
Aus der Medizinischen Poliklinik – Innenstadt 
 

der Ludwig-Maximilians-Universität München 
 

ehem. Direktor: Prof. Dr. med. Detlef Schlöndorff 
 

jetziger komm. Direktor: Prof. Dr. med. Martin Reincke 
 
 

 
 
 
 
 
 
 
 

The role of chemokine receptor CCR1-dependent 

macrophage recruitment for the progression of 

chronic kidney disease in murine Alport 

syndrome or type 2 diabetes 
 

 

 

 

 

Dissertation 

Zum Erwerb des Doktorgrades der Humanbiologie 

an der Medizinischen Fakultät der 

Ludwig-Maximilians-Universität zu München 
 

 
 

 

Vorgelegt von: Volha Ninichuk 

Minsk, Weissrussland 
 

2008 



 
 

Mit Genehmigung der Medizinischen Fakultät der Universität München 
 
 
 
 
 
 
 
 
 
 
 
 

1. Berichterstatter:     PD Dr. H.- J. Anders 
        
2. Berichterstatter:     PD Dr. H. Engelmann 
 
1. Mitberichterstatter:     PD Dr. St. Lederer 
        
2. Mitberichterstatter:     Prof. Dr. F. Krombach 
 
Dekan:       Prof. Dr. med. D. Reinhard 
 
Tag der mündlichen Prüfung:   15.01.2008  
 
 
 
 



 
 
 
 
 
 
 
 
 
Die vorliegende  Arbeit wurde in der Zeit von Oktober 2003 bis Januar 2007 in 

der Abteilung für Klinische Biochemie in der Medizinischen Poliklinik der 

Ludwig-Maximilians-Universität durchgeführt. 

(Direktor:  Prof. Dr. Med. Detlef Schlöndorff) 

 

Betreut wurde die Arbeit von Herrn PD Dr. med. Hans-Joachim Anders 

 

 

 



ACKNOWLEDGEMENTS 

 

First and foremost, my profound gratitude is addressed to my supervisor PD Dr. med. Hans-

Joachim Anders for his leadership, valuable help and kind support. It would be impossible to 

complete this work without his editorial advices, suggestions, discussions and guidance.  

I am also heartily grateful to Prof. Dr. med. Detlef Schlöndorff for accepting me at the research 

laboratories of the Medical Policlinic, for his critical reading of our manuscripts and his positive 

influence on my work. 

Moreover, I would like to acknowledge the skilful technical assistance of Ewa Radomska, 

Stephanie Pfeiffer, Dan Draganovici and Jana Mandelbaum from the groups of Dr. Hans-

Joachim Anders and Dr. Stephan Segerer. 

I also express my thanks to our collaborators for their significant and fruitful contribution to a 

number of our experiments: Prof. Fritz Krombach from the Institute for Surgical Research 

(Munich, Germany) and members of his group; Dr. Richard Horuk and his team from Berlex 

Biosciences, Richmond, California, USA and Dr. Pius Loetscher from Novartis Institute for 

Biomedical Research, Basel, Switzerland for providing us with CCR1 antagonists; PD Dr. Oliver 

Gross from the Department of Nephrology and Rheumatology, University of Göttingen 

(Göttingen, Germany) supplying us with Col4A3-deficient mice.  

For organizing the GRK438 course “Vascular Biology in Medicine” I want to thank Prof. Dr. 

Wolfgang Siess (Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum 

der LMU, Munich, Germany). It was a great chance for me to improve my scientific skills and I 

want also to warmly thank all members and students of the Department of Clinical Biochemistry 

of the Ludwig Maximilians University (Munich) who monitored my work and helped me during 

my stay in the lab. 

Furthermore, I would like to express my deepest gratitude and thanks to all members of my 

group for having shared with me their experience and creation a wonderful working 

environment. 

I especially thank my family and all my friends. Their faith, love and support are the keys of all 

my achievements. 



 
Publications Related to the Dissertation Work 

 
 

1. Ninichuk V, Gross O, Reichel C, Khandoga A, Pawar RD, Ciubar R, Segerer S, Belemezova 

E, Radomska E, Luckow B, de Lema GP, Murphy PM, Gao JL, Henger A, Kretzler M, 

Horuk R, Weber M, Krombach F, Schlöndorff D, Anders HJ: Delayed chemokine receptor 1 

blockade prolongs survival in collagen 4A3-deficient mice with Alport disease.  

     J Am Soc Nephrol 16:977-985, 2005  

2. Ninichuk V, Anders HJ: Chemokine receptor CCR1: a new target for progressive kidney 

disease. Am J Nephrol 25:365-372, 2005 

3. Anders HJ, Ninichuk V, Schlöndorff D: Progression of kidney disease: blocking leukocyte 

recruitment with chemokine receptor CCR1 antagonists.  

     Kidney International 69:29-32, 2006 

4. Ninichuk V, Segerer S, Khandoga AG, Loetscher P, Schlapbach A, Revesz L, Feifel R, 

Khandoga A, Krombach F, Nelson PJ, Schlöndorff D, Anders HJ: The role of interstitial 

macrophages in nephropathy of type 2 diabetic db/db mice. (Am J Pathol 2007, in press) 

5. Ninichuk V, Kulkarni O, Clauss S, Anders HJ: Tubular atrophy, interstitial fibrosis, and 

inflammation in type 2 diabetic db/db mice. An accelerated model of advanced diabetic 

nephropathy. (under revision) 

 

 

 

Additional Publications  
 

 

6. Ninichuk V, Gross O, Segerer S, Hoffmann R, Radomska E, Buchstaller A, Huss R, Akis N, 

Schlöndorff D, Anders HJ: Multipotent mesenchymal stem cells reduce interstitial fibrosis 

but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. 

Kidney International 70:121-129, 2006 

7. Kulkarni O, Purschke W, Eulberg D, Selve N, Buchner K, Ninichuk V, Segerer S, Vielhauer 

V, Klussmann S, Anders HJ: Spiegelmer therapy of lupus-like disease in MRL-(Fas)lpr mice. 

(under revision) 

 



Presentation of this Project 
 

 

Oral presentations 

 

1. 3-d Herrsching-Symposium of the Graduate Program “Vascular Biology in Medicine“ 

(GRK 438) 

March 2005, Munich, Germany 

Ninichuk V , Reichel CA, Khandoga A, Krombach F, Schlöndorff D, and Anders HJ: 

Antagonism of chemokine receptor CCR-1 prolongs survival in Alport disease.  

 

2. Nephrologisches Forum München  “Fellow’s night 2006”     

June 2006, Munich, Germany     

Ninichuk V, Schlöndorff D, and Anders HJ: The role of interstitial macrophages in 

nephropathy of type 2 diabetic db/db mice. 

 

 

Posters  

 

1. 1-st Students’ meeting “DECIPHERING THE CELL MIGRATION CODE”,  

May 2005, Gwatt-Zentrum am Thunersee, Thun, Switzerland 

Ninichuk V , Reichel CA, Khandoga A, Krombach F, Schlöndorff D, and Anders HJ: 

Antagonism of chemokine receptor CCR-1 prolongs survival in Alport disease.  

 

2. 2-nd Students’ meeting “DECIPHERING THE CELL MIGRATION CODE”,  

May 2006, Gwatt-Zentrum am Thunersee, Thun, Switzerland 

Ninichuk V , Khandoga A.G, Krombach F, Schlöndorff D, and Anders HJ: 

Blocking chemokine receptor CCR1 reduces interstitial macrophage infiltrates in diabetic 

nephropathy. 

 

 

 

 



CONTENTS   
 

 

I

 
CONTENTS  
 
 
1. SUMMARY         1                     
 
2.      INTRODUCTION        5  
 
2.1  Chronic kidney disease       5 
2.1.1  Alport syndrome        8 
2.1.2  Diabetes         14 
2.2  Pathophysiology of the progression of chronic kidney disease  18 
2.2.1  Chemokines and chemokine recepors in renal inflammation  18 
2.2.2  Chemokines and chemokine recepors     23 
2.2.3  Chemokone receptor CCR1 as a potential target in kidney disease  26 
2.2.3.1  Chemokine receptor CCR1       26 
2.2.3.2  CCR1 antagonism in models of kidney disease    28 
2.3  Research hypothesis        32 

      
3.  MATERIAL AND METHODS      33 

3.1 Materials         33 
3.1.1 Equipment         33 
3.1.2 Chemicals and materials       34                             
3.1.3  Oligonucleotide primers and probes for RT-PCR    37 
3.1.4 Computer programs        38 
3.1.5  Solutions         38  
3.2 Methods         41              
3.2.1 Animal studies        41 
3.2.1.1  Homing conditions and animal procedures     41 
3.2.1.2  Study design and experimental procedures     41 
3.2.1.3  Determination of BL5923 blood levels     43 
3.2.1.4 Cremaster muscle intravital microscopy     43 
3.2.1.5 Cell transfer study        45 
3.2.1.5.1 Cell isolation         45 
3.2.1.5.2 Fluorescent labeling        46 
3.2.1.5.3 Intravenous injection protocol      46 
3.2.2 In vitro methods        47 
3.2.2.1  Culture of mammalian cells       47 
3.2.2.2  Cell freezing and thawing       47 
3.2.2.3  Stimulation experiments       48 
3.2.2.4  Cytokine Elisa        48 
3.2.3  Immunohistochemical methods and histopathological evaluation  49 
3.2.5 RNA analysis         50 
3.2.5.1  RNA isolation         50 
3.2.5.2  cDNA synthesis and real-time RT-PCR     51 
3.2.6 Statistical analysis        52 
               



CONTENTS   
 

 

II

 
 
4.  RESULTS         53 
 
4.1  Role of CCR1 for the progression of Alport disease   53 
 
4.1.1  CCR1 blockade and survival of COL4A3-deficient mice   53 
4.1.2  Interstitial macrophages and tubulointerstitial injury in  

COL4A3-deficient mice       54 
4.1.3  Renal infiltration of labeled macrophages in kidneys of  

COL4A3-deficient mice       57 
4.1.4  Interstitial renal fibrosis       59 
4.1.5  Renal CCL5 expression in COL4A3-deficient mice    61 
4.1.6   CCL5 producion by J774 macrophages     62 
4.1.7  CCR1 mediates intravascular adhesion and transendothelial 
  migration of leukocytes       64 
 
4.2  Role of CCR1 for the progression of type 2 diabetic nephropathy 67 
 
4.2.1  Effect of uninephrectomy on diabetic nephropathy of db/db mice  67 
4.2.2  CCR1 antagonist reduces recruitment of macrophages to the renal 

interstitium of uninephrectomized db/db mice    69 
4.2.3  CCR1 antagonist reduces interstitial macrophage counts and  
          tubulointerstitial injury in uninephrectomized db/db mice   71 
4.2.4  CCR1 blockade reduces renal expression of proinflammatory  

mediators in uninephrectomized db/db mice     78 
4.2.5  CCR1 blockade inhibits the proliferation of J774 but not of tubular  

epithelial cells         80 
 

5. DISCUSSION        82 
 
6.  REFERENCES        87 
 
7.  ABBREVIATIONS        102 
 
8.  CURRICULUM VITAE       107 



SUMMARY    
 

 

1

 
1. SUMMARY 
 
The global burden of chronic kidney diseases remains an ongoing medical challenge. 

Therapies that can halt or reverse advanced renal injury are not yet available. Increasing 

numbers of patients progress to the end-stage renal failure and require renal replacement 

therapy, the latter being associated with significant mortality, a lower quality of life, and high 

costs for national health systems. Thus, new treatment strategies that slow down, halt or even 

revert progressive renal damage are requested. 

Chemokines and their receptors are involved in the pathogenesis of renal diseases. They 

mediate leukocytes and macrophages recruitment and activation during initiation as well as 

progression of renal inflammation. Infiltrating leukocytes are the major source for 

proinflammatory and profibrotic cytokines and are therefore critical for mediating fibroblast 

proliferation, differentiation into myofibroblasts, matrix production, and tubular atrophy.  

Recent advances in the understanding of the molecular mechanisms that regulate renal 

leukocyte recruitment suggest chemokines and chemokine receptors as novel targets for 

specific pharmacological intervention. 

The aim of the present thesis was to investigate the role of chemokine receptor CCR1 for the 

progression of chronic kidney diseases, e.g. Alport disease and diabetic nephropathy. Two 

different animal models were used: Col4A3-deficient mice and type 2 diabetic db/db mice 

with advanced diabetic nephropathy. We blocked CCR1 in Col4A3-deficient mice with 

BX417, a small molecule CCR1 antagonist, and BL5923, a novel orally available antagonist 

with a high specificity for human and murine CCR1 in uninephrectomized type 2 diabetic 

db/db mice, respectively. 

Treatment with BX471 (25mg/kg) from weeks 6 to 10 of life improved survival of COL4A3-

deficient mice, characterized by glomerulosclerosis and subsequent progressive 

tubulointerstitial injury, leading to fatal end-stage renal disease (ESRD). Improvement was 

associated with less interstitial macrophages, apoptotic tubular epithelial cells, tubular 

atrophy, interstitial fibrosis, and less globally sclerotic glomeruli. BX471 reduced total renal 

Ccl5 mRNA expression by reducing the number of interstitial CCL5-positive cells in 

inflammatory cell infiltrates. Intravital microscopy of the cremaster muscle in male mice 

identified that BX471 or lack of CCR1 impaired leukocyte adhesion to activated vascular 

endothelium and transendothelial leukocyte migration, whereas leukocyte rolling and 

interstitial migration were not affected. Furthermore, in activated murine macrophages, 

BX471 completely blocked CCL3-induced CCL5 production.  
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When CCR1 was blocked with BL5923 (60mg/kg, b.i.d), the interstitial recruitment of ex 

vivo labeled macrophages was markedly decreased in uninephrectomized male db/db mice 

with type 2 diabetes. Similarly, BL5923 orally administered from month 5 to 6 of life 

reduced the numbers of interstitial macrophages in uninephrectomized db/db mice. This was 

associated with reduced numbers of Ki-67 proliferating tubular epithelial and interstitial 

cells, tubular atrophy, and interstitial fibrosis in uninephrectomized db/db mice. Glomerular 

pathology and proteinuria were not affected by the CCR1 antagonist. BL5923 reduced renal 

mRNA expression of Ccl2, Ccr1, Ccr2, Ccr5, Tgf-β1, and collagen I-α1 when compared to 

untreated uninephrectomized male db/db mice of the same age.  

Thus, we identified a previously unrecognized role for CCR1-dependent recruitment of 

interstitial macrophages for the progression of chronic kidney disease in Alport disease and 

diabetic nephropathy. These data identify CCR1 as a potential therapeutic target for Alport 

disease and late stage diabetic nephropathy or other progressive nephropathies associated 

with interstitial macrophage infiltrates. 
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1.          ZUSAMMENFASSUNG    
 
 
Die zunehmende Prävalenz der Chronischen Niereninsuffizienz bleibt eine medizinische 

Herausforderung. Behandlungsmöglichkeiten, die einen Stop oder eine Heilung der 

Chronischen Niereninsuffizienz erlauben, sind bisher nicht verfügbar. Bei immer mehr 

Patienten schreitet die Chronische Niereninsuffizienz bis zum terminalen Nierenversagen 

vorran, die letztlich nur durch Nierenersatz am Leben erhalten werden können, Verfahren, 

die mit einer erheblichen Morbität, Kosten und Einschränkungen der Lebensqualität 

einhergehen. Daher sind neue Behandlungsverfahren, die die Progression der Chronischen 

Niereninsuffizienz aufhalten oder gar rückgängig machen können dringend notwendig. 

Chemokine und ihre Rezeptoren sind an der Pathogenese von Nierenkrankheiten beteiligt. 

Die vermitteln die Rekrutierung und Aktivierung von Leukozyten und Makrophagen and 

wärend der Initiation und Progression der renalen Entzündung. Infiltrierende Leukozyten 

sind die Hauptquelle von proinflammatorischen und profibrotischen Zytokinen und tragen so 

zur Fibroblastenproliferation, Differenzierung in Myofibroblasten, Matrixproduktion und 

Tubulusatrophie bei.  

Fortschritte zum Verständnis der molekularen Mechanismen der renalen 

Leukozytenrekrutierung deuten daraufhin, dass Chemokine und Chemokinrezeptoren als 

neue Targets für eine spezifische pharmakologische Intervention in Frage kommen. 

Das Ziel der vorgelegten Arbeit ist, die funktionelle Bedeutung des Chemokinrezeptors 

CCR1 für die Progression der Chronischen Niereninsuffizienz z.B. beim Alport Syndrom 

und der Diabetischen Nephropathie zu untersuchen. Es wurden zwei verschiedene 

Tiermodelle verwendet: Col4A3-defiziente Mäuse und db/db Mäuse mit Typ 2 Diabetes und 

fortgeschrittener Diabetischer Nephropathie. Wir verwendeten BX471 als CCR1 

Antagonisten bei Col4A3-defizienten Mäusen, und BL5923, einen oral verfügbaren CCR1 

Antagonist bei uninephrektomierten db/db Mäusen. 

BX471 (25mg/kg) von der 6. bis 10. Lebenswoche gegeben, verbesserte das Überleben von 

COL4A3-defizienten Mäusen, durch Reduktion der Glomerulosklerose und der 

nachfolgenden progredienten tubulointerstitiellen Schädigung. BX471 reduzierte die Zahl der 

interstitiellen Makrophagen, der apoptotischen Tubulusepithelzellen, die Tubulusatrophie 

und die interstitielle Fibrose. BX471 reduzierte auch die totale renale Ccl5 mRNA 

Expression durch Reduktion der Zahl der interstitiellen CCL5-positiven Zellen. Durch 

Intravitalmikroskopie konnte gezeigt werden, dass nach Gabe von BX471 oder genetischer 
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Verlust von CCR1 die Leukozytenadhäsion und die transendotheliale Migration behindert ist, 

wohingegen das Leukozytenrolling und die interstitielle Migration nicht beeinträchtigt 

waren. Darüberhinaus, blockierte BX471 in aktivierten Makrophagen die CCL3-induzierte 

CCL5 Produktion.  

CCR1 Blockade mit BL5923 (60mg/kg alle 12h) reduzierte die Rekrutierung ex vivo 

markierter Makrophagen in das renale Interstitium uninephrektomierter männlicher db/db 

Mäuse mit Typ 2 Diabetes. Wurde BL5923 ab dem 5. Lebensmonat für 4 Wochen oral 

gegeben kam es zu einer Abnahme der Zahl interstitieller Makrophagen sowie Ki-67 

positiver proliferierender Tubulusepithelzellen in uninephrektomierten db/db Mäusen. Die 

glomeruläre Pathologie und die Proteinurie wurden durch den CCR1 Antagonisten nicht 

verbessert. BL5923 reduzierte zudem die renale mRNA Expression von Ccl2, Ccr1, Ccr2, 

Ccr5, Tgf-β1 und collagen I-α1.  

Zusammengefasst konnten wir durch Blockade von CCR1 bislang unbekannte Funktionen 

für interstitielle Makrophagen bei der Progression der Chronischen Niereninsuffizienz von 

Mäusen mit Alport Syndrom oder Diabetischer Nephropathie beschreiben. Diese Daten 

identifizieren CCR1 als ein potentielles Therapietarget für das Alportsyndrom und die 

fortgeschrittene Diabetische Nephropathie oder andere progrediente Nierenkrankheiten, bei 

denen interstitielle Makrophageninfiltrate auftreten. 
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2. INTRODUCTION 

 
 
2.1 Chronic kidney disease  
          

        

 Chronic renal failure  

 

Chronic renal failure (CFR) defined by gradual and progressive loss of the ability of the 

kidneys to excrete wastes, concentrate urine, and conserve electrolytes. It usually occurs over 

a number of years as the internal structures of the kidney are slowly damaged. In the early 

stages, there may be no symptoms. In fact, progression may be so gradual that symptoms do 

not occur until kidney function is less than one-tenth of normal.  

