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Zusammenfassung 
Das WHO/UNAIDS „Global summary of the AIDS epidemic“, erschienen im Dezember 

2006, schätzt, dass 39,5 Millionen Menschen mit HIV leben, 4,3 Millionen in 2006 infiziert 

wurden und 2,9 Millionen Menschen im gleichen Jahr an AIDS gestorben sind. In den 

Industrieländern werden HIV-1 infizierte Personen mit einer Kombination von 

antiretroviralen Medikamenten behandelt (hochaktive antiretrovirale Therapie, HAART). Die 

Therapie verringert die Virenlast auf ein nicht nachweisbares Niveau, ist aber nicht in der 

Lage das Virus zu eliminieren. Folglich ist eine lebenslange HAART Therapie erforderlich. 

Einige Probleme sind mit HAART in den Industrieländern, in denen die meisten HIV-1 

infizierten Menschen leben verbunden: Nebenwirkungen, vorschriftsmäßige Einnahme, 

Virusmutationen und hohe Kosten. Diese Beobachtungen heben die Notwendigkeit für die 

Entwicklung eines therapeutischen Impfstoffs gegen HIV-1 hervor. 

Wir führten eine Sicherheits- und Immunogenitäts-Phase I Studie durch, in der wir einen 

Impfstoff, basierend auf einem modifizierten Vaccinia Virus Ankara (MVA) Vektor, der das 

HIV-1 regulierende Protein Nef  exprimiert in zehn chronisch HIV-1 infizierten Patienten 

unter HAART verwendet haben. Die Studienteilnehmer wurden dreimal, in Woche 0, 2 und 

16 subkutan geimpft. Danach wurden alle für mindestens ein Jahr beobachtet. 

Der Impfstoff erwies sich als sicher und immunogen. Eine Zunahme der Nef-spezifischen 

CD4 T-Zell-Antworten, die zeitlich mit der Impfung in Zusammenhang steht, wurde in der 

Mehrheit der Patienten festgestellt und die beobachtete Immunantwort war der ähnlich der, 

die in einer Kohorte von Langzeit Nicht-Progressoren (LTNP) festgestellt wurde. 

Entsprechend dieser Daten verbessert sich der immunologische Status der Patienten und es 

erhöht sich die Wahrscheinlichkeit, dass geimpfte Personen die Virusproduktion kontrollieren, 

ähnlich wie es bei den LTNP der Fall ist. Interessanterweise waren die Nef-spezifischen CD4 

T-Zellen ein Jahr nach der Impfung noch nachweisbar und demonstrierten die Eigenschaft des 

Impfstoffs, eine langfristige Gedächtnisantwort auszulösen. 

MVA gehört zu dem vielversprechendsten attenuierten viralen Vektorsystem für die 

Präsentation von Antigenen und es ist einer der vielversprechendsten Impfstoffe gegen 

Pocken. HIV-1 infizierte Personen sind möglicherweise immunsupprimiert und werden als 

gefährdet für die Nebenwirkungen der klassischen Pockenschutzimpfung betrachtet. Die 

MVA-nef Impfstudie lieferte eine wertvolle Möglichkeit zur Analyse der Eigenschaften von 

MVA, Vaccinia-spezifische Immunantworten in chronisch HIV-1 infizierten Personen unter 

HAART zu induzieren. Nach der Impfung mit MVA-nef beobachteten wir eine starke 
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spezifische humorale und zelluläre Immunantwort gegen den viralen Vektor. Von Interesse ist 

hier, dass Vaccinia-spezifische Antikörper in der Lage waren, das Virus zu neutralisieren. Die 

Antikörper waren hauptsächlisch von der IgG Klasse. Die Analyse der MVA-spezifischen 

und der Nef-spezifischen Immunantworten ergab eine mögliche Interferenz zwischen den 

CD4 T-Zellen, die den viralen Vektor erkennen und den CD4 T-Zellen, die spezifisch für Nef 

sind. Tatsächlich hatten die Patienten mit den niedrigsten Nef-spezifischen CD4 T-

Zellantworten die höchsten CD4 T-Zellantworten gegen MVA und umgekehrt. Zusätzlich 

zeigte der Vaccinia naive Patient Nr. 10 die stärkste CD4 Antwort gegen Nef und eine 

niedrige CD4 Antwort gegen MVA. Diese Beobachtungen weisen auf einen möglichen 

negativen Effekt der vorhandenen Immunität gegen Vaccinia Virus hin, eine starke 

Immunantwort gegen das heterologe Antigen auszulösen. 

Die Charakterisierung der gegen MVA gerichteten Immunantwort weist auf die mögliche 

Verwendung von MVA als alternativen Impfstoff gegen Pocken und die Eigenschaft des 

MVA-nef Vektors hin, eine doppelte Impfung zu ermöglichen. Diese Daten stellen das 

Grundprinzip für die weitere Entwicklung und Prüfung des MVA-nef Impfstoffs zur 

Verfügung. 
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Summary 
The WHO/UNAIDS “Global summary of the AIDS epidemic” released in December 2006, 

estimates that 39.5 million of people are living with HIV, 4.3 million were newly infected in 

2006 and 2.9 million of people died of AIDS in the same year. In developed countries, HIV-1 

infected individuals are treated with a combination of antiretroviral drugs (Highly Active 

Antiretroviral Treatment, HAART). This treatment normally reduces the viral load to 

undetectable levels but is not able to eradicate the virus. Therefore, life-long administration of 

HAART is required. Several problems are associated with HAART: side effects, compliance, 

virus escape and high cost for developing countries where most HIV-1 infected individuals 

reside. These considerations highlight the need for a therapeutic vaccine against HIV-1. 

We performed a safety and immunogenicity phase I pilot study using a vaccine based on a 

modified vaccinia virus Ankara (MVA) vector expressing the HIV-1 regulatory protein Nef in 

ten chronically HIV-1 infected individuals undergoing HAART. Study subjects were 

vaccinated subcutaneously three times at week 0, 2 and 16. Afterwards, all the subjects were 

monitored for at least one year. 

The vaccine resulted to be safe and immunogenic. An increase of the Nef-specific CD4 T-cell 

responses temporally associated with the administration of the vaccine was observed in the 

majority of the individuals and the observed magnitude was similar to that observed in a 

cohort of long-term non-progressors (LTNP). These data suggest an improvement of the 

immunological status and an increased chance of the vaccinated subject to control viral 

replication as it is the case for the LTNP. Interestingly, one year after the administration of the 

vaccine CD4 T-cells specific to Nef were still detectable demonstrating the capacity of the 

vaccine to elicit a long term memory response. 

MVA is among the most promising live viral vector system for the delivery of pathogen-

derived antigens and is one of the most promising safe vaccines against smallpox. HIV-1 

infected subjects are potentially immunocompromised and are considered at risk for the side 

effects of the classical smallpox vaccination. The MVA-nef vaccination study provided a 

valuable chance to analyze the capacity of MVA to elicit vaccinia specific immune responses 

in chronically HIV-1 infected individuals under HAART. Following vaccination with MVA-

nef, we observed a strong humoral and cellular immune response specific to the viral vector. 

Of note, vaccinia specific antibodies were able to neutralize the virus and were mainly of the 

IgG class, suggesting an effective immune response.  The analysis of the MVA-specific and 

the Nef-specific immune responses highlighted a possible interference between CD4 T-cells 
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recognizing the viral vector and CD4 T-cells specific to Nef. In fact, subjects with the lowest 

Nef-specific CD4 T cell responses had the highest CD4 T cell responses to MVA and vice 

versa. In addition, the vaccinia naïve study subject number 10 was able to mount the strongest 

CD4 response to Nef and showed a low CD4 response to MVA. These important observations 

highlighted a possible negative effect of the pre-existing immunity to vaccinia virus on the 

capacity of the MVA vector to elicit a strong immune response to the genetic insert. 

The characterization of the immune response directed to MVA, highlighted the potential use 

of MVA as alternative vaccine against smallpox and the capacity of the MVA-nef vector to 

provide a double vaccination. This data provide the rationale for further development and 

testing of the MVA-nef vaccine.  



 9

Background 

AIDS and HIV an historical overview 

The first cases of Acquired Immunodeficiency Syndrome (AIDS) were described in 1981 in 

San Francisco and New York. Physicians noted that a group of young homosexual men was 

dying from infections and tumors that a fully competent immune system is able to control 

without problems. The first report (Gottlieb et al., 1981) described four homosexual men that 

contracted Pneumocystis carinii pneumonia, extensive mucosal candidasis and multiple viral 

infections. All the patients were lymphopenic, they had no lymphocyte proliferative response 

to soluble antigens and their responses to phytohemagglutinin were reduced. Moreover, CD4+ 

T-helper cells were almost absent. Patients were clearly in an immunodeficient status. 

In the same year, Pneumocystis carinii pneumonia associated with an immunodeficient status 

was observed in a group of injecting drug users (Masur et al., 1981), suggesting that the 

pathology was not restricted to the homosexual community. This observation was extended 

the next year when the pathology was observed in haemophiliacs (MMWR, 1982a) and in a 

20-month old child that received multiple transfusion of blood (MMWR, 1982b). It was then 

clear that the disease was transmitted via the sexual route or via the blood. 

In August 1982, the disease was being referred to as “Acquired Immune Deficiency 

Syndrome” (AIDS). This name was a summary of all the knowledge about this disease at that 

time. In fact, “Acquired” indicated that people acquired the condition rather than inherited it, 

the condition was the result of a deficiency within the immune system and it was a syndrome, 

with several manifestations, rather than a single disease. 

In 1983, Montagnier and his colleagues at the Pasteur Institute in Paris reported the discovery 

of a T-lymphotropic retrovirus in a patient at risk of AIDS, this was the virus that we now call 

human immunodeficiency virus (HIV) (Barre-Sinoussi et al., 1983). Afterwards, Gallo and 

his collegues showed that the virus discovered in Paris was the etiologic agent of AIDS (Gallo 

et al., 1984; Popovic et al., 1984; Sarngadharan et al., 1984; Schupbach et al., 1984) and 

succeeded to grow it in continuous T-cell cultures enabling the development of a blood test 

for detecting HIV. These two works opened the way to a period of intense discovery. The 

HIV genome was sequenced (Wain-Hobson et al., 1985), the HIV antigenic variation was 

discovered, the virus was found in the brain of AIDS patients (Gabuzda et al., 1986; Gartner 

et al., 1986; Stoler et al., 1986), genomic sequence variation was found in viral population 

from the same patient (von Briesen et al., 1987), macrophages were found to be target of HIV 
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(Wiley et al., 1986), various mode of transmission were elucidated, all HIV’s genes and 

proteins were defined and the HIV receptor CD4 was identified (Dalgleish et al., 1984; 

Klatzmann et al., 1984). 

In 1987, the first anti-HIV drug entered in clinical use. One year before, a study published in 

the New England Journal of Medicine demonstrated that a drug called azidothymidine (AZT) 

decreased mortality and the frequency of opportunistic infections in subjects with AIDS 

(Fischl et al., 1987). However, the same study showed severe adverse reaction including 

hematologic toxic effects, nausea, myalgia, insomnia, and severe headaches (Richman et al., 

1987). 

In 1989, a second drug, dideoxyinosine (ddI), was made available. Both AZT and ddI targeted 

the viral enzyme reverse transcriptase (RT), a key enzyme responsible for the 

retrotranscription of the viral RNA to DNA, a process that precedes the integration of the 

proviral DNA in the host cell genome. AZT and ddI are nucleoside analogues and they act as 

chain terminators in the RT reaction, blocking the virus immediately after its entry into the 

cell. The use of several nucleosides analogues was approved in the following years. However, 

the toxicity, the lack of activity in some cell types and the susceptibility to viral resistance 

were already important issues that limited the use of these drugs. 

In 1995, two trials (ACT175 trial and Delta trial) demonstrated for the first time that a 

combination of two different nucleosides analogues was more effective than an AZT 

monotherapy in delaying disease progression. 

Also in 1995, the FDA approved the drug saquinavir, the first member of a new class of anti-

HIV drugs. Saquinavir is a HIV-specific protease inhibitor. This new class of antiretroviral 

drugs inhibits the viral protease that cleaves the viral precursor proteins needed for the 

construction of a mature virion. As consequence, infected cells release immature and non-

infectious particles. 

The next obvious step was the use of a combination of reverse transcriptase inhibitors 

together with protease inhibitors. The rationale behind this strategy was that the use of several 

antiviral drugs should suppress viral replication to such low level to avoid viral escape.  This 

new strategy named highly active antiretroviral therapy (HAART) gave impressive results and 

in the 11th International Conference on AIDS in Vancouver (1996) numerous reports from 

clinical trials using HAART were presented. In 1997, the widespread use of HAART in 

developed countries drastically reduced AIDS related morbidity and mortality. However, in 

the following years it became also evident that the adverse events associated with the 
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administration of HAART and the capacity of the virus to escape would have been major 

obstacles to the complete eradication of HIV. 

Between 1995 and 1996, the main HIV-1 co-receptors were identified. The discovery that the 

CC-chemokines RANTES, MIP-1 alpha and MIP-1 beta produced by CD8 T-cells are able to 

suppress HIV-1 (Cocchi et al., 1995), opened the way to the discovery of the main HIV-1 co-

receptors CXCR4 and CCR5 (Lusso, 2006) and to the dissection of the entry mechanism of 

HIV-1. Virus entry in CD4 expressing cells is mediated by the envelope glycoprotein 

expressed on the surface of the virion (Berzofsky et al., 2004). The envelope protein is 

composed by an external subunit, the gp120, and a transmembrane subunit, the gp41 (Figure 

IA). These two subunits are arranged in trimers on the surface of the virus, with the three 

gp120 subunits forming a sort of shield protecting the three gp41 subunits. The gp120 binds 

first the main receptor CD4 (Figure IB) triggering a conformational change that exposes the 

coreceptor binding site (Figure IC). After engagement with the coreceptor (CCR5 or CXCR4), 

the fusion domain of the gp41 is exposed and can interact with the membrane of the target cell 

(Figure ID). Then, fusion between the viral and cellular membrane occurs (Figure IE). 

 
Figure I: Mechanism of HIV-1 entry in a target CD4 expressing cell. From Berzofsky et al., J. Clin. Invest. 

2004. 

The distinctive use of CCR5 or CXCR4 coreceptors for entry into target cells, identify two 

phenotypic variant of HIV-1, R5 and X4 viruses, respectively. Usually, recently infected 

individuals harbor a R5 virus while X4 viruses predominate in the late stages of the disease. 
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The advent of HAART changed the public perception of HIV and AIDS. The public began to 

perceive HIV infection as a treatable chronic disease, and the attention dedicated to HIV and 

AIDS started to decrease drastically over the time. This change of perception lead also to a 

change of the affected population. In fact, in the United Kingdom in 1999, for the first time 

the number of newly diagnosed heterosexual infected with HIV was higher than the number 

of newly diagnosed homosexual. 

In 1999, T20 an antiretroviral drug that targets the fusion process between the virus and the 

cell went into clinical trials and in 2002 at the Barcelona International Conference on AIDS, 

several groups reported on the efficacy of the new drug. 

An important milestone in the fight against HIV was the conclusion of the first phase III 

efficacy trial of the VaxGen vaccine (McCarthy, 2003a; McCarthy, 2003b). The vaccine 

contained two recombinant form of the HIV-1 Envelope protein gp120 in a monomeric form. 

Two different trials were conducted in North America (AIDSVAX B/B) and in Thailand 

(AIDSVAX B/E), and in both the reduction of the HIV infection rate and progression to 

disease between vaccinated and placebo groups resulted to be not significant. Despite the 

disappointing result, this first trial finally demonstrates what had been already shown in vitro 

in several settings; gp120 specific antibodies plays a minor role in controlling HIV replication. 

However, Env variants that permit the exposure of conserved epitopes and oligomeric forms 

of the envelope protein that include the transmembrane protein gp41 are currently available 

and under study and may represent good candidate vaccine for future clinical trials 

(Pantophlet and Burton, 2006). 

In 2006, the first “one a day” pill (Atripla) was approved for sale in the USA. It is aspected 

that this new pill will increase the compliance to HIV treatment and as direct consequence 

will decrease the emergence of escape mutants. 

In the same year, a new threat emerged; several cases of extreme drug-resistant tuberculosis 

(XDR-TB) were recorded in South Africa. HIV infected people are more susceptible to 

Mycobacterium tuberculosis infection and to progression to active TB. As a consequence, 

HIV infected people with their compromised immune system represent a favourable host for 

the emergence of XDR-TB. High prevalence of HIV infection as been found also in 

individuals seeking treatment for malaria in Uganda (Kamya et al., 2006), underscoring the 

deadly interaction between HIV and other disease that commonly affect developing countries. 

