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Part I

Concepts
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Chapter 1

Introduction

1.1 Purpose and Structure

The present work is the result of my interest in two themes: poverty and environ-

ment. Scarcity, which is in fact the essential economic problem in all the history

of economic thought, is inevitably related to the finiteness of the natural environ-

ment. And it is not a coincidence that ”eco”-nomics and ”eco”-logy have the same

Greek root ”oikos”, meaning household. After World War II, economic growth is

considered as the ultimate remedy for poverty, but it is only since the 1990s that

the notions of natural resources and environmental economics systematically enter

the theory of economic growth to model sustainable development, which recognizes

the value of the environmental services for the growth process.

The dissertation is organized in two parts. The first one comprises the present

chapter 1 ”Introduction” and chapter 2 ”Economy and environment joined together”

and provides an overview of key notions for a better understanding of the second

part, which presents new theoretical applications. Explicitly the second part ana-

lyzes different aspects of the sustainability problem that are not already captured by

the existing growth literature: in chapter 3, the non-constancy of the regenerative

capacity of the environment; in chapter 4, the connection between use and depletion

of renewable resources to address the problem of biodiversity loss and in chapter 5

2



Introduction 3

the role of nature as a knowledge reservoir.

The motivation for chaper 3 ”Role of the regenerative capacity of nature in the

sustainability debate: a Schumpeterian endogenous growth model” is the study of

the waste sink and life support services. In the construction of a model of economic

growth, the analysis of these environmental services requires the insertion of the re-

generative capacity of nature in the regeneration function of the environment, which

is captured by an environmental quality indicator reflecting all ecosystems and their

interactions. But the regenerative capacity of nature is different from just the regen-

erative capacity of biological populations because it includes also the regenerative

ability of particular types of renewable resources, namely water, soil, atmosphere,

to maintain the quality necessary for human life (assimilation of pollutants). There-

fore it is not constant, as assumed in the model of Aghion and Howitt (1998), but

it depends on the impact of pollution on the environment.

The recently growing interest in the problem of biodiversity loss is the motivation

for chapter 4 ”Biodiversity loss and stochastic technological processes: a sustainable

growth analysis”. In contrast to the greenhouse effect which is well studied in the

economic growth literature, to address the problem of biodiversity loss we need

a new methodological approach. Namely to combine the ideas of the standard

environmental quality literature of economic growth, which investigates pollution

awareness, with the ”corn-eating” framework, used in the analysis of optimal use of

renewable resources. So, it is possible to investigate the joint effect of harvesting

and induced pollution degradation on renewable resources. In addition to that,

the model extends the lesson coming from the previous chapter about the need

of developing different types of technologies, introducing all three possible types

of environmentally friendly technologies: techniques that affect the productivity of

harvested resources, techniques that reduce pollution damages, and techniques that

reduce the production of pollution itself.

The motivation for chapter 5 ”Nature as a knowledge reservoir: a non scale

endogenous growth model with relaxation of knife edge assumptions” is the recog-

nition of the positive role of nature as knowledge reservoir in the advancement of
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scientific research. In an economic model this implies inserting an environmental

indicator variable, which will be called natural knowledge, not only into the produc-

tion function of the final good but also into the production function of the standard

technological sector. This model specification, in addition to giving a new explana-

tory variable for the growth process, eliminates the presence of scale effects and

the recourse to knife edge assumptions about the returns to scale in the produced

factors of production. Here, as well as in the previous two chapters, the final goal

of the analysis is to conjecture whether the model predicts sustainable growth, and

under which assumptions.

Each chapter of the second part is therefore a self-contained paper which can

be read independently of the others, although the chosen sequence is not casual.

It represents an evolution not only in the results of the models (from ones without

sustainable development to ones with sustainable development) but also in the focus

of the environmental analysis (from the particular role of the regenerative capacity

of nature in the regeneration function, to the general one of nature as basis for

scientific advancement).

1.2 The sustainability issue

It was during the 1970s that the new concept of economic sustainability entered

the international political agenda. At that time politicians and researchers recog-

nized that the environment plays an important role for the maintenance of economic

growth. Nevertheless note that this consciousness was already present in classical

economics two centuries before. For all classical economists the central question

of research was what determined national wealth and its growth (Perman et al.

(2003)), and natural resources were important explanatory variables, as well for

Thomas Malthus in his ”Essay on the Principle of Population” (1798), as for David

Ricardo in his ”Principles of Political Economy and Taxation” (1817).

In the 1970s the connection between natural environment and economic growth

returned to the center of attention for many reasons, most important the energy
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crisis, environmental catastrophes and discouraging scientific publications, which

produced a lot of debate.1 That new sensibility for the relationship between nature

and the economic world flowed into the United Nations Conference on the Human

Environment in 1972 which was the first of a long series of international confer-

ences about the role of the natural environment in the economic development. The

successive decades, in fact, are characterized by an increasing awareness of the role

of the natural environment and therefore for its preservation, which is testified by

all international conventions, programmes, conferences, publications that followed,

some of them listed in the appendix to this introduction.2

But it was only in 1987 that the concept of sustainable development was for-

malized. In that year the final report of the World Commission on Environment

and Development ”Our Common Future” (WCED (1987)) was published.3 It states

that ”environment and development are not separate challenges: they are inex-

orably linked” and ”attempts to maintain social and ecological stability through

old approaches to development and environmental protection will increase instabil-

ity.” Therefore the new concept of sustainable development was presented, which is

development that ”seeks to meet the needs and aspirations of the present without

compromising the ability to meet those of the future.” In the report this new concept

is absolutely not associated with reduction of the economic activities, instead: ”Far

from requiring the cessation of economic growth, it recognizes that the problems of

poverty and underdevelopment cannot be solved unless we have a new era of growth

in which developing countries play a large role and reap large benefits.” And further

”The medium term prospects for industrial countries are growth of 3-4 per cent, the

minimum that international financial institutions consider necessary if these coun-

tries are going to play a part in expanding the world economy. Such growth rates

could be environmentally sustainable if industrialized nations can continue the re-

1The Costs of Economic Growth, Mishan (1967); The Limits to Growth, Meadows et al. (1972).
2For a detailed historical reconstruction see UNEP (2002).
3Both the Commission and the report are also called Brundtland after the chairperson of the

commission, Gro Harlem Brundtland. She was both Minister of the Environment and Prime

Minister of Norway.
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cent shifts in the content of their growth towards less material- and energy-intensive

activities and the improvement of their efficiency in using materials and energy.”

Then after this cornerstone report, the United Nation Conference on Environ-

ment and Development in 1992 followed. Among other goals it produced the docu-

ment ”Agenda 21” (UN (1993)), which is an action programme for the realization

of sustainable development and the creation of a permanent UN agency called Com-

mission on Sustainable Development. Ten years later in 2002 the World Summit

on Sustainable Development followed. It states again in the ”Report of the World

Summit on Sustainable Development” (UN (2002)), the necessity to implement the

programs for sustainable development asserting that:”Thirty years ago, in Stock-

holm, we agreed on the urgent need to respond to the problem of environmental

deterioration. Ten years ago, at the United Nations Conference on Environment

and Development, held in Rio de Janeiro, we agreed that the protection of the

environment and social and economic development are fundamental to sustainable

development, based on the Rio Principles. To achieve such development, we adopted

the global programme entitled Agenda 21 and the Rio Declaration on Environment

and Development, to which we reaffirm our commitment. The Rio Conference was

a significant milestone that set a new agenda for sustainable development.”

But, if the Brundtland report is commonly recognized to have put the concept of

sustainable development on the international scene, in the literature there are many

different definitions of sustainability as recalled by Pezzey (1997). In the standard

view the term sustained growth is used to indicate increases in consumption, while

sustained development refers to increases in utility. In this dissertation the terms

growth and development are used interchangeably, as long as the utility function

considers only consumption. To the extent that also the second goal of an increase

in the environmental indicator is met, we speak of sustainable growth/development.
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1.3 Environmental facts

For the pursuit of reliable information about the state of the environment and its

evolution along the years, the United Nation Environment Programme (UNEP)

started the Global Environmental Outlook (GEO) project in 1995. The first report,

GEO-1 was published in 1997, the second in 2000 and the third and so far last, GEO-

3 in 2002.4 Since 2003, due to an increased request of updated information, also an

annual report was prepared, the last one is the GEO Year Book 2006. There are

eight macro indicators under observation: atmosphere, disasters caused by natural

hazards, forests, biodiversity, coastal and marine areas, freshwater, urban areas,

global environmental governance, (UNEP (2002)).

The macro indicator ”atmosphere” comprises several sub-indicators: the energy

use per unit of GDP which is decreasing and indicates therefore an improvement in

the energy use, the renewable energy supply index which presents a small increase

only for the wind energy, the total carbon dioxide emissions which are increasing

especially for the Asia and Pacific regions, the mountain glacier mass balance which

is steadily decreasing indicating an accelerating global warming, the consumption of

chlorofluoro- and hydrochlorofluoro carbons and methyl bromide, substances which

are responsible for the stratospheric ozone depletion. Thanks to the Vienna Con-

vention and the Montreal Protocol their use is decreasing.

Deforestation is continuing at a high rate for the need of the agricultural sector,

the surface of protected areas to maintain biological diversity is staying constant

and the Red List Index for birds, which indicates the extinction’s risk of species, is

steadily worsening. The levels of Biological Oxygen Demand in freshwater, which

indicates water contamination, is increasing in Africa and Latin America and the

Caribbean. But as a signal for environmental commitment the number of ratifica-

tions of the major multilateral environmental agreements (indicated with MEA in

the appendix to this introduction) is increasing.

4The new GEO-4 is planned to be published between March and August 2007.
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1.4 Appendix 1

1972 UNESCO Convention Concerning the Protection of the World Cultural and

Natural Heritage (World Heritage), MEA

1973 Convention on International Trade in Endangered Species of Wild Fauna and

Flora (CITES), MEA

1975 Great Barrier Reef Marine Park declared in Australia

1977 United Nations Conference on Desertification, Nairobi, Kenya

1979 First World Climate Conference, Geneva, Switzerland;

Convention on the Conservation of Migratory Species of Wild Animals (CMS),

MEA

1980 World Climate Programme established;

”World Conservation Strategy” launched by IUCN, UNEP and WWF;

Beginning of the International Decade for Drinking Water and Sanitation

1982 United Nations Convention on the Law of the Sea (UNCLOS), MEA;

United Nations General Assembly adopts the World Charter for Nature

1984 World Industry Conference on Environmental Management

1985 Vienna Convention for the Protection of the Ozone Layer (Ozone), MEA;

International Conference on the Assessment of the Role of Carbon Dioxide

and other Greenhouse Gases, Villach, Austria

1986 International Whaling Commission imposes a moratorium on commercial

whaling

1987 Montreal Protocol on Substances that deplete the Ozone Layer adopted;

”Our Common Future” published
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1989 Basel Convention on the Transboundary Movements of Hazardous Wastes and

their Disposals (Basel), MEA;

Inter-governmental Panel on Climate Change established

1990 Second World Climate Conference, Geneva, Switzerland;

Global Climate Observing System (GCOS) created

1991 Global Environment Facility established to finance conventions

1992 UN Conference on Environment and Development (the Earth Summit), Rio

de Janeiro, Brazil;

Convention on Biological Diversity (CBD), MEA;

UN Framework Convention on Climate Change

1993 Chemical Weapons Convention

1994 UN Convention to Combat Desertification (UNCCD), MEA;

International Conference on Population and Development, Cairo, Egypt;

Global Conference on the Sustainable Development of Small Island Developing

States, Bridgetown, Barbados

1995 World Summit for Social Development, Copenhagen, Denmark;

World Business Council for Sustainable Development created

1996 ISO 14 000 created for environmental management systems in industry;

Comprehensive Nuclear Test Ban Treaty

1997 Kyoto Protocol adopted (Kyoto), MEA;

Rio + 5 Summit reviews implementation of ”Agenda 21”

1998 Rotterdam Convention on the Prior Informed Consent Procedure for Certain

Hazardous Chemicals and Pesticides in International Trade (PIC), MEA

1999 Launch of ”Global Compact” on labour standards, human rights and envi-

ronmental protection
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2000 Millenium Summit, New York, United States;

World Water Forum, The Hague

2001 Stockholm Convention on Persistent Organic Pollutants (POPs), MEA

2002 World Summit on Sustainable Development, Johannesburg, South Africa



Chapter 2

Economy and environment joined

together

2.1 What an ideal model should encompass

As indicated in the previous chapter, to study the sustainability issue the natural

environment has to be incorporated into the functional specifications of an optimal

growth model. An almost complete and standard model could be constructed with

• a production function of the final good (Y ) which is affected by the labor

force (L), the human-made capital stock, natural capital and pollution. Re-

spectively human-made capital embraces physical capital (K), human capital

(H) and technological capital (A); natural capital describes the flows of re-

newable (RR) and non-renewable (RNR) resources, and the stocks of renewable

(SR) and non-renewable (SNR) resources; pollution in form of stock (P ) and

flow (F ),

• a growth function respectively for K, H and A,

• a growth function for L,

• a growth function for SR and SNR,

11



Economy and environment joined together 12

• a growth function for P ,

• a social welfare function (U) which depends on consumption (C) and the state

of the environment ( SR, SNR, F P ).

The introduction of the flows of natural resources into the production function

of the final good corresponds to the standard interpretation of nature as a resource

base of raw materials for the agricultural and industrial sectors. Instead, the in-

corporation of the state of the environment into the production function together

with its incorporation into the growth functions of the stock of resources describes

the life support feature of nature (see Bovenberg and Smulders (1995), Gradus and

Smulders (1996)). This feature guarantees that the conditions for human life are

maintained on earth as the quantity of UV-B radiation on earth, air quality, or tem-

perature.1 Then the waste sink service is captured by the assimilative capacity of

nature in the growth function of the stock of pollution and the amenity base service

by the introduction of the state of the environment into the social welfare function.

The importance of this service can be best understood if one imagines its absence.2

From the above analysis, it is evident that such a complex model, which takes into

consideration all economic and environmental aspects, cannot be solved to produce

analytical solutions. So, the strategy of the theoretical literature is to focus on a

particular aspect of the more general model.3 For example the model of Aghion and

Howitt (1998), which is presented in the next chapter, focuses on the environmental

degradation of nature caused by the flow of pollution. Using the same variable labels

as above, in their model, the production function of the final good is described only

by K, A and F , where the flow of pollution in the production function is attributed

1Some empirical studies find a correlation between average temperature and income, demon-

strating that warmer countries have a worse economic performance than cooler ones; Gallup et al.

(1999), Horowitz (2001).
2Which would also have big consequences for a portion of the tourist industry.
3The other strategy is that of the Computable General Equilibrium Model literature, see

Boehringer (2003), which computes the solution using real data and estimated functional forms,

e.g. the MIT Integrated Global System model (Reilly et al. (2005)).
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a positive role (opposite to the negative one that it would have in respect to the

life support service). Their interpretation about the flow of pollution is that if it

is possible to pollute more, then it is also possible to produce more. The stocks of

resources SR, SNR are combined to form the maximal environmental quality and

the loss in that maximal quality, called E, is introduced into the utility function.

So, considering that the population is constant, the model is reduced to only three

state variables making it possible to find an analytical solution.

2.2 The basic model

The first model which describes an interaction between the economic and the eco-

logical systems is that of Dasgupta and Heal (1974). The production function of

output Y , which is increasing, strictly concave, twice differentiable and homogenous

of degree 1, is described by

Yt = Y (Kt, RNR,t).

