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Zusammenfassung v

Diese Dissertation beschäftigt sich mit der Korrespondenz von offenen
und geschlossenen Strings. Seit langer Zeit ist es bereits evident, dass diese
beiden Sektoren der String-Theorie nicht nur aneinander koppeln, sondern
dass sich sogar Anregungen geschlossener Strings im offenen Stringsektor
identifizieren lassen. In einer Vielzahl von Beispielen wurde diese Korre-
spondenz exemplarisch gezeigt, was sich als Hinweis auf einen weit profun-
deren Zusammenhang deuten lässt. In dieser Arbeit wird versucht, dies vom
Standpunkt gekoppelter offen-geschlossener Moduliräume und letzendlich
von einem stringfeldtheoretischen Standpunkt zu verstehen. Implikatio-
nen dieser vermuteten Korrespondenz haben schon heute große Bedeutung,
unter anderem für Korrespondenzen zwischen Eich- und Gravitationstheo-
rien, AdS/CFT-Korrespondenz und nichtperturbative Phänomene in of-
fener Stringfeldtheorie.

Im Rahmen einer neu entwickelten Erweiterung der bosonischen Rand-
stringfeldtheorie (boundary string field theory) in gekrümmten Räumen
wird eine Methode vorgestellt, mit der sich geschlossene Stringanregnungen
im offenen Stringsektor identifizieren lassen. Dazu werden Faktorisierung-
seigenschaften des Pfadintegrals für allgemeine WZW-Modelle hergeleitet,
die erst zu einer adäquaten Reformulierung der Randstringfeldtheorie füh-
ren. Es wird erstmals gezeigt, dass sich auf diese Weise tatsächlich das
Auftreten gekrümmter D-Branen durch Tachyon-Kondensation aus dem
flachen Raum unter Anwesenheit von nicht-lokalen Wechselwirkungen erklä-
ren lässt. Dies deckt sich sich mit bekannten Resultaten aus konformer
Feldtheorie.

Darüber hinaus werden erste Schritte zum Studium komplexerer super-
symmetrischer Stringtheorien auf Calabi-Yau-Mannigfaltigkeiten unternom-
men, die eine exemplarische Untersuchung gekoppelter offener- und ge-
schlossener Moduliräume umfassen. Dies wird im Rahmen einer topol-
ogischen Stringtheorie erreicht, die die volle Theorie auf einen endlichen
Subsektor projeziert. Für diese Untersuchung wird die kürzlich entwicklete
Beschreibung von Typ-B-Branen mit Hilfe von Matrix-Faktorisierungen
benutzt. Es wird konkret gezeigt, wie der offene String-Moduliraum ex-
akt konstruiert werden kann und dass der Einfluss von Störungen im ge-
schlossenen Stringsektor ein Superpotenzial erzeugt, das von offenen und
geschlossenen String Moduli abhängt. Dieses Superpotenzial wird explizit
berechnet.
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Abstract vii

The topic of this thesis is the correspondence of open and closed strings.
Already for a long time it has been evident that those both sectors of string
theory do not only couple to each other, but it is also possible to identify ex-
citations of the closed string in the open string sector. This correspondence
has been shown in a multitude of examples, which indicates a deep con-
nection. This thesis tries to understand this from the viewpoint of coupled
open-closed moduli spaces and finally from a string field theoretic point
of view. Implications of this conjectures correspondence have gained great
importance, among them gauge-gravity correspondence, AdS/CFT corre-
spondence as well as non-perturbative effects in open string field theory.

A new approach to bosonic boundary string field theory on curved target
spaces is developed, which allows to demonstrate techniques to identify
closed string excitations in the open string sector. Certain factorisation
properties of path integrals over WZW-models are derived, which lead to
a adequate re-formulation of boundary string field theory. It is shown for
the first time that this setting can reproduce curved D-branes by tachyon
condensation starting from flat space as soon as non-local interactions terms
are permitted. The results coincide with expectations from conformal field
theory.

Additionally first steps are taken to study more complex supersymmetric
string theories on Calabi-Yau manifolds. This includes an exemplary inves-
tigation of coupled open-closed moduli spaces. These results are derived in
the framework of topological string theory, which constitutes a projection
to a finite subspace of the full theory. The recent formalism of matrix fac-
torisations for describing B-type branes is used in order to show how open
string moduli spaces can be constructed exactly. Moreover the influence
of closed string perturbations appears in form of an effective open-closed
superpotential, which also is explicitly computed.
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Chapter 1

Introduction

From a theoretical as well as from an experimental point of view quantum
field theory has emerged over many years of research as the correct ap-
proach to describe particle interactions at low scales and high energies, up
to the GUT scale where the unification of the known forces is predicted.
Based upon this theory the standard model of particle physics has been
developed, which has been successful in unifying the known forces and par-
ticles in a consistent mathematical framework. It provides a scheme where
all observed particles can be gathered, classified according to mass, charge,
spin etc. This extremely successful model has provided deep insights into
the fundamental laws of nature, also from a conceptional point of view.

Despite its success, in our present understanding it still leaves several
issues untouched. One of them is the fact that many properties of the
particles in the standard model must be determined by experiment. This
raises the question if there is some mechanism that fixes for example the
particle masses, and if not, then why is there a discrete spectrum observed.
Re-prashed differently, there is still a consistent framework missing which
explains the basic origin and properties of elementary particles.

Another flaw in the quantum field theory approach are the mathemat-
ical problems which arise when trying to include gravity in the theory.
The quantisation of gravity cannot be done by employing usual methods
of quantum theory. Despite many attempts, it has not been possible to
conduct the quantisation correctly, and it is also not clear if more ad-
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vanced methods will finally lead to a positive result. One the other hand,
it is evident that a thorough understanding of gravity at quantum scales
is important. An example for this is black hole physics, where it has been
known for a long time that classical concepts break down at the central sin-
gularity while even semi-classical phenomena like Hawking radiation show
that black holes must be treated as quantum objects. Another example is
cosmology, where in inflationary scenarios initial perturbations caused by
vacuum fluctuations are quantum effects that are presumed to be respon-
sible for the present distribution of matter in the universe.

The lesson to learn is that gravity makes probably a modification of
conventional quantum field theory necessary. Due to the different nature
of gravity as compared to the other known forces this modification must be
rather fundamental. It is therefore unlikely that it is possible to derive such
a theory in a bottom-up approach by mildly extending the standard model
description. Rather, major shifts in viewpoints must be expected in order
to make it possible to understand a theory of quantum gravity as part of
a greater framework which also incorporates all other known particles and
forces.

Such a modification has been proposed by string theory (see e.g. [63, 64,
99, 100]). While it shares many concepts with conventional quantum field
theories, in principle it is still able to reproduce the known forces and parti-
cles, as well as perturbative gravity. All this is achieved in a first quantised
framework, so that string theory in fact provides a perturbative approach
to quantum gravity. Generally, perturbative string theory has large ‘mod-
uli spaces’, which means that there are again free parameters in the model.
But is has been observed that there are mechanisms at work which tend to
fix these parameters and it is hoped, that this fixation is complete. This
would then yield a model free of (continuous) parameters, and one would
obtain a description of all possible vacua that can arise within string the-
ory. Unfortunately this happens often in the non-perturbative regime of
string theory, which is often hard to control as one usually deals with a
perturbative theory. Therefore it is of major interest to develop an off-shell
version of string theory, referred to as string field theory. Large parts of
this thesis are dedicated to contribute to a better understanding of such a
string field theory.

In the following we describe briefly the underlying ideas behind string
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theory from a conceptual point of view and explain some important prop-
erties and mechanisms that appear generically.

The basic construction of string theory, which has its roots originally
in the attempt to invent an effective theory for quark interactions, is very
simple. The one-dimensional worldline, which would be viewed as a particle
in spacetime, is replaced by a two-dimensional worldsheet, so that in each
time slice it appears as a ‘string’ in space rather than a point. The string’s
position in spacetime is then described by the string map Xµ(σα) which
maps the worldsheet to the target space. It is by no ways clear that such a
theory can be quantised, and indeed it does only work for two-dimensional
worldsheets, but not for higher-dimensional worldvolumes. Even the string
must satisfy certain conditions so that a quantisation is possible, namely
the Weyl anomaly cancellation condition which essentially fixes the number
of spacetime dimensions to 10 or 26 in the supersymmetric and bosonic
case, respectively. Similar conditions cannot be easily satisfied in higher-
dimensional settings, so that string theory is in fact singled out by the
simplicity of its construction.

The transition from a worldline to a worldsheet introduces new degrees
of freedom into the theory which can be imagined as the spacelike modes of
the string map on the worldsheet. These are not present for point particles,
since for them the worldline is always timelike. The existence of these modes
are finally responsible for infinitely many new excitable states of the string.
In addition, strings can appear in open and closed form, each version leading
to states with characteristic properties. While open strings describe scalar
and vector bosons in the massless sector, most remarkably one can find
excitations among the closed strings can be identified as gravitons. This
discovery has amplified the interest in string theory.

A theory formulated in more than four spacetime dimensions has to
explain why only four dimensions are actually observed. Usually extra
directions are treated as ‘internal’ dimensions, which are compactified on
a scale compatible with experimental observations. This results in a con-
struction where four-dimensional spacetime appears as usual flat Minkowski
space, whereas the internal dimensions constitute manifolds with possibly
complicated geometry. The spectrum and properties of fields appearing in
the extended dimensions depends on the details of the compactification.
Of special interest is here the supersymmetric case. In this case the com-
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pact manifold must be a six-dimensional Calabi-Yau-manifold. While it is
believed that this version of string theory is suitable to build up an exten-
sion of the (supersymmetric) standard model, it is also attractive because
mathematical methods apply which allowed for an important progress in
the past.

It turns out that in string theory typically also tachyons appear in the
spectrum. In quantum field theory this is usually an indication for a per-
turbative instability of the chosen vacuum. Hence it is important to look
for tachyon-free vacua, which has lead to a thorough and successful study
of supersymmetric string theories. In some situations one can accept the
tachyon rather as a feature than a flaw: At least in the open string case, it
has been shown that the tachyon creates a potential whose minima describe
stable vacua. In these minima also D-branes can appear, which are hyper-
surfaces on which the end-points of open strings are fixed. The number and
configuration of D-branes is an important ingredient for the investigation
of consistent string vacua. Given the importance of tachyon condensation
for the open string case, it is plausible to believe that similar techniques
also apply to closed strings. However, for them new complications arise,
which tremendously increase the technical difficulties.

With the study of tachyon potentials and the associated condensation
processes from instable to stable vacua one enters already the regime of
string field theory, since the tachyon potential can be considered as the
static approximation of a string field theory action which is also well-defined
off-shell, i.e. away from classical solutions. For the open string the tachyon
condensation is in principle under control as long as only massless and
tachyonic modes are included. But string theory usually comes with in-
finitely many massive fields, too, which can contribute non-perturbatively.
While this on the one hand adds to the technical difficulties, it on the other
hand can be shown that open and closed strings might not be so different
than originally suspected.

Over the years many examples have been collected which show that open
strings sometimes are capable of describing closed string interactions. Since
the early days of string theory it has been presumed that the distinction
between open strings and closed strings is not fundamental. This follows
already from the observation that closed string poles occur as intermediate
states in open string scattering amplitudes. From the point of view of open
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string field theory these poles seem to violate unitarity unless closed string
states are present in the classical open string field theory. One possibility
is to accept that open string field theory is not unitary and to add extra
closed string degrees of freedom by hand [155]. However, in this approach
one has to address the problem of overcounting since now the same diagram
can be obtained from the open and closed string sector of the field theory
Lagrangian.

An alternative approach is to try to identify closed string states directly
in open string field theory [127, 124]. This idea receives further motivation
from Sen’s work on non-BPS branes [114, 116] which resulted in a very
active study of open string field theory in different formulations and some
progress in understanding the vacuum structure of open strings has been
achieved [120]. The correspondence goes so far that it has been conjectured
that generally on-shell closed strings can be described by open strings. It
is tempting to conjecture that there is maybe only a single fundamental
object in string theory, and that open and closed strings are just different
ways of describing the same theory, which leads to easier formulations in
one or the other regime.

The purpose of this thesis is to investigate the correspondence between
open and closed strings on the level of boundary string field theory (BSFT).
Roughly, there are two types of input data necessary for the construction of
the action: first, the bulk conformal field theory must be specified, which
corresponds to the choice of a closed string background. As there is no
complete classification of conformal field theories, the space of closed string
backgrounds is not well-defined. Equally poorly understood is the space of
boundary interaction terms, which is used to deform the boundary confor-
mal field theory. This space is intimately related to the configuration space
of open string field theory.

On the other hand, these two spaces are certainly not independent of
each other, because some examples of dualities between open and closed
strings are known [67, 90, 127, 24, 79, 53, 118, 39, 123, 94, 78]. Such
correspondences appear already on the level of moduli spaces of classical
solutions of string theory. In particular, examples are known of coupled
open-closed moduli spaces, the most simple realisation being a constant
antisymmetric tensor field, a Kalb-Ramond field, in the closed string back-
ground which can in the same way be viewed as a gauge field in open
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string background. The further development of this idea led to Kontsevich’s
theory of deformation quantisation [81]. Also AdS/CFT-correspondence,
holography and gauge/gravity duality are research directions in string the-
ory which strongly suggest an underlying profound connection between
open and closed strings [91, 2].

In order to make progress on the issue of open-closed correspondence,
our strategy will be to consider deformations in the open string sector and
compare them to deformations in the closed string sector, starting form a
σ-model point of view. While this is already a difficult problem on the level
of open-closed moduli spaces (i.e. for on-shell string theories), we manage
to go beyond that classical niveau, at least in the bosonic case, and apply
these ideas to open string field theory [22]. We will see that it is indeed
possible to relate deformations of the closed string background to an infinite
collection of open string excitations. In order to arrive at this statement
it will be necessary to develop a version of boundary string field theory in
curved target spaces. On the way to this, a conjecture about factorisation
properties of path-integrals on curved target spaces will be made and proven
for a large class of models.

The generally obtained statements are supported by calculations in ex-
plicit models, where results on tachyon condensation on D-branes are ob-
tained, which are consistent with our knowledge of string theory in curved
target spaces, as well as with expectations from open-closed correspondence
[21]. In particular we observe strong hints that tachyons in flat space can
condense to curved branes, which are stabilised by the presence of non-local
couplings. This leads to the speculation that, roughly speaking, non-local
open string couplings are related to closed strings in open string field theory.

Once the bosonic case is understood, it is desirable to apply the lessons
learned to supersymmetric string theory on Calabi-Yau manifolds. In this
case one encounters complicated moduli spaces and therefore also the in-
teraction of open and closed string moduli is expected to be difficult. We
were able to make progress in the study of a topological version of this
model. The outcome presented in the last part of this thesis shall be un-
derstood a preparation for further investigations. The study of open-closed
moduli spaces is an important topic in itself, therefore the results given are
still very interesting from this point of view. The investigation of non-local
couplings in supersymmetric settings is an ongoing research project.
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The framework for the construction of open-closed moduli spaces is the
topologically B-twisted N = (2, 2) theory. The topological version is very
attractive because it contains less degrees or freedom, and these are under
better control than in a non-topological theory. This is mainly due to the
fact that the renormalisation group flow in the models under investigation
is strongly constrained. Yet these theories describe certain quantities of
physical importance like for example Yukawa couplings.

Since we work with a topological theory, the appearance of non-local
couplings is not expected. Hence this approach gives in a way the reduc-
tion to constant modes of the procedure we developed for bosonic string
field theory. The results are considered then from a slightly different point
of view: we manage to relate the topological calculations to the renor-
malisation group by conformal field theory methods [20]. This allows us
to obtain concrete expressions for effective superpotentials on the quintic
which are exact in the open string coupling and first order in the closed
string coupling. While these results open up the way to many other in-
triguing questions, it would be very interesting to extend the calculations
to the non-topological case. In particular the role of non-local couplings in
supersymmetric theories should be clarified. These issues will be subject
of further studies.

This thesis is organised in three parts. The first part gives some general
background information on string theory and its mathematical description.
Conformal field theory in general is introduced briefly, as well as Wess-
Zumino-Witten models, which will be used to formulate open string field
theory on curved target spaces. The fourth chapter collects some informa-
tion on effective theories and the spacetime interpretation of string theory
as well as its relation to renormalisation group flow. This will be useful as
preparation for the investigation of string field theory.

The second part deals with closed string deformations in open string
field theory. Chapter five provides a basic introduction to bosonic bound-
ary string field theory as well as to an associated generalised boundary state
formalism. The sixth chapter reviews central aspects of tachyon conden-
sation, since we will see later that the tachyon is the driving force which
causes a localisation on branes curved space. This chapter also addresses
some issues of open-closed correspondence which appear in this context.
Chapter seven contains the main results on the construction of boundary
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string field theory on curved manifolds. It contains the factorisation con-
jecture as well as its proof for group manifolds. In the eighth chapter a
concrete example is worked out, which demonstrates the condensation of
a flat 3-brane to a spherical 2-brane, triggered by the presence of no-local
couplings. Issues of stability under tachyonic perturbations is discussed,
and perturbative β-functions are calculated explicitly.

The third part contains our result on the deformations of the topologi-
cally twisted B-model. Chapter nine provides the technical background by
a brief introduction to N = (2, 2) string theory on Calabi-Yaus, from the
conformal field theory point of view as well as from the Landau-Ginzburg
point of view. The tenth chapter explains how D-branes arise in this model
and how they can be described by so-called matrix factorisations. A few
very basic examples are provided and the connection to conformal field
theory is discussed. In chapter eleven, the matrix factorisation technique is
used to determine the moduli space of 2-branes.1 The effect of closed string
deformations on the open string moduli space is investigated. By using the
connection to conformal field theory, it is possible to explicitly calculate
the effective superpotential. Although this method has been developed for
a specific example, it is generally applicable.

Main new results are presented in chapters 7, 8 and 11, while many less
significant calculations and insights are distributed over other chapter, too.
In the course of this research project the main results have been published
already in [22, 21, 20].

1As the four external dimensions are ignored we speak of 2-branes with respect to
the internal Calabi-Yau threefold. Hence when one takes all dimensions into account
one should speak of D5-branes rather.
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String theory





Chapter 2

Conformal field theory

This chapter gives a short introduction to conformal field theory (CFT)
[23, 62, 36]. Often string theory is defined in a path-integral approach (see
[63, 64, 99, 100]), where the integrals are taken over all possible embed-
dings of the 2-dimensional string worldsheets in spacetime. Although this
approach provides a very intuitive way of thinking about string scattering
diagrams, it is difficult to work with this formalism in general. Conformal
field theory provides an efficient and well developed way for perturbative
string theory calculations around a classical background configuration. In
fact, in a configuration where the string β-functions vanish, there is a map-
ping between string states and operators in an associated 2-dimensional
conformal field theory.

2.1 Closed strings

A propagating closed string is geometrically described by a cylindrical
worldsheet Σ = S1 × R, where the non-compact direction is temporal.
After a suitable Wick-rotation into Euclidean space, the worldsheet can be
furnished with complex coordinates z and z̄. At the heart of CFT lies its
invariance under conformal transformations. These are locally given by

z "→ f(z) z̄ "→ f̄(z̄) , (2.1)
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where f(z) and f̄(z̄) are holomorphic and anti-holomorphic. On the other
hand, global conformal transformations of the closed string worldsheet are
given by the Möbius group, acting like

z "→ az + b

cz + d
with

(
a b
c d

)
∈ SL(2, R) . (2.2)

A similar transformation appears for z̄. The infinitesimal generators of
this transformation are given by ln = −zn+1∂z. They can be combined
into a energy-momentum tensor, which can be considered as the operator
generating scale transformations. In a quantum field theoretic treatment
the so-called Witt-algebra

[ln, lm] = (n−m)ln+m (2.3)

satisfied by ln is centrally extended, known as the Virasoro algebra. In this
case the generators are denoted by Ln and obey

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 . (2.4)

The constant c is called central charge [152].

The energy-momentum tensor T (z, z̄) = T (z) + T̄ (z̄) is then given by

T (z) =
∑

n

Ln

zn+2
(2.5)

and analogously for L̄n. One should note that the holomorphic (‘left-
moving’) and anti-holomorphic (‘right-moving’) operators commute for boun-
dary-less worlsheets,

[Ln, L̄m] = 0 . (2.6)

Thus the full algebra is a product of two Virasoro algebras. This will also
be true for the Hilbert space of states, which in the same way factors into
a left-moving and a right-moving part,

Hc = H⊗ H̄ . (2.7)

This Hilbert space is determined through the action of the Virasoro gener-
ators by imposing

L0|h〉 = h|h〉 Ln|h〉 = 0 for n > 0 (2.8)
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on physical states |h〉 in each of the two sectors. The eigenvalue h of L0

is the conformal weight of |h〉, which is called primary state when it is
eigenstate of L0.

In conformal field theory every state |φ〉 can be associated to an operator
φ(z, z̄) acting on the conformal vacuum via

|φ〉 = lim
z,z̄→0

φ(z, z̄)|0〉 . (2.9)

Using this correspondence, the conformal weight of a primary state acquires
an interpretation as scaling exponent under local conformal transformations
(f, f̄),

h(z, z̄) "→
(

∂f

∂z

)h (
∂f̄

∂z̄

)h̄

h(z, z̄) . (2.10)

Locally this is encoded in the action of the energy-momentum tensor. If
the conformal transformation is given by f(z) = z + ε(z) the associated
charge (for the holomorphic sector) is defined as

Tε =

∮
dz

2πi
ε(z)T (z) , (2.11)

where the integral goes along a closed contour around the origin. By ex-
pansion one finds a commutator for operators at the same radius1

[Tε, h(w, w̄)] =

(
ε(w)∂w +

∂ε(w)

∂w
h

)
h(w, w̄) . (2.12)

A similar relation holds also under the integral,

T (z)h(w, w̄) =
h

(z − w)2
h(w, w̄) +

1

z − w

∂

∂w
h(w, w̄) + . . . (2.13)

where the dots denote holomorphic functions in z − w, which are regular
as z → w.

This is an example for a operator-product-expansion (OPE), which is a
useful technique in CFT. In fact, for all primary fields hi such a OPE is
given generally by2

hi(z)hj(0) =
∑

k

zhk−hi−hjCk
ijhj(0) =

C0
ij

zhi+hj
+ less singular terms . (2.14)

1by a suitable transformation quantisation in time direction has been replaced by
radial quantisation.

2only the holomorphic sector is considered, for simplicity.
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The constants Ck
ij appear as structure constants. Their knowledge deter-

mines the OPE and therefore the theory completely.

With the OPE at hand it is possible to find expressions for n-point
functions 〈hi1hi2 · · ·hin〉. In particular, as by definition 〈hi(z)〉 = 0 one
finds

〈hi(z)hj(0)〉 =
C0

ij

zhi+hj
, (2.15)

because all less singular terms in (2.14) are linear in the fields.

2.2 Open strings

2.2.1 Boundary fields and correlators

While closed string worldsheets have the topology of a cylinder, open strings
are described by strips of topology I×R. As an open string has boundaries,
the treatment of the string end points introduces new structures into the
theory.

The main complications arising in the open string sector come from the
necessity of imposing boundary conditions, as the worldsheet is not closed
any more. The presence of a boundary may destroy conformal invariance,
although in a less drastic way than a relevant perturbation of the closed
string background. The proper setting up of a boundary conformal field
theory (BCFT) means the introduction of a boundary in a well-defined
way, and the proper choice of boundary conditions.

Local conformal transformations, which played an essential role in the
construction of CFTs in previous sections, are now modified by the presence
of a boundary. They must respect the boundary in the sense that only
transformations tangential to it are valid. Otherwise the local properties
of CFTs with and without boundary do not differ. Global properties, such
as the spectrum, do differ immensely.

The restriction of valid conformal transformations results in a break-
down of the left- and right-Virasoro algebra to a single one. Still, the
condition for conformal invariance, namely the tracelessness of the energy
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momentum tensor T , should also be satisfied at the boundary. Therefore
one has to impose

T (z) = T̄ (z̄) (2.16)

at the boundary z = z̄∗, where the form of z∗ depends on the geometry of
the boundary3. The resulting conditions from this requirement are called
gluing conditions. They encode the conformal boundary conditions.

Starting from this expression, the mode expansion of (2.16) translates
into a condition on the Virasoro generators,

Ln ≡ Ln + L̄−n = 0 (2.17)

at the boundary and for all n. Like before in the closed string case, the new
single set generators Ln can be used to define the state space of boundary
states and the conformal vacuum.

One way to construct operators in BCFT is the use of the method of
images. This requires that any operator φ(z, z̄) in the bulk is accomplished
by a ‘mirror operator’ φ∗(z∗, z̄∗) on the other side of the boundary in a way
that local conformal symmetries are untouched. I.e. an operator φ(z, z̄) on
the open string worldsheet can be represented as φ(z, z̄)φ∗(z∗, z̄∗) on the
closed string worlsheet.

While this is fine everywhere in the bulk, it produces singularities when
the bulk operator is transported to the boundary. There the field interacts
with its image, which can be seen from the OPE,

φ(z, z̄)φ∗(z∗, z̄∗) =
A

|z − z̄∗|2hφ
+ . . . (2.18)

As z = z̄∗ defines the boundary, the one-point function

〈φ(z, z̄)〉disk =
A

|z − z̄∗|2hφ
(2.19)

becomes singular.

In addition there are operators in the spectrum, which are genuine to
the open string sector.

3when the boundary is identical to the real line, z̄∗ ≡ z̄.
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In the same way as in the bulk, an open string Hilbert space can be
built, consisting of states which are compatible with the gluing conditions.
Not surprisingly, an operator-state correspondence can be employed here
again, which allows the construction of boundary fields. These fields live
by construction at the boundary x = z = z∗. Again, they posses OPEs,
which are this time of the form

ψi(x)ψj(y) =
∑

k

C(α)k
ij

(x− y)hi+hj−hk
ψk(y) . (2.20)

In complete analogy, the boundary field ψi can be assigned a conformal
weight hi which appears in the OPE with T (x)− T̄ (x). A formal difference
to the closed string case is the appearance of an additional label (α) in

the defining constants C(α)k
ij of the boundary OPE. This label denotes a

certain boundary condition. Generally, one expects that there are more
than one possible boundary conditions for a given CFT, so that the open
string Hilbert space becomes a direct sum of the different boundary sectors.

Going back to the idea, that boundary fields describe open strings, it
seems plausible to introduce operators, which switch between different
boundary conditions. The heuristic view behind that is an open string
whose one end obeys boundary condition (α) and whose other end obeys
boundary condition (β). Indeed it makes sense to introduce such operators
in a BCFT. The associated Hilbert space will be denoted by H(αβ). For
α *= β its elements will be called boundary changing operators, whereas
boundary preserving operators are contained as special case for α = β in
H(α) ≡ H(αα). In general, the open string Hilbert is a direct sum of Hilbert
spaces H(αβ).

2.2.2 Boundary states

Let us be more explicit about the construction of the boundary states
associated to boundary fields.

When an algebra of fields is given, boundary conditions can be viewed
as relations that induce a linear map on the field algebra with values in
C. Every element of the Hilbert space defines such a map. But since these
maps must obey algebraic constraints, only certain linear combinations of
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these homomorphisms can be chosen. In this way each boundary condition
(α) can be associated to a ‘boundary state’ ||α〉〉 via

〈φ1 · · ·φn〉(α) ≡ 〈φ1 · · ·φn||α〉〉 . (2.21)

The boundary state ||α〉〉 is a coherent state, that means it is no finite
energy state in the Fock space. The coherent states that describe boundary
conditions are characterised by the property that the left- and right-moving
fields corresponding to unbroken symmetries are related to one another at
the boundary. Thus for boundary preserving symmetry generators S(z)
and S̄(z̄) there are relations of the form

S(z) = ρ(S̄(z∗)) (2.22)

at the boundary z = z∗ (e.g. for the real line z∗ = z̄). The automorphism
ρ must leave the stress tensor invariant. The symmetry generator has a
mode expansion of the form S(z) =

∑
n Snz−n−h, where h is the conformal

weight. After a suitable conformal transformation the condition (2.22) can
be expressed in modes, acting on the boundary state as

(
Sn − (−1)hρ(S̄−n)

)
||α〉〉 = 0 n ∈ Z . (2.23)

These are called gluing conditions and must be obeyed by any symmetry
preserved at the boundary. In particular for the conformal generators the
conditions are

(
Ln − L̄−n

)
||α〉〉 = 0 . (2.24)

Every boundary conformal field theory must obey these conditions, since
they are independent of the choice of ρ, as long as ρ leaves the stress tensor
invariant.

For a Hilbert space of the form

H =
⊕

i,j

N ij
k Hi ⊗ H̄j, (2.25)

where i, j label irreducible representation of chiral symmetry algebras, and
N ij

k are constants, one can show that the solutions of (2.22) lay in the
diagonal Hilbert space, denoted by

|i〉〉 ∈ Hi ⊗ H̄i . (2.26)
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These special coherent states are called Ishibashi states [74]. Any boundary
state can be expressed as a linear combination of Ishibashi states (if there
are finitely many, the theory is called rational)

||α〉〉 =
∑

i

Bi
(α)|i〉〉 . (2.27)

The constraints we found earlier on the boundary states must translate in
some way on the coefficients Bi. There are two types of such constraints,
the Cardy [30] conditions and the ‘sewing relations’ [87, 32]

The Cardy conditions come from the fact that the left hand side of (2.21)
is a correlator in the open string sector, and it is identified with an expres-
sion in the closed string sector on the right hand side. Demanding such
an equivalence for the complete partition function, i.e. an invariance under
modular transformations, this leads to the Cardy constraints, relating open
string one-loop diagrams to closed string tree-level amplitudes.

The sewing conditions are conditions which arise already on the upper
half plane, i.e. without taking loop diagrams into account. These conditions
are statements about crossing symmetry, which leads finally to an associa-
tive bulk-boundary algebra. One can consider different combinations of
bulk and boundary fields in three- and four-point functions, which there-
fore leads to three sewing relations that involve boundary fields (coming
from correlators with four boundary fields, with two boundary fields and
one bulk field, and with one boundary field and two bulk fields).