On December 2006, two randomized controlled trial of male circumcision performed in 

Kenya and Uganda (Bailey et al., 2007; Gray et al., 2007) provided evidence of a strong 

association between circumcision intervention and a reduced risk of contracting HIV. In 
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regions with high HIV incidence and prevalence, circumcision may have a profound impact in 

saving life. However, large-scale implementation of circumcision will require improvement of 

the health care system and improvement of the communication with local authorities and 

community member. 

Natural history of HIV infection 

The detailed definition of the different stages of HIV infection in humans is an important field 

of research to highlight potential vulnerabilities of the virus. For obvious reasons the majority 

of the direct information regarding the different stages of the infection has been generated on 

the SIV model while a series of indirect observations in humans confirm the model of 

infection designed in non-human primates. 

The dominant mode of transmission of HIV and SIV is through heterosexual intercourse and 

the first contact between the virus and the host occurs at the mucosal barrier (Haase, 2005). 

After crossing the mucosal barrier, the virus infects the resting memory CCR5+ CD4+ T-cells 

in the lamina propria. These are the first cells to be infected by HIV, probably because they 

are the more abundant cells that reside in the lamina propria. Although the memory CCR5+ 

CD4+ cells infected by HIV in the lamina propria have a typical resting phenotype, they are 

able to support viral replication and the virus is then able to infect activated CD4+ T-cell, 

macrophages and dendritic cells that reside as well in the lamina propria, but are less 

numerous than resting CD4+ T-cells. The observation of resting CD4+ T-cell in the lamina 

propria supporting SIV and HIV replication in vivo (Zhang et al., 1999; Zhang et al., 2004) 

contrasts with the data obtained in vitro, where lentiviral replication and T-cell activation are 

strictly connected. This contradiction might be related to the methods used to define the 

phenotype of the resting CD4 T-cells. That is probably these cells are not really resting.  

After 4 to 6 days, virions disseminate from the small founding area in the lamina propria to 

the draining lymph node and afterwards establish infection in the peripheral lymph node, the 

spleen and the gut associated lymphoid tissue (GALT). All these organs contain highly 

packed target cells, a condition that favors viral replication, and between day 10 and 14 after 

exposure virus production reaches the highest level of any stage of the infection. Virus 

replication in the GALT plays a central role in HIV-1 and SIV pathogenesis. GALT contains 

nearly half the human body’s total T-cells and the majority of the GALT CD4 T-cell 

expresses the CCR5 co-receptor. This distribution may account for the selection of CCR5 

using viruses (R5 viruses) early in the course of infection. In the GALT, large numbers of 

memory CCR5+ CD4+ T-cells are killed by direct virus infection in few days after infection 
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(Li et al., 2005; Mattapallil et al., 2005). The degree of destruction of the CD4 memory 

compartment during acute infection predicts survival in monkey infected with SIV 

(Mattapallil et al., 2006). CCR5 using viruses are then maintained during all the chronic phase 

of infection and a shift towards CXCR4 using viruses is seen only during the progression to 

AIDS. 

By two to four weeks after infection, the amount of virus in the host starts to drop down. Two 

contemporary acting mechanisms can explain the decline that follows the peak of viral load 

during the acute infection. First, the exhaustion of the resting CD4 T-cell killed by direct virus 

cytopathic effect and by virus induced apoptosis decreases the availability of target cells. 

Second, the immune system develops a strong HIV / SIV specific immune response able to 

counteract the viral production of the activated CD4 T-cells. Depletion studies performed in 

monkeys have nicely demonstrated that CD8 T-cells play a crucial role in controlling SHIV 

replication in primary infection (Matano et al., 1998). 

After the acute phase of the infection, the viral load decreases to a lower level that is 

characteristic for each individual and is called “viral set point”.  This is the typical chronic 

phase of the disease, characterized by the absence of symptom, detectable viral load (>50 

copies RNA/ml) and a slow decline in the total CD4 counts. CD8 T-cells play an important 

role also in controlling the chronic phase of the infection as demonstrated by depletion studies 

in the SIV / Macaca mulatta model (Jin et al., 1999) and contribute to stabilize the viral load 

at the viral set point in the absence of antiretroviral therapy. During the acute infection and the 

chronic phase of the disease, we assist to the formation of the viral reservoirs that will be 

maintained throughout the life of the host. HIV and SIV reservoir include the follicular 

dendritic cell network, macrophages and resting memory CD4 T-cells (Noe et al., 2005). 

In the final stage of the disease, we assist to a rapid decline of the total CD4 T-cells and to the 

rise of the viral load. At this time, patients are in a clear immunodeficient status and 

opportunistic infections begin to occur when the CD4 count falls below 200 cells/μl. From a 

virologic point of view, the terminal phase of the HIV infection is characterized by a 

phenotypic shift from the R5 to the more pathogenic X4 virus. X4 viruses dominate the late 

stages of the HIV-1 disease and are responsible of dramatic damages to the immune system 

via their capacity to infect and destroy naïve CD4 T-cells (Moore et al., 2004). 

In this scenario, the administration of antiretroviral drugs changes the natural course of HIV-1 

infection and prolongs the chronic asymptomatic phase of the disease. After administration of 

HAART, the viral load falls below 50 RNA copies/ml, CD4 count remain stable and the 

probability to develop AIDS is strongly reduced. Despite the strong reduction in plasma viral 
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load, several studies theoretically demonstrated that eradication of HIV-1 might be achieved 

only after more than 60 years of continuous antiretroviral treatment (Pierson et al., 2000). The 

main obstacle to achieve eradication in a realistic time frame is the presence of viral reservoirs 

that form a sort of protected archive for the proviral DNA (Noe et al., 2005). Since proviral 

DNA may persist inside the cell without expression of viral protein, this reservoir cannot be 

targeted with the actual technology. Therefore, eradication of HIV remains an unrealistic 

scenario.  

Vaccination 

The WHO/UNAIDS “Global summary of the AIDS epidemic” released in December 2006, 

estimates that 39.5 million of people are living with HIV, 4.3 million were newly infected in 

2006 and 2.9 million of people died of AIDS in the same year. Twenty-five million HIV 

infected people live in Sub-Saharan Africa (Figure II) where only 1 million of people were 

receiving antiretroviral treatment by June 2006.  

Sub-Saharan Africa

South/South-East Asia

 Western/Central
Europe

 North
America/Caribbean

 Eastern Europe/Central
Asia

Latin America

East Asia/Oceania

 Middle East/North
Africa

 
Figure II: Global prevalence of people living with HIV in 2006. 

Despite the efforts made to increase the access to an effective treatment and to develop 

prevention programmes the number of people infected by HIV continues to grow. In many 

countries, HIV incidence increased in young adult between 15 and 24 year of age. In Sub-

Saharan Africa, HIV epidemic affect more women than men. In South Africa 17% of young 

women (15-24 years) are infected by HIV, while only 4.4% of young men are infected (data 

from the year 2005). 
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These data highlights how important will be a vaccine against HIV, mainly in Sub-Saharan 

Africa. A prophylactic vaccine will certainly help in preventing the spread of the virus. On the 

other hand, a therapeutic vaccine is also urgently needed for the 40 million of people already 

infected by HIV. The aim of a therapeutic vaccine is to enhance pre-existing immune 

responses to such extent that a chronic pathogen can be kept under control or in the best 

scenario completely cleared (Autran et al., 2004). The main difference between a prophylactic 

and a therapeutic vaccine rely in the fact that a prophylactic vaccine has to face to a low 

amount of pathogen confined to a small area while a therapeutic vaccine has to face with large 

amount of pathogen and a generalized infection. 

The final aim of the HIV vaccine research is to obtain a prophylactic vaccine able to prevent 

infection and a therapeutic vaccine able to eliminate the virus already present in the host. 

However, several line of evidence indicates that such vaccines will not be available in a short 

time frame and a more realistic goal will be to set up partially effective vaccines. 

The aim of a partially effective prophylactic vaccine will be to limit the damage of the acute 

infection and delay the use of antiretroviral treatments. A partially effective prophylactic 

vaccine should reduce the amount of virus produced during the first weeks of infection; 

limiting the destruction of the memory CD4 T-cells in the gut associated lymphoid tissue. 

During the chronic phase of infection, the new vaccine should be able to lower the viral set 

point and delay the use of antiretroviral treatment. 

The aim of a partially effective therapeutic vaccine will be to maximize the time without 

antiretroviral treatment and provide a valuable alternative for all the people that do not have 

access to antiretroviral treatments. Actually, a therapeutic vaccine has to face to two different 

scenarios: 

• in a typical developed country where there is access to antiretroviral treatment for all 

the person that are in need and where there is the tendency to treat infected people as 

soon as possible, the vaccine will be administrated during treatment. Patients will have 

low or undetectable viral load and after vaccination they will have the option to 

interrupt treatment. 

• in developing countries, as South Africa, the vaccine will be administrated mainly to 

untreated persons and probably the viral load and CD4 count of this people will be 

unknown. The vaccine will have to face a scenario of active viral replication. 

For this reasons it will be necessary to develop two different therapeutic vaccines each one 

adapted to the situation in the field. 
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Several strategies of prophylactic and therapeutic vaccination that include the use of 

recombinant envelope proteins, synthetic peptides, virus like particles, whole inactivated 

viruses, plasmid DNA, recombinant orthopoxviruses and antigen pulsed dendritic cells have 

been already tested in humans (Egan, 2004; McMichael, 2006).  

Recombinant envelope proteins 

Since, antibodies able to neutralize HIV-1 in vitro were exclusively directed against the viral 

Envelope, initial efforts to identify a vaccine were directed toward the development of a 

vaccine based on recombinant Envelope proteins. Successive findings that antibodies elicited 

by recombinant Envelope were able to neutralize laboratory strain of HIV but not primary 

isolates grown on PBMC, tempered the initial optimism. Nevertheless, studies on 

recombinant Envelope proteins underwent phase I, II, and III trials. The VaxGen vaccines 

AIDSVAX B/B and AIDSVAX B/E were the first vaccines against HIV-1 to be tested in two 

large phase III trials in USA and Thailand, respectively (McCarthy, 2003a; McCarthy, 2003b) 

(see also “AIDS and HIV an historical overview”). In the trial performed in North America, 

5009 individuals were enrolled and in the three years study 5.8% of the placebo-receiving 

group and 5.7% of the vaccinated people became HIV-1 infected. The difference was not 

significant. The trial in Thailand confirmed the results obtained in North America. The results 

of these phase III trials were not unexpected and reflected the inability of the recombinant 

Envelope to elicit antibodies able to neutralize primary isolates in vitro. 

Despite this debacle, several efforts to improve the formulation of Envelope based vaccines 

are under way. These include, trimeric forms, Envelopes with deletions in the variable regions 

(Erfle et al., 2005), and complexes between the Envelope protein and CD4, CCR5, and 

antibody. All this variants may express hidden determinants with a key role in virus 

neutralization. Hidden determinants may be expressed also in the context of the virion that 

carries several cell derived membrane proteins. This issue will be discussed later (see 

“Vaccines to cellular proteins”) 

DNA vaccines 

DNA vaccines appeared ten years ago showing major advantages when compared to 

attenuated pathogens and live viral vectors. Attenuated pathogens induced primarily humoral 

immune responses and live viral vectors despite being able to induce a strong cytotoxic 

immune response, raised concerns about their safety in humans. In murine models, DNA 

vaccination was originally shown to induce strong and protective CD8 T-cell responses 
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(Ulmer et al., 1993). Unfortunately, when transferred to non-human primates and humans, 

DNA vaccination protocols failed in inducing optimal cellular and humoral immune 

responses and nowadays the main challenge is how to increase the potency of this vaccination 

strategy (Kutzler and Weiner, 2004). In a recent phase 1 safety and immunogenicity study 

(Graham et al., 2006), a DNA vaccine composed of 4 plasmids encoding Env glycoprotein 

from clades A, B, and C and an HIV-1 Gag-Pol-Nef fusion protein, induced humoral and 

cellular immune responses in the majority of the vaccinated volunteers (Table I). However, 

the detected responses were low in magnitudes and were directed only to the Env constructs. 

With the aim to improve the immunogenicity of the Gag, Pol, and Nef antigens, a new 

product was developed to express the genes on three different plasmids. The new vaccine 

formulation, composed by six plasmids encoding Env A, Env B, Env C, Gag B, Pol B, and 

Nef B , was tested in  a small phase I evaluation trial and resulted in a better immunogenicity 

of the Gag, Pol, and Nef antigens (Catanzaro et al., 2007). Nevertheless, the magnitude of the 

immune response remained low. An overview of these clinical trials is shown in Table I. 

These studies also demonstrated how important could be the phenomenon of immune 

interference in the design of new vaccines. In fact, the insertion of several antigens in the 

same vaccine could be detrimental for the immunogenicity of the entire vaccine. As shown in 

Table I, immune interference is not an issue solely related to DNA vaccines. In fact, also a 

rAd5 vaccine developed by the Vaccine Research Center at the NIH to be combined to the 

DNA vaccine and expressing the fusion protein Gag-Pol resulted to be poorly immunogenic. 

Thus, single component vaccines needs to be evaluated more in deep before the construction 

of multi-antigen vaccines.  
Table I: DNA and Ad5 vaccination in humans (Vaccine Research Center, NIH) 

Delivery Administration Quantity 
(n of subjects) Antigens T-cells Antibody Endpoint 

       
Phase I dose-escalation study of a multiclade HIV-1 DNA vaccine (Graham, JID, 
2006)   

pl(10), 2mg(5) Env A, B, C Low Low needle-free 
intramuscolar w 0, 4, 8 

4mg(20), 8mg(15) Gag-Pol-Nef (B) No No 

Safe 
Immunogenic

       
Phase I evaluation of a six plasmid multiclade HIV-1 DNA vaccine (Catanzaro, 
Vaccine, 2007)   

Env A, B, C Low Low needle-free 
intramuscolar w 0, 4, 8 4mg(14) 

Gag, Pol, Nef (B) Low Low 

Safe 
Immunogenic
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Phase I dose-escalation study of a multiclade HIV-1 rAd5 vaccine (Catanzaro, JID, 
2006)   

pl(6), 109(10) Env A, B, C Low Low 
intramuscolar w 0 

1010(10), 1011(10) Gag-Pol (B) No No 

Safe 
Immunogenic

 
To date, sparse data on therapeutic vaccination using DNA are available. The first human trial 

using DNA as therapeutic vaccine used DNA env and rev in therapy naïve subjects with CD4 

count > 500. The vaccine resulted to be safe but poorly immunogenic (MacGregor et al., 

1998). Successive studies in HIV-1 infected subjects undergoing HAART, demonstrated a 

better immunogenicity, however responses were never strong and generalized (Hejdeman et 

al., 2004). Recently, a DNA vaccine expressing HIV-1 gag p24/p17 and a string of CTL 

epitopes (pTHr.HIVA®) (Dorrell, 2005; Dorrell et al., 2006) tested on ten patients under 

HAART resulted to be poorly immunogenic. These studies demonstrated that currently used 

DNA vaccination strategies are unable to boost virus specific responses in HIV-1 infected 

individuals.  

Several approaches are underway to enhance the immunogenicity of DNA vaccines. These 

include co-administration of cytokines genes, altering codon bias of the encoded gene, 

changing the cellular localization of the expressed antigen and using different adjuvants. In 

addition, one interesting option to increase the immunogenicity of DNA vaccines is to boost 

the responses with a subsequent vaccination performed with recombinant proteins or 

recombinant viruses, such as orthopoxviruses. 

The co-administration of SIVmac239 Gag and HIV-1 89.6P Env together with the IL2 gene 

produced interesting results in rhesus monkeys challenged with a pathogenic SHIV-89.6P 

(Barouch et al., 2000). After challenge, control animals developed high plasma viral RNA 

levels, depletion of CD4 T lymphocytes and progression to disease. In contrast, seven out of 

eight vaccinated animals had no evidence of disease progression for more than two years after 

challenge. All the vaccinated animals showed a strong virus-specific CTL response and the 

lack of viral control in one animal correlated with escape from CTL recognition (Barouch et 

al., 2002). This DNA cytokine augmented set up constitute a valid example of improvement 

of a DNA based vaccine. 

Viral vectors 

Several viral vectors have been used to develop vaccines against HIV. These include, 

mammalian pox-virus (MVA, NYVAC), Avian pox-virus (ALVAC, Fowlpox), Adenovirus 

(Ad5), Alphavirus, Rhabdovirus (vesicular stomatitis virus), Herpesvirus, and Picornavirus 
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(Robinson, 2002). The viral vectors that have had the most preclinical success and are now in 

a more advanced stage of clinical development are modified vaccinia Ankara (MVA) and 

adenovirus 5 (Ad5). Both viral vectors do not replicate in primate cells and represent ideal 

vectors to be used in immunocompromised populations. Thus, in developed countries, they 

can be used as therapeutic vaccines and in developing countries, they can be used to vaccinate 

people with an unknown HIV status. One potential problem in applying these vectors to 

humans is that their effectiveness can be limited by pre-existing host immunity. In fact, 90% 

of people in developing countries have pre-existing immunity to Ad5 and all people born 

before 1970 have been immunized against smallpox using vaccinia virus. Since variola virus 

the etiologic agent of smallpox is now eradicated and smallpox vaccination will not be 

necessary in the future, the problem of host pre-existing immunity to MVA will probably 

disappear along the time. 

