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1 Summary  

The development of an organism from the fertilized zygote to a 

multicellular organism is a unidirectional process. It occurs in a spatially and 

temporally tightly controlled fashion. To understand how the genetic information 

is interpreted and how the cellular identity is inherited, are major challenges 

towards the understanding of developmental processes. Epigenetic marks like 

histone modifications, changes of the protein composition binding to DNA or the 

remodeling of nucleosomes have been shown to be important for the 

establishment of tissue-specific transcription profiles.  

Chromatin immunoprecipitation (ChIP) is a method to investigate the 

association of proteins to specific genomic loci. In this study, I have established 

two protocols for ChIP analyses of Xenopus laevis embryos: the In Situ ChIP and 

the Douncer ChIP. In addition, I have generated several antibodies in 

collaboration with Dr. Elisabeth Kremmer (GSF München) for ChIP analyses, 

which were directed against the muscle determination factor MyoD and the 

Wnt/β-catenin signaling components Lef/Tcf transcription factors Lef1 and Tcf1.  

While optimizing of the ChIP protocols, I have analyzed successfully 

the binding of various transcription factors, chromatin remodeling enzymes and 

histone modifications on genomic loci of key developmental regulators. With the 

In Situ ChIP, I have shown that the serum response factor SRF interacts 

predominantly with the actively transcribed myoD gene. Together with other data, 

this result helps to define a specific role of SRF protein in the stable maintenance 

of myoD transcription, which is essential for proper muscle differentiation.  

With the Douncer ChIP protocol, a time course study has been 

performed in order to understand, when and which histone modification marks 

appear during muscle cell determination and differentiation on the myoD locus. 

The temporal and spatial distribution of the analyzed histone modification marks 

was correlated for the most part with the expected patterns. Furthermore, I have 

demonstrated that direct binding of the chromatin remodeler CHD4/Mi2-β to the 

5' part of the sip1 gene in gastrula stage embryos. This interaction represents a 

crucial regulatory module, which determines the position along the 

animal-vegetal axis of the embryo, where the border between the mesodermal 

and neuroectodermal germ layer will be formed. These examples represent on of 
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the very few successful ChIP applications for the endogenous proteins in young 

Xenopus embryos, and I hope that my protocols will turn out useful for future 

investigations of regulatory interactions in this vertebrate model organism. 
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2 Introduction 

2.1 The live cycle of the African clawed frog Xenopus 

laevis  

The African clawed frog Xenopus laevis has been one of the most 

favored model organisms for vertebrate experimental embryology over the past 

decades. Major insights into early embryogenesis like signaling events important 

for body axis determination or germlayer formation were obtained from studies 

with Xenopus (for review see (Heasman, 2006)).  

Regarding embryological studies the major advantage of Xenopus 

over other model organisms like the mouse is that the embryos develop 

extra-uterine. The super ovulation of the females can be triggered by hormone 

induction. A female lays from several hundred up to a few thousand eggs per 

day. Cohorts of eggs can be fertilized in vitro at the same time and thus offers the 

synchrony of clutch. This provides sufficient material to perform large-scale 

experiments. The embryonic development is rapid. It takes about two days from 

fertilization to the hatching tadpole. The embryos are relatively large with 1-2mm 

in diameter. Therefore, they are easy to manipulate, for example by mRNA 

injection. Furthermore, the embryos can be easily cultured in semi-sterile 

conditions without external growth factors.  

Figure 1 shows an overview of the Xenopus live cycle. After 

fertilization, twelve subsequent cleavage divisions take place. The specific 

feature of this cleavage phase is that the cells divide very rapidly every 30min. 

The cell cycle during this first phase consists of only S-phase and M-phase. 

Except for few loci, no transcription takes place until the so-called mid-blastula 

transition (MBT) at blastula stage (Niewkoop and Faber stage 8, NF8) five hours 

post fertilization (hpf). The embryos are staged according to the normal table by 

Niewkoop and Faber (Niewkoop and Faber, 1994). At MBT, the cell divisions 

decelerate to about 60-90min, and the cell cycle is separated into the four phases 

G1, S, G2 and M. During this stage of development, cells are already committed, 

but not yet determined to their future germ layer. Major cell rearrangements 

happen during the gastrulation, which starts at about 10hpf. Mesoderm and 

endoderm move inwards, and the basic bodyplan of the tadpole is established. At 
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about 15hpf, the neural tube folds up, which gives rise to the brain and the spinal 

cord. During those stages, also the organs are formed. But they develop a little 

later during organogenesis at 21hpf. The tadpole hatches at the age of about 

48hpf. After about 38 days, changes in the environment, such as nutrient levels, 

induce the secretion of thyroid hormone. This leads the metamorphosis, which 

results in effects like the tail destruction, lung enlargement and ossification of the 

skull. The frogs are sexual mature after about 2 years. This summary is in 

essence taken from books written by Niewkoop and Wolpert (Niewkoop and 

Faber, 1994; Wolpert et al., 1998).  

 

Figure 1: Life cycle of the African clawed frog Xenopus laevis  

The numbered stages refer to standardized stages of Xenopus development (Niewkoop 
and Faber, 1994). The figure was modified from (Wolpert et al., 1998). 

2.2 Determination signals and induction events in 

Xenopus laevis 

Developmental studies with Xenopus laevis and other amphibians 

such as newts have made major contributions into the understanding of induction 

and competence phenomena in vertebrates. In 1925, Hans Spemann and Hilde 

Mangold performed their pioneering transplantation experiment with newts, 

whereby they removed the dorsal lip of an early gastrula stage embryo and 
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transplanted it into the ventral side of a second early gastrula stage embryo. The 

donor explant then gave rise to a second body axis and Siamese twins formed, 

which were joined at their bellies. In 1938, Spemann named the dorsal lip the 

organizer – later called the Spemann organizer – because of its ability to induce 

and organize the body axis. This induction event is traditionally called the primary 

embryonic induction (for review see (Gilbert, 2006)). Induction generally refers to 

the change in fate of a group of cells in response to a signal from other cells. The 

existence of inductive, diffusible signal molecules was determined a few decades 

later by transfilter experiments, in which two tissues are separated via a filter to 

prevent direct cell-cell contact (Grobstein, 1953). In 1986, Horst Grunz and 

Lothar Tacke showed with this method that the mesoderm inducing activity of 

Xenopus laevis explants can cross a filter with a small pore size (Grunz and 

Tacke, 1986). Only two years later, Horst Grunz and colleagues as well as Igor 

Dawid and colleagues purified independently from each other the first secreted 

growth factor signaling molecule, a protein of the transforming growth factor 

signaling class β (TGFβ) (Grunz et al., 1988; Rosa et al., 1988). 

Besides the necessity of an inducing signal, also the competence of a 

cell to respond to this signal is important. Major contributions for the 

understanding of competence phenomena were again derived from studies 

performed with amphibians. Several groups showed that during development the 

responsiveness of cells from the ectodermal lineage to inductive signal gets lost 

(Engländer, 1962; Gebhardt and Nieuwkoop, 1964; Grunz, 1968; Grunz, 1969; 

Leikola, 1965; Toivonen, 1953). Furthermore, Horst Grunz explored that the 

competence of ectodermal tissue to respond to various stimuli depends on 

protein biosynthesis (Grunz H, 1970). In 1989, John Gurdon and colleagues 

demonstrated with a dissociation experiment that the competence of ectodermal 

cells to respond to mesoderm inducing signals gets lots over time on the level of 

single cells (Grainger and Gurdon, 1989). Moreover, Mark Servetnick and Robert 

Grainger showed with animal cap explants (see Figure-19) that the competence 

phases of a tissue depend exclusively on its age (Servetnick and Grainger, 

1991). 

Competence – the ability of cells to respond to an inducing signal – 

and induction – the change in behavior of a group of cells – are important 

mechanistic principles of the development from the totipotent zygote to the 
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multicellular organism. In the subsequent chapters, examples of inductive 

processes in Xenopus laevis will be introduced.   

2.2.1 Transcriptional regulation of the muscle determination factor 

MyoD  

A very early link between epigenetic modifications (see chapter 2.3), 

conversion of cell fate and skeletal muscle development was provided in 1982 by 

the observation that the treatment of mouse embryonic fibroblasts with the DNA 

methyltransferase inhibitor 5’-azacytidine converted them frequently into muscle 

cells (Taylor and Jones, 1982). This led to the cloning of the myoD gene (Davis et 

al., 1987). The basic helix-loop-helix transcription factor MyoD is one of the major 

determinants of skeletal muscle formation. The Xenopus homolog was cloned 

two years later (Hopwood et al., 1989). At the mid-blastula transition (MBT), 

which demarcates the onset of zygotic transcription, the Xenopus myoD gene is 

transiently expressed at low levels (Rupp and Weintraub, 1991). This basal gene 

expression is necessary for the — probably autocatalytic — upregulation of the 

expression in the preinvoluted mesoderm at the early gastrula stage (see mRNA 

staining in Figure-2) (Steinbach et al., 1998). It is important to note that in the 

case of myoD the induction occurs on an active rather than an inactive locus. 

Subsequently, during the neurula und the following tailbud stage, myoD 

expression is maintained in the paraxial mesoderm and in myocytes, respectively 

(Hopwood et al., 1989). The competence phase for the up-regulation of the myoD 

transcription occurs in a narrow time window of about 90min during the 

mesodermal competence phase (see Figure-2) (Steinbach et al., 1998). Somatic 

linker histones gradually replace the maternal linker histone B4 after MBT. The 

window of mesodermal and myogenic competence is terminated by this 

replacement at the end of the gastrulation (Steinbach et al., 1997). In mouse, the 

linker histones also play an important role in the repression of myogenic genes. 

The somatic linker histone H1b cooperates with the homeobox protein Msx1 in 

order to repress myoD transcription (Lee et al., 2004).   

Several growth factor signaling cascades liked sonic hedgehog (SHH), 

FGF, Wnt or TGFβ have been implicated to be important for the determination of 

the muscle lineage. Furthermore, also DNA hypomethylation and histone 

deacetylase (HDAC) activities have been shown to be involved in the induction of 

myoD (for review see (Rupp et al., 2002)). However, a direct link between these 
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pathways, the epigenetic phenomena and the myoD gene has not yet been 

established.  

 

 

Figure 2: Regulation of myoD transcription 

The figure describes the timing of the myoD induction and expression pattern. The upper 
pictures show the mRNA expression domains of myoD.  

 

To gain further insights into the complex regulation of myoD and to 

understand the specification of the myogenic lineage, the locus of Xenopus 

myoD was analyzed via restriction enzyme-mediated integration (REMI) 

transgenesis in our lab (Otto, 2000; Xiao, 2003) (see Figure 3). A construct with a 

Green Fluorescent Protein (GFP) insertion in the first exon was used for this 

approach. The GFP transgene was able to mimic the endogenous myoD 

expression domain. Analysis of several deletion mutants of the wild type 

construct mapped two important elements. The deletion mutant of -900bp to 

-700bp was not able to induce the transcription of the transgene and thus 

identified it as the induction enhancer. The deletion mutant from -1800 to 

-1600bp induced the transgene properly, but could not maintain its expression. 

Therefore, this region of the myoD locus was identified as the maintenance 

enhancer. Further fine-mapping of the induction enhancer via a linker scan 

approach discovered two regulatory units within the enhancer element: one 

responsible for the induction and one important for the repression of myoD. The 
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repressive element was also shown to be important for the correct timing of the 

induction (Xiao, 2003). Yet again, the nucleotide sequences of the inductive and 

repressive linker scan elements revealed no new direct link to any of the 

myogenic inducers mentioned above. 

 

Figure 3: MyoD promoter analysis by REMI-transgenesis 

The upper lane shows the endogenous mRNA expression domain of myoD. The other 
lanes show GFP mRNA expressions of the myoD reporter construct. The transgene with 
the whole locus is able to mimic the endogenous myoD expression domain. Deletion 
mutants devoid of either the induction or the maintenance enhancer are not able to 
induce or maintain the transgene expression. The figure was adapted from (Xiao, 2003). 

 

Within the maintenance enhancer, a serum response factor (SRF) 

binding site, but not adjacent Lef/Tcf or FAST binding sites was shown to be 

important for the maintenance of the myoD transcription. Mutations of this SRF 

site in the reporter gene construct led to the loss of the transgene in neurula 

stage embryos (Nentwich, 2003; Xiao, 2003) (for a sketch of the myoD locus see 

Figure 28).  

2.2.2 Canonical Wnt/β-catenin signaling during embryonic 

development 

The Wnt signaling pathway is among the most important inductive 

signaling cascades throughout embryonic development and adulthood. During 

embryogenesis, it is involved in processes like axis specification, patterning, 

organogenesis, limb formation, adipogenesis, angiogenesis and stem cell 

development. During adulthood, it is important for the stem cell maintenance for 
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example of hair follicles or the gut crypt. Furthermore, it is involved in many types 

of cancer and Alzheimer’s disease (Moon et al., 2002; Stark et al., 2007).  

The central signal-transmitting molecule is β-catenin (Figure 4). 

Besides its signaling function, it is also essential for the formation of cadherin 

junctions. Binding of the Wnt ligand to the frizzled receptors and its co-receptor 

Lrp5/6 blocks the destruction complex that contains, amongst other proteins, the 

glycogen synthase kinase 3 (GSK3) (Figure 9). As a consequence, β-catenin is 

not phosphorylated, which would otherwise target it to the proteasome. The 

stabilization of β-catenin allows its translocation into the nucleus, where it binds 

to transcription factors such as the T-cell factor (Tcf) or lymphocyte enhancer 

factor (Lef) and activates target gene expression (for review see e.g. (Wang and 

Wynshaw-Boris, 2004) or http://www.stanford.edu/~rnusse/wntwindow.html). 

 

 

Figure 4: Canonical Wnt/β-catenin signal transduction pathway 

The figure describes the signal transduction by inhibition of inhibitory molecules.  
 

During the early Xenopus embryogenesis, the canonical Wnt signaling 

cascade plays different roles during development. It is important for the 

establishment of the dorso-ventral axis during cleavage stages, for the patterning 

of the mesoderm during the gastrula and for the patterning of the neuroectoderm 
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(for review see (Heasman, 2006; Stern, 2005)). Wnt target genes, which are 

involved in the establishment of the dorso-ventral axis and the Spemann 

organizer, are the homeobox genes siamois (sia) (see Figure 5B), its homolog 

twin (xtwn) and nodal related 3 (xnr3) (Brannon et al., 1997; Brannon and 

Kimelman, 1996; Laurent et al., 1997; McKendry et al., 1997). The 

responsiveness of the target genes to Wnt signaling is time and space 

dependent. The Wnt-8 ligand is able to induce an ectopic axis by activating the 

organizer genes siamois and xnr3 (Christian et al., 1991; Smith and Harland, 

1992; Sokol et al., 1991). This induction is time dependent. Overexpression of 

Wnt8 later than MBT failed to induce siamois and xnr3, but interfered with the 

patterning of the neuroectoderm. Furthermore, an activated version of the Lef/Tcf 

transcription factor Tcf3 was also able to induce an ectopic secondary axis 

(Darken and Wilson, 2001). This suggests that the Lef/Tcf transcription factors 

regulate the responsiveness of their target genes and thereby also the 

competence phase of the axis induction. 

Most promoters of Wnt target genes comprise several Wnt response 

elements, which are bound by Lef/Tcf transcription factors. In the absence of Wnt 

signaling, the Lef/Tcf proteins are bound to their target sites in conjunction with 

Groucho-like co-repressors. Upon Wnt stimulation and β-catenin translocation 

into the nucleus, the Groucho-like co-repressors become displaced and β-catenin 

together with histone acetyltransferase p300/CBP (Hecht et al., 2000) and ATP-

dependent chromatin remodeling ATPase Brg1 (see chapter 2.4.2.1) binds to the 

Lef/Tcf proteins and thus activates gene transcription (for review see (van Noort 

and Clevers, 2002)). In Xenopus, it could be shown that Brg1 is important for the 

transcriptional activation of xnr3 and siamois (Singhal, 2005). The siamois 

promoter contains five Lef/Tcf binding sites, of which two have activating and 

three have repressive function. This demonstrates the complex regulation of the 

siamois gene expression by Lef/Tcf proteins (see Figure 5B) (Brannon et al., 

1997). 

In addition to its activating function, canonical Wnt signaling is also 

involved in the repression of genes. An example is the myogenic transcription 

factor myf5. Two distal Lef/Tcf binding sites are important to prevent the myf5 

expression during the gastrula stage at the Spemann organizer (Yang et al., 

2002), which has high levels of Wnt signaling (Schohl and Fagotto, 2002) (see 

Figure 5A).  
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Figure 5: Wnt/β-catenin target genes 

A) The bottom panel shows the myf5 promoter with two distal Lef/Tcf binding sites, a 
target gene that is negatively influenced by Wnt signaling. The top panel shows the 
endogenous myf5 mRNA expression pattern. B) shows the positively regulated siamois 
promoter with its five Lef/Tcf binding sites. The cartoon illustrates in red the siamois 
expression domain in the future Spemann organizer in the late blastula stage.  

 

The Xenopus laevis Lef/Tcf protein family consists of four members 

Tcf1, Lef1, Tcf3 and Tcf4 (see Figure 13). The Lef/Tcf genes have distinct, yet in 

part overlapping mRNA expression domains. Tcf1 and Tcf3 are maternally 

expressed (Kunz et al., 2004; Molenaar et al., 1998; Roel et al., 2003). Lef1 and 

Tcf4 are zygotically expressed from the early gastrula stage and from late 

neurula on in the brain anlage, respectively (Konig et al., 2000; Molenaar et al., 

1998).  

The Lef/Tcf protein family members possess a N-terminal β-catenin 

binding domain and a C-terminal DNA-binding HMG box. In addition, Tcf3 and 

Tcf4a possess a central motif that has repressive function (Pukrop et al., 2001). 

Furthermore, it could be shown that the individual Lef/Tcf protein family members 

have distinct roles in the transmission of the Wnt signal throughout development. 

Lef1 has activating function and is important for the patterning of the mesoderm 

after the onset of zygotic transcription (Roel et al., 2002). Tcf3 is required for the 

maternal Wnt signaling during axis specification. It has repressive function and 

prevents Wnt target gene expression on the future ventral side (Houston et al., 

2002; Roel et al., 2002). Furthermore, it is required for the induction of the 
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mesoderm (Liu et al., 2005). Tcf1 plays a dual role during the maternal Wnt 

signaling. Ventrally and laterally it prevents target gene activation, whereas 

dorsally it activates their expression (Standley et al., 2006). Tcf4 plays an 

important role in the patterning of the midbrain (Kunz et al., 2004). 

2.2.3 Distinct regulatory input of the SNF2-like chromatin remodeling 

ATPase CHD4 

Chromatin remodeling, SNF2 domain containing ATPases catalyze the 

alteration of nucleosome positions (see chapter 2.4.2). In 2004, our laboratory 

published the screening of 29 members of the SNF2 domain containing protein 

family for Xenopus laevis (Linder et al., 2004). Expression analyses of these 

proteins revealed that the family members are not ubiquitously expressed, but 

that they have stage and tissue-specific mRNA expression domains. The 

chromatin remodeling ATPase CHD4 was further analyzed by gain and loss of 

function studies in regard to their influence on specific marker genes (Linder et 

al., 2007). Loss of function experiments with CHD4 reduced the expression 

domain of the mesodermal marker gene Xenopus brachyury (Xbra) and 

expanded the expression domain of the neuroectoderm marker gene 

Smad-Interacting Protein 1 (sip1). Both genes demarcate the border between the 

mesoderm and the neuroectoderm. These borders are formed between the 

germlayers during the gastrulation. How the inducing signals are transformed into 

these sharp boundaries is still not solved in detail. The current knowledge 

suggests that the developmentally important genes receive a complex regulatory 

input. Xenopus brachyury (Xbra) is such a gene, which is expressed in response 

to Nodal/Smad2 and FGF/MAPK signaling. Xbra is induced shortly before 

gastrulation in the future mesoderm (for review see (Wardle and Smith, 2006)). 

The typical ring-like transcription domain is generated by activating signals 

combined with transcriptional repression in areas, where Xbra expression is not 

necessary (Latinkic et al., 1997; Lerchner et al., 2000). The Smad-Interacting 

Protein 1 (Sip1) is a potential repressor of Xbra, since a single bipartite binding 

site is located in the Xbra promoter region (Eisaki et al., 2000; Lerchner et al., 

2000; Papin et al., 2002; Verschueren et al., 1999). Sip1 has neural-inducing 

activity in Xenopus laevis animal cap explants (Eisaki et al., 2000; Nitta et al., 

2004). In chicken embryos, Sip1 is important for a pathway, which promotes the 

formation of neurogenesis and suppresses mesoderm (Sheng et al., 2003). In 
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Xenopus, Xbra and sip1 are initially co-expressed at the beginning of 

gastrulation, but their domains are quickly separated into neighboring domains, 

which mark the future mesoderm and neuroectoderm, respectively (Papin et al., 

2002). The mechanism, by which this separation happens, is so far unknown. 

However, our laboratory showed with mRNA in situ hybridization experiments 

and animal cap explanation assays (see Figure 19A) that CHD4 is important for 

the positioning of the neuroectoderm/mesoderm border, by controlling specifically 

the Nodal input via Sip1 for the Xbra transcription (Figure 6) (Linder et al., 2007). 

 

Figure 6: Positioning of the mesoderm/neuroectoderm boundary by 

Chd4 

The cartoon illustrates the regulatory network of the positioning of the 
neuroectoderm/mesoderm border: CHD4 binds to the sip1 locus and restricts the 
expression of the gene. Sip1 on the other hand is involved in the repression of Xbra. 

2.3 Epigenetics - from genotype to phenotype  

The development of a multicellular organism is a unidirectional 

process, which occurs in a tightly controlled spatial and temporal fashion. It starts 

with a single, totipotent cell — the fertilized egg. Through subsequent cell 

divisions, the zygote gives rise to the complex organism. The developmental 

process leading from a totipotent cell to specialized cell types is called 

differentiation. This requires multiple preceding events resulting in the committed 

and finally differentiated cell. The process of commitment is divided into two 

stages. The first is the specification step, which is reversible. A cell or a tissue is 

defined as specified, when it can differentiate autonomously in a neutral 

environment. The second stage of commitment is called determination. Cells are 

considered to be determined, when they can differentiate autonomously even 

when placed in a non-neutral environment (for detailed information see (Gilbert, 

2006)).  

But how is a differentiation profile inherited, based on the fact that all 

cells of one organism posses the identical genome? The underlying principle of 
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this cellular memory is called epigenetics. Conrad Waddington coined the term, 

when he defined epigenetics as “the branch of biology, which studies the causal 

interactions between genes and their products, which bring the phenotype of the 

being” (Waddington, 1942). In 1957, he published the epigenetic landscape 

(Waddington, 1957) (Figure 7). It describes the differentiating cell as a marble 

rolling along a landscape. At the branches, the marble can choose between two 

ways. Thereby, it will have made several binary choices until it reaches the 

bottom of the landscape (for review see (Slack, 2002)).  

  The current definition of epigenetics is a “bridge between genotype 

and phenotype — a phenomenon that changes the final outcome of a locus or 

chromosome without changing the underlying DNA sequence. (…) Cellular 

differentiation may be considered an epigenetic phenomenon, largely governed 

by changes in what Waddington described as the epigenetic landscape rather 

than alterations in genetic inheritance. More specifically, epigenetics may be 

defined as the study of any potentially stable and, ideally, heritable change in 

gene expression or cellular phenotype that occurs without changes in Watson-

Crick base-pairing of DNA” (Goldberg et al., 2007). The majority of the ongoing 

epigenetic research concerns the study of covalent histone modification, DNA 

methylation, nucleosome remodeling and other mechanisms that influence the 

chromatin structure of a specific gene locus. 

 

Figure 7: The epigenetic landscape  
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The marble represents a cell that rolls down a landscape-like surface. At various points 
the marble can roll into different valleys, id est the cell can differentiate into various cell 
types. So by the time, when the marble has reached the bottom of the landscape, it has 
made several binary choices (Waddington, 1957).  

2.4 Chromatin 

2.4.1 Structural features of chromatin 

Chromatin is the complex of DNA and proteins found inside the nuclei 

of eukaryotic cells. The name chromatin originates from the fact that it is easy 

visible by staining. Walter Flemming coined the term in 1882, which is derived 

from the Greek word “χρωµα” for color, when he observed the nuclear material by 

light microscopy (Flemming, 1882). In order to fit the large genome within the 

dimension of a nucleus, the DNA has to be compacted. The major proteins 

involved in the compaction of the DNA are the histone proteins, but also other 

chromosomal proteins are engaged in the compaction. Simplified, three levels of 

chromatin compaction exist: (I) the nucleosome: DNA wrapping around a histone 

octamer, (II) the 30nm-fiber: chromatin condensed with the help of linker 

histones, and (III) the higher order structure of the chromatids (see Figure 8). 

 

Figure 8: Schematic representation of the DNA packing in the nucleus  

The DNA is wrapped around a histone octamer forming the nucleosome. With the help of 
linker histones, the DNA is further compacted into the 30nm fiber. This stage is followed 
by several higher orders of compaction. The figure was adapted from (Hansen, 2002). 
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2.4.1.1 The nucleosome 

In 1974, Roger Kornberg suggested that the structural repeating unit 

within the eukaryotic nucleus would be the nucleosome, as it is defined 

nowadays (Kornberg, 1974). The final structure of the nucleosome was resolved 

by Richmond and colleagues more than 20 years later (Luger et al., 1997). The 

basic repeat element, the nucleosome, consists of 1.65 turns of DNA (=146bp) 

wrapped around the histone octamer complex. The complex is composed of a 

central tetramer of the histone proteins H3 and H4 and two dimers of the 

Histones H2A and H2B. The histone proteins are small basic proteins with an N-

terminal domain, a so-called central histone fold domain, and a C-terminal 

domain. The N-termini and some C-termini reach tail-like out of the globular 

octamer domain. These tail-like protrusions are major substrates for covalent 

modifications like methylation, acetylation etc. (see chapter 2.4.3, Figure 9) (for 

review see (Alberts et al., 2004)). The histone proteins belong to the most 

conserved protein among all eukaryotes. In addition, many eukaryotic organisms 

developed specialized histone variants, which differ only in very few amino acids. 

For example, four vertebrate histone variants for H3 are known: H3.1, H3.2, H3.3 

and CENP-A. CENP-A is a H3 variant that is specifically localized at centromers. 

The variant H3.3 is associated with actively transcribed loci. The roles of H3.1 

and H3.2 are less well understood (for review see (Bernstein and Hake, 2006)). 

These various histone modifications and variants, which are found incorporated 

into the histone octamer, emphasize the important role that the nucleosomes play 

in the regulation of gene expression.    

2.4.1.2 The 30nm fiber 

Adjacent nucleosomes are linked via the so-called linker DNA, which 

varies in length in a cell- and species-specific manner. Long chains of 

nucleosomes can be visualized by electron microscopy as a “beads-on-a-string”-

structure, but are very unlikely to exist as such in a living cell. Instead, these 

nucleosome arrays are very tightly compacted in a larger structure, called the 

30nm-fiber (for review see (Alberts et al., 2004)). Additional histone proteins, the 

linker histones, are important for the formation of this structure. The linker 

histones consist of a central, globular domain and a highly positive charged 

C-terminal domain. With their globular domain they anchor themselves to the 

nucleosome. The C-terminal domain binds to the linker DNA (for review see 
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(Jerzmanowski, 2004)). How the structure of the 30nm-fiber looks like, is still 

highly debated. Visualization studies with electron microscopy show a various 

types of zigzag models (for review see (Alberts et al., 2004)). However, recent 

studies by Rhodes and colleagues suggest a one-start chromatin-fiber model with 

interdigitated nucleosomes (for review see (Robinson and Rhodes, 2006)). 

The linker histones are less conserved than the core histones. Histone 

variants differ from the conventional histones by slight or significant alterations of 

the amino acid composition (for review see (Bernstein and Hake, 2006)). The 

linker histone variants can be divided into maternal and somatic linker histones. 

They differ mainly in their length and charge of their C-terminal domains. The 

Xenopus maternal linker histone B4 and somatic linker histone H1a share only 

about 30% sequence identity (Dworkin-Rastl et al., 1994). During early Xenopus 

development until mid-blastula transition (MBT) (also see chapter 2.1), the nuclei 

contain the oocyte-specific linker histone B4. From MBT onwards until the end of 

the gastrulation, B4 is replaced by somatic linker histones H1a, H1b and H1c 

(Dimitrov et al., 1993; Dworkin-Rastl et al., 1994). The replacement of the 

maternal B4 with the somatic H1a leads in vitro to a stronger compaction of the 

chromatin, which cannot be remodeled anymore (Saeki et al., 2005). 

Furthermore, maternal linker histones H1M or H1oo have also been described for 

mammals and other frog species (for review see (Schulze and Schulze, 1995)).  

2.4.1.3 Higher order chromatin structure 

The DNA of a chromatid undergoes further levels of compaction 

compared to the 30nm-fiber. Generally, two populations are detectable with light 

microscopy: the highly condensed heterochromatin and the less condensed 

euchromatin (Heitz, 1928). Constitutive heterochromatin is referred to as 

gene-poor regions with very high levels of DNA compaction like telomeres or 

centromers. Facultative heterochromatin referrers to chromosome regions, which 

have lost gene expression like inactivated mammalian X-chromosomes or genes 

that were silenced during differentiation. Euchromatic regions are described as 

gene-rich with active transcription (for review see (Elgin and Grewal, 2003; 

Henikoff, 2000)). Changes in gene expressions can alter the relationship 

between euchromatin and heterochromatin as well as the location of genes within 

the nucleus. Furthermore, the local organization of genes on a chromatin-loop 

bordered by boundary elements or even the organization of the whole chromatid 
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as giant chromosome loops are described to be important for the regulated 

expression of a gene (for review see (Cremer et al., 2006; Misteli, 2007)).   

2.4.2 ATP-dependent chromatin remodeling 

For the precise regulation of the gene expression, eukaryotes have 

evolved an elaborate system. It depends on enzymes that catalyze dynamic 

changes of the chromatin structure: enzymes that covalently modify histones act 

in concert with ATP-dependent chromatin remodeling enzymes to alter DNA-

histone interactions. These chromatin-altering enzymes play important roles 

especially during differentiation processes, where they can promote or prevent 

gene expression (for review see e.g. (Bouazoune and Brehm, 2006)). 

Furthermore, chromatin remodeling enzymes are important for the chromatin 

assembly and the maintenance of the chromosome structure (for review see 

(Langst and Becker, 2001)). 

All chromatin remodeling enzymes harbor an ATPase domain with 

seven motifs that are characteristic for helicases (Eisen et al., 1995). By 

comparing different yeast helicase-containing chromatin remodeling machineries 

by a phylogenetic approach (Bork and Koonin, 1993; Eisen et al., 1995; 

Gorbalenya et al., 1989), they were divided into several SNF2-domain containing 

subfamilies. The term SNF2 is derived from the yeast helicase SNF (sucrose 

nonfermenter), which is important for the growth on sucrose and raffinose (for 

review see (Sudarsanam and Winston, 2000)). As a result of this phylogenetic 

and many following studies, three major groups of SNF2-domain containing 

chromatin remodelers were defined SWI/SNF2, ISWI, INO80 and CHD (for 

review see for example (Becker and Horz, 2002; Bouazoune and Brehm, 2006)). 

