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sehr angenehme und freundschaftliche Atmosphäre danken. Dabei gebührt mein beson-
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Zusammenfassung

In den vergangenen Jahren hat die Komplexität von Datensätzen immer weiter zugenom-
men, wodurch flexiblere Analyseverfahren erforderlich wurden. Ein solches flexibles Ver-
fahren ist die Regressionsanalyse basierend auf einem strukturiert additiven Prädiktor.
Dieser ermöglicht eine geeignete Modellierung von unterschiedlichen Informationsarten,
z.B. mittels glatter Funktionen für räumliche Information, nichtlinearer Funktionen für
stetige Kovariablen oder mittels Effekten für die Modellierung gruppenspezifischer Hetero-
genität. In dieser Arbeit geben wir einen Überblick über viele wichtige Funktionen. Außer-
dem setzen wir einen Schwerpunkt auf Interaktionseffekte und führen eine Möglichkeit zur
einfachen Modellierung einer komplexen Interaktion zweier stetiger Kovariablen ein.
Ein zentraler Aspekt dieser Arbeit ist das Thema der Variablenselektion und Glättungs-
parameterbestimmung in strukturiert additiven Regressionsmodellen. Zu diesem Zweck
führen wir einen effizienten Algorithmus ein, der gleichzeitig relevante Kovariablen auswählt
sowie den Glattheitsgrad ihrer Effekte bestimmt. Mit diesem Algorithmus ist es sogar
möglich, komplexe Situationen mit vielen Kovariablen und Beobachtungen zu bewältigen.
Dabei basiert die Bewertung von verschiedenen Modellen auf Gütekriterien wie z.B. dem
AIC, BIC oder GCV. Die methodische Entwicklung wurde stark durch Fallstudien aus
unterschiedlichen Bereichen motiviert. Als Beispiele analysieren wir zwei verschiedene
Datensätze bezüglich der Einflussfaktoren auf Unterernährung in Indien sowie auf die
Tarifberechnung von Versicherungen. Außerdem untersuchen wir das Verhalten unseres
Selektionsalgorithmus anhand mehrerer ausführlicher Simulationsstudien.

Abstract

In recent years data sets have become increasingly more complex requiring more flexible
instruments for their analysis. Such a flexible instrument is regression analysis based on a
structured additive predictor which allows an appropriate modelling for different types of
information, e.g. by using smooth functions for spatial information, nonlinear functions for
continuous covariates or by using effects for the modelling of cluster–specific heterogeneity.
In this thesis, we review many important effects. Moreover, we place an emphasis on inter-
action terms and introduce a possibility for the simple modelling of a complex interaction
between two continuous covariates.
Mainly, this thesis is concerned with the topic of variable and smoothing parameter se-
lection within structured additive regression models. For this purpose, we introduce an
efficient algorithm that simultaneously selects relevant covariates and the degree of smooth-
ness for their effects. This algorithm is even capable of handling complex situations with
many covariates and observations. Thereby, the validation of different models is based
on goodness of fit criteria, like e.g. AIC, BIC or GCV. The methodological development
was strongly motivated by case studies from different areas. As examples, we analyse two
different data sets regarding determinants of undernutrition in India and of rate making for
insurance companies. Furthermore, we examine the performance or our selection approach
in several extensive simulation studies.
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Chapter 1

Introduction

The issues addressed in this thesis arise in the course of practical applications in many

different areas like e.g. marketing, insurance, development economics, ecology and many

more. The introduction will explain the central issues on the basis of an example from an

insurance company and give an outline of the thesis.

The example confronts us with the following problem: during one year, a Belgian insurance

company selling car insurance policies gets claim reports from some of their policyholders

together with the costs which have arisen by these claims. Additionally, the company has

certain information about their policyholders: gender, age, address, type and age of the

car, etc. Based on this data our objective is to calculate (at least relatively) fair premi-

ums: Policyholders who produce high costs for the company due to many and/or expensive

claims are supposed to pay higher fees than the rest. Hence, we need to detect charac-

teristics of policyholders who produce high costs and characteristics of policyholders with

low costs. Therefore, the relation between each variable of interest, i.e. number and costs

of claims, and the influencing variables, i.e. characteristics of the policyholders, has to be

analysed. With a simple descriptive analysis, it is possible to study the relation between

the response variable and one (or possibly two) independent variables at a time. Figure

1.1, for instance, shows average response values for the Belgian districts and, separately

for men and women, average response values for the grouped policyholder’s age. Both

response variables vary over the Belgian districts: the highest average logarithmic claim

size is observed in the extreme south of Belgium whereas the same area has the lowest

average claim frequencies. High average claim frequencies can be observed in the area

around Brussels. The policyholder’s age also shows variation in both response variables:

the average logarithmic claim size is especially high for young and old drivers whereas the

average claim frequency decreases with age. With policyholder’s age, the average values

of both response variables differ between the sexes but show a similar trend for each sex.
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Figure 1.1: Average response variables logarithmic claim size (left column) and claim fre-
quency (right column) each calculated over three successive years of age separately for men
and women (upper row) and over the Belgian districts (bottom row).

Instead of considering the effect of only one influencing factor at a time as in figure 1.1,

our objective is to obtain a model for each response variable which considers all influencing

variables simultaneously. An adequate instrument is a special, very flexible form of regres-

sion analysis which is explained in chapter 2 and which assumes the following relation

between the expectation of the response variable y (either logarithmic claim size or claim

frequency in the example) and influencing variables x1, . . . , xq:

E(y|x1, . . . , xq) = h(γ0 + f1(x1) + . . . + fq(xq)),

where the functions fj and the parameter γ0 are estimated from the data at hand but the so

called response function h is fixed. The choice for each function fj depends on the type of
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variable xj and on assumptions about the function’s smoothness. For many different types

of covariates, chapter 2 describes functions which adequately model the respective effect.

For example, it is possible to estimate a smooth spatial effect for the districts of Belgium

which assumes that neighbouring regions behave similar (which is assumed due to a similar

traffic density or similar socio–demographic factors). The effect of the policyholder’s age

can be modelled by a smooth nonlinear function because figure 1.1 indicates a nonlinear

relationship between age and each of the two response variables. Nonlinear functions for

continuous covariates can even deal with effects whose functional form is unknown. It is

also possible to estimate two separate nonlinear age effects for men and women. More-

over, we introduce a special kind of function (which we call ANOVA type decomposition)

for the simple modelling of a complex nonlinear interaction effect between two continuous

covariates.

The choice of the response function h depends on the distribution assumed for the response

y and is chosen such that the estimated expectations lie in the correct domain. For many

frequently used distributions, possible choices for h are given in the second chapter. More-

over, we describe how the estimation of functions and regression parameters is performed.

In the second chapter we assume that all influencing variables x1, . . . , xq which are used in

the regression model have an influence on the response y. In chapter 3 we want to dismiss

this assumption out of the following reasons: the assumption implies, that before we esti-

mate the regression model we have to carefully choose the covariates entering the model

from all available variables. Thereby, the goal is to consider all important factors but to

limit the size of the model. For this selection by hand, a descriptive analysis like in figure

1.1 can provide useful clues. However, descriptive plots often do not clearly show whether

certain covariates are actually important. For instance, the policyholder’s age clearly has

an effect on both response variables. But based on figure 1.1 one cannot definitely decide,

whether an interaction between age and gender is necessary for the logarithmic claim size.

Moreover, only one variable (or one interaction) at a time can be examined. Hence, the

variation visible in a descriptive plot could also be due to other more important covariates

whose behaviour differs over the range of the examined variable. The result of such depen-

dencies may be that the less important covariate loses its influence on the response if all

covariates are considered in a common model. For instance, regional differences as visible

in figure 1.1 are probably to a large extent due to differences in traffic density and allowed

speed: In urban areas there is high density of traffic at low allowed speed while this is the

opposite in rural areas. Hence, if the two factors traffic density and allowed speed were

available (what is not the case) and included in the regression model, the spatial effect may

vanish. Hence, after a descriptive analysis, we do not definitely know which covariates or

terms should be included in the model.

Furthermore, nonlinear functions fj include an additional parameter which governs the
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smoothness of the respective function. The methods in chapter 2 can only deal with a

fixed smoothing parameter so that the degree of smoothness must be known beforehand.

For the spatial function, this implies that we know how similar neighbouring regions ac-

tually are: completely alike, sharing some common characteristics or completely different?

However, these facts are usually unknown.

In conclusion, when analysing a data set, we have to deal with some or all of the following

questions:

• Which terms (covariates) are to be included in the model?

• Which degree of smoothness is appropriate for a nonlinear function?

• Does a nonlinear effect vary over the range of another variable?

• Is there a complex interaction between two continuous variables?

• Does the data contain spatial heterogeneity?

• Does the data contain heterogeneity between groups or clusters?

These questions are addressed in the third chapter. We introduce selection algorithms that

are designed to answer these questions by automatically selecting a good model from a large

set of possible models. Thereby, the evaluation of competing models is based on goodness

of fit criteria. An emphasis is placed on the practicability of the selection algorithms even

for complex models with many available covariates.

Consider our starting example again: For the logarithmic claim size (logs) the question

has arisen if an interaction term between the policyholder’s age (ageph) and gender (s) is

necessary. Hence, we specify the largest possible model by

logs = γ0 + f1(ageph) + g1(ageph) · s + fspat(dist) + gspat(dist) · s + γs s + . . . + ε,

where the effect of the policyholder’s age and the spatial effect over the Belgian districts

(dist) may vary between the sexes. Our automatic selection algorithm chooses the model

logs = γ0 + f1(ageph) + g1(ageph) · s + fspat(dist) + γs s + . . . + ε,

where only the interaction effect of the policyholder’s age and gender is selected but not

the interaction between the spatial effect and gender.

Chapter 4 extends the contents of the preceding chapters to the special case of multino-

mial logit models. Here, the response variable is categorical and can have more than two

possible outcomes. Hence, this chapter deals with a special kind of multivariate response,

in contrast to chapters 2 and 3 which deal with univariate response variables.

Chapter 5 addresses the subject of credible intervals for regression parameters and nonlin-

ear functions. Confidence bands of nonlinear functions are an important optical tool that
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help to detect areas of the function with a larger uncertainty. Moreover, we consider the

issue of model selection uncertainty: The selected model depends on the available data and

would probably be different for a new data sample. Hence, we are interested to examine

the stability of the selected model.

We implemented the selection algorithms described in chapters 2–5 in the programming

language C++ within the software package BayesX. BayesX is available free of charge via

internet from

http://www.stat.uni-muenchen.de/∼bayesx
Chapter 6 explains how a data analysis based on this methodology can be performed

using BayesX.

We tested our selection algorithm in excessive simulation studies and compared it to com-

peting approaches. The results are presented in chapter 7.

In chapter 8 we analyse two real data sets using the methodology of chapters 2–5. First

(in section 8.1) we continue the car insurance application and select a model both for the

logarithmic claim size and for the number of claims. Thereby, a focus is placed on in-

teraction effects with regard to the policyholder’s gender. Additionally, for each response

variable we use the methodology from chapter 5 to examine model selection uncertainty,

i.e. the stability of the selected model.

The second application described in section 8.2 examines child undernutrition in India.

Here, the response variable is the nutritional condition of a child compared to the aver-

age nutritional status of children from a well–nourished reference population. We analyse

chronic undernutrition which is indicated by an insufficient height for age also called stunt-

ing. Again, we focus on interaction effects with regard to the children’s gender.

The appendix refers to selected topics of chapters 2 and 3 and explains these topics in

greater detail.

Finally, we want to mention that based on the methodology from chapter 3 we published

two papers in proceedings volumes: Steiner, Belitz & Lang (2006) and Belitz & Lang

(2007).
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Chapter 2

Univariate Structured Additive
Regression Models

This chapter gives an introduction to regression models based on a structured additive

predictor (STAR models). These regression models are very general and can deal with

different types of dependent variables and also with different kinds of covariates. In the

first section 2.1 of this chapter, we give a short introduction in regression models including

the generalisation to STAR models. How to adequately approximate different covariate

effects is the subject of section 2.2. The last section 2.3 deals with parameter estimation

in the class of STAR models.

2.1 Introduction

The objective of regression analysis is to measure the influence of some variables xj, j =

1, . . . q, the so–called covariates, on a further variable y called response or independent

variable. The model most widely used is the classical linear model. This model requires

a Gaussian distributed (or under less strict assumptions at least continuous) response

variable. The relation between the conditional mean of the response and the covariates is

assumed to be

E(y|x1, . . . , xq) = γ0 + γ1x1 + . . . + γqxq = γ′x =: η. (2.1)

Through their value and algebraic sign, the regression coefficients γ1, . . . , γq determine the

direction and the strength of influence of their respective covariate. The parameter γ0 is

called constant term or intercept. Parameter η is referred to as linear predictor because

formula (2.1) is linear in the regression coefficients and the relation between covariates and
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expectation is also linear.

If the response variable is no longer Gaussian distributed but belongs to an univariate

exponential family, the generalised linear model can be used. Here, it is assumed that the

linear predictor η and the conditional expectation are linked through a response function

h, i.e.

E(y|x1, . . . , xq) = h(γ0 + γ1x1 + . . . + γqxq) = h(γ′x) = h(η). (2.2)

Usually, function h is chosen such that the values of η are transformed to the domain of

the expected value. For Gaussian distributed responses, the expectation can adopt all real

values. Hence, a transformation is not necessary and the identity function can be chosen

for h, i.e. h = id. Examples for non–Gaussian response variables and appropriate choices

for function h are given in section 2.3.3 of this chapter. In a similar way it is also possible

to deal with multicategorical response variables, see chapter 4.

In this thesis, we replace the linear predictor

η := γ0 + γ1x1 + . . . + γqxq = γ′x (2.3)

by a semiparametric structured additive predictor (compare Fahrmeir, Kneib & Lang

(2004)) of the form

η := γ0 + f1(x1) + . . . + fq(xq) + γ1u1 + . . . + γpup = f1(x1) + . . . + fq(xq) + γ′u. (2.4)

The reason for using a semiparametric predictor lies in the strong assumptions made by

the linear predictor. The linear predictor assumes: (i) a linear influence of the covariates

on the predictor or even on the response in the Gaussian case; (ii) independence of the

observations. In many situations, however, the assumptions are not adequate and we are

confronted with one or more of the following problems:

• The effect of some of the continuous covariates may be of a (unknown) nonlinear

form.

• The observations can be spatially correlated.

• The observations can be temporally correlated.

• There can be unobserved heterogeneity among individuals or units that is not ac-

counted for by the available covariates.

• There may be a complex interaction between two continuous variables.

The structured additive predictor (2.4) overcomes the difficulties by replacing the linear

effects γjxj by functions fj(xj). The functions fj can be of different type according to
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the different types possible for the covariates xj. For instance, the predictor is able to

model nonlinear effects of continuous variables or time scales and it can deal with spatial

or unit–specific information. The estimation of complex interactions between two covari-

ates is also possible. Possibilities for appropriate functions fj will be given in section 2.2

of this chapter. The predictor can be semiparametric, i.e. include a parametric part like

γ′u in formula (2.4), so that some covariates, especially categorical variables, can still be

modelled by linear effects. Note that covariates which are modelled linearly are denoted

by uj in order to distinguish them from other covariates. The parametric part γ′u also

contains the intercept term γ0.

Structured additive regression models cover a wide range of different models. Some special

cases that are well known in the literature are: additive and generalised additive models

(Hastie & Tibshirani (1990), Rigby & Stasinopoulos (2005) or Wood (2006a)), generalised

additive mixed models (Ruppert, Wand & Carroll (2003)), geoadditve models (Fahrmeir

& Lang (2001a) or Kammann & Wand (2003)), varying coefficient models (Hastie & Tib-

shirani (1993)), geographically weighted regression (Fotheringham, Brunsdon & Charlton

(2002)) and ANOVA type interaction models (Chen (1993)).

2.2 Model components

As already mentioned in the last section, we deal with different kinds of independent

variables in the context of STAR models. For every type of covariate, there exist one

or more possibilities to construct a function which adequately represents the available

information. These possibilities with their specific features are described in this section.

It turns out that all nonlinear functions described in this section can be written in a

general form. This allows an equal treatment of all nonlinear functions when estimating

regression coefficients and selecting relevant covariates (compare chapter 3 for this topic).

That means, for inference and selection algorithms we only need to distinguish between

two cases: linear effects and nonlinear functions.

In this thesis we follow mainly a frequentist approach based on a penalised likelihood. Since

some of the nonlinear functions originally were derived under a Bayesian point of view, we

discuss also Bayesian interpretations and the equivalence between penalised likelihood and

empirical Bayesian estimation.

The common features of all nonlinear functions f(x) are listed below:

• First of all, the vector of function evaluations f = (f1, . . . , fn)′ for n observations

can be written as a linear combination of a n × p design matrix X and a vector of
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regression coefficients β = (β1, . . . , βp)
′, i.e.

f = Xβ. (2.5)

That means, all functions f are linear in their regression coefficients. Because of the

additive structure of the predictor this property still holds for the entire predictor

even if the predictor contains several functions.

• In a Bayesian framework each function f is provided with a prior distribution. The

prior distribution depends on the type of the respective covariate x and on assump-

tions about the smoothness of the function f . This leads to different priors for the

different types of functions which are described in the following sections in detail.

Generally, the prior assumptions about f can be expressed by applying a prior distri-

bution to the regression coefficients β. The distribution is either a proper or improper

Gaussian distribution of the form

p(β) ∝ exp

(
− 1

2τ 2
β′Pβ

)
, (2.6)

with a variance parameter τ 2 and a precision matrix P. The prior distributions of

different function types are characterised by their individual precision matrix which

contains information about the function type and assumptions about the smoothness

of the function. If matrix P is rank–deficient the prior distribution is improper, oth-

erwise it is proper.

There is a close relationship between the Bayesian and the penalised likelihood ap-

proach: Suppose, the predictor only contains function f , i.e. η = f = Xβ. In this case

the likelihood function L(y|β) and the log–likelihood function l(y|β) only contain the

parameter vector β and no other parameters. Then, the posterior distribution p(β|y)

with response vector y = (y1, . . . , yn) is given by

p(β|y) ∝ L(y|β) · p(β). (2.7)

The mode of this distribution may be calculated from the logarithmic posterior dis-

tribution

log(p(β|y)) ∝ l(y|β) + log(p(β))

∝ l(y|β)− 1

2τ 2
β′Pβ. (2.8)

Formula (2.8) is equivalent to a penalised log–likelihood where the precision matrix

P is used as penalty matrix. Hence, the penalised maximum likelihood estimate and

the mode of the posterior distribution are identical. The logarithmic kernel of the
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prior p(β) corresponds to the penalty term of the penalised log–likelihood.

In the context of penalised likelihood, instead of variance parameter τ 2 usually a

smoothing parameter is used to control the smoothness of the function. This smooth-

ing parameter is defined as λ := φ/τ 2 (see Green & Silverman (1994)), where φ is

the scale parameter of the response variable’s distribution, i.e. φ = σ2 and λ := σ2

τ2

for the special case of a Gaussian distributed response. The formula of the penalised

log–likelihood, which is to be maximised for the calculation of estimates for β, is

then defined by

lpen(y|β) = φ · l(y|β)− 1

2
λ β′Pβ. (2.9)

An estimation algorithm for the regression coefficients is described in section 2.3.3 of

this chapter.

In the case of a Gaussian response, maximisation of formula (2.9) is equivalent to

minimising the penalised residual sum of squares

RSSpen = (y −Xβ)′W(y −Xβ) + λ · β′Pβ,

with n×n diagonal matrix W containing weights for all observations. An algorithm

for estimating the coefficients β in the Gaussian case is presented in section 2.3.2.

The estimator for β is here given by

β̂ = (X′WX + λP)−1X′Wy. (2.10)

• All prior distributions (2.6) include a variance parameter τ 2 that influences the form

of the estimated effect. In this chapter we consider the parameter τ 2 or equivalently

the smoothing parameter λ for each nonlinear function as fixed. How to determine

an appropriate value for smoothing parameters is the subject of chapter 3.

The following subsections will give detailed information concerning the derivation and

specific features of different types of functions.

2.2.1 Linear effects

As mentioned in the last section, a structured additive predictor contains often a parametric

part including variables uj, j = 1, . . . , q which are to be modelled linearly. Moreover, at

least in this thesis, the predictor always contains an intercept term γ0. For the vector of

regression parameters γ = (γ0, . . . , γq)
′ for all linear effects including the intercept term, we

use no penalisation. In this case, we get maximum likelihood estimates for the coefficients.
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For a Gaussian response, the maximum likelihood estimates (or equivalently the least

squares estimates) are given by

γ̂ = (U′WU)−1U′Wy,

where U is the n × (q + 1) design matrix including all observations for all respective

covariates. Additionally, U contains a column containing merely the value one for the

estimation of the intercept term.

Equivalent to the maximum likelihood approach is to assume independent, diffuse priors

p(γj) ∝ const, j = 1, . . . , q for a Bayesian perspective here. In this case, the mode of the

posterior distribution is equal to the maximum likelihood estimates.

2.2.2 Categorical Variables

In order to estimate the effect of a categorical variable u with k ≥ 2 categories, the variable

is represented by k − 1 dummy- or effect variables. We will describe both representations

in this section because both can be used with our selection algorithms. In both cases, one

of the categories has to be specified as reference category. Without restriction, we number

the categories as 1, . . . , k and use the last category k as reference.

2.2.2.1 Dummy Coding

Dummy variables uj, j = 1, . . . , k − 1 are defined as

uj =

{
1 , if u = j
0 , otherwise.

(2.11)

The reference category is indicated by entries of zero in all dummy variables. The effect of

the categorical variable is a linear combination of all dummy variables, i.e.

γ1 · u1 + . . . + γk−1 · uk−1

and is added to the parametric part of the predictor. That means, all dummies are fixed

effects and the parameters γj are independent with a diffuse prior each as was described in

the last section. The effect of the reference category k is incorporated in the intercept γ0.

The parameters γj represent the difference between category j and the reference category.

The reason for using only k−1 parameters is to get an identifiable model, i.e. to get unique

solutions for the parameter estimates. In this thesis, we consider only models containing an

intercept term. In this case and when using all possible dummy variables, a constant value
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can be added to the intercept and subtracted from all other parameters without changing

the predictor, i.e.

γ0 + γ1 · u1 + . . . + γk · uk = (γ0 + c) + (γ1 − c) · u1 + . . . + (γk − c) · uk.

By using only k − 1 dummies, i.e. by setting γk = 0, this problem is solved and we get

unique solutions for the parameter estimates.

2.2.2.2 Effect Coding

Effect coding works similar but the variables uj are now defined by

uj =





1 , if u = j
−1 , if u = k

0 , otherwise
(2.12)

for j = 1, . . . , k − 1. This leads to a different interpretation of the regression coefficients.

A parameter for the reference category can be calculated by

γk = −
k−1∑
j=1

γj.

The intercept represents the average of all categories and parameter γj the difference

between this mean and category j.

2.2.3 Continuous covariates

In this section, we consider the simple model ηi = f(xi), i = 1, . . . , n, where function f is

supposed to be a smooth function of a continuous variable or time scale x. To approximate

these nonlinear functions, there are different approaches in the literature, either depending

on local likelihood approaches (see e.g. Fan & Gijbels (1984) and Loader (1999)) or on an

expansion in basis functions. In this thesis we will consider the latter case.

2.2.3.1 B–Splines

As basis functions we use polynomial spline functions (splines in short) which are defined

piecewise over a set of knots. The knots split up the range of variable x as

xmin = k0 < . . . < kr = xmax.

Each basis function, respectively each spline, is
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• a polynomial of degree l on the interval [ki, ki+1], i = 0, . . . , r − 1

• l − 1 times continuously differentiable at the knots ki (l times at all other points

besides the knots).

The function f can be written as a linear combination of the basis functions Bj, i.e.

f(xi) = β1 ·B1(xi) + . . . + βp ·Bp(xi),

where p = l+r (see De Boor (1978) or Dierckx (1995)). The terms Bj(xi) denote the value

of the j–th basis function evaluated at observation point xi and serve as new covariates.

The function f itself can also be called a spline because it holds the same properties as

described above. In matrix notation, each row i of the design matrix X = (Bj(xi)) contains

the function evaluations of all basis functions for the respective observation point xi. The

vector of function evaluations f is given by f = Xβ.

In this thesis, we use the B–spline basis whose basis functions are constructed recursively

by

Bl
j(x) =

x− kj

kj+l − kj

Bl−1
j (x) +

kj+l+1 − x

kj+l+1 − kj+1

Bl−1
j+1(x) (2.13)

with initial basis functions

B0
j (x) =

{
1 , if kj ≤ x < kj+1

0 , else.

For the construction of a basis using degree l > 0 a set of 2l additional knots has to

be defined: l knots smaller than xmin and l knots larger than xmax. The B–spline basis

possesses some useful properties:

• It forms a local basis since every basis function is positive only over the range of l+2

knots;

• The basis functions are bounded, giving the B–splines good numerical properties;

• The sum over the columns of the design matrix takes the value one in each row.

Figure 2.1 gives an illustration for the construction of a spline function: Part (a) shows

B–spline basis functions of degree l = 2, part (b) shows weighted basis functions and part

(c) the resulting function f(x), that is the sum over all weighted basis functions.

Apart from polynomial splines, there are other possibilities for basis functions, e.g. radial

basis functions with the special case of thin–plate splines used by Wood (2003).
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(a) B−spline basis functions
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(b) weighted basis functions
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(c) spline function f(x)

Figure 2.1: (a) B–spline basis functions of degree 2 over the range of [0; 1] with 5 knots at
{0, 0.25, 0.5, 0.75, 1}, (b) weighted basis functions and (c) resulting spline function f(x).

2.2.3.2 P–Splines

One crucial issue with B–splines is the choice of the knots, affecting both the number of

knots and their location: many knots result in a rough function, few knots in a smooth

one. The question is how many knots should be chosen so that the resulting function is

neither too rough nor to smooth. This problem is often called the bias–variance trade–off

(see Hastie & Tibshirani (1990)): many knots result in a rough function that is close to

the data and therefore has a small bias. But the variance of this function is large. Few

knots result in a smooth function that has only a small variance but a high bias instead.

A further problem when only a few knots are chosen is where to place the knots.

In order to overcome these problems, there are two different approaches in the literature:

the first one is based on adaptive knot selection where the knots are chosen parsimoniously

but on positions that result in a sufficiently flexible function. One example is the software

MARS introduced by Friedman (1991). Bayesian approaches for adaptive knot selection
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are described in Biller (2000). The second approach uses a roughness penalty. The idea is

to use a relatively large number of basis functions to gain enough flexibility. Smoothness

is achieved by a penalty term that imposes restrictions on the parameter vector β, like

e.g. shrinking the parameters towards zero or penalising too abrupt jumps between adjacent

parameters. For that purpose, the log–likelihood is replaced by a penalised log–likelihood

defined by

lpen(y|β1, . . . , βp) = φ · l(y|β1, . . . , βp)− 1

2
· penalty(λ), (2.14)

where the trade–off between bias and variance, i.e. between flexibility and smoothness, is

controlled by the smoothing parameter λ.

A widely used version of a roughness penalty approach are smoothing splines (see Wahba

(1990) or Hastie & Tibshirani (1990) who also present a Bayesian version) where a cubic

natural spline basis with knots at all different observation points is used. The integral over

the quadratic second derivative, i.e. the curvature, of the resulting function serves as a

penalty.

We use the so-called P(enalised)–splines which were introduced by Eilers & Marx (1996)

and Marx & Eilers (1998) and which are based on the B–spline basis. Here 20–40 knots

are chosen, usually equidistant over the range of x. We describe here only the case of

equidistant knots. In order to ensure smoothness a difference penalty term is used that

consists of quadratic differences of adjacent coefficients, i.e.

penalty(λ) = λ ·
p∑

j=k+1

(∆kβj)
2 = λ · β′Pkβ,

where ∆k denotes differences of order k. Usually differences of order k = 1 or k = 2 are

used. For equidistant knots they take the form:

∆1βj = βj − βj−1 and ∆2βj = βj − 2βj−1 + βj−2. (2.15)

Generally, differences of order k can be defined recursively as ∆kβj = ∆1(∆k−1βj) with

∆0βj = βj. Hence, second order differences can be calculated as

∆2βj = ∆1βj −∆1βj−1 = βj − βj−1 − (βj−1 − βj−2).

By defining (p− k)× p difference matrices Dk, it is possible to write the differences for all

parameters in matrix notation using the product Dkβ. For k = 1 and k = 2 the matrices

Dk have the form

D1 =




−1 1
−1 1

. . . . . .

−1 1


 and D2 =




1 −2 1
1 −2 1

. . . . . . . . .

1 −2 1


 .



2.2 Model components 17

For the penalty matrix Pk = D′
kDk we get

P1 =




1 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 1




and P2 =




1 −2 1
−2 5 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1




(2.16)

A small smoothing parameter λ results in a rough function with small bias but large

variance. In the limit λ → 0 there occurs no penalisation at all. In contrast, a large

smoothing parameter results in a function with high bias and low variance. The limit

λ →∞ leads to different results depending on the order k chosen for the difference penalty:

penalisation of first differences leads to a constant function and penalisation of second order

differences to a linear fit. An important issue is how to determine an optimal value for the

smoothing parameter. This is one of the central topics of this thesis and will be discussed

in detail in chapter 3. Figure 2.2 already illustrates the impact of the smoothing parameter

on the estimated P–spline by showing the results for different smoothing parameter values

in a simulated data set. The two extreme cases, the unpenalised spline for λ = 0 (a) and

the limits for λ → ∞ both for second (e) and for first order (f) penalty, are also shown.

The optimal value for λ is determined by an approach described in chapter 3.

A Bayesian version of P–splines has been introduced by Lang & Brezger (2004) and Brezger

& Lang (2006). They replace the difference penalties ensuring the smoothness of the

function by random walk priors assuming that

βj = βj−1 + uj, j = 2, . . . , p (2.17)

for a first order random walk and

βj = 2 · βj−1 − βj−2 + uj, j = 3, . . . , p (2.18)

for a second order random walk. In both cases, the error terms uj are N(0, τ 2) distributed.

For the initial values diffuse priors are assumed, i.e. p(β1) ∝ const for a first order random

walk or p(β1), p(β2) ∝ const for a second order random walk, respectively. Alternatively,

the prior assumptions (2.17) and (2.18) can be written as

βj|βj−1 ∼ N(βj−1, τ
2)

for the first order random walk or

βj|βj−1, βj−2 ∼ N(2βj−1 − βj−2, τ
2)
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(f) P−spline with k=1: lambda = 100000

Figure 2.2: Shown are P–splines with different amount of smoothing for the same simulated
data y. All plots show the data points, the true underlying function f(x) = sin(x) (dashed
line) and an estimated P–spline function (solid line). In each case, the spline consists of 22
cubic basis functions (what is equivalent to 20 knots in the range of x). For plots (a)–(e)
a second order penalty was used, for plot (f) a first order penalty. Plots (e) and (f) show
the limit of the P–spline for λ → ∞: (e) is a straight line (second order penalty) and (f)
a constant function (first order penalty).
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Figure 2.3: Shown is the Bayesian interpretation of the (left plot) first and (right plot)
second order random walk. The first order random walk expects parameter βj to vary around
the previous parameter βj−1, whereas the second order random walk expects parameter βj

to vary around the line spanned by the two previous parameters βj−1 and βj−2.

for the second order random walk. For both orders k = 1, 2, the joint distribution of the

regression coefficients β is an improper multivariate Gaussian distribution of the general

form (2.6), i.e.

p(β) ∝ exp

(
− 1

2τ 2
β′Pkβ

)
, (2.19)

where τ 2 is the variance parameter controlling the smoothness of the function. The pre-

cision matrix Pk is for the same order k equal to the penalty matrix of formula (2.16).

This fact explains the equivalence of the empirical Bayesian approach to the maximum

penalised likelihood approach already mentioned in the introduction of this chapter.

The Bayesian approach allows for a nice interpretation of the penalties: The first order ran-

dom walk induces a constant trend for the conditional distributions of βj|βj−1, j = 2, . . . , p.

This intuitively explains why the limit for λ →∞ is the constant function (see figure 2.2).

In contrast, the second order random walk assumes a linear trend for the conditional dis-

tributions of βj|βj−1, βj−2, j = 3, . . . , p, and deviations from this linear trend are penalised.

Again this intuitively explains the linear fit as the limit for λ →∞.

Now, we give a more formal explanation for the limiting behaviour if λ →∞. This expla-

nation is provided by the constraint imposed on the parameters by the difference matrix

Dk. If λ →∞, maximising the penalised log–likelihood reduces to minimising the penalty

term β′D′
kDkβ. This term reaches its minimum if β fulfils the constraint

Dkβ = 0.

For a random walk of first order this constraint is fulfilled if all parameters are equal. For

a second order random walk, the parameters have to lie on a straight line to fulfil the
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condition. In general, for a random walk of order k, the parameters fulfil the constraint

if they form a polynomial of order k − 1. The same result is achieved by examining the

null space of the penalty matrix. The null space consists of all vectors β fulfilling the

condition Pkβ = 0 and thus includes all values for β that are not penalised by the matrix.

Penalty matrices are symmetric and so the basis of the null space can be calculated via the

eigenvalue decomposition. In the case of symmetric matrices, the basis of the null space

consists of the eigenvectors corresponding to the zero eigenvalues. The p × p matrix P1

for a first order random walk has rank rk(P1) = p − 1. Hence, the null space of P1 has

dimension 1. Here its basis is a constant vector, i.e. vector 1 = (1, . . . , 1)′, which provides

the basis for a constant function for the parameters β.

The rank of the p × p penalty matrix P2 for a second order random walk amounts to

rk(P2) = p− 2. Hence the null space has dimension 2. The basis of the null space consists

of the columns of 


1 1
1 2
1 3
...

...
1 p




and generates polynomials of degree one for β.

The constraint imposed on β by the penalty matrix also affects the resulting spline f .

The null space containing the indices for β like in the formula above can be equivalently

written using other equally spaced values instead. By dividing the range of variable x in

p− 1 equal parts, the respective null space




1 xmin

1 xmin + xmax−xmin

p−1

1 xmin + 2xmax−xmin

p−1
...

...
1 xmax




forms a basis of straight lines over the range of x. Figure 2.4 illustrates how the constraints

imposed on β are transferred to the resulting spline function f . The left part (a) shows

the parameters β lying on a constant function or on a straight line, respectively. Plot

(b) shows the resulting spline functions which use the basis functions of figure 2.1. These

basis functions in their weighted version, i.e. multiplied by the respective parameter, are

additionally shown in the figure. In the case of equal parameters, the resulting function is

constant because of the equally shaped basis functions that sum up to one. Similar reasons

lead to a straight line for the resulting function if the parameters lie on a straight line.

Hence for the range of x, that is the interval [0; 1], the functions f are also a constant
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function or a straight line, respectively. However, a spline function of order l can only

reduce to a polynomial of degree k−1 if l ≥ k−1 (see Brezger (2004) who presents a proof

for these facts). If, for example, the basis functions are of degree 0, i.e. constant functions,

the resulting spline can only reduce to a uniform step function for a second order random

walk penalty but not to a straight line.
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(a) limit function imposed on the parameters
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(b) resulting spline functions

Figure 2.4: Part (a) shows the parameters β lying on a constant function (solid line) or
on a straight line (dashed line). The right part (b) shows the resulting spline functions f
togehter with the underlying weighted basis functions of figure 2.1. For the range of x, that
is the interval [0; 1], the resulting function of the constant β is also constant (solid line),
whereas the other function is a straight line in accordance to β.

2.2.3.3 Random Walks

A further possibility to model nonlinear functions of continuous variables are random walks

(see e.g. Fahrmeir & Lang (2001a)). Random walks should be preferred to P–splines when

there are merely few distinct observation points or when the covariate is ordinal. Here, a

random walk prior is applied to the function evaluations f(x). Suppose that

x(1) < . . . < x(j) < . . . < x(p)

are the ordered distinct observation points of x. By defining a 0/1-incidence matrix X

indicating the x–value for each observation and by setting βj := f(xj), the vector of

function evaluations can be written as a linear combination f = Xβ. The design matrix

X coincides with a B–spline design matrix of degree l = 0 but with knots at every distinct

observation point. That means, random walks can be seen as a special case of P–splines

where the differences between adjacent function evaluations are penalised. Usually, the

distinct observations are not equidistant, and so the priors (2.17) and (2.18) have to be
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adjusted.

For the random walk prior of first order, the distribution of error uj, j = 2, . . . , p, has to

account for the distance δj = x(j) − x(j−1) between two adjacent values and changes to

uj ∼ N(0, δjτ
2).

This leads to a different penalty matrix

P1 =




δ−1
2 −δ−1

2

−δ−1
2 δ−1

2 + δ−1
3 −δ−1

3
. . . . . . . . .

−δ−1
p−1 δ−1

p−1 + δ−1
p −δ−1

p

−δ−1
p δ−1

p




that can be calculated from the ordinary matrix of first differences by

P1 = D′
1 diag(δ−1

2 , . . . , δ−1
p )D1.

The null space of this penalty matrix is again spanned by the vector 1 = (1 . . . , 1)′ leading

to a constant function for λ →∞.

The adjustment for the second order random walk is more complicated. It can be derived

by generalising the second order differences for equidistant values to the case of non–

equidistant values. That means, formula

∆2βj = βj − 2βj−1 + βj−2 = (βj − βj−1)− (βj−1 − βj−2)

is generalised to formula

∆2βj =
βj − βj−1

δj

− βj−1 − βj−2

δj−1

, (2.20)

comparing the differences between two adjacent parameters with the respective distance.

Formula (2.20) is equal to zero if the three parameters are on a straight line. It leads to

the Bayesian formulation of the generalised second order random walk with

βj =

(
1 +

δj

δj−1

)
βj−1 − δj

δj−1

βj−2 + uj, (2.21)

and uj ∼ N(0, wjτ
2). As described in Fahrmeir & Lang (2001a), there exist several possible

choices for the weights wj. The most simple one is wj = δj. Another possibility that also

accounts for the former distance δj−1 is wj = δj

(
1 +

δj

δj−1

)
.

The common prior for β is again an improper Gaussian distribution like formula (2.19) but

the precision matrix has to be adjusted for the distances. It can be calculated as

P2 = D′
2 diag(w3, . . . , wp)D2,
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where D2 is a generalised second order difference matrix according to formula (2.20). In

both cases a basis of the null space is given by



1 0
1 δ2

1 δ3
...

...
1 δp



⇔




1 x(1)

1 x(2)

1 x(3)
...

...
1 x(p)




,

leading to a step function where the function evaluations f(x(j)) can be connected by a

straight line.

2.2.3.4 P–Splines with shape constraints

In some situations it is known beforehand that the function f(x) posses a certain shape,

e.g. it is known to be monotonically increasing. In these cases, it can be useful to apply

certain constraints on the function so that the estimated function follows the given form.

The type of restrictions most often used with nonparametric functions are monotonicity

restrictions, i.e. function f(x) is assumed to be either monotonically increasing or monoton-

ically decreasing. There exist a variety of approaches dealing with imposing these kind of

restrictions on splines, e.g. Ramsey (1988) or Tutz & Leitenstorfer (2006) for frequentist

approaches and Brezger & Steiner (2006) for a Bayesian approach.

In this thesis we follow the idea introduced and described in Bollaerts, Eilers & Van Meche-

len (2006) for a Gaussian response. This approach allows not only for monotonicity restric-

tions but also for restrictions resulting in a convex or concave function. Their idea is based

on the fact that the first and second order derivatives of a B–spline f(x) with equidistant

knots can be written as

f (1)(x) =
∂f(x)

∂x
=

∂

∂x

p∑
j=1

βjB
l
j(x) = (lh)−1l

p+1∑
j=1

∆1βjB
l−1
j (x) (2.22)

for a spline of degree l ≥ 1 or

f (2)(x) =
∂f (1)(x)

∂x
=

2∏
i=1

((l + 1− i)h)−1(l + 1− i)

p+2∑
j=1

∆2βjB
l−2
j (x) (2.23)

respectively, for a spline of degree l ≥ 2, where h is the distance between adjacent knots.

Restricting the differences ∆oβj with o = 1, 2 to be positive (negative) is a sufficient

condition for getting a positive (negative) first (o = 1) or second (o = 2) order derivative

because values h, l+1−i and Bl−o
j (x) are all positive. If the resulting derivative is piecewise
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constant or piecewise linear, this condition is also necessary.

When using first order differences, function f(x) becomes monotonely increasing for ∆1βj >

0 and decreasing for ∆1βj < 0. In contrast, using second order differences results in a

convex function for ∆2βj > 0 or a concave function for ∆2βj < 0. This fact is also true for

functions whose derivative of interest reduces to zero, i.e. if l < o.

These conditions can be formulated in the form of a penalty term

β′Pmonoβ =

p∑
j=o+1

w(βj)(∆oβj)
2 = β′D′

odiag(wo+1, . . . , wp)Doβ

with order of derivative o = 1, 2 and weights

wj = w(βj) =

{
0 , if ∆oβj fulfils the restriction
1 , otherwise.

Matrix Do is the difference matrix of order o as introduced earlier in section 2.2.3.2.

The complete penalty term for function f(x) is composed of two individual penalties: the

usual P–spline penalty term of order k = 1, 2 which regulates the function’s smoothness

and the penalty term introduced above which imposes the monotonicity restriction. Thus,

the overall penalty is

penalty(λ) = λβ′Pkβ + κβ′Dodiag(wo+1, . . . , wp)Doβ = λβ′Pkβ + κβ′Pmonoβ, (2.24)

where κ is an additional smoothing parameter that we set to a large value, e.g. κ =

100000, in order to ensure that the constraint is fulfilled. In contrast to λ which has to be

determined appropriately, the value for κ is fixed.

In formula (2.24) the penalty matrix Pmono for the restriction depends on the values of β.