MVA and Ad5 vectors have been often used in a prime-boost strategy in order to boost 

immune responses previously elicited by DNA vaccines. Preclinical trials in monkey models 

performed with recombinant MVA and recombinant Ad5 had promising results. T-cell 

responses rose by prime-boost strategies using DNA and MVA or Ad5 vectors successfully 

controlled pathogenic challenges with the SHIV 89.6P chimera (see Table II). Strong virus 

specific CD8 responses were detected after the administration of the vaccine; with the 

DNA/Ad5 prime-boost combination being the more effective and the MVA/MVA 

combination being the least effective (see Table II and Figure III). Despite major differences 

in the immunogenicity, all the vaccination strategies shown in Table II and Figure III, were 

effective in reducing the viral set point after SHIV-89.6P challenge. The challenge resulted in 

a reduced viral set point in comparison to not vaccinated monkey even when live viral vectors 

were used alone and demonstrated to elicit low immune responses. Thus, measured immune 

responses did not predict the outcome of the challenge. In these trials, immune responses were 

monitored by following the expression of IFN-γ after antigenic stimulation or by tracking the 

epitope specific T-cells with MHC multimer technology. Monkeys were usually typed for the 

Mamu-A*01 MHC allele and immune responses were tracked using Gag-CM9 MHC 

multimer. Despite the lack of correlation between measured immune responses and viral 

control, DNA/IL2 vaccinated monkey lost viral control after escape from specific CD8 

responses (Barouch et al., 2002) and DNA/MVA vaccinated monkeys lost viral control after 

depletion of CD8 T-cells (Robinson and Amara, 2005). Thus, while control of viral 

replication after challenge correlates with the presence of vaccine elicited specific CD8 T-

cells, the capacity to mount such protective response does not correlate with the magnitude of 
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vaccine-elicited CD8 T-cells. Trials including the experimental depletion of T-cell 

subpopulations after vaccine administration but before challenge should be undertaken to 

discover correlates for the efficacy of the vaccines. 

 
Figure III: Patterns of CD8 T-cells specific to the immunodominant Gag-CM9 epitope during vaccination 

and challenge for a DNA/Ad5 vaccine (a) (Shiver et al., 2002), a cytokine augmented DNA vaccine (b) 

(Barouch et al., 2000), and a DNA/MVA vaccine (c) (Amara et al., 2001).  From H.L. Robinson and R.R. 

Amara, Nat Med 2005.  
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Table II: Prime-boost studies in the Rhesus macaque model challenged with SHIV-89.6P 

Model  Delivery Administration Antigens T-cells Antibody Challenge Outcome 
         
Control of a mucosal challenge by a multiprotein DNA/MVA vaccine (Amara, Science 2001)         

Prime► id, im (needle 
free) w 0, 8 (DNA) SIVmac239(Gag, Pol, Vif, Vpx Vpr) 

HIV89.6(Env, Tat, Rev) Low Low Rhesus 
macaque 

Boost► id, im (needle) w 24 (MVA 2x108) SIVmac239(Gag, Pol) HIV 
89.6(Env) Strong Low 

m 7, 
intrarectal, 
SHIV-
89.6P 

Reduced 
viral set point 

         
Different patterns of immune responses but similar control of SHIV 89.6 by MVA and DNA/MVA vaccines (Amara, J Virol 2002)     

Prime► id w 0, 8 (MVA 2x108) Low High Rhesus 
macaque Boost► id, im w 24 (MVA 2x108) 

SIVmac239(Gag, Pol) HIV 
89.6(Env) Low High 

m 7, 
intrarectal, 
SHIV-
89.6P 

Reduced 
viral set point 

         
Reduction of a SHIV 89.6P Viremia in Rhesus Monkey by rMVA vaccination (Barouch, J Virol 2001)         

Rhesus 
monkey   im w 0, 4, 21 (MVA 108) SIVmac239(Gag, Pol) HIV 

89.6(Env) Low No 
w 27, iv, 
SHIV-
89.6P 

Reduced 
viral set point 

         
Replication incompetent Ad5 elicit effective anti-immunodeficiency virus immunity (Shiver, Nature 2002) 

Prime► w 0, 4, 8 (DNA) Low No 

Boost► W 25 (DNA) Medium No 

Reduced 
viral set point 
(3/3) 

Prime► w 0, 6 (MVA) Low No 

Boost► w 32 (MVA) Low No 

Reduced 
viral set point 
(2/3) 

Prime► w 0, 6 (Ad5) Medium No 

Boost► w 32 (Ad5) Strong No 

w 12, iv, 
SHIV-
89.6P 

Reduced 
viral set point 
(3/3) 

Prime► w 0, 4, 8 (DNA) Medium No 

Boost► w 32 (MVA) Strong No 

Reduced 
viral set point 
(1/3) 

Prime► w 0, 4, 8 (DNA) Low No 

Rhesus 
macaque 
monkey 

Boost► 

im 

w 32 (Ad5) 

SIVmac239(Gag) 

Very Strong No 

w 6, iv, 
SHIV-
89.6P Reduced 

viral set point 
(3/3) 
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The relevance of the animal and challenge model used in these studies is not firmly 

established. The SHIV-89.6P chimera expresses a CXCR4 specific HIV envelope and after 

infection causes a dramatic decrease of total CD4 T-cell. AIDS develops in almost all the 

infected animals within six months from infection. This aggressive virus does not resemble 

HIV-1 that soon after infection establishes a long phase of latency that last for years before 

the first manifestations of AIDS related symptoms. Intriguingly, this aggressive virus seems 

easier to control by vaccination and studies conducted with the less aggressive CCR5 

dependent viruses SIVmac239 and SIVmac251 resulted in a modest reduction of the viral set 

point (Aandahl et al., 2003; Horton et al., 2002; Vogel et al., 2003). In addition, recent studies 

addressing the influence of MHC class I haplotype on vaccine mediated protection, 

demonstrated that the expression of the MHC class I allele Mamu-A*01 was associated with a 

particularly efficient control of the SHIV-89.6P (Seaman et al., 2005). The same has been 

shown for vaccination and challenge studies using the less virulent SIVmac. 

To overcome these problems Letvin et al. (Letvin et al., 2006) immunized monkeys that do 

not expressed Mamu-A*01 alleles and performed a challenge using the less virulent SIVmac 

strain. In addition, after challenge, monkeys were followed for more than three years to 

evaluate the long-term effect of the vaccine. DNA/Ad5 vaccinated monkeys showed only a 

limited reduction of the viral set point after challenge but the long-term follow up revealed 

significant difference in survival associated with the preservation of central memory CD4 T-

cells. This study constitutes the base for further studies in monkeys and suggests a possible 

correlate of protection that can be analyzed in humans. 

In summary, two main problems affect studies performed in monkeys: the relevance of the 

animal, and challenge model and the absence of a correlate of protection. In addition, it is not 

evident that these issues will be solved in the recent future. Therefore, it will be important to 

translate as soon as possible this vaccination protocols in clinical trials in order to establish 

their relevance for human beings. 

 

 MVA and Ad5 carrying different HIV-1 antigens have been already used in phase I and II 

clinical trials. Both vectors were safe and able to elicit immune responses to the inserted 

antigens. However, since efficacy studies in healthy subject require a large number of 

individuals and a long term follow up, at present time, no data exist on the efficacy of this 

vector as prophylactic vaccines. ALVAC vCP1521 vector is now in a more advanced stage of 

development. In October 2003, Sanofi Pasteur started a large phase III clinical trial to 

evaluate the efficacy of a prime/boost vaccine strategy employing an ALVAC vCP1521 (env 
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B, E; gag/pol) and the AIDSVAX B/E (protein env B, E). The placebo controlled double-

blinded study will enroll 16,000 volunteers in Thailand and will end by June 2009. 

MVA, Ad5 and ALVAC have been used in therapeutic vaccine settings. The therapeutic 

setting can provide information on efficacy even with a limited number of study subjects.  

However, despite safety and immunogenicity have been demonstrated, no indication of 

efficacy has been reported to date. 

Vaccination using MVA 

The interesting data obtained in the monkey model fostered the use of MVA as vaccine vector 

in humans. MVA does not replicate in most mammalian cells and since the block in the 

replication cycle is at a late stage of morphogenesis, early and late gene expression is not 

impaired. This allows for a good expression of the inserted genes and for good safety 

characteristics. 

The first report of a Phase I clinical trial using a recombinant MVA expressing an HIV-1 

derived antigen is the main subject of this thesis (Cosma et al., 2003). Briefly, the vaccination 

of 10 chronically HIV-1 infected subjects with a MVA-HIV-1LAI-nef vector resulted to be 

safe and immunogenic. Interestingly, elicited immune responses were mainly mediated by 

CD4 T-cells. This study provided also valuable information upon the use of MVA as an 

alternative vaccine against smallpox in HIV-1 infected patients under HAART (Cosma et al., 

2007). 

Following this first report in HIV-1 infected individuals, the group of T. Hanke and A. J. 

McMichael demonstrated the capacity of MVA to induce HIV-1 specific responses in healthy 

subjects (Mwau et al., 2004). In this case, the MVA vector was expressing a consensus HIV-1 

clade A Gag p24/p17 proteins fused to a string of clade A CTL epitopes (Hanke et al., 2002). 

These pioneering studies were followed by other clinical trial that showed the good 

immunogenicity of MVA as a vaccine against HIV-1 (Dorrell et al., 2006; Goonetilleke et al., 

2006; Harrer et al., 2005).  

Vaccines to cellular proteins 

In 1995, Stott et al. (Stott and Almond, 1995) showed that monkeys vaccinated with 

inactivated SIV grown on human cells and challenged with the same virus were successful 

protected. When the challenge was performed with SIV grown on monkeys’ cells no 

protection was observed. At that time, it was not clear if protection was mediated by allo-

specific or xeno-specific humoral immune response. However, it was clear that cellular 
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molecules incorporated into virions played a role in the protection mechanism. Since, this 

vaccination strategy succeeded in achieving full protection, further investigations should be 

undertaken now that new technologies to dissect immune responses are available. 

Host derived proteins are selectively incorporated into viral particles (Esser et al., 2001) and 

can confer new functions and new antigenic properties to the virus. For instance, ICAM-1, 

HLA class II and CD28 molecule accelerate the kinetic of viral entry by interacting with their 

corresponding counter-receptors displayed on the target cells (Giguere et al., 2005; Tremblay 

et al., 1998). The analysis of these molecules might be useful in the design of vaccines that 

can better mimic the envelope of the virus or can target important step in the virus life cycle. 

 

In 1999, we characterized the effect of the incorporation of HLA class I molecules into viral 

particles (Cosma et al., 1999). The study addressed in particular the role of the incorporation 

of the HLA Cw4 allele into CXCR4 dependent viruses. The incorporation of HLA-class I 

Cw4 alleles increased the infectivity of newly formed viral particle changing the 

conformation of the Envelope protein. As shown in Figure IV, the incorporation of HLA Cw4 

into LAI and Bru virions increased the capacity of these viruses in entering an indicator CD4+ 

cell line. Similar results were observed upon incorporation of HLA Cw4 into primary isolates. 

The incorporation of HLA Cw4 had no effect on the NL4-3 and NDK viral strain.  

 
Figure IV: Effects of HLA Cw4 expression on infectivity. Viruses generated from HLA Cw4 negative 

(open symbols) and positive (closed symbol) cells collected at the peak of infection were added to Hela-

CD4-LTR-LacZ P4 indicator cells and efficiency of infection was measured by colorimetric determination 

of β-gal activity in cell extracts. pg/ml of virus added to assay are indicated on the x axis. β-gal activity in 

term of optical density is shown in the y axis. The different strain of HIV tested are shown on the top of 

each graph. 

The observed increase in infectivity was associated with conformational changes in regions 

responsible for the viral tropism, such as the V3 loop and the epitopes normally induced by 

the interaction with the CD4 receptor. These changes were probably induced by direct 
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interaction of the Envelope protein and the HLA Cw4 molecule on the surface of the virions. 

In fact, we were able to co-precipitate the two molecules from the surface of actively HIV-

1LAI producing cells (Figure V). 
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Figure V: Western blot analysis of immunoprecipitates from HIV-1LAI infected HLA-Cw4 expressing cells.  

Cell expressing HLA-Cw4 or not (as indicated at the top) were infected with HIV-1LAI (LAI+) or left 

untreated (LAI-). Then, lysates were immunoprecipitated with an antibody (P4D10)  recognising the V3 

loop of the envelope protein or an antibody (L31) recognising the HLA-C molecules (in green). 

Immunoprecipitated material was separated using SDS-PAGE and then transferred to a nitrocellulose 

membrane that was probed with the antibodies P4D10 and L31 (in red). Moleular weights are shown on 

the left. 

These data indicate that a host derived molecule is able to modulate the conformation of the 

HIV-1 Envelope protein (Figure VI). These modifications include epitopes important for 

antibody specific virus neutralization and can unmask cryptic epitopes. Thus, complex of 

Envelope and HLA-Cw4 molecules can be used to build protein or cellular vaccines with 

different and may be better antigenic properties. It is also possible that the observation of Stott 

et al. may be better explained in terms of a different capacity of human and monkey host 

derived molecules to interact with the SIV Envelope. 
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Figure VI: ICAM-1 enhance the infectivity of the HIV-1 viral particle via the interaction with its natural 

ligand expressed on the target cell. HLA-Cw4 acts in cis and changes the conformation of the Envelope 

protein on the viral particle. We hypothesized that these conformational changes allow a better interaction 

with the CD4 receptor and the CXCR4 co-receptor on the target cell. This conformational change can be 

used to formulate new antibody based vaccines. 

Correlates of protection 

To evaluate AIDS vaccine formulations in humans is necessary to have indications about 

possible correlates of protection. Unfortunately, at present time, no clear correlates of 

protection or viral control exist and animal models did not provide this information. 

One possibility to find correlates of protection is the study of humans that can naturally 

control infection or remain apparently uninfected despite repeatedly contacts with the virus. 

Long Term Non-Progressor 

Long term non-progrssor (LTNP) represent 1 to 5 % of the HIV-1 infected individuals and are 

characterized by a documented HIV-1 infection for more than seven years, stable and high 

total CD4 counts, usually more than 600 cell/mm3, low levels of viremia in peripheral blood, 

no history of anti-retroviral therapy and no symptoms of AIDS disease. The genetic 
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background of the host, the characteristic of the virus, a peculiar host immune response or a 

combination of all these factors may be responsible for the non-progressive status. 

Polymorphisms in the genetic background of the host responsible of decreased susceptibility 

to infection and delayed progression to AIDS include the HIV co-receptors CCR5 and CCR2 

(Dragic et al., 1996; Hogan and Hammer, 2001; Lee et al., 1998; Quillent et al., 1998), the 

chemokine SDF-1 (Meyer et al., 1999) and the HLA-B57 allele (Migueles et al., 2000). 

In the virus genome, mutations and deletion in the regulatory gene nef have been clearly 

associated with the non-progressive status (Catucci et al., 2000).  

While the genetic markers in the host and the virus have been clearly associated with a slow 

progression to AIDS, immunological markers are more difficult to track and up to now, we do 

not have clear evidences for immunological markers of protection or slow progression. 

However, the example of LTNP demonstrates that control of viral replication by the immune 

system in the context of the natural course of the disease is possible. The analysis of the anti-

HIV immune response in LTNP, chronically HIV infected individuals under HAART and 

individuals with progressive disease highlighted some possible correlates of protection and 

some possible immunological mechanisms of viral control. HIV specific CD4 T-cell plays a 

key role in this scenario. Indeed, proliferative capacity (Rosenberg et al., 1997), IL2 (Harari et 

al., 2004) and IFN-γ (Pitcher et al., 1999) production were preferentially observed in HIV-

specific CD4 T-cells derived from LTNP. Interestingly, better proliferative capacity and 

higher perforin expression was detected in HIV-specific CD8 T-cells derived from LTNP 

(Migueles et al., 2002). The capacity of HIV-specific CD8 T-cells to proliferate was 

associated with the presence of HIV-specific CD8 T-cells able to produce simultaneously 

IFN-γ and IL-2 (Zimmerli et al., 2005). Despite the phenotype of proliferating IFN-γ/IL-2 

secreting CD8 T-cells represent an attractive marker of slow progression to AIDS, a similar 

population has been found in 30% - 40% of subjects successfully treated with HAART 

(Harari et al., 2006). Therefore, the preserved capacity to proliferate may merely represent a 

marker for a not yet compromised immune system. All this observations suggest that the 

immune system may be able to control viral replication. More recently, Betts et al. (Betts et 

al., 2006), observed that polyfunctional CD8 T-cell were preferentially observed in LTNP. 