Capital accumulation follows the rule

K̇t = Y (Kt, RNR,t)− Ct

where Ct represents consumption. The change in the resource stock is described by

ṠNR,t = −RNR,t

and the utilitarian social welfare function reads

W =

t=∞∫
t=0

U(Ct)e
−ρtdt

where UC > 0, UCC < 0. The corresponding current-value Hamiltonian is

H = U(Ct) + λ1,t[Y (Kt, RNR,t)− Ct]− λ2,tRNR,t,
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and the necessary condition with respect to the control variables Ct and RNR,t and

with respect to the state variables Kt and SNR,t are

UC,t = λ1,t (2.1)

λ1,tYRNR,t
= λ2,t (2.2)

˙λ2,t = ρλ2,t (2.3)

˙λ1,t = ρλ1,t − YKtλ1,t. (2.4)

Equations (2.1) and (2.2) describe the static efficiency conditions. The former

states that the marginal net benefit of one unit of output either used for consumption

or for increases in the capital stock must be equal. The latter condition implies that

the marginal value of the resource stock must be equal to the value of the marginal

product of the resource.

The other two equations instead represent the dynamic efficiency conditions.

Equation (2.3) is known as the Hotelling rule and assures that the growth rate of

the shadow price of the resources is equal to the utility discount rate. The same

happens for the other asset of this economy in equation (2.4). It guarantees in

fact that capital appreciation (the growth rate of the shadow price of capital) plus

marginal productivity of capital is equal to the discount rate.

Another way to see that would be to differentiate equation (2.2) with respect to

time and substituting the value with equation (2.3) and (2.4). This operation leads

to

YKt =
ẎRNR,t

YRNR,t

which states a no-arbitrage condition of equality among rates of return.

Then differentiating equation (2.1) with respect to time and inserting equation

(2.4), the growth rate of consumption is found:

gCt =
1

η
(YRNR,t

− ρ)

where η is the elasticity of marginal utility, −UCC,tCt

UC,t
. With η being positive, whether

consumption is growing, decreasing or stays constant, depends on the difference be-

tween the marginal productivity of capital and the rate of time preference. But
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with capital accumulation the marginal productivity of capital decreases, so Das-

gupta and Heal (1974) demonstrated that permanent growth is possible only if the

elasticity of substitution σ between the exhaustible resource and capital is greater

than 1 and the asymptotic marginal productivity of capital is greater than the rate

of time preference.

Whether and to what extent substitution between natural and human-made

capital is possible, has long been debated between economists (Solow (1986)) and

is difficult to imagine for the amenity base and life support services. In the context

of the present model it means that we are able to bequeath to future generations

substitutes for exhaustible resources, so e.g. it should not be important how much of

one specific resource we leave to future generations, but whether we leave them the

ability to satisfy the need that we satisfy today with that resource (Perman et al.

(2003)).

2.3 Hotelling rule for renewable resources

Renewable resources, and nature as an environmental indicator in general, have the

capacity to regenerate. Biological populations such as animals or forests reproduce

themselves, and natural resources such as water, air, soil are reproduced by bio-

chemical and biophysical processes. This means that the functional specification for

the change in the resource stock should be substituted with

ṠR,t = −RR,t + G(SR,t)

where the basic functional form Gt = G(SR,t) states that the resources’ regeneration

positively depends on the stock.

The current-value Hamiltonian is now slightly different,

H = U(Ct) + λ1,t[Y (Kt, RR,t)− Ct]− λ2,t[RR,t −G(SR,t)],
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and the necessary conditions are

UC,t = λ1,t (2.5)

λ1,tYRR,t
= λ2,t (2.6)

λ̇2,t = ρλ2,t −GSR,t
λ2,t (2.7)

λ̇1,t = ρλ1,t − YKtλ1,t. (2.8)

Equation (2.7) is different from the previous model only because the Hotelling rule

now is
λ̇2,t

λ2,t

= ρ−GSR,t
.

Differently from before, the growth rate of the shadow value of resources is smaller

because the ability of resources to regenerate themselves decreases their physical

scarcity.

Chapter 4 presents a complex functional form for the change of the resource stock

in order to investigate the problem of biodiversity loss. Even though the structure

of that model is different from the present deterministic one, focusing the attention

only on the environmental part, we can still appreciate how the Hotelling rule will be

modified. The first consideration, following chapter 3, is that GSR,t
is not a constant

but a function, GSR,t
= GS(Pt, SR,t), which is negatively affected by the stock of

pollution Pt, so that
λ̇2,t

λ2,t

= ρ−GS(Pt, SR,t).

The second step is to treat jointly the negative effects on the resources coming

from the harvesting (RR,t) and the environmental degradation, let’s call it Dt, which

is a function of the flow of pollution Ft, Pt and SR,t. Therefore the growth rate of

the shadow value is increased again:

λ̇2,t

λ2,t

= ρ−GS(Pt, SR,t) + DSR,t
.

Finally, the positive role of different types of environmentally friendly technolo-

gies (T ) is considered. It makes the reduction of the physical scarcity of the resources
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possible, affecting positively the regenerative capacity GSR,t
and negatively the en-

vironmental degradation rate DSR,t
. Thus the new Hotelling rule is

λ̇2,t

λ2,t

= ρ−GS(Pt, SR,t, TG,t) + DS(SR,t, TD,t)

where TG are technologies targeted to reduce pollution damages and TD to reduce

the production of pollution. This happens because the regeneration function for the

resource stock would correspond in this deterministic framework to

ṠR,t = −Rt(RR,t, TR,t) + Gt(SR,t, Pt, TG,t)−Dt(Ft, SR,t, Pt, TD,t)

where TR are technologies targeted to increase the productivity of harvested re-

sources.
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3.1 Introduction

Since the publication of ”The Brundtland Report” in 1987, the growth literature

has been using a new concept: sustainable development.1 About since then, a

new framework for studying growth has been developed. If the neoclassical growth

literature of the ’70s focused predominantly on the optimal use of non-renewable re-

sources2 in response to the ”oil crises”, new growth models of the ’90s devote increas-

ingly attention to environmental quality problems as a consequence of pollution-

induced global changes (greenhouse effect, biodiversity loss).

The United Nations Conference on Environment and Development held in Rio de

Janeiro in 1992 recognized the pressing environment and development problems of

the world and, through adoption of Agenda 21, produced a strategy for sustainable

development in the 21st century. After a decade known as the rhetoric decade,

the World Summit for Sustainable Development, held in Johannesburg in August

2002, made clear that urgent action is necessary. The main result of the summit

was that ”one of the three pillars of sustainable development - the environment

- is seriously damaged because of the distortions placed on it by the actions of

human population. The collapse of the environmental pillar is a serious possibility

if action is not taken as a matter of urgency to address human impacts, which have

left: increased pollutants in the atmosphere, vast areas of land resources degraded,

depleted and degraded forests, biodiversity under threat, reduction of the fresh water

resources, depleted marine resources” (UNEP (2002)).

One of the best-established endogenous growth models is the Schumpeterian

approach of Aghion and Howitt (1998), henceforth referred to as A&H. They over-

come the shortcoming of the Stokey (1998) setup in reaching the combination of

two goals which count for the most pragmatic definition of sustainable development

(see Brock and Taylor (2004b)): ”... a balanced growth path with the joint result

of increasing environmental quality and ongoing growth in income per capita”, the

1The broad concept of sustainable development was discussed also before but that report put

it on the international agenda. For a comprehensive survey of definitions see Pezzey (1992).
2Even though there are exceptions see Forster (1980).
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so-called sustained growth. But their model ignores the lasting effects of cumulative

pollutants by modeling the regenerative capacity of the environment as a constant.

I will demonstrate that in the Schumpeterian set-up sustainable development, as de-

fined above, cannot be reached if, in line with insights from ecological and biological

sciences, the regenerative capacity of the environment depends on the lasting effects

that pollutants have on the environment. It is argued that a more sophisticated

theoretical framework, incorporating different types of innovation, is needed.

I will proceed as follows: in section 2 the theoretical background for a regenera-

tion function of the environment with a non-constant regenerative capacity will be

presented; in section 3 the economic part of the model will be briefly introduced. In

section 4 the new concept about the regenerative capacity of the environment will

be introduced in the model. In section 5 the main idea will be explicitly modeled

and section 6 will comment on the results and conclude.

3.2 The ecological part of a growth model: the

regeneration function

Two of the four services3 that the environment provides are the waste sink and

the life support. The former means the capacity to disperse pollutants. The latter

subsumes services like regulation of the hydrological cycle (material cycles of water

and phosphorus), regulation of the gaseous composition of the atmosphere (material

cycle of carbon), generation and conservation of soils (material cycle of nitrogen).

In the growth literature, these two services can be associated with the regenerative

capacity of the environment in the regeneration function of the environment. The

environment or nature is captured by an environmental quality indicator reflecting

all biosystems and their interactions. So, the regenerative capacity of the envi-

ronment is different from just the regenerative capacity of one biological population

because it includes also the ability of particular types of renewable resources, namely

3The other two are the resource base and the amenity base (see Perman et al. (2003)).
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water, soil, atmosphere, to maintain the quality necessary for human life (assimila-

tion of pollutants). The regenerative capacity of the environment is a combination

of biophysical and biochemical processes. Therefore, it also depends on living or-

ganisms (bacteria, fungi, algae, plants, animals, in one word: the biodiversity). As

Dasgupta and Maeler (1994) put it, ”... the speed of regeneration depends, among

other things, upon: the current state of the resource, the rate at which pollutants

are deposited, the nature of the pollutants.”

Therefore it is worthy to stress that we are not going to transfer a specific logistic

function for representing the natural growth rate of nature. This would be correct if

we wished to investigate one specific population of renewable resources (as the well

studied populations of fish). We do not know which is the function for nature as a

whole but we want to capture the fact that a linear function is not appropriate. In

fact, the regenerative capacity of the environment (which, transferred to a logistic

function of one specific population would correspond to the intrinsic growth rate

of the resource) is not independent of changes that will happen in the environment

such as the direct and indirect negative effects of different types of pollutants.

The most serious environmental problem our societies face is the increasing preva-

lence of cumulative pollutants (that is, pollutants that cannot be absorbed by nature

in historical but only in geological times). This increase is not only due to a higher

presence of strictly cumulative pollutants (e.g. organochlorine pesticides) but also

due to the change of noncumulative pollutants into cumulative ones (e.g. CO2).

The change is caused by too high a rate of emission in comparison to the normal

rate of regeneration. If that condition persists, the normal rate of regeneration

will also start to decline and eventually go to zero (causing extinction of biological

populations and quality loss for other types of renewable resources).

3.3 The Schumpeterian growth approach

The model developed by Aghion and Howitt is not a pure endogenous-growth model

with technological progress, but it combines two alternative visions of the growth
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process:

1. capital accumulation as in Solow (1956);

2. innovation as in Aghion and Howitt (1992).

That is the reason why in the optimization problem there is one law of motion

for the tangible capital K,

K̇ (t) = Y (t)− c (t) ,

and another one for the intellectual capital B

Ḃ (t) = ησn (t) B (t) .

B is nothing else than the quality of the technology incorporated in the intermediate

goods, needed for the production of the final output. It is called a Schumpeterian

approach because the research activities produce technological innovation not in the

sense of an increase of the number of intermediate goods as in Romer (1990), but in

the sense of an increase of their quality. So, vertical instead of horizontal innovation

produces obsolescence of the old technologies or the so-called Schumpeterian ”cre-

ative destruction” feature. As Aghion and Howitt (1998) write, ”σ indicates the rate

at which the flow of innovations pushes out the economy’s technological frontier; η

is a positive parameter of the research technology indicating the Poisson arrival rate

of innovation to a single research worker; n is the number of researchers”.

The aggregate production function of the final good then is

Y (t) = K (t)α (B (t) (1− n (t)))1−α

where α ∈ (0, 1).
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3.4 The Schumpeterian approach to the environ-

mental quality with endogenous regenerative

capacity of the environment

As Aghion and Howitt did, I use the specifications proposed by Stokey (1998) for

1) the final good production function with environmental awareness, 2) the flow

of pollution production function, and 3) the environmental disutility in the utility

function.

In contrast, a new regeneration function of the environment is introduced. For-

mally, this implies that the final good production function with environmental aware-

ness is

Y (t) = K (t)α (B (t) (1− n (t)))1−α z (t)

where 0 < α < 1 and 0 6 z 6 1 is a measure of the dirtiness of the existing

technologies or of the emission standard of the existing techniques. ”The cost of

using a cleaner technique is that less output can be obtained per unit of input”

(Aghion and Howitt (1998)).

The production function for the flow of pollution is

P (t) = Y (t) (z (t))γ

where γ > 0.

The loss of environmental quality E is inserted into the utility function of the

representative agent. This captures the amenity base services of the environment.

The instantaneous utility function has an additive isoelastic form:

u(c, E) =
(c)(1−ε) − 1

1− ε
− (−E)(1+ω) − 1

1 + ω
,

with ε, ω > 0. c denotes the consumption and E is defined as the difference between

the actual environmental quality and the maximal environmental quality, which

could only be reached if all production would cease indefinitely.
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E is also subject to an ecological threshold of the form Emin ≤ E (t) ≤ 0 because

the authors want to take into account that a lower limit exists below which environ-

mental quality cannot fall without starting an irreversible deterioration process.4

The new regeneration function of the environment is

Ė (t) = −P (t)− θ(t)E (t)

where θ(t) = 1 + aE(t). Here, the regenerative capacity of the environment, θ, is

not constant any more.5 Since θ depends on E, the establishment of an ecological

threshold Emin ≤ E(t) ≤ 0 ∀t implies that the regenerative capacity of the environ-

ment, i.e. θ(t), faces a threshold as well.6 So, E is increased by the flow of pollution

P and reduced by the regenerative function which now is not any more linear, θE(t),

but quadratic, (1 + aE(t))E(t).

The social planner’s problem is described (where for concision we drop the time

index with all the variables) by:

max
c,z,n

∫ ∞

0

e−ρtu (c, E) dt

subject to

K̇ = Y − c = Kα(B(1− n))1−αz − c

Ḃ = ησnB

Ė = −P − θE = −Kα(B(1− n))1−αz1+γ − (1 + aE)E

and the initial conditions for K, B, E, the ecological threshold Emin ≤ E0 ≤ 0, the

requirement that K(t) and B(t) ≥ 0, and the transversality conditions for K, B, E.

4By assumption, see page 165 of Aghion and Howitt (1998); in any case, this threshold is not

relevant for the optimal balanced steady state.
5In A&H, θ represents the maximal potential rate of regeneration. This interpretation is no

longer suitable here.
6Note that E(t) is a measure of cumulative pollutants as well as of the current state of resources

(actual environmental quality). Hence, θ(t)E(t) controls for the loss of environmental quality

associated with cumulative and non-cumulative pollutants.
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The new current-value Hamiltonian is

H = u(c, E) + λ
[
Kα (B (1− n))1−n z − c

]
+ µσηnB

−ζ
[
Kα (B (1− n))1−α zγ+1 + (1 + aE)E

]
and the new first order conditions for E and ζ are7

∂H

∂E
= −

·
ζ + ρζ ⇒

·
ζ = ρζ − (−E)ω + ζ (1 + 2aE) ,

∂H

∂ζ
=

·
E ⇒

·
E = −KαB1−α(1− n)1−αzγ+1 − (1 + aE) E.

This leads to a completely different result than A&H. In the original model of

A&H a balanced steady state8 with sustainable development is possible even though

under four9 really special assumptions, because sustained development (gK , gc, gy >

0)10 is combined with environmental improvement (gE < 0 ).

Proposition 1 In this model along the balanced steady state, there is no sustainable

development defined as joint achievement of sustained development and environmen-

tal improvement. Hence, an improvement of the environmental quality (gE < 0)

and, at the same time, sustained development (gK , gc, gy > 0) cannot be achieved.

But rather, there is a constant environmental quality (gE = 0) and non-sustained

development (gK , gc, gy = 0).

Proof: See Appendix 1 to this chapter.

7We only present the most relevant first order conditions, here. The other ones are presented

in Appendix 1 to this chapter.
8That is where all variables growth at a constant rate.
9First assumption: ε−1 > 0, second assumption: ησ−ρ > 0, third assumption: (ε−1)(ησ−ρ) <

θ
[
ε(1 + ω) + ε+ω

(1−α)γ

]
and fourth assumption: Emin ≤ E0 ≤ 0.

