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Summary

Two important aspects were investigated in this dissertation. First, using a mul-

tilocus approach to examine the effects of population structure, demography and nat-

ural selection on DNA polymorphism in two closely related wild tomatoes, Solanum

peruvianum and S. chilense (Solanum section Lycopersicon, Solanaceae). Sequence

data were used for eight unlinked nuclear loci from populations across much of the

species’ range. Both species exhibit substantial levels of nucleotide variation. The

average level of silent nucleotide diversity across all loci in S. peruvianum (θsil ≈
2.04%) is about 1.3-fold higher than in S. chilense (θsil ≈ 1.59%). One of the loci

deviates from neutral expectations, showing a clinal pattern of nucleotide diversity

and haplotype structure in S. chilense. This geographic pattern is likely caused by

an incomplete (ongoing) selective sweep. Both studied wild tomato species exhibit

moderate levels of population differentiation (average Fst ≈ 0.15). These estimates

of Fst may seem surprisingly low in view of the high fragmentation of local popula-

tions. It is likely that patterns of population differentiation in our samples reflect

the presence of soil seed banks, and historical association mediated by climatic cycles.

Interestingly, the pooled sample across different demes exhibits a negative Tajima’s

D, as possibly a consequence of ancestral population structure. We therefore pro-

pose that population structure is one of the most important evolutionary forces to

shape patterns of nucleotide diversity within and among populations in these wild

tomatoes. Furthermore, intragenic linkage disequilibrium decays very rapidly with

physical distance (within a few hundred base pairs), suggesting high recombination

rates and effective population sizes in both species. The rapid decline of linkage dis-

equilibrium seems very promising for future association studies with the purpose of

mapping functional variation in wild tomatoes.

Second, assessing genealogical footprints of speciation history of wild tomatoes.

We present a multilocus sequencing study to assess patterns of polymorphism and

divergence in the closely related wild tomato species, Solanum peruvianum and S.

chilense. The dataset comprises seven mapped nuclear loci (≈ 9.3 kb of analyzed se-

quence across loci) and four local population samples per species that cover much of

the species’ range (between 80-88 sequenced alleles across both species). Specifically,

we employ the analytical framework of divergence population genetics in evaluating

the utility of the ‘isolation’ model of speciation to explain observed patterns of poly-
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morphism and divergence. Whereas the isolation model is not rejected by goodness-

of-fit criteria established via coalescent simulations, patterns of intragenic linkage

disequilibrium provide compelling evidence for historical introgression at two of the

seven loci. These results suggest that speciation occurred under residual gene flow,

implying natural selection as one of the evolutionary forces driving the divergence

of these tomato species. The complexities due to the joint effects of the coalescent

process in subdivided populations and the sampling scheme may have conspired to

bias the demographic estimates and the scaled time since speciation; there is an obvi-

ous need to develop more refined models of divergence that explicitly take population

subdivision into account in making historical inferences.
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General Introduction

‘Nothing in biology makes sense except in the light of evolution’

(Dobzhansky, 1973)

About this thesis and introduction

My thesis involves two aspects. First, quantifying the magnitude and patterns

of population structure, natural selection and linkage disequilibrium in two closely

related wild tomato species, Solanum peruvianum and S. chilense, using population-

genetic approaches (chapter one). Second, assessing the speciation history of these

two taxa within an explicitly population-genetic framework (chapter two). Both chap-

ters are manuscripts for papers to be submitted, which have their required formats

and introductions. Both are self-contained and can be read separately. The idea of

the following sections is thus to generally introduce the topics dealt within this thesis.

Wild tomatoes studied and their habitats

The tomato clade (Solanum section Lycopersicon) consists of up to thirteen

species, of which the only cultivated species is S. lycopersicum. Eleven of them are

native to western South America, and two (S. cheesmanii and S. galapagense) are

endemic to the Galapagos Islands (Rick, 1986; Taylor, 1986; Spooner et al., 2005;

Peralta et al., 2005). The phylogenetic relationships among the tomato species are

not well resolved. However, many analyses revealed two well-defined clades: one

corresponding to mating system (self-compatible versus self-incompatible species)

and the other, a subset of the first, corresponding to fruit color (red versus green

fruits) (Miller and Tanksley, 1990).

Wild tomatoes have become an ideal plant model system for evolutionary analy-

ses because of their recent divergence, the clear phenotypic distinction and the great

diversity of mating systems. In this study, we used S. peruvianum and S. chilense

as model taxa to examine the patterns of population structure, demography, and

speciation processes in these two closely related self-incompatible species (Figure 1).

S. peruvianum is distributed along the western side of the Andes from north-central
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Figure 1: Morphological distinction between S. peruvianum and S. chilense; e.g. S. peru-

vianum has a curved anther cone but S. chilense has a straight anther cone. Leaves of S.

peruvianum are generally larger than of S. chilense. Leaf-shape is more finely subdivided in

S. chilense (‘fern-like’) than in S. peruvianum. Moreover, S. peruvianum has hairy stems,

whereas S. chilense has smooth stems.

Peru to northern Chile, and S. chilense from southern Peru to northern Chile (Figure

2). Both studied taxa grow in a wide diversity of habitats from sea level to the high-

land up to 3,300 meters (Rick, 1986; Taylor, 1986; see also Figures 3 and 4). Earlier

studies, based on single populations in each of five species, suggested that positive

directional selection does not have a large effect in the tomato clade; therefore, the

analyses of demographic processes and population structure become more significant

for understanding patterns of genetic diversity and historical events in wild tomatoes

(Städler et al., 2005; Roselius et al., 2005).

Additionally, the differences between the northern and southern populations

of S. peruvianum have long been recognized. Rick (1986) demonstrated that the

northern races were partially crossable among themselves, but showed reduced cross-

ability to southern populations. S. chilense is restricted to northern Chile and the

three southernmost Peruvian departments (Arequipa, Moquegua, Tacna), where it is
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Figure 2: Approximate geographic distribution of wild tomato samples. From north to south, the

blue line indicates the geographic range of S. peruvianum and the purple line shows the geographic

range of S. chilense. Note that there is a region of sympatry of both species (overlap between the

blue and purple lines). S. peruvianum samples are indicated with blue stars and S. chilense samples

with purple circles. Note that the light blue star and purple circle indicate the old samples from the

previous study (Städler et al., 2005).

broadly sympatric with the widely distributed S. peruvianum (see Figure 2). Inter-

estingly, only S. peruvianum from the far-northern part of its geographic range can

be hybridized with S. chilense, whereas populations in regional sympatry appear to

be genetically isolated (Rick and Lamm, 1955; Rick, 1979). Therefore, it is of great

interest to elucidate the details of the speciation process in the two closely related

wild tomatoes and the divergence patterns of these morphologically distinct species

using a population genetic approach.
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Figure 3: Natural habitats of S. peruvianum. Both habitats are at similar elevations of ≈ 2,100

meters, however, plenty of plants were found in the Canta habitat, whereas only few plants along

the road in the Nazca habitat (at the time of collection, May 2004).

Figure 4: Natural habitats of S. chilense. Both habitats are arid deserts; the Quicacha habitat is

at an elevation of ≈ 1,800 meters (some S. peruvianum plants co-occur in sympatry). The Tacna

collection site is at an elevation of ≈ 1,260 meters.
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Neutral theory and neutrality tests

In the late 1960s, Motoo Kimura first proposed the neutral theory of molecu-

lar evolution. This neutral theory contends that most evolutionary change at the

molecular level is driven by genetic drift rather than natural selection. Since then,

testing the neutral hypothesis has been one of the main objectives of molecular pop-

ulation genetics. The neutral theory has been used as a null model against which

specific occurrences of selection may be detected. For Single Nucleotide Polymor-

phism (SNP) data, one of the most popular tests is Tajima’s D statistic (Tajima,

1989). The D statistic is based on the fact that under the standard neutral model,

estimates of Watterson’s θw (based on the number of segregating sites) and of the av-

erage pairwise number of nucleotide differences (π) are identical. This test measures

the skew in the frequency spectrum; a negative D value indicates an excess of rare

polymorphisms and a positive D suggests an excess of intermediate frequency poly-

morphisms. There are several similar approaches based on slightly different statistics,

e.g. Fu and Li’s D test (1993) and Fay and Wu’s H test (2000). An alternative test

based on the joint analysis of interspecific divergence and intraspecific polymorphism

is the Hudson-Kreitman-Aguadé test (Hudson et al., 1987). This HKA test assesses

whether levels of within- and between-population DNA variation are positively corre-

lated, as predicted by the neutral mutation hypothesis.

Plant molecular population genetics approaches

Population geneticists spend most of their time focusing on two aspects: describ-

ing the nature of genetic variation of populations (i.e. patterns and magnitudes of

polymorphisms as well as their frequency distribution in populations), and exploring

the evolutionary forces acting on populations. Generally, patterns of genetic diversity

within and among populations are influenced both by evolutionary processes that af-

fect the entire genome, such as demographic history and population structure, and

by processes that act at individual genes such as natural selection. A multilocus ap-

proach is a powerful way to disentangle the effects of different evolutionary forces on

DNA variation. This approach has been used for several well-studied plant species,

e.g. species of Arabidopsis (Wright et al., 2003; Ramos-Onsins et al., 2004; Schmid

et al., 2005; Nordborg et al., 2005), and maize (Tenaillon et al., 2004; Wright et al.,

2005).



General Introduction 10

The era of empirical molecular population genetics in plants, based on sequence

data, began less than 20 years ago. Since the first publication of sequence diversity

in plants (Shattuck-Eidens et al., 1990), many additional comprehensive studies of

plant nucleotide diversity have been published e.g. (Gaut and Clegg, 1993; Miyashita

et al., 1996; Purugganan and Suddith, 1998; Savolainen et al., 2000; Tiffin and Gaut,

2001; Olsen and Purugganan, 2002; Morrell et al., 2003; Wright et al., 2005; Liu and

Burke, 2006). Most of these plant population genetics studies have been focused on

detecting the signature of positive selection and/or examining demographic history.

However, demographic processes have been poorly addressed in plant studies, in part

because an assessment of demography requires large multilocus data sets (Wright and

Gaut, 2005).

Moreover, very few empirical plant population genetics studies have analyzed

and compared sequence diversity among local populations, as most plant studies

are based on ‘species-wide’ samples that use single individuals from many locations

(Wright and Gaut, 2005). It is important to study the magnitude and consequences

of population structure, as well as to include explicit sampling of local populations.

There are two main reasons for this, (i) ‘real’ population sampling will provide in-

sights into demographic factors, which will facilitate understanding of the evolution-

ary process as well as the design of association studies, (ii) sampling of local popula-

tions may provide additional insights into the nature and strength of selection. For

example in chapter one, analyzing a few genuine population samples enabled us to

discover and interpret the clinal pattern of variability at locus CT208 as signatures

of an ongoing selective sweep in S. chilense. Sampling only a single population or,

alternatively, single individuals from many locations across the species range, might

have entirely missed this signature.

Population structure

Populations of organisms are often substructured. Therefore, the issue of popu-

lation structure have recieved much attention in population genetics studies. In the

presence of population structure, several factors including levels of gene flow among

populations and the number of demes are expected to contribute to levels of nucleotide

diversity within and among populations, and consequently influence species-wide lev-

els of variation (Whitlock and Barton, 1997; Wakeley and Aliacar, 2001; Laporte and

Charlesworth, 2002). There is considerable evidence that population structure shapes
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patterns of genetic variation in many plant species, e.g. in A. thaliana (Sharbel et al.,

2000; Schmid et al., 2006), A. lyrata (Wright et al., 2003; Clauss and Mitchell-Olds,

2006), Populus tremula (Ingvarsson, 2005), and Silene tatarica (Tero et al., 2003).

Fst is an estimate of population differentiation measuring the differentiation of

subpopulations relative to the total population. Fst can be used as a statistic to

summarized patterns of differentation between populations. In chapter one, we show

that both insect-pollinated wild tomatoes exhibit moderate levels of Fst estimates,

which are broadly comparable to the estimates in outcrossing plant species (based on

both allozyme and nucleotide data). The estimates of Fst in both studied taxa may

seem surprisingly low in view of the high fragmentation of local populations. It is

likely that patterns of population differentiation in our samples reflect the presence

of soil seed banks, and historical association mediated by climatic cycles.

Linkage Disequilibrium (LD)

LD is the nonrandom association of alleles/SNPs at different loci. The terms

linkage and LD are often confused. Linkage refers to the correlated inheritance of

loci through the physical connection on a chromosome, whereas LD refers to the cor-

relation between polymorphisms (e.g. SNPs) that is caused mainly by the history

of mutation and recombination. While there are a variety of statistics to measure

LD, the two most common LD statistics are r2 and D
′
. Both methods reflect dif-

ferent aspects of LD and perform differently under various conditions. Generally, r2

summarizes both recombinational and mutational history, whereas D
′
measures only

recombinational history (reviewed by Flint-Garcia et al., 2003). Two methods are

widely used to visualize the extent of LD between polymorphic sites; the first is a

scatter plot of r2 values versus physical distance, which is effective for visualizing the

rate at which LD declines (as used in chapter one). Alternatively, LD matrices are

used to visualize the linear arrangement of LD between polymorphic sites.

LD plays an important role in association analysis, which recently emerged as

a powerful method to identify Quantitative Trait Loci (QTL) in plants. Therefore, a

detailed understanding of the extent and patterns of LD within a given target species

will facilitate the choice of appropriate methodology for association mapping. In

chapter one, we show that LD decays rapidly in both wild tomato species, reflecting

high rates of recombination as well as high effective population sizes. Moreover, the

fast decay of LD looks very promising for association mapping of functional variation
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in wild tomatoes.

Speciation

Speciation is the evolutionary process by which new biological species arise. One

of many ways to ‘classify’ modes of speciation is based on the extent to which pop-

ulations are geographically isolated from one another. Four types of this speciation

are; allopatric (due to geographic isolation), peripatric (due to mostly geographic iso-

lation), parapatric (due to little geographic isolation), and sympatric speciation (due

to non-geographic isolation) (Mayr, 1942; Ridley, 2003). In chapter two, we have

assessed the speciation history in wild tomatoes, in particular testing the following

methods.

Isolation speciation model

Wakeley and Hey (1997) provide a simple model of allopatric speciation which

makes use of the genealogical information contained in sequence data. The model

assumes that an ancestral population splits into two descendent species at some

point in the past, and that there was no gene flow between the diverging species

(Figure 5). This model assumes that effective population size is constant within

species, but can change at the time of isolation. The input data are the counts of

four mutually exclusive types of polymorphisms (Figure 6). We need sequence data

from several independent loci in order to reduce genealogical correlations among sites.

The parameter estimates should yield information about demographic and temporal

aspects of speciation event in the tomato genus.

LD test of historical gene flow

Machado et al. (2002) introduced a test of gene flow based on patterns of LD

among specific types of segregating sites, i.e. using a subset of total intragenic LD

(Figure 7; see chapter two for details). The LD test of historical gene flow (gene flow

that occurred after initial species divergence) among the diverging species may allow

us to contrast pairs of populations where both are from outside the other species’

range (allopatric comparison), and pairs of populations from regions of sympatry

(see Städler et al., 2005). If historical gene flow in fact characterized the divergence

between S. chilense and S. peruvianum, we would expect to see more evidence of it

(based on the LD test statistic) in sympatric than in allopatric comparisons, unless
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Figure 5: The isolation model of al-

lopatric speciation assumes that an an-

cestral population splits into two de-

scendent species at some point in the

past, and that there was no gene flow

between the diverging species. The

model yields estimates of the four para-

meters θA, θ1, θ2 and τ , where θA, θ1,

θ2 denote the population mutation pa-

rameters of the ancestral species and

two extant species, respectively. The

time since the species split is τ which

is equal to 2ut, where u denotes the

mutation rate and t is the number of

generations since speciation (Wakeley

and Hey, 1997).

high within-species gene flow has homogenized haplotypes (and thus patterns of LD

among SNPs) in both species after their genetic differentiation. Evidence of historical

gene flow would imply that the speciation history of wild tomatoes did not proceed

in a strictly allopatric fashion, and natural selection would have to be invoked as

one of the forces underlying historical species divergence. In addition, the earlier

study of Städler et al. (2005) based on single populations found limited evidence for

historical introgression from S. chilense into S. peruvianum. In the present study,

we therefore predict that using more samples per species will yield more power for

testing of historical gene flow.
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Figure 6: Hypothetical gene genealogies with examples of four specific classes of segregating sites.

The upper left diagram presents shared polymorphic site; upper right, fixed difference between the

species; lower left, exclusive polymorphism in species 1; and lower right, exclusive polymorphism in

species 2. The red dots indicate mutation events.

Scope of the thesis

In chapter one, a multilocus approach was used to examine the patterns and

magnitudes of population structure, demography and natural selection in two closely

related wild tomato species, using sequence data for eight unlinked nuclear loci from

populations across much of the species’ range. We address the following basic ques-

tions:

1) What are the levels and patterns of nucleotide diversity in wild tomatoes?

2) Is there any evidence for positive selection in the studied species?

3) What are the characteristic levels of population structure in wild tomatoes?

4) How fast is the decline of LD with physical distance in these wild tomatoes?

