
 

Mechanism of Action of Group II Chaperonins: 

 Impact of the Built-in Lid on the Conformational Cycle 

 
 
 
 
 
 
 
 
 

Dissertation 

Fakultät für Biologie 

Ludwig-Maximilians-Universität München 

carried out at the 
 

Department of Biological Sciences 
 

Stanford University 
 
 
 
 
 

presented by 
 

Stefanie Reißmann 

 
May 2007

 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Reviewer: Prof. Dr. A. Böck 
 
2. Reviewer: Prof. Dr. K. Jung 
 

 
Date of the oral examination: July 24, 2007 
 
 
 
 
 
 
 
 
 



 

PUBLICATIONS: 
 
 
Research articles: 
 
Reissmann S., Hochleitner E., Wang H., Paschos A., Lottspeich F., Glass R.S. and 
Böck A. (2003) Taming of a poison: Biosynthesis of the NiFe-Hydrogenase Cyanide 
Ligands. Science 299, 1067-70 
 
Blokesch M., Paschos A., Bauer A., Reissmann S., Drapal N., Böck A. (2004) 
Analysis of the transcarbamoylation-dehydration reaction catalysed by the 
hydrogenase maturation proteins HypF and HypE. Eur J Biochem 271: 3428-3436 
 
Reissmann S., Parnot C., Booth CR, Chiu W. and Frydman J. (2007) Essential 
function of the built-in lid in the allosteric regulation of eukaryotic and archaeal 
chaperonins. Nat Struct Mol Biol May;14(5):432-440 
 
Reissmann S., Meyer A. and Frydman J. Positive cooperativity in group II 
chaperonins is a sequential event driven by a gradient of affinities for ATP. 
Manuscript in preparation. 
 
 
 
 
Review articles: 
 
Spiess C., Meyer S.A., Reissmann S. and Frydman J. (2004) Mechanism of the 
eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol. 
2004 Nov; 14(11): 598-604. 
 



                                                                                                                     

 



                                                                                                             Table of Contents 

I. INTRODUCTION......................................................................1 

I.1. PROTEIN FOLDING IN VITRO VERSUS IN VIVO ..........................................................................................  1 

I.2. THE CYTOPLASMATIC CHAPERONE MACHINERY .................................................................................... 2 

The Hsp70-Hsp40 chaperone system .......................................................................................................... 2 

The chaperonins are Hsp60 family members .............................................................................................. 4 

Not all chaperones are heat shock proteins ................................................................................................ 6  

Co-translational folding in the eukaryotic cytoplasm ................................................................................ 7 

I.3. CHAPERONINS - A DISTINCT CLASS OF MOLECULAR CHAPERONES ......................................................... 8 

Chaperonin structure................................................................................................................................... 8 

Group I chaperonins: The GroEL-GroES machinery ..................................................................... .........10 

Group II chaperonins from archae and eukarya ....................................................................................... 12 

I.4. AIMS OF THIS WORK ............................................................................................................................ 15 

II. MATERIALS AND METHODS.............................................16 

II.1. PLASMIDS AND STRAINS .................................................................................................................... 16 

II.2. MEDIA AND SUPPLEMENTS ................................................................................................................ 17 

II.3. Oligonucleotides ............................................................................................................................... 18 

II.4. CHEMICALS AND REAGENTS .............................................................................................................. 18 

II.5. MICROBIOLOGICAL METHODS ........................................................................................................... 19 

Bacterial and yeast cultures ..................................................................................................................... 19 

Pulse-chase of yeast cells with [35S]-methionine ...................................................................................... 19 

Overproduction of [35S]-labeled rhodanese in E. coli .............................................................................. 19 

II.6. MOLECULAR GENETIC METHODS ...................................................................................................... 20 

Standard Methods ..................................................................................................................................... 20 

Construction of the bacterial expression vector pET21MmCpnWT ......................................................... 20 

Site-directed mutagenesis ......................................................................................................................... 20 

Sequencing of DNA ................................................................................................................................... 20  

II.7. Electrophoresis ................................................................................................................................. 21 

Electrophoresis of DNA ............................................................................................................................ 21 

Denaturing and native polyacrylamide gel electrophoresis (PAGE) ....................................................... 21 



                                                                                                             Table of Contents 

II.8. PROTEIN PURIFICATION ..................................................................................................................... 21 

Purification of TRiC ................................................................................................................................. 21 

Purification Mm-Cpn wild type and mutant forms ................................................................................... 22 

Purification of rhodanese ......................................................................................................................... 23 

Purification of [35S]-labeled actin ............................................................................................................ 24 

II.9. BIOCHEMICAL METHODS ................................................................................................................... 24 

Determination of protein concentrations .................................................................................................. 24 

Isolation of Mm-Cpn-substrate complexes ............................................................................................... 25 

Generation of cTRiC ................................................................................................................................. 25 

Proteinase K protection assay .................................................................................................................. 26 

Rhodanese folding assay .......................................................................................................................... 26 

Actin folding assays .................................................................................................................................. 27 

Rhodanese binding assay ......................................................................................................................... 27 

Preparation of EL-trap ............................................................................................................................. 28 

ATPase assay ............................................................................................................................................ 28 

Cross-link of α-[32P]-8-N3-ATP to TRiC and separation of subunits by RP-HPLC.................................. 28 

Filter binding assays ................................................................................................................................ 29 

DNaseI pull-down of native actin ............................................................................................................. 29 

TRiC Immunoprecipitation ....................................................................................................................... 30 

Sample preparation for cryo-electron microscopy ................................................................................... 30 

II.10. BIOINFORMATICAL METHODS ......................................................................................................... 31 

Image analysis .......................................................................................................................................... 31 

Molecular modeling .................................................................................................................................. 31 

Analysis of autoradiograms ...................................................................................................................... 31 

Analysis of mathematical data .................................................................................................................. 31 

III. RESULTS ..............................................................................33 

III.1. THE GROUP II CHAPERONIN MM-CPN FROM M. MARIPALUDIS............................................................ 33 

Cloning, purification and initial characterization of Mm-Cpn ................................................................ 33 

The search for intrinsic substrate proteins of Mm-Cpn ............................................................................ 35 

Analysis of the conformational cycle in Mm-Cpn ..................................................................................... 36 



                                                                                                             Table of Contents 

ATP hydrolysis is required to generate the folding-active state of Mm-Cpn ............................................ 37 

III.2. THE IRIS-LIKE LID STRUCTURE OF GROUP II CHAPERONINS PREVENTS PREMATURE RELEASE OF 

SUBSTRATE PROTEIN EJECTED INTO THE CENTRAL CAVITY. ....................................................................... 40 

The apical protrusions are required for efficient substrate folding in Mm-Cpn ....................................... 40 

Mm-Cpn ∆lid is unable to encapsulate substrate protein within the central cavity .................................. 42 

ATP hydrolysis in Mm-Cpn results in the release of bound substrate protein .......................................... 44 

Substrate binding sites are hidden in the closed conformational state induced by ATP hydrolysis .......... 47 

III.3. LID FORMATION TRIGGERS COOPERATIVITY IN GROUP II CHAPERONINS............................................ 50 

The built-in lid in TRiC couples ATP hydrolysis to substrate folding ...................................................... 51 

The built-in lid establishes allosteric coupling between subunits in one ring ........................................... 52 

Negative allosteric coupling between rings affects ATP binding and hydrolysis ...................................... 56 

Negative allosteric coupling between rings drives a “two-stroke” motor cycle ....................................... 58 

The second allosteric transition is absent in lid-less group II chaperonins .............................................. 60 

III.4. POSITIVE COOPERATIVITY IN THE EUKARYOTIC CHAPERONIN TRIC IS A SEQUENTIAL EVENT DRIVEN 

BY A GRADIENT OF AFFINITIES FOR ATP .................................................................................................... 63 

A gradient of affinities for ATP binding in TRiC ...................................................................................... 64 

Not all subunits in TRiC cross-link to ATP at saturating conditions ........................................................ 67 

Stoichiometry of TRiC-nucleotide complexes under equilibrium conditions............................................. 69 

ATP binding to CCT6 is dispensable for TRiC’s catalytic cycle in vivo .................................................. 71 

IV. DISCUSSION.......................................................................74 

IV.1. ALLOSTERIC REGULATION IN GROUP II CHAPERONINS ..................................................................... 74 

Similar allosteric coupling within the subunits of a ring is achieved by different strategies in Group I 

and group II chaperonins .....................................................................................................  ..... .............74 

Influence of the built-in lid on inter-ring communication ........................................................................ 75 

IV.2. POSITIVE COOPERATIVITY IN GROUP II CHAPERONINS PROPAGATES SEQUENTIALLY......................... 77 

What is the structural feature common to all high affinity subunits? ....................................................... 77 

The order of sequential ATP-induced allosteric transitions in one ring of TRiC...................................... 79 

Do the low affinity subunits fulfill a regulatory function? ........................................................................ 80 

IV.3. THE APICAL PROTRUSIONS AND THE CONFORMATIONAL CYCLE OF GROUP II CHAPERONINS............. 81 

Conformational changes in group II chaperonins upon binding of ATP ................................................. 81 



                                                                                                             Table of Contents 

ATP hydrolysis is the central step in the folding cycle of group II chaperonins ....................................... 82 

What is the signal for re-opening of the lid?.. . ...................................................................................... ...83 

V.  SUMMARY............................................................................84 

VI. REFERENCES.......................................................................86 

 



                                                                                                                   Abbreviations 

  
ABBREVIATIONS: 
 
 
AAA-ATPase   ATPases associated with diverse cellular activities 

ADP    adenosine diphosphate 

ampR    ampicillin resistance 

ATP    adenosine triphosphate 

BCA    bichinoic acid   

bp    base pairs  

BSA    bovine serum albumin 

C-    carboxy-terminal 

CDTA    1,2 cyclohexane-diaminetetra-acetic acid 

CLIPs    chaperones linked to protein synthesis 

DEAE-   diethylaminoethyl- 

DTT    dithiothreitol 

EDTA    ethylenediamine tetraacetic acid 

IPTG    isopropyl-β-D-1-thiogalactopyranoside 

N-    amino-terminal 

HEPES    (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

HSPs    heat shock proteins 

MOPS    3-(N-morpholino)propanesulfonic acid  

PBS    phosphate buffered saline 

PCR    polymerase chain reaction 

PEI-cellulose   polyethyleneimine cellulose 

psi    pounds per square inch     

RAC    ribosome associated complex 

RP-HPLC   reversed phase HPLC 

rpm    rounds per minute  

SDS    sodium dodecyl sulfate 

SDS-PAGE   SDS-polyacrylamide gel electrophoresis 

TAE    Tris-Acetate-EDTA 

TBS    Tris-buffered saline 

TBS-T    Tris-buffered saline plus 0.1 % Tween-20 

TF    trigger factor 



                                                                                                                   Abbreviations 

TFA    trifluoroacetic acid 

TLC    thin layer chromatography 

TRiC/ CCT tailless complex polypeptide 1 (TCP1) ring complex/  

chaperonin containing TCP1 

Tris    tris-(hydroxymethyl-)-aminomethan 

WD repeats   tryptophan-aspartate repeats 



                                                                                                                  Collaborations 

COLLABORATIONS: 
 
 
Cryo Electon Microscopy was performed in collaboration with the laboratory of  
Prof. Dr. Wah Chiu, National Center for Macromolecular Imaging, Baylor 
College of Medicine, Houston, TX, USA. 
 
 
Mathematical analysis of kinetic data was performed in collaboration with Dr. 
Charles Parnot, Stanford University, CA, USA. 
 
 
 
 



 



                                                                                                                      Introduction 

 1

I. INTRODUCTION 

A central theme of biology is the conversion of genetic information into functional 

proteins. The fact that virtually every biological process involves proteins can be 

attributed to the enormous functional spectrum of this class of macromolecules, 

ranging from simply providing structure to catalyzing chemical reactions. The 

ribosome catalyzes an important step during protein biosynthesis, namely translation 

of the one-dimensional genetic code into a linear polypeptide chain. However, to 

actually perform the destined biological function, every polypeptide subsequently has 

to adopt a defined native three-dimensional structure in a process referred to as 

protein folding. To assure a robust cellular environment, newly synthesized 

polypeptides have to reliably fold into the native state and the native state, once 

acquired, has to be maintained throughout the lifespan of a protein. Defects in both 

protein folding and quality control are associated with a variety of different diseases, 

such as cystic fibrosis and neurodegenerative disorders like Huntington and 

Alzheimer’s1,2. Understanding of the process of protein folding in molecular detail 

would lead to fundamental advances in many aspects of biology and medicine but 

would also benefit industrial production of insoluble proteins like insulin. 

I.1. Protein folding in vitro versus in vivo 

Landmark experiments for which Christian Anfinsen was awarded the Nobel Prize 

over three decades ago revealed that the three-dimensional structure of a native 

protein under physiological conditions is the one with the lowest Gibbs free energy 

and hence determined by the amino acid sequence3. Consequently, many small 

proteins are able to spontaneously fold into the corresponding native state after 

denaturing stresses in vitro. According to the current view, a polypeptide chain can 

follow multiple folding pathways towards the energetic minimum, driven by burying 

hydrophobic stretches inside the 3-D structure4,5. However, those conclusions are 

derived from in vitro folding experiments, which are usually performed at low 

temperature and a high protein dilution, both conditions that prevent off-pathway 

reactions like aggregation.  

In contrast, the cytosol is a concentrated broth containing 200–300 mg of protein per 

ml6,7, resulting in a situation described as “excluded volume effect” or “molecular 

crowding”8,9, where protein aggregation is favored and strongly competes with 
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refolding to the native state10. The situation is aggravated by the vectorial emergence 

of the linear polypeptide chain in the cytosol during synthesis on the ribosome. Since 

the information for the native state is encoded by the entire amino acid sequence, the 

nascent polypeptide chain is unable to fold stably until fully synthesized, but exposes 

hydrophobic sequences into the cytoplasm. Additionally, translation occurs on 

polysomes where many ribosomes move along the same mRNA and thereby produce 

a high local concentration of unfolded polypeptides with high propensity to aggregate. 

In order to cope with such unfavorable conditions, cells evolved a set of remarkable 

enzymes, called molecular chaperones, that assist folding of both newly synthesized 

and stress-denatured proteins11-15. Chaperones can selectively detect unfolded proteins 

by specifically binding to exposed stretches of hydrophobic amino acids, since those 

residues are usually buried inside the three-dimensional structure of the native state. 

By shielding those hydrophobic patches from the cellular environment, they 

successfully prevent off-pathway reactions like aggregation thereby keeping the 

polypeptides in a soluble, folding competent state11-15.  

I.2. The cytoplasmatic chaperone machinery  

Molecular chaperones, frequently also referred to as heat shock proteins (Hsp), 

comprise a family of structurally unrelated proteins11,12,14,16. They are functionally 

coupled to a machinery and fulfill a key role in cellular protein folding under normal 

growth condition as well as under stresses. Furthermore, they are involved in a variety 

of cellular processes that require maintenance of proteins in specific conformational 

states, such as protein translocation17 and targeting for degradation18,19.  Prior to 

describing the cell biological aspect of chaperone networks in the cytoplasm, the 

mechanistic principles of the two major classes of ATP-dependent molecular 

chaperones, found in all three kingdoms of life, namely the Hsp70s and the 

chaperonins (Hsp60s) are introduced. 

The Hsp70-Hsp40 chaperone system  

Hsp70 chaperones are monomeric proteins with a molecular mass of approximately 

70 kDa that bind to both newly translated and stress-denatured proteins16,20. They are 

ubiquitously found in all kingdoms of life but seem to be absent in certain 

methanogenic archaea21. The functionally best characterized Hsp70 is the E. coli 

DnaK protein (Fig. 1)16,22,23. ATP binding opens a peptide-binding cleft, resulting in a 
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conformational state where substrate binds with low affinity due to high on and off 

rates. The substrate binding cleft closes during ATP hydrolysis, facilitating stable 

association of substrate with DnaK in the ADP state. Hsp70 chaperones work hand in 

hand with co-chaperones from the Hsp40 family named DnaJ in E. coli16,22,23. DnaJ 

binds denatured substrate proteins and its characteristic J-domain activates ATP 

hydrolysis in DnaK resulting in the transfer of the polypeptide chain to the Hsp70 

protein.  In E. coli, a second DnaK co-factor, GrpE, catalyzes the exchange of bound 

ADP for ATP, thereby promoting substrate release from DnaK16,22,23. As a 

consequence, the DnaK-DnaJ-GrpE machinery reversibly binds hydrophobic patches 

exposed by unfolded proteins and thereby maintains unfolded polpeptides in a 

soluble, folding competent state (Fig. 1).  

 

 
 

Figure 1. The well-studied bacterial DnaJ-DnaK-GrpE chaperone system exemplifies the Hsp70 

reaction cycle. ATP binding to the bacterial Hsp70 homologue DnaJ induces a conformational change 

that results in opening of a substrate-binding cleft (1). Interaction with the J-domain of its Hsp40 co-

chaperone DnaK stimulates ATP hydrolysis in DnaK and results in stable association of unfolded 

protein (U) or a folding intermediate (I) and DnaK (2). GrpE serves as a nucleotide exchange factor for 

DnaK (3) and subsequent ATP binding results in the release of bound substrate protein (4) in the 

unfolded state or an intermediate folding state. The protein can either fold spontaneously into the native 

state or alternatively is transferred to the Hsp60 chaperone system (GroEL) for further assistance (5). 

The figure is taken from Frydman J., 200112. 

 

Due to their broad substrate spectrum and their property to “hold” a polypeptide in an 

unfolded state, chaperones from the Hsp70 family form a central intersection in the 
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pathway of cytoplasmatic protein folding. They bind to newly translated polypeptides 

as well as stress-denatured proteins and either support their folding to the native state 

or transfer them to a different chaperone machinery, like the chaperonins, where 

folding is completed, or to the degradation machinery18,19. Moreover, chaperones 

from the Hsp70 family work hand in hand with the oligomeric AAA+ ATPase ClpB 

in E. coli (Hsp104 in yeast) during the recovery of proteins from protein 

aggregates.18,24. Intriguingly, a number of different Hsp70 proteins are found in the 

yeast cytosol. Ssb1 and Ssb2 as well as the Hsp70-related protein Ssz (Pdr13) and its 

Hsp40 cofactor zuotin are associated with the ribosome and therefore recruited for the 

folding of newly synthesized proteins25-27. The latter pair, Ssz/zuotin, forms a stable 

heterodimer, also termed RAC27, and stimulates the ATPase activity of Ssb28. The 

other four Hsp70 family members, Ssa1-4, as well as the closely related homologue 

Sse1 are free in the cytosol and cover the broad spectrum of Hsp70-function in this 

compartment.  

The chaperonins are Hsp60 family members 

Chaperonins on the other hand comprise a family of large (800–900 kDa) oligomeric 

assemblies composed of two rings that are stacked back to back giving rise to two 

central cavities29,39 (Fig. 2 and 4A). Substrate binding sites are exposed at the distal 

rim of each ring in the nucleotide-free state. During the ATP-dependent folding 

reaction29 (Fig. 2) the bound substrate becomes encapsulated within the central cavity. 

Chaperonins therefore transiently provide a microenvironment protected from the 

unfavorable cytoplasic conditions. In the case of the well-studied bacterial chaperonin 

GroEL, closure of the central cavity requires binding of the dome-shaped co-

chaperonin GroES16,29 (Fig. 2A). GroES binding induces a structural conversion of 

the inner GroEL surface from a mainly hydrophobic to a hydrophilic environment and 

generates an enclosed space of approximately 80 Å in diameter and 85 Å in height 

spacious enough to accommodate a protein of up to 60 kDa in size30. Whether the 

cavity simply resembles an “Anfinsen-cage”, this is an environment favorable for 

protein folding comparable to an in vitro situation, or if the cavity walls actively 

influence the folding pathway is currently under investigation31. Recent biochemical 

analysis of the GroEL-GroES “nano-cage”32 suggests that a combination of structural 

confinement together with repulsion from the hydrophilic wall and specific 

interactions with conserved C-terminal Gly-Gly-Met repeats may provide an optimal 
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environment to catalyze folding of certain proteins32. Additionally, it has been 

proposed that chaperonins apply pulling forces, thereby unfolding bound substrate 

proteins before ejection into the central cavity33, but such an mechanism needs yet to 

be proven. The basic structure of archaeal and eukaryotic chaperonins is very similar 

to that of their bacterial counterparts34,35 (Fig. 2B). However, they can function 

independent of a GroES-like co-chaperone and achieve closure of their central cavity 

with the help of an integrated lid structure34,35 (Fig. 2B). This fundamental difference, 

which resulted in their classification as group II chaperonins, might be a result of an 

exclusive role in co-translational folding of polypeptides during protein synthesis36,37. 