10g means growth rates.
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3.5 Endogenous regenerative capacity of the en-

vironment and the stock pollution function

In the previous section the regenerative capacity of the environment θ was negatively

affected by the loss of environmental quality the society experiences, E. It is a

very general and useful environmental indicator, but for capturing explicitly the

special negative role of cumulative pollutants on the regenerative capacity, we have

to introduce a new stock variable: the pollution stock S for the pollutants that

accumulate, formally defined by Ṡ = φPS. φ is the fraction of the flow of pollutants

that accumulates.

The regenerative capacity of the environment θ(t), is now equal to bS(t)−δ, where

b is a positive constant, S(t) is the stock of pollution and δ > 0, which captures the

sensitivity of the potential maximal regeneration rate b to the negative effect of the

accumulation of pollutants.

The new social planner’s problem is

max
c,z,n

∫ ∞

0

e−ρtu (c, E) dt

subject to

K̇ = Y − c = Kα(B(1− n))1−αz − c

Ḃ = ησnB

Ė = −P − θE = −Kα(B(1− n))1−αz1+γ − bS−δE

Ṡ = φPS

and the initial conditions for K, B, E, S, the ecological threshold Emin ≤ E0 ≤ 0,

the requirement that K(t), B(t) and S(t) ≥ 0, and the transversality conditions for

K,B,E, S.

The new current-value Hamiltonian is

H = u(c, E) + λ
[
Kα (B (1− n))1−n z − c

]
+ µσηnB

−ζ
[
Kα (B (1− n))1−α zγ+1 − bS−δE

]
+ ξφPS
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and the derivation of all first order conditions is affected by the model specification.

Proposition 2 Also in this new model specification, along the balanced steady state

there is no sustainable development. Again, an improvement of the environmental

quality (gE < 0) and, at the same time, sustained development (gK , gc, gy > 0)

cannot be achieved. But rather, there is a constant environmental quality (gE = 0)

and non-sustained development (gK , gc, gy = 0).

Proof: See Appendix 2 to this chapter.

So, even though the regeneration function has a more precise formulation than

before (in the sense that the regenerative capacity is explicitly negatively affected by

the indirect effect of cumulative pollutants through the stock of them) and a more

general one (in the sense that δ 6= 0), the results do not change.

3.6 Conclusion: what the new environmental spec-

ifications tell us

In both cases, even though the model specifications are different, the theoretical

motivations for a non-constant regenerative capacity are the same, and this is the

reason why the same results appear. The intuition for them is the following. The

intellectual capital B does not grow enough to offset the decline in dirtiness z. In

the model of A&H, z has to fall to compensate the environmental costs of just the

flow of pollution. In my models, z needs to fall even faster. The reason is that not

only the direct environmental costs associated with the flow of pollution but also the

indirect ones, generated by the accumulation of pollutants, have to be compensated

to avoid increased environmental damage.

Whereas non-cumulative pollutants can be controlled by acting on the emission

flow, cumulative pollutants need to be controlled through a management of the

environmental stock. This suggests that, in order to avoid the accumulation of envi-

ronmental damage and to restore environmental quality, incentives and innovations
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that are suited to manage the stock of damage should be targeted.
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3.7 Appendix 1

3.7.1 Optimal control problem

The problem exhibits three state variables, K(t), B(t) and E(t), and three control

variables, c(t), n(t) and z(t). Formally, it can be written as

max
c,n,z

∞∫
0

u(c, E)e−ρtdt

subject to

·
K = Y − c = Kα(B(1− n))1−αz − c
·
B = σηnB
·
E = −Kα(B(1− n))1−αzγ+1 − (1 + aE)E

K0, B0 ≥ 0

E0 ∈ (Emin, 0)

lim
t→∞

e−ρtλK = 0

lim
t→∞

e−ρtµB = 0

lim
t→∞

e−ρtζE = 0

E(t) ∈ [Emin, 0] ∀t.

The current-value Hamiltonian is

H = u(c, E)+λ
[
Kα (B (1− n))1−α z − c

]
+µσηnB−ζ

[
Kα (B (1− n))1−α zγ+1 + (1 + aE)E

]
.

The necessary conditions are:
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Static part:

∂H

∂c
= 0 ⇒ ∂u(c, E)

∂c
− λ = 0

⇒ λ = c−ε (3.1)

∂H

∂z
= 0 ⇒ λ− ζ (γ + 1) zγ = 0

⇒ ζ =
λ

(1 + γ) zγ
(3.2)

∂H

∂n
= 0 ⇒ µησB = (1− α)

γ

1 + γ

λY

1− n
(3.3)

Dynamic part:

∂H

∂K
= −

·
λ + ρλ ⇒

·
λ

λ
= ρ− α

Y

K

(
1− ζ

λ
zγ

)
(3.4)

∂H

∂B
= − ·

µ + ρµ ⇒ ·
µ = ρµ− µηnσ − (1− α) λ

Y

B

γ

1 + γ
(3.5)

∂H

∂E
= −

·
ζ + ρζ ⇒

·
ζ = ρζ − (−E)ω + ζ(1 + 2aE). (3.6)

A&H instead have

∂H

∂E
= −

·
ζ + ρζ ⇒

·
ζ = ρζ − (−E)ω + ζθ.

The three resource constraints are

∂H

∂λ
=

·
K ⇒

·
K = KαB1−α(1− n)1−αz − c (3.7)

∂H

∂µ
=

·
B ⇒

·
B = σηnB (3.8)

∂H

∂ζ
=

·
E ⇒

·
E = −Kα(B(1− n))1−αzγ+1 − (1 + aE)E. (3.9)

A&H instead have

∂H

∂ζ
=

·
E ⇒

·
E = −Kα(B(1− n))1−αzγ+1 − θE.

3.7.2 Derivation of growth rates in a balanced steady state

From

gK ≡
·

K

K
=

Y

K
− c

K
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a balanced steady state
·

gK = 0 is found either when

gK = gY = gc, (3.10)

as in the endogenous growth literature is assumed, or when

gK = 0, gY = gc. (3.11)

From (3.1), we obtain

gλ = −εgc. (3.12)

From (3.6) the growth rate of ζ is

gζ = ρ− (−E)ω

ζ
+ (1 + 2aE)

and therefore in balanced steady state the growth rate of gζ must satisfy

−ωgE + gζ = 0

and

gE = 0. (3.13)

Thus also

gζ = 0. (3.14)

From

gB ≡
·
B

B
= ησn

and
·

gB = 0, we get

gn = 0. (3.15)

From (3.5) and
·

gµ = 0, we obtain

gY − gB + gλ − gµ = 0.

With (3.12) and knowing that gY = gc, we obtain

gc (1− ε)− gB = gµ. (3.16)
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From (3.9) and
·
gE = 0, we find

Y zγ

E
(−gY − γgz + gE)− aEgE = 0.

Therefore, recalling that gY = gc and that gE = 0, we have

γgz = −gc.

From (3.4) and
·
gλ = 0 and using (3.12) and (3.14), we obtain

γgz = −εgc

and, after inserting the previous equation,

−gc + εgc = 0.

Thus we obtain

gc = 0 (3.17)

and

gY = 0. (3.18)

Substituting back in γgz we get

gz = 0 (3.19)

and in (3.12)

gλ = 0. (3.20)

From the production function we must have gY = αgK + (1− α) gB + gz. Knowing

that gY = 0, gz = 0 and gK = 0 (either because of (3.10) or (3.11)), we obtain

gB = 0. (3.21)

Therefore from (3.16), we find also that

gµ = 0. (3.22)
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3.8 Appendix 2

3.8.1 Optimal control problem

The problem exhibits four state variables, K(t), B(t), E(t) and S(t), and three

control variables c(t), n(t) and z(t). Formally, it can be written as

max
c,n,z

∞∫
0

u(c, E)e−ρtdt

subject to

·
K = Y − c = Kα(B(1− n))1−αz − c
·
B = σηnB
·
E = −P + bS−δE
·
S = φPS

K0, B0, S0 ≥ 0

E0 ∈ (Emin, 0)

lim
t→∞

e−ρtλK = 0

lim
t→∞

e−ρtµB = 0

lim
t→∞

e−ρtζE = 0

lim
t→∞

e−ρtξS = 0

E(t) ∈ [Emin, 0] ∀t.

The current-value Hamiltonian is

H = u(c, E) + λ
[
Kα (B (1− n))1−α z − c

]
+ µσηnB − ζ

[
P − bS−δE

]
+ ξφPS.

We recall that P = Y zγ = Kα (B (1− n))1−α z1+γ. The necessary conditions are:
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Static part:

∂H

∂c
= 0 ⇒ ∂u(c, E)

∂c
− λ = 0

⇒ λ = c−ε (3.23)

∂H

∂z
= 0 ⇒ λ

Y

z
− ζ(1 + γ)

P

z
+ ξφ(1 + γ)

P

z
S = 0

⇒ ζ =
λY

(1 + γ)P
+ ξφS (3.24)

∂H

∂n
= 0 ⇒ −λ(1− α)

Y

(1− n)
+ µσηB + ζ(1− α)

P

(1− n)
− ξφ(1− α)

P

(1− n)
S = 0

⇒ µησB = λ(1− α)
Y

(1− n)
− ζ(1− α)

P

(1− n)
+ ξφ(1− α)

P

(1− n)
S = 0

⇒ µησB = (1− α)
γ

1 + γ

λY

1− n
(3.25)

Dynamic part:

∂H

∂K
= −

·
λ + ρλ ⇒

·
λ

λ
= ρ− α

Y

K

(
1− ζ

λ
zγ +

ξ

λ
zγφS

)
(3.26)

∂H

∂B
= − ·

µ + ρµ ⇒ ·
µ = ρµ− (1− α)λ

Y

B
− µσηn + ζ

P

B
(1− α)− ξφ

P

B
(1− α)

⇒ ·
µ = ρµ− µηnσ − (1− α) λ

Y

B

γ

1 + γ
(3.27)

∂H

∂E
= −

·
ζ + ρζ ⇒

·
ζ = ρζ − (−E)ω − ζbS−δ (3.28)

∂H

∂S
= −

·
ξ + ρξ ⇒

·
ξ = ρξ − ξφP + ζbδS−δ−1E. (3.29)

The three resource constraints are

∂H

∂λ
=

·
K ⇒

·
K = KαB1−α(1− n)1−αz − c (3.30)

∂H

∂µ
=

·
B ⇒

·
B = σηnB (3.31)

∂H

∂ζ
=

·
E ⇒

·
E = −P + bS−δE (3.32)

∂H

∂ξ
=

·
S ⇒

·
S = φPS. (3.33)

3.8.2 Derivation of growth rates in a balanced steady state

From

gK ≡
·

K

K
=

Y

K
− c

K
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a balanced steady state
·

gK = 0 is found either when

gK = gY = gc, (3.34)

as in the endogenous growth literature is assumed, or when

gK = 0, gY = gc. (3.35)

From (3.23), we obtain

gλ = −εgc. (3.36)

From (3.28) the growth rate of ζ is

gζ = ρ− (−E)ω

ζ
− bS−δ

and therefore in balanced steady state the growth rate of gζ must satisfy

−ωgE + gζ = 0 (3.37)

and

gS = 0. (3.38)

From

gB ≡
·
B

B
= ησn

and
·

gB = 0, we get

gn = 0. (3.39)

From (3.27) and
·

gµ = 0, we obtain

gY − gB + gλ − gµ = 0.

With (3.36) and knowing that gY = gc, we obtain

gc (1− ε)− gB = gµ. (3.40)

From (3.32) and
·
gE = 0, we find

−Y zγ

E
(gY + γgz − gE)− δbS−δgS = 0.
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Therefore, recalling that gS = 0, we have

gE = gY + γgz. (3.41)

From (3.33) and
·
gS = 0, we find

gY + γgz = 0. (3.42)

Thus from (3.41), we obtain

gE = 0, (3.43)

and from (3.37)

gζ = 0. (3.44)

Equation (3.26) is the growth rate of λ and therefore in balanced steady state the

growth rate of gλ must satisfy

gζ − gλ + gY + γgz − gK = 0 (3.45)

and

gξ − gλ + gY + γgz − gK + gS = 0. (3.46)

Knowing that gζ = 0, gY + γgz = 0 and gλ = −εgc, from (3.45), we obtain

εgc − gK = 0.

Thus either because of (3.34) or (3.35), we get

gc = 0, (3.47)

and

gY = 0. (3.48)

From (3.46) and knowing that gS = 0, gY + γgz = 0 and εgc − gK = 0, we obtain

gξ = 0. (3.49)

From (3.47) and (3.36), we obtain

gλ = 0. (3.50)
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From (3.48) and (3.42), we obtain

gz = 0. (3.51)

From the production function we must have gY = αgK + (1− α) gB + gz. Knowing

that gY = 0, gz = 0 and gK = 0 (either because of (3.34) or (3.35)), we obtain

gB = 0. (3.52)

Therefore from (3.40), we find also that

gµ = 0. (3.53)



Chapter 4

Biodiversity loss and stochastic

technological processes: a

sustainable growth analysis
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4.1 Introduction

The two most critical environmental challenges that our society faces nowadays are

human-induced global ones: the greenhouse effect and the biodiversity loss. We

develop a stochastic endogenous growth model to investigate the biodiversity loss

challenge for the purpose of sustainability. In fact we investigate the conditions for

an optimal growth path to be sustainable.

There are four motivations for developing such a model. First, the problem of

biodiversity loss has not received attention from the growth literature yet (in con-

trast to the greenhouse effect). Second, the analysis of the biodiversity loss requires

an approach that is fundamentally different from that one used for assessing the

greenhouse effect. Third, an optimal growth model is the best way to study sustain-

ability, since we can use such a model to derive conditions under which sustained

growth can go hand in hand with environmental improvement. Finally, the chosen

stochastic approach is very effective to incorporate different types of technological

progress and to find an analytical solution. In a deterministic version we should add

a state variable for each different type of technological progress. This would increase

the complexity of the model and, as already discussed in Chapter 2, the chance to

find a general mathematical solution, see Pezzey (1992).

The importance of biodiversity loss as an indicator of environmental sustainabil-

ity has only recently come to the limelight of research. For instance, the current

observed rate of extinction per century just for birds and mammals is 100-1000 times

the ”natural” background rate, based on fossil records, see Townsend et al. (2003).

Furthermore, the tropical moist forest clearance and burning due to land conversion

(one of the major causes of biodiversity loss) will increase over the next 50 years by

30 percent and 20 percent, respectively, see Tilman et al. (2001).

Why do we need a different approach to account for biodiversity loss? This can be

seen immediately from recalling that the two major reasons for biodiversity loss (at

the level of species, communities, and ecosystems) are overexploitation of renewable

resources (which in the model corresponds to the variable R) and habitat disruption.
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The latter can be directly caused by the flow of pollution (Γ), or indirectly by

the stock of pollution (P). The consideration of biodiversity loss requires viewing

renewable resources from a broader perspective (including biological populations and

water, soil and atmosphere). Hence, it is insufficient to analyze either the optimal

use of renewable resources or the lasting effects of pollution problems resulting from

that use. In fact both aspects are simultaneously relevant for biodiversity loss. This

is inherently different from the greenhouse effect whose cause is the cumulation of

pollutants rather than the exhaustion of non-renewable resources per se.

There is a notable disconnection between the ”70s growth models” being inter-

ested in the optimal use of non-renewable resources (Dasgupta and Heal (1974),

Stiglitz (1974), Solow (1974a)) and the present pollution-induced awareness intrin-

sic in the ”90s growth models” on environmental quality (Bovenberg and Smulders

(1995), Stokey (1998), Aghion and Howitt (1998), Brock and Taylor (2004a)). Brock

and Taylor (2004b) provide a critical discussion of this ‘unbundling’ of interests in

environmental issues. Obviously, the case of renewable resources calls for a simulta-

neous treatment of ”optimal use” and ”quality degradation” issues.