In comparison to the previous studies in wild tomatoes (Baudry et al., 2001;

Städler et al., 2005; Roselius et al., 2005), which were based on only single popula-

tions per species, this study allows for more generality by adding three additional

populations, broadly covering most of the species’ range. Our assessment of pop-

ulation structure allowed us to understand several patterns of variability in wild
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Figure 7: Rationale of the LD test

of historical gene flow (Machado et al.,

2002). Each letter represents a SNP

(Capital letters represent the ances-

tral state, and small letters the de-

rived state). Each population expe-

riences mutation and recombination

events so that multiple haplotypes are

generated in each population. Assum-

ing there is gene flow between the di-

verging species, LD among pairs of

shared polymorphisms in the recipient

species should be positive (e.g. C-D

and/or c-d should be overrepresented),

and LD among pairs of sites where one

member is a shared and the other an

exclusive polymorphism should be neg-

ative (e.g. A-d and/or B-c should be

overrepresented).

tomatoes. One of our most interesting findings is that Tajima’s D statistic is higher

in the samples of the individual populations than in the pooled sample, where the

pooled samples show a significant excess of low-frequency polymorphisms. We argue

that this may also be a consequence of ancestral population structure (see Discussion).

We thus propose here that population structure is one of the most important evolu-

tionary forces to shape patterns of nucleotide diversity in both species. Moreover,

the rapid decline of LD with physical distance seems promising for future association

studies with the purpose of mapping functional variation in wild tomatoes.

In chapter two, we investigate speciation processes in the two closely related

wild tomato species, applying the analytical framework of divergence population ge-

netics. More specifically, we test the suitability of the isolation speciation model

(divergence without gene flow) for the S. peruvianum – S. chilense divergence, using

multilocus sequence data from seven ‘neutral’ nuclear loci. We also test for historical

gene flow by analyzing patterns of intragenic LD, and compare between sympatric

and allopatric population pairs. In this study, we cannot reject the isolation model

based on overall goodness-of-fit criteria, however, patterns of LD are indicative of

historical gene flow between S. peruvianum and S. chilense.
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List of Abbreviations

bp Base pair

DFL Fu and Li’s D test

Dss LD among pairs of shared polymorphisms

Dsx LD among pairs of sites where one member is a shared

and the other an exclusive polymorphism

DT Tajima’s D test

Fs Fu’s F test

H Fay and Wu’s H test

kb Kilobases

LD Linkage disequilibrium

n Number of sample sizes

Ne Effective population size

r Physical recombination rate

r2 Correlation coefficient for a pair of biallelic sites

SNPs Single nucleotide polymorphisms

S Number of segregating sites

Sf Number of fixed differences

Ss Number of shared polymorphisms

Sx1 Number of exclusive polymorphisms in species 1

Sx2 Number of exclusive polymorphisms in species 2

WH Wakeley and Hey Isolation model

µ Mutation rate

θ Nucleotide diversity based on number of segregating sites

π Nucleotide diversity based on the average pairwise

differences between sequences

ρ Population recombination rate (Hudson, 2001)

γ Population recombination rate (Hey, 1997)
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Chapter 1
Using multilocus data to assess population

structure, natural selection and linkage

disequilibrium in wild tomatoes

1 Introduction

Understanding the evolutionary forces that shape patterns of nucleotide diver-

sity within and among populations and recently diverged species is an important aim

of population genetics. Generally, patterns of genetic diversity within and among pop-

ulations are influenced both by evolutionary processes that affect the entire genome,

such as demographic history and population structure, and by processes that act at

individual genes such as natural selection. A multilocus approach is a powerful way

to disentangle the effects of different evolutionary forces on DNA variation. This

approach has been used for several well-studied species of Drosophila, e.g. (Glinka

et al., 2003; Das et al., 2004; Ometto et al., 2005), Arabidopsis (Wright et al., 2003;

Ramos-Onsins et al., 2004; Schmid et al., 2005; Nordborg et al., 2005), and maize

(Tenaillon et al., 2004; Wright et al., 2005).

In the presence of population structure, several factors including levels of gene

flow among populations and the number of demes are expected to contribute to lev-

els of nucleotide diversity within and among populations, and consequently influence

species-wide levels of variation (Whitlock and Barton, 1997; Wakeley and Aliacar,

2001; Laporte and Charlesworth, 2002). There is considerable evidence that popula-

tion structure shapes patterns of genetic variation in many plant species, e.g. in A.

thaliana (Sharbel et al., 2000; Schmid et al., 2006), A. lyrata (Wright et al., 2003;

19
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Clauss and Mitchell-Olds, 2006), Populus tremula (Ingvarsson, 2005), Silene tatarica

(Tero et al., 2003), and Pinus densata (Ma et al., 2006). The effects of population

structure might also influence the magnitude and pattern of linkage disequilibrium

(LD) (e.g. Ostrowski et al. (2006)), and the presence of population structure can also

lead to the detection of spurious associations in association studies (e.g. Helgason

et al. (2005)).

In principle, several factors can lead to an increase in LD, for instance population

structure, low recombination rate, natural and artificial selection, inbreeding and

small effective population size. However, other factors such as outcrossing, high

recombination rate and large effective population size may propel a decay of LD

(reviewed by Gupta et al. (2005)). Since the availability of genome-wide sequences

and/or single nucleotide polymorphism (SNP) maps, LD mapping has been used

extensively in animal and plant systems, as well as to dissect the molecular bases of

human diseases (Flint-Garcia et al., 2003; Rafalski and Morgante, 2004). Therefore, a

detailed understanding of the extent and patterns of LD within a given target species

will facilitate the choice of appropriate methodology for association mapping.

Even though LD has received much attention recently, more studies are needed

to investigate patterns of LD as well as factors that influence LD. In plant genomics

only a few well-studied species such as A. thaliana, P. tremula, rice, maize, barley

and sunflower have been characterized for the extent and decay of LD with physical

distance (Lin et al., 2001; Remington et al., 2001; Tenaillon et al., 2001; Nordborg

et al., 2002; Garris et al., 2003; Kraakman et al., 2004; Ingvarsson, 2005; Liu and

Burke, 2006).

Wild tomatoes (Solanum section Lycopersicon) have become a suitable plant

model system for evolutionary analyses because of their recent divergence, the clear

phenotypic distinction and the great diversity of mating systems. Wild tomatoes

are native to western South America, with two endemic species in the Galapagos

Islands (Rick, 1986; Taylor, 1986; Spooner et al., 2005; Peralta et al., 2005). Our

earlier studies, based on single populations in five species, suggested that nucleotide

diversity in wild tomatoes is influenced by mating system, among-locus variation

in neutral mutation rate and/or selective constraints among loci, while evidence for

positive selection was scarce (Städler et al., 2005; Roselius et al., 2005). In other

words, if positive directional selection does not have a large effect in the tomato clade

then the analyses of demographic processes and population structure become more
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significant for understanding patterns of genetic diversity and historical events in wild

tomatoes.

In this study, we adopt a multilocus approach to examine the effects of popu-

lation structure and demographic history on nucleotide variability in wild tomatoes.

We also characterize the (intragenic) decay of LD using multiple natural populations

across much of the species range of the self-incompatible, closely related species (S.

peruvianum and S. chilense). We ask specifically:

1) What are the patterns of nucleotide diversity in wild tomatoes?

2) Do wild tomato populations show genetic differentiation?

3) How fast is the decline of LD with physical distance in these two closely related

wild tomato species?

Using polymorphism data for eight unlinked nuclear loci from four natural pop-

ulations per species, we found substantial levels of nucleotide polymorphism and

modest levels of population differentiation in both species. More interestingly, the

presence of population structure (as well as sampling design) may have facilitated

the ability to discover a clinal pattern of nucleotide variation at CT208, a probable

signature of an ongoing selective sweep in S. chilense. Furthermore, LD decays very

rapidly, reflecting fairly high rates of recombination at all loci as well as high effective

population size.
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2 Materials and Methods

2.1 Population sampling

Wild tomatoes have been taxonomically reassigned to the genus Solanum section

Lycopersicon (Spooner et al., 1993; Olmstead et al., 1999; Spooner et al., 2005).

For this study, we adopted the new nomenclature and chose two self-incompatible

tomato species. S. peruvianum is distributed along the western side of the Andes

from north-central Peru to northern Chile, and S. chilense from southern Peru to

northern Chile (cf. Fig. 1, Städler et al. (2005)). Both studied wild tomatoes are

patchily distributed species, and grow in a wide diversity of habitats from sea level to

the highland up to 3,300 meters (Rick, 1986; Taylor, 1986). In their native habitats,

it appears that S. peruvianum is the most widespread and highly subdivided species

(Rick, 1986). Moreover, it shows the greatest level of nucleotide polymorphism, even

on a local population scale (Baudry et al., 2001; Städler et al., 2005; Roselius et al.,

2005). In order to adequately sample the geographic ranges of the species, three new

populations of each species were collected in Peru by T. Städler and T. Marczewski

(May, 2004). Voucher specimens have been deposited at USM (Lima, Peru) and

MSB (Munich, Germany). In addition, we included one population of each species

(Tarapaca for S. peruvianum and Antofagasta for S. chilense) from an earlier analysis

(Städler et al., 2005). The population samples and geographic locations are given in

Table 1.1.

Table 1.1: Geographical location of the populations analyzed

Species Population Location Coordinates Abbreviated

(latitude, longitude) population

S. peruvianum Tarapaca Northern Chile 18◦33’S, 70◦09’W TAR

Arequipa Southern Peru 16◦27’S, 71◦42’W ARE

Nazca Southern Peru 14◦51’S, 74◦44’W NAZ

Canta Central Peru 11◦32’S, 76◦42’W CAN

S. chilense Antofagasta Northern Chile 22◦14’S, 68◦23’W ANT

Tacna Southern Peru 17◦53’S, 70◦08’W TAC

Moquegua Southern Peru 17◦04’S, 70◦52’W MOQ

Quicacha Southern Peru 15◦38’S, 73◦48’W QUI
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2.2 Loci studied

For each population, we analyzed at least five individuals (10 alleles) of eight

unlinked nuclear loci (CT093, CT208, CT251, CT066, CT166, CT179, CT198 and

CT268) that represent a subset of those studied earlier (Baudry et al., 2001; Städler

et al., 2005; Roselius et al., 2005). The loci encompass regions of low to high recom-

bination as estimated by Stephan and Langley (1998). The characterization of our

loci are showned in Table 1.2.

Table 1.2: Characterization of eight unlinked analyzed loci

Locus Chromosome Putative encoded protein RN
a

CT093 V S-adenosylmethionine decarboxylase proenzyme 0

CT208 IX Alcohol dehydrogenase class III 0

CT251 II At5g37260gene 0.46

CT066 X Arginine decarboxylase 0.93

CT166 II Ferredoxin-NADP reductase 1.61

CT179 III Tonoplast instrinsic protein 1.97

CT198 IX Submergence induced protein 2-like (SIP) 2.10

CT268 I Receptor-like protein kinase 2.33

aRecombination rate x 10−8 ,Stephan and Langley (1998)

2.3 DNA amplification and sequencing

We isolated genomic DNA from dried leaves of mature plants using the DNeasy

Plant Mini Kit (Qiagen GmbH, Hilden, Germany). Polymerase Chain Reaction

(PCR) primers were designed based on the published cDNA or genomic DNA se-

quences from S. lycopersicum, which are available from the Tomato Gene Index at The

Institute for Genomic Research (TIGR; http://www.tigr.org/tdb/lgi/). PCR primers

and conditions are deposited at http://www.zi.biologie.uni-muenchen.de/evol/. PCR

products were sequenced directly from both strands on an ABI3730 DNA analyzer

(Applied Biosystems, Foster city, CA). Direct sequencing was also used to confirm

polymorphic sites in heterozygotes. Since it is essential to resolve haplotypes, we

designed haplotype-specific sequencing primers based on heterozygous nucleotides or

indels as previously described (Städler et al., 2005). Briefly, we exploited putative
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or confirmed SNPs to anchor the 3
′
-end of sequencing primers that were intended to

resolve the heterogeneous PCR products. This approach enabled us to verify SNPs

(and indel variation) and establish haplotype phase based on overlapping informa-

tion supported by multiple primer pairs. In this study, haplotype phase was thus

completely resolved for all new sequences. Sequences were edited and aligned using

the Sequencher program (Gene Codes, Ann Arbor, MI) and adjusted manually after-

wards. Locus CT208 was resequenced in the TAR population, revealing eight alleles

(instead of 10 as in a previous study; Baudry et al. (2001)). Moreover, we designed

new primers for CT166 and CT208, for which shorter PCR products were sequenced

than previously (Baudry et al., 2001; Roselius et al., 2005).

2.4 Estimation of nucleotide diversity and neutrality tests

We estimated levels of nucleotide diversity for all sites and silent sites (using

non-coding and synonymous sites), calculating Watterson’s estimator (Watterson,

1975)(θw = 4Neµ where Ne denotes the effective population size and µ the mutation

rate per site and generation) and π the average number of pairwise differences be-

tween sequences in a population (Nei, 1987). We tested the deviation from neutrality

by using Tajima’s D statistic (Tajima, 1989). This test is based on the fact that un-

der the standard neutral model, estimates of θw (based on the number of segregating

sites) and of the average number of nucleotide differences (π) are identical. The test

measures the skew in the frequency spectrum; a negative D value indicates an excess

of rare polymorphisms and a positive D suggests an excess of intermediate frequency

polymorphisms. Tajima’s test is conservative for testing departures from neutral equi-

librium conditions, in particular under the assumption of no recombination. We also

employed Fu and Li’s D (Fu and Li, 1993) and Fay and Wu’s H (Fay and Wu, 2000)

statistics. The H statistic measures the differences between the average number of

nucleotide differences and the estimator θH , which is based on the frequency of de-

rived variants. A significantly negative H value indicates an excess of high-frequency

derived variants, which may be indicative of positive selection. The significance of H

was evaluated by 10,000 coalescent simulations, using the observed number of segre-

gating sites and no recombination. All standard analyses were performed in DnaSP

version 4.0 (Rozas et al., 2003).
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In addition, we used the multilocus HKA statistics (Hudson et al., 1987) to

assess the ratio of polymorphism within species to the divergence between species, as

implemented in the program HKA (http://lifesci.rutgers.edu/ heylab/). Significance

of Tajima’s D and Fu and Li’s D statistics were also assessed using 10,000 coalescent

simulations in HKA program. In the tests mentioned above, we used sequences from

S. ochranthum or S. lycopersicoides from Roselius et al. (2005) as outgroup species,

except for CT208 for which we obtained a new sequence from S. ochranthum.

2.5 Tests of population differentiation

We calculated the Fst statistics using the Analysis of Molecular Variance ap-

proach (AMOVA), as implemented in Arlequin 3.1 (Excoffier et al., 2005), to quantify

population differentiation between all pairwise comparisons within species. Fst is an

estimate of population differentiation measuring the differentiation of subpopulations

relative to the total population. Its significance was assessed using permutation tests

(10,000 permutations). We also estimated Fst values based on the method of Hudson

et al. (1992) using DnaSP program. Both methods yielded comparable results (data

not shown).

2.6 Analyses of recombination and intragenic LD

We estimated the minimum number of recombination events (Rm) using the

four-gamete test of Hudson and Kaplan (1985) and the population recombination

parameter (ρ), where ρ = 4Nec and c the recombination fraction between sites, using

Hudson’s composite likelihood method (Hudson, 2001). This method is based on

pairwise LD between sites, as implemented in the LDhat 2.0 package (McVean et al.,

2002). Moreover, we calculated the degree of LD in terms of the Zns statistic (Kelly,

1997), which is the average of squared allele-frequency correlations (r2) (Hill and

Robertson, 1968) over all pairwise comparisons.

We investigated the decay of LD over physical pairwise distance following the

methods of Remington et al. (2001). The estimates of LD were calculated by using

(r2) between pairs of polymorphic sites. The expected decay of LD was modeled as:

E(r2) =

[
10 + ρ

(2 + ρ)(11 + ρ)

] [
1 +

(3 + ρ)(12 + 12ρ + ρ2)

n(2 + ρ)(11 + ρ)

]
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where n denotes the number of sequences (Hill and Weir, 1988). We fitted this

equation to the data using the R statistical package (http://www.r-project.org/). The

nonlinear regression yields a least-squares estimate of ρ per base pair; this estimate

may not be precise and unrealistic due to several factors, e.g. the nonindependence

between linked sites and nonequilibrium populations. Nonetheless, this model is still

useful to characterize the rate of decay of LD, e.g. (Remington et al., 2001; Brown

et al., 2004; Ingvarsson, 2005; Liu and Burke, 2006). These analyses were done for

each locus separately, both within populations and for the combined data set, and

for all eight loci together. Observed sites with multiple hits were excluded in the

recombination and LD analyses, and all singletons were removed in the LD analyses.
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3 Results

3.1 Patterns of nucleotide diversity and tests of neutrality

We sequenced eight unlinked nuclear loci in three populations of each species,

with a total concatenated length of > 10 kb per ‘allele’. We also added one population

of each species from an earlier study (Städler et al., 2005). Therefore, in this study we

evaluated in total four populations and about 40-46 alleles per locus per species. The

total length (including indels) of the individual loci ranges from 778 bp to 1887 bp.