This fact complicates the minimisation of the penalised residual sum of squares. Bollaerts,

Eilers & Van Mechelen (2006) use a Newton–Raphson method in order to find the optimal

solution. This algorithm alternates between estimating parameters β̂ with fixed penalty

matrix Pmono, i.e. by

β̂ = (X′WX + λPk + κPmono)
−1X′Wy,

and calculating the penalty matrix using the current estimate for β. This is repeated until

the changes in the parameter estimates are sufficiently small. For the first estimate of β,

penalty matrix Pmono is set equal to zero.

2.2.4 Time Scales

The effect of calender time can often be split into a smooth trend and a seasonal component,

i.e.

ftime(t) = ftrend(t) + fseason(t).
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In order to approximate the smooth trend function we can use the same kind of nonlinear

functions as for continuous covariates, i.e. P–splines or random walks. In this section we

describe the modelling of a flexible seasonal component with a certain period per. For

example, monthly seasonal data corresponds to per = 12.

For the modelling of the flexible seasonal component with period per, one can use a general

autoregressive prior like in Fahrmeir & Lang (2001a), i.e.

fseason(t) = βt = −
per−1∑
j=1

βt−j + ut, (2.25)

with t = per, . . . , p and p denoting the latest season observed. The error terms are assumed

to be normally distributed with a common variance parameter, i.e. ut ∼ N(0, τ 2). For the

per−1 initial values, we assume diffuse priors. If τ 2 → 0, the seasonal component becomes

fixed and does not vary over time, i.e. βj = βj+per. In this case, the effect sums to zero

and is equivalent to a representation by per − 1 effect variables (compare section 2.2.2).

The design matrix for a seasonal component is a n×p 0/1–incidence matrix where the value

one indicates the season a certain observation belongs to. Similar to P–splines or random

walks, the common prior distribution for all parameters β = (β1, . . . , βp)
′ can be written

as an improper Gaussian distribution of the general form (2.6). The precision matrix can

be written as Pper = D′
perDper using a (p− per + 1)× p difference matrix which is of the

form

Dper =




1 . . . 1
1 . . .

. . .

1
. . . . . .

1 . . . 1︸ ︷︷ ︸




.

per

For a quarterly seasonal effect, i.e. per = 4, the penalty matrix is given by

P4 =




1 1 1 1
1 2 2 2 1
1 2 3 3 2 1
1 2 3 4 3 2 1

. . . . . . . . . . . . . . . . . . . . .

1 2 3 4 3 2 1
1 2 3 3 2 1

1 2 2 2 1
1 1 1 1




.

In order to identify the limit function for τ 2 → 0 or equivalently λ →∞, we consider the

null space of the penalty matrix. For seasonal components, the null space of the penalty
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matrix has dimension per − 1 and consists of all time–constant seasonal effects. For the

special case of per = 4 the basis vectors of the null space are the columns of



1 0 0
0 1 0
0 0 1

−1 −1 −1
1 0 0
0 1 0
0 0 1

−1 −1 −1
...

...
...




.

It is obvious, that all three basis vectors b1, b2 and b3 fulfil the constraint D4bk = 0.

Time–constant seasonal effects could alternatively be modelled via effect coding (2.12) like

a per-categorical variable.

2.2.5 Spatial covariates

This section deals with the modelling of spatial correlation when the data points are ob-

served at different locations. Often, this spatial correlation can be ascribed to unobservable,

spatially varying covariates. The construction of a spatial function where the function eval-

uations are correlated across the locations is the objective of this section. Sometimes, there

are additional unobservable factors whose effect is independent of each other at different

locations. In these situations, the spatial effect can be split into a smooth, spatially cor-

related (structured) part and a locally varying, spatially uncorrelated (unstructured) part

(see Besag, York & Mollie (1991)), i.e.

fspat(s) = fstr(s) + funstr(s). (2.26)

The unstructured effect can be estimated via region–specific i.i.d. Gaussian random effects

that are dealt with in section 2.2.6.

In the following, we consider the case that covariate s represents a location in connected

geographical regions. In this case, a smooth spatial function can be modelled by a Markov

Random Field (MRF). An important part in constructing MRFs is the set of neighbours

that must be defined for each region s. Usually, the neighbourhood of one area s consists

of all regions that share a common boundary with s. For more complex neighbourhood

definitions see Besag, York & Mollie (1991). The idea is that adjacent regions are more

alike than any arbitrary locations. Figure 2.5 shows the neighbourhood structure based on

common boundaries.
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Figure 2.5: The map shows a neighbourhood defined by common boundaries. All grey
coloured regions are neighbours to the black one.

The prior for the function evaluations fspat(s) = βs is an extension of the univariate first

order random walk. It takes the form

βs|βs′ , s
′ 6= s ∼ N

(
1

Ns

∑

s′∈δs

βs′ ,
τ 2

Ns

)
, (2.27)

where δs denotes the set of neighbours to region s and Ns = |δs| the number of these

neighbours. An improved prior accounting for irregularities in the map can be achieved by

defining a weighted version similar to the one for one–dimensional random walks, i.e.

βs|βs′ , s
′ 6= s ∼ N

(∑

s′∈δs

wss′

ws+

βs′ ,
τ 2

ws+

)
,

where ws+ =
∑

s′∈δs
wss′ and the weights wss′ depend on a distance measure between the

regions s and s′. A distance measure can be specified according to one of the following

examples:

• If one always assumes the same distance between adjacent regions, the weights be-

come wss′ = 1 and the prior reduces to formula (2.27).

• Weights can be chosen proportional to the length of the common boundary.

• Weights can be chosen inverse proportional to the Euclidian distance d(s, s′) between

the centroids of two regions, i.e. wss′ ∝ exp(−d(s, s′)).

For p regions, the design matrix X is a 0/1-incidence matrix of order n × p indicating

whether observation i belongs to region s (Xis = 1) or not (Xis = 0). The common prior
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for all parameters β is again an improper Gaussian prior of the form (2.6) with a p × p

precision or penalty matrix Pspat depending on the weights

pss = ws+

pss′ =

{ −ws,s′ , if s and s′ are neighbours
0 , otherwise.

(2.28)

The precision matrix Pspat is again rank–deficient with rk(Pspat) = p − 1. Like in the

case of a one–dimensional random walk, the basis of the null space is the 1–vector. Here,

f(sj) = βj, so the penalty matrix influences f directly. The limit of the spatial function

for λ →∞ or equivalently τ 2 → 0 is therefore a constant function indicating no differences

between the regions.

Note, that the function evaluation for a region can be estimated even if there are no ob-

servations for this region available. This is due to the smoothness assumptions included in

the prior distribution.

The MRF can be also applied when a relatively small number of exact locations s = (sx, sy)

are available by defining a symmetric neighbourhood structure. For a large set of dif-

ferent locations or if a surface estimation is required, there exist other, more preferable

approaches. One possibility, not implemented for our selection algorithms, are Gaussian

Random Field (GRF) priors that assume a two–dimensional correlation function to model

spatial correlation (see Kammann & Wand (2003) or Kneib (2006) for instance). Another

possibility basing the estimation on 2–dimensional penalised tensor–product splines is de-

scribed in section 2.2.8 of this chapter. The disadvantage of this approach (in contrast to

a GRF) are the anisotropic basis functions (see Kneib (2006)). Here, the lines of the basis

functions’ contour plots form no circles, especially for a small degree l. This implies, that

different directions are treated unequally.

2.2.6 Unobserved heterogeneity

In this section we deal with data that consists of repeated observations of individuals or

within clusters such as groups or regions. There can be differences between individual units

or clusters that are due to unobserved factors. To overcome this problem, it is possible

to estimate a random effect that models the differences between each unit and the overall

mean. For this purpose, we use i.i.d. Gaussian random effects assuming the parameters βi,

i = 1, . . . , p, for the p individuals to be independently normally distributed with a common

variance parameter, i.e.

βi ∼ N(0, τ 2).

Here the joint distribution for β is a proper normal distribution. Nevertheless, it can be

written in the same general form (2.6) as all other priors by using the identity matrix as
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precision matrix, i.e. Prand = I. This matrix is of full rank, so that the null space is of

dimension zero only containing the null vector 0 = (0, . . . , 0)′. In this case, using a large

smoothing parameter results in a function equal to zero.

The design matrix X is again a 0/1-incidence matrix of order n× p. If the random effect

is used to estimate an unstructured spatial effect, the design matrix of the random effect

is exactly identical to the one belonging to the structured spatial effect.

For the limit τ 2 → ∞ or equivalently λ → 0, the random effect consists of unpenalised

parameters for all p individuals. This is equivalent to estimating the function via p dummy

variables. As was mentioned in section 2.2.2, this again is equivalent to using only p − 1

dummy variables and an intercept term. Hence, a random effect includes a constant term

like all other univariate functions described in this chapter. But in contrast to other

univariate functions, random effects penalise the constant term. This can be seen from the

penalty matrix whose null space contains merely the null vector.

2.2.7 Varying Coefficients

In the preceding sections various approaches for the modelling of different kinds of one–

dimensional effects have been introduced. We now describe extensions that allow us to

model two–dimensional interactions. Varying coefficients were first popularised by Hastie

& Tibshirani (1993) in the context of smoothing splines. Here, the slope of a variable z

varies smoothly over the range of another variable v by defining the term

f(v, z) = g(v)z. (2.29)

Often, the interacting variable z is categorical, but it can be continuous as well. The effect

modifier v can be either a continuous variable, a spatial location or a group indicator. The

vector of function evaluations f can be written as linear combination

f = Xβ,

using a design matrix X and a vector of coefficients β = (β1, . . . , βp)
′. The design matrix

for f(v, z) is based both on the observations of z and of v and is calculated as

X = diag(z1, . . . , zn)V,

where V is the design matrix corresponding to g(v). The prior for the effect modifying

function g, or the parameters β respectively, can be any of the priors introduced in sections

2.2.3–2.2.6 and 2.2.8 according to the type of covariate v.

Some special cases of varying coefficients sometimes appear under a different name: if
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the effect modifier v is a group indicator, the two–dimensional function f(v, z) is called

random slope. Models including a varying coefficient with a spatial effect as modifying

function are known as geographically weighted regression in the geography literature (see

Fotheringham, Brunsdon & Charlton (2002)). Dynamic models are based on time–varying

coefficients (see Fahrmeir & Tutz (2001)).

Finally, we take a look at the limit of f(v, z) for λ → ∞ or equivalently τ 2 → 0. This

depends on the prior distribution imposed on the univariate function g(v). The limit

functions g(∞)(v) were described in the respective sections for all univariate functions g.

The limit function of the varying coefficient is

f (∞)(v, z) = g(∞)(v)z.

That means, f (∞)(v, z) is equal to zero if g(v) is a random effect or is a linear effect of z

for a random walk prior of first order (MRF or P–spline of first order). For a second order

random walk prior we obtain an interaction of the form f (∞)(v, z) = c1 · z + c2 · v · z.

2.2.8 Interaction surfaces

A varying coefficient can be too restrictive if both interacting variables x1 and x2 are

continuous. In this case, a more flexible approach is achieved by estimating a smooth

two–dimensional surface. As described in Lang & Brezger (2004) and Brezger & Lang

(2006), we use an approach based on bivariate P–splines. Similar to the univariate P–

splines described in section 2.2.3, it is assumed that the unknown smooth surface f(x1, x2)

can be approximated by a linear combination of basis functions, i.e.

f(x1, x2) =

p1∑
j=1

p2∑

k=1

βjkBjk(x1, x2),

where the two–dimensional basis functions form a tensor product of univariate B–spline

basis functions for x1 and x2, i.e.

Bjk(x1, x2) = Bj(x1) ·Bk(x2).

Figure 2.6 shows some of those tensor–product basis functions for degree l = 2. Shown are

only nonoverlapping basis functions.

The function evaluations of the two–dimensional basis functions can be written as a

n × p1p2 design matrix X = (Bjk(xi1, xi2)) with an associated parameter vector β =

(β1,1, . . . , β1,p2 , . . . , βp1,p2)
′. We confine bivariate B–splines to the case of p1 = p2 = p so

that both the x1– and the x2–direction are treated equally.

For the prior distribution of the parameter vector β we distinguish two different cases:



2.2 Model components 31

 0
0.2

0.4
0.6

0.8
1

 

 0

0.2

0.4

0.6

0.8

1

 

 0
0.

2
0.

4
0.

6
 

Figure 2.6: Tensor product B–spline basis functions of degree l = 2. The plot shows only
nonoverlapping basis functions.

• We are only interested in the two–dimensional effect f(x1, x2) of x1 and x2.

• We want to estimate an ANOVA type interaction model, i.e. the overall surface

f(x1, x2) consists of an interaction component finter(x1, x2) and two main effects

f1(x1) and f2(x2) (see Chen (1993)). The two main effects are supposed to contain

as much information as possible whereas the interaction component is supposed to

represent only the deviation of the overall surface from the sum of main effects.

In the following sections we will describe the two cases in more detail.

2.2.8.1 Interaction surfaces as functions of two–dimensional covariates

In this section we describe prior distributions for the first case when the predictor only

includes the two–dimensional function f(x1, x2) and no main effect. Here, we use two

different possibilities for the prior distribution of β: a bivariate first and a bivariate second

order random walk.

A bivariate first order random walk can be obtained by applying an unweighted MRF

prior (2.27) on the four adjoining parameters which lie on a regular grid. In this case, the
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conditional prior distributions for parameters with four neighbours take the form

βjk|βj′k′ , j
′ 6= j, k′ 6= k ∼ N

(
1

4
(βj−1,k + βj,k−1 + βj+1,k + βj,k+1),

τ 2

4

)
, (2.30)

with j, k = 2, . . . , p−1. This is illustrated in figure 2.7 (a). The conditional prior distribu-

tions for parameters at the corners and edges have to be adjusted appropriately, see Lang

& Brezger (2004).

beta_jk

4

−1

−1 −1

−1

 

 

(a)
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12

1

−4

1 −4 −4 1
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(b)

Figure 2.7: Conditional prior distributions for βjk, indicated by a black dot, together with
the coefficients of the precision matrix for (a) a first order and (b) a second order random
walk. The neighbours are indicated in grey.

The joint prior distribution of β can be written in the general form (2.6) by using the

p2 × p2 precision matrix P
(2)
1 which is defined by formula (2.28). Here, the upper index (2)

indicates the penalisation of a two–dimensional function. Matrix P
(2)
1 corresponds to the

penalty term

penalty(λ) = λβ′P(2)
1 β

where the amount of smoothness is controlled by one smoothing parameter. Hence, the

same amount of smoothing is applied both in the direction of x1 and of x2. Alternatively,

matrix P
(2)
1 can be calculated from the one–dimensional p×p precision matrix P1 of a first

order random walk that is applied in both directions as

P
(2)
1 = I⊗P1 + P1 ⊗ I. (2.31)

Eilers & Marx (2003) use this representation (2.31) for the definition of an anisotropic

penalty where the strength of the penalisation may differ between the directions of x1
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and x2. This is achieved by using an individual smoothing parameter for each of the two

directions leading to the penalty

penalty(λ1, λ2) = β′(λ1I⊗P1 + λ2P1 ⊗ I)β. (2.32)

We use the penalty based on one smoothing parameter which corresponds to the general

form (2.6). In this case, the limit for λ →∞ or τ 2 → 0 is a constant function because vector

1 forms the basis of the null space of P
(2)
1 . The penalty matrix is of rank rk(P

(2)
1 ) = p2−1.

There are several proposals for constructing a bivariate second order random walk (see e.g.

Rue & Held (2005)). The easiest possibility is to replace the univariate penalty matrices

of first order in formula (2.31) by matrices of second order, i.e.

P
(2)
2 = I⊗P2 + P2 ⊗ I. (2.33)

This leads to a dependency structure where the parameter βkj depends on the eight nearest

neighbours in x1– and x2–direction. Similar to the first order random walk the parameter

does not depend on parameters apart from the main directions, like e.g. on parameters on

the diagonals. The conditional prior distribution for parameters βjk for j, k = 3, . . . , p− 2,

i.e. having a complete set of neighbours, is illustrated in figure 2.7 (b). Again, the priors

have to be adjusted appropriately for the corners and edges.

The precision matrix (2.33) also allows for an unequal penalisation in the directions of x1

and x2 by using two different smoothing parameters as described in Eilers & Marx (2003).

Again, we use only one smoothing parameter and thus the same amount of smoothing in

both directions. This makes it possible to write the joint prior distribution of β in the

general form (2.6).

The basis of the null space of matrix P
(2)
2 is presented by the columns of matrix




1 1 1 1 · 1
1 1 2 1 · 2
...

...
...

...
1 1 p 1 · p
1 2 1 2 · 1
...

...
...

...
1 2 p 2 · p
1 3 1 3 · 1
...

...
...

...
1 p p p · p




.

Hence in this case, the limit for λ →∞ or τ 2 → 0 is a linear interaction of the form

f (∞)(x1, x2) = c0 + c1 · x1 + c2 · x2 + c3 · x1 · x2.
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2.2.8.2 Interaction surfaces for ANOVA type interactions

In this second, more difficult case, the predictor contains not only the interaction finter(x1, x2)

but also the main effects f1(x1) and f2(x2), i.e.

η = γ0 + f1(x1) + f2(x2) + finter(x1, x2).

Here, the interaction component finter(x1, x2) represents only the deviation of the predic-

tor from the sum of the two main effects (see Gu (2002)). Hence, the two main effects

must contain as much information as possible whereas the interaction contains only the

information that cannot be modelled by the main effects. In this case, usually a two–

dimensional surface smoother together with two one–dimensional smoothers is estimated.

This approach, however, has considerable drawbacks regarding the calculation of degrees

of freedom (see section 3.3): The sum of the three individual degrees of freedom cannot

be used as an approximation to the overall degrees of freedom. Moreover, the convergence

of modular algorithms like the backfitting algorithm (compare section 2.3.2) is slow for

such highly correlated functions. We therefore follow a different approach: We specify and

estimate a two–dimensional surface based on tensor product P–splines and compute the

resulting decomposition into main effects and interaction component thereafter.

Penalty matrix for a decomposition of the surface smoother into main effects

In the following we construct a penalty matrix such that, for the limit λ →∞, we get an

exact decomposition of the overall surface into two main effects (without an interaction

component). Hence, we need to know the conditions under which a two–dimensional tensor

product function can be split into two main effects, i.e.

f(x1, x2) =

p∑

j,k=1

βjkBj(x1)Bk(x2)
!
=

p∑
j=1

ajBj(x1) +

p∑

k=1

bkBk(x2) = f1(x1) + f2(x2),

with main effects coefficients aj and bk for j, k = 1, . . . , p. The exact calculation of these

conditions is described in section A.1 of the appendix. It turns out that, for λ → ∞,

function f(x1, x2) can be decomposed into two main effects by using a penalty which is

based on differences of differences of the parameters, i.e. on

∆(1,0)∆(0,1)βj,k = βj,k − βj−1,k − βj,k−1 + βj−1,k−1,

with j, k = 2, . . . , p and a two–dimensional difference operator ∆. The resulting penalty

term (compare Rue & Held (2005)) is given by

λ ·
p∑

j=2

p∑

k=2

(∆(1,0)∆(0,1)βj,k)
2.
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These (p− 1)2 differences of differences can be summarised in the (p− 1)2 × p2 difference

matrix D given by

D=




1 −1
. . . . . .

1 −1

−1 1
. . . . . .

−1 1
· · · · · · · · · · · ·

1 −1
. . . . . .

1 −1

−1 1
. . . . . .

−1 1




(2.34)

where each of the (p − 1) · p submatrices is of order (p − 1) × p. For Dβ = 0 the surface

is exactly decomposed into main effects (compare section A.1 of the appendix). By using

the corresponding penalty matrix P := D′D it is possible to estimate β̂ such that Dβ̂ = 0

for λ → ∞. Matrix P can alternatively be derived as Kronecker product of two one–

dimensional first order random walk penalty matrices, i.e.

P = P1 ⊗P1. (2.35)

This penalty matrix describes a neighbourhood structure where every parameter depends

on its eight nearest neighbours, i.e. both on parameters in x1– and x2–direction and on

parameters on the diagonals (see Rue & Held (2005)). The conditional prior distribution

for parameters βjk, with j, k = 2, . . . , p − 1, i.e. having a complete set of neighbours, is

illustrated in figure 2.8. Again, the priors have to be adjusted appropriately for parameters

at corners and edges, shown in figure 2.9.

The rank of matrix P is (p − 1)2 because of the property rk(P) = rk(P1) · rk(P1) which

holds for the rank of a Kronecker product. Hence, the null space of P has dimension

p2 − (p − 1)2 = 2p − 1 which is in accordance with the degrees of freedom of two un-

penalised one–dimensional spline functions. That means, using penalty matrix P from

formula (2.35) yields two unpenalised main effects for the limit λ →∞.

Combined penalty matrix

In the last subsection we presented a penalty matrix that, for λ → ∞, leads to an ex-

act decomposition of the tensor product spline into two unpenalised main effects. Since

unpenalised splines usually are too wiggly, we now modify the penalty matrix in such a way

that the overall surface can be decomposed into two penalised main effects. For that pur-

pose, we combine penalty matrix (2.35) with anisotropic two–dimensional penalty matrices

(compare formula (2.32)). Hence, the two directions of x1 and x2 are no longer treated

equally (compare Eilers & Marx (2003)), but there is no reason why they should. Two
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Figure 2.8: Shown are the conditional prior distributions for βjk, indicated by a black
dot, together with the coefficients of the precision matrix for the Kronecker product of two
one–dimensional first order random walk matrices. The neighbours are indicated in grey.

beta_jk

1 −1

1−1

 

 beta_jk

2−1 −1

1 −2 1

 

 

Figure 2.9: Shown are the conditional prior distributions for βjk at the corners (left) or
edges (right) together with the coefficients of the precision matrix. βjk is indicated by a
black dot, the neighbours are indicated in grey.

main effects not connected through an interaction do not have the same penalty, either.

The combined penalty matrix is given by

Pcomp = λP +
λ1

p
Px1 +

λ2

p
Px2 . (2.36)

Matrix Px1 = Pk1⊗Ip and smoothing parameter λ1 control the penalisation in the direction

of x1, whereas Px2 = Ip ⊗ Pk2 and λ2 do the same for x2. The one–dimensional penalty

matrices Pk1 and Pk2 can be based on first or second order random walks (i.e. k1, k2 = 1, 2)

and the order of the penalties may be different.

Note that formula (2.36) does not use the smoothing parameters λ1 and λ2 themselves but

the values λ1/p and λ2/p instead. This is done in order to account for the fact that the

penalty matrices Px1 and Px2 are p times as strong as matrices Pk1 and Pk2 . This fact
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is explained in detail in section A.2 of the appendix. The penalty term corresponding to

matrix Pcomp is given by

penalty(λ, λ1, λ2) = β′Pcomp β (2.37)

and serves as overall penalty for the surface f(x1, x2).

The overall penalty matrix Pcomp imposes a neighbourhood structure where each parameter

βjk with j, k = 2, . . . , p− 1 depends either on 8, 10 or 12 nearest neighbours depending on

the order of the penalisation of the main effects. The different neighbourhood structures

are shown in figure 2.10.

beta_jk

 

 

(a) rw1/rw1

beta_jk

 

 

(b) rw2/rw2

beta_jk

 

 

(c) rw2/rw1

Figure 2.10: Shown is the neighbourhood structure for βjk for different one–dimensional
penalisations. Plot (a) shows the neighbourhood structure for two first order random walks
and plot (b) for two second order random walks. Plot (c) shows a combined neighbourhood
structure using a second order random walk in the direction from left to right and a first
order random walk otherwise. The parameter βjk is in each case indicated by a black dot,
the neighbours are indicated in grey.

The combination of the three penalty matrices has the following nice properties:

• The limit λ → ∞ results in a main effects model. The main effects are P–splines

with smoothing parameters λ1 and λ2.

• The limit λ → 0 yields the anisotropic penalties described in Eilers & Marx (2003)

as a special case.

• The limit λ1 → 0 and λ2 → 0 yields the Kronecker product (2.35) as a special case.

• The limit λ →∞, λ1 →∞ and λ2 →∞ results in a main effects model with linear

or constant main effects depending on the order of matrices Pk1 and Pk2 .

Some examples for different combinations of the three smoothing parameters are illustrated

in the appendix A.4.
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After estimation, the overall surface f̂(x1, x2) is decomposed into the two main effects

f̂1(x1) and f̂2(x2) and the interaction component f̂inter(x1, x2) by

f̂(x1, x2) = f̂1(x1) + f̂2(x2) + f̂inter(x1, x2).

In order to ensure that the two main effects contain as much information as possible we

impose the following constraints on the interaction component (compare Chen (1993) and

Lang & Brezger (2004)):

f̄inter(x2) =
1

r(x1)

∫ x1,max

x1,min

finter(x1, x2)dx1 = 0 for all distinct values of x2,

f̄inter(x1) =
1

r(x2)

∫ x2,max

x2,min

finter(x1, x2)dx2 = 0 for all distinct values of x1,

f̄inter =
1

r(x1)r(x2)

∫ x2,max

x2,min

∫ x1,max

x1,min

finter(x1, x2)dx1dx2 = 0

with r(x1) = x1,max−x1,min and r(x2) = x2,max−x2,min. Hence row wise, column wise and

overall means of the interaction component are supposed to be zero. In order to obtain a

function fulfilling these constraints the integrals

f̄1|2(x2) =
1

r(x1)

∫ x1,max

x1,min

f(x1, x2)dx1,

f̄1|2(x1) =
1

r(x2)

∫ x2,max

x2,min

f(x1, x2)dx2,

f̄1|2 =
1

r(x1)r(x2)

∫ x2,max

x2,min

∫ x1,max

x1,min

f(x1, x2)dx1dx2

of the overall two–dimensional function must be calculated first. Then the interaction

component is calculated by

f̂inter(x1, x2) = f̂(x1, x2)− f̄1|2(x2)− f̄1|2(x1) + f̄1|2.

Afterwards, the two main effects are extracted. For the main effects we consider the

additional constraints (compare section 2.3.1)

f̄1 =
1

r(x1)

∫ x1,max

x1,min

f1(x1)dx1 = 0,

f̄2 =
1

r(x2)

∫ x2,max

x2,min

f2(x2)dx2 = 0

so that the main effects are obtained by

f̂1(x1) = f̄1|2(x1)− f̄1|2,

f̂2(x2) = f̄1|2(x2)− f̄1|2.
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Note, that the intercept term γ0 of the predictor has to be corrected by

γ̂0 −→ γ̂0 + f̄1|2

in order to ensure that the predictor remains unchanged.

Both main effects f̂1(x1) and f̂2(x2) are P–splines what is easily shown by inserting the

tensor product representation of f into f̄1|2(x2) and f̄1|2(x1) (compare section A.3 of the

appendix).

Note that this approach for two–dimensional interactions as described here can be used for

non–overlapping interactions only. That means that two interaction terms must not have

a common main effect.

2.3 Inference

In this section, we describe inference for the regression coefficients in a model with a struc-

tured additive predictor (2.4). For the moment, inference is conditional on the model and

the smoothing parameters. Model selection is described in detail in chapter 3.

For the description of inference methods we consider a structured additive predictor con-

taining several nonlinear components and a parametric part, i.e.

η = f1(x1) + . . . + fq(xq) + γ′u.

Due to the general representation of nonlinear functions, we don’t need to distinguish

between different functions here. Estimators for the regression coefficients are obtained by

maximising the penalised log–likelihood which takes the form (using scale parameter φ)

lpen(y|β1, . . . , βq, γ) = φ · l(y|β1, . . . , βq, γ)− 1

2

q∑
j=1

λjβ
′
jPjβj,

where the individual penalty terms are added to an overall penalty.

In the following sections we will describe algorithms for maximising this penalised log–

likelihood: in section 2.3.2 for the case of a Gaussian response variable and in section

2.3.3 for the more general case of a response variable belonging to an exponential family.

Additionally, we will describe the most important features of generalised regression models

and give some examples of exponential families in this section. But first we start with

some details regarding the identifiability in structured additive predictors.
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2.3.1 Identifiability problems in structured additive predictors

An important issue is the identifiability of the individual nonlinear functions. In most cases

there exist no unique solutions for the functions fj, i.e. the functions are not identifiable.

Hence, additional constraints have to be imposed to guarantee identifiabilty. The following

sections describe different kinds of predictors together with their specific identifiability

problems.

2.3.1.1 Identifiability of univariate functions

Suppose, we have an additive predictor only containing univariate functions of any of

the possibilities described in sections 2.2.3–2.2.5 (i.e. the functions can be any nonlinear

function apart from i.i.d. Gaussian random effects). In this case, we could change some of

the functions by adding or subtracting constant terms without changing the predictor, for

example

η = f1(x1) + . . . + fq(xq) + γ′u = (f1(x1) + c) + . . . + (fq(xq)− c) + γ′u. (2.38)

That means, only the shape of the individual functions fj is uniquely determined but not

their absolute level. This difficulty is due to the fact that every type of nonlinear function,

apart from i.i.d. Gaussian random effects, includes an unpenalised constant term. In

other words: every function contains its own intercept. Whether a function includes an

unpenalised constant term or not can be detected by looking at the null space of its penalty

matrix: If the null space contains constant functions, the respective function includes an

unpenalised intercept term. This is true for all univariate functions introduced in the last

section with the only exception of i.i.d. Gaussian random effects. As shown in predictor

(2.38) above, these constant terms can be shifted either between two functions or between

a function and the overall intercept γ0.

In order to overcome this identifiability problem, additional constraints are imposed on the

functions so that their level becomes unique too. We use the following constraints: For

random walks of first or second order, Markov random fields or seasonal components, we

assume

f̄ =
1

p

p∑

k=1

fk =
1

p

p∑

k=1

βk = 0,

whereas for P–splines of first or second order we assume (compare Lang & Brezger (2004))

f̄ =
1

xmax − xmin

∫ xmax

xmin

f(x) dx = 0.
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A two–dimensional P–spline used as surface estimator for a two–dimensional covariate also

contains its own intercept and is treated like any of the univariate functions. In this case,

we have to deal with the same identifiability problem as described above and the constraint

used here is (compare Lang & Brezger (2004))

f̄ =
1

(x1,max − x1,min)(x2,max − x2,min)

∫ x2,max

x2,min

∫ x1,max

x1,min

f(x) dx1dx2 = 0.

These additional constraints are fulfilled through the centering of each function and by

adding the values f̄j to the overall intercept γ0. Then the identifiable predictor is given by

η = (f1(x1)− f̄1) + . . . + (fq(xq)− f̄q) + γ′u +

q∑
j=1

f̄j

= f
(c)
1 (x1) + . . . + f (c)

q (xq) + γ′u +

q∑
j=1

f̄j, (2.39)

where the functions f (c)j(xj) are uniquely determined.

2.3.1.2 Identifiability in ANOVA type interaction models

More complex identifiability problems arise in models including interactions between sev-

eral covariates. In ANOVA type interaction models including a complex interaction and

the respective main effects, i.e. in predictor

η = γ0 + f1(x1) + f2(x2) + finter(x1, x2),

it is principally possible to shift functions of x1 or x2 between the interaction and the

respective main effect. For example the predictor above is equal to

η = γ0 + (f1(x1) + g(x1)) + f2(x2) + (finter(x1, x2)− g(x1)).

In this thesis, we use the approach described in section 2.2.8.2 for the estimation of this

kind of interaction. In this case, both main effects and interaction are uniquely determined

regarding this identifiability problem and no further constraints are necessary than those

already imposed in section 2.2.8.2.

Note, that it is not possible to estimate several overlapping interactions by this approach.

This is due to identifiability problems between the two–dimensional functions, e.g.

η = γ0 + f1(x1) + f2(x2) + f3(x3) + finter(x1, x2) + finter(x1, x3)

= γ0 + f1(x1) + f2(x2) + f3(x3) + (finter(x1, x2) + g(x1)) + (finter(x1, x3)− g(x1)).

The estimation of this predictor would require additional identifiability constraints.



42 2. Univariate Structured Additive Regression Models

2.3.1.3 Identifiability in varying coefficient models

In a predictor including several varying coefficients which modify the effect of the same

interacting variable we have similar identifiability problems as in ANOVA type interaction

models. For example in predictor

η = γ0 + g1(v1)z + . . . + gq(vq)z,

it is possible to shift linear effects between two varying coefficients, i.e.

η = γ0 + g1(v1)z + . . . + gq(vq)z = γ0 + (g1(v1)− c)z + . . . + (gq(vq) + c)z. (2.40)

Hence, all modifying functions gj have to be centered using the respective constraint de-

scribed in section 2.3.1.1. The values ḡj from the centering are then collected in a linear

effect for variable z that has to be additionally included to the predictor, i.e. predictor

(2.40) changes to the identifiable predictor

η = γ0 + (g1(v1)− ḡ1)z + . . . + (gq(vq)− ḡq)z +

(
q∑

j=1

ḡj

)
z. (2.41)

A further kind of varying coefficient model often used is

η = γ0 + f(v) + g1(v)z1 + . . . + gk(v)zk,

where variables z1, . . . , zk represent a k + 1–categorical variable z. This predictor makes

it possible to estimate separate effects for the categories of z with f(v) representing either

the effect of the reference category (dummy–coding) or an average effect (effect–coding).

Identifiability problems arise if the range of variable v differs between the categories. This

problem affects here only ranges of values that were not observed for all categories. Hence,

this predictor should be used merely if all categories have largely the same range of values

for v. If this is not fulfilled, the predictor

η = γ0 + f(v)zk+1 + g1(v)z1 + . . . + gk(v)zk,

together with dummy–coded variables zj can be used instead.

Furthermore, for varying coefficient models of the kind described above, i.e.

η = γ0 + f(v) + g(v)z,

the convergence of the iterative estimation algorithm (described in the next section) im-

proves considerably if the (continuous) interacting variable z is centered around zero. The

iterative estimation algorithm estimates both functions f(v) and g(v) alternately and its
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performance decreases with an increasing degree of dependency between the two functions.

The centering of z causes a reduction of the dependency between main effect f(v) and vary-

ing coefficient g(v). We want to illustrate this here: In case of a Gaussian response, the

covariance matrix of the joint parameter vector β = (β′f ,β
′
g)
′ is given by

Cov(β) = σ2

(
V′V V′ZV
V′ZV V′V

)−1

Suppose, design matrix V is a 0/1–incidence matrix (what applies to many functions)

whereas matrix Z = diag(z1, . . . , zn) contains the observations of the interacting variable.

In this case, matrix V′ZV = diag
(∑

1≤i≤n:vi1=1 zi, . . . ,
∑

1≤i≤n:vip=1 zi,
)

contains all pair-

wise correlations between parameters of the two functions. The absolute value of the sum

of individual correlations is for a centered variable equal to zero indicating that this number

has to be larger for a non–centered variable, i.e.∣∣∣∣∣
p∑

k=1

∑
i:vik=1

(zi − z̄)

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

(zi − z̄)

∣∣∣∣∣ = 0 ≤
∣∣∣∣∣

n∑
i=1

zi

∣∣∣∣∣ =

∣∣∣∣∣
p∑

k=1

∑
i:vik=1

zi

∣∣∣∣∣ .

This implies that a centered function leads to the minimal possible overall dependency be-

tween both functions. For a categorical variable z similar facts apply: Here, z is represented

by k dummy or effect variables and a centering of these variables is not common. However,

effect coding mostly reduces the dependency of f(v) and g(v) compared to dummy cod-

ing. With effect coding f(v) represents the average effect of the categories rather than the

average over of all observations. Nevertheless, with effect coding f(v) is mostly nearer to

the average of all observations than with dummy coding where f(v) represents the effect

of one category.

2.3.2 Gaussian Response

In this section we consider models with a Gaussian distributed response y, i.e.

yi = ηi + εi,

for i = 1, . . . , n, with independently distributed errors εi. In most cases, the errors are

assumed to have the same distribution N(0, σ2) but it is also possible to deal with het-

eroscedastic error terms with distributions N(0, σ2/wi). Conditional on covariates and pa-

rameters, the observations yi are independent and N(ηi, σ
2)– or N(ηi, σ

2/wi)–distributed.

In both cases, the maximum of the penalised log–likelihood is equivalent to the minimum

of a penalised residual sum of squares

RSSpen(y|β1, . . . , βq,γ) = (y − η)′W (y − η)′ +
q∑

j=1

λj · β′jPjβj,
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where W = I for homoscedastic errors or W = diag(w1, . . . , wn) otherwise.

One approach capable of estimating additive predictors with different components is the

backfitting algorithm described by Hastie & Tibshirani (1990). It works as follows:

Backfitting Algorithm

1. Initialisation:

Set γ̂(0) = 0 and β̂
(0)

j = 0 for j = 1, . . . , q. Set r = 1.

2. Compute

γ̂(r) = (U′WU)−1U′W

(
y −

q∑
j=1

f̂
(r−1)
j

)

and for j = 1, . . . , q:

β̂
(r)

j = (X′
jWXj + λjPj)

−1X′
jW

(
y −Uγ̂(r) −

j−1∑

k=1

f̂
(r)
k −

q∑

k=j+1

f̂
(r−1)
k

)
.

3. Centering of the nonlinear functions f̂
(r)
j = Xjβ̂

(r)

j for j = 1, . . . , q:

f̂
(c,r)
j = f̂

(r)
j − f̄

(r)
j

and adjustment of the intercept term, i.e.

γ̂0
(r) = γ̂0

(r) +

q∑
j=1

f̄
(r)
j

or of the common linear effect for varying coefficients.

Set r = r + 1.

4. Repeating 2. and 3. until there are no changes in the estimated parameters.

Remarks concerning the convergence of the backfitting algorithm can also be found in

Hastie & Tibshirani (1990). Usually, with linear smoothers as those described in this the-

sis, the algorithm converges.

The algorithm is built modular insofar as all functions are estimated separately and alter-

nately. This allows to utilise the sparse structure of design and penalty matrices of the

nonlinear functions for an efficient computation (see Rue (2001) and George & Liu (1981)).

Alternatively, in a Gaussian model all coefficients could be estimated simultaneously with-

out an iterative algorithm. However, this approach has the disadvantage that the sparse

structures of penalty and design matrices get lost. Moreover, identifiability constraints

have to be imposed on the overall design matrix to guarantee that the matrix is of full
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rank.

The backfitting algorithm is based on the fact that the expected value of the posterior

distribution for one set of parameters βj given the data and all other parameters is

E(βj|y, βk, k 6= j, γ) = (X′
jWXj + λjPj)

−1X′
jW

(
y −Uγ −

∑

k,k 6=j

fk

)
.

This relationship is also true for the estimated parameters after convergence of the backfit-

ting algorithm. The part
(
y −Uγ −∑

k,k 6=j fj

)
serves as vector of response values during

the progression of the algorithm. Its elements are called partial residuals.

A Bayesian approach based on backfitting for estimating the entire posterior distribution

rather than merely the posterior mode was presented by Hastie & Tibshirani (2000).

Based on the estimates of the response, the variance parameter σ2 can be estimated using

formula

σ̂2 =
1

n

n∑
i=1

wi(yi − ŷi)
2, (2.42)

which is the maximum likelihood estimate for σ2. This estimator is only asymptotically

unbiased. An unbiased estimator corrects the factor 1/n with the number of estimated

parameters.

2.3.3 Response of an univariate exponential family

Now, we consider models with an univariate response variable belonging to an exponential

family. Examples are count data or binary response variables. These models in combination

with a linear predictor are called generalised linear models (see e.g. McCullagh & Nelder

(1989)). Here again, like in Gaussian models, it is possible to replace the linear predictor

with a structured additive predictor (2.4) leading to generalised STAR models.

Before we will describe the estimation of regression coefficients in section 2.3.3.2, we will

introduce some facts about model specification.

2.3.3.1 Model specification

Here, we sketch the most important facts about model specification in generalised regression

models. More details about model specification and estimation can be found in Fahrmeir

& Tutz (2001) for instance. In generalised regression models, model specification is based

on two different assumptions. This fact results in several possible models for the same data

even when using the same predictor. The two assumptions are:
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1. Distributional assumption

Given the predictor values ηi, i = 1, . . . , n, the response values yi are conditionally in-

dependent and their distributions belong to an exponential family, i.e. the respective

density can be written as

f(yi|θi, φ, wi) = exp

{
yiθi − b(θi)

φ
wi + c(yi, φ, wi)

}
,

where
θi is the natural parameter of the exponential family,
φ is a scale or dispersion parameter common to all observations,
wi is a weight and
b(.) and c(.) are specific functions depending on the particular exponential family.

2. Structural assumption

The (conditional) expectation µi = E(yi|ηi) is related to the predictor ηi by

µi = h(ηi) or ηi = g(µi),

where

h is a known bijective, sufficiently smooth response function and

g is the inverse of h, called link function.

The natural parameter θ is a function of the mean µ and is for every exponential family

uniquely determined by the relation

µ = b′(θ) =
∂b(θ)

∂θ
.

For a single observation, we have the relation θi = θ(µi). The natural parameter provides

a special kind of link function, the natural link function. Here, the natural parameter is

directly linked to the predictor, i.e.

θ = θ(µ) = η.

The variance of the observations yi is of the form

Var(yi|ηi) =
φv(µi)

wi

,

where the variance function is also for every exponential family uniquely determined by

v(µ) = b′′(θ) =
∂2b(θ)

∂θ2
.
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Distribution Notation θ(µ) b(θ) φ b′(θ) b′′(θ)
Normal N(µ, σ2) µ θ2/2 σ2 µ = θ 1

Bernoulli B(1, π) log(π/(1− π)) log(1 + exp(θ)) 1 π = exp(θ)
1+exp(θ)

π(1− π)

Poisson Po(λ) log(λ) exp(θ) 1 λ = exp(θ) λ
Gamma G(µ, ν) −1/µ − log(−θ) ν−1 µ = −1/θ µ2

Table 2.1: Important quantities of some exponential families.

Important quantities of some exponential families, like e.g. the natural parameter and the

variance function, are shown in table 2.1.

