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Summary

Proteins play a central role in organisms as they perform many important tasks in their
cells. Accordingly, the better we understand how proteins are built, the better we can
deal with many common diseases. In particular, information on structural properties of
proteins can give insight into the way they work and how mutations, for instance, may
affect their operability. Such knowledge can therefore help and influence modern medicine
and drug development.

This work is situated in the field of protein structure prediction. Here, the aim is to
determine a three-dimensional structure from a protein’s amino acid sequence. Depending
on their quality, the resulting structure models can be used for a variety of purposes. At
the moment there are millions of known protein sequences but only tens of thousands of
known protein structures available. As it cannot be expected that it will be possible to
experimentally determine a structure for each protein in the near future, protein structure
prediction is an important task of current bioinformatics research.

In particular, so-called template-based modeling can result in very good predicted struc-
tures. Here, given a target sequence with unknown structure, a simple modeling approach
(1) searches for similar sequences with known structures (so-called templates), (2) com-
putes mappings from the target sequence to the template sequences (so-called alignments),
(3) takes the atom coordinates from the mapped parts of the templates for the structure
model, and (4) refines the model.

Protein structures can be classified into hierarchies. Prominent examples for such
hierarchies are the SCOP and CATH databases. The units used for such classifications
are so-called protein domains, which are parts of a protein that are able to (depending on
the definition) fold independently, for instance, or to fulfill an independent function. In
particular, the domain content of a protein, i.e. the contained domains and their positions,
is important for the final function of a protein as well as for the biological processes it is
used in and the molecules it interacts with.

The focus of this work is on methods for the prediction of protein domains and their
structural classifications. Protein structure prediction can benefit from such predictions,
as, once a structural classification is known, it is easier to find suitable templates and
the probability is higher to obtain a good model. Furthermore, in many cases, additional
properties can be derived from the knowledge of a structural classification, such as a
potential function. For the experimental solution of structures it can also be of interest to
know the contained domains, as it may be easier to solve the domains individually.



xiv Zusammenfassung

The methods described in the following are a new approach for quick selection of po-
tential fold classes (Preselection and Refinement, [Gewehr et al., 2004]), a new method
for fast and specific prediction of structural classifications using known sequence patterns
(AutoSCOP, [Gewehr et al., 2007a]) and a corresponding database of predicted classifica-
tions (AutoPSI, [Birzele et al., 2008]) which contains more than two million sequences, a
new and template-based protein domain prediction method (the SSEP-Domain approach,
[Gewehr and Zimmer, 2006]), as well as a software (QUASAR, [Birzele et al., 2005]) and
a new method for optimized alignment ranking and computation with respect to struc-
tural quality. In addition, we describe a new structural alignment method (Vorolign,
[Birzele et al., 2007]), an XML schema for the representation of knowledge on protein
structures (ProML), and an extension library for the well-known Weka machine learning
framework, which contains bioinformatics-specific methods and data formats (BioWeka,
[Gewehr et al., 2007b]).

These approaches provide important contributions for the protein structure prediction
process: A new sequence can be split into domains using SSEP-Domain; these domains
can be classified using Preselection and AutoSCOP. If the sequence is part of the public
databases, structural classifications may already be available via the AutoPSI database.
Having aligned a target to templates, with QUASAR and the corresponding optimization
methods, good alignments can be either selected or newly computed. If the structure is
known, structural alignment and a search for similar structures can be done with Vorolign.
Gained information can be stored using ProML.

Protein structure prediction will remain an essential task for many years. Improvements
of the prediction process allow to produce more and better structure models, which are steps
towards the overall aim of finding a structure for each protein sequence. Our evaluations
show that the proposed methods and tools can be used for this purpose and also provide
a good basis for future research in this direction.



Zusammenfassung

Die Funktionsfähigkeit der in unseren Zellen enthaltenen Proteine spielt für unsere Gesund-
heit eine wesentliche Rolle. Dementsprechend besteht ein großes Interesse daran, die Mech-
anismen zu verstehen, nach denen Proteine aufgebaut sind und ihre Funktionen erfüllen.
Insbesondere die Kenntnis der dreidimensionalen Struktur eines Proteins und der Effekt
eventueller Mutationen auf diese Struktur können Hinweise und Ansatzpunkte für die
Medikamentenentwicklung liefern.

Diese Arbeit ist im Bereich der Proteinstrukturvorhersage angesiedelt. Darunter ver-
steht man die Aufgabe, für Proteinsequenzen mit unbekannter Struktur möglichst gute
Modellstrukturen zu erzeugen, die dann entsprechend ihrer Qualität zu unterschiedlichen
Zwecken herangezogen werden können. Die Notwendigkeit, Proteinstrukturen vorherzusagen
anstatt sie experimentell aufzulösen, ensteht aus der Tatsache, daß die Anzahl der bekan-
nten Proteinsequenzen um Größenordnungen höher ist (in den aktuellen Datenbanken
finden sich Millionen) als die Anzahl der bekannten Strukturen (im Moment weniger als
50.000), und daß die experimentellen Prozesse zur Auflösung einer Struktur sowohl relativ
langwierig als auch kostspielig sind. Es ist nicht zu erwarten, daß es in nächster Zukunft
möglich sein wird, eine Struktur für jede Proteinsequenz zu finden, ohne in großem Maße
Vorhersagemethoden einzusetzen.

Insbesondere die sogenannte template-basierte Modellierung liefert qualitativ hochwer-
tige Strukturmodelle. Methoden, die in diese Kategorie fallen, machen es sich zunutze, daß
ein ähnliches Protein mit bekannter Struktur existiert. Gegeben ein Target, ein Protein
mit bekannter Sequenz aber unbekannter Struktur, läßt sich ein vereinfachter Ablauf einer
solchen Modellierung wie folgt darstellen: (1) man sucht nach geeigneten Kandidaten (sog.
Templaten), (2) man erstellt Abbildungen des Targets auf die Template (sog. Alignments),
(3) man überträgt die entsprechenden Koordinaten aus der bekannten Struktur und (4)
man verfeinert das Modell.

Proteinstrukturen lassen sich klassifizieren und in Hierarchien einteilen. Beispiele für
solche Klassifizierungen sind die Datenbanken SCOP und CATH. Die Einheiten, die solchen
Hierarchien zugrunde liegen, sind sogenannte Proteindomänen, Teile eines Proteins, die, je
nach Definition, z.B. unabhängig eine Struktur ausbilden können oder eine eigene Funktion
erfüllen. Insbesondere ist die Domänenstruktur, d.h. die enthaltenen Domänen und ihre
Positionen, wesentlich für die finale Funktion eines Protein, sowie für die biologischen
Prozesse, an denen es teilhat, und die Moleküle, mit denen es interagiert.



xvi Zusammenfassung

Der Fokus dieser Arbeit liegt auf Methoden zur Vorhersage von Proteindomänen und
ihrer strukturellen Klassen. Der Nutzen für die Proteinstrukturvorhersage liegt darin, daß
man, wenn eine strukturelle Klassifikation mit großer Konfidenz vorhergesagt werden kann,
leichter gute Template finden kann und damit die Wahrscheinlichkeit erhöht, am Ende ein
gutes Modell zu erhalten. Darüberhinaus lassen sich in vielen Fällen weitere Eigenschaften
von hinreichend genauen strukturellen Klassifikationen ableiten, wie z.B. eine mögliche
Funktion. Für die experimentelle Bestimmung von Strukturen ist es ebenfalls von Vorteil,
die vorhandenen Domänen in einem Zielprotein zu kennen, da diese unter Umständen
einfacher separat aufzulösen sind.

Die hier vorgestellten Methoden umfassen einen Ansatz zur schnellen Vorselektion
potentieller Strukturklassen (Preselection and Refinement, [Gewehr et al., 2004]), einen
neuen Ansatz zur schnellen und hochspezifischen Vorhersage von Strukturklassen auf der
Basis bekannter Sequenzmotive (AutoSCOP, [Gewehr et al., 2007a]) und eine dazugehörige
Datenbank von Vorhersagen, die Millionen bekannter Sequenzen umfaßt (AutoPSI DB),
eine neue und schnelle templat-basierte Methode zur Proteindomänenvorhersage (SSEP-
Domain, [Gewehr and Zimmer, 2006]), und eine Software (QUASAR, [Birzele et al., 2005])
sowie eine Methode zur optimierten Bewertung und Erstellung von Alignments in Hin-
blick auf die strukturelle Qualität der resultierenden Modelle. Darüberhinaus werden
zusätzliche, neue Werkzeuge für die Forschung im Bereich der Proteinstrukturen eingeführt:
(1) eine Methode zum Alignment von Proteinstrukturen (Vorolign, [Birzele et al., 2007]),
(2) ein XML Schema zur Speicherung und Bereitstellung von Wissen über Proteine und
Proteinmengen (ProML), und (3) eine neue JAVA-Bibliothek, die das bekannte Weka Sys-
tem für maschinelles Lernen um grundlegende Bioinformatikmethoden und -datenformate
erweitert (BioWeka, [Gewehr et al., 2007b]).

Diese Methoden liefern wichtige Beiträge für den Proteinstrukturvorhersageprozeß:
Eine neue Sequenz kann mittels SSEP-Domain in Domänen zerlegt werden. Diese können
mit Preselection und AutoSCOP in die bekannten strukturellen Klassifikationen einge-
ordnet werden. Handelt es sich bei dem Target um eine bereits bekannte Sequenz aus
den öffentlichen Datenbanken, besteht zudem die Möglichkeit, Regionen mit potentiellen
strukturellen Klassifikation direkt über die AutoPSI-Datenbank zu erhalten. Nachdem
man Alignments gegen geeignete Template erstellt hat, lassen sich QUASAR und die da-
rauf aufbauenden Optimierungsmethoden anwenden, um gute Alignments zu erkennen
oder neu zu erstellen. Ist eine Struktur bekannt, kann Vorolign zur Ähnlichkeitssuche zu
den strukturell eingeordneten Strukturen eingesetzt werden. Informationen über bekannte
Proteine können mittels ProML gespeichert werden, um sie dann mit BioWeka weiter zu
untersuchen.

Die Vorhersage von Proteinstrukturen wird noch für viele Jahre ein wesentlicher Be-
standteil der Bioinformatik bleiben. Schrittweise Verbesserungen des Vorhersageprozesses
erlauben es, mehr und bessere Modellstrukturen zu erstellen, und damit dem Ziel, eine
gute Struktur für jedes bekannte Protein zu finden, ein wenig näher zu kommen. Unsere
Auswertungen zeigen, daß die vorgestellten Methoden und Werkzeuge nutzbringend ein-
setzbar sind und damit eine gute Basis für weitere Forschung in diesem Bereich darstellen.



Chapter 1

Motivation and Overview

1.1 The Benefit of Protein Structure Prediction

Proteins play a central role in organisms as they perform many important tasks in their
cells. Accordingly, the better we understand how proteins are built, the better we can
deal with many common diseases. In particular, information on structural properties of
proteins can give insight into the way they work and how mutations, for instance, may
affect their operability. Such knowledge can therefore help and influence modern medicine
and drug development.

Protein Structure Prediction

Public databases contain millions of protein sequences (currently the UniProt database
alone contains more than 4.5 million entries), but the number of publicly available pro-
tein structures is smaller by about two orders of magnitude (the PDB database of protein
structure currently contains about 45.000 structures). The protein structure prediction
community aims at developing methods for the prediction of the structure of a protein
from its sequence, with the long term goal to provide a structure for each available protein
or gene. Good examples for the effort spent in structure prediction and determination
are the CASP experiments (Critical Assessment of techniques of protein Structure Predic-
tion, [Moult, 2005]) as well as structural genomics (see chapter 2). Another example are
databases like the SWISS-MODEL repository [Kopp and Schwede, 2006] and MODBASE
[Pieper et al., 2006] which currently contain up to 4.3 million predicted models based on
automated prediction pipelines.

What Can be Achieved?

In a Science publication of 2001, Baker and Sali describe the potential of protein structure
models for different applications depending on the accuracy of the model when compared
to the true structure [Baker and Sali, 2001]. This illustrates the many benefits of protein
structure prediction, even when the model accuracy is not high enough for drug design pur-
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poses. Structure models with an accuracy of 1.0 Å RMSD (root mean square deviation) for
the main chain atoms, which is in the range of the deviation of native structures themselves
(low-resolution X-ray or medium-resolution NMR), can be used for the study of catalytic
mechanisms or the design and improvement of ligands. Such structures can be modeled if
proteins with identical (or almost identical) sequences and already known structures exist.
With decreasing accuracy, i.e. with an increasing RMSD and a decreasing coverage of the
main chain, the tasks that are still possible range from docking of macromolecules to the
refinement of NMR structures. Even with low accuracy but roughly correct structures,
for certain regions of a protein, it may still be possible to assign functional sites or find
functional relationships between proteins.

With the ever increasing number of available structures, the possibility for a target
protein with yet unresolved experimental structure to have a similar protein with known
structure will increase. For decades, researchers have been working on methods for mod-
eling the structure of the target in such cases, using so-called template-based modeling,
where template means a protein with known structure that is similar to the target. How-
ever, the quality of many predicted structures is still not sufficient for many purposes in
drug development. One reason for this is the complexity of the structure prediction task,
since it involves many steps from the target sequence to the final model, each of which
is an interesting problem in its own right. The problems to be solved in template-based
protein structure prediction and modeling include the search for suitable templates, the
recognition of the overall topology of the protein, the assignment of structurally, evolution-
ary or functionally independent parts of the protein, the alignment of its sequence with
the sequences of the available templates, the assignment of coordinates to the atoms of the
protein (often based on an alignment), the modeling of flexible regions or regions where no
similar, known structure was found, and the refinement of the resulting models.

Protein Domains and Structural Classifications

”Complexity in biology has evolved through modification and recombination of existing
building blocks instead of invention from scratch. In the protein world these building
blocks have been termed domains and the identification and characterization of new do-
mains and domain families is a major goal of protein science” [Heger and Holm, 2003]. In
a more structure-oriented view, protein domains are usually defined either as recurrent
evolutionary units, as independent folding units or as globular, more or less independent
parts of a protein, and further definitions can be found in the literature (see chapter
2). Nonetheless, based on protein domains, hierarchical structure-based classifications like
SCOP [Murzin et al., 1995] or CATH [Orengo et al., 1997] attempt to introduce order in
the universe of protein structures by classifying them into tree-like hierarchies, so-called
structural classifications. If the classification of a target protein domain is known, finding
potential templates for modeling the structure can be done by searching for structures with
the same classification; depending on the level of the known classification (the finer the
better), it may also be possible to deduce further properties of the target.
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1.2 Thesis Outline

The focus of this thesis is on methods for protein domain recognition and the prediction of
their structural classifications. By concentrating on these tasks, the main objective is to
enable researchers to deduce and use information about structural properties and structural
neighborhoods as defined by hierarchies of protein domains like SCOP. In particular, the
following chapters contain:

• Chapter 2: Background knowledge. In this chapter, we introduce the basics of
protein structure prediction and its subtasks; further, we briefly describe databases
and alignment methods which are used frequently in this work.

• Chapter 3: Speeding up alignment-based protein fold recognition. As more
sophisticated alignment methods for fold recognition can become computationally
expensive when large numbers of alignments have to be computed, we propose a
method to speed-up the prediction process [Gewehr et al., 2004] that is based on a
fast scan for potential fold classes based on a simple measure for potential topological
similarity. Our approach yields a speed-up of about one order of magnitude while
keeping a comparable fold recognition accuracy when combined with profile-profile
alignment, a well-known method for fold recognition. This so-called preselection is
used in slightly modified variants in both the Vorolign and the SSEP-Domain method
(chapters 7 and 5, respectively).

• Chapter 4: Fast and reliable prediction of structural classifications. A new
approach to the prediction of structural classifications of protein domains, which we
called AutoSCOP [Gewehr et al., 2007a], deals with the prediction of a protein clas-
sification on different SCOP levels based on sequence patterns. AutoSCOP focuses
on high specificity, such that it can be used either as a reliable standalone predictor
or as an additional filter in combination with other prediction methods, and we in-
deed observe an improvement in accuracy when combined with individual alignment
methods in our evaluation. Given the sequence patterns on an amino acid sequence,
our approach can assign SCOP predictions in a matter of seconds.

As the necessary input data is available in a precomputed form for many of the
available protein sequences, our approach allows for large-scale prediction of poten-
tial SCOP classifications. In joint work with Fabian Birzele, we built the AutoPSI
database [Birzele et al., 2008], a database of SCOP predictions which contains con-
sensus predictions of AutoSCOP and Vorolign based on structural alignments and
additional information for many newly found protein structures as well as AutoSCOP
predictions for millions of further amino acid sequences.

With respect to protein domain prediction, pattern locations and especially anno-
tated structural classifications can further give hints on the existence of domains on
target sequences, though the boundaries are often not very exact. Therefore, us-
ing AutoSCOP, with the annotation of structural classifications, we can also quickly
derive potential SCOP domain occurrences on these sequences.
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• Chapter 5: Fast, homology-based protein domain prediction. The former
prediction approaches mainly work on protein domains, which are the units for struc-
tural classification, as described above. Given a target amino acid sequence with un-
known structure, however, the domain content (the positions of individual domains
on the sequence) is usually unknown and has to be predicted. As stated above, Au-
toSCOP can already give insights into the potential domain structure, but it is often
not exact enough. Therefore, in order to provide a more exact domain prediction
method (though also computationally more expensive than AutoSCOP), we apply
techniques which have been proven to be useful, namely patterns and the alignment-
based fold recognition, together with appropriate filtering and scoring methods in
our SSEP-Domain server, which assigns potential domain regions to amino acid se-
quences on the basis of similarity to known domains [Gewehr and Zimmer, 2006]. In
the CASP 6 and CAFASP 4 community-wide blind-test experiments, SSEP-Domain
was ranked among the top performing servers for protein domain prediction.

• Chapter 6: Optimized alignment scoring and computation. Once templates
have been selected, for building structure models using comparative modeling, an im-
portant task is selecting the best model alignment out of a pool of sequence-structure
alignments for a target. In joint work with Fabian Birzele, we have recently devel-
oped the QUASAR system [Birzele et al., 2005], a software for alignment ranking
and model selection. Using the infrastructure of this software package, we evaluate
known alignment scores for this purpose and show how to optimize combinations of
them. Based on genetic optimization, we propose a method for building new matrices
for alignment scoring. Further, we show how to extend this approach towards the
generation of fold-class specific parameters for profile-profile alignment computation,
which are able to improve the quality of the resulting models as compared to the
default parameters.

• Chapter 7: Additional tools for protein research. Both Preselection and
AutoSCOP require only the target’s amino acid sequence as input; however, if the
target structure is known, it is possible to include this information into the prediction
process, i.e. for assigning a potential SCOP classification to the target. Vorolign
[Birzele et al., 2007], developed by Fabian Birzele in joint work with the author and
Gergely Csaba, is a new structure-based fold recognition and structural alignment
method, which is able to align protein structures also in case of inherent protein
flexibility, making use of both the sequence of residues of the aligned proteins and
their structural neighborhoods based on Voronoi tessellation.

BioWeka [Gewehr et al., 2007b], developed in joint work with Martin Szugat, is an
extension to the Weka data mining framework [Witten and Frank, 2005] that intro-
duces bioinformatics data formats and methods to Weka. In addition, we developed
a new XML schema based on the original ProML language [Hanisch et al., 2002] for
the description of proteins and protein sets, which can be used with BioWeka, for
instance.
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The methods and tools in this work contribute to improving subtasks of protein structure
prediction. As shown in Figure 1.1, they fit directly into the context of protein structure
prediction:

As described above, a generalized, domain-based protein structure prediction process
may look as follows: (1) find the domains on the target, (2) align them to good tem-
plates, and (3) build and refine corresponding models. In the diagram, starting on the left
path, i.e. on the upper left corner, we are given a target sequence, usually with unknown
structure. This sequence can be split into potential domains with SSEP-Domain. Protein
domains can then be assigned structural classifications with methods such as Preselection
and AutoSCOP. Here, also BioWeka may be included in order to apply machine learning
methods for fold recognition on particular protein features, for instance. With the Au-
toPSI database, for many protein sequences available in UniProt, predicted classifications
and their locations based on patterns can already be looked up without further overhead.
Once structural classifications have been assigned, it is possible to select suitable templates
with similar or identical classifications for the modeling of these domain regions, starting
with alignments. QUASAR aims at ranking those alignments as high as possible that are
expected to result in a good structure model. As we will see in chapter 6, if we can be rela-
tively sure of the structural classification of a target domain, in some cases the alignments
can even be refined using the described approach for optimization of scoring matrices and
realignment. Based on such alignments, structure models can be generated.

However, protein domains and structural classifications are also interesting for newly
resolved protein structures, for instance for the understanding of protein evolution or the
evalutation of protein fusion and fission events. In a second scenario starting in the up-
per right corner of the diagram, if the target structure is known, we can find domains on
the basis of structural information using standard methods for this task and then include
the Vorolign structural alignment server for assigning structural classifications. In partic-
ular, for this work, we make use of AutoSCOP and Vorolign for the AutoPSI database
of predicted classifications in order to assign potential domains and corresponding SCOP
classifications to those new PDB entries that have not been classified by SCOP yet.

Overall, in this thesis we describe methods that can predict structural classifications
quickly, namely Preselection, AutoSCOP and Vorolign. With AutoSCOP and the SSEP-
Domain method, we can further predict the domain content of many sequences, either
coarse-grained but very fast, or more refined but still fast enough to be applied to larger
numbers of targets. In addition, the methods described in chapter 6 can help improving the
quality of structure models, and BioWeka and ProML can be used for further evaluation
of protein properties using machine learning approaches.
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Figure 1.1: Overview of the methods described in this thesis and their contributions to
template-based protein structure prediction. The light gray boxes mark those steps that
contain algorithms and tools proposed in the following chapters, the other boxes are used
to illustrate possible process flows in protein structure prediction. See section 1.2 for a
detailed description of this diagram.



Chapter 2

Introduction to Protein Structure
Prediction

This chapter contains general background knowledge for this thesis. We start with prop-
erties of protein structures, describe well-known databases and the assignment of protein
domains, and end up with alignment methods, with the focus on methods and data used
in this work.

2.1 Protein Structures and Related Databases

First, we introduce some of the structural properties of proteins. A more complete in-
troduction can be found in ”Introduction to Protein Structure” by Branden and Tooze
[Branden and Tooze, 1999] (which is one of the main sources for this part). The second
section describes important databases for researchers that work with protein structures.
Here, besides the sources referenced in the text, [Bourne and Weissig, 2003] was used as
an additional source.

2.1.1 From Primary to Tertiary Structure

A protein consists of amino acids, which are connected as a chain. As this chain is arranged
in space, parts of a protein adopt certain local structural properties, whole proteins fold
into their so-called structures, and several chains (even more than one protein) can connect
and build new, more complex structures.

The so-called primary structure of a protein is defined as the order of its amino acids
as determined by its genetically encoded sequence. Amino acids consist of a central carbon
atom (Cα) and two connected groups, namely an amino group (NH2) and a carboxyl group
(COOH). Further, they have a so-called side chain attached to the Cα atom. In proteins,
most of the naturally occurring amino acids (or residues) can be found in a standard
alphabet of 20 amino acids which differ in the structure of their side chains. For this
alphabet, there are two common representations: three-letter-representation (e.g. ALA for
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Alanine) and one-letter-representation (e.g. A for Alanine) of the contained amino acids,
the latter of which will be used in this work.

Amino acids are connected by so-called peptide bonds. Here, the carboxyl group of
the first amino acid condenses with the amino group of the next amino acid to eliminate
water [Branden and Tooze, 1999]. This results in the amino acid chains that make up the
primary structure of a protein as described above.

A protein chain can usually fold by itself or together with other protein chains into a
three-dimensional structure. Thereby, small parts of a chain build certain, often-observed
local structures. When using the term secondary structure, one assigns local structure
types to the contained amino acids. For this purpose, we make use of a three letter
alphabet {C,E,H}, where C stands for coil, E stands for extended, and H stands for helix.
This alphabet is also used e.g. by the well-known protein secondary structure prediction
software Psipred [Jones, 1999b], which is important for many of the methods described
in this work. Helices or α helices are parts of amino acid chains that contain a helix-like
structure with 3.6 residues per turn and hydrogen bonds between residues n and n + 4.
Other helix types can be formed with hydrogen bonds between n and n+3 or n+5 (namely
the 310 helix and the π-helix). The second type, extended regions, denote parts of the chain
that are in an almost fully extended conformation. A combination of these regions where
the individual parts lie either parallel or antiparallel to each other as β strands is called a
β sheet. The term coil in this context is used for parts of the chain that contain any other
local structure that is not helix or strand.

The tertiary structure of a protein is the three-dimensional structure its amino acid
chains fold into. Finally, one speaks of the quarternary structure, when proteins exist as
subunits that then bond with other subunits to build more complex structures.

2.1.2 Structure-Related Databases

There exist many databases in the field of protein structures and protein annotations,
each of which has special properties that make it useful for certain tasks. Some of these
databases, which are described below, have become very popular or, in case of e.g. the
PDB, have become nearly inevitable for certain types of data. Here, we concentrate on
those databases that are important for the following chapters.

The PDB

The protein data bank (PDB) [Berman et al., 2000] (http://www.pdb.org) is both an
ancient and maybe the most important database for structural bioinformatics. New protein
structures are made available in the PDB after they have been solved and published, and
therefore the PDB provides the basis for most structure prediction research. It was started
at the Brookhaven National Laboratory in 1971 and is thus one of the earliest community-
wide databases of biological data [Bourne and Weissig, 2003]. The file format used by
the PDB contains information about the source, the sequence and the three-dimensional
coordinates of a protein structure among other information. For instance, a number of

http://www.pdb.org�
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method-specific details can be described, like experimental conditions and data collection
information. Further, the website of the PDB offers derived information such as the domain
content of a protein as assigned by different sources.

SCOP/ASTRAL and CATH

SCOP and CATH use protein domains (see next section) as classification units and order
them in hierarchies, i.e. in tree-like structures with certain similarity criteria at each level
of a tree.

SCOP is short for Structural Classification of Proteins. The database was set up in
1995 by Murzin and coworkers [Murzin et al., 1995]. The corresponding website can be
found at http://scop.mrc-lmb.cam.ac.uk. Its classifications are mainly made manu-
ally. The SCOP hierarchy contains four main levels: class, fold, superfamily and family.
Further, some sublevels of family are available. Families are supposed to contain clearly
evolutionary related domains which can be grouped e.g. by sequence, structure or function
similarity. The next higher level, the superfamily level, groups families which have common
structures or functions and are believed to be evolutionary related. Sequence similarity
within superfamilies can be much lower than within families, as structure is often more
strongly conserved than sequence. The fold level groups superfamilies by so-called core
structures, namely ”the same secondary structure elements in the same arrangement with
the same topological connections” [Bourne and Weissig, 2003]. Classes (the highest level)
as used by SCOP are defined by the secondary structure element content of the domains,
which becomes clear be looking at the full names: ”all α”, ”all β”, ”α/β”, ”α + β”, and
some more. Besides coils, all α domains contain mostly helices, all β domains mostly
sheets, α/β domains usually contain a sheet surrounded or flanked by helices, and α + β
domains contain largely separated regions for helices and sheets.

An addition to SCOP is the ASTRAL compendium [Chandonia et al., 2004], which
provides selections of SCOP domains filtered for different levels of sequence identity. Ad-
ditional features of ASTRAL include Hidden Markov Models for SCOP families and co-
ordinate files for each SCOP domain. ASTRAL is an important resource by itself, as it
provides the SCOP data in an easily accessible way that makes possible many of the evalu-
ations and applications that are described in the following chapters. ASTRAL is available
at http://astral.berkeley.edu.

The name of the second, large domain compendium, CATH [Orengo et al., 1997] is an
acronym for the levels of its hierarchy: Class, Architecture, Topology and Homology. In
contrast to SCOP, some parts of CATH are automated, such as the definition of the class
of a domain based on its secondary structure composition and packing. This level to some
degree corresponds to the class level of SCOP, with slight differences. For instance, the two
classes ”α/β” and ”α+β” were merged to a single class. The next level, architecture, does
not consider connectivity but the orientation of secondary structures with respect to each
other. It can be regarded as being situated above the level of folds in SCOP and contains
architectures such as β barrels or α bundles. The fold of a domain is used for the definition
of the third level, topology, which includes connectivity between secondary structures. The

http://scop.mrc-lmb.cam.ac.uk�
http://astral.berkeley.edu�
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next level, the homology level, then defines superfamilies of evolutionary related domains
based on sequence, structure or function. Further, finer classes are e.g. families within
superfamilies etc. Although the CATH domain assignment involves both automated and
manual steps, the CATH database is often considered an expert-based database such as
SCOP.

2.2 Assignment of Protein Domains

Protein domains, which have already been mentioned as basic units of SCOP and CATH,
are subunits of a protein. Beyond this fact, there exist a number of different definitions
which make the use of the term ”protein domain” difficult. Nonetheless, domains are
important for a number of reasons and in a number of different areas. For the crystal-
lization of proteins, for instance, it is helpful to know which parts of a protein can fold
independently, as these parts may be easier to crystallize independently, too. Similarly,
in structure modeling and structure prediction, it may happen that one domain of a new
protein sequence with unknown structure is very similar to a domain in a known protein
structure A, whereas a second part is more similar to a domain belonging to a protein B;
structure modeling may then be improved by handling domains independently. Also for
predicting the function of a protein, it is helpful to be able to know which parts of the
protein are similar to certain well-known functional subunits of proteins.

2.2.1 An Old Problem

In [Bourne and Weissig, 2003], Lorenz Wernisch and Shoshana J. Wodak review methods
for the identification of domains in protein structures. They briefly cover the history
of domain assignments starting in the early 1970s. According to the authors, the most
popular concept of the earlier domain definition methods is based on a ”globular” view,
i.e. regarding domains as globular parts of proteins: it is usually assumed that ”the atomic
interactions within domains are more extensive than between domains”. Often, domains
were also considered as being stable on their own and possibly to fold independently. One
problem with this approach is that globular or at least highly connected parts of a protein
do not necessarily have to be comprised of contiguous sequence segments. Some possible
reasons for so-called discontinuous domains are domain swapping or gene insertion events.

Wernisch and Wodak define basically two generations of methods. All first generation
methods in this review have in common that they do not ”consider the problem of optimally
partitioning the protein 3D structure in its full generality”, as they are based on the order
of residues and use continuous segments of the sequence, at least as starting points. They
identify those methods as the second generation methods that are free of such restrictions,
which are often influenced by other disciplines like physics, statistics or graph theory.

Popular approaches which are currently used by the PDB database as additional in-
formation on protein structures are Domain Parser (DP) [Xu et al., 2000] and Protein
Domain Parser (PDP) [Alexandrov and Shindyalov, 2003], both of which are able to de-
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tect and define continuous as well as discontinuous structural domains based on a given
protein structure in PDB format. Further, one of the earliest large-scale efforts to de-
fine and classify domains in a hierarchically way and provide the results as a resource for
the community is FSSP [Holm and Sander, 1997], which is built using the DALI software
[Holm and Sander, 1996] for structure-based domain recognition.

2.2.2 Comparison of Domain Assignments

William R. Taylor and Andras Aszodi name some reasons for the difficulties of finding a
structure-based domain definition in chapter 7 of their book ”Protein Geometry, Classifica-
tion, Topology and Symmetry” [Taylor and Aszodi, 2004]. These are extensive interfaces
between domains, which pose the problem of finding an appropriate level of granularity,
and also the cases of discontinuous domains, which are in general harder to detect than
continuous ones. Such reasons can result in differing domain definitions for a single protein
for different experts or methods. A recent study by Veretnik et al. [Veretnik et al., 2004]
compares protein domain definitions from some popular sources and analyzes the agree-
ments and disagreements. Overall, the authors identify five possible classes of domain
definitions, namely (in their words):

1. ”Regions that display a significant level of sequence homology;”

2. ”a minimal part of the gene that is capable of performing a function;”

3. ”a region of the protein with an experimentally assigned function;”

4. ”parts of structures that have significant structural similarity;”

5. and ”compact spatially distinct units of protein structure.”

For definitions one and four, similarity is often measured in comparison to similar se-
quences/structures, i.e. these definitions concentrate on conserved regions of the se-
quences/structures. The complete list illustrates the diversity of the existing definitions,
as these five are apparently quite different from each other. Especially the latter three of
these definitions are widely used and have thus been evaluated by Veretnik and coworkers.

The methods used for their setup have been categorized as follows: (1) expert meth-
ods such as SCOP, CATH and the annotation provided by the authors of crystal struc-
tures (AUTHORS) [Islam et al., 1995], and (2) the algorithmic methods, namely DALI
[Holm and Sander, 1996], Domain Parser (DP) [Xu et al., 2000] and Protein Domain Parser
(PDP) [Alexandrov and Shindyalov, 2003].

For their test set, the authors find that between 80 and 90% of the assignments of
the different methods are in agreement with respect to the assigned number of domains,
and each of the methods has its inherent advantages and drawbacks. They also find some
tendencies:
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• Single domain vs. multi-domain chains. The assigned number of domains varies
significantly between methods. E.g. SCOP tends towards low numbers (81% single
domains as compared to AUTHORS with only 69.5%), whereas DALI outputs large
numbers of domains in comparison.

• Continuous vs. discontinuous domains. Again, e.g. SCOP shows a high num-
ber of continuous assignments (97%), whereas some of the other methods result in
approximately 10-15% discontinuous domain assignments.

The evaluation of domain boundaries also shows that, when using AUTHORS as reference,
the agreement on domain boundaries based on the overlap of the assigned domains is good.
Based on the chosen domain overlap measure, especially SCOP shows the smallest number
of chains that disagree on domain boundaries for both an 80% overlap threshold and a
95% overlap threshold (see Table 2 in [Veretnik et al., 2004]).

Further, in a more recent evaluation, Holland and coworkers [Holland et al., 2006] com-
pared automated methods including PDP and DP to an expert consensus from SCOP,
CATH and AUTHORS. Their results confirm that different methods have different ten-
dencies: in particular, PDP, which reached 85% correct assignments, clearly tends towards
predicting too many domains, whereas DP, which reached 77% correct assignments, tends
towards too few predicted domains with respect to the experts.

These evaluations make us aware of the problem that there is no perfect protein domain
definition standard for our experiments and methods. So far, the results of a domain
assignment method will depend to some degree on the domain definition that is used as
well as, if applicable, on the basis of its training data (e.g. SCOP or CATH).

For this work, we mostly concentrate on SCOP domain definitions, as the SCOP
database is one of the major, expert-curated sources for domain definitions. According
to its’ authors, ”A domain is defined as an evolutionary unit, in the sense that it is either
observed in isolation in nature, or in more than one context in different multi-domain pro-
teins” [Lo Conte et al., 2002]. In other words, SCOP uses domains as recurrent structural
units. For structural classifications and their prediction, we believe that this is a good
notion, as this definition inherently contains additional information about parts occurring
together in all observed cases. This does not make it necessary to find all possible subparts
of such a unit individually in a template search, for instance. Once a significant similarity
to a SCOP domain has been found, the whole recurrent unit has been identified and can be
used for subsequent steps such as structure modeling under the assumption that indeed all
subparts of the SCOP domain always occur together. Further, a lot of groups use SCOP
domains (in [Bourne and Weissig, 2003] Reddy and Bourne observed that ”SCOP is the
most cited resource for classifying proteins”), which makes it possible to compare results
with other methods on the same standard.

