
3D Reconstruction of Neural Circuits

from Serial EM Images

Nina Maack

München 2008





3D Reconstruction of Neural Circuits

from Serial EM Images

Nina Maack

Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften (Dr. rer. nat.)

der Fakultät für Biologie

der Ludwig–Maximilians–Universität München

Angefertigt am Max-Planck-Institut für Neurobiologie

Abteilung ”Neuronale Informationsverarbeitung”

vorgelegt von

Nina Maack

aus Landsberg/Lech

München, den 29.04.2008





Erstgutachter: Professor Dr. Alexander Borst

Zweitgutachter: Professor Dr. Benedikt Grothe

Tag der mündlichen Prüfung: 20.06.2008





Table of Contents

Table of Contents i

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract 1

1 Introduction 3

1.1 Neural Circuit Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Microscopy Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Serial Section Transmission Electron Microscopy . . . . . . . . . . . 5

1.2.2 Serial Block-Face Scanning Electron Microscopy . . . . . . . . . . 7

1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Materials and Methods 13

2.1 Specimen Preparation for SBFSEM . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Fly Brain Preparation and Fixation . . . . . . . . . . . . . . . . . . 13

2.1.2 Staining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Final Preparation of SBFSEM Sample . . . . . . . . . . . . . . . . 14

2.1.4 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Software Development Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Results 17

3.1 SBFSEM Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Software - Neuron2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1.1 Tiling Technique of SBFSEM . . . . . . . . . . . . . . . . 19



ii Table of Contents

3.2.1.2 Overview of Image Registration Methods . . . . . . . . . . 20

3.2.1.3 Implementation - Image Registration . . . . . . . . . . . . 22

3.2.1.4 Results - Image Registration . . . . . . . . . . . . . . . . . 22

3.2.2 Image Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2.1 Overview of Image Filtering Algorithms . . . . . . . . . . 24

3.2.2.2 Implementation - Image Preprocessing . . . . . . . . . . . 27

3.2.2.3 Results - Image Preprocessing . . . . . . . . . . . . . . . . 28

3.2.3 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3.1 Contour-Propagation Algorithms . . . . . . . . . . . . . . 30

3.2.3.2 Canny Segmentation Algorithm . . . . . . . . . . . . . . . 38

3.2.3.3 Manual Interaction . . . . . . . . . . . . . . . . . . . . . 41

3.2.3.4 Quantification of Segmentation Algorithms . . . . . . . . . 43

3.2.3.5 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Software - Neuron3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1.1 Overview of Surface Reconstruction Algorithms . . . . . . 49

3.3.1.2 Implementation - Surface Reconstruction . . . . . . . . . 51

3.3.1.3 Integration of Branches . . . . . . . . . . . . . . . . . . . 53

3.3.2 3D Image Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2.1 Surface Representation . . . . . . . . . . . . . . . . . . . . 56

3.3.2.2 Lighting Implementation . . . . . . . . . . . . . . . . . . 57

3.3.2.3 Integration of SBFSEM Data . . . . . . . . . . . . . . . . 61

3.3.3 Results and Data Storage . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Software Usage and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Discussion 69

4.1 Software Neuron2D and Neuron3D . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Biological Application of the Software . . . . . . . . . . . . . . . . . . . . . 71

4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 References 75

Acknowledgements 83

Curriculum Vitae 85



iii

List of Figures

1.1 Visual system of the fly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Technique of SSTEM and TEM . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Schematic of SEM and BSE coefficient . . . . . . . . . . . . . . . . . . . . 8

1.4 Schematic of ESEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Schematic of SBFSEM and working principle . . . . . . . . . . . . . . . . . 10

3.1 Example SBFSEM image stack . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Example tiling SBFSEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Results image registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Example image preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Different gray value distributions of SBFSEM image stacks . . . . . . . . . 30

3.6 Splitting of objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Schematic illustration of the algorithm . . . . . . . . . . . . . . . . . . . . 34

3.8 Segmentation of the first image (screen shots) . . . . . . . . . . . . . . . . 38

3.9 Example Canny segmentation algorithm . . . . . . . . . . . . . . . . . . . 41

3.10 Quantification of performance . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.11 Typical errors made by the algorithm . . . . . . . . . . . . . . . . . . . . . 45

3.12 Test Canny segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.13 Typical errors made by the Canny segmentation algorithm . . . . . . . . . 46

3.14 Example XML output file . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.15 Surface reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.16 Branched contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.17 Surface simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.18 Shadow implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.19 Reconstruction of axonal structures . . . . . . . . . . . . . . . . . . . . . . 63

3.20 Selected test regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.21 Software evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Visualization of synapses with SBFSEM . . . . . . . . . . . . . . . . . . . 71

4.2 Fluorescein and neurobiotin staining of VS-cells . . . . . . . . . . . . . . . 72

4.3 EM images of gap junctions . . . . . . . . . . . . . . . . . . . . . . . . . . 73



iv

Abbreviations

2D Two-Dimensional

3D Three-Dimensional

API Application Programming Interface

BSE Backscattered Electrons

DTW Dynamic Time Warping

EM Electron Microscope

EMD Elementary Motion Detector

ESEM Environmental Scanning Electron Microscope

GUI Graphical User Interface

LMCs Large Monopolar Cells

LPTCs Lobula Plate Tangential Cells

NLDF Nonlinear Diffusion Filter

NP Non-deterministic Polynomial time

OpenGL Open Graphics Library

PB Phosphate Buffer

RAM Random Access Memory

SBFSEM Serial Block-Face Scanning Electron Microscopy

SDF Signed Distance Function

SE Secondary Electrons

SEM Scanning Electron Microscopy

TEM Transmission Electron Microscopy

XML Extensible Markup Language



Abstract

A basic requirement for reconstructing and understanding complete circuit diagrams of

neuronal processing units is the availability of electron microscopic 3D data sets of large

ensembles of neurons. A recently developed technique, ”Serial Block Face Scanning Elec-

tron Microscopy” (SBFSEM, Denk and Horstmann 2004) allows automatic sectioning and

imaging of biological tissue inside the vacuum chamber of a scanning electron microscope.

Image stacks generated with this technology have a resolution sufficient to distinguish dif-

ferent cellular compartments, including synaptic structures. Such an image stack contains

thousands of images and is recorded with a voxel size of 23 nm in the x- and y-directions

and 30 nm in the z-direction. Consequently a tissue block of 1 mm3 produces 63 terabytes

of data.

Therefore new concepts for managing large data sets and automated image processing

are required. I developed an image segmentation and 3D reconstruction software, which

allows precise contour tracing of cell membranes and simultaneously displays the resulting

3D structure. The software contains two stand-alone packages: Neuron2D and Neuron3D,

both offering an easy-to-operate graphical user interface (GUI).

The software package Neuron2D provides the following image processing functions:

• Image Registration: Combination of multiple SBFSEM image tiles.

• Image Preprocessing: Filtering of image stacks. Implemented are Gaussian and

Non-Linear-Diffusion filters in 2D and 3D. This step enhances the contrast between

contour lines and image background, leading to a higher signal-to-noise ratio, thus

further improving detection of membrane borders.

• Image Segmentation: The implemented algorithms extract contour lines from the

preceding image and automatically trace the contour lines in the following images

(z-direction), taking into account the previous image segmentation. They also permit

image segmentation starting at any position in the image stack. In addition, manual

interaction is possible.



2

To visualize 3D structures of neuronal circuits the additional software Neuron3D was

developed. The program relies on the contour line information provided by Neuron2D to

implement a surface reconstruction algorithm based on dynamic time warping. Additional

rendering techniques, such as shading and texture mapping, are provided.

The detailed anatomical reconstruction provides a framework for computational models

of neuronal circuits. For example in flies, where moving retinal images lead to appropriate

course control signals, the circuit reconstruction of motion-sensitive neurons can help to

further understand the neural processing of visual motion in flies.



1 Introduction

The ability of animals to navigate in the world relies heavily on the processing of visual

information. Whenever an animal moves through its environment or an object moves past

it the visual system is challenged with motion. By examining large sections of the changing

retinal image it is possible to make good estimates of ones self motion in comparison to both

the landscape and moving objects of interest. The optic flow, describing the continuous

changes of the retinal images, is not explicitly represented in the brightness patterns of

the retinal images. In contrast, the information is computed from the temporal brightness

changes in the retina. Therefore it is highly interesting how the brain is organized to

analyze visual patterns and how behaviorally relevant motion information is extracted.

1.1 Neural Circuit Reconstruction

The reconstruction of complete circuit diagrams of neuronal processing units is necessary

to understand the connectivity in neuronal networks and the principles of brain design. In

addition to the detailed wiring diagrams, activity patterns related to computational pro-

cesses of neuronal populations are required. These are obtained with optical and electrical

recording techniques (e.g. Buzsaki 2004) and are used to relate the circuit connectivity

to observed signals. Finally the aim is to understand how electrical activity in neuronal

circuits generates behavior. So far only one organism’s wiring diagram exists: that of the

nematode Caenorhabditis elegans (White et al., 1986). Further reconstructions of com-

plete circuit diagrams of neuronal processing units, e.g. the vertebrate cortical columns,

hippocampal circuits or entire invertebrate nervous systems still must be obtained.

One representative for circuit reconstruction of invertebrate nervous systems are flies,

where neural processing of visual motion is one of the sensory components involved in

flight control. To understand the neural mechanisms leading from moving retinal images

to appropriate course control signals, the underlying neural network of the fly visual sys-

tem needs to be analyzed. Anatomically, the fly visual system is divided into three layered



4 1. Introduction

structures (fig. 1.1A): lamina, medulla and lobula complex. Each of these structures is

composed of repeated columns, where each column corresponds to the relative position

of facets in the eye and consists of stereotyped, layer specific ensembles of neurons (fig.

1.1B). The lobula complex is divided into the lobula and the lobula plate. In the lobula

plate, one prominent group of 60 neurons, the lobula plate tangential cells, are individually

identifiable (LPTCs, fig. 1.1C and blue neuron 1.1B). These neurons are motion sensitive

visual interneurons. With their large dendrites, LPTCs spatially integrate the output sig-

nals of columnar neurons (fig. 1.1B-C) and respond to visual motion within large parts of

the visual field in a directionally selective way. So far most of the neural cell types, e.g.

LPTCs, are well-characterized at a resolution accessible with light microscopy (Strausfeld,

1984). However the presynaptic processing of LPTCs underlying local motion detection

is unknown. To understand this presynaptic circuit it is necessary to identify the spa-

tial arrangement and synaptic connectivity of these cells within and across the columnar

network.

Figure 1.1: Visual system of the fly
(A) Schematic horizontal cross-section through the fly head. The three layers of the optic ganglia are
indicated in green (modified from Borst and Haag 2002). (B) 3D schematic of the visual ganglia together
with a LPTC, displayed in blue. The columns in each layer can be seen to represent the facets of the
retina in a one-to-one fashion leading to a retinotopic projection of the visual surround onto the
dendrites of LPTCs (modified from Borst and Haag 2002). (C) Subset of lobula plate tangential cells
(Neurobiotin filled cells from Calliphora vicina, modified from Borst and Haag 1996).



1.2 Microscopy Techniques 5

1.2 Microscopy Techniques

The reconstruction of complete neuronal circuits is based on the anatomical knowledge of

single neurons, as well as their pre- and postsynaptic connections. This implies that both

high resolution and a large field of view must be combined, as for example vesicles of a

chemical synapse have a diameter of approximately 25 nm. The techniques available for

the reconstruction of large tissue volumes are dictated by the required resolution.

3D light microscopy, such as confocal (Conchello and Lichtman, 2005) or two-photon

microscopy (Denk et al., 1990), is limited by the wave length of the light and hence axons

or dendrites with a diameter significantly lower than the resolution limit cannot be properly

resolved (lateral and axial resolution of about 200 nm). A higher lateral and axial resolution

of about 100 nm are obtained with technologies such as the stimulated emission depletion

(STED, Hell 2003), where the nonlinear interaction between two light sources is used

to gain a higher resolution. However, so far only electron microscopy (EM) techniques

are suitable to reconstruct neural circuits in their entirety with a resolution sufficient to

distinguish tiny processes, such as synaptic connections. Traditionally, three dimensional

reconstruction of neural tissue has been achieved by serial section transmission electron

microscopy of ultrathin sections (SSTEM, Stevens et al. 1980). An alternative is serial

block-face scanning electron microscopy (SBFSEM, Denk and Horstmann 2004), in which

image acquisition is automated and subsequent-section alignment is irrelevant. The third

possibility to reconstruct 3D neural tissue is serial section electron tomography (SSET,

Soto et al. 1994), which is based on the principle of reconstructing a 3D structure from

multiple 2D projections at varying angles. The method is similar to computed tomography

(CT) scans in medical radiology (Frey et al., 2006). In the following sections, 1.2.1 to 1.2.2,

only serial section transmission electron microscopy and serial block-face scanning electron

microscopy will be described further, as serial-section reconstruction in comparison to

SSET is better suited for tracing continuity over long distances throughout the depth of

tissue.

1.2.1 Serial Section Transmission Electron Microscopy

For the past 30 years serial section transmission electron microscopy (SSTEM, Stevens et al.

1980) has been well-established for studies of single neurons in 3D with a lateral resolution

of less than 10 nm and a section thickness of about 50 nm. SSTEM is a conceptually

simple technique (fig. 1.2A, Reimer 1993). Briefly, the fixated, embedded tissue block is



6 1. Introduction

serially sectioned with a diamond knife on an ultramicrotome. The staining process can be

performed before (block staining) or after sectioning (section staining). Ribbons of sections

are transferred onto grids for imaging with a conventional transmission electron microscope

(TEM, fig. 1.2B), in which the thin specimen is irradiated with an electron beam of uniform

current density. The electron energy ranges from 60-150 keV. Electrons are emitted from

the electron gun in vacuum mode by thermionic emission from tungsten hairpin cathodes

or by field emission from pointed tungsten filaments. A two-stage condenser-lens system

permits variation of the illumination aperture and the area of the specimen illuminated.

The electron-intensity distribution behind the specimen is imaged with a three- or four-

stage lens system, onto a fluorescent screen. The image can be recorded by direct exposure

of a photographic emulsion inside the vacuum chamber or digitally by CCD (charge-coupled

device) or TV cameras. The image contrast is due to the increased elastic scattering of

electrons in areas containing the heavy metal stain (Reimer, 1993).

Figure 1.2: Technique of SSTEM and TEM
(A) Schematic diagram of the steps involved in the acquisition of tissue volumes using SSTEM (modified
from Briggman and Denk 2006). (B) Schematic ray path for a TEM, equipped for additional x-ray and
electron energy-loss spectroscopy (modified from Reimer 1993).

Generally the sectioning and transfer processes of SSTEM are susceptible to many prob-



1.2 Microscopy Techniques 7

lems including loss of sections, uneven section thickness, debris on sections and geometrical

distortion. Even if the sections can be successfully imaged, distortions, which vary locally

and between sections, hamper automated approaches for the alignment and reconstruction

of fine neuronal processes or complete circuits.

1.2.2 Serial Block-Face Scanning Electron Microscopy

A recently developed technique in EM serial-reconstruction is serial block-face scanning

electron microscopy (SBFSEM, Denk and Horstmann 2004; Leighton 1981). SBFSEM

automates the process of sectioning and imaging blocks of tissue by incorporating a custom-

made microtome into the vacuum chamber of a scanning electron microscope (SEM). Unlike

a TEM, the images in an SEM are generated from electrons scattered off the surface of an

embedded tissue sample, which allows the imaging of block faces. One major component

of an SEM is the electron column (fig. 1.3A), which consists of an electron gun and two

or more electron lenses. The electron lenses influence the paths of electrons traveling

down an evacuated tube. At the base of the column are typically pumps that produce a

vacuum of about 10−6 Pa. The electron gun generates electrons and accelerates them to

an energy in the range of 0.1 - 30 keV (Goldstein et al., 2003). The beam emerges from

the final lens into the specimen chamber, where it interacts with the specimen to a depth

of approximately 1 µm and generates signals used to form an image. The prevalent image

mode in the SEM is the detection of secondary electrons (SE), which are emitted when

the primary electron beam strikes the sample surface. The SE signal depends strongly

on the orientation of the surface, leading to topographic images that characteristically

resemble obliquely illuminated solid objects. Since the microtome-cut block surface is

devoid of topographic features, very little contrast is generated (Kuzirian and Leighton,

1983). Therefore for SBFSEM the image formation is based on a second type of generated

electrons, the backscattered electrons (BSE). The BSE signal is strongly depended on the

mean atomic number (Z) of the sample material, since atoms with a high atomic number

scatter more effectively than light ones (Goldstein et al., 2003). Hence, the backscattered

coefficient, η, provides information about the material composition of a specimen (fig.

1.3B).



