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Kurzfassung

Die nukleare Magnetresonanz-Spektroskopie (NMR) ist eine der wichtigsten Meth-
oden, um die drei-dimensionale Struktur von Biomolekülen zu bestimmen. Trotz
großer Fortschritte in der Methodik der NMR ist die Auflösung einer Protein-
struktur immer noch eine komplizierte und zeitraubende Aufgabe. Das Ziel
dieser Doktorarbeit ist es, Bioinformatik-Methoden zu entwickeln, die den Prozess
der Strukturaufklärung durch NMR erheblich beschleunigen können. Zu diesem
Zweck konzentriert sich diese Arbeit auf bestimmte Messdaten aus der NMR, die
so genannten chemischen Verschiebungen.

Chemische Verschiebungen werden standardmäßig zu Beginn einer Struktur-
auflösung bestimmt. Wie alle Labordaten können chemische Verschiebungen
Fehler enthalten, die die Analyse erschweren, wenn nicht sogar unmöglich machen.
Als erstes Resultat dieser Arbeit wird darum CheckShift präsentiert, eine Meth-
ode, die es ermöglich einen weit verbreiteten Fehler in chemischen Verschiebungs-
daten automatisch zu korrigieren.

Das Hauptziel dieser Doktorarbeit ist es jedoch, strukturelle Informationen aus
chemischen Verschiebungen zu extrahieren. Als erster Schritt in diese Richtung
wurde SimShift entwickelt. SimShift ermöglicht es zum ersten Mal, strukturelle
Ähnlichkeiten zwischen Proteinen basierend auf chemischen Verschiebungen zu
identifizieren. Der Vergleich zu Methoden, die nur auf der Aminosäurensequenz
basieren, zeigt die Überlegenheit des verschiebungsbasierten Ansatzes. Als eine
natürliche Erweiterung des paarweisen Vergleichs von Proteinen wird darauf fol-
gend SimShiftDB vorgestellt. Gegeben ein Protein, durchsucht SimShiftDB eine
Datenbank bekannter Proteinstrukturen nach strukturell homologen Einträgen.
Die Suche basiert hierbei nur auf der Aminosäuresequenz und den chemischen
Verschiebungen des Proteins. Die detektierten Ähnlichkeiten werden zusätzlich
nach statistischer Signifikanz bewertet.

Mit der Chemical Shift Pipeline wird schließlich das Hauptresultat der Dis-
sertation vorgestellt. Durch die Kombination der automatischen Fehlerkorrektur
(CheckShift) mit dem Datenbank-Suchalgorithmus (SimShiftDB), wird in 70%
bis 80% der vorhergesagten strukturellen Ähnlichkeiten eine sehr hohe Qualität
erreicht. Der Anteil der fehlerhaften Vorhersagen beträgt nur etwa 10%.
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Summary

Nuclear magnetic resonance spectroscopy (NMR) is one of the most important
methods for measuring the three-dimensional structure of biomolecules. Despite
major progress in the NMR methodology, the solution of a protein structure is
still a tedious and time-consuming task. The goal of this thesis is to develop
bioinformatics methods which may strongly accelerate the NMR process. This
work concentrates on a special type of measurements, the so-called chemical shifts.

Chemical shifts are routinely measured at the beginning of a structure resolu-
tion process. As all data from the laboratory, chemical shifts may be error-prone,
which might complicate or even circumvent the use of this data. Therefore, as
the first result of the thesis, we present CheckShift, a method which automatically
corrects a frequent error in NMR chemical shift data.

However, the main goal of this thesis is the extraction of structural information
hidden in chemical shifts. SimShift was developed as a first step in this direc-
tion. SimShift is the first approach to identify structural similarities between
proteins based on chemical shifts. Compared to methods based on the amino
acid sequence alone, SimShift shows its strength in detecting distant structural
relationships. As a natural further development of the pairwise comparison of
proteins, the SimShift algorithm is adapted for database searching. Given a pro-
tein, the improved algorithm, named SimShiftDB, searches a database of solved
proteins for structurally homologue entries. The search is based only on the
amino acid sequence and the associated chemical shifts. The detected similarities
are additionally ranked based on calculations of statistical significance.

Finally, the Chemical Shift Pipeline, the main result of this work, is presented.
By combining automatic chemical shift error correction (CheckShift) and the
database search algorithm (SimShiftDB), it is possible to achieve very high quality
in 70% to 80% of the similarities identified. Thereby, only about 10% of the
predictions are in error.
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1 Introduction

1.1 Overview

The main goal of Bioinformatics is to assist people working on biological prob-
lems with the solution of tasks that require a thorough understanding of computer
science. One of the most prominent methods, which has nowadays become a stan-
dard tool for people working in molecular biology, is sequence comparison. With
the size of the publicly available databases increasing, it became unfeasible to
compare a newly derived sequence to a database of already solved and possibly
functionally annotated sequences by hand. Therefore, tools were developed to
search databases of millions of sequences automatically. To date, sequence com-
parison has a strong research background and many problems arising in this area
have been solved.

Is the time for computational biology now over? Of course not, because there
is more than just the protein sequence one might like to compare and investigate.
What is strongly important in understanding the function of a protein is the
protein’s three-dimensional structure. It has been shown that there exist proteins
with very low sequence similarity sharing a strongly similar three-dimensional
structure (see for example [Pastore and Lesk, 1990]). This underlines the need
for structural data as often sequence comparison alone is not sufficient. To date,
it is not possible to calculate the protein structure reliably from the protein
sequence alone. NMR spectroscopy is one of the most important methods for
resolving a protein structure in the laboratory. However, solving a protein as a
whole is a complicated task, requiring a series of complex experiments.

The work presented in this dissertation focuses on data which may be acquired
fairly easily in a standard NMR experiment. This data are the so-called chemical
shifts, which will be explained in section 2.2 in more detail. Chemical shifts are
in general not sufficient to solve a protein structure and may contain various
measurement errors. A thorough analysis of this data, however, can remove the
need for additional experiments, thereby saving time and money.

Chapters 3 to 5 describe several computational methods which analyze chemical
shift data, altogether reaching for the ultimate goal to be able to construct three
dimensional models from chemical shift data alone. In Chapter 3 we present
CheckShift, a method to correct a very common error in NMR chemical shift
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2 Chapter 1. Introduction

data automatically. Chapter 4 describes and evaluates SimShift, a method which
identifies structural similarities between proteins based on chemical shift data. It
is shown that SimShift outperforms methods which work on amino acid sequence
and/or secondary structure data alone. In Chapter 5, we extend and adapt
this method for database searching. A statistical model is used to evaluate the
significance of each similarity identified. SimShiftDB is able to search a whole
database of protein structures for structural homologous, based on chemical shift
information alone. The additional information hidden in chemical shifts proves to
be useful to identify structural homologous for proteins where this is not possible
using the amino acid sequence alone. Finally, Chapter 6 connects CheckShift and
SimShiftDB thereby building the Chemical Shift Pipeline. We define a benchmark
set and evaluate various parameter settings. The chemical shift pipeline achieves
a correctness of up to 75% thereby covering 65% of the targets’ residues.

1.2 Synopsis

NMR Spectroscopy is one of the most prominent methods for resolving protein
structures on the atomic level. The solution of a protein structure, however,
cannot be performed through a single experiment. Multiple sophisticated experi-
ments with additional data analysis are necessary. In this work, we concentrated
on a special type of data from NMR experiments, the so-called chemical shifts.
Chemical shifts are easy to measure and are acquired by default at the begin-
ning of the solution of a protein structure. In the beginning of our work, we
asked the question: ”Is it possible to identify structural similarities from chemical
shifts, which may not be identified using the amino acid sequence alone?”. To
answer this question, we developed SimShift, a program which identifies struc-
tural similarities in proteins, solely based on chemical shifts. SimShift works as
a two step algorithm. In the first step, locally similar regions of the two proteins
are identified. In the second step of the algorithm, the best (legal) combination
of a subset of these locally similar regions is calculated. To evaluate the per-
formance of SimShift, we built a test set of pairs of (known) protein structures
with associated chemical shifts. Now we compared SimShift to two state-of-the-
art methods, which work solely on the amino acid sequence or the secondary
structure of the respective protein. We were able to show that SimShift out-
performs the other methods especially in the case of distant homologies. After
having empirically proved, that it is possible to use the information hidden in
chemical shifts we wanted to go one step further. Therefore, we developed a
database search engine, called SimShiftDB, which searches a database of protein
structures based on the chemical shifts measured for a target protein. We devel-
oped a scoring function which is able to reflect the probability that two residues
with associated chemical shifts are part of the same three-dimensional structure.
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Again a two step approach is used for each target-template pair which follows
the same ideas as the SimShift approach. The underlying algorithms, however,
were completely redesigned. For each target-template pair, SimShiftDB identifies
structurally similar regions. If similar protein structures are found, these may be
used to build a model for the target protein. These models may than be ver-
ified through a fairly simple NMR experiment. Building a model for a protein
at this early stage of the NMR structure solution process is a very important
task, as it saves time and money. To get high quality models, it is extremely
important to evaluate the statistical significance of the similarities identified.
Therefore, SimShiftDB calculates an E-Value for each similarity, which gives the
number of results of equal or better quality expected to occur by chance. For the
performance evaluation, we compare SimShiftDB to TALOS [Cornilescu et al.,
1999], a widely used method which tries to infer protein backbone torsion an-
gles from chemical shift data. As chemical shifts are error prone [Zhang et al.,
2003], we used a small, but very reliable test set, given to us by collaborating
researchers from NMR spectroscopy. SimShiftDB shows its strength especially in
cases where TALOS gives erroneous predictions or no prediction at all. There-
fore, SimShiftDB completes the range of existing methods which try to utilize
chemical shifts for structure prediction. In parallel to the work on SimShiftDB,
we realized that a very common error in NMR chemical shift data often hampers
the quality of this data and, therefore, also the quality of any further data analy-
sis. Chemical shifts are always given based on a reference compound to account
for the different experimental conditions in different laboratories. Unfortunately,
there are a great number of possible reference compounds available, and chemi-
cal shifts are often given without proper declaration of the reference compound
used. Therefore, we developed a method, named CheckShift, which automat-
ically corrects chemical shifts to a standard reference compound. CheckShift
compares the target chemical shifts (which shall be corrected) to a database of
chemical shifts which are reliably referenced according to the IUPAC [Markley
et al., 1998] standard. Through this comparison it is possible to calculate the
amount of correction necessary, which is then proposed as the re-referencing off-
set. The comparison to other methods which do automatically re-referencing
showed that CheckShift has a significantly lower error rate. CheckShift is pro-
posed as an error checker for newly deposited data by BMRB [Seavey et al.,
1991], the most prominent public source for chemical shift data (”The Chemi-
cal Shift Reference Check” on http://www.bmrb.wisc.edu/deposit ). In
the most current work, we combined CheckShift and SimShiftDB, thereby build-
ing the Chemical Shift Pipeline. We built a benchmark set of protein struc-
tures with associated chemical shifts. For this reason, we tried to map each
BMRB entry to a structure from the ASTRAL [Chandonia et al., 2004] database
based on amino acid sequence homology. We were able to build a test set of
144 proteins structure with associated chemical shifts. Every protein in the test
set was subsequently re-referenced using CheckShift. Then we evaluated differ-
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ent parameter settings for SimShiftDB. To exclude trivial hits from the evalua-
tion, template proteins which show high amino acid sequence similarity to the
target protein were removed from the SimShiftDB results. Through the addi-
tional error correction and a certain parameter choice, the number of correct
torsion angle predictions goes up to 75 percent, thereby achieving coverage of
the targets’ residues of 65 percent. SimShiftDB and CheckShift are available via
http://shifts.bio.ifi.lmu.de .



2 Preliminaries

2.1 Introduction

In the beginning of this chapter basic information on the origin and measurement
of chemical shifts is given. Afterwards we describe SHIFTX, which enables the
user to back-calculate chemical shifts from the three-dimension protein structure.
Following this section TALOS is introduced, a method which calculates protein
backbone torsion angles based on chemical shift data. The short description of
several Bioinformatics methods follows. These include methods for automatic
calculation of secondary structure (PSIPRED, which is based on the amino acid
sequence, CSI, which calculates secondary structure based on chemical shifts;
STRIDE, which uses the three-dimension protein structure) and methods for
calculating protein alignments based on the amino acid sequence (HHsearch),
secondary structure (SSEA), as well as on the three-dimensional structure (CE).
Another section is devoted to MaxSub, a score which evaluates the quality of an
alignment based on the three-dimensional structure. Finally, an overview over
the databases used for this work is given.

2.2 NMR Basics

Atoms possess a property called spin. An atom with spin 1
2

has two possible
stationary orientations in a magnetic field B0. The spin (I) can take values
0, 1

2
, 1, 3

2
, . . .. In a magnetic field a nucleus of spin I has 2I+1 possible orientations

given by the magnetic quantum number mI , which has values from −I to I in
integer steps. When a spin is inserted into a magnetic field, it has quantized1

energy depending on its orientation in the field. The energy difference between
the orientations is given by the equation

∆E = −
γhB0

2π
, (2.1)

where h is Planck’s constant and γ is the so-called gyro-magnetic ratio which
determines the transition frequency of a nucleus in a given magnetic field. Atoms

1restricted to a certain set of values

5



6 Chapter 2. Preliminaries

in general have different energy levels. A transition between two energy levels
can be caused by a photon with a certain frequency ν. In a magnetic field ν is
dependent on the atom type (through the so-called gyro-magnetic ratio γ) and the
strength of the magnetic field B0: This frequency is proportional to the difference
between the two energy levels, as expressed in the formula

∆E = hν . (2.2)

Combining Equations 2.1 and 2.2, ν is obtained as

ν = −
γB0

2π

The resonance or transition frequency is therefore dependent on the atom type
(through γ) and the applied magnetic field.

The state mI = 1
2

will be named α (parallel) and the state mI = −1
2
β (anti-

parallel).

The Boltzmann equation gives us information about the population of the two
energy states α and β.

Nβ

Nα

= e
− ∆E

kBT

As ∆E > 0, kB = 1.38∗10−23 > 0, T ≥ 0 the lower energy state (α) is populated
more frequently at thermal equilibrium.

B
0

x
y

z

m
ag

ne
tic

 f
ie

ld

Ξ

Figure 2.1: The magnetic moments of the nuclei precess uniformly distributed
around the applied magnetic field B0 (along the z-axis). The bulk
magnetization Ξ of the individual nuclei is drawn as a thick arrow
along the z-axis.

Consider the magnetic field B0 to be in a three-dimensional coordinate sys-
tem, where the direction of B0 is along the z-axis. Each nucleus in the magnetic
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Figure 2.2: A coil produces an oscillating magnetic field perpendicular to the
applied magnetic field B0.

field has a certain magnetic moment. The magnetic moments of the nuclei pre-
cess around the z-axis with a certain frequency, called the Larmor -frequency (cf.
Fig. 2.1). This frequency is equal to the transition frequency ν. The magnetic
moments of the individual nuclei add up to a net macroscopic magnetization along
the direction of the applied magnetic field B0. This is called bulk magnetization
of the sample and denoted by Ξ in Fig. 2.1.

x
y

z

Figure 2.3: A coil produces an oscillating magnetic field perpendicular to the
applied magnetic field B0. This causes the bulk magnetization vector
to be tilted away.

What is detected in the NMR experiment is the precession of the bulk mag-
netization vector around the z-axis (which equals the Larmor -frequency of the
single nucleus). This precession starts when the bulk magnetization vector is
tilted away from the z-axis by a magnetic pulse which oscillates along the x-axis
(see Fig. 2.3). If the frequency of the magnetic pulse is equal or close to the Lar-
mor -frequency, even a small magnetic field induced by the coil around the x-axis
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x
y

z

Figure 2.4: The bulk magnetization precesses around the z-axis back to its orig-
inal position. This induces a current in the coil.

can tilt the bulk magnetization vector away from the z-axis. When rotating back
to its original position, the magnetization vector induces a current in the coil in
the xy-plane (see Fig. 2.4). This can be measured as the so-called Free Induction
Decay (FID). The FID is a function of the strength of the bulk magnetization
along the x-axis over time. To convert this time domain function (FID) into a
frequency domain function (spectrum), Fourier transformation is used.

Definition 1. The chemical shift of an atom is its resonance frequency relative
to some standard reference compound S. It is defined as

δ =
ν − νS

νS

,

where νS is the frequency of the standard S and ν is the frequency represented by
the chemical shift value. As these values tend to be very small, they are usually
given in ppm (parts per million).

The chemical shift for a certain nucleus is influenced by its environment. This
is due to the fact that surrounding electron clouds induce a local magnetic field,
which adds to (or subtracts from) the applied field. Therefore, the effective
field acting upon the nucleus is different from the applied magnetic field B0. As
the chemical shift is dependent on the resonance frequency, and the resonance
frequency is in turn dependent on the magnetic field acting on the nucleus, this
results in different chemical shifts for different environments. This is why the
shift values are helpful for resolving (protein) structures with NMR. In a protein
the chemical shift of an atom is influenced by the type of amino acid it is part
of and the electron clouds of atoms which are close in space due to the tertiary
structure of a protein. The influence of the amino acid type may be removed
by subtracting the so-called random coil shifts, which give an average value for
the chemical shift of a specific atom in a certain amino acid. These normalized
chemical shift values are then called secondary shifts.
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For more information on chemical shifts and NMR in general, we refer the
reader to [Levitt, 2001].

