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CHAPTER 1

Introduction and summary

Monetary policy has been very successful in most countries in recent years. Average

inflation rates have declined considerably since the 1980s. Furthermore, a number

of authors such as Stock and Watson (2002) and Martin and Rowthorn (2005) also

attribute the observed decline in macroeconomic volatility, i.e. in the variance of

inflation and output, at least partly to better monetary policy.

But the last decade has not passed without new challenges for central banking

in theory and practice. In theory, the New Keynesian or New Neoclassical Syn-

thesis model became the standard workhorse for monetary macroeconomics and

some of its most prominent proponents such as Woodford (2003) argued for a new

‘timeless-perspective’ approach to policy as the allegedly optimal monetary policy.

In practice, the creation of the European Monetary Union, with the European Cen-

tral Bank (ECB) being responsible for monetary policy since 1999, represented an

enormous challenge for policy-makers in ‘unchartered waters’ (Duisenberg, 1998).

Furthermore, the world faced several severe liquidity crises on financial markets

that threatened the stability of the financial system. This thesis develops and ap-

plies three different frameworks to analyse these challenges in detail within three

self-contained chapters.

Besides the focus on frameworks for monetary policy analysis, the special role of

rules represents another unifying theme for all three essays. Chapter 2 investigates

the optimality of the timeless perspective rule in the New Keynesian model and

chapter 3 uses Taylor rules to examine if the ECB conducted a stabilising monetary

policy with respect to inflation and output. Finally, chapter 4 studies the role of the

liquidity provision principle as an optimal response to liquidity crises on financial

markets.

1
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The debate about rules in monetary policy dates at least back to the beginning of

the 19th century as reported in Flandreau (2006). Wicksell (1898) wrote a compre-

hensive treatise of monetary policy emphasising an interest rate rule that provides

the basis for the modern analysis in Woodford (2003). After the Great Depression,

Simons (1936, p. 30) argued in a similar vein as Wicksell (1898, p. 4) that

[a] monetary rule of maintaining the constancy of some price-index,

preferably an index of prices of competitively produced commodities, ap-

pears to afford the only promising escape from present monetary chaos

and uncertainties.

While this proposal comes already very close to current mandates of most central

banks, the thinking about rules versus discretion after the rational expectations

revolution in macroeconomics in the 1970s has been mainly shaped by Kydland

and Prescott (1977): Since private agents include expectations about future policies

in their current actions, discretionary monetary policy that follows optimal control

theory results in suboptimal economic outcomes. Hence, rule-based policy-making

can increase welfare.

The timeless perspective proposed by Woodford (1999, 2003) represents a promi-

nent modern form of such a rule in monetary policy analysis. It helps to overcome

not only the traditional inflation bias in the sense of Barro and Gordon (1983),

but also the stabilisation bias, a dynamic loss stemming from cost-push shocks in

the New Keynesian model as described in Clarida, Gaĺı and Gertler (1999). These

represent the long-run gains from rule-based policy-making in the New Keynesian

model.

Chapter 2 shows, however, that the timeless perspective is associated with short-

run costs because the monetary authority demonstrates its commitment to the time-

less perspective by not exploiting given inflation expectations in the initial period.

Instead, it follows a policy ‘to which it would have been optimal to commit to at a

date far in the past,’ i.e. it behaves as if the policy rule had been in place already

for a long time. This policy is strategically coherent because it avoids any initial pe-

riod effects that are one reason for the time inconsistency of standard commitment

solutions, but it is initially suboptimal. These short-run costs from the timeless per-

spective are the price to pay to make the commitment to it arguably more credible

than an overall optimal commitment solution that exploits given inflation expecta-

tions. Using this framework, chapter 2 analyses under which circumstances these

short-run costs exceed the long-run gains from commitment.

After deriving a formal condition for the superiority of discretion over the time-

less perspective rule, I investigate the influence of structural and preference parame-

ters on the performance of monetary policy both under discretion and the timeless
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perspective. Discretion gains relatively to the timeless perspective rule, i.e. the

short-run losses become relatively more important, if the private sector behaves less

forward-looking or if the monetary authority puts a greater weight on output gap

stabilisation. For empirically reasonable values of price stickiness, the relative gain

from discretion rises with stickier prices. A fourth parameter which influences the

relative gains is the persistence of shocks: The introduction of serial correlation into

the model only strengthens the respective relative performance of policies in the

situation without serial correlation in shocks. In particular, I show conditions for

each parameter under which discretion performs strictly better than the timeless

perspective rule.

Furthermore, the framework of short-run losses and long-run gains also allows

explaining why an economy that is sufficiently far away from its steady-state suf-

fers rather than gains from implementing the timeless perspective rule. In general,

chapter 2 uses unconditional expectations of the loss function as welfare criterion, in

line with most of the literature. The analysis of initial conditions, however, requires

reverting to expected losses conditional on the initial state of the economy because

unconditional expectations of the loss function implicitly treat the economy’s ini-

tial conditions as stochastic. Altogether, in the normal New Keynesian model all

conditions for the superiority of discretion need not be as adverse as one might

suspect.

Finally, I introduce an ‘optimal’ timeless policy rule based on Blake (2001) and

Jensen and McCallum (2002). While the general influence of structural and pref-

erences parameters on the performance of monetary policy under this rule is not

affected, discretion is never better than this rule when evaluated with unconditional

expectations as it is common in the literature on monetary policy rules. The reason

is that this allegedly optimal rule optimally accounts for the use of unconditional ex-

pectations as the welfare criterion. For any timeless rule, however, initial conditions

can be sufficiently adverse to make the rule inferior to discretion.

As a policy conclusion of chapter 2, the timeless perspective in its standard for-

mulation is not optimal for all economies at all times. In particular, if an economy

is characterised by rigid prices, a low discount factor, a high preference for output

stabilisation or a sufficiently large deviation from its steady state, it should prefer

discretionary monetary policy over the timeless perspective. The critical parameter

values obtained in this paper with the simplest version of the New Keynesian model

suggest that – for a number of empirically reasonable combinations of parameters

– the long-run losses from discretion may be less relevant than previously thought.

Furthermore, the short-run costs in this paper can be interpreted as a lower bound

for the actual costs because they are derived under the assumption of full credibility
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of the monetary authority. Incomplete credibility would raise the costs from com-

mitment even further, since it takes some time until the central bank can reap the

full gains from commitment.

Another important theoretical result of the New Keynesian literature model is

that monetary policy can and should stabilise the inflation rate around its target

rate and real output around its ‘natural’ level, i.e. the level in the absence of nominal

rigidities. For example Woodford (2003) shows that the Taylor-rule developed by

Taylor (1993) fulfills both stabilisation objectives as it implies countercyclical real

interest rates in response to deviations of inflation and output from their respective

target values. In particular, the so-called ‘Taylor-principle’ states that the central

bank should increase the nominal interest rate by more than one for one in response

to an increase of inflation in order to raise the real interest rate. A specific advantage

of the Taylor principle is its robustness in a wide range of different theoretical models.

Over the last decade, this simple instrument policy rule has become a popular

framework for evaluating monetary policy of the Federal Reserve and other central

banks. Chapter 3, which is joint work with Jan-Egbert Sturm, presents one of the

first empirical studies of actual monetary policy in the euro area. By estimating

several instrument policy reaction functions for the ECB, we look back over the

‘Duisenberg-era’ and explore what role the output gap has played in actual ECB

policy and how actively the ECB has really responded to changes in inflation. We

compare these results with those for the Bundesbank in order to get a clearer picture

of the new institutional monetary setting in Europe.1

Looking at contemporaneous Taylor rules, the presented evidence clearly con-

firms previous research and suggests that the ECB is accommodating changes in

inflation and hence follows a destabilising policy. The differences between the Bun-

desbank and the ECB are significant. Such an interpretation gives rise to the con-

jecture that the ECB follows a policy quite similar to the pre-Volcker era of US

monetary policy, a time also known as the ‘Great Inflation’ (Taylor, 1999).

One focus of chapter 3 refers to data uncertainties faced by policy-makers. They

base their decisions upon data which will most likely be revised in the future. Yet

most studies on central bank behaviour neglect this issue and use so-called ‘current’

or ‘ex-post’ data, i.e. data published in the latest release, to estimate monetary

policy rules. In reality, central bankers can only use so-called ‘real-time’ data, i.e.

data available when taking the decision. In his influential paper, Orphanides (2001)

1Since the ECB is a supranational institution and can set only one interest rate for the whole
euro area, it is a ‘natural consequence’ that the ECB defined its mandate of price stability in terms
of overall inflation in the euro area (ECB, 2004, p. 51). Hence, its policy can only be reasonably
assessed in chapter 3 with data for the euro area aggregate. The consequences of nationally
heterogenous inflation rates for the economic development of member states are discussed in Henzel
and Sauer (2006), for example.
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shows that estimated policy reaction functions obtained by using the ex-post revised

data can yield misleading descriptions of historical policy in the case of the US. We

explore whether data revisions contain similar problems for the euro area. In this

line of argument, the use of survey data which are rarely being revised in the course

of time, readily available, and timely (as opposed to most official data) can be very

helpful.

A second important aspect of survey data is its prevalent forward-looking per-

spective. It is well known that central banks not only respond to past information,

but use a broad range of information. In particular, they consider forecasts of in-

flation and output in their decision process. The theoretical justification for such a

forward-looking approach is given by, e.g., Clarida et al. (1999) and Woodford (2003)

within a New Keynesian model. In addition to investigating policy reaction func-

tions based on survey data, we follow Clarida, Gaĺı and Gertler (1998,1999,2000) and

estimate forward-looking Taylor rules in order to compare the relevance of real-time

versus forward-looking aspects.

The impression of a destabilising monetary policy by the ECB, which is based

on contemporaneous Taylor rules, seems to be largely due to the lack of a forward-

looking perspective. Either assuming rational expectations and using a forward-

looking specification as suggested by Clarida, Gaĺı and Gertler (1998), or using

expectations as derived from surveys result in Taylor rules which do imply a sta-

bilising role of the ECB. In such forward-looking cases, the weights attached to the

inflation rate by the Bundesbank and the ECB do no longer significantly differ.

Furthermore, the ECB appears to have responded to real economic developments at

least as strongly as the Bundesbank.

The use of real-time industrial production data, as suggested by Orphanides

(2004), hardly influences the results. Estimations for an extended sample until the

end of 2006 confirm the results obtained for the Duisenberg-era; contemporaneous

specifications find an insufficient response to inflation developments in the euro area,

but forward-looking rules indicate a stabilising role of the ECB.

In the low-inflation environment of recent years, a lot of central banks have

begun to add concerns about financial stability in addition to the maintenance of

price stability and limited output and employment volatility to the top of their

agenda. The increased tendency of major central banks such as the ECB, the Bank of

England or the Swedish Riksbank to publish ‘Financial Stability Reports’ represents

a widely visible evidence for this conjecture. The prevention of financial crises is an

important reason for this behaviour.

The model in chapter 4 helps to provide guidance for central banks in the event

of such crises. In particular, it offers a framework to analyse emergency liquid-
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ity assistance of central banks on financial markets in response to aggregate and

idiosyncratic liquidity shocks.

Liquidity is an important concept in finance and macroeconomics. The micro-

economic literature in finance views liquidity roughly as the ability to sell assets

quickly and costlessly. In macroeconomics, liquidity refers to a generally accepted

medium of exchange or, in brief, money. Money is the most liquid asset due to

the fact that it does not need to be converted into anything else in order to make

purchases of real goods or other assets. This feature makes money valuable in both

perspectives.

Chapter 4 uses this common perspective of money and links liquidity risk on

an asset market with aggregate demand and aggregate supply on a goods market.

Spillover effects from the asset market to the goods market can justify a central

bank intervention on the asset market even if the central bank does not take the

welfare of investors on the asset market into account. Hence, the model provides

a framework to analyse the perceived insurance against severe financial turmoil by

the Federal Reserve under Alan Greenspan, which has been termed the ‘Greenspan

put’ in the popular press and ‘liquidity provision principle’ by Taylor (2005).

The chapter begins with a survey of empirical and historical evidence for the

relevance of liquidity for asset prices, in particular during financial crises. The

stock market crash in October 1987 or the LTCM-crisis in September 1998 represent

‘flight to quality’ or ‘flight to liquidity’ episodes in which investors wanted to shift

from relatively illiquid medium to long-term assets such as shares into safe and

liquid government bonds or cash. While liquidity provision has been studied in the

literature with a focus on the role of financial intermediaries within ‘real’ models,

chapter 4 develops a model in nominal units in order to look at optimal monetary

interventions on financial markets.

In the model, investors can invest on an asset market in liquid money and po-

tentially illiquid, but productive assets, in order to optimally satisfy their uncertain

consumption needs on a separated goods market over two periods. Two channels

link the goods market to the asset market: First, the amount of money held by in-

vestors determines together with the size of a liquidity shock the aggregate demand

of investors on the goods market which is subject to a cash-in-advance constraint.

Second, a dramatic decrease of the asset price negatively influences the goods supply

in the final period because it forces investors to costly liquidate their asset. Con-

fronted with a liquidity crisis, the central bank faces a trade-off between injecting

liquidity and thus incurring risks to price stability and negative supply effects in

the future. The size of the optimal intervention increases in the size of the liquidity

shock, the weight on output relative to inflation and the extent of negative supply
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effects of the crisis. It decreases in the size of the associated inflation in goods prices

which is linked to the possibility to sterilise the intervention and the amount of

liquidity initially held by investors.

Furthermore, the anticipation of central bank interventions by private investors

leads to a moral hazard effect in the form of less private liquidity provision and

thus an increase in the likelihood of financial crises. At the same time, less liquidity

provision means more productive investment and thus greater aggregate supply in

the absence of a financial crisis. If the central bank is able to credibly commit to

some future policy, the optimal liquidity provision rule has to take these additional

effects into account.

After the analysis of idiosyncratic liquidity shocks within this framework, chap-

ter 4 offers a thorough discussion of mechanisms that can turn small shocks into

large ones. Finally, I review the related literature on the Greenspan put, market

segmentation, market microstructure theory and the public supply of liquidity.

This summary shows that the different chapters of this thesis apply a wide range

of economic methodologies to the analysis of monetary policy. Chapter 2 looks at

optimal monetary policy in the modern micro-founded New Keynesian macroeco-

nomic model, while chapter 3 offers an empirical investigation of monetary policy

in the euro area. The final chapter 4 combines a microeconomic model of liquidity

shocks on an asset market that includes features of market microstructure theory

with a model of the goods market inspired by nominal rigidities as common in

macroeconomic models. All three chapters are connected by the prominent role of

different rules and the objective to develop and apply frameworks for the analysis

of monetary policy from a theoretical and empirical perspective.
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CHAPTER 2

Discretion rather than rules?

When is discretionary policy-making

better than the timeless perspective?

Abstract

Discretionary monetary policy produces a dynamic loss in the New Keynesian model

in the presence of cost-push shocks. The possibility to commit to a specific policy

rule can increase welfare. A number of authors since Woodford (1999) have argued

in favour of a timeless perspective rule as an optimal policy. The short-run costs

associated with the timeless perspective are neglected in general, however. Rigid

prices, relatively impatient households, a high preference of policy makers for output

stabilisation and a deviation from the steady state all worsen the performance of

the timeless perspective rule and can make it inferior to discretion.

2.1 Introduction

Kydland and Prescott (1977) showed that rule-based policy-making can increase

welfare. The timeless perspective proposed by Woodford (1999) represents a promi-

nent modern form of such a rule in monetary policy analysis. It helps to overcome

not only the traditional inflation bias in the sense of Barro and Gordon (1983),

but also the stabilisation bias, a dynamic loss stemming from cost-push shocks in

the New Keynesian model as described in Clarida, Gaĺı and Gertler (1999). It is,

10
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however, associated with short-run costs that may be larger than the long-run gains

from commitment.

After deriving a formal condition for the superiority of discretion over the timeless

perspective rule, this paper investigates the influence of structural and preference

parameters on the performance of monetary policy both under discretion and the

timeless perspective in the sense of Woodford (1999). Discretion gains relatively

to the timeless perspective rule, i.e. the short-run losses become relatively more

important, if the private sector behaves less forward-looking or if the monetary au-

thority puts a greater weight on output gap stabilisation. For empirically reasonable

values of price stickiness, the relative gain from discretion rises with stickier prices.

A fourth parameter which influences the relative gains is the persistence of shocks:

Introducing serial correlation into the model only strengthens the respective rela-

tive performance of policies in the situation without serial correlation in shocks. In

particular, we show conditions for each parameter, under which discretion performs

strictly better than the timeless perspective rule.

Furthermore, the framework of short-run losses and long-run gains also allows

explaining why an economy that is sufficiently far away from its steady-state suffers

rather than gains from implementing the timeless perspective rule. In general, this

paper uses unconditional expectations of the loss function as welfare criterion, in

line with most of the literature. The analysis of initial conditions, however, requires

reverting to expected losses conditional on the initial state of the economy because

unconditional expectations of the loss function implicitly treat the economy’s ini-

tial conditions as stochastic. Altogether, in the normal New Keynesian model all

conditions for the superiority of discretion need not be as adverse as one might

suspect.

We also introduce an ‘optimal’ timeless policy rule based on Blake (2001), Jensen

and McCallum (2002) and Jensen (2003). While the general influence of structural

and preferences parameters on the performance of monetary policy under this rule is

not affected, discretion is never better than this rule when evaluated with uncondi-

tional expectations as it is common in the literature on monetary policy rules. The

reason is that this allegedly optimal rule optimally accounts for the use of uncondi-

tional expectations as the welfare criterion. For any timeless rule, however, initial

conditions can be sufficiently adverse to make the rule inferior to discretion.

The following section 2.2 presents the canonical New Keynesian Model. Section

2.3.1 explains the relevant welfare criteria. The analytical solution in section 2.3.2

is followed by simulation results and a thorough economic interpretation of the

performance of policies under discretion and the timeless perspective, while section

2.3.4 concludes the discussion of Woodford’s timeless perspective by looking at the
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effects of initial conditions. Section 2.4 introduces the optimal timeless policy rule

and repeats the analysis from section 2.3.3, whereas section 2.5 concludes.

2.2 New Keynesian Model

The New Keynesian or New Neoclassical Synthesis model has become the standard

toolbox for modern macroeconomics. While there is some debate about the exact

functional forms, the standard setup consists of a forward-looking Phillips curve, an

intertemporal IS-curve and a welfare function.1 Following, e.g., Walsh (2003), the

New Keynesian Phillips curve based on Calvo (1983) pricing is given by

πt = βEtπt+1 + αyt + ut (2.1)

with

α ≡ (1− ζ)(1− βζ)

ζ
. (2.2)

πt denotes inflation, Et the expectations operator conditional on information in

period t, yt the output gap, and ut a stochastic shock term that is assumed to follow

a stationary AR(1) process with AR-parameter ρ and innovation variance σ2. While

the output gap refers to the deviation of actual output from natural or flexible-price

output, ut is often interpreted as a cost-push shock term that captures time-varying

distortions from consumption or wage taxation or mark-ups in firms’ prices or wages.

It is the source of the stabilisation bias. 0 < β < 1 denotes the (private sector’s)

discount factor and 0 ≤ ζ < 1 is the constant probability that a firm is not able to

reset its price in period t. A firm’s optimal price depends on current and (for ζ > 0)

future real marginal costs, which are assumed to be proportional to the respective

output gap.2 Hence, ζ and α reflect the degree of price rigidity in this model which

is increasing in ζ and decreasing in α.

The policy-maker’s objective at an arbitrary time t = 0 is to minimise

L = E0

∞∑
t=0

βtLt with Lt = π2
t + ωy2

t , (2.3)

where ω ≥ 0 reflects the relative importance of output-gap variability in policymaker

preferences. We assume zero to be the target values of inflation and the output gap,

respectively. While the former assumption is included only for notational simplicity

and without loss of generality, the latter is crucial for the absence of a traditional

1Depending on the purpose of their paper, some authors directly use an instrument rule or a
targeting rule without explicitly maximising some welfare function.

2In (2.1), the proportionality factor is set equal to 1.
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inflation bias in the sense of Barro and Gordon (1983).

The New Keynesian model also includes an aggregate demand relationship based

on consumers’ intertemporal optimisation in the form of

yt = Etyt+1 − b(Rt − Etπt+1) + vt, (2.4)

where Rt is the central bank’s interest rate instrument and vt is a shock to pref-

erences, government spending or the exogenous natural-rate value of output, for

example.3 The parameter b > 0 captures the output gap elasticity with respect

to the real interest rate. Yet, for distinguishing between the timeless-perspective

and the discretionary solution, it is sufficient to assume that the central bank can

directly control πt as an instrument. Hence, the aggregate demand relationship can

be neglected below.4

2.2.1 Model Solutions

If the monetary authority neglects the impact of its policies on inflation expectations

and reoptimises in each period, it conducts monetary policy under discretion. This

creates both the Barro and Gordon (1983) inflation bias for positive output gap

targets and the Clarida et al. (1999) stabilisation bias caused by cost-push shocks.

To concentrate on the second source of dynamic losses in this model, a positive

inflation bias is ruled out by assuming an output gap target of zero in the loss

function (2.3). Minimising (2.3) subject to (2.1) and to given inflation expectations

Etπt+1 results in the Lagrangian

Λt = π2
t + ωy2

t − λt(πt − βEtπt+1 − αyt − ut) ∀ t = 0, 1, 2, . . . . (2.5)

The first order conditions

∂Λt

∂yt

= 2ωyt + αλt = 0

∂Λt

∂πt

= 2πt − λt = 0

imply

πt = −ω

α
yt. (2.6)

If instead the monetary authority takes the impact of its actions on expectations

3vt is generally referred to as a demand shock. But in this model, yt reflects the output gap
and not output alone. Hence, shocks to the flexible-price level of output are also included in vt.
See, e.g., Woodford (2003, p. 246).

4Formally, adding (2.4) as a constraint to the optimisation problems below gives a value of zero
to the respective Lagrangian multiplier.
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into account and possesses an exogenous possibility to credibly commit itself to some

future policy, it can minimise the loss function (2.3) over an enhanced opportunity

set. Hence, the resulting commitment solution must be at least as good as the one

under discretion. The single-period Lagrangian (2.5) changes to

Λ = E0

∞∑
t=0

βt
[
(π2

t + ωy2
t )− λt(πt − βπt+1 − αyt − ut)

]
. (2.7)

This yields as first order conditions

∂Λ

∂yt

= 2ωyt + αλt = 0, t = 0, 1, 2, . . . ,

∂Λ

∂πt

= 2πt − λt = 0, t = 0,

∂Λ

∂πt

= 2πt − λt + λt−1 = 0, t = 1, 2, . . . ,

implying

πt = −ω

α
yt, t = 0 and (2.8)

πt = −ω

α
yt +

ω

α
yt−1, t = 1, 2, . . . . (2.9)

The commitment solution improves the short-run output/inflation trade-off faced by

the monetary authority because short-run price dynamics depend on expectations

about the future. Since the authority commits to a history-dependent policy in

the future, it is able to optimally spread the effects of shocks over several periods.

The commitment solution also enables the policy maker to reap the benefits of

discretionary policy in the initial period without paying the price in terms of higher

inflation expectations, since these are assumed to depend on the future commitment

to (2.9). Indeed, optimal policy is identical under commitment and discretion in the

initial period. In two recent paper, Dennis and Söderström (2006) and Levine,

McAdam and Pearlman (2007) compare the welfare gains from commitment over

discretion under different scenarios.

However, the commitment solution suffers from time inconsistency in two ways:

First, by switching from (2.9) to (2.6) in any future period, the monetary author-

ity can exploit given inflationary expectations and gain in the respective period.

Second, the monetary authority knows at t = 0 that applying the same optimisa-

tion procedure (2.7) in the future implies a departure from today’s optimal plan, a

feature McCallum (2003, p. 4) calls ‘strategic incoherence’.

To overcome the second form of time inconsistency and thus gain true credibility,

many authors since Woodford (1999) have proposed the concept of policy-making
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under the timeless perspective: The optimal policy in the initial period should be

chosen such that it would have been optimal to commit to this policy at a date far in

the past, not exploiting given inflationary expectations in the initial period.5 This

implies neglecting (2.8) and applying (2.9) in all periods, not just in t = 1, 2, . . .:

πt = −ω

α
yt +

ω

α
yt−1, t = 0, 1, . . . . (2.10)

Hence, the only difference to the commitment solution lies in the different policy in

the initial period, unless the economy starts from its steady-state with y−1 = 0.6 But

since the commitment solution is by definition optimal for (2.7), this difference causes

a loss of the timeless perspective policy compared to the commitment solution. If this

loss is greater than the gain from the commitment solution (COM) over discretion,

rule-based policy making under the timeless perspective (TP) causes larger losses

than policy under discretion (DIS):

LTP − LCOM > LDIS − LCOM ⇔ LTP > LDIS. (2.11)

The central aim of the rest of this paper is to compare the losses from TP and DIS.

2.2.2 Minimal state variable (MSV) solutions

Before we are able to calculate the losses under the different policy rules, we need

to determine the particular equilibrium behaviour of the economy, which is given

by the New Keynesian Phillips curve (2.1)7 and the respective policy rule, i.e. DIS

(2.6) or TP (2.10). Following McCallum (1999), the minimal state variable (MSV)

solution to each model represents the rational expectations solution that excludes

bubbles and sunspots.

Under discretion, ut is the only relevant state variable in (2.1) and (2.6)

πt = βEtπt+1 + αyt + ut

πt = −ω

α
yt,

5Woodford (1999) compares this ‘commitment’ to the ‘contract’ under John Rawls’ veil of
uncertainty.

6Due to the history-dependence of (2.10), the different initial policy has some influence on the
losses in subsequent periods, too.

7Without loss of generality but to simplify the notation, the MSV solutions are derived based on
(2.1) without reference to (2.2). The definition of α in (2.2) is substituted into the MSV solutions
for the simulation results in section 2.3.3.
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so the conjectured solution is of the form

πt,DIS = φ1ut

yt,DIS = φ2ut.

Since Etπt+1 = φ1ρut in this case, the MSV solution is given by

πt,DIS =
ω

ω(1− βρ) + α2
ut (2.12)

yt,DIS =
−α

ω(1− βρ) + α2
ut. (2.13)

Under the timeless perspective, yt−1 and ut are the relevant state variables from

(2.1) and (2.10):

πt = βEtπt+1 + αyt + ut

πt = −ω

α
yt +

ω

α
yt−1.

Hence, the conjectured solution becomes

πt,TP = φ11yt−1 + φ12ut (2.14)

yt,TP = φ21yt−1 + φ22ut. (2.15)

After some calculations,8 the resulting MSV solution is described by

πt,TP =
ω(1− δ)

α
yt−1 +

1

γ − β(ρ + δ)
ut (2.16)

yt,TP = δyt−1 − α

ω(γ − β(ρ + δ))
ut. (2.17)

with γ ≡ 1 + β + α2

ω
and δ ≡ γ−

√
γ2−4β

2β
. Given these MSV solutions, we are now

able to evaluate the relative performance of monetary policy under discretion and

the timeless perspective rule.

2.3 Policy Evaluation

2.3.1 Welfare criteria

Unconditional expectations: The standard approach to evaluate monetary pol-

icy performance is to compare average values for the period loss function, i.e. values

8 These calculations include a quadratic equation in φ21, of which only one root, 0 < δ < 1, is
relevant according to both the stability and MSV criteria.
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of the unconditional expectations of the period loss function in (2.3), denoted as

E[L].9 We follow this approach for the analysis of the influence of preference and

structural parameters mainly because it is very common in the literature10 and

allows an analytical solution. However, it includes several implicit assumptions.

First, πt and yt need to be covariance-stationary. This is not a problem in our

setup since ut is stationary by assumption and 0 < δ < 1 is chosen according to

the stability criterion, see footnote 8. Second, using unconditional expectations

of (2.3) implies treating the initial conditions as stochastic (see, e.g., King and

Wolman, 1999, p.377) and thus averages over all possible initial conditions. Third,

Rudebusch and Svensson (1999) and Dennis (2004, Appendix A) show that the

standard approach is formally correct only for lim β → 1, the central bank’s discount

factor being close to 1. This may influence the precise parameter values for which

DIS performs better than TP in section 2.3.3, but it only strengthens the general

argument with respect to the influence of β as will be shown below.

Conditional expectations: At the same time, using unconditional expecta-

tions impedes an investigation of the effects of specific initial conditions and tran-

sitional dynamics to the steady state on the relative performance of policy rules.

For this reason and to be consistent with the microfoundations of the New Keyne-

sian model, Kim and Levin (2005), Kim, Kim, Schaumburg and Sims (2005) and

Schmitt-Grohé and Uribe (2004) argue in favour of conditional expectations as the

relevant welfare criterion. If future outcomes are discounted, i.e. β < 1, the use of

conditional expectations, i.e. L in (2.3) as welfare criterion, implies that short-run

losses from TP become relatively more important to the long-run gains compared

to the evaluation with unconditional expectations.

Both concepts can be used to evaluate the performance of monetary policy under

varying parameter values and the results are qualitatively equivalent. Besides its

popularity and analytical tractability, the choice of unconditional expectations as

the general welfare measure has a third advantage: by implicitly averaging over all

possible initial conditions and treating all periods the same, we can evaluate policies

for all current and future periods and thus consider the policy problem from a ‘truly

timeless’ perspective in the sense of Jensen (2003), that does not bias our results in

favour of discretionary policy-making. Only the analysis of the effects of different

initial conditions requires reverting to conditional expectations.

9The unconditional expectations of the period loss function Lt are equal to the unconditional
expectations of the total loss function L in (2.3), scaled down by the factor (1− β).