Xenopus laevis and human homologues of these remodelers were clustered in a 

similarity tree and undescribed Xenopus homologues were identified by a 

EST-based screen in our laboratory (Linder et al., 2004).  

The mechanism by which the chromatin remodeling enzymes affect 

the structure of the nucleosome and the nucleosomal array is distinct for each 

class of remodelers. This can happen either by catalyzing the depositions or 

evictions of nucleosomes or by alteration of the nucleosome position (for review 

see (Saha et al., 2006)).  

In the subsequent chapters, the SWI/SNF and CHD class of 

remodelers will be described in more detail. 
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2.4.2.1 SWI/SNF-containing chromatin remodeling complexes 

The yeast SWI/SNF complex was the first described complex with 

ATP-dependent chromatin remodeling activity (reviewed by (Bouazoune and 

Brehm, 2006; Stern et al., 1984)). Independently, the Drosophila protein Brahma 

was identified as a dominant negative repressor of Polycomb mutations. This 

classified it as a member of the Trithorax group of proteins, which are important 

for the proper maintenance of homeotic gene expressions in Drosophila 

(Kennison and Tamkun, 1988). Later, this protein was found to be highly related 

to the yeast SWI/SNF remodeling ATPase (Tamkun et al., 1992). Besides an 

ATP-dependent helicase domain, the SWI/SNF ATPases possess a second 

characteristic C-terminal domain, the bromodomain, which distinguishes them 

from ISWI and CHD-like ATPases (Tamkun, 1995). The bromodomain 

recognizes acetylated lysines on the histone tails (see Figure 10A) (for review 

see (Zeng and Zhou, 2002)). 

Homologues of Drosophila Brahma have also been found in 

vertebrates like Xenopus (Gelius et al., 1999), humans (Chiba et al., 1994; 

Khavari et al., 1993; Muchardt and Yaniv, 1993) and mouse (Randazzo et al., 

1994). In these organisms, two SWI/SNF isoforms exist: Brahma and Brg1 

(Brahma related gene 1). The compositions of Brahma- and Brg1-containing 

complexes are variable and depend on the cellular context. Several publications 

suggested that the mammalian SWI/SNF complexes play a role in the regulation 

of cell growth. Many tumor cells misexpress or carry mutations in the Brg1 or 

Brahma genes. Furthermore, Brg1 was shown to interact with the retinoblastoma 

protein (Rb), cyclin E and BRCA1, a gene, which is frequently mutated in breast 

cancer. Most studies support a role of these complexes in the activation of 

transcription. However, some studies also implicate a role in transcriptional 

repression (for review see (Becker and Horz, 2002; Bouazoune and Brehm, 

2006)). Knockout of either murine Brahma or Brg1 are both viable, since they can 

compensate for each other (Bultman et al., 2000). In Xenopus, Brg1 was 

described to play an important role in the β-catenin dependent determination of 

the secondary body axis (Singhal, 2005). In addition, Brg1 is required for 

neurogenesis by mediating the transactivation of the bHLH transcription factors 

neurogenin and neuroD (Seo et al., 2005a; Seo et al., 2005b).   
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2.4.2.2 CHD class of remodelers 

The first chromodomain-containing chromatin remodeling ATPase, 

murine CHD1, was cloned by the laboratory of Rick Perry (Delmas et al., 1993). 

Subsequently, related proteins have been identified in other eukaryotes. The 

common feature of the CHD protein family is a pair of chromodomains in addition 

to the SNF2-related ATPase domain. The chromodomain is named after proteins, 

which are involved in the regulation of chromatin (chromatin organization 

modifiers) (Paro and Hogness, 1991). The best studied chromodomain is the one 

of the heterochromatin protein 1 (HP1), which binds to di- or trimethylated lysine 

9 one histone H3 (Grewal and Jia, 2007). Based on protein sequence features 

and a phylogenetic analysis, the CHD ATPases were grouped into three 

subclasses (Woodage et al., 1997). Among the second CHD protein subclass are 

the best-studied CHD proteins CHD3 (Mi-2α) and CHD4 (Mi-2β). They contain 

two PHD fingers in addition to the chromodomain. PHD fingers are named after 

the plant homeodomain and are a highly specialized methyl-lysine binding 

domains (see Figure 10A) (for review see (Mellor, 2006b)). Later, CHD4 was 

shown to be the chromatin-remodeling ATPase of the NuRD complex. In addition 

to Mi2, the NuRD complex consists of other subunits: the histone deacetylases 

HDAC1/2 and the histone H4-interacting proteins RbAP46/48. Furthermore MTA, 

p66/68 and MBD protein family members, which bind to methylated DNA, were 

later identified as components of the complex (Brackertz et al., 2002; Brackertz et 

al., 2006; Feng et al., 2002; Feng and Zhang, 2001; Fujita et al., 2004; Fujita et 

al., 2003; Wade et al., 1999). Taking these facts together, the NuRD complex is 

not only able to detect epigenetic modifications like methylation of DNA, but it 

also combines two different chromatin remodeling strategies: histone modification 

activity and ATP-dependent nucleosome remodeling activity (Becker and Horz, 

2002). 

The Mi2 protein containing complexes have various functions 

throughout Drosophila development. A prime function of the Drosophila NuRD 

complex appears to be the prevention of the inappropriate function of 

developmental transcription programs (Bouazoune and Brehm, 2006). In other 

model organisms and in cell culture systems, the NuRD complex was also shown 

to be involved in cell-type specific transcriptional repression (Fujita et al., 2004; 

Fujita et al., 2003; Unhavaithaya et al., 2002; von Zelewsky et al., 2000). 
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However, the NuRD complex was also shown to be important for maintaining an 

active transcription cycle of a estrogen-receptor activated gene (Mellor, 2006a). 

2.4.3 Covalent, post-translational histone modifications 

Besides the ATP-dependent alteration of the nucleosome position, 

another way of nucleosome remodeling are covalent, post-translational 

epigenetic modifications of the core histones. The modifications can either be 

acetylation, methylation, phosphorylation, ubiquitination or biotinylation of mainly 

the N-termini of the core histones (Figure 9). To shorten the spelling for the 

histone modification, the Brno nomenclature will be used, which was set out at 

the first meeting of the Epigenome Network of Excellence (NoE), at the Mendel 

Abbey in Brno, Czech Republic: Trimethylation of lysine 4 on Histone H3 will be 

written for example as H3K4me3 (for review see (Turner, 2005)). Many proteins 

have been identified that put these modifications in place and/or recognize 

specifically the one or the other modification (for review see(Kouzarides, 2007; 

Nightingale et al., 2006)).  

 

 

Figure 9: Histone modifications on the nucleosome core particle 

The arrows mark the N-terminal, tail-like protrusions of the four core histones. The picture 
was adapted from (Turner, 2005).  
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Depending on the position, the quality and the combination, histone 

modifications have different implications in regard to gene expression. The 

majority of the histone modifications can be correlated with active transcription, 

repression and cell cycle stages. Figure 10 gives an overview of the histone 

modifications on Histone H3 with their corresponding enzymes that read, set and 

remove them. The color code of Figure 10B (red for repressive function and blue 

for activating function) and interactions of the different chromatin modifying 

enzymes illustrates the complexity for the epigenetic regulatory pathways. Some 

factors regulate or inhibit each other and thereby form a complex network of 

interactions. Figure 10A shows factors that bind to the corresponding 

modifications (for review see (Mellor, 2006a)). Furthermore, the histone 

modifications do not occur in isolation, they rather appear in a combinatorial 

fashion. Modifications either depend on or antagonize each other. The majority of 

the modifications is either correlated with active or repressed gene expression. 

Even hierarchies of histone modifications were postulated (for review see (Allis 

CD, 2007)). 

The finding that most of the histone modifications are correlated with 

different chromatin states like active or silent gene expression resulted in the 

proposal of the histone code hypothesis. It is proposed to be a code consisting of 

histone modifications, which regulate the accessibility and the functional state of 

the underlying DNA (Jenuwein and Allis, 2001). Further more, Brian Turner 

suggested the existence of an epigenetic code, which he described as “the way 

in which the potential for expression of genes in a particular cell type is specified 

by chromatin modifications put in place at an earlier stage of differentiation” 

(Turner, 2007). Whether this epigenetic code exists and whether the histone 

modifications are cause or consequence of changes in gene expression is still 

under debate. 
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Figure 10: Histone modifications on the N-terminus of Histone H3 

The figure shows the IUPAC code of the amino acid sequence of the N-terminus of 
Histone H3. The modified amino acids are marked in red. The numbers underneath mark 
the position of the amino acid. me: methylation, ac: acetylation. A) shows the factors with 
their domains that are known to bind to the modifications. B) shows the enzymes that 
modify the residues. Enzymes associated with activating events are marked in blue; 
those associated with repressive events are marked in red. This figure was adapted from 
(Mellor, 2006a). 

2.4.3.1 Acetylation 

Acetylation of histones was first described in the early 1960ies. It was 

shown that acetylated histones do not inhibit the in vitro RNA synthesis as non-

acetylated histones do (Allfrey et al., 1964; Phillips, 1963). Acetylation is placed 

on lysines of the N-termini of H3 and H4 and is correlated with active RNA 

transcription (for review see (Nightingale et al., 2006)). Histone acetylation alters 

the chromatin structure by weakening the interactions between the core histones 

and the DNA. Other studies have proven that the transcriptional activation of a 

gene due to histone acetylation is brought about by specific binding factors. 

Bromodomain proteins like Brahma or Brg1 have been shown to bind to 

acetylated lysines with high affinity (see Figure 10A) (for review see (Fischle et 

al., 2003)).  

The enzymes that are responsible for the acetylation of the histones 

are the histone acetyltransferases (HATs). HATs are parts of multimeric 

complexes. Based on sequence similarities, HATs are grouped into several 

subfamilies. The Gcn5/PCAF family functions as a co-activator for a specific 

subset of transcriptional activators and contains besides the HAT domain a 



Introduction   24  

conserved bromodomain. Another family is called p300/CBP. The members of 

this family harbor a more extended HAT domain than the PCAF family members 

and are more globally involved in transcriptional regulation (for review see 

(Santos-Rosa and Caldas, 2005)).   

The acetylation of the lysine residues is reversible, and the turnover 

rate of this modification is very rapid. It occurs within a few minutes (Waterborg, 

2001). The deacetylation is governed by histone deacetylases (HDACs). These 

enzymes are also part of multimeric complexes, which are involved in 

transcriptional repression. In addition, the HDACs were found in complexes 

together with HAT and thereby form a local equilibrium of histone acetylation 

(Yamagoe et al., 2003). The HDACs are grouped into three major subclasses. 

Class I HDACs are nuclear proteins that are expressed in many tissues. Class II 

HDACs are larger in size, are expressed tissue-specifically and shuttle between 

the nucleus and the cytoplasm. Class III HDACs differ in their catalytic 

mechanism. Their enzymatic activity depends on the cofactor NAD+. HDACs are 

found to be overexpressed in a variety of tumors (for review see (Santos-Rosa 

and Caldas, 2005)) and are therefore targets for chemotherapy. A critical 

component of the class I HDAC activity is a zinc-ion in the enzymatic pocket. This 

site is the main target for anti-cancer drugs and HDAC inhibitors TSA and SAHA 

(Finnin et al., 1999) 

2.4.3.2 Methylation 

Histone methylation has been described about 40 years ago (Murray, 

1964). Arginine and lysine residues can be mono-, di- or tri methylated. Methyl 

groups are transferred to arginine residues by protein arginine 

methyltransferases (PRMTs) (see Figure 10A) and have either activating or 

repressive function. The methyltransferases PRMT1 and CARM1 are involved in 

transcriptional activation. Their recruitment is mediated by transcription factors. 

Furthermore, they were shown to interact with HATs to form co-activator 

complexes. PRMT5 in contrast is involved in repression (for review see (Santos-

Rosa and Caldas, 2005)). In very recent studies, CARM1 was shown to regulate 

pluripotency (Torres-Padilla et al., 2007) and to be involved in the coupling of 

transcription and mRNA processing (Cheng et al., 2007). The histone methylation 

marks have long been considered as stable marks due to their much lower 

turnover rate compared to the histone acetylations. Mechanisms for the removal 
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of methylated histones like histone replacement or tail clipping were discussed 

(Klose et al., 2007). For the first time, the enzymatic demethylation of an 

methylated arginine residue was described by Kouzarides and colleagues in 

2004 (Cuthbert et al., 2004). They showed that the peptidyl arginine deiminase 4 

(PDI4) converts arginine to citrulline and thereby antagonizes arginine 

methylation. 

Histone lysine methylation is set by histone methyltransferases (HMT). 

The common catalytic HMT domain is the so-called SET domain. Several 

well-characterized lysine residues are highly conserved. H3K4, H3K36 and 

H3K79 methylations are correlated with active transcription, whereas H3K9, 

H3K27 and H4K20 methylations are correlated with non-transcribed regions. 

Therefore, the transcriptional state of a locus can be classified according to the 

present histone methyl marks (Kouzarides, 2007). 

H3K4 methylation is catalyzed in mammals (humans) by the Trithorax-

related SET1 domain containing protein family MLL (mixed lineage leukemia) 

with its members MLL1, MLL2, MLL3, MLL4, SET1A and SET1B. H3K4me3 is 

strongly correlated with active RNA polymerase II transcription and histone 

acetylation and peaks at the promoter regions. H3K4me2 in vertebrates is found 

on promoter regions together with trimethylation, while in yeast it is spread 

throughout genes in either a transcriptionally poised or active state. Recently, 

H3K4me1 was described to be associated with enhancer regions in human cell 

lines (for review see (Heintzman et al., 2007)). Methylation marks can be read by 

proteins containing a chromodomain or a PHD finger (see Figure 10A). An 

example is CHD1, which binds H3K4 methylation via its chromodomain and 

mediates ATP-dependent chromatin remodeling (for a detailed review see 

(Ruthenburg et al., 2007)). 

H3K9 methylation is implicated in gene repression as well as the 

formation of heterochromatin found in telomeres or centromers. The HMTs 

Suv39-protein family members Suv39h, G9a, EST/SETB1 and EuHMTaseI sets 

this epigenetic mark (Santos-Rosa and Caldas, 2005). H3K9me-mediated 

repression is usually facilitated by the Heterochromatin Protein 1 (HP1) (for 

review see (Kouzarides, 2007)). The recruitment of Suv39h to promote the 

formation of pericentric heterochromatin is mediated by short heterochromatic 

RNAs (shRNAs). In contrast, sequence-specific DNA-binding transcriptional 
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repressor proteins facilitate the recruitment to euchromatic promoters (for review 

see (Lee et al., 2005)).  

H3K27 methylation is involved in transcriptional silencing. H3K27me1 

can be found in pericentric heterochromatin, whereas H3K27me3 is a 

characteristic of the facultative heterochromatin of the inactive X chromosome 

(Lee et al., 2005). Furthermore, H3K27 methylation is engaged in the silencing of 

euchromatic gene loci.  

This methylation mark is set by the HMTase Enhancer of Zeste (E(z)) 

of the Polycomb group of protein (PcG). Three PcG complexes (PRC) are 

described for Drosophila and mammals: PRC1 with E(z), Esc (extra sex combs, 

human homolog: EED), Su(z)12 (suppressor of zeste) and Nurf55 (in humans: 

RbAp46/48; PRC2 with Pc (Polycomb), polyhomeotic (Ph), Psc (posterior sex 

combs) and dRING as well as several other factors; the third complex is called 

PhoRC including Pho (polyhomeotic) and dSfmbt protein. Neither PRC1 nor 

PRC2 core complexes contain proteins that specifically bind to DNA. Pho is the 

only known sequence specific DNA binding protein. It was shown to interact with 

PCR2 (for a detailed review see (Schuettengruber et al., 2007)).  

The vertebrate Pho homolog is called Ying-Yang1 (YY1) (Brown et al., 

1998). The Xenopus YY1 is expressed throughout the embryonic development 

(Ficzycz et al., 2001; Kwon and Chung, 2003; Morgan et al., 2004). It was shown 

to be important for neural, neuronal and heart-muscle development (Latinkic et 

al., 2004; Morgan et al., 2004; Satijn et al., 2001). In pluripotent embryonic stem 

cell lines, H3K27me3 and EED are found in concert with the activation marks 

H3K4me2,3 and H3K9ac on promoters of developmentally important genes like 

msx1 or sox2. This is so far exclusively described for mouse and human (Azuara 

et al., 2006; Bernstein et al., 2006) and suggests an important role of PcG 

proteins during embryonic development. 

In 2004, the first lysine demethylase LSD1 was discovered. This paved 

the way for the discovery of many other demethylating enzymes. Two distinct 

catalytic subunits have been described so far: LSD1 domain and JmjC domain.  

LSD1 acts as a demethylase for H3K4 methylation; if present in complexes with 

the androgen receptor, it can also remove methyl groups of H3K9. Furthermore, 

H3K9 methylation can also be removed by a variety of enzymes containing a 

JmjC domain like JHDM2A (Klose et al., 2007; Kouzarides, 2007). However, the 

precise regulatory function of these demethylases is still unclear. 
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2.4.3.3 Other modifications 

Apart from acetylation and methylation, further modifications of 

histones include phosphorylation, ubiquitination, ADP-ribosylation, biotinylation 

and SUMOylation. Phosphorylation of serine at position 10 on histone H3 

(H3S10ph) during interphase is a sign for chromosome relaxation and gene 

expression. During metaphase it correlates with chromosome condensation (for 

review see (Prigent and Dimitrov, 2003)). The mono-ubiquitination of H2B 

(H2BK123ub) is important for the methylation of H3K4me2,3 and H3K79me (for 

review see (Nightingale et al., 2006)). Polyubiquitination is a general sign for 

proteasome-mediated proteolysis (for review see (Pickart and Cohen, 2004)). 

The other modifications are less well studied. 

2.5 Chromatin immunoprecipitation (ChIP) 

Complex inductive signaling networks bring about epigenetic 

alterations in the chromatin environment, resulting ultimately in the change of 

gene expression. These events are part of cellular determination and 

differentiation processes. A method to investigate the chromatin environment 

during development is the chromatin immunoprecipitation (ChIP). This technique 

allows studying the association of proteins to a specific genomic region in vivo. 

The assay involves the fixation of chromatin proteins to DNA, fragmentation of 

the chromatin, immunoprecipitation, purification and quantification of the enriched 

DNA (see Figure 11).  
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Figure 11: Flowchart of the ChIP procedure 

Modified flowchart from www.upstate.com. 
 

The fixation of proteins to DNA with formaldehyde can be traced back 

to the late 1960ies, when the distribution of newly synthesized histones together 

with newly replicated DNA was studied with isopycnic CsCl gradient 

centrifugation (Brutlag et al., 1969; Ilyin and Georgiev, 1969). About five years 

later, the technique was extended to map histone-histone interactions within 

nucleosomes (Jackson, 1978; Van Lente et al., 1975). In the 1980’s, two groups 

independently combined the in vivo crosslinking and the immunoprecipitation of 

the chromatin fragments (Gilmour and Lis, 1984; Gilmour et al., 1991; Solomon et 
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al., 1988; Solomon and Varshavsky, 1985). In these early ChIP assays, the 

enriched DNA was detected via Southern blot analysis. In the mid 1990’s, the 

extract preparation was simplified and the DNA analysis with Southern Blot was 

replaced by PCR (Braunstein et al., 1993; Dedon et al., 1991; Hecht et al., 1996; 

Strahl-Bolsinger et al., 1997). From these pioneering work onwards, the ChIP 

assay was used for a variety of objectives concerning histone modification, 

transcription factor binding etc. Multiple modifications of the protocol for several 

species were published. A good and reviewed protocol collection is provided at 

the epigenome network of excellence (ENOE) homepage 

(http://www.epigenome-noe.net). For about seven years, the ChIP technology 

has been combined with microarray technology to identify genome wide location 

patterns of proteins (for example (Iyer et al., 2001; Ren et al., 2000)).  

Very few ChIPs using antibodies against endogenous proteins have 

been published for early Xenopus embryos (Morgan et al., 2004; Park et al., 

2005; Stancheva et al., 2003). The in vivo ChIP in developing Xenopus laevis 

embryos is challenging for several reasons: First, the expression domains of 

important developmental regulators like the organizer gene siamois are rather 

small. Secondly, the younger the embryos are the less cells they have and thus 

the less desired protein-DNA interactions they contain. Thirdly, no inbred lines of 

the Xenopus laevis exist and therefore, the populations are very heterogenic. 

However, in order to understand the underlying epigenetic alterations of 

determination and differentiation processes, the chromatin immunoprecipitation 

assay with developing vertebrate embryos is an important tool. Therefore, it was 

very important to establish a reliable protocol for ChIP in early Xenopus laevis 

embryos. 
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2.6 Objectives 

How transcription factors gain access to their target sites in vivo in the 

correct spatio-temporal manner is an important biological issue for the 

understanding of gene regulation. The accessibility of a putative binding site on 

the DNA template depends on one hand on the biochemical activities of 

transacting factors, on the other hand on the local chromatin environment. 

Chromatin immunoprecipitation (ChIP) examines the in vivo association of 

proteins with specific DNA sequences in the genome.  

My methodological goal was to establish a reliable ChIP protocol for 

early Xenopus laevis embryos and ideally, for animal cap explants as well. 

Furthermore, I aimed to generate antibodies as tool for the ChIP. To understand 

the influence of inducing signaling events on the chromatin environment of target 

genes, I analyzed three different scenarios:  

1. The temporal and spatial changes of the chromatin environment at the 

locus of the muscle determination factor myoD.  

2. The influence of the canonical Wnt signaling pathway on the association 

of Wnt signaling components to Wnt target genes. 

3. The association of the chromatin remodeling ATPase CHD4 to the sip1 

locus.  
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3 Materials and Methods 

3.1 Reagents 

3.1.1 Fine chemicals 

The subsequent fine- and bio-chemicals were ordered at the following 

companies:  

Fluka, Merck, Sigma, USB. 

Agar (Difco); Agarose (Gibco/BRL); Ampicillin, Streptomycin, Bacto trypton, 

Yeast extract (Difco); Chicken serum, lamb serum (Gibco/BRL); Human 

choriongonadotrophin (Sigma); Levamisol (Vector Laboratories). 

3.1.2 Enzymes and proteins 

The following enzymes were ordered at the companies put in brackets:  

Alkaline phosphatase (Roche); BSA fraction V, Chymostatin, Leupeptin, 

Pepstatin (Sigma); DNase I (Stratagene); Klenow enzyme (Roche); MMTV 

reverse transcriptase (Gibco/BRL); Restriction endonuclease with 10x restriction 

buffer system (New England Bio Labs, Roche, Fermentas); RNaseA (Sigma); 

RNasin (Promega); T3, T7 and SP6 RNA polymerase with 5x incubation buffer 

(Promega); Taq DNA polymerase with 10x PCR buffer (NEB), Advantage 2 

Polymerase Mix (BD Bioscience Clontech), Proteinase K (Sigma); RNase free 

DNase I (Promega); Pre-stained protein molecular weight standard (Sigma), 

Precision Plus Protein Prestained Standard (Biorad) 

3.2 Laboratory Equipment 

The subsequent laboratory equipments were used. The companies are put in 

brackets. 

CCD camera: ProGres C14 (Zeiss) 

Centrifuges: Eppendorf centrifuge 5417C (Eppendorf); Omnifuge 2.0 RS 

(Haereus); Sorvall RC-5B (Du Pont), Micro 22R (Hettich Zentrifugen), Optima LE-

80K Ultracentrifuge (Beckman Coultier), PicoFuge (Stratagene) 

Developer: Curix-60 (Agfa) 

FRENCH® Pressure Cells and Press (Thermo Spectronic) 
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Glass injection needles: Glass 1BBL W/FIL 1.0 mm (World Precision 

Instrument). 

Injector Pli-100 (Digitimer Ltd.). 

Incubator: Driblock DB1 and DB20 (Teche). 

Microneedle Puller P-87 (Sutter Instrument). 

Micromanipulator: Mm-33 (Science Products). 

Microscopes: Stereomicroscopes Stemi SV6, Stemi SV11 (Zeiss), MZFCIII 

(Leica), Axiophot (Zeiss), Axiovert 200M (Zeiss) 

Microsurgery: Gastromaster (Xenotek Engineering). 

Nylon membrane: Hybond™ N (Amersham). 

Software: Photoshop CS2 (Adobe); Illustrator CS2 (Adobe); MacVector 7.1 

(Oxford Molecular Group); Office 2004 for Mac (Microsoft), Endnote 9.0 

(Thomson), ABI Prism Primer Express (Applied Biosystems), ABI Prism 7000 

SDS Software (Applied Biosystems) 

Spectrophotometer: GeneQuant II (Pharmacia Biotech), Nanodrop ND-1000 

(PeqLab) 

Thermocycler: Primus 96 plus (MWG) used for semi-quantitative PCR, ABI 

Prism 7000 SDS (Applied Biosystems) used for real-time PCR 

Sonicators: Branson Digital Sonifier 250-D; Bioruptor™ (Diagenode) 

3.3 Antibodies 

3.3.1 Primary Antibodies 

3.3.1.1 Primary Antibodies, commercially available or published 

Acetyl Histone H4 (Upstate); Chicken myosin heavy chain MF20 (ICC 1:100) 

(Bader et al., 1982); c-Myc 9E10 (WB 1:100) (Evan et al., 1985); FLAG M2 (WB 1:1000) 

(Sigma); H3 dimethyl K4 (Abcam); H3 dimethyl K9 (Abcam); H3 trimethyl K27 (Abcam); 

Histone H3 core region (Abcam); Rabbit anti-Rat IgG (Dianova); SRF G-20 (Santa Cruz 

Biotechnology), Mouse anti-Rat IgM (Biozol) 

3.3.1.2 Rat monoclonal antibodies  

The antibodies were generated in collaboration with Dr. Elisabeth Kremmer, GSF 

München (see chapter 4.1). 

Antigen xMyoDb as a recombinant GST fusion protein:  

MYO 7F11: subtype: IgG2a, epitope: C-terminus (transactivation domain) (Western blot 

analysis (WB) negative, positive in immnoprecipitation (IP) and chromatin 



Materials and Methods   33  

immunoprecipitation (ChIP), immunocytochemistry (ICC) not tested, immnofluorescence 

(IF) not tested) 

MYO 5A9: subtype IgG2a, epitope: C-terminus (transactivation domain), WB negative, IP 

+ ChIP positive, ICC not tested, IF not tested) 

MYO 6C8: subtype IgG2b, epitope: C-terminus (transactivation domain), (WB: 1:10, 

positive in IP + ChIP, ICC negative, IF not tested) 

Antigen Lef1 Dom A+B as a recombinant GST fusion protein (see Figure 13):  

LEF 3D4: subtype IgG1, (WB 1:10, positive in IP + ChIP, ICC undiluted, IF undiluted) 

LEF 5F12: subtype IgG1, (WB 1:10, positive in IP + ChIP, ICC not tested, IF not tested) 

LEF 1F12: subtype IgG2b, (WB negative, positive in IP + ChIP, ICC not tested, IF not 

tested) 

LEF 5B10: subtype IgG2a, (WB negative, IP + ChIP negative, ICC not tested, IP not 

tested) 

Antigen xTCF3 Dom A+B as a peptide (LDSPSTAGLKDARSPSPA) (see Figure 13):  

TCF3 6B6: subtype IgG1, (WB negative, IP+ ChIP negative, ICC negative, IF not tested) 

TCF3 3E5: subtype IgG2b, (WB negative, IP+ ChIP negative, ICC negative, IF negative) 

The peptide was selected and synthesized by Peptide Specialty Laboratories GmbH 

(Heidelberg).  

Antigen xTCF1c Dom A+B as a peptide (IPHSGNKDMDIYER) (see Figure 13): 

TCF1 5F2: subtype IgG2a, (WB negative, IP positive, ChIP not tested, ICC not tested, IF 

not tested) 

TCF1 7E3: subtype IgG2c, (WB negative, IP + ChIP positive, ICC not tested, IF not 

tested) 

TCF1 2F4: subtype IgG2b, (WB 1:10, positive in IP + ChIP, ICC undiluted, IF undiluted) 

TCF1 1D12: subtype IgG1, (WB negative, positive in IP + ChIP, ICC not tested, IF not 

tested)  

The peptide was selected and synthesized by Peptide Specialty Laboratories GmbH 

(Heidelberg).  

Antigen xβ-catenin as a peptide of last 15aa of the C-terminus (Schneider et al., 1996): 

PGDS 1B1: subtype IgG2b, (WB 1:10, positive in IP + ChIP, ICC not tested, IF undiluted)  

PGDS 7D12: subtype IgG2a, (WB 1:10, positive in IP + ChIP, ICC not tested, IF not 

tested) 

The peptide was synthesized by Peptide Specialty Laboratories GmbH (Heidelberg).  

Antigen xBrg1 (Singhal, 2005): 

XB 3F1: subtype IgG1 (WB 1:10, positive in IP + ChIP, ICC + IF not tested)  

Antigen xChd4 as GST-fusion protein of the N-terminus (aa1-aa357) (Linder et al., 2007; 

Singhal, 2005): 

CH4-N 3A11: subtype IgG2a (WB negative, positive in IP + ChIP, ICC negative)  
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CH4-N 5H4: subtype IgG1 (WB negative, positive in IP + ChIP, ICC negative)  

CH4-N 5A2: subtype IgG2a (WB negative, positive in IP + ChIP, ICC negative)  

Antigen xChd4 as GST-fusion protein of the C-terminus (aa 1513- aa 1891) (Linder et 

al., 2007): 

CH4-C 7C9: subtype IgM (WB negative, positive in ChIP, ICC positive) 

CH4-C 7E8: subtype IgM (WB negative, positive in ChIP, ICC positive) 

3.3.2 Secondary Antibodies 

3.3.2.1 Immunocytochemistry 

Sheep anti-mouse IgG coupled with alkaline peroxidase (1:1000, Chemicon); 

Anti-Rabbit IgG (Fc) coupled with alkaline peroxidase (Promega); Alkaline 

Phosphatase-conjugated AffiniPure Goat-Anti-Rat IgG + IgM (H+L) (1:10000) 

(Dianova). 