2.3 SHIFTX

SHIFTX [Neal et al., 2003] is a computer program which rapidly and accurately
calculates the diamagnetic 1H, 13C, and 15N shifts of both backbone and side
chain atoms in proteins. To calculate the chemical shifts from the structure,
SHIFTX uses a hybrid approach, combining classical equations with chemical
shift hypersurfaces, derived from a database of three-dimensional structures with
associated chemical shifts. The chemical shift for a specific atom (δ) is calculated
as the sum of several components:

δ = δC + δRC + δEF + δHB + δHS, (2.3)

where δC is the random coil shift as given by Wishart et al. [1995a], δRC is the
ring current shift, δEF is the electric field contribution, δHB is the hydrogen bond
contribution and δHS is the contribution of the chemical shift hypersurfaces. The
SHIFTX program performs the following steps sequentially:

1. Check and calculate the positions of the hydrogen atoms. (For details,
see [Neal et al., 2003], section Hydrogen placement.)

2. Calculate ring current, electric field, and hydrogen bond contributions.

3. Calculate chemical shift hypersurface contributions.

4. Sum all contributions to calculate the predicted chemical shift.

2.3.1 Ring Current Effects

Aromatic rings have a strong influence on the chemical shifts of nearby nuclei.
SHIFTX first calculates a list of rings and a list of atoms, which may be influenced.
Subsequently, the influence on each chemical shift for each susceptible atom is
calculated using the methods by Haigh and Mallion [1972]. The ring current
contribution is calculated as

δRC = G*I*F, (2.4)

where G is a geometrical factor, I is a ring specific intensity, and F is a atom
specific constant. The parameter G is equivalent to the parameter K ′

i described
in [Haigh and Mallion, 1972]. I and F were determined empirically using the
training database (see tables 2.1 and 2.2 for the chosen values).
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Table 2.1: Empirically optimized values for the ring specific intensity (I).

Residue I Ring Atoms
F 1.05 CG-CD2-CE2-CZ-CE1-CD1
Y 0.92 CG-CD2-CE2-CZ-CE1-CD1
W 1.04 CD2-CE3-CZ3-CH2-CZ2-CE2
W 0.90 CG-CD2-CE2-NE1-CD1
H 0.43 CG-ND1-CE1-NE2-CD2

Table 2.2: Empirically optimized values for the atom specific constant (F).

Atom F
HN 7.06 ∗ 10−6

Other H 5.13 ∗ 10−6

CA 1.50 ∗ 10−6

CB, CO, N 1.00 ∗ 10−6

2.3.2 Electric Field Effects

Alpha carbons and all hydrogens are influenced by electrostatic effects. To cal-
culate the influence on the chemical shifts of the respective atoms, the method
by Buckingham [1960] is used. Atoms are therefore classified as target (influ-
enced through electrostatic effects) and source atoms (reason for the electrostatic
effects). The calculation also requires the coordinates of the partner atoms for
each target atom. Partner atoms are bonded to the target atom. A list of part-
ner atoms for each target is given in Table A.1 in Appendix A. All source-target
combination within 3.0Å are analyzed, given the following constraints hold:

– Source and target atom are not part of the same residue or adjacent residue.

– If the target is atom HN, source must not be O.

– Solvent atoms do not act as sources.

The effect on the chemical shift can then be calculated as:

δEF =
1010 ∗ q ∗ cos θ

d2
, (2.5)

where q is the source charge as according to table 2.3, θ is the source-target-
partner angle and d is the distance from source to target in Ångstrom.
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Table 2.3: Partial charges for each source atom ([esu]).

Atom(s) Charge
O, OD, OE −0.9612 ∗ 10−10

C 1.3937 ∗ 10−10

N 0.7209 ∗ 10−10

2.3.3 Hydrogen Bond Effects

It was found that including hydrogen bond effects into the calculation improves
the performance of SHIFTX. To calculate the influence of hydrogen bonds on
the chemical shifts, a list of donor-acceptor pairs is compiled. The following
constraints have to be fulfilled for all pairs:

– The donor and the acceptor must be on different residues.

– If the acceptor is a solvent oxygen, the donor must be Hα.

– The oxygen-hydrogen distance must be less than an empirically derived
cutoff (3.50Å for HN and 2.77Å for Hα).

– The vector between the N-H bond and the C=O bond must be 90◦ or more,
when the vectors are translated such that N and C occupy the same point
in space.

SHIFTX now builds a list of possible hydrogen bonds. Subsequently, this list is
processed, such that only the strongest hydrogen bond for each donor is kept in
the list. Then the following formula (see [Wagner et al., 1983, Wishart et al.,
1991]) is used to calculate the effects on the chemical shifts of the respective
atoms:

δHB =
0.75

r3
− 0.99. (2.6)

Thereby r is the distance between donor and acceptor. The parameters (0.75 and
0.99) were optimized on the SHIFTX training set. The formula may be applied
to bonds of length between 1.5 to 3.5Å. To account for the (more infrequently
occurring) case in which HA protons act as hydrogen bond donors, a second
equation is used:

δHB =
15.56

r3
− 0.67. (2.7)

For cases in which the distance r is greater than 2.61 or less than 2.27, r is set to
a fixed value of 2.61 or 2.27, respectively.
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2.3.4 Empirical Chemical Shift Hypersurfaces

SHIFTX uses a set of so-called chemical shifts hypersurfaces (two-dimensional
arrays) which give chemical shift corrections for a variety of structural param-
eters, whose influence is not taken into account using the classical equations
described above. To identify the necessary corrections and the parameters hav-
ing the strongest influence on the chemical shift, a data mining procedure was
applied (details on the procedure are not given in the publication). The analyzed
parameters are listed in Table 2 in [Neal et al., 2003]. Every two-parameter-
combination was tested and the ones showing a strong need for chemical shift
correction were chosen. The parameter combinations (and the associated chemi-
cal shift hypersurfaces) finally used are described in the supplementary material
of [Neal et al., 2003]. The influence of all applicable hypersurfaces for a given
atom are then summed to calculate δHS.

It has to be noted that the description given here is a strong simplification of
the procedure actually used, as not even in the original SHIFTX publication the
full detail of the chemical shifts hypersurface calculations are given.

2.4 TALOS

TALOS [Cornilescu et al., 1999] is one of the most widely used tools for NMR
spectroscopists. The aim of TALOS is to identify protein backbone angles by
comparing a set of newly derived chemical shifts to a database of chemical shifts
which are associated with an already resolved protein structure.

TALOS moves a sliding window of length three over the residue sequence of
the target protein. Each triple from the target is then compared to each triplet in
the template database using an optimized scoring function. The scoring function
is defined as

S[ti][sj ] =
1

∑

k=−1

{

µM [k] ∗M [ti+k][sj+k] + µCα
[k] ∗ (δCα

[ti+k]− δCα
[sj+k])

+ µCβ
[k] ∗ (δCβ

[ti+k]− δCβ
[sj+k]) + µC′[k] ∗ (δ

′

C [ti+k]− δ
′

C [sj+k])

+ µN [k] ∗ (δN [ti+k]− δN [sj+k]) + µHα
[k] ∗ (δHα

[ti+k]− δHα
[sj+k])

}

(2.8)

where δCα
, δCβ

, δ
′

C , δN , and δHα
are the secondary shifts for the respective atoms.

This scoring function compares the residue types (using the substitution matrix
M , see [Cornilescu et al., 1999] for details), but also takes into account the differ-
ences between Cα, Cβ , C’, N and Hα secondary shifts (if available in the target).
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Table 2.4: Weighting factors for scoring function

k µM µCα
µCβ

µC′ µN µHα

-1 0.739 0.7213 0.7624 1.1455 0.1596 14.665
0 1.478 0.9857 0.9092 1.2051 0.1752 17.539
1 0.739 0.7178 0.6990 1.0422 0.1972 15.251

Table 2.5: RMSD values of the secondary shifts for Cα, Cβ, C’, N and Hα

Cα Cβ C’ N Hα

2.40 2.01 2.02 4.56 0.51

To find the best weighting factors for the chemical shift differences (µCα
, µCβ

, µC′,
µN , µHα

), the (original) template database was searched with 183 residue triples.
For each target triplet, the RMSD and the standard deviation of all database
triples, where the difference between the target’s and template’s Φ and Ψ angles
is less than 15◦, was calculated. Then the average of the RMSD divided by the
standard deviation is used as the weighting factor for the respective atom (see
Table 2.4).

µMwas optimized empirically, taking those factors which minimize the number
of erroneous prediction. More detailed information on how µMwas optimized
(test set, value range) are not available in [Cornilescu et al., 1999].

If chemical shifts are missing in the target, the value is set to 1.5 times the
RMSD of the corresponding secondary shift (see Table 2.5). Therefore, missing
chemical shift values should not contribute to a good score. To evaluate the
quality of the predictions, the 10 best matching triplets (according to S[ti][sj ])
for every target triplet are analyzed. The following classifications are possible in
the standard version:

Good: Either 9 out of the 10 triplets have (Φ,Ψ) angles in the same region
of the Ramachandran map (see Figure 2.5) and none of the center
residues in the 10 triplets has a positive Φ angle, or 9 triplets are
situated in the positive Φ angle range.

New: All residues that do not fulfill the constraints for Good.
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Figure 2.5: Ramachandran map used for TALOS torsion angle classification.
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2.5 PSIPRED

PSIPRED [Jones, 1999] predicts the secondary structure of a protein based on
the amino acid sequence alone. This is accomplished in the following way:

– A PSI-BLAST [Altschul et al., 1997] search using the target sequence is
performed against a non-redundant database, which is beforehand filtered
for low complexity regions. Thereby, the number of iterations for PSI-
BLAST is set to 3.

– The calculated position specific scoring matrix is subsequently used as an
input to a neuronal network which gives the three state secondary structure
prediction as an output.

The neural network uses a standard feed-forward architecture and was trained
by applying a back-propagation procedure Rumelhart et al. [1986]. In secondary
structure prediction it is a common procedure to include neighboring residues,
when trying to predict the central residue’s structure. Based on a small bench-
mark set (16 targets from the CASP2 experiment Moult et al. [1997]), a window
of 15 residues (7 residues on either side of the target residue) was selected to be
optimal in performance. The whole network consists of two parts, the first part
being built of 315 input units (21 input units for every residue in the window),
75 hidden units and 45 output units. Thereby, the 21st residue is used as an
indicator that the window spans a chain terminus. 45 outputs are then fed to the
second part of the network consisting of 60 input units (4 secondary structure
states times 15 residues in the window, the 4th secondary structure state being
used as the 21st amino acid before), 60 hidden units and finally 3 outputs for the
prediction of the central residue.

On the benchmark set presented by [Jones, 1999], PSIPRED achieves an aver-
age Q3 score (average accuracy for the three secondary structure states) between
76.5% and 78.3%. According to an evaluation by the EVA server [Rost and
Eyrich, 2001] conducted on March 27, 2007, PSIPRED still ranks at first place
concerning the comparison of average scores and under the best 4 methods avail-
able as according to a pairwise comparison.

2.6 Chemical Shift Index (CSI)

The chemical shift index (CSI) [Wishart et al., 1992] is a simple and very robust
method to calculate the secondary structure of a protein based on 1Hα chemical
shift values. The calculation works in 3 steps:
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1. The chemical shift values are normalized using amino acid specific random
coil shifts.

2. The resulting secondary shift values are converted to discrete values (-1,0,1),
by setting all values less than -0.1 to -1, more than 0.1 to 1 and all between
to zero. Thereby -1 stands for potential helix residues, 0 for coil residues
and 1 for residues being part of a strand.

3. Several heuristics are applied, including a minimum length restriction for
secondary structure element, thereby producing the final output.

CSI was enhanced to work also using 13C chemical shifts [Wishart and Sykes,
1994]. The 13C-method works exactly as the one described for 1Hα chemical
shift values. The zero-range, however, is defined as [-0.7,0.7]. Using a consensus
prediction of 1Hα and 13C chemical shifts, CSI is able to achieve an accuracy in
excess of 92%.

2.7 Structural Identification (STRIDE)

STRIDE [Frishman and Argos, 1995] calculates secondary structure from the
three dimensional structure of a protein. These calculations are based on hydro-
gen bonding patterns as well as on backbone torsion angles. STRIDE calculates
an empirical energy for hydrogen bonds and probabilities for torsion angles being
part of an alpha helix or a beta strand. For the assignment of a certain secondary
structure type, the hydrogen bond energies and probabilities are combined and
compared to a cutoff. The weighting factors and the cutoff values were optimized
using a hand curated dataset of protein structure with secondary structures de-
fined by the experimentalists. STRIDE is shown to yield assignments closer to
those given in PDB for nearly twice as many structures as the most famous
methods for secondary structure calculation, namely DSSP [Kabsch and Sander,
1983]. Assignments made by STRIDE are in general in agreement with DSSP
(the maximal difference in percent of correctly assigned residues does not ex-
ceed 14%). Based on these facts, we consider STRIDE as the better alternative
and, therefore, used it throughout this work when secondary structure had to be
assigned.

2.8 HHsearch

HHsearch [Söding, 2005] is a state-of-the-art method to align amino acid sequence
through the comparison of two hidden markov models. When compared to other
sequence based methods (PSI-BLAST [Altschul et al., 1997], HMMER [Eddy,
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1998]), and profile-profile comparison tools (PROF SIM [Yona and Levitt, 2002],
COMPASS [Sadreyev and Grishin, 2003]), it is shown that HHsearch outperforms
the other methods both in the detection of homologues and in alignment quality.
Additionally, HHsearch is able to build alignments based on both amino acid
sequence and secondary structure. This is especially useful for this work, as it is
possible to calculate secondary structure quite reliably from chemical shift data
[Wishart et al., 1992].

2.9 Secondary Structure Element Alignment

(SSEA)

SSEA [Fontana et al., 2005] calculates protein alignments based on secondary
structure alone. Thereby, the secondary structure elements (continues stretches of
a certain secondary structure) are derived from both secondary structure strings
to be aligned. The secondary structure has to be classified to one of three states,
being either helix, strand, or coil. For the alignment, a simple scoring function is
applied:

– Matching secondary structure elements (helix to helix, strand to strand, or
coil to coil) are scored by the length of the smaller element.

– Mismatches (helix to strand) are not scored at all.

– Structure to coil matches are scored half the length of the shorted segment.

Additionally, the user may choose to calculate either a global or a local alignment.

2.10 Combinatorial Extension (CE)

CE [Shindyalov and Bourne, 1998] calculates protein structure alignments based
on the combination of so-called aligned fragment pairs (AFPs). These AFPs are
identified by searching for strong local similarities in the two structures. The
complete alignment is constructed in three steps:

1. Potential AFPs (of fixed length) are filtered by comparing all residue-residue
distances in the two protein fragments (see the description of the DSingle

score below). This leaves the algorithms with a set of high quality AFPs,
which are subsequently used as possible starting points of the alignment
path.
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2. Then the algorithm tries to identify the best consistent combination of
AFPs. Every AFP from the last step is considered as a possible starting
point for the final alignment path. To evaluate if an AFP shall be added to
an existing path, an independent set of residue-residue distances between
the new AFP and all the AFPs already in the path is compared. This is
done in a pairwise fashion using the DPair score described below. If the av-
erage difference between the intra-protein distances satisfies an empirically
derived cutoff, the AFP is added to the path.

3. For alignment paths of sufficient quality, an optimization procedure is ap-
plied. This last step is based on minimizing the root mean square deviation
of aligned residues in the superimposed three-dimensional structures of the
two proteins.

CE compares well to other structure alignment methods such as DALI or VAST
(see Tables 5 and 6 in [Shindyalov and Bourne, 1998]). Additionally, CE was used
in the CASP5 [Kinch et al., 2003] and CASP6 [Wang et al., 2005a] experiment
for performance evaluation.

2.10.1 Distance Scores

The DSingle score is used to evaluate the quality of a single AFP. It is defined as
follows,

DSingle =
1

l2

l−1
∑

i=0

l−1
∑

j=0

|dA

sA+i,sA+j − d
B

sB+i,sB+j|, (2.9)

where l is the length of the AFP, sA and sB are its starting points in protein A
and B respectively, and dA

i,j, d
B

i,j are the distances between residues i and j in the
two proteins.

To evaluate the quality of the combination of two AFPs, the score DPair is used.
It is defined in the following way,

DPair =
1

l

(

|dA

sA1 ,sA2
− dB

sB1 ,sB2
|+ |dA

sA1 +l−1,sA2 +l−1 − d
B

sB1 +l−1,sB2 +l−1|

+
l−2
∑

i=1

|dA

sA
1

+i,sA
2
−i−1+l

− dB

sB
1

+i,sB
2
−i−1+l

|
)

,
(2.10)

where the meaning of the variables is the same as for the single score, despite of
the starting points sA1 , s

A

2 , s
B

1 , s
B

2 , which are now not only associated to a certain
protein, however, the subscripts additionally refer to either the first or the second
AFP.
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2.11 MaxSub

The MaxSub score [Siew et al., 2000] is an alignment dependent measure to
evaluate the quality of a certain protein-protein alignment based on the quality
of the superposition of the aligned residues. It is defined as

S =

∑

i
1

1+(
di
d

)2

n
(2.11)

where di is the distance between the ith pair of equivalent residues after super-
position, d is a cutoff parameter (the authors propose a value of 3.5 Å), and n is
the maximal number of residues which could be aligned.