10See, e.g., various articles in the conference volume by Taylor (1999) and Clarida et al. (1999),
Woodford (1999), Jensen and McCallum (2002).
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2.3.2 Analytical solution

In principle, the relative performance of DIS and TP can be solved analytically if

closed form solutions for the unconditional expectations of the period loss function

are available. This is possible, since

Li = E[Lt,i] = E[π2
t,i] + ωE[y2

t,i], i ∈ {DIS, TP} (2.18)

from (2.3) and the MSV solutions in section 2.2.2 determine the unconditional vari-

ances E[π2
t,i] and E[y2

t,i]. The MSV solution under discretion, (2.12) and (2.13) with

ut as the only state variable and E[u2
t ] = 1

1−ρ2 σ
2, give the relevant welfare criterion

LDIS =

[
ω

ω(1− βρ) + α2

]2
1

1− ρ2
σ2 + ω

[ −α

ω(1− βρ) + α2

]2
1

1− ρ2
σ2

=
ω(ω + α2)

[ω(1− βρ) + α2]2
· 1

1− ρ2
σ2. (2.19)

For the timeless perspective, the MSV solution (2.16) and (2.17) depends on two

state variables, yt−1 and ut. From the conjectured solution in (2.14) and (2.15), we

have

E[π2
t,TP ] = φ2

11E[y2
t−1] + φ2

12E[u2
t ] + 2φ11φ12E[yt−1ut]

E[y2
t,TP ] = φ2

21E[y2
t−1] + φ2

22E[u2
t ] + 2φ21φ22E[yt−1ut]. (2.20)

These two equations are solved and plugged into (2.18) in Appendix 2.A. The result

is

LTP =
2ω(1− δ)(1− ρ) + α2(1 + δρ)

ω(1− δ2)(1− δρ)[γ − β(δ + ρ)]2
· 1

1− ρ2
σ2. (2.21)

Hence, discretion is superior to the timeless perspective rule, if

LDIS < LTP ⇔ ω(ω + α2)

[ω(1− βρ) + α2]2
<

2ω(1− δ)(1− ρ) + α2(1 + δρ)

ω(1− δ2)(1− δρ)[γ − β(δ + ρ)]2

⇔ RL ≡ LTP /LDIS − 1 > 0. (2.22)

(2.22) allows analytical proofs of several intuitive arguments: First, the variance

of cost-push shocks 1
1−ρ2 σ2 affects the magnitude of absolute losses in (2.19) and

(2.21), but has no effect on the relative loss RL because it cancels out in (2.22).

Second, economic theory states that with perfectly flexible prices, i.e. ζ = 0 and

α →∞, respectively, the short-run Phillips curve is vertical at yt = 0. In this case,

the short-run output/inflation trade-off and hence the source of the stabilisation

bias disappears completely and no difference between DIS, COM and TP can exist.
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Third, if the society behaves as an ‘inflation nutter’ (King, 1997) and only cares

about inflation stabilisation, i.e. ω = 0, inflation deviates from the target value

neither under discretion nor under rule-based policy-making. This behaviour elimi-

nates the stabilisation bias because the effect of shocks cannot be spread over several

periods. Shocks always enter the contemporaneous output gap completely. Further-

more, the initial conditions do not matter, since y−1 receives a weight of 0 in (2.10)

and no short-run loss arises. The last two statements are summarised in the follow-

ing proposition.

Proposition 2.1 Discretion and Woodford’s timeless perspective are equivalent for

1. perfectly flexible prices or

2. inflation nutter - preferences.

Proof. 1. limα→∞ RL = 0. 2. limω→0 RL = 0.

Finally, proposition 2.2 states that discretion is not always inferior to Woodford’s

timeless perspective. If the private sector discounts future developments at a larger

rate, i.e. β decreases, firms care less about optimal prices in the future, when they

set their optimal price today. Hence, the potential to use future policies to spread

the effects of a current shock via the expectations channel decreases. Therefore, the

loss from the stabilisation bias under DIS, where this potential is not exploited, i.e.

the long-run gains LDIS −LCOM , also decreases with smaller β, while the short-run

costs from TP, LTP − LCOM , remain unaffected under rule (2.10). In the extreme

case of β = 0, expectations are irrelevant in the Phillips curve (2.1) and the source of

the stabilisation bias disappears. If the reduction in the long-run gain is sufficiently

large, conditions (2.11) and (2.22) are fulfilled.

Proposition 2.2 There exists a discount factor β small enough such that discretion

is superior to Woodford’s timeless perspective as long as some weight is given to

output stabilisation and prices are not perfectly flexible.

Proof. RL is continuous in β because stability requires 0 ≤ δ, ρ < 1. Furthermore,

limβ→0 RL = [α2+2(1−ρ)ω+(1+ρ)ω](α2+ω)
(α2+2ω)[α2+(1−ρ)ω]

− 1 > 0 for ω > 0 ∧ α < ∞.

In principle, (2.22) could be used to look at the influence of structural (ζ, ρ) and

preference (β, ω) parameters on the relative performance of monetary policy under

discretion and the timeless perspective rule more generally.11 Unfortunately, (2.22)

is too complex to be analytically tractable. Hence, we have to turn to results from

simulations.
11Please note that it would be conceptually nonsense to compare one policy over several values

of a preference parameter. Here, however, we always compare two policies (DIS and TP) holding
all preference and structural parameters constant.
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2.3.3 Simulation results

Preference (β, ω) and structural (ζ, ρ) parameters influence the relative performance

of monetary policy under discretion and the timeless perspective rule. To evaluate

each effect separately, we start from a benchmark model with parameter values

presented in table 2.1 and then vary each parameter successively.

Table 2.1: Parameter values for the benchmark model.

Parameter β ω ζ α ρ

Value 0.99 0.0625 0.8722 0.02 0

If one period in the model reflects one quarter, the discount factor of β = 0.99

corresponds to an annual real interest rate of 4%. Setting ω = 1/16 implies an

equal weight on the quarterly variances of annualised inflation and the output gap.

For β = 0.99, ζ = 0.8722 corresponds to α = 0.02, the value used in Jensen and

McCallum (2002) based on empirical estimates in Gaĺı and Gertler (1999).12

Discount factor β: Figure 2.1 presents the results for the variation of the

discount factor β as the loss from the timeless perspective relative to discretionary

policy, RL. A positive (negative) value of RL means that the loss from the timeless

perspective rule is greater (smaller) than the loss under discretion, while an increase

(decrease) in RL implies a relative gain (loss) from discretion.

The simulation shows that RL increases with decreasing β, i.e. DIS gains relative

to TP, if the private sector puts less weight on the future. This pattern reflects

proposition 2.2 in the previous section. Since the expectations channel becomes

less relevant with smaller β, the stabilisation bias and thus the long-run gains from

commitment also decrease in β, whereas short-run losses remain unaffected.

In particular, DIS becomes superior to TP in the benchmark model for β < 0.839,

but with ω = 1 already for β < 0.975. Differentiating between the central bank’s

and the private sector’s discount factor β as in section 2.4, when the optimal timeless

policy rule is derived analytically, shows that the latter drives RL because it enters

the Phillips curve, while the former is irrelevant due to the use of unconditional

expectations as the welfare criterion as discussed in section 2.3.1. But since using

the unconditional expectations of the loss function gives equal weight to all periods

and hence greater weight to future periods than actually valid for β < 1, this effect

only strengthens the general argument.

12ζ and α are linked through the definition of α in (2.2).



Chapter 2 Discretion rather than rules? 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

R
L

Value of β

ω = 1/16
ω = 1

Figure 2.1: Variation of discount factor β, TP vs. DIS.

This can be shown with the value of the loss function (2.3), L = E0

∑∞
t=0 βtLt,

conditional on expectations at t = 0 instead of the unconditional expectations E[L].

As figure 2.2 demonstrates, the general impact of β on RL is similar to figure 2.1.13

The notable difference is the absolute superiority of DIS over TP in our benchmark

model, independently of β. In order to get a critical value of β for which DIS and TP

produce equal losses, other parameters of the benchmark model have to be adjusted

such that they favour TP, e.g. by reducing ω as explained below. Hence, figure

2.2 provides evidence that the use of unconditional expectations does not bias the

results towards lower losses for discretionary policy. For reasons presented in section

2.3.1, we focus only on unconditional expectations from now on.

Output gap weight ω: In Barro and Gordon (1983), the traditional inflation

bias increases in the weight on the output gap, while the optimal stabilisation policies

are identical both under discretion and under commitment.14 In my intertemporal

model without structural inefficiences, however, the optimal stabilisation policies are

different under DIS and COM/TP. The history-dependence of TP in (2.10) improves

the monetary authority’s short-run output/inflation trade-off in each period because

it makes today’s output gap enter tomorrow’s optimal policy with the opposite sign,

13The use of conditional expectations requires setting the initial conditions, i.e. y−1 and u0, to
specific values. In figure 2.2, y−1 = −0.01 and u0 = 0.

14In Barro and Gordon (1983), a larger ω increases the marginal utility of higher inflation. Under
discretion, the marginal utility of higher inflation must equal its marginal cost such that the ex
ante expected policy is also ex post optimal on average, which leaves the optimal stabilisation
policy unaffected.
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Figure 2.2: Variation of discount factor β using conditional expectations of loss
function, TP vs. DIS.

but the same weight ω/α in both periods. Hence, optimal current inflation depends

on the change in the output gap under TP, but only on the contemporaneous output

gap under DIS. This way, rule-based policy-making eliminates the stabilisation bias

and reduces the relative variance of inflation and output gap, which is a prominent

result in the literature.15

The short-run costs from TP arise because the monetary authority must be tough

on inflation already in the initial period. These short-run costs increase with the

weight on the output gap ω.16 The long-run gains from TP are caused by the size of

the stabilisation bias and the importance of its elimination given by the preferences

in the loss function. Equation (2.10) shows that increasing ω implies a softer policy

on inflation today, but is followed by a tougher policy tomorrow. Although the

effect of tomorrow’s policy is discounted by the private sector with β, the size of the

stabilisation bias, i.e. the neglection of the possibility to spread shocks over several

periods, appears to be largely independent from ω. However, the reduction in the

relative variance of inflation due to TP becomes less important the larger the weight

on the variance of the output gap in the loss function, i.e. the long-run gains from

TP decrease in ω. Since short-run costs increase and long-run gains decrease in

the weight on the output gap (ω ↑), a larger preference for output gap stabilisation

favours DIS relative to TP for reasonable ranges of parameters.

15See, e.g., Woodford (1999) and Dennis and Söderström (2006).
16The optimal output gap yt under DIS is decreasing in ω, see equation (2.6).
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Figure 2.3: Variation of weight on the output gap ω, TP vs. DIS.

In the benchmark model of figure 2.3, RL initially decreases from 0 for ω = 0

with ω ↑.17 But for reasonable values of ω, i.e. ω > 0.0009 in the benchmark model,

RL increases in the preference for output stabilisation and becomes even positive

for ω > 5.28.18

Price rigidity ζ: Proposition 2.1 states that DIS and TP are equivalent for

perfectly flexible prices, i.e. ζ = 0 or α →∞, respectively. Increasing price rigidity,

i.e. increasing ζ, has two effects: First, firms’ price-setting becomes more forward-

looking because they have less opportunities to adjust their prices. This effect

favours TP over DIS for ζ ↑ because TP optimally incorporates forward-looking

expectations. Second, more rigid prices imply a flatter Phillips curve and thus the

requirement of TP to be tough on inflation already in the initial period becomes more

costly. Hence, the left-handside of (2.11), the short-run losses from TP over DIS,

increases. Figure 2.4 demonstrates that for ζ > 0.436, the second effect becomes

more important, and for ζ > 0.915, the second effect even dominates the first.19

Gaĺı and Gertler (1999) provide evidence that empirically reasonable estimates

for price rigidity lie within α ∈ [0.01; 0.05], i.e. ζ ∈ [0.909; 0.804]. In this range,

figure 2.5 shows that RL increases with the firms’ probability of not being able to

17Note the magnifying glass in figure 2.3.
18RL may approach 0 again for ω →∞, the (unreasonable) case of an ‘employment nutter’.
19Since the relationship between ζ and α given by equation (2.2) also depends on β, there is a

qualitatively irrelevant and quantitatively negligible difference between varying the probability of
no change in a firm’s price, ζ, and directly varying the output gap coefficient in the Phillips curve,
α.
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Figure 2.4: Variation of degree of price rigidity ζ, TP vs. DIS.

reset their price, ζ, and exceeds 0 for ζ > 0.915 or α < 0.009.

Correlation of shocks ρ: The analysis of the influence of serial correlation

in cost push shocks, ρ, is more complex. LDIS exceeds LTP in the benchmark

model with ρ = 0 and raising ρ ceteris paribus strengthens the advantage of TP

as demonstrated in figure 2.6. If shocks become more persistent, their impact on
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Figure 2.5: Variation of degree of price rigidity ζ for ζ > 0.9, TP vs. DIS.
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Figure 2.6: Variation of degree of serial correlation ρ in the benchmark model, TP
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future outcomes increases and thus TP gains relative to DIS because it accounts for

these effects in a superior way. The long-run gains from TP dominate its short-run

losses and RL decreases with ρ.

However, the relationship between ρ and RL is not independent of the other

parameters in the model, while the relationships between RL and β, ζ and ω, re-

spectively, appear to be robust to alternative specifications of other parameters.

Broadly speaking, as long as LDIS > LTP for ρ = 0, varying ρ results in a diagram

similar to figure 2.6, i.e. LDIS > LTP for all ρ ∈ [0; 1) and RL decreases in ρ. If,

however, due to an appropriate combination of β, ζ and ω, LDIS ≤ LTP for ρ = 0,

a picture symmetric to the horizontal axis in figure 2.6 emerges, as shown in figure

2.7.20 That means that a higher degree of serial correlation only strengthens the

dominance of either TP or DIS already present without serial correlation. Hence,

serial correlation on its own seems not to be able to overcome the result of the

trade-off between short-run losses and long-run gains from TP implied by the other

parameter values.21

20For parameter combinations that result in LDIS in the neighbourhood of LTP for ρ = 0,
increasing ρ has hardly any influence on RL, but for high degrees of serial correlation from about
ρ > 0.8, RL increases rapidly.

21This shows that the results in McCallum and Nelson (2004, p. 48), who only report the
relationship visible in figure 2.6, do not hold in general.
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2.3.4 Effects of initial conditions

As argued in section 2.3.1, we have to use conditional expectations of L in 2.3 in

order to investigate the effects of the initial conditions, i.e. the previous output gap

y−1 and the current cost-push shock u0 on the relative performance of policy rules.

Figure 2.8 presents the relative loss R̂L = LTP /LDIS − 1 conditional on y−1 and u0.

Starting from the steady state with y−1 = u0 = 0 where R̂L = −0.0666 in the

benchmark model,increasing the absolute value of the initial lagged output gap |y−1|
increases the short-run cost from following TP instead of DIS and leaves long-run

gains unaffected: While π0,DIS = y0,DIS = 0 from (2.12) and (2.13), π0,TP and

y0,TP deviate from their target values as can be seen from the history-dependence of

(2.10) or the MSV solution (2.16) and (2.17). Hence, TP becomes suboptimal under

conditional expectations for sufficiently large |y−1|. Note also that this short-run cost

is of course symmetric to the steady-state value y−1 = 0.

If in addition to |y−1| > 0 a cost-push shock |u0| > 0 hits the economy, the

absolute losses both under DIS and TP increase. Since TP allows an optimal com-

bination of the short-run cost from TP, the inclusion of |y−1| > 0 in (2.10), with the

possibility to spread the impact of the initial shock |u0| > 0 over several periods, a

larger shock u0 alleviates the short-run cost from TP. Hence, the relative loss R̂L

from TP decreases in |u0| for any given |y−1| > 0.

However, this effect is the weaker the closer |y−1| is to 0, as can be seen from

the less bent contour lines in figure 2.8. If y−1 = 0, the size of |u0| has no influence
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Figure 2.8: R̂L depending on y−1 and u0.

on R̂L any more since DIS and TP do not differ in t = 0.22 In this case, R̂L

is parallel to the u0-axis. While u0 still influences the absolute loss-values L under

both policies and how these losses are spread over time under TP, it has no influence

on the relative gain from TP as measured by R̂L, which is solely determined by the

long-run gains from TP for y−1 = 0.

Note that RL is symmetric both to y−1 = 0 for any given u0 and to u0 = 0 for

any given y−1. Under DIS, y−1 has no impact because (2.6) is not history-dependent

and u0 only influences the respective period loss L0, which is the weighted sum of the

variances π2
0 and y2

0. Hence, LDIS is independent of y−1 and symmetric to u0 = 0.

Under TP, however, the history-dependence of (2.9) makes y−1 and u0 influence

current and future losses. While the transitional dynamics differ with the relative

sign of u0 and y−1, the total absolute loss LTP does not for any given combination of

|y−1| and |u0|. If the economy was in a recession (y−1 < 0), for example,23 the price

to pay under TP is to decrease π0 through dampening y0. In figure 2.9, the shift of

the steady-state aggregate demand curve AD∗ to AD0 reflects this policy response.

Scenario 1: If additionally a negative cost-push shock u0 < 0 hits the economy,

i.e. with the same sign as y−1 < 0, this shock lowers π0 further as the Phillips curve

(2.1) is shifted downwards from its steady-state locus AS∗ to AS ′0 in figure 2.9. At

22To be precise, the policy ‘rules’ (2.6) and (2.10) do not differ in t = 0, but the losses differ
because of the more favourable output-inflation trade-off through the impact of TP on E0π1 in
(2.1). This benefit of TP is part of the long-run gains, however, because it is also present under
COM.

23The following arguments run in a completely analogous manner for y−1 > 0.
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Figure 2.9: AS-AD-Diagram in t = 0 for two symmetric cost-push shocks u0.

the same time, u0 < 0 increases y0 ceteris paribus,24 brings y0 closer to the target

of 0 and thus reduces the price to pay for TP in the next periods t = 1, . . .. The

anticipation of this policy in turn lowers inflation expectations E0π1 compared to

the steady-state and thus shifts AS ′0 even further down. B denotes the resulting

equilibrium in figure 2.9 and is always closer to the π0-axis than A.

Scenario 2: If, however, the initial cost-push shock u0 is positive, i.e. of opposite

sign to y−1 < 0, the transitional dynamics are reversed. The Phillips curve (2.1) is

shifted upwards to AS ′′0 in figure 2.9. In contrast to scenario 1 with u0 < 0, this

reduces the negative impact of y−1 on π0 but increases y0 to point C. Hence, the

price to pay under TP in t = 1 is larger than in scenario 1, which in turn also lowers

inflation expectations E0π1 by more. The additional shift of AS ′′0 downwards is thus

larger than for u0 < 0 and the new equilibrium is at point D.

Figure 2.10 presents the discounted period losses under TP for both cases in the

benchmark model. The behaviour of the economy as described above causes a larger

loss in the initial period for the first scenario with sign(y−1) = sign(u0) compared to

the case with sign(y−1) = −sign(u0) because the expectations channel has a smaller

24Formally, partial derivatives of (2.16) and (2.17) with respect to both state variables (yt−1, ut)
show that both have the same qualitative effect on πt and an opposing effect on yt: ∂πt/∂yt−1 =
ω(1−δ)

α > 0 and ∂πt/∂ut = 1
γ−β(ρ+δ) > 0 while ∂yt/∂yt−1 = δ > 0 and ∂yt/∂ut = −α

ω(γ−β(ρ+δ)) < 0.
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Figure 2.10: Discounted per-period loss values LTP,t for |y−1| = 0.02 and |u0| =
0.01.

impact, but a reversal of the magnitude of losses for t ≥ 1 because the price to

pay for TP then is larger until the period loss converges to its unconditional value.

Since the sum of the discounted losses, however, is equal in both scenarios, LTP is

symmetric to u0 = 0 given y−1 and to y−1 = 0 given u0.

To summarise, Figure 2.8 presents the influences of the initial conditions on the

relative performance of TP and DIS and the rest of this section provides intuitive

explanations of the effects present in the model. R̂L becomes positive, i.e. DIS

performs better than TP, in the benchmark model for quite realistic values of the

initial conditions, e.g. R̂L > 0 for |y−1| = 0.015 and |u0| = 0.01. Hence, it may not

be welfare increasing for an economy to switch from DIS to TP if it is not close to

its steady state.

2.4 Optimal timeless policy rule

So far, we have compared policy under discretion and under the timeless perspective

rule in the sense of Woodford (1999). The latter appears to be the most common

‘optimal’ rule in the recent literature on monetary policy. However, as noted in

the introduction, several authors have already mentioned that TP is not always an

optimal rule - without providing an analysis of the influence of different parameters

on the performance of TP and without an intuitive interpretation of their result,

the main objectives of this chapter. In particular, Blake (2001) and Jensen (2003)
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derive the optimal timeless policy (OP) based on the unconditional expectations of

the timeless perspective’s MSV solution, i.e. equations (2.16) and (2.17) in section

2.2.2, as

πt = −ω

α
yt + β

ω

α
yt−1 ∀t. (2.23)

Starting from the root of the problem, however, and differentiating between the

monetary authority’s discount factor βMA, at which the intertemporal losses in (2.3)

are discounted, and the private sector’s discount factor βPS, that enters the New

Keynesian Phillips curve (2.1), allow further insights. The intertemporal Lagrangian

(2.7) changes to

Λ = E0

∞∑
t=0

βt
MA

[
(π2

t + ωy2
t )− λt(πt − βPSπt+1 − αyt − ut)

]
. (2.24)

This yields as first order conditions

∂Λ

∂yt

= 2ωyt + αλt = 0, t = 0, 1, 2, . . . ,

∂Λ

∂πt

= 2πt − λt = 0, t = 0,

∂Λ

∂πt

= 2βMAπt − βMAλt + βPSλt−1 = 0, t = 1, 2, . . . ,

implying

πt = −ω

α
yt, t = 0 and (2.25)

πt = −ω

α
yt +

βPS

βMA

ω

α
yt−1, t = 1, 2, . . . . (2.26)

Again, the timeless perspective requires neglecting (2.25) and applying (2.26) in

all periods. We know from the discussion in section 2.3.1 and Dennis (2004, Appen-

dix A) that using the ‘truly timeless’ perspective with unconditional expectations

implicitly sets βMA = 1. Hence, the optimal timeless rule by Blake (2001) and

Jensen (2003) is in fact25

πt = −ω

α
yt + βPS

ω

α
yt−1, ∀t. (2.27)

This rule causes a loss under unconditional expectations of

LOP =
ω[1− η2 + (βPS − η)2] + α2

ω(1− η2)(ξ − βPSη)2
· σ2, (2.28)

25Recall that Blake (2001) and Jensen (2003) cannot account for the difference between βPS and
βMA because they optimise over unconditional expectations of the loss function.
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where ξ ≡ 1 + β2
PS + α2

ω
, η ≡ ξ−

√
ξ2−4β2

PS

2βPS
and ρ = 0 for simplicity.

Performing simulations analogous to the ones in section 2.3.3, but with the op-

timal timeless rule (2.27) instead of (2.10) and R̃L ≡ LOP /LDIS − 1, gives graphs

with similar patterns to the respective figures in section 2.3.3. The critical difference

is that R̃L never becomes positive for any parameter combinations (see figures 2.12

to 2.16 in Appendix 2.B), even for figure 2.7, where RL is positive, but R̃L negative

for all ρ.26 This suggests that as long as the private sector is not completely my-

opic27 and some weight is given to output stabilisation and prices are not perfectly

flexible, the inclusion of βPS in the optimal policy rule (2.27) is superior to DIS

from a truly timeless perspective.28 The optimal policy rule reduces its reaction to

the lagged output gap in all periods and thus optimally accounts for the decreasing

potential to use future policies to spread the effects of a current shock both in the

initial and future periods, given that the future is not discounted in the welfare

function (βMA = 1). The reason is that (2.27) reduces the weight on yt−1 by βPS

whereby today’s output gap receives exactly the same weight in tomorrow’s policy

with which the private sector discounts tomorrow’s policy today.29

Hence, the inclusion of βPS optimally accounts for the use of unconditional ex-

pectations as the welfare criterion. But the general argument, that the relative

performance of policy-making under the timeless perspective and discretion reflects

the trade-off between short-run losses and long-run gains in (2.11), remains valid for

two reasons: First, the general pattern of the parameter influences is not affected

by OP. Second, the influence of initial conditions on the relative performance is al-

leviated, but still present in the benchmark model with β = 0.99 as can be seen in

figure 2.11, which plots R̂L as in figure 2.8, but with OP instead of TP compared

to DIS.

2.5 Conclusion

This paper explores the theoretical implications of different policy rules and discre-

tionary policy under varying parameters in the New Keynesian model. With the

comparison of short-run gains from discretion over rule-based policy and long-run

26Here, LDIS ≥ LOP for ρ = 0 with any combination of parameters, and increasing ρ only
aggravates this situation.

27For a completely myopic private sector, i.e. βPS = 0, the optimal timeless rule causes a loss
equivalent to the one under discretion because equations (2.6) and (2.23) are identical for βPS = 0.
Hence, there is no equivalent to Proposition 2.2 for OP.

28An analytical proof of this result could be given as follows: Since limβP S→0 LOP = LDIS and
dLOP

dβ < 0 for 0 < β ≤ 1, while dLDIS

dβ = 0, LOP < LDIS for 0 < β ≤ 1. But dLOP

dβ is too complex

to allow an analytical determination of sign
(

dLOP

dβ

)
.

29Recall also the discussion of the influence of β and ω in sections 2.3.2 and 2.3.3.
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Figure 2.11: R̂L = LOP

LDIS
depending on y−1 and u0.

losses from discretion, we have provided a framework in which to think about the

impact of different parameters on monetary policy rules versus discretion. This

framework allows intuitive economic explanations of the effects at work.

Already Blake (2001), Jensen and McCallum (2002) and Jensen (2003) provide

evidence that a policy rule following the timeless perspective can cause larger losses

than purely discretionary modes of monetary policy making in special circumstances.

But none of these contributions considers an economic explanation for this rather

unfamiliar result let alone analyses the relevant parameters as rigorously as this

chapter.

What recommendations for economic policy making can be derived? Most im-

portantly, the timeless perspective in its standard formulation is not optimal for all

economies at all times. In particular, if an economy is characterised by rigid prices,

a low discount factor, a high preference for output stabilisation or a sufficiently

large deviation from its steady state, it should prefer discretionary monetary policy

over the timeless perspective. The critical parameter values obtained in this chapter

suggest that – for a number of empirically reasonable combinations of parameters –

the long-run losses from discretion may be less relevant than previously thought.

In an overall laudatory review of Woodford (2003), Walsh (2005) argues that

Woodford’s book ‘will be widely recognized as the definitive treatise on the new

Keynesian approach to monetary policy.’ He critisises the book, however, for its

lack of an analysis of the potential short-run costs of adopting the timeless perspec-

tive rule. Walsh (2005) sees these short-run costs arising from incomplete credibility
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of the central bank. Our analysis has completely abstracted from such credibility

effects and still found potentially significant short-run costs from the timeless per-

spective. Obviously, if the private sector does not fully believe in the monetary

authority’s commitment, the losses from sticking to a rule relative to discretionary

policy are even greater than in the model used in this chapter. One way to incorpo-

rate such issues is to assume that the private sector has to learn the monetary policy

rule. Evans and Honkapohja (2001) provide a convenient framework to analyse this

question in more detail.
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Appendix

2.A Derivation of LTP

The unconditional loss for the timeless perspective, equation (2.21), can be derived

in several steps. The MSV solution (2.16) and (2.17) depends on two state variables,

yt−1 and ut. From the conjectured solution in (2.15), we have

E[y2
t ] = φ2

21E[y2
t−1] + φ2

22E[u2
t ] + 2φ21φ22E[yt−1ut]. (2.29)

E[yt−1ut] can be calculated from (2.15) with ut = ρut−1 + ε as

E[yt−1ut] = E[(φ21yt−2 + φ22(ρut−2 + εt−1))(ρut−1 + εt)]

= E[φ21ρ yt−2ut−1︸ ︷︷ ︸
=E[yt−1ut]

+φ22(ρ
2 ut−1ut−2︸ ︷︷ ︸

=ρσ2
u

+ρ ut−1εt−1︸ ︷︷ ︸
=σ2

)] + 3 · 0, (2.30)

since the white noise shock εt is uncorrelated with anything from the past. Solving

for E[yt−1ut] with σ2
u = 1

1−ρ2 σ2 gives

E[yt−1ut] =
φ22ρ

1− φ21ρ
· 1

1− ρ2
σ2. (2.31)

Plugging this into (2.29), using E[y2
t ] = E[y2

t−1] = E[y2] and φ21, φ22 from the

MSV solution (2.17) leaves

E[y2] =
1

1− φ2
21

(
φ2

22 +
2φ21φ

2
22ρ

1− φ21ρ

)
1

1− ρ2
σ2

=
α2(1 + δρ)

ω2(1− δ2)(1− δρ)[γ − β(δ + ρ)]2
· 1

1− ρ2
σ2. (2.32)

From the conjectured solution in (2.14), we have

E[π2
t ] = φ2

11E[y2
t−1] + φ2

12E[u2
t ] + 2φ11φ12E[yt−1ut]. (2.33)

Combining this with the previous results and the MSV solution (2.16) results in

E[π2] =
2(1− ρ)

(1 + δ)(1− δρ)[γ − β(δ + ρ)]2
· 1

1− ρ2
σ2. (2.34)

Hence, LTP as the weighted sum of E[π2] and E[y2] is given by

LTP =
2ω(1− δ)(1− ρ) + α2(1 + δρ)

ω(1− δ2)(1− δρ)[γ − β(δ + ρ)]2
· 1

1− ρ2
σ2. (2.35)
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2.B Influence of parameters on R̃L
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Figure 2.12: Variation of discount factor β, OP vs. DIS.
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Figure 2.13: Variation of weight on the output gap ω, OP vs. DIS.
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Figure 2.14: Variation of degree of price rigidity ζ, OP vs. DIS.
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Figure 2.16: Variation of degree of serial correlation ρ with ω = 10, OP vs. DIS.
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Dennis, Richard and Ulf Söderström (2006): How important is precommitment

for monetary policy? Journal of Money, Credit, and Banking, vol. 38 (4), pp.