8 1. Introduction

Figure 1.3: Schematic of SEM and BSE coefficient
(A) Schematic drawing of the electron column, showing the electron gun, lenses, the deflection system
and the electron detector (modified from Goldstein et al. 2003). (B) Backscattered electron coefficient as
a function of atomic number plotted for a range of beam energies from 5 to 49 keV. Backscatter
coefficient of selected chemical elements are marked (modified from Goldstein et al. 2003).

One major requirement for a conventional SEM is that both the electron-optic column

and the specimen chamber are kept under high vacuum of about 10−6 Pa. Although this

condition ensures that the electron beam can travel unimpeded from the source to the

sample, many nonconducting specimens, such as biological tissue, cannot be observed in

their natural state in the SEM. As it is required of SBFSEM to image uncoated block

surfaces, an environmental scanning electron microscope (ESEM, Donald 2003) instead

of a conventional SEM is used. Hereby, a gaseous environment is maintained around the

sample during imaging, although the electron gun itself is kept at the standard pressure

of around 10−6 Pa. This is achieved by the use of differential pumping within the column,

creating a series of different pressure zones, with increasing pressures as the sample chamber

is reached (fig. 1.4). In addition the gaseous environment around the sample compensates

charge build-up at the surface of the specimen. Hereby charging, which occurs when the

energy from the primary electrons is retained by the sample instead of being shed to

an electrical ground, is avoided by gas ionization in the sample chamber. The resulting

ionization of the gas molecules with the emitted electrons creates additional electrons,

amplifying original secondary electron signal and positive ions. The positive ions are

attracted to the sample surface, that is negatively charged from the primary electron

beam. The resulting neutralization suppresses charging artifacts. Consequently ESEM

allows imaging of samples in low-pressure gaseous environments and high relative humidity



1.2 Microscopy Techniques 9

(up to 100%). To avoid the scattering of electrons, the total distance electrons must travel

through the gas is minimized; thus, most incident electrons do not undergo any large-angle

collisions. Consequently the ESEM allows imaging of cells and other biological assemblies

including whole organisms without dehydration or coating: only staining or fixation of the

specimen block is necessary.

Figure 1.4: Schematic of ESEM
The different pressure zones in the ESEM column. The gun can be maintained at high vacuum, while a
system of differential pumping- and pressure-limiting apertures allows the chamber to be maintained at a
pressure of a few torr (modified from Donald 2003).

As the SBFSEM technology uses an ESEM, the microtome incorporated into the vac-

uum chamber, must be compatible with low vacuum conditions. Additionally to ensure

alignment of subsequent images, which is one of the primary objectives of serial block-face

imaging, the position of the block must remain stable or be returned to the same location

after each image is taken. Therefore the designed knife, rather than the block, is moved for

cutting. In the z-direction, sample advance rather than knife advance is used in order to

keep the cutting plane, and hence the location of the block surface, constant. This removes

the need for refocusing the ESEM, which contributes to image stability and registration

(Denk and Horstmann, 2004). The lateral position jitter is typically below 10 nm. Ade-

quate contrast is obtained by block staining, using for example uranyl acetate and osmium

tetroxide. The maximum lateral resolution is about 10 nm and it is possible to cut series



10 1. Introduction

of thousands of sequential sections with a section thickness of around 30 nm. The detailed

working principle is shown in figure 1.5 as well as the mechanical design for the in-chamber

microtome.

Figure 1.5: Schematic of SBFSEM and working principle
(A) The mechanical design for the in-chamber microtome is shown in an overview and a zoomed view of
the diamond knife (light blue) and sample (amber). Most parts are nonmagnetic stainless steel (gray).
The BSE detector (red) is depicted schematically above the sample. A piezoelectric actuator (green)
drives the knife holder back and forth. A direct-current-motor-driven micrometer (dark blue) drives the
sample advance via a lever (modified from Denk and Horstmann 2004). (B) Principle of SBFSEM
operation: (1) an SEM image is taken of the surface of the plastic-embedded (blue trapezoid) tissue
preparation (green). (2) Then with a diamond knife (yellow) an ultrathin slice is cut off the top of the
block. (3) After retraction of the knife, the next picture is taken. The pictures shown are from an image
stack of the outer chiasm of the blowfly, but are not successive slices (modified from Denk and
Horstmann 2004).



1.2 Microscopy Techniques 11

There are several advantages of SBFSEM over traditional SSTEM (section 1.2.1). Be-

cause the images are taken directly from the block face prior to each cut, the problems

of sections being distorted or lost during handling are completely avoided. Furthermore

the images in raw SBFSEM datasets are already aligned and therefore automated image

analysis and reconstruction are possible. Additionally, as the sectioning process is fully

automated, large volumes can be imaged without significant operator involvement.

Generally, however, the area to be imaged is many times larger than the field of view

of the ESEM at the required resolution. Hence it is necessary to take multiple images

to cover block faces as large as 500 µm. Thus the microtome, needs to be mounted on a

translation stage with a mechanical reproducibility better than the lateral resolution of 10

nm in order to maintain the alignment within and between subimage stacks.

The speed of SBFSEM is ultimately limited by the voxel dwell time necessary to achieve

a reasonable signal-to-noise ratio. The voxel dwell time, τd, can be calculated with the

following formula (Denk and Horstmann, 2004):

τd =
(RSN)2e

ηIb
, (1.1)

where RSN = signal-to-noise ratio, e = elementary charge, η = backscattering coefficient

and Ib = beam current.

Using the values RSN = 100, Ib = 1 nA and η = 0.2 the calculated voxel dwell time τd

is 8 µs. At this rate the time required to collect a tissue volume of 0.01 mm3 (total brain

volume of Drosophila melanogaster) at a resolution of 20 x 20 x 30 nm3 would be about

2.5 months and the required memory in the range of 550 gigabyte. Using the SBFSEM

technique for the analysis of larger organisms such as the blowfly Calliphora vicina, with

a total brain volume of 1 mm3, the scan time is about 21 years and 54 terabyte memory

capacity is required. However, it is possible to analyze only interesting regions of the

brain, e.g. the visual ganglia, which leads to a significant reduction of the scan time and

the memory capacity.

In principle with the lateral (10 nm) and horizontal (30 nm) resolution limit of SBFSEM

it is possible to identify plasma membranes (diameter of approx. 20 nm) and chemical

synapses (diameter of vesicles between 20 to 30 nm). Without additional labeling electri-

cal synapses, with a diameter of 1 to 7 nm, are currently not detectable with the SBFSEM.

Shortcomings of the SBFSEM technique are the low vacuum mode, block staining (no pos-

sibility to enhance contrast after cutting) and the low RSN value. Overall ultrastructural



12 1. Introduction

3D anatomical data of e.g. neuronal circuits of the fly brain can be obtained with the

SBSFSEM technology.

1.3 Goals

So far the fly visual system is well described at a resolution accessible with light microscopy

(Strausfeld, 1984). To gain further insights into the circuits underlying visual motion pro-

cessing in flies (Borst and Haag, 2002) knowledge at the ultrastructural level is necessary.

To obtain detailed anatomical information of the underlying neuronal circuitry, we apply

the SBFSEM technique (section 1.2.2). This technique, in comparison to other methods,

allows automated sectioning and imaging of biological tissue with a resolution sufficient

to trace even thin neuronal processes and visualize sites of chemical synaptic contact. As

mentioned above an enormous amount of data is produced during the imaging of a speci-

men block with the SBFSEM technique. Therefore, new concepts for managing large data

sets and for automated 3D reconstruction algorithms needed to be developed. To allow the

best possible analysis of SBFSEM image stacks, it was necessary to develop custom-made

software, that achieves the following requirements:

• Efficient (time and space) data handling and storage:

Images are segmented sequentially rather than the whole stack at once.

• Semi-automated image segmentation:

– Development of segmentation algorithms for precise contour tracing of cell mem-

branes.

– Segmentation of a varying number of objects per image.

– Automated segmentation of splitting objects, branch points of e.g. dendrites.

– Segmentation of neurons with process diameters varying from approx. 50 nm

to several µm.

• Visualization of 3D structures of neuronal circuits parallel to image segmentation:

Segmentation errors are located and corrected in an early phase of data analysis.

In addition the developed algorithms must be embedded into an easy-to-operate graph-

ical user interface (GUI). In the following, I will describe the software I developed for the

analysis of SBFSEM image stacks.



2 Materials and Methods

2.1 Specimen Preparation for SBFSEM

2.1.1 Fly Brain Preparation and Fixation

Female blowflies, Calliphora vicina, were briefly anesthetized with CO2 and mounted ven-

tral side up with wax on a small preparation platform. The head capsule was opened from

behind. Finally trachea and air sacs that cover the lobula plate were removed. The tissue

was prepared as described in Brotz et al. (Brotz et al., 1995). In a first step the head

capsule was filled with a fixative solution (4% paraformaldehyde, 0.3% glutaraldehyde, 1%

sucrose in 0.1 M phosphate buffer, pH 7.2). After a brief incubation time of 3 minutes the

brain was carefully removed with a shear from the head capsule and kept in an Eppendorf

cup with fresh fixative solution overnight at 4◦C. Afterwards the two optic lobes were dis-

sected and washed three times for ten minutes in 0.1 M phosphate buffer, pH 7.2, and 1%

sucrose at room temperature.

2.1.2 Staining

Unless noted otherwise all steps were carried out at room temperature. Staining of samples

for the SBFSEM technique was done using established procedures common for preparing

TEM samples (Hayat 2000, chapter 6 p.342ff). The tissue was postfixed for 2 hours in

a solution containing 2% Osmiumtetroxide (SERVA Electrophoresis GmbH, Heidelberg,

Germany) reduced with 0.8% potassium ferricyanid in 0.1 M PB, pH 7.2, on a rotationary

wheel. Afterwards, the specimen was washed once for 10 minutes in 0.1 M PB, pH 7.2, and

three times for 10 minutes in a 25% methanol-water (double distilled) mixture. Then the

tissue was subjected to a block contrast enhancement step by soaking it for 12 hours in a

solution of 4% uranyl acetate (Sigma-Aldrich Chemie GmbH, Munich, Germany) in a 25%

methanol-water (double distilled) mixture (Stempak and Ward, 1964) in the dark. After

that the tissue was dehydrated in a methanol sequence (2x 25% for 20 min, 2x 70% for 30



14 2. Materials and Methods

min, 2x 90% for 30 min, 1x 95% for 30 min, 2x 100% for 30 min) and incubated two times

for 10 minutes in propyleneoxide. These steps were followed by infiltration of the epoxy

resin monomer (Epon 812 mixture, Serva Electrophoresis GmbH, Heidelberg, Germany)

into the specimen. Infiltration steps were: 1:1 Epon 812/propyleneoxide mixture, for 4

hours; 3:1 Epon 812/propyleneoxide mixture, overnight at 4◦C; pure Epon 812 for 3 hours.

The epoxy resin was polymerized for 72 hours at 60◦ in flat embedding molds.

All chemicals, unless otherwise noted, were obtained from Sigma (Sigma-Aldrich Chemie

GmbH, Munich, Germany).

2.1.3 Final Preparation of SBFSEM Sample

The block face of the resin block, containing the specimen, was trimmed to a pyramid

of dimension 500 x 500 x 500 µm3 with an EM high speed milling system (Leica EM

Trim, Leica Microsystems GmbH, Wetzlar, Germany) and a conventional ultramicrotome

(Reichert & Jung Ultracut, Leica Biosystems Nussloch GmbH, Nußloch, Germany). Light

microscopy of semithin (1 µm) sections stained with toluidine blue and SEM images of

the untrimmed block face were used to select the desired field of view before the final

trimming step producing the desired small cutting pyramid with an edge angle of 45◦

(Denk and Horstmann, 2004).

2.1.4 Microscopy

The SBFSEM consists of an environmental SEM with a field-emission electron gun (QuantaFEG

200, FEI, Eindhoven, Netherlands) and a custom-made microtome (Winfried Denk, MPI

for Medical Research, Heidelberg, Germany, Denk and Horstmann 2004). The microtome

is located in the low-vacuum chamber of the SEM. The entire SBFSEM experiment is con-

trolled by custom-made software (Winfried Denk, MPI for Medical Research, Heidelberg,

Germany). The principles of the SBFSEM operation are:

1. An SEM image is taken of the surface of the plastic-embedded tissue preparation by

detecting the backscattered electrons.

2. An ultrathin slice is removed from top of the block with a diamond knife.

3. After retraction of the knife the next picture is taken.

For a detailed description see section 1.2.2 and Denk et al. (Denk and Horstmann, 2004).



2.2 Software Development Tools 15

One image stack from the Calliphora vicina outer chiasm, which was used as the basis for

the software development, was recorded by Alexander Borst (MPI of Neurobiology, Mar-

tinsried, Germany) and Winfried Denk (MPI for Medical Research, Heidelberg, Germany)

under the following conditions:

• Low vacuum mode (environmental SEM): 50 Pa.

• Beam energy: 4 keV.

• Spot size: 3.5.

The detailed properties of this image stack are:

• Digital resolution: 26.40 nm/pixel.

• Scan field (x-, y-direction): 2048 x 1768 pixels, equivalent to 55 x 47 µm2.

• Total number of images: 1000.

• Slice thickness: 50 nm.

• Extent in the z-direction: 50 µm.

• Voxel dwell time: 12.5 µs.

The voxel dwell time is calculated with formula 1.1.

A volume reconstruction as well as some example images of this stack are represented

in figure 3.1.

Most of the steps described in section 2.1 were performed by Christoph Kapfer and

Marianne Braun (MPI of Neurobiology, Martinsried, Germany).

2.2 Software Development Tools

2.2.1 Hardware

The software was developed on a 32-bit workstation (Intel(R) Xeon Processor, operating

system: Windows XP32) with an ATI FireGL V3100 graphics board and 2.00GB RAM.

All software tests were executed on a 64-bit workstation (64-Bit-Dual-Core Intel Xeon

Processors, operating system: Windows XP64) with an NVIDIA Quadro FX 3500 graphics

board and 8.00GB RAM.



16 2. Materials and Methods

2.2.2 Programming Languages

Depending on the requirements of each software part, the following programming languages

were used:

• Java (Sun Microsystems, California, United States; JavaTM SE Development Kit 6):

Object-oriented programming language, used for the development of all GUIs. Ad-

ditionally the following APIs were used: Java Advanced Imaging API (version 1.1.3)

for image analysis, JDOM (version 1.1) for accessing, manipulating, and outputting

XML data, Java Media Framework API (version 2.1.1) for movie generation and

JMatLink (version 1.3.0) for connecting Java and Matlab.

• Jogl (Sun Microsystems, California, United States; JavaTM Binding for the OpenGLR

API, version 1.1.0): External OpenGL-programming library for the programming

language Java, used for implementation of hardware-supported 3D graphics to model

and render 3D-scenes.

• Matlab (Mathworks, Michigan, United States; version 7.5.0(R2007b)): High-level

technical computing language and interactive environment for algorithm develop-

ment, used for implementation of image segmentation, registration and filter algo-

rithms.

• C (Borland Compiler, California, United States; version 5.5): Imperative program-

ming language, used for the development of application programming interfaces

(WinAPI, 32 & 64 bit).

The entire software project has been developed with Eclipse SDK (Eclipse Foundation,

Inc, Canada, version 3.2.1), an open source development platform.



3 Results

3.1 SBFSEM Data

The SBFSEM data which was mainly used as the basis for software development, was taken

from the blowfly Calliphora vicina. The image stack was taken from the outer chiasm, a

brain region located between two of the five retinotopic neuropils of the fly visual system:

the lamina and the medulla (fig. 3.1A). The outer chiasm contains as the most prominent

structures long visual axons, which project from the lamina to the medulla, so called large

monopolar cells (LMCs, Strausfeld and Douglass 2003, Meinertzhagen and O’Neil 1991).

A detailed description of the specimen preparation and recording technique is summarized

in chapter 2. One feature of the staining method is highlighted in the zoomed inset of

figure 3.1B. Comparing the cytoplasm (F) with the membranes (←), membranes show a

higher backscattered contrast and consequently appear darker. Therefore, a precise border

between cytoplasm and extracellular space exists, that can be used for automated image

segmentation. The volume reconstruction (fig. 3.1C) of 27 from 1000 slices, each 50

nm thick, visualizes the possibilities given by the SBFSEM technique: without any prior

alignment of consecutive images in x-, y- direction the axonal structures of e.g. LMCs can

be followed in z-direction.

In the following sections 3.2 to 3.3.3 the development of the custom-made software will be

described in detail. In general the software contains two stand-alone packages: Neuron2D

(section 3.2) which allows for a precise contour tracing of cell membranes and Neuron3D

(section 3.3) which displays the resulting 3D structure.