The MaxSub score is chosen for the evaluations presented in Chapter 4 due to
the following reasons:

– It is a simple and robust score, which represents a good tradeoff between
the number of aligned residues and the quality of the alignment.

– MaxSub only requires a single parameter (d) and it was shown by Siew
et al. [2000] that the score is stable with respect to this parameter in a
range from 2Å to 7Å.

MaxSub proves its discriminative power on the CASP3 targets as there is good
agreement between the human based evaluation of the better models and the eval-
uation through the MaxSub score. MaxSub is also used for prediction evaluation
in all CAFASP experiments starting from CAFASP2 [Fischer et al., 2001].

2.12 Databases

Several publicly available databases are used in this work. The spectrum reaches
from protein structure databases (ASTRAL), and databases containing pairwise
(DALI Database) and multiple (DMAPS, S4) structural alignments, to the the
main repository for chemical shift data (BMRB). A short description of each
database used is given in the following.

ASTRAL: The ASTRAL database [Chandonia et al., 2004] contains a filtered
subset of protein structures from the PDB [Berman et al., 2000]. The
filtering process removes redundancy from the PDB set of structures and
additionally splits the structures according to the SCOP [Murzin et al.,
1995] classification. In the process of removing redundancy, representatives
have to be chosen for sets of equivalent structures. Thereby, the focus is
laid on choosing the structure of highest quality available.
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DALI Database: The DALI Database [Holm and Sander, 1996] is constructed
from an all against all comparison of all entries in PDB. It contains the
corresponding structural alignments which are calculated using the DALI
search engine. Here, we use the alignments in this database as a basis for
calculating chemical shift substitution matrices.

DMAPS: DMAPS [Guda et al., 2006] contains multiple structural alignments
for several sets of protein families. The alignments are calculated using the
CE-MC algorithm [Guda et al., 2004]. In this work, we use two of the avail-
able alignment sets. The first set contains multiple structural alignments for
each SCOP domain family. The second set defines families through a cer-
tain extent of structural similarity identified by the CE algorithm. There-
fore, an all-against-all comparison of all structures in PDB is performed
and neighbors with a z-score > 4.0 and and RMSD < 3.0Å are assembled
into clusters of common substructures. For each of those clusters multiple
structure alignments are calculated.

S4: S4 [Casbon and Saqi, 2005] is an automatically generated database. It con-
tains multiple protein structure alignments for each superfamily as defined
by the SCOP classification. Thereby, structural domains may not share
more than 40% sequence identity with another member in the superfamily
to be included in the alignment.

BMRB: The BMRB [Seavey et al., 1991] is the main repository for data from
NMR spectroscopy, measured from proteins, peptides and other biomolecules.
Each entry in the database is associated to a specific protein and contains
assigned chemical shifts, as well as additional data from the corresponding
NMR experiments.
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3.1 Introduction

The most common approach to extracting structural information from protein
chemical shifts is to compare the shifts of the target protein to a database of
reference shifts. This has been applied to direct refinement of protein struc-
tures [Schwieters et al., 2003], prediction of protein secondary structure [Wishart
et al., 1992, Wang and Jardetzky, 2002], inference of protein backbone angles
[Cornilescu et al., 1999, Neal et al., 2006], structure validation [Oldfield, 1995],
and detection of structural similarities in proteins [Ginzinger and Fischer, 2006,
Ginzinger et al., 2007]. In all of these methods, the quality of the database is
crucial to the outcome, in terms of its size, the accuracy of the component struc-
tures, and consistent referencing of chemical shifts. The last factor is perhaps a
larger obstacle than it may first appear, due to the number of different referencing
compounds and methods in current use. Even with detailed information on the
method, re-referencing of shifts to a single standard is difficult. In practice, incom-
plete or inconsistent annotation in the main repository, the Biological Magnetic
Resonance Database (BMRB) [Seavey et al., 1991], often makes this impossible,
and cases where re-referencing is necessary can be difficult to detect. Often the
magnitude of referencing errors is of the same order as structure-dependent sec-
ondary shifts, and thus all data must be checked for accurate referencing before
use [Zhang et al., 2003].

Several existing programs are capable of re-referencing chemical shifts using
expectation values calculated on a residue-by-residue basis either from high-
resolution structures [Neal et al., 2003, Zhang et al., 2003] or secondary struc-
ture predictions based on correctly referenced 1Hα shifts [Wang and Wishart,
2005]. Here we present a method for automatically re-referencing chemical shift
data, named CheckShift, which takes the alternative approach of comparing the
global chemical shift distribution of the target protein to a reference distribu-
tion. In addition to the chemical shift values, CheckShift requires only an es-
timate of the overall proportion of residues in β-sheet and α-helix secondary
structures, a quantity that can be reliability predicted from primary sequence
using PSIPRED [Jones, 1999]. CheckShift minimizes the difference between the
distributions’ density functions. Due to this modus operandi, CheckShift is in-
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sensitive to outlying values. We show here that CheckShift is very accurate and
compares well to other structure independent methods.

3.2 The CheckShift Algorithm

The following steps are performed to calculate the re-referencing offset for each
atom type of a set of target chemical shifts. Each step will be discussed in detail
below.

1. Preparation of reference density functions: Secondary shift density
functions from correctly referenced data sets are prepared as a reference.
This step has to be performed only once.

2. Calculation of similarity: The reference density functions are compared
to the density function of the secondary shifts in the target data set.

3. Re-referencing of data sets: The previous step is iterated while chang-
ing the re-referencing offset to find the best agreement of the target and
reference. The offset that minimizes the difference between the two density
functions is suggested as re-referencing offset.

3.2.1 Preparation of Reference Density Functions

We have used all 13C’, 13Cα, 13Cβ and 15N chemical shifts which are included in the
TALOS reference database (78 proteins, referenced to DSS and liquid ammonia)
to prepare the reference density function. The TALOS database was chosen as
it is well curated and therefore of very high quality, as opposed to other sources
of chemical shift data. Chemical shifts from cysteine residues are excluded as
they strongly depend on the oxidation state of each residue, which is a structure
dependent feature that cannot be predicted using sequence information alone.
Although structures are available for all entries from TALOS and, thus, cysteine
oxidation states are known, this is not necessarily the case for the target chemical
shifts.

Subsequently, the secondary shifts for all chemical shifts from the remaining
19 amino acids are derived by subtracting the amino acid-specific random coil
shifts as given by Zhang et al. [2003]. The secondary structure associated with
each chemical shift is calculated from the corresponding protein structure using
STRIDE [Heinig and Frishman, 2004]. The 5 letter code given by STRIDE is
converted to a three letter code as follows: G, I and H are translated to helix
(H), B and E are defined as sheet (S) and all others are set to coil (C). Therefore,
the secondary shifts can be classified according to their secondary structure. This
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gives rise to three separate secondary shift density functions for each atom type
(see Figure 3.1). Please note that the number of shifts in each distribution is
different, leading to a prior probability ρ = (ρH , ρS, ρC) for each of the three
secondary structure states.
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Figure 3.1: Density function of 13Cα secondary shifts from TALOS, used as ex-
pectation for secondary shifts of correctly TSP-referenced data sets.
The density functions for each of the three secondary structures states
(Sheet, Coil, Helix) are shown together with the total density function
(Aggregate).

3.2.2 Calculation of Similarity

When predicting the re-referencing offset for each atom type of a target, the
three secondary structure dependent density functions serve as the reference.
These are based on the empirical chemical shifts of proteins, which are referenced
according to the IUPAC standard. Target chemical shifts, which are given in
the standardized way, are expected to have a similar density function as the
reference. On the other hand, if the density functions are found to be shifted,
this is an indicator of non-standard referencing or a referencing error.
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For the comparison, secondary shifts are derived from the target’s chemical
shifts, except for cysteine. Subsequently, PSIPRED [Jones, 1999] is used to pre-
dict the secondary structure of the target sequence. This is due to the fact
that three dimensional structures are not always available, and thus neither a
mapping nor a defined secondary structure can be derived. While PSIPRED in
general gives good predictions of secondary structures, this prediction is not used
to split the secondary shifts of the target according to the secondary structure,
but only to calculate the ratio σ = (σH , σS, σC) of the three secondary structure
states relative to each other. Later, for each of the three secondary structure
states sec ∈ (H,S, C), the respective secondary structure dependent reference
density function from TALOS with a prior ρsec is scaled by σsec/ρsec to have the
same ratio σ as the target protein before combining and comparing them to the
target’s combined density function. Please note the difference between the two
density functions in Figure 3.2 for an illustration of this approach. This takes
into account that proteins can have a very different secondary structure content,
having a related ratio σ that is not necessarily equal to the prior ρ from TALOS.
Consequently, this leads to different expected secondary shift density functions.
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Figure 3.2: The density function of the 13Cα secondary shifts from the TALOS
data set together with the adjusted density function for a protein with
80% β-content, i.e. σ = (0.0%, 0.8%, 0.2%)..
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This approach avoids a wrong assignment of secondary shifts to a specific sec-
ondary structure, which would occur by splitting secondary shifts based on the
secondary structure prediction. Wrong prediction of secondary structure would
then result in inferior secondary shift density functions. Consequently, checking
consistency to the reference distributions would be more difficult and error-prone.
While PSIPRED makes correct predictions with a rate of about 83%, its strength
is to correctly predict the overall architecture of whole secondary structure ele-
ments. However, the exact positions of those elements is not always predicted
correctly, and may vary by a few residues. Therefore, using only the informa-
tion about the overall secondary structure architecture (i.e., secondary structure
content), combining the three scaled density functions, and comparing the two
density functions as described above, should be more accurate than using the
information in a residue specific way.
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Figure 3.3: Example of the density function of the target’s C’ shifts for a test
protein, σ = (0%, 37%, 63%), (original and corrected) and the corre-
sponding reference density function.

Accounting for the secondary structure ratio mentioned above is done by mul-
tiplying the density functions for each secondary structure state, derived from the
TALOS data set, by the ratio derived from the target protein. The final reference
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density function is then calculated as the sum of the three ratio-adjusted density
functions.

To evaluate the quality of a certain re-referencing offset, we now calculate the
averaged summed distance between the target and the reference density function.
This value is inversely proportional to the quality of the proposed offset.

3.2.3 Re-Referencing of Data Sets

The re-referencing is accomplished by searching for the optimal offset over a
range defined by the reference distribution, using an increment of 0.1 ppm. Sub-
sequently, all chemical shifts of the data set can be adjusted by adding the deter-
mined offset, effectively leading to a data set that is re-referenced to a consistent
standard. Additionally, this offset can be used to determine the actual referencing
method for a data set.

3.3 Results

The database RefDB [Zhang et al., 2003] uses a structure dependent approach
for re-referencing chemical shift data. This is done by comparing a data set
to chemical shift data derived from the mapped structure using SHIFTX [Neal
et al., 2003]. While this approach is reported to work well and is the established
standard, it is limited by the availability of structural data, which is not available
for 61% of data sets from the BMRB. Furthermore, some entries in the RefDB still
show inconsistencies after re-referencing due to insufficient handling of outliers;
chemical shifts that differ from those predicted by SHIFTX by more than four
times the expected SHIFTX root mean square error (e.g., 5.0 ppm for 13Cα)
do not contribute to the average that is compared to the average of SHIFTX
predictions. Data sets which differ strongly from IUPAC standard referencing
are therefore re-referenced by an offset that is too small. Here one should keep
in mind, that non-standard referencing may not only occurr due to the use of
another referencing compound. Offsets may also be induced through calculation
errors when the chemical shift data is prepared. The range of these calculation
errors may be much larger than the difference between the available reference
compounds.

Unlike the RefDB approach, Wang and Wishart [2005] introduced a protocol
for adjusting inconsistently referenced chemical shifts that does not depend on
structural data. 1Hα-chemical shifts are used to determine the secondary struc-
ture of the protein. Subsequently, the re-referencing offset for each chemical shift
is derived by comparison to a set of previously published averaged, secondary
structure-dependent chemical shifts. These offsets are averaged for each nucleus



3.3. Results 27

over all residues to yield a consensus re-referencing offset for each nucleus. The
re-referenced chemical shifts along with the original 1Hα-chemical shifts are then
used to derive the secondary structure and calculate the re-referencing offset as
described before. This last step is iterated twice. CheckShift differs from the
approach by Wang and Wishart [2005] in that overall shift distributions are com-
pared rather than individual shifts, and is therefore not exposed to errors in
secondary structure prediction for individual amino-acids.

Recently, LACS [Wang et al., 2005b] was developed, a method which calculates
re-referencing offsets based on secondary chemical shift values alone. LACS uses
linear equations to relate the differences between Cα and Cβ shifts to the chemical
shift value of Cα, Cβ , C’ and Hα. By solving these equations, the re-referencing
offset for the respective atoms may be calculated. Two constraints have to be
fulfilled for LACS to be applicable:

– Chemical shifts for Cα and Cβ have to be available.

– Cα and Cβ shifts have to be (mis-)referenced in the same way.

In comparison to LACS, CheckShift is not dependent on these constraints, which
proves valuable in cases where Cα or Cβ shifts are missing or have been referenced
differently. Additionally, CheckShift calculates reference corrections for N, which
is not possible using the LACS approach.

As it is often hard to check the reliability of chemical shift data, we used a set
of 11 target structures (see Table 3.1 for details) provided by the group of Prof.
Dr. Horst Kessler from the Technische Universität München for the performance
evaluation of CheckShift.

We introduce artificial referencing errors by adding the same offset (artificial
error) to all chemical shift values of the targets. This is fair with respect to
LACS (as this method is dependent on having the same referencing error for
Cα and Cβ), however, does not give any advantage to CheckShift as all atoms
are processed independently by our method. All multiples of 0.5 in the interval
[−5, 5] are used as artificial referencing errors. This way we end up with 220
target chemical shift sets with an artificial error, plus the original 11 chemical
shift sets. For each of these chemical shift sets, we calculate the root mean square
deviation (RMSD) between the error which was introduced and the negative re-
referencing offset calculated by the respective re-referencing methods. The results
of this evaluation are shown in Table 3.2. CheckShift strongly outperforms the
re-referencing method by Wang and Wishart [2005] and performs equivalently to
the LACS approach.

CheckShift’s calculations are based on a secondary structure prediction, which
is of course not free of error. Therefore, it is interesting to evaluate the dependence
of CheckShift on the correctness of the secondary structure assignment. Here, we
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Name Reference Length %Helix %Sheet %Coil

β-ADT Heller et al. [2004] 154 27 27 46
HAMP Hulko et al. [2006] 54 69 0 31
KdpB Haupt et al. [2006] 136 36 32 32
Mj0056 EMBO-J, in press 136 16 41 43
Ph1500N unpublished 83 13 41 46
PhS018 Coles et al. [2006] 92 22 52 26
VatN Coles et al. [1999] 185 15 36 49
josephin Nicastro et al. [2005], 182 38 20 42

Mao et al. [2005]

Table 3.1: The benchmark set used for performance evaluation. Three unpub-
lished chemical shift sets are not included in the table.

Method Cα Cβ C’ N

CheckShift 0.25 0.24 0.55 0.71
Wang and Wishart [2005] 0.81 0.59 1.42 1.12
LACS 0.20 0.20 0.66 n/a

Table 3.2: RMSD of the re-referencing errors.

use 8 target structures from our test set, for which three-dimensional structural
information is available (these are the ones listed in Table 3.1). The secondary
structure for these targets is calculated using STRIDE. Then a certain percentage
of the secondary structure assignments is falsified randomly. Therefore, a certain
percentage of the residues in the target are selected randomly. Subsequently, the
correct secondary structure assignment for these residues is changed to one of the
other two possibilities (e.g., helix might be changed to strand or coil, depending
on a random function). This way we generate a set of targets with a secondary
structure prediction correctness of 50%, 60%, 70%, 80%, 90%, and 100%. Then,
we evaluate CheckShift on all of these sets. The results (shown in Table 3.3)
reveal that the quality of Cα and Cβ corrections is slightly dependent on the
secondary structure assignment. For C’ and N offsets hardly any effect may be
observed. This proves empirically that CheckShift is stable with repect to errors
in secondary structure prediction of up to 50%, as none of the RMSD exceeds
0.7ppm even in the a case of highly unreliable predictions.
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✔(H,S,C) Cα Cβ C’ N

50% 0.53 0.41 0.69 0.48
60% 0.42 0.31 0.53 0.56
70% 0.29 0.26 0.47 0.32
80% 0.33 0.31 0.49 0.36
90% 0.23 0.22 0.44 0.53

100% 0.16 0.21 0.44 0.55

Table 3.3: RMSD of the re-referencing errors for different secondary structure
prediction error rates. The first column (✔(H,S,C)) shows the percentage
of correctly assigned secondary structure.