The incidence and prevalence of chronic kidney disease (CKD) is on the rise worldwide. 

ESRD is the most advanced form of CKD, requiring some form of renal replacement therapy 

to ensure survival. Interventions to prevent or slow the progression of CKD, irrespective of 

the original cause, are thus of significant importance (1). For example, ESRD affects more 

than 2 out of 1,000 people in the United States. Diabetes and hypertension are the two 

commonest causes and account for approximately two thirds of the cases of chronic renal 

failure and ESRD (2). In fact, by the time dialysis is initiated, more than 70% of patients with 

CKD have four or six comorbidities. Besides diabetes and hypertension, dialysis patients 

often have congestive heart failure, atherosclerotic heart disease, and transient ischemic 

attack (TIA) or stroke (3). In addition to vascular risk factors and diseases, patients with 

CKD are predisposed to oxidative stress, inflammation, elevated homocysteine levels, 

anemia, and vascular calcification (4, 5) all of which have been associated with impaired 

neurologic functions (6). In the USA in 2002, the Kidney Disease Outcomes Quality 

Initiative (K/DOQI) of the National Kidney Foundation established a classification of CKD 

(7), which has become increasingly accepted by the international nephrology community (8) 

(Table 1). This classification defines CKD as a GFR <60 ml/min/1.73 m2 or a GFR 60 

ml/min/1.73 m2 together with the presence of kidney damage, present for 3 months (9).   
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Table 1.  The USA National Kidney Foundation’s K/DOQI classification (with minor 
adaptations, ref. 9). 
 
 
 
Stage 

 
Description 

 
GFR 
(ml/min/1.73m2) 

 
Prevalence 

 
Focus of care 

 
1 

 
Kidney damage with 
normal 

 
>90 

 
3.3% 

 
Diagnosis and disease-
specific therapies 

 
2 

 
Kidney damage with 
mildly 

 
60–89 

 
3.0% 

 
Slowing of progression and 
reduction 

 
3 

 
Moderately impaired 
GFR 

 
30–59 

 
4.3% 

 
Addressing complications of 
CKD 

 
4 

 
Severely impaired 
GFR 

 
15–29 

 
0.2% 

 
Preparation for dialysis 

 
5 

 
Established renal 
failure 

 
<15 or on dialysis 

 
0.2% 

 
Dialysis, transplantation or 
conservative care 

 

Chronic renal failure (CRF) is a progressive process. It may result from any major cause of 

renal dysfunction.  Progression may continue to ESRD, requiring dialysis or a kidney 

transplant. According to the “Annual Report on Dialysis Treatment and Renal 

Transplantation in Germany for 2005/2006” on 31 December 2005 a total of 87,151 patients 

were treated with renal replacement therapy (RRT), corresponding to a prevalence of 1,057 

RRT per million population (pmp) (Table 2) (http://www.quasi-niere.de). 
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Table 2.  Summary overview on ESRD therapy in Germany for the years 2005, 2004, 
2003  (http://www.quasi-niere.de) 

 

   
2005

 
2004 

 
2003

 
Response rate 
(%) 

  
89

 
90 90

 

Total number of ESRD patients 

children<15 years 

adolescents 15-18 years 

  

87, 151

578

349

 

82, 305 

523 

348 

78,281

564

326

 
Prevalence of ESRD therapy / pmp 
 

  
1057

 
998 949

 
Total number of dialysis patients 
 

  
63,427

 
60,992 58,579

 

Prevalence / pmp 

- Patients on haemodialysis 

- Patients on peritoneal dialysis 

  

769

60,411

3,016

 

739 

58,168 

2,824 

710

55,871

2,708

 
Patients with a functional transplant 

  
23,724

 
21,313 19,702

 
Prevalence functioning transplant / pmp 

  
288

 
258 239

 
Commencement of ESRD therapy 

  
16, 766

 
16,027 15,360

 

Incidence / pmp 

- Haemodialysis treatment (adults) 

- Peritoneal dialysis treatment 

(adults) 

- Children and adolescents (on 

dialysis) 

- Preemptive transplantation 

  

203

15,578

973

108

107

 

194 

14,953 

856 

 

137 

 

81 

186

14,402

802

103

53

 
Deceased patients 

  
11,519

 
10, 992 10,654
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2.1.1 Alport syndrome 
 
 

Alport syndrome (AS) is a hereditary nephropathy characterized by a family history of 

hematuria and proteinuria, progressive renal failure, sensorineural deafness and typical ocular 

changes (10, 11). 

The combination of a progressive hereditary nephritis with sensorineural deafness was first 

described by A. Cecil Alport in 1927. Alport’s syndrome develops from mutations of either 

the α3, α4 or α5 chain of type IV collagen, i.e. collagen types that constitute basement 

membranes in the renal glomerulus, the ear and the eye (12). 

Alport syndrome is clinically heterogeneous, and patients have been classified by their age at 

ESRD and by the presence of accompanying features, such as sensorineural deafness and 

ocular lesions (lenticonus and perimacular flecks) (13, 14). More rarely, patients develop 

diffuse esophageal and vulvar leiomyomatosis (15, 16) or macrothrombocytopenia (17, 18). 

Among patients with diffuse leiomyomatosis, severe congenital and bilateral cataracts are 

frequent. Alport syndrome is characterized by hematuria progressing in males to renal failure 

at young or adult age (19). Clinical features are usually less severe in females (20, 21). Alport 

patients who reach ESRD are dialyzed or undergo renal transplantation. Some transplanted 

patients develop a posttransplant anti-GBM nephritis, leading to irreversible graft failure 

(22). 

The involvement of type IV collagen in Alport syndrome was indicated by 

immunohistochemical analysis of renal biopsies using anti-type IV collagen antibodies. The 

antibodies directed against type IV α3 and α5 collagen chains did not bind to the GBM in 

most Alport patients (23, 24). Further evidence came from studies of collagenase treated 

renal basement membranes from Alport patients, in which type IV collagen NC domains 

were absent (25, 26). The type IV collagen COL4A3 and COL4A5 NC domains were also 

the targets of anti-GBM antibodies, which occurred in some patients after renal 

transplantation (27, 28). These data also point to a possible type IV collagen defect as the 

cause of Alport syndrome. 
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Structure and function of type IV collagen 

 

Type IV collagen is a multimeric protein composed of three so-called α chains. To date, six 

different α chains have been identified (α1– α6) with molecular weights of 170–185 kDa. 

Each of the six chains of collagen IV has three domains: there is a short 7S domain at the N-

terminal; a long, collagenous domain occupies the midsection of the molecule; and a 

noncollagenous domain (NC1) is positioned at the C-terminal (Figure 1) (29).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Triple helical organization of the type IV collagen family (ref. 29). 

Six genetically distinct α chains are arranged into three triple helical protomers that differ in 
their chain composition. Each protomer has a 7S triple helical domain at the N-terminal; a 
long, triple helical, collagenous domain in the middle of the molecule; and a noncollagenous 
(NC1) trimer at the C-terminal. Interruptions in the Gly–Xaa–Yaa amino acid sequence at 
multiple sites along the collagenous domain (white rings) confer flexibility, allowing for 
looping and supercoiling of protomers into networks. The selection of α chains for 
association into trimeric protomers is governed by molecular recognition sequences encoded 
within the hypervariable regions of NC1 domains (30, 31). 
 

 

In spite of many potential permutations, the six chains of collagen IV apparently form only 

three sets of triple helical molecules called protomers, which are designated as α1.α1.α2(IV), 

α3.α4.α5(IV) and α5.α5.α6(IV) (30-33). These protomers create collagenous networks by 

uniting two NC1 trimers to form hexamers and uniting four 7S domains to form tetramers 

with other protomers, as shown in the α3.α4.α5(IV) network in Figure 2. Only three 

canonical sets of hexamers form networks: α1.α1.α2(IV)- α1.α1.α2(IV), α3.α4.α5(IV)-
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α3.α4.α5(IV), and α1.α1.α2(IV)-α5.α5.α6(IV). The x-ray crystallographic structure of the 

α1.α1.α2(IV) NC1 hexamer provides novel insight into the molecular interactions that govern 

chain assembly and the pathophysiological mechanisms underlying Goodpasture’s and 

Alport’s syndromes (34, 35). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Assembly and network organization of collagen IV protomers (ref. 29). 
 
Protomers create basement-membrane networks with other protomers by uniting two NC1 
trimers to form an interface hexamer at the C-terminal and by uniting four triple helical 7S 
domains at the N-terminal. A network composed of α3.α4.α5(IV) protomers is illustrated, 
showing end-to-end connections of individual protomer units, supercoiling and looping of the 
triple helixes, and disulfide cross-links between triple helical domains (30-33). The structure 
of the NC1 hexamer is determined by the particular α chains that form a triple helical 
protomer and by the particular canonical protomers that can connect to adjoining protomers 
(NC1 box). Molecular recognition sequences encoded within NC1 domains govern the 
selection of partner chains for both protomer and network assembly. The 7S domains also 
play a key part in determining the specificity, affinity, and geometry of the tetramer formed 
through the connection of four protomers (7S box) (33, 36, 37). Two other networks are 
composed of pairs of α1.α1.α2(IV) hexamers or α1.α1.α2(IV)–α5.α5.α6(IV) NC1 hexamers 
(30-33).  The α3.α4.α5(IV)–α3.α4.α5(IV) network differs from the others in that it has a 
greater number of disulfide cross-links between triple helical domains, which increases its 
resistance to proteolysis (38). 
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Assembly of collagen IV networks is regulated developmentally. The α1.α1.α2(IV)-

α1.α1.α2(IV) network is α1.α1.α2(IV) is a component of all basement membranes of all 

animal phyla (39-42), whereas the α3.α4.α5(IV)-α3.α4.α5(IV) and α1.α1.α2(IV)-

α5.α5.α6(IV) networks have a restricted distribution in mammalian tissues. The α3.α4.α5(IV) 

network occurs in the kidney (in glomerular basement membrane and some tubular basement 

membranes), lung, testis, cochlea, and eye (38, 43, 44) and the α5.α5.α6(IV) network is a 

feature of skin, smooth muscle, esophagus, and kidney (Bowman’s capsule) (31, 32, 45, 46). 

 

 

Alport genetics 

 

There are three genetic forms of Alport syndrome: XLAS (X-linked Alport syndrome), 

ARAS (autosomal recessive Alport syndrome) and ADAS (autosomal dominant Alport 

syndrome).  

The estimated gene frequency of Alport syndrome is 1:5000. The disorder is genetically 

heterogeneous (20), but the vast majority (85%) of Alport pedigrees showed X-linked 

dominant inheritance. The X-linked Alport gene was mapped to the Xq22–24 region (19, 47, 

48), in which the COL4A5 and COL4A6 genes were subsequently localized (49). Mutations 

in the COL4A5 gene turned out to be the main cause of Alport syndrome. The autosomal 

recessive (AR) form comprises about 10–15% of the pedigrees and is linked to the COL4A3 

and COL4A4 locus (50). Mutations were identified in the COL4A3 and COL4A4 genes in 

AR Alport families (51, 52). In these families, female patients were clinically 

indistinguishable from affected male siblings; carriers were asymptomatic and often 

consanguinous. ADAS accounts for perhaps 5% of Alport patients, at most (Figure 3) (53). 

 

 

 

 

 

 

 

 

 

 

Figure 3. Genetic forms of Alport syndrome. (ref. 53) 
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Animal models of Alport syndrom 
 
Animal models of genetic disorders provide opportunities for investigating both pathogenesis 

and treatment of disease. Several excellent animal models of Alport syndrome have been 

developed (Table 3) (54).  

  
 
 
Table 3. Animal models of Alport syndrome (with minor adaptation, ref. 54). 
 
 

Model 
 
 

Genetics 
 
 

Mutation 
 
 

 
 
Onset of 
proteinuria 
 

Timing of  
ESRD 
 

 
Canine 

    

       Samoyed 
 
 
 

X-linked 
 
 
 

 
G to T in exon 35 of 
Col4A5,creating 
premature stop 
 

4 months 
 
 
 

8-10 months 
 
 
 

       Navasota 
 
 
 

X-linked 
 
 
 

 
10-bp deletion in 
exon 9 shift and 
premature stop 
 

3-4 months 
 
 
 

10-15 months 
 
 
 

 
English cocker 
spaniel 
 

Autosomal 
recessive 
 

? 
 
 

5-8 months 
 
 

12-18 months 
 
 

Bull terrier 
 
 

 
Autosomal 
dominant 
 

? 
 
 

? 
 
 

Years 
 
 

 
Murine 

    

         
     COL4A3 -/-     
  
 

Autosomal 
recessive 
 

 
 
COL4A3 deactivated 
 
 

6 weeks 
 
 

9-10 weeks 
 
 

     tg/tg mice 
 
 

 
Autosomal 
recessive 
 

COL4A3 & 
COL4A4 deactivated 
 

2 weeks 
 
 

8-12 weeks 
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Murine models have the advantage of a short gestation period. The murine forms of Alport 

syndrome progress very rapidly (Table 3).  Mice that are genetically deficient of the a3(IV)-

chain (“Alport mice”) develop a renal phenotype very similar to that of Alport patients, i.e. 

proteinuria, glomerulonephritis and subsequent tubulointerstitial fibrosis starting at 8 weeks 

of age and leading to death due to renal failure at 20–23 weeks (Figure 4) (12). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Typical renal morphology in a normal (left) vs an Alport mouse at 8 weeks of 
age (right).  
 
In the Alport mouse typical splitting of the glomerular basement membrane and pronounced 
glomerular matrix accumulation is present. Magnification: x20 000 (left) and x800 (right) 
(12).  
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2.1.2  Diabetes 

 

Definition 

Diabetes results from hyperglycemia associated with defects in insulin secretion, insulin 

action, or both. 

Type 1 diabetes is characterized by beta cell destruction, usually leading to absolute 

insulin deficiency. This type of diabetes, also known as juvenile-onset diabetes is usually 

diagnosed in childhood, accounts for 10-15% of all people with the disease. It can appear 

at any age, although commonly under 40, and its etiology is either immune mediated, 

related to physical destruction of the pancreas (as in pancreatitis or pancreatic cancer) or 

idiopathic. Due to the lack of insulin daily injections of insulin are required to sustain 

life. 

Type 2 diabetes is the most common type of diabetes, affecting 85-90% of all people 

with the disease. This type of diabetes, also known as late-onset diabetes, is characterized 

by insulin resistance and relative insulin deficiency (55). The disease is strongly genetic 

in origin but lifestyle factors such as excess weight, inactivity, high blood pressure and 

poor diet are major risk factors for its development. It usually occurs in adulthood. 

Symptoms may not show for many years and, by the time they appear, significant 

problems may have developed. People with type 2 diabetes are twice as likely to suffer 

cardiovascular disease.  

The effect of diabetes is not limited to carbohydrate metabolism. Lipid and protein 

metabolism play an important role in the progression of the disease. Abnormal glucose 

metabolism accounts for poorly regulated biochemical processes that glycosylate 

hemoglobin and other proteins and lipids throughout the body. The progression of 

diabetes is caused by numerous metabolic events that occur over a period of years (56). 

Diabetes is a leading cause of blindness, renal failure, and foot and leg amputations in 

adults. 
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Epidemiology of type 2 diabetes and Diabetic Nephropathy 

The global figure of people with diabetes is set to rise from the current estimate of 150 

million to 220 million in 2010, and 300 million in 2025 (57, 58). Most cases will be of type 2 

diabetes, which is strongly associated with a sedentary lifestyle and obesity (59). This trend 

of increasing prevalence of diabetes and obesity has already imposed a huge burden on 

health-care systems and this will continue to increase in the future (60, 61). In Germany it 

has been estimated that the point prevalence of type 2 diabetes in the adult population is 6% 

depending on age; the point prevalence rises to 20% at the age 80 years. The same is also 

seen in most developed countries (62).  

Diabetic nephropathy is a leading cause of ESRD in the Western world, and is one of the 

most significant long-term complications leading to increased morbidity and mortality in 

patients with Type 2 diabetes (63). The characteristic renal changes occurring in early stages 

of diabetic nephropathy include an increase in glomerular filtration rate (GFR) due to 

hyperfiltration, renal and glomerular hypertrophy, and accumulation of extracellular matrix 

(ECM) proteins (64). Glomerular hypertrophy precedes GBM thickening, leading to 

glomerular hyperfiltration, microalbuminura and the development of proteinuria. Advanced 

mesangial matrix expansion reduces the surface area of glomerular capillaries available for 

filtration, leading to declining glomerular function (65). Progressive loss of renal function 

correlates with the development of tubulointerstitial fibrosis in addition to glomerulosclerosis 

(66). Glomerular hypertrophy occurs in both Type 1 and Type 2 diabetic patients in both the 

early and the late stages of disease, although the mechanisms leading to increase in 

glomerular size may differ (67, 68). Previous studies (69-71) provide convincing evidence of 

glomerular capillary growth and glomerular hypertrophy as an earliest response to 

hyperglycaemia in diabetic nephropathy. Evidence from both human and animal studies 

indicates that glomerular filtration surface area is increased in the early stages of diabetes, 

and quantitative morphological (stereological) studies have shown this to be the result of 

increases in length, surface area and number of capillaries per glomerulus (69, 71). Results 

from several studies indicate that capillary growth contributes to glomerular growth prior to 

FSGS (72-76). Nagata et al. (77) found an increase in the length of capillaries in glomeruli 

following unilateral nephrectomy, and Nyengaard et al. (71) demonstrated a significant 

increase in the surface area, length and number of capillaries in streptozotocin (STZ)-induced 

diabetic rats at 10 days. Cahill et al. (78) reported that glomerular hypertrophy and 

glomerular capillary growth in a rat model of FSGS where glomerular hypertrophy preceded 
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FSGS by several weeks. However, the alterations in the glomerular capillary dimensions 

associated with advanced diabetic nephropathy have not yet been described (79). 

Approximately 30% of patients with type 1 diabetes develop DN (80, 81). Barkis et al. (82) 

reported that approximately 25 to 30% of patients with type 2 diabetes will develop overt DN 

(83). Diabetic nephropathy is generally considered a non-immune disease; however, 

examination of human biopsies and animal models has shown the presence of macrophages 

in diabetic kidney (84-89). Macrophages are known to cause renal injury in experimental 

models of immune-mediated kidney disease and they correlate with renal impairment in 

human glomerulonephritis (90), but the role in diabetic nephropathy is poorly understood 

(91). 

 
 

Animal models of Diabetes 

There are several genetic mouse models of diabetes. These include the hypoinsulinemic non-

obese diabetic mouse, the Kkay mouse, the New Zealand obese mouse, the hyperinsulinemic 

ob/ob mouse, and the different strains of obese hyperinsulinemic db/db mouse. Each of these 

models displays some renal changes, but the most studied is the db/db mouse.  