3.3.2.2 Immunofluorescence 

Alexa Fluor® 488 rabbit anti-rat (IgG (H+L) (1:100) (MoBiTec) 

3.3.2.3 In Situ Hybridization 

Sheep anti-Digoxigenin Fab fragment coupled with alkaline phosphatase 

(Roche);  

3.3.2.4 Western Blot analysis 

Peroxidase-conjugated AffiniPure Goat-Anti Mouse IgG (H+L) (1:10000) 

(Dianova), Peroxidase-conjugated AffiniPure Goat-Anti Rat IgG + IgM 

(H+L)(1:5000) (Dianova), Peroxidase-conjugated AffiniPure Goat-Anti-Rabbit IgG 

(H+L) (1:10000) (Dianova),  

3.4 Nucleic acids 

3.4.1 Solutions 

Real-time PCR reaction 2xMastermix: TaqMan Universal PCR Mastermix 
(Applied Biosystems) 

3.4.2 Size standard 

1kb ladder: GeneRuler™ 1kb DNA ladder (Fermentas). The DNA ladder 

yields the following 14 discrete fragments (in base pairs): 10000, 8000, 6000, 

5000, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 750, 500, 250. 
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100bp ladder: GeneRuler™ 100bp DNA ladder plus (Fermentas). The 

DNA ladder yields the following 14 discrete fragments (in base pairs): 3000, 

2000, 1500, 1200, 1031, 900, 800, 700, 600, 500, 400, 300, 200, 100.  

3.4.3 Oligonucleotides 

Oligonucleotides were synthesized by either MWG Biotec or Biomers. 

Fluorescence-labeled oligonucleotides were synthesized by MWG Biotech or 

Applied Biosystems. MGBNFQ-Probes were ordered from Applied Biosystems, 

TAMRA quenched TaqMan-Probes from MWG Biotech. 

3.4.3.1 Oligonucleotides for RT-PCR 

Random Hexamer: 

RR13: 5' - NNNNNC -3 ' (N = G, A, T or C) 

 

Xenopus Histone H4 (Niehrs et. al, 1994): 

Forward: 5' - CGGGATAACATTCAGGGTATCACT -3 ' 

Reverse: 5 ' - ATCCATGGCGGTAACTGTCTTCCT -3  

 

Xenopus GAPDHb (Genbank accession No: AF549496) 

Forward: 5’- TGAGCGGTAAAGTTCAAGTCGTC -3’ 

Reverse: 5’- CACTACATACTCGGCACCAGCATC -3’ 

 

Xenopus TH/bZIP (Furlow, D1, personal communication) 

Forward: 5’- CGTGTCATTGCCCTTCTTGA -3’ 

Reverse: 5’- TCATGTTCTGGCACTCGGTC -3’ 

3.4.3.2 Oligonucleotides for cloning 

Primer no. 1: xLef1 FLAG XhoI F 
5’- CCGCTCGAGCGGATGCCTCAGCTCTCTGGAGC -3’ 
 
Primer no. 2:  xLef1 FLAG XhoI R 
5’- GCTCTAGAGCCGATGTAGGCAGCTGTCATT -3’ 
 
Primer no. 3: xTCF1 FLAG XhoI F 
5’- CCGCTCGAGACCATGCCCCAAATGAACAGCG -3’ 
 
 

                                                
1 J. David Furlow, Ph.D., University of California, Davis, CA 95616-8519 
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Primer no. 4: xTCF1 FLAG XbaI R 
5’- GCTCTAGAGCCTCTGCATGGGCCGCACC -3’ 
 
Primer no. 5: xTCF3 FLAG XhoI F 
5’- CCGCTCGAGCGGATGCCTCAGCTCAACAGCGGC -3’ 
 
Primer no. 6: xTCF3 FLAG XbaI R 
5’- GCTCTAGAGCCGTCACTGGATCTGGTCACTAG -3’ 
 
Primer no. 7:  xTCF4a FLAG EcoRI F 
5’- GGAATTCGATGCCGCAGTTGAATGGCG -3’ 
 
Primer no. 8: xTCF4a FLAG XhoI R 
5’- CCGCTCGAGCGGGATAAGCTTCCATCTGAAGAGGGC -3’ 
 
Primer No. 9: MyoD AB EcoRI F 
5’- CGGAATTCCGAGCTGTTGCCCCCACCACT -3’ 
 
Primer No. 10: MyoD AB SalI R 
5’- ACGCGTCGACCTATAAGACGTGATAGATGG -3’ 
 
Primer No. 11: Tcf1 dom a+b EcoRI F 
5’- GGAATTCCGCCTCACATCCCCG -3’ 

 
Primer No. 12: Tcf1 dom a+b XhoI R 
5’- CCGCTCGAGCTCTTTTTCTCTCTTTGGCTC -3’ 

3.4.3.3 Oligonucleotides for real-time PCR 

Amplicons were designed with the Primer Express program (Applied 

Biosystems). 

 

Egr1 Promoter:  

Forward:  5’- CCAGCACCTCATCAGCACTTT- 3’ 

Reverse:  5’ -CGGCAGCTTAGGCCATGTAA- 3’ 

Probe: 5’-6FAM-CTTTCCGGATCAGCTCCCTCTCCCTTT-TAMRA-3’ 

 

Myf5 Tcf:  

Forward:  5’- CATCGAATAGGCTACTACGACCTTCTAC - 3’ 

Reverse:  5’- CGAATGGTCTAACAGTCAAACGATT - 3’ 

Probe: 5’-6FAM- TCGAATGATTCGAACTAAA-MGBNFQ -3’ 
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MyoDb 5’Region:  

Forward:  5’- TGGAGGACACTCGGCACC - 3’ 

Reverse:  5’-CACAGCACAGTGCTGGCC - 3’ 

Probe: 5’-6FAM-TGAGAACTGCTGATCAATCCCATGTCGTA-TAMRA-3’ 

 

MyoDb Maintenance Enhancer (ME): 

Forward:  5’- AGTTGGCTGGTGAAGGTCTCC - 3’ 

Reverse:  5’– TTAACGCGGCACCTTCCT- 3’ 

Probe: 5’-6FAM-AGCAGCCTTGTCAGCAGGCCTCACTTC-TAMRA-3’ 

 

MyoDb Induction Enhancer (IE): 

Forward:  5’- ACTAACCATTCACAGAGCGACTGA - 3’ 

Reverse:  5’- TTACAGCCCCACCCCCA - 3’ 

Probe: 5’-6FAM-CTATATTCGCAAACCTAGCAGCATCCACAG-TAMRA-3’ 

 

MyoDb Promoter (P):  

Forward:  5’- CCCTCCTAAAAGTGCAGCCATA - 3’ 

Reverse:  5’- GCCCACGCACAGTCACCTT - 3’ 

Probe: 5’- 6FAM- CTCTCACCCTCTCAGGG-MGBNFQ -3’ 

 

MyoDb Exon1 (E1):  

Forward:  5’- AGGAAGGCCGCCACTATGA - 3’ 

Reverse:  5’- GTTGCGCAGGATCTCCACTT - 3’ 

Probe: 5’-6FAM-TTTGAGACCCTGAAGCGATACACCTCAACTAAC -TAMRA-3’ 

 

MyoDb Exon3 (E3): 

Forward: 5’- AAACCTTCATTCCCTTTGTTCC - 3’ 

Reverse:  5’- CCGCTCTACGATGCTGGA - 3’ 

Probe: 5’- VIC-TCCCAAGTCTCGAGTCTG -MGBNFQ -3’ 

 

TH/bZIP: 

Forward:  5’- GACATGTTGATAGGCTGTGCATTC - 3’ 

Reverse:  5’- GAAAATGTGCCAGCCTTTCC - 3’ 

Probe: 5’- 6FAM- TCTCAACTCCTGAACGGCACTCGCT -TAMRA-3’ 
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GAPDH: 

Forward:  5’- TTACACTGCCACCCAGAAGACA - 3’ 

Reverse:  5’- ATGTTCTGACCGGCACCTCTT - 3’ 

Probe: 5’- VIC-CCCATCAGGGAAGCT- MGBNFQ-3’ 

 

Siamois Promoter:  

Forward:  5’- CATATGCACCCTGAAAGAATTGG - 3’ 

Reverse:  5’- GGGCAAGATCAAGGGAAACA - 3’ 

Probe: 5’-6FAM-TGTCATCAGAATCATCAAAGGACCTCCCTT-TAMRA-3’ 

 

xU5 (sip1 locus):  

Forward:  5’- CATAAGGCTTTACAGTATCTCCAGGA - 3’ 

Reverse:  5’- TGGGAGGAGGAATCAAAGGG - 3’ 

Probe: 5’-6FAM- CCTCACCTACTCTCCTTCTTCCATGCTTCTTG -TAMRA-3’  

 

xE1 (sip1 locus):  

Forward:  5’- GCCGAGTCCATGCGAACT - 3’ 

Reverse:  5’- GGCCATCCGCCATGATC - 3’ 

Probe: 5’-6FAM-CCATCTGATCCCACTCTTATCAATGAAGCAAGAAGCAA – 

TAMRA-3’ 

 

xE2 (sip1 locus):  

Forward:  5’- CATGCTCAACCACGAGACTTCT - 3’ 

Reverse:  5’- TCAATTCATCTTCCTCTTCGTCTCT - 3’ 

Probe: 5’-6FAM- CCCAAGCCAACCAAGCACTATTGCC -TAMRA-3’ 

3.4.4 Plasmids 

Unless stated otherwise, the plasmids were constructed and cloned in our lab. 

3.4.4.1 Vectors for cloning 

pBS (Stratagene) 
pCS2+ (Rupp et al., 1994) 
pCS2+MT6 (Rupp et al., 1994) 
pCS2+ FLAG: FLAG tag cloned into pCS2+ between XbaI and SnaBI  
pET-M30 (Novagen) 
pGEX 4T3 (Pharmacia) 
pGEM-T (Promega) 
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3.4.4.2 Plasmids for in vitro transcription 

pXLef1: Xenopus Lef1 cDNA cloned into pCS2+ with XhoI. For in vitro 
transcription linearize with NotI, transcribe with RNA-Polymerase SP6, kindly 
provided by Gradl, D2.  
 
pLef1-FLAG: Xenopus Lef1 cDNA subcloned via PCR (primer no 1 & 2) of 
pXLef1 with XhoI and XbaI into pCS2+FLAG. For in vitro transcription linearize 
with NotI, transcribe with RNA-Polymerase SP6. 
 
pMT-Lef1-FLAG: Xenopus Lef1 cDNA subcloned of pLef1-FLAG with XhoI and 
NotI into pCS2+MT6. For in vitro transcription linearize with NotI, transcribe with 
RNA-Polymerase SP6. 
 
pMT-Tcf1-FLAG: Xenopus Tcf1c cDNA subcloned of pTcf1-FLAG with XhoI and 
NotI into pCS2+MT6. For in vitro transcription linearize with NotI, transcribe with 
RNA-Polymerase SP6. 
 
pMT-Tcf3-FLAG: Xenopus Tcf3 cDNA subcloned of pTcf3-FLAG with XhoI and 
NotI into pCS2+MT6. For in vitro transcription linearize with NotI, transcribe with 
RNA-Polymerase SP6. 
 
pMT-Tcf4a-FLAG: Xenopus Tcf4a cDNA subcloned of pTcf4a-FLAG with EcoRI 
and NotI into pCS2+MT6. For in vitro transcription linearize with NotI, transcribe 
with RNA-Polymerase SP6. 
 
pRR65: Xenopus xMyoDb cloned into pCS2+. 
 
pRR107: Xenopus xMyoDb cloned into pCS2+MT6. 
 
pTCF1-FLAG: Xenopus Tcf4a cDNA subcloned of EST BU916421 via PCR  
(primer no. 3 & 4) with XhoI and XbaI into pCS2+FLAG. For in vitro transcription 
linearize with NotI, transcribe with RNA-Polymerase SP6. 
 
pTcf3-FLAG: Xenopus Tcf3 cDNA subcloned via PCR (primer no. 5 & 6) of pTcf3 
(Pukrop et al., 2001) with XhoI and XbaI into pCS2+FLAG. For in vitro 
transcription linearize with NotI, transcribe with RNA-Polymerase SP6. 
 
pTcf4a-FLAG: Xenopus Tcf4a cDNA subcloned via PCR (primer no. 7 & 8) of 
pxTCF4a with EcoRI and XhoI into pCS2+FLAG. For in vitro transcription 
linearize with NotI, transcribe with RNA-Polymerase SP6. 
 
pxTcf4a: Xenopus Tcf4a cDNA cloned into pCS2+ with EcoRI and XhoI. For in 
vitro transcription linearize with NotI, transcribe with RNA-Polymerase SP6. 
Kindly provided by Gradl, D2.  
 
pTH/bZIP cDNA in pBS KS- (Stratagene) (Brown et al., 1996). 
 

                                                
2 Dr. Dietmar Gradl, Universitiät Karlsruhe, Zoologisches Institut II, Kaiserstr. 11, 76131 
Karlsruhe 
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pUE16: Deletion of C-terminus (aa 153-289) of Xenopus MyoD cloned into 
pCS2+MT6. 
 
pUE24: Deletion of N-terminus (aa 2-123) of Xenopus MyoD cloned into 
pCS2+MT6. 
 
pUE28: bHLH domain (aa 63-153) of Xenopus MyoD cloned into pCS2+MT6. 

3.4.4.3 Plasmids for dig-labeled RNA in situ hybridization probes 

pRR 104: XMyoDb cloned into pCS2+ via EcoRI/XbaI (Rupp et al., 1994).  

3.4.4.4 Plasmids for recombinant GST-Fusion-Proteins 

pET-M30XTCF3DomAandB: Xenopus Tcf3 cDNA Domain A and B cloned into 
pET-M30, kindly provided by Gradl, D2. 
 
pET-M30XLef-1A,B: Xenopus Lef1 cDNA Domain A and B cloned into pET-M30, 
kindly provided by Gradl, D2. 
 
pGEX-MyoD: Xenopus MyoDb cDNA subcloned of pRR3 (Rupp et al., 1994) by 
PCR (primer no. 9 & 10) with EcoRI and NotII into pGEX 4T3.  
 
pGEX-Tcf1 Dom A+B: Xenopus Tcf1c cDNA domain A+B subcloned of pTcf1-
FLAG by PCR (primer 11& 12) with EcoRI and NotI into pGEX 4T3.  
 

3.4.4.5 Plasmids for real-time PCR tests 

pMD-6,0/4,7GFP2: xMyoDb locus from -6000 until +4710 (Otto, 2000). 

3.4.5 Handling of bacteria 

Preparations of competent cells and transformation have been 

performed according to standard methods (Sambrook et al., 1989). 

3.4.6 Bacteria strains 

Table 1: Summary of Escherichia coli strains  

Strain Genotype Company 
BL21(DE3) B F- dcm ompT hsdS(rB- mB-) gal (DE3) Novagene 

XL1Blue 
F'::TN10 proA+B+laclq Δ(lacZ)M15/recA1 end A1 
gyrA96(NalR) thi hadR17 (rK

-mK
-) glnV44 relA1 lac 

Stratagene 

3.5 Molecular biological methods 

3.5.1 Solutions 

AB buffer: 80% TBSX, 15% heat-inactivated lamb serum, 5% Xenopus egg 
extract. 
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AP-Buffer: 100mM trichlorethane Tris/HCl 9.5; 100mM NaCl; 50mM MgCl2 
 
Bleaching solution: 1% H2O2; 5% Formamid; 0.5x SSC 
 
DEPC-H2O: ddH2O with 0.1% Diethylpyrocarbonat (DEPC) agitated at 23°C over 
night and autoclaved afterwards. 
 
10mM DIG NTP mixture: 10mM CTP, GTP, ATP, 6.5mM UTP and 
3.5mM Dig-11-UTP. 
 
Hybridizing solution: 5x SSC, 50% formamide, 1% Boehringer block, 
0.1% Torula RNA, 0.01% Heparin, 0.1% Tween-20, 0.1% CHAPS, 5mM EDTA. 
 
Lamb Serum: Heat-inactivated lamb serum (30 min with 56°C), stored at -20°C. 
 
MEMFA: 0.1M 3-(N-Morpholino)-propanesulfonic acid (MOPS), 2mM EGTA, 
1mM MgSO4, 3.7% formaldehyde pH 7.4  
 
Paraformaldehyde: 4% paraformaldehyde in PBSw  
 
PBS: 137mM NaCl, 2.7mM KCl, 8mM Na2HPO4, 1.7mM KH2PO4 pH 7.2  
 
PBSw: 1xPBS, 0.1% Tween-20  
 
PCI: 50% phenol, 48% chloroform, 2% isoamyl alcohol. 
 
Proteinase K: 10µg/ml Proteinase K in PBSw 
 
20xSSC: 3M NaCl, 0.3M sodium citrate (pH 7.0 at 23°C). 
 
TBS: 50mM trichloroethylene (Tris)/HCl, 150mM of NaCl (pH 7.5 at 23°C). 
 
TBSX: 1xTBS, 0.1% Triton X-100 (pH 7.5 at 23°C). 
 
TE: 1mM EDTA, 10mM of Tris/HCl (pH 8.0 at 23°C). 
 
TBE: 100mM Tris/HCl, 83mM borate, 0.1mM EDTA (pH 8.6 at 23°C). 
 
Xenopus egg extract for in situ hybridization: dejelly unfertilized eggs with 
2% cysteine, wash 3 times, add 1 volume of PBS, then lysed by 10 strokes of a 
Dounce homogenisators, and centrifuged (7500xg, Sorvall Rc-5b, rotors SS-34, 
10000rpm, 4°C, 10min). The supernatant was transferred into a fresh centrifuge 
tube and recentrifuged twice under the same conditions. The supernatant was 
aliquoted and stored at -20°C. 

3.5.2  Isolation of nucleic acids 

3.5.2.1 Mini-preparation with Qiagen kit 

Plasmid DNA mini-preparations were carried out using Qiagen mini-

preparation kits. 
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3.5.2.2 Isolation of RNA 

The embryos or explants were collected at the proper developmental 

stage in 1.5ml Eppendorf tubes, five animal caps or five whole embryos in one 

tube. As much buffer as possible was removed, 30µl per explant or 100µl per 

embryo of Trizol (GibcoBRL) was added and vortexed for 30sec at room 

temperature. If not used immediately, Trizol samples were stored at -80°C. The 

cell debris were removed by centrifugation for 10min at 12000xg and 4°C. 2µl per 

10µl of chloroform was added, vortexed, and centrifuged 5min at 4°C with 

maximal speed. The upper phase was transferred into a new tube. The RNA was 

precipitated with 0.5 volume equivalents isopropanol, incubated for 10min at RT, 

followed by a centrifugation at 4°C for 20min. The pellet was washed with 

70% ethanol and dried at room temperature for 20min. The RNA was dissolved in 

DEPC-treated H2O and stored at -80°C. 

3.5.3 Analysis and manipulation of nucleic acids 

3.5.3.1 Cloning methods 

The cloning of DNA has been performed according to standard 

methods (Sambrook et al., 1989). 

3.5.3.2 Gel electrophoresis of nucleic acids 

DNA or in vitro synthesized RNA was isolated in horizontal agarose 

gel. Depending upon fragment size, one to two percent TBE agarose gels were 

used. After electrophoresis the gels were photographed. 1kb or 100bp DNA 

ladder was used as size standard. 

3.5.3.3 Isolation of DNA fragments from agarose gel 

In order to isolate DNA fragments after electrophoresis from agarose 

gel, the appropriate bands were cut out under long-wave UV light. The DNA was 

extracted from the gel with Qiagen gel-extraction kit. 

3.5.4 Polymerase chain reaction (PCR)  

3.5.4.1 PCR amplification of DNA fragments for cloning 

The reaction was accomplished in a total volume of 50µl. The reaction 

mixture contained 100ng template DNA, 25pmol each primer, 0.5mM dNTPs, 

1U Advantage Taq Polymerase (Invitrogen) or Taq polymerase (NEB) and 1x of 
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the supplied buffer. The program was 95ºC 30 sec, xºC 30sec (annealing 

temperature depended on the primers used), 68°C/72ºC 1min/kb, 30 cycles. The 

PCR products were digested with the suitable endonuclease and separated on 

agarose gel. Subsequently, the desired DNA fragment was isolated. 

3.5.4.2 RT-PCR assay 

In the RT-PCR assay, 1µg mRNA was reverse-transcribed with 

RevertAid™ M-MuLV Reverse Transcriptase (Fermentas) and random hexamers 

according to the manufacturer’s protocol to generate cDNA. The cDNA samples 

were normalized by PCR amplification of housekeeping genes, such as H4 

(Histone H4), and then the desired target cDNA species were amplified using 

specific primers. PCRs were carried out in the exponential phase of amplification 

and PCR samples were loaded side by side in the agarose gel to compare their 

intensity. 

3.5.4.3 Real-time PCR 

For the real-time PCR 96-Well Optical Reaction Plates (Applied 

Biosystems) were used. PCR-Reaction of 25µl were pipetted the following: 

Mastermix Probe: 1.25µl Probe 5µM, 2.25µl Primer F 10µM, 2.25µl Primer R 

10µM; Mastermix Template: 12.5µl 2x TaqMan Universal PCR Mastermix, DNA + 

ddH2O to 6,75µl. PCR reaction was performed according to the manufacturer’s 

protocol, but with 45 cycles. 

3.5.5 In vitro transcription 

3.5.5.1 In vitro transcription for microinjection 

Capped mRNAs for microinjection were in vitro transcribed with RNA 

polymerase. Reactions were set up as following: in a total volume of 50µl, 4µg 

linearized plasmid DNA, 1x of the supplied transcription buffer, 0.5mM dNTPs, 

2.5mM RNA cap structure analogue, 10mM DTT, 20U RNAsin and 40U Sp6 or 

60U T3 or T7 RNA Polymerase. The reaction was incubated for 4 hours at 37°C. 

Subsequently, the template DNA was digested with 10U RNase free DNaseI for 

30min at 37°C. The RNA was purified with the RNeasy Spin Kit (Qiagen). The 

concentration of the RNA was determined by NanoDrop ND-1000 

spectrophotometer (Peqlab). 
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3.5.5.2 In vitro transcription of dig labeled RNA probes 

Plasmids were linearized and antisense RNA was generated by in vitro 

transcription. The reactions were set up in a total volume of 50µl as following: 

4µg linearized plasmid DNA, 1x of the supplied transcription buffer, 0.1mM Dig-

NTPs, 20U RNAsin and 20U SP6 or T3 or T7 RNA Polymerase. The reactions 

were incubated at 37°C for 4h and purified with the RNeasy Kit (Qiagen). 

3.5.6 RNA in situ hybridization 

The embryos were fixed in fresh MEMFA for 1.5-2 hours and washed 

afterwards with PBS 3x5min. The dehydration of the embryos was performed 

over a period of one hour by replacing the PBS subsequently with 100% ethanol. 

The lipid membranes were dissolved overnight at -20°C in 100% ethanol. The 

embryos were rehydrated through a 75, 50, 25% ethanol series in PBSw. Each 

ethanol step was incubated for 5min at room temperature.  Afterwards 3 washes 

with for 5min with PBSw were performed. The solution was then changed to 

Proteinase K in PBSw and incubated for 20min at 17°C, followed by a short rinse 

with PBSw. Again two washes for 5min each were performed with PBSw. After 

the Proteinase K digest the embryos were refixed with paraformaldehyde for 

20min. A short rinse with PBSw was performed followed by subsequent washing 

in PBSw for 5x5min. The PBSw was replaced with hybridization solution (50% 

PBSw: 50% hybridization solution; 100% hybridization 3min each step). 0.5ml of 

fresh hybridization solution was added to each vial and incubated at 65°C for 1h 

to inactivate endogenous phosphatases. The embryos were then prehybridized 

at 60°C for 2-6h. To 100µl of hybridization solution 30-50ng of RNA probe was 

added and incubated at 95°C for 2-5min, cooled immediately afterward on ice 

and added to the embryos in prehybridization solution. The RNA probe was 

hybridized to the mRNA over night at 60°C. To remove excessive RNA probe, the 

embryos are washed the following after the hybridization:  2xSSC; 0.1% CHAPS 

short rinse; 2xSSC;0.1% CHAPS for 20min; short rinse with 0.2xSSC;0.1% 

CHAPS; 2x for 30min at 60°C in 0.2xSSC;0.1% CHAPS. Prior to the antibody 

binding the embryos were transferred into TBSX (short Rinse in 50% TBS: 50% 

0.2xSSC; 0.1% CHAPS), washed in TBS for 5min and rinsed in TBSx. To block 

unspecific antibody binding sites, the embryos were incubated in antibody buffer 

(0.5ml per vial) for 2h at 4°C. In parallel, AP-conjugated anti-DIG antibody 

(1/5000 diluted) was preabsorbed against Xenopus proteins present in antibody 
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solution. 0.5ml of preabsorbed antibody solution was added to the embryos and 

incubated overnight at 4°C. After antibody binding, the embryos were briefly 

rinsed with TBSx and washed 6 times for 1h in TBSx. Embryos were shortly 

rinsed in AP buffer and equilibrated for 15min. AP-buffer was replaced with 0.5ml 

staining solution and incubated overnight until or to 3 days at 17°C in the dark. 

The staining reaction was stopped by washing twice in PBS for 10min. If the 

embryos were over-stained, some color was removed by washing the embryos in 

75% ethanol in PBS for 20min. The stain was fixed in MEMFA for 90min. The 

embryos were bleached in bleaching solution on a light box for 2h. The bleach 

solution was washed off with PBS 3x5min. For long-term storage, the embryos 

were transferred to PBSw containing 0.2% Azid and kept at 4°C. 

3.6 Embryological methods 

3.6.1 Solutions 

Cystein: 2% L-Cystein in 0.1xMBS (pH7.8 at 23°C, adjusted with 5M NaOH). 
 
Human Chorionic Gonadotropin (HCG): 1000 I.U./ml HCG in ddH2O. 
 
MEMFA: 0.1M 3-(N-Morpholino)-propanesulfonic acid (MOPS), 2mM EGTA, 
1mM MgSO4; 3.7% formaldehyde (pH 7.4 at 23°C). 
 
1xModified Barth’s Saline (MBS): 5mM HEPES, 88mM NaCl, 1mM KCl, 0.7mM 
CaCl2, 1mM MgSO4, 2.5mM NaHCO3 (pH 7.6 at 23°C). Add the CaCl2 before use. 
 
MBS/high salt: 1xMBS with 50mM NaCl 
 
0.1xMBS/Gentamycin: 0.1xMBS, 10µg/ml Gentamycin 
 
0.5xMBS/BSA: 0.5xMBS, 1mg/ml BSA, 10µg/ml Gentamycin 

 
MBS/CS: 0.8xMBS high salt with 20% chicken serum, 200U Penicillin/ml, 
200µg/ml streptomycin stored at -20°C 

 
0.5xMBS/PIF: 0.5xMBS/BSA with activin supernatant diluted 1:10 (Sokol et al., 
1990) 

3.6.2 Experimental animals 

Adult wild-type Xenopus laevis frogs (Xenopus Express) were used. 

The frogs were kept in tab water with a temperature of 17-19°C and a population 

density of 5l water per frog. The animals were fed three times per week with 

Pondsticks Premium brittle (Interquell GmbH, Wehringen). 
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3.6.3 Superovulation of female Xenopus laevis 

Xenopus laevis females were stimulated to lay eggs by injection of 

800 units of human chorionic gonadotropin (Sigma) into the dorsal lymph sac and 

incubated at 18-20°C over night. Egg lying started about 12-18h later. 

3.6.4 Preparation of testis 

A male frog was anaesthetized in 0.1% 3-Aminobenzoeacid-ethyl-ester 

in ddH2O for 30min, cooled down in ice-cold water and killed by decapitation. The 

two testes were taken from the abdominal cavity by pulling out the yellow fat 

body, with which they are connected by connective tissues. Until use, the testes 

were stored in MBS/CS for maximal 7 days. 

3.6.5 In vitro fertilization of eggs and culture of the embryos 

For in vitro fertilization a piece of testis was minced in 1xMBS and mixed it with 

freshly laid eggs. Afterwards the embryos were cultured in 0.1xMBS at 16-23°C 

in 110mm Petri dish. 

3.6.6 Removal of the egg jelly coat 

One hour after fertilization or later, the egg jelly coat was removed in 

2% cysteine solution pH 7.8 for about 5min with gentle agitation in a conical glass 

flask. Embryos were washed three times with 0.1xMBS and cultured further in 

0.1xMBS at 16-23°C. 

3.6.7 Injection of embryos 

Injection needle was pulled from capillaries with the Microneedle Puller 

(setting: heat:800; pull:35; vel:140; time: 139; Sutter Instrument, model P-87). It 

was placed into the holder of the injection equipment (Medical System, model Pi-

100). The tip of the injection needle was broken carefully with Dumont tweezers. 

The needle was filled with 1-2µl nucleotide acid containing solution shortly before 

the injection. The injection volume was adjusted by choosing the injection 

pressure (25-30psi) and/or the injection duration (30ms-1s). 5nl nucleotide 

solution was injected into each blastomere. Embryos were injected at two to eight 

cell stages into the animal hemisphere. After injection, the embryos were 

incubated in 0.1xMBS at 16-23°C until the desired developmental stages in a 

60mm Petri dish covered with 1% agarose in 0.1xMBS. The saline was changed 

every day to increase the survival rates of the embryos. 
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3.6.8 Preparation of animal cap explants 

For the preparation of explants, injected embryos were transferred into 

3cm cell culture dishes covered with 1% agarose and filled with 0.5xMBS. 

Afterwards the animal caps were dissected with the Gastromaster (Xenotek 

Engineering, Belleville, IL, USA). Each animal cap was transferred into one well 

of a 96-well plate, which was covered with 50µl 1% Agarose and filled with 

100µl 0.5xMBS/BSA or 0.5xMBS/PIF, respectively. 

3.7 Histological methods 

3.7.1 Solutions 

AP buffer: 100mM Tris/HCl (pH 9.5), 50mM MgCl2, 100mM NaCl, 
0.1% Tween 20, 5mM Levamisole. 
 
AP staining solution: 4.5µl NBT, 3.5µl BCIP in 1ml AP buffer. 
 
A-PBS: 103mM NaCl, 2.7mM KCL, 0.15mM KH2PO4, 0.7mM NaH2PO4 pH7.5 
 
A-PBS-T: APBS with 0.1% Tween20 
 
Blocking buffer: PBT plus 10% heat inactivated serum 
 
Citrate buffer: Stock A: 0.1M citrate monohydrate (10.5g for 500ml solution) 
Stock B: 0.1M Trisodiumcitrate-dihydrate (14.7g for 500ml solution) 
Working Sol.: 9ml A with 41ml B to 450 ml ddH2O. pH should be 6. 
 
DAPI: Hoechst dye (1mg/ml) 1:1000 in APBS-T  
 
Dent’s Fixative: 80% methanol, 20% dimethyl sulfoxide (DMSO) 
 
Elvanol: 2.4g Moviol 4 (Hoechst, Frankfurt) were mixed with 6g glycerol and 6ml 
ddH2O and stirred at least for 2h at room temperature. Then 2ml 
0.2M Tris/HCl pH8.5 were added and incubated for 10min at 60°C. Afterwards 
50mg/ml DABCO (1.4-Diazabicyclo(2.2.2)-Octane) were added and centrifuged 
for 30min at 17000xg. Aliquots of the supernatant were stored at -20°C. 
 
MEMFA: 0.1M MOPS, 2mM EGTA, 1mM MgSO4, 3.7% formaldehyde (pH7.4 at 
23°C), prepare freshly. 
 
