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SUMMARY 

DNA lesions arising from environmental and endogenous sources induce various 

cellular responses including cell cycle arrest, DNA repair and apoptosis. Although 

detailed insights into the biochemical mechanisms and composition of DNA repair 

pathways have been obtained from in vitro experiments, a better understanding of 

the interplay and regulation of these pathways requires DNA repair studies in living 

cells. 

In this study we employed laser microirradiation and photobleaching techniques in 

combination with specific mutants and inhibitors to analyze the real-time 

accumulation of proteins at laser-induced DNA damage sites in vivo, thus unravelling 

the mechanisms underlying the coordination of DNA repair in living cells. 

The immediate and faithful recognition of DNA lesions is central to cellular survival, 

but how these lesions are detected within the context of chromatin is still unclear. In 

vitro data indicated that the DNA-damage dependent poly(ADP-ribose) polymerases, 

PARP-1 and PARP-2, are involved in this crucial step of DNA repair. With specific 

inhibitors, mutations and photobleaching analysis we could reveal a complex 

feedback regulated mechanism for the recruitment of the DNA damage sensor 

PARP-1 to microirradiated sites. Activation of PARP-1 results in localized poly(ADP-

ribosyl)ation and amplifies a signal for the subsequent rapid recruitment of the 

loading platform XRCC1 which coordinates the assembly of the repair machinery. 

Using similar techniques we could demonstrate the immediate and transient binding 

of the RNA Polymerase II cofactor PC4 to DNA damage sites, which depended on its 

single strand binding capacity. This establishes an interesting link between DNA 

repair and transcription. We propose a role for PC4 in the early steps of the DNA 

damage response, recognizing and stabilizing single stranded DNA (ssDNA) and 

thereby facilitating DNA repair by enabling repair factors to access their substrates. 

After DNA lesions have been successfully detected they have to be handed over to 

the repair machinery which restores genome integrity. Efficient repair requires the 

coordinated recruitment of multiple enzyme activities which is believed to be 

controlled by central loading platforms. As laser microirradiation induces a variety of 

different DNA lesions we could directly compare the recruitment kinetics of the two 

loading platforms PCNA and XRCC1 which are involved in different repair pathways 

side by side. We could demonstrate that PCNA and XRCC1 show distinct recruitment 

and binding kinetics with the immediate and fast recruitment of XRCC1 preceding the 
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slow and continuous recruitment of PCNA. Introducing consecutively multiple DNA 

lesions within a single cell, we further demonstrated that these different recruitment 

and binding characteristics have functional consequences for the capacity of PCNA 

and XRCC1 to respond to successive DNA damage events. 

To further study the role of PCNA and XRCC1 as loading platforms in DNA repair, we 

extended our analysis to their respective interaction partners DNA Ligase I and III. 

Although these DNA Ligases are highly homologous and catalyze the same 

enzymatic reaction, they are not interchangeable and fulfil unique functions in DNA 

replication and repair. With deletion and mutational analysis we could identify 

domains mediating the specific recruitment of DNA Ligase I and III to distinct repair 

pathways through their interaction with PCNA and XRCC1. We conclude that this 

specific targeting may have evolved to accommodate the particular requirements of 

different repair pathways (single nucleotide replacement vs. synthesis of short 

stretches of DNA) and thus enhances the efficiency of DNA repair.  

Interestingly, we found that other PCNA-interacting proteins exhibit recruitment 

kinetics similar to DNA Ligase I, indicating that PCNA not only serves as a central 

loading platform during DNA replication, but also coordinates the recruitment of 

multiple enzyme activities to DNA repair sites. Accordingly, we found that the 

maintenance methyltransferase DNMT1, which is known to associate with replication 

sites through binding to PCNA, is likewise recruited to DNA repair sites by PCNA. We 

propose that DNMT1, like in DNA replication, preserves methylation patterns in the 

newly synthesized DNA, thus contributing to the restoration of epigenetic information 

in DNA repair. 

In summary, we found immediate and transient binding of repair factors involved in 

DNA damage detection and signalling, while repair factors involved in the later steps 

of DNA repair, like damage processing, DNA ligation and restoration of epigenetic 

information, showed a slow and persistent accumulation at DNA damage sites. We 

conclude that DNA repair is not mediated by binding of a preassembled repair 

machinery, but rather coordinated by the sequential recruitment of specific repair 

factors to DNA damage sites. 
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1. INTRODUCTION 

DNA repair – a complex response to a lethal threat 

Mammalian cells are constantly threatened by multiple types of DNA lesions arising 

from various sources like irradiation, environmental agents, replication errors or by-

products of the normal cellular metabolism. If not readily detected and repaired these 

lesions can lead to cell death or to the transformation of cells giving rise to serious 

diseases like cancer. Consequently, multiple specialized repair pathways have 

evolved to preserve the genetic integrity of a cell (Figure 1).  

 

Figure 1 Cellular responses to DNA damage. Different types of DNA damage agents cause different 
lesions which induce various cellular responses ranging from checkpoint activation to cell death. 

The DNA damage response is a multistep process involving lesion detection, 

processing of repair intermediates, checkpoint activation and finally restoration of the 

genetic and epigenetic information (Figure 2). Given the increasing number of DNA 

damage sensors, checkpoint regulators and repair factors identified in the numerous 

interconnected repair pathways raises the question of how DNA repair is coordinated. 

Furthermore, it is still unclear how specific repair factors gain access to their 

respective substrates. DNA lesions might be detected through continuous scanning 

of the genome or by high affinity binding and transient immobilization of freely 

diffusing proteins (assembly on the spot). It has also been proposed that instead of 

being directly sensed, DNA lesions might rather be indirectly detected through 
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changes in chromatin topology (Bakkenist and Kastan, 2003). Once the DNA 

damage has been successfully detected it has to be handed over to the repair 

machinery which then restores the genetic information. This could either be achieved 

through competition between different repair proteins binding at the lesion site, or 

alternatively, a rapid turnover of repair factors could generate a window of opportunity 

for every factor to bind, enabling a more flexible access. Finally, after the genetic 

information has been successfully restored, the epigenetic information including 

methylation patterns and chromatin states has to be re-established.  

We addressed several of these questions using a combination of laser 

microirradiation, live cell microscopy and photobleaching analysis to gain insights into 

the spatio-temporal coordination of DNA repair factors ranging from damage 

detection to restoration of genome integrity. 

 

Figure 2 Basic steps in DNA repair, exemplary illustrated for the single strand break repair pathway. 
DNA lesions are detected by DNA damage sensors which trigger the DNA damage response, resulting 
in lesion processing, checkpoint activation and finally DNA repair.  
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1.1. DNA lesion detection and signalling  

Lesion detection and signalling by the DNA-damage-dependent Poly(ADP-

ribose) polymerases PARP-1 and PARP-2 

Cellular survival depends on the immediate recognition of DNA lesions and rapid 

recruitment of repair factors. A central surveillance factor, which is believed to play an 

important role in damage recognition and signalling is the poly(ADP-ribose) 

polymerase-1 (PARP-1). PARP-1 is the founding member of the PARP family 

encompassing 17 members involved in various biological processes such as DNA 

repair, transcription, mitotic segregation, telomere homeostasis and cell death 

(Schreiber et al., 2006). In vitro studies indicated that PARP-1 either directly senses 

single strand breaks (SSBs) or detects DNA breaks, resulting from the processing of 

damaged bases by the single strand break repair (SSBR) or base excision repair 

(BER) pathway, through its two zinc fingers (Gradwohl et al., 1990). 

Upon binding its substrate, PARP-1 becomes activated and catalyzes the 

polymerization of ADP-ribose moieties from NAD+ on target proteins, a post-

translational modification called poly(ADP-ribosyl)ation. Albeit automodifying itself, 

PARP-1 poly(ADP-ribosyl)ates histones leading to chromatin relaxation. Several 

proteins were reported to interact with poly(ADP-ribose) (PAR) or poly(ADP-

ribosyl)ated PARP-1 suggesting that PAR may serve as a recruiting molecule 

(Pleschke et al., 2000).  

Besides PARP-1, PARP-2 is the only DNA-damage-dependent PARP identified so 

far. Several lines of evidence obtained from knock-out mice and cells suggest that 

PARP-1 and PARP-2 have both overlapping and non-redundant functions in DNA 

repair (de Murcia et al., 1997; Masutani et al., 1999; Menissier de Murcia et al., 2003; 

Schreiber et al., 2002; Trucco et al., 1998; Wang et al., 1997). Biochemical studies 

revealed that PARP-2, like PARP-1, interacts with the SSBR/BER repair factors 

XRCC1, DNA polymerase ß and DNA Ligase III (Ame et al., 1999; Schreiber, 2004). 

PARP-1 and PARP-2 can heterodimerize, but they recognize different targets within 

DNA (Schreiber, 2004). PARP-2 does not recognize SSBs, but gaps or flap 

structures, which indicates that PARP-2 is probably involved in the later steps of the 

repair process (Schreiber et al., 2002). However, the exact cellular function of 

PARP-2 remains to be elucidated. 

As most data on the role and regulation of PARP-1 and PARP-2 are derived from 

biochemical experiments, we systematically investigated the kinetics, role and 
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interplay of PARP-1 and PARP-2 in living cells. We found that both PARPs are 

recruited to DNA damage sites, however with different kinetics and roles. Our data 

indicate that the initial step of the damage response is mediated by a feedback 

regulated accumulation of PARP-1 and concomitant local poly(ADP-ribosyl)ation 

leading to a rapid recruitment of repair factors. 

 

Role of the RNA Polymerase II cofactor PC4 in the early steps of DNA repair 

The positive cofactor 4 (PC4) is a multifunctional nuclear protein involved in various 

cellular processes including transcription, replication and chromatin organization (Das 

et al., 2006; Ge and Roeder, 1994; Kretzschmar et al., 1994; Pan et al., 1996). 

Originally, PC4 was identified as a positive cofactor enhancing activator-dependent 

transcription by RNA polymerase II (Ge and Roeder, 1994; Kretzschmar et al., 1994; 

Meisterernst et al., 1991). Expression of class II genes in eukaryotes is a complex 

and highly regulated process mediated by the basic transcription machinery 

consisting of general transcription factors and RNA Polymerase II. Moreover, 

transcription is further regulated by additional cofactors (Blazek et al., 2005; Kaiser 

and Meisterernst, 1996; Malik and Roeder, 2000; Thomas and Chiang, 2006). One of 

these cofactors is PC4, which has been shown to facilitate the formation of the 

preinitiation complex (PIC), thereby enhancing the transcriptional activation potential 

of gene-specific activators (Kaiser et al., 1995). Furthermore, PC4 interacts with 

TFIIA a component of the basic transcription machinery (Ge and Roeder, 1994; 

Kretzschmar et al., 1994) and has been shown to bind to TFIIB in yeast (Knaus et al., 

1996). These findings imply that PC4 connects gene-specific regulators and the 

basal transcription machinery during PIC formation, by direct interaction with the 

TFIIA-TBP-complex and the activation domains of transcriptional regulators (Ge and 

Roeder, 1994; Kretzschmar et al., 1994). However, PC4 also seems to function as a 

transcriptional repressor in a minimal transcription system lacking an activator 

(Werten et al., 1998; Wu and Chiang, 1998). The complex role of PC4 in transcription 

is further underlined by recent findings showing that PC4 is also involved in promoter 

release, transcription elongation (Fukuda et al., 2004) and polyadenylation (Calvo 

and Manley, 2001). 

PC4 has a bipartite structure consisting of an N-terminal regulatory domain (amino 

acid residues 1-62), which mediates protein-protein interactions and is essential for 

coactivator functions and a C-terminal domain (CTD, amino acid residues 63-127) 
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which allows sequence-independent binding to single and double stranded DNA 

(Kaiser et al., 1995; Kretzschmar et al., 1994; Werten et al., 1998). Structural 

analysis revealed that PC4 homodimerizes through its CTD and that the dimeric fold 

provides a binding surface for two anti-parallel single-stranded DNAs (Brandsen et al., 

1997; Werten and Moras, 2006). Through comparison with the RPA-ssDNA co-

crystal structure (Bochkarev et al., 1997), critical amino acid residues within the CTD 

of PC4 predicted to be essential for ssDNA binding were identified and mutated. 

These mutations abolished the binding of PC4 to ssDNA and resulted in the loss of 

its potential to repress transcription (Werten et al., 1998). The N-terminal domain of 

PC4 contains a so called SEAC motif, which was shown to be a target of casein 

kinase II (CKII) phosphorylation (Kretzschmar et al., 1994), regulating the activity of 

PC4 in mammalian cells (Ge et al., 1994). Phosphorylation of PC4 has been shown 

to revoke its coactivator and dsDNA binding activities, but maintains its ability to bind 

to ssDNA to mediate transcriptional repression (Ge et al., 1994; Werten et al., 1998). 

PC4 was recently identified in a screen for human genes suppressing an oxidative 

mutagenesis phenotype in E. coli. Moreover, it was found that the ssDNA binding 

capacity of PC4 is required for resistance to hydrogen peroxide (H2O2) and prevents 

spontaneous and induced oxidative mutagenesis in E. coli and S. cerevisiae (Wang 

et al., 2004). While this study suggests a role for PC4 in DNA repair, the direct 

involvement of PC4 in the mammalian DNA damage response remains elusive. To 

gain further insights into the potential role of PC4 in DNA repair, we studied its 

recruitment and binding dynamics at laser-induced DNA damage sites in living cells. 

We found a very rapid and transient accumulation of PC4 at DNA damage sites 

which depended on its ability to bind ssDNA, which argues for a role of PC4 in the 

very early steps of DNA repair. 
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1.2. Checkpoint activation 

Recruitment of the cyclin-dependent kinase inhibitor p21 to DNA repair sites 

A central mechanism of the DNA damage response is the activation of cell cycle 

checkpoints to prevent spreading of unrepaired DNA lesions to daughter cells. 

Depending on the damage extent, different cellular responses can be induced 

including cell death through apoptosis, induction of cellular senescence or cell 

survival after successful DNA repair (Bartek and Lukas, 2007). Failure of checkpoint 

activation can have severe consequences. This is highlighted by the fact that defects 

in checkpoint components like p53 and ATM are found in nearly all human cancer 

types (Bartek et al., 2004). The cyclin-dependent kinase inhibitor p21 plays a central 

role in the DNA damage response by inducing cell cycle arrest and inhibiting DNA 

replication through stable association with proliferating cell nuclear antigen (PCNA). 

Additionally, p21 has been shown to be involved in several other cellular pathways 

like growth arrest, senescence, terminal differentiation and transcription regulation 

(reviewed in (Coqueret, 2003; Dotto, 2000)). Whether or not p21 is directly involved 

in DNA repair is still controversial. While some studies indicate that high levels of p21 

inhibit DNA repair (Cooper et al., 1999; Pan et al., 1995; Podust et al., 1995) others 

have shown that p21 has no negative (McDonald et al., 1996; Sheikh et al., 1997; 

Shivji et al., 1998; Shivji et al., 1994) or even a stimulating effect on DNA repair (Li et 

al., 1996; Ruan et al., 1998; Savio et al., 1996). Furthermore, it has been shown that 

p21 must be degraded for S phase entry to prevent binding to PCNA which would 

inhibit DNA replication (Bornstein et al., 2003; Gottifredi et al., 2004). However, 

whether p21 inhibits recruitment of PCNA to DNA repair sites or loading of other 

factors to PCNA is still under debate. We investigated whether p21 induction might 

inhibit DNA repair by interfering with PCNA accumulation at DNA damage sites and 

studied the recruitment kinetics of p21 to laser-induced DNA damage sites in living 

cells. Interestingly, we found that p21 is recruited to DNA damage sites, albeit with 

slower kinetics than PCNA. These results indicate that p21 is involved in DNA repair. 
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1.3. Repair of genetic information  

Role and dynamics of the loading platforms PCNA and XRCC1 in DNA repair 

DNA repair requires the coordinated recruitment of multiple enzyme activities to 

ensure efficient repair of DNA lesions. So called loading platforms are considered to 

play a central role by locally concentrating and coordinating repair factors at sites of 

DNA damage. Loading platforms are characterized as proteins with no intrinsic 

enzymatic activity and the ability to interact with numerous proteins through highly 

conserved binding motifs. The two repair factors XRCC1 (X-ray cross complementing 

factor 1) and PCNA both fulfil these criteria and are therefore considered to act as 

central loading platforms in DNA replication and repair (Caldecott, 2003; Maga and 

Hubscher, 2003; Moldovan et al., 2007; Warbrick, 2000). XRCC1 was first identified 

in a mutant cell line which shows a defect in SSBR and increased sensitivity to 

alkylating agents and ionizing irradiation resulting in elevated frequency of 

spontaneous chromosome aberrations and deletions (Thompson et al., 1982). 

Consistent with these results XRCC1 was found to interact with various proteins 

involved in SSBR and BER including PARP-1, PARP-2 (Masson et al., 1998; 

Schreiber et al., 2002), DNA polymerase-β (Caldecott et al., 1994; Kubota et al., 

1996) and DNA Ligase III (Caldecott et al., 1994; Wei et al., 1995). Recently, it was 

reported that XRCC1 interacts with PCNA, another central loading platform involved 

in DNA repair and replication (Fan et al., 2004). 

PCNA forms a homotrimeric ring around the DNA which at the same time allows 

stable association with and sliding along the DNA double helix. Because of this 

unique property PCNA is often referred to as a “sliding clamp” which is capable of 

mediating interactions of various proteins with DNA in a sequence-independent 

manner. Apart from being a central component of the replication machinery, PCNA is 

also involved in various repair pathways including nucleotide excision repair (NER) 

(Shivji et al., 1992), base excision repair (BER) (Gary et al., 1999; Levin et al., 2000), 

mismatch repair (MMR) (Jiricny, 2006; Johnson et al., 1996; Umar et al., 1996) and 

repair of double strand breaks (DSBs) (Dorazi et al., 2006; Holmes and Haber, 1999). 

In addition, PCNA is implicated in the coordination of postreplicative processes such 

as cytosine methylation and chromatin assembly (Chuang et al., 1997; Moggs et al., 

2000). Most of the PCNA-interacting proteins bind to a common site on PCNA 

through a conserved PCNA-binding domain (PBD). The increasing number of 

identified PCNA-interacting proteins raises the question of how binding is coordinated 
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and sterical hindrance avoided in various processes such as DNA replication and 

repair. Recently, it has been shown that posttranslational modifications such as 

ubiquitinylation and sumoylation target PCNA to different repair pathways (Hoege et 

al., 2002; Matunis, 2002; Papouli et al., 2005; Pfander et al., 2005; Solomon et al., 

2004; Stelter and Ulrich, 2003). In order to gain insights into the spatio-temporal 

accumulation of PCNA and XRCC1 at DNA repair sites and their ability to respond to 

successive DNA damage events, we used a combination of repeated microirradiation, 

live cell microscopy and photobleaching techniques. We found that the two loading 

platforms XRCC1 and PCNA exhibit distinct recruitment and binding kinetics at repair 

sites resulting in different capacities to respond to successive DNA damage events. 

 

Recruitment of DNA Ligase I and III to DNA repair sites 
To complete repair of the genetic information the integrity of the phosphodiester 

backbone has to be re-established. This reaction is catalyzed by members of the 

ATP-dependent DNA Ligase family which consists of three enzymes termed DNA 

Ligase I, III and IV. Although all three DNA Ligases catalyze the same basic reaction 

and contain a highly conserved catalytic domain they are not interchangeable and 

have distinct cellular functions (Martin and MacNeill, 2002; Timson et al., 2000). DNA 

Ligase I is required for joining of Okazaki fragments during lagging strand synthesis 

and is implicated in long-patch or replicative BER and NER. DNA Ligase I is targeted 

to replication sites through its PBD-mediated interaction with PCNA (Cardoso et al., 

1997; Montecucco et al., 1995). Loss of DNA Ligase I function leads to abnormal 

joining of Okazaki fragments during S phase (Mackenney et al., 1997), defective 

long-patch BER (Levin et al., 2000) and reduced repair of DSBs by homologous 

recombination (Goetz et al., 2005). 

DNA Ligase III is implicated in short-patch BER and SSBR and in vivo exists as a 

preformed complex with XRCC1 (Caldecott et al., 1994; Cappelli et al., 1997; Wei et 

al., 1995). The interaction of DNA Ligase III with XRCC1 is mediated by the carboxy 

terminal BRCT (BRCA1 carboxy terminal) domain of DNA Ligase III (Beernink et al., 

2005; Dulic et al., 2001; Taylor et al., 1998b). DNA Ligase III possesses a unique N-

terminal zinc finger which was suggested to bind SSBs (Mackey et al., 1999) and 

shows homology with the two zinc finger motifs of PARP-1 which also binds DNA 

strand breaks. The recent identification of DNA Ligase III as a candidate component 

of the nonhomologous end joining (NHEJ) backup pathway (B-NHEJ) (Wang et al., 
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2005) indicates that DNA Ligase III might also be implicated in double strand break 

repair (DSBR). 

The last member of the ATP-dependent DNA Ligase family, DNA Ligase IV, plays a 

central role in the NHEJ pathway and forms a complex with XRCC4 (Critchlow et al., 

1997; Grawunder et al., 1997). The importance of DNA Ligase IV functions for 

various cellular processes is highlighted by defects in V(D)J recombination, increased 

sensitivity to ionizing radiation and embryonic lethality in mice lacking DNA Ligase IV 

(Barnes et al., 1998; Frank et al., 1998). 

To shed light on the mechanisms mediating the unique functions of the highly 

conserved ATP-dependent DNA Ligases, we compared their recruitment to laser-

induced DNA damage sites in living cells. We could detect only a weak accumulation 

of DNA Ligase IV at laser-induced DNA damage sites. Kinetic studies and deletion 

analysis indicated that selective recruitment of DNA Ligase I and III to specific repair 

pathways is mediated through interaction with PCNA and XRCC1, respectively. 

These results suggest that PCNA and XRCC1 play a central role in the spatio-

temporal coordination of repair factors and thereby enhance the specificity and 

efficiency of DNA repair in eukaryotic cells. 
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1.4. Repair of epigenetic information 

Recruitment of DNA methyltransferase 1 to DNA repair sites 

Numerous DNA repair pathways re-establishing the genetic information are known 

and have been extensively described (Friedberg, 2003; Hoeijmakers, 2001). In 

contrast, much less is known about enzymes and mechanisms involved in the 

restoration of the epigenetic information. Epigenetic information is defined as the 

information which is not contained within the basic sequence of DNA, but is 

nevertheless maintained over multiple cell divisions. There are two main epigenetic 

marks, DNA methylation and histone modifications which are essential for cell type 

specific gene expression (Becker, 2006; Berger, 2007; Bird, 2007; Jaenisch and Bird, 

2003; Leonhardt and Cardoso, 2000; Reik, 2007; Robertson, 2002). Recently, it has 

become more and more evident that during DNA repair chromatin is extensively 

modified, remodelled and finally restored similar to what has been initially described 

for chromatin states during transcription (reviewed in: (Downs et al., 2007; Groth et 

al., 2007; van Attikum and Gasser, 2005)). In contrast, the problem of restoring and 

thus maintaining the methylation pattern during DNA repair has not been addressed. 

DNA methylation is a postreplicative modification which occurs mostly at cytosine 

residues of CpG dinucleotides and is essential for mammalian development (Li et al., 

1992), parental imprinting (Li et al., 1993), X inactivation (Panning and Jaenisch, 

1996) and genome stability (Brown and Robertson, 2007; Chen et al., 2007; Eden et 

al., 2003; Espada et al., 2007; Gaudet et al., 2003). In mammalian cells DNA 

methylation is carried out by members of the DNA methyltransferase family which 

can be subdivided into maintenance methyltransferases (DNMT1) and de novo 

methyltransferases (DNMT3a, DNMT3b) (Bestor, 2000). The maintenance 

methyltransferase DNMT1 is ubiquitously expressed and has a preference for 

hemimethlyated sites generated during replication. The association of DNMT1 with 

the processivity factor PCNA ensures faithful maintenance of the methylation pattern 

during S phase (Chuang et al., 1997; Leonhardt et al., 1992). In contrast to DNMT1, 

the two de novo methyltransferases DNMT3a and DNMT3b (in concert with 

DNMT3L) establish new methylation patterns during development and show a low 

and tissue specific expression (Okano et al., 1999; Okano et al., 1998; Xu et al., 

1999). The requirement of maintaining methylation patterns was recently 

underscored by several studies using DNMT1 knock-out or knock-down approaches. 

Loss of DNMT1 and accompanying hypomethylation leads to altered gene 
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expression, development defects, onset of cancer, genome instability and cell death 

(Brown and Robertson, 2007; Chen et al., 2007; Espada et al., 2007; Gaudet et al., 

2003; Gaudet et al., 2004; Spada et al., 2007). These results clearly demonstrate the 

importance of DNA methylation, and raise the question whether and how this 

epigenetic information is maintained during DNA repair. We therefore investigated 

whether and which DNA methyltransferases are present at DNA repair sites. We 

could show that the maintenance methyltransferase DNMT1 is recruited to laser-

induced DNA damage sites in S and non S cells in a PCNA-dependent manner, while 

the two de novo methyltransferases DNMT3a and DNMT3b were not recruited. 

These results argue for a role of DNMT1 in maintaining methylation patterns in DNA 

repair.  



INTRODUCTION 
 

- 18 - 

1.5. A new assay to study protein-protein interactions in living cells 

As more and more proteins participating in the various DNA damage response 

pathways are identified, it becomes essential to reveal their complex interaction 

network to gain insights into the mechanisms and coordination of DNA repair. A wide 

variety of different methods to study protein-protein interactions, ranging from 

biochemical to genetic or cell-based approaches, have been introduced in recent 

years. The classical genetic yeast two-hybrid (Y2H) assay enables screening of 

hundreds or even thousands of interactions within the cellular environment but the 

read out involving transcriptional activation leads to many false positive and false 

negative results (Parrish et al., 2006; Suter et al., 2006). In contrast, biochemical 

methods like affinity purification, pull down analyses or immunoprecipitation allow 

direct detection of protein-protein interactions in vitro. Recent advances in 

fluorescence microscopy and molecular biology lead to the introduction of new 

fluorescence-based methods for in-cell visualization of protein-protein interactions. 

Fluorescence resonance energy transfer (FRET) (Miyawaki, 2003; Sekar and 

Periasamy, 2003) and bimolecular fluorescence complementation (BiFC) (Kerppola, 

2006) are two well-established methods which rely on the expression of fluorescently 

labelled proteins or fragments thereof and allow to study protein-protein interactions 

in potentially any (living) cell. 

We developed a new method for direct visualization of protein-protein interactions in 

living cells termed fluorescence two-hybrid (F2H) assay. This assay relies on the 

immobilization of a fluorescent bait protein at a given cellular structure. Interaction of 

a differently labelled prey protein with the bait protein results in colocalization of the 

fluorescent signals which can be visualized by microscopy. In our approach we chose 

a lac operator array stably integrated into BHK and U2OS cells (Janicki et al., 2004; 

Tsukamoto et al., 2000) to immobilize a triple fusion bait protein consisting of a 

fluorescent protein (FP), the Lac repressor (LacI) and a protein to be tested for 

interactions. Binding of this fusion protein to the lac operator array results in focal 

enrichment of the fluorescent signal in the nucleus. Interaction with a second 

differently labelled protein of interest (prey) can then be detected by colocalization of 

the fluorescent signals at the lac operator array. Using this F2H assay we could 

observe various interactions between different repair factors. In addition, we could 

show that these interactions occur in the absence of DNA damage. 
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1.6. Technical Background 

Methods to study DNA repair in living cells 

In vitro studies of the DNA repair machinery using isolated proteins and cell extracts 

provided detailed insights into the biochemical mechanisms of DNA repair. However, 

the complexity of the genome surveillance network and the spatio-temporal 

coordination of various repair factors require studying DNA repair in vivo. The recent 

development of a variety of different methods to generate DNA lesions together with 

the introduction of fluorescently tagged proteins opened up new ways to investigate 

DNA repair mechanisms in living cells. A classical approach, traditionally used to 

study the repair of DSBs, is ionizing irradiation or the use of radiomimetic drugs. 

Ionizing irradiation leads to the accumulation of DSB repair factors in so called 

ionizing radiation-induced foci (IRIF). Using ionizing irradiation in combination with 

FRAP analysis it has been shown that DSB repair factors rapidly diffuse throughout 

the nucleus until they encounter a break and become transiently immobilized (Essers 

et al., 2002). This finding is very reminiscent of what has been originally described for 

NER repair proteins (Houtsmuller et al., 1999) and allows an efficient and fast 

recognition of DNA damage and rapid exchange of repair factors. The disadvantage 

of using ionizing irradiation is that DNA lesions are scattered randomly throughout the 

genome. Furthermore, it is not possible to visualize the real-time accumulation of 

repair proteins and IRIF are hardly distinguishable from other nuclear foci like 

replication sites. Recently, some of these drawbacks have elegantly been 

circumvented by using focal irradiation with charged particles or heavy ions, which 

allows specific induction of DSBs along the ion or particle track (Aten et al., 2004; 

Hauptner et al., 2004; Hauptner et al., 2006; Jakob et al., 2002; Jakob et al., 2003). 

However, these methods require technical expertise and expensive instrumentation 

not available in most standard laboratories. 

Researchers working on the NER pathway which removes UV-induced photolesions 

faced a similar problem, as the classical approach to study NER is global irradiation 

with a UVC lamp (254 nm) which leads to random distribution of UV-lesions 

throughout the genome. UVC irradiation through an isopore polycarbonate filter 

confines DNA damage induction to subnuclear regions (Green and Almouzni, 2003; 

Volker et al., 2001). This local irradiation approach combined with live cell imaging 

and FRAP analysis can be used to study the dynamics of NER proteins in living cells 

(Mone et al., 2004; Politi et al., 2005). 
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An elegant approach to specifically induce DSBs at defined subnuclear sites is the 

introduction of rare restriction sites into the genome followed by conditional 

expression of the respective endonuclease. This method was first developed in yeast 

(Lisby et al., 2003; Melo et al., 2001) but has also been adapted in mammalian cells 

(Jasin, 1996; Soutoglou et al., 2007). DSBs can even be followed over time in vivo by 

flanking the restriction sites with tet or lac operator cassettes and expression of 

fluorescently tagged Tet- and/or Lac-binding fusion proteins (Lisby et al., 2003; 

Soutoglou et al., 2007). However, the considerable long lag time between induction 

of the endonuclease and cutting (up to 30 min) does not allow precise kinetics 

measurements of repair factor assembly at DNA breaks. 

In recent years, lasers used in confocal microscopy or microdissection devices have 

been adapted by various groups to introduce DNA lesions at preselected subnuclear 

sites in living cells. These microlaser techniques are based on the presensitization of 

DNA with low levels of halogenated thymidine analogs and/or DNA intercalating dyes 

(e.g. Hoechst 33258) which render the DNA hypersensitive to light within the UVA 

spectrum (Bekker-Jensen et al., 2005; Bradshaw et al., 2005; Celeste et al., 2003; 

Fernandez-Capetillo and Nussenzweig, 2004; Lukas and Bartek, 2004; Rogakou et 

al., 1999; Tashiro et al., 2000; Walter et al., 2003). Microirradiation with a UV laser 

leads to a photochemical reaction which is sufficient to induce various DNA lesions 

including SSBs and DSBs. Interestingly, it has been shown that the number of DSBs 

can be controlled by level of BrdU substitution, presence of Hoechst and fluence of 

UVA light (Limoli and Ward, 1993). In addition to SSBs and DSBs other more UVA 

typical DNA lesions, like thymine dimers, may be introduced by UVA irradiation. To 

eliminate these side effects some groups used laser microirradiation without 

sensitization, which requires much higher laser energy and can lead to damage of 

overall cellular structures (Kim et al., 2002; Lan et al., 2004).  

We adapted the microirradiation protocol first introduced by Tashiro et al (Tashiro et 

al., 2000) using a 405 nm Diode laser coupled into the light path of a Leica SP2 or 

Leica SP5 confocal microscope. The 405 nm laser is normally used for 

photoactivation experiments or excitation of DNA dyes such as Hoechst or DAPI. The 

advantage of this system is that the FRAP wizard module of the Leica software can 

easily be used to exactly define the laser energy and the sites to be microirradiated. 

Thus additional laser lines or costly instrumentation, like microdissection devices 

used in the past, are not needed. The combination of this system with the use of 
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fluorescently tagged proteins allows the real-time measurement of protein 

redistribution immediately after damage induction over extended time periods in living 

cells (Figure 3). Several studies indicated that the use of halogenated thymidine 

analogs in combination with Hoechst 33285 may lead to oversensitization of cells 

(Lukas and Bartek, 2004; Rogakou et al., 1999; Tashiro et al., 2000). Thus we 

decided to sensitize cells by preincubation in medium containing moderate levels of 

BrdU (10 µM) for a limited time period (about 24-48 h) which is sufficient to increase 

the sensitivity to UV laser microirradiation leading to the generation of various DNA 

lesions including SSBs and DSBs. 

 

Figure 3 Schematic outline of microirradiation experiments. Cells are transfected with expression 
constructs (light blue circles) encoding fluorescently tagged fusion proteins and sensitized by 
incubation in medium containing BrdU (dark blue dots) for 24-48 h (1). Microirradiation is performed 
with a 405 nm laser (2) and the accumulation of fluorescently labelled proteins at DNA damage sites is 
monitored in real-time (3). After measuring and normalizing the fluorescence intensity at the 
microirradiated site, the recruitment kinetics are plotted as a graph (4). 
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ABSTRACT

Genome integrity is constantly threatened by DNA
lesions arising from numerous exogenous and
endogenous sources. Survival depends on immedi-
ate recognition of these lesions and rapid recruit-
ment of repair factors. Using laser microirradiation
and live cell microscopy we found that the DNA-
damage dependent poly(ADP-ribose) polymerases
(PARP) PARP-1 and PARP-2 are recruited to DNA
damage sites, however, with different kinetics and
roles. With specific PARP inhibitors and mutations,
we could show that the initial recruitment of PARP-1
is mediated by the DNA-binding domain. PARP-1
activation and localized poly(ADP-ribose) synthesis
then generates binding sites for a second wave of
PARP-1 recruitment and for the rapid accumulation
of the loading platform XRCC1 at repair sites. Further
PARP-1 poly(ADP-ribosyl)ation eventually initiates
the release of PARP-1. We conclude that feedback
regulated recruitment of PARP-1 and concomitant
local poly(ADP-ribosyl)ation at DNA lesions amplifies
a signal for rapid recruitment of repair factors
enabling efficient restoration of genome integrity.