3.4 Discussion

Correct referencing of chemical shift data is vital for its further use. In the
scope of this work, a re-referencing protocol was developed, which does not use
structural information, as opposed to established approaches. For this purpose,
chemical shifts from a target protein are compared to chemical shift data from
a set of correctly referenced proteins by comparing the two datasets’ density
functions. Subsequently, the target chemical shifts are re-referenced by applying
an offset to the chemical shifts of the target. The offset that maximizes the
similarity between the target and reference chemical shift data is proposed as the
re-referencing offset.

By assessing the performance of this approach, it was found the CheckShift
performs very well in correcting referencing errors. CheckShift strongly out-
performs another structure-independent re-referencing protocol by Wang and
Wishart [2005]. The comparison to LACS, a recently proposed re-referencing
method, shows that CheckShift performs equivalently. Thereby CheckShift has
the advantage of being able to re-reference the chemical shift for each atom in-
dependently and to give re-referencing offsets for nitrogen atoms.

3.5 Availability

http://shifts.bio.ifi.lmu.de/checkshift





4 SimShift

4.1 Introduction

NMR spectroscopy is one of the most important methods for resolving structures
on an atomic level and has been successfully applied to macromolecules such as
proteins. Several problems arise on the way from the NMR experiment to the
full determination of the 3D coordinates of the structure. One of them is the
interpretation of the so-called chemical shifts. These are known to inherently
carry structural information. It is a difficult task to determine the topology of
the protein from the chemical shift data alone. This is therefore usually done
by incorporating (human) expert knowledge, in combination with modeling tools
and additional experiments — a time consuming process that may take up to
several months.

We present an approach (called SimShift) to identifying structural similarities
among two proteins by searching for similarities in the associated chemical shift
sequences. This is done by computing an alignment of the two sequences, the so-
called shift-alignment. The shift-alignment algorithm will be presented in Sec. 4.3.

The justification of our approach can be seen as follows: The chemical shift
for a certain nucleus is influenced by its environment. This is due to the fact
that surrounding electron clouds induce a local magnetic field which adds to or
subtracts from the field applied in the NMR experiment. This results in different
shifts for different environments. In a protein the chemical shift of an atom is
influenced by the type of amino acid it is part of and the electron clouds of atoms
which are close in space due to the tertiary structure of a protein. The influence
of the amino acid type may be removed by subtracting the so-called random coil
shifts, which give an average value for the chemical shift of a specific atom in a
certain amino acid. These normalized chemical shift values are called secondary
shifts. For a short introduction into NMR spectroscopy see Section 2.2.

We will empirically prove the claim that similarity of the shift sequences implies
similarity of the respective structures. To do so, in Sec. 4.2 we define a benchmark
set which we show to be hard for structure prediction. This set consists of pairs
of proteins which have high structural similarity (measured by the the MaxSub
score [Siew et al., 2000] of their best superposition) but low sequence similarity.
We choose the MaxSub score as a measure of structural correctness since it is

31



32 Chapter 4. SimShift

a good trade-off between the RMSD and the number of aligned residues (see
Section 2.11). In analogy to the definition of structural correctness, we define
sequence similarity as the MaxSub score of the superposition of the residue pairs
assigned by an amino acid sequence alignment algorithm. By performing the steps
presented in Sec. 4.2, it is possible to generate hard test sets for the evaluation
of protein prediction methods in general. Since the scientific community lacks a
clearly defined method for deriving benchmark sets for such a task, this can be
viewed as another important contribution of our research.

We show in Sec. 4.4 that SimShift is capable of detecting non-trivial structural
similarities. SimShift is always better than a mere secondary structure alignment
(SSEA), and beats HHsearch (a method that uses both primary and secondary
structure information) in more than 50% of all cases. This shows that our align-
ment quality is situated in the gap between methods that make use of sequence
and secondary structure information and high quality structure-structure align-
ments.

There exists one other prominent approach which aims at inferring struc-
tural information at this early stage of an NMR-experiment, namely TALOS
[Cornilescu et al., 1999]. The TALOS approach predicts backbone torsion angles
from chemical shifts and sequence information by making use of a database of
high quality X-ray structures and resonance assignments. This works roughly as
follows: A sliding window of length three is used to partition the input sequences
into triples. For each such a triple the database is then searched for similar triples
(in terms of sequence and shifts) for which the torsion angles are known, and the
best 10 matches are selected. On basis of their agreement the φ and ψ angles are
either calculated or the prediction is declined. If any, TALOS gives very accu-
rate predictions, which is the case for about 40% of all residues in the author’s
benchmark set (or 2/3 after optimization by a human expert). For more detailed
information on TALOS see Section 2.4.

SimShift is different from TALOS in the sense that it searches for similar struc-
tures rather than predicting the structure. It thus enables the construction of a
crude model of the query structure, even if there is no ”exact” match in the
database. This is the reason why we are not bound to using high-resolution X-
ray structures as templates, as it is the case for TALOS. Indeed, any structure
for which coordinates and chemical shifts are available may be used for compar-
ison. A comparison against TALOS reveals that the SimShift alignments result
in significantly better φ- and ψ-angle predictions for about half of the targets in
our test set.

A typical application of chemical shift alignments may be as follows: Having
measured the NMR shift data of a protein with unknown tertiary structure, the
obtained sequence is compared to a database of resolved proteins for which shift
data is also available. The unresolved protein is likely to be similar in structure
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to a protein whose shift values align well. So the three dimensional model of the
aligned residues of the known protein is a good starting point for resolving the
new structure.

In this chapter we concentrate our research on pairwise chemical shift align-
ments. Based on the result for pairwise comparisons, we then developed SimShiftDB,
a database search tool which fulfills the task sketched in the previous paragraph
(see Chapter 5 for details).

4.2 Selection of the Benchmark Set

Several constraints have to be considered for the benchmark set. First, the protein
pairs shall be similar in structure, however, amino acid sequence similarity shall be
low as otherwise the structural similarity would be easily detectable by an amino
acid sequence alignment. Additionally, chemical shift data has to be available
for each protein in the benchmark set. The selection of the benchmark set is
sketched in Fig. 4.1.

BMRB
3175 protein entries

1217 entries

585 entries

170820 pairs

2548 pairs

Blast: MaxSub < 0.05
with distance threshold = 3.5Å

Shifts for N and Cα

Mapping BMRB to ASTRAL

Calculate all possible pairs

CE: MaxSub > 0.4
with distance threshold = 5.0Å

Figure 4.1: Selection of the benchmark set.



34 Chapter 4. SimShift

4.2.1 Databases Used

All protein entries from BMRB [Seavey et al., 1991] for which N- and Cα-shifts are
available are used. The snapshot of the BMRB-database was taken on February
22th, 2005. From 3175 BMRB-entries of the proteins/peptide class, 1217 con-
tained chemical shift values for N and Cα for at least 80 residues.1 Apart from the
information on chemical shifts, each BMRB-entry also contains the corresponding
amino acid sequence, though their source (i.e., the protein where the sequence
was taken from) is not given in a regular way, sometimes even missing. To identify
protein structures corresponding to these amino acid sequences, a BLAST-search
[Altschul et al., 1990] against the sequences from the ASTRAL [Chandonia et al.,
2004] database is conducted for each BMRB-entry. If the full BMRB sequence
can be matched without gaps against an ASTRAL sequence, the corresponding
ASTRAL structure is assigned to the BMRB entry. After this selection procedure
we ended up with 585 structures that contain chemical shift values for N and Cα

and could be mapped to an ASTRAL entry.

As some entries in BMRB match more than one sequence in ASTRAL, one
representative structure has to be chosen. This is accomplished by using the
AEROSPACI score [Chandonia et al., 2004] provided for each ASTRAL entry.
The main contribution to the AEROSPACI score comes from the resolution of
the corresponding protein. Higher scores represent better resolutions. Therefore,
if more than one sequence from ASTRAL matches one BMRB sequence, the
structure with the highest AEROSPACI score is chosen. In general, chemical shift
data is not available for every residue in the structure. The matched structures
are cut at the beginning and the end to remove overhanging ends, for which no
chemical shift data is available.

To calculate the secondary structure assignment (needed in Phase 3 of the
algorithm), STRIDE [Frishman and Argos, 1995] was run on all structures in
ASTRAL. Via the mapping the assignment was transfered to the corresponding
residues in each BMRB entry.

4.2.2 Evaluating the Structural Correctness of Alignments

We will often need to measure the structural correctness of an alignment. The
following procedure is always used:

– Extract pairs of aligned residues from the alignment.

– Extract the coordinates of the Cα atoms from the tertiary structures.

1This threshold was chosen to exclude BMRB-entries consisting of just one secondary structure
element.
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– Superimpose the two point sets. Here we use the superposition algorithm
by Kabsch [1978] as it calculates the optimal superposition as according to
the RMSD between the aligned residues.

– Calculate the MaxSub-score [Siew et al., 2000] using a certain distance
threshold.

The latter is used as a measure of structural correctness of the alignment. This
procedure is chosen as in our work we are interested in detecting structural sim-
ilarity. Therefore, it is important to evaluate the structural correctness of the
alignments created. As we first optimize the superposition of the corresponding
protein structures based on RMSD (using the algorithm by Kabsch [1978]), but
evaluate the quality of the alignment using the MaxSub score, we additionally
avoid training SimShift to work well with just one specific scoring system.

4.2.3 Defining a Benchmark Set

Our aim is to show the algorithm’s ability to identify structural similarities in
pairs of proteins where sequence similarity is low. To create a test set with these
properties, we first compute all possible combinations of our 585 structures from
Sect. 4.2.1. Now, we select pairs that fulfill the following constraints:

Low predictability from the sequence. We calculate a BLAST pairwise align-
ment for all pairs. If a BLAST alignment has been found, we evaluate the
structural correctness of the alignment with the method from Sec. 4.2.2. We
keep all pairs that either do not have a BLAST alignment or whose BLAST
alignment has a MaxSub-score ≤ 0.05, where the distance threshold is 3.5Å.

Existence of structural similarity. The pairs to be finally used should have
some detectable structural similarity, despite of their low sequence simi-
larity. To identify such proteins pairs we calculate CE-alignments for all
remaining test pairs with the method presented by Shindyalov and Bourne
[1998]. The correctness of the alignment is again evaluated as described
in Sec. 4.2.2. We keep those pairs with a MaxSub-score > 0.4, where the
distance threshold is 5.0Å.

MaxSub is insensitive to small variation in the distance cutoff (see Section 2.11).
The value of 3.5 is chosen according to the recommendation by Siew et al. [2000].
For the second constraint, the cutoff value is slightly relaxed to include also more
distant structural similarities. The MaxSub cutoffs are adjusted to achieve a
reasonable size of the benchmark set, thereby being sure that a MaxSub score
of ≤ 0.05 does definitely describe a completely insignificant alignment, and that
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a MaxSub score of > 0.4 means there is definitely some detectable structural
similarity. The set of pairs that passed these two criteria consists of 2548 pairs
which are built from 417 structures. Their average number of residues is 117,
with a standard deviation of 38. As we imposed a minimum length restriction
(see Section 4.2.1) none of the structures has less than 80 residues.

4.3 The Shift-Alignment Algorithm

For the algorithm presented in this section we will use the shift-values of the Cα-
and the N-atoms (from the backbone of the protein). The algorithm takes two
amino-acid sequences s = s1 . . . sn and t = t1 . . . tm and the shift-values of the
respective Cα- and the N-atoms and returns a list of aligned amino-acids. This
is done in three phases that are explained in the next subsections.

4.3.1 Phase 1: Calculation of the Shift-Difference Matrix

For the shift-values of the Cα-atoms, we compute the distance for each possible
pairing of the amino-acids and store the result in a shift-difference matrix MCα

,
MN , and i.e., for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, we calculate

MCα
[i][j] = |δCα

(ti)− δCα
(sj)|,

MN [i][j] = |δN(ti)− δN(sj)|,
(4.1)

where δCα
(ti) and δN (ti) are the secondary shifts of the Cα and N atoms of

residue i in sequence t, respectively. The shift-difference matrix MN is computed
accordingly for the δN -values. We stress the fact that the shift-difference matrices
are only of conceptual nature and need not be calculated explicitly. Nevertheless,
they facilitate the understanding of the algorithm. The secondary shift values
are obtained using the random coil shifts from Wishart et al. [1995b]. For the
15N random coil shift in Proline (not available from Wishart et al. [1995b]), we
take the results from Braun et al. [1994].

4.3.2 Phase 2: Find Good Blocks

We now wish to find a set of blocks {bh} that represents “good” local alignments
(without gaps) of substrings from s and t. More formally, a block b is defined
as a triple (i, j, k) with 1 ≤ i ≤ m − k + 1 and 1 ≤ j ≤ n − k + 1, where the
intended meaning is that ti . . . ti+k−1 aligns with sj . . . sj+k−1. For simplicity of
notation, for a given block b = (i, j, k), we define the block extents Xmin(b) = j,
Ymin(b) = i, Xmax(b) = j + k − 1, and Ymax(b) = i+ k − 1.
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Two restrictions are placed on these blocks. First, they should fulfill a minimum
length criterion, so we require that k ≥ l for some minimum length l. Second, all
aligned amino-acids should have “similar”shift-values for both the Cα- and the N-
atom, i.e. MCα

[i+p][j+p] ≤ γCα
and MN [i+p][j+p] ≤ γN for all 0 ≤ p < k. We

further require the extent of blocks to be maximal, i.e. MCα
[Ymin(b)−1][Xmin(b)−

1] > γCα
or MN [Ymin(b)− 1][Xmin(b)− 1] > γN and likewise for the other end of

the block (Xmax(b) + 1, Ymax(b) + 1). The values γCα
and γN are called cutoff -

parameters. A graphical depiction of this concept can be found in Fig. 4.2. For
the rest of this section, we denote by n′ the number of blocks that have been
found in Phase 2.

4.3.3 Phase 3: Concatenation of Blocks

In this step, multiple local alignments are concatenated to a global alignment
consisting of more than one block. To find the best global alignment, a positive
score (representing the block’s global correctness) is first associated with each
block. To calculate this score, we re-use the idea of secondary shifts; here, how-
ever, we normalize not only according to the amino acid type, but also according
to the protein’s secondary structure. This increases the influence of long-range
interactions on the score. For normalization, we calculate z-scores using the aver-
aged β-strand, random-coil, and α-helix shifts, as well as the according standard
deviations from Wang and Jardetzky [2002]. To calculate a specific block score,
we calculate the N and Cα differences between the normalized chemical shifts
and sum them over all residue pairs in the block. A more formal definition of the
block score is given in the following paragraph.

Defining ζ to be the chemical shift value that is normalized according to sec-
ondary structure and amino acid type, we set

M = max
c(i,j,k)∈{b1,...,bn′},

r∈{0,...,k−1}

{

|ζN(ti+r)− ζN(sj+r)| + |ζCα
(ti+r)− ζCα

(sj+r)|
}

,

which is the maximum of all pairwise differences in the set of blocks that has
been found in Phase 2. We then define the score s of a block (i, j, k) as

s(i, j, k) =

k−1
∑

r=0

(

M − |ζN(ti+r)− ζN(sj+r)| − |ζCα
(ti+r)− ζCα

(sj+r)|
)

.

The effect of this formula is that the pair scores are inverted and moved to
the positive range to associate the highest score with the best pair. Using these
scores, we apply the following algorithm to identify the highest scoring block
chain.
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Figure 4.2: Blocks in the alignment matrix: thick lines represent “good” local
alignments in the sense of Sec. 4.3.2. The block extents for a block b
are also depicted.
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Figure 4.3: A global alignment (highlighted) constructed from good blocks. Dot-
ted lines represent gaps in either of the sequences.

For a given set of blocks {bh}, a block chain B is defined as a non-overlapping
sequence of blocks bh1

, . . . , bhr
, where “non-overlapping” means that Xmax(bhq

) <
Xmin(bhq+1

) and Ymax(bhq
) < Ymin(bhq+1

) for all 1 ≤ q ≤ r. The block score is
extended in a natural way to block chains by setting s(B) =

∑r
q=1 s(bq). The

optimal block chain is the one with maximal score. See Fig. 4.3 for an example.
Further, the block extents are extended to block chains by defining Ymin(B) to be
the minimum of all Ymin’s in B, and likewise for the other extents Ymax, Xmin and
Xmax.

Algorithm 1 is used to compute the optimal block chain for a set of n′ blocks.
It is a straightforward adaption of the algorithm by Joseph et al. [1992].2 We note
that with an efficient implementation of the setD the running time of Algorithm 1

2In line 11 of Alg. 1 we corrected a slight mistake in the original algorithm Joseph et al. [1992]
by comparing Ymin(Bc) to Ymin(bj) instead of Ymax(bj).
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is O(n′ log n′). As phases 1 and 2 can both be implemented in O(nm), the total
running time of the shift-alignment algorithm is O(nm + n′ logn′). Although
this term may be as high as O(nm log (nm)), it will be O(nm) even for slightly
“restrictive” choices of the parameters l, γCα

and γN , because with few blocks
calculated in Phase 2 the n′ logn′-term is asymptotically less than the nm-term.