Polyfunctionality was intended as simultaneous production/expression of CD107, IFN-γ, 

MIP-1β, IL-2, and TNF-α and/or CD107, IFN-γ, MIP-1β, and TNF-α. In contrast with 

previous studies expression of IL-2 was not associated with the LTNP status and significant 

differences between LTNP and progressor were mainly observed in polyfunctional CD8 T-

cells lacking IL-2 expression. 
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In summary, from all these studies is difficult to define clear protection markers, often each 

study is focalized only on one aspect of the immune response and the characteristics of the 

cohorts of patients differs from one study to another. In addition some studies are based on a 

limited number of subjects and conclusions could be biased by sampling problems. 

Seronegative subjects exposed to HIV 

Exposure to HIV-1 does not always lead to infection as observed in person in high-risk group 

who are not infected despite frequent exposure to HIV-1. HIV-1 exposed seronegative (ESN) 

individuals are mostly found between long-term sexual partners of HIV-1 infected individuals 

(serodiscordant couples) and commercial sex workers suggesting that the frequency of the 

exposure is an important factor to be considered. This observation also support the idea that 

acquired factors are likely involved in this resistance. As for the LTNP, several 

immunological mechanisms and markers have been studied in ESN. Since HIV is mainly 

sexually transmitted and the first contact with the host is at the level of the genital mucosa, the 

presence of HIV-specific mucosal IgA in HIV-1 negative partners of serodiscordant couples 

(Mazzoli et al., 1997) represents one important mechanism of protection involving the 

humoral immunity. Interestingly, when we purified IgA from ESN, we observed a clear 

neutralizing activity in 5 out of 15 subjects (Mazzoli et al., 1999). Of note, the neutralization 

assay was performed using HIV-1 primary isolates. These studies demonstrate that an HIV-

specific immune response is present in HIV-1 negative and highly exposed subjects. 

In our studies focused on ESN individuals, we also observed the presence of anti-HLA class I 

antibodies in seronegative injection drug users at risk for HIV exposure (Beretta et al., 1996b) 

and HIV-1 negative partners of serodiscordant couples (Beretta et al., 1996a; Lopalco et al., 

2000). An immune response against cellular targets highlight the importance of cellular 

proteins incorporated into virions and the possible use of this molecules in vaccine 

formulations (see also “Vaccines to cellular proteins”). 

On the side of the cellular immunity HIV-1 specific CD8 and CD4 T-cells have been found in 

several cohort of female sex workers (Alimonti et al., 2006; Alimonti et al., 2005; Fowke et 

al., 2000; Jennes et al., 2004), suggesting a possible role of the cellular immune response in 

protection from infection. However, we cannot exclude an antibody mediated protective role 

at the mucosal site and a cellular immune response simply reflecting the contact with the virus. 
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Summary by points of the main challenges for an AIDS vaccine 

Despite our knowledge of HIV-1 and its interaction with the host is increasing, the hope to 

have a vaccine against HIV-1 in a short term is not foreseen. Here are summarized a series of 

important challenges that we have to face to find an effective vaccine against HIV-1.  

1. Neutralizing antibodies 

a. Conserved epitopes are hidden by variable regions and glycosylation 

2. Integrated proviral DNA 

a. Has a long half-life 

b. Forms an archive of all the virus infecting the host over the time 

c. Can be reactivated to produce infective virions 

d. Viral protein are not expressed in the latent phase 

3. HIV genome is high variable 

a. There are 12 known subtypes 

b. Regional vaccines might be necessary 

c. Escape mutants are constantly generated 

4. Lack of a suitable animal model 

5. Lack of a clear correlate of protection in humans 
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Materials and Methods 

Reagent Setup 

• Culture medium: prepare RPMI 1640 medium (Cambrex, cat.no. BE12-702F/U1) 

supplemented with 10% heat-inactivated FCS (Biochrom AG, cat.no. S0115) and 1% 

PenStrep (Cambrex, cat.no. DE17-602E) -> lab name is RPMI-10 

• Live/Dead staining solution: Used for to count cells, Trypan Blue (Gibco, Invitrogen, 

Cat.no. 15250-061) 

• Costimulating antibodies (coAbs): CD28 pure (BD, cat.no. 340975), CD49 pure 

(BD, cat.no. 340976)  

• Peptide pools: use 2μg/ml peptide in the total volume of 200μl (after the addition of 

the BFA) 

• Negative & positive control: negative control is only RPMI-10, positive control is 

with PMA + Ionomycin (PMA+I) 

• PMA: Phorbol 12-myrstate 13-acetate (Sigma, cat.no. P-8139), prepare a stock 

solution with a concentration of 0.1mg/ml in DMSO (Sigma, cat.no. D2650), store 

small single-use-aliquots at -20°C 

• Ionomycin: (Sigma, cat.no. I-0634), prepare a stock solution with a concentration of 

0.5 mg/ml in EtOH, store small single-use-aliquots at -20°C 

• BFA: Brefeldin A (Sigma, cat.no. B-7651), prepare a stock solution with a 

concentration of 5mg/ml in DMSO, store small single-use-aliquots at -20°C  

• EMA: Ethidium monoazide bromide (Invitrogen, Molecular Probe, cat.no. E-1374), 

live/dead discriminator, prepare a stock solution with a concentration of 2mg/ml in 

DMFA, store at -20°C for long time, once thawed keep at 4°C 

• FACS buffer: (BD Pharmingen Stain Buffer 0,2% BSA, 0,09% Na Azide in DPBS, 

cat.no. 554657)  

• A3.01 cells: Centre for AIDS Reagents (EU Programme EVA/AVIP), ARP098, 

Human CD4+ T Cell line 

• MVA-gfp: single-use aliquot (115µl), 5*107 IU/ml, stored at -80°C -> the amount of 

MVA-gfp has to be determined doing a titration for each viral preparation in order to 

obtain between 200 and 400 Gfp expressing cells 

• PBS: phosphate buffered saline 
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• Dianisidine solution: Prepare a saturated solution of O-Dianisidine (D9143, Sigma) 

in EtOH, vortex al least 1’, let stand at least 1h at room temperature protected by light, 

vortex, spin down. You can store this solution ten days at 4°C. Always vortex before 

use. 

Immune-staining of MVA infected cells 

The immune-staining is performed on cells forming a monolayer, such as CEF or HeLa. It is 

usually performed in 6 wells/plates on confluent cells 

Wash the cells 1X PBS 

• Fix with Acetone/Methanol (1:1) 5’ room temperature 

2X wash with PBS 

• I Ab in PBS 3%FCS 1h room temperature (L31 1/500, P4D10 1/250) 

2X wash in PBS 3%FCS 

• II Ab goat anti mouse HRP (1/500) in PBS 3%FCS 45’ room temperature 

3X wash in PBS 

• Add substrate (O-Dian.) solution 

Prepare substrate solution just before adding to the cells: 

add 200µl O-Dianisidine solution and 10µl H2O2 to 10ml of PBS 

Wait until plaques are visible and the background in the negative control remain clear. Then, 

simply wash away the O-Dianisidine solution with PBS. 

Let dry the stained cells. 

Western Blot analysis of the expression of the Nef protein delivered 

by the recombinant vector MVA-nef 

1) Infection of target cells with MVA-nef 

1.5 * 106 B-LCL has to be infected with 10 pfu MVA/cell in a total volume of 225 μl of 

complete media. Perform the incubation in a 48 well plate. 

Sample list: 

B-LCL + mock infection 

B-LCL + MVA wt 

B-LCL + MVA nef (laboratory production) 

B-LCL + MVA nef (GMP production) 
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 2 hours, 37°C 

1 wash 

Transfer the cells in a 6 wells plate in a total 3 ml volume. 

overnight at 37° 

Take all the cells; 1500 rpm for 5’ 

Add 150μl of 1% NP40 in PBS (Cold) 

Keep on ice for 20’ 

14000 rpm, 2' 

Take the supernatant and add 37.5μl of SB5x 

Boil 5’ at 95°C, 

 

2) Analyze sample in SDS-PAGE and Western Blot 

3) Staining of the Western Blot 

The following buffer was used for the incubations: 5% BSA, 0.05%Tween in PBS (BSA-T-

PBS). The washing steps were performed in the same buffer without BSA (T-PBS). 

After the transfer, the nitrocellulose membrane is dried over-night. 

The nitrocellulose membrane is carefully immerged in the T-PBS buffer. 

3 wash with T-PBS 

Overcoating: 1h in BSA-T-PBS 

3 wash with PBS 

I Ab 2hours 3D6 (1/200) 

3x5’ washes in T-PBS 

II Ab Goat anti mouse HRP 1 hour (1/2000) 

8x5’ washes 

Develop using Lumi Light 

Intracellular cytokine staining 

Peripheral blood was collected in heparin and processed using standard Ficoll (Biochrom, 

Berlin, German) density centrifugation. Lymphocytes were adjusted to 6,6 x 106 cells/ml in 
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RPMI 1640 (Biochrom), 10% FCS, 1% antibiotics, 1,3 μg/ml anti CD28 and 1,3 μg/ml anti 

CD49d costimulatory antibodies (Becton Dickinson, Heidelberg, Germany). Then, 150 μl of 

cell suspension was plated in a 96 well plate together with peptides and left for 1 hour at 37°C 

in a humidified 5% CO2 atmosphere. Brefeldin A (Sigma, Taufkirchen, Germany) was added 

to the cell suspension to a final concentration of 10 μg/ml and cells were subsequently 

incubated for 4 hours. Stimulated cells were incubated the photoreactive fluorescent label 

ethidium monoazide (EMA; Molecular Probe, Leiden, Netherlands) used as viability probe. 

Antibodies to surface antigens were added and incubation carried out on ice for 30 min. Then, 

cells were fixed and permeabilized, before adding antibody to the intracellular markers. Cells 

were analysed using a FACS Calibur (Becton Dickinson), a LSRII (Becton Dickinson) or a 

CYAN (Dako Cytomation) flow cytometer. The workflow for the intracellular cytokine 

staining procedure is shown in Figure VII. Four different sets of HIV peptides were used to 

stimulate lymphocytes: (i) 20-mer peptides overlapping by 10 amino acids corresponding to 

HIV strain LAI spanning the Nef, Tat and Rev proteins, (ii) 20-mer peptides overlapping by 

10 amino acids corresponding to HIV strain SF2 spanning the p24 protein, (iii) 15-mer 

overlapping by 5 amino acids corresponding to HIV strain SF2 spanning the p17 protein, (iv) 

optimally defined epitopes from 8 to 11 amino acid in length derived from HIV-LAI Nef as 

described in the Los Alamos Molecular Immunology Database (Korber B., 2001), referred 

here as Nef CD8 Opt. The final concentration of each individual peptide was 0,4 μg/106 cells 

for all the experiments described. Alternatively, PBMC were infected with MVA in order to 

analyze vaccinia specific immune responses. 
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Figure VII: Example of workflow for the IFN-γ-based intracellular cytokine staining 

Detailed protocol for the peptide stimulation of PBMC 

Warm up the RPMI-10 to 37°C! 

Use: 1 x106 cells/150µl RPMI-10 + coAbs for each experimental sample (Exp) 

         0.5 x106 cells/150µl RPMI-10 + coAbs for each compensation sample (Cmp) 

1) RPMI-10 + coAbs: 

Prepare always for 2-3 samples more than needed in a 50 ml Falcon tube 

 

 

 

 

 

Resuspend the samples in RPMI-10 + coAbs and distribute 150μl in each well  

2) Peptide pools (Antigens): 

 RPMI-10 (µl) CD28 (µl) CD49d (µl) 

1   sample 150 0.2 0.2 

25 samples 3750 5 5 

40 samples 6000 8 8 
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Use 2μg/ml peptide in the final 200μl (the total volume will be 200μl after the addition of the 

BFA) 

Prepare PMA+I working solution: 20μl PMA stock solution + 1980μl PBS 

     20μl I stock solution        +   180μl PBS 

Pipette PMA and I with 100µl-filtered tips 

For 6 individuals: 

 

 

 

 

 

 

 

 

 

 

Distribute 10μl of peptide pools in each experimental sample 

 1 hour at 37°C 

3) BFA:  

Prepare working solution: 20μl BFA stock solution + 180μl PBS  

Mix 192μl BFA working solution with 2200μl RPMI-10 

Add 50μl/well (don’t mix) 

 4 hours at 37°C 

4) Stopping the stimulation:  

Cover the edges of the plate with parafilm and store over night at 4°C, protected by light. 

On the next day start the staining following the appropriate protocol. 

Detailed protocol for the MVA stimulation of PBMC 

4x106 frozen cells are used for each determination (-Ctrl and Sample) 

Keep RPMI-10 at room temperature before starting the experiment 

 peptide (µl) RPMI-10 (µl) 

Neg Ctrl 0 60 

Nef 4.8 55.2 

Nef Opt 21.3 38.7 

Tat 2.6 57.4 

Rev 2.9 57.1 

p17 3.1 56.9 

p24 5.3 54.7 

PMA + I 22.5 + 18 19.5 
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1) First day: MVA infection 

Thaw the cells 

2 wash in RPMI-10 (use 50 ml Falcon tube) {MVA preparation} 

Resuspend cells in 400 μl RPMI-10 (always in the same 50 ml Falcon tube) 

Take out 50 μl as Neg Ctrl and 50 μl to be infected with MVA;  

 

 

0.5x106 cells/well 

 

Plate them in a 96 well/plate flat bottom where the MVA (2.5x106 pfu; 5pfu/cell) was already 

plated. Mix well when adding the cells. Fill with PBS the wells around the samples. 

Add 300 μl RPMI-10 to the 50 ml Falcon tube and leave the tubes in a slant position with the 

cap loosened in the incubator overnight 

Leave RPMI-10 out of the fridge for the next day 

2) MVA preparation 

Thaw MVA (Example: MVA_F6 583 CEF 2.1x109 pfu/ml) 

Vortex 30’’, put on ice, vortex, ice, vortex, ice 

Use 1.2 μl MVA + 8.8 μl RPMI-10/sample 

Plate in the 96 well/plate flat bottom before adding the cells 

Example: 

 #1 #2 #3 #4 #5 

#1 #2 #3 #4 #5 

3) Second day: stimulation 

Infected cells in 96 well/plate flat bottom: 

Add 150 μl RPMI-10 (r.t.) and transfer cells to a 96 well/plate round bottom 

2 wash with RPMI-10 (r.t.) 

Leave the {pellet} 

Cells in 50 ml Falcon: 

Add 5 ml RPMI-10 (r.t.) 

1500 rpm, 5’, 21˚C, discard media 

Add 300 μl of RPMI-10 + 0.4 μl (0.4 μg) CD28 and CD49d Abs 

- Ctrl MVA 

- Ctrl 

MVA 
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Add the cells to the {pellet}; 150 μl for the –Ctrl well and 150 μl for the MVA infected well 

(1.5x106 cells/well) 

Follow the standard ICS protocol 

Detailed protocol for the IFN-γ-based intracellular cytokine staining 

Resuspend the cells with a multi-channel pipette. 

1500 rpm, 5’, 4°C 

Prepare EMA solution: 1μl in 1ml of FACS buffer (0,5% BSA, 0,02% NaAzide in PBS). 

Add 50μl EMA sol. to each well 

 20’ on ice, in the dark 

 10’ on ice, to strong light 

Add 150μl FACS buffer, 1500 rpm, 5’, 4°C 

2 wash with 200μl FACS buffer, 1500 rpm, 5’, 4°C 

Add 50μl FACS buffer and transfer the cell suspension to a 96 well plate were the antibodies 

to cell surface markers have been already plated. 

Anti CD8 PE 2μl/50μl test X42 samples 84μl + 

Anti CD4 PerCP 2μl/50μl test  84μl + 

Anti CD3 APC 0,5μl/50μl test  21μl +  

  FACS buffer 231μl = 

   420μl  

Distribute 10μl of antibodies dilution in each well. 

 30’ on ice, in the dark 

Add 150μl FACS buffer, 1500 rpm, 5’, 4°C 

2 wash with 200μl FACS buffer, 1500 rpm, 5’, 4°C 

Add 200μl of 1X FACS Lysing sol (resuspend well!) 
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 10’ room temperature, in the dark 

1 wash with 200μl FACS buffer, 1800 rpm, 5’, room temperature 

Add 100μl of 1X Permeabilization sol (resuspend well!) 

 10’ room temperature, in the dark 

Add 100μl FACS buffer, 1800 rpm, 5’, room temperature 

1 wash with 200μl FACS buffer, 1800 rpm, 5’, room temperature 

Add 50μl FACS buffer and transfer the cell suspension to a 96 well plate were the antibodies 

to intracellular markers have been already plated. 