This chapter combines the ideas of the standard environmental quality litera-

ture of economic growth (which investigates pollution awareness) with that of the

”corn-eating” framework (used in the analysis of optimal use of renewable resources,

see Pezzey (1992)). Thereby, three standard shortcomings will be overcome: (i) we

investigate the joint effect of harvesting and induced pollution degradation on re-

newable resources; (ii) in contrast to previous research, the recruitment curve will

not treat the environment as invariant (Townsend et al. (2003)) or, put differently,

the regenerative capacity (Clark (1990)) will not be exogenous and fixed but ”con-

ditional on the particular environment circumstances that happen to prevail, and [it

will] change if any of those circumstances change” (Perman et al. (2003));1 (iii) the

regeneration function will be affected by the scientific and technological advance-

ments, unlike in previous research. We introduce three possible types of environ-

1In the previous chapter we have demonstrated the importantce of the non-constancy of the

regenerative capacity.
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mentally friendly technologies: techniques that affect the productivity of harvested

resources (e.g., to avoid clear-felling in the forest harvest), techniques that reduce

pollution damages (e.g., to restore water quality), and techniques that reduce the

production of pollution (e.g., to increase the efficiency of the practices used to pre-

vent soil degradation). The technologies are generated by a non-stationary Poisson

process whose arrival rate depends on both time and R&D investments (Lafforgue

(2004)). Only in steady state, this process will be stationary. If these R&D in-

vestments produced an infinite number of innovations, the three lasting effects on

renewable resources would potentially disappear.

This chapter is organized in five sections. We present the model in the following

one. In section 3 we examine the new Hotelling rule, taking into account the negative

effects of pollutants and the positive ones of new innovations. In section 4 analytical

optimal solutions are discussed. Then, in section 5, we study the optimal trajectories

of extraction and consumption and we determine the necessary conditions for the

optimal growth paths to be sustainable. A summary and the concluding remarks

are given in section 6.

4.2 Structure of the model

Assume an economy that produces a homogeneous final good Yt, using labor (L)

and renewable resources according to

Yt = F (Rt, Lt) = Rθ
t L

1−θ
t (4.1)

where Rt is the harvested resources (i.e., the flow) at period t. The population is

constant over time and equal to 1 and each individual can supply up to one unit of

labor per unit of time, i.e. 0 ≤ Lt ≤ 1. Furthermore, there are constant returns to

scale, θ ∈ (0, 1).

The stock of resources is modeled as a stochastic process. It evolves over time
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according to the following stochastic equation

dSt = (µP−ζ
t Sκ

t dt+σ1µP−ζ
t Sκ

t dq1,t)− (Rtdt−σ2Rtdq2,t)− (ΓP ξ
t Sρ

t dt−σ3ΓP ξ
t Sρ

t dq3,t)

(4.2)

where µ, κ, ζ, ρ, ξ ≥ 0 and σ1, σ2, σ3 ≥ 0 are parameters. The parameters σi(i =

1, 2, 3) denote the expected rate of growth in the availability of the resources due

to technological innovations. The components on the right-hand side of (4.2) can

be interpreted as follows. µP−ζ
t = Ξt is the regenerative capacity of resources that

is endogenously determined in equilibrium. Then, µP−ζ
t Sκ

t dt is a modified regen-

eration function of resources. Note that this differs from the one used in existing

sustainable growth models, Aghion and Howitt (1998), where the regenerative ca-

pacity is constant. Here, this rate inter alia depends on the stock of pollution of

the economy (P ). There is a direct negative effect on the change in resource stocks

from the harvesting (R) and from the flow of pollution (Γ), which depending on the

type of pollutants is reinforced by the level of pollution and resources. However,

there is a threefold role to play for technological innovations. Among those, there

are two ways of how technological innovations affect the impact of pollution on the

availability of resources. First, σ1 is the rate at which the indirect negative effect of

pollution on resources is reduced. Second, σ3 reflects the rate at which the direct

negative effect of pollution on resources is reduced. Note that σ1 and σ3 are due to

innovations affecting resource abatement. In contrast, σ2 is due to innovations in

the efficiency of resources usage. Therefore, there is a direct positive effect on dSt

from the latter.

Note that the law of motion for the renewable resources takes into account all the

considerations given in the introduction. 1) The regenerative capacity of resources

Ξt is not exogenously given but negatively influenced by the lasting effects of pol-

lutants, especially, of cumulative ones. 2) The regeneration function is reduced not

only by either harvesting Rtdt or environmental degradation induced by the emis-

sion of pollutants ΓP ξ
t Sρ

t dt, but by both of them simultaneously. 3) These three

lasting effects on the regeneration function can be reduced by three possible types
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of environmental friendly innovations: σ1µP−ζ
t Sκ

t dq1,t, σ2Rtdq2,t, and σ3ΓP ξ
t Sρ

t dq3,t.

4) The variations in the random cumulated number of innovations (dq1,t,dq2,t, dq3,t)

follow a non stationary Poisson process2 with arrival rates λi(Nt)(i = 1, 2, 3), where

Nt denotes the fraction of labor devoted to R&D as in Lafforgue (2004):

P(qi,t − qi,s = k) =
(
∫ t

s
λi(Nu)du)k

k!
e−

R t
s λi(Nu)du (4.3)

for 0 ≤ s ≤ t, and q1,t −
∫ t

0
λ1(Ns)ds, q2,t −

∫ t

0
λ2(Ns)ds, q3,t −

∫ t

0
λ3(Ns)ds are in-

dependent martingales (E[qi,T |qi,t] = qi,t for T ≥ t). The intensity function λi(.)

is assumed to be increasing and concave in Nt. In the time intervals between the

innovation jumps of the technological sector, the resource evolves deterministically.

Labor can be devoted to either production or R&D activities. Therefore, the

following constraints must hold:

Nt ≥ 0,

Lt ≥ 0,

1− Lt −Nt ≥ 0.

We consider pollutants as an inevitable consequence of human activity. Following

the argument of the law of thermodynamics and the considerations of Common

(1995) about the environmental impact, in the very long run, we model the evolution

of the stock of pollution as:
·
P = ΓP.

Note that this specification is consistent with an inverted U-shape of the environ-

mental Kuznets curve. However, it also covers the case where no such inverted

U-shaped environmental Kuznets curve prevails.3 What is important here is that

2A Poisson process (qt) is a time dependent family of identically and independent distributed

(iid) random variables with integer values q0 = 0. The increments qt − qs and qv − qu are stochas-

tically independent and stationary.
3Although the empirical finding of an inverted U-shaped environmental Kuznets curve is uncon-

troversial for some particular forms of pollution (see Grossman and Krueger (1995)), recent papers

cast doubt on an application of the concept to pollution in general (see Bertinelli and Strobl (2005),

Stern (2004)).
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the emission of pollutants does not converge to zero but to a maybe even small level

Γ > 0 as income grows.

Equation (4.3) tells us that the current probability of a new successful innovation

increases with the effort devoted to R&D activities. As long as no such effort is

undertaken, the probability of success is zero (λi(0) = 0). In each point of time

either a new innovation is developed (dqi,t = 1) with probability λi(Nt)dt, or is not

(dqi,t = 0) with probability [1−λi(Nt)dt]. In this last case equation (4.2) is reduced

to its deterministic components and becomes

dSt = µP−ζ
t Sκ

t dt−Rtdt− ΓP ξ
t Sρ

t dt

where the technological progress does not mitigate the negative effects on the re-

generative function. Assume that the consequences of successful innovations are

instantaneous. Then, each time a new innovation occurs, qi is instantaneously in-

creased by one unit and dt = 0. Thus, the availability of resources instantaneously

grows but in a discontinuous manner since the stock trajectory jumps upward at

each new success of the technological process. The size of such a jump is given by

∆1St = σ1µP−ζ
t Sκ

t ,

∆2St = σ2Rt,

∆3St = σ3ΓP ξ
t Sρ

t .

The discrete changes in the availability of resources are assumed to be proportional

to the size of the lasting effects, to maintain the notion that the R&D activity is

proportional to the severity of the lasting effects. Each of the three possible types

of innovations happens independently of each other. On average, the positive effects

of innovations may balance the lasting pressures of harvesting and pollutants.

The instantaneous utility function of the infinitely lived representative agent is

characterized by

u(Ct) =
C1−γ

t

1− γ
; γ > 0; γ 6= 1

where Ct is the consumption quantity of the final good at date t and 1
γ

is the elasticity

of intertemporal substitution of consumption.
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4.3 The new Hotelling Rule

The program (Ω) of the social planner is to maximize the expected present value of

the utility

V (S) = max
Rt,Nt≥0

E

∞∫
0

u(Ct)e
−δtdt

subject to

Ct = F (Rt, 1−Nt)

dSt = (µP−ζ
t Sκ

t dt+σ1µP−ζ
t Sκ

t dq1,t)− (Rtdt−σ2Rtdq2,t)− (ΓP ξ
t Sρ

t dt−σ3ΓP ξ
t Sρ

t dq3,t)

Rt, Nt, 1−Nt, St ≥ 0 ∀t ≥ 0

where future utility flows are discounted at rate δ > 0 and one control variable is

redundant through Lt = 1−Nt. Using the dynamic programming technique (Merton

(1990)) and the results of Sennewald and Waelde (2005) and Sennewald (2005) we

find the Hamilton-Jacobi-Bellman equation associated with the value function of

(Ω), V (St).

δV (St) = max
Rt,Nt≥0

{u(Ct) +
1

dt
EdV (St)}. (4.4)

If we expand the stochastic differential dV (St), equation (4.4) becomes

δV (S) = max
Rt,Nt≥0

{u(Ct) + V ′(S)[µP−ζ
t Sκ −Rt − ΓP ξ

t Sρ] +

+λ1(Nt)∆1V (Ŝ) + λ2(Nt)∆2V (Ŝ) + λ3(Nt)∆3V (Ŝ)} (4.5)

where ∆1V (Ŝ), ∆2V (Ŝ), and ∆3V (Ŝ) are the respective instantaneous increases in

social welfare due to the development of a new environmental friendly innovation,

reducing the permanently negative effects of pollutants on the regenerative capacity

µ, the harvesting pressure, and the temporary emission intensity:

∆1V (Ŝ) = V (S + σ1µP−ζ
t Sκ

t )︸ ︷︷ ︸
V1(Ŝ)

− V (S)

∆2V (Ŝ) = V (S + σ2Rt)︸ ︷︷ ︸
V2(Ŝ)

− V (S)

∆3V (Ŝ) = V (S + σ3ΓP ξ
t Sρ)︸ ︷︷ ︸

V3(Ŝ)

− V (S).
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The first order conditions for (Ω) are

∂u

∂C
(Ct)

∂F

∂R
(Rt, Lt) = V ′(S) + λ2(Nt)σ2V

′(S + σ2Rt), (4.6)

∂u

∂C
(Ct)

∂F

∂L
(Rt, Lt) = λ′1(Nt)∆1V (Ŝ) + λ′2(Nt)∆2V (Ŝ) + λ′3(Nt)∆3V (Ŝ). (4.7)

As usual equation (4.6) indicates that along any optimal path the marginal ben-

efit of using (harvesting) the resource in terms of instantaneous utility must be equal

to the resource rent V ′(S), corrected for the second type of innovations – in the effi-

ciency of resources usage (σ2) – that are not proportional to the stock of resources.

Equation (4.7) assures that along any optimal path the marginal cost of the R&D

activity in terms of instantaneous utility must equal the expected utility gain due

to the development of a new type of innovation, being the marginal probability of

success in the development of a new innovation λ′i(Nt), and the associated instanta-

neous increment of social welfare, ∆iV (Ŝ). If we replace the u(.) and F (.) functions

by their analytical analogues and divide equation (4.6) by equation (4.7), then

θ(1−Nt)

(1− θ)Rt

=
V ′(S) + λ2(Nt)σ2V

′(St + σ2Rt)

λ′1(Nt)∆1V (Ŝt) + λ′2(Nt)∆2V (Ŝt) + λ′3(Nt)∆3V (Ŝt)
. (4.8)

In models of optimal use of renewable resources the standard result is that the

resource rent (or shadow price of the resource) grows at the difference between the

interest rate and the regeneration rate of the resource. This result is known as

the Hotelling Rule extended to renewable resources and describes the permanent

intertemporal trade-off resource users are faced with. But in our model, with the

lasting effects of pollutants and the R&D activities, the standard Hotelling Rule

needs to be modified and takes a new form.

Proposition 3 If the stock of the renewable resources (St) satisfies (4.2), then the

resource rent in average grows as follows:

1
dt

E(dV ′(St))

V ′(St)
= δ − (µP−ζ

t κSκ−1 − ΓP ξ
t ρSρ−1

t ) (4.9)

−[λ1(Nt)σ1µP−ζ
t κSκ−1

t

V ′
1(Ŝt)

V ′(St)
+ λ3(Nt)σ3ΓP ξ

t ρSρ−1
t

V ′
3(Ŝt)

V ′(St)
]
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where V ′
1(Ŝt) = V ′(St + σ1µP−ζ

t Sκ
t ) is the value of the resource rent following an

innovation for the mitigation of the lasting effects of pollutants on the regenerative

capacity and V ′
3(Ŝt) = V ′(St + σ3ΓP ξ

t Sρ
t ) is the value of the resource rent following

an innovation for reducing the production of pollutants.

Proof: See Appendix 1 to this chapter.

In this model, the rate of growth of the resource rent is not simply equal to

the social discount rate net of the regeneration rate of the resource. But rather,

the latter has to be corrected for two crucial factors of influence: (i) the effect on

the growth rate through technological progress ( σ1 and σ3), and (ii) the sum of the

indirect effects on the regenerative capacity µ of the stock of pollution and the direct

one on the stock of resources of the flow. The corrections connected with the direct

and the indirect effects of pollution increase the growth rate due to the fact that

lasting effects of pollutants increase the physical scarcity of the resource. The effect

of technology as such reduces the growth rate because at the time a new innovation

is developed, the physical scarcity of resources is instantaneously reduced. As a

result, the adverse effects of pollutants on the regeneration rate may slow down the

use of the resource, but uncertainty on the return of innovations may speed up the

harvesting.

Equation (4.9) is also important to verify the transversality condition of (Ω). A

sufficient condition for the transversality condition to hold is

1

dt
E[

d(e−δtV ′(S))

V ′(S)
] < 0.

From equation (4.9) it becomes

1

dt
E[

d(e−δtV ′(St))

V ′(St)
] = e−δt[−δ +

1
dt

E(dV ′(St))

V ′(St)
]

= −e−δt[λ1(Nt)σ1µP−ζ
t κSκ−1

t

V ′
1(Ŝt)

V ′(St)

+λ3(Nt)σ3ΓP ξ
t ρSρ−1

t

V ′
3(Ŝt)

V ′(St)

+µκP−ζ
t Sκ−1 − ρΓP ξ

t Sρ−1
t ] < 0.
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Hence, the transversality condition holds if the expression in the parenthesis on

the right hand side is positive.

Note that µκP−ζ
t Sκ−1 − ρ ΓP ξ

t Sρ−1
t > 0 is a sufficient condition for this. How-

ever, even if the effect on the regeneration rate and the direct effect of pollutants

on S is negative, µκP−ζ
t Sκ−1 − ρΓP ξ

t Sρ−1
t < 0, the transversality condition holds

as long as it is smaller in absolute value than the positive technological effect,

λ1(Nt)σ1µP−ζ
t κSκ−1

t
V ′
1(Ŝt)

V ′(St)
+ λ3(Nt)σ3ΓP ξ

t ρSρ−1
t

V ′
3(Ŝt)

V ′(St)
.

4.4 The optimal paths

For finding an analytical solution of the optimal policy functions of harvesting and

R&D effort, we set λi(Nt) = λiNt, with λi ∈ [0, 1]. In fact only a linear functional

form for the intensity allows us to solve (Ω) analytically. So, an increase in the

R&D effort leads to a higher probability of technological innovation, but leaving the

marginal probability unchanged. For analytical simplicity we also restrict ourself to

the case where σ2 = σ3 = 0 because the main result of the positive effect of newly

developed innovations will not be affected and no additional qualitative insight will

be gained.