18 3. Results

Figure 3.1: Example SBFSEM image stack
(A) Horizontal cross-section through the fly head (modified from Borst and Haag 2002): displayed in red
the retina, in yellow the central brain and in green the fly visual system, which consists of three
successive visual neuropils, the lamina, the medulla and the lobula-complex. The latter is divided into
the lobula and lobula-plate. (B) Sample SBFSEM image, size 2048 x 1768 pixels (equal to 55 x 47 µm2).
The inset shows a magnification of large processes of lamina monopolar cells (average diameter of 3.5
µm). (C) Volume reconstruction (14 x 14 x 27 µm3, slice thickness 50 nm), done by Alexander Borst
(MPI of Neurobiology, Martinsried, Germany) with IDL functions (ITT Visual Information Solutions,
Colorado, USA).

3.2 Software - Neuron2D

The software package Neuron2D provides the possibility to extract contour lines from one

image and to automatically trace those in the following images (z-direction). It includes

an easy-to-operate GUI and provides three main image processing functionalities (image

registration, filtering and segmentation), which are described in section 3.2.1 to 3.2.3. In

addition, an elementary image viewer is integrated, where images are displayed in sequential

order.



3.2 Software - Neuron2D 19

3.2.1 Image Registration

The goal of image registration is to match two or more images in x-, y- direction, so that

identical coordinate points in these images correspond to the same physical region of the

imaged scene. These images are related through 2D coordinate transformation. The next

part describes why image registration is necessary for SBFSEM image stacks and how it

was realized.

3.2.1.1 Tiling Technique of SBFSEM

The total volume that can be reconstructed by SBFSEM is limited in the lateral dimension

by the digital resolution available on commercial SEM instruments. To allow the acquisition

of large volume the surface of the image block is tiled. This means that a block surface of

200 x 200 µm2 is for example divided into 10 x 10 subimage stacks (fig. 3.2).

Figure 3.2: Example tiling SBFSEM
Large volume, e.g. 200 µm2, can be acquired by tiling. Hereby each tiled image stack has a size of 20
µm2 in x-, y-direction.

Neuronal structures are spread over more than one single tiled stack. To achieve recon-

struction of those processes first the single tiled planes must be registered in x-, y-direction.

Therefore it was necessary to implement a software function to reassemble the original sur-

face.



20 3. Results

3.2.1.2 Overview of Image Registration Methods

As image registration is used in different areas, such as remote sensing, medical imaging,

computer vision etc., its application can be divided into four main groups (Brown, 1992):

• Multiview Analysis: Images of the same scene are acquired at different viewpoints.

The aim is to gain a larger 2D view or a 3D representation of the scanned scene.

• Multitemporal Analysis: Images of the same scene are acquired at different time

points and possibly under different conditions. Thus changes in the scene which

appeared between consecutive image acquisitions can be found and evaluated.

• Multimodal Analysis: Images of the same scene are acquired by different sensors.

The integration of the information obtained from different source streams to gain

more complex and detailed scene representation is accomplished with this analysis.

• Scene to model registration: Images of a scene and a model of the scene are registered.

The aim is to localize and compare the acquired image in the scene/model.

The image acquisition with the SBFSEM technique is classified as a multiview analysis.

Because, as above described, images of the same scene are acquired at different viewpoints.

Furthermore standard image registration algorithms are categorized into two main meth-

ods: area based and feature based methods (Zitova and Flusser, 2003). In the following

the original image is called reference image and the image to be mapped onto the reference

image is referred to as the target image.

Area based registration is focused on the global structure of the image (Fonseca and

Manjunath, 1996). Consequently this method is applied if the images do not contain many

prominent details and the distinctive information is provided by graylevels/colors rather

than by local shapes and structure. Therefore one principal limitation is, that reference

and target image must have similar intensity functions (identical or at least statistically

dependent). The second limitation is that only transformations in x-, y-direction and small

rotations between images are located by the algorithm. One prominent representative of the

area-based method is the normalized cross-correlation and its modifications (Pratt, 1974).

The calculated normalized cross-correlation gives a measure of degree of similarity between

the reference and target image. The maximum value indicates the pixel shift in x-, y-

direction between the two images. Disadvantages are that the normalized cross-correlation

is not invariant with respect to imaging scale, rotation, and perspective distortions. Further

approaches of the area-based registration are Fourier methods and mutual information



3.2 Software - Neuron2D 21

methods, where a measurement of statistical dependency between images from different

modalities is calculated (Viola and Wells, 1997). Fourier methods are used when images

were acquired under varying conditions or are corrupted by frequency-dependent noise.

One representative is the phase-correlation method (Kuglin and Hines, 1975), which is

based on the Fourier Shift Theorem (Bracewell, 1965) and was originally proposed for the

registration of translated images. It computes the cross-power spectrum of the sensed and

reference image and looks for the location of the peak in its inverse:

(∆x,∆y) = argmax
(x,y)

{
F−1

{
F (I)F (T )∗

|F (I)F (T )∗|

}}
(3.1)

where I = reference image and T = target image.

Such as in the normalized cross-correlation the peak indicates the pixel shift between

the two images.

Feature based methods are the second main method of image registration algorithms

(Zitova and Flusser, 2003). These are typically applied when the local structural informa-

tion is more significant than the information carried by the image intensities. They allow

registering of images of completely different nature (such as aerial photographs, maps) and

can handle complex between-image distortions. The crucial point is to have discriminative

and robust feature descriptors that are invariant to all assumed differences between the

images. Features are for example significant regions, lines or points, which can be detected

in both images. This kind of registration method is based on algorithms using spatial

relations, invariant descriptors or relaxation approaches (Zitova and Flusser, 2003). By

selecting appropriate features, feature based methods are very robust to image rotations

and zooming.

Tiled image stacks acquired with the SBFSEM technique have the following properties:

predefined arrangement of the image tiles (stored in image file name), user-defined overlap

(2 - 10%) of successive images, possibly brightness changes, small translational shifts in x-,

y-direction between images and no image rotations/zooming. To cover these requirements,

I implemented for the image registration function the above decribed phase-correlation

method, which estimates efficiently the translative movement between two images and is

robust against brightness changes. The phase-correlation method has been chosen as for

feature-based matching methods it is necessary to have significant local structural image

information, which is not given for the small overlapping region of SBFSEM image stacks.

Therefore a member of area-based methods is chosen, where image registration is based



22 3. Results

on image intensity values. Furthermore, the phase-correlation method is robust against

frequency dependent noise and non-uniform, time varying illumination disturbances. As

one of the advantages of SBFSEM is, that the lateral position jitter is less than 10 nm,

only small translational shifts between subimage stacks are expected and those can be

calculated with the used phase-correlation method.

3.2.1.3 Implementation - Image Registration

The implementation of the phase-correlation algorithm was based on formula 3.1. The

predefined arrangement of the image tiles and the user-defined overlap of successive images

allows calculating the image alignment between two images only on a small extract of the

images. In detail images are considered as matrices and the registration of the images

starts at the top-left tile and images are added row by row to the complete plane. For the

alignment calculation of the top-left tile with the following tile in the row only the last/first

columns of the matrices, depending on the overlap, are considered. For example tiles with

a matrix size of 2048 columns to 1768 rows are cropped by an overlap of 2 · 2% to a matrix

size of 80 columns to 1768 rows, where for the top-left tile the last 80 columns and for the

following tile of the row the first 80 columns are considered. Consequently for the image

registration of multiple subimage stacks, such as 10 x 10 subimage stacks, an acceleration

of the computational speed was achieved. An overview of the calculation process is given

in the algorithm 3.1, written in pseudocode.

The algorithm was implemented in Matlab and the corresponding GUI in Java. The GUI

offers the possibility to select image tiles, specify the overlap (in %) of successive images

and to define further parameters, such as the arrangment of tiles in rows and columns.

3.2.1.4 Results - Image Registration

The image registration was tested with different numbers and arrangements of image tiles

as well as varying image brightness. Even though successive images had considerable

brightness changes in the overlapping region, the images were aligned correctly.

In figure 3.3 one example of the image registration function is displayed. The block

surface was divided into 4 x 4 images, each with a size of 512 x 442 pixels and 2% overlap.

Figure 3.3B shows a magnification of the red outlined images in figure 3.3A. In the mag-

nification the correctness and accuracy of the implemented phase-correlation algorithm is

displayed. For the calculation of the image alignment only the blue outlined overlap region

is considered.



3.2 Software - Neuron2D 23

Algorithm 3.1: Image Registration (uses phase-correlation algorithm)

Input: imageArray=selected image tiles, ov=overlap in %
Output: outImg=registered image

begin

imgA=first element of imageArray;
cropSize=two-times (imagesize times ov);

for x=2 to size of imageArray do

imgB=image at position x of imageArray;

Images are cropped depending on their position to each other in the image
mosaic - left, right, upper or lower image boundary:
imgACrop=crop image imgA to cropSize;
imgBCrop=crop image imgB to cropSize;

Calculate phase-correlation between cropped images:
peak=maximum of phase-correlation(imgACrop, imgBCrop);

imgA=translate(defined by peak) and add image imgB, without overlapping
region, to image imgA;

end

outImg=imgA;
return outImg;

end

At the moment, intensity adjustment between image edge pixels (image blending) is only

provided for borders of the finally aligned image.

So far the image registration function of the software Neuron2D provides a robust and

accurate solution for the alignment of image tiles. The existing test data volume had only

small translational shifts and no projective distortion. As these problems might occur in

following SBFSEM image stacks, it might be useful to extend the image registration func-

tion, in the future, with the implementation of the scale-invariant feature transform (SIFT)

algorithm (Lowe, 1999). This approach transforms an image into a large collection of lo-

cal feature vectors, each of which is invariant to image translation, scaling, and rotation.

Unlike previous local feature approaches, the SIFT algorithm is invariant to illumination

changes and is not sensitive to projective distortion.



24 3. Results

Figure 3.3: Results image registration
(A) 4 x 4 Artificial image tiling, image size of 512 x 442 pixels and an overlap of 2%. (B) Magnification
of the red bordered images. Only the blue bordered image sections are used for the image registration
calculation.

3.2.2 Image Preprocessing

As the main aim of the software package is to segment and finally extract contour line

information from SBFSEM image stacks, the signal-to-noise ratio must be enhanced. Con-

sequently patterns (e.g. edges or membranes) are clearly identifiable in contrast to the

back- foreground. The main function of the image preprocessing step is therefore the us-

age of selected image filtering algorithms. The image contrast of SBFSEM image stacks

depends mainly on the staining procedure and the recording conditions. Hence different

image filtering algorithms were implemented (see section 3.2.2.2) to provide the user with

the opportunity to choose the most efficient (time vs. quality) filtering method for each

image stack.

3.2.2.1 Overview of Image Filtering Algorithms

Image filtering algorithms can be divided into the following common filter techniques (Gon-

zalez and Woods, 2002):



3.2 Software - Neuron2D 25

• Low-pass filter, low frequencies are passed.

• High-pass filter, high frequencies are passed.

• Band-pass filter, a limited range of frequencies are passed.

• Band-reject filter, all frequencies except a limited range are passed.

• All-pass filter, all frequencies are passed, but the phase relationship among them is

altered.

• Notch filter is a specific type of band-reject filter that acts on a particularly narrow

range of frequencies.

Furthermore, image filtering consists of two main classes: linear and nonlinear filtering.

Linear filtering, convolution, is an operation where the same filter mask is applied to

each pixel of the image (Gonzalez and Woods, 2002). Consequently the calculation of

the filter process is fast. However, during image blurring patterns, like membranes, are

reduced. This can be a major drawback to image quality. The simplest type of linear

filters is the mean filter. The idea is to replace each pixel value in an image with the

average value of its neighbors, including itself. This has the effect of eliminating pixel

values which are unrepresentative of their surroundings, but as a consequence edges are

smoothed. The most prominent representative of linear filters, especially the low-pass

filters, is the isotropic Gaussian filter. The Gaussian filter uses a normal distribution for

calculating the transformation to be applied to each pixel in the image. The equation of

the Gaussian distribution in N dimensions is:

G(r) =
1

(2πσ2)
N
2

e
−r2
(2σ2)

where r = radial variable and σ = filter width.

(3.2)

When applied in two dimensions, N = 2 and r2 = x2 + y2, this formula produces a

surface whose contours are concentric circles with a Gaussian distribution from the center

point. Values from this distribution are used to build the filter kernel g(x, y) which is

applied to the original image I(x, y):

C(x, y) = g(x, y) ∗ I(x, y) (3.3)



26 3. Results

Using the Gaussian distribution as filter kernel, the ‘weighted average’ of each pixel’s

neighborhood is weighted towards the value of the central pixels. Therefore boundaries

and edges are better preserved, than using other, more uniform linear filters such as the

above described mean filter.

Nonlinear image filters are the second main class of filter algorithms. Hereby the filtering

process depends on local properties of image patterns, e.g. edges. Thus edges are preserved,

but the filtering is time-consuming (Gonzalez and Woods, 2002). One member of this group

is the median filter (Yin et al., 1996), which is an extension of the previously described mean

filter. It considers each pixel in the image in turn and looks at its nearby neighbors to decide

whether or not it is representative of its surroundings. Instead of simply replacing the pixel

value with the average of neighboring pixel values, it replaces it with the median of those

values. The median is calculated by first sorting all the pixel values from the surrounding

neighborhood into numerical order and then replacing the pixel being considered with the

middle pixel value. By calculating the median value of a neighborhood rather than the

mean value, the median filter has two main advantages over the mean filter:

• The median is a more robust average than the mean and so a single very unrepre-

sentative pixel in a neighborhood will not affect the median value significantly.

• Since the median value must actually be the value of one of the pixels in the neigh-

borhood, the median filter does not create new unrealistic pixel values when the filter

straddles an edge. For this reason the median filter is much better at preserving sharp

edges than the mean filter.

An alternative nonlinear filtering process is the nonlinear diffusion filter. This technique,

based on the use of partial differential equations, has been extensively studied since the

early work of Perona and Malik (Perona and Malik, 1990). It is a noise-removing yet

edge preserving filtering technique which, at each location, sets the degree of filtering in

dependence to an estimate of the intensity-gradient at that location. Thereby strong edges

are preserved but regions that do not have strong edges are smoothed substantially. 2D

nonlinear diffusion filtering is based on the following formula, where I(x,y,t) is the image

at time t:

d

dt
I(x, y, t) =

d

dx

[
c(x, y, t) · d

dx
I(x, y, t)

]
+

d

dy

[
c(x, y, t) · d

dy
I(x, y, t)

]
(3.4)

where c(x,y,t) is the diffusivity function.



3.2 Software - Neuron2D 27

For nonlinear diffusion filters the diffusivity function is image dependent. The algorithm

of Perona and Malik (Perona and Malik, 1990) uses a diffusivity function c(x, y, t) that is

based on the derivative of the image at time t. Consequently the diffusion near the edges

in the image is controlled. The result is a diffusion process that encourages intraregion

smoothing while inhibiting interregion smoothing. The extension of formula 3.4 to the

third dimension is demonstrated in the following formula, where I(x,y,z,t) is the image at

time t:

d

dt
I(x, y, z, t) =

d

dx

[
c(x, y, z, t) · d

dx
I(x, y, z, t)

]
+

d

dy

[
c(x, y, z, t) · d

dy
I(x, y, z, t)

]
+

d

dz

[
c(x, y, z, t) · d

dz
I(x, y, z, t)

]
(3.5)

where c(x,y,t) is the diffusivity function.

3.2.2.2 Implementation - Image Preprocessing

The implementation of the image preprocessing function is divided into two steps. First,

intensity values within each image are normalized to have the same median and inter-

quartile range. Next, each image is spatially filtered. For the filtering the program gives the

user the choice between Gaussian broadening and nonlinear diffusion (Perona and Malik,

1990), both implemented in 2D and 3D. For the implementation of the nonlinear diffusion

filter a publicly available Matlab filtering toolbox (D’Almeida, 2000) was used. The two

implemented filter algorithms were chosen, because the user has now the possibility to

select the most efficient filtering techniques, depending on the contrast of the image stack.

High-contrasted image stacks are thus filtered with the fast, smoothing Gaussian filter

(2D or 3D). Images with less contrasted contour lines are filtered with the time-intensive,

edge preserving nonlinear diffusion filter (2D or 3D). The reason for the additional 3D

implementation of both algorithms is based on the SBFSEM data. Considering image

stacks as volume data, filtering including the third dimension leads to higher noise reduction

and a better preservation of edges. The GUI allows the setting of user-specified parameters,

e.g. median value or filter size, for each filtering technique.

As a final preprocessing step the cross-correlation between any two consecutive images

is calculated. This allows the detection and elimination of corrupted images, which can

result, for example, when debris has gotten onto the block face.



28 3. Results

3.2.2.3 Results - Image Preprocessing

The quality of the image preprocessing step mainly depends on the original image con-

trast. In figure 3.4 example results of the image preprocessing function are displayed. In

both charts the first illustration represents the normalized, unfiltered image. Figure 3.4A

allows a comparison between the normalized image and 2D/3D Gaussian filtered images.

As previously described a Gaussian filter smooths the image linearly and therefore edges

are not well preserved. The inset highlights this disadvantage: contour lines with a strong

contrast are preserved, but those with a weak contrast disappear in the filtered image.

