Improving the Identification of a Penicillin
Fermentation Model

Mark Timothy Syddall

A thesis submitted to the Faculty of Engineering
of the University of Birmingham
for the degree of
DoCTOR OF PHILOSOPHY

The School of Chemical Engineering
Faculty of Engineering

The University of Birmingham
Birmingham, UK

B15 2TT

October 1998

UNIVERSITYOF
BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

To my grandparents, LNJ and GG.

ABSTRACT

This work concentrates on the selection and improvement of differential equa-
tion based models of the penicillin G fermentation. Published penicillin fer-
mentation models have been reviewed and compared with regard to their
abilities to predict fermentation behaviour, genetic algorithms have been ap-
plied to the design of optimal experiments for model parameter estimation,
and a new approach to assessing the theoretical identifiability of model struc-
tures has been proposed. When applied to the best penicillin fermenation
model yet found, this new approach suggests that the model’s parameters
are uniquely identifiable.

The best performing model was shown to be a morphologically structured
model for which measurement data related to the various morphologically
distinct regions were obtained using image analysis. This model was modified
to increase its speed of execution, and extended to describe fermentations
where lactose was present in the inoculum.

Design criteria from the field of optimal experiment design were combined
with genetic algorithms as a technique for searching through the range of pos-
sible input combinations, subject to constraints on the fermenter operation,
to develop experimental feed profiles.

The theoretical identifiability of the fermentation model has been assessed
for the first time, using a novel approach to identifiability testing which uses
a symbolic mathematics package, along with subsequent post-processing, to
determine almost at a glance whether or not a fermentation model should be
uniquely identifiable.

ACKNOWLEDGEMENTS

I would like to thank Dr. C. A. Kent and Professor C. R. Thomas, my
supervisors, for their guidance and advice over my three years in Birmingham,
and for allowing me the freedom to pursue the occasional diversional line of
enquiry. Particular thanks go to Dr. Gopal Paul, for providing me with
experimental data from fermentations that he has carried out, and for his
work in constructing and building on his original model. Thanks also to
the collaborators from the University of Newcastle, Gary Montague, Maia
Ignova and Alan Ward for insightful comments, useful discussions, and the
opportunity to practise presenting material on a friendly audience.

Without the technical staff of the Biocentre, little of the work supporting
this thesis would have been possible, so thanks to Hazel Jennings, Elaine
Mitchell, Dave Bowden, David French and Rob Haddock for their expertise.
I have also appreciated being able to chat ideas through with the occupants of
G20 over the years, so thanks to Phil Cox, Jonathan Bleier, Sanja, Immanuel,
Bénédicte, Grainne, Jayne, Stuart, Nigel, Peter, Trevor, Maria, Ade, Chris,
Geni, Patricia, Iyad, Heike, Katja and the others that I am bound to have
forgotten. G20 has been a busy place over the last three years.

I gratefully acknowledge the financial support of the EPSRC throughout
my PhD studentship, and the support of both the EPSRC and the School of
Chemical Engineering in helping fund my visit to the ‘Computer Applications
in Biotechnology 7" Conference in Osaka in June, 1998.

CONTENTS

1. Introduction e e e 1
1.1 The Penicillin Fermentation 1
1.2 Fermentation Modelling 2

1.21 Typesofmodel 3
1.3 Model-based Control Applications 4
1.3.1 Estimation. 5
1.3.2 Optimisation 6
1.3.3 Control 6
1.4 The Importance of Good Models 7
1.5 Layout of this Thesis 7
1.6 Hardware and Software 9

2. Selecting the Best Model 10
2.1 Introduction 10
2.2 Model Structure Comparison 11

2.2.1 Biomassterms. 15
2.2.2 Substrateterms L0 18
2.2.3 Penicillin terms 20
2.2.4 Dilutionterms. 23
2.2.5 Summary of model features 25
2.3 Comparing Model Performance 26
2.3.1 Fermentation method 26
2.3.2 Modelling and tuning methods 28
2.3.3 Validationresults 29
2.4 Discussion e 31
2.4.1 Difficulty in tuning modelso 31
2.4.2 Comparison of models’ performances 33
2.4.3 Quantitative comparison of the prediction errors 40

2.5

Conclusions s, 43

Contents vii
2.6 Notation 44
3. Simplifications and Extensions to the Paul and Thomas Model . . . 54
3.1 Simplifying the Vacuolation Process Model 54
3.1.1 Simplifications considered 95
3.1.2 Comparing the simplified models 60
3.1.3 Results — Single step models 62
3.1.4 Results - Two step models 67
3.1.5 Discussion 73

3.2 Including Lactose as a Second Substrate 75
3.2.1 A previous two substrate penicillin fermentation model 75
3.2.2 Two substrates in the Paul and Thomas (1996) model . 79

3.3 Notation 81
4. Improving Parameter Confidence 83
4.1 The Form of the Equations 83
4.2 Tuning the Model Parameters 84
4.2.1 A geometrical interpretation of the errors 85
4.2.2 Considering ellipsoids 88

4.3 Optimal Experiment Design 89
4.3.1 Criteria for experiment design 92

4.4 Multi-rate Extension to the Information Matrix 98
4.4.1 Example of multi-rate information matrix expression 99

4.5 Calculus Based Optimisation Techniques 102
4.5.1 Steepest descent L. 102
4.5.2 Steepest descent with minimisation along a line 102
4.5.3 Newton-Raphson 103
454 Gauss-Newton 106
4.5.5 Marquardt method 107

4.6 Introduction to Genetic Algorithms 109
4.6.1 Genetic algorithms, a HOWTO 111
4.6.2 Analysis of convergence L. 114

4.7 Selecting a Search Method 119
4.7.1 Gradient descent-based optimisation algorithms 121
4.7.2 Genetic algorithmso 121

4.8 Designing Optimal Experiments Using Genetic Algorithms . . 125
4.8.1 Input feed profile parameterisation 126
4.8.2 Genetic algorithm parameters 126

Contents viii

4.8.3 Feed rate limits and constraints 127
4.8.4 Objective function for optimal experiment design . . . 129
4.9 Results. 133
4.9.1 Experiment designs — real-valued 134

4.9.2 Experiment designs — 5 bit binary-valued, unconstrained 134
4.9.3 Experiment designs — 5 bit binary-valued, constrained . 137

4.10 Discussiono 140
4.11 Notation 153
. Considering Model Identifiability 157
5.1 The Problem 158
5.2 Theoretical Identifiability 159
5.2.1 The Taylor series approach 160
5.2.2 The state isomorphism approach 161
5.2.3 The differential algebraic approach 164

5.3 A New Approach to Identifiability 167
5.3.1 Thetest 167
5.3.2 Theproblem. oo 169
5.3.3 What if not all (; are measurable? 176
5.3.4 Finding k; from kio 177

5.4 Pohjanpalo’s Compartmental Model 179
5.4.1 The linear model 179
5.4.2 The nonlinear model 180

5.5 An Example from Ljung and Glad (1994) 182
5.5.1 The Ritt’s algorithm results 183
5.5.2 Results following the new approach to identifiability . . 185

5.6 Identifiability Analysis of the Model of Paul et al. (1998) . . . 186
5.6.1 The X0 expression 187
5.6.2 The X1 expression 191
5.6.3 The X2 expression 196
5.6.4 The X3 expression 197
5.6.5 The X4 expression 200
5.6.6 The S expression 200
5.6.7 The L expression 201
5.6.8 The P expression 203

5.6.9 Identifiability result for the model of Paul et al. (1998) 204
5.7 Notation 205

Contents ix

6. Conclusions and Further Work 209
6.1 This Thesis 209
6.2 Future Work 210

6.2.1 Open-loop economic optimisation 211
6.2.2 Estimators. 212
6.2.3 Controllers. 214
6.3 Notation 215

Appendix 216

A. Models Considered in This Work 217
A.1 Unstructured Models 217

A.1.1 Fishman and Biryukov (1974) 217
A.1.2 Heijnen et al. (1979) 219
A.1.3 Bajpai and Reuf}(1980/1981) 221
A.1.4 Montague et al. (1986) 222
A.1.5 Nicolai et al. (1991) 223
A.1.6 Menezes et al. (1994) 224
A1.7 Tiller et al. (1994) 225
A18 Klugeetal (1992) 227
A.2 Morphologically Structured Models 229
A21 Megee et al. (1970)o 229
A.2.2 Nestaas and Wang (1983) 232
A2.3 Cagney et al. (1983) 234
A.2.4 Paul and Thomas (1996) 235
A.3 Model Simplification L. 237
A.3.1 Thetwostepmodels 237
A3.2 Theonestepmodels 239
A4 Paul and Thomas (1998) 240
A5 Notation 242

B. MATLAB Routines v .. 248

C. Perl Program for Parsing Model Equations 258
C.1 The Perl Program 259
C.2 A Maple Session 266

C.3 Output from the Perl program 294

Contents X

D. Generating the Fisher Information Matrix Using Maple 313
D.1 Start of Maple Session, and Introductory Comments 313
D.2 Model Equations 314
D.3 Nonlinear State Derivative Vector 315
D.4 States Vector 316
D.5 Calculating the Derivatives wrt the States 317
D.6 Parameters Vector 319
D.7 Calculating the Derivatives wrt the Parameters 320
D.8 Generating C code for use in the SIMULINK S-function. . . . 322

E. Conference Paper 330

LIST OF FIGURES

2.1
2.2
2.3
24
2.5

2.6

2.7

2.8

2.9

2.10

211

Product formation as per Heijnen et al.
Product formation as per Tiller et al.
Feed profiles used in generating the data sets used
SIMULINK block diagram for the model of Paul et al. (1998)
Comparison of nonlinear and linearised specific growth rate
EXPIeSSIONS . . . v v i e e e e e e
Predicted and measured concentrations for unstructured mod-
els related to the model of Bajpai and Reuf§ tuned for constant
feed rate fermentation data and validated against time-varying
feed rate fermentation data
Predicted and measured concentrations for unstructured mod-
els related to the model of Bajpai and Reufl tuned for time-
varying feed rate fermentation data and validated against con-
stant feed rate fermentation data
Predicted and measured concentrations for unstructured mod-
els not related to the model of Bajpai and Reufl tuned for
constant feed rate fermentation data and validated against
time-varying feed rate fermentation data
Predicted and measured concentrations for unstructured mod-
els not related to the model of Bajpai and Reufl tuned for
time-varying feed rate fermentation data and validated against
constant feed rate fermentation data
Predicted and measured concentrations for morphologically
structured models tuned for constant feed rate fermentation
data and validated against constant feed rate fermentation
data
Predicted and measured concentrations for morphologically
structured models tuned for time-varying feed rate fermen-
tation data and validated against constant feed rate fermen-
tation data

46

List of Figures xii

3.1

3.2

3.3

3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8

4.9
4.10
4.11

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

Diagram showing the vacuolation process as modelled in Paul
and Thomas (1996). The boxed area indicates those parts of

the model affected by the model simplification. 56
Conversion from non-growing hyphae to fully vacuolated hy-

phae via an intermediate, partially vacuolated state o7
Conversion directly from non-growing hyphae to fully vacuo-

lated hyphae oo 58
Comparing predicted data— Model 1 53 (with lysis) 65
Comparing predicted data— Model 1 %> 3 (with lysis) 66
Comparing predicted data— Model 1 9 5 3 with lysis . . . 71
Comparing predicted data— Model 1 L2 5 3 with lysis . . . 72
3D plot of a quadratic function 90
Steepest descent directions for an ellipsoidal objective function 104
Steepest descent directions for a circular objective function . . 105
A Canonical Genetic Algorithm 112

Probability of convergence for a GA as a function of population
size and number of generations (all chromosomes were 33 bits

long) 118
3 dimensional contours for a two-minima function 122
2 dimensional contours for a two-minima function 123

Progress of genetic algorithm over nine generations; each ‘+’
is a parameter pair evaluated in the generation indicated by

the figure above the subplot 124
Input feed rates and simulated volume profiles (20 bit) 135
Simulated state values for 20 bit designs 136
Input feed rates and simulated volume profiles (5 bit uncon-

strained) 137
Simulated state values for unconstrained 5 bit designs 138
Input feed rates and simulated volume profiles (5 bit constrained)142
Simulated state values for constrained 5 bit designs 143
Sensitivity of X, to the model parameters 144
Sensitivity of X; to the model parameters 145
Sensitivity of X, to the model parameters 146
Sensitivity of X3 to the model parameters 147
Sensitivity of S to the model parameters 148

Sensitivity of L to the model parameters 149

List of Figures

4.21 Sensitivity of P to the model parameters

LIST OF TABLES

2.1
2.2
2.3
24
2.5

3.1

3.2

3.3
3.4

3.5

3.6

4.1
4.2
4.3
4.4
4.5

B.1
B.2
B.3
B.4
B.5
B.6

Summary of models’ features. 25
Expected residual errorso 30
Validation results for constant feed tuning 31
Validation results for time-varying feed tuning 32
Average summed squared error in predicting fermentation per-

formance 42
Prediction errors for single-step models tuned on constant feed

profile data, predicting time-varying feed profile data 63
Prediction errors for single-step models tuned on time-varying

feed profile data, predicting constant feed profile data 64
Average total prediction errors for the single-step models . . . 64
Prediction errors for two-step models tuned on constant feed

profile data, predicting time-verying feed profile data 68
Prediction errors for two-step models tuned on time-varying

feed profile data, predicting constant feed profile data 69
Average total prediction errors for the two-step models 70
Criteria for optimal experiment design 97
Genetic algorithm operating parameters 128
Determinant values for optimal experiment designs 135
Feed profile specification 141
Determinant values for simple feed profiles 153
Listing for eg tun.m 250
Listing for eg targ.m 253
Listing for eg data.m 254
Listing for fb14.mo 255
Listing for eg_scrga.m 256

Listing for eg_objga.m 257

1. INTRODUCTION

The University of Birmingham Centre for Bioprocess Engineering Rolling
Grant Project B: ‘Monitoring and Physiological Control of Productive Fer-
mentations’ proposes to combine physiological models of fermentations with
Artificial Neural Networks (ANNs) to produce hybrid models and to inves-
tigate their applicability for use in monitoring and controlling the penicillin
fermentation.

The work described in this thesis forms part of that larger body of work
aimed at developing control and optimisation applications based on physio-
logical models of the penicillin fermentation. It is intended that the result-
ing applications should be the best that can currently be achieved, based
solely on physiological equation models, and that the applications developed
would provide a baseline for performance against which schemes using artifi-
cial neural networks, and hybrid schemes incorporating both artificial neural

networks and physiological model equations, could be compared.

1.1 The Penicillin Fermentation

The penicillin fermentation has been performed industrially since the Second
World War. The original Penicillium notatum cultures had yields of only 2

mg/l, but searching many different varieties of Penicillium led to the identifi-

1. Introduction 2

cation of the higher-yielding variant Penicillium chrysogenum. A systematic
process of deliberate exposure to mutagens and screening to find high yield-
ing mutants, along with improvements in fermentation operation and media
have given an increase in titre to over 20 g/l (Primrose, 1987).

The world market in penicillin is competitive, with recent developments
in India and China leading to oversupply and a consequent drop in the price
of penicillin from $ 18/bu in the middle of 1996 to $ 10/bu in the second
quarter of 1997, but the size of the market as a whole is still considerable, de-
spite a drop in production from about 40,000 metric tons in 1996 to around
37,000 metric tons in 1997 (Chemical Market Reporter, 1998). With the
market remaining competitive, and new producers in India and China in-
creasing their output, the improved operation and control of fermentations

remain important concerns for penicillin producers.

1.2 Fermentation Modelling

Fermentation models are produced for two main reasons: to test hypotheses
about the way in which the fermentation behaves, and to provide a relatively
quick and cheap way of experimenting with fermentation feed profiles and
control strategies. In this thesis we are mainly concerned with being able
to predict the behaviour of a fermentation, with the goal of using a model
which describes the fermentation well in developing an open-loop optimal
feed profile to maximise the profitability of the fermentation.

Although unstructured models, where the biomass is treated as an aver-
aged, lumped whole have been used to model the penicillin fermentation, the

validity of using such an approach to model fermentations which employ fila-

1. Introduction 3

mentous fungi has been challenged (Nielsen, 1992), since “the growth mech-
anism of filamentous fungi is ... completely different from that of unicellular
organisms” and so “for a complete description of fermentation processes it is

. important to consider the hyphal structure”.

1.2.1 Types of model

Schiigerl (1986) gave the following list of levels on which models used in
biotechnological applications may be developed. (Both the level on which
the models are developed and descriptive names for the type of models were

given.)
e molecular or enzyme level (enzyme synthesis models)
e intracellular component level (structured cell models)
e cellular level (kinetic models)
e cellular environmental level (unstructured reactor models)
e dynamic cellular environmental level (structured reactor models)

Since the availability of on-line fermentation measurements is essential
for models to be used as part of a control system, it is not currently pos-
sible to develop control systems based around Schiigerl’s first two levels of
model, enzyme synthesis models and structured cell models, as on-line mea-
surements of enzyme and intracellular concentrations are not feasible. Of the
remaining three levels listed, the cellular level and the cellular environmental
level are commonly combined when constructing fermentation models, with

simple kinetics being used to describe biomass growth, product formation

1. Introduction 4

and substrate consumption, and the assumption commonly being made that
the fermenter is well-mixed and so may be approximated by a continuous
stirred tank reactor (CSTR).

The models considered in this work are typically made up of terms de-
scribing processes which are known or proposed as occurring during the
course of the penicillin fermentation. Historically such models have been
built up using terms familiar to fermentation engineers, such as Monod,
Contois and inhibition kinetics (Nielsen and Villadsen, 1994). (The equa-
tions defining the models considered in the course of this work are given
in Appendix A.) Although these do not describe the underlying metabolic
processes carried out by the organism, they are generally accepted as be-
ing good approximations to the gross, overall behaviour observed during the
fermentation (Nielsen and Villadsen, 1994).

Attention has specifically not been focussed on models based around ar-
tificial neural networks, as one of the goals of the overall project within
which the work described in this thesis lies is to provide the best exploita-
tion of knowledge-based differential equation models of the penicillin fer-
mentation, against which the performance of pure artificial neural network
models and hybrid differential equation/artificial neural network models in

control-related applications may be compared.

1.3 Model-based Control Applications

Provided that a model gives a sufficiently close description of how the fer-
mentation proceeds, it may be possible to make practical use of it. Three of

the more common applications of models in fermentation control strategies

1. Introduction 5

are to estimation of states and rates, open-loop optimisation of feed profiles

(and other input profiles), and to the construction of controllers themselves.

1.3.1 Estimation

The use of models in constructing state and rate estimators for use with fer-
mentations occurs often in the published literature. A range of techniques has
been applied to the on-line estimation of fermentation states, with extended
Kalman filter approaches possibly being the most common (Tarbuck et al.,
1986; Nahlik and Burianec, 1988; Pons et al., 1988; Shi and Yuan, 1988;
Lee and Ricker, 1994; Myers et al., 1996); recursive parameter estimation
(Montesinos et al., 1995) is an alternative that has been applied to a struc-
tured model describing the Candida rugosa fermentation. Di Massimo et al.
(1992) applied both partially and fully adaptive estimators to the estimation
of biomass concentration using offgas measurements taken from an industrial
penicillin fermentation.

Estimators have also been constructed to track growth and production
rates on-line (Hardwicke et al., 1991; Cazzador and Lubenova, 1995; Farza et al.,
1997) and have been integral in the construction of control schemes associ-
ated with pre-designed, open-loop optimal fermentation trajectories (Gattu
and Zafiriou, 1995; King, 1997). It is therefore not unreasonable to assume
that ultimately an on-line estimator for the penicillin fermentation may be
constructed using the refined models available after using the methods de-

scribed later in this thesis.

1. Introduction 6

1.3.2 Optimisation

The use of models in seeking optimal control trajectories for the penicillin
fermentation has a long history, and many attempts at this have been made
over the years (Fishman and Biryukov, 1974; Lim et al., 1986; San and
Stephanopoulos, 1989; van Impe et al., 1992; van Impe and Bastin, 1995;
Rodrigues and Filho, 1996). The models used as the bases for these designs
were the model due to Ramkrishna et al. (1967), the widely used model of
Bajpai and Reuf(1980), and the model of Nicolai et al. (1991).