PBS: 137mM NaCl, 2.7mM KCl, 8mM Na2HPO4, 1.7mM KH2PO4 (pH7.2 at 23°C). 
 
PBT: PBS, 2mg/ml BSA, 0.1% Triton-X-100. 

3.7.2 Immunocytochemistry 

The vitelline membrane was removed from the embryos. 
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Subsequently, they were fixed in MEMFA for 1-2h at room temperature with 

rotation and rinsed afterwards with PBS. PBS was gradually replaced with 

methanol. The embryos were incubated in methanol at -20°C for at least over 

night. They were rehydrated by 80%, 50%, 0% methanol in PBS for 5min each, 

followed by a short 1x5min rinse with PBS and one rinse in PBT for 15min. The 

embryos were incubated in PBT plus 10% heat inactivated goat serum, blocking 

unspecific antibody binding sites at room temperature for 1h. The primary 

antibody was diluted in the blocking buffer and incubated over night at 4°C. 

Afterwards the embryos were washed 6 times with PBT for one hour. The 

secondary antibody coupled with alkaline phosphatase was diluted 1:1000 

blocking buffer. The embryos were incubated in this secondary antibody solution 

over night at 4°C. Subsequently, the embryos were washed 6 times with PBT for 

on hour. Prior to the stain, incubating the embryos twice in AP buffer for 30min 

blocked the endogenous alkaline phosphatases due to the addition of Levamisol 

to the AP buffer. The embryos were stained in 1ml staining solution in the dark for 

30 to 120min at room temperature. The staining reaction was stopped by rinsing 

the embryos in PBS. The stain was fixed in MEMFA over night. If necessary, the 

embryos were bleached with bleaching solution for 2h on a light box.  

3.7.3 Immunofluorescence on Embryo Sections 

The following protocol is based on Kunz et al. (Kunz et al., 2004) with 

modification for paraffin sections after Judy Wally 

(http://tgmouse.compmed.ucdavis.edu/HistoLab/ihc.htm). The embryos were 

fixed under rotation in MEMFA for one hour at room temperature. Afterwards, 

they were transferred into ice-cold Dent’s Fixative over night at -20°C. Prior to 

embedding, the embryos were rehydrated for 30min in 100mM NaCl, 

100mM Tris/HCl pH7.4. Embryos were again dehydrated with an ascending 

ethanol series of 50%, 70%, 80%, 96% and 100% for 2h each. The ethanol was 

replaced by incubating the embryos for two times two hours in Xylene. Then they 

were soaked in paraffin at 55°C for two times two hours. The embryos were 

orientated in moulds and the paraffin was hardened on a cooling plate. The 

embryos were sectioned to slices of 4µm and dried for 2h at 37°C. The paraffin 

was removed by the following steps: 2x10min Rotihistol (Roth), 

2min 100% Ethanol, 2min 96% Ethanol, 2min 80% Ethanol, 1min 70% Ethanol, 

1min 70% Ethanol, briefly in ddH2O. After a short rinse with citrate buffer, the 
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antigen was refolded by boiling the slides in citrate buffer in the microwave for 

two times seven minutes with a 2min break. The sections were cooled down to 

room temperature for at least 20min. A short rinse with ddH2O followed. Prior to 

immunostaining, unspecific antibody binding sites were blocked by incubation for 

one hour at room temperature in APBS-T with 20% heat inactivated lamb serum. 

The primary antibody was incubated over night at 4°C in APBS-T with 10% heat 

inactivated lamb serum. Subsequently, the slides were washed the following: 

2x5min in APBS-T, 5min in APBS-T with 0.3M NaCl, 2x5min in APBS-T. The 

secondary antibody was again incubated over night at 4°C in APBS-T with 

10% heat-inactivated lamb serum. Since the secondary antibody was labeled 

with a fluorescent dye the sections were kept in the dark from this step on. 

Afterwards the slides were washed the following: 2x5min in APBS-T, 5min in 

APBS-T with 0.3M NaCl. The DNA was stained for 10min with DAPI. The slides 

were washed for the last time for 5min in APBS-T. Afterwards they were dried 

and embedded in Elvanol. The cover slips were fixed with colorless nail polish. 

The sections were analyzed with fluorescence microscopy. 

3.8 Protein analysis 

3.8.1 Solutions 

3x Lämmli buffer: 150mM Tris pH6.8, 300mM DTT, 4% SDS, 30% glycerol,  
 
Blocked ProteinG-Sepharose Beads Fast Flow 4 (Amersham Pharmacia): 25µl 
beads in 25µl 20% BSA, 6.25µl 10µg/µl herring sperm DNA and 0.1% Tween20 
blocked over night at room temperature. 
 
Chemiluminescence reagents (ECL): 
Luminol solution: 0.44g luminol in 10ml DMSO, freeze in 1ml aliquots, store at 
-20°C; p-coumaric acid: 0.15g in 10ml of DMSO, freeze in 0.44ml aliquots, store 
at -20°C; 
solution 1 (100ml): 10ml 1M Tris/HCl pH 8.5, 1ml luminol, 0.44ml 
p-coumaric acid;  
solution 2 (100ml): 10ml 1M HTris/Cl pH 8.5, 60µl 30% H2O2 

 

GST-lysisbuffer: 1xHEMG, 0.5M NaCl, 0.1% NP-40, 1mM PMSF, 
2.5µg/ml Leupeptin, 10µg/ml Aproptinin, 0.7µg/ml Pepstatin 
 
GST-washbuffer I: 1xHEMG, 0.7M NaCl, 0.1% NP-40, 1mM PMSF, 
2.5µg/ml Leupeptin, 10µg/ml Aproptinin, 0.7µg/ml Pepstatin  
GST-washbuffer II: 1xHEMG, 0.7M NaCl, 0.01% NP-40, 1mM PMSF, 
2.5µg/ml Leupeptin, 10µg/ml Aproptinin, 0.7µg/ml Pepstatin 
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GST- urea-elutionbuffer: 1xHEMG, 8M Urea 
 
HEG buffer: 50mM Hepes pH7.6, 10% Glycerol, 1mM EDTA, 1mM DTT, 
1% TritionX-100, 1mM PMSF, 2.5µg/ml Leupeptin, 10µg/ml Aproptinin, 
0.7µg/ml Pepstatin 
 
HEG150: HEG buffer with 150mM NaCl 
 
HEG500: HEG buffer with 500mM NaCl 
 
1x HEMG: 25mM Hepes pH7.6, 0.1mM EDTA pH8, 12.5mM MgCl2, 
10% Glycerol 
 
LiCl-Solution: 10mM Tris pH8, 250mM LiCl, 0.1% NP40, 0.5% Na Desoxycholate, 
1mM EDTA 
 
Lysozyme solution: 0.5g/10ml GST-lysisbuffer 
 
PBS-PI: 136mM NaCl, 2.7mM KCl, 1.5mM KH2PO4, 6.5mM Na2HPO4, pH7.4, 
1mM PMSF, 2.5µg/ml Leupeptin, 10µg/ml Aproptinin, 0.7µg/ml Pepstatin 
 

3.8.2 In vitro translation 

In vitro translations of proteins were performed with the TNT® SP6 Quick 

Coupled Transcription/Translation System (Promega) according to the 

manufacturer’s protocol. 

3.8.3 Protein extract for SDS-PAGE with StrataClean™ resin 

The embryos were lysed in HEG500 buffer through pipetting up and 

down a 200µl tip. 50-100µl HEG500 were used per embryo. The lysate was 

incubated on ice for 20min and afterwards cleared via centrifugation at 4°C for 

10min at 14000rpm. The supernatant was transferred into a new tube. 

10µl StrataClean™ resin (Stratagene) were added per 10 embryos, vortexed for 

1min and incubated on ice for 10min. The StrataClean™ resin was pelleted by a 

short spin in the PicoFuge, the supernatant was discarded, and 3xLämmli buffer 

was added and boiled for 5min. An equivalent of 1 to 10 embryos was loaded per 

slot on a SDS-PAGE gel. 

3.8.4 Protein extract for SDS-PAGE with StrataClean™ resin and 

sonication 

The embryos were lysed in HEG500 through pipetting up and down a 

200µl tip. 50-100µl HEG500 were used per embryo. The lysate was incubated on 
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ice for 60min, sonicated 3x30sec with setting High in the Bioruptor (Diagenode) 

and cleared via centrifugation at 4°C for 10min at 14000rpm. The supernatant 

was transferred into a new tube. 10µl StrataClean™ resin (Stratagene) were 

added per 10 embryos, vortexed for 1min and incubated on ice for 10min. The 

StrataClean™ resin was pelleted by a short spin, the supernatant was discarded, 

and 3xLämmli Buffer was added and boiled for 5min. An equivalent of 1 to 10 

embryos was loaded per slot on a SDS-PAGE gel. 

3.8.5 SDS-PAGE and Western Blot Analysis 

SDS-PAGE (SDS-polyacrylamide gel electrophoresis) and Western 

blot analysis were carried out according to standard protocols (Sambrook et al., 

1989), and signals were detected by enhanced chemiluminescence solution in a 

relation of 1:1. The signals were exposed to X-ray film (Kodak) and developed 

according to the manufacturer’s protocol. 

3.8.6 Immunoprecipitation (IP) 

25µl blocked ProteinG-Sepharose Beads were reabsorbed in 0.5ml 

antibody supernatant under rotation for one hour at room temperature to bind the 

antibodies to the beads. The embryos were lysed in 50-100µl HEG500 per 

embryo with a yellow tip and incubated on ice for 20min. The lysate was cleared 

via centrifugation at 4°C for 10min at 14000rpm. The supernatant was transferred 

into a new tube. The lysate was split into the desired samples. One sample 

equivalent was put aside as the input sample. 25µl blocked antibody incubated 

ProteinG-sepharose suspension were added into the samples and incubated 

overnight with rotation at 4°C. The sepharose was pelleted by a gentle 

centrifugation at 4000xg for about 10sec. The supernatant was carefully removed 

and discarded. The beads were washed with a rotation lasting 15min at 4°C with 

the buffers as follows: 2xHEG150, 2xHEG500. After the last step, as much 

washing buffer as possible was removed carefully. The beads were boiled in 20µl 

3xLämmli buffer for 5min. The entire IP samples including input dilutions were 

loaded on an SDS-PAGE. 

3.8.7 ChIP-type Immunoprecipitation (ChIP-type IP) 

100 embryos were fixed in 10ml 1% formaldehyde (270µl of 37% stock 

solution) in 0.1xMBS 30 min at 37°C in tube on a roller. The reaction was 
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quenched by adding 500µl 2.5M glycine to a final concentration of 125mM. The 

embryos were washed twice with ice-cold PBS-PI. HEG150 was added to 4ml 

total volume and applied to the minicell of the FRENCH Press (2 times at 

1100psi). The lysate was centrifuged for 10min at 14.000rpm at 4°C. The 

supernatant was transferred to a new tube. 25µl blocked ProteinG-sepharose 

suspension was added to 1ml of lysate and incubated for 1h with rotation at 4°C. 

The ProteinG-sepharose was pelleted for 1min at 2000rpm. The supernatant was 

transferred to a new tube. The samples were split as desired. One volume was 

put aside as the input sample. The input sample was precipitated with 2 volume 

equivalents ice-cold acetone, kept at -20°C for 30min and pelleted for 30min with 

20,000xg at 4°C. The pellet was air-dried and resuspended in 3xLämmli buffer. 

The antibody and 25µl blocked ProteinG-sepharose suspension were added and 

incubated with rotation overnight at 4°C. For the ChIP-type IP with rat monoclonal 

antibodies, 25µl ProteinG-sepharose were preabsorbed with antibody out of 

0.5ml of antibody supernatant for 1h at room temperature. After binding of the 

crosslinked chromatin to the antibody and ProteinG-sepharose, the 

ProteinG-sepharose/Protein/DNA-complex was pelleted by centrifugation for 

1min at 2000rpm. The supernatant with the unbound, non-specific chromatin was 

removed carefully. The ProteinG-sepharose/Protein/DNA-complex was washed 

with 15min rotation at 4°C with the 500µl of buffers: HEG150 one wash, HEG500 

two washes, LiCl solution two washes. After the last washing step as much 

washing buffer as possible was removed carefully. The beads were boiled in 20µl 

3xLämmli buffer for 20min. The total of 20µl IP sample plus input dilutions were 

loaded on an SDS-PAGE gel.  

3.8.8 Purification of GST-tagged, recombinant proteins 

The expression vectors were transformed into Escherichia coli strain 

BL21. A starter culture was grown over night at 37°C. The starter culture was 

diluted 1:100 and grown until at 37°C to an OD595 of 0.6. A 1ml aliquot was taken 

out for the uninduced state. The protein expression was induced with 1mM IPTG 

for 1-2h at 37°C. Another 1ml aliquot was taken out for the induced state. The 

cells were harvested at 4,000xg for 20min and the supernatant was discarded. 

The pellet was resuspended in 15ml GST-lysis buffer per 1l culture volume. 200µl 

lysozyme solution were added per 1l culture volume and rotated for 30min at 

4°C. Afterwards the lysate was frozen in liquid N2 and thawn at 37°C for three 
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times. To shear the genomic DNA, the lysate was sonicated 3x30sec with 

amplitude of 50% with a microtip. Warming up was avoided by putting the tube 

on ice. The lysate was cleared via centrifugation for 30min at 15.000rpm, 4°C. 

Samples from supernatant and pellet were frozen away for the purification 

analysis on a SDS-PAGE. Prior to the GST purification, the glutathione 

sepharose beads were washed with 5-10 bed volumes of GST-lysis buffer. 300µl 

beads were added to 20ml of crude lysate and rotated for one hour at 4°C to 

allow binding of GST-fusion protein to glutathione beads. Afterwards the beads 

were washed three times with 5ml GST-washbuffer I and three times with 

5ml GST-washbuffer II for 15min at 4°C. The GST-fusion protein was eluted off 

the beads with GST-urea-elutionbuffer for 2h at RT. A second elution was 

performed overnight at RT. Again aliquots of washing steps, elution steps and 

beads was analyzed by SDS-PAGE.  

3.9 Chromatin Analysis 

3.9.1 Solutions 

Buffer A1: 60mM KCl, 15mM NaCl, 4mM MgCl2, 15mM HEPES (pH7.6), 0.5% 
Triton X-100, 0.5mM DTT, 10mM sodium butyrate, 1mM PMSF, 
2.5µg/ml Leupeptin, 10µg/ml Aproptinin, 0.7µg/ml Pepstatin 
 
Dialysis buffer: 5% Glyercol, 10mM Tris pH8, 1mM EDTA, 0,5mM EGTA 

 
HEG buffer: 50mM Hepes pH7.6, 10% Glycerol, 1mM EDTA, 1mM DTT, 1% 
TritionX-100, 1mM PMSF, 2.5µg/ml Leupeptin, 10µg/ml Aproptinin, 
0.7µg/ml Pepstatin 

 
HEG150: HEG buffer with 150mM NaCl 
 
HEG150S: HEG150 + 1%SDS 
 
HEG500: HEG buffer with 500mM NaCl 

 
LiCl-Solution: 10mM Tris pH8, 250mM LiCl, 0.1% NP40, 0.5% Na Desoxycholate, 
1mM EDTA 

 
Lysis buffer: 140mM NaCl, 15mM HEPES pH 7.6, 1mM EDTA, 0.5mM EGTA, 
0.5mM DTT, 0.1% sodium deoxycholate, 10mM sodium butyrate, 1mM PMSF, 
2.5µg/ml Leupeptin, 10µg/ml Aproptinin, 0.7µg/ml Pepstatin 
1xMBS (1xModified Barth’s Saline): 5mM HEPES, 88mM NaCl, 1mM KCl, 
0.7mM CaCl2, 1mM MgSO4, 2.5mM NaHCO3 (pH7.6 at 23°C), add the CaCl2 

before use 
 

PBS: 136mM NaCl, 2.7mM KCl, 1.5mM KH2PO4, 6.5mM Na2HPO4, pH7.4  
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PBS-PI: 136mM NaCl, 2.7mM KCl, 1.5mM KH2PO4, 6.5mM Na2HPO4, pH7.4, 
1mM PMSF, 2.5µg/ml Leupeptin, 10µg/ml Aproptinin, 0.7µg/ml Pepstatin 
 
PCI: Phenol:Chloroform:Isoamyl alcohol 25:24:1 saturated with 10mM Tris pH8.0, 
1mM EDTA (Sigma) 

 
PFA: para-formaldehyde, 37% - 320µl aliquots. For 30ml of solution: 
11.1g para-formaldehyde in 20ml ddH2O heated in a water bath with magnetic 
stirring. 400µl 1M KOH was added. When the para-formaldehyde was dissolved, 
volume was brought to 30ml. 320µl aliquots were frozen by plunging in liquid 
nitrogen. Aliquots were stored at -80°C. Prior to use, they were thawn at 65°C 
water bath. Each aliquot was used only once. 

 
ProteinG- or A-sepharose-suspension: Block ProteinG or A-Sepharose beads 
(Fast Flow 4, Amersham Pharmacia) in 1 volume 20% BSA and ¼ volume 
2.5µg/µl Herring sperm DNA over night at room temperature 

 
Proteinase K: 10mg/ml  

 
RNase: 1mg/ml in ddH2O 

 
Sarcosine: 10% solution N-lauroylsarcosine in ddH2O 

 
TE: 10mM Tris-HCl pH7.4, 1mM EDTA pH 8.0 

3.9.2 In Situ Chromatin Immunoprecipitation (ChIP)  

The In-Situ ChIP protocol was modified for Xenopus laevis embryos 

after Hörz and colleagues (Reinke and Horz, 2003). 100 embryos were fixed in 

10ml 1% formaldehyde (270µl of 37% stock solution, Sigma) in 0.1xMBS 30min 

at 37°C in tube on a roller. The reaction was quenched by adding 

500µl 2.5M glycine to a final concentration of 125mM. The embryos were washed 

twice with ice-cold PBS-PI. HEG150 was added to 4ml total volume and applied 

to the minicell of the FRENCH Press (2 times at 1100psi). The lysate was 

centrifuged for 10min at 14.000rpm at 4°C. The supernatant was transferred to a 

new tube. 50µl blocked ProteinG-sepharose suspension was added to 2ml of 

lysate and incubated for 1h with rotation at 4°C. The ProteinG-sepharose was 

pelleted for 1min at 2000rpm. The supernatant was transferred to a new tube. 

The samples were split as desired. The antibody and 50µl blocked 

ProteinG-sepharose suspension were added and incubated with rotation 

overnight at 4°C. For the ChIP with rat monoclonal, 50µl ProteinG-sepharose 

were preabsorbed with antibody out of 2ml of antibody supernatant for 1h at 

room temperature. After binding of the fixed chromatin to the antibody and 
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ProteinG-sepharose, the ProteinG-sepharose/Protein/DNA-complexes was 

pelleted by centrifugation for 1min at 2000rpm. The supernatant that contained 

unbound, non-specific DNA was removed carefully. The 

ProteinG-sepharose/Protein/DNA-complex were washed with 15min rotation at 

4°C with the 500µl of buffers: HEG150 one wash, HEG500 two washes, 

LiCl solution two washes, HEG150 two washes. About 100µl HEG150 was left on 

the bead after the last wash. 1/20 volume equivalent of 20% SDS was added and 

incubated 2h at 4°C with rotation. The elution was repeated. The eluates were 

combined and adjusted to a sample volume of 200µl with HEG150S. The 

combined eluates were incubated to reverse Protein-DNA-crosslink by heating at 

65ºC overnight. The samples were cooled down to room temperature. 1µl RNase 

was added to the samples and incubated for 30min at 37°C. Afterwards 10µl 

Proteinase K were added and incubated 2h at 37°C. The samples were adjusted 

to a volume of 400µl with 0.1xTE pH 8.0. The DNA was recovered by PCI 

extraction. The DNA was precipitated with 1/25 volume equivalent 5M NaCl, 

1µl Glycogen, 1 volume equivalent isopropanol for 1h at -20°C and centrifuged 

for 40min at 4°C at 14000rpm. The DNA pellet was washed twice with 

70% ethanol and dissolved in 50µl ddH2O. 

3.9.3 Douncer ChIP  

The Douncer ChIP protocol was modified for Xenopus after Orlando 

and colleagues (Chanas et al., 2004). 200 embryos were homogenized in 10ml of 

buffer A1 + 1%PFA (320µl of 37% solution) at 17°C in a Douncer with a type 

“small” pestle (3 strokes). The lysate was transferred to 15ml Flacon tube and 

incubated for 15min at 17°C (total time starting from beginning of 

homogenization). 1.8ml glycine solution was added, mixed and incubated for 

5min at 17°C. Afterwards the tubes were placed on ice. The lysates were 

centrifuged for 5min, 3500rpm at 4°C. The supernatant was discarded. The pellet 

was resuspended in 3ml of buffer A1 and centrifuged for 5min, 3500rpm at 4°C. 

This washing step was repeated three times. Afterwards the pellet was washed 

once in 3ml of lysis buffer and pelleted again by centrifugation for 5min 3500rpm 

at 4°C. The cross-linked material was resuspended in 2ml lysis buffer containing 

0.1% SDS and 0.5% Sarcosine and incubated for 10min at 4°C on a rotating 

wheel. To shear the eluted chromatin, the lysate was sonicated using the 

Bioruptor eleven times at level High for 30sec in a 15ml tube with 30sec break in 
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between. After the sonication the solution was again rotated for 10min and 

centrifuge for 5min, 3500rpm at 4°C. The supernatant was transferred to a new 

tube. The pellet was again resuspended in 2ml lysis buffer containing 0.1% SDS 

and 0.5% Sarcosine and incubated for 10min at 4°C on a rotating wheel. The 

lysate was centrifuged again for 5min, 3500rpm at 4°C. The supernatants were 

combined and cleared twice via centrifugation at 14000rpm for 10min. The 

chromatin lysate was frozen in liquid N2 and stored at -80°C until use.  

For immunoprecipitation with monoclonal rat antibodies, 50µl blocked 

ProteinA-sepharose beads were pre-coupled for 60-90min with 50µg rabbit 

anti-rat antibodies or mouse anti-rat IgM at room temperature in PBS. Coupled 

beads were washed with PBS and transferred to the appropriate mount of 

monoclonal supernatant.  

For preclearing 50µl blocked ProteinA-sepharose suspension were 

added to 1ml of lysate and incubate 1h with rotation at 4°C. The sepharose was 

pelleted for 1min at 2000rpm. Beads were discarded and the supernatant taken. 

The samples were split as desired. The antibody and 50µl blocked 

ProteinA-sepharose suspension were added and incubated with rotation 

overnight at 4°C. After binding of the fixed chromatin to the antibody and 

ProteinA-sepharose, the ProteinA-sepharose/Protein/DNA-complexes were 

pelleted by centrifugation for 1min at 2000rpm. The supernatant that contained 

unbound, non-specific DNA was removed carefully. The 

ProteinA-sepharose/Protein/DNA-complex were washed with 15min rotation at 

4°C with the 500µl of buffers: lysis buffer with 0.1%SDS four washes, lysis buffer 

with 500mM NaCl and 0.1%SDS one wash, TE two washes. 250µl elution buffer 

were added to pelleted ProteinA-sepharose/Protein/DNA-complex, vortexed 

briefly and rotated at room temp 15min. The beads were pelleted for 1min at 

2000rpm room temperature. The supernatant was kept and the elution was 

repeated.  

The supernatants of the two elutions were pooled. 20µl 5M NaCl were 

added and DNA/proteins complexes were decrosslinked at 65°C over night. Also 

the input sample was adjusted to 1% SDS and 250mM NaCl. The sample eluates 

were cooled down to room temperature, 1µl RNase was added and incubated for 

30min at 37°C. 5µl Proteinase K were added and incubated at 37°C for 2h. The 

DNA was recovered by Phenol-Chloroform extraction. The DNA was precipitated 

with 1/25 volume 5M NaCl, 1µl Glycogen, 1 volume isopropanol for 1h at -20°C 
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and centrifuged for 40min at 4°C at 14000rpm. The DNA pellet was washed twice 

with 70% ethanol and dissolved in 50µl ddH2O. 

3.9.4 Cesium chloride isopycnic centrifugation 

50 embryo equivalents (eeq) of the Douncer ChIP lysate were used to 

test the correct degree of protein/DNA crosslink. 2.272g CsCl were dissolved into 

the lysate and filled up with lysis buffer to an end volume of 4ml. In order to 

establish the gradient, the samples were centrifuged for 36-48h, 195.000xg at 

20°C. The gradient was collected in 0.5ml fraction from the bottom to the top. The 

density of each fraction was measured with a refractometer. Properly crosslinked 

protein-DNA complexes have a density of 1.39g/cm3 (Orlando et al., 1997). The 

fractions were dialyzed against the dialysis buffer with a 

12-14K MWCO membrane over night at 4°C. 1µl RNase was added to each 

sample and incubated for 30min at 37°C. 1.5µl 20%SDS and 2.5µl Proteinase K 

were added and incubated for 1h at 55°C. The crosslink was removed over night 

at 65°C. The DNA was recovered by PCI extraction. The DNA was precipitated 

with 1/25 volume 5M NaCl, 1µl Glycogen, 1 volume isopropanol for 1h at -20°C 

and centrifuged for 40min at 4°C at 14000rpm. The DNA pellet was washed with 

70% ethanol and dissolved in 20µl ddH2O. The DNA was visualized by agarose 

gel electrophoresis. 

3.9.5 Quantification of enriched DNA through ChIP with real-time-PCR 

3.9.5.1 ΔΔCt Method 

Requirement: slope of standard curves = -3,32 to -3,34 

Correlation R ≥0,99 

• Average of Ct values 
• Ct probe - Ct internal control = ΔCt 
• ΔCt probe - ΔCt calibrator = ΔΔCt 
• 2-ΔΔCt 

 

 

 

3.9.5.2 Quantification via standard curves 

• Average of Ct values 
• Calculation of relative DNA amounts via standard curve 
• Normalization to input 
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4 Results 

4.1 Generation of tools for ChIP analyses 

Antibodies that are applicable in chromatin immunoprecipitation (ChIP) 

analyses are a prerequisite for successful experiments. I chose to use 

monoclonal antibody, because they have a high specificity and selectivity for their 

antigen. Furthermore, immortal hybridoma cell lines, which secrete the 

monoclonal antibodies into the cell culture medium, are a constant source for the 

antibodies. The antibodies were raised in cooperation with the laboratory of 

Elisabeth Kremmer (GSF München). I cloned and purified the GST-fusion 

proteins (see 3.8.8). Positive primary hybridoma cell supernatants were 

prescreened by the Kremmer laboratory concerning their specificity to bind the 

antigen, but not to the GST-fusion part. Using Western blot and 

immunoprecipitation (IP) analyses, positive clones were further analyzed for their 

specific detection of in vitro translated antigens in our lab. Subsequently, the 

Kremmer laboratory stabilized the positive tested hybridoma clones. Clones were 

then tested in IPs and ChIP-IPs for their specificity and affinity to their antigen 

(see 3.8.6 and 3.8.7).  

4.1.1 Antibodies against MyoD 

The up-regulation of myoD expression requires autocatalysis 

(Steinbach et al., 1998), yet direct binding of the MyoD protein to its own locus 

has not been shown so far. In order to perform ChIP, antibodies against MyoD 

were required. Hopwood and colleagues described a monoclonal antibody for the 

specific detection of the transactivation domain (TD) of MyoD (see Figure 12B, 

right side) (Hopwood et al., 1992). Since this antibody was no longer available, 

new antibodies were raised against MyoD. Three stabilized αMyoD monoclonal 

antibodies MYO 7F11, MYO 5A9, and MYO 6C8 were characterized by Western 

blot analysis in whole embryo lysates of morula (NF6) and tailbud stage embryos 

(NF22) (see 3.8.3, Figure 12A). Since the myoD expression is activated at the 

early gastrula stage (Hopwood et al., 1989), all three antibodies detected MyoD 

in tailbud stages (NF22), but not in the morula stages (NF6). Although the 

theoretical molecular weight of MyoD is 32kDa, it showed a decreased mobility 

upon SDS-PAGE analysis as described previously (Hopwood et al., 1992). In 
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contrast to the monoclonal antibodies MYO 7F11 and MYO 5A9, which 

additionally recognized multiple unspecific bands, the MYO 6C8 antibody 

detected a single band of correct molecular weight in the appropriate embryonic 

stage. In Figure 12B, the antigen epitopes of MyoD were mapped. All three 

antibodies recognize an epitope located in the N-terminus of the protein. They 

could not detect the other two MyoD deletion constructs, which lack the bHLH or 

the C-terminal domain of MyoD. Based on this, the transactivation domain (TD) 

appears to be the preferred antigenic domain. Interestingly, also the published 

antibody recognized the MyoD protein in this domain (Hopwood et al., 1992). 

After Western blot analysis, the antibodies were tested for their ability to 

immunoprecipitate MyoD from embryonic extracts, which were treated under 

ChIP conditions (Figure 12C). The endogenous MyoD levels are low, the protein 

migrates at the same size as the IgG heavy-chain, and therefore it is not 

detectable in the IP assay. For that reason, 4-cell stage embryos were injected 4 

times into the animal pole of all four blastomeres with 400pg of Myc-tagged MyoD 

RNA. These embryos were cultured until late blastula/early gastrula stage and 

treated further according to the ChIP-type protocol (see 3.8.7). Untreated 

embryos were used as a control. The IPs were analyzed by immunoblotting with 

an antibody directed against the Myc-epitope. Whereas MYO 7F11 and 

MYO 5A9 precipitated only ~12.5% of the injected Myc-tagged MyoD, the IP with 

MYO 6C8 resulted in approximately 50% precipitated input protein. 
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Figure 12: Characterization of monoclonal antibodies against MyoD 

A) Western blot analysis of MyoD with rat monoclonal antibodies MYO 7F11, MYO 5A9 
and MYO 6C8. In each lane protein lysates of 10 embryo-equivalent (eeq) of morula 
(NF6) and tailbud stage embryos (NF22) were loaded. The lysates were treated 
according to the protein extraction protocol of Strataclean resin. The arrow marks the 
MyoD band. B) Left side: Determination of the antibody epitope of MYO 7F11, MYO 5A9, 
and MYO 6C8 in in vitro translated, 35S-labelled MyoD truncations.  N term: N-terminus 
and bHLH domain of MyoD (encoded on plasmid pUE16), C-term: C-terminus of MyoD 
(encoded on plasmid pUE24), bHLH: basic helix-loop-helix domain of MyoD (encoded on 
plasmid pUE28), mock: no DNA added. The arrow marks the MyoD band. The asterisk 
labels unspecific bands. Bottom panel: autoradiograph of radiolabeled in vitro translated 
proteins serves as translation and loading control. Right side: Cartoons representing 
MyoD truncations. C) “ChIP-type” IP with MYO 5A9, MYO 7F11, and MYO 6C8. 4 eeq of 
Myc-tagged MyoD-MT (pRR107 mRNA injected) or UI (uninjected) lysates were applied 
to the IP. Prot-G showed the background that sticks to the ProteinG-sepharose beads. 
Input dilutions of 100%, 50%, 25%, and 12.5% were loaded on the SDS-PAGE to 
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estimate the precipitation efficiency of the IP. Immunoblotting was performed using αMyc 
antibody 9E10. 