As already mentioned above, the same distributional assumption together with different

choices for the response function in the structural assumption leads to several possible mod-

els for the same data. The following passages describe frequently used response functions

for different types of dependent variables.

• Normal distribution

The normal distribution is also an exponential family. When using the natural link

function θ(µ) = µ, the response function is simply the identity h(η) = η and we get

back to the classical linear (or STAR) model as in section 2.3.2.

• Bernoulli and binomial distribution

First, we consider the case of ungrouped data with a binary response coded by 0

and 1. Here the expected value is the probability for observing the value 1, i.e.

E(yi|ηi) = P (yi = 1|ηi) = πi. The natural link function is

θ = log

(
π

1− π

)
= η

with the logistic distribution function

π = h(η) =
exp(η)

1 + exp(η)

as resulting response function. Applying a distribution function on the predictor η

ensures that the probability π lies in the interval [0; 1]. The model using the natural

link function is called the logit model.

Another possible choice for the response function is the standard normal distribution

function, i.e.

π = h(η) = Φ(η).

This model is called the probit model. There exist further possibilities for choosing

the response function. Here we have restricted to the ones mentioned above.
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If we can group the data, i.e. if there are several independent trials for every combi-

nation of covariates, we get yi ∼ B(mi, πi) with i = 1, . . . , n. In this case, the relative

frequencies ȳi = yi/mi are used as dependent variable leading to a scaled binomial

distribution with E(ȳi) = πi. By defining weights wi = mi for i = 1, . . . , n, both logit

and probit model can also be used for grouped data.

• Count data

Here, we assume to have a Poisson distributed response variable, i.e. y ∼ Po(λ). In

this case the most natural choice is using the natural link and the respective response

function which are given by

g(λ) = log(λ) = η and h(η) = exp(η) = λ.

This ensures a positive value for the mean λ. The model in combination with a

simple linear predictor is often called a loglinear model.

• Gamma distribution

Here, we deal with a nonnegative continuous response variable that usually has an

asymmetric distribution. One possible model for these data is the lognormal model

where the identity link of the normal model is replaced by a log link. The other

possibility is to assume a distribution that by definition only has the support R+,

e.g. the gamma distribution. Additionally, the gamma distribution has the property

that it includes asymmetric distributions. The most common choice for the structural

assumption, that we also use, is the log link

g(µ) = log(µ) = η

with the respective response function

h(η) = exp(η) = µ.

This choice ensures a nonnegative value for µ. This, however, is not ensured when

using the natural response function

h(η) = −η−1 = µ.

Note that for the notation used here the gamma distribution is parameterised as

follows:

f(y|µ, ν) =
1

Γ(ν)

(
ν

µ

)ν

yν−1 exp

(
−ν

µ
y

)
,

with E(y) = µ and Var(y) = µ2/ν.
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2.3.3.2 Inference

As the system of estimation equations is nonlinear for generalised models, it is no longer

possible to calculate maximum likelihood estimates for the coefficients in the linear predic-

tor analytically. And the analytical calculation of posterior mode or maximum penalised

likelihood estimates in a structured additive predictor is not possible, either. Instead, we

need iterative algorithms. First, we want to describe the IWLS algorithm for computing

maximum likelihood estimates γ̂ in a linear predictor without penalisation. IWLS is short

for iteratively weighted least squares. In every iteration, weighted least squares estimates

are calculated where the weights and the dependent variable are adjusted with respect to

the current estimates of γ.

IWLS Algorithm

1. Initialisation:

Set (e.g.) γ̂(0) = 0. Set r = 1.

2. Computation of weight matrix and dependent variable:

W(r−1) = diag(d
(r−1)
1 , . . . , d(r−1)

n )

η
(r−1)
i = u′iγ̂

(r−1)

µ
(r−1)
i = h

(
u′iγ̂

(r−1)
)

θ
(r−1)
i = θ

(
h

(
u′iγ̂

(r−1)
))

d
(r−1)
i = wi

(
∂h(η

(r−1)
i )

∂η

)2 (
∂2b(θ

(r−1)
i )

∂θ2

)−1

ỹ
(r−1)
i = η

(r−1)
i +

(
∂h(η

(r−1)
i )

∂η

)−1

(yi − µ
(r−1)
i )

3. Computation of the weighted least squares estimate

γ̂(r) = (U′W(r−1)U)−1U′W(r−1)ỹ(r−1)

4. Computation of the stop criterion

||γ̂(r) − γ̂(r−1)||
||γ̂(r−1)|| .

If the stop criterion is larger than a specified ε > 0, set r = r + 1 and go back to 2.,

otherwise terminate the process.



50 2. Univariate Structured Additive Regression Models

This algorithm is equivalent to Fisher–Scoring which is a modified Newton–Raphson method.

Fisher–Scoring uses the expected Fisher information matrix instead of the matrix contain-

ing the second derivatives of the log–likelihood, the observed information matrix. When

using the natural link function, expected and observed Fisher information are identical.

If we have a structured additive predictor, i.e. if we want to maximise a penalised log–

likelihood, step 3. of the IWLS algorithm is replaced by the backfitting algorithm. This

combined algorithm is called Local Scoring Procedure by Hastie & Tibshirani (1990).

In fact, it calculates the zero point of the first derivative of the penalised log–likelihood

∂ lpen(y|γ, β1, . . . , βq)/∂ (γ, β1, . . . , βq).

If the scale parameter is unknown, as is the case for a Gamma or normally distributed

response, it can be estimated by

φ̂ =
1

n

n∑
i=1

wi
(yi − µ̂i)

2

v(µ̂i)
, (2.43)

where µ̂i = h(η̂i) and v(µ̂i) are the respective mean and variance function of yi. For a

normally distributed response formula (2.43) results in the ML–estimate σ̂2 from formula

(2.42). In contrast to the usually used estimator (see e.g. Fahrmeir & Tutz (2001)), we do

not correct n with the number of model parameters in order to get an estimator analogous

to the ML–estimate in the Gaussian case.



Chapter 3

Selection of Variables and Smoothing
Parameters

In chapter 2, we already mentioned the influence of the smoothing parameter λ (or equiv-

alently the variance parameter τ 2) on the estimated effect of a covariate (see figure 2.2

for the case of P–splines in section 2.2.3.2). We also described approaches for inference in

structured additive models if all smoothing parameters are fixed. In this chapter, we deal

with the problem of determining appropriate values for the smoothing parameters. Addi-

tionally, we want to deal with a second, but similar, problem: the selection of important

variables. This question was not mentioned in the last section. But in many applications,

a lot of potentially influential covariates are available although only a few of them actually

have an influence on the response. Altogether, there arise the following questions:

• Which terms (covariates) are to be included in the model?

• Is the effect of a certain continuous variable linear or nonlinear, i.e. is it necessary

to use a spline function or would a linear effect be sufficient?

• Which value should be used for the smoothing parameter of a nonlinear function?

• Does a nonlinear effect vary over the range of another variable or is the effect con-

stant?

• Is there a complex interaction between two continuous variables?

In this chapter, we want to deal with these questions simultaneously and introduce algo-

rithms that can answer them.

This chapter is organised as follows: The first section 3.1 gives an overview of alternative

and related methods for variable and/or smoothing parameter selection. All other sections
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explain details that are in close connection with our selection approach: section 3.2 de-

scribes several selection criteria, the concept of degrees of freedom in additive models is

explained in section 3.3 and the selection algorithms are described in the last section 3.4.

3.1 Alternative Approaches

In the last two decades, considerable research has been carried out on the topic of variable

selection and on determining values for smoothing parameters. Nevertheless, most of the

existing approaches can either select subsets of variables in (generalised) linear models or

can determine smoothing parameters for a fixed set of covariates. Altogehter, none of the

approaches introduced in this section can deal with a simultaneous variable and smoothing

parameter selection in such a broad class of models as our approach described in section

3.4.

3.1.1 Approaches for variable selection

An overview over methods for subsect selection in (generalised) linear models can be found

in Miller (2002) or Kadane & Lazar (2004) for instance. The best known approaches

are forward selection and backward elimination. Forward selection starts with the empty

model containing the intercept term only. Then in each step, the best variable according

to a selection criterion (compare subsection 3.2) or a certain test statistic is added to the

model (among those that have not been added previously). The algorithm stops when the

model is not improved by adding one of the remaining variables.

Unlike forward selection, backward elimination starts with the full model containing all

variables. At each step, it removes the least important variable from the model basing the

decision again either on a selection criterion or on a test statistic. The process stops when

the model is not improved by removing one of the remaining variables from the model.

These two approaches can be combined leading to stepwise regression (see e.g. Miller

(2002)).

Alternative approaches for subset selection in linear models which are closely related to each

other are Lasso, forward stagewise regression and LARS (compare Efron, Hastie, Johnstone

& Tibshirani (2004)). For all three approaches we assume that the response variable and all

covariates are centered around zero and that the covariates are additionally standardised.

Lasso was introduced by Tibshirani (1996) and estimates the regression coefficients by

minimising the residual sum of squares subject to the condition that the sum of absolute
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coefficient values is smaller than a certain threshold value, i.e.

p∑
j=1

|βj| ≤ t

This threshold value t serves as a tuning parameter and has to be determined appropriately,

e.g. using cross validation. If the threshold value is large enough, the estimated coefficients

are identical to the usual least squares estimates. In contrast, if the threshold value is

small the parameter estimates are shrunken towards zero. Often some of the coefficients

are even equal to zero so that the respective covariates can be considered having no effect

on the response.

Forward stagewise regression is an iterative method that chooses in each step the covariate

xj with the highest absolute correlation to the current residual vector r = (y − µ̂). Then,

the current linear predictor µ̂ is adjusted and replaced by

µ̂ + ε · sign(cor(xj, r))xj

using a small value for the constant ε. For ε = cor(xj, r) this approach is equivalent to the

simple forward selection. The starting values for the parameter estimates are zero. Vari-

able selection is included implicitly by not choosing certain covariates during the entire

process.

Least Angle Regression (LARS) introduced by Efron, Hastie, Johnstone & Tibshirani

(2004) is a modified version of the forward stagewise regression. Similar to the formula for

stagewise regression above, the linear predictor is in each step adjusted using the variable

with the largest absolute correlation to the current residual vector r. There are two differ-

ences to forward stagewise regression: the value ε is not fixed but is in each step chosen

such that the correlation between the newly adjusted residual vector and the actual chosen

variable is as big as the correlation between the predictor and the next best covariate xk,

i.e.

|cor[y − (µ̂ + ε · sign(cor(xj, r)) · xj), xj]| = |cor[y − (µ̂ + ε · sign(cor(xj, r)) · xj), xk]|

must hold. Out of these two variables a new variable xk′ is built such that the angle between

the variable vectors xj and xk is divided equally by this new variable. The algorithm

continues using this artificial variable. Variable selection is again included implicitly by

not choosing certain covariates during the entire process. The LARS algorithm can also

be modified to provide solutions for Lasso.

Bayesian approaches for model selection can be based on Bayes factors which compare

different models (compare Kass & Raftery (1995) or section 3.2.3 of this chapter). Other
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Bayesian approaches for subset selection of variables in linear models can be based on

indicator variables γj for each of the covariates xj leading to the predictor

η = β0 + γ1β1x1 + . . . + γpβpxp

An example is the approach presented by George & McCulloch (1997). They use hierar-

chical Bayes mixture models in combination with MCMC methods like the Gibbs sampler

or the Metropolis–Hastings algorithm (compare Green (2001)) to perform the selection.

The lowest level of the hierarchy is represented by the indicator variables γj. These are

provided independently of each other with prior probabilities πj = P (γj = 1) indicating

the probability that the j-th covariate has an influence on the response. The next level are

the prior distributions for the regression parameters conditional on the indicator variables.

Here, it is possible to use a normal mixture of the form

βj|γj = (1− γj)N(0, τ 2
j0) + γjN(0, τ 2

j1),

with a small value for τ 2
j0 and a large one for τ 2

j1. How to choose the values for the

variances is described in George & McCulloch (1997). The parameter τ 2
j0 can also be set

to zero leading to a point mass on βj = 0. This was considered in Geweke (1996). The

decision which model to use can be based on the posterior distributions of different models.

Alternatively, these approaches also allow the performance of a kind of model averaging

(compare chapter 5 of this thesis).

The earlier approach of Mitchell & Beauchamp (1988) works similar. As prior distribution

for each regression parameter they choose what they call slab and spike distribution: a

mixture prior with a point mass at zero and a diffuse uniform distribution elsewhere. This

prior depends on the ratio of the probability assigned to zero to the probability assigned to

all other values. This ratio has to be chosen by the user, e.g. by using a kind of Bayesian

cross validation.

3.1.2 Approaches for determining smoothing parameters

There exists a variety of approaches for determining smoothing parameters in (generalised)

additive models or even in (generalised) STAR models. Two methods that can be applied

to (generalised) STAR models with as many different possible function types as described

in chapter 2 are a fully Bayesian approach using MCMC methods described in Fahrmeir

& Lang (2001a), Fahrmeir & Lang (2001b) or Lang & Brezger (2004) and the restricted

maximum likelihood (REML) estimation described in Fahrmeir, Kneib & Lang (2004) or

Kneib (2006).

In the fully Bayesian approach, the variance parameters τ 2
j are considered as random and
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are therefore each provided with a hyperprior. A common assumption is that all variance

parameters are independent and inverse gamma distributed, i.e. τ 2 ∼ IG(aj, bj), with

fixed parameters aj and bj. Possible choices for the parameters would be the same small

value for both parameters, like e.g. aj = bj = 0.001, or alternatively aj = 1 and a small

value for bj, e.g. bj = 0.005 (see Fahrmeir & Lang (2001a) for instance). Considering the

variance parameters as random allows to estimate them simultaneously with the regression

coefficients. The prior distribution of each set of regression parameters βj is now considered

conditional on the current value of the respective variance parameter τ 2
j . In contrast to

(2.7), the posterior distribution of all parameters given the data is now of the form

p(β1, . . . , βq,γ, τ 2
1 , . . . , τ 2

q |y) ∝ L(y|β1, . . . , βq, γ)

q∏
j=1

(p(βj|τ 2
j )p(τ 2

j )). (3.1)

The estimation is carried out using either the Gibbs sampler for a Gaussian response (com-

pare Lang & Brezger (2004)) or a Metropolis–Hastings algorithm otherwise (see Brezger

& Lang (2006)), where the regression coefficients and variance parameters are updated

alternately.

REML estimation is based on the transformation of a STAR model in a (generalised) lin-

ear mixed model (GLMM). In doing so, every parameter vector βj is decomposed in its

penalised and its unpenalised part, i.e.

βj = Xpen
j βpen

j + Xunp
j βunp

j .

The unpenalised part βunp
j is the part of βj that is not penalised by the respective penalty

matrix and depends on its null space (compare chapter 2), i.e. the length of βunp
j cor-

responds to the dimension of this null space. Accordingly, the length of the penalised

vector βpen
j is the difference between the number of parameters pj and the length of βunp

j .

Function fj can now be decomposed in

fj = Xjβj = XjX
pen
j βpen

j + XjX
unp
j βunp

j ,

where the first unpenalised part contains only fixed effects. The penalty matrix belonging

to the new parameter vector βpen
j is the identity matrix as is the case for i.i.d. Gaussian

random effects. Altogether, the transformed model contains now only fixed effects and ran-

dom effects. That allows to estimate the variance parameters τ 2
j with methods developed

for mixed models. The regression coefficients and variance parameters are estimated al-

ternately: the regression coefficients through maximisation of the penalised log–likelihood

with given variance parameters and the variance parameters through maximisation of a

restricted marginal log–likelihood.
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A widely known method for selection of smoothing parameters in (generalised) spline mod-

els is provided by the R software package mgcv described in Wood (2006b), Wood (2000)

and Wood (2004). The original approach from Wood (2000) goes back to Gu & Wahba

(1991). Here, the algorithm alternates between the determination of an overall smoothing

parameter by using a one–dimensional direct search and the selection of the individual

relative smoothing parameters of the functions by using Newton updates. The selection

is based on the minimisation of a criterion like e.g. GCV. Wood (2004) presents a mod-

ified and improved selection method that is numerically more stable and can deal with

user–specified, fixed smoothing parameters. Here, the optimisation is carried out using the

Newton algorithm where some Newton steps are replaced by steepest descent steps in case

the criterion is not locally concave. With both selection methods, penalties combining a

difference penalty with a small shrinkage component can be used for the spline functions.

The shrinkage component sets a function equal to zero for a large enough value of the

smoothing parameter, i.e. if the function is practically completely smooth according to the

difference penalty (see Wood (2006b)). For small smoothing parameters, the shrinkage

component has hardly any influence on the estimated effect. Hence, an automatic variable

selection can be performed by using these shrinkage penalties.

Another approach which is able to determine the degree of smoothness of nonlinear func-

tions is boosting (compare Bühlmann (2004) or Bühlmann & Yu (2003) for an overview).

Here, starting from the empty model, so called weak learners which are relatively smooth

are successively applied to the current residuals (y − η̂). In each iteration, only the weak

learner of one variable is chosen to be added to η̂. The chosen variable is the one that min-

imises a selection criterion. If the addition of each of the variables to the predictor increases

the selection criterion the process is finished. With boosting, the degree of smoothness of

every nonlinear function is controlled by the number of times the respective weak learner

is chosen during the process. The nonlinear functions can be of ridge type (see Tutz &

Binder (2006)) in which case the approach becomes for Gaussian responses similar to the

selection algorithm introduced later in this chapter. Boosting can perform a variable selec-

tion implicitly by never choosing the weak learner of a certain function during iterations.

One approach developed for the simultaneous selection of variables and smoothing para-

meters in additive models is based on genetic algorithms and is presented in Krause & Tutz

(2004) and Krause & Tutz (2006). The method is based on ideas adopted from biological

inheritance: mutation, crossover and selection. Mutation and crossover make sure that the

model space is searched thoroughly, whereas selection causes to reject bad models. The

selection is once again based on a criterion like e.g. AIC.
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3.2 Selection Criteria

In our approach the selection of variables and smoothing parameters is based on selection

criteria. There is a wide variety of criteria available. Here, we restrict to some of the most

widely used criteria which can be used in combination with our selection algorithms. A

detailed overview of this topic can be found in Miller (2002) for instance.

3.2.1 Akaike Information Criterion (AIC)

The Akaike Information Criterion or AIC was originally introduced by Akaike (1973).

Burnham & Anderson (1998) or Cavanaugh (1997) derive the AIC from the Kullback–

Leibler distance

I(f, g) =

∫
f(y) ln

(
f(y)

g(y|θ)
)

dy =

∫
f(y) ln(f(y))dy −

∫
f(y) ln(g(y|θ))dy, (3.2)

that measures the distance between the true, but unknown model f of the dependent

variable y and the assumed model g. Often, the model g presents a family of models

depending on parameters θ. The smaller the value of I(f, g) the better is the assumed

model g. The Kullback–Leibler distance is a directed distance because I(f, g) 6= I(g, f). It

is always positive, with the exception of f ≡ g when it is zero. The term
∫

f(y) ln(f(y))dy is

unknown because of the unknown function f but it is equal for all models. This means, for

the comparison of models the first term in (3.2) can be neglected. The AIC is an estimate

for the expectation of the second term, multiplied by two. Therefore, as an estimate of

the relative expected Kullback–Leibler distance the AIC has no natural zero. That means,

AIC can be used to compare models but gives no evidence of the actual quality of a certain

assumed model. The formula for AIC is

AIC = −2 · l(θ|y) + 2 · p, (3.3)

where l(θ|y) = ln(g(y|θ)) is the log–likelihood of the model and p is the number of esti-

mated parameters in θ. For selection in linear regression models, the vector θ includes all

regression coefficients and possibly a scale parameter (depending on the type of response

distribution). By setting a certain coefficient equal to zero, the respective variable is re-

moved from the model and the number of estimated parameters reduced.

In the special case of Gaussian distributed response variables, when the variance σ2 is also

estimated, we get the simplified formula (compare Burnham & Anderson (1998))

AIC = n log(σ̂2) + 2 (p + 1), (3.4)
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with p degrees of freedom for the p regression coefficients and one degree of freedom for

the variance estimate. The estimate σ̂2 is the maximum likelihood estimate σ̂2 = 1/n RSS

and depends on the current model. As the variance is estimated in all models, we can use

the number of regression parameters p instead of p + 1 without influencing the selection.

The two terms included in AIC have contrary effects regarding selection: the negative log–

likelihood or the residual sum of squares, respectively, becomes smaller when the model

gets more complex and/or more variables are added. In the same case, the value of the

second term measuring the complexity of the model increases. The opposite is true for the

other way round: the simpler the model, the larger the value of the negative log–likelihood

and the smaller the value of the second term. Hence, with these two terms AIC holds the

balance between over– and underfitting.

The formula (3.3) mentioned above was developed for maximum likelihood inference, i.e.

the assumed models g are likelihood functions. In structured additive models we perform

penalised maximum likelihood inference, so that the assumed models g are now penalised

likelihoods. In this context, a derivation of an information criterion based on the Kullback–

Leibler distance is given by Shibata (1989). He calls the resulting criterion RIC. In this

thesis, we will also refer to the criterion as AIC because the general form includes both

cases: maximum and penalised maximum likelihood estimation. In the general form the

AIC has the formula (compare Hastie & Tibshirani (1990))

AIC = −2 l(θ|y) + 2 tr(H) = −2 l(θ|y) + 2 dftotal, (3.5)

where the hat matrix H is the matrix that projects the data y on the fitted values, i.e.

ŷ = Hy. In the case of a non–Gaussian response, H is the matrix evaluated at the last

iteration of the scoring algorithm, i.e. η̂ = Hỹ. In the following, we refer to the quantity

dftotal := tr(H) as degrees of freedom of the model. In maximum likelihood inference the

quantity tr(H) is equal to the number of regression parameters. More details regarding

the calculation of degrees of freedom are described in section 3.3 of this chapter.

3.2.2 Improved AIC

The bias–correction term 2dftotal of the AIC is not sufficient if the degrees of freedom are

large compared to the number of observations n. In this case, it is better to use a corrected

version of AIC, the improved AIC described by Hurvich, Simonoff & Tsai (1998) for the

context of smoothing parameter selection. It is developed for Gaussian response variables

but can also be used for other response distributions (compare Burnham & Anderson

(1998)). In comparison to AIC, the improved AIC contains an additional bias–correction
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term:

AICimp = AIC +
2dftotal(dftotal + 1)

n− dftotal − 1
. (3.6)

Burnham & Anderson (1998) give an approximate rule when the improved AIC should

be used: It should be used when the ratio n/dftotal < 40 for the most complex model

considered for selection.

3.2.3 Bayesian Information Criterion (BIC)

The Schwarz Criterion or Bayesian Information Criterion (BIC) was derived by Schwarz

(1978). A derivation of BIC can also be found in Cavanaugh & Neath (1999). The BIC

originates from a Bayesian context. Suppose, we have two different models Mi, i = 1, 2,

which are assumed with a priori probabilities p(M1) and p(M2). The priors for the re-

gression coefficients are in this case defined conditional on the model by p(θi|Mi). With

Bayes’s theorem one gets the posterior probability for each model by

p(Mi|y) =
p(y|Mi)p(Mi)

p(y|M1)p(M1) + p(y|M2)p(M2)
,

where the expression p(y|Mi) is the marginal likelihood of the model and is calculated as

p(y|Mi) =

∫
p(y|θi,Mi)p(θi|Mi)dθi.

The term p(y|θi,Mi) is the likelihood function for the parameters θi. In order to answer

the question which of the two models is superior, one can use the Bayes factor (see Kass

& Raftery (1995))

B12 =
p(y|M1)

p(y|M2)
,

which supports M1 if B12 > 1. In the case of equal prior probabilities p(Mi), the Bayes

factor is identical to the ratio of posterior odds. The BIC is a rough approximation to the

Bayes factor and allows to avoid the specification of prior probabilities. In certain settings,

model selection with BIC is even equal to selection based on bayes factors (see Kass &

Raftery (1995) for more details). The formula of BIC is

BIC = −2l(θ|y) + log(n) · p, (3.7)

where p is again the number of parameters and n the number of observations. BIC has a

consistency property: If the candidate models include the true model that generated the
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data, BIC will identify this model with probability one for n →∞.

In the context of structured additive regression models we compare models which have the

same number of regression parameters but differ in the amount of smoothness. In order to

account for these differences, we again replace the number p with the number dftotal. This

leads to formula

BIC = −2l(θ|y) + log(n) · dftotal. (3.8)

3.2.4 Generalised Cross Validation (GCV)

GCV is short for generalised cross–validation and is not an information or likelihood based

criterion like the three previous ones. A derivation for normal distributed response can be

found in Hastie & Tibshirani (1990) for instance. Suppose we have a model with a normal

distributed response only containing one nonlinear function, i.e.

yi = f(xi) + εi,

with i.i.d. error terms εi ∼ N(0, σ2). In this case, the hat (or smoother) matrix H projecting

the data y on the fitted values, i.e. ŷ = Hy, is given by

H = X(X′X + λP)−1X′,

where X is the respective design and P the penalty matrix.

In order to determine an appropriate value for the smoothing parameter λ one can use

cross-validation with leaving out one observation at a time. That means, the criterion

CV =
1

n

n∑
i=1

(yi − f̂−i
λ (xi))

2 (3.9)

is minimised over λ, where f̂−i
λ (xi) was estimated without observation (yi, xi). Function

f̂−i
λ (xi) can be directly calculated from matrix H without estimating all n different models

through

f̂−i
λ (xi) =

n∑

j=1,j 6=i

Hij

1−Hii

yj.

Using this relationship, formula (3.9) can be equivalently written as

CV =
1

n

n∑
i=1

(
yi − f̂λ(xi)

1−Hii

)2

.



3.2 Selection Criteria 61

By replacing the diagonal elements Hii by their average value tr(H)/n one obtains the

generalised cross–validation

GCV =
1

n

n∑
i=1

(
yi − f̂λ(xi)

1− tr(H)/n

)2

.

In a structured additive model with several terms and with possibly heteroscedastic errors

the more general formula is

GCV =
1

n

n∑
i=1

wi

(
yi − η̂i

1− tr(H)/n

)2

, (3.10)

where H again represents the hat matrix for the entire model and additionally includes

weight matrix W (compare section 3.3).

In the case of a non–normal response, GCV can be adapted by using the residual sum of

squares based on the last step of the scoring algorithm (see Wood (2006a)):

GCV =
1

n

n∑
i=1

di

(
(ỹi − η̂i)

2

1− tr(H)/n

)2

, (3.11)

with IWLS–weights di and working response ỹi.

Alternatively, GCV can be adapted using residuals appropriate for the respective context.

One possibility is to use squared Pearson residuals (see e.g. Fahrmeir & Tutz (2001)).

Another possibility is to use deviance residuals (see Hastie & Tibshirani (1990)) which

lead to

GCV =
1

n

n∑
i=1

Di(µ̂i|yi)

(1− tr(H)/n)2
, (3.12)

where the deviance is defined as (see Fahrmeir & Tutz (2001))

Di(µ̂i|yi) = −2φ
n∑

i=1

li(µ̂i|yi)− li(µ̂max,i|yi).

The term li(µ̂max,i|yi) denotes the biggest possible value resulting from the saturated model.

Often, all observations have different values in the covariates and µ̂max,i = yi. If several

observations have exactly the same values in all covariates, µ̂max,i is the mean of the

respective response values.

For the selection algorithms described in this chapter it is possible to use either GCV from

formula (3.11) or the one from formula (3.12).

A modified version of GCV selecting more parsimonious models is introduced in Kim & Gu



62 3. Selection of Variables and Smoothing Parameters

(2004). Here, the degrees of freedom of the model are multiplied by an additional factor

α > 1 which results for Gaussian response in formula

GCV =
1

n

n∑
i=1

wi

(
yi − η̂i

1− α · tr(H)/n

)2

. (3.13)

For non–Gaussian response variables formulas (3.11) or (3.12) are changed accordingly.

Based on the results of simulation studies, Kim & Gu (2004) suggest to choose a value in

the range [1.2, 1.4] for α.

In the case of a normal distributed response variable, each of the four criteria AIC, AICimp,

BIC and GCV can be brought into the general form

criterion = log(σ̂2) + ψ(dftotal), (3.14)

where the function ψ indicates a penalty term. Table 3.1 gives an overview of the functions

ψ and figure 3.1 illustrates the resulting curves in dependence on the ratio of the degrees of

freedom to the number of observations. This helps to explain the different performance of

the criteria. BIC has a strong penalty that is outdone by AICimp and GCV only if the ratio

df/n is near one. AICimp and GCV both have nonlinear penalties increasing more strongly

for high values of df/n, where AICimp always has the stronger penalty. For a small ratio

df/n < 0.2, or alternatively for n →∞, AIC, AICimp and GCV are almost equivalent.

Criterion Penalty ψ
AIC 2df/n
AICimp 2df/n + 2df(df + 1)/(n(n− df − 1))
BIC log(n)df/n
GCV −2 log(1− df/n)

Table 3.1: Penalty functions ψ for the selection criteria AIC, AICimp, BIC and GCV.

3.2.5 Mean Squared Error of Prediction (MSEP)

Both GCV and AIC can be seen as estimates for the error of prediction when using the

log–likelihood or the residual sum of squares as loss–function (compare Hastie, Tibshirani

& Friedman (2001)). Considering the normal–response model

yi = f(xi) + εi

with i = 1, . . . , n again, both GCV and AIC are estimates of the following global prediction–

oriented measure:

MSEP =
1

n

n∑
i=1

E(Y ∗
i − f̂(xi))

2, (3.15)
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Figure 3.1: Penalty terms ψ(df) for the selection criteria AIC, AICimp, BIC and GCV in
dependence on the ratio df/n. Here, n = 1000 is used for the number of observations.

where Y ∗
i are new, independent observations at covariate values xi.

A different approach to estimate this MSEP (mean squared error of prediction) is by

splitting the data into two parts (see Hastie, Tibshirani & Friedman (2001)): a training set

and a test set. The training set is used to calculate the parameter estimates whereas the

observations in the test set represent the new observations Y ∗
i and are used to calculate

MSEP. Suppose, we have m observations in the test set, then MSEP can be estimated

using the formula

MSEP =
1

m

m∑
i=1

(yi − f̂ training(xi))
2. (3.16)

In the case of non–normal response variables, the residual sum of squares is replaced by

the deviance resulting in

MSEP =
1

m

m∑
i=1

Di(µ̂i|yi). (3.17)

The split–up of the original data set is carried out randomly with a few restrictions due to

specific features of structured additive models:

For P–splines and one–dimensional random walks, the basis functions are defined locally

on the range between minimum and maximum [xmin, xmax] (compare section 2.2.3). This

complicates the prediction of function evaluations f(x) for values of x outside the interval
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[xmin, xmax]. To overcome this problem, we make sure that both values xmin and xmax are

in the training set.

Another problem occurs with Markov random fields and/or random effects. Here, one

regression parameter is estimated for every region or group. In the case of random effects,

it is only possible to estimate the parameter of a certain group if this group is represented

in the training set. Therefore, the training set contains at least one observation of each

group. A similar problem arises with Markov random fields: In principle, it is possible to

estimate a parameter for a region without observations by the average of all neighbours.

However, leaving out one region in the training set changes the neighbourhood structure

in comparison to the complete data set and therefore the training set contains at least one

observation of every region.

The split–up of the original data requires a relatively large number of observations. But

unlike the previously described criteria, MSEP does not require the calculation of the

degrees of freedom of the models.

3.2.6 Cross Validation

Like MSEP, cross validation is a direct estimate for prediction–error as defined by formula

(3.15). And similarly, the original data is split up in several parts. With our algorithms,

5–fold and 10–fold cross validation is available, i.e. the data set is split into five or ten parts,

respectively. But generally, every number up to the number of observations n, resulting

in leave–one–out cross–validation (compare the section about GCV), is possible for the

number of different parts. The split–up of the original data is carried out randomly in such

a way that the resulting parts are disjunct. That means, every observation is contained in

only one part. As far as possible, each part gets the same number of observations.

Let m = 5, 10 denote the number of parts and ni the number of observations for part i.

Then, the criteria CV5 or CV10 can be calculated as

CVm =
1

n

m∑
i=1

ni∑
j=1

(yij − f̂−i(xij))
2, (3.18)

where f̂−i(xi,j) is the estimate without using the i–th part. So, the estimation is always

carried out by using m − 1 parts whereas validation is performed by using the omitted

part. This is repeated m times by always omitting another part. In the case of non–

normal response, we again replace the residual sum of squares by the deviance

CVm =
1

n

m∑
i=1

ni∑
j=1

D−i
ij (µ̂ij|yij). (3.19)
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Like MSEP, cross validation has the advantage that the calculation of the degrees of free-

dom of the models is not necessary. But it also requires a relatively large number of

observations for the partitioning of the data. The restrictions imposed for choosing the

training set for MSEP cannot be observed here because of the split–up in m disjunct parts.

In contrast to MSEP, cross validation has a high computational effort because all models

have to be estimated five or ten times, respectively.

The estimation of models based on the m training sets (each consisting of m− 1 parts) is

carried out by defining m weight variables where the weights are set to zero if the respec-

tive observation is not in the training set. This allows to perform estimation for different

training sets by only changing the weight variables without having to define new design

matrices. The calculation of MSEP is handled in a similar way based on one weight variable

with zero entries indicating the observations from the test set.

3.3 Degrees of freedom in STAR models

In the previous section, we already mentioned the concept of degrees of freedom of a model.

The calculation of degrees of freedom is required with four of the selection criteria (AIC,

AICimp, BIC and GCV) in order to account for the complexity of a model. In this section,

we will describe a few details regarding this number.

The degrees of freedom, in the context of additive models sometimes alternatively called

equivalent degrees of freedom, are calculated by

dftotal = tr(H),

where the so–called hat matrix H projects the response y on the fitted values ŷ, i.e. ŷ = Hy.

In the case of a non–Gaussian response, H is evaluated at the last iteration of the scoring

algorithm, i.e. η̂ = Hỹ.

There are two special cases in which the calculation of tr(H) is simple: in the case of a

linear model the trace of H is equal to the number of regression coefficients p. In the

case of a simple model merely containing one non–linear function, tr(H) can be calculated

directly through

H = X(X′WX + λP)−1X′W, (3.20)

with design matrix X, penalty matrix P and weight matrix W containing either weights

for a weighted Gaussian regression or for the last iteration of the IWLS algorithm. For

non–linear functions of continuous covariates, matrix H is often called smoother matrix and

the number tr(H) equivalent degrees of freedom of the smoother (see Hastie & Tibshirani
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(1990)). In the following, we will refer to the number tr(H) simply as degrees of freedom.

The degrees of freedom are always positive and depend on the value of the smoothing pa-

rameter. The relationship between smoothing parameter and degrees of freedom is inverse:

A large (small) smoothing parameter results in small (large) degrees of freedom.

In the following, we will use the term smoother matrix to denote matrices of the form (3.20)

regardless of the type of nonlinear function used. Furthermore, we consider the paramet-

ric part of the predictor as one single linear function with an appropriate, unpenalised

smoother matrix of the form (3.20), i.e. P = 0.

More difficult than in the simple cases mentioned above is the calculation of tr(H) in a

(structured) additive model with several non–linear functions or with a non–linear func-

tion in combination with categorical covariates. In this case, the hat matrix H containing

entries for all regressors is unknown and so, of course, is tr(H). The reason is, that for

estimation performed by backfitting algorithm (see section 2.3.2) or local scoring procedure

(see section 2.3.3) the complete hat matrix is not needed. The estimation is carried out

iteratively using only the individual smoother matrices Hj of the respective functions fj.

Additionally, building up the complete hat matrix H in structured additive models is often

computationally very expensive. The inversion of a p × p matrix is necessary, where p is

the total number of parameters. For a spatial function, for instance, the number of basis

functions is equal to the number of regions and can easily amount to a few hundred. To

overcome the problem of the unknown hat matrix, the degrees of freedom of the model

are approximated by the sum of individual degrees of freedom (see Hastie & Tibshirani

(1990)), i.e.

dftotal =
∑

j

dfj. (3.21)

In the case of most non–linear functions individual degrees of freedom are calculated by

dfj = tr(Hj)− 1, (3.22)

where the subtracting of 1 accounts for the centering with respect to the intercept term

in case of an univariate nonlinear function or with respect to the common linear effect in

case of a varying coefficient. The value dfj lies in the range [dj − 1; pj − 1] where dj is

the dimension of the null space of the respective penalty matrix or equivalently the rank

deficiency. The number pj indicates the number of regression coefficients.

The approximate degrees of freedom ignore dependencies between individual terms and

are only true if X′
iX

′
j = 0 for all i 6= j. However, the approximation (3.22) was examined

by Buja, Hastie & Tibshirani (1989) who found it to provide good results compared to the

true degrees of freedom. Figure 3.2 also compares the approximate and the true degrees of

freedom for a model with two P–splines, each represented by 22 basis functions. It should
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be noted that each plot in figure 3.2 shows the whole range of possible degrees of freedom

but that, in real data sets, the individual degrees of freedom for P–splines seldom exceed

the value dfj = 7. The approximation is very good in plot (a) where the two underlying

covariates are uncorrelated and the number of observations n = 100 is distinctly higher

than the maximal number of parameters (p = 43). The largest difference between approx-

imated and true value amounts to 0.8 at dftrue ≈ 35. In the case of correlated underlying

variables shown in plots (b) and (c), the approximation is a bit worse especially for large

individual degrees of freedom. The approximation always overestimates the true number

with the largest difference of 3.8 at dftrue ≈ 31. This is similar in plot (d) with a small

number of observations n = 50, which is only slightly larger than the maximal number of

parameters, but with uncorrelated underlying variables. Here, the approximation exceeds

the true value only for large individual degrees of freedom. The largest difference amounts

to 2.8 at dftrue ≈ 35.

Note that the approximation of the overall degrees of freedom does not work if the sum

of the individual degrees of freedom is larger than the number of observations. The true

degrees of freedom cannot exceed the number of observations n.

For non–Gaussian responses, both true and approximate degrees of freedom depend on

the current model. The reason is that the hat matrix and the single smoother matrices

depend on the IWLS weights. That means, a certain value for a smoothing parameter λj

can result in different values for dfj if the modelling of other covariates is changed.

In the following, we will describe functions and constellations of functions where the simple

approximation (3.22) performs poorly or is clearly wrong. For all functions not mentioned,

the simple approximation (3.22) is used.

Fixed effects

As mentioned earlier in this section, the parametric part of the predictor is considered as

a special type of function. The intercept term is included in the parametric part, i.e. every

model automatically contains a parametric part. The individual degrees of freedom are

simply the number of coefficients, i.e.

dffix = tr(Hfix) = pfix. (3.23)

I.i.d. Gaussian random effects

Consider now the simple predictor

η = γ0 + fran(x)
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(a) df for y = f(x1) + g(x2)
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(b) df for y = f(x1) + g(x2)
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(c) df for y = f(x1) + g(x2)
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(d) df for y = f(x1) + g(x2)

Figure 3.2: Approximated degrees of freedom versus true degrees of freedom for (a) a model
with two P–splines each using 22 basis functions with number of observations n = 100. The
two underlying variables are uncorrelated; (b) a model like in (a) but with positively corre-
lated underlying variables (ρ = 0.5); (c) a model like in (a) but with negatively correlated
underlying variables (ρ = −0.5); (d) a model like in (a) but with number of observations
n = 50.

only containing an intercept term γ0 and an i.i.d. random effect fran(x). As mentioned in

section 2.2.6, the null space of the penalty matrix is of dimension zero only containing the

zero vector. That means, the function contains no unpenalised constant and is not cen-

tered. However, the function contains a penalised intercept term. Therefore, the separate

calculation of the degrees of freedom of intercept term and random effect is not possible:

For the unpenalised function, i.e. setting λ = 0, we get tr(Hran) = p, where p is the number

of different groups. In the case of λ →∞, the vector of function evaluations becomes the

zero vector, i.e. tr(Hran) = 0. So, tr(Hran) lies in the range of [0; p]. In contrast, the true

degrees of freedom for the above model lie in the range [1; p]. The model always contains

an intercept term, i.e. the minimal value is one. In the other extreme case, the predictor

contains p + 1 unpenalised parameters but only p of them can be estimated freely. One
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(a) df for y = f(x1) + g(x2) + h(ind)
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(b) df for y = f(x1) + g(x2) + h(spat)

Figure 3.3: Approximated degrees of freedom versus true degrees of freedom for (a) two
P–splines with 22 basis functions (ρ = 0.3) and an i.i.d. random effect for 10 groups with
n = 100 (largest difference 3.5 at dftrue ≈ 40); (b) two P–splines with 22 basis functions
(ρ = 0.3) and an MRF for 12 regions with n = 200 (largest difference 2.75 at dftrue ≈ 40).

parameter can always be calculated from all other parameters (compare section 2.2.2 about

categorical covariates).

So, instead of basing the approximation solely upon tr(Hran), we use formula

dfran = tr
{

(Xran,1) [(Xran,1)′W(Xran,1) + λran diag(Ip, 0)]
−1

(Xran,1)′W
}
− 1 (3.24)

(for λran > 0), where 1 is the vector containing value one only. The resulting values lie

in the range of [0; p − 1]. For the simple predictor used in this section, this formula even

results in the true degrees of freedom because it takes into account the relationship between

intercept term and nonlinear function.

For an efficient computation, formula (3.24) can equivalently be written as

dfran =

p∑

k=1

−cn3
k + n2

k − 2cn2
kλran + nkλran

(nk + λran)2
+ n · c− 1, (3.25)

where c = (n −∑p
k=1 n2

k/(nk + λran))−1 and nk =
∑

1≤i≤n:xik=1 wi and n =
∑p

k=1 nk. For

an unweighted Gaussian regression model nk is simply the number of observations in group

k. The exact derivation of formula (3.25) is given in section B.1 of the appendix.