Nonetheless, we are well aware of the problem of differing domain definitions. In our
protein domain prediction method SSEP-Domain (chapter 5) we also made use of SCOP
domains. Veretnik et al. state that ”When SCOP assigns the number of domains correctly,
it also assigns the domains correctly,” and indeed independent evaluations confirmed that
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our method is quite accurate in boundary placement. However, we found that in some
cases SCOP domains disagree with other experts’ point of view, who may emphasize the
structural properties such as globularity. This agrees with Veretnik et al.’s observations.
In the corresponding chapter, we therefore discuss the differences when using SCOP and
other sources of domain assignments such as CATH, PDP and DP against the background
of protein domain detection on the CAFASP 4 and CASP 7 targets.

2.3 Structure Prediction Categories

Proteins and their structures are determined by their corresponding genes. Therefore, if
two genes have evolved from a common ancestor, one can use both the term homologous
genes and, more importantly for this work, homologous proteins. For finding homologous
proteins, many methods have been proposed. Mostly, these methods rely on sequence
similarity between proteins, alone or in combination with other features. Homology as
indicated by these factors is the basis for the differentiation of the structure prediction
approaches into Comparative Modeling, Fold Recognition, and Ab Initio methods.

2.3.1 Comparative Modeling

Comparative modeling is a term that is often used for a structure modeling process, when
significant sequence similarity has been observed. In a recent review, in agreement with
John Moult’s review of protein structure prediction [Moult, 2005], Krysztof Ginalski, one of
the most successful predictors in the CASP 6 structure prediction experiment, writes that
the most reliable and accurate protein structure models still come from comparative model-
ing approaches when applicable [Ginalski, 2006]. The driving force behind template-based
structure prediction in general and comparative modeling in particular is the hypothesis
that two evolutionary related proteins (where we find sufficient sequence similarity) also
have similar three-dimensional structures (an illustrating diagram of this view can be found
in Fig. 2.1). Therefore, the usual steps for comparative modeling are

1. Template Selection: Given a databases of so-called templates, i.e. proteins of known
structure, find the most similar templates for the target.

2. Alignment : Align target and templates such that the resulting alignments reflect the
structurally similar regions for each target-template pair.

3. Model Generation: Based on the alignments, build structure models for the target.

4. Model Selection: Rank the resulting models such that the potentially best model can
be selected.

The last step is closely related to the problem of automated servers e.g. in CASP and
CAFASP (see below) to predict only a restricted number of models for a target (five, for
instance), and to select a ”first” model for both the benefit of a user and the evaluation
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Figure 2.1: Homology-based approach to protein structure prediction (shown as black
path). Instead of directly predicting the structure for a target (as it might be done by
some ab initio methods), we select a template of sufficient sequence similarity and align
it to the target. Then, under the assumption that sequence similarity yields structural
similarity (shown as light gray path), we can transfer the coordinates of the template to
the target on the basis of the aligned positions and subsequently refine the model.

of comparison experiments. Nonetheless, as Ginalski states, the ”optimal use of structural
information from available templates” and the correctness of the alignments are still the
”most significant determinants of final model quality” [Ginalski, 2006].

2.3.2 Fold Recognition

Ginalski further categorizes comparative modeling cases as such in which templates can
be found with standard methods such as PSI-BLAST [Altschul et al., 1997] or BLAST
[Altschul et al., 1990]. The fold recognition category focuses on those cases where remote
homologs can be found with newer, in some cases very elaborate methods, such as profile-
profile alignment methods [von Öhsen and Zimmer, 2001, von Öhsen et al., 2003] or the
alignment of so-called profile Hidden Markov Models [Eddy, 1998, Söding, 2005]. While
nowadays the methods are very similar for both difficulty classes, the final implementations
often differ depending on which area they focus on, e.g. by choosing to optimize their
parameters on either closely related protein pairs or on remote homology cases.
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2.3.3 Ab Initio

A whole new class of algorithms comes from the other side of the difficulty spectrum by
focusing on structure prediction in cases where no suitable templates are available. These
are called ab initio or de novo approaches. In this work, as we do not make use of ab initio
methods, we will not discuss the corresponding methods and principles further.

2.4 Community-Wide Efforts

In order to assess and speed-up progress in protein structure prediction, some community-
wide efforts have been established. Especially the CASP and CAFASP experiments are
of importance for this work, as they provide independent assessments of protein structure
prediction methods. Besides CASP/CAFASP, also Structural Genomics efforts are very
important for research in structural biology depending on solved protein structures since
they allow for concerted target searches and the solution of those targets which are deemed
to be especially interesting.

2.4.1 Community-Wide Experiments

CASP1 (Critical Assessment of Structure Prediction) is a large-scale community experi-
ment, conducted every two years [Moult, 2005]. From 1994 to 2006, CASP has monitored
the progress of the structure prediction approaches, both manual and automated. In
2004, already over 200 prediction teams from 24 countries participated in CASP 6. A
similar experiment, CAFASP2 (Critical Assessment of Fully Automated Structure Predic-
tion), has been held five times so far, with focus on fully automated prediction servers
[Fischer et al., 2003]. The procedure of such experiments is as follows: The organizers
collect sequences for which structures will be solved in the near future and pass them on
to the registered predictors. Human groups have some weeks and servers have a couple of
days to submit their top models for each target. In 2004, besides structure prediction also
categories like domain prediction, model refinement and model quality assessment have
been added to CASP and CAFASP.

Especially important is the fact that the prediction setup described above is a blind-test
setup, i.e. the true structure is truly unknown at the time the predictions have to be deliv-
ered, which allows for a fair comparison between methods. Further, independent assessors
carefully analyze and rank the methods with respect to different aspects of their prediction
performance, and thus provide an independent and widely acknowledged assessment of the
progress and performance of the state-of-the-art approaches.

1http://predictioncenter.org
2http://www.bgu.ac.il/̃fischer/CAFASP
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2.4.2 Structural Genomics and Structure Prediction

One excellent example of the effort spent on resolving more protein structures experimen-
tally is the Structural Genomics Initiative of the National Institute of Health (NIH), a
”worldwide initiative aimed at determining a large number of protein structures [...] in
a high throughput mode [...]” (quoted from http://sg.pdb.org/). The term structural
genomics stems from the aim to determine all protein structures for the available genomes,
which may be regarded as the logical next step after determining all potential proteins
derived from a genome. In other words, ”the ultimate goal of structural genomics is to
provide structures for all biological proteins” [Yan and Moult, 2005].

Nonetheless, even these efforts (combined with similar initiatives around the world) do
not aim at directly solving the structures for all known protein sequences. In particular, as
stated by Grabowski and coworkers, ”the initial long-term goal of the Structural Genomics
(SG) endeavor was to map all protein folds, so that the structures of virtually all proteins
could be either found in the Protein Data Bank (PDB) or derived by computational meth-
ods” [Grabowski et al., 2007]. As described above, since evolutionary related proteins have
similar structures, comparative modeling methods can be used to obtain a structure for any
protein with a detectable evolutionary relationship to another protein with an experimen-
tal structure [Yan and Moult, 2005]. Even knowing that the accuracy of such comparative
models is usually not as high as that of a high-quality X-ray structure, such structure
models can still be useful, as discussed in chapter 1 (see also [Baker and Sali, 2001]).

2.5 Alignment Methods

As we have seen, in protein structure prediction, the ultimate question to answer is how
to determine the three-dimensional structure of a protein from its sequence. In order to
be able to tackle these tasks, especially one category of tools has become very popular,
namely alignment methods.

Alignment methods generate so-called alignments. These are used to find similarities
between protein sequences, which in turn can be used to find and map appropriate tem-
plates to a structure prediction target. For instance, most alignment methods used in this
work generate mappings between the amino acids of two or more proteins based on different
properties, which can then be utilized to assign coordinates to the matched amino acids
of the target on the basis of the known coordinates for the match partners in a template
sequence and its corresponding structure. Besides protein structure prediction, comparing
amino acid sequences is also important for other tasks in molecular biology, as it may give
insights into evolutionary relationships, in some cases functional similarity, and more.

2.5.1 Sequence Alignment

The most simple case of aligning two amino acid sequences by using only the order and
the type of amino acids has been investigated for decades. In the following, we start with

http://sg.pdb.org/�
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this case and, based on it, explain techniques like profile-profile alignment and secondary
structure element alignment.

Representation of Alignments

In order to find such similarities between amino acid sequences, it is necessary to find a
suitable representation for protein sequences. Firstly, one needs an alphabet of amino acids:

Definition (Amino Acid Alphabet). The alphabet of amino acids ΣA in its one-letter
representation is defined as {A,C, D, E, F, G, H, I, K, L,M, N, P, Q,R, S, T, V, W, Y }, based
on the 20 most usual amino acids in protein sequences. Sometimes this alphabet is com-
bined with an additional character ”X”, which stands for any other, non-standard amino
acid.

As stated in the introduction to this section, given two sequences S1, S2 ∈ Σ∗
A built from

the alphabet of standard amino acids, the aim of sequence alignment is to derive a measure
of similarity (or, in some cases, difference) between these sequences, the alignment score,
and to align the sequences such that an amino acid from S1 is either mapped to an amino
acid from S2 or left unmapped (and vice versa). Thereby, in case of sequence alignments,
the sequential order of amino acids is preserved, i.e. it is not possible to map the residue
at position 1 of S1 to the residue at position 2 of S2 as well as the residue at position 2 of
S1 to the residue at position 1 of S2 in the same alignment:

Definition (Extended Alphabet) The extended alphabet of amino acids ΣA,− is defined
as ΣA ∪ {−}, were the so-called gap symbol ”-” stands for ”unmatched”.

Definition (Alignment) A pairwise alignment of two amino acid sequences S1, S2 ∈ Σ∗
A is

defined as a tuple {A1, A2}, where A1 ∈ Σl
A,− results from S1 after insertion of gap symbols

(and A2 from S2 analogously). Here, l ∈ N denotes the length of the alignment, as both
extended sequences A1, A2 must have the same length. Aligned positions i ∈ {1, ..,l}, i.e.
positions where neither extended sequence contains a gap symbol, can either be matches
(i.e. A1[i] = A2[i]) or mismatches (A1[i] 6= A2[i]). At an unaligned position or gap position,
either A1 or A2 contains the gap symbol ”-”. Please note that it is not allowed for both
A1 and A2 to contain the gap symbol at the same position.

Scoring of Alignments

The basis for aligning amino acids is usually a so-called scoring matrix, which contains
a score value for each pair of amino acids a and b based on observations such as point
mutations or frequencies of occurring amino acid pairs obtained from superpositions of
similar protein structures.
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Stretches of unmatched residues are called gap regions or simply gaps and may occur
in both A1 or A2, as described above. In alignment methods which try to maximize a
similarity score (in contrast to minimizing the difference score), gap positions are usually
punished by a negative score. Further, one categorizes so-called gap costs as e.g. linear
(i.e. each unmatched residue contributes the same score) or affine, where both a gap open
score (the punishment for opening a new stretch of unmatched residues) and a gap extend
score (the punishment for elongating a gap) are used.

Each alignment between two amino acid sequences can be assigned an overall score,
the so-called alignment score, given a scoring matrix M and gap costs, by summing over
the values in the matrix corresponding to the aligned positions and applying the gap costs
depending on the distribution of gap symbols in the alignment. The computation of the
gap punishment further depends on the alignment model that has been chosen, such as
global or local alignment (see below).

Computation of Alignments

The computation of alignments usually means the search for the optimal alignment with
respect to a certain alignment scoring scheme. For global alignment, the computation of
the optimal alignment score with affine gap costs can be done by recursive equations, which
can be found in a similar manner in many papers and books about bioinformatics. Here,
we use a similar notation to Gusfield’s in [Gusfield, 1997]:

Definition. Let i and j ∈ N denote positions on amino acid sequences S1, S2. Define
E(i, j) as the maximum value of any alignment of prefix S1[1..i] with prefix S2[1..j] that
ends with a gap in the extended sequence A1. Define F (i, j) as the maximum value of
any alignment that ends with a gap in the extended sequence A2. Define G(i, j) as the
maximum value of any alignment that ends with a match or mismatch. Finally, define
V (i, j) as the maximum value of E(i, j), F (i, j) and G(i, j).

The base cases of the necessary recurrence equations for global alignment can be written
as

V (i, 0) = E(i, 0) = −gapopen − i gapextend,

V (0, j) = F (0, j) = −gapopen − j gapextend.

The recurrences themselves are

V (i, j) = max{E(i, j), F (i, j), G(i, j)},
E(i, j) = max{E(i, j − 1), V (i, j − 1)− gapopen} − gapextend,

F (i, j) = max{F (i− 1, j), V (i− 1, j)− gapopen} − gapextend,

G(i, j) = V (i− 1, j − 1) + score(S1(i), S2(j)).
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Definition. The score of a global alignment given affine gap costs is the score obtained af-
ter having aligned both sequences S1, S2 completely according to the equations given above.

The aim of global alignment [Needleman and Wunsch, 1970] is to align the whole input
sequences S1, S2, and therefore each gap position is punished based on the assigned gap
costs. For local alignment [Smith and Waterman, 1981], the aim is to find a local, highly
similar region. Everything surrounding this region is ignored, and match/mismatch scores
as well as gap costs apply only for positions in the corresponding part of the alignment.
This means that the initialization as well as any other value computed in the recurrences
is never below 0. So-called freeshift alignments are a special case. Here, it is assumed that
a long part of the two sequences is similar, but can occur at different positions of the whole
sequences. Therefore, leading and trailing gaps are free, and in between the mechanisms of
global alignment are applied. Intuitively, this means that the two sequences can be slided
along each other (or shifted) without costs.

Having computed the optimal score, one chooses one or more alignments that achieve
this score by following the path that is given by the choices in the maximum operations
backwards to the beginning of the recursion, as each choice defines either a match/mismatch
between two residues or an insertion of a gap symbol in one of the two aligned sequences.
Multiple optimal alignments are possible when the maximum operations can choose from
equal values.

Alignments can usually be computed quite efficiently by a relatively simple technique
called dynamic programming. Here, one makes use of the fact that many results in the
recursions are computed over and over again in different instances and can thus be com-
puted only once and then stored for efficiency. Then, as can be seen for the equations
shown above, in a naive implementation the effort for alignment computation with affine
gap costs is reduced to filling matrices E, F,G, and V , where the i and j in the equations
correspond to the rows and columns of these matrices. The details of this technique are
described in most of the available bioinformatics textbooks, including [Gusfield, 1997], and
will not be discussed here.

Further, so far we have only introduced pairwise alignments, i.e. alignments between
two protein instances. So-called multiple alignments, alignments between more than two
proteins, require more elaborate techniques, e.g. to determine the order by which instances
are incorporated in an incrementally growing alignment and so forth. In fact, the exact
multiple alignment problem for the so-called sum of pairs-score has even been shown to
be NP-complete [Wang and Jiang, 1994]. Prominent software tools using heuristics are
ClustalW [Thompson et al., 1994] and T-Coffee [Notredame et al., 2000]. Again, the cor-
responding techniques are well-documented in the literature and will not be discussed here.

2.5.2 Alignment Methods used in this Work

In the final section of this chapter as well as of this part, we briefly describe the two
alignment versions that will occur the most often in the next part, namely log average
profile-profile alignment and secondary structure element alignment.



20 2. Introduction to Protein Structure Prediction

Profile-Profile Alignment

One recent breakthrough in structure prediction was achieved by the introduction of pro-
files. In a (sequence) profile as used in this work, a residue in an amino acid sequence
at a position i is replaced by a vector ∈ R20, which contains the occurrence probability
of each residue at this position in a multiple alignment of similar protein sequences. The
alignment procedure works exactly as described above, with the only difference being the
scoring of two aligned positions when, as it is the case for profile-profile alignment meth-
ods, vectors of occurrence frequencies are used on both the target and the template side
during the alignment process. Well-known scoring functions used for profiles are discussed
in [von Öhsen, 2005], such as

• Dot product: This method was proposed by [Rychlewski et al., 2000] and is prob-
ably the most simple way of scoring the coincidence of two vectors α, β ∈ R20:

scoredotproduct(α, β) =
20∑

i=0

αiβi.

• Average scoring: This scoring function, which was used by ClustalW in a similar
fashion, averages over the scores between residues:

scoreavg(α, β) =
20∑

i=0

20∑

j=0

αiβj log
prel(i, j)

pipj

where prel(i, j) denotes the observed frequency of the respective amino acid pair (i, j)
in related sequences and pipj denotes the background occurrence frequency for this
pair in random alignments.

Other methods discussed are an approach originally described by [Yona and Levitt, 2002],
the COMPASS method [Sadreyev and Grishin, 2003] and the approaches proposed by
[Panchenko, 2003].

Log Average Profile-Profile Alignment

Further, there is a scoring method which was shown to perform very well in comparison to
other methods by Niklas von Öhsen and coworkers and which will be used several times in
the following chapters. The log average scoring function looks very similar to the average
scoring function, but contains a slight difference: the logarithm is taken after the averaging:

scorelogavg(α, β) = log
20∑

i=0

20∑

j=0

αiβj
prel(i, j)

pipj

.

This score has a number of advantages, which are discussed in [von Öhsen and Zimmer, 2001,
von Öhsen et al., 2003], and was evaluated to be very accurate for fold recognition in the
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Algorithm 1 Pseudocode of the pairwise SSEA algorithm.

1: Represent both target and template as sequences of contained secondary structure
elements and discard leading and trailing coils. For instance, the secondary structure
sequence CCCHHHHHCCCCCCEEEECC becomes ([H,C,E],[5,6,4]), i.e. a helix of
length 5, a coil of length six and a strand of length 4.

2: Align the two sequences using dynamic programming with zero gap costs. H-H, C-C
and E-E are scored with the minimum length of the two aligned elements. H-C and
E-C (or vice versa) are scored with half the minimum length, and H-E (or vive versa)
is scored with zero.

3: Normalize the score by dividing the raw score by the mean length of the two (trimmed)
sequences, i.e. without leading and trailing coils.

CAFASP 3 experiment, where the corresponding fold recognition server (Arby) was ranked
among the top servers for single domain targets [von Öhsen et al., 2004].

For Arby, an addition has been made to the log average function, namely the intro-
duction of secondary structure profiles. Here, the procedure is essentially the same as for
sequence profiles, but now two scores are computed (one for the sequence-based similarity
and one for the secondary structure-based similarity) which are combined linearly:

scorelogavg = caascoreaa + csecscoresec

where aa denotes the sequence part and sec denotes the secondary structure part with their
corresponding weights caa, csec ∈ R.

Secondary Structure Element Alignment (SSEA)

Given two protein structures, one particular class of structural alignment methods performs
a comparison of types and arrangements of α helices and β strands, including the ways these
secondary structure elements are connected [Mount, 2001]. In many cases these elements
are represented as vectors in space (including relative position, type, direction and length)
and can thus be compared much easier than three-dimensional coordinates for each residue
or even atom. Popular tools that use such secondary structure elements are VAST and
SARF [Madej et al., 1995, Alexandrov, 1996].

In the next chapter, we will deal only with secondary structure annotations derived
from the amino acid sequence of a target. In this situation, still the order, the type and
the lengths of the elements can be used. Secondary structure element alignment (SSEA) for
secondary structure sequences may therefore to some degree reflect topological similarity
between proteins, though with a clearly reduced knowledge base.

The SSEA algorithm we employ for speeding-up PPA-based fold recognition (chapter
3), Vorolign (chapter 7) and SSEP-Domain (chapter 5) is a very simple method using three-
state secondary structure representations. A similar procedure to the one described here
was proposed by Theresa Przytycka and coworkers in 1999 [Przytycka et al., 1999]. Liam
J. McGuffin and David Jones then adopted this approach and found in their evaluation
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[McGuffin et al., 2001], that SSEA is able to find similar folds more accurately than other
methods in their comparison (including simple sequence as well as secondary structure
alignment).

The version that works best in their comparison, and which is therefore used in this
work, is described in Algorithm 1. In short, each protein is represented as a sequence of
its secondary structure elements (with annotated lengths). The alignment is then done via
dynamic programming using a very simple scoring function based on the element types
and lengths as described in the pseudocode of Algorithm 1.

Parameters used in this thesis

If not stated otherwise for the corresponding evaluations, all profiles and secondary struc-
ture predictions were generated using Psipred and PSI-BLAST [Altschul et al., 1997] against
an NR database [Wheeler et al., 2000] of nonredundant protein sequences obtained in April
2004, using 5 iterations for PSI-BLAST (as proposed by [Schäffer et al., 2001]).

For the combination of sequence and secondary structure profiles, we use both the
software and the parameters obtained from Niklas von Öhsen, shown here in the notation
of the PPA software:

common.target.aa.convertermatrix=blosum62

common.target.ss.convertermatrix=KawabataN00

score.gapinsertion=14.7426772777912

score.gapextension=0.36945751321605

score.alimode=global

score.psc.ss.scale=0.695214057254826

score.psc.aa.scale=2.885390082

All matrices and classes as used in these parameters were already part of the original PPA
software.



Chapter 3

Selection of Fold Classes based on
Secondary Structure Elements

Alignments are among the most powerful tools for finding similar proteins to a target
in a database of templates and therefore are relevant also for all subsequent tasks such as
protein structure modeling. Also for the prediction of the fold class of a protein domain, the
so-called fold recognition task, alignments are a heavily used tool, as they allow measuring
similarity between new and known domains. However, one of the main drawbacks of many
of the more sophisticated alignment-based fold recognition approaches is their relatively
low speed while, given the growing number of available templates, one often has to find
efficient means of selecting useful templates.

A solution to this problem proposed here is a two-stage approach, which uses a simple
and thus very fast alignment method to discard a large part of the template database based
on assumed topological dissimilarity before employing a more specific but also much slower
method in the second stage. We call this approach ”Preselection and Refinement”.

In this chapter, we present an updated evaluation of this concept which has been pre-
sented in a previous stage in [Gewehr et al., 2004], having included a newer and more
powerful refinement method, namely log average alignment on both sequence and sec-
ondary structure profiles. Our evaluations show that it is indeed possible to speed-up the
recognition process over using methods such as profile-profile alignment alone while achiev-
ing a similar fold recognition accuracy. Further, the preselection idea has been integrated
in different variants into the Vorolign method (chapter 7) and the SSEP-Domain method
(chapter 5).

3.1 Introduction

Similar to the protein structure prediction task called fold recognition, there exists also
a protein classification problem with the same name. Here, the aim is not to deliver a
good coordinate model for a target, but the protein classification (namely the fold) the
target structure will most probably belong to. In other words, for the former task, we
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would produce a coordinate model for a target based on (remote) homology, whereas for
the latter task it suffices to name the fold class, e.g. ”a.1” when using SCOP. In the
following, when we use the term ”fold recognition”, we mean the second problem, i.e. the
classification task.

Recent approaches for tackling the fold recognition problem follow two major directions,
namely the application of machine learning methods and the application of alignment meth-
ods. Representatives of the first direction are the methods by [Ding and Dubchak, 2001]
(neural networks and support vector machines (SVMs)) and [Chinnasamy et al., 2004]
(tree-augmented näıve Bayesian classifiers). Examples for alignment-oriented methods
are GenTHREADER [Jones, 1999a] (sequence-profile alignment, evaluation by energy po-
tentials) and the MANIFOLD approach [Bindewald et al., 2003] (sequence and secondary
structure alignments combined with enzyme codes).

While there exist successful methods for this task such as profile-profile alignment, these
methods often require considerable computational effort. For speeding up this process, we
propose a two-stage approach, which uses a sensitive and fast alignment method to discard
a large part of the template database before applying a more specific but also much slower
method in the second stage. The approach is based on topological similarity of proteins
and protein domains. In particular, given a protein structure, by topology we mean the
sequence of the contained secondary structure elements (the helices, sheets and coils),
their relative positions and orientations in space and the observed contacts between these
elements.

Initially, all that is available in a fold recognition setup is the sequence of a target pro-
tein, therefore it is not possible to directly compare topologies between the target and the
available templates. However, given a good secondary structure prediction for the target,
we can approximate topology by using only the sequences of secondary structure elements
without knowledge about contacts. Therefore, we can formulate the main hypothesis for
this chapter as follows:

Working Hypothesis. Since fold membership is based on the topology of a protein
structure, it is possible to select potential fold classes for a target based on the sequence
of secondary structure elements.

We still have to define what we mean with secondary structure element in this context, i.e.
when the structure of protein is unknown, as it is the case for our targets:

Definition (Secondary Structure Element). Given a predicted secondary structure
sequence (i.e. a sequence over the alphabet {C, E, H}), the corresponding secondary struc-
ture elements are all contiguous stretches of identical symbols.

For instance, the sequence CCCEECCHHHHCCEECC contains three non-coil elements,
namely two strands of length two and one helix of length four, with four surrounding coil
regions with lengths 3,2,2,2, in sequential order.

In order to find fold classes quickly that contain topologically similar templates, we
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select template fold classes based on the secondary structure elements in the target sequence
as predicted by Psipred [Jones, 1999b] using a fast alignment method designed for such
cases.

Once a number of potential template fold classes have been selected, often approximate
topological similarity based on only the order and length of secondary structure elements
is not enough to discriminate between them, as shown for the SSEA method in the results
section. At this stage, we therefore change to a finer level of description by using profile-
profile alignment (PPA) on both sequence and secondary structure profiles. This method
is much slower than the preselection step in finding a single, final predicted class for a
target but very accurate in comparison to other fold recognition methods.

An overview of the approach is shown in Figure 3.1. 1) It quickly preselects potential
classes. 2) It rescores the selected classes using the second, more expensive measure for
selecting the finally predicted class. As our evaluation will show, this idea allows for a
reduction of computation time by about one order of magnitude as compared to PPA
alone while achieving comparable results in fold recognition.

3.2 Material

3.2.1 Training and Test Data

We use three different data sets for this chapter, one well-known ”difficult” set, one newly
compiled “intermediate” set, and one well-known, ”easy” set:

1. CATH MJ: The first set was introduced by [McGuffin and Jones, 2002]. It con-
tains 542 nonredundant domains based on CATH [Orengo et al., 1997] version 1.7
and is divided into a subset of 252 ”known” domains which have at least one other
match in this set, and 290 ”unique” domains, i. e. domains which have folds
unique with respect to this set. In order to compare our method to the results
of [Bindewald et al., 2003], we used their approach by selecting the set of known
folds as targets and the complete set as templates, excluding identical hits. For com-
parison purposes we used the classifications given by CATH V2.4 as described in
[Bindewald et al., 2003]. It should be noted that, using this CATH version, we can
find matching partners with respect to the CATH topology level for only 241 of the
set of known domains. For the evaluation, we nonetheless keep all 252 domains as
reference number for 100% accuracy.

2. ASTRAL25: The second set was compiled from the ASTRAL [Chandonia et al., 2004]
subset with less than 25% sequence identity based on SCOP version 1.651. We per-
formed leave-one-out tests on all fold classes containing at least 2 members (3999
domains in 441 fold classes). This set was used for training our approach (we evalu-
ated the percentage of selected folds on this set) for two reasons: First, we have no

1provided by http://astral.berkeley.edu
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Figure 3.1: Graphical overview of the preselection and refinement approach. At first, all
templates are scored with a fast but sensitive method and potential fold classes are selected.
Using only these classes, all remaining templates are rescored in the refinement step with
a more selective approach and the class with the highest-scoring template is selected for
the final prediction.

comparison with other methods on this dataset (in contrast to the two other sets),
and second, the ASTRAL set is the the most similar set to the template sets usually
used for structure prediction and fold recognition by methods competing e.g. in the
CASP experiment. Therefore, a high performance on the ASTRAL set is desirable
especially when considering to apply preselection for fold recognition in prediction
methods such as SSEP-Domain, for instance, which also uses ASTRAL as template
database.

3. SCOP DD: The third set is the test set provided by [Ding and Dubchak, 2001].
It contains 386 SCOP domains in 27 SCOP folds. This set is known to contain
(distant) homologs [Bindewald et al., 2003], a fact that leads to higher recognition
rate for such target-template pairs. We again follow the MANIFOLD procedure by
performing leave-one-out tests on the test set only (Silvio C. E. Tosatto, personal
communication).
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For this updated evaluation of the preselection approach, sequence and secondary structure
profiles as well as secondary structure predictions were generated in the same manner as
for the SSEP-Domain method, for instance, which makes use of the preselection approach
to speed up protein domain prediction (see section 2.5.2 for details).

It should be noted that 26% of the targets in the SCOP DD set are contained in the
ASTRAL25 set, i.e. 100 of the 386 domains are also used in the ASTRAL set. However,
the set is much smaller and the conditions are very different to the ASTRAL set. From
the CATH MJ set, 36.5% of the used protein chains in the test set are also used in the
ASTRAL data (92 of 252). Nonetheless, the setup is again very different from the ASTRAL
data: no cross-validation is used, the set is much smaller and the domain definitions were
taken from CATH instead of SCOP. Therefore, using the SCOP DD and CATH MJ sets
as test sets allows for a fair comparison with the methods quoted for these sets.

3.2.2 Quoted Methods

For the sets obtained from the literature, we are able to compare our results directly to
the accuracy values reported for other methods:

• MANIFOLD (MF). The MANIFOLD method [Bindewald et al., 2003] is the most
interesting comparison, since it also makes use of secondary structure element align-
ment. The results are combined with PDB-BLAST and enzyme code similarity by
training a two-layer neural net for weighing the three contributions.

• PDB-BLAST (PB). From [Bindewald et al., 2003] we quote their results for the
PDB-BLAST method [Rychlewski et al., 2000] which generates PSI-BLAST profiles
[Altschul et al., 1997] for each target and then aligns them to all template sequences.

• GenTHREADER (GT). From [McGuffin and Jones, 2002] we used the results for
GenTHREADER, an approach introduced by [Jones, 1999a] which uses a sequence
profile-based algorithm and subsequently analyzes the alignments by using energy
potentials.

• BAYESPROT (BP). BAYESPROT utilizes tree-augmented näıve Bayesian clas-
sifiers. Here, we quote the results from [Chinnasamy et al., 2004].

• Ding and Dubchak (DD). Ding and Dubchak studied support vector machines
and neural nets for fold recognition. The results are quoted from the original paper
of 2001 [Ding and Dubchak, 2001].

Since these results were not recomputed, it should be noted that there are small differences
in the setup between our approach and the quoted methods. We use Psipred [Jones, 1999b]
predictions while, for the Ding and Dubchak set, MANIFOLD makes use of consensus
secondary structure predictions as described by [Albrecht et al., 2003]. Furthermore, since
we made use of an NR version of April 2004 to compute our profiles, these will differ slightly
from the profiles generated by Bindewald et al. for MANIFOLD. The final revision of their
paper was in August 2003.
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3.3 Preselection of Fold Classes

The first question that arises is how to select suitable fold classes from the template data.
Intuitively, we can describe this problem as

Preselection of Fold Classes. Given template protein domains in ntot classes, select a
fraction of n classes out of ntot such that the number of necessary templates is reduced
significantly while keeping the correct class as often as possible within the selection of
potential fold classes.

Based on the working hypothesis, we make use of the secondary structure elements con-
tained in the target structure to find out which protein domains are similar to our target
and which are not.

3.3.1 Secondary Structure Element Alignment (SSEA)

One alignment method based on secondary structure elements which is very well suited
for this task is the so-called secondary structure element alignment (SSEA). This method
has been shown to compare favorably against direct secondary structure alignment meth-
ods [McGuffin et al., 2001]. Here, two proteins are represented as the sequences of their
secondary structure elements and then aligned using dynamic programming based on the
types and the lengths of the elements (see Algorithm 1). This matches our idea, as the
topology of a protein is assumed to be related to the sequence of its elements, and thus
using SSEA gives us a measure of supposed topological similarity between two proteins (or
protein domains in this evaluation). Since SSEA is fast, in order to select potential fold
classes, we can align a target against all available templates, assign the score of the highest
scoring template in a fold class to the respective class and order the template fold classes
respectively.

Whether to use Psipred or DSSP on the Template Side

On the target side, we can only make use of secondary structure predictions (in our case
generated by Psipred), but on the template side, we have the option of using either direct
secondary structure annotations (derived from a protein structure itself) obtained from
DSSP [Kabsch and Sander, 1983], for instance, or secondary structure predictions. On the
ASTRAL25 data, we evaluated which version would achieve higher accuracy.

We find that, if we use DSSP annotations on the template side and Psipred predictions
on the target side, our prediction accuracy (when using only the top hit for each target)
drops to 45% as compared to 54% for Psipred vs. Psipred. This effect can be attributed
to the differences between these two methods, i.e. using the same method on both sides
(target and template) allows finding similar templates, even if the predicted secondary
structure for the template is not necessarily as correct as possible. In other words, as
we make similar mistakes on both sides, it is beneficial to also use predictions on the
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template side. Using DSSP on the template side and Psipred on the target side instead
simply leads to larger differences and, in some cases, clearly different secondary structure
element content between a target and suitable templates, such that their similarity cannot
be recognized by SSEA.

Although this is not possible in a real-world prediction setup, we also compared to using
DSSP on both sides, which results in an accuracy of 60% (i.e. six percentage points more
than Psipred on both sides). This indicates that better secondary structure predictions,
i.e. more accurate in terms of structural properties, also seem to result in better prediction
accuracy for SSEA.

3.3.2 Selection Strategies based on SSEA

Approach 1: Relative Number of Folds

Once all potential fold classes have been assigned a score using SSEA, it is necessary to
discard most of them in order to achieve the desired speed-up of the subsequent profile-
profile alignment step. Simply using a fixed number of classes is not advisable, as the
number of available classes can vary significantly depending on the setup, i.e. on the
available template database (see e.g. the difference between Ding and Dubchak’s and the
ASTRAL set). For this evaluation, we chose the next simple solution in selecting the top
n% of available classes instead, i.e. choosing the number of selected classes relatively to
the number of classes in the template database.

We therefore evaluated the number of times the correct fold was found within the top
n% and the average number of templates needed on the ASTRAL dataset for increasing
n (see Fig. 3.2). The final value of n = 5, i.e. selecting the top 5% of fold classes for
further processing, was chosen as a reasonable tradeoff between speed and accuracy: We
computed the relative accuracy gain as the gain in accuracy divided by the increase in the
average number of templates per step for n = [1 : 9] with a step size of 1. As expected,
the relative accuracy gain falls with increasing n; however, we find a local maximum for
n = 5 (see Fig. 3.2, lower panel), which we decided to use as our threshold. Further, the
stepwise accuracy gains after n = 5 are below two percent. For databases containing only
few different fold classes, we defined a minimum number of selected fold classes of 5. On
ASTRAL25, selecting the top 5% of the classes contains the correct class in 88% of the
cases while discarding 95% of all available template classes.

Interestingly, the cases where this preselection approach misses the correct fold cannot
be mapped clearly to certain features of the corresponding targets: These targets lie in
239 fold classes (which range in size from 2 members to 175 members with respect to this
dataset), they range in length from 28 amino acids to 740 amino acids, and, as shown in
section 3.5.1, they are not restricted to only few secondary structure elements.
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Figure 3.2: Evaluation of fold selection for the first approach: On the x-axis we find the
relative fraction of selected fold classes, on the y-axis (1) the number of cases where the
correct fold class is within the selected classes is shown (upper panel), (2) the average
number of templates out of all 3999 templates in the ASTRAL25 set we have to align the
target to (middle panel), and (3) the relative accuracy gain per step (the accuracy gain
for a step divided by the increase in the number of templates for the same step). A local
maximum in the otherwise more or less monotonically decreasing relative accuracy gain
found at n = 5, i.e. selecting 5% of the folds, was chosen as the threshold for our method.
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Approach 2: Threshold-Based Preselection

Alternatively, is is also possible to select those fold classes which have a member whose
score difference to the top-scoring template overall is less than a threshold t. We computed
the number of times the correct fold was found, including a fold whenever the top-scoring
member of the fold was within a certain score distance to the top hit for a target. We
evaluated different thresholds and chose one for which we found an identical performance
to our first preselection approach (the relative number of folds) with respect to accuracy:
using all folds with members having a score distance of less than this threshold (0.09417)
to the top hit, we also find the correct fold in our selection for 88% of the targets.

