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Zusammenfassung

Räumlich kontrollierte Polymerisation von Aktin ist der Ursprung selbst-
ständiger zellularen Bewegung und ist die Ursache für die Bildung von
zellularen Vorsprüngen, wie Lamellipodia. Die Krankheitserreger Liste-

ria monocytogenes und Shigella flexneri bewegen sich in befallenen Zellen,
indem sie auf einem Aktinschweif reiten, der aus hochgradig querverbunde-
nen polymerisierten Aktinfilamenten besteht, die einen Kreislauf von An-
haftung und Ablösung an der Oberfläche der Bakterien durchlaufen.

Der Schwerpunkt dieser Arbeit liegt auf der Formulierung eines ein-
fachen theoretischen Models der auf Aktin basierenden Zellbewegung. Der
physikalische Mechanismus unseres Models verwendet sowohl belastungs-
abhängige Ablösungs- und Anhaftungsraten sowie Polymerisationsgeschw-
indigkeiten, als auch Rückstellkräfte der gebundenen Filamente und treib-
ende Kräfte der abgelösten Filamente oder der möglichen Querverbindun-
gen und Verknüpfungen des Aktinnetzwerkes. Wir konnten zeigen, das
das Zusammenspiel von Bindung und Ablösung von Filamenten auf der
einen Seite und Polymerisation und Querverbindung von Aktin auf der an-
deren Seite zu spontanen Oszillationen der Hindernisgeschwindigkeit führt.
Unsere Ergebnisse sind in Bezug auf die Geschwindigkeitsamplituden und
Perioden in guter Übereinstimmung mit denen in Listeria Experimenten.
In diesem Model sind weder Elastizität noch eine mögliche Krümmung
des Hindernisses berücksichtigt. Dies wird Gegenstand zukünftiger Model-
lierung Aktin induzierter Bewegung sein.

Als eine wichtige Vorarbeit für unser Model haben wir analytische Berech-
nungen und ausführliche Monte Carlo Simulationen durchgeführt, um die
treibende Kraft der abgelösten Filamente zu untersuchen. Die Analyse
beginnt mit der Berechnung der entropischen Kraft, die durch ein fixiertes
Polymer auf eine massive Wand ausgeübt wird. Diese rein entropische Kraft
hängt von der Kontourlänge, der Persistenzlänge und der Orientierung des
Polymers, als auch gegebenenfalls vom Abstand des Auflagepunkts des
Polymers zur Wand ab. Der Gültigkeitsbereich unser analytischen Lösung
wurde mit zahlreichen Monte Carlo Simulationen für steife, semiflexible
und flexible Polymere untersucht. Das Hindernis wurde in dieser Analyse
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stets als starre Wand behandelt. Im realen Experiment sind aber die Hin-
dernisse, wie z.B. Membranen, keine starren Objekte, sondern unterliegen
thermischen Fluktuationen. Deswegen sind weitere analytische Berechnun-
gen und Monte Carlo Simulation nötig, um die Beweglichkeit der Hin-
dernisse mit zu berücksichtigen.

Um die auf Aktin basierende Zellbewegung zu untersuchen, werden in in

vivo Experimenten üblicherweise ActA beschichtete Perlen verwendet. Um
den Einfluss der Krümmung des Hindernisses auf die entropische Kraft
zu untersuchen, haben wir die treibende Gesamtkraft eines homogenen
Aktinnetzwerkes auf eine starre Kugel berechnet. Diese Analyse hat ein-
deutig ergeben, dass sowohl die Eigenschaften des Hindernisses (wie z.B.
der Kugelradius) als auch die des Netzwerkes (wie z.B. dessen Orientierung)
einen direkten Einfluss auf die Stärke und Richtung der Gesammtkraft
haben. Die Berechnungen wurde dabei für ein statisches System durchgefü-
hrt: Eine konstante Anzahl von Filamenten mit identischer Kontourlänge
drücken gegen eine Kugel in festem Abstand. Bindung und Ablösung der
Filamente an und von der Kugel, Polymerisation und der Aufbau von
Querverbindungen sind dynamische Prozesse, die in zukünftigen Model-
lierungen mit einbezogen werden sollen.

Im Zellcytoskelett, das ein aus Biopolymeren bestehendes Fasernetzwerk
darstellt, werden thermische Fluktuationen durch die Anwesenheit anderer
Filamente stark unterdrückt. Diese Beschränkung erhöht die freie En-
ergie der einzelnen fluktuierenden Polymere, was zu einer gemittelten ab-
stossenden Kraft entropischen Ursprungs führt. Das vierte Kapitel dieser
Arbeit widmet sich entropischer Kräfte zwischen zwei parallelen und senkre-
chten Polymeren. Die analytischen Ergebnisse, die wiederum mit Monte
Carlo Simulationen untermauert wurden, zeigen eindeutig die Existenz
einer räumlichen “Helfrich Abstossung” zweier parallelen Polymeren bei
kleinen Abständen.
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1 Introduction

1.1 Actin-based motility

The cytoskeleton of cells

The mechanical stability and integrity of biological cells is provided by
the cytoskeleton, a semi-dilute meshwork of biopolymers. Recent research
has underscored its role as a dynamic, multifunctional muscle, whose pas-
sive and active mechanical performance is highly heterogeneous in space
and time and intimately linked to many biological functions, such that it
may serve as a sensitive indicator for the health or developmental state of
the cell. The cytoskeleton is a network of protein fibers in the cytoplasm

(a) (b)

Figure 1.1 (a) Cytoskeleton of a cultured epithelial cell. Microtubules are
shown in green, actin in red and DNA in blue. (b) Actin cytoskeleton of mouse
embryo fibroblasts, stained with phalloidin. The figures are from the website
http://cmgm.stanford.edu/theriot/.

that serve functions such as establishing cell shape, providing mechanical
strength, generating locomotion in cells such as white blood cells and the
amoeba, providing force for chromosome separation in mitosis and meiosis
and involving in intracellular transport of organelles. The cytoskeleton is
made up of three kinds of protein filaments: actin filaments, intermediate
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2 1 Introduction

filaments and microtubules (Fig. 1.1).
Actin filaments, made of monomers of the protein actin, polymerize to

form long, thin fibers. These are about 8 nm in diameter and, being the
thinnest of the cytoskeletal filaments, are also called microfilaments. Some
functions of actin filaments are

� form a band just beneath the plasma membrane that provides me-
chanical strength to the cell and links transmembrane proteins (e.g.,
cell surface receptors) to cytoplasmic proteins. It also anchors the
centrosomes at opposite poles of the cell during mitosis and pinches
dividing animal cells apart during cytokinesis,

� generate cytoplasmic streaming in some cells,

� generate locomotion in cells such as amoeba,

� interact with myosin (“thick”) filaments in skeletal muscle fibers to
provide the force of muscular contraction.

Intermediate filaments are fibers with an average diameter of 10 nm and
thus are “intermediate” in thickness between actin filaments (8 nm) and
microtubules (25 nm). Microtubules are straight, hollow cylinders whose
wall is made up of a ring of approximately 13 protofilaments. They are
variable in length but can grow 1000 times as long as their width and are
built by the assembly of dimers of alpha and beta-tubulin. Microtubules
are found in both animal and plant cells. Microtubules grow at each end
by the polymerization of tubulin dimers which is powered by the hydrol-
ysis of GTP 1, and shrink at each end by the release of tubulin dimers
(depolymerization). However, both processes always occur more rapidly at
one end, called the plus end. The other, less active, end is the minus end.
Microtubules participate in a wide variety of cell activities. Most involve
motion. The motion is generated by protein “motors” that use the energy
of ATP 2 to move along the microtubule. There are two major groups of
microtubule motors: kinesins, which most of them move toward the plus
end of the microtubules, and dyneins which move toward the minus end.

Cell motility

Many biological movements like cell motility, are based on the dynam-
ics of the actin network in cells. Cell crawling begins with protrusion, the

1GTP=Guanosine 5’-triphosphate.
2ATP=Adenosine triphosphate.



1.1 Actin-based motility 3

(a) (b)

Figure 1.2 (a) A keratocyte cell crawling on a substrate by extending a leading
edge. Actin filaments are stained in green. (b) Listeria monocytogenes (red dots)
moves inside the infected host cell by riding on an actin tail (green). The figures
are from the website http://cmgm.stanford.edu/theriot/.

process of actin-based extension of the cell’s leading edge (Fig. 1.2a). It is
an important phenomenon that drives cellular and developmental processes
as diverse as morphogenesis and metastasis. Cell migration is directional,
ATP-consuming, and is associated with actin polymerization. It is a com-
plex process, coupling protrusion of the cell’s leading edge, contraction of
the cytoskeleton, and dynamic graded adhesion. The phenomenon of lamel-
lipodial protrusion- motile appendages of rapidly migrating simple shaped
cells- is one aspect of cell movement, where our understanding is most
advanced. To produce the forces required for the motion, actin is often
associated with myosin, as in muscles or in the cell contractile ring (Bray,
2001). However, the presence of motor proteins like myosin is not neces-
sary to produce a motile force; this issue has been discussed for amoboid
motion (Mitchison and Cramer, 1996) and has been demonstrated several
times in the case of the bacterium Listeria monocytogenes (Fig. 1.2b), for
which motor proteins associated with its actin tail have been sought but
not found (Southwick and Purich, 1998; Loisel et al., 1999). It is therefore
widely accepted that the process of actin polymerization itself is sufficient
to induce cell movement.

A crucial factor for protrusion is actin polarity. The two ends of an
actin filament are structurally and functionally different, one termed barbed
(with fast dynamics, favored for polymerization) and the opposite, termed
pointed. The principal reactions constituting the cycle of turnover of the
lamellipodial actin network are dendritic nucleation, elongation, capping
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Figure 1.3 The actin polymerization machinery triggers dendritic nucleation
for protrusion at the leading edge. The activated Arp2/3 complex nucleates
and branches actin filaments at the leading edge, pushing the membrane for-
ward. Capping proteins control the half-life of filaments, and by blocking a large
fraction of barbed ends, promote site-directed elongation of uncapped filaments.
ADF/cofilin promotes dissociation of ADP-actin from filament pointed ends and
severs preexisting filaments, generating new barbed ends. Profilin catalyzes the
exchange of ADP for ATP on monomeric actin molecules, which become available
for new polymerization at barbed ends. This figure is from the paper by Disanza
et al. (2005).
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and disassembly of actin filaments. First, proteins of the WASP 3/WAVE 4

families activate Arp2/3 5 protein complexes (see Fig. 1.3). These com-
plexes nucleate new actin filaments at the sides or tips of existing fila-
ments (Welch et al., 1997; Svitkina and Borisy, 1999; Borisy and Svitkina,
2000; Pollard et al., 2000). The new nucleated filaments elongate at their
barbed ends, exerting pushing force on the membrane at the leading edge
until they are capped by capping proteins which block further addition
of actin monomers. Capping is believed to increase the actin monomer
pool by restricting the number of growing filament ends, and thus makes
the elongation of the remaining uncapped filaments more efficient (Carlier
and Pantaloni, 1997; Pantaloni et al., 2001; Mogilner and Edelstein-Keshet,
2002). Actin monomers for the elongation of the uncapped barbed ends
are produced in the process of disassembly at the opposite, pointed ends.
This process is accelerated in cells by proteins of the ADF/cofilin family
which increase the number of depolymerizing minus ends in the actin net-
work, filling up the subunit pool for filament elongation. During steady
cell locomotion, elongation/disassembly and branching/capping reactions
are expected to be balanced, so that the total concentration of polymerized
actin as well as the average number of actin filaments does not change.

How does the whole shape of the leading edge evolves in time and what
is the control mechanism? The description of actin organization and dy-
namics at microscopic level is not sufficient to understand the organization
and dynamics of the leading edge at a macroscopic scale. The actin dy-
namics is believed to be related to the geometry of the rigid surface on
which the actin network is growing (Bernheim-Groswasser et al., 2002).
Model systems with well-defined leading edge dynamics, like fish epidermal
keratocytes, are very usefull to investigate the relationship between actin
dynamics and cell shape. Fish keratocytes are one of the most rapidly
moving eukaryotic cell types. They crawl on surfaces with a steady fan-like
shape lamillipodium at a speed around 15 µm per minute (Lee et al., 1993a).
The lamellipodium of the keratocyte is only a few tenths of a micrometer
thick but stretches for several tens of micrometers from side to side and for
about ten micrometers from front to back (see Fig.1.4). The rate of actin
polymerization equals the rate of protrusion at the leading edge since, dur-
ing cell movement, the actin network in the large part of the keratocyte
lamellipodium is stationary with respect to the substratum (Theriot and
Mitchison, 1991; Mitchison and Cramer, 1996). In the moving coordinate
system of the cell, actin filaments move back from the leading edge, and

3WASP=Wiskott-Aldrich syndrome protein.
4WAVE=WASP family Verprolin-homologous protein.
5Arp2/3=Actin-related proteins Arp2 and Arp3.



6 1 Introduction

the barbed ends of the filaments are oriented at some angle with respect
to the membrane (Small, 1994). By moving from the front to the back of
the lamellipodium, due to slow depolymerization of actin, the density of
the actin network decreases (Svitkina et al., 1997; Edelstein-Keshet and
Ermentrout, 2000). The side and the back area of the lamellipodium are
the only parts in which actin filaments move with respect to the substra-
tum and to each other (Lee et al., 1993a,b; Svitkina et al., 1997; Anderson
and Cross, 2000). Thus, the processes of actin polymerization and the sub-
sequent contraction of the network are spatially separated, and the shape
of the front part of the lamellipodium may be considered to be the result
of the polymerization-driven protrusion. Three mechanisms - protrusion,
adhesion, and contraction - are acting together to produce cell movement.
First, growth of the actin plus ends leads to the extension of the cell’s
leading edge. Then, graded adhesion of the cytoskeleton to the substrate
is developed: the adhesion to the surface at the front is stronger, than at
the cell’s back. Finally, the actin network contracts, pulling the back of the
cell forward. In keratocytes, all these steps take place at the same time so
that the cell moves steadily without changing its shape.

Listeria propulsion

Listeria monocytogenes is a Gram-positive bacterium, named for Joseph
Lister. It is a cylinder-like object with radius of around 0.5 µm and length
of 1.5 µm. Listeria hijacks actin monomers from the host cell and assem-
ble them into a comet-like tail which is made up of oriented, cross-linked
networks of actin filaments. Barbed (growing) ends of actin filaments are
oriented toward the bacterial surface on which actin filaments polymerize
with the same rate as that of the bacterial cell propulsion. This suggests
that the actin polymerization drives the bacterium forward (Theriot et al.,
1992). The actin comet is used as an anchor in the cytoplasm, so that
as new polymerized actin is added between the bacterium surface and the
older polymerized gel, the organism is propelled forward (Fig. 1.2b). Liste-

ria moves through the host cytoplasm rapidly, with velocities of the order
of tenth of a micron per second (Cameron et al., 2001). The wild-type of
Listeria is observed to move with a constant velocity but Listeria mutant
ActA∆21−97 shows oscillatory motion with a period around 100 sec. This
Listeria mutant is named “hopping Listeria”. (see Fig. 1.5)

Actin based motility has been shown to be more general than initially
thought: movement of the Gram-positive L. monocytogenes , the Gram-
negative Shigella flexneri (Clerc and Sansonetti, 1987), the vaccina virus
(Cudmore et al., 1995) are all based on the formation of an actin tail.
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Figure 1.4 Organization of actin filaments and localization of Arp2/3 complex
in lamellipodia. (a-c and e-g) Fluorescence microscopy of Xenopus keratocyte (a-
c) or fibroblast (e-g). Staining with p21 antibody (green) and TRITC-phalloidin
(red) shows Arp2/3 complex highly enriched in lamellipodia. Boxed region in g
is enlarged in insets; it shows several filopodia lacking and only one filopodium
containing Arp2/3 complex. (d and h) Immuno-EM of lamellipodia of Xenopus
keratocyte (d) or fibroblast (h) stained with p21 primary antibody and 10-nm
gold-conjugated secondary antibody after glutaraldehyde fixation and SDS treat-
ment of detergent-extracted cells. Gold particles are highlighted in yellow. Bars:
(a and e) 10 µm; (d and h) 0.1 µm. This figure is from the paper by Svitkina
and Borisy (1999).
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(a) (b)

Figure 1.5 (a) Kinematics record of the mutant ActA∆21−97 (hopping Listeria):
Speed and position of bacteria as functions of time. (b) Speed and measurement
of the video gray level intensity along the tail from the snapshots at time 108 s
as a function of the position. These figures are from the paper by Gerbal et al.
(2000a).

Transmembrane protein, ActA, is distributed asymmetrically on the surface
of Listeria. The presence of ActA, has been shown to be required and
sufficient to trigger actin polymerization and thus motility(Kocks et al.,
1993). Infected medium provides all the other necessary proteins like actin,
cross-linkers (such as α-actinin) and Arp2/3.

Using Listeria as a model system for studying the biochemistry of actin-
based movement, suffers from the fact that geometrical parameters such as
its size and shape are predetermined, and the surface density of the Arp2/3
complex activator (ActA) is unknown. Biophysical studies on movement in-
duced by actin polymerization were greatly facilitated by the development
of in vitro systems that explore actin-driven motility of non-biological car-
gos such as protein coated beads (Cameron et al., 1999) and vesicles (Upad-
hyaya et al., 2003) placed in cell extracts. These in vitro systems, when
coated with either ActA or WASP proteins, move much the same way as the
pathogens. Polystyrene beads coated with purified ActA protein can un-
dergo directional movement in an actin-rich cytoplasmic extract (Fig. 1.6).
Thus, the actin polymerization-based motility generated by ActA can be
used to move non biological cargos, as has been demonstrated for classical
motor molecules such as kinesin and myosin. Initiation of unidirectional
movement of a symmetrically coated particle is a function of bead size and
surface protein density. Small beads (< 0.5 µm in diameter) initiate actin-
based motility when local asymmetries are built up by random fluctuations
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(a) (b) ((c)

Figure 1.6 (a) ActA coated bead is riding on an actin tail with denderic or-
ganization. (b) A serial image sequence, captured every thirty seconds of .5-
micron bead coated with the ActA protein. (c) Graphical representation of an
actual ActA-coated latex sphere undergoing the transition from a bead (red cir-
cle) symmetrically coated with actin (pseudocolor) to a bead being propelled by
an actin comet tail. These figures are from the papers by Cameron et al. (1999)
and Van Oudenaarden and Theriot (1999).

of actin filament density or by thermal motion, demonstrating the inherent
ability of the dynamic actin cytoskeleton to spontaneously self-organize into
a polar structure capable of generating unidirectional force. Larger beads
(up to 2 µm in diameter) can initiate movement only if surface asymmetry
is introduced by coating the beads on one hemisphere. This explains why
the relatively large L. monocytogenes requires polar distribution of ActA
on its surface to move. These in vitro systems have several advantages:
the number of essential proteins is small; their structures, concentrations
and localizations are known; the reaction rates of the actin dynamics have
been measured (Loisel et al., 1999; Pollard and Borisy, 2003); and the force
generated by the actin comet is also measured (Marcy et al., 2004; Parekh
et al., 2005).

Mathematical modelling

The challenge in understanding the physical mechanism of force generation
by actin assembly has given rise to various theoretical descriptions. The
process of protrusion is based on the polymerization of actin into a two-
stranded polar helix with barbed and pointed ends having fast and slow
dynamics, respectively (Pollard, 1986). The monomers bind ATP, and ATP
hydrolysis results in the filament’s dynamic asymmetry and treadmilling
(net depolymerization from the pointed end balanced by net polymeriza-
tion onto the barbed end with monomers simply being recycled by diffusion)
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(see Fig. 1.7). Protrusion is based on the treadmilling of the polar actin
arrays, rather than of the individual filaments. What determines the fast
rate of treadmilling of these arrays and how do they self-organize? What
is the nature of the protrusive force?

Figure 1.7 A schematic presentation of actin treadmilling, i.e. simultaneous
association and dissociation of actin molecules from an actin filament. The figure
is from the website http://bbri.org/.

Equilibrium polymerization was first modelled quantitatively by Oosawa
and Asakura (1962) and treadmilling predicted mathematically by Wegner
(1976). Thermodynamics was used by Hill (1981a) to demonstrate that a
polymerizing filament can generate force in the piconewton range. Later
on, Peskin et al. (1993) formulated a Brownian ratchet theory for how a
growing polymer could exert an axial force. This theory explained how such
force can be generated: even when a resisting force is applied to the object
in front of the filaments tip, the object can still diffuse away, creating a gap
sufficient for monomers to intercalate and assemble onto the tip, thereby
inhibiting the object from diffusing backward. In this model, polymers are
assumed to be infinitely stiff, such that the Brownian motion of the load
alone creates a gap sufficient for monomers to intercalate between the tip
and the load. Consequently, it predicts that the bacterial velocity should
depend on its diffusion coefficient, and as a result on its size. However,
experiments failed to show such a size dependence: Listeria and Shigella

move at the same speed despite their very different sizes (Goldberd and
Theriot, 1995). The actin network at the leading edge of lamellipodia is
organized into an orthogonal network (Small et al., 1995). This is unex-
plained by the Brownian ratchet model , which treats only collinear filament
growth. To remove these limitations, Mogilner and Oster (1996a) have gen-
eralized the elastic ratchet model to include the elasticity of the polymer
and to relax the collinear structure of growing tips. The principle result of



1.1 Actin-based motility 11

this model was an expression for the effective polymerization velocity of a
growing filament as a function of the load force Fload it is working against

vp = vmax
p exp(−δ Fload/kBT ), (1.1)

in which δ = 2.7 nm is the actin monomer size and vmax
p is the free poly-

merization velocity. They used this expression to describe the propulsion
of Listeria and the protrusion of lamellipodia. But, as we discuss in the
next section, experimental data soon revealed its limitations.

Tethered ratchet model

On the basis of observations that the actin filaments are flexible rather
than rigid, an elastic ratchet model suggested that a filament’ s own ther-
mal undulations can create a gap between its tip and the load (Mogilner and
Oster, 1996a). Subsequent monomer assembly increases the fibers length
so that when the tip contacts the load the polymer is bent; the resulting
elastic force pushes on the load. In these models, which are based on the
behavior of individual filaments, the actin binding energy drives protru-
sion. ATP hydrolysis is not utilized directly in the force generation but is
necessary for treadmilling.

But this model faces the following shortcomings. First, actin filaments
responsible for protrusion are not actually independent, but are rather parts
of the dendritic network (Pollard and Borisy, 2003). Second, one-filament
models cannot really describe the complex geometry of the actin network
leading edge impinging on the curved cell membrane or bacterial surface.
Third, experimental data (Cameron et al., 2001; Kuo and McGrath, 2000)
indicated that the filaments are attached to the surface they push. Now the
question is: How can the ratchet model work if the filaments are attached
to the surface? Mogilner and Oster (2003) introduced the tethered ratchet

model which answers this question by assuming that the filaments attach
transiently to the surface of the obstacle via protein complexes. However,
they soon dissociate and grow until they lose contact with the surface af-
ter capping. The attached fibers are in tension and resist the protrusion,
whereas the dissociated fibers are in compression and generate the force of
propulsion (see Fig.1.8).
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Figure 1.8 Tethered ratchet model of propulsion. Actin filaments (red) grow
by branching as mediated by the Arp2/3 complex (blue). (A) Some filaments are
attached to the load surface which is coated with ActA (green). Other unattached
filaments are free to polymerize. (B) Thermal fluctuations cause the polymerizing
filaments to bend away from the load. (C) Once the elongated filaments attach
to the load, they are under compression and their subsequent relaxation provides
the propulsive force and can move the object forward. The attached filaments
detach and are free to polymerize. This figure is from the paper by Upadhyaya
and Oudenaarden (2004).

Elastic continuum model

Operating on a much larger length scale than the microscopic models, the
elastic propulsion theory treats the actin tail as an elastic continuum gel
(Gerbal et al., 2000a). Experimental evidence suggests that the actin mesh
around the object behaves like an elastic gel (Gerbal et al., 2000b). Based
on experimental results showing that Listeria are connected to their tail
and using the measured value of the Young’s modulus (Y = 103 − 104 Pa)
of the actin tail, a macroscopic elastic propulsion model suggested that the
curved surface is not merely pushed, but is rather squeezed forward by an
elastic stress. This model is formulated at a mesoscopic scale at which the
actin tail gel is viewed as a continuous medium and does not consider ex-
plicitly the microscopic mechanism of force generation at the surface. The
squeezing stress develops when the growth of actin at the surface pushes the
actin gel outward, stretching it and generating tangential tension balanced
by radial compression at the surface (Fig. 1.9).

This model assumes that there is an effective friction between the gel and
surface. Similar to the microscopic models, the elastic propulsion model
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predicts a balance between the pushing elastic and pulling friction forces on
the surface. It describes the complex system of Listeria by a two-gel model
to illustrate the main features of the propulsion mechanism. This approach
makes a few assumptions about the microscopic mechanism at work in the
polymerization/reticulation process; it can, in principle, be used with any
microscopic mechanism. The internal forces exerted on the bacteria surface
predicted by this model lead to a simple understanding of the oscillatory
motion (Fig. 1.5) of the Listeria mutant ActA∆21−97: at the microscopic
level the mutation of the ActA gene changes the connection kinetics of
the links between the gel and the bacterium surface. It corresponds, at a
physical or macroscopic level, to a modification of the surface properties,
change in the polymerization rate and the effective friction between the gel
and the bacterium. This can induce a stick-slip transition, resulting in the
oscillatory motion of the mutant. This model succeeds in reproducing the
experimental data of its motion. It predicts that the strength of linkage
between the mutant and the tail should be stronger during its slow phase
and weaker during its rapid displacement.

On the other hand, growth of filaments on a flat surface will not lead to
a build-up of stress, as described in Fig. 1.9. The results of Schwartz et al.

(2004) show that curvature-derived stresses may not be critical for move-
ment. They used flat disks (made by compression of polystyrene beads)
coated uniformly with ActA in cell extracts to reconstitute Listeria-like
motility. They find that the disks move through extracts with comet tails
in a manner similar to Listeria, beads and vesicles. Furthermore, particles
with tails on their curved perimeters are observed to hop, but disks with
face tails move steadily, suggesting that curvature of the load is required for
hopping. Hopping has been observed previously for spherical beads in puri-
fied protein solutions (Bernheim-Groswasser et al., 2005) and was found to
be in agreement with a curvature-induced build-up of stress (Gerbal et al.,
2000a). The period of velocity oscillations with beads differs by one order
of magnitude (8-15 min) from Listeria.