Proposition 4 The optimal paths of harvesting, R&D effort, and consumption are

unique and regular. They are

1−N∗
t = L∗

t =
(1− θ)(1− γ)mt

ληt

(4.10)

R∗
t = mtSt (4.11)

C∗(St) = mt[
(1− γ)(1− θ)

ληt

]1−θSθ
t (4.12)

where

ηt = (1 + σ1µP−ζ
t Sκ−1

t )θ(1−γ) − 1

mt =
1

γ
[δ − ληt − θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )].
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Proof: See Appendix 2 to this chapter.

Since ηt and µt are time dependent, the optimal allocation of labor in the pro-

duction sector and in the R&D sector are not constant. But since we have to meet

the constraints 0 ≤ N∗, L∗ ≤ 1, we have to characterize a feasible set of parameters

that guarantees the existence of an interior optimal solution.

Proposition 5 An interior optimal solution exists if and only if

δt ∈ {δt, δt}

where, for µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t > 0,the lower bound is

δt =

 θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + ληt ifγ < 1

0 ifγ > 1

and the upper bound is for γ < 1

δt = θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + λ(ηt +
ηtγ

(1− γ)(1− θ)
)

and for γ > 1

δt =

 0 ifλ ≤ Ω

θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + λ(ηt + ηtγ
(1−γ)(1−θ)

) ifλ > Ω

where

Ωt =
−θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )

[1−θ(1−γ)]
(1−γ)(1−θ)

ηt

.

See figures 4.1a) and 4.1b).

For µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t = 0

δt =

 ληt ifγ < 1

0 ifγ > 1

and both for γ < 1 and γ > 1

δt =
[1− θ(1− γ)]

(1− γ)(1− θ)
ηtλ.

See figures 4.1c) and 4.1d).
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For µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t < 0 and γ < 1

δt =

 0 ifλ ≤ Υ

θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + ληt ifλ > Υ

δt =

 0 ifλ ≤ Φ

θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + λ(ηt + ηtγ
(1−γ)(1−θ)

) ifλ > Φ

where

Υt =
−θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )

ηt

and

Φt =
−θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )

[1−θ(1−γ)]
(1−γ)(1−θ)

ηt

.

See figure 4.1e).

For γ > 1

δt =

 θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + ληt ifλ ≤ Ψ

0 ifλ > Ψ

and

δt = θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + λ(ηt +
ηtγ

(1− γ)(1− θ)
)

where

Ψt =
−θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )

ηt

.

See figure 4.1f).

Proof: See Appendix 3 to this chapter.

The lower and upper constraints delimitate our feasible set and are time de-

pendent. But since we are interested in balanced steady state solutions, we use

now the definition given to the evolution of pollutants gP = Γ =
·
P/P and as-

sume that also gS =
·
S/S is a constant. If and only if −ζgP = (1 − κ)gS and

ξgP = (1 − ρ)gS hold, we have that P−ζ
t Sκ−1

t = constant and P ξ
t Sρ−1

t = constant,

and therefore we find a balanced steady state solution for the optimal paths where

both the feasible set for the parameters and the optimal path are no more time
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dependent. Hence µP−ζ
t Sκ−1

t −ΓP ξ
t Sρ−1

t = µP−ζSκ−1−ΓP ξSρ−1 and when, for e.g.,

µP−ζSκ−1 − ΓP ξSρ−1 > 0 and γ < 1 we can rewrite:

δ = θ(1− γ)(µP−ζSκ−1 − ΓP ξSρ−1) + λη

and

δ = θ(1− γ)(µP−ζSκ−1 − ΓP ξSρ−1) + λ(η +
ηγ

(1− γ)(1− θ)
).

In this case δ and δ are linear in λ with slope η and η + γη
(1−γ)(1−θ)

, respectively

and have a common intercept (1− γ)θ(µP−ζSκ−1 − ΓP ξSρ−1). They span a cone in

which all (λ, δ) -pairs are associated with feasible equilibria given the constraints.

This is shown in figure 4.1a).

The following Table 1, similar to Lafforgue (2004), summarizes the qualitative

effects of parameters on the optimal paths.

δ λ σ1 St θ

N∗ − + + / γ < 1 : +

γ > 1 : −

L∗ + − − / γ < 1 : −

γ > 1 : +

R∗ + γ < 1 : − γ < 1 : − + γ < 1 : −

γ > 1 : + γ > 1 : + γ > 1 : +

C∗ + γ < 1 : − γ < 1 : − + γ < 1 : −

γ > 1 : ± γ > 1± γ > 1 : +

Let us concentrate on the social discount rate (δ). An increase in δ causes the

(labor and resources) input usage to increase, the R&D effort to diminish, and

the consumption to increase. An increase in the marginal probability of success

increases the effort N∗ in R&D and consequently decreases the productive labor

input L∗; it also increases current extraction R∗ if and only if society favors its

present consumption capacity, i.e. γ > 1. In that case, it raises consumption C∗ if

the positive effect on extraction more than compensates the negative effect on labor.



Biodiversity loss and stochastic technological processes 54

4.5 The optimal paths analysis

We first characterize the exact optimal paths and then find their asymptotic be-

havior. In a balanced steady state, according to solutions (4.10) and (4.11), our

stochastic differential equation (4.2), if we recall from Appendix 2 to this chapter

that P−ζSκ−1 = A and P ξSρ−1 = B, is

dSt = µAStdt−mStdt− ΓBStdt + σ1µAStdqt (4.13)

where we recall

m =
1

γ
(δ − λη − (1− γ)θ(µA− ΓB)).

As long as there is no innovation (no jump) dqt = 0, then equation (4.13) has the

solution

S(t, 0) = S0e
(µA−m−ΓB)t.

When an innovation is developed dqt = 1 and the availability of resources is instan-

taneously increased by σ1 percent. Then the resources follow the optimal trajectory

S∗(t, qt) = (1 + σ1µA)qtS(t, 0) = (1 + σ1µA)qtS0e
(µA−m−ΓB)t, (4.14)

the optimal harvesting trajectory is

R∗(t, qt) = mS∗(t, qt) = m(1 + σ1µA)qtS0e
(µA−m−ΓB)t, (4.15)

and the one for consumption reads

C∗(t, qt) = mθ(1 + σ1µA)θqtSθ
0e

θ(µA−m−ΓB)t(1−N∗)1−θ. (4.16)

Since the exact trajectories (4.14),(4.15) and (4.16) are piecewise discontinuous (they

jump upwards at the instant an innovation is developed) and their asymptotic behav-

ior is undetermined (qt tends to infinity in probability over an infinite time horizon

and S0e
(µA−m−ΓB)t could decline to zero if µA < m+ΓB), we compute the smoothed

trajectories. Hence, we consider the paths of the expected value of S∗t , R
∗
t and C∗

t .

Integrating (4.13) and computing the expected value, we get

St = S0 exp((µA−m− ΓB + λN∗σ1µA)t)
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and therefore the solution for (4.15) (the expected optimal extraction rate path) is

Rt = mSt (4.17)

and in a similar way the solution for (4.16) (the expected optimal consumption path)

is

Ct = (µS0)
θ(1−N∗)1−θ exp({θ(µA−m− ΓB) + λN∗[(1 + σ1µA)θ − 1]}t). (4.18)

The corresponding growth rates are constant over time. For R and S they are

gS = gR = (4.19)

= µA−m− ΓB + λN∗σ1µA =

= µA− ΓB − 1

γ
(δ − λη − (1− γ)θ(µA− ΓB))(1 +

(1− γ)(1− θ)

η
σ1µA) + λσ1µA

and for C the growth rate is

gC = (4.20)

= θµA− θΓB − θm + λN∗(1 + σ1µA)θ − λN∗ =

= θ(µA− ΓB) + λ[(1 + σ1µA)θ − 1] +

−1

γ
(δ − λη − (1− γ)θ(µA− ΓB))(θ +

(1− γ)(1− θ)

η
[(1 + σ1µA)θ − 1].

We are interested in the signs of those rates. In particular, the aim of this

chapter is to determine the necessary conditions for sustainable growth, i.e., positive

consumption growth and increasing resources over time. Therefore we find the two

functions that guarantee gS > 0 and gC > 0. Using (4.19)

(δ − λη − (1− γ)θ(µA− ΓB))[1 +
(1− γ)(1− θ)

η
σ1µA] < γ(µA− ΓB) + γλσ1µA

if and only if

δ < δS = (µA− ΓB)((1− γ)θ +
γ

Q
) + λ(η +

γσ1µA

Q
) (4.21)

where Q = 1 + (1−γ)(1−θ)
η

σ1µA. Using (4.20)

(δ−λη−(1−γ)θ(µA−ΓB))[1+
(1− γ)(1− θ)

η
[(1+σ1µA)θ−1]] < θγ(µA−ΓB)+γλ[(1+σ1µA)θ−1]
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if and only if

δ < δC = θ(µA− ΓB)((1− γ) +
γ

Z
) + λ(η +

γ[(1 + σ1µA)θ − 1]

Z
) (4.22)

where Z = θ + (1−γ)(1−θ)
η

[(1 + σ1µA)θ − 1].

Now, recall that the original constraints δ(λ) and δ(λ) assure a feasible set of

parameters. Together with the new non-negativity constraints δS(λ) and δC(λ) given

in (4.21) and (4.22), we can study the sustainability issue in the δ and λ space. For

the sake of better readability, let us give this system of four equations again:

δ(λ) = (µA− ΓB)θ(1− γ) + λη

δ(λ) = (µA− ΓB)θ(1− γ) + λ(η +
ηγ

(1− γ)(1− θ)
)

δS(λ) = (µA− ΓB)(θ(1− γ) +
γ

Q
) + λ(η +

γσ1µA

Q
)

δC(λ) = θ(µA− ΓB)((1− γ) +
γ

Z
) + λ(η +

γ[(1 + σ1µA)θ − 1]

Z
).

When γ < 1 and µA − ΓB > 1 (see figure 4.2a)), δ(λ) and δ(λ) have the same

positive intercept at λ = 0, namely θ(1− γ)(µA − ΓB). Since Q,Z > 0 and γ > 0

the intercept of δS(λ) and δC(λ) is higher than that of δ(λ), δ(λ). The slope of δ(λ)

is bigger than that of δ(λ). Also, the slope of both δS(λ) and δC(λ) are bigger than

that of δ(λ) since γσ1µA
Q

> 0 and γ[(1+σ1µA)θ−1]
Z

> 0. They exhibit a bigger intercept

than δ(λ) so that they cannot intersect with δ(λ). Comparing the slopes of δS(λ)

and δ(λ),

γη

(1− γ)(1− θ)
≥ γσ1µA

Q
⇔ (4.23)

η

(1− γ)(1− θ)
+ σ1µA ≥ σ1µA.

The last condition always holds with strict inequality, since η(1 − γ) > 0. Thus,

the slope of δ(λ) is strictly bigger than that of δS(λ). Knowing that the intercept of

δS(λ) is bigger than that of δ(λ), then the two functions have an intersection point.

Comparing δC(λ) and δ(λ),

γη

(1− γ)(1− θ)
≥ γ[(1 + σ1µA)θ − 1]

Z
⇔ (4.24)

η

(1− γ)(1− θ)
+ (1 + σ1µA)θ − 1 ≥ (1 + σ1µA)θ − 1.
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The last condition holds with strict inequality for the same reasons as above. Again

the slope of δ(λ) is strictly bigger than that of δC(λ), and because also the intercept

of δC(λ) is bigger than that of δ(λ) a new intersection point exists.

Then, comparing the slopes of δS(λ) and δC(λ),

γσ1µA

Q
≥ γ[(1 + σ1µA)θ − 1]

Z
⇔ (4.25)

θσ1µA ≥ [(1 + σ1µA)θ − 1].

The last condition holds with strict inequality throughout, since the auxiliary func-

tion θx and [(1 + x)θ − 1] start both in 0 but the first one has a bigger derivative,

thus lies always above the second one. The slope of δS(λ) is strictly bigger than that

of δC(λ) and together with the fact that δC(λ) has a bigger intercept than that of

δS(λ) a last intersection point must be found.

Therefore the intersection point I1 from δC(λ) = δS(λ) is

(µA− ΓB)(θQ− Z) = λ(Zσ1µA−Q[(1 + σ1µA)θ − 1])

hence,

λ∗1 =
(µA− ΓB)(θQ− Z)

θσ1µA− [(1 + σ1µA)θ − 1]
=

(µA− ΓB)(1− γ)(1− θ)

η
. (4.26)

The intersection point I2 from δ(λ) = δS(λ) is

µA− ΓB

Q
= λ(

η

(1− γ)(1− θ)
− σ1µA)

Q
)

hence,

λ∗2 =
(µA− ΓB)(1− γ)(1− θ)

ηQ− (1− γ)(1− θ)σ1µA
=

(µA− ΓB)(1− γ)(1− θ)

η
. (4.27)

And finally the intersection point I3 from δ(λ) = δC(λ) is

(µA− ΓB)θ

Z
= λ(

η

(1− γ)(1− θ)
− [(1 + σ1µA)θ − 1]

Z
)

hence,

λ∗3 =
(µA− ΓB)θ(1− γ)(1− θ)

ηZ − (1− γ)(1− θ)[(1 + σ1µA)θ − 1]
=

(µA− ΓB)(1− γ)(1− θ)

η
. (4.28)
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We see that λ∗1 = λ∗2 = λ∗3 and hence I1, I2, and I3 are identical and the three

linear constraints δ(λ), δS(λ), δC(λ) intersects in the same point I∗. This implies

that positive consumption growth is always consistent with growth of the resources,

whenever we are within the feasible parameter range constrained by δ(λ) and δ(λ)

until I∗ and by δ(λ) and δC(λ) after I∗.

After the intersection point I∗ we can therefore distinguish three areas:

δλ ∈ [δ,δC ] δλ ∈ (δC , δS] δλ ∈ (δS,δ]

C increasing C decreasing C decreasing

S increasing S increasing S decreasing

We have these three areas also when µA− ΓB = 0, but with the difference that

they start already in the origin, all the intercepts being zero; see figure 4.2c).

When µA− ΓB < 0 (see figure 4.2e)), all the intercepts are negative and those

of δS(λ) and δC(λ) smaller than those of δ(λ) and δ(λ) (which are identical). This

means that the intersection points now happen with the line δ(λ), the slopes of δS(λ)

and δC(λ) being bigger than that of δ(λ).

The intersection point I∗1 between δS(λ) and δ(λ) is

λ∗1 = −(µA− ΓB)

σ1µA

and the intersection point I∗2 between δC(λ) and δ(λ) corresponds to

λ∗2 = − θ(µA− ΓB)

[(1 + σ1µA]θ − 1]

which is the key point for the beginning of the sustainable growth area.

Finally for γ > 1 , all the previous results for the three cases apply if we assume

respectively for δS(λ) that θ(1 − γ) + γ
Q

> 0 and η + γσ1µA
Q

> 0 and for δC(λ) that

(1− γ) + γ
Z

> 0 and η + γ[(1+σ1µA)θ−1]
Z

> 0.
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4.6 Conclusion

Thanks to all the three new considerations in the regeneration function (connection

between harvesting and quality degradation of renewable resources; non-constancy of

the regenerative capacity; technological processes that directly affect the availability

of resources), we obtain a new Hotelling rule. In fact, in this model, the rate of

growth of the resource rent is not simply equal to the social discount rate net of

the regeneration rate of the resource. But rather, it has to be corrected for two

crucial factors of influence: (i) the effect on the growth rate through technological

progress, and (ii) the sum of the indirect effects of pollutants on the regeneration

rate and the direct one on the stock of resources. The correction connected with the

direct and indirect effects of pollutants increases the growth rate of the resource rent

due to the fact that lasting effects of pollutants increase the physical scarcity of the

resource. The effect of technology as such reduces the growth rate of the resource

rent because at the time a new innovation is developed, the physical scarcity of

resources is instantaneously reduced. As a result, the adverse effects of pollutants

on the regeneration function may slow down the use of the resource, but uncertainty

on the return of innovations may speed up the harvesting.