One should note that is no general solution to all these constraints
known. It is not even clear, if they are consistent in all cases, and if there
is always an unique solution. The investigation of relations between bulk
and boundary data in conformal field theories is still an interesting branch
of research.

2.3 Renormalisation group flow

Conformal field theories are constructed as scale invariant theories and
represent therefore fixed points under scale transformations in the space
spanned by all possible perturbations. There is a principle difference be-
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tween the effects of perturbation by bulk operators and by boundary opera-
tors. The general understanding is that perturbations can possibly destroy
scale invariance, which makes an adjustment of the coupling constants nec-
essary. The task is to find new values for the couplings so that the theory is
again scale invariant and consistent in the sense that no singularities with
logarithmic behaviour appear in correlation functions. When this proce-
dure is conducted perturbatively around a known conformal point, it is
necessary to choose a certain scheme which determines how to deal with
non-logarithmic singularities. This procedure is known as renormalisation.
Finally this leads to a set of equations called β-functions, which describe
how the couplings must be changed under small perturbations of the theory.
The dependence of these functions on the chosen renormalisation scheme
is a relict of the perturbative expansion.

Perturbations of conformal field theories without boundaries by bulk
fields have been studied starting with [152, 153]. There the c-theorem has
been proven, stating that the central charge c can only decrease under bulk
deformations. An approach to renoramlisation group flow in the language
of conformal field theory can be found in [31].

For the boundary sector the behaviour is different. One can show that
perturbations with boundary operators are not able to change the central
charge (at least not in the presence of finitely many perturbing operators).
That means under boundary renormalisation group flow the basic prop-
erties of the bulk CFT are preserved, giving valuable information on the
possible end points of the flow. Generally speaking, it is therefore often
easier to keep the boundary flow under control than the bulk flow.

The influence of bulk perturbations on boundary CFTs has already been
investigated in [35, 125, 51, 60]. A treatment of combined bulk and bound-
ary renormalisation group flow has not been available until [48]. In the
following their arguments will be briefly reviewed.

Starting from a conformal action S∗ the perturbed action has the form

S = S∗ +
∑

i

λ̃i

∫
d2zφi(z, z̄) +

∑

j

µ̃j

∫
dxψj(x) , (2.28)

where φi is a set of bulk fields with associated coupling constants λ̃i, and ψj

are boundary fields with couplings µ̃j. The perturbing operators can have
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different scaling dimensions, thus the couplings themselves are dimension-
ful. It makes sense to define dimensionless bare couplings λi and µj and
introduce an explicit length scale l to compensate:

λ̃i = λil
hφi

−2 µ̃j = µjl
hψj

−1 . (2.29)

The classical scaling behaviour is determined by the conformal weights hφi

and hψj . One can immediately see that the couplings are scale invariant for
hφi = 2 and hψj = 1. The associated operators are called marginal then;
in case hφi < 2, hψj < 1 they are called relevant, and they are irrelevant
for hφi > 2, hψj > 1. Contributions from irrelevant operators are not
crucial for the renormalisation and contribute only to subleading order.
Relevant perturbations on the other hand can change the conformal field
theory fundamentally. Marginal operators correspond to flat directions in
moduli space and therefore describe deformations which lead to families of
connected theories. Although marginal perturbations do not change the
scaling behaviour to lowest order, they may acquire quantum corrections
which threaten scale invariance again. When such corrections are absent,
the operators are called exactly or truly marginal.

When the path-integral defined by the action (2.28) is expanded in the
couplings, this will generate insertions of (mixed) bulk and boundary fields.
When these operators coincide this leads to infinities, which must be regu-
larised. One possibility is the introduction of an UV cutoff by demanding
that

|zi
k − zi′

k′| > l |xj
k − xj′

k′| > l d(z) >
l

2
. (2.30)

Here zi
k denotes the kth insertion of the ith bulk operator, and xi

k analo-
gously for the boundary fields. The third condition demands a cutoff for
the distance d(z) of bulk operator insertion points from the boundary. For
the upper half plane d(z) = Im z.

These three inequalities are responsible for higher order contributions to
β-functions in the coupling constants. The reason is that the cutoffs appear
as boundaries of integration domains, and variation with respect to l gen-
erates additional contributions from these integrals to the obvious scaling
behaviour in (2.29). Therefore is it possible to determine changes δλi and
δµj of the couplings under variations of the scale l, so that scale invariance
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of the theory is ensured. One can choose a variable t parametrising the
renormalisation flow and express the resulting β-functions as derivatives of
the couplings with respect to this parameter

λ̇k = (2− hφk
)λk + πCijkλiλj +O(λ3)

µ̇k = (1− hψk
)µk +

1

2
Bikλi + Dijkµiµj +O(µλ, µ3, λ2) .

(2.31)

Here Cijk, Dijk and Bik denote the structure constants of the bulk-three-
point function, the boundary-three-point function and the bulk-boundary-
two point function. Renormalisation group fixed points are determined by
the vanishing of the right hand sides of (2.31).

In the second equation in (2.31) we see that there is a contribution from
closed string couplings to the β-functions of the open string couplings.
Therefore it can happen, that a marginal boundary field does not stay
marginal when a bulk pertubation is switched on, i.e. even for marginal
fields it is not always possible to set them to zero constantly. This situation
will be crucial in the arguments in chapter 8 and 11. In particular one
understands that, at least for these perturbative β-functions, changes in
the bulk fundamentally modify the boundary theory, but changes in the
boundary sector have no effect on the bulk. In chapter 8 the renormalisation
group methods will be applied to the factorised boundary string field theory
action, where the distinction of the two sectors is not that clear any more.
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Chapter 3

WZW-models

3.1 Closed string

Wess-Zumino-Witten models were introduced in [141, 144, 143] as σ-models
with Lie groups as target spaces. They represent spacial version of CFTs,
where a larger symmetry is present, given by the Lie algebra of the target
space. The algebra is described by the generators

[
T a, T b

]
= ifab

cTc , (3.1)

where fabc are the structure constants of the group. The trace operator
used here is normalised as

Tr
(
T aT b

)
= 2δab . (3.2)

The model has a symmetry which is generated by currents J and J̄ .
Their algebra is obtained as central extension of the Lie algebra. This is
known as Kac-Moody algebra and is given by

[
Ja

n, J b
m

]
= ifab

c J c
n+m + k n δabδn+m,0 . (3.3)

Again, there is also an independent anti-holomorphic sector present gener-
ated by J̄ with the same commutation relations. The constants fab

c ap-
pearing in the algebra are the structure constants of the original Lie group.



24 3. WZW-models

k determines the central extension and is called the level of the model.
From unitarity constraints it follows that k must be a positive integer.

Once this structure is given, the Virasoro algebra can be obtained from it
by the so-called Sugawara-construction. The Virasoro generators are then
given by

Ln =
1

2

1

k + h∨

∑

a

∑

m

: Ja
mJa

n−m : (3.4)

involving normal ordered products of the Kac-Moody generators. h∨ is the
dual Coxeter number, which is a constant associated to the Lie group. This
Virasoro algebra comes with a central charge

c =
k d

k + h∨
, (3.5)

where d is the dimension of the Lie group.

The remaining commutation relations are given by

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m

[Ln, J
a
m] = −mJa

n+m .
(3.6)

These can be used to checked that

J(z) =
1

k
Ja(z)Ta (3.7)

is primary with weight 1, where Ta are the generators of the KM-algebra.

The connection to the worldsheet description can be provided by in-
troducing the map g from the worldsheet into the group. This way the
KM-generators can be represented as

J = −∂zgg−1 J̄ = g−1∂z̄g . (3.8)

The σ-model action is given by the two-dimensional integral [143, 54]

k

4πi
Tr

∫

Σ

d2z g−1∂gg−1∂̄g . (3.9)

It turns out that this action, once quantised, is not conformally invariant,
although it is classically scale-invariant. It can but be restored by addition
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of a topological term, the so-called Wess-Zumino term. The full action is
given by

SWZW (g) =
k

4πi
L(g) +

k

4πi
Γ(g) . (3.10)

The first term is given, as states before, by

L(g) = Tr

∫

Σ

d2z g−1∂gg−1∂̄g . (3.11)

The second term is more intricate to define. It is assumed that the target
group G is connected and simply connected and that the worldsheet Σ is
boundary-free. In this case the field g : Σ → G map be extended to a map
g̃ : B → G, where B is 3-dimensional whose boundary is the closed string
worldsheet, ∂B = Σ. In this case one may define the WZ-form1

χ =
1

3
Tr

(
dgg−1

)∧3 (3.12)

and set

Γ(g) =

∫

B

g∗χ . (3.13)

Note that the pullback has been explicitly included because Γ(g) is defined
through an integral in the target space.

Whenever χ is exact, Γ can be reduced to a worldsheet integral, but in
the general case Γ(g) is multi-valued. This is because there are ambiguities
of the form

∫
B ∆g∗χ, where ∆g stands for the difference of the different

extensions. As the holonomy group is Z for the groups under consideration,
the ambiguities in the action are integer multiples of 1

4πiΓ(g). The only
way to make path-integral independent of the choice of the extension is to
arrange the coefficient in a way so that the ambiguous contributions are
multiples of 2π.

The relative coefficient between L(g) and Γ(g) is fixed by the requirement
of conformal invariance. Luckily it is possible to adjust the parameter of
the model, k, in a way that yields well-defined correlation functions, namely
by demanding that k is positive integer.

1for notational convenience there will be no further distinction between g and g̃.
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One should note that, although the WZ-term is given by an integral
over a 3-dimensional extension of the worldsheet, its variation is still a
worldsheet integral. In the presence of a B-field (a two-form B living in
the target space (group manifold) G), the variation of the B-field part of
the action is

δ

∫

Σ

g∗B =

∫

Σ

(g + δg)∗B −
∫

Σ

δg∗B

=

∫

∂−1(g∗Σ∪(g+δg)∗Σ)

dB =

∫

∂−1(g∗Σ∪(g+δg)∗Σ))

χ,
(3.14)

where the first two integrals are over the worldsheet Σ, and the last two
integrals are over a submanifold of the target space (defined by the map g :
Σ → G, g(Σ) =: g∗Σ). The expression ∂−1O denotes the volume enclosed by
the boundary-less surface O. Clearly, g∗Σ∪ (g + δg)∗Σ) has no boundaries,
because closed strings are considered, and the variation at initial and final
times vanishes.

χ is a three-form living in the target space. As soon as it is no longer
exact (i.e. χ *= dB) it cannot easily be expressed from a worldsheet point
of view (indeed, the invariance of the action under G × G determines χ).
One way to proceed is to extend the worldsheet Σ by a third coordinate y,
so that the integration domain can be expressed by means of an extended
map g̃(z, z̄, y) and a three-dimensional extension B of the worldsheet:

g̃∗B = ∂−1(g∗Σ ∪ (g + δg)∗Σ))

Σ ⊂ B

g̃(z, z̄, 0) = g(z, z̄)

g̃∗|y=0B = g∗Σ

(3.15)

The equations of motion are obtained through the two contributions to
the variation of the action. In addition to the topological term, the local
worldsheet integral provides another term, so that both combined give the
equations of motion

∂̄J = 0 = ∂J̄ . (3.16)

These state that the classical WZW-currents are holomorphic or anti-holo-
morphic, respectively.



3.1 Closed string 27

Finally we list the OPEs in several relevant cases, as these have been
used in later calculations. They are given by

Ja(z)J b(w) ∼ kδab

(z − w)2
+ ifab

c

J c(w)

z − w

Ja(z)g(w, w̄) ∼ −T a g(w, w̄)

z − w

J̄a(z)g(w, w̄) ∼ g(w, w̄)

z − w
T a .

(3.17)

3.1.1 Polyakov-Wiegmann identity

The WZW-action also satisfies a very useful identity, which is due to Pol-
yakov and Wiegmann [101]. When the field g is composed of two field as
g = g1g2, the terms in the action split into

L(g1g2) = L(g1) + L(g2) + Tr

∫
d2z

(
g−1∂g1∂̄g2g

−1
2 + g−1

1 ∂̄g1∂g2g
−1
2

)

Γ(g1g2) = Γ(g1) + Γ(g2)− Tr

∫
d2z

(
g−1
1 ∂g1∂̄g2g

−1
2 − g−1

1 ∂̄g1∂g2g
−1
2

)
,

(3.18)

which combine to

S(g1g2) = S(g1) + S(g2) + W (g1, g2) (3.19)

with

W (g1, g2) = 2Tr

∫
d2z g−1

1 ∂̄g1∂g2g
−1
2 . (3.20)

This is valid for the closed string case. In the open string case, where Σ
has a boundary, more complications appear.

3.1.2 Chiral symmetry

The holomorphicity of the currents points towards a chiral symmetry of
the model. It can easily be verified that the action has a symmetry group
GL ×GR, which acts as

g → hL(z)ghR(z̄) . (3.21)
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Most easily this can be seen when which can be seen when one applies the
Polyakov-Wiegmann formula:

L[hLghR] + Γ[hLghR] = L[hL] + Γ[hL] + L[ghR] + Γ[ghR] + W [hL, ghR]

= L[hL] + Γ[hL] + L[g] + Γ[g] + L[hR]

+ Γ[hR] + W [hL, ghR] + W [g, hR]

= L[g] + Γ[g]

(3.22)

The fresult in the final line is obtained by noting that L[hL] vanishes be-
cause it contains derivatives ∂̄; the same is true for L[hR], W [hL, ghR] and
W [g, hR]. Γ[hL] is zero because it is given by (h−1

L ∂hLdz)∧3 and holomor-
phicity of hL causes any three-form constructed out of an extension into the
interior of the worldsheet to vanish. This argument is also true for Γ[hR].
Therefore the action possesses the symmetry claimed.

3.2 Open string

As expected, the situation changes drastically when a worldsheet boundary
is introduced into the model [80, 8, 126]. The most obvious effect it has
is, that the symmetry group cannot be fully preserved any more. We will
see below that conformal boundary conditions imply that the worldsheet
boundary lies in a (twisted) conjugacy class, so that only part of the full
symmetry can be realised.

In the case of open strings variation of the B-field parts yields

δ

∫

Σ

g∗B =

∫

Σ

(g + δg)∗B −
∫

Σ

δg∗B (3.23)

as well, but the surface g∗Σ ∪ (g + δg)∗Σ has a boundary, so that the
operation ∂−1 is not well defined. However, this problem can be overcome
in the presence of D-branes, because they provide a unique way to close
the holes by using them as ”caps”. This is possible, because (g∗Σ ∪ (g +
δg)∗Σ) ∩ (D-branes) are 1-cycles. When D1 and D2 denote those parts of
the D-brane hyperplanes, which are bounded by these 1-cycles, the domain
of integration can be defined as M := ∂−1(g∗Σ ∪ (g + δg)∗Σ ∪ D1 ∪ D2).
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The Di are not uniquely determined, but that this does not matter as long
as the variation is correctly defined as

∫

M

χ−
∫

D1

α1 −
∫

D2

α2. (3.24)

Independence of the choice of the interpolating hyperplanes Di is achieved
by demanding that

dαi = χ|Di (3.25)

By this definition α is not determined uniquely, but only up to an exact
one-form β:

α → α + dβ (3.26)

Thus the action should read

SWZW [g] :=
κ

4πi
L[g] +

κ

4πi
Γ[g]− κ

4πi

∫

D

(α + dβ)

=
κ

4πi
L[g] +

κ

4πi
Γ[g]− κ

4πi

∫

D

α− κ

4πi

∮

∂D

β

=
κ

4πi
L[g] +

κ

4πi
Γ[g]− κ

4πi

∫

D

α +
κ

4πi

∮

∂Σ

β

(3.27)

This means that an action

S ∼ L[g] +

∫

g∗Σ

B +

∫

g∗Σ∩D-brane
A (3.28)

is only well defined up to

(χ, α1, α2, β1, β2) :=
κ

4πi

[∫

M

χ−
∫

D1

α1 −
∫

D2

α2 +

∮

∂Σ

β1 +

∮

∂Σ

β2

]

(3.29)

3.2.1 D-branes

Having identified conformal boundary conditions for the WZW model (al-
though, as remarked before, there do often exist boundary conditions which
are not of the maximally symmetric type described by conjugacy classes;
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maybe not even twisted conjugacy classes are general enough to capture
all possible boundary conditions) we are now interested in their spacetime
interpretation.

Following [8] we use the currents2

J = ∂gg−1 J̄ = g−1∂̄g (3.30)

and re-write them in term of tangential and normal vectors on the disk. In
the open string picture these are given by

∂t =
1

2
(∂ + ∂̄) ∂n =

1

2
(∂ − ∂̄)

∂ = ∂t + ∂n ∂̄ = ∂t − ∂n.
(3.31)

With

AdfX := fXf−1 (3.32)

the currents can be re-written as

J = ∂tgg−1 + ∂ngg−1 = Adg(g
−1∂tg ) + Adg(g

−1∂ng)

J̄ = g−1∂tg − g−1∂ng
(3.33)

J ± J̄ = 0 are conformal boundary conditions.

The Dirichlet case The sum of both is given by

J + J̄ = (1 + Adg)g
−1∂tg + (1− Adg)g

−1∂ng . (3.34)

In the commutative limit, which may be defined as the limit in which all
those structure constants in the current-current OPE vanish, which are not
contracted with the identity operator (i.e. only C0

ij survived), (3.34) reduces
to ∂tX = 0. This is a well-known condition from open bosonic string theory.
It describes Dirichlet boundary conditions. On the other hand we will find,
that the combination J − J̄ = 0 corresponds to Neumann conditions. This
is verified as follows.

Acting on a fixed group element y, Adg describes an orbit in the group.
We can split the tangent space of the group into a part T n

y which is normal

2The definition of J differs by a minus sign compared to [8].
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to the orbit, and a part T t
y tangential to it. Note that therefore the action

of Adg on T n
y is trivial, i.e.

Adg

∣∣∣
T n

= id, (3.35)

whereas we cannot say anything about its action on the tangential part.
Therefore, on T n the Dirichlet conditions becomes

(J + J̄)
∣∣∣
T n

= (1 + Adg)g
−1∂tg

∣∣∣
T n

= 0 (3.36)

Thus indeed the Dirichlet condition g = const is satisfied as long as the
boundary of the worldsheet maps into a conjugacy class.

On the conjugacy class, i.e. evaluated on T t, the operater 1 − Adg is
invertible (because it vanishes only on T n, except for degenerate cases). It
is possible to define a 2-form

ω = g−1dg
1 + Adg

1− Adg
g−1dg . (3.37)

It can be shown that dω ∝ (g−1dg)3. This provides a geometric inter-
pretation of the boundary condition. With this point of view we see that
conjugacy classes are in fact D-branes of WZW models.

Note that in the normal directions the Neumann condition ∂ng is not
satisfied.

The Neumann case

J − J̄ = (1− Adg)g
−1∂tg − (1 + Adg)g

−1∂ng, (3.38)

Again, we can split the tangent space like before. But now the operator
1−Adg vanishes and we end up with Neumann boundary conditions ∂ng = 0
on the conjugacy class.

Note that in a WZW setting there is less freedom to choose D-branes of
different dimensions than in ordinary tensor products of flat bosonic CFTs.
In particular it is not always possible to impose Dirichlet conditions in all
direction, iėṫo construct a D0-brane, because this would be in conflict with
the commutation relations between the currents.
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3.2.2 Conjugacy classes

As has been already indicated above a way to construct D-branes in WZW
model is provided by the use of conjugacy classes [49]. Generally, the
only requirement for conformal invariance is the vanishing of the energy
momentum tensor on the boundary,

TrT = T (z)− T̄ (z̄) ≡ 0 . (3.39)

One way satisfy this condition is by employing the Sugawara construction
of T by taking T (z) ∼: J(z)J(z) : and T̄ (z̄) ∼: J̄(z̄)J̄(z̄) :. For the currents
J and J̄ this means that they must be glued together by fulfilling

J(z) = ΛJ̄(z̄) (3.40)

at the boundary. Λ denotes an automorphism of the algebra, and its choice
is restricted by conformal invariance. It is possible to associate a geometry
to the choice of Λ, as demonstrated in the previous paragraph, where a
rather explicit description of the D-brane through the vanishing of the
normal bundle was given. Generally the automorphisms are of the form

Λ = ΩAdg , (3.41)

where Ω is an outer automorphism, i.e. one that does not depend on location
g in the group. It is clear then, that in the simplest case, where Ω =id the
D-branes are given by conjugacy classes

g|∂Σ ∈ C(f) (3.42)

(if f ∈ g(∂Σ) then hfh−1 ∈ g(∂Σ)), where C(f) is a conjugacy class

C(f) := {gfg−1, g ∈ G} . (3.43)

This construction coincides with the example in the previous paragraph,
so that generalised Dirichlet boundary conditions can be associated to
conjugacy classes with trivial outer automorphism, whereas the Neumann
boundary conditions correspond to conjugacy classes with Ω = −id. In
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general cases other outer automorphism may be of relevance, leading then
to twisted conjugacy classes, which are but of not further importance for
what follow.

The action is then constructed as

Lg∗Σ + ΓM −
∫

D

α (3.44)

where

dα(g) = χ(g) ∀g ∈ C(f) (3.45)

It is possible to evaluate the topological term Γ on the conjugacy class.
In fact, it reduces to a local contribution then, as can be seen from the
following calculation:

Γ[gfg−1] = Γ[g] + Γ[fg−1]−
∫

M

d(g−1dgd(fg−1)(fg−1)−1)

= Γ[g] + Γ[g−1] +

∫

M

d(f−1g−1dgfg−1dg)

=

∫

∂M

f−1g−1dgfg−1dg

(3.46)

Then α is defined as

α = f−1g−1dgfg−1dg (3.47)

In addition the ambiguities δS must be integer multiples of 2π, which im-
poses a constraint on valid conjugacy classes. In particular the consequence
is that the WZW level k will be quantised.

For illustrational purposes, and as preparation of chapter 8, we briefly
explain the maximally symmetric D-branes of a WZW model with target
group SU(2).

3.2.3 Example: D-branes in SU(2)

As was noted above, branes in WZW models are, at least in the maximally
symmetric case, described by conjugacy classes of the target group. The
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geometry of such subgroups of SU(2), which is isomorphic to S3 is well-
known and given by a S2-bundle which degenerates at the poles of S3.

For these D-branes a conjugacy class C, which is a closed manifold, can
be contracted in two ways. The difference between the possible contractions
leads to the ambiguity

∆S =

∫

C

ω +
k

4

∫

B

χ (3.48)

in the action. In the second integral appears the integration domain B,
which is the ball in S3, which is bounded by C.

In order for the path-integral to be well defined the ambiguity must be
an integer multiple of 2π. An explicit evaluation shows that these integers
run from 1 to k − 1. Thus there are k − 2 D2-branes in the SU(2)-WZW
model, which are characterised by the fact that they pass through the
points diag(exp πin

k , exp−πin
k ). At the points ±1 the 2-branes degenerate

to points, i.e. they are D0-branes.



Chapter 4

Spacetime interpretation

In previous sections the σ-model approach has been introduced as a way to
compute scattering amplitudes starting from a conformal two-dimensional
worldsheet theory. It provides a way to compute S-matrix elements in the
closed string case and in the open string case. For a full description of the
theory, one would like to have a full effective action, though.

According to the philosophy behind the σ-model description, the cou-
plings of the worldsheet operators gain the interpretation of spacetime fields
in the effective theory. An effective theory containing all possible fields
which can be generated by the string, should encode complete information
about the vacuum structure of string theory, also non-perturbatively.

We will review the basic arguments for the bosonic case, leading to the
conjecture that the effective action equals the generating functional S = Z.
Later we will see that BSFT modifies this conjecture.

4.1 The string path-integral

In the attempt to formulate string theory in a way which resembles the
description of quantum field theories, a path-integral formalism has been
established [63, 64], which resides on an action principle minimising the
area of 1 + 1-dimensional string worldsheets. A suitable formulation has
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been given by the Polyakov-action

S =
T

2

∫
d2σ

(√
hhabGµν + iεabBµν

)
∂aX

µ∂bX
ν +

1

4π

∫
d2σ
√

hRΦ ,

(4.1)

where σ1,2 and h are the worldsheet coordinates and worldsheet metric,
G, B, R and Φ are spacetime metric, Kalb-Ramond field, Ricci scalar and
the dilaton field. The string tension T is given by T = 1

2πα′ .

A configuration which is supposed to reproduce usual quantum field
theories is given by flat spacetime G = η, vanishing Kalb-Ramond field
B = 0 and constant dilaton. In this case the theory is quantised by choosing
the standard measure in the path-integral.

Still, there are fields present which do not have an obvious interpretation
from the spacetime point of view, in particular the worldsheet metric h.
In fact, an investigation of the partition function shows that there is an
anomaly present, which inhibits the theory from being scale invariant.

It had been a great success of string theory to find a way how to avoid
that so-called Weyl-anomaly. It turned out that the vanishing conditions
for it require that the worldsheet theory is a conformal field theory with
a central charge of c = 26 in the bosonic case and c = 15 in the super-
symmetric case. This implicitly fixes the number of spacetime dimensions
in case the (tensor products of) CFTs describe free particles. For bosonic
string theory one obtains D = 26 spacetime dimensions and for the super-
symmetric case D = 10.

The obtained action is scale invariant and therefore describes string the-
ory at a RG fixed point. Therefore one has obtained a classical vacuum
of the theory. Setting stability considerations of the vacuum aside, it is
possible to consider small perturbations in the spacetime fields and expand
the path-integral in the couplings. In this way one can calculate S-matrix
elements.

The problem with this approach is that a string can be excited in in-
finitely many ways. In other words, there will be infinitely many couplings
present which must be taken into account. The spacetime fields will be
functions of the string map X, so that the space of couplings is determined
by a power expansion as well as by a derivative expansion of the target
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space fields in the string map. Such an expansion is ambiguous, since par-
tial integration can change the structure of the derivative expansion.

Let Z be the partition of the σ-model. It is also a generating functional
for expectation values of vertex operators 〈V1 . . . Vn〉 [46, 47]. It has been
argued that during renormalisation of the action, massless poles are sub-
tracted, thus the partition function obtained from the renormalised action
is conjectured to be related to the effective action for the massless modes
[132, 131].

Usually, for the computation of correlation functions a certain Weyl-
gauge of the worldsheet metric is chosen, in particular the conformal gauge
when the computations are done in a CFT framework. Nevertheless the
σ-model is naturally defined ‘off-shell’, i.e. away from conformal gauge
and the D = 26 or D = 10 condition. Thus one might suspect, that the
σ-model description is indeed a good starting point for writing down an
off-shell extension of the S-matrix.

Indeed we shall see in later chapters, that such an extension is possible
and is provided in form of boundary string field theory (BSFT) for the
bosonic open string. In the case of the closed string, a similar off-shell
action cannot be written down, at least not while attempting to use similar
methods as in the open string sector. However, it will be explained in some
detail that BSFT indeed is able to capture information about the closed
string background. The reason for that is a non-trivial correspondence
between the open and closed string sector.

4.2 Effective action and renormalisation group

flow

For background fields, which do not represent a flat background space-
time, the σ-model action (4.1) is subject to restrictions which ensure Weyl
invariance. This is necessary to set up a consistent theory, which is invari-
ant under scale transformation. To first order the Weyl variation can be
measured by the trace of the worldsheet energy-momentum tensor (in a
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particular renormalisation scheme) [63, 99]

T a
a = − 1

2α′
βG

µνh
ab∂aX

µ∂bX
ν − i

2α′
βB

µνε
ab∂aX

µ∂bX
ν − 1

2
βΦR . (4.2)

The β-functions which appear in this expression have been obtained in
lowest order in the string coupling as

βG
µν = α′Rµν + 2α′∇µ∇νΦ−

α′

4
HµλωHν

λω +O(α′2)

βB
µν = −α′

2
∇ωHωµν + α′∇ωΦHωµν +O(α′2)

βΦ =
D − 26

6
− α′

2
∇2Φ + α′∇ωΦ∇ωΦ− α′

24
HµνλH

µνλ +O(α′2) .

(4.3)

q In this expression, ∇ is the covariant derivative and H = dB. Scale
invariance is obtained through the conditions

βG = βB = βΦ = 0 . (4.4)

For the flat background spacetime these β-functions vanish, except for the
first term in βΦ, which gives again the condition on the number of spacetime
dimensions D.

The most remarkable property of these equations is that they can be
integrated. In fact it is possible to obtain them as variations of a spacetime
action. This action is given by

S =
1

2κ2
0

∫
dDx

√
−Ge−2Φ

[
−2(D − 26)

3α′
+ R− 1

12
H2 + 4|∂µΦ|2 +O(α′)

]
.

(4.5)

We will encounter a technically similar situation, though for open strings,
in the investigation of the topological theory. The string map is then re-
stricted to constant maps, so that the integration of the β-functions yields
an effective static spacetime potential.

4.3 Open string effective action

In the open string case similar methods can be applied to the σ-model
action. The difference here is that now additional boundary fields are
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present. The boundary action which can be added has the form
∫

dx0
[
T (X) + Aµ(X)Ẋµ + · · ·

]
, (4.6)

where T is the open string tachyon, A denotes the photon field and the dots
stand for massive fields. While this σ-model partition function approach
was successful for the massless string modes leading to covariant expressions
to all orders in powers of gravitons and dilatons in the closed string case
and the vector field strength in the open string case, it produced unfamiliar
expressions when applied to the tachyon field T . The expression for the
partition function Z[T ] computed by expanding in derivatives of T has the
following structure in the critical bosonic string theory (both in the closed
string case on 2-sphere and open string case on the disk):

Z = a0

∫
dDXe−T

[
1 + a1α

′∂2T +O(α′2)
]

. (4.7)

The constants a0 and a1 are renormalised constants, where a1 is scheme
dependent. Again, as in the closed string case, some extra input or guiding
principle is necessary to fix an off-shell extension of scattering amplitudes.