1.3.3 Control

The use of models in the construction of controllers for fermentations is al-
most inextricably bound up with the previous two model applications. Since
on-line measurements of fermentations tend to be limited, with offgas analysis
being the most common high-rate measurement, such analysis is frequently
used as input to state estimators with the state estimate produced being
employed as the measured value in controllers designed to track pre-designed
optimal trajectories (King, 1997).

Montague at al. (1986), working with models of the penicillin fermen-
tation, combined an extended Kalman filter with a self-tuning controller.
Van Impe and Bastin (1995) used the penicillin-G fermentation to illustrate
the performance of adaptive controllers making use of three different sets of
available measurements: biomass and substrate concentrations, the substrate
concentration only, and on-line measurement of the carbon dioxide evolution
rate (CER).

It is anticipated that future work, following on from that described here,

1. Introduction 7

will consider the use of the best-performing differential equation based models

in the optimisation, estimation and control of the penicillin fermentation.

1.4 The Importance of Good Models

The better the model fits and predicts fermentation data, the closer to the
optimum any ‘optimal’ feed profile designs based on the model will be, the
less difficulty there is likely to be in constructing on-line estimators (using the
more frequent offgas, dissolved oxygen concentration and dissolved species
(HPLC) measurements) to produce estimates of biomass concentrations be-
tween sample intervals for use as a part of a control scheme, and the easier it
may be to produce a robust control scheme which can cope with inaccuracies
in the model. For these reasons, this thesis concentrates on selecting the
best performing of the existing published models of the penicillin fermenta-
tion, and on designing experiments to produce data on the basis of which

confidence in the model’s parameters may be increased.

1.5 Layout of this Thesis

This thesis outlines the process by which the best of the available penicillin
fermentation models was identified and refined, and then goes on to describe
theoretical applications concerned with model identification and model iden-

tifiability.

e Chapter two
In order to be confident that we have found the best basis against

which to compare the ANN applications, it was considered reasonable

1. Introduction 8

to start with the penicillin fermentation model which best describes the
behaviour of the penicillin fermentation, both in fitting to measured

data and in predicting the behaviour of fermentations.

e Chapter three
Having found the best-performing of the existing penicillin fermenta-
tion models, some work was then necessary to improve the performance
of the model for our purposes. This involved simplifying part of the ex-
isting model, with consequent improvements in simulation speed, and
adding a model state and relationships to describe the way in which an

additional substrate, lactose, is used during the fermentation.

e Chapter four
On the basis of this modified fermentation model, work was then car-
ried out on optimal experiment design, with the goal of improving con-
fidence in the model parameter estimates. This involved using genetic

algorithms, which are introduced later in this chapter.

e Chapter five
Attention was also been paid to the question of whether or not the
parameters which fit the model to the data are unique or not. Ex-
isting nonlinear model identifiability techniques were reviewed, and a
simple approach was developed from these, which is shown to give the
same conclusions as the existing methods, but which seems simpler to
use. Although limited in its power with respect to one of the exist-
ing methods, the simple approach is considered to be adequate for our

purposes.

1. Introduction 9

1.6 Hardware and Software

All the work described in this thesis was carried out using IBM compatible
personal computers. Two different operating systems were used: Microsoft
Windows 3.11 running over Microsoft DOS 6.22 and Red Hat Linux release
4.1 (Kernel 2.0.27). The modelling and experiment design work was done
on a Windows PC, using MATLAB 4.2¢ with SIMULINK 1.3c, also using the
MATLAB Optimization Toolbox, and the Genetic and Evolutionary Algo-
rithms Toolbox (Pohlheim, 1996). Version 10.7 of the Watcom C compiler
was used to produce cmex files and for SIMULINK model acceleration, Maple V
release 4 was used to produce matricial differentials and to generate C code,
and to perform manipulations and simplifications to the model equations,
with Perl 5.003 (on the Linux PC) being used as the scripting language for
post-processing Maple text output. This thesis was written using IXTEX2,

running on a Linux PC.

2. SELECTING THE BEST MODEL

2.1 Introduction

The penicillin fermentation is an industrially important antibiotic fermenta-
tion, and is commonly studied as a model system for secondary metabolite
production. A large number of models of the process have been published
in the literature, ranging in complexity from simpler unstructured models
such as that of Bajpai and Reufl (1981), where the biomass is modelled as
a single lumped mass, to more complex morphologically structured models
such as that of Megee et al. (1970), where the biomass is broken down into
distinct fractions by association with product formation, or on the basis of
observable morphological differences. (Here, models that divide the biomass
solely into live and dead fractions are regarded as unstructured.)

In this chapter, we consider penicillin models with regard to their use-
fulness for optimisation and control studies. It is anticipated that the fer-
mentation may be controlled by varying the substrate concentration in the
fermenter, that penicillin is the product of interest, and that both the rate of
biomass growth and the rate of penicillin production depend on the substrate
concentration, as well as the biomass concentration. Hence a minimum re-
quirement for us to consider a model for such uses is that it represent biomass,

substrate and penicillin concentrations.

2. Selecting the Best Model 11

First we consider the bases of the terms from which the models are con-
structed, with regard to the ways in which they represent observed features
of the fermentation. Then we present a comparison of the performance of
the models in tuning and validation against a single, common pair of fermen-
tation records.

The models were originally defined for a range of different fermentation
conditions, both in terms of fermenter scale and of medium composition.
Our comparison here is based on two sets of fed-batch fermentation data
produced for identical conditions of fermenter scale and medium composi-
tion (Paul et al., 1994), differing only in their input feed rate profiles. These
fermentations were performed using a penicillin-G producing strain of Peni-
cillium chrysogenum, and so the models are being compared particularly with

reference to penicillin-G producing fermentations.

2.2 Model Structure Comparison

As mentioned earlier, models of the penicillin fermentation should include
at least states representing the biomass, substrate (commonly modelled as a
single limiting component, often glucose) and penicillin concentrations, and
our efforts have been focussed on how accurately the collected models predict
these three states.

As originally published, some of the models included additional nutri-
ent states, such as dissolved oxygen (Bajpai and Reuf}, 1980), lactose and
lysed biomass concentrations (Kluge et al., 1992), or additional products
(Megee et al., 1970), or product precursors (Nestaas and Wang, 1983), or

additional expressions, such as the carbon dioxide production rate (Mon-

2. Selecting the Best Model 12

tague et al., 1986). Since the data we have used in comparing the perfor-
mance of the models do not include measurements for any of the above (the
measured data are for the biomass concentrations, both as individual, mor-
phologically distinct fractions and as total biomass concentration, and for the
glucose and penicillin concentrations), we cannot consider them here. When
these models were built for tuning and comparison, the influence of such
terms on biomass growth, substrate consumption and penicillin formation
was neglected, with these terms being replaced with constants. (The carbon
dioxide production has been modelled as being dependent on biomass con-
centration and growth rate, and penicillin formation rate (Montague et al.,
1986), but no influence of the dissolved carbon dioxide concentrations on
biomass, substrate or penicillin concentrations was modelled.) As a result of
setting such terms constant, two of the models were effectively reduced to a
common form (Bajpai and Reuf}, 1981; Montague et al., 1986).

The following models have been compared:
e Unstructured

— Fishman and Biryukov (1974)
— Heijnen et al. (1979)

— Bajpai and Reuf} (1980/81)

— Nicolai et al. (1991)

— Kluge et al. (1991)

— Menezes et al. (1994)

— Tiller et al. (1994)

2. Selecting the Best Model 13

e Morphologically structured

Megee et al. (1970)

Nestaas and Wang (1983)

— Cagney et al. (1984)

Paul and Thomas (1996)

Of the above models, the majority (Fishman and Biryukov, 1974; Ba-
jpai and Reuf, 1980; van Suijdam et al., 1982; Nestaas and Wang, 1983;
Cagney et al., 1984; Tiller et al., 1994) described generic penicillin produc-
ing fermentations. Most of the others (Heijnen et al., 1979; Nicolai et al.,
1991; Menezes et al., 1994; Paul and Thomas, 1996) referred specifically to
the production of penicillin-G. Only the model of Kluge et al. (1992) was
originally proposed as describing a penicillin-V forming fermentation.

The model of Megee et al. (1970) was originally proposed as a general
model for mould growth, associating product formation with different frac-
tions of the mould. Although it was originally presented with reference to
Aspergillus awamori, it is considered here as a candidate for use in modelling
the penicillin fermentation because of the model’s general structure. In us-
ing this model to describe the penicillin fermentation, we have assumed that
both of the non-growth-associated products given in the original model (see
Appendix A.2) are penicillin. The growth-associated product in the original
model has been ignored.

The penicillin fermentation has a number of distinct observed features,
each of which may be represented by a term in the models. These include

the following:

2. Selecting the Best Model

14

1. Biomass terms

(a) Biomass growth
(b) Conversion between biomass fractions

(c) Biomass lysis
2. Substrate terms

(a) Growth related consumption
(b) Production related consumption

(c) Maintenance related consumption
3. Penicillin terms

(a) Formation

(b) Hydrolysis

4. Dilution terms

To describe the fed-batch fermentation data used here, these would be

F(Zin—2)

of the form o

, where F'is the input feed rate, Z is the concen-

tration of some model state in the fermenter, Z;, is the concentration

of the same state in the feed, and V is the volume of medium present

in the reactor.

The models for the penicillin fermentation that have been published in

the literature have used different symbols to describe similar states found and

processes occurring in the models. To ease comparison between the models,

they have been collected together here, rewritten in a common form. The

2. Selecting the Best Model 15

model descriptions may be found in Appendix A.1 for unstructured models
and Appendix A.2 for morphologically structured models.

2.2.1 Biomass terms

Biomass growth

Growth is described, for the majority of the models, by either Monod kinetics,

dt K¢+ S
or Contois kinetics.
dt KyX+S

Of these, the Monod expression was historically the first (Monod, 1942),
and has been widely used, as it is simple and models using it are easily anal-
ysed. The models of Heijnen et al. (1979) (Eqn A.6), Nicolai et al. (1991)
(Eqn A.18) and Kluge et al. (1992) (Eqn A.31) calculate the growth rate
from the substrate uptake rate, which is modelled using a Michaelis-Menten
kinetic (mathematically identical to the Monod expression). The morpho-
logically structured models of Megee et al. (1970) (Eqns A.38,39), Cagney
et al. (1984) (Eqns A.56,67) and Paul and Thomas (1996) (Eqns A.62.63)
all model growth behind the hyphal tips as following Monod kinetics, with
the formation of new hyphal tips by branching from other hyphal states also

2. Selecting the Best Model 16

modelled as following Monod kinetics. According to Nielsen and Villadsen
(1994): “the Monod model has been shown to correlate fermentation data

»

for many different organisms.” However, “the satisfactory fit of the Monod
model to many experimental data should never be misconstrued to mean
that the Monod equation is a mechanism of fermentation processes.”

The Contois expression (Contois, 1959) is an alternative to the Monod
expression, used in modelling systems where the biomass increases to a con-
centration considered to have a significant direct effect on the specific growth
rate, causing it to decrease with increasing biomass concentration. This form
was first used in modelling the penicillin fermentation by Bajpai and Reuf
(1980) (Eqn a.10), and has subsequently been used in models based thereon
(Montague et al., 1986; Nicolai et al., 1991; Menezes et al., 1994) (Equs A.14,
A.18 and A.21, respectively).

Nestaas and Wang (1983) divided the growth into two phases, a ‘growth
phase’ and a ‘production phase’. In the ‘growth phase’ the rates of growth of
both tips and bulk hyphal material were linearly proportional to the concen-
tration of tips (Eqns A.48,49). In the ‘production phase’ tip growth ceased

and the growth rate of bulk hyphal material remained linearly proportional

to the tip concentration (Eqns A.50,51).

Conversion between biomass fractions

Morphologically structured models (Megee et al., 1970; Nestaas and Wang,
1983; Cagney et al., 1984; Paul and Thomas, 1996) (Subsections A2.1, A2.2,
A2.3 and A2.4) include terms which describe the rate at which one biomass

fraction changes to another, say from being growing tips to general hyphal

2. Selecting the Best Model 17

material. These include expressions to describe processes which have previ-
ously been named ‘differentiation’, ‘degeneration’ and ‘dormancy’. Provided
that these sets of expressions are internally consistent, with material being
conserved as it moves from one state to the next, there is little that can be

said about them at this time.

Biomass lysis

Autolysis terms describe the rate at which the biomass is destroyed.

Van Suijdam et al. (1982), modelling the growth of Penicillium chryso-
genum in pelleted form, stated that it is known that mycelia in fermentations
undergo lysis at low oxygen or substrate concentration. Indeed, it is generally
accepted that microorganisms will eventually lyse at low oxygen or substrate
concentration. However, we assume here that the oxygen concentration in
the fermentation broth does not fall to levels liable to result in lysis.

There are models which include a state representing dead or dormant
biomass (Megee et al., 1970; Fishman and Biryukov, 1974; Nestaas and
Wang, 1983; Cagney et al., 1984; Menezes et al., 1994). These do not model
lysis as such, but do include ‘death’ terms for the conversion of biomass from
a live, active state into an inactive state.

A number of models include lysis terms which result in the destruction
of biomass. Kluge et al. (1992) (Eqn A.30) and Paul and Thomas (1996)
(Eqn A.64) model lysis as proceeding at a rate linearly proportional to the
concentration of ‘inactive’ biomass. Tiller et al. (1994) use an age-dependent

term to calculate the lysis coefficient (Eqn A.26).

2. Selecting the Best Model 18

2.2.2 Substrate terms

Carbon balancing suggests that there should be substrate consumption or
endogenous metabolism terms expressing the utilisation of substrate material
in the formation of biomass and product. It is also appreciated that viable

biomass uses energy, derived from substrate, for biomass maintenance.

Growth related consumption

All of the models considered describe the growth-related consumption of

substrate using a constant yield coefficient.

Production related consumption

Most of the models considered here model penicillin production related sub-
strate consumption using a constant yield coefficient. There are only two
exceptions which do not have a substrate consumption term associated with
product formation (Megee et al., 1970; Fishman and Biryukov, 1974).
Nicolai et al. (1991) included a term to describe endogenous production,
occurring at low substrate concentrations (Section A 1.5). This took the
form of a modifier, (1 — e~%/7), multiplied by the production rate, where S

is the substrate concentration and Ep is a constant.

Maintenance related consumption

The model of Fishman and Biryukov (1974) does not have a term to describe
consumption of substrate associated with the maintenance requirements of

the biomass.

2. Selecting the Best Model 19

Of the models that do consider biomass maintenance, four do so by means
of a linear term proportional to the amount of biomass present (Bajpai and
Reuf}, 1980; Nestaas and Wang, 1983; Montague et al., 1986; Tiller et al.,
1994) (Eqns A.11, A.55, A.15 and A.27, respectively). In a model this type of
term can result in substrate being consumed even when there is no substrate
present. Although this is mathematically feasible, it is clearly a biological
impossibility.

Four models (Megee et al., 1970; Cagney et al., 1984; Menezes et al., 1994;
Paul and Thomas, 1996) use a Monod type (Michaelis-Menten) expression
to describe the maintenance substrate consumption rate (Eqns A.43, A.59,
A.22 and A.66, respectively). This term goes to zero as the substrate goes
to zero, thus avoiding the feasibility problem associated with a term purely
proportional to the biomass concentration.

The model of Nicolai et al. (1991) has a complex substrate consumption
expression, which models endogenous metabolism (Eqn A.19). The main-
tenance term in this model is of the form my % (1 — e=%/Fm), where m, is
the maintenance coefficient, S is the substrate concentration, and F,, is a
constant.

Heijnen et al. (1979) (Equ A.7) and Kluge et al. (1992) (Eqn A.33)
consider the biomass maintenance as consuming a portion of the substrate
taken up by the hyphae. This has the effect of reducing the growth rate, but
does not affect the rate of substrate uptake itself, which is modelled using
Michaelis-Menten kinetics.

The maintenance term is easier to understand for unstructured mod-

els, where it represents consumption of substrate which is not associated

2. Selecting the Best Model 20

with either growth or product formation. For the morphologically struc-
tured models, what has been referred to here as the maintenance term is
often proportional to the terms used to describe conversion between biomass
states. This conversion contributes neither to biomass growth nor to product

formation, and so may be regarded as a maintenance process.

2.2.3 Penicillin terms

Penicillin is a secondary metabolite of Penicillium chrysogenum, and its pro-
duction is known to be non-growth-associated. Its rate of formation is known
to be reduced at high glucose concentrations, presumably as a result of some
inhibition or repression mechanism. The mechanism of this is not yet known,

and so no specific form can be indicated for the penicillin formation term.

Formation

The most common form for the production term is a type of inhibition kinet-
ics first used in the context of penicillin fermentation modelling by (Bajpai

and Reuf, 1980).

pupSX
Kp+ S(1+(S/K)))

Production rate =

This is used in both unstructured and morphologically structured models.
In the unstructured models (Bajpai and Reuf}, 1981; Montague et al., 1986;
Nicolai et al., 1991), production has been associated with the total amount of

biomass present in the system (Eqns A.12, A.16 and A.20, respectively). The

2. Selecting the Best Model 21

Y

0.01 Specific Growth Rate
Fig. 2.1: Product formation relation used by Heijnen et al., 1979

structured models (Cagney et al., 1984; Paul and Thomas, 1996) associate
the production with a specific portion of the biomass (Eqns A.60 and A.67).
In none of the structured models is production associated with the hyphal
tips, where hyphal growth is most active. Menezes et al. (1994) observed
no catabolite repression of production in their work, and so replaced the
inhibited formation term with a simpler, Monod-type product formation term
(Eqn A.23).

Two models (Heijnen et al., 1979; Tiller et al., 1994) relate the prod-
uct formation rate to the specific growth rate of the biomass (Eqns A.8 and
A.29). Both assume a minimal growth rate, below which product forma-
tion decreases with decreasing growth rate. Tiller et al. (1994) also make
use of a maximal growth rate, above which the product formation starts to
decrease with increasing growth rate. These two relationships are shown in

Figures 2.1 and 2.2.

2. Selecting the Best Model 22

y

K pl R p2 2“ p2
Specific Growth Rate

Fig. 2.2: Product formation relation used by Tiller et al., 1994
(pep1 is the lower limit of the maximum penicillin formation rate,
p2 is the upper limit of the maximum penicillin formation rate.)

Other models have used age-associated production (Fishman and Biryukov,
1974) (Eqn A.4), or production via a postulated intermediate (Nestaas and
Wang, 1983) (Eqns A.53,54). As stated earlier, in Section 2.2, the two non-
growth-associated products in the model of Megee et al. (1970) (Eqns A.44-
46) have been lumped together and assumed to be penicillin. Their rates of
formation are described using Monod kinetics. All of these expressions can
represent non-growth associated kinetics, and any of these expressions could
be associated either with the total biomass present, or with some distinguish-
able portion of the biomass.

The term used by Kluge et al. (1992) (Eqns A.35,36) may be shown to

2. Selecting the Best Model 23

be equivalent to a steady-state inhibition rate expression, with an additional

constant in its numerator, subject to a first order lag.

Hydrolysis

It is known that penicillin undergoes hydrolysis to penicilloic acid in aqueous
solution (Benedict et al., 1945), and that the reaction is first order with
respect to penicillin. Three of the models do not have hydrolysis terms

(Megee et al., 1970; Fishman and Biryukov, 1974; Heijuen et al., 1979).

2.2.4 Dilution terms

The descriptions of the models given in Appendix A.1 do not include dilution
terms, but the models as built and tuned do. The general derivation of the
dilution terms is as follows.

Generally, for species X in reactor volume V.