 

Based on these results, MYO 6C8 was identified as the antibody most 

suitable for Western blot analyses, IPs and ChIP experiments.  

4.1.2 Antibodies against Lef1, Tcf1 and Tcf3 

No Xenopus-specific Lef/Tcf antibodies were available, which enable 

the characterization of the Lef/Tcf1 transcription factors, when and where they 

are bound to their binding sites of the model promoters myf5 and siamois, 

Therefore, antibodies were raised against Tcf1, Lef1 and Tcf3. The focus of this 

study was on maternal and early zygotic Wnt signaling until the gastrula stage. 

Therefore, we raised no antibodies against Tcf4, because Tcf4 is not expressed 

until the neurula stage (Konig et al., 2000; Kunz et al., 2004). Figure 13A shows a 

schematic overview of the Lef/Tcf transcription factors and their conserved 

domains. To reduce or exclude cross-reactivity, the antibodies were directed 

against the most divergent domain between the β-catenin binding domain and the 

HMG box (see Figure 13B). 
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Figure 13: Lef/Tcf protein family and antigens for monoclonal antibodies 

A) Schematic representation of Tcf splice variants (modified after (van Noort and Clevers, 
2002)). Red box marks the β-catenin binding domain, green box the HMG box, a DNA 
binding motif. On the right the numbers of splice variants in Xenopus laevis are listed. B) 
Amino acid sequence of xTcf1, xLef1 and xTcf3. Red letters mark the β-catenin binding 
domain, green letter mark the HMG box and purple letters the antigen peptides (Tcf1, 
Tcf3) or GST-fusion-protein (Lef1).  

 

We obtained five monoclonal antibody against Lef1 LEF 1F12, 

LEF 3D4, LEF 5B10, LEF 5F12, LEF 3F2, against Tcf1 four monoclonal 

antibodies Tcf1 7E3, Tcf1 5F2, Tcf1 1D12, Tcf1 2F4 and against Tcf3 two 

monoclonal antibodies Tcf3 6B6 and Tcf3 3E5. These antibodies were tested for 

their ability to immunoprecipitate their respective antigen. In vitro translated, 
35S-labeled Lef1 protein was used to test the IP performance of the αLef1 

antibodies supernatants LEF 1F12, LEF 3D4, LEF 5B10, LEF 5F12 and LEF 3F2 

(Figure 14A). LEF 3D4 and LEF 5B10 precipitated over 50% of the Lef1 protein, 

LEF 1F12 and LEF 5F12 around 50% and LEF 3F2 around 25%. Since the 
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endogenous proteins migrate approximately at the same molecular weight as the 

heavy chain of the IgG signal, overexpressed Myc-tagged Tcf1 and Tcf3 proteins 

were used to test the IP performance in vivo. The Myc-tag increases the 

molecular weight of about 10kDa. Therefore the Myc-tagged Lef/Tcf proteins can 

be distinguished from the endogenous protein and the IgG heavy chain signal. 

250pg of MT-Tcf1-FLAG or MT-Tcf3-FLAG mRNA was injected 4x in to the 

animal pole of all four blastomeres of 4-cell stage embryos. These embryos were 

cultured until late blastula/early gastrula stage. Uninjected embryos were used as 

a control. The IPs were analyzed by immunoblotting against the Myc-epitope. 

Tcf1 1D12 and 2F4 precipitated more than 50% of the injected Myc-tagged Tcf1 

protein. Tcf1 7E3 and 5F2 precipitated in addition to the Tcf1 an unspecific 

protein. Tcf3 3E5 precipitated also over 50% of the overexpressed protein, but 

Tcf3 6B6 precipitated barely anything of the overexpressed Tcf3 protein. 
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Figure 14: Screening of monoclonal antibodies against xLef1, xTcf1 and 

xTcf3 for immunoprecipitation 

A) IP of in vitro translated, 35S-labeled Lef1 protein (L, encoded by plasmid pLef1-FLAG) 
or mock translation (M, no DNA) with the indicated antibodies. As a background control 
for the IP served the ProteinG-sepharose  (Prot G) without antibody. In order to estimate 
the IP efficiency, input dilutions were loaded on the gel. The figure shows an 
autoradiograph. B) IP with the indicated antibodies. 250pg of MT-Tcf1-FLAG mRNA for 
αTcf1 antibodies or 250pg of MT-Tcf3-FLAG mRNA for αTcf3 antibodies were injected 4x 
into the animal pole. 2eeq of the injected (Tcf1 or Tcf3) and UI (uninjected) lysates were 
applied to the IP. Prot-G showed the background. 50% of the input was loaded in the 
SDS-PAGE. The immunoblotting was performed with αMyc antibody 9E10. The asterisk 
marks an unspecific band. IgG-H: heavy chain of IgG, IgG-L: light chain of IgG. 

 

The calculated theoretical molecular weight of Lef1 is 42kDa, which 

corresponds to band a detected in Figure 15A. An equivalent band at the same 

molecular weight was detected by LEF 1F12, LEF 3D4 and LEF 5B10. In addition 
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LEF 1F12 and LEF 5B10 recognized a second moiety (band b, Figure 15A). This 

signal is likely to be the Xenopus version of Lef1-S (molecular weight of murine 

Lef1-S: 31.8kDa). Lef1-S is a short, dominant negative version of the Lef1 

protein, which lacks the β-catenin binding domain. This short variant does not 

originate from differential splicing, but from differential promoter usage (Hovanes 

et al., 2001). In Figure 15B, the ability of the αTcf1 antibodies (Tcf1 7E3, 

Tcf1 5F2, Tcf1 1D12, Tcf1 7E3) to recognize their antigen by immunoblotting was 

tested on whole embryo lysate of gastrula stages (NF11) (see 3.8.4) in 

comparison to in vitro translated Tcf1c-Flag protein (see 3.8.2). Only Tcf1 2F4 

recognized a protein of approximately 55kDa (Figure 15B band 1). But this signal 

did not correspond to the molecular weight signal of Tcf1c-Flag (Figure 15B, 

band 2). This observation could be due to splice variants of Tcf1, which have 

been already described in (Van de Wetering et al., 1996). Therefore, we 

performed developmental Western blot analysis to identify other splice variants in 

lysate from various stages (see 3.8.3): 2-cell stage, blastula stage (NF8), gastrula 

stage (NF11), neurula stage (NF18), and tailbud stage (NF26). Hoppler and 

colleagues described for Xenopus two of the five Tcf1 splice variants (Roel et al., 

2003), originally identified for human Tcf1 by Clevers and colleagues (Van de 

Wetering et al., 1996). The Western blot analysis in Figure 15C suggested that 

five splice variants exist in all tested stage during Xenopus development. The 

appearance of the splice variants in Figure 15C in comparison to Figure 15B is 

due to the fact that different embryo lysis protocols were used (see 3.8.3 vs. 

3.8.4); the embryo lysis protocol used in Figure 15C includes an additional 

sonication step. In addition to these splice variants, it was shown that maternal 

Tcf1 is more abundant in the ventral half of very early embryos as in the 4-cell 

stage (also see Appendix Figure 1). β-catenin served as a loading control, which 

is distributed equally during this stage (Fagotto and Gumbiner, 1994). 

Unfortunately, the endogenous Tcf3 protein was not detectable with any of the 

αTcf3 antibodies.  
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Figure 15: Screening of monoclonal antibodies against Lef1 and Tcf1 for 

Western blot analysis 

A) Western Blot analysis of endogenous Lef1 protein with the indicated monoclonal 
supernatants. 2eeq were loaded per lane of morula (NF6) or tailbud stage embryos 
(NF22) (see 3.8.3). Arrows a and b mark putative variants of Lef1 and Lef1-S, 
respectively. B) Immunoblotting of endogenous xTcf1 protein with rat monoclonal 
supernatants Tcf1 5F2, Tcf1 2F4, Tcf1 1D12 and Tcf1 7E3. 1eeq was loaded per lane of 
gastrula stage embryos (NF11) (see 3.8.4). Arrows 1 and 2 mark putative splice variants 
of Tcf1. C) Developmental Western blot analysis with one eeq of the following stages: 
2-cell stage, blastula stage (NF8), gastrula stage (NF11), neurula stage (NF18) and 
tailbud stage (NF26). The immunoblotting was prepared against Tcf1 with Tcf1 2F4. 
Arrows 1-5 mark different splice variants of Tcf1. The lysates were performed after the 
protein extraction protocol with Strataclean resin. D) Distribution of Tcf1 in a 4-cell stage 
embryo. WE: 1eeq of a whole embryo, VH: 1eeq ventral half, DH: 1eeq dorsal half. The 
immunoblotting was performed against Tcf1 with Tcf1 2F4. The blow up of the shorter 



Results   67  

exposure shows immunoblotting with Tcf1 2F4 and β-catenin antibody PGDS 1B1. The 
lysates were prepared according to the protein extraction protocol with Strataclean resin. 

 

 Based on these results, αLef1 antibodies LEF 1F12, 3D4 and 5B10 

were identified to be suitable for Western blot analyses, IPs and ChIP-IPs, 

Tcf1 2F4 in ChIP-IPs and Western blot analyses, Tcf1 1D12 in ChIP-IPs and 

Tcf3 3E5 in ChIP-IPs. 

4.1.2.1 Specificity of the antibodies 

The antibodies of the Lef/Tcf protein family members were directed 

against the most divergent domains between the β-catenin binding domain and 

the HMG box (see Figure 13). Nevertheless, these regions still share a sequence 

similarity of about 40%. Therefore, the antibodies were tested for cross-reactivity. 

In Figure 16, the antibodies LEF 3D4, LEF 5F12, Tcf1 1D12, Tcf1 2F4, Tcf3 3E5 

were analyzed by IP with in vitro translated, 35S-labeled Lef1, Tcf1, Tcf3 and 

Tcf4a alone or as a mixture. LEF 3D4 and LEF 5F12 were specific for Lef1, 

Tcf1 1D12 and Tcf1 2F4 for Tcf1. The αLef antibodies enriched the smaller band 

of the in vitro translated Lef1 double band. The αTcf3 antibody Tcf3 3E5 did not 

precipitate its antigen Tcf3.  
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Figure 16: Lef/Tcf antibodies precipitate their specific in vitro translated 

antigen, but no other members of the protein family 

2µl of in vitro translated, 35S labeled Lef1 (encoded by plasmid pLef1-FLAG), Tcf1 
(encoded by plasmid pTcf1-FLAG), Tcf3 (encoded by plasmid pTcf3-FLAG), Tcf4a 
(encoded by plasmid pTcf4a-FLAG) and mock control (no DNA) were supplied 
individually or as a mix of all 5 TNT reactions IPs with the indicated antibodies; Protein-G 
sepharose beads alone served as a control (beads). In addition to the 50% input, on each 
gel 10% of the input of the mixed in vitro translation reactions was loaded in the first lane 
of all gels to make it easier to discriminate between the four Lef/Tcfs. The figure shows 
an autoradiograph of the 35S-labeling with an exposure time of 24h. 

 

The antibodies LEF 3D4, LEF 5F12, and Tcf1 2F4 precipitated also in 

vivo specifically their over-expressed antigen out from a mixture of all four Lef/Tcf 

protein family members (Figure 17). Tcf1 1D12 also precipitated its specific 
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antigen Tcf1, but less efficiently than Tcf1 2F4. Therefore, the subsequent 

experiments were performed with Tcf1 2F4 solely. Tcf3 3E5 was again not able 

to precipitate Tcf3 or any of the other Lef/Tcfs. 

 

 

Figure 17: Lef1 and Tcf1 antibodies precipitate specifically their 

overexpressed antigen in vivo 

250pg each of in vitro transcribed MT-Tcf1-FLAG mRNA, MT-Lef1-FLAG mRNA, MT-
Tcf3-FLAG mRNA and MT-Tcf4a-FLAG mRNA were injected into 4 cell stage embryos 
and cultured until the blastula stage (NF9). Four eeq Tcf-Mix injected embryo lysate (X) 
or untreated embryos (UI) were used for the IPs with the indicated antibodies. ProteinG- 
sepharose beads (Protein G) served as a background control. 33% of the inputs were 
also loaded on SDS-PAGE. The immunoblotting was performed with αMyc antibody 
9E10. IgG-HC: IgG heavy chain.  

 

In addition to the IP specificity in non-crosslinked embryo lysates, also the IP 

specificities of the antibodies under formaldehyde-fixed ChIP conditions were 

investigated. Lysates of formaldehyde-fixed, Tcf-mix injected or uninjected 

embryos were applied to the ChIP-type IP. The αLef1 antibodies LEF 3D4 and 

LEF 5F12 precipitated predominantly Lef1. Unanticipated, they also precipitated 

the other three Tcf proteins Tcf1, Tcf3 and Tcf4a under ChIP conditions 
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(Figure 18). The αTcf1 antibody Tcf1 2F4 enriched primarily Tcf1 but also the 

other three Tcf family members Lef1, Tcf3 and Tcf4a. The αTcf3 antibody 

Tcf3 3E5 was able precipitated all 4 Lef/Tcfs, but did not preferentially bind to 

Tcf3. In order to exclude a DNA-dependent co-precipitation of the Lef/Tcfs, the 

IPs were performed with and without the presence of DNaseI. This revealed, that 

the co-precipitation of the Lef/Tcf protein occurred in a DNaseI-treatment 

independent manner. 

 

Figure 18: Lef/Tcf antibodies precipitate all four over-expressed Lef/Tcf 

family members upon formaldehyde fixation under ChIP conditions 

250pg each of in vitro transcribed MT-Tcf1-FLAG mRNA, MT-Lef1-FLAG mRNA, 
MT-Tcf3-FLAG mRNA and MT-Tcf4a-FLAG mRNA were injected into 4-cell stage 
embryos, cultured until the blastula stage (NF9) and fixed for ChIP-type IP (see 3.7.7).  
3eeq Tcf-Mix injected embryo lysate (X) or untreated embryos (UI) were used for the 
“ChIP”-type IPs with LEF 3D4, LEF 5F12, Tcf1 2F4 and Tcf3 3E5. ProteinG-sepharose 
was blocked for Lef1 and Tcf1 IPs in the presence of 0.05% Tween20 (beads Lef1+Tcf1), 
for Tcf3 without Tween20 (beads Tcf3). The proteins were bound to the antibodies with or 
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with out the presence of 10U DNaseI (Roche). 33% of the inputs were loaded on the 
SDS-PAGE. The immunoblotting was performed with αMyc antibody 9E10. IgG-HC: 
IgG heavy chain. For the analysis of DNaseI treatment, the chromatin was decrosslinked; 
the DNA was purified and analyzed on a 1% agarose gel. 

 

A direct interaction of Lef/Tcf protein was not reported so far, although 

Lef/Tcf binding sites frequently appear as multimers on promoter elements like 

the siamois promoter (Brannon et al., 1997). Still, it is possible that Lef/Tcf 

proteins interact in someway directly or indirectly. The co-precipitation under 

formaldehyde-fixed conditions was further analyzed with the bimolecular 

fluorescence complementation technique (BiFC) (Hu et al., 2002). However, all 

attempts to demonstrate an interaction between Lef/Tcf proteins in vivo were 

fruitless, although the positive controls bJun fused to the N-terminal part of YFP 

and bFos fused to the C-terminal part of YFP showed the YFP fluorescent signal. 

From these results, I conclude that the αLef1 LEF 3D4 and LEF 5F12 

and αTcf1 Tcf1 2F4 are highly specific and do not cross-react with the other 

Lef/Tcf family members. The Tcf3 antibody Tcf3 3E5 was not able to precipitate 

its antigen under native conditions. Unexpected, the αTcf1, αLef1 and αTcf3 

antibodies precipitated their own antigen. This precipitation is very specific under 

unfixed condition. The co-precipitation their family members under 

formaldehyde-fixed ChIP conditions in a DNaseI-treatment independent manner 

suggests that they are some uncharacterized parts of multimeric complexes, 

although they do not interact directly. 

4.1.2.2 Lef/Tcf protein expression pattern 

The mRNA expression pattern of the Lef/Tcf transcription factors is 

analyzed for Xenopus embryos (Kunz et al., 2004; Molenaar et al., 1998; Roel et 

al., 2003). The influence of these factors on the patterning of the Xenopus 

embryo is also very well studied via loss- and gain-of-function experiments (for 

example (Houston et al., 2002; Liu et al., 2005; Roel et al., 2002; Standley et al., 

2006)). However, the protein expression patterns of Lef1 and Tcf1 were not yet 

described for Xenopus embryos due to the lack of antibodies. Therefore, the 

protein expression pattern was analyzed by immunocytochemistry (ICC, see 

3.7.2) and immunofluorescence analysis (IF, see 3.7.3) on paraffin sections. 

Lef1 mRNA is detectable from late blastula stage (NF9) on (Molenaar 

et al., 1998). However, the protein was not detected until neurula with ICC or IF 

(Appendix Figure 1). This might be due to low protein levels or low detection 
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sensitivity of the antibody in these assays. The ICC and IF analyses showed that 

Lef1 is expressed tissue-specifically. In neurula stage embryos, a stain in the 

dorso-anterior region is visible (Appendix Figure 6). From this stage on, the 

protein expression pattern is consistent with the published mRNA pattern 

(Molenaar et al., 1998). In the tailbud stage, the protein is detectable in the brain, 

retina, neural crest and dermis (Appendix Figure 7 and 8).  

The maternal Tcf1 protein is more abundant on the ventral side of the 

embryo until blastula stage (Appendix Figure 1). During gastrula stage, it starts to 

accumulate on the dorsal portion of the ectoderm (Appendix Figure 2). From 

neurula stage on the protein is ubiquitously expressed (Appendix Figure 2-5).  

With the exception of the protein localization at the blastula stage, the observed 

protein expression pattern matches that of the mRNA described by Roel et al. 

(Roel et al., 2003). 

From this analysis, I conclude that the generated antibodies against 

Lef1 and Tcf1 are not only suitable for IP and ChIP experiments, but are 

appropriate to study the in vivo protein localization by ICC and IF. 

4.2 ChIP Analyses 

4.2.1 SRF localizes to the myoD maintenance enhancer in 

activin-induced animal cap explants 

In order to understand its complex regulation, the locus of the myoD 

gene was analyzed with a transgenic reporter gene approach. This study 

revealed two important regulatory elements. One element – the maintenance 

enhancer (ME) – is required to stabilize the myoD transcription subsequent to its 

induction during the gastrula stage. A functional serum response factor (SRF) 

binding site is located in this ME element (Xiao, 2003). The direct binding of SRF 

to this site was verified by ChIP with somite explants containing majorly myoD 

expressing cells and pre-gastrula stage animal cap explants with myoD 

non-expressing cells (Nentwich, 2003). With this ChIP analysis, I aimed to show 

the association of SRF to the myoD maintenance enhancer in an 

activation-dependent manner, which was not shown by Oliver Nentwich 

(Nentwich, 2003). Therefore, the ChIP against SRF on the myoD locus was used 

to establish a more sophisticated method in our lab. The protocol differs in three 

crucial steps: First of all, I established the SRF ChIP with whole embryos of 
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mid-gastrula stage (NF11), which have just induced the myoD expression in the 

preinvoluted mesoderm, and late neurula stage embryos (NF18), which have 

maintained the myoD expression in paraxial mesoderm (also see Figure 31). 

Subsequently, I extended my analysis by using induced and non-induced animal 

cap explants of neurula stage embryos (see Figure 19) to investigate, if the SRF 

binding to the myoD locus is induction-dependent. Secondly, I perform the lysis 

and the chromatin shearing as a single step by applying the explants to the 

FRENCH Press. Oliver Nentwich lysed his explants prior to the chromatin 

fragmentation, which he performed by sonication with a Branson sonifier microtip. 

Thirdly, I performed quantitative real-time PCR analysis of the enriched DNA 

fragments of amplicons located along almost the entire myoD locus. Oliver 

Nentwich performed his analysis with semi-quantitative PCR analysis; moreover, 

he used only two PCR amplicons located at the maintenance enhancer and in 

the 3’ untranslated region of the myoD gene. 

The flowchart in Figure 25 shows the experimental workflow of the 

subsequent ChIP analysis (modified after (Reinke and Horz, 2003)): Selection 

and fixation of the animal cap explants, lysis of the embryos with subsequent 

shearing of the chromatin with the FRENCH Press, IP, purification of the DNA 

and quantification of the enriched DNA with real-time PCR. For simplicity 

reasons, this ChIP protocol was called In Situ ChIP. The establishment of these 

steps was discussed in detail in the subsequent chapters. 

4.2.1.1 Titration of activin containing cell culture supernatant for mesoderm 

and muscle induction of animal caps 

In order to distinguish between myoD expressing and non-expressing 

cells of the same embryonic stage, we made use of the animal caps assay 

(Green et al., 1992). In this assay, the blastocoel roofs of blastula stage embryos 

are excised with the Gastromaster (Figure 19A). The animal cap explants are 

cultured further with or without the presence of mesodermal inducer. Animal 

caps, which are cultured in medium containing the TGFβ ligand activin, formed 

tissues of the mesodermal lineage in a dosage-dependent manner (Figure 19A) 

(Sokol et al., 1990). Non-induced animal cap explants stayed in the ectodermal 

lineage and developed to atypical epidermis (Ariizumi and Asashima, 2001). In 

Figure 19B, different dilutions of the activin containing medium were titrated to 

induce muscle tissue. The 1:10 dilution in 0.5xMBS/BSA showed the best 
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enrichment of muscle-induced cells, identified by the protein stain of the structural 

muscle protein Myosin (MF20) (Figure 20B5). The in situ hybridization in Figure 

20C showed expression of myoD mRNA in the activin treated animal caps. 

Although less cells show myoD expression than MF20 staining, the induction of 

muscle differentiation with the 1:10 activin medium dilution was confirmed (Figure 

20C8). This difference is due to variations of the induction.  

 

Figure 19: Titration of activin containing medium for muscle induction in 

animal caps 

A) Schematic representation of the animal cap assay. Animal cap explants are excised in 
the blastula stage (NF9), cultured in saline with or without mesodermal inducer until the 
required stage, which is here in C the neurula stage (NF18) and in B the tailbud stage 
(NF30) (modified after (Ariizumi and Asashima, 2001)). B) Titration of activin containing 
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medium analyzed with ICC against MF20 (myosin heavy chain, a structural muscle 
component) to examine the muscle induction. 1: sibling embryos of tailbud stage (NF30) 
as a staging and staining control. 2: animal caps cultured without inducer. 3: animal caps 
cultured with activin containing medium diluted 1:2 in 0.5xMBS/BSA. 4: activin containing 
medium diluted 1:4. 5: activin containing medium diluted 1:10. Red arrow marks the 1:10 
dilution, which was used for subsequent muscle induction of animal caps. C) MyoD in situ 
hybridization of neurula stage animal caps (NF18) treated with activin containing medium 
diluted 1:10 in 0.5xMBS/BSA  (8) or without inducer (9) were performed to investigate the 
activation of myoD. 6: sibling embryos as negative control with MyoD probe. 7: sibling 
embryo as positive control with MyoD probe. Scale bar in A: 770µm, B-E and H,I: 800µm, 
F,G: 300µm.  

4.2.1.2 Optimizing the chromatin shearing conditions 

Having established the induction conditions for the animal cap 

explants, the fragmentation of the chromatin was the next crucial step, which had 

to be calibrated. It is an important step, because it determines the resolution of 

the ChIP. If the chromatin fragments are too large, amplicons, which are in close 

proximity, cannot be distinguished. If the fragments are too small, they are 

undetectable by PCR. Moreover, applying too much energy in order to generate 

smaller chromatin fragments might damage antigens such as modifications of 

histone tails. Following the protocol after (Reinke and Horz, 2003), the chromatin 

was sheared by the FRENCH Press. Exerting high pressure followed by abrupt 

relaxation leads to the shearing of the chromatin. Appling the lysate two times to 

the FRENCH Press was adequate to shear the chromatin to a size of 

500-1000bp (Figure 20). 

 

 

Figure 20: Testing of chromatin shearing conditions with the FRENCH 

Press Minicell set up 

200 neurula stage embryos were formaldehyde-fixed (In Situ ChIP protocol), lysed in 4ml 
HEG150 and subjected to the Minicell of the FRENCH Press for up to 5x. After each 
round, a 100µl aliquot was put aside. The DNA of these aliquots was purified. Half of the 
DNA was treated with RNase. The shearing of the DNA was analyzed on a 1% agarose 
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gel. Already after two rounds of treatment, the DNA was sheared to an average size of 
500-1000bp. As the size standard served the 100bp ladder.  

4.2.1.3 Quantification of the precipitated DNA via TaqMan technology-based 

real-time PCR  

The precipitated DNA was quantified with real-time polymerase chain 

reaction (PCR). The advantage of this PCR method is that the data are collected 

in the exponential amplification phase. Thus, the dynamic range of the detection 

is increased compared to quantitative PCR, which measures at the end-point of 

the PCR reaction. The increase in DNA is measured by a fluorescent dye. Two 

different ways of detection are available. One stain is SYBR Green, a fluorescent 

dye that intercalates sequence-unspecifically into double-stranded DNA and 

becomes thereby fluorescent. The other staining technique is a 

fluorescent-labeled oligonucleotide used by the TaqMan probe that binds within 

the PCR amplicons after the denaturing step. Upon DNA polymerase elongation, 

the fluorescent-labeled oligonucleotide is chopped up. This decouples the 

fluorescent and quenching dyes and thus fluorescence increases in each cycle, 

proportional to the amount of probe cleavage. I decided to use the TaqMan 

detection system, because the probe hybridizes to its target sequence and thus 

increases the specificity of the PCR detection. Unlike with SYBR Green staining, 

the PCR products generated by non-specific amplification due to mis-priming or 

primer-dimer artifacts do not generate a signal. 

The fluorescent signal is recorded and plotted as an amplification 

curve over 45 PCR cycles. The baseline reflects the background fluorescence. It 

is set, according to the manufacturer’s protocol suggestion, from cycle 3 until the 

two cycles before the fluorescent signal is detectable. In order to measure DNA 

amplification in the exponential range of the PCR reaction, a threshold has to be 

determined. Therefore, a standard curve with serial dilution 1:10 of mock ChIP 

DNA over a range of five orders of magnitude (Figure 21A) was performed with 

real-time PCR. (Mock ChIP DNA is DNA purified under ChIP conditions, but 

without immunoprecipitation.) The threshold was set at the level, where the 

standard curve was approximating the optimal slope. The optimal PCR reaction 

leads to a doubling of the amplified DNA. The standard curve is plotted as log10 

by the PCR program (Figure 21B). As a consequence, the optimal slope is -3.322 

(23.322=10). Figure 21 shows as an example the standard curve of the amplicon 

MyoD ME (SRF) (also see Figure 22A). The PCR amplification is therefore 
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determined by the threshold and is measured by the Ct value. The Ct value 

displays the cycle number, when the fluorescent signal of the PCR reaction 

crosses the threshold. 

 

Figure 21: Standard curve on mock ChIP DNA with real-time PCR 

A) Screen shot of amplification curves from individual PCR reactions. Green bar: 
threshold level of the MyoD SRF (ME) amplicon, DNA amounts used: five 1:10 dilution, 
starting concentration 300ng = 46,875 genomic copies (1 genomic copy = 12.8pg). Each 
dilution is accomplished in three replicates. B) Log10 of Standard curve of the input 
dilutions with determinants for the standard curve of the MyoD SRF (ME) amplicon. The 
slope gives the number of slope of the standard curve. The intercept is the value, at 
which the ordinate is crossed. R2 shows the correlations of three PCR replicates. 

 

Table 2 shows a summary of the standard curves of all used PCR 

amplicons for the αSRF ChIP. From the slopes of these standard curves are 

close to the optimum of -3,322, the slopes differ less than 0.1 and the correlation 

of the PCR reaction replicates is at 0.99. Therefore, the standard curves fulfill the 

prerequisite for the ΔΔCt quantification method (see above). 
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Amplicon Baseline Threshold Slope Intercept 

Correlation 

of PCR  

triplicates 

R2 

Egr1 3 – 22 0.15 -3.325187 43.853996 0.98 

MyoD ME 

(SRF) 
3 - 23 0.079 -3.327664 45.038616 0.99 

MyoD IE 3 - 23 0.245 -3.327779 47.399097 0.99 

MyoD P  3 - 23 0.052 -3.369062 47.300529 0.99 

MyoD E3  3 - 21 0.052 -3.270968 42.98996 0.99 

xGAPDH 

MGB 
3 - 27 0.2 -3.325291 47.638584 0.99 

 

Table 2: Standard curves of the different real-time PCR amplicons 

 

After the determination of the standard curves, the quality of the mock 

ChIP DNA was investigated. In Figure 22A, equal copy number of plasmid DNA 

(encoded by plasmid pMD-6,0/+4,7GFP2) and mock ChIP DNA were compared 

with each other. The difference of nine cycles reflects an approximate 

discrepancy of 10,000-fold. It was analyzed, whether this large difference was a 

reflection of the chemical damage in the ChIP DNA sample, or whether it was 

due to some inhibitor of the PCR reaction. Mixing plasmid DNA and mock ChIP 

DNA showed no considerable retardation of the PCR amplification in comparison 

to the plasmid DNA alone. The experiment in Figure 22B demonstrated that the 

PCR reaction is inhibited in cis at the level of the DNA. If the inhibition was in 

trans, this should be reflected by a gap of nine cycles compared to plasmid DNA 

alone. 
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Figure 22: Comparison of the amplification efficiency of plasmid DNA 

compared to mock ChIP DNA 

A) About 870000 copies of the plasmid pMD-6,0/+4,7GFP2, encoding the myoD locus 
and about 870000 genome copies of the mock ChIP DNA were tested with real-time PCR 
on the MyoD SRF amplicon, NTC: no template control B) Plasmid-DNA 870.000 copies, 
Plasmid-DNA 870.000 copies + mock ChIP DNA 870.000 copies. NTC: no template 
control 
 

For the quantification of the ChIP results, the ΔΔCt method was 

chosen. It involves two steps of normalization. In a first step, the ΔCt value is 

calculated by subtraction of the Ct value of the internal standard from the Ct 

value of the target gene. In a second step, the ΔΔCt value is determined by 

subtraction of the ΔCt value of calibrator from the ΔCt value of the probe. The 

results is then calculated by using the formula 2-(ΔΔCt). For the ΔΔCt calculation to 

be valid, the amplification efficiencies of the target and the endogenous reference 

must be approximately equal. The slopes should be close to -3.32 and should not 

differ by more than 0.1. This was fulfilled by the standard curves used for the 

ChIP analysis (see Table 2).  
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4.2.1.4 SRF is bound to the MyoD maintenance enhancer in activin-treated 

animal cap explants 

Following the determination of the shearing conditions, at first ChIP 

experiments with the αSRF antibody with gastrula-stage embryos (NF11) 

compared with neurula stage embryos were performed (data not shown). These 

preliminary experiments confirmed Oliver Nentwich’s data that SRF is bound to 

the maintenance enhancer in neurula stage embryos (NF18). Subsequently, the 

ChIP analysis with the αSRF antibody was extended and performed with activin 

treated and untreated animal cap explants of neurula stage (NF18) (Figure 23) to 

prove that SRF is exclusively bound to the myoD maintenance enhancer on the 

active locus. Figure 23A depicts a schematic chart of the used amplicons. As the 

internal control, the housekeeping gene GAPDH was chosen, which is expressed 

in all analyzed stages (see Figure 29). The promoter amplicon at the egr1 locus 

served as a positive control, because the immediate early gene egr1 is 

constitutively bound by the SRF protein independently form its transcriptional 

status (Nentwich, 2003; Panitz et al., 1998). Four amplicons were investigated on 

the myoD locus. The MyoD probe at the maintenance enhancer (ME) and at the 

third exon (E3) were placed across putative SRF binding sites (CArG box) with 

the consensus sequence CC(A/T)6GG (Latinkic et al., 2002). Two other probes 

located at the induction enhancer (IE) and the promoter (P) are not in close 

proximity to any SRF binding sites. The amplicons are at least 500bp apart from 

each other. With an average size of 500bp of the chromatin fragments, they are 

distinguishable from each other. Therefore, they served as negative controls in 

cis. In Figure 23B, I showed that the SRF protein is bound in an 

activation-dependent manner to the maintenance enhancer of myoD, which is 

demonstrated by the 5-fold increase in SRF binding upon myoD induction. In 

addition, I also showed a binding of SRF to a site at the end of the 2nd intron. The 

binding of SRF to this site was not observed before. Further analyses will be 

needed to investigate its function. In contrast to Oliver Nentwich’s data 

(Nentwich, 2003) our data suggest an increase in SRF binding to the Egr1 

promoter. This is dependent on the activation upon activin treatment in animal 

caps of neurula stage (NF18) (2-fold increase).  
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Figure 23: SRF is bound to the MyoD maintenance enhancer in 

activin-treated animal caps  

A) Schematic chart of the TaqMan amplicons. The chart is not drawn to scale, for scale 
see Figure 28. CArG: SRF binding site. Orange boxes: coding sequence, exons. Red bar: 
TaqMan probe. ME: maintenance enhancer. IE: induction enhancer. P: promoter. E3: 
exon 3. B) shows a representative αSRF ChIP experiment with activin treated and 
untreated animal caps in neurula stage (NF18) plotted as the alteration in SRF binding 
upon activin induction. 100 animal caps were used per IP. Amplicons were normalized to 
GAPDH. As the calibrator, the IP of the untreated animal caps was used. 