Reverting to the original boundary σ-model with tachyonic and massless
modes only, one notices that the model is renormalisable within the stan-
dard derivative expansion, i.e. the space of boundary couplings is closed un-
der renormalisation group operations. As has been argued in [132, 134, 130],
the effective action for the massless fields should be given by the renor-
malised partition function. This conjecture holds up to the first few orders
[11]. However, when in addition to the photon field also a tachyon field
is admitted, then one finds that the tachyon generates a potential. This
requires but a modification of the conjecture S[T,A] = Z[T,A]ren, and we
will see in chapter 8 how this can be implemented.
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Closed string deformations in
open string field theory





Chapter 5

Boundary string field theory

5.1 Generalities

The formulation of string theory as it has been presented in the previous
chapter is a perturbative formulation. Implicitly it is assumed that the
theory can be formulated as expansion around a fixed configuration point,
a consistent vacuum. This is most obvious when employing the language
of conformal field theories as they, by definition, describe a renormalisation
group fixed point. This immediately raises the question, whether it is
possible to formulate, in the spirit of quantum field theory, a string field
theory. Despite the success of the conformal field theory description of
string theory it is clear, that in the end the theory can only be finalised by
setting up a ‘second quantised’ version.

Such a string field theory would incorporate all possible vacua as classical
configurations, would contain an understanding of non-perturbative phe-
nomena like solitonic connections between distant points in moduli space
and would possibly also contain M-theory as limit. In any case it is reason-
able to assume that such a second quantised version should be evidently
built upon fundamental principles of string theory – principles, which are
certainly not (easily) accessible in perturbative formulations. Maybe the
lacking of such basic insight is the greatest flaw in modern string research;
or the greatest challenge. A big problem is, for example, to identify the
overall dynamical degrees of freedom which are not only valid in a certain
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region of moduli space. In connection with this it seems that a subtle
relation between open and closed strings play an important role.

Most excitingly a certain correspondence between them is obvious al-
ready in the earliest calculations of scattering amplitudes. Although ini-
tially open and closed strings are treated as different objects, it becomes
clear that open string amplitudes contain closed strings as intermediate
states as soon as one goes beyond tree-level. The heuristic picture of one-
loop open strings which look like tree-level closed strings support this ob-
servation. Over the years a number of evidences has been found from
various areas in string theory pointing towards a certain duality of open
and closed strings [67, 90, 127, 24, 79, 53, 118, 39, 123, 94, 78]. The reason
for progress in this direction was a increasingly better understanding of
non-perturbative open strings. At last the availability of open string field
theories, which are in the centre of interest for such issues, has given var-
ious new insights, among them the famous Sen conjecture (see [120] and
references therein).

An open string field theory comprises the consistent truncation to the
open string sector concerning the relevant degrees of freedom, at least non-
perturbatively. In modern language it can be considered as the worldvolume
theory that includes all open string modes living on a D-brane. There
are basically two formulations available, cubic OSFT [145] and boundary
string field theory (BSFT) [148, 150, 121, 122], the relation between both
being not entirely clear. Both come with advantages and disadvantages,
predestinating them for application in different realms.

In works of Sen it has been shown that BSFT provides an answer to the
vacuum selection problem for open strings. Namely, in the limit of small
string coupling constant the closed string background can be fixed and it
then is possible to ask, what are the possible D-brane configurations for
such a background. This question is answered by classical open string field
theory, whose equations of motion directly give the desired vacua. In this
picture D-branes are viewed as solitons of the open string tachyon. Since
it is possible to calculate the potential for the tachyonic degrees of freedom
and to consistently truncate the theory to massless (and tachyonic) fields,
the minima of the potential correspond to static vacua.

The next step would be the incorporation of closed string degrees of
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freedom in this framework. The approach followed by Zwiebach [155] rests
on the idea to include them by and be very careful with counting them.
This is because at loop-level closed strings are expected to appear alone
from the open string sector already, so that an overcounting of the closed
string degrees of freedom must be avoided. From a conceptual point of
view open and closed strings are treated on equal footing and appear both
as fundamental degrees of freedom. In Witten’s cubic OSFT on the other
hand it only necessary to explicitly work with open string modes in order
to generate closed string poles in the S-matrix. This has been shown in
[61, 154]. Therefore, closed string may be viewed as derived objects in this
approach.

It is not clear how similar processes work in BSFT. It has been shown
that BSFT is capable of describing the decay of D-branes into the vacuum
(which is most presumably the closed string vacuum). Also, it was argued
in [59] that open string degrees of freedom are removed during this decay,
and using some intuition obtained from [119] one is led to think that infor-
mation about closed strings at the endpoint of the decay must be contained
in the BSFT action. The problem with this approach is the close connec-
tion to the worldsheet formulation of string theory (which is an advantage
from the CFT point of view, since it is easy then to establish a connection
between the worldsheet and the spacetime description). But the worldsheet
formulation is supposed to be ‘local’ in moduli-space, i.e. it is not expected
to be a good formulation of the physics of the tachyon condensate. Never-
theless the main result of this thesis is to show that indeed BSFT can in
principle be used to answer questions about the degrees of freedom at the
endpoint, although they appear in a rather involved way.

Before tackling this issue an introduction to BSFT will be provided.
Its relation with effective actions will be discussed and some well-known
though important results for the bosonic tachyon potential are presented.

5.2 Introduction to BSFT

Following [148, 150] and [121, 122] the basic idea behind the construc-
tion of BSFT is the application of the BV-formalism [68] on a field theory
with infinitely many degrees of freedom, which exactly constitute the open
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string degrees of freedom under consideration. Supposed now such a theory
does exists, it must be formulated over a supermanifold containing fields,
anti-fields, ghost and anti-ghosts. Moreover a closed non-degenerate odd
symplectic ω must exist together with a well-defined ghost number opera-
tor U . The supermanifold has Darboux coordinates qa and θa of grading 0
and 1. Locally, ω = dθadqa, so that the BV-antibracket is given by

{A, B} =

−→
∂ A

∂uk
ωkj

←−
∂ B

∂uj
, (5.1)

where ua are local coordinates on the supermanifold. The BV-action is
then determined through the master equation

{S, S} = 0. (5.2)

In addition the existence of a vector field V is postulated which generates
the symmetries of ω. It is then easy to show that the action must satisfy1

dS = iV ω . (5.3)

The important step is now to make contact between the abstract formu-
lation and string theory by identifying the relevant objects on both sides.
First of all, the coordinates are taken to be the boundary degrees of free-
dom of a two-dimensional field theory on a disk with conformal bulk. This
makes sure that the resulting theory is formulated in terms of open strings,
and that the closed string background is completely fixed. Neglecting issues
of well-definedness it is intuitive to think of this as the space of all 2d field
theories fibered over all possible bulk configurations, so that its tangent
space is constituted by the coupling constant u of local open string vertex
operators V only. BRST invariance is taken into account by demanding
that V is closed up to exact forms, i.e.

{QBRST ,V} = dO (5.4)

for some operator O.

In the next step the symmetry generated by V is identified with the
BRST symmetry, and V therefore with its current. Finally, the odd sym-
plectic form can be defined as worldsheet correlation function

ω (V1,V2) =

∫

∂Σ

dt1dt2〈O1(t1)O2(t2)〉 , (5.5)

15.3 implies 5.2.
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where the integration goes over the boundary of the worldsheet with coor-
dinate t. The quantity on the right hand side can be computed by means
of conformal field theory. Putting the parts together one arrives at the
following differential expression for the action

dS =
1

2

∫

∂Σ

dt1dt2〈dO(t1) {QBRST ,O(t2)}〉 . (5.6)

Note that as this formula possibly includes operators of conformal weight
< 1 it makes only sense when equipped with a cutoff.

Further simplification is achieved by assuming that the field content can
be split in a ghost sector and a matter sector, i.e. that local operators are
always given as product of a ghost part and a matter part. Also, this form
must be kept up so that matter-ghost mixing operators are not allowed.
This is reasonable for most sensible theories. Concretely this means that
instead of considering operators O of ghost number one as basic building
blocks of the state space, the operators V are used alternatively. They can
be incorporated in the worldsheet formulation of correlators by adding a
term

∆I =

∫

∂Σ

dtV (5.7)

to the path-integral. With a suitable definition of the b- and c-ghosts which
is consistent with the usual usage in CFT the relation between the states
can be rephrased as V = b−1O. As matter and ghosts are not allowed
to mix, this relation is invertible, so that O = cV . This enables one to
compute the BRST-action on O as follows:

{QBRST ,O(t)} = −
∑

i

(hi − 1) uiVi(t)(c∂c)(t) , (5.8)

where hi denotes the conformal weight of Vi in the expansion V = uiVi.

The term hi − 1 in (5.8) looks like the classical part of a β-function,
and indeed this is its origin. It was shown in [121, 122] that the energy-
momentum tensor contained in QBRST receives corrections in higher order
in the boundary couplings. This is due to contact terms arising from the
boundary of the open string worldsheet. This means that ∂

∂ti QBRST = 0 is
not true anymore. Most remarkably it is possible to integrate the differen-
tial expression for the action (5.6.) Skipping the most tedious calculations,
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one arrives at the final result

S =

(
1− βi ∂

∂ui

)
Z(u) . (5.9)

Here Z is the generating function as obtained by determining the vacuum
expectation value of the unit operator in the theory perturbed by arbitrary
operators V = uiVi. As announced, in this expression appear β-functions,
which are associated to the coupling u. This form suggestively points out
the relation to renormalisation group flow, and indeed the classical con-
figurations of this action are characterised by BRST-invariance including
conformal invariance.

It is clear that (5.8) does not transform correctly under coordinate
reparametrisations, because ui does not transform like a vector. This prob-
lem is resolved in the formulation of (5.9), as all objects appearing there
like βi and the Zamolodchikov metric Gij do have the correct transforma-
tion behaviour [121]. This renders the expression for the action invariant
under local changes of coordinates in the space of coupling constants.

In order to demonstrate the usage of this formalism it is instructive
to look at a simple example. Heuristically, in the most basic (and most
investigated) case of bosonic flat string theory, one can imagine the follow-
ing proceeding: First choose some open string boundary condition, e.g. a
spacefilling D25-brane. This theory is conformal, therefore the correlation
functions can be evaluated in the associated BCFT. The boundary inter-
action which can be added to the standard action (2πα′)−1

∫
d2z∂X∂̄X in

this case has the form

∆I =

∫
dtV

V = T (X) + Aµ(X)∂tX
µ + Bµν(X)∂tX

µ∂tX
ν + Cµ(X)∂2

t X
µ + . . .

(5.10)

The coupling constants u appearing in 5.9 are given by the modes φi =
(Aµ,Bµν ,Cµ, . . . ) of the fields A(X), B(X), C(X), . . . . Thus the classical
equations of motion obtained from S by varying with respect to φi exactly
correspond to configurations where βi(φ) = 0.

One should note that these expressions are rather formal. In practice,
as mentioned before, a cutoff has to be introduced in order to deal with
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non-renormalisation interactions. This is not a problem, since as long as all
possible interactions are taken into account, it is feasable to find a renor-
malisation scheme that leads to a theory without divergences and therefore
to a well-defined fixed point. Perturbative calculations on the other hand
suffer from all the usual problems and ambiguities one encounters in RG
theory. Therefore it has been of great value exact solutions for the BSFT
action have been constructed by Sen. Some of them will be reviewed in the
next section.

5.3 BSFT and the renormalisation group

The appearance of (worldsheet) β-functions suggests that there is a close
relation between processes in BSFT and renormalisation groups flows. It is
immediately clear that a vacuum configuration, describe by certain values
u∗ for the couplings represents a fixed point of worldsheet renormalisation
group flow, since there the β-functions vanish, and

S(u∗) = Z(u∗) . (5.11)

Supposed there exist two vacuum solutions, which are located at the fixed
points u∗1 and u∗2. At these points Z(u∗1,2) has the interpretation of a bound-
ary entropy [1, 83]. In the special case where these two vacua are related
through flat directions in moduli space, the BSFT action evaluated on the
interpolating line is a g-function. On the other hand, tachyon condensation
provides an example for a complementary situation, where the two vacua
are connected through a line of off-shell configurations. By construction,
the BSFT action still is a meaningful quantity then. For this reason it can
be viewed as an off-generalisation of the boundary entropy.

With these preparations it is possible to re-derive the g-theorem in a
most simple way. Indeed, scale transformations of S are given by the
Callan-Symenzik equation [83]

µ∂µS = −βi∂iS = −βiβjGij . (5.12)

Here it has been used that S does not contain any explicit scale dependence.
Therefore S decreases along RG trajectories, as long as G is positive defi-
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nite. The positivity of G is guaranteed for unitary theories, for which also
the expression (5.9) has been derived2.

In order to understand the role of renormalisation group flow in BSFT
better it is instructive to consider the most simple example of tachyon
condensation in this framework [121, 10]. According to the general con-
struction outlined above the open string tachyon is included in the action
by a boundary term

∆I =

∮
T (X) . (5.13)

The tachyon field T (X) can be Taylor-expanded in the string map X as
follows:

T (X) = a + bµX
µ + uµνX

µν + · · · , (5.14)

where a, b, u, . . . are coupling constants. The inclusion of these boundary
interaction terms breaks conformal invariance, since the tachyon operator is
relevant. But this does by construction not affect the conformal properties
of the theory in the bulk, therefore the renormalisation group flow is only
expected to appear in the open string sector as a boundary flow. Rephrased
differently, the bulk is kept on-shell, while the boundary theory is taken off-
shell. Therefore it makes sense to consider the boundary renormalisation
group flow alone without further reference to the bulk.

5.4 BSFT and boundary states

As has been shown in section 2.2.2 it is possible to represent conformal
boundary conditions in BCFT by so-called boundary states, which are cer-
tain linear combinations of Ishibashi-states. This is generally true for con-
formal field theories with boundaries. The purpose of this section is to
review the construction of boundary states corresponding to flat D-branes
in bosonic string theory. In a next step this concept will be generalised, and
what emerges is a rather obvious connection at BSFT. This can be used
to calculate D-brane tensions and discuss aspects of open string tachyon
condensation in the closed string sector (employing open/closed duality at
the conformal points).

2However, when the restriction of matter-ghost separation is abandoned, then there
could be propagation ghost degrees of freedom, which destroy unitarity.
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5.4.1 Boundary states for D-branes

First the construction of D-brane states will be reviewed. This section
follows [38, 19], where also the supersymmetric constructions are presented,
but here only the bosonic case is of interest. The construction works as
follows.

Let X be the mapping of the string worldsheet into the target space.
In the case of open strings the worldsheet has a boundary ∂Σ on which
conditions must be specified in order to obtain a conformal theory. For flat
space all possible D-branes are characterised by imposing either Dirichlet
or Neumann condition in each direction. The Dirichlet condition becomes

X i|∂Σ = const, (5.15)

while for Neumann condition

∂tX
a|∂Σ = 0 (5.16)

must be imposed. At the conformal point open and closed string partition
functions are connected via modular transformations, which means that
one-loop open string diagrams can be represented by closed string tree-
level diagrams. After performing the transformation to the closed string
channel one obtains analogous conditions on the string map, as the D-brane
enters as condition on the initial and final closed string state.

More explicitely, in the case of closed strings it is convenient to use
holomorphic coordinates on the worldsheet given by

z = e2i(τ−σ) z̄ = e2i(τ+σ) , (5.17)

where τ denotes the temporal direction and σ the spatial. In a Euclidean
setting, where τ → −iτ , the coordinates are related by complex conju-
gation, so that z̄ = z∗. The bosonic string map X(z, z̄) can be written
as

Xµ(z, z̄) =
1

2
Xµ(z) +

1

2
X̃µ(z̄) , (5.18)

where

Xµ(z) = xµ
0 − i

√
2α′ ln z αµ

0 + i
√

2α′
∑

n)=0

αµ
n

n
z−n (5.19)
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and

X̃µ(z) = xµ
0 − i

√
2α′ ln z̄ α̃µ

0 + i
√

2α′
∑

n)=0

α̃µ
n

n
z̄−n . (5.20)

After performing the conformal transformation which allows to switch from
open string variables to closed string variables, the conditions which must
be imposed on the initial are

∂τX
a|τ=0|B〉 = 0 (5.21)

in Neumann directions a along the D-brane, and

X i|τ=0|B〉 = const (5.22)

in Dirichlet directions perpendicular to the D-brane. The same construction
must be applies to the final state. As these conditions preserve conformality
on the boundary, |B〉 is called a boundary state.

In a next step it is possible to look for more explicit realisations of a
boundary states. In the case of string theory in a flat background such
a construction is indeed possible. Just by re-writing (5.21) and (5.22) in
terms of the closed string oscillators one obtains

(
αa

n + α̃a
−n

)
|B〉 = 0 (5.23)

(
αi

n − α̃i
−n

)
|B〉 = 0 ∀n *= 0 (5.24)

and for the zero modes

pa|B〉 = 0 (5.25)
(
xi

0 − yi
)
|B〉 = 0 , (5.26)

where yi is constant. It can be easily checked that the boundary state has
the representation

|B〉 = Npδ
d−p−1(xi

0 − yi)e−
P

n=1
1
n αµ

−nSµν α̃ν
−n|p = 0〉 (5.27)

for a Dp-brane embedded in d-dimensional space. Here |p = 0〉 denotes the
closed string vacuum with zero momentum. The matrix

Sµν = diag(−1, 1‖,−1⊥) (5.28)
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has been introduced for a condensed notation, where the directions denoted
by ‖ are parallel to the brane, while ⊥ denotes directions perpendicular to
the brane. Np is a normalisation constant which has to be determined
independently.

This state is compatible with conformal invariance, but in order to obtain
BRST invariances the state needs to be supplemented with an appropriate
ghost part. In a completely analogue way boundary conditions for the ghost
fields (b, c) can be found from which the boundary state can be determined.
Details of the construction can be found in [38, 37]. The complete BRST
invariant boundary state is then given by a product of the matter and ghost
part.

5.4.2 Path-integral representation and generalised

boundary states

In the situation presented above the construction of the boundary states
turns out to be very simple, the reason for this being the flat closed string
background and the absence of any open string background fields. In more
general situations it can be useful to work with a path-integral representa-
tion of the boundary state.

D-branes in flat space are rigid flat hypersurfaces, characterised by set-
ting certain cartesian variables to zero. In general one would expect that
the D-brane on which the string endpoints are fixed are as submanifolds in
a curved embedding space. Therefore the string map at the boundary of
the worldsheet should not be constant, but an arbitrary function.

This can be accomplished by changing the open string boundary condi-
tions slightly,

X i|∂Σ = qi(τ) , (5.29)

where q(τ) is an arbitrary function with support on the boundary. Transla-
tion into closed string variables yields a modified condition on the boundary
state

pa|B〉 = 0 (5.30)
(
xi

0 − yi(t)
)
|B〉 = 0 . (5.31)
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Contrary to (5.25), y(t) =
∑

yneint is now a function regular on the bound-
ary. In terms of oscillator modes this becomes

(αn − α̃−n − yn) |y〉 , (5.32)

which implicitely defines the state |y〉. Technically this is a coherent state
is given by

|y〉 = Npδ
p(x0 − y0)e

−
P

n>0
1
n (yny−n−α−nα̃−n−α−nyn+α̃−ny−n)|0〉 . (5.33)

It is possible to impose a reality condition y∗ = y, so that y−n = y∗n ≡ ȳn.

The normalisation Np can be fixed by demanding, that unity has a rep-
resentation through coherent states,

1 = N∗
p Np

∫ [
∏

n

dyn√
2π

]
|y〉〈y| . (5.34)

Given the construction of these coherent states, the idea is to express
arbitrary boundary states with conformal boundary condition B by

|B〉 =

∫
DyWB(y)|y〉 , (5.35)

where WB(y) is an appropriate weighting functional of y.

5.4.3 Neumann and Dirichlet states

The Neumann and Dirichlet states, which have been constructed before, can
be associated to certain choices of WB. An explicit and short calculation
shows that

WN(y) = 1 (5.36)

gives the Neumann boundary state after performing the path-integral. Also
the Dirichlet state can be constructed this way, by setting

WD(y) = δ(y0 − ŷ0)
∏

n)=0

δ(yn) (5.37)

for a D-brane located at ŷ0.
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5.4.4 Transitions between boundary states

The coherent state formalism allows to make explicit contact with the
worldsheet formulation of CFT. This is achieved by noting, that the pure
y-dependent part in (5.33) is given by the integral over the modes of the
sigma model field on the boundary of a disc of the classical action. There-
fore

〈0|y〉 = e−S∂(y) , (5.38)

where S∂(y) = 1
2

∮
y∂̄ȳ is the boundary term obtained by evaluating the

Polyakov action on is classical solutions y(τ, σ).

In particular it is possible to include arbitrary boundary interactions
in this formalism. This provides the definition of a boundary state in the
presence of arbitrary open string fields, whose impact is collected in an
boundary interaction term I[T,A, . . . ],

|B[T,A, . . . ]〉 =

∫
Dy e−I[T,A,... ](y)|y〉 . (5.39)

In particular this state provides the correct coupling of closed string state
to D-branes in the presence of open string background fields. There-
fore the conformal configurations are given by open string couplings u∗ =
(T ∗, A∗, . . . ), which are determined as RG endpoints or as solutions of the
BSFT action, as has been discussed above.

It is possible to verify in the level boundary states, that solutions of
BSFT correspond to different conformal boundary conditions. To see this
in the simplest case, consider a spacefilling brane together with a tachyon
depending only on one coordinate. I.e. take the interaction term

∆I =
1

2πα′

∮
T (y) (5.40)

with a quadratic tachyon profile in the 25-direction

T (y) = u|y25|2 . (5.41)

The boundary state obtained in dependence of the coupling u is

|B[u]〉 = Nu

∏

n>0

e−
1
n α−nSnα̃−n|0〉 (5.42)
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with

(Sn)0,0 = −1 (5.43)

(Sn)a,b = δab for 1 ≤ a, b ≤ 24 (5.44)

(Sn)25,25 =
1− 2πα′u

n

1 + 2πα′u
n

(5.45)

and a normalisation

Nu =
1

2
|u|− 1

2

∏

n>0

∣∣∣∣1 +
2πα′u

n

∣∣∣∣
−1

=
1

2

∣∣2πα′
√

uΓ(2πα′u)
∣∣ . (5.46)

Here the tension of the 25-brane has been normalised to 1. In the last
step of (5.46) the infinite product has been conducted using ζ-function
regularisation. By consecutively performing the condensation in different
directions it is possible to compute the correct relative D-brane tensions
Np/Np−1.

More interestingly one sees that the coupling u is able to interpolate
between a D25- and a D24-brane. For this consider first the limit u = 0. In
this case, (Sn)25,25 = 1 so that the associated boundary state is a spacefilling
brane. But as soon as u is switched on, RG flow will increase its value and
drive it towards its fixed point at infinity. This should also be a conformal
point, and indeed one finds that (Sn)25,25 = −1, so that the resulting state
is a D24-brane. This shows very intuitively, how tachyon condensation
processes can be understood from the boundary states’ point of view.

One might wonder at this point, if it is also possible to describe a con-
densation into a pure closed string vacuum in this formulation, where no
(perturbative) open string excitations are present. Indeed this is possible,
but some more preparations are necessary. This issue will be taken up
again in 6.2.



Chapter 6

Open string tachyon
condensation

The presence of tachyons, which generically appear in many models of string
theory, indicate that the vacuum, in which these models are formulated, is
not a stable vacuum. Similar statements are known from quantum field the-
ory, from where it is known that the minimum of the potential determines
the expectation values of the background fields and therefore determines
the correct vacuum around which the theory should be expanded. This
however makes it necessary to work with a second quantised theory, so
that the tachyon itself bears a physical interpretation. In string theory the
situation is a little bit different, as one mostly works in a first quantised
formalism. The analogy to quantum field theory suggests but to rather
attack such issues with a version of string field theory.

String field theory indeed has made significant progress when, in the
context of BSFT, condensation processes have been discovered, which are
triggered by open string tachyons. This phenomenon has been affirmed
by calculations in cubic SFT, while due to the nature of this theory, the
calculations are laborious and can only be conducted numerically. Tachyon
condensation processes add substantial insight into open string field theory,
as they open the path to understanding dynamic formation and decay of
D-branes.

Informally speaking, tachyon condensation appears, viewed from the
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CFT point of view, in the boundary sector. There the RG flow is under
slightly better control since, at least at tree level, the central charge of
the CFT cannot change. Closed string tachyon condensation on the other
hand, almost inevitably causes an RG flow in the closed string sector, so
that it is usually impossible to keep the condensation under control. Also,
there are no as general predictions for the end-point of such condensations
as for the open string sector, except in very controlled settings [150].

From this point of view it is remarkable that the open string conden-
sation can be handled rather well and allows access of several interesting
non-perturbative effects. It becomes possible to derive effective actions
for tachyonic configurations interpolating between different D-brane con-
figurations, even time-dependent ones. To some extent it is also possible
to investigate the closed strings coupling to condensing D-branes, which
means some further step in understanding open-closed string correspon-
dences. In supersymmetric settings, where BPS conditions reflect the sta-
bility of D-branes, transition rules may be formulated which culminate in
an K-theoretic formulation and generalisations thereof.

Integrating out heavy non-tachyonic fields in the open string path-integral
yields an effective theory for the massless and tachyonic string modes. Its
static part provides a potential whose minima determine the possible vacua
of the theory as renormalisation group fixed points. This will be explained
in the next section, where also some properties of the potential are discussed
and summarised as Sen’s conjectures. A formalism based on boundary
states is introduced.

Also condensation processes with the closed string vacuum as end-point
will be discussed. This is done from several points of view, and it is shown
how open string degrees of freedom are completely removed from the spec-
trum after condensation.

The final comments in this chapter deal with the open string com-
pleteness conjecture, which touches some aspects of the coupling to closed
strings.

The condensation processes discusses here take place in a flat background
geometry. Although it is believed that similar phenomena appear in curved
backgrounds, almost no concrete examples nor proofs for this concept are
available. In chapter 8 however, an example is presented which gives the
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desired hints that condensation on curved branes in curved target spaces
do take place.

6.1 Tachyon effective action and lower

dimensional branes

In order to study the properties of target space fields it is usually advised to
investigate their low energy effective action. This is obtained by integrating
out heavy fields, and to lowest order at tree-level these can be eliminated
by inserting their classical equations of motion. The restriction to light
degrees of freedom as the only dynamical ones makes sure the action gives
a consistent theory. In the case of field theories with tachyons the situation
is more involved. As they contribute a negative mass squared, the mass is no
longer a good expansion parameter, as combinations of heavy and tachyonic
particles might show up in the energy region of light fields. Therefore, in a
strict manner, one cannot approach the problem by simply integrating out
heavy fields. But one can try to derive some kind of effective action and do
a formal analysis. This is the usual approach for tachyon effective actions,
and this is also the most intricate part of the analysis. The reason why this
approach works lies in the properties of the RG flow induced by tachyons.
In fact it can be shown that the flow of boundary tachyons as the most
relevant fields and the massless fields decouples from the rest [1, 134]. In
this sense it is feasible to work with tachyon effective actions.

Although the most important models of string theory do not contain
tachyons in their perturbative spectrum (which is the reason of their im-
portance) tachyon generically appear in the spectrum when D-branes enter
the game. In fact, strings on non-BPS branes or stretching between D-
branes have tachyons in their spectrum, and even in a supersymmetric
setting those may survive the GSO projection. The condensation process
triggered by such tachyons may result in a decay of D-branes (like in the
case of annihilating brane-anti-brane systems) or formation of lower dimen-
sional configurations. It is the aim of effective tachyon action to capture
and describe this behaviour. Much of this information is contained in the
tachyon potential V (T ), which is obtained as the static part of the tachyon
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effective action1

Employing techniques which originated in the study of the σ-model in
the path-integral approach [134, 11, 133, 130, 135] and BSFT it has been
possible to observe some basic properties of tachyon effective actions, which
are conveniently summarised in Sen’s three conjectures. Although these
have not been proven in the strict sense there is little doubt on their cor-
rectness. In particular it can be regarded as significant fortification that,
up to now, almost every aspect of these conjectures has been verified also
in cubic string field theory [107, 41].

6.1.1 Sen’s conjectures

Before presenting illustrative examples we will formulate the conjectures.
The first one addresses the issue of (local) minima of the static potential.
Their existence is essential for providing the mere possibility to find a stable
vacuum. But in addition to that the first conjecture makes a statement on
the interpretation of the energy differences in the tachyon potential (see
[120]):

1. The tachyon potential V (T ) does have a pair of global minima at
T = ±T0 for non-BPS D-branes, and a one-parameter (α) family of
global minima at T = T0eiα for the brane-anti-brane system. At this
minimum the tension of the original D-brane configuration is exactly
cancelled by the negative contribution of the potential V (T ). Thus

V (T0) + Ep = 0 , (6.1)

where Ep is the energy associated with the D-brane. In the super-
symmetric case

Ep =

{
T̃p for non-BPS Dp-branes

2Tp for Dp-D̄p brane pair
. (6.2)

Thus, as general rule, the total energy vanishes at the minimum of
the potential.

1In this context time dependent solutions are also of immense interest, but for the
purposes of the later chapters these aspects are of inferior relevance.



6.1 Tachyon effective action and lower dimensional branes 61

The second conjecture makes a statement about the endpoint of the
condensation process, suggesting a closed string vacuum as the result of a
full decay:

2. Since the total energy density vanishes at T = T0, and furthermore,
neither the non-BPS D-brane nor the brane-antibrane system carries
any RR charge, it is natural to conjecture that the configuration
T = T0 describes the vacuum without any D-brane.

A pure closed string vacuum as it is conjectured is expected to contain no
perturbative open string excitations at all. This leaves to obvious questions,
namely: what exactly happens to the open string degrees of freedom, and:
is open string field theory able to describe the closed string vacuum? Both
question will be addressed later.

The third conjecture reads as follows:

3. Although there are no perturbative physical states around the min-
imum of the potential, the equations of motion derived from the
tachyon effective action Seff(T, . . . ) does have non-trivial time in-
dependent classical solutions. It is conjectured that these solutions
represent lower dimensional D-branes.

These conjectures are supported by many examples [111, 70, 113, 112,
115, 117, 91, 107, 41].

