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Z

Die Ozeane speichern und transportieren enorme Mengen an Sonnenwärme und spielen so

eine entscheidende Rolle für das Klima unseres Planeten. Indem sie überschüssige Energie

aus den Tropen in höhere Breiten transportieren, tragen Meeresströmungen dazu bei die

Temperaturunterschiede zwischen dem Äquator und den Polen auszugleichen. Ein großer

Teil dieser Energie wird durch den sogenannten ‘Ocean Conveyor Belt’ (Broecker, 1991)

transportiert. Dieses ‘Förderband’ ist ein weltumspannendes Strömungssystem, angetrie-

ben durch thermohaline Konvektion. Veränderungen der Strömungsmuster wirken sich auf

die Verteilung von Wärme aus und beeinflussen so das Klima auf verschiedenen Maßstäben

von lokal bis global.

Auf Grund der Bedeutung von Meeresströmungen für das Klimageschehen ist die Re-

konstruktion von Paläoströmungen seit jeher von großem Interesse für die Klimaforschung

und die Paläoozeanographie. Unter den verschiedenen Werkzeugen, die zur Strömungs-

rekonstruktion verwendet werden, erfährt das Sm–Nd Isotopensystem zunehmende Auf-

merksamkeit. Dieses System wurde erstmals durch O’Nions et al. (1978) in einem ozea-

nographischen Kontext angewandt. Mittlerweile ist es als Standardmethode etabliert, wie

eine Fülle kürzlich erschienener Publikationen zeigt (z.B. Rutberg et al., 2000; Tütken et al.,

2002; Weldeab et al., 2002; Benson et al., 2003; Farmer und Barber, 2003; Piotrowski et al.,

2004; Bayon et al., 2002, 2003, 2004; Lacan und Jeandel, 2001, 2004, 2005, und viele mehr).

In der Anwendung des Sm–Nd Isotopensystems auf ozeanographische und paläoozeano-

graphische Fragestellungen können zwei Ansätze unterschieden werden.

Der erste Ansatz beruht auf den Isotopenzusammensetzungen von im Kristallgitter de-

tritischer Minerale gebundenem Sm und Nd. Mit deren Hilfe kann die kontinentale Her-

kunft klastischer Sedimente bestimmt werden, um so Rückschlüsse auf Transportrichtung

und -distanz zu ziehen (z.B. Revel et al., 1996; Tütken et al., 2002). Im zweiten Ansatz

wird die Isotopenzusammensetzung von in Meerwasser gelöstem Nd als ‘Fingerabdruck’

zur Unterscheidung verschiedener Wassermassen benutzt. Diese Methode beruht auf der

im Vergleich zur globalen Umwälzrate der Ozeane (ca. 1000 Jahre) kürzeren Verweildauer

von gelöstem Nd in Meerwasser (500-1000 Jahre; Tachikawa et al., 2003). Dieser Umstand

führt zu charakteristischen Unterschieden in den Isotopenzusammensetzungen verschie-

dener Wassermassen, die jeweils durch den Eintrag von gelöstem Nd gesteuert werden.

Mit Hilfe dieser isotopischen Unterschiede kann die Verteilung rezenter Wassermassen be-

stimmt werden (z.B. Lacan und Jeandel, 2001, 2004). Zusätzlich ermöglicht diese Methode

unter Verwendung geeigneten Probenmaterials die Rekonstruktion verschiedener Wasser-
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massen in der Vergangenheit. Hierfür kommt theoretisch jegliches Material in Frage, dessen

Nd-Gehalt sich von ehemals in Meerwasser gelöstem Nd ableitet. Verwendung finden fos-

sile Überreste mariner Organismen (z.B. Foraminiferen; Vance und Burton, 1999; Burton

und Vance, 2000), oder, vor allem für die nähere geologische Vergangenheit, Eisen-Mangan

Knollen (z.B. Frank et al., 2002). Jedoch sind Eisen-Mangan Knollen nicht auf das für die

Klimaforschung besonders interessante Spätquartär anwendbar. Dies liegt an deren niedri-

gen Wachstumsraten (mm/Ma), die eine nur unzureichende zeitliche Auflösung erlauben.

Um diesen Nachteil zu umgehen, wird in den letzten Jahren verstärkt die Verwendbarkeit

von in der Sedimentsäule fein verteilten Eisen-Mangan Phasen untersucht (z.B. Rutberg

et al., 2000; Bayon et al., 2002, 2003, 2004; Piotrowski et al., 2004).

Im Rahmen dieser Arbeit wurden beide Ansätze, d.h. die Verwendung von im Kristall-

gitter detritischer Minerale gebundenem Sm und Nd, und Nd in fein verteilten, authigenen

Eisen-Mangan Phasen, verfolgt. Die verwendeten Proben stammen aus einem Sediment-

kern vom Yermak Plateau aus der nordöstlichen Fram Straße. Zwischen Grönland und

dem Spitzbergen Archipel gelegen, stellt die Fram Straße die einzige Tiefenwasserverbin-

dung zwischen dem Arktischen Ozean und, über die Grönland-Island-Norwegen See, dem

Nordatlantik dar. Im Bereich der Grönland-Island-Norwegen See findet für die globale

thermohaline Zirkulation wichtige Tiefenwasserbildung statt. Dieser Prozess befindet sich

in einem empfindlichen Gleichgewicht, das vor allem durch den Salzgehalt des Oberflä-

chenwassers bestimmt wird. Der Salzgehalt des Oberflächenwassers in dieser Region wie-

derum wird maßgeblich durch den Ausstrom niedrigsalinen Wassers aus dem Arktischen

Ozean beeinflusst. Aus diesem Grund ist die Rekonstruktion des Wasseraustausches zwi-

schen dem Arktischen Ozean und dem Atlantik durch die Fram Straße von großem Inter-

esse für die Klimaforschung.

In der vorliegenden Arbeit wurde die Herkunft der im Laufe der letzten 129 000 Jahre

am westlichen Yermak Plateau abgelagerten Sedimente untersucht. Hierzu wurden neben

den Proben des untersuchten Sedimentkernes auch Proben aus potenziellen Liefergebie-

ten auf ihre Sm–Nd-Isotopie hin analysiert. Nach weitverbreiteter Meinung wird unter

rezenten Bedingungen Sedimentmaterial sowohl per Eisdrift aus den sibirischen Schelfge-

bieten, als auch durch aus dem Süden einströmendes Oberflächen- und Tiefenwasser an-

geliefert. Um diese unterschiedlichen Transportmechanismen und Herkunftsgebiete auf-

zulösen, wurde der Großteil der verwendeten Proben in die Korngrößenfraktionen Ton,

Feinsilt, Grobsilt und Sand aufgetrennt.

Durch die Lage des untersuchten Sedimentkernes ist die Anlieferung von Material in

Sandgröße (oder gröber) eindeutig auf Eisdrift beschränkt. Dieses eistransportierte Ma-

terial (IRD) dient damit als Hinweis auf die Veränderungen der Oberflächenströmungen.

Das Sedimentmaterial in Ton- bis Siltgröße hingegen liefert ein Mischsignal von Eis- und

Strömungstransport (IRD und Schwebefracht). Durch Vergleich der Isotopenzusammen-
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setzungen der einzelnen Proben untereinander und mit denen der potenziellen Lieferge-

biete, läßt sich unter Einbeziehung isotopenunabhängiger Literaturdaten (z.B. mineralogi-

sche Sedimentzusammensetzung, Korngrößenverteilung, Faunenzusammensetzung, etc.)

eine Reihe von Aussagen treffen. Die verschiedenen Korngrößenfraktionen einzelner Kern-

proben weisen in der Regel nur geringe Unterschiede in ihrer Isotopenzusammensetzung

auf (größtenteils unterhalb der analytischen Nachweisgrenze). Die größten Abweichun-

gen zeigen die Sandfraktionen. Bis auf wenige Ausnahmen kann dies vermutlich auf den

Umstand zurückgeführt werden, dass die Sandfraktionen auf Grund der geringen Proben-

menge im Verhältnis zur groben Korngröße nicht repräsentativ sind.

Die generell geringen isotopischen Unterschiede deuten auf eine gemeinsame Herkunft

von IRD und Schwebefracht hin. Da ein Transport von Schwebefracht von den sibirischen

Schelfgebieten der Laptev- und Kara See zum Yermak Plateau ausgeschlossen werden kann,

ist auch eine solche Herkunft des IRD unwahrscheinlich. Hingegen erscheint, unter rezen-

ten interglazialen Bedingungen, eine gemeinsame Herkunft von IRD und Schwebefracht

aus dem Bereich von Spitzbergen und der westlichen Barents See wahrscheinlich.

Die zeitliche Entwicklung der Isotopenkurve für den untersuchten Sedimentkern legt

nahe, dass die rezenten Sedimentationsverhältnisse trotz wiederholter großräumiger Ver-

gletscherungen der Spitzbergen-Barents See Region auch während der letzten 129 000 Jahre

im Wesentlichen unverändert bestanden haben. Die größten Abweichungen von den rezen-

ten Verhältnissen zeigen sich während der Hauptphase des letzten Glazials vor ca. 20 000

Jahren. Zu diesem Zeitpunkt wurden beträchtliche Mengen IRD durch vom Skandinavi-

schen Eisschild stammende Eisberge bis in die Fram Straße transportiert. Darüber hinaus

konnte an Hand von Schreibkreidefragmenten eine während des letzten Glazials bis in die

südliche Fram Straße (Spielhagen, 1991) reichende Eisbergdrift aus der Nordsee auch für

das Yermak Plateau nachgewiesen werden.

Im Rahmen des zweiten analytischen Ansatzes, d.h. der Untersuchung der Nd-Isotopie

von fein verteilten Eisen-Mangan Phasen, wurde zunächst an der Umsetzung der experi-

mentellen Methode gearbeitet. Die Methode der chemischen Extraktion der Eisen-Mangan

Phasen durch ein Mischreagenz (bestehend aus Essigsäure und Hydroxylamin-Hydrochlo-

rid) beruht im Wesentlichen auf der Arbeit von Chester und Hughes (1967). Im Laufe

der Jahre wurden verschiedene auf deren Arbeit beruhende Modifikationen der Methode

vorgeschlagen (Tessier et al., 1979; Chao und Zhou, 1983; Hall et al., 1996), und zuletzt

durch Bayon et al. (2002) einem umfassenden Vergleich unterzogen. In Anlehnung an das

von Bayon et al. (2002) beschriebene Extraktionsprotokoll (das vor allem auf die Vermei-

dung von Kontamination durch andere Sedimentkomponenten abzielt) wurden zunächst

fünf Kernproben bearbeitet, und mit großzügiger Unterstützung der EU an der European

Union Large Scale Geochemical Facility an der Universität Bristol, England, per ICP-MS

auf ihre Seltenerdmuster untersucht. Zusätzlich wurde in München die Nd-Isotopie von
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aus neun Proben des untersuchten Sedimentkernes extrahierten Eisen-Mangan Phasen be-

stimmt. Die in England bestimmten Seltenerdmuster weisen eine für Eisen-Mangan Pha-

sen untypische Anreicherung der mittleren Seltenen Erden auf. Auch die Isotopenuntersu-

chungen ergaben ein ungewöhnliches Bild. Über die Zeit gesehen verlaufen die Isotopen-

kurven der Eisen-Mangan Phasen und der detritischen Phasen weitgehend parallel, was auf

das Bestehen einer systematischen genetischen Beziehung zwischen den analysierten Nd-

Fraktionen hindeutet. Eine ähnliche Beziehung scheint auch für einen in mehreren Publi-

kationen bearbeiteten Sedimentkern aus dem südöstlichen Atlantik zu bestehen (Rutberg,

2000; Rutberg et al., 2000; Piotrowski et al., 2004).

Zur Beantwortung der aufgeworfenen Fragen bezüglich der generellen Anwendbarkeit

der Methode wurde daraufhin eine Experimentreihe durchgeführt. Mehrere Aliquote ein

und der selben Kernprobe wurden mit unterschiedlichen Einwirkzeiten und Konzentra-

tionen der verwendeten Reagenzien bearbeitet und in möglichst vielen Zwischenschritten

auf ihre Sm- und Nd-Isotopie analysiert. Die Ergebnisse dieser Experimentreihe weisen

auf eine konzeptionelle Schwäche der Methode hin. Zur Vermeidung von Kontamination

(d.h. des Herauslösens von kristallgebundenem Nd) beschränken sich alle in der Litera-

tur beschriebenen Methoden auf eine Variation der Konzentration des zur Reduktion der

Eisen-Mangan Phasen verwendeten Hydroxylamin-Hydrochlorids. Dabei wird jedoch die

korrosive Wirkung der beigemischten Essigsäure außer Acht gelassen, die in allen Fällen bei

4.4 mol·l-1 liegt. Bei den typischerweise verwendeten Einwirkzeiten ist der durch eine derar-

tige Konzentration von Essigsäure bedingte niedrige pH-Wert ausreichend, um leicht lös-

liche Mineralphasen anzugreifen und kristallgebundenes Nd freizusetzen (Hannigan und

Sholkovitz, 2001; Dubinin und Strekopytov, 2001). Hierbei sind vor allem phosphatische

Mineralphasen in Betracht zu ziehen, was mit den oben erwähnten Anreicherungen der

mittleren Seltenen Erden übereinstimmen würde. Verschiedene phosphatische Mineral-

phasen, z.B. Apatit, sind häufige Nebenbestandteile vieler klastischer Sedimentgesteine und

können mit ihren hohen Seltenerdkonzentrationen jegliches Meerwassersignal maskieren.

Dies alles deutet darauf hin dass die verwendeten Methoden zur Bestimmung der Paläo-

meerwasserisotopie mit Hilfe fein verteilter Eisen-Mangan Phasen noch bei weitem nicht

ausgereift genug sind um standardmäßig angewendet zu werden.
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S

By storing and transporting vast amounts of energy derived from solar insolation, the

oceans play an important role in shaping Earth’s climate. On the largest scale, ocean cur-

rents smooth the temperature gradients between the equator and the poles by redistributing

excess energy from the tropics to higher latitudes. Much of this excess heat is transported

by the so-called Ocean Conveyor Belt (Broecker, 1991), a global network of ocean currents

driven by thermohaline convection. Changes in the pattern and strength of thermohaline

circulation affect the redistribution of heat, and thereby significantly influence climate on

local to global scales.

The reconstruction of paleocurrents has long been a subject of paleoceanographic re-

search. Among the various methods employed in tracing paleocurrents (and modern cur-

rents), the Sm–Nd isotope system is experiencing ever increasing attention. First applied

in an oceanographic context by O’Nions et al. (1978), it is by now established as a standard

tool, as shown by numerous recent publications (e.g. Rutberg et al., 2000; Tütken et al.,

2002; Weldeab et al., 2002; Benson et al., 2003; Farmer and Barber, 2003; Piotrowski et al.,

2004; Bayon et al., 2002, 2003, 2004; Lacan and Jeandel, 2001, 2004, 2005, and many more).

Two lines of application of the Sm–Nd isotope system to oceanography/paleoceanography

can be distinguished, both of which were followed for this thesis.

The first approach uses the isotopic composition of Sm and Nd hosted in detrital min-

erals to infer the provenance of terrigenous sediments. This information can be used to

draw conclusions about the direction and distance of sediment delivery. The second ap-

proach uses the isotopic signature of Nd as a tracer of different water masses. Due to the

oceanic residence time of Nd being shorter than the global turnover rate of seawater (500-

1000 years vs ~1000 years; Tachikawa et al., 2003), different bodies of water acquire distinct

Nd isotopic signatures as a function of the age of adjacent continents. Apart from directly

analyzing the Nd isotopic compositions of water samples to trace the modern distribution

of different water masses (e.g. Lacan and Jeandel, 2001, 2004), suitable archives of seawater-

derived Nd can be employed to study paleocurrents. Possible archives are fossil remains of

marine organisms (e.g. foraminifers; Burton and Vance, 2000), or, most widely used for the

recent geological past, Fe-Mn nodules and crusts (e.g. Frank et al., 2002). With slow growth

rates on the order of mm/Ma, however, Fe-Mn nodules do not offer the high temporal reso-

lution necessary to study Late Quaternary climate change. Attention has therefore recently

turned to authigenic Fe-Mn oxyhydroxides finely dispersed throughout the sediment col-

umn (e.g. Rutberg et al., 2000; Bayon et al., 2002, 2003, 2004; Piotrowski et al., 2004).
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For this thesis, both lines of application of the Sm–Nd isotope system to paleoceanog-

raphy were followed. The samples were taken from a sediment core collected from the Yer-

mak Plateau in the north-eastern Fram Strait. Situated between Greenland and the Svalbard

Archipelago, the Fram Strait is the only deep connection between the Arctic Ocean and, via

the Greenland-Iceland-Norwegian (Nordic) Seas, the North Atlantic. The Nordic Seas are

an area of deep-water formation important for the global thermohaline circulation. There,

the processes of deep-water formation are in a state of equilibrium that is most sensitive

to changes in surface water salinity, which, in turn, is strongly influenced by the outflow

of water of low salinity from the Arctic Ocean. This makes the history of water exchange

between the Atlantic and the Arctic Ocean through the Fram Strait a subject of key interest

for climate research.

In particular, it was attempted to reconstruct the provenance of sediments deposited on

the western Yermak Plateau over the last 129 000 years. This was done by analyzing samples

from the sediment core and from potential source areas for their Sm–Nd isotopic composi-

tions. The current understanding is that under present interglacial conditions sediment is

delivered to the Yermak Plateau by ice drift from the Siberian shelf areas (Kara- and Laptev

Sea) and as suspended load of Atlantic water advected from the south. To resolve these

assumed differences in provenance and transport mechanism, the majority of the samples

was split into the grain-size fractions clay, fine silt, coarse silt, and sand for Sm–Nd analyses.

The position of the investigated core on the upper slope of the western Yermak Plateau

limits delivery of sand-size (or coarser) material to ice rafting. The sand fractions of the

core samples were therefore interpreted to be exclusively of ice rafted origin, and thus used

as an indicator of changes in the pattern of surface currents. Clay- to silt-size material, on

the other hand, yields a mixed signal of ice rafting and suspended-load delivery. Based on a

comparison of the isotopic compositions of the core samples with those of the samples from

potential source areas, a number of conclusions can be drawn: Most core sample show only

little isotopic variation between their constituent size fractions (mostly less than analytical

uncertainty). Only sand fractions show considerable differences. This can probably be

explained by the sand samples’ small sample size relative to their coarse grain size; as a

result, most sand fractions probably are not representative.

The generally good agreement between the isotopic compositions suggests a common

origin of ice rafted detritus (IRD) and suspended load. The possibility of suspended par-

ticulate matter transport from the Siberian shelf areas of the Kara- and Laptev Seas to the

Yermak Plateau in significant amounts can be excluded. An origin of IRD in the Kara-

and Laptev Sea is therefore equally unlikely. Instead, a common provenance of IRD and

suspended particulate matter from the Svalbard/Barents Sea area is a plausible scenario,

supported by isotope-independent data from the literature (e.g. grain-size distribution,

mineralogical composition, faunal abundance, etc.).
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The moderate downcore Nd isotopic variation suggests that, despite repeated large-

scale glaciations in the Svalbard/Barents Sea area, the general modern-type circulation in

the Fram Strait area has been active for most of the last 129 000 years. The largest deviation

from modern conditions is indicated for the peak of the last glacial phase, approximately

20 000 years ago. Then, large amounts of IRD were delivered to the Yermak Plateau by ice-

bergs calving from the Scandinavian ice sheet. Moreover, the occurrence of chalk fragments

confirms iceberg drift from as far south as the North Sea. A similar finding has previously

been reported for samples from the southern Fram Strait by Spielhagen (1991).

Regarding the second analytical approach, i.e. the Nd isotopic analysis of finely dis-

persed authigenic Fe-Mn oxyhydroxides, implementation of the experimental technique

was targeted first. The method of Fe-Mn oxyhydroxide extraction by means of leaching

with a mixed reagent (acetic acid and hydroxylamine-hydrochloride) largely is based on the

work of Chester and Hughes (1967). Modifications of their method have been reported in

Tessier et al. (1979), Chao and Zhou (1983), and Hall et al. (1996), and have recently been

compared by Bayon et al. (2002). Based on the experimental protocol described by Bayon

et al. (2002), five core samples were processed and analyzed for their rare earth element

(REE) concentrations by ICP-MS at the European Union Large Scale Geochemical Facility

at the University of Bristol, England, financed by the EU. In addition, nine core samples

were processed and the leachates analyzed for their Nd isotopic composition in Munich.

The REE patterns of the leachates show an enrichment of the middle REE that is atyp-

ical for authigenic Fe-Mn phases. The isotopic analysis also yielded controversial results:

downcore, the Nd isotope curves for the leachates and the detrital phases run approximately

parallel, suggesting a systematic genetic relationship between the analyzed Nd fractions. A

similar relationship appears to exist between data reported in Rutberg (2000), Rutberg et al.

(2000), and Piotrowski et al. (2004) for a sediment core from the south-eastern Atlantic.

To answer the questions raised by these controversial results, a sequential leaching ex-

periment was designed. Several aliquots of one core sample were treated for different dura-

tions with different concentrations of the leaching reagents, and at intermediate steps were

analyzed for their Sm–Nd isotopic composition. The results of this leaching experiment

point towards a conceptual weakness of the method. In order to avoid contamination by

non-authigenic sediment components, all experimental methods described in the literature

focus on adjusting the concentration of the hydroxylamine-hydrochloride used to reduce

Fe and Mn to their soluble states. This approach, however, does not take into account the

dissolution of acid-soluble phases by acetic acid, which in all cases is used at a strength of 4.4

mol·l-1. Consequently, the leaching reagent is sufficiently corrosive to attack easily-soluble

detrital minerals and release non-seawater-derived Nd (Hannigan and Sholkovitz, 2001;

Dubinin and Strekopytov, 2001). Phosphatic phases are therefore a likely source of non-

seawater-derived Nd. Apatite, for instance, is a common component of clastic sedimentary
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rocks, is easily dissolved by weak acids, and can account for the middle REE enrichment

in the leachates. Its high Nd concentrations would mask any seawater signal. To conclude,

it appears as though the available extraction techniques are not yet sufficiently refined to

reliably determine the Nd isotopic composition of finely dispersed Fe-Mn oxyhydroxides as

a proxy for paleoseawater composition.
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 I

Being the largest reservoir of heat derived from solar insolation (Cronin, 1999), the oceans

play an important role in shaping Earth’s climate. Fundamentally, climate is driven by tem-

perature gradients across the surface of the Earth, causing atmospheric and oceanic motion

that, on the largest scale, transfers excess heat from low to high latitudes. Much of this heat

is transported by the so-called Ocean Conveyor Belt (Broecker, 1991), a global network of

ocean currents driven by thermohaline convection (Fig. 1). Changes in the pattern and

strength of thermohaline circulation affect the redistribution of heat, and thereby signifi-

cantly influence climate on local to global scales.

A key site of global thermohaline circulation is the North Atlantic, where, under present-

day interglacial conditions, deep-water is formed by sinking of dense (cold and salty) water

in the Greenland-Iceland-Norwegian (Nordic) Seas and in the Labrador Sea (Fig. 1). Heat

delivered by the compensating northward flow of warm surface water is responsible for the

mild climate of Europe. The mechanism of deep-water formation is particularly sensitive

to changes in salinity. Paleoceanographic research has shown that input of large amounts

of freshwater has repeatedly slowed down, or entirely interrupted, deep-water formation in

the North Atlantic in the past (e.g. Rahmstorf, 2002, and references therein). Freshwater in

Cold and salty deep current

LS

NS

Warm and
less salty

shallow
current

Figure 1 : Simplified illustration of the global Ocean Conveyor Belt (present-day situation). One

overturn of the water masses takes about 1000 years. LS = Labrador Sea, NS = Nordic

Seas. Redrawn from Alley (2000).
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large quantities can be released by melting of ice sheets, by drainage of ice-dammed lakes

(e.g. Svendsen et al., 2004), or large-volume discharge of rivers. In addition to controlling

the freshwater budget, large ice sheets can directly influence oceanic conditions by blocking

pathways of ocean currents(e.g. shelf-based ice sheets) or changing atmospheric conditions

(e.g. katabatic winds influencing sea ice conditions).

With the circum-Arctic area being drained by some of the worlds largest rivers, and

having repeatedly experienced large-scale glaciations, the history of exchange of water be-

tween the Arctic Ocean and the North Atlantic is of much interest for paleoclimate research.

An area exceptionally well suited to study this history is the Fram Strait between Greenland

and the Svalbard Archipelago, the only deep connection between the Arctic Ocean and the

North Atlantic. Located in the north-eastern Fram Strait, the submarine Yermak Plateau

(Fig. 2) provides ideal conditions to retrieve undisturbed sedimentary records of high tem-

poral resolution, such as core PS2837-5 investigated in this study (see Chapter 2).

Paleoceanographic research employs many tools, among which provenance analyses are

particularly useful for the reconstruction of ocean currents. Increasingly, provenance stud-

ies are conducted by means of Sm–Nd isotopic investigations. Shortly after its introduc-

PS2837-5
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Figure 2 : Map of the Fram Strait region, showing the location of the investigated sediment core

PS2837-5. Arrows depict simplified features of water circulation; WSC = West Spits-

bergen Current, YSC = Yermak Slope Current, TPD = Trans Polar Drift, EGC = East

Greenland Current.
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tion to the earth sciences in the mid-1970s, the Sm–Nd isotope system was first applied to

questions of oceanography by O’Nions et al. (1978). Ever since, it has been used in oceano-

graphic and paleoceanographic studies and by now is well established as a standard tool, as

shown by the large number of recent papers (e.g. Rutberg et al., 2000; Tütken et al., 2002;

Weldeab et al., 2002; Benson et al., 2003; Farmer and Barber, 2003; Piotrowski et al., 2004;

Bayon et al., 2002, 2003, 2004; Lacan and Jeandel, 2001, 2004, 2005).

Two applications of the Sm–Nd isotope system to oceanography/paleoceanography can

be distinguished. The first application employs the Nd isotopic composition of particulate

matter (i.e. continental detritus) to trace the provenance of sediments (e.g. Revel et al.,

1996; Tütken et al., 2002), thereby inferring the pattern of oceanic circulation. In order to

trace the Late Quaternary history of sediment delivery to the Yermak Plateau, samples from

sediment core PS2837-5 and from potential source areas were analyzed for their Sm–Nd

systematics (see Chapter 2).

The second application is based on seawater-dissolved Nd. The oceanic residence time

of Nd is shorter than the global turnover rate of water in the oceans (500-1000 years vs

~1000 years; Tachikawa et al., 2003), leading to isotopic differences between different water

masses as a function of the average age of the surrounding land masses. These isotopic

differences can be used as a tracer of inter- and intra-oceanic circulation. Since the work of

O’Nions et al. (1978), Mn nodules have been used as an archive of seawater Nd. As a nodule

grows layer by layer by precipitation of Fe-Mn phases from the surrounding seawater, a

time series of the Nd isotopic composition of the seawater becomes recorded in the nodule.

Since Mn nodules have high REE concentrations of up to several hundred µg·g-1, very small

sample sizes can be analyzed. However, the slow growth rates of Mn nodules (on the order

of mm/Ma), and the minimum mass of sample material that can physically be removed

from the nodule, limit the temporal resolution. Mn nodules are therefore best suited to

study events occurring over long timescales, such as the closure of the Central American

Isthmus (Burton et al., 1997).

A solution to the problem of poor temporal resolution has been found in Fe-Mn oxyhy-

droxides distributed throughout the sediment column, mainly as coatings on foraminifers

(Palmer, 1985; Haley and Klinkhammer, 2002) or detrital particles (Sholkowitz et al., 1994).