The db/db mouse was identified initially in 1966 in Jackson Labs as an obese mouse that was 

hyperphagic soon on weaning (92). The diabetic gene (db) is transmitted as an autosomal 

recessive trait. The db gene encodes for a G-to-T point mutation of the leptin receptor, 

leading to abnormal splicing and defective signaling of the adipocyte-derived hormone leptin 

(93, 94). Lack of leptin signaling in the hypothalamus will lead to persistent hyperphagia and 

obesity with consequently high leptin and insulin levels. The recognition of diabetes initially 

was recognized in mice from the C57BLKS/J strain. The C57BLKS/J mouse shares 84% of 

its alleles with the common C57BL/6 strain and 16% with the DBA/2J strain and was initially 

maintained by Dr. N. Kaliss (KS). The updated nomenclature from Jackson Labs uses the 

term C57BLKS/JLepr (KS for Kaliss) to designate the db/db mouse in the C57 black Kaliss 

background (Jackson Labs, http://jaxmice.jax.org/jaxmicedb/html/model_66.shtml). The 

db/db mouse has a long history as a model of human diabetic nephropathy. Key common 

features with the human condition are renal hypertrophy, glomerular enlargement, 

albuminuria, and mesangial matrix expansion. Occasionally, arteriolar hyalinosis is observed 

in the glomerular arterioles. Features that are not as reproducibly altered in the db/db mouse 

with respect to the human condition are the increase in GBM thickening in relation to 

albuminuria and the lack of progressive increase in albuminuria. Chow et al. (91) showed an 
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increase in interstitial leukocytes in kidneys from these diabetic mice at 6 to 8 months of age. 

By 8 months of age, there was a threefold rise in interstitial macrophages in diabetic db/db 

mice versus db/+ control mice (Figure 5). By 6 months of age, an increase in tubular dilation, 

atrophy, apoptosis, and early interstitial fibrosis as assessed by an increase in interstitial 

volume and type IV collagen deposition were also observed (91). 

 

 

 

 

 

 

 

Figure 5. Macrophage association with renal damage in diabetic db/db kidneys.   

Immunostaining shows only a few macrophages (brown) in a db/+ kidney at 8 months of age 
(A), and many glomerular and interstitial macrophages in a diabetic db/db kidney at 8 
months (B) (91). 
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2.2  Pathophysiology of the progression of chronic kidney disease  

2.2.1  Chemokines and chemokine receptors in renal inflammation 

Chronic inflammation and tissue fibrosis are common causes of progressive organ 

dysfunction. In the kidney, the extent of leukocyte infiltration and tubulointerstitial fibrosis 

are strong prognostic factors for the degree of renal insufficiency and the progression to end-

stage renal disease (95). Interstitial fibrosis is characterized by the accumulation of interstitial 

T cells, macrophages, and fibroblasts that contribute to extracellular matrix production and 

tubular atrophy (96). In this process the accumulation of interstitial leukocytes is critical for 

mediating fibroblast proliferation, differentiation into myofibroblasts, matrix production, and 

lymphocytes are the major sources for proinflammatory and profibrotic cytokines (97). All 

types of renal cells can produce chemokines upon stimulation (reviewed by ref. 98). 

Proinflammatory stimuli including reactive oxygen species, growth factors and vasoactive 

agents like angiotensin II can stimulate chemokine production of renal cells. Furthermore, 

immune complexes and complement activation cause mesangial production of chemokines. 

In proximal tubular cells chemokines can be induced by LPS (99), high concentrations of 

albumin (110, 101) or exposure to both calcium oxalate and calcium phosphate crystals 

(102). Besides intrinsic renal cells, infiltrating leukocytes are a major source of local 

chemokine production in a positive amplification loop (103, 104), as chemokines secreted by 

infiltrating leukocytes promote additional leukocyte recruitment (105). It is important to note 

that chemokine expression is restricted to the injured compartment of the kidney (reviewed in 

ref. 22). The spatial expression of chemokines in the kidney correlates with the local 

accumulation of inflammatory cell infiltrates and renal damage (106, 104). Data from animal 

models have been confirmed by human renal biopsy studies (107-110).  

Termination of the trigger injury correlates with a reduction of chemokine expression by 

intrinsic renal cells and infiltrating leukocytes (111). As further influx of leukocytes does not 

occur, the number of infiltrating leukocytes declines in parallel to the resolution of disease. 

Termination of the chemokine signal is critical for the resolution of the inflammatory 

process. If local chemokine expression is augmented by another trigger of chemokine release, 

a pre-existing renal disease may eventually progress to severe renal damage. For example, 

intercurrent infections frequently result in a deterioration of renal diseases including chronic 

transplant nephropathy. The proinflammatory signals of bacterial and viral invasion are 

mediated by Toll-like receptors (TLR) (112). TLRs recognize pathogen-associated molecules 
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such as LPS, peptidoglycanes, and unmethylated CpG-DNA (112). It has been found that 

injection of unmethylated CpG-DNA into mice with otherwise self-limiting immune complex 

glomerulonephritis resulted in progression instead of resolution of the disease process. This 

was associated with increased chemokine expression and subsequent glomerular macrophage 

recruitment (113). Even if the triggering injury subsides, renal chemokine expression can be 

maintained by other mechanisms such as infection, renin-angiotensin activation, hypoxia or 

proteinuria, and contribute to persistent leukocyte infiltration and tissue damage. Many 

studies addressed the functional role of single chemokines or chemokine receptors in defined 

renal disease models by applying either neutralizing antibodies, DNA vaccination, 

chemokine receptor antagonists, or by using mutant mice (reviewed in ref. 104). Among 

those only a few studies have administered specific antagonists late in the disease process, 

which most appropriately mimics treatment of established kidney disease. Such data is only 

available for specific blockade of CCR1 (197). 

 
 
 
Model of stages of progressive renal disorders  
 
 
 

• Early-stage disease (initiation phase) 

Injury to any type of renal parenchymal cells leads to the secretion of proinflammatory 

mediators that induce leukocyte infiltration and activation at the place of injury (Figure 6a). 

If the inflammatory process is restricted either to the glomerulus or to the tubulointerstitium 

the leukocyte infiltration will be restricted to the respective compartment (111, 114). The 

selective recruitment of certain leukocyte subsets to different compartments of the kidney 

further illustrates the complexity of this process. For example, except for transplant 

glomerulitis, T cells are rarely found within the glomerular tuft as long as Bowman's capsule 

is intact, whereas T cells are commonly present in interstitial infiltrates (115). Compared to 

peritubular vessels glomerular capillaries may not support the binding and transmigration of 

T cells, a phenomenon that could be related to a different expression of adhesion molecules 

and chemokines or simply to higher shear stress in the glomerular microcirculation. On the 

other hand, macrophages can be found intraglomerularly during proliferative and especially 

crescentic glomerulonephritis. Microthrombosis of glomerular capillaries, which is 

commonly present in focal necrotic or crescentic lesions, may contribute to this phenomenon. 
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• Mid-stage disease (amplification phase)  

Infiltration and local proliferation of leukocytes further enhance the local production of 

cytokines and chemokines (Figure 6b). Furthermore, neutrophils and macrophages generate 

radical oxygen species and lipid mediators that contribute to local tissue damage, supporting 

positive feedback mechanisms. Macrophages themselves may secrete extracellular matrix 

components, but they also are the major source of growth factors such as fibroblast growth 

factor (FGF), transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), 

epithelial growth factor (EGF), and platelet-derived growth factor (PDGF) (97). These 

cytokines stimulate mesangial cell proliferation and matrix synthesis in the glomerulus 

leading to the typical pictures of mesangioproliferative GN (116). Activation of podocytes 

leads to rearrangement of the complex secondary structure, including the slit membrane 

leading to foot process effacement and proteinuria. Extensive podocyte damage leads to focal 

adhesions of the denuded GBM to Bowman's capsule and to focal glomerulosclerosis. In the 

tubulointerstitium, fibroblast proliferation and secretion of extracellular matrix leads to 

widening of the interstitial space and renal fibrogenesis. Sources of the heterogeneous 

fibroblast population include proliferation of resident fibroblasts and myofibroblasts derived 

from tubular epithelial cells by a process described as epithelial-mesenchymal 

transformation, two mechanisms that are induced by macrophage derived profibrotic 

cytokines such as FGF-2 (117). In addition, blood borne immature, monocyte-like cells, 

referred to as fibrocytes, rapidly enter sites of tissue injury and contribute to the local fibrosis 

(118). However, their role in renal fibrosis has not yet been determined. Another common 

observation leading to interstitial fibrosis is the appearance of an interstitial cell infiltrate in 

primary glomerulopathies such as membranous GN, focal glomerulosclerosis or 

mesangioproliferative GN. The tubular epithelial cell may have an important role in 

mediating the progression from glomerular to tubulointerstitial nephritis. Spillover of 

proinflammatory mediators, growth factors, and even albumin into the glomerular 

ultrafiltrate appear as stimulators for tubular epithelial cells to secrete additional 

proinflammatory profibrotic cytokines and chemokines (98). Furthermore, proinflammatory 

mediators secreted within the glomerulus will reach the post-glomerular peritubular 

circulation, thereby activating peritubular endothelial and tubular epithelial cells (119). In 

addition, focal capsular adhesions develop "misdirected" ultrafiltrate that may result in local 

generation of mediators (120). All of these mechanisms may enhance interstitial 

mononuclear cell recruitment secondary to primary glomerular injury and thus expand the 

lesion from the glomerulus to the tubulointerstitium. 
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Figure 6. Proposed model of chemokine involvement in progressive disease and fibrosis. 

Details are in the text. 

(a) Early-stage disease (initiation phase). (b) Mid-stage disease (amplification phase).  

(c) Late-stage disease (progression phase). (d) Final-stage disease (terminal phase). Modified, 

with permission, from ref. 106. 

 

 
• Late-stage disease (progression phase) 

The continuous stimulation of intrinsic renal parenchymal cells by infiltrating leukocytes, 

proteinuria, and secreted cytokines results in ongoing synthesis of extracellular matrix 

components and irreversible structural damage (Figure 6c). In the glomerulus infiltrating 

macrophages stimulate mesangial cells to secrete collagen type IV, laminin, and fibronectin 

that contribute to the development of glomerulosclerosis (121). Mesangial expansion also 
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leads to narrowing or obliteration of single glomerular capillaries as well as dilation of others 

(122). Eventually this will not only result in podocyte damage and glomerular sclerosis, but 

also in destruction of the entire nephron, including downstream peritubular capillaries (120, 

122). Thus, the tubulointerstitial compartment undergoes major structural rearrangement. The 

accumulation of T cells and macrophages provides continuous release of profibrotic 

mediators that induce the accumulation of fibroblasts, and the ongoing production of 

extracellular matrix. Activated tubular epithelial cells themselves contribute to this 

phenomenon by matrix production chemokine-cytokine release, and even to transdifferentiate 

to myofibroblasts that migrate into the interstitial space (117). The interstitial cell infiltrate 

itself, together with the increasing amount of extracellular matrix, lead to critical widening of 

the interstitial space, thereby increasing the distance of the remaining peritubular capillaries 

to their respective tubular segments, impairing oxygen diffusion as well as tubular 

reabsorption and excretory function (123). The tubulointerstitial ischemia is considered to be 

an important factor for tubular cell apoptosis, necrosis, and, finally, tubular atrophy (124, 

125). Thus, progressive glomerular and interstitial injuries are tightly linked and aggravate 

each other by multiple mechanisms, including ischemia. 

 

• Final-stage disease (terminal phase) 

Finally, vascular rarification and diffuse scarring lead to extensive tubular atrophy, and 

glomerulosclerosis (Figure 6d). The extensive loss of renal parenchyma and structural 

integrity finally results in end-stage renal disease with the clinical signs and symptoms of 

uremia. Leukocytic cell infiltrates resolve, but renal fibroblasts maintain the synthesis of 

extracellular matrix due to sustained hypoxia and autocrine stimulation (126, 127). 

Myofibroblasts contribute to contraction of the fibrous tissue with scarring, resulting in the 

ultimate stage, the shrunken kidney. In the above process there are roles for chemokines at 

multiple steps. The contribution of the chemokines cannot be viewed in isolation, but as part 

of an integral system together with adhesion molecules and cytokines (106). 
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2.2.2  Chemokines and chemokine receptors 

 

Chemokines 

Chemoattractant cytokines (chemokines) are a family of low-molecular-weight cytokines  

that induce migration of leukocytes and modulate multiple functions of immune and non-

immune cells (128) as well as involve in a number of biological proceses, including growth 

regulation, hematopoiesis, embryonic development, angiogenesis, and HIV-1 infection (129). 

Although chemokines have a relatively low level of sequence identity, their three-

dimensional structure is highly homolog in that they all have the same monomeric fold. This 

fold results from a four-cysteine motif that forms two characteristic disulfide bridges. 

Depending on the relative position of the first two cysteines, chemokines are divided into 

CC, CXC, C, and CX3C subfamilies (128). The systematic nomenclature describes 

individual chemokines (ligands L) and their receptors (R) on the basis of subgroups they 

belong to (Table 4) (128, 130, 131). Chemokines can be further categorized into two classes 

depending on whether they are constitutively produced or are inducible (132, 133). The first 

group, the homeostatic chemokines, are instrumental in basal leukocyte development and 

trafficking during immune surveillance. For example, chemokines such as CCL21 or CCL19 

are involved in physiological homing of leukocytes to lymphoid tissues (130, 134), and in 

lymphocyte and dendritic cell trafficking during immune surveillance (135). In contrast, 

inflammatory chemokines are induced by proinflammatory stimuli and orchestrate innate and 

adaptive immune responses, for example by recruitment of leukocytes to sites of tissue injury 

(CCL2, CCL3, CCL5, and CXCL10) and regulation of T cell, monocyte and dendritic cell 

differentiation. All members of the chemokine family work in concert with selectins and 

integrins to sort and direct effector leukocyte migration (136, 137). Chemokines mediate 

their biological effects by binding to cell surface receptors that belong to the GPCR 

superfamily (138). Receptor binding initiates a cascade of intracellular events mediated by 

the receptor associated heterotrimeric G proteins. These G protein subunits trigger various 

effector enzymes, which leads to the activation not only of chemotaxis but also to a wide 

range of functions in different leukocytes, such as an increase in the respiratory burst, 

degranulation, phagocytosis, and lipid mediator synthesis. Chemokines can interact with only 

one receptor or a single chemokine binds to multiple receptors (136). Increased chemokine 
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expression has been shown to be associated with a number of autoinflammatory diseases, 

including multiple sclerosis, rheumatoid arthritis, diabetes, endometriosis, transplant 

rejection, multiple myeloma, etc. (139).  

 

Chemokine Receptors 

All chemokines signal through G-protein-coupled seven-transmembrane receptors. 

Chemokine receptors are named and classified according to their chemokine ligand(s), that is 

C, CC, CXC, and CX3C receptors (Table 4) (128, 130, 131). Each chemokine receptor has a 

distinct chemokine specificity and a restricted expression on subclasses of leukocytes (and 

non-hematopoietic cells). However, ligand specificities of the receptors can substantially 

overlap within a chemokine class leading to redundancy in the system. Some receptors bind 

multiple chemokines, and others share the same ligands (Table 4). The receptor binding 

involves high affinity interactions and signal transduction initiated by the dissociation of G-

protein complex into Gα and Gβγ subunits. Gα induces the activation of the 

phosphoinositidine 3-kinase pathway, while the Gβγ subunits activate phospholipase C and 

induce Ca2+ influx and protein kinase C activation. The involvement of MAP kinases as well 

as JAK/STAT signaling also has been shown (140). In general, the proinflammatory 

chemokine receptors have more promiscuous ligand-binding specificities, while receptors 

involved in basal leukocyte development and trafficking have fewer ligands. Although in 

vitro binding and activation studies suggest a high degree of redundancy in the chemokine 

system, this might actually be not true in vivo. Indeed, genetic and an increasing number of 

functional studies have largely confirmed that single chemokines and receptors play non-

redundant roles in immune biology (133, 141). The complexity of the system may be further 

enhanced by the fact that chemokine receptors can form heterodimers with new ligand 

specificities and that some chemokines or their metabolites can even act as antagonists for 

their receptors (142).  
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Table 4. Classification of chemokines and chemokine receptors (with minor adaptation 
128, 130, 131, abbreviations see page 102). 
 
 

 
Systematic name 

 

 
Common names 

 
Chemokine receptors 

Alpha (CXC) chemokine-receptor family 
CXCL1 
CXCL2 
CXCL3 
CXCL4 
CXCL5 
CXCL6 
CXCL7 
CXCL8 
CXCL9 
CXCL10 
CXCL11 
CXCL12 
CXCL13 
CXCL14 
CXCL15 
CXCL16 

Gro-α, KC, MIP-2 
Gro-β, CINC-2α 
Gro-γ, CINC-2β 
PF4 
ENA-78 
GCP-2 
NAP-2 
IL-8 
Mig 
IP-10 
I-TAC 
SDF-1 (α / β) 
BCA-1 
BRAK/bolekine 
Lungkine 
CR-PSOX 

CXCR1, CXCR2 
CXCR2 
CXCR2 
Unknown 
CXCR2 
CXCR1, CXCR2 
CXCR2 
CXCR1, CXCR2 
CXCR3 
CXCR3 
CXCR3 
CXCR4 
CXCR5 
Unknown 
Unknown 
CXCR6 

Beta (CC) chemokine-receptor family 
CCL1 
CCL2 
CCL3 
CCL4 
CCL5 
CCL7 
CCL8 
(CCL9/10) 
CCL11 
(CCL12) 
CCL13 
CCL14 
CCL15 
CCL16 
CCL17 
CCL18 
CCL19 
CCL20 
CCL21 
CCL22 
CCL23 
CCL24 
CCL25 
CCL26 
CCL27 
CCL28 

I-309, TCA-3 
MCP-1 
MIP-1α 
MIP-1β 
RANTES 
MCP-3 
MCP-2 
Unknown 
Eotaxin 
Unknown 
MCP-4 
HCC-1 
HCC-2 
HCC-4 
TARC 
DC-CK1 
MIP-3β/ELC 
MIP-3α/LARC 
SLC/6Ckine 
MDC 
MPIF-1 
Eotaxin-2/ MPIF-2 
TECK 
MIP-3α/Eotaxin-3 
CTACK/Eskine 
MEC 

CCR8 
CCR2 
CCR1, CCR5 
CCR5 
CCR1, CCR3, CCR5 
CCR1, CCR2, CCR3 
CCR2, CCR3, CCR5 
CCR1 
CCR3 
CCR2 
CCR1, CCR2, CCR3 
CCR1, CCR5 
CCR1, CCR3 
CCR1, CCR2 
CCR4 
Unknown 
CCR7 
CCR6 
CCR7 
CCR4 
CCR1 
CCR3 
CCR9 
CCR3 
CCR10 
CCR3/CCR10 

Gamma (C) chemokine-receptor family 
XCL1 
XCL2 

Lymphotactin/SCM-1α 
SCM-1β 

XCR1 
XCR1 

Delta (CX3C) chemokine-receptor family 
CX3CL1 Fractalkine/neuroactin CX3CR1 
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2.2.3  Chemokine receptor CCR1 as a potential target in kidney 

disease 

2.2.3.1  Chemokine receptor CCR1 

CC chemokine receptor 1 (CCR1) was the first CC chemokine receptor identified (143, 144). 

Initially this receptor was identified as the CCL3/MIP-1α and CCL5/RANTES  receptor, but 

later studies have shown it to bind and signal in response to a variety of chemokines 

including CCL8/MCP-2, CCL7/MCP-3, CCL15/Lkn-1, CCL24/MPIF-1 (myeloid progenitor 

inhibitory factor), and CCL14/HCC-1 (hemofiltrate CC-chemokine) (145, 146). The gene is 

on human chromosome 3p21 in a cluster with CCR2, CCR3, CCR4, CCR5, CCR8, CCR9, 

XCR1, CX3CR1 (147). The open reading frame (ORF) is on a single exon, and the predicted 

polypeptide is 355 aminoacids in a length. The strong association with a wide variety of 

autoimmune and pro-inflammatory diseases has made the CCR1 protein an attractive 

therapeutic target, and Berlex has developed a potent, specific, orally available antagonist, 

BX 471, currently in a phase II clinical trial (148) (Figure 7, ref. 157). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The structure of human CCR1 predicted using MembStruk computational 
method showing the BX 471 antagonist binding site predicted using HierDock computational 
protocol. A side view with the extracellular region at the top (157).  
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Human CCR1 binds several CC chemokines, including CCL3, CCL5, CCL7, CCL8, CCL13, 

CCL14, CCL15, CCL16, and CCL23 (Table 4). The aminoacid sequence of human CCR1 

has a high degree of homology to murine CCR1 (Figure 8). However, species-specific 

pharmacodynamics need to be defined for each antagonist when to be tested in another 

species (149).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Alignment of human and mouse CCR1.  
 