As for the previous approach, we find the wrong predictions in 224 folds which contain
2 to 175 members, and the corresponding targets also vary strongly in lengths (from 24
residues to 740 residues). For this approach, we find that indeed those targets with few
secondary structure elements are more difficult to predict than targets with many secondary
structure elements (see 3.5.1).

3.4 Refinement with Profile-Profile Alignment

Given a number of preselected classes, the second step deals with the problem of refining
the selection to finally predict only one fold class for the target:

Refinement: Selection of the Final Fold Class. Given msel template protein domains
in n classes, select one class for the final prediction with as high accuracy as possible.

For finding the final prediction, we employ log average profile-profile alignment (PPA) on
the templates of the preselected fold classes. This approach is computationally much more
expensive than SSEA (the sequences are longer, as PPA aligns residue-wise, and at each
position profile vectors have to be evaluated instead of single elements). While in our
previous study [Gewehr et al., 2004] we made use only of sequence profiles, for the final
evaluation presented in this chapter we selected a more recent and also more powerful
PPA, namely the log average profile-profile alignment method used by the authors of
the Arby structure prediction server [von Öhsen et al., 2004], which uses global alignment
on both sequence and secondary structure profiles. In a comparison with PPA variants
using sequence profiles only, we could confirm that Arby outperforms all previously used
versions on our ASTRAL 25 dataset. The parameters for the Arby alignment approach
have been optimized by its authors independently and were used without modification in
our evaluation for this chapter (see section 2.5.2).

3.5 Results

As the aim of our study is to speed-up fold recognition, in the following we will evaluate
different methods including our own with respect to fold recognition accuracy, i.e. the



32 3. Selection of Fold Classes based on Secondary Structure Elements

number of correct predictions divided by the size of the test set, given as percentage.
Further, we will have a closer look at the preselection accuracy, i.e. the number of targets
for which the correct fold was included by a preselection approach divided by the number
of all targets in percent.

3.5.1 Preselection Performance on ASTRAL25

For comparison, we configured both preselection approaches (relative number of fold classes
and threshold-based selection) such that they find the correct fold in their selection in
exactly the same number of cases (see above): When used as described above, both find
the correct fold in their selection for 88% of all targets, whereas the first approach uses a
fixed number of 22 folds and the second approach visits 24 folds on average.

We evaluated whether it was necessary to introduce a ”special treatment” for targets
with few predicted elements, which we expected to be harder to predict than those with
more elements. For this reason, we exemplarily selected all targets with only one or two
secondary structure elements (excluding coils) from our ASTRAL25 set. On this data, the
first approach (using the top 5% of fold classes) still contains the correct fold in 85% of the
cases (as compared to 88% for all targets). In contrast, the threshold-based version shows a
clearly reduced performance, containing the correct class in only 51% in its selection. This
shows that especially the first approach is applicable also for targets with few secondary
structure elements.

For both approaches, we observe that with increasing number of secondary structure
elements also the preselection accuracy increases: Using only targets with more than 20
secondary structure elements, the first approach selects the correct fold in 91% of the cases
and the second approach nearly reaches 99%.

Overall, although they were tuned to the same preselection accuracy on all targets,
the relative number of folds works much better on few secondary structure elements than
the threshold, and the threshold is better for very high numbers of secondary structure
elements. When used in combination, i.e. using at least 22 folds and running until the
threshold is reached, it is possible to capture the good parts of both approaches. Then, in
91.5% of all cases we find the correct fold in our selection. However, using an average of
34 folds, this combination is actually comparable to the first approach alone when simply
using the top 8% instead of the top 5% of folds. And indeed, for the top 8% of folds, we
would have achieved a very similar preselection accuracy of also about 91%.

Apparently, there is a tradeoff between fold recognition accuracy and speed-up. Using
the individual approaches or the combination of the two, an increased number of folds
or a less restrictive threshold will increase the preselection accuracy but in turn include
more potential folds. On the other hand, as we will see on the CATH MJ set in the next
subsection, the restriction to only few fold classes by SSEA can in some cases even improve
accuracy over PPA alone. In addition, the threshold-based preselection depends much
stronger on the properties of a prediction setup (the expected sequence similarity between
the template classes, for instance) than the first approach: When trained on a set with low
similarity between template classes and then used on a set with high sequence similarities
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between template classes (and thus smaller score differences), the threshold will probably
find many more folds than expected from the training data, and vice versa. In contrast, the
relative number of folds can be expected to yield a speed-up on most datasets independently
of the contained sequence similarities, as long as it does not happen that a very large part of
the templates is concentrated in just a few of the available template classes. This illustrates
that, as we have seen, the application of SSEA can help concentrating on potential fold
classes in fold recognition setups, but it will depend on the intended application how to
choose the approach and the corresponding parameters.

3.5.2 Fold Recognition Accuracy

In this subsection, we combine preselection with subsequent refinement using PPA for fold
recognition. In direct comparison, the characteristics of the first approach seem better
suited for this purpose than those of the second, as it does not depend on the number
of secondary structure elements to work well, whereas the threshold-based version has
considerable problems in the presence of only few secondary structure elements. Further,
the combination of both approaches increases the number of folds over the first approach
by more than 50% while only resulting in a few percent better preselection accuracy. In the
following, we therefore use the relative number of folds as defined by the first approach as
an exemplary choice of preselection method for the purpose of fold recognition: We select
the top 5% of fold classes with SSEA, and we subsequently apply PPA to predict a single,
final fold class for a target.

The fold recognition accuracy for this approach as well as our comparison methods on
the two benchmark sets and on the training set is shown in Figure 3.3. All values were
rounded to full percentages. The difficulty level of the benchmark sets decreases from left
to right as indicated by the accuracy of the methods for each set.

• CATH MJ: For the most difficult set we find that sequence based methods perform
poorly (PDB-BLAST: 13%, GenThreader: 14%). Secondary structure element align-
ment achieves 32% accuracy and PPA achieves 38% accuracy. Nonetheless, on this
set, the combination with SSEA can further increase prediction accuracy to 41%, in
comparison to 34% for MANIFOLD [Bindewald et al., 2003]. The reason for this im-
provement is that, when only very low sequence similarities to sequences of the same
fold are given (as in this set), PPA finds only very low scores against all templates.
Then it is possible for unrelated templates to gain a slightly higher PPA score than a
remotely related template by accident, for instance because of a few similar residues,
although the overall topology may be completely different. On this set, for some
cases, the restriction of the available folds by preselection prevented PPA from run-
ning into such traps. In such difficult situations, confidence measures such as score
gaps [Sommer et al., 2002] may be used to abstain from a prediction completely and
apply other methods instead when available. However, for this test set, the score
differences between the first ranked and the second ranked fold are usually small,
and therefore such an approach might significantly reduce PPA’s sensitivity.
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• ASTRAL25: Here, with only 54% accuracy, secondary structure element alignment
achieves significantly less hits than PPA with 79%. The combination of both yields
76%, this time decreasing accuracy by about 3%.

• SCOP DD: On the easier benchmark set containing distant homologs we find that
our approach achieves 83% accuracy as compared to 75% for MANIFOLD, achieving
24% more fold recognition accuracy than the recently published BAYESPROT and
even 27% more than the machine learning methods proposed by Ding and Dubchak.
Again the best result is obtained by PPA alone with 84%, whereas secondary struc-
ture element alignment achieves 73%.

We find that, by speeding up the fold recognition process using preselection, we can ob-
tain a similar performance to using PPA directly (CATH MJ: +3%, ASTRAL25: -3%,
SCOP DD: -1%). On all three sets, both PPA and the combination of preselection and
PPA clearly outperform their comparison methods.

3.5.3 Speed-Up Evaluation

In a runtime evaluation of the used implementations on an Intel Xeon DP with 2.8 Ghz,
SSEA was more than a hundred times faster than PPA, with up to between 103 and 104

alignments per second as compared to 10 to 100 alignments per second for global PPA
with both secondary structure and sequence profiles in our setup. This shows that SSEA
is faster than PPA by about two orders of magnitude. Therefore, the speed-up achieved
by preselection can indeed be considered relative to the number of discarded templates.

When using the top 5% of folds, under the assumption that we discard about 95% of the
templates by discarding 95% of the fold classes, we therefore can expect a speed-up of 95%
(20-fold). In fact, the real speedup depends on the selected classes. For the ASTRAL25
dataset, the average number of templates per fold class is about 9, whereas the maximum
number is 175. Interestingly, the median is 4, and the distribution shows that only about
100 (i.e. about 25%) of the fold classes actually have more members than 9 in our set.
Nonetheless, if we align against each template of the selected fold class, this distribution
results in a true speedup as measured by the number of templates for each target of about
87%, i.e. 8-fold, as we have to use PPA against 532 templates on average instead of all
3998 of the ASTRAL set.

3.6 Discussion

We have introduced a simple way of combining two powerful alignment methods for fold
recognition, namely profile-profile alignment and secondary structure element alignment
(SSEA). We select potential fold classes according to their potential secondary structure
topology and then rescore these classes using profile-profile alignment (PPA).

For an exemplary fold recognition setup, we used a strategy that selects the top 5% of
available fold classes in the template data as ranked by SSEA scores descendingly. Direct



3.6 Discussion 35

Figure 3.3: Fold recognition accuracy on three benchmark sets. Method labels
are PS (the proposed combination of Preselection and PPA), PP (profile-profile align-
ment using both sequence and secondary structure profiles), BP (BAYESPROT), DD
(Ding and Dubchak), GT (GenThreader), MF (MANIFOLD), PB (PDB-BLAST),
and SS (secondary structure element alignment). The values for PB and MF
were obtained from Bindewald et al. [Bindewald et al., 2003], the value for BP
from Chinnasamy et al. [Chinnasamy et al., 2004], the value for DD from Ding
and Dubchak [Ding and Dubchak, 2001], and the value of GT from McGuffin et al.
[McGuffin and Jones, 2002]. For MF only the mean values were shown.
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comparison to other fold recognition methods confirms that this approach is well capable
of predicting the fold class of a target: On two well-known benchmark sets obtained from
the literature both PPA alone as well as the sped-up combination with SSEA outperform
published results of other methods. Especially interesting is the improvement of accuracy
for difficult targets, i.e. targets for which we do not find close homologs in the template set,
as it is the case for the McGuffin and Jones dataset. This shows that SSEA can actually
guide PPA towards topologically similar templates and may thus be considered a useful
advisor in the absence of significant sequence similarity, i.e. for more difficult targets in fold
recognition setups. Overall, on all three benchmark sets, our combination of preselection
with PPA achieves comparable performance to PPA alone, winning a few percent accuracy
on one set and losing a few percent accuracy on another.

In comparison to using PPA alone, we have shown that a significant speed-up could
be achieved by using SSEA to select fold classes before using PPA, as intended. For our
example approach, this speedup could be estimated to be about 95% (i.e. 20-fold) under
the assumption of an equal distribution of the number of templates over all template fold
classes: The SSEA procedure is very fast and we discard 95% of the fold classes in our
template data. On our training data (the ASTRAL 25 set), where such a distribution is
not given, we can still realize a speedup of 87% (i.e. 8-fold).

To conclude, our proposed speed-up for fold recognition works well, and it is possible to
tune the tradeoff between speed and accuracy by choosing the parameters as required by a
particular application. Variants of our preselection idea were successfully integrated in the
methods described in chapters 5 (SSEP-Domain) and 7 (Vorolign), in the first case again in
combination with PPA, and in the second case in combination with structural alignments.
This made it possible for the corresponding servers to provide accurate predictions in
reasonable time, i.e. in minutes instead of hours.



Chapter 4

AutoSCOP: Unique Mapping of
Patterns to SCOP Classifications and
Application to Fold Recognition

In the previous chapter, we have described an alignment-based approach to the fold recog-
nition problem, which can generally be defined as the task of predicting the correct fold
of a new protein sequence and, of course, whether the fold is a so-called new fold and has
therefore not been classified yet. Especially the latter case is interesting and would require
an additional threshold or any other rejection criterion when using an alignment method
such as profile-profile alignment, for instance. Further, domain hierarchies like SCOP do
not stop on fold level but also make classifications on finer levels such as superfamilies or
families. Therefore, we define the problems of family recognition and superfamily recog-
nition analogously as the problem of assigning the correct family/superfamily to a target
sequence.

In this chapter, we describe a new approach to fold, superfamily and family recognition
of protein domain sequences (AutoSCOP), which makes use of the available motif and
HMM databases for protein sequence annotation. In particular, we map patterns (i.e.
hits from motif, profile and HMM searches) to SCOP classifications and then use this
mapping to predict the SCOP classification of a target domain sequence. Thereby, the aim
of AutoSCOP is to combine the ability to make predictions also for interesting targets (i.e.
targets with relatively low sequence identity) with a reasonably high specificity, in order
be not only applicable as a standalone method but also for finding and correcting potential
errors of other methods in combined approaches.

Since recognition problems inherently have to find similarities between template and
target instances, databases based on sequence patterns such as those contained in the In-
terPro [Mulder et al., 2003] collection provide a wealth of knowledge on significant regions
in amino acid sequences that have been defined for a lot of different applications. As
our evaluations show, including this knowledge can clearly contribute to the prediction of
SCOP classifications both being applied individually and in combination with well-known
alignment-based methods.
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AutoSCOP is joint work with Volker Hintermair, who performed initial evaluations
of unique patterns in his bachelor’s thesis supervised by the author. The description of
the methods and the evaluations presented in this chapter are based on our paper on
AutoSCOP which appeared in Bioinformatics in 2007 [Gewehr et al., 2007a]. In addition,
we describe the AutoPSI database [Birzele et al., 2008] of predicted SCOP classifications
for PDB and UniProt [Bairoch et al., 2005] entries, which is joint work with Fabian Birzele.
This database makes use of both AutoSCOP and the Vorolign structural alignment method
(see chapter 7).

4.1 Introduction

The method proposed in the following (AutoSCOP) is a straight-forward approach for
SCOP classification prediction (or simply SCOP prediction) of protein domain sequences.
However, the aim of this chapter is not only to come up with a good new standalone
predictor but instead with a method that can be combined with already existing, well-
performing methods for SCOP prediction. We aim at building a method that is highly
specific and is at the same time able to make predictions for non-trivial cases, i.e. cases
with low sequence identity to the available template sequences, for instance. One possible
application for AutoSCOP is therefore to be used as a filter before applying other methods,
i.e. all highly confident predictions are caught and all others are passed on for further
processing.

Our data source are sequence patterns as provided by various databases. The Au-
toSCOP approach allows for the integration of this data into a single SCOP prediction
framework. For an exemplary evaluation, InterPro [Mulder et al., 2003] provides us with a
collection of useful databases including Pfam [Bateman et al., 2004] and SUPERFAMILY
[Gough and Chothia, 2002]. Though e.g. SUPERFAMILY uses structure information ex-
plicitely for generating libraries of hidden Markov models (HMMs), on the target or query
side we only make use of the sequence and do not need the corresponding structure.

Our approach can be used for any collection of pattern or feature databases, with the
InterPro compendium being a convenient example for such a collection which was already
applied by other approaches with different prediction aims. We use InterPro patterns in our
protein domain prediction method SSEP-Domain ([Gewehr and Zimmer, 2006], see chapter
5). InterPro has further proven to be a valuable resource for EC number prediction using
association rule mining [Chiu et al., 2006]. [Artamonova et al., 2005] have evaluated and
successfully used association rules to improve sequence annotation which includes InterPro
patterns among other data. In a recent study [Brezellec et al., 2006], the mapping of Pfam
annotations to organism-specific proteins was found to be useful for the identification of
certain genes with potential link to DNA maintenance. Especially interesting for SCOP
predictions is the mapping between SCOP families and Pfam patterns as investigated by
[Zhang et al., 2005]. This mapping showed that there is a general agreement between these
databases, but there are still areas of disagreement as well as unmapped SCOP domains.

Given the latter result, it is obvious that Pfam patterns can be used for SCOP pre-
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diction, but it is necessary to discard the disagreeing pattern occurrences and fill the
gaps resulting from the unmapped domains with patterns from further data sources. Our
approach, which is based on what we call unique mappings from patterns to SCOP classi-
fications, exploits this idea with respect to highly specific SCOP prediction using multiple
databases: For maximizing specificity, we introduce a strict criterion for the acceptance
of a mapping between a pattern occurrence and a SCOP classification that allows us to
discard all mappings that do not clearly match the SCOP hierarchy. We assign a pattern
to a SCOP superfamily, for instance, whenever this pattern occurs only in members of this
superfamily and nowhere else. Such patterns we call unique patterns. For these mappings,
increasing the number of included databases simultaneously increases the coverage on the
training data: The number of training sequences we could assign a SCOP class to using
our mappings rises from 64.7% for Pfam alone to 86.2% for all InterPro member databases
on family level. On superfamily and fold levels, we achieve a coverage of 99%.

The assignment of patterns to SCOP classifications was trained on the ASTRAL com-
pendium [Chandonia et al., 2004]. The predictive power was evaluated in a blind-test like
scenario using three different sets: (1) the complete difference set between two ASTRAL
versions (which contains many ”easy” predictions due to high sequence identities), (2) a
more difficult set with low sequence identities which was used for structure alignment eval-
uation by [Birzele et al., 2007], and (3) the CAFASP4 targets. We made use of an InterPro
version that was released before the ASTRAL domains we used in our test set, such that
the contained HMMs, profiles and regular expressions could not have been trained on the
SCOP classifications used for testing.

We evaluated the power of our method when applied as a filter by combining it with
log average profile-profile alignment (PPA, [von Öhsen et al., 2003]). The combination was
tested on the second, more difficult data set. Here, although we do not make use of the
target structure, we could achieve results that are comparable even to structure align-
ment methods. Further, we observe an improvement over the best structure-based method
on this set (Vorolign, [Birzele et al., 2007]) when we combine Vorolign with our method,
similarly to the combination with PPA. On the third set, the CAFASP4 targets, we find
that we can contribute SCOP predictions for about half of the targets with classifications
available in the latest SCOP release.

Albeit being simple, our unique patterns are a quite powerful tool for SCOP prediction.
The inclusion of unique pattern combinations does not significantly improve performance
over unique patterns alone but helps a bit on family level. A possible reason for this is the
high co-occurrence of patterns from different databases: for instance, a test domain may be
classified correctly by patterns from different databases simultaneously. The extensibility
of AutoSCOP was demonstrated by including also ASTRAL HMMs trained on SCOP
families into our approach, which increased sensitivity on family level on the complete
difference set significantly (already without pattern combinations).

We provide a web server for AutoSCOP where users can submit their sequences and ob-
tain SCOP predictions. In addition, precomputed SCOP predictions for PDB and UniProt
are available from the AutoPSI database.
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4.2 Material

4.2.1 InterPro and its Member Databases: HMMs, Profiles and
Regular Expressions for Protein Sequence Annotation

InterPro is a compendium of databases which include sequence patterns that range from
e.g. functionally important motifs as stored in PROSITE up to structural domains trained
on SCOP superfamily definitions (SUPERFAMILY). InterPro annotations can be found in
many protein resources, as they give hints on e.g. the evolutionary or functional context of
areas on amino acid sequences. In particular, the InterPro version used for this evaluation
(v7.2) contains the following databases:

• Pfam [Bateman et al., 2004]: In Pfam, protein domain families have been rep-
resented as multiple alignments (one for each family). Then, profile hidden Markov
models have been built from these alignments using the HMMer1 software by S.R.
Eddy. Alignment of a query sequence against the database of families is again done
with HMMer.

• PIR Superfamily [Wu et al., 2004]: In PIRSF (or PIR Superfamily), proteins
are classified by their evolutionary relationships and combined in HMMs.

• PRINTS [Attwood, 2002]: PRINTS contains so-called protein family ”finger-
prints”, i.e. motifs which are used in combination to detect members of protein
superfamilies. The search is done by FingerPRINTScan [Scordis et al., 1999].

• ProDom [Bru et al., 2005]: For ProDom, which contains protein domain families,
InterProScan uses BlastProDom.pl (by Florence Servant, flo@ebi.ac.uk) based on
BLAST [Altschul et al., 1990] to scan target sequences for these families.

• PROSITE [Hulo et al., 2004]: PROSITE contains both regular expressions for
significant amino acid patterns, which are searched for by ScanRegExp (by W. Fleis-
chmann, Wolfgang.Fleischmann@ebi.ac.uk) and Ppsearch (Fuchs, R. 1994), and pro-
files for protein families with higher sequence divergence, which are searched with
pfscan from the Pftools package (by Philipp.Bucher@isrec.unil.ch).

• SMART [Letunic et al., 2004]: SMART (a Simple Modular Architecture Re-
search Tool) annotates genetically mobile domains. The corresponding HMMs were
built on manually optimized alignments.

• SUPERFAMILY [Gough and Chothia, 2002]: The SUPERFAMILY database
represents SCOP superfamilies by groups of HMMs.

• TIGRFams [Haft et al., 2003]: TIGRFAMs contains HMMs for curated multiple
alignments of protein families.

1http://hmmer.janelia.org
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We used the InterProScan program [Quevillon et al., 2005] against the InterPro 7.2 databases
for searching InterPro patterns on the amino acid sequences in our training and test data.

4.2.2 ASTRAL Asteroids and Family HMMs

Between SCOP releases, the ASTRAL team provides predicted domains from PDB chains
since the latest ASTRAL release (Asteroids), which are updated on a weekly basis. The
prediction process makes use of BLAST against ASTRAL, HMMs for SCOP families and
superfamilies and HMMs from the Pfam-A database. We used Asteroids as a comparison
and also included ASTRAL’s family HMMs in our prediction method.

4.2.3 Training Data

For computing pattern mappings, it is necessary to define a training set based on SCOP
which is as complete as possible, in order to find as many pattern matches as possible. All
patterns that are not found in the training data cannot be used for prediction as they cannot
be assigned to a SCOP class. Therefore, we chose the ASTRAL compendium based on
SCOP 1.65 [Chandonia et al., 2004]. We make use of the atom-based entries as provided by
the corresponding sequence file, which can be obtained at http://astral.berkeley.edu.
This set contains 50979 domains as defined by the SCOP database after exclusion of so-
called genetic domains (which are defined to be comprised of parts from different protein
chains).

4.2.4 Test Data

For testing the predictive power of the AutoSCOP approach, three test sets are used, each
of which gives a hint on the behavior of our method in a particular setup:

1. Complete Difference Set: We computed the difference set between ASTRAL 1.65
and 1.67 under exclusion of genetic domains. This yields 10039 domains classified in
536 SCOP folds, 804 SCOP superfamilies and 1251 SCOP families. Global sequence
alignment against the ASTRAL 95 subset of SCOP 1.65, a representative subset
filtered for 95% sequence identity, shows that about 50% of these test domains have
more than 95% sequence identity to the training set, i.e. many of the contained
targets are easy to predict.

It should be noted that 458 of these folds contain only one superfamily. However,
AutoSCOP’s prediction accuracy for those superfamilies belonging to folds with more
than one superfamily in the test set was found to be comparable to the overall
prediction accuracy on all levels.

2. Non-Trivial Difference Set: Since the complete set contains many trivial targets,
as a second set, we also used the subset of non-trivial targets. This set was generated
as described for the Vorolign evaluation [Birzele et al., 2007]: It contains all domains

http://astral.berkeley.edu�
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which have at most 30% sequence identity and at least 30 identically aligned residues
with one of the templates, and which belong to a SCOP family that is represented by
at least one template in ASTRAL 1.65. This filter results in 979 domains, which can
give a good hint on how AutoSCOP behaves on difficult but still homologous targets.
The 979 domains are classified in 129 different folds, 169 different superfamilies, and
208 different families.

3. CAFASP 4 Set: In addition, AutoSCOP’s fold recognition performance was tested
on the 58 targets of the CAFASP 4 community-wide blind test experiment for protein
structure prediction, which contain many difficult cases (new families, superfamilies
and even folds).

4.3 The AutoSCOP Approach

As stated in the introduction, our aim is to build a filter method, by which we mean a com-
ponent of a larger fold recognition system that yields highly specific results when possible
and abstains otherwise. A similar aim has the SCOPmap approach [Cheek et al., 2004],
where a number of alignment methods including both sequence-based and structural align-
ments are combined for SCOP superfamily prediction of new protein structures. However,
for SCOPmap, knowledge of the target structure is essential, whereas we concentrate on
a setup where the structure of the target is still unknown. Further, where the SCOPmap
approach calibrates the thresholds for the individual methods such that specificity is max-
imized, we keep standard parameters but exclude patterns that do not match the InterPro
hierarchy, as described in the following.

4.3.1 Motivation

It was observed before for the mouse secretome [Grimmond et al., 2003], that some In-
terPro domains as well as SUPERFAMILY predictions were exclusively found in secre-
tome proteins and that such occurrences might be used as an alternative approach to
identifying putative secretome proteins. Another example, the DomainSieve approach
[Brezellec et al., 2006] searches for Pfam patterns that occur only in certain organisms.
The authors of the PANDORA system [Kaplan et al., 2003], a web-based tool for automatic
representation of keyword-based biological knowledge associated with sets of proteins based
on graphical analysis, suggest to analyze protein sets as given by GO [Camon et al., 2003]
or SCOP by studying shared keywords.

4.3.2 Unique Patterns

In a similar fashion, we assign those patterns that occur in only one subtree of the classifi-
cation hierarchy (in our training data) with respect to a particular SCOP level as so-called
unique patterns to the corresponding SCOP subtree. Thus, for instance, a superfamily may
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Figure 4.1: Illustration of the concept of unique patterns: Given the Pattern-Class graph for
a SCOP level l shown on the left panel, we keep only unique patterns (i.e. patterns Pi with
exactly one adjacent edge) for our final mapping of patterns to SCOP classifications. In
this example, some patterns are not unique (e.g. P1 and P2) and some SCOP classifications
have become unpredictable on this level (e.g. C1 and C2).
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Figure 4.2: Illustration of the second stage of AutoSCOP: If no unique match is found
using unique patterns, the intersection of all possible assignments resulting from common
patterns is built. If this intersection contains exactly one possible classification, a prediction
is made (case 1), otherwise AutoSCOP abstains, as in case 2, where the intersection for
patterns P1, P2, and P3 is empty.
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be described by a set of unique patterns, each of which covers a subset of the superfamily’s
members.

Given a sequence with unknown classification, for prediction we again use InterProScan
to detect patterns. We then compare the found patterns to our database of unique patterns.
If any unique pattern as defined on the training data is found, we assign the corresponding
classification to the sequence. In cases where no unique patterns are found or we find
unique patterns with differing SCOP classification assignments, we cannot assign a SCOP
classification at this stage.

Let P denote the set of all patterns that have been found in the training data. For
a classification task, let C define a set of classes. In particular, for SCOP prediction, let
l ∈ {fold, superfamily, family} denote a SCOP level and Cl denote the set of SCOP clas-
sifications on level l, e.g. Cfold = {”a.1”, ”a.2”, . . .}.

Definition: Pattern-Class Graph. The pattern-class graph Gl = (Vl, El) for a level l is
defined as a bipartite graph using patterns P and classifications Cl as nodes Vl. An edge
e ∈ El ⊆ P × Cl exists between a pattern p ∈ P and a class c ∈ Cl iff pattern p occurs in
at least one member (i.e. one protein domain sequence) of class c.

Definition: Unique Patterns. A pattern p ∈ Vl is called a unique pattern for a pattern-
class graph Gl iff degreeGl

(p) = 1, i.e. p has exactly one adjacent edge in Gl. We define

P ∗
l = {p ∈ P |degreeGl

(p) = 1}

as the set of unique patterns on pattern-class graph Gl.

Thus, we obtain functions f ∗l : P ∗
l 7→ Cl that return the corresponding classification for

a unique pattern (see Fig. 1 for an illustration). For domain sequences, we can now define
prediction functions fl : Sequences 7→ Cl that map a sequence to a SCOP classification on
level l if f ∗l maps all unique patterns found on the sequence to the same classification, and
we abstain otherwise.

4.3.3 Extension: Pattern Combinations

In an additional step, we also include unique combinations of common patterns (patterns
that are not unique with respect to the chosen SCOP level), but only if no unique pat-
terns are found. We analyze combinations of common patterns by searching for consensus
classifications. Each common pattern occurs in a number of different SCOP classifications
on the chosen hierarchy level. If the intersection of the sets of possible classifications for
all found common patterns contains exactly one remaining classification assignment, we
predict this classification for the target. If the intersection is empty or contains more than
one possible classification, we abstain from a prediction (see Figure 4.2).
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Database Detected Unique Unique Unique
Patterns (Fold) (Superfamily) (Family))

Pfam 2031 1981 1979 1825
PIRSF 68 68 68 68
PRINTS 755 674 673 649
ProDom 520 500 500 475
PROSITE 1188 1087 1080 999
SMART 419 405 401 351
SUPERFAMILY 1226 1207 1196 873
TIGRFAMs 493 488 488 481

total 6700 6410 6385 5721

Table 4.1: Quantitative analysis of unique InterPro patterns on the training data. The
highest value for each column is printed in boldface.

4.3.4 AutoSCOP∗: Inclusion of Further Data Sources

In order to show the extensibility of the AutoSCOP approach, in the following we also
included predictions made by HMMs trained on SCOP families as provided by ASTRAL
for SCOP version 1.65. This is a logical extension because of the relatively low coverage
on the family level using InterPro data alone (see Table 4.2). Predictions were made
using HMMer 2.3.2 (S.R. Eddy, http://hmmer.janelia.org) against the complete HMM
library. For each target, the top hit was used like any InterPro pattern using an e-value
threshold of 0.1, which is proposed as a useful cutoff in HMMer’s user’s guide. We will refer
to AutoSCOP including ASTRAL’s family HMMs as AutoSCOP∗ in the results section.

4.4 Results

4.4.1 Mapping of Training Domains

Table 4.1 shows the number of unique patterns for each individual database in our training
data. In fact, most of the patterns (6410 of 6700, 95%) are unique on at least fold level,
which is an indicator for the high quality of the database scan results. Here, we can also
assess the performance of our pattern-based approach on the training data (see Table 4.2):
With unique patterns alone we can correctly assign folds, superfamilies and families to
99.12%, 98.99% and 86.20% of all domains, respectively. While unique combinations of
common patterns do not clearly improve coverage on fold and superfamily levels, they can
contribute nearly three percent on family level.

http://hmmer.janelia.org�
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Database Coverage Coverage Coverage
(Fold) (Superfamily) (Family)

Pfam 85.07% 84.96% 64.70%
PIRSF 1.46% 1.46 % 1.46%
PRINTS 30.80% 30.79% 28.45%
ProDom 23.40% 23.40% 20.99%
PROSITE 43.90% 43.57% 37.43%
SMART 25.19% 25.10% 19.93%
SUPERFAMILY 96.50% 94.60% 30.33%
TIGRFAMs 10.69% 10.69% 10.47%

total 99.12% (99.34%) 98.99% (99.27%) 86.20% (88.97%)

Table 4.2: Coverage analysis on training data based on unique InterPro patterns. The
results after inclusion of pattern combinations (AutoSCOP) are shown in brackets. The
highest value for each column was highlighted.

Method Family Family Superfam. Superfam. Fold Fold
Sens Spec Sens Spec Sens Spec

AutoSCOP 84.20% 96.77% 94.40% 98.17% 93.36% 98.13%

w/o Pfam 74.57% 97.06% 92.77% 97.73% 92.33% 98.11%
w/o PIR 84.19% 96.77% 94.40% 98.17% 93.36% 98.13%
w/o PRINTS 82.96% 96.65% 94.51% 98.17% 93.47% 98.14%
w/o PRODOM 83.60% 96.80% 94.31% 98.16% 93.27% 98.13%
w/o PROSITE 82.78% 97.13% 94.56% 98.19% 93.47% 98.16%
w/o SMART 77.70% 96.52% 94.39% 98.14% 93.35% 98.11%
w/o SUPERFAM. 79.76% 97.17% 84.49% 99.06% 83.26% 99.08%
w/o TIGRFAMs 82.79% 96.64% 94.40% 98.17% 93.36% 98.13%

Table 4.3: Influence of InterPro databases as measured by the prediction performance of
AutoSCOP (i.e. our approach on InterPro data) after leaving out individual databases.
This analysis shows that many predictions are made by more than one database. As in the
coverage analysis, again SUPERFAMILY and Pfam have the highest impact on the final
method. The lowest value for each column was highlighted.
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4.4.2 Prediction of SCOP 1.67 Domains

In our test set, we find 97 new SCOP folds, 163 new SCOP superfamilies and 326 new
SCOP families. On fold level, 433 of the 10039 domains in our test set belong to new
folds and are therefore considered as ”new” in our framework, i.e. targets for which we
do not have a template with the same fold in our database. Accordingly, the remaining
9606 domains are considered ”known”, i.e. targets for which a correct prediction would
be possible. On superfamily level, we have 601 ”new” and 9438 ”known” domains, and
on family level, we have 1167 ”new” domains and 8872 ”known” domains. We evaluate
prediction accuracy on the ASTRAL difference set for each SCOP level by means of

• sensitivity: the number of correct predictions on ”known” domains divided by the
number of all ”known” domains, and

• specificity: the number of correct predictions divided by the number of all predic-
tions, including wrongly predicted ”new” domains.

Individual Contributions of InterPro Databases

It is interesting to see how the individual contributions of the databases differ (Table 4.2).
On fold level, the SUPERFAMILY database already covers 96.5% of all domains (the best
individual result on fold level). A similar performance can be observed on superfamily
level with 94.6%. However, on family level, SUPERFAMILY only achieves about 30%
coverage, whereas here Pfam achieves the best result with about 65%. This shows that
some patterns are good for certain levels of the SCOP hierarchy (e.g. SUPERFAMILY for
fold and superfamily), but none performs best on all SCOP levels.

Table 4.3 shows the performance of AutoSCOP on the test data after leaving out
individual databases. As could be expected from the coverage analysis, SUPERFAMILY
and Pfam are especially important. Some databases are nearly completely covered by the
remaining InterPro members for our purpose. PRINTS and PROSITE are interesting, as
these databases increase performance on family level but slightly decrease performance on
superfamily and fold level. For our approach we kept all InterPro member databases, but
leaving out e.g. the latter two may be an option when the focus lies on higher levels of the
SCOP hierarchy.

Comparison with Reference Methods

Table 4.4 shows sensitivity and specificity of our pattern-based predictions on all three
evaluated levels of the SCOP hierarchy. For the family level, unique patterns on InterPro
data achieve a specificity of more than 96%, for superfamily and fold more than 98%. With
respect to sensitivity, this approach performs best on fold and superfamily level, achieving
values of more than 93% and 94%, respectively. As expected from the mapping results,
the less complete coverage of the family level is reflected in the prediction performance for
SCOP families in a sensitivity of only about 80%.
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The inclusion of pattern combinations has practically no effect on fold and superfamily
predictions, but, on family level, slightly increases sensitivity and slightly decreases speci-
ficity. More importantly, the inclusion of ASTRAL Family HMM predictions (AutoSCOP∗)
rises sensitivity up to 95% on family level even for unique patterns alone and also slightly
improves performance on superfamily and fold level while keeping high specificity.

In this evaluation, in addition to the different AutoSCOP variants, we also used a
number of reference methods on the same data to compare our results against. These
methods were applied in our setup as follows:

• Asteroids. Asteroids comes as a FASTA file containing annotated regions on protein
chains which are not necessarily identical to the final ASTRAL domains on the
corresponding chains (i.e. our test domains). However, ideally a test domain and
the corresponding Asteroids region should be identical in sequence. Therefore, for
mapping Asteroids regions to domains we aligned all Asteroids sequences against the
test domains using BLAST and transferred superfamily assignments (when available)
whenever the e-value of a match to a domain on the same chain was below an e-
value cutoff that ensures a clear similarity between two regions of the same original
amino acid sequence. The chosen threshold (3e-14) is the minimum e-value achieved
by aligning randomly selected subsequences of length 29 taken from test domains
against the test data (which contains the original, full-length sequences). It thus
reflects coverage of about 30 residues or more in significant parts of a sequence,
which is similar to one of the criteria we applied for filtering the Vorolign test set.