Figure 3.3 (a) shows the performance of the approximated degrees of freedom for a model

with two P–splines and a random effect. Like in figure 3.2, the degrees of freedom are

overestimated, especially for large true degrees of freedom. Note, that the number of ob-

servations n = 100 is unrealistically small compared to the maximum of df = 52.
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Spatial effects

Now, we are going to examine spatial effects with decomposition in a smooth and an

unstructured component with predictor

η = γ0 + fstr(s) + funstr(s),

where the smooth function fstr(s) is modelled by a Markov random field and the un-

structured function funstr(s) by an i.i.d. Gaussian random effect. In this case, the design

matrices Xstr for the smooth function and Xunstr for the random effect are exactly identical,

i.e. Xstr = Xunstr = X. The difference between these two functions lies in the penalisation

(compare sections 2.2.5 and 2.2.6), i.e. the penalty matrices differ. But for small values of

the smoothing parameters, the penalty matrices hardly have any influence on the estimated

functions. In this case, the smoother matrices of both functions are nearly identical or even

equal for the extreme case of λstr = λunstr = 0. Hence, the true degrees of freedom for the

predictor above lie in the range of [1; p] where the minimal value df = 1 can be obtained if

both smoothing parameters tend towards infinity and the maximal value p is equal to the

number of regions. The maximal value is obtained if the sum fstr(s) + funstr(s) results in

unpenalised estimates for all parameters.

In contrast, the individual degrees of freedom of both functions lie in the range of [0; p− 1]

(by using formula (3.24) for the unstructured function). Hence, adding up the individual

degrees of freedom results in a number much too high for small smoothing parameters.

Instead, we calculate the degrees of freedom for both functions in one step using the com-

bined design matrix (X,X) and the combined blockdiagonal penalty matrix

Ptotal = diag(λunstrIp, λstrPstr) as

dfspat = dfstr + dfunstr = tr
{

(X,X) [(X,X)′W(X,X) + Ptotal]
−1

(X,X)′W
}
− 1. (3.26)

In order to account for the intercept term contained in the predictor, the value one is

subtracted. By using the fact that both matrix X′X and matrix (X′X + λunstrIp)
−1 are

diagonal, formula (3.26) can be transformed into the computationally more efficient formula

dfspat = tr(diag(nk)·Z) + tr(diag(nk)·Y)− 1︸ ︷︷ ︸
dfstr

+ tr(diag(nk)·Y) + tr(diag(nk)·X )︸ ︷︷ ︸
dfunstr

, (3.27)

where the first two terms can be related to the structured and the last two terms to

the unstructured spatial function. With k = 1, . . . , p and nk =
∑

1≤i≤n:xik=1 wk, matrix

diag(nk) = X′WX. Matrices X , Y and Z are elements of the inverse matrix

(
X′WX + λunstrIp X′WX

X′WX X′WX + λstrPstr

)−1

=

( X Y
Y Z

)
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with

Z =

[
diag

(
nkλunstr

nk + λunstr

)
+ λstrPstr

]−1

,

Y = −Z · diag

(
nk

nk + λunstr

)

and

X = diag

(
1

nk + λunstr

)
[Ip − diag(nk) · Y ].

An exact derivation of formula (3.27) is given in section B.2 of the appendix. For the

simple model only containing the intercept term and the two different spatial functions as

mentioned above, formula (3.26) results in the true degrees of freedom.

Figure 3.3 (b) shows the performance of the approximated degrees of freedom for a model

with two P–splines and a Markov random field. Like in figure 3.2, the degrees of freedom

are overestimated, especially for large true degrees of freedom.

Seasonal Components

Here, we consider the predictor

η = γ0 + fseason(t),

containing an intercept term and a seasonal effect with p seasons and period per. Similar

to i.i.d. random effects, the null space of a seasonal component (obtained for λ → ∞)

contains no intercept term (compare section 2.2.4) but only per − 1 effect variables. In

contrast, for λ → 0, the seasonal component consists of p unpenalised dummy variables.

This indicates that a seasonal component contains a penalised intercept term. Hence,

tr(H) lies in the range [3; p] whereas the true degrees of freedom for the predictor above

can take values from [4; p]. So again, the degrees of freedom for the seasonal component

can not be calculated independently from the intercept term. Instead, we use formula

dfs = tr
{

(1,Xs) [(1,Xs)
′W(1,Xs) + λs diag(0,Pper)]

−1
(1,Xs)

′W
}
− 1 (3.28)

=
∑

k

nkzkk − 1

n

∑

k

n2
kzkk − 2

n

∑

j>k

nknjzjk (3.29)
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for the calculation of the individual degrees of freedom dfs with nk =
∑

1≤i≤n:xik=1 wi for

k = 1, . . . , p and n =
∑p

k=1 nk. The values zjk are elements of matrix

Z =







n1 − n2
1/n −n1n2/n . . . n1np/n

−n1n2/n
. . .

...
...

. . . np−1np/n
−n1np/n . . . np−1np/n np − n2

p/n


 + λsPper




−1

.

The exact derivation of formula (3.29) is given in the appendix section B.3.

Varying coefficients

Among predictors including varying coefficients we have to distinguish between two situa-

tions. In the first situation we deal with a predictor of the kind

η = γ0 + g1(v1)x + g2(v2)x + γx · x.

In this case, the predictor is not identifiable (compare section 2.3.1) and the varying coeffi-

cients have to be centered with respect to the common linear effect of interacting variable

x. That means that each varying coefficient loses one degree of freedom to the common

linear effect. Hence, the general formula (3.22) can be used to calculate the individual

degrees of freedom for both varying coefficients. The exception are random slopes based

on i.i.d. Gaussian random effects where formula (3.24) has to applied.

In the second situation we consider the simpler predictor

η = γ0 + g(v)x.

As this predictor contains only one varying coefficient modifying the effect of x, it is not

necessary to center the varying coefficient here. That means, the formula for its degrees of

freedom is both for random slopes and for other univariate functions given by

dfvc = tr(H).

ANOVA type decomposition

Here, we consider a predictor containing only an ANOVA type interaction of two con-

tinuous variables x1 and x2, i.e.

η = γ0 + f1(x1) + f2(x2) + finter(x1, x2) (3.30)
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as described in section 2.2.8. For this kind of predictor, the complete two–dimensional

function f(x1, x2) = f1(x1) + f2(x2) + finter(x1, x2) is estimated first. Only afterwards, the

individual terms are calculated from the overall function. Therefore, the degrees of freedom

are calculated in the same way: The degrees of freedom dfall for the overall function are

the trace of the respective smoother matrix, i.e.

dfall = tr

(
X′WX

(
X′WX + λP +

λ1

p
Px1 +

λ2

p
Px2

)−1
)
− 1,

where λ1 and λ2 are the smoothing parameters for functions f1 and f2, λ is the smoothing

parameter for the interaction component and X is the tensor product design matrix. For

further details regarding this formula compare section 2.2.8. The individual degrees of

freedom dfj, j = 1, 2 of f1 and f2 are calculated using the one–dimensional smoother

matrices, i.e.

dfj = tr(X′
jWXj(X

′
jWXj + λjPj)

−1)− 1.

The degrees of freedom for the interaction component are then given by

dfinter = dfall − df1 − df2.

For the simple predictor (3.30), this formula results in the true overall degrees of freedom

because it takes the dependencies between the individual terms into account. The true

overall degrees of freedom lie between the sum of lower bounds of df1 and df2 for large

smoothing parameters λ, λ1 and λ2 and the number p2−1 for small smoothing parameters.

3.4 Algorithms for simultaneous selection of variables

and degree of smoothness

In this section we will describe several algorithms for simultaneous selection of variables

and the degree of smoothness in structured additive regression models. The simplest

algorithm is the stepwise algorithm as implemented in the S–Plus routine step.gam and

described in Chambers & Hastie (1992) or Hastie & Tibshirani (1990) for additive models.

We will give a brief description of this method in the first part of this section. Afterwards,

we will introduce a selection algorithm together with some modifications that is based

on a mathematical optimisation algorithm, the coordinate descent method. All selection

algorithms are designed to answer the questions from the introduction of this chapter.

Hence, they are able to

• decide whether a particular covariate or term should be incorporated in the model,
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• choose between a linear and non–linear function for a particular continuous variable,

• select the degree of smoothness, i.e. the smoothing parameter for each non–linear

function,

• decide if there are complex interactions between certain covariates.

This is done by choosing a good model (according to a selection criterion) from a large

set of possible models. The models are composed by choosing from a set of potentially

important covariates or terms, where each covariate or term is again provided with a set

of modelling alternatives. For the nonlinear modelling alternatives of a term, e.g. the j–th

term, a certain number of smoothing parameters

λj1 > λj2 > . . . > λj,mj

is chosen according to predefined degrees of freedom

dfj1 < dfj2 < . . . < dfj,mj
. (3.31)

That means, the algorithms perform a grid search and do not treat smoothing parameters

as continuous. In addition to the possibilities for a nonlinear function defined through

smoothing parameters, some other modelling alternatives can be considered, like e.g. ex-

cluding the variable or term from the model or using a linear effect. These alternatives

depend on the term type and are listed in table 3.2 together with the range of degrees of

freedom possible for the respective nonlinear function. The possibility of removing a term

from the model (coinciding with dfj = 0) is not mentioned in table 3.2 as this alternative

exists for each term type. It is possible to decide for each variable or term whether this

alternative should be considered or whether the respective term must be included in the

predictor. Likewise, the representation by a linear effect which is possible with some terms

can be eliminated. For each variable or term, the modelling alternatives are ordered ac-

cording to their degrees of freedom leading to a list of the form (3.31).

Some specifics for the different term types regarding the choice of modelling alternatives

are given in the last column of table 3.2 with some further details given here:

1. In some cases, the smallest degree of freedom possible for the nonlinear function is

smaller than the degree of freedom of an extra alternative. Then, the extra alternative

has to be correctly positioned between nonlinear alternatives. For example, for a P–

spline with first order penalty it is possible to estimate a nonlinear function with

dfj < 1, whereas dfj = 1 corresponds to the linear effect. In this case, the linear

effect is positioned between the nonlinear alternatives with dfj < 1 and those with

df > 1.
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2. For a two–dimensional P–spline the selection algorithms offer the possibility to use

a linear interaction term of the form

γ1,2 · (x1 − x̄1)(x2 − x̄2). (3.32)

Here, the centered covariates x1 − x̄1 and x2 − x̄2 are used for the reason shown

in figure 3.4: The form of the surface depends on the values of the two covariates.

When using the centered variables, the surface is fixed and thus independent of linear

transformations of the original covariates. Note that the linear interaction (3.32) is

not the limit for a two–dimensional P–spline with a second order penalty and λ →∞.
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Figure 3.4: Shown are (a) the linear interaction using the non–transformed covariates and
(b) the linear interaction using centered covariates.

3. An ANOVA type decomposition is controlled by three smoothing parameters λ, λ1

and λ2 in the overall penalty matrix Pcomp = λP + λ1/pPx1 + λ2/pPx2 . Hence, the

degrees of freedom depend on all three smoothing parameters. But the choice of

modelling alternatives is carried out separately for the three parameters: The in-

teraction component is mainly controlled by λ and for the determination of values

for λ according to predefined degrees of freedom we set λ1 = λ2 = 0. Additionally,

the interaction component can be a linear interaction of the form (3.32) or can be

removed from the model.

The values for λ1 and λ2 are determined independently for the respective one–

dimensional P–splines, i.e. for the case of a model with main effects only. For the

main effects, the alternatives of using a linear effect or removing the term from the

model are also possible.

There are, however, some restrictions regarding the extra modelling alternatives (lin-

ear fit or exclusion) which have to be considered during the selection process. These

are mainly due to the definition of the ANOVA type decomposition where the main
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effects are extracted from the overall surface. This, for instance, does not allow the

modelling of a main effect by an additional linear effect if the overall surface is also

estimated. Altogether, the function type used for the interaction component must

never be more complex than the least complex function type used for the main effects.

This leads to the following consequences:

• the interaction component may only be included in the model if the model

contains both main effects;

• the interaction component cannot be nonlinear if one main effect is linear;

• the main effects cannot be removed from the model if the interaction component

is included;

• the main effects cannot be modelled through a linear fit if the interaction com-

ponent is nonlinear.

4. For varying coefficients fj = g(vj)x the modelling alternatives and the respective

degrees of freedom depend on whether fj is identifiable or has to get centered with

respect to x. This is considered in table 3.2.

5. The centering of a non–identifiable varying coefficient fj with respect to variable x

has a consequence for the selection process: variable x is automatically included in

the model if the varying coefficient fj is included (even if x was not included in the

model before).

When describing the selection algorithms in the next sections, we will use the fact that

each possible model is uniquely determined by the combination of modelling alternatives

for all covariates and terms, i.e. by vector (df1, . . . , dfq). For each function fj (depending on

the function type, compare table 3.2), the selection algorithms can choose between some or

all of the alternatives ‘removing the term from the model’, ‘using a linear effect’ or ‘using

a nonlinear function’, i.e. the vector of function evaluations fj|dfj is estimated by

f̂j|dfj =





0
γ̂j xj

Xjβ̂j



 =





0 , if dfj = 0
xj(x

′
jxj)

−1x′j r̃ , if dfj = 1
Xj(X

′
jXj + λjPj)

−1X′
j r̃ , if dfj ↔ λj,

(3.33)

where r̃ denotes the respective partial residuals. The expression dfj ↔ λj indicates the

unique relationship between dfj and λj. For an ANOVA type decomposition the formula

is analogue but determined by the degrees of freedom of all three components.
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3.4.1 Stepwise Algorithm

As already mentioned before, an important condition for the stepwise algorithm is the

hierarchical ordering of the modelling alternatives for every covariate. Starting from a

user–specified basis model, the algorithm changes the modelling of one variable at a time.

In doing so, it tries out both adjoining alternatives (from the ordered list (3.31)), i.e. the

next complex and the next smooth function. Afterwards, it goes back to the basis model.

This process is repeated for each covariate, and only afterwards the basis model is changed.

The best among all new models calculated during this one iteration is chosen to become

the new basis model. This process is repeated until the new basis model is worse than

the old one. In this case, the search is finished and the old basis model is the best model

found. The evaluation of the models is based upon a selection criterion.

One modification is to use not only the next but also the second to next or even more

neighbouring alternatives.

Stepwise Algorithm

1. Initialisation

For j = 1, . . . , q:

Choose a set of modelling alternatives for covariate (or term) xj as described in the

paragraphs above, i.e.

dfj,1 < . . . < dfj,mj
.

2. Starting model

Choose a starting model, i.e. choose a modelling alternative df
j,k

(0)
j

for each covariate

(or term) xj, where k
(0)
j ∈ {1, . . .mj}. The starting model consists of the set of

modelling alternatives given by(
df

1,k
(0)
1

, df
2,k

(0)
2

, . . . , df
q,k

(0)
q

)

Estimate this model and calculate the selection criterion C(0).

Set r = 1.

3. Iteration

For j = 1, . . . , q:

• For variable xj try the alternative that is next in complexity, i.e.

replace df
j,k

(r−1)
j

with df
j,k

(r−1)
j +1

(if existing) which leads to the model

(
df

1,k
(r−1)
1

, . . . , df
j,k

(r−1)
j +1

, . . . , df
q,k

(r−1)
q

)
.

Calculate the selection criterion Cj+.
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• For variable xj try the alternative that is next in smoothness, i.e.

replace df
j,k

(r−1)
j

with df
j,k

(r−1)
j −1

(if existing) which leads to the model

(
df

1,k
(r−1)
1

, . . . , df
j,k

(r−1)
j −1

, . . . , df
q,k

(r−1)
q

)
.

Calculate the selection criterion Cj−.

• Go back to the old alternative df
j,k

(r−1)
j

again, i.e. go back to the basis model.

Determine the minimum value amongst C1+, . . . , Cq+, C1−, . . . , Cq− and assign it to

C(r). Additionally determine the model, i.e. determine variable xj and modelling

alternative df
j,k

(r−1)
j +1

or df
j,k

(r−1)
j −1

, that produced C(r). Use this model which is

indicated by (
df

1,k
(r)
1

, . . . , df
j,k

(r)
j

, . . . , df
q,k

(r)
q

)

as the new basis model. Set r = r + 1.

4. Termination

Step 3. is repeated until the best model of the current iteration is worse than the

basis model of this iteration, i.e. until C(r) > C(r−1).

The best model found is the model belonging to C(r−1).

3.4.2 Algorithms based on the Coordinate Descent Method

The coordinate descent method is a multidimensional optimisation algorithm based on

repeated one–dimensional minimisations. Like the stepwise algorithm, the coordinate de-

scent method starts with a user–specified basis model. It also changes the modelling of one

covariate or term at a time, but it always checks all possible alternatives. The old mod-

elling of the respective covariate or term is at once replaced by the best alternative. That

means, the basis model is changed after each component and is replaced by the currently

best model. During one iteration, the algorithm passes through all covariates and terms

always using the same sequence. The search is finished if during one entire iteration the

model does not change any more.

This process is also shown in figure 3.5 for two continuous variables x1 and x2. The upper

plot (a) shows the AIC–function in dependence on the individual degrees of freedom df1

and df2. The minimum is indicated by the black dot. The lower plot (b) shows a contour

plot for the same AIC–function together with the progression of the search. The search

starts in the direction of x1 finding the minimum after two iterations. In contrast to the

stepwise algorithm, the order of the variables may influence the progression. This is shown

in plot (c). Here, the search starts in the direction of x2 and needs only 1.5 iterations to
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find the minimum.

First, before coming to some modified versions, we will describe the basic coordinate de-

scent algorithm in detail.

Basic algorithm or exact search

1. Initialisation

For j = 1, . . . , q:

For covariate xj choose a set of modelling alternatives as described in the paragraphs

above, i.e.

dfj,1 < . . . < dfj,mj

2. Starting model

Choose a starting model, i.e. choose a modelling alternative df
j,k

(0)
j

for each covariate

xj, where k
(0)
j ∈ {1, . . .mj}. The starting model is given by the set of modelling

alternatives (
df

1,k
(0)
1

, df
2,k

(0)
2

, . . . , df
q,k

(0)
q

)
.

Estimate this model and calculate the selection criterion C(0).

Set r = 1.

3. Iteration

For j = 1, . . . , q:

For k ∈ {1, . . .mj}, k 6= k
(r−1)
j :

Estimate the model that replaces df
j,k

(r−1)
j

with dfj,k, i.e. the model indicated by

(
df

1,k
(r)
1

, . . . , df
j−1,k

(r)
j+1

, dfj,k, dfj+1,k
(r−1)
j+1

, . . . , df
q,k

(r−1)
q

)

Change the basis model by replacing df
j,k

(r−1)
j

with df
j,k

(r)
j

minimising the selection

criterion over all modelling alternatives for xj. The new basis model is given by the

set (
df

1,k
(r)
1

, . . . , df
j,k

(r)
j

, df
j+1,k

(r−1)
j+1

, df
q,k

(r−1)
q

)
.

4. Termination

Repeat step 3. until the modelling alternatives of all covariates do not change.

Modifications

The problematic part of the basic algorithm or exact search, as we will call it from now on,

is the third step (step 3.). For each covariate or term, the algorithm has to try all modelling
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alternatives in order to find the best possibility. In doing so, the algorithm uses backfitting

or local scoring procedure, respectively, to estimate every model. This process is very time

consuming. In order to overcome this problem, we introduce some modifications of the

basic algorithm.

1. Adaptive search

This selection method can not only be seen as a modification of the basic coordinate

descent algorithm but also as an adaptive backfitting algorithm instead. We want to

introduce the algorithm from the backfitting point of view. A very similar algorithm

called BRUTO was already presented by Hastie, Tibshirani & Buja (1994). Like

the basic algorithm, the adaptive search starts from a basis model with user specified

modelling alternatives for each independent variable or term. This model is estimated

via backfitting or local scoring procedure leading to the predictor

η̂ = γ̂0 + f̂
1,k

(0)
1

(x1) + f̂
2,k

(0)
2

(x2) + . . . + f̂
q,k

(0)
q

(xq).

In the formula, the effect of each covariate or term is expressed through a func-

tion f̂
j,k

(0)
j

(xj), where removing the variable from the model can be expressed by

f̂j,1(xj) ≡ 0 and the linear effect by f̂j,2(xj) = γ̂jxj (compare formula (3.33)).

After estimating the basis model, the algorithm alternately runs through all inde-

pendent variables and terms, each time updating the respective function estimate f̂j

by basing it on the current partial residuals y− η̂ + f̂
j,k

(r−1)
j

. This is a similar process

as is used by the backfitting algorithm. In contrast to the backfitting algorithm, the

degree of smoothness of the function is not fixed. Instead, all modelling alternatives

kj ∈ {1, . . . , mj} are checked and the alternative df
j,k

(r)
j

currently minimising the

selection criterion is chosen for the update. Note, that the intercept term should be

adjusted when trying the zero function dfj = 0 or the fixed effect dfj = 1. With

nonlinear functions, the intercept is adjusted automatically.

For ANOVA type decompositions according to 2.2.8.2 this process has to be changed

slightly. Here, the main effects are extracted from the estimated overall surface rather

than being estimated as extra components. The surface estimator uses penalty matrix

Pcomp = λP + λ1/pPx1 + λ2Px2 including all three smoothing parameters. Hence, if

one of the smoothing parameters λ, λ1 or λ2 is to be chosen, the respective smoothing

parameter in Pcomp is changed and the overall surface is reestimated. If the selection

method decides that a nonlinear interaction component is not necessary, the two

main effects are selected and estimated as separate components in the usual way as

described above.

The process described in the paragraphs above is repeated until the modelling of

all covariates does not change during three successive iterations. The number three
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accounts for changes that could arise due to the improving of function estimates even

if there had been no changes in the last iteration. Afterwards, the algorithm switches

to backfitting or local scoring procedure in order to obtain the correct penalised max-

imum likelihood estimates.

With non–Gaussian responses, additional to the process described above, the scale

parameter (if unknown) and the IWLS weights are updated after each iteration,

i.e. after the algorithm has once passed through all covariates and terms. This process

mimics the local scoring procedure with the difference that the local scoring proce-

dure updates scale parameter and IWLS weights only after the convergence of the

inner backfitting algorithm.

In contrast to the terminating condition mentioned above, there could be thought of

two possibilities as terminating condition: Either the search algorithm could continue

until there are no changes in the estimated regression coefficients. But with fixed

modelling alternatives, this variation is exactly identical to backfitting or local scor-

ing procedure, just needing more time. The other alternative would be to continue

minimising the selection criterion. However, with most criteria this process would

be equivalent to maximising the unpenalised log–likelihood and, therefore, would not

result in penalised maximum likelihood estimates.

The adaptive search can be interpreted as a modification of the basic coordinate

descent algorithm. Thereby, the way of choosing the modelling alternative of one co-

variate or term is regarded as an approximate one–dimensional minimisation method.

The approximation lies in the mere updating of the respective function by formula

(3.33) without adjusting all other terms, whereas the exact search always fits the

whole model. Moreover, it has to be accepted that the value of the selection crite-

rion can get worse during the process. This is due to the adaptation of the function

estimates to the penalised log–likelihood caused by the backfitting updates whereas

the selection criteria include the unpenalised log–likelihood.

2. Adaptive/exact search

This modification is a combination of the exact and the adaptive search that is

intended to combine the advantages of both versions. Here, the adaptive search is

performed first. Afterwards, based on the model selected by the adaptive search, an

exact search follows. The aim is to select a good model in a short time by the adaptive

search. Based on this good model, the exact search is supposed to need only very

few iterations to correct errors that are possibly made because of the approximations

during the first search. With this process, the combined algorithm is supposed to

need less time than the exact search alone but to arrive at the same or a very similar

model.
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3. Approximate search

This modification is very similar to the adaptive search. The choice of the modelling

alternative for each covariate or term is performed exactly as with the adaptive search,

i.e. by only updating the estimate of the respective function. The difference to the

adaptive search is that, after the choice of the modelling alternative, the approximate

search at once estimates this new model using either backfitting algorithm or local

scoring procedure. Moreover, the old basis model also is at once replaced by the new

model, but only if the new model is better than the old one. This ensures that the

selection criterion always improves during the process.

In simulation studies, the results achieved by the approximate and the adaptive search

were nearly identical. Additionally, both methods needed about the same time to

select and estimate the models. Hence, we do not use this approximate search in the

rest of this thesis.
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Figure 3.5: (a) shows the AIC as a two–dimensional function of df1 = tr(H1) and df2 =
tr(H2). The black dot indicates the minimum value. (b) shows the coordinate descent
method for the AIC function in (a). The algorithm works along the directions of variables
x1 and x2. After two iterations, it finds the minimum. (c) shows the coordinate descent
method with a switched order of variables, i.e. it starts in the direction of x2. With this
order, the algorithm finds the minimum after merely 1.5 iterations. (Nevertheless, it has
to complete the second iteration in reality.)



Chapter 4

Structured Additive Multinomial
Logit Models

In this chapter, we consider extensions of chapters 2 and 3 to multinomial logit models. The

first section deals with inference in these models when dependent variables and smooth-

ing parameters are fixed. The second part describes adjustments regarding the selection

algorithms and their components, e.g. the calculation of degrees of freedom.

4.1 Model specification and Inference

In this section, we describe the estimation of regression coefficients in multinomial logit

models with fixed covariates and smoothing parameters. More details can be found in

Fahrmeir & Tutz (2001) for instance. Multinomial logit models are a special case of multi-

variate exponential families. We consider here a multinomial distributed response variable

Y with k + 1 different possible outcomes which are labelled by 1, . . . , k + 1 for simplicity.

At first, we consider the case of one trial per observation, i.e. we have

Y |η ∼ M(1, (π(1), . . . , π(k))′),

where η denotes the predictor with fixed covariates and smoothing parameters. In an

alternative representation, the response variable Y is written as a vector y = (y(1), . . . , y(k))′

of k indicator variables y(s) given by

y(s) =

{
1 , if Y = s
0 , otherwise.
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The vector π = (π(1), . . . , π(k))′ contains the probabilities for observing categories 1, . . . , k,

i.e. we have

P (Y = s) = P (y(s) = 1) = π(s).

In order to ensure identifiability, the last category k + 1 serves as reference category with

respective probability given by P (Y = k + 1) = 1−∑k
s=1 π(s).

Using the vector notation of y, it is also possible to consider the more general case with

several trials m ≥ 1 per observation. Similar to binomial data (described in section 2.3.3.1),

we use the scaled multinomial distribution in this case. That means, the response variables

y(s) denote the relative frequencies of trials with outcome s, i.e. we have

(y(1), . . . , y(k))′|η ∼ 1

m
M(m, (π(1), . . . , π(k))′).

The vector of conditional expectations µ = E(y|η) is equal to the probability vector, i.e.

µ = (µ(1), . . . , µ(k))′ = (π(1), . . . , π(k))′ = π.

Like in the univariate case, the model specification for the multinomial logit model is based

on two different assumptions:

1. Distributional assumption

Given the predictor values ηi, the response variables yi, i = 1 . . . , n are conditionally

independent. The density of vector yi can be written in form of a multivariate

exponential family, i.e.

f(yi|θi, φ, wi) = exp

{
y′iθi − b(θi)

φ
wi + c(yi, φ, wi)

}
,

with scale parameter φ = 1 and weights wi = mi where mi denotes the number of

trials per observation. The natural parameter θi is here

θi =

[
ln

(
π

(1)
i

1−∑k
s=1 π

(s)
i

)
, . . . , ln

(
π

(1)
i

1−∑k
s=1 π

(s)
i

)]′

and function b(θ) is given by

b(θ) = − ln

(
1−

k∑
s=1

π(s)

)
.

2. Structural assumption

The conditional expectation µi = E(yi|ηi) is related to the multivariate predictor

ηi = (η
(1)
i , . . . , η

(k)
i )′ by

µi = h(ηi) or ηi = g(µi).
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The multinomial logit model uses the natural link function

η = g(π) = (g1(π), . . . , gk(π))′ = θ =

[
ln

(
π(1)

1−∑k
s=1 π(s)

)
, . . . , ln

(
π(1)

1−∑k
s=1 π(s)

)]′

and the resulting response function

π = h(η) = (h1(η), . . . , hk(η))′ =

(
exp(η(1))

1 +
∑k

s=1 exp(η(s))
, . . . ,

exp(η(k))

1 +
∑k

s=1 exp(η(s))

)′

.

Here again, we have the relation µ = ∂b(θ)/∂θ. With φ = 1 the conditional covariance

matrix for observation i is given by

Cov(yi|ηi) =
1

wi

∂b(θi)

∂θ∂θ′

with

∂b(θi)

∂θ∂θ′
=




π
(1)
i (1− π

(1)
i ) −π

(1)
i π

(2)
i . . . −π

(1)
i π

(k)
i

−π
(1)
i π

(2)
i π

(2)
i (1− π

(2)
i )

...
...

. . .
...

−π
(1)
i π

(k)
i . . . −π

(k−1)
i π

(k)
i π

(k)
i (1− π

(k)
i )




=
∂h(ηi)

∂η
(4.1)

The multivariate predictor ηi for the i–th observation can be written as the product of a

design matrix Xi and a parameter vector β, i.e.

ηi = Xiβ,

where the design matrix is of dimension k× p and the parameter vector has length p. The

number p is here the overall number of parameters, i.e. p =
∑k

s=1 p(s) with p(s) indicating

the number of parameters for the s–th component η(s) of the predictor. The numbers p(s)

and the dependent variables can be different for the single components η(s). The design

matrix is given by

Xi =




x
(1)′
i

x
(2)′
i

. . .

x
(k)′
i


 ,

where x
(s)′
i contains the covariate values for the component η(s). Accordingly, the parameter

vector β = (β(1)′ , . . . , β(k)′)′ contains one subvector for each component. That means, each

component has its own regression coefficients what also allows to perform variable selection
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separately for each component η(s). The overall design matrix X for all n observations is

of order nk × p and takes the form

X =




X1

X2
...

Xn


 .

Accordingly, vector y = (y′1, . . . , y
′
n)′ of length nk is the vector containing all n response

variables and η = (η′1, . . . , η
′
n)′ the overall predictor.

Similar to univariate generalised STAR models, the estimation of the unknown regression

parameters can be based on the individual smoother matrices of the individual components

so that the computation of the overall design matrix X is not necessary. The respective

estimation algorithm is a modification of the Local Scoring procedure (compare section

2.3.3.2) for multinomial logit models and was presented by Abe (1999). It computes IWLS

weights separately for each component and uses the backfitting algorithm to estimate re-

gression parameters. The design matrices used in the formulas below are therefore identical

to the design matrices in univariate response models.

Local Scoring procedure

1. Initialisation:

For s = 1, . . . , k: Set (e.g.) γ̂(s,0) = 0 and β̂
(s,0)
j = 0 for j = 1, . . . , q(s).

Set r = 1.

2. For s = 1, . . . , k: Calculation of weight matrix and dependent variable:

W(s,r−1) = diag(d
(s,r−1)
1 , . . . , d(s,r−1)

n )

η
(s,r−1)
i = f̂

(s,r−1)
1 (xi1) + . . . + f̂

(s,r−1)

q(s) (xiq(s)) + u′iγ̂
(s,r−1)

µ
(s,r−1)
i = h(η

(s,r−1)
i )

θ
(s,r−1)
i = η

(s,r−1)
i

d
(s,r−1)
i = wi

∂h(η
(s,r−1)
i )

∂η(s)
= wi V ar(y

(s)
i |η(s,r−1)

i ) = wi π
(s,r−1)
i (1− π

(s,r−1)
i )

ỹ
(s,r−1)
i = η

(s,r−1)
i +

(
∂h(η

(s,r−1)
i )

∂η(s)

)−1

(y
(s)
i − µ

(s,r−1)
i )

3. Calculation of the weighted least squares estimates using backfitting
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(a) Initialisation:

Set r′ = 0.

For s = 1, . . . , k: Set γ̂(s,r′) = γ̂(s,r−1) and β̂
(s,r′)
j = β̂

(s,r−1)
j for j = 1, . . . , q(s).

Set r′ = 1.

(b) For s = 1, . . . , k:

Calculation of

γ̂(s,r′) = (U′(s)W(s)U(s))−1U′(s)W(s)


ỹ(s) −

q(s)∑
j=1

f̂
(s,r′−1)
j




and for j = 1, . . . , q(s):

β̂
(s,r′)
j = (X′(s)

j W(s)X
(s)
j + λ

(s)
j P

(s)
j )−1X′(s)

j W(s)res
(s,r′)
j

using the current partial residuals

res
(s,r′)
j = ỹ(s) −U(s)γ̂(s,r′) −

j−1∑

l=1

f̂
(s,r′)
l −

q(s)∑

l=j+1

f̂
(s,r′−1)
l .

(c) For s = 1, . . . , k:

Centering of the nonlinear functions f̂
(s,r′)
j = X

(s)
j β̂

(s,r′)
j for j = 1, . . . , q(s):

f̂
(c,s,r′)
j = f̂

(s,r′)
j − f̄

(s,r′)
j

and adjustment of the intercept term, i.e.

γ̂
(s,r′)
0 = γ̂

(s,r′)
0 +

q(s)∑
j=1

f̄
(s,r′)
j

or of the common linear effect for varying coefficients.

Set r′ = r′ + 1.

(d) Repeating of (b) and (c) until there are no changes in the estimated parameters.

4. The process terminates if the changes in all parameters are sufficiently small, other-

wise set r = r + 1 and go back to 2.

4.2 Simultaneous selection of variables and smooth-

ing parameters

In this section we describe the extensions for the selection procedures of chapter 3 to

multinomial logit models. As already mentioned in the last section, we consider several,
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in general k, response categories where each category has an own predictor with its own

parameter values. Therefore, each predictor can also have its own covariates and its own

smoothing parameters. Hence, the selection algorithms described in this chapter select

dependent variables and smoothing parameters separately for each category. The selection

depends on one of the selection criteria described in chapter 3.2 based on the deviance.

First, we describe the calculation of degrees of freedom.

4.2.1 Degrees of freedom

Like in univariate models, the true degrees of freedom are calculated using the overall

generalised hat matrix from the last iteration of the IWLS algorithm (compare Fahrmeir

& Tutz (2001)), i.e.

dftotal = tr(H),

where H is the matrix that projects the working response ỹ on the fitted values ŷ, i.e.

ŷ = Hỹ. The vector y is the nk × 1 vector containing all observations for all categories.

Again, similar to the univariate case, the overall hat matrix H is difficult to compute. The

degrees of freedom for a model are therefore approximated using formula

dftotal =
k∑

s=1

q(s)∑
j=1

df
(s)
j . (4.2)

The individual degrees of freedom df
(s)
j are calculated from the respective smoother matrix

H
(s)
j as described in chapter 3 for the univariate case.

In contrast to the univariate case, however, formula (4.2) not only ignores the dependencies

between individual terms of one category but also the dependencies between the categories.

Matrix (4.1) shows that the covariances of all pairs of categories are unlike zero.

4.2.2 Stepwise Algorithm

In the multivariate case the stepwise algorithm works essentially as for univariate responses.

One iteration comprises trying out new models for each category and each term. But every

iteration is divided into several parts. The first part contains all terms belonging to the

first predictor, the second one all terms belonging to the second predictor and so on. Every

part of one iteration is then treated like a complete iteration in the univariate case. That

means, after trying out new possible predictors for the first category, the actual basis model

is immediately replaced by the best among these models (if this best model is better than

the old basis model). Then the algorithm continues with the second category using the
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new basis model that was determined after having completed the selection for the first

predictor. In this way, all categories are passed alternately always proceeding with the

first category after having completed the last (k–th) one. This process continues until the

basis model is not replaced during one entire iteration.

4.2.3 Algorithms based on the Coordinate Descent Method

In the multivariate case, the algorithms based on the coordinate descent method work

nearly exactly as for univariate models. In the case of the adaptive search, this is possible

because the estimation algorithm used for calculating the individual IWLS estimates is

also the backfitting algorithm.

Both algorithms, exact and adaptive search, run alternately through all categories start-

ing with the predictor of the first category. For each category, the respective predictor

is improved by running once through all terms as described in section 3.4 for univariate

responses. Afterwards, both algorithms proceed with the predictor of the next compo-

nent. When using the adaptive search, the IWLS weights are updated after each category.

When the algorithms have completed the last (k–th) category they continue with the first

predictor again. This process is repeated until there are no changes in the model during

one (exact search) or three successive (adaptive search) iterations. One iteration comprises

here all terms of all individual predictors.

In the multivariate case, it is of course also possible to perform the exact search after having

completed the adaptive search in order to get the adaptive/exact search as an additional

selection procedure.
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Chapter 5

Construction of conditional and
unconditional credible intervals

In this chapter we describe methods for the construction of credible intervals for nonlinear

functions and for regression coefficients of parametric terms. The credible intervals can be

conditional or unconditional. Conditional means that the model is considered as fixed and

only the regression coefficients show variation, whereas unconditional intervals incorporate

the uncertainty induced by model selection. Generally, credible intervals for nonlinear

effects are an important visual tool when plotted around the estimated function. They

help to detect regions with a higher variability which is often due to few data points.

5.1 Conditional credible intervals

In this section we describe an approach for the construction of credible intervals for regres-

sion parameters of linear effects and for nonlinear functions which are conditional on the

model selected by one of the selection algorithms of chapter 3. All selection algorithms

described there use the backfitting algorithm for the estimation of regression parameters.

The backfitting algorithm is a modular algorithm based on the individual smoother matri-

ces. That means, the overall hat matrix is not needed and, therefore, not known. However,

the overall hat matrix would be needed for a direct calculation of credible intervals. Out

of this reason we calculate conditional credible intervals using a hybrid MCMC approach:

first, a model is selected by one of the selection algorithms and, afterwards, MCMC tech-

niques are used to construct credible intervals conditional on this selected model. Thereby,

smoothing parameters and scale parameter are set fixed to the values estimated or chosen

by the selection algorithm. Hence, the joint posterior distribution of regression parameters
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for linear effects and vectors of nonlinear functions is given by

p(γ, f1, . . . , fq|y, φ̂, d̂f0, d̂f 1, . . . , d̂f q)

∝ L(y|φ̂, γ, f1, . . . , fq, d̂f0, d̂f1, . . . , d̂f q)

q∏
j=1

p(fj|φ̂, d̂f j). (5.1)

Here, the degrees of freedom d̂f j, j = 1, . . . , q, represent the modelling alternative or degree

of smoothness chosen for the respective function fj, whereas d̂f0 = (d̂f 0,1, . . . , d̂f0,f ) is the

vector summarising the degrees of freedom selected for the linear effects. Hence, the vector

(d̂f0, d̂f 1, . . . , d̂f q) uniquely specifies the selected model among all different possible models.

For many nonlinear functions, the selection algorithms can choose between removing the

term from the model, using a linear effect or a nonlinear function, i.e. fj|d̂f j can be expressed

by

fj|d̂f j =





0 , if d̂f j = 0

γj xj , if d̂f j = 1
Xjβj , else,

where the usual prior assumptions (compare chapter 2) are made regarding the coefficients

βj or γj.

MCMC simulation techniques create a Markov chain with the joint posterior (5.1) as sta-

tionary distribution. This is achieved by repeatedly drawing random numbers which, at

least after a convergence phase, can be considered as random numbers from the joint poste-

rior (5.1). The random numbers can be used to estimate certain quantities of the posterior

distribution, like e.g. its mean or even its density function. In our case, we use the random

numbers for the construction of credible intervals.

The way in which the random numbers are drawn depends on the type of the response vari-

able y, i.e. one distinguishes between Gaussian responses and non–Gaussian responses from

an exponential family, where the Gaussian case is easier to deal with. In both cases, random

numbers are not drawn directly from the joint distribution of all functions but are obtained

by alternately drawing from the full conditional posterior distributions of one function con-

ditional on all others, i.e. by drawing from p(fj|·) = p(fj|y, φ̂, γ, fk, k 6= j, d̂f0, d̂f 1, . . . , d̂f q)

and p(γ|·). For nonlinear functions which are not removed from the model, this is achieved

by drawing from the full conditional of the coefficients βj or γj and calculating fj after-

wards.

In the Gaussian case the joint posterior (5.1) of all functions conditional on variance pa-

rameter and degrees of freedom is multivariate Gaussian with known parameters. Here, a

direct calculation of credible intervals would be possible but would require the overall hat

matrix. Hence, we use the Gibbs sampler (compare Green (2001)) which alternately draws



5.1 Conditional credible intervals 95

random samples for the individual functions from their full conditionals. That means we

again get a modular algorithm which uses the sparse structures of the individual smoother

matrices similarly to the backfitting algorithm. For the full conditional of regression para-

meters for linear effects we get a multivariate Gaussian distribution with expectation and

covariance matrix given by

E(γ|·) = (U′WU)−1U′W(y − η̃0) and Cov(γ|·) = σ̂2(U′WU)−1. (5.2)

The regression parameters of nonlinear functions also possess multivariate Gaussian full

conditionals with

E(βj|·) = (X′
jWXj + λjPj)

−1X′
jW(y − η̃j) and Cov(βj|·) = σ̂2(X′

jWXj + λjPj)
−1.(5.3)

Vectors η̃j = η−Xjβj and η̃0 = η−Uγ are used to construct the respective partial residuals.

For details on the drawing of random samples from the full conditionals compare Lang &

Brezger (2004) and Rue (2001).

In the non–Gaussian case the form of the joint posterior (5.1) is unknown. Hence, a direct

calculation of credible intervals is not possible. Moreover, the form of the individual full

conditionals is also unknown so that the Gibbs sampler can no longer be used. Instead,

we use a Metropolis–Hastings–algorithm based on IWLS proposals. IWLS proposals were

first introduced by Gamerman (1997) and adapted to the context of structured additive

regression models by Brezger & Lang (2006).

Suppose, we want to update the function vector fj. This is achieved by updating the

respective regression coefficients βj, where βc
j is the current value of the chain. With the

Metropolis–Hastings–algorithm, a random sample for βj is created by drawing a proposed

vector βp
j from a proposal density q(βc

j, β
p
j) which may depend on the current value βc

j.

The new value βp
j is accepted as new state of the chain with a certain probability α(βc

j,β
p
j).