In chapter. 5, we present our simple model of actin-based motility for a
flat obstacle. The model which is formulated on the single filament level,
predicts that for a given set of parameters, changing the attachment rate of
filaments drives the system from a stationary to a saltatory movement. Our
results agree well with respect to velocity spike amplitude and periods in
Listeria experiments (see Fig. 5.5a). It also predicts that curvature of the
obstacle is not necessary for “hopping”, which is in contradiction with the
recent results by Schwartz et al. (2004). It seems that more experiments
on flat obstacles, for a broad range of parameters, needs to be done.
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Figure 1.9 Curvature-induced elastic stress development. (A) A curved object
coated with ActA (green) polymerizes actin on its surface. The first layer of actin
is depicted in red. As the subsequent layer (yellow) grows on the surface of the
object, it displaces the first layer and causes it to stretch. The growth of the next
layer (blue) causes the previous layers to be further stretched. This leads to a
compressive force on the bead. (B) Actin polymerizing on a flat object coated
with ActA on one surface. In a time interval the thickness of the gel increases by
d. Successive layers are not stretched and therefore do not generate a compressive
stress. This is in contrast to the curved object where the thickness of older layers
decreases as each new layer is added. This figure is from the paper by Upadhyaya
and Oudenaarden (2004).

1.2 The wormlike chain model

Many important biopolymers, like actin, microtubules, and DNA, are stiff
meaning that their persistence length `p is several orders of magnitude
larger than the microscopic scale defined by the backbone diameter or
monomer size a. The theoretical understanding of the mechanical prop-
erties of a single stiff macromolecule in isolation is already a nontrivial
statistical mechanics problem with quite a number of recent developments
50 years after it was first formulated (Kratky and Porod, 1949). In con-
trast to flexible polymers, which are usually theoretically represented by
highly coarse grained, effective models such as the fractal Gaussian chain,
stiff polymers can be modeled more realistically by the so-called wormlike
chain model: an inextensible contour with a resistance to bending quanti-
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fied by the persistence length `p, which is the characteristic decay length
of tangential correlations under the influence of thermal forces. The fil-
ament is represented by an inextensible space curve r(s) of total length
L parametrized in terms of the arc length s (Fig. 1.10a). The statistical
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Figure 1.10 Sketch of the wormlike chain as (a) a differentiable space curve
r(s) of a contour length L parametrized by arc length s and (b) a succession
of N segments ~ti, whose direction is tangent to the polymer contour at the ith
segment.

properties of the wormlike chain are determined by a free energy functional
which measures the total elastic energy of a particular conformation. The
elastic energy of a given configuration r(s), parametrized in terms of the
arc length s ∈ [0, L], is given by

H =
κ

2

∫ L

0

ds

(

∂t(s)

∂s

)2

, (1.2)

where t(s) = ∂r(s)/∂s is the tangent vector. The energy functional is
quadratic in the local curvature with κ being the bending stiffness of the
chain. The inextensibility of the chain is expressed by the local constraint,
|t(s)| = 1, which leads to non-Gaussian path integrals. Since there would
be high energetic costs for a chain to fold back onto itself one may safely
neglect self-avoidance effects for sufficiently stiff chains.

Despite the mathematical difficulty of the model some quantities can be
calculated exactly. Among these is the tangent-tangent correlation func-
tion which decays exponentially, 〈t(s). t(s′)〉 = exp[−(s− s′)/`p], with the
persistence length `p = κ/kBT . Another example is the mean-square end-
to-end distance

R2 := 〈R2〉 = 2`2p(e
−L/`p − 1 + L/`p)

=

{

L2 for L/`p → 0 (rigid rod)

2`pL for L/`p → ∞ (random coil),
(1.3)
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which reduces to the appropriate limits of a rigid rod and a random coil
(with Kuhn length 2`p) as the ratio of L to `p tends to zero or infinity,
respectively. The calculation of higher moments quickly gets very trouble-
some (Hermans and Ullman, 1952).

Rigorous analytical calculations within the wormlike chain model are
essentially limited to perturbation calculations for weakly bending rods
L < `p, but this limit captures the most important property of the model.

It is also possible to define a discrete form of the worm like chain model.
In this framework, a polymer conformation is represented by a succession
of N segments ~ti, whose direction is tangent to the polymer contour at the
ith segment (Fig. 1.10b). Since the polymer is assumed to be inextensible,
all segments ~ti have a prescribed length a = L/N . The Hamiltonian in the

presence of constant external force ~f is given by

H
kBT

= − λa2

kBT

N
∑

i=1

t̂i · t̂i+1 −
N
∑

i=1

~fa

kBT
· t̂i, (1.4)

where t̂ = ~t/a and λa2/kBT is the (dimensionless) energy associated with
each bond. λ is chosen such that to reproduce the energy of a semiflexible
polymer of persistence length `p. The relation in d dimensions is computed
to

exp(−L/`p) =

[

Id/2(K)

Id/2−1(K)

]N

(1.5)

with K = λa2/kBT and Iν as modified Bessel function of first kind.
Continuum limit can be obtained for a → 0, N → ∞, with Na = L

and λa3 held fixed. Since K = (λa3)/(a kBT ) and λa3 is finite, small a is
equivalent to large K. In the limit of large K, Eq. 1.5 reduces to

`p =
2

d− 1

KL

N
=

2

d− 1

λa3

kBT
(1.6)

The Hamiltonian is then equivalent to the following functional

H =
κ

2

∫ L

0

ds

(

∂t(s)

∂s

)2

− ~f ·
∫ L

0

ds t(s), (1.7)

where κ = 2/(d− 1)λa3.

1.3 Non-linear force-extension relation

A useful property of the wormlike chain model, which can be computed
exactly is the linear force extension. Consider a semiflexible polymer with
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contour length L and persistence length `p which is grafted at one end in
ẑ direction. The other free fluctuating end is pulled by an external force
f = fẑ (Fig. 1.11).
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Figure 1.11 A semiflexible polymer is grafted in one end and the other free
fluctuating end is pulled by an external force f in ẑ direction. R is the end-to-end
distance of the polymer and rz(L) is the projection of R in ẑ direction.

The non-linear force extension relation of the filament in the weakly
bending approximation has been calculated in Sec. 2.3.2 and looks like (Gho-
lami et al., 2006)

〈rz(L)〉f = L

(

1 − L(d− 1)

4`p

tanh
√

fL‖/kBT
√

fL‖/kBT

)

, L‖ = L2/`p, (1.8)

where f is the external force exerted on the free fluctuating end of the
filament in the graft direction and rz(L) is the end-to-end distance of the
filament projected in ẑ direction. d is the dimension of the embedding
space.

In the limit of small external forces, this reduces to

〈rz(L)〉f = L

[

1 − d− 1

4

L

`p
+
d− 1

12

(

L

`p

)2

fL

]

, (1.9)

which identifies R‖ (the z projection of the equilibrium end-to-end distance
of the filament R in the absence of external forces) as L[1 − (d− 1)L/4`p]
and the effective linear spring constant k‖ = 12κ2/(d−1)kBTL

4. For strong
stretching forces, the extension saturates asymptotically as

〈rz(L)〉f = L

[

1 − L (d− 1)

4 `p
√

fL‖

]

, (1.10)

which agrees with results by Marko and Siggia (1995).
In the limit of large compressive forces, the weakly bending rod approx-

imation breaks down. The non-linear response of the polymer to compres-
sive forces (as well as extension forces) can be obtained from the probability
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distribution of the tip position (Frey et al., 1998). The probability distri-
bution of a grafted semiflexible polymer in the z direction has the scaling
form (see Sec. 2.3.3)

P‖(z, L, `p) = L−1
‖ P̃‖(ρ̃) , (1.11)

where we have introduced the scaling variable

ρ̃ =
L− z

L‖
(1.12)

measuring the compression of the filament in units of L‖. In three dimen-
sions, one finds (see Sec. 2.3.3)

P‖(ρ̃) =







π exp
(

− 1
4π

2ρ̃
)

ρ̃ ≥ 0.3

1√
πρ̃3

exp
(

− 1
4ρ̃

)

ρ̃ < 0.3
. (1.13)

Now we calculate the moment generating function by a Laplace transform

P‖(f) := 〈e−f(L−rz(L))/kBT 〉0 =

∫ L

0

dz e−f(L−z)/kBTP‖(z)

=

∫ L/L‖

0

dρ̃ e−fL‖ρ̃/kBTP‖(ρ̃) . (1.14)

Then, the force-extension relation is given by

〈rz(L, f)〉 = L+ kBT
∂ lnP‖(f)

∂f
. (1.15)

The results of numerically evaluating Eq. (1.15) using Eqs. 1.13, 2.20 are
presented in Fig. 1.12a for different values of ε = L/`p.

Also shown in Figs. 1.12b,c,d are the results from the Monte Carlo (MC)
simulations at different intervals of fL/kBT . We used MC data for the
probability distribution of the tip in z direction, P‖(z), to calculate numer-
ically the integral in Eq. 1.14 for different values of ε = L/`p. The MC
simulations have been performed according to the standard Metropolis al-
gorithm for a chain with N = 50 identical segments (see Appendix A).
We found a good agreement between analytical results and MC data for
intermediate (semiflexible polymers) and even large values of ε (flexible
polymers). For stiff filaments (ε � 0.1), the deviations for compressing
forces are significant due to the weak statistics of MC data at small values
of z. The probability to find the tip of the stiff polymer at small values of z
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Figure 1.12 (a) 〈rz(L)〉/L as a function of the dimensionless force fL/kBT .
The curves are for different values of ε = L/`p = 10, ..., 1 with steps of size
1 (Frey et al., 1998). (b), (c), (d) Results of MC simulations are plotted in
different intervals of fL/kBT . Deviations from analytical results due to the lack
of simulation time is pronounced for semiflexible (ε ∼ 1) and stiff filaments (ε � 1
which are not presented here).

is very small, since these configurations are strongly suppressed. Although
this probability is negligible, but it is not exactly zero. At small values
of z, P‖(z) is small but e−f(L−z) (f negative) can be large, so their mul-
tiplication is not necessary small. Indeed, our MC data vanishes at small
values of z which for compressing forces, has important contribution to the
integral in Eq. 1.14. One may need to run MC simulations for longer times
in order to get a better statistics of P‖(z) at small values of z.

Finally, we also note the result for the linear response of a semiflexible
polymer which is grafted at one end (in ẑ direction) and the other end is
pulled out by a small force fn̂ with ϑ to be the angle between ẑ and n̂
(Fig. 1.13).

The force coefficient is markedly angle dependent and in two dimensions
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Figure 1.13 A pulling force fn̂ acts on the free fluctuating end of a semiflexible
polymer which is grafted in ẑ direction.

is given by (Kroy, 1998; Kroy and Frey, 1996)

k−1
‖ (ϑ) =

4`2p
kBT

[

1

2

L

`p
+ e−L/2`p − 1

+ cos 2ϑ

(

1

4
+

1

12
e−2L/`p − 1

3
e−L/2`p

)

− cos2 ϑ (e−L/2`p − 1)2
]

. (1.16)

In three dimensions, k−1
‖ (ϑ) changes to (Kroy, 1998)

k−1
|| (ϑ) =

`2p
kBT

[

2

3

L

`p
− 5

9
+

1

18
e−3L/`p + sin2 ϑ e−L/`p

+
1

6
cos 2ϑ (e−3L/`p + 2) − cos2 ϑ (e−L/`p − 1)2

]

. (1.17)

1.4 Objective of this thesis

In this thesis, we aim to build up a simple model of actin-based motility on
the single filament level. We assume that filaments can attach to the sur-
face of the obstacle with a constant rate and detach with a force dependent
rate. While the free fluctuating length of detached filaments grow by a force
dependent polymerization velocity (Eq. 1.1), it decreases by crosslinking of
both attached and detached filaments in the stiff part of the actin gel. A
detached filament which is grafted at distance ζ with respect to the obsta-
cle and has free fluctuating length ld, performs thermal fluctuations in the
presence of the obstacle. Since the number of possible configurations of the
filament is decreased or its free energy has been increased, it exerts a force
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on the obstacle which is pure entropic in origin. Hence, the following ques-
tion arises: how does the magnitude of this force depend on ld, ζ, `p and
ϑ? Here, `p is the persistence length and ϑ is the filament orientation. To
address this question, first, we analytically solve this problem in the weakly
bending approximation which is a valid approximation for stiff filaments
(ld � `p). In the next step, we perform extensive Monte Carlo simulations
to check the validity range of our analytical calculations. We found that
there is a nice agreement between our analytical results and MC simula-
tions for stiff filaments and the results start to deviate as the persistence
length of filament becomes comparable to its contour length (semiflexible
polymers). Our MC simulations also reproduces the already known results
for flexible polymers like the gaussian distribution of end-to-end distance
(see Chapter. 2).

On the other hand, attached filaments which are attached to the obstacle
via some linker proteins, most the time pull back the obstacle. Obviously,
this pulling force will depend on the contour length of attached filament, its
persistence length, its orientation and eventually on the spring constant of
the linker protien. We include the presence of the linker protein in the non-
linear force extention relation (Sec. 1.3) in order to calculate the pulling
force of attached filaments (see Appendix D).

We use the results of our calculations for pushing and pulling forces as
a main ingredients to build up our simple theoretical description of actin-
based motility. We show that attachment and detachment of actin filaments
to the obstacle, polymerization at the filament’s free ends and cross-linking
of the actin network lead to spontaneous oscillations of the obstacle velocity
(Chapter 5).

We also use the analytical results obtained for pushing force of detached
filaments to calculate numerically the total entropic force exerted by a
homogeneous actin network on a sphere. These calculations may serve as
a prerequisite for modelling actin-based motility in in vitro experiments
using curved obstacles like beads and vesicles (Chapter 3).

At the end, part of this thesis is also dedicated to our numerical results
obtained for steric interactions between two biopolymers fluctuating paral-
lel or perpendicular to each other with different boundary conditions. This
is the situation that one often encounters in cell cytoskeleton. We also com-
pare the results obtained from Monte Carlo simulations to our analytical
calculations (Chapter 4).
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2 Entropic forces exerted by a

grafted polymer on a wall

This chapter has been published as: A. Gholami, J. Wilhelm, and E. Frey: En-

tropic forces generated by grafted semiflexible polymers, Phys. Rev. E. 74, 41803

(2006). More Monte Carlo results in 3d are added.

Abstract

The entropic force exerted by the Brownian fluctuations of a
grafted semiflexible polymer upon a rigid smooth wall are cal-
culated both analytically and by Monte Carlo simulations. Such
forces are thought to play an important role for several cellular
phenomena, in particular, the physics of actin-polymerization-
driven cell motility and movement of bacteria like Listeria. In
the stiff limit, where the persistence length of the polymer is
larger than its contour length, we find that the entropic force
shows scaling behavior. We identify the characteristic length
scales and the explicit form of the scaling functions. In cer-
tain asymptotic regimes, we give simple analytical expressions
which describe the full results to a very high numerical accuracy.
Depending on the constraints imposed on the transverse fluctu-
ations of the filament, there are characteristic differences in the
functional form of the entropic forces. In a two-dimensional
geometry, the entropic force exhibits a marked peak.

2.1 Introduction

In a cellular environment, soft objects like membranes and polymers are
subject to Brownian motion. As a result there are interactions between
them which are entropic in origin, i.e. a consequence of constraints im-
posed on the Brownian fluctuations. For example, two parallel membranes
repel each other entropically with a potential that falls off like a power law
in the distance between them (Helfrich, 1978). Similarly, thermally fluctu-
ating biopolymers like F-actin and microtubules may exert entropic forces
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on membranes or some other obstacles; for an illustration see Fig. 5.1.
Though due to the same thermal fluctuations, such forces have to be dis-

membrane

actin network grafting point

Figure 2.1 A membrane constrains the Brownian fluctuations of a semiflexi-
ble polymer grafted parallel to the z-axis resulting in an entropic force on the
membrane. The membrane, for simplicity, has been considered as a rigid smooth
wall.

tinguished from forces obtained by pulling on a biopolymer (Fixman and
Kovac, 1973; Kovac and Crabb, 1982; Marko and Siggia, 1995; Benetatos
and Frey, 2004). It turns out that the force-distance curves of these two
cases have no resemblance at all in a regime where thermal fluctuations play
a role, which is generically the case for all cytoskeletal filaments. Both types
of forces are thought to play a prominent role in cell motility and move-
ment of pathogens like Listeria monocytogenes , that propel itself through
the cytoplasm of infected cells by constructing behind it a polymerized tail
of cross-linked actin filaments (Marcy et al., 2004). Similarly, in a crawling
cell, the force generated from the polymerization of a collection of actin
fibers is responsible for the protrusion of cell membrane, which are known
as lamellipodia, filopodia, or microspikes according to their shapes (Bray,
2001). It seems that polymerizing networks of actin filaments are capable
of exerting significant mechanical force, which are used by eukaryotic cells
and their prokaryotic pathogens to change shape or move.

In this chapter, we will not enter into the debate on the particular force
generating mechanism responsible for all these different types of cell motil-
ity. It seems plausible to us that a final model for a particular biological
system may be a macroscopic viscoelastic model of the actin gel (Gerbal
et al., 2000a,b) combined with elements from a microscopic elastic Brown-
ian ratchet (EBR) model of the growing edge of the network (Mogilner and



2.1 Introduction 25

Oster, 1996a,b). The first one is a continuum model of Listeria propul-
sion relying on the elastic shear stress developed by growth of the actin
meshwork at the cell surface. In the EBR model, which is based on the
behavior of individual actin filaments, thermal bending undulations of semi-
flexible actin fibers create the polymerization gap and the entropic force
of the growing filaments pushes the bacterium forward or deforms the cell
membrane. It seems that a detailed analysis of the entropic forces which
fluctuating stiff polymers exert on rigid walls may serve as an important
input for future molecular models of force generation in cellular systems.
The length of the thermally fluctuating parts of these polymers are typ-
ically 200 ∼ 300 nm, which is very short compared to their persistence
length `p ≈ 15µm (LeGoff et al., 2002), such that an analysis which con-
siders these filaments as stiff seems appropriate. For microtubules, whose
persistence length ranges from 110µm to 5mm when L is varied between
2.6 and 47.5µm (Pampaloni et al., 2006), the analysis should even work
better.

We consider the idealized situation illustrated in Fig. 5.1, where one end
of a semiflexible polymer is fixed both in position and orientation to some
rigid support, e.g. the dense part of an actin gel. We choose coordinates
such that the grafted end is at the origin with the tangent fixed parallel to
the z-axis. The membrane or obstacle is considered as a rigid, smooth wall
orthogonal to the x-z-plane at a distance ζ from the origin. Let ϑ be the
angle between the z-axis and the normal n̂ of the wall. If ζ is small enough,
the wall will constrain the Brownian fluctuations of the polymer leading to
an increase in free energy with respect to the unconstrained polymer. On
time scales larger than the equilibration time of the grafted polymer, this
results in an average force f exerted on the wall. In this paper we will
calculate how the entropic force f depends on the geometric parameters ζ,
ϑ, the contour length L and the persistence length `p of the polymer, and
the dimensionality of the embedding space.

Polymers confined to two dimensions is a situation frequently encoun-
tered in in vitro experiments but also of relevance for actin filaments in the
confined space of a lamellipodium. We find that in this case the entropic
force shows a pronounced maximum as a function of the compression of
the polymer, L− ζ, for a broad range of stiffness parameters ε = L/`p ≤ 4.
The magnitude of the maximum force exceeds the value of the Euler buck-

ling force fc = π2

4
`pkBT

L2 by a factor between 2 and 3. These results are
quite distinct from the behavior of a polymer which is free to fluctuate in
three dimensions. Then, the entropic force is a monotonic function of the
compression and exceeds the buckling force only in the nonlinear regime
for strong compressions.
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In the branched actin network formed in lamellipodia, the Arp2/3 com-
plex is responsible for the nucleation of new filaments. It is found that the
angle relative to the parent filament is 2ϑ ≈ 70◦ (Small et al., 1995). It has
been asked (Mogilner and Oster, 1996a,b) whether this angle corresponds
to an optimal angle with respect to the entropic force generated by a fluc-
tuating filament. Indeed, we do find that there is such an optimal angle for
a homogeneous network pushing against a flat membrane (see section 2.5),
but this angle is much larger, ranging in the interval 2ϑ ∈ [120◦, 150◦]. This
angle differs from previous estimates (Mogilner and Oster, 1996a,b) mainly
since they were based on an incorrect value for the persistence length of
actin. It would, however, be overhasty to conclude that the branching angle
is not optimized for maximal force production since the simplified model
in section 2.5 leaves out important physics such as the polydispersity in
filament length and the thermal fluctuations of the membrane.

We proceed as follows: Section 2.2 serves to introduce and discuss the
various types of thermodynamic forces which can be generated by fluctu-
ating semiflexible polymers. We arrive at the conclusion that the entropic
forces discussed above are closely related to the probability distribution of
the free end of the clamped polymer. In Section 2.3, we start our anal-
ysis of entropic forces with a polymer grafted perpendicular to the wall.
This chapter contains a definition of the wormlike chain model and the
basic idea of our analytical calculations, which starting from the tip dis-
tribution calculates the restricted free energy and the entropic force. The
analysis is complemented by Monte Carlo (MC) simulations, which both
show the range of validity of the analytical results and the crossover from
semiflexible to Gaussian chains. Details of the calculations are deferred to
the Appendices C.1, C.2 and C.3. Section 2.4 treats the technically more
complicated case of a polymer inclined at an angle ϑ with respect to the
wall. Here, we obtain the entropic forces analytically up to the numerical
evaluation of some integrals. For some asymptotic cases explicit analytical
formula are obtained. The MC simulations in this chapter are restricted to
a parameter range which is close to the stiff limit and mainly serve the pur-
pose to define the range of applicability of the analytical results. In Section
2.5, we take the polymerization kinetics of the filaments into account and
show that there is an optimal angle at which the polymerization velocity
is maximum.



2.2 Entropic forces and probability densities 27

2.2 Entropic forces and probability densities

According to the wormlike chain model (Kratky and Porod, 1949; Saito
et al., 1967), the elastic energy of a given configuration r(s), parametrized
in terms of the arc length s ∈ [0, L], is given by

βH =
`p
2

∫ L

0

ds

(

∂t(s)

∂s

)2

. (2.1)

Here t(s) = ∂r(s)/∂s ≡ ṙ(s) is the local tangent to the contour r(s), `p =
κ/kBT is the persistence length with κ the polymer’s bending modulus,
and β = 1/kBT . As the polymer is considered to be inextensible, we have
|t(s)| = 1 for all s, i.e. the tangent vectors are restricted to the unit sphere.

In a cellular environment, biopolymers are flexed by Brownian motion,
i.e. they exhibit thermal fluctuations in their shape. This makes for a
rich mechanic response genuinely different from its classical analogue, a
rigid beam. Consider a polymer whose position (not its orientation) is
fixed at one end and one is pulling on its other end, a typical situation
encountered in an experiment using optical or magnetic tweezers. Then
there is no unique force-distance relation. It actually matters whether
one pulls at constant force f and measures the resulting average distance
〈r〉(f) or vice versa. Results for the constant force ensemble are thor-
oughly discussed in Refs. Fixman and Kovac (1973); Kovac and Crabb
(1982); Marko and Siggia (1995). In a constant distance ensemble, the
probability density distribution of the end-to-end distance P (r) provides
the necessary information (Wilhelm and Frey, 1996). It defines a free en-
ergy F (r) = −kBT lnP (r) from which the average force may be derived by
differentiation, 〈f〉(r) = −∂F (r)/∂r (Frey et al., 1998). Here, we are inter-
ested in the force a fluctuating filament exerts on a rigid obstacle which is
fixed in its position. The polymer’s end facing the obstacle is considered
as free to fluctuate and only its proximal end is fixed in position and orien-
tation; see Fig. 5.1. Since there are no direct forces between polymer and
obstacle the force exerted on the wall is solely due to the steric constraints
imposed on the filament. This suggests to use the term “entropic forces”,
frequently used in analogous physical situations (Lubensky, 1997). How-
ever, this should not leave the reader with the wrong impression that there
are different physical origins for entropic forces and those discussed in the
preceeding paragraph. It is merely the type of “boundary condition” im-
posed on the thermal fluctuations which leads to their (drastically) different
character.

For getting acquainted with the problem, let us consider the simplest
case, a grafted polymer whose one end and tangent is fixed such that it
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is oriented perpendicular to a smooth wall (Fig. 5.1 with ϑ = 0). The
presence of the wall allows only for those polymer configurations which
are entirely in the half-space to the left of the wall. Since we are mostly
interested in stiff polymers (which have a low probability for back-turns),
this restriction may be approximated as a constraint solely on the position
of the polymer tip facing the wall, rz(L) ≤ ζ; later in Section 2.4.3 we will
show some simulation data going beyond this approximation.

To derive the average force acting on the wall, we consider a wall potential
U(ζ − rz(L)) for the free polymer tip, which at the end of the calculation
will be reduced to a hard wall potential. For now, picture a steep potential
which rises rapidly for rz(L) → ζ. Then, the ensemble average for the force
the polymer tip exerts perpendicular to the wall reads

〈f‖〉(ζ) =
1

Z‖(ζ)

∫

D[r(s)] e−β(H+U) ∂U

∂rz(L)
. (2.2)

Here the partition sum

Z‖(ζ) =

∫

D[r(s)] e−β(H+U) (2.3)

is a path integral over all polymer configurations compatible with the
boundary conditions imposed on the distal and free end of the grafted
polymer, where the measure is taken such that the partition sum without
a constraining wall (U = 0) is normalized to 1. This is now a thermody-
namic force. In an actual experiment, it is obtained by a time average with
an averaging time much larger than the equilibration time for the grafted
polymer. This force would also be measured in an experiment where a large
number of independent and identical polymers push against the same wall.

Since the wall potential depends only on the difference between the po-
sition of the polymer tip and the wall, we may rewrite the entropic force in
Eq. (2.2) as

〈f‖〉(ζ) = kBT
∂

∂ζ
lnZ‖(ζ) . (2.4)

Upon defining a free energy of the confined polymer as

F‖(ζ) = −kBT lnZ‖(ζ) , (2.5)

the entropic forces again reads as a spatial derivative of a free energy

〈f‖〉(ζ) = − ∂

∂ζ
F‖(ζ) . (2.6)
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The physical interpretation of this free energy becomes clear as one goes
to the hard wall limit. Then the partition function reduces to

Z‖(ζ) =

∫

D[r(s)] Θ(ζ − rz(L)) e−βH

=: 〈Θ(ζ − rz(L))〉0 , (2.7)

where the subscript 0 indicates that the average is now taken with respect to
the bending Hamiltonian only. The Θ-function, defined such that Θ(x) = 1
for x > 0 and zero elsewhere, indicates that only those configurations are
counted with the position of the polymer tip to the left of the wall. Hence,
as for the fixed distance ensemble in a pulling experiment, the free energy
results from a quantity measuring the number of configurations obeying the
imposed constraint, where each configuration is weighted by a Boltzmann
factor for the bending energy.