Using this filter, we obtain 86.35% sensitivity and 99.39% specificity on the test data,
as shown in Table 4.4. If we relax this criterion, i.e. if we do not use an e-value cutoff,
we can actually improve sensitivity to 86.87% while keeping a specificity of 99.39%,
as we then allow shorter overlaps and can capture also the few very short regions
contained in Asteroids; nonetheless, this difference is small, and in both versions,
Asteroids’ sensitivity is clearly below all other methods except Pfam in our setup.

• ASTRAL Family HMMs. We used HMMer to align the test domains against
ASTRAL’s family HMMs based on ASTRAL 1.65. We accepted predictions using an
e-value of 0.1 as an upper bound, a threshold described as appropriate by HMMer’s
user’s guide.

• BLAST. For comparison, we used BLAST in its default parameters and applied an
e-value threshold such that the specificity is comparable to AutoSCOP’s specificity
on fold level. In particular, we transferred the SCOP classifications only of matches
below an e-value of 0.2; everything else was considered an abstention.

• PSI-BLAST. For PSI-BLAST, we used an NR database of April 2004 together with
the ASTRAL 1.65 as training data. We performed five iterations using an inclusion
threshold of 0.001 and used the best ASTRAL hit in the last iteration. As for BLAST,
we chose an e-value threshold such that the specificity on fold level was comparable
to AutoSCOP, namely 7.0, and transferred the SCOP classifications only when a
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Method Family Family Superfam. Superfam. Fold Fold
Sens Spec Sens Spec Sens Spec

AutoSCOP∗ 95.25% 96.28% 94.96% 98.07% 93.85% 98.13%
AutoSCOP∗U 95.01% 96.43% 94.95% 98.08% 93.85% 98.13%
AutoSCOP 84.20% 96.77% 94.40% 98.17% 93.36% 98.13%
AutoSCOPU 80.34% 96.92% 94.39% 98.19% 93.36% 98.13%

Asteroids - - 86.35% 99.39% - -
Family HMMs 91.45% 96.74% - - - -
BLAST 93.59% 96.26% 89.65% 98.09% 88.17% 98.19%
Pfam 61.14% 97.67% 78.57% 99.10% 77.40% 99.12%
PSI-BLAST 95.57% 93.06% 94.31% 97.69% 93.07% 98.13%
SUPERFAMILY 27.22% 97.06% 89.31% 97.86% 90.22% 98.20%

Vorolign 95.91% 89.52% 96.60% 95.91% 96.66% 97.68%

Table 4.4: Upper Part: Sensitivity and specificity on different SCOP levels on the complete
ASTRAL 1.67-1.65 difference set, for AutoSCOP and AutoSCOP∗ as well as for both
methods restricted to unique patterns only (U). Lower Part: Reference methods. As a
reference for the prediction quality of AutoSCOP, we used ASTRAL’s Asteroids (version
1.65-040809) predictions on superfamily level (Asteroids’ most complete level). In total, we
were able to find Asteroids regions on the same chain for 97.5% of all test domains using
BLAST. Sensitivity for Asteroids was computed relatively to the number of domains coming
from known superfamilies in this set. Further, we included the predictions made by the
ASTRAL Family HMMs based on ASTRAL 1.65 directly (using an upper e-value bound of
0.1) and computed individual unique pattern results for the two InterPro databases with
the highest coverage (SUPERFAMILY and Pfam). We added PSI-BLAST and BLAST
predictions with e-value cut-offs that give comparable specificity to AutoSCOP on fold
level (7.0 and 0.2, respectively). For PSI-BLAST, we used 5 iterations and an inclusion
threshold of 0.001 against an NR database downloaded from the NCBI in April 2004 (which
was available at the same time as SCOP 1.65) together with our training set, using the
best ASTRAL hit below the threshold in the last iteration as prediction. For BLAST, we
directly used our training data as database. In addition, the structure alignment method
Vorolign was applied using its default settings. The highest sequence-based value for each
column was highlighted.
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match was below this threshold. Please note that 7.0 is a rather high threshold,
which shows that, on the complete test set, PSI-BLAST does not make many errors
at all. This also explains the high sensitivity of PSI-BLAST in Table 4.4.

• Pfam and SUPERFAMILY. In addition, we used our unique pattern approach
restricted to Pfam or SUPERFAMILY patterns only. In other words, we use a com-
plementary approach to the one shown in Table 4.3 by concentrating on the accuracy
when using only one database in AutoSCOP.

• Vorolign. Finally, in order to achieve something like an upper bound to what is
possible on the data, we used the structure alignment method Vorolign (see chapter
7) in its default setting. As it is not sequence- but structure-based, in the table the
corresponding results are written in italics.

Comparison with our reference methods shows that AutoSCOP∗ achieves the highest sensi-
tivity of all compared sequence-based methods on superfamily and fold level (its sensitivity
being only second to the structure alignment method Vorolign). On family level, where
sequence similarity is most important, AutoSCOP∗, PSI-BLAST and Vorolign are close
together and achieve sensitivities of 95.25%, 95.57% and 95.91%, respectively, but with
clearly lower specificity for Vorolign and PSI-BLAST as compared to AutoSCOP∗. Aster-
oids and Pfam achieve higher specificity but clearly lower sensitivity.

False Assignments of Domains from new Classifications

Errors often result from the assignment of test domains from ”new” classifications to
”known” classifications. Using unique InterPro patterns on fold level, we make 170 false
assignments, 115 of which are wrongly assigned new fold domains (67.64%). On super-
family level, of the 164 false assignments, 135 fall into this category (82.31%). On family
level, of the 226 false assignments, we have 192 targets from new families (84.95%). We
correctly abstain from a prediction for 73.44% of the test domains belonging to new folds
(318 of 433), 77.53% of the test domains belonging to new superfamilies (466 of 601) and
83.54% of the test domains belonging to new families (975 of 1167).

On superfamily level, we further analyzed the wrong assignments made by unique
InterPro patterns from new superfamilies to already existing superfamilies (135): about
70% have corresponding PSI-BLAST hits with e-values less than 1e-5, and nearly 50% have
PSI-BLAST hits with e-values less than 1e-20. This shows that, as judged by sequence
similarity, many of these assignments are reasonable. All errors with clear PSI-BLAST
hits could be attributed to changes in the classification or in the domain definition between
ASTRAL 1.65 and newer versions.

Prediction Rates using Reduced Training Data

As the computation of InterPro matches for the whole ASTRAL dataset is quite time-
consuming, we also evaluated the prediction performance of AutoSCOP∗ using the AS-
TRAL25 (which is smaller than the whole training dataset by more than one order of
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Training Set Family Family Superfam. Superfam. Fold Fold
Sens Spec Sens Spec Sens Spec

Whole Training Set 95.25% 96.28% 94.96% 98.07% 93.85% 98.13%
ASTRAL 95 95.18% 96.28% 94.91% 98.07% 93.80% 98.13%
ASTRAL 25 94.72% 96.06% 94.34% 97.97% 93.24% 98.09%

Table 4.5: AutoSCOP∗’s sensitivity and specificity on different SCOP levels on the com-
plete ASTRAL 1.67-1.65 difference set using reduced training data sets. We find that, for
the ASTRAL 95 set (filtered for 95% sequence identity), which is less than one fifth of
the whole set, there is nearly no loss in sensitivity and specificity. Even for the ASTRAL
25 (filtered for 25% sequence identity), which contains less than one tenth of the original
data, we observe a loss of less than one percent in both sensitivity and specificity.

magnitude, containing only 4326 domains with annotated patterns) and the ASTRAL95
(which contains 9386 domains with annotated patterns) as training data. The correspond-
ing prediction rates are given in Table 4.5. We find that the ASTRAL95 with nearly as
good results as the whole dataset may be an interesting alternative to using all available
data. The ASTRAL25 as a further reduced set still performs well with only about 0.5
percent less sensitivity on all three levels. Nonetheless, for the following evaluations, we
make use of the whole training data in order to achieve the best possible performance for
our method given our data sources (InterPro and Family HMMs).

4.4.3 Comparison of InterPro Entries and AutoSCOP Mappings

InterPro itself groups individual database patterns together as InterPro entries based on
identified sequences in UniProt. Further, it delivers curated information including an
abstract on the associated proteins, literature references and links to relevant member
databases. Such entries sometimes also contain curated links to structural classifications
as additional annotations, but their generation is not aimed at unique SCOP hits.

An example, which illustrates the possible differences between AutoSCOP mappings
and annotated InterPro entries, is IPR000191 (”Formamidopyrimidine-DNA glycolase”),
where we have 4 patterns (PD003689, PF01149, PF06831, and TIGR00577) and three
SCOP links (a.156.1.2, b.113.1.1, and g.39.1.8). With AutoSCOP we can directly assign
a.156.1.2 to PF06831 and b.113.1.1 to PF01149, whereas we indeed find PD003680 in all
three different SCOP families and therefore do not map this pattern.

Having in mind that many individual patterns often occur together, for AutoSCOP
we investigated whether it would be beneficial to use these entries instead of the direct
results of the member databases by exchanging the individual pattern identifiers with the
InterPro entry identifiers. On the training data, we found that using this variant of the
AutoSCOP approach decreases coverage clearly: we lose about 14% on each SCOP level
(family: 75.71% instead of 88.97%, superfamily: 85.21% instead of 99.27%, fold: 85.28%
instead of 99.34%). On the test data, we obtain similar results. When concentrating on
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the IPR entries, we only obtain 70.52% sensitivity and 96.61% specificity on family level,
78.91% sensitivity and 98.62% specificity on superfamily level, and 78.10% sensitivity and
98.61% specificity on fold level. This means that we also lose 14-15% sensitivity on each
SCOP level as compared to AutoSCOP (see Table 4.4 for comparison), and therefore using
the individual patterns is better for our purpose.

Further, we evaluated whether AutoSCOP can infer information not already contained
in the curated InterPro database: If we use those IPR entries with single annotated SCOP
links, i.e. those entries that should clearly map to a SCOP classification, we can keep our
specificity but clearly reduce sensitivity to 52.56% on family level, 65.13% on superfamily
level and 65.04% on fold level, which is reduction compared to AutoSCOP of nearly 30
percentage points. Correspondingly, we observe a further reduced coverage on the training
data: 59.34% on family level, 71.23% on superfamily level and 71.97% on fold level. We
find that many of these annotations do not agree with our criteria although only a single
SCOP link is annotated: Most of the links are to SCOP families. If we directly use these
family level links as predictions on the test data, we achieve a sensitivity of 61.47% with a
specificity of only 82.03%. Thus, in many cases the links pointed to a wrong SCOP family;
and indeed, of these annotations, only 84% are actually unique on this level in our training
data.

Our automatically generated mappings are different from the curated IPR entries and
much more suited for our purpose. As we could find, InterPro’s curated SCOP links are
not necessarily unique with respect to our criteria, even if we concentrate on those InterPro
entries which contain exactly one structure link. With respect to predictions, we clearly
benefit from the higher resolution we gain by using database patterns individually as well
as from the direct, level-specific mapping resulting from our unique pattern approach.

4.4.4 Fold Prediction of CAFASP4 Targets

CASP [Moult, 2005] and CAFASP [Fischer et al., 2003] are community-wide blind test ex-
periments for protein structure prediction. Our domain prediction method SSEP-Domain
[Gewehr and Zimmer, 2006] (which includes an InterProScan run on a target protein)
participated in CAFASP4 during 2004 [Saini and Fischer, 2005]. We analyzed the Inter-
Pro pattern occurrences that were found by SSEP-Domain during this experiment. The
databases for this evaluation were chosen such that we make use of data already available
before the beginning of CAFASP4, i.e. the predictions were made in a blind-test-like setup.

For 46 of the 58 CAFASP4 targets we can find SCOP annotations in ASTRAL 1.71.
For 23 of these targets we can make AutoSCOP predictions on the InterPro data (50%).
Of these 23, 21 are completely correct (91.3%), including two two-domain targets for which
AutoSCOP finds the correct fold for both domains. One target is a new fold but is wrongly
predicted as belonging to a known fold. For the remaining target, two possible folds were
found, one of which is correct.
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Method Sensitivity Sensitivity Sensitivity
Family Superfam. Fold

AS∗ + PPA 89.0 92.7 96.2
PSI-BLAST + PPA 82.1 89.2 93.2
PPA 81.5 88.3 92.2
Asteroids + PPA - 88.2 -
AutoSCOP∗ (AS∗) 69.7 (97.0) 85.3 (99.6) 88.6 (99.9)
PSI-BLAST 75.3 (89.6) 79.9 (95.0) 83.1 (98.9)
Asteroids - 32.3 (99.7) -

AS∗ + Vorolign 92.6 95.1 99.3
Vorolign 86.4 92.4 97.7
CE 84.6 91.9 94.1

Table 4.6: Comparison of AutoSCOP∗ (AS∗) with other methods on the Vorolign test
set. This set contains 979 non-trivial test domains from ”known” families which have
less than 30% sequence identity on at least 30 residues with the template set. Values are
given in percentages. Methods were ordered by sensitivity on fold level descendingly. Best
results for each part are highlighted. For each test sequence, the combination with other
methods (AS∗ + method) was computed by using AutoSCOP∗ to obtain a prediction first
and, if AutoSCOP∗ abstained, using the prediction of the method using in the combination.
Combinations of PSI-BLAST and Asteroids as filters with PPA were computed analogously.
For comparison purposes, in the lower part, the results of the two structure alignment
methods Vorolign and CE are shown. For some methods, which were able to abstain from
a prediction, specificity is shown in brackets. For all other methods, on this set, sensitivity
equals specificity, since there are no new families and hence the total number of predictions
equals the total number of possible correct assignments. Sensitivity for all combinations,
AutoSCOP∗, PPA, and PSI-Blast was computed with respect to the whole Vorolign set (979
domains). Results for CE and Vorolign were quoted from [Birzele et al., 2007]. As on the
complete difference set, Asteroids’ sensitivity was computed on those ASTRAL domains
for which we found Asteroids regions on the same chain using BLAST (903 domains).
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4.4.5 Performance in the Sequence Twilight Zone

We compared our approach to well-known alignment methods using the test set of non-
trivial targets defined in [Birzele et al., 2007]. Vorolign and CE results were also quoted
from [Birzele et al., 2007]. For global profile-profile alignment on both sequence and sec-
ondary structure profiles (PPA) using the parameters described in section 2.5.2, we aligned
the target domains against the ASTRAL 25 compendium (Version 1.65) as a representa-
tive template set as described by Birzele et al., but without using Vorolign’s secondary
structure element-based filtering. PSI-BLAST hits were computed as described for the
complete difference set (Table 4.4). For all alignment methods, the classification of the
highest scoring template was used as the predicted classification of the target sequence.

Table 4.6 shows the results. We find that AutoSCOP∗ performs better on superfamily
and fold than on family level. On these SCOP levels, sensitivity is slightly worse than
for PPA. When using only InterPro patterns (AutoSCOP), we lose 0.4% on superfamily
and fold level and 8.1% on family level as compared to AutoSCOP∗. Further, AutoSCOP∗

achieves specificity rates of 99.9% (fold), 99.6% (superfamily) and 97.0% (family) due to
being able to abstain from predictions.

4.4.6 Using AutoSCOP∗ as a Filter

For evaluation of AutoSCOP∗’s ability as a filter, we combine AutoSCOP∗ with profile-
profile alignment as follows: We predict the SCOP classification using AutoSCOP∗. For all
abstentions, we then align the corresponding targets against the ASTRAL 25 using PPA
as described above. The corresponding results are shown in Table 4.6 (AS∗ + PPA).

We find that, in combination, we achieve about 4% improvement over the best individ-
ual method on fold and superfamily level, and about 7% on family level. We also find that
using AutoSCOP∗ as a filter clearly increases accuracy over using PSI-BLAST or Asteroids
as a filter. Comparison with the results of structure alignment methods on the same test
set as an upper bound to accuracy shows that our combination outperforms the well-known
CE method [Shindyalov and Bourne, 1998] on all levels and the best structure alignment
method in our comparison (Vorolign, [Birzele et al., 2007]) on both superfamily and family
level. In this setup, the inclusion of Astral Family HMM predictions only slightly improves
accuracy: using AutoSCOP instead of AutoSCOP∗ in combination with PPA we get 0.6%
less accuracy on family level and identical accuracy on superfamily and fold level, as most
of the additional predictions are covered by PPA.

Using AutoSCOP∗ together with Vorolign, e.g. for the purpose of assigning a classifi-
cation to a newly resolved structure, we achieve a clear improvement over Vorolign alone.
In other words, on this set, we can correct some false assignments made by structure
alignments. Again, using AutoSCOP instead of AutoSCOP∗ in combination with Vorolign
decreases accuracy only by up to 0.6% (on family level).

Both combinations show that AutoSCOP∗ indeed works well as a filter. AutoSCOP∗’s
high specificity apparently still allows for a sensitivity that can improve accuracy in the
combinations with well-known methods over using these methods individually.
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4.5 The AutoPSI Database - Bridging the Gap be-

tween SCOP and PDB and more

With the AutoSCOP method, we have introduced a unique mapping from patterns to
SCOP classifications based on InterPro as well as other patterns which can be used for
highly-specific SCOP classification prediction of new domain sequences. Using AutoSCOP
we can now assign SCOP classifications to unclassified PDB entries by running InterPro on
their chains, for instance, and assigning predictions based on the locations of the matched
patterns. In addition, given precomputed InterPro data for millions of UniProt sequences
[Bairoch et al., 2005] available for download from InterPro, it is possible to assign our an-
notated structural classifications to regions on these sequences. For UniProt sequences, our
unique mappings extend the meta-level InterPro entries which can also contain structural
annotations, as we aim at a unique, level-specific and pattern-wise mappings to SCOP: In
section 4.4.3, we achieved both clearly higher sensitivity and clearly higher specificity for
our approach.

Furthermore, in cases where the structure is known, we can split a structure into do-
mains using PDP or similar tools and then apply Vorolign as described in chapter 7 to
assign SCOP classifications based on the similarity found to already classified SCOP do-
mains.

Using both of these tools, in joint work with Fabian Birzele, we developed a database
of annotated and predicted SCOP classifications which contains PDB entries as well as
UniProt sequences and thus bridges the gap between SCOP and PDB and even extends
SCOP’s reach to UniProt [Birzele et al., 2008]. Users can search for sequences by keyword
and then browse the annotations and predictions. We deliver a simple consensus which
gives direct access to the agreeing and disagreeing predictions. Covering large parts of
UniProt together with using a new and different approach focusing on high specificity, this
database can help to further clarify relationships between proteins in the protein sequence-
structure space.

4.5.1 AutoPSI Database Content and Methods

Protein Content: The protein data available in our database is based on PDB and
UniProt. In particular, we provide all PDB and UniProt sequences for which we could
make SCOP classification predictions or find already existing SCOP annotations using any
of our methods.

Pattern Content and AutoSCOP: The AutoSCOP method computes InterPro patterns
that are unique for a particular SCOP classification, i.e. that occur only in a particular
superfamily, for instance. As training data, for this version of our database, the ASTRAL
1.69 distribution was scanned with InterProScan on the InterPro databases of version 12.1.
All PDB sequences in the database were scanned in the same way and the found InterPro
patterns and their locations were stored. Therefore, for each PDB sequence, we can show
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Figure 4.3: Screenshot of the AutoPSI detail view for 2er8C.
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Figure 4.4: Workflow of the annotation process for the AutoPSI database.
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the location of the patterns and, based on AutoSCOP, the assigned SCOP classification.
For UniProt, we made use of the corresponding Protein2IPR.dat file downloaded from
InterPro, which is a precomputed database of pattern occurrences on UniProt sequences.
Again, whenever we find a pattern for a UniProt sequence, we can show its location and
annotate a classification when such a mapping is possible.

Structures, Domains and Vorolign: In addition, if the structure is known (as it is the
case for PDB entries), we annotate the structural domains. If available, we make use of the
SCOP definitions directly. If not, we use PDP on the structure to assign potential struc-
tural domains and then run the Vorolign structural alignment method for these potential
domains against a template database of structural domains (the ASTRAL 1.69), in order
to predict the SCOP classification based on structural similarity.

Consensus Predictions: In cases where we have multiple predictions, we compute a
simple consensus between the corresponding SCOP classifications (residue-wise by choosing
the finest level of agreement between them). As an example, if we have two predictions,
namely a.1.1 from position 1 to 200 and a.1.1.2 from position 50 to 150, our consensus
yields a prediction of a.1.1 for the regions 1-49 and 151-200, and a prediction of a.1.1.2 for
positions 50 to 150. Further, in the user interface, very short regions are not displayed in
order to make the consensus parts easier to grasp by visual inspection.

Using the Web Interface of AutoPSI DB

In the entry dialog, a user can enter a search term for a search either on PDB IDs, UniProt
IDs, and the annotations given by PDB and UniProt. This will result in a list of found
sequences and PDB chains which can then be browsed and selected for a detailed inspection.

The detail view for a sequence which opens as a new tab on the website then contains
a summary of the available information: If available, a JMOL2 applet opens where the
structure can be examined in a 3D view. A second, schematic view shows the protein,
its domains and the consensus predictions. By clicking on the button ”Show Individual
Predictions” a user can get a larger picture which contains also patterns and Vorolign
predictions and their locations on the sequence (see Figure 4.3). A click on the bars in
the picture results in coloring of the corresponding parts in the structure visualization.
Below the overview picture, a tabbox containing entries for the sequence itself and the out-
puts of the different predictions mechanisms and annotations provides further information.
Clicking on list items will open a popup with links to external databases.

The individual predictions obtained from AutoSCOP-annotated InterPro patterns (for
both UniProt and PDB) as well as the Vorolign predictions for PDB entries can be down-
loaded from the database homepage as flat files.

2http://jmol.sourceforge.net/
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4.5.2 Towards Large-Scale Protein Domain Prediction

As we have seen in the previous evaluations, unique patterns as mapped by AutoSCOP
are strong indicators for SCOP classifications and therefore for contained protein domains.
For protein chains, the question is whether the correct domain boundaries differ from the
pattern locations. Different examples for PDB chains annotated with both SCOP domains
and the corresponding pattern locations can be found in Figures 4.5, 4.6 and 4.7.

Predicted Domain Content in ASTRAL 1.69-1.71 Difference Set

For our first analysis of the predicted domain content, i.e. the predicted classifications
without considering the locations, we used the difference set (with respect to chains) be-
tween ASTRAL 1.71 and ASTRAL 1.69 as test set. Here, we have about 3000 chains with
both annotated SCOP domains obtained from ASTRAL 1.71 and annotated AutoSCOP
patterns based on ASTRAL 1.69. For 92%, SCOP and AutoSCOP agree in both the num-
ber of folds and the assigned fold classifications. In the remaining chains, we find that
in most of the cases either SCOP contained all assignments of AutoSCOP or vice versa.
Not all of such predictions have to disagree with the assigned SCOP domains: The first
case can occur when no unique pattern was found for one of the SCOP domains, and the
second case can occur when SCOP does not assign domains for regions of the target where
patterns are found, as shown in the examples.

Analysis of Pattern Boundaries

For an analysis of the correlation between pattern boundaries and ASTRAL domains, we
used the predicted pattern occurrences on all ASTRAL 1.65 domains. For this set, we find
that, when averaging over all patterns of all used InterPro databases, we achieve a coverage
of only 51.7%, i.e. a pattern covers only about half of a domain sequence on average. If
we discard members from PRINTS and PROSITE, since these databases contain many
short-ranged patterns, we can improve this value to 86.7%.

In particular, we analyzed the average coverage of patterns with respect to the InterPro
databases: ProDom 75.3%, Pfam 80.6%, PIRSF 99.1%, PRINTS 10.0%, PROSITE 31.7%,
SMART 75.6%, SUPERFAMILY 98.4%, and TIGRFams 94.2%. What we can learn from
this evaluation is that in many cases using pattern matches in the domain prediction will
”underestimate” the extent of a domain region.

What this evaluation does not show is whether some patterns tend to ”overestimate”
the extent of a SCOP domain on a chain. We tested the agreement between SCOP and
pattern locations on about 50000 PDB chains from ASTRAL 1.69 (about 75% single-
domain and about 25% multi-domain). We define a pattern location as different from a
SCOP domain whenever we observe an overlap of more than 10 residues at the same time
as a non-overlapping region of more than 10 residues. We observe that on nearly 20%
of all chains we find pattern locations that exhibit such differences to SCOP domains.
Therefore, the pattern regions can be regarded as good hints for domain occurrences but
not necessarily as sufficient indicators for the concrete domain locations.
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Figure 4.5: In this example (1a0p ), we can see the case when AutoSCOP abstains, as
there were patterns for the first domain of the sequence but these patterns were not found
to be unique. For the second domain, however, we can assign the correct family. Here, the
consensus, which is shown in the interface as a tooltip via mouse-over, assigns the family
to a correct location based on PF005589 and leaves out the borders with the remaining
superfamily annotations based on SSF56349 as they are too short to be displayed.

Figure 4.6: For 1jwlc we find patterns in regions without annotated SCOP domains. The
consensus finds the SCOP domain as c.93.1.1, but spares a short part of it as here we find
an overlap with a differing prediction.

Figure 4.7: This example, 1a79a, shows a very good prediction: both domains are predicted
correctly on family level, and the corresponding locations are also nearly identical.
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Fold-Based Domain Consensus and Evaluation on CAFASP 4 Data

However, a combination of pattern regions may be a better indicator than each pattern
itself, especially if PROSITE and PRINTS are involved. As a simple means to combine
individual pattern locations into a final domain prediction for a protein chain, we used a
fold-based consensus. The underlying algorithm is as follows: (1) merge all patterns of the
same fold as long as there are less than 20 residues between them, and (2) abstain for all
regions where differing folds are annotated.

We tested our fold consensus in a blind-test like setup using our predicted patterns
from the CAFASP 4 experiment, which allows us to compare against our specialized SSEP-
Domain protein domain prediction method, which will be described in the next chapter. As
mentioned in section 4.4.4, of the 46 CAFASP 4 targets which we could find in the ASTRAL
1.71, for 23 we can make AutoSCOP predictions. We analyzed the corresponding pattern
occurrences on these targets and compared them to the CAFASP 4 domain assignments.
With respect to the predicted domain number, when compared to CAFASP on the 23
targets, AutoSCOP is in 18 cases correct and in 5 cases wrong. Using SCOP as a reference,
AutoSCOP is in 21 cases correct and two predictions are wrong. In all cases, AutoSCOP
and SSEP-Domain agreed in the predicted domain number. We further compared the
average overlap between the predicted domain regions and the CAFASP 4 definitions using
the score described in section 5.3.2 (subsection ”Overlap Score”). We find that, on the
23 targets, the AutoSCOP patterns achieve an average overlap score of about 84% as
compared to 91% for our SSEP-Domain approach, i.e. the predicted locations are good,
but not completely correct, as could be expected from the evaluations given above.

4.6 Conclusion

AutoSCOP is a simple yet effective sequence-pattern-based approach to SCOP prediction
on different SCOP levels. For the domains in the test set with known folds/superfamilies
we achieve sensitivity values of more than 93%. Here, especially the specificity values of
about 98% are striking. On the Vorolign test set, AutoSCOP even achieves specificity
rates of up to 99.9% (fold level). This means that, if a prediction is made, it is indeed very
reliable. A test on CAFASP4 targets also shows that the predictions made by AutoSCOP
can provide useful information in blind-test protein structure prediction scenarios.

The combination with profile-profile alignment underlines the potential of the Auto-
SCOP approach by improving the sensitivity of our predictions over the best individual
method by about four percentage points. On family and superfamily level, this combi-
nation even outperforms the structure alignment methods in our comparison. AutoSCOP
can be used as a filter for template selection and fold or superfamily recognition in addition
to alignment-based recognition methods.

The inclusion of unique pattern combinations does not significantly improve the per-
formance over unique patterns alone. One possible reason for this is the high redundancy
between the InterPro member databases. In Table 4.3 we observe that, with the excep-
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tion of Pfam and SUPERFAMILY, leaving out one database does not change the perfor-
mance very much, especially on superfamily and fold level. Even after leaving out the
SUPERFAMILY database, we still observe sensitivity values well above 80% for these lev-
els. Nonetheless, using all found patterns is beneficial for our approach: we could show
that using the higher-level InterPro entries, for instance, clearly decreased the performance
of our method.

The low coverage and the low sensitivity of AutoSCOP on family level can be explained
by the focus of the pattern databases, many of which concentrate on less fine-grained
similarities (an obvious example is the SUPERFAMILY database). This implies that many
patterns that are unique on coarse levels can be found in more than one SCOP family, and
therefore the prediction of the family is not possible. It seems that most patterns work
best on superfamily level, which also explains the similar performance of AutoSCOP on
superfamily and fold level, as all unique patterns on superfamily level have to be unique on
fold level by definition. Thus, especially for the family level, inclusion of specialized data
sources such as ASTRAL Family HMMs is useful.

One problem for AutoSCOP as well as for many other SCOP predictors is the handling
and recognition of domains belonging to new folds, superfamilies or families. Many pre-
dictions for such cases could be traced back to changes in the SCOP versions. However,
sometimes we observe only low sequence identities, and in such cases it remains difficult
to discriminate between known and new classifications. Discarding such targets can in-
crease specificity but comes with the loss of many good predictions in the twilight zone of
sequence identities. This is an interesting point for future development.

The proposed method can easily be extended by including sequence patterns from other
data sources, which we have shown here by including predictions from ASTRAL Family
HMMs. AutoSCOP is further applicable to any protein domain hierarchy, with SCOP
being one very popular example. For the time between releases of such hierarchies, re-
liable predictions of potential protein classifications are important also for proteins with
already available structures. The combination with Vorolign (Table 4.6) shows that there
is potential to detect and avoid errors in assignments made on the basis of structure align-
ments. AutoSCOP may also be a useful additional component for systems like SCOPmap
[Cheek et al., 2004] that combine both sequence- and structure-based predictors into a
larger system.

If an InterProScan run is necessary, the runtime of AutoSCOP was found to be about
half the runtime of a PPA run (with included profile generation for the target), but slightly
longer than a Vorolign scan as described in [Birzele et al., 2007], using up to a few minutes
per target on an AMD Athlon XP with 1.8 Ghz. If annotated patterns are available the
whole AutoSCOP process is mainly reduced to a database lookup which can be done in a
few seconds.

Further, for the computation of the training data, which may be time-consuming, we
could show that it is possible to still achieve good results with strongly filtered training
data (e.g. the ASTRAL 25, which is filtered for 25% sequence identity); this means that
the effort needed for generating the training data can be reduced by more than one order
of magnitude (in our case) if necessary without a large reduction in accuracy.
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Structurally classified protein sequences and structures are a useful basis for research in
protein structure prediction. We therefore provide the AutoPSI database of precomputed,
predicted SCOP classifications for new PDB entries as well as for about two million UniProt
sequences, which is available at http://www.bio.ifi.lmu.de/AutoPSIDB. It is a resource
that can help in two ways: researchers with an interest in specific proteins may get a clue
on structural classification and, associated with this, possible further properties such as
a general function; method developers can use the database to derive and compare larger
scale data for their purpose.

With respect to domain prediction, the AutoSCOP method and its derived database
also offer first insights into the domain structure of these sequences. It is known that
InterPro pattern locations can to some degree reflect the locations of protein domains (an
evaluation of the performance of InterPro as a domain predictor was done by the assessors
of the CAFASP 4 experiment and will be discussed in the next chapter). With AutoSCOP,
we can annotate our highly-specific SCOP classifications to each pattern we have already
seen in our training data, i.e. in the available SCOP/ASTRAL sequences. With these
annotations, we can combine the pattern locations in a consensus which can then give a
clear picture of the regions where the corresponding SCOP classifications are located, even
if such a consensus region is comprised of many short PROSITE patterns, for instance.
This can help users to get a direct impression on potential SCOP domain locations. Our
evaluations show that AutoSCOP annotated patterns when available performed well on the
CAFASP 4 data in a blind-test like setup, which confirms their applicability. Therefore,
this approach can also be regarded as a step towards large-scale protein domain recognition.

In addition to our precomputed results, on our website we provide a web server at
http://www.bio.ifi.lmu.de/autoscop, which applies AutoSCOP∗ on domain sequences.
Here, users can directly submit their sequences in order to obtain SCOP predictions.

http://www.bio.ifi.lmu.de/AutoPSIDB�
http://www.bio.ifi.lmu.de/autoscop�
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Chapter 5

SSEP-Domain: Template-Based
Protein Domain Prediction

The methods presented so far (Preselection and AutoSCOP) deal mostly with protein
domains and the corresponding classifications. However, given a target protein of unknown
structure, also the domain content, i.e. the partition of the target into structural domains,
is unknown. Here, AutoSCOP can give good hints but is not necessarily accurate with
respect to the correct domain boundaries.

In this chapter, we present the SSEP-Domain protein domain prediction approach,
which is based on the application of secondary structure element alignment and profile-
profile alignment in combination with InterPro pattern searches. As we could show for
Preselection and Refinement in chapter 3, secondary structure element alignment (SSEA)
allows rapid screening for topologically similar and therefore potential domain regions while
profile-profile alignment provides us with the necessary specificity for selecting significant
hits. Including InterPro patterns, which have turned out to be a valuable resource for the
AutoSCOP approach, we can also find regions on the target sequence that share similarities
to known family or superfamily definitions which are not necessarily based on structural
homologs.

In the CAFASP 4 experiment, SSEP-Domain performed well and was placed in the
top group of domain prediction algorithms. Since then, we have introduced some changes
that both significantly speed-up the procedure and slightly improve the performance. The
description of the method and its evaluation on CAFASP 4 data presented here is an
extended version of our journal contribution on the SSEP-Domain approach that appeared
in Bioinformatics [Gewehr and Zimmer, 2006].

In addition, a newer evaluation on CASP 7 data shows that SSEP-Domain as well
as its template database (SCOP) tend towards defining too few domains on the target
sequences with respect to the definitions of the CASP 7 assessors. We therefore describe a
variant of SSEP-Domain that includes an alternative structure-based domain assignment
for the template domains (SSEP-Domain∗), i.e. a different view on protein domains than
the SCOP standard, that performs better on multi-domain proteins when evaluated on the
CASP 7 data.
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5.1 Introduction

Domain assignment in proteins is an important subtask of structure prediction, as do-
mains are usually considered the basic units for protein folding, evolution, and function
[Heger and Holm, 2003, Vogel et al., 2005], and thus the decomposition of proteins into
domains can help in areas such as functional classification, homology-based structure pre-
diction, and structural genomics [Liu and Rost, 2003]. Since 2004, the CASP and CAFASP
experiments have included a domain prediction subcategory into their evaluations, which
confirms the importance of this task.

The algorithm described in this chapter, SSEP-Domain, predicts protein domains us-
ing the amino acid sequence of the target on the basis of alignments to known SCOP
domains. Other recent approaches for domain recognition from sequence are also often
alignment-based, such as ADDA [Heger and Holm, 2003], the Dompred-DomSSEA ap-
proach [Marsden et al., 2002], and DOMAINATION [George and Heringa, 2002a]. DO-
PRO [von Öhsen, 2005] uses stochastic models on the alignment-based output of the Arby
structure prediction server [von Öhsen et al., 2004]. Besides alignments, the basis for
such approaches can also be machine learning methods as described for BIOZON in
[Nagarajan and Yona, 2004] and PPRODO [Sim et al., 2005], statistics as in the DGS
method [Wheelan et al., 2000], taxonomy [Coin et al., 2004] or clustering as in MKDOM
[Gouzy et al., 1999] or DIVCLUS [Park and Teichmann, 1998]. Some approaches make in-
herently use of predicted structures, such as SnapDragon [George and Heringa, 2002b] or
the Robetta servers, namely Robetta-Rosettadom [Kim et al., 2005] and Robetta-GINZU
[Chivian et al., 2003], which are part of the evaluation in the results section.