IgG2a FITC 0,25μl/50μl test X6 samples 1,5μl + 58,5μl   

Anti IFNγ FITC 2μl/50μl test X38 samples 76μl + 304μl 

 45’ room temperature, in the dark 

Add 150μl FACS buffer, 1800 rpm, 5’, room temperature 

1 wash with 200μl FACS buffer, 1800 rpm, 5’, room temperature 

Fix the cells with 1% Paraformaldhyeide in PBS 400μl/sample 

Detailed protocol for the IFN-γ/IL-2/CD154 intracellular cytokine staining 

Resuspend the cells, 1600 rpm, 5’, 4°C, discard the supernatant (SN) 

1) EMA staining: 

Prepare working solution: 1μl EMA stock solution in 1ml of FACS buffer  

Resuspend the cells in 50μl/well 

 20’ on ice, in the dark 

             10’ on ice, to strong light 
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Add 150μl FACS buffer, 1600 rpm, 5’, 4°C, discard the SN 

2x wash with 200μl FACS buffer, 1600 rpm, 5’, 4°C, discard the SN 

2) Surface staining: 
Compensation antibodies: 

 (µl) FACS buffer (µl) total (µl) Position 

Voltage Set Up 0 20 20 A 1 

No Abs Ctrl 0 20 20 A 2 

CD8 FITC 4 16 20 A 3 

CD8 PE 2 18 20 A 4 

CD4 PerCP 5 15 20 A 5 

CD8 PacB 2.5 17.5 20 A 6 

CD8 APC 0.5 19.5 20 A 7 

CD3 PE-Cy7 0 20 20 A 8 

 

Surface staining antibody mix: 

for 1 sample (µl) 

CD4 PerCP 5 

CD8 PacB 2.5 

FACS buffer  12.5 

total 20 

the Surface staining antibody mix at 12000 rpm, 3’, 4°C -> transfer the SN to a new 

Eppendorf 

Distribute 20μl of Surface staining antibody mix in the appropriate wells 

Resuspend the cells in 50μl FACS buffer and transfer the cell suspension to the prepared plate 

where the antibodies to cell surface markers have been already plated. 

 30’ on ice, in the dark 

Add 150μl FACS buffer, 1600 rpm, 5’, 4°C, discard the SN 

2x wash with 200μl FACS buffer, 1600 rpm, 5’, 4°C, discard the SN 

3) Fixation & Permeabilization: 

Resuspend well in 100μl Cytofix/Cytoperm reagent 
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 20’ on ice, in the dark 

Add 100μl Perm/Wash buffer, 1800 rpm, 5’, 4°C, discard the SN 

3x wash with 200μl Perm/Wash buffer, 1800 rpm, 5’, 4°C, discard the SN 

4) Intracellular staining: 
Compensation antibodies: 

 (µl) FACS buffer (µl) total (µl) Position 

Voltage Set Up 0 30 30 A 1 

No Abs Ctrl 0 30 30 A 2 

CD8 FITC 0 30 30 A 3 

CD8 PE 0 30 30 A 4 

CD4 PerCP 0 30 30 A 5 

CD8 PacB 0 30 30 A 6 

CD8 APC 0 30 30 A 7 

CD3 PE-Cy7 2 28 30 A 8 

 

 

Intracellular staining antibody mix Effector panel: 

 

 

 

 

 

the Intracellular staining antibody mix at 12000 rpm, 3’, 4°C -> transfer the SN to a new 

Eppendorf 

Distribute 30μl of Intracellular staining antibody mix in in the appropriate wells  

Resuspend the cells in 50μl Perm/Wash buffer and transfer the cell suspension to the prepared 

plate where the antibodies to intracellular markers have been already plated. 

 

for 1 sample (µl) 

IFNγ FITC 13 

CD154 PE 10 

IL2 APC 5 

CD3 PE-Cy7 2 

FACS buffer 0 

total 30 
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 30’ on ice, in the dark 

Add 150μl Perm/Wash buffer, 1800 rpm, 5’, 4°C, discard the SN 

2x wash with 200μl Perm/Wash buffer, 1800 rpm, 5’, 4°C, discard the SN 

5) Acquisiton: 
Acquisition with CYAN and LSRII: 

Resuspend the samples in 350μl FACS buffer in 1ml titer-tubes 

Vortex 

Acquire all 

Acquisition with HTS at LSRII: 

Resuspend in 200µl FACS buffer in a 96well plate V-bottomed 

After each individual fill 3 washing wells with FACS flow solution 

loader settings:  

 

 

 

 
 

 

 

 

Plate cheme: 

experimental sample (Exp) 

compensation sample (Cmp) 

washing wells (wash)       

      Cmp ---------------------------------------------------------------------> 

Voltage 

Set Up 

No Abs 
Ctrl 

CD8 

FITC 

CD8 

PE 

CD4 

PerCP 

CD8 

PacB 

CD8 

APC 

CD3 

PECy7 

 wash wash wash 

Exp 

ID1 

Exp 

ID1 

Exp 

ID1 

Exp 

ID1 

Exp 

ID1 

Exp 

ID1 

Exp 

ID1 

Exp 

ID1 
 wash wash wash 

Exp 

ID2 

Exp 

ID2 

Exp 

ID2 

Exp 

ID2 

Exp 

ID2 

Exp 

ID2 

Exp 

ID2 

Exp 

ID2 
 wash wash wash 

 Set Up Samples Washes 

Sample Flow Rate (µl/sec) 1 2.5 3 

Sample Volume (µl) 150 150 200 

Mixing Volume (µl) 100 100 100 

Mixing Speed (µl/sec) 150 150 200 

Number of Mixes 5 5 0 

Wash Volume (µl) 800 800 800 
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Exp 

ID3 

Exp 

ID3 

Exp 

ID3 

Exp 

ID3 

Exp 

ID3 

Exp 

ID3 

Exp 

ID3 

Exp 

ID3 
 wash wash wash 

Exp 

ID4 

Exp 

ID4 

Exp 

ID4 

Exp 

ID4 

Exp 

ID4 

Exp 

ID4 

Exp 

ID4 

Exp 

ID4 
 wash wash wash 

 

CYAN setting: 
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LSRII setting: 

 
FSC setting may change after the regular BD service 
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MVA-gfp neutralization assay 

The MVA-gfp neutralization assay was modified from its original description (Cosma et al., 

2004). Briefly, heat inactivated sera were incubated with the MVA-gfp (multiplicity of 

infection of 0.1) for one hour at 37°C. Then, 0.5 x 106 A3.01 were added and the incubation 

carried out for two more hours in the same conditions. Cells were washed in RPMI-10, 

transferred in 96 well flat-bottom tissue culture plate and kept overnight at 37°C. Then, cells 

were fixed in 1% paraformaldeyde. The percentage of MVA infected A3.01 was evaluated by 

measuring Gfp expression in a FACScalibur (Becton Dickinson) or CYAN ADP (Dako 

Cytomation). For each sample, 100,000 living cells were acquired. Representative pseudo-

color dot plots are shown in Figure VIII.  Five dilutions (1:16 to 1:10,000) were tested for 

each sample to obtain trend lines of percentages of neutralization and units of area under the 

curve (AUC) were calculated using GraphPad Prism version 4.03 (San Diego, California, 

USA). 
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Figure VIII: MVA-gfp neutralization assay. Representative pseudo-color dot plots of a typical MVA-gfp 

neutralization assay. A negative control, a positive control and three dilutions of a preparation of 

neutralizing vaccinia virus immunoglobulin (VIG) are shown 

Detailed protocol for the MVA-nef neutralization assay 

1 day before starting seed A3.01 cells to a density of 1x106/ml in 20ml of RPMI-10 

1) Preparation of the human sera: 
Heat inactivation: 10µl sera in a Eppendorf tube 

   Heat inactivation 30’ at 56°C 

   max speed, 2’, 21 °C 

2) Preparation of MVA-gfp: 
Thaw MVA-gfp  

Vortex 3x for 1’, keep on ice in between 
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For one plate: use 100 µl MVA-gfp + 2400 µl RPMI-10 

Vortex 

3) Preparation of the plate:  
Fill the wells with RPMI-10 according to the scheme, fill the wells around with 100µl PBS 

PBS 40µl 40µl 40µl 40µl 40µl PBS PBS PBS PBS PBS PBS 
PBS 40µl 40µl 40µl 40µl 40µl 45µl 40µl 40µl 40µl 40µl PBS 
PBS 45µl 40µl 40µl 40µl 40µl 45µl 40µl 40µl 40µl 40µl PBS 
PBS 45µl 40µl 40µl 40µl 40µl 45µl 40µl 40µl 40µl 40µl PBS 
PBS 45µl 40µl 40µl 40µl 40µl 45µl 40µl 40µl 40µl 40µl PBS 
PBS 45µl 40µl 40µl 40µl 40µl 45µl 40µl 40µl 40µl 40µl PBS 
PBS 45µl 40µl 40µl 40µl 40µl 45µl 40µl 40µl 40µl 40µl PBS 
PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS 
 

4) Sera dilution: 
Add 5µl sera to the appropriate wells and perform 1/5 dilutions 

   

                      10μl     10μl    10μl     10μl       10μl 

  

5) Plating the MVA-gfp & NegCtrl: 

Add 25µl of diluted MVA-gfp (vortex before adding) to the appropriate wells, for the NegCtrl 

wells add only 25µl RPMI-10           
 NegCtrl NegCtrl NegCtrl NegCtrl NegCtrl       

 MVA MVA MVA MVA MVA MVA MVA MVA MVA MVA  

 MVA MVA MVA MVA MVA MVA MVA MVA MVA MVA  

 MVA MVA MVA MVA MVA MVA MVA MVA MVA MVA  

 MVA MVA MVA MVA MVA MVA MVA MVA MVA MVA  

 MVA MVA MVA MVA MVA MVA MVA MVA MVA MVA  

 MVA MVA MVA MVA MVA MVA MVA MVA MVA MVA  

            

      

            

      serum      

 serum     serum      

 serum     serum      

 serum     serum      

 serum     serum      

 serum     serum      
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 1 hour at 37°C 

6) Preparation & adding of the A3.01 cells: 
We need 0.5x106 cells in 50µl RPMI-10/well -> 50x106 cells in 5ml/plate 

1500 rpm, 5', 21°C, discard the SN 

Resuspend the pellet in 10ml RPMI-10 

Count the cells in a counting chamber (1/2 or 1/5 in Trypan Blue) 

1500 rpm, 5', 21°C, discard the SN 

Resuspend the pellet in 5ml RPMI-10 

Add 50µl cells/well to all wells (exept PBS-wells!) 

Mix well before and after adding! 

 2 hours at 37°C 

7) Over Night incubation: 

1500 rpm, 5', 21°C, discard the SN 

2x wash with 200µl RPMI-10, 1500 rpm, 5', 21°C, discard the SN 

Resuspend the cells in 110µl RPMI-10 and transfer to a in a 96well plate flat-bottomed, fill 

the wells around with 100µl PBS 

 over night at 37°C (approx. 16 hours) 

8) Fixation: 
Resuspend the cells and transfer to a 96well plate U-bottomed 

1500 rpm, 5', 21°C, discard the SN and resuspend the cells in 300µl of fixation solution 

Detection of vaccinia specific antibodies in ELISA 

Maxisorp plates (Nunc, Wiesbaden, Germany) were coated with sucrose-gradient purified 

MVA (at a protein concentration of 1µg/ml) for 3 h at 37 °C and overnight at 4 °C. The plates 

were blocked with PBS containing 0.05% Tween 20 and 10% FCS for 60 min at 37 °C. After 
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incubation of sera for 60 min at 37 °C, plates were washed five times with PBS. Then, a 

secondary anti-human immunoglobulin alkaline phosphatase conjugate was added for 30 min. 

According to the assay, affinity purified anti human IgG, IgM or IgG/IgM (Jackson 

ImmunoResearch, West Baltimore Pike, PA) were used. Following five washes, the plates 

were incubated with pNPP substrate (Sigma, Taufkirchen, Germany) at 37 °C, and the optical 

density was measured after 20 min at a wavelength of 405 nm. Eight dilutions (1:100 to 

1:12,800) were tested for each sample and the obtained ODs were used to calculate units of 

AUC. Alternatively, plates were coated with 0.25 μg/ml of recombinant A27R or A33R 

protein overnight at room temperature and  blocked with PBS containing 1% Tween (PBS-T) 

and 3% BSA for 2 hours at 37 °C. Sera were diluted in PBS-T and incubated for 60 min at 37 

°C. After six washes with PBS-T, anti-human IgG/IgM peroxidase (Jackson ImmunoResearch) 

was added to the plate and incubation carried out for 1 hour 37 °C. Following 5 washes, the 

plate was incubated for 30 min with ABTS substrate (Sigma) before the measurement of the 

optical density at 405 nm. For each sample three dilutions (1:50 to 1:200) were tested and the 

obtained ODs were used to calculate units of AUC. 

Results and Discussion 

Rationale for the use of the MVA-HIV-1nef vector 

Vaccinia viruses engineered to produce recombinant proteins are promising vaccine 

candidates. However, in HIV infected individuals due to concerns about the side effects of the 

classical replication competent vaccinia virus, the delivery of HIV genes require the use of 

highly attenuated replication defective vaccinia virus strains. One such virus strain, MVA was 

chosen for our study. From a safety perspective, MVA was used as a smallpox vaccine in over 

120,000 recipients without significant adverse reaction (Mayr et al., 1975). Moreover, in non-

human primate models of AIDS, MVA vectors engineered with HIV derived genes resulted to 

be capable to confer protection against disease progression after viral challenge (Amara et al., 

2002a; Amara et al., 2001; Amara et al., 2002b). 

HIV-1 Nef is an early expressed regulatory protein, which plays an important immune-

modulatory role. In fact, Nef is responsible for the downregulation of CD4, HLA class I and 

CCR5 on the surface of HIV infected cells. Moreover, Nef changes the activation state of the 

cells (Simmons et al., 2001). In vivo, Nef is essential for the maintenance of high levels of 

viral replication and progression to AIDS in SIV-infected monkeys. In humans, functional 
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deletions in the Nef gene have been shown to influence progression to AIDS (Learmont et al., 

1999). 

All these observations indicate that Nef is an essential protein for the pathogenesis of HIV. 

Thus, Nef represent an attractive component of HIV to be targeted in order to face the virus. 

One important issue to be addressed is which HIV genes have to be included in a candidate 

vaccine against AIDS. The multi-protein approach, while partially eliminating the problem of 

the choice of the genes, does not give information on the immunogenicity at the single gene 

level. Thus, the information provided by the multi-protein approach does not permit to 

improve the vaccine in term of composition. 

Our approach has as final target to evaluate the ability of the MVA-Nef vaccine to elicit an 

immune response and to improve the immune control of HIV in chronically HIV-1 infected 

individuals. We want also to collect information about the immunogenicity of Nef alone in 

order to build a collection of data to be used for the development of new vaccines against HIV. 

Characterization of the MVA-nef vector 

Expression in chicken embryo fibroblast 

The MVA vector expressing the HIV-1LAI Nef gene was first characterized on chicken 

embryo fibroblast (CEF). CEF are usually used to amplify preparations of recombinant MVA 

(Sutter and Staib, 2003). The use of CEF monolayer and serial dilutions of the MVA vector 

ensure the visualization of single plaques generated by single infectious units. Nef expression 

was detected in all the plaques (Figure IX), demonstrating the purity and stability of the 

MVA-nef vector. 
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Figure IX: Immunostaining of a typical MVA plaque on CEF. CEF monolayer infected with different 

dilutions of MVA-nef were fixed and stained with a polyclonal rabbit serum specific to Nef. Anti-rabbit 

HRP conjugated secondary antibody and dianisidine substrate were used to develop the assay. A 

representative plaque generated by infection with MVA-nef is shown. The darker cells express the Nef 

protein. 

This staining confirmed the stability of the MVA-nef vector. However, further experiments in 

human cells are required to asses the expression of Nef in a system relevant for the successive 

use of the vector as a vaccine in humans beings. 

Expression in human B-LCL 

Expression of the Nef protein in MVA-nef infected human B-LCL was measured by 

intracellular staining and Western blot. Intracellular staining showed that in more than 50% of 

the cells the Nef protein was detectable at 16 hours post-infection. A representative histogram 

plot obtained with MVA-nef infected B-LCL from individual 3975 is shown in Figure X. 

Similar results were obtained with individuals 4097 and 063 B-LCL (data not shown). The 

same samples were analyzed for the expression of Nef in Western blot. A band with a 

molecular weight of 27 kDa corresponding to Nef was detected in all three samples (Figure 

X). 
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Figure X: Nef protein expression in MVA-nef infected B-LCL analyzed by intracellular staining and 

Western blot. B-LCL were infected with 8 pfu/cell of MVA-nef or MVA-wt and incubated overnight at 

37°C in 5% CO2. As additional control, B-LCLs were mock infected. The Nef-specific mAb 3E6 followed 

by a FITC-conjugated goat anti mouse antibody was used for the intracellular staining. The same cells 

were analyzed in Western blot using the Nef-specific mAb 3D6. 