Here, the difficulty lies in the extraction of these Fe-Mn phases without contamination from

other sedimentary components. A method for the extraction of Fe-Mn phases from pelagic

sediments by means of chemical leaching has first been published by Chester and Hughes

(1967), and various refined extraction methods have been proposed since (Tessier et al.,

1979; Chao and Zhou, 1983; Hall et al., 1996). None of these studies, however, investigated

the Nd isotopic compositions of the extracted Fe-Mn phases. This was first done in a study

of North Atlantic Deep Water export to the South Atlantic during the Late Quaternary by

Rutberg et al. (2000).
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Finely dispersed Fe-Mn phases as an archive of seawater Nd were investigated within

this thesis in a first attempt to apply the method to Arctic paleoceanography. Samples from

sediment core PS2837-5 were subjected to various leaching procedures (see Chapters 2.2.3

and 2.2.4), and the leachates were analyzed for their REE concentrations and Nd isotopic

compositions. As can be seen below, the results raised questions about the general applica-

bility of the method (discussed in Chapter 4.4).

. S 

Although the focus of this study lies on the Yermak Plateau, the area of investigation in-

cludes potential source areas of sediments deposited at the location of core PS2837-5. The

main source areas can be expected to lie within the Arctic, although sediment delivery dur-

ing the Last Glacial Maximum from as far south as the North Sea has been reported (Spiel-

hagen, 1991).

Following the definition used in the Arctic Monitoring and Assessment Programme

(AMAP, 1998), the marine Arctic area (Fig. 3) includes the Arctic Ocean, the adjacent shelf

seas (Beaufort, Chukchi, East Siberian, Laptev, Kara, and Barents Seas), the Nordic Seas

(Greenland, Norwegian, and Iceland Seas), the Labrador Sea, Baffin Bay, Hudson Bay, the

Canadian Arctic Archipelago, and the Bering Sea. The Arctic Ocean is connected with the

Pacific Ocean via the shallow Bering Strait and the Bering Sea. Exchange of water with the

Atlantic Ocean occurs through the Canadian Arctic Archipelago and the Barents Sea (both

shallow), and the deep Fram Strait with a sill depth of approximately 2600 meters (John-

son, 1990). The Lomonosov Ridge divides the deep Arctic Ocean into two main basins:

the Canadian Basin (subdivided into the Canada Basin and the Makarov Basin by the Al-

pha/Mendeleev Ridge) and the Eurasian Basin (subdivided into the Amundsen Basin and

the Nansen Basin by the Gakkel Ridge). The active Gakkel Ridge, spreading at rates of 2-

20 mm/a (Johnson, 1990; Fütterer, 1992), is connected to the Mid-Atlantic ridge system

through the Fram Strait transform fault system.

. H 

The hydrography of the Arctic Ocean will be described here only briefly, and, where nec-

essary, will be dealt with later in more detail (for details see AMAP, 1998, and references

therein). Generally, the Arctic Ocean can be characterized by a stable stratification of three

layers of different water masses with different circulation patterns: the surface layer, the

Atlantic layer, and the Arctic deep-water.

The surface of the Arctic Ocean is characterized by a near-complete permanent sea ice

cover, and is dominated by two large-scale features of circulation: the Trans Polar Drift
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Figure 3 : Map of the Arctic Ocean and adjacent areas. Morphological features of the central Arctic

Ocean are illustrated by the 1000 m, 2000 m, and 3500 m isobaths. In the Nordic Seas

(Greenland Sea, Norwegian Sea, and Iceland Sea) only the 1000 m isobath is shown. FJL

= Franz Josef Land, NZ = Novaya Zemlya, SZ = Severnaya Zemlya.

(TPD) and the Beaufort Gyre (BG). The Trans Polar Drift (TPD) extends from the Siberian

shelves to the western Fram Strait (Fig. 4), each year carrying approximately 2850 km3 of

sea ice out of the Arctic Ocean (Vinje et al., 1998). Sea ice formed in the Laptev Sea, for

instance, takes about three years to travel to the Fram Strait (Rigor, 1992), and, after leaving

the Arctic Ocean, is transported south along the coast of Greenland by the East Greenland

Current. The BG, rotating in a clockwise direction, extends over the entire Canadian Basin.
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Sea ice formed in the Beaufort, Chukchi, and East Siberian Seas may circulate within the

BG for more than five years (Thorndike, 1986) before being destroyed or leaving the Arctic

Ocean through the Canadian Arctic Archipelago. Limited exchange between the TPD and

the BG occurs along the Lomonosov Ridge. The surface layer is fed by inflow of Atlantic

water through Fram Strait and the Barents Sea, Pacific water through the Bering Strait,

and by continental run-off. Outflow occurs through the Canadian Arctic Archipelago, the

Fram Strait, and, to a lesser degree, through the Barents Sea. The amount and routing of

freshwater exported from the Arctic Ocean is thought to at least in part control deep-water

formation processes in the Labrador Sea and the Nordic Seas (Aagaard and Carmack, 1989).

The intermediate depths of the Arctic Ocean are occupied by water of Atlantic origin.

Warm and saline Atlantic water enters the Nordic Seas with the Norwegian Atlantic Cur-

rent, following the western Scandinavian margin northwards (Fig. 4). Some of this water is

deflected to the east and enters the Arctic Ocean via the Barents Sea. The remaining Atlantic

water continues northward along the western Barents Sea margin as the West Spitsbergen

Current (WSC), and partly recirculates to the west into the Greenland Sea. North of Sval-

bard, the upper part of the WSC is deflected eastwards by Coriolis forcing. The lower part

continues northward as the Yermak Slope Current (YSC), and is deflected eastwards north

of the submarine Yermak Plateau (Fig. 2). Upon entering the Arctic Ocean, the Atlantic

water submerges below the surface layer and follows the continental slope eastwards. Flow-

ing in a generally anticlockwise direction, the Atlantic water circulates through the different

basins of the Arctic Ocean in several loops (Fig. 5). Along the way it is modified by diffu-

sion and mixing with surrounding water masses, before eventually leaving the Arctic Ocean

through the western Fram Strait.

In the deep Arctic Ocean, Canadian Basin Deep Water and Eurasian Basin Deep Water

can be distinguished (AMAP, 1998). Canadian Basin Deep Water is relatively warm and

saline (-0.5 °C, 34.955), whereas Eurasian Basin Deep Water is colder and fresher (-0.95

°C, 34.945). Communication between the two basins across the Lomonosov Ridge is lim-

ited. While the Canadian Basin is largely cut off from the global deep-water circulation,

the Eurasian Basin receives Norwegian Deep Sea Water through the Fram Strait. The major

source of deep-water in both basins, however, is thought to be highly saline water formed

during sea ice formation in various places on the shelves (Anderson et al., 1994). Circula-

tion is anticlockwise in both basins (Fig. 6). Outflow of deep-water from the Arctic Ocean

occurs exclusively through the western Fram Strait.
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(1998).
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. S  

Marine sediments potentially are mostly heterogeneous multi-component mixtures result-

ing from a variety of processes and sources (summarized in Fig. 7). Of primary interest for

provenance studies is the terrigenous detritus. It may be transported as atmospheric dust

(aeolian input), by gravitational down-slope movements (turbidity currents), as suspended

load of ocean currents, and, unique to high latitudes, as ice rafted detritus (IRD).

Particles of wind-blown dust can represent a valuable source of information for the re-

construction of atmospheric conditions, but may hamper provenance analysis with regard

to current-transported material. Biscaye et al. (1997) studied dust particles extracted from

the Greenland Ice Sheet Project (GISP 2) ice core, and found them to have a mean grain

size of 1.2 µm. Atmospheric dust would therefore only be found in the clay fraction of the

sediment samples. Mass accumulation rates of dust in the GISP 2 samples range from 1.7 to

14.4 mg×cm–2
×ka–1, two to three orders of magnitude lower than the minimum sediment

accumulation rate of ~2 g×cm–2
×ka–1 for the sediment core investigated in this study (C.

Hass, personal communication). Biscaye et al. (1997) also found the Nd isotopic compo-

sitions of the dust samples to scatter around (Nd -10. As shown below, these values are

similar to those determined for the investigated core samples from the Yermak Plateau. It

can therefore be assumed that a wind-blown-dust component would not significantly alter
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Figure 7 : Cartoon illustrating sedimentary processes at high latitudes.
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Figure 8 : Extent of sea ice in the Arctic Ocean, and major/ minor sources of icebergs. Modified

from Grantz et al. (1990). Iceberg sources from Vogt (1997).

the Sm-Nd characteristics of the analyzed samples.

Currents in the open ocean rarely have velocities high enough to keep grains > 63 µm

in suspension (McCave et al., 1995b). Transport of grains > 63 µm is therefore largely re-

stricted to gravitational down-slope movements and ice rafting. The position of the inves-

tigated sediment core on the upper slope of the Yermak Plateau (see Fig. 2 in Chapter 2.1)

was chosen as to minimize the risk of disturbance by turbidity currents, and careful ex-

amination of the core revealed no signs of disturbance (C. Hass, personal communication,

see also core description in Appendix C, pp. 103-105). All detritus > 63 µm is therefore

assumed to by exclusively ice rafted.

Floating ice can transport large amounts of terrigenous material over long distances.

While icebergs may carry material of all grain sizes (up to boulder size), sea ice-rafted
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sediments are mainly composed of silty clay, with generally low contents of (mainly fine)

sand (Wollenburg, 1993). The restriction to finer grain sizes, as compared to icebergs, re-

flects suspension freezing as the major mechanism of sediment entrainment into sea ice

(Reimnitz et al., 1994; Dethleff, 1995). This mechanism mainly occurs in shallow shelf ar-

eas, where suspended (or resuspended) sediment particles become trapped in growing ice

crystals floating to the surface. Sediments can also be deposited on top of ice floes, when,

during the break up of rivers in spring, sediment-laden river water flows onto the sea ice

where it looses its sediment load.

Sediment transport by icebergs is of minor importance under modern interglacial con-

ditions, but in some areas has been the dominant mechanism during times of large-scale

glaciations. During Heinrich events, for instance, IRD layers up to one meter thick were

deposited in the North Atlantic within a few hundred years by armadas of icebergs released

from circum-North Atlantic ice sheets (Cronin, 1999). Today, icebergs are released only

from the Greenland ice sheet and minor ice caps on Svalbard, Franz Josef Land, Novaya

Zemlya, Severnaya Zemlya, and some islands of the Canadian Arctic Archipelago (Fig. 8).

Sea ice rafting, on the other hand, is supposed to be the main mechanism of sediment

transport to the modern deep Arctic Ocean (Nürnberg et al., 1994; Eicken et al., 2000), and

may also be a significant factor at the Yermak Plateau. Approximately 14 million km2 of

the Arctic Ocean are covered with sea ice at the peak of winter (Fig. 8). Intense summer

melting reduces the ice cover to ca. 7 million km2, releasing huge amounts of sediment in

the process. Other mechanisms of sediment release are subsurface melting of ice in warm

water, and mechanical destruction of ice floes (e.g. during build-up of pressure ridges;

Wollenburg, 1993).
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 S  

. S

.. L Q — PS-

Kastenlot core PS2837-5 (81° 13.99´ N, 2° 22.85´ E, 1042 m water depth, 8.76 m recovery)

and its companion boxcore PS2837-6 (recovery 0.49 m) were collected during the expedi-

tion ARK XIII/2 of RV Polarstern (Stein and Fahl, 1997). The core location on the western

slope shoulder of the Yermak Plateau (Fig. 2), north of the modern summer ice margin,

was chosen on the basis of shipboard PARASOUND echosounding data, suggesting high

sediment accumulation at the site (C. Hass, personal communication). The sediments are

dominantly clayey silts and silty clays, with sand (> 63 µm) contents ranging from 0 wt %

to 29 wt % (see Fig. 9, and core descriptions in Appendix C). Individual samples represent

slices of 1 cm thickness, and are named after their depth in the core; e.g. PS2837-5/55 is a

slice of sediment between 55 cm and 56 cm below the core top.

According to the age model (see next section) the sediment record covers the last 129

ka, corresponding to MIS 1-5 (Marine Isotope Stages, after Martinson et al., 1987). In the

following, all ages are given as calendar years BP (before present, 0 BP = AD 1950) unless

otherwise stated.

... A-    PS-

Age-depth models usually are constructed from a combination of absolute age determina-

tions (e.g. 14C dates) and correlation of proxy records (e.g. foraminiferal δ 18O) with other

well dated records, such as ice cores. 15 AMS (accelerator mass spectrometry) 14C dates and

several proxy parameters are available for core PS2837-5. Of these proxies, only the record

of grain-size composition covers the whole length of the core with high sampling density.

However, in the case of core PS2837-5 the grain-size record does not allow a straightforward

interpretation†, and can therefore not be used to establish an age-depth model.

Age-depth information for core PS2837-5 has been published by Hass (2002), Levitan

et al. (2002a), Nørgaard-Pedersen (2002), Nørgaard-Pedersen et al. (2003), Vogelsang and

Sarnthein (2003), Birgel and Hass (2004), and Wollenburg et al. (2004). The age-depth

†The mean grain size of the sortable silt fraction (10-63 µm) can be used as a proxy for current strength,

if the material in this grain-size range is exclusively transported as suspended load (Bianchi and McCave, 1999;

McCave et al., 1995a,b). This criterion, however, is not met in the case of core PS2837-5.
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models in these studies are all based on the same AMS 14C measurements performed at

the AMS facility at the Leibniz Laboratory, Kiel University, Germany. The conversion of
14C years to calendar years was in all cases performed with the INTCAL98 calibration data

set (Stuiver et al., 1998). However, the calibrated ages show marked differences. As the

cited studies provide neither detailed information about the calibration process, nor uncer-

tainties of the calibrated calendar ages, these differences are difficult to explain. Also, only

Levitan et al. (2002a) presented an age-depth model for the entire length of the core, al-

though they do not explicitly explain how the model is constructed beyond the limit of 14C

dating. For the sake of transparency, a new age-depth model was constructed in this study

from recalibrated 14C dates from Nørgaard-Pedersen et al. (2003), and linear interpolation

between age tie points (Table 1). This new age-depth model is described in the following

paragraphs, and shown in Fig. 10.

Down to 389 cm core depth the new model is based on 13 AMS 14C dates from

Nørgaard-Pedersen et al. (2003), converted to calendar years with revision 5.10 beta of

the CALIB software (Stuiver and Reimer, 1993) and the Marine04 calibration data set of

Hughen et al. (2004b). In addition to gaining full control over the calibration process, and

obtaining uncertainties of the calibrated ages, the recalibration benefits from an extended

calibration data set and an improved calibration algorithm that has been developed for the

Marine04 calibration (Blackwell et al., 2006).

The construction of an age-depth model for the core section below 389 cm was more

difficult. Although there are AMS 14C dates for samples at 415 cm (23.83 14C ka) and 497

cm (48.76 14C ka) depth (Nørgaard-Pedersen et al., 2003), these ages are of limited use

for the model; the ages > 21.7 14C ka are beyond the limit of the Marine04 calibration.

Calendar age estimates, or rather age range estimates, for samples older than 21.7 14C ka

can be derived from 14C year–calendar year curves, such as the ones of Voelker et al. (1998),

Hughen et al. (2004a), and Fairbanks et al. (2005). According to the data presented in these

studies, the samples at 415 cm and 497 cm have ages of between ca. 26 ka and 30 ka, and

ca. 43 ka and 60 ka, respectively. Due to the large uncertainties, these two dates were not

considered. Instead, the age-depth model for this part of the core was constructed by linear

interpolation between the oldest reliable 14C date at 389 cm and an age estimate for the core

bottom.

No reasonable minimum age estimate can be given for the core bottom, but the maxi-

mum age can be constrained with some confidence. Given the absence of a prominent peak

in the abundance of coarse-grained material in the lowest part of the core (see Fig. 9), it can

plausibly be assumed that the core does not extend to the penultimate glacial maximum

(MIS 6). The maximum age of the core bottom can therefore be confined to the MIS 5/6

boundary at 129 ka. From this age for the core bottom follows a linear sedimentation rate of

4.40 cm·ka-1 for the core section below 389 cm, which is well within the range of observed
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sedimentation rates in other cores from the Yermak Plateau (Levitan et al., 2002a). Using

this sedimentation rate of 4.40 cm·ka-1, the ages of the samples at 415 cm and 497 cm can

be calculated to be 26.07 ka and 44.70 ka, respectively, falling within the possible calendar

year ranges determined for the 14C dates.

MIS 4 MIS 5MIS 3MIS 1 MIS 2

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

200

400

600

800

Age (ka BP)

De
pt

h 
(cm

)

PS2837-5

Figure 10 : Age-depth model for core PS2837-5, based on linear interpolation between age tie

points. Open circles: 14C dates from Nørgaard-Pedersen et al. (2003), converted to

calendar years with revision 5.10 beta of the CALIB software (Stuiver and Reimer, 1993)

and the Marine04 calibration data set (Hughen et al., 2004b). Black bars: possible cal-

endar age ranges for AMS 14C dated samples at 415 cm and 497 cm from Nørgaard-

Pedersen et al. (2003), based on data from Voelker et al. (1998), Hughen et al. (2004a),

and Fairbanks et al. (2005). Filled circle: age estimate for core bottom based on sedi-

mentological parameters; see text for details. MIS 1-5 are Marine Isotope Stages after

Martinson et al. (1987).
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Table 1 : AMS 14C data from cores PS2837-5 and PS2837-6.

Calendar years BP (b)

Core Depth (cm) 14C years ± 1σ (a) Lab. code 2σ range Weighted avg (c)

PS2837-6 10 135 ± 25 KIA 7570 69 – 260 170

PS2837-5 50 1730 ± 40 KIA 4652 1594 – 1828 1720

PS2837-5 76 2940 ± 35 KIA 8927 3079 – 3316 3200

PS2837-5 111 4565 ± 45 KIA 8928 5139 – 5454 5320

PS2837-5 153 7005 ± 45 KIA 8929 7761 – 7962 7870

PS2837-5 182 7670 ± 60 KIA 4653 8388 – 8694 8530

PS2837-5 225 8890 ± 60 KIA 8930 9913 – 10 239 10 110

PS2837-5 253 10 540 ± 50 KIA 7571 12 339 – 12 751 12 530

PS2837-5 274 11 755 ± 60 KIA 10863 13 439 – 13 747 13 600

PS2837-5 300 12 255 ± 60 KIA 7572 13 924 – 14 420 14 130

PS2837-5 359 12 540 ± 70 KIA 10864 14 250 – 15 024 14 670

PS2837-5 382 15 640 ± 80 KIA 10865 18 760 – 19 008 18 890

PS2837-5 389 17 040 ± 110 KIA 4654 19 917 – 20 409 20 160

PS2837-5 415 23 830 ± 180 KIA 7573 ca. 26-30 ka (d)

PS2837-5 497 48 760 +4810/-2990 KIA 4655 ca. 43-60 ka (d)

PS2837-5 869 129 ka (e)

(a) From Nørgaard-Pedersen et al. (2003), reservoir corrected by minus 400 years.
(b) This study. 14C years converted to calendar years with revision 5.10 beta of the CALIB software

(Stuiver and Reimer, 1993) and the Marine04 calibration data set (Hughen et al., 2004b).
(c) Age tie points used for the construction of the continuous age-depth model. Weighted averages

are calculated from probability distributions.
(d) These are not calibrated 2σ ranges, but possible calendar year ranges derived from 14C year–

calendar year curves from Voelker et al. (1998), Hughen et al. (2004a), and Fairbanks et al. (2005).
(e) Age estimate for the core bottom based on sedimentological parameters; see text for details.

Although the age estimate for the core bottom is uncertain, and the sedimentation rate

is unlikely to have remained constant for more than 100 ka, the chosen approach to the

construction of the age-depth model appears to be the most objective, involving a mini-

mum of untestable assumptions. It should, however, be kept in mind that the age model

below 389 cm can at best be a rough approximation that may at any given depth be wrong

by several thousand years.

.. M S

... R 

L17, L18, L20, L21, and L22—supplied by V. Rachold (Alfred Wegener Institute for Po-

lar and Marine Research (AWI), Bremerhaven)—are river-bed surface sediments from dif-
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ferent localities along the major outflow of the Lena River in the eastern part of its delta

(Rachold et al., 1995). L18, L20, and L21 consist of sand-size material only. L17 contains

3.7 wt % clay, 18.2 wt % silt, and 78.1 wt % sand, and L22 is composed of 8.7 wt % clay,

54.2 wt % silt, and 37.1 wt % sand. See Fig. 11 for a map, Fig. 12 for a satellite image, and

Table 11 for coordinates.

BP01/72—supplied by F. Schoster (AWI, Bremerhaven)—was collected from the Ob

River estuary during the Kara Sea expedition SIRRO 2001 of RV Akademik Boris Petrov

(Stein and Stepanets, 2002). It is a river-bed surface sediment, composed of 19.5 wt % clay,

26.4 wt % silt, and 54.1 wt % sand (F. Schoster, personal communication). See Fig. 11 for a

map, Fig. 13 for a satellite image, and Table 11 for coordinates.

BP00/15—supplied by F. Schoster (AWI, Bremerhaven)—was collected from the Yenisei

River estuary during the Kara Sea expedition SIRRO 2000 of RV Akademik Boris Petrov

(Stein and Stepanets, 2001). It is a river-bed surface sediment composed of 9.0 wt % clay,

85.7 wt % silt, and 5.3 wt % sand (F. Schoster, personal communication). See Fig. 11 for a

map, Fig. 13 for a satellite image, and Table 11 for coordinates.

... B 

WoA, WoF, WoG (Kongsfjorden, West Spitsbergen) and WoC, WoD, and WoE (Isfjor-

den, West Spitsbergen)—supplied by C. Hass (AWI, Bremerhaven)—are beach deposits

collected during the expedition ARK-XVI/2 of RV Polarstern (Krause and Schauer, 2001).

WoA, made up of shale fragments, can be related to outcrops of the Late Paleozoic Gips-

dalen Group on the Brøggerhalvøya peninsula (Dallmann, 1999). WoF and WoG are coarse

crystalline sands, derived from pre-Old Red basement rocks outcropping north of Kongs-

fjorden (Dallmann, 1999). WoC, WoD, and WoE consist of fragments of shales and silt-

stones that can be related to the Mesozoic Adventdalen, Kapp Toscana, and Sassendalen

groups outcropping on the southern and northern shores of Isfjorden (Dallmann, 1999).

See Fig. 11 for a map, Fig. 41 in Appendix B (p. 97) for a satellite image, and Table 11

for coordinates. No photographs of the sampling sites are available, but Figs. 42 and 43 in

Appendix B (p. 98) provide a general impression of the area.

... I   (IRD) 

K3-1, K5-2, K6-1, and K6-2—supplied by C. Kierdorf (AWI, Bremerhaven)—are samples

of ice-rafted detritus (IRD) from sediment-laden sea ice in the central Fram Strait. The

samples were collected during expedition ARK-XVIII/1 of RV Polarstern (Lemke, 2003).

See Fig. 11 for a map, and Appendix B (pp. 99-102) for color photographs and descriptions

of the sampling sites.

Ice80-30—supplied by C. Hass (AWI, Bremerhaven)—is a very fine-grained IRD sam-

ple from the Fram Strait at ~80° 30´ N, 02° E, collected from sediment laden sea ice during

expedition ARK-XIII/2 of RV Polarstern (Stein and Fahl, 1997). See Fig. 11 for a map.
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Figure 11 : Sampling locations of modern samples from the central Fram Strait, Svalbard,

and Siberia. See Table 11 for coordinates.
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Figure 12 : Satellite image of the Lena River delta, including sampling sites of river sediments. Im-

age courtesy of MODIS Rapid Response Project at NASA/GSFC (2002/238-08/26, 4:40

UTC, satellite Terra, pixel size 250 m, center of image 72.5° N, 125° E).
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Figure 13 : Satellite image covering the Ob and Yenisei River estuaries, including sampling sites

of river sediments. Image courtesy of MODIS Rapid Response Project at NASA/GSFC

(2004/201-07/19, 6:55 UTC, satellite Aqua, pixel size 1km, center of image 70° N, 75° E).
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. S 

.. S 

Most of the sample preparation at the pretreatment stage has been carried out prior to this

study by members of AWI, Bremerhaven. Samples, after being collected, were stored at 4

°C until further processing. In a first step, they were freeze dried for the determination

of dry mass. To remove organic material, the samples were suspended in a 3.3 mol·l-1

solution of H2O2 and left to react for several days, followed by repeated cycles of washing

with deionized water. The sand fractions were separated by passing the material through

a 63 µm screen. After drying, the sand fractions were split into sub-fractions of 63-250

µm, 250-500 µm, and > 500 µm by dry sieving. Biogenic carbonate, present in significant

amounts in some sand samples, was removed from the samples chosen for isotopic analyses

by leaching with HCl (0.1 mol·l-1), followed by threefold rinsing with deionized water. The

fractions < 63 µm were either dried, or kept in suspension for further processing.

.. G-    <  µ

The material < 63 µm of most samples was split into the sub-fractions clay (< 2 µm), fine

silt (2-10 µm), and coarse silt (10-63 µm), or clay and silt (2-63 µm). The separation of

samples into different grain-size fractions was performed with settling tubes in Bremer-

haven and Munich. The settling tube method is based on Stokes’s law, which describes the

behavior of an ideal spherical particle in a liquid medium under the influence of gravity

(with restriction to laminar flow). It allows the calculation of the time it takes for a spher-

ical particle of known diameter and density to settle a given vertical distance in a liquid of

known viscosity and density.

t =
(

174.852
×η×h

)/(

(D1–D2)×d2
)

t = settling time [min]

h = settling height [cm]

D1= density of the settling grain [g·cm-3]

D2= density of the liquid [g·cm-3]

η = viscosity of the liquid [g·cm-1
·s-1]

d = equivalent diameter of the settling grain [µm]

The term equivalent diameter accounts for the non-spherical shape of sediment particles,

i.e. a sediment particle with a certain equivalent diameter behaves like a sphere of the same

diameter.
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Figure 14 : Flowchart of the sample preparation protocol applied at AWI,

Bremerhaven, and Munich. GKG: Gross Kasten Greifer.

Grain-size separation was performed with glass cylinders, with upper and lower marks

indicating the settling distance (Fig. 15). A suspension of the fraction < 63 µm in water

was mixed with a pinch of sodiumpolyphosphate, placed on an orbital shaker for 24 hours

to achieve complete disaggregation, and filled into a settling tube. The settling tube was

then filled to the upper mark with an aqueous solution of ammonia (1.3 mmol·l-1), which

prevents reaggregation of cohesive particles. After the sediment had settled for the appro-

priate time the water column above the lower mark was drained and collected. The settling

tube was refilled with the ammonia solution, the sediment suspension was thoroughly ag-

itated, and allowed to settle again. This cycle was repeated until the water above the lower

mark was clear after settling. Note that this method allows only near quantitative grain-size
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Figure 15 : Schematic illustration of the settling tubes in Bremerhaven (left) and Munich (right).

separation. Wollenburg (1993), for instance, reported 3-9 % of clay remaining in the silt

fraction, even after numerous repetitions of the separation cycle. The Ob and Yenisei River

samples were split into separate grain-size fractions by F. Schoster at AWI, Bremerhaven.

.. E   F-M /   

  (HH)

The experimental procedure for the extraction of authigenic Fe-Mn oxides/hydroxides

hosting a seawater Nd signal is based on a method first introduced by Chester and Hughes

(1967). They suggested the use of an acidic-reducing solution of hydroxylamine hydrochlo-

ride (NH2OH-HCl) in acetic acid (4.4 mol·l-1, 25 %), hereafter referred to as HH, to reduce

Fe and Mn to their soluble states.