Most of the loci contained both coding and noncoding sites (introns and/or flanking

regions), except for CT066 and CT268 which contribute only coding sites (Table 1.3).

Table 1.3: Length of eight loci analyzed

Coding

Locus Chromosome Totala Noncoding Synonymous Nonsynonymous

CT093 V 1389 359 248.3 780.7

CT208 IX 1069 621 107.8 339.2

CT251 II 1672 348 318.0 1005.0

CT066 X 1346 0 331.8 1012.2

CT166 II 1265 823 91.1 349.9

CT179 III 899 318 153.1 425.9

CT198 IX 693 359 76.2 256.8

CT268 I 1881 0 435.1 1445.9

aexcluding sites with gaps from the total alignment, based on S. peruvianum (n = 40-44

alleles)

We quantified polymorphism by using Watterson’s θw and π for all sites (θall,

πall) and for silent sites (θsil, πsil). For each locus and each population, the estimates

of nucleotide diversity are given in Table 1.4. Across individual loci, the levels of

variation (θall) varies from 0.15 - 2.92% in S. peruvianum and 0.04 -1.86% within S.

chilense. CT198 appears to be the most polymorphic locus, whereas CT093 shows

the least polymorphism in both species.
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We also examined the weighted average levels of nucleotide diversity across all

eight loci for each population, as presented in Table 1.4. Most of the loci and pop-

ulations generally exhibit substantial levels of polymorphism. In S. peruvianum, we

found that the northernmost population (CAN) shows the highest level of variabil-

ity which is a bit higher than that of the southernmost population (TAR), whereas

the ARE population exhibits the lowest level of polymorphism. In S. chilense, the

three new populations (TAC, MOQ and QUI) display comparable levels of sequence

diversity, which is twice as higher as in the ANT population.

We used Tajima’s D and Fu and Li’s D statistics to test for deviations from

neutrality. Based on these statistics, most of our populations do not show significant

departures from neutral expectations. The only two exceptions are the ARE and

ANT populations. The ARE population shows significant deviations from the neutral

model at four loci, where three loci (CT093, CT179 and CT268) exhibit positive

Tajima’s D values, while only CT066 exhibits a significantly negative value (Table

1.5 and 1.6). The ANT population also shows significantly positive Tajima’s D values

at several loci as reported in our previous study (Roselius et al., 2005). The multilocus

neutrality tests, based on all sites, are reported in Table 1.4. Multilocus Tajima’s D

values are slightly and consistently negative in S. peruvianum (except for the ARE

population), whereas in S. chilense the Tajima’s D values are close to zero (except

for the ANT population which shows a very significantly positive value). Moreover,

we found that the Fu and Li’s D statistic exhibits similar patterns as Tajima’s D.

However, the estimates of Fu and Li’s D indicate a departure from neutrality for the

CAN population (DFL = -0.91, P = 0.02), as well as for the ANT population in S.

chilense (DFL = 1.25, P < 0.001). This negative DFL value suggests an excess of

polymorphisms on external branches of the genealogy (i.e., singletons) of the CAN

sample, whereas the positive value for the ANT population indicates an excess of

polymorphisms on internal branches (i.e., intermediate-frequency variants).

In addition, we averaged the levels of silent polymorphism across all populations

in S. peruvianum(θsil = 2.18% , πsil = 2.04% ), which is about 1.3- to 1.5-fold higher

than in S. chilense ( θsil = 1.50% , πsil = 1.59% ). Concordant patterns are found for

the estimates using all sites. We also calculated levels of nucleotide variation using

the combined sample (treated as a single population) in both species (Table 1.4). We

found an interesting pattern, in that the θ estimates are consistently higher than

the mean θ’s for individual populations, whereas the π estimates are less affected by
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Table 1.4: Summary of nucleotide polymorphism and multilocus neutrality

tests

Population θsil
a πsil

a θall
a πall

a DT
b DFL

b HKAb

(P -valuves)

S. peruvianum

TAR 2.38 2.26 1.26 1.20 −0.22 −0.49 0.96

ARE 1.39 1.45 0.72 0.78 0.27 0.28 0.67

NAZ 2.17 2.04 1.17 1.13 −0.19 −0.40 0.87

CAN 2.79 2.39 1.44 1.28 −0.54 −0.91∗ 0.98

Allc 3.44 2.40 1.81 1.29 −1.06∗∗∗ −1.69∗∗∗ 0.96

S. chilense

ANT 0.83 1.06 0.43 0.55 1.44∗∗∗ 1.25∗∗∗ 0.02∗

TAC 1.64 1.63 0.93 0.92 −0.09 −0.05 0.99

MOQ 1.86 1.82 1.03 1.01 −0.28 0.04 0.97

QUI 1.66 1.81 0.92 1.01 0.27 0.43 0.98

Allc 2.25 2.01 1.27 1.10 −0.53 −1.11∗∗ 0.56
∗P<0.05, ∗∗P<0.01, ∗∗∗P<0.001

aweighted average across eight loci, presented in percentage per site
bTajima’s D(1989), Fu and Li’s D (1993) and HKA (1987)
canalyses of the combined sampled (treated as a single population)

pooling the samples. Hence, we obtained a highly significantly negative multilocus

Tajima’s D for the combined sample of S. peruvianum sequences (DT = -1.06, P <

0.001). In S. chilense, however, this effect is less pronounced. Using the combined

sample, Tajima’s D is negative but only marginally significant (DT = -0.55, P =

0.07). Similarly, for Fu and Li’s D statistic, both species exhibit significantly negative

values when calculated using the combined sample, suggesting an excess of singletons

in the samples. We will discuss this result below. It appears to be a consequence

of the underlying population structure of the two tomato species S. peruvianum and

chilense, but is difficult to explain by the standard models of population subdivision

(such as the island model).

Furthermore, we applied Fay and Wu’s H test using S. ochranthum or S. lycop-

ersicoides as outgroups (based upon availability; Roselius et al. (2005)). At locus

CT208, two S. chilense populations (TAC and MOQ) show significantly negative H
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values (H = -15.12, P = 0.02 for TAC, and H = -21.33, P < 0.001 for MOQ) that

indicate an excess of high-frequency derived variants (Fay and Wu, 2000). Figure 1.1

summarizes patterns of nucleotide variation at locus CT208 across the S. chilense

populations. The northernmost QUI population exhibits more SNPs that belong to

the ancestral varaint group than SNPs of the MOQ and TAC populations. We iden-

tified the alleles which are similar to the outgroup as the ‘ancestral’ haplotype group

and the other alleles as the ‘derived’ haplotype group. We found that the MOQ

population shows a very high frequency of derived variants, in that only one allele

belongs to the ‘ancestral’ haplotype group. Likewise, for the TAC population only

two alleles are of the ‘ancestral’ group. In addition, the ‘derived’ group has fixed in

the southernmost ANT population, which is clearly indicative of a selective sweep.

Furthermore, in S. peruvianum a significantly negative H value was found at locus

CT066 for the ARE population (Table 1.5).

Additionally, the multilocus HKA test (Hudson et al., 1987) was used to assess

departures from the neutral model. We observed no evidence for any significant devi-

ations in S. peruvianum. In S. chilense, none of the new populations show significant

deviations from the neutral model, whereas the ‘old’ ANT population clearly departs

from the neutral model (P = 0.02), as shown in Table 1.4. A statistically significant

HKA test was also found in the previous study, which was based on 14 loci (Roselius

et al., 2005).

Due to the relatively few polymorphisms and/or haplotype structure for the

ARE population (S. peruvianum) at the majority of loci, and particularly for the

ANT population (S. chilense) (Roselius et al., 2005), these samples may therefore

be regarded as ‘outliers’. Because of those patterns in both populations (which do

not appear to be ‘typical’ species-wide patterns), we excluded both populations from

further analyses of population differentiation, recombination and intragenic linkage

disequilibrium. Note that if we exclude the ARE and ANT populations, we obtain

higher average levels of diversity in both species. Moreover, average Tajima’s D

values become more negative in S. peruvianum (-0.31) and are approximately zero in

S. chilense (-0.03).

3.2 Levels of population differentiation

Table 1.7 shows estimates of Fst and the permutation tests of population dif-

ferentiation across three populations for each species at eight loci, using an AMOVA
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Table 1.5: Summary of nucleotide polymorphism in S. peruvianum

Locus Population Lengtha Nb Sc θall
d πall

d Dall
e FW-H f

CT093 TAR 1390 10 23 0.59 0.57 -0.14 3.02
ARE 1393 10 9 0.23 0.32 1.68∗ -0.80
NAZ 1392 12 24 0.57 0.49 -0.60 -3.94
CAN 1393 12 31 0.74 0.57 -1.00 2.45
All 1389 44 61 1.01 0.53 −1.69∗ -1.40

CT208 TAR 1087 8 41 1.46 1.39 -0.23 3.86
ARE 1090 10 24 0.78 0.65 -0.77 3.56
NAZ 1087 12 47 1.43 1.26 -0.54 4.39
CAN 1085 12 43 1.31 1.17 -0.51 0.76
All 1069 42 89 1.94 1.32 -1.15 -7.72

CT251 TAR 1678 10 70 1.48 1.43 -0.14 3.56
ARE 1713 10 37 0.76 0.82 0.37 0.89
NAZ 1701 12 55 1.07 1.14 0.28 3.00
CAN 1702 10 70 1.45 1.35 -0.35 6.40
All 1672 42 132 1.84 1.37 -0.92 1.86

CT066 TAR 1346 10 40 1.05 0.98 -0.31 2.49
ARE 1346 10 10 0.26 0.15 −1.92∗∗ −7.11∗∗

NAZ 1346 12 25 0.62 0.71 0.28 -4.45
CAN 1346 12 43 1.06 0.84 -0.93 2.64
All 1346 44 66 1.13 0.95 -0.56 -1.88

CT166 TAR 1298 8 42 1.25 1.13 -0.51 5.07
ARE 1330 10 30 0.80 0.78 -0.11 2.93
NAZ 1299 12 45 1.15 0.88 -1.07 2.09
CAN 1316 12 75 1.89 1.58 -0.75 9.27
All 1265 42 121 2.22 1.20 −1.68∗ 6.41

CT179 TAR 958 10 29 1.07 1.07 0.00 -7.47
ARE 915 9 34 1.37 1.79 1.54∗ -5.97
NAZ 915 12 49 1.77 1.62 -0.37 -1.03
CAN 911 12 56 2.04 1.86 -0.40 0.70
All 1389 43 99 2.55 1.93 -0.88 -3.88

CT198 TAR 760 10 62 2.88 2.92 0.07 8.00
ARE 705 10 32 1.60 1.58 -0.08 -2.58
NAZ 770 10 50 2.29 2.27 -0.05 2.84
CAN 757 10 57 2.66 2.63 -0.05 8.44
All 693 40 97 3.29 2.57 -0.78 4.34

CT268 TAR 1884 10 56 1.05 0.94 -0.51 1.96
ARE 1884 10 34 0.64 0.82 1.41∗ -2.93
NAZ 1881 12 70 1.23 1.27 0.15 7.18
CAN 1884 12 68 1.19 1.10 -0.35 6.58
All 1881 44 132 1.61 1.26 -0.80 3.40

All = Analyses of combined sample (treated as a single population); ∗P<0.05, ∗∗P<0.01,
∗∗∗P<0.001; NA= Not Available

aexcluding indels
bNumber of alleles sequenced
cSegregating sites
din percentage per site
eTajima’s D(1989)
fFay & Wu’s H (2000), using S. ochranthum or S. lycopersicoides as an outgroup species
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Table 1.6: Summary of nucleotide polymorphism in S. chilense

Locus Population Lengtha Nb Sc θall
d πall

d Dall
e FW-H f

CT093 ANT 1393 10 8 0.20 0.27 1.38 -0.53
TAC 1393 12 18 0.43 0.49 0.61 -0.24
MOQ 1393 10 25 0.63 0.53 -0.79 2.13
QUI 1393 13 17 0.39 0.27 -1.38 -4.45
All 1393 45 45 0.74 0.51 -1.07 -0.19

CT208 ANT 1111 10 1 0.03 0.04 0.82 NA
TAC 1094 12 31 0.94 0.75 -0.92 −15.12∗

MOQ 1077 10 29 0.95 0.57 −1.93∗∗ −21.33∗∗∗

QUI 1078 14 35 1.02 1.31 1.22 5.54
All 824 46 45 1.24 1.04 -0.57 -5.06

CT251 ANT 1726 10 6 0.12 0.16 1.32 -1.07
TAC 1716 12 66 1.27 1.26 -0.02 -5.45
MOQ 1716 10 52 1.07 1.16 0.40 -4.53
QUI 1693 14 72 1.34 1.59 0.86 -8.09
All 1690 46 109 1.47 1.37 -0.25 -10.89

CT066 ANT 1346 10 18 0.47 0.74 2.66 0.00
TAC 1346 12 33 0.81 0.90 0.50 3.73
MOQ 1346 10 37 0.97 1.00 0.14 4.00
QUI 1346 12 33 0.81 0.89 0.46 2.82
All 1346 44 64 1.09 0.89 -0.66 4.25

CT166 ANT 1307 10 33 0.89 0.88 -0.08 -2.40
TAC 1323 12 44 1.10 1.09 -0.04 4.79
MOQ 1317 10 58 1.56 1.64 0.26 8.80
QUI 1314 12 28 0.70 0.71 0.03 -6.73
All 1279 44 79 1.42 1.38 -0.10 5.12

CT179 ANT 916 10 23 0.89 1.19 1.62∗ 0.27
TAC 919 10 31 1.19 1.30 0.43 -6.40
MOQ 919 10 38 1.46 1.51 0.17 -4.27
QUI 915 10 27 1.04 1.04 -0.01 2.49
All 907 40 75 2.05 1.56 -0.71 -6.35

CT198 ANT 772 10 8 0.37 0.56 2.23∗∗ 0.62
TAC 772 10 20 0.92 0.65 -1.36 -3.47
MOQ 772 10 20 0.92 0.83 -0.46 -2.67
QUI 772 10 37 1.69 1.83 0.48 3.64
All 772 40 54 1.64 1.15 -1.08 -3.41

CT268 ANT 1884 10 29 0.54 0.72 1.54∗ -8.80
TAC 1884 12 48 0.84 0.86 0.10 -2.42
MOQ 1884 10 46 0.86 0.85 -0.04 -9.07
QUI 1884 14 43 0.72 0.80 0.48 -0.04
All 1884 46 88 1.06 1.08 0.07 -0.86

All = Analyses of combined sample (treated as a single population); ∗P<0.05, ∗∗P<0.01,
∗∗∗P<0.001; NA= Not Available

aexcluding indels
bNumber of alleles sequenced
cSegregating sites
din percentage per site
eTajima’s D(1989)
fFay & Wu’s H (2000), using S. ochranthum or S. lycopersicoides as an outgroup species
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Figure 1.1: Clinal pattern of nucleotide variability (SNPs) at locus CT208 in S. chilense.

From up to bottom, samples are ordered from the south (ANT) to the north (QUI) of the

geographic range. Sample identifiers are given in the left column. The Polymorphic sites

shown here are distributed over the entire (sequenced) locus. Nucleotide positions at which

the outgroup (S. ochranthum) differs from all S. chilense sequences were eliminated for

visual clarity.
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approach (Excoffier et al., 1992). In S. peruvianum, we observed significant genetic

differentiation at all eight loci, with Fst ranging from 0.089 (CT166) to 0.234 (CT066).

The average Fst estimate is 0.145 for S. peruvianum, which is comparable to the value

for S. chilense (Fst = 0.147). Six loci show evidence of significant population differ-

entiation in S. chilense, whereas two loci (CT251 and CT066) are not significantly

differentiated. Notably, locus CT066 exhibits the highest level of population differen-

tiation in S. peruvianum but shows the lowest level of differentiation in S. chilense.

Table 1.7: Population differentiation at eight loci

S. peruvianum S. chilense

Locus Fst
a P -valueb Fst

a P -valueb

CT093 0.131 0.004∗∗ 0.225 0.003∗∗

CT208 0.176 <0.001∗∗∗ 0.208 0.017∗

CT251 0.124 <0.001∗∗ 0.087 0.087ns

CT066 0.234 <0.001∗∗∗ <0.001 0.399ns

CT166 0.089 0.009∗∗ 0.179 0.009∗∗

CT179 0.204 <0.001∗∗∗ 0.131 0.012∗

CT198 0.101 0.008∗∗ 0.210 0.002∗∗

CT268 0.128 <0.001∗∗∗ 0.204 <0.001∗∗∗

Average 0.145 <0.001∗∗∗ 0.147 <0.001∗∗∗

ns not significant, ∗P<0.05, ∗∗P<0.01, ∗∗∗P<0.001

aFst statistic based on AMOVA approach (Excoffier et al., 1992)
bevaluated by permutation tests

In addition, we calculated among-population pairwise estimates of Fst across

eight loci, as summarized in Table 1.8. Interestingly, despite the greatest geographic

distance between them, the northernmost S. peruvianum population (CAN) is less

differentiated from the southernmost population TAR (Fst = 0.089) than from the ge-

ographically intermediate NAZ population (Fst = 0.134). In S. chilense, the estimate

of population differentiation between TAC and MOQ is very low and not significant

(Fst = 0.008). In contrast, the other population pairs (TAC-QUI and MOQ-QUI)

show substantial levels of differentiation (Fst ≈ 0.21). Thus, unlike within S. peru-

vianum, there is at least a tendency that levels of population differentiation correlate

with geographic distance.
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A hierarchical AMOVA approach was used to additionally quantify differenti-

ation between the species. We observed 30.3% of the total variation among species

and only 10.1% among populations within species, while 59.6% of the total variation

was found within populations. Thus, the fixation index among species is 0.303, and

permutation tests are highly significant (P < 0.001), suggesting a considerable level

of differentiation between S. peruvianum and S. chilense, which clearly exceeds the

level of differentiation between subpopulations within species.