Including the third dimension the result of the Gaussian filter is improved as weakly con-

trasted edges are better preserved against smoothing. Regarding the nonlinear diffusion

filtered images there is almost no difference between the 2D and 3D version, as the origi-

nal images were already highly contrasted. However, in contrast to the Gaussian filtered

images edges, independent from the original contrast, are not smoothed and consequently

are clearly distinguishable from other parts of the image. Comparing the calculation time

2D nonlinear diffusion filtering takes about twice as long as 2D Gaussian filtering.

Figure 3.4: Example image preprocessing
(A) Comparison of the normalized, unfiltered image (median 150, spread 80) with a Gaussian 2D (σ = 1
pixel, window size n = 3 x 3) and 3D (σ = 1 pixel, window size n = 3 x 3 x 3) filtered image. (B)
Comparison of the normalized, unfiltered image (median 150, spread 80) with a NLDF 2D and 3D (cube
size: 8 images) filtered image.



3.2 Software - Neuron2D 29

As the loss of contour lines leads to problems in the following membrane structure de-

tection, it is recommended to choose for each image stack independently the most efficient,

implemented filtering technique.

Finally the performance of filters is sensitive to the choice of user-specified parameters.

Therefore, it is advisable to optimize parameters on, or even learn the filter parameters

from manually labeled images (Vollgraf et al., 2004). The contrast parameter λ and the

speed of the diffusivity m are example parameters of the nonlinear diffusion filter which

could be optimized further.

3.2.3 Image Segmentation

Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.)

in images and to finally extract a set of contours (Shapiro and Stockman, 2001). Practical

applications of image segmentation are face and fingerprint recognition as well as medical

imaging (computer-guided surgery, study of anatomical structure etc.). Several general-

purpose algorithms and techniques have been developed for image segmentation. Since

there is no general solution, these techniques often must be combined with domain knowl-

edge in order to effectively solve an image segmentation problem. Established techniques

are for example (Shapiro and Stockman, 2001):

• Clustering Methods

• Histogram Based Methods

• Edge Detection Methods

• Region Growing Methods

• Level Set Methods

• Neural Networks Segmentation

The implementation of the Neuron2D software function ”image segmentation” is divided

into two approaches: a contour propagation (section 3.2.3.1) and an edge detection (section

3.2.3.2) method. Such as in the preprocessing step the user must choose, depending on

the image gray value distribution, the most promising algorithm. Here, two different gray

level value distributions, induced by the used image staining method, are considered. On

the one hand images can be divided into fore- and background regions depending on the



30 3. Results

gray value. For these stacks foreground regions, especially the cytoplasm of neurons, are

overall brighter than the background and a precisely identifiable border separates fore- and

background regions of the image (fig. 3.5A). On the other hand the gray value distribution

of an image stack can be homogeneous. Hence fore- and background regions are only

separated by an border or edge (fig. 3.5B). For this reason the favored image segmentation

algorithm for image A is the contour propagation (section 3.2.3.1) algorithm and for image

B the edge detection algorithm (section 3.2.3.2).

Figure 3.5: Different gray value distributions of SBFSEM image stacks
(A) Gray values of foreground regions are brighter than background, allowing contour line detection
based on gray value threshold (contour-propagation method). (B) Homogeneous gray value distribution,
consequently no difference between fore- and background regions exists. Segmentation based on edge
detection method.

To allow segmentation of large image stacks, as well as to enable user interaction, im-

ages are segmented sequentially rather than the entire stack at once. I assume that the

objects are continuous across adjacent images — an assumption that can be problematic

for processes that run at an oblique angle to the slicing plane. To ensure continuity, the

information from the pixel-intensities of the current image with that from the segmentation

of the previous image must be combined. Therefore, a prior was used that favors such

segmentations. In other words, the segmentation of one image is propagated into the next.

3.2.3.1 Contour-Propagation Algorithms

For the contour propagation segmentation, algorithms were chosen that do not represent

the boundaries of objects explicitly (e.g. splines) but rather implicitly as the zero-level set

of (usually) a signed distance function φ. I seek to segment the image I : Ω → R, where



3.2 Software - Neuron2D 31

I(x) is the gray-scale value of pixel x, into foreground and background regions. In the

level-set framework (Osher and Fedkiw, 2003; Sethian, 1999), one tries to find a function

φ : Ω → R, such that the set Ω+ = {x : φ(x) > 0} is the foreground, i.e. the set of pixels

that are inside within a boundary, or neuron, and Ω− = {x : φ(x) < 0} is the background.

The contour separating objects and background is given by Γ = {x : φ(x) = 0}. Note that

images with multiple objects can be segmented with a single segmentation function, φ, by

defining objects to be connected components of the foreground regions.

As this embedding is not unique, φ is sometimes constrained to be a signed distance

function (SDF), i.e. such that its absolute value gives the distance to the closest boundary.

However, this does not have to be the case. For example, given a statistical model for the

segmentation, one could interpret φ(x) + t (where t is a scalar offset) to be the log of the

probability that pixel x belongs to the foreground. In this case, φ(x) indicates not only

what region a pixel is assigned to, but also represents a measure of the confidence in the

assignment.

Compared to an explicit representation, an implicit representation has the advantage

that it can easily deal with changes in topology (such as splitting or merging of objects,

fig. 3.6) and can readily be extended to higher dimensions.

Figure 3.6: Splitting of objects
The used region-based approach makes it possible to segment splitting objects without
reparametrization. In this example, the object is split into two constituents, each of which is tracked in
subsequent images. Scalebar: 55 pixels (1.47 µm).

Here the focus is on region-based methods, which do not rely on detecting edges in the

image but exploit differences in the distribution of pixel intensities in fore- and background

regions. In practice, an artificial time variable, t, is often introduced and φt is evolved to

minimize some energy function, E(φ, I), (Cremers et al., 2006).

Algorithms that have been developed for the analysis of images obtained from confocal–

or multi-photon microscopy are often based on the assumption that neuronal structures can



32 3. Results

be modeled as tube-like structures (Koh et al., 2002; Al-Kofahi et al., 2002; Schmitt et al.,

2004) with approximately circular cross-sections. As the processes observed in SBFSEM

data can have shapes very dissimilar to circles, this assumption was not made.

Level-set methods are commonly used for segmentation of three-dimensional objects for

bio-medical applications (Whitaker et al., 2001) as well as in other domains such as syn-

thetic aperture radar (SAR) images (Huang et al., 2005). The implemented algorithms

differ from existing ones in the way that information is propagated from one image to the

next, and in the exact form of the energy-functions used. Furthermore, many algorithms

segment the three-dimensional data-blocks directly and need time-consuming computa-

tions, and are thus not well suited for online user interaction. This approach is related to

the one of Jurrus et al. (2006) who used a propagation scheme based on Kalman filters

and explicit contours rather than level-sets to represent objects.

Statistical Model

Let In be the image n, and φn the corresponding segmentation that is to be found. Also,

suppose that the previous image is already segmented, such that φn−1 is known. The aim

is to find the most probable segmentation, φn, given In and φn−1 or, in mathematical terms,

such that P (φn|In, φn−1) is maximal (Cremers et al., 2006). By Bayes’ Rule, I obtain

P (φn|In, φn−1) ∝ P (In|φn, φn−1)P (φn|φn−1). (3.6)

P (φn|φn−1) can be interpreted as a prior on the possible segmentations φn, and can

be used to ensure continuity of objects between adjacent images. This helps tracing of

structures through multiple images. In addition, other priors can be used to favor smooth

contours, or to incorporate prior knowledge about the likely shapes of segmented objects.

Ideally, these priors would be learned from manually labeled images, but for the lack of an

extensive training set, the functional forms for the prior distributions were chosen.

For simplicity, I assume that image In is independent of the segmentation of the previous

image, φn−1, given the actual segmentation, φn, i.e. P (In|φn) = P (In|φn, φn−1). For a given

(signed) distance, d, P (In(x)|φn(x) = d) gives the probability distribution for the intensities

of all pixels that are on the outside (or inside, depending on the sign of φ(x)), and have

a distance d to the closest boundary. For convenience, I will from now on write φ instead

of φn to denote the segmentation function of the current image, n. The term φ0 is used

instead of φn−1 to denote the segmentation function of the previous image. Maximizing



3.2 Software - Neuron2D 33

the posterior probability, P (φ|I), is equivalent to minimizing its negative logarithm, which

leads to the energy function

E(φ|I) = − log(P (I|φ))− log(P (φ|φ0)) = EI + Eπ. (3.7)

The total energy is written as a sum of an image-dependent part EI and a prior-

dependent part Eπ. In the following, two possible forms of the probability distributions,

P (I|φ) and P (φ|φ0) are specified in detail.

Simple Segmentation Algorithm

A normal distribution is assumed for the pixel-intensities I(x) with mean αφ(x) − β

and variance σ2, i.e. on average the intensity of pixels is linearly related to their signed

distance to the boundary. An additional assumption is that the difference of the signed

distance functions of two adjacent images is normally distributed. As mentioned above, this

favors segmentations that are similar to the segmentation of the previous images, with the

aim of improving the tracking of structures through multiple images. The corresponding

probability distributions are:

P (I|φ) ∝ exp

(
−
∫

Ω

(
I − αφ− β

2σ

)2

dx

)
(3.8)

P (φ|φ0) ∝ exp

(
‖φ− φ0

2η
‖2

)
= exp

(
−
∫

Ω

(
φ(x)− φ0(x)

2η

)2

dx

)
. (3.9)

This leads to an energy function of the form:

E(φ|I) =

∫
Ω

(
I − αφ− β

σ

)2

+

∫
Ω

(
φ− φ0

η

)2

, (3.10)

which attains its minimum for

φ =
αη

ηα2 + σ
I +

σ

ηα2 + σ
φ0 −

αβη

ηα2 + σ
(3.11)

Therefore, the function φ, which characterizes the current segmentation, is merely a

linear combination of the intensity values of the current image I, the previous segmentation

function φ0, and a scalar offset (fig. 3.7).



34 3. Results

Figure 3.7: Schematic illustration of the algorithm
The segmentation function φ of the image (red) is the weighted sum of the intensity value of that image
(gray) and a term that depends on the segmentation of the previous image (blue).

Although this model might be too restrictive to provide a good fit to the actual image,

using such a simple form has two advantages: First, the minimum of the energy func-

tion, minE(φ|I), has a simple closed-form solution, which permits rapid calculation of the

boundary. Second, the parameters α, β, σ and η can be interpreted and adjusted while

the effect on the segmentation is visually judged. The parameter α re-scales the distances

relative to intensities and β is an offset: If an intensity value of a pixel is larger than β,

then (ignoring the prior) it is more likely that the pixel belongs to an object than to the

background. The parameters σ and η control the relative weight of the image and the

prior-dependent contribution. Discrepancies between two adjacent segmentations are only

penalized if they exceed a threshold, τ , as small variations between adjacent images are to

be considered as normal. Thus, the term (φ(x)− φ0(x))2 was replaced by |φ(x)− φ0(x)|2τ ,
where

|φ(x)− φ0(x)|2τ =

(|φ(x)− φ0(x)| − τ)2 for |φ(x)− φ0(x)| ≥ τ

0 else
(3.12)

Then the form of the solution is as before, just with φ0 replaced by |φ0|τsign(φ0).



3.2 Software - Neuron2D 35

Alternative Segmentation Algorithm

The algorithm described above does not attempt to achieve segmentations with smooth

boundaries. In addition, it makes a rather restrictive assumption about the intensity

distribution of pixels in the image. Therefore a second segmentation algorithm with a

different energy function that also contains a term favoring smooth segmentations was

implemented.

This algorithm assumes that the pixel-intensity distributions of the background and

foreground, P− and P+, are different but might overlap. Furthermore, I assume that the

probability that a given pixel has a certain intensity only depends on the region that the

pixel belongs to, but not on its distance to the closest boundary. Therefore P+ and P− must

be estimated from manually segmented images. One could use the histograms of intensities

in these images directly (Cremers and Rousson, 2006), but I chose to approximate them

by Gaussians, with specific means and variances, µ± and σ2
±. This has the advantage of

specifying the distribution using a small number of parameters, which can be manually

optimized by the user. I then get

EI =

∫
Ω+

1

2
log(σ+)(I(x)− µ+)2dx+

∫
Ω−

1

2
log(σ−)(I(x)− µ−)2dx

= c+

∫
Ω+

(I(x)− µ+)2dx+ c−

∫
Ω−

(I(x)− µ−)2dx,

(3.13)

where c± = 1
2

log(σ±). The cost function EI is low if the pixels inside the objects are

close to µ+, and the pixels outside are close to µ−. The prior-dependent energy Eπ is a

sum of the two terms Econt and Esmooth:

Eπ = Econt + Esmooth . (3.14)

The first term, Econt, ensures that segmentations of adjacent images are similar, and is

identical to the corresponding term in the simple algorithm.

Econt = λcont

∫
Ω

|φ(x)− φ0(x)|2τdx (3.15)

The second term Esmooth penalizes the length of the boundary between foreground and



36 3. Results

background, thus favoring smooth boundaries.

Esmooth = λsmooth

∫
Ω

δ(φ(x))|∇φ|dx (3.16)

The choice of the parameters λcont and λsmooth determines the relative importance of the

two energy terms. In particular, the smoothness term can be switched off by choosing the

weight λsmooth to be 0. If λcont = 0, this model is similar to the (piecewise continuous)

version of the Mumford-Shah function (Mumford and Shah, 1989; Chan and Vese, 2001).

In this model, the means, µ±, are known a priori and do not have to be optimized further.

I am primarily interested in the regions where the actual segmentation φ is close to 0 rather

than in calculating its exact value for all x. Therefore, the following constraint was added

for all pixels x:

|φ(x)− φ0(x)| < τ̂, (3.17)

where τ̂ is some positive scalar value. This constraint is computationally convenient, as it

allows to restrict all calculations to the region of the image where |φ0| < τ̂ . The parameter

τ̂ is chosen such that it exceeds the largest difference expected between successive images.

A (local) minimum of the energy function E can be found by an iterative procedure:

Starting with an initial guess, φ(0), the segmentation function φ is repeatedly updated via

the evolution equation:

φ(k+1) = φ(k) + tstep
dφ

dt
, (3.18)

where tstep is the step-size. The update-direction dφ/dt can be found by calculating the

gradient of the function E with respect to the segmentation function φ (Chan and Vese,

2001):
∂E

∂φ
=
dφ

dt
= −δ(φ)(log(P+(I))− log(P−(I)))− ∂

∂φ
log(P (φ|φ0)). (3.19)

With the particular distributions P± and the energy function E = EI + Econt + Esmooth

I obtain
dφ

dt
= δ(φ)(c+(I − µ+)2 − c−(I − µ−)2)

+2λcont|φ− φ0|τsign(φ− φ0)

+λsmoothδ(φ)∇.( ∇φ
‖∇φ‖

).

(3.20)

The gradient dφ/dt is, except for the last two terms in the sum, identical to the one used

in Chan and Vese (2001). I employ the commonly used smooth approximations, Hε and



3.2 Software - Neuron2D 37

δε, for the Heaviside– and δ-functions:

Hε(s) =
1

2
(1 +

2

π
tan−1(

s

ε
)) (3.21)

δε(s) =
d

ds
Hε(s) =

ε

π(ε2 + s2)
, (3.22)

where ε is a positive parameter. The algorithm is initialized with the segmentation

function of the previous image, i.e. by φ(0) = φo. Since this initial value is usually

reasonably close to the desired solution, the algorithm converges very quickly. In addition,

only φ has to be updated close to the boundary Γ, and not on the whole domain Ω.

Even if the segmentation φ is initialized to be a signed distance function, this property is

not preserved by the update step. Therefore, φ must be reinitialized every few iterations to

ensure stability of the algorithm. Reinitialization creates a SDF function that is consistent

with the given segmentation (Osher and Fedkiw, 2003; Sethian, 1999).

The algorithm described in this section is more flexible than the simple one, but also

computationally more demanding, as each iteration takes as long as one run of the simple

algorithm.

Segmentation of the First Image

For the segmentation of the very first image in a stack, it is not possible to rely on

information from the preceding slice, so a slightly different strategy must be used. To

avoid the time consuming manual retracing of contour lines, the first image is segmented

with one of the two algorithms above (ignoring the term Eπ), and objects are defined to

be the connected components of foreground regions Ω+, which I call o1 . . . on. For each

object oi, the correspondence to a neuronal process must be determined. Three coefficients

for each object (mean intensity, area, and “roundness”, i.e. area divided by square of

circumference) are extracted. After that a classification in this three-dimensional space

with logistic regression, using the labeled data as a training set, is performed (Hosmer and

Lemeshow, 2000). The weighted sum of these three coefficients is represented by the color

of the contour line: a continuous color scale is used from black for very small values to red

for very high values of the weighted sum. Finally the GUI allows the adjustment of the

weights of the regression via sliding-bars. With this procedure a reasonable initialization

is obtained quickly, which can subsequently be fine-tuned and further corrected manually.