Algorithm 1 Chaining Algorithm
1: initialize D as an empty list
2: letX = {x1, . . . , x2n′} be the list of pointsXmin andXmax, sorted in decreasing

order
3: for i = 1, . . . , 2n′ do
4: if xi = Xmax(bj) for some j then
5: Bc ← first block-chain in D such that Ymin(Bc) > Ymax(bj)
6: if Bc = ∅ then
7: Bj = {bj} {start new block chain}
8: else
9: Bj = {bj}+Bc

10: else if xi = Xmin(bj) for some j then
11: Bc ← first block-chain in D such that Ymin(Bc) ≥ Ymin(bj)
12: if Bc = ∅ or s(Bc) ≤ s(Bj) then
13: insert Bj into D s.th. ∀ 1 ≤ k < |D|:

Ymin(D[k]) ≤ Ymin(D[k + 1]) and
s(D[k]) ≥ s(D[k + 1])

14: for all B↓ ∈ D\Bj do
15: if Ymin(B↓) ≤ Ymin(Bj) and

s(B↓) < s(Bj) then
16: remove B↓ from D
17: return D

4.3.4 Parameter Optimization

The performance of the algorithm is highly dependent on the choice of the mini-
mum length restriction l and the cut-off parameters γCα

and γN . Since it is hard
to predict which combination of the three values yields the best alignments, we
try all combinations of the three parameters in the range l ∈ {3, 4, . . . , 17} and
γCα

, γN ∈ {2.0, 2.5, 3.0, . . . , 10.0}. The average difference between the MaxSub-
scores of SimShift and CE is used for ranking the parameter combinations.

Several combinations of the parameters yield equally good scores. Among
those, we inspected some by hand and found a clear influence of the parameters on
the RMSD and the length of the alignment: Lowering γCα

and γN and increasing
l yields shorter alignments with a better RMSD, whereas raising the cut-offs
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and lowering the minimal block length yields longer alignments with a higher
RMSD. In the following, we use the cut-off values γN = 5.5, γCα

= 3.5 and a
minimum blocks length of 12, which seems to be a reasonable tradeoff between
specificity and sensitivity. In practice, one might start searching a database of
secondary shift sequences with a target sequence using very strict parameters. If
no satisfactory answer is found, one might start loosening parameters. That way,
some similarity to another structure may be found in any case; however, one has
to keep in mind that the probability of achieving a correct structural alignment
declines.

4.4 Results

4.4.1 Comparison to SSEA and HHsearch

We compare SimShift to SSEA [Fontana et al., 2005] and HHsearch [Söding, 2005].
The former is used to rule out the possibility that SimShift does a mere alignment
of secondary structure elements, the latter because it is a state-of-the-art method
that incorporates both sequence and secondary structure information. We use
the benchmark set from Sect. 4.2 for comparison.3 In each pair of this set, one
structure is used as a template, the other as a target. For SSEA and HHsearch,
the secondary structure of the target is computed by PSIPRED [Jones, 1999],
whereas for SimShift it is computed by the method of [Wishart et al., 1992]. In a
second comparison, we used the predictions given by [Wishart et al., 1992] for all
methods, however, this yielded worse results for both SSEA and HHsearch. The
secondary structure of the template is calculated by STRIDE for all methods. We
only compare alignments where all three methods produce a non-empty result.
Therefore, the number of pairs is reduced to 1373. For the comparison a MaxSub
score with a distance threshold of 5.0Å is used.

Fig. 4.4 and Fig. 4.6 show the percentage of pairs where SimShift is better
than SSEA (top line) or HHsearch (bottom line). SimShift is substantially
better than SSEA, revealing that the method achieves more than a mere sec-
ondary structure element alignment. Regarding the comparison to HHsearch,
note that in the region where the pairs do not have a global structural similarity
(.4 ≤ CE MaxSub < .58), SimShift is significantly better. However, with rising
structural similarity, HHsearch plays off its strength.

We are further interested in the gain in alignment quality, one can achieve
by analyzing chemical shifts in addition to primary and/or secondary structure.
Therefore, we investigate those cases where SimShift is better than both of the

3This is admissible because the cutoff parameters for SimShift were optimized against the
CE-alignment (see Sec. 4.3.4), whereas here we compare to different methods.
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Figure 4.4: The performance of SimShift compared to SSEA and HHsearch.
The secondary structure for SSEA and HHsearch is calculated us-
ing PSIPRED. The actual structural similarity of the pairs is plotted
against the percentage of alignments where SimShift achieves a higher
MaxSub score than SSEA or HHsearch, respectively. Note that each
segment is the average over 137 pairs, so the step-width of the x-axis
is not linear.
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Figure 4.5: Average MaxSub scores for CE, SimShift, HHsearch and SSEA for
pairs where SimShift outperforms the other two methods. The
secondary structure for SSEA and HHsearch is calculated using
PSIPRED. The x-axis is equivalent to Figure 4.4.
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Figure 4.6: The performance of SimShift compared to SSEA and HHsearch. The
secondary structure for all methods is calculated using CSI. The ac-
tual structural similarity of the pairs is plotted against the percentage
of alignments where SimShift achieves a higher MaxSub score than
SSEA or HHsearch, respectively. Note that each segment is the aver-
age over 123 pairs, so the step-width of the x-axis is not linear.
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Figure 4.7: Average MaxSub scores for CE, SimShift, HHsearch and SSEA for
pairs where SimShift outperforms the other two methods. The sec-
ondary structure for all methods is calculated using CSI. The x-axis
is equivalent to Figure 4.6.
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other methods. The results can be seen in Fig. 4.5 and Fig. 4.7 (bottom 3 lines).
It shows that the average MaxSub score of the alignments made by our method
is much better than the average scores of SSEA’s and HHsearch’s alignments. In
fact, SimShift is about 3 times better than SSEA, and about twice as good as
HHsearch.

We further plot the average MaxSub scores of the respective CE-alignments in
the graph of Fig. 8 (top line). It is interesting to see that it is much lower than
the average score of the whole segments on the x-axis. This emphasizes the fact
that SimShift is especially useful in cases where structural similarity is not very
high and the performance of other methods decreases.

4.4.2 Comparison to TALOS

As TALOS predicts backbone angles rather than producing an alignment, it was
impossible to include it in the tests of the previous section. Nevertheless, as
the ultimate goal of this work is to be able to do homology modeling based on
chemical shift alignments, it is important to evaluate if there are cases where
SimShift is able to provide higher quality torsion angle predictions than TALOS.

Therefore, we split the proteins in the benchmark set into two parts: Of each
pair, one protein is classified as being the modeling target and the other is used
as a potential template. This leaves us with a set of 363 target proteins, each one
having at least one associated template structure.

Because the true structure of our targets is known, we can compare the RMSDs
of the backbone angles of the best alignment produced by SimShift to the pre-
dictions made by TALOS. Thereby, we use only residues where both methods
provide torsion angles. Of all 363 targets, 178 have a better RMSD for both
the φ- and the ψ-angle. The average RMSD-difference for those where SimShift
is better is 18.18◦ for φ, and even 45.58◦ for ψ. This shows that SimShift can
be useful for assisting the structure resolution process even in the presence of
TALOS.

4.5 Discussion

We aimed at answering the question: “Is it possible to create structurally correct
alignments from chemical shift data alone, when sequence similarity is low?” We
argued that this is indeed the case. Through the comparison to other methods we
also motivated that information about long range interactions can be extracted
from chemical shift data and may be used to create structurally meaningful align-
ments.



46 Chapter 4. SimShift

The shift data used here is derived from the BMRB, which is known to contain
high quality as well as low quality entries. We were interested in the performance
of our approach on experimental data, we therefore did not include any interme-
diate processing steps. Additionally, because there is only a limited number of
proteins with associated chemical shifts, it is not advisable to reduce this set even
more by restricting oneself to confirmed high quality entries. As the performance
presented here was achieved on shifts probably containing erroneous data, one
can expect even more accurate alignments when using curated shift data.

What has been presented is a first step towards automating the structure de-
termination process with NMR spectroscopy. Chemical shift alignments can be
a useful tool for the spectroscopist who starts searching a database of chemical
shifts before performing additional experiments. If similarities can be identified
a model for the protein of interest may be created. Through comparison to NOE
maps, for example, it is possible to validate (or invalidate) the model.

There is still some work to do towards automating structure determination.
In the following chapter we present SimShiftDB, a database search tool based
on chemical shift alignments. Using the similarities identified by our database
search we are able to infer structural information from database proteins to the
target protein we are working on. We also apply a statistical model to assess the
significance of each similarity identified.



5 SimShiftDB

5.1 Introduction

NMR Spectroscopy is an established method to resolve protein structures on an
atomic level. The NMR structure determination process consists of several steps,
varying in complexity. A quantity that is measured routinely in the beginning is
the chemical shift. Chemical shifts are available on a per atom basis and inher-
ently carry structural information. Chemical shifts in general do not suffice to
calculate the structure of biological macromolecules, such as proteins. Additional
experiments of increased complexity and human expert knowledge are necessary
to obtain the solution.

In Chapter 4, the performance of a pairwise chemical shift alignment algorithm
was evaluated. We were able to show that it is indeed possible to utilize the infor-
mation hidden in the chemical shift data for constructing structurally meaningful
alignments. Now we present a method (called SimShiftDB) that searches for sim-
ilarities between a target protein with assigned chemical shifts and a database
of template proteins for which both chemical shift data and 3D coordinates are
available. The alignment algorithm used in the previous chapter was adapted to
fit the requirements of database searching. Also additional constraints derived
from the template structure have been incorporated into the calculations.

For each target-template-pair we calculate a chemical shift alignment. These
alignments map a set of residues from the target to a set of residues from the
template structure. Therefore, we can build a structural model for the aligned
residues from the target based on the coordinates of the associated residues from
the template. To give the spectroscopist the possibility to judge over the statis-
tical significance of a certain alignment with shift similarity score S, we calculate
the expectation of the number of alignments with score ≥ S occurring by chance.

To evaluate the performance of our approach, we compare the backbone angle
prediction quality of our method to 123D [Alexandrov et al., 1996], a threading
approach, and to TALOS [Cornilescu et al., 1999], which tries to calculate back-
bone angles from the amino acid sequence and associated chemical shift data.
We are able to prove empirically that 123D is outperformed significantly by our
method. When comparing to TALOS, SimShiftDB performs significantly bet-
ter for 36% of the target’s residues. Our result suggests that both TALOS and
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SimShiftDB have their strengths and, therefore, should be used in parallel in the
NMR structure determination process.

In the following we describe the template database, the chemical shifts substi-
tution matrices used for scoring chemical shift alignments, the calculation of the
expected value and the SimShiftDB algorithm. Afterwards, the results on our
test set will be presented and discussed.

5.2 The Template Database

The BMRB [Seavey et al., 1991] is the main repository for protein chemical shift
data. However, to date there are only 3750 structure in the proteins/peptide class,
which corresponds to about 10% of the structures deposited in PDB. Additionally,
there is no standard set of chemical shifts which has to be available for each entry,
e.g., one entry may contain only 1H chemical shifts while for a different one just
15N chemical shifts are available. Finally, as pointed out by Zhang et al. [2003]
various errors occur in the data. These problems led us to the conclusion to use
a different template database.

Chemical shifts for all structures in the ASTRAL [Chandonia et al., 2004]
database are calculated using SHIFTX [Neal et al., 2003]. Chemical shifts pre-
dicted with SHIFTX correlate strongly with measured data. It is also shown that
the agreement between observed and calculated chemical shifts is an extremely
sensitive measure to assess the quality of protein structures (for more information
on SHIFTX see Section 2.3). This approach leaves us with a database containing
64,839 proteins with known 3D structure and associated chemical shifts.

5.3 Substitution Matrices for Shift Data

In order to identify pairs of amino acids with associated chemical shifts which are
likely to be structurally equivalent, we derive substitution matrices for chemical
shifts using the modus operandi described by Henikoff and Henikoff [1992]. There-
fore, a Standard of Truth is needed for the calculation of the matrix values. We
rely on the DALI database [Holm and Sander, 1996] containing a set of 188,620
structure-based alignments. Through a sequence-similarity-search [Altschul et al.,
1990] we map all sequences being part of a DALI alignment to our template
database.

For each amino acid, we calculate the minimal and maximal chemical shift of
1Hα, 13Cα, 13Cβ, and 13C in our template database. Then we divide the range
between minimum and maximum into two equal parts. This enables us to classify
each chemical shift as either weak (situated in the first part of the range) or strong.
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It is convenient to define a new alphabet on proteins with associated chemical
shift sequences, namely ΣS . A letter A in this alphabet is a tuple (a, s1, s2, s3, s4),
where a is the corresponding amino acid identifier and s1, s2, s3, s4 are the classi-
fications for the corresponding shifts for 1Hα, 13Cα, 13Cβ , and 13C, respectively.

We derive the relative frequencies of each of the letters in the template database,
denoted by pA. Additionally, we calculate the relative frequencies of all substitu-
tion events, denoted by qA,B, which is the relative frequency of letters A and B
being aligned in the DALI database. To account for the bias of overrepresented
folds, we use pseudo counts to give each fold type an equal weight. To do so,
each alignment is identified with the fold type associated to the first sequence
according to the SCOP [Murzin et al., 1995] classification.

Then, we calculate the well-known log-odds scores [Henikoff and Henikoff, 1992]

oA,B = log

(

qA,B

eA,B

)

, (5.1)

where

eA,B =

{

2 ∗ pA ∗ pB if A 6= B,
p2
A otherwise.

(5.2)

Finally the log-odds scores are multiplied with a normalization factor η and
rounded to the nearest integer. The shift substitution matrix entries sA,B are
then formally defined as

sA,B = ⌊oA,B ∗ η + 0.5⌋. (5.3)

Here the parameter η is set to 10. This value was chosen based on a thorough
inspection of the values oA,B, thereby trying to sacrifice as little information as
possible.

5.4 E-Values for Chemical Shift Alignments

A shift alignment produced by SimShiftDB is a set of local ungapped alignments
which do not overlap. Karlin and Altschul [1993] derive a p-value for multiple
ungapped alignments which may be ordered consistently (see page 5874, section
Consistently Ordered Segment Pairs in Sequence Alignments for details). For this
p-value two statistical parameters (λ, κ) have to be calculated.

We use the method described by Karlin and Altschul [1990] to obtain these
parameters. Formally λ is defined as the unique positive solution of the equation

∑

A,B∈ΣS

pT

A ∗ p
D

B ∗ e
λ∗sA,B = 1, (5.4)
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where pT

A is the probability that the letter A occurs in the target sequence and
pD

B is the probability that letter B occurs in the template database.

The parameter κ is calculated as

κ = eγ ∗
δ

(1− e−λ∗δ) ∗ E[S[1]eλ∗S[1]]
, (5.5)

with

γ = −2 ∗
∞

∑

k=1

1

k
(E[eλ∗S[k]|S[k] < 0] + P (S[k] ≥ 0)) (5.6)

and

δ = gcd{sA,B | A,B ∈ ΣS}. (5.7)

Here, S[k] is a random variable representing the sum of the pair scores of an
alignment of length k. For further details, we refer to [Karlin and Altschul, 1990].

Using λ, κ as described above, we can normalize the score of an ungapped
chemical shift alignment A as follows. Let SA be the sum of the pairwise scores
of the aligned letters from ΣS. The normalized score S ′

A is then defined as

S ′
A = λ ∗ SA − ln(n ∗m ∗ κ), (5.8)

where n is the length of the target sequence and m is the length of the template
sequence.

According to Karlin and Altschul [1993], we can calculate the probability that
a number of consistently ordered alignments A1, . . . , Ar with summed normalized
score at least T ′ occurs by chance as

P (T ′, r) =

∫ ∞

T ′+ln(r!)

e−t

r!(r − 2)!

∫ ∞

0

yr−1e−e
y−t

r dy dt, (5.9)

with

T ′ =

r
∑

i=1

S ′
Ai
. (5.10)

Note that we start integrating not from T ′, but we add the value ln(r!). This is
due to the fact that in our case the ungapped alignments are ordered consistently.
The original theory is based on the assumption that the r ungapped alignments
need not be ordered. As we apply the additional constraint of consistent ordering,
we effectively divide the solution space by r!. This is accomplished by shifting
the lower bound of the integral by ln(r!), as due to the properties of the p.d.f.
this divides P (T ′, r) by r!.
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However, one problem remains. P (T ′, r) does not take into account the database
size. Therefore, we additionally calculate the expected number of alignments in
our search space with a score not less than the score of the alignment of interest:

E(T ′, r) = P (T ′, r) ∗
N

m
. (5.11)

Here m is the length of the template sequence and N is the number of letters in
the database. E(T ′, r) is the e-value we use to assess the statistical significance
of the chemical shift alignments.

5.5 The Shift Alignment Algorithm

We design a two step algorithm to build a chemical shift alignment for two se-
quences from the alphabet ΣS. Initially, a set of local ungapped alignments is
constructed. Then we search for a best legal combination of a subset of these
alignments.