If it is not accepted the current state of the chain is used once more as the new value.

The idea of IWLS proposals is to use a multivariate Gaussian distribution as proposal

density whose mean and covariance matrix are calculated using one step of the IWLS

algorithm. That means, mean and covariance matrix of the Gaussian proposal are analogue

to formulas (5.2) and (5.3) where σ̂2 is replaced by the general scale parameter φ̂, y by the

working response ỹ and matrix W contains the current IWLS weights based on βc
j. The

proposed value βp
j is accepted as new value with probability

α(βc
j,β

p
j) = min

(
1,

p(βp
j |·)q(βp

j ,β
c
j)

p(βc
j|·)q(βc

j,β
p
j)

)
,

where p(βj|·) is the full conditional for βj.

Usually, MCMC techniques need a certain number of iterations in order to converge to the
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stationary distribution. The samples from this so called burn–in phase are not used for

inference. In our case, the mode of the joint posterior (5.1) has already been calculated

by the selection algorithm so that the mode can be used as starting value for the Markov

chain. Hence, the Markov chain already starts in its stationary distribution so that a

burn–in phase is not necessary. Nevertheless, an analysis of the MCMC output, e.g. of the

sampling paths should be performed in order to ensure that no problems have occurred.

The marginal credible intervals for regression cofficients and nonlinear functions regarding

significance level α are calculated by using the empirical quantiles q(α/2) and q(1− α/2)

of the respective random samples. For a nonlinear function fj the credible bands are

calculated pointwise, i.e. the credible interval for each observation point xij is computed

seperately by using the quantiles of function evaluations at this point.

5.2 Unconditional credible intervals

Model selection can be considered as a kind of estimation procedure (compare Burnham

& Anderson (1998)) what is distinct in the following comparison: Estimation of regression

parameters means choosing a certain value for each parameter based on some criterion,

like e.g. the log–likelihood. This is similar for model selection: Based on one of the selec-

tion criteria we choose a certain modelling alternative for each term and certain values for

the corresponding regression coefficients. In both cases, the result depends on the current

data set. With another sample, the result very likely will be different: In the case of

the mere parameter estimation we will get other values for the estimated parameters and

with model selection we will get a different best model (and also other estimates for the

regression parameters). Hence, when constructing credible bands or intervals we should

not only consider the uncertainty in the estimation of regression parameters but also the

uncertainty due to model selection. Otherwise, the credible intervals can get too narrow

leading to undercoverage.

In the context of this thesis we are mainly interested in constructing credible intervals for

regression parameters and nonlinear functions which consider model selection uncertainty.

Besides, we are interested to examine the stability of the modelling for individual covariates

and terms: Is there a clearly best modelling alternative or should other possibilities also

be considered and which are these possibilities?

There are already various approaches for considering model selection uncertainty in (gen-

eralised) linear models. Most approaches go beyond the scope of this section and lead to

averaged estimates that are obtained by averaging the estimates from several good models.

Many approaches for Model Averaging are Bayesian like the approach of Geweke (1996) for

linear models which is shortly described in section 3.1.1. Here, indicator variables are used
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to indicate whether a certain covariate is included in the model or not. Hence, MCMC

samples of the regression coefficients can be considered as being obtained from different

models and their quantities, like e.g. the mean, as model averaged estimates. An approach

for splines based on indicator variables was presented by Yau, Kohn & Wood (2003).

Another approach known as Bayesian Model Averaging is, amongst others, described in

Raftery, Madigan & Hoeting (1997), Hoeting, Madigan, Raftery & Volinsky (1999) or

Clyde & George (2004). Here, the posterior distribution of the parameters θ given the

data y is a weighted sum of the posterior distributions of different models Mj, i.e.

p(θ|y) =
∑

j

p(θ|y, Mj)p(Mj|y),

where the weights p(Mj|y) are the posterior probabilities for the different models Mj. If

the model space is large, the evaluation of this distribution requires the computation of

large integrals and sums. Therefore, Occam’s window (compare Madigan & Raftery (1994))

restricts the model space to models whose posterior probability is higher than some thresh-

old value. Other approaches use MCMC samplers that can jump between the parameter

spaces of different models Mj, e.g. the reversible jump MCMC approach introduced by

Green (1995) or the MCMC model composition (MC3) algorithm described in Madigan &

York (1995).

Frequentist approaches for model averaging are often based on bootstrap resampling as de-

scribed in Burnham & Anderson (1998) or in Augustin, Sauerbrei & Schumacher (2005) for

the special case of survival models with a linear predictor. Here, model selection is repeated

for each bootstrap sample and model averaged estimates can be obtained by averaging the

estimates from all selected models. For an overview and a theoretical background on boot-

strap methods compare the monographs of Efron & Tibshirani (1993), Davison & Hinkley

(1997) or Shao & Dongsheng (1995).

Bootstrap methods are also frequently used for the construction of credible bands for non-

linear functions. An overview of different bootstrap approaches for the construction of

credible intervals is given in Carpenter & Bithell (2000). For smoothing splines, Wang &

Wahba (1995) compare bootstrap based credible intervals to Bayesian intervals. Further

issues special to the construction of confidence bands for penalised splines are described in

Kauermann, Claeskens & Opsomer (2006).

As bootstrap methods have already been used both for the construction of credible bands

for nonlinear functions on the one hand and for investigating model selection uncertainty

on the other hand, we use bootstrap based methods for the purposes of this chapter. This

means that the model selection process is bootstrapped, i.e. a model is selected for each

bootstrap data set by using one of the selection algorithms of chapter 3. At first we used

pairwise resampling for the construction of bootstrap data sets. This is described in Burn-
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ham & Anderson (1998) in combination with bootstrapping of the model selection process.

Here, a certain number of bootstrap data sets with as many observations n as the origi-

nal data set is created by sampling randomly with replacement from the observations of

the original data set. However, this approach led to considerable difficulties. The main

problem was that the selection algorithms performed badly for the bootstrap data sets and

often selected models with many degrees of freedom and rough functions. This is due to the

many identical observations in the bootstrap data sets. The formulas for selection criteria

like AIC include the number of observations and, as it turned out, for a good performance

of these criteria, observations have to be grouped as far as possible. But the grouping of

identical observations in the bootstrap data sets would mean to hurt the assumption of

using n independent observations. Out of these reasons, we rejected this approach.

Hence, we use parametric bootstrap where the covariates are considered as fixed and only

the response vectors are changed. With this approach, adequate models are selected for the

bootstrap data. However, there arose a further problem: the credible bands for nonlinear

functions based on bootstrap samples are heavily biased. This problem is also mentioned

by Kauermann, Claeskens & Opsomer (2006) for instance. The reason is that the estimates

of nonlinear functions including a penalty term are biased. This bias is underestimated by

bootstrap and thus enlarged. The approach described in Wood (2006c) for the context of

smoothing parameter selection avoids this problem. Hence, we adapt this approach to the

wider context of a simultaneous selection of variables and degree of smoothness.

The approach of Wood (2006c) is based on the idea that, in a fully Bayesian approach,

the joint posterior distribution of the regression parameters for linear effects and vectors

of nonlinear function evaluations on the one hand and the degrees of freedom on the other

hand can be decomposed as

p(γ, f1, . . . , fq,df0, df1, . . . , dfq|y)

= p(γ, f1, . . . , fq|df0, df1, . . . , dfq, y) · p(df0, df1, . . . , dfq|y), (5.4)

where vector (df0, df1, . . . , dfq) uniquely specifies all different possible models. The esti-

mation of this joint posterior distribution would require complicated MCMC techniques,

e.g. based on indicator variables for each term similar to the approach of Geweke (1996) for

linear models. The selection algorithms described in chapter 3 yield an estimated model

which is indicated by vector (d̂f0, d̂f 1, . . . , d̂f q). Hence the idea of Wood (2006c) is to re-

place dfj by d̂f j in formula (5.4), thus using the distribution of the frequentist estimates

for the degrees of freedom. The unknown distribution p(d̂f0, d̂f 1, . . . , d̂f q) can be estimated

via bootstrap methods so that, actually, we deal with the approximation

p(γ, f1, . . . , fq, d̂f0, d̂f1, . . . , d̂f q|y)

≈ p(γ, f1, . . . , fq|d̂f0, d̂f 1, . . . , d̂f q, y) · p̂(d̂f0, d̂f 1, . . . , d̂f q). (5.5)
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Here, using bootstrap methods means that the model selection process is bootstrapped,

i.e. we construct bootstrap response variables y(k), k = 1 . . . , B, and repeat the selection

procedure for each y(k). For the simulation of bootstrap responses we use parametric

bootstrap (compare Efron & Tibshirani (1993)). This means, we make a distributional

assumption regarding the response vector y and use this distribution in combination with

the estimated conditional expectations µ̂ of the original response for the simulation of new

response variables. In the context of generalised regression models which are also based on

a distributional assumption, parametric bootstrap seems to be an appropriate approach.

The individual responses y
(k)
i , i = 1, . . . , n, k = 1, . . . , B, are chosen randomly using a

certain distribution D with expectation µ̂i, scale parameter φ̂ and weight wi, i.e.

y
(k)
i ∼ D(µ̂i, φ̂, wi).

For instance, for a Gaussian response we get y
(k)
i ∼ N(µ̂i, σ̂

2/wi).

Repeating the selection process B + 1 times leads to different selected models. Some mod-

els are selected more often, other models are never selected. Thus, we get the estimated

distribution p̂(d̂f0, d̂f 1, . . . , d̂f q) by using the relative frequencies of the different models.

Models which are selected frequently are more likely to be good models. Similarly, for the

individual covariates or terms, the estimated marginal distribution p̂(d̂f j) can be obtained

by using the relative frequencies of the modelling alternatives. This gives a hint as to

how stable the respective term is regarding the alternative chosen for the original data y:

Some variables or terms are quite stable and only a few similar modelling alternatives are

selected. Others are not so stable and more different alternatives are selected with similar

frequencies. Hence, bootstrapping offers a sensitivity analysis for model selection.

Apart from the frequency distribution for the different models, we are mainly interested in

credible intervals for regression parameters and nonlinear functions. To obtain these credi-

ble intervals, Wood (2006c) suggests to combine the bootstrapping of the selection process

with MCMC techniques that are used conditional on the selected models like in section

5.1. That means, we draw random numbers for the regression parameters and nonlinear

functions conditional on each of the B + 1 selected models. By using this approach we get

random samples that are, at least approximately, from the joint posterior distribution of

regression parameters and degrees of freedom.

Here, it is possible that the chosen degrees of freedom for fj are dfj = 0 meaning that the

function was removed from the model. In this case, we use a point mass at zero for the

sampling of function evaluations, i.e.

p(fj|d̂f j = 0) =

{
1 , fj = 0
0 , else

Altogether, the combined algorithm works as follows:
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Algorithm for the construction of unconditional credible intervals

1. Select and estimate a model based on the original data y resulting in estimates

γ̂(0), β̂
(0)

1 , . . . , β̂
(0)

q for the regression parameters, η̂(0) and µ̂(0) for linear predictor and

conditional expectations, and d̂f
(0)

0 , d̂f
(0)

1 , . . . , d̂f
(0)

q for the modelling alternatives.

2. Use the conditional approach from section 5.1 for the sampling of random numbers

for the regression parameters γ and nonlinear functions fj, j = 1, . . . , q, conditional

on the selected model resulting in s samples each.

3. For k = 1, . . . , B, do:

(a) Simulate a bootstrap response vector y(k) based on the estimates µ̂(0) by using

the distribution assumed for the response y and using the estimate φ̂(0).

(b) Select end estimate a model based on the bootstrap response y(k) leading to

estimates d̂f
(k)

0 , d̂f
(k)

1 , . . . , d̂f
(k)

q for the modelling alternatives.

(c) Use the conditional approach from section 5.1 for the sampling of random num-

bers for the regression parameters γ and nonlinear functions fj, j = 1, . . . , q,

conditional on the selected model (d̂f
(k)

0 , d̂f
(k)

1 , . . . , d̂f
(k)

q ) but using the original

response y. This results in s samples each.

4. Construct credible intervals for parameters γ and nonlinear functions fj, j = 1, . . . , q,

by determining the empirical quantiles to level α of all (B + 1)s MCMC samples.

This combined approach has considerable advantages compared to a simple bootstrap

algorithm. As already mentioned, bootstrap estimates of nonlinear functions are usually

biased. This problem is solved here, because the regression parameters (after the selection

process is finished) are always estimated (and sampled) using the original data y instead

of the bootstrap responses y(k). The variables y(k) are merely used for selection.

Furthermore, we do not need to repeat the bootstrapping of the selection process very

often. Using B = 99 resulting in 100 different models is sufficient to get an estimate for

the probability distribution of different models. With a simple bootstrap algorithm, we

would have to use the bootstrapping of the selection process in order to obtain enough

samples for the calculation of credible intervals. Hence, we would have to use B ≈ 1000,

each time repeating the selection process what is very time consuming.



Chapter 6

Variable and smoothing parameter
selection with BayesX

All algorithms introduced in this thesis are implemented in the programming language

C++ within the statistical software package BayesX. Apart from the approaches for

variable and smoothing parameter selection, BayesX provides estimation of generalised

STAR models either by fully Bayesian inference based on MCMC techniques or by empir-

ical Bayesian inference based on restricted maximum likelihood estimation (REML). An

overview of these methods and their usage in BayesX can be found in Brezger, Kneib &

Lang (2005a) or in the BayesX manuals (Brezger, Kneib & Lang (2005b)), especially the

reference and methodological manuals. BayesX is free of charge and available at

http://www.stat.uni-muenchen.de/∼bayesx

together with the manuals mentioned above.

In this chapter, we demonstrate the usage of BayesX in combination with the selection

algorithms presented in chapters 3–5 on the basis of the Belgian car insurance data from

the application in section 8.1. For the general structure of BayesX and basic commands,

like e.g. the handling of data sets and maps, compare the BayesX manuals.

BayesX is object–oriented and the syntax for generating a new object is

> objecttype objectname

where objecttype is the type and objectname is the user–defined name of the new object. The

Belgian car insurance data is stored in the external ASCII–file c:\data\carinsurance.raw.

It can be read into BayesX by creating a dataset object named d via the command

> dataset d
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and by storing the data in object d using the infile command of dataset objects, i.e.

> d.infile using c:\data\carinsurance.raw

Based on the data, it is possible to estimate a spatially correlated effect for the Belgian

districts. For this purpose we need geographical information of Belgium, i.e. the boundaries

of the districts, in order to compute the neighbourhood structure. BayesX stores the

geographical map in a map object created with command

> map m

and, afterwards, reads in the information contained in the external boundary file

c:\data\belgium.bnd by using the infile command for map objects:

> m.infile using c:\data\belgium.bnd

BayesX automatically computes the neighbourhood structure.

In order to perform a variable and smoothing parameter selection in BayesX, we start with

creating a stepwisereg object which we simply call s:

> stepwisereg s

The next step is to specify the output directory and a basis filename for the files containing

the estimation results. This is done via the outfile command of stepwisereg objects:

> s.outfile = c:\results\car

Now, all results files created by BayesX after the selection process are stored in the direc-

tory ’c:/results’ and their names begin with the characters ’car’. If the user does not

specify an output directory, the results files are written to the subdirectory ’output’ of

the installation directory. In this case, the name of the stepwisereg object, i.e. ’s’ in our

example, is used as base filename.

The selection is performed using the regress command for stepwisereg objects. Its general

structure is

> s.regress depvar = term1 + term2 + . . . + termr [weight weightvar] [if expression]

[, options] using d

where depvar is the dependent variable, i.e. the logarithmic claim size in our example, and

term1, etc. specifies the type of function for the respective covariate (compare tables 6.5

and 6.6). An intercept term is automatically included in the model and is not specified

by the user. The part using d indicates that data stored in dataset object d is used for

the selection. In the Belgian car insurance example we want to perform a variable and

smoothing parameter selection using the dependent variable logs (logarithmic claim size),
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weight variable nclaims (number of claims) and independent variables ageph (policyholder’s

age), bm (bonus–malus score) and s (gender). A simple linear model based on these

variables can be selected and estimated by command

> s.regress logs = s + ageph + bm weight nclaims,

criterion=AIC_imp family=gaussian using d

But as we want to investigate whether the continuous variables ageph and bm possess

nonlinear effects, we have to specify the semiparametric predictor

η = γ0 + γss + fageph(ageph) + fbm(bm),

where the two nonlinear functions are represented by P–splines. The selection for this

semiparametric predictor can be performed using the command

> s.regress logs = s + ageph(psplinerw2,dfmin=2,dfmax=16,number=15) +

bm(psplinerw2,dfmin=2,dfmax=16,number=15) weight nclaims,

criterion=AIC_imp family=gaussian using d

For the selection, there are several global options available whose meanings are described

in the following list. Possible values and default values are given in tables 6.3 and 6.4.

algorithm specifies the selection method that is to be used.

steps defines the maximum number of iterations that can be used during the
selection process. If the value steps is reached before the selection process
is finished, the process stops and the results of the current model are
written to the results files. If that happens, a warning is written to the
output window. By setting steps=0 it is possible to estimate a certain
model without performing a selection.

criterion specifies the selection criterion that is to be used.

proportion If the selection is based on a criterion using a training and a validation
data set, i.e. on MSEP, proportion defines the fraction of the original data
used as training data.

startmodel defines the model that is used as basis model.

number defines the number of different smoothing parameters to be used for the
nonlinear terms. This number can be overwritten using the local option
number.

trace specifies how detailed the output in the output window will be.
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CI specifies if confidence intervals are to be calculated. The default value
is CI=none so that no confidence intervals are obtained. CI=MCMCselect

yields confidence intervals which are estimated by MCMC techniques con-
ditional on the selected model, i.e. scale parameter and smoothing para-
meters are fixed on the values chosen by the preceding selection algorithm.
Unconditional confidence intervals can be obtained by CI=MCMCbootstrap

where several models are selected on the basis of bootstrap samples. For
each of the selected models samples are drawn by MCMC techniques
conditional on the respective model and based on the original data set.
CI=bootstrap yields unconditional confidence intervals by selecting many
models on the basis of bootstrap samples.

bootstrap-

samples

defines the number of bootstrap samples used for CI=bootstrap or
CI=MCMCbootstrap.

iterations defines the number of MCMC iterations used for CI=MCMCselect or
CI=MCMCbootstrap. With CI=MCMCbootstrap, option iterations speci-
fies the total number of iterations, i.e. the sum of iterations used for the
individual conditional MCMC estimations. Here, iterations is divided
equally between the individual conditional estimations so that the num-
ber of iterations used for one model is iterations / (bootstrap + 1).
Hence, iterations should be chosen appropriately.

step is a thinning parameter and specifies that only every step–th MCMC–
sample is used for the calculation of credible intervals with CI=MCMCselect

or CI=MCMCbootstrap. Since the samples are correlated, the thinning out
of MCMC samples is used to obtain approximately independent samples.

burnin defines the number of MCMC iterations used for the burn–in phase at the
beginning of each conditional MCMC estimation. Hence it is meaningful
for CI=MCMCbootstrap and CI=MCMCselect. The burn–in phase usually
is needed to achieve convergence of the Markov chain regarding its sta-
tionary (i.e. the posterior) distribution. In our case, the initial estimates
for each conditional MCMC estimation are the posterior mode estimates.
That means, the Markov chain already starts in its stationary distribution.
Hence, the burn–in phase usually is not needed here and it is possible to
define burnin=0 what saves a lot of computing time.

level1 defines the first significance level for confidence intervals.

level2 defines the second significance level for confidence intervals.
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predict By specifying predict an additional results file is created containing esti-
mates for the predictor and for the conditional expectation of the response
variable.

family specifies response distribution and link function.

reference specifies the reference category for multinomial logit models.

The commands for specifying different term types for univariate covariates are listed in

table 6.5. Possibilities for interactions and the respective commands are shown in table

6.6. For all term types, there are various options which are described below. In the

following, we will refer to these options as local options (in constrast to the global options

affecting the whole selection process). Possible values for the local options are described

in table 6.7 whereas table 6.8 gives a short overview of possible combinations of function

terms and local options.

dfmin Option dfmin defines the smallest possible degree of freedom for a non-
linear function (besides the linear effect). Hence, the largest smoothing
parameter is calculated according to dfmin. Possible values depend on the
number of regression parameters and on the prior distribution (compare
section 3.3). In order to avoid numerical problems the smoothing parame-
ter may not become larger than 109. If a value larger than 109 would be
obtained, dfmin is repeatedly enlarged by (dfmax - dfmin) / number (and
number is reduced by one) until λ < 109. Additionally, this ascertains that
dfmin is redefined to a possible value.

dfmax Option dfmax defines the largest possible degree of freedom for a nonlinear
function. Hence, the smallest smoothing parameter is calculated according
to dfmax. Possible values depend on the number of regression parameters
and on the prior distribution (compare section 3.3). In order to avoid nu-
merical problems the smoothing parameter may not become smaller than
10−9. If a value smaller than 10−9 would be obtained, dfmax is repeat-
edly reduced by (dfmax - dfmin) / number (and number is reduced by one)
until λ > 10−9. Additionally, this ascertains that dfmax is redefined to a
possible value.

dfstart Option dfstart defines the complexity of the function used in the base
model. This option is only meaningful if startmodel=userdefined is
specified. In this case, the default value for dfstart is either the fixed
effect, if possible, or otherwise the degree of freedom nearest to one.
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logscale This option causes the smoothing parameters to lie on a logarithmic scale
instead of being specified according to equidistant degrees of freedom. In
this case, only the smallest and largest smoothing parameters are calcu-
lated according to dfmin and dfmax. This option is only meaningful if
option sp is not specified (see below).

df accuracy This option specifies the maximal absolute difference in terms of degrees of
freedom that is allowed when calculating smoothing parameters according
to user–specified degrees of freedom.

sp Option sp causes the smoothing parameters to be chosen directly according
to values specified by options spmin, spmax and spstart. All other values
are chosen according to a logarithmic scale. (Options dfmin, dfmax and
dfstart are ignored.)

spmin This option defines the smallest smoothing parameter but is only valid if
sp is specified.

spmax Option spmax defines the largest smoothing parameter but is only valid if
sp is specified.

spstart This option is only meaningful if startmodel=userdefined and sp are
specified. It defines the smoothing parameter used for the base model.
Note, that spstart can not only take positive values but can also take
the values spstart=0 for excluding the function in the base model and
spstart=-1 for using the fixed effect.

number number specifies the number of different smoothing parameters (besides
the linear effect and exclusion from the model). For number=0 the global
option number is used.

forced into This option drops the possibility to exclude the function from the model.
That means the respective function is always included in the model.

nofixed This option drops the possibility to use a linear fit. Hence, only possibilities
for a nonlinear effect and for the removal from the model remain.

center center has to be specified with varying coefficients if the coefficients must
get centered with regard to the interacting variable, i.e. if there are sev-
eral varying coefficients modifying the same interacting variable. Hence,
center is only meaningful for varying coefficients and random slopes. The
interacting variable has to be specified as separate term.
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coding Option coding is only meaningful for factor variables. It deter-
mines whether dummy variables (coding=dummy) or effect variables
(coding=effect) are used to represent the factor.

reference Option reference is again only meaningful for factor variables. It defines
the value for the reference category.

degree Specifies the degree of B-spline basis functions.

nrknots Specifies the number of inner knots for a P-spline term.

monotone Option monotone specifies additional constraints for univariate P–spline
terms. Possible are the estimation of an unrestricted function, a monoton-
ically increasing or decreasing function (i.e. positive/negative first deriva-
tive) or a convex or concave function (i.e. positive/negative second deriv-
ative). Note, that both type and direction of the constraint have to be
defined by the user and are not determined by the selection algorithm.

gridsize The option gridsize can be used to restrict the number of points (at
the x-axis) for which estimates are computed. By default, estimates are
computed at every distinct covariate value in the data set (indicated by
gridsize=-1). This may be relatively time consuming in situations where
the number of distinct covariate values is large. If gridsize=nrpoints is
specified, estimates are computed on an equidistant grid with nrpoints

knots.

period The period of the seasonal effect can be specified with option period. The
default is period=12 which corresponds to monthly data.

map The map object for a spatial function is defined by option map.

Some information about the progression of the selection algorithm and some results are

shown in the output window whereas other results are only available from external ASCII–

files. The output window shows all specified covariates and terms together with the respec-

tive number of different smoothing parameters and the way in which they were specified.

Furthermore, even by specifying option trace=trace off, starting model and final model

are shown together with the respective values of the selection criterion. The total number

of iterations is also given in the output. By using option trace=trace on, the output

window additionally shows every model that was tried during iterations. Default value

trace=trace half reduces the output to the starting models of the individual iterations.

With trace=trace off, the information given in the output window is
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STEPWISE OBJECT s: stepwise procedure

GENERAL OPTIONS:

Performance criterion: AIC_imp

RESPONSE DISTRIBUTION:
Family: Gaussian
Number of observations: 18139

OPTIONS FOR STEPWISE PROCEDURE:

OPTIONS FOR FIXED EFFECTS TERM: s

Startvalue of the 1. startmodel is the fixed effect

OPTIONS FOR NONPARAMETRIC TERM: ageph

Minimal value for the smoothing parameter: 2.0480375
This is equivalent to degrees of freedom: approximately 16, exact 16.0369
Maximal value for the smoothing parameter: 62500
This is equivalent to degrees of freedom: approximately 2, exact 1.95119
Number of different smoothing parameters with equidistant degrees of freedom: 15
Startvalue of the 1. startmodel is the fixed effect

OPTIONS FOR NONPARAMETRIC TERM: bm

Minimal value for the smoothing parameter: 1.0240375
This is equivalent to degrees of freedom: approximately 16, exact 16.0487
Maximal value for the smoothing parameter: 45000
This is equivalent to degrees of freedom: approximately 2, exact 2.02502
Number of different smoothing parameters with equidistant degrees of freedom: 15
Startvalue of the 1. startmodel is the fixed effect

STEPWISE PROCEDURE STARTED

Startmodel:

LOGS = const + s + ageph + bm
AIC_imp = 14821.315

------------------------------------------------------------------------

Final Model:

LOGS = const + ageph(psplinerw2,df=5.96466,(lambda=666.043)) +
bm(psplinerw2,df=4.96696,(lambda=1188.99))

AIC_imp = 14757.465

Used number of iterations: 4



109

The estimation results are stored in several external ASCII-files whose names start with the

basis filename car . The file car FixedEffects1.res contains the estimated coefficients

for the linear effects in tabular form, including the estimated intercept term and coefficients

of factor variables. The results for linear effects are additionally shown in the output

window. For each nonlinear function, e.g. for fageph(ageph), there exists one file in form of

a data frame, here called car f ageph pspline.res, containing the function estimates at

all distinct covariate values. The first lines of the file are

intnr ageph pmean pqu2p5 pqu10 pmed pqu90 pqu97p5 pcat95 pcat80
1 18 -0.0003835 0 0 0 0 0 0 0
2 19 -0.0226083 0 0 0 0 0 0 0
3 20 -0.0445334 0 0 0 0 0 0 0
4 21 -0.0659971 0 0 0 0 0 0 0

Column pmean contains the function estimates. Columns pqu2p5 to pcat80 are only mean-

ingful if credible intervals are constructed. In this case, columns pqu2p5 and pqu97p5 build

the credible interval corresponding to level1=95, whereas pqu10 and pqu90 belong to the

credible interval with level2=80. Columns pcat95 and pcat80 indicate whether the credible

interval is strictly negative (-1), contains zero (0) or is strictly positive (1) with (posterior)

probabilities of nominal levels 95% and 80%. The first column intnr is merely a para-

meter index. These results files can be read into any general purpose statistics software

(e.g. STATA, R, S-plus) to further analyse and/or visualise the results. The names of

the respective files are shown in the output window. BayesX has also some facilities for

the plotting of nonlinear and spatial functions. The respective commands plotnonp and

drwamap are described in the manuals.

Additional to the files containing estimated effects, there are files containing information

about the progression of the selection: the file car models.raw displays the models chosen

after every iteration (i.e. after having passed once through all variables and terms). Its

contents are

step AIC_imp model
0 14821.315 LOGS = const + s + ageph + bm
1 14757.645 LOGS = const + ageph(psplinerw2,df=5.96466,(lambda=666.043)) +

bm(psplinerw2,df=4.96696,(lambda=1188.99))
...
3 14757.468 LOGS = const + ageph(psplinerw2,df=5.96466,(lambda=666.043)) +

bm(psplinerw2,df=4.96696,(lambda=1188.99))
4 14757.465
B 14757.464

In this example, variable s has been removed from the model during the first iteration,

whereas the effects of ageph and of bm are modelled by nonlinear effects. Column step



110 6. Variable and smoothing parameter selection with BayesX

shows the number of the current iteration with step=0 indicating the starting model. The

information step=B is peculiar to the adaptive search where the final model is estimated

by backfitting after the selection process is finished what usually changes the value of the

selection criterion once more. The largest number of steps indicates the total number of

iterations. Using this file, it is possible to detect changes in the model that were made

during an iteration. Furthermore, it is possible to observe the changes of the selection

criterion during the selection process using file car criterium.raw which displays

step var AIC_imp
0 0 14821.315
0 1 14820.56
0 2 14770.105
0 3 14757.645
1 0 14757.645
1 1 14757.645
1 2 14757.485
1 3 14757.485
...
4 0 14757.465
B 0 14757.464

This file displays the current value of the selection criterion after the respective covariate or

term was updated. Variable step again indicates the number of iterations whereas column

var gives the number of the covariates / terms. In each iteration, var=0 indicates the

starting model.

If option predict is specified, BayesX creates a file car predictmean.raw containing

estimates for the predictor ηi in column linpred and for the conditional expectations of the

response µi in column mu. If CI=MCMCbootstrap is specified the file contains the estimates

for the original data in columns linpred and mu and, additionally, contains average estimates

for ηi and µi calculated from the samples of all selected models (columns average linpred

and average mu). Then, the first lines of car predictmean.raw are given by

logs s ageph bm nclaims linpred average_linpred mu average_mu sat_dev
11.086 1 50 5 1 9.8551 9.85614 9.8551 9.8561 0.74395
8.7470 -1 28 9 1 9.9052 9.90306 9.9052 9.9031 0.65828
8.7470 1 26 11 1 10.016 10.0125 10.016 10.013 0.79044

If unconditional confidence bands were constructed by using options CI=MCMCboostrap or

CI=bootstrap, BayesX creates one additional results file for each nonlinear term and for the

linear effects. Those files contain the possible degrees of freedom for the term together with

the frequency distribution, i.e. the number of bootstrap samples in which the individual

degrees of freedom were selected plus the degree of freedom selected for the original data.

For the P–spline effect of ageph the file is called car f ageph pspline df.res and contains
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df_value sp_value frequency selected
4.04862 3447.83 3 -
4.99322 1438.86 26 -
6.03377 632.898 48 +
6.98883 325.333 14 -
7.97817 173.922 1 -
9.96079 56.4291 2 -
11.033 32.1334 2 -
11.9617 19.9828 2 -
13.0304 11.5881 1 -

BayesX automatically creates a file car model summary.tex summarising the most impor-

tant results which can be compiled using LATEX. Among the displayed results are graphics

for the nonparametric and spatial effects. These graphics are also created automatically

and stored in postscript format. The effect of ageph, for example, is contained in file

car f ageph pspline.ps.

When credible intervals are constructed by using one of the hybrid MCMC methods

(CI=MCMCselect or CI=MCMCbootstrap), BayesX stores the MCMC samples for the re-

gression parameters of linear effects and for the nonlinear function evaluations. These

samples can be obtained using the post estimation command

s.getsample

and used for an analysis of the sampling paths. For further information regarding the

command getsample and the analysis of MCMC output compare the BayesX manuals.

6.1 Specific commands for multinomial logit models

The commands for multinomial logit models differ slightly from the commands for univari-

ate response models. Here, we explain the specifics of these commands: For multinomial

logit models, there are two different commands in order to perform a variable and smooth-

ing parameter selection. If the data consists of observations with merely one trial per

observation, the dependent variable Y is supposed to specify the chosen category, e.g.

Y ∈ {1, . . . , k +1}. In this case, a selection can be performed using the regress command

like for univariate response variables:

> s.regress Y = term1 + term2 + . . . + termr [if expression] [, options] using d

Here, an important option is reference specifying the category that is to be chosen as

reference category. A weight variable is not allowed with regress.

The second possibility is given by the command mregress. Here, it is possible to deal with
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grouped data with several trials per observation. In this case, BayesX needs k response

variables, e.g. Y1, . . . , Yk, each specifying the numbers of cases in which the respective

category was chosen. One category, here k + 1, serves as reference. The command is

> s.mregress Y1 = term11 + term12 + . . . + term1r:

Y2 = term21 + term22 + . . . + term2r:
...

Yk = termk1 + termk2 + . . . + termkr

[weight weightvar] [if expression] [, options] using d

The weight variable defines the number of trials per observation. The command mregress

assumes the same fixed effects for each of the categories and, regarding all other effects, it

requires the same number of terms for all categories but not necessarily the same terms.

The global and local options are the same as for the regress command and local options

can be individually specified for each term and category.

With both commands, BayesX creates one results file for each nonlinear term (in every

category) containing the estimated effects like in the univariate case. For the linear effects,

there exists one results file per category containing all respective parameter estimates. The

names of results files for the first category are identical to the names used for univariate

response models, e.g. s f varname pspline.res for the P–sline effect of variable varname.

For the j–th category with j = 2, . . . , k the names additionally contain number j and the

P–spline effect of variable varname is stored in file s f varname j pspline.res.

global option type default values description
algorithm string cdescent1 cdescent1 adaptive search

cdescent2 exact search
cdescent3 adaptive/exact search
stepwise stepwise algorithm

criterion string AIC imp GCV GCV (based on deviance residuals,
i.e. (3.12) for non–Gaussian, (3.10) for
Gaussian response)

GCVrss only meaningful for non–Gaussian re-
sponse: GCV (3.11) based on residual
sum of squares

AIC AIC
AIC imp improved AIC
BIC BIC
MSEP MSEP
CV5 5–fold cross validation
CV10 10–fold cross validation
AUC area under the ROC curve

(only for binary response)

Table 6.3: Possible global options for stepwisereg objects.
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global option type default values description
steps numeric

(integer)
100 {0; 10000} maximum number of iterations

proportion numeric
(real)

0.75 (0; 1) for MSEP (see description in text)

startmodel string empty empty empty model containing the intercept
term only

full most complex possible model
userdefined base model specified by the user;

default: linear model
number numeric

(integer)
20 {1; 50} number of smoothing parameters

trace string trace half trace on output shows every new model during
iterations

trace half output shows the starting models of all
iterations

trace off no output except starting and final
model

CI string none none no confidance intervals
MCMCselect conditional MCMC confidance bands
MCMCbootstrap unconditional confidance bands based

on bootstrap and MCMC
bootstrap unconditional MCMC confidance inter-

vals based on bootstrap
bootstrap-
samples

numeric
(integer)

99 {0; 10000} number of bootstrap samples

iterations numeric
(integer)

20000 {1; 10000000} total number of MCMC iterations

step numeric
(integer)

20 {1; 1000} thinning parameter for MCMC samples

burnin numeric
(integer)

0 {0; 500000} number of MCMC iterations used for
each burnin phase

level1 numeric
(real)

95 [40; 99] first significance level

level2 numeric
(real)

80 [40; 99] second significance level

predict boolean false false no estimates for predictor / expecta-
tions of response

true estimates for predictor and expecta-
tions are obtained

family string logit gaussian Gaussian distribution with identity link
binomial Binomial distribution with logit link
binomialprobit Binomial distribution with probit link
poisson Poisson distribution with log link
gamma Gamma distribution with log link
multinomial Multinomial distribution with logit link

reference numeric
(real)

0 [−10000; 10000] reference category for multinomial logit
models

Table 6.4: Possible global options for stepwisereg objects.
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Type Syntax example Description
offset offs(offset) Variable offs is an offset term.
linear effect W1

W1(linear)
Linear effect for W1.

factor F1(factor) Effect of categorical variable F1
first or second or-
der random walk

X1(rw1)
X1(rw2)

Nonlinear effect of X1.

P-spline X1(psplinerw1)
X1(psplinerw2)

Nonlinear effect of X1.

seasonal prior time(season) Varying seasonal effect of time.
Markov random
field

region(spatial,map=m) Spatial effect of region where region indi-
cates the region an observation belongs to.
The boundary information and the neighbour-
hood structure are stored in map object m.

Two dimensional
P-spline

region(geosplinerw1,map=m)
region(geosplinerw2,map=m)

Spatial effect of region by estimating a two
dimensional P-spline based on the regions’
centroids. The centroids are stored in map
object m.

random intercept grvar(random) I.i.d. Gaussian random effect of group indica-
tor grvar.

Table 6.5: Overview over different model terms for stepwisereg objects.

Type of interaction Syntax example Description
Varying coefficient
term

X1*X2(rw1)
X1*X2(rw2)
X1*X2(psplinerw1)
X1*X2(psplinerw2)

Effect of X1 varies smoothly over the range
of the continuous covariate X2.

random slope X1*grvar(random) The regression coefficient of X1 varies with
respect to the unit- or cluster–index grvar.

Geographically
weighted regression

X1*region(spatial,map=m) Effect of X1 varies geographically. Covariate
region indicates the region an observation
belongs to.

Two dimensional sur-
face

X1*X2(pspline2dimrw1)
X1*X2(pspline2dimrw2)

Two dimensional surface for the continuous
covariates X1 and X2.

ANOVA type decompo-
sition

X1*X2(psplineinteract)
+ X1(psplinerw?)
+ X2(psplinerw?)

ANOVA type decomposition for continuous
covariates X1 and X2. For the univariate P–
splines rw1 and rw2 are possible.

Table 6.6: Possible interaction terms for stepwisereg objects.
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Chapter 7

Simulation Studies

In this chapter we present the results of several simulation studies that aim at testing

the performance of the selection algorithms described in chapters 3–5, especially of the

adaptive search. All simulation studies address the following questions:

• How accurate is the performance regarding selection of relevant covariates and terms?

That means, do the algorithms select the important covariates that have an influence

on the response and omit irrelevant covariates without an influence?

• How well works the selection of smoothing parameters? That means, do the estimated

functions possess a good fit towards their true underlying function? In the case of

a linear effect, we like to see, whether the selection algorithms recognise the linear

form and avoid a nonlinear modelling of the respective function.

• All algorithms are supposed to minimise the selection criterion. So we are interested

to see which of the algorithms obtain the smallest values.

• The computing time differs considerably between the selection approaches. Hence

the last topic is to compare the times each of the algorithms needed to estimate all

replications.

To answer these questions, we show the results of the following approaches:

• Stepwise algorithm

• Adaptive search

• Adaptive/exact search

• Exact search
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• Fully Bayesian approach based on MCMC techniques (see e.g. Fahrmeir & Lang

(2001a), Lang & Brezger (2004) and Brezger & Lang (2006)). This approach serves

as a benchmark and estimates the true model, i.e. only the variance parameters have

to be estimated but the covariates are fixed. Linear functions are estimated by fixed

effects.

• Selection with the mgcv package (see Wood (2006b)).

7.1 Simulation of an additive model

The first simulation study is an additive model, i.e. only continuous covariates are avail-

able. Whether the algorithms can select an important variable and estimate its effect

appropriately often depends on the strength of influence the respective variable has on the

response (compare Burnham & Anderson (1998)). For this reason, we used two different

classes of functions: the functions in the first class have a large range of values (the dis-

tance between minimum and maximum amounts to 2.0) and thus a strong influence on the

response whereas the functions in the second class have only a small range (the distance

between minimum and maximum amounts to 0.6) and a weak influence. Altogether, we

used six different types of functions where each functional form imposes other difficulties

for the selection. Every functional form was used twice: once with a strong influence and

once with a weak influence. All twelve functions are shown in figure 7.1. The predictor for

this additive model is given by

η =
12∑

j=1

fj(xj).

The underlying covariates x1 to x12 were chosen uniformly from the interval [−3; 3] but

rounded to two decimal places afterwards. Furthermore, we usually used 18 additional

covariates without an influence on the response which were chosen in the same way. All

covariates were chosen independently of each other.

For the simulation study we created R = 250 replications with n = 700 observations each

which are based on the following distributional assumptions:

• Gaussian model with response yi ∼ N(ηi, σ
2) with σ2 = 1;

• Binomial logit model with m = 3 repeated binary observations, i.e. yi ∼ B(3, πi),

where πi = exp(ηi)
1+exp(ηi)

;

• loglinear Poisson model, i.e. yi ∼ Po(λi), with λi = exp(ηi/2);
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Figure 7.1: True functions for the simulation of the additive model. The two functions
contained in the same plot are of the same functional form but with different ranges.

• loglinear Gamma model with yi ∼ Γ(µi, ν) with µi = exp(ηi) and ν = 2.

In order to prevent too extreme predictor values, we used only 8 additional covariates for

the Gamma model.

For each covariate we used a P–spline of third degree with a second order penalty and 22

basis functions. The possibilities were in each case the removal from the model, a linear

effect or a nonlinear function with possible degrees of freedom {2, . . . , 21}. As selection cri-

terion we used AICimp for the continuous response models (Gaussian and Gamma model).

For the discrete response models (Poisson and logit model) we used GCV based on de-

viance residuals (since AICimp was especially derived for Gaussian responses as described

in Hurvich, Simonoff & Tsai (1998)). Generally, AIC and BIC yielded worse results (not

shown).

In order to compare the estimation results of different approaches we examined the different

approaches regarding the following aspects:

• We examined the number of wrongly identified variables, i.e. either relevant variables

that were removed from the model or irrelevant variables that were added to the

model. Additionally, we also analysed the individual numbers of wrongly omitted

variables and wrongly added variables.



120 7. Simulation Studies

• We analysed the number of replications in which the linear effects were correctly

identified.

• For each individual function fj, j = 1, . . . , 12, we calculated an average estimate by

f̄j(xj) =
1

250

250∑
i=1

f̂ij(xj).