In a first step, five samples (PS2837-5/213, 390, 623, 668, and 789) were chosen to

be analyzed by ICP-MS for their rare earth element (REE) abundances in bulk sample,

the extracted Fe-Mn component, and the leaching residue. The applied leaching protocol

using 1 mol·l-1 HH closely follows a method presented in Bayon et al. (2002). 1 mol·l-1

HH solution was prepared by mixing 69.49 g hydroxylamine hydrochloride salt with 250

ml glacial acetic acid and purified water (18 MΩ resistivity, hereafter referred to as 18 MΩ

water) to make one liter of solution. Aliquots of approximately 200 mg freeze-dried bulk

sample were accurately weighed and transferred to precleaned 15 ml PP centrifuge tubes.

To these, 10 ml of the 1 mol·l-1 HH solution were added, resulting in a reagent-to-solid

sample ratio of 50 ml : 1 g. Two samples were additionally leached with a reagent-to-solid
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sample ratio of 100 ml : 1 g (213/2 and 623/2). For this, second aliquots of approximately

40 mg were mixed with 4 ml of 1 mol·l-1 HH. Following a thorough mixing of sample and

reactive agent with a vortex mixer, the centrifuge tubes were placed in a drying cabinet

set to 90 °C. After three hours, during which they had been manually agitated every 30

minutes, the tubes were removed from the drying cabinet and centrifuged for seven minutes

at 3000 r.p.m.. The clear supernatants were decanted into 15 ml teflon vessels, the centrifuge

tubes were filled with 4 ml of 18 MΩ water, thoroughly shaken, centrifuged as above, and

decanted into the same teflon vessels. To destroy excess HH, 1 ml of HNO3 (16 mol·l-1) was

added to the leachates, which were left to react for a few minutes, taken to dryness under

an infrared (IR) lamp, and dissolved in 1 ml of HCl (2.5 mol·l-1). The solid residues of

the leaching procedure were repeatedly washed with 18 MΩ water, taken to dryness, and

weighed.

At first it was attempted to determine the mass of the extracted Fe-Mn component,

necessary for the calculation of absolute REE abundances, by weighing the dried leachate

and subtracting the excess mass related to the dried residue of the reagent. This, however,

yielded inconsistent results. Instead, the mass differences between unleached bulk samples

and solid residues were used. As this approach includes all possible loss of material during

the leaching process, the determined leachate masses are maximum estimates.

Different sequential sediment leaching methods (see Bayon et al., 2002, and references

therein) aim at the extraction of a pure detrital component. To achieve this, these methods

employ a leaching procedure of a strength and duration sufficient to quantitatively remove

the authigenic Fe-Mn component. This, however, entails the possibility of attacking detrital

minerals, which would render the Fe-Mn leachate useless as a proxy of seawater composi-

tion. In contrast, no quantitative leaching is necessary for the determination of the isotopic

composition of the authigenic Fe-Mn component. The leaching can therefore be split into

a first step, weak enough so that no attacking of detrital minerals occurs, and, if desired, a

second step strong enough to quantitatively remove all Fe-Mn oxides/hydroxides.

The ‘weak leach’ approach was used for the nine samples chosen to be analyzed for the

Nd isotopic compositions of their leachable Fe-Mn components (PS2837-5/133, 213, 337,

374, 390, 447, 601, 623, and 789). Buffered 0.87 mol·l-1 acetic acid and 0.2 mol·l-1 HH were

used as reagents. 0.87 mol·l-1 acetic acid buffered to pH 5 was made by mixing 50 ml of

glacial acetic acid with 124 g of sodium acetate salt and 18 MΩ water to a volume of one

liter. 0.2 mol·l-1 HH solution was prepared by mixing 13.90 g hydroxylamine hydrochlo-

ride salt with 250 ml glacial acetic acid and 18 MΩ water to make one liter of solution. To

yield sufficient Nd for mass spectrometric analyses, aliquots of approximately 1 g of freeze

dried bulk sample were used. The samples were mixed with 5 ml of buffered acetic acid

in precleaned 15 ml PP centrifuge tubes, agitated with a vortex mixer, left to react for 12

hours, and centrifuged for 20 minutes at 1200 r.p.m., after which the supernatants were
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discarded. Remaining acetic acid was removed from the solid residues by three cycles of

rinsing with 18 MΩ water and centrifuging. The samples were then mixed with 6 ml of

0.2 mol·l-1 HH (equivalent to a reagent-to-solid sample ratio of 1.2 ml : 1 g with 1 mol·l-1

HH), agitated with a vortex mixer, and placed in an ultrasonic bath (with additional ag-

itation every 30 minutes). After two and a half hours, the samples were centrifuged for

30 minutes at 2000 r.p.m. and the supernatants were transferred to weighed 15 ml teflon

vessels. The centrifuge tubes were refilled with 2 ml of 18 MΩ water, agitated with a vortex

mixer, centrifuged as above, and the supernatants added to the first extracts. Excess HH was

destroyed by reaction with 0.5 ml HNO3 (16 mol·l-1). The leachates were taken to dryness,

dissolved in 1 ml HCl (2.5 mol·l-1), transferred to 1.5 ml PP centrifuge tubes, centrifuged

for 10 minutes at 15 000 r.p.m., and were then ready for chemical separation as described

in Chapter 2.2.5.

.. S  

A sequential leaching experiment was performed to explore questions raised by the analyt-

ical results for samples that were leached as described in the previous Chapter.

Four aliquots of freeze dried bulk sample PS2837-5/712 (#2, #3, #4, #6, approximately

100 mg each) were weighed into cleaned 15 ml PP centrifuge tubes. Aliquots #2, #3, and #4

were mixed with 5 ml of buffered 0.87 mol·l-1 acetic acid and left to react for 18 hours at 40

°C. Aliquot #6 was mixed with 5 ml of unbuffered 1.7 mol·l-1 acetic acid and left to react

for 18 hours at room temperature. All centrifuge tubes were occasionally agitated with a

vortex mixer. After 18 hours, the samples were centrifuged for 20 minutes at 1200 r.p.m.

and the supernatants were pipetted into Savillex beakers. The supernatant from aliquot #6

(labeled #6/1st HOAc) was dried and stored for analysis by isotope dilution TIMS. The solid

residues of aliquots #2, #3, and #4 were washed with 18 MΩ water (and centrifuged) three

times. The solid residue of aliquot #2 was dried, weighed, and stored for analysis, while the

solid residues of aliquots #3 and #4 were put aside for further leaching. The solid residue

of aliquot #6 was subjected to a second acetic acid leaching identical to the first one. It was

then centrifuged as above, and the supernatant was transferred to a Savillex beaker, dried,

and stored for analysis (labeled #6/2nd HOAc). The solid residue was washed three times

and put aside for further leaching.

In a second step, the solid residues of aliquots #3, #4, and #6 were mixed with 5 ml

of 0.2 mol·l-1 HH and left to react for two hours at room temperature, with occasional

agitation. They were then centrifuged for 30 minutes at 1200 r.p.m. and the supernatants

were pipetted into Savillex beakers. The leachates were first taken to dryness, and then dis-

solved in 1 ml HNO3 (16 mol·l-1) to destroy excess HH. The leachates from aliquots #4

and #6 (labeled #4/1st HH and #6/1st HH) were dried again and stored for analysis. The
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solid residue from aliquot #6 was washed three times, dried, weighed, and stored for anal-

ysis. The solid residues from aliquots #3 and #4 were subjected to a second cycle of HH

leaching as described above, but lasting for 5:45 hours. They were then centrifuged and

the supernatants were transferred to Savillex beakers, dried, and redissolved in 16 mol·l-1

HNO3. The leachate from aliquot #4 (labeled #4/2nd HH) was dried and stored for analysis.

The solid residue from aliquot #3 was washed three times, dried, weighed, and stored for

analysis. The solid residue from aliquot #4 was subjected to a third HH leaching, lasting

for 20 hours. The leachate was treated as above, labeled as #4/3rd HH, and stored for anal-

ysis. The solid residue was washed three times, dried, weighed, and stored for analysis. All

leachates stored for analysis were spiked with a mixed 149Sm – 150Nd tracer solution for the

determination of Sm and Nd concentrations by isotope dilution (see below), dissolved in 1

ml HCl (2.5 mol·l-1), transferred to 1.5 ml PP centrifuge tubes, centrifuged for 10 minutes

at 15 000 r.p.m., and were then ready for chemical separation as described in Chapter 2.2.5.

.. S   TIMS 

Sample digestion: All acids were either of Suprapur® grade (HClO4, H3PO4) or purified

by sub-boiling distillation (HCl, HF, HNO3). Between 25 mg and 100 mg of finely ground

sample were spiked with an adequate amount (see discussion in Chapter 2.3.1) of a mixed
149Sm – 150Nd tracer solution for the determination of Sm and Nd concentrations by iso-

tope dilution. The samples were digested in closed Savillex® teflon vessels placed on a hot

plate, using a mixture of 1 ml HF (23 mol·l-1) and approx. 0.1 ml HClO4 (12 mol·l-1).

Upon complete dissolution, SiF4 and excess HClO4 were fumed off at high temperature.

The resulting sample cakes were repeatedly dissolved in HCl (6.1 mol·l-1) and evaporated

to dryness (2-3×), dissolved in 1 ml HCl (2.5 mol·l-1), transferred to 1.5 ml PP centrifuge

tubes, and centrifuged for 10 minutes at 15 000 r.p.m. to remove solid particles from the

sample solution. These sample solutions were ready for chemical separation of the elements

by ion exchange chromatography.

During the course of this study it became obvious that the aforementioned removal of

organic matter with a 3.3 mol·l-1 solution of H2O2 was not in all cases complete. In particu-

lar, several clay samples contained trace amounts of organic matter, visible as minute black

specks after the first uptake in HCl (6.1 mol·l-1). The presence of these organic particles

presents two problems. First, they hinder the formation of a uniform sample cake during

evaporation (Fig. 16). Propelled by electrostatic forces, sample material can then ‘jump’

out of the teflon vessel, leading to a loss of sample and a possible contamination of other

samples. Second, the organic particles tend to get ‘burned’ into the teflon vessel, making an

abrasive cleaning procedure necessary that is time consuming and potentially hazardous to

the smooth inner surface of the beaker.
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a) b)

Figure 16 : Two aliquots of sample 390 c in teflon beakers after digestion in a HF - HClO4 mixture

and drying on a hot plate. Prior to digestion aliquot a) had been treated with H2O2 to

destroy organic components; aliquot b) had additionally been baked for one hour at

650 °C. Horizontal field of view is 9 mm each.

A solution to this problem is the complete removal of organic matter by baking at high

temperature, as has been experimentally verified. An aliquot of sample PS2837-5/390 c (‘c’

= clay fraction) was baked in a muffle furnace at 650 °C for one hour, resulting in a weight

loss of 9.4 %. This baked aliquot was then subjected to the normal digestion procedure,

parallel to an unbaked aliquot. Fig. 16 shows both aliquots after the first evaporation; the

success of the baking procedure is clearly visible. Upon uptake in HCl (6.1 mol·l-1), the

unbaked aliquot contained several black particles, while the beaker with the baked aliquot

contained a perfectly clear solution. Routine baking of samples expected to contain organic

material should therefore be considered for the sample preparation protocol.

Chemical separation: The separation of the light REE (LREE) from the sample matrix

was performed on 5 ml quartz glass columns filled with Dowex® AG 50W 12X cation ex-

change resin (2.5 mol·l-1 HCl and 6.1 mol·l-1 HCl as eluents, see Table 2a for the elution

protocol). Minor traces of the resin, washed out of the column during the elution process,

were destroyed by reacting the dried LREE cut with HNO3 (16 mol·l-1). Nd and Sm were

separated from the LREE with the so called reverse phase method, where the REE are eluted

in the order of increasing atomic number (Richard et al., 1976). This order of elution, in

combination with the sharp elution fronts (Fig. 17), is very effective at removing the iso-

baric Sm interference on 144Nd. Ce, which, due to the long elution tails, can be present in

the Nd cut, presents a problem only if 142Nd is to be accurately measured. Nd and Sm cuts

were obtained with 2 ml quartz glass columns filled with HDEHP (hexyl di-ethyl hydro-

gen phosphate) coated teflon powder, using 0.18 mol·l-1and 0.4 mol·l-1 HCl as eluents (see
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Table 2b). 2 µl of H3PO4 (0.21 mol·l-1) were added to the Nd and Sm cuts, which, after

drying, were ready for mass spectrometric analysis.
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Figure 17 : Schematic elution profiles of LREE from a reverse phase HDEHP column,

showing sharp fronts and long tails. Redrawn from Dickin (1995).

Table 2 : Elution protocols for (a) 5 ml columns and (b) 2 ml columns.

(a) 5 ml columns (b) 2 ml columns

Equilibrate 5 ml HCl (2.5 mol·l-1) Equilibrate 2 ml HCl (0.18 mol·l-1)

Equilibrate 5 ml Equilibrate 2 ml

Equilibrate 5 ml Equilibrate 2 ml

Load sample 1 ml Load sample 0.3 ml

Rinse 1 ml Rinse 0.2 ml

Rinse 1 ml Rinse 0.2 ml

Discard 38 ml Rinse 0.2 ml

Collect Sr 7 ml Rinse 0.2 ml

Discard 5 ml HCl (6.1 mol·l-1) Discard 10 ml

Collect LREE 15 ml Collect Nd 8 ml

Wash 15 ml Discard 4 ml HCl (0.4 mol·l-1)

Wash 15 ml Collect Sm 4 ml

Wash 15 ml Wash 15 ml HCl (6.1 mol·l-1)

Wash 15 ml

Wash 15 ml
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.. S   ICP-MS 

For the determination of REE abundances at the European Union Large Scale Geochemical

Facility at the University of Bristol, England, three types of samples were prepared: un-

treated bulk sample, leached Fe-Mn oxides/hydroxides, and solid residue from the leaching

procedure. All samples were prepared at Bristol, following their ICP-MS laboratory proto-

col using Aristar-grade acids.

For the bulk samples, 200 mg aliquots were digested in a mixture of 5 ml HF (23

mol·l-1), 2.5 ml HNO3 (16 mol·l-1), and 1 ml HClO4 (12 mol·l-1) in open 50 ml teflon

beakers on a hot plate set to 150 °C. Upon complete dissolution, the temperature was raised

to 230 °C and the contents of the beakers were taken to near dryness. The sample cakes were

then dissolved in 20 ml HNO3 (0.16 mol·l-1), transferred to a volumetric flask, and diluted

with HNO3 (0.16 mol·l-1) to a total volume of 100 ml.

The residues of the leaching procedure described above were prepared in a similar fash-

ion, only that all available sample material was used (ranging between 37 and 202 mg), and

that they were diluted to a total volume of 50 ml.

The leachable Fe-Mn oxides/hydroxides, dissolved in 1 ml HCl (2.5 mol·l-1), were taken

to dryness on a hot plate, dissolved in 20 ml HNO3 (0.16 mol·l-1), and diluted with HNO3

(0.16 mol·l-1) to a total volume of 50 ml.

For analysis, 5 ml of sample solution were mixed with 5 ml of a 20 ng·g-1 Re-Ru so-

lution, resulting in sample dilution factors of 1000 for the bulk samples, between 500 and

5000 for the leaching residues, and between 1800 and 17000 for the leachate samples. At a

sample dilution factor of e.g. 1000, 1 ng·g-1 in the measured solution equals 1 µg·g-1 in the

solid sample.

. D   

.. TIMS

Data collection: Sm and Nd isotope ratios were determined on two different Finnigan MAT

261 thermal ionization mass spectrometers (TIMS 1 and 2) at the Department of Earth- and

Environmental Sciences, Ludwig-Maximilians-University, Munich, using double Re fila-

ment assemblies. Nd isotope ratios were determined in dynamic quadruple mass collection

mode (recording a minimum of 100 cycles per run, peak integration time 8 seconds, inter-

nal normalization to 146Nd/144Nd = 0.7219). Within-run precision on 143Nd/144Nd ratios

was better than 12×10-6 (2σm) in most cases, and better than external precision (see be-

low) in all cases. Sm isotope ratios were recorded in dynamic single cup mode, and were

normalized to 147Sm/152Sm = 0.56081.



S   – D    30

Data reduction: Sm and Nd concentrations were determined by isotope dilution. With

a highly enriched spike, such as the Munich mixed 149Sm – 150Nd tracer solution, it is possi-

ble to determine element concentration and isotope ratios from a single mass spectrometric

analysis of a sample–spike mixture (hereafter referred to as IC-ID analysis). For this, a so-

called double isotope dilution is performed, which includes a correction of the natural iso-

tope ratios for spike contribution. The levels of precision and accuracy that can be achieved

in an IC-ID analysis largely depend on the composition of the spike, the knowledge thereof,

and the sample-to-spike ratio in the analyzed mixture.

Ideal conditions for IC-ID analysis would be met with a truly monoisotopic spike, with

the spike isotope being one that is of no interest for the determination of relevant isotope

ratios. However, since truly monoisotopic spikes are not available, the addition of spike

to the sample introduces added uncertainty to the determination of isotope ratios. This

added uncertainty has two sources. The first source is the uncertainty in the determination

of the isotopic composition of the spike itself, because, due to the lack of a known natural

isotope ratio, mass fractionation during the mass spectrometric analysis of the pure spike

can generally not be accurately corrected. Note, however, that the so-called ‘critical mixture’

method allows to circumvent the problem of mass fractionation under certain conditions

(see Roddick et al., 1992, and references therein).

The second source of uncertainty is the mass fractionation correction of the analyzed

sample–spike mixture. In the case of Nd, the true 146Nd/144Nd ratio of the mixture is un-

known at the time of mass spectrometric analysis. Instead, the natural 146Nd/144Nd ratio

of 0.7219 is used for correction, resulting in an incorrect normalization. This incorrect

normalization—which may be named ‘fractionation offset’—has to be accounted for in

a second-order correction. Since the accuracy of all commonly used normalization laws

(based on empiric evidence, e.g. linear, exponential, etc.) is inversely related to the mag-

nitude of fractionation, it is desirable to keep the fractionation offset at a minimum. De-

pending on the isotopic composition of the spike, the magnitude of the fractionation offset

is proportional to the amount of spike in the analyzed mixture (Fig. 18). For the determi-

nation of isotope ratios, the amount of spike in the mixture should therefore be as small as

possible.

In contrast, optimum precision on the determination of the Nd concentration is at-

tained at a significantly different amount of spike in the mixture. The precision on the con-

centration is determined by the precision with which the amount of spike in the mixture,

i.e. the 150Nd/144Nd ratio of the mixture, can be determined. The statistic, mass spectro-

metric uncertainty on an isotope ratio is increased by a magnification factor depending

on the total sample–to–spike number of atoms ratio q (De Bievre and Debus, 1965). For

a given isotopic composition of the spike, this magnification factor can be calculated as

a function of the sample–spike ratio. Fig. 19 shows the result of this calculation for the
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Figure 18 : The 146Nd/144Nd ratio of a sample–spike mixture as a function of its 150Nd/144Nd

ratio (calculated for the Munich 150Nd tracer solution). The true 146Nd/144Nd ratio

of the mixture is unknown at the time of the mass spectrometric analysis. Instead, the

natural 146Nd/144Nd ratio of 0.7219 is used for correction, resulting in an incorrect

normalization. This incorrect normalization—which may be named ‘fractionation

offset’—has to be accounted for in a second-order correction. It can be seen that the

fractionation offset is small for the chosen 150Nd/144Nd ratio of 0.6, keeping the extra

uncertainty introduced by the second-order mass fractionation correction small. See

text for discussion.

Munich mixed 149Sm – 150Nd spike; as can be seen, error magnification is low for a wide

range of 150Nd/144Nd ratios in the mixture. Although the absolute uncertainty cannot be

determined mathematically, a suitable compromise between error magnification and frac-

tionation offset can be found by choosing an appropriate sample–spike ratio.

Data presentation: Nd isotopic compositions, i.e. 143Nd/144Nd ratios, are expressed as

(Nd values (DePaolo and Wasserburg, 1976), representing the ‘ in parts per 10 4 ’ deviation

of a sample’s 143Nd/144Nd ratio from the chondritic uniform reservoir (CHUR) at time t,

calculated as:

(Nd (t) =

(

[

(

143Nd/144Nd
)

Sample (t)

/

(

143Nd/144Nd
)

 (t)

]

-1

)

×10 4
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Figure 19 : Magnification of the relative uncertainty on the sample–to–spike number of atoms

ratio q as a function of q (a), and the 150Nd/144Nd ratio (b) of the mixture. Cal-

culated for the Munich 150Nd tracer solution, after De Bievre and Debus (1965).

Although the error magnification is at a minimum for q = 0.6 (150Nd/144Nd mixture

= 7), we aim at q = 11.25 (150Nd/144Nd mixture = 0.6). See text for discussion.
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All given (Nd values were calculated for t = 0, with present-day 143Nd/144Nd CHUR =

0.512638 (Jacobsen and Wasserburg, 1980).

Depleted mantle model ages TDM were calculated according to the model of Goldstein

et al. (1984), based on linear evolution of the depleted mantle from a CHUR composition

at 4.5 Ga.

TDM =

(

1

λ

)

× ln

(

1+

[

(

143Nd/144Nd
)

Sample –
(

143Nd/144Nd
)

DM

/

(

147Sm/144Nd
)

Sample –
(

147Sm/144Nd
)

DM

]

)

with 147Sm/144Nd DM = 0.2136, 143Nd/144Nd DM = 0.513151, and λ147Sm = 6.54× 10-12

(Goldstein and Jacobsen, 1988).

.. ICP-MS

REE abundances in bulk samples, leached Fe-Mn oxides/hydroxides, and solid leaching

residues were determined at the European Union Large Scale Geochemical Facility at the

University of Bristol, England, using a VG Elemental Plasma Quad II ICP-MS. The analyses

were carried out by T. Kemp and C. Choi. Re and Ru (10 ng·g-1) were used as internal

standards to correct for instrument drift. Analytical blanks and silicate reference materials

(see Table 8) were analyzed with the natural samples.

. Q  TIMS 

.. B

Measured whole-procedure blanks for Nd (Table 3) show a tenfold increase over the period

of this study, pointing to deteriorating quality of the elution columns. However, blank levels

are at least three orders of magnitude lower than Nd contents in the analyzed aliquots of

the natural samples under investigation, and are therefore negligible.

Table 3 : Procedure Nd blanks determined during this study.

Date 149Sm – 150Nd tracer measured 150Nd/144Nd Nd blank

2000/12/21 23.36 mg 165.59 70 pg

2003/02/22 13.63 mg 74.10 360 pg

2004/03/17 25.29 mg 74.11 660 pg
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.. I- N  

Repeated measurements of the Munich in-house isotope standard Ames Nd metal yielded

means of 143Nd/144Nd = 0.512 138 ± 23×10-6 (2σ, n = 11, TIMS 1, Table 4) and 143Nd/144Nd

= 0.512 141 ± 15×10-6 (2σ, n = 34, TIMS 2, Table 5), corresponding to 143Nd/144Nd values

of 0.511 850 and 0.511 853, respectively, for the La Jolla Nd standard. For reasons of con-

sistency the higher value of ± 23×10-6, corresponding to ± 0.5 (Nd values, is applied to all

data as external reproducibility.

Table 4 : Reproducibility of the Nd isotopic composition of the Munich in-house standard Ames

Nd metal with TIMS 1.

143Nd/144Nd † Operator Date 143Nd/144Nd † Operator Date

1. 0.512 130 ± 09 WOS 2000/12/18 7. 0.512 124 ± 10 WOS 2001/02/26

2. 0.512 143 ± 12 WOS 2000/12/19 8. 0.512 137 ± 14 WOS 2001/02/27

3. 0.512 161 ± 15 WOS 2001/01/10 9. 0.512 121 ± 11 WOS 2001/02/28

4. 0.512 139 ± 15 MWI 2001/01/11 10. 0.512 143 ± 22 WOS 2001/03/20

5. 0.512 135 ± 10 WOS 2001/01/12 11. 0.512 148 ± 11 WOS 2001/03/21

6. 0.512 132 ± 11 WOS 2001/01/19 Mean: 0.512138 ± 23 (2σ)

143Nd/144Nd ratios are normalized to 146Nd/144Nd = 0.7219. † Within-run precision (2σm) refers

to the last significant digits. WOS: W. Schmitt, MWI: M. Willbold.

.. R 

Repeated measurements of the United States Geological Survey (USGS) reference materials

BCR-1 and BCR-2 (Table 6)—which have been shown to be very similar in composition

(Raczek et al., 2001, 2003)—yielded combined means of 6.43 µg·g-1 Sm, 28.3 µg·g-1 Nd,

and 143Nd/144Nd = 0.512 633 ± 17×10-6 (2σ, n = 4). These results correspond well to

published values (Raczek et al., 2001, 2003, and references therein).

.. R    

Replicate measurements, using separate sample aliquots, have been performed for twelve

natural samples from this study (Table 7). Eight samples have been repeated as unspiked

runs (PS2837-5/487 sa, BP01/72 c, and the six Spitsbergen samples). Their 143Nd/144Nd

ratios agree with the results from the original measurements to within ± 18.5×10-6, which

is better than the assumed external reproducibility of ± 23×10-6. Four samples from core

PS2837-5, comprising two clays, one coarse silt, and one sand, have been repeated as spiked

runs. The 143Nd/144Nd ratios of three of these replicates agree with the original results

to within ± 17×10-6. The replicate of the sand from PS2837-5/623, however, differs by
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Table 5 : Reproducibility of the Nd isotopic composition of the Munich in-house standard Ames

Nd metal with TIMS 2.

143Nd/144Nd † Operator Date 143Nd/144Nd † Operator Date

1. 0.512 143 ± 15 WOS 2002/11/14 18. 0.512 144 HEG 2004/03/25

2. 0.512 144 ± 16 WOS 2003/02/20 19. 0.512 128 HEG 2004/03/25

3. 0.512 140 ± 18 WOS 2003/04/07 20. 0.512 143 HEG 2004/03/26

4. 0.512 140 ± 12 MWI 2003/08/25 21. 0.512 147 HEG 2004/03/26

5. 0.512 144 ± 11 MWI 2003/08/26 22. 0.512 149 HEG 2004/03/26

6. 0.512 148 ± 10 MWI 2003/08/28 23. 0.512 144 HEG 2004/03/27

7. 0.512 138 ± 10 HEG 2003/12/26 24. 0.512 149 HEG 2004/03/27

8. 0.512 142 ± 15 WOS 2004/02/19 25. 0.512 147 HEG 2004/03/27

9. 0.512 141 ± 09 WOS 2004/02/22 26. 0.512 129 HEG 2004/03/28

10. 0.512 141 ± 10 WOS 2004/03/18 27. 0.512 140 HEG 2004/03/28

11. 0.512 149 HEG 2004/03/23 28. 0.512 142 ± 13 WOS 2004/04/25

12. 0.512 146 HEG 2004/03/23 29. 0.512 129 ± 10 ARO 2004/09/14

13. 0.512 144 HEG 2004/03/23 30. 0.512 130 ± 10 ARO 2004/09/20

14. 0.512 146 HEG 2004/03/23 31. 0.512 153 ± 13 ARO 2004/09/21

15. 0.512 136 HEG 2004/03/24 32. 0.512 138 ± 08 ARO 2004/09/21

16. 0.512 129 HEG 2004/03/24 33. 0.512 135 ± 13 ARO 2004/09/22

17. 0.512 124 HEG 2004/03/24 34. 0.512 155 ± 11 WOS 2005/01/17

Mean: 0.512141 ± 15 (2σ)

143Nd/144Nd ratios are normalized to 146Nd/144Nd = 0.7219. † Within-run precision (2σm) refers

to the last significant digits. WOS: W. Schmitt, MWI: M. Willbold, HEG: E. Hegner, ARO: A. Ro-

choll.

Table 6 : Sm and Nd concentrations and isotopic compositions of USGS reference materials BCR-

1 and BCR-2.