INTRODUCTION

Genomic DNA is under constant surveillance and
protection from mutagenic or clastogenic insults, which
can result from environmental or endogenous threats
such as ionizing radiation, genotoxic chemicals and
free radicals. Specific proteins inspect the DNA for the
presence of particular lesions such as base or nucleotide

damage, single- or double-strand breaks and if necessary
trigger appropriate repair mechanisms (1).
A growing number of proteins are known to be involved

in these pathways enabling damage recognition, signaling
of the damage, recruitment of other repair factors and
finally restoration of the genetic and epigenetic informa-
tion. A central surveillance factor, which is believed to
play an important role in damage recognition and
signaling is the poly(ADP-ribose) polymerase-1 (PARP-
1). PARP-1 is the founding member of the PARP family
encompassing 17 members involved in various biological
processes such as DNA repair, transcription, mitotic
segregation, telomere homeostasis and cell death (2).
PARP-1 is a molecular sensor of single-strand DNA
breaks (SSB) generated directly or resulting from the
processing of damaged bases by the SSBR/BER pathway.
The two C-X2-C-X28,30-H-X2-C zinc fingers of PARP-1
were shown to bind single-strand breaks in vitro and define
a novel DNA interruptions binding module, present also
in the SSBR/BER factor DNA ligase III (3,4). Upon
binding to its DNA target, PARP-1 catalyzes the
polymerization of ADP-ribose moieties from NAD+ on
target proteins, a post-translational modification
called poly(ADP-ribosyl)ation. Major targets of
poly(ADP-ribose) (PAR) are PARP-1 itself and histones,
mainly H1, leading to chromatin relaxation. In addition,
PAR likely serves as a recruiting molecule, since several
proteins were reported to interact with PAR or poly(ADP-
ribosyl)ated PARP-1 (5). XRCC1, the non-enzymatic
scaffold protein of SSBR/BER that interacts with and
stimulates most of the SSBR/BER enzymes (6) was shown
to interact preferentially with poly(ADP-ribosyl)ated
PARP-1 (7). Recent studies demonstrated that XRCC1
is recruited to local damaged sites through a PAR- and
PARP-1 dependent manner (8–10). However, the
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involvement of PARP-1 in DNA repair has been
questioned by a study showing that BER is efficient in
cells lacking PARP-1 (11).
One additional PARP, PARP-2 has been implicated

in the cellular response to DNA damage (12,13). PARP-1
and PARP-2 deficient cellular and animal models indi-
cated redundant but also complementary functions of the
two enzymes in the surveillance and maintenance
of genome integrity (14,15). PARP-1 and PARP-2 knock
out mice are sensitive to ionizing radiation and alkylating
agents (14,16–18), and embryonic fibroblasts derived
from both genotypes showed a comparable delay in the
repair of alkylated DNA (15,19). Yet, a recent report
using siRNA suggested that PARP-2 depletion has only a
minor impact on global SSBR rates (20).
Biochemical studies revealed that PARP-2, like PARP-

1, interacts with the SSBR/BER repair factors XRCC1,
DNA polymerase b and DNA ligase III (12,15). However,
whether PARP-2 acts in a similar way as PARP-1 is still
under debate. PARP-1 and PARP-2 can heterodimerize,
but they recognize different targets within DNA (15).
PARP-2 does not recognize SSBs, but gaps or flap
structures which indicates that PARP-2 is probably
involved in the later steps of the repair process (13).
As most data on the role and regulation of PARP-1 and

PARP-2 are derived from biochemical experiments we
systematically investigated the kinetics, role and interplay
of PARP-1 and PARP-2 in living cells. With microirradia-
tion and live cell microscopy we could show that both
PARPs are recruited to DNA damage sites however
with different kinetics and roles. Our data indicate that
the initial step of the damage response is mediated by
a feedback regulated accumulation of PARP-1 and
concomitant local poly(ADP-ribosyl)ation leading to a
rapid recruitment of repair factors.

MATERIALS AND METHODS

Cell culture and transfection

Hela cells stably expressing GFP-PARP-1 were generated
by transfection of pEGFP-C3-hPARP-1 vector and
selection of resistant clones with G418 (0.5 mg/ml). The
activity of the recombinant fusion protein was verified by
activity blot according to Dantzer et al. (21). Wild type,
PARP-1 and PARP-2 deficient MEF cells were previously
described (15,19). All cell lines were cultured in DMEM
containing 50 mg/ml gentamicin supplemented with 10%
FCS. Cells grown on m-slides (Ibidi) or on gridded
coverslips were cotransfected with jetPEI (PolyPlus
Transfection) according to the manufacturer’s instruc-
tions. For microirradiation experiments cells were either
sensitized by incubation in medium containing BrdU
(10mg/ml) for 24–48 h, or incubated with Hoechst 33285
(10mg/ml) for 10min. NU1025 (Sigma) was added to the
medium at least 1 h before microirradiation experiments in
a final concentration of 200 mM.

Expression plasmids

Mammalian expression constructs encoding full length
or truncated translational fusions of human PARP-2

were previously described (22). The GFP-PARP-1 expres-
sion vector was described in Maeda et al. (23).
Mammalian expression constructs encoding truncated
forms of human PARP-1 were generated by subcloning
into the PstI site of pEGFP-C3 (Clontech). PstI/PstI
fragments were isolated from the following pTG plasmids
previously described: PARP-1C21G,C125G (4), PARP-1E988
(24), and PARP-11–373 (25). The GFP-XRCC1 expression
construct was generated by subcloning the EcoRI/EcoRI
fragment from pCD2E-XRCC1 into the EcoRI site of
pEGFP-C2. A red variant of XRCC1 was generated by
replacing GFP with RFP (26). In all cases expression was
under the control of the CMV promoter. We tested all
fusion proteins by expression in 293T cells followed by
western blot analysis.

Immunofluorescence and detergent extraction

Cells were fixed in 3.7% formaldehyde for 10min and
permeabilized with ice-cold methanol for 5min. The
following primary antibodies (diluted in PBS containing
2% BSA) were used: anti-PAR (Trevigen) and anti-
PARP-1 (C2-10) mouse monoclonal antibodies, and anti-
PARP-2 rabbit polyclonal antibody (Yuc, Alexis).
Primary antibodies were detected using secondary anti-
bodies (diluted 1:400 in PBS containing 2% BSA)
conjugated to Alexa Fluor 488, 555 or 647 (molecular
probes). Cells were counterstained with DAPI and
mounted in Vectashield (Vector Laboratories).

Live-cell microscopy, microirradiation and photobleaching
experiments

Live cell imaging, microrirradiation and photobleaching
experiments were carried out with a Leica TCS SP5/AOBS
confocal laser scanning microscope equipped with a
UV-transmitting HCX PL 63�/1.4 oil objective.
Fluorophores were excited using a 488 nm Ar-laser line
and a 561 nm DPSS laser line. The microscope was
equipped with a heated environmental chamber set to
378C. Confocal image series were typically recorded with a
frame size of 256� 256 pixels and a pixel size of 90 nm.

Microirradiation was carried out with a 405 nm diode
laser set to 50% transmission. Preselected spots of �1 mm
in diameter within the nucleus were microirradiated for
1 s. Before and after microirradiation confocal image
series of one mid z-section were recorded at 2 s time
interval (typically six preirradiation and 150 post-irradia-
tion frames). For evaluation of the recruitment kinetics,
fluorescence intensities of the irradiated region were
corrected for background and for total nuclear loss of
fluorescence over the time course and normalized to the
preirradiation value. Data from microirradiation of
individual cells obtained in at least two independent
experiments performed on different days were averaged
for evaluation and plotting of corresponding graphs.

For FRAP analysis, a region of interest was selected
and photobleached for 300ms with all laser lines of the
Ar-laser and the 561 nm DPSS laser set to maximum
power at 100% transmission. Before and after bleaching,
confocal image series were recorded at 150ms time
intervals (typically 10 prebleach and 200 post-bleach
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frames). Mean fluorescence intensities of the bleached
region were corrected for background and for total-
nuclear loss of fluorescence over the time course and
normalized to the mean of the last four prebleach values.

For the quantitative evaluation of microirradiation
and photobleaching experiments, data of at least nine
nuclei were averaged and the mean curve as well as
the standard error of the mean calculated and displayed
using Microsoft Excel software. The half-time of recovery
was calculated from the average curves.

Images of fixed cells were taken with a Zeiss Axiophot
2 widefield epifluorescence microscope using a Zeiss Plan-
Apochromat 63x/1.40 oil objective and a cooled CCD
camera (Visitron Systems).

RESULTS

PARP-1 is recruited to DNA damage sites

Various biochemical studies and knock out experiments
have clearly shown the involvement of PARP-1 in DNA
repair (2). However, whether and how PARP-1 is
recruited to sites of DNA damage is still an open question.
To investigate the dynamics of PARP-1 recruitment
to DNA damage sites in living cells we generated DNA
lesions at preselected subnuclear sites with a long
wavelength UV diode laser in BrdU-sensitized cells, as
described before (27,28). Immunofluorescence stainings
with specific antibodies revealed that endogenous PARP-1
is recruited to microirradiated sites in Hela and MEF
cells (Figure 1B and data not shown). When transiently or
stably transfected in MEFs or Hela cells, GFP-PARP-1
was distributed throughout the nucleus and accumulated
in nucleoli as previously described (22). For in vivo
studies we determined the recruitment kinetics of PARP-
1 in living cells by quantifying the amount of GFP-tagged
PARP-1 accumulated at microirradiated sites.
We observed a rapid accumulation of GFP-PARP-1 at
DNA damage sites immediately after microirradiation
(Figure 1C and D). Accumulation of PARP-1 at DNA
damage sites was rather transient, as the fluorescence
intensity gradually declined after reaching a maximum
about 1min after microirradiation (Figure 1C and D).
Interestingly, we observed a similar fast recruitment of
GFP-PARP-1 in cells undergoing mitosis (Supplementary
Figure 1). To test whether PARP-1 recruitment is
accompanied by poly(ADP-ribosyl)ation at microirra-
diated sites we performed immunostainings with
specific antibodies against PAR. We found a strong
PAR signal clearly colocalizing with GFP-PARP-1
at microirradiated sites (Figure 1A). Taken together, our
results show a rapid but transient accumulation of
PARP-1 at DNA damage sites colocalizing with sites
of poly(ADP-ribosyl)ation.

PARP activity enhances the recruitment of PARP-1
to DNA damage sites

It has previously been shown that PARP activity is
required for the recruitment of the repair factor XRCC1
to DNA lesions (8–10). To address the question whether
PARP activity has an effect on its own recruitment

we tested the recruitment of GFP-PARP-1 in the presence
of the PARP inhibitor NU1025. As expected, treatment
with NU1025 efficiently inhibited poly(ADP-ribosyl)ation
as no PAR signal could be detected after microirradiation
of treated cells (Figure 1A). Interestingly, accumulation of
endogenous and GFP-tagged PARP-1 at laser-induced
DNA damage sites seemed not to be affected by this
treatment (Figure 1A and B). Quantitative evaluation of
live cell experiments, however, revealed that inhibition of
PARP activity lead to a reduced recruitment efficiency in
Hela cells (Figure 1C and D).
We then examined the recruitment of GFP-PARP-1 in

MEFs lacking PARP-1. Whereas GFP-PARP-1 was
efficiently but transiently recruited, similarly to what was
observed in Hela cells, treatment of these parp-1�/� cells
with NU1025 lead to a delayed and prolonged accumula-
tion of GFP-PARP-1 (Figure 1E and F).
To further test the influence of the catalytic activity on

the recruitment of PARP-1, we generated a catalytic
mutant by replacing the central glutamic acid at aa
position 988 by lysine (GFP-PARP-1E988K). This muta-
tion, affecting the PAR chain elongation, converts PARP-
1 into a mono-ADP-ribosyl-transferase (24). The inability
of GFP-PARP-1E988K to synthesize PAR was verified by
activity blot (data not shown). To circumvent side effects
arising from endogenous PARP-1 dimerizing with the
fusion protein, we performed the microirradiation experi-
ments in parp-1�/� MEFs. The PARP-1E988K fusion
protein showed a delayed accumulation and longer
persistence at DNA damage sites in comparison to the
wild-type protein (Figure 1E and F) which is in agreement
with our data obtained from parp-1�/� MEFs treated with
NU1025. Altogether, these results indicate that PARP
activity is not essential for the initial recruitment of
PARP-1 to DNA damage sites, but clearly enhances the
recruitment efficiency.

Recruitment of PARP-1 to DNA damage sites is mediated
by the DNA-binding domain and the BRCT domain

Having shown that PARP-1 accumulates at DNA damage
sites, we determined which domain of PARP-1 mediates
this recruitment in vivo. First we tested whether the two zinc
finger containing DNA-binding domain of PARP-1 [DBD,
residues 1–373, (4)] was sufficient for the recruitment to
laser-inducedDNAdamage sites.We observed recruitment
of GFP-PARP-11–373 in both parp-1�/� (Figure 2) and
Hela cells (data not shown). A direct comparison of the
recruitment kinetics of the DBD and the full-length PARP-
1 revealed a fast but less efficient recruitment of the DNA
binding domain (Figure 2A and B). Using half-nucleus
FRAP experiments, we found that the initial, very fast,
recruitment of the DBD is supported by an overall higher
mobility of the isolated DBD (t1/2=3.75 s) in the nucleus
compared to the full-length PARP-1 (t1/2=7.20 s) and
PARP-1E988 (t1/2= 7.25 s) harboring all interaction
domains (Supplementary Figure 2).
The reduced and transient accumulation of the DBD

suggests that another part of the protein could enhance
the recruitment of PARP-1. To further test this hypothesis
we mutated key residues within the DBD known to be
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essential for DNA binding, in the context of the full-length
PARP-1. The C21G and C125G mutations target
cysteine residues involved in zinc binding and abolish
the binding to DNA (4). These mutations lead to a
dramatically reduced, but still detectable recruitment of
GFP-PARP-1C21G,C125G to DNA damage sites (Figure 2C

and D). Interestingly, treatment with the PARP inhibitor
NU1025 affected the recruitment of GFP-PARP-
1C21G,C125G. (Figure 2C–F), indicating that PAR mole-
cules synthesized at the damaged site by local PARP-1 are
involved in this second wave of DBD-independent
recruitment of PARP-1. Furthermore, we found that the

Figure 1. Recruitment of PARP-1 to DNA damage sites. (A) Immunostaining of PAR after microirradiation of Hela cells stably transfected with
GFP-PARP-1. GFP-PARP-1 clearly colocalizes with PAR at microirradiated sites. Treatment of Hela GFP-PARP-1 cells with the PARP-1 inhibitor
NU1025 results in loss of PAR signals at microirradiated sites, while GFP-PARP-1 accumulation is still present. (B) Immunostaining of PARP-1 and
PARP-2 after microirradiation of Hela cells in the absence or presence of NU1025. (C) Live cell imaging of microirradiated Hela cells stably
expressing GFP-PARP-1. Accumulation of GFP-PARP-1 can be observed immediately after microirradiation in untreated cells as well as in cells
treated with the PARP inhibitor NU1025. (D) Quantitative evaluation of PARP-1 recruitment kinetics in the absence and presence of the PARP
inhibitor NU1025. Inhibition of PARP activity does not prevent recruitment of PARP-1 but leads to a reduced accumulation at microirradiated sites.
(E and F) Live cell imaging and quantitative evaluation of PARP-1 recruitment kinetics in the absence and presence of the PARP inhibitor NU1025
compared with the recruitment kinetics of the fluorescence tagged catalytic mutant PARP-1 after microirradiation of PARP-1 knock out cells. Error
bars represent the SEM. Scale bar, 5 mm.
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BRCT domain alone (residues 384–524), which is involved
in PARP-1 homodimerization (15) and PAR binding
(data not shown), showed a weak accumulation at
laser-induced DNA damage sites which was reduced in
the presence of NU1025 (Figure 2E and F). Taken
together, our results indicate that the DBD of PARP-1
is necessary and sufficient for recruitment of PARP-1 to
DNA lesions. The catalytic activity of PARP-1 likely
enhances the recruitment efficiency by locally generating

PAR polymers, which are then recognized by the BRCT
domain, recruiting more PARP-1 molecules.

The enzymatic activity is required for dissociation
of PARP-1 fromDNA damage sites

The longer persistence of the catalytic PARP-1 mutant at
DNA damage sites (Figure 1E and F) was rather
unexpected and led us to study this effect in more detail.

Figure 2. Mechanism of PARP-1 recruitment to DNA damage sites. (A) Live cell imaging of microirradiated PARP-1 knock out MEFs (MEF
parp-1�/�) expressing either GFP-PARP-1 or the GFP-tagged DNA binding domain of PARP-1 (GFP-PARP-11–373). Accumulation of both,
GFP-PARP-1 and GFP-PARP-11–373 can be observed immediately after microirradiation. (B) Quantitative evaluation of GFP-PARP-11–373
recruitment kinetics. For comparision, the recruitment kinetics of GFP-PARP-1 from Figure 1F are displayed. Time-matched controls are shown in
Supplementary Figure 3. (C) Live cell imaging of microirradiated MEFs expressing a PARP-1 fusion protein containing two point mutations
affecting the DNA binding capacities of PARP-1 (GFP-PARP-1C21G,C25G) in the absence or presence of the PARP inhibitor NU1025.
(D) Quantitative evaluation of recruitment kinetics. (E) Live cell imaging of microirradiated MEFs expressing the GFP-tagged BRCT domain of
PARP-1 (GFP-PARP-1384–524) in the absence or presence of the PARP inhibitor NU1025. (F) Quantitative evaluation of recruitment kinetics.
Error bars represent the SEM. Scale bar, 5mm.
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We performed long-term live cell observations of micro-
irradiated parp-1�/� MEFs transiently transfected with
either GFP-PARP-1 or GFP-PARP-1E988K. In contrast to
the very fast accumulation reaching a maximum about
1min after microirradiation followed by the dissociation
of PARP-1, GFP-PARP-1E988K showed a delayed accu-
mulation and persisted at DNA repair sites during the
observation period of 30min (Figure 3A and B).
To analyze the mechanisms underlying these kinetic

differences, we performed FRAP analysis. The irradiated
region was bleached with a high-energy laser pulse 5min
after microirradiation and the fluorescence recovery was
determined for GFP-PARP-1 and GFP-PARP-1E988K.
We found a slower fluorescence recovery of GFP-PARP-
1E988K (t1/2=2.25 s) in comparison to GFP-PARP-1
(t1/2=1.80 s), indicating a stronger binding of the
catalytic mutant at DNA damage sites (Figure 3C
and D). These results show that the catalytic activity of
PARP-1 is not only needed for efficient targeting to but
also for dissociation from DNA damage sites.

PARP-2 is recruited toDNAdamage sites later thanPARP-1

Besides PARP-1, PARP-2 is the only DNA-damage
dependent PARP identified so far (12). PARP-2 is
required for efficient single-strand break repair like
PARP-1 (15), but its function(s) in the repair process

are still largely unknown (2). When transiently expressed
in MEFs or Hela cells, GFP-PARP-2 distributes through-
out the nucleus and accumulates within the nucleoli,
as previously described (22). Microirradiation of MEFs
and Hela cells lead to the recruitment of GFP-PARP-2 to
DNA damage sites. However, in comparison to PARP-1,
PARP-2 was recruited slower but persisted longer at DNA
repair sites (Figure 4A and B and Supplementary
Figure 4). In addition, we could demonstrate recruitment
of endogenous PARP-2 to laser-induced DNA damage
sites (Figure 1B).

We next analyzed whether recruitment of PARP-2
depends on PARP activity or the presence of PARP-1.
We found that recruitment of PARP-2 to DNA repair
sites was less efficient in cells treated with NU1025 as well
as in parp-1�/� cells, (Figure 4C and D and Supplementary
Figure 4). Altogether, these results indicate that PARP-1
and PARP-2 show distinct recruitment and dissociation
kinetics at DNA repair sites and that poly(ADP-ribosyl)a-
tion enhances the recruitment efficiency of both.

The nucleolus is a storage of PARP-1 and PARP-2
for heavy DNA damage

In the course of this study, we observed that microirradia-
tion in the presence of the photosensitizer Hoechst leads
to more DNA damage than sensitization with BrdU,

Figure 3. The catalytic activity of PARP-1 is needed for dissociation from DNA damage sites. (A) Long-term observations of microirradiated
PARP-1 knock out MEFs (MEF parp-1�/�) expressing either GFP-PARP-1 or a GFP-tagged catalytic mutant (GFP-PARP-1E988K). The catalytic
mutant shows a prolonged association at DNA damage sites. (B) Quantitative evaluation of recruitment kinetics. (C) Mobility of GFP-PARP-1 and
GFP-PARP-1E988K at DNA damage sites. The mobility of accumulated fluorescent fusion proteins was determined by bleaching the microirradiated
site 5min after microirradiation and subsequent recovery measurements. Inset shows the bleached microirradiated site. (D) FRAP data from
10 individual experiments are shown as mean curves. Error bars represent the SEM. Scale bar, 5 mm.
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which is likely due to more efficient absorption of the
energy of the 405 nm laser. We therefore used Hoechst to
determine the kinetics of GFP-PARP-1 and GFP-PARP-2
in response to heavy DNA damage. Microirradiation of
Hoechst-sensitized cells resulted in massive recruitment of
GFP-PARP-1 and GFP-PARP-2 from nucleoli to damage
sites (Figure 5). This depletion of the nucleolar storage
was transient and GFP-PARP-1 and GFP-PARP-2
reappeared in the nucleolus correlating with their dis-
sociation from repair sites (Figure 5). These data suggest
that the nucleolus serves as a storage supplying PARP-1
and PARP-2 in response to heavy DNA damage.

Recruitment of XRCC1 to damage sites depends
on PARP-1 but not on PARP-2

Recent studies have indicated that the recruitment
of SSBR/BER factors, like XRCC1 depends on PARP
activity (9,10). To analyze the effect of poly(ADP-
ribosyl)ation on recruitment of XRCC1 in more detail,
we microirradiated wild-type, parp-1�/� and parp-2�/�

MEFs expressing GFP-XRCC1. We found a consid-
erably reduced recruitment of GFP-XRCC1 in cells
lacking PARP-1, whereas recruitment of GFP-XRCC1
in parp-2�/� MEFs was as in wild-type cells (Figure 6A
and B). To elucidate the mechanisms underlying these
different recruitment kinetics we performed FRAP

analysis, 5min after microiradiation. In wild-type cells as
well as in cells lacking PARP-2 we found a slow turnover
of GFP-XRCC1 at microirradiated sites (t1/2=3.3 s and
t1/2=2.85 s, respectively) whereas in parp-1�/� cells GFP-
XRCC1 fluorescence recovered much faster (t1/2=1.2 s),
indicating a high mobility of XRCC1 at DNA damage
sites (Figure 6C and D).
To test, whether the enzymatic activity of PARP-1

is needed for XRCC1 recruitment we cotransfected
parp-1�/� MEFs with RFP-XRCC1 and GFP-tagged
wild-type (GFP-PARP-1) or catalytically inactive PARP-
1 (GFP-PARP1E988K). We found that RFP-XRCC1 is
efficiently recruited to laser-induced DNA damage sites in
parp-1�/� MEFs rescued with GFP-PARP-1 (Figure 7A
and C). In contrast, recruitment of RFP-XRCC1 was
dramatically reduced in parp-1�/� MEFs transfected with
GFP-PARP-1E988K (Figure 7B and C). These results show
that PARP-1 activity enhances the recruitment of repair
factors to DNA damage sites by generating high-affinity
binding sites.

DISCUSSION

Genetic studies of knockout mice and cells have demon-
strated the requirement of the two DNA-damage depen-
dent PARPs, PARP-1 and PARP-2, for DNA repair

Figure 4. Recruitment of PARP-2 to DNA damage sites in living cells. (A) Live cell imaging of microirradiated MEFs either expressing GFP-
PARP-1 or GFP-PARP-2. Accumulation of GFP-PARP-1 and GFP-PARP-2 can be observed immediately after microirradiation. (B) Quantitative
evaluation of GFP-PARP-2 recruitment kinetics. For comparision, the recruitment kinetics of GFP-PARP-1 from Figure 1F are displayed. Time-
matched controls are shown in Supplementary Figure 3. (C and D) Live cell imaging of microirradiated MEFs reveals a slower accumulation of
GFP-PARP-2 in the presence of NU1025. Error bars represent the SEM. Scale bar, 5 mm.
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Figure 6. Efficient recruitment of XRCC1 to DNA repair sites depends on the presence of PARP-1. (A) Live cell imaging of microirradiated
wild-type, PARP-1 and PARP-2 knock out MEFs (MEF parp-1�/�, MEF parp-2�/�) expressing GFP-XRCC1. Accumulation of GFP-XRCC1 at
DNA damage sites is dramatically reduced in the absence of PARP-1. (B) Quantitative evaluation of recruitment kinetics. (C and D) Mobility of
GFP-XRCC1 at DNA damage sites. The mobility of accumulated fluorescent fusion proteins was determined by bleaching the microirradiated
site 5min after microirradiation and subsequent recovery measurements. Inset shows the bleached microirradiated site. FRAP data from 10
individual experiments are shown as mean curves. Error bars represent the SEM. Scale bar, 5 mm.

Figure 5. The Nucleolus serves as a storage of PARP-1 and PARP-2 to cope with heavy DNA damage. (A and C) Live cell imaging of
microirradiated Hela cells sensitized with Hoechst 33285. Microirradiation of Hoechst sensitized cells leads to massive recruitment and temporary
depletion of PARP-1 and PARP-2 from the nucleolus. (B and D) Quantitative evaluation of recruitment and nucleolar depletion kinetics. Error bars
represent the SEM. Scale bar, 5mm.
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(14–19). Based on their interaction with common proteins
involved in genome restoration and binding to different
DNA lesions and substrates, it was suggested that
PARP-1 and PARP-2 have both overlapping and non-
redundant functions (14,13). However, there have been
reports questioning the importance of PARP-1 or PARP-2
for DNA repair (11,20). In this study, we compared
the spatio-temporal redistribution of PARP-1 and PARP-
2 in response to DNA damage induced by laser

microirradiation in living cells. We observed a clear
accumulation of both DNA-damage dependent PARPs
at DNA damage sites. Consistent with distinct roles in
DNA repair we found different recruitment kinetics for
PARP-1 and PARP-2. While PARP-1 accumulated fast
and transiently, PARP-2 showed a delayed and persistent
accumulation at repair sites. The clear accumulation of
PARP-2 at DNA damage sites together with biochemical
and genetic data argues for an involvement of PARP-2
in DNA repair. Our kinetic studies suggest a role for
PARP-2 in the latter steps of DNA repair, however the
precise function of PARP-2 has to be elucidated in future
studies.
Recruitment of PARP-1 is mainly mediated by its

N-terminal DNA binding domain, as mutations of two
cysteine residues within the Zn Finger domain dramati-
cally reduced accumulation at repair sites, whereas the
isolated DBD was sufficient for recruitment. Interestingly,
the highly homologous Zn Finger domain of DNA ligase
III, was neither necessary nor sufficient for recruitment
to DNA repair sites, which was instead mediated by its
BRCT domain binding to XRCC1 (28). Using a potent
PARP inhibitor we could demonstrate that PARP activity
is not essential for, but enhances the efficiency of, PARP-1
and PARP-2 recruitment to repair sites. This fits well
with our observation that the second wave of PARP-1
recruitment relies on PAR binding via the BRCT domain
of PARP-1. Interestingly, we found that the catalytic
activity of PARP-1 is not only needed for efficient
recruitment, but also for dissociation from DNA repair
sites. This observation could be explained with earlier
findings showing that automodification of PARP-1
abolishes DNA binding in vitro (29). These data argue
for three distinct roles of PARP-1 in response to DNA
damage: the detection and labeling of the damaged site,
the local relaxation of chromatin structure and the
recruitment of repair factors.
In summary, we propose the following model for the

spatio-temporal accumulation of SSBR/BER factors
at DNA strand breaks (Figure 8). Single-strand breaks
are detected by the DNA binding domain of PARP-1.
Poly(ADP-ribosyl)ation by PARP-1 leads to chromatin
relaxation and attracts additional PARP-1 molecules via
its BRCT domain. Further poly(ADP-ribosyl)ation at
DNA lesions then leads to the release of PARP-1 through
charge repulsion enabling a switch to the next step in
DNA repair initiated by recruitment of the versatile
loading platform XRCC1. Interestingly, PARP-2,
which is required for DNA repair could not replace
PARP-1 in the rapid recruitment of repair factors.
However, we cannot exclude that PARP-2 could con-
tribute to the slow recruitment of XRCC1 observed in
parp1�/�MEFs.
This study of PARP-1 recruitment revealed a complex

regulation of a repair factor in response to DNA damage.
After detection of the DNA damage, PARP-1 activation
and poly(ADP-ribosyl)ation leads to a positive feedback
loop accumulating more PARP-1 and thus amplifying
the signal for rapid recruitment of repair factors. Further
accumulation is countered by a negative feedback result-
ing in the release of PARP-1 likely to protect against

Figure 7. The catalytic activity of PARP-1 is needed for efficient
recruitment of XRCC1 to laser-induced DNA damage sites. (A) Live
cell imaging of microirradiated PARP-1 knock out MEFs (MEF
parp-1�/�) coexpressing GFP-PARP-1 and RFP-XRCC1. Expression
of GFP-tagged wild-type PARP-1 results in efficient recruitment of
RFP-XRCC1. (B) Live cell imaging of microirradiated PARP-1 knock
out MEFs (MEF parp-1�/�) coexpressing GFP-PARP-1E988K and RFP-
XRCC1. Accumulation of RFP-XRCC1 at DNA damage sites is
dramatically reduced in PARP-1 knock out MEFs expressing
catalytically inactive GFP-PARP-1E988K. (C) Quantitative evaluation
of recruitment kinetics. Error bars represent the SEM. Scale bar, 5 mm.
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uncontrolled poly(ADP-ribosyl)ation which would disrupt
cellular functions and lead to apoptosis. This feedback
regulated recruitment of PARP-1 at DNA lesions thus
allows a balance between signal amplification for rapid
recruitment of repair factors and protection against
extensive poly(ADP-ribosyl)ation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Supplementary Information 

Supplementary Figure 1 

Recruitment of GFP-PARP-1 to DNA damage sites during mitosis. Live cell imaging 

of a microirradiated parp-1-/- cell expressing GFP-PARP-1. Accumulation of GFP-

PARP-1 can be observed immediately after microirradiation in cells undergoing 

mitosis. Scale bar, 5 µm. 

Supplementary Figure 2 

Half nucleus FRAP reveals high mobility of the DNA binding domain in comparision

to the full length and catalytic PARP-1 mutant. Quantitative evaluation of half nucleus 

FRAP experiments are shown. The DNA binding domain shows an overall higher

mobility compared to the full length PARP-1 or the catalytic mutant PARP-1. 



Mortusewicz et al. 

Supplementary Figure 3 

Time-matched controls for the recruitment of (A) GFP-PARP-11-373 and (B) GFP-

PARP-2 in comparison to GFP-PARP-1.
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Supplementary Figure 4 

Recruitment of PARP-2 to DNA damage sites in living cells. (A) Live cell imaging of 

microirradiated Hela cells either expressing GFP-PARP-1 or GFP-PARP-2.

Accumulation of GFP-PARP-1 and GFP-PARP-2 can be observed immediately after 

microirradiation. Live cell imaging of microirradiated Hela cells reveals a delayed 

accumulation of GFP-PARP-2 in the presence of NU1025. (B) Kinetics of PARP-2

recruitment in the absence and presence of NU1025. For comparision, the 

recruitment kinetics of GFP-PARP-1 from Figure 1 D are displayed. (C and D) 

Comparison of PARP-2 recruitment kinetics in wild type and PARP-1 knock out 

MEFs. Error bars represent the standard error of the mean. Scale bar, 5 µm. 
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Abstract 
The multifunctional nuclear protein PC4 is involved in various cellular processes 

including transcription, replication and chromatin organization. Recently, PC4 has 

been identified as a suppressor of oxidative mutagenesis in E. coli and S. cerevisiae. 

To investigate a potential role of PC4 in mammalian DNA repair, we used a 

combination of live cell microscopy, microirradiation and FRAP analysis. We found a 

clear accumulation of endogenous PC4 at DNA damage sites introduced by either 

chemical agents or laser microirradiation. Using fluorescent fusion proteins and 

specific mutants we could demonstrate that the single strand binding capacity of PC4 

is essential for rapid recruitment to laser-induced DNA damage sites. Furthermore 

PC4 showed a high turnover at DNA damages sites compared to the repair factors 

RPA and PCNA. We propose that PC4 plays a role in the early steps of the DNA 

damage response recognizing and stabilizing ssDNA and thereby facilitating DNA 

repair by enabling DNA repair factors to access their substrates. 

 

 

Keywords: PC4, RPA, microirradiation, DNA repair, RNA pol II 
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Introduction 
The human positive cofactor 4 (PC4) is an abundant nuclear protein which plays an 

important role in various cellular processes including transcription, replication and 

chromatin organization (Das et al., 2006; Ge and Roeder, 1994; Kretzschmar et al., 

1994; Pan et al., 1996; Wang et al., 2004). PC4 was originally identified as a 

transcription cofactor that was minimally needed - in addition to the basal 

transcription machinery consisting of TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH - to 

mediate the response of RNA polymerase II to transcriptional activators (Ge and 

Roeder, 1994; Kretzschmar et al., 1994; Meisterernst et al., 1991). 