A manual correction is in average only necessary for 10% of all detected regions. Figure



38 3. Results

3.8 displays a GUI screenshot of the segmentation of the first image.

Figure 3.8: Segmentation of the first image (screen shots)
The overview (A) shows the image and the parameter adjustment GUI. In the zoomed image (B) it can
be seen how even small structures can be detected. For each object of the first segmented image the mean
intensity, area, and “roundness”(area divided by square of circumference) are extracted. The weighted
sum of these three coefficients is represented by the color of the contour line: A continuous color scale is
used from black for very small values to red for very high values of the weighted sum. Scalebars 1 µm.

3.2.3.2 Canny Segmentation Algorithm

The algorithms described in section 3.2.3.1 are based on different gray value distributions

between fore- and background regions. Therefore, for the segmentation of images with a

homogeneous intensity distribution. Hence fore- and background regions are only separated

by an border or edge (fig. 3.5B), a different algorithm needed to be implemented.

The basic idea is to use the Canny edge detection operator (Canny, 1986) to detect a

wide range of edges in the images. Similar to the previous contour propagation algorithms

a distance function was used to favor segmentations that are similar to the segmentation of

the previous images, with the aim of improving the tracking of structures through multiple

images. Thus the segmentation of the previous image φn−1 again was used as a prior for the

actual segmentation, φn, of image In. The difference is that instead of a signed an unsigned

distance function was used, as no difference between in- and outside regions exists. The



3.2 Software - Neuron2D 39

distance function d calculates the distance of all pixels to the closest boundary. Therefore,

the function φn is a linear combination of the intensity values of the currently segmented

image In and the previous segmentation function φn−1. Discrepancies between two adjacent

segmentations are only penalized if they exceed a threshold τ , as small variations between

adjacent images are to be considered as normal.

|φn(x)− φn−1(x)|2τ =

(|φn(x)− φn−1(x)| − τ)2 for |φn(x)− φn−1(x)| ≥ τ

0 else
(3.23)

The segmentation of image In is based on the Canny edge detection algorithm (Canny,

1986). The following steps are performed:

1. The gradient of In(x, y) is computed by convolving In(x, y) with the first derivative

of the 2D Gaussian distribution G(x, y) (formula 3.2):

∇xf(x, y) =

(
In ∗

∂G

∂x

)
(x, y), ∇yf(x, y) =

(
In ∗

∂G

∂y

)
(x, y). (3.24)

M(x, y) =
√

(∇xf(x, y))2 + (∇yf(x, y))2 (3.25)

and

θ(x, y) = arctan

(
∇yf(x, y)

∇xf(x, y)

)
(3.26)

2. Definition of the threshold M :

MT (x, y) =

M(x, y) if M(x, y) > T

0 otherwise
(3.27)

where T is chosen such that all edge elements are kept while most of the noise is

suppressed. Non-maxima pixels in MT (x, y) are suppressed to thin the edge ridges.

Therefore it is calculated if each non-zero element of MT (x, y) is greater than its

two neighbors along the gradient direction θ(x, y). If that is true MT (x, y) is kept

unchanged, otherwise, it is set to 0.

3. The previous result is thresholded by two different thresholds τ1 and τ2, where τ1 < τ2,

to obtain two binary images T1 and T2. Comparing T1 and T2 it is seen that T2 has



40 3. Results

less noise and fewer false edges but larger gaps between edge segments.

4. Edge segments in T2 are linked to form continuous edges. Each segment is traced in

T2 to its end and for its neighbors it is searched in T1. The located edge segments in

T1 are used to bridge the gap until reaching another edge segment in T2.

An overview of the segmentation process is given in the following algorithm 3.2, written

in pseudocode:

Algorithm 3.2: Canny Segmentation Algorithm

Input: images=previous and actual image for the segmentation,
thresholdCanny=parameter for the Canny filter function

Output: outImg=segmented image

begin

In−1=previous segmented image;
imgRegionArray=store all segments of In−1;
In=actual image;
imgCanny=calculate canny edge function for In with thresholdCanny;

for x=1 to size of imgRegionArray do

imgDist=calculate distance function for segment x of imgRegionArray in
In−1;

imgCanny=add imgDist to imgCanny;

Perform boundaries calculation:
imgBound=define boundaries of imgCanny;

Test if new boundary is complete:
if imgBound not closed then
(Complete imgBound with corresponding line segment from region x of
imgRegionArray)

outImg=add imgBound to outImg;

end

return outImg;

end



3.2 Software - Neuron2D 41

Segmentation of the First Image

Such as in the contour propagation algorithms for the segmentation of the very first

image in a stack, it is not possible to rely on information from the preceding slice, so a

different strategy must be used. In that case the regions, which should be segmented,

must be marked manually by the user and these are traced and segmented in the following

slices. The manual selection process is based on B-spline curves and described in detail in

section 3.2.3.3. The following figure 3.9 gives a short overview of the implemented Canny

Segmentation algorithm and its correctness:

Figure 3.9: Example Canny segmentation algorithm
1. First image In−1. 2. Manual selected region by the user, displayed in red. 3. Next image, In, filtered
with the Canny algorithm. 4. Unsigned distance function of In−1 added to filtered image In. 5. Final
segmented region of image In is displayed in green, if the resulting boundary is not closed the
corresponding line segment, displayed in red, is copied from the previous segmentation of image In−1.

3.2.3.3 Manual Interaction

During image segmentation it is possible to insert new regions, that are tracked in the

following images in addition to the previously selected ones. The user can insert points

along the desired contour using mouse-clicks. To calculate the actual contours, these

control points are interpolated using B-spline curves (Schoenberg, 1946)(de Boor, 1978):

The B-Spline curve C(u), u ∈ [τp, τn−p+1] with order p, is defined by control points



42 3. Results

Pi(i = 1, ..., n − p) and B-Spline basis functions Ni,p,τ (i = 1, ..., n− p) with breakpoints

τ = (τ1, ..., τn) , τi ≤ τi+1.

C (u) =

n−p∑
i=1

PiNi,p,τ (u) (3.28)

TheB-Spline basis functions are defined by the recursion formula of de Boor/Cox/Mansfield

(de Boor, 1978):

Ni,1,τ (u) =


1 : u ∈ [τi, τi+1]

0 : else

(3.29)

and

Ni,p+1,τ (u) =
u− τi
τi+p − τi

Ni,p,τ (u) +
τi+p+1 − u
τi+p+1 − τi+1

Ni+1,p,τ (u) (3.30)

The behavior of B-spline curves is local in the sense that changes in one point only

changes the shape of the curve between nearby control points. Therefore, manipulating

the contour line by adding, deleting or dragging control points changes only the local

behavior of the curve and not the global behavior, which allows for fast re-computation of

the curve. I used functions from Matlab’s Spline Toolbox.

To correct for mistakes in the segmentation process, contour lines can be adjusted man-

ually. In this case, the contour of a selected region was approximated by a B-spline curve,

which can then be manipulated by moving the control points. All manual corrections in

one image are taken into account for the segmentation of subsequent images.

Using B-spline curves for the implementation of the manual interaction instead of snakes

allows segmenting of regions with destructed contour lines or image distortions. Snakes,

or interactive deformable contours, are a model-based feature localization and tracking

technique (Kass et al., 1988). Their use for contour-based segmentation of e.g. medical

images was proposed e.g. in Carlbom et al. (1995). Snakes differ substantially from

manual contouring approaches. Snakes are dynamic models made of simulated elastic

material. They are attracted to image boundaries through forces. This improves both

the speed and the accuracy of the segmentation and contouring. As mentioned above the

manual interaction is mainly necessary for the segmentation of regions that are not clearly

identifiable (destructed contour lines or false fusion of regions) and therefore B-spline curves

allow a more promising user interactive manual correction as snakes.



3.2 Software - Neuron2D 43

3.2.3.4 Quantification of Segmentation Algorithms

The performance of the described algorithms depends on the properties of the original

image stack, e.g. the image contrast and number of corrupted images. To quantify the

performance I used the described image stack from the Calliphora vicina outer chiasm

(see chapter 2 and section 3.1). As for this image stack objects are separated from the

background by their pixel intensities the implemented contour propagation algorithms

(section 3.2.3.1) were used. An additional assumption was that the objects do not vary too

strongly between slices. This assumption is justifiable as the average slice thickness is in a

range of 30 nm. Consequently consecutive images have minor variations. The possibility

to reconstruct a volume of SBFSEM image stacks (fig. 3.1C) allows analyzing of SBFSEM

data in all dimensions. Therefore regions lying vertical to the slicing plane can be analyzed

in a second segmentation step, where images are not segmented in z-direction but e.g. in

x-direction.

I filtered the image stack with the Gaussian filter, standard deviation σ = 1 pixel (section

3.2.2) and extracted an image cube of 512× 512× 250 pixels in x-, y- and z-direction. The

extracted image cube covers a tissue volume of 14 × 14 × 13 µm3. To demonstrate the

performance of the algorithm for processes with different properties, I selected regions with

area size ranging from 55 up to 7800 pixels in the initial slice, and different “roundness

factors” (see fig. 3.10). I analyzed this data set with both methods described in chapter

3.2.3.1:

• Using the simple algorithm (3.2.3.1), it took, on average, 3 seconds to segment one

image. User interaction consisted of eye-inspection of the segmentation and, if neces-

sary, manual correction. In the image stack displayed above, the user had to correct

2% of 2000 regions manually.

• Alternative algorithm (3.2.3.1): Average processing time per image amounted to 5

seconds plus user interaction. Out of 2140 regions, 1.5% regions had to be corrected

manually.

For both segmentation methods the quality of the segmentation, and hence the need

for user interaction mainly depends on the contrast difference between the object and the

surrounding background as well as the complexity of the contour lines. For example, region

15 (fig. 3.10), which has a high contrast and does not deviate from one image to the next,

could be segmented and traced through all slices without any user interaction. Regions 3

and 7 in figure 3.10 have complicated contour lines which are very variable between images



44 3. Results

Figure 3.10: Quantification of performance
Fifteen regions (labeled in red) were segmented for the performance test. The number of pixels per
region ranges from 55 pixels (region 9, labeled in green) up to 7800 pixels (region 15, labeled in green).
The roundness factors range from 0.3217 (region 12, labeled in green) up to 0.9069 (region 9, labeled in
green). Scalebar: 20 pixels (540 nm).

(fig. 3.11). Much more user interaction was required for these two objects than for others,

but they could be reconstructed using a combination of algorithmic user-interaction and

manual corrections (see fig. 3.19 for the three-dimensional reconstruction and fig. 3.11 and

fig. 3.6).

Independently of the method used, the total time taken per image (algorithmic seg-

mentation plus user interaction) was about 15 seconds for 15 selected regions. A purely

manual tracing of the selected regions (fig. 3.10) takes about 12 minutes per image. The

user had to trace the boundaries for each region manually by marking corner-points with

mouse-clicks. I, thus, have a speed-up by a factor of about 50 by algorithmic over manual

segmentation.



3.2 Software - Neuron2D 45

Figure 3.11: Typical errors made by the algorithm
Two typical situations in which the algorithm failed to give a satisfactory segmentation, and had to be
corrected manually. Left side: original image section, right side: segmentation results, labeled in red.
Scalebar: 28 pixels (750 nm). (A) Image 120: The structure surrounding the black dot (yellow arrow)
has a ragged contour, and is not successfully segmented by the algorithm, which splits it up into two
regions. (B) Image 129: The object at the lower left of the region I want to segment is separated by only
a thin and light membrane (yellow arrow), and thus incorrectly joined to the large region. As before, the
region indicated by the green arrow is separated into two regions.

As so far only few SBFSEM images with a homogeneous gray value distribution exist

(fig . 3.5B), the canny segmentation algorithm (section 3.2.3.2) cannot be quantified in the

same way as the contour propagation algorithms. To test the usability of the algorithm,

I filtered the image stack again with the Gaussian filter, standard deviation σ = 1 pixel

(section 3.2.2) and extracted an image cube of 512×512×30 pixels in x-, y- and z-direction.

The three regions labeled in figure 3.12 were selected to test the canny segmentation.

The canny segmentation is based on detecting edges in the image. Therefore manual

interaction is necessary when contour lines are not clearly identifiable. This might occur

due to brightness changes in the image (fig. 3.13, indicated by the yellow arrow) or ragged

contour lines (fig. 3.13, indicated by the green arrow) e.g. produced from irregular staining

of the membrane, lead to false segmentation results.



46 3. Results

Figure 3.12: Test Canny segmentation
Three regions with a different circumference were selected for the test of the canny segmentation
algorithm. Scalebar: 20 pixels (540 nm).

Figure 3.13: Typical errors made by the Canny segmentation algorithm
The membrane of region 1 (fig. 3.12) is not clearly identifiable due to brightness changes (yellow arrow)
and the algorithm failed. The contour line is destructed by the the black dot (green arrow) and is not
successfully segmented by the algorithm. Scalebar: 20 pixels (810 nm).

Summing up, the implemented segmentation algorithms offer a robust and fast segmen-

tation of SBFSEM image stacks (section 3.3.3) with optional user interaction. The need for

user interaction mainly depends on the quality of the original image contrast. Compared



3.2 Software - Neuron2D 47

to purely manual tracing, processing time is speed-up by a factor of about 50.

3.2.3.5 Data Storage

Segmentation results are stored in an XML (Extensible Markup Language) document,

which facilitates the sharing of structured data across different information systems. In

this case the contour line information is exchanged between the two software packages

Neuron2D and Neuron3D. Key concept of XML is a generic framework for storing any

amount of text or any data whose structure can be represented as a hierarchical structured

tree. The only indispensable syntactical requirement is that the document has exactly one

root element. Additionally tree knots are elements, attributes and comments. The XML

document used for the software packages has the following output structure (fig. 3.14 ).

Furthermore the usage of databases to store XML-based information is possible. There-

fore two different approaches exist. On the one hand native XML databases are used and

XML documents are stored directly. On the other hand the usage of hybrid databases

is common. These are comparable to object relational databases. Those databases re-

ceive XML documents, but store them in tables. Examples for the hybrid solution are the

Microsoft SQL-Server as well as Oracle databases. The general task of a database is to

efficiently govern data and to allow access to several elements. For the SBFSEM data the

integration of a database might be useful, because complete regions of the fly brain are

analyzed and reconstructed in the future. Consequently the efficient storage, exchange and

access of the reconstructed data can be realized and in addition multiuser operations are

provided.



48 3. Results

Figure 3.14: Example XML output file
Root element contains the project name, element ”stack” contains the image size and general
information, element ”slice” represents each segmented image, with the image number and the
corresponding z-coordinate, element ”spline” represents each segmented neuronal structure per image,
attributes are name, parent (important for branchpoints), x-, y-coordinates and spline center.



3.3 Software - Neuron3D 49

3.3 Software - Neuron3D

The software package Neuron3D was developed to visualize neuronal structures in 3D.

The reconstruction is based on the contour line information provided by the XML-files

generated by the software package Neuron2D. It includes an easy-to-operate GUI and

provides rendering techniques such as shading and texture-mapping. Additionally the

reconstructed anatomical data can be exported to 3D visualization programs such as Amira

(Amira, 2006).

3.3.1 Surface Reconstruction

The surface reconstruction in the case of SBFSEM data is based on a given collection of

planar contours representing cross-sections through the neurons. To reconstruct the tri-

angular surface from given contours an algorithm solving this problem has first to decide

which contours of two successive slices should be connected by the surface (branching prob-

lem). Second which vertices of the assigned contours should be connected for the triangular

mesh (correspondence/tiling problem). As the information for the branching problem is

in this case already provided by the image segmentation step of the software Neuron2D

and stored in the XML-files (information about which contours are connected in succes-

sive slices and about existing branching points), only the correspondence problem must be

solved for the surface reconstruction. Used data for the surface reconstruction of SBFSEM

data are only points of contour lines. An alternative might be to also use information from

the extended level-set algorithms used for the image segmentation (section 3.2.3, Osher and

Sethian 1988). However implementing additional segmentation algorithms based on e.g.

neuronal networks the algorithm for the surface reconstruction must be reimplemented.

Therefore the surface reconstruction of SBFSEM data is based on points of contour lines

as this information is always provided by segmentation algorithms.

3.3.1.1 Overview of Surface Reconstruction Algorithms

One of the first solutions to the construction of surfaces from contour data was proposed

by Keppel (Keppel, 1975). In this approach surfaces are constructed from elementary

triangular tiles, each defined between two consecutive points on the same contour and a

single point on an adjacent contour. Constructing this surface is shown to be equivalent to

finding a minimum path in a directed graph. However the method depends on the fact that

there is a one-to-one relationship between contours. A different solution was proposed by



50 3. Results

Boissonnat (Boissonnat, 1988) which is based on a Delaunay triangulation between each

pair of slices. For a d-dimensional Euclidean space E and a set M of N points m1...mN ,

the associated Voronoi diagram is a sequence V (m1)...V (mN) of convex polyhedra covering

E where V (mi) consists of all the points of E that have mi as a nearest point in the set

M . Thus

V (mi) = {P ∈ E;∀j, 1 ≤ j ≤ N, δ(P,Mi) ≤ δ(P,Mj)} , (3.31)

where δ denotes the Euclidean distance.