Known or predicted helixes are highlighted in light gray. Known or predicted-strands are 
highlighted in dark gray. Cysteine residues are encircled. Disulfide bonds is indicated by the 
letter ‘S’. 
 

s----------------

----------------------------------------------------------------------------------------

------s

hCCR1   METPNTTEDYDTTTEFDYGDATPCQKVNERAFGAQLLPPLYSLVFVIGLVGNI LVVLVL

hCCR1   VQYKRLKNMTSIYLLNLAI SDLLFLFTLPFWIDY .KLKDDWVFGDAMCKILSGFYYT.GL
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The latter often compromises the interpretation of data generated in rodents that apply 

chemokine antagonists designed for the human system. CCR1 is expressed at low levels on T 

cells. By contrast, human and murine blood monocytes, tissue macrophages, neutrophils, and 

eosinophils express CCR1 at high levels (128, 110, 150). Upon ligation with its ligands a 

conformational change of the seven transmembrane elements of CCR1 leads to intracellular 

activation of G-protein subunits (Figure 8). CCR1 signaling includes calcium flux, inhibition 

of adenylyl cyclase, and chemotaxix (151, 152). Studies using an in vitro flow chamber 

system first identified a critical role for CCR1 for adhesion of rolling macrophages or T cells 

to activated endothelium using established human cell lines (141). These findings were 

validated in vivo by two approaches. First, intravital microscopy of the cremaster muscle in 

mice was used to study the role of CCR1 for leukocyte rolling, firm adhesion, 

transendothelial migration, and interstitial migration. Either by applying a specific CCR1 

antagonist or perfoming intravital microcopy in CCR1-deficient mice has been found that 

CCR1 is required for leukocyte adhesion and transendothelial migration during the 

recruitment process (153). The coherent findings in antagonist-treated mice or CCR1 

deficient mice argue for a non-redundant role of CCR1 in that processes. Because organ-

specific roles of chemokines and chemokine receptors have been reported, studies performed 

on cremaster muscles do not allow a safe conclusion upon the role of CCR1 in the kidney. 

Thus, as a second approach macrophages were isolated and T cells from spleens of CCR1-

deficient or wild-type mice. After ex vivo labelling with fluorescence dye cells were injected 

into mice with renal fibrosis after unilateral ureteral obstruction (UUO) (154). CCR1-

deficient macrophages and T cells showed markedly reduced recruitment to the interstitial 

compartment of diseased kidneys as compared to cells isolated from wild-type mice (154). 

These data show that CCR1 on macrophages and T cells is required for interstitial leukocyte 

recruitment in renal fibrosis in mice.  

 
 

2.2.3.2            CCR1 antagonism in models of kidney disease 

 

The functional roles of various chemokines during renal inflammation were examined by 

either blocking chemokine activity with neutralizing antibodies, chemokine receptor 

antagonists, or targeted disruption of genes encoding chemokines and their receptors in 

various animal models (106). It turned out that within the large family of chemokines and 

chemokine receptors, CCR1 appears to be particularly suitable target for an antagonistic 

strategy in progressive renal disease (155).  
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Acute and Chronic Renal Allograft Rejection 
 
The first study that used the small molecule CCR1 antagonist BX471 in kidney disease was 
reported by Horuk et al. (156) in 2001.  
BX471 (R-N-[5-chloro-2-[2-[4-[(4-fluorophenyl)methyl]-2-methyl-1-piperazinyl]-2-o 

xoethoxy]phenyl]urea hydrochloric salt ), non-peptide CCR1 antagonist (Figure 9), is able 

to displace the CCR1 ligands CCL3, CCL5,  and  CCL7 (MCP-3) with high affinity (Ki  

ranged from 1nM to 5.5 nM) and is potent functional antagonist based on its ability to inhibit 

a number of CCR1-mediated effects, including Ca2+ mobilization, increase in extracellular 

acidification rate, CD11b expression, and leukocyte migration.  BX 471 demonstrated a 

greater than 10, 000-fold selectivity for CCR1 versus other GPCR in both receptor binding 

assays and functional assays (158). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.  A top view of the predicted structure of BX 471 in the CCR1 binding pocket. 
(157). 

BX 471
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In this study, BX471 monotherapy had beneficial effects on serum creatinine levels and renal 

survival in a model of kidney transplantation in rabbits. Pathologic analysis showed that 

BX471 was similar to cyclosporine in its ability to prevent extensive infarction of 

transplanted kidneys (156). Furthermore, BX471 prevented chronic allograft nephropathy in 

a Fischer 344 into Lewis rat model of acute and chronic allograft rejection (159). BX471 

given from day 21 to 42 after kidney transplantation reduced the number of ED-1-positive 

macrophages in renal allografts in association with a reduction of markers of renal fibrosis. 

 

 

Obstructive Nephropathy 

Experimental UUO represents a model for obstructive nephropathy but also allows insight 

into the process of interstitial fibrosis that is a common characteristic of many chronic 

nephropathies. UUO kidneys show increased CCR1 expression as compared to their 

respective non-obstructed contralateral kidneys (114). UUO kidneys from mice treated with 

the CCR1 antagonist BX471 revealed a marked reduction of interstitial leukocyte counts 

(160). Markers of renal fibrosis, such as interstitial fibroblasts, interstitial volume, mRNA 

and protein expression for collagen I, were all significantly reduced by BX471 compared to 

vehicle-treated controls. Most interestingly, the beneficial effect was comparable when 

BX471 was given not before day 6, indicating that late onset of CCR1 blockade may still be 

effective. By contrast, treatment was ineffective when the drug was supplied only from day 0 

to day 5. These data were confirmed by inducing UUO in CCR1-deficient mice (154).  

 

 

Immune Complex Glomerulonephritis 

Chemokines are also involved in systemic immune responses (128), so that data from the 

UUO model may not apply to renal manifestations of systemic autoimmunity, e.g. lupus 

nephritis. In fact, lack of CCR1 has been reported to be associated with an enhanced Th1-like 

immune response and aggravation of nephrotoxic serum nephritis (161). It has been studied 

the effects of therapeutic CCR1 blockade in progressive lupus-like immune complex 

glomerulonephritis of MRL lpr/lpr mice. BX471 treatment initiated late during the course of 

disease (weeks 20–24 of age) improved blood urea nitrogen levels and reduced the amount of 

macrophages and lymphocytes in the interstitium (162). Furthermore, BX471 reduced the 

extent of interstitial fibrosis as evaluated by interstitial smooth muscle actin expression and 

collagen I deposits, as well as mRNA expression for collagen I and TGF- β1. BX471 did not 

affect serum DNA autoantibodies despite potential roles of CC chemokines and their 
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receptors in systemic immune responses. As CCR1 blockade does not reduce glomerular 

macrophage recruitment, it was found to be ineffective in modulating glomerular pathology 

and proteinuria in MRL lpr/lpr mice. 

 

 

Focal Segmental Glomerulosclerosis 

Proteinuria represents a major prognostic factor for the progression of renal disease, because 

unselective proteinuria can induce chemokine expression in renal tubular cells (163). 

Thereby proteinuria serves as a major factor for tubulointerstitial inflammation. The authors 

hypothesized that CCR1 antagonism would be able to improve interstitial fibrosis in the 

presence of massive proteinuria caused by FSGS. FSGS was induced in BALB/c mice by 

two intravenous injections of adriamycin at day 0 and 14. BX471 was started from day 14 

when nephrotic syndrome was established. Again, BX471 reduced the amount of interstitial 

macrophages and T cells and markers of renal fibrosis including interstitial fibroblasts and 

interstitial volume (164). These findings demonstrate that therapeutic CCR1 blockade is 

effective in the presence of heavy proteinuria. Consistent with our previous findings, BX471 

did not affect glomerular pathology in adriamycin-injected BALB/c mice. 

CCR1 blockade can effectively prevent recruitment of monocytes and lymphocytes into the 

renal interstitium. BX471 is effective in multiple models of progressive kidney disease in 

mice even when treatment was started late in the disease process. Thus, interfering with renal 

leukocyte recruitment by targeting CCR1 may represent a promising strategy to prevent 

disease progression in chronic nephropathies characterized by interstitial leukocytic cell 

infiltrates (197). 
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2.3 Research hypothesis  

 
 
The aim of my thesis was to investigate the role of chemokine receptor CCR1 for the 

progression of chronic kidney disease in murine Alport syndrome and type 2 diabetes, 

because the molecular and cellular mechanisms of intrarenal inflammation in Alport disease 

and diabetic nephropathy remain poorly characterized. In particular, attempts have been 

made to assess the putative proinflammatory role of interstitial macrophages in disease 

progression and the impact of therapeutic blockade of chemokine receptor CCR1 in 

COL4A3-deficient mice with Alport disease and type 2 diabetic db/db mice with advanced 

diabetic nephropathy. 

We hypothesized that blocking CCR1-depending interstitial macrophage recruitment might 

prolong survival of COL4A3-deficient mice and reduce tubulointerstitial inflammation and 

tubular injury in COL4A3-deficient mice and type 2 diabetic db/db mice.  
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3. MATERIAL AND METHODS 

3.1    Materials 

3.1.1 Equipment  

Balances: 

Analytic Balance, BP 110 S    Sartorius, Göttingen, Germany 

Mettler PJ 3000     Mettler-Toledo, Greifensee, Switzerland 

Cell Incubators: 

Type B5060 EC-CO2     Heraeus Sepatech, München, Germany 

Centrifuges: 

Heraeus, Minifuge T     VWR Internationl, Darmstadt, Germany 

Heraeus, Biofuge primo  Kendro Laboratory Products GmbH, 

Hanau, Germany 

Heraeus, Sepatech Biofuge A    Heraeus Sepatech, München, Germany 

ELISA-Reader 

Tecan, GENios Plus                Tecan, Crailsheim, Germany 

Fluorescence Microsocopes 

Leica DC 300F             Leica Mycrosystems, Cambridge, UK  

Olympus BX50   Olympus Microscopy, Hamburg, Germany 

Spectrophotometer 

Beckman DU® 530     Beckman Coulter, Fullerton, CA, USA 

TaqMan Sequence Detection System  

ABI prism ™ 7700 sequence detector              PE Biosystems, Weiterstadt, Germany 

Other Equipments 

Cryostat RM2155     Leica Microsystems, Bensheim, Germany 

Cryostat CM 3000     Leica Microsystems, Bensheim, Germany 

Digital camera DC 300F    Leica Microsystems, Cambridge, UK 

Glucometer Accu check sensor   Roche, Mannheim, Germany 

Homogenizer ULTRA-TURRAX T25  IKA GmbH, Staufen, Germany  

Microtome HM 340E     Microm, Heidelberg, Germany 

pH meter WTW      WTW GmbH, Weilheim, Germany 

Thermomixer 5436     Eppendorf, Hamburg, Germany 

Vortex Genie 2™     Bender&Hobein AG, Zurich, Switzerland 

Water bath HI 1210     Leica Microsystems, Bensheim, Germany 
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3.1.2          Chemicals and materials 

Chemicals for the molecular biology techniques 

RNeasy Mini Kit     Qiagen GmbH, Hilden, Germany 

RT-PCR primers      PE Biosystems, Weiterstadt, Germany 

DuoSet® Elisa Kit (mouse RANTES/CCL5)  R&D Systems, Minneapolis, MN, USA 

 

Cell culture  

DMEM-medium  Biochrom KG, Berlin, Germany  

RPMI-1640 medium     GIBCO/Invitrogen, Paisley, Scotland, UK 

FSC       Biochrom KG, Berlin, Germany 

Dulbecco’s PBS (1×)      PAA Laboratories GmbH, Cölbe,Germany 

Trypsine/EDTA (1×)      PAA Laboratories GmbH, Cölbe,Germany 

Penicillin/Streptomycin (100×)   PAA Laboratories GmbH, Cölbe,Germany 

 

Antibodies  

rat anti-F4/80      Serotec, Oxford, UK 

anti-Ki-67      Dianova, Hamburg, Germany 

anti-ssDNA        Chemicon, Hofheim, Germany 

anti-mMECA-32      University of Iowa, Hybridoma Bank, USA 

anti-mCCL5       PeproTech, Rocky Hill, NJ, USA 

goat anti-fibronectin      Santa Cruz, Heidelberg, Germany 

rat anti-Mac2      Cederlane, Ontario, Canada 

anti-ERHR3       DPC Biermann, Bad Nauheim, Germany 

anti-CD3       BD Pharmingen, Hamburg, Germany 

mouse F4/80 FITC conjugated   Caltag Laboratories, Bulingame, CA, USA 

     

Miscellaneous 

Anti-FITC MicroBeads    Miltenyi Biotec, Bergish Gladbach, Germany 

CellTiter 96 Proliferation Assay Promega, Mannheim, Germany 

Fluorescence-labeled microspheres Molecular Probes™/Invitrogen GmbH, 

(0.96 µm FluoSpheres)    Karlsuhe, Germany 

LS+/VS+ Positive selection columns (MACS) Miltenyi Biotec, Bergish Gladbach, Germany 

Needles       BD Drogheda, Ireland 
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Pipette’s tip 1-1000µL  Eppendorf, Hamburg, Germany 

PKH26 Red Fluorescent Cell Linker kit   Sigma-Aldrich Chemicals, Steinheim, Germany 

Plastic histosettes     NeoLab, Heidelberg, Germany 

Preseparation filters     Miltenyi Biotec, Bergish Gladbach, Germany 

SuperFrost® Plus microscope slides Menzel-Gläser, Braunschweig, Germany 

Silver Impregnation Kit    Bio-Optica, Milano, Italy 

Syringes  Becton Dickinson GmbH, Heidelberg, Germany 

Tissue culture dishes  Ø 100x20mm   TPP, Trasadingen, Switzerland 

Tissue culture dishes  Ø 150x20mm   TPP, Trasadingen, Switzerland 

Tissue culture dishes  Ø 35x10mm   Becton Dickinson, Franklin Lakes, NJ, USA 

Tissue culture flasks 150 cm2    TPP, Trasadingen, Switzerland 

Tubes 15 and 50 mL     TPP, Trasadingen, Switzerland 

Tubes 1.5 and 2 mL     TPP, Trasadingen, Switzerland 

 

 

Chemicals  

Aceton Merck, Darmstadt, Germany  

AEC Substrat Packung Biogenex, San Ramon, USA  

Ether Merck, Darmstadt, Germany  

Bovines Serum Albumin Roche Diagnostics, Mannheim, Germany 

BX471 Berlex Biosciences, Richmond, USA 

Cyclodextrin  Sigma-Aldrich Chemicals, Steinheim,Germany  

DEPC Fluka, Buchs, Switzerland 

DMSO Merck, Darmstadt, Germany 

Diluent C for PKH26 dye  Sigma-Aldrich Chemicals, Steinheim, Germany  

EDTA Calbiochem, SanDiego, USA 

Eosin Sigma, Deisenhofen, Germany 

Ethanol Merck, Darmstadt, Germany 

Formalin Merck, Darmstadt, Germany  

Hydroxyethyl cellulose Sigma-Aldrich, Steinheim, Germany 

HCl (5N) Merck, Darmstadt, Germany 

Isopropanol  Merck, Darmstadt, Germany 

Kaliumchlorid Merck, Darmstadt, Germany  

Kaliumdihydrogenphosphat Merck, Darmstadt, Germany 
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Kaliumhydroxid Merck, Darmstadt, Germany 

MACS-Puffer   Miltenyi Biotec, Bergisch Gladbach, Germany 

Merkaptoethanol Roth, Karlsruhe, Germany 

Natriumacetat Merck, Darmstadt, Germany  

Natriumchlorid Merck, Darmstadt, Germany 

Natriumcitrat Merck, Darmstadt, Germany 

Natriumdihydrogenphosphat Merck, Darmstadt, Germany 

Penicillin Sigma, Deisenhofen, Germany 

Roti-Aqua-Phenol Carl Roth GmbH, Karlsruhe, Germany 

SSC (Saline-sodium citrate Puffer) Sigma, Deisenhofen, Germany 

Streptomycin Sigma, Deisenhofen, Germany 

Tissue Freezing Medium  Leica, Nussloch, Germany 

Trypan Blue Sigma, Deisenhofen, Germany 

Oxygenated water DAKO, Hamburg, Germany  

Xylol Merck, Darmstadt, Germany  

 

• BX 471 was kindly supplied by Berlex Biosciences, Richmond, California, USA; 

• BL 5923 was kindly supplied by Novartis Institute for Biomedical Research, Basel, 

Switzerland; 

• rabbit anti-laminin (gift from M. Paulsson, Cologne, Germany); 

• All other reagents were of analytical grade and are commercially available from 

Invitrogen, SIGMA or ROTH. 
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3.1.3        Oligonucleotide primers and probes for RT-PCR  

The following oligonucleotide primers (300 nM) and probes (100 nM) were used for studies:  

 

Ccr1:          Forward primer: 5’-TTAGCTTCCATGCCTGCCTTATA-3’ 

                         Reverse primer: 5'-TCCACTGCTTCAGGCTCTTGT-3' 

      Internal fluorescence labeled probe (FAM): 5'-ACTCACCGTACCTGTA-        

GCCCTCATTTCCC-3'  

 

Ccr2:          Forward primer: 5'- CCTTGGGAATGAGTAACTGTGTGA -3' 

                              Reverse primer: 5’- ACAAAGGCATAAATG-ACAGGATTAATG - 3’  

Internal fluorescence labeled probe (FAM):5’- TGACAAGCACTTA-

GACCAGGCCATGCA -3’ 

 

Ccr5:          Forward primer: 5'-CAAGACAATCCTGATCGTGCAA-3' 

                         Reverse primer: 5'-TCCTACTCCCAAGCTGCATAGAA-3' 

       Internal fluorescence labeled probe (FAM): 5'- TCTATACCCGATCC- 

  ACA GGAGAACATGAAGTTT-3' 

 

Tgf-ß1:          Forward primer: 5'- CACAGTACAGCAAGGTCCTTGC-3' 

                         Reverse primer: 5'- AGTAGACGATGGGCAGTGGCT-3' 

       Internal fluorescence labeled probe (FAM): 5'- GCTTCGGCG- 

TCACCGTGCT-3’ 

 

collagenI-α1:  Forward primer: 5'- TGCTTTCTGCCCGGAAGA-3' 

                   Reverse primer: 5'- GGGATGCCATCTCGTCCA-3'     

   Internal fluorescence labeled probe (FAM): 5'- CCAGGGTCTC 

CCTTGGGTCCTACATCT -3’ 

 

mGAPDH:  Forward primer: 5'-CATGGCCTTCCGTGTTCCTA-3' 

        Reverse primer: 5'-ATGCCTGCTTCACCACCTTCT-3' 

        Internal fluorescence labeled probe (VIC): 

        5'-CCCAATGTGTCCGTCGTGGATCTGA-3' 

 

Ccl2   predeveloped TaqMan assay reagent from PE Biosystem 
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Ccl5   predeveloped TaqMan assay reagent from PE Biosystem 

 

18s rRNA  predeveloped TaqMan assay reagent from PE Biosystem 

 

 
 

3.1.4 Computer programs 

- Adobe Acrobat Writer 6.0 

- Internet Explorer 

- Office XP, 2003 

- Photoshop 7.0, CS 

- Windows 2003 Professional  

- CellQuest software 

- ABI PRISM Sequence Detection software 1.0 

- SPSS for Windows 13.0 

 

 

 

3.1.5    Solutions 

40% Cyclodextrin 

40g of cyclodextrin was weighed into a 100 ml sterile plastic bottle. 0.9% NaCl was added 

portionwise. The mixture was shaken and mixed overnight to dissolve. 0.9% NaCl was added 

to a total volume of 100ml. The solution was filtered through a 0.22 um filter into a sterile 

bottle, labeled and stored at 4 ºC. 