 

Taking my ChIP experiments with whole embryos and animal cap 

explants into account, I demonstrated that SRF is bound to the maintenance 

enhancer exclusively on the activated locus. In addition, I showed that SRF is 

also bound to the 3rd exon of the myoD locus in an activation-dependent 

manner.  

4.2.2 αLef/Tcf ChIP at the siamois and myf5 loci was irreproducible 

The canonical Wnt/β-catenin signaling cascade is one of the most 

important pathways during development. The Wnt signal is transmitted by 

β-catenin, which enters the nucleus upon Wnt stimulation, binds to Lef/Tcf 

transcription factors and thus activates target gene expression (Wang and 
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Wynshaw-Boris, 2004). During Xenopus laevis development it is crucial for the 

axis determination, where it induces its target the organizer gene siamois. The 

promoter of siamois contains five Lef/Tcf binding sites, three at the promoter 

possess activating and two repressing functions (see Figure 5B) (Brannon et al., 

1997). Furthermore, the canonical Wnt signaling exerts repressive function. In the 

organizer region, it prevents the expression of the muscle determining 

transcription factor myf5. This locus exhibits two distal Lef/Tcf binding sites, 

which are involved in the repression of the gene (Yang et al., 2002). Since the 

same signaling cascade can have different functions in regards to gene 

expression, I aimed to study, if Tcf1 and/or Lef1 in concert with Brg1 and 

β-catenin are bound to the Lef/Tcf binding sites of the model promoters myf5 and 

siamois (also see 4.1.2). Additional TaqMan probes were generated, which are 

located upon the Lef/Tcf sites of the Myf5 locus and at the Siamois promoter 

(Figure 24, Table 3). 

 

Figure 24: Schematic chart of the TaqMan amplicons used for the 

αLef/Tcf ChIP 

The chart shows an overview of the used TaqMan amplicons, it is not drawn to scale 
WRE: Lef/Tcf binding site. Orange boxes: coding sequence, exons. Red bar: TaqMan 
probe.  

 

Amplicon Baseline Threshold Slope Intercept 

Correlation 

of PCR 

triplicates 

R2 

Siamois 

promoter 
3 – 23 0.2 -3.340479 48.376823 0.99 

Myf5  Tcf 3 - 25 0.05 -3.249039 44.888489 0.99 

 

Table 3: Additional amplicons for αLef/Tcf ChIP 
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In this ChIP assay, blastula stage embryos (NF9), in which the siamois 

gene is actively transcribed in the organizer region, were compared to early 

tailbud stage embryos (NF24) (calibrator) that do not express siamois. The 

analysis was performed three times with the αLef antibodies LEF 3D4 and 5F12 

and αTcf1 Tcf1 1D12 and 2F4. Siamois promoter, Myf5 Tcf and GAPDH (internal 

control) amplicons were analyzed. Unfortunately, the ChIPs were inconsistent 

and not reproducible with respect to specific enrichments of Lef1 or Tcf1 at the 

siamois and myf5 loci (data not shown). In addition, ChIPs with αβ-catenin PGDS 

7D12 and αBrg1 XB 3F1 antibodies (Singhal, 2005) on the siamois locus with the 

same set up as for the αLef/Tcf ChIPs were also irreproducible with regard to the 

specific enrichments (data not shown).  

The failure of these ChIPs might have multiple reasons. One critical 

determinant is the abundance of the expected antigen-DNA interaction. Early 

Xenopus laevis embryos contain only few cells, but are very rich in maternal 

proteins stored as yolk. This stored pool of the antigen might interfere in the IP 

with the antigen bound to the DNA and thus decrease the IP efficiency. Tcf1, 

β-catenin and Brg1 are high abundant and maternally expressed proteins, which 

are also stored in the yolk pool. Due to this reason, I changed the protocol. I 

made this effort, to rule out the above-mentioned technical problem. 

4.2.3 The switch to the Douncer ChIP protocol helps to remove 

excessive proteins 

The portion of the maternally stored proteins might interfere in the IP 

with the chromatin-associated antigens. This is especially critical in young 

embryos like in the blastula stage, in which the embryos contain only about 

15,000 cells (see Table 5). The ChIP procedure was changed to a modified 

protocol after Orlando and colleagues (Chanas et al., 2004). For simplicity 

reasons, the protocol will be called Douncer ChIP (see 3.9.3). Two major 

differences of this protocol compared to the In Situ ChIP are introduced in terms 

of the preparation of the chromatin lysate (Figure 25).  

The first major change is that the chromatin in the Douncer ChIP is 

fixed during mechanical lysis of the embryos with a douncer. Thereby, the 

chromatin remains in the crude pellet. This pellet is washed several times. 

Subsequently, the chromatin is eluted from the pellet by addition of the 

detergents SDS and N-lauroylsarcosine. With these washing and elution steps 
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the chromatin becomes purified to a certain extend and 

non-chromatin-associated proteins are washed out. In the In Situ ChIP though, 

the chromatin is fixed in the intact cells. In doing so, the generated cell lysate 

containing the chromatin is rather crude. This crude lysate of the early Xenopus 

embryos is very likely to contain a lot of antigen maternally stored in the yolk, 

which could interfere with the IP of the antigen in the chromatin fraction.  

The second important protocol difference is the shearing of the 

chromatin. The chromatin of the In Situ ChIP is sheared with the Minicell of the 

FRENCH Press. This Minicell can hold up to 4ml of lysate, but there are always 

about 250µl of liquid, which remains in the minicell. After 2 rounds with the 

FRENCH Press this leads at least to a loss of 25% of the lysate. The Bioruptor, a 

sonication waterbath, circumvents this large loss of lysate material, since the 

shearing takes place in the test tube and does not need to be transferred. 
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Figure 25: Comparison of ChIP methods 

Flowchart of the different ChIP protocols In Situ ChIP and Douncer ChIP 
 

In the subsequent chapters, the establishment of the various steps 

including the quality control of the chromatin of the Douncer ChIP will be 

discussed. For the detailed procedure see chapter 3.9.3.  

4.2.3.1 Titration of the chromatin lysate condition  

In order to determine the fixation conditions, initially 2% and 4% 

para-formaldehyde (PFA) were used to fix the chromatin under conditions of the 

Douncer ChIP. Subsequently, the crosslink of the chromatin was analyzed with a 

CsCl isopycnic centrifugation (see 3.9.4) (Orlando et al., 1997). Although the 

cross-linked chromatin peak was correlated with the correct density of 1.39g/cm3, 
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it was not properly sheared (Figure 26A). For my ChIP analyses, the optimal DNA 

fragment size is between 500 and 1000bp due to the spacing of the amplicons 

(see Figure 28). The DNA fragments of this chromatin are much larger. This was 

due to over-fixation of the chromatin (Orlando et al., 1997). Therefore, also the 

concentration of 1% PFA was tested. This is in contrast to Chanas et al., 2004, 

who fixed their chromatin of Drosophila embryos with 1.8% PFA. The chromatin, 

which was fixed with 1% PFA, was sheared reproducible to the expected DNA 

size of around 500bp (Figure 26B).  

 

Figure 26: Titration of the PFA concentration 

A) 200 gastrula stage embryos (NF11) fixed with either 2% PFA or 4% PFA and were 
sonicated 3x30sec in the Bioruptor in 0.5ml lysis buffer. 50eeq were analyzed by CsCl 
isopycnic centrifugation. The figure shows half of the DNA of each centrifugation fraction 
from bottom (lane 1) to the top of the tube (lane 8) on 1% agarose gels. The red arrows 
mark the fraction with the proper density of the crosslinked chromatin. The asterisk marks 
free DNA in fraction 1 of the CsCl isopycnic centrifugation with 2% PFA. The low bright 
band in the upper gel shows unspecific background. B) 200 gastrula stage embryos 
(NF11) fixed with either 1% or 2% PFA were sonicated 3x30 sec in the Bioruptor in 0.5ml 
lysis buffer. The DNA was de-crosslinked and purified. A small portion was visualized on 
a 1% agarose gel.  
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Although the chromatin of gastrula stage embryos could be sheared to 

the required size around 500bp, the chromatin of neurula stage embryos and 

older could not be fragmented. This might be due to the higher chromatin density 

of the older embryos. Therefore, the lysis buffer volume was increased to 2ml. In 

Figure 27, the settings for the shearing in a volume of 2ml were tested. 

Sonication of 11 times 30sec in the Bioruptor sheared the chromatin of the proper 

density reproducible to the correct size of around 500bp. Since the majority of the 

chromatin peaked at around 500bp, the sonication was not carried further in 

order to avoid destruction of histone tails or other chromatin-associated factors. 

 

Figure 27: Sonication conditions 

A) 200 neurula stage embryos (NF18) fixed with 1% PFA were sonicated 5-8x 30sec and 
8-11x 30sec in a second experiment in the Bioruptor in 2ml lysis buffer. The DNA was de-
crosslinked, purified and visualized with a 1% agarose gel. B) 200 neurula stage embryos 
(NF18) fixed with 1% PFA and sonicated 11x30sec in the Bioruptor in 2ml lysis buffer. 
50eeq were analyzed by CsCl isopycnic centrifugation. The figure shows the DNA of 
each centrifugation fraction on 1% agarose gels. The red arrows mark the fraction with 
correct density of the crosslinked chromatin.  
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Based on these results, I have established the following settings: 200 

embryos are fixed with 1% PFA. After the elution in 2ml lysis buffer, the lysate is 

sonified 11x30sec with the Bioruptor in order to shear the chromatin to a 

fragment size of 500bp.  

4.2.3.2 TaqMan amplicons and method of quantification  

For the subsequent ChIP analysis of the myoD locus against the 

various histone modifications and MyoD (see 4.2.4), eight amplicons were 

analyzed. Six of the eight amplicons were derived from the myoD locus 

(Figure 28). Aside from the previously used amplicons MyoD ME, MyoD IE, 

MyoD P and MyoD E3 (see Figure 23), two additional probes were designed. The 

probe MyoD 5’Region is located about 1,3kb 5’ of the maintenance enhancer 

element, while the locus and the amplicon MyoD E1 at the 3’ portion of the first 

exon. The probes at the myoD locus have a distance of 400bp up to 1500bp to 

each other (Figure 28). Since the chromatin was sheared to an average size of 

500bp (see Figure 27), this should allow discrimination by PCR.  

 

 

Figure 28: Amplicons derived from the myoD locus and unrelated 

control amplicons 

Schematic diagram of the myoD locus and the TaqMan amplicons. The TaqMan 
amplicons are depicted as red bars. The numbers underneath are the center of the 
amplicons. The amplicons have an average length of about 100bp. The grey boxes 
outline the enhancer and promoter elements on the myoD locus. The white boxes mark 
the exons. The numbers underneath the boxes are the starting and end point of the 
elements/exons. ME: maintenance enhancer; IE: induction enhancer; P: promoter; 1: 
exon1; 2: exon 2; 3: exon3. 
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The probes GAPDH and TH/bZIP are unrelated to the myoD locus. 

They are not only unrelated to the myoD locus in terms of the physical proximity 

to the myoD locus, also their expression pattern is distinct. The housekeeping 

gene gapdh is transcribed ubiquitously throughout the analyzed stages blastula 

(NF9), gastrula (NF11), neurula (NF18), tailbud (NF26) and activin treated or 

untreated animal caps (Figure 29). TH/bZIP is a gene that is activated by thyroid 

hormone during metamorphosis (Brown et al., 1996) (also see chapter 2.1). It 

was reported to be inactive during embryogenesis. This was verified for the 

analyzed embryonic stages under investigation by RT/PCR (Figure 29). As 

described previously in chapter 4.2.1.4, the probe GAPDH is located in the 

coding region of the GAPDH gene, whereas the PCR amplicon TH/bZIP was 

placed at the promoter. 

 

 

Figure 29: GAPDH and TH/bZIP mRNA expression profile during early 

Xenopus development 

RT-PCR of the myoD-unrelated amplicons GAPDH and TH/bZIP of the different stages 
used in the Histone ChIP (see 3.9.4.2). Blastula stage embryos (NF9), gastrula stage 
embryos (NF11), neurula stage embryos (NF18), tailbud stage embryos (NF26), neurula 
stage, activin-treated animal caps AC NF18 PIF, neurula stage, untreated animal caps 
AC NF18 UI, plasmid pcDNATH/bZIP as positive control for TH/bZIP RT-PCR. Histone 
H4 serves the control for equal mRNA loading of the different samples. –RT is the control 
for genomic DNA contaminations of the samples. 
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Amplicon Baseline 
Thres

hold 
Slope Intercept 

Correlation of 

PCR triplicates 

R2 

GAPDH  3 - 20 0.1 -3.320723 32.753403 0.99 
MyoD 
5’Region 3 - 22 0.089 -3.345328 36.610786 0.97 

MyoD ME 3 - 22 0.3 -3.286521 36.05439 0.98 
MyoD IE 3 - 22 0.235 -3.323773 35.379673 0.96 
MyoD P 3 - 23 0.05 -3.450624 35.82766 0.99 
MyoD E1 3 - 22 0.2 -3.108521 33.538055 0.98 
MyoD E3  3 - 20 0.1 -2.847332 33.888596 0.99 
TH/bZIP 3 - 20 0.21 -3.320156 32.8461 0.98 

 

Table 4: Amplicons for Histone ChIP with Douncer protocol 

 

The ΔΔCt method to quantify ChIP has the advantage that it compares 

biological differences of two different samples. In doing so, the comparison 

expels the possibility to quantify a ChIP precipitation without a calibrator (other IP 

sample). Furthermore, it neglects differences of chromatin preparations. They 

can vary in their quality with regards to the DNA performance in the real-time 

PCR. This detriment can be circumvented by normalization to the input (mock 

ChIP DNA). Therefore, the method of quantification was changed to the following 

method: 

1. Average of Ct value (PCR duplicates): Av Ct 

2. Calculation of relative DNA amounts via standard curve:  

y=10((Av Ct – Intercept)/slope) 

3. Normalization to input: y / Input DNA amount 

4. Average of 3-4 independent IPs plus standard deviation 

4.2.3.3 Determination of the amount of antibody  

In Figure 30, the amount of commercially available antibody used for 

the histone ChIPs was determined. 1µg, 2µg, 4µg and 10µg of αH3K4me2 

antibody were tested. The signal of 4µg showed maximal enrichment at the 

MyoD P amplicon, which is in agreement with published data as the histone 

modification H3K4me2 is usually enriched at the promoter of actively transcribed 

genes (Sims and Reinberg, 2006). This enrichment was not further improved by 

using 10µg of the antibody. As a compromise, 4µg were used of the commercially 

available ChIP antibodies. 
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Figure 30: Titration of the antibody amount  

65eeq of neurula stage embryos (NF16) were used for ChIP with different antibody 
concentrations of αH3K4me2. A) 1µg, 2µg and 4µg. B) 4µg and 10µg. These ChIP 
experiments are quantified differently to chapter 4.2.4: 1., Average Ct. 2., DNA amount 
via standard curve 3., subtraction of IgG background, 4., normalization to Input, 
5., normalization to TH/bZIP. Analyzed amplicons were MyoD ME, MyoD IE, MyoD P, 
MyoD E3 and TH/bZIP (see Figure 30 and Table 4). The graphs display a single 
experiment each. 

4.2.4 Chromatin profiling of the myoD locus  

After the establishment the Douncer ChIP protocol, I proceeded with 

ChIP analyses of the myoD locus. The timing events of the cis regulatory 

elements of myoD are well studied. In addition to the functional SRF site at the 

maintenance enhancer, a transgenic reporter gene approach determined two 

important regulator elements within the induction enhancer: LS5, which is 

important for the induction, and LS9, which is necessary to prevent to early 

induction of myoD (Xiao, 2003). Nevertheless, a direct inducer was not identified 

so far. Factors that are involved in transcriptional silencing of the myoD locus are 

better understood. The accumulation of somatic H1 protein was shown to be 
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rate-limiting for the induction competence of the myoD expression (Steinbach et 

al., 1997). This observation suggests for a contribution of chromatin in the 

regulation of the myoD locus. For example, alterations of histone modifications 

might enable the induction or the repression of the gene. Therefore, a time 

course ChIP analysis of the myoD locus was performed with antibodies against 

histone modifications, which mark actively transcribed, committed or silenced 

loci. Commercially available antibodies were used to analyze the histone 

modification profile of the myoD locus. The histone proteins and the modifications 

of their N-terminal tails are highly conserved among all eukaryotes (Alberts et al., 

2004). Therefore, the antibodies cross-react across species (see 

www.abcam.com or www.upstate.com). As a mark for actively transcribed genes, 

antibodies against pan-acetylated histone H4 (H4ac) and dimethylated lysine 4 

on histone H3 (H3K4me2) were used (see Figure 9). For hallmarks of silent gene 

loci I used antibodies against di-methylated lysine 9 on histone H3 (H3K9me2) 

and tri-methylation of lysine 27 on histone H3. In order to quantitate the local 

nucleosomal density, ChIPs against histone H3 were performed. 

Up to now, SRF is the only direct, positive regulator of the myoD 

transcription (see chapter 4.2.1.4). The only candidate for the direct myoD 

induction is the MyoD protein itself, because the up-regulation of myoD 

expression from the basal expression to the proper induction requires 

autocatalysis (Steinbach et al., 1998). For that reasons, additional time-course 

ChIP experiments were performed with the αMyoD antibody MYO 6C8 to 

investigate, if the MyoD protein is at all bound to its own locus. 

With this ChIP approach I aimed to understand which and when 

histone modification marks appear during muscle cell determination and 

differentiation. Therefore, the following time-points of myoD transcription were 

analyzed (see Figure 31): In blastula stage embryos (NF9), myoD expression is 

not significantly induced yet, although a basal, ubiquitous myoD expression 

exists. The myoD expression is induced in prospective myoblasts in the gastrula 

stage (NF11). Neurula stage embryos (NF18) show stable myoD expression in 

presumptive myoblasts. In tailbud stage embryos (NF30), myoD expression 

begins to be down-regulated in postmitotic, differentiating myocytes. In order to 

distinguish between myoD expressing and non-expressing cells, the animal cap 

explants were used. In untreated, neurula stage animal cap explants, myoD is 

stably repressed in all cells (see Figure 19). In activin-treated, neurula stage 
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animal cap explants (NF18), stable myoD expression is enriched the explanted 

cells (see Figure 19).  

Figure 31 describes the potential histone modifications at the myoD 

locus. In the blastula, when myoD is basally and ubiquitously expressed, the 

histone modification H3K4me2 might be detectable, since it can also be found on 

committed but not yet activated promoters (Sims and Reinberg, 2006). After the 

induction of myoD in the gastrula stage, the embryo consists of a mixed 

population of myoD-expressing and non-expressing cells. Therefore, both 

typically active and inactive marks should be precipitated from the myoD locus. In 

the maintenance or stably silent phase of the myoD transcription, both silence 

and activation marks in the neurula and tailbud stages were expected to be 

detectable.  

 

Figure 31: Overview the analyzed embryonic stages 

Top row indicates the embryonic stages analyzed by ChIP. Second row shows the mRNA 
expression pattern of myoD with in situ Hybridization (ISH) (see 3.5.6). Third row 
describes the myoD expression pattern. Fourth row shows the potential histone marks, 
marks for active transcription in green, for repressed transcription in red. The histone 
modifications are listed after the Brno nomenclature (Turner, 2005) 

 

To have enough desired antigen-chromatin associations, 1x106 to 

1x107 cells are used for the ChIPs in general (see e.g. ChIP protocol collection at 

www.epigenome-noe.net). Since it is not possible to determine the exact cell 

number of an embryo, the amount of chromatin per IP was applied as embryo 

equivalents (see Table 5). In order to judge the quantities I used for my 

experiments, I had to determine the cell count. From the input samples, the 
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average DNA amounts were determined. With this value, it was possible to 

calculate the cell numbers per embryo with the knowledge that a Xenopus laevis 

nucleus contains 12.8pg DNA. By multiplication with the number of eeq per IP, I 

calculated the number of cells per IP. It is important to note that this number 

includes the total cell number of myoD-expressing and non-expressing cells. Due 

to technical reasons, it was not feasible to collect more than 100 eeq per IP 

reaction (≈ 1,6x106 cells), because for one replicate with the 6 antibodies plus 

IgG background control and input sample, 800eeq were necessary. Since the 

ChIPs were repeated four times, we collected 3200eeq of blastula embryos. The 

same amount was used for gastrula stage embryos (NF11) (≈ 4x106 cells). For 

neurula and tailbud stage embryos, 40eeq (≈ 4x106 cells) or 30eeq (≈ 1x107 cells) 

per IP were used. For the two replicates of the animal cap assay, 3200 animal 

cap explants were dissected and 100 animal cap equivalents (≈ 7x105 cells) were 

used per IP sample. In summary, about 12,000 embryos and animal cap explants 

were collected for the subsequent ChIP data set. 

 

Stage Numbers of 
eeq per IP 

Average DNA 
amount 

Numbers of 
cells per IP 

Number of 
cells per 
stage 

Blastula (NF9) 100 21230 1,658,579 16,586 
Gastrula (NF11) 100 61027 4,767,713 47,677 
Neurula (NF18) 40 55064 4,301,863 107,547 
Tailbud (NF30) 30 118801 9,281,320 309,377 
AC UI (NF18) 100 9406 734,880 7,349 
AC PIF (NF18) 100 11294 882,373 8,824 

 

Table 5: Cell numbers used in the different stages.  

The average DNA amount is the average of eight individual measured input DNAs of 
each stage/explant. A Xenopus laevis nucleus contains 12.8pg DNA (assumption of 
diploid organism, source: www.bio.nagoya-u.ac.jp:8000/compG01.html). This was used 
to calculate the cell numbers. AC UI (NF18):, untreated animal caps of neurula stage 
(NF18). AC PIF (NF18): activin-treated animal caps of neurula stage (NF18).  

 

In Figure 30, the amount of antibody to use for the subsequent ChIP 

analyses was determined. Therefore, IPs with 4µg unspecific rabbit IgG were 

performed to investigate unspecific binding of the chromatin fragments to the 

ProteinA-sepharose beads. According to the manufacturer’s protocol, they have 

a binding capacity of 10µg/µl. Therefore, the inserted 15µl ProteinA-sepharose 

beads are not saturated with 4µg of antibody. Consequently, it is important to 

determine whether some amplicons stick more to the beads than other. Figure 32 
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displays this background. If I compare the individual and average binding levels 

off each stage, I can conclude that none of the amplicons adhered to a greater 

extend to the beads than the other amplicons. For unknown reasons, the 

chromatin of gastrula embryos offered the lowest background (see Figure 32, last 

columns “average”). The rather large standard deviations reflect the variations of 

the individual IP reactions. The averages of the IgG background were used to 

investigate the signal-to-noise ratio of the subsequent ChIP analysis.  

 

Figure 32: Average of IgG Background 

This graph shows the average of the IPs with 4µg unspecific rabbit IgG for each stage 
and each sample. The DNA amounts were calculated via the standard curves. The 
background is then plotted as % Input. The last columns (average) give the average 
background of each stage as the average of all 8 analyzed amplicons. 

 

Prior to the investigation of histone modifications, it is necessary to 

examine the nucleosomal density at the studied genomic loci. Figure 33 displays 

the results of the ChIP analysis with the antibody against total Histone H3. This 

ChIP indicates the relative nucleosomal density at the analyzed loci. This 

information is important to interpret the presence or absence of specific histone 

modifications. Figure 33B demonstrates the ration of αH3 ChIP signal over the 

average IgG background. This IP signal is at least 22-fold (tailbud stage embryos 

(NF30)) until up to 879-fold (gastrula stage embryos (NF11)) over IgG 

background. The precipitation efficiency of αH3 ChIPs, which is reflected by the 

%-Input value, is high compared to other antibodies like αH3K27me3 (see 
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Figure 37). Figure 33C represents the relative enrichments of the raw ChIP data 

of A in arbitrary units. From this graph, it is apparent that the H3 occupancy and 

thus the nucleosomal density at the maintenance enhancer (ME) is lower 

compared to the myoD gene body and the silent TH/bZIP promoter. In general, 

the relative density changes a lot during the analyzed stages. During the blastula 

stage, the chromatin appears to be more compacted. In gastrula stage, the 

nucleosome density seems to be rather low. This increases in neurula stages and 

decreases in the tailbud stage. The promoter region of the silent TH/bZIP locus 

appears to be nucleosome rich particularly in neurula, while the coding region of 

the actively transcribed housekeeping gene GAPDH harbors less nucleosomes. 

This corresponds to the findings that actively transcribed loci are loosely packed 

whereas the nucleosomal density is high in silenced loci (Nemeth and Langst, 

2004). The large standard deviations are discussed in the following chapter 4.2.6.  

As a result, I concluded that the nucleosomal densities at the myoD locus and at 

the control loci differ dramatically over space and time. This might indicate that 

the chromatin of Xenopus embryos is very dynamic over time. However, it awaits 

further investigation. 
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Figure 33: αHistone H3 ChIP shows relative nucleosomal densities  

A) The chart of the αHistone H3 ChIP is plotted as % of Input. The analyzed stages and 
amplicons were described previously (see Figure 28 & 31). The standard deviations 
reflect 4 individual experiments. B) This chart shows the signal over background ratio. 
Division of average % Input (IP) by average % Input (IgG) calculates this ratio. C) A 
diagram of the graph in A of the αH3 ChIP results in arbitrary units. The y-axis gives a 
time scale of analyzed stage with pictures of a myoD mRNA in situ hybridization. The 
x-axis shows the myoD locus from 5’ to the 3’ end plus the amplicons as red bars. 
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Dimethylation of lysine 4 at histone H3 (H3K4me2) is put in place by 

SET domain proteins like the MLL protein family, SET1 or ASH1 (Kouzarides, 

2007). The modification is predominantly found at the transcription start site of 

active loci (Sims and Reinberg, 2006). In Figure 34, this methylation mark on the 

myoD locus correlated with the myoD transcription. It is detectable during the 

basal transcription phase in the blastula stage embryos (NF9) at the promoter 

and exon 1. As the mRNA amount increases until neurula stage, the methylation 

mark increases and spreads also into gene exon3 and into the 5’Region of the 

locus. While myoD transcription drops off in the tailbud stage embryos (NF30) as 

shown by RNA in situ hybridization (see Figure 29), also the H3K4me2 mark 

decreases. Compared to the MyoD P amplicon, virtually no H3K4me2 mark was 

detected at the inactive TH/bZIP promoter. The GAPDH amplicon shows also 

hardly any H3K4me2. One possible explanation for this is in regard to the 

GAPDH probe that the H3K4me2 is predominantly enriched at the transcription 

sstart site. The signal to noise ratio is again significant (Figure 34B). The signal is 

up to 214-fold higher than IgG background. Again this shows the good quality of 

this antibody. From this ChIP analysis, I concluded that the H3K4me2 histone 

mark correlates very well with the intensity of the myoD transcription during the 

tested developmental stages.  
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Figure 34: Dimethylated lysine 4 on histone H3 (H3K4me2) is enriched at 

the promoter and exon1 during active myoD transcription.  

A) The chart of the ChIP against dimethylated lysine 4 on Histone H3 (H3K4me2) is 
plotted as % of Input. The analyzed stages and amplicons were described previously 
(see Figure 28 & 31). The standard deviations reflect 4 individual experiments. B) This 
chart shows the signal over background ratio. Division of average % Input (IP) by 
average % Input (IgG) calculates this quotient. C) A diagram of the graph in A of the ChIP 
results in arbitrary units. The y-axis gives a time scale of the analyzed stage with pictures 
of a myoD mRNA in situ hybridization. The x-axis shows the myoD locus from 5’ to the 
3’ end plus the amplicons as red bars. 
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Hyperacetylation of histones is a hallmark for actively transcribed 

genes (Turner, 2007). These acetylations are set by histone acetyltransferases 

(HATs) like CBP/p300, HBO1 and TIP60 (Kouzarides, 2007). The HAT activity of 

PCAF and p300 is important for the induction of myoD expression in mouse cell 

lines as well as in Xenopus laevis (Puri et al., 1997; Steinbach, 1998). The 

acetylation of Histone H4 (H4ac) is enriched at the promoter of myoD throughout 

all analyzed stages compared to the other analyzed MyoD amplicons. From 

gastrula stage onwards, the modifications spread towards the 5’Region of the 

locus (Figure 35A&C). In agreement with published data, the coding sequence of 

GAPDH is not hyperacetylated (Myers et al., 2001). In contrast to this, TH/bZIP 

appears to be acetylated, probably reflecting basal acetylation levels. However, 

this was not detected by Sachs and Shi perhaps due to the lower sensitivity of 

the endpoint PCR they used (Sachs and Shi, 2000). The signal:noise ratio is up 

to 13x higher than IgG background (Figure 35B). This suggests that the antibody 

precipitates not as good as the previously discussed one αH3K4me2. 