The geometrical dual of the Voronoi diagram, obtained by linking the points mi whose

Voronoi polyhedra are adjacent across a common face, is called the Delaunay triangulation

of M . With this approach intersection planes between contours are identified and surface

tiles are reconstructed from these intersections. Additionally the triangulation of slices with

multiple contours can be handled. The complexity of the algorithm is O(NLogN + T ),

where T is the number of tetrahedra of the triangulation.

In the last few years also algorithms for the correspondence problem of planar contours

were developed which primarily were used to find an optimal match between two given

protein structures or word sequences. Two main approaches in this research field are the

Longest Common Subsequence approach (LCSS, Hirschberg 1975) and the Dynamic Time

Warping approach (DTW, Myers and Rabiner 1981). The first one is mainly used in

bioinformatics and tries to find a maximum length subsequence of two or more strings.

For the general case of an arbitrary number of input sequences this problem is classified

into the computational complexity theory group of nondeterministic polynomial-time hard

(NP-hard) problems. When the number of sequences is constant, the problem is solvable

in polynomial time by dynamic programming. The second one, Dynamic Time Warping,

is a well known application for automatic speech recognition and the optimization process

is also performed with dynamic programming. In the case of matching points from two

contours DTW matches every point with at least one point of the other contour and in

particular the first and last points of both contours must be matched to each other. The

final matching of two contour lines is defined by the minimum distance between both,

based on a distance function d(x, y).

The surface reconstruction from two consecutive contour lines obtained from SBFSEM

data is not only a simple predefined point to point connection, as contour lines can have

a different number of points, no defined starting or end point and translations in x-, y-

direction are possible. Therefore the reconstruction of the 3D surface is based on the DTW

approach.



3.3 Software - Neuron3D 51

3.3.1.2 Implementation - Surface Reconstruction

The implementation is based on a DTW algorithm for comparison of trajectories described

in Sielhorst et al. (2005). As previously mentioned DTW computes the matching that has

the lowest summed distance concerning a given distance function d(x, y), which can be

recursively defined by:

DTW (A,B) = d(ai, bj)+

min(DTW (Ai−1, Bj−1), DTW (Ai−1, Bj), DTW (Ai, Bj−1)),
(3.32)

where A and B are contour lines with points (a1...ai) and (b1...bj). In detail the following

steps are performed by the algorithm:

1. Calculation and sorting of the distance matrix:

In this step the 3D Euclidean distance between every point of contour line A =

(a1...ai) to every point of contour line B = (b1...bj) is calculated and stored in the

matrix dist(A,B). As start-/endpoints of successive contour lines are not necessarily

aligned, the calculated distance matrix is resorted so that the new starting point is the

minimal distance value of the matrix. One restriction is that both points must have

an equal orientation from the midpoint of the contour line, so that a misalignment

is avoided.

2. Calculation of the DTW function:

The DTW matrix is filled up with the result of DTW (An, Bm) in field(n,m), which

is acquired by the value of dist(An, Bm) and adding the minimum of the left, upper

or upper-left field of the DTW matrix, see formula 3.32.

3. Calculation of optimal matching:

For the optimal path search dynamic programming is used. Starting point is the

lower-right field of the DTW matrix and in the following steps always the points

an, bm are stored as correspondent where the upper, left or upper-left field of the

matrix is the minimum. Since all points are matched, outliers could have a too

intense impact on how points are matched. Therefore in the implemented approach

additional constraints were added. The first constraint considers the matching of

contour lines with a different number of points. If the number of points in A is

bigger than in B, |A| > |B|, the minimum calculation is only based on the upper

and upper-left field of the DTW matrix, where columns are equal to points of B and



52 3. Results

rows are equal to points of A. Hence for the other case, |A| < |B|, only the left and

upper-left field of the DTW matrix, where columns are equal to points of B and rows

to points of A, are considered. Adding this constraint ”double matching” of points

(one point is more than once connected with a point of the other contour line) is

only allowed in the contour line with the smaller amount of points. As in this case

each pixel of a contour line is represented by one point, this assumption leads to a

better triangulation. The second constraint controls the double matching of points

in the contour line with the smaller number of points. Considering the case that

contour line A is smaller than B and the next minimum field of the DTW matrix is

the left one, meaning point an might be double matched, vectors
−−→
anbm and

−−−−→
an+1bm

are additionally calculated. The comparison of the orientation of both vectors and

the knowledge that contour line points are oriented clockwise are used to decide if

double matching the point an is correct, otherwise the upper-left field is chosen.

4. Quantification of warping path:

The calculated warping path must be in the range of length = ||A| − |B||, if not step

3 is recalculated.

These steps are calculated for each pair of successive contour lines, so that finally a

triangulation of the neuronal surface is computed. Generally the time and space complexity

of the DTW algorithm is O(N2). Figure 3.15 displays the DTW calculation between two

contour lines A and B. As |A| > |B| the calculation of the warping path is constrained to

the upper and upper-left field of the matrix. Selected elements for the final warping path

are red bordered and additionally the correct triangulation of these two contour lines is

displayed.



3.3 Software - Neuron3D 53

Figure 3.15: Surface reconstruction
Displaying the DTW calculation between contour line A and B, with |A| > |B|. Red bordered matrix
elements are part of the calculated warping path. Additionally the correct triangulation of these two
contour lines is displayed.

3.3.1.3 Integration of Branches

The above described calculation of the surface triangulation considers only a one-to-one

contour matching. Therefore, for branching contours, an additional step must be inserted.

In the last decade several algorithms were developed for solving the branching problem.

In the following classical branching algorithms are enumerated:

• Parametrization of Contours (Ganapathy and Dennehy, 1978):

The parametrization of contours is a heuristic based on intercontour coherence.

• Contour Decomposition (Ekoule et al., 1991):

The algorithm is based on the decomposition of the contour into elementary convex

subcontours. Then the problem of linking one contour in a slice to several contours in

an adjacent slice is examined. Consequently a new and unique interpolated contour

is generated between the two slices, and the link is created using standard matching

procedures.



54 3. Results

• Contour Branching Using Minimum Spanning Trees (Meyers et al., 1992):

The algorithm handles narrow valleys and branching structures using a minimum

spanning tree (MST, Kruskal 1956) of a contour adjacency graph. The MST of

a weighted graph is a spanning tree whose sum of edge weights is minimal. The

minimum spanning tree describes the cheapest network to connect all of a given set

of vertices.

• Angular Bisector Network (Olivia et al., 1996):

The Angular Bisector Network (ABN) is an approximation of the Voronoi Diagram

between the polygon segments of the original contours. To each edge of the contours

there is one corresponding cell of the ABN that contains the points closest to this

edge. The proximity information is used to identify the cells that can be triangulated

in a straightforward way. Where such a straightforward triangulation is impossible,

an intermediate contour consisting of the border between cells belonging to contours

in different slices is inserted.

• Partial Curve Matching (Barequet et al., 2000):

The basic idea is to partition the root contour into subcontours using shape informa-

tion of branch contours. If a root contour is properly partitioned, the original double

branching problem can be reduced to a single branching problem: single branch-

ing from each subcontour of the root contour to one of the corresponding branch

contours.

As in this case branching contour lines are not overlapping, the implementation is based

on the partial curve matching algorithm. As described above the root contour is parti-

tioned into subcontours using shape information of the branching contours. If the root

contour is properly partitioned, the original multiple branching problem is reduced to a

single branching problem. Figure 3.16 shows an example of double branching. Using the

partitioning line the root contour of the double branching 〈(Cr), (C1, C2)〉 is partitioned

into two parts, and by triangulating the left subcontour to C1 and the right subcontour

to C2 the original branching problem is solved. For the final triangulation the DTW al-

gorithm (section 3.3.1.2) is used as the branching problem has been reduced to a partial,

one-to-one, curve matching.



3.3 Software - Neuron3D 55

Figure 3.16: Branched contours
Using the calculated partitioning line, displayed in red, the root contour Cr is partitioned into two parts
and triangulated with the subcontours C1, C2.

The implementation is based on the following algorithm 3.3, written in pseudocode:

Algorithm 3.3: Multiple Branching

Input: Cr=root contour at level z = k, C1, C2...Cn=n branch contours of Cr at level

z = k + 1

Output: surf=triangulation of Cr with C1, C2...Cn

begin

partLine=calculation of partitioning line between all branch contours

C1, C2...Cn;

Cr1, Cr2...Crn=calculation of intersection points of Cr with partLine and divide

Cr into subcontours;

for x=1 to size of C1, C2...Cn do

Triangulation of Crx with Cx:

dtwCx= calculation of DTW(Crx, Cx);

Add calculated dtwCx to surf:

surf= surf plus dtwCx;

end

return surf;

end

One extension would be to allow the user to re-define branches, where re-define stands

for deleting or adding branchpoints.



56 3. Results

3.3.2 3D Image Editing

In addition to the surface reconstruction several image rendering techniques to animate or

layout the calculated wireframed sketch are provided with the software package Neuron3D.

To place the 3D objects within a scene and also to define the spatial relationship between

objects in that scene standard transformation methods such as rotation, translation and

scaling are implemented. The viewing volume, which determines how an object is projected

onto the screen and which objects are clipped out of the final image is defined by the projec-

tion transformation. OpenGL provides two general classes of projection transformations:

orthographic and perspective projection. The perspective projection is implemented in

Neuron3D, as it creates more realistically looking scenes. Hereby the viewing volume is

a frustum of a pyramid and hence the size of an object depends on the distance to the

viewer. For a better orientation in the scene a coordinate system and a scale bar are

optional displayed.

3.3.2.1 Surface Representation

The representation of the surface is defined by the user. One selectable feature is the final

polygonal rasterization. The following standard polygon modes are implemented:

• Point: Polygon vertices which are the start of a boundary edge are drawn as points.

Point attributes such as size and smoothness control the rasterization of the points.

• Line: Boundary edges of the polygon are drawn as connected line segments. The line

attribute width controls again the rasterization of the lines.

• Fill: The interior of the polygon is filled. This option is predefined in Neuron3D.

Color properties are first randomly assigned to the surface but can be re-defined by the

user in a later step. Additionally texture mapping is provided (Shreiner et al., 2005). In

this process the user has the possibility to choose from a selection of standard textures the

desired one. As texture coordinates are specified at each vertex of a given triangle of the

surface the mapping must account the vertices’ positions in the 3D space. Therefore to

achieve the perspective correction, texture coordinates are not interpolated directly, but



3.3 Software - Neuron3D 57

coordinates are divided by their depth:

uα =
(1− α)u0

z0
+ αu1

z1

(1− α) 1
z0

+ α 1
z1

,

where uα = texture coordinate, u0, u1 = endpoints, α = color component

and z0, z1 = depth (relative to the viewer).

(3.33)

The texture mapping procedure is realized with standard OpenGL functions. In addition

a function for polygonal surface simplification is provided by the software package. As

reconstructed 3D models of SBFSEM data are acquired at a very high resolution these

models have a high complexity. However, full complexity is not always required. Since

the computational cost of a model is directly related to its complexity, it is useful to

have simplified versions. For surface simplification several different algorithms have been

formulated and are roughly categorized into three classes (Luebke, 2001):

• Vertex Decimation

• Vertex Clustering

• Iterative Edge Contraction

Since in this case surface reconstruction is based on the triangulation between two con-

secutive contour lines, the implemented surface simplification considers each connected

contour line pair separate. Generally the implemented algorithm is based on vertex deci-

mation. In detail neighboring normal vectors of quads are used to define the similarity of

polygons. If a similarity exists the corresponding vertex is deleted and the two quads are

fused. To allow a different graduation of surface simplification, the similarity determination

of quads is based on a user-defined percentage value. Hereby a value of 95% similarity for

example means that only vertices with equal normal vectors are deleted. Consequently the

range of similarity is, depending on the percentage value, enlarged and thus different levels

of surface simplification are provided. Figure 3.17 gives an impression of the implemented

surface simplification based on the similarity of normal vectors.

3.3.2.2 Lighting Implementation

One of the most important aspects of 3D computer graphics is creating depth percept

visualization of 3D structures in space. One possibility is to illuminate the scene. Hereby

different models are used to describe the appearance of a surface to finally generate more



58 3. Results

Figure 3.17: Surface simplification
Normal vectors of corresponding quads are compared and depending on the user-defined percentage
value, here in the range of 100% to 5%, are defined as similar. Similar quads are fused, which results in a
surface simplification.

realistic 3D objects. These models are divided into illumination, reflection and shading

models. The first type, the illumination model is divided into global and local illumina-

tion. Global illumination simulates the light diffusion in a scene. Typical algorithms are

e.g. radiosity and ray tracing. As these algorithms are not suited for real time rendering

modern 3D computer graphics rely on local illumination. Local illumination simulates

light conditions on surfaces. Hereby the brightness or color of a surface point is calcu-

lated from the orientation of a reflecting light beam. Therefore the following information

is necessary: normal vectors, material and light properties and the field of view. Stan-

dard local illumination models are Lambert- , Phong-, Schlick- illumination models and

per-pixel-lighting. Local illumination models must handle diffuse and specular reflections

in a reasonable calculation time. The Phong model (Phong, 1975) is indeed not based

on physics, but on empirical observation. Despite its lack of a theoretical grounding, it

produces realistic light scenes in an efficient computing time and has been the basis for

most computer graphics imagery and therefore is used for Neuron3D. The model consists

of an independent ambient, diffuse and specular term:

Iout = Iambient + Idiffuse + Ispecular, (3.34)



3.3 Software - Neuron3D 59

where the single terms are described in the following:

• Ambient Light:

Iambient = Ia · kambient, (3.35)

where Ia = intensity of the ambient light and kambient = material constant.

• Diffuse Light:

Idiffuse = Iin · kdiffuse · cosφ, (3.36)

where Iin = intensity of the light beam of the point light source, kdiffuse = empirical

defined reflection factor and φ = angle between surface normal vector and light beam.

• Specular Light:

Ispecular = Iin · kspecular · cosn Θ, (3.37)

where Iin = intensity of the light beam of the point light source, kspecular = empirical

defined reflection factor for specular components, n = constant factor for the descrip-

tion of the surface properties and Θ = angle between reflection direction of omitted

light beam and field of view of the observer.

As in OpenGL light is broken into red, green and blue components the user has the

possibility to define these components for the light source independently. In addition the

position, x-, y- and z-coordinate, of the light source is adjustable by the user.

The second model to describe the appearance of a surface is the reflection or scattering

model, which describes the relationship between incoming and outgoing illumination at

a given point. Descriptions of scattering are usually given in terms of a bidirectional

scattering distribution function (Heckbert, 1991). Popular reflection rendering techniques

in 3D computer graphics include:

• Flat shading: A technique that shades each polygon of an object based on the poly-

gon’s normal vector and the position and intensity of a light source.

• Gouraud shading: A fast and resource-conscious vertex shading technique used to

simulate smoothly shaded surfaces.

• Phong shading: Simulation of specular highlights and smooth shaded surfaces, but

significantly greater time complexity than Gouraud shading.



60 3. Results

Predefined reflection model for Neuron3D is Gouraud shading (Gouraud, 1971). Reasons

for this are that for flat shading, shading is constant across polygons and therefore surfaces

have a staged appearance. Phong shading interpolates normals rather than colors, therefore

surfaces are smoothed shaded. However, the significantly high computing time allows the

rendering mostly off-line and is therefore not suitable for real time rendering. The selected

Gouraud shading averages all adjacent face normals and finally interpolates the colors of

the polygon interior between the vertex colors. Neighboring pixels have slightly different

colors, but overall smooth lighting on polygon surfaces is achieved in a fast computation

time.

The third model includes shading techniques. Shadows are essential for realistic 3D

images and are a region of relative darkness within an illuminated region caused by an

object totally or partially occluding the light. Without them scenes often feel unnatural

and flat. In addition the relative depths of objects in the scene is hard to define. Shadow

algorithms are not predefined in OpenGL. Generally the algorithms are divided into three

groups: shadow mapping, shadow volume and shadow projection algorithms (Woo et al.,

1990). The shadow volume algorithm is a geometry based shadow algorithm which requires

connectivity information of the polygonal meshes in the scene to efficiently compute the

silhouette of each shadow casting object. It is a per pixel algorithm, which performs an in

shadow test for each rendered fragment. This operation can be accelerated using graphics

hardware. Generally the scene complexity has direct influence on the performance of this

algorithm. Shadow mapping is an intrinsic image-space algorithm, which means that no

knowledge of the scene’s geometry is required to carry out the necessary computations. As

it uses discrete sampling it must deal with various aliasing artifacts, the major drawback

of the technique.