Consequently, expression of the eukaryotic chaperonin TRiC is not stress-induced but 

co-regulated with the expression of the translational machinery36. However, the cell 

biological role of chaperonins in the cytoplasm of archaea has not been investigated 

yet.  

 

 

Figure 2. Chaperonins are oligomeric double ring structures that open and close their two 

central cavities in an ATP regulated manner. (A) The bacterial group I chaperonin GroEL interacts 

with the GroES co-chaperonin in a nucleotide dependent reaction resulting in closure of the central 
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chamber and encapsulation of substrate protein. (B) Group II chaperonins from eukaryotic and archaeal 

origin are independent of a GroES-like co-chaperonin but possess a built-in lid that assembles over the 

central chamber in an ATP dependent fashion. This figure is modified from Frydman, J., 200112 and 

from Spiess et al., 200454. 

 

Not all chaperones are heat shock proteins 

Although the terms “heat shock protein” and “chaperone” are often used as synonyms 

recent genomic analysis in yeast36 discovered the existence of a subset of molecular 

chaperones, the so-called CLIPS (chaperones linked to protein synthesis), which is 

transcriptionally co-regulated with the translational machinery and therefore actually 

down-regulated under stress conditions. Prominent members of the CLIP family in 

yeast are ribosome-associated chaperones namely the Hsp70-homologue Ssb1/2, a 

hetero-dimer composed of the DnaK-related Ssz/Pdr13 and the DnaJ-like protein 

zuotin (termed RAC, ribosome-associated complex), as well the eukaryotic 

chaperonin TRiC. Comprehensive functional analysis36 revealed that the CLIP 

chaperones are exclusively involved in the folding of newly synthesized polypeptides 

as they emerge from the ribosome (Fig. 3A). On the other hand, the classical heat 

shock proteins (HSPs) comprise a class of stress-inducible eukaryotic chaperones that 

function either in re-folding or clearing of misfolded proteins38.  

A picture emerges where two different chaperone networks cope with the two distinct 

pathways of protein folding in the eukaryotic cytosol, namely co-translational 

folding37,39,40 of newly synthesized polypeptides and re-folding of denatured proteins 

during stress situations (Fig. 3A). 

In contrast, the bacterial chaperone system comprises one global network of stress-

inducible heat shock proteins (Fig. 3B)38. The only ribosome associated chaperone in 

bacteria, trigger factor (TF), is located in proximity of the ribosomal exit tunnel41 and 

maintains the emerging polypeptides in a folding competent conformation42. Further 

downstream, the GroEL-ES and Hsp70 machinery collaborate during both post-

translational folding of newly synthesized polypeptides and the re-folding of stress 

denatured proteins38,43,44. 
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Figure 3. In contrast to bacterial cells two distinct chaperone networks divide forces in the 

eukaryotic cytosol. (A) Two distinct chaperone networks fulfill different functions in the eukaryotic 

cytosol: Chaperones of the CLIP (chaperones linked to protein synthesis)- family are transcriptionally 

co-regulated with the translational machinery and play an exclusive role in the co- and post-

translational folding of newly synthesized polypeptides. The CLIP-family members are down regulated 

under stress-conditions and a second distinct chaperone network consisting of classical heat shock 

proteins (Hsps) takes over in the re-folding of stress-denatured proteins.  (B) In bacteria one chaperone 

network covers the entire protein folding requirement in the cytoplasm, namely folding of newly 

synthesized polypeptides that is thought to occur mainly post-translational as well as re-folding of 

stress denatured proteins. With the exception of the ribosome associated trigger factor (TF) all bacterial 

chaperones are stress inducible and therefore classical heat shock proteins (Hsps). This figure was 

kindly provided by Veronique Albanese. 

 

Co-translational folding in the eukaryotic cytoplasm 

Cotranslational protein folding in the eukaryotic cytosol37,39,40 occurs in a sequestered 

environment that appears to be effectively shielded from disturbing cytoplasmic 

conditions by the close cooperation of the CLIP chaperone network45-48. Probably as a 

result of its prominent localization on the ribosome, Ssb1/2 interacts with most 

nascent chains whereas other members of the Hsp70 chaperone family, like Ssa1 and 

Sse1 as well as the eukaryotic chaperonin TRiC, interact with a smaller subset of 

nascent chains and therefore presumably function downstream of Ssb1/249. The 
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majority of polypeptides can be folded solely by the Hsp70 members, whereas only 

about 10 to 15 % of newly synthesized proteins require the chaperonin TRiC for 

further assistance47. The most prominent substrates are the highly abundant 

components of the cytoskeleton, actin and tubulin, and it has been well established 

that TRiC cooperates with different CLIP family members in their folding45-47. During 

this process, the emerging polypeptide chain is transferred from the ribosome to TRiC 

with the help of the specialized GimC (prefoldin) chaperone complex46,50. Other TRiC 

substrates, including the WD repeat protein Cdc20 or the von-Hippel-Lindau tumor 

suppressor are transferred from the ribosome with the help of Ssb51,52. Most 

components of the yeast chaperone networks are present also in higher eukaryotes, 

suggesting a similar mechanism of protein biogenesis53.  

Intriguingly, many eukaryotic proteins such as actin, tubulin, and luciferase cannot 

fold after expression in bacteria39,40,48 suggesting a major difference in the chaperone 

networks. Comparison of the eukaryotic and bacterial proteome reveals that 

eukaryotes posses a higher portion of multi-domain proteins. The ability to co-

translationally fold individual domains could therefore be of major advantage in 

eukaryotes.  

I.3. Chaperonins - a distinct class of molecular chaperones 

Chaperonins appear to be mechanistically very specialized members of the chaperone 

family that play a central role for the folding of a number of essential cytosolic 

proteins29,54. No other chaperone system can substitute for their function in vivo and 

consequently deletion of the chaperonin subunits-encoding genes is lethal. What is the 

unique clue of those sophisticated molecular machines? The following section 

provides an overview of the current mechanistic understanding of the structurally 

related chaperonin groups in all three kingdoms of life.  

Chaperonin structure 

Chaperonins are ATP-driven molecular machines composed of two cylinders stacked 

back to back30,34 (Fig. 4A). The resulting internal cavities can enclose unfolded 

polypeptides in an ATP-dependent manner and provide a protected microenvironment 

for protein folding to occur. All chaperonins subunits share a similar architecture30,34 

(Fig. 4B), consisting of three distinct domains: an equatorial domain connected via a 

hinge-like intermediate to the distal apical domain.  The equatorial domain provides 
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the interaction surface between the two rings and harbors the major sites of ATP 

binding. The adjacent intermediate domain closes over bound ATP, thereby 

generating the nucleotide binding pocket. This ATP-induced conformational change 

in the intermediate domain is transferred to the apical domain, where the substrate 

binding sites are located. Despite overall structural similarities, there are significant 

differences between the eubacterial chaperonins, such as GroEL from E. coli16,29,55, 

and the chaperonins from archaea and eukaryotes54,56.  

 

 
 

Figure 4. Architecture of group I and group II chaperonins. (A) Crystal structures of the GroEL- 

GroES-(ADP)7 complex30 (left) and the thermosome34 (middle), respectively. The image on the right 

side corresponds to the top view of the crystal structure of the thermosome34 and shows assembly of 

the apical protrusions in the iris-like lid structure characteristic for all group II chaperonins. (B) Crystal 

structures of a single subunit of GroEL (left) and the thermosome (right), respectively. The equatorial 

domain (red) is linked via the hinge-like intermediate domain (green) to the apical domain (yellow). In 

contrast to the group I chaperonin GroEL group II chaperonins contain apical protrusions extending 

from the tip of the apical domain.  
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While the, so-called group I chaperonins from bacteria are homo-oligomeric and each 

cylinder is made up of seven subunits, eukaryotic and archaeal group II chaperonins 

are with a few exceptions hetero-oligomeric54 and composed of eight or nine subunits 

per ring. The eukaryotic group II chaperonin TRiC is the most complex group II 

chaperonin as it is composed of eight different subunits, CCT1-8, which share only 

25-36 % sequence identity among each other57. The most dramatic difference between 

group I and group II chaperonins resides in their distinct strategies to mediate closure 

of their central folding chamber. Group I chaperonins use a ring-shaped co-chaperone 

GroES as a detachable lid. In the presence of ATP, GroES binds to the apical domains 

of the GroEL subunits and thereby generates the central cavity55 (Fig. 3A and 4A).  

One long-standing mystery in the chaperonin field involved the apparent lack of a 

cofactor for type II chaperonins, which appeared to be fully functional without such 

an accessory protein.  The answer to this puzzle was found in the crystal structure of 

the group II chaperonin from the archaeum Thermoplasma acidophilum34. The 

structure revealed that each subunit of the thermosome complex can be superimposed 

onto a GroEL subunit with the exception of an additional loop protruding from the tip 

of the thermosome apical domain. This so-called apical protrusion (Fig. 4B) from 

neighboring subunits forms a β-sheet and creates an iris-like lid structure (Fig 4A, 

right) that may restrict access to the cavity34. Clearly, group II chaperonins require a 

highly coordinated ATPase cycle to reversibly open and close a central cavity without 

the help of an external co-factor. Since basic structural features are conserved 

between chaperonins from different groups, it is helpful to consider the molecular 

details of the well-studied group I chaperonin GroEL in order to investigate the 

adaptations of archaeal and eukaryotic chaperonins necessary to maintain a built-in 

lid.  

Group I chaperonins: The GroEL-GroES machinery 

The ATPase cycle of the group I chaperonin GroEL has been studied in detail and 

high-resolution structures of several conformational states along the reaction cycle, 

obtained by both cryo-electron microscopy and crystallography, are available29,30,58-60. 

Each individual ring in GroEL represents a functional unit, whose individual subunits 

have to act fully synchronized. Accordingly, chaperonins are highly allosteric protein 

machines61-63. Subunits within each ring are coupled via positive cooperativity in ATP 

binding61,64,65, which allows them to act in a concerted fashion to create the closed 
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folding chamber. In addition, negative communication between the rings causes ATP 

binding to one ring to inhibit ATP binding to the adjacent ring64,65. This feature 

ensures that only one ring, the so called cis-ring, is folding-active at a given time, 

allowing GroEL to function as a "two-stroke" motor where the two rings alternate 

during the reaction cycle. This unique allosteric behavior is described as nested 

cooperativity, since the positive cooperative transitions within each ring are nested 

into the overall negative cooperativity between them64. 

Substrate binds to hydrophobic sites located at the inner rim of the central cavity66 

(Fig. 5). Binding of ATP to the substrate-bound cis-ring initiates the attachment of the 

heptameric GroES lid67, resulting in encapsulation of the substrate within the cavity 

(Fig. 5). Association of GroES induces dramatic conformational changes in the 

GroEL apical domains, discharging the substrate into the GroES-capped chamber, 

where it commences folding29,68,31. Surprisingly, ATP hydrolysis is not required for 

quantitative substrate folding within the central chamber as shown for the ATPase 

deficient GroEL mutant form D398A69. However, ATP hydrolysis to ADP in the cis-

ring has to occur in order to facilitate ATP binding to the trans-ring, which in turn 

results in release of ADP, GroES, and the native substrate protein from the cis-ring 
29,69. GroES then binds to the “new” cis-ring, and a new round of folding starts70 

(Fig. 5). 

 

 
 

Figure 5. The folding cycle of the bacterial chaperonin system GroEL-ES. Cooperative binding of 

ATP to the substrate bound GroEL cis-ring induces slight conformational changes that result in 

increased affinity for GroES. GroES binding induces large conformational changes in the apical 

domains of GroEL, which move the hydrophobic substrate binding sites (red) away from the central 

chamber and permit GroES to bind on top of GroES thereby encapsulating substrate protein and 

forming the the asymmetric cis-folding active complex. Hydrolysis of ATP to ADP occurs with a half 

time of 8-10 sec and serves as a timer mechanism since the association of GroEL and GroES in the 

ADP bound post hydrolysis complex is less stable. Binding of ATP to the trans-ring finally discharges 
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ADP, GroES and the encapsulated substrate from the cis-ring and the next folding cycle starts in the 

new cis-ring. 

 

Group II chaperonins from archaea and eukarya 

Despite intensive studies on the biochemistry and function of the bacterial chaperonin 

GroEL along with its co-chaperonin GroES, little is known on the mechanistic and 

biological significance underlying the unique structural features of eukaryotic and 

archaeal chaperonins. Central objects of current studies are the eukaryotic chaperonin 

TRiC purified from bovine tissue54 and two crystallized homologues from 

hyperthermophilic archaebacteria, namely the thermosome from Thermoplasma 

acidophilum34,56 and KS-1 from Methanococcus spec.35.  

In the absence of nucleotide, all group II chaperonins adopt a symmetrically open 

conformation and can bind unfolded substrate protein (Fig. 6 [1])71,38,44,45,46,43. 

Unfortunately, high-resolution structural information of this conformation is not 

available, as irrespective of the nucleotide state, group II chaperonins have only been 

crystallized in a symmetrically closed state so far34,35.  

Upon binding of non-hydrolysable nucleotide analogs, the lid structures in TRiC and 

the thermosome remain in an open conformation72-74 (Fig. 6 [2]). Intriguingly, 

incubation of the thermosome with ATP at low temperatures, where ATP is not 

hydrolyzed, cannot trigger lid assembly either73,75. Contradicting results are reported 

for the group II chaperonin KS-1, where nucleotide binding seems to be sufficient to 

induce lid closure76. In TRiC and the thermosome, ATP hydrolysis is required to 

induce a conformational change during which the apical protrusions of neighboring 

subunits assemble into an iris-like β-sheet and that leads to an conformational state 

that supports substrate folding72,77 (Fig. 6 [3]). Group II chaperonins trapped in the 

transition state of ATP hydrolysis by incubation with ATP and AlFx adopt a 

symmetrically closed conformation72,78 (Fig. 6 [4]). In the presence of ADP, by 

contrast, all group II chaperonins are rendered in the open conformation (Fig. 6 [5]), 

suggesting that gamma-phosphate release triggers re-opening of the lid 

structure72,73,75,76. Investigation of the allosteric properties of TRiC revealed a nested 

cooperative mechanism similar to that of GroEL, suggesting the existence of positive 

intra-ring and negative inter-ring cooperativity79,80. Consistently, asymmetric 

conformations have been reported for the thermosome81,82 and TRiC in the presence 
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of ATP83 and ADP-AlFx
72 as well as for KS-1 in the presence of ADP-BeFx

78. Our 

current interpretation of the ATPase cycle in group II chaperonins relies on a 

collection of isolated conformational states that need to be interconnected. Detailed 

analysis of the allosteric regulation in group II chaperonins as well as further 

structural analysis will provide insight into the relevance of the different 

conformations for the nucleotide cycle and might elucidate whether group II 

chaperonins function as two-stroked molecular machines comparable to the GroEL-

ES chaperonin system.  Remarkably, GroEL, although able to bind several TRiC 

substrates, cannot assist in the folding reaction71,84,85. Better understanding of the 

folding cycle of TRiC might help to explain its unique ability to fold a variety of 

essential eukaryotic proteins54.  

It is becoming increasingly clear that TRiC’s essential function in the co-translational 

folding of a variety of proteins is connected to several disease phenotypes. Tumor-

causing mutations in the tumor suppressor protein VHL are found to be located in the 

TRiC-binding sites86 and lead to severe misfolding of VHL in vivo explaining the lack 

of function of the mutant protein51,87. More recently, TRiC was attributed an essential 

role in protecting cells against the formation of cytotoxic conformations of proteins 

with extended polyglutamine repeats, which underlie Huntington’s disease and other 

neurodegenerative disorders88-90. In order to understand the contribution of TRiC to 

these processes and to be able to counteract cellular imbalances that lead to disease 

states, it is necessary to obtain a defined structural view in synergy with a molecular 

understanding of the ATP driven motions in TRiC during the folding cycle. 
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Figure 6. Current understanding of the conformational states in group II chaperonins. (1) In the 

absence of nucleotide group II chaperonins are in an open conformation and bind to substrate protein. 

(2) Binding of non-hydrolysable nucleotide analogues does not induce lid closure in the eukaryotic 

chaperonin TRiC and the thermosome (3) The folding-active closed state is only sampled in the 

presence of hydrolysable ATP but a detailed view of the ATPase cycle of group II chaperonins 

especially in respect of their possible function as a two-stroke motor remains to be established. (4) 

Incubation with ATP and AlFx traps group II chaperonins in a conformation with both rings in the 

closed state. (5) In the ADP bound state group II chaperonins are found to be in the open conformation 

with exposed substrate binding sites. 
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I.4. Aims of this work 

The aim of this work was to understand how group II chaperonins maintain a 

productive folding cycle without the help of an external GroES-like lid co-factor and 

to identify the molecular adjustments necessary to use a built-in lid. To this end, it 

was planned to investigate the role of the lid-forming segments in the catalytic cycle 

and to determine the molecular basis of cooperative conformational changes that 

result in lid closure in group II chaperonins. Intrigued by the subunit heterogeneity in 

TRiC it was furthermore intended to investigate whether the eight different subunits 

contribute equally to the ATPase cycle.  

Although the study mainly focused on the eukaryotic chaperonin TRiC it was planned 

to investigate the homo-oligomeric chaperonin Mm-Cpn from the mesophilic 

methanogenic archaeon Methanococcus maripaludis in parallel. Development of 

biochemical techniques to study the folding cycle of this distantly related group II 

chaperonin would on the one hand provide the possibility to generate genetically 

modified mutant forms of a group II chaperonin and on the other hand allow to base 

the biochemical analysis of group II chaperonins on two distinct model systems of 

different origin and complexity.  
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II.  MATERIALS AND METHODS 

II.1. Plasmids and Strains 

All bacterial and yeast strains used in this study are listed in Table 1. All plasmids 

generated during this study or used from different sources are listed in Table 2.  

 

Table1: Bacterial and Yeast strains 

Strain Genotype Reference 

Bacterial strains:   

Rosetta2 

(DE3)pLysS 

E. coli B, F-, ompT, hsdSB(rB
-mB

-), gal, dcm, λDE3, 

pLysSRARE (CamR) 

Invitrogen  

DH5α E. coli K12, F-, gyrA96, recA1, relA1, endA1, thi-1, 

hsdR17, glnV44, deoR, ∆(lacZYA-argF)U169, 

[Φ80d∆(lacZ)M15] 

Invitrogen 

Yeast strains:   

B-9018 cct6-∆1::TRP1, MATa, ura3-52, trp1-∆63, leu2-∆1, 

GAL2, pAB990, pAB1058 

Lin et al., 

199791 

B-10301 cct6-∆1::TRP1, MATa, ura3-52, trp1-∆63, leu2-∆1, 

GAL2, pAB990, pAB1852 

Lin et al., 

199791 

 

Table 2: Plasmids  

Plasmid Genotype Reference 

Bacterial plasmids:   

pET21a+ pBR322 ori, ampR
, T7 promotor 

 

Novagen 

pET11d pBR322 ori, ampR
, T7 promotor Novagen 

pETMm-CpnWT pET21a+-derivate, carrying the mm-cpn-gene (ampR) this study 

pETMm-Cpn∆lid pETMm-CpnWT–derivative this study 

pETMm-CpnD386A pETMm-CpnWT–derivative this study 

pETMm-Cpn∆lid/ 

D386A 

pETMm-CpnWT–derivative this study 

pBROD pET11d-derivative, carrying bovine adrenal 

rhodanese cDNA (ampR) 

Miller et al., 

199192 
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Yeast plasmids:   

pAB990 CCT6, URA3, CEN4, ARS1  Lin et al., 

199791 

pAB1058 CCT6, LEU2, CEN6, ARSH4  Lin et al., 

199791 

pAB1852 PAB1058 derivative,  CCT6-24 Lin et al., 

199791 

 

II.2. Media and Supplements 

The media listed in Table 3 were used to cultivate bacterial and yeast cells.  

 

Table 3: Media 

Medium Composition 

LB-medium 1 % pepton, 0.5 % yeast extract, 0.5 % NaCl 

LB-agar 1 % pepton, 0.5 % yeast extract, 0.5 % NaCl, 1.5 % agar 

M9-medium 0.6 % Na2HPO4, 0.3 % KH2PO4, 0.05 % NaCl, 0.1% NH4Cl, 0.3 % 

CaCl2, 1 mM MgSO4, 0.8 % glucose, 0.00005 % thiamine 

YPD-medium 2 % peptone, 1 % yeast extract, 1 % glucose 

Complete synthetic 

yeast medium 

0.17 % Yeast nitrogen base (Difco 0335-15), 2 % glucose, 0.5 % 

(NH4)2SO4, 2 g/L of dropout mix (see below) lacking either uracil (- 

Ura), leucine (-Leu), or methionine (-Met). 

dropout powder-mix 0.5 g adenine, 2 g alanine, 2 g arginine, 2 g asparagine, 2 g aspartic 

acid, 2 g cysteine, 2 g glutamic acid, 2 g glutamine, 2 g glycine, 2 g 

histidine, 2 g myo-inositol, 2 g isoleucine, 4 g leucine, 2 g lysine, 2 g 

methionine, 0.2 g para-aminobenzoic acid, 2 g phenylalanine, 2 g 

proline, 2 g serine, 2 g threonine, 2 g tryptophane, 2 g tyrosine, 2 g 

uracil, 2 g valine 

 

Supplements were used at the final concentration listed in Table 4. 