It is useful to rewrite the partition function as

Z‖(ζ) =

∫ L

−L

dzΘ(ζ − z)〈δ(z − rz(L))〉0 =

∫ ζ

−L

dz P‖(z) , (2.8)

where P‖(z) = 〈δ(z − rz(L))〉0 is the probability density to find the z-
coordinate of the polymer’s free end at z irrespective of its transverse
coordinates. It identifies the restricted partition sum as the cumulative
distribution function corresponding to the probability density P‖(z). One
may then write the entropic force in the alternative form

〈f‖〉(ζ) = kBT
P‖(ζ)

Z‖(ζ)
. (2.9)

Upon multiplying this formula by dζ, it may be interpreted as follows.
The work done on the wall upon displacing it by an infinitesimal distance
dζ equals the thermal energy scale kBT times a conditional probability
Pleft(ζ)dζ = P‖(ζ)dζ/Z‖(ζ), which measures the probability that the posi-
tion of the polymer tip is within a distance dζ from the wall given that the
polymer is in the left half-space.

Since the probability density for the position of the polymer tip P (x, z)
is actually a function of the position perpendicular and transverse to the
wall, Eq. (2.9) immediately suggests that one could define a local entropic
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pressure. Indeed, upon generalizing the above arguments, one may write

p(x, ζ) =
−1

Z‖(ζ)

∫

D[r]
∂U

∂ζ
δ(x−r⊥(L)) e−β(H+U)

=
kBT

Z‖(ζ)

∂

∂ζ
〈Θ(ζ − rz(L)) δ(x − r⊥(L))〉0

= kBT
P (x, ζ)

Z‖(ζ)
(2.10)

for the entropic pressure, i.e. the force per unit area exerted locally at x

on the wall. Again, the entropic force is given by the thermal energy scale
times a conditional probability density, which now measures the probability
of finding the polymer tip at a particular site x on the wall conditioned on
the polymer configuration being to the left of the wall. Pictorially, one may
say that the local pressure is given by kBT times the number of “collisions”
of the polymer with the wall per unit area, a reasoning which is frequently
used in scaling analyses.

The total force is obtained by integrating over this local pressure, 〈f‖〉(ζ) =
∫

dx p(x, ζ). In addition, one may now also define an entropic torque as
has recently been done for a rigid rod facing a planar wall (Roth et al.,
2002); we leave this issue for future investigations.

Generalizing the above ideas suggests to introduce an effective local free
energy per unit area as

F(x, ζ) = −kBT

∫ ζ

dz
P (x, z)

Z‖(z)
, (2.11)

which is useful in applications where the obstacle is actually not rigid but
soft with some internal elasticity, e.g. a membrane whose dynamics is much
slower than the equilibration time of the polymer. Then the elastic energy
describing membrane bending and the above effective free energy may just
be added to describe the combined system. Of course, such a description
fails if time scales for the dynamics of both soft objects are comparable.

Our main conclusion in this section is that entropic forces generated by
a grafted stiff polymer can be reduced to the calculation of the proba-
bility distribution of the polymer tip. For a polymer constrained to two
dimensions, the distribution function has been found to show quite inter-
esting behavior such as bimodality in the transverse displacement of the
free end (Lattanzi et al., 2004). This pronounced feature of the distribu-
tion function has recently been rationalized upon exploiting an interesting
analogy to a random walker in shear flow (Benetatos et al., 2005).
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2.3 Polymer orthogonal to a wall

In this section, we are going to calculate the entropic force generated by a
grafted polymer whose orientation is on average perpendicular to the wall.
It illustrates the basic idea of our analytical calculations for the simplest
geometry.

2.3.1 Weakly bending limit: mode analysis

In evaluating the distribution function analytically, we restrict ourselves
to the limit of a weakly bending filament. In other words, we consider
the persistence length `p to be large enough compared to the total contour
length L, such that the statistical weight of configurations with small sharp
bends will be negligible. The key small dimensionless quantity will be the
stiffness parameter

ε = L/`p (2.12)

and we will refer to the weakly bending limit also as the stiff limit.
For small ε, the transverse components tx(s) and ty(s) of the tangent

vector t(s) will be small for all s. The condition |t(s)| = 1 would suggest a
parameterization of t(s) in terms of polar coordinates or Euler angles. Such
a parameterization, however, becomes quite cumbersome in the present
case where the embedding into an external space matters due to the steric
constraints imposed by the wall. It is much more convenient to use a
Monge-like parameterization

t =
1

√

1 + a2
x + a2

y







ax

ay

1






, (2.13)

where we dropped all arguments s for brevity; the generalization to d spatial
dimensions is obvious.

The boundary conditions at the ends of the polymer are

t(0) = (0, 0, 1)T (clamped end) , (2.14a)

ṫ(L) = (0, 0, 0)T (free end) . (2.14b)

This translates into a(0) = (ax(0), ay(0))T = (0, 0)T and ȧ(L) = (ȧx(L),
ȧy(L))T = (0, 0)T . We thus can choose a Fourier representation or in other
words a normal mode decomposition

ax(s) =

∞
∑

k=1

ax,k sin
(

λk
s

L

)

(2.15)
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with eigenvalues

λk =
π

2
(2k − 1) , (2.16)

and Fourier (normal mode) amplitudes

ax,k =
2

L

∫ L

0

ds ax(s) sin
(

λk
s

L

)

, (2.17)

and similar for ay(s). To second order in the Fourier amplitudes, the loca-
tion of the end-point along the z-axis reads

rz(L) =

∫ L

0

ds tz(s) ≈ L− 1

2

∫ L

0

ds
[

a2
x(s) + a2

y(s)
]

= L− L

4

∞
∑

k=1

[

a2
x,k + a2

y,k

]

. (2.18)

Similarly, we find for the Hamiltonian to second order

βH ≈ `p
4L

∞
∑

k=1

λ2
k

[

a2
x,k + a2

y,k

]

. (2.19)

2.3.2 Moment generating function

To calculate the probability density function P‖(z), we follow a procedure
outlined in Wilhelm and Frey (1996) and consider the moment generating
function

P‖(f) := 〈e−f(L−rz(L))〉0 =

∫ L

−L

dz e−f(L−z)P‖(z)

=

∫ 2L

0

dρ e−fρP‖(L− ρ) . (2.20)

Note that thermal averages have to be evaluated using the bare elastic free
energy Eq. (2.1). Since for stiff chains configurations with large values for
the stored length (“compression”) ρ = L − z are rather unlikely, we can
extend the upper boundary of the integral in the last line of the preceding
equation to infinity. This allows us to write the moment generating function
as the Laplace transform of the distribution function P‖(z)

P‖(f) =

∫ ∞

0

dρ e−fρP‖(L− ρ) . (2.21)
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For f = 0, the latter equation reduces to the normalization condition of
the probability density function P‖(z) such that P‖(0) = 1.

Combining Eqs. (2.18, 2.19) and 2.20, the moment generating function
can be put into the following path integral form

P‖(f) =

∫

D[a(s)] exp

{

−1

2

∫ L

0

ds
[

`pȧ
2 + fa2

]

}

(2.22)

with the boundary conditions given by Eq. (2.14). This path integral is
easily evaluated upon using the Fourier representation of the transverse
tangent fields Eq. (2.15), and noting that to harmonic order fluctuations in
all transverse directions are statistically independent. We find in d spatial
dimensions

P‖(f) =

(

∫ ∞
∏

k=1

dak

N exp

{

−1

4

[

λ2
k`p
L

+ fL

]

a2
k

}

)(d−1)

=
∞
∏

k=1

(

1 +
fL2

`pλ2
k

)−(d−1)/2

, (2.23)

where the normalization factor N of the path integral was chosen such that
P‖(0) = 1. If f ∈ R+ the product may be rewritten as (Hansen, 1975)

P‖(f) =

(

cosh

√

fL2

`p

)− 1
2 (d−1)

. (2.24)

Note that the moment generating function, which also depends on the
length scales L and `p, has the scaling form

P‖(f, L, `p) = P̃‖(fL‖) , (2.25)

where we have defined the characteristic longitudinal length scale

L‖ :=
L2

`p
. (2.26)

The formulas in Eq. (2.23) and Eq. (2.24) are the basis for all subsequent
calculations in this section, which are basically different forms of performing
the inverse Laplace transform.

For future reference and comparison with the entropic forces, we close
this subsection with a discussion of the force-extension relation in the fixed
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force ensemble. It simply follows as the first moment of the moment gen-
erating function

〈rz(L)〉f = L+
∂ lnP‖(f)

∂f

= L

(

1 − L(d− 1)

4`p

tanh
√

fL‖
√

fL‖

)

, (2.27)

where f is the external force in units of the thermal energy kBT . In the
limit of small external forces, this reduces to

〈rz(L)〉f = L

[

1 − d− 1

4

L

`p
+
d− 1

12

(

L

`p

)2

fL

]

, (2.28)

which identifies L‖ as 4/(d− 1) times the equilibrium stored length due to
thermal fluctuations. We also recover the effective linear spring coefficient
k‖ = 12κ2/(d−1)kBTL

4, which was previously calculated by Kroy and Frey
(1996). For strong stretching forces the extension saturates asymptotically
as

〈rz(L)〉f = L

[

1 − L (d− 1)

4 `p
√

fL‖

]

. (2.29)

In the limit of large compressional forces, the weakly bending rod approx-
imation breaks down and one has to use different approaches to evaluate
the force-extension relation (Frey et al., 1998).

2.3.3 Probability density for the position of the polymer

tip: analytical and MC results in 3d

We now return to the distribution function and the resulting entropic forces.
Upon performing the inverse Laplace transform one gets (for details of the
calculations see Appendix C.1.1)

P‖(z) =
2

L‖

∞
∑

k=1

(−1)k+1λk exp

[

−λ2
k

L− z

L‖

]

. (2.30)

Inspection of Eq. (2.30) immediately tells us that it can be written in scaling
form

P‖(z, L, `p) = L−1
‖ P̃‖(ρ̃) , (2.31)
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where we have made the dependence of the probability density on L and
`p explicit and introduced the scaling variable

ρ̃ =
L− z

L‖
(2.32)

measuring the compression of the filament in units of L‖. This implies
that data for the probability density of the polymer tip can be rescaled to
fall on a scaling function P̃‖(ρ̃), shown as the solid curve in Fig. 2.2. Of
course, since the analytical calculations are based on the mode analysis in
the weakly bending limit, such a universal scaling curve is obtained only
for small enough stiffness parameters ε.
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Figure 2.2 Scaling function P̃‖(ρ̃) (solid line) in 3d for the probability density to
find the free end of a grafted semiflexible polymer in a plane defined by rz(L) =
z or equivalently with a reduced stored length ρ̃. For comparison, MC data
are given for a series of stiffness parameters ε = L/`p indicated in the graph.
Deviations from the scaling curve in the stiff limit become significant for ε ≥ 0.5.

The probability density is strongly peaked towards full stretching, ρ̃→ 0,
and falls off exponentially for large ρ̃, such that for ρ̃ ≥ 0.3

P̃>
‖ (ρ̃) = π exp

(

−1

4
π2ρ̃

)

(2.33)

is already an excellent approximation. The series expansion given by
Eq. (2.30) converges well for all values of z well below L, but its conver-
gence properties become increasingly worse if z approaches L. As detailed
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in Appendix C.1.2, one may also derive an alternative series representation
of the tip distribution function which converges well close to full stretching

P̃‖(ρ̃) =

∞
∑

l=0

(−1)l 2l+ 1
√

πρ̃3
exp

[

− (l + 1
2 )2

ρ̃

]

. (2.34)

Already the first term of Eq. (2.34)

P̃<
‖ (ρ̃) =

1
√

πρ̃3
exp

(

− 1

4ρ̃

)

(2.35)

gives an excellent fit for ρ̃ ≤ 0.3. In particular, it captures the main feature
of the distribution function, namely its maximum is close to full stretching.
The same approximate expression may also be obtained by evaluating the
inverse Laplace transform using the method of steepest descent; see Ap-
pendix C.2. The asymptotic results given in Eq. (2.35) and Eq. (2.33) taken
together give a representation of the scaling curve to a very high numerical
accuracy. They are the analogues of the results found by Wilhelm and
Frey (1996) for a freely fluctuating filament; see also Frey et al. (1998).

The MC data shown in Fig. 2.2 have been obtained by using a standard
algorithm for a discretized wormlike chain, similar to the one described
by Wilhelm and Frey (1996). As expected, the MC results agree very well
with the analytical calculations for small values of ε. From Fig. 2.2 we
can read off that the asymptotic stiff scaling regime remains valid up to
stiffness parameters ε ≈ 0.1; even for ε = 0.5 the shape of the scaling
function resembles the MC data quite closely. As the polymer becomes
more flexible, the shape asymptotically becomes Gaussian; for ε = 3 a
skew is still noticeable. Note that in the parameter range given in Fig. 2.2,
the width of the rescaled probability densities stays approximately the same
and is hence well characterized by the longitudinal scale L‖.

2.3.4 Confinement free energy and entropic forces: 3d

Now we are in a position to calculate the restricted partition sum (cumula-

tive probability distribution) Z‖(ζ) =
∫ ζ

−L
dzP‖(z) by (formally) integrat-
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ing the series expansion of Eq. (2.30) term by term. This gives

Z‖(ζ) = 1 −
∫ L

ζ

dz P‖(z)

= 1 − 2

∞
∑

k=1

(−1)k+1λ−1
k

(

1 − e−λ2
k(L−ζ)/L‖

)

= 2

∞
∑

k=1

(−1)k+1λ−1
k e−λ2

k(L−ζ)/L‖ , (2.36)

where in the first line we used the normalization of P‖(z) and in the last
line the identity (Abramowitz and Stegun, 1970)

∞
∑

k=1

(−1)k+1 1

2k − 1
=
π

4
. (2.37)

The series expansion in Eq. (2.36) converges well for all values of ζ well
below L. Alternatively, one may start from Eq. (2.34) and derive

Z‖(ζ) = 1 + 2

∞
∑

k=1

(−1)kerfc

(

λk/π
√

(L− ζ)/L‖

)

, (2.38)

which is well behaved for ζ close to L, and dominated by its first term. A
second method to obtain Eq. (2.38) can be found in Appendix C.3.

From both series expansions, it is evident that the restricted partition
sum has the scaling property

Z‖(ζ, L, `p) = Z̃‖(η̃) , (2.39)

where we have introduced the scaling variable

η̃ =
L− ζ

L‖
, (2.40)

which measures the minimal stored length (compression) η = L−ζ of the fil-
ament in units of L‖. The confinement free energy, F̃‖(η̃) = −kBT ln Z̃‖(η̃),
corresponding to this partition function is shown in Fig. 2.3. Again, the
universal scaling function describes the MC data well for ε ≤ 0.1. Note
that for all values of η̃ and the stiffness parameter ε, the free energy is
convex. This will turn out to be an important feature which distinguishes
the 3d and 2d case.
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Figure 2.3 Confinement free energy F̃‖(η̃) of a grafted polymer constrained by a
rigid wall in 3d as a function of the reduced minimal stored length η̃ = (L−ζ)/L‖.
The solid line gives the scaling function obtained in the limit of a weakly bending
rod. Symbols represent MC data for different values of the stiffness parameter ε
as indicated in the graph.

Upon using Eq. (2.9) for the entropic force we find

f‖(ζ) =
kBT

L‖

P̃‖(η̃)

Z̃‖(η̃)
(2.41)

which immediately shows its scaling behavior and identifies kBT/L‖ as the
characteristic force scale. It is up to a prefactor identical to the critical
force

fc =
π2κ

4L2
=
π2

4

kBT

L‖
(2.42)

for the buckling instability of a classical Euler-Bernoulli beam (see Ap-
pendix. B). It suggest to rewrite the entropic force as

f‖(ζ, L, `p) = fc f̃‖(η̃) , (2.43)

with the scaling function

f̃‖(η̃) :=
4

π2

P̃‖(η̃)

Z̃‖(η̃)
. (2.44)
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Figure 2.4 Scaling function f̃‖(η̃) for the entropic force exerted on a wall at a dis-
tance ζ from the grafted end as a function of the scaling variable η̃ = (L− ζ)/L‖.
Symbols represent MC data for different stiffness parameters ε, as indicated in
the graph. Entropic force is a monotonically increasing function of η̃.

The analytical result for the scaling function f̃‖(η̃), shown as the solid
curve in Fig. 2.4, has several characteristic features. First of all, it is al-
ways monotonically increasing since the free energy is convex. For η̃ ' 0.4,
the scaling function is f̃‖ ≈ 1 corresponding to f‖ ≈ fc, i.e. a vanishing con-
tribution of thermal fluctuations to the force. For smaller η̃, corresponding
to larger distances ζ between the wall and the grafted end of the polymer,
fluctuations reduce the force exerted on the wall by effectively shortening
the polymer. For ζ → L (resp. η̃ = 0), the probability of the polymer
to contact the wall becomes smaller and smaller until finally for ζ = L
only one configuration, namely the completely straight one, has rz(L) = L.
Hence the force must vanish for all ζ ≥ L (resp. η̃ ≤ 0).

We have learned already in Section 2.3.3 that there are excellent ap-
proximations to the scaling function for the probability density of the free
polymer end for small values of the reduced stored length, Eq. (2.35). In
the same way, the first term of Eq. (2.38) is an excellent approximation to
the infinite series for η̃ / 0.2. Thus, we may write for the scaling function
of the entropic force

f̃<
‖ (η̃) =

4 e−1/4η̃

π5/2η̃3/2
(

1 − 2 erfc(1/2
√
η̃)
) , (2.45)
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which already describes most of the nontrivial shape of the scaling function.
For η̃ ' 0.2, it suffices to high accuracy to use the first two terms of
Eq. (2.36), which gives

f̃>
‖ (η̃) =

1 − 3e−2π2η̃

1 − 1
3e−2π2η̃

. (2.46)

Upon inspection of Eq. (2.41), one may interpret the functional form of
the entropic force as due to two effects. In the numerator, we have the
probability density for the position of the free end at the wall. This function
shows a pronounced peak as one decreases the distance ζ (resp. increases
the scaling variable η̃). At the same time, the denominator, the cumulative
distribution function, decreases by decreasing ζ. It is now a matter of how
fast these changes occur and what the ensuing shape of the scaling function
for the entropic force will be. In the present case of a polymer in 3d, the
decrease in the cumulative distribution function seems to be fast enough to
compensate the maximum in the probability density of the free polymer end
such that the entropic force becomes a monotonically increasing function
of η̃.

From Fig. 2.4, one observes that the universal scaling curve is a lower
bound to the MC data for all values of the stiffness parameter ε. For
fixed ε, the entropic force always increases monotonically with increasing
compression; for intermediate values ε ≈ 2.5 there is a pronounced change
in curvature at η̃ ≈ 0.25. For strong compression the results asymptote
to the mechanical limit (kBT = 0). This limit is not correctly reproduced
within the harmonic approximation which gives

fmech(ζ) = fcΘ(L− ζ) , (2.47)

whereas the exact force-extension curve is a monotonous function in ζ that
is somewhat larger than fc for ζ < L and tends to fc for ζ → L.

One might finally ask, whether these entropic forces f‖(ζ) are related to
the force extension relation discussed in section 2.3.2, 〈rz(L)〉f −〈rz(L)〉0 =
k−1
‖ f + O(f2) with k‖ = 6κ2/kBTL

4 (Kroy and Frey, 1996). Rewriting

these linear response result in scaling form we find,

f

fc
=

24

π2

(

η̃ − 1

2

)

. (2.48)

Comparing this with Fig. 2.4, we see that the linear response result does
not contain any information about the situation under investigation here.
To the contrary, the initial rise of the force when ζ becomes slightly smaller
than L is highly nonlinear (see Eq. (2.45)).
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2.3.5 Distribution function and entropic forces: 2d

Since in some important physiological situations like the leading edge of
a crawling cell, polymer is essentially confined to fluctuate in 2d, it is
important to look at the 2d problem more precisely. Analogous to the
previous section, the tip distribution function of a polymer confined to 2d,
e.g. by two parallel glass plates, obeys a scaling law in the stiff limit

P‖(z, L, `p) = L−1
‖ P̃‖(ρ̃) . (2.49)

The scaling function may again be represented in terms of series expansions
(see Appendix C.1.2). A series which converges well for small values of ρ̃
reads

P̃‖(ρ̃) =

∞
∑

l=0

(

− 1
2

l

)

2l+ 1
2√

2π ρ̃3/2
exp

[

− (l+ 1
4 )2

ρ̃

]

; (2.50)

for an explicit formula for the binomial coefficient in Eq. (2.50) see Eq. (C.17).
The scaling function, shown as the solid curve in Fig. 2.5, has an overall
shape which is quite similar to 3d with a pronounced maximum close to full
stretching. The series approximations may again give useful approximate
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Figure 2.5 Probability density P̃‖(ρ̃) of the free end of a grafted semiflexible
polymer in 2d as a function of ρ̃ (solid curve). Symbols represent MC data for
different stiffness parameters, as indicated in the graph. MC data deviates from
universal curve as ε increases

expressions for the shape. In the proximity of full stretching, the series



42 2 Entropic forces exerted by a grafted polymer on a wall

given by Eq. (2.50) converges very fast such that already the first term

P̃<
‖ (ρ̃) =

1√
8πρ̃3/2

exp

(

− 1

16ρ̃

)

(2.51)

is an excellent approximation for the whole series at least for ρ̃ ≤ 0.3. As in
3d, a saddle point approximation also gives Eq. (2.51) (see Appendix C.2).
Alternatively, as shown in Appendix C.1.2, one may derive a series expan-
sion which converges well in the strong compression limit; see Eq. (C.11).
For ρ̃ ' 0.3, it suffices to use the first term of this sum only which reads

P̃>
‖ (ρ̃) =

πe−π2ρ̃/4

2
√

2

[

1 + 1.5 e−5π2ρ̃/16 + 2 e−12π2ρ̃/16

+ 2.5 e−21π2ρ̃/16 + 3 e−32π2ρ̃/16
]

. (2.52)

Upon increasing the stiffness parameter, the rescaled probability dis-
tribution deviates from the scaling function in the semiflexible limit and
approaches a Gaussian distribution. In contrast to 3d, there is an inter-
mediate parameter regime in the stiffness parameter where P̃‖(ρ̃) exhibits
a marked shoulder. This feature of the distribution function has recently
been identified and explained in terms of an interesting analogy with the
physics of a random walker in shear flow (Benetatos et al., 2005).

Upon integrating Eq. (2.50) from −L to ζ, one obtains for the restricted
partition sum

Z‖(ζ) = 1 −
√

2

∞
∑

k=0

(−1)k(2k−1)!!

2kk!
erfc

(

λ2k+1

2π
√
η̃

)

, (2.53)

with the same scaling variable η̃ as in the previous section. Similarly, using
Eq. (C.11) gives

Z‖(ζ) ≈
1

1.49

∞
∑

k=0

(−1)k
8
∑

i=4

λ−1
2k+i/4e

−λ2
2k+i/4 η̃ . (2.54)

Hence, as in 3d, one finds for the free energy

F‖(ζ, L, `p) = −kBT ln Z̃‖(η̃) (2.55)

and the entropic force

f‖(ζ, L, `p) = fc f̃‖(η̃) (2.56)
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with the scaling function

f̃‖(η̃) = − 4

π2

Z̃ ′
‖(η̃)

Z̃‖(η̃)
(2.57)

where fc = π2κ/4L2; see the solid curves in Fig. 2.6 and Fig. 2.7 for a plot
of the scaling functions for the free energy and entropic force, respectively.
The key difference between the results in 2d and 3d is that the effective
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Figure 2.6 Free energy of a grafted polymer whose tip is constrained by a rigid
wall in 2d. The solid line gives the universal scaling function in the stiff limit.
MC data are given by the symbols for different values of the stiffness parameter
ε as indicated in the graph.

free energy exhibits a change in curvature at η̃ ≈ 0.05 and as a result a
pronounced peak in the entropic force. The peak is a pretty robust feature
of the distribution function and vanishes only for very large values of ε ≈ 5.

In order to understand the physical origin of this peak it suffices to
consider small values of η̃. Then, using only the leading term of the series
expansion Eq. (2.53), one obtains for the entropic force

f̃<
‖ (η̃) =

√
2e−1/16η̃

π5/2η̃3/2
(

1 −
√

2erfc[1/4
√
η̃]
) . (2.58)

This has the same functional form as the corresponding expression in 3d,
Eq. (2.45), but differs in some numerical factors. These differences can
all be traced back to the strength α of the essential singularity of the tip
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Figure 2.7 Scaling function for the entropic force which a grafted polymer exerts
on a rigid wall in 2d as a function of the reduced stored length η̃ = (L − ζ)/L‖.
The solid line gives the universal scaling function in the stiff limit. MC data are
given by the symbols for different values of the stiffness parameter ε as indicated
in the graph. There is a pronounced peak in the entropic force for ε < 5.

distribution function close to full stretching, P̃‖(ρ̃) ∝ exp(−α/ρ̃); compare
Eq. (2.35) with Eq. (2.51). One may interpret this strength as a kind of
phase space factor counting how fast the number of polymer configura-
tions decreases as one approaches full stretching. It clearly shows that the
maximum of the entropic force in 2d is of purely geometric origin. As an
interesting consequence of this maximum, one should note that for most
values of the reduced stored length η̃ the entropic force exceeds the purely
mechanical force given by the Euler buckling force.

2.4 Grafted polymer at an oblique angle to the

wall

The generic situation one encounters in a cellular system is that the polymer
is inclined with respect to a membrane. Then we have to ask how the force
derived above changes when the graft of the polymer is not orthogonal to
the constraining wall but at some oblique angle π/2−ϑ; see Fig. 2.8. Since
the presence of the wall restricts the position of the polymer tip to

rz(L) cosϑ+ rx(L) sinϑ ≤ ζ (2.59)
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one has to evaluate the restricted partition sum

Z(ζ, ϑ) = 〈Θ[ζ−rz(L) cosϑ−rx(L) sinϑ]〉0
=

∫

dxdzP (x, z) Θ[ζ−z cosϑ−x sinϑ] (2.60)

to find the entropic force.