Table 1.8: Average pairwise estimates of Fst across eight loci

S. peruvianum S. chilense

Population TAR NAZ CAN Population TAC MOQ QUI

TAR - 0.197∗∗∗ 0.090∗∗∗ TAC - 0.008ns 0.218∗∗∗

NAZ - 0.134∗∗∗ MOQ - 0.209∗∗∗

CAN - QUI -
ns not significant, ∗∗∗P< 0.001 (evaluated by permutation tests)

3.3 Recombination and intragenic LD

Using the four-gamete test to infer the minimum number of recombination

events (Rm) in all three populations for each species, we found very diverse esti-

mates across loci, varying from 0 to 13 for individual populations (Table 1.9). These

Rm estimates are higher for the analyses of the combined samples in both species

(with n = 30-36 alleles per species). Overall, the estimated minimum number of

recombination events is largely consistent with the levels of physical recombination

rate for each locus, except for CT251; this locus exhibits high Rm estimates in both

species, in contrast to its low recombination rate estimated by Stephan and Langley

(1998).

We also estimated the population recombination parameter (ρ) at each locus

using the composite-likelihood approach of Hudson (2001). We found that ρ ranges

from 0 to 0.102 per site in S. peruvianum and from 0 to 0.053 in S. chilense (Table

1.9). We computed the species-wide weighted average of ρ in S. peruvianum across the

three populations (ρ ≈ 0.0389), which is about three-fold higher than in S. chilense (ρ

≈ 0.0123). In order to have more alleles and power for the analysis, we combined two

populations per species and treated them as a single sample. Because both the TAR-
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CAN (S. peruvianum) and TAC-MOQ (S. chilense) pairs show relatively low levels

of population differentiation, these were chosen for a combined analysis (Table 1.8).

For the estimates based on two relatively undifferentiated populations, the weighted

average ρ across the eight loci is ≈ 0.0348 in S. peruvianum, while it increases to ≈
0.0238 in S. chilense (data not shown). The ratio of these ρ estimates is about 1.5,

which is close to the ratio of the θ estimates between both species (see Table 1.4).

Furthermore, we estimated the degree of LD using the Zns statistic (Table 1.9).

Overall, the Zns values mirror the ρ estimates in that low recombination rates cor-

respond to high levels of LD. Figure 1.2 illustrates the decline of LD with physical

distance, using pooled data of all eight loci for the nonlinear regression model. The

expected value of (r2) decays to negligible levels (i.e., < 0.05) within < 150 base

pairs for the combined sample in S. peruvianum and within < 750 base pairs in S.

chilense, while LD extends about two to four times larger distances within individual

populations. It should be noted that the extended LD within individual populations

is possibly due to the smaller sample size and/or low polymorphism levels within pop-

ulations. Moreover, we present the decay of LD with physical distance for each locus

separately, as shown in Figures 1.3 and 1.4. In general, the decay of LD is relatively

fast at all loci in both species, whereas CT208 in S. chilense exhibits somewhat higher

levels of LD than the other loci. This is certainly caused by the unusual pattern of

SNP and haplotype structure at this locus (see Figure 1.1). Finally, it does not seem

that the decay of LD is much faster at loci with higher recombination rates.
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Table 1.9: Summary of recombination parameters and Zns

S. peruvianum S. chilense

Locus Population Hapa Rm
b ρc Zns

d Population Hapa Rm
b ρc Zns

d

CT093 TAR 0.80 3 0.0134 0.242 TAC 0.67 2 0.0021 0.373
NAZ 0.83 2 0.0042 0.371 MOQ 1.00 1 0.0049 0.353
CAN 1.00 3 0.0233 0.187 QUI 0.38 1 0.0014 0.653
All 0.88 6 0.0119 0.105 All 0.63 4 0.0053 0.173

CT208 TAR 0.75 2 0 0.745 TAC 0.58 0 0 0.913
NAZ 0.50 1 0 0.408 MOQ 0.70 0 0 NA
CAN 0.58 1 0 0.552 QUI 0.43 1 0 0.367
All 0.59 4 0.0017 0.161 All 0.53 2 0.0025 0.264

CT251 TAR 0.80 9 0.0051 0.383 TAC 1.00 9 0.0096 0.354
NAZ 0.83 5 0.0147 0.227 MOQ 0.90 6 0.0074 0.356
CAN 1.00 7 0.0431 0.197 QUI 0.50 4 0.0023 0.489
All 0.88 15 0.0305 0.092 All 0.78 14 0.0081 0.182

CT066 TAR 0.80 3 0.0104 0.281 TAC 0.67 3 0.0037 0.346
NAZ 0.58 0 0.0007 0.453 MOQ 0.90 0 0.0015 0.474
CAN 0.92 5 0.0431 0.145 QUI 0.83 2 0.0007 0.486
All 0.76 9 0.0240 0.091 All 0.76 4 0.0030 0.179

CT166 TAR 0.75 3 0.0015 0.475 TAC 0.75 6 0.0095 0.258
NAZ 0.83 5 0.0140 0.238 MOQ 0.80 3 0.0037 0.379
CAN 0.83 4 0.0051 0.264 QUI 0.58 1 0.0015 0.707
All 0.81 10 0.0126 0.097 All 0.71 8 0.0130 0.141

CT179 TAR 0.70 4 0.0112 0.284 TAC 1.00 5 0.0386 0.258
NAZ 1.00 10 0.1015 0.137 MOQ 0.80 6 0.0162 0.271
CAN 0.92 8 0.0548 0.156 QUI 0.50 1 0.0010 0.581
All 0.88 14 0.0965 0.057 All 0.77 12 0.0294 0.123

CT198 TAR 0.70 7 0.0103 0.342 TAC 0.70 1 0.0051 0.333
NAZ 0.90 5 0.0411 0.223 MOQ 0.70 1 0.0026 0.659
CAN 0.90 3 0.0154 0.294 QUI 0.60 5 0.0026 0.358
All 0.83 15 0.0602 0.088 All 0.63 9 0.0201 0.183

CT268 TAR 1.00 13 0.0307 0.246 TAC 0.83 13 0.0530 0.168
NAZ 1.00 10 0.0424 0.173 MOQ 0.80 8 0.0127 0.241
CAN 1.00 12 0.0771 0.119 QUI 0.57 4 0.0042 0.374
All 1.00 24 0.0795 0.054 All 0.72 17 0.0215 0.096

All = Analyses of combined sample, based on three populations (treated as a single population)
NA= Not Available

aHaplotype fraction
bminimum number of recombination events (Hudson and Kaplan 1985)
cpopulation recombination rate (Hudson 2001)
daverage of squared allele-frequency correlation (r2) over all pairwise comparisons (Kelly 1997)
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Figure 1.2: Plots of the square allele frequencies (r2) versus pairwise distance in base pairs

between polymorphic sites across eight loci in; S. peruvianum (2A), and S. chilense (2B).

The solid lines depict the expected decline in linkage disequilibrium for all combined samples,

and broken lines for individual populations. All lines are based on nonlinear regressions of

r2 against distance, using Equation of Hill and Weir (1988).
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Figure 1.3: Plots of the square allele frequencies (R2) versus pairwise distance in base pairs

between polymorphic sites in S. peruvianum. The black thick lines depict the expected

decline in linkage disequilibrium for all combined samples and broken lines for individual

populations; TAR (blue), NAZ (red), and CAN (green). All lines are based on nonlinear

regressions of r2 against distance, using Equation of Hill and Weir (1988). The loci are pre-

sented from low to high physical recombination rates (Stephan and Langley, 1998), ordering

from top to bottom and then left to right.
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Figure 1.4: Plots of the square allele frequencies (R2) versus pairwise distance in base pairs

between polymorphic sites in S. chilense. The black thick lines depict the expected decline in

linkage disequilibrium for all combined samples and broken lines for individual populations;

TAC (blue), MOQ (red), and QUI (green). All lines are based on nonlinear regressions of

r2 against distance, using Equation of Hill and Weir (1988). The loci are presented from

low to high physical recombination rates (Stephan and Langley, 1998), ordering from top

to bottom and then left to right.
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4 Discussion

4.1 Levels and patterns of nucleotide diversity

Both studied wild tomato species exhibit substantial levels of nucleotide vari-

ation. The level of silent polymorphism (πsil) across eight loci is 0.0204 in S. pe-

ruvianum and 0.0159 in S. chilense. This average value is somewhat higher in S.

peruvianum than the estimates in several other outcrossing angiosperms, whereas

the level of diversity in S. chilense is comparable to other outcrossing taxa, e.g. Ara-

bidopsis lyrata ( ≈ 0.0140; Wright et al. (2003)), A. halleri ( ≈ 0.0150; Ramos-Onsins

et al. (2004)), maize ( ≈ 0.0120; Tiffin and Gaut (2001)), and Populus tremula (≈
0.0160; Ingvarsson (2005)). However, the species-wide level of silent diversity in S.

peruvianum is slightly lower than that obtained for wild sunflower (≈ 0.0234; Liu and

Burke (2006)).

When there is population structure, the number of demes is an important

factor that might influence the species-wide level of variation (Whitlock and Bar-

ton, 1997; Pannell and Charlesworth, 1999; Wakeley and Aliacar, 2001; Laporte and

Charlesworth, 2002). Given that S. peruvianum appears to be more patchily distrib-

uted than S. chilense (Rick 1986; T.S., personal observation), it is not surprising to

find higher levels of nucleotide polymorphism in S. peruvianum than in S. chilense.

However, other factors might also contribute to this difference between both species,

such as demographic processes (e.g. population bottlenecks and expansion since

species divergence). Some populations (e.g. ARE and ANT) are probably not un-

der equilibrium conditions, a situation that might be mediated by local population

bottlenecks and/or extinction-recolonization processes.

In general, the level of variation in selfing populations should be lower than

in outcrossing taxa because the effective population size is expected to be halved

in completely selfing populations (Nordborg and Donnelly, 1997). Certainly, the

relevant estimates in outcrossing species are much higher than species-wide estimates

in inbreeding taxa such as A. thaliana (πsil ≈ 0.0083; Schmid et al. (2005)), wild

barley (πall ≈ 0.0075; Morrell et al. (2005)), as well as a local population estimate

for soybean (πsil ≈ 0.0015; Zhu et al. (2003)).
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4.2 Evidence of an ongoing selective sweep in S. chilense

Locus CT208 in S. chilense features an intriguing geographic pattern of nu-

cleotide diversity, in that levels of nucleotide variation gradually diminish from north

to south, with essentially no variation in the southernmost sample. Moreover, the

northernmost population exhibits many haplotypes distinguished by ancestral vari-

ation (SNPs), as inferred by outgroup comparison (S. ochranthum), whereas the

southernmost sample is fixed for a derived haplotype. In other words, the frequency

of derived variants increases from north to south, with significantly negative H values

for the MOQ and TAC populations, where the derived haplotype group has nearly

fixed (9:1 and 10:2 respectively, cf. Figure 1.1). This clinal pattern of nucleotide

variation is one of the first such instances in plants that we are aware of. One ex-

ample is the recent study of European Aspen that showed clinal variation of four

SNPs, suggestive of an adaptive response in phyB2 to local photoperiodic conditions

(Ingvarsson et al., 2006). However, the clinal pattern of variation seen in our study

appears to be different, in that many SNPs spread out over the entire locus CT208,

and mainly in noncoding regions. Additionally, the clinal pattern of nucleotide vari-

ation is quite different from a ‘classical’ expected pattern under a selective sweep,

where most of the neutral variation linked to the selected locus is lost. Generally, a

selective sweep scenario can be detected by a reduction in nucleotide diversity e.g.

(Maynard Smith and Haigh, 1974; Kim and Stephan, 2002; Beisswanger et al., 2006;

Kane and Rieseberg, 2007).

Two alternative possibilities to explain this geographic pattern of variation

among populations might be (i) a mutational origin of the derived haplotype and

its subsequent spread due to positive selection, and (ii) introgression of the selected

haplotype from an unidentified donor species (or very divergent population). The first

scenario seems unrealistic because divergence appears to be too high for the selected

haplotype group to have arisen by mutation within S. chilense. The second possibility

amounts to introgression of an adaptive haplotype and its subsequent spread. Morjan

and Rieseberg (2004) suggested that even very low migration rates might be sufficient

for the spread of advantageous alleles. One putative example of the introgression of

an adaptive haplotype is the recent study on the brain-size gene microcephalin in

humans (Evans et al., 2006). This study marshaled evidence for introgression of an

allele from an archaic Homo lineage into modern humans and its subsequent rise to

high frequency under positive selection. In our case, two potential sources of origin
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for the selected haplotype are the tomato relatives S. lycopersicoides and S. sitiens,

as both species occur within the geographic range of S. chilense. However, these two

species are characterized by very strong reproductive isolation from S. chilense (Rick,

1979). Clearly, it would be useful to obtain sequences from both species as outgroup

comparisons.

Santiago and Caballero (2005) showed that a selective sweep in a structured

population can lead to an increase in neutral variation in particular subpopulations.

After the selective sweep, variation at linked neutral sites is expected to be reduced

in the population where the new variant first appeared, as predicted by the classical

sweep scenario. However, the effect in the other populations, where the mutation is

introduced by gene flow, can be different depending on the level of genetic differen-

tiation among populations. The model of a selective sweep in two subpopulations

(Santiago and Caballero, 2005) can plausibly be used to explain the level and pattern

of nucleotide diversity at locus CT208, where levels of variation are different among

populations. The explanation for the geographic pattern seen in CT208 might be

the presence of a soil seed bank, which probably retards the loss of genetic diversity

within populations as well as differentiation among them. A seed bank is a likely

contributing factor prolonging the time needed for local adaptation and/or selective

sweeps (in addition to population subdivision per se).

4.3 Population structure and its consequences

We obtained levels of Fst estimates in both species that indicate moderate pop-

ulation structure. Levels of genetic differentiation in wild tomatoes, which are insect-

pollinated herbaceous perennials, are close to the mean level found in a metaanalysis

of other comparable outcrossing plant species, based on allozyme data (Hamrick and

Godt, 1996). Furthermore, based on nucleotide data, levels of Fst estimates in both

studied wild tomatoes are broadly comparable to the estimates in A. lyrata (Wright

et al., 2003), as well as in the wind-pollinated tree species Populus tremula (Ingvars-

son, 2005). Life-history traits such as the breeding system, life forms, geographic

ranges and seed dispersal mechanisms tend to be associated with different levels of

genetic diversity within and differentiation among populations (Gottlieb, 1977; Ham-

rick and Godt, 1989, 1996). Moreover, Hamrick and Godt (1996) reported that life

form and breeding system in particular had highly significant influences on genetic di-

versity and its distribution. More explicitly, outcrossing species have significantly less
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genetic diversity distributed among subpopulations, regardless of their other traits.

However, the genetic diversity maintained by a species is not only a function of its

life history traits but also heavily depends on the ecological and evolutionary his-

tory of the species (Hamrick and Godt, 1989, 1996), see above and companion study;

(Städler et al., MS).

Generally, the pollen and/or seed dispersal potential of plants should affect

their ability to maintain local genetic diversity. Hamrick and Godt (1996) showed

that outcrossing species with limited pollen and/or seed dispersal tend to have greater

genetic differentiation among populations than species with more potential for gene

movement. In addition, it is most likely that the tall stature and comparatively low

population densities of trees should result in larger dispersal distances for seeds and

pollen than would be expected to occur in herbaceous species (e.g. wild tomatoes),

whose individuals are generally shorter and found in more dense stands. Hence, pollen

and/or seed dispersal under equilibrium conditions may not be sufficient to explain

the patterns of population differentiation in our samples, especially the low differen-

tiation between the northernmost and southernmost populations in S. peruvianum,

despite the greatest geographic distance and the large differences in habitats between

them. An alternative explanation for patterns of differentiation in our samples rests

on the likely presence of soil seed banks, and historical association of tomato popula-

tions mediated by climatic cycles (as alternative to equilibrium gene flow). Soil seed

banks probably play an important role in maintaining the large genetic diversity in

wild tomatoes (Roselius et al., 2005). The presence of seed banks can have a ma-

jor impact on effective population size and consequently the maintenance of genetic

diversity in plants (Levin, 1990; Nunney, 2002).