847–872.

Evans, George W. and Seppo Honkapohja (2001): Learning and Expectations in

Macroeconomics. Princeton University Press, Princeton.
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Schmitt-Grohé, Stephanie and Mart́ın Uribe (2004): Optimal operational

monetary policy in the Christiano-Eichenbaum-Evans model of the U.S. busi-

ness cycle. Duke University, http://www.econ.duke.edu/∼grohe/research/

research.html.

Taylor, John B. (1999): Monetary Policy Rules. University of Chicago Press,

Chicago.

Walsh, Carl E. (2003): Monetary Theory and Policy. MIT Press, Cambridge,

second edn.

—— (2005): Interest and prices: A review essay. Macroeconomic Dynamics, vol. 9,

pp. 462–468.



Chapter 2 Discretion rather than rules? 40

Woodford, Michael (1999): Commentary: How should monetary policy be con-

ducted in an era of price stability? In: New Challenges for Monetary Policy, pp.

277–316. Federal Reserve Bank of Kansas City.

—— (2003): Interest and Prices: Foundations of a Theory of Monetary Policy.

Princeton University Press, Princeton, NJ.



CHAPTER 3

Using Taylor rules to understand ECB

monetary policy∗

Abstract

Over the last decade, the simple instrument policy rule developed by Taylor (1993)

has become a popular tool for evaluating monetary policy of central banks. As an

extensive empirical analysis of the ECB’s past behaviour still seems to be in its

infancy, we estimate several instrument policy reaction functions for the ECB to

shed some light on actual monetary policy in the euro area under the presidency of

Wim Duisenberg and answer questions like whether the ECB has actually followed

a stabilising or a destabilising rule so far.

Looking at contemporaneous Taylor rules, the presented evidence suggests that

the ECB is accommodating changes in inflation and hence follows a destabilising

policy. However, this impression seems to be largely due to the lack of a forward-

looking perspective in such specifications. Either assuming rational expectations

and using a forward-looking specification, or using expectations as derived from

surveys result in Taylor rules which do imply a stabilising role of the ECB. The use

of real-time industrial production data does not seem to play such a significant role

as in the case of the US.

∗This chapter is based on joint work with Jan-Egbert Sturm and provides an extended and
updated version of Sauer and Sturm (2007).
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3.1 Introduction

Over the last decade, the simple instrument policy rule developed by Taylor (1993)

has become a popular tool for evaluating monetary policy of central banks. Besides

numerous papers on the behaviour of the Federal Reserve and other central banks,2

some authors have applied this rule as a policy guide for the European Central

Bank (ECB) in advance of the introduction of the euro in 1999.3 Since then, the

Taylor rule has been used mainly as a rough guide for the evaluation of the ECB

policy by many ECB watchers in several periodicals such as ‘Monitoring the ECB’

by the CEPR. In contrast to that evidence and despite the end of term of the

ECB’s first president, Mr. Duisenberg, an extensive empirical analysis of the ECB’s

past behaviour still seems to be in its infancy. Referring to its short history, most

papers on ECB monetary policy have estimated a Bundesbank or a hypothetical

ECB reaction function prior to 1999 and then, e.g., by testing for out-of-sample

stability, compared the implied interest rates with the actual ECB policy.4 Only

few researchers, such as Fourçans and Vranceanu (2002), Gerdesmeier and Roffia

(2003) and Ullrich (2003), have actually estimated an ECB reaction function.

We add to this latter literature by estimating several instrument policy reaction

functions for the ECB. In this way we intend to shed some light on actual monetary

policy in the euro area. Looking back over the ‘Duisenberg-era’, we explore what role

the output gap has played in the actual ECB policy and how actively the ECB has

really responded to changes in inflation. By comparing these results with those for

the Bundesbank, we hope to get a clearer picture of the new institutional monetary

setting in Europe.

In describing actual monetary policy of the ECB by so-called Taylor rules, we

will focus on data uncertainties faced by policy-makers. They base their decisions

upon data which will most likely be revised in the future. Still most studies on

central bank behaviour neglect this issue and use so-called ‘current’ or ‘ex-post’

data, i.e. data published in the latest release, to estimate monetary policy rules.

In reality, central bankers can only use so-called ‘real-time’ data, i.e. data available

when taking the decision. Croushore and Stark (2001) and Swanson, Ghysels and

Callan (1999) show that data revisions in the case of the US affect policy analysis

and economic forecasts to a substantial degree. In his influential paper, Orphanides

(2001) shows that estimated policy reaction functions obtained using the ex-post

revised data can yield misleading descriptions of historical policy in the case of the

2See, e.g., Clarida, Gaĺı and Gertler (1998), Clarida, Gaĺı and Gertler (2000), Judd and Rude-
bush (1998), Kozicki (1999), Orphanides (2001), Rudebusch (2002) and Taylor (1999).

3See, e.g., Gerlach and Schnabel (2000) and Peersman and Smets (1998).
4See, e.g., Clausen and Hayo (2002), Faust, Rogers and Wright (2001) and Smant (2002) for

the first approach and, e.g., Clausen and Hayo (2002) and Gerlach-Kristen (2003) for the latter.
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US. We explore whether data revisions contain similar problems for the euro area.

In this line of argument, the use of survey data which are rarely being revised in the

course of time, readily available, and timely (as opposed to most official data) can

be very helpful.

A second important aspect of survey data is its prevalent forward-looking per-

spective. It is well known that central banks not only respond to past informa-

tion, but use a broad range of information. In particular, they consider forecasts

of inflation and output in their decision process. The theoretical justification for

such a forward-looking approach is given by, e.g., Clarida, Gaĺı and Gertler (1999)

within a New Keynesian model. In addition to investigating policy reaction func-

tions based on survey data, we follow Clarida et al. (1998, 1999, 2000) and estimate

forward-looking Taylor rules in order to compare the relevance of real-time versus

forward-looking aspects.

We conclude that, without assuming a forward-looking attitude of ECB policy-

makers, past policy rate changes are identified as having been too small with respect

to changes in inflation and the ECB’s policy reaction function does clearly differ

from that of the Bundesbank. However, once forward-looking behaviour of the ECB

is taken into account, it has followed a stabilising course, i.e. nominal policy rate

changes were large enough to actually influence real short term interest rates. In

that case, it becomes more difficult to statistically distinguish between the way the

Bundesbank has carried out its mandate of achieving price stability in the nineties

and the way the ECB has done it since. Specifications using survey information, and

therefore combining a forward-looking aspect with the use of real-time data, result

in by far the best fit. Unlike for the US, the use of real-time – instead of ex-post

data – does not make such a clear difference for any of our conclusions for the euro

area.

The next section introduces the Taylor rule. Section 3.3 offers a short overview of

the relevant empirical literature. The following two sections present our own results.

Amongst others, we exemplify the use of real-time as well as forward-looking data

in estimating Taylor rules for the ECB. We end with some concluding remarks.

3.2 The Taylor rule

The Maastricht Treaty has made the ECB very independent. Nowadays, it is widely

believed that a high level of central bank independence and an explicit mandate

for the bank to restrain inflation are important institutional devices to assure price

stability. It is thought that an independent central bank can give full priority to low

levels of inflation. In case of the ECB, its statutes define its primary objective to be
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price stability, which according to the Governing Council of the ECB is measured by

a year-on-year increase of the harmonised index of consumer prices (HICP) for the

euro area of below, but close to 2 per cent over the medium term. In countries with a

more dependent central bank, other considerations (notably, re-election perspectives

of politicians and a low level of unemployment) may interfere with the objective of

price stability.

The monetary policy strategy of the ECB rests on two ‘pillars’.5 One pillar,

the monetary analysis, gives a prominent role to money. As inflation in the long

run is considered to be a monetary phenomenon, the ECB Governing Council has

announced a quantitative reference value for the annual growth rate of a broad

monetary aggregate (M3). The other pillar, the economic analysis, is a broadly

based assessment both of the outlook regarding price developments and of the risks

to price stability in the euro area as a whole. As noted by Issing, Caspar, Angeloni

and Tristani (2001), a wide range of economic and financial indicator variables –

like output gap measures (i.e. measures of the discrepancy between output, or its

factors of production, and their equilibrium values) – is used for this purpose.

The above suggests that, like for the US, it might be possible to describe mone-

tary policy in the euro area by a rule depending upon both inflation and output gap

developments. A natural starting point is the rule as advocated by Taylor (1993) to

describe the monetary policy of the Federal Reserve in the US:6

it = r∗ + πt + 0.5(πt − π∗) + 0.5yt = (r∗ − 0.5π∗) + 1.5πt + 0.5yt. (3.1)

it represents the policy interest rate, r∗ the equilibrium or natural real rate, πt the

rate of inflation (as a proxy for expected inflation), π∗ the inflation target and yt

the output gap in period t.

From a theoretical point of view, Svensson (1999) shows that such a rule is

the optimal reaction function for a central bank pursuing an inflation target in a

simple backward-looking model (using an IS and a Phillips curve).7 In line with

the economic analysis of the ECB’s policy strategy, the output gap is useful in

forecasting future inflation and therefore enters the reaction function of the central

bank even when it has a strict inflation target.

An important question relates to the weight on inflation. Since it is the real

5The announced changes by the ECB Governing Council on May 8th 2003 are primarily intended
to improve communication. For instance, the two pillars have been interchanged and relabelled to
stress the way in which information under the two pillars are cross-checked.

6As common in this line of literature, the nominal short-term interest rate on the money market
is considered to reflect the stance of monetary policy.

7For other examples which motivate such a specification theoretically, we refer to Svensson
(1997), Bernanke and Woodford (1997), Ball (1999) and Woodford (2001, 2003a).
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interest rate which actually drives private decisions, the size of this weight needs to

assure that – as a response to a rise in inflation – the nominal interest rate is raised

enough to actually increase the real interest rate. This so-called ‘Taylor principle’

implies that this coefficient has to be greater than 1. Appendix 3.A derives the

Taylor principle using the model of Svensson (1999) and the New Keynesian model

of chapter 2.

The idea that an ‘active’ monetary policy that reacts strongly to inflation de-

termines the equilibrium of an economy goes at least back to Leeper (1991). If the

central bank does not follow such a ‘leaning against the wind’ policy, self-fulfilling

bursts of inflation may be possible (see, e.g., Bernanke and Woodford, 1997; Clarida

et al., 1998, 2000; Woodford, 2001, 2003a).8

In order to compare the original Taylor rule (3.1) with actual monetary policy,

we need to set the equilibrium real interest rate and the inflation target and find

proxies for the actual stance of monetary policy, the rate of inflation and the output

gap.9 With the ECB’s inflation target of (close to, but) under 2 per cent and a mean

ex-post real interest rate of roughly 1.5 per cent over the Duisenberg era, Taylor’s

(1993) original values of π∗ = 2 and r∗ = 2 for the US should also do reasonably

well for the euro area. We measure actual monetary policy with the Euro Overnight

Index Average (EONIA) lending rate on the money market.10 Inflation is measured

by the year-on-year percentage change in the harmonised index of consumer prices

for the euro area, i.e. the price index used by the ECB to measure price stability.11

The most difficult variable to quantify in this context is the output gap. Given

the relatively short time span since the introduction of the euro and the monthly

frequency in which the governing council of the ECB meets and discusses the stance

of monetary policy, we follow, e.g., Clarida et al. (1998) and Faust et al. (2001) and

use monthly data. This restricts our option with respect to an output gap measure.

In line with, e.g., Clarida et al. (1998), we take the industrial production index

8Within the literature on adaptive learning, Bullard and Mitra (2002) show that the Taylor
principle completely characterises learnability of the fundamental (minimum state variable) rational
expectations equilibrium. Honkapohja and Mitra (2004) demonstrate that policies violating the
Taylor principle lead to indeterminacy and also non-fundamental rational expectations equilibria
are then unlearnable.

9Appendix 3.B contains a list of all time series used and their sources.
10There is some discussion about what is the correct short-term interest rate for the euro area.

We focus on the EONIA as it is the European equivalent of the Federal Funds rate for the US.
Nevertheless, Pérez Quirós and Sicilia (2002) challenge its relevance because of the relatively high
volatility when looking at a daily frequency due to short-term liquidity needs. As monthly averages
smooth out such movements, this does not appear to be relevant for our study; all results are robust
to using the 3-month EURIBOR instead.

11We use ex-post available data with respect to the inflation rate, i.e. the major revision of the
German CPI as published in March 2003 is included. This revision has reduced inflation rates in
the euro area up to 0.5 percentage points mainly in the year 2000. Taking older releases, however,
does not change any of our qualitative conclusions (not shown).
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Figure 3.1: The nominal interest rate and the Taylor rule in Germany and the
euro area.
Notes: The data before 1999 refer to Germany and monetary policy as conducted by the German
Bundesbank. From 1999 onwards, the data refer to the euro area and the ECB. The solid line
equals the Frankfurt overnight interest rate / EONIA, whereas the dotted line shows the three
months moving average Taylor rule, in which the inflation rate is measured as the year-to-year
percentage change in the Harmonised Index of Consumer Prices (for respectively Germany and
the euro area) and the output gap is measured as the deviation of (German / euro area) industrial
production from a Hodrick-Prescott filtered trend.

for the euro area, apply a standard Hodrick-Prescott filter (with the smoothing

parameter set at λ = 14, 400 and calculate our measure of the output gap as the

deviation of the logarithm of actual industrial production from its trend.12 Despite

the increasing share of services in the overall economy, it is still generally believed

that the industrial sector is the ‘cycle maker’ in the sense that it leads and influences

large parts of the economy.13

Using these measures, figure 3.1 depicts actual monetary policy together with

the Taylor rule as given by equation (3.1).14 To enhance comparison with the Bun-

12To calculate a reliable measure of the output gap, we use data for euro area industrial produc-
tion from 1985 onwards.

13As will be discussed later, industrial production data are frequently revised. For that reason,
we will also look at real-time industrial production and at the European Sentiment Indicator
(ESIN) as measures of the output gap.

14Since our measure of the output gap based on industrial production is more volatile than
Taylor’s (1993) original GDP-based output gap, it might be argued that it is more appropriate to
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desbank era, the same graph also shows both time series for Germany using the

Frankfurt overnight interest rate and other German counterparts for the remaining

series.15 In general, the coincidence of the actual nominal interest rate and the

Taylor rule is quite striking especially given the sometimes volatile movements in

industrial production.16 Only during three time periods, the discrepancy between

the two series appears to be relatively persistent: First, in the aftermath of Ger-

man unification and the following crisis of the European Exchange Rate Mechanism

(ERM) until mid-1993. Second, during the second half of 1998 and the first half of

1999. Hence, the change towards the euro seems to have had its effect on actual

monetary policy. Finally, the gap since 11 September 2001 appears to be rather

widening.

3.3 An overview of the empirical literature

Using such a simple rule for monetary policy and building on the experience of

Taylor (1993), several authors have tried to estimate the weights given to deviations

of inflation and output from their optimum by central bankers rather than choosing

a symmetric weight of 0.5 as in equation (3.1). The general idea of such work is to

estimate:

it = α + gππt + gyyt + εt (3.2)

where the constant α captures the term (r∗ − 0.5π∗) in equation (3.1), gπ and gy

represent the estimated weights on inflation and the output gap, respectively, and

εt is an i.i.d. error term.

In practice, it is commonly observed that, especially since the early 1990s, central

banks worldwide tend to move policy interest rates in small steps without reversing

direction quickly.17 To capture this so-called interest rate smoothing, equation (3.2)

is viewed as the mechanism by which the target interest rate i∗t is determined. The

actual interest rate it partially adjusts to this target according to it = (1−ρ)i∗t +ρit−1,

where ρ is the smoothing parameter. This results in the following equation to be

use a lower weight on yt than 0.5. Adjusting this weight by the ratio of the standard deviations
of the output gaps based on GDP and industrial production (=0.68 for euro area since 1999) does
not alter figure 3.1 in any relevant way.

15For the period before 1999, we have also experimented with using industrial production and in-
flation for the euro area. The data, however, suggest that actual policy of the German Bundesbank
has been more concerned with inner German developments.

16Using quarterly data and taking deviations of GDP from its trend to measure the output gap
results in an even better fit. This explains why, for example, the fit as shown in figure 3.1 is not
as perfect as in Taylor (1993) for the federal funds rate.

17See, e.g., Amato and Laubach (1999), Rudebusch (2002).
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estimated:

it = (1− ρ)α + (1− ρ)(gππt + gyyt) + ρit−1 + εt (3.3)

Table 3.1 presents a review of different Taylor rule estimates for the euro area

and the Bundesbank using monthly or quarterly data.18 All regressions show that

monetary policy prior to 1999 followed the Taylor principle as gπ exceeds 1 consis-

tently. This holds for both Germany and the hypothetical euro area.19 One reason

for the small differences between the Bundesbank and the hypothetical euro area

might be the fact that Germany possesses a very large weight in the calculation of

the hypothetical euro area interest rate due to its economic size and some authors

included merely a subset of all euro member countries in their studies.20

Furthermore, note that studies which allow the central banks to behave in a

forward-looking manner do not seem to differ significantly from those which do not.

This result can be interpreted in different ways. One possibility is that the period

of estimation has been relatively stable which would make actual measures of the

business cycle and the inflation differential good indicators of (short-term) future

developments. In less stable environments – as arguably encountered by the ECB

in the last couple of years – this convenient attribute of contemporaneous measures

might fail.

With respect to actual ECB policy the story looks rather different; the results

of Gerdesmeier and Roffia (2003) and Ullrich (2003) – who use standard output

gap measures based on Hodrick-Prescott-filtered industrial production as described

above – contradict those of Fourçans and Vranceanu (2002) – who take annual

growth rate of industrial production as business cycle measure – and the literature

on Taylor rules for both Germany and the hypothetical euro area. While Fourçans

and Vranceanu (2002) find the ECB to react strongly to variations in the inflation

rate and much less to output variations, Gerdesmeier and Roffia (2003), Surico

(2003), as well as Ullrich (2003) estimate small reactions to inflation movements –

suggesting a destabilising role of the ECB – and (both in relative and in absolute

terms) strong replies to output deviations. Furthermore, Ullrich (2003) observes a

structural break between pre-1999 and post-1999 monetary policy in the euro area.

18Recently, some authors have used ordered probit models to estimate the probability of discrete
policy interest rate changes rather than to explain interest rate levels with inflation and output gap
measures (see, e.g., Carstensen, 2006; Gerlach, 2005; Ullrich, 2005). Since the estimation technique
and the interpretation of the parameters are very different to the standard approach used in this
chapter, such papers are not included in table 3.1.

19The way the hypothetical euro area is being defined slightly varies across the cited papers.
However, any measure is dominated by the three largest economies in the euro area, i.e. Germany,
France and Italy.

20The striking difference of Clausen and Hayo’s (2002) value for euro area gy in comparison with
all other papers and their own value for the Bundesbank might be due to their special estimation
technique; they estimate a simultaneous equation model using full information maximum likelihood.
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Table 3.1: Review of Taylor rule estimations for the euro area and the Bundesbank.

Study Type of rule Sample period α gπ gy ρ

Germany

Clarida et al. (1998) Fwd. 1979:3-1993:12 3.14 1.31 0.25 0.91
(0.28) (0.09) (0.04) (0.01)

Peersman and Smets Fwd. 1979:1-1997:12 2.52 1.30 0.28 0.93
(1998) (0.32) (0.10) (0.05) (0.01)
Faust et al. (2001) Fwd. 1985:1-1998:12 2.85 1.31 0.18 0.91

(0.85) (0.35) (0.16) (0.03)
Clausen and Hayo (2002) Cont. 1979:I-1996:IV 3.83 2.89 0.49 0.88
Smant (2002) Fwd. 1979:3-1998:12 3.32 1.73 0.45 0.91

(0.26) (0.25) (0.17) (0.02)
Bohl and Siklos (2007) Fwd. 1982:1-1998:12 1.20 0.28 0.92

(0.20) (0.59) (0.03)

Hypothetical euro area

Peersman and Smets Fwd. 1980:I-1997:IV 3.87 1.20 0.76 0.76
(1998) (0.44) (0.09) (0.13) (0.13)
Gerlach and Schnabel Cont. 1990:I-1998:IV 2.40 1.58 0.45
(2000) (0.30) (0.09) (0.06)

Cont. 1990:I-1998:IV 2.65 1.51 0.49 0.32
Fwd. 1990:I-1998:IV 1.95 1.51 0.28 0.18

Clausen and Hayo (2002) Cont. 1979:I-1996:IV 4.07 2.15 2.12 0.86
Gerlach-Kristen (2002) Cont. 1988:I-1999:IV 1.72 0.91 0.75

(0.33) (0.28) (0.05)
Ullrich (2003) Cont. 1995:1-1998:12 1.97 1.25 0.29 0.23
Castelnuovo (2007)∗ Cont. 1980:I-2003:IV 1.15 0.98

(0.28) (0.22)
Fwd. 1980:I-2003:IV 1.00 1.80

(0.60) (0.85)

[Table continued on the next page]

To summarise, in contrast to the evidence of the Bundesbank and the hypo-

thetical euro area, the actual ECB policy since 1999 does not necessarily seem to

comply with the Taylor principle. In the rest of the chapter, we intend to shed some

more light on this issue by estimating several reaction functions of the ECB and

elaborating on the relevance of the output gap measures. Furthermore, we will go

into the forward-looking behaviour of actual monetary policy in recent years. Table

3.1 already reveals that all papers published after the working paper version of this

chapter (Sauer and Sturm, 2003) confirm the Taylor principle with a forward-looking

rule, but reject it with a contemporaneous one.
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Table 3.1: (continued)

Study Type of rule Sample period α gπ gy ρ

Actual euro area

Fourçans and Vranceanu Cont./ 1999:4-2002:2 1.22 1.16 0.18 0.73
(2002)§ Fwd. (0.15) (0.04) (0.06)
Gerdesmeier and Roffia Cont. 1999:1-2002:1 2.60 0.45 0.30 0.72
(2003) (0.20) (0.10) (0.03) (0.04)
Surico (2003) Cont. 1997:7-2002:10 3.77 0.77 0.47 0.77

(0.06) (0.11) (0.07) (0.03)
Ullrich (2003) Cont. 1999:1-2002:8 2.96 0.25 0.63 0.19
Fourçans and Vranceanu Cont. 1999:4-2003:10 1.80 0.84 0.32 0.90
(2004) Fwd. 1999:4-2003:10 -2.53 2.80 0.19 0.84
Belke et al. (2005) Cont. 1999:I-2005:II 0.02 0.49 1.94 0.75

(0.00) (0.19) (0.08) (0.02)
Fendel and Frenkel (2005) Fwd. 1999:1-2005:6 -1.26 1.67 0.57 0.86

(1.08) (0.48) (0.05) (0.02)
Fendel and Frenkel (2006) Fwd. 1999:1-2003:12 -0.68 2.00 0.53 0.84

(0.65) (0.30) (0.03) (0.01)
Hayo and Hofmann (2006) Fwd. 1999:1-2004:5 0.32 1.48 0.60 0.85

(1.77) (0.79) (0.10) (0.05)
Fourçans and Vranceanu Cont. 1999:1-2005:10 0.07 0.63 1.08 0.94
(2006) Fwd. 1999:1-2005:10 -0.34 4.88 0.66 0.96

Notes: Contemporaneous (Cont.) Taylor rules refer to equation (3.3), forward-looking (Fwd.)
Taylor rules to equation (3.5). If reported, standard errors are within parentheses.
∗This author employs a procedure developed by English, Nelson and Sack (2003) in order to test
for active interest rate smoothing (see also section 3.6). This test requires to estimate equations
(3.3) and (3.5) in first differences, i.e. using ∆it = it − it−1 as a dependant variable instead of it,
and these results are reported here.
§These authors use so-called growth-rate cycles (instead of growth cycles) of industrial production.
As shown by, e.g., Nierhaus and Sturm (2003), a property of growth rate cycles is that business cycle
turning point usually show up sooner than in case of growth cycles. Relative to growth cycles, the
use of growth rate cycles therefore introduces a limited form of forward-looking behaviour. Sauer
and Sturm (2003, 2005) show that this actually explains the difference in results between these
and other authors using actual euro area data for 1999-2003.

3.4 Contemporaneous rules for the ECB

3.4.1 Using ex-post data

Columns (1) and (4) of table 3.2 report the results of estimating equations (3.2)

and (3.3) using ex-post data. In order to get a clearer impression of the institu-

tional changes related to the ECB taking up monetary policy in the euro area, the

regressions have been conducted for the period 1991:1-2003:10, the end of Wim

Duisenberg’s presidentship. However, all parameters are estimated separately for
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the Bundesbank (1991:1-1998:12) and the ECB (1999:1-2003:10) period.21 In this

way, we can test whether significant changes have occurred. Without for the time

being going into the details of the different regressions, the last two rows of the

table – presenting the results of this Chow test – clearly reject the assumption of

identical monetary policy reaction functions. Figure 3.1 suggests that this might be

mainly due to the transition period, i.e. the second half of 1998 and the first half

of 1999. To test this, Columns (2) and (5) do not take data from 1998:7-1999:6

into account. The results of the Chow test are hardly influenced by this. Hence,

Bundesbank policy for Germany during the 1990s clearly differs from ECB policy

under Duisenberg.

To explain in what way policies diverge, we look at the individual parameter

estimates. Column (1) shows the outcomes when estimating equation (3.2). The

inflation parameter for the ECB period ( gECB
π ) is higher than the output parameter

( gECB
y ), but does, however, not exceed one. Hence, the ECB moves to accommodate

changes in inflation, but does not increase it sufficiently to keep the real interest rate

from declining. This is confirmed by one of the last rows of table 3.2 labelled Prob(
gECB

π > 1
)

, which reports the probability of the ECB inflation parameter to exceed

one.

The middle half of table 3.2, reporting the extent to which ECB and Bundesbank

coefficients differ, shows that the Bundesbank did not pursue such an accommodative

strategy. The point estimate for gBuBa
π equals (0.47 + 0.90 =)1.37. The difference

between the two point estimates is highly significant. Hence, the Bundesbank more

clearly followed a policy stabilising inflation as compared to the ECB. This finding

is quite robust in the sense that the difference between the inflation parameters is

significantly positive across almost all specifications tested.

Furthermore, the row labelled gBuBa
y −gECB

y reports highly significant differences

between the Bundesbank and the ECB with respect to the output variable when

estimating equation (3.2). The ECB seems to respond much more to changes in the

business cycle than the Bundesbank has during the last years in which it determined

monetary policy.

A consistent feature of OLS estimates of such simple rules as equation (3.2) is a

high degree of serial correlation in the error term. Both the low Durbin-Watson sta-

tistic and the high maximum gap reported by the Durbin Cumulated Periodogram

test clearly indicate severe problems with respect to serial correlation in the error

term.22 Furthermore, the Engle and Granger (1987) cointegration tests indicate

21Changing the sample period for the Bundesbank to 1994:1-1998:12, i.e. excluding the aftermath
of German unification and the ERM crisis, does not alter our qualitative results.

22As we report Newey and West (1987) standard errors this should – in principle – not affect
our ability to interpret the reported standard errors.
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Table 3.2: Estimated contemporaneous Taylor rules based on Hodrick-Prescott fil-
tered output gap, 1991:1-2003:10 (with and without transition period).