 

0.5 % Hydroxyethyl cellulose 

0.5g of hydroxyethyl cellulose was weighed into a 100 ml sterile plastic bottle. Unbuffered 

saline was added portionwise. The mixture was shaken and mixed overnight to dissolve. 

Saline was added to a total volume of 100 ml. The solution labeled and stored at ambient 

temperature. 
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BX 471 

25mg/ml solution of BX471 in cyclodextrin was prepared in the following manner: 

1.25g of BX471 was weighed into a 100 ml plastic erlenmeyer flask. 50 ml of 40% 

cyclodextrin in 0.9% NaCl was added to the flask. The mixture was stirred during the 

addition of 250µl of conc HCl. The mixture was stirred to dissolve. After dissolution was 

complete (1 hour) the pH of the solution was measured at pH=3.3 and 1N KOH was added to 

raise the pH to 4.5. The solution was filtered through a 0.22 um filter into a clean plastic 

erlenmeyer. The solution was labeled and stored at ambient temperature. 

 

BL 5923 

30mg/ml solution of BL5923 in 0.5% hydroxyethyl cellulose was prepared in the following 

manner: 

1g of BL5923 was weighed into a 50 ml plastic erlenmeyer flask. 33.3 ml of 0.5% 

hydroxyethyl cellulose unbuffered saline was added to the flask. The mixture was shaken and 

mixed overnight to dissolve in a waterbath at 37°C. The solution was labeled and stored at 

ambient temperature. 

 

 

Anesthesia mixture 

10 ml Midazolam (1mg/ml)  

2 ml Fentanyl (0.05 mg/ml) 

1 ml Dormitor (1 mg/ml) 

 

Antagonist mixture 

5 ml Annexate (0.1mg/ml)  

0.5 ml Antisedan (5 mg/ml) 

3 ml Naloxon (0.4 mg/ml) 

 

MACS Buffer 

PBS pH 7.2 

0.5% bovine serum albumin 

2 mM EDTA 
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10x Citratpuffer 

110 mM Natriumcitrat 

in ddH2O  

with 2N NaOH to pH 6  

 

20x PBS 

2.74 M NaCl 

54 mM KCl 

30 mM KH2PO4 

130 mM Na2HPO4 

in ddH2O  

with HCl to pH 7.5   

 

Solution D 

4M Guanidinium Thiocyanat 

25mM Natriumcitrat, pH 7 

0.5% Sarcosyl 

0.1M ß-Mercaptoethanol 
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3.2  Methods 

3.2.1        Animal studies 

3.2.1.1     Homing conditions and animal procedures 

 

Mice were housed in filter top cages with a 12 hour dark/light cycle and unlimited access to 

food (Sniff, Soest, Germany) and water for the duration of the study. Cages, bedding, nestles, 

food, and water were sterilized by autoclaving before use. The genotype of each mouse was 

confirmed by PCR using genomic DNA extracted from tail tips. COL4A3-deficient mice on 

a 129/SvJ genetic background were bred under specific-pathogen-free housing conditions. 

Male 5 week old C57BLKS db/db or C57BLKS wild-type mice were obtained from Taconic 

(Ry, Denmark) and maintained on a normal diet under standard animal house conditions as 

described above. 

All experimental procedures were performed according to the German animal care and ethics 

legislation and had been approved by the local government authorities. 

 

 

3.2.1.2     Study design and experimental procedures 

 

COL4A3-deficient mice: COL4A3-deficient mice develop glomerulosclerosis with renal 

fibrosis progress to uremia-related death at about 10 weeks of age (165, 166). At the age of 6 

weeks COL4A3-deficient mice were divided in two groups that received either BX471 (25 

mg/kg body weight) in the vehicle 40% cyclodextrin or vehicle only by subcutaneous 

injections at 8 hour intervals (160). Treatment was continued until death for assessment of 

survival or until day 63 of age (9 weeks) in a subgroup of mice which were sacrificed for 

histopathological evaluation. Urine samples were obtained at weekly intervals and analyzed 

for protein/creatinine ratios using an automatic autoanalyzer (Integra 800, Roche 

Diagnostics, Germany). Blood samples were collected from each animal under general 

anaesthesia at the end of study as described below. 

 

Db/db mice: At the age of 6 weeks uninephrectomy (1K mice) or sham surgery (2K mice) 

was performed under general anesthesia with midazolam 5mg/kg and 0.05 mg/kg fentanyl in 

db/db and wild-type mice. Anesthetized mice were positioned on the dissection border. After 

this 1.5 cm flank incision was performed. Silk suture (2-0) was placed around the right 

kidney and after tying off the vessels and ureter the kidney was rapidly removed. In sham 
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group of mice the kidney was manipulated but not ligated. Skin incision was closed with silk 

suture and wound clamps (Figure 10). After surgery all mice received analgetic (1 drop of 

Novaminsulfon-ratiophrm, Ratiopharm GmbH, Germany, 1:200, orally administered) and 

were allowed free access to water and food. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 10.  Schematic representation of uninephrectomy. 

A: Making flank incision.  B: Tying off the kidney’s vessels and ureter with silk suture. 
C: Removing of the kidney after ligation. D: Wound closing with silk suture and wound 
clamps. 
 
 

At the age of 5 months uninephrectomized (1K mice) db/db mice were divided in three 

groups that received either BL5923 (60 mg/kg, b.i.d.) in the vehicle 0.5% hydroxyethyl 

cellulose, vehicle only or nil by oral gavage. Treatment was continued for 4 weeks when 

tissue was obtained for histopathological evaluation. Mice were examined for diabetes from 2 

months old and blood glucose levels were determined at monthly intervals using a 

glucometer (Accu check sensor, Roche, Mannheim, Germany). White blood counts were 

determined with a Coulter counter (Beckmann Coulter GmbH, Krefeld, Germany). Urine 

samples were obtained at monthly intervals and analyzed for albumin/creatinine ratios using 

an automatic autoanalyzer (Integra 800, Roche Diagnostics, Germany). Blood was drawn 

A B

C D
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from the retroorbital sinus under general anesthesia before sacrifice. For obtaining serum the 

whole blood was centrifuged at 3000 x g for 5 minutes at 4 ºC and stored at -20 ºC. Serum 

was analyzed for creatinine and BUN using an automatic analyzer as described above. 

After completion of the treatment period the mice were sacrificed by cervical dislocation and 

the kidneys were collected and processed for RNA isolation, immunostaining or paraffin 

fixed for histological analysis (section 3.2.3). For histological analysis kidneys were fixed 

with 10% formalin and processed for periodic acid Schiff staining for the examing 

histomorphological changes (section 3.2.3). 

 

 

3.2.1.3 Determination of BL5923 blood levels  

 

Blood samples (45 µl) were spiked with an internal standard (5 µl) and extracted with 200 µl 

acetonitrile. After centrifugation, 220 µl of the supernatant were dried and redissolved in 60 µl 

methanol and 40 µl 0.1% formic acid. The solution was centriguged and 10 µl of the supernatant 

were analyzed by HPLC/MS using the Rheos LC HPLC system. Eluent A was water with 1.5 % 

formic acid plus 0.02 % TFA, eluent B was acetonitrile/methanol (50:50, V/V) with 1.5 % formic 

acid plus 0.02 % TFA. Column efflux was directly introduced into the ion source of a Finnigan 

Quantum Ultra MS detector. Quantitative analysis was performed by selected ion monitoring over 

the respective quasi-molecular ions. The calibration curve was performed in triplicate. Data from 

blood samples were calculated along the calibration curve and are expressed in ng/ml. 

Determination of BL5923 blood levels was performed in collaboration with Novartis Institutes for 

BioMedical Research, Basel, Switzerland. 

 

 

3.2.1.4     Cremaster muscle intravital microscopy  

 

The surgical preparation of cremaster muscles was performed as originally described by Baez 

(ref. 167) with minor modifications. Mice were anesthetized using a ketamine/xylazine 

mixture (100 mg/kg of ketamine and 10 mg/kg of xylazine) administered by intraperitoneal 

injection. The left femoral artery was cannulated in a retrograde manner for continuous blood 

pressure monitoring and the administration of substances to the cremaster vasculature (Figure 

11A-B). The right cremaster muscle was exposed through a ventral incision of the scrotum. 

The muscle was opened ventrally in a relatively avascular zone, using careful electrocautery 

to stop any bleeding, and spread over the transparent pedestal of a custom-made microscope 
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stage (Figure 11C-D). Epididymis and testicle were detached from the cremaster muscle and 

placed into the abdominal cavity. Throughout the procedure, the muscle was superfused with 

buffered Ringer’s injection.  To minimize induction of inflammation by the surgical trauma, 

the muscle was handled as little as possible. After surgical preparation, which typically 

required 30 min, the stage was transferred to the microscope and the temperature of the 

superfusion buffer was maintained at 37 °C by an infrared heating lamp and a digital 

thermometer with a thermocouple small enough to allow for placement of the probe in close 

vicinity of the cremaster muscle (168).  

Intravital microscopy was performed using an Olympus BX50 upright microscope equipped 

for stroboscopic fluorescence epi-illumination microscopy and microscopic images as well as 

real-time recordings. Three hours after intrascrotal injection of CCL3 (600 ng in 0.3 ml PBS; 

R&D Systems Europe Ltd.), intravital microscopic analysis was performed in wild-type and 

CCR1-deficient mice as well as in wild-type mice injected subcutaneously with the CCR1 

antagonist BX471 (25 mg/kg body weight) 1 hour before intrascrotal injection of CCL3. 

Wild-type mice treated with PBS were used as controls (n=7 each group). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Preparing cremaster muscle for intravital microscopy. 

A-B: Preparation of left femoral artery for continuous blood pressure monitoring and the 
administration of substances to the cremaster vasculature. 
C-D: Cremaster muscle exposing and spreading for intravital microscopy.  
 

A B

C D
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Leukocyte migration parameters were determined in five postcapillary venules (inner 

diameter 17-35 µm) per animal. Rolling leukocytes were defined as those moving slower 

than the associated blood flow and quantified for 30 s. Firmly adherent leukocytes were 

defined as leukocytes that remained stationary for at least 30 s and related to the luminal 

surface per 100-µm vessel length. Emigrated leukocytes were counted in regions of interest 

(ROIs) covering a width of 75 µm on both sides of a vessel over 100 µm vessel length. For 

the analysis of interstitial migration of leukocytes, these ROIs were divided into two sub-

areas, respectively: One adjacent to the vessel (25 µm in length x 100 µm in width) and one 

distant to the vessel (50 µm in width x 100 µm in length. Blood flow velocity was measured 

after intraarterial administration of fluorescence-labeled microspheres (0.96 µm FluoSpheres, 

Molecular Probes). Intravital studies were performed in collaboration with Prof. Krombach’s 

group (Institute for Surgical Research, Munich, Germany). 

 

 

3.2.1.5         Cell transfer study 

3.2.1.5.1     Cell isolation 

F4/80 positive macrophages were prepared by immunomagnetic selection from spleens of 8 

weeks Collagen4A3-deficient mice or 6 months old db/db male mice. The mice were 

sacrificed by cervical dislocation and spleens were isolatad for obtaining cultures of spleen 

macrophages. After isolation total spleens were placed in a petri-dish containing MACS 

buffer on ice and mashed with the help of forceps, this coarse suspension was then passed 

through a 30 micron steel wire mesh and collected in a sterile petri-dish. Then suspension 

was centrifuged at 1500 RPM at 4 °C to obtain a pellet. The pellet thus obtained was washed 

with sterile PBS and resuspended in an arbitrary volume of MACS buffer. This was followed 

by a washing steps (2x), passed through a presepararion filter to obtain single cell 

suspension. Finally the cells were centrifuged, supernatant was discarded and the pellet was 

resuspended in 1 ml volume of MACS buffer and cell counts were done. 

Magnetic labeling was performed following the manufacturer’s protocol in which the cell 

pellet obtained from total spleen was resuspended in 100 µl MACS buffer 107 total cells, 2 µl 

of F4/80 FITC conjugated antibody was added, mixed well and incubated for 10 min at RT. 

The cells were then washed twice after incubation and centrifuged at 300 x g for 10 min. 

Supernatant was discarded and cell pellet was resuspended in 90 µl of MACS buffer per 107 

total cells. 10 µl of MACS Anti-FITC Microbeads was added per 107 total cells, mixed well 

and incubated for 15 min in refrigerator at 6-12°C. The cells were washed by adding 10-20x 
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labeling volume of MACS buffer, centrifuged at 300 x g for 10 minutes and supernatant was 

discarded. The cell pellet was then resuspended in 500 µl per 108 total cells and this 

suspension was applied on LS+/VS+ positive selection columns, that were pre-rinsed with 3 

ml MACS buffer and the remaining effluent was collected. Purity of isolated cells was 

verified by flow-cytometric analysis.  

 

 

3.2.1.5.2 Fluorescent labeling 

Separated F4/80 positive macrophages were labeled with PKH26, the red fluorescent cell 

linker, following the manufacturer’s protocol. PKH26 has been characterized in a wide 

variety of systems and found to be useful for in vitro and ex vivo labelling (169, 170), in vitro 

cell proliferation studies (171, 172), and in vitro and in vivo cell tracking applications (169-

172). All steps have been performed at 25 ºC. Single cell suspension (2x107cells/probe) was 

placed in a conical bottom polypropylene tube, washed once using RPMI medium without 

serum and centrifuged at 400 x g for 5 minutes into a loose pellet. After centrifuging cells, 

supernatant was carefully aspirated leaving no more 25 µl of supernatant on the pellet. The 

cell pellet was resuspended in 1 ml of Diluent C by pipetting the suspension manually. 1 ml 

fresh prepared 4x10-6 M PKH26 dye was added to the cell suspension, mixed well and 

incubated 3 minutes at 25 ºC. Periodically, the tube was inverted gently to assure mixing 

during this staining period. The staining reaction was stopped by adding an equal volume of 

serum (1ml of FSC) and incubated 1 minute. The serum-stopped sample was diluted by 

adding an equal volume of complete medium (3 ml of RPMI+10% FSC) and centrifuged at 

400 x g for 10 minutes to remove cells from staining solution. Supernatant was removed and 

the cell pellet was transferred to a new tube for further washing (3 times by adding 10 ml of 

complete RPMI medium). Finally the cells were centrifuged, supernatant was discarded and 

the pellet was resuspended in an arbitrary volume of complete RPMI medium and cell counts 

were done.  Labeling efficacy was assessed by flow cytometry.  

 

 

3.2.1.5.3    Intravenous injection protocol  

Collagen4A3-deficient mice: 8 weeks old collagen4A3-deficient mice were injected with 2.0 

x 105 F4/80 macrophages in 200 µl isotonic saline through the tail vein. Two groups of mice 

were injected with macrophages that had been preincubated with either 600 µM of BX471 or 

vehicle (40% Cyclodextrin) for 30 minutes. The respective mice received a single 
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subcutaneous injection of either BX471 (25 mg/kg) or vehicle 3 hours before the injection of 

the cells.  

Db/db mice: 3.5 x 105 F4/80 macrophages in 200 µl isotonic saline were injected into the tail 

vein of 6 months old db/db that had received a single dose of either BL5923 or vehicle (0.5 

% hydroxyethyl cellulose) 3 hours before injection.  

In both experiments renal tissues were obtained after 3 hours, snap frozen by using Tissue 

Freezing Medium, and prepared for fluorescence microscopy. The number of interstitial 

fluorescent cells was determined in 15 high power fields.  

 

 

3.2.2     In vitro methods 

3.2.2.1    Culture of mammalian cells  

The murine macrophage cell line J774 (American Type Culture Collection, Rockville, MD, 

USA) was grown in RPMI 1640 medium containing 10% heat-inactivated fetal calf serum, 

penicillin 100 U/ml and streptomycin 100µg/ml (complete RPMI medium) under standard 

culture conditions (in an incubator set at 37 °C supplied with 5 % CO2/air). A proximal tubular 

epithelial cell line was maintained in DMEM medium (GIBCO/Invitrogen, Carlsbad, CA, 

USA) containing 10% FCS and 1% penicillin-streptomycin under standard culture conditions 

as described above (173). J774 mouse macrophages and proximal tubular epithelial cells 

double every 24-36 h and were normally subcultured twice a week according to the following 

procedure: After removing the old medium, cells were washed twice with PBS. Subsequently, 

the appropriate volume of EDTA-trypsin solution was added to the culture flasks and the cells 

were incubated at RT for 5 min. Trypsinization was stopped by resuspending the cells in 

complete medium and cell suspension was transferred to new falkon tube. Cells were 

centrifuged at 1000 RPM for 3 min at RT, supernatant was discarded and the pellet was 

resuspended in 5 ml of complete RPMI or DMEM medium. Cells counts were done and 

desired number of cells was plated in 6 well plates and incubated at 37 ºC for 24 h under 

standard culture conditions. 

 

 

3.2.2.2   Cell freezing and thawing  

Cells were spun down under sterile conditions for 3 min at 1000 RPM. The cell pellet was 

maintained on ice and carefully resuspended in cold freezing medium (90 % FCS and 10 % 

DMSO) by pipetting the suspension repeatedly up and down. 1.5 ml aliquots were quickly 
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dispensed into freezing vials (4 °C). The cells were slowly frozen at –20 °C for 1 h and then 

at –80 °C overnight. The next day, they were transferred to liquid nitrogen. 

In order to thaw cells a freezing vial was removed from liquid nitrogen and put in a waterbath 

at 37 °C. The cells were then dispensed in 5 ml of warm complete growth medium and spun 

down at 1000 RPM for 5-7 min. Then the old medium was removed and the cells were 

resuspended in fresh medium. The medium was changed once more after 24 h. 

 

 

 

3.2.2.3     Stimulation experiments 

 J774 mouse macrophages were maintained in RPMI 1640 supplemented with 10% heat 

inactivated fetal calf serum and 1% penicillin-streptomycin. Cells were kept at a density of 

5x105 cells/ml for 24 hours in standard medium without supplements before being stimulated 

with 200 U/ml IFN-γ (PeproTech Inc, Rocky Hill, NJ, USA), 500 U/ml TNF-α 

(ImmunoTools, Friesoythe, Germany) and 500 ng/ml CCL3 (Cell Sciences Inc, Canton, MA, 

USA) for 24 hours. In some wells BX471 was added to a final concentration of 1 µM. 

Supernatants were collected and assayed for CCL5 by ELISA. 

Cell proliferation assay has been carried out in J774 mouse macrophages and murine tubular 

epithelial cells by following methodology. Initially cells were grown in medium (RPMI or 

DMEM) with or without fetal calf serum 24 h in 96 wellplate prior incubation with BL5923 

(10 µg/ml, or 50 µg/ml) for 48 hours. Subsequently 20 µl of CellTiter 96 Aqueous One 

Solution (Promega, Mannheim, Germany) was added to each well and incubated for 1.5 h at 

37 ºC. The optical density was measured at 492 nm. 