5.5.1 Step 1: Calculate local alignments

We construct the pair score matrix containing scores for all pairs of letters A and
B, where A is a letter of the target and B is a letter of the template sequence.
The score for each pairing is sA,B as defined in Equ. (5.3). Then we apply an algo-
rithm [Ruzzo and Tompa, 1999] which identifies all maximal scoring subsequences
(MSS ) on each diagonal in linear time. An MSS is defined as follows.

Definition 2. Let a = (a1, . . . , an) ∈ R
n and a′ = (ai, . . . , aj) be a subsequence

of a. a′ is a maximal scoring subsequence if and only if

(1) All proper subsequences of a′ have lower score.

(2) No proper supersequence of a′ contained in a satisfies (1) .

These conditions uniquely define all MSS in a given sequence. Additionally, it
is easily proved that MSS may not overlap.

Here we choose MSS instead of the cutoff approach used in Chapter 4 as with
the MSS it is possible to bridge few residues with low pair score, as long as the
summed score of the diagonal segment is maximal. This strongly increases the
sensitivity of the first step of the algorithm An MSS can also be interpreted as
a local ungapped alignment and will be called a block from now on. Note that
the algorithm only identifies MSSs with score greater than zero. Additionally,
we remove all MSSs of length ≤ 5. This cutoff is chosen as similar regions of
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length ≤ 5 are likely to occur very often, thereby having a low significance. In
the following chapter it is actually shown that SimShiftDB is stable with respect
to small variations in the minimum length restriction.

5.5.2 Step 2: Identify the best legal combination

We now build a DAG (directed acyclic graph) in which the blocks correspond to
the nodes in the graph. Two blocks may be combined if they are connected by
an edge in this graph. Two constraints have to be fulfilled for two blocks (B1 and
B2) to be connected by an edge from B1 to B2:

1. B1 and B2 may not overlap, neither in the target nor in the template
sequence. Additionally, B1 has to appear before B2 in the target as well as
in the template.

2. Let d be the number of residues in the target sequence between the end of
B1 and the beginning of B2. Let L be the last residue from the first block
in the template sequence and F be the first residue from the second block
in the template sequence (see Fig. 5.1). We require the residues L and F
not to be further apart in the structure than the maximal distance that
could be bridged by a polypeptide chain of d residues. Here it is assumed
that the maximal distance between two Cα atoms in the polypeptide chain
is 4.0Å.

We also add an artificial start node to the DAG from which every other node
may be reached.

Fig. 5.1 shows an example of a block matrix with blocks B1 and B2 fulfilling
constraint 1 and the corresponding check of constraint 2 in the template structure.
In this example, d has to be at least 2, if blocks B1 and B2 are to be connected
by an edge in the DAG.

In the DAG we then weigh each node with the normalized score (as defined in
Equ. (5.8)) of the corresponding block. Then Procedure 2 identifies the optimal
path in the DAG. This will be explained in more detail in the following paragraph.

The idea of the algorithm is as follows. Beginning from the artificial start
node, we perform a depth first search (DFS ) in the DAG identifying the lowest
scoring path according to P (T ′, r). However, P (T ′, r) is not only dependent on
the summed score of the blocks but also on r, the length of the path (number of
nodes in the path ≡ number blocks in the alignment). When reaching a node v
in the DFS, it is impossible to determine the overall best successor for this node.
However, when the number of allowed successors of v in the path is fixed, the
solution may be found. Therefore, we do not save a single best successor for each
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Figure 5.1: A block matrix with a gap of length d in the target sequence high-
lighted and the corresponding gap in the structure of the template.
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Procedure 2 DFS which fills the array succ

/* adj . . . adjacency list of the nodes in the graph
visited . . . array of boolean variables saving the DFS status of each node
v . . . current node looked at in the graph
succ . . . two dimensional array saving the optimal successors */

def SimShiftDB DFS(adj,visited,v,succ)
1: best succ ← [] /*empty array*/
2: for w in adj[v] do
3: if visited[w] = 0 then
4: SimShiftDB DFS(adj,visited,w,succ)
5: /*merge arrays best succ and succ[w] favoring higher scoring paths*/
6: best succ ← merge(best succ, succ[w])
7: visited[v] ← 1
8: for k in best succ do
9: succ[v][k+1] ← best succ[k]

node, but we keep an array of optimal successors, for each possible number of
succeeding blocks, named succ in Procedure 2 (succ[v][3], for example, saves the
optimal successors of v given that v is first node in a path consisting of three
blocks). After the DFS finishes, succ[start] contains a list of pointers, pointing to
the start node of the optimal path for each possible path length. Finally, we select
the combination of blocks (path) achieving the lowest p-value from succ[start].
The worst case running time of Procedure 2 is O(e ∗ (n + m)) with e being the
number of edges in the DAG and n and m being the length of the target and the
length of the template, respectively. Note that the DAG is sparsely connected
and therefore in practice e is in the order of (n +m)2.

To give a simple estimation of SimShiftDB’s running time in practice, we apply
the algorithm to our set of target proteins (average length of 122 residues) and
calculate the average time per protein. In our implementation one database1

search on an standard laptop (Intel T2500, 2.0 GHz, 1 GB RAM) takes about 10
minutes. By discarding longer blocks in Step 1 of the algorithm the running time
may be strongly decreased. Discarding all blocks with a length less than 10, for
example, results in a strong running time decrease to about 1 minute per protein.

164839 proteins with an average length of 183 residues
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5.6 Results

5.6.1 Evaluation of the Modeling Performance

To evaluate the performance of our algorithm, we compare our method to 123D,
an established threading method, and the standard tool used by spectroscopists
working with chemical shifts, namely TALOS. Our target set has to fulfill two
constraints:

– The chemical shift data shall be of high quality (not corrupted by errors as
noted by Zhang et al. [2003]).

– Chemical shifts for 1H, 13Cα, 13Cβ and 13C’ have to be available, as the
substitution score is calculated based on these values.

As it is often hard to check the reliability of chemical shift data, we use a set
of six target structures which were provided by the group of Prof. Dr. Horst
Kessler from the Technische Universität München. The data for PH1500-N (un-
published), HAMP [Hulko et al., 2006] , PHS018 [Coles et al., 2006], KDP [Haupt
et al., 2004] and VAT-N [Coles et al., 1999] was measured directly by this group.
The data for JOSEPHIN [Nicastro et al., 2005], which was solved by a different
group, was checked for its correctness. As all of these structures were recently
resolved, three dimensional data is also available. This way we can reliably check
the quality of our predictions. The set-up of our experiment is as follows:

– It is required that all methods give torsion angle prediction for at least 80%
of the target protein. For 123D and SimShiftDB, we sort the alignments
produced by the quality score of the respective method (alignment score for
123D and e-value for SimShiftDB) and take as many alignments (starting
from the best) as necessary such that at least 80% of the residues of the
target protein have an assigned residue from a template structure. The
assignment is done favoring alignments with better score if a residue from
the target structure is assigned multiple times in separate alignments. Con-
cerning the comparison of SimShiftDB to 123D, we additionally discard all
alignments with sequence identity ≥ 90% to remove trivial solutions. As
TALOS predicts backbone torsion angles for all residues of the target, no
additional work is required in this case.

– To evaluate the torsion angle predictions, we build a model for the torsion
angles from the target structure (using the torsion angles of the assigned
residues from the templates). Then we calculate the torsion angles for our
target using STRIDE [Frishman and Argos, 1995]. Now it is possible to
assess the average error in torsion angle prediction by using the STRIDE
calculations as a Standard of Truth.
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Fig. 5.2 and Fig. 5.3 show the percentage of torsion angles per structure where
SimShiftDB outperforms 123D and TALOS (for Φ and Ψ angles, respectively).
SimShiftDB outperforms 123D in 62% and 69% of all cases and 35% and 36% of
all backbone torsion angles predicted by SimShiftDB have a smaller error than
those predicted by TALOS. To check that the difference between TALOS and
SimShiftDB is not just marginal, we calculate the mean error of both methods
for the cases where SimShiftDB outperforms TALOS (see Fig. 5.4 and 5.5 for
Details). SimShiftDB reduces the error (compared to TALOS) by more than
60%.

5.6.2 Evaluation of the P-Value Correctness

Two sets, S1 and S2, of random chemical shift alignments are constructed as fol-
lows. Step 1 of the SimShiftDB algorithm is performed for each target-template-
pair. Based on the identified blocks, two DAGs, namely G1 and G2, are build. In
G2 nodes which fulfill constraints 1 and 2 (see page 52) are connected, whereas
in G1 constraint 1 has to be fulfilled only. Then ten nodes are drawn from each
DAG without replacement. For every node n, we construct a random path in the
DAG starting in n until we reach a node with outdegree zero. Each prefix of the
path in G1 (or G2) yields an alignment, which is added to S1 (or S2, respectively).

Using the procedure decribed above, we are able to construct random align-
ments which are built of up to seven blocks. For each constructed alignment from
S1 or S2, we calculate the empirical p-value and compare it to the theoretical p-
value. The results of this comparison for alignments consisting of one to seven
blocks are shown in Appendix B and C, for S1 and S2, respectively. The empirical
p-value is always less than the theoretical p-value for both sets. Therefore, the
theoretical p-value provides a conservative estimate, both in theory and practice.

5.7 Discussion

We developed a method which builds models for target proteins of unknown struc-
ture using chemical shift data measured in NMR Spectroscopy. The method has
been evaluated on a small, but very reliable test set. From the results presented
in the last section, we draw the following conclusions:

– SimShiftDB strongly outperforms methods which are based on amino acid
sequence information alone and should therefore be used whenever chemical
shift data is available.

– When comparing to TALOS, both methods show their strength. However,
SimShiftDB is able to outperform TALOS in a significant number of cases.



5.7. Discussion 57

Figure 5.2: Percentage of Φ-angle prediction where SimShiftDB outperforms
123D and TALOS
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Figure 5.3: Percentage of Ψ-angle predictions where SimShiftDB outperforms
123D and TALOS
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Figure 5.4: Φ-angle error compared to STRIDE for those prediction where
SimShiftDB outperforms TALOS
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Figure 5.5: Ψ-angle error compared to STRIDE for those prediction where
SimShiftDB outperforms TALOS
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As also described in Chapter 3 chemical shift data is often inconsistently ref-
erenced, which may strongly influence the quality of any further data analysis.
Many approaches as TALOS or PSSI2 [Wang and Jardetzky, 2002] use simple
re-referencing protocols which are applied before the actual method. In the next
chapter, we present the Chemical Shift Pipeline, a combination of CheckShift and
SimShiftDB. Using this combination, wrongly referenced chemical shifts data does
not hamper the quality of SimShiftDB’s results any more. Therefore, we are now
able to define a larger benchmark set based on entries from the BMRB database.
We also calculate a set of different chemical shift substitution matrices and pro-
pose a ”best” matrix based on the results for the proteins in the benchmark set.

5.8 Availability

http://shifts.bio.ifi.lmu.de/

2A method which calculates secondary structure based on chemical shifts





6 The Chemical Shift Pipeline

6.1 Introduction

In this chapter, the main result of this work, the so-called Chemical Shift Pipeline,
is presented. The Chemical Shift Pipeline combines CheckShift and SimShiftDB,
to increase the performance of the homology modeling procedure, making it in-
sensitive to inconsistent referencing. Additionally, the SimShiftDB algorithm is
extended, being able to cope with missing chemical shift values in a better way.

As seen in Chapter 5, some parameters have to be defined for SimShiftDB to
run, the most influential being the chemical shift substitution matrix. Here we
compile a set of 17 chemical shift substitution matrices to test whether the per-
formance of the SimShiftDB may be improved, by using the ”right” substitution
matrix. It is always an issue to define a measure of correctness for chemical shift
alignments. Therefore, a benchmark set of 144 (sufficiently large) proteins is de-
rived, where both chemical shifts and structural data are available. Subsequently,
different parameter combinations are evaluated on the benchmark set. Finally
the performance of the different parameter settings is presented and the ”best”
setting is proposed.

6.2 Coping with Missing Chemical Shift Data

As for all data from the laboratory, chemical shift data may not only be error-
prone (see Chapter 3), but also simply missing. It is always a difficult question,
how to cope with missing data. Especially when working with chemical shifts, it
seems worthwhile spending some time on this issue. To give an example, if the Cα

and Cβ shift are given and only the C’ shift is missing, it is somewhat uneconomic
to mark the whole residue as unusable. Therefore, a different alphabet for amino
acids with associated chemical shifts is defined, where chemical shifts may not
only be week or strong, but also missing. A residue with a missing C’ shift is now
not unusable, but induces only a different lookup in the chemical shift substitution
matrix. As the chemical shifts substitution matrices are built from different sets
of reference alignments, one has to keep in mind that the larger the alphabet
gets, the worse is the statistical conditioning. Therefore, we do not allow letters
in out alphabet in which more than three chemical shift values are available.
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Residue Pair:

C Cβ Cα N H Hα Hα H N Cα Cβ C

2 0 1 1 1 0 L A 0 0 1 2 0 1

Highest Priority Mask (Number 39):

Hα H N Cα Cβ C

✘ ✘ ✘

Masked Residues:

Cβ H Hα Hα H Cβ

0 1 0 L A 0 0 0

Matrix Lookup:

190%[39][010L-A000] = −4

Figure 6.1: Example of the similarity score retrieval.

In practice masks are defined for every legal subset of the available chemical
shift values (see Table 6.1). If two residues A and B shall be compared, the
highest priority mask, which may be applied to both A and B (thereby not
masking shift values that are missing), is identified. Now the chemical shift
substitution matrix for this mask is selected and the similarity score is retrieved
(see Figure 6.1 for an example). The chemical shift priority is defined as follows:
Cα has the highest priority, followed by Cβ , C’, Hα, H and N. These priorities
were selected based on the experience of several researchers working in NMR
Spectroscopy. Based on the constraints imposed, it is not necessary to calculate
and fill a matrix containing (20 · 36)2 = 212.576.400 elements, however, we need
only

(

6
3

)

+
(

6
2

)

+
(

6
1

)

= 20+15+6 = 41 matrices (one for every legal mask) of size
(20 · 23)2 = 25.600, which multiplies to a total of 1.049.600 matrix elements.

6.3 Chemical Shift Substitution Matrices

As described in Section 5.3, the chemical shift substitution matrices are calculated
based on a set of protein-proteins alignments which are assumed to be correct.
Various source for alignments exist. Three sets of alignments were selected based
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Table 6.1: Masks used for selection of certain chemical shift values.

Hα H N Cα Cβ C

1 ✘

2 ✘

3 ✘ ✘

4 ✘

5 ✘ ✘

6 ✘ ✘

7 ✘ ✘ ✘

8 ✘

9 ✘ ✘

10 ✘ ✘

11 ✘ ✘ ✘

12 ✘ ✘

13 ✘ ✘ ✘

14 ✘ ✘ ✘

15 ✘

16 ✘ ✘

17 ✘ ✘

18 ✘ ✘ ✘

19 ✘ ✘

20 ✘ ✘ ✘

21 ✘ ✘ ✘

22 ✘ ✘

23 ✘ ✘ ✘

24 ✘ ✘ ✘

25 ✘ ✘ ✘

26 ✘

27 ✘ ✘

28 ✘ ✘

29 ✘ ✘ ✘

30 ✘ ✘

31 ✘ ✘ ✘

32 ✘ ✘ ✘

33 ✘ ✘

34 ✘ ✘ ✘

35 ✘ ✘ ✘

36 ✘ ✘ ✘

37 ✘ ✘

38 ✘ ✘ ✘

39 ✘ ✘ ✘

40 ✘ ✘ ✘

41 ✘ ✘ ✘
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on an extensive literature research. All three are tested as possible basis for the
chemical shifts substitution matrices:

1. A set of protein family alignments where families correspond to the protein
domain sets as defined by the SCOP [Murzin et al., 1995] classification.

2. A set of multiple alignments of protein families, defined through structural
similarity calculated using the CE [Shindyalov and Bourne, 1998] algorithm.

3. The S4 set of alignments [Casbon and Saqi, 2005] which consists of mul-
tiple alignments of proteins classified as being in the same superfamily as
according to the SCOP classification.

Sets 1 and 2 are available from the DMAPS database [Guda et al., 2006].

By further restricting sets 1 and 2 to include only alignments which do not
excess as certain sequence identity, 17 sets were compiled from these three data
sources (for set 3 this restriction is not needed, as according to [Casbon and
Saqi, 2005] all alignments have ≤ 40% equal residues). Thereby the following
values were used as cutoffs for the maximal sequence identity: 30%, 40%, 50%,
60%, 70%, 80%, 90%, 100%. Now for every set we calculate the chemical shift
substitution matrices in the following way:

1. Minimal and maximal shifts for each atom and residue type are retrieved
from the template database described in Section 5.2.

2. For every amino acid and every atom type, we divide the range between
the minimal and the maximal shift observed into two parts. Every shift
associated to a residue in a reference alignment is then converted into a
integer value, being either weak (0) (situated in the lower part of the range),
strong (1) (situated in the upper part of the range), or missing (2). This
discrete representation of chemical shifts together with the amino acid type
is then used as a letter in our sequence alphabet (see Table 6.2 for an
example).