Functional characterization 

The capacity of Nef to downregulate the surface expression of HLA class I molecules was 

measured in the three B-cell lines used in Figure X. B-LCL were infected as described above 

with MVA-nef or MVA-wt and surface expression of HLA-A,-B,-C, HLA-C  and HLA class 

II molecules was measured in flow cytometry (Figure XI). The mAb W6/32 (Serotec) was 

used to measure the expression of HLA-A,-B and –C molecules while the mAb L31 (Setini et 

al., 1996) was used to specifically measure the expression of HLA-C molecules. The mAb 

WR18 (Serotec) was used to detect HLA-class II molecules. The total surface expression of 

HLA class I decreased upon infection with MVA-nef in all the B-LCL tested while no 

differences were observed in the expression of HLA-C between MVA-nef and MVA-wt 
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infected B-LCL. The surface expression of HLA class II was only slightly affected by the 

expression of the Nef protein. 

 
Figure XI: Functional characterization of the Nef protein expressed by the MVA-nef vector in different B-

cell lines. B-LCL were infected with 8 pfu/cell of MVA-nef or MVA-wt and incubated overnight at 37°C in 

5% CO2.  Each panel represents a B-LCL derived from a different individual. 

To characterize further the functionality of the Nef protein encoded by MVA-nef, a human 

CD4+ T-cell line (A3.01) was used. The intracellular expression of the Nef protein together 

with the surface expression of CD4 and HLA class I were evaluated after infection with 

MVA-HIV-nef, MVA-SIVmacJ5-nef or wtMVA. The Nef protein was expressed in 80% of 

the cells with mean fluorescence intensity (MFI) of 109 (data not shown). As shown in Figure 

XII, the CD4 expression was downregulated from an MFI of 265 to 54 in more than 90% of 

the cells. As expected we observed a selective downregulation of HLA-A and –B (from an 

MFI of 83 to 48) but not HLA-C molecules (Figure XII). 

 
Figure XII: Functional characterization of the Nef protein expressed by the MVA-nef vector in the A3.01 

T-cell line. Cells were infected with 8 pfu/cell of MVA-HIV-nef, MVA-SIVmacJ5-nef or wtMVA for 3 
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hours and after 16 hour at 37°C in 5% CO2 the expression of HLA class I, HLA-C and CD4 molecules was 

evaluated in flow cytometry. 

These results showed that the MVA-nef vector can be used to express the Nef protein in 

human cells and that this protein was functional concerning its capacity to downregulate CD4 

and HLA class I molecules. 

Characterization of the ability of the MVA-nef vector to present Nef derived 
epitopes 

Viral interference with MHC-class I molecules is considered an important mechanism of 

immune escape adopted by several viruses that infect humans (Alcami and Koszinowski, 

2000). HIV Nef protein downregulates HLA-A and B but not HLA-C and -E alleles (Le Gall 

et al., 1998; Schwartz et al., 1996). This selective Nef-mediated downregulation of HLA class 

I molecules was shown to correlate with protection of infected primary T lymphocytes from 

killing by CTL (Cohen et al., 1999) and from lysis by NK cell (Collins et al., 1998). The 

downregulation of HLA-A and –B molecules in MVA-nef infected T and B-cells might 

impede the correct presentation of Nef epitopes to specific CD8 T-cells, thus decreasing the 

capacity of the vaccine in inducing Nef-specific CD8 responses.  

To address the effect of the MVA-nef induced HLA class I downregulation on antigen 

presentation, we used B-LCL infected with MVA-nef and T-cell lines specific for defined Nef 

epitopes. Nef specific T-cell lines derived from HIV-1 infected patients were mixed with 

different amounts of autologous B-LCLs infected with MVA-nef or MVA-wt. As an 

additional control mock-infected B-LCL were used. After five hours of co-incubation, IFN-γ 

and IL2 production in CD3+ CD8+ cells were determined using intracellular cytokine staining. 

MVA-nef infected B-LCLs were able to stimulate the production of IFN-γ in all the four T-

cell line tested (Figure XIII). The percentage of IFN-γ producing cells at the maximal T/E 

ratio varied from 3.5% to 35% of the total CD3+ CD8+ cells. Only the T-cell line restricted to 

B35 and B7 were able to respond to the antigenic stimulation producing IL2 (Figure XIV). Of 

note, an MVA-wt specific response with production of IFN-γ and IL2 was observed with the 

B35 restricted T-cell line. Since this T-cell line was derived from an MVA-nef vaccinated 

subject, we cannot exclude a contamination by MVA-specific CD8 T-cells during the 

expansion of the Nef specific T-cells. 
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Figure XIII: Expression of IFN-γ in T-cell lines stimulated with MVA-nef infected B-LCL. Nef specific 

CD8 T-cell lines were stimulated with B-LCL infected with MVA-nef (red), MVA-wt (green) or mock 

infected (black) and stained for the expression of intracellular cytokines. Each graph represents a 

different CD8 T-cell line stimulated with autologous B-LCL. Different amounts of B-LCL were used and 

the Target / Effector ration is shown on the x axis. Epitope specificity and HLA restriction are indicated in 

each graph. 

 

B8 restricted T-cell line (FLKEKGGL)

0

10

20

30

40

5/1 1/1 1/5
T / E

%
 I

F
N

-γ
+

 C
D

8
 T

-c
e
ll
s

Cw7 restricted T-cell line (RRQDILDLWIY)

0

1

2

3

4

5/1 1/1 1/5
T / E

%
 I

F
N

-γ
+

 C
D

8
 T

-c
e
ll
s

B7 restricted T-cell line (TPGPGVRYPL)

0

5

10

15

20

25

5/1 1/1 1/5
T / E

%
 I

F
N

-g
+

 C
D

8
 T

-c
e
ll
s

B35 restricted T-cell line (YPLTFGWCY)

0

2

4

6

8

10

5/1 1/1 1/5
T / E

%
 I

F
N

-γ
+

 C
D

8
 T

-c
e
ll
s

B8 restricted T-cell line (FLKEKGGL)

0

0.2

0.4

0.6

5/1 1/1 1/5
T / E

%
 I

L
2

+
 C

D
8

 T
-c

e
ll
s

Cw7 restricted T-cell line (RRQDILDLWIY)

0

0.2

0.4

0.6

5/1 1/1 1/5
T / E

%
 I

L
2

+
 C

D
8

 T
-c

e
ll
s

B7 restricted T-cell line (TPGPGVRYPL)

0

0.2

0.4

0.6

0.8

5/1 1/1 1/5
T / E

%
 I

L
2

+
 C

D
8

 T
-c

e
ll
s

B35 restricted T-cell line (YPLTFGWCY)

0

0.2

0.4

0.6

0.8

5/1 1/1 1/5
T / E

%
 I

L
2

+
 C

D
8

 T
-c

e
ll
s



 58

Figure XIV: Expression of IL2 in T-cell lines stimulated with MVA-nef infected B-LCL. Nef specific CD8 

T-cell lines were stimulated with B-LCL infected with MVA-nef (red), MVA-wt (green) or mock infected 

(black) and stained for the expression of intracellular cytokines. Each graph represents a different CD8 T-

cell line stimulated with autologous B-LCL. Different amounts of B-LCL were used and the Target / 

Effector ration is shown on the x axis. Epitope specificity and HLA restriction are indicated in each graph. 

As positive control, B-LCLs were loaded with the peptides recognized by the respective T-

cell line. As expected, peptide loaded B-LCLs were able to stimulate strongly the specific T-

cells (Figure XV). IFN-γ production varied between 43% and 72% of the total CD3+ CD8+ 

cells. Of note, the B8 and Cw7 restricted T-cell lines that did not produced IL2 after 

stimulation with MVA-nef infected B-LCL, produced low amount of IL2 after the strong 

stimulation provided by the peptide loaded B-LCL. Thus, the absence of IL2 production in 

these T-cell lines was not a consequence of the Nef expression in the antigen presenting cells 

but it is an intrinsic characteristic of the specific T-cell lines. 
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Figure XV: Expression of IFN-γ and IL2 in T-cell lines stimulated with MVA-nef infected B-LCL. Nef 

specific CD8 T-cell lines were stimulated with B-LCL loaded with peptides corresponding to the epitopes 

recognized by the autologous B-LCL or they were infected with MVA-nef (red), MVA-wt (green) or mock 

infected (black). After 5 hours of stimulation, cells were stained for the expression of IFN-γ and IL2. The 

quadrant gate in the pseudo color dot plots define the percentages of CD8+ T-cell that produce only IFN-γ, 

only IL2 or both. The HLA restriction of the different T-cell lines is indicated on the right of the panel. 

Stimulation is indicated on the top of the panel. Only the graphs representing a Target / Effector ratio of 5 

/ 1 are shown. 

Similar results were obtained using a classical chromium release assay. The four epitopes 

specific T-cell lines were able to lyse efficiently B-LCL infected with the MVA-nef vector 

(data not shown). Altogether, these results indicate that Nef epitopes are generally presented 

by antigen presenting cells as B-LCL after infection with MVA-nef. 

 

In summary, we demonstrated that the MVA vector expressing the HIV-1LAI Nef gene is able 

to express Nef in chicken embryo fibroblast, immortalized human B-cells (B-LCL) and 

human CD4 T-cell lines. The expressed Nef protein is functional in regard to its capacity to 

selectively downregulate HLA-A and –B molecules and CD4. Finally, Nef epitopes are 

correctly presented to the immune system by professional APC infected with MVA-nef. 

Therapeutic vaccination with MVA-HIV-1 nef in chronically HIV-1 

infected individuals. 

Description of the phase I vaccination trial 

Ten chronically HIV-1 infected patients were included in the study according to the following 

inclusion criteria: 

• Male or female subjects, aged >18 years 

• Asymptomatic HIV-infection with two documented positive HIV-1 antibody tests 

• Stable on anti-retroviral therapy for at least 6 months 

• Karnofsky performance status >80% 

• CD4 cell counts above 400/microliter (mean of two determination) 

• Written informed consent signed prior to study entry 

• Negative pregnancy test 

Exclusion criteria were the following: 

• Uncontrolled infection i.e. not responding to antimicrobial therapy 

• Recent (less than 6 months) myocardial infarction 
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• Creatine > 2mg/dl 

• Hemoglobin (Hb) <9g/dl 

• Leukocytes <3000/microliter 

• Platelets<50000/microliter 

• Liver function Tests (LFT) > 5x upper limit of normal 

• Any continuoos therapy that may influence CD4 counts other than anti-retroviral 

therapy 

• Any immune modifying therapy within 4 weeks prior to entry 

• Participation in any other investigational drug trial 

 

Ten subjects matching the entry criteria received three immunizations given by subcutaneous 

route at week 0, 2 and 16. Each vaccine dose consisted of 5 x 108 infectious units of MVA-

HIV-1LAI-nef in 1ml of phosphate buffer. Blood was collected for three times before vaccine 

administration, after each vaccine administration and one year after the third vaccination as 

shown in Figure XVI.  

 

 
Figure XVI: Timing of vaccination and blood cells collection 

Safety of the MVA-nef vaccination 

The vaccine was safe and we did not observed any adverse reaction for the entire follow up. 

In particular, total CD4 counts and viral load were maintained for all the study period and no 

changes associated with the vaccine administration were observed. For a detailed description, 

see Cosma et al. (Cosma et al., 2003). 

Characterization of the Nef-specific cellular immune response 

CD8 and CD4 T-cell immune responses were assessed using an IFN-γ based intracellular 

cytokine staining (ICS). Pools of overlapping peptides were used to stimulate freshly isolated 

PBMC before staining for extracellular markers (CD3, CD8 and CD4) and intracellular IFN-γ. 

The pools used to stimulate the PBMC are shown in Table III. The immune response to Nef 

Timeline (week) 

Vaccination: 

PBMC collection: 

-6  -4    0  2  4    8        16  18  20            32                      1 year 
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was characterized using both 20mer overlapping by 10 and a selection of optimal CD8 

epitopes (Nef Opt). As controls, we used pools of overlapping peptides derived from the HIV 

regulatory proteins Tat and Rev, and from the HIV structural proteins p17 and p24. 
Table III 

Protein Peptide length Overlap HIV-1 strain 

Nef 20mer 10 LAI 

Nef (Nef Opt) 8 to 11 Not overlapping LAI and SF2 

Tat 20mer 10 LAI 

Rev 20mer 10 LAI 

p17 15mer 5 SF2 

p24 20mer 10 SF2 

 

Before the administration of the MVA-nef vaccine, all the 10 subjects showed a CD8 Nef-

specific immune response at least against one of the two Nef pools tested (Figure XVII A and 

C, and Figure XVIII). During the longitudinal follow up of the CD8 T-cell response, we 

observed a clear increase of the Nef-specific immune response temporally associated with the 

vaccine administration in subject 8 and 10. While in the other eight subjects an association 

between vaccination and increase of the Nef-specific CD8 immune response was not evident 

(Figure XVIII). CD4 immune response to Nef was present only in two subjects before the 

administration of the vaccine (subject 3 and 10). Interestingly, after the first vaccine 

administration at week 2, eight out of ten subjects showed an increased CD4 immune 

response to Nef (Figure XVII C and Figure XIX) and this response was boosted after the 

second and third vaccination in subject 4 and 10. Of note in subject 10, we were able to detect 

1% of CD4 T-cells specific to Nef after the third vaccination at week 18. For a detailed 

description see also Cosma et al. (Cosma et al., 2003). The follow up of the CD8 and CD4 

immune response to Tat, Rev, p17 and p24 was carried out in parallel to the characterization 

of the Nef-specific immune response to monitor changes in the anti-HIV immune response 

and verify the specificity of the Nef-specific responses elicited by the vaccine. CD8 immune 

responses to Tat, Rev, p17 and p24 remained mostly unchanged during the follow up (Figure 

XX). Five out of ten subjects showed already a p24-specific immune response to Nef before 

the vaccine administration and in two of them (subject 3 and 8) an increase of the p24-specific 

CD8 immune response was detected after the first and the second vaccination, respectively. 

Subject number 1 had a strong and variable immune response to Tat for all the follow up 
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period. Similarly, CD4 immune responses remain unchanged and almost undetectable for all 

the time of the study (Figure XXI). However, in subjects 1, 3 and 8, we observed an increase 

of the p24-specific CD4 immune response temporally associated with the vaccine 

administration. In summary, except for the p24-specific immune response, temporally 

associated variations of the immune response directed to the other HIV-1 proteins tested were 

not detected. 
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Figure XVII: CD8 and CD4 T-cell responses to Nef.  Tukey Whiskers plots of the CD8 (A, B) and CD4 (C) 

responses to Nef measured using overlapping peptide (A, C) or a pool of optimal CD8 epitopes (B) are 

shown for each time point. The red arrows indicate the time of vaccination. The asterix indicates a p value 

< 0.05 using a Wicoxon matched pair test. 
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Figure XVIII: Follow up of the CD8 T-cell responses to Nef. PBMC were stimulated with 20mer peptide 

overlapping by 10 (closed square) or a pool of optinal CD8 epitopes (open circles). Each graph depicts the 

immune response observed in one individual. The arrows indicate the time of vaccination. 
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Figure XIX: Follow up of the CD4 T-cell responses to Nef. PBMC were stimulated with 20mer peptide 

overlapping by 10 (closed square) or a pool of optimal CD8 epitopes (open circles). In this case, the pool of 

optimal CD8 epitopes serve as negative control. Each graph depicts the immune response observed in one 

individual. The arrows indicate the time of vaccination 
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Figure XX: Follow up of the CD8 T-cell responses to Tat (open circle), Rev (asterix), p17 (closed circle) 

and p24 (open triangle). Each graph depict the immune response observed in one individual. The arrows 

indicate the time of vaccination. 
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Figure XXI: Follow up of the CD4 T-cell responses to Tat (open circle), Rev (asterix), p17 (closed circle) 

and p24 (open triangle). Each graph depict the immune response observed in one individual. The arrows 

indicate the time of vaccine administration. 
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Characterization of the long-lasting memory immune response 

One year after the last vaccine administration, we assessed if the CD4 immune response 

elicited by the vaccination was still detectable in the eight responder individuals. It was not 

possible to include subject 3 in our study, since he interrupted the antiretroviral therapy 

immediately after the end of our study without the advice of the physicians. All the other 7 

patients continued to assume regularly the antiretroviral therapy and blood samples were 

collected to measure the residual CD4 response specific to Nef. Results are shown in Figure 

XXII. 
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Figure XXII: Characterization of the Nef-specific CD4 immune response one year after the last vaccine 

administration.  The following subjects are shown: 1, 4, 6, 7, 8, 10 and 11. 