Given that the El Niño Southern Oscillation (ENSO) is a key phenomenon

for weather patterns in the tropical Pacific Ocean (Devries, 1987; Tudhope et al.,

2001; Tudhope and Collins, 2003), these cyclical events are expected to affect seed

germination and other aspects of plant ecology and evolution over large regions of

coastal western South America. Gutiérrez and Meserve (2003) suggested that the

ENSO influences plant establishment and the replenishment of soil seed banks in many

plant taxa. It thus seems likely that the ENSO has a major effect on fluctuations in

the number and size of tomato populations, and consequently influences patterns of

population structure over time. More specifically, the effects of ENSO might result in

high (transient) levels of connectivity across the species range, perhaps via ‘bridging’
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populations, or might influence species-wide or regional expansions and contractions.

One of our most interesting findings is that Tajima’s D statistic is higher in the

samples of the individual populations than in the pooled sample, where the pooled

samples show a significant excess of low-frequency polymorphisms. We argue that this

may also be a consequence of the population structure in both wild tomato species. At

first sight, this seems perplexing, as standard models of population structure, such as

the island model, cannot explain this observation. Indeed, the latter model predicts

that the pooling of samples from different populations should increase the proportion

of intermediate- to high-frequency polymorphisms (Tajima, 1989; Pannell, 2003). The

average structure of genealogies of our polymorphic (‘typical’) samples is character-

ized by deep internal branch (probably reflecting subdivision in the ancestral species)

with the final coalescence events occurring in the ancestral species. Two aspects

of our data lead to this conclusion, (i) the high within-deme diversity compared to

species-wide levels (i.e. relatively low Fst), and (ii) the absence of fixed nucleotide dif-

ferences between populations and even between the two species (Städler et al., 2005).

Thus, pooling the population samples does not result in additional internal branches

of the genealogy that would account for higher proportions of intermediate-frequency

polymorphism. Rather, pooling of samples yields an excess of singletons, as most of

the singletons within local populations still remain singletons in the pooled sample.

In addition, more negative DT values for pooled samples were found in some pre-

vious studies, without offering a general explanation e.g. (Ingvarsson, 2005; Liu and

Burke, 2006). Our study therefore highlights the importance of sampling strategies,

as most studies do not include ‘real’ population samples (e.g. using single individuals

per deme). When sampling single individuals from many locations and pooling them

as species-wide samples, one may obtain negative DT values, the interpretation of

which, however, may not be straightforward. Hence, the biological factors underlying

these patterns need to be explored theoretically.

4.4 Recombination and the decay of linkage disequilibrium

Intragenic LD in wild tomatoes decays rapidly to very low levels (r2 < 0.05)

within a few hundred base pairs in both species. This is true even at the loci with

very low estimates of physical recombination rate (i.e. CT093 and CT208; Stephan

and Langley (1998)), suggesting considerable levels of recombination at all loci, as

also shown by appreciable Rm estimates in both species. Hence, the estimates of



4 Discussion 46

physical recombination rate at some loci might possibly be underestimated. More-

over, high levels of haplotype diversity in both species also imply sufficient levels of

recombination, which consequently result in the rapid decline of LD in both species.

In general, the decay of LD with distance varies greatly in different species,

such as within 250 kb in Arabidopsis thaliana (Nordborg et al., 2002, 2005), from

0.2-1.5 kb in maize (Remington et al., 2001; Tenaillon et al., 2001), less than 1 kb

in Drosophila melanogaster (Long et al., 1998), and from 5-80 kb in humans (Reich

et al., 2001). Overall, the rapid decay of LD in wild tomatoes is comparable to that

previously documented in several outcrossing plant species. For example, LD decays

to about 50% within 2 kb in loblolly pine (Brown et al., 2004), to negligible levels

within 250 bp in European Aspen (Ingvarsson, 2005), within a few hundred base pairs

in Norway Spruce (Heuertz et al., 2006), and within 200 bp in wild sunflower (Liu

and Burke, 2006).

In plants particularly, different mating systems and recombination rate are im-

portant factors that affect the decay of LD with distance. The relationship between

recombination and mating system can increase or decrease levels of LD. Nordborg

and Donnelly (1997) suggested that effective recombination rate is related to the

degree of selfing because recombination is less effective in selfing populations where

individuals are more likely to be homozygous than in outcrossing taxa. Therefore,

LD will be more extensive in selfing than in outcrossing populations. Indeed, LD in

outcrossing species decays much faster than under a primarily selfing mating system,

e.g. significant LD extends to 100 kb in rice (Garris et al., 2003), to >50 kb in soy-

bean (Zhu et al., 2003), and to about 70 kb in potato (outcrossing species but usually

vegetatively propagated; Simko et al. (2006)).

The difference in LD observed across species is a result of the interplay of many

factors, e.g. recombination rate, mating system, selection, effective population size,

and population structure (reviewed by Rafalski and Morgante (2004)). Among these

factors, high recombination rate, obligate outcrossing and high Ne in concert provide

the most plausible explanation for the rapid decline of LD in our samples, whereas

the more extensive LD seen at locus CT208 in S. chilense is easily explained by

the unusual haplotype structure within and among populations (incomplete selective

sweep).
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Under equilibrium conditions, it is possible to calculate estimates of the effective

population size based on the population parameters ρ and θ, where ρ = 4Ner and

θ = 4Ne µ (Li, 1997). In this study, we estimated the effective population size of

wild tomatoes on the basis of ρ, using the average physical recombination rate per

generation based on six loci (r≈ 1.56 x 10−8, excluding CT093 and CT208 because the

recombination rates appear to be underestimated, see above). Using the estimated

mean ρ based on two relatively undifferentiated populations per species (see Results),

we obtain estimates of Ne ≈ 6.63 x 105 for S. peruvianum and ≈ 4.88 x 105 for S.

chilense. These Ne estimates are somewhat lower than the Ne estimates from our

previous study, which were based on θ estimates from single populations per species

(Roselius et al., 2005).
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5 Conclusion

In comparison to the previous studies in wild tomatoes by Baudry et al. (2001),

Städler et al. (2005), and Roselius et al. (2005), which were based on only single pop-

ulations per species, our study allows for more generality by adding three additional

populations, broadly covering most of the species’ range. We propose that population

structure is one of the most important evolutionary forces that shaped patterns of nu-

cleotide diversity within and among populations in these wild tomatoes. Given that

wild tomatoes are subdivided species, our assessment of population structure allowed

us to understand several patterns of variability in wild tomatoes. First, analyzing a

few genuine population samples enabled us to discover and interpret the clinal pat-

tern of variability at CT208 as (likely) signatures of an ongoing selective sweep in

S. chilense. Sampling only a single population or, alternatively, single individuals

from many demes across the species range, might have entirely missed this signature.

Second, our unexpected finding that pooling of samples from different local popula-

tions led to an excess of low-frequency variants, which contradicts predictions of the

standard models of population subdivision, suggests that the population structure

of both tomato species (in particular S. peruvianum) is complex and probably influ-

enced by subdivision of the ancestral species. Third, the rapid decay of LD in both

species is very useful for high-resolution mapping in association studies given that

appropriate candidate genes are chosen. For this purpose, however, a high-density

marker screening would be needed.



Chapter 2
Population genomics of speciation in two

closely related wild tomatoes (Solanum

section Lycopersicon)

1 Introduction

The biological and geographic determinants of species divergence have long

been contentious, and it is now increasingly appreciated that patterns of genetic vari-

ation and differentiation may provide valuable insights into the evolutionary processes

shaping this divergence. The importance of geographic isolation in facilitating evo-

lutionary divergence as a consequence of mutation and genetic drift (or additionally,

adaptive differentiation) was recognized early, and the process of allopatric speciation

is uncontroversial on theoretical grounds (Mayr, 1963; Losos and Glor, 2003; Coyne

and Orr, 2004). If residual gene flow characterized the divergence of incipient species,

however, modes other than strict allopatric speciation must be invoked, and these in-

variably require natural selection as one of the factors underlying species divergence.

In addition to the putatively rare cases of sympatric speciation (e.g., Savolainen et al.

(2006)), divergence under residual gene flow may proceed in parapatry, i.e., geograph-

ically adjacent populations may be subject to directional selection that incidentally

confers reproductive isolation (Endler, 1977; Turelli et al., 2001; Gavrilets, 2003). An-

other scenario is an initial period of divergence in allopatry followed by secondary

contact allowing gene flow and thus direct selection for stronger interspecific barriers

(reinforcement of reproductive isolation; Rice and Hostert (1993); Coyne and Orr

(2004); Hoskin et al. (2005)). Some researchers posit that interspecific hybridization

49
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and postdivergence gene flow following secondary contact may promote novel advan-

tageous gene combinations in populations of mixed ancestry, perhaps contributing to

adaptive divergence and speciation e.g. (Arnold, 1997; Seehausen, 2004; Rieseberg

et al., 2004; Mallet, 2005).

Multilocus gene sequences collected within and among closely related species

contain a wealth of historical-demographic information and are particularly infor-

mative when considered in the framework of genealogical (coalescence) models e.g.,

(Tajima, 1989; Hudson, 1990; Rosenberg and Nordborg, 2002). As an extension of

population genetic procedures to the species level, the analytical framework of di-

vergence population genetics (DPG) encompasses coalescent-based models to infer

historical attributes of lineage divergence from a common ancestor, and to assess the

utility of simple speciation models (Hey and Kliman, 1993; Wakeley and Hey, 1997;

Wang et al., 1997; Machado et al., 2002; Hey and Machado, 2003; Hey and Nielsen,

2004). The DPG approach accommodates the stochastic nature of lineage sorting

(Edwards and Beerli, 2000; Hudson and Turelli, 2003) and thus the (gradually de-

creasing) segregation of shared ancestral polymorphism in the descendent species, as

these become more differentiated through genetic drift and the accumulation of new

mutations.

The ‘isolation’ model of speciation (Wakeley and Hey, 1997; ‘WH model’) as-

sumes divergence in isolation without subsequent gene flow, and as such is an explicit

model of allopatric speciation. The WH model makes quantitative predictions regard-

ing patterns of nucleotide diversity across multiple loci, and sequence data obtained

from recently diverged taxa can provide scaled estimates of population-size changes

and the timing of speciation, as well as probe for signatures of postdivergence gene

flow (Wakeley and Hey, 1997; Wang et al., 1997; Kliman et al., 2000; Machado et al.,

2002; Broughton and Harrison, 2003). More recently, bidirectional gene flow following

initial species divergence has been incorporated as additional model parameters in

the isolation-with-migration (IM) model (Nielsen and Wakeley, 2001; Hey and Nielsen,

2004), but a notable restriction of its current implementation is the assumption of

nonrecombining data within loci. Despite this limitation, the IM model appears to

enjoy increasing popularity e.g., (Dolman and Moritz, 2006; Kronforst et al., 2006).

The currently available coalescent-based speciation models (WH, IM) further

assume panmixia within both extant and ancestral species, an assumption that is

rarely tested or even discussed in empirical applications of these models. We suspect
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that not only DPG studies in plants but also those in many animal groups are at

risk of using inappropriate models of divergence, given the likely importance of pop-

ulation subdivision in many taxa; similar concerns have been raised in the context of

statistical phylogeography (Knowles and Carstens, 2007). In assessing possible biases

in the WH parameter estimates due to population subdivision and sampling, we will

return to this issue in the Discussion.

Multilocus genealogical studies of speciation scenarios are still very limited for

plants (Ramos-Onsins et al., 2004; Städler et al., 2005; Zhang and Ge, 2007). Building

on our pilot study that was limited to single populations per species (Städler et al.,

2005), the current paper provides an in-depth assessment of the divergence process

between two closely related wild tomato species, Solanum peruvianum and S. chilense

(Solanum section Lycopersicon, Solanaceae). Previous studies of Lycopersicon using

a variety of molecular markers have generally found low levels of differentiation among

species e.g., (Miller and Tanksley, 1990; Baudry et al., 2001; Peralta and Spooner,

2001), implying a fairly recent divergence of the tomato clade. In particular, our

multilocus study of three self-incompatible species demonstrated variation between

species pairs in the proportion of loci showing some/many fixed interspecific differ-

ences, vs. those with appreciable numbers of shared polymorphisms (Städler et al.,

2005). These differential signals of genealogical divergence highlight the suitability

of wild tomatoes as a plant speciation model under the DPG framework; they also

imply widespread incomplete lineage sorting.

Based on multiple population samples per species, we used seven effectively

unlinked nuclear loci to estimate population parameters and scaled divergence times

between these outcrossing tomato species. Additionally, we sought evidence for di-

vergence under residual gene flow by applying a test based on patterns of intragenic

linkage disequilibrium (LD). While we cannot reject the isolation model based on

overall goodness-of-fit criteria, patterns of LD are indicative of historical gene flow

between the diverging lineages.
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2 Materials and Methods

2.1 Study system and sampling

For this in-depth study, we chose two of the previously used self-incompatible

wild tomato species. In contrast to our exploratory study of three taxa (Städler et al.,

2005), we adopt the current taxonomic treatment of tomatoes as a section within

the large genus Solanum (e.g., Spooner et al. (1993); Olmstead et al. (1999)). Our

study species are the widely distributed S. peruvianum and the southernmost tomato

species, S. chilense. Native to western South America, the two morphologically differ-

entiated species have partly overlapping ranges in the arid coastal regions of southern

Peru and northern Chile, west of the continental divide (Rick and Lamm, 1955; Rick,

1979, 1986; Taylor, 1986); see Figure 1 in Städler et al. (2005). Systematists have

recently proposed to recognize four species in what traditionally was regarded as the

polymorphic S. peruvianum (Peralta et al., 2005; Spooner et al., 2005). According to

their proposition, our sampling of three natural populations in central and southern

Peru (see below) would encompass both the new entity S. corneliomuelleri and S.

peruvianum sensu stricto. However, there appear to be neither molecular data nor

crossing results that would validate the proposed split of S. corneliomuelleri from S.

peruvianum s. str.; we thus treat all of our new samples as S. peruvianum. There is

no published evidence for interspecific hybridization between S. chilense and S. peru-

vianum in their natural habitats, in concordance with the strong reproductive barriers

uncovered in experimental crossing studies (Rick and Lamm, 1955; Rick, 1979, 1986).

For each of the two study species, three new population samples were collected in

southern and central Peru in May, 2004 (TS and T. Marczewski); population nomen-

clature, geographical locations and altitude are summarized in Table 2.1. With the

exception of the Canta population (S. peruvianum), all new samples are from regions

of sympatry with the other species, even though this may not be true at a local scale.

The Canta population, however, is far north of the S. chilense species range. Five to

seven plants were collected per population, and altitude and geographic coordinates

were determined by GPS. We sampled approximately 3-5 gram of fresh leaf tissue per

plant and stored it in plastic bags with silica gel until our return to Munich. Voucher

specimens have been deposited at USM (Lima, Peru) and MSB (Munich, Germany).

Our exploratory study used one accession (equivalent to a population sample) of each

species, obtained from the Tomato Genetics Resource Center at U.C. Davis (Städler



2 Materials and Methods 53

et al., 2005). These accessions were both from northern Chile (S. chilense: accession

LA2884, Antofagasta, five plants; S. peruvianum: LA2744, Tarapaca, five plants).

Table 2.1: Geographical origin of the sampled populations

Species/ Population Department/ Latitude/ Elevation (m)

population identifier region longitude

S. peruvianum

Tarapaca TAR Tarapaca 18◦33’S,70◦09’W 400

Arequipa ARE Arequipa 16◦27’S,71◦42’W 2180

Nazca NAZ Ica 14◦51’S,74◦44’W 2140

Canta CAN Lima 11◦32’S,76◦42’W 2050

S. chilense

Antofagasta ANT Antofagasta 22◦14’S,68◦23’W 2900

Tacna TAC Tacna 17◦53’S,70◦08’W 1260

Moquegua MOQ Moquegua 17◦04’S,70◦52’W 2450

Quicacha QUI Arequipa 15◦38’S,73◦48’W 1830

Within each species, the populations are listed from south to north, and are generally named

after a nearby town or city. All samples except TAR and ANT are from Peru; TAR and ANT

originate from northern Chile (see Figure 1 in Städler et al. 2005). With few exception, we sequenced

10 to 12 alleles per population (five or six plants).

2.2 Choice of marker loci

Linkage maps are available for all 12 tomato chromosomes, based mainly on

interspecific crosses between S. lycopersicum and S. pennellii (Tanksley et al. (1992);

http://www.sgn.cornell.edu). Sequence information is available for many of the

mapped cDNA markers (Ganal et al., 1998), which have been integrated into longer

’tentative contigs’ in the Tomato Gene Index at the Institute for Genomic Research

(http://www.tigr.org/tdb/lgi). For this study focusing on multiple populations per

species, we chose a subset of the loci previously used in our initial surveys (Baudry

et al., 2001; Städler et al., 2005; Roselius et al., 2005); CT066, CT093, CT166, CT179,

CT198, CT208, CT251 and CT268 are eight anonymous, single-copy cDNA markers

previously mapped by Tanksley et al. (1992). Given that it was impossible to se-
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quence so many samples at all the previous loci, this reduced set of genes was chosen

primarily because it yielded very similar proportions among the isolation model pa-

rameters as when using the full set of genes (Städler et al., 2005).