Accumulation = In — Out — Reaction

The total quantity of species X present in the reactor is V" (concentration

times volume). Rewriting the above equation we have

d[V.x]
dt
dz dV

Va + e Qiry — Qoxo — Vir (2.2)

= Qixf - Qoxo -V (21)

2. Selecting the Best Model 24
the volume rate expression is given by
dV
— =Q,—Q, 2.3
T-0-q (2.3
So, dividing throughout by V', we obtain the general form
dz .T(Qz - Qo) szf — Qoxo
had o/ _ _ ZeJ wore 2.4
AT Ty 24)
For a batch reactor, Q); = Q, =0
dz
- 2.5
i (2.5)
For a fed-batch reactor, (), = 0
dx Qi(xy —x)
- 2.
i r+ v (2.6)
For a CSTR, Q; = Q,
d) - Woso
Ty Gty Qo (2.7)

dt 1%

So, to model a generic reactor, useful for batch, fed-batch and continuous

fermentation, we have:

de Qizy = Qur, (Qi — Q)T
pr r—+ v Vv

(2.8)

In the above, (); is the feed rate to the fermenter, z; is the concentration

2. Selecting the Best Model 25

Biomass Substrate Penicillin
Model Name Growth | L. | G.r. | Por. | M. | Production | H.
Megee et al. Monod |/ | vV | vV | V Monod X
Fishman and Biryukov | Monod | x | / X | x | Age-related | x
Heijnen et al. Monod | x | / | v/ | V Linear X
Bajpai and Reuf Contois | X | v/ | v/ | v | Inhibited | /
Nestaas and Wang Linear | /| v | v/ | V| Precursor | /
Cagney et al. Monod | /| v/ | vV | v | Inhibited |/
Montague et al. Contois | X | v/ | v/ | v | Inhibited | /
Kluge et al. Monod |/ | v/ | vV | v/ | See App. A | /
Nicolai et al. Contois | X | v/ | v/ | v | Inhibited | /
Menezes et al. Contois | v/ | v/ | vV | V Monod V
Tiller et al. Monod |/ | / | v/ | v/ | See App. A | /
Paul & Thomas Monod | /| v/ | vV | v | Inhibited |/

Tab. 2.1: Summary of features included in the models
(v/— Feature present, x—Feature absent)
[L.—Lysis, G.r.—Growth related, P.r.—Production related,
M.—maintenance, H.—Hydrolysis]

of species X in the feed, (), is the rate of removal of liquor from the fermenter,
T, is the concentration of species X in the stream leaving the fermenter, and x
is the concentration of species X in the fermenter. The distinction between
z, and x is made, because in the case of online measurement of dissolved
species using HPLC, the sampled stream leaving the fermenter is filtered,
and so the concentration of insoluble biomass fractions in the sample stream
is zero, which is not the same as that in the fermenter. The withdrawal of
a filtered sample stream acts in such a way as to concentrate the insoluble

species in the fermenter.

2.2.5 Summary of model features

Table 2.1 summarises the terms found in the models.

2. Selecting the Best Model 26

2.3 Comparing Model Performance

The models’ performances in fitting to and predicting fermentation behaviour

were compared using data supplied by Paul (1996).

2.3.1 Fermentation method

The data used in tuning and validating the models were taken from two 5 litre
working volume fermentations carried out using a pre-production strain of
Penicillium chrysogenum under the same conditions of fermenter scale and
medium composition. The fermentation protocol used was that described
by (Paul et al., 1994). The two fermentations differed only in the substrate
feed profile used. The first data set used was produced using a constant
feed profile, whilst the second was produced using a feed profile with a step,
followed by a decreasing ramp. Both feed profiles are shown in Figure 2.3.
These feed profiles were used in the original work of Paul et al. (1994) to
investigate the influence of substrate concentration on the rate of vacuole
formation and hyphal differentiation.

The two data sets produced, for constant feed rate, and time-varying feed
rate, comprise eighteen and nineteen measurement times respectively, with
all states (four biomass states and three soluble species) being measured
coincidentally at irregular intervals which vary from four to twelve hours
(measurements being more frequent during the first 50 or so hours of the
fermentation).

Image analysis was used to measure the relative proportions of differing
morphological fractions, following the method used by Paul et al. (1994).
The fractions identified here are those used by Paul and Thomas (1996) in

2. Selecting the Best Model

27

Glucose Feed Rate (g/hour)

Glucose Feed Rate (g/hour)

Constant Input
T T

| | | |
0 24 48 72 96 120 140 160
Time (hours)

Time-varying Input

| | | |
0 24 48 72 96 120 140 160
Time (hours)

Fig. 2.3: Feed profiles used in generating the data sets used

2. Selecting the Best Model 28

their model. These will not necessarily be the same as, nor correlate well
with, the fractions defined in other morphologically structured models, as
image analysis was not used in determining the biomass fractions for the

earlier models.

2.3.2 Modelling and tuning methods

The models were built using MATLAB and SIMULINK, and tuned using rou-
tines from the MATLAB Optimisation toolbox. SIMULINK is a block-diagram
oriented modelling tool; the SIMULINK block diagram for the model of Paul
et al. (1998) is shown in Figure 2.4. A least squares routine (Levenberg-
Marquardt algorithm) was used to tune each model’s parameters, with the

target error function being calculated as follows.

e Simulate the model over the time period of the reference data set, using

a fourth order Runge-Kutta algorithm.

e Interpolate linearly within the model output to obtain simulated values

corresponding to the times of the experimental measurements.
e (Calculate the difference between the measured and simulated values.

e Weight the differences for each model state by the inverse of the max-
imum value in the measured data set for that state. Weighting each
state using 1/(noise variance), a commonly used approach, was con-
sidered, but the approximate assumption that the noise is Gaussian
becomes less true for low state values - considering particularly the low

values observed for the glucose and penicillin concentrations - with the

2. Selecting the Best Model 29

distribution of the noise possibly becoming skewed in favour of positive
noise values. The approach used here attempts to normalise the differ-
ence values with respect to the maximum measured values of each of

the states.

e Square and sum the weighted differences. (This is done by the optimi-

sation routine-it works on the matrix of weighted differences.)

Mathematically, the target function can be expressed as follows,

n

Error = Z

=1

2 2
<Xmeas(i) - stm(z)) + <Smeas(i) - Sszm(z))

maX(Xmeas) maX(SmeaS)
2
+ Pmeas(i) - Pszm(z)
max (Peas)

where the summation is carried out for all times corresponding to measure-

ment times, and the subscripts meas and sim denote measured and simulated

values respectively.

2.3.3 Validation results

If a model were to predict perfectly the behaviour of the system, there would
be a residual least squared error between simulated and measured data, re-
lated to the noise on the measurements. Assuming that the noise is Gaussian
and proportional to the magnitude of the measurement (this is a simplifica-
tion, as errors are likely to be larger relative to the measurement value for
small values), this expected residual error can be calculated. Here we have
assumed that the percentage errors on the three measured states are as fol-

lows: Biomass ~ 10%, Substrate ~ 5%, Penicillin ~ 1%. Expected residual

2. Selecting the Best Model 30

errors for the constant and time-varying input data sets are given in Table
2.2. Since the magnitudes of the expected error values are proportional to
the assumed percentage errors, expected error values for other percentage

errors may be obtained by appropriately scaling the values given here.

State Constant Input | Varying Input
Biomass (10%) 0.09 0.11
Substrate (5%) 0.006 0.008
Penicillin (1%) de-4 de-4
Overall ~ 0.10 ~ 0.12

Tab. 2.2: Expected residual errors for a perfect model (normalised for each state
with respect to its maximum measured value, and summed to give the
overall error)

For both of the sets of fermentation data, the models were tuned as
described above, and then validated against the set of data not used in the
tuning. The results of validating the models are shown in Figures 2.6 to 2.11.
For comparison purposes, the summed least squares errors for biomass, sub-
strate and penicillin concentrations, along with an overall value, have been
tabulated. Errors for tuning using the constant feed profile and validating
against the time-varying profile are given in Table 2.3. Errors for the converse

are given in Table 2.4.

2. Selecting the Best Model 31

Model Name Summed Squared Error
Biomass ‘ Glucose ‘ Penicillin ‘ Overall
Paul and Thomas 0.10 0.04 0.03 0.17
Kluge et al. 0.03 0.19 0.29 0.51
Cagney et al. 0.09 0.42 0.04 0.55
Megee et al. 0.17 0.32 0.21 0.70
Nicolai et al. 0.03 0.41 0.30 0.74
Menezes et al. 0.10 0.33 0.42 0.85
Bajpai and Reuf 0.02 0.19 0.83 1.04
Fishman and Biryukov 0.51 0.32 0.53 1.36
Heijnen et al. 0.09 0.29 1.18 1.56
Tiller et al. 0.20 0.75 0.97 1.93
Nestaas and Wang 0.98 84.64 1.33 86.95

Tab. 2.3: Validation results for tuning using the constant feed data set (normalised
for each state with respect to its maximum measured value in the time-
varying feed data set, and summed to give the overall error)

2.4 Discussion

2.4.1 Difficulty in tuning models

Tuning biological models is difficult. There is no guarantee that the ‘opti-
mum’ parameter sets reached using optimisation methods are global; opti-
misation techniques may converge to a local optimum, depending on initial
conditions. There may also be difficulties in determining exact values for
specific parameters as model terms may often be reduced to simpler forms
for extreme values of model states. For example, consider the Contois ex-
pression for the specific growth rate, ux XS/(KxX + S). At low substrate
concentrations, this expression reduces to the linear form, puxS/Kx. (These

two forms are plotted for comparison in Figure 2.5.) In the data sets used

2. Selecting the Best Model 32

Model Name Summed Squared Error
Biomass ‘ Glucose ‘ Penicillin ‘ Overall
Paul and Thomas 0.06 0.09 0.04 0.18
Cagney et al. 0.08 0.35 0.02 0.45
Menezes et al. 0.11 0.07 0.38 0.55
Nicolai et al. 0.04 0.18 0.44 0.66
Megee et al. 0.15 0.12 0.45 0.73
Bajpai and Reuf3 0.03 0.06 0.76 0.85
Kluge et al. 0.04 0.23 0.75 1.03
Heijnen et al. 0.04 0.18 1.22 1.44
Tiller et al. 0.11 0.75 0.61 1.47
Fishman and Biryukov 0.54 0.22 1.47 2.24
Nestaas and Wang 4.69 258 4.49 267

Tab. 2.4: Validation results for tuning using the time-varying feed data set (nor-
malised for each state with respect to its maximum measured value in
the constant feed data set, and summed to give the overall error)

here, the substrate concentration is reduced almost to zero after the first
40 hours of the fermentation. Whilst there is a large discrepancy between
the Contois expression and its linearised form for the first 40 hours of the
fermentation, this corresponds to only four or five measured data points. So,
although we may be confident that we have obtained an appropriate ratio of
ix to Kx, we should be a little less certain about the absolute values.
Given that the morphologically structured models have more states and
parameters than unstructured models, they have more ‘degrees of freedom’
when being tuned, and so it might be supposed that by varying their param-
eters they may be fitted to a wider range of data. There is also the possibility
that models may be ‘over-fitted’ to the data used in tuning, thereby mod-

elling both the fermentation behaviour and the noise on the measurements.

2. Selecting the Best Model 33

The average prediction errors from Tables 2.3 and 2.4 are all greater than
the expected best possible prediction errors in Table 2.2. For the assumed
percentage errors used in calculating the expected errors, this suggests that

none of the models has been ‘over-fitted’ to the experimental data.

2.4.2 Comparison of models’ performances

For comparison purposes, the models are divided into three groups. The
unstructured models are divided into two groups, those which are related to
the model of Bajpai and Reuf8 (Bajpai and Reu$, 1980; Nicolai et al., 1991;
Menezes et al., 1994; Tiller et al., 1994), and those which are unrelated
(Fishman and Biryukov, 1974; Heijnen et al., 1979; Kluge et al., 1992). The
morphologically structured models (Megee et al., 1970; Nestaas and Wang,
1983; Cagney et al., 1984; Paul and Thomas, 1996) are treated as a single

group.

Unstructured models related to the model of Bajpai and Reufs (1980)

Graphs comparing the fermentation behaviour predicted by unstructured
models related to the model of Bajpai and Reufl (1980) with the measured
fermentation data are given in Figures 2.6 and 2.7.

The two models which do not have explicit biomass destruction terms
(Bajpai and ReuB, 1980; Nicolai et al., 1991) predict the biomass profile
better than the other two, neither overestimating the biomass concentration
at the end of the growth phase, nor predicting an excessive decline in the
biomass concentration during the production phase.

The four models have different expressions describing the rate of sub-

2. Selecting the Best Model 34

strate consumption associated with biomass maintenance. The poorest per-
formance in predicting the substrate profile is that of Tiller et al. (1994),
which uses an age-dependent maintenance term. For low substrate concen-
trations, both the exponential form used by Nicolai et al. (1991) to describe
the influence of endogenous maintenance, and the Monod form used for the
maintenance term by Menezes et al. (1994) may represent the maintenance
substrate consumption better than the linear form used in Bajpai and Reuf§
(1980).

The model of Menezes et al. (1994) differs from the others in that it uses
a Monod kinetic to describe the penicillin production rate, as opposed to the
substrate inhibition kinetic. This causes the predicted penicillin concentra-
tion to start increasing earlier than is observed for the measured values. Using
an inhibition kinetic makes the penicillin production rate extremely sensitive
to changes in the substrate concentration; this is the most likely explanation
for the differing penicillin profiles generated by the models of Bajpai and Reufl
(1980), Nicolai et al. (1991) and Tiller et al. (1994). (Tiller et al. (1994)
relate the penicillin production rate to the specific growth rate as shown in
Figure 2.2. This may be considered equivalent to a crude approximation to
the substrate inhibition kinetic.)

The divergence between the measured and predicted penicillin concen-
trations for the model of Bajpai and Reufl (1980), for fermentation times
greater than 110 hours, tuned on constant feed rate data and validated on
time-varying data (Figure 2.6) may be due to small errors in the prediction
of the associated glucose concentration. The penicillin production kinetic,

upSX/(Kp+S(1+4S/Kj)), when plotted as a function of glucose concentra-

2. Selecting the Best Model 35

tion, has a narrow peak, and small errors in the predicted glucose concentra-
tion therefore cause disproportionate changes in the shape of the predicted

penicillin profile.

Unstructured models not related to the model of Bajpai and Reufs (1980)

Graphs comparing the fermentation behaviour predicted by unstructured
models not related to the model of Bajpai and Reuf (1980) with the measured
fermentation data are given in Figures 2.8 and 2.9.

The model of Fishman and Biryukov (1974) models only ‘actively grow-
ing’ biomass. Here we have assumed that only growing hyphal tips are ‘ac-
tively growing biomass’. The models of Heijnen et al. (1979) and Kluge et
al. (1992) predict their respective biomass profiles reasonably well, whilst
that of Fishman and Biryukov (1974) performs badly. This may be because
the assumption that only hyphal tips are ‘actively growing’ is poor or due to
the difficulties in relating the states of Fishman and Biryukov (1974) to the
reference states of Paul and Thomas (1996).

The model of Fishman and Biryukov (1974) predicts the substrate con-
centration during the growth phase reasonably well, but in the production
phase of the fermentation the model consistently predicts substrate values
which are higher than the measured values. This is probably due to the
presence of a postulated inhibitor in the model. The model of Kluge et al.
(1992) predicts the substrate concentration in the growth phase better than
does the model of Heijnen et al. (1979) when tuning on data obtained using
a constant feed rate (Table 2.3), but worse when tuned on data obtained

using a time-varying feed rate (Table 2.4).

2. Selecting the Best Model 36

The model of Heijnen et al. (1979) has a function describing the penicillin
production rate which relates it to the specific growth rate (illustrated in
Figure 2.1). This expression saturates with increasing specific growth rate,
thus approximating a Monod type kinetic, in contrast with the more common
substrate inhibition kinetic, which passes through a maximum. Using this
form to describe the penicillin production rate results in a predicted penicillin
concentration profile of the wrong form, increasing earlier than the measured

values, and levelling off after the initial growth phase.

Structured models

Graphs comparing the fermentation behaviour predicted by morphologically
structured models with the measured fermentation data are given in
Figures 2.10 and 2.11.

Three of the four morphologically structured models considered here are
similar in form (Megee et al., 1970; Cagney et al., 1984; Paul and Thomas,
1996). The other morphologically structured model (Nestaas and Wang,
1983) is fundamentally different in that its description of the fermentation is
divided into two distinct portions—‘growth’ and ‘growth and production’. All
three similar models include at least three distinct biomass fractions: growing
tips, productive hyphae (just ‘behind’ the tips), and degenerating material.
The model of Megee et al. (1970) has three productive hyphal portions, two
of which are associated with non-growth-associated products.

The model of Nestaas and Wang (1983) performs far worse in predicting
fermentation behaviour than the other models. In this model, the biomass

growth rate is described as being independent of the substrate concentration.

2. Selecting the Best Model 37

The rate of penicillin production, via a precursor, is described as being depen-
dent solely on the biomass concentration. The constructed equation describ-
ing changes in the substrate concentration is derived from these expressions,
and so is also independent of the substrate concentration. This means that
the predictions made by this model only depend on the data for which it
is originally tuned, and are, with the exception of the predicted substrate
profile, independent of the input feed profile. The substrate concentration
predicted by the model is calculated from feeding and consumption terms.
Since the substrate concentration influences neither the biomass growth rate
nor the product formation rate, the substrate consumption term is fixed
when the model is tuned. Changes in the feed profile thus directly affect the
predicted substrate concentration. Therefore, however well tuned this model
may be for a given data set, it is not useful for control or optimisation.

The model of Megee et al. (1970) does not predict the biomass concen-
tration as well as the other two. However, as this model has five biomass
states, with many terms describing transitions between them, it is hard to
identify any single explanation for this. It is possible that this model has
a structure for which the parameters cannot be accurately identified using
only the available measurements of the total biomass, substrate and penicillin
concentrations.

The models of Cagney et al. (1984) and Paul and Thomas (1996) both
make good predictions of the biomass profile. From Figures 2.10 and 2.11 it
can be seen that the separation between the predictions of Paul and Thomas
(1996) and Cagney et al. (1984) decreases for simulation times greater than

~ 60 hours. In Figure 2.11 the predictions are seen to cross. This observation

2. Selecting the Best Model 38

may be due to the presence in the model of Paul and Thomas (1996) of a
biomass lysis term, which that of Cagney et al. (1984) does not have.
In the model of Cagney et al. (1984), the overall growth rate of biomass

is described by one term.

: dX, . p1XoS

dt Ks+ S

n=0

Here X,, are the individual biomass states (tips, subapical fractions, de-
generate regions) in the Cagney model, X, represents the hyphal tips, u; is
the specific growth rate, by extension, of the biomass, S is the substrate con-
centration, and Kg is a Monod-type constant. The above expression depends

on X, and S. The rate of change of X itself is given by the following.

% . VX15' . CX()
dt — Ks¢+S M+S

Here X is the concentration of the subapical fraction, v is a branching
coefficient, and ¢ and A are differentiation coefficients. For low values of S this
expression becomes negative, resulting in decreasing Xy and thus a reduction
in the overall growth rate of biomass. Eventually, the overall growth rate of
biomass may be reduced to less than the effect of the dilution, at which
point the total biomass concentration will start to decrease. This point is
not reached with the model as tuned for either of the two data sets considered
here.

As degenerated hyphae, the state assumed to undergo lysis, is involved

2. Selecting the Best Model 39

in neither penicillin formation nor substrate consumption, lysis terms only
directly influence the biomass concentration. The addition of a lysis term to
this model would introduce a rate of decrease term to the expression describ-
ing the overall biomass concentration. This may improve the prediction of
overall biomass concentration towards the end of the fermentation, and may
also cause a change in the proportions of the other biomass states, possibly
improving the model’s substrate and penicillin predictions.

The main difference between the fermentation prediction errors of Cagney
et al. (1984) and Paul and Thomas (1996), illustrated in Figures 2.10 and
2.11 and summarised in Tables 2.3 and 2.4, is in the substrate error. This is
possibly due to the fact that the model of Paul and Thomas (1996) has two
additional substrate consumption states, associated with maintenance of the
hyphal tips and growth by extension of the productive hyphal state.

The poorer performance of the model of Megee et al. (1970) in predicting
the substrate concentration is associated with the differences in biomass and
penicillin production and also the fact that the model of Megee et al. (1970)
does not have production-related substrate consumption.

Both Cagney et al. (1984) and Paul and Thomas (1996) perform bet-
ter than Megee et al. (1970) in predicting the penicillin concentration. The
model of Megee et al. (1970) uses Monod kinetics to describe the rates of
formation of its two non-growth-associated products, assumed here to repre-
sent penicillin, whereas Cagney et al. (1984) and Paul and Thomas (1996)
both use a form of substrate inhibited kinetic to describe the rate of penicillin
production.