Furthermore, this could also reflect the high turnover rate of the acetylation marks 

due to histone deacetylase (HDAC) activity. As a result, I concluded that H4ac is 

enriched at the promoter and that it spreads into the 5’Region of the locus after 

the induction and during the maintenance phase of transcription most likely in 

myoD expressing cells.  
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Figure 35: Pan-acetylation of histone H4 is enriched at the myoD 

promoter and spreads into the 5’Region. 

A) The chart of the ChIP against pan-acetylated Histone H4 (H4ac) is plotted as % of 
Input. The analyzed stages and amplicons were described previously (see 
Figure 28 & 31). The standard deviations reflect 4 individual experiments. B) This chart 
shows the signal over background ratio. Division of average % Input (IP) by average % 
Input (IgG) calculates this quotient. C) A diagram of the graph in A of the αH4ac ChIP 
results in arbitrary units. The y-axis gives a time scale of analyzed stage with pictures of a 
myoD mRNA in situ hybridization. The x-axis shows the myoD locus from 5’ to the 3’ end 
plus the amplicons as red bars. 
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Dimethylation of lysine 9 on histone H3 (H3K9me2) is put in place by 

HMTs like SUVAR39 or G9a and is a hallmark of silent loci (Kouzarides, 2007). 

Figure 36 shows the ChIP analysis for this modification. H3K9me2 is almost not 

detectable at the myoD locus. It is slightly increased at the 5’Region, but this is 

still low compared to the control amplicons TH/bZIP and GAPDH. TH/bZIP and 

GAPDH both show a strong enrichment of H3K9me2 in the neurula stage. This 

might perhaps reflect the time point, when the heterochromatin starts to form. 

Also the signal: noise levels of the myoD amplicons are low compared to GAPDH 

and TH/bZIP (Figure 36B). This fact raises the questions, whether the IP displays 

only background or whether the IgG control is a not a suitable control after all due 

to background deriving from chromatin binding to unspecific IgG. In summary, 

this experiment suggests that H3K9me2-mediated repression is not involved in 

myoD silencing in non-muscle cells.  
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Figure 36: The dimethylation of lysine 9 on histone H3 (H3K9me2) is 

undetectable on the myoD locus. 

A) The chart of the ChIP against dimethylated lysine 9 on Histone H3 (H3K9me2) is 
plotted as % of Input. The analyzed stages and amplicons were described previously 
(see Figure 28 & 31). The standard deviations reflect 4 individual experiments. B) This 
chart shows the signal over background ratio. Division of average % Input (IP) by 
average % Input (IgG) calculates this quotient. C) A diagram of the graph in A of the 
αH3K9me2 ChIP results in arbitrary units. The y-axis gives a time scale of analyzed 
stage with pictures of a myoD mRNA in situ hybridization. The x-axis shows the myoD 
locus from 5’ to the 3’ end plus the amplicons as red bars. 
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Polycomb-mediated repression is marked by trimethylation of lysine 27 

on histone H3 (H3K27me3). This methylation is put in place by the histone 

methyltransferase Enhancer of Zeste (Ehz), a component of the 

Polycomb-related complexes (PRC) (Levine et al., 2004) (see 2.4.3.2). In 

Figure 37, this modification was detectable in neurula and tailbud stage embryos 

at the entire myoD locus. This might indicate a role during establishment of the 

stably repressed state in cells, which do not express the myoD gene. The largest 

enrichment of H3K27me3 was detected at the 5’Region, suggesting again a 

functional role of this region (see αH4ac ChIP). The spreading of the H3K27me3 

modification along the entire myoD locus is consistent with published 

αH3K27me3 ChIPs (Bracken et al., 2006), again arguing for a role of PcG 

proteins in the repression of the myoD locus. The signal:noise ratio was again 

very low. Once more, this questions the IgG control, since the H3K27me3 

modification is absent in earlier stage and emerges from neurula stage on the 

myoD locus as well as the two control loci. This suggests an overall role of 

Polycomb-mediated repression, starting at some point in development between 

gastrula (NF11) and neurula stage embryos (NF18). 
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Figure 37: Polycomb-mediated repression might be involved in myoD 

silencing. 

A) The chart of the ChIP against trimethylated lysine 27 on Histone H3 (H3K27me3) is 
plotted as % of Input. The analyzed stages and amplicons were described previously 
(see Figure 28 & 31). The standard deviations reflect 4 individual experiments. B) This 
chart shows the signal over background ratio. Division of average % Input (IP) by 
average % Input (IgG) calculates this quotient. C) A diagram of the graph in A of the 
αH3K27me3 ChIP results in arbitrary units. The y-axis gives a time scale of analyzed 
stages with pictures of a myoD mRNA in situ hybridization. The x-axis shows the myoD 
locus from 5’ to the 3’ end plus the amplicons as red bars. 
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These previous ChIP analyses were performed with lysates of whole 

embryos consisting of a mixture of myoD expressing and non-expressing cells. In 

order to distinguish these two populations of cells, ChIPs with animal cap 

explants were performed (also see Figure 19). Figure 38A displays the average 

of two individual IPs rather in contrast to the previous experiment, where 4 IPs 

were performed. Nevertheless, the ChIP against histone H3 suggests that the 

density of nucleosomes in myoD non-expressing cells in untreated explants is 

higher than at the actively transcribed locus in activin treated explants. MyoD E1 

shows an exception, which might have technical reasons. 

 

Figure 38: Nucleosomal densities of the myoD locus in myoD expressing 

and non-expressing animal cap explants. 

A) The chart of the αHistone H3 ChIP is plotted as % of Input. AC NF18 UI: 100eeq 
untreated, neurula stage (NF18) animal cap explants with myoD non-expressing cells AC 
NF18 PIF: 100eeq activin-treated, neurula stage (NF18) animal cap explants with myoD 
expressing cells (also see Figure 19). The standard deviations reflect 2 individual 
experiments. B) This chart shows the signal over background ratio. Division of average 
% Input (IP) by average % Input (IgG) calculates this ratio. 



Results   107  

Although great efforts were undertaken to cut the animal cap explants, 

the ChIP against the four histone modifications H3K4me2, H4ac, H3K9me2 and 

H3K9me3 failed, because the enrichment of the amplicons was below the IgG 

background and thus inconsistent (data not shown). These reasons also apply to 

the ChIP against MyoD with the antibody MYO 6C8 in animal caps explants as 

well in whole embryo lysates (data not shown). 

From these ChIP analyses, I recapitulated that at first the nucleosomal 

density at the ME is remarkably lower compared to exon 1 and exon 3. Second, 

the nucleosomal densities appear to be very dynamic over the analyzed stages. 

Third, the αH3 ChIP from animal cap explants suggests that the nucleosomes 

are less condensed in myoD expressing cells. Fourth, the active marks H3K4me2 

and H4ac are detectable on the promoter of myoD, likely on the transcribed 

gene. Fifth, the mark for facultative heterochromatin H3K9me2 is virtually not 

detectable in the stages used for the ChIP analysis. Control amplicons show this 

modification in the neurula stage (NF18). Sixth, the hallmark for constitutive 

heterochromatin H3K27me3 appears at neurula stage and thus 

Polycomb-mediated repression seems to be involved in the regulation of the 

myoD locus. As a summary I draw the conclusion that all analyzed histone 

modification followed their published patterns (for review see (Kouzarides, 

2007)). 

4.2.5 CHD4 binds to the sip1 gene 

The chromatin remodeling ATPases CHD4 shows a highly tissue 

specific expression (Linder et al., 2004). Further loss- and gain-of-function 

analyses of CHD4 revealed that it is important for the positioning of the 

mesoderm/neuroectoderm boundary, which is marked by the expression of Xbra 

in the mesoderm and sip1 in the neuroectoderm. This studied showed that CHD4 

negatively influences sip1 expression (Linder et al., 2007). In order to obtain 

evidence for a direct regulation of sip1 by CHD4 ChIP experiments of mid-

gastrula stage 11 were performed. The structural organization of the mouse sip1 

locus has been described recently (Nelles et al., 2003), including the presence of 

nine untranslated and alternatively spliced exons (U1 – U9), and the nucleotide 

sequence of two putative promoter regions located upstream of U1 and U4/U5, 

respectively (see Figure 39A). Exons U5, E1 and E2 were identified by sequence 

conservation between Xenopus tropicalis (genome assembly v4.1, scaffold 232) 



Results   108  

and mouse sip1 genomic DNA sequences (Nelles et al., 2003). Among these 

elements, cDNA (Eisaki et al., 2000) and genomic sip1 DNA sequences from 

Xenopus showed high sequence similarity for exons U5, E1 and E2, while shorter 

stretches of clearly conserved DNA sequence extended into the promoter region 

upstream of U5 (see Figure 39A). Based on this information, TaqMan amplicons, 

which were located at xU5, xE1 and xE2 of the Xenopus sip1 gene, were 

designed. They cover approximately 90kb of the transcribed 5’ portion of the sip1 

gene (Table 6, Figure 39A).  

 

Amplicon Baseline 
Thres

hold 
Slope Intercept 

Correlation of 

PCR triplicates 

R2 

xU5 3 to 16 0.3 -3,252112 30.446922 0.997565 
xE1 3 to 17 0.2 -3.202356 30.003592 0.997568 
xE2 3 to 18 0.2 -3.426923 30.491692 0.99917 

 

Table 6: Additional amplicons at the sip1 locus for αChd4 ChIP with Douncer 

protocol 

 

The relative occupancy of CHD4 protein at the sip1 locus was 

calculated the following way: 

1. Average of Ct value (PCR duplicates): Av Ct 

2. Calculation of relative DNA amounts via standard curve:  

y=10((Av Ct – Intercept)/slope) 

3. Normalization to input: y / Input DNA amount = z 

4. Normalization to GAPDH: z / z(GAPDH) 

5. Average of 3 independent IPs plus standard deviation 

 

For the IP of the Chd4 protein, a mixture of αCHD4 monoclonal 

antibodies CH4-N 3A11, CH4-N 5H4, CH4-N 5A2, CH4-C 7C9 and CH4-C 7E8 

was used. This ChIP analysis indicates that CHD4 binding was more than 

three-fold enriched at the xE1 amplicon, i.e. within the 5’ part of the transcribed 

gene body compared to U5 and E2 (Figure 39B). Furthermore, among all tested 

regions, amplicon E1 showed the highest CHD4 occupancy. The standard 

deviations of this ChIP analysis are rather low, because the standard deviations 
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reflect independent IPs of the same lysate. Based on this result, the sip1 gene 

was identified as a direct target of CHD4.  

 

Figure 39: CHD4 binds to the Sip1 gene. 

(A) The cartoon depicts the organization of Xenopus and mouse sip1 gene loci around 
the first translated exon E1 (AUG indicated by arrow). While Exons U5 and E1 are highly 
conserved in sequence (connected by dashed lines), mouse exons U6-U9 are apparently 
not conserved in Xenopus. Black bars indicate the relative positions of the ChIP 
amplicons xU5, xE1, and xE2 for Xenopus. Not drawn to scale, however, absolute 
distances between ChIP probes are given in brackets. (B) Chromatin 
immunoprecipitations were performed on midgastrula stage Xenopus embryos (NF11), 
using a rat monoclonal antibody mix against xCHD4 protein followed by real-time PCR 
analysis. They reveal preferential binding of endogenous xCHD4 protein to E1 
(n=3 experiments). The relative xCHD4 occupancy was normalized to the xGAPDH 
amplicon; xTH/bZIP is a silent gene, which becomes activated during metamorphosis. 
Error bars: mean standard deviation. This figure is published as Figure 4 in (Linder et al., 
2007). 

4.2.6 ChIP data quality assessment 

The ChIP analyses of histone modifications at the myoD locus have 

very high standard deviation, although the ChIP analyses were performed with 

highest accurateness. I took great care of the following issues: First, great efforts 

were made to optimize all protocol parameters. Second, the embryos were 

handpicked and thoroughly staged. Third, the maximal available sample material 

and the highest possible replicate number were exploited. This led to the 

collection of about 12000 embryos for the ChIP analysis against the histone 

modifications. However, it should be noted that ChIPs with many antibodies are 
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just above the noise. In most of the cases the standard deviations are large. So, 

why is it not possible to evaluate the data in a statistically relevant fashion? 

In order to address this question, I assessed the Douncer ChIP 

method by comparing it to ChIP methods of other species, which are carried out 

at the Department of Molecular Biology of the Adolf-Butenandt-Institut, LMU 

München. This comparison revealed significant differences with regard to 

genome size and complexity, cell heterogeneity, cell number and PCR efficiency. 

At first, the size of the genomes was compared. The different species are listed in 

Table 6. The DNA amounts were deduced from the base number and plotted as 

% to Xenopus laevis. I considered Xenopus laevis as diploid, since it is 

allotetraploid. This means that it has a diploid chromosome set, but each 

chromosome has been duplicated and thus has twice the size of a Xenopus 

tropicalis chromosomes. The non-allelic genome copies derived from this 

duplication can be distinguished in their nucleotide sequence. Only about 68% of 

the highly expressed, no-allelic gene copies have the same function, whereas 

low expressed ones have only in 38% of the cases an expression paralog (Morin 

et al., 2006).  

Considering the number of bases the Xenopus laevis genome has the 

largest size. The baker yeast Saccharomyces cerevisiae has about a 1000-fold 

less genome size, the fruit fly Drosophila melanogaster 34-fold less. The 

mammalian mouse and human genomes have only 55% of the size of the 

Xenopus genome.  

 

species bases 

DNA weight 

per nucleus 

in pg  

compared 

to 

Xenopus 

ploidity 

Yeast 6.2x106 0.00682 0.11% haploid 

Drosophila 1.7x108 0.187 2.94% diploid 

Mouse 6x109 7 55.56% diploid 

Human 6x109 7 55.56% diploid 

Xenopus laevis 12x109 12.8 --- allotetraploid/ diploid 

 

Table 7: Genome complexity of ChIP model organisms 

The ploidity of Xenopus laevis was calculated as diploid, because the term “allotetraploid” 
reflects the existence of two non-allelic copies of each gene, which differ in their DNA 
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sequence and frequently expression patterns. Source for Xenopus, human and mouse: 
www.bio.nagoya-u.ac.jp:8000/compG01.html, yeast and Drosophila: http://users.rcn.com/ 
jkimball.ma.ultranet/BiologyPages/G/GenomeSizes.html 

 

In a second step, the individual ChIP protocols were compared. 

Comparing the cell numbers per IP showed that the Xenopus cell numbers per IP 

are approximately 2-10-fold less than the other the ChIP of the other species (see 

Table 7). As the Xenopus ChIPs were performed with whole embryos, the ChIP 

lysates consist of a heterogeneous cell population. This is an additional difficulty, 

because this number per IP describes the total number of applied cells. 

Therefore, the actual cell number expressing e.g. myoD is much less and can 

only be estimated.  

Another import issue of the ChIP method is the real-time PCR (also 

see 4.2.1.3). In Table 7, the Ct values of 10.000 copies of ChIP input DNA were 

compared. TaqMan-based PCR analysis of murine and Xenopus ChIPs need 

around 28 cycles to reach the threshold with 10000 genomic copies. The yeast 

Ct value is at around 25 cycles. This reflects about a 10-fold less sensitive PCR, 

which is most likely due to the lower complexity of the yeast genome. 

Comparing SYBR Green based ChIP quantifications with TaqMan 

based ones, another important fact was discovered. SYBR Green based 

real-time PCR of Drosophila and human cell culture cells show the Ct values at 

around 21 to 23 cycles, the TaqMan based at 25-28. This suggests that the 

SYBR Green PCR is more efficient on mock ChIP DNA than the TaqMan-based 

real-time PCR technology. This could be due to the damage of the DNA, which 

may happen during the ChIP procedure. The TaqMan technology requires the 

binding of a specific fluorescence-labeled oligonucleotide within the PCR 

amplicon and might therefore be more sensitive to DNA damage.    
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species  
ChIP protocol 

type 

Cell number 

per IP 

Ct value of 

Input of 

10.000 copies 

real-time PCR  

method 

Xenopus NF9 Douncer ChIP 1,6x106 28,56 TaqMan 

Xenopus 

NF11 
Douncer ChIP 4,7x106 28,56 TaqMan 

Xenopus 

NF18 
Douncer ChIP 4,3x106 28,56 TaqMan 

Xenopus 

NF30 
Douncer ChIP 9,2x106 28,56 TaqMan 

Xenopus 

NF18 AC PIF 
Douncer ChIP 8,8x105 28,56 TaqMan 

Xenopus 

NF18 AC UI 
Douncer ChIP 7,3x105 28,56 TaqMan 

human breast 

cancer cell 

line 

In Situ ChIP 1x107 21,5 
SYBR 

Green 

mouse 3T3 

Cells 
In Situ ChIP 5x106  28,14 TaqMan 

Drosophila 

adults 
Douncer ChIP 1x107  23,66 

SYBR 

Green 

Drosophila 

embryos 
In Situ ChIP 3,3x107  21  

SYBR 

Green 

yeast In Situ ChIP 3,3x107 25,15 TaqMan 

 

Table 8: Comparison of the ChIP protocols of different species 

For a comparison of the Douncer ChIP and In Situ ChIP methods see Figure 25. For a 
detailed description of the two different real-time PCR techniques see chapter 4.2.1.3. 
For a description of the Ct value see Figure 23. The Ct values of the Xenopus stages are 
equal, because they were calculated as the mean Ct value of described standard curves 
(see chapter 4.2.1.3). 

 

Comparing SYBR Green and TaqMan PCR techniques directly by 

using the same primer set of the TH/bZIP amplicons showed that the TaqMan 

fluorescence (Ct=29.83) is detected 5.42 cycles later that the SYBR Green 

fluorescence (Ct=24.41) (data not shown). Comparing the primer set of the MyoD 

P, which has a quencher molecule that binds to the minor groove of the DNA 

helix, showed that the TaqMan fluorescence (Ct=34.1) is detected 8.1 cycles 
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later than the SYBR Green fluorescence (Ct=26.0). This suggests that the PCR 

reaction of SYBR Green is more efficient for the ChIP analysis, because the 

fluorescence is up to 8 cycles earlier detectable. This might help to decrease the 

standard deviations of the ChIP, because the PCR efficiency is increased and 

thus might decrease the detection limit. 

Apart from the technical problems, there are also biological 

parameters, which contribute to the high standard deviations. First of all, an 

important difference to ChIP with cell lines is that the ChIPs of Xenopus embryos 

are performed with a heterogeneous material. Although the embryos were staged 

thoroughly, the embryos were the offspring of wild(-type) animals with a 

heterogenetic background. In order to balance this fact, one should attempt to 

have 2-3 independent IPs of the same male and female combinations.  

The most important issue is the limitation of the sample material. In the 

Xenopus ChIP, approximately 10-fold less cells are used in total than the other 

protocols. This number reflects the total cell number of the heterogeneous cell 

population, thus the actual number of desired protein-DNA interaction per cell is 

much lower. Another limitation regarding the detection limit of the desired 

protein-DNA interactions is the fact that genomic DNA works 20x better than 

ChIP DNA. So if I assume to detect for example 2000 copies, in reality only 100 

copies are detectable. Taken these restrictions together, our ChIP assay seems 

to be in most of the cases at the level of detection. Nevertheless, our established 

ChIP protocol is able to show trends of the in vivo situation.  
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5 Discussion 

How a complex organism can develop out of a single cell, this question 

has puzzled developmental biologists since more than a century. Developmental 

processes were studied with genetic and interference analyses. With these 

approaches, developmentally important genes were identified and hierarchies of 

these genes were established, but it was not possible to determine, whether the 

influences were direct or not. Therefore, one of the major challenges within this 

quest is still to understand how the genetic information is interpreted to guide the 

unidirectional process of development. Alterations of histone modifications, 

changes in the protein composition binding to DNA, or the remodeling of 

nucleosomes have been proven to be important for the establishment and the 

inheritance of tissue-specific transcription profiles. A method to study this direct 

protein association to a specific genomic locus is the chromatin 

immunoprecipitation (ChIP).  

In this study, I have established the two following protocols for ChIP 

analyses in Xenopus laevis embryos: the In Situ ChIP and the Douncer ChIP 

(also see Figure 25). I addressed three different developmental scenarios. First of 

all, I investigated the chromatin evolvement during myoblasts determination and 

differentiation. Successful ChIP analyses with the In Situ ChIP protocol were 

performed against the serum response factor SRF on the myoD locus. With the 

Douncer ChIP protocol, a time course study was performed in order to 

understand which and when histone modification marks appear during muscle 

cell determination and differentiation on the myoD locus. Secondly, I attempted to 

study the chromatin readout upon Wnt/β-catenin signal stimulation at the Wnt 

target and organizer gene siamois and the muscle determination factor myf5. 

Therefore, I generated rat monoclonal antibodies directed against the Lef/Tcf 

transcription factors Lef1 and Tcf1. Thirdly, I proofed the influence of CHD4 on 

the positioning of the neuroectoderm/mesoderm boundary in the gastrula to be 

direct via ChIP. 

5.1 Technical aspects of ChIP 

The ChIP assay involves five major steps: (I) fixation of DNA bound in 

situ, (II) the shearing of the chromatin, (III) the immunoprecipitation of the desired 
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chromatin-associated protein, (IV) the purification of the DNA, and (V) the 

quantification of the DNA via PCR. In the ideal case, the fixed chromatin has an 

average size of about 500 to 1000bp. The antigen epitope is easily accessible to 

the specific antibody, the affinity of the antibody is very high and thus the 

precipitation efficiency is large; i.e. it lies within the range of 2-10% compared to 

the input.  

Nevertheless, the ChIP assay has a variety of limitations. First of all, 

ChIP is not a quantitative assay. It shows qualitative differences, but it does not 

offer absolute numbers. A major disadvantage of the assay is its complexity, as it 

involves many crucial steps. The success of the ChIP depends very much on the 

abundance of the desired protein-DNA adducts under investigation, on the well-

established preparation of the chromatin lysate, on the quality and the affinity of 

the antibody and on the efficiency of the real-time PCR. Furthermore, it depends 

on the chosen controls and on the thoughtful interpretation of the data.  

In this study, I showed that it is possible to investigate histone 

modifications and chromatin-associated factors in developing Xenopus embryos. 

Subsequently, I have discussed the technical aspects of the ChIP method and 

considered my established ChIP protocols and my generated data. 

5.1.1 Comparison of ChIP methods 

5.1.1.1 Preparation of chromatin lysates 

The In Situ ChIP protocol (see 3.9.2) is the protocol type, which is 

most commonly used for ChIPs (see e.g. www.epigenome-

noe.net/researchtools/protocols.php). In this protocol, the chromatin is fixed in 

intact cells by adding formaldehyde into the culture medium. Subsequently, the 

cells are lysed and the chromatin is sheared with the FRENCH Press. The cell 

debris is removed via centrifugation. The ChIP lysate, originating from this 

preparation, is rather crude. Other protocols purify nuclei, extract the chromatin 

afterwards (for Xenopus neurula stage embryos e.g. (Morgan et al., 2004; Sachs 

and Shi, 2000)) and thereby get rid of the majority of the cytoplasmic and other 

proteins, which are not associated with the nucleus. Since such preparations of 

nuclei usually have a low yield (20-30%), too many embryos would be necessary 

for this kind of protocol. Especially very young embryos of blastula stage have 

only about 15,000 cells (also see Table 5). The Douncer ChIP protocol (see 3.9.3 

and 4.2.3) avoids the preparation of nuclei, but removes a lot of the soluble 
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protein fraction and fatty acids by fixation of the chromatin during mechanical 

lysis with a Douncer in a low salt and low detergent-containing buffer. The 

chromatin remains in the insoluble portion of the slurry. Subsequently, it is 

washed several times and eluted afterwards with a buffer containing SDS and 

N-Lauroylsarcosine. The chromatin is subsequently sheared by sonication.  

The chromatin fixation under mechanical lysis is the major 

disadvantage of the Douncer ChIP protocol. Although all steps were performed 

with maximal accurateness, slight differences of the cell lysis might lead to 

variation of the chromatin fixation. The fixation of the chromatin in situ is probably 

more consistent. 

The Douncer ChIP protocol has two important benefits over the In Situ 

ChIP protocol. First of all, the lysate preparation involves several washing steps. 

Thereby, a great portion of the maternally stored, non-chromatin incorporated 

yolk storage portion of the antigen becomes eliminated and does not interfere 

with the IP of the chromatin-associated portion of the antigen. Secondly, the 

material loss with the FRENCH Press used for the In Situ ChIP is circumvented 

by the Douncer ChIP protocol, which shears the chromatin via sonication and 

thus does not need the transfer of the lysate into a new test tube. A crucial 

disadvantage of the FRENCH Press is its dead volume of approximately 12%. 

Since the amount of embryonic material is limiting, it was crucial to decrease the 

loss of lysate. This was achieved by switching the chromatin shearing with the 

FRENCH Press to the sonicator Bioruptor. This change resulted in a yield up to 

25% more lysate. 

5.1.1.2 Selection of Antibodies 

Polyclonal antibodies are the most commonly used reagents for IPs. 

Their advantage is that they contain a mixture of antibodies binding to several 

sites at the target protein. However, because of this, antisera are also prone to 

cross-react with unrelated proteins. Therefore, their avidity for the antigen is 

usually high. Because polyclonal antibodies form multivalent interactions with 

their antigen, their disadvantage is that this can lead to unspecific interactions 

with other proteins (Harlow E, 1988). By contrast, monoclonal antibodies bind 

only to one epitope of the antigen. This results in a very high specificity and thus 

in rather low background. Given that the antibodies bind to only one epitope, the 

affinity to the epitope can be very low. Therefore, it is crucial to evaluate the 
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antibodies in regard to their IP efficiency (Harlow E, 1988). Ideally, it was my aim 

to generate several antibodies against the same target protein, which were tested 

individually in regard to their cross-reactivity and avidity. By mixing these 

monoclonal antibodies, they should combine the advantages of the monoclonal 

and the advantages of the polyclonal antibodies. In order to raise several 

monoclonal antibodies, rats were immunized with full-length proteins. This should 

stimulate a complex immune response, which is directed against different 

antigenic regions of the target protein. Therefore, rat monoclonal antibodies were 

raised in collaboration with the laboratory of Dr. Elisabeth Kremmer (GSF 

München). Here, rat monoclonal antibodies against the MyoD protein and the 

Lef/Tcf transcription factors were raised and successfully tested in Western blot 

analysis, immunocytochemistry (ICC), immunofluorescence (IF), 

immunoprecipitation (IP) and ChIP-type IPs (see chapter 4.1). 

Immunoprecipitation efficiency of formaldehyde-fixed antigens of the αMyoD 

antibody MYO 6C8 is above 50% of the input sample. For the αLef1 antibodies 

LEF 3D4 and LEF 5F12 and the αTcf1 Tcf1 2F4 the efficiency is still within 

15-20% of the input sample. Therefore, it can be concluded that the generated 

antibodies are suitable for ChIP assays. However, ChIP analyses with these 

generated antibodies failed so far. The reasons for the so far unsuccessful ChIPs 

are presumably not due to the precipitation efficiency of the antibodies and will be 

discussed below in the discussion part of the biological aspects (see 5.2.2).  

5.1.1.3 ChIP controls 

It is important to control the ChIP on two levels: the IP control 

determines the specificity of the observed signal and the PCR controls show the 

background level of the unspecific DNA co-precipitation. For the control of the IP, 

equivalent IgG amounts of the specific antibody of either unspecific rabbit IgG 

were used. In ChIPs with the rat monoclonal antibodies, of the bridging antibody 

rabbit-αrat IgG were used as the IP control. In Figure 30, the average IgG 

background was plotted as the percentage of input. None of the amplicons 

adhered to a greater extend to the ProteinA-sepharose beads than the other 

amplicons. Due to the large standard deviation, it is apparent that there are huge 

variations in the unspecific precipitation of this control. This might suggest that 

also the specific IPs with different lysate preparations have great variations in 

their precipitation efficiency. Although it was taken great care concerning the 
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experimental accuracy, this could be due to slight differences in the preparation 

of the lysate. To circumvent this problem, independent IPs of the same chromatin 

lysate preparation should be used for the calculation, which should improve the 

height of the standard deviations (see 4.2.5, Figure 39).  

Another important issue is the precise quantification of the IP sample. 

In order to do so, unrelated control amplicons are necessary. Here, I used control 

amplicons derived from the gapdh and th/bZIP gene. The GAPDH amplicons is 

located within the coding region of the constitutively expressed housekeeping 

gene. The TH/bZIP amplicon is situated at the promoter region of a thyroid 

hormone responsive gene, which is silent throughout embryogenesis until 

metamorphosis. The expression profiles for these two control genes differ from 

the analyzed genes myoD, siamois, myf5 and sip1, which are developmentally 

regulated during early embryogenesis. Therefore, they are good controls for the 

ChIP analyses representing both constitutively active and transcriptionally silent 

single copy gene loci. 

5.1.1.4 Real-time PCR techniques 

In this study, the TaqMan-based real-time PCR was performed to 

quantify the relative DNA enrichment of the ChIP sample (see chapter 4.2.1.3). 

The TaqMan technology is based on a fluorescence-labeled oligonucleotide, 

which binds sequence-specifically within the PCR amplicon. In the intact 

oligonucleotide, a quencher disrupts the signal emission of the fluorescent dye. 

During the elongation of DNA polymerase, the TaqMan oligonucleotide is 

degraded by the 5’ nuclease activity of the DNA polymerase. As a consequence, 

the quenching is abolished and the fluorescent signal becomes detectable. I have 

chosen this PCR method, because the TaqMan probes hybridize very specifically 

to their target sequence. This minimizes the signal detection due to mis-priming 

or primer-dimer artifacts, which occurs in other real-time PCR methods such as 

the SYBR Green PCR. This fluorescent dye intercalates unspecifically into any 

double-stranded DNA. Nevertheless, comparing SYBR Green-based ChIP 

analyses with TaqMan-based ones revealed that the SYBR Green PCR is more 

efficient on ChIP Input DNA than the TaqMan PCR (see chapter 4.2.6). This 

became apparent by comparing the Ct values, which indicate the cycle numbers, 

when the amplification curve crosses the threshold (see Figure 21). On one and 

the same DNA template the Ct values of the SYBR Green PCR are detectable 
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around cycles 21-23, the TaqMan PCR at around cycle 28 (see Table 7). 

Comparing the PCR performance with identical primer sets by the TaqMan and 

SYBR Green techniques confirmed this.  

Based on these facts, I conclude that the TaqMan-based real-time 

PCR technology has the advantage that it has very high sequence specificity. 

However, the SYBR Green technology is more efficient on DNA, which was 

treated under ChIP conditions. Therefore, the SYBR Green technology should be 

preferred for subsequent ChIP analyses. Nevertheless, the SYBR Green method 

needs to be thoroughly established to exclude PCR products due to mis-priming 

or primer-dimer artifacts. 