However, our companion study focusing on tests of neutrality, population sub-

division and linkage disequilibrium found clear evidence of non-neutral evolution at

locus CT208 (Arunyawat et al., MS). Because it is paramount to avoid the inclusion

of loci under positive selection in testing the isolation model, we decided to base

our WH simulations on the seven remaining loci that show no obvious departures

from neutral expectations. Sequencing and haplotype determination: Genomic DNA

was extracted from dried leaf tissue using the DNeasy plant mini kit (Qiagen GmbH,

Hilden, Germany). PCR conditions followed those of our previous studies (Städler

et al., 2005; Roselius et al., 2005); they as well as all primer information can be ac-

cessed at http://www.zi.biologie.uni-muenchen.de/evol/Downloads.html. For locus

CT166, we designed new PCR primers and amplified a shorter fragment (about 1,300

bp) compared to the original studies. Sequencing was performed on an ABI 3730 DNA

analyzer (Applied Biosystems, Foster City, CA). Distinct haplotypes within heterozy-

gous individuals were resolved by applying a suite of haplotype-specific sequencing

primers. In most cases, we exploited putative or confirmed SNPs to anchor the 3
′
-end

of sequencing primers that were intended to resolve the heterogeneous PCR products.

This approach enabled us to verify SNPs (and indel variation) and establish hap-

lotype phase based on overlapping information supported by multiple primer pairs.

Sequence alignments were initially done either in Sequencher (Gene Codes, Ann Ar-

bor, MI) or in Sequence Navigator (Applied Biosystems, Darmstadt, Germany) and

adjusted manually in MacClade (Maddison and Maddison, 1992).

2.3 Estimation of polymorphism, frequency spectrum and

haplotype structure

Standard population genetic analyses of the sequence data were performed us-

ing the program packages DnaSP, version 4.0 (Rozas et al., 2003) and SITES (Hey

and Wakeley, 1997). As a measure of intraspecific polymorphism, we calculated Wat-

terson (1975)’s estimator θW of the population mutation parameter, as well as the

estimator π (average pairwise sequence divergence within samples; Nei (1987)). In

this study, we restrict our attention to SNPs (excluding all insertion-deletion polymor-

phism) and report all estimates of nucleotide diversity as per-site values. We tested
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for departures from neutral equilibrium expectations by applying the intraspecific,

standard Tajima (1989)’s D test, which can extract signatures of changes in effective

population size based on the frequency spectrum of segregating mutations. Signif-

icance of the population- specific multilocus D statistics was assessed with 10,000

coalescent simulations, as implemented in the HKA program. The observed number

of distinct haplotypes per sample was evaluated with Fu (1997)’s Fs test statistic, al-

though there is no straightforward way to obtain the probability of multilocus (mean)

Fs values.

2.4 Testing the isolation speciation model

The multilocus data were fitted to the WH isolation model (Wakeley and Hey,

1997; Wang et al., 1997). This simple model of allopatric speciation assumes that

an ancestral, panmictic species characterized by the population mutation parameter

θA gave rise to two extant species at time τ in the past ( τ = 2ut, where t is the

number of generations since speciation). The extant species are characterized by

the mutation parameters θ1 and θ2 , respectively. Hence, effective population size

is assumed to be constant within species, but is allowed to change at the time of

speciation. The model further assumes the neutrality of segregating variants and no

gene flow (introgression) subsequent to the initial species divergence. Our current

data encompass multiple populations and – if treated as a single sample – were not

expected to match the model assumption of panmixia within species. In fact, our

companion paper demonstrates significant population subdivision in both species, as

expected for insect-pollinated angiosperm taxa (Arunyawat et al., MS). In order to

extract biologically meaningful WH parameter estimates, data from single population

pairs were sequentially fitted to the isolation model, i.e., without pooling populations

within species. Pooling was done, however, for two populations per species showing

the least amount of genetic differentiation, as discussed below.

As shown by Wakeley and Hey (1997), the expectations of the observable quanti-

ties Sx1, Sx2, Ss and Sf (exclusive polymorphisms for species 1 and 2, shared polymor-

phisms and fixed differences, respectively) are functions of the four model parameters.

Hence, by equating observations with expectations, their moment-based algorithm

yields the parameter estimates from multilocus data. For each pair of interspecific

populations (e.g., TAR-MOQ, CAN-TAC, etc., see Table 2.1) and each of the seven

loci, we calculated the number of observations for each of the four site categories
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(excluding sites with observable multiple hits), and simultaneously estimated the

population recombination parameter γ , using the program SITES (Hey and Wake-

ley, 1997). For each pairwise comparison, we ran 10,000 coalescent simulations using

a modified WH program (Wakeley and Hey, 1997; Wang et al., 1997; Städler et al.,

2005).

To avoid biasing the recombination rate downwards in the WH simulations, we

let γ be ‘unknown’ for the S. chilense samples, except in a few cases where γ for the

S. peruvianum sample was estimated to be zero but the S. chilense sample had a γ >

0; in such cases we used the S. chilense γ and let the S. peruvianum γ be ‘unknown’.

As implemented in WH, the relative magnitudes of the model parameters θ1 and θ2

and θA determine the level of recombination for ‘unknown’ entries, such that γ2 = γ1

× (θ2/θ1) and γA = γ1 × (θA/θ1), where γ1 in our case is the previously estimated

locus-specific recombination parameter for the S. peruvianum sample. This has the

effect of imposing a fixed ratio of γ ’s in a given interspecific comparison, but allows

for variation in levels of recombination across loci.

2.5 Linkage disequilibrium test of gene flow

Machado et al. (2002) introduced a test of gene flow based on patterns of linkage

disequilibrium (LD) among specific classes of segregating sites, i.e., using a subset of

total intragenic LD. Under a scenario of gene flow, LD among pairs of shared poly-

morphisms (average = Dss) in the recipient species should tend to be positive (i.e.,

preponderance of ancestral-ancestral and/or derived-derived SNP associations), and

LD among pairs of sites where one member is a shared and the other an exclusive

polymorphism (average = Dsx) should tend to be negative (i.e., preponderance of

ancestral-derived SNP associations). Both expected effects can be seen as a conse-

quence of insufficient time for recombination to erode LD (given introgression has

occurred after initial species separation) compared to the situation where shared

polymorphisms represent truly ancestral mutations, i.e., those preceding speciation.

Unlike for our initial study (Städler et al., 2005), the availability of outgroup

sequences from species outside the tomato clade allowed us to use the LD test statistic

proposed by Machado et al. (2002). Here, we use sequence data generated from either

S. lycopersicoides (CT093, CT268) or S. ochranthum (all other loci; Roselius et al.

(2005)) to polarize LD. It may be expected that polarized LD has greater power to

detect historical introgression than our previous, unpolarized LD test (Städler et al.,
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2005), although this has not been formally evaluated. Using the LD measure D
′

(=D/Dmax, possible range from -1 to +1), the observed values of the test statistic x

(Dss - Dsx; Machado et al. (2002); computed in the SITES program) were confronted

with expectations generated by the same set of WH simulations that was used to test

the quality of fit of the isolation model. For these analyses, only loci with at least

four pairs of sites in each of the above categories were used, which excludes loci with

observed Ss values < 4.
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3 Results

3.1 Single nucleotide polymorphism and tests of neutrality

Levels of nucleotide variation at eight nuclear loci and tests of neutrality have

been summarized in our companion paper (Arunyawat et al., MS). For our purpose

of testing simple models of speciation, we utilized the seven loci that appear to evolve

neutrally and re-calculated population-specific mean diversity levels and multilocus

Tajima’s D and Fu’s Fs statistics (Table 2.2). Levels of overall and silent polymor-

phism (using only noncoding and synonymous sites) are consistently higher for S.

peruvianum than for S. chilense populations, except for the ARE sample (see below).

Average θsil estimates for ‘typical’ S. peruvianum populations range from 2.18-2.94%

whereas the range of θsil estimates for ‘typical’ S. chilense populations is 1.68-1.93%

(Table 2.2).

The multilocus Tajima (1989)’s D statistic is slightly, but not significantly, neg-

ative in the three S. peruvianum samples TAR, NAZ and CAN, while estimates of D

are close to zero in the three S. chilense samples TAC, MOQ and QUI (Table 2.2).

Clearly, the new sequence data obtained for three natural populations of S. chilense

indicate that our first sample (ANT; Städler et al. (2005)) is uncharacteristic in terms

of polymorphism, frequency spectrum and haplotype structure (Table 2.2). Similarly,

the S. peruvianum ARE sample departs from the other populations by exhibiting

lower polymorphism, a slight excess of intermediate-frequency polymorphism (posi-

tive D), and a slight deficit of distinct haplotypes (positive Fs; Table 2.2). It is likely

that these two ‘outlier’ samples (ANT, ARE) reflect local or regional bottlenecks

and/or greater degrees of isolation from neighboring demes (i.e., lower proportions

of immigrants via gene flow), compared to the bulk of the species’ range. Because we

are interested in demographic estimates reflecting species-wide patterns subsequent

to their recent divergence, we decided to restrict our tests of the isolation model to

the three apparently ‘typical’ population samples per species.

The estimates of Tajima’s (1989) D statistic presented in Table 2.2 are based on

all classes of polymorphism, i.e., including substitutions at noncoding, synonymous

and nonsynonymous sites. Although there is clear evidence that levels of nonsynony-

mous polymorphism are markedly lower than levels of silent polymorphism (compare

θall and θsil in Table 2.2), as expected under strong purifying selection, D estimates

based on only silent sites are very similar (data not shown). This suggests that
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Table 2.2: Levels of nucleotide polymorphism in eight population samples

Species/ Length #SNPs θall πall θall πall DT Fs

Population (bp) (%) (%) (%) (%)

S. peruvianum

TAR 9,314 322 1.24 1.18 2.43 2.31 -0.22 0.64

ARE 9,286 186 0.71 0.79 1.43 1.55 0.41 1.67

NAZ 9,304 318 1.14 1.11 2.18 2.08 -0.14 -1.16

CAN 9,309 400 1.45 1.30 2.94 2.52 -0.55 -1.98

S. chilense

ANT 9,344 125 0.47 0.61 0.98 1.25 1.53 7.38

TAC 9,353 260 0.93 0.94 1.69 1.73 0.03 -0.70

MOQ 9,347 276 1.04 1.05 1.93 2.00 -0.05 -0.47

QUI 9,317 257 0.91 0.98 1.68 1.80 0.13 2.72

Length refers to the total number of base pairs across the seven loci, where all indels have

been exclided; #SNPs reports the total number of segregating sites per sample, some of which were

excluded for the WH analyses due to multiple hits. The estimators of nucleotide diversity (θ and π)

are weighted means across the seven loci and are given for all sites (‘all’; mean = 1,333 bp/locus)

and for silent sites (‘sil’; mean = 574 bp/locus). Tajima’s D and Fu’s Fs statistics are based on all

SNPs and are given as the unweighted means among loci; the multilocus D is significant at P<0.001

for ANT (boldface). Populations TAR and ANT (from Städler et al. (2005)) are included here for

comparison.

the segregating nonsynonymous variants are not under strong negative selection but

rather behave in a nearly-neutral manner. Because there was no obvious evidence of

non-neutrality in the data comprising these seven loci, we felt justified in using the

entire SNP data for testing the isolation model of speciation.

3.2 Polymorphic site categories in interspecific population

contrasts

The among-locus distributions of four categories of polymorphic sites, namely

exclusive polymorphisms in species 1 and 2 (Sx1 and Sx2, respectively), polymor-

phisms that are shared among species (Ss), and fixed differences between the species

(Sf ) represent summary statistics of the data and collectively yield the WH isola-
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Table 2.3: Distribution of polymorphic sites in the interspecific contrast of the most

variable population samples (Canta-Moquegua)

Locus Length(bp) Sx1 Sx2 Ss Sf γperu(%)

CT066 1,332 32 27 9 0 2.05

CT093 1,392 24 19 6 0 2.07

CT166 1,279 56 41 11 0 1.61

CT179 882 36 20 9 0 4.79

CT198 753 45 9 8 0 2.44

CT251 1,684 47 28 21 2 3.61

CT268 1,880 51 31 13 1 3.91

Total 9,202 291 175 77 3 –

Sx1, number of exclusive polymorphisms in the S. peruvianum sample (Canta); Sx2, number

of exclusive polymorphisms in the S. chilense sample (Moquegua); Ss, number of shared polymor-

phisms; Sf , number of fixed diferences (Wakeley and Hey, 1997); multiple hits were eliminated from

the dataset. The recombination estimator γ refers to the Canta sample (see text) and is given per

site x 10−2.

tion model parameters (Wakeley and Hey, 1997). When the three chosen population

samples per species were treated as combined (pooled) samples, there were no fixed

differences between these two species at any of the loci (data not shown). However,

under such conditions the WH approach cannot yield reliable estimates of the model

parameters, as the method requires that a range of possible genealogies is represented

in the data (Wakeley and Hey, 1997).

As a first approximation to the model assumption of panmixia, we contrasted

all nine combinations of interspecific pairs of populations (for limitations and caveats,

see Discussion). Table 2.3 presents the distribution of polymorphic sites for the

population pair characterized by the highest within-population level of polymorphism.

This locus-by-locus tabulation clearly shows two features of the multilocus data that

are found in all interspecific population comparisons: all loci exhibit multiple shared

polymorphisms while there are only very few fixed interspecific differences at one or

two of the loci (Table 2.3). Table 2.4 summarizes the polymorphic site counts for all

nine comparisons, and these data emphasize the ubiquity of shared polymorphisms

and the paucity of fixed differences (Sf between two and seven for these interspecific

comparisons based on single populations per species).
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Table 2.4: Summary of polymorphic site counts in nine interspecific population con-

trasts (S. peruvianum-S. chilense)

Population contrast Length(bp) Sx1 Sx2 Ss Sf

TAR-TAC 9,186 232 174 74 6

TAR-MOQ 9,178 230 187 74 5

TAR-QUI 9,191 241 182 64 7

NAZ-TAC 9,227 236 175 68 2

NAZ-MOQ 9,208 236 190 67 2

NAZ-QUI 9,195 224 165 78 4

CAN-TAC 9,208 296 160 75 3

CAN-MOQ 9,202 291 175 77 3

CAN-QUI 9,206 291 160 81 4

The four site categories Sx1, Sx2, Ss, Sf , (see Table 2.3 and text for definitions) have been

summarized over all seven loci; multiple hits were eliminated from the dataset.

3.3 Parameter estimates and model fitting

Table 2.5 presents WH parameter estimates for all nine pairwise (interspecific)

population comparisons. Across these nine comparisons, the estimates of ancestral

population size (θA) are roughly comparable to those for the S. chilense samples

(θ2), whereas the effective size of S. peruvianum (θ1) is estimated to be larger. The

WH parameter estimates have broad confidence intervals (Table 2.5). The means of

simulated parameter values are generally very close to the point estimates, except

that the simulated θ’s for S. peruvianum samples are often somewhat higher than

the corresponding point estimates (data not shown). A notable result is that the

T estimates (= τ/θ1) imply very recent divergence from a common ancestor, in the

range of 0.11-0.20 units ago (where time is measured in units of 2NeS. peruvianum

generations).

Coalescent simulations implementing the estimated recombination levels did not

reject the simple isolation model, as neither the wwh (Wang et al., 1997) nor the χ2

(Kliman et al., 2000) test statistics approach significance in any of the pairwise in-

terspecific comparisons (Table 2.5). In particular, the generally high values of Pwwh

reflect the absence of even moderate (let alone drastic) differences in the proportions

of Ss and Sf among loci (Table 2.3), while the fairly low Pχ2 value for the NAZ-QUI
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comparison (Table 2.5) reflects additional deviations due to variable levels of exclu-

sive polymorphisms among loci for these two samples. Summarizing these contrasts

between observed data and expectations under the simple WH isolation model, it is

evident that our data fit the model surprisingly well; this is mainly due to the fairly

even distribution of the polymorphic site classes across loci.

We also ran these analyses on three pooled datasets, which were motivated

as follows. Our companion study found that genetic differentiation among the S.

chilense populations Tacna and Moquegua is very low (Fst < 0.01; Arunyawat et al.

(MS)). In addition, the most polymorphic S. peruvianum populations (Canta and

Tarapaca; Table 2.2) exhibit the least divergence within that species (Fst ≈ 0.09).

Hence, we generated a pooled TAC&MOQ sample and contrasted it with either of

the above S. peruvianum populations as well as with a pooled TAR&CAN sample.

In these interspecific contrasts, the number of fixed differences across all seven loci

is between two and five; pooling other (or more) samples eliminates fixed differences

entirely, as was observed for the species-wide dataset.

Table 2.5 also presents the WH estimates and goodness-of-fit statistics for these

pooled contrasts. As was observed for the single-population comparisons, the demo-

graphic estimates imply a roughly stable population size for S. chilense compared to

the ancestral species, while S. peruvianum appears to have undergone a population-

size expansion. Likewise, coalescent simulations do not reject the simple isolation

model, again reflecting the fairly even among-locus distributions of the polymorphic

site classes (data not shown). Compared to the single-population contrasts, vari-

ances for the population mutation parameters of the extant taxa (θ1 and θ2) tend to

be lower (Table 2.5), probably reflecting additional power due to the higher number

of sequenced alleles/SNPs.