PSfrag replacements ϑ

ẑ

x̂

ζ n̂

Figure 2.8 A smooth hard wall at some oblique angle π/2 − ϑ, constrains the
configurations of a stiff polymer grafted parallel to the z-axis.

2.4.1 Probability distribution function of the tip

This calculation requires the knowledge of the joint probability density of
the tip

P (x, z) := 〈δ[rx(L) − x] δ[rz(L) − z]〉0 . (2.61)

In Section 2.3, we have already analyzed the reduced distribution function
P‖(z) and found that its width is characterized by the scale L‖ = L2/`p.
Similarly, one can find an explicit expression for P⊥(x) in harmonic ap-
proximation, where

rx(L) ≈
∞
∑

k=1

ax,k

∫ L

0

ds sin(λks/L) = L

∞
∑

k=1

λ−1
k ax,k , (2.62)
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and thus

P⊥(x) =

∫

dq

2π
eiqx

〈

exp

[

−iqL

∞
∑

k=1

λ−1
k ax,k

]〉

=

∫

dq

2π
eiqx exp

[

−L
3

`p
q2

∞
∑

k=1

λ−4
k

]

. (2.63)

With
∑∞

k=1 (2k − 1)−4 = π4

96 (Abramowitz and Stegun, 1970), this gives a
Gaussian distribution

P⊥(x) =
1√

2πL⊥

e−
1
2 (x/L⊥)2 , (2.64)

where we have defined the characteristic transverse length scale

L⊥ =
√

L3/3`p . (2.65)

Together with L‖, these are the two length scales characterizing the width of
the joint distribution function. This suggests to write the joint distribution
function as

P (x, z, L, `p) =
1

L‖L⊥
P̃ (x̃, ρ̃) , (2.66)

in terms of dimensionless variables

x̃ = x/L⊥ , (2.67)

ρ̃ = (L− z)/L‖ . (2.68)

An explicit form of the joint distribution function can be calculated to
harmonic order. For simplicity, we start with a polymer fluctuating only
in the x-z-plane (d = 2). Then

P2(x, z) =

∫

dqz
2π

dqx
2π

e−iqzz−iqxx〈ei(qzrz(L)+qxrx(L))〉0

=

∫

dqz
2π

dqx
2π

eiqz(L−z)−iqxx
∏

k

〈

e
−i

“

Lqz
4 a2

x,k−
Lqx
λk

ax,k

”
〉

=

∫

dqz
2π

dqx
2π

eiqz(L−z)−iqxx
∏

k

√

λ2
k

λ2
k + iqzL‖

e
−

3q2
xL2

⊥
λ2

k
(λ2

k
+iqzL‖)

=
1

L⊥L‖

∫

dq̃z
2π

dq̃x
2π

eiq̃z ρ̃−iq̃xx̃
∏

k

√

1

1 + iq̃zλ
−2
k

e

P

k

−3q̃2
x

λ2
k
(λ2

k
+iq̃z)

=
1

L⊥L‖

∫

dq̃z
2π

dq̃x
2π

a2(iq̃z)e
iq̃z ρ̃−iq̃xx̃e−

3
2 q̃2

x b(iq̃z) , (2.69)
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where for z ∈ R+ we have (Abramowitz and Stegun, 1970)

a2(z) :=
∏

k

√

1

1 + zλ−2
k

=

√

1

cosh
√
z
, (2.70)

b(z) := 2
∑

k

1

λ2
k(λ2

k + z)
=

√
z − tanh

√
z

z3/2
. (2.71)

For d = 3, the additional degrees of freedom associated with excursions
in the y-direction lead to the replacement of qza

2
x(k) by qz [a

2
x(k) + a2

y(k)]

which results in an additional factor of
√

1 + iqzλ
−2
k for each mode k. Thus,

for general d, we have to replace a2(z) with

ad(z) :=
∏

k

[

1

1 + zλ−2
k

](d−1)/2

. (2.72)

As < [b(iq̃z)] > 0 for all q̃z ∈ [−∞,∞], the Gaussian integration over q̃x

in Eq. (2.69) can be performed by completing the square, such that

P̃d(x̃, ρ̃) =

∫

dq̃z
2π

eiq̃z ρ̃ ad(iq̃z)
√

6πb(iq̃z)
exp

[

− x̃2

6b(iq̃z)

]

. (2.73)

Along similar lines, one may also calculate the full joint distribution
function for a grafted polymer in d = 3,

P3(x, y, z) =
1

L2
⊥L‖

∫

dq̃z
2π

eiq̃z ρ̃ a3(iq̃z)

6πb(iq̃z)
exp

[

− x̃
2 + ỹ2

6b(iq̃z)

]

=:
1

L2
⊥L‖

P̃3(x̃, ỹ, ρ̃) . (2.74)

In addition to the poles of a3(iq̃z) at q̃z = iλ2
k on the positive imaginary

axis of the q̃z-plane, the integrand also has singularities at the zeros iλ2
k of

b(z). Thus we continue by evaluating the integrals numerically.

Numerical evaluation of integrals

The integrand of Eq. (2.73) has no singularities on the real q̃z-axis. Before
attempting a numerical integration, we discuss the behavior of the different
terms appearing in Eq. (2.73). For d = 3, we have

a3(z) =
∏

k

1

1 + zλ−2
k

=
1

cosh
√
z
. (2.75)
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For q̃z ∈ R, the real and the imaginary part 1/ cosh
√

iq̃z are respectively
even and odd functions rapidly decaying in magnitude for q̃z → ±∞. The
real part of 1/b(iq̃z) is strictly positive and increasing with increasing |q̃z|.
The imaginary part of 1/b(iq̃z) behaves asymptotically as =

[

b−1(iq̃z)
]

∼
q̃z leading to a second strongly oscillating contribution to the integrand
of Eq. (2.73) besides exp(iqz). In the interest of numerical stability of
the integration, it is advantageous to rewrite the integrand appearing in
Eq. (2.73) to

1

2π
eiq(ρ̃−x̃2/6) a3(iq)

√

2π3b(iq)
exp

[

− x̃
2

6
(1/b(iq) − iq)

]

(2.76)

for q larger than some fixed q0.

Region of vanishing probability

Eq. (2.76) suggests that ρ̃ = x̃2/6 is a special situation. The probability
density P (x, z) must vanish for points which are at distances greater than
L from the graft: x2+z2 ≤ L2. What does this translate to in the harmonic
approximation? The largest value x∗ of rx(L) that can be obtained for a
given value z∗ of rz(L) can be found from the variation of rx(L) − ρ(z∗ −
rz(L)) where ρ is a Lagrange multiplier. Using Eq. (2.18) and Eq. (2.62),
this leads to ax,k = a/λk where a is some number. We thus find

x∗ = La
∞
∑

k=1

λ−2
k = L

a

2
(2.77)

and

z∗ = L− L

4
a2

∞
∑

k=1

λ−2
k = L− L

a2

8
(2.78)

resulting in

L− z∗

L
=

1

2

(

x∗

L

)2

. (2.79)

As L2
⊥/LL‖ = 1/3, this is equivalent to

ρ̃∗ =
1

6
(x̃∗)2 . (2.80)

Hence P̃ (x̃, ρ̃) has to vanish for ρ̃ < x̃2/6 .
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Figure 2.9 Density plot of the probability density P̃ (x̃, ρ̃) in (a) d = 3 and (b)
d = 2 calculated numerically from Eq. (2.73). As it is expected, the probability
distribution of the tip is much narrower in 2d compare to 3d.
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Figure 2.10 Density plot of the probability density P̃ (x̃, ρ̃) in (a) d = 3 and
(b) d = 2 obtained from MC simulations for ε = 0.1. The MC data agrees very
well with corresponding numerical results in Fig. 2.9.

Results for the general distribution function

It is now straightforward to evaluate the integrals in Eq. (2.73) by some
standard numerical method. The corresponding results are shown in Fig. 2.9
as contour plots of P̃ (x̃, ρ̃) in d = 3 and d = 2, respectively. These analyt-
ical results compare very well with MC results for polymers with a stiffness
parameter ε ≤ 0.2; see a plot with ε = 0.1 in Fig. 2.10. There are devia-
tions between the harmonic approximation and MC data for larger values
of ε (Lattanzi et al., 2004; Benetatos et al., 2005).

The density distribution essentially vanishes outside the parabola given
by ρ̃ = x̃2/6, corresponding to the classical contour of the polymer in
harmonic order. The main weight of P̃ (x̃, ρ̃) is concentrated close to this
line, where the effect is stronger for d = 2. Profiles parallel to the ρ̃ direction
are of a shape qualitatively similar to P̃‖(ρ̃) (see Fig. 2.2) at least for small
x̃. Profiles parallel to the x̃-axis are not Gaussian. For small ρ̃ / 0.1,
they are peaked at x̃ = 0 but unlike a Gaussian, they vanish for x̃2 > 6ρ̃.
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For larger ρ̃, they display a double-peaked shape. Both features would be
completely missed by a factorization approximation P̃ (x̃, ρ̃) = P̃⊥(x̃)P̃‖(ρ̃).

The shape of the full joint probability distribution P3(x, y, z) is best
illustrated by plotting an iso-surface, e.g. P̃3(x̃, ỹ, ρ̃) = 0.1 as shown in
Fig. 2.11. Due to rotational symmetry, a density plot for P3(x, y, z) may
be obtained by rotating the contour plot of P3(x, z) (Fig. 2.9a) around the
z-axis. Again MC and analytical results are identical for small ε.

PSfrag replacements

x̃
ỹ

z̃

Figure 2.11 3d probability isosurface (P̃ (x̃, ỹ, z̃) ≈ 0.1) of a grafted polymer
calculated numerically from Eq. (2.74).

Further insight can be gained by the inspection of the joint distribution
function P (x, z), represented with density plots in Fig. 2.12 and Fig. 2.13
in 3d and 2d, respectively. In the stiff limit, P (x, z) should be confined to
the classical contour obtained by applying the elasticity equations to a rigid
rod. This contour can be approximated by a parabola in the proximity of
full stretching and is obtained through elliptic functions for any deforma-
tion (Landau and Lifshitz, 1959). In Fig. 2.12a the classical contour coin-
cides with the ridge of the probability distribution function. As we relax
the stiffness, thermal fluctuations will make the tip of the filament explore
the configuration space in the vicinity of the classical contour. Roughly
speaking, transverse bending fluctuations enhance fluctuations along the
classical contour and shift weight from the center to the upper and lower
wings in Figs. 2.12a and 2.12b. In contrast, longitudinal fluctuations widen
the distribution function perpendicular to the classical contour. Since for a
semiflexible polymer, the corresponding lengths L⊥ and L‖ scale differently
transverse fluctuations are much “softer” than longitudinal ones, upon low-
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Figure 2.12 Color density plots of P (x, z) obtained by Monte Carlo simulations
in 3d: regions with high probability are colored in red.(a) ε = 0.1; (b) ε = 1; (c) ε =
5; (d) ε = 10.

ering the stiffness P (x, z) gains more weight in the wings rather than in the
center. It is precisely this effect that gives rise to the doublepeak distribu-
tion, when P (x, z) is projected in the transverse direction [see Fig. 2.12b].
Eventually, in the flexible limit, where transverse and longitudinal fluc-
tuations become comparable, P (x, z) is spread so as to cover almost all
the available space Fig. 2.12c, before the isotropic Gaussian distribution is
recovered Fig. 2.12d.

Density plot of P (x, y) has been also presented in Fig. 2.14 for differ-
ent values of ε in 3d. At the intermediate values of ε ∼ 1 (semiflexible
polymer), a yellow ring (higher density) forms inside two red rings (lower
density), which is the 3d manifestation of the corresponding double peak
structure of P (y) in 2d (see Lattanzi et al. (2004)). In order to compare our
MC data with analytical results obtained by Semeriyanov and Stepanow
(2007), P (x = 0, y) has been presented in Fig. 2.15 for different values of ε.
Obviously, there is a nice agreement between our Monte Carlo simulations
and analytical results. Both MC data and analytical results are normal-

ized such that
∫ L

−L
P (x = 0 , y) dy = 1. The transverse one dimensional
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Figure 2.13 Color density plots of P (x, z) obtained by Monte Carlo simulations
in 2d: regions with high probability are colored in red. (a) ε = 0.1; (b) ε =
1; (c) ε = 5; (d) ε = 10 (Lattanzi et al., 2004).

distribution function P (x = 0, y), displays a biomodal shape in the inter-
mediate range of ε = 1.3, ..., 3.5 which is consistence with the analytical
calculations by Semeriyanov and Stepanow (2007).

2.4.2 Entropic forces: scaling functions

We are now in a position to evaluate the general expression, Eq. (2.60),
for the restricted partition sum. Before going into the details of the cal-
culations, it is instructive to have a look at the geometry of the problem
in terms of the dimensionless variables x̃ and ρ̃. Recall that x̃ and ρ̃ are
measuring the transverse displacement of the tip x and the stored length
L−z in units of the characteristic transverse and longitudinal length scales,
L⊥ and L‖, respectively. As can be inferred from Fig. 2.8, the wall crosses
the x̃- and ρ̃-axis at

η⊥ =
L cosϑ− ζ

L⊥ sinϑ
and η‖ =

L cosϑ− ζ

L‖ cosϑ
, (2.81)
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Figure 2.14 Color density plots of P (x, y) obtained by MC simulations in 3d:
(a) ε = 0.05, (b) ε = 0.1, (c) ε = 1, (d) ε = 1.5, (e) ε = 2, (f) ε = 3, (g) ε = 5 and
(h) ε = 10.
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Figure 2.15 (a) There is a good agreement between our MC simulations (data
points) and analytical results (lines) obtained by Semeriyanov and Stepanow
(2007). The distribution function displays a biomodal shape and is normalized
such that the area under each curve is one. (b) Distribution function has been
presented at the onset of bimodality (ε = 1.25, 1.35) and in the region of its
disappearance (ε = 3.3, 3.7).

respectively; see Fig. 2.16. These are the two basic dimensionless variables
characterizing the entropic forces exerted on the inclined wall. We also
introduce the slope µ = tanα of the constraining wall with respect to the
x̃-axis

µ =
η‖

η⊥
=
L⊥

L‖
tanϑ =

1√
3ε

tanϑ . (2.82)

As discussed above, the finite length of the polymer gives a constraint on the
reduced stored length ρ̃ such that it has to be larger than x̃2/6, i.e. above
the parabola drawn in Fig. 2.16. Hence, just the points on the constraining
wall inside the parabola are accessible to the tip of the polymer. As one
moves the wall further away from the grafted end, the number of contact
points decreases and finally reduces to zero when the wall becomes tangent
to the parabola. In this limit, where

ηc
‖ = −3

2
µ2 (2.83)

the force exerted on the wall vanishes.
We may now write the restricted partition sum in terms of the reduced

stored length η‖ and the slope of the wall µ

Z(ζ, ϑ) = Z̃(η‖, µ) , (2.84)



2.4 Grafted polymer at an oblique angle to the wall 55

PSfrag replacements
α tanα = µ

ρ̃ = x̃2/6

η‖

η⊥

x̃

ρ̃

Figure 2.16 Geometry of the problem in terms of the reduced coordinates x̃
and ρ̃. The position of the wall is characterized by its slope µ = η‖/η⊥ and η‖,
the distance from the origin along the z̃-axis, i.e. the minimal reduced stored
length imposed by the presence of the constraining wall. To harmonic order the
finite length of the filament also constrains the reduced stored length ρ̃ to be
larger than x̃2/6.

where

Z̃(η‖, µ) =
1

2
erfc

η‖√
2µ

(2.85)

−
∫ ∞

0

dq

πq
=
[

eiqη‖
(

a3(iq)e
− 3

2 (µq)2b(iq) − e−
1
2 (µq)2

)]

,

as shown in Appendix C.4. The force is again found by taking the derivative
of kBT lnZ with respect to ζ. It obeys the scaling law

f(ζ, ϑ, L, `p) = fc(ϑ) f̃
(

η‖, µ
)

, (2.86)

with an amplitude

fc(ϑ) =
π2κ

4L2 cosϑ
=

fc

cosϑ
(2.87)

and a scaling function

f̃(η‖, µ) = − 4

π2

Z̃ ′(η‖, µ)

Z̃(η‖, µ)
(2.88)
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that can be expressed in terms of the restricted partition sum and its deriva-
tive

Z̃ ′(η‖, µ) = −
∫ ∞

0

dq

π
<
(

eiqη‖a3(iq)e
− 3

2 (µq)2b(iq)
)

. (2.89)

As detailed in Appendix C.4, Eq. (2.85) and Eq. (2.89) are suited best for
a numerical evaluation of the entropic force.

In Fig. 2.17, the analytical results for the scaling function f̃(η‖, µ) of the
entropic force are shown as a function of δη‖ = η‖−ηc

‖, for a series of values
of µ. Since we have subtracted off the critical value of the reduced stored
length ηc

‖, the forces vanish for δη‖ ≤ 0. There is a dramatic difference in the
shape of the force-distance curves in 2d and 3d. Whereas the force increases
monotonically with increasing δη‖ for 3d, it shows a pronounced maximum
in 2d, the physical origin of which is the same as for ϑ = 0. The maximum
in 2d vanishes upon increasing µ, which can either be understood as an
increase in the inclination angle or an increase in the persistence length;
see Eq. (2.82).

For comparison, MC data are given for a particular value of the stiffness
parameter, ε = 0.1. In this stiff regime the analytical results compare very
well with the MC data, except for large values in the stored length where
the harmonic approximation is expected to become invalid.

For small values of µ, the reduced stored length η‖ is no longer a good
variable. Instead, we define a new scaling function f̄(η⊥, µ) such that

f(ζ, ϑ) =
kBT

L⊥ sinϑ
f̄(η⊥, µ) (2.90)

where

f̄(η⊥, µ) = µ
π2

4
f̃(η‖/µ, µ) . (2.91)

Like in the previous scaling plot, the force should vanish for δη‖ < 0, which

in terms of η⊥ reads η⊥ < − 3
2µ. Again, there is a marked difference between

2d and 3d results; see Fig. 2.18. We also observe that the scaling function
f̄(η⊥, µ) asymptotically approaches a limiting curve for µ → ∞, which for
a fixed value of ε, corresponds to ϑ → π/2. It turns out, as we will show
now, that this limiting behavior can well be explained within a factorization
approximation P (x, z) ≈ P‖(z)P⊥(x). Then, Z(ζ, ϑ) simplifies to

Z(ζ, ϑ) =

∫

dzP‖(z)Z⊥(ζ sin−1 ϑ− z cotϑ) . (2.92)
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Figure 2.17 Scaling function of the entropic force f̃ in (a) d = 3 and (b) d = 2 as
a function of δη‖ = η‖ + 3

2
µ2 for a series of values of µ as indicated in the graphs.

Solid lines represent analytical results as obtained from a numerical evaluation
of Eq. (2.88). Monte Carlo data for a stiffness parameter ε = 0.1 are given as
symbols, as indicated in the graphs. For µ = 0, one recovers the results for f̃‖(η‖)
as discussed in Section 2.3.



58 2 Entropic forces exerted by a grafted polymer on a wall

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-4 -3 -2 -1  0  1  2  3  4

(a)

µ=0.125
µ=0.250
µ=0.500
µ=1.000
µ=2.000
µ=4.000
µ=8.000
µ=16.00

µ=infinity

PSfrag replacements

η⊥

f̄
(η

⊥
,µ

)

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

(b)

µ=0.125
µ=0.250
µ=0.500
µ=1.000
µ=2.000
µ=4.000
µ=8.000
µ=16.00

µ=infinity

PSfrag replacements

η⊥

f̄
(η

⊥
,µ

)

Figure 2.18 Scaling function f̄ (η⊥, µ) in (a) d = 3 and (b) d = 2 for a series of
values for µ (solid lines). For large µ, the scaling function f̄(η⊥, µ) asymptotically
converges to f̄⊥(η⊥) obtained within a factorization approximation. The MC
data indicated by different symbols in the graphs are given for a fixed stiffness
parameter ε = 0.1.
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where

Z⊥(x) =

∫ x

−∞

dx′P⊥(x′) (2.93)

is the restricted partition sum for the transverse fluctuations. The longi-
tudinal distribution function P‖(z) is, for small L/`p, strongly peaked at
z ≈ L with a characteristic width of L‖, and Z⊥ varies on the scale L⊥.
Then, for µ� 1, the width of the longitudinal distribution function is much
smaller than the transverse restricted partition sum, such that the integra-
tion over P‖ can be approximated by Z(ζ, ϑ) ≈ Z⊥

(

[ζ − L cosϑ] sin−1 ϑ
)

which upon using that the transverse distribution function is a simple Gaus-
sian, Eq. (2.64), results is

Z(ζ, ϑ) ≈ 1

2
erfc

η⊥√
2

=: Z̄⊥(η⊥) (2.94)

This approximation fails when µ ≈ 1, which defines an angle

ϑc = arctan(L‖/L⊥) ≈
√

3L/`p (2.95)

well above which the factorization approximation is valid. The entropic
force is then

f(ζ, ϑ) =
kBT

L⊥ sinϑ
f̄⊥(η⊥) , (2.96)

where

f̄⊥(η⊥) = −Z̄ ′
⊥(η⊥)

Z̄⊥(η⊥)
=

√

2

π

e−η2
⊥/2

erfc(η⊥/
√

2)
. (2.97)

This result for the scaling function of the entropic force is indicated as the
thick solid line in Fig. 2.18. It becomes exact in the limit ϑ = π/2, where
starting from Eq. (2.60) one can integrate out the longitudinal coordinate
to end up with

Z(ζ,
π

2
) =

1

2
erfc

( −ζ√
2L⊥

)

. (2.98)

Finally, for large ζ, one recovers the linear response result f(ζ, π/2) =
3κζ/L3.

If we compare the results of the factorization approximation for ϑ > ϑc,
Eq. (2.96) and Eq. (2.97), to Eq. (2) and Eq. (5) of Ref. Mogilner and Oster
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(1996a), one realizes that they are almost identical up to the minor differ-
ence that Mogilner and Oster define their κ0 to be 4κ/L3 where it actually
should be 3κ/L3. The factor 4 in Mogilner and Oster (1996a) instead of the
correct value 3 is the result of assuming that the minimal energy configura-
tion of a thin rod bent by application of a force to its non-grafted end has
constant radius of curvature for small deflections, which is not the case. In
fact, the boundary condition of the mechanical problem forces the curva-
ture to vanish at the non-grafted end. In Mogilner and Oster (1996a), the
entropic force was calculated by taking into account the transverse fluctu-
ations of the grafted polymer only and completely disregarding any stored
length fluctuations. Here, the factorization approximation, which treats
longitudinal and transverse fluctuations as independent, gives the same re-
sult for inclination angles ϑ > ϑc. The reason behind the validity of the
asymptotic results, Eq. (2.96) and Eq. (2.97), is that the tip distribution
function is much narrower in the longitudinal than the transverse direction
for ϑ � ϑc ∼

√

L/`p. Hence the range of validity of the factorization
approximation becomes larger as the polymers become stiffer. Of course,
the analysis by Mogilner and Oster (1996a) has to fail for small inclination
angles since it does not account for stored length fluctuations at all. This
is seen most dramatically for ϑ = 0, where such an approximation would
give no force at all in contrast to what we find in Section 2.3.

2.4.3 Entropic forces: explicit results

The analysis in the previous section gives the full scaling picture for the
entropic forces as a function of the scaling variables η‖ and η⊥. Here we
discuss our findings in terms of the actual distance of the grafted end to
the wall ζ, the inclination angle ϑ, and the stiffness parameter ε = L/`p,
which may be more convenient for actual applications. Of course, the
disadvantage of such a representation is that we now have to give the results
for particular values of the stiffness parameter. In this section, we first
discuss the results in 3d and then compare it to the 2d case.

In Figs. 2.19 and 2.20, the force f in units of the Euler buckling force
fc is shown as a function of ζ (in units of the total filament length L) for
a series of values of ϑ and vice versa (d = 3); the stiffness parameter has
been taken as ε = 0.1. Recall that the angle ϑ = 0 corresponds to a
wall perpendicular to the orientation of the grafted end of the polymer,
which has been discussed in detail in Section 2.3. Upon increasing the
inclination angle ϑ, the entropic force decreases for all given values of ζ.
This is to be expected since the wall then cuts off less from the probability
cloud of the polymer tip. For the same reason the forces also decrease with
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Figure 2.19 Analytical and MC simulation results for the entropic force f/fc

as a function of the distance of the grafted end from the wall ζ/L for a series of
inclination angles ϑ = 17◦, · · · , 89◦ with steps 9◦ (d=3).

increasing ζ for a given value of ϑ. The analytical results (solid lines) agree
well with the MC data for not too small values of ζ. The deviations grow
larger upon decreasing the distance between the wall and the grafted end.
Then non-linear effects are not taken into account by our weakly bending
approximation set in.

In the limit as the inclination angle approaches π/2, it is certainly no
longer justified to calculate the entropic force by assuming that only the
polymer tip is not allowed to penetrate the membrane. Then, one has to
take into account the fact that also the body of the polymer is constrained
by the presence of the wall. Since this reduces the number of allowed
polymer configurations even further, this effect is expected to lead to an
enhancement of the entropic force. Indeed this is the case, as one may
infer from Fig. 2.21, where we show a comparison with MC simulation
accounting for these constraints. One also notes that the enhancement of
the entropic forces becomes largest as ϑ → π/2 and the distance between
the wall and the grafted end becomes small.

For comparison, Fig. 2.22 shows the entropic force f in 2d as a function
of ϑ for different values of ζ. Inspection of this figure immediately tells us
that in contrast to 3d decreasing ζ (for a given value of ϑ) is not always
increasing the entropic force.

Finally, we would like to compare our full results in 3d with the fac-
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Figure 2.20 Analytical and MC simulation results for the entropic force f/fc

as a function of the inclination angle ϑ (in degrees) for a series of distances to
the wall ζ/L = 0.99, 0.985, · · · , 0.95.

torization approximation discussed in the previous section, Eq. (2.97),
which when corrected for some minor factor is identical to the results given
by Mogilner and Oster (1996a). The comparison is given in Fig. 2.23 for
a stiffness parameter ε = 0.1. In the limit of large inclination angles well
above ϑc ≈ 30◦, there is excellent agreement between the factorization
approximation and the full results for not too small values of ζ. As one ap-
proaches ϑc, the range of validity of the factorization approximation shrinks
and finally it becomes invalid for ϑ < ϑc.