PC4 is thought to facilitate the formation of the preinitiation complex at the level of 

TFIID-TFIIIA binding as well as during promoter opening and the escape of RNA 

polymerase II through interaction with TFIIH (Fukuda et al., 2004; Kaiser et al., 1995) 

In addition to its cofactor function PC4 represses transcription through interaction 

with single stranded DNA at open promoter regions (Werten et al., 1998; Wu and 

Chiang, 1998). Interestingly, PC4 was found to interact genetically and physically 

with a component of the polyadenylation complex, CtsF-64/Rna15p, which indirectly 

supported the hypothesis that transcription, polyadenylation and termination may be 

closely linked (Calvo and Manley, 2001). 

The 127 amino acid protein PC4 consists of two major domains that are critical for 

distinct functions. The lysine-rich N-terminal regulatory domain (amino acid residues 

1-62) is required for protein-protein interactions and is essential for coactivator 

function in vitro (Kaiser et al., 1995; Kretzschmar et al., 1994). The C-terminal 

domain, comprising amino acid residues 63-127, allows binding to single and double 

stranded DNA in a sequence-independent manner, mediating both transcriptional 

repression and coactivation (Kaiser et al., 1995; Werten et al., 1998). Structural 

analysis of the C-terminal domain (CTD) revealed that PC4 dimerizes and binds 

single-stranded DNA through the carboxy-terminal domain (Brandsen et al., 1997; 

Werten and Moras, 2006). Mutation of critical amino acid residues within the CTD of 

PC4, predicted to be essential for ssDNA binding based on structural comparison 

analyses using the RPA-ssDNA co-crystal structure (Bochkarev et al., 1997), 

resulted in the loss of its ability to bind to ssDNA and to repress transcription (Werten 

et al., 1998). Within its N-terminal regulatory domain PC4 contains the co-called 

SEAC motif, which is rich in serine and acidic residues and was shown to be a target 

of casein kinase II (CKII) phosphorylation (Kretzschmar et al., 1994), regulating the 
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activity of PC4 in mammalian cells (Ge et al., 1994). In proliferating mammalian cells 

about 95% of PC4 was shown to be phosphorylated, which affects its DNA-binding 

properties. Phosphorylated PC4 was shown to loose its coactivator and dsDNA 

binding activities, but maintained its ability to bind to ssDNA mediating transcriptional 

repression (Ge et al., 1994; Werten et al., 1998). 

Recently it has been shown that the ssDNA binding capacity of PC4 is required for 

resistance to hydrogen peroxide (H2O2) and prevents mutagenesis by oxidative DNA 

damage in E. coli and S. cerevisiae (Wang et al., 2004). While these genetic studies 

argue for a role of PC4 in DNA repair, the direct involvement of PC4 in the DNA 

damage response of mammalian cells remains elusive. We used a combination of 

live cell microscopy, laser microirradiation and FRAP analysis to study the 

recruitment of PC4 to DNA damage sites in vivo. We found a very rapid and transient 

accumulation of PC4 at DNA damage sites depending on its ability to bind ssDNA 

which, together with the suggested helicase activity of PC4, argues for a role of this 

multifunctional cofactor in the early steps of DNA repair. 
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Results and discussion 
 
PC4 accumulates at DNA damage sites 
To investigate the role of PC4 in DNA repair we examined the redistribution of PC4 

in response to DNA damage in human and mouse cells. After treatment with different 

chemical agents, cells were in situ extracted and subsequently stained for 

endogenous PC4 and specific DNA damage markers. In untreated cells we found a 

diffuse distribution of PC4 in the nucleus. Upon treatment with H2O2 or Hydroxyurea 

(HU) PC4 accumulated at discrete subnuclear foci colocalizing with sites of DNA 

damage visualized by antibodies against poly (ADP)Ribose (PAR) and γH2AX, 

respectively (Figure 1 A and B). Replication arrest with HU or Aphidicolin (Aph), 

resulting in extended stretches of single stranded DNA (ssDNA), as well as 

treatment with H2O2, also lead to a redistribution of PC4 into foci colocalizing with the 

single strand binding protein RPA (Figure 1 C). 

To locally introduce DNA lesions at preselected subnuclear sites we employed 

microirradiation using a 405 nm diode laser as described previously (Mortusewicz et 

al., 2006; Mortusewicz et al., 2005). This treatment results in the generation of a 

mixture of different types of DNA damage, including single strand breaks (SSBs) and 

double strand breaks (DSBs), which are substrates for different DNA repair 

pathways. Immunofluorescence stainings with specific antibodies revealed that 

endogenous PC4 accumulates at sites of DNA damage as early as 5 min after 

microirradiation in both human and mouse cells (Figure 2 A, B and D). Furthermore 

we observed colocalization of PC4 with the replication and repair protein PCNA at 

laser-induced DNA damage sites (Figure 2 C and E). Taken together, these results 

show that PC4 accumulates at sites of DNA damage generated by chemical agents 

or laser microirradiation. 

 

Recruitment kinetics and mobility of PC4 at DNA repair sites 
Having shown that endogenous PC4 accumulates at DNA damage sites we 

generated GFP- and RFP-tagged fusion proteins to study the recruitment of PC4 in 

living cells (supplementary Figure 1 A). As a positive control we chose the 

proccessivity factor PCNA, which is involved in various DNA repair pathways 

including nucleotide excision repair (NER) (Shivji et al., 1992), base excision repair 
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(BER) (Gary et al., 1999; Levin et al., 2000), mismatch repair (MMR) (Jiricny, 2006; 

Johnson et al., 1996; Umar et al., 1996) and repair of double strand breaks (DSBs). 

Using a combination of microirradiation and time-lapse analysis we followed the 

spatio-temporal accumulation of GFP-PC4 and RFP-PCNA in vivo. For 

quantification, the fluorescence intensity at the irradiated sites were measured, 

corrected for background and total nuclear loss of fluorescence over the time course 

and normalized to the preirradiation value as described before (Mortusewicz et al., 

2006). We found that GFP-PC4 accumulated at DNA damage sites immediately after 

microirradiation, preceding recruitment of RFP-PCNA (Figure 3 A). While RFP-PCNA 

showed a slow and constant increase of accumulation at repair sites during the 

observation period of 5 min, fluorescence intensities of GFP-PC4 declined after 

reaching a maximum around 20-40 s after microirradiation (Figure 3 B). To 

determine whether the recruitment of PC4 to DNA damage sites is cell cycle 

dependent, we microirradiated cells in different S phase stages using RFP-PCNA as 

a cell cycle marker. We found that PC4 accumulates at laser-induced DNA damage 

sites in early, mid and late S phase cells (supplementary Figure 2).  

To determine the mobility of PC4 at laser-induced DNA damage sites we performed 

FRAP analysis 5 min after microirradiation. The irradiated region was bleached with 

a high energy laser pulse for 300 ms and the fluorescence recovery was determined. 

After bleaching of the repair foci we observed complete recovery of the PC4 signal 

within 5-10 s indicating a high mobility of PC4 at repair sites (Figure 3 C and D). In 

contrast, no recovery of PCNA at repair sites could be observed within the 

observation period, which is in good agreement with previous studies where DNA 

damage was induced by chemical agents or irradiation with a UV lamp (Essers et al., 

2005; Solomon et al., 2004). As the fluorescence intensity of PC4 already begins to 

decline during the observation period of 5 min we also performed FRAP analysis 20 

s after microirradiation to determine the mobility of PC4 at the peak of accumulation. 

We could not detect any differences in the mobility of PC4 20 s or 5 min after 

microirradiation (supplementary Figure 3). The constant increase in RFP-PCNA 

fluorescence observed when FRAP analysis was performed 20 s after 

microirradiation can be explained by new RFP-PCNA molecules being recruited 

during the time course of the FRAP experiment. 
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Taken together these results show an early and transient binding of PC4 at DNA 

damage sites suggesting a role for PC4 in the early steps of DNA repair, like 

damage recognition and/or signaling.  

This raises the question of how PC4 gets recruited to DNA lesions. Given that the 

single strand binding capacity of PC4 is needed for resistance against hydrogen 

peroxide in repair deficient E. coli (Wang et al., 2004), it was tempting to speculate 

that PC4 is recruited by binding to single stranded DNA generated at microirradiated 

sites. In addition, the crystal structure of PC4 shows high similarity to the single 

strand binding domains of RPA70 and RPA34 (supplementary Figure 1B and 

(Bochkarev et al., 1999; Bochkarev et al., 1997; Brandsen et al., 1997)). Therefore, 

we directly compared the recruitment kinetics and the mobility of RFP-PC4 with 

GFP-RPA34. We found that both, PC4 and RPA34, were recruited immediately after 

microirradiation, with PC4 accumulating slightly faster than RPA34 (Figure 4 A). Like 

PCNA, RPA34 showed a slow and constant increase in fluorescence intensity at the 

irradiated site, while the intensity of PC4 gradually declined after reaching a 

maximum (Figure 4 B). FRAP analysis revealed distinct recovery rates indicating that 

PC4 exhibits a higher mobility at DNA damage sites than RPA34 (Figure 4 C and D). 

Taken together we could demonstrate that in comparison to the single strand binding 

protein RPA34, PC4 shows distinct recruitment and binding properties at laser-

induced DNA damage sites. 

 

The C-terminal single strand binding domain of PC4 mediates recruitment to 
DNA damage sites 
The fact that PC4 and RPA show different recruitment kinetics and turnover rates at 

DNA repair sites raises the question whether PC4 indeed recognizes single stranded 

DNA generated after microirradiation. Earlier studies revealed a bipartite structure of 

PC4 comprising an amino-terminal regulatory domain (aa 1 to 62) and a carboxy-

terminal ssDNA binding and dimerization domain (CTD, aa 63 to 127). It has also 

been shown that the ssDNA binding activity is not needed for the coactivator function 

of PC4 (Werten et al., 1998). To investigate the mechanisms mediating the 

recruitment of PC4 to DNA damage sites we generated GFP-fusion constructs 

comprising either the N-terminal regulatory domain (GFP-PC4 1-61) or the C-

terminal domain (GFP-PC4 62-127). For direct comparison, we cotransfected the N-

terminal domain together with the full length PC4. We found only a minor 
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accumulation of GFP-PC4 1-61 at microirradiated sites (Figure 5 A). In contrast 

GFP-PC4 62-127 showed the same recruitment kinetics as the full length protein 

(Figure 5 B). We conclude that the C-terminal domain of PC4 is necessary and 

sufficient for recruitment to DNA damage sites. 

To further characterize the recruitment of PC4 to DNA damage sites, we generated 

mutants in the context of the full length and the C-terminal domain (CTD) of PC4. We 

introduced a point mutation at position 89 replacing Trp by Ala (GFP-PC4W89A and 

GFP-PC4CTDW89A) and a triple mutation at positions 77, 78 and 80 (GFP-

PC4β2β3 and GFP-PC4CTDβ2β3), which were previously described to be essential 

for ssDNA binding of PC4 (Werten et al., 1998). The results of the microirradiation 

analysis of the PC4 mutants are summarized in supplementary Figure 1 A and 

shown in detail in Figure 5. Both mutations lead to a reduced accumulation of PC4 at 

microirradiated sites in the context of the full length and the CTD of PC4 (Figure 5 C-

F) indicating that the single strand binding capacity of PC4 is needed for efficient 

recruitment of PC4 to DNA repair sites in living cells. 

 

The fast and transient binding of the transcriptional cofactor PC4 at DNA damage 

sites identified in this study raises several interesting questions concerning potential 

roles in DNA repair and connections to transcriptional regulation. The observation 

that the recruitment of PC4 depends on its single strand binding capacity suggests 

that PC4 might fulfill similar roles in DNA repair as RPA. However, the different 

binding kinetics and mobility of PC4 and RPA at DNA damage sites would argue for 

distinct functions in DNA repair. As PC4 has been implicated in the regulation of 

DNA replication (Pan et al., 1996), it could stop DNA replication near DNA lesions. 

Similarly, PC4 might also stop transcription as a response to DNA damage which is 

supported by the fact that PC4 is a potent repressor of transcription at specific DNA 

structures such as ssDNA, DNA ends and heteroduplex DNA which are generated 

during DNA repair (Werten et al., 1998). Moreover, PC4 could have a helicase-like 

function (Werten and Moras, 2006; Werten et al., 1998), which through binding and 

multimerization along ssDNA is predicted to enable ATP-independent unwinding of 

duplex DNA. 

The crystalization of PC4 in complex with ssDNA revealed that the subunits of the 

PC4 homodimer cooperate in the sequence-independent binding (Ballard et al., 
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1988) of two opposing DNA backbones, exposing the DNA bases to the surrounding 

environment (Werten and Moras, 2006). These observations together with the rapid 

recruitment of PC4 to DNA damage sites argue for a role of PC4 in the detection 

and/or exposure of DNA damages. During the subsequent repair process PC4 may 

be displaced, as suggested by the observed transient binding at damaged sites. 
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Materials and Methods 

 

Cell culture and transfection 

Mouse C2C12 and human HeLa cells were cultured in DMEM containing 50 µg/ml 

gentamicin supplemented with 20% and 10% FCS, respectively. Cells grown on µ-

slides (Ibidi) or on gridded coverslips were cotransfected with jetPEI (PolyPlus 

Transfection) according to the manufacturers instructions. For microirradiation 

experiments cells were sensitized by incubation in medium containing BrdU 

(10 µg/ml) for 24-48 h. Hydroxyurea, Hydrogen Peroxide and Aphidicolin were 

obtained from Sigma. 

 

Expression plasmids 
The generation of PC4 deletion and point mutants was previously described 

(Kretzschmar et al., 1994; Werten et al., 1998). Corresponding GFP-PC4 fusion 

constructs were constructed by ligation of either restriction fragments (NdeI/ClaI for 

GFP-PC4; EcoRI/ClaI for the constructs GFP-PC4β2β3, GFP-PC4W89A, GFP-PC4 

22-127, GFP-PC4 CTDβ2β3, and GFP-PC4 CTDW89A; XhoI/PstI for GFP-PC4 62-

127), or PCR products (forward primer 5’ GAAGATCTCCGGTTATTCTTCATATGCC 

3’, reverse primer 5’ TGGAATTCTCAATCATCTCTG 3’ and BglII/EcoRI cloning for 

GFP-PC4 1-61) into matching restriction sites of pEGFP-C1 (Clontech). GFP-PC4 

fusion constructs were verified by sequencing and tested by expression in HeLa cells 

followed by western blot analysis. A red variant of PC4 was generated by replacing 

GFP with RFP (Campbell et al., 2002) and termed RFP-PC4. 

Mammalian expression constructs encoding translational fusions of human RPA34 

and PCNA with either green (GFP) or red (RFP) fluorescent protein were previously 

described (Sporbert et al., 2005). In all cases expression was under the control of 

the CMV promoter and correct expression of fusion proteins was verified by western 

blot analysis. 

 

Immunofluorescence and Detergent Extraction 
Cells were fixed in 3,7 % formaldehyde for 10 min and permeabilized with 0,5% 

Triton X-100 or ice-cold methanol for 5 min. The following primary antibodies (diluted 

in PBS containing 4% BSA) were used: anti-γH2AX (Ser139) mouse monoclonal 
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antibodies (Upstate), anti-PAR mouse monoclonal antibodies (Trevigen), anti-RPA34 

mouse monoclonal antibodies (Calbiochem), anti-PC4 rabbit polyclonal antibodies  

(SA2249, generated by standard techniques, Herstal, Belgium) and anti-PCNA rat 

monoclonal antibodies (Spada et al., 2007). Primary antibodies were detected using 

secondary antibodies (diluted 1:200 in PBS containing 4% BSA) conjugated to Alexa 

Fluor 488 or 555 (Molecular Probes). Cells were counterstained with DAPI and 

mounted in Vectashield (Vector Laboratories). For in situ extraction, cells were 

permeabilized for 30 s with 0,5 % Triton X-100 in PBS before fixation. 

 

Live-cell Microscopy, microirradiation and photobleaching experiments 
Live cell imaging, mircoirradiation and photobleaching experiments were carried out 

with a Leica TCS SP2/AOBS confocal laser scanning microscope equipped with a 

UV-transmitting HCX PL 63x/1.4 oil objective. Fluorophores were excited using a 

488 nm Ar laser line and a 561 nm DPSS laser line. The microscope was equipped 

with a heated environmental chamber set to 37°C. Confocal image series were 

typically recorded with a frame size of 256x256 pixels and a pixel size of 90 nm.  

Microirradiation was carried out as previously described (Mortusewicz et al., 2006). 

In brief, a preselected spot of ~1 µm in diameter within the nucleus was 

microirradiated for 1 s with a 405 nm diode laser set to maximum power at 100% 

transmission. Before and after microirradiation confocal image series of one mid z-

section were recorded at 2 s time interval (typically 6 pre-irradiation and 150 post-

irradiation frames). For evaluation of the recruitment kinetics, fluorescence intensities 

at the irradiated region were corrected for background and for total nuclear loss of 

fluorescence over the time course and normalized to the pre-irradiation value. 

For FRAP analysis, a region of interest was selected and photobleached for 300 ms 

with all laser lines of the Ar-laser and the 561 nm DPSS laser set to maximum power 

at 100% transmission. Before and after bleaching, confocal image series were 

recorded at 150 ms time intervals (typically 10 prebleach and 200 postbleach 

frames). Mean fluorescence intensities of the bleached region were corrected for 

background and for total nuclear loss of fluorescence over the time course and 

normalized to the mean of the last 4 prebleach values.  

For the quantitative evaluation of microirradiation and photobleaching experiments, 

data of at least 9 nuclei were averaged and the mean curve and the standard error of 

the mean calculated and displayed using Microsoft Excel software.  
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Images of fixed cells were taken with a Zeiss Axiophot 2 widefield epifluorescence 

microscope using a Zeiss Plan-Apochromat 63x/1.40 oil objective and a cooled CCD 

camera (Visitron Systems). 

 

Online supplemental material 
Fig.S1 shows a schematic outline of the fusion proteins used in this study and a 

comparison of the crystal structure of PC4 (Brandsen et al., 1997) with RPA70 

(Bochkarev et al., 1997) and RPA34 (Bochkarev et al., 1999). Fig.S2 shows that 

recruitment of PC4 to laser-induced DNA damage sites occurs in all S phase stages. 

Fig.S3 shows that PC4 displays a high turnover at DNA damage sites 20 s and 5 min 

after microirradiation.  

.  
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Abbreviations: 
PC4: positive cofactor 4 

PCNA: proliferating cell nuclear antigen 

RPA: replication protein A 

HU: Hydroxyurea 

Aph: Aphidicolin 

PAR: poly (ADP)ribose 

SSB: single strand breaks 

TFII: transcription factor II 

TBP: TATA-binding protein 

TAF: TBP-associated factor 

RNA pol II : RNA polymerase II 

PIC: preinitiation complex 

CTD: C-terminal domain 

ssDNA: single-stranded DNA 

dsDNA: double-stranded DNA 

RPA: replication protein A 
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Figure 1 

PC4 accumulates at DNA damage sites. Hela cells were treated with Hydroxyurea 

(10 mM), H2O2 (10 mM) or Aphidicolin (10 µg/ml) for indicated time points and in situ 

extracted with 0,5 % Triton-X-100 for 30 s before fixation. (A and B) Widefield 

fluorescence images of human Hela cells treated with H2O2 or Hydroxurea (HU) 

show accumulation of PC4 at subnuclear sites colocalizing with the DNA damage 

markers PAR and γH2AX, respectively.  

- 59 - 



under revision at The Journal of Cell Biology  Mortusewicz et al. 2007 
 

(C) Replication arrest with Hydroxyurea or Aphidicolin, as well as DNA damage 

induction with H2O2 results in relocalization of PC4 to subnuclear foci colocalizing 

with the single strand binding protein RPA34. Scale bar, 5 µm. 

 

 
Figure 2 
PC4 accumulates at laser-induced DNA damage sites. Widefield fluorescence 

images of mouse C2C12 and human Hela cells are shown. Fixation and 

immunostaining was performed ~5 min after laser microirradiation. Arrows mark sites 

of irradiation. Laser microirradiation results in local generation of DSBs and SSBs (A, 

B and D) detected by antibodies against γH2AX and PAR, respectively. Endogenous 

PC4 accumulates at DNA damage sites in mouse (A and B) and human cells (D) and 

colocalizes with PCNA (C and E). Scale bar, 5 µm. 
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Figure 3 
Recruitment and mobility of PC4 and PCNA at DNA damage sites in living cells. 

(A) Live cell imaging of a microirradiated C2C12 cell coexpressing GFP-PC4 and 

RFP-PCNA. Accumulation of GFP-PC4 can be observed immediately after 

microirradiation, while RFP-PCNA accumulates with a short delay of about 2-10 s. 

(B) Quantitative evaluation of recruitment kinetics showing mean curves. (C) To 
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analyze the mobility of PC4 and PCNA at DNA damage sites, the microirradiated 

region was bleached 5 min after microirradiation and the fluorescence recovery was 

measured. Quantitative evaluation of FRAP data showing mean curves. Error bars 

represent the standard error of the mean. Scale bar, 5 µm. 
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Figure 4 
Comparison of recruitment and binding capacities of PC4 with RPA34 in living cells.  

(A) Live cell imaging of a microirradiated C2C12 cell coexpressing GFP-RPA34 and 

RFP-PC4. Both, GFP-RPA34 and RFP-PC4 accumulate immediately after 

microirradiation (at sites of DNA damage). (B) Quantitative evaluation of recruitment 

kinetics showing mean curves. (C) Mobility of PC4 and RPA34 at DNA damage 

sites. (D) Quantitative evaluation of FRAP data showing mean curves. The Error 

bars represent the standard error of the mean. 
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Figure 5 
The single strand binding capacity of PC4 is needed for efficient recruitment to DNA 

damage sites. Deletion constructs containing either the N-terminal (1-61) or the C-

terminal domain (62-127) of PC4 were tested for in vivo recruitment to DNA damage 

sites. While the N-terminal domain shows only a minor accumulation at 

mircoirradiated sites (A), the C-terminal domain is recruited with similar kinetics like 

the full length PC4 (B). For further analysis key residues essential for single strand 

binding within the full length or CTD of PC4 were mutated (outlined in Figure 3A). 

Recruitment of mutated fusion proteins to DNA damage sites is greatly reduced (C-

F). Scale bar, 5 µm. 
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Supplementary Figure 1 

(A) Schematic outline of fusion proteins used in this study. Mutated amino acid 

positions are indicated in red. (B) Comparison of the crystal structure of PC4 

(Brandsen et al., 1997) with RPA70 (Bochkarev et al., 1997) and RPA34 (Bochkarev 

et al., 1999). Shown are two conformations indicating the OB fold and the binding 

curvature. PC4, RPA70 and RPA43 are shown as green ribbon models. The ssDNA 

is represented as a blue stick model. Key residues involved in binding of single 

stranded DNA are indicated in red.  

 

Supplementary Figure 2 

Recruitment of PC4 to laser-induced DNA damage sites occurs in all S phase 

stages. Live cell imaging of microirradiated C2C12  cells coexpressing GFP-PC4 and 

RFP-PCNA. The cell cycle stage was determined using the characteristic S phase 
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pattern of RFP-PCNA. Recruitment of GFP-PC4 to laser-induced DNA damage sites 

can be observed in early, mid and late S phase cells. Scale bar, 5 µm. 

 

 

Supplementary Figure 3 

PC4 displays a high turnover at laser-induced DNA damage sites. To analyze the 

mobility of GFP-PC4 and RFP-PCNA at the peak of GFP-PC4 accumulation, the 

microirradiated region was bleached 20 sec after microirradiation and the 

fluorescence recovery was measured. As a control a similar sized region in non-

irradiated cells cotransfected with GFP-PC4 and RFP-PCNA was bleached and the 

fluorescence recovery was measured. The recovery curves obtained from FRAP 

analysis 5 min after microirradiation (Figure 4 B) are also displayed as a reference. 

Quantitative evaluation of FRAP data showing mean curves.  
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Introduction
The cyclin-dependent kinase (CDK) inhibitor p21CDKN1A (also
known as p21WAF1/Cip1) plays an important role in several
cellular pathways in response to intracellular and extracellular
stimuli. In particular, p21 is involved in growth arrest
induced by cell-cycle checkpoints, senescence, or terminal
differentiation (Dotto, 2000). In addition, p21 has been shown
to interact directly, or indirectly with proteins regulating gene
expression, thus suggesting a role for p21 in regulation of
transcription (Coqueret, 2003).

Although its activity is usually associated with CDK
inhibition, p21 is also able to interact directly with proliferating
cell nuclear antigen (PCNA), thereby inhibiting DNA
replication (Gulbis et al., 1994). PCNA is a cofactor of DNA
polymerases � and �, that is necessary both for DNA
replication and repair (Tsurimoto, 1999; Warbrick, 2000).
However, PCNA plays a major role in coordinating DNA
metabolism with cell-cycle control (Prosperi, 1997) by
interacting with other DNA replication and repair factors, as
well as with cell-cycle proteins (Paunesku et al., 2001; Vivona
and Kelman, 2003). The binding of p21 to PCNA results in
competition and displacement of PCNA-interacting proteins,

thereby inhibiting DNA synthesis (Oku et al., 1998). Given that
PCNA is also involved in DNA repair, the effects of p21 on
this process are more controversial. In fact, biochemical studies
suggest that high p21 levels inhibit DNA repair (Pan et al.,
1995; Podust et al., 1995), and similar results are obtained on
electroporated cells (Cooper et al., 1999). However, other
studies showed that nucleotide excision repair (NER) was
insensitive to p21 in vitro (Shivji et al., 1994; Shivji et al.,
1998), and that p21 did not inhibit NER in vivo (McDonald et
al., 1996; Sheikh et al., 1997). In particular, cells expressing a
p21 mutant form unable to bind PCNA were deficient in NER,
but when the wild-type protein was expressed, cells became
proficient for repair (McDonald et al., 1996). A positive role
for p21 in NER, was also suggested by the colocalisation and
interaction of p21 and PCNA in actively repairing normal
fibroblasts (Li et al., 1996; Savio et al., 1996), and by cell
resistance to cytotoxic drugs after p21 expression (Ruan et al.,
1998). Other studies performed on p21-null murine fibroblasts,
or on tumour cell lines lacking p21 protein, report that the NER
process is not significantly affected (Smith et al., 2000;
Adimoolan et al., 2001; Wani et al., 2002). However, deletion
of p21 gene in human normal fibroblasts results in reduced

The cyclin-dependent kinase inhibitor p21CDKN1A plays a
fundamental role in the DNA-damage response by inducing
cell-cycle arrest, and by inhibiting DNA replication
through association with the proliferating cell nuclear
antigen (PCNA). However, the role of such an interaction
in DNA repair is poorly understood and controversial.
Here, we provide evidence that a pool of p21 protein is
rapidly recruited to UV-induced DNA-damage sites, where
it colocalises with PCNA and PCNA-interacting proteins
involved in nucleotide excision repair (NER), such as DNA
polymerase �, XPG and CAF-1. In vivo imaging and
confocal fluorescence microscopy analysis of cells
coexpressing p21 and PCNA fused to green or red
fluorescent protein (p21-GFP, RFP-PCNA), showed a rapid
relocation of both proteins at microirradiated nuclear
spots, although dynamic measurements suggested that p21-

GFP was recruited with slower kinetics. An exogenously
expressed p21 mutant protein unable to bind PCNA neither
colocalised, nor coimmunoprecipitated with PCNA after
UV irradiation. In NER-deficient XP-A fibroblasts, p21
relocation was greatly delayed, concomitantly with that of
PCNA. These results indicate that early recruitment of p21
protein to DNA-damage sites is a NER-related process
dependent on interaction with PCNA, thus suggesting a
direct involvement of p21 in DNA repair.

Supplementary material available online at
http://jcs.biologists.org/cgi/content/full/119/8/1517/DC1

Key words: p21waf1/cip1, PCNA, DNA repair, Nucleotide excision
repair, UV irradiation
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DNA repair capacity (Stivala et al., 2001). Thus, although p21
is required for the successful cellular response to DNA
damage, its participation in NER is still debated. It is known
that p21 must be degraded for S-phase entry (Bornstein et al.,
2003; Gottifredi et al., 2004), to prevent PCNA binding and
consequent inhibition of DNA replication. Similarly, it has
been recently shown that ubiquitin-dependent proteolysis of
p21 is triggered after UV-induced DNA damage, and that this
degradation is required for PCNA recruitment to DNA-repair
sites (Bendjennat et al., 2003). However, it is well known that
PCNA is also recruited to DNA-damage sites with fast kinetics
in quiescent cells (Toschi and Bravo, 1988; Prosperi et al.,
1993; Aboussekhra and Wood, 1995; Savio et al., 1998), which
show delayed p21 proteasomal degradation (Bendjennat et al.,
2003). Thus, p21 removal may not be directly required for this
step of the repair process.

In this study we have investigated whether the induction of
p21 may inhibit DNA repair by preventing PCNA recruitment,
and analyzed the spatiotemporal dynamics of p21 recruitment
to DNA-damage sites directly on living cells. We show that a
pool of p21 was rapidly recruited to, and colocalised with
PCNA and other DNA-repair proteins at DNA-damage sites.
By coexpressing p21 fused to green fluorescent protein (p21-
GFP) and PCNA fused to red fluorescent protein (RFP-PCNA),
we further show by dynamic fluorescence measurements that
p21-GFP was recruited to damaged sites with slower kinetics
than that of RFP-PCNA. Relocation of p21 was found to
depend on prior recruitment of PCNA to DNA-damage sites.

Results
p21 protein is not completely degraded after UV
irradiation
To investigate to what extent removal of p21 protein was
required for DNA repair, human fibroblasts were exposed to
different UV-C doses, and collected at various periods of time
after irradiation. Fig. 1A shows that 6 hours after irradiation,
p21 levels were unchanged in samples exposed to a relatively
low dose (2.5 J/m2). By contrast, the protein was significantly
degraded (by about 55% as quantified by band densitometry
versus actin loading), at a high dose (10 J/m2). These doses
corresponded to clonogenic survivals of about 80% and 10%,
respectively. A more significant decrease in p21 protein (by
about 85%) was observed after a dose of 30 J/m2. The time-
course study (Fig. 1B) showed that after an initial reduction
(by about 60%) observed 30 minutes after exposure to 2.5 J/m2

UV-C, p21 levels increased, reaching at 24 hours, about twice
the amount of the untreated control samples. A consistent
decrease was observed at each time point after irradiation with
10 J/m2, though p21 was not completely degraded, because
about 20% of the protein was still detected 24 hours after
irradiation.

p21 is recruited together with PCNA to DNA repair sites
Previous studies on the involvement of p21 in NER focus only
on a time scale of hours after DNA damage (Li et al., 1996;
Savio et al., 1996). Thus, we first asked whether p21 protein
surviving degradation could relocate to DNA-damage sites
within a short interval after UV irradiation, similarly to PCNA.
Fibroblasts were synchronised in G1 phase, to avoid the
presence of S-phase cells containing high levels of chromatin-
bound PCNA. Samples collected 30 minutes after irradiation

Journal of Cell Science 119 (8)

were processed for indirect immunostaining of chromatin-
bound PCNA, and three-step amplification with streptavidin-
Texas-Red for detection of p21. The results clearly indicate that
after DNA damage, early recruitment of p21 occurs similarly
to PCNA (Fig. 2A).

To further test that this was an active process induced by
exposure to UV-C radiation, p21 and PCNA were coexpressed
in HeLa cells as GFP and RFP fusion proteins, p21-GFP and
RFP-PCNA respectively. Coexpression levels of the two fusion
proteins were similar in a high proportion (60-80%) of
transfected cells. Previous analysis showed that p21-GFP
arrested HeLa cells mainly in G1, and partly in G2 phase
(Cazzalini et al., 2003). Thus, in nonirradiated control samples
chromatin-binding of fluorescent proteins was dependent on
the cell-cycle phase. About 65% of transfected cells showed
chromatin-bound p21-GFP, whereas RFP-PCNA was
chromatin-bound (in about 30% of cells), only in S phase
(Leonhardt et al., 2000), as verified by BrdU incorporation (not
shown). The concomitant presence of the two proteins bound
to chromatin, was found in a very low number of cells (about
4%), that were probably at the G1-S transition, as previously
observed for p21-GFP and endogenous PCNA (Cazzalini et al.,
2004). By contrast, after UV irradiation, both proteins were
chromatin-bound in about 70% of transfected cells (Fig. 2B).
In these cells, the two proteins were already colocalised 30
minutes after irradiation, as indicated by the yellow colour of
the merged confocal images (Fig. 2C). To further test the
recruitment of both p21-GFP and RFP-PCNA at DNA repair
sites, cotransfected HeLa cells were also exposed to local UV
irradiation (10 J/m2) through 3-�m-pore filters. Fig. 2D shows
confocal sections of green and red fluorescence signals that are
localised to the exposed areas. The merged image shows the
distribution of the two proteins in the nucleus, as visualised by
DNA staining.