 

Table 4: Supplements 

Supplements  

Ampicillin 100 µg/ml 

Chloramphenicol 50 µg/ml 

IPTG 100 µM 
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II.3. Oligonucleotides 

The oligonucleotides used in this study are listed in Table 5. 

 

Table 5: Oligonucleotides 

Name Sequence 

Mm-Cpn-fw 

Mm-Cpn-rev 

Mm-Cpn-midfw 

Mm-Cpn∆lid(link)-fw 

Mm-Cpn∆lid(link)-rev 

Mm-CpnD386A-fw 

Mm-CpnD386A-rev 

5’-ggaattccatatgtcacaacaaccaggagttttacc-3’ 

5’-cgcggatccttacatcattcctggcattccgcccattcc-3’ 

5’-atcgcaatgacctcaatcaccggaaaagg-3’ 

5’-ctagctagcgaaatgttaaaagacatggttgctgaaatcaaagcaagcgg-3’ 

5’-ctagctagctgattcttcgattgcacagtttaaaagtgcaatttttgcgtcag-3’ 

5’-gaagaagttgcaagagcagtagacgctgctgttggtgtagttggatgtac-3’ 

5’-gtacatccaactacaccaacagcagcgtctactgctcttgcaacttcttc-3’ 

 

II.4. Chemicals and Reagents 

8-N3-ATP and α-[32P]-8N3-ATP were obtained from ALT Inc. (KY, USA). α-[32P]-

ATP and [35S]-methionine was purchased from Perkin-Elmer Life and Analytical 

Sciences (Boston, MA, USA). ATP of highest purity was purchased from Sigma-

Aldrich (Mo, USA). All other chemicals were either obtained from Sigma-Aldrich or 

from J.T. Baker (NJ, USA) unless mentioned otherwise. Restriction enzymes and 

other DNA-modifying enzymes were obtained from MBI Fermentas (MD, USA), 

Stratagene (CA, USA), and Invitrogen (CA, USA). Genomic DNA from M. 

maripaludis strain LL was kindly provided by Dr. John Leigh (Department of 

Microbiology, University of Washington, Seattle, WA, USA). Methanococcus 

mariplaudis cells were kindly provided by Prof. Dr. A. Böck (Department of Biology 

I, LMU München, Germany). HELA cells used to purify radiolabeled actin were 

generously provided by Dr. John Christianson (laboratory of Prof. R. Kopito, 

Stanford, CA, USA) and Ron Geller (laboratory of Prof. J. Frydman, Stanford, CA, 

USA). Purified GroEL and GroES proteins were kindly provided by Dr. Sheila Jaswal 

(laboratory of Prof. J. Frydman, Stanford, CA, USA) and Dr. Anne Meyer (laboratory 

of Prof. J. Frydman, Stanford, CA, USA) respectively.  
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II.5. Microbiological Methods 

Bacterial and yeast cultures 

Bacteria and yeast cultures where cultivated in either reaction tubes or Erlenmeyer 

flasks filled with 1/10th of their assigned volume and incubated on a shaker in order to 

ensure sufficient aeration. Bacterial cultures were incubated at 37°C, yeast cultures 

were grown at 30°C. To overproduce chaperonin proteins, the E. coli strain Rosetta 

(DE3) pLysS (EMD Biosciences, USA) harboring the corresponding pET21-derived 

expression plasmid was grown to an OD600 of 0.8 in the presence of ampicillin. 

Protein production was induced by addition of 100 µM IPTG and the cells were 

cultivated for additional 4 hours. Subsequently, they were harvested by centrifugation 

at 15 000 g, washed in PBS and flash-frozen in liquid nitrogen.  

Pulse-chase of yeast cells with [35S]-methionine 

Yeast strains B-1098 (∆cct6/ LEU2cct6)93 and B-10301 (∆cct6/ LEU2cct6-24)93 were 

grown to log phase and starved for 30 min in complete synthetic medium without 

methionine.  The cells were then labeled with 100 µCi/ml [35S]-methionine for 1 min, 

followed by a chase with 20 mM unlabeled methionine.  At the indicated time points, 

aliquots were withdrawn, quickly chilled, and supplemented with 250 mM cold azide 

to deplete ATP and 0.5 mg/ml cycloheximide to stop protein synthesis. Cells were 

harvested and lysates were prepared in lysis buffer (10 mM HEPES [pH 7.5], 50 mM 

Tris/HCl [pH 8], 100 mM KCl, 10 mM MgCl2, 10 % glycerol, 0.1 % triton-X-100, 1 

mM DTT) supplemented with protease inhibitor cocktail by bead beating for 10 min 

at 4ºC. The lysates were clarified by centrifugation for 15 min at 16,000 g and 4ºC 

and used to isolate TRiC-substrate complexes by immunoprecipitation as well as 

native actin by a DNaseI pull-down experiment as described below.  

Overproduction of [35S]-labeled rhodanese in E. coli 

Heterologous overproduction of [35S]-labeled bovine rhodanese in E. coli was 

performed as described94. E. coli strain Rosetta (DE3) pLysS (EMD Biosciences, 

USA) harboring the plasmid pBROD92 was grown at 37°C in 10 ml of LB-medium to 

OD600= 0.8, and synthesis of T7-polymerase was induced by addition of IPTG to a 

final concentration of 0.1 mM. After 30 min of induction, the cells were harvested, 

washed in 5 ml sterile PBS, and resuspended in 10 ml of M-9 minimal medium 
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supplemented with all amino acids except methionine. After addition of rifampicin 

(200 µg/ml) and further incubation for 12 min, 300 µCi of S35-methionine were added 

and the cells were cultivated for 2 hours at 37°C.  Cells were harvested, washed in 

PBS and flash-frozen in liquid nitrogen. 

II.6. Molecular Genetic Methods 

Standard Methods 

Molecular genetic standard methods like restriction, phosphorylation, 

dephosphorylation, and ligation were performed according to the instructions 

provided by the company the respective enzymes were obtained from. In order to 

extract DNA fragments from agarose gels, the QIAquick gel extraction kit (Qiagen) 

was used. Plasmids were isolated from 5ml of a bacterial culture grown to stationary 

phase in LB-medium.  Plasmid preparation was achieved using the QIAprep Spin 

miniprep kit (Qiagen, USA) according to the manufactor’s instructions. 

Construction of the bacterial expression vector pET21MmCpnWT  

Genomic DNA from M. maripaludis strain LL was used as a template to amplify the 

mm-cpn gene by polymerase chain reaction (PCR). The PCR fragment was inserted 

into the vector pET21a+ (EMD Chemicals Inc., USA) using the NdeI and BamHI 

restriction sites, resulting in the vector pET21MmCpnWT.  

Site-directed mutagenesis 

To replace the helical protrusion region (amino acids I241-K267) by a short linker 

(ETASE), the plasmid pET21MmCpnWT was PCR-amplified using Pfu-Turbo DNA 

polymerase (Stratagene, USA) and primers (Mm-Cpn∆lid(link)-fw and Mm-

Cpn∆lid(link)-rev)  that were oriented divergently but overlapped at their 5' ends. 

Single amino acid changes in Mm-Cpn were performed by site-directed mutagenesis 

using plasmid pET21MmCpnWT as a template according to the QuikChange kit 

(Stratagene) protocol.  

Sequencing of DNA 

In order to obtain DNA sequences, 10 µl of a standard plasmid preparation were 

submitted to the company ElimBio Biopharmaceuticals Inc. (Hayward, CA, USA). To 
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sequence the entire mm-cpn-gene we used the primers T7-fw and T7-rev, provided by 

the company, as well as the primer Mm-Cpn-midfw.  

II.7. Electrophoresis  

Electrophoresis of DNA 

Separation of DNA fragments was performed using horizontal 1% agarose gels in 

TAE-buffer95. 

Denaturing and native polyacrylamide gel electrophoresis (PAGE) 

In order to separate proteins under denaturing conditions discontinuous polyacrylamid 

gel electrophoresis was applied96. Protein solutions were mixed with SDS sample 

buffer95, heated for 5 min at 95°C, and loaded on the gel. Fixation and detection of 

separated protein was achieved by Coomassie staining of the gel. To this end, the gel 

was incubated for 5 min in a staining solution (0.1% Coomassie-G, 50% Methanol, 

10% acetic acid), followed by incubation in de-staining solution (10% acetic acid). 

To analyze chaperonin and chaperonin-substrate complexes under native conditions,  

MOPS-based native gel electrophoresis was performed as described48. To this end, 

4% acrylamide gels were prepared in MOPS buffer (80 mM MOPS [pH 7.0], 5 mM 

MgCl, 50 mM KCl). Samples, in reaction buffer containing 10 % glycerol, were 

supplemented with 1 µl 1 % bromphenolblue solution, and directly loaded on the gel. 

Gels were run at 4°C in MOPS buffer containing 0.1% L-cysteine and 1 mM DTT for 

2 hours at 120 V.  Detection of protein was achieved by Coomassie staining and 

autoradiography.  

II.8. Protein Purification 

Purification of TRiC 

TRiC was purified from bovine testis essentially as described87. In brief, the tubules 

of bovine testis (500 g) separated from the tunica albuginea by dissection were 

homogenized in buffer H (20 mM HEPES/KOH [pH 7.4], 5 mM MgCl2, 0.1 mM 

EDTA, 50 mM NaCl, 1 mM DTT) containing the protease inhibitors leupeptine (2 

µg/ml), aprotinin (0.5 µg/ml), pepstatin (0.5 µg/ml) and PMSF (0.2 mM), and the 

lysate was clarified by centrifugation for 30 min at 20 000 g followed by a 1 hr 

centrifugation step at 100,000 g. The lysate was subjected to a 35% ammonium 
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sulfate cut, and the resulting supernatant was precipitated with a final concentration of 

50% ammonium sulfate. The pellet was resuspended in a small volume MQ-A buffer 

(20 mM HEPES/KOH [pH 7.4], 5 mM MgCl2, 0.1 mM EDTA, 50 mM NaCl, 10% 

glycerol, 1 mM DTT) and 30 ml aliquots, respectively, were loaded on sucrose 

cushions (lower layer: 2 ml 60% sucrose in MQ-A buffer; upper layer 5 ml 20% 

sucrose in MQ-A buffer). After 20 hr ultracentrifugation in a SW-28 rotor at 26 000 

rpm and 4°C, the sucrose cushions together with all sedimented material were pooled, 

dialyzed against MQ-A buffer, and loaded on a Q Sepharose FF column (60 ml, GE 

Healthcare, USA) equilibrated in MQ-A buffer. Bound proteins were eluted with 0.4 

M NaCl in MQ-A buffer. Fractions containing protein were pooled and diluted 1:1 in 

MQ-A buffer before they were loaded on a High-Trap Heparin column (20 ml, GE 

Healthcare, USA) equilibrated in MQ-A buffer containing 0.2 M NaCl. Bound 

proteins were eluted by a NaCl gradient ranging from 0.2 to 1 M NaCl. Fractions 

containing TRiC were pooled, concentrated using an Amicon Ultra-15 10K 

concentrator (Millipore Corporation, USA), and loaded on a Superose 6 10/300 GL 

column (GE Healthcare, USA). Fractions containing the oligomeric chaperonin were 

pooled, and aliquots were flash-frozen in liquid nitrogen.  

Purification Mm-Cpn wild type and mutant forms 

Purification of Mm-CpnWT, Mm-Cpn∆lid, Mm-CpnD386A and Mm-Cpn∆lid/D386A was 

achieved using the following procedure: chaperonin proteins were overproduced in 

E. coli strain Rosetta (DE3) pLysS (EMD Biosciences, USA) harboring plasmid 

pET21MmCpnWT, pET21Mmcpn∆lid, pET21aMmCpnD386A, or 

pET21Mmcpn∆lid/D386A respectively. The cells were harvested by centrifugation, 

resuspended in MQ-A buffer (20 mM HEPES/KOH [pH 7.4], 50 mM KCl, 5 mM 

MgCl2, 0.1 mM EDTA, 10% glycerol, 1 mM DTT, 0.1 mM PMSF) and disrupted 

using a French Press at a pressure of 16,000 psi, The lysate was centrifuged at 15 000 

g for 30 min to pellet cell debris. The supernatant of a 55% ammonium sulfate cut 

was dialyzed against MQ-A buffer and loaded on a Q Sepharose FF column (60 ml, 

GE Healthcare, USA) equilibrated in MQ-A buffer. Bound proteins were eluted by a 

NaCl gradient ranging from 0–1 M NaCl. Fractions containing Mm-Cpn were pooled 

and diluted 1:1 in MQ-A buffer before they were loaded on a High-Trap Heparin 

column (20 ml, GE Healthcare, USA) equilibrated in MQ-A buffer containing 0.2 M 

NaCl. Bound proteins were eluted by a NaCl gradient ranging from 0.2 to 1 M NaCl. 
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Fractions containing Mm-Cpn were pooled, concentrated using an Amicon Ultra-15 

10K concentrator (Millipore Corporation, USA), and loaded on a Superose 6 10/300 

GL column (GE Healthcare, USA). Fractions containing the oligomeric chaperonin 

were pooled, and aliquots were flash-frozen in liquid nitrogen. The protein 

concentration was determined using the BCA-Assay (Pierce, USA) with BSA as a 

standard. 

Purification of rhodanese 

Bovine rhodanese (type II highly purified) was purchased from Sigma-Aldrich (USA) 

and further purified as described97. To this end, the lyophilized protein was dissolved 

in buffer A (50 mM Na-acetate pH 5.0, 20 mM Na-thiosulfate) at a concentration of 

10 mg/ml and loaded onto a Mono-S HR 5/5 column (GE Healthcare, USA) 

equilibrated in buffer A. Bound proteins were eluted by a salt gradient from 0-500 

mM NaCl in buffer A. Fractions containing rhodanese were pooled and concentrated 

using Amicon Ultra-15 10K concentrator (Millipore Corporation, USA) and loaded 

on a Superdex 75 HR 10/30 column (GE Healthcare, USA) equilibrated in buffer A. 

Fractions containing rhodanese were pooled and concentrated as before. The protein 

concentration was determined spectroscopically (ε280=60890 M-1/cm). 

[35S]-labeled bovine rhodanese was purified from inclusion bodies after heterologous 

overexpression of the protein in E. coli strain Rosetta (DE3) pLysS (EMD 

Biosciences, USA) harboring the plasmid pBROD 92. The cells were lysed in 1 ml 

lysis buffer (10 mM HEPES [pH 7.5], 50 mM Tris/HCl [pH 8], 10 mM MgCl2, 100 

mM KCl, 10 % glycerol, 0.1 % Triton X-100, 1 mM DTT and 0.2 mM PMSF) by 

three freeze-thawing cycles in liquid nitrogen. Inclusion bodies were sedimented by 

centrifugation for 30 min at 16,000 g, washed in lysis buffer and subsequently 

solubilized in 1 ml 8 M urea/ 50 mM Na-acetate (pH 5.0). After addition of 100 µl of 

a 1:1 slurry of SP-Sepharose (GE Healthcare) in 6 M urea/ 50 mM Na-acetate (pH 

5.0) and incubation for 15 min at 4°C, the mixture was transferred into a 1 ml empty 

gravity column and washed with 2 x 200 µl of 6 M urea/50 mM Na-actetate (pH 5) 

containing 100 mM, 500 mM and 1M NaCl, respectively. [35S]- labeled rhodanese, 

eluting in the fractions containing 500 mM NaCl, was concentrated using a Amicon 

Ultra-0.5 10K concentrator (Millipore Corporation, USA) and subjected to a buffer 

change into 6 M urea/ 50 mM Na-actetate (pH 5) and 1 mM DTT using a P(30) spin 
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column (BioRad). The protein concentration was determined spectroscopically 

(ε280=60890 M-1/cm). 

Purification of [35S]-labeled actin 

[35S]-labeled actin was purified from HELA cells essentially as described48. 4 x 150 

mm plates to 40 % confluence and labeled overnight in medium lacking methionine 

using 30 µCi 35S-methionine per plate. The cells were washed in ice-cold PBS, 

harvested in 2 ml cold PBS/ plate, sedimented by centrifugation at 4°C for 10 min at 

1000 g, washed in PBS, and resuspended in a total of 1.5 – 3 ml G10 buffer (10 mM 

Tris/HCl [pH 7.4], 1 mM CaCl2, 10 % formamide, 1 mM DTT, 1 mM ATP) 

supplemented with 1 mM PMSF and protease inhibitor cocktail.  

Cells were lysed by 50 douncing cycles and the cell debris was removed by 

centrifugation at 4°C for 20 min at 14,000 g. The supernatant was loaded on a column 

containing 0.5 ml bed volumes of DNase I covalently attached to Sepharose 4B (GE 

Healthcare) equilibrated in buffer G10-buffer supplemented with 10 % glycerol (G10’-

buffer). The lysate was incubated with the DNaseI-sepharose beads for 1 h at 4°C 

while gently shaking. Subsequently unbound proteins were removed by two 1 ml 

washes G10
’-buffer, followed by a 0.5 ml wash in G10’-buffer supplemented with 0.4 

M KCl and two further 0.5 ml washes in buffer G10’-buffer. To obtain native [35S]-

labeled actin, 0.5 ml of G40’-buffer (as G10’-buffer but 40 % formamide) were added 

to the column and the eluate was collected after a 5 min incubation at 4°C. After 1:10 

dilution in G10-buffer, the native [35S]-actin was concentrated to a final volume of 100 

µl, supplemented with 0.002 % NaN3, and stored at 4°C. The majority of the DNase I-

bound [35S]-actin was recovered as denatured protein following incubation of the 

beads with 1 ml of 6 M guanidinium/ HCl for 1 h at 4°C. The column was subjected 

to a low speed centrifugation step in order to recover the sample quantitatively. 

Denatured [35S]-actin was flash-frozen in liquid nitrogen and stored at -80°C. 

II.9. Biochemical Methods 

Determination of protein concentrations 

The GroEL concentration was determined spectrometrically by measuring the 

absorption at 280 nm (Gill and Hippel, 1989). The protein concentration of TRiC was 

determined by the BCA Assay (Pierce, IL, USA), using BSA (Pierce) as a standard. 
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By submission of a TRiC sample of known concentration (by BCA Assay) to Amino 

Acid Sequencing facility of the Molecular Structure Facility (UC Davis, CA, USA) 

we obtained a correction factor to determine the actual protein concentration. 

Isolation of Mm-Cpn-substrate complexes 

To isolate Mm-Cpn-substrate complexes, we prepared lysates from anaerobically 

grown M. maripaludis cells. Cells were lysed by incubation of 5 g frozen cell pellet in 

4 ml Mm-Cpn lysis buffer (25 mM PIPES [pH 6.8], 1 mM DTT, 5 mM PMSF) by an 

30 min incubation at 30°C in the presence of 50 µg/ml DNaseI. Lysates were clarified 

by 20 min centrifugation at 13 000 g and 4 °C followed by a 1 hr ultracentrifugation 

step (100 000 g) at 4°C. M. maripaludis lysates were supplemented with 20 mg/ml 

BSA, 5 mM EDTA, and 6 µl of affinity-purified anti-Mm-Cpn antibodies, and then 

incubated on ice for 40 minutes. The samples were centrifuged at 16 000g for 15 min 

to remove protein aggregates and 10 µl 1:1 slurry of Protein G Sepharose in TBS 

were added. The assays were gently rotated for 30 min at 4°C.  Sepharose beads were 

sedimented by low speed centrifugation and washed twice with TBS + 0.05%Tween 

and then three times with TBS + 1% Tween, as described 47.  Samples were 

resuspenden in SDS-sample buffer, and proteins were separated by 12% SDS-PAGE 

gel electrophoresis and detected by Coomassie staining. Protein bands of interest were 

excised from the gel and submitted to mass spectrometric analysis by the SU Mass 

Spectrometry facility (Stanford, CA, USA). In an alternative approach, proteins from 

a M. maripaludis lysate, prepared as described above, were denatured by addition of 

solid Guanidin/ HCl to a final concentration of 6 M and incubation at 30 °C for 1 hr. 

Aggregated proteins were removed by centrifugation at 4°C at 16 000 g for 30 min. 

The lysate in 6 M Guanidin/ HCL was diluted 1:100 into a reaction mix containing 

0.25 µM purified Mm-Cpn protein in MQ-A buffer and incubated for 30 min at 30°C. 