We have also determined the necessary conditions for sustainable growth i.e.,

positive consumption growth and positive resources growth over time. For that rea-

son as in Lafforgue (2004), we have firstly found an analytical solution of the optimal

policy functions of harvesting, R&D effort and consumption; secondly characterized

the smoothed optimal paths (the exacted ones being only piecewise continuous and

asymptotically undetermined); thirdly computed the growth rates. As final result

we have that, if the marginal probability of innovations is high enough compared

with the degree of impatience of society, the expected positive effect of R&D activi-

ties overrides expected negative effects of harvesting and environmental degradation

(caused by the direct and indirect impacts of pollutants) so that the smoothed tra-

jectory of renewable resources and consumption increases over time.
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4.7 Appendix 1

We start with the description of the eight possible states according to the three

independent Poisson process (q1,t), (q2,t), (q3,t). For this we consider a given time t

and a later time t + dt.

Event in ”dt” State Probability

Only jump of (q1,t) I λ1(Nt)dt(1− λ2(Nt))dt(1− λ3(Nt))dt

Only jump of (q2,t) II λ2(Nt)dt(1− λ1(Nt))dt(1− λ3(Nt))dt

Only jump of (q3,t) III λ3(Nt)dt(1− λ1(Nt))dt(1− λ2(Nt))dt

Only jump of (q1,t) and (q2,t) IV λ1(Nt)dtλ2(Nt)dt(1− λ3(Nt))dt

Only jump of (q1,t) and (q3,t) V λ1(Nt)dtλ3(Nt)dt(1− λ2(Nt))dt

Only jump of (q2,t) and (q3,t) VI λ2(Nt)dtλ3(Nt)dt(1− λ1(Nt))dt

Jump of (q1,t), (q2,t), (q3,t) VII λ1(Nt)dtλ2(Nt)dtλ3(Nt)dt

No jump at all VIII (1− λ1(Nt))dt(1− λ2(Nt))dt(1− λ3(Nt))dt

For the derivative V ′(S) at time t + dt we have

V ′(S)|t+dt = V ′(S)|t + V ′′(S)dSt.

This gives according to the above table the following representation of V ′(S)|t+dt

depending of the state

V ′(S)|t+dt =



V ′(S)|t + µP−ζ
t Sκ

t V ′′(S)dt−RtV
′′(S)dt−

ΓP ξ
t Sρ

t V
′′(S)dt state VIII

V ′
1,2,3 = V ′(St + σ1µP−ζ

t Sκ
t + σ3ΓP ξ

t Sρ
t + σ2Rt) state VII

V ′
2,3 = V ′(St + σ3ΓP ξ

t Sρ
t + σ2Rt) state VI

V ′
1,3 = V ′(St + σ1µP−ζ

t Sκ
t + σ3ΓP ξ

t Sρ
t ) state V

V ′
1,2 = V ′(St + σ1µP−ζ

t Sκ
t + σ2Rt) state IV

V ′
3(Ŝ) = V ′(St + σ3ΓP ξ

t Sρ
t ) state III

V ′
2(Ŝ) = V ′(St + σ2Rt) state II

V ′
1(Ŝ) = V ′(St + σ1µP−ζ

t Sκ
t ) state I
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This implies

V ′(S)|t+dt − V ′(S)|t
dt

=



[µP−ζ
t Sκ

t −Rt − ΓP ξ
t Sρ

t ]V
′′(S)

= MV ′′(S) state VIII

1
dt

(V ′
1,2,3 − V ′(S)|t) state VII

1
dt

(V ′
2,3 − V ′(S)|t) state VI

1
dt

(V ′
1,3 − V ′(S)|t) state V

1
dt

(V ′
1,2 − V ′(S)|t) state IV

1
dt

(V ′
3(Ŝ)− V ′(S)|t) state III

1
dt

(V ′
2(Ŝ)− V ′(S)|t) state II

1
dt

(V ′
1(Ŝ)− V ′(S)|t) state I

We apply the expectation

E (
V ′(S)|t+dt − V ′(S)|t

dt
) = ([1− (λ1(Nt) + λ2(Nt) + λ3(Nt))dt] + (4.29)

+ [λ1(Nt)λ2(Nt) + λ2(Nt)λ3(Nt) + λ1(Nt)λ3(Nt)](dt)2 + λ1(Nt)λ2(Nt)λ3(Nt)(dt)3)MV ′′(S)

+ λ1(Nt)λ2(Nt)λ3(Nt)(dt)2(V ′
1,2,3 − V ′(S)|t)

+ λ2(Nt)λ3(Nt)dt(1− λ1(Nt)dt)(V ′
2,3 − V ′(S)|t)

+ λ1(Nt)λ3(Nt)dt(1− λ2(Nt)dt)(V ′
1,3 − V ′(S)|t)

+ λ1(Nt)λ2(Nt)dt(1− λ3(Nt)dt)(V ′
1,2 − V ′(S)|t)

+ λ3(Nt)(1− λ1(Nt)dt)(1− λ2(Nt)dt)(V ′
3(Ŝ)− V (S)|t)

+ λ2(Nt)(1− λ1(Nt)dt)(1− λ3(Nt)dt)(V ′
2(Ŝ)− V (S)|t)

+ λ1(Nt)(1− λ2(Nt)dt)(1− λ3(Nt)dt)(V ′
1(Ŝ)− V (S)|t)

We partially differentiate (4.5) with respect to S

δV ′(S) = V ′′(S)(µP−ζ
t Sκ

t −Rt − ΓP ξ
t Sρ

t ) + V ′(S)(κµP−ζ
t Sκ−1

t − ρΓP ξ
t Sρ−1

t )

+ λ1(Nt)∆1V
′(Ŝ) + λ1(Nt)σ1µκP−ζ

t Sκ−1
t V ′

1(Ŝ)

+ λ2(Nt)∆2V
′(Ŝ)

+ λ3(Nt)∆3V
′(Ŝ) + λ3(Nt)σ3ρΓP ξ

t Sρ−1
t V ′

3(Ŝ).



Biodiversity loss and stochastic technological processes 63

After rearranging terms, we derive

MV ′′(S) +
3∑

i=1

λi(Nt)∆iV
′(Ŝ) = δV ′(S)− λ1(Nt)σ1µκP−ζ

t Sκ−1
t V ′

1(Ŝ) (4.30)

− λ3(Nt)σ3ρΓP ξ
t Sρ−1

t V ′
3(Ŝ)− V ′(S)(κµP−ζ

t Sκ−1
t − ρΓP ξ

t Sρ−1
t ).

We now divide (4.29) by ”V ′(S)”and let dt tend to zero so that (4.29) becomes

1
dt

E(dV ′(St))

V ′(St)
=

MV ′′(S) +
∑3

i=1 λi(Nt)∆iV
′(Ŝ)

V ′(St)
.

With (4.30) we conclude the proof:

1
dt

E(dV ′(St))

V ′(St)
= δ − [λ1(Nt)σ1µκP−ζ

t Sκ−1
t

V ′
1(Ŝt)

V ′(St)

+ λ3(Nt)σ3ρΓP ξ
t Sρ−1

t

V ′
3(Ŝt)

V ′(St)

+ (µκP−ζ
t Sκ−1

t − ρΓP ξ
t Sρ−1

t )].

4.8 Appendix 2

We follow the standard technique and use the first order conditions in (4.6) and

(4.7) to compute the optimal solution for the extraction rate and labour input rate:

∂u

∂C
(Ct) = C−γ

t

∂F

∂R
(Rt, Lt) = θRθ−1

t L1−θ
t

∂F

∂L
(Rt, Lt) = (1− θ)Rθ

t L
−θ
t .

Using Ct = F (Rt, Lt) and σ2 = σ3 = 0, the conditions (4.6) and (4.7) read

∂u

∂C

∂F

∂R
= θR

θ(1−γ)−1
t L

(1−γ)(1−θ)
t = V ′(S) (4.31)

and
∂u

∂C

∂F

∂L
= (1− θ)R

θ(1−γ)
t L

−γ−(1−γ)θ
t = λ∆1V (Ŝ). (4.32)

Dividing (4.32) by (4.31) and omitting the time index reveals

R =
θ

1− θ

λ∆1V (Ŝ)

V ′(S)
L. (4.33)
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Inserting back into (4.32) gives

(1− θ)
( θ

1− θ

)θ(1−γ) (λ∆1V (Ŝ))θ(1−γ)

V ′(S)θ(1−γ)
· Lθ(1−γ) · L−γ−(1−γ)θ = λ∆1V (Ŝ).

After rearrangements we get

Lγ = (
1− θ

λ∆1V (Ŝ)
)1−θ(1−γ)(

θ

V ′(S)
)θ(1−γ)

and finally

L = (
1− θ

λ∆1V (Ŝ)
)

1−θ(1−γ)
γ (

θ

V ′(S)
)

θ(1−γ)
γ . (4.34)

We insert (4.34) into (4.33):

R = (
1− θ

λ∆1V (Ŝ)
)

(1−θ)(1−γ)
γ (

θ

V ′(S)
)

1−(1−θ)(1−γ)
γ . (4.35)

We now insert this into the HJB equation (4.5) and, using the abbreviations G1 =

µP−ζ
t Sκ

t and G3 = ΓP ξ
t Sρ

t , we get

δV (S) =
Rθ(1−γ)L(1−θ)(1−γ)

1− γ
+ V ′(S)G1 − V ′(S)R− V ′(S)G3 + λ(1− L)∆1V (Ŝ).

With (4.34) and (4.35) we realize after rearrangements that

δV (S) = (
γ

1− γ
)[

1− θ

λ∆1V (Ŝ)
]
(1−θ)(1−γ)

γ [
θ

V ′(S)
]

θ(1−γ)
γ (4.36)

+ λ∆1V (Ŝ) +
G1

S
SV ′(S)− G3

S
SV ′(S).

Thus,

δV (S) = (
γ

1− γ
)[

1− θ

λ∆1V (Ŝ)
]
(1−θ)(1−γ)

γ [
θ

V ′(S)
]

θ(1−γ)
γ (4.37)

+ λ∆1V (Ŝ) + µP−ζ
t Sκ−1

t [SV ′(S)]− ΓP ξ
t Sρ−1

t [SV ′(S)].

Now assume that for all t ≥ 0

P−ζ
t Sκ

t = AtSt (4.38)

P ξ
t Sρ

t = BtSt, (4.39)

with At, Bt continuous. Condition (4.38) guarantees that the HJB equation (4.5)

defines a necessary condition for an optimal path. For the sufficient condition no
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additional assumption is required (see Sennewald (2005)). Then equation (4.37)

turns into

δV (S) = (
γ

1− γ
)[

1− θ

λ∆1V (Ŝ)
]
(1−θ)(1−γ)

γ [
θ

V ′(S)
]

θ(1−γ)
γ (4.40)

+ λ∆1V (S) + µAt[SV ′(Ŝ)]− ΓBt[SV ′(S)].

Equation (4.40) shows an ordinary differential equation for V . To solve it we use

the approach

V (S) = ΨSθ(1−γ) (4.41)

where Ψ ∈ R is unknown, and needs to be determined below. We compute the

derivative and ∆1V (Ŝ):

V ′(S) = θ(1− γ)ΨSθ(1−γ)−1 (4.42)

∆1V (Ŝ) = Ψ[(1 + σ1µAt)
θ(1−γ) − 1]Sθ(1−γ). (4.43)

Insertion of (4.41), (4.42) and (4.43) into (4.40) gives

δΨSθ(1−γ) = (
γ

1− γ
)(

1− θ

λ
)

(1−θ)(1−γ)
γ [Ψ[(1 + σ1µAt)

θ(1−γ) − 1]]−
(1−θ)(1−γ)

γ

· S−
(1−θ)(1−γ)

γ
θ(1−γ)θ

θ(1−γ)
γ (θ(1− γ)Ψ)−

θ(1−γ)
γ S

θ(1−γ)
γ

(1−θ(1−γ)

+ λΨ[(1 + σ1µAt)
θ(1−γ) − 1]Sθ(1−γ)

+ µAtθ(1− γ)Ψ[S · Sθ(1−γ)−1]− ΓBtθ(1− γ)Ψ[S · Sθ(1−γ)−1].

Collecting terms that involve S, we obtain in a first step

δΨSθ(1−γ) = (
1− θ

λ
)

(1−θ)(1−γ)
γ [Ψ[(1 + σ1µAt)

θ(1−γ) − 1]]−
(1−θ)(1−γ)

γ

· (
γ

1− γ
)θ

θ(1−γ)
γ (θ(1− γ)Ψ)−

θ(1−γ)
γ Sθ(1−γ) (4.44)

+ λΨ[(1 + σ1µAt)
θ(1−γ) − 1]Sθ(1−γ)

+ µAtθ(1− γ)ΨSθ(1−γ) − ΓBtθ(1− γ)ΨSθ(1−γ).
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In (4.44) each term contains Sθ(1−γ) by which we divide to derive

δΨ = (
1− θ

λ
)

(1−θ)(1−γ)
γ [(1 + σ1µAt)

θ(1−γ) − 1]−
(1−θ)(1−γ)

γ

· (
γ

1− γ
)θ

θ(1−γ)
γ (θ(1− γ))−

θ(1−γ)
γ Ψ− θ(1−γ)

γ Ψ− (1−θ)(1−γ)
γ (4.45)

+ λ[(1 + σ1µAt)
θ(1−γ) − 1]Ψ

+ µAtθ(1− γ)Ψ− ΓBtθ(1− γ)Ψ.

Now note that Ψ− θ(1−γ)
γ

− (1−θ)(1−γ)
γ = Ψ · Ψ− 1

γ . Hence, each term in (4.45) contains

Ψ. We divide again and use the abbreviation x = σ1µAt, y = µAt and z = ΓBt to

derive

δ − λ[(1 + x)θ(1−γ) − 1]− (y − z)θ(1− γ) = (4.46)

Ψ− 1
γ (

γ

1− γ
)(

1− θ

λ
)

(1−θ)(1−γ)
γ [(1 + x)θ(1−γ) − 1]−

(1−θ)(1−γ)
γ θ

θ(1−γ)
γ (θ(1− γ))−

θ(1−γ)
γ .

This implies

Ψ = [
γ(1− γ)−

γ+θ(1−γ)
γ [ 1−θ

λ[(1+x)θ(1−γ)−1]
]
(1−θ)(1−γ)

γ

δ − λ[(1 + x)θ(1−γ) − 1]− (y − z)θ(1− γ)
]γ. (4.47)

Now we use the expression V (S) = ΨSθ(1−γ) and insert (4.47) into the expressions

for L and R given in (4.34) and (4.35), respectively:

R = (
1− θ

λΨ[(1 + x)θ(1−γ) − 1]Sθ(1−γ)
)

(1−θ)(1−γ)
γ (

θ

θ(1− γ)ΨSθ(1−γ)−1
)

1−(1−θ)(1−γ)
γ =

= (
1

1− γ
)

1
γ (

(1− θ)(1− γ)

λ[(1 + x)θ(1−γ) − 1]
)

(1−θ)(1−γ)
γ Ψ− 1

γ S. (4.48)

Collecting terms, this can be rewritten as

R =
δ − λ[(1 + x)θ(1−γ) − 1]− (y − z)θ(1− γ)

γ
S. (4.49)

And for L we compute

L = (
1− θ

λΨ[(1 + x)θ(1−γ) − 1]Sθ(1−γ)
)

1−θ(1−γ)
γ (

θ

θ(1− γ)ΨSθ(1−γ)−1
)

θ(1−γ)
γ =

= (
1− θ

λ[(1 + x)θ(1−γ) − 1]
)

1
γ (

λ[(1 + x)θ(1−γ) − 1]

(1− γ)(1− θ)
)

θ(1−γ)
γ Ψ− 1

γ . (4.50)

Collecting terms we derive

L =
(1− θ)(1− γ)

λ[(1 + x)θ(1−γ) − 1]γ
(δ − λ[(1 + x)θ(1−γ) − 1]− (y − z)θ(1− γ)). (4.51)
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Recalling the definition of x and y and setting

ηt = [(1 + x)θ(1−γ) − 1] = [(1 + σ1µP−ζSκ−1
t )θ(1−γ) − 1]

mt =
δ − λ[(1 + x)θ(1−γ) − 1]− (y − z)θ(1− γ)

γ

=
δ − λ[(1 + σ1µP−ζSκ−1

t )θ(1−γ) − 1]− θ(1− γ)[µP−ζSκ−1
t − ΓP ξSρ−1

t ]

γ

we complete the proof.