To illustrate the applicability of the factorization approximation, let us
take some examples. For the cytoskeletal filament F-actin with a contour
length 100 nm and persistence length `p = 15 µm, the stiffness parameter
becomes ε = 0.006 which gives ϑc ≈ 7.6◦. Upon increasing the stiffness
parameter to ε = 0.1, which amounts to changing the contour length to a
value of L = 1.6 µm, the critical angle ϑc increases to 28.7◦.

2.5 Protrusion velocity and intercalation

probability

In this final section, we would like to apply our results to calculate the
protrusion velocity for an idealized model system. This serves to illustrate
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Figure 2.21 Comparison of the analytical results for the entropic force as a
function of ζ/L (solid lines) for a series of values for ϑ = 17◦, · · · , 89◦ with steps
9◦ indicated in the graph with MC simulations (symbols in the graph), which
take into account the constraints of the wall on the body of the polymer; ε = 0.1.
The deviations are most pronounced for small values of ζ and inclination angles
ϑ close to π/2 (d=3).

how the theoretical results obtained in this paper may be applied to arrive
at a microscopic model for cell motility. As illustrated in Fig. 2.24, we
consider a semiflexible polymer mesh, where each filament is inclined at
a fixed angle ϑ with respect to a membrane, which - for simplicity - is
idealized as a rigid smooth wall. We ask for the average protrusion velocity
of the polymerizing mesh pushing against a membrane which is under a
constant external load f .

For a monomer to be appended to the tip of fluctuating semiflexible
polymer near the rigid wall, the distance between tip and the wall must
be at least δ cosϑ where δ is the increase in polymer length due to the
addition of a single monomer. For actin, δ would be half a monomer radius
or δ ≈ 2.7 nm. The intercalation probability is given by

p(ζ, ϑ, δ) =
Z(ζ − δ cosϑ, ϑ)

Z(ζ, ϑ)
. (2.99)

Biologically relevant parameters are L ≈ 30 nm and `p ≈ 15 µm which
corresponds to ϑc = 4.5◦ and a critical force of fc ≈ 150 pN. For a given
external force f , we may now find ζ and ϑ such that f(ζ, ϑ) = f . Then,
following Mogilner and Oster (1996a), the intercalation probability can
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Figure 2.22 Analytical results for the entropic force f/fc as a function of the
inclination angle ϑ (in degrees) for different values of distances to the wall (d = 2);
stiffness parameter has been taken as ε = 0.1. MC data points has been removed
for more clarity

(under certain assumptions) be converted into a protrusion velocity of the
tip

v(f, ϑ) = δ cosϑ[konM p(ζ(f, ϑ), ϑ, δ) − koff] , (2.100)

where M is the monomer concentration and kon and koff are the monomers
attachment and detachment rates, respectively. Fig. 2.25a displays the
velocity as a function of the inclination angle ϑ and a set of forces ranging
from 0.1 pN to 2.9 pN. The main feature of this figure is that the filament
growth velocity is not a monotonic function of the angle ϑ, but passes
through a maximum at an optimal filament orientation ϑopt. The physical
reason for such an optimal angle is obvious. On the one hand, thermal
fluctuations may not be able to bend a stiff polymer like actin which is
grafted normal to the wall to permit intercalation. On the other hand, a
filament polymerizing freely parallel to the wall is not able to exert force. In
general, ϑopt is an increasing function of the load force and the persistence
length. For the parameters listed in Fig. 2.25a, this angle ranges from
ϑopt ≈ 60◦ at 0.1 pN to ϑopt ≈ 75◦ at 2.9 pN. If the persistence length
is lowered to `p ≈ 1 µm, the optimal angle is considerably decreased;
compare Fig. 2.25b. We have also included a plot for the protrusion velocity
generated using the factorization approximation for all angles. We find
qualitatively the same behavior as for the full expression but significant
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Figure 2.24 An actin network polymerizing in the presence of an external load.
ϑ is the network orientation, kon is the monomers attachment rate and koff is the
monomers detachment rate. The membrane - for simplicity - has been idealized
as a rigid smooth wall.
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quantitative differences (see Fig. 2.25c).
For completeness, we add Fig. 2.26 presenting decay in protrusion veloc-

ity as the external load force increases obtained using full expressions for a
fix network orientation ϑ.

2.6 Summary

In summary, we have presented analytical calculations and extensive Monte
Carlo simulations for the entropic force f exerted by a grafted polymer on
a rigid obstacle (wall). The scale for the magnitude of the entropic force is
given by the Euler buckling force fc ∝ kBT`p/L

2. The stiffness parameter

ε = L/`p discerns the two universal regimes of a Gaussian chain (ε � 1)
and a semiflexible chain (ε � 1). In this thesis, we have mainly focused
on the stiff limit, where analytical calculations using a weakly bending rod
approximation are possible. In comparing our results with Monte Carlo
simulations, we have found that the range of applicability of the results
obtained in the stiff limit extend to stiffness parameters as large as ε = 0.1.
Qualitatively the asymptotic results remain valid even up to ε = 1.

For the simplest possible geometry, where the polymer is perpendicular
to the wall, located at a distance ζ from the grafted end, our analytical
calculations show that the entropic force obeys a scaling law in the stiff
limit

f‖(ζ, L, `p) = fcf̃‖(η̃) (2.101)
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with the scaling variable η̃ = (L−ζ)/L‖ measuring the minimal compression
of the filament in units of the longitudinal width of the tip distribution
function L‖ = L2/`p, and fc the Euler buckling force of a classical beam.
For small values of the scaling variable we have derived a simple analytical
expression, Eq. (2.45),

f̃<
‖ (η̃) =

4

π5/2

exp[−1/4η̃]

η̃3/2
[

1 − 2erfc(1/2
√
η̃)
] (2.102)

and a corresponding formula in 2d, Eq. (2.58), which describe the full
scaling function to a high numerical accuracy for η̃ ≤ 0.2. For η̃ ≥ 0.2,
there are equally simple expressions, as for example Eq. (2.46) for 3d. We
expect these formulas to be useful for molecular models of cell motility.
The shape of the scaling function shows dramatic differences between 2d
and 3d, which are of geometric origin. In 3d the entropic forces always
stay below the Euler buckling force. In contrast, in 2d it is larger than the
mechanical limit for most of the parameter space and exhibits a pronounced
maximum at small values of the scaling variable η̃ before it steeply drops
to zero as ζ → L.

Extensive Monte Carlo simulations confirm these analytical results and
show that their range of applicability is ε ≤ 0.1. For larger values of the
stiffness parameter, there are clear deviations from the stiff scaling limit,
which become qualitative for ε ≥ 1. Features of the stiff limit, such as the
maximum in the entropic force, are visible even for ε as large as 4.

Experimentally, one should be able to measure entropic forces in 2d and
compare it to 3d. For example, 2d force measurements may be feasible by
confining the filament to fluctuate between two parallel plates. Since in
some important biological systems like the leading edge of a crawling cell,
the system is effectively 2d, these kind of experiments might also help to
understand better a complex system like a lamellipodium.

For a polymer inclined at an angle ϑ with respect to the wall, the trans-
verse width L⊥ =

√

L3/3`p of the tip distribution function plays also a

significant role; note that the ratio L‖/L⊥ =
√

3ε. The entropic force can
now be written in the scaling form

f(ζ, ϑ;L, `p) = fc(ϑ)f̃ (η‖, η⊥) , (2.103)

where η⊥ = (L cosϑ − ζ)/(L⊥ sinϑ), η‖ = (L cosϑ − ζ)/(L‖ cosϑ) and
fc(ϑ) = fc/ cosϑ. It turned out that a proper choice of scaling variables
are µ = η‖/η⊥ = (L⊥/L‖) tanϑ and η‖ or η⊥ depending on whether the
inclination angle is smaller or larger than a characteristic angle tanϑc =
L‖/L⊥, i.e. µc = 1. Upon increasing the inclination parameter µ, the shape
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of the scaling function changes from a step-function-like form at µ = 0 to
a purely convex shape as µ → ∞. The limit µ → ∞ either corresponds to
ϑ → π/2 or for a fixed ϑ 6= 0 to the stiff limit ε → 0. For 2d, in addition,
the maximum vanishes at µ ≈ 0.6.

In the limit of inclination angles which are much larger than the char-
acteristic angle ϑc, we have found that an approximation, Eq. (2.96) and
Eq. (2.97), based on factorizing the joint probability distribution of the
polymer tip gives an excellent asymptotic representation of the full analyt-
ical results:

f(ζ, ϑ) =
kBT

L⊥ sinϑ

√

2

π

e−η2
⊥/2

erfc(η⊥/
√

2)
. (2.104)

It is simpler than the full scaling form since it only depends on one scal-
ing variable. Up to minor factors this asymptotic formula for the entropic
force is mathematically identical to the results found by Mogilner and Os-
ter (1996a), which was derived upon assuming that the tip of the polymer
fluctuates perpendicular to its contour only. Since tanϑc ∝ √

ε the range
of applicability of this results grows with increasing stiffness parameter.
For example, ϑc equals approximately 30◦ and 10◦ for stiffness parameter
ε equal to 0.1 and 0.006, respectively. For ϑ ≤ ϑc the factorization ap-
proximation fails completely, since it gives an incorrect description of the
longitudinal stored length fluctuations. Then, a full analysis in terms of a
two parameter scaling function is necessary.

We have shown that filaments in a polymerizing network grow fastest in
a preferred direction ϑopt, such that one should expect that the population
of those filaments growing near the optimal angle will be dominant. If the
optimal angle ϑopt is larger than the critical angle ϑc, which is the case for
an actin network with `p ≈ 15 µm, then one can to a large degree use the
results from the factorization approximation.
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3 Entropic forces exerted by an

actin network on a sphere

3.1 Introduction

The past 10 years have seen remarkable advances in understanding the
molecular basis of actin-driven motility (Pollard and Borisy, 2003; Pan-
taloni et al., 2001). In all existing microscopic models, such as the Brownian
ratchet model, the effects of curvature of the load surface on the generat-
ing force and polymerization velocity is not taken into account, although
curvature might play an important role in the magnitude of the entropic
force acting on the ActA-coated beads and vesicles in in vitro experiments.
In the experiments of Cameron et al. (1999, 2000, 2001), the velocity of
the plastic beads coated with ActA, depends on the size: larger beads
move faster. They were also able to control the density of the actin tail
by varying the bead size and ActA concentration but the density of ActA
had little effect on the average speed. Filaments nucleate at the bead sur-
face and subsequently detach such that the filament-bead interaction is not
permanent and undergoes cycles of association and dissociation events. At
optimal ActA concentration, often fewer than 10 filaments from the tail had
contact with the surface of 0.2 µm beads, which was sufficient for motility.

Here, we use our analytical results from Sec. 2.4 to numerically calculate
the total entropic force generated by a very simple actin network on a
sphere with radius R. The actin tail in a real experiment has a denderic
organization with filaments of different length and orientation. However,
here, for simplicity we consider an idealized network of actin filaments,
all with the same length and orientation and anchored firmly on the dense
part of the actin gel. We also assume that each filament acts independently.
The density of the actin tail is in general a function of the radius of the
sphere and the density of the ActA protein. We consider that a fixed
number, N , of filaments are crowded behind a sphere which is located at
a constant distance ζ from the graft wall (Fig. 3.1). This analysis is not
realistic enough to describe actual experimental systems, but may serve as
a necessary prerequisite for more detailed theoretical models. We proceed

71
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actin gel

graft line

PSfrag replacements
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R

Figure 3.1 A hard sphere constrains the fluctuations of a network of stiff
polymers, oriented at an angle ϑ, resulting in the average repulsive force between
the sphere and the polymer network. One end of free fluctuating filaments is
firmly anchored in the dense part of the actin gel (graft line).

as follows: Sec. 3.2, represents our analysis of a polymer network with
a generic geometry of the graft surface pushing against an obstacle. We
formulate the problem for a very general case and then analyse it for two
specific examples: i) a sphere with radius R (Sec. 3.3) and ii) a Listeria-
like object with radius R and length L (Sec. 3.4). At the end, we give a
discussion of our main results.

3.2 An inhomogeneous actin network and a rigid

obstacle

Consider an inhomogeneous stiff actin network fluctuating in front of an
obstacle (such as bacteria) with an arbitrary shape (Fig. 3.2). The actin
filaments are anchored firmly within an actin gel. The anchoring point of
each filament, which fixes the position and orientation of the filament, char-
acterizes a so called “graft surface” of the network. The graft surface might
have any arbitrary shape. In the next section, for simplicity, we consider
it as a flat or spherical surface. We also neglect all steric repulsions be-
tween filaments. Filaments can flex by Brownian motion, i.e. they exhibit
thermal fluctuations in their shape. The presence of the obstacle reduces
the number of possible configurations for each filament leading to an in-
crease in free energy and as a result a total pushing force on the obstacle
which is entropic in origin. Since the actin filaments are stiff (`p ≈ 15 µm),
they fluctuate around the completely stretched configuration. Filaments
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Figure 3.2 An inhomogeneous actin network fluctuating in front of an obsta-
cle with arbitrary geometry. The actin network exerts a repulsive force on the
obstacle which is entropic in its origin. O is the centre of mass of the obstacle.

which are long enough to hit the obstacle, feel locally a plane wall, which
is tangent to the object at the interacting point. In other words, the tip of
each stiff filament experiences a plane wall which has different orientations
at different interacting points. Since we have assumed that each filament
works independently, the total entropic force due to the network on the
object is just the sum over the entropic forces of each single filament. For
a given shape of the obstacle and graft surface, we need to integrate over
the length and angle distribution of the free fluctuating part of the actin
network in order to evaluate the total entropic force

~F =

∫

r(φ)dφ

∫

dϑ

∫

dL Cφ,{~rg}(L, ϑ) × fn(L, `p, ϑ, ~rg , φ, r(φ)). (3.1)

Here, Cφ,{~rg}(L, ϑ) is the number of polymers per unit length between φ
and φ + dφ, with orientation ϑ and contour length L. fn is the entropic
force exerted by the filament grafted at ~rg and hitting the barrier at r(φ).

The length of the thermally fluctuating parts of these polymers are typ-
ically 200 ∼ 300 nm, which is very short compared to their persistence
length. At any point on the surface of the obstacle, the force fn is perpen-
dicular to the local tangent plane at that point. Obviously, the total force
which has in general both x and y components, depends on the network
geometry characterized by Cφ,{~rg}(L, ϑ), the geometry of the obstacle given
by {φ, r(φ))} and the geometry of the graft surface given by {~rg}. This
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concludes the general framework for entropic forces generated by a polymer
brush on an arbitrary shaped rigid object. In the following two sections, we
present the results for a sphere and a rod-like object, which are analyzed
in detail.

3.3 A homogeneous actin network and a sphere

In this section, we numerically calculate the integral in Eq. (3.1) for a
homogeneous non-polymerizing actin network. One end of each filament is
firmly anchored on a flat graft surface and the other free end undergoing
thermal fluctuations and exerting force on the bead. For simplicity, we
assume that half of the filaments are oriented at an angle ϑ and the other
half at −ϑ, with all of them of the same contour length L. We define ζ to be
the minimal distance between the sphere and the graft surface (Fig. 3.3).

flat graft surface
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Figure 3.3 Geometry which has been used to calculate the entropic force on a
bead. The two filaments tangent to the sphere at −ϑ and π − ϑ are the first and
last filaments which (if they are long enough to feel the presence of the bead) are
able to exert force on it giving −ϑ ≤ φ ≤ π − ϑ.

As already mentioned, we assume that each filament which hits the sur-
face of the bead, effectively sees the flat tangent-plane at the contact point
to the sphere as a barrier (Fig. 3.3). This assumption is valid for a stiff
filament like actin with persistence length of `p ≈ 15 µm. The problem of
calculating the total entropic force on the sphere, reduces to an integration
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over the force of each single filament grafted at ψ = π
2 − (θ+φ) and fluctu-

ating in front of a rigid wall at distance ζ⊥ = (ζ+R−R sinφ) cosψ/ cos θ
with φ changing from −ϑ to π − ϑ. The force of each stiff filament at
the contact point is perpendicular to the local tangent surface or, in other
words, is directed to the centre of the bead. We are interested in the total
force in x and y directions. For symmetry reasons, the total force in the
y direction vanishes, and the force in x direction (per single filament) is
given by

fs(ζ, ϑ,R) = Fx/(nπR) =
1

π

∫ π−ϑ

−ϑ

fn(φ) sinφ dφ, (3.2)

where n is the linear density of actin filaments and fn will be calculated
from Eq. (2.88).

In a real experiment, the filaments nucleate at the bead surface and
subsequently detach. Hence the assumption that all filaments have on
average the same contour length would suggest that a spherical graft surface
might be a better choice (see Fig. 3.4).
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Figure 3.4 A schematic presentation of an actin network with a spherical graft
surface pushing against a sphere.

Fig. 3.5 displays fn(φ) as a function of φ for ϑ = 0 for both a flat and a
spherical graft surface. fn has been scaled with fc = π2`pkBT/4L

2, which
is the Euler buckling force. For ϑ = 0, fn is symmetric around its maximum
at φmax = π/2. Thus the filament directing to the bead at φmax is the most
efficient pushing filament. For a flat graft surface, the force is nonzero for
φc < φ < 180◦ − φc. It is not difficult to calculate the value of φc at which
the force vanishes. The condition that the filament should have contact
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Figure 3.5 Force fn(φ) in units of fc as a function of φ for ϑ = 0, ζ/L = 0.85,
R/L = 0.5 and L/`p = 0.1 for a flat and spherical graft surface.

with the surface of the sphere implies that L cosψ > ζ⊥, which for ϑ = 0,
ζ/L = 0.8, R/L = 1 and L/`p = 0.1 gives φc = 53.1◦. For a spherical graft
surface, all the filaments hitting the bead at 0◦ < φ < 180◦ are able to
exert a force.

We now turn to a discussion of the total force Fx exerted on the bead,
restricting ourselves first to a flat graft surface. See Fig. 3.6a and Fig. 3.6b
for an illustration of Fx as a function of ϑ and a fixed value of ζ but
a series of values for R and vice versa. In both cases, the total force
vanishes when the orientation of the network is larger than a maximum
angle ϑmax. For constant ζ, it is easy to approximate the value of ϑmax

at which the force goes to zero. The polymer directed to the sphere at
an angle φ = π/2 is pushing the sphere most efficiently (see Fig. 3.5).
When the total force vanishes, this means that even this polymer is not
pushing anymore. In other words, the distance of this filament to the
sphere is larger than its contour length, ζ⊥ > L cosϑ. As a result, whenever
ϑ > ϑmax = cos−1(ζ/L), the force vanishes. Since ϑmax is independent of
R, the force vanishes at the same value of ϑmax = cos−1(0.95) ∼ 18◦ for
different values of R (see Fig. 3.6a). However, changing ζ/L, would change
ϑmax, as presented in Fig. 3.6b.

Another feature of Fig. 3.6a is that for a constant linear density of work-
ing filaments n, which corresponds to a total number nπR of filaments,
the force per single filament fs is higher for smaller spheres. However, the
total force Fx = fs × nπR is higher for larger spheres since the number of
pushing filaments for fixed n is proportional to R. Here, for simplicity, we
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Figure 3.6 Plot of the dimensionless force per single filament as a function of ϑ
(in degrees), exerted by a homogeneous network of stiff polymers with a flat graft
surface and linear density n on (a) spheres with different radius R but the same
ζ/L = 0.95, and on (b) a sphere with radius R/L = 1 but located at different
ζ/L with L/`p = 0.1. (c) and (d) are the same as (a) and (b) with a spherical
graft surface.

have assumed that n is not a function of φ but can be a function of R. One
can also keep the size of the bead fixed and decrease ζ. Obviously, this will
increase the total entropic force and increase ϑmax (Fig. 3.6b).

In order to see the effect of the graft surface geometry, we have calculated
the total entropic force for a spherical graft surface as well. As expected,
the force drops down by a factor cosϑ and the average force per filament
collapses to a single curve for different values of R/L but the same value
of ζ/L (Fig. 3.6c). Again, moving the bead closer to the network increases
the force per single filament (Fig. 3.6d). In contrast to a flat graft surface,
where just those filaments hitting the bead at φc < φ < 180 − φc are
involved in exerting force, all the filaments can push against the bead for
a spherical anchoring surface. As a result, the average force per single
filament in Figs. 3.6c and 3.6d is higher compared to the flat graft surface
in Figs. 3.6a and 3.6b.
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Figure 3.7 A stiff polymer network in the presence of a rigid cylinder.

3.4 A homogeneous actin network and a cylinder

In this section, we consider a bacteria-like object with radius R and length a
(Fig. 3.7). For those filaments in the network facing the spherical part of the
obstacle, one can use the results from section 3.3 with the minor difference
that the integration interval must be [0, π− ϑ] instead of [−ϑ, π− ϑ]. This
correction doesn’t make a big difference in the results.

Now let us focus on the flat side of the obstacle. The entropic force
on the circumference of the cylinder has no component in the y direction
since the force exerted by the group of filaments oriented at angle ϑ will be
cancelled by those at angle −ϑ. But what about the component of the force
in the x direction which is parallel to the long axis of the cylinder? As we
have mentioned already, the force generated by a fluctuating polymer on a
relatively long wall has no component parallel to the wall itself and the total
force is perpendicular to it. The reason is that moving the wall parallel to
itself doesn’t change the number of possible configurations of the filament.
This force would have a tangential component if the filament could feel
the finite length a of the cylinder. To make the statement more precise,
consider a filament which is fixed at one end in position and orientation
and which at the other free end is fluctuating near a rigid wall with finite
length a (Fig. 3.8). Now the question is: how does this tangential force
depend on a, θ and the position of the wall?

We know from the literature (Benetatos and Frey, 2003) that the proba-
bility distribution function for a free semiflexible chain in the weakly bend-
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Figure 3.8 A smooth hard wall with finite length a constrains the fluctuations
of a semiflexible polymer grafted at angle θ resulting in an average force on the
wall which has both parallel and perpendicular components.

ing limit (L� `p, θ � 1) is given by the following propagator

G(ys, θs, s|y0, θ0, 0) =

√
3

2π

`p
s2

exp (
−3`p
s3

[(y − y0 − θ0s)
2

−s(y − y0 − θ0s)(θ − θ0) +
1

3
s2(θ − θ0)

2] ) . (3.3)

G(ys, θs, s|y0, θ0, 0) is interpreted as a two point conformational probability
distribution, valid only in the weakly bending limit (s� `p). Now consider
a polymer which is grafted at an angle θ in one end at x = y = 0 and its
free end is fluctuating near a wall barrier with its middle point located
at x0 ≈ L and y0. The probability of finding the free end of this polymer
within a range of slops −∞ < θL <∞ and transverse displacements −∞ <
yL < y0 − a/2 and y0 + a/2 < yL <∞ is

P =

∫ ∞

−∞

dθL

(

∫ ∞

y0+
a
2

dyL +

∫ y0−
a
2

−∞

dyL

)

G(yL, θL, L|0, 0, 0). (3.4)

One can integrate over θL using well-known formulas for Gaussian integrals,
and integrate over yL using the following integral

∫ +∞

a

exp[A (x−B)2] =
1

2

√

− π

A
Erfc[

√
−A (a−B)]. (3.5)

The partition function is proportional to P with a constant factor. Then
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Figure 3.9 Scaled tangential force exerted by a polymer fluctuating near a wall
with finite length a/L = 1, L = 500 nm and `p = 15 µm (Fig. 3.8).

after scaling all lengths to L and defining ε = L/`p we get

Z =
1

2
Erfc

[

√

3

4 ε
(y0 + a/2− θL)/L

]

+
1

2

(

1 + Erf

[

√

3

4 ε
(y0 − a/2− θL)/L

])

. (3.6)

Hence, the repulsive force parallel to the wall is

f‖/fc := −4 ε

π2

Z ′

Z
, (3.7)

where the derivative is with respect to y0 and fc = π2`pkBT/4L
2. Fig. 3.9

displays f‖ scaled by the Euler buckling force fc as a function of y0. As
expected, f‖ is very sensitive to y0 and drops down very fast to zero for
large values of y0.

3.5 Summary

We have presented a general formalism to calculate the entropic forces
generated by a polymer network on an arbitrarily shaped object. The
results depend on the network characteristics (like orientation and length
distribution of filaments) and graft surface geometry. Our focus here is
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on stiff polymer networks. A polymer is stiff if its contour length is much
smaller than its persistence length which is indeed the case for an actin
filament with `p ≈ 15 µm and free thermally fluctuating parts of 100 ∼
200 nm. Furthermore, we have simplified the network such that it consists
of two groups of filaments one, oriented at angle ϑ and the other at angle
−ϑ. This assumption makes the system completely symmetrical in the y-
direction. Moreover, in order to simplify the numerics even more, we have
assumed that all the filaments in both groups have the same free fluctuating
contour length L. We have introduced the concept of the graft surface. All
the filaments are anchored firmly on this surface which for simplicity is
considered to be either flat or spherical. In principle, it is not necessary
to consider all the filaments with the same contour length and orientation.
But then for a given length and orientation distribution of the network
and geometry of the graft surface, one can (at least formally) calculate
the total entropic force on the obstacle. The scale for the magnitude of
the entropic force is given by the Euler bucking force fc = π2`pkBT/4L

2.
For a special geometry of the obstacle (sphere and cylinder), the numerical
results show that the total entropic force depends on the radius R , the
network orientation ϑ as well as graft surface geometry.
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4 Steric repulsions between two

polymers

4.1 Introduction

The interaction between biopolymers in the cytoskeleton or membranes in
biological systems is characterized by the interplay of energy and entropy.
Indeed, lipid bilayers in solution often form stacks or bunches in which
several membranes are, on average, parallel to each other. If one ignores
thermally excited fluctuations, the membrane or polymer can be regarded
as planar sheets or lines which interact as a result of various intermolecular
forces. This direct interaction consists of two contributions: “Nonspecific”
interactions such as those arising from the van der Waals and electrostatic
forces and “specific” interactions mediated by biologically relevant macro-
molecules. Shape fluctuations give rise to an effective repulsion between the
membranes or polymers, which is called “Helfrich repulsion”. Helfrich’s in-
teraction between membranes scales like (Helfrich, 1978)

VHelf =
3π2(kBT )2

128κ

1

(d− δ)2
, (4.1)

where d is the average distance between two membranes, δ is the bilayer
thickness, and κ is the bending modulus of a single bilayer.