Potential Mm-Cpn-substrate complexes were isolated by size exclusion 

chromatography on a Superose 6 10/300 GL column (GE Healthcare, USA). Fractions 

containing the oligomeric chaperonin were pooled and analyzed by 12% SDS-PAGE.  

Generation of cTRiC  

cTRiC was generated essentially as described72. Briefly, 0.25 µM purified TRiC 

protein was pre-incubated in TRiC-ATPase buffer I (50 mM Tris/HCl [pH 7.4], 50 

mM KCl, 5 mM MgCl2, 1 mM EGTA) for 5 min at 25°C. After addition of 20 µg/ ml 
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Proteinase K and further incubation for 10 min at 25°C, protease activity was 

inhibited by supplementing the reaction with PMSF to a final concentration of 5 mM. 

After incubation on ice for approximately 10 min, the quantitative conversion of 

TRiC to cTRiC was confirmed by SDS-PAGE analysis. Reactions containing cTRiC 

were kept on ice for maximally 2 hours before they were used for further biochemical 

analysis. 

Proteinase K protection assay 

0.25 µM purified TRiC or 0.25 µM purified Mm-CpnWT or Mm-CpnD386A, 

respectively, were pre-incubated in the respective ATPase buffer (Cpn-buffer: 20 mM 

Tris/ HCl [pH 7.5], 100 mM KCl, 5 mM MgCl2, 10 % glycerol), which was 

supplemented with EDTA (5 mM), ADP (1 mM), or ATP (0.2 or 1 mM). To generate 

AlFx, Al(NO3)3 (5 mM) and NaF (30 mM) were included in the reaction. The 

reactions were incubated for 10 min (30 min for reactions containing AlFx) at 30°C 

for Mm-Cpn and 25°C for TRiC. After addition of 20 µg/ ml proteinase K and further 

incubation for 10 min at 25°C, PMSF was supplemented to a final concentration of 5 

mM to inhibit protease activity. Subsequently the reaction was incubated on ice for 10 

min and analyzed by SDS-PAGE. For N-terminal sequencing, the protein fragments 

were transferred on a PVDF-membrane and visualized by amido-black stain. The 

protein bands were cut from the membrane and submitted to the Stanford PAN 

faciltity. 

Rhodanese folding assay 

Rhodanese folding by Mm-CpnWT and Mm-Cpn∆lid was assayed as described97. In 

brief, 0.25 µM protein was incubated in Cpn-buffer supplemented with 20 mM 

sodium thiosulfate. Purified rhodanese was denatured in 6 M guanidinium/HCl 

containing 5 mM DTT and rapidly diluted 1:100 to a final concentration of 30 µM 

into the reaction mix. After incubation for 5 min at 37°C, the reaction was started by 

addition of 2 mM ATP and allowed to proceed for 50 min at 37°C. In order to detect 

the presence of re-folded rhodanese, 10 µl of the reaction were withdrawn and applied 

to a rhodanese activity assay performed as described97. 
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Actin folding assays 

The standard actin-folding assay was carried out as described48. In brief, 0.25 µM 

TRiC or cTRiC, respectively, were incubated in buffer A (20 mM Hepes-KOH [pH 

7.5], 100 mM potassium acetate, 5 mM MgCl2, 1 mM DTT, 10 % glycerol, and 1% 

PEG 8000). Subsequently, [35S]-actin denatured in 6 M guanidin/ HCl48 was rapidly 

diluted 1:100 to a final concentration of 30 µM into the reaction mix. After incubation 

for 10 min at 4°C, the assay was supplemented with 1 mM ATP and incubated for 40 

minutes at 30°C. Generation of native [35S]-actin was determined by native gel 

electrophoresis using folded [35S]-actin as a control as described previously48. The gel 

was exposed on a phosphor storage screen (Kodak, USA), which was scanned in a 

Typhoon 9410 imager (GE Healthcare, USA). The radioactive signal was quantified 

using Image Quant 5.2 (Molecular Dynamics). The amount of actin migrating with 

native mobility is expressed as percent of total radioactivity per lane. 

To determine actin-folding rates at different ATP concentrations, generation of native 

[35S]-actin was determined by a protease protection assay as described 72. To this end, 

TRiC and actin were incubated as described above. After addition of 5 mM EDTA, 

0.2 mM ATP, and 1 mM ATP, respectively, samples were withdrawn at the indicated 

time points and the folding reaction was stopped by incubation on ice and 

supplementation of the reactions with 10 mM CDTA. Subsequently, the samples were 

incubated with 20 µg/ml Proteinase K for exactly 5 min at 25°C, before protease 

activity was inhibited by adding PMSF to a final concentration of 5 mM. After 

incubation on ice for 10 min, the samples were analyzed by SDS-PAGE. The gel was 

exposed on a phosphor storage screen (Kodak, USA), which was scanned in a 

Typhoon 9410 imager (GE Healthcare, USA). The radioactive signal corresponding 

to native actin72 was quantified using Image Quant 5.2 (Molecular Dynamics). 

Rhodanese binding assay 

 0.25 µM Mm-CpnWT and Mm-Cpn∆lid, respectively, were incubated in Cpn-buffer. 

Purified [35S]-rhodanese, denatured in 6 M urea94 was rapidly diluted 1:100 to a final 

concentration of 26 µM into the assay. After incubation for 15 min at 4°C, 

chaperonin-bound rhodanese was detected by native gel electrophoresis as described 

for TRiC48. The migration behavior of the chaperonin proteins was analyzed by 

Coomassie staining of the gel. To visualize co-migration of [35S]-rhodanese, the gel 
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was exposed on a phosphor storage screen (Kodak, USA), which was scanned in a 

Typhoon 9410 imager (GE Healthcare, USA). 

Preparation of EL-trap 

The GroEL-trap was prepared essentially as described98. 0.4 µM purified GroEL 

protein was incubated in a buffer composed of 25 mM MOPS pH [7.2], 75 mM KCl, 

5 mM MgCl2, 1 mM DTT with 1.5% glutaraldehyde at 25°C for 45 min. The reaction 

was applied to a P(30) gel-filtration spin-column (Bio-Rad, Hercules, CA, USA) 

equilibrated in buffer A in order to achieve buffer exchange. Aliquots of the resulting 

EL-trap were frozen in liquid nitrogen.  

ATPase assay 

ATP hydrolysis by wild-type chaperonins and chaperonin variants was measured at 

25 ºC for TRiC and cTRiC and at 37ºC for Mm-CpnWT, Mm-Cpn∆lid, and Mm-

CpnD386A in the respective ATPase buffer in the presence of 1 – 1000 µM α- [32P]-

ATP. After 5 minutes of pre-incubation, the reaction was started by mixing 5 µl of α- 

[32P]-ATP (0.01 µCi/µl) solution with 20 µl of 1.25-fold concentrated reaction mix. 

At the indicated time points, 2 µl samples were taken and transferred onto PEI-

cellulose F TLC plastic sheets (EMD Chemicals Inc.). The plates were developed in a 

solvent system containing 1 M LiCl and 0.5 M formic acid in H2O, air-dried, and 

exposed to a phosphor screen (Kodak). After scanning the screen in a Typhoon 9410 

imager, the amount of α- [32P]-ADP was quantified using Image Quant 5.2. 

ATPase assays of TRiC in the presence of denatured actin were performed in the 

same way with the following modification: to generate TRiC-actin complexes, 300 

µM actin (Sigma) denatured either in 6M guanidin/HCl or 8 M urea was diluted 1:100 

to a reaction mix containing 0.25 µM purified TRiC. After 15 min incubation at 4ºC, 

samples were shifted to 30ºC and the ATPase reaction was started as described above.  

Additionally, 10 µl of the reaction mix was analyzed by 12 % SDS-PAGE.  

Cross-link of α-[32P]-8-N3-ATP to TRiC and separation of subunits by RP-HPLC 

To generate TRiC 8-N3-ATP complexes, 2 µM TRiC in buffer A (50 mM Tris-HCl 

[pH 7.4], 50 mM KCl, 10 mM MgCl2, 10% glycerol) were pre-incubated with 10 µM 

α-[32P]-8N3-ATP (8 mCi/µmol) or 0.2, 0.5, 1 and 2 mM α-[32P]-8-N3-ATP (0.8 

mCi/µmol), respectively. To trap TRiC in the closed conformation, the transition state 
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analog ADP-AlFx was generated by supplementing the reaction with 1 mM α-[32P]-8-

N3-ATP (8 mCi/µmol), 5 mM Al(NO3)3, 30 mM NaF, 10 mM MgCl2 and incubation 

at 25°C for 30 min. Since the α-[32P]-8-N3-ATP was dissolved in methanol, the 

required volume was initially pipetted on parafilm and allowed to evaporate for 20 

min at 25ºC before it was resuspended in the TRiC-buffer mix. Activation of the 

azido group was achieved by exposing the reaction mix to UV light from a hand-held 

UVGL-25 lamp (UVP Inc., USA) on the short wavelength setting for 2 min from a 

distance of 1 inch with the sample placed on chilled parafilm. Subsequently, the 

activated azido group was quenched with 10 mM DTT for 10 min on ice and the free 

α-[32P]-8-N3-ATP was separated from the cross-linked fraction using a P (30) gel 

filtration spin column (Bio-Rad, Hercules, CA, USA) equilibrated in buffer A. To 

separate the eight different TRiC subunits, TFA was added to a final concentration of 

0.1%, and the sample was loaded on a RP-HPLC C4-column (214TP54, Grace 

Vydac, USA). TRiC subunits elute at 50 % to 60% acetonitril/ 0.1% TFA as 

described86.  Elution of the TRiC subunits was monitored by measuring the 

absorption at 214 nm, and collected fractions were subjected to scintillation counting 

in order to detect co-eluting α-[32P]-labeled nucleotides. 

Filter binding assays 

0.25 µM TRiC or 0.25 µM GroEL in the presence of 0.5 µM GroES, were pre-

incubated in buffer A in the presence of 1 mM DTT and 1 mM α-[32P]-ATP (0.1 

µCi/µmol) for 5 min at 30ºC in case of TRiC and 37ºC in case of GroEL/ES. 

Subsequently, 10 µl of the reaction mix were applied to a protran-nitrocellulose 

membrane (Schleicher & Schuell, USA) placed on a vacuum system. After two brief 

washes with 1 ml of chilled buffer A supplemented with 1 mM DTT, the filter was 

dried at room temperature and subjected to scintillation counting.  This filter-binding 

procedure was repeated four times for each reaction and the average number was 

calculated.  

DNaseI pull-down of native actin 

Selective pull-down of native actin using DNaseI covalently attached to beads was 

performed as described by Thulasiraman et al., (2000)99 with some minor 

modifications. Highly purified DNase I was covalently attached to cyanogen-

bromide-activated Sepharose 4B (GE-Healthcare, USA) as described99. Yeast lysates 
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from puls-chase experiments were diluted into buffer G10’ (20 mM Tris/HCl [pH7.4], 

2 mM CaCl2, 1mM DTT, 10 % glycerol, 10 % formamide, and 0.2 mM ATP), and 

aggregated proteins were removed by centrifugation at 16,000 g for 30 min at 4°C.  

After addition of a 1:1 slurry of DNase I sepharose equilibrated in buffer G10’ the 

samples were rotated at 4°C for 30 min. Subsequently, the DNaseI-coupled beads 

were sedimented by low-speed centrifugation and washed two times in buffer G10’ 

followed by one wash in buffer G10’, containing 40% formamide and two more 

washes in buffer G10’. The beads were resuspended in SDS-sample buffer and heated 

for 5 min at 95°C.  The supernatant of a subsequent low-speed centrifugation was 

loaded on a 15% SDS-PAGE gel, which was exposed on a phosphor storage screen 

(Kodak, USA).  

TRiC Immunoprecipitation 

Yeast lysates from the puls-chase experiment were supplemented with 20 mg/ml BSA 

and 2 µl of anti-CCT polyclonal antibody and incubated on ice for 40 minutes. The 

reactions were further clarified to remove protein aggregates before addition of 10 µl 

of a 1:1 slurry of Protein G Sepharose in TBS. The reactions were rotated for 30 

minutes at 4°C.  Sepharose beads were sedimented by low-speed centrifugation and 

washed twice with TBS + 0.05% Tween and then three times with TBS + 1% Tween.  

Proteins were eluted from the beads by incubation with SDS-sample buffer, separated 

by 12% SDS-PAGE gel, and detected on a phosphor storage screen (Kodak, USA), 

which was scanned in a Typhoon 9410 imager (GE Healthcare, USA).  

Sample preparation for cryo-electron microscopy 

Chaperonin samples were prepared in Cpn-buffer without the addition of glycerol for 

Mm-Cpn and in buffer A without glycerol and PEG 8000 for TRiC/CCT. Samples 

were embedded in vitreous ice as follows: 3 µl of TRiC and cTRiC sample, 

respectively, were placed onto a washed, glow-discharged 200 mesh R2-1 Quantifoil 

continuous carbon grid (Quantifoil Micro Tools GmbH, Jena Germany). The grid was 

blotted and flash-frozen in liquid ethane using a Vitrobot (FEI, USA). Grids were 

stored in liquid nitrogen until imaging.  
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II.10. Bioinformatical Methods 

Image analysis 

SDS-PAGE gels were scanned in a regular document scanner at a resolution of 200 

dpi and further analyzed using the program Photoshop 7.0 (Adobe Systems, San Jose, 

USA). 

Molecular modeling 

The homology model for Mm-Cpn was obtained by submitting the protein sequence 

to the SWISS-Model server100 (http://www.swissmodel.expasy.org). The figures were 

prepared using MacPyMOL (http://www.pymol.org). 

Analysis of autoradiograms 

Phosphor storage screens (Kodak, USA) were scanned in a Typhoon 9410 imager 

(GE Healthcare, USA).  The radioactive signals were quantified using Image 

Quant 5.2 (Molecular Dynamics). 

Analysis of mathematical data 

Analysis of the allosteric properties of TRiC, cTRiC , Mm-CpnWT and MmCpn∆lid 

with respect to ATP was performed by directly fitting the data points to equation (1) 

or (2) as indicated in the corresponding figure legends using Kaleidagraph Version 

4.0 (Synergy Software). 

 (1)       v0 = (vmax(1) + vmax(2) ([S]/K2)m)/(1+(K1/[S])n+([S]/K2)m) 

v0 is the observed initial rate of ATP hydrolysis, [S] is the ATP concentration, vmax(1) 

and vmax(2) are the respective maximal initial rates of ATP hydrolysis by a single ring 

and by both rings of group II chaperonins, n and m are the Hill coefficients for the 

first and second allosteric transition respectively, and K1 and K2 are the respective 

apparent binding constants of ATP to the first and second ring80.  

(2)       v0 = vmax /1+(K1/[S])n 

v0 is the observed initial rate of ATP hydrolysis, [S] is the ATP concentration, vmax is 

the maximal initial rate of ATP hydrolysis, n is the Hill coefficient, and K1 is the 

respective apparent binding constant for ATP. 

To determine whether the allosteric parameters derived above using the Hill equation 

explained the experimental data more accurately than a simple non-allosteric 
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Michaelis-Menten model, the statistical significance of both fits was compared in 

collaboration with Dr. Charles Parnot (Stanford, CA) using an F-test, as implemented 

in  the Prism statistical analysis package (GraphPad Software, Inc.). Briefly, for each 

chaperonin, the fit obtained using equation (2) with a free Hill coefficient (n) value 

was compared with a fit done using equation (2) but the Hill coefficient (n) value 

arbitrarily fixed at 1 (i.e. no allosteric regulation, Michaelis-Menten equation). This 

analysis indicated that the Hill equation shown in Table 1 was significantly better at 

explaining the experimental data than a Michaelis-Menten model (p values of 0.0004 

and <0.0001 for TRiC and Mm-Cpn respectively). A similar approach was used to 

assess the significance of the loss of cooperativity observed upon removal of the lid 

segments in TRiC or Mm-Cpn. Briefly, for both TRiC and Mm-Cpn an F-test was 

used to compare the global fits obtained for the intact and lid-less versions of the 

chaperonin using either two independently fitted n values, or an identical n value for 

both curves. This test indicated that the loss of positive cooperativity measured in the 

fits is statistically significant as the experimental data are best explained by two 

different n values for intact and lidless versions (p values of 0.01 for TRiC vs cTRiC 

and 0.004 for Mm-CpnWT vs Mm-Cpn∆lid).  
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III.  RESULTS 

III.1. The group II chaperonin Mm-Cpn from M. maripaludis 

Biochemical characterization of the cytosolic chaperonin TRiC is compromised by 

methodological limitations, since the protein is purified from bovine tissue. Archaeal 

group II chaperonins like the thermosome from T. thermolitotrophus and the 

chaperonin KS-1 from Thermococcus spec. have proven to be useful model systems 

for structural analyses and both complexes have been crystallized34,35. However, both 

chaperonins are hetero-oligomeric versions and, due to their hyperthermophilic origin 

they depend on high temperatures (55-60ºC) for optimal enzymatic activity75,76. 

Therefore it is complicated to reproduce physiological conditions in vitro. 

We planned to establish the recently introduced chaperonin (Mm-Cpn) from the 

archaeon Methanococcus maripaludis101 as a model system to study group II 

chaperonins in molecular detail. Mm-Cpn consists of eight identical subunits per ring, 

and the protein complex can be heterologously expressed and purified in an active 

form from E. coli101. In contrast to TRiC, Mm-Cpn is therefore amenable for 

mutational analysis. Importantly, Mm-Cpn originates from a mesophilic organism, 

which implies optimal enzyme activity at 37°C. 

Cloning, purification and initial characterization of Mm-Cpn  

The mm-cpn gene was amplified using M. maripaludis genomic DNA as a template 

and cloned in a bacterial expression vector. After heterologous overproduction in 

E. coli, the wild-type Mm-Cpn protein (Mm-CpnWT, WT) was purified as an 

oligomeric complex to apparent homogeneity. 
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Figure 7. The archaeal group II chaperonin Mm-Cpn is purified from E. coli in a correctly 

assembled and enzymatic active form. (A) Schematic illustration of the group II chaperonin 

architecture. (B) Cryo-EM analysis reveals preservation of the chaperonin-like oligomeric assembly in 

Mm-Cpn. Three representative reference-free class averages of a side, tilted, and top view of Mm-Cpn 

are shown. (C) Homology model of a single subunit of Mm-Cpn. The equatorial domain (equ, black) is 

linked to the apical domain (ap, light grey) via the flexible intermediate domain (int, grey). The 

position of D386 is indicated. (D) ATP hydrolysis rate of Mm-Cpn measured at 0.5 mM α-[32P]-ATP. 

(E) Mm-Cpn is able to promote rhodanese folding in the presence of ATP. (F) Mm-Cpn closes its lid in 

the presence of ATP. Different conformational states in the presence or absence of nucleotides were 

detected by a protease sensitivity assay. N-terminal sequencing of bands 1, 2 and 3 revealed the 

respective site of protease cleavage.   
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Cryo-EM analysis confirmed the chaperonin-like oligomeric assembly of 16 subunits 

arranged into two stacked rings (Fig. 1A and B), and confirms that Mm-CpnWT 

displays the same eight-fold symmetry as TRiC. The homology model derived for one 

subunit of Mm-Cpn (Fig. 1C) suggests a three-domain arrangement typical for all 

chaperonin subunits30,34. The equatorial domains (Fig. 1C, eq, black) provide the 

inter-ring contacts and contribute predominantly to the ATP binding pocket. The 

hinge-like intermediate domains (Fig. 1C, int, grey) cover the ATP binding pocket 

from the top and communicate ATP-induced conformational changes to the distal 

apical domain (Fig. 1C, ap, light grey), where the substrate binding sites are located. 

Protrusions (Fig. 1C, ap, black) extend from the very tip of the apical domains in 

every single subunit. 

Apart of its unique structural features, Mm-Cpn exhibited enzymatic activities 

typically observed for chaperonin proteins. As shown in Figure 1D and E 

respectively, Mm-Cpn was able to hydrolyze ATP and to promote ATP-dependent 

folding of denatured rhodanese in vitro.  

The search for intrinsic substrate proteins of Mm-Cpn  

Rhodanese is a 33 kDa mitochondrial protein and has been used for decades as an 

artificial substrate protein to study GroEL activity94,102. Therefore, it appears to be an 

appropriate substrate to investigate the basic folding cycle of Mm-Cpn. However, it 

would be of considerable advantage to identify native substrate proteins of Mm-Cpn 

and develop suitable folding assays. We have undertaken two approaches to detect 

Mm-Cpn-interacting proteins in M. maripaludis lysates prepared from an 

anaerobically grown culture. On one hand, we isolated potential chaperonin-substrate 

complexes by immunoprecipitation of endogenous Mm-Cpn using Mm-Cpn specific 

antibodies (Fig. 8A). In a second approach, we diluted M. maripaludis lysate prepared 

in 6 M guanidine/HCl into a reaction mix containing purified Mm-Cpn protein and 

isolated putative MmCpn-substrate complexes by gel filtration (Fig. 8B). Gel 

electrophoretic analysis of the isolated protein complexes indicated the presence of 

interacting proteins (Fig. 8). We were able to identify the 46 kDa and 50 kDa band 

from the co-immunoprecipiton experiment (Fig. 8A) by mass spectrometry. The 

46 kDa band corresponds to elongation factor 1a (Mm-ElF1a) from M. maripaludis. 