5.1.1.5 Abundance of the investigated protein-DNA association 

The success of a ChIP experiment directly interdepends with the 

abundance of the investigated protein-DNA interactions. Therefore, it is important 

to determine cell number used for the ChIP experiments. In chapter 4.2.6 

Table 7, the cell numbers per IP were summarized and compared. ChIPs with 

Xenopus embryos applied around 5x106 cells in total, whereas ChIP in 

Drosophila, yeast and cell culture cell lines used about 1x107 cells. This 

demonstrated that the cell numbers per Xenopus ChIP are about 2 to 10-fold 

lower than in other ChIP protocols. If the desired protein-DNA interactions are 

only rare abundant, it is likely that they are below the level of detection. Since the 

embryonic material is limiting, it is not possible to increase the amount of 

embryos per IP and thus the amount of precipitated DNA. Therefore, 

linker-mediated linear amplification of the precipitated DNA might be an option to 

overcome the PCR limitation. Farnham and colleagues used a protocol to amplify 

their ChIP DNA in a linear fashion (O'Geen et al., 2006). Their assay might be 

used for our ChIP protocol to amplify the precipitated DNA, and thus might help 

to decrease the variations of the real-time PCR replicates, which frequently led to 

inconsistent ChIP results (see αLef/Tcf ChIP chapter 4.2.2, αMyoD ChIP chapter 

4.2.4). 

5.1.1.6 Quantification and representation of the ChIP data  

Important issues of the ChIP are the quantification of the enriched 

DNA fragments and the representation of data. Two different quantification 

approaches were used for this project. For the analysis of the αSRF ChIP at the 
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myoD locus, the ΔΔCt method was used. This calculation method requires almost 

ideal slopes of all standard curves, because it calculates the ratio between 

different samples by subtraction of the Ct values and subsequent conversion with 

the PCR equation 2n (see chapter 4.2.1.3). For the quantification of the ChIP 

against the histone modification, the relative DNA amounts were determined via 

the standard curve and plotted as the percentage of the input DNA sample (see 

chapter 4.2.3). Some ChIPs are quantified by subtraction of the IgG background 

prior to the normalization to the input DNA sample (personal communication Attila 

Nemeth, University of Regensburg). But this subtraction leads to irregular 

variability of the normalization ratios. Therefore, the ChIPs in this analysis were 

plotted without taking the IgG control into account.  

Nevertheless, I evaluated the relative impact of non-specific binding by 

dividing the % input of the IP by the % input of the IgG. This revealed that in 

some cases, e.g. with αH3 or αH3K4me2 antibodies, the precipitated DNA 

amounts were several hundred fold over IgG background level. In other cases, 

e.g. the αH3K27me3 antibody, this difference between the specific precipitation 

and the background was only up to four fold. This difference reflects the 

discrepancy in the epitope avidity of the antibodies. In spite of this, the IP with 

unspecific IgG is an important control to interpret the specificity of the observed 

signal. 

There is no commonly accepted standard, how ChIP data should be 

controlled and represented. The data can in principle be plotted as the average of 

the PCR replicates or as the average of individual IPs. The ChIP data in chapter 

4.2.4 are plotted as average of four individual IPs of independent chromatin 

lysate preparations. I have chosen this conservative way of data representation, 

because I believe that this is close to the in vivo situation. A compromise to 

reduce high standard deviations is to display the average of independent IPs of 

the same lysate.  

Taking the variations of the biological material, the IP and the PCR into 

consideration, the ChIP quantification by plotting the data as % input is the 

method of choice for my future ChIP experiments. Furthermore, IP replicates of 

the same lysate should be performed in order to avoid different IP efficiencies 

due to slight differences in the lysate preparation. 
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5.1.1.7 Conclusions 

In this project, two different ChIP protocols were adapted for Xenopus 

laevis embryos. Both approaches were successful with some antibodies, but also 

failed with others. They have the discussed advantages and disadvantages. For 

early developmental stages until the tailbud stage (NF30), the Douncer ChIP is 

more suitable, because the lysate preparation removes maternal, non-chromatin 

incorporated storage proteins, which could otherwise interfere in the IP with the 

chromatin-bound fraction of the antigens. Recapitulating this technical part of the 

discussion, I come to the conclusion that I have established a reliable ChIP 

method, which is able to show qualitative trends. However, there is room for 

further technical improvement like changing the real-time PCR staining technique 

or amplification of the precipitated DNA. 

5.2 Biological results of this project 

5.2.1 Regulation of the MyoD locus 

The basic helix-loop-helix protein MyoD is a transcription factor that 

promotes skeletal muscle formation in Xenopus laevis. Its expression is activated 

at the early gastrula stage and is restricted to the gastrula mesoderm and the 

somites of neurula and tailbud embryos (Hopwood et al., 1989) (also see Figure 

2). Several growth factor signaling cascades have been shown to be important 

for muscle development (for review see e.g. (Pownall et al., 2002)), yet a direct 

link like a transcription factor binding to the myoD locus upon induction was not 

identified until now. Transcriptional repressors of myoD are better understood. It 

was shown that the globular domain of the somatic linker histones is sufficient for 

direct gene specific transcriptional repression (Lee et al., 2004; Steinbach et al., 

1997; Vermaak et al., 1998). In subsequent studies, the Xenopus myoD locus 

was cloned, sequenced and analyzed with a transgenic reporter gene assays to 

determine regulatory elements (Otto, 2000; Xiao, 2003). Two enhancer elements 

were mapped, which are important for the induction and the maintenance of the 

myoD transcription. Based on this study, ChIP analyses at the myoD locus were 

performed during this project to gain a better understanding of these regulatory 

elements. 
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5.2.1.1 Histone ChIP 

Observations like the involvement of H1 in transcriptional silencing 

(Steinbach et al., 1997) suggested a contribution of chromatin in the regulation of 

the myoD gene expression. In order to study the chromatin environment during 

the various phases of myoD expression, a time course of histone modifications 

was carried out (see chapter 4.2.4, Figures 33-38). The modifications are mainly 

found on the N-terminal tails of the core histones. The best-studied covalent 

modifications are methylations, acetylations and phosphorylations (Kouzarides, 

2007).  

As a prerequisite for the analysis of histone modifications, I 

investigated the nucleosomal densities of the myoD locus (see Figure 33). I 

showed by characterization of the nucleosomal loading that the nucleosomal 

density at the maintenance enhancer is remarkably lower compared to exon 1 

and exon 3. Furthermore, the αH3 ChIP of animal cap explants suggests that the 

chromatin is less condensed in myoD-expressing cells compared to myoD non-

expressing cells. This “open” chromatin conformation at the active locus is in 

accordance to published data (Nemeth and Langst, 2004). Unexpectedly, the 

nucleosomal densities appear to be very dynamic over the analyzed stages. In 

the blastula and neurula stage it appears rather condensed, in the gastrula and in 

the tailbud stage less condensed. This is a phenomenon, which was not 

described so far. The biological relevance of this observation will have to be 

analyzed further. 

The results of time course of the different analyzed histone 

modifications are summarized in Figure 40. The active marks H3K4me2 and 

H4ac are detectable throughout all analyzed stage on the promoter of myoD. In 

all likelihood, they were detected on the actively transcribed gene, since these 

modifications can be correlated with the myoD expression pattern (see Figure 40, 

upper lane) (Hopwood et al., 1989; Rupp and Weintraub, 1991). The only 

exception was H3K4me2. In the tailbud stage, the myoD expression decreases 

and therefore the histone modification marks disappear. The increase of 

H3K4me2 at the promoter of myoD until the neurula stage is in consistence with 

previously described data (Nightingale et al., 2006). The importance of histone 

acetylation for the myoD locus was described previously. It was shown that over 

expression of histone acetyl-transferases PCAF and P300 leads to earlier myoD 

induction (Puri et al., 1997). My ChIP results support these data, since I see an 
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enrichment of H4ac on the myoD promoter prior to the gene induction. 

Unexpectedly, H4ac was enriched at the 5’Region amplicon in the neurula stage. 

This acetylation mark might suggest the transcription of a non-coding RNA. 

These RNAs are known to be involved in gene silencing (Yang and Kuroda, 

2007). A second indication for the existence of transcription of non-coding RNAs 

was made by the identification of highly repetitive DNA region upstream of the 

maintenance enhancer (Xiao, 2003). This sequence is very similar to a reported 

repetitive sequence motive Flirt (Spohr et al., 1981). If a non-coding RNA plays a 

role in the silencing of myoD, remains to be elucidated. 

The mark for constitutive heterochromatin H3K9me2 is almost not 

detectable in the stages used for the ChIP analysis (see Figure 36). Therefore, 

an involvement of histone methyltransferases SUVAR39 or G9a in the repression 

of the myoD gene is highly unlikely. However, the control amplicons show this 

modification in the neurula stage (NF18), suggesting that this way of repression 

exists in Xenopus. In addition, G9a-meditated repression was described already 

for Xenopus laevis oocytes (Stewart et al., 2006).  

The histone modification H3K27me3, correlated with Polycomb-

mediated repression, appears at neurula stage on the myoD locus. Furthermore, 

a potential YY1 binding site is found at the myoD promoter. YY1 is the vertebrate 

homolog of the Drosophila Polycomb group (PcG) protein Pleiohomeotic. The 

over-expression of a dominant-negative YY1-EnR inhibits the myoD expression 

(Xiao, 2003). This suggests that PcG proteins are involved in the transcriptional 

repression of myoD. Moreover, it is described for mouse cell lines that Ezh2 

regulates muscle gene expression (Caretti et al., 2004). In addition, it was shown 

that the PcG group protein Suz12 is bound the gene body the myoD locus in ES 

cells. Upon differentiation into muscle cells, the binding of Suz12 to the myoD 

locus together was lost. Furthermore, also the H3K27me3 mark disappears (Lee 

et al., 2006). Interestingly, PcG members are expressed in somites (Showell and 

Cunliffe, 2002). Taking all these evidences into consideration, they suggest that 

Polycomb-mediated repression is also involved in the silencing of myoD in 

Xenopus. Further analysis will be needed to determine the players and the entry 

site. A potential candidate for the entry factor is YY1.  
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Figure 40: Summary of the analyzed histone modifications at the myoD 

locus 

Top row indicates the embryonic stages analyzed by ChIP. Second row shows the mRNA 
expression pattern of myoD with in situ Hybridization (ISH) (see 3.5.6). Third row 
describes the myoD expression pattern. Fourth row shows the detected histone marks, 
marks for active transcription in green, for repressed transcription in red. The histone 
modifications are listed after the Brno nomenclature (Turner, 2005) 

 

From the above discussion, it can be concluded that the histone 

modification pattern detected at the myoD locus correlates with the mRNA 

expression pattern (see Figure 40). The hallmarks for active transcription H4ac 

and H3K4me2 are detectable on the myoD locus in stages, which express myoD. 

The hallmark for silent loci H3K27me3 is detectable in from neurula stage on, 

which is the stage, when the myoD transcription is maintained. In addition, the 

hallmarks for active transcription H4ac and H3K4me2 can be detected at the 

myoD locus prior to the gene induction during the phase of basal myoD 

transcription. However, it is not possible to draw mechanistic insights concerning 

the activation of myoD by any growth factor signaling cascades. With regard to 

the transcriptional silencing I hypothesize that Polycomb-mediated repression is 

involved in the myoD regulation.  

Interesting for future experiments are the following observation by 

Fisher and colleagues. They showed that H3K27me3 was found together with 

H3K9ac and H3K4me2 on one nucleosome (Azuara et al., 2006) on some 

developmentally important gene loci in human and murine ES cells. This 

phenomenon of bivalent histone modifications could not be detected at the myoD 
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locus. There are several reasons, why this phenomenon was not observed. The 

bivalent modification pattern might only exist during the early cleavage stages. 

Furthermore, it might be specific for mammals, which have evolved extra-

embryonic tissue parts. Apart from the histone modifications, also the 

characterization of the chromatin architecture by mapping DNaseI hypersensitive 

sites and/or histone positioning in the promoter region and the enhancer is 

important. Moreover, histone variants like H3.3 might be involved in the 

regulation of active transcription (Kimura, 2005). Recently, Ren and colleagues 

could show that in HeLa cells enhancers can be mapped by the existence of the 

histone modification H3K4me1, DNaseI hypersensitive sites and shortage of 

Histone H3 (Heintzman et al., 2007). Further ChIP studies with additional 

antibodies like H3K4me1 and earlier embryonic stages might also help to 

understand further details of the myoD regulation.  

5.2.1.2 αSRF ChIP 

Transgenic reporter gene assays indicated that a SRF binding site in 

the maintenance enhancer is important for maintaining the myoD reporter gene 

expression (Xiao, 2003). Neighboring E-boxes and Lef/Tcf binding sites are not 

necessary for this maintenance function. These data were supported with ChIP 

analysis, which proofed that SRF is bound to the myoD maintenance enhancer in 

neurula-stage somite explants, but not in blastula stage animal cap explants 

(Nentwich, 2003). Here, we have extended this analysis by comparing a more 

homogenous tissue sample of muscle-induced activin-treated animal cap 

explants with ectodermal, non-induced animal cap explants (see chapter 4.2.1.4, 

Figure 23). This αSRF ChIP analyses could confirm the earlier ChIP analysis and 

determined in addition that SRF is preferentially bound to the myoD maintenance 

enhancer exclusively in myoD-expressing cells. Furthermore, an additional SRF 

binding site was discovered in the second intron shortly before the third exon. 

The function of this site is unknown until now. Future analysis with the REMI 

transgenic reporter approach (also see chapter 2.2.1) will have to reveal the 

functional properties of the newly discovered SRF binding site.  

How the SRF transcription factor gains access to its binding site during 

active myoD transcription is still unknown. Cooper and colleagues mapped SRF 

binding sites in various different human cell lines (Cooper et al., 2007). Although 

they have analyzed several histone modifications and the DNA methylation, only 
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few of these sites they were correlated with these epigenetic marks. The same is 

true for the histone modifications analyzed in this study. Neither the hallmarks for 

active chromatin H4ac and H3K4me2, nor hallmarks for silent loci H3K9me2 and 

H3K27me3 are enriched at the myoD maintenance enhancer. The only obvious 

difference of this site is that it appears to be poor in nucleosomes compared to 

the promoter or exon1 (see Figure 33). Whether this has any functional relevance 

for the binding of the SRF to the myoD maintenance enhancer, remains to be 

elucidated. Besides a possible epigenetic mechanism for the recruitment of SRF 

to its tissue specific target site, it is more likely due to signaling events through 

auxiliary factors. Components of the ternary complex factor TCF like Elk or Ets, 

which are responsible for stabilizing SRF at immediate early gene egr1 (Panitz et 

al., 1998), could be excluded due to the lack of the required binding sequence. 

One candidate for this DNA binding co-factor could be the myocardin-related 

protein MAL. Treisman and colleagues showed that MAL becomes translocated 

into the nucleus upon Rho-actin signaling (Miralles et al., 2003). In a subsequent 

analysis, they showed that SRF and MAL form a complex in a signal-dependent 

manner. Furthermore, DNA binding and distortion is necessary for optimal 

interaction between SRF and MAL, which directly contacts DNA flanking the SRF 

binding site (Zaromytidou et al., 2006). It is unknown, whether the binding of MAL 

to the DNA is sequence-specific or not. Therefore, it is not possible to predict the 

binding of MAL together with SRF at the SRF site in the maintenance enhancer 

by sequence analysis. An additional support of this hypothesis is that the 

expression of myoD in murine C2C12 myoblasts depends on Rho-actin signaling 

(Dhawan and Helfman, 2004). However, it remains to be determined, whether 

MAL could be the signaling dependent co-factor, which helps to target or stabilize 

SRF to the myoD locus.  

5.2.1.3 αMyoD ChIP 

The MyoD autocatalysis is important for the myoD induction 

(Steinbach et al., 1998; Thayer et al., 1989). Fifteen potential E-boxes were 

identified by sequence comparison on the myoD locus. Three of them are located 

in the promoter and in the first exon and were shown to be able to support 

autocatalysis of the gene (Lun et al., 1997). The in vivo binding of MyoD to its 

own locus could not be shown yet. Therefore, rat monoclonal antibodies against 

MyoD were generated (see chapter 4.1.1, Figure 12) in order to perform ChIP 
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experiments. The antibodies MYO 6C8, MYO 5A9 and MYO 7F11 were raised. 

The antibody MYO 6C8 was identified as the most suitable for ChIP analyses. 

Although the antibody showed a good IP efficiency under formaldehyde-fixed 

ChIP condition, the time course ChIP analysis failed. Apart from the 

above-discussed technical reasons (see chapter 5.1.1 and following chapters), 

several biological reasons are conceivable. First of all, it is not known for how 

long after induction MyoD autocatalysis is required. Basal myoD expression is 

detectable from the start of the zygotic transcription at the mid-blastula stage 

(NF8) on (Rupp and Weintraub, 1991). The second reason could be that MyoD 

protein is only transiently bound to its target sites. Thus, it might be impossible to 

fix it to the DNA. The third possibility is that the antigen is very low abundant. 

Therefore, the precipitation efficiency might be below the background noise and 

as a consequence not detectable by real-time PCR.  

5.2.2 Lef/Tcf transcription factors co-precipitate under ChIP-type IP 

conditions 

The canonical Wnt/β-catenin signaling is one of the most important 

signaling cascades throughout embryonic development and adulthood. Its 

extracellular and cytoplasmic signal transmission is very well understood (see 

Figure 4). Upon Wnt stimulation the central, signal transmitting molecule 

β-catenin enters the nucleus and binds to its interaction partners like the Lef/Tcf 

proteins (for review e.g. (Moon et al., 2002; Wang and Wynshaw-Boris, 2004)). 

However, the signal transmission within the nucleus after the stabilization is less 

well studied. Therefore, antibodies against the transcription factors Lef1, Tcf1 and 

Tcf3 were raised in order to analyze, which of them and when they are bound to 

their sites at the Wnt target genes siamois or myf5. They were tested for their 

ability to detect their antigen by immunoblotting, immunofluorescence, 

immunocytochemistry, IP, and ChIP-type IP. Their specificity was tested in IPs 

and ChIP-type IPs. In native IPs (see Figure 16 & 17), the antibodies precipitated 

very specifically their antigen. Unexpectedly, under formaldehyde-fixed condition 

they precipitated apart from their specific antigen also the other Lef/Tcf family 

members (see Figure 18). I investigated this co-precipitation further with the 

bimolecular fluorescence complementation assay (Hu et al., 2002). Unfortunately 

in non-formaldehyde fixed samples, I could not detect any direct or short-range 

interaction among Lef/Tcf proteins. This analysis and the native Co-IP suggest 
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that the Lef/Tcfs do not interact directly with each other. However, they appear to 

be components of a large complex either in the nucleus or in the cytoplasm. Yet 

in this study, Lef1 and Tcf1 were localized in the nucleus (see Figures Appendix 

3-8). So if they are present in the nucleus, they might be part of mediator 

complexes (Heintzman and Ren, 2007) and thereby trigger transcriptional 

processes. Another fact, which argues for a supercomplex, is the clustering of 

functional Lef/Tcf binding sites, typically associated with Wnt target gene 

promoters. For example, the siamois promoter harbors five Lef/Tcf binding sites 

within of 311bp (Brannon et al., 1997). However, further analyses will be needed 

to test this hypothesis. Co-immunoprecipitation experiments with components of 

the mediator complex like the TRAP220/MED1 subunit (Roeder, 2005) might help 

to determine the association of the Lef/Tcf proteins to a supercomplex. 

Furthermore, also components of the preinitiation complex (PIC) like TFIID 

(Chadick and Asturias, 2005) or hallmarks of active RNA polymerase II 

transcription like the phosphorylated C-terminal domain of RNA polymerase II are 

candidates for components of a mediator supercomplex associated upon Wnt 

target activation. 

5.2.3 CHD4 binds to the sip1 locus at exon 1 

During gastrulation the three germlayers are formed. In Xenopus, the 

border between neuroectoderm and mesoderm is marked by the transcription 

factors sip1 and Xbra, respectively (Papin et al., 2002; Wardle and Smith, 2006). 

A potential mechanisms for this border formation might be repression of Xbra 

mediated by Sip1 (Lerchner et al., 2000; Papin et al., 2002). On the other hand, 

the sip1 gene expression was found to be under the regulation of CHD4 (Linder 

et al., 2007). In order to prove a direct regulation, I performed a ChIP analysis 

with CHD4 antibodies at the sip1 locus. My results (see Figure 39) identified the 

sip1 gene as a direct target of CHD4 in gastrula stage embryos (NF11), the 

stage, when the neuroectoderm/mesoderm boundary is formed. CHD4 was 

exclusively enriched at the first transcribed exon, but not at the untranslated exon 

U5 or at the 80kb downstream located transcribed exon 2. The binding of CHD4 

to the locus might either be local at the exon E1 or might be spread along the 

locus. Further analysis will be necessary like ChIP-on-chip experiments with a 

tilling array to investigate the association of CHD4 to the sip1 locus in detail with 

a high resolution. 
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In comparison to the ChIPs against the histone modifications, the 

standard deviations of this ChIP are low. This could be due to two technical 

reasons. First, a mixture of five monoclonal antibodies against different parts of 

CHD4 was used. This helped to increase the stability between the antibodies and 

the target protein. Second, in this ChIP assay we performed three independent 

IPs of the same lysate. This excludes variations of the lysate, which could lead to 

large standard deviations. 

The direct binding of CHD4 to the sip1 locus suggests for a binding at 

the active locus rather than the silent one, because over-expression of CHD4 

protein reduced sip1 mRNA levels in animal caps (Linder et al., 2007). This is in 

contrast to the prevailing opinion that the CHD4 containing NuRD complex is 

correlated with repressed loci (Bowen et al., 2004). However, Drosophila 

Mi-2/CHD4 is co-localized with activated RNA polymerase II in salivary gland 

polytene chromosome (Srinivasan et al., 2005). Furthermore, the human Mi-2 

protein was shown be important for the re-initiation of the transcription elongation 

(Mellor, 2006a). Due to my observations and the cited publication, I suggest that 

CHD4 is involved in restricting sip1 expression at the activated locus. Yet the 

subcomposition of the CHD4 protein complex and its recruitment to the sip1 gene 

remains to be elucidated.  

5.2.4 Conclusions 

The examples discussed above illustrate that the two ChIP protocols, 

which I have adapted for the use in Xenopus laevis, provide biological 

information. The established ChIP protocols were successfully employed in 

Xenopus laevis embryos for different approaches. But the success of the 

experiments depends very much on the precipitation efficiency of the antibody 

and abundance of the protein-DNA interaction under investigation. Therefore, I 

come to the conclusion that our ChIP data are able to show qualitative trends of 

the association of proteins to specific genomic loci.  
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5.3 Outlook 

In order to investigate how the genetic information is interpreted on the 

level of the chromatin template during cellular differentiation, I have established 

and adapted two ChIP protocols for Xenopus laevis. They provide a powerful tool 

to study the direct interaction of proteins with specific genomic loci in early frog 

embryos. Future ChIP approaches will help to gain further insight into the 

regulation of key regulators of Xenopus development.  

For instance, the window of myogenic competence is very likely 

determined by the chromatin composition. Somatic linker histone variants were 

shown to be rate limiting for the induction of myoD (Steinbach et al., 1997). ChIP 

analyses with maternal and somatic linker histones would be very useful to gain 

more insights into the induction processes of the gene. 

Moreover, Polycomb-group (PcG) of proteins are important negative 

regulators of myoD in mice and humans (Caretti et al., 2004; Lee et al., 2006). 

Therefore, members of the PcG protein family are candidate negative regulators 

of the Xenopus myoD locus. ChIP approaches with components of the PcG of 

proteins like Suz12, Eed or YY1 would support the understanding of the 

regulation of the skeletal muscle regulator myoD.  

Furthermore, CHD4 was shown to be important for the positioning of 

the neuroectoderm/mesoderm germlayer boundary (Linder et al., 2007) by 

constraining the expression of the neuroectoderm marker sip1. A continuative 

αCHD4 ChIP approach with SYBR Green amplicons located on the entire sip1 

locus would help to understand how CHD4 is involved in quantitative transcription 

control.  

In general, ChIP is a potent technology to study direct physical 

interactions of proteins and DNA. By genetic and interference analyses in 

contrast, regulatory hierarchies can be determined, but it is not possible to 

determine, whether the regulation is direct or not. For Xenopus laevis, which is 

the best understood model organism concerning the early embryonic vertebrate 

development, connections of genetic regulatory networks were investigated in 

detail (Loose and Patient, 2004). The ChIP technology will provide important data 

to hardwire the regulatory networks in Xenopus, which promote differentiation 

processes. In addition, if the properties of chromatin and associated factors on 

exemplary gene loci like myoD and sip1 over the period of embryonic 
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development is identified, cell fate determination processes will be better 

understood.  
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6 Abbreviations 

ATP  adenosine triphosphate 

bHLH  basic helix-loop-helix 

bp  base pairs 

cDNA  complementary DNA 

ChIP  chromatin immunoprecipitation 

Ct Cycle number, when the threshold is crossed (real-time PCR, see 

Figure 21) 

DEPC  diethlypryocarbonate 

ddH2O  double-distilled water 

DNA  deoxyribonucleic acid 

eeq  embryo equivalents 

e.g.  exempli gratia, for example 

EST  expressed sequence tag 

et al.  et alii, and others 

etc.  et cetera 

g  gram 

GFP  green fluorescent protein 

GST  glutathione S-transferase 

h  hour 

HAT  histone acetyltransferase 

HDAC  histone deacetylase 

H3K4me2 example for abbreviation of histone modification, here: 

dimethylation of lysine 4 on Histone H3 

HMG high mobility group 

hpf hours post fertilization 

ICC  immunocytochemistry 

i.e.  id est, it is 

IF  immunofluorescence 

IP  immunoprecipitation 

l  liter 

kDa  kilodaltons 

min minutes 
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M molar 

MBT mid-blastula transition 

ml milliliter 

mM millimolar 

mRNA messenger ribonucleic acid 

NF Xenopus developmental stages according to the normal table of 

staging of Xenopus laevis (Daudin) after (Niewkoop and Faber, 

1994) 

ng nanogram 

nm  nanometer 

NTPs nucleotide triphosphate mixture containing adenosine, guanidine, 

uridine and cytosine 

OD optical density 

PCR  polymerase chain reaction 

pmol  picomol 

REMI  restriction enzyme-mediated integration 

RNA  ribonucleic acid 

rpm  revolutions per minute 

RT  room temperature 

RT-PCR reverse transcription polymerase chain reaction 

SDS  sodium dodecyl sulfate 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gelelectrophoresis 

sec  seconds 

TSA  Trichostatin A 

UV  ultraviolet 

WB  Western blot analysis 

µg  microgram 

µl  microliter 

µM  micromolar 
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Appendix Figure 1: Protein expression patterns of Lef1 and Tcf1 in embryos 
 A-D: Immunocytochemistry (ICC, see 3.7.2) with αTcf1 antibody Tcf1 2F4; E-G: 
Immunocytochemistry (ICC) with αLef1 antibody LEF 3D4; H-J: negative control of ICC 
without primary antibody. A, B, E, H: 4-cell stage embryos; C,F: blastula NF8; D,F,I: 
gastrula NF11; G,J: tailbud NF 30. White arrowhead in D marks the bastopore lip on the 
dorsal side of the embryo. 
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Appendix Figure 2: Control of immunofluorescence study of Lef1 and Tcf1 

Immunofluoresence (IF, see 3.7.3) on paraffin sections with secondary antibody alone. 
A,D,G:  background fluorescence of anti-rat-alexa488; B,E,H: DAPI staining of DNA, 
C,F,I: merged alexa and DNA stain. Yellow are the overlays. A-C: gastrula NF11 dorsal to 
the right, animal to the top, D-F: neurula NF 18, anterior to the front, dorsal to the top; G-I:  
tailbud NF 28, anterior to the right, dorsal to the top. 
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Appendix Figure 3: Protein expression pattern of Tcf1 in paraffin sections of 
gastrula NF11 and neurula NF15 
Immunofluoresence analysis (IF, see 3.7.3) on paraffin sections of Tcf1. A,D: Tcf1 stain 
with antibody Tcf1 2F4; B,E: DNA stain with DAPI; C, F: merged pictures. A-C: gastrula 
NF11 dorsal to the right, animal to the top, bc: blastocoel; white arrow head: dorsal 
blastopore lip. D-F: neurula NF 18, anterior to the front, dorsal to the top, ac: archenteron. 
Scale bar is 200µM. Sketch on the right hand side marks the section planes. 
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Appendix Figure 4: Protein expression pattern of Tcf1 in cross sections of head, 
anterior and posterior trunk of a tailbud NF27 

 
Immunofluoresence analysis (IF, see 3.7.3) on paraffin sections of Tcf1. A,D,G: Tcf1 stain 
with antibody Tcf1 2F4; B,E,H: DNA stain with DAPI; C,F,I: merged pictures. A-C: 
Sections of the head including midbrain, eyes and cement gland, D-F: Section of the 
anterior trunk. G-I: Section of the posterior trunk. Scale bar is 100µM. Sketch on the 
bottom marks the section planes. 
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Appendix Figure 5: Protein expression pattern of Tcf1 in longitudinal sections of a 
tailbud NF27 

 
Immunofluoresence analysis (IF, see 3.7.3) on paraffin sections of Tcf1. A,D: Tcf1 stain 
with antibody Tcf1 2F4; B,E: DNA stain with DAPI; C,F: merged pictures. A-C,D-F: 
longitudinal sections of a tailbud embryos. Scale bar is 500µM. Sketch on the bottom 
marks the section plain. 
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Appendix Figure 6: Protein expression pattern of Lef1 in paraffin sections of 
neurula NF15 

 
Immunofluoresence analysis (IF, see 3.7.3) on paraffin sections of Lef1. A,D: Lef1 stain 
with antibody LEF 3D4; B,E: DNA stain with DAPI; C, F: merged pictures. A-C, D-F: 
neurula NF 18, anterior to the front, dorsal to the top, bc: blastocoel ac: archenteron. 
Scale bar is 200µM. Sketch on the right hand side marks the section planes. 
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Appendix Figure 7: Protein expression pattern of Lef1 in cross sections of head, 
anterior and posterior trunk of a tailbud NF27 
Immunofluoresence analysis (IF, see 3.7.3) on paraffin sections of Lef1. A,D,G: Lef1 stain 
with antibody LEF 3D4; B,E,H: DNA stain with DAPI;  C,F,I: merged pictures. A-C: 
Sections of the head including midbrain, eyes and cement gland, D-F: Section of the 
anterior trunk. G-I: Section of the posterior trunk. Scale bar is 100µM. Sketch on the 
bottom marks the section planes. 
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Appendix Figure 8: Protein expression pattern of Lef1 in longitudinal sections of a 
tailbud NF27 
Immunofluoresence analysis (IF, see 3.7.3) on paraffin sections of Lef1. A,D: Lef1 stain 
with antibody LEF 3D4; B,E: DNA stain with DAPI; C,F: merged pictures. A-C,D-F: 
longitudinal sections of a tailbud embryos. Scale bar is 500µM. Sketch on the bottom 
marks the section planes. 
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