Sample Sm Nd Sm/Nd 143Nd/144Nd †
(Nd TDM Date

(µg·g-1) (µg·g-1) (Ga)

BCR-1, 60/20 6.56 28.7 0.2286 0.512 637 ± 11 0.0 1.04 2003/04/11

BCR-1, 46/16 6.51 28.4 0.2292 0.512 639 ± 12 0.0 1.04 2003/04/12

BCR-2 6.41 28.0 0.2289 0.512 618 ± 12 -0.4 1.08 2004/03/17

BCR-2 6.43 28.1 0.2288 0.512 638 ± 16 0.0 1.04 2004/12/13

Mean 6.48 28.3 0.2289 0.512 6335555 -0.1 1.05

2σ 0.12 50.5 0.0004 0.0000175555 0.3 0.03

143Nd/144Nd ratios are normalized to 146Nd/144Nd = 0.7219. † Within-run precision (2σm) refers

to the last significant digits. (Nd calculated according to DePaolo and Wasserburg (1976), with

present-day 143Nd/144Nd CHUR = 0.512 638 (Jacobsen and Wasserburg, 1980). TDM calculated ac-

cording to the depleted mantle model of Goldstein et al. (1984), using 147Sm/144Nd DM = 0.2136,
143Nd/144Nd DM = 0.513 151, and λ147Sm = 6.54×10-12 (Goldstein and Jacobsen, 1988).
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Table 7 : Results of replicate measurements of natural samples.

Sample Size fraction Sm Nd Sm/Nd 143Nd/144Nd †
(Nd TDM

(µm) (µg·g-1) (µg·g-1) (Ga)

487 sa 5563-250 2.54 13.5 0.1881 0.512 098 ± 11 -10.5 1.60

487 sa re. 55 0.512 061 ± 13 -11.3
55
55 ∆ = 0.000 0375555

BP01/72 c 55< 2 6.15 30.8 0.1997 0.512 281 ± 11 -7.0 1.42

BP01/72 c re. 55 0.512 273 ± 26 -7.1
55
55 ∆ = 0.000 0085555

WoA 55< 63 6.09 32.6 0.1868 0.511 732 ± 12 -17.7 2.14

WoA re. 55 0.511 727 ± 13 -17.8
55
55 ∆ = 0.000 0055555

WoF 55< 500 3.05 15.8 0.1930 0.511 876 ± 13 -14.9 2.00

WoF re. 55 0.511 888 ± 13 -14.6
55
55 ∆ = 0.000 0125555

WoG 55< 500 1.63 558.76 0.1861 0.511 840 ± 12 -15.6 1.98

WoG re. 55 0.511 862 ± 13 -15.1
55
55 ∆ = 0.000 0225555

WoC 55< 63 7.88 40.2 0.1960 0.511 987 ± 12 -12.7 1.86

WoC re. 55 0.512 000 ± 12 -12.4
55
55 ∆ = 0.000 0135555

WoD 55< 63 8.68 47.0 0.1847 0.511 929 ± 12 -13.8 1.82

WoD re. 55 0.511 949 ± 14 -13.4
55
55 ∆ = 0.000 0205555

WoE 55< 63 7.82 41.3 0.1893 0.511 966 ± 12 -13.1 1.82

WoE re. 55 0.511 986 ± 10 -12.7
55
55 ∆ = 0.000 0205555

55 c 55< 2 7.11 37.9 0.1876 0.512 032 ± 10 -11.8 1.70

55 c re. 55 6.93 36.9 0.1878 0.512 022 ± 10 -12.0 1.72
55
55 ∆ = 0.000 0105555

390 c 55< 2 7.82 42.8 0.1827 0.511 887 ± 10 -14.6 1.87

390 c re. 55 7.99 43.7 0.1828 0.511 893 ± 11 -14.5 1.85
55
55 ∆ = 0.000 0065555

623 sa 5563-250 2.13 11.2 0.1902 0.512 103 ± 10 -10.4 1.61

623 sa re. 55 1.54 558.87 0.1736 0.511 909 ± 11 -14.2 1.74
55
55 ∆ = 0.000 1945555

668 cs 5510-63 5.39 27.3 0.1974 0.511 946 ± 10 -13.5 1.94

668 cs re. 55 5.65 28.7 0.1969 0.511 980 ± 11 -12.8 1.88
55
55 ∆ = 0.000 0345555

See footnote to Table 6 for details.
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3.8 (Nd values from the original measurement. In analogy with a coarse-grained granite,

significantly more sample material is required for a representative analysis of sand-size ma-

terial than for a fine-grained clay sample (or basalt). As the amount of sand-size material

available for analysis in this study was as little as 84 mg, the significance of the analytical

results for sand samples is questionable. Hence they will be treated with caution.

To conclude, eleven out of twelve replicate measurements of natural samples confirm

the general external reproducibility of ± 0.5 (Nd, whereas the reproducibility of sand sam-

ples may be on the order of ± 2 (Nd, perhaps even higher.

.. P  S/N 

Sm/Nd ratios determined by isotope dilution with the Munich 149Sm – 150Nd mixed tracer

solution are precise to 0.2 %, as verified against the CalTech-Sm/Nd standard solution (E.

Hegner, personal communication), and confirmed by replicate measurements of natural

samples and USGS reference materials BCR-1 and BCR-2 (see above).

. Q  ICP-MS 

The Bristol in-house standard 3570 and the silicate reference materials BE-N, MAG-1, JG-

2, DR-N, JA-3, JB-1, and BHVO-2 were analyzed as a means of controlling the quality of

ICP-MS data.

Precision (at the 1 σ level) is better than 5 % for all REE except Gd (12 %), Er (6 %), and

Lu (8 %), as established by 47 measurements of the Bristol in-house standard 3570 during

a period of 19 months (C. Choi, personal communication, see Table 8).

REE concentrations determined for the reference materials BE-N, JB-1, and BHVO-2

(basalts), JA-3 (andesite), and DR-N (diorite) are in good agreement with published refer-

ence values (Table 8). In contrast, the results for MAG-1 (marine mud) and JG-2 (granite)

show a systematic deviation from the reference values (Table 8). For MAG-1, LREE concen-

trations are consistently at, or slightly above, the upper limit of the 1σ uncertainty interval,

whereas heavy REE (HREE) concentrations are too low by as much as 16 %. For JG-2, LREE

concentrations agree well with the reference values, whereas HREE concentrations are too

low by as much as 23 %. Gromet et al. (1984) and Sholkovitz (1990) reported similar HREE

depletion and a moderate LREE depletion in sediments subjected to open beaker digestion,

which, as they concluded, is not suited for the accurate analysis of sediment samples. It

therefore has to be assumed that the REE concentrations determined for bulk samples and

leaching residues from core PS2837-5 are incorrect. The results for the leachates, however,

should be unaffected.
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Table 8 : REE concentrations (µg·g-1) of the Bristol in-house standard 3570 and the reference ma-

terials BE-N, MAG-1, JG-2, DR-N, JA-3, JB-1, and BHVO-2, determined by ICP-MS in

Bristol (Meas.), reference values (Ref.), and Meas./Ref. ratios. For 3570, the Meas. value is

the mean of 6 measurements; the Ref. value is the mean of 47 measurements, carried out

over a period of 19 months (personal communication C. Choi). RSD = relative standard

deviation. Continued on the next page.

3570 BE-N

Meas. RSD Ref. RSD Meas./Ref. Meas. Ref. 1 Meas./Ref.

La 8.11 0.036 8.24 0.035 0.98 83.2 82.0 1.02

Ce 18.6 0.051 18.3 0.051 1.02 152 151 1.01

Pr 2.57 0.026 2.59 0.042 0.99 17.8 17.9 0.99

Nd 12.1 0.023 12.2 0.033 0.99 67.5 66.0 1.02

Sm 3.27 0.019 3.30 0.035 0.99 12.4 11.9 1.04

Eu 1.19 0.020 1.23 0.049 0.97 3.62 3.75 0.97

Gd 3.67 0.017 3.60 0.117 1.02 10.6 10.5 1.01

Tb 0.614 0.028 0.629 0.047 0.98 1.28 1.31 0.98

Dy 4.05 0.018 3.97 0.048 1.02 6.50 6.54 0.99

Ho 0.842 0.015 0.863 0.038 0.98 1.05 1.08 0.97

Er 2.53 0.027 2.45 0.056 1.03 2.65 2.60 1.02

Tm 0.355 0.034 0.364 0.047 0.98 0.315 0.320 0.98

Yb 2.42 0.023 2.37 0.034 1.02 1.92 1.83 1.05

Lu 0.334 0.022 0.332 0.076 1.01 0.248 0.264 0.94

MAG-1 JG-2 DR-N

Meas. Ref. 1 Meas./Ref. Meas. Ref. 1 Meas./Ref. Meas. Ref. 2 Meas./Ref.

La 42.6 40.7 1.05 18.8 19.0 0.99 20.4 21.5 0.95

Ce 86.5 84.0 1.03 46.1 45.0 1.03 43.6 46.0 0.95

Pr 10.6 10.3 1.02 6.10 6.00 1.01 5.50 5.70 0.96

Nd 39.6 36.9 1.07 25.1 24.0 1.05 22.6 23.5 0.96

Sm 7.41 7.00 1.06 7.40 7.50 0.99 4.88 5.40 0.90

Eu 1.47 1.43 1.03 0.090 0.090 1.00 1.37 1.45 0.95

Gd 5.89 6.20 0.95 8.18 9.30 0.88 4.94 4.70 1.05

Tb 0.809 0.890 0.91 1.43 1.74 0.82 0.746 0.770 0.97

Dy 4.35 5.07 0.86 9.42 11.7 0.81 4.55 4.60 0.99

Ho 0.789 0.970 0.81 1.98 2.52 0.79 0.912 1.00 0.91

Er 2.28 2.73 0.84 6.35 7.80 0.81 2.58 2.50 1.03

Tm 0.314 0.393 0.80 0.942 1.22 0.77 0.373 0.390 0.96

Yb 2.16 2.53 0.86 6.74 8.10 0.83 2.46 2.50 0.98

Lu 0.326 0.381 0.86 0.976 1.21 0.81 0.360 0.400 0.90

Reference values from: 1 Dulski (2001), 2 Govindaraju (1995)
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Table 8 : . . . continued

JA-3 JB-1 BHVO-2

Meas. Ref. 1 Meas./Ref. Meas. Ref. 3 Meas./Ref. Meas. Ref. 4 Meas./Ref.

La 9.11 9.30 0.98 36.7 37.4 0.98 15.1 15.2 1.00

Ce 21.3 21.6 0.99 63.7 67.4 0.94 37.9 37.5 1.01

Pr 2.78 2.90 0.96 7.11 7.08 1.00 5.37 5.29 1.01

Nd 12.2 12.1 1.01 26.1 26.3 0.99 25.0 24.5 1.02

Sm 2.94 3.00 0.98 4.90 5.06 0.97 6.20 6.07 1.02

Eu 0.784 0.770 1.02 1.44 1.48 0.97 2.03 2.07 0.98

Gd 3.20 3.40 0.94 4.68 4.66 1.00 6.07 6.24 0.97

Tb 0.492 0.530 0.93 0.691 0.640 1.08 0.901 0.936 0.96

Dy 3.16 3.30 0.96 4.11 4.09 1.01 5.28 5.31 0.99

Ho 0.653 0.670 0.98 0.769 0.810 0.95 0.961 0.972 0.99

Er 1.96 2.00 0.98 2.26 2.22 1.02 2.60 2.54 1.02

Tm 0.284 0.290 0.98 0.307 0.330 0.93 0.343 0.341 1.01

Yb 2.00 1.98 1.01 2.05 2.07 0.99 2.09 2.00 1.04

Lu 0.298 0.300 0.99 0.305 0.300 1.02 0.276 0.274 1.01

Reference values: 1 Dulski (2001), 3 Jochum and Jenner (1994), 4 Raczek et al. (2001)
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 R

All analytical results are given in Appendix A. Sm-Nd data for sediment core samples are

presented in Table 10, and in Table 11 for modern samples. The results of ICP-MS mea-

surements at the University of Bristol are listed in Table 12. The Nd isotopic compositions

of the HH-leachable fractions of bulk samples from core PS2837-5 are listed in Table 13,

and the analytical results for the sequential leaching experiment in Table 14.

. D  

As this thesis deals with a multitude of different samples and sample types, several de-

scriptive terms are defined to avoid confusion and to simplify discussion. ‘Bulk sample’

refers to a sample as originally collected, without further splitting or extraction, e.g. a

one-centimeter slice of sediment core. The bulk samples from the sediment cores PS2837-

5 and PS2837-6 are collectively referred to as ‘the core samples’. References to ‘samples

from core PS2837-5’ always include the one sample collected from its companion box core,

namely sample PS2837-6/1. Individual core samples are identified by their depth in core,

e.g. PS2837-5/133 is referred to as sample 133. All samples that do not belong to the core

samples are referred to as ‘modern samples’. ‘Grain-size fraction’ refers to material belong-

ing to a given range of grain sizes separated from a particular bulk sample, whereas ‘grain-

size class’ makes no distinction between individual samples. Particular grain-size fractions

are appended in abbreviated form to sample names: ‘c’ is clay (< 2 µm), ‘fs’ is fine silt (2-10

µm), ‘cs’ is coarse silt (10-63 µm), ‘sil’ is silt (2-63 µm), ‘sa’ is sand (> 63 µm); e.g. L17 cs

identifies the fraction 10-63 µm of the Lena River bulk sample L17.

. S-N   - 

.. S  N 

Element abundances in the core samples range from 1.4 µg·g-1 to 8.5 µg·g-1 for Sm, and

from 7.3 µg·g-1 to 43.7 µg·g-1 for Nd. Each grain-size class is characterized by a distinct

range of Sm and Nd concentrations, with only a small overlap between fine silt and clay

(Fig. 20a). This overlap may be a consequence of the insufficient separation of clay sized

material from the fine silt fraction mentioned in Chapter 2.2.2. Due to the aforementioned

problem of heterogeneity (see Chapter 2.4.4), the scatter is highest for sand fractions. The

inverse correlation of Sm and Nd concentrations with grain size is in agreement with the
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Figure 20 : Sm-Nd abundance data for analyzed grain-size fractions. (a) Sm vs Nd and (b) Sm/Nd

vs Nd for grain-size fractions from sediment core PS2837-5. (c) Sm vs Nd and (d)

Sm/Nd vs Nd for modern samples from the Lena, Ob, and Yenisei rivers, Spitsbergen

beach deposits, and IRD from the central Fram Strait.

mineral assemblages that can generally be expected for these grain-size classes (e.g. abun-

dant quartz in the sand fraction, mainly clay minerals in the clay fraction). Sm/Nd ratios

span a small range from 0.168 to 0.201, with no clear distinction between, but relative

uniformity within each of the different grain-size classes (Fig. 20b). As with Sm and Nd

concentrations, the scatter in Sm/Nd ratios is highest for sand fractions.

Modern samples show higher overall variation from 1.6 µg·g-1 to 11.2 µg·g-1 for Sm, and

from 8.6 µg·g-1 to 60 µg·g-1 for Nd (Fig. 20c). The variation in Sm/Nd ratios between 0.157

and 0.217 is approximately twice the range found in the core samples (Fig. 20d). In contrast

to the core samples, the grain-size classes of modern samples do not fall into distinct ranges

of Sm and Nd concentrations. With respect to their Sm/Nd ratios, the grain-size classes

of modern samples are less uniform than those of the core samples. In Fig. 21, grain-

size classes from the core samples and from the modern samples are compared in plots of
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Figure 21 : Sm/Nd ratios vs Nd concentrations of grain-size classes from sediment core PS2837-5

and modern samples.

Sm/Nd ratios vs Nd concentrations. Clay in modern samples covers a much wider range of

both Nd concentrations and Sm/Nd ratios than clay in the core samples, which fall within

the range of the modern samples. For modern fine silt, the variations in Nd concentrations

and Sm/Nd ratios exceed those for the core samples by factors of approximately five and

two, respectively. Coarse silt in modern samples is different from coarse silt in the core

samples. Although there is a small overlap, modern coarse silt has generally lower Sm/Nd

ratios and higher Nd concentrations than coarse silt from the core samples. For sand, the

variation in Sm/Nd ratios in modern samples is almost twice that in the core samples, while

the variation in Nd concentrations is similar.

Despite being represented by a significantly smaller number of data points, modern

samples show a much higher variation in Sm and Nd concentrations and Sm/Nd ratios

than the core samples. The implication is that the core samples have a relatively uniform

mineralogical composition that has changed only little during 129 ka of sedimentation.
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.. N  

Nd isotopic compositions have been determined for grain-size fractions of 18 core samples.

For 15 samples, all four size fractions were analyzed. For a further three samples only the

sand fraction was measured. (Nd values for the core samples span a range of 5.1 units (from

-9.5 to -14.6). (Nd values show no correlation with grain size (Fig. 22a), indicating that the

isotopic composition is not primarily determined by mineralogical composition.

The modern samples span a range of 11.8 (Nd values (from -6.0 to -17.8). This includes

samples that were analyzed as bulk, or whose grain-size fractions do not match the clay-fine

silt-coarse silt-sand scheme (see Table 11 in Appendix A for analyzed size fractions). As with

the core samples, (Nd values in the modern samples do not correlate with grain size. Most

modern samples can be distinguished from each other on the basis of their (Nd values and

Sm/Nd ratios (Fig. 22b). The least radiogenic values are found in the beach deposits from

Kongsfjorden ((Nd -14.7 to -17.9) and the samples from the Lena river ((Nd -14.7 to -16.8).

Although their Nd isotopic compositions overlap, the Kongsfjorden samples generally have

higher Sm/Nd ratios (0.1861-0.1939) than the Lena samples (0.1568-0.1880). The Kongs-

fjorden samples and the Isfjorden samples have similar Sm/Nd ratios (0.1861-0.1939 and

0.1847-0.1960, respectively), but the Nd isotopic compositions of the Isfjorden samples are

distinctly more radiogenic ((Nd -12.6 to -13.6). The three grain-size fractions of the River

Ob sample have (Nd values between -7 and -9.2, and Sm/Nd ratios between 0.1817 and
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Figure 22 : Sm/Nd ratios vs (Nd values of (a) grain-size fractions from sediment core PS2837-

5, and (b) modern samples (bulk and grain-size fractions) from the Lena, Ob, and

Yenisei rivers, Kongsfjorden and Isfjorden (Spitsbergen), and IRD from the central

Fram Strait. Note the closeness of the samples from the Yenisei, one grain-size frac-

tion from the Ob, and some IRD samples to the Putoran flood basalts. Data for the

Putoran flood basalts are from Arndt et al. (1995) and Wooden et al. (1993).
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Figure 23 : Downcore variation of (Nd values for the size fractions clay, fine silt, coarse silt, and

sand from sediment core PS2837-5. White circles represent replicate measurements of

separate sample aliquots. The light gray area represents the Nd isotopic variation in all

size fractions, the dark gray area that of clay, fine silt, and coarse silt only. MIS 1-5 are

Marine Isotope Stages after Martinson et al. (1987).
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0.1997. The three grain-size fractions of the Yenisei sample have a very homogeneous com-

position with (Nd values between -6.3 and -6.6, and Sm/Nd ratios between 0.2080 and

0.2094. These compositions are consistent with a significant contribution from the Permo-

Triassic flood basalts of the Putoran Plateau ((Nd ~ 0, Sharma et al., 1992), outcropping in

the catchment area of the Yenisei. The Nd isotopic compositions of IRD samples from the

central Fram Strait scatter over a wide range ((Nd -6 to -13). IRD is not recognizable as

a distinct source; instead, its Sm-Nd systematics can be explained by mixing of sediments

delivered to the Arctic Ocean by the Siberian rivers Lena, Ob, and Yenisei (discussed in

Chapter 4.2).

Nd isotopic downcore variation in PS2837-5 is shown for each grain-size class sepa-

rately in Fig. 23. The curves for clay, fine silt, and coarse silt are very similar, and are in

fact identical within the limits of reproducibility of ± 0.5 (Nd. The only exception is sample

213, with a moderate disagreement between its size fractions of ± 0.6 (Nd.

The agreement between the sand curve and the curves for the finer fractions is better

than one would expect. For seven samples, the sand fraction is identical with the finer frac-

tions within the limits of reproducibility. For five samples, the sand fraction is close to the

finer fractions (± 0.65 (Nd). For sample 487, one of the two analyzed sand aliquots agrees

with the finer fractions to within ± 0.45 (Nd (± 0.85 (Nd for the other). For sample 337 the

situation is special, as it contained no detrital sand-size material. Instead, the sand from

samples 334, 335, and 336 was combined for analysis. This composite sand sample differs

from the three finer grain-size fractions of sample 337 by ca. 3 (Nd values. The difference

of 3 (Nd units may reflect rapid changes in the sedimentational regime, rather than sam-

ple heterogeneity (the linear sedimentation rate in this part of the core is, according to the

age-depth model, 110 cm·ka-1, compared to 5.5 cm·ka-1 in the underlying interval).

.. D   

The distribution of depleted mantle model ages is shown in Fig. 24 separately for each

grain-size class of the core samples and for all modern samples together. Model ages range

from 1.50 Ga to 2.02 Ga for the core samples. Clay, fine silt, and coarse silt show a normal

distribution of model ages (given the small number of data). The general trend of an in-

crease in model age from clay over fine silt to coarse silt reflects the same trend in Sm/Nd

ratios. The wider range of model ages for sand fractions reflects the higher scatter in Sm/Nd

ratios, and shows a weak indication of a bimodal distribution.

For modern samples, model ages range from 1.37 Ga to 2.14 Ga and have a bimodal dis-

tribution. The cluster of model ages younger than 1.6 Ga is formed by the samples from the

Ob and Yenisei, and most of the central Fram Strait IRD samples. Their ‘young’ model ages

reflect the input of material derived from the Permo-Triassic flood basalts of the Putoran
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Plateau. The remaining modern samples (Lena River, Spitsbergen, and two IRD samples)

have model ages centered at approx. 1.85 Ga, somewhat younger than the global average

for upper continental crust of ~2 Ga (Hawkesworth and Kemp, 2006).
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Figure 24 : Distribution of depleted mantle model ages in grain-size classes from core PS2837-5

and modern samples (grouped together).
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. REE   , HH- ,  -

 

REE concentrations have been determined for five core samples from sediment core PS2837-

5 (213, 390, 623, 668, and 789). For each sample, the untreated bulk sample, the HH leach-

able fraction, and the solid residue of the leaching process were measured by ICP-MS. The

results are listed in Table 12.

Chondrite-normalized REE patterns for the untreated bulk samples (not shown) re-

semble typical clastic sediments derived from upper continental crust. Shale-normalized

patterns (normalized to Post Archean Australian Shale [PAAS], Fig. 25), however, reveal a

depletion of HREE relative to average sediment (exemplified by the REE pattern of USGS

reference material MAG-1, a marine mud). This HREE depletion probably is an artifact, at-

tributable to insufficient sample digestion (see Chapter 2.5). This may also affect the LREE,

although the LREE and MREE in the untreated bulk samples are similar to MAG-1, and

fall within the range of post-Archean Australian shales from Nance and Taylor (1976) on

which the PAAS composite is based. Total REE contents (ΣREE) range from 163 µg·g-1 to

187 µg·g-1, and are similar to PAAS (185 µg·g-1). Sm and Nd concentrations in bulk samples

are between 8 % higher and 10 % lower than predicted from TIMS data (bulk compositions

calculated from size-fraction data). The degree of disagreement between ICP-MS data and

TIMS data does not show any relation to particular sample properties, such as sand content

or grain-size distribution.

The solid residues represent between 85 wt % and 92 wt % of the original aliquots, and

have generally flat shale-normalized REE patterns with lower overall REE contents (ΣREE

= 90-146 µg·g-1). Surprisingly, they show no HREE depletion, although the same refractory

phases causing the HREE depletion in the untreated bulk samples should also be present in

the leaching residues. A possible explanation for this apparent lack of HREE depletion is

that it is compensated for by a loss of LREE and MREE at an earlier stage of sample treat-

ment. Bulk compositions calculated from the results for the solid residues and leachates

reveal that some LREE and MREE are indeed missing (up to 40 % for La). Loss of solid

sample material during sample handling may account for these missing REE. Presumably,

fine clay particles were lost during washing of the solid residues after leaching.

The HH leachates have higher total REE contents than the untreated bulk samples

(ΣREE = 260-460 µg·g-1). These values probably underestimate the actual REE contents,

since they are based on weight loss during leaching (providing a maximum estimate of

leachate mass). Shale-normalized REE patterns display a distinct MREE enrichment with

LaN/SmN ratios between 0.45 and 0.57, and small positive Ce anomalies between 1.05 and

1.16. The compatibility of these REE patterns with the assumed seawater origin of REE in

the HH leachable fractions is discussed in Chapter 4.4.
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Figure 25 : Shale-normalized REE patterns for samples from sediment core PS2837-5. Top panel:

untreated bulk samples. USGS reference material MAG-1 (marine mud) is shown for

comparison (data from Dulski, 2001). Middle panel: HH-leachable fractions extracted

from separate aliquots of the bulk samples. Bottom panel: solid residues of the leaching

process. PAAS data from McLennan (1989). See text for details.

. N    HH- 

Nd isotopic compositions have been determined for the HH leachable fractions of nine

core samples (133, 213, 337, 374, 390, 447, 601, 623, and 789; Table 13). (Nd values for the

leachates vary between -9.3 and -13, and are consistently more positive than the calculated

bulk compositions of the samples from which they have been extracted. Downcore, the

curves for leachates and detrital grain-size fractions show a close covariation with a near
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Figure 26 : Downcore variation of (Nd values for HH-leachable fractions in sediment core

PS2837-5. Note that the curve runs sub-parallel to the gray band representing the range

of isotopic downcore variation for the clay, fine silt, and coarse silt fractions. MIS 1-5

are Marine Isotope Stages after Martinson et al. (1987)

constant offset of approximately 1.6 (Nd values (Fig. 26). The shape of the detrital curve

is in fact confirmed by the leachates from samples 374 and 601, for which there are no

detrital counterparts. Possible explanations for this systematic relationship are discussed in

Chapter 4.4.

. S  

Nd isotopic compositions and Sm and Nd abundances have been determined for the un-

treated bulk sample PS2837-5/712, solid residues of four aliquots of the same sample (sub-

jected to different leaching treatments), and six leachates extracted from these aliquots. Sm

and Nd abundances of solid residues and leachates are given in per cent relative to the un-

treated bulk sample, because no meaningful weights could be determined for the leachates

(due to, for instance, sodium acetate precipitated during evaporation of buffered acetic

acid). All results are given in Table 14.

The untreated bulk sample yielded 6.52 µg·g-1 Sm, 35.0 µg·g-1 Nd, Sm/Nd = 0.1863,

and (Nd = -12.1. This is in good agreement with a calculated bulk composition based on

the individual results for measurements of grain-size fractions from PS2837-5/712 (6.57

µg·g-1 Sm, 35.2 µg·g-1 Nd, Sm/Nd = 0.1866, and (Nd = -12.8).

Fig. 27 shows the Nd isotopic compositions for all samples plotted against their ‘leach-

ing index’. The leaching index is an arbitrary measure of leaching. A solid residue with a

high index has been exposed to more and/or stronger leaching steps than a residue with

a low index, i.e. the leaching index increases with every leaching step performed. Accord-

ingly, the higher the index of a leachate, the higher the index of the solid residue from which

it has been extracted.
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Figure 27 : Nd isotopic compositions for leachates and solid residues of the sequential leaching

experiment (error bars are ± 0.5 (Nd). The leaching index is an arbitrary measure of

leaching. A solid residue with a high index has been exposed to more and/or stronger

leaching steps than a residue with a low index. The higher the index of a leachate, the

higher the index of the solid from which it has been extracted. Numbers below data

symbols are Sm/Nd ratios, numbers above are per cent Nd relative to the untreated

bulk sample as determined by isotope dilution, i.e. not normalized to 100 %.