It is possible for a model using Monod kinetics to reproduce the observed

2. Selecting the Best Model 40

penicillin production behaviour, which is known to be substrate inhibited, if
the concentration of the biomass states associated with product formation
varies. How well such a model can predict the penicillin profile is constrained
by the requirement that the model also predict the biomass profile with

reasonable accuracy.

2.4.3 Quantitative comparison of the prediction errors

Examining the graphs of Figures 2.6 to 2.11 only enables us to make a crude
comparison between the performance of the models. More detailed compar-
ison may be made with reference to the tabulated errors given in Tables 2.3
and 2.4. These error values have been calculated in the same manner as the
error values used in tuning the models, being weighted for each state with
respect to the inverse of the maximum value measured for that state. This
scheme was used in tuning because it was considered that using the absolute
error values could result in a tuning that favoured those profiles with larger
absolute values, thereby resulting in tunings which fitted the biomass profile
well, and the penicillin profile poorly. The maximum values were chosen for
weighting so as to avoid the divide-by-zero errors that would be caused if
initial or final values were used for weighting, or if normalised errors were
used instead of weighted errors, and to attempt to avoid the biasing that
would be caused if average values were used.

Most of the models perform better in predicting the performance of a
constant feed rate fermentation, having been tuned on fermentation data ob-
tained using a time-varying feed rate. This may be explained by considering

the time-varying data as passing through a wider range of fermentation con-

2. Selecting the Best Model 41

ditions, and thus providing richer information on which to tune the model.
The change in performance of the model of Megee et al. (1970) is not consid-
ered to be significant. The reason for the model of Nestaas and Wang (1983)
failing to make better predictions when tuned using time-varying feed rate
data has been explained above. The model of Fishman and Biryukov (1974)
may fail to perform better with time-varying feed rate data tuning because it
is a particularly simple model, describing penicillin formation as being age-
related, not including terms to describe substrate consumption associated
with biomass maintenance or penicillin formation, and also not including a
penicillin hydrolysis term. The largest change in the error due to an indi-
vidual state for the model of Kluge et al. (1992), which also performs better
when tuned with constant feed rate data, is that of the penicillin state. It
seems that, although this model is capable of being tuned to match either of
the two sets of fermentation data considered here, its penicillin production
expression is largely unaffected by the data set used in calculating prediction
errors. This may be because the penicillin production expression itself is not
sufficiently sensitive, particularly to changes in the glucose concentration.
After considering the variation in performance due to changing the order
in which the data sets were used in tuning and validation, we consider changes
in the relative performance of the models. Apart from the models which
perform more poorly when tuned on time-varying data, mentioned above, the
models whose relative performance changes are those of Megee et al. (1970),
Nicolai et al. (1991) and Menezes et al. (1994). The ranking of these three
models is reversed when tuned using time-varying feed rate fermentation

data, as opposed to constant feed rate fermentation data. This may be due

2. Selecting the Best Model 42

Ranking | Model Name Error
1 Paul and Thomas 0.18
2 Cagney et al. 0.50
3(=) Nicolai et al. 0.70
3(=) Menezes et al. 0.70
5t Megee et al. 0.72
6 Kluge et al. 0.77
7 Bajpai and Reuf 0.95
8 Heijnen et al. 1.50
9 Tiller et al. 1.70
10 Fishman and Biryukov | 2.20
11 Nestaas and Wang 170

Tab. 2.5: Average summed squared error in predicting fermentation performance

to changes between the two data sets in the sensitivities of the prediction
errors to variation in model parameters.

Since how well a model predicts fermentation data depends on the data
set used to tune the model, we have used the average overall prediction errors
to determine which models perform better (see Table 2.5).

The two best models are both morphologically structured (Cagney et al.,
1984; Paul and Thomas, 1996) and make good predictions of the penicillin
concentration. This is likely to be a consequence of their being able to re-
late penicillin production specifically to one fraction of the biomass, situated
between the growing tips and older, degenerating portions of the hyphae. Un-
structured models are incapable of associating penicillin production so closely
to a portion of the biomass. The two unstructured models which predict most
closely the penicillin concentration (Nicolai et al., 1991; Menezes et al., 1994)

include terms which decrease the concentration of biomass associated with

2. Selecting the Best Model 43

penicillin production. In the model of Nicolai et al. (1991), this is a conse-
quence of endogenous metabolism at low substrate concentrations, whereas

the model of Menezes et al. (1994) includes a term to describe biomass death.

2.5 Conclusions

Morphologically structured models have some practical disadvantages when
compared with the simpler unstructured models. The model of Paul and
Thomas (1996), along with the other morphologically structured models, di-
vides the biomass into a number of distinct states which ideally need to be
determined directly. This implies that additional equipment, e.g. an im-
age analyser or the filtration probe, is needed if the maximum benefit is
to be derived from using such models. Morphologically structured models
have a greater number of states than unstructured models and as a conse-
quence are slower to simulate than unstructured models. Morphologically
structured models also tend to have a larger number of parameters than
unstructured models. Combined with the greater number of states of mor-
phological models, this means that tuning their parameters takes longer than
for unstructured models.

However, the better performance of the morphologically structured mod-
els suggests that their additional complexity has benefits in terms of pre-
dictive performance. The best performing morphologically structured model
has an overall prediction error less than one third of that of the best unstruc-
tured model. If this could be translated into a corresponding improvement
in fermentation control, this might well make up for the premium incurred

in obtaining additional equipment, e.g. an image analyser for measuring

2. Selecting the Best Model 44

directly distinct biomass fractions.

As engineers we are interested in using differential equation based models
in designing optimal feeding strategies for the penicillin fermentation and in
developing improved methods for controlling the fermentation. To do this
we need models which describe the fermentation well. The rest of this thesis
builds upon the best performing morphologically structured model, that of
Paul and Thomas (1996).

2.6 Notation

Ey Endogenous maintenance coefficient, g(S)1™*

Ep Endogenous production coefficient, g(S)1™*

F Feed rate to fermenter, lh=*

K; Inhibition coefficient, g(S)1™!

Kp Inhibition coefficient, g(S)1™!

Kg Monod coefficient for glucose, g(S)1™*

Kx Contois constant, g(S)g(DW) !

P Concentration of penicillin, g(P)1™*

Qi Flow rate into fermenter, lh=*

Q. Flow rate out of fermenter, lh=!

S Concentration of glucose, g(S)I™!

V Volume of broth in fermenter, |

X Concentration of biomass, g(DW)I!

X, Concentration of biomass fraction *, g(DW)1~*

A Concentration of a model state, gl=!

Zin Concentration of a model state fed to the fermenter, gl=!
meas Subscript denoting measured value

sim Subscript denoting simulated value

ms Maintenance coefficient, g(S)g(DW)~'h~!

rp Rate of formation of penicillin, moles h™*

PO Maximum rate of formation of penicillin, moles h™*
r Rate of consumption of some species in the fermenter,

gl th!

2. Selecting the Best Model 45

xf

Lo

Greek Symbols

¢
A
7
Hp
Hx
Hp1

MpQ

M1

Time, h

Concentration of some general species X, gl™*
Concentration of some general species X fed to the
fermenter, gl !

Concentration of some general species X leaving the
fermenter, gl=!

Degeneration numerator coefficient, g(S)17*h™"
Differentiation denominator coefficient, g(S)I™!

Specific growth rate, h!

Penicillin production constant, h=!

Growth constant h=!

Minimum specific growth rate associated with maximum
rate of penicillin production, h—!

Maximum specific growth rate associated with maximum
rate of penicillin production, h™!

Growth rate, h=!

Branching numerator coefficient, h=!

Penicillin production rate, g(P)g(DW) th™!

2. Selecting the Best Model

K
V calculation |
1. Volume E@,

i >[50]

2. (dv/dt) * (17 > q
3. Feed Rate > "
mu0 Term > X0 Concentration

x
o
o
=
=)
1=
8
Ef

X1 Concentration

> X1 calculatipn g)
— \ vlc Calculation

®
2
3
3
)
2
4
o
3
vlva v

m1*rhoc... Term

mue Term :E
> |
:@ X2 calculation
> Degenblk2
mO Term
» X3
T | *
q X3 calculation
Degenblkl mua
K
o g » P .
» X4 Concentration
mup*rhoc... Term —>_ P X4 calculation
P calculation
—’ﬁ>é >
S < > S]
> ¢ S

S calculation
:Eé > L
> L
t-Catcotation

Removal
for
sampling

Fig. 2.4: SIMULINK block diagram for the model of Paul et al. (1998)

2. Selecting the Best Model

Comparison of Contois and linearised growth terms

oF -~

Growth rate (g(DW)IZh?

0 20 40 60 80 100 120 140 160
Time (h)

Fig. 2.5: Comparison of nonlinear and linearised expressions for specific growth
rate (— nonlinear, — linear) The nonlinear growth rate was taken from
the model of Bajpai and Reuf}, tuned for time-varying feed data. The
linearised growth curve was calculated using the predicted substrate con-
centration from the tuned model. (ux = 0.10, Kx ~ 0.16)

47

2. Selecting the Best Model 48

w
a1

Biomass (g(DW)I?)
= N N w
(6] o ol o

=
(=}

0 20 40 60 80 100 120 140 160

20

[
al

Substrate (g(S)I%)
[
« o

0 =2 S ek
0 80 100 120 140 160
6
x*
5F x]
*
4 * -

Penicillin (g(P)I?)
w

1 1 1
0 20 40 60 80 100 120 140 160

Time (h)

Fig. 2.6: Predicted and measured concentrations for unstructured models related
to the model of Bajpai and Reufl tuned for constant feed rate fermenta-
tion data and validated against time-varying feed rate fermentation data
(* Measured data, — Bajpai and Reu$, - - Menezes et al.,

—- Nicolai et al., --- Tiller et al.)

2. Selecting the Best Model 49

w
[

w
o

N
a1

20

15

10

Biomass (g(DW)I?)

1 1 1
0 20 40 60 80 100 120 140 160

15

Substrate (g(S)I?)

Penicillin (g(P)I%)

1
0 20 40 60 80 100 120 140 160
Time (h)

Fig. 2.7: Predicted and measured concentrations for unstructured models related
to the model of Bajpai and Reufl tuned for time-varying feed rate
fermentation data and validated against constant feed rate fermentation
data
(* Measured data, — Bajpai and Reu$, - - Menezes et al.,

—- Nicolai et al., --- Tiller et al.)

2. Selecting the Best Model 50

w
[

N N w
o o o
T T T

*
A\
\
K
\
\
I I

[
ol
T
K
|

i
o
T
RSN
|

Biomass (g(DW)I?)

ol
T
\
HN
Q|
[¢]
I

=

1 1 1
60 80 100 120 140 160

o
N
=]
IN
o

20

=
a1

Substrate (g(S)I?)
[y
« o

a1

e e e g R S S
3 ¥ 23 K *

80 100 120 140 160

Penicillin (g(P)I?)

1 1 1 1
0 20 40 60 80 100 120 140 160
Time (h)

Fig. 2.8: Predicted and measured concentrations for unstructured models not
related to the model of Bajpai and Reufl tuned for constant feed
rate fermentation data and validated against time-varying feed rate
fermentation data
(* Measured data, — Fishman and Biryukov, - - Kluge et al.,
—- Heijnen et al., o ‘actively growing biomass’ (Fishman and Biryukov))

2. Selecting the Best Model 51

w
[

Biomass (g(DW)I?)
2NN W
-]
T T T T
N

¥\
Y
\
\
\\‘
\
\
*
\
1
I
|
0
i
1
[
\l
I
1
I
\\
[}
*
I
|
Il Il *

=
o
T
K
I

ol
T
O
o
O
Ql
Ol
o
o]
|

=

1 1 1
20 40 60 80 100 120 140 160

15 —

=
o

Substrate (g(S)I?)

Penicillin (g(P)I?)

9 1
0 20 40 60 80 100 120 140 160
Time (h)

Fig. 2.9: Predicted and measured concentrations for unstructured models not
related to the model of Bajpai and Reuf tuned for time-varying feed rate
fermentation data and validated against constant feed rate fermentation
data
(* Measured data, — Fishman and Biryukov, - - Kluge et al.,

—- Heijnen et al., o ‘actively growing biomass’ (Fishman and Biryukov))

2. Selecting the Best Model 52

40

Biomass (g(DW)I?)
N} w
=] o

[
o

0 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

N
1
L

N
o
L

[y
o

Substrate (g(S)I%)
[
(6]

al

80 100 120 140 160

Penicillin (g(P)I?)
w

[0 s
0 20 40 60 80 100 120 140 160
Time (h)

Fig. 2.10: Predicted and measured concentrations for morphologically structured
models tuned for constant feed rate fermentation data and validated
against constant feed rate fermentation data
(* Measured data, — Megee et al., - - Cagney et al.,
—- Paul and Thomas, --- Nestaas and Wang)

2. Selecting the Best Model 53

a
o

Biomass (g(DW)I?)
N w n
o o o
T T T
Il

[
o
T

S

1 1 1
0 20 40 60 80 100 120 140 160

Substrate (g(S)I?)

_10 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

N w i
T T T

Penicillin (g(P)I?%)

=
T

Q
¥
*
¥
3

" 1 1 1
0 20 40 60 80 100 120 140 160

Fig. 2.11: Predicted and measured concentrations for morphologically structured
models tuned for time-varying feed rate fermentation data and validated
against constant feed rate fermentation data
(* Measured data, — Megee et al., - - Cagney et al.,

—- Paul and Thomas, --- Nestaas and Wang)

3. SIMPLIFICATIONS AND EXTENSIONS TO THE PAUL
AND THOMAS MODEL

3.1 Simplifying the Vacuolation Process Model

As shown in the preceding chapter, the penicillin fermentation model of Paul
and Thomas (1996) is the best performing model of those considered in this
thesis in predicting the behaviour of penicillin producing fermentations of
Penicillium chrysogenum. It is a morphologically structured model which

divides the biomass up into a number of distinct states:

e hyphal tips, the actively growing area of the hyphae (Region Xj)

e non-growing region of the hyphae, the region of the hyphae just behind
the tips (Region X;)

e growing vacuoles, divided by size into a number of ‘bins’ (Region X5)

e fully vacuolated hyphae, in which the vacuoles have grown to fill the

hyphal compartments (Region X3)

e lysed material, formed by the destruction of fully vacuolated hyphal
compartments (This model state is difficult to measure directly.)

(Region X,)

3. Simplifications and Extensions to the Paul and Thomas Model 55

However, this model is extremely complex and could prove difficult to
use in controller design or as a part of some kind of hybrid differential equa-
tion/neural network based model scheme. Most of this complexity is due to
the way in which the vacuole formation and growth processes are described
in the model. The distribution of vacuole sizes changes as the fermenta-
tion proceeds, with small vacuoles being formed and growing until hyphal
compartments become completely vacuolated, at which point the vacuole
is considered to have given rise to a degenerated hyphal compartment and
ceases to be regarded as vacuole. In the model, the vacuole size distribution
is discretised, with the vacuoles being divided into a number of ‘bins’, which
correspond to distinct, non-overlapping size ranges. The number of vacuoles
in each size range is represented by a model state. The rates of change of
these states have relatively high values, which could cause the model as a
whole to be numerically ‘stiff’, needing a more specialised numerical integra-
tion routine to solve it accurately. As a result of the additional states and
the fact that the system is ‘stiff’, the original model is slow to simulate.

Here ways are considered in which the vacuolation part of the model could
be replaced, or removed, with the aim of increasing the speed with which the
system can be simulated, without, one hopes, too great a loss in performance

as a result of using a simplified model.

3.1.1 Simplifications considered

The processes described in the vacuolation portion of the model of Paul and
Thomas (1996) are shown in Figure 3.1. Vacuoles (X2) form in the non-

growing region (X1), grow, and eventually reach a size where whole hyphal

3. Simplifications and Extensions to the Paul and Thomas Model 56

¢ | Penicillin production
X0 > X1 > P

5 Vs
= o
: s
= S
P
a =
2
g.

l’

> X3 > X4
Degeneration Autolysis

Fig. 3.1: Diagram showing the vacuolation process as modelled in Paul and
Thomas (1996). The boxed area indicates those parts of the model af-
fected by the model simplification.

compartments are vacuolated (X3). At this point, the vacuoles are regarded
as having given rise to fully vacuolated hyphal compartments. In the model of
Paul and Thomas (1996), penicillin production is associated with the volume
of cytoplasm present in the non-growing region. The process of vacuolation
therefore reduces the volume of penicillin-producing cytoplasm.

An attempt has been made to replace the existing description of the
vacuolation process with much simpler terms, similar to those used elsewhere
in penicillin fermentation models. Two possible candidate structures were

considered.

e A structure in which material in the non-growing region gives rise to

partially vacuolated material, which then gives rise to fully vacuolated

3. Simplifications and Extensions to the Paul and Thomas Model 57

X0 > X1 - P

Degeneration
UOT}RUIIO] 9[OTDRA

~
X2 > X3 > X4
Degeneration Autolysis

In this simplified model, the vacuole formation
and growth processes are described approximately,
using one formation and one destruction kinetic.

Fig. 3.2: Conversion from non-growing hyphae to fully vacuolated hyphae via an
intermediate, partially vacuolated state

hyphal material (see Figure 3.2).

e A structure in which material in the non-growing region is considered

as passing directly to fully vacuolated hyphal material (see Figure 3.3).

Both these structures are intended to describe only the observed gross
changes in the hyphae and make no attempt to describe the mechanisms by
which vacuole formation and growth take place.

Three possible types of kinetic were considered for use in describing each

step in each of the candidate structures.

e a first order kinetic, kX, (F)

3. Simplifications and Extensions to the Paul and Thomas Model 58

X0 >

X3— X4

Autolysis

Fig. 3.3: Conversion directly from non-growing hyphae to fully vacuolated hyphae

e a conversion kinetic, 2%, (C)

kXS ()

e a substrate inhibition kinetic, T
L+5+52

For each candidate structure, two alternative forms, with and without
degeneration of the fully vacuolated hyphae (assumed to be first order), were
considered.

This means that, in total, 24 different candidate model structures were
tuned and compared (6 single-step models and 18 two-step models). However,
it was only necessary to construct two general model structures, one for
single-step models and one for two-step models. The three kinetics being
considered for each step were constructed in parallel, with software ‘flags’
being used to determine which kinetic was operating (in any group of three
parallel kinetics). This also made it possible to automate the tuning of
the candidate models, by writing scripts to go through the set of candidate
models sequentially, tuning each in turn and saving the resulting parameter

sets to files.

3. Simplifications and Extensions to the Paul and Thomas Model 59

The following short forms are used to refer to the candidate model struc-

tures:

e single-step models describing a transition directly from state X; to
state X3, are denoted by 1 =y 3, where the transition kinetic used in
the model is indicated by the superscript on the arrow, being one of

the three possibilities, First order (F), Conversion (C) or Inhibited (I).

e two-step models describing transition from state X; to state Xy and

F.CI . F,CI
= 2 % 3, where the super-

thence to state X3 are denoted by 1
scripts on the arrows denote the transition kinetics used in the model,
from the three options considered, First order (F), Conversion (C) and

Inhibited (I).

Where the destruction of fully vacuolated hyphal compartments (biomass
state X3) has been modelled, the words “(with lysis)” are appended to the

above short forms.

Comnsequential modifications

In the original model of Paul and Thomas (1996), the rates of penicillin
production and of the maintenance-related substrate consumption terms are
dependent on the volume concentration of active cytoplasm. In the simplified
models, this dependence on the volume concentration of active cytoplasm has
been replaced by dependence on the mass concentration of the non-growing
regions of the hyphae. The equations defining the models considered here

are given in Appendix A.3.

3. Simplifications and Extensions to the Paul and Thomas Model 60

3.1.2 Comparing the simplified models

Each of the simplified model structures was built and tuned against fermenta-
tion data supplied by Paul (1996). Two sets of data were used, both having
been obtained under the same conditions of fermenter scale and medium
composition, but with different initial fermentation conditions and feed pro-
files being used. One set of data was obtained for a fermentation carried
out with constant feed rate, and the second for a fermentation carried out
with a time-varying feed rate. These data sets were the same as those used
in tuning models from the published literature in the course of selecting the
best performing penicillin fermentation model (see Figure 2.3 for details).