The interplay between this fluctuation-induced repulsion and the direct
interaction can lead to continuous unbinding transitions from a state where
the membranes are bound together to a state where they are completely
separated (Lipowsky and Leibler, 1986; Lipowsky, 1988, 1994). The be-
havior of interacting fluid membranes and their unbinding transitions have
been simulated by Lipowsky and Zielinska (1989) using a vectorized Monte
Carlo code. They studied the shape fluctuations of a membrane which
interacts with another membrane or surface. This interaction has an at-
tractive part which leads to a bound state of the membrane and, thus, to a
confinement of its fluctuations. For the linear external potential V (z) = Pz
(Fig. 4.1), MC data showed that the mean separation distance 〈z〉 between
two membranes scales like P−1/3, as predicted theoretically by analytical

83



84 4 Steric repulsions between two polymers

P: external pressure

PSfrag replacements 〈z〉 ∼ P−1/3
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y

Figure 4.1 A membrane bounds to a rigid wall at 〈z〉 via a linear external
potential V (z) = Pz. Unbinding transition of the membrane happens at P = 0.

calculations (Lipowsky, 1991; Meunier et al., 1987). Lipowsky (1991) also
studied more realistic interactions such as the superposition of hydration
and van der Waals forces, and determined critical unbinding transitions for
several interaction parameters.

In the above studies, fluctuations of a fluid membrane are restricted by
the presence of a rigid wall which is oriented parallel to the membrane.
Now let us replace the rigid wall by a rigid rod which is oriented perpen-
dicular to the membrane (see Fig. 4.2). The entropic force exerted by the
fluctuating membrane on the polymer rod tip was calculated by Daniels
and Turner (2004). This is the situation which one often encounters in

membrane

rigid polymer
PSfrag replacements

∆

Figure 4.2 Schematic presentation of a fluctuating membrane interacting with
a fiber tip used by Daniels and Turner (2004). ∆ denotes the height of the rod
as measured from the membrane frame at z = 0 (shown as dashed line).

the lamellipodium of a crawling cell. In their analysis, Daniels and Turner
(2004) assumed actin filaments to be rigid. They showed that the force
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exerted by the membrane on the polymer rod tip is given by

f∆ = 2

√

A

π

exp(−A∆2)

Erfc(
√
A∆)

(4.2)

in which A = 2πγ/ ln(1 + γ L2/κπ2). L×L is the membrane size, κ is the
membrane bending rigidity and γ is the surface tension.

In this chapter, our focus is on “Helfrich repulsion” between biopoly-
mers. For example, in the cell cytoskeleton, filaments are highly confined
in the fiber network. This confinement increases the free energy of each
single fluctuating filament, resulting in an average repulsive force, which
is entropic in origin. As is shown in Fig. 4.3, filaments in the network
have different orientations with respect to each other. Here, we study en-
tropic repulsion between two filaments fluctuating either i) parallel or ii)
perpendicular to each other, using Monte Carlo methods and analytical
calculations. The Monte Carlo data give clear evidence for the existence
of a repulsive interaction between biopolymers at short distances. We find
that the form of the repulsive interaction is in good agreement with the
analytical results obtained from scaling arguments.

Figure 4.3 Microfilaments with fluorescent label in the cell cytoskeleton. The
figure is from the website http://www.biology.arizona.edu/.

4.2 Steric repulsion between two parallel

polymers

In this section, the aim is to calculate the repulsive force emerging through
steric restrictions in a many polymer system, where the polymers are fluc-
tuating parallel to each other. Similar calculations have been already done
in a many membrane system, showing the existence of repulsive forces at
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short distances which scale like 1/d2 (Safran, 2003). Here, d is the average
distance between membranes. These calculations can readily be recast in
the language of semiflexible polymers, and will be reviewed in this section.

To start, we ask the following question: how does the entropic force
between two polymers scale as a function of the average distance between
them? To answer this question, in the first step, we do our analytical
calculations for stiff filaments. A polymer is stiff if its contour length L is
much smaller than its persistence length `p (L � `p). In a next step, we
perform Monte Carlo simulations to see the validity range of our analytical
results.

Consider a system with polymers whose average positions lie on a one
dimensional lattice along the ẑ direction, with lattice spacing d as shown
in Fig. 4.4. A given polymer has an absolute height zn = nd + hn(x),
where n is an integer which indexes the lattice positions and hn(x) is the
local deviation of the polymer from its average value, 〈zn〉 = nd. If there
are no thermal fluctuations of the polymers, then hn(x) = 0. Due to the
fluctuations, the polymers collide with each other and lose entropy in these
collisions. This can be understood if one considers hardcore repulsions
between polymers; the excluded volume of the neighboring polymers limits
the configuration of any given polymer, thus reducing its entropy. This
implies that the free energy per polymer of a layer of polymers must be
greater than that of a single free filament.

We assume that the net result of these collisions is that each polymer
experiences an effective interaction with its nearest neighbors which has its
lowest energy state, the periodic configuration, where

zn+1 − zn = d. (4.3)

This interaction is represented as a quadratic form in the deviation of
(zn+1 − zn)− d from zero, or equivalently in hn+1(x)− hn(x). In addition,

PSfrag replacements

d
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Figure 4.4 A layer of polymers at an average spacing d but with randomness
hn due to thermal fluctuations. Roughness hn for nth polymer is measured from
the polymer frame at z = nd.
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there is the bending energy of each polymer. The Hamiltonian, H, is thus
written as

H =

∫

dx u(x), (4.4)

u =
1

2
B
∑

n

(hn − hn+1)
2 +

1

2
κ
∑

n

(∇2hn)2. (4.5)

Here κ is the bending rigidity of the polymer (with dimension energy×
length), and 1

2 (∇2hn) is the mean curvature of the nth polymer. This
expression is correct for polymers with gentle undulations (∇h�1); other-
wise the simple expressions for the curvature are incorrect and the length
constraints must be reconsidered as well. The compressional elastic con-
stant, B, represents an effective repulsion between the membranes and will
be computed self-consistently. Note that this Hamiltonian is unchanged
if the positions of all the polymers are uniformly shifted, representing a
trivial translation of the system. After Fourier transforming in both the
ẑ direction (Fourier wave number qz with an upper cutoff π/d due to the
periodicity) and the x plane (Fourier wave number qx) we have

H =
∑

qx,qz

|h(qx, qz)|2
[

B (1 − cos(qzd)) +
1

2
κq4x

]

=
∑

qx,qz

H(qx, qz). (4.6)

At temparatue T , e−H(qx,qz)/kBT is a measure of the probability that a
mode with wave numbers qx and qz will be excited. Indeed, this probabil-
ity is a Gaussian function of h(qx, qz) and as we will see, this makes the
calculations quite straightforward .

4.2.1 Free energy of undulations and the repulsive

interaction

As we mentioned, the Boltzman factor corresponding to the Hamiltonian
of Eq. (4.6) is a Gaussian, so the free energy F is easily evaluated from

F = −kBT ln

[

∏

qx,qz

∫

dh(qx, qz)e
−H/kBT

]

. (4.7)

Performing the integral, we find that the difference in free energy per
unit length, ∆Fl, between the many polymer system and that of a single
polymer (where d→ ∞ and we anticipate that B → 0) is given by

∆Fl =
kBT

2(2π)2

∫

dqx dqz ln

[

B(qz) + κq4x
κq4x

]

, (4.8)
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where B(qz) = 2B (1 − cos qzd). Integrating first over qx with the upper
cutoff set to ∞, we find

∆Fl =
kBT

25/4π

(

B

κ

)1/4 ∫ π/d

−π/d

dqz
4
√

(1 − cos qzd). (4.9)

This integral can be written as

∆Fl = 0.763
kBT

d

(

B

κ

)1/4

. (4.10)

Now, the modulus B is related to the second derivatives of the free energy
with respect to the average layer spacing; i.e, imagine a uniform expansion
or compression of the system. The restoring force is just the effective value
of B which is proportional to the macroscopic compressibility of the system.
Thus, we may obtain a self-consistent equation to determine B from

B = d
∂2∆Fl

∂d2
. (4.11)

Using Eq. (4.11) in Eq.( 4.10), we find that

B = 5.09 kBT

(

kBT

κ

)1/3

d−8/3, (4.12)

and the free energy difference per unit length, ∆Fl, is

∆Fl = 1.146 kBT

(

kBT

κ

)1/3

d−2/3, (4.13)

representing an effective repulsion that decays algebraically as d is in-
creased. This long-range, entropic repulsion is present in all multipolymer
and multimembrane systems. In addition to this repulsion, the specific
Coulomb repulsions due to charge effects and/or attractions due to Van
der Waals interactions may result in an effective attractive well that binds
two polymers or membranes at a particular distance.

For membranes, the Hamiltonian in Eq. 4.6 changes to (Safran, 2003)

H =
∑

q,qz

|h(q, qz)|2
[

B (1 − cos(qzd)) +
1

2
κq4

]

=
∑

~qx,qz

H(q, qz), (4.14)

in which q = (qx, qy) is the Fourier wavevector in the x − y plane (see
Fig. 4.1). Similar to Eq. 4.8, the difference in free energy per unit area for
the membranes reads

∆Fa =
kBT

2(2π)3

∫

dqx dqy dqz ln

[

B(qz) + κq4

κq4

]

, (4.15)
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Figure 4.5 Effective steric potential Veff/kBT shows different scaling behaviour
for polymers and membranes. It scales as X for membranes but as X1/3 for
polymers.

Here κ is the bending modulus of the membranes, which has dimension of
energy.

Carrying out the integral in Eq. 4.15 and following a procedure similar
to that for polymers, we arrive at our final expressions for B and ∆Fa

B = 3.647 kBT

(

kBT

κ

)

d−4,

∆Fa = 0.304 kBT

(

kBT

κ

)

d−2. (4.16)

See Fig. 4.5 for a plot of (dimensionless) effective steric potential Veff/kBT
between two polymers or membranes as a function of variableX = kBT/κ d

2.
Veff scales as X for membranes but as X1/3 for polymers. Note that X has
the dimension of length−2 for membranes but length−3 for polymers.

The important conclusion here is that the effective steric repulsive poten-
tial Veff, between two polymers or membranes can be written in the general
form

Veff/kBT ∼ C

(

kBT

κ

)(2D−3)/3

d−(4D−6)/3 (4.17)

in which C ∼ 1.146, D = 2 for polymers, and C ∼ 0.304, D = 3 for
membranes.
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Figure 4.6 A polymer fluctuating near a rigid line. ξ⊥ is the roughness and ξ‖
is the parallel correlation length. h is the average distance between the polymer
and the wall.

4.2.2 Scaling arguments

Analytical calculations in Sec. 4.2.1 show that steric repulsion between two
polymers or membranes scales like d−mc , in which mc is equal to 2 for
membranes and 2/3 for stiff polymers. It is possible to get the power mc

from scaling arguments. Of course, this scaling argument doesn’t give any
information about the constant prefactor. Similar scaling arguments have
already been given for membranes (Lipowsky and Zielinska, 1989). Here,
we adopt those for stiff polymers.

We start with two parallel polymers undergoing thermal fluctuations in
two dimensions (2d). For simplicity we assume that one of the polymers is
a rigid line, such that we actually have a fluctuating polymer near a rigid
line (see Fig. 4.6). The free energy of the polymer is

F =
κ

2

∫ L

0

(∇2h)2ds, (4.18)

where h is the average height of the polymer measured with respect to the
rigid wall.

Since typical energies are of the order of the thermal energy scale kBT ,
we may estimate from Eq. 4.18

kBT ∼ κ

(

ξ⊥
ξ2‖

)2

ξ‖, (4.19)
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where ξ⊥ is the typical height of the fluctuations and ξ‖ is the respective
parallel correlation length. Thus

ξ⊥ ∼
(

kBT

κ

)1/2

ξ
3/2
‖ . (4.20)

For a fluctuating polymer near a wall, ξ⊥ is of the order of the average
distance between the polymer and the rigid wall:

ξ⊥ ∼ 〈h〉. (4.21)

Therefore, the free energy per unit length scales as

∆Fl ∼ kBT

(

kBT

κ

)1/3

ξ
−2/3
⊥ , (4.22)

or from Eq. (4.21)

∆Fl ∼ kBT

(

kBT

κ

)1/3

〈h〉−2/3. (4.23)

Hence, we expect to have a steric repulsion force between the polymer
and the rigid wall which scales as 〈h〉−5/3, since steric potential scales as
〈h〉−2/3.

In the Monte Carlo simulations, we apply an external constant pressure
P to the polymer to bring the polymer close to the wall. Now the question
arises, how does 〈h〉 scales as a function of external pressure P ? In the
presence of an external pressure, the free energy per unit length reads

∆Fl ∼ kBT

(

kBT

κ

)1/3

〈h〉−2/3 + P 〈h〉. (4.24)

The equilibrium distance is found from ∂∆Fl/∂〈h〉 = 0 as

−2

3
kBT

(

kBT

κ

)1/3

〈h〉−5/3 + P = 0, (4.25)

〈h〉 ∼ P−3/5. (4.26)

Similarly, for a fluctuating membrane, Eq. 4.19 changes to

kBT ∼ κ

(

ξ⊥
ξ2‖

)2

ξ2‖ , or ξ‖ ∼ ξ⊥

(

κ

kBT

)1/2

. (4.27)
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Thus, the free energy per unit area reads as

∆Fa ∼ kBT

(

kBT

κ

)

ξ−2
⊥ , or ∆Fa ∼ kBT

(

kBT

κ

)

〈h〉−2. (4.28)

In the presence of an external pressure which pushes the membrane close
to a rigid wall (see Fig. 4.1), the free energy per unit area is

∆Fa ∼ kBT

(

kBT

κ

)

〈h〉−2 + P 〈h〉, (4.29)

and the equilibrium distance is found by ∂∆Fa/∂〈h〉 = 0 to be

〈h〉 ∼ P−1/3. (4.30)

In summary, the length scales 〈h〉 and ξ⊥ show algebraic behavior 〈h〉 ∼
ξ⊥ ∼ P−ηc , in which ηc = 3/5 for polymers and ηc = 1/3 for membranes.
For polymers, the parallel correlation length ξ‖ scales as P−2ηc/3 but for
membranes as P−ηc .

4.2.3 Monte Carlo simulations

To investigate the validity range of our analytical calculations, we did some
Monte Carlo simulations. Monte Carlo simulations have been performed in
the presence of a constant external pressure P , which pushes the polymer
close to the wall (see Fig. 4.7). This external pressure leads to a bound
state of the polymer and, thus, to a confinement of its fluctuations.

P: external pressurePSfrag replacements x

z

h0

~ti

Figure 4.7 A polymer fluctuating near a wall in presence of an external pressure.
The polymer is represented by N segments ~ti, whose direction is tangent to the
polymer contour length L.

The Hamiltonian of such a system from Eq. 1.4 reads

H
kBT

= − λ

kBT

N
∑

i=1

~ti · ~ti+1 +
P

kBT

N
∑

i=1

(N + 1− i)(~ti)z +
P

T
Nh0, (4.31)
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where h0 is the height of one end of the polymer.
Now, we define the dimensionless quantities ẑi = ~ti/a and z0 = h0/a.

Then

H
kBT

= −R
N
∑

i=1

ẑi · ẑi+1 + p
N
∑

i=1

(N + 1 − i)(ẑi)z + pNz0, (4.32)

where R = λa2/kBT = `p/a and p = aP/kBT . Indeed, R/N = `p/L is a
measure of the filament’s stiffness. A filament is stiff if R/N � 1 and is
flexible if R/N � 1. For R ∼ N , our filament is termed semiflexible.

Fig. 4.8a shows Monte Carlo results for the 〈z〉 and ξ⊥ = (〈z2〉−〈z〉2)1/2

as a function of p where N = 100, R = `p/a = 100 (semiflexible poly-
mer). The figure shows that ξ⊥ ∼ 〈z〉 ∼ p−3/5 which is in agreement with
Eq. (4.26) and Eq. (4.21). Monte Carlo simulations have been repeated for
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Figure 4.8 The Monte Carlo results for the 〈z〉 and ξ⊥ as a function of p with
(a) `p/L = 1 and (b) `p/L = 0.01 (N=100). The straight lines have slope -3/5.

a flexible polymer with `p/L = 0.01, as well. The results show the same
scaling behavior for both 〈z〉 and ξ⊥. (See Fig. 4.8b). At high pressures
(p > 10), Monte Carlo data start to deviate from scaling curves. These de-
viations might be due to the fact that for high external pressures, filaments
undulations are not small any more and the assumption ∇h � 1 breaks
down. This means that one needs to take higher order terms into account.

Similar Monte Carlo simulations on membranes by Lipowsky and Zielin-
ska (1989) showed that, in the presence of a linear external pressure, all
three length scales 〈z〉, ξ‖ and ξ⊥ scale as p−1/3 (Fig. 4.9). This scaling be-
haviour was predicted theoretically in Eqs. 4.27, 4.30. Their MC data also
deviates from scaling lines for pressures p > 1. This show that the scaling
arguments breakdown for large pressures, in which membranes undulations
might not be small any more.
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Figure 4.9 The results of Monte Carlo simulation on membranes, taken from
the paper by Lipowsky and Zielinska (1989). The straight lines have slope −1/3
showing the same scaling behaviour for all three length scales 〈z〉, ξ‖ and ξ⊥.

Here, p = a3P/(kBTκ)1/2 in which a is the lattice constant, P is the external
pressure and κ is the membranes’ bending modulus.

4.2.4 Probing steric repulsion between two parallel

polymers by MC simulations

In the presence of an external pressure, the polymer binds to the wall at
an average distance 〈z〉. Indeed, at p = 0 the polymers unbind from each
other and 〈z〉 → ∞. The fluctuations around 〈z〉, which we record from
our Monte Carlo simulations, give information about the effective potential
between the polymer and the wall. We expect an effective potential of a
form like V (z)/kBT = αz−2/3 + βz + γ, in which α, β and γ are fitting
parameters. The first term is the Helfrich repulsion term, the second one
is the external linear potential and the last term is just a constant. We will
fit this potential to our MC data to get values of α, β and γ.

Fig. 4.10a shows the effective potential between two flexible polymers
in the presence of different external pressures (`p/L = 0.01, N = 100).
Obviously, there is an effective repulsion near the wall which scales as
〈z〉−2/3. This is in agreement with Eq. (4.23). This long-range entropic
repulsion together with the attractive external pressure result in an effective
well that binds the polymer at a particular distance. As we increase p, the
polymer binds to the wall at a closer distance (Fig. 4.10c). Coefficients α,
β and γ are collected in Table 4.1. As expected β increases with external
pressure p. The coefficient α which we expect to be dependent on L/`p but
independent of external pressure, shows dependency on p: it first increases
and then decreases. However, as one can see from Fig. 4.11a, in the range
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Figure 4.10 Veff/kBT of (a), (c) a flexible polymer with `p/L = 0.01 and
(b), (d) a semiflexible with `p/L = 1 for different values of external pressure
p = aP/kBT (N = 100). The solid lines are the scaling functions of the form
V (z)/kBT = αz−2/3 + βz + γ, in which α, β and γ are the fitting parameters,
presented in Table 4.1 and 4.2.

of 0.125 ≤ p ≤ 128 that β changes 3 order of magnitude, both α and γ
don’t change significantly.

MC simulations also have been done for a semiflexible polymer with
`p/L = 1 (R = `p/a = 100, N = 100). Fig. 4.10b,d shows Veff in this
regime. Comparison of Veff for a flexible polymer with a semiflexible poly-
mer shows that flexible polymer feels a higher repulsion due to more thermal
fluctuations, so binds to the wall at higher distances compare to a semi-
flexible polymer. Coefficients α, β and γ are collected in Table 4.2. Again,
β increases with pressure but, α first increases and then decreases with
external pressure p.
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Table 4.1 Coefficients of effective potential Veff for `p/L = 0.01.

p α β γ p α β γ

2−3 91.5529 14.5783 -86.2964 2−2 99.056 28.699 -119.058
2−1 96.362 52.496 -149.403 20 76.669 86.4875 -159.416
21 53.642 145.357 -158.901 22 35.536 260.600 -157.359
23 22.8439 485.778 -155.534 24 16.8329 911.355 -166.876
25 10.3079 1732.27 -161.515 26 6.43172 3410.55 -160.281
27 3.97222 6786.83 -158.87

Table 4.2 Coefficients of effective potential Veff for `p/L = 1.

p α β γ p α β γ

2−3 13.49 12.5741 -26.35 2−2 17.756 31.228 -45.021
2−1 19.791 62.909 -63.582 20 20.106 114.911 -81.442
21 21.062 217.964 -107.847 22 21.282 416.415 -140.381
23 16.1365 639.529 -141.548 24 12.2864 1175.82 -153.643
25 9.27367 2163.43 -165.733 26 5.92352 3688.52 -157.258
27 3.81547 6922.6 -156.207

4.3 Steric repulsion between two perpendicular

polymers

In cross-linked polymer networks, like the cytoskeleton, filaments are highly
entangled. Here, we focus on the case that two filaments are entangled
perpendicular to each other. One or both ends of the filaments might
be firmly anchored inside the fiber network, and so we can have different
boundary conditions. Again, the aim is to calculate the Helfrich repulsion
force for different boundary conditions.

To start, consider two polymers embedded in three dimensional space
(3d). For simplicity, we assume that one of the polymers is rigid and the
other polymer is fluctuating perpendicular to it. Now the question is how
does the entropic repulsion between these two polymers scale as a function
of minimal distance? One can map this problem to 2d in which a polymer
is fluctuating in 2d near a point barrier (Fig. 4.12b). The next subsection
is a collection of our calculations in 2d, using two different methods: i)
propagator method and ii) path integral method which is similar to the
work by Daniels and Turner (2004) on membranes.
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Figure 4.11 α, β and γ as a function of external pressure for (a) `p/L = 0.01
and (b) `p/L = 1. In both cases, at the range of p in which β increases strongly
with external pressure, the coefficients α and γ don’t change significantly.

4.3.1 Analytical calculations

Propagator Method

One intuitive way of looking at the problem is to “count” the number of
possible configurations of the filament in the presence of the barrier. Ob-
viously, compared to a free fluctuating filament, this number is reduced.
This number is a measure of the probability to find the filament above the
barrier. We know already from the literature that the probability distri-
bution function for a free semiflexible chain in the weakly bending limit
(L� `p, θ � 1) is given by the following propagator (Benetatos and Frey,
2003)

G(ys, θs, s|y0, θ0, s = 0) =

√
3

2π

`p
s2

exp

( −3`p
s3

[

(y − y0 − θ0s)
2

−s(y − y0 − θ0s)(θ − θ0) +
1

3
s2(θ − θ0)

2

])

. (4.33)

Here, (θ0, y0) and (θs, ys) are the orientation and transversal position of
the polymer at contour lengths 0 and s, respectively. For fixed y0 = θ0 = 0,
the probability of finding the free end of the polymer within a very small
range of slopes and transverse displacements (−∆θ < θL < ∆θ and −∆y <
yL < ∆y) is

P (∆θ,∆y) =

∫ ∆θ

−∆θ

dθL

∫ ∆y

−∆y

dyL G(yL, θL, L|0, 0, 0), (4.34)
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Figure 4.12 (a) A polymer fluctuating perpendicular to a rigid polymer in 3d.
It is possible to map this problem to 2d in which a polymer is fluctuating in the
presence of a point barrier (b).

in which G(yL, θL, L|0, 0, 0) is interpreted as a two point conformational
probability density, valid only in the weakly bending limit (L� `p).

To start, we consider a polymer which is clamped at one end at y = d
and is fluctuating near a point barrier located at y = h0. The other end of
the polymer is hinged at x ∼ L, but is free to slide in the y direction and
choose different orientations (Fig. 4.13).PSfrag replacements

d h0
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−∞ < θL/2 <∞
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h0 < yL/2 <∞
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y

Figure 4.13 A polymer fluctuating near a point barrier. One end of the filament
is clamped at x = 0, y = d and has a fixed orientation θ0 = 0. The other end is
hinged at x ∼ L such that it can slip in the y direction and change orientation
as well. We call this case clamped-hinged (slip y).

The probability of finding the free end of this polymer within a range of
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slopes −∞ < θL <∞ and transverse displacements −∞ < yL <∞ is

P =

∫ ∞

−∞

dθL

∫ ∞

−∞

dθL/2

∫ ∞

h0

dyL/2

∫ ∞

−∞

dyL ×

G(yL, θL, L|yL
2
, θL

2
,
L

2
) ×G(yL

2
, θL

2
,
L

2
|d, 0, 0). (4.35)

By using Eq. (4.33)

P =
12`2p
π2L4

∫ ∞

−∞

dθL

∫ ∞

−∞

dθL/2

∫ ∞

h0

dyL/2

∫ ∞

−∞

dyL

× exp

(

−24`p
L3

[

(yL/2 − d)2 − L

2
(yL/2 − d)(θL/2) +

L2

12
θ2L/2

])

× exp

(

−24`p
L3

[

(yL − yL/2 − θL/2
L

2
)2 − L

2
(yL − yL/2 − θL/2

L

2
)

× (θL − θL/2) +
L2

12
(θL − θL/2)

2

])

. (4.36)

One can integrate over θL, θL/2 and yL using the well-known Gaussian
integral

∫ +∞

−∞

exp
[

A(x − α) +B(x− α)2
]

=

√

− π

B
exp(−A2/4B), (4.37)

and integrate over yL/2 using the following integral
∫ +∞

a

exp[A(x −B)2] =
1

2

√

− π

A
Erfc[

√
−A(a−B)]. (4.38)

Then, we end up with our final expression for P

P =
1

2
Erfc

[

(
6`p
L

)
1/2

(h0 − d)/L

]

. (4.39)

The partition function Z is proportional to P with a constant factor. As
a result we have (Fig. 4.14a)

Z ∼ 1

2
Erfc

[

(

6`p
L

)1/2

(h0 − d)/L

]

. (4.40)

Then the effective repulsion between the polymer and barrier is given by

Veff/kBT ∼ − ln

(

1

2
Erfc[(

6`p
L

)
1/2

(h0 − d)/L]

)

= − ln

(

1

2
Erfc[

√
C X ]

)

,

(4.41)
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in which C = 6`p/L and X = (h0 − d)/L.
Now we are in a position to calculate the force between the polymer and

barrier as follows

fs =
fL

kBT
=
∂Veff

∂X
∼ 2

√

C

π

exp(−CX2)

Erfc[
√
C X ]

. (4.42)

The (dimensionless) force f ′ = fs/(2
√

C/π), as given by Eq. 4.42, is

plotted in Fig. 4.14b as a function of
√
CX and has the following limits

f ′ → √
π(
√
CX) as X → ∞ ,

f ′ → 1 +
2√
π

(
√
CX) as X → 0 ,

f ′ → 1

2
exp(−CX2) as X → −∞ . (4.43)
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Figure 4.14 (a) Partition function Z and (b) dimensionless force (red curve)
as well as its three limits from Eq. 4.43, are plotted as a function of

√
CX. For

large positive X and also for small X, the force on the polymer becomes linear
with spring constants 2C (black line) and 4C/π (green line), respectively. For
large negative X, the force decays exponentially (blue curve).