6.1.2 Example: the lump solution

Here we will provide an example, which illustrates a method to obtain
an exact solution for a tachyon field, which describes a lower dimensional
D-brane. This solution is time-independent and uses methods of CFT in
order to explicitly construct it. Each D-brane configuration corresponds
to a certain CFT furnished with appropriate boundary conditions. Adding
tachyon interactions to the action modifies the BCFT, which will in general
result in RG flow. However, in some cases, as in the presented example in
this section, it is possible to control this RG-flow and determine the value
of the coupling constant at the end point of the flow.
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To be specific, a boundary term
∫

∂Σ

dθ T (θ) (6.3)

is added to the action, where T = T (X(θ)) has an expansion in the string
map X(θ) at the boundary, but contains no worldsheet derivatives. From
the point of view of the BCFT, T (θ) is a vertex operator, by which in
general conformal invariance is broken. But when T (θ) does not break
conformal invariance, the modified action represents a classical solution
of string field theory and thereby a vacuum solution. Thus there is a
correspondence between such classical solutions and conformally invariant
vertex operators.

The conformally invariant field theory describing a spacefilling brane in
bosonic string theory is well known. Starting with such a solution in a flat
uncompactified target space means choosing a boundary interaction T ≡ 0.
This describes string theory on a space-filling D25-brane. It is possible to
construct a D24-brane which can be regarded as a solution of the theory
on the D25-brane with tachyon interaction, the so-called ’lump solution’.

Sen’s approach to this problem was, to find the exact BCFT associated
to this lump solution by conducting a series of marginal deformations. For
this the theory is in one direction compactified on a circle with radius
R. Radius deformations are exactly marginal, therefore it is possible to
transport the theory to the point R = 1. This is the self-dual radius, which
is also distinguished by the presence of a extended symmetry of the bulk
CFT. The currents of this SU(2)L × SU(2)R symmetry are given by

J3
L = i∂̄XL J3

R = i∂XR J1
L,R = cos 2XL,R J2

L,R = sin 2XL,R ,

(6.4)

where X has been split up into a left-moving and a right-moving part.

The Neumann boundary conditions for the upper half plane as world-
sheet imply that XL = XR at the boundary, therefore the boundary oper-
ator cos X = cos(XL + XR) = cos 2XL is exactly marginal. Therefore it is
possible to include a interaction term

−α

∫
dθ cos X (6.5)
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with α an arbitrary constant. This can be clearly interpreted as switching
on a background tachyon field.

The value of α cannot be taken arbitrarily once the radius R is taken
back to infinity. As was shown in [115], the one-point function of the
operator already ceases to vanish for generic α,

〈cos X(0)/R〉R;α ∝ (R− 1) sin 2πα (6.6)

in the vicinity of R = 1. However, for those values of α, where the sine in
(6.6) vanishes, the one-point function stays zero for all values of R [115].
While α = 0 describes the original theory with a space-filling brane, the
soltuion with α = 1

2 has a different interpretation at R = ∞. A direct
way to argue is to remind oneself of the effect the inclusion of the operator
−α

∫
cos X = −α

∫
J1

L has. It merely is a Wilson line which causes a
rotation in the enhanced SU(2)L symmetry, implemented by a phase factor
exp 2πiα. In order to ensure that the operators in the theory keep their
form during the rotation, a field-redefinition in form of a U(1)-rotation of
XL is necessary, so that XL → −XL. This does not affect the bulk, but
it has effect on the boundary conditions. They change from XL = XR to
XL = −XR, therefore from Neumann to Dirichlet. The resulting D-brane
is thus a D24-brane.

This construction can be repeated independently for all other directions,
too, so that the tachyon obviously can be used to construct D-branes with
arbitrary codimension.

This solution has been obtained in a somewhat indirect way by a series of
exactly marginal deformations. It should in principle be possible to derive
the same result by directly perturbing the theory at R = ∞. This will
however initiate a renormalisation group flow and is therefore rather hard
to deal with exactly. In the next paragraph a perturbative approach to the
problem is presented.

6.2 Closed string vacuum

One of the main insights gained from the study of tachyon condensation in
Sen’s approach is, that there is indeed a connection between open string
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vacua and closed string vacua on the level of string field theory. Further ev-
idence for this is provided by recent calculations [155, 41], in the framework
of cubic string field theory.

In this section we want to investigate, how this connection can in prin-
ciple be understood in BSFT. The understanding, which has been estab-
lished there, is that the perturbation theories of open and closed strings
are expansions in some background independent universal theory around
the different vacua. The approach followed here goes back to [59], where
it has been suggested that these expansions are connectied by a Higgs-like
mechanism.

Subsequently we will describe a boundary state approach to the same
problem.

6.2.1 Fate of open string degrees of freedom

For this example we will only focus on the massless and tachyonic modes,
in a bosonic string theory. The closed string background is given by the
metric G and the B-field, in the open string sector we wish to include the
photon field A besides the tachyon T . In general, the full spectrum must
be included of course, but as has been explained in earlier sections, the
truncation of the theory to light modes is a valid approximation.

The open string sector is as usual included by a Wilson line taking the
form e−

R
dθ(T+AdA) of a boundary integral. There are two obvious sym-

metries of this action, namely a gauge transformation A → A + dΛ and
a shift A → A+const. It is important to understand that dΛ enters the
action in the same way as a closed B-field contributions. This is obvious
when considering the effective spacetime action obtained from the BSFT
construction in form of

S(G, B, A, T ) = Sclosed(G, B)

+

∫
d26X

√
G

(
e−T (1 + T ) + e−T |T ′|2 +

1

4
e−T |B − dA|2 + . . .

)
.

(6.7)

We have no knowledge over the closed string part, except for its mere
existence. This follows from applying the ideas of unitarity of a consistent
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second quantised theory to BSFT in its expansion around the supposed
closed string vacuum, as will be explained below. Therefore this Ansatz is
justified a posteriori.

The spacetime action (6.7) posses the gauge invariance

B → B + da A → A + a a ∈ Ω1 . (6.8)

From previous considerations we know already two fixed points of the
theory. The one for vanishing tachyon field is unstable, since the tachyon
itself is not massless. The other, stable, point lies at T = ∞. It becomes
obvious at once, that the open string part of the action simply vanishes at
that point in moduli space. This is not a statement about any modes to
become massive/undynamical, so that they can be integrated out; rather
one sees that the kinetic term for the open string gauge field, which is the
only dynamic field at the endpoint, is multiplied with e−T → 0. Hence the
open string modes are simply removed from the spectrum.

The action (6.7) is to be compared to the standard Higgs Lagrangian

S(H, φ,A) =

∫
dnX

(
1

g2
F (A)2 + H2|dφ−A|2 + |H ′|2 + λ(H2 −H2

0 )2

)
,

(6.9)

where the Higgs field Φ has been split in a radial and an angular part

Φ = Heiφ . (6.10)

The gauge transformations associated to this action

A → A+ dχ φ → φ + χ (6.11)

suggest a formal identification of (6.9) with (6.7)) by means of

e−
T
2 → H A → φ B → A . (6.12)

The analogy with between the two theories is as follows. In the Higgs
model there is a phase where the symmetry is broken. This is indicated
by the fact the H takes a non-vanishing expectation value and the angular
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field φ is fixed. This corresponds on the string theory side to a situation
where the tachyon T vanishes and the gauge field A takes a specific value.
Unlike in the Higgs model, this is not a stable configuration for the string
theory.

On the other hand there is a phase in the Higgs-model that corresponds
to the configuration where the tachyon becomes infinite, or Φ = 0. This
vacuum is characterised by a vanishing radial field variable H, while the
value of the angular field variable φ is not determined. The fact that φ
is ill-defined at this point has no physical reasons, but is an artefact of
the choice of the coordinate system. In fact, such an apparent singularity
disappears with the choice of a well-behaved coordinate system on the field
space.

From this we can gain some physical insight. The singular field φ is
mapped to the open string field A by the above correspondence. At the
endpoint of tachyon condensation the open strings are removed from the
spectrum, which means that A is certainly no good variable more for the
formulation of the model.

Although the Lagrangian vanishes at T = ∞, the model is not ill-defined.
The indication for a variable transformation naturally forces one to include
more than just the field with which we started. In particular, in order to be
able to construct a suitable transformation of the fields all possible inter-
action terms must be included. This includes also terms which come with
arbitrarily high derivatives of the string field X. That means, expanded
in the old variables, the tachyon can be represented as an infinite series
T = T (X + AX ′ + CX ′′ + . . . ).

All this supports the idea that there is a closed string vacuum at the
endpoint of the open string tachyon condensation, which carries no open
string degrees of freedom.

6.2.2 Boundary states

If the end point of open string tachyon condensation does truly describe
closed string vacuum, one should expect that this process also gives some
way of interpolating between closed string correlators on the disk and on
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the sphere. This question has been asked already in [9].

For a set of closed string operator insertions one would like to compare

〈O1 · · · On〉sphere (6.13)

with

〈O1 · · · On〉disk (6.14)

and ask if there is way to interpolate between the two expressions. The
existence of a smooth interpolation will show that the coupling to the closed
string sector is consistent with the idea of an emerging closed string vacuum,
and therefore will offer more support of the above proposed interpretation
of the end point of candensation.

Most easily this problem is treated in the boundary state formalism in-
troduced above. We have seen already that a boundary state corresponding
to a spacefilling brane will condense to a lower dimensional brane under
tachyon condenstion with quadratic tachyon profile. This is reflected in
the fact that (S)25,25 in (5.43) interpolated between ±1 for u = 0,∞. But
we know (or otherwise reassure ourselves with a brief calculation) that ex-
pectation values of on-shell closed string states do not distinguish between
Dirichlet- and Neumann-boundary conditions. Therefore the sole inclusion
of a quadratic tachyon interaction cannot be the full answer. This is, on
the other hand, also not expected, since in general an infinite number of
additional interaction terms must be taken into account.

The correct answer can be found by an inspection of the boundary state.
As shown above, it is given by

|B[u]〉 = Nu

∏

n>0

e−
1
n α−nSnα̃−n|0〉 . (6.15)

Let us look in the 25-direction only, which is valid since the state factorises
into contributions from each dimension. The matrix element (S)25,25 con-
trols the interaction between the holomorphic and anti-holomorphic sector.
This in turn encodes the boundary conditions. Now note that

(Sn)25,25 =
1− 2πα′u

n

1 + 2πα′u
n

. (6.16)
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An absence of an interaction between the right and left moving sector can
only be achieved when (S)25,25 ≡ 0. The quadratic tachyon alone is not
capable of doing this, thus a more general ansatz is in place. This is achieved
by formally assuming an n-dependence of u in the above formular, hence
let us make the ansatz

(Sn)25,25 =
1− r

1 + r
. (6.17)

One immediately sees that the matrix element vanishes for r = 1, while
r = 0 gives the Neumann condition and r = ∞ the Dirichlet condition.

The important question is now, what boundary interaction must be
added to the string action in order to get this function for (S)25,25. It
is in fact not too hard to find the associated expression. It is given by

∆Ir =
r

2

∞∑

n=1

yny−n (6.18)

in the notation of section (5.4). Similar boundary interactions were also
considered in [88]2.

This is obviously a non-local interaction term. We will encounter it again
in the next chapter, where it appears naturally as a closed string variation
in BSFT. In fact it originates in a radius change of the compactification
torus in target space. Anticipating the arguments to be presented, one must
thus accept (6.18) as a legitimate boundary interaction term3. Therefore
this also supports the existence of a closed string vacuum in open string
field theory.

2in order to preserve locality, only finite sums over terms of this for were considered.
3One must understand, that these arguments involve a string field theoretic treatment

which goes beyond conformal field theories.



Chapter 7

Factorisation of BSFT action

BSFT is defined by the path integral over σ-model fields for a fixed closed
string background X with the dynamical open string degrees of freedom
t corresponding to boundary deformations of the CFT on the disk. It is,
however, important to note that these deformations are not required to be
local on the boundary of the worldsheet [148, 150, 121, 122] Once non-local
boundary perturbations are included the distinction to open and closed
degrees of freedom on a worldsheet with boundary becomes ambiguous. In
fact in the early days of background independent open string theory it was
realised that the notion of locality on the worldsheet was a major question
to be addressed since deformations on the boundary were described by a
limiting procedure of taking the closed string operator from the bulk and
moving it to the boundary. The simplest way to identify X is by means
of the closed string σ-model Lagrangian. X then defines a conformal σ-
model background in the absence of boundaries. In the examples studied
in this chapter we will make some natural choices in this regard and then
demonstrate a relation between them. The presentation follows [22] closely.

The key ingredient in our approach is the factorization property for the
BSFT space-time action S(X|t),

S(X|t) = Z0(X )S0(X|t) . (7.1)

Here Z0(X ) is the D-instanton partition function and S0(X|t) is described
purely in terms of the quantum mechanical degrees of freedom Φb on the
boundary. Given the relation between the worldsheet partition function and
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the BSFT action (see equation (2.1) below) this property is a consequence
of the following conjecture for 2d conformal field theories on a manifold
with boundary:

∫

Φ|∂Σ=Φb(θ)

D[Φ] e
i

α′ IΣ(Φ) = Z0(X ) e
i

α′ I
bdry(Φb) . (7.2)

Here IΣ(Φ) is a Lagrangian for the worldsheet conformal field theory on a
2d surface with boundary, and Z0(X ) is the D-instanton partition function
which is given by (7.2) for Φb = 0. We verify this property the case of
when Σ is a disk, in the situation where ghosts and matter decouple and
for X such that the closed string worldsheet is conformal and described
in terms of a WZW (or related) model. These technical assumptions are
necessary since not much is known about BSFT when ghosts and matter
do not decouple.

The logic underlying our approach is the following: To each 2d CFT
with boundary corresponds a boundary action Ibdry(Φb). Due to the fac-
torisation property, Ibdry(Φb) is independent of α′ but certainly depends
on the CFT chosen on the left hand side of (7.2). The ambiguity in this
process is under control. On the other hand, in the reconstruction of the
bulk CFT for a given boundary action there may be further ambiguities.
We then claim that there is a distinction between the class of bulk the-
ories reconstructed from boundary actions Ibdry, differing by (non-local)
functionals of the boundary field Φb.

Note that the boundary action plays a central role in BSFT since one
integrates over all maps from the worldsheet to the target space without
specifying the boundary conditions. One starts from a boundary action
and considers the class of its boundary deformations; this class contains
all other boundary actions with the same number of boundary fields Φb

(or less). The boundary actions corresponding to boundary conformal field
theories on the worldsheet are, by definition of the string field theory action,
solutions of the classical equations of motion for S(X|t). These are in
turn critical points in t for fixed X and denoted by t∗. The space-time
action S(X|t∗ + tq) expanded around t∗ to n-th order in tq is supposed to
reproduce the n-point open string amplitudes for the background defined
by t∗. This is known to be true on classical level in the space-time field
theory corresponding to disk amplitudes on the worldsheet.
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Concretely we start with a closed string background X and find t1∗. Then
we look for a second critical point of S0: t2∗; since X is a “hidden variable”
in the open string field theory action S0 we need to reconstruct it for the
new critical point t2∗. This in general is a difficult problem and in principle
might be ambiguous. Even so we can argue that in the set of critical points
of S0(X|t) there are critical points t = t1∗ and t = t2∗ such that the expansion
around t2∗ is identical to the expansion around t1∗ but for different closed
string background X ′, i.e.

S0(X|t1∗ + tq) = S0(X ′|t2∗ + tq) . (7.3)

Thus, a deformation from t1∗ to t2∗ can be interpreted as deforming the closed
string background from X to X ′.

A simple realisation of the conjectured property (7.3) leads to the Seiberg-
Witten map [110]: It is well known that a constant magnetic B-field can be
seen equivalently as a closed string background X or a perturbation on the
boundary of the open string worldsheet, i.e. S0(X = (G, B)|tq) = S0(X ′ =
(G, 0)|t∗ + tq). The result of [110] can then be formulated as the state-
ment that the expansion around t∗ leads to non-commutative field theory
in Minkowski space. The generalisation to a non-constant, closed B-field
leads to Kontsevich’s deformation quantisation [81]. At present we allow
for arbitrary B compatible with bulk conformal invariance.

Note that the factorisation of the worldsheet partition function into
bulk and boundary contributions is crucial for the closed string degrees
of freedom to be contained in open string field theory. Indeed if bulk α′-
corrections entered in the definition of Ibdry(Φb) one would get different
α′-expansions for the open and closed string β-function. The factorisation
property, which guarantees that closed string fluctuations do not feed back
into the definition of the open string field theory, is instrumental for the
open-closed string correspondence to work. This appears to be a very sub-
tle distinction between bulk conformal field theories in 2d and general 2d
QFT where this factorisation does not hold in general.

In a first the the promised properties will be shown in the context of
BSFT on a torus. In this setting the radius deformations are very well
under control, and the basic ideas can be applied easily. As an example for
a curved closed string background we then prove the factorisation property
for boundary WZW models with arbitrary boundary conditions to all orders
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in perturbation theory in section 3. This requires a definition of WZW
models with boundary conditions which are not of the class J = RJ̄ [80,
8, 126, 7, 45] rather only implying T − T̄ = βi(t)Vi(t) = 0, where Vi(t) is
a boundary perturbation and βi(t) its β-function. An application will be
presented in the next chapter.

7.1 BSFT on a torus

In the case when ghost and matter fields decouple the definition of the
space-time action in flat space is written in terms of the disk partition
function Z(t) and boundary β-function as [122]1

S(X|t) =

(
1− βi ∂

∂ti

)
Z(X|t) . (7.4)

Here ti are the couplings representing the open string degrees of freedom
and βi denotes the β-function associated to the coupling ti.

For our purpose we suggest a different normalisation of the space-time
action by replacing Z(X|t) by Zbdry(X|t) ≡ Z(X|t)/Z0(X ), where Z0(X )
is the “D-instanton” partition function, which is independent of the open
string background {t}. Of course this normalisation assumes the factorisa-
tion of the CFT on the disk, which we will prove shortly. Our normalisation
does not alter the dynamics of the open string fields ti, therefore we can
work with S0(X|t) instead of S(X|t),

S0(X|t) =

(
1− βi ∂

∂ti

)
Zbdry(X|t) . (7.5)

To start with we consider the free action for maps X from the disk into
a circle of radius R

S(X) =
R2

4πiα′

∫

D

∂X∂̄X . (7.6)

where ∂ ≡ dz∂z. The radius R plays the role of a closed string modulus.
According to BSFT we are instructed to integrate over maps with free

1Note that this expression is written without use of a metric on the space of boundary
interactions, only the vector field βi is required.
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boundary conditions, which leads to the notion of the boundary field f
defined through X(z, z̄)|∂D = f(θ); boundary deformations are functionals
of f , in general non-local. This field f can be unambiguously extended
from the boundary to the interior of the disk via harmonicity condition
(harmonic functions are solutions of the worldsheet equations of motion).
Every field X(z, z̄) may thus be split into a harmonic boundary field and
a bulk field which obeys Dirichlet conditions,

X(z, z̄) = X0(z, z̄) + Xb(f) , (7.7)

such that X0|∂D = 0 and Xb(z, z̄)|∂D = f(θ) with ∆Xb = 0, so Xb(f) is a
harmonic function with value f(θ) on the boundary.

Note that the boundary field can always be expanded as f =
∑

n fneinθ,
which suggests a separation into chiral and anti-chiral modes corresponding
to positive and negative frequencies. Thus, f = f+ + f− + f0 can then be
extended to Xb(f) = f+(z) + f−(z̄) + f0. Moreover there is a reality
condition f+∗ = f−. The zero mode f0 plays the role of the space-time
integration variable in the space-time action.

Plugging this ansatz into the free action (7.6) the mixed terms containing
X0 and Xb vanish after partial integration. The action splits into

S(X) =
R2

4πiα′

∫
∂X0∂̄X0 +

R2

4πiα′

∫
∂f+∂̄f− . (7.8)

Given the translation invariance of the measure in this example the factori-
sation property is obviously satisfied. The partition function then reads

Z(R) = Z0(R)

∫
D[f ] e−

R2

4πiα′
R

∂f+∂̄f− , (7.9)

where

Z0(R) =

∫
D[X0] e

− R2

4πiα′
R

∂X0∂̄X0 , (7.10)

supplemented by the b, c ghost system is the “D-instanton” partition func-
tion2. Since f± is harmonic its contribution takes the form of a non-local
boundary interaction

Ibdry(f) =
R2

4π

∮
fH(f) =

R2

4π

∮ ∮
dθdθ′f(θ)H(θ, θ′)f(θ′) =

R2

2π

∮
f+∂θf

− ,

(7.11)

2 Here we take the conventional boundary conditions for b and c, because decoupling
of matter and ghost sector is assumed.
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where H is a Hilbert transform H(f) = ∂nf = ∂(f− − f+). The kernel is
given by H(θ, θ′) = 1

4πi

∑
ne

in(θ−θ′)|n|. Integration over f with this boundary
interaction then produces the partition function of a D-brane extended
along the X-direction.

To be more general we can add local interactions on the boundary,
parametrized by couplings {tq}. They are given by functionals of f , so
that the local and non-local contributions can be collected into

Ibdry(t, X) = Ibdry(t, f) , (7.12)

Zbdry(R|t) =

∫
D[f ]e

i
α′ I

bdry(t,f) . (7.13)

From the above it is now clear that a change in the closed string modulus
R → R + δR appears as a deformation of the boundary interaction

Ibdry → Ibdry + δIbdry (7.14)

δIbdry(R) =
RδR

2π

∮
fH(f) . (7.15)

In the presence of open string degrees of freedom this is a non-trivial
modification of the boundary theory. For instance for the Euclidean D1-
brane wrapping S1 the condition for marginality of the boundary operator
exp ikXb with k = n ∈ Z is changed by the shift3 R → R + δR. We
thus conclude that the modulus R of the closed string background X = S1

R

enters as a non-local boundary interaction. In particular,

S0(X = S1
R+δR|t1∗ + tq) = S0(X = S1

R|t2∗ + tq) , (7.16)

in accord with (7.3). Note that the theory without additional boundary
interactions is conformally invariant for any R. Therefore there is no β-
function associated to the radius deformation. But the β-functions for other
couplings depend on the non-local part (and therefore on the bulk moduli)
of the boundary interaction.

After this warm-up we will now consider interacting CFTs. In the next
section we show that the factorization property also holds for boundary
conformal theories on group manifolds.

3Similarly, strings attached to the D-instanton can wind around S1. Their contri-
bution to the boundary partition function is represented by the insertion of boundary
vertex operators exp iwR

α′ Xb.



7.2 Boundary WZW model 75

7.2 Boundary WZW model

The prototype example for open strings propagating in curved space-time
is the WZW model which is also an example where the B-field is not closed.
Here we will discuss this case in detail. Other curved target spaces can be
treated in a similar fashion.

As is well known [80, 8, 126] in this case worldsheets Σ with bound-
ary ∂Σ require some care in the definition of the topological term Γ(g) =∫

Γ tr(dgg−1)3 with ∂Γ = M . For a closed 2d surface M this term is defined
as an integral of a 3-form over a 3-manifold Γ with the 2d surface M as its
boundary. If the 2d surface has a boundary the unambiguous definition of
this term is problematic.

We need the condition H3(G) = 0 on the group G in order to define
the topological term in the WZW model in terms of a globally well-defined
2-form w2 such that dw2(g) = w3(g) = tr(dgg−1)3 (since w3 is a closed
3-form, dw3 = 0, such w2 always exists locally). We write this formally
as w2(g) = d−1w3(g). If H3(G) = Z there is no such globally well-defined
w2, but Γ(g) =

∫
M w2 is still globally well-defined modulo Z as long as M

has no boundaries. If M = Σ has a boundary, one needs the condition
H3(G) = 0 in order to define

∫
Σ w2(g) for an arbitrary map g : Σ → G.

This is the case, for instance, for SL(2, R) which we will now consider.
However, even in this case Γ(g) is not unique since any w′

2 that differs from
w2 by an exact 2-form,

w′
2 = w2(g) + dβ(g) , (7.17)

leads to the same w3. In general dβ is closed but not necessarily exact.
Thus, the action Γ(g) is defined by the 3-form w3 up to an ambiguity that
comes from the 1-form β, which contributes to the action only through a
boundary term

Γβ(g) =

∫

Σ

w2(g) +

∫

∂Σ

β(gb) . (7.18)

We denote by gb the restriction of g to the boundary. If β is not well-
defined globally,

∫
Σ dβ still makes sense and depends only on gb since for

two different continuations of gb into the bulk the difference is
∫

S2 dβ =
0 mod Z.



76 7. Factorisation of BSFT action

For SL(2, R), (7.18) can serve as definition of a class of WZW actions
together with the standard kinetic term

IWZW =
κ

4πi

∫

Σ

tr (∂µgg−1)2 +
κ

4πi
Γβ(g) . (7.19)

One expects the theory to be exactly conformally invariant for particu-
lar choices of the boundary term

∫
∂Σ β. Classifying such 1-forms β is an

interesting question, in particular, in view of solutions to the quantum con-
formality condition T = T̄ on the boundary which do not reduce to the
condition that gb belongs to a fixed conjugacy class, which in turn follows
from the equations for the currents J = J̄ on the boundary. The latter
constraint is, in fact, stronger than the conformality condition.

Let us now see how the procedure described for free scalar field in the
previous section is modified in this case. From dw2 = w3 it follows imme-
diately on the level of differential forms that

γ(g1, g2) ≡ w2(g1g2)− w2(g1)− w2(g2) + tr g−1
1 dg1dg2g

−1
2 . (7.20)

is a well-defined closed 2-form. We note in passing that (7.20) is closed
without restriction to H3(G) = 0. Furthermore, γ defines a 2-cocycle on
the loop group L̂G. Indeed, if we integrate the closed 2-form (7.20) over
the disk with boundary S1, we get α2(gb

1, g
b
2) =

∫
D γ(g1, g2), where gb is the

restriction of g to the boundary and this α2 satisfies the cocycle condition.
To see that α2 only depends on the boundary data of g1 and g2, we note
that for two different extension g+

i and g−i of gb
i the difference

∫

D+

γ −
∫

D−
γ =

∫

S2

γ = 0 mod Z (7.21)

as a consequence of (7.20). Since g+
i and g−i are the same on the boundary

and are otherwise independent, the result follows. The fact that α2 satisfies
cocycle condition can be checked by direct algebraic computation using
(7.20) (see also [44, 96, 95, 89]).

To continue we will use the following decomposition (motivated by the
free field example in the previous section) for a generic map from the disk
Σ to the group G:

g(z, z̄) = g0(z, z̄)k(z, z̄); g0|∂Σ = 1; k|∂Σ = f(θ) , (7.22)
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so g0 describes the D-instanton and k is purely defined by the boundary
data f(θ) : S1 → G. We will give a concrete definition of k below. For
H3(G) = 0 each 2-form appearing on the rhs of (7.20) is separately well-
defined, so that

∫

Σ

w2(g0k) =

∫

Σ

w2(g0) +

∫

Σ

w2(k)−
∫

Σ

tr g−1
0 dg0dkk−1 mod Z (7.23)

since the 2-cocycle α2(gb
1 ≡ 1, gb

2 ≡ f) = 0 mod Z [102]. Combined with
the kinetic term in (7.18) this leads to the expression

IWZW (g) = IWZW (g0)

+
κ

4πi

∫

Σ

tr (∂µkk−1)2 +
κ

4πi
Γβ(k) +

κ

2πi

∫

Σ

tr g−1
0 ∂̄g0∂kk−1 .

(7.24)

This action is well-defined though the theory depends on the 1-form β
through the boundary integral

∫
S1 β(f) in Γβ(k).

In order to proceed we will now specify the extension k(z, z̄) of the
boundary data f(θ) by solving the Riemann-Hilbert problem for f(θ). This
means we decompose f(θ) as

f(θ) = h+(θ)h−(θ) , (7.25)

where h+ can be holomorphically continued to h(z) into the disk Σ and h−
anti-holomorphically to h̄(z̄). Thus, we have for k(z, z̄)

k(z, z̄) = h(z)h̄(z̄) . (7.26)

Here h and h̄ are fields on the complexified group4. This k(z, z̄) solves the
WZW equations of motion and, together with g0, gives an unique decompo-
sition of an arbitrary field g = g0k on the disk. We will take (7.24) with this
decomposition as definition of the WZW model on the disk for arbitrary
boundary fields f(θ) taking values in the group manifold. In background
independent open string field theory we are instructed to integrate over
f(θ). As we emphasised above this WZW theory on the disk depends on

4The factors h and h̄ can be constructed by solving the equation of motion in
Minkowski signature, that is, k(σ+, σ−) = h(σ+)h̄(σ−) where h and h̄ are independent
functions and then define h(z) and h̄(z̄) by analytic continuation.



78 7. Factorisation of BSFT action

the 1-form β on the boundary, and since this 1-form is completely arbitrary
we include it in the definition of the boundary perturbation in BSFT. We
do not specify for which β this theory is conformal – this is a good question
and the only comment we will make is that the string field theory action is
one candidate for the solution – its critical points correspond to conformal
boundary interactions parametrised by β(f). We conclude that the WZW
theory on the disk for the case H3(G) = 0 is given by the action (7.24)
with the definitions (7.25), (7.26) and (7.22).

7.2.1 Bulk-boundary factorisation

Unlike for the free field case, in the classical WZW action (7.24) the bound-
ary field k does not decouple from the bulk fields g0 on the level of the
classical action. The interaction between these two fields is given by

κ

2πi

∫

Σ

d2zJ̄g0∂K , (7.27)

where J̄g0 is the anti-holomorphic g0-current, and the holomorphic function
K(z) is defined via ∂K = ∂kk−1 using the fact that ∂kk−1 is a holomorphic
1-form.

Nevertheless, we will show below that this cross term in (7.24) between
g0 and f (which parametrises k) does not contribute to the path integral
over g0. Concretely we will prove that the n-point function

〈(∫

Σ

tr g−1
0 ∂̄g0∂kk−1

)n
〉

g0

= 0 . (7.28)

Thus for any choice of β
∫

g|∂Σ=f

D[g]e−IWZW (g) = Z0e
−W (f) , (7.29)

where

W (f) =
κ

4πi

∫

Σ

tr (∂µkk−1)2 +
κ

4πi
Γβ(k) (7.30)

and

Z0 =

∫

g0|∂Σ=1

D[g0]e
−IWZW (g0) , (7.31)
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verifying our conjectured factorisation in this class of models. This is the
main technical result of this work.