ElF1a promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of the 
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ribosome during protein biosynthesis and would be a suitable substrate protein since 

proper folding could be monitored using a GTPase activity assay. The 50 kDa band 

corresponds to a yet uncharacterized open reading frame (ORF) named MMP0044, 

which is annotated as a predicted hydrolase of the metallo-beta-lactamase superfamily 

(COG0595)103. Both genes were cloned in a bacterial expression vector and the 

proteins are subject to current analysis. 

 

 

Figure 8. Isolation of Mm-Cpn-interacting proteins from M. maripaludis cell lysates. (A) Immuno-

precipitation of endogenous Mm-Cpn allows detection of interacting proteins. Arrows indicate co-

precipitated proteins. Single and double asteriscs indicate the bands that were cut from the gel to 

determine protein identity by mass spectrometry. *46 kDa: Mm-ElF1a, **50 kDa: MMP0044 

(uncharacterized M. maripaludis protein), L.c.= antibody light chain, H.c. = antibody heavy chain. (B) 

Interacting proteins from denatured M. maripaludis lysates co-elute with purified Mm-Cpn protein 

during size exclusion chromatography. Displayed is the Coomassie stain of an SDS-PAGE analysis of 

the high molecular weight fractions corresponding to oligomeric Mm-Cpn protein. Arrows indicate 

interacting proteins. 

Analysis of the conformational cycle in Mm-Cpn 

In order to define the nucleotide requirements for lid closure in Mm-Cpn,we exploited 

the differential protease susceptibility of the lid segments in the open and closed 

states72,104 (Fig. 7F). Mild proteolytic treatment of wild-type Mm-Cpn in the open, 

nucleotide-free state led to specific cleavage within the lid segments (Fig. 7F). N-

terminal sequencing of the 30 kDa fragment revealed that the cleavage site located at 

the tip of the helical protrusion is analogous to the one in TRiC104. The 29 kDa 
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fragment contains the original N-terminus whereas the third, slightly smaller fragment 

(24 kDa) results from the truncation of the first 15 N-terminal amino acids.  

Incubation with ATP but not ADP triggers lid closure resulting in protection of the lid 

segments (Fig. 7F). Of note, incubation of Mm-Cpn with ATP and AlFx results in a 

conformation whereby the apical protrusions in both rings are protected from protease 

digestion (Fig. 7F), as observed for TRiC72.  AlFx is thought to replace phosphate in 

the nucleotide-binding pocket after ATP hydrolysis has occurred. The resulting ADP-

AlFx is a transition state analog that mimics the pentagonal pyramidal state of ATP 

during the hydrolysis reaction105,106. Although the exact nucleotide state of the 

symmetrically closed conformations in both Mm-Cpn and TRiC remains to be 

investigated, this property of group II chaperonins provides a biochemical tool to 

irreversibly lock the folding chambers in the folding-active state.  

ATP hydrolysis is required to generate the folding-active state of Mm-Cpn 

As an attempt to investigate whether ATP binding or ATP hydrolysis induces lid-

closure and to define the ATP-bound conformational state of Mm-Cpn in greater 

detail, we generated an ATPase-deficient version of Mm-Cpn. To this end, the 

conserved Asp-386 residue (Fig. 7C) was replaced by alanine, since the 

corresponding mutation has been shown to interfere with ATP hydrolysis in GroEL69. 

This aspartate residue is located in the intermediate domain and, as apparent from the 

crystal structure of the theromosome34, it interacts with the gamma-phosphate of 

bound ATP. Mm-CpnD386A (D386A) was purified as an oligomeric complex from E. 

coli. Biochemical analysis confirmed that Mm-CpnD386A, although it bound to ATP 

(Fig. 9A), was unable to hydrolyze ATP (Fig. 9B). Of note, Mm-CpnD386A binds two 

times more ATP than the wild type chaperonin as determined by the filter binding 

experiment displayed in Figure 9A. This finding awaits a more detailed analysis but 

it can be hypothesized that ADP generated only in the ATPase-active wild type 

chaperonin binds with lower affinity than ATP and can therefore not be detected in 

the assay applied. Mm-CpnD386A
 was not able to promote folding of denatured 

rhodanese in vitro (Fig. 9C), although it bound denatured rhodanese to the same 

extent as the wild-type protein (Fig. 9C, inset), suggesting that ATP hydrolysis is 

required for chaperonin activity. Analysis of the conformational state of Mm-

CpnD386A in the presence and absence of ATP by the protease protection assay 

described above (Fig.  1F) revealed that ATP binding does not suffice for lid closure 
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(Fig. 9D) as Mm-CpnD386A is not protected from protease cleavage in any of the 

nucleotide states tested. Three-dimensional reconstruction of cryo-EM images 

obtained for Mm-CpnD386A in the presence of ATP (Fig. 9E) confirms that the 

chaperonin resides in the open state upon ATP binding. Accordingly, lid closure in 

Mm-Cpn is mediated by ATP hydrolysis, as observed for the eukaryotic chaperonin 

TRiC72 and the thermosome75. Since Mm-CpnD386A is unable to promote rhodanese 

folding, we propose that the closed conformation corresponds to the folding active 

state in Mm-Cpn.  
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Figure 9. ATP binding to Mm-Cpn does not induce lid closure and is not sufficient to promote 

substrate folding. (A) The Mm-Cpn mutant version Mm-CpnD386A still binds to ATP. Binding of α-

[32P]-ATP to Mm-CpnWT and Mm-CpnD386A respectively in the presence of 2 mM ATP was detected by 

a filter-binding assay. (B) Mm-CpnD386A is unable to hydrolyze ATP. The ATP hydrolysis rate was 

measured at 0.5 mM α-[32P]-ATP. (C) ATP binding is not sufficient to promote rhodanese folding by 

Mm-Cpn. Folding of denatured rhodanese was measured for Mm-CpnWT and Mm-CpnD386A in the 

presence and absence of ATP by a coupled enzyme assay. The inset shows an autoradiogram of [35S]-

rhodanese-chaperonin complexes formed in the presence of EDTA analyzed by 4 % native gel 

electrophoresis. (D) ATP hydrolysis but not ATP binding induces lid closure in Mm-Cpn. 

Conformational changes of Mm-CpnD386A upon incubation with ATP were detected by a protease 

sensitivity assay. Compare to Figure 1 for conformational changes in the wild type version of Mm-

Cpn. (E) Three dimensional structure of Mm-CpnD386A
 incubated with 1 mM ATP obtained by cryo-

EM.
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III.2. The iris-like lid structure of group II chaperonins prevents 

premature release of substrate protein ejected into the central cavity. 

The apical protrusions extending from every single subunit in group II chaperonins 

assemble into an iris-like lid structure upon ATP hydrolysis in the equatorial 

domain72. This distinct structural feature, which is exclusively found in archaeal and 

eukaryotic chaperonins, is absent in the bacterial chaperonin GroEL, in which this 

built-in lid is functionally replaced by the co-chaperonin GroES. In the GroEL-ES 

system, substrate proteins remain bound to the substrate binding sites upon initial 

association of GroES107,108. Substrate release into the central cavity occurs in a 

conformational transition that follows immediately afterwards and is most likely 

accompanied by tight binding of GroES to GroEL. This sophisticated timing 

mechanism107 ensures successful encapsulation of released substrate protein within 

the cavity. It seems challenging for group II chaperonins to achieve a similar type of 

timed substrate release without the help of an external co-factor. It was proposed that 

group II chaperonins might never completely release substrate protein from the 

substrate binding sites during the folding reaction109. Based on our findings that the 

ATPase cycle in Mm-Cpn is very similar to the one in TRiC, the archaeal chaperonin 

appears to be a suitable model system to investigate molecular and mechanistic 

adjustments necessary to use a built-in lid. To this end, we used biochemical 

approaches to address the following three major questions. First: Are the apical 

protrusions required for chaperonin function? Second: Are substrate proteins ejected 

into the central cavity during the folding reaction or do they remain bound to the 

binding sites throughout the ATPase cycle of Mm-Cpn? And in case the substrate is 

released:  Does the iris-like lid provide a functional barrier required to encapsulate 

substrate protein.  

The apical protrusions are required for efficient substrate folding in Mm-Cpn 

To study the role of the lid segments, we generated the mutant version Mm-Cpn∆lid by 

replacing the apical protrusions (I241-K267) with a short linker (Fig. 10). As shown 

in Figure 10B, Mm-Cpn∆lid hydrolyzes ATP with a rate comparable to that of the 

wild-type chaperonin. However, we cannot observe potential conformational changes 

by the protease protection assay employed for the wild-type protein (Fig. 7F) and the 
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Figure 10. The built-in lid couples ATP hydrolysis to substrate folding in archaeal group II 

chaperonins. (A) Homology model of a single subunit of Mm-Cpn∆lid (∆lid). The equatorial domain 

(equ, black) is linked to the apical domain (ap, light grey) via the flexible intermediate domain (int, 

grey). A short linker replaces the apical protrusions. (B) Deletion of the lid structure does not affect 

ATPase activity in Mm-Cpn. ATP hydrolysis by Mm-Cpn∆lid in comparison to Mm-CpnWT was 

measured at 0.5 mM α-[32P]-ATP. (C) Mm-Cpn∆lid is protected against proteolysis in agreement with 

deletion of the protease target sequence in the apical protrusions. The new occurring fragments 

between 55 and 45 kDa in the reaction of ∆lid with protease are the result of N- and C-terminal 

cleavage events. All three fragments (1, 2, and 3) share the same N-terminus starting with tyrosine-15 

as determined by N-terminal sequencing. The 29 kDa band in the lane with ∆lid in the presence of 

protease corresponds to proteinase K (Prot K) (D) Mm-Cpn∆lid cannot efficiently promote rhodanese 

folding in the presence of ATP. The inset shows an autoradiograph of [35S]-rhodanese-chaperonin 

complexes formed in the presence of EDTA analyzed by 4 % native gel electrophoresis. 
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ATPase-deficient mutant since (Fig. 9D) the cleavage site is absent in Mm-Cpn∆lid. 

Therefore, no internal digestion is observable even in the absence of nucleotide (Fig. 

10C). Instead cleavage events occurring in the C- and N-terminal regions are 

unmasked in this mutant form (Fig. 10C).  Those regions located in the equatorial 

domain (Fig. 10A) extend into the cavity and are thought to constitute the septum 

between the two rings34,35. Intriguingly, nucleotide binding to Mm-Cpn seems to 

induce a conformational change in those regions, since no proteolytic fragments are 

detectable in the presence of ATP, ATPAlFx, and ADP (Fig. 10C). N-terminal 

sequencing of the three 45 to 55 kDa fragments occurring in the absence of nucleotide 

revealed that they all contain the same N-terminal 15 amino acids, starting with 

methionine-1 and, therefore, differ in the length of their C-terminal regions. 

Interestingly, the lid-less version of Mm-Cpn, although it still binds to substrate 

protein (Fig. 10D, inset), is unable to promote rhodanese folding in the presence of 

ATP to the same extent as the wild-type protein (Fig. 10D). We therefore conclude 

that the apical protrusions are required for an efficient catalytic cycle in Mm-Cpn. 

Mm-Cpn ∆lid is unable to encapsulate substrate protein within the central cavity 

A fraction of denatured rhodanese is capable to re-fold spontaneously under 

conditions were aggregation is minimized (e.g. high dilution)110. The residual 50% of 

folded rhodanese in the experiment described above (Fig. 10C) could indicate that 

Mm-Cpn∆lid releases unfolded rhodanese in the presence of ATP to some extent and 

therefore supports spontaneous rhodanese re-folding. If this assumption proves to be 

correct it would indicate that the lid-less version of Mm-Cpn is not able to 

encapsulate substrate protein. 

To test this possibility we performed a rhodanese binding experiment (Fig. 11). Wild-

type and lid-less chaperonin proteins were incubated with radioactively labeled 

denatured rhodanese in the absence of nucleotide to achieve stable complex 

formation. The complex was purified by anion-exchange chromatography using a 

Mono-Q column (1 ml, Pharmacia) in order to remove unbound substrate protein 

(Fig. 11A). Subsequently the purified complex was incubated in the presence or 

absence of nucleotide, and rhodanese binding was analyzed by native gel 

electrophoresis (Fig. 11B, left panel). Figure 11B shows the autoradiograph of the 

corresponding native gel. Although Mm-CpnWT remains stably associated with [35S]-
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rhodanese even in the presence of ATP the rhodanese-chaperonin complex is 

destabilized in case of the lid-less chaperonin version.  

To analyze the fraction of released rhodanese quantitatively, we included the protein 

GroEL-Trap (EL-trap) into the reaction (Fig. 11B, right panel). EL-trap is an 

internally cross-linked and thus inactive version of the bacterial chaperonin GroEL, 

generated by incubation of the purified protein with glutaraldehyde98. It has proven to 

be a useful tool to distinguish natively folded substrates (e.g. rhodanese) from 

unfolded conformational states by irreversibly capturing exclusively denatured 

substrate in the reaction mix98. Conveniently, EL-trap can be separated from Mm-Cpn 

by native gel electrophoresis allowing a comparative analysis of both [35S]-rhodanese 

complexes (Fig. 11B, right panel). As apparent from Figure 11B, [35S]-rhodanese is 

quantitatively transferred from Mm-Cpn∆lid
 to El-trap in the presence of nucleotide, 

indicating that Mm-Cpn∆lid
 releases rhodanese in an unfolded state during the ATPase 

cycle. In the case of the wild-type chaperonin, only 50% of [35S]-rhodanese is 

released as non-folded protein during the folding cycle and accessible for the EL-trap, 

whereas the other fraction remains associated with Mm-Cpn and is protected from 

EL-trap by encapsulation. It cannot be accounted for the fraction of folded rhodanese 

in this assay as native rhodanese does not enter the native gel under the 

chromatographic conditions required to analyse Mm-Cpn. 

We conclude from those results that the helical protrusions of group II chaperonins 

assemble into an iris-like structure that indeed functions as a lid on top of the cavity 

and is necessary to encapsulate substrate proteins. Furthermore, it appears that 

rhodanese gets released from the binding sites during the ATP-induced 

conformational cycle of Mm-Cpn, arguing against a folding mechanism where the 

substrate remains associated with the binding sites during the folding cycle.  
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Figure 11. Mm-Cpn∆lid is unable to encapsulate substrate protein in the central chamber. (A) To 

study chaperonin-rhodanese complexes at different nucleotide conditions the complex was formed and 

purified by anion-exchange chromatography to remove all unbound rhodanese. (B) Mm-Cpn∆lid 

releases bound substrate in an unfolded conformational state upon incubation with ATP. Purified 

complexes of Mm-CpnWT and Mm-Cpn∆lid respectively and [35S]-rhodanese were incubated with ATP 

or EDTA in the absence (left panel) or presence of an inactivated GroEL version (EL-trap) that 

irreversibly binds to denatured substrate proteins and functions as a trap for denatured rhodanese. The 

reactions were analyzed by native gel electrophoresis and subsequent autoradioagraphy. 

 

ATP hydrolysis in Mm-Cpn results in the release of bound substrate protein 

We next investigated during which step in the ATPase cycle Mm-Cpn releases 

substrate protein from the binding sites. To this end, we constructed a double-mutant 

version of Mm-Cpn, namely Mm-Cpn∆lid/D386A (Fig. 12A), deficient in ATP 

hydrolysis and unable to form an iris-like lid structure. Accordingly, this mutant was 

not able to hydrolyze ATP (Figure 12B) and behaved like Mm-Cpn∆lid
 in the protease 

protection assay (Fig. 12C).  
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Figure 12. In the double mutant Mm-Cpn∆lid/D386A
 the biochemical properties of both single 

mutant versions are combined. (A) Homology model of a single subunit of Mm-Cpn∆lid/D386A 

(∆lid/D386A). The equatorial domain (equ, black) is linked to the apical domain (ap, light grey) via the 

flexible intermediate domain (int, grey). A short linker replaces the apical protrusions. Aspartate-386 is 

replaced by alanine. (B) The Mm-Cpn mutant version Mm-Cpn∆lid/D386A is unable to hydrolyze ATP. 

The ATP hydrolysis rate was measured at 0.5 mM α-[32P]-ATP. (C) Mm-Cpn∆lid/D386A is protected 

against protease digestion comparable to Mm-Cpn∆lid (Fig. 10C). The 29 kDa band in the lane with ∆lid 

in the presence of protease corresponds to proteinase K (Prot K). (D) ATP hydrolysis by Mm-Cpn is 

required to promote rhodanese folding. Mm-Cpn∆lid/D386A cannot catalyze refolding of denatured 

rhodanese in vitro. 
 

Interestingly, Mm-Cpn∆lid/D386A did not support folding of denatured rhodanese (Fig. 

12D) indicating that the ATP hydrolysis activity is required for the residual folding 

activity in Mm-Cpn∆lid (Fig. 10D). In agreement with this observation, Mm-
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Cpn∆lid/D386A did not release rhodanese upon incubation with nucleotide (Fig. 13, left 

panel). Consequently, no denatured rhodanese was captured by the GroEL-trap in 

levels above background (Fig. 13, right panel). As a control experiment, we carried 

out the same rhodanese binding analysis with the ATPase-deficient mutant Mm-

CpnD386A (Fig. 13).  

 

 
 
Figure 13. ATP binding to Mm-Cpn is not sufficient to trigger substrate release. The experimental 

setup is identical to the one described in Figure 11 but the two mutant versions Mm-Cpn∆lid/D386A and 

Mm-CpnD386A were analyzed. Purified complexes of Mm-Cpn∆lid/D386A and Mm-CpnD386A respectively 

and [35S]-rhodanese were incubated with ATP or EDTA in the absence (left panel) or presence of 

GroEL-trap (EL-trap) that irreversibly binds to denatured substrate proteins and functions as a trap for 

denatured rhodanese. The reactions were analyzed by native gel electrophoresis and subsequent 

autoradioagraphy. 

 

Taken together, the data strongly suggest that ATP hydrolysis presents a critical step 

during the ATPase cycle in group II chaperonins, resulting not only in lid closure but 

also in ejection of substrate protein into the central folding chamber. Of note, the 

corresponding conformational changes of the apical protrusions and substrate binding 

sites can occur independently of each other, since substrate release is still observed in 

the lid-less chaperonin version Mm-Cpn∆lid.  
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Substrate binding sites are hidden in the closed conformational state induced by 

ATP hydrolysis 

The substrate binding sites in TRiC have been mapped recently86 and were found to 

locate to a position similar to that in GroEL within the groove between the two distal 

helices in the apical domain. It has been shown that the substrate binding sites in the 

double-closed conformation of TRiC86 are not accessible from the outside.  

In order to confirm those results for the wild-type chaperonin Mm-Cpn and to prove 

that the substrate binding sites are completely distorted in the folding-active state and 

neither available from the outside of the complex nor within the central chamber, we 

trapped MmCpnWT and Mm-Cpn∆lid in a conformation in which both rings are closed 

by incubation with ATP and AlFx. Interestingly, the apical protrusions are not 

required to achieve the double-closed conformation since Mm-Cpn∆lid migrates, 

comparable to the wild-type protein, as a more compact conformational species in a 

native gel upon incubation with ATP and AlFx (Fig. 14, lane 2 and 5). However, in 

agreement with the observation that ATP hydrolysis is required for lid closure, we are 

not able to generate the fast-migrating species with the double mutant Mm-

Cpn∆lid/D386A (Fig. 14, lanes 3 and 6).  

 

 
 

Figure 14. Mm-CpnWT and Mm-Cpn∆lid
 but not ATPase deficient mutant versions can be trapped 

with ATP and AlFx in a closed conformation that migrates faster on a non-denaturing gel. Wild-

type and mutant chaperonin versions were incubated with EDTA, ATP or ATP plus AlFx respectively 

and subsequently analyzed by native gel electrophoresis followed by Coomassie staining. The 

proposed conformational state of the differently migrating chaperonin species is indicated on the left. 

 

To investigate the availability of the substrate binding sites in the state that mimics 

the folding-active conformation, we included [35S]-rhodanese at two different steps 
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within the experimental procedure (Fig. 15A). First, we generated the chaperonin-

substrate complex prior to addition of the nucleotide analog (Fig. 15A, left panel). In 

the second case, we first incubated with ATP and AlFx and subsequently incubated 

the closed complexes with denatured [35S]-rhodanese (Fig. 15A, right panel). In both 

cases, we analyzed formation of a chaperonin-rhodanese complex by native gel 

electrophoresis (Fig. 15).  