CD4 T-cells producing IFN-γ after stimulation with the pool of Nef derived peptides were 

detected in all the seven subjects and frequencies were significantly higher than frequencies 

detected before the administration of the vaccine in the same subjects (p=0,0156, Wilcoxon 

signed rank test). Thus, the MVA-nef vaccine was able to elicit a long lasting CD4 immune 

response specific to Nef. 
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Comparison between the immune response elicited by MVA-nef and 

the immune response observed in LTNP 

To understand better the quality of the immune response elicited by the MVA-nef vaccine, we 

analyzed the Nef-specific CD4 and CD8 immune response in a cohort of chronically HIV 

infected individual and in a cohort of long term non-progressor. As controls, CD4 and CD8 

immune responses specific to Tat, Rev, p17 and p24 were also screened. Specific immune 

responses were defined by IFN-γ production in CD8 and CD4 T-cells after stimulation with 

pools of overlapping peptides (see Table III). 

The cohort of chronically HIV infected individuals was composed of 18 individuals 

diagnosed as HIV-1 infected for a median of 71 months (range 26 to 183 months) and treated 

for a median of 62 months (range 23 to 171 months). The median CD4 count was 513 

cells/mm3, with a range between 285 and 1110 cells/mm3. Seven individuals had detectable 

but low viral loads ranging from 105 to 20417 copies RNA/ml. In all the other individuals, the 

viral load was less than 50 copies RNA/ml. The clinical characteristic of the single patients at 

the time of sample evaluation are shown in Table IV. 
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Table IV Clinical characteristic of the 18 chronically HIV infected subjects 

Patient ID Date of birth 

HIV+ 

diagnosis 

(months) 

Antiretroviral 

treatment 

(months) 

Plasma viral 

load (RNA 

copies/ml) 

CD4 cells 

counts 

(cells/mm3) 

01-0910 25/4/1957 99 96 15849 334 
01-1610 6/1/1942 70 56 1122 285 
01-2310 27/3/1956 109 57 50 737 
02-0910 5/8/1977 26 23 1047 502 
03-0910 30/5/1948 116 110 2455 444 
03-1610 17/9/1940 183 171 118 780 
04-2310 3/8/1960 62 58 50 524 
04-1610 25/1/1965 60 59 50 588 
05-2310 10/1/1959 63 61 50 317 
05-1610 24/1/1948 72 70 105 459 
06-1610 8/5/1945 65 63 20417 634 
09-2210 29/3/1954 115 59 50 1110 
01-1003 1/2/1962 76 75 50 969 
02-1003 20/6/1970 116 74 50 609 
03-1003 30/5/1966 72 69 50 347 
04-0604 9/11/1969 45 44 50 334 
05-1904 22/9/1943 55 53 50 688 
06-1904 2/8/1967 66 64 50 455 
 

The characteristics of the ten chronically HIV infected individuals enrolled in the MVA-nef 

vaccination trial, sampled six weeks before the administration of the vaccine, are shown in 

Table V. They were diagnosed as HIV-1 infected for a median of 124 months (range 25 to 

209 months) and treated for a median of 61.5 months (range 24 to 146 months). The median 

CD4 count was 565.5 cells/mm3 (range 407 to 1421 cells/mm3). Eight individuals had 

undetectable viral load while in two had detectable but stable viral load. 
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Table V Clinical characteristic of the 10 chronically HIV infected subjects enrolled in the MVA-nef 

vaccination trial 

Patients Date of birth 

HIV+ 

diagnosis 

(months) 

Antiretroviral 

treatment 

(months) 

Plasma viral 

load (RNA 

copies/ml) 

CD4 cells 

counts 

(cells/mm3) 

1 6/10/1959 185 54 50 407 
2 13/8/1944 149 64 6077 803 
3 3/7/1955 209 66 8710 1116 
4 23/6/1955 48 34 50 1421 
5 11/3/1962 187 66 50 584 
6 22/5/1937 99 41 50 782 
7 1/7/1949 66 60 50 473 
8 6/7/1960 83 63 50 549 
10 16/7/1963 197 146 50 488 
11 6/1/1962 25 24 50 488 
 

Statistical analysis did not reveal any significant difference between the ten chronically HIV 

infected individuals enrolled in the MVA-nef vaccination trial and the group of 18 chronically 

HIV-1 infected subjects (Figure XXIII). Therefore, the 18 chronically HIV-1 infected 

individuals were taken as reference group to study changes in the status of the immune 

response following MVA-nef vaccination. 
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Figure XXIII: Comparison between the clinical characteristics observed in 18 chronically HIV-1 infected 

individuals (CHI) and in the 10 chronically HIV-1 infected individuals enrolled in the MVA-nef study 

(MVA-nef study).  

The cohort of LTNP was composed of 12 individuals. All the subjects were antiretroviral 

naïve at the time of sample evaluation and were diagnosed as HIV-1 infected between 58 and 

228 months (median 200 months). The viral load ranged from 214 to 91201 copies RNA/ml 

(median 1600 copies RNA/ml) and total CD4 counts ranged from 134 to 626 cells/mm3 

(median 338 cells/mm3). The characteristic of the single patients at the time of sample 

evaluation are shown in Table VI. 
Table VI: Clinical characteristics of the 12 LTNP 

Patients Date of birth 

HIV+ 

diagnosis 

(months) 

Antiretroviral 

treatment 

(months) 

Plasma viral 

load (RNA 

copies/ml) 

CD4 cells 

counts 

(cells/mm3) 

L1 4/2/1948 210 - 3631 354 
L2 9/5/1965 217 - 31623 377 
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L3 25/4/1961 190 - 1023 276 
L4 15/10/1970 115 - 8511 322 
L5a 1/2/1962 213 - 91201 281 
L6 22/9/1953 225 - 214 626 
L7 24/5/1958 195 - 1300 134 
L8 19/1/1952 160 - 720 466 
L9 31/10/1961 205 - 1100 421 
L10 5/9/1964 58 - 1400 204 
L11 22/6/1961 228 - 1800 274 
L12 14/7/1953 101 - 2400 525 
 

To compare the immune response elicited by the MVA-nef vaccine with the immune 

responses usually observed in LTNP and chronically HIV infected subjects, we decided to 

consider the maximal immune response observed after vaccine administration during the 32 

weeks study period in the 10 vaccinated subjects. In keeping with the results shown 

previously, the median Nef-specific CD4 response after vaccine administration was 

significantly higher than the median observed before the administration of the vaccine (Figure 

XXIV). Interestingly, the median Nef-specific CD4 response was also significantly higher 

than the median observed in 18 chronically HIV-1 infected individuals, thus demonstrating a 

significant change not only in comparison to the previous responses but also in comparison to 

the general responses observed in chronically HIV-1 infected individuals. When we analyzed 

the Nef-specific CD4 T-cell responses in a cohort of LTNP (Table VI), we observed a 

heterogeneous response. Seven LTNP did not show Nef-specific CD4 responses, while five 

LTNP showed responses similar to the MVA-nef vaccinated subjects. These data suggest that 

the MVA-nef vaccine is able to stimulate Nef-specific CD4 responses with a magnitude 

similar to that observed in LTNP. The analysis of the Nef-specific CD8 responses did not 

reveal major differences between study subjects sampled before and after vaccination. 

However, CD8 Nef responses in the chronically HIV-1 infected individuals enrolled in the 

MVA-nef study were in general higher than CD8 Nef responses in the reference cohort of 

HIV-1 infected individuals (Figure XXIV). As control immune response to Tat, Rev, p17 and, 

p24 were analyzed in chronically HIV-1 infected subjects and LTNP (Figure XXV). CD4 

responses to p17 and p24 were detected more frequently in LTNP than in chronically HIV-1 

infected individuals. Eight out eleven (72%) LTNP showed a significant CD4 T-cell response 

to p24 while only six out of eighteen (33%) showed the same response in chronically HIV-1 

infected individuals. A similar pattern was observed for the p17 specific CD4 responses. CD8 

responses to p24 were equally found in LTNP and chronically HIV-1 infected individuals. 

However, the magnitudes of the responses were higher in LTNP. No differences between 
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LTNP and chronically HIV-1 infected individuals were observed for immune responses 

specific to Tat and Rev. 
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Figure XXIV: The Nef-specific CD4 responses elicited by MVA-nef are similar to CD4 responses observed 

in LTNP. Comparison of Nef-specific CD8 and CD4 responses measured in chronically HIV-1 infected 

subjects (C), LTNP (L), study subjects before (0) and after MVA-nef vaccination (m). Immune response 

were determined measuring the production of IFN-γ following stimulation with Nef derived peptides as 

described previously. The median is shown for each group. 
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Figure XXV: Analysis of the CD4 and CD8 immune responses in LTNP and chronically HIV-1 infected 

individuals. CD4 (A and B) and CD8 (C and D) responses were measured in LTNP (B and D) and 

chronically HIV-1 infected individuals (A and C). Each point represents one individuals. Median is shown 

for each cohort and antigen tested. Dotted lines represent the cut off for a positive CD8 and CD4 response. 

As previously discussed, a clear correlate of protection does not exist. However, we can 

deduce that our MVA-nef vaccine was able to change the immunological status of the 

vaccinated chronic HIV-1 infected individuals, rendering them more similar to LTNP. 

Obviously, this change is focused only on the Nef-specific immune response. 

Evaluation of MVA as alternative vaccine against smallpox 

Although increasing evidences in animal models suggest that MVA might be an alternative 

vaccine against smallpox for individuals at risk of the side effects induced by the classical 

smallpox vaccine (Belyakov et al., 2003; Earl et al., 2004; Wyatt et al., 2004), the immune 

responses elicited by MVA in these high risk individuals have not yet been characterized. In 
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addition, in our study we notice that the only subject not receiving smallpox vaccination in his 

childhood demonstrated the strongest immune response to Nef (Figure XXVI). Therefore, in 

our study to evaluate safety and immunogenicity of the MVA-nef vector, we included a 

complete characterization of the vaccinia specific immune response elicited by the vaccine. 

 
Figure XXVI: In subject 10, following the MVA-nef vaccination we observed the higher frequency of 

CD4+ lymphocytes producing IFN-γ, a boost of the immune response at each vaccine administration and 

an expansion of the targeted Nef epitopes. 

Vaccinia specific immune responses were readily detected after MVA-nef 
vaccination 

Humoral immune responses were measured using an innovative neutralization assay 

developed in our laboratory (Cosma et al., 2004), together with a classical ELISA that used 

highly purified viral particles or recombinant vaccinia virus proteins. Cellular immune 

responses were measured using the same intracellular cytokine staining used to measure the 

Nef-specific immune response. In this case, however, PBMC were stimulated with autologous 

PBMC previously infected with MVA. MVA was able to elicit vaccinia specific humoral and 

cellular immune in all the ten vaccinated subjects (Figure XXVII) (Cosma et al., 2007). These 

responses were maintained over one year demonstrating the capacity of MVA to elicit long 

lasting immune responses. 

To assess whether humoral immune responses and CD8 T-cell responses were equally 

regulated we performed a Spearman’s rank correlation between neutralizing titers and % of 
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IFN-γ producing CD8 T-cells for all the time points tested. As shown in Figure XXVIII no 

correlations were found. For instance, subject number 2 who showed the lowest neutralizing 

activity demonstrated a strong CD8 T-cell response after the second MVA administration 

(0.37%) and maintained a strong response for one year (0.38%). Similarly, subject 10, the 

only one that was not vaccinated against smallpox as a child and in which we observed low 

titers of antibodies, demonstrated a strong CD8 T-cell response with 0.20% of IFN-γ 

producing cell after two MVA administrations, 0.46% after three MVA administrations and 

0.24% one year after the last immunization. 

Antibodies detected after vaccination with MVA were mainly of the IgG class 

A possible association between protection from monkeypox and presence of vaccinia specific 

IgG was recently described in SIV infected monkeys (Edghill-Smith et al., 2005a). SIV 

infected monkeys vaccinated with Dryvax or MVA followed by Dryvax were fully protected 

after a lethal monkeypox challenge only when their CD4 T-cell levels were above 300 

cells/mm3. Monkeys with CD4 T-cells levels above 300 cells/mm3 had high IgG titers and 

low IgM titers while highly immunocompromised monkeys with CD4 T-cells levels < 300 

cells/mm3 had low IgM and IgG titers. These data suggest that the presence of high titers of 

vaccinia specific IgG is a protection marker for monkeypox in monkeys and could be similar 

for smallpox in humans. 

Since CD4 T-cell counts in our cohort of chronically HIV-1 infected individuals were > 400 

cells/mm3 (Table VII), MVA should be able to induce high titers of vaccinia specific IgG. To 

verify this hypothesis, we performed an ELISA to measure vaccinia specific IgG and vaccinia 

specific IgM on the sera collected after the third MVA administration. 

As shown in Table VII, IgG titers ranged between > 25,600 and 1600 while IgM titers were 

significantly lower ranging between 200 and < 100 (Mann-Whitney U test, p < 0.0001). The 

observed IgG and IgM titers were consistent with titers observed in monkeypox protected 

monkeys (Edghill-Smith et al., 2005a).  
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Figure XXVII: MVA-specific humoral and cellular immune responses in MVA-nef vaccinated subjects. 

Samples were tested before MVA administration (0), after two immunizations (II), after three 

immunizations (III), and 1 year after the third immunization (1 Year). Humoral immune responses were 

measured using a neutralization assay and the neutralization capacity is expressed in terms of area under 

the curve (AUC). CD8 and CD4 T-cells specific to MVA were measured using an IFN-γ-based 

intracellular cytokine staining.  A cut off of 0.04% was applied to CD8 responses while a cut off of 0.03% 

was applied to CD4 responses. The cut off line is shown in each graph. 
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Figure XXVIII: Correlation analysis between humoral and cellular immune response to vaccinia virus. 

The correlation between neutralizing activity (MVA-gfp NT) and frequency of vaccinia specific CD8 T-

cells (% of IFN-γ+ CD8+ cells) was determined by Spearman’s rank correlation. R and P value are shown 

in each figure. The solid line represents a regression line. Data points relative to the individuals discussed 

in the text are indicated. Subject 10 was vaccinia naïve while subject 2 received smallpox vaccination as 

children. Since PBMC were not available, the cellular immune response for subject number 2 at (0) and 

subject number 4 at (III) were not assessed. 
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Table VII: ELISA titer and total CD4 counts. (0) before vaccination, (III) after the third vaccination 

CD4 counts  MVA ELISA 

 IgG/IgM  IgG  IgM Subject 
Baseline 

 0 III   III   III 

1 407  800 3,200  6,400  200 

2 803  400 1,600  1,600  100 

3 1116  800 3,200  12,800  100 

4 1421  400 3,200  12,800  100 

5 584  400 12,800  12,800  100 

6 782  800 12,800  12,800  <100 

7 473  400 3,200  6,400  <100 

8 549  1600 6,400  12,800  <100 

10 488  400 3,200  3,200  <100 

11 488  1600 >12,800   >25,600   100 
 

Eradication of smallpox demonstrated that the immune response elicited by the classical 

vaccination was remarkably effective. However, since variola virus is now eradicated, it is not 

possible to establish if the residual immunity still detectable in individuals vaccinated more 

than 30 years ago is protective. The same applies to immune responses elicited by alternative 

vaccines against smallpox such as MVA. Therefore, to determine the efficacy of the immune 

response elicited by MVA in chronically HIV infected subjects we characterized the vaccinia 

specific immune response in four healthy subjects that were recently vaccinated with the 

classical smallpox vaccine and/or MVA. Theoretically, these subjects should have a vaccinia 

specific immune response similar or higher to that that was present during the smallpox 

vaccination campaign. Vaccination status and results are summarized in Table VIII. Subject 

32 demonstrated the highest titer of neutralizing antibodies. The neutralizing titer was similar 

to the mean observed in chronically HIV-1 infected individuals one year after the last 

vaccination with MVA (Figure XXVII). In the same subject, cellular immune responses were 

under the limit of detection. The opposite pattern was observed in subject 33, 0.15% of CD8 

T cells specific to vaccinia virus were detected while the neutralization titer was low. Subject 

31 and 34 had a weak but detectable CD8 T cell response and intermediate neutralizing titers. 
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Overall, the immune responses detected were similar or lower than the average responses 

detected in chronically HIV-1 infected individuals vaccinated with MVA. 
Table VIII: Vaccinia specific immune response in subjects repeatedly vaccinated with the classical 

smallpox vaccination and MVA. Blood samples were collected in 2004. Cellular immune responses are 

expressed in terms of % of CD4 or CD8 T-cells expressing IFN-γ after stimulation with autologous MVA 

infected PBMC. 

   
Year of vaccination 

Humoral 
response 
(MVA-gfp 
NT) 

 
Cellular response Subject 

Vaccinia MVA  AUC   CD8 CD4 
31 1954, 1965, 1975 2001 46.2  0.06 0.02 
32 1970 2000, 2001 88.8  0.04 0.01 
33 childhood 2001 23.7  0.15 0.00 
34 1958, 1969, 1995, 2000 1990, 2000, 2001 57.7   0.05 0.03 
 

Analysis of the relationship between MVA-specific and Nef-specific immune 
responses. 