3. Then the relative frequencies of each pair of lettersA,B (qA,B) are calculated
from the reference alignments (see Figure 6.2). For each family of the
respective alignment sets, we add pseudo counts, thereby removing the bias
introduced by the over-representation of certain protein families.

4. The relative frequencies of each letter A occurring independently (pA) are
derived from the back calculated chemical shifts in the template database.

5. Finally log-odds scores are calculated for every combination of two letters
A and B:

oA,B = log

(

qA,B

eA,B

)

, (6.1)
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where

eA,B =

{

2 ∗ pA ∗ pB if A 6= B,
p2
A otherwise.

(6.2)

The log-odds scores are multiplied with a normalization factor η and rounded
to the nearest integer. The shift substitution matrix entries sA,B are then
formally defined as

sA,B = ⌊oA,B ∗ η + 0.5⌋. (6.3)

Here we set the value of η equal to 10. This value was chosen based on a
thorough inspection of the values oA,B, trying to sacrifice as little informa-
tion as possible.

Note that steps 3, 4 and 5 are executed for every mask shown in Table 6.1.

6.4 The Benchmark Set

To test the performance of the Chemical Shift Pipeline, a benchmark set has to
be defined for which both chemical shifts and the three-dimensional structure of
the protein are available. The BMRB [Seavey et al., 1991] is the main public
repository for chemical shift data1. However, there is no consistent mapping
to PDB, therefore making it difficult to relate structural with chemical shift
information reliably. Therefore, a mapping between BMRB and ASTRAL is
calculated based on amino acid sequence similarity. Every entry in the benchmark
set has to fulfill the following constraints.

– A 100% sequence match to an ASTRAL entry.

– At least 100 residues with associated chemical shifts, to exclude very short
protein fragments (e.g., single helices)

The mapping procedure used here is the same as described in Section 4.2.1.
Based on these constraints a set of 144 chemical shift set was derived. The
benchmark set is listed in Appendix D. For each member we show the corre-
sponding ASTRAL and BMRB identifier, its secondary structure composition
and its length.

6.5 Results

To evaluate the performance of the different chemical shift substitution matrices,
the chemical shift pipeline is applied to all entries in the benchmark set: At first all

1The snapshot of the BMRB used here was taken on the 11th of June, 2007
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Table 6.2: Reference alignment with associated shifts (floating point value and
their discrete equivalents).

1ar5b EKDLAFNLAGHVNHSVFWKNMAP
1qnna EGGIFNNAGQTLNHNLYFTQFRP

C Cβ Cα N H Hα Hα H N Cα Cβ C
Floating point values:
175.2 33.6 55.0 119.8 8.0 4.5 E E 4.1 8.5 118.7 59.0 29.3 179.2
176.1 n/a 46.2 109.0 8.7 4.1 G K 4.1 7.9 120.0 59.4 32.3 178.6
175.2 n/a 48.0 105.2 8.8 3.7 G D 4.5 8.5 119.6 57.1 40.6 178.6
178.1 37.2 64.2 121.5 7.7 3.7 I L 3.9 8.2 120.6 58.1 42.2 178.8
176.8 39.2 60.7 122.5 7.8 4.0 F A 4.0 8.0 120.7 55.1 18.3 179.3
177.2 38.4 56.6 116.3 8.4 4.1 N F 4.1 8.6 119.4 61.7 39.3 n/a
177.5 38.6 56.0 117.2 n/a 4.2 N N 4.2 8.2 116.0 56.1 38.4 177.3
179.9 18.4 54.9 122.5 8.0 3.9 A L 3.7 8.2 121.9 58.0 42.1 178.9
176.0 n/a 47.9 104.6 7.9 3.0 G A 4.0 8.0 120.9 n/a 18.2 179.9
179.0 28.5 58.5 120.6 7.5 3.8 Q G 2.6 7.4 104.4 47.7 n/a 175.5
176.4 68.6 66.5 116.9 7.6 3.9 T H 4.3 8.1 120.8 59.0 30.1 177.5
178.4 42.0 58.2 122.3 7.9 3.9 L V 3.4 7.9 120.4 66.1 31.4 177.7
177.2 38.5 57.1 116.7 8.3 4.2 N N 4.1 8.1 116.4 56.8 38.4 177.2
177.7 28.5 58.7 117.1 8.3 4.0 H H 3.6 7.9 117.4 58.5 28.6 178.1
177.4 38.2 56.5 118.5 8.4 4.5 N S 4.3 8.0 117.2 61.6 62.6 176.9
178.7 41.9 57.5 119.2 7.8 4.1 L V 3.6 7.6 120.6 65.7 31.1 177.6
178.2 38.6 60.9 119.7 8.1 4.0 Y F 4.2 7.7 119.5 61.3 39.2 176.9
176.4 39.2 60.5 117.8 8.4 4.6 F W 4.8 7.7 118.2 60.1 28.7 178.8
175.1 69.0 62.1 107.3 7.6 4.4 T K 4.2 7.6 116.2 59.1 31.6 178.6
175.4 29.3 56.3 119.7 7.3 4.2 Q N 4.6 8.1 115.2 54.0 38.7 174.5
175.2 41.3 56.4 117.1 7.5 5.2 F M 4.8 6.9 119.1 53.6 35.3 174.6
173.5 33.9 54.3 120.6 8.1 4.6 R A 4.3 7.8 120.6 50.5 21.9 174.7
176.6 32.1 63.0 n/a n/a 4.3 P P 4.2 n/a n/a 62.2 31.9 176.7

Associated discrete values:
0 1 0 0 1 1 E E 0 1 0 1 0 1
1 0 1 0 1 1 G K 0 0 0 1 0 1
1 0 1 0 1 0 G D 1 1 0 1 0 1
1 0 1 1 0 0 I L 0 1 1 1 0 1
1 0 1 1 0 0 F A 0 0 0 1 0 1
1 0 1 0 1 0 N F 0 1 0 1 0 2
1 0 1 0 2 1 N N 1 1 0 1 0 1
1 0 1 1 0 0 A L 0 1 1 1 0 1
1 0 1 0 0 0 G A 0 0 0 2 0 1
1 0 1 1 0 0 Q G 0 0 0 1 0 1
1 0 1 1 0 0 T H 1 0 1 1 0 1
1 0 1 1 0 0 L V 0 0 1 1 0 1
1 0 1 0 1 1 N N 0 1 0 1 0 1
1 0 1 0 0 0 H H 0 0 0 1 0 1
1 0 1 0 1 1 N S 1 0 0 1 0 1
1 0 1 0 0 1 L V 0 0 1 1 0 1
1 0 1 0 1 0 Y F 1 0 0 1 0 1
1 0 1 0 1 1 F W 1 0 0 1 0 1
1 0 0 0 0 1 T K 1 0 0 1 0 1
0 0 0 0 0 1 Q N 1 1 0 1 0 0
1 1 1 0 0 1 F M 1 0 0 0 1 0
0 1 0 1 0 1 R A 1 0 0 0 1 0
0 0 0 0 0 1 P P 1 0 0 0 0 0
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Mask (Number 21):

Hα H N Cα Cβ C

✘ ✘ ✘

Aligned Residues:

C Cβ Cα N H Hα Hα H N Cα Cβ C
1 0 1 1 0 0 F A 0 0 0 1 0 1
1 0 1 1 1 0 L A 0 0 1 1 0 1
1 0 1 0 1 0 N F 0 1 0 1 0 2
1 0 1 0 2 1 N N 1 1 0 1 0 1
1 0 1 1 0 0 A L 0 1 1 1 0 1
1 0 1 0 0 0 G A 0 0 0 2 0 1
1 0 1 1 0 0 Q G 0 0 0 1 0 1

Masked Aligned Residues:

Cβ Cα H H Cα Cβ

0 1 0 F A 0 1 0
0 1 1 L A 0 1 0
0 1 1 N F 1 1 0
0 1 0 A L 1 1 0
0 1 0 Q G 0 1 0

Relative frequencies:

q21(010A-F010) =
1

5

q21(010F-N110) =
1

5

q21(010A-L110) =
2

5

q21(010G-Q010) =
1

5

Figure 6.2: Example of the calculation of pairwise relative frequencies for mask
number 21.
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targets are re-referenced using CheckShift (see Chapter 3). Then SimShiftDB is
run for each target. This is repeated with all chemical shift substitution matrices
calculated. All results were calculated 6 times with the minimal block length
parameter varying from 5 to 10. However, as there were essentially no differences,
for the sake of simplicity, we only present the results for the minimal block length
set to 10. Subsequently, we analyze all alignments which achieve an e-value
of at most 10−3. Then we use these alignments to infer torsion angles for the
target from the associated residues of the template. It is extremely interesting to
evaluate the performance of SimShiftDB also in cases where sequence similarity
is low. Therefore, 8 evaluations were performed, for each of which a different
maximum sequence similarity in the evaluated alignment was defined. Alignments
exceeding the maximum sequence similarity were excluded from the evaluation.

Some notations are defined for the presentation of the results:

– Torsion angles with an error of less than or equal to 15◦ are considered
correct (marked as ✔Φ, ✔Ψ in the tables).

– Torsion angles with an error of more than 30◦ are considered completely
wrong (marked as ✖Φ, ✖Ψ in the tables).

– Sequence identity is defined as the percentage of identical residues in the
alignment. Therefore, the number of aligned residue pairs which are iden-
tical is derived and divided by the number of all amino acid pairs in the
alignment.

– The rows in the result tables correspond to different substitution matrices.
The number relates to the associated alignment set (as listed in Section 6.3).
The subscript describes the maximal sequence identity in the alignments
used to calculate the pairwise frequencies. For example the row marked with
190% gives the results for the matrix calculate from the SCOP alignments
taken from the DMAPS database with a maximal sequence identity of 90%.

In Tables E.1 to E.8, the results of the evaluation of the Chemical Shift Pipeline
on the benchmark set are given. The rows in the tables are ordered by the
percentage of correct Φ angle predictions (which correlates strongly with Ψ angle
correctness). The column C give the percentage of the number of target residues
for which a prediction has been made. In the columns ∆Φ, ∆Ψ the averaged error
of all torsion angle predictions is shown. From this evaluation, we propose to use
the matrix 190% (highlighted with a gray background) as it gives a good tradeoff
between sensitivity and specificity.

What is also interesting is the performance of the Chemical Shift Pipeline on
different types of secondary structure. As the three dimensional structure of
all proteins in the benchmark set is known, every target residue can be classi-
fied as being part of on of the three secondary structure states: H - Helix, S -
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Sheet, C - Coil. The secondary structure for the target is calculated again using
STRIDE [Frishman and Argos, 1995], and the 5 letter secondary structure code
produced is subsequently converted to the three states, by defining G, I and H as
helix, B and E as sheet, and everything else as coil. In Table 6.3 the secondary
structure percentage in correct and completely wrong predictions is listed for
every maximal sequence identity in the alignments. As the secondary structure
prior in the test set is 38%, 24%, and 37%, for helix, sheet, and coil, respectively,
one can say that the predictions for sheet match well with the percentage induced
by the bias of the benchmark set. What can also be derived is that the percentage
of correct predicions in helix increases, whereas the corresponding percentage in
coil regions decreases. This seems very logical, as coil regions as often measured
incorrectly and are definitly harder to predict than the very well structured helix
regions. This test proves empirically, that the Chemical Shift Pipeline has no
bias when comparing helix to sheet performance.

6.6 Discussion

What has been presented is a new way to analyze chemical shift data, leading
to the creation of a three dimensional model for a target protein at an early
stage of the NMR experiments. It has been shown that the Chemical Shift
Pipeline produces high quality alignments, even in cases where sequence simi-
larity is low. Using the e-value as a tool to separate the wheat from the chaff
results in highly reliable predictions. We are convinced that the availability of the
Chemical Shift Pipeline will support researchers in NMR spectroscopy, thereby
significantly speeding up the structure solving process.

6.7 Availability

http://shifts.bio.ifi.lmu.de/
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Table 6.3: Secondary structure percentage in correct and completely wrong pre-
dictions for 190%. The prior percentage of secondary structure in the
benchmark set is 38%, 24%, 37%, for helix, sheet and coil, respec-
tively. The first column (≤Id.) gives the maximal sequence identity for
the evaluated alignments. In the upper part we show the secondary
structure percentage of correct predictions (✔Φ, ✔Ψ) in the lower part
of the table the corresponding percentages for completely wrong pre-
dictions (✖Φ, ✖Ψ) are shown.

≤Id. ✔ΦH ✔ΦS ✔ΦC ✔ΨH ✔ΨS ✔ΨC

30% 64% 21% 15% 63% 23% 14%
40% 56% 26% 18% 55% 27% 18%

50% 54% 25% 21% 53% 27% 21%
60% 51% 25% 24% 50% 27% 24%

70% 49% 25% 26% 48% 26% 26%
80% 48% 25% 27% 47% 27% 26%

90% 48% 24% 27% 47% 26% 26%
100% 46% 25% 29% 46% 26% 29%

✖ΦH ✖ΦS ✖ΦC ✖ΨH ✖ΨS ✖ΨC

30% 17% 31% 52% 21% 27% 52%
40% 15% 32% 53% 17% 29% 54%

50% 13% 31% 56% 16% 28% 56%
60% 14% 29% 57% 16% 26% 58%
70% 14% 29% 58% 16% 25% 59%

80% 15% 28% 57% 17% 25% 59%
90% 15% 28% 58% 16% 25% 59%

100% 14% 28% 57% 16% 25% 59%



7 Outlook

What has been presented is a new way to identify structural homologues for
proteins of interest, which is solely based on analyzing amino acid sequence and
chemical shift data. It has been shown that SimShiftDB, given an additional
automatic reference correction using CheckShift, achieves highly accurate predic-
tions. What remains is the question: Where to go from now on?

If we were to define the ultimate goal of analyzing protein chemical shifts,
the answer gives us a ’déjà écouté’-feeling. As many people who analyze the
amino acid sequence of proteins, we want to find a way to get straight from the
chemical shifts to the three-dimensional structure. Is this realistic? Definitely not
in a general sense! However, we are convinced that using SimShiftDB the range
of structures which can be modeled is strongly expanded. To get a high quality
structure out of a SimShiftDB database search, structural constraints, extracted
from several alignments, have to be combined. Subsequently, the resulting crude
model has to be refined to yield a realistic three dimensional protein structure.
Finding the best combination and refinement procedures is exactly where further
research is headed.
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A SHIFTX Supplementary Material

Residue Target Partner

All CA N
All HA CA
All but PRO H N

ALA HB1 CB
ALA HB2 CB
ALA HB3 CB
ARG HB2 CB
ARG HB3 CB
ARG HD2 CD
ARG HD3 CD
ARG HE NE
ARG HG2 CG
ARG HG3 CG
ARG HH11 NH1
ARG HH12 NH1
ARG HH21 NH2
ARG HH22 NH2
ASN HB2 CB
ASN HB3 CB
ASN HD21 ND2
ASN HD22 ND2
ASP HB2 CB
ASP HB3 CB
ASP HD2 OD2
CYS HB2 CB
CYS HB3 CB
CYS HG SG
GLN HB2 CB
GLN HB3 CB

continued on next page
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continued from previous page

Residue Target Partner

GLN HE21 NE2
GLN HE22 NE2
GLN HG2 CG
GLN HG3 CG
GLU HB2 CB
GLU HB3 CB
GLU HE2 OE2
GLU HG2 CG
GLU HG3 CG
GLY HA2 CA
GLY HA3 CA
HIS HB2 CB
HIS HB3 CB
HIS HD1 ND1
HIS HD2 CD2
HIS HE1 CE1
HIS HE2 NE2
ILE HB CB
ILE HD1 CD1
ILE HD2 CD1
ILE HD3 CD1
ILE HG12 CG1
ILE HG13 CG1
ILE HG21 CG2
ILE HG22 CG2
ILE HG23 CG2
LEU HB2 CB
LEU HB3 CB
LEU HD11 CD1
LEU HD12 CD1
LEU HD13 CD1
LEU HD21 CD2
LEU HD22 CD2
LEU HD23 CD2
LEU HG CG
LYS HB2 CB
LYS HB3 CB

continued on next page
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continued from previous page

Residue Target Partner

LYS HD2 CD
LYS HD3 CD
LYS HE2 CE
LYS HE3 CE
LYS HG2 CG
LYS HG3 CG
LYS HZ1 NZ
LYS HZ2 NZ
LYS HZ3 NZ
MET HB2 CB
MET HB3 CB
MET HE1 CE
MET HE2 CE
MET HE3 CE
MET HG2 CG
MET HG3 CG
PHE HB2 CB
PHE HB3 CB
PHE HD1 CD1
PHE HD2 CD2
PHE HE1 CE1
PHE HE2 CE2
PHE HZ CZ
PRO HB2 CB
PRO HB3 CB
PRO HD2 CD
PRO HD3 CD
PRO HG2 CG
PRO HG3 CG
SER HB2 CB
SER HB3 CB
SER HG OG
THR HB CB
THR HG1 OG1
THR HG21 CG2
THR HG22 CG2
THR HG23 CG2

continued on next page
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continued from previous page

Residue Target Partner

TRP HB2 CB
TRP HB3 CB
TRP HD1 CD1
TRP HE1 NE1
TRP HE3 CE3
TRP HH2 C22
TRP HZ2 CZ2
TRP HZ3 CZ3
TYR HB2 CB
TYR HB3 CB
TYR HD1 CD1
TYR HD2 CD2
TYR HE1 CE1
TYR HE2 CE2
TYR HH OH
VAL HB CB
VAL HG11 CG1
VAL HG12 CG1
VAL HG13 CG1
VAL HG21 CG2
VAL HG22 CG2
VAL HG23 CG2

Table A.1: Target and partner atoms for electric field effects calculation.