Each model was tuned using the first set of fermentation data and used
to predict the performance of the fermentation for the second set of fermen-
tation data, and wvice versa. Because model tunings depend on the data
used in tuning the model, the models were compared on the basis of how
well they predicted the measured fermentation data. For the model tunings,
all parameters in any given candidate model structure were optimised, with
tuning being carried out using as many of the measured model states as was
appropriate for the type of model (all biomass states, glucose and penicillin
concentrations for two-step models, omitting only the vacuolated biomass
state when considering single-step models).

The models were built using MATLAB and SIMULINK, and tuned using
routines from the MATLAB Optimisation toolbox. A least squares routine
(Levenberg-Marquardt algorithm) was used to tune each model’s parameters,

with the target error function being calculated as follows:

e Simulate the model over the time period of the reference data set,

3. Simplifications and Extensions to the Paul and Thomas Model 61

using a fourth order Runge-Kutta algorithm or Gear’s algorithm, both

supplied in SIMULINK.

e Log the model output to obtain simulated values corresponding to the

times of the experimental measurements.

— Single-step models were tuned to fit the biomass states Xy, X;
and X3 (omitting the vacuolated state), along with the glucose

and penicillin concentrations.

— Two-step models were tuned to fit the biomass states Xy, X,
X, and X3 (all the biomass states), along with the glucose and

penicillin concentrations.
e (Calculate the difference between the measured and simulated values.

e Weight the differences for each model state by the inverse of the max-

imum value in the measured data set for that state.

e Square and sum the weighted differences. (This is done by the optimi-

sation routine-it works on the matrix of weighted differences.)

Mathematically, the target function can be expressed as follows,

n 2
valuemeas(iy — VOlUE;m (i
Error = g E < © l © (3.1)
1=1 all measured values maX(Ua Uemeas)
where the summation is carried out for all measurement times and the

subscripts meas and sim denote measured and simulated values respectively.

The above equation indicates that the error expression contains contributions

3. Simplifications and Extensions to the Paul and Thomas Model 62

from the biomass, substrate and product states modelled. For the case of
single-step models, this means that summation is carried out for Xy, X, X3,
S and P, whilst for two-step models, summation is carried out for Xy, X,

X5, X3, S and P, that is, with an additional measured biomass state, X5.

3.1.3 Results — Single step models

The results presented here are for predicting the behaviour of a fermenta-
tion whose data have not been used in tuning the model and so obtain-
ing a set of model parameters. Two summary tables of errors are shown
(Tables 3.1 and 3.2). The tabulated data include summed squared error val-
ues for all five model states considered, three biomass states (vacuoles are
ignored in the single-step models), glucose and penicillin, along with a to-
tal error value, formed by adding the entries in each row of the table. The
summary tables of errors are given to four decimal places, as this is the stan-
dard format generated from MATLAB, and thus the easiest to obtain directly
for inclusion in this document. The average prediction errors, provided as a
summary of the calculated errors, may be found in Table 3.3. The average
prediction errors were calculated by hand and are only given to two decimal
places. This is sufficient for comparison between the various candidate model
structures.

The best performing single-step model is that in which the conversion
of Xy to X3 is described by an inhibited kinetic, with X3 being considered
to undergo first order degeneration (degeneration was only considered as
being first order). The graphs associated with the best averaged fits to the

measured fermentation data are given in Figures 3.4 and 3.5.

3. Simplifications and Extensions to the Paul and Thomas Model 63

Model X0 X1 X3 S P | Total
Structure

153 0.3765 | 0.0502 | 0.6337 | 0.0480 | 0.0775 | 1.1859
153 (w.l) | 0.3765 | 0.0502 | 0.6337 | 0.0480 | 0.0775 | 1.1859
153 0.3166 | 0.0255 | 0.6355 | 0.2146 | 0.4369 | 1.6291
153 (w.1) | 0.3351 | 0.0729 | 0.5829 | 0.1753 | 0.1347 | 1.3010
153 0.2460 | 0.2492 | 0.6265 | 0.1095 | 0.0845 | 1.3156
153 (w.l) | 0.2739 | 0.2021 | 0.4834 | 0.1713 | 0.0761 | 1.2068

Tab. 3.1: Prediction errors for single-step models tuned on constant feed profile
data, predicting time-varying feed profile data [(w.l.) denotes models
with lysis considered]

The biomass fractions make the largest contributions to the summed
squared error (well over half the total summed squared error value), with
X3 making the largest contribution of all the biomass states. Since X3 does
not influence growth, substrate consumption, or product formation, how-
ever, the magnitude of this error is relatively unimportant, and may even
be a consequence of the lack of influence of X3 on other states’ errors. The
best-performing single-step model’s poor performance in fitting X3, shown

in Figures 3.4 and 3.5, is, therefore, unimportant.

3. Simplifications and Extensions to the Paul and Thomas Model

64

Model X0 X1 X3 S P | Total
Structure

153 0.2042 | 0.1135 | 0.6292 | 0.0658 | 0.0577 | 1.0704
153 (w.l.) | 0.2106 | 0.0991 | 0.6444 | 0.0733 | 0.0760 | 1.1035
153 0.2825 | 0.0718 | 0.7111 | 0.0609 | 0.4077 | 1.5340
153 (w.l.) | 0.2027 | 0.1738 | 0.6404 | 0.0954 | 0.1203 | 1.2326
153 0.2937 | 0.1386 | 0.4266 | 0.2032 | 0.0973 | 1.1594
153 (w.l.) | 0.3112 | 0.1015 | 0.3048 | 0.1614 | 0.0512 | 0.9301

Tab. 3.2: Prediction errors for single-step models tuned on time-varying feed pro-
file data, predicting constant feed profile data [(w.l.) denotes models
with lysis considered]

Model Structure Total
153 1.13
15 3 (with lysis) | 1.14
153 1.58
15 3 (with lysis) | 1.27
153 1.24
1L 3 (with lysis) | 1.07

Tab. 3.3: Average total prediction errors for the single-step models

3. Simplifications and Extensions to the Paul and Thomas Model 65

Predicted Behaviour

IS
[S)

Biomass g(X)I*
N
o

0

0 20 40 60 80 100 120 140 160
.20 :
@
[/7 TN
g 10/ \\ i
(5]
=] \
o 0 L \\ Il 1 L L L L

0 20 40 60 80 100 120 140 160
Z 6
o
E’ 4
:g 2
[}
[a 8

(=]

=
o

o

(=]

o

N W
o

Biomass X, g(X)I* Biomass X, g(X)I*
=
o

0

La

[=2]

3

92

©

£

o —— ~—— - — _

mo—=—= L T - — e s = = e = = = e = = o
0 20 40 60 80 100 120 140 160

Time h

Fig. 3.4: Comparing predictions of data obtained using a constant feed rate, for
models tuned with data obtained using a time-varying feed rate, validated
against data obtained using a constant feed rate.

Model 1 5 3 (with lysis), (— Measured data, —- simple model)

3. Simplifications and Extensions to the Paul and Thomas Model 66

Predicted Behaviour

IS
[S)

Biomass g(X)I*
N
o

(=]

0 20 40 60 80 100 120 140 160
15 :
D =N
7
o10r \ 1
(%) \
g st \\ il
OO L L R 1 -
0 20 40 60 80 100 120 140 160
L6
a
24
:g 2
)
o

(=]

o

o

(=]

o

Biomass X, g(X)I* Biomass X, g(X)I*
B 8 w =

o

N

N

Biomass X, g(X)I*

o

Fig. 3.5: Comparing predictions of data obtained using a time-varying feed rate,
for models tuned with data obtained using a constant feed rate, validated
against data obtained using a time-varying feed rate.

Model 1 5 3 (with lysis), (— Measured data, —- simple model)

3. Simplifications and Extensions to the Paul and Thomas Model 67

3.1.4 Results — Two step models

The results presented here are for predicting the behaviour of a fermenta-
tion whose data have not been used in tuning the model and so obtaining
a set of model parameters. Two summary tables of errors are shown in
Tables 3.4 and 3.5, with the associated graphs being given in Figures 3.6 and 3.7.

The tabulated data include summed squared error values for all five model
states considered, all four biomass states, glucose and penicillin, along with a
total error value, formed by adding the entries in each row of the table. The
average prediction errors, provided as a summary of the calculated errors,
may be found in Table 3.6.

The best performing two-step model is that in which the conversion of
X to X, and of X5 to X3 are both described by first order kinetics, with X3
being considered to undergo first order degeneration (degeneration was only
considered as being first order).

Again, the biomass fractions make the largest contributions to the summed
squared error (well over half the total summed squared error value), with the
degenerated biomass state (X3) often making the largest contribution of all
the biomass states. Since X3 does not influence growth, substrate consump-
tion, or product formation, however, the magnitude of this error is relatively
unimportant, and may even be a consequence of the lack of influence of X3 on
other states’ errors. The best-performing two-step model’s poor performance
in fitting X3, shown in Figures 3.6 and 3.7, may, therefore, be considered to

be unimportant.

3. Simplifications and Extensions to the Paul and Thomas Model 68

Model X0 X1 X2 X3 S P Total
Structure

15253 0.2460 | 0.1289 | 0.2566 | 0.6900 | 0.1807 | 0.0605 | 1.5627
15253 (wl) | 0.2421 | 0.1497 | 0.2505 | 0.6805 | 0.1766 | 0.0492 | 1.5486
15253 0.3717 | 0.1632 | 0.2369 | 0.6988 | 0.1749 | 1.3358 | 2.9814
15253 (wl) | 0.1985 | 0.1910 | 0.3944 | 0.7238 | 0.1451 | 0.0574 | 1.7102
15253 0.1522 | 0.0992 | 4.7372 | 4.5880 | 0.1309 | 0.1087 | 9.8161
15253 (wl) | 0.2373 | 0.1836 | 1.6924 | 7.1470 | 0.1877 | 0.0438 | 9.4917
15253 0.2387 | 0.1279 | 0.3423 | 0.7438 | 0.2203 | 0.0558 | 1.7287
15253 (wl) | 0.2330 | 0.1640 | 0.3451 | 0.7364 | 0.1981 | 0.0442 | 1.7207
15253 0.2381 | 0.0983 | 0.3271 | 0.7600 | 0.1980 | 0.0627 | 1.6843
15253 (wl)|0.0761 | 0.1198 | 3.5298 | 5.4979 | 0.1332 | 0.0452 | 9.4019
15253 0.2051 | 0.1426 | 1.8380 | 7.1470 | 0.2235 | 0.0438 | 9.6000
15253 (wl) | 0.1866 | 0.2244 | 2.2195 | 7.1031 | 0.2385 | 0.0640 | 10.0360
15253 0.1899 | 0.1956 | 8.6188 | 1.9179 | 0.2594 | 0.1403 | 11.3220
15253 (wl) | 0.3370 | 0.2634 | 8.0459 | 1.0486 | 0.0769 | 0.2312 | 10.0031
15253 0.3283 | 0.2048 | 4.4607 | 1.1815 | 0.3758 | 0.4470 | 6.9980
15253 (wl) | 0.2198 | 0.2864 | 4.2140 | 3.4513 | 0.4126 | 0.2757 | 8.8597
15253 0.4497 | 0.0888 | 0.8219 | 1.9767 | 0.1058 | 0.0797 | 3.5226
14253 (wl)|0.3375 | 0.1031 | 0.1379 | 0.6385 | 0.2332 | 0.6807 | 2.1309

Tab. 3.4: Prediction errors for two-step models tuned on constant feed profile data,
predicting time-varying feed profile data [(w.l.) denotes models with lysis
considered]

3. Simplifications and Extensions to the Paul and Thomas Model 69

Model X0 X1 X2 X3 S P | Total
Structure

15253 0.1360 | 0.2418 | 0.2091 | 0.7450 | 0.0385 | 0.0315 | 1.4020
15253 (wl) | 0.1168 | 0.1844 | 0.2317 | 0.7681 | 0.0381 | 0.0271 | 1.3662
15253 0.1505 | 0.3012 | 0.7620 | 0.8976 | 0.0377 | 0.0489 | 2.1979
15253 (wl) | 0.1058 | 0.1476 | 0.4225 | 0.9609 | 0.0381 | 0.0200 | 1.6949
15253 0.3930 | 0.2967 | 1.6173 | 5.8882 | 0.0415 | 0.0439 | 8.2806
15253 (wl) | 0.2917 | 0.3019 | 1.6083 | 5.8945 | 0.0592 | 0.0800 | 8.2357
15253 0.1161 | 0.1925 | 0.2580 | 0.7612 | 0.0388 | 0.0199 | 1.3865
15253 (wl) | 0.1644 | 0.3042 | 0.1945 | 0.8911 | 0.0423 | 0.0574 | 1.6538
15253 0.3033 | 0.2656 | 0.7155 | 3.5088 | 0.0454 | 0.1720 | 5.0105
15253 (wl) | 0.2991 | 0.1719 | 0.5477 | 1.3786 | 0.0548 | 0.0562 | 2.5084
15253 0.3942 | 0.2311 | 1.7672 | 5.8542 | 0.0397 | 0.0643 | 8.3509
15253 (wl) | 0.1166 | 0.1244 | 1.7036 | 5.9443 | 0.0377 | 0.0185 | 7.9451
15253 0.7691 | 0.4633 | 1.0677 | 0.5190 | 0.0573 | 0.0459 | 2.9222
15253 (wl) | 0.0951 | 0.0659 | 7.5075 | 1.5162 | 0.0609 | 0.0319 | 9.2773
15253 0.4046 | 0.2285 | 0.7892 | 5.9075 | 0.1287 | 0.0375 | 7.4960
15253 (wl) | 0.3052 | 0.0738 | 0.6713 | 0.5210 | 0.0874 | 0.0790 | 1.7378
15253 0.5512 | 0.2250 | 0.5307 | 2.3624 | 0.6775 | 0.0759 | 4.4227
15253 (wl) | 0.4055 | 0.1464 | 1.1847 | 1.1647 | 0.2661 | 0.0201 | 3.1874

Tab. 3.5: Prediction errors for two-step models tuned on time-varying feed profile
data, predicting constant feed profile data [(w.l.) denotes models with
lysis considered]

3. Simplifications and Extensions to the Paul and Thomas Model 70

Model Name Total
The Original Model | 1.06
Two Step Models

15253 1.48
15253 (wl) 1.46
15253 2.59
15253 (wl) 1.70
15253 9.05
15253 (wl) 8.86
15253 1.56
15253 (wl) 1.69
15253 3.35
15253 (wl) 5.96
15253 8.98
15253 (wl) 8.99
152583 7.12
15253 wl) | 10.30
15253 7.25
15253 (wl) 5.30
15253 3.97
15253 (wl) 2.66

Tab. 3.6: Average total prediction errors for the two-step models [(w.l.) denotes
models with lysis considered]

3. Simplifications and Extensions to the Paul and Thomas Model 71

Predicted behaviour

IS
[S)

N
o

(=]

Il
0 20 40 60 80 100 120 140 160

N
o

=y
o
N
L

(=]

Il Il Il
0 20 40 60 80 100 120 140 160

=
o

(&)
T

(=]

Il Il Il
0 20 40 60 80 100 120 140 160
10

s X, g(X)IBiomass X, g(X)I* Penicillin g(P)I* Glucose g(S)I* Biomass g(X)I*
N
o

N
o

(=]

IS

N
T

(=]

IS

N
T

Biomass X, g(X)[Biomass X, g(x)IE/°mas

o

o
N
o
IN
S
o
o
©
)
=
o
)
P
)
o
=
N
S
=
o
o

Fig. 3.6: Comparing predictions of data obtained using a time-varying feed rate,
for models tuned with data obtained using a constant feed rate, validated
against data obtained using a time-varying feed rate.

Model 1 & 2 5 3 with lysis, (— Measured data, —- simple model)

3. Simplifications and Extensions to the Paul and Thomas Model 72

Predicted behaviour

IS
[S)

N
o

(=]

Il
0 20 40 60 80 100 120 140 160

N
o

=y
o
T
N
2
z
L

(=]

4 Glucose g(S)I* Biomass g(X)I*

S
o
N
o
ey
o
o
S
©
s}
=
SL
s}
=
oL
o
=
L
S
=
1)
S

Penicillin g(P)!
N
T

Il Il Il
0 20 40 60 80 100 120 140 160

=
o

o

Il Il Il
0 20 40 60 80 100 120 140 160

s X, g(X)IBiomass X, g(X)I*
N
o

N
o

(=]

o
N
o
ey
o
o
S
©
s}
=
SE
s}
=
oL
o
=
L
S

160

IS

N
T
\
1
1
i
1
|
1
L

(=]

o
N
=}
ey
o
o
o
©
=}
=
=y
s}
P
SL
o
=
=L
S

160

IS

N
T
I

o
r

1 1 - -
20 40 60 80 100 120 140 160
Time h

Biomass X, g(X)[Biomass X, g(x)IE/°mas
)

o

Fig. 3.7: Comparing predictions of data obtained using a constant feed rate, for
models tuned with data obtained using a time-varying feed rate, validated
against data obtained using a constant feed rate.

Model 1 & 2 5 3 with lysis, (— Measured data, —- simple model)

3. Simplifications and Extensions to the Paul and Thomas Model 73

3.1.5 Discussion

From the tables of average summed squared prediction errors, Tables 3.3
and 3.6, it may be found that the best performing single-step model is is
that in which the conversion of X; to X3 is described using an inhibition
kinetic and which contains a lysis term, (1 %3 (with lysis)), and that
the best performing two-step model is that in which the conversion of X
to Xy is described as using a first order kinetic, conversion of X, to X3 is
also described using a first order kinetic, and which contains a lysis term
(1525 3 (with lysis)).

It is not possible to make a direct comparison between the averaged
summed squared prediction errors for these two models, as they have been
tuned against differing numbers of model states.

Some of the arguments in favour of choosing the two-step model are as

follows.

o [t is likely to be easier to extend a two-step model to include a de-
scription of the vacuolation process than a single-step model, when the

details of the vacuolation process are better understood.

e More data were used in tuning the two-step models than in tuning
the single-step models (the additional vacuole state data), and so the

two-step models are based on more process information.

e The two-step model makes better predictions of the glucose and peni-
cillin concentrations. Since glucose is most likely to be the controlled

variable for the fermentation, and penicillin is the product of principal

3. Simplifications and Extensions to the Paul and Thomas Model 74

interest, it is particularly important that the model should describe

these two states well.

e The two-step model describes the concentration of hyphal tips better
than does the single-step model.

Against these reasons, the following arguments were advanced for consid-

ering the single-step models.

e The single-step model is simpler and has fewer states and parameters

than does the two-step model.

e The single-step model fits the active cytoplasm concentration better

than the two-step model does.

It is difficult to be certain that any particular model tuning is globally op-
timal (that the best of all possible parameter sets has been found). Parameter
optimisations starting with differing initial parameter sets may terminate in
local optima, or termination of the parameter estimation routine may oc-
cur because the parameter set has entered a region of the parameter space
in which the summed squared error varies extremely slowly with changes in
parameter values, thus being approximately ‘flat’.

So, for the reasons listed above, and since the differences in the summed
error values for the two best models seem to be mainly in the X3 state,
which has no influence on glucose consumption, biomass growth or penicillin
formation (unlike Xy, X7 and X5), the best two-step model was used in the

work following from model simplification.

3. Simplifications and Extensions to the Paul and Thomas Model 75

3.2 Including Lactose as a Second Substrate

Thus far, the results presented have been based around a model of the peni-
cillin fermentation in which only a single carbon-providing substrate, glucose,
is assumed to be present. However, industrially this is not the case, as the
carbon source used is frequently complex. Experimentally, lactose was found
to be present in the inocula for the fermentation experiments carried out in
the department at levels that can not be considered to be negligible (=~ 6¢g/L).
The presence of lactose in the experimental data sets provided an opportu-
nity to extend the model so as to consider conditions in which more than one

carbon source is present.

3.2.1 A previous two substrate penicillin fermentation model

A penicillin fermentation model based on lactose and glucose as substrates
has previously been published by Kluge et al. (1992). In this model, the
focus is quite strongly on the rates of uptake of the two substrate species
from the fermentation medium, with rates of growth and product formation
being calculated after subtraction of the biomass’s maintenance requirements
from the total rate of substrate uptake.