Therefore an alternative algorithm to achieve shadow calculations, shadow projection,

was implemented in Neuron3D. Blinn (1988) invented the original technique, which allows

shadows to be cast on planar surfaces. The general idea is given by a plane P with

~n · ~r + d = 0 and a point light source l with position vector ~l = (lx, ly, lz). A projection

matrix M is constructed that projects point p with position vector ~p = (px, py, pz) onto

the plane P . The point s with position vector ~s = (sx, sy, sz), which is the projection of

point p onto the plane P , can be described as:

~s = ~l − ~n~l + d

~n · (~p−~l)
(~p−~l) (3.38)



3.3 Software - Neuron3D 61

This can be converted into a projection matrix which satisfies Mp = s (Moeller and Haines,

2002):

M =



~n~l + d− lxnx −lxny −lxnz −lxd

−lynx ~n~l + d− lyny −lynz −lyd

−lznx −lzny ~n~l + d− lznz −lzd

−nx −ny −nz ~n~l


(3.39)

To avoid anti-shadows, e.g. when the light source is between the occluder and the shadow

plane, the stencil buffer is used. The implemented approach allows a fast calculation of

shadows and is very effective for the usage in Neuron3D (fig. 3.18).

Figure 3.18: Shadow implementation
Comparison between image display without, left section, and with shadow, right section, projected to the
ground.

3.3.2.3 Integration of SBFSEM Data

The integration of SBFSEM images gives the user the opportunity to correlate the recon-

structed 3D structure with the original SBFSEM data. Therefore single SBFSEM images

can be selected and are added in relation to the orientation of the 3D object (fig. 3.19A).

Also an image cube can be generated from multiple SBFSEM slices (fig. 3.19B). Hereby



62 3. Results

the user has the possibility to define a ”slicing mode” where depending on the specified

time always the first image is removed until the end of the image cube. Furthermore for the

verification of the resulting 3D structure the 2D segmentation of a region can be displayed

in a separate window. Hereby it is possible to edit the corresponding contour line (see

section 3.2.3.3) and after confirmation of the changes the 3D structure is automatically

updated.

3.3.3 Results and Data Storage

Finally the software provides three different storage possibilities:

1. QuickTime movies (file extension .mov):

Storage of a video stream of the animated 3D scene in the QuickTime file format.

2. Portable network graphics (file extension .png):

Screenshots can be stored in the bitmapped image format, png, which employs lossless

data compression.

3. XML file (file extension .xml):

Store screenshots of the entire rendered scene, including transformation coordinates,

light conditions and so on. These files can be reloaded at a later time point to further

modify the 3D scene.

To give an impression of the final visualization of neuronal structures figure 3.19 displays

3D surfaces of axonal structures in the outer chiasm of the blowfly Calliphora vicina.



3.4 Software Usage and Evaluation 63

Figure 3.19: Reconstruction of axonal structures
Size of image stack: 14 x 14 x 26 µm3, slice thickness 50nm. (A) Multiple axonal structures with
interlaced SBFSEM-Images. (B) Two axonal structures lying close to each other, embedded in a
SBFSEM-Image Block using the slicing mode. Average diameter of process shown in gray is 1.53 µm and
in white 1.13 µm (C) Zoomed and rotated view of figure 3.19B. Scalebars: 2.6 µm A, 1.81 µm B and 0.54
µm C.

3.4 Software Usage and Evaluation

The two software packages Neuron2D and Neuron3D are stand-alone applications and

therefore mainly used in single mode. However, as sometimes it is desirable and helpful

to visualize the growing 3D structures during the segmentation process, it is also possible



64 3. Results

two run both programs in parallel. Additionally both programs are executable under 32

and 64 bit operating systems.

For the evaluation of the software packages Neuron2D and Neuron3D a user test was

performed. Therefore ten individuals had to achieve the following two tasks after a short

introduction about how the software operates. In the first task participants had to test

the functionality of Neuron2D, especially the segmentation of an image stack. The second

task was performed to test the usability of Neuron3D to setup a 3D scene.

After the experiment participants had to fill out a questionnaire reporting on their

experiences with the two software packages.

Task I - Software Neuron2D:

1. Create a new project, using the images in the folder ”D:\imageStack\”. Select the

following parameters:

• Image range: Extract a region of [100,400,612,912].

• Filter method: Gaussian, window size: 5, standard deviation: 1.

• Filter options: Mean: 150, variance: 80.

2. Use the function ”new segmentation” of the image processing button for the segmen-

tation of the previously filtered images.

• First slice: image with number 0001.

• Number of images: 30.

• Parameters: Select method 1 - exact segmentation.

• Select Button ”Parallel 3D Reconstruction”.

3. Select the following three regions (fig. 3.20), start/analyze the segmentation and try

to reconstruct the 3D structure:



3.4 Software Usage and Evaluation 65

Figure 3.20: Selected test regions

4. Please fill out the following questionnaire.

Software Evaluation - Neuron2D

(Scoring: 1 = best up to 6 = worst)

Question 1 2 3 4 5 6 Note

How clearly laid out is the GUI in general?

How intuitive is the usability? (e.g. name

of a button vs. its function)

How useful is the help file?

How stable is the application? Did an er-

ror occur?



66 3. Results

How is your general feeling about the seg-

mentation results? (correctness of the re-

sult vs. computing time)

Please quantify the usability of the man-

ual interaction.

Task II - Software Neuron3D:

1. Load the xml-file ”D:\axonalStructures.xml\”.

2. Play around with the various software functions.

3. Please fill out the following questionnaire.

Software Evaluation - Neuron3D

(Scoring: 1 = best up to 6 = worst)

Question 1 2 3 4 5 6 Note

How clearly laid out is the GUI in general?

How intuitive is the usability? (e.g. name

of a button vs. its function)

How useful is the help file?

How stable is the application? Did an er-

ror occur?

How would you quantify the implemented

rendering functions (e.g. color, light, tex-

ture) for setting up a realistic 3D scene?

How satisfied are you with the storage op-

tions (mov, png, xml)?

If you wish any extensions, please note

them.



3.4 Software Usage and Evaluation 67

The questions in the questionnaire allowed personal estimations between 1 (best) and 6

(worst). The results of the subjective answers are summarized in the following plots (fig.

3.21).

Figure 3.21: Software evaluation

The evaluation of the user test shows that both applications have a clearly arranged



68 3. Results

GUI and are easy to use. In addition the help files are convenient and both applications

run stable (fig. 3.21, upper graph).

For both software packages two additional questions, specially for each program, were

asked in the questionnaire. Hereby for Neuron2D users had to quantify the segmentation

results and the manual interaction (sec. 3.2.3.3) during the segmentation process. As

seen in the lower left plot of figure 3.21 for both questions the mean of the personal

estimation is around 1.5. The lower right plot of figure 3.21 displays the results of the

two additional questions of Neuron3D. Hereby users quantified the rendering functions as

useful and satisfying. Also the possible storage options are adequate. Two users mentioned

that storage options should be extended with e.g. jpeg or tiff picture format.

Summing up both software packages were evaluated user-friendly and suitable to analyze

SBFSEM image stacks.



4 Discussion

In this work, I described the software development for the analysis and reconstruction of

SBFSEM image stacks. In the following I summarize the specific requirements that had to

be met by the software to allow fast and user-friendly processing of the memory-intensive

SBFSEM data. Finally I will give a short overview of possible applications of the software

for answering biological questions.

4.1 Software Neuron2D and Neuron3D

The developed software package Neuron2D offers robust and fast segmentation of SBFSEM

image stacks (section 3.3.3) with optional user interaction. Compared to purely manual

tracing, processing time is sped up by a factor of about 50. As images are segmented

sequentially, rather than the entire stack at once, no storage intensive operations are nec-

essary. Ultimately, algorithms that do not require any or very little user interaction are

desirable and the segmentation algorithms described here present a first step in this direc-

tion.

A possible extension for the segmentation algorithms is the integration of flexible priors.

So far the prior for the segmentation φn of image n is peaked at the segmentation φn−1 of

the previous image, independent of the segmentation of slices n − k, with k > 1. Given

sufficient training data, one could drop this rather restrictive assumption and use more

than one image in the calculation of the prior (Cremers, 2006). For example, one could

assume φn to be similar to 2φn−1 − φn−2, which is the linear prediction based on the two

previous images. More generally, one could learn the best prediction of φn (given previous

slices) and use both the prediction and the estimated uncertainty of the prediction for

the segmentation process. Operations such as image preprocessing (section 3.2.2) and

registration (section 3.2.1) do not require user interaction after the parameters are adjusted

and therefore huge image stacks can also be selected for filtering or alignment.

Neuron3D allows the subsequent 3D reconstruction of neuronal structures based on



70 4. Discussion

XML-files generated by Neuron2D. Neuron3D provides standard rendering techniques to

display natural 3D scenes. Operations, such as shadows, which have a high computation

time (section 3.3.2.2) can be switched off until the final scene is reconstructed. Additionally

the integration of single SBFSEM image stacks or an image cube (section 3.3.2.3) gives the

user the opportunity to correlate the reconstructed 3D structure with the original data.

Furthermore XML-files can be read by visualization softwares, such as Amira, that offers

e.g. stereo 3D projection. The surface reconstruction is based on a given collection of

planar contours representing cross-sections through the neurons and is implemented as a

DTW approach. Therefore 3D objects are represented as tube-like structures. In addition

the implemented algorithm allows, parallel to the segmentation step of Neuron2D, the re-

construction of neuronal structures, as only the consecutive planar contours of an object

are considered for the triangulation of the surface. As it may be desirable at times to

visualize complete reconstructed neurons as isosurfaces, the additional implementation of

the marching cubes algorithm (Lorensen and Cline, 1987) is useful. The basic principle

behind the marching cubes algorithm is to subdivide space into a series of small cubes.

The algorithm ”marches” through each of the cubes testing the corner points and replacing

the cube with an appropriate set of polygons. The total sum of all generated polygons will

be a surface that approximates the one the data set describes.

Both programs are stand-alone applications and therefore are mainly used in single mode.

However, as it is sometimes desirable and helpful to visualize the growing 3D structures

during the segmentation process, it is also possible two run both programs in parallel.

Hereby errors during the segmentation step are identified at an early reconstruction stage

and the user can interact. In addition both programs are executable under 32 and 64 bit

operating systems.

So far the main implementation of Neuron2D and Neuron3D took into consideration the

special requirements for the image analysis and reconstruction of SBFSEM data. Now the

software can be extended further e.g. with the usage of plug-ins. One possible extension

might be to enlarge the image viewer of Neuron2D. At the moment the image viewer

functionality displays images in a sequential order. To allow an interactive and more user-

friendly preview of neuronal structures, spanning more than one image stack, it is required

to implement an image viewer functionality where the user can navigate through image

stacks with the mouse pointer. Consequently the user will have the possibility to preselect

neuronal structures across multiple image stacks obtained by tiling (section 3.2.1.1) and

generate a sub image stack around the specified region of interest. The final reconstruction



4.2 Biological Application of the Software 71

would be less time-intensive, as only a part of the entire data set is considered.

To sum up, the described segmentation algorithms in combination with the developed

software packages, Neuron2D and Neuron3D, offer a convenient method of SBFSEM image

stack analysis. Furthermore the labeled data-set obtained with Neuron2D and Neuron3D

could be used as a training set for more elaborated segmentation algorithms based on

artificial neuronal networks.

4.2 Biological Application of the Software

So far axonal tracts of the fly outer chiasm were reconstructed. The next step will be

to obtain SBFSEM image stacks from the lobula plate, one of the neuropils of the fly

visual system, to analyze the neural circuitry of motion-sensitive LPTCs. To analyze these

motion-sensitive neurons it is necessary to first obtain the cell skeletal data such as axons,

dendrites and cell bodies. And secondly to acquire information about the anatomical

distribution of synapses in the neuronal circuit. Denk and Horstmann (2004) showed that

it is possible to visualize and analyze chemical synapses with the current resolution limit

(10 x 10 x 30 nm3) of SBFSEM (fig. 4.1).

Figure 4.1: Visualization of synapses with SBFSEM
(A) Presynaptic vesicles (SV) and postsynaptic folds (SF) are clearly visible in a motor endplate
preparation (Denk and Horstmann, 2004). (B) Similarly, the hexagonal array of action filaments (AA)
can be resolved (Denk and Horstmann, 2004). (C) Cortical tissue, pre- and postsynaptic densities (SD)
are clearly discernable (Denk and Horstmann, 2004).



72 4. Discussion

However for the reconstruction of complete circuit diagrams of LPTCs it is necessary to

obtain information about electrical synapses, as these cells are electrically coupled to their

direct neighbors (Haag and Borst 2002, Haag and Borst 2004). To prove the electrical

coupling of LPTCs dye coupling was used in addition to electrophysiological recordings.

Hereby the injection of Neurobiotin in a single vertical system (VS) cell led to a co-staining

of the neighbors of the cell with fainter staining of cells further away from the injected cell

(fig. 4.2, Haag and Borst 2005).

Figure 4.2: Fluorescein and neurobiotin staining of VS-cells
(A) The dye-mixture was injected into a VS5-cell, which is the only cell that is visible under fluorescent
light (Haag and Borst, 2005). (B) In the neurobiotin staining, several adjacent VS-cells can be seen.
Besides the VS5 cell, which showed the strongest staining, VS3, VS4, VS6 and VS7 were costained. This
demonstrates that these cells are connected via electrical synapses (Haag and Borst, 2005).

With the current lateral resolution limit of SBFSEM, 10 nm, it has not been possible



4.2 Biological Application of the Software 73

to identify electrical synapses which range from 1 to 7 nm in diameter. Therefore the

main structural components of invertebrate gap junction channels, the protein innexins

(invertebrate connexin analogues, fig. 4.3), need to be labeled with electron dense material

to increase the backscattered coefficient, η. Traditional immunohistochemical techniques

e.g. with gold particles are not possible, as the tissue of the specimen block is too compact

and consequently the gold labeled antibodies cannot diffuse into the tissue. Using the

fruitfly Drosophila melanogaster and its powerful genetic toolbox, it might be possible to

endogenous enrich innexins with Zinc (using Zinc-fingers) or Selene (using Selenocysteine).

Figure 4.3: EM images of gap junctions
(A) High power view of a region of an electrical-type synapse between the giant fiber (GF, upper) and
the tergotrochanteral motorneuron (TTMn, lower) in an Oregon-R animal. The junction has a 2-4 nm
intercellular space, with cross striations spaced approximately 18 nm apart (arrows). There is a single
row of vesicles in the GF (arrowheads) and some dense material under the TTMn membrane (asterisks)
(Blagburn et al., 1999). (B) Neighboring section to that shown in A (Blagburn et al., 1999). (C)
Electrical-type synapse sectioned in parallel to the plane of the membranes, showing the regular array of
vesicles in GF (asterisks) (Blagburn et al., 1999).

In addition to the detection problem of electrical synapses with SBFSEM the segmen-

tation algorithms of the software package Neuron2D must be adjusted. Generally the

junctional region is arranged in a hexagonal array of subunits and appear as simple black

dots in EM images (fig. 4.3C). For the development of segmentation algorithms to analyze

gap junctions it might be useful to incorporate texture information in addition to pixel

intensities. Using texture information allows to look at the neighborhood, N (x), of each

pixel x, and estimate the distributions of these patches. The neighborhood could either be

taken to be two-dimensional, i.e. by looking at nearby pixels, or three-dimensional by also

including pixels from adjacent images. A classification algorithm could be trained on a set

of patches sampled from labeled images, and L(x) is set to be the output of the classifier to

the input N (x). The value of L(x) will then be positive if the neighborhood N (x) is more

likely to belong to the foreground than to the background, and negative otherwise. This



74 4. Discussion

newly constructed image, L(x), can be segmented using the algorithms described above.

This approach can be implemented with any classifier that produces real-valued rather

than binary output, such as support-vector machines (Kim et al., 2002).

4.3 Outlook

Extending the software package with the described approaches, e.g. image viewer or tex-

ture information for the analysis of electrical synapses, will provide a powerful tool for

the analysis of SBFSEM data sets. Finally the integration of the obtained anatomical

knowledge about the neuronal circuitry of the fly visual system will answer one of the

classic questions in computational neuroscience, i.e. how neurons compute the direction of

motion.



5 References

Al-Kofahi KA, Lasek S, Szarowski DH, Pace CJ, Nagy G, Turner JN, Roysam B (2002)

Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE

Transactions on Information Technology in Biomedicine 6:171–187.

Amira (2006) Amira - Advanced 3D visualization and volume modeling.

http://www.amiravis.com/ .

Barequet G, Shapiro D, Tal A (2000) Multilevel sensitive reconstruction of polyhedral

surfaces from parallel slices. The Visual Computer 16:116–133.

Blagburn JM, Alexopoulus H, Davies JA, Bacon JP (1999) Null mutation in shaking-B

eliminates electrical, but not chemical, synapses in the Drosophila Giant Fiber System:

A structural study. Journal of Comparative Neurology 404:449–458.