Intriguingly, incubation of the Mm-Cpn-rhodanese complex with ATP and AlFx 

results in co-migration of [35S]-rhodanese with the fast-migrating species of Mm-

CpnWT (Fig. 15A, lane 1). This proves that the wild-type chaperonin encapsulates 

rhodanese within its central cavity.  However, no rhodanese is associated with the 

fast-migrating species of Mm-Cpn∆lid, although the majority of Mm-Cpn∆lid protein 

adopts the more compact double-closed conformation (Fig. 15A, lane 2) after 

incubation with ATP and ALFx. [35S]-rhodanese exclusively co-migrates with the 

small fraction of Mm-Cpn∆lid in the open, slower migrating conformation, which is 

hardly detectable in the Coomassie-stained gel (Fig. 15A, lane 2). The double mutant 

Mm-Cpn∆lid/D386A remains tightly associated with [35S]-rhodanese even in the presence 

of ATP and ALFx (Fig. 15A, lane 3), corroborating the finding that ATP hydrolysis is 

required for substrate release. We can thus provide further evidence that the apical 

protrusions indeed present a structural barrier comparable to a lid on top of the central 

cavity. Furthermore, as apparent from Figure 15A (lanes 4-6) denatured rhodanese 

can neither bind to wild-type chaperonin nor to the lid-less chaperonin version 

trapped in the double closed conformational state by incubation with ATP and Alfx. 

However, rhodanese associates with Mm-Cpn∆lid/D386A. This observation strongly 

suggests that ATP hydrolysis induces a conformational change in the substrate 

binding sites that makes them unavailable from both the outside and the inside of the 

complex.  
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Figure 15. The substrate binding sites are occluded in the folding active, closed state of Mm-Cpn. 

(A) (i) Experimental approach. (ii) Coomassie stained native gel. In contrast to Mm-Cpn∆lid/D386A
 (lane 

3 and 6) Mm-CpnWT (lane 1 and 4) and Mm-Cpn∆lid (lane 2 and 5) can be trapped in the double closed 

conformational state that migrates faster on a native gel (compare to Fig.14). (iii) Autoradiography of 

the native gel. (B) Formation of a fuctional lid-structure is required to encapsulate rhodanese in the 

presence of ATP and Alfx. Encapulation of rhodanese was determined by a protease protection assay. 

PK = proteinase K. 
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III.3. Lid formation triggers cooperativity in group II chaperonins 

The chaperonin folding cycle is critically dependent on the synchronized action of 

individual subunits61-63. The unique allosteric behavior observed in both group I and 

group II chaperonins61,64,65,79,80 is described as nested cooperativity, since positive 

cooperative transitions within each ring are nested into overall negative cooperativity 

between them. In the absence of ATP, both chaperonin rings are predominantly in the 

so-called T (“tense”)-state, which is characterized by low affinity for ATP. Binding of 

ATP to one subunit induces the transition of the corresponding ring, the so-called cis-

ring, from the T- to the R (“relaxed”)-state, resulting in an increased affinity for ATP 

and cooperative binding of ATP within this cis-ring61. Despite this positive 

cooperativity between subunits of each individual ring, there is a negative 

cooperativity observed between the two rings61. As a consequence binding of ATP to 

the cis-ring has an inhibitory effect on ATP binding to the opposite trans-ring. 

Therefore, chaperonins undergo two allosteric transitions upon increasing ATP 

concentrations. The first allosteric transition occurs at a relatively low ATP 

concentration and corresponds to ATP binding and hydrolysis in the cis-ring. The 

second allosteric transition, by contrast, has its midpoint at a much higher ATP 

concentration, reflecting the lower affinity of the second ring for ATP. At high ATP 

concentrations, the negative cooperativity can be overcome and both rings are in the 

R-state with high affinity for ATP61. 

The molecular basis of allosteric regulation in group I chaperonins has been 

extensively studied. Positive and negative cooperativity in GroEL is established 

independently of the GroES lid60,64, although GroES profoundly influences the 

conformational changes of GroEL58-60,62,111. In contrast, little is known about the 

molecular basis of allostery in eukaryotic and archaeal chaperonins. In group II 

chaperonins, all eight apical protrusions within a ring must interact tightly to form the 

iris-like lid34. Given the overall conservation of the chaperonin structure, 

communication between subunits could be independent of the lid segments, as 

observed in GroEL64. Alternatively, the apical protrusions themselves could 

synchronize the subunits within one ring, thus coordinating lid formation. To examine 

the role of the built-in lid in the folding cycle of group II chaperonins, we assessed the 
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effect of eliminating the lid from the eukaryotic chaperonin TRiC and the archaeal 

chaperonin Mm-Cpn (chapter III.2.)101,112. 

The built-in lid in TRiC couples ATP hydrolysis to substrate folding 

As presented in chapter III.2 (Fig. 10) of the present study, the built-in lid of Mm-Cpn 

was dispensable for both ATP hydrolysis and substrate binding. However, deletion of 

the lid impaired the ability of Mm-Cpn to fold rhodanese in the presence of ATP.  

Clipped TRiC (cTRiC) is a version of TRiC generated by mild Proteinase K treatment 

in the absence of nucleotide72,104 (Fig. 16A,B). Since the cleavage occurs within the 

helical protrusions104, every single subunit gets cut in two halves of similar size, 

which can be separated under denaturing conditions (Fig. 16B). Cryo-EM analysis 

revealed that the double-ring architecture characteristic of chaperonins is preserved in 

cTRiC (Fig. 16C), consistent with previous findings72. Furthermore, both the 

substrate-binding and the ATPase domains retain their integrity in cTRiC, since it 

binds non-native substrates such as [35S]-actin with an efficiency comparable to that 

of TRiC (Fig. 16D compare lanes 2 and 4), and can also effectively hydrolyze ATP 

(Fig. 16E). Strikingly, cTRiC is not able to promote actin folding upon incubation 

with ATP (Fig. 16D, compare lanes 3 and 5). We conclude that an intact lid is 

required to couple ATP hydrolysis with productive substrate folding in the eukaryotic 

chaperonin.  

Taken together, our data suggest that, despite their evolutionary distance, the 

mechanism of closure and the function of the lid are conserved among all group II 

chaperonins. In both archaeal and eukaryotic chaperonins, lid closure is triggered by 

ATP hydrolysis. Furthermore, in both cases the lid is required to fold a bound 

substrate upon ATP hydrolysis (Fig. 10D and Fig. 16D). The characterization of lid-

less variants of TRiC and Mm-Cpn provided a unique opportunity to define how the 

built-in lid regulated the ATP-driven conformational cycle of group II chaperonins. 
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Figure 16. The built-in lid couples ATP hydrolysis to substrate folding in the eukaryotic 

chaperonin TRiC. (A and B) cTRiC is a lid-less version of TRiC generated by a selective cleavage 

within the apical protrusions. Prot K: Proteinase K (B) SDS-PAGE analysis followed by Coomassie 

staining of TRiC and cTRiC. Note that cleavage in the apical protrusion of each of the eight different 

55–60 kDa subunits of TRiC results in sixteen 24–36 kDa fragments under denaturing conditions. (C) 

Cryo-EM analysis reveals preservation of the chaperonin-like oligomeric assembly in cTRiC. Two 

representative reference free class averages of TRiC (i) and cTRiC (ii) in top and a side view are 

shown. (D) cTRiC is able to bind denatured [35S]-actin but cannot promote [35S]-actin folding in the 

presence of ATP. Lane 1: native [35S]-actin migration standard. (E) ATP hydrolysis by TRiC and 

cTRiC measured at 0.6 mM α-[32P]-ATP. 

 

The built-in lid establishes allosteric coupling between subunits within one ring  

In group II chaperonins, all eight apical protrusions within a ring must interact tightly 

to form the iris-like lid34. Accordingly, ATP should produce a concerted 

conformational change in all subunits of one ring. Given the overall conservation of 

the chaperonin structure, communication between subunits could be independent of 
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the lid segments, as observed in GroEL, where positive intra-ring cooperativity is 

independent of GroES64 (Fig. 17A, Model 1). Alternatively, the apical protrusions 

themselves could synchronize the subunits within one ring, thus coordinating lid 

formation (Fig. 17A, Model 2). These models make distinct predictions for the 

contribution of the built-in lid to positive intra-ring cooperativity. While coupling 

between subunits would be retained in lid-less chaperonin variants according to the 

first model, it would be lost according to the second one. To distinguish between 

these possibilities, we compared the intra-ring cooperativity in wild-type (Fig. 17B, 

C) and lid-less (Fig. 17E, F) variants of both TRiC and Mm-Cpn. The allosteric 

properties of these chaperonins were determined by measuring the initial rates of ATP 

hydrolysis as a function of ATP concentration (Fig. 17). The first allosteric transition 

of TRiC and Mm-Cpn results from intra-ring communication80,112.  Accordingly we 

assessed coupling between subunits in one ring by comparing the kinetics of these 

chaperonins at ATP concentrations below 100 µM80,112. The kinetics obtained for both 

intact TRiC and Mm-CpnWT (Fig. 17B, 17C) were sigmoidal indicating positive 

cooperativity between the subunits of one ring (p<0.001 for both proteins). The 

apparent ATP binding constant (K1) and the Hill coefficient (n) for this first allosteric 

transition as well as the maximal turnover rate (vmax), were calculated by fitting the 

data points to the Hill equation (equation 1 and Table 6). For TRiC, the values for K1 

and n are 10.1 (± 0.5) µM and 2.0 (± 0.2) respectively, in very good agreement with 

previous observations80. Comparison of the respective values for the catalytic rate 

(kcat, calculated to be 0.04 sec-1 for TRiC and 0.7 sec-1 for Mm-CpnWT) reveals that the 

archaeal chaperonin is a much more efficient ATPase than TRiC - a property Mm-

Cpn shares with its bacterial counterpart GroEL64. Notably, although Mm-Cpn 

hydrolyzes ATP much more rapidly than TRiC, the affinity of the archaeal chaperonin 

for ATP (K1 = 5.8 ± 0.3 µM) as well as its degree of allosteric coupling (n = 1.9 ± 0.1) 

were very similar to those of TRiC (Table 6). Thus, for both chaperonins, positive 

intra-ring cooperativity drives a concerted conformational change within all subunits 

of one ring that results in lid closure (Fig. 17D). This allosteric switch converts the 

subunits of one ring from a "tense" T state, with low affinity for ATP, to a "relaxed" 

R state with high affinity for ATP61 (Fig. 17D). 
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Figure 17. The built-in lid is required for positive cooperativity between the subunits of one ring. 

(A) Two different models could account for positive cooperativity in group II chaperonins. On the one 

hand intra-ring coupling could be similar to GroEL (Model 1). On the other hand the lid segments 

could be required to orchestrate synchronized action between subunits in one ring (Model 2). To 

distinguish between the two possibilities we investigate intra-ring coupling in the lid-less versions of 

group II chaperonins. (B and C) Wild-type eukaryotic and archaeal chaperonins display positive 

cooperativity within the subunits of one ring. Initial velocities of ATP hydrolysis by TRiC (B) and 

Mm-CpnWT (C) were plotted against the corresponding ATP concentrations (1 – 100 µM ATP). The 

data where fitted to the Hill equation (equation 2, see methods). Each data point corresponds to the 

average of at least three independent experiments. The error bars represent the standard error of 

measurements (SEM). (D) Model of the ATP-induced conformational change of one ring of TRiC and 

Mm-CpnWT. Positive cooperativity causes subunits in one ring to undergo a concerted conformational 

change leading to lid closure. (E and F) Allosteric coupling of subunits within one ring is impaired in a 

lid-less chaperonin. Initial velocities of ATP hydrolysis by cTRiC (E) and Mm-Cpn∆lid (F), plotted 

against the corresponding ATP concentrations (1 – 100 µM ATP) and fitted to equation 2 as above. 

Each data point corresponds to the average of at least three independent experiments. The error bars 

represent the standard error of measurement (SEM). (G) Model of the ATP-induced conformational 

changes in lid-less cTRiC and Mm-Cpn∆lid. No allosteric coupling between the subunits can be 

observed, indicating that the subunits bind to ATP independently of each other.  

 

 

The allosteric coupling of lid-less variants of TRiC and Mm-Cpn was examined next 

(Fig. 17E, F).  Loss of the lid segments did not affect the overall affinity for ATP, K1, 

and the maximal hydrolysis rate, vmax, of either chaperonin (Table 6). However, there 

was a dramatic loss in positive cooperativity between the subunits (Fig. 17E, F and 

Fig. 18), as indicated by significantly reduced values for the Hill coefficients (n) 

(Table 6; p=0.01 for nTRiC vs ncTRiC, p=0.005 for nMm-CpnWT vs nMm-Cpn∆lid). Of note, 

deletion of the entire apical protrusion in Mm-Cpn (Fig. 17F) has a similar effect on 

the positive cooperativity as cleaving the lid-forming segments in TRiC (Fig. 17E). 

These lid-less chaperonins hydrolyze ATP with Michaelis-Menten kinetics typical of 

enzymes without allosteric regulation, indicating that the subunits within one ring 

bind ATP independently of each other (Fig. 17G). 

These experiments indicate that the presence of intact lid segments is important to 

establish positive cooperativity within the subunits of one ring. Thus, the built-in lid 

is required to synchronize the ATP-induced conformational change of subunits within 

one ring. 
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Table 6. Parameters defining kinetic properties of Type II chaperonins. 

 TRiC cTRiC Mm-CpnWT Mm-Cpn∆lid 

K1 (µM): 10.1 (+/- 0.5) 16.5 (+/- 1.0) 5.8 (+/- 0.3) 9.0 (+/- 0.6) 

K2 (µM): 593 (+/- 23) naa 562 (+/- 175) na 

nb: 2.0 (+/- 0.2) 1.3 (+/- 0.2) 1.9 (+/- 0.1) 1.3 (+/- 0.1) 

mc 10.8 (+/- 4.2) na 2.9 (+/- 1.8) na 

kcat R/T’ 

(oligomer-1 sec-1): 

 

0.04 

 

0.03 

 

0.7 

 

0.8 

kcat R’/R’ 

(oligomer-1 sec-1): 

 

0.028 

 

na 

 

0.54 

 

na 
a na: not applicable; b n: Hill coefficient of first allosteric transition; c m: Hill coefficient of second 

allsoteric transition. 

 

 

 
 

Figure 18. Direct comparison of the first allosteric transition in wild-type and lid-less chaperonin 

version. The data presented in Figure 17 are displayed from 0 to 25 µM ATP and the overlap of the 

kinetics wild-type and lid-less chaperonin versions is shown. 

 

Negative allosteric coupling between rings affects ATP binding and hydrolysis 

TRiC and Mm-Cpn display a second allosteric transition above 400 µM ATP, which 

results from inter-ring communication80,112 (Fig. 19A,B). These higher ATP 

concentrations overcome the negative cooperativity between the rings and as a result, 

the trans-ring also starts binding and hydrolyzing ATP80,112 (Fig. 19C). 

To examine the nature of inter-ring communication in group II chaperonins, we 

extended our analysis to a broader range of ATP concentrations80. The second 

allosteric transition observed for both TRiC and Mm-Cpn was reflected by a 

decreased hydrolysis rate at higher ATP concentrations (Fig. 19A,B), in contrast to 
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previous measurements for TRiC80. Importantly, similar results were obtained for 

TRiC and Mm-CpnWT. Thus our results probably reflect a general property of group II 

chaperonins.  Since both chaperonins used here were fully competent for substrate 

folding (Fig. 10D and Fig. 16D), the discrepancy with previous TRiC measurements 

could be explained by weakened inter-ring contacts in previous protein preparations, 

which may impair negative cooperativity.   

The observation that the second allosteric transition produces a marked decrease in 

the rate of ATP hydrolysis suggests that in group II chaperonins, negative inter-ring 

communication prevents both ATP-bound rings from hydrolyzing ATP 

simultaneously at an optimal rate. Our findings suggest a model for how nested 

allosteric interactions in group II chaperonins allow them to function as two-stroke 

motors (Fig. 19C). In the absence of nucleotide, the two rings are virtually identical 

and in the symmetrically open T-state (Fig. 19C). At intermediate ATP 

concentrations (Fig. 19C, 0.2 mM ATP), the subunits in one ring (i.e. the cis-ring) 

undergo an allosteric transition to the R-state and bind ATP with positive 

cooperativity65,79. As a result of the negative inter-ring cooperativity, ATP binding to 

the cis-ring induces a conformational change in the subunits of the trans-ring to a T'-

state with lower affinity for ATP. This asymmetric state is characterized by an 

optimal ATPase activity (vmax1). At higher ATP concentrations (Fig. 19C; 1 mM 

ATP), the trans-ring also binds ATP but overall ATP hydrolysis becomes less 

efficient. We propose that this change corresponds to a different state of the enzyme, 

the R’/R’-state, where the negative cooperativity for ATP binding has been overcome 

and both rings are forced to adopt a conformation with a suboptimal ATPase rate 

(vmax2). Strikingly, similar results are observed for both TRiC and Mm-Cpn despite 

their widely different overall catalytic rates and subunit composition, suggesting that 

this type of allosteric regulation is conserved in all group II chaperonins.  
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Figure 19. Negative allosteric coupling between rings affects ATP binding and hydrolysis. (A and 

B) Negative allosteric coupling between rings results in a second allosteric transition occurring at high 

ATP concentrations in wild-type chaperonins. Initial velocities of ATP hydrolysis by TRiC (A) and 

Mm-CpnWT (B) were plotted against the corresponding ATP concentrations (1 – 1000 µM ATP) and 

fitted to equation 2 (see methods). Each data point corresponds to the average of at least three 

independent experiments. The error bars represent the standard error of measurement (SEM). (C) 

Proposed conformational states for group II chaperonins at different ATP concentrations. T/T-state: in 

the absence of nucleotide, both rings reside in the “tense” (T) state, and the lid structure is not formed. 

This T/T complex is characterized by a low affinity for ATP. R/T’-state: at intermediate ATP 

concentrations (0.2 mM ATP) the cis-ring reaches saturation for ATP binding and hydrolysis and 

therefore assumes the R-state. At the same time the trans-ring is rendered in a conformational state T’ 

with low affinity for ATP as a consequence of negative cooperativity between the rings. This 

asymmetric state is characterized by an optimal ATPase activity (vmax1). R’/R’-state: at high ATP 

concentrations (1 mM ATP) the negative cooperativity is overcome and both rings bind and hydrolyze 

ATP simultaneously. The two rings hinder each other, leading to the observed drop in the hydrolysis 

rate vmax, which marks the transition to the R’/R’-state.  

 

Negative allosteric coupling between rings drives a “two-stroke” motor cycle 

The model suggested above predicts the formation of an asymmetric R/T’-state at 

intermediate ATP concentrations and a symmetric R’/R’-state at high ATP 

concentrations. This prediction was tested by exploiting the differential protease 

sensitivity of the lid in the open, T-state and the closed R-state. TRiC (Fig. 20A i) and 
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Mm-Cpn (Fig. 20A ii) were incubated in the absence of nucleotide or in the presence 

of either 0.2 or 1 mM ATP to generate the three states proposed by our model (Fig. 

19C). The gamma-phosphate mimic AlFx was included in the assays to stabilize the 

closed state72,78. As expected, both rings were in the open conformation in the 

nucleotide-free T/T-state (Fig. 20A). In contrast, at high ATP concentrations (Fig. 

20A, 1mM ATP), virtually all the apical lid segments were protected in both TRiC 

and Mm-CpnWT, yielding full length chaperonin, consistent with a R'/R'-state in 

which both rings are closed. Interestingly, incubation with an intermediate ATP 

concentration (Fig. 20A, 0.2 mM) reduced the level of protection of the lid segments 

of either mammalian or archaeal chaperonin to about half of the values obtained at 

high ATP concentrations, consistent with the idea that negative inter-ring 

cooperativity prevents the trans-ring from binding ATP. Importantly, this lower ATP 

concentration yields the maximal ATP hydrolysis rates, suggesting that the 

asymmetric conformation of the chaperonin induced by this ATP concentration is 

optimized for ATP cycling.  

The observation of an asymmetric R/T’ state at intermediate ATP concentrations 

raised the possibility that negative allosteric coupling between rings allows the 

inherently symmetrical group II chaperonins to function as “two-stroke” motors. To 

relate the regulation of ATPase activity to chaperonin function, we compared the 

protein folding activity of both TRiC and Mm-Cpn at either 0.2 or 1 mM ATP (Fig. 

20B, C) TRiC-mediated actin folding was assessed using two independent folding 

assays, non-denaturing PAGE (Fig. 20B i) and protease susceptibility (Fig. 20B ii)72. 