Superficially, this approach is similar to that of Nielsen (1991), but it
differs in that in the model of Kluge et al. (1992) no consideration is made
of enzyme concentrations within the biomass that are associated with the
uptake of different substrates from the medium. In the model of Nielsen
(1991), these enzyme concentrations vary with time, changing according to
the availability of substrates in the medium, and so the model is capable of

describing the delays in converting from growth on one substrate to growth on

3. Simplifications and Extensions to the Paul and Thomas Model 76

a second. The model of Nielsen (1991) assumes that, after uptake, the sugar
substrates that it considers are converted into the same energy-providing
compound and so that there is no difference in the way in which the organism
obtains energy from its internal sources.

The model of Kluge et al. (1992) differs in that no enzyme structures are
assumed, and instead considers the rate of uptake of lactose as being related
to the rate of uptake of glucose. Kluge et al. (1992) have the following pair

of equations:

dsS
T —qsXa +[Sy = SID (3:2)
dL
4 = ~wXa+ Ly~ LD (3.3)

where gs and ¢, are the specific uptake rates for glucose and lactose, respec-
tively, Sy and Ly are the glucose and lactose concentrations in the feed, D
is the dilution rate (Feed/Volume), and X4 is the concentration of active

biomass. The specific consumption rates ¢s and ¢;, are given by:

_ qsoS
gs Ko+ S
qroL 1

@ = (KL + L) (1 + CLqu)

(3.4)

(3.5)

3. Simplifications and Extensions to the Paul and Thomas Model 7

where ¢so and ¢z are the maximum specific uptake rates of glucose and
lactose, Kg and K, are Michaelis-Menten uptake expression coefficients, and
CpLs is a coeflicient relating the repression of lactose uptake to the glucose

uptake rate. Substituting for ¢g in the expression for ¢z, the following is

obtained:
qL _ QLOL K5+S (3 6)
(KL+L) (KS+(1+CL5(]50)S) '
qroL CrsqsoS)
= 14+ = 3.7
Kp+L < Ks+ S > (3.7)

In Kluge et al. (1992), biomass growth is then described as follows.

dX
- X 3.8
O HaXa (3.8)
where
wp
fa = <CIS +agqr, —m — Y—> Yxs (3.9)
PS

Here p4 is the specific growth rate of active biomass, « is a coefficient re-
lating the nutritional value of lactose to that of glucose, m is a maintenance
coefficient, pp is the specific penicillin production rate, and Ypgs and Yxg are
yield coefficients for the production of penicillin and biomass, respectively,
from substrate.

Relating substrate and uptake in this way, using Michaelis-Menten en-
zyme uptake kinetics, is conceptually different from using Monod kinetics to

describe the growth of an organism, and then calculating from the growth

3. Simplifications and Extensions to the Paul and Thomas Model 78

rate the necessary growth-related rate of substrate uptake.

The Michaelis-Menten enzyme uptake kinetics based approach, as used
by Kluge et al. (1992), starts by calculating the rate of substrate uptake,
and then relates the growth rate of the biomass to the excess of uptake over
requirements for maintenance and product formation. The Monod kinetic
based approach starts from a correlation between substrate concentration
and biomass growth rate, and calculates the growth related substrate con-
sumption from this, usually by assuming a time-invariant yield coefficient of
biomass from substrate. The substrate consumption rates related to biomass
maintenance and, through a second yield coefficient, to the product forma-
tion rate are then added on, and the total is taken to be the rate of removal
of substrate from the medium.

Theoretically, it would appear that the former, Michaelis-Menten uptake
based, approach is more valid, because the latter, Monod growth based, ap-
proach can give rise, theoretically, to uptake rates which exceed the physical
limitations of organisms being modelled.

The use of such an approach has the drawback that it is, mathemati-
cally, possible for the growth rate to become negative if the maintenance and
production associated consumption of substrate should exceed the rate at
which substrate is taken up by the organism, as may well be the case for
low substrate concentrations such as those observed during the production
phase of a penicillin fermentation. Difficulties could arise in attempting to
avoid this problem, by matching the consumption rates to the uptake rates,
in determining how the consumption of substrate should be split between

maintenance and product formation.

3. Simplifications and Extensions to the Paul and Thomas Model 79

3.2.2 Two substrates in the Paul and Thomas (1996) model

It was observed that the lactose present in the fermentation was carried over
from the inoculum, and that the lactose concentration remained approxi-
mately constant (subject to dilution by the glucose-containing feed) until
such time as the glucose concentration was significantly reduced, at which
point the lactose was rapidly consumed.

Paul (1997) proposed the following form for the lactose consumption ki-

netic.

dL _ prL Xo+ Xy (3.10)
dt (Ksp + L) (1+ S/Ks;) '

Here piy, is the maximum specific consumption rate of lactose, Ky, is a Monod
coefficient, and Kg; is an inhibition coefficient.

In the above equation, the lactose consumption rate decreases with in-
creasing glucose concentrations, thereby giving a higher rate of lactose con-
sumption at lower glucose concentrations. Lactose consumption, or uptake,
is assumed to be associated with the active biomass fractions, the hyphal tips
(Xo) and the active, penicillin-producing subapicial regions (X;). Note that
the rate of lactose consumption falls to zero as the lactose concentration falls
to zero, thus satisfying the logical boundary condition that no concentration
can ever become negative.

To minimise the impact of adding the lactose term to the simplified model,
the consumption of lactose has been likened to converting the lactose in the
medium to glucose in the medium, which is then taken up by the organism

in the usual way. This is not intended to describe any physical process.

3. Simplifications and Extensions to the Paul and Thomas Model 80

Using this approximation to describe the consumption of lactose from the
medium means that the bulk of the model, the equations describing growth
and product formation, may be left unchanged and solely glucose based,
and that the only equation that needs to be modified is the glucose rate of
change equation. As long as the rate of lactose uptake in the fermentation is
small, remaining less than the total rate of substrate utilisation for growth,
maintenance and product formation, then this crude approximation should
be reasonable. As the two substrate model currently stands, it is probably
only justified to use the model to describe fermentations where lactose is
present in relatively small amounts at the start of the fermentation, and
where glucose is fed throughout at a rate sufficient to account for the bulk of
the substrate taken up by the organism. The model is not considered to be
suitable for use in describing growth on lactose as a single substrate - such
conditions are far from those for which the model has been developed and
applied to date.

When the conversion of lactose to glucose is added to the equation used in
the model to describe the change in the glucose concentration, the following
equation is obtained.

g _ QofloX1S _ Qefle XS _ moXoS _ M1 PeVicS
dt Ko+ S K.+ S K+ S Ky + S

. Qp flip PeVicS prL Xo+ Xy
Kp+S(1+S/K;) (Ksr+ L) (1+S/Ksp)

(3.11)

3. Simplifications and Extensions to the Paul and Thomas Model

81

3.3 Notation
Crs

D
K

YP S

YXS

meas

Constant allowing for lactose uptake repression in the
presence of glucose uptake, g(DW)hg(S)™!
Dilution rate, h=*

Inhibition coefficient, g(S)1™!

Monod coefficient for lactose, g(L)1™*

Inhibition coefficient, g(S)1!

Monod coefficient for glucose, g(S)1™*

Inhibition coefficient for lactose conversion, g(S)1~
Monod coefficient for lactose, g(L)1™!

Monod type denominator term, g(S
Monod type denominator term, g(
(
(

1

Monod type denominator term, g
Monod type denominator term, g
Concentration of lactose, g(L)1™!
Concentration of lactose fed to the fermenter, g(L)l~
Biomass conversion kinetic coefficient, g(S)I™!
Inhibited biomass conversion kinetic coefficient, g(S)1~
Concentration of penicillin, g(P)1~!

Concentration of glucose, g(S)1™!

Concentration of glucose fed to the fermenter, g(S)I™!
Concentration of biomass, g(DW)I!

Concentration of active biomass, g(DW)1™!
Concentration of biomass state 0, (hyphal tips)
g(DW)I~!

Concentration of biomass state 1, (subapicial regions)
g(DW)I™

Effective concentration of biomass state 2, (vacuoles)
g(DW)I™

Concentration of biomass state 3,

(fully vacuolated regions) g(DW)1~!

Effective concentration of biomass state 4,

(lysed material) g(DW)1~*

Yield coefficient for penicillin with respect to substrate,
2(P)g(S)

Yield of biomass with respect to glucose, g(DW)g(S)™*
Subscript denoting measured value

1

1

3. Simplifications and Extensions to the Paul and Thomas Model 82

qr,
qro
qs

qso
t

Vie

Greek Symbols

(07

e

Qp

)

17\
237
Hp
Hp
Ho
He
Pe

Subscript denoting simulated value

First order biomass conversion coefficient, h—!
Maintenance coefficient, g(S)h~!

Maintenance coefficient for state 0, g(S)g(DW) *h~!
Maintenance coefficient for state 1, g(S)g(DW)~'h~!
Uptake rate of lactose g(L)g(DW)~*h~!

Uptake coefficient for lactose, g(L)g(DW)~'h~!
Uptake rate of glucose, g(S)g(DW) th™!

Uptake coefficient for glucose, g(S)g(DW) 'h~*
Time, h

Volume concentration of active cytoplasm, m?®1~!

Coefficient relating nutritional value of glucose

to that of lactose, g(S)g(L) !

Coefficient relating substrate consumption to biomass
extension, g(S)g(DW) !

Coefficient relating substrate consumption to product
formation, g(S)g(P)™!

Coefficient relating substrate consumption to biomass
growth, g(S)g(DW) !

Specific growth rate of active biomass, h™!

Specific conversion rate for lactose, g(L)g(DW)~'h~!
Penicillin production rate, g(P)h™*

Penicillin production constant, g(P)g(DW)~'h™!
Specific growth rate, g(X0)g(X1) th™!

Specific growth rate, g(X1)g(X0) th™!

Density of cytoplasm, gm~3

4. IMPROVING PARAMETER CONFIDENCE

4.1 'The Form of the Equations

The penicillin fermentation is considered here as being described by a non-

linear differential equation based model of the following form.

#(t) = f(2(t), 5, u(t)) (4.1)
y(t) = g(z(t), 5, u(t)) (4.2)

In the above, z(t) is a vector of time-varying model states, [is a set of
assumed time-invariant parameters, and wu(t) is some time-varying input to
the model (such as the feed rate of substrate to the fermenter). The output of
the model is y(¢); this second equation may be used to relate measurements
to the model states. Frequently the measurements are the model states,
such as biomass, substrate and product concentrations, and volume in the
fermenter, but other measurements are possible, for example, carbon dioxide
production rate (CPR), which has been modelled previously (Montague et al.,
1986) as being related to biomass growth and maintenance, and to penicillin
production, ie. a relationship of the form CPR aX + 06X + fyP. For
simplicity, we will here assume that only the states are measured, that is,

that y(t) = x(¢).

4. Improving Parameter Confidence 84

Typically, there exists no analytical solution to a model of this type, and
so numerical integration is needed to calculate the state trajectories over
time. Here the models were numerically integrated using SIMULINK, a block-
diagram oriented modelling tool associated with MATLAB, which provides
a number of numerical integration algorithms. The two algorithms most
frequently used in this work were a fourth order Runge-Kutta method, and

Gear’s algorithm.

4.2 Tuning the Model Parameters

In order to use the model for practical purposes, it must first be tuned so as
to accurately represent the fermentation. This was done using the MATLAB
least squares based optimisation routine leastsq to adjust the parameters so
as to minimise the summed weighted squared error between the fermentation
data measured at a number of sample intervals, and values generated using
the model.

The least squares error between the measured and simulated values may

be expressed as follows.

i=1

In the above, E is the error value, m(t) is a vector of measurement values
at some time ¢, x(t) is the corresponding vector of simulated values, and
the summation is carried out for n sample times. The matrix W is a time-
invariant weighting matrix, frequently a diagonal matrix with one weight per

state along the leading diagonal.

4. Improving Parameter Confidence 85

To avoid possible bias in the parameter set obtained, as a result of a state
with large absolute values dominating the tuning of the parameters, the error
value at each measurement interval, for each model state, was divided by the
maximum measured value of the model state in question. This is equivalent to
using a diagonal W matrix, with 1/(max(z))? along the diagonal. Weighting
on the basis of initial, final or minimum values would have resulted in divide-
by-zero errors, and it was considered that weighting on the basis of average
values would have been biased, since zero values would depress the average
value of a state’s measurements. (The measured data included zero values

for some initial, final and intermediate values.)

4.2.1 A geometrical interpretation of the errors

The error function E can be considered as a hypersurface given by
E = B(f)-E (4.4)

where E(3) denotes a general error value for some parameter set 3, and Ej

is the minimum value of the error function that we are seeking.
Ey, = E(b) (4.5)

In the above, b denotes the parameter set at the optimal tuning. Ex-

pressed as a Taylor expansion around the optimum ...

oF 1 0’F
E(f) = Eo+ 2 B+ (f-b) 2

o5 |, 5 (B—0b)+-- (4.6)

4. Improving Parameter Confidence

86

First and second derivatives of scalars with respect to vectors are defined

as follows:
[o
061
L (4.7)
6ﬂ 052
9E
| 083
9E _ [a_Ea_Ea_E} (4.8)
aﬂ’ 0p1 0B2 9p3
[25 o2E 8%E
0161 96182 9B183
2
0°F — 9°E 8%E O%E (4 9)
opops! 9B2f1 9B2B2 9p213 :
92E 8’E 8’E
| 06361 0B3B2 083033

The derivative of a vector with respect to another vector, for example, 0x /9,

is as follows:

o0x

3 =

Oz Ox2
0B1 01
Oz Ox2
0f2 0f2
Oz Ozy
0p3 083

(4.10)

Because F has a minimum at 3 =50 ...

oE
b |5,

and
0’FE
opop

0

is positive definite

4. Improving Parameter Confidence 87

So, neglecting higher terms, we have ...

Hence,
1 . PE
B~ 8-V gaag| (6D (4.12)

which describes a hyperparaboloid. Curves of constant E are hence hyperel-
lipsoids.
For the error function in Equation 4.3, the first two derivatives of the

error function with respect to the parameters may be expressed as follows

(Eykhoft, 1974).

a7 =22 (%55) wonw —+ie (113)

25 (5 0 ()2 (5 o

=1

(4.14)

The second of the above equations is not strictly correct, as 0*x(t;) /03 03’
is a tensor. However, close to the optimal parameter set, for noise-free mea-
surements perfectly described by the model, the error between measured and
simulated values goes to zero, [Vi;,limg_;(m(t;) — z(¢;)) = 0], and so this
second term vanishes. (For cases where the model structure is not capable
of matching the data, or where there is a relatively large noise contribution

to the error in fitting the model, this will, however, not be the case, and it

4. Improving Parameter Confidence 88

may be worthwhile comparing the relative magnitudes of the the two terms
in Equation 4.14 in such circumstances.)

The sensitivity of the model states to the parameter values (0z(t)/00) is
described by the following equation, obtained by differentiating Equation 4.1
with respect to the parameter vector § (Holmberg, 1982).

A% afox(t) of()
dt — 8_1‘ 85 +—8ﬁ (415)

In optimisation, it is generally assumed that, close to the optimal point,
the errors of a system vary in a quadratic manner (Norton, 1986). That is to
say, that contours of constant error around the tuning point form ellipsoids
(ellipses in the case of a two-parameter system). For a least squares objective
function of the type given in Equation 4.3, the above equations show that
close to an optimum, where the errors may be approximately described by a

Taylor series expansion, this is always the case.

4.2.2 Considering ellipsoids

Substituting for 0*E/0303' in Equation 4.12 from Equation 4.14, ignoring
the second term which vanishes close to the optimal parameter set we obtain

the following,

E

Q

Loy [Z (agg(;i))'vv (ag(;i))] (G-1) (416

which is a quadratic equation.

4. Improving Parameter Confidence 89

Consider a general quadratic equation of the following form.
E=X'AX (4.17)

If we assume that A is a diagonal matrix, and that the X vector has only

two elements, x1 and x5, then this may be rewritten in the simpler form
E = CLHJJ% + CLQQ.’II% (418)

which is the equation describing a three-dimensional paraboloid.
For fixed values of E, the above equation is analogous to that for an

ellipse, written in terms of the major and minor axis lengths.
E = 13/a* + 23 /b (4.19)

It can be seen that ay; is analogous to 1/@2 and, similarly, ayy is analogous
to 1/b2%.

A quadratic function is plotted in Figure 4.1, which shows the paraboloid
for the function, two elliptical contours of constant error value, and the major

and minor axes corresponding to one of the error contour ellipses.

4.3 Optimal Experiment Design

The field of optimal experiment design aimed at improving the quality of
system models is well established (Walter and Pronzato, 1990). Most of the
work published in this field is concerned with the improvement of models’

system predictions by improving the confidence with which model parame-

4. Improving Parameter Confidence 90

Fig. 4.1: Paraboloid surface, two elliptical error contours and specimen major and
minor axes for the quadratic function E = 22 + 22 /4

ters are estimated. Optimal experiment works have focussed on selecting the
conditions under which experiments should be carried out (Hosten, 1974;
Hosten and Emig, 1975; Pinto et al., 1990), designing the inputs used to
excite systems being modelled (Murray and Reiff, 1984; Espie and Macchi-
etto, 1989; Versyck et al., 1997), improving the positioning of sensors, and
on selecting portions of the measured data (Yoo et al., 1986; Kalogerakis and
Luus, 1984) or sampling rates (Murray and Reiff, 1984; Jacquez and Greif,
1985) so as to maximise parameter confidence.

Various optimisation criteria have been advanced, most of which are re-

4. Improving Parameter Confidence 91

lated to the information matrix (Fisher Information Matrix) or its inverse,
the parameter variance-covariance matrix (Hosten, 1974; Pinto et al., 1990;
Walter and Pronzato, 1990). Sequential schemes, in which data are gradu-
ally accumulated over a number of experiments and model tuning is based
on the total data available, as well as single-shot, best next experiment ap-
proaches are described. The use of reparameterisation (Agarwal and Brisk,
1985; Bilardello et al., 1993) and of rescaling the parameters (Pinto et al.,
1991) as means of improving confidence in the parameters to be estimated
also appears in the literature. Examples of dynamic systems used to illus-
trate the design of experimental inputs based on information matrix related
design criteria include the continuous yeast fermentation (Espie and Macchi-
etto, 1989), a batch fermentation of Trichosporon cutaneum (Baltes et al.,
1994), model Monod and Haldane processes (Versyck et al., 1997) and fixed
bed heat transport (Murray and Reiff, 1984).

Improved experiment design for parameter estimation is particularly im-
portant with respect to fermentation modelling, as performing fermentations
to generate data for model tuning is both costly and time-consuming. The
data sets supplied by Dr. Gopal Paul, used in this thesis, are typically taken
from week-long fermentations, with additional time being taken to prepare
inocula, media and equipment, and for biomass sampling, image analysis
measurements and subsequent post-processing of the data obtained so as to
get it into a form suitable for use in modelling.

An alternative approach, which has received attention in recent years,
is the more goal-oriented approach of designing only experiments which are

optimal with regard to economic or productivity criteria, and using the data

4. Improving Parameter Confidence 92

from these as a basis for sequential model refinement (Galvanauskas et al.,
1997; Galvanauskas et al., 1998). This leads to repeated passes through a
cycle of designing an economically optimal input, performing an experiment
using this input, refining the model parameters with emphasis on those pa-
rameters to which the economically optimal profile is most sensitive, and
returning to the design of an economically optimal input. This approach
may have the advantage that, since it concentrates primarily on the region
around the economically optimal trajectory, a simpler model may be applied
over this subset of fermentation conditions and be capable of predicting the
behaviour of the process in this range just as well as a more complex fer-
mentation model, tuned over a wider range of fermentation conditions. If a
model is to be used to improve understanding of the system, as well as for
improving the performance of a production process, then this highly goal-
centred approach may well focus on too narrow a set of fermentation con-
ditions. Example processes used as illustrations (Galvanauskas et al., 1997,
Galvanauskas et al., 1998) are maximising the biomass in an Escherichia coli
fermentation, maximising the amount of biomass produced with respect to
glucose supplied in a baker’s yeast fermentation, and maximising the concen-
tration of penicillin at a predefined final fermentation time for a Penicillium

chrysogenum fermentation.