4.9 Appendix 3

We verify the constraints 0 ≤ Lt, Nt ≤ 1. From equation (4.10) we recall that

1−N∗
t = L∗

t =
(1− θ)(1− γ)mt

ληt

where

ηt = (1 + σ1µP−ζ
t Sκ−1

t )θ(1−γ) − 1

mt =
1

γ
[δ − ληt − θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )].

Because µP−ζ
t Sκ−1

t −ΓP ξ
t Sρ−1

t can be greater, equal or smaller than 0 and γ greater

or smaller than 1, six cases follow.

Case 1: µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t > 0 and γ < 1. When γ < 1 then ηt > 0. Hence

according to equation (4.10)

L∗
t ≥ 0 ⇔ mt ≥ 0.

The lower bound on δ becomes

δt = θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + ληt.

According to (4.10) again, we have that

L∗
t ≤ 1 ⇔ 1− (1− γ)(1− θ)mt

ληt

≥ 0.

This condition is equivalent to

ληt − (1− γ)(1− θ)
1

γ
(δ − ληt − θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )) ≥ 0
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and the upper bound on δ becomes

δt = θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + λ(ηt +
ηtγ

(1− γ)(1− θ)
)

Case 2: µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t > 0 as before, but γ > 1. When γ > 1 then now

ηt < 0. According to (4.10)

L∗
t ≥ 0 ⇔ mt ≥ 0.

The lower bound on δ becomes now δt = 0, as δt = θ(1−γ)(µP−ζ
t Sκ−1

t −ΓP ξ
t Sρ−1

t )+

ληt is negative. To find the new upper bound on δ again,

L∗
t ≤ 1 ⇔ 1− (1− γ)(1− θ)mt

ληt

≥ 0.

This condition is equivalent to

ληt − (1− γ)(1− θ)
1

γ
(δ − ληt − θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )) ≥ 0

and the upper bound on δ becomes

δt =

 0 ifλ ≤ Ω

θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + λ(ηt + ηtγ
(1−γ)(1−θ)

) ifλ > Ω

where

Ω =
−θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )

[1−θ(1−γ)]
(1−γ)(1−θ)

ηt

,

which is the intersection point between the δt = 0 line and the δt = θ(1−γ)(µP−ζ
t Sκ−1

t −

ΓP ξ
t Sρ−1

t ) + λ(ηt + ηtγ
(1−γ)(1−θ)

) line.

When µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t = 0 we have similar results to Lafforgue.

Case 3: µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t = 0 and γ < 1. When γ < 1 then ηt > 0. Hence

according to equation (4.10)

L∗
t ≥ 0 ⇔ mt ≥ 0.

The lower bound on δ becomes

δt = ληt.
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According to (4.10) again, we have that

L∗
t ≤ 1 ⇔ 1− (1− γ)(1− θ)mt

ληt

≥ 0.

This condition is equivalent to

ληt − (1− γ)(1− θ)
1

γ
(δ − ληt) ≥ 0

and the upper bound on δ becomes

δt =
[1− θ(1− γ)]

(1− γ)(1− θ)
ηtλ.

Case 4: µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t = 0 and γ > 1. When γ > 1 then ηt < 0. Hence

according to equation (4.10)

L∗
t ≥ 0 ⇔ mt ≥ 0.

The lower bound on δ becomes δt = 0, as δt = ληt is negative. According to (4.10),

we have that

L∗
t ≤ 1 ⇔ 1− (1− γ)(1− θ)mt

ληt

≥ 0.

This condition is equivalent to again

ληt − (1− γ)(1− θ)
1

γ
(δ − ληt) ≥ 0

and the upper bound on δ becomes

δt =
[1− θ(1− γ)]

(1− γ)(1− θ)
ηtλ.

In the same way we proceed for the last two cases.

Case 5: µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t < 0 and γ < 1. When γ < 1 then ηt > 0. Hence

according to equation (4.10)

L∗
t ≥ 0 ⇔ mt ≥ 0.

The lower bound on δ becomes

δt =

 0 ifλ ≤ Υ

θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + ληt ifλ > Υ
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where

Υt =
−θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )

ηt

,

which is the intersection point between the δt = 0 line and the δt = θ(1−γ)(µP−ζ
t Sκ−1

t −

ΓP ξ
t Sρ−1

t ) + ληt line. According to (4.10) again, we have that

L∗
t ≤ 1 ⇔ 1− (1− γ)(1− θ)mt

ληt

≥ 0.

This condition is equivalent to

ληt − (1− γ)(1− θ)
1

γ
(δ − ληt − θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )) ≥ 0

and the upper bound on δ becomes

δt =

 0 ifλ ≤ Φ

θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + λ(ηt + ηtγ
(1−γ)(1−θ)

) ifλ > Φ

where

Φt =
−θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )

[1−θ(1−γ)]
(1−γ)(1−θ)

ηt

,

which is the intersection point between the δt = 0 line and the δt = θ(1−γ)(µP−ζ
t Sκ−1

t −

ΓP ξ
t Sρ−1

t ) + λ(ηt + ηtγ
(1−γ)(1−θ)

) line.

Case 6: µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t < 0 and γ > 1. When γ > 1 then ηt < 0. Hence

according to equation (4.10)

L∗
t ≥ 0 ⇔ mt ≥ 0.

The lower bound on δ becomes

δt =

 θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + ληt ifλ ≤ Ψ

0 ifλ > Ψ

where

Ψt =
−θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )

ηt

,

which is the intersection point between the δt = θ(1−γ)(µP−ζ
t Sκ−1

t −ΓP ξ
t Sρ−1

t )+ληt

line and the δt = 0 line. To find the new upper bound on δ again,

L∗
t ≤ 1 ⇔ 1− (1− γ)(1− θ)mt

ληt

≥ 0.
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This condition is equivalent to

ληt − (1− γ)(1− θ)
1

γ
(δ − ληt − θ(1− γ)(µP−ζ

t Sκ−1
t − ΓP ξ

t Sρ−1
t )) ≥ 0

and the upper bound on δ becomes

δt = θ(1− γ)(µP−ζ
t Sκ−1

t − ΓP ξ
t Sρ−1

t ) + λ(ηt +
ηtγ

(1− γ)(1− θ)
).
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5.1 Introduction

Since the period after World War II economic growth is normally seen as the only

solution for poverty. As Perman et al. (2003) p. 16 writes: ”Economic growth in-

creases the size of the cake. With enough of it, it may be possible to give everybody

at least a decent slice, without having to reduce the size of the larger slices.” Be-

cause of this fundamental consideration a flourishing growth literature has developed

over the decades to investigate two crucial questions: what determines worldwide

growth (in order to raise it) and why are there cross-country income differences

(in order to close the gap in standards of living between poor and rich countries).

But the exercises trying to answer those questions have been done without taking

natural systems into consideration which indeed are the ultimate foundation of the

worldwide economic system. Starting with the milestone works arising from the

Symposium on the Economics of Exhaustible Resources organized by The Review

of Economic Studies in 1974 (see Dasgupta and Heal (1974), Solow (1974a), Stiglitz

(1974)), a new literature was born, namely natural resource economics emerged out

of the neoclassical growth economics. The further consideration that pollution (and

therefore the ability of the nature ”to act as a sink for human wastes”, see Brock

and Taylor (2004b)) can also be a drag on growth, lead to the sustainable devel-

opment literature of the ’90s. Sustainability reflects the aim of reducing poverty

without damaging the environment in a way that negatively affects future economic

improvement.

So, since the last decade we have experienced two parallel discipline advance-

ments, one improving the growth literature in itself without any consideration of

the role of nature, and the other improving the sustainability literature which tries

to incorporate the limitations arising from either natural resource scarcity or na-

ture’s limited capacity to absorb pollution in the best available growth model, in

order to check the consistency of growth prediction. Significant examples are Verdier

(1993) as an enrichment of Romer (1990), Stokey (1998) of Rebelo (1991), Aghion

and Howitt (1998) of Aghion and Howitt (1992), Brock and Taylor (2004a) of Solow
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(1956) and di Maria and Valente (2006) of Acemoglu (2003).

Along this line of research, nature even though being recognized as producing

important services,1 is constrained, ultimately, to be a limiting factor2 to growth,

either because natural resources are exhaustible or because the environmental qual-

ity is strongly negatively affected by pollution.3 Another interesting point is that

with this interpretation of nature as a limiting factor no insight can be gained to

improve the answers the growth literature gives to its two above mentioned funda-

mental questions.4 But if the attention is concentrated on the inestimable role that

nature plays for the advancement of the sciences, e.g. as a knowledge reservoir, then

this new interpretation can help in climbing up the quality ladder for growth models

and thus contributes to explaining the sources of the growth process. Along with

attributing a new role to nature in the context of economic growth, we take into

consideration that as Romer (2006) writes: ”The principal conclusion of the Solow

model is that the accumulation of physical capital cannot account for either the vast

growth over time in output per person or the vast geographic differences in output

per person.” We therefore exclude physical capital from our analysis and endogenise

1The four big categories of environmental services are: resource base that enters directly into

the production function of output, waste sink which enters into the environmental quality function,

amenity base service entering the utility function and the life support that can enter either in the

production function directly or in the regenerative capacity function.
2Along the direct negative effect of nature on growth, there is also a possible indirect one,

through environmental policy. Whether stringent environmental policies have a negative direct

input effect or a win-win outcome (the Porter hypothesis) is long debated. Ricci (2004) surveys

the related literature. It should be noted that if a positive effect is found, it relies either on knife

edge assumptions, that should be avoided, or on an indirect effect through the standard explanatory

variables for growth.
3The empirical literature is also debating the existence or not of the so called ”curse of natural

resources” when nature is seen as supplier of raw materials; see Gylfason (2001), Gylfason (2004),

Sachs and A.M.Warner (1995), Bretschger (2006), Brunnschweiler (2006). Instead, the paper of

Bloom and Sachs (1998) stresses the role of a better understanding of how climate and natural

ecology work for development policies.
4This conceptually means that the sustainable development literature is a follower of the growth

literature.
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the Solow effectiveness of labor (A), interpreting it as technology. In addition, the

introduction of the positive role of nature in the production function of technologies

eliminates the low empirical success of the scale endogenous growth literature and

the necessity of knife edge assumptions about the returns to scale to the produced

factors in the production function of technologies.

In the following section the debate about scale effects and non-robustness (need

of knife edge assumptions) will be briefly summarized; in section 3 the role of nature

as a knowledge reservoir will be illustrated. Section 4 presents the basic model with

natural knowledge and its dynamic implications for economic growth. In section 5

a more detailed version of the model is introduced in order to investigate in section

6 the role that the technological sector can play in the presence of environmental

constraints. Section 7 concludes.

5.2 The scale effects and knife edge debate

The endogenous growth literature is motivated by the desire to explain what in the

Solow model is exogenous and the driving force for sustained growth, namely the

technological progress. The standard endogenous growth literature, also referred to

as first-generation R&D-based growth models, is based upon the knife edge assump-

tion of constant returns to scale in the produced factors of production.5 In addition

to that, these models imply scale effects, because the scale of the economy (L), or

the fraction of the resources it gives to the R&D sector (LR

L
), influences the long-run

growth rate. In fact, both the horizontal innovation approach of Romer (1990),6

where the manufacturing sector and the innovative sector are described by

Y = Kα(ALY )(1−α)

Ȧ = λALR, λ > 0,

5For a detailed survey and discussion see Groth (2004) and Jones (1999).
6The production function of the final good is the result of static efficiency for Y =(

A∑
i=1

xα
i

)
L

(1−α)
Y , 0 < α < 1, where xi, the input of intermediate good, is equal to x = K

A for

all i.
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and the vertical innovation approach of Grossman and Helpman (1991) and Aghion

and Howitt (1992),7 with

Y = Kα(AQLY )(1−α)

Q̇ = λQLR, λ > 0

lead to the steady state result

gy =
ẏ

y
= λsRL, where sR =

LR

L
.

Therefore policy can affect the long-run growth rate by influencing sR, which is the

fraction of labor devoted to the innovative sector.

But Jones’s critique (Jones (1995a) and Jones (1995b)) claims that the assumed

scale effects are contradicted by empirical evidence. He proposes an alternative with

decreasing returns to scale

Ȧ = λAϕLR, ϕ < 1

LR = sRL,
L̇

L
= n ≥ 0.

This produces that in steady state

gy =
n

1− ϕ

and thus the scale effects are cleared out.

The response to Jones was the second generation R&D-based models, Dinopoulos

and Thompson (1998), Howitt (1999), Peretto (1998), Young (1998). These models,

connecting the horizontal and the vertical innovation approach, managed to get rid

only of the scale effect arising from the scale of the economy (L) but not of that

deriving from the fraction of the resources devoted to the different R&D sectors

(sQ). In fact, given the production function

Y = Kα(AQLY )1−α

7Also here the production function of the final good is the result of static efficiency for Y =(
Q∑

i=1

xα
i

)
L

(1−α)
Y , 0 < α < 1, where xi = x =

K
A

Q and A, the number of different intermediate goods,

is fixed and Q is the quality attached to the latest version of intermediate good.
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and

Q̇ = λQ
sQsRL

A
, λ > 0

Ȧ = µ(1− sQ)sRL, λ > 0

where sQ is the fraction of the researchers working in the vertical innovation sector,

the steady state is

gy = (1 +
λsQ

µ(1− sQ)
)n.

In addition to that, see Jones (1999) and Li (2002), they are based upon knife edge

assumptions on the spillovers within and between types of innovatios: zero among

horizontal innovations, one among vertical innovations, and zero across horizontal

and vertical innovation.

5.3 Nature as a knowledge reservoir

The natural environment, or commonly said nature, is a thermodynamically closed

system and is composed by the earth and the atmosphere. With the rest of the

universe it has only an exchange of energy (no matter exchange) and the way in

which it absorbs or reflects that energy influences the functioning of the climate

system. The earth and the atmosphere are a complex interaction of different types

of ecosystems (Olson (1994) singles out 94 ecosystem classes) where biological pop-

ulations coact with the abiotic environment in which they are set and where a vast

amount of biological, chemical and physical processes take place. How terrestrial

and aquatic communities are distributed around the globe, depends on topographi-

cal and geological factors, on the soil and water chemical characteristics, on the solar

radiation and the ocean currents. All the scientific knowledge we possess nowadays

is the result of a challenging process along the centuries to understand and, in the

end, control nature in favor of our precarious human condition. The observation

and the study of nature and its phenomena are at the origin of physics, astronomy,

geometry, mathematics in the antique world and later in the Renaissance, when ”the
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scientific method” was developed, of sciences (in the same meaning as nowadays8)

as chemistry, biology, medicine, topography, cartography, geography and geology.

All these types of scientific knowledge backgrounds were the prerequisite for the big

land discoveries of the XV/XVI centuries, for the industrial revolution and the later

improvements in human health conditions.

If we only consider living organisms in their three realms of animals, plants and

microorganisms, we know nowadays that just only the described species are respec-

tively: 52.000 for animal vertebrates, 1.272.000 for animal invertebrates, 270.000 for

plants, 4.000 for bacteria, 80.000 for algae and protozoa and 72.000 for fungi; yield-

ing a total of 1 750 000 described species. But the real number of species is estimated

to be 14.000.000 (UNEP-WCMC (2000)). The knowledge about this overwhelming

biological diversity thanks to the science of ecology, can help us in saying today

that ”without the appropriate level of diversity, natural ecosystems cannot adjust

to natural variations in the environment” (Heal (2004)). Nature is an infinite basis

of possible information which raises opportunities to directly or indirectly (through

inventions) increase our utility. The difficulty is to find this information through

a more or less slow process of scientific advancement. We could not have invented

the steam engine without knowing the physical law of thermodynamics or the plane

without the desire to copy birds and knowledge about aerodynamic laws. Every new

discovery is an improvement of the scientific knowledge and therefore in the end our

ability to survive better on the earth and develop new inventions.