If the variable was removed from the model in replication i the respective function

estimate f̂ij was set to zero. For the comparison of linear and nonlinear estimates

the linear functions were centered in the same way as the nonlinear functions.

• Additionally we calculated for each function fj logarithmic empirical mean squared

errors (MSE) given by

log(MSE(fj)) = log

(
1

m

m∑
i=1

(
f̂j(xij)− fj(xij)

)2
)

,

where m denotes the number of different values of the underlying covariate xj. The

logarithmic empirical MSE was also calculated for the predictor η using the same

formula.

In this simulation study we often want to compare estimated functions that are of

the same functional form but have unequal ranges. In this case we use a logarithmic

relative MSE defined as

log(relMSE(fj)) = log




∑m
i=1

(
f̂j(xij)− fj(xij)

)2

∑m
i=1 (fj(xij))

2


 .

• For comparison of the obtained values of the selection criterion we used the ratio

CRi =
Ci −minj(Cij)

C
(0)
i −minj(Cij)

, (7.1)

where Ci denotes the value of the selection criterion that was achieved for the i–

th replication by the respective selection method, minj(Cij) denotes the best value

achieved for the i–th replication among all four selection methods and C
(0)
i denotes

the value for the model containing an intercept term only (from now on called empty

model) and thus yielding the worst value possible. This ratio serves at judging if the

models selected by different selection algorithms differ distinctly or if the difference

is rather negligible. We use this ratio here because it is not possible to interpret

absolute values or even absolute differences of the selection criteria (this is due to the
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fact that constant factors are often omitted for the calculation of the criteria). Ratio

(7.1) compares the actually achieved improvement (compared to the empty model)

to the largest achieved improvement. Note however, that the value min(Ci) is not

automatically the absolute minimum of the criterion function because the selection

methods not always find this minimum.

7.1.1 Dependence on the starting model

With each of our selection algorithms the user has the option to specify the basis model

from which the selection process starts. In this section we will examine the sensitivity of

the selection process regarding the choice of the basis model. For this purpose we compared

the results of the approaches

• adaptive/empty:

adaptive search in combination with the empty basis model,

• adaptive/linear:

adaptive search in combination with the linear basis model using a linear effect for

each of the 30 available covariates,

• adaptive/nonlinear:

adaptive search in combination with a nonlinear basis model using a function with

df = 10 for each of the 30 available covariates,

• stepwise/empty:

stepwise algorithm in combination with the empty basis model,

• stepwise/linear:

stepwise algorithm in combination with the linear basis model,

• stepwise/nonlinear:

stepwise algorithm in combination with a nonlinear basis model using a function with

df = 10 for each of the 30 available covariates.

In order to detect how much the results of the selection algorithms depend on the chosen

basis model it suffices to compare the distributions of ratio (7.1) for the respective values

of AICimp and the distributions of the empirical logarithmic MSE for the predictor. These

distributions are shown in figures 7.2 and 7.3, respectively. More detailed results are

presented in section 7.1.3. The results shown in figures 7.2 and 7.3 lead to the following

conclusions:
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Figure 7.2: Distributions of ratio (7.1) for all different approaches (left plot) and without
the results of stepwise/empty (right plot) for a better comparison of the other results.
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Figure 7.3: Distributions of log(MSE(η)) for all different approaches (left plot) and without
the results of stepwise/empty (right plot) for a better comparison of the other results. The
constant lines indicate the common minimum, median and maximum calculated over all
approaches contained in the respective plot.

• From figure 7.2 it is obvious that the values of AICimp achieved by the stepwise

algorithm strongly depend on the chosen basis model. The empty model led to the

distinctly worst results. Between the results of the adaptive search there is hardly any

difference visible. This indicates that its results are sufficiently independent of the

chosen basis model. Additionally, the results of the adaptive search are all distinctly

better than those of the stepwise algorithm.

• Figure 7.3 shows that the results regarding the MSE values indicate the same pattern

as described above for ratio (7.1).

• Table 7.1 shows the computing time each approach needed to perform the selection

for all 250 replications. All adaptive approaches needed about the same computing
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time whereas the computing time for the stepwise algorithm strongly depends on the

chosen basis model. Additionally, the stepwise algorithm was in each case distinctly

slower than the adaptive search.

In summarising these three conclusions, we can see that the results of the stepwise algorithm

strongly depend on the chosen basis model whereas the results of the adaptive search are

almost independent of the basis model. Based on these results, the linear model proved

to be the best starting model for the stepwise algorithm since the empirical MSE took the

lowest values and the selection was finished after a moderate time. Merely the values for

ratio (7.1) were better for the nonlinear basis model. Hence, we use the linear model as

basis model throughout the rest of this section.

7.1.2 Dependence on the order of the covariates

In section 3.4.2 we already mentioned that the order of the covariates can influence the

progression of the selection algorithms based on the coordinate descent method. Hence, in

this section, we want to examine if a different order of covariates changes the results, i.e. if

other models are selected. For this purpose we used the adaptive search together with the

four different versions:

• adaptive:

The covariates are ordered according to their names. Hence, functions with a large

effect are estimated first, then functions with a small effect and covariates without

an effect are estimated last, i.e.

η =
6∑

j=1

fj +
12∑

j=7

fj +
30∑

j=13

fj.

• order1:

Here, we changed the order of the covariates such that the unimportant variables

were estimated at first and the functions with a large effect at last, leading to

η =
30∑

j=13

fj +
12∑

j=7

fj +
6∑

j=1

fj.

• order2:

Here, we only changed the order of the important functions such that the functions

with a small effect were estimated first, i.e.

η =
12∑

j=7

fj +
6∑

j=1

fj +
30∑

j=13

fj.
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• order3:

Here, the order of variables was chosen randomly.
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Figure 7.4: Distributions of ratio (7.1) (left plot) and distributions of log(MSE(η)) (right
plot) for all different approaches.

The results of this simulation study show that the finally selected model sometimes changes

if the order of the covariates changes. The selected models are, however, very similar as is

shown in figure 7.4 in terms of the distributions of ratio (7.1) and of the empirical MSE

since these plots show practically no differences. A more thorough investigation of the

results (not shown) shows that for many replications the same model is selected and that

otherwise the modelling of some covariates merely differs by one or two degrees of freedom.

Moreover, as can be concluded from the nearly identical distributions of ratio (7.1), there

exists no ordering that is superior to the others.

Hence, as there are only small differences between the four versions, we use the ordering

based on the number of terms as in version adaptive for the further results of the simulation

study.

7.1.3 Detailed results

In this section we show the detailed results of the stepwise algorithm, the adaptive search,

the adaptive/exact search and the exact search and compare them to the results achieved

by the mgcv package. For the mgcv package we used GCV with α = 1.4 (see section 3.2.4)

as selection criterion and a smoothing spline with 22 basis functions for each covariate. The

penalty for the smoothing splines included a small shrinkage component in order to be able

to shrink unimportant terms towards zero and such perform a kind of variable selection.

The estimates of the true model obtained by MCMC techniques serve as a benchmark in

order to see what could ideally be achieved.
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7.1.3.1 Gaussian distribution

algorithm adaptive adaptive/exact exact stepwise
linear 1:10 7:09 11:28 26:36
empty 1:00 3:14
nonlinear 1:05 143:15
mgcv 184:52
MCMC 5:11

Table 7.1: Gaussian distribution: Computing times in hours for all 250 replications each.
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Figure 7.5: Gaussian distribution: The left plot shows the distributions of ratio (7.1)
for AICimp values. The right plot compares the distributions of log(MSE(η)). Here, the
constant lines indicate the common minimum, median and maximum calculated over all
approaches.

From the results of the Gaussian model we can draw the following conclusions:

• The stepwise algorithm produced worse results than the selection algorithms derived

from the coordinate descent method. This applies to the results regarding the distri-

bution of ratio (7.1), the distribution of the logarithmic MSE of the predictor (both

shown in figure 7.5) and the number of wrongly identified variables (see figure 7.10).

In contrast, the distributions of the logarithmic relative MSE of the individual func-

tions (shown in figures 7.6 and 7.7) are mostly not distinguishable between the four

selection algorithms. Here, the only exception is function f11 where the stepwise

algorithm produced distinctly worse results.

• The three selection algorithms derived from the coordinate descent method achieved

practically the same results regarding MSE values, number of wrongly identified

variables and average function estimates (not shown). The values of ratio (7.1)
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Figure 7.6: Gaussian distribution: Distributions of the logarithmic relative MSE for the
individual functions. Each row compares the functions that are of the same functional form
where the functions with a large influence are in the left column and the functions with a
small influence in the right one. The constant lines indicate in each case the common
minimum, median and maximum calculated over all algorithms.

were slightly larger for the adaptive search than for the other two methods but this

difference is negligible since the largest value for the adaptive search only amounts to

about 0.006. This means, that if C
(0)
i −minj(Cij) = 100, the difference between the

value of the adaptive search and the minimum would be merely Ci−minj(Cij) = 0.6.

The most important difference between these approaches is the time they needed to

perform the selection for all 250 replications (compare table 7.1). The adaptive search

is by far the most efficient approach and needed even considerably less time than the

estimation of the true model by MCMC techniques.
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Figure 7.7: Gaussian distribution: Distributions of the logarithmic relative MSE for the
individual functions. Each row compares the functions that are of the same functional form
where the functions with a large influence are in the left column and the functions with a
small influence in the right one. The constant lines indicate in each case the common
minimum, median and maximum calculated over all approaches.

Hence, as the results of all coordinate descent methods are practically the same and

the computing time of the adaptive search is considerably lower, the adaptive search

is the most preferable selection algorithm.

• The distributions of the empirical MSE of the predictor (shown in figure 7.5) indi-

cates that the estimates of the predictor for MCMC (true) conditional on the true

predictor are superior to the estimates achieved by any of the selection algorithms.

The results of mgcv are, however, only slightly better than those of the coordinate
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Figure 7.8: Gaussian distribution: Average estimated functions together with the true un-
derlying functions for the adaptive search (left column), the mgcv package (middle) and
the true model estimated by MCMC techniques (right column). By multiplying the weak
functions with factor 3.3, both functions of the same type are plotted on the same scale.
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Figure 7.9: Gaussian distribution: Average estimated functions together with the true un-
derlying functions for the adaptive search (left column), the mgcv package (middle) and
the true model estimated by MCMC techniques (right column). By multiplying the weak
functions with factor 3.3, both functions of the same type are plotted on the same scale.

descent methods.

In contrast, the average function estimates (shown in figures 7.8 and 7.9) and the

distributions of the empirical relative MSE (compare figures 7.6 and 7.7) show merely

small differences (apart from the stepwise algorithm). As expected, the smallest bias

of individual functions was achieved conditional on the true model. The bias of the

individual mgcv estimates is often slightly larger than for the adaptive search.

• When analysing the number of wrongly omitted covariates (figure 7.10), the coor-

dinate descent methods show show comparable results to mgcv. In contrast, the

number of wrongly identified variables is considerably larger for mgcv. This is due

to the fact that mgcv treats smoothing parameters as continues and therefore can

estimate functions with very small degrees of freedom that are, nevertheless, unequal

to zero. The same could be observed for the number of replications in which the

linear effects were correctly identified (not shown for mgcv). Here, mgcv hardly ever

used an exactly linear effect.

Altogether, the results achieved by the coordinate descent methods are as least as

good as those achieved by mgcv. The biggest advantage of our approach is the com-
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puting time for the 250 replications (compare table 7.1). The adaptive search needed

a bit more than an hour whereas mgcv needed more than a week for the estimation

of this complex model.

• In the introduction we mentioned that the performance of selection algorithms re-

garding individual covariates depends on the strength of influence of the respective

effect. The average function estimates in figures 7.8 and 7.9 show that the weak func-

tions are always more heavily biased than the strong functions, whereas some of the

strong functions are nearly unbiased. A similar conclusion can be obtained from the

distributions of the relative empirical MSE in figures 7.6 and 7.7. Here, the relative

MSE takes much lower values for the functions with a large effect. Additionally, the

deviation of the distribution is smaller in this case. The difference between strong

and weak functions is especially distinct if the true effect is wiggly (functions f5/f11

and f6/f12). Additionally, in all cases when important covariates were removed from

the model, these functions were among those with a small effect.

These results (regarding bias and MSE) show, however, that difficulties with the

selection and estimation of functions with a small effect did not only occur with vari-

able selection algorithms but also with MCMC techniques which only had to choose

appropriate degrees of smoothness.

• The span of the average estimates of the null functions is always below 0.03 and in

most cases even below 0.02. Average estimated null functions are not shown for the

Gaussian distribution. But they are similar to the estimates obtained for the Gamma

simulation shown in figure 7.12.

algorithm x1 x7

adaptive 0.76 0.83
adaptive/exact 0.78 0.81
exact 0.78 0.80
stepwise 0.79 0.82

Table 7.2: Gaussian distribution: Portion of replications in which variables x1 or x7 were
correctly modelled by a linear effect.
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Figure 7.10: Gaussian distribution: Histograms for the distribution of the number of
wrongly identified covariates (upper rows) and the number of wrongly omitted covariates
(bottom rows). Wrongly identified means that both cases of mistakes are considered (i.e. rel-
evant variables which were removed from the model or irrelevant variables which were in-
cluded into the model).
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7.1.3.2 Gamma distribution
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Figure 7.11: Gamma distribution: The left plot shows the distributions of ratio (7.1) for
AICimp values. For a better comparison, the plot leaves out the extreme outlier (0.2) of the
stepwise algorithm. The right plot compares the distributions of log(MSE(η)), where the
extreme outlier (-0.29) of the stepwise algorithm is left out. The constant lines indicate
the common minimum, median and maximum of all approaches excluding the outlier.

algorithm adaptive adaptive/exact exact stepwise mgcv
wrongly added 1.61 1.61 1.58 3.11 1.83
wrongly omitted 0.00 0.00 0.00 0.10 0.00
total 1.61 1.61 1.58 3.21 1.83

Table 7.3: Gamma distribution: Average numbers of wrongly identified variables.

The results obtained for the Gamma distributed response variables are essentially the same

as for the Gaussian distribution. Therefore, we confine the results to the most important

ones. Additionally, we show some figures not shown for the Gaussian simulation.

• In terms of ratio (7.1) for AICimp shown in figure 7.11, the difference between the

stepwise algorithm and the other approaches is even greater than for the Gaussian

simulation. There is no noteworthy difference between the algorithms derived from

the coordinate descent method.

• Regarding the MSE of the predictor (figure 7.11) the stepwise algorithm performed

worst. Between the other selection methods and mgcv there is no difference, whereas

the true model (MCMC) achieved slightly better results.

• The results of the individual functions regarding average estimates and logarithmic

relative MSE are very similar to the results shown in figures 7.8 to 7.9 and 7.6 to 7.7

for the Gaussian simulation. Hence, the respective conclusions apply here as well.

• Figure 7.12 exemplarily shows the average estimates and the empirical MSE for two

of the eight null functions (for covariates x13 and x14) for the adaptive search and
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Figure 7.12: Gamma distribution: Average estimated functions (solid line) together with
the true underlying null functions (dashed line) for adaptive search (left column) and mgcv
package (middle column). The right plots compare the distributions of the empirical MSE
for the same functions. The constant lines indicate the common maximum.

mgcv. There is no difference between the two approaches. The empirical MSE is

equal to zero in at least 75% of replications indicating that the respective variable

was correctly removed from the model. The average estimates are close to zero.

• Table 7.3 shows the average numbers of wrongly identified variables. The stepwise

algorithm was the only approach that removed important variables from the model

and has the highest number of mistakes. Between the other selection algorithms and

mgcv there is no notable difference.

• The runtime the algorithms needed to select and estimate all 250 replications is shown

in table 7.4. The results are also similar to the Gaussian distribution. The adaptive

search was again by far the fastest approach by nearly identical other results.

algorithm adaptive adaptive/exact exact stepwise mgcv mcmc (true)
runtime 1:05 13:02 33:26 37:47 204:55 12:34

Table 7.4: Gamma distribution: Computing times in hours for all 250 replications.
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7.1.3.3 Binomial distribution

For the Binomial simulation we also wanted to show results of mgcv for a comparison with

our approaches. However, there sometimes occurred convergence problems so that we did

not obtain results for all replications. Furthermore, mgcv needs nearly two hours for the

estimation of one replication. For these reasons, we cannot show the results of mgcv here.

The results of the Binomial simulation are in most respects comparable to the results of

Gaussian and Gamma simulation. Therefore, we restrict to the most important results

here. If not mentioned otherwise, the same conclusions apply as for Gaussian and Gamma

simulation.

0
.0

1
.0

2
.0

3
.0

4
.0

5
G

C
V

−
R

a
ti
o

adaptive adaptive/exact exact stepwise

Distribution of GCV−Ratios
−

2
−

1
.5

−
1

−
.5

ln
(M

S
E

(e
ta

))

adaptive adap./exact exact stepwise MCMC(true)

Distribution of the logarithmic MSE of the predictor

Figure 7.13: Binomial distribution: The left plot shows the distributions of ratio (7.1).
The right plot shows the distributions of log(MSE(η)) for all different approaches. The
constant lines indicate the common minimum, median and maximum calculated over all
approaches contained in the plot.

• The results regarding ratio (7.1) for the GCV values (compare figure 7.13) are com-

parable to those of the other distributions: the stepwise algorithm produced the

worst results whereas exact and adaptive/exact search nearly always selected the

best model. The median for the adaptive search is 0.0024. Hence, the differences

between adaptive search and adaptive/exact and exact search are only small.

• In terms of logarithmic MSE of the overall predictor (compare figure 7.13), the

MCMC techniques conditional on the true model performed clearly better than any

of the selection algorithms. Exact and adaptive/exact search yielded slightly worse

results than adaptive search and stepwise algorithm although they obtained better

GCV values. This indicates, that the minimal GCV value does not correspond with

the best model.
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Figure 7.14: Binomial distribution: The upper row shows histograms for the distribution of
the number of wrongly identified covariates. Wrongly identified means that either important
variables were removed from the model or that unimportant variables were included into
the model. The bottom row shows histograms for the distribution of the number of wrongly
omitted covariates, i.e. only important variables that were removed from the model are
considered here.

• Regarding the number of wrongly identified variables, the adaptive search yielded

better results than stepwise algorithm and exact search. For each selection algorithm

the total number of mistakes was here slightly larger than for the Gaussian simulation.

The differences to the Gaussian results are mainly due to the larger number of wrongly

omitted covariates.

• Once again, the adaptive search was the most efficient estimation approach regarding

the time needed for selecting and estimating all 250 replications (see table 7.5).

Exact search and stepwise algorithm needed considerably more time than MCMC

techniques conditional on the true model.

algorithm adaptive adaptive/exact exact stepwise mgcv mcmc (true)
runtime 0:58 11:26 22:15 39:00 — 13:55

Table 7.5: Binomial distribution: Computing times in hours for all 250 replications each.
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7.1.3.4 Poisson distribution

Like with the Binomial simulation there occurred convergence problems with mgcv for

some replications. Furthermore, mgcv needs even more then two hours for the estimation

of one replication. So again, we cannot show the results of mgcv here.

The results of the Poisson simulation study can be summarised as follows:
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Figure 7.15: Poisson distribution: The left plot shows the distributions of ratio (7.1). The
right plot shows the distributions of log(MSE(η)) for all different approaches. The constant
lines indicate the common minimum, median and maximum calculated over all approaches.

• Regarding ratio (7.1) for the GCV values shown in figure 7.15 we obtained the same

results as for all other distributions: the stepwise algorithm performed worst whereas

the exact and the adaptive/exact search nearly always found the best model. Again,

the median of about 0.002 for the adaptive search indicates that the differences to

the best model are only small.

• In terms of logarithmic empirical MSE for the predictor (compare figure 7.15), the

results obtained conditional on the true model are better than those of the selec-

tion algorithms. Like for the Binomial simulation, exact and adaptive/exact search

yielded slightly worse results than adaptive search and stepwise algorithm, although

they obtained better GCV values. Adaptive search and stepwise algorithm yielded

comparable results with the exception of a few outliers with higher values for the

stepwise algorithm.

• Regarding the estimates of the individual functions, particularly of the weak func-

tions, the results were here slightly worse than for all other distributions. This applies

likewise to the results of the selection algorithms and those conditional on the true

model. Partly, this can be attributed to the fact that the influence of each function
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Figure 7.16: Poisson distribution: Distributions of the relative logarithmic MSE for the
important functions.

is here only half as strong as with all other distributions. Figure 7.16 shows the loga-

rithmic relative MSE values which are larger than those of the Gaussian simulation.

The bad results for functions f11 and f12 are due to the fact that these functions were

often removed from the model, particularly by the stepwise algorithm.

• Figure 7.17 shows the average estimated functions for the adaptive search. The

functions are more biased than for the Gaussian simulation, especially the wiggly

functions. The results of MCMC techniques conditional on the true model are only

slightly less biased than those of the adaptive search and are not shown.

• The results regarding the zero functions are comparable to the other distributions
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Figure 7.17: Poisson distribution: Average estimates of the adaptive search. By multiplying
weak functions with factor 3.3, both functions of the same type are plotted on the same scale.
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Figure 7.18: Poisson distribution: Histograms for the distribution of the number of wrongly
identified covariates (left) and the number of wrongly omitted covariates (right). Wrongly
identified means that both cases of mistakes are considered (i.e. relevant variables which
were removed or irrelevant variables which were included into the model).

and are not shown here.

• Figure 7.18 shows the number of wrongly identified terms for stepwise algorithm

and adaptive search. The results of exact and adaptive/exact search (not shown)

are similar to those of the adaptive search. Here, the total number of mistakes is

considerably higher than for the Gaussian simulation and even higher than for the

Binomial simulation. This is due to the increased number of important terms that
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were removed from the model. Most often, the weak wiggly functions f11 and f12

were not recognised.

• In terms of computing time (compare table 7.6) the adaptive search was the most

efficient selection method again.

algorithm adaptive adaptive/exact exact stepwise mgcv mcmc (true)
runtime 0:53 10:35 16:56 48:27 — 11:59

Table 7.6: Poisson distribution: Computing times in hours for all 250 replications each.



140 7. Simulation Studies

7.2 Simulation of a multinomial logit model

For the simulation of a multinomial logit model with three possible outcomes, i.e. k = 2, we

used the 12 functions of the additive simulation study (shown in figure 7.1) and constructed

two predictors as

η(1) = f1(x1) + f3(x3) + f5(x5) + f8(x8) + f10(x10) + f12(x12),

η(2) = f2(x2) + f4(x4) + f6(x6) + f7(x7) + f9(x9) + f11(x11).

Hence, each predictor contains the same number of functions and includes both weak and

strong functions. We created R = 200 replications with n = 700 observations each. Each

observation yi consists of m = 3 repetitions, i.e. yi ∼ M(3, (π
(1)
i , π

(2)
i )′), with probabilities

π
(1)
i =

exp(η
(1)
i )

1 + exp(η
(1)
i ) + exp(η

(2)
i )

,

π
(2)
i =

exp(η
(2)
i )

1 + exp(η
(1)
i ) + exp(η

(2)
i )

.

For both predictors, the selection algorithms had to select the relevant covariates out

of variables x1–x15 where covariates x13–x15 have no influence on either predictor. The

modelling possibilities for the covariates were the same as described in section 7.1.

For this distribution, we compare the results of the adaptive, exact and adaptive/exact

search and the stepwise algorithm. As reference, we estimated the true model using the

adaptive search. True model means that for each category we used only functions with

an influence on the respective predictor. Thereby, we estimated linear functions using a

linear fit and specified nonlinear functions as nonlinear so that merely appropriate degrees

of freedom had to be selected. The selection was always performed using AIC.

algorithm adaptive adaptive/exact exact stepwise true model
runtime 1:04 19:20 44:25 85:54 0:32

Table 7.7: Multinomial logit model: Computing times in hours for the 200 replications.

The results can be summarised as follows:

• In terms of ratio (7.1) for AIC values, figure 7.19 shows similar results as the plots

for the univariate simulations in section 7.1: the stepwise algorithm yielded the worst

results followed by the adaptive search. But as described for the results of the normal

distribution, the differences between the approaches based on the coordinate descent

method are only small.
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Figure 7.19: Distributions of ratio (7.1) for all different approaches.
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Figure 7.20: Distributions of log(MSE(η(1))) and log(MSE(η(2))) for all different ap-
proaches. The constant lines indicate the common minimum, median and maximum cal-
culated over all approaches.
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Figure 7.21: Distributions of the empirical MSE for the null functions.

• Regarding the empirical logarithmic MSE of the two predictors (figure 7.20), there

was practically no difference between the selection algorithms. As expected, the

results conditional on the true model were better.
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• The average estimates of the important functions (not shown) are slightly more bi-

ased than those of the Gaussian simulation (see figures 7.8 and 7.9). The function

estimates based on the true model were slightly less biased than those obtained by

the selection algorithms. Again, the estimates are better for the strong than for

the weak functions. The same picture arises when considering the empirical MSE of

the important functions (not shown). There is practically no difference between the

different selection algorithms, whereas the estimates conditional on the true model

were slightly better. The only real difference resulted for function f11 of the second

category (weak highly frequented sine). In 101 replications the stepwise algorithm

excluded this function from the model whereas the other algorithms included it in

more than 160 cases.

• The span of average estimates of the null functions always lies below 0.06. For the

adaptive search figure 7.21 shows the distributions of the empirical MSE for all null

functions. The MSE values are all sufficiently small and there is no difference between

functions that are important for the other category and completely unimportant

functions.

• Table 7.8 compares the average numbers of wrongly identified variables separately for

both categories. There are only small differences between the algorithms. The step-

wise algorithm seems to select slightly sparser models because the number of wrongly

removed variables is larger and the number of wrongly added variables smaller.

• The adaptive search was by far the fastest approach (compare table 7.7) and per-

formed the selection for all replications in one hour. In contrast, the stepwise algo-

rithm needed more than three days. Even the adaptive/exact search took nearly 20

hours for the selection so that, altogether, the adaptive search is the algorithm which

is most preferable.

algorithm adaptive adaptive/exact exact stepwise
category 1: wrongly added 2.45 2.24 2.21 1.92
category 1: wrongly omitted 0.24 0.24 0.22 0.41
category 1: total 2.69 2.48 2.43 2.33

category 2: wrongly added 2.61 2.52 2.55 2.28
category 2: wrongly omitted 0.30 0.27 0.28 0.58
category 2: total 2.91 2.79 2.83 2.85

total 5.60 5.27 5.26 5.18

Table 7.8: Multinomial logit model: Average numbers of wrongly identified variables.



7.3 Simulation of a geoadditive mixed model 143

7.3 Simulation of a geoadditive mixed model

For this simulation study we used a geoadditive mixed model which contains a smooth

spatial function and a random intercept in addition to six nonlinear functions of continuous

covariates. For the nonlinear functions of continuous variables we used functions f1 to f6

from the simulation study in section 7.1 which are shown in figure 7.1. The functions are

indicated by the same numbers in the geoadditive simulation study. The smooth spatial

function and the random effect are both shown in figure 7.22. For the spatial effect we

used the 309 regions of West-Germany and created a two–dimensional function using the

centroids (r1, r2) of the regions as variables. The spatial function is then given by

fspat = sin(r1 · r2) + 0.1483,

where r1 is the value of a centroid in east–west direction and r2 its value in north–south

direction. Both variables r1 and r2 had been centered and standardised before. The

function is centered around zero by the value 0.1483. For each region we generated three

observations so that we have 729 observations for the geoadditive simulation. Then, we

generated a group variable ind with twenty individuals for a random effect. The individuals

were randomly assigned to the observations in such a way that there are either 46 or

47 observations per individual. The random effect was created according to a normal

distribution with mean zero and a standard deviation of 0.4.

The span between minimum and maximum of these two functions again amounts to 2 (like

for the continuous variables) so that all functions have an equally strong influence on the

predictor. The predictor takes the form

η =
6∑

j=1

fj(xj) + fspat(region) + frand(ind).

Additionally, we used six continuous covariates without effect. The number of replications

is R = 250 and we assumed a Gaussian model with a standard deviation of σ = 1.1.

For the modelling of the spatial function a Markov random field was used with possible

degrees of freedom {0, 10, 20, . . . , 300} and df = 10 for the basis model. The effect of

the continuous variables were represented by cubic P–splines with 22 basis functions and

possible degrees of freedom {0, 1, 2, . . . , 21} where the linear fit df = 1 was used for the

basis model. The random effect was represented by an i.i.d. Gaussian random effect with

possible degrees of freedom {0, 1, 2, . . . , 19}. For the basis model we used a random effect

with df = 1. For all functions, df = 0 corresponds to the removal of the respective function

from the model.

To analyse the results we computed average function estimates, empirical MSE, empirical

bias and the ratio of AICimp values. We draw the following conclusions:
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Figure 7.22: True smooth spatial function fspat and random effect frand used in the geoad-
ditive simulation study.
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Figure 7.23: The left plot shows the distributions of ratio (7.1). The right plot shows the
distributions of log(MSE(η)) for all different approaches. Here, the constant lines indicate
the common minimum, median and maximum calculated over all approaches.

• In terms of ratio 7.1 of AICimp values shown in figure 7.23 the adaptive search per-

formed slightly worse than the exact and adaptive/exact search and even than the

stepwise algorithm. For the adaptive search, the median of the distribution, however,

is just about 0.00025 indicating that the difference to the best model is only 0.025%

of the difference between the best and the empty model. Hence, in this respect, there

is practically no difference between the algorithms.

• Regarding the empirical MSE of the predictor (compare figure 7.23), there is no
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Figure 7.24: Distributions of the logarithmic MSE for the random effect and the spatial
function. The constant lines indicate in each case the common minimum, median and
maximum calculated over all approaches.
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Figure 7.25: Estimated random effects (solid line) together with the true underlying random
effect (dashed line). All functions are plotted against the true random effect.
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Figure 7.26: Histograms for the distribution of the number of wrongly identified covariates.
Wrongly identified means in this case unimportant covariates that were included into the
model as there were never any important variables removed.

difference between the selection algorithms. Only the estimation conditional on the
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true model by MCMC techniques yielded slightly better results.

• For the individual nonlinear functions f1 to f6, the logarithmic MSE values show no

difference between the different approaches (not even for MCMC techniques condi-

tional on the true model) and, therefore, are not shown. The same applies to the

logarithmic MSE for random effect and spatial function (compare figure 7.24). The

only exception are the values of MCMC(true) for the spatial function which are in

average slightly larger than for the other approaches.

• The average estimated functions f̂1, . . . , f̂6 are very similar to the respective estimated

functions of the additive simulation study shown in figures 7.8 and 7.9. Therefore,

they are not shown. For some functions there is a small bias which is slightly larger

for the adaptive search than for the true model. The largest bias was obtained for

function f6 (peak). The average estimated random effects together with the true

random effect are shown in figure 7.25. Here, the bias from the adaptive search is not

distinguishable from the bias obtained from the true model. For the spatial effect,

average estimated functions and empirical bias are shown in figure 7.27. The bias of

the spatial function is slightly larger for the adaptive search than for MCMC(true).

• Figure 7.26 shows the number of unimportant variables which were wrongly added

to the model wheres neither approach removed important variables from the model.

Again, the results are very similar where the adaptive search yielded slightly worse re-

sults and the stepwise algorithm slightly better results than exact and adaptive/exact

search. The results of exact and adaptive/exact search are identical.

• The computing times displayed in table 7.9 yielded greater differences between the

selection algorithms than all other results. The adaptive search was by far the fastest

approach whereas the stepwise algorithm again took the most time.

algorithm adaptive adaptive/exact exact stepwise mcmc (true)
runtime 0:59 2:13 2:49 5:04 4:53

Table 7.9: Computing times in hours for all 250 replications each.
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Figure 7.27: Average estimated spatial functions (left column) and their empirical bias
(right column) for the adaptive search (top row) and the true model estimated by MCMC
techniques (bottom row). Yellow indicates regions without bias.
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7.4 Simulation of a varying coefficient model

For this simulation study we used a varying coefficient model which imitates the kind of

models analysed in chapter 8 where nonlinear effects can be different across two groups

(boys and girls in the example). That means, we consider varying coefficients of the form

g(v)s, where s is a two–categorical variable. Here, the values for s where chosen uniformly

from {−1; 1}.
The predictor contains two smooth spatial functions: the average effect fspat and the vary-

ing effect gspat. The underlying map again consisted of the 309 regions of West–Germany

and two–dimensional functions were calculated by using the centered and standardised

centroids (r1, r2) of the regions as variables. The spatial functions are given by

fspat = (sin(r1 · r2) + 0.1483)/0.555,

gspat = (r1 + r2)/2.409,

where r1 is the value of a centroid in east–west direction and r2 its value in north–south

direction. Both functions are centered around zero and shown in figure 7.29. For each

region we generated three observations so that, altogether, we have 729 observations for

the VC simulation.

In addition to the spatially varying coefficient we used two nonlinear varying coefficients

shown in figure 7.28. Moreover, the model contains two nonlinear functions that do not vary

across the two groups (also shown in figure 7.28) and two continuous covariates without

any influence on the response. The values for the six continuous covariates were chosen

independently of each other and uniformly from the range [−3; 3] but rounded to two

decimal places afterwards. All functions fj, j = 1, . . . , 4, spat, were chosen such that

σfj
= 1 whereas the effect of functions gj, j = 1, 3, spat, is weaker with σgj

= 0.5. The

true predictor takes the form

η = f1(x1) + g1(x1)s + f2(x2) + f3(x3) + g3(x3)s + f4(x4) + fspat(region) + gspat(region)s.

Since the categorical variable s is effect–coded, effects for s = 1 are obtained by fj + gj

whereas those for s = −1 are given by fj − gj. Hence, the main effects fj represent the

average estimate of both categories and functions gj the deviation of this average effect

and the individual effects. The number of replications is R = 250 and we assumed a

Gaussian model with a standard deviation of σε = 0.82 leading to a signal–to–noise ratio

of ση/σε = 3.

Together with the unimportant terms the most general possible predictor is

η = γ0 + f1(x1) + g1(x1)s + . . . + f6(x6) + g6(x6)s + fspat(region) + gspat(region)s + γs s.
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Figure 7.28: True nonlinear functions used in the VC simulation study.

For this simulation study we compared the adaptive, adaptive/exact and exact search with

the stepwise algorithm, the mgcv package and the fully Bayesian approach via MCMC tech-

niques conditional on the true model. For each of the two spatial functions fspat and gspat

we used a two–dimensional P–spline with 122 = 144 basis functions and a second order

random walk penalty. The possible degrees of freedom were given by {0, 1, 5, 10, . . . , 120}.
(As an alternative, we also tried Markov random fields for the spatial functions but the

results were worse and not directly comparable to those of mgcv.) For the one–dimensional

functions we used P–splines with 22 basis functions, a second order random walk penalty

and possible degrees of freedom {0, 1, 2, . . . , 21}. For mgcv we used cubic smoothing splines

instead of P–splines with 22 basis functions for univariate functions and 70 basis functions

for the spatial functions. The selection was based on AICimp or on GCV with α = 1.4 for

mgcv, respectively. For the MCMC techniques we used every 20th sample for the calcu-

lation of estimates where the first 4000 samples presented the burn–in phase. Altogether,

we used 1000 samples for the calculation of estimates.

The results lead to the following conclusions:

• In terms of ratio (7.1) (compare figure 7.30) there are only small differences between

the selection algorithms: adaptive search and stepwise algorithm performed a bit
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Figure 7.29: True smooth spatial functions used in the VC simulation study.

worse whereas adaptive/exact and exact search nearly always found the best model.

• Regarding the empirical MSE of the predictor shown in figure 7.30, there is no notable

difference between the approaches with the exception of MCMC conditional on the

true model: this approach performed slightly better than the rest.

• Regarding the estimates of the individual functions there are no differences between

the approaches either. The only exceptions are the spatial functions where mgcv

performed for fspat worse than all other approaches but better for gspat. Altogether,



7.4 Simulation of a varying coefficient model 151

algorithm adaptive adaptive/exact exact stepwise mgcv MCMC (true)
runtime 0:07 0:18 0:26 0:42 3:05 1:31

Table 7.10: Computing times in hours for the first 25 replications each.
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Figure 7.31: Histograms for the distribution of the number of wrongly identified covariates;
here only irrelevant variables which were incorrectly included into the model.

the average estimated important functions are only slightly biased (compare figures

7.33–7.35) and the average estimates of the unimportant functions are nearly zero

(not shown). The empirical MSE of the unimportant functions (not shown) is never

above 0.02 indicating that individual estimated functions are close to zero. Each

unimportant function was removed from the model in at least 72% and at most

80.4% of replications by the adaptive search with similar values for the other selection

methods.
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over all approaches.
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Figure 7.33: Average estimated functions (solid line) together with the true function (dashed
line) for adaptive search (left column), mgcv package (middle) and MCMC techniques (right
column).

• Figure 7.31 shows the number of wrongly identified terms of the adaptive search

and mgcv where mgcv made slightly more wrong decisions. The other selection
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Figure 7.34: Average estimates and empirical bias of the spatial main effect fspat for adap-
tive search (left column), mgcv package (middle) and MCMC techniques (right column).
In the bias plots, yellow indicates regions without bias. For some approaches there is one
region with a bias lower than -0.7 (mgcv: -1.19 and MCMC: -0.73).

algorithms yielded comparable results to the adaptive search. All mistakes are due

to unimportant variables that were additionally included into the model.

• The computing times displayed in table 7.10 show that the adaptive search was once

more the fastest algorithm. Mgcv was considerably slower than any of the other

approaches.

In addition to the selection of a single best model we performed further evaluations to

investigate the performance of conditional and unconditional credible intervals (compare

chapter 5). For this purpose, we used the original data set with n = 927 observations and
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Figure 7.35: Average estimates and empirical bias of the spatial varying effect gspat for
adaptive search (left column), mgcv package (middle) and MCMC techniques (right col-
umn). Yellow indicates regions without bias.

a larger data set with 2n = 1854 observations but based on the same predictor. For each

replication, unconditional confidence bands were obtained conditional on the respective

selected model. We drew 20000 MCMC samples with a thinning parameter of 20, so

that the confidence bands are based on 1000 samples. For the unconditional confidence

bands we used the same number of MCMC samples that were equally divided between

the original data set and 99 bootstrap data sets. For comparison, we show confidence

bands of a fully Bayesian approach conditional on the true model (i.e. the unimportant

functions are not included in the model but the confidence bands are unconditional with

regard to the important functions since their variance parameters can change during the
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estimation process) and we show confidence bands obtained by a combination of mgcv and

bootstrap (compare Wood (2006c)) with 9 bootstrap data sets (since this approach is very

time consuming we could not use more than 9). For all approaches, we present average

pointwise coverage probabilities for the individual functions in table 7.11. Here, the results

can be summarised as follows:

• For the important nonlinear functions of continuous covariates, the conditional credi-

ble bands frequently show undercoverage. The same applies to the mgcv bands. This

suggests that 9 bootstrap samples are not enough to consider the full model selection

uncertainty. In contrast, the MCMC bands often are considerably above the nominal

level. Here, the best results were achieved by the unconditional bands which mostly

yielded coverage rates near the nominal level.

• For the unimportant functions, the coverage rates of the unconditional bands are

considerably above the nominal level. This could be due to the fact that here only

the mistake of overfitting can be made whereas underfitting is impossible. This

phenomenon can also be observed with the mgcv bands.

• The credible bands for the spatial functions mostly show considerable overcoverage.

Here, only mgcv yielded coverage rates that were close at the nominal level.

• For all approaches, average coverage rates are closer to the nominal level if the sample

size is increased.

• Figure 7.36 compares conditional bands, unconditional bands and MCMC bands

for some individual functions. In order to highlight the differences between the

approaches, we plotted the differences between the bands and the respective true

underlying function. The MCMC bands are clearly wider than the other bands.

Between unconditional and conditional bands there is a small difference where the

unconditional bands are slightly wider than the conditional ones. An example for

distinctly different conditional and unconditional bands is given in figure 8.18 for a

real data set.
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data conditional uncond. MCMC mgcv conditional uncond. MCMC mgcv
f1 g1

n 95% 0.898 0.933 0.969 0.906 0.952 0.963 0.973 0.889
2n 95% 0.932 0.959 0.970 0.933 0.939 0.958 0.972 0.941
n 80% 0.738 0.769 0.834 0.735 0.799 0.828 0.856 0.757
2n 80% 0.781 0.816 0.843 0.769 0.781 0.814 0.844 0.789

f3 g3

n 95% 0.921 0.939 0.966 0.861 0.923 0.939 0.961 0.903
2n 95% 0.940 0.953 0.970 0.935 0.948 0.962 0.970 0.950
n 80% 0.748 0.767 0.837 0.670 0.763 0.781 0.819 0.741
2n 80% 0.780 0.798 0.838 0.763 0.794 0.819 0.844 0.794

fspat gspat

n 95% 0.988 0.984 0.990 0.917 0.984 0.985 0.987 0.960
2n 95% 0.994 0.991 0.995 0.926 0.980 0.983 0.987 0.941
n 80% 0.945 0.926 0.951 0.766 0.912 0.917 0.927 0.829
2n 80% 0.966 0.952 0.969 0.779 0.904 0.912 0.925 0.804

f2 g2

n 95% 0.951 0.962 0.971 0.952 0.947 0.983 — 0.992
2n 95% 0.943 0.958 0.969 0.955 0.956 0.991 — 0.995
n 80% 0.807 0.830 0.857 0.826 0.812 0.924 — 0.924
2n 80% 0.794 0.827 0.848 0.818 0.852 0.930 — 0.946

f4 g4

n 95% 0.940 0.949 0.964 0.950 0.938 0.979 — 0.992
2n 95% 0.944 0.951 0.958 0.950 0.945 0.983 — 0.989
n 80% 0.782 0.793 0.822 0.796 0.851 0.917 — 0.928
2n 80% 0.789 0.802 0.817 0.799 0.846 0.920 — 0.936

f5 g5

n 95% 0.930 0.967 — 0.982 0.938 0.978 — 0.992
2n 95% 0.950 0.981 — 0.992 0.947 0.982 — 0.980
n 80% 0.803 0.885 — 0.906 0.857 0.920 — 0.922
2n 80% 0.864 0.935 — 0.948 0.867 0.930 — 0.911

f6 g6

n 95% 0.951 0.982 — 0.993 0.948 0.983 — 0.986
2n 95% 0.942 0.983 — 0.992 0.955 0.986 — 0.982
n 80% 0.877 0.938 — 0.936 0.867 0.935 — 0.926
2n 80% 0.844 0.918 — 0.945 0.868 0.933 — 0.899

Table 7.11: Average coverage probabilities for the individual functions based on nominal
levels of 95% and 80%. Values that are more than 2.5% below (above) the nominal level
are indicated in red (green).
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Figure 7.36: Lines 1 and 3 show average unconditional credible bands for the adaptive
search together with the true underlying function (solid line) and average estimated function
(dashed line). Lines 2 and 4 show differences between 95% credible bands and true function
and thus compare conditional bands, unconditional bands and bands obtained by MCMC
techniques.
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7.5 Simulation of ANOVA type interaction models

In this section we examine the performance of the ANOVA type decomposition of a two–

dimensional surface into two main effects and interaction component as described in section

2.2.8.2. For this purpose we show the results of two simulation studies. The predictor in

the first simulation study includes an interaction whereas the predictor of the second study

consists of two main effects only.