Blinn J (1988) Jim Blinn’s Corner: Me and my (fake) shadow. IEEE Computer Graphics

and Applications 8:82–86.

Boissonnat JD (1988) Shape reconstruction from planar cross sections. Computer Vision,

Graphics and Image Processing 44:1–29.

Borst A, Haag J (1996) The intrinsic electophysiological characteristics of the fly lob-

ula plate tangential cells. I. Passive membrane properties. Journal of Computational

Neuroscience 3:313–336.

Borst A, Haag J (2002) Neural networks in the cockpit of the fly. Journal of Comparative

Physiology 188:419–37.

Bracewell RN (1965) The Fourier Transform and its applications. McGraw-Hill Science

Engineering.

Briggman K, Denk W (2006) Towards neural circuit reconstruction with volume electron

microscopy techniques. Current Opinion in Neurobiology 16:562–570.



76 5. References

Brotz TM, Egelhaaf M, Borst A (1995) A preparation of the blowfly (Calliphora erythro-

cephala) brain for in vitro electrophysiological and pharmacological studies. Journal of

Neuroscience Methods 57:37–46.

Brown L (1992) A survey of image registration techniques. ACM Computing Sur-

veys 24:326–376.

Buzsaki G (2004) Large-scale recording of neuron ensembles. Nature Neuro-

science 7:446–451.

Canny JF (1986) A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence 8:679–698.

Carlbom I, Klinker G, Terzopoulus D (1995) Soft tissue segmentation from medical images

using interactive deformable contours. Proceedings of the 9th Scandinavian Conference

on Image Analysis, Uppsala, Sweden, pp. 905–912.

Chan TF, Vese L (2001) Active contours without edges. IEEE Transactions on Image

Processing 10:266–277.

Conchello JA, Lichtman JW (2005) Optical sectioning microscopy. Nature Meth-

ods 2:920–931.

Cremers D (2006) Dynamical statistical shape priors for level set based tracking. IEEE

Transactions on Pattern Analysis and Machine Intelligence 28:1262–1273.

Cremers D, Rousson M (2006) Efficient kernel density estimation of shape and intensity

priors for level set segmentation In Suri JS, Farag A, editors, Parametric and Geometric

Deformable Models: An application in Biomaterials and Medical Imagery. Springer.

Cremers D, Rousson M, Deriche R (2006) A review of statistical approaches to level set

segmentation: integrating color, texture, motion and shape. International Journal of

Computer Vision pp. 67–81.

D’Almeida F (2000) Nonlinear Diffusion Toolbox for Matlab.

http://www.mathworks.com/matlabcentral/fileexchange/loadAuthor.do? object-

Type=author&objectId=938351 .

de Boor C (1978) A practical guide to splines Springer Verlag.



5. References 77

Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct

three-dimensional tissue nanostructure. PLoS Biology 2:e329.

Denk W, Strickler JH, Webb WW (1990) 2-photon laser scanning fluorescence microscopy.

Science 248:73–76.

Donald A (2003) The use of an environmental scanning electron microscopy for imaging

wet and insulating materials. Nature Materials 2:511–516.

Ekoule AB, Peyrin FC, Odet CL (1991) A triangulation algorithm from arbitrary shaped

multiple planar contours. ACM Transactions on Graphics 10:165–172.

Fonseca L, Manjunath B (1996) Registration techniques for multisensory remotely sensed

imagery. Photogrammetric Engineering and Remote Sensing. 62:1049–1056.

Frey TG, Perkins GA, Ellisman MH (2006) Electron tomography of membrane-bound

cellular organelles. Annual Review of Biophysics & Biomolecular Structure 35:199–224.

Ganapathy S, Dennehy TG (1978) A new general triangulation method for planar contours.

In Proceedings SIGGRAPH pp. 69–75.

Goldstein J, Newbury D, Joy D, Lyman C, Echlin P, Lifshin E, Sawyer L, Michael J (2003)

Scanning Electron Microscopy and X-Ray Microanalysis Springer Science and Media.

Gonzalez R, Woods R (2002) Digital Image Processing Prentice Hall.

Gouraud H (1971) Continuous shading of curved surfaced. IEEE Transactions on Com-

puters 20:623–628.

Haag J, Borst A (2004) Neural mechanism underlying complex receptive field properties

of motion-sensitive interneurons. Nature Neuroscience 7:628–34.

Haag J, Borst A (2005) Dye-coupling visualizes networks of large-field motion-sensitive

neurons in the fly. Journal of Comparative Physiology 191:445–454.

Haag J, Borst A (2002) Dendro-dendritic interactions between motion-sensitive large-field

neurons in the fly. Journal of Neuroscience 22:3227–33.

Hayat M (2000) Principles and techniques of electron microscopy, biological applications.

Cambridge University Press.



78 5. References

Heckbert P (1991) Simulating global illumination using adaptive meshing. University of

California at Berkeley .

Hell SW (2003) Toward fluorescene nanoscopy. Nature Biotechnology 21:1347–1355.

Hirschberg D (1975) A linear space algorithm for computing maximal common subse-

quences. Communications of the ACM 18:341–343.

Hosmer D, Lemeshow S (2000) Applied logistic regression Wiley-Interscience Publication.

Huang B, Li H, Huang X (2005) A level set method for oil slick segmentation in SAR

images. International Journal of Remote Sensing 26:1145–1156.

Jurrus E, Tasdizen T, Koshevoy P, Fletcher PT, Hardy M, Chien CB, Denk W, Whitaker R

(2006) Axon Tracking in Serial Block-Face Scanning Electron Microscopy In Workshop

on Microscopic Image Analysis with Applications in Biology.

Kass M, Witkin A, Terzopoulus D (1988) Snakes: Active contour models. International

Journal of Computer Vision 1:321–331.

Keppel E (1975) Approximating complex surfaces by triangulation of contour lines. IBM

Journal of Research and Development 19:2–11.

Kim K, Jung K, Park S, Kim H (2002) Support Vector Machines for texture classification.

IEEE Transactions on Pattern Analysis and Machine Intelligence 24:1542–1550.

Koh I, Lindquist W, Zito K, Nimchinsky EA, Svoboda K (2002) An image analysis algo-

rithm for dendritic spines. Neural Computation 14:1283–310.

Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman

problem. Proceedings of the American Mathematical Society 7:48–50.

Kuglin C, Hines D (1975) The phase correlation image alignment method. Proceedings of

IEEE International Conference on Cybernetics and Society pp. 163–165.

Kuzirian AM, Leighton SB (1983) Oxygen plasma etching of entire block face improves

the resolution and usefulness of serial scanning electron microscopic images. Scanning

Electron Microscopy pp. 1877–1885.

Leighton SB (1981) SEM images of block faces, cut by a miniature microtome within the

SEM - A technical note. Scanning Electron Microscopy 2:73–76.



5. References 79

Lorensen WE, Cline HE (1987) Marching Cubes: A high resolution 3D surface construction

algorithms. Computer Graphics 21:163–169.

Lowe DG (1999) Object Recognition from Scale-Invariant Features. Proceedings of the

International Conference on Computer Vision pp. 1150–1157.

Luebke DP (2001) A developer’s survey of polygonal simplification algorithms. IEEE

Computer Graphics and Applications pp. 24–35.

Meinertzhagen I, O’Neil S (1991) Synaptic organization of columnar elements in the

lamina of the wild type in Drosphila melanogaster. Journal of Comparative Neurol-

ogy 305:232–263.

Meyers D, Skinner S, Sloan K (1992) Surfaces from contours. ACM Transactions on

Graphics 11:228–258.

Moeller T, Haines E (2002) Real-Time Rendering AK Peters, Ltd.; 2 edition.

Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and

associated variational problems. Communications on Pure and Applied Mathemat-

ics 42:577–684.

Myers C, Rabiner L (1981) A comparative study of several dynamic time-warping algo-

rithms for connected word recognition. The Bell System Technical Journal of Compar-

ative Neurology 60:1389–1409.

Olivia JM, Perrin M, Coquillart S (1996) 3D reconstruction of complex polyhedral shapes

from contours using simplified generalized Voronoi diagram. Computer Graphics Fo-

rum 15:397–408.

Osher S, Fedkiw R (2003) Level Set Methods and Dynamic Implicit Surfaces, Vol. 153 of

Applied Mathematical Sciences Springer Verlag, New York.

Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: algorithms

based on Hamilton-Jacobi formulations. Journal of Computational Physics 79:12–49.

Perona P, Malik J (1990) Scale-Space and edge detection using anisotropic diffusion. IEEE

Transactions on Pattern Analysis and Machine Intelligence 12:629–639.



80 5. References

Phong BT (1975) Illumination for computer generated pictures. Communications of the

ACM 18:311–317.

Pratt WK (1974) Correlation techniques of image registration. IEEE Transaction on

Aerospace and Electronic Systems 10:353–358.

Reimer L (1993) Transmission Electron Microscopy: Physics of image formation and

microanalysis Springer Verlag.

Schmitt S, Evers J, Duch C, Scholz M, Obermayer K (2004) New methods for the

computer-assisted 3-D reconstruction of neurons from confocal image stacks. Neuroim-

age 23:1283–98.

Schoenberg I (1946) Contributions to the problem of approximation of equidistant data

by analytic functions. Quarterly of Applied Mathematics 4:45–99,112–141.

Sethian JA (1999) Level Set Methods and Fast Marching Methods Cambridge Monograph

on Applied and Computational Mathematics. Cambridge University Press.

Shapiro L, Stockman G (2001) Computer Vision Prentice Hall.

Shreiner D, Woo M, Neider J, Davis T (2005) OpenGL Programming Guide Addison-

Wesley.

Sielhorst T, Blum T, N. N (2005) Synchronizing 3D movements for quantitative compar-

ison and simultaneous visualization of actions. Fourth IEEE and ACM International

Symposium on Mixed and Augmented Reality pp. 38–47.

Soto GE, Young SJ, Martone ME, Deerinck TJ, Lamont S, Carragher BO, Hama K,

Ellisman MH (1994) Serial section electron tomograph: a method for three-dimensional

reconstruction of large structures. Neuroimage 1:230–243.

Stempak J, Ward R (1964) Improved staining method for electron microscopy. Journal of

Cell Biology 22:697–701.

Stevens JK, Davis TL, Sterling P (1980) A systematic approach to reconstructing micro-

circuitry by electron microscopy of serial sections. Brain Research 2:265–293.

Strausfeld NJ (1984) Functional neuroanatomy of the blowfly’s visual system. In Ali

MA, editor, Photoreception and vision in invertebrates, pp. 483–522. Plenum Publishing

Corporation.



5. References 81

Strausfeld NJ, Douglass J (2003) Anatomical organization of retinotopic motion-sensitive

pathways in the optic lobes of flies. Microscopy Research and Technique 62:132–150.

Viola P, Wells W (1997) Alignment of maximization of mutual information. International

Journal of Computer Vision 24:137–154.

Vollgraf R, Scholz M, Meinertzhagen I, Obermayer K (2004) Nonlinear filtering of electron

micrographs by means of Support Vector Regression In Thrun S, Saul L, Scholkopf B,

editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge,

MA.

Whitaker R, Breen D, Museth K, Soni N (2001) Segmentation of biological volume datasets

using a level set framework. Volume Graphics pp. 249–263.

White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous

system of the nematode Caenorhabditis elegans. Philosophical Transaction Royal Society

Publishing London A 314:1–340.

Woo A, Poulin P, Fournier A (1990) A survey of shadow algorithms. IEEE Computer

Graphics and Applications 10:13–32.

Yin L, Yang M, M. G, Y. N (1996) Weighted median filters: A tutorial. IEEE Transactions

on Circuits and Systems 43(3):157–192.

Zitova B, Flusser J (2003) Image registration methods: a survey. Image and Vision

Computing 21:977–1000.



82 5. References



Acknowledgements

I want to thank all the people for supporting me during the past years and in particular

during the development of this thesis, even if I cannot mention all of their names here.

First of all, I want to thank my supervisor Alexander Borst a lot, not only for making my

dissertation possible, but also for giving me helpful advice, guidance, and support during

the last years. In addition for providing a great working environment in his department.

Christoph Kapfer I want to thank for many interesting discussions and very helpful sug-

gestions on my work. Gudrun Klinker for being part of my thesis committee and for her

theoretical and practical support.

I also want to thank the whole ’Borst Department’ for having a wonderful time in the

laboratory and all the PhD students who came along with me. Especially Yong Choe for

helpful suggestions on the manuscript. Friedrich Förstner for Amira support and computer

science discussions. Bettina Schnell and Thomas Hendel for having lots of fun and discus-

sions in our room. And of course the members of the ’coffee-lunch group’: Adrian Wertz,

Marco Mank, Stephan Direnberger, Johannes Plett, Alex Ihring, Nicola Heim for sharing

a lot of time with me and having many discussions about science and life.

In addition I want to thank my family, especially my parents who always supported me,

and friends for being with me. Finally, I want to thank David for always encouraging me

and his ability to make me laugh and feel good at any time.



84 Acknowledgements



Curriculum Vitae

Nina Maack

Education

since 06/2005 Ph.D. Thesis:

Max-Planck-Institute of Neurobiology, Martinsried, Germany.

Department of Systems and Computational Neurobiology.

Supervised by Prof. Dr. Alexander Borst.

”3D Reconstruction of Neural Circuits from Serial EM Images”.

08/2007 PENS Neuroscience School:

Arcachon, France.

Course: Advanced Course in Computational Neuroscience

Project: Integration of flow-field signals by descending neurons

in the fly visual system.

08/2004 - 02/2005 Diploma Thesis:

Max-Planck-Institute of Neurobiology, Martinsried, Germany.

Department of Systems and Computational Neurobiology.

Supervised by Prof. Dr. Alexander Borst.

”Software Development for 3D Reconstruction of Image Stacks”

04/2004 - 07/2004 Student Assistant:

GSF-Institute of Bioinformatics, Munich, Germany.

Installation of a Distributed Sequence Annotation System

(DAS) Server.



86 Curriculum Vitae

08/2003 Internship:

GSF-Institute of Molecular Biology and Tumor Genetics,

Munich, Germany.

Practical Experience in the field of molecular biology.

10/2001 - 07/2003 Student Assistant:

Dept. of Computer Science, Ludwig Maximilian University,

Munich, Germany.

Tutor for Computer Science Courses.

10/2000 - 04/2005 Undergraduate studies in Bioinformatics:

Ludwig Maximilian University and Technical University of

Munich, Germany.

05/2000 Graduation from High School:

Theresia Gerhardinger Gymnasium, Munich, Germany.

Publications (Parts of this thesis have previously been published)

Macke J, Maack N, Gupta R, Denk W, Schoelkopf B, Borst A (2008): Contour-

propagation algorithms for semi-automated reconstruction of neural processes.

J Neurosci Methods 167/2: 349-357.



Ehrenwörtliche Versicherung

Ich versichere hiermit ehrenwörtlich, dass die vorgelegte Dissertation von mir selbständig

und ohne unerlaubte Beihilfe angefertigt ist.

Martinsried, den . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erklärung

Hiermit erkläre ich, dass ich mich anderweitig einer Doktorprüfung ohne Erfolg nicht

unterzogen habe und die Dissertation nicht ganz oder in wesentlichen Teilen einer

anderen Prüfungskommission vorgelegt worden ist.

Martinsried, den . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




	Table of Contents
	List of figures
	Abbreviations

	Abstract
	Introduction
	Neural Circuit Reconstruction
	Microscopy Techniques
	Serial Section Transmission Electron Microscopy
	Serial Block-Face Scanning Electron Microscopy 

	Goals

	Materials and Methods
	Specimen Preparation for SBFSEM
	Fly Brain Preparation and Fixation
	Staining
	Final Preparation of SBFSEM Sample
	Microscopy

	Software Development Tools
	Hardware
	Programming Languages


	Results
	SBFSEM Data 
	Software - Neuron2D 
	Image Registration
	Tiling Technique of SBFSEM
	Overview of Image Registration Methods
	Implementation - Image Registration
	Results - Image Registration

	Image Preprocessing
	Overview of Image Filtering Algorithms
	Implementation - Image Preprocessing
	Results - Image Preprocessing

	Image Segmentation
	Contour-Propagation Algorithms
	Canny Segmentation Algorithm
	Manual Interaction 
	Quantification of Segmentation Algorithms
	Data Storage


	Software - Neuron3D 
	Surface Reconstruction
	Overview of Surface Reconstruction Algorithms
	Implementation - Surface Reconstruction 
	Integration of Branches

	3D Image Editing
	Surface Representation
	Lighting Implementation 
	Integration of SBFSEM Data

	Results and Data Storage

	Software Usage and Evaluation

	Discussion
	Software Neuron2D and Neuron3D
	Biological Application of the Software
	Outlook

	References
	Acknowledgements
	Curriculum Vitae