The solid residues show a gradual development towards less radiogenic compositions

with increasing leaching index, although the difference of 0.9 (Nd values between the solid

residue with the highest leaching index and the untreated bulk sample is small compared

to the external precision of ± 0.5 (Nd. Relative Sm and Nd abundances, and Sm/Nd ratios

also decrease to 69 % for Sm, 78 % for Nd, and Sm/Nd = 0.1640, indicating the progres-

sive extraction of a component with a Sm/Nd ratio higher than that of the untreated bulk

sample.

A complementary trend is seen for the leachates, whose Nd isotopic compositions de-

velop towards more radiogenic values (up to (Nd -9.1), except for the leachate with the

highest leaching index, which has an intermediate (Nd of -10.5. Sm/Nd ratios are consis-

tently higher than that of the untreated bulk sample (between 0.2283 and 0.2866), but show

no systematic relation with the leaching index. The relative amounts of Sm and Nd in the

different leachates vary between 4 % and 13 % for Sm and between 3 % and 9 % for Nd.

The Sm-Nd systematics of the leachates and solid residues cannot be explained by sim-

ple binary mixing between a pure detrital component and a leachable component with a

high Sm/Nd ratio. Instead, the data are consistent with three-endmember mixing, as illus-
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trated in Fig. 28. In a plot of Sm/Nd ratio vs (Nd, the solid residues fall on a mixing line

(R2 = 0.984) with the untreated bulk sample, #4/3rd HH, #6/1st HH, and #4/2nd HH (in

the order of increasing Sm/Nd ratio). At the extreme ends lie #4 solid residue and #4/2nd

HH (EM B in Fig. 28). Instead of #4 solid residue, #3 solid residue is chosen as the detri-

tal endmember (EM A in Fig. 28) because prolonged leaching of #4 solid residue may have

attacked detrital minerals, as indicated by the composition of #4/3rd HH. The three remain-

ing leachates #6/1st HOAc, #6/2nd HOAc, and #4/1st HH plot off this mixing line. Two of

these three leachates (#6/2nd HOAc and #4/1st HH) fall on a regression line with #4/2nd HH

(R2 = 0.993). If this correlation is interpreted as the result of binary mixing, than EM C falls

on an extrapolation of the regression line towards less radiogenic (Nd values. The intersect

of the EM B–EM C mixing line with an extrapolation of the connecting line between EM A

and #6/1st HOAc yields the composition of EM C. Allowing for adjustments to optimize the

R2 values for the EM A–EM C and EM B–EM C mixing lines, EM C has a Sm/Nd ratio of

0.3164 and an (Nd of -10.9.

Data plotting along a straight line in a graph of Sm/Nd against (Nd are consistent with

binary mixing only if the concentrations of Sm and Nd change continuously along this line.

Although weighing of the leachates gave no meaningful results, the determined weights can

be used to derive minimum estimates for the Sm and Nd concentrations of the leachates.

Allowing Sm and Nd concentrations higher than these minimum estimates (within rea-

sonable limits), EM B and EM C can be modelled. Concentrations of 20 µg·g-1 Sm and 80

µg·g-1 Nd for EM B, and 15 µg·g-1 Sm and 47.5 µg·g-1 Nd for EM C yield consistent results

for all solid residues and leachates.

Regarding the nature of the endmembers, it can be said that EM A obviously is the de-

trital endmember. EM B, which is present in significant amounts only in the HH leachates,

probably is the seawater endmember released from Fe-Mn phases. As dilute acetic acid is

known to dissolve Fe-Mn phases (Chester and Hughes, 1967), if only in small amounts,

the composition of the second acetic acid leachate of aliquot #6 is compatible with EM B

being the seawater endmember. The nature of EM C is discussed in Chapter 4.4, but it can

be observed that it is soluble in dilute acetic acid, and that it has been completely removed

by twofold leaching with 1.7 mol·l-1 acetic acid prior to the first HH leaching. In contrast,

the single leaching with buffered 0.87 mol·l-1 acetic acid prior to the first HH leaching of

aliquot #4 has only partly removed EM C. This is an important observation, the implication

of which is also discussed in Chapter 4.4.
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Figure 28 : Sm/Nd ratios vs (Nd values for the results of the sequential leaching experiment. The

data are consistent with ternary mixing between #3 solid residue (EM A), #4/2nd HH

(EM B), and a hypothetical endmember EM C (gray circle). See text for details.
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 D

. S   - 

One of the initial assumptions of this study was that more detailed information about

oceanographic processes may be gained by analyzing several grain-size fractions instead

of just one (e.g. bulk samples). However, for 14 out of 15 samples from core PS2837-5, the

(Nd values of clay, fine silt, and coarse silt are identical within the external reproducibil-

ity of ± 0.5 (Nd units. Only one sample shows a moderate disagreement between its fine

size fractions of ± 0.6 (Nd values. It therefore seems justifiable to use calculated bulk com-

positions < 63 µm for the discussion of the results, rather than the individual grain size

fractions. Although the sand fractions agree considerably well with the finer fractions for

most samples (considering the poor reproducibility on the order of ± 2 (Nd values), they

will be treated independently, for they have a special meaning as indicators of ice rafting.

Bulk compositions < 63 µm were calculated by three-endmember-mixing between clay,

fine silt, and coarse silt, using the data from Table 10. The results are listed in Table 9, and

shown as a downcore profile in Fig. 29. Bulk compositions < 63 µm were also calculated for

the modern samples K5-2 (IRD), L22 (Lena), BP01/72 (Ob), and BP00/15 (Yenisei). The

results are listed in Table 9.
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Figure 29 : Downcore variation of (Nd values in core PS2837-5, represented by calculated bulk

compositions < 63 µm. The light gray area represents the isotopic variation in all size

fractions, the dark gray area that of clay, fine silt, and coarse silt. MIS 1-5 are Marine

Isotope Stages after Martinson et al. (1987).
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Table 9 : Sm-Nd data for bulk samples (< 63 µm) from sediment core PS2837-5, central Fram

Strait IRD (K5-2), and the Siberian rivers Lena (L22), Ob (BP01/72), and Yenisei

(BP00/15). Calculated from size-fraction data in Tables 10 and 11.

Sample Sm (µg·g-1) Nd (µg·g-1) Sm/Nd 147Sm/144Nd 143Nd/144Nd (Nd TDM (Ga)

555 6.39 33.6 0.1902 0.1149 0.512 030 -11.9 1.73

133 6.45 34.2 0.1886 0.1139 0.512 015 -12.2 1.74

213 6.51 34.6 0.1882 0.1137 0.511 978 -12.9 1.79

305 6.45 34.0 0.1897 0.1146 0.512 068 -11.1 1.67

337 6.69 34.9 0.1917 0.1158 0.512 106 -10.4 1.63

390 7.04 37.8 0.1862 0.1125 0.511 898 -14.4 1.89

447 6.58 34.4 0.1913 0.1155 0.512 050 -11.5 1.71

487 6.95 35.8 0.1941 0.1172 0.512 041 -11.6 1.75

558 6.70 35.3 0.1898 0.1146 0.512 040 -11.7 1.71

623 6.32 33.5 0.1887 0.1140 0.511 975 -12.9 1.80

668 6.68 35.5 0.1882 0.1137 0.511 984 -12.8 1.78

712 6.68 35.7 0.1871 0.1130 0.511 980 -12.8 1.77

789 6.55 34.6 0.1893 0.1143 0.511 996 -12.5 1.77

846 6.17 32.3 0.1910 0.1154 0.512 004 -12.4 1.78

868 6.47 34.1 0.1897 0.1146 0.512 035 -11.8 1.72

IRD (K5-2) 4.67 24.2 0.1930 0.1166 0.512 172 -9.1 1.54

Lena 7.90 42.9 0.1841 0.1112 0.511 880 -14.8 1.89

Ob 6.20 31.9 0.1944 0.1174 0.512 217 -8.2 1.48

Yenisei 4.09 19.6 0.2087 0.1262 0.512 312 -6.4 1.46

. S      Y

P

At the location of core PS2837-5, the deposition of lithogenic particles larger than 63 µm

can only be explained with delivery by floating ice. Under present-day, interglacial condi-

tions, sea ice rafting is supposed to be the main mechanism of sediment transport to the

deep Arctic Ocean (Nürnberg et al., 1994; Eicken et al., 2000), and may also significantly

contribute to the sedimentation at the Yermak Plateau.

The main source of sea ice IRD transported to the Fram Strait via the Trans Polar Drift

(TPD) is generally thought to be the western Laptev Sea shelf area, where shallow water

depth favors sediment entrainment by suspension freezing (Nürnberg et al., 1994; Eicken

et al., 1997; Tütken et al., 2002). As this process becomes less effective with increasing water

depth, the Kara Sea is generally considered to be of only minor importance regarding the

production of IRD (Pfirman et al., 1997). While this may be true for direct export of IRD

from the Kara Sea, Nd isotope data suggest that sediments becoming entrained in sea ice in



D – S      Y P 55

-10.6
-17.2

-12.7

-11.4

-7.9

-8.0

-8.6 -9.7

-12.1

-13.5

-11.1

-11.8-12.3

-13.4-11.6

-9.1

-9.3

-11.7-9.1
-8.5

-9.3
-8.9

-8.6

-14.8

-6.4

-8.2
(-7.0 to -9.1)

(-6.2 to -6.5)

(-14.6 to -16.7)
Lena

Laptev
SeaKara

Sea

Putoran
flood basalts

Khat
ang

a

60° E 90° E 120° E 150° E

70°
 N

80°
 N

Ob
Yenisei

Figure 30 : (Nd values of bulk samples < 63 µm of surface sediments (filled black circles and bold

numbers) and sediment-laden sea ice (open circles) from the eastern Kara Sea and the

Laptev Sea (data from Eisenhauer et al., 1999, and Tütken et al., 2002), and calculated

bulk compositions < 63 µm for sediments delivered by the Ob, Yenisei, and Lena rivers

(black diamonds). The values in parentheses represent the total variation found for

each river.

the western Laptev Sea contain a significant proportion of material originally delivered to

the Kara Sea by the Ob and Yenisei rivers. Eisenhauer et al. (1999) and Tütken et al. (2002)

reported Nd isotope data for surface sediments and sediment-laden sea ice from the east-

ern Kara Sea and the Laptev Sea. Although the data display some heterogeneity, a gradual

eastward decrease of (Nd values from -8 in the eastern Kara Sea to approximately -13 in the

eastern Laptev Sea is apparent (Fig. 30). Compared to the Nd isotopic compositions of sed-

iments delivered by the Ob, Yenisei, and Lena (Table 11, Fig. 30), the data from Eisenhauer

et al. (1999) and Tütken et al. (2002) are in excellent agreement with an eastward trans-

port of clastic material from the Kara Sea into the Laptev Sea, and an eastward increasing

influence of the Lena River.

Tütken et al. (2002) found a narrow range of (Nd values (-8.3 to -9.4) in sediment-

laden sea ice in the Siberian branch of the TPD between Svalbard and Franz-Josef-Land,

pointing to an origin from a restricted area within the western Laptev Sea. In contrast, (Nd
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values between -6.0 and -12.8 for sediment-laden sea ice in the central Fram Strait (Table

11) indicate a less restricted source area probably including the Kara Sea and the eastern

Laptev Sea.

In Fig. 31 Sm/Nd ratios and (Nd values for calculated bulk compositions < 63 µm for

core PS2837-5 and the central Fram Strait IRD sample K5-2 are compared with calculated

bulk compositions < 63 µm for the river samples from the Ob, Yenisei, and Lena. Consistent

with the above findings, the IRD sample plots inside a mixing triangle defined by the three

rivers. The core samples also plot inside, or close to, the same mixing triangle. This may

suggest that IRD derived from the Kara- and Laptev Sea shelves, transported to the Yermak

Plateau via the TPD, is the major component of sediments in core PS2837-5.

This view was suggested by Levitan et al. (2002b), who, based on the mineralogical

compositions of sediment cores from the Yermak Plateau (including PS2837-5), argued

that the lithogenic silt and sand fractions of sediments from the Yermak Plateau are mainly

transported by sea ice and icebergs from Eurasian sources. For the pelitic fraction, they

assumed a North Atlantic provenance including the Norway-Greenland Basin. Similarly,

Tütken et al. (2002), based on Sr and Nd isotope data, argued that up to 75 % of interglacial

sediments in core PS1533 (north-eastern Yermak Plateau, see Fig. 32) were transported

as IRD from the western Laptev Sea shelf via the TPD. Vogt et al. (2001) also reported

high percentages of Kara- and Laptev Sea shelf material in sediments from the last two

deglaciations in core PS2212-3 (north-eastern Yermak Plateau, see Fig. 32).

The sedimentary record of PS2837-5, however, allows an alternative interpretation that
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Figure 32 : Map of the Svalbard/Barents Sea area with a simplified illustration of surface circulation

and locations of sediment cores and traps discussed in the text. Temperate waters of At-

lantic origin are indicated by black arrows (NAC = Norwegian Atlantic Current, WSC

= West Spitsbergen Current). Cold waters of Arctic origin are indicated by gray arrows

(TPD = Trans Polar Drift, ESC = East Spitsbergen Current, BIC = Bear Island Current).

PS1533 from Tütken et al. (2002); PS2212-3, PS2122-1, and PS2123-2 from Vogt et al.

(2001); PS2138 from Knies et al. (2001); PS1535 from Spielhagen et al. (2004); sedi-

ment traps from Hebbeln (2000); JM96-68/1, JM96-70/1, and JM98-624/1 from Farmer

and Barber (2003).
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may also apply to other cores from the area. Compared to the sediment load of modern

sea ice from the Arctic Ocean, the sediments in core PS2837-5 have higher clay and sand

contents, and, despite covering 129 ka of sedimentation, are compositionally more homo-

geneous (Fig. 33). Also, sediment accumulation rates—at least in the uppermost part of the

core corresponding to present-day oceanographic conditions—are too high to be explained

by IRD deposition alone (Hebbeln, 2000). A second transport mechanism, presumably de-

livery of suspended matter by surface/subsurface currents, is therefore necessary. The Sm-

Nd systematics of the core samples require that the current-delivered material (hereafter

referring to the suspended load, as opposed to IRD delivered by sea ice or icebergs drifting

with surface currents) has the same, or an isotopically very similar, source as the IRD. Since

ice rafting is the only plausible mechanism for sediment transport to the Yermak Plateau

from the Kara- and Laptev Sea shelves, this part of the Eurasian shelf can be excluded for

the current transported component. A geographically different, but isotopically very simi-

lar source might be a possible explanation. However, it seems more plausible that the IRD

in core PS2837-5 is not derived from the Kara- and Laptev Sea shelves at all, but instead

has the same source as the current-transported component. This source presumably lies

south of the core location, and both IRD and suspended matter are delivered by the West

Spitsbergen Current (WSC).

Considering present-day oceanic circulation, the suspended load of the WSC may be

derived from a variety of sources; sediment particles can be transported from the south by

the NAC/WSC system (NAC = Norwegian Atlantic Current; see Fig. 32), and may also be

delivered by other water masses converging with the WSC from the west or the east.

Due to complex patterns of recirculation in the Fram Strait and the Greenland Sea

(Rudels et al., 1999; Schlichtholz and Houssais, 1999), the provenance of suspended matter

that may be fed into the WSC from the west is difficult to constrain. Water leaving the

Arctic Ocean through the western Fram Strait is partly recirculated towards the WSC in

the Greenland Sea and may transport sediment from Amerasia and Greenland. However,

significant sediment delivery from these areas is unlikely, since (Nd values typical for this

area of < -20 (Tütken et al., 2002) are found neither in core PS2837-5, nor in core PS1533

(Tütken et al., 2002). Studies of the chemical composition of Fe oxide grains entrained

in Arctic Ocean sea ice (Darby, 2003) and lithological compositions and abundances of

ice rafted clasts in Arctic Ocean sediments (Phillips and Grantz, 2001) also indicate no

significant sediment input from Amerasia and Greenland. Deposition of material from the

Kara- and Laptev Sea via recirculation in the Greenland Sea cannot be excluded on the

basis of Nd isotopes. It is, however, unlikely that the contribution from eastwards directed

recirculation is significant (judging from, for instance, magnetic susceptibility distribution

in surface sediments from the Greenland and Norwegian Seas, Pirrung et al., 2002).
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Figure 33 : Grain-size compositions of 845 samples from sediment core PS2837-5 (data from Hass,

2000) and 129 samples of Arctic Ocean sea ice IRD (data from Wollenburg, 1993).

In contrast, significant contribution from the east, i.e. the Svalbard/Barents Sea area, is

a plausible scenario supported by mineralogical data (high kaolinite contents of lithogenic

material collected in sediment traps in the eastern Fram Strait; Berner and Wefer, 1994).

Pathways for suspended particulate matter export from the Barents Sea are given under a

variety of climatic conditions: today, the Bear Island and East Spitsbergen surface currents

reach the western shelf edge (Fig. 32). Transport of suspended particles may also occur

through the bathymetric depressions of the Bear Island Trough (south of Bear Island) and,

to a lesser degree, the Storfjordrenna (north of Bear Island). These troughs are outlets

for cold and saline waters that are formed on the shelf in winter (AMAP, 1998). During

glacial periods, when the shelf was covered by an ice sheet, large amounts of sediments

were transported subglacially to the shelf edge (e.g. Laberg and Vorren, 1995). Periodic

collapse of sediment piles built from this subglacial transport repeatedly led to turbidity

flows that built, for instance, the large Bear Island Trough Mouth Fan (BITMF; Laberg and

Vorren, 1996).

The Barents Sea shelf is mainly composed of clastic Mesozoic rocks (Dallmann, 1999),

which makes it difficult to estimate the Nd isotopic composition of sediments derived from

this area. For instance, (Nd values for Triassic sandstones from Spitsbergen, Bear Island,

Novaya Zemlya, and the central and southern Barents Sea scatter between -15.5 and 1.2
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(Mørk, 1999). The problem of isotopic heterogeneity can be overcome by looking at natu-

rally mixed composite samples, such as sediments from the BITMF. Since BITMF sediments

were delivered by an ice stream fed by glaciers converging in the Bear Island Trough (Laberg

and Vorren, 1995), they may provide a reasonable approximation to an average Barents Sea

composition. Farmer and Barber (2003) presented Nd isotope data for two samples (< 63

µm) from the BITMF (cores JM96-68/1 and JM96-70/1, see Fig. 32). The sample from

core JM96-68/1 is from a Late Weichselian (Last Glacial Maximum) debris flow deposit,

and is entirely composed of Barents Sea shelf material (Laberg and Vorren, 2000). Its (Nd

value of -10.1 is similar to the most radiogenic values in core PS2837-5 (Fig. 34), making a

close genetic relationship possible. The sample from core JM96-70/1 has been dated to the

Holocene, when, according to Laberg and Vorren (1995), most of the sediments introduced

to the fan probably resulted from winnowing of shallow bank sediments on the Barents Sea

shelf. This sample’s moderately lower (relative to the Late Weichselian sample) (Nd value

of -11.4 may indicate a contribution from a source outside the Barents Sea.

A plausible candidate for this source is the Norwegian shelf, from where sediments can

be delivered by the NAC (see Fig. 32). Farmer and Barber (2003) presented Nd isotope

data for two samples (< 63 µm, dated to the Last Glacial Maximum) from core JM98-624/1

from the mid-Norway shelf (see Fig. 32). The samples have (Nd values of -14.8 and -15.1,

consistent with a western Baltic Shield source (Paleoproterozoic crust, or its reworked Cale-

donian equivalent; Farmer and Barber, 2003). Reduced sediment delivery from the Barents

Sea shelf under interglacial (unglaciated) conditions may increase the relative proportion

of sediments derived from the mid-Norway shelf, resulting in more negative (Nd values

for the suspended load of the WSC. Note that (Nd values similar to the mid-Norway shelf

are found in the Caledonian fold belt of western Spitsbergen (Kongsfjorden samples WoF

and WoG, see Fig. 34). While sediment delivery from western Spitsbergen to the BITMF

is unlikely (due to missing pathways), sediment transport to the Yermak Plateau via the

WSC is plausible. The available Nd isotope data alone, however, do not allow to distinguish

between western Spitsbergen and the mid-Norway shelf.

In summary, existing pathways and Nd isotope data suggest that the suspended load

of the WSC is composed of material derived from the Barents Sea shelf and the Norwegian

shelf/western Spitsbergen area. Variations in the relative proportions of sediments delivered

from these areas can account for the downcore Nd isotopic variation found in core PS2837-

5 (Fig. 34).

Independent evidence suggests that also the IRD in core PS2837-5 is mainly derived

from the Svalbard/Barents Sea area. Hebbeln (2000) reported sediment flux data obtained

from sediment traps moored for three years (during the late 1980s) in the eastern Fram

Strait (see Fig. 32). Although a continuous but small release of IRD from TPD sea ice was

observed, four to sixfold higher fluxes occurred when sea ice from the fjords and coastal
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Figure 34 : Sm/Nd ratios vs (Nd values for calculated bulk compositions < 63 µm from core

PS2837-5 and data from the literature. Spitsbergen (except Isfjorden and Kongsfjorden,

this study) and Bear Island data are for Triassic sandstones from Mørk (1999). Barents

Sea shelf edge and mid-Norway shelf data are for samples from the cores JM96-68/1,

JM96-70/1, and JM98-624/1 (see Fig. 32) from Farmer and Barber (2003).

areas of Svalbard and the Barents Sea was close to the sediment traps. A proximal source for

the released IRD is indicated by high numbers of plasma-containing benthic foraminifers.

The cold East Spitsbergen Current (ESC, Fig. 32) carries sea ice from the Barents Sea and

eastern Svalbard, and, after rounding the southern tip of Spitsbergen, flows northwards as

a coastal current (Johannessen, 1986). On its way north, it can pick up more sea ice from

the fjords and coastal areas of western Spitsbergen. If this Spitsbergen/Barents Sea sea ice

becomes entrained in the WSC (flowing further off the coast), it might be carried north

up to the location of core PS2837-5, and significantly contribute to the deposition of IRD

there.

Although TPD sea ice is also melted by the high surface temperatures of the WSC (> 0

°C year-round, Johannessen, 1986), it apparently releases significantly less IRD than the

Spitsbergen/Barents Sea sea ice. According to Hebbeln (2000), the explanation is found in

the age difference between the two different types of sea ice. The Spitsbergen/Barents Sea sea

ice is first-year ice, and its sediment load is evenly distributed throughout the ice column.

In contrast, the TPD sea ice has a multi-year history with several seasonal thawing/freezing
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cycles, which lead to a net loss of sediment and a concentration of the remaining sedi-

ment at the surface of the ice floe (Pfirman et al., 1989). Because melting by ‘warm’ water

happens from the bottom upwards, TPD sea ice requires substantially more melting than

Spitsbergen/Barents Sea sea ice before IRD is released.

At this point it can be concluded that, at least under present-day oceanographic condi-

tions, the western Yermak Plateau receives a strong input of current-transported sediments

and IRD from the Svalbard/Barents Sea area (with possible contributions from Scandi-

navia). The flux of IRD derived from the Kara- and Laptev Sea shelves (which are the

major sources for IRD in the deep Eurasian Basin) is proposed to be small compared to the

input of IRD from the Svalbard/Barents Sea area.

. O    Y P

  L Q

Fig. 35 shows the downcore variation of sand content as an indicator of ice rafting by sea ice

and icebergs, and (Nd values for the fractions > 63 µm and < 63 µm in core PS2837-5. The

< 63 µm curve shows little variation around a mean (Nd value of -12.3 (± 0.5, 1σ) prior to

30 ka and after 10 ka, with no correlation between (Nd values and abundance of particles

> 63 µm (R2 = 0.12). Only between 30 ka and 10 ka, coeval with the most prominent peak

in sand abundance, significant variation between (Nd values of -14.4 and -10.4 can be seen.

The (Nd curve for the fraction > 63 µm shows higher variation than the finer fraction,

but, as mentioned before, it is difficult to judge whether or not this higher variation is

analytically significant. The correlation of (Nd values and abundance of particles > 63 µm

is only marginally better (R2 = 0.2).

As demonstrated above, sedimentation at the location of core PS2837-5 is, under present

day oceanographic conditions, dominated by particulate matter derived from the Sval-

bard/Barents Sea area and possibly north-western Scandinavia. The aim of this Chapter

is to demonstrate that the downcore variation in core PS2837-5 can be explained by cli-

mate induced variations in sediment delivery from these sources. If, as proposed, no other

sources were involved, the basic modern pattern of circulation in the Atlantic–Arctic Ocean

gateway has been active during most of the 129 ka covered by the sedimentary record of

core PS2837-5.

In the past 180 ka (the last two glacial–interglacial cycles), the Svalbard/Barents Sea area

and Scandinavia were affected by four large-scale glaciations (Svendsen et al., 2004): the

Saalian (ca 180 ka-130 ka), the Early Weichselian (ca 90 ka-80 ka), the Middle Weichselian

(ca 60 ka-50 ka), and the Late Weichselian (ca 24 ka-18 ka). Of these four glaciations, the

Saalian was by far the largest in areal extent, total ice volume, and duration. The later

glaciations were characterized by progressively smaller ice sheets over the Barents Sea, the
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Figure 35 : Downcore variation of abundance of particles > 63 µm and > 1000 µm, and (Nd

values in core PS2837-5. Open circles in the > 63 µm abundance curve mark drop-

stones. Asterisks mark layers where high sand contents result from abundant planktic

foraminifers (Nørgaard-Pedersen et al., 2003). This might also be the case for some

sand-abundance peaks in the lower part of the core, for which no foraminifer data ex-

ist. The sample density of the > 1000 µm curve is 1 cm between 0 ka an 38.5 ka, and

10 cm beyond 38.5 ka. Open circles in the (Nd curve for sand represent replicate mea-

surements of separate sample aliquots. Abundance data are from Hass (2000) for the

fraction > 63 µm, and from Hass (unpubl. data) for the fraction > 1000 µm. MIS 1-5

are Marine Isotope Stages after Martinson et al. (1987).
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Kara Sea, and the Siberian mainland, whereas the southward extension of the ice sheet

over Scandinavia and northern Europe progressively increased. The smallest differences

in areal extent between successive glaciations are found in the Svalbard/Barents Sea area

and in northern Scandinavia (Svendsen et al., 2004). During each of these four glaciations,

the ice caps over Svalbard and Scandinavia were at one point connected by an ice sheet

covering the Barents Sea shelf (the Svalbard/Barents Sea Ice Sheet, SBIS), which had a triple

effect. First, inflow of Atlantic water through the Barents Sea was cut off, rerouting the

entire inflow to the Fram Strait. Second, transport of sea ice from a proximal source to

the Yermak Plateau via the East Spitsbergen Current ceased and was replaced by iceberg

rafting from the SBIS, possibly including more distant sources. Third, continuous injection

of suspended matter into the WSC by outflow from the Barents Sea ceased. This might have

been partly compensated for by outflow from meltwater channels, and periodic collapse of

sediment piles build from continuous subglacial transport of material to the shelf break

(Laberg and Vorren, 1996).

In the following paragraphs, the (Nd record of core PS2837-5 is discussed in the light

of the current understanding of the glacial/interglacial history of the Svalbard/Barents Sea

area. Additional information comes from core PS1533 from the eastern Yermak Plateau

(Fig. 32), for which Tütken et al. (2002) presented a continuous (Nd record extending

back to the Saalian glaciation (not recorded in core PS2837-5). Fig. 36 shows that the (Nd

records for the two cores are similar during MIS 1, 2, and 5, whereas they are significantly

different during MIS 3 and, to a lesser degree, in early MIS 4. This might as well be due to

inconsistencies in the age-depth models.