Fig. 1. p21 is not completely degraded after UV-induced DNA
damage. (A) Dose response analysis of p21 degradation after UV-
induced DNA damage in LF1 human fibroblasts. Cells were lysed
directly in loading buffer 6 hours after UV-C irradiation at the
indicated doses. Samples were analysed by western blot for p21
protein levels versus actin as a loading control. (B) Time-course
analysis of p21 degradation after UV irradiation at 2.5 or 10 J/m2.
Samples were analysed for p21 and actin, as above.
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1519Dynamics of p21 recruitment to DNA-repair sites

Spatiotemporal dynamics of p21-GFP recruitment to
DNA-damage sites
To directly compare p21 relocation with that of PCNA, and to
demonstrate that this process occurred independently of the
cell type, we analysed the recruitment kinetics of p21-GFP
and RFP-PCNA in living C2C12 myoblasts, after inducing
cyclobutane pyrimidine dimers (CPDs) DNA damage with a
405 nm laser (supplementary material Fig. S1). The dynamics
of p21-GFP and RFP-PCNA fluorescent signals observed at
DNA-damage sites in single C2C12 living cells, is shown in
Fig. 3A. The irradiated spot shows maximal fluorescence
intensities of both proteins within 2-15 minutes of irradiation,
and then a decrease reaching basal levels 1-2 hours later. A
detailed analysis showed that both proteins started to
accumulate at the irradiated spot within a few seconds, but p21-
GFP fluorescence appeared with a short delay after that
of RFP-PCNA (Fig. 3B). Also, a direct comparison of
fluorescence intensities at irradiated spots revealed a slightly
but consistent faster recruitment of RFP-PCNA than p21-GFP
(Fig. 3C). A similar behaviour was also observed in HeLa cells
(supplementary material Fig. S2).

p21 is recruited to UV-damaged sites together with
DNA-repair proteins
In order to clarify whether the levels of p21 may be a crucial
determinant negatively influencing the recruitment of PCNA
to DNA-damage sites, human fibroblasts were treated with
trichostatin (TSA), a histone deacetylase inhibitor that is
known to induce transcription of the p21 gene thereby
increasing p21 protein levels (Richon et al., 2000). TSA-treated
and mock-treated cells were exposed to UV-C irradiation, and

30 minutes later were collected for determination of total and
chromatin-bound levels of PCNA and p21, as well as of other
proteins participating in DNA repair. Western blot analysis
shows that the total amount of PCNA, DNA ligase I (Lig I), or
DNA polymerase � (pol �), were not appreciably modified by
TSA or UV-C exposure, either alone or in combination (Fig.
4A). As expected, TSA induced an increase in p21 protein
levels (by about 35%), whereas UV-C reduced the levels to
about 15% of the untreated control sample. Interestingly, cells
treated with TSA and then irradiated with UV-C also showed
reduced levels (about 20% of the TSA-treated sample),
indicating that p21 was degraded to a similar extent,
notwithstanding the higher starting levels. The levels of the
above proteins in the chromatin-bound fraction were
undetectable in the control and in the TSA-treated cells,
whereas UV-C induced a significant relocation of all proteins,
including p21 itself. Pre-treatment with TSA did not induce
any significant decrease in the amount of chromatin-bound
PCNA, or of the other proteins, even if the levels of chromatin-
bound p21 were apparently increased (Fig. 4B).

To further test whether p21 relocation occurred concomitantly
with PCNA, and did not interfere with the recruitment of other
repair factors, HeLa cells transfected with p21-GFP expression
vector, were exposed to UV-C irradiation through filters with 3
�m pores. Thirty minutes later, cells were processed for in situ
hypotonic lysis, fixed and immunostained with antibodies to pol
�, XPG, or CAF-1. Fig. 5A shows confocal sections of p21-GFP
fluorescence (green) and immunofluorescence (red) signals
relative to pol �, and the merged image of both signals, together
with that of DNA. Similarly, Fig. 5B,C shows the presence of
XPG or CAF-1, respectively, together with that of p21-GFP, at

Fig. 2. Early recruitment of p21 to DNA repair sites. (A) LF1 human fibroblasts were irradiated with UV-C (10 J/m2) and 30 minutes later
samples were extracted in situ and fixed for indirect immunofluorescence determination, or biotin-streptavidin amplification of chromatin-
bound PCNA (green fluorescence) and p21 (red fluorescence), respectively. DNA (blue fluorescence) was stained with Hoechst 33258.
(B) HeLa cells were cotransfected with p21-GFP and RFP-PCNA expression vectors, and 24 hours later exposed to UV-C radiation (10 J/m2).
After 30 minutes, control (C) and irradiated (UV) cells were extracted in situ and fixed for detection and counting of cells showing only
chromatin-bound RFP-PCNA (empty bars), p21-GFP (solid bars), or both (dashed bars). The percentages of cells in a representative experiment
are shown. (C) Confocal sections of merged green and red fluorescence signals, of untreated control and UV-C-irradiated cells. (D) HeLa cells
expressing p21-GFP and RFP-PCNA were exposed to local UV-C radiation (10 J/m2) through 3 �m pores. Confocal sections of green (p21-
GFP) and red (RFP-PCNA) fluorescence signals are displayed, together with the merged image showing also the blue fluorescence (Hoechst) of
DNA counterstaining. Bars, 10 �m (A,C); 5 �m (D).
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locally irradiated sites. Each protein analysed was detected
(though with variable intensity) at virtually every spot containing
p21-GFP. These results indicate that in addition to PCNA, p21-
GFP also colocalises with these proteins involved in different
steps of DNA repair.

Interaction of p21 with PCNA and DNA pol � after UV-C
irradiation
Previous studies showed that p21 does not influence the RFC-
mediated PCNA loading to DNA replication sites, yet it
prevents or destabilises further binding of PCNA-interacting
proteins, such as pol � (Waga and Stillman, 1998; Cazzalini et
al., 2003). To understand whether this was also the case during
DNA repair, native p21 or p21-GFP were immunoprecipitated
from normal fibroblasts, or from HeLa cells, respectively using
antibodies to p21 or to GFP. After immunoprecipitation, bound
peptides were analysed by western blot for the presence of
PCNA and pol � (p125 subunit). Fig. 6A shows the results of

Journal of Cell Science 119 (8)

Fig. 3. Dynamics of p21 recruitment to DNA-repair sites in living cells. (A) C2C12 myoblasts expressing both p21-GFP and RFP-PCNA were
exposed to 405 nm laser microirradiation and fluorescence signals were acquired after the indicated times. Maximum projections of confocal
mid sections show the accumulation of p21-GFP and RFP-PCNA fluorescence signals at sites of DNA damage (arrows). (B) Short-term kinetic
analysis of p21-GFP and RFP-PCNA fluorescence after 405 nm laser microirradiation. Signals were acquired every 2 seconds and confocal
sections are shown of images taken at the indicated times. The arrows indicate the site of irradiation. (C) Plot of the relative fluorescence
intensity of p21-GFP (green) and RFP-PCNA (red) at the irradiated spot. Fluorescence intensities acquired every 2 seconds at the irradiated
region, were corrected for background, and for total nuclear loss of fluorescence over the time course, and normalised to the pre-irradiation
value. Bars, 5 �m (A,B).

Fig. 4. Induction of p21 expression does not inhibit recruitment of
PCNA and DNA repair proteins. LF1 fibroblasts were treated for 16
hours with TSA to induce expression of p21, as described in the
Materials and Methods. 30 minutes after exposure to UV-C radiation
(10 J/m2), cells were directly lysed in loading buffer, for
determination by western blot of total cellular content (total) of p21,
PCNA, pol � (p125 subunit) and Lig I. (A). Parallel samples were
fractionated for western blot analysis of proteins in the chromatin-
bound fraction (B). Actin was also determined as a loading control.
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1521Dynamics of p21 recruitment to DNA-repair sites

p21 immunoprecipitation from fractionated cell extracts
(detergent-soluble or chromatin-bound fractions) of LF1
fibroblasts. It can be seen that in the detergent-soluble fraction,
PCNA was coimmunoprecipitated with p21 from both
control and UV-treated samples. Interestingly, the pol-�–p125
subunit was also present, being immunoprecipitated to a higher
extent in UV-treated cells than in the control samples, though
protein levels in the input soluble extracts were not
significantly different. For a positive control, an aliquot of the
soluble fraction was immunoprecipitated with a polyclonal
antibody anti-p125 subunit. As expected, PCNA was
coimmunoprecipitated with p125 (Riva et al., 2004).

No detectable signal of PCNA or p125 could be observed in
the immunoprecipitation from the chromatin-bound fraction of
untreated control cells, in which p21 levels were not detectable.
By contrast, PCNA and pol � were clearly immunoprecipitated
by p21 antibody from the chromatin-bound fraction of
UV-treated samples, in which p21 levels before
immunoprecipitation were readily detected.

To investigate the kinetics of the p21-PCNA interaction,
HeLa cells expressing p21-GFP or pEGFP, were UV irradiated

and collected at various periods of time. After fractionation,
immunoprecipitation was performed with anti-GFP antibody
on chromatin-bound extracts. Fig. 6B shows that both PCNA
and pol � could be immunoprecipitated from the chromatin-
bound fraction of cells transfected with the p21-GFP
expression vector, but not from that of cells transfected
with empty vector (pEGFP). In particular, PCNA
coimmunoprecipitated with p21-GFP from untreated control
and from UV-irradiated samples, whereas pol � was found
only in the immunoprecipitates from UV-irradiated cells. The
levels of PCNA and pol � immunoprecipitating together with
p21-GFP decreased with time. This result may be attributed
to a reduction in the levels of pol � in the chromatin-bound
extract. The levels of PCNA were not concomitantly reduced,
probably because they represent the sum of chromatin-

Fig. 5. Colocalisation of p21-GFP with DNA repair proteins
recruited to DNA-damage sites. HeLa cells expressing p21-GFP
were locally irradiated with UV-C (10 J/m2) through 3 �m pores.
After 30 minutes, cells were extracted in situ and fixed for
determination of chromatin-bound p21-GFP and
immunofluorescence staining of DNA repair proteins. (A) Confocal
sections of p21-GFP (green) and pol � (red) fluorescence signals are
displayed together with the merged image also showing DNA
counterstaining with Hoechst 33258 (blue). (B) confocal sections
showing the single and merged images of p21-GFP (green), and XPG
(red) at the irradiated sites. DNA was counterstained with Hoechst
33258 (blue). (C) Confocal sections showing the recruitment of p21-
GFP (green) and CAF-1 (red), and DNA counterstaining (blue).
Bars, 5 �m.

Fig. 6. p21 does not displace pol � from binding to PCNA after UV-
C DNA damage. (A) Immunoprecipitation (Ip) was performed on
detergent-soluble (S), or chromatin-bound fraction (Cb) obtained
from LF1 fibroblasts irradiated or not with UV-C (10 J/m2), and
harvested after 30 minutes. Samples were immunoprecipitated with
anti-p21, or with anti-p125 (pol �) polyclonal antibodies, or with
purified rabbit immunoglobulins (Ig) for specificity control. The
immunoprecipitated material was analysed by western blot for the
presence of PCNA, pol � (p125 subunit), and p21. The position of
each protein is shown together with Ig heavy chains (Ig h).
Fractionated extracts (Input) were loaded (1/30 and 1/15 for S and
Cb fractions, respectively) together with recombinant PCNA
(PCNAr), and analysed by western blot for pol �, PCNA, p21, and
actin as a loading control. (B) Immunoprecipitation (IP) was
performed on HeLa chromatin-bound extracts with anti-GFP
antibody. Cell extracts were obtained from cells expressing pEGFP
(GFP), or p21-GFP, irradiated or not with UV-C (10 J/m2) and
harvested at times indicated below each panel. Western blot analysis
of PCNA and pol �, was performed on immunoprecipitated material.
The position of each protein is shown together with Ig heavy chains
(Ig h). Chromatin-bound extracts (Input) were loaded (1/15) on a
parallel gel for western blot analysis of pol �, PCNA, p21-GFP, and
actin as a loading control.
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bound PCNA in transfected and non-transfected cells (see
Discussion).

Relocation of p21 to DNA-damage sites depends on the
interaction with PCNA
Although it had been suggested that p21 interaction with
PCNA is important for DNA repair (MacDonald, 1996; Stivala
et al., 2001), the mechanism underlying this aspect was not
previously elucidated. Thus, we investigated whether the
presence of p21 at DNA-damaged sites was dependent on the
interaction with PCNA. To this purpose, HeLa cells were
transfected with constructs for the expression of HA-tagged
wild-type p21 (p21wt-HA), or a mutant form unable to bind
PCNA (p21PCNA–HA) (Cayrol and Ducommun, 1998). These
constructs were chosen because a similar p21 mutant protein

fused to GFP was previously found to be unstable (Cazzalini
et al., 2003). After localised UV irradiation, cells were
immunostained with anti-PCNA and anti-HA antibodies
for detection of chromatin-bound PCNA and p21-HA,
respectively. Analysis by fluorescence confocal microscopy
showed that p21wt-HA colocalised with PCNA at the locally
irradiated sites, as shown by the merged images of p21-HA
(green fluorescence) and PCNA (red fluorescence). By
contrast, the p21PCNA–HA mutant form showed a
heterogeneous, punctuate distribution, but was not recruited
with PCNA to the irradiated areas (Fig. 7A). Whole-cell
exposure to UV-C was also performed for immunoprecipitation
analysis with anti-HA antibody, after cell fractionation. Fig. 7B
shows that PCNA and pol � were immunoprecipitated from
both the soluble and chromatin-bound fractions, obtained
from UV-exposed cells expressing p21wt-HA. In the
immunoprecipitate obtained from the soluble fraction of cells
expressing p21PCNA–HA, a faint band was detected at the
position relative to pol � or PCNA, probably because of an
interaction with CDK2 (Cazzalini et al., 2003). Remarkably,
no band corresponding to PCNA or pol � could be detected in
the immunoprecipitate performed on the chromatin-bound
fraction, despite the presence of both proteins together with
p21PCNA–HA, in the extract. Immunoprecipitation with anti-HA
antibody from non-transfected cells showed the absence of any
of these proteins in the immunoprecipitate, indicating the
specificity of the antibody reaction.

As a further step to understand whether p21 recruitment was
dependent on the DNA-repair process, and not a consequence
of checkpoint activation, we used NER-deficient XP-A
fibroblasts (DeLaat et al., 1999). These cells do not recruit
PCNA with the fast kinetics shown by normal cells
(Aboussekhra and Wood, 1995; Miura, 1999). Fig. 8 shows that
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Fig. 7. p21 recruitment to DNA repair sites requires interaction with
PCNA. HeLa cells were transfected with HA-tagged constructs for
expression of wild-type p21 (p21HAwt) or a mutant form (p21HAmt)
unable to bind PCNA (p21PCNA–). (A) 24 hours after transfection,
cells were exposed to local UV irradiation (15 J/m2) through filters
with 3 �m pores, extracted in situ 30 minutes later and fixed for
immunofluorescence staining with anti-HA (green fluorescence) or
anti-PCNA (red fluorescence) antibody. Confocal sections of each
signal, together with the merged images, are shown. Bars, 5 �m.
(B) Immunoprecipitation was performed with anti-HA antibody on
detergent-soluble (soluble), and chromatin-bound (chrom.) fractions
obtained from non-transfected (ntr) cells, and from cells expressing
p21wt (wt), or p21PCNA– (mt) proteins. Immunoprecipitated material
was analysed by western blot with anti-pol �, anti-PCNA, and anti-
HA antibodies. The position of each protein is shown together with
Ig heavy (Ig h), and light (Ig l) chains. For detergent-soluble and
chromatin-bound extracts, 1/30 and 1/15 respectively, were loaded
(Input) on a parallel gel for western blot analysis of pol �, PCNA,
p21HA-tagged proteins, and actin as a loading control.

Fig. 8. p21 recruitment to DNA-damage sites depends on DNA
repair activity. LF1 and XP20PV (XPA) fibroblasts were exposed to
local UV-C irradiation (15 J/m2) through filters with 3 �m pores,
extracted in situ, and fixed at the indicated times for determination of
chromatin-bound PCNA and p21. Samples were immunostained with
anti-PCNA polyclonal, and anti-p21 monoclonal antibody, detected
respectively with secondary antibody conjugated with Alexa Fluor
488 (green fluorescence) or Alexa Fluor 594 (red fluorescence);
DNA was counterstained with Hoechst 33258 (blue fluorescence).
Bar, 10 �m.
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1523Dynamics of p21 recruitment to DNA-repair sites

30 minutes after local exposure to UV-C irradiation,
immunofluorescence signals related to PCNA (green) and p21
(red) were present at damaged sites in normal (LF1), but not
in XPA fibroblasts, as indicated by the yellow spots (merged
green and red signals). This result was not dependent on the
lack of lesions at the irradiated areas, since CPDs were detected
with a specific antibody (supplementary material Fig. S3).
Chromatin-bound PCNA and p21 associated to DNA-repair
sites could be detected in XPA cells, 24 hours after irradiation.

p21 does not inhibit PCNA-dependent DNA-repair
synthesis
In order to test whether the presence of p21 did not inhibit
DNA repair, unscheduled DNA synthesis (UDS) was assessed
in normal LF1 fibroblasts, as well as in p21-GFP-expressing
HeLa cells. In normal fibroblasts, UDS can be visualised by
BrdU incorporation and discriminated from DNA replication,
in which much higher levels of BrdU are normally incorporated
(Nakagawa et al., 1998). Fig. 9A shows the spots of BrdU
incorporation detected in LF1 fibroblasts after exposure to UV-
C (10 J/m2) and further incubated for 3 hours in medium
containing 100 �M BrdU. For comparison, samples containing
high levels of p21 induced by TSA treatment (see Fig. 4A)

were also included (TSA and TSA+UV). An overexposed S-
phase cell is visible in the control sample. UDS in irradiated
samples is denoted by the presence of fluorescent nuclear foci.
Quantification by flow cytometry revealed that G1-phase cells
treated with TSA before irradiation (TSA+UV) showed BrdU
incorporation levels 1.5 times higher than untreated but UV-
irradiated cells (Fig. 9B). In HeLa cells, UDS was assessed by
autoradiography of [3H]thymidine incorporation in cells
transfected with p21-GFP, or pEGFP, and detected by
immunoperoxidase staining (brown colour) with anti-GFP
antibody (Fig. 9C). The results showed that the number of
autoradiographic granules relative to UDS, detected after UV
irradiation in p21-GFP transfected cells, was not significantly
different from that in pEGFP, or in non-transfected cells (Fig.
9D).

Discussion
Fast recruitment of p21 and PCNA to DNA repair sites
independently of p21 degradation
In this study we provide evidence showing that UV-induced
DNA damage elicits two different immediate responses
regarding p21 protein. In normal fibroblasts, UV irradiation
induced a drastic reduction (~60-80%) in p21 protein levels.

However, a detectable pool (~5-10%) of
the remaining protein was rapidly
recruited together with PCNA at the
irradiated sites. It was recently reported
that p21 was degraded by the proteasome
within hours after UV irradiation, in order
to promote PCNA-dependent DNA repair
(Bendjennat et al., 2003). In our system,
p21 protein was not completely degraded
either at low (2.5 J/m2) or high (10 J/m2)
UV doses. In fact, other mechanisms
regulating gene expression after UV
damage (Barley et al., 1998; McKay et al.,
1998), or after other types of DNA lesions
(Frouin et al., 2003), may influence p21
turnover. An important factor limiting p21
proteasomal degradation is the interaction
with PCNA, because the C8 proteasome
subunit binds p21 at its C-terminal region,
where the PCNA binding site is located
(Touitou et al., 2001). In fact, a p21
mutant protein unable to bind PCNA
showed proteasomal degradation faster
than wild-type protein (Cayrol and
Ducommun, 1998).

Dose-response and time-course studies
previously showed that low levels of p21
become chromatin-bound within 2 hours
of UV damage (Pagano et al., 1994; Savio
et al., 1996). Here we have clearly
detected chromatin association of p21 as
an immediate response to DNA damage.
The time course of p21-GFP and RFP-
PCNA accumulation in living murine and
human cells, showed that both proteins
were recruited within seconds of UV
irradiation and persisted for more than 2
hours, consistent with in vivo dynamics of

Fig. 9. p21 does not inhibit UDS repair activity. (A) Untreated or TSA-treated LF1
fibroblasts were irradiated with UV-C (10 J/m2), and incubated with 100 �M BrdU for 3
hours. Cells were then fixed and immunostained with anti-BrdU antibody, a secondary
biotinylated antibody followed by streptavidin-FITC. Fluorescence images of untreated
(C), or TSA-treated cells (TSA) are shown together with samples exposed to UV radiation
(UV), or exposed after TSA treatment (TSA+UV). (B) Normalised fluorescence intensity
of BrdU immunofluorescence in G1-phase cells, measured by flow cytometry. Mean values
± s.d. (n=3) are reported. *P<0.05 compared with levels in the UV sample (Student’s t-
test). (C) HeLa cells expressing pEGFP, or p21-GFP, were UV-C irradiated (20 J/m2),
incubated for 2 hours in [3H]thymidine and then fixed. Cells were immunostained with
anti-GFP primary antibody and HRP-conjugated secondary antibody, and detected by
immunoperoxidase staining (brown precipitate). UDS is denoted by the presence of nuclear
autoradiographic granules. (D) Quantification of UDS grains in non-S-phase nuclei. Mean
values of grain number (± s.d.) in duplicate samples, are reported. Bars, 10 �m (A,C).

Jo
ur

na
l o

f C
el

l S
ci

en
ce



1524

other repair factors, such as ERCC1-XPF or TFIIH
(Houtsmuller et al., 1999; Hoogstraten et al., 2002;
Rademakers et al., 2003; Moné et al., 2004). This time period
is in agreement with estimated repair time under local
irradiation conditions (Houtsmuller et al., 1999), with the time
course of endogenous PCNA recruitment (Toschi and Bravo,
1988; Prosperi et al., 1993), and with the evidence that PCNA
recruited to sites of DNA damage shows a very low turnover
(Solomon et al., 2004). Initial measurements indicated that
RFP-PCNA was relocated slightly faster than p21-GFP,
suggesting that p21 binding to DNA-damage sites followed
that of PCNA.

Rapid recruitment of p21 was previously observed after
heavy-ion-induced DNA damage in human fibroblasts,
supporting a role for p21 in early processing of double-strand
breaks (Jakob et al., 2002). We also observed rapid p21
relocation with irradiation conditions (337 nm laser) producing
double-strand breaks (not shown). However, we used 405 nm
laser irradiation to induce CPDs, a typical NER substrate
(supplementary material Fig. S1). Although it cannot be
excluded that under these conditions other DNA lesions were
also produced, our results were confirmed by microirradiation
experiments with UV-C. Thus, the p21 response seems to be
independent of the type of lesion, but related to PCNA-
dependent repair pathways.

Interaction of p21 with PCNA at DNA repair sites does
not displace PCNA-interacting proteins
Our results also showed that p21 relocation after DNA damage
occurred concomitantly with the recruitment of other proteins
directly involved in DNA repair, such as pol � and Lig I
(Aboussekhra et al., 1995). This relocation was not affected in
TSA-treated fibroblasts, which after DNA damage exhibited
chromatin-bound p21 levels higher than those in samples
exposed only to UV irradiation. In addition, in HeLa cells we
found that p21-GFP was not significantly degraded (not
shown), and colocalised with pol �, and with factors known to
interact with PCNA, required at different steps of the NER
process, such as XPG (Gary et al., 1997), and CAF-1 (Green
and Almouzni, 2003). These results indicate that p21 does not
inhibit the recruitment of repair factors to DNA-damage sites.

In the present study, immunoprecipitation experiments have
shown that in UV-irradiated samples, pol � could interact with
chromatin-bound p21 and PCNA. These results are in contrast
to previous findings showing that p21 disrupts the interaction
of PCNA-associated proteins involved both in DNA
replication and repair, such as FEN-1 (Chen et al., 1996), Lig
I (Levin et al., 1997), DNA methyltransferase (Chuang et al.,
1997), XPG (Gary et al., 1997), or pol � (Cazzalini et al.,
2003; Riva et al., 2004). However, in those studies the
interaction was mainly assessed with purified proteins, or by
overexpressing p21 in cells not exposed to DNA damaging
agents. Thus, although high p21 levels may saturate PCNA
binding, this condition may not have occurred in repairing
normal cells. We have also shown that in UV-damaged cells,
chromatin-bound pol � remained associated with PCNA, even
in cells expressing exogenous p21 (either as GFP- or HA-
tagged proteins). Moreover, a p21 mutant form (p21PCNA–)
unable to bind PCNA (Cayrol and Ducommun, 1998), was not
able to coimmunoprecipitate detectable levels of chromatin-
bound PCNA, or pol �, further supporting the evidence that

p21 binds in vivo to PCNA complexed with pol � at DNA-
damage sites.

The role of a p21–PCNA–pol-� complex during DNA repair
is still unclear. It could be hypothesised that p21 is required for
PCNA–pol-� interaction during DNA repair. From this point of
view, p21-null human fibroblasts showed substantially normal
recruitment of PCNA after UV irradiation, whereas the repair
efficiency was significantly reduced (Stivala et al., 2001).
Alternatively, this complex could represent a transition state in
which p21 binding to PCNA will enable the disassembly of pol
�, thereby promoting the next PCNA-dependent steps (Riva et
al., 2004). In fact, in p21-null human fibroblasts, or in cells with
mutant p53, an accumulation of chromatin-bound PCNA was
observed at late repair times (Stivala et al., 2001; Riva et al.,
2001). Similar behaviour of PCNA was observed here in p53-
deficient HeLa cells (Fig. 6B).

p21 recruitment depends on binding to PCNA involved
in NER activity
The evidence that p21PCNA– mutant protein was not able to
relocate to DNA-damage sites strongly suggests that
interaction with PCNA is responsible for p21 recruitment.
Thus, the slightly slower kinetics of p21-GFP accumulation
may indicate that PCNA is recruited first, and soon after p21
follows. In NER-deficient XPA cells, PCNA recruitment was
previously described only at late times after DNA damage
(Miura, 1999). In agreement with these findings, we also
observed a delayed relocation of p21 concomitant with that of
PCNA. The lack of early recruitment of both proteins in XP-
A cells supports the conclusion that p21 interacts with PCNA
in a process dependent on ongoing DNA repair, and not as an
immediate consequence of checkpoint activation. Accordingly,
early p21 recruitment after UV damage was also observed in
normal quiescent fibroblasts (not shown), which have p21
levels higher than those in proliferating cells (Itahana et al.,
2002).

p21 does not inhibit DNA-repair activity in living cells
The presence of p21 did not inhibit DNA repair, as determined
by the UDS assay, because both TSA-treated human fibroblasts
and HeLa cells containing detectable levels of p21, showed
UDS activity equivalent to that of cells containing low
physiological levels (untreated fibroblasts), or low-to-
undetectable amounts (untransfected or pEGFP-transfected
HeLa cells) of endogenous p21. Thus, it is possible that only
relatively high p21 levels, such as those reached in cells
expressing a p21 mutant protein not degraded after UV
irradiation, may reduce or abolish the recruitment of PCNA
(Bendjennat et al., 2003). Interestingly, an increase in UDS
activity was observed after UV exposure in fibroblasts treated
with TSA, an inducer of p21 (Richon et al., 2000). It is known
that TSA also increases histone acetylation, thereby favouring
the accessibility of DNA-repair machinery to DNA-damage
sites (Rubbi and Milner, 2003), which was not hindered by
higher p21 levels.

We have shown that, as an immediate response to DNA
damage, cells do not completely degrade p21, and that low p21
levels interacting with PCNA accumulate at DNA-damage
sites, without inhibition of DNA repair. Possible effects of p21
on the composition and/or activity of PCNA complexes in
DNA repair remain to be clarified by future studies.
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Materials and Methods
Cells, transfections and treatments
HeLa S3 cell line was grown in Dulbecco’s modified Eagle’s medium (DMEM,
Sigma) supplemented with 10% foetal bovine serum (FBS, Gibco BRL), 4 mM L-
glutamine (Gibco BRL), 100 U/ml penicillin, 100 �g/ml streptomycin in a 5% CO2

atmosphere. Expression constructs coding for p21 wt or a C-terminal mutant
(p21PCNA–) protein deficient for PCNA interaction (Cayrol and Ducommun, 1998)
were cloned in pEGFP-N1 (Clontech), or pCDNA3 vectors, for expression of p21-
GFP or p21-HA fusion proteins respectively, as previously described (Cazzalini et
al., 2003). The expression construct encoding mRFP-PCNAL2 was obtained by
replacing EGFP with mRFP1 (Sporbert et al., 2005). Cells seeded on coverslips or
Petri dishes, were transiently transfected with Effectene transfection reagent
(Qiagen) 24 hours after seeding (70% confluence), and irradiation was usually
performed 24 hours after transfection.

Mouse C2C12 myoblasts were cultured in DMEM supplemented with 25 mM
HEPES, 50 �g/ml gentamicin and 20% FBS (Sporbert et al., 2002). Cells grown
on gridded coverslips, or on Lab-Tek® chamber slides (Nunc), were either
microinjected with plasmid DNA using an automated microinjection system
(Eppendorf), or cotransfected with TransFectin® transfection reagent (Bio-Rad),
according to manufacturers instructions. Cells were subsequently incubated
overnight before microirradiation and live-cell analyses.

Human embryonic lung fibroblasts (LF1), kindly provided by J. Sedivy (Brown
University, Providence, RI), were grown in Earle’s minimal essential medium
(Invitrogen) supplemented with 10% FBS (Invitrogen), 100 U/ml penicillin and 100
�g/ml streptomycin in a 5% CO2 athmosphere. The XP20PV (XPA) primary
fibroblasts were provided by M. Stefanini (IGM-CNR, Pavia, Italy), and grown in
HAM F-10 medium, supplemented with 10% FBS.

For cell synchronisation in G1 phase, fibroblasts were serum starved (0.5% FBS)
for 72 hours, and then re-incubated in complete medium for 8 hours. In some
experiments, cells were treated for 16 hours with trichostatin A (TSA) at the final
concentration of 200 ng/ml (Rubbi and Milner, 2003). Cell exposure to UV-C was
performed with a lamp (Philips TUV-9) emitting mainly at 254 nm, at doses ranging
from 2.5 to 30 J/m2, as measured with a DCRX radiometer (Spectronics). Localised
irradiation was performed by laying Isopore polycarbonate filters (Millipore) with
3-�m pores (Katsumi et al., 2001) on top of the cells.

Laser microirradiation and time-lapse microscopy
Microirradiation experiments were essentially performed as described
(Mortusewicz et al., 2005). In brief, C2C12 cells were seeded on coverslips and
sensitised for microirradiation by incubation in medium containing BrdU (10
�g/ml) for 20 hours. For live-cell microscopy and irradiation, coverslips were
mounted in FCS2 (Bioptechs), or in POC (Visitron Systems) live-cell chambers and
maintained at 37°C. In some experiments, microirradiation was carried out with a
microdissection system (P.A.L.M.) using a pulsed N2 laser (337 nm) coupled to a
Zeiss LSM410 confocal laser-scanning microscope. However, to induce the
formation of cyclobutane pyrimidine dimers (CPDs), microirradiation was carried
out with a 405 nm Diode laser coupled to a Leica TCS SP2/AOBS confocal laser
scanning microscope. The laser was set to maximum power at 100% transmission,
and cells were irradiated for 1 second. For evaluation of the recruitment kinetics,
fluorescence intensities of the irradiated region were corrected for background and
for total nuclear loss of fluorescence over the time course and normalised to the pre-
irradiation value.

For long time-lapse analysis, light optical sections were acquired with a Zeiss
LSM410 confocal laser-scanning microscope using the 488 nm Ar laser line and
the 543 nm HeNe laser line. Six mid z-sections at 0.5 �m intervals were taken every
3-10 minutes and cells were followed up to several hours. Focus drift over time was
compensated with a macro, as described (Mortusewicz et al., 2005). After image
acquisition, a projection of all six z-sections was performed from each time point
using ImageJ 1.34. Short time series were taken with a Leica TCS SP2/AOBS
confocal laser-scanning microscope using the 488 nm Ar laser line and the 561 nm
DPSS laser line. Before and after microirradiation, confocal image series of one
mid z-section were recorded every 2 seconds.

Immunofluorescence and confocal microscopy
HeLa cells seeded on coverslips were transfected as described above. After 24 hours,
cells were locally irradiated, and re-incubated in whole medium for the required
period of time. Cells on coverslips were then washed twice in PBS, dipped in cold
physiological saline and lysed for 10 minutes at 4°C in hypotonic buffer: 10 mM
Tris-HCl (pH 7.4) 2.5 mM MgCl2, 0.1% Nonidet NP-40, 0.2 mM
phenylmethylsulfonyl fluoride (PMSF) and 0.2 mM Na3VO4. Thereafter, samples
were washed in PBS, fixed in 2% formaldehyde for 5 minutes at room temperature
(RT), and then post-fixed in 70% ethanol. After re-hydration, samples were blocked
in PBST buffer (PBS, 0.2% Tween 20) containing 1% bovine serum albumin (BSA),
and then incubated for 1 hour with specific monoclonal antibodies. anti-PCNA
(PC10, Dako), anti-DNA polymerase � (pol �) p125 subunit (clone 22, BD
Biosciences), anti-CAF-1 (Ab-2, Oncogene Research), or anti-XPG (Ab-1,
NeoMarkers), all diluted 1:100 in PBST buffer/BSA. After washing, each reaction
was followed by incubation for 30 minutes with anti-mouse antibody conjugated

with Alexa Fluor 594 (Molecular Probes). Cells expressing p21-HA fusion proteins
were incubated with anti-HA monoclonal antibody (clone H7, Sigma), and with
FL261 rabbit polyclonal antibody to PCNA (Santa Cruz Biotech.), diluted 1:500 or
1:100, respectively. After three washes with PBST buffer, coverslips were incubated
for 30 minutes with goat anti-rabbit and anti-mouse antibodies labeled with Alexa
Fluor 488 or 594 (Molecular Probes), respectively. After immunoreactions, cells
were incubated with Hoechst 33258 dye (0.5 �g/ml) for 2 minutes at RT and washed
in PBS. Slides were mounted in Mowiol (Calbiochem) containing 0.25% 1,4-
diazabicyclo-[2,2,2]-octane (Aldrich) as antifading agent. LF1 fibroblasts grown on
coverslips were irradiated as above, dipped in cold double-distilled H2O before lysis
in hypotonic buffer, and fixation as above (Savio et al., 1998). Samples were
incubated for 1 hour in FL261 polyclonal antibody to PCNA, and with monoclonal
antibody to p21 (clone DCS 60.2, NeoMarkers), both diluted 1:100. After washing,
samples were incubated for 30 minutes in goat anti-rabbit and anti-mouse antibodies
conjugated with Alexa Fluor 488 (1:200), and Alexa Fluor 594 or biotin,
respectively. In the latter case, incubation with streptavidin-Texas-Red (Amersham
Biosciences) diluted 1:100 was performed.