(1) (2) (3) (4) (5) (6)
yex−post yex−post yreal−time yex−post yex−post yreal−time

ECB-coefficients

αECB 2.49 1.54 1.93 4.81 5.75 5.27
(5.55) (4.44) (4.56) (2.82) (1.60) (0.81)

gECB
π 0.47 0.89 0.83 -0.84 -1.28 -0.27

(2.04) (5.24) (3.64) (-0.89) (-0.71) (-0.10)
gECB

y 0.38 0.43 0.19 1.45 1.52 3.01
(4.83) (5.40) (2.13) (1.99) (1.66) (0.65)

ρECB 0.94 0.95 0.98
(25.50) (22.68) (29.81)

Difference BuBa-ECB coefficients

αBuBa − αECB -0.72 0.01 -5.77 -6.78
(-1.44) (0.02) (-1.70) (-1.48)

gBuBa
π − gECB

π 0.90 0.54 2.29 2.78
(3.74) (2.83) (2.19) (1.49)

gBuBa
y − gECB

y -0.39 -0.44 0.08 -0.06
(-4.14) (-4.55) (0.04) (-0.04)

ρBuBa − ρECB 0.04 0.03
(0.93) (0.68)

# Obs. 154 142 58 153 142 57
adj. R2 0.85 0.86 0.32 1.00 1.00 0.96

DW/Durbin’s h 0.27 0.32 0.13 0.13 0.13 0.13
Cum. Per. Test 0.64 0.61 0.69 0.12 0.12 0.15
Engle-Granger -3.69 -3.91 -0.77 -11.36 -11.40 -7.15

Prob (gECB
π > 1) 0.01 0.27 0.22 0.03 0.11 0.32
Chow-test 39.15 37.55 20.10 18.32

p-value 0.00 0.00 0.00 0.00

Notes: Columns (1), (2) and (3) show the results for equation (3.2) using OLS with Newey and West
(1987) standard errors allowing for serial correlation up to order 3. Columns (4), (5) and (6) present
non-linear least squares estimates of equation (3.3) again using Newey and West (1987) standard
errors. Columns (2) and (5) exclude the transition period to EMU, i.e. 1998:7-1999:6. The output
gap is measured by the Hodrick-Prescott filtered industrial production. Columns (3) and (6) take
detrended real-time industrial production, shifted back by two months, for the output gap variable.
The row identified as DW/Durbin’s h presents the Durbin-Watson test statistic for Columns (1),
(2) and (3) and Durbin’s h for Columns (4), (5) and (6). The Durbin Cumulated Periodogram
Test (Cum. Per. Test) – a test for general serial correlation using frequency frequency domain
techniques – shows the maximum gap between the theoretical spectral distribution of a white noise
process and the actual residuals. In case it is significantly different from zero, we cannot reject
the null of general serial correlation. For Columns (1), (2), (4) and (5) the approximate rejection
limits for this test are 0.17 (1%), 0.14 (5%) and 0.12 (10%). In case of Columns (3) and (6)
these rejection limits are 0.24 (1%), 0.20 (5%) and 0.18 (10%). The row labelled Engle-Granger
denotes the t-statistics of the Engle and Granger (1987) cointegration test. The MacKinnon (1991)
critical value using 154 observations and 6 explanatory variables equals -5.41 at the 1 per cent level.
The MacKinnon (1991) critical value using 58 (57) observations and 3 (4) explanatory variables
equals -4.55 (-4.73) at the 1 per cent level. The next row shows the probability of the coefficient
gECB

π being larger than 1. The null hypothesis of the Chow test is that the coefficients for the
Bundesbank and ECB period are the same (i.e. no break). t-statistics are within parentheses.
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that the residuals are non-stationary, which implies that at least some variables

are non-stationary and indicates that it might be problematic to interpret the es-

timated coefficients the way we did.23 While interest rates and inflation are likely

to be stationary in large samples, augmented Dickey and Fuller (1979, 1981) tests

nevertheless indicate the presence of a unit root in our sample (not shown).24

To cope with the non-stationarity of some of our series and to take a possible

cointegration relationship into account, we have also applied the fully modified es-

timator of Phillips and Hansen (1990).25 This method provides an alternative to

the use of error correction models (ECM) that are of growing popularity in em-

pirical research.26 As shown in Phillips (1988), the semi-parametric fully modified

method and the parametric ECM approach are asymptotically equivalent in some

cases. In other cases (characterised by feedback among the innovations) the fully

modified method is preferable in terms of asymptotic behaviour. The fully modified

estimation results (not shown) do not differ much from the results presented in the

first columns. The point estimate for the ECB inflation parameter is even nearly

identical. The ECB output parameter, and the differences between the Bundesbank

and ECB period are generally found to be larger, albeit less significant.27

The other more conventional answer to the reported high serial correlation in

the residuals of equation (3.2) is to include a lagged interest rate as an additional

explanatory variable and hence turn to empirical estimates of equation (3.3). Col-

umn (4) of table 3.2 reports the results. The inclusion of the lagged interest rate

both improves the fit of the regression and lowers the degree of serial correlation

23We prefer the use of the Engle-Granger cointegration test, instead of the Durbin-Watson test
on cointegration, because ‘[t]he use of [the Durbin-Watson] statistic is problematic in the present
setting. First, the test statistic for co-integration depends upon the number of regressors in the
co-integrating equation and, more generally, on the data-generation process and hence on the
precise data matrix. Second, the bounds diverge as the number of regressors is increased, and
eventually cease to have any practical value for the purpose of inference. Finally, the statistic
assumes the null where [the residual vector] is a random walk, and the alternative where [the
residual vector] is a stationary first-order autoregressive process (. . . ). However, the tabulated
bounds are not correct if there is higher-order residual autocorrelation, as will commonly occur.’
(Banerjee, Dolado, Galbraith and Hendry, 1993, p. 207).

24By using the Hodrick-Prescott filter to calculate our measure of the output gap, this variable
is by construction stationary. This is confirmed by augmented Dickey-Fuller tests. However,
according to, e.g., Nelson and Plosser (1982) or Harvey and Jaeger (1993), the use of the Hodrick-
Prescott filter might create artificial business cycles in the output gap variable (if the underlying
industrial production series is non-stationary). A solution to this potential problem is the use of
(stationary) survey data.

25The underlying idea of cointegration is that non-stationary time series (such as interest and
inflation rates) can move apart in the short run, but will be brought back to an equilibrium relation
in the long run.

26See in the present context Gerlach-Kristen (2003), for example.
27As the fully modified OLS method continues to produce similar outcomes to other methods,

we will in the remaining of the chapter neither report nor discuss them; these results are available
upon request.
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in the errors. Both the Durbin-h statistic and the Durbin Cumulated Periodogram

test cannot reject the hypothesis that the residuals behave normal. Furthermore, the

Engle and Granger cointegration test clearly rejects non-stationarity of the residuals.

As compared to the first column, the ECB inflation parameter reduces in value

and becomes even negative. Hence, its difference to that of the Bundesbank further

increases albeit becomes less significant. For the output gap parameter, the point

estimate for the ECB becomes larger. However, the difference between the Bundes-

bank and the ECB is no longer significant. Column (5) shows that these conclusions

are hardly driven by the inclusion of the period 1998:7 until 1999:6 in which the tran-

sition towards a single currency took place and appears to have affected monetary

policy (see figure 3.1).

In general, these results confirm Gerdesmeier and Roffia (2003) as well as Ullrich

(2003) and suggest that the ECB reacts to a rise in inflation by raising nominal short-

term interest rates by a relatively small amount and thus letting real short-term

interest rates decline. As argued before, such accommodating behaviour constitutes

a destabilising policy with respect to inflation. Hence, instead of continuing the

inflation stabilising policy line as conducted by the Bundesbank, the ECB appears

to have followed a policy rather comparable to the pre-Volcker era of the Federal

reserve, for which, e.g., Taylor (1999) and Clarida et al. (2000) have found values

for gπ well below one.

3.4.2 Using real-time data

A general critique to estimated policy rules such as (3.2) and (3.2) has been pro-

posed in a sequence of articles by Orphanides (2001, 2002, 2004). He suggests that

appropriateness of the Taylor rule requires the use of ‘real-time’ data, i.e. data ac-

tually available to the central bank at the time of its decision making. The first

step to acknowledge this argument is by referring to expectations and the use of an

available information set to form these expectations. Often then – to get rid of the

problem of real-time data – rational expectations with unbiased forecast errors with

respect to the final data are assumed.28 However, as shown by Orphanides (2001,

2002, 2004), the actual use of real-time data in the case of the Federal Reserve for

the US can cause important differences. While he uses information provided by the

Greenbook for Federal Reserve Board meetings, we have to rely on publicly available

data for the euro area.

In accordance with Coenen, Levin and Wieland (2005), one way to solve this

problem is to take real-time data from the ECB’s Monthly Bulletin statistics for the

28See, e.g., Clarida et al. (1998, 1999, 2000).
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HICP and industrial production. The time lag of publication varies between one

and two months for the inflation rate29 and three to four months for the industrial

production index.30 Coenen et al. (2005, Table 1), document the extent of revisions

of these figures, which can be summarised as being negligible for the inflation rate,31

but substantial and frequent for the industrial production index. For this reason,

we focus on the consequences of using real-time data for our measure of the output

gap.

Converting our business cycle measure into real time not only involves the use

of real-time industrial production data. In the previous section – and as usual

in this line of literature –, we have estimated potential output in one run using

all ex-post data available. However, policymakers do not have access to future

information necessary to properly calculate potential output. Our monthly measure

of the real-time output gap is therefore based only on data available up to two

months before the month in question, i.e. potential output is calculated using the

Hodrick-Prescott (HP) filter for each month separately using each time 10 preceding

years of data.32 In each run, we use the first release of industrial production for the

six most recent monthly observations; ex-post data are used for older observations.

Hence, we assume that the major revisions will take place within the first half year

after release.33

Figure 3.2 shows, amongst others, the output gap measures as calculated us-

ing ex-post data (IP) and the version based on real-time data (real-time IP) since

1999:1, i.e. the ECB period. Especially during the period between the second half

of 2000 and the first half of 2002, the use of real-time data clearly underestimates

the expansionary phase in which the European industrial sector was situated. This

might explain the relatively low interest rate during that period as compared to the

Taylor rule shown in figure 3.1.

29Since November 2001, Eurostat base their first estimate on only a selected number of countries.
This allows the first estimate to be published one month earlier than before.

30In fact, Eurostat releases its figures already one month before they are published in the ECB
Monthly Bulletin. Therefore, we will assume that data for month t − 2 is the latest information
available on industrial production in month t.

31The only noticeable exception is the major revision in March 2003 as mentioned in footnote
11. Nevertheless, using real-time inflation rates does not affect any of our results in any notable
way.

32To circumvent the end-point problem in calculating potential output using the Hodrick-
Prescott filter, we also experimented with taking an autoregressive method to forecast several
additional months which are then added to the series before applying the Hodrick-Prescott filter.
This does not affect the outcomes in a substantial way. To not already introduce some form of
forward-looking behaviour, we decided to refrain from doing so at this stage of the analysis. When
estimating a forward-looking rule in section 3.5.2, the real-time output gap is based on 12-months
forecasts using an AR(3) process.

33We experimented with slightly different procedures to construct the real time output gap.
The point estimates from the different procedures do not differ much and focusing on the method
proposed in the text does not affect any of the qualitative conclusions.
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Figure 3.2: Different indicators for the output gap of Germany and the euro area.
Notes: The data before 1999 refer to Germany, after 1999 to the euro area. The thin solid line
labelled IP stands for the detrended industrial production index. The Hodrick-Prescott filter
(with λ = 14, 400) has been used to detrend the series. The thick solid real-time IP line shows the
detrended European industrial production index this time only using real-time data as explained
in the text. The dashed line labelled ESIN depicts the European Economic Sentiment Indicator
from which its average over the relevant time period has been subtracted.

To investigate the consequences of this ‘under-estimation’ in real time, Columns

(3) and (6) of table 3.2 show results when using a real-time HP measure of the

output gap instead of using ex-post data. In the specification of equation (3.2),

the use of real-time data results in the size of the inflation parameter to increase

somewhat, without, however, exceeding one. Nevertheless, the last row of table 3.3

shows that, instead of having a probability of (nearly) zero of having the inflation

parameter to exceed 1, this probability increases to 22 and 32 per cent, respectively.

Albeit the likelihood of the ECB to conduct a stabilising monetary policy has

increased to more than 20%, overall we have to conclude that the use of real-time

data does not lead to significantly different results. The explanatory power – as

denoted by the adjusted R2 – even declines (somewhat).
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3.5 Forward-looking rules for the ECB

The ECB Governing Council has on several occasions explicitly announced that price

stability is to be maintained over the medium term. Since monetary policy operates

with a lag, successful stabilisation policy therefore needs to be forward-looking.

Hence, an explicitly forward-looking version of the Taylor rule – with inflation and

output forecasts as arguments – might be more appropriate than contemporaneous

versions as estimated above.

3.5.1 Using survey data

One way to include forward-looking elements into the analysis is to use survey

information to proxy business cycle movements. As survey information not only

becomes available much sooner than statistical information and in general includes

questions regarding future developments, it is nowadays widely believed that the

former is a good leading indicator for the latter.

Since 1962 – the year in which the first harmonised business survey in industry for

the EU was launched – there has been a spectacular growth of business and consumer

surveys. This allowed the scope and sectors covered by such surveys to expand over

time. Since 1985, the European Commission publishes the composite EU Economic

Sentiment Indicator (ESIN) on a monthly basis.34 The ESIN provides a picture of

economic activity one to two months before industrial production statistics become

available.35

Figure 3.2 shows the deviations of the ESIN from its average together with our

other two indicators for the output gap. In general, the patterns of these three

indicators are rather similar. The only clear difference is in volatility: the ESIN is

by far the least volatile measure. A somewhat less pronounced difference is that –

for the ECB period – the ESIN appears to lead the other two indicators.

By taking the ESIN as our output gap measure into the regressions, the inflation

parameter gets close to – or even slightly larger than – one (Columns (1) and (3) of

table 3.3). The probability of the ECB stabilising inflation increases to respectively

42 and 62 per cent, respectively (coming from close to zero in Columns (1) and (4) of

table 3.2). The output parameter reduces slightly in size without losing significance.

This suggests that ECB’s apparent accommodative behaviour can be explained by

differences between contemporaneous and forward-looking data.

34The EU ESIN comprises of an industrial confidence indicator, a consumer confidence indicator,
a construction confidence indicator and a retail trade confidence indicator. In May 2004, i.e. after
the time period considered, a service sector indicator was added to ESIN.

35For the relevance of ESIN as a business cycle indicator for the EU, see, e.g., Goldrian, Lindl-
bauer and Nerb (2001).
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Table 3.3: Estimated forward-looking Taylor rules using survey data, 1991:1-
2003:10.

(1) (2) (3) (4)
yESIN +πforecast yESIN +πforecast

ECB-coefficients

αECB 1.50 0.12 1.09 0.13
(3.61) (0.17) (2.16) (0.19)

gECB
π 0.96 1.95 1.08 1.85

(4.93) (4.73) (4.28) (4.63)
gECB

y 0.28 0.23 0.66 0.59
(4.71) (4.54) (6.89) (5.81)

ρECB 0.88 0.87
(35.14) (28.58)

Difference BuBa-ECB coefficients

αBuBa − αECB 0.33 0.34 -0.20 0.69
(0.72) (0.37) (-0.26) (0.71)

gBuBa
π − gECB

π 0.39 -0.22 0.25 -0.45
(1.89) (-0.46) (0.81) (-0.85)

gBuBa
y − gECB

y -0.13 -0.12 0.05 -0.42
(-1.31) (-1.75) (0.20) (-3.46)

ρBuBa − ρECB 0.08 -0.01
(2.42) (-0.12)

# Obs. 154 118 153 117
adj. R2 0.87 0.76 1.00 0.98

DW/Durbin’s h 0.28 0.20 0.26 0.26
Cum. Per. Test 0.65 0.67 0.10 0.08
Engle-Granger -3.51 -2.20 -12.72 -11.72

Prob (gECB
π > 1) 0.42 0.99 0.62 0.98

Chow-test 37.92 4.02 12.21 17.71
p-value 0.00 0.26 0.02 0.00

Notes: Columns (1) and (3) take the European Sentiment Indicator (ESIN) as output gap measure.
Columns (2) and (4) also use forecasted inflation as published in The Economist instead of actual
inflation. All parameters are estimated separately for the Bundesbank (1991:1-1998:12 in case of
(1) and (3), 1994:1-1998:12 in case of (2) and (4) ) and the ECB (1999:1-2003:10) period, based
on data for the respective region. See notes of table 3.2.
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Instead of relying on statistical releases of the (contemporaneous) inflation rate,

we can also use (forward-looking) survey results to get an idea of inflation devel-

opments. The newspaper The Economist has published inflation forecasts based on

a poll of a group of forecasters every month since 1994.36 Figure 3.3 shows these

survey forecasts together with our regular inflation measure. The inflation forecast

measure is less volatile.

Figure 3.3: Different indicators for inflation in Germany and the euro area.
Notes: The solid line labelled ‘Inflation’ shows the year-on-year percentage change of the Har-
monised Index of Consumer Prices (HICP) for Germany and the euro area, respectively. The
dotted line shows the inflation forecasts taken from The Economist for the respective regions.

Columns (2) and (4) of table 3.3 show the results in case we combine both

forward-looking survey measures, i.e. replace actual inflation in Columns (1) and (3)

by this inflation forecast measure. In both specifications, the inflation parameter

both for the Bundesbank and the ECB is – with a probability of close to 100 per cent

– larger than one without significantly affecting the output parameter. Without the

interest rate smoothing term, the structural break between the Bundesbank and the

ECB disappears, while in column (4) the break is driven solely by the significantly

36Unfortunately, these figures are only annual average inflation rates, not true 12-month inflation
forecasts. To convert these into monthly moving figures, we take as the 12-month forecast of
inflation the weighted average of the forecast for the current and the following year, where the
weights are x/12 for the x remaining months in the current year and (12− x)/12 for the following
year’s forecast. See also Smant (2002, p. 7).
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smaller reaction of the Bundesbank to the German ESIN-output gap rather than

different reactions to inflation forecasts. Hence, taking these survey measures as

proxies for our theoretical output gap and inflation variables shows that the ECB

has appeared to have followed a stabilising policy rule with respect to both.

3.5.2 Using HP-filtered industrial production

As survey measures also bear real-time aspects – they are usually available without

long time lags and without (substantial) revisions – it could be argued that the

improved results in table 3.3 (as compared to table 3.2) should be attributed to

the use of real-time data instead of taking a forward-looking perspective. However,

note that the use of real-time data in so-called contemporaneous rules (Columns (3)

and (6) of table 3.2) seems to reject that hypothesis. To nevertheless shed some

additional light on this, we will now estimate explicitly forward-looking models in

which ex-post and real-time data on industrial production are used.

As an enhancement of the standard Taylor-rule framework, many economists

follow Clarida et al. (1998) and use a forward-looking rule, where the target interest

rate i∗t is set in response to expected inflation and output. Expectations are based

on the available information set Ω at time t and reach k and l periods into the

future, respectively.

it = α + gπE (πt+k|Ωt) + gyE (yt+l|Ωt) + εt (3.4)

it = (1− ρ) α + (1− ρ) (gπE (πt+k|Ωt) + gyE (yt+l|Ωt)) + ρit−1 + εt (3.5)

Assuming rational expectations, these equations are estimated using the generalised

method of moments (GMM). Table 3.4 reports results for k = 6 and l = 3.37

Independent of whether we use ex-post or real-time data to measure the output

gap, the inflation parameter is with high probability larger than one. Hence, by

explicitly including forward-looking behaviour on account of the ECB, monetary

policy in recent years has – at least ex ante – been sufficiently aggressive to stabilise

inflation in the euro area. The use of real-time data as compared to ex-post data

does not seem to make much of a difference. From table 3.2, however, we know

that it is not sufficient to use real-time data in a contemporaneous set-up. Without

taking a forward-looking perspective, ECB’s monetary policy cannot be considered

to have stabilised inflation.

Comparing the results in table 3.4 with those in table 3.3 reveals that the use of

37The set of instruments are up to six lags of the inflation and output gap corresponding to data
employed in the regression, and – in case we model interest rate smoothing – the money market
rate.
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Table 3.4: Estimated forward-looking Taylor rules using GMM, 1991:1-2003:10.

(1) (2) (3) (4)
yex−post yreal−time yex−post yreal−time

ECB-coefficients

αECB 1.15 0.15 -1.36 -6.23
(1.45) (0.18) (-1.10) (-0.61)

gECB
π 1.05 1.54 2.15 6.62

(2.88) (4.06) (3.83) (0.90)
gECB

y 0.22 0.01 1.10 9.24
(1.60) (0.05) (3.22) (0.64)

ρECB 0.91 0.98
(31.20) (35.57)

Difference BuBa-ECB coefficients

αBuBa − αECB 0.66 -2.93
(0.78) (-0.16)

gBuBa
π − gECB

π 0.49 -1.59
(1.30) (-0.50)

gBuBa
y − gECB

y -0.15 8.71
(-1.07) (0.29)

ρBuBa − ρECB 0.08
(2.44)

# Obs. 145 55 141 51
adj. R2 0.80 0.27 1.00 0.96

DW/Durbin’s h 0.20 0.24 0.24 0.24
Cum. Per. Test 0.69 0.61 0.07 0.17
Engle-Granger -2.93 -2.04 -11.36 -9.01

Prob (gECB
π > 1) 0.55 0.92 0.98 0.77

Chow-test 93.65 8.62
p-value 0.00 0.07

Notes: Under rational expectations, forward-looking estimates of inflation and the output gap
are used, i.e. we set k = 6, l = 3 in equation (3.4) and (3.5). The results are estimated by the
Generalised Method of Moments (GMM) with Newey-West heteroscedasticity and serial correlation
robust estimators. As instruments, we use up to six months lagged inflation and output gaps
corresponding to data employed in the regression, and – in case we model interest rate smoothing
– interest rates. Columns (1) and (3) use ex-post data. Columns (2) and (4) take detrended real-
time industrial production, shifted back by two months, for the output gap variable. For Columns
(1) and (3), the approximate rejection limits for the Durbin Cumulated Periodogram Test (Cum.
Per. Test) are 0.17 (1%), 0.14 (5%) and 0.12 (10%). In case of Columns (2) and (4) these rejection
limits are 0.24 (1%), 0.20 (5%) and 0.18 (10%). The MacKinnon (1991) critical value using 145
observations and 6 explanatory variables equals −5.43 at the 1 per cent level, or −4.57(−4.99)
when using 55 (51) observations and 3 (4) explanatory variables. See notes of table 3.2.



Chapter 3 Using Taylor rules to understand ECB monetary policy 62

survey data results in a better fit than does the use of industrial production data in

forward-looking specifications like equation (3.4) or (3.5).

3.6 Concluding remarks

In this chapter, we have explored different ECB Taylor rules for the euro area. We

have asked ourselves, whether or not the ECB has in its first years of existence under

the presidency of Mr. Duisenberg been following a stabilising or a destabilising rule.

Already Faust et al. (2001) argue that the ECB puts too high a weight on the output

gap relative to inflation and in comparison to the Bundesbank.

Looking at contemporaneous Taylor rules, the presented evidence clearly con-

firms previous research and suggests that the ECB is accommodating changes in

inflation and hence follows a destabilising policy. The differences between the Bun-

desbank and the ECB are significant. Such an interpretation gives rise to the con-

jecture that the ECB follows a policy quite similar to the pre-Volcker era of US

monetary policy, a time also known as the ‘Great Inflation’ (Taylor, 1999).38

However, this impression seems to be largely due to the lack of a forward-looking

perspective. Either assuming rational expectations and using a forward-looking

specification as suggested by Clarida et al. (1998), or using expectations as derived

from surveys result in Taylor rules which do imply a stabilising role of the ECB.

In such forward-looking cases, at least the weights attached to the inflation rate by

the Bundesbank and the ECB do no longer significantly differ. The use of real-time

industrial production data, as suggested by Orphanides (2004), hardly helps in this

respect.

Our preferred specification involves the use of survey data; their real-time char-

acter combined with their forward-looking nature seems to produce the best results,

in the sense that its explanatory power is the largest and the parameters do confirm

a stabilising role for the ECB. Furthermore, an important advantage of survey data

is that one does not have to rely upon (artificial) decomposition methods like the

Hodrick-Prescott filter introducing several additional problems – problems which we

barely touched upon in this chapter.

The chapter so far concentrated on the empirical analysis of the ‘Duisenberg-

era’ from January 1999 to October 2003. In November 2003, Jean-Claude Trichet

succeeded Wim Duisenberg as the president of the ECB. Table 3.5 provides a com-

parison of a contemporaneous Taylor rule with our preferred specification based on

38Taylor (1999) finds values of gπ = 0.81 and gy = 0.25 with ex-post data for the US for that
period, while Orphanides (2004) estimates a forward-looking rule with real-time data and reports
gπ= 1.64 and gy= 0.57.
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survey data for the full ECB sample for which data are available, i.e. 1999:1-2006:12.

The results confirm the evidence for the shorter sample period: Based on the con-

temporaneous specification, the ECB appears to have followed a destabilising policy

with respect to inflation; the estimated weight on inflation is even significantly nega-

tive. Using survey data, however, provides similar results to Column (4) in table 3.3

and thus corroborates the view that the ECB follows a forward-looking, stabilising

policy with respect to inflation expectations and output developments.

Table 3.5: Estimated Taylor rules for the full ECB period, 1999:1-2006:12.

(1) (2)
Contemporaneous Forward-looking

αECB 5.06 -0.26
(3.55) (-0.16)

gECB
π -1.00 1.87

(-1.60) (2.03)
gECB

y 1.50 0.21
(3.48) (4.95)

ρECB 0.95 0.94
(54.84) (61.24)

# Obs. 93 95
adj. R2 0.98 0.98

DW/Durbin’s h 0.05 0.06
Cum. Per. Test 0.12 0.14
Engle-Granger -9.97 -11.39

Prob (gECB
π > 1) 0.00 0.83

Notes: Columns (1) and (2) present non-linear least squares estimates of equations (3.3) and (3.5),
respectively, using Newey and West (1987) standard errors. Column (1) repeats the estimation of
Column (4) in table 3.2, but for the sample 1999:1-2006:10. Column (2) reflects Column (4) in
table 3.3 for the sample 1999:1-2006:12. See notes of table 3.2.
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We have also largely abstracted from the second pillar of the ECB’s monetary

policy strategy, the monetary analysis. Formally, results from the monetary analysis

serve to ‘cross-check’ the shorter-term inflationary risks emerging from the economic

analysis and the ECB has emphasised its relevance on numerous occasions. Empir-

ically, however, Fourçans and Vranceanu (2004) and Fendel and Frenkel (2006) find

that simply adding money growth as an additional explanatory variable to equa-

tions (3.2) to (3.5) has no statistically significant impact on the estimation.39 In a

recent paper, Hofmann, Sauer and Strauch (2007) report a positive, systematic role

of monetary aggregates on interest rates only for different empirical specifications

reflecting the idea of ‘cross-checking’ in a more elaborate way.40

A final result of this chapter is that the data show a large degree of partial

adjustment in the interest rate, i.e. short-term interest rates tend to be changed

in several sequential steps in one direction. In principle, this could imply that

policy responds too little and too late to changes in the economic environment.

Rudebusch (2002, 2006) reports comparable outcomes for the US. In contrast to

the conventional wisdom that the Federal Reserve smoothes adjustments in the

interest rate, Rudebusch argues – based on quarterly data – that this view is an

illusion and the apparent inertia rather reflect persistent shocks to the economy.41

Castelnuovo (2007) tests for Rudebusch’s hypothesis using data for the hypothetical

euro area from 1980 to 2003. His results42 suggest that the observed gradualism

in the interest rate is to a significant extent endogenous, i.e. stemming from the

systematic component of monetary policy in the hypothetical euro area. Whether

this is also true for the ECB since 1999 is a question that is left for future research.

39Berger, de Haan and Sturm (2006) construct indices measuring the different aspects of the
ECB’s strategy in its monthly press statements explaining interest rate decisions. They obtain no
significant impact of the index related to monetary developments on actual interest rate decisions.

40Inter alia, they include inflation projections based on information from monetary aggregates
rather than the monetary aggregates themselves in empirical reaction functions as additional vari-
ables.

41Sack and Wieland (2000) offer three explanations of interest-rate smoothing: forward-looking
behaviour by market participants, measurement error associated with key macroeconomic vari-
ables and uncertainty regarding relevant structural parameters. Goodfriend (1991) stresses the
financial instability associated with potential market overreactions in response to volatile policy
interest rates. Ellis and Lowe (1997) emphasise that repeated changes in the direction of interest
rate adjustments may be perceived by the public as policy ‘mistakes’ and weaken the announce-
ment effect of interest rate changes in the transmission mechanism of monetary policy. Further
arguments in favour of interest rate smoothing involve the zero lower bound on nominal interest
rates (Reifschneider and Williams, 2000) and the history dependence of optimal monetary policy
as advocated by Woodford (2003a,b) and analysed in chapter 2 of this thesis.

42The results of the estimated reaction functions are reported in table 3.1.
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Appendices

3.A Theoretical foundations of the Taylor princi-

ple

The Taylor principle, i.e. the increase of the nominal interest rate it by more than

one-for-one in response to an increase in inflation πt or inflation expectations Etπt+1

in order to raise the real interest rate, has proven to be a robust guideline for pru-

dent monetary policy in a wide range of macroeconomic models. In this appendix,

we derive the Taylor principle in two models that have a non-vertical short-run ag-

gregate supply curve, an aggregate demand relationship that depends on the real

interest rate and a loss function or an explicit interest rate rule for the central bank.

3.A.1 Backward-looking model

Svensson (1997) uses a model of the economy, where the transmission lag of interest

rate changes to real activity is one period and to inflation two periods:43

πt+1 = πt + γyt + εt+1 (3.6)

yt+1 = δyt − ϕ(it − Etπt+1 − r∗) + ηt+1, (3.7)

where Et denotes expectations conditional upon information available at t. γ, δ, ϕ

are positively defined parameters and εt and ηt i.i.d. are shocks with mean zero.

Equation (3.6) represents a backward-looking, accelerationist Phillips curve, (3.7)

an aggregate demand relationship. The central bank controls the nominal interest

rate {it}∞t=0 and minimises

E0

∞∑
t=0

βt(πt − π∗)2. (3.8)

Plugging (3.7) in (3.6) shifted forward by one period yields

πt+2 = πt + γyt + εt+1 + γ{δyt − ϕ[it − (πt + γyt)− r∗] + ηt+1}

and the expected inflation rate

Etπt+2 = (1 + γϕ)πt + γ(1 + δ + γϕ)yt − γϕ(it − r∗). (3.9)

43The timing of the model is consistent with results from a number of VAR-studies, if one
interprets one period as roughly one year (see, e.g., Christiano, Eichenbaum and Evans, 1996).
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Since the central bank can influence inflation with its instrument it only with a

two-period lag, the first-order condition for optimal policy in t ≥ 0 is

∂Etβ
2(πt+2 − π∗)2

∂it
= Et

[
2β2(πt+2 − π∗)

∂πt+2

∂it

]

= −2β2γϕ(Etπt+2 − π∗) = 0.