 

  

 

3.2.2.4      Cytokine Elisa  

Cytokine levels in cell culture supernatants were determined using commercial Elisa kit for 

CCL5 following the protocol provided by the respective manufactures. The 96-well plate was 

first coated with 100 µl/well capture antibody (anti-mouse cytokine) at recommended 

dilution in 0.2 M Sodium phosphate buffer of specified pH and placed overnight at 4 ºC. The 

wells were then aspirated, washed with >200 µl wash buffer (PBS pH 7 with 0.05% Tween-

20) and the plate was blocked with >200 µl/well assay diluent (PBS pH 7 with 10% FCS) and 

incubated at RT for 1 hour. This was followed by aspiration, 2 washes as described above, 

and 100 µl of standard or sample was pipetted to appropriate well and the plate was 
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incubated for 2 hours at RT. The plate was then aspirated, washed five times and 100 µl 

working detector (biotinylated anti-mouse cytokine or detection antibody with avidin-horse 

radish peroxidase conjugate) was added to each well and incubated at room temperature for 1 

hour. This was followed by an aspiration and wash steps (>5 washes). The TMB substrate 

solution (BD Biosciences, Hamburg, Germany) was added to each well at the volume of 100 

µl and incubated for 30 minutes. The stop solution (1M Phosphoric or 2N Sulphuric acid) 

was then added to each well, and absorbance was measured at prescribed wavelength (nm), 

using an automatic plate reader. Note: reagents and buffers used in all experimental 

protocols, double distilled water (ddH2O) was used unless stated otherwise. 

 

 

3.2.3 Immunohistochemical  methods and histopathological evaluation 

All immunohistological studies were performed on paraffin embedded sections. From each 

mouse parts of the kidneys were isolated, placed in plastic histosettes and fixed in 10% 

formalin in PBS. 2 µm thick paraffin-embedded sections were cut and processed for 

immunohistochemical staining. Deparaffinisation followed by dehydration was carried out by 

incubating the sections in xylene, 100% absolute ethanol, 95%, 80% and 50% ethanol 

followed by rinsing with PBS (2 changes, 3 minutes each). 

The following rat and rabbit antibodies were used as primary antibodies: rat anti-Mac2 

(glomerular macrophages, Cederlane, Ontario, Canada, 1:50), rat anti-F4/80 (macrophages, 

Serotec, Oxford, UK, 1:50), anti-Ki-67 (cell proliferation, Dianova, Hamburg, Germany, 

1:25), rat anti-CD3 (lymphocytes, Serotec, 1:50), anti-ssDNA (apoptotic cells, Chemicon, 

Hofheim, Germany, 1:50), anti-mMECA-32 (endothelial cells, Iowa Hybridoma Bank, 

USA,1:50), anti-mCCL5 (Peprotech, Rocky Hill, NJ, 1:50), rabbit anti-laminin (gift from M. 

Paulsson, Cologne, Germany, 1:100), goat anti-fibronectin (St. Cruz, Heidelberg, Germany, 

1:100). Negative controls included incubation with a respective isotype antibody. 

For quantitative analysis 2 µm sections were stained with periodic acid-Schiff reagent or 

silver following the instructions of the supplier (Bio-Optica, Milano, Italy). Glomerular 

sclerotic lesions were assessed using a semiquantitative score by a blinded observer as 

follows: 0 = no lesion, 1 = <25% sclerotic, 2 = 25-49% sclerotic, 3 = 50-74% sclerotic, 4 = 

75-100% sclerotic, respectively. 15 glomeruli were analysed per section. The indices for 

interstitial volume, interstitial collagen deposition, tubular cell damage, and tubular dilatation 

were determined by superposing a grid containing 100 (10 x 10) sampling points on 

photographs of 10 nonoverlapping cortical fields of silver-stained tissue (x 20) of each 

kidney. Interstitial laminin and fibronectin staining was graded by semiquantitative scoring 
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of 12 different kidney sections from each animal into 0, 1+ and 2+ by a blinded observer 

(166). Interstitial cell counts were determined in 15 high power fields (hpf, 400x) by a 

blinded observer.  

 

 

3.2.5      RNA analysis 

3.2.5.1      RNA isolation   

From each animal aliquots of the kidneys were snap frozen in liquid nitrogen and stored at -

80 °C.  The RNA isolation protocol was suitably modified from Chomczynski’s method 

(174). 3 ml of solution D containing 8 µl of ß-mercaptoethanol/ml was taken in 15 ml falcon 

tube, to which a small piece of tissue from which RNA had to be isolated, was placed. The 

tissue was homogenized using ULTRA-TURRAX T25 at speed level 2 and placed on ice. To 

this 300 µl 2M sodium acetate solution was added and mixed gently, followed by addition of 

3 ml Roti-Aqua-Phenol and gentle mixing. A 1.6 ml mixture of chloroform/isoamylalcohol 

(49:1) was added to the contents of the falcon and vortexed for 20 seconds until milky white 

suspension resulted. The falcon tube was then placed on ice for 15 min and centrifuged at 

4000 x g at 4 °C. The upper phase (approximately 3 ml) was collected carefully in a fresh 

falcon tube, to which 3 ml isopropanol was added, incubated for 30 minutes at – 20 °C and 

centrifuged for 15 minutes at 4000 x g at 4 °C. The supernatant was then discarded carefully 

to avoid loss of pellet and falcon tube was inverted on a tissue paper to drain of the remaining 

isopropanol and 1 ml solution. The pellet was dissolved in 0.5 ml solution D and the solution 

was transferred to fresh DEPC-treated tubes and 0.8 ml isopropanol was added to it, mixed 

and placed at at – 20 °C for 30 minutes. This was followed by centrifugation for 15 minutes 

at 4000 x g at 4 °C; the supernatant was discarded carefully to retain the pellet. The pellet 

then was washed with 80% ethanol made in DEPC water, and vortexed again for 15 min and 

centrifuged at 4000xg at 4 °C. The supernatant was discarded and the tubes were inverted to 

drain of residual ethanol and the semi-dried pellet was dissolved in 100 µl DEPC water. A 10 

µl aliquot was used for the quality check and remaining RNA solution was stored at -80 °C 

until cDNA synthesis. The RNA was quantified and quality was determined by taking 2 µl of 

RNA solution diluted 50 times in DEPC water for calculating ratios 260/280 nm 

spectrophotometric OD measurement. The formula used was Extinction x dilution to obtain 

number of µl/ml of RNA per sample and ratio value approximately close to 1.6 was 

considered to be of acceptable quality. Further quality check (if necessary) was performed 

using a denaturing RNA gel, ran at 70-100 V for 1 hour and the gel was read on a gel 

documentation apparatus. 
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3.2.5.2      cDNA synthesis and real-time RT-PCR  

The RNA samples isolated according to the procedure detailed above were diluted in DEPC 

water to the concentration of 1 µg/20µl. A master mix was prepared with reagents such as 9 µl 

of 5x buffer (Invitrogen, Karlsruhe, Germany), 1 µl of 25 mM dNTP mixtute (Amersham 

Pharmacia Biotech, Freiburg, Germany), 2 µl of 0.1 M DTT (Invitrogen, Karlsruhe, Germany), 

1 µl of 40U/ µl RNasin (Promega, Mannheim, Germany), 0.5 µl of Hexanucleotide (Roche, 

Mannheim, Germany), 1 µl of Superscript (Invitrogen, Karlsruhe, Germany) or ddH2O in the 

case of the control. The master mix was made to the volume of 15 µl and added to 1 µg/ 20µl 

RNA samples were taken in separate DEPC treated microcentrifuge tubes, which were mixed 

and placed at 42 °C on a thermal shaker incubator for 1 hour. After 1 hour the cDNA samples 

were collected at placed at -20 °C until use for real-time RT-PCR analysis.  

The cDNA samples prepared as described above were diluted 1:10 a dilution for the real-time 

RT-PCR. The real-time RT-PCR was performed on a TaqMan® ABI 7700. The quantitative 

PCR for mRNA is based on the employment of sequence-specific primers and likewise 

sequence-specific probes. The latter is tagged at both ends with a fluorescent molecule. The 

quencher absorbs TAMRA (at the 3’- End) the fluorescence of the other reporter tagged 

material such as FAM or VIC at the 5’- End. The TaqMan® universal PCR master mix 

(Applied Biosystems, Darmstadt, Germany) contained Taq polymerase possessing a 5’→ 3’ 

polymerase activity and a 5’→ 3’ exonuclease activity. During the elongation phase of the 

PCR, specifically bound probe was hydrolyzed by the exonuclease and the 5’-tag was set free. 

With every newly synthesized DNA strand fluorescent tag material was set free and the 

resulting fluorescence was measured at 488 nm. The resulting fluorescence signal is directly 

proportional to the quantity of DNA synthesized. The CT value (= “Cycle Threshold”) was 

computed for each sample. This is the cycle number, with which the reporter fluorescence 

signal breaks through a user-defined threshold.  The TaqMan® universal PCR master mix 

containing, the forward primers and reverse primers (final concentration of 300 nM) and the 

probe (final concentration of 100 nM) was placed on ice. In the TaqMan® universal PCR 

master mix contained are the PCR buffers, dNTPs and the AmpliTaqGold® previously 

mentioned (Taq polymerase without 3’→ 5’ exonuclease activity). 18 µl of the mastermix was 

pipetted into each well of a 96-well plate and 2 µl of template (DNA dilution) was added to 

each of these wells. The plate was sealed and centrifuged at 280 xg and analyzed using 

TaqMan® ABI 7700. For the TaqMan®  RT-PCR the following temperature settings were 

used: The first incubation was carried out for 2 minutes at 50 °C followed by 95 °C for 10 

minutes so as to activate the polymerase. Templates were amplified during 40 cycles each 
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comprising 15 seconds incubation at 95 °C followed by 1 minute incubation at 60 °C. The RT-

PCR for the housekeepers (18S rRNA or GAPDH) was carried out under similar conditions. 

The CT values were recorded using the ABI PRISM Sequence Detection software (version 1.0) 

and the results were evaluated in relation the respective housekeepers. In all cases controls 

consisting of ddH2O were negative for target and housekeeper genes. Oligonucleotide primer 

(300 nM) and probes (100 nM) were used for RT-PCR described in section C.1.3. Primers and 

probes for murine Ccl2, Ccl5 and 18S rRNA were obtained as predeveloped assay reagents 

from PE Biosystems. 

 

 

3.2.6 Statistical analysis 

Data are presented as mean ± SEM. Intravital microscopy data were analysed using one-way 

ANOVA followed by Student-Newman-Keuls test, using SigmaStat Software (Jandel 

Scientific, Erkrath, Germany). Comparison of groups was performed using univariant 

analysis of variance and post-hoc Bonferroni`s correction was used for multiple comparisons 

(in vitro data). Paired Student`s t-test was used for the comparison of single groups (in vivo 

data of Alport model). A value of p < 0.05 was considered to indicate statistical significance. 

Survival curves were compared by Kaplan-Meier analysis using log-rank two-tailed testing. 
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4.  RESULTS 

4.1  Role of CCR1 for the progression of Alport disease 

4.1.1 CCR1 blockade and survival of COL4A3-deficient mice 

Alport disease is characterized by glomerulosclerosis and subsequent progressive 

tubulointerstitial injury, leading to ESRD. In human Alport disease and in COL4A3-deficient 

mice, disease progression is associated with considerable interstitial inflammatory monocytic 

cell infiltrates, but their functional role for disease progression remains unclear (175, 176, 

177). 

We hypothesized that CCR1 blockade can reduce interstitial leukocyte recruitment and 

activation during progressive renal fibrosis and prolong survival in COL4A3-deficient mice. 

This question was addressed by treating COL4A3-deficient mice and wild-type mice with 

either BX471 in vehicle or vehicle only. Vehicle-treated COL4A3-deficient mice showed a 

mean survival of 69 days (95% confidence interval 64 to 74 days) while daily treatment with 

BX471 from week 6 increased mean survival to 86 days (95% confidence interval 80 to 92 

days, p = 0.0002, Figure 12). Mortality of COL4A3-deficient mice was likely to be related to 

uremic death as within the last week of life the physical activity of COL4A3-deficient mice 

continuously declined until death as noted in previous studies (165, 166). Wild-type control 

mice remained healthy until the end of the study at week 20. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
Figure 12.  Survival of collagen 4A3-deficient mice.  

Mice were treated with either BX471 in vehicle or vehicle alone as indicated. Survival is 
illustrated as Kaplan-Meier curve.  
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4.1.2  Interstitial macrophages and tubulointerstitial injury in COL4A3-

deficient mice 

We hypothesized that improved survival in BX471-treated COL4A3-deficient mice was 

caused by prevention of renal disease progression. Some additional studies were performed 

using the same treatment protocol as before but where COL4A3-deficient mice were 

sacrificed at the age of 9 weeks, for collection of renal tissue.  

Glomerular injury: In vehicle-treated COL4A3-deficient mice proteinuria increased over 

time until the end of the study. By contrast in BX471-treated mice proteinuria did not 

increase from week 6 and showed a significant reduction of protein/creatinine ratios in urines 

compared to vehicle-treated mice at week 9 (Figure 13). This was consistent with a reduced 

number of glomeruli with severe glomerulosclerotic lesions in BX471-injected COL4A3-

deficient mice (Table 5, Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Proteinuria of collagen 4A3-deficient mice.  

Urinary protein/creatinine ratios from urine samples taken at weekly intervals in vehicle-
treated (black line) and BX471-treated COL4A3-deficient mice (dotted line). Values 
represent means ± SEM. 
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 BX471 did not affect the number of Ki-67 positive proliferating glomerular cells (Table 5, 

Figure 14). No statistical significant differences were noted in BUN and serum creatinine 

levels in vehicle- and BX471-treated COL4A3-deficient mice at week 9.  

 

 

 

Table 5.  Serum, urinary, and histological findings in Collagen4A3-deficient mice.  

  
Wild-type + vehicle 

    (n = 7) 

COL4A3-/- + vehicle 

(n = 8) 

COL4A3-/- + BX471 

(n = 10) 
     

 

Renal function  

 BUN [mg/dl] 

 serum creatinine [mg/dl] 

  

23.1 ± 2.8 

0.39 ± 0.05 

  

69.5 ± 19.8*  

0.52 ± 0.11* 

  

65.9 ± 13.4*   

0.50 ± 0.04* 
     

Glomerulosclerosis score  

0 (no lesion in %) 

  

89 ± 7  

  

 6 ± 5*  

  

20 ± 9*#   

1    [1 - 24%]  11 ± 10    10 ± 4   23 ± 11*#   

2    [25 - 49%]  0 ± 0    10 ± 4*   12 ± 9*   

3    [50 - 74%]  0 ± 0    25 ± 9*   18 ± 7*   

4    [75 – 100%]  0 ± 0    49 ± 11*   27 ± 13*#   
     

Cellular response  [cells/glom. or hpf]    

 Glom.     Ki-67+       0.1 ± 0.1  1.0 ± 0.3* 1.2 ± 0.4* 
     

Interst.    F4/80+       1.9 ± 0.7    24.3 ± 2.3*   17.9 ± 3.2a# 
     

Tubular   Ki-67+       0.4 ± 0.2  1.6 ± 0.8* 3.2 ± 0.7* # 

              ssDNA+      0.1 ± 0.0    1.8 ± 0.4 *    0.7 ± 0.4 * # 
 

 

 

 

    

Peritubular capillaries [capillary cross sections/hpf]    

 MECA-32 +         66.7 ± 10.3  33.8 ± 8.6* 59.3 ± 9.0*# 
 

 

    

Interstitial matrix deposition     

Fibronectin  [% hpf]  0.0 ± 0.0 1.1±0.4*  1.2±0.4* 

Laminin  [% hpf]  0.0  ± 0.0 1.8±0.3* 1.3 ±0.2* #  

Values are means ± SEM, *  p < 0.05 vs. wild-type,  # p < 0.05 BX471 vs. vehicle 
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Figure 14.  Renal histopathology in COL4A3-deficient mice.    

Renal sections of wild-type and COL4A3-deficient mice were stained with periodic acid 
Schiff solution or for the indicated markers as described in methods. For quantification see 
table 5, original magnification 400x. 
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Tubulointerstitial injury: Vehicle-treated COL4A3-deficient mice had diffuse tubular 

atrophy and interstitial fibrosis as compared to age-matched wild-type mice (Figure 14, Table 

5). COL4A3-deficient mice had increased numbers of Ki-67 positive proliferating and 

apoptotic tubular epithelial cells (Table 5, Figure 14). Interstitial damage in COL4A3-

deficient mice was associated with a robust increase of interstitial F4/80 positive 

macrophages. BX471 markedly reduced the numbers of interstitial F4/80 positive 

macrophages compared to vehicle-treated COL4A3-deficient mice (Figure 14, Table 5). This 

reduction of interstitial macrophages was associated with reduced numbers of ssDNA 

positive apoptotic tubular epithelial cells. By contrast, BX471 increased the numbers of Ki-

67 positive proliferating tubular epithelial cells, suggesting a role of interstitial macrophages 

for the balance of apoptotic cell death and tubular cell regeneration (Figure 14, Table 5). 

BX471 prevented the reduction in peritubular capillary cross sections observed in untreated 

COL4A3-deficient mice (Table 5, Figure 14), suggesting that CCR1-dependent macrophage 

recruitment is involved in interstitial microvascular injury of COL4A3-deficient mice. 

 

 

4.1.3  Renal infiltration of labeled macrophages in kidneys of COL4A3-deficient 

mice  

In order to confirm that BX471-induced reduction of interstitial macrophage counts is caused 

by blocking macrophage recruitment, we performed cell transfer studies with labeled 

macrophages. After injection fluorescently labeled F4/80 macrophages localized to the 

interstitial compartment of 8 weeks of COL4A3-deficient mice, while glomeruli and 

perivascular fields were negative (Figure 15A). Pretreatment with BX471 significantly 

reduced the numbers of labeled F4/80 macrophages that infiltrated into the renal interstitium 

of COL4A3-deficient mice (Figure 15B).  
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Figure 15. Renal infiltration of labeled macrophages in kidneys of COL4A3-deficient 

mice.  

A. COL4A3-deficient mice 8 weeks of age were injected intravenously with PKH26-labeled 
F4/80 macrophages isolated from spleens of donor mice. The cells were pretreated with 
either vehicle or BX471 as indicated. Recipient mice received subcutaneous injections with 
either vehicle or BX471 before injection of the respective cells and kidneys were obtained 3 
hours after injection of cells and examined by fluorescence microscopy. Fluorescence-labeled 
cells locate to the renal interstitium, original magnification 400x.  
B. Cell counts for interstitial labeled F4/80 macrophages were determined by fluorescence 
microscopy from 15 hpf. Values are means ± SEM. * p<0.001. 
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4.1.4  Interstitial renal fibrosis 

The degree of interstitial renal fibrosis was compared in kidneys of mice from all groups. 

Vehicle-treated COL4A3-deficient mice showed an increase of the respective indices for 

damaged tubular cells, tubular dilatation, interstitial matrix, and interstitial volume when 

compared to age-matched wild-type mice (Figure 16). BX471 significantly reduced all these 

markers compared to vehicle-treated COL4A3-deficient mice (Figure 16). BX471 reduced 

the amount of interstitial laminin deposits as compared to vehicle-treated COL4A3-deficient 

mice, but BX471 had no effect on interstitial fibronectin deposits (Table 5).  
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Figure 16.  Renal fibrosis in COL4A3-deficient mice.  

A. Renal sections of wild-type and COL4A3-deficient mice were stained with silver. Images 
illustrate representative sections of kidneys from the respective groups at week 9 of age 
(original magnification 100x).  
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Figure 17.  Renal fibrosis in COL4A3-deficient mice.   