For determination of laser-induced CPDs, C2C12 cells were fixed with 3.7%
formaldehyde in PBS and permeabilised with 0.2% Triton X-100 for 4 minutes.
DNA was denatured by incubation in 0.5 M NaOH for 5 minutes, and then
coverslips were stained with anti-CPDs monoclonal antibody (Kamiya Biomedical)
diluted 1:1000 in PBS containing 2% BSA, and detected with Cy3-conjugated goat
anti-mouse antibody (Amersham) diluted 1:400. Cells were counterstained with
DAPI and mounted in Vectashield (Vector Laboratories).

Fluorescence signals were acquired with a Leica TCS SP2 confocal microscope,
at 0.3 �m intervals. Image analysis was performed using the LCS software. Images
of fixed cells were taken with a Zeiss Axiophot 2 widefield epifluorescence
microscope equipped with a cooled CCD camera (Visitron Systems), or with a
BX51 Olympus fluorescence microscope equipped with a C4040 digital camera.

Immunoprecipitation and western blot analysis
For western blot analysis, cells were directly lysed in SDS sample buffer (65 mM
Tris-HCl pH 7.5, 1% SDS, 30 mM DTT, 10% glycerol, 0.02% Bromophenol Blue),
or fractionated in soluble and chromatin bound fraction, as previously described
(Riva et al., 2004) with minor modifications. Cells were lysed in hypotonic buffer
containing 10 mM Tris-HCl (pH 7.4), 2.5 mM MgCl2, 1 mM PMSF, 0.5% Nonidet
NP-40, 0.2 mM Na3VO4 and a mixture of protease and phosphatase inhibitor
cocktails (Sigma). After 10 minutes on ice, cells were pelleted by low-speed
centrifugation (200 g, 1 minute), and the detergent-soluble fraction was recovered.
Lysed cells were washed once in hypotonic buffer, followed by a second wash in
10 mM Tris-HCl buffer (pH 7.4), containing 150 mM NaCl, and protease/
phosphatase inhibitor cocktails. Cell pellets were then incubated with DNase I (20
U/106 cells) in 10 mM Tris-HCl (pH 7.4), 5 mM MgCl2 and 10 mM NaCl for 15
minutes at 4°C. After a brief sonication on ice, samples were again centrifuged
(13,000 g, 1 minute), and the supernatant containing the chromatin-bound fraction
was collected.

For immunoprecipitation, about 107 cells were re-suspended in 1 ml lysis buffer
and fractionated as above. Equal amounts of each extract were incubated with anti-
GFP rabbit polyclonal antibody (Molecular Probes), N-19 rabbit polyclonal
antibody to p21 (Santa Cruz), or with H7 anti-HA antibody pre-bound to protein A
Sepharose CL-4B (Pharmacia). Half the amount of each antibody was used for
chromatin-bound fractions. In some experiments, C20 polyclonal antibody to pol �
p125 subunit (Santa Cruz) was also used. Reactions were performed for 3 hours at
4°C under constant agitation. The samples were then centrifuged at 14,000 g (30
minutes, 4°C), and immunocomplexes were washed with ice-cold 50 mM Tris-HCl
(pH 7.4) containing 150 mM NaCl, 0.5% Nonidet NP-40. Immunoprecipitated
peptides were eluted in SDS sample buffer and resolved by 7.5% or 12% SDS-
polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were electrotransferred
to nitrocellulose, then membranes were blocked for 30 minutes in 5% non-fat milk
in PBST buffer, and probed with primary antibodies anti-PCNA, or anti-HA (H7)
diluted 1:1000. Anti-pol � p125 (clone 22), and anti-DNA ligase I (1A9,
NeoMarkers) were diluted 1:500. Membranes were then washed in PBST, incubated
for 30 minutes with appropriate HRP-conjugated secondary antibodies
(Amersham), and revealed using enhanced chemiluminescence.

Analysis of DNA repair by UDS determination
DNA repair was assessed by determination of unscheduled DNA synthesis (UDS).
After irradiation, LF1 fibroblasts were incubated for 3 hours in medium containing
100 �M BrdU, then fixed in 70% ethanol (Nakagawa et al., 1998). After DNA
denaturation in 2 N HCl for 30 minutes, and neutralisation for 15 minutes in 0.15
M Na2B4O7, samples were blocked in TBST/BSA. Incubation (1 hour) in anti-BrdU
antibody (Amersham) was followed by a biotinylated anti-mouse antibody, and
streptavidin-FITC (Amersham). Immunofluorescence of G1-phase cells was
measured with an Epics XL flow cytometer, as described (Stivala et al., 2001).

In p21-GFP, or pEGFP-expressing HeLa cells, UDS was determined after
irradiation (20 J/m2), by incubating cells for 2 hours in medium containing 1 ml
[3H]-thymidine (NEN, 10 �Ci/ml specific activity), then chased for 1 hour in
medium containing 10 �M each cold thymidine and cytidine. Cells were then fixed
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in 4% formaldehyde and post-fixed in 70% ethanol. Detection of cells expressing
p21-GFP or pEGFP was performed by incubation in anti-GFP antibody, followed
by immunoperoxidase staining with diaminobenzidine. Samples were processed for
autoradiography using an Ilford K2 emulsion, exposed for 4 days at 4°C, and then
developed and fixed before mounting on microscope slides. Autoradiographic
granules were counted in 50 non-S phase cells showing GFP staining, in duplicate
experiments.
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Supplementary Information 

Fig. S1. Colocalization of p21-GFP and CPDs at the micro irradiated spot in a C2C12 

myoblast. p21 transfected C2C12 cells were fixed 25 min after 405 nm laser 

microirradiation. CPDs were detected with monoclonal antibody. Arrow marks site of 

irradiation. p21-GFP accumulates at sites of DNA damage and co-localizes with 

CPDs. Bar, 5 µm. 

Fig. S2. Short term kinetics analysis of p21-GFP and RFP-PCNA fluorescence after 

405 nm laser microirradiation in HeLa cells. Signals were acquired every 2 seconds 

and confocal sections are shown of images taken at the indicated times. The arrows 

indicate the site of irradiation. Bar, 5 µm. 
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Fig. S3. Localisation of UV-induced CPDs and p21 protein, in locally irradiated XPA 

cells. After exposure to UV-C (15 J/m2) through filters with 3 mm-pores, cells were 

lysed in situ and fixed. Immunostaining with anti-CPDs monoclonal antibody (green 

fluorescence), and anti-p21 polyclonal antibody (red fluorescence) was performed 

after mild DNA denaturation with DNase I, to expose UV-lesions. Green spots 

indicate the presence of CPDs, while yellow spots indicate the presence of both UV-

lesions and p21, at irradiated areas. Bar, 10 mm. 
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Abstract
Background: Genome integrity is constantly challenged and requires the coordinated
recruitment of multiple enzyme activities to ensure efficient repair of DNA lesions. We
investigated the dynamics of XRCC1 and PCNA that act as molecular loading platforms and play a
central role in this coordination.

Results: Local DNA damage was introduced by laser microirradation and the recruitment of
fluorescent XRCC1 and PCNA fusion proteins was monitored by live cell microscopy. We found
an immediate and fast recruitment of XRCC1 preceding the slow and continuous recruitment of
PCNA. Fluorescence bleaching experiments (FRAP and FLIP) revealed a stable association of
PCNA with DNA repair sites, contrasting the high turnover of XRCC1. When cells were
repeatedly challenged with multiple DNA lesions we observed a gradual depletion of the nuclear
pool of PCNA, while XRCC1 dynamically redistributed even to lesions inflicted last.

Conclusion: These results show that PCNA and XRCC1 have distinct kinetic properties with
functional consequences for their capacity to respond to successive DNA damage events.

Background
Mammalian cells have to deal with a wide variety of dif-
ferent DNA lesions caused by cellular metabolites, replica-
tion errors, spontaneous disintegration and
environmental influences. These lesions can occur at suc-
cessive times and in distant parts of the genome constitut-
ing a permanent threat to the genetic integrity. Numerous
repair pathways have evolved to reestablish and maintain
the genetic information [1,2]. The recent identification of
DNA methyltransferase I at repair sites indicated that not
only the genetic but also the epigenetic information is
restored [3].

The repair of DNA lesions involves multiple steps includ-
ing initial damage recognition, intracellular signaling and
the recruitment of repair factors. For the latter step so
called loading platforms are considered to play a central
role by locally concentrating and coordinating repair fac-
tors at sites of DNA damage. These loading platforms have
no enzymatic activity of their own but interact with
numerous proteins through highly conserved binding
motifs. XRCC1 (X-ray cross complementing factor 1) and
PCNA (proliferating cell nuclear antigen) both fulfill
these criteria and are therefore considered to act as central
loading platforms in DNA replication and repair
(reviewed in [4-6]).
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XRCC1 was first identified in the Chinese Hamster ovary
(CHO) mutant cell line EM9 [7]. This cell line shows a
defect in single strand break repair (SSBR) and increased
sensitivity to alkylating agents and ionizing irradiation
resulting in elevated frequency of spontaneous chromo-
some aberrations and deletions. The importance of
XRCC1 is further underlined by the embryonic lethality of
XRCC1-/- mice [8]. The fact that XRCC1 interacts with var-
ious proteins involved in SSBR and base excision repair
(BER), including PARP-1, PARP-2 [9-11] Polymerase-
[12,13] and DNA Ligase III [9,14] suggests that XRCC1
acts as a loading platform in these pathways. Interestingly,
XRCC1 also interacts with PCNA and it was proposed that
this interaction facilitates efficient SSBR during DNA rep-
lication [15].

PCNA forms a homotrimeric ring around the DNA allow-
ing both stable association with and sliding along the
DNA double helix. Therefore PCNA is often referred to as
a "sliding clamp" mediating interaction of various pro-
teins with DNA in a sequence-independent manner. Pho-
tobleaching experiments have shown that in DNA
replication PCNA acts as stationary loading platform for
transiently interacting Okazaki fragment maturation pro-
teins [16,17]. In the last few years it has become evident
that PCNA is not only essential for DNA replication but
also for various DNA repair pathways including nucle-
otide excision repair (NER) [18], base excision repair
(BER) [19,20], mismatch repair (MMR) [21-23] and
repair of double strand breaks (DSBs) [24,25]. Recently it
has been shown, that accumulation of PCNA at DNA
repair sites is independent of the RFC complex, which
loads PCNA onto DNA during DNA replication [26]. Fur-
thermore PCNA plays also an important role in postrepli-
cative processes such as cytosine methylation and
chromatin assembly [27,28]. In most cases, proteins
involved in these processes directly bind to PCNA through
a conserved PCNA-binding domain (PBD). This raises the
question of how binding is coordinated and sterical hin-
drance avoided in DNA replication and repair. Recent
studies have shown that posttranslational modifications
of PCNA such as ubiquitinylation and sumoylation [29-
34] mediate a switch between DNA replication and differ-
ent repair pathways.

To study the dynamics of the two loading platforms
XRCC1 and PCNA at DNA repair sites in Hela cells we
used a combination of microirradiation, live cell micros-
copy and photobleaching techniques. We found that
XRCC1 and PCNA exhibit distinct recruitment and bind-
ing kinetics at repair sites resulting in different capacities
to respond to successive DNA damage events.

Results and discussion
XRCC1 is less tightly associated with repair sites than 
PCNA
XRCC1 and PCNA have no known enzymatic function,
are present at repair sites and interact with a high number
of different proteins suggesting that they act as loading
platforms in DNA repair. To investigate the role of XRCC1
and PCNA in DNA repair we performed immunostainings
of microirradiated Hela cells. We employed a confocal
laser scanning microscope to generate DNA damage at
preselected subnuclear sites with a long wavelength UV
diode laser in BrdU-sensitized cells as described before
[3,35]. Microirradiated sites stained positive for phospho-
rylated histone variant H2AX ( H2AX), a marker for dou-
ble strand breaks (DSBs), and poly(ADP-Ribose) which is
generated by PARP at single strand breaks (SSBs) (Addi-
tional file 1). This indicates that microirradiation with a
405 nm laser generates a mixture of different types of
DNA damage that are substrates for distinct DNA repair
pathways involving XRCC1 and/or PCNA. Immunofluo-
rescence stainings with specific antibodies revealed that
endogenous PCNA and XRCC1 are both present at DNA
damage sites as early as 2–4 min after irradiation (Figure
1A). To investigate the binding properties of XRCC1 and
PCNA at DNA repair sites we performed salt extraction
experiments. Microirradiated cells were permeabilized for
30 s followed by extraction with phosphate buffer con-
taining 500 mM NaCl for 1 min. Immediately after salt

Immunochemical detection of endogenous XRCC1 and PCNA at DNA repair sitesFigure 1
Immunochemical detection of endogenous XRCC1 and 
PCNA at DNA repair sites. Widefield fluorescence images of 
Hela cells are shown. Cells were fixed at indicated time 
points after laser microirradiation. (A) Both, XRCC1 and 
PCNA, accumulate at laser-induced DNA damage sites. (B) 
Microirradiated Hela cells were extracted with 0,5% Triton-
X100 and 500 mM NaCl prior to fixation. After in situ 
extraction no endogenous XRCC1 can be detected at micro-
irradiated sites while PCNA accumulations can still be 
observed. Scale bars, 5 m.
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extraction, the cells were fixed and stained for endogenous
proteins showing that XRCC1 and PCNA were both
extracted in non-S phase cells that were not microirradi-
ated. In microirradiated non-S phase cells only XRCC1
was extracted while PCNA could still be detected at DNA
damage sites (Figure 1B), which is in good agreement with
an earlier study, where detergent resistant foci of PCNA
could be observed after local UV irradiation [36]. As pre-
viously reported [15] we also detected a partial colocaliza-
tion of XRCC1 with PCNA at replication sites, but noticed
dramatically different binding properties. Thus XRCC1
was readily extracted, whereas PCNA was still stably asso-
ciated with sites of DNA replication (Figure 1B). Taken
together these results show that endogenous XRCC1 and
PCNA are both present at DNA replication and repair sites
but exhibit different binding properties.

Recruitment and mobility of XRCC1 and PCNA at DNA 
repair sites
To further investigate the dynamics detected with salt
extraction experiments we combined the microirradiation
technique with live cell microscopy and photobleaching
analysis (FRAP). We first determined the recruitment
kinetics of XRCC1 and PCNA in living cells by quantifying
the amount of GFP- and RFP-tagged XRCC1 and PCNA
accumulated at microirradiated sites. The intensity values
were corrected for background and for total nuclear loss of
fluorescence over the time course and normalized to the
pre-irradiation value.

A direct comparison of GFP- and RFP-tagged XRCC1 and
PCNA showed a significantly slower recruitment of PCNA
in contrast to the very fast accumulation of XRCC1 at
microirradiated sites (Figure 2A). The fluorescence inten-
sity of PCNA at the irradiated site increased during the
observation period of 5 min, while XRCC1 accumulation
reached a maximum about 1–2 min after irradiation (Fig-
ure 2B). These kinetic differences are in good agreement
with earlier studies comparing the recruitment of XRCC1
and PCNA to laser-induced DNA damage sites [37].

Having shown that XRCC1 and PCNA are recruited with
distinct kinetics we performed FRAP analysis to determine
their dynamics at laser-induced DNA damage sites. Two
separate spots were microirradiated in living cells coex-
pressing GFP-XRCC1 and RFP-PCNA. After 5 min one
region was bleached with a high energy laser pulse for 300
ms and the fluorescence recovery was determined. After
bleaching of the repair foci we observed complete recov-
ery of the XRCC1 signal within 24 s (Figure 3). Since flu-
orescence intensity at repair sites had already peaked and
did not increase any further, the measured recovery has to
be attributed to a rapid turnover of XRCC1.

In contrast, no recovery of PCNA at DNA repair sites could
be observed within the observation period, which is in
good agreement with previous studies where DNA dam-
age was induced by chemical agents or irradiation with a
UV lamp [30,38].

To determine the dissociation kinetics of XRCC1 and
PCNA from DNA damage sites we performed FLIP experi-
ments in Hela cells expressing GFP-XRCC1 and RFP-
PCNA. 5 min after microirradiation half of the nucleus
was repeatedly bleached with a high energy laser pulse
over a time period of 150 s and the loss of fluorescence at
the microirradiated site located outside the bleaching area
was determined (Figure 4, inset). The intensity values

Recruitment of XRCC1 and PCNA at DNA damage sites in living cellsFigure 2
Recruitment of XRCC1 and PCNA at DNA damage sites in 
living cells. (A) Schematic representation of the fluorescent 
fusion proteins. (B) Live cell imaging of a microirradiated 
Hela cell coexpressing GFP-XRCC1 and RFP-PCNA. Accu-
mulation of GFP-XRCC1 can be observed immediately after 
microirradiation, while RFP-PCNA accumulates with a short 
delay of about 2–10 s (indicated by arrows). (C) Quantitative 
evaluation of recruitment kinetics showing mean curves. 
Error bars represent the standard error of the mean. Imme-
diate and fast recruitment of GFP-XRCC1 precedes slow and 
constant recruitment of RFP-PCNA at DNA damage sites. 
Scale bar, 5 m.
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were corrected for background fluorescence and normal-
ized to the pre-bleach value.

Within the first 10–15 s both fusion proteins showed a
rapid loss of fluorescence due to depletion of highly
mobile, unbound fluorescent molecules within the region
of interest. After this initial phase XRCC1 and PCNA
exhibited dramatically different dissociation kinetics. We
could observe a rapid decrease of XRCC1 fluorescence to
10% of the initial intensity within the observation period
while the intensity of PCNA was only reduced to 34%
(Figure 4). This argues for a constant exchange of fluores-
cent XRCC1 molecules between the damage site and the
bleached half of the nucleus, while most RFP-PCNA mol-
ecules remained bound at DNA repair sites.

These results show that the two loading platforms XRCC1
and PCNA exhibit distinct recruitment kinetics and
mobility (association and dissociation rates) at DNA
repair sites, which is consistent with an involvement of
XRCC1 and PCNA in distinct repair pathways. On the one
hand, PCNA is involved in repair pathways where the syn-
thesis of long stretches of DNA requires a stable and
processive repair machinery. On the other hand, XRCC1 is
part of the short patch BER pathway where only a single

nucleotide needs to be replaced and no processive and sta-
ble machinery is required.

To further investigate the role of XRCC1 and PCNA as cen-
tral loading platforms in DNA repair we extended our
photobleaching analysis to their respective interaction
partners DNA Ligase III and I. In a previous study we com-
pared the recruitment kinetics of theses highly conserved
DNA Ligases and found that they are recruited to DNA
repair sites with distinct kinetics. Using mutational analy-
sis and binding studies we could show, that DNA Ligase I
is recruited to repair sites through interaction with PCNA,
while DNA Ligase III is recruited via its BRCT domain
interacting with XRCC1 [35]. FRAP analysis revealed that
both DNA Ligases show a high turnover at repair sites,
with DNA Ligase I recovering faster than DNA Ligase III
(Additional file 2). Interestingly, DNA Ligase III showed
the same recovery rate as its loading platform XRCC1,
while the mobility of DNA Ligase I and PCNA at repair
sites differed dramatically (Additional file 2).

These results demonstrate that these loading platforms
and their interacting repair factors have independent
binding properties at repair sites. We speculate that even
transient interaction of repair factors with their respective
loading platform enhances the efficiency of DNA repair by
local concentration of enzyme activities at repair sites,

Different binding kinetics of XRCC1 and PCNA at DNA repair sitesFigure 4
Different binding kinetics of XRCC1 and PCNA at DNA 
repair sites. FLIP data from 9 individual experiments are 
shown as mean curves. The scheme of the experiment is out-
lined in the inset. Two separate subnuclear spots of tran-
siently transfected Hela cells were microirradiated. Half of 
the nucleus containing one irradiated site was repeatedly 
bleached for 1 s over a total time period of 150 s, starting 5 
min after microirradiation. The decay of the fluorescence 
intensity at the microirradiated site within the non-bleached 
half of the nucleus was measured and plotted over time. 
Error bars represent the standard error of the mean.

Mobility of XRCC1 and PCNA at DNA damage sitesFigure 3
Mobility of XRCC1 and PCNA at DNA damage sites. (A) 
Two separate subnuclear spots of a transiently transfected 
Hela cell were microirradiated. The mobility of accumulated 
fluorescent fusion proteins was determined by bleaching one 
of the two spots 5 min after microirradiation and subsequent 
recovery measurements. Inset shows the bleached microirra-
diated site. Scale bar, 5 m. (B) FRAP data from 11 individual 
experiments are shown as mean curves. Error bars represent 
the standard error of the mean.
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allowing faster recognition and binding of repair sub-
strates.

Flexible response of XRCC1 and PCNA to multiple DNA 
damage events
To investigate whether the different binding properties of
XRCC1 and PCNA have functional consequences we
tested their ability to respond to multiple DNA lesions.
Successive DNA lesions were introduced with a time inter-
val of 2.5 min at separate spots and the recruitment kinet-
ics were determined for each individual spot. We observed
a constant decrease of PCNA accumulation at sites irradi-
ated at later time points (Figure 5). In contrast, XRCC1
accumulation at early and late irradiated sites was similar.

These differences can be explained by the tight binding of
PCNA at repair sites leading to a depletion of the cellular
pool of PCNA molecules available for repair of subse-
quent damages.

In contrast, the dynamic binding of XRCC1 enables fast
exchange between multiple DNA damages sites separated
in time and space. Taken together these findings argue for
a role of PCNA as a stationary loading platform in DNA
repair allowing efficient and accurate repair, whereas the
fast recruitment and high turnover of XRCC1 enables a

flexible response to multiple DNA damage events occur-
ring at distant sites and successive times in the genome.

Conclusion
In summary, we found that XRCC1 and PCNA exhibit dis-
tinct recruitment and binding kinetics at repair sites,
which goes beyond earlier studies comparing only the
accumulation of XRCC1 and PCNA at repair sites [37].
Efficient repair of DNA lesions requires avid recognition
of the damage and coordinated recruitment of a multi-
tude of repair factors. The principle dilemma faced by the
repair machinery is that the stable complex formation
required for processivity and completion of multi-step
processes is incompatible with a flexible response to later
changes like subsequent DNA damages. Our live cell
recruitment and photobleaching analyses showed that
XRCC1 and PCNA represent opposite strategies. We
clearly demonstrate that the stable binding of the proces-
sivity factor PCNA limits its capacity to respond to succes-
sive damage events. While the avid and transient binding
of XRCC1 might be sufficient for single nucleotide
replacement but allows a flexible response to multiple
consecutive DNA lesions. This type of live cell analysis
should also help to explore the flexibility of other repair
factors and complex cellular machineries in response to
changing requirements.

Flexible response of XRCC1 to multiple DNA damage eventsFigure 5
Flexible response of XRCC1 to multiple DNA damage events. (A) Consecutive/Successive DNA lesions were introduced with 
a time interval of 2.5 min, starting 4 min after microirradiation of the first spot. One spot irradiated in close proximity to the 
nucleoli was not evaluated (arrowhead) (B) The recruitment kinetics of XRCC1 and PCNA at consecutively microirradiated 
sites were evaluated and plotted over time. Representative curves of one Hela cell are shown.
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Methods
Cell culture and transfection
HeLa cells were cultured in DMEM containing 50 g/ml
gentamicin supplemented with 10% FCS. Cells grown on

-slides (Ibidi) or on gridded coverslips were cotrans-
fected with jetPEI (PolyPlus Transfection) or TransFectin
transfection reagent (Bio-Rad) according to the manufac-
turers instructions. For microirradiation experiments cells
were sensitized by incubation in medium containing
BrdU (10 g/ml) for 24–48 h.

Expression plasmids
Mammalian expression constructs encoding translational
fusions of human PCNA with either green (GFP) or red
(RFP) fluorescent protein were previously described [17].
Red variants of the previously described GFP-Ligase III [3]
and GFP-XRCC1 [39] were generated by replacing GFP
with RFP [40] and termed RFP-Ligase III and RFP-XRCC1,
respectively. In all cases expression was under the control
of the CMV promoter. We tested all fusion proteins by
expression in 293T cells followed by western blot analysis.

Immunofluorescence and Detergent Extraction
Cells were fixed in 3,7% formaldehyde for 10 min and
permeabilized with ice-cold methanol for 5 min. The fol-
lowing primary antibodies (diluted in PBS containing 2%
BSA) were used: anti-  H2AX (Ser139) rabbit antibody
(Upstate), anti-PAR mouse monoclonal antibody (Trevi-
gen), anti-XRCC1 mouse monoclonal antibody (Abcam)
and anti-PCNA rat monoclonal antibody [41]. Secondary
antibodies (diluted 1:400 in PBS containing 2% BSA)
conjugated to Alexa Fluor 488, 555 or 647 (Molecular
Probes) were used. Cells were counterstained with DAPI
and mounted in Vectashield (Vector Laboratories). For in
situ detergent extraction, cells were permeabilized for 30 s
with 0,5% Triton X-100 in PBS and extracted for 1 min
with 500 mM NaCl in PBS before fixation.

Live-cell Microscopy, microirradiation and photobleaching 
experiments
Live cell imaging, mircorirradiation and photobleaching
experiments were carried out with a Leica TCS SP2/AOBS
confocal laser scanning microscope equipped with a UV-
transmitting HCX PL 63×/1.4 oil objective. Fluorophores
were exited using a 488 nm Ar laser line and a 561 nm
diode laser line. The microscope was equipped with a
heated environmental chamber set to 37°C. Confocal
image series were typically recorded with a frame size of
256 × 256 pixels and a pixel size of 90 nm.

Microirradiation was carried out with a 405 nm diode
laser set to maximum power at 100% transmission. Prese-
lected spots of ~1 m in diameter within the nucleus were
microirradiated for 1 s. Before and after microirradiation
confocal image series of one mid z-section were recorded

at 2 s time interval (typically 6 pre-irradiation and 150
post-irradiation frames). For evaluation of recruitment
kinetics, fluorescence intensities at the irradiated region
were corrected for background and for total nuclear loss of
fluorescence over the time course and normalized to the
pre-irradiation value.

For FRAP analysis, a region of interest was selected and
photobleached for 300 ms with all laser lines of the Ar-
laser and the 561 nm DPSS laser set to maximum power
at 100% transmission. Before and after bleaching, confo-
cal image series were recorded at 150 ms time intervals
(typically 10 prebleach and 200 postbleach frames). Mean
fluorescence intensities of the bleached region were cor-
rected for background and for total nuclear loss of fluores-
cence over the time course and normalized to the mean of
the last 4 prebleach values.

For FLIP analysis, one half of the nucleus was repeatedly
photobleached (typically 150 frames) with all laser lines
of the Ar-laser and the 561 nm DPSS laser set to maximum
power at 100% transmission for 1 s. Mean fluorescence
intensities of the bleached region were corrected for back-
ground and normalized to the initial value.

For quantitative evaluation of microirradiation and pho-
tobleaching experiments, data of at least 9 nuclei were
averaged and the mean curve as well as the standard error
of the mean calculated and plotted using Microsoft Excel
software.

Images of fixed cells were taken with a Zeiss Axiophot 2
widefield epifluorescence microscope using a Zeiss Plan-
Apochromat 63×/1.40 oil objective and a cooled CCD
camera (Visitron Systems).
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Supplementary Figure 1

Laser microirradiation generates different types of DNA damage. Widefield 

fluorescence images of Hela cells are shown. Fixation and immunostaining was

performed ~5 min after laser microirradiation. Arrows mark sites of irradiation. Laser

microirradiation results in local generation of DSBs (A) and SSBs (B) detected by 

antibodies against -H2AX and PAR, respectively. Scale bar, 5 µm. 

Supplementary Figure 2 

Mobility of XRCC1 and PCNA and their respective binding partners DNA Ligase III

and I at DNA damage sites. Two separate subnuclear spots of transiently transfected 

Hela cells were microirradiated and the mobility of accumulated fluorescent fusion 

proteins was determined as described in Figure 3. FRAP data from at least 5 

different experiments are shown as mean curves. Error bars represent the standard 

error of the mean. 
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ABSTRACT

DNA ligation is an essential step in DNA replication,
repair and recombination. Mammalian cells contain
three DNA Ligases that are not interchangeable
although they use the same catalytic reaction mech-
anism. To compare the recruitment of the three
eukaryotic DNA Ligases to repair sites in vivo we
introduced DNA lesions in human cells by laser
microirradiation. Time lapse microscopy of fluores-
cently tagged proteins showed that DNA Ligase III
accumulated at microirradiated sites before DNA
Ligase I, whereas we could detect only a faint accu-
mulation of DNA Ligase IV. Recruitment of DNA
Ligase I and III to repair sites was cell cycle inde-
pendent. Mutational analysis and binding studies
revealed that DNA Ligase I was recruited to DNA
repair sites by interaction with PCNA while DNA
Ligase III was recruited via its BRCT domain
mediated interaction with XRCC1. Selective recruit-
ment of specialized DNA Ligases may have evolved
to accommodate the particular requirements of
different repair pathways and may thus enhance
efficiency of DNA repair.

INTRODUCTION

Higher eukaryotes are challenged with various types of DNA
damage caused by replication errors, radiation, environmental
agents and by-products of cellular metabolism. Numerous
repair pathways re-establishing the genetic information are
known (1,2). An increasing number of proteins have been
identified and assigned to these repair pathways, but the
recruitment mechanisms and the spatio-temporal coordination
of these repair factors at DNA damage sites remains largely
unknown. One of the late steps in DNA repair is the joining
of breaks in the phosphodiester backbone of duplex DNA,
which is catalyzed by members of the DNA Ligase family.
The ATP-dependent DNA Ligase family comprises three

enzymes termed DNA Ligase I, III and IV, which all contain
a highly conserved catalytic domain responsible for the liga-
tion reaction. Although all three DNA Ligases use the same
basic reaction mechanism, they have distinct functions and
are not interchangeable (3,4).

DNA Ligase I is required for the joining of Okazaki
fragments during lagging strand synthesis and is implicated
in long-patch or replicative base-excision repair (BER) and
nucleotide excision repair (NER). The end-joining activity
of DNA Ligase I is directed to DNA replication sites by its
interaction with PCNA, a central component of the replica-
tion machinery. This interaction and localization is mediated
by the N-terminal PCNA-binding domain (PBD) of DNA
Ligase I (5,6). It has been shown that loss of DNA Ligase I
function, leads to abnormal joining of Okazaki fragments dur-
ing S-phase (7), defective long-patch BER (8) and reduced
repair of double strand breaks (DSBs) by homologous
recombination (9).

DNA Ligase III is implicated in short-patch BER and sin-
gle strand break (SSB) repair (SSBR) and forms a complex
with XRCC1 (10–12). XRCC1 and DNA Ligase III normally
exist as a preformed complex in vivo interacting via the
C-terminal BRCT (BRCA1 C-terminal) domain of DNA
Ligase III (10,13–15). XRCC1 also interacts with PARP-1,
PARP-2, DNA polymerase b and PCNA (16) and appears
to act as a scaffold protein during BER. The unique zinc fin-
ger near the N-terminus of DNA Ligase III was shown to bind
DNA SSBs (17). Interestingly, this DNA Ligase III zinc fin-
ger shows homology with the two zinc finger motifs
of poly(ADP-ribose) polymerase (PARP) which also bind
DNA strand breaks (11). Therefore, it was suggested that
binding of DNA Ligase III via its zinc finger may displace
PARP from the DNA break allowing access of DNA Ligase
III and other repair proteins to the DNA lesion (17). Recently
DNA Ligase III was also identified as a candidate component
of the non-homologous end joining (NHEJ) backup pathway
(B-NHEJ) (18) and might thus be implicated in double strand
break repair.

DNA Ligase IV is implicated in the NHEJ pathway and
forms a complex with XRCC4 (19,20). Cultured cells that
lack DNA Ligase IV are defective in V(D)J recombination
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and show increased sensitivity to ionizing radiation (21).
Inactivation of DNA Ligase IV in mice leads to embryonic
lethality, implying that DNA Ligase IV may have essential
functions during early mammalian development (21,22).

We investigated the recruitment of DNA Ligases to repair
sites in HeLa cells using a combination of microirradiation,
live cell microscopy and binding studies. We could detect
only a faint accumulation of DNA Ligase IV at laser-induced
DNA damage sites. Kinetic studies and deletion analysis indi-
cated that selective recruitment of DNA Ligase I and III
to specific repair pathways is mediated through interaction
with PCNA and XRCC1, respectively. These results suggest
that PCNA and XRCC1 play a central role in the spatio-
temporal coordination of repair factors and thereby
enhance the specificity and efficiency of DNA repair in
eukaryotic cells.

MATERIALS AND METHODS

Cell culture and transfection

Human HeLa or HEK 293T cells and mouse C2C12
myoblasts were cultured in DMEM containing 50 mg/ml
gentamicin supplemented with 10 and 20% FCS, respec-
tively. For transfection, cells grown on m-slides (Ibidi) or
on gridded coverslips were cotransfected with jetPEI
(PolyPlus Transfection) or TransFectin transfection reagent
(Bio-Rad) according to the manufacturer’s instructions.
Cells were subsequently incubated for 24–48 h before per-
forming microirradiation and live cell analyses or immunos-
tainings. 293T cells were transfected with plasmid DNA
using TransFectin reagent (Bio-Rad) and incubated for 48 h
before immunoprecipitations.