⇔ Etπt+2 = π∗ (3.10)

Combining the expected inflation rate (3.9) and the first-order condition (3.10) gives

the optimal interest rate rule

it = r∗ + πt +
1

γϕ
(πt − π∗) +

(
γ +

1 + δ

ϕ

)
yt. (3.11)

Equation (3.11) corresponds to the Taylor rule (3.1) with general weights instead of

0.5 as initially suggested by Taylor (1993). In particular, the rule (3.11) fulfills the

Taylor principle as 1
γϕ

> 0. In line with the second pillar of the ECB’s monetary

policy strategy, the output gap is useful in forecasting future inflation and therefore

enters the reaction function of the central bank even when it has a strict inflation

target.44

3.A.2 New Keynesian model

Using the forward-looking New Keynesian model of chapter 2, Woodford (2003a)

shows that the Taylor principle must hold in order to determine the price level with

an interest rate rule. Let the forward-looking New Keynesian Phillips curve (3.12)

and the aggregate demand relationship (3.13) based on intertemporal optimisation

be given by

πt = βEtπt+1 + ayt + ut (3.12)

yt = Etyt+1 − b(it − Etπt+1) + vt (3.13)

with a, b as positively defined parameters, ut, vt i.i.d. shocks with mean zero and the

natural real interest rate r∗ = 0. The model is closed with a general interest rate

rule in which the central bank reacts only to the inflation rate and not to the output

gap:

it = φππt. (3.14)

44Svensson (1997) shows that the Taylor principle also holds in the optimal interest rate rule
if the loss function explicitly includes an output gap term, i.e. the period loss function is Lt =
(πt−π∗)2 +ωy2

t . The loss function (3.8) reflects the special case with a weight ω = 0 on the output
gap term.
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The rule is not explicitly derived from a loss function and the inflation target π∗ = 0

for simplicity. The system can be rewritten as

[
Etπt+1

Etyt+1

]
=

[
1
β

− a
β

bgπ − b
β

1 + ab
β

]

︸ ︷︷ ︸
≡A

[
πt

yt

]

︸ ︷︷ ︸
≡zt

+

[
− 1

β
0

b
β

1

]

︸ ︷︷ ︸
≡B

[
ut

vt

]

︸ ︷︷ ︸
≡et

which can be summarised as

Etzt+1 = Azt + Bet.

Since et is stationary by assumption, the rational expectations equilibrium is de-

terminate if and only if the matrix A has both eigenvalues outside the unit circle.

Given that the trace trA = 1 + β−1(1 + ab) > 1 and the determinant detA =

β−1(1 + abgπ) > 1, Woodford (2003a) shows that the eigenvalues of A fulfill this

condition if and only if detA− trA > −1, i.e.

β−1(1 + abgπ)− 1− β−1(1 + ab) > −1,

which simplifies to the Taylor principle

gπ > 1.

In a recent working paper, Cochrane (2006) challenges the conventional wisdom

and argues that 1) the Taylor principle would not determine the price level or the

inflation rate in the New Keynesian model and that 2) the Taylor rule coefficients

could not be identified in a Taylor rule regression. The first conjecture is based on the

observation that the Taylor principle guarantees only a unique local equilibrium as

it is derived from a log-linear approximation of the true non-linear model. Cochrane

relates this to the fiscal theory of the price level which claims that the government

satisfies its budget constraint only in equilibrium and only this equilibrium condition

could determine the price level. For example, Buiter (2002) provides a thorough

critique of the fiscal theory of the price level.

Cochrane’s second conjecture crucially depends on the assumption that the in-

terest rate shock xit in the interest rate rule

it = gππt + xit

represents the only state variable in the system. If there are other state variables

such as cost-push shocks ut, demand shocks vt or lagged inflation rates and out-
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put gaps which could be due to habit formation, for example, Cochrane’s strong

conclusions break down.45

3.B Data

3.B.1 Interest rates

For the nominal interest rate of the euro area, we take the Euro Overnight Index

Average (EONIA). In case of Germany, we use the Frankfurt Interbank Offered

Rate Overnight. Both interest rates are provided as monthly averages by the Bun-

desbank’s time series data base: http://www.bundesbank.de/stat/zeitreihen/

index.htm

3.B.2 Inflation rates

Annual inflation for the euro area is measured by the harmonised index of consumer

prices (HICP). This series is not adjusted for seasonally effects and is taken from

the ECB website: http://www.ecb.int/stats/mb/eastats.htm.

For Germany, we take the annual inflation rate based on the consumer price

index (CPI) (not seasonally adjusted) as published by the Federal Statistical Office

Germany.

Real-time inflation for the euro area is based on first published figures for the

respective month as available in the ECB Monthly Bulletins. The inflation forecasts

are based on data published by the newspaper The Economist. In that case, the

calculation of each monthly data point is described in footnote 36.

3.B.3 Output gap measures

As first measure for the output gap, we take the European industrial production

index starting in 1985, apply a standard Hodrick-Prescott filter with the smoothing

parameter of λ = 14, 400 and calculate the output gap as the deviation of the

logarithm of actual industrial production from trend. Our measure of the euro area

industrial production index excludes construction, is seasonally and working day

adjusted, and is taken from the ECB website.

Alternative estimates of the output gap include a ‘real-time’ industrial produc-

tion index and the European Sentiment Indicator (ESIN). The former consists of

first published figures for the respective months and is collected from the ECB

45I have developed this argument in joint research with Agostino Consolo.
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Monthly Bulletins. The latter, which is a weighted combination of an industrial con-

fidence indicator, a consumer confidence indicator, a construction confidence indica-

tor, and a retail trade confidence indicator, is taken from the European Commission

website: http://europa.eu.int/comm/economy finance/indicators/business

consumer surveys/bcsseries en.htm

German industrial production is seasonally adjusted and taken from Eurostat.
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Fourçans, André and Radu Vranceanu (2002): ECB monetary policy rule:

Some theory and empirical evidence. ESSEC Working Paper No. 02008.

—— (2004): The ECB interest rate rule under the Duisenberg presidency. European

Journal of Political Economy, vol. 20, pp. 579–595.

—— (2006): Is the ECB so special? A qualitative and quantitative analysis. ESSEC

Working Paper No. 06004.

Gerdesmeier, D. and B. Roffia (2003): Empirical estimates of reaction functions

for the euro area. ECB Working Papers Series No. 206.

Gerlach, Stefan (2005): Interest rate setting by the ECB: Words and deeds. Uni-

versity of Basel, http://www.wwz.unibas.ch/makro/gerlachs/sgerlach.htm.

Gerlach, Stefan and Gert Schnabel (2000): The Taylor rule and interest rates

in the EMU area. Economic Letters, vol. 67, pp. 165–171.

Gerlach-Kristen, Petra (2003): Interest rate reaction function and the Taylor

rule in the euro area. ECB Working Paper Series No. 258.

Goldrian, Georg, Jürg D. Lindlbauer and Gernot Nerb (2001): Evaluation and

development of confidence indicators based on harmonised business and consumer

surveys. Economic Paper by Directorate General Economic and Financial Affairs

No. 151.

Goodfriend, Marvin (1991): Interest rate smoothing and the conduct of monetary

policy. Carnegie-Rochester Conference of Public Policy, vol. 34, pp. 7–30.

Harvey, Andrew C. and A. Jaeger (1993): Detrending, stylized facts and the

business cycle. Journal of Econometrics, vol. 8, pp. 231–247.

Hayo, Bernd and Boris Hofmann (2006): Comparing monetary policy reaction

functions: ECB versus Bundesbank. Empirical Economics, vol. 31, pp. 645–662.

Hofmann, Boris, Stephan Sauer and Rolf Strauch (2007): Estimates of mone-

tary policy rules in the euro area. Mimeo, European Central Bank.



Chapter 3 Using Taylor rules to understand ECB monetary policy 73

Honkapohja, Seppo and Kaushik Mitra (2004): Are non-fundamental equilibria

learnable in models of monetary policy? Journal of Monetary Economics, vol. 51,

pp. 1743–1770.

Issing, Otmar, Vitor Caspar, Ignazio Angeloni and Oreste Tristani (2001):

Monetary Policy in the Euro Area. Strategy and Decision-Making at the European

Central Bank. Cambridge University Press, Cambridge.

Judd, John P. and Glenn D. Rudebush (1998): Taylor’s rule and the Fed: 1970-

1997. Economic Review, vol. 1 (3), pp. 3–16. Federal Reserve Bank of San

Francisco.

Kozicki, Sharon (1999): How useful are Taylor rules for monetary policy. Economic

Review, vol. 84 (2), pp. 5–33. Federal Reserve Bank of Kansas City.

Leeper, Eric M. (1991): Equilibria under ‘active’ and ‘passive’ monetary and fiscal

policies. Journal of Monetary Economics, vol. 27 (1), pp. 129–147.

MacKinnon, James G. (1991): Critical values for cointegration tests. In: R. F.

Engle and C. W. J. Granger, eds., Long-Run Economic Relationships: Readings

in Cointegration, chap. 13. Oxford University Press.

Nelson, Charles R. and Charles I. Plosser (1982): Trends and random walks in

macroeconomic time series: Some evidence and implications. Journal of Monetary

Economics, vol. 10 (2), pp. 139–62.

Newey, Whitney K. and Kenneth D. West (1987): A simple positive-definite het-

eroskedasticity and autocorrelation consistent covariance matrix. Econometrica,

vol. 55, pp. 703–70.

Nierhaus, Wolfgang and Jan-Egbert Sturm (2003): Methoden der Konjunktur-

prognose. Ifo Schnelldienst, vol. 56 (4), pp. 7–23.

Orphanides, Athanasios (2001): Monetay policy rules based on real-time data.

The American Economic Review, vol. 91 (4), pp. 964–985.

—— (2002): Monetary-policy rules and the Great Inflation. The American Eco-

nomic Review, vol. 92 (2), pp. 115–120.

—— (2004): Monetay policy rules, macroeconomic stability and inflation: A view

from the trenches. Journal of Money, Credit, and Banking, vol. 36, pp. 151–175.

Peersman, Gert and Frank Smets (1998): Uncertainty and the Taylor rule in a

simple model of the euro-area economy. Ghent University Working Paper.



Chapter 3 Using Taylor rules to understand ECB monetary policy 74
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CHAPTER 4

Liquidity risk and monetary policy

Abstract

This chapter provides a framework to analyse emergency liquidity assistance of cen-

tral banks on financial markets in response to aggregate and idiosyncratic liquidity

shocks. The model combines the microeconomic view of liquidity as the ability to

sell assets quickly and at low costs and the macroeconomic view of liquidity as a

medium of exchange that influences the aggregate price level of goods. The cen-

tral bank faces a trade-off between limiting the negative output effects of dramatic

asset price declines and more inflation. Furthermore, the anticipation of central

bank intervention causes a moral hazard effect with investors. This gives rise to the

possibility of an optimal monetary policy under commitment.

4.1 Introduction

Liquidity is an important concept in finance and macroeconomics. The microeco-

nomic literature in finance views liquidity roughly as the ability to sell assets quickly

and costlessly. In macroeconomics, liquidity refers to a generally accepted medium

of exchange or, in brief, money. Money is the most liquid asset due to the fact that

it does not need to be converted into anything else in order to make purchases of

real goods or other assets. This feature makes money valuable in both perspectives.

This chapter uses this common perspective of money and links liquidity risk on

an asset market with aggregate demand and aggregate supply on a goods market.

Spillover effects from the asset market to the goods market can justify a central
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bank intervention on the asset market even if the central bank does not take the

welfare of investors on the asset market into account. Hence, the model provides

a framework to analyse the perceived insurance against severe financial turmoil by

the Federal Reserve under Alan Greenspan, which has been termed the ‘Greenspan

put’ in the popular press and ‘liquidity provision principle’ by Taylor (2005).

Liquidity provision has been studied in the literature with a focus on the role

of financial intermediaries (see, e.g., Allen and Gale, 1998; Diamond and Dybvig,

1983; Diamond and Rajan, 2001, 2005; Goodhart and Illing, 2002). Considerably less

research looked at liquidity provision by financial markets (see, e.g., Allen and Gale,

1994; Holmström and Tirole, 1998). Furthermore, all of these papers use models

with real assets and claims. If the aim is to analyse optimal monetary interventions

on financial markets, however, it seems to be natural that one has to use a model in

nominal units, since modern central banks provide nominal fiat money but not real

goods. Only recently, Gale (2005) and Diamond and Rajan (2006) have made first

steps in that direction and developed models with nominal assets.1 Contributing to

this literature, I develop an analytical framework based on the cash-in-the-market

pricing model of Allen and Gale (1994, 2005) that directly links monetary policy

and liquidity on financial markets.

Before I turn to the details of the model, the following two sections provide em-

pirical and historical evidence of the role of liquidity on asset prices and in financial

crises.

4.1.1 Empirical evidence for the role of liquidity on asset

prices

One of the first studies that empirically links asset pricing and liquidity is Amihud

and Mendelson (1986), who show that shares’ excess returns increase in the size of

the average bid-ask spread, a well-known measure of an asset’s level of liquidity.

Recent research has provided further important empirical evidence on the relevance

of time-varying market-wide liquidity on asset pricing and of the effects of monetary

expansions on liquidity during crisis periods.

Pastor and Stambaugh (2003) measure market liquidity as the equally weighted

average of individual shares’ expected return reversal. The authors start from the

idea that a sell (buy) order should be accompanied by a negative (positive) price

1Allen and Gale (1998) contains discussions about both monetary policy to limit some ineffi-
ciencies of bank runs and the effects of an asset market. Gale (2005, p. 2) himself, however, argues
that this and more recent papers by Allen and Gale that use the same methodology are ‘essentially
real (non-monetary) models’ and ‘focus on banks and banking, to the exclusion of other parts of
the financial system.’
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impact that one expects to be partially reversed in the future if the share is not

perfectly liquid. Sharp declines in this measure coincide with market declines and

‘flight to quality’ or ‘flight to liquidity’ episodes in which investors want to shift

from relatively illiquid medium to long-term assets such as shares into safe and

liquid government bonds or cash. Examples of such incidents are discussed in the

following section 4.1.2. Market-wide liquidity as measured by Pastor and Stambaugh

(2003) appears to be a state variable that is important for share prices. Shares whose

returns are more sensitive to aggregate liquidity have substantially higher expected

returns, even as the authors control for exposures to the market, size and value

factors of Fama and French (1993) and a momentum factor.

Acharya and Pedersen (2005) derive and estimate a liquidity-adjusted capital

asset pricing model. In addition to the standard market beta, their model has three

betas representing different forms of liquidity risk. One beta resembles the analysis

in Pastor and Stambaugh (2003): Investors are willing to accept a lower expected

return on an asset with a high return in times of market illiquidity. Futhermore,

Acharya and Pedersen (2005) show that investors require a higher expected return

for a security that becomes illiquid when the market in general becomes illiquid.

Finally, investors require a lower expected return for an asset that is liquid if the

market return is low. In the authors’ estimations, the last effect appears to have the

strongest impact on expected returns.

Most importantly for this chapter, Chordia, Sarkar and Subrahmanyam (2005)

establish an empirical link between the macro- and the micro-perspective of liquidity.

The authors find that ‘money flows (...) account for part of the commonality in

stock and bond market liquidity.’ Furthermore, they use vector autoregressions

to provide evidence that a loose monetary policy, measured as a decrease in net

borrowed reserves or a negative interest rate surprise,2 is associated with lower bid-

ask spreads, i.e. increased liquidity, in times of crises.

4.1.2 Historical liquidity crises and central banks’ reactions

Besides these empirical studies, there is also a lot of anecdotal evidence how central

banks reacted to liquidity crises, since the last decades have shown a number of such

crises on financial markets. For example, Davis (1994) describes five severe liquidity

crises in international markets: The Penn Central Bankruptcy in 1970, the crisis in

the floating-rate notes market in the UK in 1986, the failure of the US-High Yield

2Net borrowed reserves represent the difference between the amount of reserves banks need to
have to satisfy their reserve requirements and the amount which the Fed is willing to supply. A
negative interest rate surprise is defined as a drop of the federal funds target rate below market
expectations (Chordia et al., 2005, pp. 112-113).
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bond market in 1989, the Swedish Commercial Paper crisis in 1990 and the collapse

of the ECU bond market in 1992. Greenspan (2004) highlights three crises during

his chairmanship at the Federal Reserve (Fed), in which market participants wanted

to convert illiquid medium to long-term assets into cash because they favoured safety

and liquidity over uncertainty: The stock market crash in 1987, the LTCM-crisis

1998 and the terrorist attacks of September 11, 2001. This section provides a brief

review of these three events and the central banks’, in particular the Fed’s, reactions

to them.

On 19 October 1987 (‘Black Monday’), the Dow Jonex Index dropped by 22.6%.

Many commentators blamed institutional investors that followed a portfolio insur-

ance investment strategy for the dramatic crash in prices.3 Similar to stop-loss-

orders, portfolio insurance implies automatic sell orders when the value of a port-

folio or single shares falls below a certain threshold. If the absorption capacity of

the market is limited, portfolio insurance can cause a vicious circle of price falls and

further sell orders (see also section 4.4.3).

Grossman and Miller (1988) describe the events on 19 and 20 October against the

background of their model in which market liquidity is determined by the demand

and supply of immediacy, i.e. the willingness to trade immediately rather than to

wait some time for a possibly better price. They argue that order imbalances were

so great4 that market makers became incapable of supplying further immediacy.

Market illiquidity materialised as delays in the execution and confirmation of trades

and as the virtual impossibility of executing market sell orders at the quoted prices

at the time of order entry.

As chairman of the Fed, Alan Greenspan managed to improve the confidence of

investors and the liquidity of the market by issuing the following statement at 9am

on 20 October 1987:

The Federal Reserve, consistent with its responsibilities as the Nation’s

central bank, affirmed today its readiness to serve as a source of liquidity

to support the economic and financial system (Greenspan, 1987).

The Dow Jones regained 5.9% and 10.1% on this and the following day, respec-

tively. Garcia (1989) discusses the different tools the Fed used to limit the extent

of the stock market crash. These included, besides communication via the quoted

statement, mainly open market operations and the use of the discount window to

3For example, Gammill and Marsh (1988) report official statistics that show that institutional
investors who followed a portfolio insurance investment strategy were the heaviest net sellers on
the New York Stock Exchange and in the S&P 500 index futures market.

4After a more than 10% decline of the Dow Jones between Wednesday, 14 October, and Friday,
16 October, Gammill and Marsh (1988) note an ‘overhang of incomplete portfolio selling’ by
portfolio insurers which caused additional selling pressure on the morning of Black Monday.
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provide liquidity in the form of additional money to the market. The handling

of the crisis by Alan Greenspan, who had been appointed as Fed Chairman only

two months earlier, laid the foundations for the belief in an insurance against stock

market losses, the alleged ‘Greenspan put’ (see also section 4.5.1).

In September 1998, the near-collapse of the hedge fund Long-term Capital Man-

agement (LTCM) caused severe turmoil on financial markets.5 After years of ex-

traodinary performance, LTCM experienced below-average returns in 1997 and even

losses in the first half of 1998. In response, LTCM increased its leverage, i.e. its

debt/equity ratio, and focused even more on investments in relatively illiquid as-

sets. The Russian default in August 1998 caused a flight to quality into liquid

government bonds, while the prices of more illiquid assets fell dramatically. Margin

calls forced LTCM to sell its assets into the falling market, which exacerbated the

crisis. Other market participants could not (and some did not want to, see Brunner-

meier and Pedersen, 2005) step in and buy assets, not least because they had copied

LTCM’s trading strategies and were constrained in their available funds. LTCM’s

supposedly sophisticated risk management system had not taken this endogeneity of

risk sufficiently into account and its imminent collapse threatened the functioning of

the Treasury bond market because of LTCM’s large short-positions on this market.

On 23 September, the New York Fed organised a private bailout of LTCM by 14

banks that had lent to the fund. In the following weeks, the Fed lowered its policy

rate three times by 25 basis points in order to provide sufficient liquidity for financial

markets. Both Greenspan (2004) and Meyer (2004), who was on the Fed’s Board

of Governors at that time, admit that the purpose of these rate cuts was to calm

financial markets rather than to stimulate the still expanding real economy. Indeed,

the second cut boosted financial markets6 and, for example, considerably lowered

spreads on repos, swaps, corporate bonds and off-the-run treasuries, which all had

increased dramatically after the Russian default (IMF, 1998, p. 39). Nevertheless,

the Fed still feared the downside risks and lowered its policy rate a third time on

17 November despite lingering positive GDP data. Given the subsequent rise in

inflation and equity prices until 2000, Meyer (2004, p. 121) later regretted this last

cut.

The terrorist attacks in the morning of 11 September 2001 represented a very

different form of a liquidity shock to financial markets. Liquidity evaporated from

the financial system not because of margin calls, portfolio insurance strategies or a

preference shock, but rather because large parts of the communication system and

5For a more detailed analysis of the LTCM-crisis, see e.g. IMF (1998), Jorion (2000) or Sauer
(2002).

6The cut was implemented between two scheduled meetings of the Federal Open Market Com-
mittee on 15 October 1998, a very rare step by the Fed under Alan Greenspan.
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a lot of back offices in lower Manhattan were physically destroyed. One immediate

response of the authorities was to leave the New York Stock Exchange, the American

Stock Exchange and NASDAQ closed until 17 September. Hence, liquidity problems

concentrated in the payment and settlement system and did not affect the stock

market immediately. In that sense, the effects were limited and the Fed could quickly

withdraw the additional 108 billion US-$ in discount window credits, overnight repos

and check floats it had supplied to banks until 13 September already by 20 September

(Lacker, 2004, table 1).

In Europe, the European Central Bank (ECB) immediately issued the following

press statement on 11 September:

After the unprecedented and tragic events in the United States today,

the Eurosystem stands ready to support the normal functioning of the

markets. In particular, the Eurosystem will provide liquidity to the

markets, if need be. (ECB, 2001a)

Furthermore, the ECB conducted two one-day fine-tuning operations on 12 and

13 September with a volume of 69.3 and 40.5 billion Euro, respectively, in which all

bids were satisfied. It also entered into a swap agreement with the Fed over 50 billion

US-$ to provide dollar liquidity to European banks on 12 September (ECB, 2001b).

However, the ECB left its key interest rates unchanged on its regular meeting on 13

September.

Just before U.S. stock markets reopened on the morning of Monday 17 Sep-

tember, the Fed cut its target rate by 50 basis points. The ECB followed suit

and also lowered its key interest rates by the same amount. The Fed continued to

cut rates on 2 October, 6 November and 11 December, while the ECB reduced its

rates only on 9 November. Although Lacker (2004, p. 961) argues that ‘the [Fed]

interest rate cuts following September 11 are probably best viewed as addressing

the medium- and longer-term macroeconomic consequences’ rather than a neces-

sary response to disruptions in the payment system, the contemporaneous action of

central banks worldwide on 17 September7 hints that this move was also aimed at

rebuilding confidence and signalling that central banks would continue to provide

liquidity if necessary. Indeed, on 17 September the Dow Jones opened only 3.2%

below the closing value on 10 September. Until 21 September, the Dow lost 14.3%

compared to 10 September, but regained quickly in the following weeks and reached

the pre-terrorist attacks level already in October.

A common feature of these crises is that the Fed lowered its interest rate to

provide emergency liquidity to the market, although the mandate of the Fed in

7Besides the Fed and the ECB, also the Bank of England, the Swedish Riksbank, the Bank of
Canada and other central banks worldwide lowered their policy rates on the same day.
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Figure 4.1: Federal funds target rate (solid line) and Taylor rule rate (dashed line)
in the U.S. during the crises in 1987, 1998 and 2001.
Notes: The Taylor rule rate is based on equation (4.1) with πt measured as the annual growth
rate of the consumer price index and yt measured as the quarterly OECD-output gap transformed
into monthly data with a cubic spline. The Taylor rate is adjusted for time-varying r∗t and π∗t by
matching the average Taylor rate in the six months prior to the respective crisis with the average
Federal funds target rate over this period. Data source: Thomson Financial Datastream.

the Humphrey-Hawkins Act of 1978 focuses on price stability and full employment.

Taylor (1993) suggested a simple interest rate rule to capture these two goals:

it = r∗t + πt + 0.5(πt − π∗t ) + 0.5yt. (4.1)

The nominal interest rate it should rise with the natural real rate r∗t , inflation πt

relative to its target rate π∗t and the output gap yt. The comparison of the actual Fed

funds target rate with the recommendation from this Taylor rule provides a simple

test for the liquidity provision principle, i.e. a temporary departure of interest rates

from the Taylor rule during financial crises (Taylor, 2005) in order to avoid negative

spillover effects from the asset to the goods market. Figure 4.1 shows that the Fed

decreased its policy rate in the months following all three crises as noted above.

The Taylor rule, however, recommended a rise of the interest rate after the crises

of 1987 and 1998. Therefore, monetary policy appears expansionary for about six

months until April 1988 and even more so after the LTCM-crisis 1998. In contrast,

the Taylor rate matches the actual Fed funds rate after the terrorist attacks in

2001 quite closely. From the beginning of 2002, actual monetary policy looks even

restrictive compared to the Taylor rule.

Figure 4.2 reveals considerable differences in the development of inflation in

the aftermath of the crises. For comparison, inflation is measured as the annual

growth rate of both the consumer price index (CPI) and the personal consumption

expenditure index (PCE), but the differences appear to be negligible. The average

inflation rate one and a half to two years after the crises compared to average

inflation in the six months up to the crises increased by 0.8 percentage points after
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Figure 4.2: CPI (solid line) and PCE (dashed line) inflation rates in the U.S. after
the crises in 1987, 1998 and 2001.
Notes: Inflation is measured as the annual growth rate of the consumer price index (CPI) and the
personal consumption expenditure index (PCE). Data source: Thomson Financial Datastream.

1987 and 1.7 points after 1998.8 In contrast, inflation decreased by 0.4 (PCE) or 0.9

(CPI) points after 2001. Therefore, expansionary monetary policy via the liquidity

provision principle appears to have contributed to price increases after 1987 and

1998, while a normal or even restrictive stance of monetary policy added to a decline

of inflation after 2001.

All three historical episodes of liquidity crises demonstrate that central banks,

and in particular the Fed under Alan Greenspan, stood ready to provide liquidity

in times of financial crises. Greenspan (2004, p. 38) states that the ‘immediate

response on the part of the central bank to such financial implosions must be to

inject large quantities of liquidity,’ roughly in line with the traditional Bagehot

(1873) principle for a lender of last resort activity to ‘lend freely at a high rate

against good collateral.’ But the events also indicate that not all financial crises are

alike and central banks face a difficult task to decide on the optimal policy, which

depends on the associated costs and benefits. The rest of this chapter develops a

stylised model of an asset market and a goods market which provides a framework

to analyse the relevant trade-offs for the central bank.

4.1.3 The model in a nutshell

The model consists of two separate markets, an asset market and a goods market.

The main focus is on developments on the asset market, but these developments have

important implications for the goods market. Although the monetary authority only

cares about deviations of goods prices and quantities from the optimal values, the

spillover effects from the asset market may require a central bank intervention on

this market.

8Besides the rise in consumer prices, expansionary monetary policy may also have contributed
to the boom and bust period of equity prices in the five years following the LTCM-crisis.
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In the model, investors can invest on an asset market in liquid money and poten-

tially illiquid, but productive assets, called shares, in order to optimally satisfy their

uncertain consumption needs on the goods market over two periods. Two channels

link the goods market to the asset market: First, the amount of money held by in-

vestors determines together with the size of a liquidity shock the aggregate demand

of investors on the goods market which is subject to a cash-in-advance constraint.

Second, a dramatic decrease of the asset price negatively influences the goods supply

in the final period because it forces investors to costly liquidate their asset. Hence,

the central bank faces a trade-off between inflating a demand shock today, which

causes higher losses today, and limiting a negative supply shock tomorrow, which

will cause higher losses tomorrow. Expectations of central bank intervention give

rise to a moral hazard effect with additional investment in less liquid, but productive

shares. If the central bank has the possibility to commit to some future policy, it

should optimally weight these productivity gains against the expected intervention

costs.

Section 4.2 analyses the basic model under certainty and aggregate risk. Section

4.3 provides further insights into the trade-off the central bank faces and derives

the optimal central bank intervention before section 4.4 discusses the impact of

idiosyncratic risk. After a review of the related literature in section 4.5, section 4.6

concludes.

4.2 The model

4.2.1 Framework

A continuum of ex ante identical investors i is uniformally distributed on an intervall

I = [0; 1]. They can invest on an asset market and buy goods for consumption on a

separate goods market. An investor i derives utility from consumption ct in periods

t = 1 and 2 according to the utility function

Ui(c1, c2) = γζi ln c1 + β ln c2. (4.2)

γζi represents a liquidity shock that consists of an aggregate liquidity shock γ and an

individual liquidity shock ζi. The distribution functions of both shocks are assumed

to be uncorrelated, symmetric, having a positive support and an expected value of

1 in t = 0, i.e. E0 [γζi] =
∫∞
−∞ γf(γ)dγ · ∫∞−∞ ζif(ζi)dζi = 1.

Every investor is endowed with nominal wealth w that can be invested in t = 0 in

nominal money m and a real asset s, called shares, on a primary market with price

q0 = 1 fixed and s endogenous. The asset pays a fixed nominal return R in t = 2
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Table 4.1: Payoffs of money and shares in t = 0, 1, 2.

0 1 2

m = w − s −1

{
1 0
0 1

s −1





q 0
0 R
ρ 0

and can be traded at the nominal price q on a secondary asset market in t = 1 after

the realisation of the liquidity shock γζi, but before goods are traded on the goods

market. Besides, investors have access to a costly real liquidation technique, which

transforms z units of the asset s into ρz units of additional consumption goods in

period 1 with ρ < 1. The individual cost of liquidation is the missed nominal return

Rz in t = 2 and the social cost is a reduction of aggregate supply in t = 2 by ∆(z).9

The asset s can also be interpreted as a nominal bond with a fixed interest rate R

and a real put option with a strike price of ρ. Table 4.1 summarises the payoffs of

m and s in t = 0, 1, 2.