Knowledge about microorganisms like bacteria, fungi, viruses, yeasts, which in

the common imagination are seen more like a threat to our life, are of fundamental

importance for the human utility in every-day life: in classical microbial processes

(in the food industry for the production of cheeses, wines, beers, bakery products and

preservatives; in the chemical industry for that of ethanol, acetone, butanol between

8Indeed the oral transmission of the Odyssey can be seen as a first encyclopedic work of geog-

raphy and cartography but not in the meaning that is given today at that sciences; also knowledge

of anatomy and medicine were available even before the period of the Classical Greece but they

were mixed with religion and philosophy.
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many others); in the pharmaceutical industry for the production of antibiotics, vac-

cines, active ingredients and therapeutical approaches; in new microbial processes

(in the chemical industry for the production of enzymes, amino acids, nucleotide or

steroids); in the utilization and conversion of crude oil, natural gas and cellulose; in

the growing sectors of gene and biotechnology; in the treatment of wastes (see Dixon

(1996), Schlegel (1992)). The relevance of studying nature can also be seen in the

growing sector of biomechanics9 which has lead to the development and production

of nanostructures and in computer sciences to robotics and cybernetics.10

5.4 Natural knowledge as a prerequisite for sus-

tained growth

5.4.1 Model structure

Having in mind the economic implications of the environment illustrated in the pre-

vious section and the economic evidence about the factor capital (K) mentioned

in the introduction, the model structure is straightforward. It is described by four

variables, namely output (Y ), labor (L), knowledge (A) in the standard interpreta-

tion of technology (see Romer (1990), Grossman and Helpman (1991), Aghion and

Howitt (1992)), and knowledge (D) in the interpretation of basic scientific research

which arises by the study and the understanding of nature. In the analysis to follow

A will be called technology and D natural knowledge. There are, therefore, three

sectors: the final good sector where the output is produced; the standard R&D

sector which is mostly private and characterized by the strength of developing tech-

nologies which have a clear target for their utilization in the production of goods; the

9Well known examples of drawing from nature in engineering are Leonardo da Vinci’s flying

machines and ships.
10The sector of biomechanics, or also said bionics from the connection of biology and electronics,

is nowadays one of the most promising sectors, especially if we consider that the overlap between

biology and technology in terms of mechanisms used is only 10% approximately.
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scientific research sector which is mostly non-private and fundamentally motivated

by the intrinsic human aspiration of enlightenment and improvement of the human

condition. Normally in this sector, gained knowledge that afterwards is found to

be relevant for the development of a specific market good (either directly in the

production function or indirectly through the development of a new invention) is

only a side product rather than the target of research,11 such as the discovery of the

first antibiotic12 or the invention of new materials/tissue.13

The production function of the final good is

Y (t) = D(t)α[A(t)(1− aA − aD)L(t)]1−α, (5.1)

that for technologies is

Ȧ(t) = D(t)β(aAL(t))γA(t)θ, (5.2)

and finally the production function of natural knowledge is

Ḋ(t) = (aDL(t))χD(t)ε. (5.3)

Population growth is exogenous and follows the standard differential equation

L̇(t) = nL(t), with n exhibiting a positive value. Fraction aA of the labor force

is used for the invention of technologies; fraction aD for the discovery of natural

knowledge; and 1 − aA − aD is used for the production of the final good.14 The

three production functions have a standard Cobb-Douglas specification and follow

the standard literature, see e.g.Romer (2006). The production function for the final

11Indeed in all natural sciences, as Pasteur said, the relationship between basic and applied

research is very close: ”Il n’y a pas des sciences appliquees... Mais il y a des applications de la

science”, see Schlegel (1992).
12Penicillin, which is a substance produced by the mould Penicillium notatum, was the first

antibiotic discovered by Alexander Fleming in 1928 by chance on a nutrient agar which was thrown

away after the study of another bacterium.
13As to the promising expectations arising from the study of the echinoderm sea cucumber, see

Thurmond and Trotter (1996) and Jangoux et al. (2002).
14So, in a very elementary interpretation, we could also rename the variables A as inventions

and D as discoveries.
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good presents constant returns to labor and to natural knowledge for a given tech-

nology, with 0 < α < 1. Together with the introduction of the technological process

as Harrod-neutral, the model therefore exhibits constant returns to scale in the pro-

duction function of the final good for both factors of production, namely technology

and natural knowledge. Thus, on net, whether this economy has increasing, de-

creasing or constant returns to scale to the produced factors depends on the returns

to scale it has in the production function of knowledge, equation (5.2), and so on

(β + θ) T 1. Note that in this model, we will see that the type of returns to scale to

the produced factors is no more a key determinant for the existence of a balanced

growth path, thus there is no need for a knife edge assumption like β + θ = 1 or

decreasing returns, β + θ < 1.

There is no specific assumption with respect to the type of returns to scale to

natural knowledge and labor in the production function of technology, and therefore,

β ≥ 0 and γ ≥ 0. The same applies for the production function of natural knowledge

where the returns to scale to labor could be decreasing, constant or increasing,

χ ≥ 0. There are good reasons for all three possibilities therefore, we do not impose

a specific formulation.

Finally, the parameters θ and ε, which represent the contribution of existing

inventions to the success of the standard R&D sector and the contribution of ex-

isting discoveries to the advancement of scientific research, are also not subject to

any assumption leaving them to be positive or negative. In fact, the contribution

could be positive if we believe that inventions or discoveries in the past make future

improvements easier; or it could also be negative if we assume that the bigger the

stock of improvements, the more difficult to add new ones.
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5.4.2 Dynamics of technology and natural knowledge

For simplicity we omit time indices. The growth rates of the two endogenous stock

variables, A and D, become

gA = Dβaγ
LLγAθ−1, (5.4)

gD = aχ
DLχDε−1. (5.5)

Finding the balanced steady state implies

ġA = 0 ⇒ βgD + γgL + (θ − 1)gA = 0

⇒ gD = −γ

β
gL +

1− θ

β
gA (5.6)

˙gD = 0 ⇒ χgL + (ε− 1)gD = 0

⇒ gD =
χ

1− ε
gL (5.7)

Proposition 6 Independent of the initial values of ga and gD, the economy always

converges to its balanced steady state (g∗A, g∗D) where A and D grow steadily. The

existence of this balanced steady state is independent of the returns to scale in the

production function of technology.

Proof: The values of gA and gD at the balanced steady state can be found if we

recall that in equilibrium both ˙gD = 0 and ġA = 0. Thus g∗Aand g∗D must satisfy

βg∗D + γgL + (θ − 1)g∗A = 0 (5.8)

and

χgL + (ε− 1)g∗D = 0, (5.9)

which by substituting g∗D = χ
1−ε

gL from equation (5.9) in equation (5.8) leads to

g∗A =

χ
1−ε

+ γ
β

1−θ
β

gL. (5.10)

As depicted in figure 5.1 the phase diagram represents the locus of points where

gD and gA are constant for θ < 1 and ε < 1. Equation (5.6) corresponds to the set of

points where gA is constant. Above this locus, gA is rising and, correspondingly, the
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Figure 5.1: Sustainable Growth Equilibria
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arrows point east; below the locus, it is falling and therefore the arrows point west.

Similarly, equation (5.7) corresponds to the set of points where gD is constant. Above

the locus, gD is falling and the arrows point south; below the locus, it is rising and

the arrows point north. Thus, the two schedules divide the space into four regions.

The arrows point southwest in the first quadrant, southeast in the second, northeast

in the third, and northwest in the fourth. The balanced steady state is (g∗A, g∗D) and

this point is stable. For any values of gA and gD, the dynamics of the system takes

it back to the balanced steady state.�

The model does not imply scale effects because the long-run growth rates are

not permanently influenced by changes in the resources devoted either (as in the

early new growth literature) to the R&D sector (aA) or the scientific research sector

(aD). At the same time the existence of the equilibrium is independent of the type

of returns to scale in the produced factors of production in the production function

of technology: increasing if β + θ > 1, constant if β + θ = 1, decreasing if β + θ < 1.

This overcomes both the knife edge assumption of the endogenous growth literature

where β+θ = 1 and the assumption of Jones’s critique (Jones (1995a)) that β+θ < 1.

This is because the driving force of the economy is now the production function of

natural knowledge where the only limitation is the human thinking capacity.

5.5 The threat from what gets lost: pollution dam-

ages on nature as a knowledge reservoir

The production function for the final good is again

Y = Dα[A(1− aA − aD)L]1−α

and the production function for technology is maintained as before

Ȧ = Dβ(aAL)γAθ.

The production function of natural knowledge as potential for the maximal scientific

improvement, differently from the basic model, additionally captures the realistic
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feature that something of the nature is destroyed due to pollution damages as result

of the human activity. Therefore precious sources of information get lost, reduc-

ing the basis of scientific knowledge. These damages are modeled as an inevitable

consequence of the output production. Thus the new function is

Ḋ = (aDL)χDε − d{Dα[A(1− aA − aD)L]1−α}. (5.11)

For finding an equilibrium the dynamics of the model must be studied.15 The

new growth rate for gD is

gD = aχ
DLχDε−1 − dDα−1A1−α[(1− aA − aD)L]1−α (5.12)

and therefore balanced steady state implies that the growth rate of gD must satisfy

χgL + (ε− 1)gD = 0 (5.13)

and

(α− 1)gD + (1− α)gA + (1 + α)gL = 0, (5.14)

hence

gD =
χ

1− ε
gL (5.15)

gD = gA + gL. (5.16)

Equations (5.15) and (5.16) are indicating the constraints that must be satisfied for

having ˙gD = 0. This happens only in one point (g′A, g′D) which is the intersection

point of the two equations if χ
1−ε

> 1 (even though it does not mean any restriction

on the type of returns to scale on labor (χ) in equation (5.3), recalling that from

the basic model ε < 1). Thus

g′D =
χ

1− ε
gL

and

g′A = (
χ

1− ε
− 1)gL.

15As we ate interested in the existence of equilibrium at this stage, we will not investigate issues

of convergence.
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The locus of points where gD is constant is, as before, the straight line with

intercept − γ
β
gL and slope 1−θ

β
:

ġA = 0 ⇒ gD = −γ

β
gL +

1− θ

β
gA. (5.17)

Summing all the information together the second proposition follows.

Proposition 7 This economy possesses an equilibrium ( ˙gD = 0 and ġA = 0) with

(g∗A, g∗D) = (g′A, g′D) where A and D grow steadily but if and only if β + θ < 1.

Proof: If g′A and g′D are substituted into equation (5.17), it follows

χ

1− ε
gL = −γ

β
gL +

1− θ

β
(

χ

1− ε
− 1)gL

where it must be that

1− θ

β
=

(
χ

1−ε
+ γ

β

)
(

χ
1−ε

− 1
) > 1 (5.18)

and therefore β + θ < 1. See figure 5.2a).�

This economy can perform sustainable growth without scale effects, but it needs

decreasing returns to scale in the two produced factors of production, namely A and

D, in the production function of technologies. This brings the model back to run on

the same assumption as Jones (1995b), yet not to the early new growth literature

with β +θ = 1. Now the main relevant force of the economy is the constraint arising

from the loss of useful information d{Dα[A(1− aA− aD)L]1−α from equation (5.11).

But because the production function of the final good has constant returns to scale

in A and D, in the end, whether that constraint is too strong or not for having

sustaiable growth depends on the returns to scale of A and D in the production

function of technologies. Therefore only with decreasing returns the limiting effect

is not too severe for the growth process.
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5.6 How technological progress influences a knife

edge assumption

If the consideration that technologies could play an important role in this economy

is taken into account, then the production function for natural knowledge becomes

Ḋ = (aDL)χDε − d{Dα[A(1− aA − aD)L]1−α}A−λ (5.19)

where λ > 0. In fact, technological progress can mitigate the environmental impact

of the production activities on nature and therefore relax the constraint on D.

Again the dynamics of the new model are studied. The growth rate of natural

knowledge is

gD = baχ
DLχDε−1 − dDα−1A1−α−λ[(1− aA − aD)L]1−α (5.20)

and therefore balanced steady state implies that the growth rate of gD must satisfy

χgL + (ε− 1)gD = 0 (5.21)

and

(α− 1)gD + (1− α− λ)gA + (1 + α)gL = 0, (5.22)

hence

gD =
χ

1− ε
gL (5.23)

gD =
1− α− λ

1− α
gA + gL. (5.24)

Again, these two straight lines are the conditions that must be jointly respected in

order to find the only point which guarantees that ˙gD = 0. The new intersection

point is (g′′A, g′′D) with

g′′D =
χ

1− ε
gL

as before and

g′′A =
( χ

1−ε
− 1)

1−α−λ
1−α

gL
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which is positive either when χ > 1− ε and λ < 1− α or χ < 1− ε and λ > 1− α

or χ = 1− ε and λ = 1− α.

When χ > 1− ε, as in the previous section, and if we recall that

ġA = 0 ⇒ gD = −γ

β
gL +

1− θ

β
gA, (5.25)

then

Proposition 8 The economy possesses an equilibrium with (g∗A, g∗D) = (g′′A, g′′D)

where A and D grow steadily without any assumption on the returns to scale in the

produced factors of production in the production function of technologies, namely the

sum β + θ.

Proof: If g′′A and g′′D are substituted into equation (5.25) then

χ

1− ε
gL = −γ

β
gL +

1− θ

β

( χ
1−ε

− 1)
1−α−λ

1−α

gL (5.26)

which implies that

1− θ

β
=

(
χ

1−ε
+ γ

β

)
(

χ
1−ε

− 1
) 1− α− λ

1− α
. (5.27)

From the proof to Proposition 7 the first part of the right hand side of the equation

is greater than 1 and the second part is smaller than 1, thus the sum β + θ is free

to be >,< than 1. See figure 5.2b).

The same conclusion applies for the cases χ < 1 − ε, λ > 1 − α and χ = 1 − ε,

λ = 1 − α, but the last case leads to an interesting constellation. If ˙gD = 0 was

derived for χ = 1 − ε, λ = 1 − α, then the two straight lines corresponding to

equations (5.23) and (5.24) collapse to the same one gD = gL. So, similarly to

Section 5.4, this straight line will be the locus of points where gD is constant but

with intercept 1 instead of χ
1−ε

. In this case, as in Section 5.4, β + θ can be smaller,

equal or bigger than one.�

In this version of the model sustainable growth can go hand in hand with both

increasing, decreasing and constant returns to scale in the produced factors of pro-

duction in the production function of technologies, because the constraint which
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drives this economy is d{DαA1−α−λ[(1− aA − aD)L]1−α} from equation (5.19). Dif-

ferently from the previous section where no mitigation arising from the technological

progress was considered, here, in the environmental constraint, the returns to scale

on D and A are always decreasing, independent of whether λ is >, =, < 1 − α.

This guarantees that the environmental constraint is not strong enough to affect

sustainable growth predictions.

5.7 Conclusion

A new model structure is developed where nature is given a positive interpretation as

a knowledge reservoir which is a maximal source for scientific improvement. Three

different versions of the model, which do not predict scale effects, are presented to

investigate how the role of the returns to scale in the produced factors of production

changes. Starting with no constraints at all on the production function of natural

knowledge, we move to their inclusion, ending with the recognition of the positive

role that the technological progress has in the mitigation of the environmental threat.

It is demonstrated that only in the case with the environmental constraint and

without technological mitigation, a specific assumption about the returns to scale

in the produced factor of production is needed in order to guarantee sustainable

growth. This is θ + β < 1, which also Jones (1995) found necessary to eliminate

scale effects. This assumption returns to be non-binding when technological miti-

gation is introduced, increasing therefore the generality of the model in predicting

sustainability.
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Figure 5.2: Sustainable Growth Equilibria
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