.. S   MIS  (– )

According to recent land-based (Svendsen et al., 2004) and marine-based (Spielhagen et al.,

2004) compilations of the Late Quaternary ice sheet history of northern Eurasia, the ice

sheet configuration along the western Scandinavia-Barents Sea-Svalbard margin was simi-

lar during the peak phases of the Saalian glaciation (ca 135 ka) and the Last Glacial Max-

imum (LGM, ~21.5 ka-18 ka; Sarnthein et al., 2003), but different during the intervening

glaciations. The Saalian and Late Weichselian glaciations may therefore have had similar

effects on the delivery of sediments to the Yermak Plateau. The Nd isotope record of core

PS1533 indeed shows similar (Nd values during the glacial maxima, and a similar shift to

less radiogenic values during the deglaciations (Fig. 36).

A puzzling feature, according to Spielhagen et al. (2004), is that the onset of IRD de-

position in the central and eastern Fram Strait is delayed by several thousand years relative

to the central Arctic Ocean. Spielhagen et al. (2004) suggested that during the early parts

of the glaciation, southward export of IRD bearing icebergs occurred through the western
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Figure 36 : Comparison of sand contents and downcore Nd isotopic variations in cores PS2837-

5 and PS1533. Open circles in the sand abundance curve of PS2837-5 mark drop-

stones. Asterisks mark layers where high sand contents result from abundant planktic

foraminifers (Nørgaard-Pedersen et al., 2003; Spielhagen et al., 2004). This might also

be the case for some sand-abundance peaks in the lower parts of the cores, for which no

foraminifer data exist. Note the similarity of the (Nd curves in MIS 1, 2, and 5. Nd iso-

tope data for PS1533 from Tütken et al. (2002). Grain-size data for core PS2837-5 are

from Hass (2000). Grain-size data and age model for PS1533 are from Spielhagen et al.

(2004). MIS 1-6 are Marine Isotope Stages after Martinson et al. (1987).

Fram Strait only. This interpretation apparently is based on the assumption that the ice-

bergs that delivered IRD to the central Arctic Ocean and the central and eastern Fram Strait

had the same source. This, however, doesn’t necessarily have to have been the case. Central

Arctic Ocean IRD might have been delivered by icebergs drifting with the TPD, whereas

IRD in the central and eastern Fram Strait could have been delivered by northward drifting

icebergs that broke off the ice sheet at the western Svalbard/Barents Sea margin. If this was
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the case, the delayed onset of IRD deposition indicates that the advancing ice sheet reached

the shelf break at the western Svalbard/Barents Sea margin several thousand years later than

in Siberia.

.. MIS  ( – )

The oldest sediments in core PS2837-5 correspond to the last interglacial period, the Eemian

(MIS 5e), during which a strong inflow of Atlantic water is recorded in several cores from

the Arctic gateway and the Arctic Ocean (Spielhagen et al., 2004). The MIS 5e IRD peak in

core PS2837-5 (Fig. 35) probably reflects the rapid disintegration of the remaining MIS 6

ice sheet. Evidence for iceberg rafting in MIS 5e is also found further south in core PS1535

(eastern Fram Strait; Spielhagen et al., 2004), but neither in core PS1533 (eastern Yermak

Plateau; Spielhagen et al., 2004), nor in cores PS2123-2 and PS2122-1 (north-eastern Sval-

bard shelf and margin; Vogt et al., 2001). This suggests that the icebergs drifting over the

location of core PS2837-5 calved off the western ice sheet margin (Svalbard/Barents Sea).

Further IRD peaks are found in core PS2837-5 in MIS 5d and 5c (Fig. 35). The MIS

5d peak correlates with the first post-Eemian ice sheet advance onto the Spitsbergen shelf

between ca 118 ka and 106 ka (Mangerud et al., 1998). This glacial advance appears to

have been restricted to the north-western Svalbard/Barents Sea area, and is not found in re-

constructions of Scandinavian and northern Siberian ice sheet history (e.g. Svendsen et al.,

2004). The MIS 5c peak coincides with a second Atlantic water inflow event around 100 ka

(Spielhagen et al., 2004), and probably reflects the disintegration of the MIS 5d ice sheet.

Again, evidence for iceberg rafting in MIS 5d and 5c is found in core PS1535, but to a much

lesser degree in the other, more proximal cores to the east and southeast.

Sedimentary records from the central Arctic Ocean (Spielhagen et al., 2004) support

land-based reconstructions (Svendsen et al., 2004) of a large-scale, Early Weichselian glacia-

tion in north-eastern Eurasia during MIS 5b. Terrestrial and marine evidence suggests a

short-lived (< 10 ka) advance to the west coast of Svalbard at that time (Mangerud et al.,

1998). The ice sheet may in places have reached the shelf edge west of Svalbard, but nev-

ertheless was much smaller than the MIS 5d ice sheet on Svalbard (Mangerud et al., 1998).

Spielhagen et al. (2004) noted that the low IRD contents in MIS 5b sediments in cores

PS1533 and PS1535 (as in core PS2837-5, see Fig. 35) are difficult to reconcile with their

model of dominant iceberg drift out of the Arctic Ocean. They suggested that, due to in-

flowing Atlantic water, icebergs may have melted inside the Arctic Ocean before reaching

Fram Strait. But, since indicators of Atlantic inflow yielded inconsistent results, they con-

cluded that the low IRD contents remain (for the time being) an unsolved contradiction. If,

however, as proposed in this thesis, the dominant direction of ice drift in the eastern Fram

Strait was northward throughout the Late Quaternary, the lack of abundant IRD in MIS 5b

is compatible with the very restricted extent of the glaciation on Svalbard.
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Several cores from the Arctic gateway and the central Arctic Ocean contain faunal ev-

idence (e.g. abundant planktic foraminifers) for an interval of strong inflow of Atlantic

water in MIS 5a and MIS 4 (e.g. Hebbeln and Wefer, 1997; Spielhagen et al., 2004). In the

central Arctic Ocean, this interval is interrupted by a sudden increase in IRD deposition

shortly after 80 ka, accompanied by a drop in planktic foraminifer abundance (Spielhagen

et al., 2004). The sharp lower boundary and fining-upwards character of the IRD rich layer

indicate rapid onset and gradual decrease of iceberg rafting. Spielhagen et al. (2004) as-

sumed that a combination of strong Atlantic water inflow (moisture supply) during MIS

5a and rapidly decreasing northern high-latitude insolation led to an early Middle Weich-

selian formation of ice domes in the Barents Sea/Kara Sea area. This iceberg rafting event is

not recorded in Arctic gateway cores (Spielhagen et al., 2004); contents of particles > 63 µm

are close to zero in core PS1533 (eastern Yermak Plateau), whereas elevated sand contents

in core PS1535 (eastern Fram Strait) are caused by abundant planktic foraminifers. Since

the abundance of planktic foraminifers in core PS1535 is continuously high between 80 ka

and 65 ka (Spielhagen et al., 2004), the inflow of Atlantic water may have continued across

the MIS 5/4 boundary. The low central Arctic foraminifer abundances during the 80 ka ice

rafting event may therefore reflect diminished surface productivity (due to dense ice cover)

rather than reduced inflow of Atlantic water.

The shape of the 80 ka-74 ka peak in the > 63 µm abundance curve of core PS2837-5

(Fig. 35) resembles that found in central Arctic Ocean cores. However, it appears not to

be related to increased iceberg rafting (it is not seen in the > 1000 µm record). Different

possible explanations for the elevated sand contents, all connected to the strong inflow of

Atlantic water, include abundant planktic foraminifers (as in core PS1535), winnowing of

finer particles by fast flowing bottom water, or enhanced melting of sediment laden sea ice.

Despite considerable climatic variability in MIS 5, the Nd isotope record of core PS2837-

5 shows only minor variation during this period (Fig. 35). For fractions > 63 µm (repre-

senting IRD deposition), (Nd values first decrease from -12.5 for sample 868 to -12.9 for

sample 712, and the rise to -12.3 for sample 668 (the age of 73.3 ka for sample 623 proba-

bly is overestimated by ca 8 ka, placing it in middle MIS 4 instead; discussed below). The

(Nd curve for fractions < 63 µm (representing WSC suspended load plus fine-grained IRD)

shows similarly small variation. The greater part of this small variation occurs early in the

record, between samples 868 (129 ka, (Nd -11.8) and 846 (124 ka, (Nd -12.4). The re-

maining part of the interval is characterized by a gradual decrease of (Nd values to -12.8

for sample 668 (continued until the probably incorrectly dated sample 623, (Nd -12.9, see

above). With an (Nd value similar to that for the youngest core sample 55 (2 ka, (Nd -11.9),

and close to that for a Holocene sample from core JM96-70/1 from the BITMF ((Nd -11.4,

Farmer and Barber, 2003), sample 868 is considered to reflect typical interglacial condi-

tions. The subsequent decrease of (Nd values to -12.8 for sample 668 (or -12.9 for sample
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623) is of similar magnitude as the variation between the Holocene (interglacial) samples

213, 133, and 55 (Fig. 35). Although full interglacial conditions clearly did not prevail

throughout MIS 5, full, global-scale glacial conditions were not reached either (at no time

between the Saalian and the Late Weichselian, e.g. Spielhagen et al., 2004; Svendsen et al.,

2004). This may suggest that the delivery of suspended particulate matter to the western

Yermak Plateau is significantly influenced only by climatic variation of full glacial/full in-

terglacial amplitude. On the other hand, the gradual nature of the MIS 5 trend argues for

some response to an equally gradually operating, not yet identified mechanism.

The good agreement between IRD abundance in core PS2837-5 and the glacial history

of the Svalbard archipelago suggests that the north-western Svalbard/Barents Sea area was

the dominant, if not the only, source of IRD delivered to the western Yermak Plateau during

MIS 5. The narrow range of (Nd values argues for a very restricted source area within

the isotopically heterogeneous Svalbard/Barents Sea region (e.g. Isfjorden, see Fig. 34, or

other areas with similar Mesozoic lithologies on eastern Svalbard and the north-western

Barents Sea shelf). This, in turn, argues for a derivation of WSC suspended load from the

same area. In analogy to the present-day situation, suspended matter from the Barents Sea

shelf, delivered via the East Spitsbergen and Bear Island currents, might have dominated the

suspended load budget of the WSC. Note, however, that the likely interruption of the East

Spitsbergen and Bear Island currents during times when an ice sheet covered the interior

part of the Barents Sea shelf presents a problem. The Early Weichselian glaciation in MIS

5b, for instance, although of limited extent along the western Svalbard margin (Mangerud

et al., 1998), probably occupied the entire Barents Sea shelf east of Svalbard (Svendsen et al.,

2004). Although speculative, the missing Barents Sea outflow might have been completely

compensated for by periodic collapse of sediment piles resulting from subglacial transport

to the shelf edge.

.. MIS – MIS  ( – )

The MIS 5/4 and MIS 4/3 boundaries are uncertain for core PS2837-5. For reasons dis-

cussed in section 2.1.1.1, the age-depth model for the lower half of core PS2837-5 is based

on linear interpolation between the oldest reliable AMS 14C date at 389 cm (20.16 ka) and

an age estimate of 129 ka for the core bottom. Necessarily, this approach yields a constant

sedimentation rate, which, however, is an unrealistic assumption for more than 100 ka of

sedimentation in a dynamic environment. It is therefore likely that the stratigraphy of core

PS2837-5 is partly distorted (i.e. compressed or stretched) by the linear age-depth model.

The core section predicted to correspond to MIS 4 to early MIS 3 appears to be particularly

affected.
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Based on high rates of IRD deposition in the central Arctic Ocean, Spielhagen et al.

(2004) concluded that the Middle Weichselian (MIS 4 to early MIS 3) ice sheet in north-

ern Eurasia was exceptionally productive in terms of iceberg calving rate and/or sediment

load. Using faunal evidence from Fram Strait sediment cores (Baumann, 1990; Hebbeln

and Wefer, 1997; Hald et al., 2001), they suggested that seasonally open water conditions,

caused by strong MIS 4 Atlantic water inflow (Hebbeln and Wefer, 1997), still existed when

the ice sheet had already reached much of its maximum extent. The associated, persisting

moisture supply probably was stronger than during earlier MIS 6 and 5 glaciations, leading

to a faster ice flow and thus a higher iceberg calving rate. The implication for core PS2837-5

is that the sedimentation rate during the Middle Weichselian probably was higher than the

4.40 cm·ka-1 predicted by the age-depth model.

High IRD abundances in MIS 4 to early MIS 3 (65 ka–50 ka) sediments in many cores

from the Arctic gateway and the central and eastern Arctic Ocean are related to the main

phase of the Middle Weichselian glaciation (Spielhagen et al., 2004, and references therein).

In core PS2837-5, this interval probably is represented by the core section dated to 74 ka–50

ka. Elevated sand contents between 74 ka and 63 ka, and between 55 ka and 53 ka (Fig. 35),

can unambiguously be attributed to iceberg rafting. Peaks in the > 1000 µm curve at 73.5

ka, 69.5 ka, and 54 ka (Fig. 35), and dropstones at 587 cm (65.8 ka) and 582 cm (64.7 ka)

prove melting of icebergs over the western Yermak Plateau. If the stratigraphic model for

core PS2837-5 indeed overestimates the age of this core section, then the onset of enhanced

IRD deposition dated to 74 ka may correlate with the approach of the SBIS to the shelf

break at ca 65 ka (Mangerud et al., 1998), as recorded in several cores from the western,

north-western, and northern Svalbard/Barents Sea margin (Mangerud et al., 1998; Vogt

et al., 2001; Knies et al., 2001). A local minimum in the planktic foraminifer δ18O record

of core PS2837-5 (R.F. Spielhagen, personal communication) suggests that the 55 ka–53

ka sand peak in core PS2837-5 correlates with a major deglacial event, which is recorded

throughout the Arctic as a strong meltwater spike around 52 ka (Spielhagen et al., 2004).

The interval with low sand contents dated to 63 ka–55 ka may reflect a reduction in the

rate of iceberg calving between the retreat of the ice sheet from the shelf break at ca 59 ka

(Mangerud et al., 1998) and the 52 ka major deglacial event.

Nd isotope data for fractions > 63 µm from core PS2837-5 suggest significant differ-

ences in IRD delivery between the MIS 5 and MIS 4 glaciations. Although the reliability

of (Nd values for sand samples is questionable (see replicate of sand sample 623, Fig. 35),

the excursion towards more positive values during the Middle Weichselian (sand samples

623 and 601, perhaps beginning with sample 668) is considered to be at least qualitatively

correct. Sand sample 557 ((Nd -12.6), probably post-dating the retreat of the Middle We-

ichselian ice sheet from the shelf break, records a return to pre-glacial conditions. The shift

to more positive (Nd values during MIS 4 is compatible with an increased input of IRD
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derived from eastern Svalbard. The lack of such a shift during the MIS 5d glaciation (which

was of similar areal extent in the north-western Svalbard/Barents Sea area; Mangerud et al.,

1998) may be explained with the aforementioned model of exceptionally fast Middle We-

ichselian ice flow of Spielhagen et al. (2004). Iceberg calving rates generally are highest in

front of fast flowing ice streams (Dowdeswell et al., 1998; Siegert and Dowdeswell, 2002).

Accordingly, the Middle Weichselian glaciation in the north-western Svalbard/Barents Sea

area may have been characterized by ice streams (e.g. through Isfjorden) that were larger

and faster than during the Early Weichselian. The IRD carried by Middle Weichselian ice-

bergs may therefore have been derived from more interior parts of the ice sheet (e.g. eastern

Svalbard, Mesozoic sedimentary rocks), yielding a more radiogenic Nd isotopic signature

than Early Weichselian IRD.

Fractions < 63 µm show a very different response to the Middle Weichselian glaciation.

Sample 623 ((Nd -12.9) falls on the trend of minimally decreasing (Nd values throughout

MIS 5 (Fig. 35). This supports the assumption (derived from the MIS 5 Nd isotope record)

that the ice sheet, which at that time probably had reached its maximum extension, had

no influence on the transport of WSC suspended load. Sample 558 ((Nd -11.7), probably

post-dating the peak glacial phase, marks the end of the MIS 5/MIS 4 trend and records a

return to typical interglacial (Nd values that remain stable around -11.6 throughout MIS 3.

.. M MIS  (.  – )

In core PS2837-5, the interval between 50 ka and 30 ka is characterized by sand contents

around 5 wt % before 40 ka (with a prominent peak at 45 ka), and around 1-2 wt % after

40 ka (Fig. 35). Although the elevated sand contents between 50 ka and 40 ka might reflect

sea ice rafting, rather than iceberg rafting, the peak in abundance of clasts > 1000 µm at 45

ka proves iceberg drift at that time. Similar indication for ice rafting is found in cores from

the northern Barents Sea margin (PS2138; Knies et al., 2001) and the eastern Fram Strait

(PS1535; Spielhagen et al., 2004). Elevated levels of clasts > 2 mm in PS2138 between 50 ka

and 40 ka are compatible with the presence of a Middle Weichselian ice sheet in parts of the

eastern Svalbard/Barents Sea area until at least 44 ka, as proposed by Andersen et al. (1996).

High amounts of IRD with typical Mesozoic rocks from the Barents Sea in sediments from

50 ka to 35 ka in core PS1535 indicate that a minor glaciation may have existed in the NW

Barents Sea area prior to the main ice sheet build-up in latest MIS 3 (Spielhagen, 1991;

Spielhagen et al., 2004).

In contrast, cores from the north-western Svalbard margin (e.g. PS2122-1 and PS2123-

2) and the eastern Yermak Plateau (e.g. PS2212-3 and PS1533) contain only minor IRD

from the period between ca. 50 ka and 30 ka (Vogt et al., 2001; Spielhagen et al., 2004).

Thus, the IRD record of core PS2837-5 more closely resembles those of cores from the
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northern Barents Sea margin and the eastern Fram Strait, rather than those of more prox-

imal cores from the north-western Svalbard margin and the eastern Yermak Plateau. This

finding supports the assumption that the deposition of IRD at the western Yermak Plateau

mainly responds to fluctuations of the marine-based part of the SBIS. The correlation be-

tween the IRD record of core PS2837-5 and fluctuations of the land-based part of the SBIS

on the Svalbard archipelago appears to be weak, which is also indicated by the significantly

different isotope records of the cores PS2837-5 and PS1533 during MIS 3 (Fig. 36, discussed

below).

The decrease of sand contents in core PS2837-5 at 40 ka may be connected to a strong

inflow of temperate Atlantic water into the Fram Strait that occurred during the ‘high pro-

ductivity event’ HP3 (ca. 41 ka-38 ka) in the Fram Strait and the Nordic Seas (Dokken and

Hald, 1996; Hald et al., 2001). In contrast to other inflow events, this one probably caused

a negative ice mass balance instead of ice sheet growth (Spielhagen et al., 2004). Consistent

with this assumption, the small sand peak (7.4 wt %) at 40.4 ka in core PS2837-5 may re-

flect the disintegration of a minor ice sheet in the Svalbard/Barents Sea area. The increase

in sand content from ~1 wt % to ~2 wt % around 38 ka may then mark the end of the

inflow event, and indicate an intensification of ice rafting. Note, however, that this match

might as well be a coincidental result of uncertainties in the age-depth model.

Nd isotope data are available for two samples from the interval between 50 ka and 30

ka: sample 487 at 42.4 ka, and sample 447 at 33.3 ka. The fractions < 63 µm of these two

samples have typical interglacial (Nd values of -11.6 and -11.5, respectively. The fractions

> 63 µm, on the other hand, follow a trend characterized by progressively more radiogenic

(Nd values throughout MIS 3 (Fig. 35). The (Nd values of -10.5 for the samples 487 sa and

447 sa (-11.3 for the replicate of 487 sa) are close to the assumed average Barents Sea shelf

composition of (Nd -10.1 (see Chapter 4.2), which is compatible with the minor, pre-LGM

glaciation in the NW Barents Sea area as proposed by Spielhagen (1991) and Spielhagen

et al. (2004). The lack of an unradiogenic component suggests that the glaciation may have

been restricted to eastern Svalbard, leaving the Caledonian fold belt in western Spitsbergen

ice free.

Fig. 36 shows that (Nd values for fractions < 63 µm from core PS1533 between 40 ka

and 30 ka are significantly more negative than in core PS2837-5. According to Tütken et al.

(2002), the low (Nd values in core PS1533 reflect a massively increased input of material

derived from northern Spitsbergen, which would be in accordance with a build-up of the

Late Weichselian ice sheet on Svalbard as early as 40 ka (as proposed by Lloyd et al., 1996).

This early build-up of an ice sheet on Svalbard is neither reflected in the Nd isotope record

of core PS2837-5, nor recorded in other cores from the area (Knies et al., 2000; Vogt et al.,

2001), which may point to inconsistencies in the age-depth model for core PS1533.
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.. L W    MIS   MIS  ( – )

Knies et al. (2000) argued for a rapid build-up of the SBIS after 34 ka, whereas Lloyd et al.

(1996) propose an onset of glaciation on Svalbard as early as 40 ka. The general consen-

sus, however, is that the major build-up of the Late Weichselian SBIS was a two-step pro-

cess connected to periods of strong Atlantic water inflow (i.e. moisture supply) between

32 ka and 26 ka, and around 20 ka (Spielhagen et al., 2004). Both inflow events are re-

flected by high abundances of planktic foraminifers in cores PS1535 and PS1533 (Spielha-

gen et al., 2004). High abundances of planktic foraminifers are also found in core PS2837-5

(Nørgaard-Pedersen et al., 2003), and, between 23 ka and 18 ka in particular, result in high

abundances of particles > 63 µm that do not reflect increased ice rafting (Fig. 35).

A peak in IRD abundance at ca. 30 ka in core PS2138 from the northern Barents Sea

margin is interpreted as a first initial instability of the ice sheet during build-up (Knies et al.,

2001). A similar peak is found in core PS2837-5 (Fig. 37), but not in cores from the north-

western Svalbard margin and the eastern Yermak Plateau (Vogt et al., 2001; Spielhagen et al.,

2004). This, again, supports the assumption that the deposition of IRD at the western

Yermak Plateau mainly responds to fluctuations of the marine based-part of the SBIS.

On the continental slope west of Spitsbergen, the initial stage of the Late Weichselian

glaciation (30 ka-27 ka) was characterized by low accumulation rates and a low influx of

iceberg rafted sediments (Elverhøi et al., 1995). Clay mineral assemblages and reworked

palynomorphs of Late Cretaceous and Triassic age point to eastern Svalbard and parts of

the northern and eastern Barents Sea as the sources of the delivered sediments (Elverhøi

et al., 1995).

At 27 ka, synchronous with an increase in abundance of particles > 1000 µm in core

PS2837-5 (Fig. 37), the ice sheet reached the northern Barents Sea margin between Svalbard

and Franz-Josef-Land (Knies et al., 2000, 2001). At the same time, the ice sheet advanced

onto the Barents Sea shelf south of Svalbard (Elverhøi et al., 1995). The advance to the shelf

break west of Svalbard was delayed until 22.5 ka (Andersen et al., 1996; Landvik et al., 1998).

Grounded ice on the western Svalbard shelf might have affected the northward transport of

icebergs by coastal currents, as could be concluded from the reduction of IRD > 1000 µm

in core PS2837-5 around 22.5 ka (Fig. 37).

Sediments deposited on the continental slope west of Svalbard between 27 ka and 22.5

ka are characterized by high contents of organic carbon and abundant rock fragments with

lithologies typical for the northern and eastern Barents Sea (Elverhøi et al., 1995; Andersen

et al., 1996). The high organic carbon contents are thought to reflect increased erosion of

Jurassic shales on Spitsbergenbanken south of Svalbard (Elverhøi et al., 1995). Accordingly,

sediments in core PS2837-5 deposited between 27 ka and 22.5 ka can be expected to contain

no IRD derived from western Spitsbergen, but abundant material derived from the north-
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Figure 37 : Downcore variation of abundance of particles > 63 µm and > 1000 µm, and (Nd val-

ues in core PS2837-5 between 34 ka and 9 ka. Open circles in the > 63 µm and > 1000

µm abundance curves mark dropstones. Horizontal black bars in the uppermost panel

mark layers where high sand contents result from abundant planktic foraminifers

(Nørgaard-Pedersen et al., 2003). Abundance data are from Hass (2000) for the frac-

tion > 63 µm, and from Hass (unpubl. data) for the fraction > 1000 µm. MIS 1, 2, and 3

are Marine Isotope Stages after Martinson et al. (1987).

ern and eastern Barents Sea. The (Nd value of -9.5 for sand sample 408 (24.5 ka) therefore

supports the assumption that the Barents Sea shelf is the major source of sediments with

radiogenic Nd isotopic compositions in core PS2837-5.

Synchronous with the advance of the ice sheet to the shelf break west of Svalbard at 22.5

ka, sedimentary records from the lower continental slope west of Svalbard reveal a major

shift in sediment provenance (Elverhøi et al., 1995); a reduction of organic carbon contents

(reduced erosion of Mesozoic rocks on Svalbard) was accompanied by a strong increase in
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the abundance of crystalline IRD. Due to the limited exposure of crystalline rocks along the

west coast of Spitsbergen, Elverhøi et al. (1995) assume that the crystalline IRD was mainly

derived from Fennoscandia. Iceberg drift from far south is also indicated by the occurrence

of chalk fragments (Elverhøi et al., 1995) diagnostic of North Sea tills and southern North

Sea bedrock (Spielhagen, 1991). A chalk fragment containing Cretaceous coccoliths (E.

Martini, personal communication) was also found in the fraction > 63 µm of sample 390

(20.4 ka) from core PS2837-5, proving iceberg drift from the North Sea as far north as the

western Yermak Plateau. (Nd values of -13.5 and -14.4 were determined for the fractions

> 63 µm and < 63 µm of sample 390, respectively. Compared to Nd isotopic compositions

of mid-Norway shelf sediments ((Nd -14.8 and -15.1; Farmer and Barber, 2003), the (Nd

values of fine and coarse fractions of sample 390 are consistent with a strong input from

the Fennoscandian Ice Sheet. The moderate offsets towards more radiogenic values prob-

ably reflect continued, but reduced, sediment delivery from the Svalbard/Barents Sea area

(Elverhøi et al., 1995).

.. E  ( –. )

A first sign of disintegration of the Late Weichselian SBIS is found in a sudden increase

of IRD in cores from the northern Barents Sea margin at ca 18.5 ka (Knies et al., 2001).

Shortly afterwards, a beginning disintegration of the ice sheet in the southern Barents Sea

is recorded in cores from the continental margin west of Svalbard (Elverhøi et al., 1995;

Andersen et al., 1996). Triggered by a small rise in sea level that led to a destabilization

of the shelf-based parts of the ice sheet, the initial phase of deglaciation was characterized

by melting of icebergs (drifting with inflowing temperate Atlantic water) rather than direct

meltwater run-off (Elverhøi et al., 1995). Accordingly, the prominent peak of IRD > 1000

µm at 18 ka in core PS2837-5 (Fig. 37) is interpreted to reflect increased iceberg rafting

from the disintegrating, shelf-based parts of the SBIS.

A possible explanation for the significant reduction in abundance of IRD > 1000 µm at

17 ka (Fig. 37) is given by Knies et al. (2001). They suggest that great numbers of icebergs

released from the fast-decaying ice sheet caused a cooling of surface waters, which slowed

down the release of IRD from melting icebergs. During the same period, rare or absent

‘Atlantic species’ of benthic foraminifers in core PS2837-5 indicate diminished inflow of

temperate Atlantic water (Wollenburg et al., 2004).