We will now give a qualitative argument for the vanishing of the n-point
function (7.28). The explicit proof of this claim is given in the appendix.
Consider the functional integral over g0 at fixed k. This is the WZW theory
with boundary conditions in the identity conjugacy class. The correlators
of J̄ ’s are functions with poles in z̄, but no positive powers of z̄ occur. These
correlators are then multiplied by functions ∂K which are polynomials of
positive powers of z. These products are proportional to a positive power of
eiθ so that the θ integral vanishes as long as no singularities occur and the
U(1)-action by eiθ is unbroken. In 7.2.3 we proof that no such singularities
appear5. But before that we show an important property of correlation
functions involving a chiral current.

7.2.2 Decoupling of chiral currents

The crucial property for these arguments to work is that the n-point func-
tions of the antichiral currents J̄ on the disk are functions of z̄ only. In
general one might expect interactions of the currents with their images.
This would generate terms which behave singular at the boundary. But in
this particular case no such terms appear, and this is due to the following
argument: It is important that in this n-point function only chiral bulk
fields are involved in the WZW theory with g0 = 1 at the boundary (for
the trivial conjugacy class), i.e. we are interested in the expectation values
〈J̄(z̄1) · · · J̄(z̄p)〉D with Dirichlet boundary conditions. This amplitude has
an equivalent representation in terms of a Dirichlet boundary state |BD〉.
The explicit construction of |BD〉 is not needed. We merely need to assume
that such a state exists. Then the expectation value can be written as an
unnormalised correlation function 〈0|J̄(z̄1) · · · J̄(z̄p)|BD〉. Expanding the
currents in modes we get

∑

n1···np

z̄n1
1 · · · z̄np

p 〈0|j̄n1 · · · j̄np |BD〉 . (7.32)

5It should be noted that this argument works only because we integrate over the disk.
One-dimensional integrals of such perturbations over the boundary of the disk would
give rise to divergences [18].
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All j̄n with n ≤ 0 annihilate on the vacuum, thus the expression contains
only terms with n > 0. The boundary state is defined by J̄dz̄|BD〉 =
Jdz|BD〉, thus it maps j̄n to j−n. Since the holomorphic and anti-holo-
morphic currents commute, the j−n can be moved all the way to the left
to act on the vacuum, which it annihilates. This then implies that bulk
normal ordered monomials of chiral operators have a vanishing expectation
value also for Dirichlet boundary conditions. For the ordinary product of
antiholomorphic currents we then conclude that

〈0|J̄(z̄1) · · · J̄(z̄p)|BD〉 ∝ 〈0|J̄(z̄1) · · · J̄(z̄p)|0〉 , (7.33)

that is, the boundary state enters only in the normalisation. Thus the only
singularities are those of coinciding J̄ ’s, which can then be treated in the
manner described above.

To summarise, this line of argument shows that, although the bulk and
boundary fields to not decouple in the classical action, the partition func-
tion is independent of the interaction term

∫
J̄g0∂K to any order in pertur-

bation theory. Thus the boundary degrees of freedom decouple from the
bulk and the partition function factorises. To complete the argument we
note that the translation invariance of the functional Haar measure D[g]
implies that no Jacobian occurs when integrating out the bulk fields g0.
Thus ∫

g|∂Σ=f

D[g]e−IWZW (g) = Z0e
−W (f) , (7.34)

where

W (f) =
κ

4πi

∫

Σ

tr (∂µkk−1)2 +
κ

4πi
Γβ(k) . (7.35)

An immediate consequence of the above result is that the boundary par-
tition function on a group manifold is related to the flat space partition
function by a non-local boundary deformation in agreement with the cor-
respondence stated in the introduction.

7.2.3 Vanishing of chiral current n-point functions

Here we give an explicit proof of the claim that that (7.27) does not con-
tribute to the path integral over the bulk field g0. We choose coordinates
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z = ρeiθ on the disk (|z| ≤ 1). The operator exp−
∫

J̄g0∂K is expanded as∑
(n!)−1(−1)nIn, where

In ≡
∫

d2z1∂1K(z1) · · ·
∫

d2zn∂nK(zn)An(z̄1, . . . , z̄n) (7.36)

An ≡
〈
J̄g0(z̄1) · · · J̄g0(z̄n)

〉
. (7.37)

Here J̄g0 = g−1
0 ∂̄g0 is the anti-holomorphic bulk current. The basic ingre-

dient for computing the integral (7.36) is the OPE of the anti-holomorphic
currents

J̄a(z̄1)J̄
b(z̄2) ∼

κδab

(z̄1 − z̄2)2
+

ifabc

z̄1 − z̄2
J̄ c(z̄2) , (7.38)

where J̄ = κ−1J̄aT a, T a are the generators of the algebra, fabc the structure
constants and δab the Cartan metric. But we will see that the calculation
does not depend on details like symmetry structures of the group.

As general strategy we evaluate the indefinite integrals in order to treat
the singularities correctly. The result is then shown to be a regular function
of all variables, so that the boundaries can be inserted and no singularities
occur.

It is clear that the one-point function vanishes, I1=0. The two-point
function is more involved since the Wick theorem does not hold and there
are self-interactions of the currents. The amplitude is

A2(z̄1, z̄2) =
〈 kδab

(z̄1 − z̄2)2
+

ifabc

z̄1 − z̄2
J̄ c(z̄2)

〉
T aT b ∝ 1

(z̄1 − z̄2)2
. (7.39)

We expand the holomorphic field as

∂K(z) =
∑

m>0

mKmzm−1 . (7.40)

Thus, I2 consists of (a sum of) terms

m1m2

∮
dθ1e

i(m1−1)θ1

∮
dθ2e

i(m2−1)θ2

∫ 1

0

dρ1

∫ 1

0

dρ2
ρm1

1 ρm2
2 e2iθ1

(ρ1 − ρ2e−i(θ2−θ1))2
.

(7.41)
The structure becomes more obvious when a relative boundary coordinate
θ = θ2 − θ1 is introduced,

m1m2

∮
dθ1e

i(m1+m2)θ1

∮
dθei(m2−1)θ

∫ 1

0

dρ1

∫ 1

0

dρ2
ρm1

1 ρm2
2

(ρ1 − ρ2e−iθ)2
.

(7.42)
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As mi ≥ 1 the θ1-integral makes the whole term vanish as long as the
remaining integrals are not divergent. The mi are set to 1, because higher
powers of ρi will, at best, smoothen the singularities. We conduct the
ρ1-integral and the relevant part becomes

∫
dθ

∫
dρ2

[
ρ2 ln(ρ1 − ρ2e

−iθ)− ρ2
2e
−iθ

ρ1 − ρ2e−iθ

]
. (7.43)

The second part of (7.43) is

∫
dθe−iθ

[
1

2
ρ2

2e
iθ + ρ1ρ2e

2iθ + ρ2
1e

3iθ ln(ρ1 − ρ2e
−iθ)

]
(7.44)

= ρ2
1

∫
dθe2iθ ln(ρ1 − ρ2e

−iθ) + regular terms . (7.45)

Conducting the θ-integral yields

− i

2

(
ρ2

1e
2iθ − ρ2

2

)
ln

(
ρ1e

iθ − ρ2

)
+ regular terms . (7.46)

which is non-singular in all variables. Therefore the whole expression is
non-divergent and vanishes finally under the θ1-integral.

The first part of (7.43) is, after ρ2-integration,

1

2

∫
dθ

[
ρ2

2 ln(ρ1 − ρ2e
−iθ) + e−iθ

∫
dρ2

ρ2
2

ρ1 − ρ2e−iθ

]
. (7.47)

The whole expression becomes, using the result from (7.44),

− 1

2

∫
dθe2iθ(ρ2

1 − ρ2
2e
−2iθ) ln(ρ1 − ρ2e

−iθ) + regular terms . (7.48)

This term is regular even without θ-integration. Therefore all terms are
finite and finally vanish under the θ1-integral. Thus I2 = 0.

The three-point-amplitude is proportional to

A3(z̄1, z̄2, z̄3) ∝
1

(z̄1 − z̄2)(z̄1 − z̄3)(z̄2 − z̄3)
. (7.49)

I3 contains terms of the form
∫

dρ1dθ1 · · · dρ3dθ3
m1m2m3ρ1ρ2ρ3

(ρ1e−iθ1 − ρ2e−iθ2)(ρ2e−iθ2 − ρ3e−iθ3)(ρ1e−iθ1 − ρ3e−iθ3)
.

(7.50)
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Again we set mi = 1 in order to single out the most singular part. The
indefinite integration over ρ1 gives

∮
dθ1

∫
dρ1

ρ1ρ2ρ3

(ρ1e−iθ1 − ρ2e−iθ2)(ρ2e−iθ2 − ρ3e−iθ3)(ρ1e−iθ1 − ρ3e−iθ3)

=
ρ2

2e
−iθ2ρ3

(ρ2e−iθ2 − ρ3e−iθ3)2

∮
dθ1e

2iθ1 ln(ρ1e
−iθ1 − ρ2e

−iθ2)

−
[
ρ2e

−iθ2 ↔ ρ3e
−iθ3

]
. (7.51)

Now we conduct the θ1-integral6

∫
dθ1e

iθ1 ln(ρ1e
−iθ1 − ρ2e

−iθ2)

= iρ1

[
ρ1e−iθ1 − ρ2e−iθ2

ρ1e−iθ1ρ2e−iθ2
ln(ρ1e

−iθ1 − ρ2e
−iθ2)− eiθ2

ρ2
ln(ρ1e

−iθ1)

]
.(7.52)

Restoring the pre-factors from (7.51) we see that (7.52) is less singular than

iρ2ρ3eiθ1

z̄2
23

(z̄12 ln z̄12 − z̄1 ln z̄1)−
[
ρ2e

−iθ2 ↔ ρ3e
−iθ3

]
. (7.53)

The expression in the bracket is completely regular. As pre-factor we recog-
nise the contribution from the 2-point function. Thus, we conclude that I3

must have the same or a less singular behaviour than I2. Thus, the overall
θ1-integration, which is also present for the three-point function, makes the
whole expression vanish, I3 = 0.

This argument can now be applied recursively to n-point functions. For
the sake of a clear presentation we switch to a rather symbolic notation.
The recursion then works like (modulo some permutations)

∫
dzn

(· · · )
(z̄1 − z̄2)(z̄2 − z̄3) · · · (z̄n−1 − z̄n)(z̄n − z̄1)

∝ (· · · )
(z̄1 − z̄2)(z̄2 − z̄3) · · · (z̄n−1 − z̄1)

+ less singular terms (7.54)

until one ends up with a three-point amplitude. Thus, all these indefinite
integrals are indeed regular.

6We multiply the integrand with e−iθ1 , which does not change the degree of diver-
gence. We could also use the integrand without modifications, but the computation is
slightly longer.
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Now we argue that in fact all the integrals In must vanish. We extract
eiθ1 from each factor (z̄i− z̄j)−1 and shift all the other boundary coordinates
θi → θ′i = θi − θ1. This gives a global factor of exp i

∑
i miθ1. The mi are

always positive, thus the θ1-integration makes the whole expression vanish.
We arrive at the central result of this calculation:

In = 0 . (7.55)

The immediate consequence is that the operator exp−
∫

J̄g0∂K is marginal
and therefore the partition function does not depend on it.

7.2.4 Groups with H3(G) *= 0

Let us now turn to the case when H3(G) = Z such as G = SU(N). In
this case w2 is not globally defined (it is ill-defined on a high codimension
submanifold of the target, which is just a point for the case of the SU(2) ∼=
S3 group manifold). Let us follow the arguments for the H3(G) = 0 case
and see where the problems show up. In order to reduce the action to the
form (7.24) we use the decomposition g = g0k, with k as in (7.25). Since
(7.20) is still well-defined we can formally arrive at the equation (7.23). In
particular, the non-trivial 2-cocycle α2(gb

0, f) after formula (7.23) is again
zero for gb

0 = 1. There is no problem to globally define the first and the last
term on the rhs of (7.23). The difficulty resides in the second term w2(k).
Thus the problem is with the definition of the WZW action on solutions
of the classical equations of motion ∂̄(∂kk−1) = 0, with k|∂Σ = f(θ), where
f is arbitrary. In this case the classical Lagrangian turnes out to be not
a function anymore [55, 54]. However, this might be expected, because
a path integral with boundary conditions defines a wave-function, which
corresponds to a section of some bundle. Note that although the action is
ambiguous the equations of motion derived from it are well-defined.

Recall that the reason we want to consider boundary conditions which
are not in a conjugacy class is that according to the philosophy of BSFT one
has to integrate over all degrees of freedom including the boundary fields
with boundary interactions parametrised by the 1-form β. From the expres-
sion (7.4) for the string field theory action, it follows that it is the space-time
action (7.4) that needs to be well-defined for boundary deformations and
not the worldsheet classical action W (f) = κ

4πi

∫
tr (∂µkk−1)2 + κ

4πiΓ
β(k).
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That is, an integral over boundary maps

Zbdry = Z/Z0 (7.56)

=

∫
D[f ]e−W (f) , (7.57)

shall be well-defined, where D[f ] is a Haar measure for k written in terms
of f after expressing k via the solution of the Riemann-Hilbert problem
described above. Even if this path integral diverges ultimately, it is the
combination entering in (7.4) that shall lead to a well-defined space-time
action.

Since there are infinitely many choices for β one would like to classify
them according the conformality condition for the corresponding quantum
theory. As we mentioned for SL(2, R), this is exactly the question that
background independent open string field theory studies.

For H3(G) *= 0, one way to remove the topological obstruction in defin-
ing Γβ(k), is by deleting a high codimension submanifold in G and repeating
(7.20) for g1 = g0 and g2 = k. Since these relations are algebraic we still
can safely derive the formal relation (7.23). One might then suggest that
in this case a dβ can be found, so that the integral over boundary fields
is still well-defined as mentioned above (with appropriate regularisation
procedure). We recall that a similar situation appears for the analogous
quantum-mechanical problem for trajectories with boundaries in a com-
pact phase-space (associated with coadjoint orbits, and related), where the
classical action on the world-line is ill-defined due to non-trivial H2 of the
phase space though the path integral can be properly defined in order to
get a correct wave-function [4]. In short – although the action is ill-defined
on high codimension submanifolds the path integral on the manifold with
boundary still gives a well-defined and correct “wave-function” (matrix el-
ement). According to [5, 6] our current problem is an infinite-dimensional
version of the quantum mechanical problem. We believe that the same is
true for the family of 2d field theories related to WZW models on the disk
for group manifolds with non-trivial H3.

Critical points of the string field theory action (7.4) are supposed to lead
to well-defined conformal boundary conditions and well-defined Zbdry =
Z/Z0, which is the value of the space-time action on-shell according to
(7.4) (these boundary interactions, in particular, do contain the restriction
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to conjugacy classes as a sub-set of the conformal conditions).

So at the moment we simply assume that (7.19) be given via (7.24) for
all groups including those with H3(G) *= 0 (as we mentioned for SL(2, R),
everything is properly defined in (7.24) and this case is very intersting on its
own right) and define the string field theory action via standard methods.

At this point a comment about the measure D[k] is in order. If we start
with the Haar measure for g, the natural measure for k comes out to be
the functional Haar measure for k(z, z̄) = h(z)h̄(z̄). Note, however, that
k is uniquely determined in terms of the boundary data. When pulling
back D[k] to the boundary a Jacobian occurs and introduces a further
non-locality in the boundary interaction. So the total non-local boundary
deformation resulting from a shift in the closed string background is given
by W (f) = κ

4πi

∫
Σ tr (∂µkk−1)2 + κ

4πiΓ
β(k) plus the Jacobian generated. In

the next section we will give an illustration by considering the large radius
limit of the SU(2) model.

7.2.5 The SU(2) boundary action

We now specify the closed string background to be the group manifold of
SU(2) (or its complexification) and set the one-form β to zero temporarily.
For convenience we substitute λ ≡ κ−

1
2 and obtain the SU(2)-boundary

action78

S =
1

(iλ)2
Tr

∫
∂kk−1∂̄kk−1 . (7.58)

Expanding the action up to fourth order in f and f̄ one finds after some
tedious algebra

S = s
∑

m=1

mfα
mf̄mα + α(Vα − Vᾱ) + βVβ + γ(Vγ + Vγ̄) , (7.59)

7Please note that here we denote the level of the WZW model by κ rather than by k
as in previous chapters.

8The trace is normalised in a way so that the quadratic part of the action is given
by the standard term

∑
m>0 mfmf̄m in flat space.
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with

Vα =
∑

c,b,a=1

(b− a)δc,a+bεµνλf
µ
a f ν

b f̄λ
c (7.60)

Vβ = −
∑

a,b,c,d=1

(c− b)(a− d)

a + d
δc+b,a+df

µ
c f ν

b f̄aµf̄dν (7.61)

Vγ = −2

3

∑

a,b,c,d=1

(a− d− b)δc,b+a+df
µ
c f̄aµf̄

ν
b f̄dν , (7.62)

where Vᾱ and Vγ̄ is obtained by exchanging f with f̄ . The original action
(the starting point of the renormalisation group flow) is found for s = 1, α =
λ
2 , β = γ = λ2

2 . Although the action can be computed exactly we truncate
its expansion at O(λ3) (we will see that this gives β-functions which are
exact up to O(λ5)).

There is another contribution to the action coming from a Jacobian due
to the change of variables. Starting from the standard Haar measure on
the group [dk] = k−1dk we obtain the following Jacobian:

J =

(
[δkk−1]+ , [δkk−1]−

)

(
δf, δf̄

)

=




[δhh−1]

+

δf

[hδh̄h̄−1h−1]
+

δf̄

0
[hδh̄h̄−1h−1]

−

δf̄



 =

(
J11 J12

0 J22

)
, (7.63)

where ± indicates restriction to the holomorphic/anti-holomorphic part.
Thus DetJ = DetJ11 ·DetJ22. The rather lengthy calculation can be found
in the appendix. Here we note simply the result. The measure contributes

Imeasure = 4λ2
∑

n=1

fnµf̄
µ
n +O(λ4) (7.64)

to the action. This is a mass term for the boundary field Xb which, due
to its classical dimension, flows to ∞ in the infrared thus forcing Xb to
zero, i.e. Dirichlet boundary conditions in all directions. Thus we see that
the tachyonic decay of the space-filling brane in the SU(2) WZW-model is
already encoded in the measure9.

9In fact, the measure for the boundary field k is not uniquely determined by the bulk
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theory. Here we have taken the Haar measure as the starting point. Alternatively, one
could consider the flat symplectic measure for f and f̄ . In this case the tachyon arises
as a one-loop counter term (see next chapter).



Chapter 8

Renormalisation of the boundary
action

This chapter is devoted to a concrete study of a special case of a fac-
torised boundary action. The action is treated perturbatively and expanded
around a flat space background. This results in non-local terms, which are
found to contribute to the β-functions of the system. The renormalisation
of the local and non-local couplings is conducted explicitly. The results can
be interpreted in the framework of tachyon condensation, where indications
are found that the end point of the condensation is a spherical 2-brane in
S3 target space. The presentation here follows [21].

8.1 Three-sphere boundary action

Once the concrete form of the action has been obtained, we can analyse the
quantised theory. It is clear that the action as it stands is not scale-invariant
due to the presence of the mass term. To account for the mass and the
‘cosmological constant’ we introduce the tachyon coupling T (X) = a+uff̄ .
Note that we do not expect the expansion up to fourth order to lead to a
renormalisable theory. The exact action should, however, be renormalisable
since the bulk theory from which it has been obtained is renormalisable. In
particular we expect the renormalised action to describe field configurations
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in the same group manifold. Thus the structure of the interaction terms
(which respects the group symmetry) should be untouched. Therefore we
will assume λ = κ−

1
2 to be scale dependent, but keep the relative couplings

fixed. Accounting for wave-function renormalisation we will allow for s to
be scale dependent.

8.1.1 The action

Let Tµ be the generators of SU(2). We define the operators

adf = [fµTµ, · ] Adh = h · h−1 (8.1)

and derive (with ω(θ) ≡ 2
√

fµ(θ)fµ(θ) )

Adh = id +
i sin λω

ω
adf +

cos λω − 1

ω2
ad2

f (8.2)

δhh−1 =

[
iλid +

cos λω − 1

ω2
adf + i

sin λω − λω

ω3
ad2

f

]
δfµTµ (8.3)

h−1δh =

[
iλid− cos λω − 1

ω2
adf + i

sin λω − λω

ω3
ad2

f

]
δfµTµ . (8.4)

With these preparations the action can be obtained exactly in these co-
ordinates. An expansion in the perturbation parameter λ up to order λ3

yields the expressions (7.59) and (7.60)1.

8.1.2 The Jacobian

Here we present details about the calculation of the Jacobian as advocated
in (7.2.5). Unlike for the action, it is not possible to obtain an explicit
expression for arbitrary λ, but a perturbative expansion is possible. Let us
first focus on the determinant of the matrix J11 = [δhh−1]+

δf . In components

1A normalisation of boundary integrals has been used, which absorbs factors of 2π
in a convenient way.
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it can be expressed as

(J11)
µν
nm = iλδµν

nm (8.5)

−2i

∮
dθei(n−m)θ

[
ερ

µνfρ(θ)
d

dλ
+ 2εµλρερ

κνfλ(θ)fκ(θ)

]
A(λ)

A(λ) =
sin λω − λω

ω3
. (8.6)

The functions f(θ) are given by the holomorphic function f(z) with coor-
dinates restricted to the boundary z = eiθ. As f has no zero mode, the
integral can only be non-zero when m > n. In particular only the very first
term contributes to the trace of J11. Higher powers of J11 contain terms∮

ei(n−p1)θ1
∮

ei(p1−p2)θ2 · · ·
∮

ei(pk−m)θk+1 with n < p1 < · · · < pk < m. Un-
der the trace these terms vanish again. Therefore (we suppress irrelevant
factors coming from tracing over space indices)

Tr Jn
11 = (iλ)nTr 1 . (8.7)

Using the expansion of the determinant in traces,

ln Det
J11

iλ
= Tr

∫
ds

s
e−s

J11
iλ , (8.8)

we get

Det
J11

iλ
= 1 . (8.9)

For the computation of J22 we expand

hδh̄h̄−1h−1 =
8∑

i=0

δbi (8.10)

δb0 = iλδf̄ δb1 = Z̄1adf̄δf̄ (8.11)

δb2 = Z̄2ad2
f̄δf̄ δb3 = iλZ3adfδf̄ (8.12)

δb4 = Z3Z̄1adfadf̄δf̄ δb5 = Z3Z̄2adfad2
f̄δf̄ (8.13)

δb6 = iλZ1ad2
fδf̄ δb7 = Z1Z̄1ad2

fadf̄δf̄ (8.14)

δb8 = Z1Z̄2ad2
fad2

f̄δf̄ . (8.15)

with the abbreviations

Z1 = −λ2

2
+

λ4ω2

24
− λ6ω4

720
+O(λ7) (8.16)

Z2 = −iλ3

6
+

iλ5ω2

120
+O(λ7) (8.17)

Z3 = iλ + ω2Z2 . (8.18)
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The functional matrices, which enter the determinant are

[
δbi

δf̄

]−

(µn)(νm)

, (8.19)

where the upper index ‘−’ indicates projection on the antiholomorphic
modes. Due to m ≤ n, they are all upper triangular matrices, hence the
determinant is just the product of the diagonal entries. We re-write it in
the following way:

Det
J22

iλ
≡ eTr ln Bµν

nm , (8.20)

where

Bµν
nm = δµν

mn − 4i

λ

∮
Z3Z̄1f

λf̄κεκνρερλµ (8.21)

− 8

λ

∮ [
Z3Z̄2f

λf̄κf̄ρ + Z1Z̄1f
λfκf̄ρ

]
ερνσεκστελτµ(8.22)

+
16i

λ

∮
Z1Z̄2f

λfκf̄ρf̄σεσντ ετρωεωκξεξλµ . (8.23)

Next we expand the logarithm (8.20) and derive an expression for the con-
tribution to the action. A straight forward calculation reveals

IJacobian = 4λ2
∑

n>0

fµ
n fnµ +O(λ4) . (8.24)

The lowest order of the Jacobian, which modifies the action, has therefore
the form of a tachyon interaction.

8.2 β-functions

For the calculation of the β-functions we evaluate n-point functions ex-
panded in loops. These correlators are IR finite because the theory is
considered on a one-dimensional compact space. For large momentum the
amplitudes are typically divergent, thus it is convenient to introduce a mo-
mentum cutoff Λ. This regularisation seems appropriate as we are dealing
with discrete sums so that Λ simply appears as upper bound. The diver-
gent parts of diagrams can be found by investigating the behaviour for
large Λ. Higher loop diagrams are treated in the following way. All loops
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naturally appear with sums over positive momenta only. Therefore sums
of the type

∑Λ
a=1

∑Λ
b=1 f(a, b) can be transformed into an expression of the

form
∑Λ

µ=2

∑µ−1
ν=1 f(ν, µ − ν). With this method only one divergent sum

appears, even for higher loops.

Once the divergent part is extracted the renormalisation procedure can
be performed. Here we decide to start from the normal ordered theory with
respect to the free field vacuum2 and add counter-terms, which cancel the
divergent part of the amplitudes. The counter-terms for the two- and three-
point-functions (p is the external momentum) are given by the following
expression, which must be subtracted from the classical action:

Σ(2)(p, Λ) = Λ

{
32

α2

s2

}
+ ln Λ

{
−96p

α2

s2
− 64

u

s

α2

s2

}
(8.25)

Σ(3)(p, p′, Λ) = −(p′ − p)
4α

3s2
(4γ − 3β) ln Λ . (8.26)

Here, contributions up to three-loop order must be taken into account (al-
though the 2- and 3-loop-contributions turn out to vanish). Now the β-
functions follow from (8.25), the canonical dimensions of a and u as well as
the vacum energy for free fields :

βs = −96α2

s2 βa = −a− u
s

βu = −u− 64uα2

s3 βα = −4
3

α
s2 (4γ − 3β) .

(8.27)

The non-local couplings do not contribute a counter-term for the cosmo-
logical constant. Therefore the β-function for a is not modified by λ and
takes its usual form.

All these terms are one-loop contributions and therefore scheme inde-
pendent. The two- and three-loop contribution to these β-functions vanish.
After absorption of the coupling s into the field normalization and setting

2Such a normal ordering prescription can in general not be held at higher loops. In the
approximation used here, however, it does hold, because all nested singularities of higher-
loop diagrams (≥ 2) are already removed through the 1-loop counter-terms. It turns
out that this is not due to cancellations between different diagrams, but all diagrams
become finite separately. The inclusion of self-contractions would only modify some
numeric coefficients in the 1-loop counter-terms, which does not influence the finiteness
of the 2-loop diagrams. The 3-loop-diagrams on the other hand vanish identically.
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α = λ
2 , γ = β = λ2

2 , the β-functions become

βa = −a− u (8.28)

βu = −u(1− 8λ2) (8.29)

βλ = −47

6
λ3 . (8.30)

From these equations we can draw the following conclusions:

1. The coupling λ for the non-local interaction increases under the renor-
malisation group flow. This should not be taken as an indication that the
curvature of the bulk background increases since the bulk theory, which is
decoupled, is always on-shell. This coupling should rather be interpreted
as an ‘auxiliary’ coupling which mimics the effect of the closed string back-
ground on the open string dynamics.

2. Tachyon condensation inevitably takes place. As we have seen above
the tachyon is non-zero from the beginning due to the contribution of the
measure. Furthermore, even if it were set to zero by an appropriate choice
of the measure, a tachyon would be generated due to the one-loop counter-
term.

3. The running of u is modified in a curved background. The way how
λ enters in βu indicates that the tachyon flow in this example has a richer
structure than in flat space.

At this point one could wonder about the end-point of the condensation.
At perturbative level and with a finite set of couplings taken into account it
is not possible to make definite predictions. The obtained β-functions sug-
gest that condensation to lower-dimensional branes can take place, in the
same way as in flat space tachyon condensation. An infinite u forces fµf̄µ

to zero, so that the resulting model will describe a D0-brane. The existence
of a D0-brane is expected because it also arises in the WZW model (and
is therefore compatible with the symmetries of the space). However, it is
also possible identify a condensation process towards a higher-dimensional
brane as endpoint. We present evidence for this in the next section.
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8.3 Tachyon condensation on the 3-brane

The β-functions (8.27) exhibit a complicated RG pattern, from which in-
formation about possible endpoints of the flow can be deduced. The trivial
conformal point is a = 0, u = 0, λ = 0, which is just the free boson the-
ory without tachyon. Another well-known fixed point is obtained through
tachyon condensation at a = u = ∞ (the Zamolodchikov metric vanishes
at this point). We want to argue that there is another fixed point, which
corresponds geometrically to a 2-brane. This must be expected from the
study of D-branes in the WZW model [8, 80].

In order to arrive at this conclusion, it is helpful to consider the boundary
action with a tachyon insertion given by

∮
β(Xb) =

∮
ρ(X2

b − c2)2 . (8.31)

In the case of finite c, condensation of ρ will lead to a localisation on a
spherical submanifold. Expansion up to third order in the fields yields an
interaction term

− 4ρc2ff̄ + ρc4 , (8.32)

from which an identification with couplings u and a can be obtained:

ρ =
1

16

u2

a
c2 = −4

a

u
. (8.33)

The corresponding β-functions are then given by

βc2 = 4− 8c2λ2 (8.34)

βρ = − ρ

c2

(
c2 − 16c2λ2 + 4

)
. (8.35)

A close look at (8.34) shows that the presence of curvature, parametrised
by λ, has a stabilising effect on the radius c2. The corresponding β-function
vanishes for

c2 =
1

2
λ−2 =

1

2
κ . (8.36)

Indeed, a spherical 2-brane would be characterised by a finite radius c
proportional to

√
κ = λ−1, which is expected from the WZW model. Thus

the deformation of the flat background prevents the spherical 2-brane from



96 8. Renormalisation of the boundary action

Figure 8.1: The projection of the flow diagram to the (λ, c2)-plane in the pa-
rameter region where condensation to a D2-brane starts. Only the presence of
non-vanishing λ enables a flow towards finite c. The flow can only be trusted for
small λ.

collapsing. But the condition for vanishing βc2 still depends on λ, which
itself is driven by its RG flow and increases.