3.4 Linkage disequilibrium test of historical gene flow

We additionally tested for historical gene flow by analyzing patterns of intra-

genic LD, using information that remains untapped by the multilocus goodness-of-fit

test that is often the only assessment of the suitability of the isolation model (via co-

alescent simulations). Table 2.6 presents empirical data and simulation results using

the LD test statistic x, which ought to exhibit more positive values under a scenario

of (historical) gene flow. Five out of six mean observed x values are significantly ele-

vated, with stronger signals seen in the most inclusive sample contrast (TAR&CAN
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Table 2.5: WH parameter estimates and isolation model fitting

Pop 1 Pop 2 θ1 θ2 θA τ T Pχ2 Pwwh

(S. peruvianum) (S. chilense)

TAR TAC 121.6 68.9 101.8 22.8 0.187 0.742 0.878

65.0-298.3 40.7-116.8 58.4-150.3 15.1-30.6 0.08-0.31

TAR MOQ 127.5 87.8 96.8 24.9 0.195 0.521 0.903

70.8.-275.5 51.8-153.4 55.1-145.9 17.0-32.8 0.09-0.32

TAR QUI 129.2 71.1 95.4 25.8 0.200 0.911 0.775

71.4-296.4 44.9-116.8 52.5-144.6 18.1-33.8 0.08-0.32

NAZ TAC 150.9 90.2 73.6 23.5 0.156 0.364 0.563

82.9-257.8 54.5-128.6 45.6-116.4 17.6-30.4 0.09-0.27

NAZ MOQ 144.9 113.8 72.7 25.8 0.178 0.483 0.774

81.3-237.4 65.2-173.0 43.4-120.5 19.0-33.5 0.11-0.32

NAZ QUI 108.7 66.5 95.7 19.9 0.184 0.094 0.293

56.9-220.1 37.6-107.5 56.7-144.5 12.9-26.7 0.09-0.30

CAN TAC 222.9 72.9 87.1 24.6 0.110 0.933 0.649

110.2-591.4 45.5-106.3 51.3-136.1 18.1-31.6 0.04-0.21

CAN MOQ 198.7 89.5 88.6 26.6 0.134 0.898 0.722

108.3-413.4 55.8-135.4 52.5-137.2 19.6-33.9 0.06-0.24

CAN QUI 186.4 65.3 99.2 23.2 0.124 0.395 0.439

94.9-508.0 40.1-100.3 57.4-149.0 16.4-30.1 0.04-0.22

TAR TAC&MOQ 115.4 91.3 102.5 26.6 0.231 0.521 0.853

68.7-218.3 62.0-135.4 60.8-151.5 19.7-34.1 0.12-0.36

CAN TAC&MOQ 191.7 97.5 86.4 28.1 0.147 0.882 0.732

111.9-313.5 68.6-125.7 55.7-132.3 22.4-35.2 0.09-0.26

TAR&CAN TAC&MOQ 203.7 85.8 99.2 27.9 0.137 0.755 0.789

130.6-316.1 60.8-108.5 61.7-150.6 22.5-35.4 0.09-0.22

For each of the 12 interspecific comparisons, the data (cf. Table 2.4) were fitted to the WH

isolation model. θ1, population mutation parameter for population 1 (= 4Neµ, estimated over all

sites); θ2, population mutation parameter for population 2; θA, population mutation parameter for

the ancestral species; τ , scaled time parameter (=2µt). T (= τ/θ) is the estimated time of species

divergence in units of 2N1 generations, where N1 is the effective size of population 1. Below the

primary parameter estimates, 95% confidence intervals are shown, determined by 10,000 coalescent

simulations. The P -values for both the wwh (Wang et al. 1997) and χ2 test statistics are the

proportions of simulated values ≥ the observed values. The bottom three comparisons contrast

pooled samples; within-species pooling was conditioned on (still) observing fixed differences in the

multilocus data and low population differentiation (see text)
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vs. TAC&MOQ) and the allopatric contrast CAN vs. TAC&MOQ. Interestingly,

locus CT066 exhibits significantly high x values for all samples, and locus CT166

shows significant or nearly significant x values for many of the contrasts; there is

a tendency for this signal to be stronger in S. peruvianum. Finally, there are two

marginally significant x values for locus CT179 in S. chilense, whereas there is no LD

signal of gene flow at any other locus (Table 2.6).

It should be noted that the three pooled-sample contrasts examined in Table

2.6 do not represent independent datasets; the LD test partly rests on a relational

framework, in that shared polymorphisms can only be identified in reference to a

second sample (population, species, etc.), while exclusive polymorphisms are unique

to particular populations or more inclusive samples. In addition to the three pooled-

sample comparisons, we also subjected the individual population contrasts to the LD

test of (historical) introgression. Figure 2.1 plots the P -values for individual loci in

both species, expressed as medians of the individual population contrasts. Consistent

with the results for the pooled-sample comparisons, median P -values for loci CT066

and CT166 are between 0.030 and 0.124, reflecting (often) significant or marginally

significant values of the LD test statistic x in many single-population contrasts. These

results suggest bidirectional interspecific gene flow following initial species divergence,

whereas there is no compelling evidence for such a scenario at the other loci (Figure

2.1; but see Discussion).
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Table 2.6: Linkage disequilibrium test of historical gene flow

Sample A (peru) CT066 CT093 CT166 CT179 CT198 CT251 CT268 Observed Simulated

Sample B (chil) mean x means x

A: TAR&CAN vs. 0.751 0.203 0.396 0.179 0.272 0.152 0.123 0.297 0.125

0.016 0.263 0.068 0.340 0.160 0.283 0.402 0.022

B: TAC&MOQ 0.673 0.239 0.244 0.470 0.151 -0.055 0.000 0.246 0.072

0.023 0.167 0.122 0.068 0.248 0.858 0.682 0.034

A: TAR vs. 0.650 0.268 0.428 0.224 0.071 0.025 0.090 0.251 0.086

0.031 0.182 0.092 0.263 0.417 0.605 0.351 0.049

B: TAC&MOQ 0.662 -0.110 0.339 0.192 0.089 -0.056 0.109 0.175 0.086

0.028 0.806 0.127 0.291 0.367 0.868 0.308 0.142

A: CAN vs. 0.863 0.000 0.619 0.136 0.370 0.100 0.019 0.301 0.108

0.014 0.665 0.030 0.351 0.124 0.399 0.714 0.027

B: TAC&MOQ 0.615 0.299 0.482 0.470 0.192 -0.070 -0.075 0.273 0.081

0.032 0.151 0.049 0.053 0.246 0.871 0.864 0.029

For each of the three pooled-sample contrasts (S. peruvianum vs. S. chilense), the observed

LD test statistic x is given in the first line (for each locus and each of six samples), with the

proportion of successful coalescent simulations ≥ the observed values of x (P -values) immediately

below; P -values <0.07 are highlighted in boldface. The last two columns summarize the observed

mean x (with P -values below) and the simulated mean x (assuming no interspecific gene flow) over

all loci (see text).
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Figure 2.1: Scatter plot of average locus-specific rates of recombination and median P-

values for single-population contrasts (LD test of historical gene flow). Recombination is

expressed as γ per site, and the locus-specific values are the means obtained for the S. peru-

vianum populations (i.e., both species are plotted with the S. peruvianum recombination

estimates). The P -values are locus-specific medians obtained from up to nine interspecific

population contrasts. The arrow highlights a ‘hidden’ P -value of 0.033 for locus CT066 in

S. peruvianum. Note that this lower left area of the plot contains the data for loci CT066

and CT166 (cf. Table 2.6).
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4 Discussion

The principal limitation of our previous study of speciation scenarios in wild

tomatoes was the availability of only single populations per species, leading to un-

certainty about the generality of our initial findings (Städler et al., 2005). Here we

have shown that consistent demographic estimates under the WH isolation model

(Wakeley and Hey, 1997; Wang et al., 1997) are obtained when ‘typical’ populations

of both S. peruvianum and S. chilense are chosen to portray their respective genealog-

ical histories, where ‘typical’ refers to samples exhibiting broadly comparable levels

and partitioning of nucleotide polymorphism across multiple loci. For example, our

original S. chilense sample (Antofagasta) can now be interpreted as reflecting a local

or regional bottleneck (based on unusually low levels of polymorphism and strong

haplotype structure) that is certainly not characteristic of the species-wide demo-

graphic history following speciation. Consequently, relying on such samples would

result in misleading WH parameter estimates, as was anticipated in our previous

study (Städler et al., 2005). Whereas population-size contraction in S. chilense com-

pared to the ancestral species was inferred in that study, our current demographic

estimates based on three other populations concur that historical effective popula-

tion size has remained fairly constant, while there are consistent signatures of larger

effective population size in S. peruvianum (Tables 2.2 - 2.5).

4.1 Consequences of population subdivision and sampling

scheme

We caution that the demographic estimates summarized in Table 2.5 may not ad-

equately capture the actual historical demography of these recently diverged species.

Coalescent models for subdivided species are a useful guide to interpret the demo-

graphic inferences and to identify possible biases of our analyses under the WH

framework. Wakeley (1999) introduced the distinction between the ‘scattering’ and

the ‘collecting’ phase of the coalescent process in a subdivided population (island

model). The brief scattering phase traces the genealogy of a local sample until all

remaining lineages (looking backward in time) are located in different demes, and it

is characterized by local coalescent events and migration events to different demes.

The timescale of the ensuing, much longer collecting phase depends on the rate of

migration between demes and the number and size of demes in the total population,
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in that ancestral lineages can only coalesce when they occupy the same deme (Wake-

ley, 1999, 2001; Wakeley and Aliacar, 2001). Given that we have sampled multiple

gene copies per population, we have to consider effects of the scattering phase and

the potential non-exchangeability of the sampled sequences.

Our ‘typical’ local samples do contain much of the species-wide diversity, as

reflected in the high local estimates of nucleotide diversity (Table 2.2) and moderate

estimates of population differentiation (Fst ≈ 0.15; Arunyawat et al. (MS)). This

implies that local coalescent events during the scattering phase are fairly rare, or in

other words, that the number of ancestral lineages at the beginning of the collecting

phase is fairly close to its maximal value (the size n of the local sample). In this

regard, some of our local samples almost approximate a species-wide sample where

single sequences are obtained from a larger number of demes. However, we have

noted that pooling of more than two populations per species eliminates all fixed inter-

specific differences, while single-population comparisons and selected pooled-sample

contrasts show between two and seven fixed differences (Table 2.4, and Results). We

thus ‘see’ the expected effects of underestimating the within-species diversity using

single-deme samples, as well as underestimating divergence between species when

considering species-wide samples (Wakeley, 2000, 2003; Ingvarsson, 2004); both are

consequences of the distribution of diversity within and between local demes under

population subdivision and the (potentially) higher species-wide effective population

size under restricted migration (Slatkin, 1987; Strobeck, 1987; Whitlock and Barton,

1997; Pannell, 2003). A related aspect involves the dependence of widely used ba-

sic statistics evaluating the site frequency spectrum (such as Tajima’s D) and the

expected number of distinct haplotypes (such as FU’s Fs) on random mating (i.e.,

absence of substructure) within populations from which samples are drawn. Ana-

lyzing patterns of diversity under a scenario of spatial (range) expansion in a two-

dimensional stepping-stone model, Ray et al. (2003) found that levels of inter-deme

migration may have substantial effects on patterns of diversity and the site frequency

spectrum. In particular, samples taken from single demes may completely miss the

signatures of species-wide spatial expansion, in that D and Fs fail to exhibit devia-

tions from neutral equilibrium expectations under low-to-moderate levels of gene flow.

These effects have been extended to the infinite-island model (Excoffier, 2004) and

appear to be exacerbated under temporal and/or spatial environmental heterogeneity

(Wegmann et al., 2006).
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Because the ability to quantitatively distinguish between a pure demographic

expansion and a range expansion in a subdivided population hinges on future the-

oretical work, we cannot rule out a scenario of range expansion (with concomitant

increase in species-wide population size) of one or both species following their recent

divergence. Although our WH analyses yield demographic parameter estimates for

the extant species that are consistent with the site frequency spectra for individual

population samples (Tables 2.2, 2.5), they may be biased due to the complexities of

the coalescent process in subdivided populations (discussed above), in concert with

the sampling scheme and unrealistic assumptions of the isolation model. Likewise,

the estimated divergence time (≈ 0.28 Ne generations ago for the most inclusive in-

terspecific contrast; Table 2.5) may be upwardly biased because the full interspecific

multilocus sequence comparison revealed the absence of fixed differences. This lack

of fixed differences implies very recent divergence but also may reflect the effects of

population structure, as accruing fixed differences is expected to take longer under

subdivision compared to divergence under panmixia within sister species (Wakeley,

2000). Given these complexities, there clearly is a need for more realistic models

of speciation that explicitly take population subdivision into account in extracting

signals of species’ demographic history from multilocus sequence data.

4.2 Fit of the isolation model

Despite the fact that the genealogical histories of our samples violate the model’s

assumption of within-species panmixia, we found that the data fit the simple isolation

model quite well, which is primarily a consequence of observing similar proportions

of exclusive polymorphisms, shared polymorphisms and fixed differences across loci

(Tables 2.4, 2.5). An evaluation of multilocus studies using the WH approach sug-

gests that only very recent or current introgression may allow formal rejection of the

isolation model, making this a very conservative test. For example, several multilocus

DPG studies were able to reject the isolation model due to large differences in patterns

of shared polymorphisms and fixed differences among loci, a signature attributed to

recent interspecific gene flow at some (but not all) regions of the genome (Machado

et al., 2002; Besansky et al., 2003). Such among-locus signatures are consistent with

what is known about the genetic architecture of incomplete postzygotic reproductive

isolation, and with inferences drawn from numerous studies on natural hybrid zones

(Barton and Hewitt, 1985; Rieseberg et al., 1999; Coyne and Orr, 2004).
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4.3 Sources of shared polymorphisms and signatures of his-

torical gene flow

In addition to reflecting truly ancestral mutations as envisaged under the isola-

tion model, shared polymorphisms between recently diverged taxa can arise through

introgression subsequent to species divergence, a biologically plausible process un-

der parapatric speciation or upon secondary contact after some divergence in allopa-

try. One approach that may be informative about the historical source of mutations

yielding shared polymorphisms among species uses the proportion of shared polymor-

phisms among all segregating sites. For the pooled S. chilense sample TAC&MOQ,

this proportion is 80/348 (= 0.230) in the contrast with the sympatric S. peruvianum

sample TAR, whereas it is 83/336 (= 0.247) when compared to the allopatric CAN

sample. Inspection of Table 2.4 reveals that these proportions are generally higher in

single-population comparisons. Similar patterns hold when the focal species is S. pe-

ruvianum: in the contrast with the S. chilense sample TAC&MOQ, this proportion is

80/302 (= 0.265) for the sympatric S. peruvianum sample TAR, whereas it is 83/363

(= 0.229) for the allopatric CAN sample. This latter, somewhat lower proportion,

however, is unlikely to be due to consequences of allopatry but instead reflects the

higher level of (exclusive) polymorphism in CAN (Table 2.4). Overall, these patterns

indicate that shared polymorphisms tend to be geographically widespread in both

species (whereas many exclusive polymorphisms are geographically restricted and

overall rare), consistent with them reflecting ancestral mutations. These signatures

appear to make a scenario of very recent introgression in areas of current sympatry

unlikely, which is in agreement with the strong postzygotic barriers revealed in cross-

ing experiments (Rick and Lamm, 1955; Rick, 1979, 1986; Städler et al., 2005); and

see below.

A second approach for probing the historical genesis of shared polymorphisms

among recently diverged species is implemented in the LD-based test of gene flow

(Machado et al., 2002). Using coalescent simulations, we found significantly elevated

mean values of the LD test statistic x in five out of six pooled-population contrasts

(Table 2.6), as well as in several single-population comparisons (data not shown).

More importantly, two loci exhibit consistently high x values across comparisons,

reflecting stronger LD for a subset of intragenic LD than expected if all shared poly-

morphisms were truly ancestral mutations (Figure 2.1). We argue that, in general,

nonsignificant mean values of the LD test statistic are less informative than the data
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for single loci, because a significantly high x at one or more loci might be offset by

low values at other loci, conceivably yielding a nonsignificant mean x. Under this

rationale, there appears to be strong evidence for bidirectional (historical) gene flow

at loci CT066 and CT166. These two loci were among those suggestive of interspe-

cific gene flow in our initial study using single populations per species (Städler et al.,

2005). Importantly, this genealogical signal is not restricted to regions of current

sympatry, as best seen in the contrasts involving the allopatric CAN population (Ta-

ble 2.6). The Ss/Stotal ratios discussed above are in excellent agreement with this

geographically dispersed signature of historical interspecific gene flow.