At the beginning of t = 1 and 2, homogenous, infinitely divisible and non-

storable consumption goods are produced with capital and labour input from workers

who can participate only on the goods market and receive a nominal wage ψt that

is determined at t − 1.10 These goods must be bought by investors and workers

with money, i.e. they are subject to a cash-in-advance constraint. The price of

consumption goods pt is determined by demand for goods from workers and investors

and the aggregate supply of goods. Markets are competitive but incomplete. Figure

4.3 summarises the timing of the model.

9For example, Shleifer and Vishny (1992) and Allen and Gale (1998) contain a discussion of the
costs of premature liquidation of assets. The costly liquidation technology shall represent investors
possibility to a) partly liquidate their capital, b) sell their capital to less productive owners or c)
cut down replacement investments because firms’ refinancing possibilities depend on their share
price as in the financial accelerator model by Bernanke, Gertler and Gilchrist (1999). In this model,
the assumption ρ < 1 guarantees that money is not fully dominated by the asset given the price
determination on the goods market as explained in section 4.2.2 and the absence of central bank
interventions. For the corresponding condition with central bank intervention, see Corollary 4.2
on page 105.

10Section 4.5.2 discusses the literature on market segmentation.
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Figure 4.3: Time structure of the model.

4.2.2 Under certainty

Investors’ problem and asset market

Before I analyse the effects of liquidity shocks γζi, I solve the model under certainty,

i.e. γ = ζi = 1. The individual investor maximises her utility function (4.2) subject

to her budget constraint and her cash-in-advance constraint (CIA) in t = 1.11 She

controls her initial investment in the asset s, her consumption ct in t = 1 and 2

bought on the goods market with cash, her demand for additional assets in t =

1, ŝ, and the extent of costly liquidation z, which is subject to a non-negativity

constraint:12

max
s,c1,c2,ŝ,z

U(c′1, c2) = ln (c1 + ρz) + β ln c2 s.t. (4.3)

p1c1 + p2c2 ≤ w − s + Rs + (R− q)ŝ−Rz

p1c1 + qŝ ≤ w − s

0 ≤ z ≤ s

Note that an investors’ total consumption in t = 1, c′1, is the sum of the consumption

purchased via the goods market, c1, and the real return from the possible liquidation

11The budget constraint implicitly includes the CIA for t = 2 as the investor holds only cash
when she enters the goods market in t = 2.

12The Cobb-Douglas utility function (4.2) makes ct > 0 as long as w > 0.
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of assets, ρz. Solving the maximisation problem with the Lagrangian

max
s,c1,c2,ŝ,z

Λ = ln (c1 + ρz) + β ln c2

− λ [p1c1 + p2c2 − (w − s)−Rs− (R− q)ŝ + Rz]

− µ [p1c1 + qŝ− (w − s)]

yields as first-order conditions

dΛ

dc1

=
1

c1 + ρz
− λp1 − µp1 = 0 −→ µ + λ =

1

p1 (c1 + ρz)
(4.4a)

dΛ

dc2

=
β

c2

− λp2 = 0 −→ λ =
β

p2c2

(4.4b)

dΛ

ds
= −λ + λR− µ = 0 −→ µ = λ (R− 1) (4.4c)

dΛ

dŝ
= λ (R− q)− µq = 0 −→ µ = λ

(
R

q
− 1

)
(4.4d)

dΛ

dz
=

1

c1 + ρz
ρ− λR ≤ 0 (4.4e)

dΛ

dλ
= −p1c1 − p2c2 + (w − s) + Rs+(R− q)ŝ ≥ 0 (4.4f)

dΛ

dµ
= −p1c1 − qŝ + (w − s) ≥ 0 (4.4g)

and dL
dz

z = 0, dL
dλ

λ = 0 and dL
dµ

µ = 0 as complementary slackness conditions.13

Since the costly liquidation is inefficient for p1ρ < 1, investors will not use it

under certainty, and z = 0.14 As will become clear from the discussion of the goods

market in the next section, the price of goods p1 equals its expected value, i.e. p1 = 1,

under certainty, so ρ < 1 is a necessary and sufficient condition for z = 0.

(4.4c) and (4.4d) show that q = 1 in the equilibrium under certainty because

holding money would be dominated from t = 0 to t = 1 for q > 1 such that s = w,

while holding shares would be dominated from t = 0 to t = 1 for q < 1 such that

s = 0. For q = 1, money and shares are equivalent assets from t = 0 to t = 1. Since

money is dominated by shares over the long run, the CIA is binding in t = 1.15 The

only possible symmetric equilibrium is ŝ = 0 , i.e. there is no trade on the asset

market in t = 1, and money is only held for consumption in t = 1: (4.4g) reduces to

p1c1 = w−s. The combination of (4.4a) and (4.4b) shows that a binding CIA drives

13The second-order conditions for a maximum are fulfilled, since (4.3) maximises a strictly con-
cave utility function under linear constraints and the optimum is an interior solution.

14By plugging µ from (4.4c) in (4.4a), solving for λ and then plugging λ in the inequality (4.4e),
it can be shown that dΛ/dz is negative and thus z = 0 as long as p1ρ < 1.

15Since R > 1 by assumption and λ > 0 from (4.4b), the first-order condition for optimal
investment in s yields µ > 0.
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a wedge µ, the marginal utility of cash’s liquidity services, between the marginal

utilities of consumption in t = 1 and t = 2:16

µ +
β

p2c2

=
1

p1c1

.

According to (4.4c), the wedge µ equals the marginal utility of wealth, λ, times the

excess return of shares over money, R− 1, such that the marginal rate of intertem-

poral substitution equals the price ratio times the return on shares:

c2

βc1

=
p1

p2

R.

Given the optimal consumption in t = 1 and 2, the budget constraint (4.4f) and the

CIA (4.4g), the optimal investment decision in t = 0 is

s =
β

1 + β
w and

m =
1

1 + β
w.

An individual investor has consumption demands of17

c1 =
w

(1 + β) p1

and

c2 =
βRw

(1 + β) p2

.

Finally, the investment and consumption decisions of individual investors i can

be aggregated to aggregate investment and consumption. Let capital letters denote

aggregate values of the respective variable, i.e. W ≡ ∫
i∈I

wdi, M ≡ ∫
i∈I

mdi, S ≡∫
i∈I

sdi, C1 ≡
∫

i∈I
c1di and C2 ≡

∫
i∈I

c2di. Given I = [0; 1], the following Proposition

4.1 summarises the situation under certainty:

Proposition 4.1 In the symmetric equilibrium under certainty, investors split their

wealth in money
(
M = 1

1+β
W

)
and shares

(
S = β

1+β
W

)
and consume C1 = 1

p1(1+β)
W

and C2 = βR
p2(1+β)

W . The asset price q = 1 and no assets are traded in the symmetric

equilibrium.

Plugging R = 1/β into the results of Proposition 4.1 yields a special result:

16Note that µ ≥ 0 represents the standard complementary slackness condition: If the CIA is
not binding (µ = 0), the marginal utility of money’s liquidity services is zero; but if the marginal
utility of money’s liquidity services is positive, the liquidity constraint becomes binding (µ > 0).

17For completeness, the Lagrangian parameters are λ = 1+β
Rw and µ = λ (R− 1).
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Corollary 4.1 If the interest rate R equals the discount rate 1/β, investors spend

the same amount of money in both periods, i.e. p1C1 = p2C2, and consume the same

amount of goods, i.e. C1 = C2, if prices remain constant.

To concentrate on the intertemporal substitution effects of liquidity preference

shocks, I start from the situation in Corollary 4.1 with perfect consumption smooth-

ing and thus assume βR = 1 where useful below.

Goods production and goods market

Because I want to focus on events on the asset market, in particular on the effects

of emergency liquidity provision by the central bank in section 4.3, and the direct

spillover effects to the goods market, the model includes a very stylised version

of a goods market. Non-storable goods are produced by a mass of 1 of identical

competitive firms at the beginning of periods t = 1, 2 with total labour input Nt = N̄

from identical workers who cannot participate on the asset market and capital input

Kt according to a Cobb-Douglas production function

Yt = Kα
t N̄1−α (4.5)

with 0 < α < 1. Trade on the goods market takes place after the realisation

of the liquidity shock for investors and after trade on the asset market. While

aggregate supply is already produced and thus fixed at Yt, aggregate demand consists

of demand from workers based on their nominal labour income ψt and from investors

as derived in the previous subsection.

Given a Cobb-Douglas production function with constant returns to scale and

perfect competition, the Euler theorem states that production factors are paid their

marginal product times the respective factor input. With the production function

(4.5), workers should receive the share of total output Yt that reflects their relative

importance in production as captured by 1−α, while capital owners should receive

αYt. Furthermore, I assume that investors’ demand Ct represents the whole factor

income of capital, such that Ct = αYt and that the real investment S determines

the constant producible aggregate real supply Ȳ with ∂Ȳ /∂K · dK/dS > 0.18

Since I have a model in nominal units, labour income for period t is determined

in nominal wage negotiations between workers and firms19 at the end of period t−1

such that their expected real income is Ψt = (1− α)Yt. Hence, the agreed nominal

18Although this is an obvious departure from a full general equilibrium model where the income
from capital is directly linked to the marginal product of capital, the crucial effects of the model
should still hold in general equilibrium under the assumption of a cash-in-advance constraint for
investors and limited asset market participation.

19Firms only produce consumption goods and negotiate wages in the model.
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wage is ψt = ΨtEt−1[pt] = (1− α)YtEt−1[pt] given the expected price level Et−1 [pt].

E0[p1] is normalised to 1.20 For simplicity, I assume that workers build their price

expectations based on the quantity equation, i.e. they expect that investors use all

their available nominal funds for the purchase of consumption goods in the respective

period.21 Hence, money holdings M = W−S = E0 [p1C1] and the supply of goods Ȳ

represent the information set for the wage negotiations in t = 0. The nominal return

from the investment RS plus any unused M from t = 1 equal E1 [p2C2]. Together

with Y s
2 , this provides the information for the negotiations in t = 1. The expected

nominal demand Et−1 [ptCt] in turn has to be equal to the expected income share of

capital, Et−1 [pt] αYt. Due to the normalisation E0 [p1] = 1, C1 = αȲ .22

Under certainty, this also means that E1 [p2] = p2 = 1 as well if βR = 1 because

the CIA binds (µ > 0) and investors transfer no money to t = 2. Hence, investors’

nominal funds are thus identical in t = 1 and 2. If βR 6= 1, investors’ nominal funds

differ in both periods under certainty. The nominal wage negotiations in t = 1

determine ψ2 such that the price p2 adjusts such that workers receive 1 − α and

investors α of the constant aggregate supply Ȳ in t = 2. Hence, aggregate demand

Y d
t and aggregate supply Y s

t are

Y d
t =

ψt

pt

+ Ct = Ψt + Ct and (4.6)

Y s
t = Ȳ . (4.7)

To summarise the equilibrium on the goods market under certainty for βR = 1,

the expected price of goods Et−1 [pt] equals the actual price pt = 1 for t = 1, 2.

Investors consume C1 = C2 = W/ (1 + β), while total production equals Y1 =

Y2 = W/ [α (1 + β)] and workers consume 1−α
α

times investors’ consumption, i.e.

Ψ1 = Ψ2 = 1−α
α

W/(1 + β).

4.2.3 Aggregate risk

What is the efficient response to a positive aggregate demand shock in t = 1? If the

supply of goods can be adjusted to the increased demand, it will be increased until

the marginal costs of doing so equal the marginal benefit. In this model, production

takes place before the shock, so the liquidation technology offers the only way to

increase supply in t = 1. Since the liquidation costs are very high, investors will

20This assumption avoids any problems with a possible indeterminacy of the price level.
21For example, Illing (1997) and Walsh (2003) model aggregate demand with a quantity equation.
22Actually, C1 is determined by W , S and p1 (see table 4.2). With nominal W and real C1 = αY

fixed, p1 is no free parameter any more. But the link between S and K and thus Ȳ could be
normalised such that E0[p1] = 1.
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use it only for large shocks. In an intermediate range, prices adjust such that the

marginal rate of intertemporal substitution equals the relative prices.

Since the optimal investment strategy in t = 0 depends on expectations about

developments on the asset and the goods market in t = 1 and 2, the model has to

be solved by backward induction. Hence, the allocations on the goods market in

t = 2 and t = 1 as well as the influence of the shocks on the optimal behaviour of

investors on the asset market in t = 1 have to be taken into account when one solves

the utility maximisation problem of investors in t = 0. For illustrative purposes,

however, it will be easier to begin with the description of the asset market, turn to

the goods market afterwards and then solve the initial investment problem given

the behaviour in t = 1, 2.

Asset market

The optimal investment decision problem for an individual investor under aggregate

risk becomes

max
s,c1,c2,ŝ,z

E [U(c′1, c2)] =

∫ ∞

−∞
(γ ln (c1 + ρz) + β ln c2) f(γ)dγ s.t. (4.8)

p1c1 + p2c2 ≤ w − s + Rs + (R− q)ŝ−Rz

p1c1 + qŝ ≤ w − s

0 ≤ z ≤ s.

The solution to this maximisation problem in section 4.A of the appendix uses the

Leibniz-Rule and yields as first order conditions

∂Λ

∂c1

=
γ

c1 + ρz
− λp1 − µp1 = 0 (4.9a)

∂Λ

∂c2

=
β

c2

− λp2 = 0 (4.9b)

∂Λ

∂ŝ
= λ (R− q)− µq = 0 (4.9c)

∂Λ

∂z
=

γ

c1 + ρz
ρ− λR ≤ 0 (4.9d)

∂Λ

∂λ
= −p1c1 − p2c2 + w + (R− 1) s + (R− q)ŝ−Rz ≥ 0 (4.9e)

∂Λ

∂µ
= −p1c1 − qŝ + w − s ≥ 0 (4.9f)

dΛ

ds
=

∫ ∞

−∞
[λ (R− 1)− µ] f (γ) dγ = 0. (4.9g)
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and ∂Λ
∂z

z = 0, ∂Λ
∂λ

λ = 0, ∂Λ
∂µ

µ = 0 and dΛ
ds

E0[s] = 0 as complementary slackness

conditions.23

Since all investors are identical without idiosyncratic risk, they all want to sell or

buy assets in response to an aggregate liquidity shock γ at the same time in t = 1 in

order to adjust their money holdings optimally to their desired consumption which is

subject to the CIA. As the aggregate stock of assets is determined in t = 0, however,

they cannot sell or buy in the aggregate. Hence, the asset price q has to adjust to

exclude any excess demand or supply of assets, i.e. market clearing in t = 1 requires

that Ŝ =
∫

i∈I
ŝdi = 0.

Depending on the realisation of the liquidity shock γ, the asset price q, the

Lagrangian parameters λ and µ and the choice variables c1, c2 and z lie in three

different ranges. For γ < β(W−S)
RS

≡ CIA, investors want to transfer wealth into

the next period. This drives up the asset price q, which is bounded by R: Nobody

would be willing to pay more for the asset than the asset’s fixed payoff in the next

period. In this case, the CIA becomes non-binding (µ = 0).

For greater values of γ, however, the CIA is binding and the asset price de-

pends on the cash in the market as in Allen and Gale (1994, 2005). As long as

investors do not liquidate their assets, the asset price captures the full effect of

γ ∈
[

β(W−S)
RS

; β(W−S)
p1ρS

]
. For sufficiently large liquidity shocks γ > β(W−S)

p1ρS
≡ LIQ,

the asset price q falls to a level where the investors become indifferent between liqui-

dating the asset and selling the asset. Since they cannot sell in the aggregate, they

costly liquidate part of their assets (z > 0). Table 4.2 summarises the equilibrium

values of the relevant variables in the three ranges of γ.24 Figure 4.4 illustrates the

asset price q and the two Lagrangian parameters on the budget constraint and the

CIA as a function of γ for R = 1/β = 1.1,W = 1, S = β
1+β

W and ρ = 0.7. The

possibility of a severe drop in q captures the microeconomic view of liquidity, as an

illiquid asset cannot be sold quickly without costs.

Turning to the optimal investment decision in t = 0, the first-order condi-

tion for optimal investment in the asset is given by equation (4.9g). Using the

results for λ and µ from table 4.2 and the definitions of the cumulative distri-

bution function F (x) ≡ ∫ x

−∞ f (γ) dγ of the liquidity shock γ and the function

G (x) ≡ ∫ x

−∞ γf (γ) dγ, section 4.A in the appendix shows that the determination of

the optimal investment s requires an explicit parameterisation of the shock’s den-

23As for the maximisation problem (4.3) under certainty, the second-order conditions for a max-
imum are fulfilled since (4.8) maximises a strictly concave utility function under linear constraints
and the optimum is an interior solution.

24Note that the Cobb-Douglas preferences (4.2) determine the relative expenditures p1c1 to p2c2

such that c1 is independent from p2 and c2 is independent from p1 in general. Only for γ > LIQ
and thus z > 0, c2 depends on p1ρ because this is the nominal value of liquidation in t = 1.
Without central bank intervention, p1 = 1 in this case as demonstrated in the next section 4.2.3.
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Table 4.2: Summary of the values of the asset price q, the Lagrangian parameters
λ and µ and the choice variables c1, c2 and z after the realisation of γ in t = 1.

γ < β(W−S)
RS

≡ CIA β(W−S)
RS

≤ γ ≤ β(W−S)
p1ρS

γ > β(W−S)
p1ρS

≡ LIQ

q R β(W−S)
γS

p1ρ

λ β+γ
w−s+Rs

β(W−S+RS)
RS(w−s+Rs)

p1ρ(β+γ)
R(w−s+p1ρs)

µ 0 λ
(

γRS
β(W−S)

− 1
)

λ
(

R
p1ρ
− 1

)

z 0 0 γp1ρs−β(w−s)
p1ρ(β+γ)

c1
γ

p1(β+γ)
(w − s + Rs) w−s

p1

w−s
p1

c2
β

p2(β+γ)
(w − s + Rs) Rs

p2

βR(w−s+p1ρs)
p2p1ρ(β+γ)
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Figure 4.4: q, λ, µ as a function of γ and given different parameter values.
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Table 4.3: Summary of f(γ), F (γ), G(γ) in t = 1.

γ ∈ [a; b] γ /∈ [a; b] γ = CIA γ = LIQ

f(γ) 1
b−a

0 1
b−a

1
b−a

F (γ) γ−a
b−a

0
β(W−S)

RS
−a

b−a

β(W−S)
p1ρS

−a

b−a

G(γ) γ−a
b−a

· 1
2
(γ + a) 0

F (CIA) ·
1
2

(
β(W−S)

RS
+ a

) F (LIQ) ·
1
2

(
β(W−S)

p1ρS
+ a

)

sity function f (γ). I assume γ to be uniformly distributed between a and b with

0 < a < b. Table 4.3 provides a summary of f(γ), F (γ) and G(γ) in t = 1 which is

derived in the appendix.

There is only one variable left that depends on the realisation of γ, namely the

goods price p1, which is determined on the goods market as described in the following

subsection. As noted above, however, the utility function (4.2) implies that p1 only

matters for λ, µ, Ct in the range γ ≥ β(W−S)
p1ρS

. Table 4.2 shows that in this range

investors use all their nominal funds w− s to buy consumption goods on the goods

market. The detailed description of the goods market in the next section 4.2.3 shows

that p1 = 1 in this case. Given this information, one can now solve for the optimal

investment in the asset s.

Figure 4.5 illustrates that the optimal investment is decreasing in the standard

deviation of γ, σ (γ) = b−a
2
√

3
, while this effect is more pronounced for a lower real

payoff of the liquidation technology ρ. Without aggregate risk, Proposition 4.1 states

that investors hold S = β
1+β

W ≈ 0.4762 for R = 1/β = 1.1 and W = 1. Initially,

introducing aggregate risk does not affect S because the asset price q absorbs the

full impact of the liquidity shock for the chosen parameter values, i.e. the CIA

always binds (F (CIA) = 0) and no assets are liquidated (F (LIQ) = 1) given the

equilibrium S. Further increasing σ (γ) makes the risk-averse investors reduce their

investment S. As the real payoff of liquidations Z increases in ρ and the liquidation

threshold LIQ decreases in S, the reduction in S caused by increased aggregate risk

is dampened by a greater ρ and the solid line (ρ = 0.9) lies above the dashed line

(ρ = 0.5) in figure 4.5.

This is the solution of the model with aggregate risk and access to a costly

real liquidation technology for investors. The analysis of an emergency liquidity

assistance by the central bank requires at first a deeper discussion of the goods

market in the next subsection. Furthermore, the costs and benefits of such an

intervention need to be based on an explicit welfare function for the central bank. I



Chapter 4 Liquidity risk and monetary policy 95

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

Standard deviation of γ

 S for ρ = 0.9
 S for ρ = 0.5

Figure 4.5: Optimal investment S for R = 1/β = 1.1 and W = 1.

turn to this issue in section 4.3.

Goods market

Investors’ liquidity shocks in t = 1 can spill over to the goods market via a demand

effect in t = 1 and a supply effect in t = 2. Let η denote the first channel that

links the asset market and the goods market: For small realisations of the liquidity

shock γ < CIA, the CIA of investors becomes non-binding and they do not use all

their money for consumption in t = 1. This represents a negative nominal aggregate

demand shock on the goods market, represented by η < 0. If the liquidity shock

γ is in the range of CIA ≤ γ ≤ LIQ, the asset price q absorbs the full effect of

the liquidity shock as noted in the previous section and investors’ nominal demand

p1C1 = W − S. For large liquidity shocks γ > LIQ, investors liquidate part of

their assets and thus increase the total resources available for consumption in t = 1

beyond Ȳ . Since investors satisfy ρZ of their desired consumption goods with the

liquidation technology, they still demand p1C1 = W − S on the goods market. If,

however, the central bank intervenes on the asset market and injects additional

money in case of large realisations of γ as will be shown in the following section 4.3,

investors’ nominal demand rises above the level expected in the wage negotiations.

This is represented by a positive aggregate demand shock η > 0.

The rest of aggregate demand depends on nominal labour income ψt, which is
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determined in nominal wage negotiations at t − 1 as explained in section 4.2.2:

Perfect competition and the Cobb-Douglas production function (4.5) require that

workers can consume (1− α) Yt in t given the expected price level Et−1 [pt] which

is normalised to 1 for t = 1. Workers build their price expectations based on the

quantity equation, i.e. they expect that the total amount of money held by investors

at the time of the wage negotiations is spent in t = 1. Hence, the expected nominal

demand E0 [p1C1] = W −S has to be equal to the expected capitalists’ income share

E0 [p1] αYt = αȲ as E0 [p1] = 1.25 Therefore, the aggregate demand relationship

from equation (4.6) becomes

Y d
1 =

ψ1 + W − S + η

p1

, (4.10)

while aggregate supply is again fixed to26

Y s
1 = Ȳ .

Note that the price impact of nominal demand shocks η originating from the asset

market is less than 1 as ψ1 is constant. Hence, the first channel that links the asset

with the goods market, η, causes a redistribution effect from investors’ consumption

share at p1 = 1 towards workers for η < 0 and from workers towards investors for

η > 0. Given the determination of E0 [p1] described above, positive price shocks

can only occur with additional money from the central bank which will be discussed

extensively in the following section 4.3.

The exercise of the real put option acquired with the asset s, i.e. the application

of the costly liquidation technique, in response to large liquidity shocks γ > LIQ

with no or insufficient emergency liquidity assistance by the central bank causes

the second link between the asset market and the goods market: Without costly

liquidations, the capital stock Kt is fixed over the time horizon of this model and

aggregate output is Ȳ , given the initial investment S. If investors choose to liquidate

part of their shares, i.e. Z > 0, this liquidation takes place after production in t = 1

and increases the real resources available for consumption in t = 1, but reduces K2.

25This assumption is a short-cut from the rational Erat
0 [p1C1] because investors will spend all

their money in t = 1 only as long as their CIA binds, i.e. γ ≥ CIA, and less for γ < CIA.
This implies Erat

0 [C1] < C1 (γ ≥ CIA) and E0 [η] < 0 without central bank intervention. Hence,
workers get more than their expected share of aggregate supply Ȳ in t = 1 on average and are thus
implicitly compensated for their real income risk in t = 1. To summarise, the way workers form
their expectations and the normalisation of E0[p1] determine the size of the redistribution effect
of investors’ nominal demand on workers after the realisation of γ, but not the possibility of such
redistributions.

26Ȳ may be different from the one under certainty, however, since it depends on S which may
decrease with the extent of aggregate risk as demonstrated in figure 4.5.
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The lower capital input in t = 2 lowers Ȳ by ∆ (Z), with d∆
dZ

> 0, and aggregate

supply becomes

Y s
2 = Ȳ −∆(Z). (4.11)

Any risk has disappeared from the model at the time of the nominal wage negotia-

tions for t = 2. Workers build their price expectations E1 [p2] based on investors’ safe

nominal revenues R (S − Z), potentially unused money holdings W − S − p1C1 and

the known Y s
2 . Again, perfect competition allows them to consume Ψ2 = (1− α) Y2,

which implies a nominal wage of ψ2 = E1 [p2] (1− α) Y2.
27 The aggregate demand

equation for t = 2 then is

Y d
2 =

ψ2 + R (S − Z) + W − S − p1C1

p2

. (4.12)

and equals aggregate supply at p2 = E1 [p2] in equilibrium:

Ψ2 + C2 = Ȳ −∆(Z).

p2 and its expected value adjust relative to p1 such that investors’ real consumption

C2 = α
[
Ȳ −∆(Z)

]
. For example, if investors’ liquidity shock γ is within the

intermediate range CIA ≤ γ ≤ LIQ, the CIA is binding and W − S = p1C1, but

no assets are liquidated, i.e. Z = 0. Equation (4.12) reduces to

Y d
2 =

ψ2 + RS

p2

and p2 = p1 = 1 for βR = 1 and a sufficiently small variance of γ that leaves

S = β/ (1 + β) W from the certainty case unaffected (see also figure 4.5). Since

investors’ Cobb-Douglas-preferences smooth nominal expenditures over t = 1 and

2, p2 has no effect on investors’ behaviour in t = 1 given S.

To summarise, the two direct channels that link the asset market to the goods

market in this model are the aggregate demand shock η in period 1 and the aggregate

supply shock ∆ in period 2, which both depend on the realisation of the liquidity

shock γ in t = 1.

27Note again that investors do not react to possible changes of p2 relative to a constant p1 because
the Cobb-Douglas-preferences determine the expenditure share rather than real consumption in
each period. Hence, given the constant produceable aggregate supply Ȳ and workers’ desired
income of (1− α) Y2, p2 would have to deviate from p1 even if γ = E0 [γ] = 1 for example if
βR 6= 1 in order to equate investors’ intertemporal rate of substitution to the relative price p1/p2

for constant real consumption C2 = C1 = αȲ .
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4.3 Central bank intervention

4.3.1 Welfare function

The direct spillover effects from the asset market to the goods market mean that the

central bank may intervene on the asset market even if it does not take investors’

welfare into account. The loss function L of the central bank consists of the weighted

sum of two parts: The increase of p1 above the desired price level p∗1 because of the

associated real income loss of workers and the deviation of aggregate supply Y s
2 from

Ȳ caused by liquidations Z, ∆ (Z):28

L = (p1 − p∗1)− ω
(
Y s

2 − Ȳ
)
. (4.13)

ω reflects the weight on the real income loss of workers in t = 2 relative to the

weight on the real income loss of workers in t = 1 caused by a rise in p1 and thus

implicitly includes the central bank’s time discount factor. Let p∗1 be normalised to

1 and thus equal the expected price level E0 [p1]. It is sufficient to concentrate on p1

and Y s
2 in this stylised model because Y s

1 is produced before any shocks occur and

thus not directly influencable by monetary policy under discretion29 and nominal

wage negotiations for t = 2 take place after any shocks and determine p2 such that

workers receive Ψt = (1− α) Y s
2 .

The concentration on goods markets can be justified with several arguments:

From a positive perspective because price stability and – differently accentuated –

output stability are the mandate of most central banks in the world, where price

stability is generally interpreted as a low but positive growth rate of some form

of a consumer price index. From a political economy perspective, since people

living mainly from their nominal labour income represent the majority of voters in

a society and, as I show in this chapter, this focus may even improve the welfare

of investors as well. Finally, also from a normative perspective within the New

Keynesian framework as argued by Woodford (2003) because asset prices are in

general a lot more flexible than goods prices and the monetary authority should

focus on a measure of relatively sticky core inflation to limit the distortions caused

by nominal rigidities.30

28The discussion below shows that the central bank cannot intervene symmetrically in this model.
Hence, the linear loss function represents a useful simplification. The results of the model are robust
to a loss function that is quadratic in inflation and output deviations from their respective targets,
but the comparative static analysis and the restrictions on some parameter values become more
complex (see section 4.B in the appendix).

29The indirect effect of central bank intervention on aggregate supply will be analysed in section
4.3.5. Section 4.3.6 discusses how optimal monetary policy can take the indirect effect into account.

30Note, however, that the normative argument has been subject of a long discussion in macro-
economics that goes far beyond the scope of this chapter. For example, Woodford’s argument
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4.3.2 Asset market

The central bank has the possibility to prevent the costly liquidation of shares if it

acts as a lender or rather liquidity provider of last resort to the financial market.

That means it can enter repurchasing agreements with investors at a price (just)

high enough to prevent liquidations and thus provide extra liquidity to the market.