Similar to the preselection approach described in chapter 3, for SSEP-Domain, sec-
ondary structure elements of proteins play an important role. Moreover, as the preselection-
based speedup for fold recognition, also this approach is based on the observation that the
fold class of a protein domain is often defined by the topology of its secondary structure
elements (i.e. the elements and their lengths, the order of these elements, and the contacts
between them). For protein domains, this means that their secondary structure element
topology may be an indicator for fold class membership even if the sequence differs from all
known members of the respective class. If the structure of a protein is unknown, we are still
able to make use of its secondary structure elements and their order based on secondary
structure prediction. Therefore, the comparison of subsequences of a target protein with
known protein domains based on these features may reveal regions of the target that have
the potential for being independent domains.

The DomSSEA protein domain prediction uses secondary structure element align-
ment (SSEA) for selecting PDB chains of potential templates. Other template-based
methods such as Arby select many seed sequences (derived from scans by PSI-BLAST
[Altschul et al., 1997], InterProScan [Zdobnov and Apweiler, 2001], predicted secondary
structures, and more) and then apply elaborate and often costly alignment and scoring
procedures such as threading or log-average profile-profile alignment (PPA). In SSEP-
Domain, as we aim at both a fast and an accurate prediction method, we combine the
quick SSEA with the accurate PPA, allow InterPro pattern regions directly as potential
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domains, and include some speed-up and filtering techniques. Further, as we use single
domains as templates, we can predict multi-domain targets independently of whether the
specific domain combination is already contained in the protein data bank (PDB) or not.

We provide a web-based user interface for SSEP-Domain. Our service may also be
used together with other methods as part of the domain prediction meta-server META-DP
[Saini and Fischer, 2005].

5.2 The Domain Prediction Pipeline

Definition (Domain Prediction Task): We define the Domain Prediction Task as the
problem of decomposing a target protein sequence into subsequences, each of which repre-
sents one protein domain of the target.

Like Nagarajan and Yona in [Nagarajan and Yona, 2004], we consider only continuous sub-
sequences as domain regions. Possible extensions towards the prediction of discontinuous
domain regions will be discussed at the end of this chapter.

A generic template-based domain prediction method using single-domain templates
may consist of three consecutive steps: (1) It searches for potential domain boundaries on
a target sequence, (2) it generates potential domain regions from these boundaries, and
(3) it generates combinations of potential domain regions for a complete prediction for
the target. Our approach follows these three steps, with two main objectives: We aim at
providing a fast method, i.e. we want to perform each step efficiently, and of course we
want to provide accurate predictions. In order to do so, we use a number of simple ideas:

We know that domain boundaries should lie in coil regions; therefore, we use only the
centers of coil regions in the predicted secondary structure for our target and select some
potential boundaries from them using a very quick, SSEA-based scoring. As these bound-
aries are few, we inspect all continuous subsequences between them which contain at least
50 residues in detail (we have less than ten such regions on average on the CAFASP4 test
set). This inspection is done using an efficient but accurate template-based fold recogni-
tion method, namely Preselection and Refinement as described in chapter 3, concentrating
only on templates with similar lengths. In addition, we directly add locations of Inter-
Pro patterns found on the target as additional potential domain regions, without further
processing them by alignments.

Based on the scores obtained for our regions, we use a simple scoring scheme for com-
binations of potential domains which evaluates and ranks all possible combinations of
evaluated regions in only seconds. As our results show, we can predict the domains on a
target accurately in comparison to other methods, using less than ten minutes on average
on a single workstation, in contrast to Arby, for instance, which needs up to one day. A
visualization of our ideas is given in Figure 5.1.
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Figure 5.1: Visualization of the different stages of the SSEP-Domain pipeline.
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5.2.1 Preliminaries

Target and Template Data

For each target sequence, we used PSIPRED [Jones, 1999b] and PSI-BLAST against the
NR database of April 2004 as described in section 2.5.2. From these runs we obtain not
only the secondary structure prediction, but also the PSI-BLAST sequence profile and the
PSIPRED secondary structure profile of the target. The same was done for each domain
in our template library.

We use the atom-based ASTRAL1 compendium [Chandonia et al., 2004] based on SCOP
[Murzin et al., 1995] version 1.65 (released in December 2003) and the corresponding sub-
sets filtered for 95% and 25% sequence identity without genetic domains. Furthermore,
the ASTRAL compendium provides us with the classification of the templates into fold
classes. The template library Domains contains the ASTRAL 95 subset.

Besides the fact that the underlying SCOP database is expert-curated, another advan-
tage of using ASTRAL/SCOP domains as templates is that SCOP’s boundary placement
was observed to be the most precise in comparison to other methods (see 2.2.2).

Parameter Calibration

Some parameters were fitted based on statistical evaluations on ASTRAL (length filter,
significance filter, score normalization, and gap penalties) which will be described in the
corresponding text parts. All other parameters were calibrated such that SSEP-Domain
achieves high accuracy with respect to the predicted domain number together with a rea-
sonably fast average prediction time on a training set of randomly chosen PDB chains
available in ASTRAL 1.65.

5.2.2 Step 1: Finding Potential Domain Boundaries

Before going into details, though this already pertains to the description of the algorithms,
we now define some sets which will make it easier to follow the description of the domain
prediction process, namely

• Centers: The set of all centers of coil regions on the targets sequence with respect
to the predicted secondary structure, with the exception of the leading and trailing
coils. For those, we include the first and the last position of the target sequence
instead.

• Domains: The template database of known domains used by our algorithm, namely
the ASTRAL 95 after exclusion of genetic domains (i.e. domains which span different
chains).

• Images: This set collects the highest-scoring representatives of the templates stored
in the set Domains as found by SSEA (see below for details).

1provided by http://astral.berkeley.edu
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Figure 5.2: Histogram of domain lengths observed in the ASTRAL distribution. The his-
togram was cut at length 600 for better readability, though some domains in the ASTRAL
1.65 distribution are longer than 600. The vertical line shows the mean length of the whole
distribution.

• Regions: This set contains all potential domain regions on the target sequence.

The first step of our method deals with finding positions on the target sequence where
boundaries between domains may be located. We regard all centers of predicted coil
regions on the target sequence t as potential boundaries. Since the number of boundaries
may affect the complexity of the method quadratically (see Step 2), we employ a heuristic
to select only a reasonably small number of these centers for further evaluation as described
in Algorithm 2.

Finding Domain Images using SSEA

First of all, we collect all centers of predicted coil regions on t together with the start and
the end of t in the set Centers. For each template domain sequence d in our template
database Domains, we align d against all subsequences rij between coil centers ci and cj ∈
Centers using SSEA.

Definition(Domain Image). We collect the highest-scoring rij for each template domain
d as so-called domain images in the set Images.

In other words, all subsequences between coil centers are scanned for secondary structure
similarity to the template domains using SSEA. The stored domain images for our template
domains will be used to assign a score to each center and then to select potential domain
boundaries based on these scores.

Length Filtering of Templates

Here, instead of aligning against all possible subsequences, we apply a simple length filter
for selecting only subsequences of similar length for each template domain.



5.2 The Domain Prediction Pipeline 71

Definition(Length Filter): As a further criterion for finding domain images for a do-
main template d, in order to be evaluated, subsequences on the target may differ in length
from |d| by 5% at maximum. In the following we will write this property as |d| ≈ |rij|.

As we directly make use of ASTRAL domains as templates, we chose the threshold of
5% based on a simple evaluation on all ASTRAL domain sequences of version 1.65: The
distribution of the lengths of these domains is shown in Figure 5.2. Our analysis shows
a mean length of 188 with a large standard deviation of 118. We further computed the
mean coil length at either end of a domain according to DSSP [Kabsch and Sander, 1983]
applied to the coordinate files provided by ASTRAL, which was found to be about 4.5
amino acids.

Using a threshold of 5%, for a potential region of length 188, we allow templates to differ
by the average coil length at either end, i.e. by 9 amino acids. In addition, using a scaled
threshold, we assume that with increased domain length the possible length differences
between homolog domains are also increased.

Significance Filtering of Domain Images

For filtering out unlikely domain images, we compare the SSEA score of a hit smax(d)
against a threshold sthresh(d) derived from the all-against-all SSEA alignment score distri-
bution of the fold class the template belongs to. These distributions were computed for
each fold class by aligning all members against each other, based on ASTRAL 95. Only
hits having a score higher than the mean of the corresponding distribution are accepted
and thus added to the set of domain images (Images). For classes having only one member,
we use the mean of all computed means as threshold.

Accumulative Boundary Scores

Now, given the set of domain images for our template domains, we can derive a score
for each coil center, which will then enable us to select only the few most probable ones
as potential domain boundaries for the next stages. In particular, the score of each of
the top-scoring 100 accepted domain images is added to the corresponding coil centers, i.e.
the score of a coil center ci is the sum of the scores of all adjacent domain images in this set.

Definition(Potential Boundaries): For the next stages, we then select the ends of the
target sequence as well as the 4 top scoring coil centers with respect to this accumulative
score as domain boundaries.

The number of boundaries was determined in the parameter calibration process described
in section 5.2.1.
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Algorithm 2 Domain Boundary Search (Step 1)

1: // initialization
2: Centers ← centers of coil regions predicted on target t
3: Regions ← {rij = t[ci..cj]|ci, cj ∈ Centers ∧ ci < cj}
4: Images ← {}
5: Domains ← ASTRAL95
6:
7: // generation of domain images
8: for all template domains d ∈ Domains do
9: // get highest scoring region of similar length

10: smax(d) ← maxrij∈Regions ∧ |rij |≈|d| SSEA(d, rij)
11:
12: // significance filtering: score high enough?
13: if smax(d) > sthresh(d) then
14: add corresponding region rij to Images
15: with score(rij) ← smax(d)
16: end if
17: end for
18:
19: // accumulative scoring of coil centers
20: ∀c ∈ Centers : score(c) ← 0
21: for the top-scoring rij ∈ Images do
22: score(ci) ← score(ci) + score(rij)
23: score(cj) ← score(cj) + score(rij)
24: end for
25: select the top-scoring coil centers

5.2.3 Step 2: Scoring of Domain Regions

Now that we have found potential boundaries, we can take a closer look at the subsequences
of the target defined by these boundaries:

Definition(Domain Region): A potential domain region r ∈ Regions is defined as a
subsequence of the target that starts and ends at potential boundaries and contains at
least 50 residues.

In the following we evaluate these r ∈ Regions with respect to their similarity to the tem-
plate domains using a more sophisticated alignment method, namely profile-profile align-
ment on both sequence and secondary structure profiles, in combination with a preselection
approach as introduced in chapter 3 (see Algorithm 3).
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Algorithm 3 Scoring of Domain Regions (Step 2)

1: Regions ← potential domain regions
2:
3: for all r ∈ Regions do
4: // score fold classes by highest-scoring members
5: for all fold classes Fold ⊂ Domains do
6: score(Fold) ← maxd∈Fold∧|d|≈|r| SSEA(r, d)
7: end for
8:
9: // select members of potential fold classes

10: Dtop ← members of top-scoring fold classes
11:
12: // score normalization for multiplicative scoring
13: scoreraw(r) ← maxd∈Dtop∧|d|≈|r| PPA(r, d)
14: scorefinal(r) ← scoreraw(r)/(10 log |r|)
15: end for

Alignment-based Region Scores

All fold classes are ranked by their highest-scoring member d (under the restriction that
|d| ≈ |r|) with respect to the SSEA scores against r (see Step 1), and the highest-scoring
20 classes are selected. In order to find distant homologs in the members of these classes
with matching secondary structures and similar lengths (Dtop), we align each of them with
r using PPA on both sequence and secondary structure profiles. The largest score of these
alignments is assigned as scoreraw(r) to r (see section 2.5.2 for implementation details and
alignment parameters).

This selection strategy is based on the evaluation of preselection and refinement as
shown in chapter 3: In the corresponding results, for two of three benchmark sets, a
preselection of fold classes using SSEA sped up the prediction procedure significantly while
only slightly decreasing accuracy, and on a third benchmark set preselection even increased
accuracy. In order to be able to predict the domain architecture of a target protein sequence
in reasonable time, we therefore included preselection in our approach. The number of
templates classes (20) was also determined during the parameter calibration procedure
described in section 5.2.1.

Score Normalization

Finally, we normalize the resulting raw score in order to obtain a representative score for
each evaluated domain region:

Definition(Final Region Score): We compute the final score of a potential domain
region r as

scorefinal(r) = scoreraw(r)/(10 log |r|).
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Figure 5.3: Score histogram of fold recognition evaluation on an ASTRAL subset. For
better readability, the histogram was cut at a score of 100, though few hits exceeded this
score. The optimal threshold for partitioning scores into hits and misses lies at about
scoreraw(r)/ log |r| = 10.

Since we assume that the raw scores grow stronger than logarithmically with increasing
region length, the denominator penalizes shorter regions. The factor of 10 results from fold
recognition experiments using the combined PPA scores divided by the logarithm of the
corresponding domain lengths on an ASTRAL subset filtered for 25% sequence identity.
In this evaluation, we find that the optimal threshold to discriminate between hits and
misses is scoreraw(r)/ log |r| ≈ 10 (see Figure 5.3).

By dividing the region scores by 10 log |r|, we obtain scores where the border between
correct and wrong predictions is at about 1.0. The reason for this transformation will
become clear with the description of the next step in the SSEP-Domain pipeline, Step 3,
where we score domain combinations by multiplying the individual scores. Then, a score of
1.0 is in fact a neutral score: Potential hits have a score above 1.0 and therefore augment
the score of a combination of domain regions, potential misses are below 1.0 and therefore
diminish the final scores.

Patterns as Domain Regions

At this stage, we also include InterPro patterns [Mulder et al., 2003] found by the Inter-
ProScan program [Zdobnov and Apweiler, 2001] on the target sequence as potential indi-
cators for domain regions.

As observed by [Saini and Fischer, 2005], the output of InterProScan ”is often ambigu-
ous”, and a user needs to analyze the InterProScan output visually. Nonetheless, based
on the results of the protein domain prediction analysis in the previous chapter, we added
InterPro patterns to the list of potential domain regions with the exception of PRINTS and
PROSITE patterns. However, keeping in mind the observed differences between pattern
and domain boundaries, the score of a single pattern is computed conservatively as 1.0
minus the e-value returned by InterProScan for the pattern. The maximum score of 1.0
allows patterns with highly confident hits to fill gap regions without affecting the overall
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multiplicative score of a domain combination as described in Step 3. In other words, we
regard patterns at best as neutral domain regions against the background of the score
transformations for alignment-based region scores, as for our purpose the correlation be-
tween pattern and domain boundaries was not found to be clear enough to emphasize such
regions over a neutral level.

Inclusion of AutoSCOP

At this point, a further option is to include the AutoSCOP method, either by emphasizing
patterns that are unique for a fold class or by including predicted fold casses into the set
of evaluated fold classes for a potential domain region. This option (both versions) will be
discussed and evaluated in the results section (5.3.3) together with the influence of InterPro
on the prediction process. Please note that (although this already refers to 5.3.3) inclusion
of AutoSCOP did not result in differing predicted domain numbers on our test sets when
compared to the original SSEP-Domain Step 2 as described above.

5.2.4 Step 3: Combining Multiple Domain Regions

Finally, for combining potential domain regions, we recursively generate all possible non-
overlapping combinations of regions and patterns, score them and choose the top combi-
nations as predictions.

Multiplicative Scoring

We score each combination c based on the scores obtained for the regions in the previous
steps and gap penalties for unassigned parts on the target sequence:

s(c) =
p∏

i=1

s(ri)
p+1∏

j=1

gj,

where ri, i ∈ {1, .., p} denotes a participating region and gi denotes the factor for the
unassigned region between ri−1 and ri, with g1 being the gap at the beginning, and gp+1

being the gap at the end of the target sequence.

Gap Costs

We assume that gaps may only occur in coils. Furthermore, we assume that all known
domains may be combined with each other independently of whether they occur in single-
or multi-domain chains. Therefore, we analyzed the coil lengths at both ends of the DSSP
[Kabsch and Sander, 1983] secondary structures of all ASTRAL domains. We do not pe-
nalize gaps of length less than 10 (see 5.2.2), and we allow only gaps shorter than the
minimal domain length of 50. All gaps of length 10 to 49 are penalized with the empiri-
cally estimated probability of observing combined coils (the coil region at the end of the
first domain plus the coil region at the beginning of the second domain) longer than 9.
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This coarse-grained setup with only three different gap states (0..9, 10..49, and > 49)
allows pattern boundaries to diverge from alignment boundaries within a range of the
minimal domain length while favoring short gaps. If we find gaps after having scored the
candidates for the final output, we elongate all regions equally until all gaps are closed.
Thus, like many other predictors, we concentrate on boundaries between domains and do
not predict inter-domain linker regions.

How to Handle Unknown Domains

This scoring scheme does not take into account unknown domains, i.e. domains that show
no similarity to any of the template domains. For instance, think of a case where we find
two very good hits, one at the beginning of a sequence and one at the end of a sequence, and
a long stretch (longer than 50 residues) in between where no good template could be found.
If at least a remote homology to a known template domain is found, the multiplicative score
of the three parts (two with high scores and one with a low score) will most probably result
in a good score for the overall prediction. However, if no template at all is found for the
intermediate region, we have two options: (1) discarding this prediction, as such a long
gap is not allowed, and (2) considering the intermediate stretch as an ”unknown” domain.
In its default configuration, SSEP-Domain uses the first option. In the results section we
will also evaluate and discuss what can be done for the second option (see section 5.3.5).
Please note that a case as described above did not occur in both the CAFASP 4 and the
CASP 7 test data.

5.3 Results

5.3.1 CAFASP 4 and CASP 6 Results

The SSEP-Align structure prediction server maintained by Alessandro Macri (see also
section 5.3.4) that participated in CASP 6 made use of SSEP-Domain in a first version
for its domain predictions. It submitted domain predictions for 60 of the 63 evaluated
targets along with the predicted protein structure models. SSEP-Align is ranked among
the top ten predictors (including both human and server groups) for all criteria, the best
result being rank 6 on a set of multi-domain targets. Among the servers, SSEP-Align is
ranked fourth on all targets and third on multi-domain targets with respect to NDO score,
a domain overlap measure used by the CASP 6 assessors [Tai et al., 2005]. These results
are in accordance with the results we obtained for our independent server SSEP-Domain
in a second, parallel experiment, namely CAFASP 4, which will be described below (see
Table 5.3 for comparison). In addition, SSEP-Align submitted the top-scoring prediction
for the difficult multi-domain target T0237 ([Tai et al., 2005]; not evaluated in CAFASP).

In parallel to the CASP 6 experiment, the CAFASP 4 experiment was performed.
CAFASP 4 was held from May 2004 to September 2004, containing domain prediction as
sub-category of the experiment. Here, SSEP-Domain participated as independent server



5.3 Results 77

and was also ranked among the top five domain prediction servers2. The best performance
was observed on so-called homology targets, targets for which templates having a high
sequence identity were available. It should be noted that the CAFASP evaluation, when
compared to CASP, is based on different target sets, different domain definitions and
differing evaluation methods.

5.3.2 Current Version under CAFASP Conditions

In the following section, we will concentrate on the CAFASP 4 evaluation, since there
SSEP-Domain participated as individual server. Furthermore, CAFASP evaluated more
servers that did not participate in CASP than vice versa.

Changes after CAFASP 4

At the beginning of the experiment, we detected domain boundaries by sliding a window
of roughly the size of the current template domain along the target sequence. For each
window position, we performed SSEAs similarly to the final method described in Step 1.
InterPro patterns as additional domain regions were introduced shortly after the start of
the experiments. Since the CAFASP version of SSEP-Domain needed up to several hours
for one target, after the end of CAFASP we added length filtering in order to reduce the
number of potential templates and replaced the exhaustive sliding window approach by the
coil-center-based domain boundary search (see Step 1). Thus, the main difference between
the current version and the CAFASP version is the speed of the predictions.

This speed-up can be understood by looking at the number of performed PPAs in
Step 2, which are the most time-consuming part of SSEP-Domain. Naively implemented,
each potential domain region would be aligned against more than 9000 templates in the
ASTRAL95. The preselection of potential fold classes using the SSEA scores without
length filtering reduces the number of alignments per potential region to about 11% of
the original number of templates. The additional length filter then reduces the number of
alignments per region to less than 2% of the number of available templates. So we achieve
a speedup of two orders of magnitude due to preselection and length filtering, resulting in
less than 10 minutes average runtime per target.

Further, the final version yields slightly different predictions as indicated by the per-
formance analysis (see Table 5.1): two more targets are predicted correctly. One reason
for this are the new, coil-centered boundaries. Using a sliding window as in the CAFASP
version, there may be low-scoring predicted boundaries close to each other, while the new
approach combines such blurred boundaries in the coil centers. This results in an accumu-
lated score for each coil and thus a clearer picture of whether a coil may contain a linker
region or not. In addition, the length filtering (see 5.2.1) improves these predictions by
discarding domains that achieve good alignment scores but are not representative of the
domain region under inspection due to the length differences.

2http://cafasp4.bioinformatics.buffalo.edu/dp/update.html
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Experimental Setup

For this work, we evaluated the final version of SSEP-Domain under CAFASP 4 conditions
in order to compare with our own CAFASP results as well as with the CAFASP performance
of other servers. This means that the domain database we used as template data and for
parameter calibration does not contain any of the test targets, since it was available before
the start of CAFASP 4.

We quote the CAFASP 4 results from the official evaluation website (October 1st, 2005)
for the following methods:

• ADDA [Heger and Holm, 2003]: The ADDA algorithm uses alignments derived from
an all-against-all sequence comparison to define domains within protein sequences
based on a global maximum likelihood model.

• Armadillo [Dumontier et al., 2005] uses an amino acid index (the domain linker
propensity index DLI) to convert a protein sequence to a smoothed numeric profile
from which domains and domain boundaries are deduced using z-score distributions.

• BIOZON [Nagarajan and Yona, 2004]: For the BIOZON approach, multiple se-
quence alignments are generated and several different measures are defined to quan-
tify the information content of each position along the sequence. Combination of
these measures into a single predictor is done using a neural network.

• Dompred-DomSSEA [Marsden et al., 2002], which uses SSEA to map a target to a
template protein chain and then transfers the domain assignments from the template
to the target, and another method from the same group called Dompred-DPS
which was also entered into the CAFASP 4 experiment.

• DOMPRO [Cheng et al., 2005], which uses recursive neural networks on profiles,
predicted secondary structure and predicted relative solvent accessibility.

• DOPRO [von Öhsen, 2005], which uses an approach based on stochastic models
on the output of the fold recognition stage of the ARBY fold recognition server
[von Öhsen et al., 2004], and which has been shown in [von Öhsen, 2005] to be more
accurate than Arby in domain prediction.

• GLOBPLOT [Linding et al., 2003], an approach based on a running sum of the
propensity of amino acids to be in an ordered or in a disordered state.

• MATEO, which was entered into CAFASP 4 by Matej Lexa.

• Robetta-GINZU [Chivian et al., 2003], which uses BLAST, PSI-BLAST, FFAS03
[Jaroszewski et al., 2005], the structure prediction meta-server 3DJury
[Ginalski et al., 2003] and PFam-A (using HMMER) to detect putative domain re-
gions in the query sequence.
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• Robetta-RosettaDOM [Kim et al., 2005] searches for homologous regions with
GINZU and, if nothing sufficient has been found, uses Rosetta [Bradley et al., 2005]
to produce three-dimensional de-novo models, applies a structure-based domain bound-
ary assignment to these models and finally chooses domain boundaries based on con-
sistencies in their models in an approach similar to the one described by George et
al. for SnapDragon [George and Heringa, 2002b].

• CONSENSUS [Saini and Fischer, 2005]: The CAFASP 4 domain prediction con-
sensus server.

• InterPro [Mulder et al., 2003] as evaluated by CAFASP, for which an automated
evaluation protocol for the InterProScan output was devised together with the EBI
support team [Saini and Fischer, 2005].

To our CAFASP results we will refer as SSEP-CAFASP in the tables.
The CAFASP 4 test set contains 58 targets. Some servers had missing predictions

during CAFASP 4, namely Armadillo (7), DomSSEA (5), DPS (5), GLOBPLOT (4), and
BIOZON (1). For consistency reasons, in the tables we kept the values for all targets from
the CAFASP 4 evaluation for sensitivity, specificity, and average overlap score. These
count missing submissions as wrong, ignore them, or assign 0%, respectively. In addition,
we computed the common subset of targets for which all servers sent predictions. This set
is the basis for our rankings and plots. The following sets are used in our evaluation:

1. CAFASP contains all 58 targets, including those which were missed by some servers.

2. Common contains the 44 targets for which all servers submitted predictions (see
above).

3. Single contains the 29 single-domain targets from the Common set.

4. Two contains the 15 two-domain targets from the Common set.

Sensitivity and Specificity

For our first evaluation, we concentrate on the predicted number of domains. This assess-
ment does not penalize situations where predicted boundaries are far from being correct, as
long as the number of predicted domains equals the native domain definition. We evaluate
sensitivity and specificity of the predicted domain numbers, where sensitivity is defined as
TP/(TP + FN), and specificity is defined as TP/(TP + FP). TP denotes the number of
true positives, FP the number of false positives, and FN the number of false negatives, each
with respect to the evaluated category (e.g. single-domain). Furthermore, in CAFASP 4,
split-domain predictions were considered as wrong predictions for the sensitivity evaluation
and left out for the specificity evaluation. Therefore, in addition to our CAFASP-like eval-
uation, we computed the corresponding values for the affected servers (RosettaDOM and
GINZU) after including split-domain predictions with respect to the number of predicted
domains (see below).
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Server CAFASP Single Two Common
58 targets 29 targets 15 targets 44 targets

CONSENSUS 48 26 10 36
SSEP-Domain 48 28 8 36
SSEP-CAFASP 46 27 7 34
RosettaDOM 46 23 10 33
DOPRO 44 24 9 33
InterProScan 42 28 3 31
DOMPRO 41 25 6 31
DPS 36 24 7 31
GINZU 42 23 7 30
DomSSEA 38 26 4 30
GLOBPLOT 37 27 3 30
ADDA 38 26 3 29
MATEO 23 18 2 20
BIOZON 10 3 5 8
Armadillo 8 1 4 5

Table 5.1: Correct predictions on single-domain, two-domain, and all targets of the common
subset of targets for which all servers submitted predictions. For comparison, the CAFASP
values on all 58 targets are given (based on the values given on the official evaluation
website for the numbers of correctly predicted targets on single- and two-domain targets).
The percentage given for a predictor for a certain set is computed as the relative fraction
of correct predictions in the corresponding set. Predictors were ranked on the common
subset (Common) descendingly. SSEP-Domain shows the results of our final method in
the reevaluation on the CAFASP data, SSEP-CAFASP gives the results of the preliminary
approach in the original CAFASP evaluation.
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Server single-domain two-domain single & two

RosettaDOM 94% (36) 75% (16) 88% (52)
CONSENSUS 88% (42) 79% (14) 86% (56)
GINZU 92% (36) 69% (13) 86% (49)
SSEP-Domain 83% (47) 82% (11) 83% (58)
SSEP-CAFASP 84% (45) 73% (11) 82% (56)
DOPRO 88% (40) 64% (14) 81% (54)
InterProScan 75% (51) 67% (6) 74% (57)
DomSSEA 75% (44) 63% (8) 73% (52)
DOMPRO 76% (46) 50% (12) 71% (58)
GLOBPLOT 71% (48) 60% (5) 70% (53)
DPS 78% (36) 50% (16) 69% (52)
ADDA 73% (48) 33% (9) 67% (57)
MATEO 78% (27) 15% (13) 58% (40)
Armadillo 100% (4) 18% (22) 31% (26)
BIOZON 100% (4) 19% (31) 29% (35)

Table 5.2: Specificity of predictions (based on the values given on the official evaluation
website), rounded to full percentages. All submitted predictions were used, so e.g. the
single-domain class may contain up to 41 correct predictions (all available single-domain
targets in CAFASP 4). As in CAFASP 4, missing, split-, and multi-domain predictions were
not considered. For each server, we give the fraction of correct predictions within a certain
class followed by the number of all predictions made by the server for this class shown in
brackets, in order to be able to distinguish between servers with high specificity but low
sensitivity and vice versa. For instance, for SSEP-Domain on the two-domain set, 82% (11)
means that 9 out of 11 submitted two-domain predictions were correct. For consistency
with the CAFASP 4 evaluation, for the single & two set, specificity is computed as the
number of correct predictions divided by the number of single- and two-domain predictions.
Predictors were ranked by specificity on all targets descendingly.
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Table 5.1 shows the number of correct predictions of the CAFASP 4 participants to-
gether with the results of SSEP-Domain. With 48 of all 58 targets predicted correctly
(82.8%), SSEP-Domain achieves the highest number of correct predictions of all individual
servers. Only the CAFASP consensus method also achieves 48 correct predictions. Sen-
sitivity evaluation on the Common set shows a similar picture: CONSENSUS and SSEP-
Domain perform best, followed by SSEP-CAFASP, RosettaDOM, and DOPRO. While
RosettaDOM, CONSENSUS, and DOPRO find more native two-domain proteins, SSEP-
Domain achieves the highest number of correct predictions for single-domain proteins to-
gether with InterProScan.

Table 5.2 shows the corresponding specificity values. With 82%, SSEP-Domain achieves
the highest specificity on two-domain targets. However, while we observe high overall
sensitivity for SSEP-Domain, RosettaDOM, GINZU, and CONSENSUS achieve higher
overall specificity on all targets (see also Figure 5.5, upper panel).

If we include split-domain predictions, we get different values for RosettaDOM and
GINZU: RosettaDOM now achieves 35 correct predictions on Common and 86% specificity
(of 56 counted predictions) on both single-domain and two-domain targets; GINZU achieves
32 correct predictions and 80% (of 55 counted predictions), respectively.

Overlap Score

The second major part of the CAFASP evaluation is the assessment of the correct boundary
placement using a so-called overlap score. We follow the CAFASP evaluators in using the
algorithm described in [Jones et al., 1998] for the predictions of the final version. The val-
ues for the CAFASP participants were taken from the official website. For this evaluation,
split-domain predictions were included already in the original CAFASP 4 evaluation.

The algorithm for the computation of the overlap score is simple: assign the predicted
domains to the reference domains such that the order is preserved and that the maximal
overlap over all reference domains is reached. No predicted domain nor reference domain
can be assigned to more than one match partner. Then sum over the overlapping po-
sitions for each reference domain and divide the resulting value by the overall number
of residues. Figure 5.4 shows an example for the overlap score computation taken from
[Jones et al., 1998]. Here, A and B denote the two domain assignments, and the overlap
tables show the matching domains. The third part shows the computation of the final
overlap score.

Table 5.3 shows the overlap scores for all evaluated servers on the different sets. SSEP-
Domain achieves the highest score of all evaluated predictors on the Single, Common, and
CAFASP sets. We observe an increase of average overlap score on the CAFASP set of
about three percent for SSEP-Domain over the CAFASP predictions (91.9% to 88.9%)
which can be explained to a large extent by the increased performance on single domain
targets. Figure 5.5 (lower panel) shows all CAFASP 4 participants in a plot of sensitivity
vs. average overlap score on the Common set.
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A (i) Assignments

Residue 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

A  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  3  3  3  3

B  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  3  3  3  3  3

(ii) Overlap table:

A1 A2 A3

B1  6  0  0

B2  1  8  0

B3  0  1  4

(iii) Overlap Score 6 + 8 + 4  
x 100 = 90 %

         20

B (i) Assignments

Residue 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

A  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  3  3  3  3

B  3  3  1  1  1  1  1  1  1  2  2  2  2  3  3  3  3  3  3  3

(ii) Overlap table:

A1 A2 A3

B1  5  2  0

B2  0  4  0

B3  2  3  4

(iii) Overlap Score 4 + 5 + 4  
x 100 = 65 %

         20

Figure 5.4: Overlap score examples taken from [Jones et al., 1998]: In both examples (A
and B), the overlaps are computed between the assigned domains for the two sequences as
shown in the overlap tables. Based on the resulting values, the mapping between domains
with the maximum overlap scores were chosen.
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Server Name CAFASP Single Two Common

SSEP-Domain 91.9% 98.5% 77.3% 91.3%
CONSENSUS 91.0% 94.6% 81.1% 90.0%
GINZU 89.3% 93.4% 81.5% 89.3%
RosettaDOM 89.9% 92.5% 82.6% 89.1%
SSEP-CAFASP 88.9% 94.4% 76.7% 88.3%
DomSSEA 81.5% 95.5% 73.7% 88.0%
DOMPRO 87.7% 95.5% 70.2% 86.8%
DPS 78.2% 92.8% 73.4% 86.2%
ADDA 85.0% 93.5% 69.2% 85.2%
DOPRO 85.0% 88.0% 76.6% 84.1%
GLOBPLOT 75.4% 88.1% 64.5% 80.1%
InterProScan 76.0% 83.9% 61.2% 76.1%
MATEO 73.2% 78.7% 66.7% 74.6%
BIOZON 62.2% 61.3% 67.0% 63.3%
Armadillo 49.7% 49.6% 63.2% 54.2%

Table 5.3: Average overlap score of the CAFASP 4 predictors and SSEP-Domain for the
CAFASP, Single, Two, and Common sets. Predictors were ranked by average overlap score
on the Common set descendingly. For a description of the underlying algorithm, please see
section 5.3.2.
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Figure 5.5: Sensitivity on the Common set vs. specificity on the single & two class (upper
panel), and sensitivity vs. average overlap score (lower panel) on the Common set. Each
”o” in gray represents one CAFASP participant. The results of SSEP-Domain in its final
version are marked by a circle in black. SSEP-Domain achieves high sensitivity (81.8%, see
Table 5.1), high average overlap score (91.3%, see Table 5.3), and good specificity (83%,
see Table 5.2).
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5.3.3 Evaluation of InterPro and Combination with AutoSCOP

Influence of InterPro on the CAFASP 4 data

Direct comparison between InterPro as evaluated by CAFASP 4 and SSEP-Domain on
CAFASP shows that we gain about 16% in average overlap score and about 10% in sensi-
tivity by combining InterPro with our alignment-based approach. For our evaluation, we
used InterProScan on InterPro 7.2 (March 25th 2004), which contains member databases
with dates ranging from September 2003 to March 2004. A pattern occurs as part of the
highest-scoring domain combination for 19 of the targets, and patterns lead to different
predictions with respect to the predicted domain number than alignments alone for two of
the 58 targets. In both cases, the alignment-based prediction would have been wrong with
respect to the CAFASP 4 assignment.

Combining SSEP-Domain and AutoSCOP

Given the found InterPro patterns, we computed the CAFASP results we would have
achieved had we included the AutoSCOP matching into SSEP-Domain. The corresponding
fold recognition evaluation can be found in chapter 4. We evaluated two possible ways of
including AutoSCOP into our domain prediction mechanism:

1. When comparing SSEP-Domain directly with an SSEP-Domain version that would
have used an AutoSCOP match whenever possible as domain region, we find that in
none of the cases AutoSCOP would have changed the predictions. However, there
are obvious problems when directly applying AutoSCOP to domain prediction. Some
exemplary cases illustrate these problems:

• T0200: For this target (length 255), we find two patterns, namely one Pfam pat-
tern from 0-177 and one SUPERFAMILY pattern from 0-254, both of which are
unique for the correct fold class. The target is single domain both by CAFASP
4 and by the ASTRAL 1.69 definition. For this target, when using only Auto-
SCOP, it would be difficult to say whether the Pfam pattern indicates that there
might be a second domain at the end of the target (which would be wrong) or
the SUPERFAMILY pattern is correct in matching the whole sequence (which is
correct). Due to the gap mechanism chosen by SSEP-Domain, the SUPERFAM-
ILY variant would be chosen, which matches the prediction made by alignments
only.