For small λ, where this approximation is valid, βρ is negative and stays
negative after substituting (8.36). Therefore the coupling ρ will increase
and trigger a tachyon condensation process.

The perturbative β-functions on the 3-brane suggest that c2 = 1
2λ

−2

is not the endpoint of the flow. However, while λ evolves along its RG
trajectory, ρ increases at a much higher rate. Large ρ on the other hand
suggests that the perturbative treatment of the flow on the 3-brane is not
applicable any more. Rather than trying to follow the flow all along the RG
trajectory it is more reasonable to investigate the conjectured endpoint, a
spherical 2-brane.

Note that the original couplings a and u both become infinite, so that
the condensation process looks quite like usual tachyon condensation with
a configuration with vanishing Zamolodchikov metric as endpoint. But
the transformation into (ρ, c2)-coordinates reveals, that this condensation
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is not quite as simple, due to the presence of the non-local coupling λ.
The submanifold given by this equation is lower-dimensional but curved, a
phenomenon which is impossible to observe when tachyon condensation in
the presence of only local couplings is studied.

The major drawback of the derivation presented here is the treatment
within perturbation theory while only retaining a finite set of couplings.
Exact results are out of reach with this method, and including higher per-
turbative corrections in the calculations significantly increases the necessary
efforts. In order to substantiate the above results we will present another
check for the conjectured end point of the renormalisation group flow and
the existence of a spherical 2-brane with the same qualitative properties in
the next section.

8.4 Stability of the two-brane

Motivated by the results of the previous section we want to check, if a
two-brane is perturbatively stable. We start with a boundary path-integral
localised on X2

b = c2. This constraint is compatible with the group sym-
metries of SU(2) and describes spherical 2-branes, which are known to be
stable. In order to insert this constraint into the action we expand it in the
fields f and f̄ to lowest order in λ. Moreover we assume that f 3 is of the
order of the radius c of the 2-sphere, and the other coordinates are small
compared to c. Explicitly,

f 3
n = − 1

2c

[
fαfα + 2fαf̄α

]
n
, (8.37)

where the rhs is projected on the (positive) momentum n, and the index α
runs over the directions {1, 2}.

Substituting (8.37) into the action generates several new vertices. In
particular the 3-vertex is removed and the 4-vertex shows a much more
complicated structure. The interaction consists of several terms, propor-
tional to different combinations of λ and c. It is of the form

∮
β(Xb) =

λ

c
A +

s

c2
B + λ2C . (8.38)
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The three types of interactions, distinguished through their dependence of
combinations of c and λ, are given by

A =
∑

i

Ai −
∑

i

Āi (8.39)

B = B1 + B2 + B3 + B̄3 (8.40)

C = C1 + C2 + C̄2 (8.41)

with

A1 =
1

2

∑

a=1

∑

d=2

d−1∑

e=1

(d− a)εαβfα
a f̄β

a+dfeγf
γ
d−e

Ā1 = A∗
1

A2 =
∑

a=1

∑

c=1

∑

d=2

(d− a)εαβfα
a f̄β

a+dfc+dγ f̄
γ
c

Ā2 = A∗
2

A3 =
1

4

∑

a=1

∑

b=1

a+b−1∑

g=1

(a− b)εαβfα
a fβ

b f̄gγ f̄
γ
a+b−g

Ā3 = A∗
3

A4 =
1

2

∑

a=1

∑

b=1

∑

c=1

(a− b)εαβfα
a fβ

b fcγ f̄
γ
a+b+c

Ā4 = A∗
4

B1 =
1

4

∑

m=2

m−1∑

a=1

m−1∑

b=1

mfaαfα
m−af̄bβ f̄β

m−b

B2 =
∑

m=2

m−1∑

a=1

m−1∑

b=1

mf̄aαfα
m−afbβ f̄β

m−b

B3 =
1

2

∑

m=2

m−1∑

a=1

m−1∑

b=1

mfaαfα
m−afbβ f̄β

m−b

C1 = −
∑

a,b,c,d=1

(a− b)(c− d)

c + d
fα

a f̄cαfβ
b f̄dβδa+b,c+d

C2 =
1

3

∑

a,b,c,d=1

(c− a− b)f̄α
a f̄bαf̄cβfβ

a+b+c

C̄2 = C∗
2 .

(8.42)
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A contribution from the 3d measure has been not included, since after
imposing the constraint it would appear as a cosmological constant. For
the β-functions this is taken into account anyway as part of the tachyon
couplings.

We want to check, if this action leads to a conformal fixed point describ-
ing a 2-brane. Due to the complexity of the generated non-local interaction
terms, it is hard to show conformal invariance directly. Therefore we re-
strict ourselves to the investigation of tachyonic instabilities. For this we
need to show that no tachyon is present, neither due to the measure nor due
to counter-terms arising at the quantum level. A tachyon would destabilise
the 2-brane and initiate a further condensation.

Such information is contained in the various counter-terms appearing
in the renormalisation procedure. Furthermore the various β-functions
should vanish for the theory to be scale-invariant. For this one needs to
know the logarithmically divergent counter-terms. More-than-logarithmic
divergences tell us, if certain couplings can be set identically to zero in a
consistent way.

For example, we might set a certain coupling g to zero (in an adequate
theory). Renormalisation then might make it necessary to add a counter-
term which excites the coupling g. Still, it could be possible to set the
renormalised coupling gren to zero as a renormalisation condition. This is
then an arbitrary choice and cannot have much physical meaning; it should
rather be viewed as a kind of fine tuning of the theory. However, if all
counter-terms vanish, g = 0 is a solution of the string field theory action.

This is exactly the situation we encounter in our theory (8.38). Due
to the complexity of the 4-vertex, the calculation could be done only for
vanishing tachyon. However, this is enough to see if tachyonic modes desta-
bilise the 2-brane. According to general scaling arguments, the β-function
for u is always proportional to u.3 Hence setting u = 0 makes its β-function
vanish. In order to decide if this condition is just fine tuning or has physical

3As the calculations are done in the limit u → 0 it is impossible to obtain an ex-
pression for βu. This limit involves some care in the regularisation of the theory. In
particular, the appearance of the correct combinations of u and R (the radius in the
disk, which has been set to 1) must be restored in order see the behaviour of βu. The
scaling then forces the logarithmic divergences to be proportional to u.
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relevance, we need to know the counter-terms. For the 2-point function at
vanishing external momentum, they are4

Σ(2)(p = 0, Λ) =
[
Λ ln Λ + (γ − 1)Λ

] {
4λ2

c2s3
− 8

3

λ2

s2c2
− 38

sc4

}

+ ln Λ {terms proportional to u} . (8.43)

Most remarkably the more than logarithmically divergent counter-terms
are not independent of each other. They arrange themselves in a way so
that they all appear with the same factor. Therefore it is possible to remove
them altogether by imposing one single condition, adjusting the value of
the radius c. Setting for example s = 1 gives

c2 =
57

2
λ−2 =

57

2
κ . (8.44)

Of course, the numerical factor is still modified by wave function renormal-
isation, which has not been taken into account here.

The logarithmic part of (8.43) contains the 2-loop contribution for βu.
To prove conformal invariance at the 2-loop level one ought to establish
the absence of counter-terms for the other couplings as well, which we have
not obtained here. Rather we want to stress the absence of higher-than-
logarithmic divergences in the counter-terms after imposition of localisation
to (8.44) as a check for the claim on the end point of RG-flow of the decaying
3-brane.

It is tempting to view the RG-behaviour of our model as realisation of
’t Hooft’s naturalness principle, albeit in a different context than confin-
ing gauge theories, for which it was originally formulated [128]. Natural
theories do not need fine-tuning of the couplings in order to cancel counter-
terms; therefore, small parameters stay small under a change of scale, which
is a property shared by our model. The physical picture behind is, that
small couplings are preferred, when their vanishing increases a symmetry.
One could speculate about symmetry enhancement in the above model.
Reversing the argument would imply that some symmetry exists which
fixes c2 to a certain value. This is reminiscent of the quantisation of radii

4The counter-terms have been calculated in the same way as in the previous sec-
tion. Again we find, that the free field normal ordering prescription can be consistently
implemented and is therefore justified a posteriori.
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of D-branes in SU(2) and nourishes hope that higher order perturbation
theory could reveal a D-brane potential capable of describing localisation
on quantised D-branes.
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open topological string theory





Chapter 9

Strings on Calabi-Yau spaces

9.1 N = (2, 2) SCFT

It is generally believed that classical solutions of string theory are described
by two-dimensional conformal field theories. A special case are supercon-
formal theories, which provide a way to build theories which are supersym-
metric in the target space. For the case of string theories compactified on
Calabi-Yau spaces, conformal theories with two conserved supercharges in
the left- and right-running sector are of special interest [14, 65, 108].

Such a N = (2, 2) theory contains a supermultiplet which is formed of
the energy momentum tensor T of weight 2 as top component, the super-
currects G± of weight 3

2 and the U(1)-current J with weight 1 (see e.g.
[36]). The OPE is given by

T (z)T (w) ∼ c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂wT (w) (9.1)

T (z)G±(w) ∼
3
2

(z − w)2
G±(w) +

1

z − w
∂wG±(w) (9.2)

T (z)J(w) ∼ 1

(z − w)2
J(w) +

1

z − w
∂wJ(w) (9.3)

G+(z)G−(w) ∼
2
3c

(z − w)3
+

2

(z − w)2
J(w) +

2T (w) + ∂wJ(w)

z − w
(9.4)
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J(z)G±(w) ∼ ± 1

z − w
G±(w) (9.5)

J(z)J(w) ∼ c/3

(z − w)2
(9.6)

with central charge

c =
3k

k + 2
(9.7)

expressed in dependence of the level k. Analogous expressions for the su-
perconformal algebra can be written down for the anti-holomorphic sector.

The primary fields in the NS sector are determined as eigenstates of the
operators L0 and J0 by

L0|φ〉 = h|φ〉
J0|φ〉 = q|φ〉 .

(9.8)

The positive modes of all other operators annihilate these states. Thus a
primary state carries a definite weight h as well as a U(1)-charge q.

In the Ramond sector G± has a zero mode. This makes an additional
condition necessary,

G±
0 |φ〉R = 0 . (9.9)

Spectral flow On the level of the superconformal algebra it is well known
that the Ramond sector and the Neuve-Schwarz sector can be connected by
spectral flow. To see this one notes that the mode expansions of the fields
in the current multiplet can be modified with a continuous parameter λ in
the following way:

Ln → Ln + λJn +
c

6
λ2δn

G±
r → G±

r±λ

Jn → Jn +
c

3
λδn .

(9.10)

The NS sector is obtained for λ = 0, whereas the R sector is given by λ = 1
2 .
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The important point is now, that there is a spectral flow operator Uλ

which connects both sectors. Given a field |φ〉 with weight h and charge φ,
then

|φ′〉 = Uλ|φ〉 (9.11)

has

h′ = h− λφ +
c

6
λ2

q′ = q − c

3
λ .

(9.12)

Since, after GSO projections, the R sector describes fermionic fields and
the NS sector describes bosonic field with respect to target space super-
symmetry, the spectral flow operator acquires an interpretation as target
space supersymmetry operator.

Chirality The space of states of the N = (2, 2) theory contains an impor-
tant subspace, which is formed of chiral and anti-chiral fields. Chirality is
defined here by the action of the operators G±

− 1
2

, so that they satisfy

G+
− 1

2

|chiral〉 = 0 G−
− 1

2

|anti-chiral〉 = 0 . (9.13)

The same construction applies to the anti-holomorphic sector.

An important property of chiral fields is that there is a connection be-
tween their weight and their charge,

h =
1

2
q . (9.14)

Moreover it is consistent to truncate to a subspace consisting only of chiral
fields, i.e. these fields form a ring, the so-called chiral ring. Usually this
ring has only finitely many fields, which is a property that becomes relevant
for example in minimal models and in topologically twisted models.

9.2 Gepner model

Representations of the superconformal algebra with central charge c ≤ 3
are called minimal models, because the unitarity constraints

L†
n = L−n J†

n = J−n (G±
r )† = G∓

−r (9.15)
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select a series of discrete values for the triples (c, h, q), which specify the
highest weight representations. They are labelled by integers (l, m, s) and
are given by

h =
l(l + 2)−m2

4(k + 2)
+

s2

8
mod 1

q =
m

k + 2
− s

2
mod 1 ,

(9.16)

where l = 0 . . . k, m = −k . . . k + 2 and s = −1 . . . 2, subject to l + m + s ∈
2Z. In this notation, the fields with even s are NS fields, while those
with odd s live in the R sector. Also the fields are identified under the
equivalence relation

(l, m, s) ∼ (k − l, m + k + 2, s + 2) . (9.17)

These representations can be organised according to the ADE classification
[40]

Ak : k ≥ 1

D2j+2 : k = 4j, j ≥ 1

D2j+1 : k = 4j − 2, j ≥ 2

E6 : k = 10

E7 : k = 18

E8 : k = 28 .

(9.18)

These models are equipped with symmetries g and h, acting as

gφl
m,s = e2π m

n φl
m,s

hφl
m,s = (−1)sφl

m,s ,
(9.19)

where n = k + 2 for Ak, D2j+1 and E6, and n = k+2
2 for D2j+2, E7 and E8.

The Gepner construction [58, 57, 66, 149] now relies on the idea to split
the conformal field theory underlying a string theory into a 4-dimensional
part and internal CFT, which is realised as an orbifold of suitable minimal
models. Orbifolding does not affect the central charge, so the contributions
to c of the minimal model simply add up. The required central charge for
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the internal CFT is c = 9, so that Gepner’s construction chooses a set of
levels ki so that

∑

i

3ki

ki + 2
= 9 . (9.20)

The internal CFT is thus described by a suitable tensor product

CFTk1 ⊗ · · · ⊗ CFTkr . (9.21)

In order to ensure spacetime supersymmetry it is still necessary to employ
an orbifold-like construction, due to Gepner, so that in addition modular
invariance of the partition function is satisfied. Following his approach, we
introduce the vectors

λ = (l1 . . . lr)

µ = (s0, m1 . . . mr, s1 . . . sr) ,
(9.22)

where s0 = −1, 0, 1, 2 and (li, mi, si) are labels of the CFT at level ki. Let
β0 be the 2r+1-dimensional vector which has 1 in each entry, and let βi be
the 2r+1-dimensional vector which has 2 at its first and (r+1+i)th position
and zero otherwise. Then a convenient scalar product can be defined as

µ • µ′ = −d

8
s0s

′
0 +

1

2

r∑

i=1

(
mim′

i

k + 2
− sis′i

2

)

2β0 • µ = −d

s

s0

2
−

r∑

i=1

si

2
+

r∑

i=1

mi

ki + 2

βi • µ = −d

2

s0

2
− si

2
.

(9.23)

Here d = D− 2, where D is the number of curled up ‘internal’ dimensions.
For the case of Calabi-Yau threefolds d = 2.

The correct GSO projection is then implemented by projecting on states
with

2β0 • µ ∈ 2Z + 1

βi • µ ∈ Z .
(9.24)

In order to ensure modular invariance of the partition function twisted
sectors must be introduced. For this, we need additional indices

b0 ∈ {0, 1 . . . K − 1}
bi ∈ {0, 1} ,

(9.25)
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where

K = lcm(4, 2ki + 4) . (9.26)

The partition function with the sought-after properties is then given by

Z(r)
G (τ, τ̄) =

1

2

(Imτ)−
d
2

|η(q)|2d

∑

b0,bj

∑

λ,µ

(−1)s0χλ
µ(q)χλ

µ+b0β0+b1β1+···+brβr
(q̄) . (9.27)

The sum of λ and µ is subject to the constraint (9.24).

9.3 Landau-Ginzburg description

It has been pointed out by Gepner [56, 57], that the massless spectrum of his
model is the same as that of a non-linear σ-model on a CalabiYau manifold
given as a hypersurface in a weighted projective space. The connection
is most easily established over an intermediate step involving a mapping
to a Landau-Ginzberg model furnished with a superpotential in projective
space. As next step, the Landau-Ginzburg model can be identified with an
according non-linear σ-model on a Calabi-Yau manifold.

We will first review the Landau-Ginzburg model.

9.3.1 The LG action

In order to describe (2, 2)-superspace on the worldsheet, in two dimen-
sions, we need two bosonic coordinates (x0, x1) and four fermionic coordi-
nates θ±, θ̄± (with (θ±)† = θ̄±). In the standard notation supercharges and
derivatives are given by

Q± =
∂

∂θ± + iθ̄± ∂

∂x± , Q̄± = − ∂

∂θ̄± − iθ± ∂

∂x± , (9.28)

and

D± =
∂

∂θ± − iθ̄± ∂

∂x± , D̄± = − ∂

∂θ̄± + iθ± ∂

∂x± , (9.29)
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where x± = x0±x1. They satisfy the supersymmetry algebra

{Q±, Q̄±} = −2i∂± , {D±, D̄±} = 2i∂± . (9.30)

The Landau-Ginzburg model is described by a chiral and an antichiral
superfield Φ and Φ̄, which satisfy D̄±Φ = 0 and D±Φ̄ = 0. Their component
expansion is given by

Φ(y±, θ±) = φ(y±) + θ+ψ+(y±) + θ−ψ−(y±) + θ+θ−F (y±) , (9.31)

where y± = x±−iθ±θ̄±. Let us write down the supersymmetry variation by
introducing the Grassmann parameters ε± and ε̄±. A general variation is
given by the action of δ = ε+Q−− ε−Q+− ε̄+Q̄−+ ε̄−Q̄+. On the field they
take the form

δφ = +ε+ψ− − ε−ψ+ ,

δψ+ = +2iε̄−∂+φ + ε+F ,

δψ− = −2iε̄+∂−φ + ε−F ,

δφ̄ = −ε̄+ψ̄− + ε̄−ψ̄+ ,

δψ̄+ = −2iε−∂+φ̄ + ε̄+F̄ ,

δψ̄− = +2iε+∂−φ̄ + ε̄−F̄ .

(9.32)

The supersymmetric action is constructed in the following way. It consists
of a D-term part, which is an integral over a function K(Φ, Φ̄), where all
fermionic worldsheet coordinates are integrated out. This term contains the
usual kinetic terms in the action as well as information about the spacetime
metric. The simplest non-trivial choice for K is K(Φ, Φ̄) = Φ̄Φ. It is
possible to work with this ansatz, as the properties of the model we are
interesting in do not depend on the details of the D-term.

The second contribution, the F -term, is given by an integral over a
superpotential W (Φ). This function is holomorphic, and integration goes
only over half of the fermionic worldsheet coordinates:

∫

Σ

d2xd2θ W (Φ)
∣∣
θ̄±=0

+ c.c. . (9.33)

The worldsheet superpotential fully determines the topological sector of
the bulk theory. Up to total derivatives, the bulk action can be written as

SΣ =

∫

Σ

d2x

{
−∂µφ̄∂µφ +

i

2
ψ̄−(

↔
∂0 +

↔
∂1)ψ− +

i

2
ψ̄+(

↔
∂0 −

↔
∂1)ψ+

−1

4
|W ′|2 − 1

2
W ′′ψ+ψ− −

1

2
W̄ ′′ψ̄−ψ̄+

}
,

(9.34)
where the algebraic equation of motion F = −1/2 W̄ ′(φ̄) was used.
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9.3.2 Renormalisation invariants

In general such a theory is not scale-invariant. However, if we let the
theory flow under the renormalisation group to a non-trivial fixed point in
the infrared, this will yield conformally invariant theory. This has been
shown in [33, 34].

The interesting point is that already at the starting point of the flow,
all of the characteristic features of the chiral ring can be read off from the
action, since they are completely determined by the superpotential W. The
reason for that is, for (quasi-) homogenous superpotentials there there are
powerful renormalisation theorems at work, which allow only for a wave
function remormalisation of the action, but not a change of couplings that
would modify the form of the superpotential [73, 109]. If we assume that
W (Φi) is a quasi-homogeneous function, i.e. there exist integers ki and d
with W (λkiΦi) = λdW (Φi), then this renormalisation is absorbed by an
overall rescaling that in effect leaves the superpotential un- changed. This
implies that the charge of Φi is ki

d .

From this it is clear that the effect of renormalisation group flow is
solely a change of the D-term, i.e. only the function K(Φ, Φ̄) changes under
renormalisation. The determination of K at the fixed point is a hard and
a generally unsolved problem.

A subset of the fields in the spectrum organise themselves in a chiral ring,
which is determined only through the superpotential. It can be written as

H =
C[Φ1, . . . , Φn]

∂1W, . . . , ∂nW
. (9.35)

The dimension of this ring coincides with the (c, c)-ring of the Gepner
model. The full correspondence, including the construction of the (a, c)-
ring by using spectral flow, is explained in detail in [93, 137, 142, 86]. It
relies on the following identification of the primaries with the fields

Φl ≡ φl
l,0 (9.36)

between the Landau-Ginzburg fields and the fields in the minimal model.

The different representations of the superconformal algebra in the mini-
mal models correspond on the Landau-Ginzburg side to the choice of the su-
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perpotential. According to the ADE-classification of singularities in catas-
trophe theory, the following superpotentials can be identified:

WAk+1
= Φk+2

WDk
= Φk−1

1 + Φ1Φ
2
2

WE6 = Φ3
1 + Φ4

2

WE7 = Φ3
1 + Φ1Φ

3
2

WE8 = Φ3
1 + Φ5

2 .

(9.37)

In particular the central charges on both sides match.

9.3.3 Calabi-Yau geometry

In this section we give an idea of how to establish the correspondence be-
tween the Landau-Ginzburg model and the non-linear σ-model on a Calabi-
Yau space. Following [66, 65] we can consider the path-integral over the
Landau-Ginzburg action and, as a first approximation, ignore the D-term.
Thus the following arguments will be exact for anything which is indepen-
dent of the Kähler-term, which are exactly the elements of the chiral ring,
which we are interested in.

The path integral representing the partition function of the theory now
becomes

∫
DnΦe−

R
d2xd2θW (Φ1,...Φn)+ cc . (9.38)

To be definite, we make an ansatz for the superpotential

W =
n∑

i=1

Φki+2 , (9.39)

which is quasi-homogenous in the space CP 4({wi}), where

wi =
1

ki + 2
. (9.40)

Let us consider a path of field space, in which Φ1 *= 0. Then it is possible
to introduce new variables

ξw1
1 = Φ1

ξi = Φiξ
−wi
1 .

(9.41)
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Using the quasi-homogeneity of W we find

W (Φ1, . . . , Φn) = ξ1Ŵ (1, ξ2, . . . , ξn) . (9.42)

The path-integral is re-written as
∫

Dnξi J e−
R

d2xd2θξ1Ŵ (1,ξ2,...,ξn) . (9.43)

Here a Jacobian J has been included, which comes from the field transfor-
mation. It is explicitely given by

J = ξ1−
P

wi
1 . (9.44)

One notices that the Jacobian is 1 when
∑

wi = 1 . (9.45)

In this case the integrand becomes – formally – a δ-function, which localises
on Ŵ (1, ξ2, . . . , ξn) = 0. Re-written in original coordinates, this becomes

W (Φ1, . . . , Φn) = 0 (9.46)

which defines a variety in weighted projective space CP n−1[w1, . . . , wn]. For
the case of n = 5 this describes a Calabi-Yau manifold. One can show that
the requirement (9.45) translates into the condition that the first Chern
class of W = 0 vanishes. But this is just the definition of a Calabi-Yau
manifold.

We note, though, that the change of variables we have used to simplify
the path integral is not one-to-one. In fact, upon inspection we see that ξi

are invariant under the transformation

Φi → e2πiwiΦi . (9.47)

Because of this invariance, the model we have constructed lives on W di-
vided by (9.47) rather. Since the charge of Φi is wi, this is precisely the
quotient by g0 = e2πiJ0 , which was required in the Gepner model to obtain
a consistent (space-time supersymmetric) string vacuum.

All this supports the idea that the Landau-Ginzburg model is equivalent
to a non-linear σ-model on a Calabi-Yau. The arguments presented here
are rather heuristic. See [149, 16] for a further treatment.
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9.4 Topological string theory

The chiral ring of the N = (2, 2) theory can be regarded as a topological
subsector in the sense that the operator product expansions of its finitely
many elements do not contain singularities. Concretely this means that the
correlators do not depend on the actual position on the worldsheet, which
is one of the basic qualifications of a topological theory. [146, 147] (see [97]
for a review).

In order to arrive at a topological theory a procedure called topologi-
cal twisting must be conducted. For this one observes that the currents
(T,G+, G−, J) have operator products of the form

(G+)2 ∼ 0

(G−)2 ∼ 0

G+G− ∼ T + J .

(9.48)

The same applies for the multiplet (T̄ , Ḡ+, Ḡ−, J̄).

For the construction of the topological version of the theory one is
tempted e.g. by (G+)2 ∼ 0 to declare G+ to a BRST operator and take
its cohomology as spectrum of the topological theory. This does not quite
work, because G+ has spin 3

2 instead of 1, which is required for a BRST
operator.

As explained in [146] this can be overcome by shifting

T → T ′ = T − 1

2
∂J . (9.49)

The result of this is that the spins of all operators are shifted by their
U(1)-charge. After this twist, G+ and J have spin 1 and G− and T have
spin 2. Now it does make sense to introduce

Q̄+ = G+
0 (9.50)

as a BRST operator.

The analogous construction can be done of course with the second odd
current. In this case, the BRST operator is

Q̄− = G−
0 , (9.51)
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while the sign in the shift of the charges is flipped

T → T ′ = T +
1

2
∂J . (9.52)

The choices for the BRST operators can be made independently in the
holomorphic and anti-holomorphic sector. This results is two (non-isomor-
phic) versions of the twist, known as A- and B-twist. The A-twist corre-
sponds to the choice of (G+, Ḡ+), and the B-twist to (G+, Ḡ−) as BRST
operators. Therefore the twisting procedure leaves us with the following
possible combinations for the BRST operator:

A : Q = Q̄+ + Q−

B : Q = Q̄+ + Q̄− .
(9.53)

In the transition from the original model to the topologically twisted
model the point of most importance is that the chiral ring is preserved and
indeed becomes the space of physical fields in the twisted theory. This space
is indeed the cohomology of the chosen BRST operator. In all our following
considerations only the B-twisted model will be investigated, therefore we
will ignore the A-model to a large extent.

How is the topological character of the theory reflected in the properties
of the action? The shift in the dimensions of the operators of the supercon-
formal algebra is carried over to the dimensions of the fields. This has the
prime effect that the fermions change their scaling behaviour. In particular
ψ̄+ and ψ̄− acquire scaling dimension 0, while ψ+ and ψ− scale with dimen-
sion 1. This makes it necessary to adjust the appearance of the worldsheet
metric in the action.

Under a re-swcaling of the worldsheet metric h → λ2h the Lagrangian
(9.34) changes according to

SΣ =

∫

Σ

d2x

{
−∂µφ̄∂µφ +

i

2
ψ̄−(

↔
∂0 +

↔
∂1)ψ− +

i

2
ψ̄+(

↔
∂0 −

↔
∂1)ψ+

−λ2

4
|W ′|2 − 1

2
W ′′ψ+ψ− −

λ2

2
W̄ ′′ψ̄−ψ̄+

}
.

(9.54)
By variation with respect to λ one can obtain the worldsheet energy-
momentum tensor T directly. It is possible to verify using the supercon-
formal algebra, that T is Q-exact. Physically this means that the model
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is not affected by re-scalings. In this sense it describes a fixed point of
renormalization group flow, and the model can be called conformal.

Using this scale-invariance, one can show easily that the path-integral
localises on constant fields xi and on critical points of the superpotential,
satisfying ∂iW = 0 [136] In particular one arrives at a very simple formula
for the computation of correlation functions. If F (xi) is any polynomial
and H(xi) is the Hessian det∂i∂jW , then

〈F (xi)〉g =

∫
dxn F (xi)Hg−1(xi)

∂1W∂2W . . . ∂nW
, (9.55)

where g is the genus of the worldsheet. The integration path goes around
the critical points of W , thus (9.55) computes the residues of the inte-
grand. We will later see that a similar formula is valid for bulk-boundary
correlators.
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Chapter 10

Matrix Factorisations

In the previous chapter the correspondence between Gepner models and
Landau-Ginzburg models has been explained. For all these considerations
it has been assumed that only the closed string sector is described, i.e. we
are talking about closed worldsheets. As soon as open strings are taken
into account, an additional boundary sector of the theory appears. From
the CFT point of view it is in principle clear what happens, because the
general discussion of chapter 2 applies here, too. The challenge is thus to
understand the description of the boundary sector on the Landau-Ginzburg
side. From the CFT point of view this has been achieved in [105], where
boundary states in Gepner models have been constructed (see also [106,
104, 103])

An introduction of a boundary break translation invariance at the bound-
ary, thus only half of the supersymmetries can be preserved [140]. In this
case one has two possible choices for the supercharges (see eg [28]):

A : Q = Q̄+ + Q−

B : Q = Q̄+ + Q̄− .
(10.1)

Depending on which of these charges one wants to preserve, the boundary
spectrum changes. The first choice describes the so-called A-sector with A-
branes as boundary states, while the second choice describes the B-sector.

Our main interest will lay in the investigation of the B-sector, thus we
restrict ourselves to the choice Q = Q̄+ + Q̄−. For the supersymmetry
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variations this means that

ε ≡ ε+ + ε− . (10.2)

It makes sense to introduce adequate combinations of the fermions

η = ψ− + ψ+ (10.3)

and

θ = ψ− − ψ+ . (10.4)

Then the B-supersymmetry variation

δ = εQ̄− ε̄Q (10.5)

acts like

δφ = εη ,

δη = −2iε̄∂0φ ,

δθ = 2iε̄∂1φ + εW̄ ′ ,

δφ̄ = −ε̄η̄ ,

δη̄ = 2iε∂0φ̄ ,

δθ̄ = −2iε∂1φ̄ + ε̄W ′ .