Following MVA-nef vaccination, we observed new immune responses directed to the 

encoded protein (Cosma et al., 2003) and the viral vector. The relationship between immune 

responses directed to the encoded Nef protein and to the MVA vector was assessed by means 

of correlation analysis. CD4 and CD8 T-cell responses to Nef were compared to CD4 and 

CD8 T-cell responses to MVA as well as to humoral immune responses to MVA measured by 

mean of ELISA and neutralization assay. Correlation coefficients and P values were 

calculated after two and three administrations of the vaccine, as well as for immune responses 

measured 1 year after the vaccination. Interestingly, we observed a significant inverse 

correlation between MVA-specific and Nef-specific CD4 T-cell responses after the third 

vaccination (Figure XXIX). Subjects with the lowest Nef-specific CD4 T-cell responses had 

the highest CD4 T-cell responses to MVA and vice versa. The correlation coefficient and the 

P values indicated a significant inverse correlation also when the subject with the highest CD4 

T-cell response to Nef (subject 10; r=-0.9507, p=0.0011) or the subject with the highest 

response to MVA (subject 2; r=-0.7454, p=0.0368) were excluded from the analysis. This 

correlation was not evident after two MVA-nef immunizations or one year after the last 

immunization, but only after the third immunization when we observed the peak of the MVA-

specific cellular response. This relationship highlights interference between MVA-specific 
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and Nef specific CD4 responses. CD8 T-cell responses to Nef correlated neither with cellular 

nor humoral MVA-specific immune responses at all the time points tested (data not shown). 

Nevertheless, the presence of a strong Nef-specific CD8 response before the administration of 

the MVA-nef vaccine might have masked a possible relationship.  
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Figure XXIX: Relationship between MVA-specific and Nef-specific CD4 responses after three 

administrations of the MVA-nef vaccine. The correlation between MVA-specific and Nef-specific CD4 

responses determined by IFN-� based intracellular cytokine staining was determined by Spearman’s 

rank correlation analysis. R and P values are shown. Data points relative to the subjects discussed in the 

text are shown. The analysis was carried out on nine subjects since PBMCs from subject number 4 after 

the third vaccination were not available. 

In summary, MVA was able to elicit humoral and cellular immune responses to vaccinia virus 

in a cohort of chronically HIV-1 infected individuals undergoing HAART. Of note, the 

elicited immune responses were similar to responses that are considered protective in healthy 

subjects recently vaccinated with vaccinia and/or MVA. Unfortunately, immune interference 

was detected between Nef-specific CD4 responses and MVA-specific CD4 responses. 
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Discussion 
CD8 T-cell response is crucial in controlling the acute phase of HIV infection (Borrow et al., 

1994; Koup et al., 1994). However, in the chronic phase of the disease CD4 T-cell response 

seems to be important in controlling viral load as seen in LTNP (Pitcher et al., 1999; 

Rosenberg et al., 1997) and patients treated with HAART early during primary infection 

(Rosenberg et al., 2000). The MVA-nef vector is able to elicit and expand Nef-specific CD4 

immune responses in the majority of the vaccinated subjects, increasing both the magnitude 

and breadth of the immune response. These results suggest that CD4 T-cell responses could 

be stimulated in chronically HIV infected individuals by means of therapeutic vaccination. 

Moreover, MVA-nef vaccination is able to amplify the frequencies of CD4 lymphocytes 

specific to Nef to reach levels comparable or even higher to the ones observed in LTNP, 

indicating a modulation of the virus-specific immune status in these chronically HIV-1 

infected individuals.  

Whereas a CD4 T-cell response was clearly observed, the CD8 immune response specific to 

Nef elicited by MVA-nef was faint or absent. There are several potential explanations for the 

lack of a strong Nef specific CD8 immune response after MVA-nef vaccination: 1) the 

expression of the functional product of the nef gene might induce HLA class I downregulation 

in MVA-nef-infected antigen-presenting cells inhibiting the antigen presentation to CTL 

(Collins et al., 1998); 2) since all the subjects enrolled in the study showed a Nef specific 

CD8 immune response before vaccination (Nef pool: median 0,24%, min 0,01%; max 0,42%; 

Nef Opt pool: median 0,23%, min 0,08%, max 1,33%) the T-cell precursors specific to Nef 

might be exhausted; 3) because of the strong pre-existing Nef-specific CD8 response, weak 

responses elicited by the vaccine might be masked by high variability in the determination of 

the responses 4) the MVA vector might be more effective in inducing a CD4 T-cell response 

in this clinical setting. Nevertheless, the increase observed in subjects 8 and 10 together with 

the expansion of the breadth of the CD8 T-cell response in subject 1, indicates that the MVA-

nef vector is able to stimulate also CD8 T-cell responses. 

Of note, an increase of the CD8 and CD4 T-cell responses to p24 has been observed in some 

subjects immediately after vaccination (Figure XX and Figure XXI; subjects 3 and 8). 

Cytokine-driven bystander activation or stimulation of HIV-infected antigen-presenting cells 

by vaccine-elicited T-cells might explain the clonal expansion of T-cells specific for the p24 

antigen; indicating that undetectable precursors specific to p24 might be present in chronically 

HIV infected individuals. Moreover, these increases in the p24 specific immune response 
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suggest that the MVA-nef vaccine could promote epitope spreading towards other HIV 

proteins. 

Whether a clinical benefit can be achieved by MVA-nef vaccination, is an important issue that 

has yet to be addressed. However, several lines of evidence highlight the importance of virus-

specific T-helper cells in chronic viral infections. First, T-helper cells play a critical role in 

maintaining effective immunity in murine models of chronic viral infections (Battegay et al., 

1994; Matloubian et al., 1994). Second, successful treatment of acute HIV-1 infection in 

humans leads to augmentation of T-helper-cell immune responses and enhances the immune 

control of the HIV-1 infection (Rosenberg et al., 2000). Third, we found a relatively robust 

Nef-specific CD4 immune response in LTNP. Thus, the established importance of T-helper 

cells in controlling chronic viral infections together with the clear demonstration that a T-

helper immune response can be augmented in chronically HIV infected individuals using an 

MVA-nef vector provide a rationale to further explore immunotherapeutic intervention in 

chronic HIV-infection. More interestingly, the Nef-specific T-helper response detected after 

MVA-nef vaccination might suggest that the immunological status of these HIV chronic 

infected individuals was, at least for a limited period of time, similar to that described in 

LTNP. 

Finally, this clinical study shows for the first time that the highly attenuated vaccinia-virus 

vector MVA can be used as safe vector in a cohort of immuno-compromised individuals. We 

believe this pilot study establishes the scientific rationale for future use of the MVA vector in 

individuals for which the use of a not attenuated vaccinia vector is not advisable, such as 

patients who undergo cancer therapy, long-term corticosteroid therapy, organ transplant 

recipients and patients with congenital immunodeficiency disorders (Bartlett, 2003). We also 

demonstrate that recombinant MVA vaccines can elicit immune responses to a target antigen 

also in individuals that have been previously vaccinated against smallpox. Nevertheless, the 

most prominent Nef-specific immune response was found in subject 10, the one that was not 

previously immunised with vaccinia virus (Figure XXVI).  

In summary, the MVA-nef vector is able to safely elicit a CD4 T-cell immune response 

specific to Nef in a cohort of chronically HIV infected individuals, thus changing the chronic 

unbalanced immunological status of these subjects. These results suggest that a therapy 

interruption after MVA-nef vaccination might be valuable to further amplify HIV-specific 

immune responses. Of note, as shown in Figure XXII, Nef-specific CD4 T-cells elicited by 

the MVA-nef vaccine were still present one year after the third vaccine administration 

indicating that the MVA-nef vaccine is able to elicit long lasting T-helper memory cells. 
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Although increasing evidence from animal models suggests that MVA might be an alternative 

vaccine against smallpox for individuals at risk for the side effects induced by the classical 

smallpox vaccine (Belyakov et al., 2003; Earl et al., 2004; Slifka, 2005; Wyatt et al., 2004), 

the immune responses elicited by MVA in these high risk individuals have not yet been fully 

characterized. We characterized the vaccinia-specific immune responses elicited in ten 

chronically HIV-1 infected individuals undergoing HAART after three administrations of an 

MVA vaccine. Our results demonstrated that MVA was able to evoke strong and durable 

humoral and cellular immune responses. MVA was able to elicit vaccinia-specific immune 

responses in subjects that were vaccinated against smallpox as children and in one subject that 

was completely naïve to vaccinia. Thus, MVA was able to reestablish vaccinia-specific 

immune response in individuals vaccinated long ago and at the same time, it was able to elicit 

de novo vaccinia-specific immune responses. 

The analysis of the humoral immune response demonstrated that MVA was able to elicit both 

neutralizing and binding antibodies. Notably, the magnitude of the humoral immune response 

elicited by MVA was similar to that observed in healthy subjects repeatedly vaccinated with 

vaccinia and/or MVA. 

Of note, no correlation was found between humoral immune response and CD8 T-cell 

response. This observation is consistent with the analysis performed by Hammarlund et al. 

(Hammarlund et al., 2003) on a cohort of 306 individuals vaccinated against smallpox. 

Overall, the data demonstrated that specific antibodies and IFN-γ producing CD8 T-cells are 

two independent biomarkers. 

While neutralizing antibodies and CD8 T-cells were readily elicited in all subjects, vaccinia 

specific CD4 T-cells were observed in only 4 subjects. Several hypotheses may explain the 

lack of generalized CD4 T-cell responses to vaccinia. First, MVA may have a reduced 

capacity in inducing CD4 T-cell responses in this clinical setting. However, in the same 

subjects a strong CD4 immune response to the recombinant nef gene was observed (Cosma et 

al., 2003) confirming the capacity of MVA to elicit CD4 immune responses. Second, it may 

be possible that another cytokine is the basis for the vaccinia-specific CD4 immune response 

induced by MVA. Third, since this is a retrospective study, frozen PBMCs were used in all 

experiments and CD4 T-cells are more sensitive to freezing and thawing than CD8 T cells. 

Safety, capacity to accommodate different and not related genes and ability to stimulate the 

innate immune system make MVA an optimal vector to develop novel vaccines. However, the 

encoded protein has to compete against the numerous vector-derived antigens for T-cell 
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recognition. Therefore, antigen dominance and immune interference play an important role to 

determine the immunogenicity of the encoded product and the viral vector (Kedl et al., 2003). 

Our results demonstrated a significant inverse correlation between MVA-specific and Nef –

specific CD4 responses. A possible explanation for this relationship is the existence of a 

competition at the level of the CD4 responses. Our data indicate a general advantage for the 

CD4 T-cells specific to Nef and this advantage seems to be more pronounced in the vaccinia 

naïve subject number 10. If this is the case, the lack of a generalized CD4 T-cell response to 

vaccinia might be the consequence of antigen competition. 

The respective role of neutralizing antibodies, CD8 and CD4 T-cells in protection from 

smallpox is still poorly understood. Moreover, since eradication of smallpox preceded the 

advent of modern techniques to measure T-cell responses, such as intracellular cytokine 

staining, ELISPOT and tetramer staining, historical data on the protective vaccinia-specific 

immune response rely entirely on the analysis of the presence of vaccinia-specific antibodies 

and no comparisons with cellular immune responses exist. Recently, several studies have 

addressed this issue in animal models. Antibodies were found to be sufficient in protecting 

mice from a lethal challenge with vaccinia virus in the absence of specific CD8 immune 

response, while in the absence of antibodies, CD8 T-cells were able to prevent mortality and 

disease progression (Belyakov et al., 2003; Xu et al., 2004). In mice undergoing a secondary 

infection with ectromelia virus, antibodies were sufficient and necessary for protection while 

CD8 response failed in protecting mice from lethal ectromelia infection (Fang and Sigal, 2005; 

Panchanathan et al., 2006).  In immunocompromised monkeys, the presence of high titers of 

vaccinia specific IgGs have been shown to correlate with protection against a lethal 

monkeypox challenge (Edghill-Smith et al., 2005a). Finally, a recent report analyzing the 

immunological mechanism of protection in Rhesus macaques vaccinated with Dryvax and 

then challenged intravenously with monkeypox virus, demonstrated that specific antibodies 

are necessary and sufficient for protection (Edghill-Smith et al., 2005b). In the same report, 

depletion of CD8 and CD4 T-cells performed after vaccination did not affect the outcome of 

the subsequent challenge. Overall, studies performed in the Rhesus macaque model indicate a 

pivotal role of the humoral response, while some of the studies performed in the mouse model 

suggest an additional contribution of the cellular immune response. 

In our cohort of chronically HIV-1 infected individuals, the MVA vaccine fulfills the 

requirements of stimulating both neutralizing antibodies and specific CD8 T-cells. Moreover, 

we detected high titers of neutralizing IgGs. Thus, the data support our proposal to use MVA 

as an alternative smallpox vaccine in potentially immunocompromised individuals. 
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In a parallel study, a similar cohort of HIV-1 infected individuals was vaccinated with an 

MVA HIV-1 nef vector vaccine (Harrer et al., 2005). In this study, the characterization of the 

vaccinia specific immune response was limited to the measurement of specific IgG using an 

ELISA and specific CD8 T-cells using an ELISPOT assay. Consistent with our results, 

vaccinia specific IgGs were readily detected after the administration of the MVA vaccine. 

HIV-1 infected individuals are considered potentially immunocompromised and CD4 counts 

have been shown to predict the capacity of these individuals in mounting a correct immune 

response to a vaccine (Rodriguez-Barradas et al., 1992; Rousseau et al., 1999). Our data 

showed that in a cohort of chronically HIV infected subjects with CD4 T-cell counts between 

407 and 1421 cells/mm3, MVA was able to elicit a durable immune response.  

CD4 counts also predict the risk of adverse effects following classical vaccination against 

smallpox, likely because the immune system is better able to control the spreading of the 

replication-competent vaccinia virus classically used to vaccinate against smallpox. Some 

studies involving small numbers of patients indicated that the classical smallpox vaccination 

might be safe in subjects with CD4 counts >200 cells/mm3 (Tasker et al., 2004), while below 

this threshold adverse effects were observed. However, in the absence of large scale clinical 

trials the Centers for Disease Control and Prevention (Atlanta, GA) recommended against the 

use of the replication competent vaccinia virus to vaccinate individuals with HIV infection, 

regardless of their CD4 cell counts (Bartlett, 2003). Thus, replication-deficient MVA because 

of its immunogenicity and safety may represent a better alternative. Nevertheless, a series of 

limitations of the present study needs to be emphasized. The study was conducted on a cohort 

of chronically HIV-1 infected individuals undergoing HAART with CD4 count >400 

cells/mm3 and undetectable viral load. The ability of this specific cohort in mounting a MVA 

specific response is certainly better than what we can expect in a cohort of HIV-1 infected 

individuals with CD4 counts <400 cells/mm3 and detectable viral load. Therefore, further 

studies in cohorts of HIV infected individuals with CD4 counts <400 cells/mm3 and with 

higher viral loads are required. In addition, since 9 of the 10 HIV infected individuals 

received smallpox vaccination as children, the role of MVA in priming vaccinia specific 

immune responses rely only on the characterization of the immune responses observed in 

subject number 10 who was not immunized as a child. Further studies in cohorts of vaccinia 

naïve HIV infected individuals should corroborate whether the immune responses observed in 

this subject are characteristic of the priming capacity of MVA. Finally, the vaccine used in 

our study encoded the HIV-1 regulatory protein Nef. The Nef protein promotes HIV-1 

immune escape via the downregulation of CD28, CD4 and MHC class I and class II 
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molecules. Therefore, we cannot exclude such an effect in the context of the MVA vector. If 

this is the case, the wild type MVA might be more effective in eliciting vaccinia specific 

immune responses. 

This study provides a complete characterization of the vaccinia specific immune response  

following the administration of MVA to chronically HIV-1 infected individuals with a long 

history of antiretroviral treatment and with CD4 T-cells counts >400 cells/mm3. The observed 

immune response suggests that MVA can be used as alternative vaccine against smallpox in 

this specific cohort of individuals. 

Conclusions 
With this research, we demonstrate that the MVA HIV-1LAI nef vaccine is safe and 

immunogenic in chronically HIV-1 infected individuals under HAART. The observed Nef-

specific immune responses were similar in magnitude to responses usually detected in LTNP. 

In addition, the elicited responses were detectable one year after the administration of the 

third vaccination, thus demonstrating the capacity of the vaccine to elicit long lasting 

responses. 

The natural follow up of this study will be an efficacy trial in which therapy will be 

interrupted after the administration of the vaccine. 

In addition, since this study had a therapeutic setting, it will be useful to test the MVA HIV-

1LAI nef vaccine in a prophylactic study. 

Another important aspect of this study is the consideration that MVA can be used as 

alternative vaccine against smallpox in chronically HIV-1 infected individuals under HAART. 

This study highlighted also a potential problem of immune interference between Nef-specific 

immune responses and MVA-specific immune responses. Therefore, in the next trial we will 

also evaluate immune responses in vaccinia naïve individuals. 
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