From these limits and Fig. 4.14b, we can understand the following be-
havior for our polymer-point barrier system. For large, positive X (when
the barrier strongly limits the polymer’s thermal fluctuations) the force on
the polymer becomes linear with a spring constant ≈ 2C. For small X , the
force is again linear (with a spring constant 4C/π), but does not vanish at

h0 = d. Rather, it approaches the constant value 2
√

C
π . Finally, when the

point barrier is far from the polymer, the force decays rapidly to zero, as
one would expect.
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We can also use the partition function Z to calculate the average distance
〈X〉 between the polymer and the point barrier. 〈X〉 is given by

〈X〉 =

∫∞

X dx x Z
∫∞

X dx Z . (4.44)

Calculating the integral in Eq. 4.44, we get the following expression for
the average 〈X〉

〈X〉 =

√

1

πC

exp(−CX2)

Erfc(
√
CX)

. (4.45)

By combining Eq. 4.45 with Eq. 4.42, we get

fs = 2C〈X〉, (4.46)

which has the simple linear form with spring constant 2C.

In order to get an idea about the order of magnitude of the repulsive
force, we plug in the following set of parameters: `p = 15 µm, L = 500 nm,
d = 0, h0 = L/3 and kBT = 4.1 pN nm to get f ∼ 4 pN. By increasing
h0 to the value L/2, the force increases roughly to 6 pN and by choosing
h0 = L, we get f ∼ 12 pN.

For completeness, we performed Monte Carlo simulations for different
values of ε = L/`p, in order to find out the validity range of our analytical
calculations. There is a nice agreement between MC data and analyti-
cal results for ε ≤ 0.1 (stiff filaments). For X > 0.2, MC data deviates
significantly from analytical results as ε increases (see Fig. 4.15).

Finally, we would like to mention that one can repeat the calculations for
different boundary conditions of polymer. For example, one can clamp or
hinge one or both ends. The only difference in the final results would ap-
pear in the constant number C which is summarized for different boundary
conditions in Table 4.3.

Table 4.3 Coefficient C for different boundary conditions.

boundary conditions C

clamped-clampled (slip y) 24`p/L
clamped-hinged (slip y) 6`p/L
hinged-clamped (slip y) 3`p/2L
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Figure 4.15 MC simulations (data points) in comparison to analytical results
(lines) for (a) partition function and (b) effective steric potential. As expected,
MC data deviates from analytical results for flexible and semiflexible polymers
(values of ε = L/`p > 0.1) and is in good agreement for stiff filaments (values of
ε = L/`p ≤ 0.1).

Path Integral Method

In this part, we use the same method as described by Daniels and Turner
(2004) to calculate the entropic force. Consider a stiff polymer with contour
length L and persistence length `p, where one of its end is fixed at (x =
0, y = d) and crosses the barrier at (x ∼ L/2, y). The other end is
hinged at x ∼ L such that it can slip in the y direction and choose different
orientations. Since the polymer is stiff, we parameterize the position R of
our polymer as R = xî + h(x)̂j (see Fig. 4.16).

PSfrag replacements
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Figure 4.16 A polymer starting from a fixed position and orientation (clamped)
and fluctuating above a point barrier. The other end is hinged at x ∼ L such
that it can slip in the y direction and choose different orientations.
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We can write h(x) in terms of the following discrete Fourier modes

h(x) = d+

∞
∑

n=1

hn sin(
nπx

L
), (4.47)

which satisfies the boundary condition h(x = 0) = d.

The harmonic bending energy of the polymer for the displacement h(x)
is

H =
κ

2

∫ L

0

(
∂2h

∂x2
)2dx

=
κ

2

∫ L

0

∑

n,n′

hnh
′
n(
nπ

L
)2(

n′π

L
)2 sin(

nπx

L
) sin(

n′πx

L
)dx

=
κL

4

∑

n

(
nπ

L
)4h2

n , (4.48)

which contains bending rigidity κ as well as contour length L.

To begin with, we fix the midpoint fluctuations of our polymer at some
arbitrary value, y, as follows:

y = d+

∞
∑

n=1

hn sin(
nπ

2
). (4.49)

We incorporate this constraint into the calculation of the sum over all
the polymer conformations, represented by our partition function Zy

Zy = N−1

∫ +∞

−∞

∏

n

dhn δ

(

d− y +

∞
∑

n=1

hn sin
nπ

2

)

e−βH

=
N−1

2π

∫ +∞

−∞

∏

n

dhn

∫ +∞

−∞

dµ eiµ(d−y+
P∞

n=1 hn sin nπ
2 )

× e−
βκL

4 ( π
L )4

P∞
n=1 n4h2

n , (4.50)

in which N is a normalization factor. We have also used the following
equality (Abramowitz and Stegun, 1970)

δ(z) =
1

2π

∫ ∞

−∞

dµ e−izµ. (4.51)
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Carring out the functional integral over hn in Eq. 4.50, we arrive at the
following expression for Zy

Zy =
N−1

2π

∫ +∞

−∞

dµ exp

[

∞
∑

n=1

ln(
4L3

βκπ3n4
)1/2

]

× exp[iµ(d− y)] exp

[

−
∞
∑

n=1

µ2 sin2(nπ
2 )L3

βκπ4n4

]

. (4.52)

The second summation over n leads to the following closed form (Hansen,
1975)

n=∞
∑

n=1

sin2(nπ/2)

n4
=
π4

96
. (4.53)

We use Eq. 4.53 to sum up the second series over n, enabling us to write

Zy =
N−1

2π

∫ +∞

−∞

dµ exp[iµ(d− y)] ×

exp

[

n=∞
∑

n=1

(
4L3

βκπ3n4
)1/2

]

× exp

[

− 1

96

µ2L3

βκ

]

. (4.54)

Now, carrying out a final integration over µ, we arrive at the desired ex-
pression for Zy

Zy = B exp[−CY 2], (4.55)

in which B =
√

6βκ/πL3, C = 6βκ/L and Y = (d− y)/L. The normaliza-
tion factor is calculated to be

N = exp

[

n=∞
∑

n=1

(
4L3

βκπ3n4
)1/2

]

, (4.56)

such that
∫∞

−∞
dy Zy = 1 .

In order to complete the calculations of the partition function for our
polymer, including the presence of the point barrier, we need to further
integrate Zy from the position of the point barrier, h0, to ∞. In this way,
we realize the physical constraint that we wish to impose; that the polymer
midpoint must fluctuate entirely above the point barrier and never below
it (Fig. 4.16). So we write

Zh0 =

∫ ∞

h0

dyZy. (4.57)
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Carring out the integral in Eq. 4.57, we end up with our final expression
for Zh0

Zh0 =
1

2
Erfc[

√
CX ], (4.58)

which is the same as Eq. 4.39 with C = 6βκ/L = 6`p/L andX = (h0−d)/L.

4.4 Summary

We have presented analytical calculations as well as Monte Carlo simula-
tions for the force exerted by a fluctuating polymer on a rigid rod. The
system has been analysed for two different geometries:

I) The filament fluctuates parallel to the rigid rod. In this case, the free
energy of the polymer is greater than that of a free filament. As a result,
the polymer feels an effective repulsive force which scales as 〈h〉−5/3, in
which 〈h〉 is the average distance between polymer and rigid rod. The same
results can be obtained by using scaling arguments. We also performed MC
simulations for different persistence lengths in the presence of a constant
external pressure. MC data, clearly shows that the polymer binds to the
rigid rod at a given distance in which the external attractive force is in
balance with the steric repulsive force. At very small distances, the entropic
force is dominated but decays very fast at larger distances.

II) The filament fluctuates perpendicular to the rigid rod. We have
outlined the calculations for the force exerted by a fluctuating polymer
on a point barrier using statistical mechanical methods. We explicitly and
quantitatively derive the polymer force acting on a point barrier in terms of
polymer contour length L and persistence length `p. We calculated the force
in two ways: path integral method and propagator method. We find that
at large negative distances, the force between the polymer and the point
barrier decays exponentially to zero. However, at small and large positive
distances, force can be approximated by a Hookian force with dimensionless
spring constants 24`p/L and 12`p/L, respectively. MC simulations fits very
good to the analytical results just for stiff filaments (ε ≤ 1) and deviates
at intermediate and large values of ε.
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5 Velocity oscillations in

actin-based motility

This chapter is under review in Phys. Rev. Lett. as: A. Gholami, M. Falcke,

and E. Frey: Velocity oscillations in actin-based motility (arXiv:0704.1390v1).

Abstract

We present a simple and generic theoretical description of actin-
based motility, where polymerization of filaments maintains
propulsion. The dynamics is driven by polymerization kinet-
ics at the filaments’ free ends, crosslinking of the actin network,
attachment and detachment of filaments to the obstacle inter-
faces and entropic forces. We show that spontaneous oscillations
in the velocity emerge in a broad range of parameter values, and
compare our findings with experiments.

5.1 Introduction

Force generation by semiflexible polymers is versatilely used for cell motil-
ity. The leading edge of lamellipodia of crawling cells (Bray, 2001) is pushed
forward by a polymerizing actin network and bacteria move inside cells by
riding on a comet tail of growing actin filaments (Plastino and Sykes, 2005;
Gouin et al., 2005). In vivo systems are complemented by in vitro assays
using plastic beads and lipid vesicles (Loisel et al., 1999; Marcy et al., 2004;
Parekh et al., 2005). The defining feature of semiflexible polymers is the
order of magnitude of their bending energy which is in the range of kBT .
They undergo thermal shape fluctuations and the force exerted by the fil-
aments against an obstacle arises from elastic and entropic contributions
(Mogilner and Oster, 1996a; Gholami et al., 2006).

Mathematical models have quantified the force generated by actin fila-
ments growing against obstacles (Hill, 1981b; Mogilner and Oster, 1996a;
Gholami et al., 2006). The resisting force depends on the obstacle which
is pushed. In case of pathogens, it has a small component from viscous
drag of the moving obstacle but consists mainly of the force exerted by

107
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actin filaments bound to the surface of the bacteria and pulling it back-
wards (Cameron et al., 2001; Kuo and McGrath, 2000). The tethered
ratchet model (Mogilner and Oster, 2003) is a mathematical formulation
of these experimental findings in terms of the dynamics of the number of
attached and detached polymers. The starting point of our approach will
be the dynamics of the distributions of the free length of both polymer
populations.

Actin polymerization in living cells and extracts is controlled by a com-
plex molecular network (Gouin et al., 2005). Nucleation of new filaments,
capping of existing ones, exchange of ADP for ATP on actin monomers,
buffering of monomers etc. all contribute to that control and have been
modeled (Carlsson, 2003; Mogilner and Oster, 2003; Gracheva and Othmer,
2004). Our goal is not to model the full complexity of that biochemical net-
work. Rather we focus on the core process of force generation and force
balance ensuing from the interplay between bound pulling filaments and
polymerizing pushing filaments, the transition between these two groups
and the motion of the whole force generating configuration. This is moti-
vated by recent observations of complex dynamics in simple reconstituted
systems: the velocity of beads or pathogens propelled by actin polymer-
ization may oscillate (Lasa et al., 1997; Gerbal et al., 2000a; Bernheim-
Groswasser et al., 2005). Our goal is to describe the dynamics of such
biochemically simpler systems and find a robust microscopic description
for oscillation mechanisms, which may then be controlled by higher order
processes. Such a study is meant to complement investigations based on
a continuum approach (Gerbal et al., 2000a; Bernheim-Groswasser et al.,
2005).

5.2 Definition of the model

We consider a fixed number N of actin filaments 1 firmly anchored into
a rigid cross-linked network, which advances with velocity vg ; for an il-
lustration see Fig. 5.1. Filaments of variable length l are either attached
to the obstacle interface via a protein complex or detached from it, with
time-dependent number distributions denoted by Na(l, t) and Nd(l, t), re-
spectively. In the detached state, filaments polymerize at a velocity vp(l, x),
which depends on both the polymer length l and the distance x between
rigid support and obstacle. Transitions between the two filament popu-

1A constant number is assumed to simplify matters. It has been shown, however, that
a variable number of filaments is not required for propulsion; see e.g. Brieher et al.

(2004)
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Figure 5.1 Schematic representation of an ensemble of actin filaments oriented
at ϑ = 0 with respect to the normal n̂ of an obstacle interface, which may
either be a cell membrane or a bacterium. While attached filaments are under
tension and pull the interface back, detached filaments are compressed, elongate
by polymerization with rate kon and push the interface forward. All filaments
in the brush are firmly anchored in a cross-linked network, whose front advances
with velocity vg reducing the free length l of the filaments. Attached filaments
detach with stress dependent rate kd and detached filaments attach with constant
rate ka. vo is the interface velocity in the extracellular medium, and x is the
distance between the front of the network and the interface.

lations occur with a constant attachment rate ka and a stress-dependent
detachment rate kd (Evans and Ritchie, 1999). This results in the evolution
equations

∂

∂t
Nd − ∂

∂l

[

l

x
vg(l) − vp

]

Nd = −ka Nd + kd Na , (5.1a)

∂

∂t
Na − ∂

∂l

[

l

x
vg(l)

]

Na = ka Nd − kd Na . (5.1b)

The right hand side of Eq. (5.1) describes attachment and detachment
process. The second term on the left hand side accounts for the gain and
loss of attached and detached polymers due to the dynamics of the polymer
mesh, growing with velocity vg , and the polymerization kinetics of the
filaments in the brush. The correction factor l/x in front of vg is due to
the fact that for bent polymers the rigid network swallows by this amount
more in contour length than for straight filaments. This factor is equal to
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1 for l ≤ x.
Processes contributing to the growth of the rigid polymer mesh are entan-

glement and crosslinking of filaments in the brush. Both imply a vanishing
vg for l → 0, since short polymers do not entangle and crosslinking proteins
are unlikely to bind to them. At the same time vg can not grow without
bound but must saturate at some value vmax

g due to rate limitations for
crosslinker binding. This suggests to take the following sigmoidal form

vg(l) = vmax
g tanh(l/l̄) , (5.2)

with a characteristic length scale l̄.
The polymerization rate is proportional to the probability of a gap of

sufficient size δ (≈ 2.7 nm) between the polymer tip and the obstacle for
insertion of an actin monomer (Mogilner and Oster, 1996a). This implies
an exponential dependence of vp on the force Fd by which the polymer
pushes against the obstacle,

vp(l, x) = vmax
p exp [−δ · Fd(l, x)/kBT ] . (5.3)

Here, vmax
p ≈ 500 nm s−1 (Mogilner and Oster, 1996a) is the free polymer-

ization velocity. For the entropic force Fd we use the results obtained in
Ref. Gholami et al. (2006) for d = 2, 3 spatial dimensions, where we take
the accepted value of `p ≈ 15 µm (LeGoff et al., 2002; Ott et al., 1993) for
the persistence length of F-actin.

The dynamics of the distance x between grafted end of the filament and
the obstacle interface (see Fig. 5.1) is given by the difference of the average
vg and the velocity of the obstacle

∂tx = − 1

N

∫ ∞

0

dl vg(l) [Na(l, t) +Nd(l, t)] (5.4)

+
1

η

∫ ∞

0

dl [Na(l, t) Fa(l, x) +Nd(l, t) Fd(l, x)] ,

where η is an effective friction coefficient of the obstacle. The force Fa(l, x)
acting on the obstacle interface results from the compliance of the filaments
attached to it by some linker protein complex, which we model as springs
with spring constant kl and zero equilibrium length. This complex has a
nonlinear force-extension relation which we approximate by a piece-wise
linear function; for details see the supplementary material. Let R‖ ≈ l[1−
l(d − 1)/4`p] be the equilibrium length of the filament. Then, the elastic
response of filaments experiencing small compressional forces (x ≤ R‖) is
approximated by a spring constant k‖ = 12kBT `2p/(d − 1)l4 (Kroy and
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Frey, 1996). For small pulling forces (x ≥ R‖), the linker-filament complex
acts like a spring with an effective constant keff = klk‖/(kl + k‖). In the
strong force regime, the force-extension relation of the filament is highly
nonlinear and diverges close to full stretching (Marko and Siggia, 1995).
Therefore, only the linker will stretch out. The complete force-extension
relation is captured by

Fa =















−k‖(x−R‖) , x ≤ R‖ ,

−keff(x−R‖) , R‖ < x < l ,

−kl(x− l) − keff(l −R‖) , x ≥ l .

(5.5)

Finally, we specify the force-dependence of the detachment rate by

kd = k0
d exp [−δ · Fa(l, x)/kBT ] . (5.6)

Here, k0
d ≈ 0.5 s−1 (Mogilner and Oster, 2003) is the detachment rate in

the absence of forces and we have followed Ref. Evans and Ritchie (1999).

5.3 Monodisperse distribution and set of ODEs

Eq. (5.1a) has a singularity at vp(ls) = vg(ls)ls/x since the coefficient of
the derivative of Nd with respect to l is zero at ls. To illustrate the key
physical features at that singularity, we start with the simple equation
∂tNd − ∂l[vg(l)l/x − vp(l, x)]Nd = 0 with x kept constant. Then those
parts of the distribution of Nd with l < ls will grow and catch up with
ls since vg(l)l/x − vp(l, x) is positive there, while the parts with l > ls
will shorten towards ls. As a consequence the whole distribution will be-
come concentrated at ls. To quantify this heuristic argument we expand
vg(l)l/x − vp(l, x) up to linear order around ls like v1(l − ls) and use the
method of characteristics to solve the equation. Starting initially with a
Gaussian distribution we obtain Nd(l, t) = c(t) exp[−(l− l̄(t))2/w(t)2] with
c(t) = c0 exp(v1t), l̄(t) = ls + (l̄0 − ls) exp(−v1t) and w(t) = w0 exp(−v1t).
This shows that Nd evolves to a monodisperse distribution which is lo-
calized around ls. Its width decreases exponentially with time while its
height grows exponentially. The time scale for this contraction is given by
[∂l(vgl/x− vp)]

−1 (see Fig. 5.2).

Since the same kind of singularity also occurs in the full set of dynamic
equations, Eqs. (5.1), we may readily infer that Na and Nd evolve into
delta-functions with that dynamics. This is well supported by simulations,
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Figure 5.2 The width of the initial Gaussian distribution of detached filaments
decreases exponentially with time and the peak of the distribution grows and
localizes around ls. In the complete system, ls is close to η since vp drops from
vmax

p to almost 0 in a narrow range around l = η.

and allows us to continue with the ansatz

Nd(l, t) = nd(t) δ(l − ld(t)) , (5.7a)

Na(l, t) = na(t) δ(l − la(t)) . (5.7b)

It defines the dynamic variables nd(t), ld(t), na(t) and la(t). Upon inserting
Eqs. (5.7) into Eqs. (5.1) and Eq. (5.4), we obtain the following set of
ordinary differential equations

∂tld(t) = vp(ld, x) −
ld
x
vg(ld) + kd

na

nd
(la − ld) , (5.8a)

∂tla(t) = − la
x
vg(la) + ka

nd

na
(ld − la) , (5.8b)

∂tna(t) = −kd(la, x) na(t) + ka nd(t) , (5.8c)

∂tx(t) =
1

η
[na(t) Fa(la, x) + nd(t) Fd(ld, x)]

− 1

N
[vg(la) na(t) + vg(ld) nd(t)] , (5.8d)

where nd(t) = N −na(t) since we keep the total number of filaments fixed.
The values of many parameters in the dynamics can be estimated using

known properties of actin filaments. We choose the linker spring constant
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Figure 5.3 Phase diagram of Eqs. (5.8a) - 5.8d outlining stationary and oscil-
latory regimes with η = 10−3 pN s nm−1 for (a-c) and (a) d = 2, ϑ = 0 , (b)
d = 2, ϑ = π/4, (c) d = 3, ϑ = 0 and (d) d = 3, ϑ = 0, η = 10−5 pN s nm−1.
l̄=100 nm, all other parameter values are specified in the text.

kl ≈ 1 pN nm−1 (Mogilner and Oster, 2003) and assumeN = 200 (Mogilner
and Oster, 2003) filaments to be crowded behind the obstacle. A realistic
value of the drag coefficient η is 10−3 pN s nm−1 but results did not change
qualitatively for a range from 10−5 pN s nm−1 to 1 pN s nm−1.

We have numerically solved Eqs. (5.8) in both d = 2 and d = 3 di-
mensions, and found the dynamic regimes shown in Fig. 5.3: stationary

states and oscillations. The existence of an oscillatory regime is very ro-
bust against changes of parameters within reasonable limits including the
spatial dimension. We checked robustness against changes in the param-
eter values for the number of polymers N , l̄ (see Eq. (5.2)), kl, v

max
p and

k0
d, in addition to the examples shown in Fig. 5.3. In general, we find that

oscillations occur for vmax
g . 500 nm s−1 and within a range of values for

ka. Note that the oscillatory region in parameter space depends on the ori-
entation ϑ of filaments with respect to the obstacle surface, i.e. oscillating
and non-oscillating sub-populations of filaments may coexist in the same
network.

Oscillations appear with finite amplitude and period at the lower bound-
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Figure 5.4 x , la , ld (in nm) and na as a function of time, as obtained from
a numerical solutions of Eqs. (5.8a - 5.8d) with vmax

g = 300 nm s−1 and (a)
ka = 0.143 s−1 (b) ka = 3.49 s−1. d = 3, l̄=100 nm in both panels.

ary of the oscillatory region; compare the example shown in Fig. 5.4a. The
stationary state changes stability slightly inside the oscillatory regime and
oscillations set in with a finite period. That is compatible with oscillations
appearing by a saddle node bifurcation of limit cycles. The upper boundary
of the oscillatory region is determined by a Hopf bifurcation. An example
of an oscillation close to that bifurcation is shown in Fig. 5.4b.

We start with the description of oscillations in the phase with vg > vp,
i.e., decreasing lengths x, la and ld; see Fig. 5.4. Then the magnitude
of pulling and pushing forces increases due to their length-dependence.
When the pushing force becomes too strong, an avalanche-like detachment
of attached filaments is triggered and the obstacle jerks forward; compare
the steep rise in ld, la and x shown in Fig. 5.4. That causes a just as sudden
drop of the pushing force. With low pushing force now, polymerization
accelerates and increases the length of detached filaments. The restoring
force of attached filaments is weak in this phase due to their small number.
Hence, despite of not so strong pushing forces, the obstacle moves forward.
In the meantime, some detached filaments attach to the surface such that
the average length and number of attached filaments increases as well.
When the detached filaments are long enough to notice the presence of
the obstacle interface, they start to buckle. This, in turn, increases the
pushing force and slows down the polymerization velocity. Therefore, the
graft velocity now exceeds the polymerization velocity and the average
lengths of attached and detached filaments start to decrease again and the
cycle starts anew. The period of oscillations is dependent on the parameter
values. It reduces from 240 s in Fig. 5.4a to 13 s in Fig. 5.4b as ka increases
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from 0.143 s−1 to 3.49 s−1 at vmax
g = 300 nm s−1.

The oscillations in x correspond to the saltatory motion of the obstacle
in the lab frame and the oscillations of its velocity since vg stays essentially
constant. An illustration is shown in Fig. 5.5 for a given set of parameters
which leads to oscillations with periods of the order of 100 s and velocity
of the order of 0.7 µm s−1. This is in good agreement with the results
of experiments on oscillatory Listeria propulsion (Lasa et al., 1997). The
period of velocity oscillations with beads propelled by actin polymeriza-
tion differs from those of Listeria by one order of magnitude (8 − 15 min
Bernheim-Groswasser et al. (2005)). Periods of that length can be obtained
within our model upon using values for ka close to the lower boundary of
the oscillatory regime.
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Figure 5.5 Velocity and displacement of the obstacle as a function of time with
(a) ka = 0.9 s−1, (b) ka = 1 s−1. vmax

p = 750 nm s−1, vmax
g = 75 nm s−1,

k0
d = 0.1 s−1, l̄=100 nm η = 10−3 pN s nm−1 and d = 3 in both panels.

We have also studied the system when the network is oriented at an angle
ϑ = π/4. In this case, the spring constant of the attached filaments parallel
to n̂ for d = 2 reads k−1

‖ (ϑ) = 4`2p[
ε
2+e−ε/2−1+cos2ϑ( 1

4+ 1
12e−2ε− 1

3e−ε/2)−
cos2 ϑ(e−ε/2 − 1)2]/kBT , where ε = l/`p and R‖(ϑ) = l(1 − l/4`p) cosϑ
(Kroy and Frey, 1996). For the pushing force of a filament grafted at
ϑ = π/4, we use the results of the factorization approximation given in
Ref. Gholami et al. (2006), which is well valid for a stiff filament like actin.
A numerical solution of Eqs. (5.8a- 5.8d) results in the phase diagram shown
in Fig. 5.3b with the adapted forms of Fd and Fa. The main effect is that
one needs higher values for the attachment rates and lower values for vg to
obtain oscillations.
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5.4 Summary

In summary, we have presented a simple and generic theoretical description
of oscillations arising from the interplay of polymerization driven pushing
forces and pulling forces due to binding of actin filaments to the obstacle.
The physical mechanism for such oscillations relies on the load-dependence
of the detachment rate and the polymerization velocity, mechanical restor-
ing forces and eventually also on the cross-linkage and/or entanglement
of the filament network. The oscillations are very robust with respect to
changes in various parameters, i.e. are generic in this model. Therefore,
complex biochemical regulatory systems supplementing the core process
described here may rather stabilize motion and suppress oscillations than
generate them.

Oscillations of the velocity were observed during propulsion of pathogens
by actin polymerization. There, the core mechanism described here is em-
bedded into a more complex control of polymerization, which e.g. also
comprises nucleation of new filaments and capping of existing ones. Hence,
the study presented here can not be expected to fully capture all features
of such processes. Our results still agree well with respect to velocity spike
amplitudes and periods in Listeria experiments reported in Refs. Lasa et al.

(1997); Gerbal et al. (2000a). The velocity in between spikes appears to
be smaller in experiments than in our simulations. This may be accounted
for in our model by including capping of filaments upon dissociation from
the obstacle. Periods may also become longer when capping and nucle-
ation were included since it would take longer to restore the pushing force
after the avalanche like rupture of attached filaments. Altogether, qual-
itative and quantitative comparison with experiments suggests that our
model may be a promising candidate for a robust mechanism of velocity
oscillations in actin-based bacteria propulsion.