• T0204: This target is single domain according to CAFASP 4 and two-domain
according to ASTRAL 1.69 with both domains belonging to the same fold class.
AutoSCOP correctly finds this fold class, but with differing region matches for
the corresponding unique patterns: SUPERFAMILY indicates two domains,
PRODOM only finds one with a large gap, and TIGR finds one with a match
that practically covers the whole sequence. In addition, a non-unique pattern
match from PIR is found, which also covers the whole sequence. SSEP-Domain
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and its gap mechanism chooses the single-domain variant (which matches the
CAFASP assignment), and the alignment-only prediction as well as the SU-
PERFAMILY version would correctly find the ASTRAL assignment. Again,
using AutoSCOP directly without SSEP-Domain, the choice between single-
and two-domain would be difficult.

• T0235: Here, CAFASP says two-domain and ASTRAL 1.69 says single-domain.
Both alignment-based prediction and patterns result in two-domain predictions.
One domain is assigned the correct fold class (as judged by ASTRAL) from both
AutoSCOP and alignments. For the remaining predicted domains, the align-
ment hit is weak, but AutoSCOP clearly assigns a different fold class based
on a SUPERFAMILY match. When looking at the predicted boundaries, the
CAFASP boundary is at position 120, the boundary induced by the SUPER-
FAMILY patterns is 90, and the alignment-based boundary is 149 (i.e. both
patterns and alignments miss the ”correct” boundary by about 30 residues).

These cases show that the patterns found by AutoSCOP may be used but are not
sufficient to find domain predictions for the whole sequence of a target, as the pattern
boundaries for different unique patterns can vary strongly, and, as shown above,
pattern boundaries not necessarily correlate with domain boundaries.

2. A second variant of including AutoSCOP into SSEP-Domain is to simply add the
assigned fold class to the set of selected fold classes in Step 2 whenever a domain
region contains a unique pattern hit. Also this version does not alter the predictions
made by SSEP-Domain on the CAFASP data, as in all cases the unique patterns
corresponded to those predicted regions that had already been chosen for the final
predictions by the original SSEP-Domain algorithm.

Both variants did not improve the predictions but instead can in some cases even lead
to inherently unclear situations such as described above. For this reason, we decided not
to include AutoSCOP directly into SSEP-Domain, as described for variant (1), but to
include AutoSCOP as described for variant (2), i.e. as an additional advisor for fold class
membership when applicable.

For fold recognition purposes, it should be noted that, of the 23 evaluated targets with
AutoSCOP predictions and annotated ASTRAL/SCOP fold classes, in seven cases the
correct fold was not found as top-scoring hit by SSEP-Domain (in all cases only weak
alignment hits were found), but could be predicted by AutoSCOP. Further, there is no
case where SSEP-Domain would have been able to correct a fold prediction made by
AutoSCOP. This again shows that AutoSCOP is a useful tool for further analysis of the
predicted regions such as the assignment of potential SCOP classifications.

5.3.4 SSEP-Align: An Extension towards Structure Prediction

For the CASP 6 and CAFASP 4 experiments, as already mentioned above, a straight-
forward extension of the SSEP-Domain method for structure prediction was examined.
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Ranking Position

CAFASP 4, top ten models, all targets, MaxSub rank 35 of 70
CAFASP 4, top ten models, all targets, TM-Score rank 38 of 70
CAFASP 4, top ten models, fold rec. targets, MaxSub rank 25 of 68
CAFASP 4, top ten models, fold rec. targets, TM-Score rank 34 of 68
CAFASP 4, top ten models, homology mod. targets, MaxSub rank 40 of 69
CAFASP 4, top ten models, homology mod. targets, TM-Score rank 39 of 69
TM-Score evaluation on CASP 6, top 5 models, all targets rank 34 of 60
TM-Score evaluation on CASP 6, top 5 models, easy targets rank 41 of 60
TM-Score evaluation on CASP 6, top 5 models, medium targets rank 29 of 60
TM-Score evaluation on CASP 6, top 5 models, hard targets rank 13 of 60

Table 5.4: Results of the SSEP-Align extension for structure prediction on CAFASP 4 and
CASP 6 targets. The CAFASP 4 ranking makes use of both MaxSub [Siew et al., 2000] and
TM-Score [Zhang and Skolnick, 2004] as quality measures, whereas the second evaluation,
which includes few human predictors, is completely based on TM-Scores.

As this extension, the SSEP-Align server, was mainly implemented and maintained by
Alessandro Macri, we will describe it only briefly. SSEP-Align used a simple protocol: (1)
predict domains using SSEP-Domain, (2) use predicted domain regions to compute PPA
alignments against the template database, and (3) use MaxSprout [Holm and Sander, 1991]
for postprocessing of C-α models obtained by copying the coordinates in the alignments.
Whenever the domain prediction did not result in a significant hit, PSI-BLAST results
were included instead.

All evaluations find SSEP-Align somewhere in the middle of the field of participating
automated predictors, being ranked in the main bulk of structure prediction methods.
Exemplary results from CAFASP 4 (downloaded December 3rd, 2004) and a TM-Score
based ranking of CASP 6 (downloaded from http://bioinformatics.buffalo.edu/casp6 on
December 3rd, 2004; link posted by Yang Zhang in November 2004 on http://forcasp.org)
are shown in Table 5.4. We find that, in comparison, the performance is better on more
difficult targets (the top result is rank 13 on hard targets as defined by the second ranking).
This can be explained by the observation that for ”easy” targets, significant differences be-
tween predictors can result from different model refinement steps (which the experimental
SSEP-Align server did not use), whereas for medium or hard targets, the focus lies more
on finding a good template and generating suitable alignments.

Some important problems recognized during the experiments were the quality of the
models (even when a correct template had been found) and the ranking of the resulting
models (in many cases, the top performing model was not recognized by the server and
accordingly not submitted as first model). The ranking of alignments with respect to
expected structural quality and the improvement of the final structural quality by tuning
the alignment process itself will be discussed further in chapter 6.
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5.3.5 Other Possible Extensions

Consensus Pattern Scoring

One possible extension that we evaluated are so-called consensus patterns. Here, we simply
assigned consensus scores to regions found by pattern searches: When a pattern region was
also found by other patterns (with a difference of maximal 5 residues at each end), we added
the corresponding scores to the original pattern score. This allows to assess the consensus
of pattern hits directly. For our test data, this does not alter the predictions. Nonetheless,
we believe that the consensus score for a pattern region can give a good impression on the
reliability of a predicted pattern region. Therefore, we included consensus pattern scoring
as an additional option for our approach.

Inclusion of Unknown Domains

In our scoring mechanism, we do not allow unassigned regions of length 50, and the minimal
score we assign to potential domain region is 0 (this happens very rarely but is possible),
which in turn reduces the score of a domain prediction containing this region also to 0.
This can potentially be harmful in cases where we have clear hits in combinations with a
region that is scored with 0, as then the good hits may be missed because of an ”unknown”
and potentially new fold domain.

This problem is not easy to solve. One possible way would be to score each region by
at least a minimum score, say 0.1 or 0.2. Another, more elaborate way, would be to also
invoke an ab initio test for globality on potential regions, resulting in a hybrid method
between the template-based SSEP-Domain and additional algorithm. In this case it would
be necessary to find a suitable way to let such an ab initio derived score override a low
PPA score without including too many false positives.

In SSEP-Domain, we evaluated the first version using both 0.1 and 0.2 as minimum
score for all evaluated regions. This has the effect that, for a score of 0.2, for instance,
if we have two good hits and one ”unknown” domain in between, the multiplication of
the score of the two hits will be relatively high, and another multiplier of 0.2 will only
reduce this to an overall score of one fifth of the combined score of the two hits. As an
example, if we have two hits of scores 5.0, we would achieve 5.0 * 5.0 * 0.2 = 5.0 as overall
prediction score, which has a reasonable probability of being chosen as final prediction. In
our evaluations, introducing a minimum score of 0.2 had no effect on our predictions on
the CAFASP 4 and, in fact, in anticipation of the next section, also no effect on the CASP
7 data; nonetheless it is a possible option.

The second option we did not pursue so far, but a clever integration of ab initio methods
into our prediction process may be a good point for future research. However, as we can see
in the tables presented above, where the best method classified as ”ab initio” by its authors
(DOMPRO) is clearly below SSEP-Domain on both single- and two-domain targets, such
an integration may be difficult to parameterize in order not to lose accuracy.
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5.4 Two Years After: CASP 7 and its Lessons

In order to further test the ability of SSEP-Domain, which was developed mainly in 2004,
we submitted the server predictions as part of the LMU predictor group for the CASP 7
experiment, which was held from May 2006 to August 2006. The aim of participating in this
evaluation was to again make use of independent assessors in a blind-test situation to figure
out drawbacks and necessary extensions of our original algorithm. As expected, we found
the situation in CASP 7 different for us in comparison to CAFASP 4, for reasons explained
below, and therefore we will discuss and to some degree evaluate possible extensions of our
algorithm based on the lessons learned in CASP 7.

5.4.1 Analysis of CASP 7 Results

We start with the discussion of the CASP 7 experiment. The only changes between the
version used for computing the CAFASP 4 results and the one used two years later in CASP
7 are the databases: For CASP 7, we used ASTRAL 1.69 together with some CAFASP 4
targets as alignment templates and InterPro 12.1 as pattern database (in both cases the
latest releases available at the beginning of CASP 7). However, in comparison with the
CAFASP 4 situation, we find that in CASP 7 our approach had to face one major draw-
back: In CAFASP 4, discontinuous domains were not considered for the evaluation. This
matched our approach, since SSEP-Domain is not able to predict discontinuous domains
by definition. In contrast, in CASP 7, many targets have been assigned discontinuous
domains. Thus, CASP 7 was a challenging evaluation for SSEP-Domain. The results are
as follows:

• All predicted targets: Of 95 targets, 71 have been assigned the correct domain
number according to the CASP 7 assessor’s definition (74%).

• Single domain targets: On single domains, 65 of 68 are assigned correctly (95%)
with a specificity of 76%.

• Two-domain targets: On two-domain targets, only 6 of 23 have been found by
SSEP-Domain(26%) with a specificity of 60%.

• Multi-domain targets: Of the two three-domain targets, none is assigned correctly
by SSEP-Domain (one is assigned two domains on the basis of a clear SCOP hit, and
the second is assigned a single domain on the basis of a TIGR pattern hit).

• Performance of InterPro patterns: Of those 9 targets which were predicted
wrongly without a clear SCOP hit, in three cases we do not find patterns: T0342,
T0347, T0372. In another three cases InterPro patterns without alignments fall into
at least one correct region of the target: T0321 (length: 251, Pfam pattern: 148-228,
CASP 7: (1-96), (97-251)), T0334 (length: 530, Pfam pattern: 6-494, CASP 7: (3-
528)), and T0386 (length: 299, Pfam pattern: 67-204, CASP 7: (13-218), (219-299)).
In two cases InterPro patterns do not match the correct regions:
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– T0299 (length 180): a Pfam hit covers 1-137, but the CASP 7 definition is
(1-78,168-180) for domain 1, and (79-167) for domain 2.

– T0301 (length 395): a Pfam hit covers 5-391, but the CASP 7 definition is (1-
182,378-395) for domain 1, and (187-377) for domain 2, Here, the alignments
alone would have been much better with (1-168) and (169-395) as the predicted
domains.

In the final case, T0356 (length 505), different patterns clearly disagree: here, we have
a TIGR pattern (8-458), a Pfam pattern (12-437) and two SUPERFAMILY patterns
(168-260, 327-446). The corresponding CASP 7 reference definition is (7-96,314-347),
(122-313) and (348-467). The closest agreement here is between SUPERFAMILY
and CASP, but still only two domains are more or less recognized with wide gaps in
between.

• Inclusion of AutoSCOP: As for the CAFASP 4 evaluation (see 5.3.3), inclusion of
AutoSCOP would not have improved the SSEP-Domain predictions with respect to
CASP 7 assignments in any case: For all three targets where an improvement might
have been possible (T0321, T0334 and T0386, see above), the found patterns could
not be matched to a SCOP fold.

If we compare directly against the CASP 7 assignments, we fall short of the CAFASP 4
result with only about 75% correct assignments (as compared to about 82%) due to a worse
performance on multi-domain proteins. In particular, SSEP-Domain tends to predict fewer
domains on the targets in comparison to the CASP 7 assessors.

Based on this evaluation, we can identify two major issues for SSEP-Domain in the
CASP 7 experiment: (1) the tendency towards too few domains, and (2) the algorithm not
being able to predict discontinuous domains. We will therefore discuss a possible exten-
sion for SSEP-Domain that aims at reducing the impact of these drawbacks by including
alternative domain definitions in the following.

5.4.2 Using Alternative Definitions for SCOP Domains

We evaluated all wrong single-domain predictions for which we had clear SCOP hits by
aligning the predicted template structure against the target structure, if available. Of 16
cases found with SCOP hits over a neutral score of 1.0, we could find structures in the
PDB for 14. On these 14 targets, the alignment with the structural alignment method
Vorolign and the corresponding TM-Score as a measure of structural similarity (see also
chapter 6) could confirm that the templates had been chosen correctly in almost all cases:
For all we found a template with a TM-Score over 0.5, for 12 (85%) we found a template
with a TM-Score over 0.7, and still for 7 (50%) we found a template with a TM-Score over
0.8. According to the authors of the TM-Score (which ranges between 0.0 and 1.0), a score
of 0.4 is already a significant threshold for structural similarity. A score above 0.7 can
be considered an indicator for clear structural similarity. Therefore, if we are conservative
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with respect to the TM-Score, for 12 more targets our predictions can be considered as
correct if we use SCOP definitions and not CASP 7 definitions. This means an increase
in sensitivity of more than 12%, i.e. SSEP-Domain would then achieve a sensitivity on
all targets of 86%. Correspondingly, also the sensitivity on two domain targets would be
increased to 54%.

As a side-effect, this evaluation also shows that the scoring used by SSEP-Domain is a
good indicator for structural similarity, as none of the regions with a score above neutral
level (i.e. above 1.0) in this comparison was found together with a TM-Score below 0.4 in
the corresponding structural alignment.

However, the main result of this evaluation is that in many cases SCOP hits disagreed
with the CASP definitions by assigning too few domains. As a possible alternative, in the
following, we will therefore evaluate automated domain assignments made by programs
such as DomainParser (DP) and PDP, which are known to predict more domains on average
than assigned by SCOP, on the SCOP template domains.

Evaluation of Automated Assignments

As a first evaluation, we computed PDP assignments for each SCOP domain in our template
set. Of the 11950 domain structures downloaded from ASTRAL 1.69, PDP splits 2054
into smaller domains (17%). In 1361 cases (about 11%), the PDP assignments contain
discontinuous domains. This shows a clear disagreement between ASTRAL and PDP with
respect to domain definitions; apparently methods such as PDP make it possible to generate
alternative, multi-domain predictions based on already existing SSEP-Domain predictions
by further splitting SCOP domains.

In the same evaluation, DomainParser splits 1289 ASTRAL domains into smaller do-
mains (10%), and in 602 cases these splits result in discontinuous domains (5%). It seems
that DP is more moderate than PDP, in the sense that it lies somewhere between SCOP
and PDP with respect to multi-domain assignments. This is in agreement with the observa-
tions made by [Holland et al., 2006] in their comparison of automated domain assignment
methods.

We then evaluated the accuracy of both DomainParser and PDP on the CASP 7 targets
with respect to the assigned domain numbers, in order to find out how well these methods
agree with the CASP 7 assessors. On the 89 targets where a structure was found in the
PDB, for DomainParser we find 8 differing assignments, and for PDP we find 11 differing
assignments, i.e. an agreement of 91% and 87% with the CASP assessors, respectively. We
cannot use SCOP on the CASP 7 data, as the targets are not available there yet.

On the CAFASP 4 data, however, we already know SCOP definitions for some of the
targets. When compared with the CAFASP 4 domain definitions, we find that DP and
SCOP have 10 disagreements and for PDP we have 11 disagreements on a set of 46 targets
which we could find in ASTRAL 1.71. This means that we observe 78% similar definitions
at maximum (SCOP and DP). In 9 of the observed ten cases, SCOP assigns too few
domains with respect to CAFASP 4. PDP tends towards assigning too many domains (9
of 11 cases), and for DP both cases happen equally often (5 times).
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In summary, both DP and PDP agree better with the CASP 7 assessors than with
the CAFASP 4 assessors (up to 91% as compared to 78% similar assignments). Further,
on CAFASP 4, we could again observe that SCOP tends to assign too few domains with
respect to the assessors, whereas PDP tends to assign too many domains.

Inclusion of Other Assignments into SSEP-Domain: SSEP-Domain*

Apparently, PDP and DP provide interesting alternatives to SCOP definitions, especially
with respect to the CASP 7 assessment. However, as observed by [Veretnik et al., 2004],
SCOP is the most precise standard with respect to boundary placement, which is a property
we would like to keep. When considering the precise boundary placement together with the
results from our evaluations as well as from [Veretnik et al., 2004] (see chapter 2), we can
infer that our main problem when using SCOP templates in structure-centered contexts
such as CASP 7 is that SCOP regions are sometimes split further by other experts.

Therefore, one possible way to overcome SSEP-Domain’s tendency towards few do-
mains, e.g. in order to concentrate more on purely structure-based domains instead of
SCOP domains, can be to use SSEP-Domain to find SCOP domain templates and then
use alternative definitions for the found templates that are more likely to represent struc-
tural or even discontinuous domains.

We only consider this option when we have hits above neutral level, i.e. with scores
above 1.0 (see Step 3). This can never reduce the number of predicted domains, but it is
possible that one SCOP domain is split into two or more (even discontinuous) domains by
other methods. This extension we call SSEP-Domain*.

In a first evaluation on the CAFASP 4 data (see Table Table 5.5), when we have tem-
plates with sufficient scores, we use both the Domain Parser (DP) and the PDP assignments
for the domain region on the corresponding template structure. We observe that, while DP
results in a slightly improved performance (one additional target is predicted correctly and
the rest of the assignments remains untouched), PDP actually results in a worse perfor-
mance with respect to the CAFASP 4 assignment, with a tendency towards multi-domain
predictions.

The corresponding results on the CASP 7 data are also given in Table 5.5. We find
that the use of DP assignments helps to increase the sensitivity on two-domains and also
increases the general agreement with the CASP assessors. We find disagreements between
SCOP and DP in 15 of 60 cases when our procedure was applicable. 9 times the prediction
was improved with respect to the CASP assignment, 4 times it was made worse, and for
two targets both variants were wrong, resulting in 76 correct predictions (80%). When
using PDP instead of DP, our results are not as good as for DP: in 9 cases we get better, in
7 cases we get worse, and in 2 cases we change one wrong prediction into another, resulting
in 73 of 95 targets predicted correctly (76%). Therefore, from both CAFASP 4 and CASP
7 it seems that DomainParser is the better solution for our purpose.
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Method Accuracy Sensitivity Sensitivity
All targets Single Two

SSEP-Domain (CAFASP 4) 81% 96% 53%
SSEP-Domain*, PDP (CAFASP 4) 75% 86% 53%
SSEP-Domain*, DP (CAFASP 4) 84% 96% 60%
SSEP-Domain (CASP 7) 74% 95% 26%
SSEP-Domain*, PDP (CASP 7) 76% 85% 65%
SSEP-Domain*, DP (CASP 7) 80% 89% 65%

Table 5.5: Comparison of SSEP-Domain and SSEP-Domain* on CAFASP 4 (the Common
set) and CASP 7 data. We find that, we can gain accuracy by including automated domain
assignments, especially when using DP. Therefore, as an alternative with a tendency away
from SCOP and towards smaller and more domain assignments, SSEP-Domain* based on
DP may be used instead of SSEP-Domain alone.

Using CATH instead of SCOP

As a final test, we used CATH 3.0 (which is the latest version available before CASP 7),
also reduced to 95% sequence identity. With these templates, we achieve one more correct
prediction than SSEP-Domain using SCOP (i.e. without refinement by DP or PDP) with
respect to the predicted domain number. However, the CATH-based predictions include
more continuous two-domain predictions for targets which contain one domain surrounded
by another (so-called discontinuous nested domains), i.e. these predictions are not correct
either although the predicted number of domains is correct. Using SCOP, where we often
find clear single-domain hits, we have the chance to find such architectures by applying
DP or PDP, as shown in the next subsection. Using CATH, having assigned an incorrectly
continuous two-domain prediction, this is not possible anymore. Therefore, for our purpose,
SCOP as in SSEP-Domain as well as SCOP and DP as in SSEP-Domain∗ are a reasonable
choice.

5.4.3 Discontinuous Domains

From the assessor’s talk at the CASP 7 conference, it seems that, especially with respect to
discontinuous domains, the most promising approaches in CASP 7 built structure models
first and then assigned domains based on these models, as can be done by programs like
Domain Parser (DP) or Protein Domain Parser (PDP), for instance. This is the opposite
direction of what SSEP-Domain wants to achieve, namely the quick prediction of domains
from the sequence, in order to facilitate modeling.

Nonetheless, by using PDP or DP on the template side, as described for SSEP-Domain*,
we not only improve our accuracy with respect to the predicted domain numbers, but we
can now make discontinuous domain predictions for some of the CASP targets, although
this can only be a first step towards the reliable prediction of discontinuous domains. In
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particular, on the CASP 7 data, for SSEP-Domain* using PDP we have 12 discontinuous
domain predictions, 9 of which meet discontinuous definitions made by the CASP assessors,
7 of which do reflect the assessor’s definitions well. For DP, we have 8 discontinuous
predictions, 7 of which meet discontinuous definitions made by the assessors, and all of
these 7 are in agreement with the CASP definitions.

When taking a closer look at the data, in order to explain some of these differences,
we find that, also for seven CASP 7 targets, our top templates lie in the SCOP super-
family c.108.1. Interestingly, this superfamily is described by SCOP as ”contains an insert
alpha+beta subdomain”. Both DP and PDP when used as refinement of the SCOP defi-
nitions can capture five of these seven cases.

Other examples for targets with single domain predictions based on good SCOP single-
domain hits whose descriptions allow for discontinuous multi-domain interpretations are
T0323 (captured by both DP and PDP, fold class a.96, defined as single domain but
”multihelical, consists of two all-alpha domains”) and T0333 (captured by both DP and
PDP, fold class c.87, defined as single domain but ”consists of two non-similar domains”).
The reason for such SCOP definitions is probably the underlying understanding of the
term ”domain”, as SCOP defines domains as evolutionary units (see 2.2.2).

5.5 Independent Applications and Evaluations

SSEP-Domain is available as a web server. After the method had been published, some
other groups have used it and to some extent evaluated it. Two recent papers that discuss
SSEP-Domain are:

• [Kim and Patel, 2006]: In a recently published study SSEP-Domain was used as
part of the proCC approach for protein structure classification and identification of
novel protein structures by Kim and Patel. They observed that, in comparison to
the SCOPmap approach [Cheek et al., 2004], ”the SSEP-domain prediction method
performs better than SCOPmap in identifying single domain chains.” Kim and Patel
further state that ”on average 8 minutes” were ”spent on the SSEP domain prediction
web service” per target, which agrees with our own runtime evaluation as described
above.

• [Sikder and Zomaya, 2006]: An independent comparison which includes SSEP-Domain
has been described by Sikder and Zomaya. In this comparison, the following methods
were used: SSEP-Domain, DomPro, DomPred, CHOP [Liu and Rost, 2004], Galzyt-
skaya et al. [Galzitskaya and Melnik, 2003] and the two proposed methods, Do-
mainDiscovery and Improved DomainDiscovery. Sikder and Zomaya observed that
SSEP-Domain’s ”performance is superior for single and two-domain chains but infe-
rior for three-domain or larger chains. SSEP-Domain also shows a precise placement
of domain boundaries [...].” In particular, they found that the ”SSEP-Domain method
appears to be the most precise in placement of its boundaries.”
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Algorithm Purpose

SSEA Search for topological similarities; speeds up scoring
Coil Centers Avoids close-by, low-scoring potential boundaries
Length filter Restricts search to templates of similar length;

improves precision and speeds-up the scoring
Score filter Discards low-scoring SSEAs in Step 1
PPA Final scoring of potential domain regions
Normalization Prepares scores for multiplicative scoring
InterPro Finds members of known sequence families

Table 5.6: Main algorithmic ingredients of SSEP-Domain and the corresponding purpose in
the domain prediction pipeline. Details are given in the text in the corresponding sections.

5.6 Discussion

SSEP-Domain is an alignment-based approach to domain prediction (see Table 5.6 for an
overview of the contained algorithms). We combine secondary structure element alignment
and direct boundary placement to detect potential domain boundaries on a target sequence.
Domain regions are deduced from these boundaries and an InterPro pattern search. They
are evaluated using a combination of secondary structure element alignment and profile-
profile alignment on both sequence and secondary structure. The combination of multiple
domain regions is done using a simple recursive algorithm based on the scores of the
individual regions, including InterPro patterns found on the target sequence. For this
approach, we observe an average runtime of less than 10 minutes per target on the CAFASP
set with a maximum of 18 minutes on an Intel Xeon with 2.8 Ghz. The evaluation of the
influence of InterPro patterns shows that the combination of our alignment-based approach
with InterPro patterns is indeed beneficial for domain prediction.

SSEP-Domain has been tested in the blind test scenario of CAFASP successfully, being
part of the top group of domain predictors. Since features were added to the server during
and after the experiment, we evaluated the final version under CAFASP 4 conditions. This
gives us the opportunity to compare our results to the CAFASP predictors. SSEP-Domain
performs well, achieving high sensitivity, high overlap scores, and good specificity. The
final version yields the best overall accuracy of domain predictions as measured by overlap
score due to an improved performance over the preliminary version. Direct comparison with
other CAFASP participants shows that SSEP-Domain performs very well on single-domain
proteins, but three of the other 14 methods (RosettaDOM, GINZU, and the CAFASP
CONSENSUS meta-predictor) have higher overlap scores on two-domain proteins.

Recently, independent evaluations of the SSEP-Domain server confirmed that it is ca-
pable of placing domain boundaries quite precisely and works well in comparison to other
methods (some of which have not been evaluated in this chapter) on single and two-domain
targets [Sikder and Zomaya, 2006, Kim and Patel, 2006].
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In 2006, two years after CAFASP 4, the SSEP-Domain algorithm was used on the
CASP 7 targets. Here, SSEP-Domain performs worse than on CAFASP 4, especially on
multi-domain targets, if we compare against the CASP 7 assessors’ assignments. If we
compare against clear SCOP hits, however, SSEP-Domain performs better than on the
CAFASP 4 data. The different performance of SSEP-Domain with respect to CASP 7 and
with respect to SCOP on the CASP 7 data matches the observations made by Veretnik et
al [Veretnik et al., 2004], who find that SCOP tends towards few and continuous domains.

A simple combination of SSEP-Domain with DomainParser (SSEP-Domain*) improves
sensitivity on multi-domain proteins as well as overall accuracy with respect to the official
CASP 7 assignments. Although these results are positive, this combination should be
handled with care, as it alters the SCOP definitions and is therefore a step back from
the gold standard we used for training our method. Further, our evaluations show that
different experts will assign to some degree different domains, and that SCOP, for instance,
seems to agree better with the CAFASP 4 assessors than with the CASP 7 assessors.

From what we have seen in this chapter, we would expect any ”gold standard” database
of domain assignments to contain many entries that can be discussed and where different
viewpoints will lead to differing domain assignments. Again, this agrees with Veretnik et
al.’s observations, who conclude that ”caution is recommended in using current domain
assignments” [Veretnik et al., 2004].

So far, with the variants (1) SSEP-Domain and (2) SSEP-Domain*, we described meth-
ods that are (1) based on SCOP, and (2) revised with DP in order to account more for
structural domains instead on evolutionary units, respectively. Both methods achieve good
results for their respective scenarios (SSEP-Domain with respect to SCOP, and SSEP-
Domain* with respect to the assessors’ definitions in CAFASP 4 and CASP 7). An al-
ternative to SSEP-Domain* and similar, automated approaches which contains manual
intervention and will to some degree be driven by intuition would be to manually choose
the domain assignment one likes best whenever the used sources (e.g. SCOP, PDP, DP,
etc.) differ.

Another important issue which has become clear with the CASP 7 evaluation is the
prediction of discontinuous domains. With respect to SCOP, not being able to detect dis-
continuous domains is not as much a hindrance as one might think, as SCOP assigns such
definitions only in very few cases to PDB chains (see chapter 2). However, when trying
to identify structural instead of evolutionary subunits of proteins, as the CASP 7 asses-
sors probably did, discontinuous definitions obviously become far more frequent. At the
moment, predicting such domains with SSEP-Domain is not possible, which is a drawback
we share with most of the evaluated methods in this chapter. A first step towards the
prediction of discontinuous domains has been proposed with the SSEP-Domain* variant,
which is able to generate discontinuous domain predictions to some degree.

The SSEP-Domain server, which is based on SCOP domain templates, is available at
http://www.bio.ifi.lmu.de/SSEP. On average, the computation time for a target is
less than ten minutes (Kim and Patel observed about 8 minutes per target as the average
response time in their independent evaluation of our server [Kim and Patel, 2006]), which
is quite fast as some other methods may require hours or even days.

http://www.bio.ifi.lmu.de/SSEP�
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With AutoSCOP and SSEP-Domain we proposed useful methods for protein domain
recognition for different purposes: very fast, but not necessarily very accurate; and still
quite fast, but also as accurate as the state-of-the-art as measured by CAFASP 4. As an
outlook, a combination of AutoSCOP and SSEP-Domain would be applicable to larger
numbers of targets: Given many targets of interest, by first assigning structural classifi-
cations quickly with AutoSCOP as described in the previous chapter, which can be used
as good initial positions for potential domains, we can identify the ”clear cases”; then, for
the reduced set of ambiguous or difficult targets, SSEP-Domain can be applied to refine
AutoSCOP’s annotations.



Chapter 6

Environment-Specific Alignment
Computation and Scoring

As described in chapter 2, an important step to building a complete all-atom model is often
to align a target sequence of unknown structure to a database of template sequences with
known structures. On the basis of these alignments and the underlying known template
structures, models are built and refined. In a blind-test-like setup, it is helpful to be able to
select potentially good models already on the alignment level, before having to build each
model. Further, similar to the identification of good models based on different templates,
finding the best sequence-structure alignment in a pool of alignments even coming from
the same source remains an interesting problem. This is being observed in the CASP and
CAFASP experiments regularly, where it happens often that the model ranked best by the
predictor groups themselves out of the, say, five submissions for a target is not the best
of the five models in the final assessment. In this chapter, we want to find out whether
alignment scores correlate well with the final model quality and how this correlation may
be improved. We evaluate and optimize alignment scores with respect to the correlation
to a quality measure on subsequently generated structure models. Thereby, the prediction
setup using targets of unknown structure restricts our efforts to sequence-based alignment
scores instead of including structural properties.

In addition, we optimize alignment parameters including scoring matrices for the log
average profile-profile alignment approach. In particular, this optimization is based on the
hypothesis that it is possible to tune parameters to specific environments for individual
users and thus improve performance over parameters that have been tuned more conser-
vatively to work well for most users instead. Thereby, we define the environment as those
tools and databases a structure predictor will eventually concentrate on for his/her work,
by which we mean the alignment programs, the scoring schemes, the template data, the
evaluation mechanisms and everything else he/she has chosen to finally make the predic-
tions. Default configurations of software as well as standard mechanisms are meant to
work well for the average case but are not necessarily perfect for a specific environment,
whereas including specific properties of an alignment computation process may help to
improve prediction quality as long as these properties are kept unchanged.
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We have developed an alignment-scoring software package called QUASAR which will
be described in the first section of this chapter. The QUASAR framework is joint work with
Fabian Birzele who implemented the main parts of the QUASAR package as a research
student working for the author. The contents of the corresponding section are based on
our Bioinformatics publication on QUASAR which appeared in 2005 [Birzele et al., 2005].

Based on the infrastructure provided by this package, in the subsequent sections, we
analyze how well sequence-based alignment scores correlate with structure-based scores.
We evaluate the performance of optimized linear combinations of well-known matrix-based
scores for the task of alignment ranking in comparison to the individual performances of
these matrices. The results show that combinations can be tuned to approximate the
behavior of certain benchmark scores, based on suitable training data.

In order to adapt scoring to specific environments, we further generated optimized ma-
trices for alignment ranking using a genetic algorithm adapted for this purpose. Finally,
by slightly modifying this genetic algorithm, we show that it is possible to find optimized
matrices and parameters for individual fold classes for profile-profile alignment; i.e., once
the fold class of a target is known, it is possible to generate better alignments on aver-
age with respect to the resulting structure model by using fold-class specific parameters
generated by the proposed procedure.

6.1 The QUASAR Framework

The QUASAR (QUAlity of Sequence-Structure Alignments Ranking) system has been
designed to fit two needs. First, it is a platform-independent and easily extendable soft-
ware package for scoring and ranking sequence-structure alignments coming from differ-
ent sources. Second, it aids the process of developing, benchmarking and optimizing new
alignment quality measurements. The graphical user interface (GUI) of QUASAR provides
quick access to each of the possible use cases and allows for visualization and comparison
of the results as well as for configuration of all essential parts. QUASAR can also be used
directly from the command-line.

6.1.1 Methods

Scoring Alignments

So-called scoring schemes represent alignment quality scores that are based on information
that is available from amino acid sequences (e.g. predicted secondary structure) or that
can be directly inferred from template structures. Scoring schemes provided by the system
include several amino acid and secondary structure based exchange matrices (like PAM
[Dayhoff et al., 1978] and [Luthy et al., 1991]), the two standard secondary structure fit
measures Q3 and SOV [Zemla et al., 1999] as well as two contact-capacity-based scores
[Berrera et al., 2003, Singer et al., 2002]. The number of available scoring schemes can be
easily extended by implementing a Java interface, or, in the case of (amino acid exchange)
scoring matrices, by adding a text file in a QUASAR specific format that contains the
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Score Conductor:

Combination of
Scoring Schemes

Ranking Module

Alignment Combination and Ranking

3D scores
(MaxSub, APDB,...)

Ranking Module

Benchmark: Standard of Truth Ranking

Optimizer: GA,
Least Squares

Optimization Module

Structure Files
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Figure 6.1: QUASAR reads protein alignments (input layer) and allows to evaluate
the structural quality of the alignments according to built in and/or user programmed
(Java) quality measures (ranking module). In addition, it supports to benchmark and op-
timize scoring functions, consisting of a weighted, linear combination of individual scoring
schemes, with respect to a set of standard-of-truth (structural) alignments (optimization
and benchmark modules).

matrix information. This provides a fast connection to matrix collections such as the
AAIndex database [Kawashima et al., 1999], which has a very similar data format.

Combining Scores

With the so-called score conductor, the user can integrate several scoring schemes into
one scoring function by combining the scores in a weighted sum (assigning user specified
weights for the single scores), i.e. as a linear combination of the individual scores. In
addition, by editing the configuration file, experienced users can build more complex, tree-
like formulas using further operators like multiplication and division. Therefore, a user can
test different combinations of scoring schemes with a minimal effort in order to improve
the ranking quality over the performance of the single scores. The final quality score of
every alignment is calculated by combining the single alignment scores according to the
formula given in the configuration. Single scores can also be normalized to range between
zero and one to combine scores with different magnitudes.
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Benchmarking Scores

To help the user find a scoring function that gives the best possible results, QUASAR con-
tains a number of structure-based quality scores like Touch, APDB [O’Sullivan et al., 2003],
as well as re-implementations of MaxSub [Siew et al., 2000] and TM-Score as described by
[Zhang and Skolnick, 2004]. For a given alignment benchmark set for which the structures
of query and template proteins are known, QUASAR measures the correlation coefficient of
the ranking resulting from the specified alignment score with a structure-based benchmark
measure (e.g. RMSD). It is also possible to use a user-defined quality score as a reference
by annotating it to the alignments. This makes it easy to compare the performance of an
alignment score or a combination of scores to a given “standard-of-truth” without the need
to implement the score in Java.