In such an emergency repurchasing agreement, the central bank buys l assets at a

nominal price q and sells them to the same investor in t = 2 for the asset’s nominal

payoff R. The total amount L ≡ ∫
i∈I

ldi of assets bought, their buying price q and

thus the liquidity costs for investors
(
R− q

)
L all depend on the preferences of the

central bank in (4.13).31 As in section 4.2.3, I begin with the asset market and an

investors’ optimal behaviour.

The possibility of a central bank intervention alters the optimal investment de-

cision problem for an individual investor. The maximisation problem (4.8) under

aggregate risk becomes

max
s,c1,c2,ŝ,z,l

E [U(c′1, c2)] =

∫ ∞

−∞
(γ ln (c1 + ρz) + β ln c2) f(γ)dγ s.t. (4.14)

p1c1 + p2c2 ≤ w − s + Rs + (R− q)ŝ−Rz − (
R− q

)
l

p1c1 + qŝ ≤ w − s + ql

0 ≤ z ≤ s; 0 ≤ l ≤ s; l + z ≤ s.

The problem (4.14) is solved as in section 4.2.3. While the first-order conditions

(4.9a) to (4.9d) and (4.9g) remain unchanged, the derivatives with respect to the

neglects the information content of asset prices about future consumer price inflation that was
emphasised by Alchian and Klein (1973). These authors concluded that asset prices should receive
a very high weight in the price index that the central bank tries to stabilise; their argument was
rejected mostly for practical reasons (see Cecchetti, Genberg, Lipsky and Wadhwani (2000), for
example).

The modern discussion rather ranges between, e.g., Bernanke and Gertler (1999), who argue
that asset price changes are only relevant for monetary policy insofar as they change the forecasts
of consumer price inflation and output, while, e.g., Cecchetti et al. (2000) favour a more direct
response to asset prices because this should limit the extent of asset price bubbles and thus dampen
the volatility of output and inflation. The discussion below shows that the spillover effects from
the asset to the goods market justify a direct monetary policy response to asset prices even if the
central bank neglects the welfare of asset holders and there are no bubbles.

31The individual costs of emergency liquidity provision
(
R− q

)
l represent a deadweight loss in

the model. Actually, these costs equal the nominal seigniorage income for the central bank. Section
4.3.6 includes a discussion of the optimal use of this seigniorage income.
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Lagrangian parameters (4.9e) and (4.9f) become

∂Λ

∂λ
= −p1c1 − p2c2 + w + (R− 1) s + (R− q)ŝ−Rz − (

R− q
)
l ≥ 0 (4.15a)

∂Λ

∂µ
= −p1c1 − qŝ + w − s + ql ≥ 0 (4.15b)

and the new first-order condition

∂Λ

∂l
= −λ

(
R− q

)
+ µq ≤ 0, l ≥ 0 (4.16)

is added to the system.

In order to limit the increase of the price level on the goods market p1 caused by

the extra liquidity in the market, the central bank will provide this liquidity at the

highest cost for investors that still prevents the costly liquidation, i.e. q is as low as

possible. Since (4.16) implies that λ
(

R
q
− 1

)
= µ for l > 0, it is obvious from (4.9c)

that q = q in equilibrium in this case. At the same time, the discussion in section

4.2.3 shows that λ
(

R
p1ρ
− 1

)
= µ for z > 0, i.e. γ > LIQ. q = p1ρ = q causes

investors’ indifference between consuming by liquidating assets (z > 0) or by buying

c1 for p1 on the goods market with cash from selling the asset at q to the central

bank or at q on the asset market. Hence, q = p1ρ is the lowest price at which the

central bank can prevent costly liquidations in response to large liquidity shocks γ.

4.3.3 Goods market

A closer look at the goods market in t = 1 and 2 illuminates the mechanism of the

model and the trade-off the central bank faces. In particular, the central bank needs

to quantify the costs and benefits of additional liquidity to determine the optimal

amount of nominal aggregate liquidity provision.

As in section 4.2.3, the aggregate demand shock η in (4.10) can be negative in

t = 1, as investors transfer money into t = 2 for γ < CIA. Due to the central

bank intervention, however, η can also be positive. For γ > LIQ, the central bank

increases the amount of money available for consumption purchases in the economy

by qL. Since aggregate supply is already produced at the beginning of t = 1,

the additional nominal funds qL cause a rise in the price of goods p1 by τqL.32

Given workers’ fixed nominal wage ψ1, this price increase reduces workers’ real

consumption Ψ1 and increases the amount of goods investors can buy on the goods

market with money. Investors’ total consumption C ′
1 is then the sum of goods bought

32Using the parameters and variables of the model, the price impact can be expressed as τ =
αp1ρ/ (W − S). To simplify the exposition of the arguments, I continue to use τ for the price
impact of L.
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on the goods market C1 with initial money holdings plus the liquidity provision

qL and the proceeds from the real liquidation ρZ that the central bank optimally

admits. Crucially, once the nominal wage ψ is fixed based on the expected nominal

demand such that workers expect to receive (1− α) Ȳ , a liquidity provision by the

central bank that exceeds workers’ expectations, independently of their expectation

formation mechanism, will always induce this redistribution effect and increase the

amount of real funds available for investors’ consumption in t = 1.

At the same time, the real liquidation of Z assets causes a reduction of aggre-

gate supply in t = 2 by ∆ (Z) = κZ.33 As the central bank intervention reduces

the amount of liquidations by L, it increases Y s
2 proportionately by κL. Hence,

aggregate supply Y s
2 = Ȳ −κZ, where Z denotes the amount of optimally admitted

liquidations, and the aggregate demand equation (4.12) becomes

Y d
2 =

ψ2 + R (S − Z − L) + W − S − p1C1

p2

. (4.17)

Since any risk in the model is dissolved by the time of the wage negotiations for t = 2,

the nominal wage ψ2 guarantees a real consumption of Ψ2 = (1− α)
(
Ȳ − κZ

)
and

E1 [p2] = p2. As in section 4.2.3, p2 = p1 = 1, if γ ∈ [CIA,LIQ], βR = 1 and

S = β/ (1 + β) W , for example.

4.3.4 Optimal central bank intervention

The trade-off between the price impact τ and the output effect κ determines the

optimal amount of liquidity L∗ provided by the central bank. I define Z∗ as the

maximal aggregate amount of desired asset liquidations in response to a shock γ,

i.e. Z∗ ≡ ∫
i∈I

zdi = γp1ρS−β(W−S)
p1ρ(β+γ)

with z = γp1ρs−β(w−s)
p1ρ(β+γ)

taken from table 4.2 in

section 4.2.3. The liquidation of Z∗ produces an output loss of κZ∗ in t = 2 with

κ > 0. An intervention of L causes an increase in p1 of τqL with τ > 0 above the

expected price level E0 [p1] = 1. At the same time, it reduces the extent of actual

liquidations Z by L, which increases aggregate supply in t = 2 by κL. I assume

ωκ > ρτ such that the value of the output gain is sufficiently high for a positive

level of L in response to large shocks γ. The endogeneity of the lowest intervention

33The linearity of the output loss serves again the purpose of expositional ease. Given the way
the size of the economy Ȳ is linked to the amount of assets S, κ = R/ (αp2).
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price q = p1ρ implies that

p1 = 1 + τqL

⇔ p1 = 1 + τp1ρL

⇔ p1 =
1

1− τρL
(4.18)

and requires τρL < 1 for an equilibrium. Given this information about the price

and output impacts of its intervention, the central bank optimises

min
L
L = (p1 − p∗1)− ω

(
Y s

2 − Ȳ
)

(4.19)

=

(
1

1− τρL
− 1

)
− ω

(
Ȳ − κ (Z∗ − L)− Ȳ

)

=
τρL

1− τρL
+ ωκ

(
γS − β(W−S)(1−τρL)

ρ

β + γ
− L

)
.

In the optimum, the marginal costs of higher prices p1 just equal the marginal benefit

of greater output Y s
2 ,

dL
dL

=
τρ

(1− τρL)2 + ωκ

(
β (W − S) τ

β + γ
− 1

)
!
= 0

⇔ τρ

(1− τρL)2

︸ ︷︷ ︸
direct marginal cost of

dp1
dL

+ ωκ
β (W − S) τ

β + γ︸ ︷︷ ︸
indirect marginal cost of

∂Y s
2

∂Z∗ · ∂Z∗
∂p1

· dp1
dL

= ωκ︸︷︷︸ .

marginal benefit of
∂Y s

2
∂L

(4.20)

Note that dZ∗
dL

> 0 since the goods price increase associated with L > 0 makes the

real liquidation technology more attractive. The optimal liquidity provision L∗ that

fulfills the stability criterion τρL < 1 is

L∗ =
1

ρτ
−

√
β + γ

ωκτρ [β + γ − β (W − S) τ ]
. (4.21)

Proposition 4.2 The optimal amount of assets purchased by the central bank L∗

increases in the size of the liquidity shock γ, the weight on the output gap ω and

its marginal reduction of output losses κ. L∗ decreases in its marginal price impact

τ , the real payoff of the liquidation technology ρ and the amount of money W − S

initially held by investors if ωκ > ρτ and γ > LIQ.
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Proof. The derivatives of L∗ in equation (4.21) are positive with respect to γ, ω, κ

and negative with respect to ρ, τ given the assumptions about the parameters.

Proposition 4.2 shows that the central bank will provide more liquidity in re-

sponse to a greater shock γ because it reduces the indirect marginal costs of inter-

vening.34 The opposite is true for larger money holdings W−S and more investment

in the illiquid asset S: More initial liquidity increases the marginal costs of L as the

same endogenous rise of p1 raises the desired liquidations Z∗ by more. Furthermore,

L∗ increases with the weight on output gap stabilisation relative to price stabilisa-

tion, ω, because this makes an output loss due to liquidation more costly relative

to a price increase due to central bank intervention. A greater output impact κ of

an intervention or a smaller price impact τ also improve the benefits of intervening

relative to its costs and thus raise L∗. Finally, a greater ρ amplifies the price impact

of the necessary intervention ceteris paribus and thus lowers L∗.

A special situation emerges if the central bank provides so much liquidity that p1

rises until p1ρ = q = R. A further increase of q means that the central bank actually

pays investors not to liquidate their assets and µ < 0 from (4.9c). But q > R may

become necessary as it is the nominal value of the asset’s real put option in t = 1,

p1ρ, that determines Z, not the asset’s final payoff R (see table 4.2). This situation

will not occur, however, as long as

p1 <
R

ρ

⇔ 1

1− τρL∗
<

R

ρ
.

Taking L∗ from (4.21) and neglecting the indirect marginal costs of L that only

reduce L∗ shows that

1

1− τρ
(

1
ρτ
−

√
1

ωκτρ

) <
R

ρ

⇔ R

√
τ

ωκρ
> 1

is a sufficient condition for p1 < R
ρ

and thus q < R.

4.3.5 Welfare implications and the moral hazard effect

How is the utility and the behaviour of investors affected by the central bank inter-

vention? First, the central bank chooses q such that it can prevent the real liquidation

34If the loss function (4.13) was quadratic in the output gap in t = 2, also the marginal benefit
of L would increase with Z∗ and thus with γ (see section 4.B in the appendix).
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of L∗ assets at the lowest price impact, i.e. q = p1ρ. At this price, the individual

costs of liquidating the asset (R−p1ρ) and the costs of selling it to the central bank

in exchange for cash (R− q) are identical. (4.9c), (4.9d) and (4.16) show that indi-

vidual investors are indifferent between liquidating, selling to the central bank and

selling on the market as q = p1ρ = q. Nevertheless, the central bank intervention

raises the welfare of investors ceteris paribus because it lessens the cash-in-advance

constraint via the endogenous rise of p1 and the corresponding increase in the value

of the asset in t = 1, p1ρ = q = q.35 Since the nominal income of workers and the

supply of goods Y s
1 = Ȳ are fixed, the price increase causes a redistribution from

workers to investors in t = 1.

The anticipation of central bank intervention also affects the initial investment

decision of investors. The first-order condition for optimal investment in the asset

is (4.9g),
dL

ds
=

∫ ∞

−∞
[λ (R− 1)− µ] f (γ) dγ = 0. (4.22)

In the optimum, the excess return of the asset over money (R− 1) evaluated with the

expected marginal utility of wealth λ equals the expected marginal utility of money’s

liquidity services µ. Investors anticipate that the central bank will provide extra

liquidity for some realisations of γ. These interventions raise the rationally expected

price of goods E0 [p1] relative to the one without expectations of interventions. The

higher expected price level lowers the value of money’s nominal payoff relative to the

liquidated asset’s real payoff of ρ in t = 1, or, in nominal terms, raises the nominal

value of a liquidated asset p1ρ relative to the constant nominal payoff of money of

1. Since the asset becomes more valuable relative to money, investors will increase

their investment s. This represents the so-called moral hazard effect of central bank

intervention because investors increase their holdings of the asset whose value is

possibly subject to liquidity risk as they anticipate the liquidity provision by the

central bank.

Proposition 4.3 The anticipation of a central bank intervention in t = 1 to limit

the extent of real liquidations of the asset S causes an increase in the investment in

S in t = 0 relative to the case without the possibility of a central bank intervention.

Proof. The moral hazard effect arises for two reasons. Taking the aggregate in-

vestment level S as given, the higher goods price p1 first raises the optimal amount

of assets liquidated or sold to the central bank because ∂z
∂p1
|γ>LIQ > 0 (for z, λ, µ,

see the last column of table 4.2). This is reflected in (4.22) in a lower expected

marginal utility of money, ∂µ
∂p1
|γ>LIQ < 0, and a greater marginal utility of wealth,

35See also figure 4.6 and the discussion of the moral hazard effect below.
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Figure 4.6: q, λ, µ as a function of γ and different parameter values for p1 = 1.2
(solid line) and p1 = 1 (dashed line).

∂λ
∂p1
|γ>LIQ > 0. Second, the increase in p1 lowers the threshold of the realisation

of γ, LIQ = β(W−S)
p1ρS

, for which Z and L become positive. Since CIA = β(W−S)
RS

remains unchanged for a given S, the lower LIQ reduces the intermediate range

CIA ≤ γ ≤ LIQ for which the effect of the liquidity shock is fully absorbed by the

asset price and consumption remains unchanged (see table 4.2). The constant con-

sumption levels imply that the marginal utility of wealth, λ, is also constant in this

range, while the cash-in-advance constraint becomes very costly, i.e. µ rises rapidly

with γ. Equation (4.22) shows that a greater expected marginal utility of wealth

and a smaller expected marginal utility of money increase the optimal individual

investment s. This raises also the aggregate investment S =
∫

i∈I
sdi in equilibrium.

The two effects can be seen in figure 4.6 which replicates figure 4.4 for the case of

no central bank intervention. It shows the shift to the left of the threshold LIQ, i.e.

the right kink in the three curves, and the higher values of λ and the lower values of

µ in the range of γ > LIQ for a greater price p1 due to a central bank intervention.

The moral hazard effect of Proposition 4.3 can be so severe that investors stop

holding money as stated in the following Corollary 4.2:

Corollary 4.2 Holding no money from t = 0 to t = 1 represents an equilibrium if

investors expect the central bank to intervene at a price q greater than 1.
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Proof. Assume all investors except i hold only the asset, i.e. S = W . Then,

CIA = LIQ = 0 and the central bank has to intervene with certainty. Equation

(4.22) simplifies to dL
ds

=
∫∞
−∞

[
(β+γ)(q−1)

w−s+qs

]
f (y) dγ ≥ 0 which will be strictly positive

for E0

[
q

]
> 1 as γ has a positive support, cov(γ, q) > 0 and the denominator

w+(q−1)s > 0. Hence, investing the full endowment w in the asset will be optimal

for i, i.e. s = w, and S = W represents an equilibrium.

Corollary 4.2 implies that the parameters of the model, for example the real

payoff of liquidation ρ or the weight on output stabilisation ω, have to be chosen

such that the liquidity provision is sufficiently costly and E0

[
q

]
sufficiently smaller

than 1 in order to prevent the possibility of a complete moral hazard scenario caused

by full insurance against liquidity shocks provided by the central bank.

What happens to the welfare of workers? Given the investment S, their welfare

clearly rises if the central bank’s relative weight on output in the loss function (4.13),

ω, represents their own preferences. The central bank sets L∗ and the corresponding

price q such that the marginal cost of the price increase equals the marginal benefit

of less liquidated assets in equation (4.20). The increase in S due to the moral

hazard effect is double-edged, however: The higher real investment causes a rise in

producible output Ȳ as ∂Ȳ /∂K · dK/dS > 0. At the same time, it increases the

extent of desired liquidations Z∗ and central bank intervention L∗ ceteris paribus.

In general, the overall welfare effect for workers depends on the gain from greater

output Ȳ due to the increase in S relative to the associated costs in t = 1, 2. The

following section discusses the optimal monetary policy when the central bank takes

this additional trade-off into account. That section also examines what happens if

not only investors, but also workers anticipate the central bank intervention.

4.3.6 Monetary policy under commitment and further model

extensions

In section 4.3.4, the optimal central bank intervention in t = 1 was calculated

based on the central bank loss function (4.13) after the realisation of the liquidity

shock and given aggregate investment S. This reflects the absence of a commitment

possibility of the central bank in this model. In other words, the solutions presented

so far represent optimal monetary policy under discretion. The optimal second-

best solution given the cash-in-advance constraint, however, could be achieved by a

central bank with the possibility to commit to a specific intervention policy in t = 1

at t = 0.

In that case, the central bank has to optimally weight the increased aggregate

supply Ȳ associated with the moral hazard-effect against the costs of liquidations
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and interventions in t = 1 and 2. More generally, if private investors anticipate

a liquidity insurance by the central bank, they hold less liquidity and invest their

funds more productively. A lower level of aggregate liquidity, however, makes the

financial sector less resilient, such that financial crises and central bank interventions

become more likely.

Hence, the loss function (4.13) has to be extended to take the productivity gain

from the moral hazard effect into account. As before, the loss increases in p1 − p∗1
and the output costs of liquidations ∆(Z). Additionally, the loss decreases with

aggregate output Ȳ , such that optimal monetary policy under commitment solves

min
S,L

E0

[L(Ȳ , p1 − p∗1, ∆(Z))
]

(4.23)

to find the optimal level of private investments S and the optimal liquidity provision

L conditional on the realised liquidity shock.

So far in this chapter, workers build their price expectations based on the money

holdings W − S of investors (see sections 4.2.2 and 4.2.3). The question what hap-

pens if not only investors, but also workers anticipate the central bank intervention,

is related to the brief discussion in footnote 25 of the effects if workers’ formed

their price expectations in the wage negotiations with rational expectations rather

than the quantity equation. For a given level of S, the central bank will provide

extra liquidity if γ > LIQ. This increases the expected amount of cash available

for purchases of consumption goods relative to the situation without central bank

intervention and thus raises the expected price of consumption goods or – in a re-

peated version of the model – the expected inflation rate. Since rational workers

want to be compensated for the higher expected price with higher nominal wages,

this leads to an ‘inflation bias’ which the central bank should consider in the op-

timal monetary policy under commitment.36 But once wages are determined, the

central bank can always provide more liquidity than expected. Hence, the trade-off

in t = 1 between redistribution losses for workers today versus less supply tomorrow

continues to exist, independently of the way workers form their price expectations.

Another important feature of the central bank intervention is the possibility of

a sterilisation of its intervention before the additional money causes price increases

on the goods market. The example of September 11 in section 4.1.2 shows that the

Fed was indeed able to quickly sterilise the emergency liquidity issued directly after

the terrorist attacks. But this liquidity crisis was mostly limited to the payments

36Note that although the moral hazard effect lowers private money holdings W − S, the central
bank intervention still raises the expected overall nominal demand from investors on the goods
market. The reason is that investors reduce their money holdings precisely because they expect
an easing of their CIA on average relative to the situation without central bank intervention.
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and settlement system. In the other two examples of section 4.1.2, the crises in 1987

and 1998, the Fed had to lower interest rates despite buoyant GDP growth and

rising inflation and provide liquidity for a much longer time to calm the markets

(see figure 4.1 and the discussion in section 4.1.2). In these cases, the trade-off

analysed in this chapter increases in relevance for the optimal policy response to

the crises as demonstrated by the different developments of inflation after 1987,

1998 and 2001, illustrated in figure 4.2.37 Nevertheless, a sterilisation-possibility

of interventions could be easily included into the model by making the nominal

aggregate demand shock η that spills over from the asset to the goods market a

function of the sterilisation possibilities of the central bank.

In the model so far, the individual costs of emergency liquidity provision
(
R− q

)
l

represented a deadweight loss. Actually, these costs for investors correspond to

seigniorage income for the central bank. If the central bank or the government used

this seigniorage to buy consumption goods in t = 2, the aggregate demand equation

(4.12) included the additional term
(
R− q

)
L in the numerator. The welfare effects

depend on the use of the real seigniorage income and should be taken into account

accordingly when the central bank provides liquidity in t = 1. The inclusion of

seignorage does not change the general trade-offs in the model, but it reduces the

costs of liquidity provision if the seigniorage income is distributed to workers.

Finally, the traditional Bagehot (1873) principles suggest that the central bank

should provide liquidity only to an illiquid, but solvent bank. The judgement be-

tween illiquidity and insolvency requires a lot of information about banks’ assets and

liabilities on behalf of the lender of last resort, the central bank. This identification

problem transfers to financial markets, where the central bank faces the question

if asset price declines are caused by illiquidity or by deteriorating fundamentals.

In contrast to the case of financial intermediaries, this judgement seems to be less

difficult on financial markets since a number of illiquidity measures exist and are

easily observable: For example, bid-ask spreads, the quoted depth, i.e. the number

of shares available at the bid/ask price, respectively, the volatility of returns and

the size of order flows (see, e.g., Chordia et al., 2005). If all of these criteria signal

liquidity problems, the central bank most probably faces a liquidity crisis. It should

then act as a ‘liquidity provider of last resort’ and judge its actions according to the

framework developed in this chapter.38

37Taylor (2005) supports the liquidity provision principle and thus a temporary departure of
interest rates from the recommendations of a Taylor rule that includes only inflation and output.
But he argues that policy should have returned to a standard rule more quickly after the crises in
1987 and 1998, i.e. sterilised the liquidity provision (Taylor, 2005, p. 114).

38Besides, my model could also easily capture worsening fundamentals by a lower real value of
the liquidation technology, ρ.
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4.4 Idiosyncratic risk

Having analysed the asset market, the goods market and central bank interventions

under aggregate risk in the previous sections, I now focus on the question under

which circumstances idiosyncratic shocks can influence asset prices. If liquidations

are optimal for individual investors, the optimal central bank intervention and the

spillover effects to the goods market are identical to the case under aggregate risk.

Hence, this section concentrates on the asset market.

4.4.1 Standard model

The optimal investment decision problem for an individual investor under idiosyn-

cratic risk resembles the one under aggregate risk with central bank intervention in

(4.14)39

max
s,c1,c2,ŝ,z,l

E [U(c′1, c2)] =

∫ ∞

−∞
(ζi ln (c1 + ρz) + β ln c2) f(γ)dγ s.t. (4.24)

p1c1 + p2c2 ≤ w − s + Rs + (R− q)ŝ−Rz − (
R− q

)
l

p1c1 + qŝ ≤ w − s + ql

0 ≤ z ≤ s; 0 ≤ l ≤ s; l + z ≤ s

and is solved analogically. The first-order conditions are the same as in section 4.3.2

with ζi replacing γ.40 Again, market clearing in t = 1 requires that Ŝ =
∫

i∈I
ŝdi = 0.

Hence, the asset price q has to adjust to equalise excess demand and supply of assets

by individual investors. The crucial difference to the case with only aggregate risk

is that the market clearing condition does not imply that ŝ = 0 and no assets are

traded.

The demand for shares in t = 1 by investor i, ŝi, is determined by

ŝi =
β (w − s)− qζis

q (β + ζi)
. (4.25)

Note that that the Cobb-Douglas utility function (4.2) implies that ŝi is a convex

function of ζi for a given asset price q as ∂2ŝi/ (∂ζi)
2 > 0.41

Assume that each investor has an ex-ante probability of one half of belonging to

group A who receive a shock ζA and to group B with shock ζB, respectively, and

ζA ≥ ζB without loss of generality. The condition E[ζi] = 1 and the positive support

39In order to explicitly exclude short sales, the constraint ŝ ≥ −s had to be added to (4.24).
Footnote 41 shows that this is redundant given the specification of the model.

40That means equations (4.9a) to (4.9d), (4.9g), (4.15a), (4.15b) and (4.16).
41Furthermore, ŝi > −s as β(w − s) > −qβs such that the short sale constraint is redundant.
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of ζi imply ζA ∈ [1; 2), (ζA + ζB) /2 = 1 and the absence of an aggregate shock. As

usual, market clearing requires

∫

i∈A

β (w − s)− qζAs

q (β + ζA)
di +

∫

i∈B

β (w − s)− qζBs

q (β + ζB)
di = 0.

The pricing kernel for q becomes

q = min

[
β (1 + β) (W − S)

[ζA (2− ζA) + β] S
; R

]
for

β (W − S)

S
≥ p1ρ (4.26)

with W and S defined as before. Without idiosyncratic shocks, i.e. ζi = 1, equation

(4.26) simplifies to q = β (W − S) /S, the same asset price as for γ = 1 in section

4.2.3. The condition β (W − S) /S ≥ p1ρ excludes liquidations z > 0 for ζi = 1.42

Note that q in (4.26) increases in the heterogeneity of A and B, i.e. in the

absolute value |ζi − 1|. The reason is the convexity of ŝi in (4.25) mentioned above.

The convexity implies that the additional demand of the agents with the low liquidity

shock ζB is always sufficiently large such that agents with the high shock ζA do not

need to liquidate their asset. Figure 4.7 illustrates the convexity of ŝi for R = 1/β =

1.1 and S = β/ (1 + β) W , the investment in the case of certainty. The solid line

represents the excess demand for the asset which is 0 for ζA = 1, given an asset

price of q = 1 in the left panel. For ζA > 1 (and thus ζB = 2 − ζA < 1), ŝB rises

faster than ŝA falls, the excess demand becomes positive and q > 1 for ζA > 1. For

ζA ≈ 1.413, the asset price increases to q = R, since the excess demand is 0 at this

combination of q and ζA in the right panel. For ζA > 1.413, investors hit by the low

shock ζB transfer money into t = 2 as their CIA becomes unbinding.

To summarise the effects, the structure of the model, in particular the Cobb-

Douglas utility function (4.2) that causes the convexity of ŝi and the dissolution of

risk in t = 1, imply that idiosyncratic shocks alleviate the CIA given a fixed initial

investment S. In general, however, idiosyncratic shocks can have a negative impact

on asset prices if the absorption capacity of the market is limited. This happens

in reality and in other models for example if investors are risk-averse and future

returns are risky (see, e.g., Huang and Wang, 2006). A further feature of reality

is the presence of brokers and market-makers on financial markets rather than a

Walrasian auctioneer. As they smooth price fluctuations by providing liquidity to

financial markets, they earn income in the form of bid-ask spreads. Models that

analyse the microstructure of financial markets explain the behaviour of these market

participants and the implications for transaction prices. The following subsection

presents an extension to the standard model of this section that includes transaction

42The more general form of (4.26) is q = min
[
max

(
β(1+β)(W−S)
[ζA(2−ζA)+β]S ; p1ρ

)
; R

]
.
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Figure 4.7: Convexity of ŝi: ŝA, ŝB and Σŝi = ŝA + ŝB as a function of ζA for
q = 1 and q = 2.

costs in the form of bid-ask spreads, and section 4.4.3 discusses different mechanisms

how small shocks can have large impacts on asset prices.

4.4.2 Model with transaction costs

The market microstructure literature has developed models based on order-handling

costs, asymmetric information or strategic behaviour, where idiosyncratic shocks can

have (severe) impacts on asset prices. As Biais, Glosten and Spatt (2005, p. 218)

formulate it:

In perfect markets, Walrasian equilibrium prices reflect the competitive

demand curves of all potential investors. While the determination of

these fundamental equilibrium valuations is the focus of (most) asset

pricing, market microstructure studies how, in the short term, transac-

tion prices converge to (or deviate from) long-term equilibrium values.

A full market microstructure model is beyond the scope of this chapter, but

the most important literature in this field is discussed in section 4.5.3. A simple

way to summarise the relevant issues of market microstructure as developed, e.g.,

in O’Hara (1995) and Biais et al. (2005), is to assume transaction costs in the form



Chapter 4 Liquidity risk and monetary policy 112

of a bid-ask spread Ξ that decreases in total liquidity M =
∫

i∈I
mdi available and

increases in the order size ŝi, i.e. Ξ = Ξ

(
M
−

, ŝi
+

)
.43 Market-makers buy the asset

in t = 1 at a bid price of qbid from investors with the high shock ζA > 1 and sell it

to the low-shock types B with ζB = 2 − ζA at an ask price qask = qbid + Ξ. They

earn the spread Ξ, with which they buy consumption goods on the goods market in

t = 1 such that aggregate demand for goods is not directly affected by the presence

of market-makers in the model.

The transaction cost Ξ is a measure of an asset’s liquidity from the micro-

perspective44 and has a number of interpretations beyond completely exogenous

transaction costs as, e.g., in Vayanos (2004) and Favero, Pagano and von Thad-

den (2006): It represents the time-varying illiquidity cost of shares in Acharya and

Pedersen (2005) as ŝ varies with the size of the shock.45 It also captures search

costs from search and matching models of financial markets as developed by, e.g.,

Duffie, Gârleanu and Pedersen (2005) because more available liquidity increases the

probability of quickly finding a buyer, but larger orders decrease it. A further inter-

pretation of Ξ are the random order-execution delays in Weill (2007). They are low

in normal times but can become severe in times of liquidity crises such as October

1987 or September 1998 as described in section 4.1.2. These are precisely the times

when order sizes tend to be large and aggregate liquidity tends to be low, at least

until a central bank intervention calms markets.