6 Summary

Spatially controlled polymerization of actin is at the origin of cell motility
and is responsible for the formation of cellular protrusions like lamellipodia.
The pathogens Listeria monocytogenes and Shigella flexneri, move inside
the infected cells by riding on an actin tail. The actin tail is formed from
highly crosslinked polymerizing actin filaments, which undergo cycles of
attachment and detachment to and from the surface of bacteria.

In this thesis, we formulated a simple theoretical model of actin-based
motility. The physical mechanism for our model is based on the load-
dependent detachment rate, the load-dependent polymerization velocity,
the restoring force of attached filaments, the pushing force of detached fila-
ments and finally on the cross-linkage and/or entanglement of the filament
network. We showed that attachment and detachment of filaments to the
obstacle, as well as polymerization and cross-linking of the filaments lead to
spontaneous oscillations in obstacle velocity. The velocity spike amplitudes
and periods given by our model are in good agreement with those observed
experimentally in Listeria. In this model, elasticity and curvature of the
obstacle is not included. Future modelling will yield insight into the role
of curvature and elasticity in the actin-based motility.

As an important prerequisite for this model, we used analytical calcula-
tions as well as extensive Monte Carlo (MC) simulations to investigate the
pushing force of detached filaments. The analysis starts with calculations
of the entropic force exerted by a grafted semiflexible polymer on a rigid
wall. The pushing force, which is purely entropic in origin, depends on the
polymer’s contour length, persistence length, orientation and eventually on
the distance of the grafting point from the rigid wall. We checked the va-
lidity range of our analytical results by performing extensive Monte Carlo
simulations. This was done for stiff, semiflexible and flexible filaments. In
this analysis, the obstacle is always assumed to be a rigid wall. In the
real experimental situations, the obstacle (such as membrane) is not rigid
and performs thermal fluctuations. Further analytical calculations and MC
simulations are necessary to include the elasticity of the obstacle

ActA coated beads are used widely in in vitro experiments to study
actin-based motility. To investigate the effect of the obstacle curvature
on entropic forces, we calculated the total pushing force generated by a
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homogeneous actin network on a rigid sphere. Our analysis clearly shows
that, the obstacle parameters (like the radius of the sphere) and network
properties (such as the orientation of the network) have a direct effect on
the magnitude and direction of the total pushing force. These calculations
are done for a static system: a constant number of filaments (all with the
same contour length) push against a sphere located at a given distance.
Attachment and detachment of filaments to and from the sphere, polymer-
ization and crosslinking of filaments, are dynamic processes which have to
be included in future modelling.

In the cell cytoskeleton, which is a fiber network of biopolymers, thermal
fluctuations of filaments are highly restricted due to the presence of the
other filaments. This confinement increases the free energy of each single
fluctuating polymer, resulting in an average repulsive force which is entropic
in origin. Chapter 4 of this thesis is dedicated to the study of entropic
forces between two parallel and perpendicular polymers. Our analytical
results, which are complemented by Monte Carlo simulations, clearly show
the presence of steric “Helfrich repulsion” between two parallel polymers
at short distances.
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A Monte Carlo method

Using standard Monte Carlo methods, we have studied the statistical me-
chanics of grafted polymers with arbitrary stiffness. In the intermediate
values of stiffness (semiflexible polymers), analytical results are difficult to
obtain, hence, computer simulations become crucial

The polymer model consists of a chain of N identical segments. The first
segment of the filament is assumed to be clamped, i.e., the orientation of
its tangent vector is held fixed along a direction, named the z axis. The
last segment is left free to choose any possible orientation. The way the
Metropolis algorithm implemented can be described by a simple recipe:

1. Choose an initial configuration randomly in the proximity of the full
stretching condition, thus ensuring a fast convergence to equilibrium,

2. Generate a new configuration by changing orientation of the segment
i (by amount ∆θ) and parallel translation of the segments i+1, ..., N ,

3. Calculate the change in energy ∆E = Enew −Eold using the discrete
Hamiltonian Eq. 1.4,

4. Generate a random number r such that 0 < r < 1,

5. If r < exp(−∆E/kBT ), accept the new configuration,

6. Choose another segment and change its orientation and go to 3.

We adjust ∆θ such that to have almost 50 percent acceptance rate. Ef-
fects resulting from self-avoidance are not consider, but we notice that
configurations where the chain folds back onto itself are strongly energeti-
cally suppressed for sufficiently stiff polymers. Results ceased to depend on
the number of segments for N = 50. On the order of 106 Monte Carlo steps
per segment were preformed and at each step the position of the tip was
recorded. Histogram of the tip position is a measure of probability distri-
bution of the free fluctuating end, P‖(z). In the MC simulations to study
interaction between a stiff polymer and a point barrier, we also record the
position of the segment at the middle of filament.
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To study the interaction between a stiff polymer and a rigid wall by
MC simulations (Sec. 4.2), another step needs to be added to the above
algorithm (after step 2):

2′. If the new configuration crosses the rigid wall, then go to step 2.



B Euler buckling instability

Consider a rigid rod with contour length L and bending rigidity κ which is
under exertion of an axial force f in −ŷ direction (Fig. B.1). The question
is: how does the end-to-end distance of the beam changes as a function of
f .

���
���
���

	�	
	�	
	�	

PSfrag replacements f

x̂

ŷ

θ0

Figure B.1 A beam under exertion of an axial force f .

The boundary conditions for this problem are θ = 0 for l = 0 and θ′ = 0
for l = L. Then (Landau and Lifshitz, 1959)

l =

√

κ

2f

∫ θ0

0

dθ
√

(cos θ − cos θ0)
, (B.1)

where θ0 is determined by the equation l(θ0) = L. For x and y we obtain

x =

√

2κ

f
[
√

1 − cos θ0 −
√

cos θ − cos θ0],

y =

√

κ

2f

∫ θ

0

cos θ dθ
√

(cos θ − cos θ0)
. (B.2)

For a small deflection, θ0 � 1, and we can write

L ∼=
√

κ/f

∫ θ0

0

dθ
√

(θ20 − θ2)
=
π

2

√

κ/f, (B.3)
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i.e. θ0 does not appear. This shows that, the solution in problem exists
only for f > fc = π2κ/4L2, i.e. when the rectilinear shape ceases to be
stable. For f > fc, f as a function of (L − yL)/L has been presented in
Fig. B.2.

Fig. B.3 shows entropic force exerted by a grafted semiflexible polymer
on a rigid wall in 3d as well as corresponding mechanical limits. As we see,
entropic forces for stiff filaments (small ε) approach to mechanical limits,
as wall comes closer.
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Figure B.3 Mechanical limits have been presented together with entropic forces
generated by a grafted semiflexible polymer on a rigid wall. Entropic forces for
stiff filaments (small ε) approach mechanical limits as wall comes closer (L‖ = Lε).



C Laplace and Jacobi

transformations

C.1 Inverse Laplace transform

In this appendix, we collect our calculations of the inverse Laplace trans-
form of the moment generating functions. This will give as two sets of
series representations, which show good convergence properties either close
to full stretching or for strong compression of the filament.

C.1.1 Series representation of the 3d tip distribution

function for large stored length

Starting from the moment generating function P‖(f), one can calculate the
distribution function P‖(z) by an inverse Laplace, i.e. an integral along the
imaginary axis,

P‖(z) =

∫ +i∞

−i∞

df

2πi
ef(L−z) P‖(f) . (C.1)

Since the moment generating function

P‖(f) =

∞
∏

k=1

(

1 +
4fL2

`p(2k − 1)2π2

)−1

(C.2)

has poles at fk = −λ2
k`p/L

2 with k = 1, 2, 3, ... only along the negative real
axis, standard residuum calculus gives

P‖(f) =
∞
∑

k=1

e−(L−z) λ2
k `p/L2 ∏

l6=k

(

1 − (2k − 1)2

(2l− 1)2

)−1

(
`pλ

2
k

L2
) (C.3)
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Using
∏∞

k=1

(

1 − x2

(2k−1)2

)

= cos
(

π
2x
)

(Abramowitz and Stegun, 1970), the

product term can be written as

∏

l6=k

(

1 − (2k − 1)2

(2l − 1)2

)−1

=

lim
k′→k

(

1 − (2k′ − 1)2

(2k − 1)2

)

∏

l

(

1 − (2k′ − 1)2

(2l − 1)2

)−1

=

lim
k′→k

(

1 − (2k′ − 1)2

(2k − 1)2

)

cos−1
(π

2
(2k′ − 1)

)

=

2
(−1)k+1

π

2

2k − 1
= 2(−1)k+1 1

λk
. (C.4)

Hence we find

P‖(z) = 2L−1
‖

∞
∑

k=1

(−1)k+1λk exp
[

−λ2
k(L− z)/L‖

]

(C.5)

with the characteristic longitudinal length scale L‖ = L2/`p.

C.1.2 Series representation for the tip distribution function

close to full stretching: general d

We begin the analysis with the two-dimensional case, where

P‖(f) =

∞
∏

k=1

(

1 +
fL‖

λ2
k

)−1/2

=

√

1

cosh
√

fL‖

. (C.6)

For the derivation of our first series representation, we start from the prod-
uct formula for the moment generating function. In this representation,
one has branch cuts on the negative real axis at f̃ = fL‖ = −λ2

k for k ∈ N.
We now deform the contour in the complex plane such that we enclose the
negative real axis. Then

P̃‖(ρ̃) =

∫ +i∞

−i∞

df̃

2πi
ef̃ ρ̃ P̃‖(f̃)

=

∫ 0

−∞

df̃

2πi
ef̃ ρ̃ P̃‖(f̃ − iε) +

∫ −∞

0

df̃

2πi
ef̃ ρ̃ P̃‖(f̃ + iε)

=

∫ ∞

0

df̃

2πi
e−f̃ ρ̃

[

P̃‖(−f̃ − iε) − P̃‖(−f̃ + iε)
]

(C.7)
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where ε→ 0. To proceed, we need to evaluate the product formula on the
negative real axis. We find for x ∈ [2k + 1, 2k + 3]π

2

lim
ε→0

∞
∏

l=1

√

1 − x2 ∓ iε

λ2
l

= (∓i)k 1
√

| cosx|
(C.8)

Upon substituting y2 = f̃ , this finally results in the series expansion

P̃‖(ρ̃) =
2

π

∞
∑

n=0

(−1)n

∫ λ2n+2

λ2n+1

dy
y e−y2ρ̃

√

| cos y|
. (C.9)

For large values of ρ̃, corresponding to a significant compression of the
polymer, the integral is dominated by the contribution from the interval
[π/2, 3π/2], such that the leading factor will be proportional to exp(−π2ρ̃/4).

In order to evaluate P̃‖(ρ̃) further, we may average ye−y2ρ̃ over the interval
and approximate the integral as

∫ λ2n+2

λ2n+1

y e−y2ρ̃dy
√

| cos y|
≈ 1

5

8
∑

m=4

λ2n+ m
4

e
−λ2

2n+ m
4

ρ̃
∫ 3π

2

π
2

dy
√

| cos y|
(C.10)

such that we finally get

P̃‖(ρ̃) ≈
1

N

∞
∑

n=0

(−1)n
8
∑

m=4

λ2n+ m
4

exp
[

−λ2
2n+ m

4
ρ̃
]

, (C.11)

where

N−1 =
2

5π

∫ 3π
2

π
2

dy
√

| cos y|
≈ 0.67 . (C.12)

Next we drive a series representation suitable for small values of ρ̃. We
use that for f ∈ R+ one has (Hansen, 1975)

P‖(f) =
1

√

cosh
√

fL‖

. (C.13)

With cosh(x) = 1
2 (ex + e−x) and the generalized binomial theorem, this

can be expanded to give

P‖(f) =
√

2

∞
∑

l=0

(

− 1
2

l

)

e−(2l+1/2)
√

fL‖ , (C.14)
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which is a holomorphic function on C\R−. Hence by the theorem of identity
from complex calculus this formula remains valid ∀f ∈ C\R−. Substituting
y =

√

fL‖ transforms Eq. (C.1) to

P̃‖(ρ̃) =

∫ i∞+ε

−i∞+ε

dy

πi
ey2ρ̃ y P̃‖(y

2) . (C.15)

Inserting the series representation Eq. (C.14) and using the integral repre-
sentation

D1(z) =
√

2πe
z2

4

∫ i∞+ε

−i∞+ε

ds

2πi
s exp

[

−zs+
s2

2

]

(C.16)

for the parabolic cylinder function (Abramowitz and Stegun, 1970) as well
as

(

− 1
2

l

)

= (−1)l (2l − 1)!!

2ll!
, (C.17)

where n!! = n(n− 2)(n− 4) . . . yields

P̃‖(ρ̃) =
1√
πρ̃

∞
∑

l=0

(−1)l (2l− 1)!!

2ll!

× exp

[

− (l + 1
4 )2

2ρ̃

]

D1

[

2l+ 1
2√

2ρ̃

]

. (C.18)

With D1(x) = xe−x2/4 Eq. (C.18) becomes Eq. (2.50).

Finally, all the calculations are easily generalized to general spatial di-
mensions d. One finds the series representation

P̃‖(ρ̃) = 2d/2 1√
2π

∞
∑

l=0

(

− 1
2 (d− 1)

l

)

× l + 1
4 (d− 1)

ρ̃3/2
exp

[

− (l+ d−1
4 )2

ρ̃

]

(C.19)

which is the fast converging for small ρ̃.
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C.2 Saddle point approximation

Starting from Eq. (C.1) and introducing f̃ = fL‖ gives

P‖(z) =

∫ +i∞

−i∞

df

2πi
efL‖ρ̃ cosh−1

√

fL‖

= L−1
‖

∫ +i∞

−i∞

df̃

2πi

2ef̃ ρ̃

e
√

f̃ + e−
√

f̃
. (C.20)

We are interested to the asymptotic result of the integral close to full
stretching ρ̃→ 0. Upon substituting f̃ = ξ/ρ̃2 one finds

P‖(z) =
2

ρ̃2L‖

∫ +i∞

−i∞

dξ
exp[f(ξ)/ρ̃]

1 + exp[−2
√
ξ/ρ̃]

(C.21)

where f(ξ) = ξ−√
ξ. Since the function f(ξ) has a global maximum at ξ0 =

0.25, the main contribution to the integral in the limit 1/ρ̃→ ∞ comes from
the integration along the curve of steepest descent which passes through ξ0.
We need to find this curve such that =[f(ξ)] = constant = =[f(ξ0)] = 0.
We write

√
ξ =

√
a(1 + is) in terms of the curve parameter s. Then the

condition =[f(ξ0)] = 0 gives a = 1/4, and the curve of steepest descent is
given in terms of <[ξ] = 1

4 (1 − s2) and =[ξ] = 2as, which is a parabola
parametrized by s. The saddle point approximation amounts to a contour
integral along this parabola, where f(ξ) = −(1 + s2)/4, such that

P‖(z) =
1

L‖ρ̃2

∫ ∞

−∞

ds

2π
(1 + is)

e−(1+s2)/4ρ̃

1 + e−(1+is)/ρ̃
. (C.22)

To the leading order in ρ̃ we get

P‖(z) =
exp[−1/4ρ̃]

ρ̃2L‖

∫ +∞

−∞

ds

2π
exp

[−s2
4ρ̃

]

=
1

√

πρ̃3L‖

exp

[

− 1

4ρ̃

]

(C.23)

In the two dimensional case (2d), using the same strategy and substitut-
ing f̃ = ξ/ρ̃4/3 gives

P‖(z) =
1

√

8πρ̃3L‖

exp

[

− 1

16ρ̃

]

. (C.24)
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C.3 Jacobi transformation of the restricted

partition sum

To unclutter the formulas in this section, we use the generic argument x
with x ≡ η‖. Z‖(x) can be written as

Z̃‖(x) = 2

∫ ∞

0

dy

∞
∑

k=−∞

(−1)k+1δ(y − λk)
1

y
e−`py2x

= 2

∫ ∞

0

dy δ̃(y)
1

y
e−`py2x (C.25)

where we defined

δ̃(y) :=

∞
∑

k=−∞

(−1)k+1δ(λk − y) . (C.26)

Since δ̃(y) is odd in y and has periodicity 2π, we can expand it into a
Fourier-sine-series:

δ̃(y) =

∞
∑

l=1

dl sin(ly) (C.27)

where

dl =
2

π

∫ π

0

dy δ̃(y) sin(ly)

=
2

π
sin(lπ/2)

=
2

π

{

0 if l is even

(−1)
l−1
2 if l is odd

. (C.28)

This results in

δ̃(y) =
2

π

∞
∑

l=1

(−1)l+1 sin[(2l − 1)y] . (C.29)

Inserting this into Eq. (C.25) we find for Z̃‖(x)

Z̃‖(x) =
4

π

∞
∑

l=1

(−1)l+1

∫ ∞

0

dy y−1e−y2x sin[(2l − 1)y]

. (C.30)
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The integral evaluates to (Abramowitz and Stegun, 1970) (with µ = 0,
β = x, γ = 2l− 1)

∫ ∞

0

dy y−1e−y2x sin[(2l − 1)y]

=
(2l − 1)e−(2l−1)2/4x

2
√
x

√
π1F1

(

1;
3

2
;
(2l − 1)2

4x

)

. (C.31)

As the confluent hypergeometric function 1F1(α; γ; z) ≡ Φ(α, γ; z) has the
property Φ(α; γ; z) = ezΦ(γ−α, γ;−z) (Abramowitz and Stegun, 1970) we
find with (Abramowitz and Stegun, 1970)

Φ

(

1,
3

2
; z

)

= ezΦ

(

1

2
,
3

2
;−z

)

=

√
πez

2
√
z

erf
√
z . (C.32)

Our result for Z̃‖(x) is thus

Z̃‖(x) = 2

∞
∑

l=1

(−1)l+1erf
2l− 1

2
√
x

(C.33)

This still has problems for x → 0 where erf[(2l − 1)/2
√
x] → 1. We can,

however rewrite it to

Z̃‖(x) = 2

∞
∑

l=1

(−1)l+1 + 2

∞
∑

l=1

(−1)lerfc
2l − 1

2
√
x
. (C.34)

All convergence problems are now isolated in the first sum. As we know
that Z̃‖(0) = 1 (compare Eq. (2.36)) we assign 2

∑∞
l=1(−1)l+1 = 1 to finally

find

Z̃‖(x) = 1 + 2

∞
∑

l=1

(−1)lerfc
2l − 1

2
√
x
. (C.35)

C.4 Graft-angle-dependent force

We evaluate the general expression Eq. (2.60) using the representation

Θ(x) = lim
ε→0+

∫

dq

2πi

eiqx

q − iε
(C.36)
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of the step function Θ(x). With Eq. (2.73) we find

Z(ζ, ϑ) =

∫

dq

2πi

exp
[

iq ζ/ cos ϑ−L
L‖

]

q − iε
×

∫

dx̃dη̃eiqη̃e−iq(L⊥/L‖) tan ϑx̃P̃ (x̃, η̃)

=

∫

dq

2πi

exp
[

iq ζ/ cos ϑ−L
L‖

]

q − iε
ad(−iq)

exp
[

−(qL⊥L
−1
‖ tanϑ)23b(−iq)/2

]

= Z̃
(

L− ζ/ cosϑ

L‖
,
L⊥

L‖
tanϑ

)

(C.37)

where

Z̃(η‖, µ) = −
∫

dq

2πi

eiq

q + iε
ad(iq)e

− 3µ2q2b(iq)
2 . (C.38)

Using the Dirac formula

1

q + iε
= P 1

q
− iπδ(q) , (C.39)

a3(0) = 1, 3b(0) = 1 and the symmetry properties of a3(iq) and b(iq), we
find

Z̃(η‖, µ) =
1

2
− 2

∫ ∞

0

dq

2π

1

q
=
(

eiqη‖a3(iq)e
− 1

2 µ2q23b(iq)
)

. (C.40)

The notation P denoting the principal value has been dropped as the
integrand is regular at q = 0. For large µ and/or ζ, Z̃(η‖, µ) vanishes. This
means that the integral in Eq. (2.85) must approach 1/2. Subtracting the
result of the numerically evaluating the non-vanishing integral from 1/2
strongly amplifies the unavoidable round-off error. We therefore rewrite
Eq. (C.40) to

Z̃(η‖, µ) =
1

2
erfc

η‖√
2µ

−2

∫ ∞

0

dq

2π

1

q
=
[

eiqη‖

(

a3(iq)e
− 1

2 µ2q23b(iq) − e−
µ2q2

2

)]

(C.41)
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where we used the identity

1

2
−P

∫ ∞

−∞

dq

2πi

eiqη‖

q
e−

q2µ2

2 =
1

2
erfc

η‖√
2µ

. (C.42)

As =q2b(iq) ∼ −q for large |q|, it is again advantageous to split the
integrals at some q0 and, for q > q0, to rewrite the imaginary part appearing
in the integrand of Eq. (C.41) to

=
[

eiq(η‖+3µ2/2)

(

a3(iq)e
− 3

2 µ2(q2b(iq)+iq) − e−
µ2q2+3iqµ2

2

)]

(C.43)

and the real part appearing in Eq. (2.89) to

<
(

eiq(η‖+3µ2/2)a3(iq)e
− 3

2 µ2(q2b(iq)+iq)
)

. (C.44)

In both cases, the integrand is holomorphic for =q < 0. Hence the
integrals vanish if δη‖ := η‖ + 3µ2/2 < 0 which we already understood in
the simple geometric picture of the problem.

Both integrals now vanish in the limit of large η‖ and have well-behaved

integrands on [0,∞]. The precision with which f̃(η‖, µ) can be calculated
is, however, still limited by the relative error in evaluating the integrals.
This relative error grows quickly with increasing η‖ limiting the range of

η‖ over which f̃(η‖, µ) can be calculated reliably (note that the first term
of Eq. (C.41) vanishes with increasing η‖ as well).
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D Force-extension relation of

attached filaments

In this appendix, we discuss the force-extension relation of a filament which
is attached to a rigid wall via a linker.

First, consider a semiflexible polymer with contour length L and persis-
tence length lp which is grafted in one end in the ẑ direction. The other
free fluctuating end is pulled by an external force f = fẑ (Fig. 1.11). The
force-extension curve of such a filament is presented in Fig. 1.12. In order
to have a closed form of the force-extension relation (especially for com-
pressive forces), we approximate the integral in Eq. (2.20). For compressive
forces, z → 0 or ρ̃ → L/L‖ holds. As a result, the part of the probability
distribution with large ρ̃ is dominant. This means that we can approximate
P‖(ρ̃) by π exp(−π2ρ̃/4). Now, the integral in Eq. (2.20) can be easily done
to obtain

< rz(L, f) >= L+
L (π2 + 4 f ′ε)

4π (1 − y)

[

−−16πε (1 − y)

(π2 + 4f ′ε)2
+

4π y

π2 + 4 f ′ε

]

(D.1)

in which f ′ = fL/kBT and y = exp(−f ′ − f ′
c) with f ′

c being the dimen-
sionless Euler buckling force (f ′

ckBT/L = π2κ/4L2).
A comparison of this approximation with the exact form is presented in

Fig. D.1 for different values of ε. Since ε << 1 in our case, the approxima-
tion is rather good for both pulling and pushing forces. We will use it for
the whole range of f .

Now, we consider the case that the filament is attached to a rigid wall
by a linker with spring constant kl (Fig. D.2). The aim is to calculate
the pulling force f as a function of z. It is obvious that when z > R‖,
z = rz(L, f) + rl holds (rl length of linker molecule). But for z ≤ R‖, the
linker does not play any role and z = rz(L, f) is valid. All of this leads to
the following non-linear equations for f as a function of z

z =

{

f/kl + rz(L, f) z ≥ R||

rz(l, f) z < R||

(D.2)

In the small force regime, the linker is a spring acting in series with the
attached filament with an effective spring constant keff = klk‖/(kl +k‖). In
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Figure D.1 Comparison of the exact result (green line) with approximation (red
line). The approximation works rather good for small values of ε and especially
for compressing forces.
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Figure D.2 A grafted semiflexible polymer is attached to a wall via a linker
with spring constant kl.
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the strong force regime, the effective spring constant of the system switches
to kl. The force-extension relation of the filament is highly nonlinear for
strong forces and the force diverges like 1/(L − rz(L))2 at full stretching
(see Eq. (1.10)). Since a finite external force can not stretch the filament
to its full contour length and beyond, mostly the linker will be extended.

We assume that the transition between the regimes happens at L∗ =
L− f∗/kl, in which f∗ is the solution of Eq. (D.2) at z = L. With the di-
mensionless variables φ = klL

2/kBT and ε = L/`p, f
∗ can be approximated

as

f∗L/kBT ≈ 2

3
ε−3

(

27φ2ε−2 − 8ε−6 + 3
√

3
√

27φ4ε−4 − 16φ2ε−8
)−1/3

+
1

6

(

27φ2ε− 8ε−1 + 3
√

3
√

27φ4ε2 − 16φ2ε−2
)1/3

− 1

3ε
(D.3)

L∗ is very close to L, so as an approximation we assume that the transition
of keff to kl happens at L. In the end, our linear approximation is

f(L, z) =















−k‖(z −R||) z ≤ R||

−keff(z −R||) R|| < z < L

−kl(z − L) − keff(L−R||) z ≥ L

(D.4)

The numerical solutions to Eqs. (D.2), as well as the linear approxima-
tions in Eq. (D.4) are presented in Fig. D.3 for different values of L.

Examples for the time course of forces during typical oscillations are
shown in Fig. D.4. Forces of attached filaments pull the obstacle back
most of the time, i.e. z > R‖ holds almost always.
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Figure D.3 Force exerted on the obstacle by a single polymer as a function of x
for different values of L. Parameters are `p = 15 µm, kl = 1 pN/nm, kBT = 4.1
pN nm, d = 3. The black curve is the force-extension curve calculated from
Eq. (D.2). The red, green and blue curves are the linear approximations from
Eq. (D.4) with slope k‖, keff and kl respectively.
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Figure D.4 Total pushing force (red) as well as total pulling force (green) with
N = 200 polymers as a function of time for vmax

g = 300 nm/s, vmax
p = 500 nm/s,

k0
d = 0.5 s−1 and (a) d=3, ka = 0.144 s−1, (b) d=3, ka = 3.46 s−1, (c) d=2,

ka = 0.3 s−1, (d) d=2, ka = 3.47 s−1, (e) d=2, ka = 0.186 s−1 (stationary) and
(f) d=3, ka = 0.1 s−1 (stationary). Forces are in pN and time is in seconds.
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