Figure 2.1 displays the relationship between LD-based signatures of gene flow

and estimates of the population recombination parameter γ across loci. As a group,

the two loci with low P -values (i.e., high observed values of the test statistic x ) are

characterized by an average level of recombination that is about 50% of that for the

five other loci, although there is a lot of scatter for this latter group. Very similar pro-

portions hold when recombination is estimated with Hudson’s composite-likelihood

method, as implemented in the package LDhat (Hudson, 2001; McVean et al., 2002)

(data not shown). Hypothetically, if interspecific gene flow ceased simultaneously

across the genome at some point in time, we would expect that the LD-based signal

for gene flow is maintained longer in regions of low recombination. For a range of re-

combination levels as represented across the studied loci (Figure 2.1), we might then

expect a positive correlation between P -values and levels of recombination. However,

many studies concur that the initial build-up of reproductive isolation is likely to

involve a few loci or genomic regions (with those regions being protected from intro-

gression), while most of the genome remains permeable to interspecific gene flow for

much longer (Rieseberg et al., 1999; Osada and Wu, 2005; Turner et al., 2005; Patter-

son et al., 2006; Machado et al., 2007). Our LD-based results are thus fully compatible

with expectations for regions of low recombination (given that post-divergence intro-

gression has actually occurred), and they are consistent with a suite of observations

on the nature of postzygotic reproductive barriers and their consequences for genomic

divergence.
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Our evidence for post-divergence gene flow between these taxa implies that

some of the polymorphisms shared between S. peruvianum and S. chilense do not

represent genuine ancestral mutations. Unlike some other large-scale DPG studies

that found sharing of entire haplotypes between species with partially overlapping

ranges (Machado et al., 2002; Besansky et al., 2003; Ramos-Onsins et al., 2004), our

evidence for introgression is much more subtle and simultaneously more difficult to

uncover. The implications of having found evidence for a divergence-with-gene-flow

model of speciation are, perhaps, also more interesting than for species that continue

to exchange genes. In the wild tomato taxa under study, speciation has resulted in

genomes that appear to be fully isolated from each other despite the extremely low

level of molecular divergence (indicative of recent speciation), as discussed in the next

section.

4.4 Implications of patterns of postzygotic reproductive iso-

lation

Most accessions of S. peruvianum that have been tested are isolated from S.

chilense by strong intrinsic postzygotic incompatibilities, in that usually high inci-

dences (≈ 97%) of embryonic breakdown were observed in experimental crosses (Rick

and Lamm, 1955; Rick, 1979, 1986). These results have been obtained under non-

competitive interspecific pollination, and it is thus unknown if post-pollination or

other prezygotic barriers contribute to reproductive isolation between these species

in sympatry. Our previous study identified intriguing patterns of postzygotic in-

compatibility in terms of both geography and developmental failure, as synthesized

from data and descriptions in the original studies (cited above; Städler et al. (2005)).

Briefly, the postzygotic barrier is strongest in regions of sympatry and further south,

where only S. chilense occurs. Experimental crosses using S. peruvianum s.l. acces-

sions from northern Peru, however, yielded partially fertile F1 hybrids in appreciable

frequencies (Rick and Lamm, 1955; Rick, 1986). Most of these northern Peruvian

accessions have been proposed to constitute the novel species S. arcanum (Peralta

et al., 2005; Spooner et al., 2005), but the striking feature of the strongest repro-

ductive barriers concurrent with sympatry and low molecular divergence (i.e., sister

species) remains. These combined biological facets are indicative of reinforcement of

reproductive isolation that in the case of postzygotic barriers to interspecific gene

flow might be mediated by direct selection for hybrid inviability (Grant, 1966; Coyne,
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1974; Wallace, 1988; Coyne and Orr, 2004).

Both the described hybrid embryonic breakdown and the fact that crosses be-

tween the cultivated tomato (S. lycopersicum) as the maternal parent and both S.

peruvianum and S. chilense result in viable hybrids only under embryo culture, im-

plicate endosperm-embryo imbalances in the usual failure of such crosses (Rick and

Lamm, 1955; Rick, 1986; Städler et al., 2005). From a mechanistic point of view,

the seemingly very rapid build-up of postzygotic barriers between S. peruvianum and

S. chilense might have been caused by changes in any of a number of genes instru-

mental in endosperm function. Embryo inviability (hybrid seed failure) is a common

interspecific barrier in angiosperms, and there is substantial evidence that such bar-

riers involve imbalances in endosperm-embryo interactions early in seed development

(Cooper and Brink, 1942; Lester and Kang, 1998; Bushell et al., 2003; Gutiérrez and

Meserve, 2003; Gehring et al., 2004).

These provisional interpretations account for the rapidity (and possibly very

local genomic signature) of the evolution of near-complete postzygotic isolation and

imply the involvement of natural selection as one of the forces governing species diver-

gence. As with all studies using a DPG approach, the inference of natural selection

in the history of species divergence rests on evidence for non-allopatric speciation

(i.e., evidence for post-divergence gene flow) and thus is necessarily an indirect one.

Complementary approaches will be required to demonstrate (past) natural selection

on genes or genomic regions directly involved in important trait differences or repro-

ductive incompatibility among species, as discussed elsewhere (Städler et al., 2005;

Noor and Feder, 2006).
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5 Conclusion

Our extensive study of the two closely related wild tomato species S. peru-

vianum and S. chilense has uncovered evidence for species divergence under residual

gene flow. The geographically dispersed signature of post-divergence gene flow (i.e.,

not restricted to regions of current sympatry) is consistent with historical introgres-

sion and subsequent spread through much of the species’ ranges, either via range

expansions or intraspecific gene flow. More generally, historical introgression points

to a parapatric mode of speciation or at least requires a period of secondary contact,

during which natural selection was instrumental in completing reproductive isola-

tion. The demographic estimates under the WH isolation model imply population

(or range) expansion for S. peruvianum and an effective size for S. chilense similar

to that of the ancestral species. From the outset, however, the WH assumption of

random mating within species was known to be violated for our dataset, as it is for

any such study in subdivided species regardless of the sampling scheme. Because

of the complexities of the coalescent process in subdivided populations, the WH esti-

mates of both historical demography and the time since speciation may be biased. To

fully exploit the genealogical information contained in our sequence data, one would

need an explicit model allowing for population subdivision in both the ancestral and

the extant species, with interspecific gene flow subsequent to divergence included as

parameters to be estimated from the data.
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Roselius, K., Stephan, W., and Städler, T. (2005). The relationship of nucleotide

polymorphism, recombination rate and selection in wild tomato species. Genetics,

171:753–763.

Rosenberg, N. A. and Nordborg, M. (2002). Genealogical trees, coalescent theory

and the analysis of genetic polymorphisms. Nat Rev Genet, 3:380–390.

Rozas, J., Sánchez-DelBarrio, J. C., Messeguer, X., and Rozas, R. (2003). DnaSP,

DNA polymorphism analyses by the coalescent and other methods. Bioinformatics,

19:2496–2497.

Santiago, E. and Caballero, A. (2005). Variation after a selective sweep in a subdi-

vided population. Genetics, 169:475–483.

Savolainen, O., Langley, C. H., Lazzaro, B. P., and Fréville, H. (2000). Contrasting
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Städler, T., Roselius, K., and Stephan, W. (2005). Genealogical footprints of specia-

tion processes in wild tomatoes: demography and evidence for historical gene flow.

Evolution, 59:1268–1279.

Stephan, W. and Langley, C. H. (1998). DNA polymorphism in Lycopersicon and

crossing-over per physical length. Genetics, 150:1585–1593.

Strobeck, C. (1987). Average number of nucleotide differences in a sample from a

single subpopulation: A test for population subdivision. Genetics, 117:149–153.

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by

dna polymorphism. Genetics, 123:585–595.

Tanksley, S. D., Ganal, M. W., Prince, J. P., de Vicente, M. C., Bonierbale, M. W.,

Broun, P., Fulton, T. M., Giovannoni, J. J., Grandillo, S., and Martin, G. B. (1992).

High density molecular linkage maps of the tomato and potato genomes. Genetics,

132:1141–1160.

Taylor, I. B. (1986). Biosystematics of the tomato. In The Tomato Crop: A scien-

tific Basis for improvement, edited by Atherton, J. G. and Rudich, J., pages 1–34,

London. Chapman & Hall.

Tenaillon, M. I., Sawkins, M. C., Long, A. D., Gaut, R. L., Doebley, J. F., and Gaut,

B. S. (2001). Patterns of DNA sequence polymorphism along chromosome 1 of maize

(Zea mays ssp. mays L.). Proc Natl Acad Sci U S A, 98:9161–9166.

Tenaillon, M. I., U’Ren, J., Tenaillon, O., and Gaut, B. S. (2004). Selection versus

demography: a multilocus investigation of the domestication process in maize. Mol

Biol Evol, 21:1214–1225.
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Appendix A
Primers

Primers used for PCR-reactions are as following:

F — Forward primer

R — Reverse primer

Tm – Annealing temperature

Locus CT093

CT093F 5’ CTCCCCTCGGCTACAGCATT 3’

CT093R 5’ AGCAGCCCTTCAGAACGGACT 3’

Tm = 55-56◦C

Locus CT208

CT208F 5’ CTATGGAGTTATATTTTCACCACA 3’

CT208R 5’ ACTTTTGAGAGGACATCAATTT 3’

Tm = 54◦C

Locus CT251

CT251F 5’ TCTCTTCATCCAGTTATCCG 3’

CT251R 5’ CAAGGAAGTATCGAGTCCGA 3’

Tm = 50-53◦C
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Locus CT066

This locus had to be amplified as two separate pieces

CT066F-a 5’ CGCTGTCCCTCTTACCACCC 3’

CT066R-a 5’ AATTGCTCTGCCACTTTCGCTAC 3’

Tm = 57◦C

CT066F-b 5’ TATTCTGAGTTAGTCCGCCTTGG 3’

CT066R-b 5’ ATGATAGGTGCGAACAGGGTC 3’

Tm = 55◦C

Locus CT166

CT166F 5’ TGGAGCAGAGGTCAAGATTAC 3’

CT166R 5’ CATTCCATTGCTCTGCCTTC 3’

Tm = 56◦C

Locus CT179

CT179F 5’ CGAATTCATCTCCACACTCA 3’

CT179R 5’ TAAGACCAGCCAAACTACCAC 3’

Tm = 54◦C

Locus CT198

CT198F 5’ TGACAAACTACCGAATTACGA 3’

CT198R 5’ GGTGATTTATTTAGTGCCACA 3’

Tm = 54◦C

Locus CT268

CT268F 5’ CTATGGAGTTATATTTTCACCACA 3’

CT268R 5’ ACTTTTGAGAGGACATCAATTT 3’

Tm = 56◦C



Appendix B
Protocols

DNA Extraction

The DNeasy Plant Mini Kit was used to extract DNA from dried tomato leaves,

following protocol in the Handbook 01/2004 (Pages 18-21) with minor changes as

following.

Cell Lysis

1) transfer 10-15 mg of silica dried leaves into a 1.5 ml reaction tube.

2) incubate the tube in liquid nitrogen and then pulverize plant material with a sterile

plastic pistil.

3) add 450 µl of buffer AP1 into the tube and vortex vigorously until the plant

material is suspended.

4) add 4 µl of RNase A (100 mg/ml) into the reaction tube.

5) incubate the mixture in a water bath for 30-35 minutes at 65 ◦C, and mix gently

by inverting tube every 10 minutes.

6) add 130 µl of buffer AP2 to the lysate mix, then incubate for 5 minutes on ice.

Cell-debris removement

1) centrifuge the lysate at 13,000 rpm for 5 minutes.

2) transfer the supernatant to QIAshredder Mini Spin Column.

3) centrifuge at 7000 rpm for 1-2 minutes.

4) remove the lysate by adding 1.5 volumes of Buffer AP3/E and mix by pipetting.
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DNA cleaning

1) transfer 650 µl of the mixture to a DNeasy Mini Spin Column placed on a 2 ml

collection tube.

2) centrifuge at 7000 rpm for 1-2 minutes and then discard flow-through and collection

tube.

3) place DNeasy Mini Spin Column in a new collection tube and clean twice by each

time adding 500 µl of buffer AW to the column.

4) centrifuge at 7000 rpm for 1-2 minutes and discard flow-through.

5) centrifuge again for 2 minutes at 13,000 rpm to dry the membrane.

6) dry the column at 37 ◦C for 15 minutes to remove residual ethanol.

DNA elution

1) transfer the dried column into a new 1.5 ml tube.

2) add 50 ml of buffer AE directly into the DNeasy membrane.

3) incubate for 5 minutes at room temperature.

4) centrifuge for 2 minute at 7000 rpm.

5) keep the tube containing approximately 50 µl genomic DNA.

6) repeat steps 1-5, until this step two tubes of 50 µl dilute genomic DNA are obtained.

7) store DNA at 4 ◦C (or at -20 ◦C for long-term storage).

PCR Reactions

All PCR reactions were performed in an end volume of 30 µl.

Tag-polymorrase reaction

PCR mixture

19.05 µl ddH2O

3.0 µl 10x Buffer

3.0 µl dNTPs

1.2 µl MgCl2 (50 mM)

1.5 µl Primer F (10 µM)

1.5 µl Primer R (10 µM)
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0.15 µl Taq-Polymerase

0.6 µl Template DNA

PCR cycle Program

1) initial denaturation at 94 ◦C, 4 minutes

2) 30 amplification cycles:

Denaturation at 94 ◦C, 45 seconds

Annealing at locus-specific Tm (see appendix A), 1.5 minute

Extension at 72 ◦C, 3 minutes

3) final extension at 72 ◦C for 3 minutes

4) hold at 4 ◦C

Phusion reaction

PCR mixture

19.6 µl ddH2O

6.0 µl 5x HF-Buffer

0.6 µl dNTP mix

1.5 µl Primer F (10 µM)

1.5 µl Primer R (10 µM)

0.3 µl Phusion-Polymerase

0.5 µl Template DNA

PCR cycle Program

1) initial denaturation at 98 ◦C, 30 seconds

2) 30 amplification cycles:

denaturation at 98 ◦C, 5 seconds

annealing at locus-specific Tm (see appendix A), 20 seconds

extension at 72 ◦C, 1 minute

3) final extension at 72 ◦C for 8 minutes

4) hold at 4 ◦C
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PCR Clean-up

PCR reactions were cleaned using ExoSAP (Cleveland, USA)

1) add 2 µl of ExoSAP into PCR product (30 µl)

2) run ExoSAP profile in PCR machine:

37 ◦C for 30 minutes

80 ◦C for 15 minutes

Sequencing

Sequencing were perform on a MegaBace 1000 (Amersham Pharmacia Biotech) and

an ABI 3730 DNA Analyzer (Applied Biosystems). The reaction were run separately

for forward and reverse primers for the final volume of 10 µl per reaction.

MegaBace 1000

Using the DYEnamic ET Terminator Cycle Sequencing Kit protocol (Amersham

Biosciences, UK).

Sequencing reaction

1.5 µl PCR product

2.0 µl Primer (2 µM)

4.0 µl Sequencing mix

2.5 µl ddH2O

Sequencing program

1) 30 amplification cycles of each:

Denaturation at 95 ◦C, 20 seconds

Annealing at 50 ◦C (depends on Tm), 15 seconds

Extension at 60 ◦C, 60 seconds

2) Hold at 4 ◦C
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sequencing clean-up for MegaBace

Sequencing clean-up was done using Ethanol DNA precipitation. Cleaning was per-

formed directly on the 96-well plate.

1) add 10 µl of ddH2O and 2 µl of Sodium acetate/EDTA into each well.

2) add 80 µl of ethanol (98%) into each well.

3) cover the plate with aluminium foil and vortex.

4) centrifuge the plate for 45 minutes at 3000 rpm.

5) discard the supernatant.

6) wash two times with 150 µl of ethanol (70%).

7) dry the plate for 2 hours at room temperature (until all ethanol evaporate).

8) Before running on the sequencer add 15 µl of ddH2O and vortex shortly to elute

the DNA pellet.

ABI 3730

Using the ABI BigDye Teminator v1.1 sequencing kit (Amersham Biosciences, UK).

Sequencing reaction

2.0 µl DNA from PCR product

2.0 µl Primer (10µlM)

1.0 µl 5x Buffer

2.0 µl Sequencing mix

3.0 µl ddH2O

Sequencing program

1) initial denaturation at 96 ◦C, 1 minute

2) 50 amplification cycles of each:

Denaturation at 96 ◦C, 20 seconds

Annealing at 50-55 ◦C (depends on Tm), 15 seconds

Extension at 60 ◦C, 4 minutes

3) Hold at 4 ◦C
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in both professional and personal aspects. His perfectionist in work helps me to

improve my working skills, especially during the last period of completing this thesis.

Thank you very much.

I would like to thank Prof. Susanne Renner and Dr. Laura Rose for their

invaluable suggestions during my committee meeting. I am most grateful to ‘plant

people’, Kestin Roselius, Tobias Marczewski, Lukasz Grzeskowiak, and Carlos Merino

for several valuable discussions, in particular Lukasz and Carlos for reading part of

my manuscript. I am thankful to Sarah Peter for her friendship and moral support.

I must also thank Andy and Angelika to introduce me using LaTeX. Of course, I am

very thankful to the entire Munich group for the good working atmosphere and the

companionship that they provided during my stay in Munich.

My big thanks go to Traudl Feldmaier-Fuchs for excellent and expert laboratory

assistance, particularly for her patience with my German “You are my best German

teacher I ever have”, Vielen Dank!!. My thank extends to Katrin Kümpfbeck, Anne
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