Comparable folding yields and rates were observed at 0.2 or 1 mM ATP (Fig. 20B, 

C i). The protease susceptibility assay can distinguish between released folded actin, 

which yields a protease-resistant actin fragment of 34 kDa, and TRiC-encapsulated 

actin, as lid closure protects the full-length polypeptide (Fig. 20B ii)72. Of note, since 

similar levels of 35S-actin protection were observed at 0.2 and 1 mM ATP, it appears 

that only one ring is functional for substrate folding and encapsulation, even at the 

higher ATP concentrations. Similar results were obtained for Mm-Cpn, as comparable 

yields and rates of rhodanese folding were observed at 0.2 and 1 mM ATP (Fig. 20B 

ii). Thus, the asymmetric R/T’-state supports optimal substrate folding rates. 

Taken together these results support the idea that at intermediate ATP concentrations, 

negative inter-ring cooperativity establishes an asymmetric R/T’-state, with only one 

ring possessing a closed lid. Consistent with our model, structural evidence for an 
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asymmetric cycle of lid closure has been obtained for TRiC83 and for archaeal 

thermosome81,82. Importantly, our analysis provides a rationale as to how allosteric 

regulation of group II chaperonins allows these symmetrical complexes to function as 

a two-stroke machine without the assistance of an external GroES-like cofactor. 

 The second allosteric transition is absent in lid-less group II chaperonins   

To examine the role of the apical lid segments in establishing the negative inter-ring 

cooperativity, we next extended our analysis to cTRiC and Mm-Cpn∆lid (Fig. 21). 

Remarkably, there were significant differences in the kinetics of the lid-less and wild-

type chaperonins. For both the archaeal and the eukaryotic chaperonins, absence of a 

functional lid completely abolished the second allosteric transition at higher ATP 

concentrations (Fig. 21B, C; Table 6; compare to Fig.19A, B for wild-type). We 

conclude that the lid segments not only synchronize subunits within one ring but also 

play an important role in the communication between the rings.  

 



                                                                                                                              Results 

 62

 
 

Figure 20. Group II chaperonins sample two different conformational states at intermediate and high ATP 

concentrations. (A) A biochemical assay to confirm the existence of the different conformational states proposed 

in (Fig. 19C). TRiC and Mm-CpnWT are fully protected from protease cleavage at 1mM ATP-AlFx and therefore 

reside in a symmetrically closed complex, the R’/R’-state. The partial protection pattern at 0.2 mM ATP-AlFx 

indicates the existence of an asymmetrically closed R/T’-state at intermediate ATP concentrations. (B, C) The 

asymmetric R/T’–state of group II chaperonins supports optimal substrate folding. (B) TRiC-mediated [35S]-actin 

folding at 1 mM and 0.2 mM ATP, examined by (i) protease sensitivity and (ii) non-denaturing PAGE. (i) 

Nucleotide-dependent generation of native [35S]-actin can be observed by the occurrence of the 34 kDa proteolytic 

fragment. The full-length actin band (FL-actin) in lane 5 and 6 corresponds to encapsulated substrate protein 

which is protease protected as shown previously72. (ii) About 50 % of bound [35S]-actin was re-folded by TRiC in 
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the presence of 1 mM and 0.2 mM ATP (lane 3 and 4) and in the course of the experiment. Lane 1: native [35S]-

actin migration standard. (C) Substrate folding rates of TRiC and Mm-Cpn at 0.2 and 1 mM ATP (i) Time course 

of actin folding by TRiC in the absence of nucleotide (5 mM EDTA) and in the presence of 0.2 and 1 mM ATP. 

(ii) Time course of rhodanese folding by Mm-CpnWT in the absence of nucleotide (5 mM EDTA) and in the 

presence of 0.2 and 1 mM ATP. 

 

 

 
 
Figure 21. The built-in lid affects inter-ring communication of group II chaperonins. (A) (i) 

Nested allosteric coupling in group II chaperonins. Positive cooperativity within the subunits of one 

ring is nested into negative cooperativity between the two rings. (ii) The role of the lid in inter-ring 

communication was examined by kinetic analysis of lid-less chaperonins at high ATP concentrations. 

(B, C) The second allosteric transition, occurring at high ATP concentrations, is absent in the lid-less 

chaperonin versions. Initial velocities of ATP hydrolysis by cTRiC (B) and Mm-Cpn∆lid (C), 

respectively, were plotted against the corresponding ATP concentrations (1 – 1000 µM ATP) and fitted 

to equation 2 (see methods). Each data point corresponds to the average of at least three independent 

experiments. The error bars represent the standard error of measurement (SEM). 
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III.4. Positive cooperativity in the eukaryotic chaperonin TRiC is a 

sequential event driven by a gradient of affinities for ATP 

To assemble a lid structure from building blocks provided by different subunits, ATP-

induced conformational changes must occur in a synchronized fashion within the 

subunits of one ring. To this end, the subunits are coupled to an allosteric unit by 

intra-ring positive cooperativity in respect to ATP binding. The results presented in 

the previous chapter show that the apical protrusions themselves are required to 

establish positive cooperativity in group II chaperonins. During the positive allosteric 

transition from the T- to R-state in on ring of the bacterial chaperonin GroEL, all 

subunits act in an all or none reaction according to the MWC-model put forth by the 

scientists Monod, Wyman, and Changeux in 1965113. This concerted model of 

allostery postulates that subunits of multimeric enzymes are connected in such a way 

that a conformational change in one subunit is conferred simultaneously to all other 

subunits. Consequently, all subunits must exist in the same conformation at any time. 

However, due to integration of the built-in lid structure to the allosteric network in 

group II chaperonins, positive cooperative transition within the subunits of one ring in 

TRiC and Mm-Cpn might alternatively occur sequentially as described by the KNF-

model proposed by the scientists Koshland, Nemethy, and Filmer in 1966114. This 

sequential model of allostery takes into account asymmetric conformations within the 

allosteric unit, as it would be the case during a domino-like transition around the ring 

of chaperonins. Consequently, the sequential model assumes that the conversion of 

one subunit from the T- to R-state induced by ligand binding does not induce the 

same conformational change to neighboring subunits. Interestingly, genetic analyses 

in S. cerevisiae indicated that the ATP-binding sites of the eight different TRiC 

subunits are not equivalent91. This led to the proposal that ATP binding indeed occurs 

in a sequential cooperative manner, unlike in the homo-oligomeric chaperonin 

GroEL, where ATP binding is a highly concerted allosteric event91,20.  

Since substrate most likely binds to more than one subunit in TRiC86,109,115-117, a 

sequentially occurring conformational change could impact the order with which 

different regions of the polypeptide are released from the binding sites and thereby 

determine the folding pathway of the substrate protein. This would be a mechanistic 
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feature unique to the eukaryotic chaperonin TRiC and could explain why GroEL as 

well as the archaeal group II chaperonin Mm-Cpn can bind to TRiC substrate proteins 

but fail to promote their folding71,84,85. 

A prediction of the sequential model of positive cooperativity in TRiC is that some 

subunits bind ATP with higher affinity than others. Accordingly, the “high affinity” 

subunits will bind ATP at lower ATP concentrations than the “low affinity” subunits. 

In order to determine which specific subunits of TRiC are occupied with ATP at 

different nucleotide concentrations we performed cross-link experiments with α-[32P]-

8-N3-ATP and bovine TRiC. Subsequently, we determined which specific subunit 

bound ATP by separation of all subunits by RP-HPLC. 

A gradient of affinities for ATP binding in TRiC 

TRiC is a unique member of the chaperonin family since it is assembled from eight 

different subunits. The highest degree of sequence similarity between the subunits is 

found in regions of the equatorial and intermediate domains that constitute the ATP 

binding pocket118. In theory, all subunits within the TRiC complex would therefore be 

expected to have similar affinities for ATP, which is not compatible with the 

proposed sequential model of positive cooperativity91,20,119.  

In order to test whether all subunits display the same or different affinities for ATP, 

we cross-linked ATP to TRiC using α-[32P]-8N3-ATP at low, intermediate, and high 

ATP concentrations (Fig. 22). Note, that TRiC displays similar affinities for 8-N3-

ATP and ATP (Fig. 23). The photoactive azido (-N3) group generates a highly 

reactive nitrene upon UV irradiation, which inserts either into the peptide backbone or 

into the amino acid side chain to which it is bound (ALT Inc., USA). After cross-

linking, the eight different TRiC-subunits were separated by reversed-phase HPLC 

(RP-HPLC)54 (Fig. 22, black profiles). Detection of co-eluting radioactivity allowed 

the assignment of the subunits covalently attached to nucleotide (Fig. 22, red 

profiles).  

At low ATP concentrations (Fig. 22C, 10 µM ATP), only CCT5 and to some extent 

also CCT4 could be cross-linked to ATP, at 0.2 mM ATP by contrast the cross-link 

intensity to CCT4 increased (Fig. 22D), and at 0.5 mM ATP, also CCT1 and to some 

extent CCT2 were cross-linked to ATP (Fig. 22E). Since all subunits can be cross-

linked to ATP at saturating ATP concentrations (Fig. 22F, 2 mM ATP), it was 
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assumed that the UV-induced cross-link reaction between TRiC and 8-N3-ATP was 

equally favored in all subunits.  

We therefore conclude that there is a gradient of affinities for ATP established within 

the different subunits of TRiC (Fig. 24). At low ATP concentration, ATP 

predominantly binds to CCT5 and CCT4, which therefore possess the highest affinity, 

followed by CCT1 and CCT2. CCT3, 7, 8 and 6 are only occupied with nucleotide at 

high ATP concentrations and are therefore considered to have a low affinity for ATP.  
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Figure 22.  A gradient of affinities for ATP binding in TRiC. 

(A) Experimental procedure. *ATP = α-[32P]-8-N3-ATP. (B) Initial velocities of the ATP hydrolysis 

rate of TRiC blotted against the corresponding ATP concentrations (compare Fig. 19A). The arrows 

point to the ATP concentrations for at which the cross-link experiments were performed. (C-F) The 

subunits in TRiC display different affinities for ATP. Separation of the subunits by RP-HPLC after 

cross-link of α-[32P]-8-N3-ATP at 10 µM ATP (C), 0.2 mM ATP (D), 0.5 mM ATP (E) and 2 mM 

ATP (F). The UV-profile of the eluting subunits is shown in black whereas the specific radioactivity 

detected in each fraction is illustrated as the red profile. The numbers above every pike refer to the 

identity of the subunit (CCT1-8) as determined by mass-spectrometry86.  Red numbers imply that the 

corresponding subunit co-elutes with radioactively labeled nucleotide.    
 

 
 

Figure 23. TRiC has similar affinity for 8-N3-ATP and ATP. ATP hydrolysis of TRiC was 

measured at 100 µM α-[32P]- ATP in the presence of different additives as indicated. 

 

 

 
 

Figure 24. A gradient of affinity for nucleotide binding within the different TRiC subunits. 

Summary of the cross-link experiment shown in Figure 22. The model of the arrangement of the 

different TRiC subunits is taken from Liou and Willison, 1997137. The subunits are colored in different 

shades of red according to their apparent affinities for nucleotide. Dark red = high affinity, light red = 

intermediate affinity, white = low affinity. 
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Not all subunits in TRiC cross-link to ATP at saturating conditions 

Surprisingly, even at 1 mM ATP, a saturating ATP concentration as apparent from the 

equilibrium kinetics displayed in Figure 22B, ATP predominantly co-eluted with 

CCT5, 4, 1 and 2, whereas it cross-linked only weakly to CCT3 and not detectably to 

CCT6, CCT7 and CCT8 (Fig. 25A). To confirm that this results indeed corresponds 

to unequal occupation of the TRiC subunits with ATP and is not due to high off-rates 

of the ATP-hydrolysis products from CCT3, 6, 7 and 8, TRiC was incubated with 1 

mM α-[32P]-8N3-ATP + AlFx prior to UV irradiation (Fig. 25B). Addition of the 

gamma-phosphate mimic AlFx allowed to irreversibly trap TRiC in a conformational 

state in which both rings adopt the nucleotide-induced closed conformation72. 

Intriguingly, even under those conditions only four out of the eight different TRiC 

subunits could be cross-linked to ATP (Fig. 25B). It was examined next whether the 

presence of bound substrate protein changes the occupancy of TRiC subunits with 

ATP but the cross-link results were identical in the presence and absence of denatured 

actin (Fig. 25C, D). Note that in agreement with this finding, the presence of substrate 

protein does not affect the rate of ATP hydrolysis in TRiC at saturating ATP 

concentrations (Fig. 26).  

It therefore appears that not all subunits of TRiC are occupied with nucleotide at ATP 

concentrations that provide saturating conditions in respect to the kinetics of ATP 

hydrolysis79,80 (Fig. 19).  
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Figure 25.  Not all subunits of TRiC are occupied with nucleotide even at saturating ATP 

concentrations and in the presence of substrate protein. 

(A–D) Separation of the subunits by RP-HPLC after cross-link of �-[32P]-8-N3-ATP at 1 mM ATP 

(A), 1 mM ATP in the presence of AlFx (B), 0.2 mM ATP (C) and 0.2 mM ATP in the presence of 

actin (D). The UV-profile of the eluting subunits is shown in black whereas the specific radioactivity 

detected in each fraction is illustrated as the red profile. The numbers above every peak refer to the 

identity of the subunit (CCT1-8) as determined by mass spectrometry86. Red numbers imply that the 

corresponding subunit co-elutes with radioactively labeled nucleotide. 
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Figure 26. Presence of substrate protein does not influence the rate of ATP hydrolysis in TRiC. 

(A) Reactions containing TRiC in the presence and absence of actin were analyzed by SDS-PAGE and 

subsequent Coomassie staining. (B) The presence of 60 mM guanidine/HCl (gd.) but not the presence 

of 80 mM urea stimulates the rate of ATP hydrolysis by TRiC. Bound substrate protein has no 

additional effect. ATPase activity of TRiC in the presence of different supplements was measured at 1 

mM α-[32P]-ATP. 

 

Stoichiometry of TRiC-nucleotide complexes under equilibrium conditions 

The cross-link approach described above describes the selective binding of nucleotide 

to the different TRiC subunits in a qualitative fashion but does not allow to draw 

quantitative conclusions. We therefore applied filter-binding experiments or, 

alternatively, gel filtration analyses to determine the stoichiometry of TRiC-

nucleotide complexes at saturating ATP concentration (1 mM ATP, Table 7).  

The filter-binding assay is a very time efficient procedure and thus more likely to 

yield reliable stoichiometries for ligands with high off-rates. However, due to 

background problems in the presence of AlFx, we used the gel filtration assay under 

certain conditions.  

The stoichiometry of TRiC and ATP at 1 mM ATP is found to be nine or ten 

nucleotides per oligomeric complex, as determined by the filter binding assay, and 

seven nucleotides according to gel filtration analysis (Table 7). This apparent 

difference most likely reflects the fact that some nucleotide may be dissociating from 

the chaperonins during the slower gel filtration process. However, this effect is absent 

in subsequent experiments where stably associated TRiC nucleotide complexes were 

analyzed, in which nucleotide was either cross-linked to TRiC or trapped by the 

addition of AlFx. Interestingly, we obtained the same stoichiometry for TRiC cross-
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linked to α-[32P]-8N3-ATP in the presence of AlFx and for TRiC incubated with α-

[32P]-ATP and AlFx, namely nine nucleotides per complex (Table 7). This is 

consistent with the values obtained for α-[32P]-ATP in the absence of AlFx and 

indicates that only half of the subunits are bound to nucleotide under saturating 

conditions.  

 

Table 7. Stoichiometry of chaperonins nucleotide complexes 

condition nucleotides/ oligomer 

TRiC: filter-binding gel filtration  

[α32P]-ATP  

[α32P]-8-N3-ATP, x-linked 

[α32P]-ATP + AlFx 

[α32P]- 8-N3-ATP + AlFx, x-linked 

9.6 (± 0.5) 

- 

- 

- 

7.1 (± 1.3) 

6.4 (± 2.3) 

9.1 (± 0.8) 

8.6 (± 1.0) 

GroEL/ES:   

[α32P]-ATP  

[α32P]-8-N3-ATP, x-linked 

[α32P]-ATP + AlFx 

[α32P]- 8-N3-ATP + AlFx, x-linked 

8.4 (± 0.6) 

- 

- 

- 

2.5 (± 0.3) 

7.8 (± 1.0) 

7.2 (± 0.4) 

14.4 (± 3.1) 

 

As a control, the same stoichiometry experiments were performed for GroEL, whose 

nucleotide cycle has been established by previous analyses29,120,121. GroEL incubated 

with its lid-cofactor GroES and α-[32P]-ATP was found to bind two or three 

nucleotides, as determined by gel filtration, and eight nucleotides according to the 

filter-binding assay (Table 7). The latter experiment seems more suitable under those 

conditions (as discussed above) and corresponds well with data from previous 

studies120. Although GroEL/ES bound to seven nucleotides when incubated with α-

[32P]-ATP and AlFx (Table 7), cross-linking of α-[32P]-8N3-ATP to GroEL/ES in the 

presence of AlFx resulted in fourteen bound nucleotides per oligomeric complex 

(Table 7).  In agreement with previous studies121, all subunits of GroEL are therefore 

occupied with nucleotide under those conditions. This result suggests that 8-N3-ATP 

cross-links to chaperonins in a quantitative manner. It furthermore proves, that the gel 

filtration analysis is an appropriate method to determine the stoichiometry of 
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nucleotide binding in chaperonins, given that the complex has been stabilized by 

cross-linking or addition of AlFx.  

In summary it can be concluded that only half of the TRiC subunits bind ATP under 

saturating conditions and even in the presence of ATP and AlFx, were TRiC adopts a 

conformation with both rings closed72 only half of its subunits are bound to 

nucleotide. In combination with the cross-link data this strongly suggests that only a 

subset of all TRiC subunits bind nucleotide under saturating conditions. Our data are 

consistent with a model where nucleotides are only bound to CCT4, 5, 1 and 2 in both 

rings.  

ATP binding to CCT6 is dispensable for TRiC’s catalytic cycle in vivo 

Motivated by our in vitro data, we proceeded to test the possibility that ATP binding 

to a subset of the TRiC subunits might not be required for TRiC activity in vivo.  

In the eukaryotic cytosol, TRiC cooperates with chaperones from the Hsp70 family 

and the jellyfish-like chaperone GiM/prefoldin in the co-translational folding pathway 

of a variety of essential cytosolic proteins, such as the cytoskeletal proteins actin and 

tubulin45-47. Chromosomal deletion of either TRiC subunit by itself is lethal in haploid 

cells of the yeast S. cerevisiae, but it can be complemented by providing the 

respective cctx-gene on a plasmid. Lin et al., (1997)91 have previously reported that 

the cct6-24 mutant of S. cerevisiae, in which the GDGTT putative ATP binding motif 

has been exchanged for AAAAA, was viable and grew normally on a variety of media 

at various temperatures91. The GDGTT-motif is conserved in all chaperonin 

sequences122 and mutation of the conserved Asp-87 in this motif is sufficient to 

abolishe ATP binding in GroEL123. In order to investigate whether this finding for 

CCT6 could be extended to all other TRiC subunits, we constructed and tested 

mutants in cct1 – cct8 bearing alanine replacements in the putative ATP binding 

motifs in S. cerevisiae (Stephen Tam, unpublished data). It turned out that, in contrast 

to CCT6, ATP binding to all other TRiC subunits is required for viability in yeast 

since introduction of the respective plasmids carrying the GDGTT/AAAAA 

replacement could not restore viability. It is intriguing, however, that ATP binding to 

CCT6 seems not to be essential for function, especially since it corresponds well with 

the in vitro finding that ATP cannot be cross-linked to CCT6 efficiently even at high 

ATP concentrations (Fig. 22E). In order to proof that ATP binding and hydrolysis in 

CCT6 is not only dispensable for viability but also not required for an efficient 
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catalytic cycle of TRiC, we compared the rate of co-translational actin folding in a 

wild-type and mutant yeast background (Fig. 27). To this end we performed a pulse-

chase experiment in a haploid yeast-strain that carried a deletion in the chromosomal 

copy of cct6 and contained either the wild-type or the mutant allele cct6-24 on a 

plasmid (Fig. 27A). The folding rate of newly translated pulse-labeled actin was 

examined by pull-down of native actin using DNaseI covalently attached to beads99 at 

different time-points during the pulse and after the chase (Fig. 27B). In a parallel 

approach, we immunoprecipated TRiC to observe the kinetics of transient association 

and dissociation of pulse-labeled, co-immunoprecipitated actin with TRiC (Fig. 27C).  