(10.6)

where the auxiliary fields have already been replaced by their equation of
motion. For 0-direction on the worldsheet is the tangential coordinate on
the strip, the 1-direction is the normal coordinate. In this notation, and
with setting θ0,1 = 1

2(θ
−±θ+), the B-supercharge has the explicit boundary

contribution

q̄ = ∂θ0 + iθ̄0∂0 q = −∂θ̄0 − iθ0∂0 , (10.7)

so that

Q = Qbulk + q . (10.8)

The superfields at the boundary can be constructed as

Φ(y0, θ0) = φ(y0) + θ0η(y0)

Θ(y0, θ0, θ̄0) = θ(y0)2− θ0F (y0) + 2iθ̄0∂1φ(y0)− 2iθ0θ̄0∂1η(y0) ,
(10.9)

where y0 = x0 − iθ0θ̄0. These fields are not chiral, but they satisfy the
equation DΘ = −2i∂1Φ at the boundary.
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10.1 Warner problem

The Warner problem deals with the issue of how to correctly implement
B-type boundary conditions in N = (2, 2) models. An explicit conduction
of the variation shows that there will be a surface contribution from the
D-term of the Landau-Ginzburg Lagrangian. This surface term can be
cancelled by addition of a local boundary actions, which has for K = ΦΦ̄
the form

i

4

∫
dx0

(
θ̄η − η̄θ

)
. (10.10)

Variation of the F -term vanishes only for constant W . In case W is not
constant, it contributes

i

2

∫
dx0

(
εη̄W̄ ′ + ε̄ηW ′) . (10.11)

This term cannot be made vanish by adding a boundary interaction in the
fashion of (10.10), unless one imposes D0-boundary conditions. But from
the study of the spectrum of boundary states in the Gepner model one
knows that there are much more states present. In [140] a way for the
description of the correct boundary conditions has been pointed out. It
relies on the idea that additional boundary degrees of freedom much be
incorporated. Concretely it turned out to be necessary to add boundary
fermions and enlarge the space of boundary fields that way (see also [151]).

In order to achieve that we add a fermionic superfield Π at the boundary,
which does not satisfy a chirality condition, but rather

DΠ = E(Φ) , (10.12)

where E(Φ) is a polynomial in Φ. The components of the superfield are
given by

Π(y0, θ0, θ̄0) = π(y0) + θ0l(y0)− θ̄0E(φ) + θ0θ̄0η(y0)E ′(φ) . (10.13)

The component fields are subject to the supersymmetry variations

δπ = εl − ε̄E(φ)

δπ̄ = ε̄l̄ − εĒ(φ̄)

δl = −2iε̄∂0π + ε̄ηE ′(φ)

δl̄ = −2iε∂0π̄ − εη̄Ē ′(φ̄) .

(10.14)
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With these preparations, the simplest way to remove the surface term
(10.11) is to add

∫
dt{iπ̄∂θπ +

i

2
πηα∂αJ +

i

2
π̄η̄α∂̄αJ̄

− 1

2
π̄ηα∂αE +

1

2
πη̄α∂̄αĒ − 1

2
|J |2 − 1

2
|E|2}

(10.15)

to the action. Once the auxiliary fields l and l̄ have been integrated out, π
and π̄ have variations

δπ = −iεJ̄ − ε̄E δπ̄ = iε̄J − εĒ (10.16)

J and E are polynomials in x. The requirement of B-type supersymmetry
for the full Lagrangian places a constraint on the boundary potentials E
and J . The condition is

E(x)J(x) = −iW (x). (10.17)

This constraint is rather subtle because it allows to establish a connection
between Landau-Ginzburg models and the category of matrix factoriza-
tions, which in itself is known to be equivalent to the category of D-branes
in the B-model [82, 98] The correspondence can be found by quantizing the
fermions via

{π, π̄} = 1 (10.18)

and finding a representation of the action of Q. For this it is necessary
to split the full B-charge Q = Qbulk + q into a bulk part Qbulk and a
’boundary part’ q, which acts on π and π̄ only. By Noether procedure it
can be obtained as [71]

q = −i
[
πJ + iπ̄E

]π

0
. (10.19)

By using the anticommutation relations it can be verified that

{q, π} = E {q, π̄} = −iJ. (10.20)

The quantised fermions π and π̄ satisfy a Clifford algebra and have a rep-
resentation through matrices. When we fix a basis by requiring that the
fermion grading is measured by σ3, we can identify

π ∼
(

0 1
0 0

)
π̄ ∼

(
0 0
1 0

)
(10.21)
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and represent q as

q ∼
(

0 −iJ
E 0

)
. (10.22)

One verifies immediately that q2 = −iW112, as required above. In this ap-
proach finding an admissible q corresponds to finding a matrix factorisation
of the superpotential.

Once the matrix representation of q is established the boundary action
can be re-written as a super-Wilson-line. In this form generalisations of q
can be found by allowing higher-dimensional matrices, still obeying q2 =
−iW112. Alternatively it is possible to introduce more boundary fermions
and treat the problem on the Lagrangian level. For example, an obvious
generalisation is obtained by just blowing up the boundary Lagrangian
(10.15) by adding indices to π and π̄. This can only account for those
matrix factorisations, which can be written as graded tensor products1

q = q1 : q2 =





J2 J1

−E1 E2

E2 −J1

E1 J2



 . (10.23)

For arbitrary matrix factorisation we expect a more complicated Lagrangian,
containing interaction terms between the boundary fermions. In particu-
lar we will show that non-linear terms in the fermions show up in q (and
therefore also in the variations of π and π̄) as well as in the Lagrangian.
In the next section a method is presented for the reconstruction of the
action out of a given boundary B-charge. In other words, we construct
B-supersymmetric boundary action with non-linear supersymmetry trans-
formations in the boundary fermions.

10.1.1 Reconstruction of the boundary action

Going over to more general boundary interaction terms requires some more
notation. As we are dealing with an arbitrary number of boundary fermions,
the quantisation condition becomes

{
πi, π̄j

}
= δi

j. (10.24)

1for more than two pairs of fermions, this procedure can be applied recursively.
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Indices are raised and lowered by the constant metric Gij̄. Representing a
complex structure, G is given by Gij = Gīj̄ = 0 and 1 otherwise. Normal
ordering is defined by placing π̄ to the right. Sometimes it is convenient to
represent operators as fermionic derivatives via

πi → πi π̄ ī = Gījπ̄j → Gīj∂πj = ∂πī
(10.25)

The fermions can be used to build up an exterior calculus, as long as
holomorphic and antiholomorphic components are separated. Otherwise
contact terms are present. A general normal ordered (n, m)-form can be
written as

T(n,m) = T ν1...νm
µ1...µn

πµ1 · · · πµnπ̄ν1 · · · π̄νm (10.26)

A fermionic operator q can be expanded as

q = q(1,0) + q(0,1) + q(3,0) + q(2,1) + q(1,2) + q(0,3) + . . . (10.27)

Its basic anticommutators are

{q, πµ} = qµ + qµ
abπ

aπb − 2qµc
a πaπ̄c + . . .

{q, π̄µ} = qµ + qbc
µ π̄bπ̄c − 2qc

aµπ
aπ̄c + . . .

(10.28)

where antisymmetry in the (anti-)holomorphic indices has been used. (10.28)
is exact when only two pairs of boundary fermions are present.

In the following we assume that q is a representation of the B-SUSY op-
erator acting on the boundary fermions. The SUSY-operator from the bulk
Qbulk does by convention not act on the boundary fermions. Therefore the
full B-SUSY charge is given by

Q ≡ Qbulk + q. (10.29)

The wanted Lagrangian, must satisfy the following basic properties:

• It must be Q-closed, up to a term i
2η

µ∂µW , which is cancelled by the
bulk contribution.

• It must be real. This implies that it is Q†-closed, up to − i
2 η̄

µ∂̄µW̄ .
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• It must contain a term iπ̄i∂tπi. This term is responsible for the quan-
tisation of the fermions, which accomplishes the actual connection to
matrix representations.

These requirements are enough to re-construct the Lagrangian from the
data provided by a matrix factorisation q.

For the reconstruction of the boundary action we start with the canonical
kinetic term and calculate its Q-variation. Without placing any restriction
on the boundary part of Q we get

: [Q, π̄µ∂tπ
µ] :=: {q, π̄µ} ∂tπ

µ : − : π̄µ∂t {q, πµ} :, (10.30)

where : · : denotes normal ordering, placing π̄ to the right. Replacing the
fermions in the anticommutator by derivatives yields

: [Q, π̄µ∂tπ
µ] :=

(
∂tπ

µ∂πµ + ∂tπ̄µ∂π̄µ

)
q, (10.31)

where a partial integration has been conducted. The operator in the bracket
is just a time derivative acting only on the boundary fermions in q. After
another partial integration we arrive at

: [Q, π̄µ∂tπ
µ] := −q̇, (10.32)

where we define

Ṫ(n,m) ≡
(
∂tT

ν1...νm
µ1...µn

)
πµ1 · · · πµnπ̄ν1 · · · π̄νm (10.33)

This formula is valid for arbitrary q.

If such terms are supposed to appear in Q-exact expressions, they must
originate in a variation of η. Moreover one must note that coefficients of
q can also depend on the holomorphic spacetime coordinate. The relevant
Q-variations are

[Q, xα] = 0 [Q, x̄α] = η̄α

{Q, ηα} = 2iẋα {Q, η̄a} = 0[
Q†, xα

]
= ηα

[
Q†, x̄α

]
= 0{

Q†, ηα
}

= 0
{
Q†, η̄a

}
= 2i ˙̄xα.

(10.34)
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For T a general (n, m)-form with coefficients in C[x] we can consider Q-
variations of the form

[
Q,

1

2
ηα ∂

∂xα
T(n,m)

]

±
= iṪ(n,m) −

1

2
ηα

[
q,

∂

∂xα
T(n,m)

]

±
(10.35)

and
[
Q,

1

2
η̄α ∂

∂x̄α
T †

(n,m)

]

±
= −1

2
η̄α ∂

∂x̄α

[
q, T †

(n,m)

]

±
. (10.36)

From this we can read off that we must add

1

2
ηα ∂

∂xα
q − 1

2
η̄α ∂

∂x̄α
q† (10.37)

in order to cancel (10.32). Due to the action of Q the following terms will
appear:

{
Q,

1

2
ηα ∂

∂xα
q

}
= iq̇ − 1

2
ηα

{
q,

∂

∂xα
q

}
(10.38)

and
{

Q,−1

2
η̄α ∂

∂x̄α
q†

}
=

1

2
η̄α ∂

∂x̄α

{
q, q†

}
. (10.39)

The second term on the rhs of (10.38) is a wanted contribution, because
this term can be used to cancel the surface term of the SUSY-variation in
the bulk. The corresponding condition is

−i
∂

∂xα
W =

{
q,

∂

∂xα
q

}
=

1

2

∂

∂xα
{q, q} , (10.40)

which can be re-written as2

−iW =
1

2
{q, q}+ const. (10.41)

Hence the condition for q being a matrix factorisation appears completely
naturally here.

2The same condition appears also in the antiholomorphic coordinates x̄, so that the
ambiguity is really C and not C[x̄].
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The rhs of (10.39) introduces a coupling between the holomorphic and
antiholomorphic fields. In order to cancel it an appropriate bosonic form
must be added. Such a form is generally given by

V ≡ V(0) + V(1,1) + V(2,2) + . . . , (10.42)

where we demand V † = V . The condition on V is

[Q, V ] = −1

2
η̄α ∂

∂x̄α

{
q, q†

}
, (10.43)

which determines

V = −1

2

{
q, q†

}
. (10.44)

Collecting all terms yields a Lagrangian

L = iπ̄µ∂tπ
µ +

1

2
ηα ∂

∂xα
q − 1

2
η̄α ∂

∂x̄α
q† − 1

2

{
q, q†

}
, (10.45)

which is together with the bulk Lagrangian Q- and Q†-closed by construc-
tion.

10.2 B-branes

For the discussion of the boundary spectrum let us focus on the simplest
case again, where only one pair of boundary fermions is present. For only
one spacetime direction, an ansatz for the superpotential is

W (X) = Xk+2 . (10.46)

For the polynomials J and E there are
[

k+2
2

]
choices, corresponding to the

factorisations

W = Xn ·Xk−n+2 0 ≤ n ≤
[

k+2
2

]
, (10.47)

because for large n one can just exchange E and J . The boundary contri-
bution to the supercharge is then explicitly given by

qn =

(
0 xn

xk−n+2 0

)
. (10.48)
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For the chiral primaries we know that they are annihilated by the super-
charge. As they cannot be obtained as variations of other fields, they must
lay in the cohomology of the supersymmetry operator. As long as we re-
strict ourselves to boundary fields, we can work with q alone. Therefore
the task is to fimd the cohomology of q in order to determine the spectrum
of boundary states.

10.2.1 The spectrum between identical branes

The operator q has the important property that q2 = W . That means it is
a differential only on the bulk chiral ring, where W ∼ 0. This justified the
introduction of a (twisted) differential operator [76]

DΨ = qΨ− (−1)|Ψ|Ψq , (10.49)

where Ψ is any boundary field composed of x, x̄ and π, π̄, and |Ψ| is its
fermion number. The cohomology with respect to this differential is easily
obtained. In the fermionic sector we find

Ψl =

(
0 xl

−xk+2−2n+l

)
l < n (10.50)

and in the bosonic sector

Φl =

(
xl 0
0 xl

)
l < n . (10.51)

10.2.2 The spectrum between different branes

We can associate each matrix factorisation to a particular brane. In case
we want to describe a system of two branes, the two factorisations q and q̃
can be combined into a differential

DΨ = qΨ− (−1)|Ψ|Ψq̃ . (10.52)

The calculation of the cohomology works in the same way as above. How-
ever, typically not all states from before propagate between the branes, but
only a subset of them. To be explicit, we will consider the example

W = xnxk+2−n = xñxk+2−ñ . (10.53)
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The spectrum then turns out to be [77].

Ψl =

(
0 xl

−xk+2−n−ñ+l

)
(10.54)

and in the bosonic sector

Φl =

(
xñ−n+l 0

0 xl

)
. (10.55)

10.3 Connection to CFT

The space of boundary field is, from the CFT point of view, given by

H =
⊕

[l,m,s]

(
H[l,m,s] ⊗ H̄[l,m,s]

)
, (10.56)

where the direct sum goes over equivalence classes of [l, m, s]. The B-type
boundary conditions must satisfy

(
Ln − L̄−n

)
||B〉〉 = 0

(
Jn − J̄−n

)
||B〉〉 = 0

(
G±

r + iηḠ±
−r

)
||B〉〉 = 0 ,

(10.57)

where η = ±1 describes the two spin-structures. The Ishibashi states lay
in the sectors [l, m, s]⊗ [l,−m,−s]. The B-type boundary states have been
constructed in [92] as

||L, S〉〉 =
√

k + 2
∑

l+s∈2Z

SL0S,l0s√
Sl0s,000

|[l, 0, s]〉〉 . (10.58)

Here L = 0, 1, . . . , k and S = 0, 1, 2, 3. For even states, η = 1, for odd
states η = −1. Moreover we find that ||L, S〉〉 = ||k − L, S + 3〉〉. The
operator ||L, S〉〉 → ||L, S + 2〉〉 only reverses the sign of the RR coupling,
thus it corresponds to the transitions from a brane to its anti-brane.

In order to identify CFT boundary states with matrix factorisations, it
is useful to compare certain invariants on both sides. On the one hand, the
number of branes/matrix factorisations for each minimal model match. It
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is also possible to calculate the overlap between two boundary states ||L, S〉〉
and ||L̂, Ŝ〉〉 (see eg [75, 26]). The number of propagating states between
the branes are also found to match the number of states in the cohomology
of the associated two matrix factorisation. Therefore the identification in
the case of minimal models seems to be clear, given by

qn ∼ ||n− 1, 0〉〉 . (10.59)

10.3.1 Permutation branes

One can continue with these checks for models with more dimensions and
also for the Gepner models. In this case, the central charges of the minimal
models add up and the resulting theory differs in certain aspects from the
original theories. In particular new branes can appear in the spectrum.
An important class of them are the so-called permutation branes [103] (see
also [52]). They mix contributions from the currents-multiplet from the
different minimal models (denoted by 1 and 2 here) at the boundary and
are characterised by

(
L(1)

n − L̄(2)
−n

)
||B〉〉 =

(
L(2)

n − L̄(1)
−n

)
||B〉〉 = 0

(
J (1)

n − J̄ (2)
−n

)
||B〉〉 =

(
J (2)

n − J̄ (1)
−n

)
||B〉〉 = 0

(
G±(1)

r + iη1Ḡ
±(2)
−r

)
||B〉〉 =

(
G±(2)

r + iη1Ḡ
±(1)
−r

)
||B〉〉 = 0

(10.60)

with η1 = η2. The corresponding boundary states are given by

||[L, M, S1, S2]〉〉

=
1

2
√

2

∑

l,m,s1,s2

SLl

S0l
eiπMm/(k+2)e−iπ(S1s1−S2s2)/2||[l, m, s1]⊗ [l,−m,−s2]〉〉σ ,

(10.61)

where the quantum state ||[l, m, s1]⊗ [l,−m,−s2]〉〉σ denotes the Ishibashi
state for the permutation σ. The sum runs over all indices for which

l + m + s1 and s1 − s2 even, (10.62)

so that

L + M + S1 − S2 even. (10.63)
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These states are identified under the equivalence relation

[L, M, S1, S2] ∼ [k − L, M + k + 2, S1 + 2, S2] . (10.64)

The identification of these states on the side of the Landau-Ginzburg
model has been done in [26, 42]. It was found that

||[L, M, 0, 0]〉〉 ↔ J =

M+L
2∏

m=M−L
2

(x1 − η̂mx2) , (10.65)

where η̂m denotes the (k+2)-th roots of -1. This identification is supported
by a matching of the number of states in the corresponding Hilbert space
and by the correct symmetry properties. It has also been shown that these
permutation factorisations together with graded tensor products of factori-
sations are the basic building blocks of D-branes in the Gepner model,
including the D0 and D2 branes.

10.3.2 Geometry of branes

It is not clear how the geometry of the branes constructed via matrix fac-
torisations can be read-off directly from the factorisation. But there are
indirect ways viable, relying on the identification of certain topological in-
variants. These can be intersection numbers or also bundle data.

Let us consider a concrete example. On the quintic

W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 (10.66)

one can find a matrix factorisation

q = q1 : q2 : q3 : q4 , (10.67)

determined by

J1 = x1 J2 = x2 J3 = x3 J4 = x4 − η̂x5 , (10.68)

where η̂ is one of the 5th roots of -1.
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It is very suggestive to give the common locus Ji = 0 a geometrical
meaning, in particular since this corresponds to a point in projective space.
Indeed, an identification of this matrix factorisation with a D0 brane on
W = 0 has been achieved in [26, 42].

A similar construction can be applied to construct D2 branes. An ex-
ample for such a case is the factorisation

q = q1 : q2 : q3 , (10.69)

with

J1 = x1 J2 = x2 − η̂x3 J3 = x4 − η̂′x5 . (10.70)

Again, the common locus is geometrically a complex line, and the identifi-
cation is supported by calculations of intersection numbers and charges of
the brane.

It seems to be a general property that
⋂

i Ji gives the geometry of the
brane, as long as all Ji are linear in xj [15, 98, 43]. When this is not the
case, the identification is not clear anymore.

10.4 Topological correlators

The computation of correlators of between elements of the chiral ring can
be done completely in the topological theory. This represents a clear sim-
plification of many calculations, since a closed formula is available. Not
unlike the case of the closed string theory, scaling invariance is used to de-
rive a residue-formula for boundary- and bulk-boundary-correlators. Our
arguments follow [77] and [69].

Starting in the path-integral formalism, correlators can be written as

〈O〉 =

∫
DXDX̄DΠDΠ̄ O e−Sbulk

e−Sbdry
. (10.71)

Invariance under rescaling of the worldsheet metric h → λ2h shows that
the path-integral localises like in the bulk case to constant field maps, i.e.
instantons, and D = [q, ·]± = 0. Only contributions from zero modes
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survive, as the contributions of the non-zero modes cancel each other. For
the B-twisted LG theory on a Riemann surface without boundaries, the
zero modes come from constant scalars xi, x̄i, ψ̄i

± and closed 1-forms ψi
±.

For the disk topology, there are no ψi
± zero modes. Furthermore, although

the boundary condition does not affect the bosonic zero modes, it leads to
the following relation among the fermionic zero modes:

ψ̄i
− = ψ̄i

+ ≡ ψ̄i . (10.72)

The path-integral now reduces to an ordinary integral where the measure
is given by dnxdnx̄dnψ̄.

For the boundary field we have already noted that they can be repre-
sented as Clifford matrices. It is easy to convince oneself, either by direct
calculation or by the arguments presented e.g. in [129], that the integral
over π and π̄ yields a supertrace in the matrix notation. Path ordering,
which usually must be taken into account, does not appear here, because
the integral is already reduced to constant modes.

Like in the bulk case there is a localisation on the critical points of W
and in addition on D = 0. Thus D can be expanded around the critical
points in the bosonic variables and explicitly expressed in terms of q. The
resulting integral can be evaluated, as has been demonstrated in [77]. The
resulting formula is

〈αφ〉disk =
1

(2πi)n

∫
dnx

α · STr [∂1q∂2q · · · ∂nqφ]

∂1W∂2W · · · ∂nW
. (10.73)

Here α is a bulk insertions given by a polynomial in the bulk ring, and φ
is an element of the boundary ring.

Note also that the distinction between bulk and boundary operators in
the topological theory is not completely clear, since there is a natural map
1 id, which maps any bulk operator to a boundary operator.

As in the bulk case, this formula for the correlators has its limitations.
In particular it is not possible to apply it to calculate expectation values
of unintegrated operators. That means that only three-point functions can
be evaluated with it.

We also remark that there is a generalisation to worldsheets with genus
g and handles h, which results basically in a furnishing with powers of the
Hessian Hg and products over the contributions from each handle [77].
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The correlators obtained by (10.73) can be identified with the analogous
correlators obtained from CFT. This is a powerful statement, since it allows
to make contact between the two descriptions. This will be exploited in
the following chapter to obtain expressions for effective superpotentials.



Chapter 11

Open-closed superpotential

In this chapter we will derive an expression for a bulk induced superpo-
tential by investigating D2-branes wrapping holomorphic 2-cycles of the
quintic. Our starting point is the Fermat quintic given by the following
hypersurface in IP4

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 0 ⊂ IP4 . (11.1)

We are interested in a special family of branes wrapping rational curves,
which has been studied from a mathematical point of view in [3] and from
a physics point of view in [13], see [25] for earlier work. More concretely,
the family of curves we have in mind is given by

(x1, x2, x3, x4, x5) = (u, ηu, av, bv, cv) , where a5 + b5 + c5 = 0 . (11.2)

Here a, b, c ∈ C, η is a 5th root of −1, and (u, v) parametrise a IP1. The
three complex parameters a, b, c are subject to projective equivalence and
the complex equation in (11.2), so that the above equations describe a one
parameter family of IP1’s. In fact there are 50 such families since there are
10 possibilities to pick a pair of coordinates that are proportional to u, and
5 choices for η. These families intersect along the lines

xi − ηxj = 0 , xk − η′xl = 0 , xm = 0 , (11.3)

where i, j, k, l, m are all disjoint and η and η′ are 5th roots of −1. For
example, the set

x1 − ηx2 = 0 , x3 − η′x4 = 0 , x5 = 0 (11.4)
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describes a particular IP1 in (11.2) with c = 0, a = η′, b = 1. Likewise, it
describes a IP1 in the family

(x1, x2, x3, x4, x5) = (av, bv, u, η′u, cv) (11.5)

with a = 1, b = η and c = 0. Starting from such a configuration, one
can thus move along either of the two families of which this IP1 is part.
However, once one has started to move away in one direction, the other
becomes obstructed [3]. For concreteness we shall mainly consider in the
following the family of curves associated to (11.2) although everything we
say can be easily generalised to the other classes of branes.

From a conformal field theory point of view, the existence of the above
families of IP1’s implies that the open string spectrum of every correspond-
ing brane contains an exactly marginal boundary operator which we shall
denote by ψ1. At the above intersection points there will be a second ex-
actly marginal operator which we shall call ψ2 [13]. The fact that moving
away in one direction obstructs the other should imply that the effective
superpotential contains a term of the form

W(ψ1, ψ2) = ψ3
1ψ

3
2 . (11.6)

This was argued on physical grounds in [25] and later confirmed in [13].
Recently it was shown in [17] that (11.6) is already the full superpotential
for the fields ψ1 and ψ2. We shall reproduce this result, using somewhat
different methods, at the end of section 2.

The above discussion applies to the Gepner point of the quintic, where
the hypersurface is described by equation (11.1). It is well known that
at a generic point in the complex structure moduli space of the quintic,
there are only discretely many (2875) rational 2-cycles; in particular there
are therefore no continuous families of IP1’s if we perturb the theory away
from the Gepner point. Geometrically, this means that at a generic point
in the above moduli space of branes, the complex structure deformations
are obstructed, as has already been discussed in [3]. From a worldsheet
point of view this should therefore mean that the effective superpotential
contains a term of the form

W(ψ1, ψ2, Φi) = ψ3
1ψ

3
2 +

∑

i

Φi Fi(ψ1, ψ2) + · · · , (11.7)
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where the Φi describe the different complex structure deformations.

In the following we shall mainly consider the special deformations of the
quintic described by

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + x3

1s
(2)(x3, x4, x5) = 0 , (11.8)

where s(2) is a polynomial of degree 2 in x3, x4 and x5, The only curves that
survive this deformation are those for which

a5 + b5 + c5 = 0 and s(2)(a, b, c) = 0 . (11.9)

These equations determine a discrete set of points; in fact, counting multi-
plicities there are precisely 10 solutions, as follows from Bezout’s theorem.

The deformations (11.8) are special in that the term linear in Φ in (11.7)
is independent of ψ2. In this case we can then determine the function
F (ψ1, ψ2) exactly, and thus give a complete description for how the system
behaves under the corresponding bulk perturbation; this will be described
in detail in section 3. As we shall see, the bulk perturbation induces a
boundary RG flow that is the gradient flow of the function F ; in particular
the solutions to (11.9) are precisely the critical points of F .

11.1 2-branes on the quintic

The starting point of our construction of bulk induced superpotentials will
be the investigation of families of D2-branes (11.2) at the Fermat point in
the Landau-Ginzburg model description. At this point in moduli space the
corresponding conformal field theory is known. As soon as bulk perturba-
tions are switched on, the boundary moduli space changes. Most of the con-
figurations which appeared in D2-families in the unperturbed backgrouns
are then found to break supersymmetry. The relationship to conformal
field theory will be used in order to derive renormalisation group equations
for this case. Finally this will enable us to find explicit expressions for the
bulk induced superpotential.
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11.1.1 The matrix factorisations description

At the Fermat point the quintic is described by the Gepner model corre-
sponding to five copies of the N = 2 minimal model at k = 3. The branes
of interest are B-type branes of this superconformal field theory. As we
shall see, isolated D-branes can be constructed as permutation branes in
conformal field theory [103], but in order to understand the full moduli
space of branes a treatment in the formalism of matrix factorisations is
more adequate.

At the Gepner point the relevant LG superpotential is

W0 = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 . (11.10)

The first step consistes in the construction of a matrix factorisation q with

q2 = W01 . (11.11)

q is the boundary part of the BRST operator Q, and together with the
bulk BRST charge squares to 0. In particular, q is fermionic and can be
expressed as a linear combination of (non-BRST closed) fermionic operators
πi and their conjugates π̄i, i = 1, . . . , n, that live at the boundary,

q =
n∑

i=1

(
πiJi + π̄iEi) . (11.12)

These fermions form a 2n dimensional representation of the Clifford algebra

{πi, π̄j} = δij , {πi, πj} = {π̄i, π̄j} = 0 . (11.13)

The square of q is given by

q2 =
(∑

i

EiJi

)
· 1 (11.14)

and hence q defines a matrix factorisation if

W =
∑

i

EiJi . (11.15)

Turning the argument around, whenever W can be written in the form
(11.15) a suitable matrix factorisation is given by (11.12). The matrix fac-
torisation description captures all topological aspects of the corresponding
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D-branes. For example, one can determine from q the topological part
of the open string spectrum and the topological RR charges, etc. What
will be most important for our purposes is the Kapustin-Li formula [77]
that allows one to calculate bulk-boundary correlators (or boundery three
point functions) exactly. If we denote a topological bulk field by Φ and the
boundary field by ψ, then the disk correlator is

〈Φ ψ〉 = Res Φ
STr [ ∂x1q . . . ∂x5q ψ]

∂x1W . . . ∂x5W
, (11.16)

where the residue is taken at the critical points of LG superpotential W .
More details about this formula can be found in [77, 69].

It has been noted before that strictly speaking, to find an LG description
of the quintic one has to consider an orbifold of the theory (11.10). This Z5

orbifold projects onto states with integer U(1) charge in the closed string
sector. As usual, the consequence for the open string sector is [12, 72, 138]
that we need to specify in addition a representation of the orbifold group on
the Chan-Paton labels. The open string spectrum is then given by the Z5

invariant part of the cohomology of the BRST operator. In the following,
the additional representation label will play no further role, since we will
only consider a single D-brane with an arbitrary but fixed representation
label.

The D2-branes of interest correspond to a family of matrix factorisations
that can be constructed as follows, using ideas similar to what was done in
[27, 29] (see also [72]). We define

J1 = x1 − ηx2 , J4 = ax4 − bx3 , J5 = cx3 − ax5 , (11.17)

and look for common solutions of J1 = J4 = J5 = 0 and W = 0. If η is a
fifth root of −1 and a *= 0, we get a solution if

a5 + b5 + c5 = 0 . (11.18)

If this is the case we can use the Nullstellensatz to write

W0 = J1 · E1 + J4 · E4 + J5 · E5 , (11.19)

where Ei are polynomials in xj. We then obtain a matrix factorisation by
the procedure outlined above. More specifically, we introduce 8×8 matrices
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πi and π̄i, i = 1, 4, 5, that form a representation of the Clifford algebra,
and obtain a family of matrix factorisations q(a, b, c)

q(a, b, c) =
∑

j=1,4,5

(
Jjπ

j + Ejπ̄
j
)

. (11.20)

By construction q(a, b, c) satisfies then q(a, b, c)2 = W0 · 1.