4.3.1 Criteria for experiment design

Two criteria are commonly used to determine convergence of calculus-based

techniques:

4. Improving Parameter Confidence 93

e the change in function value from one iteration to the next is less than

some small value

e the change in the parameter set from one iteration to the next (the

‘distance’ moved) is less than some small value

It is also common for these techniques to be abandoned if a minimum is
not found within a given number of iterations. One of the goals of experi-
ment design is to improve the quality of existing parameter estimates. If the
parameter optimisation algorithm has terminated prematurely, as a result of
exceeding a fixed number of iterations, then the parameter set thus obtained
may not be suitable for use in designing experiments, because it may not be
located at a minimum of the objective function.

Since one of the criteria commonly used to determine convergence in
optimisation routines is that the change in error value for an update to the
parameter values be less than some specified value, surfaces that are ‘steeper’
close to the optimal point are likely to get closer than those that are ‘shal-
lower’.

If we consider also the shape of the ellipsoids around the optimal point,
it seems reasonable that we would wish the ellipsoids to be close to spher-
ical. Since we are considering the region close to the optimum parameter
set, in which we have assumed that the Taylor series expansion provides a
good approximation to the error surface, the surfaces of constant error close
to the optimum parameter set will always be ellipsoids. (For the majority
of the gradient descent methods described below in Section 4.5, progress di-
rected towards the minimum only occurs when the error contours around

the minimum form hyperspheres.) In ellipsoids with relatively long axes the

4. Improving Parameter Confidence 94

optimisation routine is likely to reach a point on said long axis, and then
to attempt to progress along the ‘bottom of the valley’ towards the optimal
point. Since the error values are likely to change slowly along such a ‘valley’,
we find ourselves in a position where, although we may be sure of having
obtained the correct ratio between some of the parameters being tuned, we
cannot be as certain of their absolute values. It should be noted that the
principal axes of the ellipsoids are almost certainly not going to lie parallel
to the axes along which the parameters vary.

Much work in the area of optimal experiment design has been based on
criteria derived from the Fisher Information Matrix (FIM). In its continu-
ous form, the FIM may be defined as follows (Munack, 1989). (Alternative
definitions based on the logarithm of the sensitivities exist, but are less im-

mediately comprehensible.)

FIM = /OT (a’a‘(ﬁt)>lw (a’a‘g)> dt (4.20)

In discrete form, this becomes the following:

FIM = zn: <a’;—(ﬁti)>lw <a’;—(ﬂt")> (4.21)

i=1

Comparing Equation 4.21 with Equations 4.12 and 4.14, we see that the
FIM is an approximation to the second derivative of the expression for the
error surface, which is the dominant term in the Taylor series expansion

defining the error surface in the neighbourhood of an optimal parameter set.

4. Improving Parameter Confidence 95

Hence
Eox (f—0b)FIM(3—0) (4.22)

The FIM is related to the inverse of expectation of the square of the error

in the parameter set, that is to say ...

~

EB=b)(B—-b)] > FIM™ (4.23)

(The FIM is the inverse of the covariance matrix for the modelling errors.)
For a derivation of the FIM, see Eykhoff (1974).

The FIM in Equation 4.21 is defined as the sum of a series of product
terms, each of which comprises the transposed sensitivity matrix, multiplied
by the diagonal weighting matrix, multiplied finally by the sensitivity matrix.
Thus we can see that the FIM is always going to be a diagonally symmetric
matrix.

Diagonally symmetric matrices can always be decomposed in the following

manner (Bronshtein and Semandyayev, 1985).
FIM =V'DV (4.24)

where F'IM is the diagonally symmetric Fisher Information Matrix, V is a
matrix made up row-wise of the eigenvectors of FIM and D is a diagonal

matrix with the eigenvalues of F'IM along the diagonal.

4. Improving Parameter Confidence 96

Substituting from Equation 4.24 into Equation 4.22, we obtain

E =(8—b)V'DV(8 —b) (4.25)
rearranging this becomes
E =[(8 - 0)'V'|D[V (5 —b)] (4.26)
which is equivalent to
E =(AB")'D(AS") (4.27)
where
AB* =[V(B - b)] (4.28)

This form of the equation for the error is the same as that in Equation 4.17,
and so the properties of the general error (hyper)ellipsoids centred on the
optimal parameter set are simply related to those for the two-dimensional
ellipses defined by Equation 4.18 and Equation 4.19. Since elements on the
diagonal of a diagonal matrix are related to the lengths of the axes of an
ellipsoid, aj; oc 1/a?, (see Subsection 4.2.2 for more details), and D is a di-
agonal matrix with the eigenvalues of the FIM along the diagonal, then the
eigenvalues of the FIM may be related to the lengths of the axes of error
ellipsoids, A oc 1/I%, where A is some eigenvalue of the FIM, and [is the

length of the corresponding axis of the error ellipsoid.

4. Improving Parameter Confidence 97

A number of criteria based on the FIM, and having geometric interpreta-
tions based around the ellipsoids of constant error value, have been advanced
for use in the optimal design of identification experiments (Hosten and Emig,
1975; Pinto et al., 1990; Walter and Pronzato, 1990). The most common of
these are summarised, along with their conventional names and one possible

geometrical interpretation, in Table 4.1.

Criterion Formula Interpretation

A min(tr(FIM 1)) minimise mean variance
simplified A max(tr(FIM)) minimise mean variance

C min(tr(FIM)) minimises relative (mean) volume
D max(det(FIM)) minimises ellipsoid volume

E max (Amin(FIM)) minimises longest axis

modified E min(cond(FIM) = %) spherical as possible

Tab. 4.1: Criteria for optimal experiment design derived from the Fisher Infor-
mation Matrix (FIM). Apin and Apax are the minimum and maximum
eigenvalues of the FIM. The above definitions are taken from Walter and
Pronzato (1990)

The criteria given in Table 4.1 are not entirely independent of one an-
other. (This is to be expected, as they are related to the properties of the
same geometric structures.) Consider the A, D and modified E-optimality

criteria.

Amaz
tr (FIM) = > A
Amin
Amaz
det(FIM) =][] A
Amin

cond (FIM) =)\max/)‘min

4. Improving Parameter Confidence 98

(Amin denotes the minimum eigenvalue and)4, denotes the maximum eigen-
value.) If the desired reduction in the modified E-optimality criterion were
to be achieved solely by decreasing the maximum eigenvalue (\4;), then
the desired reduction in the modified E-optimality criterion would lead to

corresponding, undesirable decreases in the A and D-optimality criterion.

4.4 Multi-rate Extension to the Information Matrix

It may be possible to construct the information matrix for cases where data
are measured at more than one sample rate, as is the case for fermentation
data, measuring biomass concentrations at a relatively low sample rate and
the concentrations of soluble species (by means of online HPLC, for example)
at a higher rate.

If we consider the information matrix as an approximation to the second
derivative of the error surface, then we can quickly calculate its form. Con-
sider a simple least squares error, based on data measured at two different
sampling rates. (The sampling rates do not need to be regular.) Then the

error value is given by the following expression

E= Z(ml (t:) = 21(8:)) Wi (ma () — 21 (8:)) (4.29)

+ Z(mz (t:) — w2 (i) Wa(ma(t:) — x2(t:))

where the measurements m; and my (of states x; and xo respectively) are
measured at n; and ny sample intervals over the measurement period. (The

subscripts 1 and 2 refer to two sets of measurement data, taken from the

4. Improving Parameter Confidence 99

same experiment at two different sample rates for distinct sets of measured
variables. There should be no duplication of measurements between sets 1
and 2.)

The two summed terms in the above expression are independent of each

other, and can be differentiated separately, giving

a9U1 ax1
85 ﬁ' Z Wi Z 85 ﬂ’ my(t;) —x1(t;)) (4.30)

Z 83:2 &Ez Z aal;ﬁ, W,y m2() — xg(ti))

In the above second derivative expression, the second term on each line
vanishes close to the optimal parameter set, with the simulated values ap-
proximating the measured values, and we are left with the summation of two

information matrix expressions, after the pattern of Equation 4.21.

35 5’ 8ﬁ

4.4.1 Example of multi-rate information matrix expression

The calculation of two information matrix expressions may be illustrated us-
ing the example of a model having two states (x and y) and three parameters
(a, b, and ¢). Denoting dx/da by z, for simplicity, we obtain the following

expression.

To Ya
W, 0 Ta Tp e
2 Ya Yo Ye

Te Ye

4. Improving Parameter Confidence 100

or, as a summation

:L‘a ya
FIMl + FIM2 = |z |:W1:| |:1‘a Ty $C] + Yy |:W2:| |:ya Yb yc]
e Ye

(4.33)

Multiplying through in either case gives us

Wizere + Wayaya Wizexy + Wayayy Wizexe + Wayaye
FIM12) = | Whzam + Woyayy Wizpxs + Woysy Wizpze + Woysye
Wizeze + Woyaye Wizpre + Waypye Wizere + Waycye

(4.34)

In order to calculate a combined information matrix for data sampled
at multiple rates, therefore, we simply calculate the individual information
matrices for each distinct sampling rate, and add them together.

As an example of this, information matrices were calculated for the model
of Paul et al. (1998), using an experimental input designed to be optimal for
the sampling of all measured states at a uniform 5-hour sample interval,
considering instead biomass states to be measured at 5-hour intervals and
the soluble states to be measured at the much higher rate (online HPLC) of
5-minute intervals. The information matrix based solely on data obtained for
all measured states, both biomass and soluble species, at the 5-hour sampling
rate had a determinant of the order 127, whilst that obtained by combining

data obtained for the biomass states at the 5-hour sampling rate with data

4. Improving Parameter Confidence 101

obtained for the soluble species at the higher 5-minute sampling rate had a
determinant of the order 1e47.

Taking into consideration the higher rate at which the soluble species
were measured results in a joint confidence ellipsoid for parameter estimation
which is significantly smaller than is the case for the uniform 5-hour sample
rate. When the individual eigenvalues of the two information matrices were
compared, those for the information matrix formed by summating the pair of
matrices for the two sampling rates were found to be, with a single exception,
smaller than those for the single-rate information matrix.

It should be noted that the information matrices corresponding to the two
sampling rates, obtained for biomass states alone, and for soluble species
alone, both had determinants of zero, indicating that the volumes of the
joint confidence ellipsoids for parameter estimation were infinite. This may
be explained by referring to the sensitivities of the states considered in each
case to the complete set of parameters. If there was a parameter to which
all the states in a particular subset were insensitive, then the corresponding
column in the sensitivity matrix would contain only zeros, and hence the
row and column in the resulting information matrix would be all zeros, and
the determinant of the information matrix would be zero. As modelled, the
biomass states have no dependence on the penicillin hydrolysis rate, p;, and
the soluble states have no dependence on the rate of lysis of degenerated
hyphal compartments, u,. Hence the individual information matrices for the

two sampling rates have determinants of zero.

4. Improving Parameter Confidence 102

4.5 Calculus Based Optimisation Techniques

There are a range of methods, broadly described as ‘hill-climbing’ (or ‘valley-
seeking’), used in optimisation. At each iteration they use gradient informa-
tion supplied either as explicit derivatives of the objective function, or calcu-
lated from numerical ‘experiments’, small perturbations around the current
parameter set, to determine in which ‘direction’ the function value decreases
most rapidly, and then move in that direction. In this way, the algorithm
progresses until a local minimum is reached.

The following descriptions of calculus based optimisation techniques are

taken from Eykhoff (1974).

4.5.1 Steepest descent

In this method, update proceeds according to the following equation.

OF
Bii+1) = B6)-12& (4.35)
OB | g—ps)

Here I' is a positive constant. Some compromise must be sought between
speed of convergence and size of I'. Too large a value will cause the optimi-
sation routine to oscillate around the optimal point; too small a value will

take an inordinately long time to come close to it.

4.5.2 Steepest descent with minimisation along a line

This method proceeds exactly as for the preceding steepest descent method,
with [being chosen so as to minimise the objective function in the direction

OFE /0 for each parameter update. Typically, points are evaluated along the

4. Improving Parameter Confidence 103

direction of steepest descent until an increase is detected between values, a
quadratic function is fitted through the evaluated points, and the minimum

of the quadratic is used as starting point for the next iteration.

4.5.3 Newton-Raphson

According to Section 4.2.1, curves of constant error value (E) form hy-
perellipsoids. For an ellipsoid, lines of steepest descent do not necessarily
point towards the minimum, unless the ellipsoid happens to be circular (see
Figures 4.2 and 4.3).

It seems reasonable to suppose that a steepest descent method will be op-
timal when the surfaces of constant E are (hyper)spheres, such that progress
in the direction of steepest descent is also progress towards the minimum.
This may be achieved by transforming the ellipsoids into spheres in another
space (with respect to a modified parameter vector) and then using the steep-
est descent method.

Since

0*E

aﬁ aﬂ, e (436)

is symmetric and positive definite, it can always be decomposed into a prod-
uct made up a diagonal matrix with its eigenvalues on the leading diagonal

(D) and a matrix made up, row-wise, of its eigenvectors (V).

0*E
9B 9" |5,

V'DV (4.37)

4. Improving Parameter Confidence 104

Elliptical minimum

Fig. 4.2: Contours and arrows indicating steepest descent directions for an ellip-
soidal objective function

Substituting Equation 4.37 into Equation 4.11 leads to
* 1 « *
E(z*) = Ey+ 37 Dz (4.38)

where

4. Improving Parameter Confidence 105

Circular minimum

Fig. 4.3: Contours and arrows indicating steepest descent directions for a circular
objective function

Defining
1 1
z=D2z" and z*=D72z
we get
1

E(z) = E0+§z'z (4.39)

In this z-space, the surfaces of constant E are hyperspheres. Performing

4. Improving Parameter Confidence 106

steepest descent with I' =1,

_ 9k

z(i+ 1) = z(7) P

z2=2(i)
Differentiating Equation 4.39

OE

5 = z(7)

z2=2(1)

and so 2(i + 1) = 2(i) — 2(i) = 0. Because § — b= V'D 2z with V’ and D
positive definite, 5 — b = 0 also holds.

Transforming back from z-space to [3-space gives,

:p 1t oF
0 } 0 (4.40)

Bi+y) = 00 - |2

B=b op B=p(3)

In most cases the second derivative will be a function of 3, however it
is often assumed to be almost independent of 3, and so Equation 4.40 may
be taken as defining the Newton-Raphson method, provided that the second

derivative is calculated for the current values of (.

2 —1
O*E } OF (41)

Bi+y) = 00— |2

o=s) 98 5=
4.5.4 Gauss-Newton

Calculating second derivatives using small perturbations around the current
parameter set is likely to be difficult and time-consuming, but it is possible to
simplify the expression given above in Equation 4.41 for least-squares criteria.

Differentiating Equation 4.3 twice gives the following expressions for its first

4. Improving Parameter Confidence 107

and second derivatives.

?3—? = —2;ax§;n)lw(m(tn)—w(tn))

PE Oz(ty) . Ox(ty) L. 0%x(t,)
95 ~ 22 ap " ap 2 agap) it~ elt)

Close to the minimum, the second term in the second derivative term
can be neglected, as * &~ m. Substituting the above simplifications into

Equation 4.40 gives us the following.

pli+1) = pli)+

B=p(i)

n=1
Eykhoff (1974) states that:

The Gauss-Newton method is preferable to the steepest descent
on account of the quadratic convergence, although, contrary to

the steepest descent method, the convergence is not guaranteed.

4.5.5 Marquardt method

The Marquardt method is, in effect, a compromise between the steepest
descent method and the Gauss-Newton method.
Let ((i) be the centre of a hypersphere in the parameter space. We seek

the minimum on the hypersphere according to Lagrange minimising E(f3),

4. Improving Parameter Confidence 108

subject to the restriction.

Ap = pB+1)—pB()
AB'AB = constant

Hence

Taking a Taylor expansion of z (implies that the assumed hypersphere

need not be a pure hypersphere)

ox
r(i+1) = x(i) + 55 ApS
0B' |5-s(i
or
Ox(i+1) oz
—_— & —— 4.44
055~ 0, .
So Equation 4.43 becomes
T
ox(t,) ox(ty,
DIE L <m<tn> () - 220 Aﬁ)
n=1 B=p(i) B=p(i)
+uApB = 0
which implies
Bli+1) = B(i)+ (4.45)
T L7
0x(ty,) 0z (t,,) 0x(ty,)
W— +ul W(m(tn) — (tn))
nz; 9p B=p(1) op B=08(1) nz; 9p B=p(1)

4. Improving Parameter Confidence 109

In the above, if 4 = 0, then the update is as per the Gauss-Newton
method; if 4 = oo, then the update is effectively as per the steepest descent
method, but with a step size of 0!

By varying p, the convergence properties may be altered.

4.6 Introduction to Genetic Algorithms

The study of genetic algorithms (GAs) within the fields of computer science
and engineering has its roots in the recently re-published monograph by John
Holland (1992), first published in 1975. In that volume, GAs are presented
as modelling the processes which occur during the evolution of a population
of individuals under the action of what Holland describes as ‘reproductive
plans’. Emphasis is placed on the abilities of such plans in maximising returns
(minimising losses), with the two-armed bandit problem (pp.75-88) being
used as an example. It is, perhaps, important to note that GAs are not
explicitly treated as function optimisers, as pointed out by De Jong (1993),
although modifications have been made over the years which have rendered
the basic GA structure applicable to a range of optimisation problems.

The oft-cited volume written by David E. Goldberg (1989) provides an
excellent introduction to the theory and practice of genetic algorithms, giv-
ing details of both the theoretical foundations of GAs and citing examples
of applications to a wide range of problems. (The title of the book in itself,
“Genetic Algorithms in Search, Optimisation, and Machine Learning”, be-
trays the broad scope of GAs.) Following this book, the number of people
working with GAs seems to have increased dramatically, possibly due in part

to the decreasing cost of computer hardware on which to run GA programs.

4. Improving Parameter Confidence 110

Work continues on both the theoretical underpinnings of GAs, as de-
scribed in conference proceedings such as the Foundations of Genetic Algo-
rithms series (Whitley, 1993; Whitley and Vose, 1995), and on the practi-
cal applications of GAs to engineering and other problems (Davidor, 1990;
GALESIA, 1995; GALESIA, 1997). The vast majority of the work done to
date using GAs has been based on computer simulations, but more recently
work has started on the direct application of GAs to problems in science
and engineering, using GAs to search for regions of optimal experimental
performance, for example, (Weuster-Botz et al., 1995).

More importantly, because they make use of a population of values, ge-
netic algorithms offer an implicitly parallel approach to the minimisation of
complex, potentially multimodal, functions which is not prone to terminating
at a local minimum, as gradient descent based minimisation techniques are.

The fundamental concepts of genetic algorithms are loosely based on ideas
taken from biology. The parameters of the problem are encoded in a pop-
ulation of genes (vectors of numbers), and, over the course of a number of
generations, selection is applied with the result that these genes evolve so as
to progress towards optimal solutions. GAs work with a coding of the prob-
lem parameters, the genotype, as opposed to the parameters themselves, the
phenotype, starting from an initial population of chromosomes and at each
generation allowing the fittest chromosomes to mate and produce offspring
in the subsequent generation. The fitness values of the chromosomes provide
the only problem-specific information used by the algorithm, and so the algo-
rithm may be applied to discontinuous as well as continuous functions, unlike

calculus based optimisation techniques. In addition, the implicitly parallel

4. Improving Parameter Confidence 111

nature of the algorithm, using a population of individuals, reduces the risk
of the problem becoming trapped in a local, non-global, minimum. However,
there are some problems which are termed GA-deceptive, which are difficult
for GAs to optimise.

Various attempts have been made to combine the best features of GAs
with those of calculus based, or simulated annealing based optimisation meth-
ods. Such hybrid schemes are not considered here, as we are treating the GAs
simply as a means of finding the neighbourhoods in which the optimal so-
lutions to the various problems treated here lie. We have applied GAs to
the estimation of parameters of complex, nonlinear, morphologically struc-
tured models of the penicillin fermentation, and also to searches for optimal
fermentation feed profiles for model parameter estimation (based on criteria
related to the Fisher Information Matrix) and for maximising an economic

performance criterion for the fermentation.