As apparent from Figure 27B and C, both the rate of co-translational actin folding as 

well as the kinetics of actin cycling through TRiC are essentially the same in the wild-

type and mutant backgrounds. This result suggests that ATP binding to CCT6 is 

dispensable for TRiC’s catalytic cycle in vivo. 
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Figure 27. ATP binding to CCT6 is dispensable for TRiC’s catalytic cycle in vivo. (A) 

Experimental strategy. (B) ATP binding to CCT6 is not required for efficient actin folding in the 

cytosol. Rate of co-translational folding of pulse-labeled actin in yeast cells expressing either the wild 

type CCT6-subunit or the mutant version CCT6GDGTT/AAAAA. The error bars represent the standard error 

of measurement (SEM). (C) ATP binding to CCT6 is not required for TRiC’s catalytic cycle. The 

association and dissociation kinetic of pulse-labeled actin and TRiC was determined by TRiC 

immunoprecipitation. An autoradiogram is shown and radiolabeled bands corresponding to 

immunoprecipitated TRiC as well as co-immunoprecipitated actin and Hsp70 are marked. 
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IV. Discussion 

IV.1. Allosteric regulation in group II chaperonins  

Opening and closure of the built-in lid in group II chaperonins requires the 

coordinated action of all subunits within a ring, controlled by ATP binding and 

hydrolysis in the distant equatorial domains. The lid segments are required to 

integrate the subunits within a ring into an allosteric unit and therefore synchronize 

intra-ring conformational changes. Although the lid is located far away from the 

inter-ring contacts, the lid structure also plays a role in modulating inter-ring 

communication.  

Similar allosteric coupling within the subunits of a ring is achieved by different 

strategies in Group I and group II chaperonins 

The phenomenon of nested cooperativity has been observed in all chaperonins. 

Strikingly, we find that group I and group II chaperonins employ different strategies 

to establish the same type of allostery. Allosteric coupling of subunits within one ring 

is intrinsic to GroEL and only modulated by the GroES cofactor58-60,64,111. Instead, we 

find that group II chaperonins depend on their built-in lids to coordinate intra-ring 

communication. The requirement for the built-in lid to achieve positive cooperativity 

in group II chaperonins is surprising, given their overall similarity with their bacterial 

counterparts. However, in GroEL the lid is already preformed, and lid closure merely 

requires an increased affinity of GroEL for its cofactor. Instead, in group II 

chaperonins, the lid must be created in a coordinated manner during ATP hydrolysis 

within the ring. It is tempting to speculate that the structural challenges associated 

with having an integrated lid may be incompatible with the allosteric regulation of 

bacterial chaperonins, thus forcing the emergence of novel allosteric networks in 

group II chaperonins.   

Allosteric network in group I chaperonins 

In the bacterial chaperonin GroEL, positive cooperativity depends on a salt-bridge 

network connecting R197 in the apical domain of one subunit with E386 in the 

intermediate domain of the neighboring subunit59,124-126. This salt-bridge network, 
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established in the nucleotide-free T-state, creates physical tension within the subunits 

of one ring. Conformational changes upon ATP binding to one subunit break this tight 

salt bridge as the respective intermediate domain moves downwards in order to 

contribute residues for the coordination of ATP. This ATP induced conformational 

change in the intermediate domain is stabilized by the formation of a new salt bridge 

between E386 and the residue K80 in the equatorial domain of the neighboring 

subunit. The apical domains which are no longer fixed to neighboring intermediate 

domains are much more flexible and relax simultaneously to a conformation 

described as the R state with high affinity for ATP and the lid cofactor GroES125.   

Allosteric network of group II chaperonins 

Although the structural basis of allosteric coupling in group II chaperonins must await 

a better characterization of the ATP-bound, open state, it is clear that amino acids 

contributing to the salt bridge network between apical and intermediate domains in 

GroEL are not conserved in TRiC and the thermosome. Supported by our finding that 

lid-less chaperonins are no longer coupled by positive cooperativity, a picture 

emerges in which the corresponding network has been relocated upwards into the 

apical protrusions. Notably, in contrast to group I chaperonins in this system the 

nucleotide-free T-state is relaxed, while the closed R-state induced by ATP-hydrolysis 

appears to be under physical tension, since the apical domains have to come in close 

proximity to form the lid structure. These distinct allosteric strategies of group II 

chaperonins may originate from the unique mechanistic requirements of having a 

built-in lid. Since ATP hydrolysis hides the substrate binding sites from the cavity 

(Fig. 11, Fig. 13 and Fig. 15), it is possible that incorporating the lid into the 

allosteric network may help ensure that the lid is formed prior to substrate release.  

Influence of the built-in lid on inter-ring communication 

Our analysis indicated that the built-in lid also affects inter-ring communication (Fig. 

21). We envision two possible models that could account for these observations. First, 

removing the lid could abolish both positive and negative allosteric coupling so that 

all 16 subunits bind and hydrolyze ATP independently. However, since all subunits in 

both rings would be hydrolyzing ATP simultaneously under saturating conditions, 

this scenario would predict that the lid-less variants reach a higher maximal 

hydrolysis rate, vmax, than intact chaperonins. Indeed, such behavior has been 
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observed for GroEL mutants with distorted inter-ring communication127,128. However, 

the results presented in chapter III.3. of the present work are not consistent with this 

possibility (compare Fig. 19A, B and Fig. 21B, C). Accordingly, an alternative model 

is favored whereby the formation of a functional lid structure is not required for 

negative cooperativity, but serves to slow down the ATPase cycle by stabilizing the 

closed state. This model is consistent with different lines of evidence obtained for 

TRiC and the archaeal thermosome which indicate that lid opening is the rate-limiting 

step in the ATPase cycle72,129. First, steady state measurements at high ATP 

concentrations indicate that for TRiC the closed post-hydrolysis state dominates the 

kinetic ATPase cycle72. In agreement with this idea, kinetic analysis of the 

thermosome revealed that ADP + Pi release are rate-limiting, leading to a long-lived 

post-hydrolysis state129; furthermore, the trans-ring is prevented from hydrolyzing 

ATP until Pi and ADP are released from the cis-ring. Taken together with our results, 

these findings suggest that formation of the closed lid structure delays the release of 

the hydrolysis products ADP and Pi, thus extending the duration of the ATPase cycle 

in the cis-ring. At saturating ATP concentrations this would effectively slow down the 

steady state ATPase rate, as observed experimentally for both TRiC (Fig. 19A) and 

Mm-Cpn (Fig. 19B). Since the lid-less chaperonins do not have a closed lid to slow 

down release of ADP and Pi in the cis-ring, the inhibition of hydrolysis in the trans-

ring would not be observed. This is consistent with the faster turnover rate observed at 

high ATP concentrations for the lid-less chaperonins (Fig. 21B, C). In addition to 

explaining all available data, this model reveals that the lid acts as a timing device 

that regulates the duration of the folding-active state.  

Our study provides a striking example of how incorporation of a slight structural 

variation, namely the built-in lid, into the conserved chaperonin architecture forced 

the archaeal and eukaryotic complexes to evolve a different strategy in order to 

maintain their regulation through nested cooperativity. Defining the structural basis of 

inter-subunit communication in eukaryotic and archaeal chaperonins may thus 

provide insights into the plasticity of allosteric networks. 
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IV.2. Positive cooperativity in group II chaperonins propagates 

sequentially  

Lid formation in group II chaperonins could occur in two different ways. On the one 

hand it could involve a concerted interaction between all apical protrusions according 

to the MWC-model113. On the other hand, based on the KNF-model114 the 

conformational change could propagate sequentially via domino-like interactions 

between apical protrusions. Our finding that subunits in the hetero-oligomeric 

chaperonin TRiC display different affinities for ATP strongly suggests a sequential 

type of allosteric transition.  

What is the structural feature common to all high affinity subunits? 

The data presented in the present study suggest the existence of a gradient of affinities 

within the subunits of TRiC, whereby CCT5 has the highest affinity followed by CCT 

4, CCT1 and CCT2, whereas CCT 3, CCT6, CCT7 and CCT8 are classified as low-

affinity subunits (Fig. 24). The structural feature that discriminates low- and high- 

affinity subunits remains to be identified. Sequence alignment of the eight different 

CCT genes of S. cerevisiae shows an overall low level of sequence identity (25-35%), 

with the highest conservation being found in the regions harboring residues 

responsible for ATP binding and hydrolysis118.  Figure 28 shows a sequence 

alignment of all eight yeast CCT proteins, focusing on the regions that, according to 

the crystal structure of the thermosome beta subunit (T.a. beta)34, form the ATP 

binding pocket. It is apparent from this alignment that most of the residues involved 

in coordinating the nucleotide are highly conserved. CCT6 and CCT8 show a few 

discrepancies, but it still remains to be biochemically proven that these amino acid 

changes result in lower affinity for ATP.  High resolution structural information on 

the hetero-oligomeric TRiC complex will be necessary to elucidate the nature of the 

differences that must exist between the conserved ATP binding pockets of the 

different subunits.  
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Figure 28. Alignment of the amino acid sequence from the nucleotide binding pocket of CCT1-8 

from S. cerevisiae. (A) Schematic presentation of the domain arrangement in the linear amino acid 

sequence of the beta subunit of the thermosome from T. acidophilum. The regions (I–V) that harbor 

residues contributing to the ATP binding pocket are highlighted. T.a. beta: T. acidophilum thermosome 

beta-subunit; equ: equatorial domain, int: intermediate domain, ap: apical domain; aa: amino acid. (B) 

Sequence alignment of the regions I-V highlighted in (A) between the beta subunit of the thermosome 

and all eight subunits of the TRiC complex (CCT1- CCT8) from S. cerevisiae. Residues that, according 

to the crystal structure of the thermosome beta-subunit, directly interact with nucleotide are highlighted 

in color. Red: coordinate phosphates; blue: interact with purin-base; yellow: interacts with ribose; 

green: coordinates magnesium; grey: no direct contact but establish the pocket like structure. The 

sequence alignment was generated using the ClustalW software138. * = identical residues in all aligned 

sequences, : = functionally conserved residues in all aligned sequences. 
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The order of sequential ATP-induced allosteric transitions in one ring of TRiC 

Interpretation of our data in the light of the proposed subunits arrangement within a 

ring in TRiC91 (Fig. 24 and 29A) indicates that the high affinity subunits might not be 

located next to each other. A typical KNF-type transition114 in which the highest 

affinity subunit would bind to ATP first and induce a transition in its immediate 

neighbor resulting in sequential propagation of nucleotide binding seems therefore 

unlikely.  

 

 

 
Figure 29. Model of the subunit arrangement in the TRiC complex. (A) Proposed subunit 

arrangement within one ring of TRiC according to Liou and Willison, 1997137. The relative affinity of 

the different subunits for nucleotide is expressed by different shades of red. Dark red = high affinity, 

light red = intermediate affinity, white = low affinity. The arrows indicate the proposed direction of the 

sequential cooperative conformational change within one ring of TRiC. (B) Proposed inter-ring 

contacts according to Martin-Benito et al., 2007130.  The coloring of the subunits corresponds to (A). 
 

However, it needs to be emphasized that in the present study the occupation of the 

subunits with ATP rather than conformational changes were investigated. Cryo-EM 

analysis of one ring in TRiC revealed the presence of asymmetry at low ATP 

concentrations119. Conformational changes started in the region of CCT1/7/4/8 and 

ended at CCT2 (Fig. 29A). The data presented here confirm the suggested sequential 

allosteric transition and allow completing the model by providing two pieces of 

information: First, CCT5 can be assigned as the subunit that binds to ATP first, and 

second the transition propagates counter-clockwise via the subunits CCT4, 1 and 2 

ending at CCT6. Intriguingly, the cryo-EM study119 reports retained symmetry at 

intermediate ATP concentrations, when only the high affinity subunits are bound to 

ATP according to the cross-link experiments. This suggests that conformational 
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changes can propagate sequentially throughout the ring and result in a symmetrically 

closed active state although only every second or third subunit actually binds to 

nucleotide. According to this model, positive cooperativity between neighboring 

subunits is strong enough to induce conformational changes even in subunits without 

bound nucleotide. 

A recent report provides insight in the inter-ring arrangement of TRiC subunits130. It 

appears that the up/down inter-ring communication always involves two different 

CCT subunits in all eight positions130 (Fig. 29B). Intriguingly, the two rings are 

rotated against each other such that the subunit with highest affinity for ATP, namely 

CCT5 sits directly on top of CCT6, the subunit with lowest affinity for ATP and 

dispensable for TRiC’s catalytic cycle in yeast. How this distinct inter-ring 

arrangement affects the function of TRiC as a two-stroke molecular machine will be 

subject of future investigations.  

Given that substrate proteins might be bound to more than one subunit within a 

ring86, 117 a conformational change that occurs sequentially throughout the subunits of 

a ring can impact the mechanism of substrate release from the binding sites and may 

therefore influence the folding mechanism. It might also enable the TRiC complex to 

sequester parts of complex substrates until all players are assembled to a final 

structure. 

Do the low affinity subunits fulfill a regulatory function? 

Why only four of the eight subunits bind to ATP under saturating conditions remains 

to be investigated. Obviously, it would save energy if ATP hydrolysis in four out of 

the eight subunits in TRiC were sufficient to promote substrate folding. However, the 

energy supply of the cytoplasm is likely not to be limiting under conditions in which 

protein synthesis occurs. Additionally, one would expect less conservation in the ATP 

binding pockets if they completely lost their essential function during evolution. 

One alternative explanation could be that the affinity of the subunits for nucleotide 

changes upon interaction of TRiC with a co-factor. If occupation of all eight subunits 

in TRiC significantly influences the turnover rate of this molecular machine, changing 

the nucleotide occupation could provide a regulatory switch. GimC has been 

discussed as a possible co-chaperone for TRiC as the release of actin from TRiC is 

five- to eightfold slower in GimC-deficient cells45, suggesting that GimC activates 

TRiC’s catalytic cycle. Additionally, the Phlp1 protein was shown to bind to TRiC in 
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its native conformation131,132 and to inhibit its ATPase activity when present in a 

trimetric complex with TRiC and substrate proteins, such as actin or tubulin131. It 

would be interesting to test biochemically whether those two potential co-factors 

change the occupation pattern of TRiC under saturating ATP concentrations.  

 

IV.3. The apical protrusions and the conformational cycle of group II 

chaperonins 

This study uncovers a remarkable degree of mechanistic and functional conservation 

between group II chaperonins from eukaryotic and archaeal origin. In both cases, the 

built-in lid is in the open state upon ATP binding and closes during ATP hydrolysis. 

In the following section the data are discussed in context of the ATPase cycle of 

group II chaperonins, focusing on two steps in more detail, namely ATP binding and 

ATP hydrolysis.  

Conformational changes in group II chaperonins upon binding of ATP 

As illustrated in Figure 30, group II chaperonins are predominantly in the open 

conformation in the absence of nucleotide. Structural analysis of the isolated apical 

domain of mouse CCTγ133 as well as the apical domains in the thermosome134,135 

revealed that the tips of the apical protrusions have little propensity to adopt a defined 

structure in solution. This observation suggests that the apical protrusions may 

provide inter-subunit interactions in different stages of TRiC’s functional cycle and 

corresponds well with their function in establishing positive cooperativity within the 

subunits of a ring. Since positive and negative allosteric coupling between subunits is 

achieved at the level of ATP binding79 we propose the existence of a distinct 

conformation of the helical protrusions in the ATP-bound pre-hydrolysis state. At this 

stage of the conformational cycle of group II chaperonins the apical protrusions reside 

in the “open” conformation and are likely to form tight contacts between neighboring 

subunits which are responsible for the allosteric coupling. In accordance with the 

results presented in this work (Fig. 13 and Fig. 15), the substrate binding sites are 

available in the ATP-bound state, however, changes in the affinity for substrate might 

occur. Additionally, ATP binding induces a conformational change within the N- and 

C-terminus of the subunits that renders those regions, located in the equatorial 

domains, protected from protease digestion (Fig. 10C). A correlation between those 
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structural rearrangements within the inter-ring contacts and negative allosteric 

communication between the rings seems likely but needs to be proven.  

 

 

Figure 30. The built-in lid controls the ATPase cycle of group II chaperonins. ATP binding to 

subunits in one ring is a cooperative event communicated by the apical protrusions. Subsequent 

formation of the iris-like lid during ATP hydrolysis stabilizes an asymmetric conformation with strong 

negative cooperativity between the rings, which enables group II chaperonins to function as a “two-

stroke” engine. 

 

ATP hydrolysis is the central step in the folding cycle of group II chaperonins 

Steady state and kinetic measurements for TRiC79,80 and the thermosome129 indicate 

that the ATP-bound, open state is rather transient. Subsequent ATP hydrolysis 

initiates significant conformational rearrangements (Fig. 30) in both the substrate 

binding sites and the apical protrusions which lead to the ejection of bound substrate 

protein into the central chamber (Fig. 11, Fig. 13 and Fig. 15) and to the formation of 

the iris-like lid structure20 (Fig. 7 and Fig. 9). Future research is aimed towards 

elucidating the precise sequence of the distinct conformational changes during ATP 

hydrolysis. To this end, single tryptophan residues were introduced in the potential 

substrate binding site86 and the apical protrusions of Mm-Cpn, utilizing the advantage 

that Mm-Cpn does not contain any tryptophan residue in its primary sequence.  

Measuring changes in trytophan fluorescence in these mutant forms upon addition of 

nucleotide using a stopped flow apparatus will provide insight into the order of events 
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corresponding to lid closure and substrate release respectively.  Notably, the finding 

that substrate is ejected in the central cavity of Mm-Cpn and does not remain bound to 

the initial substrate binding sites as previously suggested117 points to an Anfinsen-

cage like function of the central cavity110.   

What is the signal for re-opening of the lid? 

The lid probably remains closed in the post-hydrolysis ADP+Pi state since re-opening 

of the stable iris-like lid structure seems to be the rate-limiting step in the 

conformational cycle129(Fig. 30). Due to negative inter-ring cooperativity79,129,136, 

ATP hydrolysis in the trans-ring can only occur once the products of ATP hydrolysis 

have dissociated from the cis-ring, although the precise mechanism that unravels the 

stable lid structure as well as the signal that induces lid opening remains undefined.  

Because the closed conformation is the folding-active state lid opening upon ADP and 

Pi release serves as a timer mechanism that regulates the length of substrate 

encapsulation in the folding chamber. Interestingly, despite having similar 

mechanisms, TRiC and Mm-Cpn have strikingly different ATP turnover rates 

(compare Fig. 19A and B), suggesting that the substrate residence time within the 

chamber may be fine-tuned to suit the folding requirements of different cellular 

environments.  
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V. Summary  

Chaperonins are highly allosteric double-ring ATPases that mediate cellular protein 

folding. ATP binding and hydrolysis control opening and closing of the central 

chaperonin chamber which transiently provides a protected environment for protein 

folding. During evolution, two distinct strategies to close the chaperonin chamber 

have emerged. Archaeal and eukaryotic chaperonins contain a built-in lid, whereas 

bacterial chaperonins use a ring-shaped cofactor as a detachable lid.  

 

The present work contributes to the current mechanistical understanding of group II 

chaperonins by unraveling key functions of the built-in lid. In addition to physically 

encapsulating the substrate, the lid-forming apical protrusions also play a key role in 

regulating chaperonin function and ensuring its activity as a “two-stroke” molecular 

machine. By comparative investigation of two distinct chaperonin systems, namely 

TRiC and Mm-Cpn, this study uncovers a remarkable degree of mechanistic and 

functional conservation between group II chaperonins from eukaryotic and archaeal 

origin, despite their evolutionary distance. 

 

In particular the following conclusions can be drawn from the present work: 

 

1) The helical protrusions of group II chaperonins assemble into an iris-like structure 

that indeed functions as a lid on top of the cavity and is necessary to physically 

encapsulate substrate proteins. Substrate is released from the binding sites during 

a conformational change that is induced by ATP hydrolysis and occurs 

independently of but with similar timing as lid formation. This observation argues 

against a folding mechanism whereby the substrate remains associated with the 

binding sites during the folding cycle.  

 

2) In both eukaryotic and archaeal chaperonins the lid-forming segments are required 

to integrate the subunits within a ring into an allosteric unit and, therefore, to 

synchronize intra-ring conformational changes. The concerted action of subunits 

within a ring appears essential for optimal chaperonin function since lid-less 
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chaperonins cannot promote efficient substrate folding, even though they are still 

able to hydrolyze ATP.  

 

3) In both eukaryotic and archaeal chaperonins negative inter-ring coupling leads to 

the alternation of allosteric states that causes group II chaperonins to function as 

“two-stroke” motors. Although the lid is located far away from the inter-ring 

contacts, the lid structure also plays a role in modulating inter-ring 

communication. 

 

4) The discovery of a gradient of affinities for ATP within the eight different TRiC 

subunits provides biochemical evidence for a sequential model of the positive 

cooperative transition within a ring of the eukaryotic chaperonin TRiC. Moreover 

it is suggested that ATP binding to all eight subunits might not be required for an 

optimal folding cycle.  
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