Expression plasmids

Mammalian expression constructs encoding translational
fusions of human DNA Ligase I, human FEN1 and human
PCNA with either green (GFP) or red (RFP) fluorescent
protein were previously described (23). Red variants of the
previously described GFP-Ligase III (24) and GFP-XRCC1
(25) were generated by replacing GFP with RFP (26) and
termed RFP-Ligase III and RFP-XRCC1, respectively.
Deletion expression constructs were amplified by PCR with
primers containing a SalI and BamHI restriction site and sub-
cloned into the SalI and BamHI site of the peGFP-C1 vector
(Clontech) downstream of GFP. The Ligase I PBD-GFP con-
struct was made by subcloning oligonucleotides correspond-
ing to the first 20 amino acids of DNA Ligase I into the
EcoRI and XmaI site of peGFP-N2 (Clontech). The GFP-
Ligase IV construct was generated by cloning the human
DNA Ligase IV cDNA (11) into the peGFP-C1 (Clontech)
vector. DNA Ligase IV was amplified using the following
oligonucleotides as primers for the PCR: forward 50-gggg
gtc gac gct gcc tca caa ac-30; reverse 50-cccc gga tcc aat
caa ata ctg gtt ttc-30. The residues in bold indicate a SalI
and a BamHI site encoded in the forward and reverse primer,
respectively, for subcloning the PCR fragment into the SalI
and BamHI sites of the peGFP-C1 vector downstream of
GFP. PCR amplified sequences were verified by DNA
sequencing. The Ku70-GFP construct (27) was provided by

William Rodgers. In all cases expression was under the
control of the CMV promoter. All fusion proteins were tested
by expression in HEK 293T cells followed by western blot
analysis.

Immunofluorescence and chemicals

Cells were fixed in 3.7% formaldehyde for 10 min and
permeabilized with ice-cold methanol for 5 min. The follow-
ing primary antibodies (diluted in PBS containing 2% BSA)
were used: anti-g H2AX (Ser139) rabbit antibodies (Upstate),
anti-PAR mouse monoclonal antibody (Trevigen), anti-DNA
Ligase III mouse monoclonal antibody (Gene-Tex), rabbit
affinity purified DNA Ligase I antibodies (5), anti-XRCC1
mouse monoclonal antibody (Abcam) and anti-PCNA rat
monoclonal antibody. Primary antibodies were detected using
secondary antibodies (diluted 1:400 in PBS containing 2%
BSA) conjugated to Alexa Fluor 488, 555 or 647 (Molecular
Probes). Cells were counterstained with DAPI and mounted
in Vectashield (Vector Laboratories).

Microscopy

Time series were taken with a Leica TCS SP2/AOBS
confocal laser scanning microscope equipped with a HCX
PL 63x/1.4 oil objective using a 488 nm Ar laser line and a
561 nm DPSS laser line. Before and after microirradiation
confocal image series of one mid z-section were recorded
at 2 s time intervals (typically 6 pre-irradiation and 150
post-irradiation frames) with a pixel size of 90 nm.

Images of fixed cells were taken with a Zeiss Axiophot
2 widefield epifluorescence microscope using a Zeiss Plan-
Apochromat 63x/1.40 oil objective and a cooled CCD camera
(Visitron Systems).

UVA laser microirradiation

Cells were either seeded on m-slides (ibidi) or on 40 mm
round coverslips and sensitized for microirradiation by
incubation in a medium containing BrdU (10 mg/ml) for
24–48 h. For live cell microscopy and irradiation round cov-
erslips were mounted in a POC live-cell chamber (Visitron
Systems). Microirradiation was carried out with a 405 nm
diode laser coupled into a Leica TCS SP2/AOBS confocal
laser scanning microscope. The 405 nm laser was set to maxi-
mum power at 100% transmission and was focused through a
UV transmitting Leica HCX PL APO 63x/1.40–0.60 oil
objective to locally irradiate preselected spots of �1 mm in
diameter within the nucleus for 1 s. For evaluation of the
recruitment kinetics, fluorescence intensities of the irradiated
region were corrected for background and for total nuclear
loss of fluorescence over the time course and normalized to
the pre-irradiation value.

Immunoprecipitations

HEK 293T cells were transiently cotransfected with expres-
sion plasmids as described. After 48 h the transfection rate
was checked by fluorescence microscopy. About 70–90% of
the cells were coexpressing the GFP and RFP fusion
constructs. For immunoprecipitations �2 · 107 cells were
harvested in ice cold 1· PBS, washed twice and subsequently
homogenized in 200 ml lysis buffer (20 mM Tris–HCl,
pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 2 mM PMSF and
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0.5% NP40). After a centrifugation step (10 min, 20 000· g,
4�C) the supernatant was adjusted with dilution buffer
(20 mM Tris–HCl, pH 7.5, 150 mM NaCl, 0.5 mM EDTA,
2 mM PMSF) to 500 ml. Totally 50 ml were added to SDS-
containing sample buffer (referred to as input). For immuno-
precipitation 1 mg of a purified a-GFP antibody was added
and incubated for 2 h rotating at 4�C. For pull down of
immunocomplexes 25 ml of equilibrated protein A agarose
beads (Amersham Pharmacia, NJ, USA) were added and
incubated for 1 h. After centrifugation (2 min, 5000· g,
4�C) the supernatant was removed and 50 ml were collected
(referred to as non-bound). The beads were washed two
times with 1 ml dilution buffer containing 300 mM NaCl.
After the last washing step 100 ml of the supernatant was
collected (referred to as wash) and the beads were resus-
pended in 2· SDS-containing sample buffer and boiled for
10 min at 95�C.

Western blot analysis.

For immunoblot analysis 1% of the input, the non-bound
and the wash fractions as well as 20% of the soluble super-
natants were separated on 12 or 10% SDS–PAGE and then
electrophoretically transferred to a nitrocellulose membrane
(Bio-Rad Laboratories, CA, USA). The membrane was
blocked with 3% milk in PBS and incubated overnight at
4�C with either a mouse monoclonal a-GFP antibody or an
a-mRFP rabbit polyclonal antibody. After washing with
PBS containing 0.1% Tween-20, the blots were incubated
with the appropriate secondary antibody conjugated with
horseradish peroxidase. Immunoreactive bands were visual-
ized with ECL plus Western Blot Detection Kit (Amersham
Biosciences, NJ, USA).

RESULTS

DNA Ligase I and III accumulate at DNA repair sites

Ligation of DNA is the ultimate step in DNA repair to restore
genome integrity. To investigate the involvement of DNA
Ligase I and III in DNA repair we performed immunostain-
ings of microirradiated HeLa cells. We employed a confocal
laser scanning microscope to locally generate DNA damage
at preselected subnuclear sites in BrdU-sensitized cells. In
contrast to previous studies we used a long wavelength ultra-
violet 405 nm diode laser for microirradiation. Using specific
antibodies for different types of DNA damage we could
detect phosphorylated histone variant H2AX (g�H2AX), a
marker for DSBs, at microirradiated sites. In addition, we
detected poly(ADP-Ribose) which is generated by PARP at
SSBs (Figure 1A). These results show that microirradiation
with a 405 nm laser generates a mixture of different types
of DNA damage that are substrates for different DNA repair
pathways involving either DNA Ligase I or III. Immunofluo-
rescence stainings with specific antibodies revealed that
endogenous DNA Ligase I and III as well as their binding
partners PCNA and XRCC1 are present at DNA damage
sites as early as 5 min after irradiation (Figure 1B and C).
These results demonstrate that this microirradiation technique
allows the direct comparison of factors from different repair
pathways within the same cell.

Recruitment kinetics of DNA Ligases at repair sites

The fact that DNA Ligase I and III although being involved
in different repair pathways are both present at microirradi-
ated sites raised the question whether they are recruited by
similar mechanisms. First hints for kinetic differences in
the recruitment of repair factors involved in SSB repair and
BER came from single measurements with GFP-fusion
proteins (28). To directly compare the recruitment kinetics
of DNA Ligase I and III we microirradiated BrdU-sensitized
cells and quantified the accumulation of different GFP- and
RFP-tagged proteins at DNA damage site (Figure 2). The
intensity values were corrected for background and for total
nuclear loss of fluorescence over the time course and normal-
ized to the pre-irradiation value. Mean values of at least eight
different cells are shown. A direct comparison of GFP- and
RFP-tagged Ligases showed a significantly slower recruit-
ment of DNA Ligase I in contrast to the very fast accumula-
tion of DNA Ligase III at microirradiated sites (Figure 3A
and B and Supplementary Fig3video1). Recruitment kinetics
of DNA Ligase I and III were independent of the fluorescence
tag as swapping of GFP and RFP gave similar results
(Supplementary Figure 1). To gain further insights into the
mechanisms underlying the different recruitment kinetics of
DNA Ligases to repair sites we extended our analysis to
their reported interaction partners. Since DNA Ligase I is tar-
geted to replication sites by PCNA in S phase we compared
the accumulation of DNA Ligase I with that of PCNA and
found similar recruitment kinetics (Figure 3C and D and Sup-
plementary Fig3video2). Both proteins showed a slow but
constant accumulation at DNA repair sites and fluorescence
intensities reached a maximum after �5 min. This suggests

Figure 1. Immunochemical detection of DNA repair intermediates after laser
microirradiation. Widefield fluorescence images of HeLa cells are shown.
Cells were fixed �5 min after laser microirradiation. Arrows mark sites of
irradiation. (A) Laser microirradiation with 405 nm results in local generation
of DSBs and SSBs detected by antibodies against g-H2AX and PAR,
respectively. Accumulation of endogenous PCNA can be observed at these
sites. (B) Both, DNA Ligase I and III accumulate at sites of DNA damage and
colocalize with PCNA. (C) XRCC1 and PCNA accumulate at laser-induced
DNA damage sites. Scale bars, 5 mm.
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that PCNA might be responsible for recruitment of DNA
Ligase I to sites of DNA repair.

Since biochemical studies had suggested an interaction
of DNA Ligase III with XRCC1 during short-patch BER
(10,13–15) we directly compared their recruitment to micro-
irradiated sites. Remarkably, we found that DNA Ligase III
and XRCC1 redistributed to sites of DNA damage with simi-
lar kinetics. After a very fast initial accumulation, intensities
of both proteins reached a maximum within 100–120 s after
irradiation and then began to decline. These observations sup-
port the idea that DNA Ligase III is targeted to DNA repair
sites through interaction with XRCC1.

To test whether DNA Ligase I and III not only differ
in their recruitment but also in their release kinetics we

performed long-term observations of irradiated HeLa cells
with 5 min time intervals to compare their release from repair
sites. After reaching a maximum the mean fluorescence inten-
sities of PCNA, XRCC1, DNA Ligase I and III decreased
gradually at the irradiated sites (Figure 4 and data not
shown). Both, DNA Ligase I and III reached basal levels
�120 min after irradiation (Figure 4). We found similar
release kinetics for their respective binding partners PCNA
and XRCC1 (data not shown). This indicates that although
DNA Ligase I and III differ in their recruitment to repair
sites they show similar release kinetics.

Next we tested whether the recruitment of GFP-Ligase I
and GFP-Ligase III is cell cycle dependent. The characteristic
focal distribution of RFP-PCNA and GFP-Ligase I allowed

Figure 2. Schematic outline of the structure of DNA Ligase I and III and of fusion proteins used in this study. The catalytic core (highlighted in grey shading) is
highly similar in both Ligases. The relative position of the conserved lysine residue (K) in the catalytic center is indicated.
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identification of S phase in living cells (29,30). Accumula-
tions of GFP-Ligase I and RFP-PCNA at DNA damage
sites could be observed in all S phase stages (Supplementary
Figure 2). We could also detect recruitment of RFP-PCNA
and GFP-DNA Ligase I to sites of DNA damage in mouse
C2C12 cells in S and non-S phase (Supplementary
Figure 3). These results indicate that DNA Ligase I and
PCNA are recruited with similar kinetics in both human
and mouse cells. We also observed accumulation of DNA
Ligase III in S phase cells (Supplementary Figure 4).

As laser microirradiation generates DSBs (Figure 1), we
tested whether DNA Ligase IV, which is involved in
NHEJ, gets recruited to laser-induced DNA damage sites.

We found only a very faint accumulation at repair sites
that was barely detectable and in some cases not distinguish-
able from the nuclear background of unbound GFP-DNA

Figure 3. Recruitment kinetics of DNA Ligase I and III at DNA damage sites in living cells. Live cell imaging of microirradiated HeLa cells coexpressing
various combinations of GFP- and RFP-tagged DNA Ligase I, DNA Ligase III, PCNA and XRCC1. For determination of the recruitment kinetics the relative
fluorescence intensity at the irradiated spot was calculated and plotted as a function of time. The displayed curves were generated after integrating data from at
least eight independent experiments. Error bars represent the SD. (A and B) Accumulation of DNA Ligase III at DNA repair sites precedes accumulation of DNA
Ligase I (Supplementary Fig3video1). (C and D) Accumulation of RFP-PCNA can be observed as early as 2 s after irradiation, while DNA Ligase I accumulates
with a delay of �30–60 s (Supplementary Fig3video2). (E and F) Immediate and fast recruitment of GFP-XRCC1 and DNA Ligase III to DNA damage sites
(Supplementary Fig3video3). Scale bars, 5 mm. The table in (G) summarizes the kinetic parameters of PCNA, DNA Ligase I, XRCC1 and DNA Ligase III
recruitment. Mean values of at least eight different cells are shown.

Figure 4. Release kinetics of DNA Ligase I and III at DNA repair sites.
Microirradiated HeLa cells were followed up several hours with a time
interval of 5 min. Maximum projections of 10–12 z-Stacks were collected and
the fluorescence intensities at the irradiated sites calculated and plotted as a
function of time.
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Ligase IV (Supplementary Figure 5A). This is consistent with
earlier reports failing to detect recruitment of factors involved
in DSB repair like Ku70, DNA-PK and Smc (31). In agree-
ment with this report, we found that Ku70-GFP was not
recruited to DNA damage sites after 405 nm irradiation
(Supplementary Figure 5B). These results suggest that the
number of DSBs generated by microirradiation and the
stoichiometry of the repair complex yield only faint signals
that are barely above background and hard to analyse with
this experimental system.

Taken together, these results show that DNA Ligase I
and III are recruited to microirradiated sites with distinct
kinetics which match similar differences of their respective
binding partners. The recruitment of both DNA Ligases

occurred independently of the cell cycle stage in S and in
non-S phase cells.

Recruitment of DNA Ligase I to sites of DNA damage
depends on its interaction with PCNA

During S phase, DNA Ligase I is targeted to sites of DNA
replication via its PCNA-binding domain (PBD) (5,6). To
test whether PCNA also mediates recruitment of DNA Ligase
I during DNA repair, we deleted the PBD of DNA Ligase I
(GFP-Ligase I DPBD) and expressed the deletion construct
in HeLa cells together with full-length RFP-Ligase I. After
laser microirradiation GFP-Ligase I DPBD showed only
minor accumulation at irradiated sites compared to the wild

Figure 5. Recruitment of DNA Ligase I to DNA damage sites is mediated by PCNA. Recruitment kinetics were determined as described in Figure 3. (A) Live
cell imaging of a microirradiated HeLa cell coexpressing GFP-DNA Ligase I DPBD and RFP-Ligase I. Deletion of the PBD in GFP-DNA Ligase I DPBD almost
completely abolishes recruitment to sites of DNA damage, whereas RFP-Ligase I accumulates at these sites as seen in Figure 3 (arrow). (C) A HeLa cell
coexpressing DNA Ligase I PBD-GFP and RFP-Ligase I shows accumulation of both, RFP-Ligase I and DNA Ligase I PBD-GFP, at sites of microirradiation
(arrows). Times after microirradiation are indicated. Scale bars, 5 mm. (B and D) Recruitment kinetics of fluorescence-tagged proteins at microirradiated sites.
(E) Coimmunoprecipitations were performed in 293T cells coexpressing different combinations of RFP and GFP fusion constructs. For interaction mapping the
same deletion constructs as in A–D were used. Immunoprecipitations were performed with an antibody against GFP. Precipitated fusion proteins were then
detected with specific antibodies against RFP and GFP on western blots. RFP-PCNA coprecipitated with GFP-Ligase I but not with GFP-Ligase III (left panel).
RFP-PCNA was also coprecipitated with Ligase I PBD-GFP but not with GFP-Ligase I DPBD (right panel).
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type fusion construct (Figure 5A and B). This suggests that
the PBD plays a critical role in the recruitment of DNA
Ligase I to repair sites. The observed residual accumulation
of the deletion construct is likely owing to recruitment via
trimerization (32) with the endogenous or the full length
DNA Ligase I construct. To directly study the function of
the PBD we fused the PBD alone with GFP (PBD-GFP).
Besides association with replication sites, the PBD fusion
protein was recruited to sites of DNA damage with kinetics
similar to the full-length DNA Ligase I construct
(Figure 5C and D and Supplementary Figure 6).

These kinetic measurements of deletion constructs
indicated that recruitment to repair sites is mediated by
an interaction of the PBD of DNA Ligase I with PCNA.
To test this interaction we performed coimmunopreci-
pitation assays with the same constructs as used for live
cell microscopy. We found that deletion of the PBD aboli-
shed the interaction of DNA Ligase I with PCNA, while
the PBD alone was sufficient to coprecipitate PCNA
(Figure 5E). These lines of evidence strongly suggest that
the PBD-mediated interaction of DNA Ligase I with PCNA
is necessary and sufficient for targeting of DNA Ligase I to
repair sites.

To test whether this mechanism applies also to other
PCNA binding proteins we compared the recruitment kinetics
of DNA Ligase I with FEN-1, another PBD-containing pro-
tein involved in DNA replication and repair. After microirra-
diation FEN-1 accumulated at DNA repair sites with similar
recruitment kinetics as DNA Ligase I (Figure 6). These
results point to a common mechanism for the recruitment
of PBD containing enzymes like DNA Ligase I and FEN-1
in DNA replication and repair.

Recruitment of DNA Ligase III to sites of DNA damage
depends on its interaction with XRCC1

The unique Zn-Finger motif at the N-terminus of DNA
Ligase III binds to unusual DNA secondary structures and
it was suggested that this domain could recruit DNA
Ligase III to damaged DNA (17,33,34). We generated a dele-
tion construct of DNA Ligase III lacking the N-terminal ZnF
motif (GFP-Ligase III DZnF) and expressed this construct
together with the full length RFP-Ligase III in HeLa cells.
After microirradiation, no difference could be observed and
both fusion proteins showed similar recruitment kinetics
(Figure 7). We then tested whether the BRCT domain
of DNA Ligase III, which was described to be essential for
the interaction with XRCC1 (10,13–15) is required for
recruitment to repair sites in vivo. We generated a deletion
construct lacking the C-terminal BRCT domain of DNA
Ligase III (GFP-Ligase III DBRCT). This fusion protein did
not enter the nucleus but remained in the cytoplasm indicat-
ing that the BRCT domain is responsible for nuclear locali-
zation of DNA Ligase III (Figure 8E). After addition of an
SV40-NLS (GFP-N-Ligase III DBRCT) the fusion protein
entered the nucleus but showed, in comparison with the
full-length construct, only a minor accumulation at DNA
repair sites (Figure 8A and C). Having shown that deletion
of the BRCT domain abolishes recruitment of DNA
Ligase III, we next fused the BRCT domain alone to GFP
(GFP-BRCT). The BRCT fusion protein redistributed to

Figure 6. Recruitment kinetics of the PCNA interacting proteins
DNA Ligase I and FEN-1 are similar. The structure of the fusion
proteins is depicted in Figure 2. (A) Live cell imaging of a microirradiated
HeLa cell coexpressing GFP-FEN-1 and RFP-Ligase I. Both FEN-1 and
DNA Ligase I accumulate at DNA repair sites (arrow) with similar
kinetics. Times after microirradiation are indicated. Scale bars, 5 mm.
(B) Recruitment kinetics of fluorescence-tagged proteins at microirradiated
sites.

Figure 7. Deletion of the ZnF motif does not abolish recruitment of DNA
Ligase III. Recruitment kinetics were determined as described in Figure 3.
(A) Live cell imaging of a microirradiated HeLa cell coexpressing GFP-DNA
Ligase III DZnF and RFP-Ligase III which accumulate at DNA repair sites
(arrow). Times after microirradiation are indicated. Scale bars, 5 mm.
(B) Recruitment kinetics of GFP-DNA Ligase III DZnF and RFP-Ligase III at
microirradiated sites.
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DNA repair sites and showed a similar although weaker accu-
mulation at these sites as the full-length DNA Ligase III
(Figure 8C and D). The slightly reduced accumulation of
the isolated BRCT domain could be explained by additional
protein sequences of DNA Ligase III enhancing recruitment
or proper protein folding.

To investigate the role of the BRCT domain in the inter-
action of DNA Ligase III with XRCC1 we performed coim-
munoprecipitation assays. We found that deletion of the
BRCT domain abolished binding of DNA Ligase III to
XRCC1, while the BRCT domain alone was sufficient for
interaction (Figure 8F). These data fit well with the results

obtained from kinetic measurements which altogether indi-
cate that the BRCT domain is necessary and sufficient
for recruitment of DNA Ligase III to repair sites while the
ZnF domain does not seem to be involved.

DISCUSSION

Different DNA repair pathways have evolved to deal with
various types of DNA damage caused by normal cellular
metabolism or exogenous factors. The common essential
step in all these different repair pathways is the joining of

Figure 8. Recruitment of DNA Ligase III to DNA damage sites is mediated by XRCC1. Recruitment kinetics were determined as described in Figure 3. (A) Live
cell imaging of a microirradiated HeLa cell coexpressing GFP-N-DNA Ligase III DBRCT, containing an additional SV40 NLS and RFP-Ligase III. Deletion of
the BRCT domain in GFP-N-DNA Ligase III DBRCT abolishes recruitment to sites of DNA damage, whereas RFP-Ligase III accumulates at these sites as seen
in Figure 3 (arrow). (B) A HeLa cell coexpressing GFP-Ligase III BRCT and RFP-Ligase III which both accumulate at sites of microirradiation (arrows). Times
after microirradiation are indicated. Scale bars, 5 mm. (C and D) Recruitment kinetics of fluorescence-tagged proteins at microirradiated sites. (E) Deletion of the
BRCT domain results in cytoplasmic localization of the fusion protein. (F) Coimmunoprecipitations were performed with 293T cells coexpressing RFP-XRCC1
and GFP-Ligase I or GFP-Ligase III, respectively. For interaction mapping the same deletion constructs as in A–D were used. Immunoprecipitations were
performed with an antibody against GFP. Precipitated fusion proteins were then detected with specific antibodies against RFP and GFP on western blots. RFP-
XRCC1 was coprecipitated with GFP-Ligase III but not with GFP-Ligase I (left panel). RFP-XRCC1 was also coprecipitated with GFP-Ligase III DBRCT but
not with GFP-N-Ligase III DBRCT (right panel).
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DNA ends by members of the DNA Ligase family. Although
the catalytic core of DNA Ligase I and III is highly conserved
they have no or only poorly overlapping functions and are not
interchangeable (7–10,18,35). Extracts from the cell line
EM9 which is deficient in DNA Ligase III (10) are defective
in short-patch BER (12) while extracts from the DNA Ligase
I deficient cell line 46BR.1G1 (36) are defective in long-
patch BER (8). Furthermore, generation of partially DNA
Ligase I defective mouse embryonic stem cells revealed
that DNA Ligase III could not compensate for loss of DNA
Ligase I function in cell proliferation (35).

To explore possible differences that could explain the non-
redundant functions of these highly homologous enzymes we
compared the recruitment kinetics of DNA Ligase I and III at
local DNA lesions generated by laser microirradiation. We
found that DNA Ligases I and III accumulated at DNA dam-
age sites with distinct kinetics suggesting that they catalyze
the same reaction but use different mechanisms for recruit-
ment. With deletion and binding studies we could demon-
strate that the PCNA binding domain (PBD) of DNA
Ligase I mediates targeting DNA repair sites. Interestingly,
the PBD is not required for enzyme activity in vitro but
rescue experiments with DNA Ligase I deficient cells demon-
strated that the PBD is essential in vivo (8,9,35). These results
suggest that PCNA mediated recruitment of DNA Ligase I
could enhance the efficiency of the ligation reaction in vivo
by locally concentrating DNA Ligase I at sites of replication
and repair.

In further studies, we also observed recruitment of FEN-1
to DNA repair sites, which like DNA Ligase I interacts with
PCNA during DNA replication (37,38) and is implicated in
long-patch BER (39,40). Remarkably, FEN-1 showed the
same recruitment kinetics as DNA Ligase I although it has
a completely different function in replication and repair.
Likewise, the PBD of DNA methyltransferase 1 (Dnmt1) is
also necessary and sufficient for accumulation of Dnmt1 at
repair sites (24). Taken together our results show that various
PBD-containing proteins involved in the restoration of gen-
etic and epigenetic information are recruited to replication
as well as repair sites by PCNA.

On one hand, it has been proposed that the ZnF motif of
DNA Ligase III could act as a nick sensor, recruiting DNA
Ligase III to DNA nicks and altered DNA structures
(17,33,34). We found, however, that deletion of the ZnF
did not influence the recruitment kinetics of DNA
Ligase III. On the other hand, biochemical studies have
suggested that the BRCT domain of DNA Ligase III is
essential for its interaction with XRCC1 (10,13–15). Here,
we demonstrate that the deletion of the BRCT domain of
DNA Ligase III abolishes recruitment of DNA Ligase III to
repair sites in vivo. Moreover, the BRCT domain alone was
sufficient to mediate recruitment of the fusion protein to
DNA repair sites and is essential for nuclear localization of
DNA Ligase III.

These different mechanisms for the localization of DNA
Ligases at repair sites are consistent with specific characteris-
tics of the respective repair pathways. The continuous syn-
thesis of long stretches of DNA during long patch BER
resembles the process of DNA replication. Consequently,
also similar recruitment mechanisms seem to be used. In
both processes DNA Ligase I is recruited through interaction

with the sliding clamp and processivity factor PCNA. In con-
trast, replacement of just a single nucleotide during short
patch BER does not require a processive repair machinery
sliding along the DNA but rather a stationary repair complex
recruiting DNA Ligase III.

In summary, although DNA Ligase I and III share a highly
similar catalytic core, they have distinct functions in DNA
replication and repair and are not interchangeable. Here we
identified differences in the adjacent regulatory domains of
DNA Ligases which may explain their non-redundant
functions in eukaryotic cells. Thus, the PBD domain of
DNA Ligase I and the BRCT domain of DNA Ligase III
mediate interaction with PCNA and XRCC1, respectively,
and target them to different repair pathways (Figure 9).
This selective recruitment may contribute to the spatio-
temporal coordination of different repair factors and could
thus enhance accuracy and efficiency of DNA repair in
eukaryotic cells.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Supplementary Information

Supplementary Figure 1

Recruitment of DNA Ligase I and III to DNA repair sites is fluorescent-tag 

independent. Recruitment kinetics of DNA Ligase I (A) and DNA Ligase III (B) tagged 

with either GFP or RFP are very similar. 
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Supplementary Figure 2

Recruitment of GFP-DNA Ligase I and RFP-PCNA to repair sites in S and non S 

phase Hela cells. The structure of the fusion proteins is depicted in Figure 2. Live cell 

imaging of microirradiated Hela cells shows accumulation of RFP-PCNA and GFP-

DNA Ligase I at sites of DNA damage (arrows) in early S (A), mid S (B), late S (C) 

and non S phase (D). Times after microirradiation are indicated. Scale bars, 5 µm. 
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Supplementary Figure 3 

Recruitment of GFP-DNA Ligase I and RFP-PCNA to repair sites in S and non S 

phase mouse C2C12 cells. The structure of the fusion proteins is depicted in Figure 

2. Live cell imaging of microirradiated C2C12 cells in early S (A), mid S (B) late S (C) 

and non S phase (D) coexpressing GFP-DNA Ligase I and RFP-PCNA shows

accumulation of RFP-PCNA and GFP-DNA Ligase I at sites of DNA damage 

(arrows). Times after microirradiation are indicated. Scale bars, 5 µm. 
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Supplementary Figure 4

Recruitment of GFP-DNA Ligase III and RFP-PCNA to repair sites in S phase Hela 

cells. The structure of the fusion proteins is depicted in Figure 2. Live cell imaging of

microirradiated Hela cells in early (A) and late S phase (B) coexpressing GFP-DNA 

Ligase III and RFP-PCNA shows accumulation of RFP-PCNA and GFP-DNA Ligase 

III at sites of DNA damage (arrows). Times after microirradiation are indicated. Scale 

bars, 5 µm. 
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Supplementary Figure 5

The NHEJ-factor GFP-DNA Ligase IV shows only a minor accumulation at laser-

induced DNA damage sites, while no accumulation of Ku70-GFP could be detected.

The structure of the fusion proteins is depicted in Figure 2. Live cell imaging of

microirradiated Hela cells shows only a minor accumulation of GFP-DNA Ligase IV

(A) and no accumulation of Ku70-GFP (B) at sites of DNA damage while RFP-PCNA

accumulates at these sites as seen before (arrows). Scale bars, 5 µm. 
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Supplementary Figure 6

Recruitment of DNA Ligase I PBD-GFP and RFP-PCNA to repair sites in S and non 

S phase Hela cells. The structure of the fusion proteins is depicted in Figure 2. Live 

cell imaging of microirradiated Hela cells in early S (A), mid S (B), late S (C) and non 

S phase (D) coexpressing DNA Ligase I PBD-GFP and RFP-PCNA shows

accumulation of RFP-PCNA and DNA Ligase I PBD-GFP at sites of DNA damage 

(arrows). Times after microirradiation are indicated. Scale bars, 5 µm. 
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In mammalian cells, the replication of genetic and epigenetic
information is directly coupled; however, little is known about the
maintenance of epigenetic information in DNA repair. Using a laser
microirradiation system to introduce DNA lesions at defined sub-
nuclear sites, we tested whether the major DNA methyltransferase
(Dnmt1) or one of the two de novo methyltransferases (Dnmt3a,
Dnmt3b) are recruited to sites of DNA repair in vivo. Time lapse
microscopy of microirradiated mammalian cells expressing GFP-
tagged Dnmt1, Dnmt3a, or Dnmt3b1 together with red fluorescent
protein-tagged proliferating cell nuclear antigen (PCNA) revealed
that Dnmt1 and PCNA accumulate at DNA damage sites as early as
1 min after irradiation in S and non-S phase cells, whereas recruit-
ment of Dnmt3a and Dnmt3b was not observed. Deletion analysis
showed that Dnmt1 recruitment was mediated by the PCNA-
binding domain. These data point to a direct role of Dnmt1 in the
restoration of epigenetic information during DNA repair.

DNA methylation � Dnmt1 � microirradiation � proliferating cell nuclear
antigen

In higher eukaryotes, maintenance and propagation of genetic
and epigenetic information is essential for cellular identity and

survival. By-products of normal cellular metabolism, spontane-
ous mutations, and environmental agents can lead to various
types of DNA damage. Numerous DNA repair pathways rees-
tablishing the genetic information are known and have been
intensively described (1, 2). However, very little is known about
enzymes and mechanisms involved in the restoration of the
epigenetic information. There are two main epigenetic marks,
DNA methylation and histone modifications, which are essential
for cell type-specific gene expression and maintained over
multiple cell divisions (3–7). Recently, chromatin assembly and
remodeling have been linked to DNA repair (8–10).

DNA methylation is a postreplicative modification occurring
mostly at cytosine residues of CpG dinucleotides and is essential
for mammalian development (11), parental imprinting (12), X
inactivation (13), and genome stability (14, 15). In mammalian
cells, DNA methylation is catalyzed by two types of enzymes,
maintenance (Dnmt1) and de novo methyltransferases (Dnmt3a,
Dnmt3b) (16). The maintenance methyltransferase Dnmt1 has a
preference for hemimethylated CpG sites generated during
DNA replication and is ubiquitously expressed (16). Dnmt1
associates with replication sites by directly binding to prolifer-
ating cell nuclear antigen (PCNA) and thus maintains DNA
methylation patterns in the newly synthesized strand after DNA
replication (17, 18). In contrast to the maintenance methyltrans-
ferase Dnmt1, the de novo methyltransferases Dnmt3a and
Dnmt3b are responsible for establishing new DNA methylation
patterns during development and show a low and tissue-specific
expression (19–21).

The importance of maintaining the epigenetic information
was recently underscored by knockdown experiments. Lowering
Dnmt1 to rate-limiting amounts in transgenic mice lead to a loss
of DNA methylation, affecting gene expression and develop-
ment, and even caused cancer (14, 15, 22).

These results clearly demonstrate the importance of DNA
methylation, and raise the question whether and how this
epigenetic information is maintained during DNA repair. There-
fore, we investigated whether and which DNA methyltrans-
ferases are present at DNA repair sites. As an experimental
system, we choose local DNA damage induction at preselected
subnuclear sites by UVA laser microirradiation (23), which
allows the study of protein dynamics involved in the repair
process in living cells.

We showed that Dnmt1 and PCNA are recruited to microir-
radiated sites in S and non-S phase cells immediately after
irradiation, whereas Dnmt3a and Dnmt3b are not accumulated.
Recruitment of Dnmt1 to DNA repair sites is mediated by the
PCNA-binding domain (PBD) of Dnmt1. These results suggest
that PCNA recruits enzymes involved in DNA synthesis, DNA
methylation, and chromatin assembly and that Dnmt1 contrib-
utes to the restoration of epigenetic information in DNA repair.

Materials and Methods
Cell Culture and Transfection. Mouse C2C12 myoblasts and human
HeLa cells were cultured in DMEM containing 50 �g�ml
gentamicin supplemented with 20% and 10% FCS, respectively.
For transfection, cells grown on gridded coverslips or on Lab-
Tek chamber slides (Nunc) were either microinjected with
plasmid DNA by using an automated microinjection system
(Eppendorf) or cotransfected with TransFectin transfection
reagent (Bio-Rad) according to the manufacturer’s instructions.
Cells were subsequently incubated overnight before performing
microirradiation and live cell analyses or immunostainings.