B. Morphometric analysis of cortical renal sections was performed as described in methods. 
Values represent means ± SEM of the respective index in 7-10 mice in each group. * p < 
0.001 vs vehicle-treated COL4A3-deficient mice, # p < 0.002 vs vehicle-treated wild-type 
mice. 
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4.1.5  Renal CCL5 expression in COL4A3-deficient mice 

For examining whether BX471 treatment affected the production of proinflammatory 

mediators, e.g. the CC-chemokine CCL5 in kidneys COL4A3-deficient mice we performed 

real-time RT-PCR for Ccl5 mRNA on total renal isolates from vehicle- and BX471-treated 

COL4A3-deficient mice at 9 weeks of age. We found that BX471 somewhat reduced renal 

Ccl5 mRNA expression although this was not statistically significant (Figure 18A).  
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Figure 18.  Renal CCL5 expression in COL4A3-deficient mice.   

A. Ccl5 mRNA expression was determined by real-time RT-PCR using total renal RNA from 
5-7 mice of each group. Ccl5 mRNA levels for vehicle- and BX471-treated COL4A3-
deficient mice are expressed per respective Gapdh mRNA expression of each kidney.  
*  p<0.05.  
 

 

Immunostaining localized CCL5 in vehicle-treated COL4A3-deficient mice to single 

periglomerular and interstitial cells but not to tubular epithelial cells or glomeruli. Treatment 

with BX471 markedly reduced the amount of CCL5 positive cells in the renal interstitium of 

COL4A3-deficient mice (Figure 18B). Together these data suggest that BX471 modulates the  

expression of CCL5 in kidneys of COL4A3-deficient mice, either by impairing recruitment 

of CCL5 producing cells to the kidney or possibly by directly inhibiting CCL5 production in 

resident renal macrophages.  
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Figure 18.  Renal CCL5 expression in COL4A3-deficient mice. 

B. Immunostaining for CCL5 was performed on paraffin-embedded renal sections as 
described in methods. Arrows indicate CCL5 positive cells in the renal interstitium and the 
periglomerular area in vehicle-treated COL4A3 mice. No CCL5 staining was detected in 
kidneys of BX471-treated COL4A3-deficient mice. Images illustrate representative sections 
of kidneys from the respective groups at week 9 of age (original magnification 400x). 
 

 

4.1.6  CCL5 production by J774 macrophages  

The role of cytokines such as TNF-α or IFN-γ for macrophage activation and CCL5 

production is well established. However, it is unknown whether CCR1 ligation contributes to 

the activation of tissue macrophages. We evaluated CCL5 production in cultured murine 

J774 macrophages after incubation with various cytokine combinations for 24 hours. A 

combination of IFN-γ and TNF-α induced marked CCL5 secretion by J774 macrophages. 

Adding the CCR1 ligand CCL3 to this cytokine combination increased CCL5 protein 

production by 50% (Figure 19). The CCR1 antagonist BX471 completely blocked the CCL3-

induced increase of CCL5 secretion, indicating that CCL3 mediates its effect on CCL5 

secretion through CCR1. CCL3 alone did not induce CCL5 secretion in J774 macrophages. 

These data suggest that CCR1 ligation by its chemokine ligand CCL3 contributes to 

macrophage CCL5 production, which may facilitate additional leukocyte recruitment and 

local inflammation in vivo. 
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Figure 19.  CCL5 production by J774 macrophages.  

J774 cells were stimulated with either 200 ng/ml IFN-γ, 500U/ml TNF-α, 500ng/ml CCL3, 
1µM BX471 or standard medium without supplements for 24 hours as indicated. CCL5 
protein production was determined in supernatants by ELISA. Results shown are from one of 
three comparable experiments, each performed in duplicate. Values are expressed as CCL5 
concentrations ± SEM. * p < 0.05. 
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4.1.7  CCR1 mediates intravascular adhesion and transendothelial migration of 

leukocytes 

In order to assess the role of CCR1 during the multistep recruitment process of intravascular 

leukocytes into inflamed tissues in vivo, we applied intravital microscopy of cremaster 

muscles in wild-type and CCR1-deficient mice, as well as in wild-type mice treated with the 

CCR1 antagonist BX471. Analysis was performed 3 hours after intrascrotal administration of 

CCL3. This technique allowed us to visualize and quantify the four following stages of 

leukocyte recruitment: rolling, adhesion, transendothelial diapedesis, and interstitial 

migration (Figure 20A).  
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Figure 20.  Intravital microscopy.   

A. Microscopic image of a CCL3-stimulated cremasteric postcapillary venule that is 
surrounded by leukocytes emigrated into the interstitial tissue (arrows). Objective 
magnification 400x. 
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Rolling phase: In the rolling phase transient interactions between activated endothelial cells 

and leukocyte surface molecules slow down circulating leukocytes. CCL3 prestimulation did 

not affect leukocyte rolling in wild type mice (Figure 20B) and no statistical significant 

differences were detected between the four groups of mice studied.  

Adherence phase: Leukocyte arrest on activated vascular endothelial cells is mediated by 

chemokine-driven activation of adhesion molecules and is a prerequisite for transendothelial 

migration. CCL3 prestimulation significantly increased leukocyte adhesion in wild-type mice 

(Figure 20C). CCL3-induced increase of leukocyte adhesion was not observed in CCR1-

deficient mice or in mice treated with the CCR1 antagonist BX471.  

Transendothelial migration phase: After adhesion leukocytes have to transmigrate through 

vascular endothelia and basement membranes in order to enter the interstitial compartment. 

CCL3 prestimulation significantly increased transendothelial migration of leukocytes in 

wild-type mice (Figure 20D). Lack of CCR1 or BX471 treatment reduced but did not 

completely block CCL3-induced leukocyte transmigration when compared to wild-type 

control mice.  

Interstitial migration phase: In interstitial tissue compartments leukocyte continue to 

migrate, but the role of CCR1 for this process is unknown. Interstingly, there was no 

significant difference between migration distances in cremaster muscles from either group, 

indicating that CCR1 does not play a role for interstitial migration of leukocytes (Figure 

20E). Systemic leukocyte counts, inner diameters of the postcapillary venules studied, cell 

velocity and shear rates were unaltered by CCL3 prestimulation, as these factors could 

compromise the comparison between CCL3-treated and control mice (data not shown).  
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Figure 20.  Intravital microscopy.   

B-E. Quantitative analysis of the respective parameters of leukocyte-endothelial cell 
interactions and leukocyte emigration as determined by intravital microscopy. Values 
represent means ± SEM in 7 mice of each group, * p< 0.05 vs sham,  p < 0.05 vs. wild-type 
mice.  
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4.2  Role of CCR1 for the progression of type 2 diabetic nephropathy 

 

4.2.1  Effect of uninephrectomy on diabetic nephropathy of db/db mice 

Albuminuria is the first functional marker of diabetic nephropathy in humans and db/db 

mice. In fact, 2 months old  db/db mice revealed increased albuminuria as compared to wild-

type mice of the same age (Figure 21A). Uninephrectomy performed in db/db (1K) mice at 6 

weeks of age was associated with higher albuminuria levels as compared to sham-operated 

(2K) db/db mice.  
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Figure 21.  Effect of uninephrectomy on diabetic nephropathy of db/db mice.  

A. Urinary albumin/creatinine ratios were determined in 2K wild-type mice (black bars), 2K 
db/db mice (grey bars), and 1K db/db mice (white bars). Values represent means ± SEM 
from 7-10 mice in each group.  
 

 

The nephrectomy-related impact on albuminuria further increased until 5 months of age, 

consistent with uninephrectomy accelerating diabetic nephropathy in db/db mice (178). 

Uninephrectomy may simply increase albuminuria by hyperfiltration and not necessarily via 

a CCR1-dependent mechanism. Therefore, we examined the renal expression of CCR1 in 1K 

and 2K db/db mice. We have previously shown that intrinsic renal cells do not express the 
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chemokine receptor CCR1 in the mouse kidney and that renal CCR1 expression originates 

from infiltrating macrophages and T cells (153). As appropriate antibodies that allow 

detection of CCR1 protein by cell fluorescence or immunostaining in mice are not available, 

we used real-time RT-PCR in order to determine the expression of Ccr1 mRNA in kidneys of 

db/db mice. Kidneys of 2 months old 2K db/db mice showed low Ccr1 mRNA expression 

which markedly increased until 6 months of age (Figure 21B). Renal Ccr1 mRNA expression 

further increased in 1K db/db mice.  
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Figure 21.  Effect of uninephrectomy on diabetic nephropathy of db/db mice.  

B. Quantitative real time RT-PCR analysis was performed on total cDNA derived from 
kidneys of 2 or 6 months old 2K db/db mice (grey bars) or 6 months old 1K db/db mice 
(white bars). The cDNA was amplified using primers specific for mCCR1 for 40 PCR cycles. 
The data shown are derived from pooled cDNA samples from 6-10 mice of each group and 
are expressed as ratio to respective 18s rRNA expression.  
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4.2.2 CCR1 antagonist reduces recruitment of macrophages to the renal 

interstitium of uninephrectomized db/db mice 

Next we tested whether the pharmacokinetic profile of the CCR1 antagonist BL5923  is 

affected by uninephrectomy and whether BL5923 can block macrophage recruitment to the 

renal interstitium of 1K db/db mice. The pharmacokinetic data show that the half-life of 

BL5923 is not prolonged in 1K db/db mice. The plasma compound levels were identical in 

sham-operated and uninephrectomized db/db mice (Figure 22A).  

A 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22.  Pharmacokinetic profile of BL5923 and recruitment of monocytes into the 

renal interstitium of db/db mice.   

A. BL5923 was applied once orally at 60 mg/kg p.o. to groups of six 2K db/db mice (closed 
circles) or 1K db/db mice (open squares). Blood samples were obtained at 30 min, 1, 2, 6, 
and 24 hours and the plasma level of BL5923 were determined by HLPC/MS and expressed 
as mean ± SEM in µg/ml. 
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Next, we performed cell transfer studies with ex vivo fluorescently labeled F4/80 positive 

monocytes into 6 months old 1K db/db mice that had been pretreated with a single dose of 

either BL5923 or vehicle. 3 hours after injection F4/80 cells were found to localize to the 

interstitial compartment of 1K db/db mice (Figure 22B). Pretreatment with BL5923 

significantly reduced the numbers of labeled F4/80 cells that infiltrated into the renal 

interstitium of 1K db/db mice (Figure 22C). Next we assessed white blood counts in mice 

treated with BL5923. A single dose of BL5923 decreased white blood counts in sham-

operated and uninephrectomized db/db mice (6.1 ± 0.6 x 103/µl vs. 3.2 ± 0.8 x 103/µl [sham-

operated] or vs. 3.4 ± 0.6 x 103/µl [uninephrectomized], p < 0.001, respectively). These data 

provide the rationale for using BL5923 to block interstitial macrophage recruitment in 1K 

db/db mice, an accelerated model of diabetic nephropathy. 
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Figure 22.  Pharmacokinetic profile of BL5923 and recruitment of monocytes into the 

renal interstitium of db/db mice.  

B. 1K db/db mice 6 months of age were injected intravenously with PKH26-labeled F4/80 
macrophages isolated from spleens of donor db/db mice. Recipient mice received 
subcutaneous injections with either vehicle or BL5923 before injection of the respective cells 
and kidneys were obtained 3 hours after injection of cells and examined by fluorescence 
microscopy. Fluorescence-labeled cells locate to the renal interstitium, original magnification 
400x.  
 

VehicleVehicle BL5923BL5923

F4/80 macrophages



RESULTS    
 

 

71

 
C 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22.  Pharmacokinetic profile of BL5923 and recruitment of monocytes into the 

renal interstitium of db/db mice.  

C. Cell counts for interstitial labeled F4/80 monocytes were determined by fluorescence 
microscopy from 15 hpf. Values are means ± SEM. * p<0.001. 
 
 

 

 

4.2.3  BL5923 reduces interstitial macrophage counts and tubulointerstitial  

injury in uninephrectomized db/db mice 

As BL5923 can block interstitial macrophage recruitment in 1K db/db mice, BL5923 

treatment may have beneficial effects on the progression of diabetic nephropathy associated 

with tubulointerstitial injury and interstitial fibrosis. We initiated oral administration of 

BL5923 (60 mg/kg, b.i.d.) or vehicle at an age of 5 months in 1K db/db mice. Treatment was 

continued for 4 weeks when urine samples and tissues were collected for the assessment of 

diabetic nephropathy. During that period BL5923 treatment did not significantly affect blood 

glucose levels or body weight which were both markedly elevated in all groups of db/db 

mice as compared to non-diabetic wild type mice (Figure 23A and B). 
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Figure 23.  Blood glucose levels and body weight in db/db and wild-type mice.  
 
Blood glucose levels (A) and body weight (B) were determined at monthly intervals in 2K 
wild-type mice (open triangles), 2K db/db mice (black triangles), and 1K db/db mice (nil: 
black squares, dashed line; vehicle: black squares; BL5923: open squares). Values represent 
means ± SEM. 
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Glomerular injury: At 6 months of age diabetic glomerosclerosis was more prominent in 

1K db/db mice as compared to 2K db/db mice (Table 6, Figure 24). BL5923 had no effect on 

glomerulosclerosis or urinary albumin/creatinine ratios of 6 months old db/db mice (Table 6, 

Figure 24). BL5923 did not affect the number of Mac-2 positive glomerular macrophages or 

Ki-67 positive proliferating glomerular cells (Table 6, Figure 24). BUN levels were 

comparable in vehicle- and BL5923-treated 1K db/db mice.  
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Table 6.   Serum, urinary, and histological findings in sham-operated (2K) and  

                   uninephrectomized (1K) mice.  

 
  2K 1K 

  Wild-type 

+ nil 

(n = 7) 

db/db 

+ nil 

(n = 7) 

db/db 

+ nil 

(n= 9 ) 

db/db 

+ vehicle 

(n = 7) 

db/db 

+ BL5923 

(n=8) 

      

Renal function  

Urine albumin/creatinine 

BUN [mg/dl] 

 

0.1 ± 0.1 

27 ± 5 

 

0.4 ± 0.1 

42 ± 18 

 

0.3 ± 0.9 

51 ± 10   

 

0.2 ± 0.1 

37 ± 6 

  

0.2 ± 0.1 

37 ± 7  

      

Glomerulosclerosis score  

   0    [no lesion] 

 

90 ± 1 

 

12 ± 6 

 

0 ± 0  

 

0 ± 0 

  

   0 ± 0  

   1    [1 - 24%]  5 ± 2 20 ± 2 4 ± 5  3 ± 4   3 ± 5  

   2    [25 - 49%]  4 ± 4 31 ± 9     23 ± 8  27 ± 4 29 ± 6  

   3    [50 - 74%]  1 ± 2 26 ± 11     32 ± 3  39 ± 5 33 ± 4  

   4    [75 – 100%]  0 ± 0 11 ± 3  40 ± 10  31 ± 9  34 ± 7  

 

Cellular response  [cells/glom. or hpf] 

 Glom.     Ki-67+             0.8 ± 0.4    0.8 ± 0.3 

                Mac-2+        0.2 ± 0.1 1.7 ± 0.1    2.4 ± 0.7  2.6 ± 0.3  2.2 ± 0.5 

 Interst.    F4/80+        2.8 ± 0.3 8.4 ± 1.3  14.4 ± 2.1  14.1 ± 2.2   2.3 ± 1.5* 

                Ki-67+             6.2 ± 4.0     0.6 ± 0.3* 

 Tubular  Ki-67+             5.7 ± 1.5    2.2 ± 0.5* 

 

Peritubular capillaries [capillary cross sections/hpf] 

MECA-32 +           81 ± 10   103 ± 11* 

Values are means ± SEM, *  p < 0.05 vs. vehicle 
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Figure 24.  Renal histopathology in db/db mice.   
 
Renal sections from mice of all groups were stained with periodic acid Schiff solution or for 
the indicated markers as described in methods. For quantification see table 6. Original 
magnification 200-400x. 
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Tubulointerstitial injury: Indices for flattened or necrotic tubular cells, tubular dilatation, 

interstitial matrix, and interstitial volume as markers of tubulointerstitial damage and renal 

fibrosis were assessed in mice of all groups by morphometry. BL5923 significantly reduced 

all these markers in 1K db/db mice (Figure 25).  

Interstitial disease in vehicle-treated 1K db/db mice was associated with a robust increase of 

interstitial F4/80 positive macrophages which were markedly reduced by BL5923 (Figure 24, 

Table 6). CD3 positive lymphocytes were absent in kidneys of 6 months old db/db mice (not 

shown). The reduction of interstitial macrophages was associated with reduced numbers of 

Ki-67 positive proliferating tubular epithelial cells as well as proliferating cells in the 

interstitial compartment (Table 6, Figure 24). BL5923 prevented the reduction in MECA32 

positive peritubular capillary cross sections which was observed in vehicle-treated 1K db/db 

mice (Table 6). These findings show that blocking CCR1-dependent interstitial macrophage 

recruitment preserves tubulointerstitial injury in db/db mice.  
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Figure 25.  Renal fibrosis in db/db mice.   

A. Renal Renal sections from mice of all groups were stained with silver. Images illustrate 
representative sections of kidneys from the respective groups at 6 months of age (original 
magnification 100x). B. Morphometric analysis of cortical renal sections was performed as 
described in methods. Values represent means ± SEM of the respective index in 10 mice in 
each group. * p < 0.05 vs vehicle-treated 1K db/db mice. 
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4.2.4  CCR1 blockade reduces renal expression of proinflammatory mediators 

in uninephrectomized db/db mice 

Macrophages are a major source of proinflammatory and profibrotic mediators in renal 

injury. Therefore, we assessed whether the BL5923-induced reduction of interstitial 

macrophage infiltrates affects the expression levels of proinflammatory mediators in kidneys 

of 1K db/db mice. We used real-time RT-PCR to quantify the mRNA expression of 

chemokines and chemokine receptors which drive renal leukocyte recruitment in chronic 

kidney disease (106). BL5923 reduced mRNA levels of Ccl2, Ccr1, Ccr2, and Ccr5 in 

kidneys of 6 months old 1K db/db mice (Figure 26). Ccl5 mRNA expression levels were 

undetectable in kidneys of all groups. In addition, BL5923 reduced renal mRNA expression 

of Tgf-β1 and collagen I-α1, two markers of interstitial fibrosis in mice (Figure 26). These 

data indicate that blocking CCR1-dependent interstitial macrophage recruitment reduces the 

renal expression of proinflammatory mediators, i.e. Ccr1, Ccr2, Ccr5, and markers of 

interstitial fibrosis, e.g. Tgf-β1 and collagen I-α1 in 1K db/db mice. 
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B  
 
 
 
 
 
 
 
 
 
 
 
 
 
C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Renal mRNA expression of proinflammatory mediators and markers of 
fibrosis.   
mRNA expression for the CC-chemokines Ccl2 and Ccl5 (A), their respective CC-
chemokine receptors Ccr1, Ccr2, and Ccr5 (B), Tgf-β1, and collagen I-α1 (C) was 
determined by real-time RT-PCR using total renal RNA pooled from 6-10 mice of each 
group. mRNA levels for each group of mice are expressed per respective 18s rRNA 
expression. 
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4.2.5  CCR1 blockade inhibits the proliferation of J774 cells but not of tubular 

epithelial cells 

Our finding that BL5923 reduces the number of proliferating cells in the tubular as well as 

interstitial compartment raises the question whether these effects are directly mediated via 

CCR1 on these cells. We used J774 cells, a murine monocyte/macrophage cell line, and a 

murine tubular epithelial cell line (173) to assess Ccr1 mRNA expression and to study the 

impact of BL5923 on the proliferation rate of these cells. Ccr1 mRNA was not detectable in 

cultured tubular epithelial cells, while J774 expressed Ccr1 mRNA at high levels (Figure 

27A). The proliferation rate of both cell lines was low within 48 hours in the absence of FCS 

but markedly increased when FCS was added to the culture dishes (Figure 27B). When 

BL5923 was added the proliferation rate of Ccr1 positive J774 cells significantly declined. 