Following the geometrical interpretation of matrix factorisations elab-
orated in [98, 15] (see also [43]) these matrix factorisations provide the
LG-description of the D2-branes described in section 11. Indeed, read as
equations in P4, the equations J1 = J3 = J5 = 0 describe precisely the
geometrical lines (11.2).

The moduli space of such branes has complex dimension one. Indeed,
it is straightforward to see that rescaling (a, b, c) by a common factor re-
sults in an equivalent factorisation; thus (11.18) can be thought of as an
equation in CP2, and hence describes a one-complex-dimensional curve.1

Furthermore we note that special points on this curve correspond to stan-
dard permutation branes [103]: for example for a *= 0 and b = 0 we may
use the projective equivalence to set a = 1. Then c must be a fifth root of
−1, leading precisely to a permutation factorisation of the form discussed
in [26, 42]. This identification is also in agreement with the analysis of
[12, 26] where it was shown that one of these matrix factorisations carries
indeed the charge of a D2-brane.

11.1.2 The fermionic spectrum

The fact that these matrix factorisations form a 1-complex dimensional
moduli space means that at every point in the moduli space the open string
cohomology contains at least one fermion of U(1)-charge one. Indeed, this
is just the matrix factorisation analogue of the fact that each such D-brane

1In the above description we have not treated the three variables a, b and c on an
equal footing, and hence a could not be zero. It should be clear, however, that we
can also use a different chart in which a = 0 is possible. In this way we can obtain
a matrix factorisation associated to (a, b, c) provided that not all three a, b and c are
simultaneously zero and that (11.18) holds. See [72] for an explicit change of coordinates
in a different example.



11.1 2-branes on the quintic 141

Figure 11.1: Riemann surface

associated to the D-brane mod-

uli space, consisting of five

copies of the complex plane.

The real and imaginary part of

b have been plotted horizontally,

the vertical axis is the imaginary

part of c. The five sheets ar-

ranged vertically at b = 0 reflect

the five possibilities for c5 = −1.

must have an exactly marginal boundary operator in its spectrum. From
a matrix factorisation point of view, the corresponding fermion can be
easily constructed. Since by assumption a *= 0, we may always rescale the
parameters so that a = 1. Let us first consider a generic point in moduli
space where bc *= 0. We then have a family of factorisations parametrised
by (b, c) subject to b5 + c5 = −1. As long as c *= 0, we can locally solve
this equation for c, i.e. we can express c ≡ c(b), and thus obtain a matrix
factorisation q(b). Since W0 does not depend on (a, b, c), it then follows
that

{q(b), ∂bq(b)} = 0 (11.21)

which is precisely the condition for ψ = ∂bq(b) to define a fermion of the
cohomology defined by q(b). For the case under consideration, we find
explicitly

ψb ≡ ∂bq(b) = −x3 π4 − b4

c4
x3 π5 + (∂bE4) π̄4 + (∂bE5) π̄5 , (11.22)

where we have used that
∂b

∂c

∣∣∣∣
a

= −c4

b4
. (11.23)

In the next section, it is shown by explicit computation that ψb is non-
trivial in cohomology. Obviously, we could have equally expressed b ≡ b(c)
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(for b *= 0) and written q(a, b, c) ≡ q(c). Then the derivation with respect
to c also defines a fermion

ψc ≡ ∂cq(c) =
c4

b4
x3 π4 + x3 π5 + (∂cE4) π̄4 + (∂cE5) π̄5 . (11.24)

It is easy to see that for bc *= 0 so that both ψb and ψc are well defined,
ψb
∼= ψc in cohomology. In the following we shall denote the equivalence

class to which ψb and ψc belong by ψ1. More specifically, we shall usually
take ψ1 ≡ ψb and assume that c *= 0.

The full fermionic cohomology of q(a, b, c) at U(1)-charge 1 is however big-
ger: in addition to ψ1 it also contains a second fermion that we shall call
ψ2. This is explained in appendix A, where ψ2 is explicitly constructed (for
c *= 0). In general, however, ψ2 does not define a modulus. In fact, using
the Kapustin-Li formula [77] one easily finds that

Bψ2ψ2ψ2 = −2

5
η4 b3

c9
. (11.25)

Unless b = 0 the three-point function of ψ2 on the boundary does not
vanish, and hence ψ2 is not an exactly marginal boundary field [106]. This
shows that at generic points in the moduli space (11.18) there is only one
exactly marginal operator, whereas at the special point b = 0 an additional
marginal operator appears, indicating an additional branch of the moduli
space. This is in nice agreement with the geometric analysis of the previous
section, since at b = 0 the above moduli space intersects with the branch
where the roles of J1 and J5 can be interchanged. In fact, this can also be
seen from the explicit formula for ψ2, see (11.36).

The three-point function (11.25) verifies the superpotential term (11.6)
that was already obtained in [13] by other means. Furthermore, after rescal-
ing ψ2 "→ ψ̂2 = c3ψ2, the b-dependence of the three-point function for ψ̂2 is
simply proportional to b3. (Recall that c ≡ c(b).) Using the arguments of
section 4.1 this then implies that, with respect to this normalisation, the
effective superpotential does not contain any higher order contributions (in
ψ1) to the term ψ3

1 ψ̂3
2 in (11.6). This is in agreement with the [17].
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11.2 The cohomology of the factorisations

In this section we want to determine the full fermionic cohomology of U(1)-
charge 1 for the factorisations q(a, b, c) (11.17) with a *= 0. First we observe
that the coordinates involved in J1 and E1 (namely x1 and x2) do not appear
in J4, E4 or J5, E5. Therefore the cohomology H of Q separates into

H(q) = H(q1):H(q2) , (11.26)

where q1 and q2 are the separate factorisations

q1 = π1J1 + π̄1E1 ,

q2 = π4J4 + π5J5 + π̄4E4 + π̄5E5 . (11.27)

The explicit polynomials are

J1 = x1 − ηx2

E1 =
∏

η′5=−1,η′ )=η

(x1 − η′x2)

J4 = ax4 − bx3

E4 =
1

a5

(
b4x4

3 + ab3x3
3x4 + a2b2x2

3x
2
4 + a3bx3x

3
4 + a4x4

4

)

J5 = cx3 − ax5

E5 = − 1

a5

(
c4x4

3 + ac3x3
3x5 + a2c2x2

3x
2
5 + a3cx3x

3
5 + a4x4

5

)
.

(11.28)

The cohomology of q1 has been calculated in [12, 26, 42], and consists of
four bosonic elements of U(1)-charge 0, 2

5 ,
4
5 and 6

5 , respectively; it does not
contain any fermions at all. Thus in order to obtain a fermion of the full
factorisation, we need to tensor one of these bosons with a fermion from
q2. We are only interested in fermions of q of total U(1)-charge 1. Since
the U(1)-charge of the fermions in q2 is always positive, there are three
cases to consider: the fermions in the cohomology of q2 can have U(1)-
charges 1, 3

5 or 1
5 which together with the boson of q1 of U(1)-charges 0,

2
5 or 4

5 , respectively, then produce a fermion of total U(1)-charge 1. Thus
it is sufficient to analyse the fermionic cohomology of q2 for these three
U(1)-charges separately.



144 11. Open-closed superpotential

11.2.1 The q2-fermions of charge 1

The general q2-closed fermion has an expansion (the closure conditions force
the absence of any higher powers of boundary fermions)

ψ = π4p4 + π̄4m4 + π5p5 + π̄5m5 , (11.29)

where we have dropped some exact terms — see (11.32) below. The re-
quirement that ψ has U(1)-charge 1 implies that p4 and p5 are polynomials
of degree 1 (thus each pi has 3 parameters) while m4 and m5 are polyno-
mials of degree 4 (with 15 parameters each), giving in total 36 parameters.
The condition that ψ is closed implies further that

J4 m4 + J5 m5 + E4 p4 + E5 p5 = 0 . (11.30)

The left hand side is a homogeneous polynomial of degree 5, and hence rep-
resents 21 conditions. We have checked (using standard matrix techniques)
that these 21 conditions are independent. This implies that the space of
closed fermions of the U(1)-charge 1 is 15-dimensional.

It remains to determine how many of them are exact. To see this we
make the following ansatz for the most general boson,

Λ = â + b̂π4π̄4 + ĉπ4π5 + d̂π4π̄5 + êπ̄4π5

+ f̂ π̄4π̄5 + ĝπ5π̄5 + ĥπ4π̄4π5π̄5 .
(11.31)

Then

[Q, Λ] =π4
(
−b̂J4 − d̂J5 − ĉE5

)
+ π5 (êJ4 − ĝJ5 + ĉE4)

+ π̄4
(
b̂E4 − êE5 − f̂J5

)
+ π̄4

(
d̂E4 + ĝE5 + êJ4

)

− π4π̄4π5ĥJ5 + π4π̄4π̄5ĥE5 − π4π5π̄5ĥJ4 + π̄4π5π̄5ĥE4 . (11.32)

Consistency with the ansatz for ψ requires ĥ = 0 and ĉ = 0. Moreover â can
be set to zero, too. The other parameters must be polynomials of degree
0, except for f̂ which has to have degree 3 (and therefore 10 parameters).
In total the space of exact fermionis is described by 14 parameters. Again,
using standard matrix methods, we have shown that these 14 parameters
are linearly independent. This implies that the fermionic cohomology of q2
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of U(1)-charge 1 is 1-dimensional. A representative of the corresponding
cohomology class for q is (for c *= 0)

ψ1 = ∂bq (11.33)

or explicitly

ψ1 =− x3π
4 +

1

a5

[
4b3x4

3 + 3ab2x3
3x4 + 2a2bx2

3x
2
4 + a3x3x

3
4

]
π̄4

− b4

c4
x3π

5 +
b4

a5c4

[
4c3x4

3 + 3ac2x3
3x5 + 2a2cx2

3x
2
5 + a3x3x

3
5

]
π̄5 .

(11.34)

11.2.2 The q2-fermions of charge 3
5

The same arguments can be used to determine the fermions of U(1)-charge
3
5 . In this case, p4 and p5 have both degree 0 (i.e. are constants) while m4

and m5 have both degree 3 (with 10 parameters each), giving rise to 22
parameters. The closure condition is now given by a polynomial of degree
4, leading to 15 (independent) equations. Thus the space of closed fermions
is in this case 7-dimensional.

For exact fermions we find that they are described by bosons Λ with
â = 0, b̂ = 0, d̂ = 0, ĉ = 0, ê = 0, ĝ = 0, ĥ = 0 and f̂ a polynomial of
degree 2 (with 6 parameters). Thus there are 6 different exact fermions, and
we have checked that they are in fact linearly independent. This implies
that there is precisely one fermion of charge 3

5 in the cohomology of q2. A
representative of the corresponding cohomology class for q is given by (for
c *= 0)

ψ2 = x1 ∂b

[
bπ4 − cπ5 − (b4x3

3 + b3x2
3x4 + b2x3x

2
4 + bx3

4)π̄
4

+(c4x3
3 + c3x2

3x5 + c2x3x
2
5 + cx3

5)π̄
5
]

, (11.35)

or, since ψ1 is proportional to x3,

ψ2 =
x1

x3
ψ1 . (11.36)



146 11. Open-closed superpotential

11.2.3 The q2-fermions of charge 1
5

For fermions of charge 1
5 , our ansatz has 12 parameters, and the closure

condition leads to 9 linearly independent conditions. Thus there are 3
different closed fermions. In Λ, all parameters are zero except f̂ , which is a
polynomial of degree 1 with 3 independent parameters. This implies that
all 3 closed fermions are in fact exact, and hence that the cohomology is
trivial.

11.3 Bulk induced renormalisation group flow

Now we want to consider the bulk perturbation of the above Gepner model
by the bulk operator Φ, i.e. we consider the perturbed superpotential

W = W0 + λ Φ , Φ = x3
1 s(2)(x3, x4, x5) , (11.37)

where s(2) is the polynomial of section 1.1 that we expand as2

s(2)(x3, x4, x5) =
∑

q+r+s=2

s(2)
qrs xq

3 xr
4 xs

5 . (11.38)

From a conformal field theory point of view the perturbation is generated by
an exactly marginal bulk field in the cc ring. We want to understand what
happens to the D-branes described by the moduli space (11.18) under this
perturbation. We shall be able to give a fairly complete description of this
problem by combining the ideas of [48] with matrix factorisation techniques.
In particular, this will allow us to calculate the effective superpotential for
the boundary parameters (a, b, c) exactly.

One way to address this problem is to study the deformation theory of
matrix factorisations, following [72] (see also [13]). Suppose that q0 is a
factorisation of W0. Then we ask whether we can find a deformation q of
q0, i.e.

q = q0 + λq1 + λ2q2 + · · · (11.39)

such that q2 = W0 + λΦ. Expanding this equation to first order in λ, we
find the necessary condition that Φ must be exact with respect to q0, i.e.

2Everything we are going to say is essentially unchanged if we were to replace x3
1 by

an arbitrary third order polynomial in x1 and x2.
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of the form Φ = {q0, χ} for some χ. In general this condition will not be
met; for example for the case at hand where q0 ≡ q(a, b, c) and Φ is given
by (11.37), we find that Φ is exact if and only if

a5 + b5 + c5 = 0 and s(2)(a, b, c) = 0 . (11.40)

On the other hand, if this condition is met, it is easy to see that we can
in fact extend the matrix factorisation for arbitrary (finite) values of λ.
Indeed, if we consider the same ansatz as in (11.17), it is clear that we can
find a joint solution to J1 = J4 = J5 = 0 and W = W0 + λΦ = 0 if (a, b, c)
satisfies (11.40). It then follows by the same arguments as above that there
exists a matrix factorisation for all values of λ (that is by construction a
deformation of Q(a, b, c)).

Unless s(2) ≡ 0, the set of constraints (11.40) has only finitely many
discrete solutions; in fact, counting multiplicities, there are precisely 10
solutions, as follows from Bezout’s theorem. This ties in nicely with our
geometric expectations since at a generic point in the complex structure
moduli space only finitely many holomorphic 2-cycles exist.

11.3.1 Combining with conformal field theory

As we have just seen, for λ = 0 we have a one-parameter family of supercon-
formal D2-branes, while for λ *= 0 only discrete possibilities remain. The
situation is therefore very analogeous to the example studied in [48]. There
a general conformal field theory analysis of this problem was suggested that
we now want to apply to the case at hand.

In [48] the coupled bulk and boundary deformations of a boundary con-
formal field theory were studied, and the resulting renormalisation group
identities were derived. It was found that an exactly marginal bulk oper-
ator may cease to be exactly marginal in the presence of a boundary. If
this is the case it will induce a renormalisation group flow on the boundary
that will drive the boundary condition to one that is again conformal with
respect to the deformed bulk theory. If we denote the boundary coupling
constant corresponding to the boundary field ψj of conformal weight hj by
µj, then the perturbation by the exactly marginal bulk operator λΦ will
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induce the RG equation

µ̇j = (1− hj)µj +
λ

2
BΦψj +O(µλ, λ2, µ2) , (11.41)

where BΦψj is the bulk-boundary operator product coefficient. Since the
first term in (11.41) damps the flow of any irrelevant operators, it is suf-
ficient to study this equation only for the marginal or relevant boundary
fields, i.e. for those that satisfy hj ≤ 1.

For the case at hand, we do not have an explicit conformal field theory
description of the D-branes away from the specific points where abc = 0.
On the other hand, we know (based on supersymmetry) that the open
string spectrum will not contain any relevant (tachyonic) operators. Fur-
thermore, the above discussion suggests that everywhere in moduli space
each brane has precisely two marginal operators in its spectrum, namely
the operators corresponding to the open string fermions described by ψ1

and ψ2 — see appendix A for details. The two boundary operators ψ1 and
ψ2 are topological, and so is the bulk perturbation Φ. In particular, this
implies that we can determine the coefficients BΦψ1 and BΦψ2 that are im-
portant for the RG equations using topological methods, without having to
solve the full conformal field theory (which would be impossibly difficult)!

Using the Kapustin-Li formula (11.16) we find (we are working in a patch
where a = 1)

BΦψ2 = 0 (11.42)

for all (a, b, c), as well as

BΦψb
=

η4

25
c−4s(2)(1, b, c) , (11.43)

and similarly for

BΦψc = −η4

25
b−4s(2)(1, b, c) . (11.44)

All of these calculations were performed in the unperturbed bulk theory.
Since the bulk-boundary coupling between Φ and ψ2 vanishes (11.42), this
field is not switched on by Φ. The RG flow will therefore only involve ψ1,
and for this we find

ḃ = λ
η4

50
c−4s(2)(1, b, c) , (11.45)
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or

ċ = −λ
η4

50
b−4s(2)(1, b, c) . (11.46)

In particular, we see that the solutions to (11.40) are precisely the fixed
points under the RG equation. Thus any brane described by (a, b, c), will
flow to one of these 10 fixed points under the RG flow.

11.3.2 Differentials on the Fermat curve and their

integrals

Let us consider the Fermat curve defined by

b̂5 + ĉ5 = 1 . (11.47)

For a = 1 this is the curve that describes the brane moduli space 1+b5+c5 =
0 provided we identify b̂ = −b and ĉ = −c. The general theory of globally
defined differentials is described in [84]. The simplest class of differentials,
the differentials of the first kind, are those that are holomorphic on the full
curve. They are of the form

ωrs = b̂rĉs
1
5d(b̂5)

b̂5ĉ5
= b̂r−1ĉs−1db̂

ĉ4
, (11.48)

where r, s,≥ 1. Since b̂4db̂ = −ĉ4dĉ this is equivalent to

ωrs = −b̂r−1ĉs−1dĉ

b̂4
. (11.49)

The first formula (11.48) is defined on the patch of the moduli space where
ĉ *= 0, while the second (11.49) is defined for b̂ *= 0. Since on (11.47)
b̂ĉ *= 0 at least one of these two expressions is everywhere well-defined. In
particular, this therefore proves that the differentials ωr,s are holomorphic
for finite b̂ and ĉ. The only potential poles may thus appear at b̂, ĉ = ∞.
Expanding around b̂ = ∞ shows that the differentials are finite as long as
r + s ≤ 4. Therefore we find the holomorphic differentials (for ĉ *= 0)

1

ĉ4
db̂,

1

ĉ3
db̂,

1

ĉ2
db̂,

b

ĉ4
db̂,

b̂2

ĉ4
db̂,

b̂

ĉ3
db̂ . (11.50)

In fact this is a basis for the holomorphic differentials on the curve. Its
number is equal to the genus of the curve.
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Integrating the holomorphic differentials

In order to calculate the effective superpotential we need to integrate these
holomorphic differentials. For all of them the answer can be expressed in
terms of a hypergeometric function. In fact in the chart where ĉ *= 0 we
have

∫ b̂

0

ωrs =

∫ b̂

0

db̃
b̃r−1ĉ(b̃)s−1

ĉ(b̃)4
=

1

r
b̂r

2F1(
r
5 , 1−

s
5 ; 1 + r

5 ; b̂
5) . (11.51)

On the other hand in the chart with b̂ *= 0 we get instead
∫ ĉ

0

ωrs = −
∫ ĉ

0

dc̃
b̂(c̃)r−1c̃s−1

b̂(c̃)4
= −1

s
ĉs

2F1(
s
5 , 1−

r
5 ; 1 + s

5 ; ĉ
5) . (11.52)

In particular, the formula for the effective superpotential (11.56) follows
directly from (11.51). Note that the reference point b̂0 = 0 corresponds to
ĉ5
0 = 1, and vice versa.

11.3.3 Renormalisation group flow as gradient flow

Actually, the above renormalisation group flow is a gradient flow, as was
also the case in the example studied in [48].3 In fact, we can integrate the
RG equation for b in (11.45) to

ḃ = ∂bW(a, b, c) , (11.53)

where W(a, b, c) is evaluated on the moduli space (11.18) with a5+b5+c5 =
0 and we have rescaled a = 1. Similarly, the same function W(a, b, c) also
controls the RG equation for c in (11.46)

ċ = ∂cW(a, b, c) , (11.54)

where again a = 1 and we regard b as a function of c via the constraint
a5 + b5 + c5 = 0. To determine W(a, b, c) explicitly we need to integrate

∫ b

b0

db′BΦψb
=

η5

25

∫ b

b0

db′c−4s(2)(a, b′, c) . (11.55)

3For exactly marginal bulk deformations this may in fact follow from the analysis of
[50].
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The integral is along a line on the Riemann surface starting at a fixed
reference point b0 that we take to be 0 and ending at b. Since b parametrises
the brane moduli space, it has a natural physical interpretation as the
position of the brane. The integrand is a holomorphic one-form on the
Riemann surface parametrising the moduli space, see appendix B for more
details. The potential therefore has a natural geometric interpretation as
the Abel-Jacobi map associated to a one-form on the Riemann surface
whose points label the brane positions. Which particular one-form is to be
integrated is determined by the bulk deformation under consideration.

Since the integrals of such forms are known, we can give explicit formulae
forW(a, b, c) in each patch. As explained in appendix B, in the patch where
a = 1 and c *= 0 (so that c ≡ c(b) is well defined) one obtains

W(1, b, c) = λ
η4

50

∑

q+r+s=2

1

r
s(2)

qrs(−b)r
2F1(

r
5 , 1−

s
5 ; 1 + r

5 ;−b5) . (11.56)

It is also checked there that this function satisfies both (11.53) and (11.54).

By combining abstract conformal field theory arguments with topologi-
cal methods we can thus give a complete description of the RG flow: the
D2-brane simply follows the gradient flow of W to arrive at one of its local
minima, which are precisely the points characterised by (11.40). As in [48],
in the RG scheme in which we always remain in the original moduli space,
this analysis is exact in the boundary moduli, and first order in the bulk
coupling constant. Obviously the picture we have found ties in very nicely
with the geometric expectations of section 1.1.

We should note that it is crucial in this analysis that the bulk pertur-
bation by Φ does not switch on ψ2, i.e. that BΦψ2 = 0. Otherwise the
bulk perturbation would switch on a boundary field that would lead us out
of the original moduli space and we would not be able to iterate the RG
equations. This is the reason why we restricted our analysis to the bulk
perturbations of the form described in (11.38).

Comparing different charts

Since the differentials we have integrated are globally defined, the two ex-
pressions we obtain in different charts, namely (11.51) and (11.52), must
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agree, once we have taken into account that the lower bound of the inte-
grals are different. This can also be checked explicitly. In order to see this
we use the identity

2F1(a, b; c; 1− z)

=
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b + 1; z) zc−a−b

+
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b; a + b− c + 1; z) .

(11.57)

This allows us to rewrite the right hand side of (11.51) as

1

r
b̂rĉs Γ(1 + r

5)Γ(− s
5)

Γ( r
5)Γ(1− s

5)
2F1(1,

r+s
5 ; 1 + s

5 ; ĉ
5)

+
1

r
b̂r Γ(1 + r

5)Γ( s
5)

Γ( r+s
5 )

2F1(
r
5 ; 1−

s
5 ; 1−

s
5 ; ĉ

5) .

(11.58)

With the help of the identities

2F1(a, c; c; z) = (1− z)−a (11.59)

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z) (11.60)

as well as properties of the Γ-function, (11.58) then becomes

− 1

s
ĉs

2F1(
s
5 , 1−

r
5 ; 1 + s

5 ; ĉ
5) +

1

r

Γ(1 + r
5)Γ( s

5)

Γ( r+s
5 )

. (11.61)

By the Gauss hypergeometric theorem the second term is precisely the value
of the right hand side of (11.51) for b̂ = 1, while the first term agrees with
(11.52). Since b̂ = 1 corresponds to ĉ = 0, the second term just accounts
for the fact that the reference points in the two line integrals (11.51) and
(11.52) are different, and we have therefore proven our claim. In particular,
this then implies that the function W defined by (11.56) solves both (11.53)
and (11.54).

11.4 Superpotentials

As has been indicated already in previous chapters, the function W has
actually an interpretation in terms of the effective spacetime superpotential.
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It therefore encodes information about the different vacua of the model (at
least in the part of the moduli space under consideration).

In the above we have seen explicitly that the RG flow is a gradient flow
of a potential. This potential is precisely the contribution to the effective
superpotential W that is first order in the bulk field Φ and exact in the
boundary field ψ1. To see this we simply note that the term that appears on
the right hand side of (11.41) is the bulk-boundary coefficient that involves
one insertion of the bulk field Φ and one insertion of the boundary field
ψ1 (that couples to µ). This bulk-boundary correlator was evaluated at
an arbitrary point in the brane moduli space; if we start around any given
point of the brane moduli space, the above expression therefore involves an
arbitrary number of insertions of ψ1 (that allow one to move around this
brane moduli space). Thus the right-hand-side of (11.41) is the generating
function describing symmetrised correlators involving an arbitrary number
of boundary fields ψ1, together with one insertion of the boundary field ψ1

and one insertion of the bulk field Φ. We can produce the insertion of the
boundary field ψ1 by taking a derivative with respect to the corresponding
boundary coupling constant. It thus follows that the function W (that
we obtained by integrating up the right hand side of (11.41)) is precisely
the generating function of one bulk field Φ with an arbitrary number of
boundary fields. It therefore defines the corresponding contribution of the
effective superpotential.

It is also clear from this argument that this method can be applied to
calculate the corresponding terms of the effective superpotential for an ar-
bitrary bulk deformation, not just one of the form (11.38). For the other
cases, the result is however trivial: the complex structure deformations
(11.38) are the only monomials (instead of x3

1 we may also allow for an ar-
bitrary third order polynomial in x1 and x2) for which the bulk-boundary
OPE coefficient with ψ1 is non-zero. Thus to first order in the bulk per-
turbation the above terms are the only terms that appear in the effective
superpotential. It should also be obvious how to perform the same analysis
for the other (45) families of D2-branes.

It should be noted that a priori only the minima of the effective su-
perpotential do have a physical interpretation. The function itself may be
subject to field redefinitions, so that it not clear if W contains definite
off-shell information. Nevertheless it is interesting to learn how the open
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string moduli spaces change under bulk deformations, and to see how they
are connected.

Note also that for the investigation of the open-closed moduli space it
was only necessary to deal with the boundary part of the BRST operator.
This is very reminiscent of bulk deformations which have been considered
in chapter 8 for bosonic BSFT. In fact, the restriction to q instead of Q is
possible because in the topological theory the bulk-boundary map is almost
trivial. It is given by the trivialisation Φ "→ Φ 1, where Φ is a bulk field.
This map involves no other modes than the constant one. This has the
effect that OPEs between any fields are always regular and do not contain
singularities. Therefore there is a trivial map from bulk to boundary fields
which makes it possible to view the bulk fields naturally as a subset of
the boundary fields. Once the projection on constant modes is abandoned,
extra singularities will appear when moving bulk operators to the boundary,
as explained in previous sections. These were seen to lead finally to non-
local excitations, thus in a non-topological setting one would again expect
the appearance of non-local terms.
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Conclusions

The main goal of the work presented in this thesis was to develop a version
of BSFT which is valid in curved backgrounds, to find a way to isolate
closed string deformations in this language and to find support for the idea
that the open string field theory is indeed capable of describing closed string
deformations.

In the bosonic case it has been possible to achieve these goals and fortify
the approach by concrete calculations. The paths taken rested on an ex-
tension of BSFT suitable for curved target spaces. While the factorisation
conjecture, which enabled this extensions, has only been proven for WZW
targets, and therefore for a large and important class of target spaces, it
does not seem too farfetched to put this forward also for general targets.

Further tests of the constructed BSFT action have been provided. In
fact it has been shown that tachyon condensation on D-branes yields the
expected results. For this we have applied the open-closed string corre-
spondence developed in chapter 7 [22] to a specific example, where the
qualitative features observed should be rather generic. Apart from the nu-
merical values not much depended on the details of the group manifold in
question. Given the highly symmetric set-up one might hope that some
of the phenomena discussed in chapter 8 and in [21] within perturbation
theory could be established exactly at least for some simple processes.

In particular within the perturbative approximation utilised here we are
not able to see all D2-branes corresponding to conjugacy classes of the
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group. Rather we only see the ‘biggest’ 2-brane. This should be related to
the fact that we worked in the large radius regime. Pushing the perturba-
tion in λ further it is conceivable that additional fixed points appear which
describe ‘smaller’ conjugacy classes, but in order to see these much more
powerful methods are needed. More interestingly it would be worthwhile in-
vestigating, if non-symmetry preserving branes exist in these models. Also,
although we have observed the absence of divergences in the 2-brane the-
ory by brute force computation, there may well be symmetry arguments
that imply finiteness of the loop correction. It would be interesting to
know if such a symmetry exists, in particular in view of a non-perturbative
approach to these models.

With chapter 11 a first step has been taken to repeat the bosonic ap-
proach in a supersymmetric setting. The starting point for this investiga-
tion has been a spacetime much more complicated than flat space, namely
the quintic. Most remarkably, it has been possible to derive exact results
on the open string moduli space of this Calabi-Yau and its behaviour under
closed string deformations. The observations made are in agreement with
the philosophy put forward in chapters 7 and 8. The fact that closed string
deformations can be treated completely by looking only at the boundary
BRST operator is, from this point of view, to be expected. If this is a relict
of the immense simplification achieved by projecting on the topological sec-
tor of the theory can only be decided once the factorisation conjecture (7.3)
has been proven for supersymmetric theories on Calabi-Yau. In addition
we have worked exclusively in the B-model, because there a description of
D-branes which is close to the worldsheet formalism is available. It is not
clear how to conduct similar calculations in the A-model, or how to consider
even situations, where A- and B-branes are considered simultaneously.

While a supersymmetric version of (7.3) for arbitrary target spaces is an
important further step in the investigation of open-closed correspondence,
the results of chapter 11 do have immediate application to other problems,
too. Prominent among them is the existence of open-closed Picard-Fuchs
equations [85, 139]. This in turn opens up the door for an investigation of
mirror symmetry when both, open and closed string moduli are included.
This is an interesting question in itself, but it should be investigated with
the far aim of shedding light on a general understanding of open-closed
correspondence in string field theory.
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