Expression Plasmids. Mammalian expression constructs encoding
translational fusions of mouse Dnmt1, Dnmt1�PBD, and the
PBD alone with enhanced GFP were described (24). Red
variants of the previously described GFP-PCNA (25) and GFP-
Dnmt1 were generated by replacing GFP with monomeric red
fluorescent protein (mRFP1) (26) and termed RFP-PCNA and
RFP-Dnmt1. GFP-Dnmt3a and GFP-Dnmt3b1 expression con-
structs were as described (27). The GFP-Ligase 3 construct was
generated by cloning the human DNA Ligase 3 cDNA (28) into
the peGFP-C1 (Clontech) vector. DNA Ligase 3 was amplified
by using the following oligonucleotides as primers for the PCR:
forward, 5�-GGGG GTCGAC GCT GAG CAA CGG TTC-3�;
reverse, 5�-CCCC GGATCC GCA GGG AGC TAC CAG-3�.
The residues in bold indicate a SalI and a BamHI site encoded
in the forward and reverse primer, respectively, for subcloning
the PCR fragment into the SalI and BamHI sites of the
peGFP-C1 vector downstream of GFP.

In all cases, expression was under the control of the CMV
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promoter. We tested all fusion proteins by expression in COS7
or 293T cells followed by Western blot analysis (29).

Immunofluorescence. Cells were fixed with 3.7% formaldehyde in
PBS and permeabilized with ice-cold methanol for 5 min or with
0.2% Triton-X-100 for 3 min. The following primary antibodies
(diluted 1:200 in PBS containing 2% BSA) were used: anti-�
H2AX (Ser-139) rabbit antibodies (Upstate Biotechnology),
anti-Dnmt1 rabbit antibodies raised against the N-terminal
domain (18), and anti-PCNA (clone PC10) mouse monoclonal
antibodies (Santa Cruz Biotechnology). Primary antibodies were
detected by using secondary antibodies (diluted 1:400 in PBS
containing 2% BSA) conjugated to Alexa Fluor 488, 635 (Mo-
lecular Probes) and Cy3 (Amersham Pharmacia), respectively.
Cells were counterstained with DAPI and mounted in Vectash-
ield (Vector Laboratories).

Microscopy. Stained cells were analyzed by using a Zeiss Axiovert
135 TV epifluorescence microscope equipped with a �63�1.4
numerical aperture Plan-Apochromat oil immersion objective.
Images were recorded with a cooled charge-coupled device
camera using METAMORPH software and appropriate filter sets.

For time lapse analysis, light optical sections were acquired
with a Zeiss LSM410 confocal laser scanning microscope using
the 488-nm Ar laser line and the 543-nm HeNe laser line,
respectively. Six mid z sections at 0.5-�m intervals were taken
every 3–10 min, and cells were followed up to several hours.
Focus drift over time was compensated with a macro that uses
the reflection at the coverslip to medium interface as reference.

After image acquisition, a projection of all six z sections was
performed from each time point by using IMAGEJ 1.34.

Alternatively, time series were taken with a Leica TCS SP2�
AOBS confocal laser scanning microscope using the 488-nm Ar
laser line and the 561-nm DPSS laser line. Before and after
microirradiation, confocal image series of one mid z section were
recorded at 2-s time interval (typically 1 preirradiation and
60–120 postirradiation frames) followed by an image series with
5-min time intervals.

UVA Laser Microirradiation. Cells were seeded on 40-mm-i.d. round
coverslips and sensitized for microirradiation by incubation in
medium containing BrdUrd (10 �g�ml) for 20 h. For live cell
microscopy and irradiation, coverslips were mounted in a FCS2
live-cell chamber (Bioptechs) and maintained at 37°C. Microir-
radiation was carried out with a laser microdissection system
(PALM) coupled into a Zeiss LSM410 confocal laser scanning
microscope. A pulsed N2 laser (337 nm) coupled into the
epifluorescence path of the microscope was focused through a
UV transmitting Plan-Neofluar �63�1.25 numerical aperture
objective to locally irradiate preselected spots of �1 �m i.d.

Fig. 1. GFP-Dnmt1 and RFP-PCNA but not GFP-Dnmt3a and GFP-Dnmt3b1
colocalize with �-H2AX at microirradiated sites. Wide-field fluorescence im-
ages of cotransfected C2C12 cells formaldehyde fixed 25–30 min after UVA
laser microirradiation. Double strand breaks were detected with rabbit poly-
clonal antibodies against �-H2AX. Arrows mark sites of irradiation. (A) Sche-
matic representation of the fusion proteins. (B) GFP-Dnmt1 and RFP-PCNA
accumulate at sites of DNA damage and colocalize with �-H2AX. (C and D)
GFP-Dnmt3a and GFP-Dnmt3b1 are bleached at irradiated sites and do not
redistribute to sites of DNA damage after microirradiation. (Scale bar, 5 �m.)

Fig. 2. Dynamics of DNA methyltransferase recruitment to repair sites in
living cells. Live cell imaging of microirradiated C2C12 cells in S phase coex-
pressing fluorescent fusion constructs of DNA methyltransferases and PCNA is
shown. The constructs used were the same as depicted in Fig. 1A except for the
RFP-Dnmt1 construct where the GFP was replaced by monomeric RFP. Maxi-
mum projections of confocal midsections are shown and times after microir-
radiation are indicated. (A) A C2C12 cell in early to mid S phase coexpressing
GFP-Dnmt1 and RFP-PCNA shows accumulation of RFP-PCNA and GFP-Dnmt1
at sites of DNA damage (arrows) as early as 1 min after irradiation. (B) An early
S phase cell coexpressing GFP-Dnmt3a and RFP-Dnmt1 shows accumulation of
RFP-Dnmt1 at the irradiated site (arrow), whereas GFP-Dnmt3a is bleached
(arrow) and does not recover during the entire observation period. (C) An
early S phase cell coexpressing GFP-Dnmt3b1 and RFP-PCNA shows bleaching
of GFP-Dnmt3b1 (arrow) at the irradiation spot, whereas RFP-PCNA accumu-
lates at this site (arrow). (Scale bars, 5 �m.)
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within the nucleus. The pulse energy could be tuned with a
rotatable absorption filter and was measured before passing
through the objective with a power meter. Taking into account
the 10% transmission of the objective at 337 nm, the energy

delivered to the target was estimated to be 8 nJ per pulse.
BrdUrd-sensitized cells were usually irradiated with 30 pulses
that corresponded to an estimated energy of 240 nJ per irradi-
ated site. For the acquisition of time series, the objective was
changed in some cases to a Plan-Apochromat �63�1.4 numerical
aperture objective after irradiation.

Alternatively, BrdUrd-sensitized cells grown on Lab-Tek
chamber slides (Nunc) were microirradiated with a 405-nm
diode laser coupled into a Leica TCS SP2�AOBS confocal laser
scanning microscope. The 405-nm laser was focused through a
UV transmitting Leica HCX PL APO �63�1.40 numerical
aperture oil objective to locally irradiate preselected spots of �1
�m i.d. within the nucleus. For microirradiation, a region of
interest was selected and irradiated with an intense 405-nm diode
laser beam (laser set to maximum power, 50 mW, at 100%
transmission) for 1 s. Under these conditions, thymine dimers
and double strand breaks are generated as demonstrated by
staining with specific antibodies (data not shown).

Results
Dnmt1 and PCNA Localize at DNA Repair Sites. To study whether and
which DNA methyltransferases are recruited to sites of DNA
repair, we used a UVA laser microirradiation system with a
pulsed 337-nm N2 laser to introduce DNA lesions. Local irra-
diation with this system causes a variety of different types of
DNA damage at defined nuclear sites. Replicative incorporation
of BrdUrd into DNA sensitizes cells and enhances the double
strand break (DSB) formation upon irradiation (23, 30, 31). We
microirradiated BrdUrd-sensitized mouse C2C12 myoblasts or
human HeLa cells and determined DNA damage induction by
immunostaining for �-H2AX. The histone variant H2AX be-
comes phosphorylated (�-H2AX) upon induction of DSBs
within a few minutes and therefore serves as a DSB marker (31).

Fig. 3. Recruitment of GFP-Dnmt1 and RFP-PCNA to repair sites in S and
non-S phase C2C12 cells. The structure of the fusion proteins is depicted in Fig.
1A. Live cell imaging of microirradiated C2C12 cells in G1 (A) and late S phase
(B) coexpressing GFP-Dnmt1 and RFP-PCNA shows accumulation of RFP-PCNA
and GFP-Dnmt1 at sites of DNA damage (arrows). Maximum projections of
confocal midsections are shown and times after microirradiation are indi-
cated. (Scale bars, 5 �m.)

Fig. 4. Recruitment of human Ligase 3 fused to GFP (GFP-Ligase 3) and RFP-PCNA or RFP-Dnmt1 to DNA repair sites after microirradiation. (A) Schematic
representation of the fusion proteins. (B) Correct expression of the GFP-Ligase 3 construct was determined by Western blot analysis. (C and D) Live cell imaging
of C2C12 cells coexpressing GFP-Ligase 3 and either RFP-PCNA (C) or RFP-Dnmt1 (D). After microirradiation with a 405-nm diode laser, GFP-Ligase 3, RFP-PCNA,
and RFP-Dnmt1 accumulate at sites of DNA damage (arrows). One confocal midsection is shown and times after microirradiation are indicated. (Scale bars, 5 �m.)
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Cells coexpressing GFP-Dnmt and RFP-PCNA fusion con-
structs were microirradiated and incubated for 25–30 min before
fixation and immunodetection of �-H2AX. At irradiated sites, an
accumulation of RFP-PCNA and GFP-Dnmt1 colocalizing with
�-H2AX was observed (Fig. 1). In contrast, GFP-tagged Dnmt3a
and Dnmt3b1 were found bleached at the irradiated region,
indicating that de novo methyltransferases were not recruited to
sites of induced DNA damage. Recruitment of endogenous
Dnmt1 and PCNA at irradiated sites was confirmed by immu-
nostaining of cells fixed �20 min after irradiation (Fig. 6, which
is published as supporting information on the PNAS web site).
Accumulation of PCNA and Dnmt1 depended on BrdUrd
treatment and the energy of the UVA laser beam (data not
shown). These results clearly show that PCNA and Dnmt1 are
recruited to UVA-induced nuclear DNA repair sites.

Kinetics of Dnmt1 and PCNA Recruitment. To study the kinetics of
DNA methyltransferase and PCNA recruitment in vivo, we
performed time lapse microscopy of microirradiated C2C12 cells
expressing various combinations of fusion constructs for GFP- or
RFP-tagged Dnmt1, Dnmt3a, Dnmt3b1, and PCNA. Short-term
confocal live cell series of irradiated cells were recorded with
time intervals of 3 min. Recruitment of RFP-PCNA and GFP-
Dnmt1 to microirradiation sites could be observed as early as 1
min after irradiation, reached a maximum �5–10 min after
irradiation, and persisted throughout the observation period of
�30 min. As was observed before, neither GFP-Dnmt3a nor
GFP-Dnmt3b1 accumulated at sites of DNA repair after micro-
irradiation (Fig. 2). Instead, GFP fluorescence at the irradiated
spot was bleached and did not recover over the total observation
period, indicating that both Dnmt3a and Dnmt3b1 were rather
immobile. These results were confirmed with further FRAP
analyses of cells expressing RFP-Dnmt1 and GFP-Dnmt3a or
GFP-Dnmt3b1 using a 488-nm Ar laser (data not shown).

Next we tested whether the recruitment of RFP-PCNA and
GFP-Dnmt1 occurs in S phase and non-S phase cells. The
characteristic focal distribution of RFP-PCNA allowed identifi-
cation of S phase in living cells (25, 32). After irradiation, we
followed cotransfected S and non-S phase cells over several
hours, recording confocal z stacks every 5–10 min. Accumula-
tions of GFP-Dnmt1 and RFP-PCNA at DNA damage sites
could be observed in S and non-S phase cells and both proteins
could still be detected at the irradiated sites as late as several
hours after irradiation (Fig. 3). Relative fluorescence intensities
at the irradiated sites decreased with a half time of �50 min.

Recruitment of RFP-PCNA and GFP-Dnmt1 to sites of DNA
damage could also be observed in human HeLa cells in S and
non-S phase (Fig. 7, which is published as supporting informa-
tion on the PNAS web site). These results show that PCNA and
Dnmt1 are recruited with similar kinetics in both human and
mouse cells.

To compare the recruitment kinetics of PCNA and Dnmt1
with a known repair protein, we microirradiated C2C12 cells
cotransfected with human DNA Ligase 3 fused to GFP (GFP-
Ligase 3) and RFP-PCNA or RFP-Dnmt1 expression vectors.
DNA Ligase 3 is known to be involved in base excision repair,
single strand break repair, and error-prone nonhomologous end
joining (33–35). Immediately after laser microirradiation, re-
cruitment of GFP-Ligase 3 and RFP-PCNA could be observed,
whereas Dnmt1 became visible with a delay of �1 min (Fig. 4).
The distinct recruitment kinetics at repair sites probably reflects
their different functions in repair. Thus, the slightly delayed
accumulation of Dnmt1 at repair sites fits well with a role in post
synthetic maintenance of DNA methylation.

Dnmt1-Recruitment to Sites of DNA Damage via PCNA. During S
phase, Dnmt1 is targeted to sites of DNA replication via its PBD
(17, 24). To test whether PCNA is also responsible for the

recruitment of Dnmt1 during DNA repair, we deleted the PBD
of Dnmt1 (GFP-Dnmt1�PBD) and expressed this deletion
construct in C2C12 cells together with RFP-PCNA. After UVA
laser microirradiation, GFP-Dnmt1�PBD, unlike RFP-PCNA,
remained diffuse and showed no accumulation at irradiated sites
(Fig. 5). This finding suggests that the PBD plays a critical role
in the recruitment of Dnmt1. To directly study the function of the
PBD, we fused the PBD alone with GFP (PBD-GFP). Besides
association to replication sites, the PBD fusion protein was
recruited to sites of DNA damage with kinetics similar to the
full-length Dnmt1 fusion construct (Fig. 5). These results dem-
onstrate that the PBD of Dnmt1 is necessary and sufficient for
localization at repair sites.

Discussion
Higher eukaryotes have established a number of DNA repair
pathways to deal with various types of DNA damage occurring
during normal cellular metabolism. Whereas repair of the
genetic information has been intensively studied, the mechanism
by which the epigenetic information is reestablished during DNA
repair is poorly understood.

The low and tissue-specific expression of Dnmt3a and -3b (19),
as well as their binding to pericentromeric heterochromatin (36),
makes these de novo methyltransferases rather unlikely candi-
dates for an involvement in the genome-wide restoration of DNA
methylation in DNA repair. In contrast, Dnmt1 is ubiquitously
expressed at high levels and has a highly mobile fraction in the
nucleus (unpublished data). Using a laser microirradiation sys-

Fig. 5. Recruitment of Dnmt1 to DNA damage sites is mediated by PCNA. (A)
Schematic representation of the fusion proteins. (B) Live cell imaging of a
microirradiated C2C12 cell coexpressing GFP-Dnmt1�PBD and RFP-PCNA. De-
letion of the PBD in GFP-Dnmt1�PBD abolishes recruitment to sites of DNA
damage, whereas RFP-PCNA accumulates at these sites as seen before (arrow).
(C) A late S phase cell coexpressing PBD-GFP and RFP-PCNA shows accumula-
tion of both RFP-PCNA and PBD-GFP at sites of microirradiation (arrows).
Maximum projections of confocal midsections are shown and times after
microirradiation are indicated. (Scale bars, 5 �m.)
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tem to induce DNA lesions at defined nuclear sites, we observed
recruitment of Dnmt1 but did not detect any accumulation of
Dnmt3a or Dnmt3b at repair sites in living mammalian cells.
These results fit well with the recent identification of Dnmt1 as
a potential component of the mismatch repair (MMR) pathway
in a genetic screen for MMR mutants using Bloom�s syndrome
protein (Blm)-deficient embryonic mouse stem cells (37). The
accumulation of Dnmt1 at repair sites suggests that, like in DNA
replication, Dnmt1 maintains the DNA methylation pattern in
the DNA newly synthesized during the repair process. Thus,
Dnmt1 likely prevents a loss of DNA methylation in repair,
which otherwise could cause epigenetic deregulation (38) and
genomic instability (14, 15). In addition, Dnmt1 has been
reported to interact with histone deacetylases (39, 40) and could
thus, together with chromatin assembly factor 1 (CAF-1) (8),
contribute to the reestablishment of chromatin structures and
respective histone modifications. Finally, Dnmt1 may also par-
ticipate in the identification of the template strand in various
repair pathways as was suggested for MMR (41, 42). Scope and
details of Dnmt1 function(s) at DNA repair sites remain to be
elucidated.

Key steps in DNA repair are recognition of the DNA
damage and recruitment of the repair machinery. We could

follow the accumulation of PCNA at DNA damage sites in
living cells, which fits well with earlier reports identifying
PCNA at DNA lesions (8, 43–45). Here, we could demonstrate
that Dnmt1 is recruited to DNA damage sites via PCNA and
that the PBD of Dnmt1 is necessary and sufficient for this
recruitment. Our results show that PCNA mediates recruit-
ment of the maintenance methyltransferase Dnmt1 not only to
replication sites but also to DNA repair sites. Interestingly,
PCNA is controlled by ubiquitination and sumoylation leading
to a switch between alternative repair pathways (45, 46). In
summary, PCNA plays a central role in DNA replication and
repair, thus serving as a versatile loading platform for enzymes
involved in DNA synthesis, chromatin assembly, and mainte-
nance of DNA methylation.
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Fig. 6. Accumulation of endogenous proliferating cell nuclear antigen (PCNA) and Dnmt1 at

microirradiated sites. Wide-field fluorescence images of C2C12 cells. Fixation and immuno-

staining was performed ~20 min after UVA laser irradiation using mouse monoclonal anti-PCNA

antibodies and rabbit polyclonal antibodies against the N terminus of Dnmt1. Both, endogenous

PCNA and Dnmt1 are recruited to induced DNA damage sites (arrows). Scale bar, 10 µm.

Fig. 7. Recruitment of GFP-Dnmt1 and red fluorescent protein-proliferating cell nuclear antigen

(RFP-PCNA) to microirradiation sites in HeLa cells. (A) Schematic representation of the fusion

constructs. Live cell imaging of microirradiated S phase (B) and non-S phase (C) HeLa cells

coexpressing GFP-Dnmt1 and RFP-PCNA show accumulation of both fusion proteins at sites

of DNA damage (arrows) as early as 1 min after irradiation. Scale bar, 5 µm.
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2.7. A fluorescent two-hybrid (F2H) assay for direct 
visualization of protein interactions in living cells. 
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Abstract  
Genetic high-throughput screens have yielded large sets of potential protein-protein 

interactions now to be verified and further investigated. Here we present a simple 

assay to directly visualize protein-protein interactions in single living cells. Using a 

modified lac repressor system, we tethered a fluorescent bait at a chromosomal lac 

operator array and assayed for co-localization of fluorescent prey fusion proteins. 

With this fluorescent two-hybrid (F2H) assay we successfully investigated the 

interaction of proteins from different subcellular compartments including nucleus, 

cytoplasm and mitochondria. In combination with an S phase marker we also studied 

the cell cycle dependence of protein-protein interactions. These results indicate that 

the F2H assay is a powerful tool to investigate protein-protein interactions within their 

cellular environment and to monitor the response to external stimuli in real-time.  
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Introduction 

After sequencing the human genome the next challenge is now to analyze the 

complex protein-networks underlying cellular functions. In the last decade a wide 

variety of methods to study protein-protein interactions ranging from biochemical to 

genetic or cell-based approaches have been developed. Biochemical methods like 

affinity purification or co-immunoprecipitation allow the detection of protein 

complexes in vitro. Genetic methods, such as the yeast two-hybrid (Y2H) system, 

enable efficient high-throughput screening of interactions within the cellular 

environment. The analysis of mammalian protein interactions in yeast may, however, 

suffer from the absence or insufficient conservation of cellular factors modulating 

protein-protein interactions, e.g. through posttranslational modifications 1. 

In recent years new fluorescence-based methods for in-cell visualization of protein-

protein-interactions have been introduced. Two established techniques, fluorescence 

resonance energy transfer (FRET) 2,3 and bimolecular fluorescence complementation 

(BiFC) 4, are based on the expression of fluorescently labelled proteins or fragments 

thereof. However, FRET requires costly instrumentation and advanced technical 

expertise, while BiFC is based on the irreversible complementation and slow 

maturation of fluorophores which does not allow real-time detection of protein-protein 

interactions 4.  

All these methods have inherent shortcomings and are typically combined to obtain 

more reliable results. We have now developed a novel fluorescent two-hybrid (F2H) 

assay for the direct visualization of protein-protein interactions in living mammalian 

cells. The simple optical readout of this F2H assay allows observation of protein-

protein interactions in real time and should also be suitable for high-throughput 

screens. 
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Results 
To visualize protein-protein interactions in living cells in real time we developed a 

fluorescence two-hybrid (F2H) assay. The rationale for the F2H assay is based on 

the fact that proteins are freely roaming the cell unless interactions with other cellular 

components immobilize them at specific structures 5. 

We used a previously described BHK and an U2OS cell line which both harbor a 

stable integration of about 200-1000 copies of a plasmid carrying 256 copies of the 

lac operator sequence 6,7. We generated an expression construct encoding a 

fluorescent bait protein consisting of a fluorescent protein (FP), the lac repressor 

(LacI) and the protein X to be tested for interactions (bait) resulting in the triple fusion 

protein FP-LacI-X (Fig. 1a) or X-LacI-FP. This fusion protein binds to the operator 

array, which then becomes visible due to the focal enrichment of the FP signal. A 

second, differently labelled fusion protein (FP-Y, prey) may either interact with the 

bait protein X leading to co-localization of the FP signals (Fig. 1b) or may not 

interact, resulting in a dispersed distribution of the prey fluorescence (Fig. 1c).  
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Visualization of interactions between DNA repair proteins 

To test the F2H assay, the previously described interaction between the two DNA 

repair proteins DNA Ligase III and XRCC1 8,9 was analyzed and the results were 

compared with data obtained from pull down assays. We have previously shown that 

this interaction is mediated by the BRCT domain of DNA Ligase III which targets it to 

DNA repair sites 10. We generated a bait fusion protein consisting of XRCC1 followed 

by the LacI and the monomeric red fluorescent protein RFP (mRFP). As expected 

this fusion protein localized at the lac operator array in transiently transfected BHK 

cells (Fig. 2a). Both, the full length GFP-tagged DNA Ligase III as well as the isolated 

GFP-labelled BRCT domain co-localize with XRCC1 at the lac operator array, while a 

fusion protein missing the BRCT domain shows a dispersed distribution. Notably, the 

highly homologous DNA Ligase I, which catalyzes the same reaction as DNA Ligase 

III, does not bind to XRCC1 (Fig. 2a and supplementary Figure 1). A direct 

comparison of the F2H data with data obtained from Co-IP experiments reveals that 

these two methods gave similar results (Fig. 2b). In addition, we could also observe 

the recently described interaction of XRCC1 with PCNA 11 and the two DNA-damage 

dependent PARPs, PARP-1 and PARP-2 12,13 (supplementary Figure 2). These 

results demonstrate that the F2H assay is well suited to study protein-protein 

interactions in living cells.  
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Analysis of cell cycle dependence of protein-protein interactions 
A challenge in the analysis of protein-protein interactions is to monitor transient 

changes caused by for example cell cycle progression or other external stimuli. We 

analyzed the previously described interaction between DNA methyltransferase 1 

(Dnmt1) and PCNA which is mediated by the PCNA binding domain (PBD) and 

targets Dnmt1 to sites of DNA replication in S phase 14,15. These findings raised the 

question whether this interaction occurs only in S phase at replication foci or 

throughout the cell cycle. We generated two bait-proteins comprising parts of Dnmt1 

fused to the LacI and YFP. One bait (PBD-LacI-YFP) comprises aa 118-427 of 

Dnmt1 including the PBD, while the second bait (∆PBD-LacI-YFP) lacks the PBD and 

comprises aa 629-1089 of Dnmt1 (Fig. 3a). As a prey-protein we used RFP-PCNA 

which in addition marks sites of DNA replication allowing the identification of cells in 

S phase 16,17. The binding possibilities of these fusion proteins at the lac operator 

array and the replication fork are summarized in Fig. 3b.  

In non S phase the LacI part of the bait proteins only binds to the chromosomally 

integrated lac operator array, which – dependent on the ploidy of the cell – becomes 

visible as one or two fluorescent spots in the nucleus. Interaction of RFP-PCNA with 

the PBD part of the bait protein results in co-localization of the fluorescent signals at 

the lac operator array (Fig. 3c upper panel), while deletion of the PBD in the bait 

protein leads to a dispersed distribution of RFP-PCNA in non S phase cells (Fig. 3d 
upper panel). This clearly illustrates that the PBD-dependent interaction of Dnmt1 

with PCNA also occurs outside of S phase. 

In S phase cells, RFP-PCNA localizes at sites of ongoing DNA replication and in 

addition is recruited to the lac operator array by the PBD-LacI-YFP bait protein (Fig. 
3c lower panel). In contrast, when RFP-PCNA is coexpressed together with a bait 

protein lacking a functional PBD (∆PBD-LacI-YFP), RFP-PCNA is exclusively 

enriched at DNA replication sites and not at the lac operator array highlighted by 

∆PBD-LacI-YFP (Fig. 3d lower panel). 
These results clearly show that the localization of RFP-PCNA (prey) at the lac 

operator array depends on the presence of the PBD in the bait construct and that this 

interaction is not restricted to S phase. 
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Next we analyzed the interaction of other PBD-containing proteins with PCNA. We 

generated a bait fusion protein comprising PCNA fused to an additional NLS followed 

by LacI and RFP (NLS-PCNA-LacI-RFP). When co-expressed with GFP-Ligase I, 

both fusion proteins localized to the lac operator array indicating interaction between 

PCNA and DNA Ligase I. Deletion of the PBD lead to a disperse distribution of DNA 

Ligase I, while the PBD of DNA Ligase I alone was sufficient for binding to PCNA at 

the lac operator array (supplementary Figure 3). This is in agreement with previous 

studies showing that the PBD of DNA Ligase I is necessary and sufficient for its 

targeting to DNA replication and repair sites 10,18,19. Notably, using the F2H assay we 

could demonstrate that DNA Ligase I, as well as the isolated PBD are capable of 

binding to PCNA also outside of S-phase. Likewise we could show binding of various 

additional replication and repair proteins like FEN1, p21 and the Polymerase δ 

subunit p66 to PCNA in non S-phase cells (supplementary Figure 4). Taken 

together we could show that the interaction between replication proteins and PCNA is 

not limited to S phase but also occurs in non S phase cells and outside the 

replication machinery. This illustrates that the F2H assay offers the unique potential 

to analyze cell cycle specific changes in protein-protein interactions in living cells.  
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Detection of interactions between proteins related to Huntington´s disease  
To investigate whether the F2H assay can also detect protein-protein interactions 

taking place in other cellular compartments, we tested the F2H assay with protein 

interactions identified in the context of Huntington´s disease by yeast two-hybrid 

(Y2H) assays 20. We analyzed the interaction of one cytoplasmatic (Vimentin) and 

two nuclear (HZFH and SUMO3) proteins. Vimentin has been described to be a 

cytoskeleton component and participates in transport processes, whereas HZFH and 

SUMO3 are involved in transcriptional regulation and DNA maintenance 20. These 

proteins were either fused with a red fluorescent mCherry-LacI-NLS or with NLS-GFP 

to generate sets of bait and prey proteins. BHK cells carrying a lac operator array 

were transfected with all possible combinations of expression constructs and 

subjected to microscopic analysis. We could detect an interaction between Vimentin 

and HZFH independent of whether these two proteins were used as bait or prey 

(Fig.4 and data not shown). We could also detect the reported interaction between 

SUMO3 and HZFH while Vimentin and SUMO3 did not interact, as previously 

described (Fig. 4) 20. These results show that interactions of nuclear and cytoplasmic 

proteins can be studied with the F2H assay. 
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Detection of interactions between mitochondrial proteins 

Next, we investigated whether the F2H assay is also suitable to detect protein-protein 

interactions occurring in other cellular organelles. To this end, we analyzed the 

interaction between two mitochondrial proteins, DDP1 (deafness dystonia peptide 1) 

and TIMM13. Both proteins are nuclear encoded and imported into the mitochondrial 

intermembrane space (IMS) forming a hexameric complex (Fig. 5a). Within the IMS 

the DDP1-TIMM13 complex facilitates the import of hydrophobic proteins of the 

mitochondrial import machinery into the mitochondrial innermembrane 21. A mutation 

of the DDP1 gene was associated with the Mohr-Tranebjaerg-Syndrome, which is a 

progressive, neurodegenerative disorder 22. This C66W missense mutation is known 

to cause a full blown phenotype and affects the highly conserved Cys(4) motif of 

DDP1. Previous studies have shown, that this amino acid exchange abolishes the 

interaction between DDP1 and TIMM13 in the IMS 23. 

Using a red fluorescent bait fusion protein comprising LacI-NLS-TIMM13 and GFP-

tagged wildtype (GFP-DDP1) or mutant DDP1 (GFP-DDP1C66W) prey proteins we 

analyzed this specific mitochondrial protein interaction with the F2H assay. We found 

that GFP-DDP1 co-localizes with TIMM13 at the lac operator array (Fig. 5b), while 

GFP-DDP1C66W was evenly distributed (Fig. 5c). These results demonstrate that the 

F2H assay is also suitable for the analysis of protein-protein interactions occurring 

outside the nucleus and the characterization of disease related point mutations 

disrupting these interactions. 
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Discussion 

Here we describe a new method to detect and visualize protein-protein interactions in 

living cells, which we termed fluorescent two-hybrid assay (F2H). This method is 

based on the immobilization of a fluorescently labeled bait protein at a distinct 

subcellular structure enabling the detection of protein-protein interactions as co-

localization of a differently labeled prey protein at this defined structure. The F2H 

assay described takes advantage of cell lines with a stable integration of a lac 

operator array to immobilize a lac repressor fused to fluorescently labeled proteins of 

interest (bait). Readily usable cell lines have already been described for human, 

mouse, hamster and Drosophila6,7,24-27. To be independent of specific transgenic cell 

lines this assay could be modified by using various cellular structures like the lamina, 

the cytoskeleton or centrosomes as anchoring structures to locally immobilize bait 

proteins.  

Like other genetic two-hybrid methods also the F2H assay may yield false positive or 

false negative results, which need to be controlled for. Prey proteins that bind to the 

lac operator array in the absence of a bait protein can be identified by an initial 

screen and then be only used as baits. We analyzed more than 20 protein-protein 

interactions from different subcellular compartments with the F2H assay and 

obtained identical results as previously described with other genetic or biochemical 

methods. Only one protein (SUMO3) was found to bind by itself to the lac operator 

array and could therefore only be used as a bait protein. These results show that the 

F2H assay is a reliable and broadly applicable method to study protein-protein 

interactions. 

In some cases, proteins may accumulate at subnuclear foci and thus complicate the 

F2H analysis. To bypass this problem, the lac operator array could be visualized and 

identified with a third fluorescent fusion protein like CFP-LacI. 

In summary, this new F2H assay allows the direct visualization of protein-protein 

interactions and should be ideally suited to investigate cell cycle or differentiation 

dependent changes in real-time in living cells. A significant advantage of the F2H 

assay over other cell-based techniques is its simplicity that does neither require 

costly instrumentation nor advanced technical expertise. The simple optical read-out 

of the F2H assay additionally offers the possibility to use this assay in automated 

high-throughput screens to systematically analyze the protein interactome in living 

cells.  
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Methods 
Expression constructs 

The LacI encoding sequence was PCR amplified from the p3’SS EGFP-LacI 

expression vector24 using the following primers: forward primer 5’-TCT AGA AAG 

CTT TCC ATG GTG AAA CCA GTA-3’ and reverse primer 5’-CCA TGC CCG GGA 

CAG GCT GCT TCG GGA AAC-3’ (restriction sites in italic). This PCR fragment was 

digested with HindIII and XmaI and cloned into the same sites of two Dnmt1-YFP 

expression vectors (MTNY.2 and PBHD-YFP)15 generating PBD-LacI-YFP and 

ΔPBD-LacI-YFP. The NLS-PCNA-LacI-RFP and XRCC1-LacI-RFP constructs were 

generated by PCR amplification of the PCNA and XRCC1 cDNA using the following 

primers (restriction sites in italic):  

PCNA forward 5´- CCCCCTCGAGATGTTCGAGGCGCGC -3´ 

PCNA reverse 5´- GGGGAAGCTTGGAGATCCTTCTTCATCCTC- 3` 

XRCC1 forward 5´- CCCCAGATCTATGCCGGAGATCCGC -3´ 

XRCC1 reverse 5´- GGGGGAATTCGGGGCTTGCGGCACCAC -3´ 

 

Subsequently the PCR fragments were cloned into a LacI-RFP expression vector 

using the XhoI/HindIII sites for the NLS-PCNA-LacI-RFP and the BglII/EcoRI sites for 

the XRCC1-LacI-RFP expression vector. 

All other F2H constructs were generated by PCR amplification of coding cDNAs and 

subsequent ligation into the AsiSI and NotI sites of the bait and prey expression 

vectors described in Figure 1 a. The following primers were used with the restriction 

site indicated in italics: 

DDP1 forward 5´-CCCCGCGATCGCGATTCCTCCTCCTCTTCCTC-3´ 

DDP1 reverse 5´-CCCCGCGGCCGCTCAGTCAGAAAGGCTTTCTG-3´ 

TIMM13 forward 5´-CCCCGCGATCGCGAGGGCGGCTTCGGCTCC-3´ 

TIMM13 reverse 5´-CCCCGCGATCGCGAGGGCGGCTTCGGCTCC-3´ 

HZFH forward 5´-GGGGGCGATCGCCACGCCCGCTTCC-3´ 

HZFH reverse 5´-CCCCGCGGCCGCTTAGTCGTCTATACAGATCACCTCC-3´ 

SUMO3 forward 5´-CCCCGCGATCGCGCCGACGAAAAGCCCAAG-3´ 

SUMO3 reverse 5´-CCCCGCGGCCGCTCAGTAGACACCTCCCG-3´ 

Vim forward 5´-GGGGTGTACAGCGATCGCATGTCGACCCACGCGT-3´ 

Vim reverse 5´-CCCCGAATTCGCGGCCGCTTATTCAAGGTCATCGTGATGCT-3´ 
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Mammalian expression constructs encoding translational fusions of human DNMT1, 

DNA-Ligase I, DNA-Ligase III, p21, FEN I, Polymerase δ p66 subunit, PARP-1, 

PARP-2 and PCNA were previously described 16,28-32. Deletion constructs and 

isolated domains of DNA-Ligase I and III were described in Mortusewicz et al 10. 