While contents of coarse IRD (> 1000 µm) in core PS2837-5 are low between 17 ka

and 14.7 ka, contents of particles > 63 µm are elevated (Fig. 37). As abundances of planktic

foraminifers are low during this interval (Nørgaard-Pedersen et al., 2003), the elevated sand

contents most likely reflect enhanced sea ice rafting. The cooling of the surface waters

mentioned above would have greatly facilitated the formation of sea ice.
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.. G I  (. –. )

A sudden rise of high-latitude atmospheric temperatures at 14.7 ka, recorded in oxygen

isotope records from Greenland ice cores (Grootes et al., 1993), marks the beginning of

the Greenland Interstadial 1 (GI-1, following the stratigraphic scheme proposed by Björck

et al., 1998). This happened during a period of rapidly increasing high-northern latitude

summer insolation (Laskar, 1990) and significant warming of surface temperatures in mid-

dle and northern Europe (Renssen and Isarin, 2001). The rising temperatures accelerated

the decay of the SBIS, which led to the release of meltwater plumes carrying large amounts

of fine-grained sediments (Elverhøi et al., 1995; Andersen et al., 1996). The strong dis-

charge of meltwater from decaying high-latitude ice sheets may also have destabilized ther-

mohaline circulation, which is a probable cause for a collapse of bottom currents at the

western Yermak Plateau (Birgel and Hass, 2004). This collapse led to the deposition of large

amounts of fine-grained sediments at the location of core PS2837-5 between 14.65 ka and

14.25 ka (Fig. 38). Iceberg rafting, however, continued during this episode, as indicated by

the finding of a dropstone (Fig. 38). This iceberg rafting most probably is related to a short

glacial readvance onto the shelf west of Svalbard that culminated around 14.4 ka (Elver-

høi et al., 1995). On the lower continental slope west of Svalbard, sediments deposited

during the early part of this glacial readvance contain both crystalline IRD and clastic-

sedimentary IRD derived from the Svalbard/Barents Sea area (Elverhøi et al., 1995; Ander-

sen et al., 1996). During the later part of the glacial readvance, only clastic sedimentary IRD

is recorded. The crystalline IRD most likely was derived from the pre-Old Red basement

exposed along the west coast of Spitsbergen. A Scandinavian provenance, however, cannot

be excluded, as an approximately simultaneous readvance of the Fennoscandian Ice Sheet

has been reported by Mangerud et al. (1979) and Vorren et al. (1988).

Nd isotopes indicate that the same sequence of events is recorded in core PS2837-

5 (Fig. 38). (Nd values of -13.2 and -10.7 for the sand fractions of samples 334-336

and 305, respectively, prove an abrupt shift of IRD provenance from a mixed Svalbard-

(Scandinavia)-Barents Sea source to a probably ‘pure’ Barents Sea source between 14.45 ka

and 14.2 ka (Fig. 38). A similar shift of provenance is not found for the fractions < 63 µm

of the samples 337 and 305, which have (Nd values of -10.4 and -11.1, respectively. These

values are in good agreement with (Nd values of -10.1 and -11.4 for sediment samples from

the Barents Sea slope in front of the Bear Island Trough (Farmer and Barber, 2003), which is

a likely outlet for the above mentioned sediment-laden meltwater plumes from the Barents

Sea.

Around 12.8 ka, a small peak of IRD > 63 µm (but not of IRD > 1000 µm) in core

PS2837-5 marks the upper boundary of a thin layer devoid of foraminifers (R.F. Spielha-

gen, personal communication). Spielhagen et al. (2004) interpret similar, foraminifer free
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Figure 38 : Downcore variation of abundance of particles > 63 µm and > 1000 µm, and (Nd values

in core PS2837-5 between 15 ka and 13 ka. Abundance data are from Hass (2000) for

the fraction > 63 µm, and from Hass (unpubl. data) for the fraction > 1000 µm. Strati-

graphic division after Björck et al. (1998): GI-1 is the warm Greenland Interstadial 1

(episodes b and d are relatively colder than episodes c and e). GS-2 is the cold Green-

land Stadial 2 (GS-2a is a particularly cold episode).

layers in cores PS1535 and PS1533 to be the result of either carbonate dissolution at the

sea floor, or a decrease of surface salinity below the tolerance limit of planktic foraminifers.

In the case of core PS2837-5, the low salinity (i.e. meltwater) scenario is the more likely

explanation, supported by a fast 1 ‰ rise of δ18O values above the foraminifer free layer

(Nørgaard-Pedersen et al., 2003). The elevated sand contents are therefore likely to reflect

a period of enhanced sea ice formation and -rafting.

.. H (. –)

A small, but distinct IRD peak (both > 63 µm and > 1000 µm; Fig. 37) at 10.5 ka is the last

evidence of enhanced iceberg drift at the western Yermak Plateau, most probably reflecting

the rapid disintegration of the remaining SBIS. The age of this last iceberg rafting event

coincides with the peak of post-glacial meltwater pulse 1b (MWP 1b), during which global

sea level rose by about 28 meters (Fairbanks, 1989). Although several central Arctic Ocean

records show a MWP 1b signal (with evidence of ice sheet melting in northern Canada

and/or northern Greenland, Nørgaard-Pedersen et al., 1998), Greenland ice core records
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(Grootes et al., 1993) show no indication of an interruption of the steady trend towards

higher atmospheric temperatures. Similarly, the δ18O record of core PS2837-5 (Nørgaard-

Pedersen et al., 2003) shows no disturbance around 10.5 ka. It can therefore be assumed

that MWP 1b was not connected to a strong input of meltwater to the areas of deep-water

formation in the Nordic Seas. Accordingly, the raised iceberg abundance at the western

Yermak Plateau probably was triggered by the rising sea level. The nature of the ice sheet(s)

supplying the enormous amounts of meltwater during MWP 1a and 1b is the subject of an

ongoing debate. Weaver et al. (2003) proposed an Antarctic source for MWP 1a (coeval

with GI-1), which might also be an explanation for the lack of a meltwater signal in the

Nordic Seas during MWP 1b.

A minor peak in the > 63 µm curve at 8.2 ka (Fig. 35) indicates a short period of in-

creased sea ice rafting. It correlates with a prominent, widespread cooling event (Alley et al.,

1997) that has been linked to a meltwater-induced weakening of thermohaline circulation

(Renssen et al., 2001). Small excursions to lighter values in the δ18O and δ13C records

of core PS2837-5 (Nørgaard-Pedersen et al., 2003), indicative of reduced salinity, support

this assumption. After the 8.2 ka event, sand contents remain on a low level during the

Holocene. Slightly elevated sand contents in the uppermost centimeters of the core may be

related to the Little Ice Age (15th–19th century AD; Matthes, 1939; Grove, 1988).

The Holocene Nd isotope record of fractions < 63 µm from core PS2837-5 is character-

ized by a trend towards more radiogenic (Nd values from -12.9 for sample 213 (9.7 ka) to

-11.9 for sample 55 (2 ka). This trend is even more pronounced for the fractions > 63 µm,

whose (Nd values change from -13.6 for sand sample 213 to -11.1 for the core-top sam-

ple (Fig. 35). Despite the higher analytical uncertainty, the trend for the > 63 µm fractions

resembles that for the < 63 µm fractions, and is therefore assumed to be at least qualita-

tively correct. The same trend towards more radiogenic values is also recorded in the < 63

µm fractions of samples from core PS1533 (Fig. 36). According to Tütken et al. (2002),

this trend reflects increasing proportions (up to 75 %) of Eurasian shelf material from the

Kara/Laptev Sea area, transported as IRD via the Trans Polar Drift. This implies that 75 %

of modern sedimentation at the location of core PS1533 is related to ice rafting. While this

may be a possible explanation for core PS1533 (with Holocene linear sedimentation rates

on the order of 2 cm·ka-1, Nørgaard-Pedersen et al., 2003), it is difficult to reconcile with

the sedimentary record of core PS2837-5, which has Holocene sedimentation rates around

20 cm·ka-1. A more plausible explanation for core PS2837-5 is that the Nd isotopic trend is

related to a change in Atlantic water advection into the Nordic Seas, which is known to have

been higher than today during the early Holocene (Polyak and Mikhailov, 1996). The weak-

ening of Atlantic inflow might have strengthened the relative contribution from Barents Sea

outflow (East Spitsbergen Current and Bear Island Current), leading to increasingly radio-

genic (Nd values for the current transported component of the WSC. An interpretation of
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the same trend observed for the > 63 µm fractions is less straightforward. Since icebergs

can be excluded as important IRD carriers during the Holocene, a gradual shift in sea ice

rafted IRD provenance is necessary to explain the gradual shift in IRD Nd isotopic compo-

sition. Although speculative, a strengthening of the East Spitsbergen Current might have

increased the proportion of eastern Svalbard/north-western Barents Sea derived IRD (‘ra-

diogenic’ Mesozoic rocks) relative to western Svalbard derived IRD (‘unradiogenic’ pre-Old

Red basement).

. S  REE  HH- 

The sequential leaching experiment with aliquots of sample 712 revealed, next to the detri-

tal and seawater REE pools, a third pool of REE. The aim of this Chapter is to show that this

is not a unique feature of this sample, but may indeed be a general feature of terrigenous

sediments. The implication is that HH leaching, aiming at the isolation of a pure seawa-

ter signal from terrigenous sediments, is subject to previously unrecognized restrictions;

particularly so if the ‘weak leach’ approach is used. The rationale behind the ‘weak leach’

approach is that a HH solution with a low concentration of hydroxylamine hydrochlo-

ride is unlikely to attack detrital minerals, but will release sufficient Nd from authigenic

ferromanganese phases for mass spectrometric analysis. The general correctness of this

assumption has been confirmed by dynamic-leaching experiments performed by Dubinin

and Strekopytov (2001).

Aubert et al. (2001) studied the fractionation and migration of REE during weather-

ing of granitic bedrock in the catchment area of a small river in the french Vosges moun-

tains. They found that the suspended load of the river corresponds to the finest fraction of

the soil in the catchment area, but that its shale-normalized REE pattern shows a distinct

MREE enrichment more similar to apatite from the unweathered bedrock. Leaching of the

suspended load with 1 mol·l-1 HCl at room temperature for 15 minutes produced REE pat-

terns even closer to apatite. The authors explain the REE pattern of the suspended load

with adsorption and/or coprecipitation of REE derived from the dissolution of phosphatic

minerals such as apatite and/or monazite.

Hannigan and Sholkovitz (2001) produced similar MREE enriched patterns by leaching

river-bank sediments (with flat shale-normalized REE patterns) with filtered lake water at

solid to liquid ratios of 1 g : 50 ml. The leaching was performed at the water’s natural pH

5, and also with the same water adjusted to pH 2. While REE were continuously released

during 48 hours at both acidities, the amount of REE released at pH 2 was three to four

orders of magnitude higher than at pH 5. They also explained the MREE enrichment with

the dissolution of phosphatic minerals.
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Alibo and Nozaki (1999) presented data for REE released from acidified (pH < 1.5)

samples of filtered (0.04 µm) and unfiltered seawater from different depths of a surface-to-

bottom profile close to Boso Peninsula, Japan. From the difference between filtered and

unfiltered water from the same depth they calculated the REE contents of the ‘acid-soluble

particulate’ (ASP) fraction. They assume that the ASP fraction contains REE adsorbed

to particles and bound in biogenic carbonate, but may exclude REE in detrital minerals.

The ASP fractions from intermediate depths have flat shale-normalized REE patterns. In

contrast, the two deepest samples, from within 80 meters of the sea floor, have higher overall

REE abundances, and MREE enriched patterns more similar to underlying sediments.

If these findings reflect general phenomena, then terrigenous marine sediments can be

expected to contain a pool of REE that (1) will be released by acidic solutions, (2) is enriched

in MREE relative to the bulk sediment, (3) is not derived from seawater, but originally was

hosted in phosphatic minerals in the same source rocks as the bulk of the detrital minerals,

and (4) has a Nd isotopic composition more radiogenic than the bulk sediment (same initial
143Nd/144Nd ratio, but higher Sm/Nd ratio).

Note that these points match the characteristics of EM C from the sequential leaching

experiment (acetic acid-soluble, Sm/Nd ratio higher than the bulk sample, Sm/Nd and (Nd

distinctly different from the seawater EM B, see Fig. 28). MREE enriched REE patterns are

also found in all HH leachates from core PS2837-5 analyzed by ICP-MS (see Fig. 25). In

two aspects, these leachates from core PS2837-5 are similar to Fe-Mn micronodules from

the central Arctic Ocean presented in Winter et al. (1997): their REE contents are low com-

pared to typical Fe-Mn nodules, and they have similar Sm/Nd ratios (0.2110-0.2468 for

PS2837-5, 0.2069-0.2544 for the central Arctic micronodules). In other aspects, however,

they are distinctly different from the central Arctic Ocean Fe-Mn micronodules, which,

except for their low REE contents, have characteristics typical of other hydrogenous and di-

agenetic marine Fe-Mn oxides (Winter et al., 1997). They have shale-normalized GdN/YbN

ratios between 1.12 and 1.77 (between 2.15 and 2.89 for PS2837-5), and strong positive Ce

anomalies with CeN/NdN ratios (no La and Pr data given) between 1.33 and 2.76 (between

0.82 and 0.92 for core PS2837-5). The Nd isotopic compositions of HH leachates from core

PS2837-5 (more radiogenic than bulk sediment, close downcore covariation with detrital

fractions, see Fig. 26) are consistent with the hypothesis that the leachates represent a pool

of REE that has the same source as the bulk of the detrital minerals, but a higher Sm/Nd

ratio (hosted, for instance, in apatite).

The aim of the following paragraphs is to reveal a systematic relationship between these

findings and particular experimental protocols for HH leaching. Applied to the sequential

leaching experiment, the results from Alibo and Nozaki (1999), Hannigan and Sholkovitz

(2001), and Aubert et al. (2001) provide a reasonable explanation for the observed sequence

of events.
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According to the proposed model, the untreated bulk sample contains three distinct

pools of REE: (1) REE fixed in the crystal lattices of non-phosphatic minerals of the terrige-

nous fraction (EM A, only homogeneous when treated as an entity), (2) REE contained in

authigenic Fe-Mn and phosphatic phases (EM B), and (3) REE fixed in the crystal lattices

of terrigenous phosphatic minerals and/or REE adsorbed to particle surfaces, but derived

from the same terrigenous phosphatic minerals (EM C).

A first 18 h leaching of an aliquot of the untreated bulk sample with 1.7 mol·l-1 acetic

acid (pH ~2.5) yielded a mix of acid-soluble EM C and particulate EM A (due to insufficient

separation of the supernatant from the solid residue). A second 18 h leaching of the same

sample aliquot with 1.7 mol·l-1 acetic acid yielded a mix of acid-soluble EM C and acid-

soluble EM B. This second acetic acid leaching was sufficient to remove all of EM C, so

that the first 2 h leaching with 0.2 mol·l-1 HH (pH ~2.5) yielded almost pure EM B (acid-

soluble and/or released by reduction of Fe-Mn phases) with a small contribution of EM A

(again, probably due to insufficient separation of the supernatant from the solid residue).

In contrast, a single 18 h leaching of a different aliquot with buffered 0.87 mol·l-1 acetic acid

(pH ~5) apparently removed EM C only partly, so that the first 2 h leaching with 0.2 mol·l-1

HH yielded a mix of EM C and EM B. This first HH leaching then removed all acid-soluble

EM C remaining after the acetic acid leaching, so that a second HH leaching, lasting for 5:45

h, yielded pure EM B. A third HH leaching of the same aliquot, lasting for 20 h, yielded a

mix of EM B and a significant proportion of EM A. This suggests that prolonged leaching

with HH does eventually attack the crystal lattices of detrital minerals, which is supported

by the position of the solid residue of this aliquot beyond EM A (see Fig. 28).

Evidently, acidity is a key factor. A HH leaching will extract a pure EM B/seawater signal

only if EM C is not present, i.e. has been removed by suitable pretreatment. Otherwise the

leachate will always be a mix of EM B and acid-soluble EM C. The important point is that

the ability of a HH solution to release adsorbed trace elements and to dissolve particulate

phosphatic phases does not depend on the reducing power of the solution, i.e. the hydrox-

ylamine hydrochloride concentration, but its acidity, which will not change significantly

with the concentration of hydroxylamine hydrochloride. This, however, appears to have so

far been ignored, as all applications of HH leaching found in the literature use acetic acid

concentrations of 4.4 mol·l-1, as originally proposed by Chester and Hughes (1967). This

particularly affects the ‘weak leach’ approach; a ‘weak’ HH solution (with a low concentra-

tion of hydroxylamine hydrochloride) will release less trace elements from ferromanganese

phases than a ‘strong’ HH solution, but both solutions will release the same amount of

trace elements from particle surfaces or particulate phosphatic phases. The ‘weak leach’

approach appears to actually be counterproductive.

This has implications for published data based on HH leaching. Rutberg et al. (2000)

and Piotrowski et al. (2004) presented a reconstruction of North Atlantic Deep Water ex-
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port variability during the last glacial–interglacial cycle based on Nd isotopic compositions

of authigenic Fe-Mn phases. The Fe-Mn phases were obtained by HH leaching of sediment

samples from core RC11-83 from the southern Cape Basin in the southeast Atlantic, and

are assumed to reflect the Nd isotopic composition of seawater. Both studies followed the

‘weak leach’ approach, using 0.45 mol·l-1 acetic acid buffered to pH 5 and HH with 0.02

mol·l-1 hydroxylamine hydrochloride in 4.4 mol·l-1 acetic acid.

To test whether or not their HH leachates reflect seawater isotopic composition, Rut-

berg et al. (2000) applied two tests. They measured the 87Sr/86Sr ratios of the leachates,

and found them to be identical to the present-day global seawater 87Sr/86Sr ratio of ~0.709.

This, however, is a proof of seawater origin for only the Sr in the leachate, and doesn’t nec-

essarily apply to other elements (as acknowledged by the authors). The second test utilized

a correlation of Nd isotope ratios with dissolved SiO2 content in deep Atlantic seawater.

Rutberg et al. (2000) showed that their youngest Fe-Mn leachate from core RC11-83, when
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Figure 39 : Downcore variation of (Nd values in HH leachates and 87Sr/86Sr ratios in HH leachates

and solid leaching residues in sediment core RC11-83 from the southern Cape Basin

in the southeast Atlantic. Note that the leachates have a uniform Sr isotopic composi-

tion identical to seawater (87Sr/86Sr = 0.709), but that the (Nd values of the leachates

are inversely correlated with 87Sr/86Sr ratios of the solid leaching residues, indicating a

close genetic relationship. R2 for data pairs from identical depth is 0.8. Leachate data

from Rutberg et al. (2000) and Piotrowski et al. (2004), solid residue data from Rutberg

(2000).
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plotted against the geographically nearest dissolved SiO2 value from the literature, falls on

the present-day Atlantic seawater dissolved SiO2– (Nd trend. They took this as evidence for

a seawater origin of the Nd in the leachates. The dissolved SiO2–(Nd correlation, however,

is not very well defined. Instead, it is a linearly elongated scatter of data points, approxi-

mately 2 (Nd high for any given dissolved silica value, and approximately 30 µmol·kg-1 SiO2

wide for any given (Nd value (see Fig. 2a in Rutberg et al., 2000). This may not be precise

enough to unambiguously prove a seawater origin for the Nd in the leachates.

In fact, there is evidence that the same systematic relationship between the Nd isotopic

compositions of HH leachates and detrital fractions found for core PS2837-5 also exists in

core RC11-83. (Nd values for detrital fractions from core RC11-83 are not reported, but

Rutberg (2000) presented 87Sr/86Sr ratios. Upper crustal rocks exposed to weathering typ-

ically have high Rb/Sr ratios but low Sm/Nd ratios, resulting in an inverse correlation of
87Sr/86Sr ratios with (Nd values. Such an inverse correlation is, for instance, well docu-

mented for detrital fractions from core PS1533 from the north-eastern Yermak Plateau (see

Fig. 3 in Tütken et al., 2002). Fig. 39 reveals an inverse correlation of HH leachate (Nd with

the 87Sr/86Sr ratios of the leaching residues in core RC11-83. It is therefore possible, if not

likely, that the Nd isotopic compositions of the HH leachates from this core do not reflect

seawater.

A different approach was used by Bayon et al. (2002), who presented results of HH

leaching of sediment samples from core MD96-2086 from the northern Cape Basin. They

used 1.7 mol·l-1 unbuffered acetic acid and HH with 1 mol·l-1 hydroxylamine hydrochlo-

ride in 4.4 mol·l-1 acetic acid at 90 °C. For their study, they analyzed the Nd isotopic com-

positions of the HH leachates, and both Nd and Sr isotopic compositions of the leaching

residues (Fig. 40). In contrast to core RC11-83 (Fig. 39), the (Nd values of the leachates and

the 87Sr/86Sr ratios of the residues are not correlated (R2 = 0.17). However, (Nd values and
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Figure 40 : Downcore variation of (Nd values and 87Sr/86Sr ratios in HH leachates and leaching

residues in sediment core MD96-2086 (northern Cape Basin, southeast Atlantic). Data

from Bayon et al. (2002).
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87Sr/86Sr ratios of the residues do not show the expected inverse correlation (R2 = 0.16).

Instead, (Nd values of HH leachates and leaching residues show an excellent correlation

(R2 = 0.98), but not the near constant offset found for core PS2837-5.

To conclude, there is reason to believe that sediment leaching with HH does not yet

provide a straightforward, easy-to-use method to extract a pure seawater signal. The reason

is that the distribution of REE between different components of marine sediments is not yet

understood well enough. The leaching procedure suited to produce meaningful results may

differ from case to case, and may have to be established through extensive testing for each

case individually.
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 C

The results of this study further unravel the Late Quaternary history of oceanographic con-

ditions at the Yermak Plateau located in the Arctic Ocean-Atlantic gateway. The principal

goal of this work was to reconstruct the provenance of sediments deposited on the west-

ern Yermak Plateau during the last 129 000 years covered by the studied sediment core

PS2837-5. Samples from the core and from potential source areas were split into the grain-

size fractions clay, fine silt, coarse silt, and sand, and analyzed for their Sm and Nd isotopic

compositions. The rationale for analyzing distinct grain-size fractions was to monitor pos-

sible grain-size dependent differences in isotopic compositions. Such differences may arise

from a combination of different sediment transport mechanisms and source areas.

The Sm–Nd isotope data suggest that, contrary to the general consensus, ice rafted de-

tritus (IRD) deposited at the western Yermak Plateau under modern interglacial conditions

was not derived from the shelf areas of the Kara- and Laptev Seas off the Siberian coast.

Instead, the Nd isotopes indicate that the IRD and the suspended load of the WSC are of

similar origin, and probably were derived from the Svalbard/Barents Sea area.

Regarding the Late Quaternary history of sedimentation at the western Yermak Plateau,

it appears that the general modern pattern of oceanic circulation has existed for most of the

last 129 000 years. Only during the Last Glacial Maximum, approximately 20 ka ago, there

is a significant change in sediment provenance, as shown by the Sm–Nd isotope data. This

change, however, was not caused by a reorganization of oceanic circulation. Instead, sedi-

mentation at the core location was dominated by material derived from Scandinavia, which

is located further upstream the WSC and its southern precursor, the Norwegian Atlantic

Current. In at least one case, sediment was delivered from as far south as the North Sea.

A second avenue of investigation dealt with the implementation and application of a

relatively novel approach for the reconstruction of seawater Nd isotopic composition with

high temporal resolution. This approach utilizes authigenic Fe-Mn oxyhydroxides that are

finely dispersed throughout the sediment column, mainly as coatings on foraminifers and

detrital particles, and whose Nd isotopic composition is thought to faithfully record the

isotopic composition of seawater. The Fe-Mn oxyhydroxides are extracted by leaching with

a mixed acidic-reducing reagent of hydroxylamine-hydrochloride in acetic acid.

Using methods described in recently published studies, several samples from core PS2837-

5 were processed and analyzed for their REE distributions and Nd isotopic compositions.

Both REE and Nd isotope data indicate that the trace element contents of the leachates are

at least partly derived from detrital phases, and thus do not yield a seawater signal: the
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REE patterns of the leachates are enriched in the middle REE, which is atypical for Fe-

Mn oxyhydroxides, and their Nd isotopic compositions show a close downcore covariation

with the detrital fractions. This observation was further investigated by means of a sequen-

tial leaching experiment. Several aliquots of the same core sample were leached for vari-

able durations with different concentrations of the leaching reagent. At intermediate steps

throughout the process, leachates and solid residues were analyzed for their Sm–Nd isotopic

compositions. The experiment revealed an insoluble, ‘pure’ detrital component, and two

pools of REE that were released by leaching with the mixed acidic-reducing reagent. One

of these presumably is the authigenic, seawater-derived component. The other pool of REE

most likely was hosted in easily soluble phosphatic phases of detrital origin. Phosphatic

phases, such as apatite, can account for the enrichment of the middle REE enrichment,

and a detrital origin would explain the observed systematic relationship between the Nd

isotopic compositions of leachates and detrital fractions. It can be concluded that the avail-

able techniques are not yet refined enough to reliably use the Nd isotopic composition of

finely dispersed Fe-Mn oxyhydroxides as a proxy for paleoseawater composition.

The dominant problem appears to be associated with the acetic acid component of

the leaching solution. This component was originally introduced by Chester and Hughes

(1967) to increase the recovery of Fe and Mn towards a complete removal of all Fe-Mn

phases from the sample. As a quantitative recovery is not necessary for Nd isotope analysis,

simply dispensing with the acetic acid may be sufficient to obtain meaningful paleoseawater

Nd isotopic compositions.
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Table 10 : Sm and Nd abundances and isotopic compositions of size fractions of samples from sediment core PS2837-5.