Adding the transaction cost Ξ to the standard model (4.24) for idiosyncratic risk

results in

max
s,c1,c2,ŝ,z

E [U(c′1, c2)] =

∫ ∞

−∞
(ζi ln (c1 + ρz) + β ln c2) f(γ)dγ s.t. (4.27)

p1c1 + p2c2 ≤ w − s + Rs + (R− qj)ŝ−Rz − (
R− q

)
l

p1c1 + qj ŝ ≤ w − s + ql

0 ≤ z ≤ s; 0 ≤ l ≤ s; l + z ≤ s

qj =

{
qbid for ζi = ζA

qask = qbid + Ξ(M, ŝ) for ζi = ζB.

43For the positive relation between order size and bid-ask spreads, see chapters 3 and 6 in O’Hara
(1995), for example. M represents a proxy for the size of the market making sector, which has a
negative impact on the size of the spread as demonstrated in different models in O’Hara (1995).
It also captures the public good character of liquidity as discussed below. Amihud and Mendelson
(1986) provide empirical evidence for the role of bid-ask spreads in asset pricing.

44Other measures of liquidity such as the size of order flows were listed in section 4.3.6.
45Furthermore, M may be time-varying in a dynamic model in which this three-period game is

repeatedly played.
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In the equilibrium with ζA > ζB, investors of group A cannot be buyers of s in t = 1,

i.e. ŝA ≤ 0, such that their constraints are based on qbid, while investors of group B

cannot be sellers of s, i.e. ŝA ≥ 0, and their constraints include qask.

The spread drives an additional wedge between the assets final payoff R and

the achievable price for sellers, qbid. Hence, costly liquidation (z > 0) is optimal

for a wider range of parameters and shocks, which in turn leads to an extension of

central bank intervention as the central bank optimally weights the output costs of

intervention against the price increase associated with additional money.

Finally, the negative dependence of Ξ on aggregate liquidity M = W − S intro-

duces the public good character of liquidity and financial stability into the model.46

While a decrease in S would lower the expected bid-ask spread and thus decrease

the probability of costly liquidation in t = 1, the individual investor does not take

this external effect into account in t = 0 since she is a price taker, i.e. dM/ds = 0.

4.4.3 From small shocks to large impacts:

Propagation mechanisms

It may be questionable if transaction costs Ξ can become so large that idiosyncratic

shocks can cause financial crises. But modern financial systems exhibit a number of

feedback mechanisms that can amplify small shocks once the price impact exceeds

a certain threshold.47 These propagation mechanisms include margin calls, capital

adequacy ratios, marking to market accounting rules and modern risk management.

Margins serve as collateral on markets for derivatives and for credit-financed in-

vestments. Combined with some form of a financing constraint, they can generate

negative feedback mechanisms. In Morris and Shin (2004), ‘liquidity black holes’

arise because of exogenous loss limits for traders. Extending the market microstruc-

ture model of Grossman and Miller (1988), Brunnermeier and Pedersen (2007) use

the concepts of market liquidity and funding liquidity: In normal times, capital con-

strained traders use external funds to smooth price fluctuations and provide market

liquidity. If traders’ outside financiers cannot distinguish illiquidity shocks from

fundamental ones48 and increase the required margins in response to an increase in

price volatility, they can create a vicious circle: A negative liquidity shock causes

losses and higher margins for traders, which reduces their ability to provide market

46Other papers that model liquidity as a public good include Holmström and Tirole (1998),
Huang and Wang (2006) and Illing (2007). For a practitioner’s view, see Geithner (2006).

47In the model of this chapter, this may be particularly relevant if idiosyncratic shocks are
combined with positive aggregate shocks.

48Brunnermeier and Pedersen (2007) borrow this idea from the performance-based arbitrage
argument in Shleifer and Vishny (1997), which is also applied for example in Gromb and Vayanos
(2002).
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liquidity and thus further increases traders’ losses and required margins. Schnabel

and Shin (2004) use the financial crisis in northern Europe in 1763 as a historic

example of such negative feedback effects. Sauer (2002) adopts the stylised model

of Schnabel and Shin (2004) to explain the LTCM-crisis in 1998.

Closely related to margin calls for leveraged investors are capital adequacy ratios

for banks. Shin (2005a,b) and Illing (2007) show that capital adequacy requirements

for banks can set off a vicious circle of asset sales similar to the one triggered by the

funding constraints in Brunnermeier and Pedersen (2007).49 Recent international

reform proposals of accounting rules suggest to extend the use of market prices

in accounting of financial firms instead of valuations based on historical costs, an

approach already common among hedge funds, for example. While such marking

to market gives a clearer picture of the true value of firms in general, it may cause

excessive price volatility, i.e. volatility not reflecting fundamentals, and exacerbate

or even trigger a financial crisis. In the model by Shin (2005a,b), marking to market

is not necessary (Illing, 2007, p. 10), but accelerates the feedback effects via banks’

balance sheets. Plantin, Sapra and Shin (2005) describe in a global games setup,

how marking to market accounting rules can cause large losses in less liquid markets

because asset sales are strategic complements under this accounting regime. They

find that the damage done by marking to market is greatest when claims are long-

lived, illiquid and senior. Cifuentes, Ferrucci and Shin (2007) combine marking to

market accounting with regulatory solvency requirements to show that balance sheet

interlinkages among financial institutions and contagion via changes in asset prices

can cause contagious failures of financial institutions as a result of small shocks.

Financial risk management is a core competence of modern financial institutions

and continuously evolving, not least in response to financial crises. In the 1980’s,

portfolio insurance became a popular form of risk management for investment funds.

The discussion of the 1987-crash in section 4.1.2 highlights the negative impact of

portfolio insurance during the crash. Today, value at risk (VaR) has become the

standard risk measure used by financial institutions. Banks’ capital requirements

in the Basel-I accords have been linked to market risk based on VaR-calculations

since 1998. Yet, VaR is no panacea, either. For example, Gârleanu and Pedersen

(2007) show that a feedback effect can arise between tighter risk management and

a reduction in liquidity. The former reduces the amount of liquidity provided to

the market and the latter increases the effective risk of positions because it takes

49In Shin (2005b), financial intermediaries also want to maintain a minimum level of leverage.
This creates a ‘virtuous circle’ of rising asset prices and increased lending. Thus, ‘booms can
be understood as a mirror image of liquidity drains.’ While Shin (2005a) just mentions possible
asymmetries due to default or inefficient liquidations, Illing (2007) extends Shin’s model with a
kinked net supply curve of assets, in this case property, due to information asymmetries. These
market imperfections cause asymmetries between boom and bust periods in asset prices.
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longer to sell them. The heart of the problem is the endogeneity of risk as described

by Danielsson (2001) and Danielsson and Shin (2003). Financial market risk is not

given exogenously by nature, but depends on the actions of market participants.

This property becomes particularly important if financial institutions follow very

similar investment strategies50 and use the same standardised methods for their risk

management (IMF, 1998).

Stress testing or liquidity-adjusted VaR measures are ways to incorporate liquid-

ity risk into risk management. Nevertheless, the fundamental problem of financial

risk’s endogeneity remains unsolved.51 In particular, individuals neglect the exter-

nal effect of their decisions on aggregate liquidity. The public good character of

liquidity, however, becomes most relevant during financial crises.

4.5 Related theoretical literature

Besides the different propagation mechanisms discussed in the previous section, the

model developed in this chapter is linked to a number of theoretical contributions in

the literature. This section reviews papers that analyse the Greenspan put option,

segmented asset and goods markets as well as market microstructure theory and

papers on the public supply of liquidity.

4.5.1 Greenspan put option

The ‘Greenspan Put’, i.e. the supposed insurance against severe financial turmoil by

the Federal Reserve under Alan Greenspan, has become a well-known argument in

the popular financial press. To my knowledge, only Miller, Weller and Zhang (2002)

and Illing (2004) have developed an explicit theoretical analysis of the Greenspan

put, focusing on the situation in which the central bank insures against asset price

declines caused by a deterioration of the fundamental value of the asset.

In Miller et al. (2002), the expected present value of all current and future divi-

dends determines the fundamental value of shares. Better management of financial

crises by the Fed under Alan Greenspan, as indicated by the examples of 1987 and

1998 in section 4.1.2, may have fundamentally reduced the risk of shares and thus

increased their fundamental value. But Miller et al. (2002) argue that investors

additionally hold the erroneous belief that the Fed could insure them against any

fall in asset prices, i.e. not only against price drops that are due to a financial crisis

50Many proprietary traders of investment banks copied the until then highly profitable strategies
of LTCM in 1998 (see, e.g., Morris and Shin, 1999, p. 52).

51In Gârleanu and Pedersen (2007), the feedback effects are even stronger for a liquidity-adjusted
VaR than a standard one.



Chapter 4 Liquidity risk and monetary policy 116

but also against ‘normal’ declines that are due to a decrease in current and future

dividends. For example, lower productivity growth than expected may reduce divi-

dends and thus justify and require a revaluation of shares. Hence, investors appear

to have overconfidence in the ability of the Fed to put a lower bound, a put option,

on the share price and this leads to an overvaluation of shares which represents a

bubble. The bubble is, however, completely independent of actual monetary policy,

which is the focus of the present chapter.

Illing (2004) uses a model that concentrates on nominal debt and financial inter-

mediation. Equity owners have a residual claim on the risky payoff of firms that are

leveraged with nominal bank debt. A severely negative aggregate shock to the fun-

damental value of firms limits their ability to repay their debt, which in turn leads

to the threat of bank runs by depositors. The collapse of banks would extinguish

the knowledge capital from relationship lending in the economy and prompts the

central bank to provide liquidity to the banks. The additional money reduces the

real value of firms’ nominal debt, which represents a capital gain for equity owners.

The anticipation of the monetary injection causes a bubble ex ante, as it raises the

firms’ share price above its fundamental value. Illing (2004) notes that the central

bank in his model faces a trade-off between the bubble created by moral hazard, i.e.

the expected capital gain, and the risk associated with the disruption of financial

intermediation.

The model by Illing (2004) can be easily classified in terms of the framework

provided in this chapter, although I focus on financial markets rather than inter-

mediation and leverage is not crucial in my model. After the realisation of the

aggregate shock, the central bank in Illing’s model does not face any trade-off be-

cause ex post it is always optimal to prevent bank runs and keep banks’ knowledge

capital.52 This is different in my model where the central bank optimally chooses

between inflation today and an output loss tomorrow after the shock. The trade-off

emphasised by Illing only arises if the central bank has the possibility to commit to

a specific intervention policy in response to a negative shock. This situation is akin

to the optimal commitment solution discussed in section 4.3.6 in my model.

Both Miller et al. (2002) and Illing (2004) analyse the central bank insurance

against asset price declines caused by a deterioration of the fundamental value of the

asset, either erroneously expected or actually conducted. This represents probably

a part of the public perception of the alleged ‘Greenspan put’. But the analysis in

my model is more closely related to a ‘liquidity provision principle’, i.e. a temporary

deviation of central bank policy from a standard Taylor rule that responds only

52A similar effect occurs in Illing (2007) within a different model with propagation effects as
discussed in section 4.4.3. There, the central bank always lowers interest rates to prevent fire sales
of assets by distressed banks which have to restore their capital adequacy requirements.
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to output and inflation in order to inject large quantities of liquidity in a financial

crisis (Taylor, 2005). It is the dramatic increase in µ, the marginal utility of cash’s

liquidity services, that induces investors to partly liquidate their assets and triggers

the central bank’s response, not a change in the fundamental pay-off of the asset

R. Hence, it is the microeconomic view of liquidity, the missing ability to sell assets

quickly and costlessly, that causes a monetary injection in my model.

4.5.2 Market segmentation

A crucial assumption in the model relates to the limited participation on the asset

market, as workers cannot buy assets. If they could do so and their liquidity needs

were not perfectly correlated with investors liquidity shocks, they might provide

the extra liquidity needed to smooth investors liquidity shocks. The assumption of

segmented markets follows the models in Allen and Gale (1994, 2005) and Huang and

Wang (2006), where limited market participation emerges from participation costs.53

The same impact has the assumption of separate cash-in-advance constraints on the

asset and the goods market for all agents in Gale (2005). Gale (2005) uses his

model to show that liquidity must be costly in order to guarantee the determinacy

of the price level. Furthermore, the asset price fluctuates without affecting the

goods price as the central bank stabilises the goods prices via its real seigniorage

income. Both features are present in my model as the cash-in-advance constraint

never binds (µ = 0) if the central bank provides liquidity for free, i.e. q = R. Asset

price volatility without spillover effects to the goods market occurs in my model in

the intermediate range of CIA ≤ γ ≤ LIQ. The main contributions of my chapter

are the analysis of financial crises and the focus on emergency liquidity provision

rather than on seigniorage income as in Gale (2005).

In reality, participation in asset markets is limited because economic agents lack

the required expertise, have limited attention, institutional barriers or other costs

of entry (Gale, 2005). Empirically, Landon-Lane and Occhino (2006) use Bayesian

techniques to estimate the fraction of households participating in financial markets

to be approximately 22%, while Campbell and Mankiw (1989) find that about 40%

to 50% of the population in the U.S. consume only their current income rather than

smooth their consumption via savings and dissavings. Statistics from the Survey

of Consumer Finances 2004 reported in Bucks, Kennickell and Moore (2006) show

that merely 20.7% of U.S. households hold publicly traded shares directly and only

53In Allen and Gale (1994), private agents decide about their participation on the asset market
before liquidity shocks occur, in Huang and Wang (2006) after the realisation of idiosyncratic
shocks which can thus have aggregate effects. Other papers that use models with limited market
participation include Alvarez, Atkeson and Kehoe (2002) and Williamson (1994), for example.
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48.6% hold some shares either directly or indirectly, e.g. via retirement accounts.

4.5.3 Market microstructure theory

The literature on market microstructure analyses the trading mechanism for finan-

cial securities and its impact on short-term asset price behaviour. O’Hara (1995)

provides an excellent summary of the earlier literature, Biais et al. (2005) survey

more recent developments. Amihud, Mendelson and Pedersen (2005) review the con-

nection between liquidity as derived from the theoretical and empirical microstruc-

ture literature and asset pricing.

A common feature of this literature is that it does not distinguish between nom-

inal and real assets and payoffs. Technically, most models maximise agents’ ex-

pected utility of terminal wealth and thus abstract from real goods (see the models

in O’Hara, 1995). For example, Grossman and Miller (1988) model liquidity as the

price of immediacy. Market makers are willing to smooth temporary order imbal-

ances for an asset with a risky final payoff if they can expect a positive excess return

compared to the investment in a riskless asset.

An alternative way to model asset trading and possible illiquidity is the search

and matching literature that has been inspired by Duffie et al. (2005). Again, these

models do not differentiate between nominal and real payoffs as an asset pays one

unit of a consumption good per period that serves as numéraire. One application

of the model by Duffie et al. (2005) are endogenous feedback effects between risk-

management and liquidity in Gârleanu and Pedersen (2007) as discussed in section

4.4.3.

By providing a framework that links asset price developments caused by liquidity

shocks to the real sector of the economy via two spillover effects, this chapter makes

one of the first steps to link the findings from the market microstructure literature

with the analysis of optimal monetary policy in the macroeconomic literature.

4.5.4 Public supply of liquidity

A prominent paper that investigates the public provision of liquidity is Holmström

and Tirole (1998), but it differs from the model in this chapter in important respects.

First, liquidity is defined as the availability of instruments to transfer wealth across

periods rather than to sell assets quickly and costlessly. Furthermore, the paper looks

at the production side of the economy as firms may have a demand for liquidity to

refinance their investment projects. Firms financing is subject to an agency problem

such that firms cannot pledge the full value of the firm as collateral for credit lines or

marketable assets. While this is not problematic in their model without aggregate



Chapter 4 Liquidity risk and monetary policy 119

uncertainty given the right private institutions such as banks, private ‘liquidity’ is

insufficient in the presence of aggregate uncertainty. The government can overcome

the agency problem and issue government bonds that are not subject to the agency

problem because it can enforce tax payments. The social optimum in the model

can be achieved with state-contingent government bonds, i.e. an active management

of public liquidity, as their existence averts any private excess liquidity. Hence,

Holmström and Tirole (1998) is not a paper about financial crises but rather about

the involvement of the state in the financial system in normal times.

More generally, however, public provision of liquidity refers to the lender of last

resort activity of a public authority, usually the central bank, as emergency liquidity

assistance to the financial system. Most of the literature on the lender of last resort

concentrates on banks and the interbank market. The collection of a wide range of

papers on the lender of last resort in Goodhart and Illing (2002) includes only one

paper by Kaufman (2002) that discusses the response to fire sales on asset markets

in an informal way. More recent treatments like Freixas, Parigi and Rochet (2004)

also neglect liquidity crises on asset markets, which are the focus of my chapter.54

Given the substantial growth of financial markets relative to traditional banking

in continental Europe and the continuous introduction of new financial instruments

like credit derivatives, an appreciation of the effects of liquidity provision in response

to liquidity crises on financial markets appears to be necessary.

4.6 Conclusion

The different specifications of the general model in this chapter help to provide

guidance for central banks in the event of liquidity crises. Confronted with a liquidity

crisis, the central bank faces a trade-off between injecting liquidity and thus incurring

risks to price stability and negative supply effects in the future. The size of the

optimal intervention increases in the size of the liquidity shock, the weight on output

relative to inflation and the extent of negative supply effects of the crisis. It decreases

in the size of the associated inflation in goods prices which is linked to the possibility

to sterilise the intervention and the amount of liquidity initially held by investors.

Furthermore, the anticipation of central bank interventions by private investors

leads to a moral hazard effect in the form of less private liquidity provision and

54One exception is Caballero and Krishnamurthy (2007) who develop a model of financial crises
based on liquidity shortages and Knightian uncertainty aversion in which public and private liquid-
ity serve as complements: The promise by the central bank to provide liquidity in extreme events,
i.e. a ‘double wave of liquidity shocks’ in the model, but not for intermediate events, i.e. only ‘one
wave’ of liquidity shocks, makes private agents provide their own liquidity for intermediate events
as they are insured against an uncertain second wave of shocks.
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thus an increase in the likelihood of financial crises. At the same time, less liquidity

provision means more productive investment and thus greater aggregate supply in

the absence of a financial crisis. Optimal monetary policy under commitment has

to take these additional effects into account.

Motivated by the actual behaviour of the Fed under Alan Greenspan, the chap-

ter has concentrated on the optimal monetary policy response to liquidity crises.

However, this does not exclude the possibility that other policy tools exist to limit

the probability and the extent of such crises. Regulatory measures represent an

obvious candidate for appropriate ex ante action, in particular in the light of the

external effects of private liquidity provision. A promising proposal seems to be the

introduction of procyclical liquidity requirements for financial institutions. Such

requirements could help to prevent the buildup of excessive positions in illiquid as-

sets during boom periods via balance sheet feedback effects converse to the ones

described in section 4.4.3 and at the same time limit vicious circles during market

downturns (see, e.g., Illing, 2007). But even with an appropriate regulatory envi-

ronment, liquidity crises may emerge and the trade-offs emphasised in this chapter

remain relevant.

Finally, in view of the substantial growth of financial markets relative to tra-

ditional banking in particular in continental Europe and the introduction of new

financial instruments like credit derivatives, the concentration on the banking sys-

tem for financial stability as common in the literature appears to be inadequate.

Instead, the understanding of the interlinkages between money, liquidity on finan-

cial markets, financial crises, inflation and real production is very important for

financial stability and the continuation of successful monetary policy in the future.

The increased tendency of major central banks such as the ECB, the Bank of Eng-

land or the Swedish Riksbank to publish ‘Financial Stability Reports’ that take a

very broad perspective on risks to the stability of the financial system represents

a widely visible evidence that central bankers acknowledge this development. This

chapter has provided a theoretical contribution to a better understanding of the

relevant arguments. The obvious next step is to transfer this model into a sto-

chastic dynamic general equilibrium framework and thus gain additional insights, in

particular about the optimal monetary policy under commitment.
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Appendices

4.A Solution to investors’ problem under aggre-

gate risk

The Lagrangian for the optimal investment decision problem for an individual in-

vestor under aggregate risk reads as

Λ =

∫ ∞

−∞
{γ ln (c1 + ρz) + β ln c2

− λ [p1c1 + p2c2 − (w − s)−Rs− (R− q)ŝ + Rz]

− µ [p1c1 + qŝ− (w − s)]}f (γ) dγ.

Using the Leibniz-Rule d
dx

∫ b

a
f (x, z) dz =

∫ b

a
∂
∂x

f (x, z) dz, i.e. pointwise differentia-

tion, the first-order conditions become

dΛ

dc1

=

∫ ∞

−∞

(
γ

c1 + ρz
− λp1 − µp1

)
f (γ) dγ = 0 (4.28a)

dΛ

dc2

=

∫ ∞

−∞

(
β

c2

− λp2

)
f (γ) dγ = 0 (4.28b)

dΛ

dŝ
=

∫ ∞

−∞
(λ (R− q)− µq) f (γ) dγ = 0 (4.28c)

dΛ

dz
=

∫ ∞

−∞

(
γ

c1 + ρz
ρ− λR

)
f (γ) dγ ≤ 0 (4.28d)

dΛ

dλ
=

∫ ∞

−∞
(−p1c1 − p2c2 + (w − s) + Rs + (R− q)ŝ + Rz) f (γ) dγ ≥ 0 (4.28e)

dΛ

dµ
=

∫ ∞

−∞
(−p1c1 − qŝ + w − s) f (γ) dγ ≥ 0 (4.28f)

dΛ

ds
=

∫ ∞

−∞
(λ (R− 1)− µ) f (γ) dγ ≤ 0 (4.28g)

and dΛ
dz
· ∫∞−∞ zf (γ) dγ = 0, dΛ

dλ
· ∫∞−∞ λf (γ) dγ = 0, dΛ

dµ
· ∫∞−∞ µf (γ) dγ = 0 and

dΛ
ds
· ∫∞−∞ sf (γ) dγ = 0 as complementary slackness conditions.

To derive the expected values of the Lagrangian parameters λ and µ in t = 0,

it is easier to use the optimal values of c1, c2, ŝ, z given a realisation of γ in t = 1

and then to integrate over all possible values of γ afterwards. This is equivalent

to solving for the optimal values of c1, c2, ŝ, z given the partial derivatives of the
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integrands in the first-order conditions above.

∂Λ

∂c1

=
γ

c1 + ρz
− λp1 − µp1 = 0 (4.29a)

∂Λ

∂c2

=
β

c2

− λp2 = 0 (4.29b)

∂Λ

∂ŝ
= λ (R− q)− µq = 0 (4.29c)

∂Λ

∂z
=

γ

c1 + ρz
ρ− λR ≤ 0 (4.29d)

∂Λ

∂λ
= −p1c1 − p2c2 + w + (R− 1) s + (R− q)ŝ−Rz ≥ 0 (4.29e)

∂Λ

∂µ
= −p1c1 − qŝ + w − s ≥ 0 (4.29f)

and ∂Λ
∂z

z = 0, ∂Λ
∂λ

λ = 0 and ∂Λ
∂µ

µ = 0 as complementary slackness conditions. Equa-

tions (4.29a) to (4.29f) and equation (4.28g) are equations (4.9a) to (4.9g) in section

4.2.3.

The first-order condition for optimal investment in the asset is given by equation

(4.28g). Using the results for λ and µ from table 4.2 produces

dΛ

ds
=

∫ β(W−S)
RS

−∞

[
β + γ

w + (R− 1) s
(R− 1)

]
f (γ) dγ

+

∫ β(W−S)
p1ρS

β(W−S)
RS

[
β (W + (R− 1) S)

RS (w + (R− 1) s)
(R− 1)− γ (W + (R− 1) S)

(w + (R− 1) s) (W − S)
+ λ

]
f (γ) dγ

+

∫ ∞

β(W−S)
p1ρS

[
p1ρ (β + γ)

R (w + (p1ρ− 1) s)
(R− 1)− β + γ

w + (p1ρ− 1) s
+ λ

]
f (γ) dγ

= 0.

Solving this using G (x) ≡ ∫ x

−∞ γf (γ) dγ and F (x) ≡ ∫ x

−∞ f (γ) dγ with CIA ≡
β(W−S)

RS
and LIQ ≡ β(W−S)

p1ρS
gives

β (R− 1)

w + (R− 1) s
F (CIA) +

(R− 1)

w + (R− 1) s
G (CIA)

+
β (W + (R− 1) S)

S (w + (R− 1) s)
[F (LIQ)− F (CIA)]

− (W + (R− 1) S)

(w + (R− 1) s) (W − S)
[G (LIQ)−G (CIA)]

+
β (p1ρ− 1)

w + (p1ρ− 1) s
[1− F (LIQ)] +

(p1ρ− 1)

w + (p1ρ− 1) s
[1−G (LIQ)]

= 0.
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In equilibrium, all investors follow the same investment strategy and the assumption

of a mass 1 of ex-ante identical investors makes s = S. The definition of conditional

expectations

E [γ|γ < x] =

∫ x

−∞ γf (γ) dγ

F (x)

leads to

G (x) =

∫ x

−∞
γf (γ) dγ = F (x) E [γ|γ < x] ,

but this does not allow to solve for s without explicitly parameterising the density

function of the liquidity shock f (γ). Assuming a uniform distribution for γ, i.e.

F (x) = x−a
b−a

for a ≤ x ≤ b, gives the conditional expected value of E [γ|γ ≤ x] =
1
2
(x + a) for 0 < a < b. The definition of the thresholds as CIA = β(W−S)

RS

and LIQ = β(W−S)
p1ρS

results in the conditional expected values E [γ|γ < CIA] =

1
2

(
β(W−S)

RS
+ a

)
and E [γ|γ < LIQ] = 1

2

(
β(W−S)

p1ρS
+ a

)
. Table 4.3 in section 4.2.3

summarises this information.

4.B Optimal central bank intervention with a

quadratic loss function

In section 4.3, the loss function (4.13) of the central bank is linear in the increase of

p1 above the desired price level p∗1 and the deviation of aggregate supply Y s
2 from Ȳ

caused by liquidations Z, ∆ (Z). This section shows that the results of the model are

robust to the loss function (4.30) that is quadratic in inflation and output deviations

from their respective targets, but the first-order condition and thus the comparative

static analysis become more complex:

L2 = (p1 − p∗1)
2 + ω

(
Y s

2 − Ȳ
)2

. (4.30)

The optimisation problem (4.19) for the central bank becomes

min
L
L2 = (p1 − p∗1)

2 + ω
(
Y s

2 − Ȳ
)2

(4.31)

=

(
1

1− τρL
− 1

)2

+ ω
(
Ȳ − κ (Z∗ − L)− Ȳ

)2

=

(
τρL

1− τρL

)2

+ ωκ2

(
γS − β(W−S)(1−τρL)

ρ

β + γ
− L

)2

.



Chapter 4 Liquidity risk and monetary policy 124

The first-order condition turns out to be

dL2

dL
=

τ 2ρ2L

(1− τρL)3 + ωκ2 (Z∗ − L)

(
β (W − S) τ

β + γ
− 1

)
!
= 0 (4.32)

⇔ τ 2ρ2L

(1− τρL)3

︸ ︷︷ ︸
direct marginal cost of

dp1
dL

+ ωκ2 (Z∗ − L)
β (W − S) τ

β + γ︸ ︷︷ ︸
indirect marginal cost of

∂Y s
2

∂Z∗ · ∂Z∗
∂p1

· dp1
dL

= ωκ2 (Z∗ − L)︸ ︷︷ ︸ .

marginal benefit of
∂Y s

2
∂L

Overall, the quadratic loss function has an impact on the relative size of direct and

indirect marginal costs and benefits, but it does not change the general structure of

the first-order condition. In particular, the direct marginal cost continues to increase

in L, while the indirect marginal cost and the marginal benefit decrease with L as

d (Z∗ − L) /dL < 0 given the assumptions about the parameters. The optimal L∗

becomes the solution to a fourth-degree polynomial. With a linear loss function,

the last two effects are constant, instead, and L∗ is the solution to the quadratic

equation (4.20).
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Duffie, Darrell, Nicolae Gârleanu and Lasse H. Pedersen (2005): Over-the-

counter markets. Econometrica, vol. 73 (6), pp. 1815–1847.

ECB (2001a): Eurosystem to support normal functioning of markets. Press release,

11 September 2001, http://www.ecb.int/press/pr/date/2001/html/index.

en.html.

—— (2001b): Monthly Bulletin October. European Central Bank, Frankfurt.

Fama, Eugene F. and Kenneth R. French (1993): Common risk factors in the

returns on stocks and bonds. Journal of Financial Economics, vol. 33, pp. 3–56.

Favero, Carlo, Marco Pagano and Ernst-Ludwig von Thadden (2006): How

does liquidity affect government bond yields? Mimeo, University of Mannheim.

Freixas, Xavier, Bruno M. Parigi and Jean-Charles Rochet (2004): The lender

of last resort: A twenty-first century approach. Journal of the European Economic

Association, vol. 6 (2), pp. 1085–1115.

Gale, Douglas (2005): Liquidity, interest, and asset prices. Wharton Working

Paper No. 05-09, University of Pennsylvania.

Gammill, James F. and Terry A. Marsh (1988): Trading activity and price be-

havior in the stock and stock index futures markets in October 1987. The Journal

of Economic Perspectives, vol. 2 (3), pp. 25–44.

Garcia, Gillian (1989): The lender of last resort in the wake of the crash. The

American Economic Review, vol. 79 (2), pp. 151–155.
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