Optimizing Scores

The performance of a scoring function depends heavily on the weights which are assigned to
the individual scoring schemes. Thus, QUASAR allows optimizing these weights with re-
spect to a benchmark set of alignments with assigned or computed standard-of-truth scores
(see above). So far, two optimization routines are available. One may invoke least-squares
optimization or use a rudimentary genetic algorithm to explore the space of possible score
combinations. The fitness of a combination of scoring scheme weights is evaluated with
respect to a benchmark set. Such an optimization may also uncover the main ingredients
of an already well-performing score combination by leaving out unnecessary scores.

Implementation

QUASAR is completely implemented in Java (version 1.4+). It is freely available for
academic users as standalone and as a Java Web Start application. All scoring schemes,
scoring functions, benchmark scores and optimization routines can be configured in an
XML like configuration file that can be generated using the GUI.

6.1.2 Use Cases

Benchmarking and Optimization

First, we discuss an interactive use case: Given a new scoring scheme, e.g. a new scoring
matrix, one builds a benchmark set of alignments and loads the data into QUASAR. In
QUASAR, one explores the performance of the new scoring matrix in comparison to and
in combination with in-built scores. The evaluation is done with respect to the standard-
of-truth benchmark scores available in QUASAR and with help of the visualization panel.
One further improves the ranking performance by combining well-performing schemes and
optimizing their weights using QUASAR’s optimization routines. Now, one saves the
configuration for future use of QUASAR from the command-line.
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Automated Alignment Ranking

A second, non-interactive use case is the ranking of sequence-structure alignments. Here,
one already has an optimized combination of scores together with the corresponding
QUASAR configuration at hand. Given a set of different sequence-structure alignments
for a target (e.g. to different template structures), one includes the call of QUASAR using
the configuration file into the structure prediction process and is thus able to e.g. discard
alignments on the basis of the previously optimized alignment score automatically.

6.2 Optimized Score Combinations

There exists many scoring matrices for pairwise protein sequence alignments, and each of
these matrices again can be used with different gap parameters and normalization methods.
In our first evaluation, we compute the correlation of a number of well-known matrix-based
scores used with parameters found in the literature. As a first method, we propose least-
squares optimization of combinations of these scores with respect to TM-Score in order to
combine the strengths of the different matrices.

6.2.1 Preliminaries

TM-Score: A Structure-Based Benchmark Score

The template modeling score (TM-score) developed by [Zhang and Skolnick, 2004] is an
interesting alternative to the assessment methods used e.g. in the CAFASP 4 structure
prediction experiment. It compares protein structure templates with predicted full-length
models by extending the approaches used in Global Distance Test (GDT) and MaxSub
(which was used in CAFASP, for instance).

The motivation for the TM-score comes from the well-known shortcomings of the root
mean square deviation (RMSD) as a measure of quality for protein structure models. Since
the RMSD is independent of the alignment coverage (i.e. the number of aligned residues),
a low RMSD on few aligned residues is not necessarily better than a slightly higher RMSD
on significantly more aligned residues when one aims at producing a good full-length model
instead of modeling only parts of a protein. The precise formula is as follows:

TM-Score = max{ 1

LN

LT∑

t=1

1

1 + ( dt

d0
)2
}.

Here, LN is the length of the native structure, LT the number of aligned residues, dt the
distance for aligned residue t and d0 a normalization factor. The maximum operator means
that the optimal spatial superposition is chosen with respect to the final TM-Score. For
our evaluations, as there are no dedicated targets and templates, for each aligned protein
domain pair, we chose the roles randomly. Here, the target defines the native structure
and the aligned positions are taken from the template as model.
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Alignment Scoring with Scoring Matrices

Scoring a sequence alignment given a scoring matrix is simple. For each aligned pair one
reads a substitution score from the matrix. The final score is the sum over the scores of all
aligned positions, with penalties for gap opening (opening a region of unaligned residues)
and gap extension (elongating a gap region) (see chapter 2). As our benchmark score
is normalized, we make use of so-called bit scores. Here, we simply divide the scores as
computed above by the length of the corresponding alignment. This reduces the influence
of the sequence lengths and increases the average correlation with the benchmark score
over the raw scores in our evaluations.

For our evaluation, we make use of an exemplary selection of 15 well-known matrices
which were available in the AAINDEX database and for which we could find parame-
ters optimized with respect to structural alignments in the literature. Listed here with
the names we will use for them in the following, these matrices are BLOSUM50 and BLO-
SUM62 [Henikoff and Henikoff, 1992], PAM250 [Dayhoff et al., 1978], the BlakeCohen ma-
trix [Blake and Cohen, 2001], the Gonnet matrix [Gonnet et al., 1992], the Johnson matrix
[Johnson and Overington, 1993], the Miyazawa matrix [Miyazawa and Jernigan, 1993], the
Overington matrix [Overington et al., 1992], the Prlic matrices [Prlic et al., 2000], the Risler
matrix [Risler et al., 1988], SM Sausage and SM Threader [Dosztanyi and Torda, 2001],
the STROMA matrix [Qian and Goldstein, 2002], and Gonnet P [Vogt et al., 1995]. The
matrices, the used parameters and their sources are shown in Table 6.1.

Training and Test Data

As database for our evaluations we used the ASTRAL compendium version 1.65, namely
the subset reduced to 95% sequence identities without genetic domains, i.e. without do-
mains that have been defined by ASTRAL by combining parts from more than one chain.
This set contains 797 different folds, 1288 different superfamilies and 2315 different protein
families.

We built a dataset using all folds having at least two members in the ASTRAL95, such
that for each domain in the database there is at least one potential template that has similar
structural properties. For each of these fold classes, we then aligned all members against
each other using global log average profile-profile alignment with standard parameters on
both sequence and secondary structure profiles (see 2.5.2).

As some fold classes contain huge numbers of alignments (for instance b.1 induces more
than 350000 alignments), for each class above 10000 alignments, we randomly sampled
10000 alignments from the available pool. This avoids heavy overrepresentation of classes
such as b.1, for instance; however, large classes will still be overrepresented. For our
setup, we accepted this fact, as some classes are very small, which would have reduced our
datasets severely when used as the reference size; further, in most template sets based on
SCOP/ASTRAL, there will be an unbalanced representation of fold classes which is also
reflected in our set.
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All folds were then divided into a training and a test set by randomly selecting classes
for the test set until more than 50 percent of all alignments were covered. This yields about
100000 alignments for testing and about 100000 alignments for training. A few alignments
were discarded during annotation of the TM-Scores, e.g. because of differences between
the ASTRAL sequences and the residue sequences in the corresponding coordinate files.

In the final step, we discarded all alignments with a TM-Score below 0.4, which has been
described as a statistically significant threshold for structural similarity by the developers
of the TM-Score [Zhang and Skolnick, 2004, Zhou and Skolnick, 2007]. Therefore, in the
final set of alignments, we have 25348 alignments for training and 32602 alignments for
testing.

Correlation Coefficient as Fitness Function

We are interested in a good ranking of a set of alignments with respect to our benchmark
score. In other words, when an alignment would be ranked above others based on the TM-
Score, for instance, we also want it ranked above them by our score. As fitness function for
our ranking optimization procedures, we therefore use the Pearson correlation coefficient
as defined in eq. 6.1 to measure the correlation of a set of alignment scores X and the
corresponding set of benchmark scores Y where (xi, yi) represents the respective matrix
score xi and benchmark score yi of alignment i and x and y are the average values of the
set X and Y respectively:

∑n
i=1(xi − x) ∗ (yi − y)√∑n

i=1(xi − x)2 ∗∑n
i=1(yi − y)2

. (6.1)

All correlations were computed using QUASAR.

One remark has to be made when using the correlation to a structure-based bench-
mark score as a fitness function: There are known cases when the highest structure-based
benchmark scores does not necessarily represent the best possible alignments, especially if
inherent protein flexibility is involved. Rigid structure superposition evaluation on Calmod-
ulin, for instance, will probably not be able to correctly assign high scores to good models,
if the template structure is in an open state and the target structure (used for benchmark-
ing) is in a closed state. In the following, as we are in need of a score that gives us a hint
on the structural quality, we will nonetheless use the correlation with the TM-Score, which
has been shown to be a good measure for model quality in many cases and is a widely
accepted score.

6.2.2 Generation of Linear Combinations

In order to combine the strengths of individual scores, we combine individual scores in a
weighted sum.
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Score Conductors

Such a combination is called a score conductor. Given m participating scores

si : Alignments 7→ R, i ∈ {1, . . . ,m}
for an alignment a ∈ Alignments, the score scombined for a conductor c = (w̄, s1, . . . , sm) is
defined as

scombined(c, a) =
m∑

i=1

wi si(a) = w̄T s̄a,

where wi denotes the individual weight for a score si as given by the score conductor, and
w̄T s̄ denotes the scalar product of an m-dimensional weight vector with an m-dimensional
score vector.

Linear Optimization

In order to obtain a good combination of scores, i.e. useful weights for our individual scores,
we tune our score conductors to approximate the benchmark scores: Given a benchmark
score s∗ : Alignments → R and a training alignment set A∗, we compute the so-called
least-squares weight vector

w̄∗ = arg min
w̄∈Rm

∑

a∈A∗
(w̄T s̄a − s∗(a))2.

This is a well-known problem which can be solved efficiently and which has been imple-
mented in many software packages. Here, the computation of least squares weights was
done using QUASAR’s optimization routine based on JAMA1.

6.2.3 Results

We scored all alignments in the test set with all matrices and computed the Pearson
correlation between the resulting scores and the TM-Score as our benchmark score. The
results are shown in Table 6.1. The best matrix is the SM THREADER matrix with 0.7933.
Also the standard matrices (PAM and BLOSUM) do quite well in comparison, their best
result being 0.7615 (BLOSUM62). Another interesting observation is the high impact of
the gap costs (all configurations were proposed in the literature): the Miyazama matrix
ranges between 0.6611 and 0.7518 in its different setups. This underlines the importance
of optimal parameters as well as the fact that such optimal parameters may vary with the
situation.

We computed the least-squares combination of all matrix configurations used above on
the set of training alignments. The resulting combination achieves a correlation of 0.8275
on the test data, which is an increase of 3.5 percentage points in comparison to the best
individual scoring matrix as observed above. Apparently, the combination of matrices is
useful for our task, as it can better approximate the ranking behavior of the TM-Score
than any of the individual matrices in our setup.

1http://math.nist.gov/javanumerics/jama/
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Scheme Correlation GO GE Parameters in

BlakeCohen 0.7328 -20.2 -3.0 [Qian and Goldstein, 2002]
BlakeCohen 0.7254 -17.0 -2.0 [Blake and Cohen, 2001]
Blosum50 0.7538 -6.0 -2.0 [Prlic et al., 2000]
Blosum62 0.7422 -5.5 -0.8 [Prlic et al., 2000]
Blosum62 0.7481 -12.0 -1.0 [Qian and Goldstein, 2002]
Blosum62 0.7452 -8.4 -0.9 [Qian and Goldstein, 2002]
Blosum62 0.7615 -3.4 -3.0 [Qian and Goldstein, 2002]
Gonnet 0.7539 -8.5 -0.8 [Prlic et al., 2000]
Gonnet 0.76 -12.0 -1.0 [Qian and Goldstein, 2002]
Gonnet 0.7468 -14.2 -0.2 [Qian and Goldstein, 2002]
Gonnet 0.7614 -3.0 -2.9 [Qian and Goldstein, 2002]
Gonnet 0.7467 -14.0 -0.2 [Vogt et al., 1995]
Johnson 0.7388 -9.5 -1.2 [Prlic et al., 2000]
Johnson 0.7205 -31.0 -28.0 [Blake and Cohen, 2001]

Miyazawa 0.6906 -12.7 -0.52 [Dosztanyi and Torda, 2001]
Miyazawa 0.6611 -11.5 -0.22 [Dosztanyi and Torda, 2001]
Miyazawa 0.7518 -9.3 -0.66 [Dosztanyi and Torda, 2001]
Miyazawa 0.7305 -13.6 -1.18 [Dosztanyi and Torda, 2001]
Overington 0.7458 -12.0 -1.0 [Qian and Goldstein, 2002]
Overington 0.7351 -9.5 -0.5 [Qian and Goldstein, 2002]
Overington 0.7585 -3.6 -2.5 [Qian and Goldstein, 2002]

Pam250 0.7541 -10.0 -1.0 [Prlic et al., 2000]
Pam250 0.7556 -12.0 -1.0 [Qian and Goldstein, 2002]

Prlic 0.7515 -7.0 -0.6 [Prlic et al., 2000]
Prlic2 0.7412 -19.0 -0.8 [Prlic et al., 2000]
Risler 0.7835 -3.0 -0.2 [Prlic et al., 2000]
Risler 0.783 -5.0 -0.1 [Vogt et al., 1995]

SM Sausage 0.4912 -10.9 -0.08 [Dosztanyi and Torda, 2001]
SM Sausage 0.4885 -3.8 -0.51 [Dosztanyi and Torda, 2001]
SM Sausage 0.4832 -4.9 -0.01 [Dosztanyi and Torda, 2001]
SM Sausage 0.5064 -6.7 -1.69 [Dosztanyi and Torda, 2001]
SM Threader 0.7897 -16.4 -0.4 [Dosztanyi and Torda, 2001]
SM Threader 0.7884 -12.7 -0.22 [Dosztanyi and Torda, 2001]
SM Threader 0.7887 -15.2 -0.24 [Dosztanyi and Torda, 2001]
SM Threader 0.7933 -15.1 -1.13 [Dosztanyi and Torda, 2001]

Stroma 0.7785 -16.2 -1.1 [Qian and Goldstein, 2002]
Gonnet P 0.7636 -6.0 -0.8 [Vogt et al., 1995]

Table 6.1: Evaluated scoring schemes and corresponding parameter settings taken from
the literature. GO stands for ”gap open” and GE stands for ”gap extend”. The highest
values for each correlation column are highlighted.



108 6. Environment-Specific Alignment Computation and Scoring

6.3 Optimized Matrices for Alignment Ranking

As we have seen, it is possible to combine the strengths of well-known matrices in a linear
combination. Such matrices, however, are not necessarily well suited for the environment
they are used in. The hypothesis for this section is that, if the environment (i.e. the
alignment method, the template database and perhaps additional features) for producing
the alignments is known, it should be possible to generate optimized scoring matrices that
can deal with the properties of these alignments.

Training has to be done on a set of training alignments that can reflect the behavior
of the underlying method, and then one can expect, if the test data comes from the same
method, that the resulting matrices can perform well on previously unseen alignments.
The algorithm described in this section is meant for approximation of the ranking be-
havior of the TM-Score, using ”bit scores”, i.e. normalized alignment scores as described
above. Nonetheless, it is general enough to optimize scoring matrices given a representative
training set and a fitness function that corresponds to the desired behavior.

6.3.1 Comparison Matrices

Many studies exist which have proposed amino acid scoring matrices for differing purposes
and with differing methodologies (see 6.2.1 for the list of matrices used in this section), some
of them aiming at alignment quality with respect to structural alignments as reference data.
Such matrices are especially interesting for us, as we expect them to reflect the structural
quality of alignments (i.e. the structural quality of the resulting models) better than others.
For comparison with our approach, we chose prominent studies of the latter type, whose
matrices were available to us via the AAIndex database and which are also the sources for
the optimized parameter settings for other well-known matrices as used in this chapter:

• [Vogt et al., 1995]: In the study by Vogt, Etzold and Argos, different matrices
and parameter combinations are tested on a set of amino acid sequences matched by
superposition of known topologies. The authors find ”relatively similar results for
the top scoring matrices, a preference for global alignment, and the importance of
matrix modification and optimized gap penalties.” This strengthens our point made
at the beginning of this chapter, namely that it is possible (and sometimes important)
to use optimized parameters for certain situations instead of the average, standard
parameters, although these do work good in many cases. From this study, we took
the highest scoring matrix (”Gonnet P” in the table).

• [Prlic et al., 2000]: Prlic, Domingues and Sippl derived matrices ”based on super-
impositions from known protein pairs of similar structure” using a formalism based
on the observed occurrence frequencies of aligned amino acid pairs. They compared
them with other previously published matrices. Their results confirm that their ma-
trices can be used for comparisons of distantly related sequences. We included the
derived matrices into our own study (”Prlic”, ”Prlic2” in the table).
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• [Blake and Cohen, 2001]: Blake and Cohen also built a new set of amino acid
interchange matrices from structural superposition data based on log-odds probability
ratios. They find both improved pairwise alignments as well as an increase in fold
recognition accuracy. We used the top performing matrix (”BlakeCohen” in the
table).

• [Dosztanyi and Torda, 2001]: Dosztanyi and Torda use low resolution force fields
to derive amino acid substitution matrices. They computationally mutated residues
and collected their contribution to the total score; based on the position-wise averages
of these values, the substitution matrices were compiled. We included both the
”SM THREADER” and the ”SM SAUSAGE” matrix in different configurations in
our evaluation.

• [Qian and Goldstein, 2002]: Qian and Goldstein computed a matrix they called
STROMA by using a downhill simplex optimization and a RMSD-based merit func-
tion. We included the ”STROMA” matrix, which was found to generate more accu-
rate alignments than other compared matrices by their authors.

Further, in a recent study, Torda et al. [Torda et al., 2004] generated optimized substi-
tution matrices for their WURST structure prediction server using Qian and Goldstein’s
approach, but with the difference that they included a structure-based scoring term used
by the WURST server into their optimization procedure. As they state, their ”substitution
matrix is not a general substitution matrix, but rather a numerical creation, fitted to the
influence of the structural score function”; in other words, their matrix is not meant to work
on its own but was adjusted to the combination of scores used by the WURST server. For
this reason, in our evaluations, we concentrated on Qian and Goldstein’s optimization re-
sults instead (namely the STROMA matrix) [Qian and Goldstein, 2002], which are based
on the same principal procedure but not restricted to use with Wurst’s structure-based
scores.

6.3.2 Range-Adaptive Genetic Algorithm

For our optimization approach, we employ a so-called genetic algorithm. The principle
behind genetic algorithms (GAs) for optimization problems is in analogy to evolution:
Populations of individual solutions to a posed problem are gathered, the best solutions
are selected, combined and eventually mutated. After each generation, bad performing
solutions are discarded and new potential solutions are generated via the mechanisms
described below. This process is repeated until convergence or a limiting criterion has
been reached. For a good introduction into GAs, please see [Mitchell, 1998].

In the case of scoring matrices, it is desirable to represent individual solutions as m-
dimensional vectors of floats. Unfortunately, the main problem in using GAs for such a
continuous optimization problem is the necessity of employing a very large number of chro-
mosomes in the population, which demands extensive computer resources. One possible
solution to this problem is to adaptively narrow the range of values for each parameter with
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Algorithm 4 Pseudocode of the GPSSA algorithm.

1: boundaries ← initializeBoundaries()
2: for i = 1 : 100 do
3: population ← generateNewPopulationWithinBoundaries(boundaries)
4: while generations < 500 AND stopping criterion not satisfied do
5: evaluate fitness of every population member
6: perform tournament selection
7: perform mating and crossover
8: perform mutation
9: end while

10: boundaries ← updateBoundaries(population)
11: end for

increasing number of generations. This concept, genetic algorithms with parameter-space
size adjustment (GAPSSAs), was described and successfully applied to the problem of
model parameter determination of the optical constants of metals by Djurisic and cowork-
ers [Djurisic et al., 1997].

In this subsection, we propose a modification of this approach for optimizing the entries
of an amino acid substitution matrix with respect to alignment ranking and model selection.
The fitness function of this optimization method is again the Pearson correlation as defined
in Equation 6.1 based on bit scores. The algorithm was used as follows:

Adaptation of the GAPSSA algorithm

An amino acid substitution matrix assigns a score to every pair of amino acids (m,n)
which scores the substitution of amino acid m by amino acid n and vice versa. Since
scoring matrices are usually symmetrical, a matrix consists of 210 values together with
two additional parameters representing gap open and gap extend penalties. Therefore, a
population member is a vector w̄ ∈ Rm, with m = 212. Without loss of generality we
assume that the initial matrix values are in the range of [−1, 1] for these matrices.

As shown in Algorithm 4, the GAPSSA consists of two loops, namely an inner and
an outer loop. In the inner loop, we use a classical genetic algorithm as described below.
More interesting is the restriction of the parameter-space size done at the end of each inner
loop: As described by [Djurisic et al., 1997], we narrow the boundaries for each parameter
based on the corresponding average values in the population:

upperbound(k) = upperbound(k)− c(upperbound(k)− average(k))

lowerbound(k) = lowerbound(k) + c(average(k)− lowerbound(k)).

Here, k determines the parameter and the factor c ∈ [0, 1] thereby regulates the speed of
the convergence in this process. Before the beginning of a new inner loop, the best member
is kept and the population is filled with new random members using the new boundaries.
Our criteria for termination of an inner loop are either that the top-scoring member has not
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changed for 50 generations or that we have reached a maximum number of 500 generations.
For the outer loop, we used a maximum number of 100 inner loops in our setup.

Inner Loop Genetic Algorithm

In the selection phase, 50% of a population are selected by pairwise tournament selection.
Random member pairs are formed and the member with the better fitness survives and
enters the next generation, while the other chromosome is removed from the population.
If the two members have the same fitness, the surviving member is chosen randomly.

After selection the rest of the population is filled with children of the surviving popu-
lation members. For mating, two random population members are chosen uniformly from
the population and their offspring is generated by a crossing over of the two chromosomes.
In a crossover event, for each parameter of a child, we choose randomly between the corre-
sponding values from its parents. This variant is referred to as ”multiple-point” crossover.

The best solution is duplicated, and the copy replaces one randomly chosen child gen-
erated by the mating procedure. Then, with the exception of the original copy of the
currently best solution, any parameter of any member in the population may mutate with
a certain probability. Just like when initializing a new population member, the mutated
value of the gene is determined according to the formula given above, i.e. within the current
boundaries set for the parameter.

6.3.3 Results

Using a mutation rate of 0.4, 100 outer loops, 500 inner loops and a population size of 100
we performed 15 runs on the training data, each of which took about one day on a single
personal computer. Figure 6.2 shows the results of the optimization procedure as a box
plot. Overall the matrices optimized by the genetic algorithm perform well in comparison
with the known matrices, though the best individual performance on the test data is still
observed for the SM THREADER Matrix: The top five matrices on the training data lie in
the range of 0.7735 and 0.7909. This shows that the optimization procedure yields matrices
which perform comparably to the best known matrices in our comparison.

Further, one usually wants to find a single matrix-parameter combination that works
well. Given our setup, the choice would have to be made on the training data. Accordingly,
in order to select only one matrix, we can choose the best matrix with respect to correlation
on the training data. This yields a correlation of 0.7883 on the test data for the best GA
matrix (the third best result of the GA matrices on the test data, which is still only
outperformed by the SM Threader matrix of all known matrices in the comparison).

For comparison, if we select the best known matrix on the training data by correlation
(the Gonnet-Matrix with gap open costs of -3 and gap extend costs of -2.9), we achieve
only a correlation of 0.7614 on the test data. Again, this shows that GA matrices perform
comparably to known matrices, and as it is usually not known beforehand what the best
matrix is (i.e. one has to choose a matrix on the training data), can even outperform those
known matrices that perform best on the training data.
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Figure 6.2: Comparison of GA matrices with well-known matrices. On the left side, a
boxplot is shown for the well-known matrices in their different parameter configurations.
On the right side, a corresponding boxplot is shown for the matrices generated by the
genetic algorithm. For each column, the upper line gives the maximum value, the box is
between 75% and 25% of the ordered results, and the lower line shows the minimum. The
line in the middle of the box shows the median of the plotted data points. In order to show
the main parts better, we cut off some outliers with lower correlations from the well-known
matrices and set the range on the y-axis to [0.65, 0.8].

In addition, we included our GA matrices into our previous approach, the linear combi-
nation of matrices. Here, the least-squares combination of the GA matrices with all known
matrices yields a correlation of 0.8299 on the test data, which is slightly better than the
least-squares combination of known matrices only.

6.4 Optimized Profile-Profile Alignments

In the previous chapters, we have shown that in many cases the fold class of a target can be
predicted from its sequence. In fact, for the AutoSCOP methods as described in chapter
5, the fold level is covered to more than 90% on the test data. However, when aligning a
target with a template, usually standard parameters are used that work reasonably well
for basically all possible fold classes, e.g. the Blosum62 matrix and the Kawabata matrix
for log-average profile-profile alignment.

At this point, our hypothesis is that the knowledge of the correct fold can be used
to improve the quality of the resulting alignments by training parameters specifically to
fold environments. Therefore, in this section, we adapt the genetic algorithm described
above to produce optimized matrices (sequence and secondary structure), gap costs and
weighting factors for log-average profile-profile alignments for exemplary fold classes. The
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aim is to make use of knowledge obtained from methods such as AutoSCOP, which predict
the fold class with high specificity, to improve the alignment procedure and therefore to
improve the expected quality of corresponding structure models.

A similar concept has been evaluated by [Vilim et al., 2004], who derived fold-specific
substitution matrices for protein classification, also using a genetic algorithm. However,
their so-called Class Attribute Substitution Matrices (CLASSUMs) approach, which was
applied to the lambda and kappa subgroups of the immunoglobulin superfamily, is based on
finding a distance measure between sequences in contrast to the usual task of recognizing
similarity and includes a sequence-position-specific term which either includes or leaves
out a position for the classification score. Second, their approach is aimed at classifying
proteins for which an overall class (e.g. the superfamily) is already known into subgroups,
whereas our approach described below has a different optimization goal: it is aimed at
improving the alignment quality for alignments between members of known folds.

Another similar study has recently been published by [Sommer et al., 2006], who make
use of non-optimal alignments to improve the structural quality of structure models. Here,
the selection of models is done using a support vector machine based on the ouput of
the VICTOR/FRST model quality assessment tool (i.e. its underlying potentials). The
method proposed in the following is different from Sommer et al.’s approach as (1) it does
not build structure models before selection, and (2) actually results in a fixed parameter
setting for PPA. Once the genetic algorithm has finished, we propose to make use of the
optimized parameters if there is a clear improvement on the test data for a particular fold
class.

6.4.1 Training and Test Data

We randomly chose 8 exemplary fold classes, two for each major SCOP class, namely a.3,
a.118, b.34, b.47, c.6, c.3, d.15, and d.19. For each of these fold classes, we extracted
all domains from the ASTRAL 95, Version 1.65, and split them into two halfs, one for
training and one for testing. From the training sets, we then computed all-against pairs,
and randomly selected 100 of them. For testing, we computed all possible alignments from
the second half of the fold members. We have an average of 789 alignments per test set
(maximum: 1770 alignments, minimum: 351 alignments).

6.4.2 Modified Genetic Algorithm

The modifications introduced to the genetic algorithm are simple:

• Representation: our chromosomes now consist of matrix entries for the sequence-
based matrix, matrix entries for the secondary structure-based matrix, gap open
and gap extension costs and weighting factors for the sequence-based score and the
secondary structure-based score.

• Diagonal entries: matrix entries are initially drawn randomly from [-1,1]. In addi-
tion, in order to speed-up the process, we increased the initial weights of the diagonal
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Fold opt. PPA PPA ∆ #Sign. Changed #Neg #Pos
a.3 0.471 0.438 0.032 10.6% 0.7% 9.9%
a.118 0.288 0.294 -0.006 4.3% 2.8% 1.5%
b.34 0.353 0.347 0.006 13.2% 4.7% 8.5%
b.47 0.570 0.532 0.038 20.4% 2.2% 18.1%
c.26 0.336 0.319 0.016 9.1% 1.9% 7.1%
c.3 0.446 0.456 -0.010 10.2% 8.1% 2.1%
d.15 0.313 0.301 0.012 8.7% 2.8% 5.8%
d.19 0.558 0.505 0.053 31.0% 0.9% 30.0%
Avg 0.416 0.399 0.017 13.4% 3.0% 10.3%

Table 6.2: Average TM-Scores after optimizing PPA parameters using a modified genetic
algorithm. Differences are shown in bold face whenever the optimization process leads to
better results on the test data. In addition, the number of significantly changed TM-Scores
(a difference of more than 0.1 TM-Score) as compared to the original PPA parameters on
the test alignments is given together with the relative number of positive changes (where
optimized parameters lead to better TM-Scores by more than 0.1) and the relative number
of negative changes (where the original parameters performed better by more than 0.1).

entries of the matrices by drawing from [0.8, 2]. Before being used in the PPA pro-
cedure, all matrices are normalized such that the entries sum up to 1.0.

• Other parameters: All other parameters such as the weights for the sequence and
the secondary structure-based parts are initially drawn from [0,20].

We used a population size of 50 and a mutation rate of 0.4. As each population member has
to be evaluated by generating profile-profile alignments and then computing the TM-Score,
the complete optimization procedure takes considerably longer than the genetic algorithm
proposed in the previous section (up to several days on a single CPU). This is the main
reason why we used only 8 exemplary fold classes in this evaluation instead of all available
fold classes (about 800) of the ASTRAL distribution.

6.4.3 Results

For each fold class, we ran our genetic algorithm five times and then chose the parameters
that performed best on the training data for the evaluation on the test set. The average
changes of the mean-length normalized TM Score are given in Table 6.2. Further, we
evaluated the number of alignments for which the TM-Score was in- or decreased by more
than 0.1 (we refer to these alignments as significantly changed alignments in the following).

Within our 8 randomly chosen fold classes, we find that for three of them (a.3, b.47
and d.19) there is a clear improvement in average TM-Score of 0.032, 0.038 and 0.053,
respectively, whereas we observe only slight increases for three classes and slight decreases
for the remaining two classes (within a range of 0.02 difference in TM-Score between the
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original and the newly generated parameters). With respect to individual alignments, we
find that, on the test sets for each fold class, on average (over the fold classes, weighing
each class equally) 13.4% of the alignments have been significantly changed, 10.3% being
”better” and 3.0% being ”worse”. In other words, on average, nearly 4 of 5 significantly
changed alignments have been improved. In the best case (d.19), 29 out of 30 significantly
changed alignments have become better with respect to TM-Score.

Keeping in mind that the genetic algorithm starts more or less without any knowledge
and that the PPA parameters have already been optimized for fold recognition purposes
in general, this shows that it is possible to generate optimized parameters from random
initial choices, at least for some of the available fold classes. By splitting the domains and
the corresponding alignments into training and test data, it is further possible to select
those fold classes where optimized parameters might be useful in future applications and
where not, though this would require quite some CPU time when applied large-scale.

The GA parameters for this evaluation were chosen intuitively, and the training sets as
well as the numbers of runs were small due to the runtime requirements. Therefore, in a
larger experiment using larger training sets, larger populations and more runs, it may be
possible to improve over the results shown in Table 6.2.

6.5 Discussion

In the first section of this chapter, we have described the QUASAR package, a simple
alignment ranking software which allows for combination and, to some extent, optimization
of alignment scores with respect to structure-based benchmark scores. The software is
available at http://www.bio.ifi.lmu.de/QUASAR together with documentation, a tutorial
and examples. It has been developed on a Linux/Unix system, but, being implemented in
JAVA, can also be used on other platforms.

QUASAR may be of interest for users who work with alignments and want to either
evaluate them with structure-based scores or rank them according to an optimized score
combination that will hopefully rank ”good” alignments (with respect to the structural
quality of the resulting coordinate model) above ”bad” alignments. Both situations occur
in CASP-like environments: the former for training and evaluation of the servers and
methods being developed, and the latter for finding those alignments and models that are
finally used as predictions.

Subsequently, two similar optimization problems have been discussed: (1) alignment
scoring and ranking for selection of potentially good structure models on the alignment
level, and (2) the optimization of fold-class specific parameters for improving the quality
of profile-profile alignment.

For the first problem, two different methods have been proposed, namely least-squares
optimized linear combination of well-known scoring matrices and the genetic optimization
of new scoring matrices. We find that the first approach works well in our comparison,
as the scores obtained from linear combinations show an improved correlation with our
benchmark score. Here, more elaborate combination techniques allowing more operators

http://www.bio.ifi.lmu.de/QUASAR�


116 6. Environment-Specific Alignment Computation and Scoring

than only addition and weighting may be an interesting starting point for future research.
The second method, the genetic optimization of scoring matrices and their gap parameters
produces competitive matrices to the well-known matrices in our comparison. Though no
individual GA matrix performed better than the best known matrix, inclusion of the GA
matrices into a combination of all evaluated matrices could further improve accuracy.

For the second problem, we modified the genetic algorithm such that it optimizes all
necessary parameters for PPA. The results show that, for some cases, a clear improvement
of alignment quality with respect to TM-Score can be reached. For this problem, the
optimization procedure itself is time-consuming, but has to be done only once for each fold
class in order to obtain the new parameters.

Overall, the evaluations in this chapter lead to two conclusions. First, given enough
computing power, it is to some degree possible to optimize parameters for alignment rank-
ing or alignment generation for specific environments (i.e. alignment procedures, template
data etc.). Second, however, it is also obvious that the currently used matrices and their
parameters already perform well and that one has to choose carefully when to use adapted
parameters and when not, especially in the second case (alignment computation with op-
timized parameters).



Chapter 7

Additional Tools for Protein Domain
Representation and Classification

In addition to the methods described in the previous chapters, in cooperation with col-
leagues, some additional tools have been developed that can contribute to research in pro-
tein structure prediction, three of which are the topics of this chapter. The first two will be
described only briefly, namely the Vorolign structural alignment server [Birzele et al., 2007]
and the ProML Schema for representation of proteins and protein sets. The third, the
BioWeka library [Gewehr et al., 2007b] that extends the Weka data mining framework
with bioinformatics data formats and methods, is described in more detail.

7.1 Vorolign: Structural Alignment and SCOP Clas-

sification Prediction

So far, we have described methods that predicted SCOP classifications based on a protein
domain’s amino acid sequence (and derived information) under the assumption that the
target’s structure is unknown. If we know the structure of the target, prediction accuracy
can be improved by including this information into the prediction process. For the Au-
toSCOP method, this was shown by combining AutoSCOP with a structural alignment
method which will be described in this section, namely the Vorolign method.

Vorolign is mainly the work of Fabian Birzele (in joint work with the author and Gergely
Csaba), therefore we will keep this section short and present only an overview which,
together with the previous chapters, completes our efforts in SCOP classification prediction
based on different types of data (sequences, patterns and finally structures). More details
about Vorolign can be found in the corresponding publication [Birzele et al., 2007]. In this
work, Vorolign was used as an additional predictor for the AutoSCOP database, which
provides predicted SCOP classifications using both AutoSCOP and Vorolign for new PDB
entries.
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Figure 7.1: The similarity computation method of the Vorolign approach (taken from
[Birzele et al., 2007]): Given their neighbors (left panel), Vorolign computes the similarity
between two residues via dynamic programming (middle panel, low level matrix). These
individual similarities are then used for the overall alignment as shown in the right panel
(high level matrix).