Immunoprecipitations were performed with a GFP-nanotrap 33 as described before10. 

All fusions constructs were tested for correct expression and localization. 

 

Cell culture and transfection 

Transgenic BHK cells (clone #2) and U2OS cells (clone 2-6-3) containing lac 

operator repeats were cultured under selective conditions in DMEM supplemented 

with 10% fetal calf serum and 150 μg/ml hygromycin B (PAA Laboratories) as 

described 6,7. For microscopy cells were grown to 50-70% confluence either on 18x18 

glass coverslips or in µ-slides (ibidi, Munich, Germany) and then co-transfected with 

the indicated expression constructs using Polyplus transfection reagent jetPEI™ 

(BIOMOL GmbH, Hamburg, Germany) according to the manufacturer’s instructions. 

After 6-10 hours the transfection medium was changed to fresh culture medium and 

cells were then incubated for another 12-24 hours before live cell microscopy or 

fixation with 3.7 % formaldehyde in PBS for 10 min at room temperature. Fixed cells 

were permeabilized with 0.2 % Triton X-100 in PBS for 3 min, counterstained with 

DAPI and mounted in Vectashield (Vector Laboratories, CA, USA). 

 

Microscopy 

Live or fixed cells expressing fluorescent proteins were analyzed using a Leica TCS 

SP2 AOBS confocal microscope equipped with a 63x/1.4 NA Plan-Apochromat oil 

immersion objective. Fluorophores were excited with a 405 nm Diode laser, a 488 nm 

and a 514 nm Ar laser and a 561 nm Diode-Pumped Solid-State (DPSS) laser. 

Confocal image stacks of living or fixed cells were typically recorded with a frame 

size of 512x512 pixels, a pixel size of 50-100 nm, a z-step size of 250 nm and the 

pinhole opened to 1 Airy unit. A maximum intensity projection of several mid z-

sections was generated with ImageJ (Version 1.38, http://rsb.info.nih.gov/ij/). 
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Figures 

 
Figure 1 

Schematic outline of the fluorescent two-hybrid (F2H) assay. (a) Outline of pF2H-

prey and pF2H-bait expression vectors coding for fluorescently labeled prey- and 

bait- proteins used for the F2H assay (b) The LacI domain of the bait-protein 

mediates binding to the chromosomally integrated lac operator array, which is visible 

as a fluorescent spot in nuclei of transfected cells. If the differentially labeled prey 

interacts with the bait it becomes enriched at the same spot resulting in co-

localization of fluorescent signals at the lac operator (visible as yellow spot in the 

overlay image). (c) If the prey does not interact with the bait protein it remains 

dispersed in the nucleus and the lac operator array is only visualized by the bait 

protein (red spot). FP1 and FP2 refer to two distinguishable fluorescent proteins, e.g. 

GFP or YFP and mCherry or mRFP. 
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Figure 2 
Specific interaction of DNA Ligase III with XRCC1 revealed by F2H (a) Transgenic 

BHK cells containing a chromosomal lac operator array were co-transfected with 

XRCC1-LacI-RFP and GFP-tagged DNA Ligase III or DNA Ligase I constructs. The 

lac repressor part of the XRCC1-LacI-RFP fusion protein mediates binding to the lac 

operator array (visible by fluorescence microscopy as red spot). DNA Ligase III is 

recruited to the lac operator array through interaction with XRCC1. Note that the 

highly homologous DNA Ligase I does not accumulate at the lac operator array 

indicating that it does not interact with XRCC1. Scale bars 5 µm. (b) Comparison of 

F2H results and co-immunoprecipitation (Co-IP) experiments. Co-IPs were performed 

with 293T cells co-expressing RFP-XRCC1 and GFP-Ligase III or GFP-Ligase I, 

respectively. For interaction mapping the GFP-tagged BRCT domain of DNA Ligase 

III and a deletion construct lacking the BRCT domain were used. 

Immunoprecipitations were performed with a GFP-nanotrap 33 (as shown before 10). 

Precipitated fusion proteins were then detected with specific antibodies against RFP 

and GFP on western blots. RFP-XRCC1 was co-precipitated with GFP-Ligase III but 

not with GFP-Ligase I. RFP-XRCC1 was also co-precipitated with GFP-

Ligase III BRCT but not with GFP-N-Ligase III ΔBRCT. For comparison of F2H 
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results the input (left) and bound (right) bands from Co-IPs were aligned with 

corresponding signals from the F2H assay. The LacI spot of the XRCC1-LacI-RFP 

bait construct shown in red and the bound fraction was aligned with the respective 

signal of the GFP-tagged prey constructs. Whole cell images of the respective F2H 

experiments are shown in (a) and supplementary Figure 1. 
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Figure 3 
F2H analysis of cell cycle independent interaction of Dnmt1 with PCNA. (a) 

Schematic outline of full-length mouse Dnmt1 and fusion proteins. PBD, PCNA 

binding domain; NLS, nuclear localization sequence; TS, targeting sequence; ZnF, 

Zn2+-binding region; BAH 1 and 2, two Bromo Adjacent Homology domains. (b) 

Outline of binding possibilities of fusion proteins at the lac operator (lac op) array and 

at the replication fork. (c) Transgenic BHK cells containing a chromosomal lac 

operator array were co-transfected with PBD-LacI-YFP and RFP-PCNA constructs. 

RFP-PCNA shows the characteristic cell cycle dependent distribution (dispersed in 

non S phase cells (top row) and focal patterns in S phase (bottom row)). The lac 

repressor part of the PBD-LacI-YFP fusion protein mediates binding to the lac 

operator array (visible as green spot and highlighted by arrowheads) and the PBD 

mediates binding to PCNA at replication sites (focal pattern in S phase). Notice, RFP-

PCNA is localized at the lac operator array in S and non S phase cells indicating an 

interaction of the PBD of Dnmt1 with PCNA throughout the cell cycle and 

independent of the replication machinery. (d) BHK cells were transfected with 

expression vectors for ΔPBD-LacI-YFP and RFP-PCNA. As above, RFP-PCNA 

shows a disperse distribution in non S phase (top row) and redistributes to replication 

sites in S phase (bottom row). The ΔPBD-LacI-YFP fusion protein binds to the lac 

operator array (green spot marked by arrowhead) but does not bind to replication 

sites in S phase since it lacks the PBD. Importantly, in these cells RFP-PCNA (prey) 

is not localized at the lac operator array (marked by arrowheads) indicating that 

binding depends on the presence of the PBD, which is absent in ΔPBD-LacI-YFP 

(bait). Scale bars 5 μm 
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Figure 4 
Analysis of Huntington´s disease related interactions by F2H. (a) Reported 

interactions between (a) SUMO3 and HZFH and (b) HZFH and Vimentin revealed by 

F2H. (c) F2H analysis shows no interaction between SUMO3 and Vimentin as 

previously described 20. In (b) the nucleus is outlined by a dashed line and in (c) the 

lac operator array is indicated (arrowheads). Scale bars 5 µm. 
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Figure 5 
Analysis of mitochondrial protein-protein interactions and the effect of a mutation 

associated with the Mohr-Tranebjaerg Syndrome. (a) Schematic overview of the 

hexameric DDP1-TIMM13 complex in the intermembrane space (IMS) of 

mitochondria. (b + c) BHK cells expressing the bait-protein mCherry-LacI-TIMM13 

together either with GFP-DDP1 (b) or the loss-of-function mutant GFP-DDP1C66W (c). 

While the functional wt fusion GFP-DDP1 shows interaction with TIMM13 revealed by 

co-localization of fluorescent signals at the lac operator array (b), the GFP-DDP1C66W 

mutant is dispersedly distributed throughout the nucleus indicating no interaction (c). 

Scale bars 5 µm. 
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Supplementary Information 

 
Supplementary Figure 1 
BRCT mediated interaction of DNA-Ligase III with XRCC1 revealed by the F2H 

assay. Transgenic BHK cells containing a lac operator array were co-transfected with 

XRCC1-LacI-RFP and various GFP-tagged DNA-Ligase III constructs. The lac 

repressor part of the XRCC1-LacI-RFP fusion protein mediates binding to the lac 

operator array (visible as red spot). The BRCT domain is necessary and sufficient for 

targeting of DNA Ligase III to the lac operator array through interaction with XRCC1. 

Note that the highly homologous DNA Ligase I does not accumulate at the lac 

operator array indicating that it does not interact with XRCC1. Scale bars 5 µm. 
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Supplementary Figure 2 
The F2H assay reveals the interaction of XRCC1 with PCNA, PARP-1 and PARP-2. 

BHK cells containing a lac operator array were transfected with expression vectors 

for XRCC1-LacI-RFP and either GFP-PARP-1, GFP-PARP-2 or GFP-PCNA. The lac 

repressor part of the XRCC1-LacI-RFP fusion protein mediates binding to the lac 

operator array (visible as red spot). GFP-PARP-1, GFP-PARP-2 and GFP-PCNA are 

targeted to the lac operator array indicating an interaction with XRCC1. 

Scale bar 5 µm. 
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Supplementary Figure 3 
The F2H assay reveals the PBD-mediated interaction of DNA-Ligase I with PCNA. 

Transgenic U2OS cells containing a lac operator array were co-transfected with NLS-

PCNA-LacI-RFP and various GFP-tagged DNA-Ligase I constructs. The lac 

repressor part of the NLS-PCNA-LacI-RFP fusion protein mediates binding to the lac 

operator array (visible as red spot). The PBD is necessary and sufficient for targeting 

of DNA Ligase I to the lac operator array through interaction with PCNA. 

Scale bar 5 µm. 
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Supplementary Figure 4 
Interaction of various replication and repair proteins with PCNA revealed by the F2H 

assay. Transgenic BHK cells containing a lac operator array expressing NLS-PCNA-

LacI-RFP and various GFP-tagged replication and repair proteins. All proteins tested 

interact with PCNA. Scale bar 5 µm. 
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3. DISCUSSION 

Pioneering work using mainly in vitro experiments gave detailed insights into the 

biochemical mechanisms and composition of the various DNA repair pathways. 

However, the identification of more and more proteins being involved in the various 

steps of DNA repair, as well as the emerging interconnection between different DNA 

repair pathways, requires studying the spatio-temporal coordination of DNA repair in 

living cells. In recent years, several methods have been introduced that allow DNA 

lesion induction and subsequent real-time analysis of the DNA damage response in 

living cells. Using laser microirradiation, live cell microscopy and photobleaching 

analysis in combination with specific inhibitors and mutants, we studied the 

recruitment kinetics and role of various DNA repair factors involved in processes 

ranging from DNA lesion detection to restoration of epigenetic information (Figure 4). 

 

Figure 4 Summary of proteins analyzed in this study and their respective role in the four major steps 
of the DNA damage response. Question marks indicate that the precise function(s) of the respective 
protein is still unclear. 
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3.1. DNA lesion detection and signalling 

Immediate and efficient sensing of DNA lesions is crucial for cellular survival. Several 

enzymes have been described to be involved in this first common step of all DNA 

repair pathways. However, it is still unclear how specific lesions are recognized within 

the context of chromatin. To gain insights into the mechanisms of lesion detection 

and signalling, we analyzed the recruitment kinetics of the two DNA-damage-

dependent PARPs, PARP-1 and PARP-2, and of a recently identified potential 

component of the DNA damage response, the RNA Polymerase II cofactor PC4. 

 

PARP-1 and PARP-2 are involved in the early steps of DNA repair 

The requirement of the two DNA-damage dependent PARPs, PARP-1 and PARP-2, 

for DNA repair have been demonstrated by various genetic studies of knock-out mice 

and cells (de Murcia et al., 1997; Masutani et al., 1999; Menissier de Murcia et al., 

2003; Schreiber et al., 2002; Trucco et al., 1998; Wang et al., 1997). Based on the 

interaction of PARP-1 and PARP-2 with common proteins involved in genome 

restoration on the one hand and their binding to different DNA lesions and substrates 

on the other hand, it was suggested that PARP-1 and PARP-2 have both overlapping 

and non-redundant functions (Menissier de Murcia et al., 2003; Schreiber et al., 

2002; Werten et al., 1998). Yet, there have been reports questioning the importance 

of PARP-1 or PARP-2 for DNA repair (Fisher et al., 2007; Vodenicharov et al., 2000). 

We compared the spatio-temporal redistribution of PARP-1 and PARP-2 in response 

to DNA damage induced by laser microirradiation in living cells. Both DNA-damage 

dependent PARPs were recruited to laser-induced DNA damage sites, albeit with 

different kinetics. While PARP-1 showed a fast and transient accumulation consistent 

with its proposed role as a DNA damage sensor, PARP-2 exhibited a slow and 

constant accumulation at DNA damage sites. Together with earlier findings 

demonstrating that PARP-2 has a high affinity for gap and flap structures (Schreiber, 

2004) this suggests, that PARP-2 is rather involved in the latter steps of DNA repair, 

like processing of repair intermediates. 

Interestingly, we found that the recruitment efficiency of both, PARP-1 and PARP-2, 

depends on their enzymatic activity. Further analysis of PARP-1 recruitment 

mechanisms showed that PARP-1 recruitment is mainly mediated by its N-terminal 

DNA binding domain (DBD). PAR generated by PARP-1 at the damage site is then 

recognized by the BRCT domain of PARP-1 leading to a second wave of PARP-1 
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recruitment. In addition to being required for efficient recruitment of PARP-1, the 

catalytic activity of PARP-1 is also needed for its dissociation from repair sites. This 

observation could be explained with earlier findings, showing that automodification of 

PARP-1 abolishes DNA binding in vitro (Ferro and Olivera, 1982). Finally, using 

knock-out cells and rescue experiments we could show, that PARP-1 activity is 

essential for the rapid recruitment of the central loading platform XRCC1 by 

generating high affinity binding sites. Taken together, these data argue for three 

distinct roles of PARP-1 in response to DNA damage: the detection and labelling of 

the damaged site, the local relaxation of chromatin structure and the recruitment of 

repair factors. 

 

Figure 5 Simplified model for the recruitment of repair factors to SSB. For a detailed discussion of the 
role and regulation of PARPs see text.  

In summary, we propose the following model for the spatio-temporal accumulation of 

SSBR/BER factors at DNA strand breaks (Figure 5). Single strand breaks are 

detected by the DNA binding domain of PARP-1. Poly(ADP-ribosyl)ation by PARP-1 
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leads to chromatin relaxation and attracts additional PARP-1 molecules via its BRCT 

domain. Further poly(ADP-ribosyl)ation at DNA lesions then leads to the release of 

PARP-1 through charge repulsion enabling a switch to the next step in DNA repair 

initiated by the recruitment of the versatile loading platform XRCC1. Interestingly, 

PARP-2 which is required for DNA repair could not replace PARP-1 in the rapid 

recruitment of repair factors. However, we cannot exclude that PARP-2 could 

contribute to the slow recruitment of XRCC1 observed in parp-1-/- MEFs.  

We have identified a complex feedback network for the recruitment of the DNA 

damage sensor PARP-1. After lesion detection, PARP-1 activation and poly(ADP-

ribosyl)ation leads to a positive feedback loop accumulating more PARP-1 and thus 

amplifying the signal for rapid recruitment of repair factors. Further accumulation is 

countered by a negative feedback resulting in the release of PARP-1 likely to protect 

against uncontrolled poly(ADP-ribosyl)ation which would disrupt cellular functions 

and lead to apoptosis. This feedback regulated recruitment of PARP-1 at DNA 

lesions thus allows a balance between signal amplification for rapid recruitment of 

repair factors and protection against extensive poly(ADP-ribosyl)ation. 

 

Role of the RNA Polymerase II cofactor PC4 in DNA repair 

Detection of DNA lesions induces various cellular responses including alterations in 

transcription. Recently, an interesting connection between transcriptional regulation 

and DNA repair has been drawn by the identification of the RNA Polymerase II 

cofactor PC4 as a potential DNA repair factor (Wang et al., 2004). We analyzed the 

role of PC4 in the mammalian DNA damage response using live cell microscopy in 

combination with microirradiation and FRAP analysis. We found a fast and transient 

accumulation of the transcriptional cofactor PC4 at DNA damage sites depending on 

its single strand binding capacity. This observation suggested that PC4 might fulfil 

similar roles in DNA repair as the single strand binding protein RPA. However, the 

different recruitment kinetics and turnover rates of PC4 and RPA at laser-induced 

DNA damage sites argue for distinct roles in DNA repair. PC4 might in fact inhibit the 

functions of RPA in S phase leading to a stop of DNA replication as a response to 

DNA damage (Pan et al., 1996). In addition, PC4 might also stop transcription as a 

response to DNA damage which is supported by the fact that PC4 is a potent 

repressor of transcription at specific DNA structures such as ssDNA, DNA ends and 

heteroduplex DNA which are generated during DNA repair (Werten et al., 1998). 
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Moreover, PC4 could have a helicase-like function (Werten and Moras, 2006; Werten 

et al., 1998), which through binding and multimerization along ssDNA is predicted to 

enable ATP-independent unwinding of duplex DNA. 

The crystallization of PC4 in complex with ssDNA revealed that the subunits of the 

PC4 homodimer cooperate in the sequence-independent binding (Ballard et al., 

1988) of two opposing DNA backbones, exposing the DNA bases to the surrounding 

environment (Werten and Moras, 2006). These observations together with the rapid 

recruitment of PC4 to DNA damage sites argue for a role of PC4 in the detection 

and/or exposure of DNA damages. During the subsequent repair process PC4 may 

be displaced, as suggested by the observed transient binding at damaged sites. 

 

3.2. The role of p21 in DNA repair 

The next important step in the DNA damage response after lesion detection is the 

activation of checkpoint controls leading to cell cycle arrest, which allows time for 

repair. A protein, which is believed to play a central role in checkpoint activation, is 

the cyclin dependent kinase inhibitor p21. However, the precise role of p21 in the 

DNA damage response is under heavy debate. While some data indicated that p21 

inhibits DNA repair and thus has to be degraded to allow efficient repair of DNA 

lesions (Cooper et al., 1999; Pan et al., 1995; Podust et al., 1995), other experiments 

suggested that p21 has no negative or even a stimulating effect on DNA repair (Li et 

al., 1996; McDonald et al., 1996; Ruan et al., 1998; Sheikh et al., 1997; Shivji et al., 

1998; Shivji et al., 1994). To shed light on the role of p21 in the DNA damage 

response, we analyzed the redistribution of p21 to laser-induced DNA damage sites 

in mouse and human cells. We could observe an immediate accumulation of both, 

p21-GFP and RFP-PCNA at microirradiated sites persisting for 1-2 h, which is in 

good agreement with estimated repair times under local irradiation conditions 

(Houtsmuller et al., 1999). Analysis of the recruitment kinetics revealed, that 

RFP-PCNA accumulated at DNA damage sites slightly faster than p21-GFP. 

Furthermore, the spatio-temporal accumulation of p21-GFP resembled that of other 

PCNA-binding proteins, like DNMT1, Ligase I and FEN-1 (Mortusewicz et al., 2006; 

Mortusewicz et al., 2005). This suggests that p21-GFP is recruited to DNA damage 

sites through its PBD-mediated interaction with PCNA. The precise function(s) of p21 

at DNA damage sites and its potential role in modifying the DNA damage response 

and/or PCNA functions have to be elucidated in future studies. 
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3.3. Coordination of DNA repair by central loading platforms 

Different capacities of the two loading platforms XRCC1 and PCNA to respond 

to successive DNA damage 

Efficient repair of DNA lesions requires avid recognition of the damage and 

coordinated recruitment of a multitude of repair factors. The principle dilemma faced 

by the repair machinery is, that the stable complex formation required for processivity 

and completion of multi-step processes may limit the ability to respond to later 

changes like subsequent DNA damages. We compared the recruitment kinetics of 

the two loading platforms XRCC1 and PCNA and studied their capacity to respond to 

successive DNA damage events. Recruitment and photobleaching analyses showed 

that XRCC1 and PCNA represent opposite strategies. We clearly demonstrate that 

the stable binding of the processivity factor PCNA limits its capacity to respond to 

successive damage events. While the avid and transient binding of XRCC1 might be 

sufficient for single nucleotide replacement allowing a flexible response to multiple 

consecutive DNA lesions. This type of live cell analysis should also help to explore 

the flexibility of other repair factors and complex cellular machineries to respond to 

changing requirements. 

 

The loading platforms XRCC1 and PCNA coordinate the recruitment of DNA 

repair factors 

To further study the role of loading platforms in the coordination of DNA repair we 

extended our analysis to two well-characterized binding partners of PCNA and 

XRCC1, DNA Ligase I and III. DNA Ligases are essential for most DNA repair 

pathways as they are catalyzing the rejoining of DNA ends. Although the catalytic 

core of DNA Ligase I and III is highly conserved they have no or only poorly 

overlapping functions and are not interchangeable (Caldecott et al., 1994; Goetz et 

al., 2005; Levin et al., 2000; Mackenney et al., 1997; Petrini et al., 1995; Wang et al., 

2005). To explore possible differences that could explain the non redundant functions 

of these highly homologous enzymes, we compared the recruitment kinetics of DNA 

Ligase I and III at local DNA lesions generated by laser microirradiation. 

We found that DNA Ligases I and III both accumulated at DNA damage sites, albeit 

with distinct kinetics suggesting that although they catalyze the same reaction they 

use different mechanisms for recruitment. With deletion and binding studies we could 

demonstrate that the PBD of DNA Ligase I mediates targeting to DNA repair sites. 
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Interestingly, the PBD is not required for enzyme activity in vitro but rescue 

experiments with DNA Ligase I deficient cells demonstrated that the PBD is essential 

in vivo (Goetz et al., 2005; Levin et al., 2000; Petrini et al., 1995). These results 

suggest that PCNA mediated recruitment of DNA Ligase I could enhance the 

efficiency of the ligation reaction in vivo by locally concentrating DNA Ligase I at sites 

of replication and repair. 

In further studies, we also observed recruitment of FEN-1 to DNA repair sites, which 

like DNA Ligase I interacts with PCNA during DNA replication (Frank et al., 2001; 

Tom et al., 2000) and is implicated in long-patch BER (Gary et al., 1999; Matsumoto 

et al., 1999). Remarkably, FEN-1 showed the same recruitment kinetics as DNA 

Ligase I although it has a completely different function in replication and repair. 

Likewise, the PBD of DNA methyltransferase 1 (DNMT1) is also necessary and 

sufficient for accumulation of DNMT1 at repair sites (Mortusewicz et al., 2005). In 

addition, the recruitment kinetics of another PBD containing protein, p21, resembled 

that of DNA Ligase I, FEN-1 and DNMT1 (Perucca et al., 2006). Taken together, our 

results show that various PBD-containing proteins involved in the restoration of 

genetic and epigenetic information are recruited to replication (Savio et al., 1996; 

Schermelleh et al., 2007; Sporbert et al., 2005; Sporbert et al., 2002) as well as 

repair sites by PCNA with similar kinetics. This suggests that PCNA fulfils an 

essential role as a central loading platform in both DNA replication and repair, 

coordinating the recruitment of various enzymatic activities. 

On one hand, it has been proposed that the ZnF motif of DNA Ligase III could act as 

a nick sensor, recruiting DNA Ligase III to DNA nicks and altered DNA structures 

(Kulczyk et al., 2004; Mackey et al., 1999; Taylor et al., 1998a). We found, however, 

that deletion of the ZnF did not influence the recruitment kinetics of DNA Ligase III. 

On the other hand, biochemical studies have suggested that the BRCT domain of 

DNA Ligase III is essential for its interaction with XRCC1 (Beernink et al., 2005; 

Caldecott et al., 1994; Dulic et al., 2001; Taylor et al., 1998b). Here, we demonstrate 

that the deletion of the BRCT domain of DNA Ligase III abolishes recruitment of DNA 

Ligase III to repair sites in vivo. Moreover, the BRCT domain alone was sufficient to 

mediate recruitment of the fusion protein to DNA repair sites and is essential for 

nuclear localization of DNA Ligase III.  

These different mechanisms for the localization of DNA Ligases at repair sites are 

consistent with specific characteristics of the respective repair pathways. The 
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continuous synthesis of long stretches of DNA during long patch BER resembles the 

process of DNA replication. Consequently, also similar recruitment mechanisms 

seem to be used. In both processes DNA Ligase I is recruited through interaction with 

the sliding clamp and processivity factor PCNA. In contrast, replacement of just a 

single nucleotide during short patch BER does not require a processive repair 

machinery sliding along the DNA but rather a stationary repair complex recruiting 

DNA Ligase III. 

 

Figure 6 Model for selective targeting of DNA Ligase I and III to DNA replication and different repair 
pathways. All DNA Ligases use the same catalytic mechanism and show high sequence similarity in 
the catalytic core (grey shading). The active site lysine residue (K) in the center of the catalytic domain 
is directly involved in the ligation reaction. However, DNA Ligases have non-overlapping functions in 
DNA repair and replication and are not interchangeable. We could show that DNA Ligase I and III are 
targeted to different repair pathways through their regulatory PBD and BRCT domains which mediate 
interaction with PCNA and XRCC1, respectively. This selective recruitment of specialized DNA 
Ligases may accommodate the specific requirements of different repair pathways and thereby 
enhance repair efficiency. 

In summary, although DNA Ligase I and III share a highly similar catalytic core, they 

have distinct functions in DNA replication and repair and are not interchangeable. 

Here we identified differences in the regulatory domains of DNA Ligases which may 

explain their non-redundant functions in eukaryotic cells. Thus, the PBD of DNA 

Ligase I and the BRCT domain of DNA Ligase III mediate interaction with PCNA and 

XRCC1, respectively, and target them to different repair pathways (Figure 6). This 

selective recruitment may contribute to the spatio-temporal coordination of different 

repair factors and could thus enhance accuracy and efficiency of DNA repair in 

eukaryotic cells. 
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3.4. Maintenance of DNA methylation patterns in DNA repair 

Repairing only the genetic information would not fully restore the genome integrity of 

a cell. In addition, chromatin states and methylation patterns have to be re-

established to maintain a cells identity. While various processes involved in 

chromatin rearrangement and maintenance have been described (reviewed in 

(Downs et al., 2007; Groth et al., 2007; van Attikum and Gasser, 2005)), the 

mechanisms ensuring the preservation of methylation patterns in DNA repair were 

largely unknown. We used laser microirradiation in combination with live cell 

microscopy to study the recruitment of DNA methyltransferases to DNA damage sites. 

While we could observe a clear recruitment of DNMT1, we could not detect any 

accumulation of the de novo methyltransferases DNMT3a and DNMT3b at repair 

sites in living mammalian cells. These results fit well with the recent identification of 

DNMT1 as a potential component of the mismatch repair (MMR) pathway in a genetic 

screen for MMR mutants using Bloom´s syndrome protein (Blm)-deficient embryonic 

mouse stem cells (Guo et al., 2004). The accumulation of DNMT1 at DNA repair sites 

suggests that, like in DNA replication, DNMT1 maintains the DNA methylation pattern 

in the DNA newly synthesized during the repair process. Thus DNMT1 likely prevents 

a loss of DNA methylation in repair, which otherwise could cause epigenetic 

deregulation (Jackson-Grusby et al., 2001) and genomic instability (Brown and 

Robertson, 2007; Chen et al., 2007; Eden et al., 2003; Espada et al., 2007; Gaudet 

et al., 2003). In addition, DNMT1 has been reported to interact with histone 

deacetylases (HDACs) (Fuks et al., 2000; Rountree et al., 2000) and could thus, 

together with chromatin assembly factor 1 (CAF-1) (Green and Almouzni, 2003), 

contribute to the reestablishment of chromatin structures and respective histone 

modifications. Finally, DNMT1 may also participate in the identification of the 

template strand in various repair pathways as was suggested for MMR (Kim et al., 

2004; Wang and James Shen, 2004). Scope and details of DNMT1 function(s) at 

DNA repair sites remain to be elucidated. 

Key steps in DNA repair are recognition of the DNA damage and recruitment of the 

repair machinery. Here we could demonstrate that DNMT1 is recruited to DNA 

damage sites via PCNA and that the PBD of DNMT1 is necessary and sufficient for 

this recruitment. Our results show that PCNA not only mediates recruitment of the 

maintenance methyltransferase DNMT1 to replication sites but also to DNA repair 

sites (Figure 7). 
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Figure 7 PCNA mediates recruitment of DNMT1 to replication and repair sites. During DNA replication, 
PCNA (shown as a trimer in red) targets DNMT1 (shown in green) to the newly synthesized strand. 
DNMT1 recognizes hemimethylated sites and catalyzes the methylation of unmethylated Cytosines, 
thus maintaining the methylation pattern during DNA replication. We propose that during DNA repair, 
PCNA likewise recruits DNMT1 to repaired stretches of DNA leading to the preservation of methylation 
patterns in DNA repair. 
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3.5. A new assay to visualize protein-protein interactions in living cells 

More and more proteins involved in the various steps of DNA repair have been 

identified in recent years. To understand the complex regulation and coordination of 

DNA repair, the interaction and regulation of these proteins need to be studied in 

living cells. We developed a new simple method for the in-cell visualization of protein-

protein interactions termed fluorescence two-hybrid (F2H) assay. This assay is based 

on the immobilization of a fluorescently labelled bait protein at distinct subcellular 

structures enabling the detection of protein-protein interactions as colocalization with 

a differently labelled prey protein. The F2H assay described takes advantage of cell 

lines with a stable integration of a lac operator array to immobilize fusion proteins 

consisting of a Lac repressor fused to fluorescently tagged proteins of interest (bait) 

(Figure 8). 

 

Figure 8 Schematic outline of the fluorescent two-hybrid (F2H) assay (kindly provided by K. Zolghadr). 
(A) The LacI domain of the bait protein mediates binding to the chromosomally integrated lac operator 
array, which is visible as a fluorescent spot in nuclei of transfected cells. If the differentially labelled 
prey interacts with the bait it becomes enriched at the same spot resulting in colocalization of 
fluorescent signals at the lac operator (visible as yellow spot in the overlay image). (B) If the prey does 
not interact with the bait protein it remains dispersed in the nucleus and the lac operator array is only 
visualized by the bait protein (red spot). 
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Readily usable cell lines have already been described for human, mouse, hamster 

and drosophila (Dietzel et al., 2004; Janicki et al., 2004; Robinett et al., 1996; 

Tsukamoto et al., 2000; Tumbar et al., 1999; Vazquez et al., 2001). To be 

independent of specific transgenic cell lines, this assay could be modified by using 

various cellular structures like the lamina, the cytoskeleton or centrosomes as 

anchoring structures to locally immobilize bait proteins.  

Like other methods also the F2H assay may yield false positive or false negative 

results, which need to be controlled for. Prey proteins that bind to the lac operator 

array in the absence of a bait protein can be identified by an initial screen and then 

be only used as baits.  

In some cases, proteins may accumulate at subnuclear foci, which complicates the 

identification of the lac operator array in the F2H analysis. To bypass this problem, 

the lac operator array could be visualized with a third fluorescent fusion protein like, 

e.g. CFP-LacI. 

In summary, the new F2H assay allows the direct visualization of protein-protein 

interactions and should be ideally suited to investigate cell cycle or differentiation 

dependent changes in real-time in living cells. A significant advantage of the F2H 

assay over other cell-based techniques is its simplicity that does neither require 

costly instrumentation nor advanced technical expertise. The simple optical read-out 

of the F2H assay additionally offers the possibility to use this assay in automated 

high-throughput screens to systematically analyze the protein interactome in living 

cells.  
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4. ANNEX 

4.1. Abbreviations 

ATM   ataxia telangiectasia mutated 

BER  base excision repair 

BiFC  bimolecular fluorescence complementation  

B-NHEJ nonhomologous end joining backup pathway  

BRCT  BRCA1 carboxy terminal 

BrdU  5-bromo-2’-deoxyuridine 

CAF-1  chromatin assembly factor-1 

CTD  C-terminal domain 

DBD  DNA binding domain 

DNMT1 DNA methyltransferase 1 

DNMT3a DNA methyltransferase 3a 

DNMT3b1 DNA methyltransferase 3b1 

DSBR  double strand break repair 

DSBs  double strand breaks 

dsDNA double stranded DNA 

F2H  fluorescence two-hybrid 

FEN-1  flap structure-specific endonuclease-1 

FLIP  fluorescence loss in photobleaching 

FP  fluorescent protein 

FRET  fluorescence resonance energy transfer  

FRAP   fluorescence recovery after photobleaching 

H2O2  hydrogen peroxide 

HDACs histone deacetylases 

IRIF   ionizing radiation-induced foci 

LacI  Lac repressor 

MMR  mismatch repair 

NER  nucleotide excision repair 

NHEJ   nonhomologous end joining 

PAR  poly(ADP-ribose) 

PARP  poly(ADP-ribose) polymerase 

PARP-1  poly(ADP-ribose) polymerase-1 

PARP-2  poly(ADP-ribose) polymerase-2 
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PBD  PCNA-binding domain 

PCNA  proliferating cell nuclear antigen 

PIC  preinitiation complex 

PC4  positive cofactor 4 

RPA  replication protein A 

SSBR  single strand break repair 

SSBs  single strand breaks 

ssDNA single stranded DNA 

Y2H  Yeast two-hybrid 

XRCC1 X-ray cross complementing factor 1 

ZnF  Zinc finger 
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