7.5.1 Model including an interaction

The aim of this first simulation study is to examine the performance of the ANOVA type

decomposition regarding the following aspects:

• the overall performance of the estimated model, i.e. the estimated predictor is com-

pared to the true predictor,

• the quality of the individual functions (both main effects and interaction), i.e. the

individual estimated functions are compared to the respective true function.

For this purpose we use a predictor containing two nonlinear main effects of continuous

covariates and a complex interaction, i.e.

η = γ0 + f1(x1) + f2(x2) + f1|2(x1, x2)

with functions

f1(x1) = 12 · (x1 − 0.5)2 − 1.13,

f2(x2) = 1.5 · sin(3 · π · x2)− 0.28,

f1|2(x1, x2) = 3 · sin(2 · π · x1) · (2x2 − 1).

The functions are chosen such that the sum of main effects has about the same range of

values as the interaction component (the range of values is about [−3; 3] in both cases).

The interaction component is carefully chosen such that it is not possible to extract a

main effect, i.e. neither a function of x1 nor of x2, from it. That will later enable us to

compare the estimated functions to the true underlying functions. The true functions and

the predictor are shown in figure 7.37.

The covariate values of x1 and x2 for the n = 300 observations lie in the interval [0; 1].

121 observations lie on a 11× 11 grid of equidistant points between 0 and 1, so that each

point of this grid appears at least once in the data set. All other values for x1 and x2 were

chosen independently of each other and uniformly on the range [0; 1] but rounded to two
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Figure 7.37: Model including interaction: True components and predictor η for the simu-
lation of the ANOVA type interaction model.

decimal places afterwards.

From the predictor we created R = 250 replications with Gaussian distributed response

variables. The variance of the error terms was chosen as σ2 = 1.16 leading to a ratio of

σ2
η/σ

2
ε = 3.

In order to be able to assess the quality of the estimates we compare the results of the

following approaches:

• ANOVA type decomposition as described in section 2.2.8.2 (anova):

For the overall surface we used a two–dimensional cubic P–spline with 122 = 144 basis

functions. Hence, the extracted main effects are P–splines with 12 basis functions.

For the penalisation in the direction of the main effects we used second order random

walk penalties. The estimation was carried out by the adaptive search algorithm. For

each component it was possible to be removed from the model, to be approximated

by a linear effect or to be modelled by a nonlinear function with the restriction that

the interaction component cannot be more complex than any of the main effects
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(regarding the used function type, i.e. zero function, linear fit or nonlinear function).

For the nonlinear functions of the two main effects (i.e. for λ1 and λ2 by setting

λ = ∞) 10 different degrees of freedom were given by {2, . . . , 11}. For parameter

λ of the nonlinear interaction component (i.e. setting λ1 = λ2 = 0) the values were

determined according to 27 degrees of freedom specified by {25, . . . , 90}.
• Model containing a surface estimator only (surface):

Here we used a two–dimensional P–spline with 122 B–spline basis functions of third

degree and a second order random walk penalty (compare section 2.2.8.1). The esti-

mation was also carried out using the adaptive search algorithm. For the smoothing

parameter we specified 35 possibilities with resulting degrees of freedom equidistant

between 5 and 90. Besides, there were the possibilities of a linear effect and the

removal from the model.

• Model containing two main effects and interaction component (mcmc):

In contrast to the first approach, the two main effects are not extracted from an overall

surface but specified and estimated as separate components. As penalties we used

one- or two–dimensional second order random walk penalties. The estimation was

carried out using a fully Bayesian approach based on MCMC simulation techniques.

In contrast to the anova approach, no selection is performed. That means, the model

specification using the three spline functions is fixed but smoothing parameters are

estimated.

With this simple predictor the exact search yielded the same results as the adaptive search.

Therefore, the results of the exact search are not shown.

For the comparison of results we computed average estimates, empirical bias and empirical

mean squared errors and draw the following conclusions:

• Regarding the MSE values of predictor and individual components shown in figure

7.38, the median of the distributions for mcmc and anova is nearly identical. Mostly,

the distribution for anova has a slightly larger variance than the one for mcmc.

Regarding the predictor, both approaches mcmc and anova perform considerably

better than the approach with a surface estimator only.

• Apart from f1 where the estimators of both approaches mcmc and anova are prac-

tically identical with the true function, the bias of the individual components is

slightly larger for anova than for MCMC (compare figures 7.39 and 7.40). This is

also true for the predcitor shown in figure 7.41. The bias of the predictor for surface

is considerably larger than those of the other approaches.

• Although anova had the possibility of model selection (i.e. to remove the interaction
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Figure 7.38: Model including interaction: Distributions of the empirical logarithmic MSE
for predictor and individual functions.
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Figure 7.39: Model including interaction: Average estimated main effects together with the
true underlying functions.

term from the model and estimate a main effects model), the full interaction was

always selected (not shown).
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Figure 7.40: Model including interaction: Average estimated interaction components (left
column) and their bias (right column). The upper plots show the results of the ANOVA
type decomposition and the lower plots those of the MCMC approach

• Summarising these results, the estimates of the ANOVA type decomposition are

nearly as good as those obtained by the real interaction model mcmc.

7.5.2 Model without interaction

Based on the same covariates x1 and x2 and the same functions f1 and f2 as above, we

created a predictor containing no interaction component, i.e.

η = γ0 + f(x1) + f(x2).

With this simulation study we examine if the search algorithms are able to detect that the

interaction term has no influence on the response. Additionally, we analyse if the selected

model depends on the chosen starting model and if so, which starting model produces the

best results.

From the predictor we again created R = 250 replications with Gaussian distributed re-

sponse variables. The variance of the error terms was chosen by σ2 = 0.63 again leading
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Figure 7.41: Model including interaction: Average estimated predictors (left column) and
their bias (right column). The upper plots show the results of the ANOVA type decomposi-
tion, the plots in the middle the results of the MCMC approach and the lower plots those
of the surface estimator.

to a ratio of σ2
η/σ

2
ε = 3.

In order to be able to assess the performance of the search algorithms we compare the

results of the following approaches:

• ANOVA type interaction model starting with the linear basis model (linear):



7.5 Simulation of ANOVA type interaction models 165

For the overall surface we used a two–dimensional cubic P–spline with 122 ba-

sis functions. Hence the extracted main effects are cubic P–splines with 12 basis

functions. For the penalisation in the direction of the main effects we used sec-

ond order random walk penalties. The search started from the linear predictor

η = γ0 + γ1x1 + γ2x2 + γ1|2x1 · x2.

• ANOVA type interaction model starting with a linear main effects model (removed):

In contrast to the linear approach, the starting predictor contains only the two linear

main effects, i.e. η = γ0 + γ1x1 + γ2x2.

• ANOVA type interaction model starting with a nonlinear model (nonlinear):

Here the starting predictor contains a relatively smooth nonlinear overall surface, i.e.

η = γ0 + f1(x1) + f2(x2) + finter(x1, x2).

• Main effects model (main):

This approach serves as a reference because the interaction component is not con-

sidered at all. That means, the predictor cannot contain an interaction term and

the search algorithm only has to estimate the two main effects. Again, the starting

model is the linear model.

As search algorithms we used the adaptive and the exact search and compared the results.

We draw the following conclusions:

−
5

−
4
.5

−
4

−
3
.5

−
3

−
2
.5

lo
g
(M

S
E

(e
ta

))

adaptive exact main effects

Distribution of the logarithmic MSE of eta

0
.0

0
5

.0
1

.0
1

5
.0

2
.0

2
5

.0
3

A
IC

im
p

−
R

a
ti
o

adaptive exact main effects

Distribution of AICimp−Ratios

Figure 7.42: Model without interaction: Distributions for the empirical logarithmic MSE
of the predictor and for the ratio of AICimp values.

• For exact and adaptive search the results are independent of the basis model as the

same models were selected with each of the basis models (results are not shown).

• The results regarding empirical MSE and ratio of AICimp values show that there is
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Figure 7.43: Model without interaction: Distributions of modelling alternatives for the
interaction component.

practically no difference between exact and adaptive search (compare figure 7.42).

The same is indicated by the results regarding the selected representation of the

interaction component shown in figure 7.43.

• In terms of empirical MSE the results of the main effects model are slightly better

than the results of the selected models. The ratios of AICimp values, however, show

that the selected model always has equal or lower AICimp values than the main effects

model. Hence, the selection algorithms chose wrong models because of their better

AICimp values.

• Figure 7.43 shows that in about 65% of replications the interaction component was

correctly removed from the model. But in more than 20% of replications, the in-

teraction component was modelled nonlinearly, meaning that an ANOVA type de-

composition was used for the overall surface with small degrees of freedom for the

interaction component.

• Summarising the results it turns out that the selection algorithms are able to de-

tect that a complex modelling of two continuous variables including an interaction

component is not necessary. But this strongly depends on the evidence given by

the selection criterion. If the selection criterion decides in favour of an interaction

component the selection algorithms do not remove it from the model. However, the

values of ratio (7.1) are only small for the main effects model with zero median. This

indicates, that there are only small differences between the selected model and the

main effects model.
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7.6 Conclusion

During the last sections we examined the performance of our selection algorithms by means

of several simulation studies which imitated different data situations. In conclusion, the

results of all simulation studies show the following pattern:

• There was no notable difference between the results of the approaches based on the

coordinate descent method, i.e. adaptive search, exact search and adaptive/exact

search. The values of the selection criteria obtained by the adaptive search were only

slightly worse than those obtained by each of the other approaches. This indicates

that very similar models were selected.

• The stepwise algorithm often yielded worse results than the algorithms based on

the coordinate descent method. Above all, its selected model strongly depends on

the chosen basis model whereas the adaptive search’s selected model proved to be

independent of the basis model.

• The results (in terms of quality of estimates and correctly selected terms) obtained by

the selection algorithms based on the coordinate descent method are fully comparable

to those obtained by mgcv. However, with the discrete response distributions mgcv

failed due to convergence problems whereas our algorithms worked well.

• For the coordinate descent methods, estimated functions and predictors are only

slightly worse than the estimates obtained by MCMC techniques conditional on the

true model.

• The adaptive search was by far the fastest approach for model selection. Even for

complex models the selection was performed in a very short time. For some simu-

lations, the adaptive search needed one hour to select all replications whereas mgcv

needed more than a week.

Summarising these results, our adaptive search algorithm is a strongly efficient and easy

to apply approach in the context of model selection in STAR models.
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Chapter 8

Applications

8.1 Belgian car insurance data

In order to calculate appropriate premiums for a car insurance, there are two different fac-

tors to be considered: on the one hand the frequency of claims per policyholder and on the

other hand the costs that have arisen by these claims. The data in this application is from

two Belgian insurance companies from 1997. Altogether, the data contains information of

about 160000 policyholders of whom about 18000 had at least one claim during this year.

In the next sections we analyse both claim frequency and claim size using different kinds

of models. Available covariates with a possible influence both on the costs and on the

frequencies are:

ageph Age of the policyholder

agec Age of the car

bm Bonus–malus score

hp Horse power of the car (in kilowatts)

dist District in Belgium in which the car is licensed

fuel Fuel oils (1 = gasoline, -1 = diesel)

fleet The vehicle belongs to a fleet (= 1) or not (= -1)

s Gender of the policyholder (1 = male, -1 = female)

use Use of the vehicle (1 = professional, -1 = private)

cov Coverage: additional subscriptions to ordinary TPL
(1 = none, 2 = limited material damage or theft, 3 = comprehensive coverage)

The three–categorical variable cov is represented in the model (if used) by two effect vari-

ables with the first category as reference. For the analysis we excluded cases where the
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car’s age lay above 20.

The data was already analysed by Denuit & Lang (2004) using geoadditive models and

MCMC inference techniques. They had to perform model choice and variable selection

in a time–consuming procedure by comparing a small number of competing models via

the Deviance information criterion (compare Spiegelhalter, Best, Carlin & Van der Linde

(2002)). Hence, they could not compare such a large number of models as our automatic

selection algorithms. Nevertheless, we can use their results to judge the plausibility of our

results.

8.1.1 Claim size

In this section, we want to analyse the costs of claims (for insured events) and find the

important regressors which influence them. For this purpose, we use the data from the

n = 18139 policyholders who had at least one claim. Here, the response variable logs is the

logarithmic average cost per claim per policyholder leading to a log–normal model. The

logarithmic costs are used because the costs of a claim can take only positive values and are

right–skewed. The number of claims per policyholder (nclaims) are used as weight variable.

A descriptive analysis shown in figure 8.1 suggests different effects of the policyholder’s
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Figure 8.1: Average logarithmic claim sizes each calculated over three successive years of
age separately for men and women.

age for men and women. In order to investigate if there actually is a difference, we use in

addition to the main effect f1(ageph) a varying coefficient with s as interacting variable.

The effects of other covariates could also show differences between men and women and,

hence, the largest possible predictor takes the form

η = γ0 + γ1 fleet + γ2 use + γ3 fuel + γ4 fuel · s + fc(cov) + gc(cov, s) +

f1(ageph) + g1(ageph) · s + f2(agec) + g2(agec) · s + f3(hp) + g3(hp) · s +

f4(bm) + g4(bm) · s + fspat(dist) + gspat(dist) · s + γs s. (8.1)
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This predictor provides the possibility of estimating separate effects for men and women

for all covariates apart from fleet and use. By removing the respective interaction term

from the predictor it is also possible to estimate a non–varying effect. For the categorical

variables fleet and use the reference category is observed for most observations so that there

is not enough information for the estimation of two separate effects. Variable s is effect–

coded so that female marginal effects are obtained as f
(fem)
j = fj − gj − γs whereas male

marginal effects are f
(male)
j = fj + gj + γs. The categorical variables are all effect–coded

with the exception of the interaction between cov and s. Here, we use dummy–coding

leading to the function

gc(cov, s) =





0 , if s = –1 or cov = 1
γcs1 , if s = 1 and cov = 2
γcs2 , if s = 1 and cov = 3.

Multicategorical variables are either completely removed from the predictor or represented

by the complete set of dummy or effect variables. The effects of the continuous covariates

(fj and gj, j = 1, . . . , 4) can each be represented either by P–splines with different degrees

of freedom, by a straight line or they can be removed from the model. For the two spatial

functions (fspat and gspat) there are only the possibilities of using a Markov random field

with different degrees of freedom or removing the function from the model. All different

possibilities for the individual model terms are listed in table 8.1. Model selection is

performed using the adaptive search in combination with the improved AIC.

The selected predictor is

η(cost) = γ0 + γ1 fleet + fc(cov) + f1(ageph) + g1(ageph) · s + f2(agec) +

g3(hp) · s + f4(bm) + fspat(dist) + γs s (8.2)

where only the effects of the policyholder’s age and of horsepower show a difference between

men and women. The details of the final model, i.e. the chosen degrees of freedom are listed

in table 8.1. The interpretation of this selected model is given below.

The progression of the selection on the basis of AICimp values and modelling alternatives

of each term is shown in table 8.2. The greatest improvement was yielded during the first

iteration. From the third iteration onward, there is only one minor change in the model.

The last row shows the AICimp value for the final model after convergence of the backfitting

algorithm. The trend of AICimp is additionally shown in figure 8.2. The selection process

took only about two minutes to get the final model.

In addition to the selection of a single best model, we perform a further analysis in order

to obtain unconditional confidence intervals and frequency distributions of the modelling

alternatives for each term. This analysis is performed using the hybrid algorithm of MCMC

techniques and bootstrap sampling described in chapter 5. Here, we use 99 bootstrap
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term no possible term types range for df chosen possibility
fuel 1 linear effect {0, 1} df = 0
fuel · s 2 linear effect {0, 1} df = 0
use 3 linear effect {0, 1} df = 0
fleet 4 linear effect {0, 1} df = 1
s 5 linear effect {0, 1} df = 1
fc(cov) 6 linear effects {0, 2} df = 2
gc(cov, s) 7 linear effects {0, 2} df = 0
f1(ageph) 8 P–spline, straight line {0, 1, . . . , 21} df = 6
g1(ageph) 12 P–spline, straight line {0, 1, . . . , 21} df = 2
f2(agec) 9 P–spline, straight line {0, 1, . . . , 21} df = 7
g2(agec) 13 P–spline, straight line {0, 1, . . . , 21} df = 0
f3(hp) 10 P–spline, straight line {0, 1, . . . , 21} df = 0
g3(hp) 14 P–spline, straight line {0, 1, . . . , 21} df = 1
f4(bm) 11 P–spline, straight line {0, 1, . . . , 21} df = 5
g4(bm) 15 P–spline, straight line {0, 1, . . . , 21} df = 0
fspat(dist) 16 Markov random field {0, 5, . . . , 200} df = 35
gspat(dist) 17 Markov random field {0, 5, . . . , 200} df = 0

Table 8.1: Summary of possible term types and degrees of freedom. The last column shows
the degrees of freedom chosen for the final model. Column no yields numbers for figure 8.2.
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Figure 8.2: Changes in AICimp during the selection. The grey dots and numbers mark
variables whose modelling is changed. The variables / terms belonging to the numbers are
given in table 8.1.

samples so that, together with the original data, we have 100 (possibly) different selected

models. For each of these selected models we draw 1000 random samples using the Gibbs

sampler. We use every tenth MCMC sample for the calculation of confidence bands so

that, altogether, each confidence band is based on 10000 samples.

For the final model, the effects of continuous covariates (black lines) together with 95%
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and 80% confidence bands are shown in figure 8.3 and the spatial effect together with 95%

and 80% significance maps in figure 8.4. The sampling distributions of degrees of freedom

obtained from bootstrapping can be found in figures 8.6 and 8.5. They can be used to

perform a sensitivity analysis regarding the selected model.

The selected predictor (8.2) shows that most of the interactions with sex are not selected.

For the horsepower of the car a linear interaction effect is in the AICimp best model but not

the main effect. Hence we observe a sex specific linear effect of horsepower with opposite

sign as shown in figure 8.3. However, the effect is uncertain as we will see below. Among

the other potential interactions only the effect of ageph varies with s . The selected model

(8.2) is similar to the model used in Denuit & Lang (2004). However, the interactions with

s are not included in their model because a systematic investigation of interaction effects

was not possible at that time.

The old drivers report more expensive claims than younger ones. Moreover, there is a clear

interaction with the gender of the policyholder. The claim sizes of female policyholders are

mostly higher than for males at the same age. The sampling distribution of the degrees

of freedom of the main effect shows a mode around 5–6, whereas for the interaction effect

a mode at df = 1 (linear effect) is obtained. The effect of the bonus malus score has

an inverse U–form, i.e. the average claim sizes increase until a score of about 16 and

decrease thereafter. The decrease for policyholders with very high bonus malus score is

probably caused by more cautious driving due to the negative experience in the past. Note

however that only a few observations with bm > 16 are available and as a consequence

large confidence intervals are obtained. Moreover, the sampling distribution of the degrees

of freedom is bimodal with a local maxima at df = 1 suggesting that a linear effect

might be reasonable as well. Overall we conclude that the effect for bm > 16 is relatively

uncertain. Even more uncertain is the effect of horsepower showing increasing average

claim sizes for female drivers and decreasing claim sizes for male drivers. The effect is small

compared to other covariates and the confidence intervals are comparably large including

the zero everywhere. The sampling distribution of the degrees of freedom shows almost

equal probabilities of about 40% for zero or one degrees of freedom suggesting the exclusion

of the effect as a reasonable alternative. Altogether, the selected effect of hp is likely to

be an artefact. The spatial effect shows that highly urban areas (Brussels and Antwerp)

are less dangerous as far as severities are concerned, whereas highly rural zones, like the

extreme South of Belgium are much more dangerous in that respect. The spatial effect

shows clearly no differences between the sexes and the significance maps of the varying

effect (not shown) are zero everywhere. For the categorical covariates, the decision if the

variables are important or not is very stable. For the effects of cov there was even always the

same alternative selected: The average effect of coverage is absolutely important whereas

there is clearly no interaction regarding gender.
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Figure 8.3: Effects including confidence bands of the continuous covariates.
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Figure 8.4: Average spatial effect and corresponding significance map. The significance map
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significance map for the varying spatial effect shows no variation and is therefore omitted.
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Figure 8.5: Sampling distributions of the different modelling alternatives obtained by boot-
strap replications.
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8.1.2 Claim frequency

Here, the claim frequency nclaims, i.e. the number of claims per policyholder, is analysed.

For that purpose, we use a loglinear Poisson model with a structured additive predictor.

Again, the largest possible predictor is predictor (8.1) where the covariates’ effects can

differ between men and women. For possible term types and possible degrees of freedom

compare table 8.1. Some policyholders were insured for only a part of the year so that the

number of days during which the policy was valid (duration) has also to be considered.

This leads to the definition of a risk variable by

risk = 0.5 · ln(duration/365).

Variable risk is added to the predictor as an offset parameter, i.e. no regression parameter

is specified for risk and it is not included in the selection process.

The selection procedure uses AIC which can be readily used as there are considerably more

observations than maximum possible degrees of freedom. The selected predictor is

η(freq) = risk + γ0 + γ1 fleet + γ2 use + γ3 fuel + fc(cov) + gc(cov) + f1(ageph) +

g1(ageph) · s + f2(agec) + g2(agec) · s + f3(hp) + f4(bm) + g4(bm) · s +

fspat(dist) + gspat(dist) · s + γs s

The interpretation of the covariates’ effects is given below.

The details of the final model, i.e. the chosen degrees of freedom are listed in table 8.4.

The progression of the selection on the basis of AIC values and modelling alternatives of

each term is shown in table 8.3. The greatest improvement was yielded during the first

iteration. From the second iteration onward, there are only minor changes in the model,

i.e. the degrees of freedom of some nonlinear functions change slightly. The last row shows

the AIC value for the final model after convergence of the local scoring procedure. The

trend of AIC is additionally shown in figure 8.7. The selection process took only about 15

minutes to get the final model.

In addition to the selection of a single best model, we again use the hybrid algorithm

of MCMC techniques and bootstrap sampling described in chapter 5 in order to obtain

unconditional confidence intervals and frequency distributions of the modelling alternatives

for each term. Again, we use 99 bootstrap samples so that, together with the original data,

we have 100 (possibly) different selected models. For each of these selected models we draw

300 random samples using a Metropolis–Hastings algorithm with IWLS proposal. We use

every 30–th MCMC sample for the calculation of confidence bands so that, altogether, each

confidence band is based on 1000 samples.

For the final model, the effects of continuous covariates (black lines) together with 95%
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term chosen possibility
s df = 1
fleet df = 1
use df = 1
fuel df = 1
fuel · s df = 0
fc(cov) df = 2
gc(cov, s) df = 2
f1(ageph) df = 6
g1(ageph) df = 5
f2(agec) df = 10
g2(agec) df = 1
f3(hp) df = 7
g3(hp) df = 0
f4(bm) df = 14
g4(bm) df = 1
fspat(dist) df = 125
gspat(dist) df = 10

Table 8.4: Degrees of freedom chosen for the model of claim frequencies. For possible term
types and possible degrees of freedom compare table 8.1.
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Figure 8.7: Changes in AIC during the selection. The grey dots and numbers mark variables
whose modelling is changed. The variables / terms belonging to the numbers are given in
table 8.1.

and 80% confidence bands are shown in figure 8.8 and the average spatial effect together

with 95% and 80% significance maps in figure 8.9. The sampling distributions of degrees

of freedom obtained from bootstrapping can be found in figures 8.10 and 8.12. They can

be used to perform a sensitivity analysis regarding the selected model.

Again, the selected model is similar to the model used by Denuit & Lang (2004). In
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Figure 8.8: Effects including confidence bands of the continuous covariates.

contrast to the model for claim sizes, there are more effects with an interaction regarding

the gender of the policyholder. The policyholder’s age shows clearly different effects for

men and women that were also discovered by Denuit & Lang (2004). Generally, young and
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-0.4 0.60

average spatial effect significance map: average spatial effect

Figure 8.9: Average spatial effect and corresponding significance map. The significance map
indicates significant positive (white or light grey) and significant negative regions (black or
dark grey) at both 80% and 95% levels (white/black) or at 80% level (otherwise). The
significance map for the varying spatial effect shows no variation and is therefore omitted.

old drivers produce more claims what is more clearly pronounced with men. Young and

old women report less accidents than men of the same age whereas there is no difference

between women and men for the age of 40 to 70. Note however, that both average and

varying effect have broad confidence intervals for an age above 80 due to few observations in

that range. The peak at an age of about 45 in the effects of both sexes could be caused by

children driving their parent’s car. This peak is especially pronounced in the female effect

what can be attributed to the fact that young car owners often ask their mother to purchase

the policy (compare Denuit & Lang (2004)). The varying effect for the policyholder’s age

is quite strong with the mode of the sampling distribution at df = 3.

New cars produce more accidents than old cars. The effect reaches a local minimum at

the age of three. This can be attributed to the Belgian characteristic that up to three

year old cars don’t have to undergo the annual mechanical check–in. The male and female

effects are nearly identical up to the age of three but differ afterwards: Women report

less accidents than men. The number of accidents decreases for very old cars. Here, the

varying effect is also identified as important with a mode at df = 1 corresponding to a

linear varying effect.

The number of reported accidents increases with horsepower. Here, there is clearly no

difference between the sexes. The effect of the bonus–malus score has also a positive trend

but with differences between men and women: the effect is identical for values up to six,

whereas for higher values women report less claims than men. The varying effect has its
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Figure 8.10: Sampling distributions of the different modelling alternatives obtained by boot-
strap replications.
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Figure 8.11: Effect of coverage.

mode at df = 1 corresponding to a linear varying effect and is identified as important.

The average effect is very rough with a mode at df = 11 and a selected value of df = 14.

However, when estimating a model without the offset parameter risk , the selected value

for the effect of bm is df = 6 leading to a smooth, increasing function. (The modelling of

all other terms is not influenced by removing the offset parameter.)

The spatial effect is also selected as varying over s, but the varying effect with a selected
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value of df = 10 is only small. Moreover, the mode of the sampling distribution is at df = 0

with a frequency of 60%. This indicates that the varying spatial effect is very uncertain

and should rather be excluded from the model. The same is indicated by the significance

maps (80% and 95%) that are zero everywhere (not shown). The average spatial effect

shows that in urban areas more claims are reported and less claims in highly rural areas,

especially the extreme south of Belgium. Hence, for claim frequencies the opposite effect

can be observed compared to the claim size.

The effects of the categorical covariates are quite stable since the frequency distribution

clearly support the selected alternatives. The only exception is use that is selected with a

frequency of only 60% indicating that the alternative of removing this variable from the

model should be considered as well. The effect of coverage is here varying with s. As

fc(cov) uses effect coding and gc(cov) dummy coding the marginal effects are obtained as

f (fem)
c (cov) =




−γc1 − γc2 − γs , if cov = 1
γc1 − γs , if cov = 2
γc2 − γs , if cov = 3

f (male)
c (cov) =




−γc1 − γc2 + γs , if cov = 1
γc1 + γcs1 + γs , if cov = 2
γc2 + γcs2 + γs , if cov = 3

For both sexes, the number of claims is largest for the simple alternative cov = 1. Women

with comprehensive coverage (cov = 3) report more claims than with cov = 2 whereas the

male effect shows no difference between these alternatives (compare figure 8.11).
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Figure 8.12: Sampling distributions of the different modelling alternatives obtained by boot-
strap replications.
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8.2 Malnutrition of children in India

Very high prevalence of childhood undernutrition as well as very large gender bias are two

of the most severe development problems in India. In this section, we will consider these

two problems. Our analysis is based on micro data from the second National Family Health

Survey (NFHS-2) from India which was conducted in the years 1998 and 1999. Among

others, the survey collected detailed health, nutrition and anthropometric information on

children born in the three years preceding the survey. The data includes approximately

13000 observations of male and 12000 observations of female children.

Undernutrition among children is usually measured by determining the anthropometric

status of the child relative to a “reference population” of children known to have grown

well. Researchers distinguish between three types of undernutrition: wasting or insufficient

weight for height indicating acute undernutrition; stunting or insufficient height for age

indicating chronic undernutrition; and underweight or insufficient weight for age which

could be a result of either. In this section we focus on stunting. For a child i stunting is

typically determined using a Z-score which is defined as

Zi =
AI i −MAI

σ
, (8.3)

where AI refers to the height of the child, MAI and σ refer to the median height and the

standard deviation of children in the reference population at the same age. The analysis

in this section is strongly oriented at the analysis performed by Belitz, Hübner, Klasen &

Lang (2007).

Undernutrition in India shows a clear regional pattern which is different for boys and

girls. This is visible in the maps (a) and (b) of figure 8.19 which show smooth spatial

functions without controlling for other covariates. In North–Central India (particularly

Uttar Pradesh, Madhya Pradesh, Rajasthan, and Orissa), both sexes suffer from significant

undernutrition, while in the very North, the East, and the South West, they are doing

significantly better. This spatial pattern seems to be more pronounced for girls than boys.

As a result, the significance map of the sex differences in undernutrition (figure 8.20 (b))

shows that girls are significantly worse off than boys in Uttar Pradesh, Madhya Pradesh

and West Bengal, while they are significantly better off in the relatively small Northeastern

states (e.g. Assam, Nagaland, Tripura).

In the analysis we want to examine if these regional differences can be at least partially

explained by other factors. Therefore, we want

• to select and analyse the most important socio–demographic, environmental and

health specific determinants of undernutrition,

• to determine the functional form of the effects and
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• to investigate possible sex–specific differences of undernutrition.

Moreover, we use the unconditional approach (with 99 bootstrap data sets, 20000 overall

MCMC samples and a thinning parameter of 20) for the construction of credible bands

and to perform a sensitivity analysis for the selected model. Afterwards, the residuals of

the selected model are used for an examination of the remaining spatial differences.

The covariates used in this study are listed in table 8.5. The variables ecstatH and wom-

statM need some further explanation: they are linear indices and specified as linear combi-

nations of certain centered and standardised covariates where the weights were calculated

by a principal components analysis. The household’s economic status ecstatH captures the

household’s economic resource base and includes factors which indicate the household’s

wealth like e.g. owning a refrigerator, owning a bicycle, having access to piped drinking

water, having electricity, owning land, etc. The mother’s women’s status womstatM in-

dicates the mother’s power relative to the power of men. Among other disadvantages,

women with a low status have weaker control over resources in their household and a more

restricted access to health services what is supposed to negatively influence the quality

of care they can provide to their children. The index womstatM includes variables like

e.g. the difference in the years of education between the mother and her partner, their age

difference, if the partner’s permission is needed for decisions regarding medical care, the

frequency of being beaten during the last year, etc. For the exact definition of these two

indices compare Belitz, Hübner, Klasen & Lang (2007) or Hübner (2003).

The two variables ageC and bfmC are strongly interrelated since a child’s age automatically

constitutes the highest possible value for its duration of breastfeeding. Hence, we need to

specify an interaction term for the joint effect of these variables. Here we compare the re-

sults of two models that merely differ in the representation of the interaction effect. In the

first model (M1) we use a two–dimensional surface, i.e. a two–dimensional P–spline with

second order random walk penalty and 172 basis functions, both for the interaction effect

and the respective varying coefficient term. In contrast, the ANOVA type decomposition

(also with 172 basis functions) is used for both interaction and varying interaction term

in the second model (M2). The ANOVA type decomposition provides the possibility to

reduce the interaction term to two main effects.

All available covariates and terms and their modelling alternatives are listed in table 8.6

together with the selected alternatives for both models. Thereby, functions fj refer to

average effects whereas functions gj refer to varying coefficients with gender as interacting

variable. Table 8.6 displays that the selected models are nearly identical with regard to

selected variables and terms. However, the AICimp values of the final models differ with

AICimp = 16835.54 for model (M1) and AICimp = 16812.017 for model (M2). This dif-

ference in the final AICimp values can only be due to the different interaction terms (for
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variable description
ageC Child’s age in months
bfmC Months child was breastfed
agebirM Mother’s age at child’s birth in years
bmiM Mother’s body mass index
educM Mother’s educational attainment (in years)
heightM Mother’s height in cm
womstatM Index for mother’s women status
ecstatH Index for household’s economic status
sexC Gender of the child (male = -1; female = 1)
areaH Place of residence? (urban = -1; rural = 1)
birthinC Preceding birth interval > 24 months? (no = -1; yes = 1)
born1stC First born child? (no = -1; yes = 1)
bplaceC Child was born in hospital? (no = -1; yes = 1)
firstmC Child got first milk? (no = -1; yes = 1)
hhsizeH Size of household (small =̂ ≤ 5; medium =̂6–10; large =̂ > 10 members)
ironfolM Mother got iron folic tablets during pregnancy? (no = -1; yes = 1)
plannedC Was the child planned? (no = -1; yes = 1)
precareM Mother received medical care during pregnancy? (no = -1; yes = 1)
religM Mother’s religion (Hinduism, Islam, Christianity, Sikh, others)
tetanusM Mother got tetanus injection during pregnancy? (no = -1; yes = 1)
toiletH Household has toilet facility of any kind? (no = -1; yes = 1)
twinC Child was born under multiple birth? (no = -1; yes = 1)
vacC Child is vaccinated according to its age? (no = -1; yes = 1)
district District in India the mother and her child live in

Table 8.5: List of available covariates.
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Figure 8.13: Changes in AICimp during the selection of model (M2). The grey dots and
letters mark variables whose modelling is changed. The variables / terms belonging to the
letters are given in table 8.6.
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the interaction between ageC and bfmC): model (M1) using a simple surface estimator

performed worse than model (M2) using the ANOVA type decomposition.

Figure 8.13 shows the trend of AICimp during the selection of (M2). The greatest improve-

ment was yielded during the first iteration, particularly for changing the modelling of the

age effect. From the second iteration onward, there occurred only minor adjustments.

The comparison of the two different interaction terms for ageC and bfmC yields interesting

results: The overall degrees of freedom of the average interaction effect are for (M2) with

df = 15 + 8 + 24.5 = 47.5 only slightly smaller than for (M1) with df = 52.5 (compare

table 8.6). The same applies to the varying interaction term with df = 7.5 for (M1) and

df = 5 for (M2). However, in model (M2), the VC term is only a main effect of child’s age

whereas variable bfmC does not contribute to the sex–varying effect. The respective boot-

strap sampling distributions (not shown) confirm this result since the sex–varying effects

of bfmC or of the interaction component were practically never selected.

Effects of the joint effect of ageC and bfmC are shown in figure 8.14 for both models (M1)

and (M2). Apart from the fact that the effects of model (M1) are slightly smoother than

those of (M2), both kinds of effects show the same trend. The nutritional status of all

children rapidly deteriorates between birth and an age of 20 months. This indicates that

children are not born malnourished but only develop this as a result of disease and inad-

equate nourishment. The improvement around 24 months is an artefact of the reference

standard. At the age of 24 months the reference population changes and children older

than 24 months are compared to a worse nourished population than younger children. This

artefact is more strongly pronounced in the ANOVA type decomposition effect.

Children who are breastfed for six or twelve months have a better nutritional status,

whereas long breastfeeding durations (18 or 24 months) carry no benefits and could indi-

cate a poor availability of alternative nourishments.

Since there are hardly any differences between the two models regarding all other effects, we

only show the effects of model (M2). The effects of the categorical covariates are shown in

figure 8.15. Many of the effects display the same tendency for boys and girls. In particular,

being a twin, having a short preceding birth interval, living in a large household, not being

breastfed immediately after birth, and having poor access to prenatal care is all associated

with poorer nutrition. According to the sampling distributions, the decision regarding

inclusion or exclusion was very certain for most covariates. Figure 8.17 (a) shows only

covariates whose selected alternative was chosen in less than 90% of bootstrap samples.

Nevertheless, for most of the covariates shown in figure 8.17 (a) the sampling distribution

is clearly in favour of the selected alternative. Exceptions are the interactions of birthinC

and toiletH with gender. Here, the relative frequencies are about 50% for inclusion and

exclusion. This explains why models (M1) and (M2) differ in these two terms.

Although only a few interaction terms were selected, there turned out to be some notable
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Figure 8.14: Nonlinear effects of the child’s age for different durations of breastfeeding.
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and systematic differences between boys and girls: It appears that the nutritional status of

girls reacts more sensitively to competition for resources within the household. The effect

of being a twin or having a short preceding birth interval are more negative for girls than

for boys. Especially, the cultural environment matters more for girls with stronger positive

effects for Christian and other religions and stronger negative effects for Islam and Sikh.

Among the effects for continuous covariates (apart from ageC and bfmC) only the effect of

mother’s women’s status differs with sex (compare figure 8.16). The effects of this variable

are surprising and should be treated with caution since womstatM is highly correlated with

other covariates used in the regression. Moreover, the sampling distributions in figure 8.17

(c) and (d) indicate that the sex–varying term is not at all relevant (mode at df = 0) and

that the relevance of the average effect is at least questionable with two modes at df = 0

and df = 5. In fact, if one just considers the univariate impact of women’s status on the

Z-score, the effect is strongly positive for both girls and boys (with a stronger effect for

girls) (compare figure 8.18). Thus, women’s relative status has a positive impact, but this

is mediated via the other effects. The effect shown in figure 8.16 is only positive for high

relative women’s status for girls, and negative for boys which seems plausible if one can

assume that high status mother’s exhibit, under the same other conditions, a preference

for favouring their daughters.

Additionally, figure 8.18 compares the conditional and the unconditional confidence bands

for the varying effect of womstatM. The confidence bands show considerable differences

where only the unconditional bands indicate clearly the areas of greater uncertainty.

All other effects show no relevant interaction with gender and the respective bootstrap

sampling distributions confirm this fact. But there are strong (common) increasing effects

of mother’s age at birth, her BMI, as well as her educational attainment on the nutrition

of her child. A high household’s economic status has also a positive effect. The sampling

distributions in 8.17 (b) and (e) suggest to use a linear effect for the currently nonlinear

functions of agebirM and ecstatH.

Finally, based on model (M2) we examine the spatial structure of the residuals after con-

trolling for covariates to see whether we have been able to explain the spatial pattern of

undernutrition. The kernel density estimates in figure 8.21 show that we have been able to

significantly reduce the spatial information which is left in the residuals. Compared to the

distribution of the spatial effects before using covariates (dotted line), the solid line shows

a much tighter distribution of the residual spatial effects. Nevertheless, a distinctly spa-

tial pattern of undernutrition remains. When comparing the maps in figure 8.19, one can

recognise some notable shifts in the residual spatial patterns compared to the other maps.

In particular, the areas of unexplained poor nutritional status have now shifted from the

Central-North to the North-West. Conversely, new areas of ‘better than expected’ female

nutrition appear in the East (e.g. in West Bengal and parts of Orissa), while undernutri-
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Figure 8.15: Effects of categorical covariates for model (M2).

tion in some areas of the extreme east (e.g. Assam, Manipur, Mizoram and Triupura) is

no longer better than expected. Regarding the spatial pattern of the sex differences in

undernutrition, our model seems to perform very well. As shown in figure 8.20 (d), there
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Figure 8.16: Effects of continuous covariates (apart from ageC and bfmC).

are hardly any significant sex differences remaining.