Sample Age MIS Size fraction wt % Sm Nd Sm/Nd 147Sm/144Nd 143Nd/144Nd †
(Nd TDM

(a) (µm) (µg·g-1) (µg·g-1) (Ga)

PS2837-6, 1 sa 555 20 1 5563-250 2.80 14.8 0.1892 0.1143 0.512 070 ± 12 -11.1 1.66

55 c 5 2000 1 55< 2 50.5 7.11 37.9 0.1876 0.1133 0.512 032 ± 10 -11.8 1.70

55 c re. 55 6.93 36.9 0.1878 0.1136 0.512 022 ± 10 -12.0 1.72

55 fs 552-10 19.8 6.61 34.3 0.1927 0.1163 0.512 055 ± 10 -11.4 1.71

55 cs 5510-63 29.1 5.00 25.5 0.1961 0.1188 0.512 002 ± 10 -12.4 1.84

55 sa 5563-250 50.5 1.65 559.69 0.1703 0.1032 0.512 060 ± 11 -11.3 1.50

133 c 5 6660 1 55< 2 50.4 6.87 37.0 0.1857 0.1122 0.512 022 ± 10 -12.0 1.69

133 fs 552-10 24.0 6.83 35.7 0.1913 0.1155 0.512 012 ± 12 -12.2 1.77

133 cs 5510-63 25.0 5.25 27.2 0.1930 0.1168 0.511 998 ± 10 -12.5 1.81

133 sa 5563-250 50.4 1.92 11.0 0.1745 0.1058 0.511 975 ± 11 -12.9 1.66

213 c 5 9670 1 55< 2 46.2 7.23 39.3 0.1840 0.1112 0.511 980 ± 10 -12.8 1.74

213 fs 552-10 19.7 7.00 36.6 0.1913 0.1155 0.512 009 ± 11 -12.3 1.77

213 cs 5510-63 33.1 5.20 26.9 0.1933 0.1169 0.511 948 ± 10 -13.5 1.89

213 sa 5563-250 50.6 2.21 12.5 0.1768 0.1068 0.511 940 ± 11 -13.6 1.72

305 c 14 180 2 55< 2 32.3 7.36 39.0 0.1887 0.1141 0.512 077 ± 13 -10.9 1.64

305 fs 552-10 16.0 7.04 37.0 0.1903 0.1150 0.512 069 ± 12 -11.1 1.67

305 cs 5510-63 32.2 5.23 27.5 0.1902 0.1148 0.512 053 ± 12 -11.4 1.69

305 sa 5563-250 18.7 3.38 17.9 0.1888 0.1143 0.512 090 ± 13 -10.7 1.63

Continued on next page. . .
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Table 10 : . . . continued

Sample Age MIS Size fraction wt % Sm Nd Sm/Nd 147Sm/144Nd 143Nd/144Nd †
(Nd TDM

(a) (µm) (µg·g-1) (µg·g-1) (Ga)

334-336 sa 14 450 2 5563-250 � 0.15 2.31 12.2 0.1893 0.1145 0.511 960 ± 12 -13.2 1.83

337 c 14 470 2 55< 2 55.6 6.91 36.8 0.1878 0.1136 0.512 100 ± 09 -10.5 1.60

337 fs 552-10 25.5 7.23 37.0 0.1954 0.1182 0.512 116 ± 11 -10.2 1.65

337 cs 5510-63 18.9 5.37 26.6 0.2019 0.1219 0.512 114 ± 10 -10.2 1.72

390 c 20 390 2 55< 2 48.0 7.82 42.8 0.1827 0.1106 0.511 887 ± 10 -14.6 1.87

390 c re. 55 7.99 43.7 0.1828 0.1104 0.511 893 ± 11 -14.5 1.85

390 fs 552-10 15.0 6.78 35.5 0.1910 0.1156 0.511 925 ± 10 -13.9 1.90

390 cs 5510-63 15.3 4.85 24.2 0.2004 0.1209 0.511 921 ± 10 -14.0 2.02

390 sa 5563-250 17.8 1.39 557.31 0.1902 0.1154 0.511 946 ± 18 -13.5 1.86

408 sa 24 480 3 5563-250 17.2 2.78 14.2 0.1958 0.1178 0.512 150 ± 13 -9.5 1.59

447 c 33 340 3 55< 2 54.9 7.34 38.3 0.1916 0.1159 0.512 050 ± 12 -11.5 1.71

447 fs 552-10 20.8 6.33 33.4 0.1895 0.1148 0.512 050 ± 14 -11.5 1.69

447 cs 5510-63 22.6 4.97 25.7 0.1934 0.1170 0.512 050 ± 11 -11.5 1.73

447 sa 5563-250 51.4 1.58 558.59 0.1839 0.1111 0.512 101 ± 10 -10.5 1.56

487 c 42 430 3 55< 2 43.9 8.45 43.3 0.1952 0.1180 0.512 046 ± 12 -11.5 1.76

487 fs 552-10 19.4 6.91 36.3 0.1904 0.1153 0.512 063 ± 10 -11.2 1.68

487 cs 5510-63 33.2 5.00 25.5 0.1961 0.1185 0.512 012 ± 10 -12.2 1.82

487 sa 5563-250 53.4 2.54 13.5 0.1881 0.1136 0.512 098 ± 13 -10.5 1.60

487 sa re. 55 0.512 061 ± 11 -11.3

Continued on next page. . .
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Table 10 : . . . continued

Sample Age MIS Size fraction wt % Sm Nd Sm/Nd 147Sm/144Nd 143Nd/144Nd †
(Nd TDM

(a) (µm) (µg·g-1) (µg·g-1) (Ga)

557 sa 58 330 3 5563-250 50.1 2.84 15.5 0.1832 0.1108 0.511 991 ± 13 -12.6 1.72

558 c 58 560 3 55< 2 49.9 7.39 39.5 0.1871 0.1132 0.512 034 ± 13 -11.8 1.69

558 fs 552-10 23.2 7.12 37.1 0.1919 0.1161 0.512 054 ± 11 -11.4 1.71

558 cs 5510-63 26.8 5.07 26.1 0.1943 0.1173 0.512 042 ± 10 -11.6 1.75

601 sa 68 330 4 5563-250 59.0 2.27 12.1 0.1876 0.1140 0.512 051 ± 13 -11.5 1.68

623 c 73 330 4 55< 2 44.8 7.32 39.9 0.1835 0.1109 0.511 961 ± 10 -13.2 1.76

623 fs 552-10 16.6 6.44 33.7 0.1911 0.1156 0.511 981 ± 09 -12.8 1.81

623 cs 5510-63 33.8 4.94 24.8 0.1992 0.1203 0.512 002 ± 11 -12.4 1.87

623 sa 5563-250 54.5 2.13 11.2 0.1902 0.1148 0.512 103 ± 10 -10.4 1.61

623 sa re. 55 1.54 558.87 0.1736 0.1049 0.511 909 ± 11 -14.2 1.74

668 c 83 560 5 55< 2 49.6 7.20 39.4 0.1827 0.1104 0.511 998 ± 10 -12.5 1.70

668 fs 552-10 22.5 7.10 37.1 0.1914 0.1155 0.511 986 ± 10 -12.7 1.81

668 cs 5510-63 27.5 5.39 27.3 0.1974 0.1193 0.511 946 ± 10 -13.5 1.94

668 cs re. 55 5.65 28.7 0.1969 0.1189 0.511 980 ± 11 -12.8 1.88

668 sa 5563-250 50.4 1.65 559.83 0.1679 0.1015 0.512 007 ± 10 -12.3 1.55

712 c 93 550 5 55< 2 46.0 7.13 39.0 0.1828 0.1106 0.511 979 ± 10 -12.9 1.73

712 fs 552-10 23.6 7.02 37.0 0.1897 0.1148 0.511 980 ± 10 -12.8 1.80

712 cs 5510-63 28.3 5.68 29.4 0.1932 0.1170 0.511 983 ± 09 -12.8 1.84

712 sa 5563-250 51.3 2.70 16.0 0.1688 0.1022 0.511 977 ± 11 -12.9 1.60

Continued on next page. . .
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Table 10 : . . . continued

Sample Age MIS Size fraction wt % Sm Nd Sm/Nd 147Sm/144Nd 143Nd/144Nd †
(Nd TDM

(a) (µm) (µg·g-1) (µg·g-1) (Ga)

789 c 111 050 5 55< 2 40.6 7.74 41.7 0.1856 0.1121 0.512 008 ± 09 -12.3 1.71

789 fs 552-10 15.1 7.06 36.9 0.1913 0.1156 0.512 001 ± 08 -12.4 1.78

789 cs 5510-63 37.6 5.05 25.9 0.1950 0.1179 0.511 971 ± 09 -13.0 1.87

789 sa 5563-250 55.1 2.72 14.9 0.1826 0.1107 0.511 976 ± 12 -12.9 1.74

846 c 124 000 5 55< 2 33.4 7.66 41.5 0.1846 0.1116 0.512 005 ± 10 -12.3 1.71

846 fs 552-10 14.4 6.56 34.2 0.1918 0.1158 0.512 028 ± 13 -11.9 1.75

846 cs 5510-63 49.2 5.04 25.6 0.1969 0.1191 0.511 994 ± 12 -12.6 1.86

846 sa 5563-250 51.9 3.65 20.1 0.1807 0.1090 0.511 980 ± 10 -12.8 1.70

868 c 129 000 5 55< 2 44.0 7.35 40.2 0.1828 0.1107 0.512 035 ± 10 -11.8 1.65

868 fs 552-10 19.0 6.75 34.8 0.1940 0.1172 0.512 046 ± 10 -11.5 1.74

868 cs 5510-63 35.3 5.21 26.1 0.1996 0.1204 0.512 027 ± 12 -11.9 1.83

868 sa 5563-250 51.5 2.44 13.9 0.1755 0.1058 0.511 995 ± 11 -12.5 1.63

c = clay, fs = fine silt, cs = coarse silt, sa = sand; re. = replicates obtained from separate sample aliquots. MIS = Marine Isotope Stages after

Martinson et al. (1987). † Within-run precision (2σm) refers to the last significant digits.
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Table 11 : Sm and Nd abundances and isotopic compositions of modern samples from potential source areas of sediments in the Arctic

Ocean.

Sample Geographical location Size fraction wt % Sm Nd Sm/Nd 147Sm/144Nd 143Nd/144Nd †
(Nd TDM

(µm) (µg·g-1) (µg·g-1) (Ga)

Lena River delta, river bed surface sediment

L17 cs 72° 23´ N, 126° 53´ E 5510-63 13.5 6.87 39.4 0.1744 0.1055 0.511 862 ± 09 -15.1 1.81

L17 sa 5563-250 55.1 3.01 17.5 0.1720 0.1039 0.511 873 ± 10 -14.9 1.77

L18 72° 16´ N, 127° 52´ E 55250-500 1.85 11.8 0.1568 0.0949 0.511 787 ± 18 -16.6 1.75

L20 72° 01´ N, 129° 08´ E 55250-500 0.511 820 ± 14 -16.0

L21 55225-500 0.511 781 ± 11 -16.7

L22 c 72° 21´ N, 126° 32´ E 55< 2 58.7 11.255 59.8 0.1880 0.1137 0.511 865 ± 11 -15.1 1.96

L22 fs 552-10 14.8 9.26 50.2 0.1845 0.1115 0.511 876 ± 11 -14.9 1.90

L22 cs 5510-63 39.4 6.65 36.4 0.1827 0.1103 0.511 887 ± 11 -14.6 1.86

L22 sa 5563-250 37.1 3.95 22.8 0.1732 0.1048 0.511 842 ± 12 -15.5 1.83

Ob River estuary, river bed surface sediment

BP01/72 c 70° 51.06´ N, 73° 43.06´ E 55< 2 19.5 6.15 30.8 0.1997 0.1206 0.512 281 ± 11 5-7.0 1.42

BP01/72 c re. 55 19.5 0.512 273 ± 26 5-7.1

BP01/72 sil 552-63 26.4 6.24 32.7 0.1908 0.1153 0.512 172 ± 12 5-9.1 1.52

BP01/72 sa 5563-250 54.1 1.57 558.64 0.1817 0.1098 0.512 194 ± 11 5-8.7 1.40

Yenisei River estuary, river bed surface sediment

BP00/15 c 72° 02.99´ N, 81° 36.16´ E 55< 2 59.0 7.16 34.4 0.2081 0.1257 0.512 304 ± 13 5-6.5 1.47

BP00/15 sil 552-63 85.7 3.77 18.0 0.2094 0.1266 0.512 314 ± 10 5-6.3 1.46

BP00/15 sa 5563-250 55.3 2.35 11.3 0.2080 0.1258 0.512 320 ± 12 5-6.2 1.44

Continued on next page. . .
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Table 11 : . . . continued

Sample Geographical location Size fraction wt % Sm Nd Sm/Nd 147Sm/144Nd 143Nd/144Nd †
(Nd TDM

(µm) (µg·g-1) (µg·g-1) (Ga)

Kongsfjorden (west Spitsbergen), beach deposit

WoA 78° 57.80´ N, 11° 24.30´ E 55< 63 10055 6.09 32.6 0.1868 0.1128 0.511 732 ± 12 -17.7 2.14

WoA re. 55 0.511 727 ± 13 -17.8

WoF 79° 00.55´ N, 11° 57.24´ E 55< 500 39.2 3.05 15.8 0.1930 0.1168 0.511 876 ± 13 -14.9 2.00

WoF re. 55 0.511 888 ± 13 -14.6

WoG 79° 08.71´ N, 11° 35.72´ E 55< 500 28.0 1.63 558.76 0.1861 0.1128 0.511 840 ± 12 -15.6 1.98

WoG re. 55 0.511 862 ± 13 -15.1

Isfjorden (west Spitsbergen), beach deposit

WoC 78° 16.54´ N, 13° 55.39´ E 55< 63 100 7.88 40.2 0.1960 0.1186 0.511 987 ± 12 -12.7 1.86

WoC re. 55 0.512 000 ± 12 -12.4

WoD 78° 23.06´ N, 14° 24.96´ E 55< 63 100 8.68 47.0 0.1847 0.1116 0.511 929 ± 12 -13.8 1.82

WoD re. 55 0.511 949 ± 14 -13.4

WoE 78° 04.84´ N, 14° 00.15´ E 55< 63 100 7.82 41.3 0.1893 0.1145 0.511 966 ± 12 -13.1 1.82

WoE re. 55 0.511 986 ± 10 -12.7

Continued on next page. . .
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Table 11 : . . . continued

Sample Geographical location Size fraction wt % Sm Nd Sm/Nd 147Sm/144Nd 143Nd/144Nd †
(Nd TDM

(µm) (µg·g-1) (µg·g-1) (Ga)

Fram Strait sea ice IRD

Ice 80-30 80° 30´ N, 02° E 55bulk 0.512 166 ± 15 5-9.2

K3-1 c 79° 11.97´ N, 02° 40.34´ E 55< 2 59.3 4.55 25.8 0.1764 0.1066 0.512 063 ± 13 -11.2 1.55

K3-1 cs 5510-63 74.4 6.12 33.5 0.1827 0.1105 0.512 021 ± 14 -12.0 1.67

K5-2 c 78° 57.99´ N, 00° 39.28´ E 55< 2 14.8 2.52 11.6 0.2172 0.1318 0.512 331 ± 13 5-6.0 1.53

K5-2 fs 552-10 18.4 5.03 25.9 0.1942 0.1175 0.512 223 ± 13 5-8.1 1.47

K5-2 cs 5510-63 63.9 5.07 26.6 0.1906 0.1152 0.512 142 ± 14 5-9.7 1.56

K5-2 sa 55> 63 52.9 2.82 14.3 0.1972 0.1193 0.512 304 ± 14 5-6.5 1.37

K6-1 79° 02.06´ N, 02° 02.31´ W 55bulk 6.48 34.5 0.1878 0.1136 0.511 982 ± 13 -12.8 1.78

K6-2 78° 46.93´ N, 02° 00.10´ W 55bulk 24.7 0.512 286 ± 12 5-6.9

c = clay, fs = fine silt, cs = coarse silt, sil = silt, sa = sand; re. = replicates obtained from separate sample aliquots. † Within-run precision (2σm)

refers to the last significant digits.
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Table 12 : REE concentrations (µg·g-1) in the HH-leachable fractions, leaching residues, and corre-

sponding bulk samples from sediment core PS2837-5, determined by ICP-MS in Bristol.

Continued on next page.

HH-leachable fraction

213 213/2 390 623 623/2 668 789

La 46.3 47.0 43.4 73.8 72.2 50.4 48.8

Ce 115 120 108 197 191 127 140

Pr 13.8 14.3 12.5 21.9 21.5 15.5 15.9

Nd 59.0 62.0 52.6 91.5 88.9 66.3 68.1

Sm 12.9 15.3 11.1 20.1 21.1 16.1 15.6

Eu 2.97 3.16 2.35 4.38 4.07 3.49 3.58

Gd 13.1 14.2 10.6 19.5 18.2 15.5 15.4

Tb 1.83 1.83 1.51 2.70 2.58 2.18 2.33

Dy 10.0 9.92 8.42 14.6 13.2 12.1 11.6

Ho 1.69 1.70 1.43 2.48 2.16 2.15 1.92

Er 4.23 4.17 3.85 6.33 5.60 5.55 4.99

Tm 0.533 0.524 0.504 0.771 0.648 0.697 0.579

Yb 2.74 3.29 2.98 4.70 3.94 4.23 3.41

Lu 0.349 0.365 0.433 0.655 0.536 0.62 0.482

ΣREE 284 298 260 460 446 322 333

LaN/YbN 1.25 1.05 1.08 1.16 1.35 0.88 1.06

LaN/SmN 0.52 0.45 0.57 0.53 0.50 0.45 0.45

Ce/Ce⋆ 1.05 1.07 1.07 1.13 1.12 1.05 1.16

wt % 10.2 7.8 15.4 8.8 12.5 11.8 9.1

Subscript ‘N’ denotes PAAS normalization. PAAS values are from McLennan (1989).

Ce/Ce⋆ = CeN/(LaN·PrN)1/2. wt % = maximum estimate for the mass of leachable fraction relative

to original aliquot mass, based on weight loss during leaching.
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Table 12 : . . . continued

Leaching residues

213 213/2 390 623 623/2 668 789

La 24.0 32.0 17.2 27.7 28.4 19.2 30.3

Ce 48.9 64.7 38.0 56.7 57.3 41.5 61.6

Pr 6.00 7.14 4.62 6.65 6.43 5.07 7.16

Nd 22.1 25.3 17.1 24.1 22.7 18.7 25.5

Sm 3.98 4.26 3.04 4.25 3.73 3.26 4.44

Eu 0.863 0.837 0.653 0.886 0.732 0.714 0.936

Gd 3.30 3.19 2.63 3.47 2.94 2.76 3.69

Tb 0.457 0.477 0.393 0.494 0.440 0.415 0.500

Dy 2.80 2.82 2.39 2.94 2.75 2.56 2.97

Ho 0.544 0.556 0.481 0.588 0.562 0.542 0.580

Er 1.71 1.85 1.48 1.77 1.77 1.71 1.83

Tm 0.268 0.281 0.225 0.265 0.291 0.266 0.272

Yb 1.81 2.15 1.62 1.90 1.92 1.91 1.96

Lu 0.274 0.314 0.234 0.286 0.284 0.279 0.278

ΣREE 117 146 90 132 130 99 142

LaN/YbN 0.98 1.10 0.78 1.08 1.09 0.74 1.14

LaN/SmN 0.88 1.09 0.82 0.95 1.11 0.86 0.99

Ce/Ce⋆ 0.94 0.99 0.98 0.96 0.98 0.97 0.96

wt % 89.8 92.2 84.6 91.2 87.5 88.2 90.9

wt % = mass of leaching residue relative to original aliquot mass.
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Table 12 : . . . continued

Untreated bulk samples

213 213 re. 390 623 623 re. 668 789

La 33.3 33.4 35.8 34.9 34.4 38.3 33.7

Ce 68.3 69.9 74.9 74.2 74.2 80.5 72.8

Pr 8.05 8.15 8.68 8.57 8.49 9.39 8.32

Nd 31.1 31.2 32.6 32.2 31.8 35.0 31.1

Sm 6.10 6.27 6.13 5.95 6.11 6.45 5.88

Eu 1.28 1.26 1.27 1.25 1.28 1.37 1.27

Gd 4.96 5.11 5.19 5.18 5.05 5.59 4.93

Tb 0.669 0.661 0.656 0.686 0.688 0.769 0.671

Dy 3.69 3.82 4.03 3.85 3.78 4.22 3.71

Ho 0.706 0.699 0.712 0.716 0.706 0.772 0.702

Er 2.02 2.04 2.08 2.00 1.96 2.27 1.88

Tm 0.300 0.308 0.289 0.301 0.268 0.326 0.268

Yb 1.81 1.98 2.02 1.96 1.90 2.05 1.76

Lu 0.269 0.281 0.281 0.291 0.268 0.295 0.265

ΣREE 163 165 175 172 171 187 167

LaN/YbN 1.36 1.25 1.31 1.31 1.34 1.38 1.41

LaN/SmN 0.79 0.77 0.85 0.85 0.82 0.86 0.83

Ce/Ce⋆ 0.96 0.98 0.98 0.99 1.00 0.98 1.00

re. = repeated measurement of the same sample solution.
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Table 13 : Nd isotopic compositions of the HH-leachable fractions of bulk

samples from sediment core PS2837-5.

Sample Age (a) MIS 143Nd/144Nd †
(Nd

133 556660 1 0.512 080 ± 10 -10.9

213 559670 1 0.512 070 ± 11 -11.1

337 514 470 2 0.512 149 ± 11 5-9.5

374 517 420 2 0.512 103 ± 11 -10.4

390 520 390 2 0.511 974 ± 12 -13.0

447 533 340 3 0.512 159 ± 11 5-9.3

601 568 330 4 0.512 080 ± 10 -10.9

623 573 330 4 0.512 054 ± 09 -11.4

789 111050 5 0.512 089 ± 12 -10.7

MIS = Marine Isotope Stages after Martinson et al. (1987). † Within-run

precision (2σm) refers to the last significant digits.

Table 14 : Results for the sequential leaching experiment with aliquots of the untreated bulk sam-

ple PS2837-5/712. Sm and Nd abundances are given as per cent relative to the original

aliquot instead of concentrations, because meaningful leachate weights could not be

determined.

Sample Residual Sm Nd Sm/Nd 143Nd/144Nd †
(Nd

mass recovery recovery

(%) (%) (%)

Untreated bulk sample: 6.52 µg·g-1 Sm, 35.0 µg·g-1 Nd 0.1863 0.512 016 ± 13 -12.1

#2 solid residue 89 93 95 0.1820 0.512 004 ± 16 -12.4

#3 solid residue 86 74 82 0.1678 0.511 984 ± 13 -12.8

#4/1st HH 12 8 0.2749 0.512 140 ± 13 -9.7

#4/2nd HH 7 5 0.2509 0.512 172 ± 20 -9.1

#4/3rd HH 4 3 0.2283 0.512 101 ± 22 -10.5

#4 solid residue 86 69 78 0.1640 0.511 971 ± 13 -13.0

#6/1st HOAc 13 9 0.2483 0.512 032 ± 15 -11.8

#6/2nd HOAc 6 4 0.2866 0.512 120 ± 24 -10.1

#6/1st HH 10 8 0.2404 0.512 154 ± 31 -9.4

#6 solid residue 87 78 85 0.1699 0.511 995 ± 13 -12.5

Residual mass is relative to original aliquot. Sm and Nd recovery are relative to original aliquot,

based on concentrations determined for the untreated bulk sample. † Within-run precision (2σm)

refers to the last significant digits.
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Figure 41 : Satellite image of western Spitsbergen (part of a larger image showing the entire Sval-

bard archipelago). White dots indicate sampling sites of Spitsbergen beach deposits.

Red dots and arrows indicate place and direction of view of photographs of Kongsfjor-

den (Fig. 42, p. 98) and Isfjorden (Fig. 43, p. 98). Original image courtesy of MODIS

Rapid Response Project at NASA/GSFC (2003/239 - 08/27, 13:00 UTC, Satellite Terra.

Pixel size 250 m. Center of image 79° N, 20° E).
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Figure 42 : Inner part of Kongsfjorden as seen from Blomstrand Halvøya, looking south-east. Ter-

minus of the Kronebreen glacier in the distance. Photograph by Olivier Paris.

Figure 43: View south across

Protektorfjellet and

Isfjorden. Kapp

Linné in the dis-

tance. Photograph

by Nils Berglund.
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Figure 44 : Sampling site of the Fram Strait IRD sample K3-1. Photograph by

Christoph Kierdorf.

Expedition: ARK-XVIII/1, RV Polarstern

Station Nr.: 3-1

Date: 2002/08/08

Latitude: 79° 11.97´ N

Longitude: 02° 40.34´ E

Description: white, partly dirty multi-year sea ice; dimensions: ~60 m ×55 m,

average thickness > 1 m; surface: 55 % snow, 0 % ice, 5 % pressure

ridges, 35 % meltwater ponds, 5 % sediment (frozen in)

Source: Christoph Kierdorf, personal communication
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Figure 45 : Sampling site of the Fram Strait IRD sample K5-2. Photograph by

Christoph Kierdorf.

Expedition: ARK-XVIII/1, RV Polarstern

Station Nr.: 5-2

Date: 2002/08/12

Latitude: 78° 57.99´ N

Longitude: 00° 39.28´ E

Description: white multi-year sea ice; dimensions: ~40 m ×25 m, average

thickness > 3 m; surface: 64 % snow, 0 % ice, 1 % pressure ridges,

30 % meltwater ponds, 5 % sediment (surficial)

Source: Christoph Kierdorf, personal communication
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Figure 46 : Sampling site of the Fram Strait IRD sample K6-1. Photograph by

Christoph Kierdorf.

Expedition: ARK-XVIII/1, RV Polarstern

Station Nr.: 6-1

Date: 2002/08/13

Latitude: 79° 02.06´ N

Longitude: 02° 02.31´ W

Description: dirty multi-year sea ice, multiple cracks; dimensions: ~50 m ×30 m,

average thickness > 1.5 m; surface: 78 % snow, 0 % ice, 2 % pressure

ridges, 10 % meltwater ponds, 10 % sediment (surficial)

Source: Christoph Kierdorf, personal communication
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Figure 47 : Sampling site of the Fram Strait IRD sample K6-2. Photograph by

Christoph Kierdorf.

Expedition: ARK-XVIII/1, RV Polarstern

Station Nr.: 6-2

Date: 2002/08/13

Latitude: 78° 46.93´ N

Longitude: 02° 00.10´ W

Description: light blue–greenish multi-year sea ice; dimensions: ~7 km ×3.5 km,

average thickness > 3 m; surface: 84 % snow, 0 % ice, 5 % pressure ridges,

10 % meltwater ponds, 1 % sediment (surficial)

Source: Christoph Kierdorf, personal communication
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Redrawn from Stein and Fahl (1997).
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0-5 cm: dark brown, silty clay, gradual boundary, bioturbated
5-7 cm: dark brown, clayey silty mud, sharp boundary (oxidized layer)
7-9 cm: dark grayish brown, silty clay, gradual boundary
9-49 cm: dark olive gray, silty clay, homogenous

Giant Box core PS2837-6
Recovery 0.49 m

Yermak Plateau
81° 14.0´ N, 02° 25.0´ E

ARK-XIII/2
Water depth: 1027 m

Lithology Description
0

1
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Lithology

9-207 cm: dark olive gray silty-clay, homogenous, gradual lower boundary

207-258 cm: dark olive gray silty-clay, homogenous with numerous black sulphide
spots (1mm to 10mm), lower boundary gradual

278-326 cm: dark olive gray silty-clay, homogenous with numerous black sulphide
spots (1mm to 10mm), lower boundary gradual

326-354 cm: dark olive gray silty-clay, homogenous with few black sulphide spots
(1mm to 3mm), lower boundary gradual

354-386 cm: dark olive gray silty-clay, homogenous with numerous black sulphide
spots (1mm to 10mm), lower boundary gradual

258-278 cm: dark olive gray silty-clay, homogenous, gradual lower boundary

Uppermost 9 cm of the core are destroyed, correlation with PS2837-6

386-405 cm: gray, sandy-silty-clayey mud, yellowish-reddish spots of limonite
(402.5 cm), sharp boundaries. Sediments are coarser than overlying sediments,
abundant foraminifers
405-409.5 cm: olive, clayey-sandy silt, "cottage-cheese" structure, mottling, sharp
boundaries
409.5-416 cm: very dark gray, sandy-clayey silt, homogenous, sharp boundaries

412 cm: dropstone (black sandstone)

416-453 cm: colour banding: olive gray, dark yellowish brown, brown, sandy-clayey
silty mud, rare specks of sulphides, sharp boundaries

Description

Kastenlot core PS2837-5
Recovery 8.76 m

Yermak Plateau
81° 13.99´ N, 02° 22.85´ E

ARK-XIII/2
Water depth: 1042 m

0

1

2

3

4
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453-564 cm: dark olive gray silty-clay, homogenous, gradual boundary

564-611 cm: dark olive gray (s.a.), silty-clay with small specks and spots of sulphides,
sharp boundary

611-632 cm: colour banding: olive gray, dark yellowish brown, sandy-clayey-silty mud,
sharp boundaries

632-653 cm: dark olive gray, silty-clay with a few amount of sand, homogenous, gradual
boundary, black spots appear in underlying deposits

653-700 cm:dark olive gray (s.a.), silty-clay, black sulphides (5-15 mm thick), boundaries
are gradual

700-782 cm: olive gray, silty-clay interbedding with lenses (5-15 mm thick) of black
sulphides, gradual boundary

782-828 cm: olive gray (s.a.), silty-clay with a few amount of sand. The layer contains
much less spots and lenses of black sulphides than overlying and underlying deposits,
gradual boundaries

828-876 cm: olive gray (s.a.), silty-clay interbedding with thin (5-10 mm) and thick
(20-30 mm) lenses of black sulphides

The whole intervall of 632-876 cm shows one sequence of deposits with various
amounts of sulphides

Lithology Description

Kastenlot core PS2837-5
Recovery 8.76 m

Yermak Plateau
81° 13.99´ N, 02° 22.85´ E

ARK-XIII/2
Water depth: 1042 m

5

6

7

8

9
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