By contrast, BL5923 had no effect on the proliferation rate of Ccr1 negative tubular epithelial 

cells.  

 
A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27. BL5923 and the proliferation of J774 macrophages or tubular epithelial cells. 
 
A. The Ccr1 mRNA expression levels were determined in cultured J774 macrophages and 
tubular epithelial cells as described in methods. Data are expressed as means ± SEM of the 
ratio of Ccr1 mRNA and the respective 18s rRNA level. 
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B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27. BL5923 and the proliferation of J774 macrophages or tubular epithelial cells. 
 
B. The proliferation of cultured J774 macrophages and tubular epithelial cells was assessed 
after 72 hours using the CellTiter 96 Proliferation Assay as described in methods. Data are 
expressed at means ± SEM of the optical density (O.D.) read at a wavelength of 492 nm. * p 
< 0.05 vs. medium + 10% fetal calf serum (FCS). 
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5. DISCUSSION 
 
 

Different types of chemokine receptors are expressed in a restricted manner on specific 

leukocyte subsets. In the context of CKD, the leukocyte subsets of interest include 

monocyte/macrophages (97, 179). Alport disease and diabetic nephropathy are associated 

with interstitial macrophage infiltrates but their contribution to disease progression is unclear. 

We addressed this question by blockade of interstitial macrophage recruitment with specific 

CCR1 antagonists in COL4A3-deficient mice, a mouse model for human Alport disease and 

uninephrectomized db/db mice, an accelerated model for advanced nephropathy of type 2 

diabetes, because CCR1 mediates the macrophage recruitment to the renal interstitium. 

 

 

 

Effect of CCR1 blockade in COL4A3-deficient mice 

 

COL4A3-deficient mice develop CKD similar to human autosomal recessive Alport 

syndrome. CCR1 blockade was found to prolong survival in COL4A3-deficient mice. This 

survival benefit was associated with a reduction of interstitial macrophages, apoptotic tubular 

cells, and in morphometric indices of tubular atrophy, interstitial fibrosis, and preservation of 

peritubular capillaries. These data suggest a role for CCR1 for the progression of kidney 

disease in COL4A3-deficient mice. Macrophages are known to secrete mediators that induce 

apoptosis of tubular epithelial cells in vitro (180). In fact, a set of recent studies provided 

indirect evidence that interstitial macrophages may account for tubular epithelial cell 

apoptosis in COL4A3-deficient mice (176, 177). For example, in these mice disease 

progression is independent to TGF-β-dependent myofibroblast proliferation and interstitial 

matrix deposition as previously anticipated (177), but rather to macrophage-induced tubular 

atrophy (181). Our data now provide direct evidence that lower numbers of interstitial 

macrophages are associated with less apoptotic tubular epithelial cells in kidneys of 

COL4A3-deficient mice. In addition, increased numbers of proliferating tubular cells in 

BX471-treated COL4A3-deficient mice suggest that lower numbers of interstitial 

macrophages support tubular cell regeneration in COL4A3-deficient mice. These 

mechanisms may also explain our finding that BX471 preserved the loss of peritubular 
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microvasculature in COL4A3-deficient mice. Loss of peritubular capillaries is a known 

marker for advanced interstitial injury, and thought to cause ischemia, a stimulus for 

fibroblast proliferation and production of extracellular matrix (182). The beneficial effects of 

BX471 treatment on the renal microvasculature of COL4A3-deficient mice may also 

contribute to our observation that BX471 reduced severe glomerulosclerotic lesions and 

proteinuria in COL4A3-deficient mice. All these factors should account for prolonged 

survival seen with CCR1 blockade. However, serum creatinine and BUN levels did not differ 

between vehicle and BX471-treated mice which is consistent with the moderate effect of 

BX471 on survival and the high variability of these measures at 9 weeks of age. 

Furthermore, we showed a role of CCR1 for leukocyte adhesion to vascular endothelial cells 

using the technique of intravital microscopy which allowed to study the specific roles of 

CCR1 during the multiple steps of leukocyte recruitment. Our finding that, CCR1 is required 

for firm adhesion of leukocytes to activated vascular endothelium in vivo, is consistent with 

previously reported data with human macrophages and T cells in an in vitro flow chamber 

model (105). CCR1 does also contribute to transendothelial leukocyte migration but as lack 

of CCR1 or CCR1 blockade only partially impaired this process other factors appear to be 

involved. In vitro data from Weber et al. argue for CCR5 being one of these factors as 

BX471 in combination with a neutralizing antibody against CCR5 completely blocked 

transendothelial migration of human monocytes and T cells in vitro (141). Organ or 

compartment specificity of single chemokines or CCRs is a common finding in chemokine 

biology. Therefore, we have to consider the possibility, that our intravital microscopical data 

derived from the M. cremaster do not allow a conclusion about the role of CCR1 for 

leukocyte recruitment in mouse kidneys. We have addressed this question by injecting 

fluorescently-labeled macrophages into COL4A3-deficient mice. BX471 blocked the 

recruitment of macrophages into the renal interstitium of these mice suggesting that, reduced 

numbers of renal macrophages observed with BX471 treatment is caused by the mechanisms 

identified by intravital microscopy.  

Activated resident and infiltrating macrophages are a major source of renal chemokine 

secretion (103), which adds on the chemokines expressed by intrinsic renal cells (reviewed 

by ref. 98). By this mechanism renal macrophages support further leukocyte recruitment and 

renal inflammation (90). In fact, the CC-chemokine CCL5 can activate renal macrophages in 

a way that kidney disease progresses even independent of the total number of renal 

macrophages (104). We therefore questioned whether CCR1 does also contribute to the 

activation state of macrophages. We found that a combination of TNF-α, IFN-γ, and CCL3 

increased the production of CCL5. This mimics the in vivo situation of an inflammatory 
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microenvironment where CC-chemokines occur in concert with other proinflammatory 

cytokines. As BX471 completely blocked the CCL3-induced production of CCL5 in vitro we 

relate this effect exclusively to CCR1 and not to other CCRs that can bind CCL3. These data 

give rise to the hypothesis that CCR1 blockade can modulate the activation state of renal 

macrophages that are already present in the diseased kidney. This would occur in addition to 

the impaired recruitment of CCL5 producing cells which was demonstrated by decreased 

numbers of CCL5 positive cells in kidneys of BX471-treated mice. 

 

 

 

Effect of CCR1 blockade in type 2 diabetic db/db mice 

 

Available rodent models of diabetic nephropathy are frequently used to study the early 

glomerular changes of diabetic nephropathy (183). However, rodents usually do not develop 

advanced interstitial lesions as they occur in late stages of human diabetic nephropathy (184). 

Experimentally, in our study uninephrectomy was used to enhance the development of 

advanced diabetic nephropathy (185). 

CCR1 blockade reduced interstitial macrophage infiltrates in uninephrectomized (1K) db/db 

mice most likely by interfering with macrophage adhesion to activated endothelial cells of 

peritubular capillaries in the renal interstitium. BL5923, the orally available CCR1 antagonist 

used in our study, showed comparable activity in 1K db/db mice in blocking the recruitment 

of fluorescently labeled macrophages into the renal interstitial compartment of 1K db/db 

mice. Adhesion is an early and critical event in the multistep process of leukocyte evasion 

from the circulation (136). Thus, consistent with the low numbers of fluorescently labeled 

intrarenal macrophages in BL5923-treated 1K db/db mice, labeled macrophages could not 

retain at activated peritubular capillaries but were carried away with the peritubular blood 

flow. In addition, we found that CCR1 blockade reduces the proliferation of murine 

monocyte/macrophages in the presence of serum. This may represent another mechanism by 

which BL5923 reduced the number of interstitial macrophages in db/db mice. In fact, the 

number of interstitial proliferating cells was found to be reduced in BL5923-treated db/db 

mice. Furthermore, we found that a single dose of the CCR1 antagonist reduces the white 

blood count in db/db mice. Chemokine receptors do not only mediate leukocyte recruitment 

to peripheral tissues but are also involved in mobilizing monocytes from the bone marrow 

into the intravascular compartment (186). The role of CCR1 in this process needs to be 

explored in future studies. Together, CCR1 blockade is modulating the number of renal 
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interstitial macrophages by multiple mechanisms, e.g. lowering the number of white blood 

cells in the intravascular compartment, blocking extravasation into the renal interstitial 

compartment, and inhibiting macrophage proliferation. 

Selectively manipulating the number of interstitial macrophages in 1K db/db mice should 

allow to conclude on their functional role for the progression of diabetic nephropathy. Most 

interestingly, reduced numbers of interstitial macrophages were associated with improved 

peritubular vasculature and the extent of tubulointerstitial injury and interstitial fibrosis, all 

important predictors of disease progression in diabetic nephropathy (187, 188). These data 

indicate that the presence of macrophages in diabetic nephropathy contributes to renal injury, 

a mechanism that may be refered to as “inflammation” (83, 189, 190). Inflammatory or 

antiinflammatory phenotypes of renal macrophages are difficult to determine by 

immunostaining but best by their function in vivo (191). For example, interstitial 

macrophages produce large amounts of proinflammatory mediators, i.e. cytokines and 

chemokines, which add to the mediators produced by renal cells, i.e. in a positive 

amplification loop (162, 105). This observation made in non-diabetic types of kidney disease 

is likely also to apply to diabetic nephropathy in humans, because 1. Interstitial macrophage 

infiltrates are common in diabetic nephropathy (192) and 2. Patients with diabetic 

nephropathy excrete high levels of CC-chemokines into the urine. For example, the urinary 

excretion of CCL2 (formerly named as monocyte chemoattractant protein-1) indicates 

intrarenal inflammation (193, 137). Chemokine expression involves activation of protein 

kinase C in renal cells as well as immune cells infiltrates. Therapeutic intervention targeting 

protein kinase C can disrupt this positive amplification loop by reducing renal chemokine 

expression, subsequent recruitment of immune cells, and tubular injury in experimental and 

human diabetic nephropathy (194, 195). However, protein kinase C blockade cannot address 

the role of single chemokine ligands in the inflammatory lesion in diabetic nephropathy. 

Chow, et al. addressed the role of CCL2 in the pathogenesis of experimental diabetic 

nephropathy by inducing type I diabetes in CCL2-deficient mice (196). CCL2-deficient mice 

were largely protected from renal injury after streptozotocin injection which was associated 

with markedly reduced macrophage infiltrates in the glomerular and the tubulointerstitial 

compartments. While this study supports an important role of CCL2 in the pathogenesis of 

experimental diabetic nephropathy the role of interstitial macrophages for progression of 

diabetic nephropathy remains unclear. The selective recruitment of a certain immune cell 

subset can better achieved by delayed blockade of a single chemokine receptor that mediates 

the recruitment of this cell type to the compartment of interest, i.e. CCR1 for the recruitment 

of macrophages to the renal interstitium. Our data indicate that interstitial macrophages are a 
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major source and trigger of intrarenal cytokine and chemokine production in experimental 

diabetic nephropathy. Blocking CCR1-dependent interstitial macrophage recruitment reduced 

the mRNA expression of the CC-chemokine CCL2 in kidneys of 1K db/db mice, for which a 

crucial role in the progression of DN was recently demonstrated (193, 196). As a 

consequence of reduced intrarenal chemokine signaling and CCR1 blockade subsequent 

leukocyte recruitment was impaired in assocation with reduced renal mRNA expression of 

the proinflammatory chemokine receptors Ccr1, -2, and -5, factors not expressed by non-

immune renal cells in vivo. 

Blocking CCR1-dependent interstitial macrophage recruitment was also associated with less 

interstitial fibrosis. This was indicated by less renal Tgf-β1 and collagen I-α1 mRNA 

expression as well as interstitial collagen deposits in BL5923-treated 1K db/db mice. Direct 

effects of BL5923 on intrinsic renal cells in the renal tubulointerstitium are unlikely. We did 

not observe detect direct effects of BL5923 on tubular epithelial cells in vitro as these cells 

lack CCR1 expression.  

Together, these data identify a previously unrecognized role for interstitial macrophages for 

tubulointerstitial injury, loss of peritubular microvasculature, interstitial inflammation and 

fibrosis in type 2 diabetic db/db mice.  

 

 

Summary and future perspectives 

 

CCR1 antagonism with specific small-molecule antagonists can effectively prevent 

recruitment of macrophages into the renal interstitial compartment. CCR1 blockade proved to 

be effective in COL4A3-deficient mice, a mouse model for human Alport disease and 

uninephrectomized db/db mice, an accelerated model for advanced nephropathy of type 2 

diabetes. Remarkably, CCR1 blockade was even effective when treatment was initiated after 

the disease process was established. It remains to be evaluated whether CCR1 blockade has 

additive effects to current treatments of CKD. However, our data show that glomerular 

pathology and proteinuria remain almost unaffected by CCR1 blockade. Thus, chemokine 

receptors other than CCR1 (e.g. CCR2) may mediate to glomerular leukocyte infiltration. 

Based on the experimental data available, we propose that the therapeutic effects of CCR1 

antagonists –in combination with established therapies – should be evaluated in an attempt to 

slow down the progression of human chronic kidney diseases, which are associated with 

interstitial macrophage infiltrates. 
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7. ABBREVIATIONS 
 
aa   amino acids 

α5(IV)   IV collagen α5 chain 

AEC 3-Amino-9-ethylcarbazole 

ADAS   autosomal dominant Alport syndrome 

AR   autosomal recessive  

ARAS   autosomal recessive Alport syndrome 

AS   Alport syndrome  

BCA-1   B cell-attracting chemokine-1  

b.i.d   twice daily 

BM   basement membrane  

BRAK   breast and kidney-expressed chemokine  

BSA   bovine serum albumin 

BUN blood urea nitrogen 

BX471           CCR1 antagonist, R-N-[5-chloro-2- [2-[4- [(4-fluorophenyl)  

                 methyl]-2-methyl-1 piperazinyl]2 oxoethoxy] phenyl] urea HCl 

BL5923 CCR1 antagonist 

cDNA complementary DNA 

CCR1   CC chemokine receptor 1 

CINC   cytokine-induced neutrophil chemoattractant 

CKD   chronic kidney disease  

COL4A3, 4A4 collagen4A3, 4A4 

COL4A5, 4A6 collagen4A5, 4A6 

CRF    chronic renal failure  

CT   cycle threshold 

CTACK  cutaneous T-cell-attracting chemokine  

DARC Duffy antigen receptor for chemokines 

DC-CK1  dendritic cell chemokine 1 

ddH2O double distilled water 

DEPC Diethylpyrocarbonate 

DMEM  Dulbecco’s modified Eagle’s medium 

DMSO   dimethyl sulfoxide 
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DN   Diabetic nephropathy 

DNA Desoxyribonucleic acid 

dsDNA  double stranded DNA 

et al.   et alii = and others 

e.g. exempli gratia = for instance  

ECM   extracellular matrix 

EDTA   ethylendiamintetraacetic acid 

EGF epidermal growth factor 

ELC   EBI1 ligand chemokine 

ELISA Enzyme-Linked Immunosorbent Assay 

ENA78  epithelial cell-derived neutrophil-activating peptide 78 

ESkine   embryonic stem cell-derived chemokine  

ESRD end-stage renal disease 

FACS fluorescence activated cell sorting 

FCS fetal calf serum 

FGF fibroblast growth factor 

FITC fluorescein isothiocyanate 

FSGS focal segmental glomerulosclerosis 

GAPDH glyceraldehyd-3-phosphate-dehydrogenase 

GBM   glomerular basement membrane 

GCP-2   granulocyte chemotactic protein-2 

GDM   Gestational diabetes mellitus  

GDP Guanosine-5’- diphosphate 

GFR glomerular filtration rate 

GN   glomerulonephritis 

GPCR   G protein-coupled receptor 

Gro   growth-regulated oncogene 

GTP   guanosine-5'-triphosphate 

HCC   hemofiltrate CC chemokine  

HCC-1   hemofiltrate CC-chemokine 

HE Hematoxylin-Eosin 

HIV human immunodeficiency virus 

HLA human leukocyte antigen 

hpf high-power-field 

ICAM-1 intercellular adhesion molecule-1 
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i.e. id est= in other words 

IgA immunoglobulin A 

IL interleukin 

IL-8   interleukin-8  

IFN-γ interferon-γ 

IP-10   interferoninducible protein-10  

I-TAC   interferoninducible T-cell α chemoattractant 

i.v. intravenous 

J774   murine macrophage cell line 

JAK/STAT  Janus kinase/signal transducers and activators of transcription 

KC   keratinocyte-derived chemokine  

K/DOQI  Kidney Disease Outcomes Quality Initiative 

Ki inhibitor constant 

LARC   liver and activation-regulated chemokine  

LPS lipopolysaccharide 

MACS magnetic assisted cell sorting 

MAP kinases mitogen-activated-protein kinases 

MCP   monocyte chemoattractant protein  

MCP-1 monocyte chemoattractant protein-1 

MCP-2   monocyte chemoattractant protein-2 

MDC macrophage derived chemokine 

MEC   mucosaeassociated epithelial chemokine  

Met-RANTES N-terminal with Methionin modified CCL5/RANTES 

MIG   monokine induced by interferon-γ 

min   minute/minutes 

MIP   macrophage inflammatory protein  

MIP-1 macrophage inflammatory protein-1 

ml/min   milliliter/minute 

MPIF   myeloid progenitor inhibitory factor  

MPIF-1  myeloid progenitor inhibitory factor-1 

mRNA messenger ribonucleic acid 

n.d. nondeteclable 

NAP-2   neutrophil-activating peptide-2  

NC noncollagenous (domain) 

NF-κB nuclear factor-κB 
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O.D.   optical density 

ORF   open reading frame 

PBS phosphate buffered saline 

PC   peritubular capillaries 

PCR polymerase chain reaction 

PDGF platelet derived growth factor 

PF4 platelet factor 4 

pH hydrogen ion exponent 

PhD Philosophiae Doctor 

pmp per million population 

RRT renal replacement therapy 

RANTES regulated on activation normal T cell expressed and secreted  

Real-time RT-PCR Real-time reverse transcription-polymerase chain reaction 

RNA ribonucleic acid 

Rnase Ribonuclease 

rRNA   ribosomal ribonucleic acid 

ROIs   Regions of interest 

RPM   revolutions per minute 

RPMI Medium cell culture medium  

RT   room temperature 

s    second 

SCM-1β  single cysteine motif-1β chemokine 

SDF-1   stromal cell-derived factor-1  

SLC   secondary lymphoid tissue chemokine  

SMA smooth muscle actin 

SR-PSOX  scavenger receptor for phosphatidylserine and oxidized lipoprotein 

SSC saline-sodium citrate Puffer 

ssDNA single-stranded DNA 

STZ   streptozotocin 

TARC   thymus and activationregulated chemokine  

TCA-3   T-cell activation protein-3  

TECK   thymus-expressed chemokine  

TIA transient ischemic attack 

TFA trifluoroacetic acid 

TGF-β transforming growth factor-β 
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Th1   T helper cell type 1 

TLR   Toll-like receptors 

TM   transmembrane (domain) 

TNF-α tumor necrosis factor-α 

U   Units 

UUO unilateral ureteral obstruction 

VCAM-1 vascular cell adhesion molecule-1 

vs versus 

v/v   volume/volume 

WT   wild type 

XLAS   X-linked Alport syndrome 

1K   1 kidney 

2K   2 kidneys 
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