B Empirical vs. Theoretical
P-Values for Set S1

Figure B.1: Alignments consisting of one block (3,654,077 data points)
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86 Chapter B. Empirical vs. Theoretical P-Values for Set S1

Figure B.2: Alignments consisting of two blocks (2,260,265 data points)
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Figure B.3: Alignments consisting of three blocks (638,037 data points)
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Figure B.4: Alignments consisting of four blocks (96,385 data points)
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Figure B.5: Alignments consisting of five blocks (8,941 data points)
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88 Chapter B. Empirical vs. Theoretical P-Values for Set S1

Figure B.6: Alignments consisting of six blocks (461 data points)
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Figure B.7: Alignments consisting of seven blocks (10 data points)
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C Empirical vs. Theoretical
P-Values for Set S2

Figure C.1: Alignments consisting of one block (3,654,077 data points)
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90 Chapter C. Empirical vs. Theoretical P-Values for Set S2

Figure C.2: Alignments consisting of two blocks (2,190,528 data points)
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Figure C.3: Alignments consisting of tHree blocks (574,503 data points)
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Figure C.4: Alignments consisting of four blocks (77,692 data points)
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Figure C.5: Alignments consisting of five blocks (6,037 data points)
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92 Chapter C. Empirical vs. Theoretical P-Values for Set S2

Figure C.6: Alignments consisting of six blocks (241 data points)
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Figure C.7: Alignments consisting of seven blocks (4 data points)
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D The Benchmark Set

BMRB Id. Shift Set ASTRAL Id. %H %S %C Length

274 1 d1wejf_ 44 3 53 102
385 1 d7rsa__ 22 35 43 122
434 1 d2i1b__ 1 51 48 152
435 1 d2i1b__ 1 52 47 151
443 1 d7rsa__ 22 35 43 124
915 1 d1l58__ 66 9 25 161
975 1 d1brsb_ 23 22 55 110

1061 1 d2i1b__ 1 51 48 153
1062 1 d2i1b__ 1 51 48 152
1093 1 d4lzt__ 46 9 45 125
1170 1 d1wejf_ 44 4 52 100
1657 1 d2rn2__ 37 32 31 155
1672 1 d256bb_ 83 0 17 104
1766 1 d1noa__ 0 57 43 113
2059 1 d1id2c_ 2 50 48 105
2208 1 d1w8ma_ 14 37 49 162
2542 1 d1jsf__ 45 11 44 127
2868 1 d1irda_ 78 0 22 105
3442 1 d1irda_ 79 0 21 103
4022 1 d1czm__ 14 32 54 259
4031 1 d7rsa__ 22 35 43 124
4038 1 d1jl6a_ 78 0 22 147
4056 1 d1lin__ 60 5 35 141
4061 1 d1bzpa_ 80 0 20 150
4062 1 d1bzpa_ 79 0 21 147
4077 1 d1fkf__ 13 42 45 107
4082 1 d1fil__ 27 31 42 138
4083 1 d3chy__ 45 17 38 127
4129 1 d2scpb_ 67 3 30 170

continued on next page
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continued from previous page

BMRB Id. Shift Set ASTRAL Id. %H %S %C Length

4132 1 d1u9aa_ 36 21 43 157
4173 1 d1g49b_ 24 19 57 169
4186 1 d1cbs__ 13 58 29 131
4189 1 d1wejf_ 43 3 54 104
4291 1 d2cthb_ 24 9 67 107
4293 1 d1fsjb_ 37 18 45 129
4299 1 d1q0na_ 31 29 40 149
4300 1 d1q0na_ 31 29 40 154
4331 1 d2sici_ 16 33 51 104
4352 1 d1fsjb_ 38 18 44 133
4364 1 d1g49b_ 25 19 56 159
4411 1 d1tgj__ 18 47 35 101
4421 1 d1gxqa_ 39 24 37 103
4472 1 d3chy__ 46 17 37 128
4554 1 d1ddrb_ 24 35 41 159
4562 1 d4lzt__ 45 9 46 129
4568 1 d1bzpa_ 80 0 20 153
4573 1 d1dhn__ 37 32 31 116
4580 2 d2dlfl_ 2 52 46 112
4676 1 d1bzpa_ 80 0 20 152
4679 1 d830cb_ 26 18 56 154
4681 1 d1opbd_ 12 58 30 133
4681 3 d1opbd_ 12 59 29 132
4682 2 d1opbd_ 12 58 30 133
4682 3 d1opbd_ 12 59 29 132
4761 1 d1cpq__ 75 1 24 129
4767 1 d256bb_ 82 0 18 105
4837 1 d1gu2a_ 47 6 47 124
4848 1 d1g6sa_ 31 30 39 232
4854 1 d1g6sa_ 31 30 39 233
4876 1 d1el1b_ 40 9 51 130
4883 1 d1qqya_ 41 8 51 126
4887 1 d1qqya_ 41 8 51 126
4943 1 d4lzt__ 46 9 45 128
4943 2 d4lzt__ 46 9 45 128
4964 1 d1brsb_ 23 22 55 110
4980 1 d1y92b_ 25 34 41 123

continued on next page
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continued from previous page

BMRB Id. Shift Set ASTRAL Id. %H %S %C Length

5011 1 d1rcf__ 38 23 39 145
5026 1 d1wejf_ 43 3 54 103
5064 1 d1gnua_ 29 25 46 101
5068 1 d4lzt__ 46 9 45 128
5069 1 d4lzt__ 50 8 42 110
5083 1 d1b56__ 15 61 24 133
5123 1 d1jsf__ 47 9 44 123
5124 1 d1oua__ 44 11 45 127
5125 1 d1jsf__ 46 11 43 125
5128 1 d1gnua_ 28 25 47 103
5130 1 d1jsf__ 44 10 46 130
5142 1 d1jsf__ 44 10 46 130
5169 1 d1i4fb_ 0 49 51 100
5222 1 d1ezka_ 37 23 40 142
5231 1 d1g49b_ 26 19 55 153
5239 1 d2cthb_ 24 9 67 105
5244 1 d2end__ 54 2 44 137
5269 1 d1s69a_ 75 0 25 123
5287 1 d1lin__ 59 5 36 144
5333 1 d1j0oa_ 27 11 62 107
5343 1 d1noa__ 0 57 43 113
5344 1 d1noa__ 0 60 40 105
5350 1 d5pnt__ 45 16 39 147
5372 1 d1wejf_ 43 3 54 104
5393 1 d1s0pb_ 78 1 21 174
5404 1 d1g2ac_ 30 34 36 146
5474 1 d1eena_ 46 17 37 244
5497 1 d1uc7b_ 42 17 41 122
5512 1 d1tw4b_ 12 60 28 125
5540 1 d1bu5b_ 39 25 36 147
5571 1 d1bu5b_ 39 25 36 147
5578 1 d1crb__ 11 55 34 134
5579 1 d1crb__ 11 55 34 134
5625 1 d2cthb_ 24 9 67 107
5679 1 d1v6wb1 11 42 47 128
5740 1 d1ra9__ 25 34 41 156
5741 1 d1ra9__ 26 34 40 158

continued on next page
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continued from previous page

BMRB Id. Shift Set ASTRAL Id. %H %S %C Length

5759 1 d1dz4b_ 45 15 40 175
5761 1 d1gyva_ 2 59 39 115
5803 1 d4lzt__ 47 8 45 118
5854 1 d1kqpb_ 56 7 37 265
5856 1 d1irda_ 81 0 19 138
5856 2 d1irdb_ 78 0 22 145
5921 1 d1vc1b_ 43 26 31 110
5969 1 d1noa__ 0 57 43 113
5981 1 d1s3va_ 20 35 45 186
6223 1 d1p6oa_ 50 19 31 150
6230 1 d1irdb_ 77 0 23 104
6230 3 d1irdb_ 77 0 23 104
6232 1 d1vc1b_ 44 27 29 104
6292 1 d1jiwi_ 11 51 38 104
6313 1 d1dqeb_ 69 1 30 128
6321 1 d1otba_ 28 38 34 100
6357 1 d1xpb__ 46 17 37 262
6444 1 d1rmza_ 27 18 55 154
6494 1 d1dbfc_ 33 25 42 127
6495 1 d1dbfc_ 33 25 42 127
6496 1 d1dbfc_ 33 27 40 118
6572 1 d1j0oa_ 28 10 62 101
6622 1 d4lzt__ 42 10 48 113
6642 1 d1tw4b_ 12 59 29 121
6807 1 d3mbp__ 46 21 33 363
6888 1 d1noa__ 0 58 42 110
7003 1 d1byqa_ 42 25 33 190
7107 1 d1b56__ 15 62 23 132
7125 1 d1irda_ 80 0 20 137
7125 2 d1irdb_ 78 0 22 145
7126 1 d1brsb_ 23 22 55 109
7133 1 d1i58a_ 54 24 22 115
7234 1 d1o08a_ 53 10 37 220
7235 1 d1o08a_ 57 11 32 196
7293 1 d1omra_ 66 4 30 177
7355 1 d1icm__ 12 61 27 121
7356 1 d1icm__ 12 60 28 131

continued on next page
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BMRB Id. Shift Set ASTRAL Id. %H %S %C Length

7357 1 d1icm__ 11 61 28 129
15066 1 d1sw0b_ 49 12 39 220
15067 1 d1sw0b_ 47 13 40 206
15082 1 d1icm__ 12 60 28 131

Table D.1: The Benchmark Set for the Chemical Shift Pipeline.





E Chemical Shift Pipeline Results

Table E.1: Result using only alignments with at most 30% sequence identity.

Set ∆Φ ∆Ψ ✔Φ ✔Ψ ✖Φ ✖Ψ C

2100% 17 22 73 70 11 13 12
190% 18 23 70 68 12 14 28

180% 20 25 69 66 14 16 33
170% 21 27 67 65 15 17 38
290% 22 29 66 64 16 19 42

160% 21 28 67 64 15 18 42
280% 22 30 65 63 17 19 46

270% 23 30 65 63 17 20 47
150% 23 30 65 63 17 19 44

260% 23 31 64 62 18 20 49
140% 23 31 65 62 17 20 45

240% 24 33 63 61 19 22 50
250% 24 32 64 61 18 21 50
130% 24 32 64 61 18 21 47

3100% 25 33 63 60 19 22 51
230% 25 34 62 59 20 23 52

1100% n/a
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Table E.2: Result using only alignments with at most 40% sequence identity.

Set ∆Φ ∆Ψ ✔Φ ✔Ψ ✖Φ ✖Ψ C

2100% 16 21 71 70 10 12 27

190% 18 23 70 69 12 14 45
180% 19 25 69 68 13 15 51
1100% 15 25 70 68 8 12 3

160% 20 27 68 67 14 16 53
170% 19 26 69 67 13 15 52

290% 20 27 68 66 14 16 54
280% 21 28 67 65 15 17 55

150% 21 29 67 65 15 18 54
270% 22 29 66 64 16 18 56

260% 22 30 66 64 16 19 56
140% 22 30 66 64 16 19 53
3100% 23 32 65 63 17 20 57

250% 23 31 65 63 17 20 57
240% 23 32 65 63 17 20 57

130% 22 31 66 63 16 20 55
230% 24 33 64 61 18 21 58
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Table E.3: Result using only alignments with at most 50% sequence identity.

Set ∆Φ ∆Ψ ✔Φ ✔Ψ ✖Φ ✖Ψ C

1100% 14 19 74 74 8 9 19

2100% 17 21 72 72 10 11 41
190% 18 23 71 70 11 13 54
180% 18 24 70 69 12 14 57

170% 19 25 69 68 13 15 58
160% 19 26 69 68 13 15 59

290% 20 26 69 67 13 16 59
270% 21 28 67 66 15 17 60

280% 20 27 68 66 14 17 60
150% 20 27 68 66 14 17 60

260% 21 29 67 65 15 18 61
140% 21 28 67 65 15 18 59
3100% 22 30 66 64 16 19 61

250% 22 30 66 64 16 19 61
240% 22 30 66 64 16 19 61

130% 22 29 67 64 15 19 60
230% 23 31 65 63 17 20 61
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Table E.4: Result using only alignments with at most 60% sequence identity.

Set ∆Φ ∆Ψ ✔Φ ✔Ψ ✖Φ ✖Ψ C

1100% 14 18 76 76 7 8 34

2100% 16 20 74 73 9 10 52
190% 17 22 73 72 10 12 60
180% 17 23 72 71 11 13 62

160% 18 24 71 70 12 14 63
170% 18 23 71 70 11 13 62

290% 18 24 70 69 12 14 63
280% 19 25 70 68 13 15 64

270% 20 26 69 68 13 15 64
150% 19 26 70 68 13 15 63

140% 19 26 69 68 13 16 63
260% 20 27 69 67 14 16 64
250% 20 28 68 67 14 17 64

130% 20 27 69 67 14 17 63
3100% 21 28 68 66 15 17 65

240% 21 28 68 66 15 17 64
230% 21 29 67 65 15 18 65
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Table E.5: Result using only alignments with at most 70% sequence identity.

Set ∆Φ ∆Ψ ✔Φ ✔Ψ ✖Φ ✖Ψ C

1100% 13 17 77 77 7 8 43

2100% 15 19 75 75 8 10 55
190% 16 21 74 73 10 11 63
180% 17 22 73 72 10 12 64

170% 17 23 72 71 11 13 64
160% 18 23 72 71 11 13 65

290% 18 24 72 70 11 13 65
270% 19 25 70 69 13 15 66

140% 19 25 70 69 13 15 65
280% 19 25 71 69 12 14 65

150% 18 24 71 69 12 14 65
250% 20 27 69 68 14 16 66
260% 19 26 70 68 13 15 66

130% 19 26 70 68 13 16 65
3100% 20 27 69 67 14 16 66

240% 20 27 69 67 14 17 66
230% 21 28 68 66 15 17 66
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Table E.6: Result using only alignments with at most 80% sequence identity.

Set ∆Φ ∆Ψ ✔Φ ✔Ψ ✖Φ ✖Ψ C

1100% 13 17 77 77 7 8 46

2100% 15 19 75 75 8 10 58
190% 16 21 74 73 10 11 64
180% 17 22 73 72 10 12 65

170% 17 22 72 71 11 13 66
160% 17 23 72 71 11 13 66

290% 18 23 72 70 11 13 66
270% 19 25 71 69 13 15 67

140% 19 25 70 69 13 15 66
280% 18 24 71 69 12 14 67

150% 18 24 71 69 12 14 66
260% 19 26 70 68 13 15 67
250% 20 26 70 68 13 16 67

130% 19 26 70 68 13 15 66
3100% 20 27 69 67 14 16 67

240% 20 27 69 67 14 16 67
230% 20 28 69 67 14 17 67
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Table E.7: Result using only alignments with at most 90% sequence identity.

Set ∆Φ ∆Ψ ✔Φ ✔Ψ ✖Φ ✖Ψ C

1100% 13 17 78 78 6 8 51

2100% 14 19 76 75 8 9 60
190% 16 20 75 74 9 11 65
180% 16 21 74 73 10 11 66

160% 17 22 73 72 11 12 67
170% 17 22 73 72 10 12 66

290% 17 23 72 71 11 13 67
150% 18 24 72 71 11 13 67

280% 18 24 72 70 12 13 67
270% 18 24 71 70 12 14 68

260% 19 25 71 70 12 14 68
140% 18 24 71 70 12 14 67
250% 19 26 71 69 13 15 68

130% 18 25 71 69 12 15 67
230% 20 27 69 68 14 16 68

3100% 19 26 70 68 13 15 68
240% 19 26 70 68 13 16 68
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Table E.8: Result using all alignments.

Set ∆Φ ∆Ψ ✔Φ ✔Ψ ✖Φ ✖Ψ C

1100% 11 14 82 82 5 6 77
2100% 12 16 80 80 7 8 77
190% 14 17 79 78 8 9 76

180% 14 18 78 77 8 10 76
170% 14 19 77 76 9 10 75

160% 15 19 77 76 9 10 75
280% 16 20 76 75 10 11 75

150% 15 20 76 75 10 11 74
290% 15 20 76 75 9 11 75
270% 16 21 75 74 10 12 74

260% 16 21 75 74 10 12 73
140% 16 21 75 74 10 12 72

130% 16 21 75 74 10 12 71
3100% 17 23 74 73 11 13 73

250% 17 22 75 73 11 13 73
240% 17 22 74 73 11 13 73

230% 17 23 74 72 11 14 72
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