There are several possible explanations for the remaining spatial pattern. One possibility

is that our covariates are not sufficiently capturing regional differences due to factors like

e.g. different female roles, different public action in the fields of health and nutrition or

different religions, although they were designed for that purpose. Or there could exist

cultural customs affecting the treatment of children which are not closely correlated with

religious affiliation or our measures of female autonomy and might therefore account for

the remaining regional pattern. Another possible explanation is that certain aspects of

public commitment and public activism are not sufficiently captured by our variables. For

instance, the areas of significantly poorer than expected performance are concentrated in

areas which recently witnessed the rise of Hindu nationalism, the ascendancy of the Hindu
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Figure 8.17: Bootstrap sampling distributions for the different modelling alternatives of
selected terms.
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Figure 8.18: Effects of mother’s women’s status without controlling for other covariates.
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Figure 8.19: Spatial effects for boys and girls without and with controlling for other effects.

nationalist BJP to political prominence, and related incidences of communal violence be-

tween Muslims and Hindus. Finally, there could be climatic factors that help to explain

these different patterns of undernutrition. We do not have the data at our disposal to inves-

tigate these hypotheses but we hope they will stimulate a further analysis of the remaining

spatial patterns of undernutrition.
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no term possible term types range for df selected (M1) selected (M2)

M sexC linear effect {0, 1} df = 1 df = 1
A twinC linear effect {0, 1} df = 1 df = 1
a twinC · sexC linear effect {0, 1} df = 1 df = 1
B born1stC linear effect {0, 1} df = 0 df = 0
b born1stC · sexC linear effect {0, 1} df = 0 df = 0
C birthinC linear effect {0, 1} df = 1 df = 1
c birthinC · sexC linear effect {0, 1} df = 0 df = 1
D vacC linear effect {0, 1} df = 1 df = 1
d vacC · sexC linear effect {0, 1} df = 0 df = 0
E firstmC linear effect {0, 1} df = 1 df = 1
e firstmC · sexC linear effect {0, 1} df = 0 df = 0
F toiletH linear effect {0, 1} df = 1 df = 1
f toiletH · sexC linear effect {0, 1} df = 0 df = 1
G bplaceC linear effect {0, 1} df = 1 df = 1
g bplaceC · sexC linear effect {0, 1} df = 0 df = 0
H precareM linear effect {0, 1} df = 1 df = 1
h precareM · sexC linear effect {0, 1} df = 0 df = 0
I ironfolM linear effect {0, 1} df = 1 df = 1
i ironfolM · sexC linear effect {0, 1} df = 0 df = 0
J tetanusM linear effect {0, 1} df = 0 df = 0
j tetanusM · sexC linear effect {0, 1} df = 1 df = 1
K plannedC linear effect {0, 1} df = 0 df = 0
k plannedC · sexC linear effect {0, 1} df = 0 df = 0
L areaH linear effect {0, 1} df = 0 df = 0
l areaH · sexC linear effect {0, 1} df = 0 df = 0
N religM linear effects {0, 4} df = 4 df = 4
n religM · sexC linear effects {0, 4} df = 4 df = 4
O hhsizeH linear effects {0, 2} df = 2 df = 2
o hhsizeH · sexC linear effects {0, 2} df = 0 df = 0
P f1(agebirM) P–spline, straight line {0, 1, . . . , 21} df = 2 df = 2
p g1(agebirM) P–spline, straight line {0, 1, . . . , 21} df = 0 df = 0
Q f2(bmiM) P–spline, straight line {0, 1, . . . , 21} df = 7 df = 7
q g2(bmiM) P–spline, straight line {0, 1, . . . , 21} df = 0 df = 0
R f3(educM) P–spline, straight line {0, 1, . . . , 21} df = 1 df = 1
r g3(educM) P–spline, straight line {0, 1, . . . , 21} df = 0 df = 0
S f4(heightM) P–spline, straight line {0, 1, . . . , 21} df = 1 df = 1
s g4(heightM) P–spline, straight line {0, 1, . . . , 21} df = 0 df = 0
T f5(womstatM) P–spline, straight line {0, 1, . . . , 21} df = 6 df = 6
t g5(womstatM) P–spline, straight line {0, 1, . . . , 21} df = 2 df = 2
U f6(ecstatH) P–spline, straight line {0, 1, . . . , 21} df = 3 df = 3
u g6(ecstatH) P–spline, straight line {0, 1, . . . , 21} df = 0 df = 0
V f7(ageC) P–spline, straight line {0, 1, . . . , 16} — df = 15
v g7(ageC) P–spline, straight line {0, 1, . . . , 16} — df = 5
W f8(bfmC) P–spline, straight line {0, 1, . . . , 16} — df = 8
w g8(bfmC) P–spline, straight line {0, 1, . . . , 16} — df = 0
X f9(ageC, bfmC) 2D P–spline, linear eff. {0, 1, 3, 5.5 . . . , 58} — df = 24.5 (=̂30.5)
x g9(ageC, bfmC) 2D P–spline, linear eff. {0, 1, 3, 5.5 . . . , 58} — df = 0
- f7(ageC, bfmC) 2D P–spline, linear eff. {0, 1, 5, 7.5, . . . , 90} df = 52.5 —
- g7(ageC, bfmC) 2D P–spline, linear eff. {0, 1, 5, 7.5, . . . , 90} df = 7.5 —

Table 8.6: Summary of possible term types and degrees of freedom. The last two columns
show the degrees of freedom chosen for the final models (M1) and (M2). Differences between
(M1) and (M2) are underlined. Column no yields the letters for figure 8.13. All functions fj

refer to average effects whereas functions gj indicate varying coefficients regarding gender.
For a better readability, the interaction effects for ageC and bfmC are optically separated.
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(a) significance map: spatial effect (b) significance map: differences boys - girls

(c) significance map: spatial effect for residuals (d) significance map: differences for residuals

Figure 8.20: Significance maps indicating significant positive (white or light grey) and
significant negative regions (black or dark grey) at both 80% and 95% levels (white/black)
or at 80% level (otherwise).
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Figure 8.21: Kernel density estimates for the spatial effects.



Chapter 9

Conclusion

In this thesis, we dealt with structured additive regression models which are based on a

very flexible predictor. This predictor allows an appropriate modelling for different types of

information, e.g. by using smooth functions for spatial information or nonlinear functions

for the effects of continuous covariates. We addressed certain aspects of STAR models in

particular detail:

• Among the different types of effects, we especially examined complex interaction

terms between two (or in some cases even three) covariates. One type of interaction

effects are varying coefficients. We used them in the applications from chapter 8 to

determine the covariates which require a modelling by sex–varying effects. Regarding

varying coefficients, we discovered that the performance of backfitting algorithm and

selection algorithms improves if the interacting variable ‘gender’ is effect coded rather

than dummy coded. For the same reason, a continuous interacting variable should

get centered.

• Moreover, we want to point out the ANOVA type decomposition for the modelling

of a complex interaction effect of two continuous covariates. Here, we introduced

the possibility of first estimating a two–dimensional surface and of obtaining main

effects and interaction component only afterwards. This approach prevents identifi-

ability problems that would occur between main effects and interaction term if all

components were estimated separately. Nevertheless, our approach can treat each

component differently by using a combination of three penalty terms. Moreover, the

ANOVA type decomposition covers some interesting special cases as shown in section

A.4 of the appendix. One simulation study of chapter 7 was especially constructed

for the examination of the ANOVA type decomposition. Here, the ANOVA type

decomposition yielded comparable results to an approach with separately specified
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main effects and interaction term. And it was clearly superior to a surface estimator

based on the simple penalty term which is usually used in this context.

• A central aspect of the thesis is the question of model selection in STAR models.

Hence, in chapters 3 and 4 we introduced selection algorithms that can automati-

cally select a good model among a large set of possible models. These algorithms

can not only perform a variable selection and decide which covariates and terms

are relevant but can also determine which degree of smoothness is appropriate for

nonlinear functions and can choose between a linear effect and a nonlinear function

for the effect of continuous covariates. An important aspect was the computational

efficiency of the selection algorithms because the selection should still be feasible for

data sets with many potential covariates and many observations. This aspect was

particularly realised with the adaptive search algorithm which is by far the fastest

approach. The fact that very complex models (even with many possible interaction

terms) can be automatically selected within a few minutes makes the adaptive search

a tool of high practical relevance.

• Our approaches base model selection on goodness of fit criteria and provide several of

the most widely used, like e.g. AIC, BIC or GCV. Most of these criteria include the

degrees of freedom of the model as a measure of model complexity. We approximate

the degrees of freedom of a model by the degrees of freedom of the individual functions

as described in Hastie & Tibshirani (1990). This approach proved to have limitations

when functions are highly correlated. In a structured additive predictor, this problem

always occurs between an i.i.d. Gaussian random effect or a seasonal component and

the intercept term and between a structured and an unstructured spatial effect. For

these special cases, we efficiently compute the degrees of freedom of both correlated

functions together.

• All selection algorithms of chapter 3 are based on the backfitting algorithm, i.e. they

use the backfitting algorithm to obtain estimates for the selected model. That means

that credible intervals for regression parameters and nonlinear functions of the se-

lected model are not easily available. Since credible bands for nonlinear functions

are an important tool for a further analysis, chapter 5 described a hybrid MCMC ap-

proach for the computation of conditional bands (conditional on the selected model)

and an approach based on a combination of bootstrap methods and MCMC tech-

niques for unconditional bands (originally introduced by Wood (2006c)). In the sim-

ulation study in chapter 7, the unconditional bands frequently showed undercoverage

whereas the unconditional bands solved this problem. Often there was, however, only

a slight difference in the credible bands of both approaches which is practically not
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visible in plots. Hence, if only credible bands of nonlinear functions are required the

faster conditional approach would be preferable. The advantage of the unconditional

approach is that it yields a sampling distribution for the selected model and, thus,

allows a sensitivity analysis regarding model selection. For each term, the marginal

frequency distribution reveals the certainty for the selected modelling alternative.

Hence, if the stability of the selected model (or merely the certainty of the represen-

tation of one covariate) is of interest, the unconditional approach is an appropriate

method.

• In several extensive simulation studies we compared our selection algorithms to com-

peting approaches. Here, we discovered that, regarding the quality of estimated

functions and estimated predictor, our results are equally good compared to the

competing approaches. Moreover, our adaptive search algorithm proved to be by

far the most efficient approach: In complex situations where the R software pack-

age mgcv needed more than a week for the estimation of all replications the adaptive

search needed merely one hour. Additionally, our selection algorithms could estimate

complex models where mgcv failed due to convergence problems.

• We also analysed real applications with our methodology and presented the results

in chapter 8. In both applications, our selection algorithm had to cope with a large

number of observations and available terms. Moreover, in each case we placed a

focus on sex–varying effects and thus further increased the number of terms. The

first application was based on data from a Belgian insurance company regarding

damage events in car insurance and consisted of two separate models for the response

variables claim frequency and claim size (given a claim occurred). The data was

already analysed by Denuit & Lang (2004) with a fully Bayesian approach who had

to tediously select appropriate models by hand. We could use their findings to judge

the plausibility of our results. In fact, our automatical selection approach selected

similar models but needed only a few minutes (in spite of the many possible terms

and the large number of observations).

The second application examined childhood undernutrition in India. Here, two of

the covariates (child’s age and duration of breastfeeding) are interrelated so that a

representation by two separate main effects was probably inadequate. Hence, we

had to use an appropriate interaction term. The ANOVA type decomposition was

used and yielded very interesting results: For the average effect of boys and girls an

interaction term was selected, whereas for the varying effect (i.e. for the difference

between boys and girls) only the main effect of the child’s age was relevant.

• In summary, the methodology presented in this thesis is of a high practical relevance
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and can be applied to problems in many different fields. Since we implemented the

methodology in the programming language C++ within the software package BayesX

our methods are available for everyone.

There are several possible future extensions for our selection algorithms:

• The methodology could easily be adapted to the context of survival models with

a structured additive predictor as described in Kneib & Fahrmeir (2007) based on

REML estimation or in Hennerfeind, Brezger & Fahrmeir (2006) based on a fully

Bayesian approach estimated by MCMC techniques.

• Furthermore, with Gaussian response variables, the variance could also be modelled

by a structured additive predictor allowing for heteroscedastic regression models.

• The adaptive selection algorithm works similar as boosting (for boosting compare

Bühlmann & Yu (2003)). It would be interesting to examine common characteristics

and differences between these two approaches more closely.

• Most selection criteria described in chapter 3 are based on the degrees of freedom of

a model. Our algorithms use only an approximation of this number. As was shown

in chapter 3, this approximation is rather accurate for a large number of observa-

tions as was the case in the applications in chapter 8. However, a more thorough

investigation of its accuracy in cases with a small number of observations would be

desirable. Moreover, the approximation seems to overestimate the true number in all

cases. Hence, a further issue would be to investigate if the approximation is always

conservative and, if so, to prove the fact.

• The methodology in chapter 5 for unconditional credible bands additionally offers

the possibility to compute model averaged effects and model averaged expectations of

the response variable. The topic of model averaging in structured additive regression

models also requires further research.



Appendix A

Details about ANOVA type
interaction models

A.1 Decomposition of a tensor product spline into

one–dimensional splines

In this section we want to examine the conditions that permit an exact decomposition of

a two–dimensional tensor product B–spline into two one–dimensional B–splines, i.e.

f(x1, x2) =

p∑

j,k=1

βjkBj(x1)Bk(x2)
!
=

p∑
j=1

ajBj(x1) +

p∑

k=1

bkBk(x2) = f1(x1) + f2(x2).

In order to show these conditions, we have to reformulate the formulae of both one– and

two–dimensional B–splines first.

One–dimensional B–spline basis functions of degree l ≥ 0 possess two important charac-

teristics which hold at every point in the range of the variable:

1. Only l + 1 of the p basis functions B1, . . . , Bp are positive at every sinlge point.

2. The l + 1 positive basis functions sum up to the value one at a single point.

Suppose at value x0 ∈ [xmin; xmax] the basis functions Ba to Ba+l are positive where index

a can take every number between 1 and p− l (dependent on value x0). Then, by using the
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two facts mentioned above, we get

p∑
j=1

ajBj
1.
=

l∑
j=0

aa+jBa+j

2.
=

l−1∑
j=0

aa+jBa+j + aa+l

(
1−

l−1∑
j=0

Ba+j

)

=
l−1∑
j=0

(aa+j − aa+l)Ba+j + aa+l, (A.1)

where we set Bj := Bj(x0) for simplicity.

This is similar for two–dimensional tensor product B–splines. We use the same degree l ≥ 0

for the one–dimensional basis functions of x1 and x2. Then, the characteristics 1. and 2.

for one–dimensional B–splines are still valid so that altogether (l + 1)2 two–dimensional

basis functions are positive at every point in the common range of x1 and x2. Suppose,

the basis functions B
(1)
a to B

(1)
a+l are positive for variable x1 and B

(2)
b to B

(2)
b+l for variable

x2, where the upper index indicates the respective covariate. Each of the indices a and b

can take some value between 1 and p− l (dependent on the value of the covariate). Using

these facts, we get

p∑
j=1

p∑

k=1

βjkB
(1)
j B

(2)
k

1.
=

l∑
j=0

l∑

k=0

βa+j,b+kB
(1)
a+jB

(2)
b+k

2.
=

l−1∑
j=0

l−1∑

k=0

βa+j,b+kB
(1)
a+jB

(2)
b+k +

l−1∑

k=0

βa+l,b+k

(
1−

l−1∑
j=0

B
(1)
a+j

)
B

(2)
b+k +

l−1∑
j=0

βa+j,b+lB
(1)
a+j

(
1−

l−1∑

k=0

B
(2)
b+k

)
+ βa+l,b+l

(
1−

l−1∑
j=0

B
(1)
a+j

)(
1−

l−1∑

k=0

B
(2)
b+k

)

=
l−1∑
j=0

l−1∑

k=0

βa+j,b+kB
(1)
a+jB

(2)
b+k + I + II + III

Formula I can be simplified to

I =
l−1∑

k=0

βa+l,b+k

(
1−

l−1∑
j=0

B
(1)
a+j

)
B

(2)
b+k

=
l−1∑

k=0

βa+l,b+kB
(2)
b+k −

l−1∑

k=0

βa+l,b+k

(
l−1∑
j=0

B
(1)
a+j

)
B

(2)
b+k
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=
l−1∑

k=0

βa+l,b+kB
(2)
b+k −

l−1∑
j=0

l−1∑

k=0

βa+l,b+kB
(1)
a+jB

(2)
b+k.

Similarly, formula II can be rewritten as

II =
l−1∑
j=0

βa+j,b+lB
(1)
a+j

(
1−

l−1∑

k=0

B
(2)
b+k

)

=
l−1∑
j=0

βa+j,b+lB
(1)
a+j −

l−1∑
j=0

βa+j,b+lB
(1)
a+j

(
l−1∑

k=0

B
(2)
b+k

)

=
l−1∑
j=0

βa+j,b+lB
(1)
a+j −

l−1∑
j=0

l−1∑

k=0

βa+j,b+lB
(1)
a+jB

(2)
b+k.

And formula III can be rewritten as

III = βa+l,b+l

(
1−

l−1∑
j=0

B
(1)
a+j

)(
1−

l−1∑

k=0

B
(2)
b+k

)

= βa+l,b+l

l−1∑
j=0

B
(1)
a+j

l−1∑

k=0

B
(2)
b+k − βa+l,b+l

l−1∑
j=0

B
(1)
a+j − βa+l,b+l

l−1∑

k=0

B
(2)
b+k + βa+l,b+l

=
l−1∑
j=0

l−1∑

k=0

βa+l,b+lB
(1)
a+jB

(2)
b+k −

l−1∑
j=0

βa+l,b+lB
(1)
a+j −

l−1∑

k=0

βa+l,b+lB
(2)
b+k + βa+l,b+l

By summarising corresponding terms, a two–dimensional tensor product B–spline can be

written as
p∑

j=1

p∑

k=1

βjkB
(1)
j B

(2)
k

=
l−1∑
j=0

l−1∑

k=0

(βa+j,b+k − βa+l,b+k − βa+j,b+l + βa+l,b+l)B
(1)
a+jB

(2)
b+k +

l−1∑
j=0

(βa+j,b+l − βa+l,b+l)B
(1)
a+j +

l−1∑

k=0

(βa+l,b+k − βa+l,b+l)B
(2)
b+k + βa+l,b+l. (A.2)

Using the alternative respresentations (A.1) and (A.2), we can easily see under which con-

ditions a two–dimensional spline decomposes into two one–dimensional splines, i.e. under

which conditions (A.2) is equal to formula

p∑
j=1

ajB
(1)
j +

p∑

k=1

bkB
(2)
k =

l−1∑
j=0

(aa+j − aa+l)B
(1)
a+j + aa+l +

l−1∑

k=0

(bb+k − bb+l)B
(2)
b+k + bb+l.

The two formulas are equal if the corresponding coefficients are equal, i.e. if
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1. βa+l,b+l = aa+l + bb+l which follows from the constant term.

2. βa+j,b+l−βa+l,b+l = aa+j−aa+l which follows from the coefficients belonging to B
(1)
a+j.

Together with 1. we get βa+j,b+l = aa+j + bb+l for j = 0, . . . , l − 1.

3. βa+l,b+k−βa+l,b+l = bb+k− bb+l which follows from the coefficients belonging to B
(2)
b+k.

Together with 1. we get βa+l,b+k = aa+l + bb+k for k = 0, . . . , l − 1.

4. βa+j,b+k − βa+l,b+k − βa+j,b+l + βa+l,b+l = 0 which follows from the coefficients for

the mixed terms. Together with 1., 2. and 3. we get βa+j,b+k = aa+j + bb+k for

j, k = 0, . . . , l − 1.

As these relationships have to apply to each combination of values for the indices a, b =

1, . . . , p−l, we get the following general condition for a decomposition of a two–dimensional

tensor product in two main effects:

βj,k = aj + bk, (A.3)

for j, k = 1, . . . , p.

Alternatively, condition (A.3) can either be rewritten as

β1,i − β1,i+1 = . . . = βp,i − βp,i+1 = bi − bi+1

or as

βi,1 − βi+1,1 = . . . = βi,p − βi+1,p = ai − ai+1

for i = 1, . . . , p− 1. Both of these alternative formulations can be equivalently written in

form of the following (p− 1)2 conditions

β1,1 − β1,2 − β2,1 + β2,2 = 0,

β2,1 − β2,2 − β3,1 + β3,2 = 0,
...

βp−1,1 − βp−1,2 − βp,1 + βp,2 = 0,

β1,2 − β1,3 − β2,2 + β2,3 = 0,
...

βp−1,p−1 − βp−1,p − βp,p−1 + βp,p = 0.

Using a two–dimensional difference operator ∆ these conditions can be generalised as

differences of differences by

∆(1,0)∆(0,1)βj,k = βj,k − βj−1,k − βj,k−1 + βj−1,k−1 = 0,

for j, k = 2, . . . , p. Summarising these (p − 1)2 conditions in a difference matrix D such

that Dβ = 0 leads to difference matrix (2.34).
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A.2 Comparison of one– and two–dimensional penalty

matrices

In this section we show that matrices Px1 = Pk1⊗Ip and Px2 = Ip⊗Pk2 used in the overall

penalty of the two-dimensional function are p times as strong as the corresponding matrices

Pk1 or Pk2 . For this purpose, we suppose that the surface exactly decomposes into two

main effects, i.e. we suppose that β = (β11, β12, . . . , βpp)
′ = (a1 + b1, a1 + b2, . . . , ap + bp)

′.
Then we have

β′Px2 β

= β′ · (Ip ⊗Pk2) · β
= (a1 + b1, a1 + b2, . . . , ap + bp) · (Ip ⊗Pk2) · (a1 + b1, a1 + b2, . . . , ap + bp)

′

= (a1 + b1, a1 + b2, . . . , ap + bp) · (Ip ⊗Dk2)
′(Ip ⊗Dk2) · (a1 + b1, a1 + b2, . . . , ap + bp)

′

= ||(Ip ⊗Dk2) · (a1 + b1, a1 + b2, . . . , ap + bp)
′||2

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




Dk2 · (a1 + b1, . . . , a1 + bp)
′

...
Dk2 · (ap + b1, . . . , ap + bp)

′




∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣




Dk2 · (b1, . . . , bp)
′

...
Dk2 · (b1, . . . , bp)

′




∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

= p · (b1, . . . , bp) ·Pk2 · (b1, . . . , bp)
′.

This confirms, that the penalty term using the two–dimensional matrix Px2 is p times as

large as the penalty using Pk2 .

For the calculation we use the fact that the line total of Dk2 is zero, so that

Dk2(ai, . . . , ai)
′ = 0

for i = 1, . . . , p. From the analogous calculation for matrix Px1 we get the result

(a1 + b1, a1 + b2, . . . , ap + bp) · (Pk1 ⊗ Ip) · (a1 + b1, a1 + b2, . . . , ap + bp)
′ = p · a′Pk1a.

A.3 Extraction of the main effects

In this section we show that the main effects that are extracted from the overall surface

are P–splines. For that purpose we use the tensor product representation of the two–

dimensional spline. Apart from additive and multiplicative constants function f̂2(x2) is
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based on the integral
∫ x1,max

x1,min
f(x1, x2)dx1. This integral can be transformed in the following

way:

∫ x1,max

x1,min

f(x1, x2)dx1

=

∫ x1,max

x1,min

(
p∑

j=1

p∑

k=1

βjkBj(x1)Bk(x2)

)
dx1

=

p∑
j=1

p∑

k=1

βjkBk(x2)

∫ x1,max

x1,min

Bj(x1)dx1

=

p∑

k=1

(
p∑

j=1

βjk

∫ x1,max

x1,min

Bj(x1)dx1

)

︸ ︷︷ ︸
=:βk

Bk(x2).

This calculation applies likewise to the integral regarding x2, i.e. to function f̂1(x1).

Thus, the coefficients of the main effect splines are a linear combination of the coeffi-

cients βjk of the two–dimensional function with weights based on the integrals over one–

dimensional basis functions. The values of these integrals depend on the degree of the

respective basis functions and are calculated by using the recursive B–spline definition

(2.13).

A.4 Examples for different combinations of smooth-

ing parameters

This section shows examples for different combinations of smoothing parameters in the

overall penalty matrix Pcomp. Table A.1 gives the overview of the combinations whose

estimated functions are shown in figures A.1–A.5. The examples are based on the data

used for the simulation study in section 7.5.1. The true components f1, f2 and finter are

shown in figure 7.37.
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λ λ1 λ2 f1(x1) f2(x2) finter(x1, x2)
(1) ∞ ∞ (rw1) ∞ (rw1) const. (≡ 0) const. (≡ 0) const. (≡ 0)
(2) ∞ ∞ (rw2) ∞ (rw2) linear linear const. (≡ 0)
(3) ∞ 3 ∞ smooth nonlin. linear const. (≡ 0)
(4) ∞ 3 3 smooth nonlin. smooth nonlin. const. (≡ 0)
(5) ∞ 0 ∞ rough nonlin. linear const. (≡ 0)
(6) ∞ 0 3 rough nonlin. smooth nonlin. const. (≡ 0)
(7) ∞ 0 0 rough nonlin. rough nonlin. const. (≡ 0)
(8) 0.6 ∞ (rw1) ∞ (rw1) const. (≡ 0) const. (≡ 0) const. (≡ 0)
(9) 0.6 ∞ (rw2) ∞ (rw2) linear linear linear

(10) 0.6 ∞ 3 linear smooth nonlin. smooth nonlin.
(11) 0.6 3 3 smooth nonlin. smooth nonlin. smooth nonlin.
(12) 0.6 ∞ 0 linear rough nonlin. smooth nonlin.
(13) 0.6 3 0 smooth nonlin. rough nonlin. rough nonlin.
(14) 0.6 0 0 rough nonlin. rough nonlin. rough nonlin.
(15) 0 ∞ (rw1) ∞ (rw1) const. (≡ 0) const. (≡ 0) const. (≡ 0) ∗∗
(16) 0 ∞ (rw2) ∞ (rw2) linear linear linear ∗∗
(17) 0 ∞ 3 linear smooth nonlin. smooth nonlin. ∗
(18) 0 3 3 smooth nonlin. smooth nonlin. smooth nonlin. ∗∗
(19) 0 ∞ 0 linear rough nonlin. rough nonlin. ∗
(20) 0 3 0 smooth nonlin. rough nonlin. rough nonlin. ∗
(21) 0 0 0 rough nonlin. rough nonlin. rough nonlin. ∗∗

Table A.1: Different combinations of smoothing parameters for the ANOVA type interac-
tion. If not stated otherwise, a second order penalty is used for the main effects. For each
main effect a spline of third degree with 12 basis functions is used. The values λ1 = 3
or λ2 = 3 each correspond to a spline with df = 5. The value λ = 0.6 corresponds to
a two–dimensional function with df = 50 if λ1 = λ2 = 0. Symbol ∗ indicates cases in
which the complete two–dimensional function is equal to the approach by Eilers and Marx
(2003) and symbol ∗∗ indicates cases in which the complete two–dimensional function is
additionally equal to Lang and Brezger (2004).
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Figure A.1: Examples for different combinations of smoothing parameters in ANOVA type
interaction models. Shown are cases (1) to (4) from table A.1.
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Figure A.2: Examples for different combinations of smoothing parameters in ANOVA type
interaction models. Shown are cases (5) to (8) from table A.1.
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Figure A.3: Examples for different combinations of smoothing parameters in ANOVA type
interaction models. Shown are cases (9) to (12) from table A.1.
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Figure A.4: Examples for different combinations of smoothing parameters in ANOVA type
interaction models. Shown are cases (13) to (16) from table A.1.
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Figure A.5: Examples for different combinations of smoothing parameters in ANOVA type
interaction models. Shown are cases (17) to (21) from table A.1.



Appendix B

Details about the calculation of
degrees of freedom

B.1 Degrees of freedom for i.i.d. Gaussian random ef-

fects

In section 3.3, we consider the simple predictor

η = γ0 + fran(x),

containing an intercept term and an i.i.d. Gaussian random effect with p individuals. For

λran > 0, the true degrees of freedom for this simple predictor can be calculated from the

overall hat matrix by using formula (3.24)

dfran = tr
{

(Xran, 1) [(Xran, 1)′W(Xran, 1) + λran diag(Ip, 0)]
−1

(Xran, 1)′W
}
− 1,

where 1 is the vector containing value one only. In this section we show the derivation of

the efficient formula (3.25) that allows to calculate the degrees of freedom by computing

only the necessary elements of the respective hat matrix.

An equivalent representation of formula (3.24) is

dfran = tr
{

(Xran, 1)′W(Xran, 1) [(Xran, 1)′W(Xran, 1) + λran diag(Ip, 0)]
−1

}
− 1

which is used later for computing the trace. But first, we have to calculate the inverse

matrix
( A B
B′ C

)−1

:= [(Xran, 1)′W(Xran, 1) + λran diag(Ip, 0)]
−1

=

(
X′

ranWXran + λranI X′
ranW1

1′WXran 1′W1

)−1

.
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As can easily be verified, the inverse matrix of a matrix containing four submatrices is

given by (compare Magnus & Neudecker (1991))
( X Y ′
Y Z

)
:=

( A B
B′ C

)−1

=

( A−1(I + B(C − B′A−1B)−1B′A−1) −A−1B(C − B′A−1B)−1

−(C − B′A−1B)−1B′A−1 (C − B′A−1B)−1

)
.(B.1)

We start with calculating submatrix Z as this is contained in the other two submatrices.

Matrix Z is actually a scalar and obtained by

Z = (1′W1− 1′WXran(X′
ranWXran + λranI)

−1X′
ranW1)−1

=

(
n− (n1, . . . , np) diag

(
1

n1 + λran

, . . . ,
1

np + λran

)
(n1, . . . , np)

′
)−1

=

(
n−

p∑

k=1

n2
k

nk + λran

)−1

=: c,

with nk =
∑

1≤i≤n:xik=1 wi for k = 1, . . . , p and n =
∑p

k=1 nk. For random effects, the

design matrix Xran is a 0/1–incidence matrix so that matrix (X′
ranWXran +λranI) and its

inverse are diagonal.

Using the above result, matrix Y can be transformed to

Y = −c1′WXran(X′
ranWXran + λranI)

−1

= −c

(
n1

n1 + λran

, . . . ,
np

np + λran

)
.

The most complex submatrix is X that can be reformulated as

X = (X′
ranWXran + λranI)

−1 (I−X′
ranW1 · Y)

= diag

(
1

n1 + λran

, . . . ,
1

np + λran

)[
I + (n1, . . . , np)

′
(

n1

n1 + λran

, . . . ,
np

np + λran

)
c

]

= diag

(
1

n1 + λran

, . . . ,
1

np + λran

)

I +




n2
1

n1+λran

n1n2

n2+λran
. . . n1np

np+λran

...
...

n1np

n1+λran
. . . . . .

n2
p

np+λran


 c




= diag

(
1

n1 + λran

, . . . ,
1

np + λran

)



cn2
1+n1+λran

n1+λran

cn1n2

n2+λran
. . . cn1np

np+λran

...
. . . . . .

...
cn1np

n1+λran
. . . . . .

cn2
p+np+λran

np+λran




=




cn2
1+n1+λran

(n1+λran)2
cn1n2

(n1+λran)(n2+λran)
. . . cn1np

(n1+λran)(np+λran)
...

...
cn1np

(n1+λran)(np+λran)
. . . . . .

cn2
p+np+λran

(np+λran)2


 .
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Altogether the inverse matrix is given by

(
X′

ranWXran + λranI X′
ranW1

1′WXran 1′W1

)−1

=




cn2
1+n1+λran

(n1+λran)2
. . . cn1np

(n1+λran)(np+λran)
− cn1

n1+λran
...

. . .
...

...
cn1np

(n1+λran)(np+λran)
. . .

cn2
p+np+λran

(np+λran)2
− cnp

np+λran

− cn1

n1+λran
. . . − cnp

np+λran
c




.

The second part in formula (3.24) for calculating the degrees of freedom is product matrix

(Xran, 1)′W(Xran, 1) which is equal to




n1 . . . 0 n1
...

. . .
...

...
0 . . . np np

n1 . . . np n


 .

When computing the trace of matrix

H :=




n1 . . . 0 n1
...

. . .
...

...
0 . . . np np

n1 . . . np n


 ·




cn2
1+n1+λran

(n1+λran)2
. . . cn1np

(n1+λran)(np+λran)
− cn1

n1+λran
...

. . .
...

...
cn1np

(n1+λran)(np+λran)
. . .

cn2
p+np+λran

(np+λran)2
− cnp

np+λran

− cn1

n1+λran
. . . − cnp

np+λran
c




we only need to calculate its diagonal elements. The diagonal elements are given by

hkk = nk
cn2

k + nk + λran

(nk + λran)2
− cn2

k

nk + λran

=
n2

k + λrannk − cn2
kλran

(nk + λran)2

for k = 1, . . . , p, whereas the last element is given by

hp+1,p+1 = − cn2
1

n1 + λran

− . . .− cn2
p

np + λran

+ nc.

Hence tr(H) can be obtained by

tr(H) =

p∑

k=1

−cn3
k + n2

k − 2cn2
kλran + nkλran

(nk + λran)2
+ nc

with c = (n−∑p
k=1 n2

k/(nk + λran))
−1

leading to formula (3.25).
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B.2 Degrees of freedom for spatial functions

For the simple predictor

η = γ0 + fspat(s) = γ0 + fstr(s) + funstr(s),

where the spatial function is divided into a smooth function represented by a Markov

random field and an unstructured effect modelled through an i.i.d Gaussian random effect,

the true degrees of freedom of the spatial function can be calculated by formula (3.26)

using the overall hat matrix, i.e.

dfspat = dfstr + dfunstr = tr(H)− 1

= tr
{

(X,X) [(X,X)′W(X,X) + Ptotal]
−1

(X,X)′W
}
− 1

= tr
{

(X,X)′W(X,X) [(X,X)′W(X,X) + Ptotal]
−1

}
− 1,

with the blockdiagonal penalty matrix Ptotal = diag(λunstrIp, λstrPstr). The design matrix

X is identical for both Markov random field and i.i.d. Gaussian random effect.

Similar to the last section, we have to calculate the inverse matrix
( X Y
Y Z

)
:=

( A B
B C

)−1

:=

(
X′WX + λunstrI X′WX

X′WX X′WX + λstrPstr

)−1

first. This can be done by using formula (B.1) where B′ = B. Again, we start with

calculating the least complex submatrix Z which is contained in the other submatrices:

Z =
(
X′WX + λstrPstr −X′WX(X′WX + λunstrI)

−1X′WX
)−1

=

(
λstrPstr + diag(nk)− diag(nk) diag

(
1

nk + λunstr

)
diag(nk)

)−1

=

(
diag

(
nkλunstr

nk + λunstr

)
+ λstrPstr

)−1

.

Here we used that nk =
∑

1≤i≤n:xik=1 wi for k = 1, . . . , p and that X′WX = diag(nk) since

X is a 0/1–incidence matrix. For the other submatrices we get

Y = −Z ·X′WX(X′WX + λunstrI)
−1

= −Z · diag

(
nk

nk + λunstr

)

and

X = (X′WX + λunstrI)
−1[I−X′WX · Y ]

= diag

(
1

nk + λunstr

) [
I + diag(nk) · Z · diag

(
nk

nk + λunstr

)]
.
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The trace of the overall hat matrix H for both spatial functions can now be simplified to

tr(H) = tr

(
X′WX · X + X′WX · Y X′WX · Y + X′WX · Z
X′WX · X + X′WX · Y X′WX · Y + X′WX · Z

)

= tr(X′WX · X ) + tr(X′WX · Y) + tr(X′WX · Y) + tr(X′WX · Z)

= (3.27) + 1,

where

tr(X′WX · Z) = tr

[
diag(nk)

(
diag

(
nkλunstr

nk + λunstr

)
+ λstrPstr

)−1
]

,

tr(X′WX · Y) = tr

[
−diag(nk) · Z · diag

(
nk

nk + λunstr

)]

= −tr

[
diag

(
n2

k

nk + λunstr

) (
diag

(
nkλunstr

nk + λunstr

)
+ λstrPstr

)−1
]

and

tr(X′WX · X )

= tr

[
diag(nk)diag

(
1

nk + λunstr

)(
I + diag(nk) · Z · diag

(
nk

nk + λunstr

))]

= tr

[
diag

(
nk

nk + λunstr

)
+ diag

(
n2

k

nk + λunstr

)
· Z · diag

(
nk

nk + λunstr

)]

=

p∑

k=1

nk

nk + λunstr

+ tr

[
diag

(
n3

k

(nk + λunstr)2

)[
diag

(
nkλunstr

nk + λunstr

)
+ λstrPstr

]−1
]

.

Hence, with these formulas tr(H) can be calculated based on the individual design and

penalty matrices so that the sparse structures of these matrices can be fully utilised. The

overall hat matrix H is not needed.

B.3 Degrees of freedom for a seasonal component

Here, we consider the simple predictor

η = γ0 + fseason(t),

containing an intercept term and a seasonal effect with p seasons. The true degrees of

freedom for this simple predictor can be calculated from the overall hat matrix using

formula (3.28)

dfs = tr
{

(1,Xs) [(1,Xs)
′W(1,Xs) + λs diag(0,Pper)]

−1
(1,Xs)

′W
}
− 1
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= tr
{

(1,Xs)
′W(1,Xs) [(1,Xs)

′W(1,Xs) + λs diag(0,Pper)]
−1

}
− 1.

In this section we show the derivation of formula (3.29).

First, we have to calculate the inverse matrix (compare formula (B.1))
( X Y ′
Y Z

)
:=

( A B
B′ C

)−1

:=

(
1′W1 1′WXs

X′
sW1 X′

sWXs + λsPper

)−1

.

Here, the most complex matrix is matrix Z which is given by

Z = (X′
sWXs + λsPper −X′

sW1(1′W1)−11′WXs)
−1

=

(
diag(n1, . . . , np)− 1

n
(n1, . . . , np)

′(n1, . . . , np) + λsPper

)−1

=







n1 − n2
1/n −n1n2/n . . . n1np/n

−n1n2/n
. . .

...
...

. . . np−1np/n
−n1np/n . . . np−1np/n np − n2

p/n


 + λsPper




−1

with nk =
∑

1≤i≤n:xik=1 wi for k = 1, . . . , p and X′
sWXs = diag(nk) since Xs is a 0/1–

incidence matrix. The computation of matrix Z requires the inversion of a symmetric

p× p matrix which has no sparse structure. However, later we will need all elements of Z
for the degrees of freedom.

Matrix Y is obtained as

Y = −Z ·X′
sW1(1′W1)−1 = − 1

n
Z · (n1, . . . , np)

′ = − 1

n

(∑

k

z1knk, . . . ,
∑

k

zpknk

)′

and matrix X is given by

X = (1′W1)−1[1− 1′WXs · Y ] =
1

n
(1− (n1, . . . , np) · Y) =

1

n

(
1 +

1

n

∑

j,k

zjknjnk

)
.

Based on these matrices the overall hat matrix is obtained as

H =




n n1 . . . np

n1 n1
...

. . .

np np


 ·




1
n
(1 + 1

n

∑
j,k zjknjnk) − 1

n

∑
k z1knk . . . − 1

n

∑
k zpknk

− 1
n

∑
k z1knk
... Z

1
n

∑
k zpknk


 .

For computing the trace tr(H) we need only the diagonal elements of H and get

tr(H) =
n

n

(
1 +

1

n

∑

j,k

zjknjnk

)
− 1

n

∑

j,k

zjknjnk −
∑

j

(
nj

n

∑

k

zjknk − njzjj

)

= 1 +
∑

k

nkzkk − 1

n

∑

k

n2
kzkk − 2

n

∑

j>k

nknjzjk = (3.29) + 1.
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Bühlmann, P. and Yu, B. (2003). Boosting with the L2 loss: regression and classification.

Journal of the American Statistical Association 98, 324–339.

Buja, A., Hastie, T., and Tibshirani, R. (1989). Linear smoothers and additive models

(with discussion). The Annals of Statistics 17 (2), 453–510.

Burnham, K. P. and Anderson, D. R. (1998). Model Selection and Multimodel Inference.

Springer.

Carpenter, J. and Bithell, J. (2000). Bootstrap confidence intervals: when, which, what?

a practical guide for medical statisticians. Statistics in Medicine 19, 1141–1164.

Cavanaugh, J. E. (1997). Unifying the Derivations for the Akaike and Corrected Akaike

Information Criteria. Statistics and Probability Letters 33, 201–208.

Cavanaugh, J. E. and Neath, A. A. (1999). Generalizing the Derivation of the Schwarz

Information Criterion. Communication in Statistics – Theory and Methods 28, 49–66.

Chambers, J. M. and Hastie, T. J. (1992). Statistical Models in S. Wadsworth and

Brooks.

Chen, Z. (1993). Fitting multivariate regression functions by interaction spline models.

Journal of the Royal Statistical Society B 55 (2), 473–491.

Clyde, M. and George, Edward, I. (2004). Model Uncertainty. Statistical Science 19,

81–94.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and their Application.

Cambridge University Press.

De Boor, C. (1978). A Practical Guide to Splines. Springer, New York.

Denuit, M. and Lang, S. (2004). Nonlife Ratemaking with Bayesian GAMs. Insurance:

Mathematics and Economics 35, 627–647.

Dierckx, P. (1995). Curve and Surface Fitting with Splines. Oxford: Clarendon Press.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression.

Annals of Statistics 32 (2), 407–499.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and

Hall.

Eilers, P. H. and Marx, B. D. (1996). Flexible smoothing with B–splines and Penalties.

Statistical Science 11, 89–121.

Eilers, P. H. and Marx, B. D. (2003). Multivariate calibration with temperature interac-

tion using two–dimensional penalized signal regression. Chemometrics and Intelligent



References 221

Laboratory Systems 66, 159–174.

Fahrmeir, L., Kneib, T., and Lang, S. (2004). Penalized additive regression for space–

time data: a Bayesian perspective. Statistica Sinica 14, 731–761.

Fahrmeir, L. and Lang, S. (2001a). Bayesian inference for generalized addititve mixed

models based on Markov random field priors. Journal of the Royal Statistical Society

C 50, 201–220.

Fahrmeir, L. and Lang, S. (2001b). Bayesian semiparametric regression analysis in mul-

ticategorical time–space data. Annals of the Institute of Statistical Mathematics 53,

11–30.

Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on General-

ized Linear Models. Springer.

Fan, J. and Gijbels, I. (1984). Local Polynomial Modelling and Its Applications. Chap-

man and Hall, London.

Fotheringham, A., Brunsdon, C., and Charlton, M. (2002). Geographically Weighted

Regression: The Analysis of Spatially Varying Relationships. Wiley, Chichester.

Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). An-

nals of Statistics 19, 1–141.

Gamerman, D. (1997). Efficient Sampling from the Posterior Distribution in Generalized

Linear Models. Statistics and Computing 7, 57–68.

George, A. and Liu, J. W. (1981). Computer Solution of Large Sparse Positive Definite

Sytems. Prentice–Hall.

George, E. I. and McCulloch, R. E. (1997). Approaches for bayesian variable selection.

Statistica Sinica 7, 339–373.

Geweke, J. (1996). Variable selection and model comparison in regression. In J. M.

Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian Statistics

5, pp. 609–620. Oxford Press.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika 82, 711–732.

Green, P. J. (2001). A primer on markov chain monte carlo. In O. E. Barndorff-Nielsen,
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