The Vorolign Approach

The task of alignment and comparison of protein structures has been investigated for
several years. When considering the proposed methods, it is usually possible to categorize
them into one of the following two classes: (1) methods treating proteins as rigid (such as
DALI [Holm and Sander, 1996] and CE [Shindyalov and Bourne, 1998]) and (2) methods
allowing flexibility in proteins (such as FATCAT [Ye and Godzik, 2003]). Especially for the
former class, the alignment criterion is often the root mean square deviation (RMSD) of the
resulting superimposition, which may be regarded either locally (i.e. over certain, similar
parts of the aligned structures) or globally (over the complete structures). Belonging to
the latter class, the Vorolign method allows for flexible alignment of protein structures
based on the following concept:

Vorolign assumes that two structurally similar residues are also similar with respect to
their environment in the corresponding structures. Thereby, the environment of a residue
is defined by its neighbors in the Voronoi tessellation of its structure. Given these neigh-
bors, for the contained residues, similarity is computed using dynamic programming based
on both amino acid as well as secondary structure exchange scores, and using these sim-
ilarity scores between residues, an overall alignment is computed again using dynamic
programming (see Figure 7.1). For details, we refer to [Birzele et al., 2007].
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Summary of Results and Conclusion

Vorolign allows for two different applications: (1) Scans for family members, i.e. aligning
a new structural domain against templates in order to predict its SCOP classification,
and (2) flexible, pairwise as well as multiple alignment of protein structures. This first
application includes a speed-up step very similar to the Preselection method described in
chapter 3, as only the top 5% of templates with respect to SSEA score are considered by
Vorolign.

For family recognition, the results show that Vorolign performs better than the struc-
tural alignment method CE and significantly better than sequence-based methods such as
profile-profile alignment while reaching a good structural alignment quality (see Table 2 in
[Birzele et al., 2007]). Multiple alignment examples show that indeed structurally similar
regions can be mapped onto each other even between ”open” and ”closed” conformations
of Calmodulin-like proteins, for instance.

In conclusion, Vorolign is a powerful structural alignment tool that extends our efforts
in SCOP classification into the domain of new protein structures.

7.2 Representation of Protein Information in ProML

The large number of proteins and the corresponding data (millions of sequences and several
thousands of structures, each annotated with further features and keywords) makes it
necessary to find a way to represent instances such as proteins and protein sets for the
purpose of finding similarities or differences between them as well as for browsing and
searching the corresponding protein space. In this section, we briefly describe an XML
application for this purpose, which is a rebuild of the Protein Markup Language (ProML,
[Hanisch et al., 2002]) as an XML Schema. The schema in its version 1.0, as described
here, is joint work with Martin Szugat. Alessandro Macri and Arthur Zimek participated
in the development of earlier versions.

Why another XML Application?

The eXtensible Markup Language (XML1) has become a standard tool for data description
and communication in the areas of biology and chemistry. Accordingly, there exist several
XML-based languages capable of representing proteins. Most of them are basically XML
representations of the underlying databases (like PIR, InterPro, SwissProt and PDB), be-
ing capable of describing not only proteins but also database-specific annotations, thus
emphasizing the aspect of complete data storage. This often leads to language elements
unnecessary for the most common computational needs and largely increased document
size. On the other hand, languages like BioML2 are more general, aiming at e.g. hierar-
chical descriptions of complete organisms. This yields less preciseness than most protein

1http://www.w3.org/XML
2http://www.proteometrics.com/BIOML/
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related tasks require, lacking e.g. the possibility to communicate coordinates. Finally, it
may be important for describing protein data to be able to include not only single proteins
but also sets of proteins together with set-based properties like multiple alignments.

The ProML Schema, Version 1.0

To cope with these demands, we developed the ProML schema, which is both slim and
modular, as it is based on on a library of more common XML elements for computational
biology called BioSchemas3 (which initially arose in the process of rebuilding ProML and
is now maintained by Martin Szugat). Further, ProML can easily be extended by including
further XML schemas from other namespaces.

The hierarchic syntax tree of ProML splits between single proteins and protein sets at
the top node. While a protein is viewed pretty traditional as a structural unit, a protein
set carries only references to the single proteins with the main part of the data describing
the characteristics of this collection, e.g. a certain protein class resulting from a ProML
query.

A protein document allows three different views, that is primary, secondary and tertiary
structure. Each of these views holds subviews, consisting of the raw data which defines
the view and constraints over this data. Some exemplary fields that are implemented in
ProML 1.0 are the amino acid sequence in single letter code, secondary structure sequences
by source (DSSP or PSIPRED, for instance), InterPro patterns with locations and further
annotations, atomic coordinates, structural classifications, general residue contacts, and
disulfide bonds.

Protein sets in ProML are usually generated by application of a given constraint, for
example by filtering for the SCOP-tag to generate the set representing a certain SCOP
family. ProML 1.0 supports mainly sequence features as protein set properties, such as
multiple alignments of the contained proteins’ sequences coming from different sources and
InterPro pattern profiles.

Summary

The ProML schema allows users to describe proteins and protein sets including align-
ments, patterns, predicted classifications and more. As an XML application, ProML can
be easily parsed and has been included into BioWeka, for instance, simply by providing a
corresponding stylesheet for the XMLXSLLoader. ProML 1.0, stylesheets and additional
information are available at http://www.bio.ifi.lmu.de/2005/proml/. ProML is now
being maintained by Gergely Csaba who is working on an updated and extended Schema
combination for use with web services.

3http://www.bioschemas.org
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7.3 BioWeka: Extending the Weka Framework for

Bioinformatics

The package described in this section is not an integral part of any of the previously
described methods. Started as an evaluation and education project, the BioWeka library
[Gewehr et al., 2007b] has nonetheless grown into a size and applicability for many basic
tasks which makes it interesting for quick prototyping and data analysis before developing
new, sophisticated applications. Further, the integration with Weka allows unexperienced
users to perform basic bioinformatics tasks together with machine learning tasks on a
single platform. In the following, we will describe the features of the underlying Weka
machine learning framework [Witten and Frank, 2005] and the BioWeka library as well as
two example applications.

Large parts of BioWeka have been implemented during the bachelor’s thesis of Martin
Szugat supervised by the author. Currently, the project is still maintained by both Martin
Szugat and the author. The following content is partly based on a publication concerning
BioWeka which appeared recently [Gewehr et al., 2007b].

7.3.1 Motivation

The tremendous amount of biological data which is nowadays available leads to the ap-
plication of data mining methods for tasks like classification and clustering. The aim of
these tools are to provide testable models, i.e. simplified abstractions, that allow for pre-
dictions of the behavior of the underlying systems. In a recent review under the title ”Ma-
chine Learning in Bioinformatics” [Larranaga et al., 2006], Pedro Larranaga and coworkers
present modeling methods as well as optimization methods together with applications in
the fields of genomics, proteomics, systems biology, evolution and text mining.

In the case of supervised classification, given a set of instances divided into classes,
classifiers are trained on the available training data (e.g. labeled examples) and are then
used for predicting labels/classes of new instances. Larranaga et al. give examples for su-
pervised classification problems in all fields listed above, including gene finding, secondary
structure prediction, prediction of protein subcellular location, modeling of signal-response
cascades, and protein/gene identification in text. This wide range of applications shows
how established machine learning has become in bioinformatics. However, the available
data is often not stored in the necessary feature-based representation for data mining appli-
cations. For instance, the well-known protein structure prediction server GenTHREADER
[Jones, 1999a] computes alignment scores in a first step and then combines these with other
features using a neural network. Other applications like ECLAT [Friedel et al., 2005] gen-
erate features from biological sequences by counting codons.

The popular data mining framework Weka offers a broad variety of useful tools for
machine learning purposes. Our BioWeka project which is described in this section extends
the Weka framework with additional bioinformatics functionalities to make applications
and features as described above easily accessible from this standard machine learning tool.
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Such extensions can be combined with the built-in functionalities of Weka (see Figure 7.2
for an overview of the interplay between Weka and BioWeka). This enables the user to
employ all the useful facilities Weka has to offer together with well-known bioinformatics
data formats and algorithms in a consistent way on a single platform.

The BioWeka website (http://www.bioweka.org) contains documentation, a tutorial
and additional information on BioWeka. The distribution can be downloaded from Source-
Forge.net via a link given on the BioWeka website. It contains Weka, BioWeka and a couple
of additional packages. As BioWeka is an open source project, users can easily integrate
their own methods into the library.

7.3.2 The Weka Framework

Weka (the Waikato Environment for Knowledge Discovery) is a project pursued by the
computer science department of the University of Waikato with the overall aim ”to build
a state-of-the-art facility for developing machine learning (ML) techniques and to apply
them to real-world data mining problems,” 4 which is well-known in the bioinformatics
community [Frank et al., 2004]. The software is available from the Weka website, free for
download and distributed under the GNU General Public License5. At the time of this
thesis, the book version of the software is 3.4 (which is used in the latest release of the
Weka book [Witten and Frank, 2005]), and the developers version is 3.5. For our purpose,
we make use of the book version, i.e. Weka 3.4.

The User Interfaces

Having downloaded, installed and started Weka, a user can choose between three different
interfaces, each of which has a special focus:

1. The Explorer is a basic interface which consists of panels for data handling, classi-
fication, rule extraction, clustering and analysis of the results.

2. The Experimenter is a more elaborate interface. Here it is possible to define setups
that contain multiple datasets as well as classifiers, for instance, and thus to make
large comparisons and experiments with Weka.

3. The Knowledge Flow interface provides the user with a graph-based experiment
design facility. Components can be drawn onto a canvas, they can be configured,
and connections between the components define the way the data flows through
these components.

In addition, all components of Weka can be used from the command-line as individual
JAVA classes. A workflow can be set up by simply using the output of one component as
input for the next by building a pipeline (which is possible because of the universal ARFF
format within Weka).

4http://www.cs.waikato.ac.nz/ ml/index.html
5http://www.gnu.org/copyleft/gpl.html

http://www.bioweka.org�
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Data Handling in Weka

Many data mining tools (as well as most of the databases used nowadays) represent their
data as relations. Here, WEKA is no exception: the so-called Attribute-Relation File
Format (ARFF) is used by its components to interchange data. All data that comes in
and out of WEKA has to be transformed into or out of the ARFF format; however, once
the data is correctly formatted, it can be used by more or less all of Weka’s components
(at least with respect to the syntax).

Another way to input and output data is to make use of relational databases, which
are supported by Weka. Data can be read from databases, new databases can be set up
and also all results can be stored again in a database. However, as Weka does not work
with multiple relations at once, it is important to join all necessary data in only one table
(or one ARFF file, respectively) to be able to use it in the Weka environment.

Weka’s way of manipulating data is to apply so-called filters to ARFF-formatted rela-
tions. Basically, a filter is a component that takes ARFF-formatted data as input, manip-
ulates the data and outputs it again in the ARFF format. A variety of filters are available
which perform tasks such as the conversion of attribute data types or the deletion of at-
tributes.

Available Data Mining Algorithms

Once the data has been prepared, it can be used as input for one of the algorithms of
the large collection of data mining methods available in Weka. The following list gives an
impression of this collection without listing all available components. Among the avail-
able classifiers, we can find many standard methods such as regression functions, neural
network variants, decision trees, rule learners, association rule mining, and support vector
machines. Further, classifiers can be stacked and combined with each other by so-called
meta classifiers. For clustering, some well-known methods for hierarchical and conceptual
clustering are included.

Two facts that should be noted about Weka is that some of the contained implemen-
tations have considerable memory requirements and are not necessarily the fastest imple-
mentations available. Nonetheless, for exploration and prototyping with small evaluation
sets, Weka is very well suited.

Experiment Design, Evaluation and Analysis Facilities

As mentioned in 7.3.2, e.g. in the Experimenter GUI it is possible to design larger data
mining experiments instead of testing each dataset and classifier by hand in the Explorer
GUI. However, already in the Explorer users can choose between different validation meth-
ods such as cross validation or percentage splits into training and test data. Several analysis
mechanisms are provided which include significance tests, the output of confusion matrices
and the graphical analysis of classification results, for instance.
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Input Layer

Gene Expression Sequences Custom XML Data

Symbol Filters

Sequence Manipulation

Weka Filters

Filters

Weka
Core ARFF Files and

Databases

Alignments Weka Classifiers Weka Clustering

Weka Validation, Evaluation and Visualization

Figure 7.2: BioWeka Overview: BioWeka offers input filters for many well-known bioin-
formatics file formats as well as the possibility to import custom XML formats. Further,
BioWeka adds a number of symbol-based filters and sequence transformations as well as
the possibility to align sequences in Weka and generate classifications from the resulting
scores. The BioWeka extensions are shown in light gray.

7.3.3 The BioWeka Library

Weka is a useful collection of tools for data mining tasks, but is mainly based on the
ARFF format and does not provide many other input formats. In order to combine Weka
with bioinformatics, in our BioWeka project, we have two main goals, (1) providing load-
ers for typical bioinformatics data formats, and (2) adding mechanisms to handle such
bioinformatics data (such as alignments for sequence data).

Input Formats

BioWeka contains an input layer for converting well-known formats into ARFF (and vice
versa for some formats). So far, the following data formats are supported:

• MAGE-ML [Spellman et al., 2002] and CSV compatible formats for gene expression
data,
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• FASTA [Pearson and Lipman, 1988], EMBL [Kulikova et al., 2004], Swiss-Prot
[Bairoch and Boeckmann, 1991], and GenBank [Benson et al., 1993] for the storage
of biological sequences in ASCII files.

• InterProScan [Zdobnov and Apweiler, 2001] for the annotation of sequence pat-
terns.

• ProML, an XML Schema which allows the description of proteins and protein sets,
as described briefly in the previous subsection.

In addition to these formats already provided by BioWeka, users can easily extend BioWeka
by adding their own converters. Custom XML formats can be incorporated into BioWeka
using XSL stylesheets. Another possibility is to store the data directly in ARFF format,
of course.

Bioinformatics Extensions

Besides its loaders, BioWeka contains new filters for

• annotating symbol properties (e.g. hydrophobicity of amino acids),

• annotating symbol counts (e.g. codon frequencies),

• translating sequences from one alphabet into another (e.g. DNA to RNA),

• manipulating sequences (e.g. cutting sequences after their first stop codon),

• generating different sequence frames (e.g. the open reading frames of a DNA se-
quence).

For the annotation of symbol properties BioWeka supports the Amino Acid Index database
[Kawashima et al., 1999]. Symbol counting also considers ambiguous symbols (e.g. X),
overlapping symbol groups and pseudo counts.

Another large part of BioWeka enables users to align amino acid sequences or secondary
structure sequences with each other using different alignment methods, including BLAST,
PSI-BLAST and JAligner [Moustafa, 2006]. For alignment-based classification, a couple of
different evaluation mechanisms are provided (e.g. by selecting the class with the highest
average alignment score or the class with the highest single alignment score). Further,
custom alignment score evaluation schemes can be plugged in.

Using BioWeka

One has to download both the Weka and the BioWeka distribution and include the Weka
JAR in the CLASSPATH variable for BioWeka. The BioWeka startup script provides
access to Weka as well as BioWeka. For the BLAST and PSI-BLAST classifiers, one also
needs a BLAST installation. In the Explorer GUI, for instance, one can import the new
data formats listed above using BioWeka’s converters and apply BioWeka’s filters and
classifiers.
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Contributing to BioWeka

BioWeka is an open and ongoing project. It is licensed under the GNU General Public
License to ensure that any contributions made to the BioWeka project are free to anyone.
We encourage bioinformatics developers and users of Weka to participate in the further
development of BioWeka by contributing code, exemplary data sets, or practical knowledge.

Extending the BioWeka framework with custom components is as easy as writing a
single Java class. By inheriting from one of the many already existing BioWeka classes the
coding effort is minimal. These implementations can then be combined with the existing
BioWeka classes.

To improve the collaboration between the BioWeka users the BioWeka web site provides
an open Wiki (based on the popular MediaWiki software of the Wikipedia Foundation)
that can be edited by any registered user. The Wiki contains an end-user documentation
of the BioWeka components, tutorials and a knowledge base. In addition, there are several
mailing lists and user forums.

7.3.4 Example Applications

Example 1: Machine Learning on SSEA Scores

As an example how to benefit from the BioWeka library, we describe a small analysis
we performed before finalizing the preselection approach proposed in chapter 3. For this
analysis, we make use of the ASTRAL 25 dataset as described in section 3.2.1. Previous
studies have shown that secondary structure element alignment (SSEA) is a useful tool
for finding topologically similar templates (see chapter 3), and for our approach we align
a target against all available templates with SSEA in order to find potential fold classes.
The aim of this small test is to find out how to make use of these scores in a suitable way
for our prediction task.

We can load the dataset into Weka using BioWeka’s FASTA loader and then apply
secondary structure element alignment (SSEA) in BioWeka’s AlignmentScorer filter to
obtain the SSEA scores for each sequence against all other sequences in the set. Using five-
fold cross-validation, with BioWeka’s AlignmentScoreClassifier we can now easily evaluate
different evaluation options. With the MaxScoreEvaluator, i.e. using the top-scoring
template for a prediction, we achieve 53% correctly classified instances on fold level (in
a leave-one-out test, this approach leads to 54%). The AverageScoreEvaluator (which
uses the class with the highest average score as prediction) reaches only 22% which can
be explained by the fact that many of the larger fold classes contain domains that differ
significantly and that therefore reduce the average scores for such classes. As a nice side-
effect we can use Weka’s analysis facilities, which allow for inspection of the correlation
between the scores obtained by aligning against particular instances of the set, which in
turn allows for visually measuring the similarity between such instances.

As we have the scores from an all-vs.-all alignment, a further question is whether it
is useful to simply use the alignment scores for each instance as vectors and then apply
a learner on these vectors, in order to make use of the context provided by the vector
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contents instead of using only the maximum score for classification. For this purpose, we
can drop all String attributes from our set and end up with the sequence lengths, the
alignment scores and the annotated, nominal class values. On this reduced set, we can
evaluate basic machine learning classifiers in order to get a feeling for their applicability as
well as of the performance of the MaxScoreEvaluator in comparison. The ZeroR classifier
(which simply predicts the largest class in the set in all cases) as the most basic test leads
to only 4% correctly classified instances. Using the OneR learner, a simple rule learner, we
reach 11% accuracy. Also a more sophisticated method, the support vector machine (SVM)
implementation provided by the LibSVM [Fan et al., 2005] package (which is included in
the BioWeka distribution) yields only 13% accuracy on this data when used in its default
configuration with radial basis functions, and Weka’s J48 classifier, which builds a decision
tree, yields 20%. The JRIP rule learner achieves 24% accuracy, and the default LibSVM
using a linear kernel yields 45% accuracy.

Although we have not varied the parameters for these machine learning algorithms,
we can already see that subsequent application of machine learning algorithms will have
at least difficulties to reach the performance of the original alignment method with the
MaxScoreEvaluator. Further, subsequent methods require additional effort in comparison
to simply using the maximum score, which in turn could reduce the desired speed-up.
From this evaluation, we decided that using SSEA scores directly and ordering template
classes by the maximum score per class is a reasonable and efficient choice for the ASTRAL
25 dataset, and we applied it accordingly in our methods as presented in chapter 3, for
instance. Though some of the learners took hours for finishing their runs because of the
relatively large dataset, for the user everything could be done with only a few clicks in the
Weka GUI, as SSEA and the score evaluators are part of the BioWeka library.

Example 2: Reimplementation of ECLAT

In Martin Szugat’s bachelor thesis, the applicability of BioWeka was confirmed by an
exemplary reimplementation of the ECLAT method [Friedel et al., 2005]. ECLAT is an
approach to classify DNA with respect to its origin, in order to be able to discriminate
between plant DNA and pathogen DNA, for instance. It applies support vector machines
to perform classification based on codon usage differences, which involves steps such as
the calculation and normalization of codon frequencies and the generation of open reading
frames.

The reimplementation of the whole method in BioWeka took about 650 lines of code as
compared to the 1260 lines of code for the original implementation which was kindly pro-
vided by Caroline Friedel, and it provides a nice graphical user interface based on the Weka
software. For a complete description of this reimplementation, please see the bachelor’s
thesis and its addendum, both of which are available from http://www.bioweka.org.

http://www.bioweka.org�
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7.3.5 Discussion

In bioinformatics research, often (newly developed) classifiers have to be compared to other,
well-known classifiers. In order to use many methods, it is often necessary to deal with
many different input and output formats and even to implement a customized evaluation
framework around the corresponding programs.

Weka is a well-known framework that offers many standard machine learning methods.
BioWeka makes it easy to use a number of data formats relevant for bioinformatics with
Weka. Everything from classification to validation can be done with such data without
further overhead using the standard workflow in Weka. To handle such data properly, some
bioinformatics-specific methods have been integrated into Weka via BioWeka. In addition,
the multifactor dimensionality reduction of the Weka-CG project [Moore et al., 2005] and
the Weka LibSVM project [EL-Manzalawy and Honavar, 2005] come with the distribution.
Tutorials on how to use BioWeka with sequences as well as how to import gene expression
data formats are available online at http://www.bioweka.org.

To conclude, the integration of bioinformatics methods and other useful tools into Weka
allows users to perform many bioinformatics standard tasks without the overhead of parsing
data formats or writing code that combines different software packages. Developers can
make use of BioWeka’s abstract classes and interfaces in order to prototype and test new
algorithms. Again, this reduces the overhead of writing converter as well as evaluation
classes and allows to concentrate directly on the methods. Comparison with many other
methods can be done directly in BioWeka. Finally, BioWeka is highly configurable and
available free of charge.

http://www.bioweka.org�


Chapter 8

Concluding Remarks

Protein structure prediction and related aspects such as structural genomics will remain
an important part of bioinformatics and computational biology, as the ultimate solution to
predicting a structure from the sequence alone seems nowhere in sight. However, gradual
improvements in methods as well as increasingly fast algorithms can provide better and
more models and may thus continually extend the possibilities for drug development and
other research purposes. Improving intermediate steps of the protein structure prediction
process is therefore a step towards the overall goal of finding a structure for every known
protein and all possible benefits which would result from such a situation.

Homology-based protein structure prediction can in many cases be broken down into a
number of subtasks, which include the search for potential domains on a target sequence,
the search for good templates, the computation of alignments to these templates and the
generation and refinement of corresponding structure models based on these alignments.
In this work, we concentrated on the recognition of protein domains on a target and
the prediction of corresponding structural classifications, which are important steps for
template searches and other applications including target selection for structural genomics.
Further, we developed new methods for optimized alignment ranking and computation with
respect to structural quality.

Summary

The first new approach described in this thesis can speed-up alignment-based fold recog-
nition (Preselection, chapter 3, [Gewehr et al., 2004]). Our results show that, when used
in combination with log average profile-profile alignment (PPA), which was shown to be
very accurate for this purpose, we can be faster than PPA alone by about one order of
magnitude while keeping a comparable accuracy.

Our second method, AutoSCOP, works either as an independent predictor or as an ad-
ditional filter not only to predict SCOP families, superfamilies and folds but also to avoid
or detect errors (chapter 4, [Gewehr et al., 2007a]). AutoSCOP is fast and reliable, as our
results could confirm: When used as standalone predictor, AutoSCOP already achieves
both high sensitivity and high specificity on the difference set between two ASTRAL ver-
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sions. When used as a filter in combination with well-known methods, we could clearly
improve accuracy over the individual methods.

One important property of the AutoSCOP approach is that its input data is available
in a precomputed form for many of the currently available protein sequences, and thus
for most sequences predictions can be done via a simple database lookup. This enables
us to provide predictions for all these sequences in a quick scan, which makes AutoSCOP
a useful tool for purposes such as structural genomics. In particular, in a joint project
with Fabian Birzele, given precomputed data from the InterPro database as well as our
own data on PDB sequences, we provide the AutoPSI database [Birzele et al., 2008] of
SCOP predictions based on both AutoSCOP and Vorolign (see below) for thousands of
new, unclassified PDB entries as well as two million UniProt/TrEMBL sequences (chapter
4). Further, given the locations of the annotated regions, we can use our AutoSCOP hits
as initial guesses for domain locations on these sequences; therefore, AutoSCOP is a quick
way to find potential locations of SCOP domains on target sequences, which can easily be
applied in a large scale, especially if precomputed pattern data is available.

Preselection and AutoSCOP work on protein domains, and in general the recognition
of domains on a new protein sequence is a common step to find good starting regions for
protein crystallization as well as for protein structure prediction. Although AutoSCOP
gives us the possibility to assign regions with potential structural classifications, the cor-
responding boundaries are often not accurate, and some domains may be missed. We
thus proposed a new algorithm for template-based protein domain recognition from a pro-
tein sequence (SSEP-Domain, chapter 5, [Gewehr and Zimmer, 2006]) which was ranked
among the top domain prediction servers in the community-wide CAFASP 4 experiment.
Our results as well as independent evaluations confirmed that SSEP-Domain works well in
both predicting the number of domains on a protein chain and correct placement of the
domain boundaries.

In chapter 5, we further discussed the influence of the underlying template databases on
the accuracy of the predictions. By including alternative domain definitions, we are able to
provide predictions based on different sources for template domain assignments, depending
on the intended purpose. As SSEP-Domain is still quite fast (less than ten minutes per
predicted sequence on average), it can be used to refine predictions where no AutoSCOP
hits have been found or the boundaries should be refined, for instance. When used together,
AutoSCOP and SSEP-Domain can help both researchers that are interested in particular
targets as well as researchers that are more interested in larger scale evaluations of protein
domain predictions and the locations of structural classifications.

For a different part of the protein structure prediction pipeline, as the quality of the
alignments is still one of the most important factors influencing the final quality of a pre-
dicted structure, we developed the QUASAR software (chapter 6, [Birzele et al., 2005]),
which facilitates the ranking of sequence-structure alignments on the basis of combinations
of well-known scoring matrices. In addition, based on QUASAR, we implemented and
evaluated optimization methods that allow for improved correlations between alignment
scores and structure-based benchmark scores. Using a genetic algorithm, we were further
able to show that we can improve the structural quality of our alignments (i.e. the quality
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of the straight-forwardly generated model structures resulting from them) by tuning pa-
rameters and scoring matrices to specific fold classes. The approaches are general enough
to be applied also for other fitness functions than the correlation with a benchmark score,
which was chosen in this work.

The last chapter, chapter 7, contains additional tools for protein structure prediction.
We briefly introduced a structural alignment method using Voronoi cell-based contact defi-
nitions (Vorolign, [Birzele et al., 2007]). Due to its underlying algorithm, Vorolign can cap-
ture flexibilities in protein structures better than any rigid-body superimposition method.
Further, being both fast and accurate, it provides a structure-based means for SCOP clas-
sification prediction that complements our sequence-based approaches (Preselection and
AutoSCOP).

We described an XML schema for the storage and handling of protein data (ProML).
Finally, we introduced BioWeka [Gewehr et al., 2007b], an extension of the well-known
machine learning framework Weka which includes bioinformatics functionalities and data
formats (including ProML) and allows for the application of standard machine learning
and data mining procedures to bioinformatics data. Based on two examples, we could
show how both small evaluations as well the development of larger prediction algorithms
can be done easily with BioWeka.

The presented methods and tools can contribute to the structure prediction process in
various ways (and they do, as as we have shown in the evaluation sections of the different
chapters): Given a new target in a CASP-like situation (i.e. only the amino acid sequence),
it is possible to find potential domains using SSEP-Domain and then predict SCOP clas-
sifications using Preselection or AutoSCOP. Given a predicted SCOP classification (and
thus a number of associated templates), alignments can be generated and ranked with
QUASAR and its extensions. The additional tools can help to handle the data or deduce
additional features of a target.

Further, the AutoPSI database already contains millions of predictions for many pro-
teins in many genomes, and the AutoSCOP method itself works in minutes, when patterns
have to be searched, and seconds, when precomputed data is available. As such data is
often available, AutoSCOP can easily be applied in a large scale. Besides AutoSCOP, also
SSEP-Domain, which provides predictions in a matter of minutes, is fast enough to be
applied in a larger scale, and it can be used directly or to refine or correct initial hints
on a domain structure of a target obtained from AutoSCOP or the AutoPSI database.
For instance, the SSEP-Domain server has recently been used by the ”parasitic nematode
genomics” group of Makedonka Mitreva from the St. Louis Genome Sequencing Center for
several thousand predictions. In this project, the aim is to identify highly conserved se-
quences across all Nematode species, so-called Nematode-specific Multi-species Conserved
Sequences (NMCS). SSEP-Domain was used to predict the number and locations of po-
tential domains on ESTs based on homology to the SCOP templates.
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Outlook

While the methods presented here are already useful in their current states, they can
be extended towards many directions. Interesting points for future research include the
disagreement of domain definitions coming from different sources and the recognition of
discontinuous domains on the amino acid sequence, as discussed in chapter 5.

Regarding the first problem, the differing points of view when using the term ”protein
domain” make it difficult to simply provide a consensus, in our opinion, as most definitions
have a justification, and a consensus will result in a blurred view somewhere in between
the individual views. Therefore, the most useful way of using such definition may be to
be clear about the purpose of an experiment and choose the definition that matches this
purpose best.

For discontinuous domains, which often result from a pure structure-oriented viewpoint,
the SSEP-Domain algorithm as well as many other domain predictors could be improved
by finding efficient means of recognizing parts of discontinuous domains and how they
belong together already on a sequence. So far, it seems that the most accurate algorithms
that can predict such domains obtain predictions by generating model structures for the
target and then assigning domains using structure-oriented algorithms. With respect to
speeding-up domain predictions for purposes such as fast, genome-wide screening, however,
it might be desirable to avoid the model building step.

As another possible extension, the combination of the template-based method SSEP-
Domain with an ab initio approach, which could cover also new fold domains, would be
interesting. Such a hybrid approach could perhaps improve the accuracy of the predictions
in cases where no (remotely) similar templates for the contained domains are available.

The AutoSCOP method will benefit from the integration of additional data sources,
as we could demonstrate exemplarily by including ASTRAL’s family HMMs in chapter 4.
The framework is simple enough to include all kinds of predicted sequence regions, and cor-
responding databases and prediction algorithms are still being developed towards new aims
by many research groups. Including this accumulated knowledge may further increase both
accuracy and coverage of the AutoSCOP approach as well as the corresponding AutoPSI
database.

Further, tools such as BioWeka need the acceptance and feedback of the research com-
munity, and therefore we chose to make BioWeka available as an open source project and
thus open to contributions from its users. The more different methods and datasets are
made available in such a project by independent researchers, the better it will be possible
for new users to apply and extend it for their own tasks.

In conclusion, SSEP-Domain, AutoSCOP and Vorolign are available as web servers,
the AutoPSI database is publicly available both via web interface and as flat files, and
QUASAR and BioWeka are available as software packages. We therefore provide both
useful solutions to known problems as well as a good basis for future research in the
area of protein structure prediction and structural genomics, which will continue to be
challenging and necessary tasks.
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Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Research, 25(19):3389–
3402.

[Artamonova et al., 2005] Artamonova, I. I., Frishman, G., Gelfand, M. S., and Frishman,
D. (2005). Mining sequence annotation databanks for association patterns. Bioinfor-
matics, 21(Suppl.3):iii49–iii57.

[Attwood, 2002] Attwood, T. K. (2002). The PRINTS database: a resource for identifica-
tion of protein families. Brief Bioinform, 3(3):252–263.

[Bairoch et al., 2005] Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann,
B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale,
D. A., O’Donovan, C., Redaschi, N., and Yeh, L.-S. L. (2005). The universal protein
resource (UniProt). Nucleic Acids Res, 33(Database issue):D154–D159.

[Bairoch and Boeckmann, 1991] Bairoch, A. and Boeckmann, B. (1991). The SWISS-
PROT protein sequence data bank. Nucleic Acids Res, 19 Suppl:2247–2249.

[Baker and Sali, 2001] Baker, D. and Sali, A. (2001). Protein structure prediction and
structural genomics. Science, 294(5540):93–96.



134 BIBLIOGRAPHY

[Bateman et al., 2004] Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V.,
Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L. L.,
Studholme, D. J., Yeats, C., and Eddy, S. R. (2004). The Pfam protein families database.
Nucleic Acids Res, 32(Database issue):D138–D141.

[Benson et al., 1993] Benson, D., Lipman, D. J., and Ostell, J. (1993). GenBank. Nucleic
Acids Res, 21(13):2963–2965.

[Berman et al., 2000] Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weis-
sig, H., Shindyalov, I., and Bourne, P. (2000). The protein data bank. Nucleic Acids
Research, 28:235–242.

[Berrera et al., 2003] Berrera, M., Molinari, H., and Fogolari, F. (2003). Amino acid em-
pirical contact energy definitions for fold recognition in the space of contact maps. BMC
Bioinformatics, 4(1):8.

[Bindewald et al., 2003] Bindewald, E., Cestaro, A., Hesser, J., Heiler, M., and Tosatto,
S. C. E. (2003). MANIFOLD: Protein fold recognition based on secondary structure,
sequence similarity and enzyme classification. Protein Engineering, 16(11):785–789.

[Birzele et al., 2007] Birzele, F., Gewehr, J. E., Csaba, G., and Zimmer, R. (2007).
Vorolign–fast structural alignment using Voronoi contacts. Bioinformatics, 23(2):e205–
e211.

[Birzele et al., 2005] Birzele, F., Gewehr, J. E., and Zimmer, R. (2005). QUASAR–scoring
and ranking of sequence-structure alignments. Bioinformatics, 21(24):4425–4426.

[Birzele et al., 2008] Birzele, F., Gewehr, J. E., and Zimmer, R. (2008). AutoPSI: A
database for automatic structural classification of protein sequences and structures. Nu-
cleic Acids Research, Accepted.

[Blake and Cohen, 2001] Blake, J. D. and Cohen, F. E. (2001). Pairwise sequence align-
ment below the twilight zone. J Mol Biol, 307(2):721–735.

[Bourne and Weissig, 2003] Bourne, P. E. and Weissig, H. (2003). Structural Bioinformat-
ics. Wiley & Sons.

[Bradley et al., 2005] Bradley, P., Malmström, L., Qian, B., Schonbrun, J., Chivian, D.,
Kim, D. E., Meiler, J., Misura, K. M. S., and Baker, D. (2005). Free modeling with
Rosetta in CASP6. Proteins, 61 Suppl 7:128–134.

[Branden and Tooze, 1999] Branden, C. and Tooze, J. (1999). Introduction to Protein
Structure. Taylor & Francis.

[Brezellec et al., 2006] Brezellec, P., Hoebeke, M., Hiet, M.-S., Pasek, S., and Ferat, J.-
L. (2006). DomainSieve: a protein domain-based screen that led to the identifica-
tion of dam-associated genes with potential link to DNA maintenance. Bioinformatics,
22(16):1935–1941.



BIBLIOGRAPHY 135

[Bru et al., 2005] Bru, C., Courcelle, E., Carrère, S., Beausse, Y., Dalmar, S., and Kahn,
D. (2005). The ProDom database of protein domain families: more emphasis on 3D.
Nucleic Acids Res, 33(Database issue):D212–D215.

[Camon et al., 2003] Camon, E., Magrane, M., Barrell, D., Binns, D., Fleischmann, W.,
Kersey, P., Mulder, N., Oinn, T., Maslen, J., Cox, A., and Apweiler, R. (2003). The gene
ontology annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL,
and InterPro. Genome Res, 13(4):662–672.

[Chandonia et al., 2004] Chandonia, J.-M., Hon, G., Walker, N. S., Conte, L. L., Koehl,
P., Levitt, M., and Brenner, S. E. (2004). The ASTRAL compendium in 2004. Nucleic
Acids Res, 32(Database issue):D189–D192.

[Cheek et al., 2004] Cheek, S., Qi, Y., Krishna, S. S., Kinch, L. N., and Grishin, N. V.
(2004). SCOPmap: automated assignment of protein structures to evolutionary super-
families. BMC Bioinformatics, 5:197.

[Cheng et al., 2005] Cheng, J., Sweredoski, M., and Baldi, P. (2005). DOMpro: Protein
domain prediction using profiles, secondary structure, relative solvent accessibility, and
recursive neural networks. Data Mining and Knowledge Discovery, page to appear.

[Chinnasamy et al., 2004] Chinnasamy, A., Sung, W. K., and Mittal, A. (2004). Protein
structure and fold prediction using tree-augmented näıve Bayesian classifiers. In Alt-
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