4.6.1 Genetic algorithms, a HOWTO

Populations of chromosomes evolve through a number of generations; with
genetic operators to perform selection for ‘fitter’ individuals, the population
gradually drifts in the direction of an optimal point.

A canonical genetic algorithm as described by De Jong (1993) is given in
Figure 4.4.

This canonical algorithm forms the basis for most simple GAs. It includes
two of the three basic genetic operators involved in the execution of a ge-
netic algorithm - selection and recombination. The third common operator,

mutation, is applied after the recombination stage is completed.

4. Improving Parameter Confidence 112

Randomly generate an
initial population

Compute and save the fitness
for each individual

in the current population

Define selection probabilites
for each individual in the population
such that the probaility of selection
is proportional to the fitness

Generate the next generation by probabilistically
selecting individuals from the population to produce
offspring via genetic operators

Fig. 4.4: A Canonical Genetic Algorithm

4. Improving Parameter Confidence 113

GA operators

In coding and analysing GAs, the primary focus of attention is on the opera-
tors used in the course of the algorithm. The most commonly used operators
are those which mimic most closely the behaviour of genetic operators in

nature and are as follows.

e Selection, whereby chromosomes with higher fitness values produce
more offspring in the breeding population than chromosomes with lower

fitness values.

e Recombination, in which pairs of chromosomes in the breeding popu-
lation exchange information by swapping portions of the chromosomes

beyond a randomly determined cutting point.

e Mutation, which acts randomly, normally with a low probability, chang-
ing the value of a single bit in binary codings. In this way, schemata
which have been lost from the population may be reintroduced to it,
albeit with low probability. High mutation rates tend to overwhelm
the convergence abilities of the GA, leading to the need for increased

numbers of generations for optima to be found.

Other, less commonly used operators include the elitist operators which
act to replace a random individual in the new population with the best in-
dividual found thus far. (Normally this individual would not have its fitness
recalculated, unless the GA were being applied in conditions with dynami-
cally varying fitness values.) Elitist algorithms, in which the GA retains the
best individual found to date within the current population, have been shown

to converge eventually to the global optimum (Yao and Sethares, 1994).

4. Improving Parameter Confidence 114

Another less common operator is the inversion operator, in which the
worst individual in the population is replaced with the bitwise complement of
an individual selected at random from the whole population. This mechanism

preserves the number of schemata present in the population.

4.6.2 Analysis of convergence

Regardless of whether or not a Genetic Algorithm finds the neighbourhood of
the global optimum for a given problem (which is, after all, what we are using
them for), without mutation a GA will eventually converge to the point where
every individual in the population is identical. Louis and Rawlins (1993) give
an exposition of an analysis of the time to convergence for a population of
binary strings, based on the mean Hamming distance between members of
the population.

The average Hamming distance of a population is the average distance
between all its members, with the Hamming distance being the summed
bitwise difference between each pair of strings considered. For a population
of N individuals, each individual is half of N —1 pairs (distance calculations),
and the total number of interpair distances from which the average distance
is calculated is N(IN — 1)/2: the distance from individual A to individual B
is the same as that from B to A.

If the strings in the population are [bits long, then, for an initially random
population, the mean Hamming distance may be approximated by a normal
distribution with mean hq (ho = [/2) and standard deviation s, (so = v/1/2).
As mentioned before, in the absence of mutation, the average Hamming

distance of the converged population is zero. Over the time to convergence,

4. Improving Parameter Confidence 115

the Hamming distance drops from /2 to 0, and for a simple GA this can

only be due to the influences of selection and crossover.

The influence of crossover on Hamming distance

For a simple, single-point crossover operator, whereby the two parents are
replaced by their offspring, the Hamming distance will be unaffected. As
Louis and Rawlins (1993) point out, the sole effect of simple crossover is to
change the order in which the bitwise contributions of points in each pair of

strings are summed.

The influence of selection on Hamming distance

How individuals are selected for mating in the next generation depends on the
problem to which the Genetic Algorithm is being applied. Louis and Rawlins
(1993) suggest that selection with probability greater than 1/2 reduces the
average Hamming distance from generation to generation, and attempt to
obtain an upper bound for the time to convergence. Said upper bound is
assumed to occur for a completely flat fitness function, which is regarded
as the worst possible. On such a surface, they state that a GA can do
no better than random search, as, for the function f(x) = constant, no
useful information may be obtained to aid any algorithm in searching for an
optimum.

The convergence of a GA on a flat function is stated to be caused by
genetic drift, whereby small random variations in the initial distribution of
alleles result in their gradual accumulation and eventual convergence. The

proof (Louis and Rawlins, 1993) begins by calculating the time for a single

4. Improving Parameter Confidence 116

allele to become fixed due to so-called genetic drift. The probability that
k copies of an allele 7 are produced in the next generation is given by the

binomial probability distribution

N
k

pe(l—pi) " (4.46)

where N is the number of individuals in the population, p; is the proportion
of allele i present in the current population.

Using this distribution, it is possible to calculate the probability of a
particular frequency of occurence of allele 7 in subsequent generations. The
solution to this problem (a classical problem in population genetics) can be
approximated, for intermediate allele frequencies and population sizes. If
f(p,t) is the probability that the frequency of an allele has the value p in

generation ¢ (0 < p < 1), then

fp,t) = WQ_%)t

This specifies the probability that the allele has not converged. The probabil-
ity that an allele is fixed (has converged) at generation ¢ is obtained simply,

as follows.

Pt)=1-f(p,?) (4.47)

4. Improving Parameter Confidence 117

Combining the two preceding equations, we obtain

Pt) = wa_%)t

and assuming that alleles are independent of one another, which seems to be
a reasonable assumption for a flat fitness function, the probability that all

alleles are fixed at generation ¢ for chromosomes of length [is given by

The above equation gives the probability of convergence of a genetic algo-
rithm on a flat function. From it may be obtained an estimate of the upper
bound on the time to convergence for a binary GA, given the population size
(N) and the chromosome length ([). Since this is the probability of conver-
gence for a function in which selection plays no role in directing the search
by the GA, the equation may also be considered as providing a lower bound
on the likelihood of the GA having converged after ¢ generations. It should
be noted, however, that this approximation is valid for ‘intermediate allele
frequencies and population sizes’. The exact meaning of this phrase is worth
some consideration.

The probability surface described by the above equation, as a function of
population size (V) and number of generations (t) is given in Figure 4.5.

Louis and Rawlins (1993) extend the above approximation for a flat fitness
function, and apply it to predicting the time to convergence for more realistic

problems.

4. Improving Parameter Confidence 118

Probability of Allelic Convergence for a Population of 75-bit Strings

300

250 : : 1

200 : : 1

0.7

150 - :]
0.6

Size of Population

0.5
100 : 09 .

0.3
50k 0y 0.4 : , -

0 ! !
0 50 100 150

Number of Generations

Fig. 4.5: Probability of convergence for a GA as a function of population size and
number of generations (all chromosomes were 33 bits long)

computing the rate of decrease in the Hamming average while
a GA is working on a particular problem allows us to predict
roughly the time to Hamming convergence. (Louis and Rawlins,

1993)

It is assumed that similarity between chromosomes implies similarity be-
tween fitness values (the similarity assumption) — this is true for unimodal
functions, and for multimodal functions genetic drift is alleged, ultimately,
to cause behaviour which may be predicted by the following model, unless

countered by niching or other diversity-preserving schemes.

4. Improving Parameter Confidence 119

Generally, the change in average Hamming distance from generation to

generation is given by

higr = f(he)

which relates h;, the Hamming average in generation ¢, to the Hamming
average in the subsequent generation.
Assuming that f(h;) is linear, and given that, without mutation, the final

Hamming average is zero, Louis and Rawlins (1993) obtain the equation
hiyr = ahy
Solving this recurrence, we obtain
hy = athyg

where hyg is the initial Hamming average, [/2 for a randomly initialised pop-

ulation.

4.7 Selecting a Search Method

The experiment design problem addressed here is that of designing an input
feed profile for the fermentation such that the best possible experiment can
be performed, subject to a fixed, pre-specified measurement sample rate,
and assuming that the optimal parameter set to be found will be in the
neighbourhood of the parameter set thus far obtained. Input profiles may be

parameterised in a number of ways:

4. Improving Parameter Confidence 120

e piecewise linear interpolation between specified values

spline interpolation between specified points

e piecewise constant, ‘stairstep’, profile

sum of exponential or periodic waveforms

polynomial of variable order
e output of a neural network

For the work done here, the input profile has been specified as a piecewise
constant, ‘stairstep’, profile, as such a profile may simply be obtained manu-
ally, making adjustments to the feed rate at each measurement sample time.
An approach for which manual input is feasible was chosen to avoid possible
complications and delays in producing a computer-controlled profile, as could
be required for any of the other candidate parameterisation methods.
Having chosen the way in which the input profile is to be parameterised,
it is necessary to search for profile parameters which give rise to the optimal
experiment design. It has previously been stated (Munack, 1989) that using
gradient descent techniques may give rise to suboptimal experiment designs,
because gradient descent techniques can become entrapped in local minima,
and thus terminate without finding the global optimum. Genetic algorithms
(GAs) have been found to perform well on (potentially) multimodal objective
functions, and have a high probability of finding the neighbourhood of the
global optimum on such objective functions (Goldberg, 1989). The perfor-
mances of gradient descent methods and genetic algorithms were compared,

for a simple function having two minima.

4. Improving Parameter Confidence 121

4.7.1 Gradient descent-based optimisation algorithms

As an illustration of the way in which gradient descent-based optimisation
routines may become trapped in local minima, consider the minimisation of
the function shown in Figure 4.6. This function is based on a quartic polyno-
mial in z, added to a minimum quadratic in y, which give a ‘valley’ shaped
function with two minima along the ‘valley’. The function has been rotated
so that the lines of steepest descent are not parallel to the parameter axes.
This figure has two minima, a global minimum at approximately (-3,-1) and
a local minimum at approximately (3.5,1). When seeking the minimum of
this function using a gradient descent technique (see Section 4.5 for details),
which minimum is found depends on where the minimisation is started from.
Figure 4.7 shows a contour plot of this function, with a line drawn across it,
dividing those points from which the global optimum is obtained from those

from which the weaker local minimum is obtained.

4.7.2 Genetic algorithms

As an alternative to gradient descent-based optimisation methods, consider
the progress made using genetic algorithms (GAs) to minimise the function
shown in Figure 4.6.

Applying a genetic algorithm to the simple function mentioned above,
and plotted in Figure 4.6, the population of points is found to rapidly ‘clus-
ter’ around the lower of the two minima of the function. The populations
evaluated in the first nine generations are shown in Figure 4.8. The spread
of the points is initially random, with values constrained to lie between +5

for all parameter pairs (subplot 1), converges first into an area covering both

122

4. Improving Parameter Confidence

3D Contours for function with two minima

4

,

W,.,,,

,,.. Wl

Fig. 4.6: Contours in 3 dimensions for a function with two minima

4. Improving Parameter Confidence 123

Areas of attraction for minima

—_— N

Fig. 4.7: Contours in 2 dimensions for a function with two minima, with lines
added to divide areas containing points from which the two minima are
reached using gradient descent minimisation methods

4. Improving Parameter Confidence 124

Genetic algorithm results

Fig. 4.8: Progress of genetic algorithm over nine generations; each ‘4’ is a param-
eter pair evaluated in the generation indicated by the figure above the
subplot

minima (subplot 2), and over the subsequent generations the space being
searched closes down around the lower of the two minima of the objective

function.

4. Improving Parameter Confidence 125

4.8 Designing Optimal Experiments Using Genetic
Algorithms

Table 4.1 lists several commonly used optimal experiment design criteria,
along with geometrical interpretations of their effects on ellipsoids of con-
stant error value, centred on the optimal parameter set. Of these, the D
optimality criterion, corresponding to minimising the volume of these error
ellipsoids, and the E optimality criterion, corresponding to making the er-
ror ellipsoids as ‘spherical’ as possible, are, perhaps the most common. Of
these two, D optimality was considered to be more appropriate, with smaller
error ellipsoids being thought preferable to ‘rounder’ errror ellipsoids. For
widely ranging parameter values, with a range of sensitivities of error value
to parameters, the E optimality criterion could result in an experimental de-
sign for which the error ellipsoids, although ‘rounder’, were larger than for
the undesigned case, thus implying that fixing the model parameters to lie
within a larger range after a designed experiment was an improvement. A D
optimal experiment design, on the other hand, should produce smaller error
ellipsoids, and hence less variation in the parameters for given error values.
Optimal experiment designs have been produced based on the D opti-
mality criterion using genetic algorithms as the search method. This section
describes how the input feed profile was parameterised and how the genetic
algorithm search was implemented, listing the parameters used to control
the GA’s operation, the range of feed values considered and the constraints
applied to the optimisation, and gives details of the objective function used

in the search.

4. Improving Parameter Confidence 126

4.8.1 Input feed profile parameterisation

As mentioned above in Section 4.7, the ‘stairstep’ profile was chosen as the
way of defining the input feed profile, as it is easy to use as a part of a genetic
algorithm search, and it is possible to apply the resulting designed inputs
manually. After discussions with Paul (1998), the input profile was divided
into piecewise constant portions each 8 hours long. The original experiment
design work (Syddall et al., 1998) was done on the basis of piecewise constant
input profiles with 5 hour long portions, but this was felt to be infeasible,
should the adjustments need to be made by hand during the fermentation.
To ease manual implementation of the feed profile, each ‘step’ in the profile
was specified as being eight hours long. The length of the fermentation was
fixed at 120 hours and so the input profile was defined by fifteen parameter
values. (The initial conditions for the fermentation were fixed at an ‘average’
set of values.) It was assumed that biomass samples are taken at eight hour
intervals, coincident with the changes in the input feed rate, and that the
soluble components in the fermentation broth are measured, using online
HPLC, at half-hourly intervals. The information matrix considered for these

designs was a multi-rate information matrix as described in Section 4.4.

4.8.2 Genetic algorithm parameters

Two different genetic algorithm implementations provided in the Genetic and
Evolutionary Algorithms Toolbox (GEAT) (Pohlheim, 1996) were used, one
for ‘real-valued’ problems (20 bit accuracy over the search range), and one for
binary valued problems (using which the search was implemented using 5 bit

accuracy over the same search range). The sizes of the spaces being searched

4. Improving Parameter Confidence 127

by the two methods differ greatly. For a stairstep input defined by fifteen
parameters, 20 bit accuracy implies a search through 22° combinations for
each parameter, resulting in a search through some 23% possible combinations
(approximately 10%). The case of 5 bit accuracy, with 25 combinations per
parameter gives a total of 27 combinations (approximately 10%?).

Since the accuracy with which the inputs to the fermenter can be applied
is limited, and since the smaller 5 bit search space can be searched effectively
using smaller genetic algorithm populations running over fewer generations
than for the 20 bit search space, the 5 bit binary coded genetic algorithm
was chosen for the final experiment designs.

The population sizes and numbers of generations needed for convergence
were determined experimentally, running repeated designs until approximate
correlation between successive results was obtained. The genetic algorithm’s
operating parameters determined in this way are given in Table 4.2 for both
the 20 bit and 5 bit codings. Also given in the table are the probabilities
of crossover and mutation used by the algorithm. Examples of scripts and
functions to be used with the Genetic and Evolutionary Algorithm Toolbox

(Pohlheim, 1996) are given in Tables B.5 and B.6 in Appendix B.

4.8.3 Feed rate limits and constraints

The range of input values searched using the genetic algorithms was bounded
such that 0 1/hr < feed rate < 0.0448 1/hr. The lower bound is no feed
rate, and the upper bound corresponds to a feed rate of approximately
22 g(glucose) /hr for glucose fed at a concentration of 500 g/l. This upper

limit is in excess of the feed rates used by Paul (1996) in the course of the

4. Improving Parameter Confidence 128

Discretisation 20 bits | 5 bits
Population size 100 20
Number of subpopulations 3 3
Percentage retained between generations 10% | 10%
Number of generations 150 20
Probability of mutation, per bit 0.0005 | 0.025
Probability of crossover 0.7 1

Tab. 4.2: Genetic algorithm operating parameters

previous work here in the department, and the optimal experiment designs
remain below this limit throughout the designed feed profiles.

In addition to defining the range of permissible input feed rates to be
searched for an optimal experiment design, constraints were imposed on the
fermentation behaviour. The volume in the fermenter was initially con-
strained to remain within the working volume of the fermenter (51 in a 61
fermenter, initial volume 41). Experiment designs produced using this con-
straint gave rise to total biomass concentrations that were considered, in
the judgement of Paul (1998), to be liable to cause the dissolved oxygen
concentration in the fermenter to fall to levels at which oxygen availabil-
ity to the organism would become limiting. Under such circumstances, the
model, which does not describe changes in the dissolved oxygen concentra-
tion, nor the influence of dissolved oxygen concentration on biomass growth
and product formation, would become inappropriate, and the experiment
designs would no longer be valid.

A second constraint was defined in the hope of avoiding excessively low

dissolved oxygen concentrations. This was a constraint on the total biomass

4. Improving Parameter Confidence 129

concentration, which was to remain below 30 g/l throughout the fermen-
tation. Limiting the total biomass concentration should limit the biomass
growth and maintenance rates, and the penicillin production rate, all of which
processes consume energy and therefore oxygen. Restricting all of these rates
should therefore also restrict the total oxygen demand of the organism, hope-

fully avoiding an excessive decrease in the dissolved oxygen tension.

4.8.4 Objective function for optimal experiment design

For the problem of finding a D optimal experiment design, the genetic al-
gorithm is searching for that input profile which maximises the determinant
of the information matrix. Since the GEAT (Pohlheim, 1996) is designed to
minimise objective functions supplied by the user and uses the ranking of
individuals within the population to determine their fitness rather than their
absolute values, maximising a value can be replaced by either minimising the
negated value or minimising the inverse of the value. Minimising the negated

value was chosen here. That is to say:

To maximise det(FIM)

minimise — det(FIM)

When using genetic algorithms, constraints are most commonly dealt with
by applying some form of penalty function to the basic objective function,
so as to render those individuals which breach constraints less fit than those
that do not, thereby reducing the probability that offspring of constraint-

breaching individuals will be produced in the next generation.

4. Improving Parameter Confidence 130

Goldberg (1989) gives an example of a penalty function (pp 85-86).

To minimise g(z)

subject to h;(xz) > 0,i=1,2,...,n
the constrained form of the objective function becomes

minimise g(z) + r Z ® [h;(z)]

where @ is a penalty function (for example, the square of the violation) and
r is a penalty coefficient.

For the case of constraining the experiment design criteria, such a penalty
function was difficult to define, due to the great difference between the mag-
nitudes of the constraint violations (= 200) and the penalty-free objective
functions (> 1e25). Since the GEAT (Pohlheim, 1996) used in this work uses
a ranking-based selection method, with lower values having greater probabil-
ities of being selected for producing the next generation, the absolute values
for the chromosomes are less important than their relative order. This means
that a penalty function could be constructed for the initial case of a single
constraint in which the objective function returns a positive value associated
with the amount by which the constraint is broken, for cases where the con-
straint is broken, and —det(FIM) for the others. For broken constraints,
the objective function returns larger values for larger constraint breaches, so
that individuals which only just breach the constraint rank better than those

which grossly breach the constraint.

4. Improving Parameter Confidence 131

For the case of D optimal experiment design, attempting to maximise
det(FIM), subject to a constraint that the volume remain below 5 litres,

the objective function becomes

. JV(t)dt VYV (t) > 5.0,if anyV (t) > 5.0

—det(FIM) if constraints satisfied

This penalised objective function returns negative values consistently for
valid input profiles, with the objective function values becoming more nega-
tive for better experiment designs.

When the total biomass constraint was added to the experiment design
criteria, the objective function was only penalised for exceeding the biomass
concentration if the volume constraint was satisfied. With this ordering of
penalty criteria, the model equations are only integrated numerically when
it is known that the volume constraint will not be broken. Since calculating
whether or not the volume constraint would be breached can be done quickly,
using the net feed rate and the initial volume, without needing to numer-
ically integrate any model equations, this ordering of penalties saves time
in executing the genetic algorithm. As executing the objective function for
a genetic algorithm is frequently the most time-consuming step, this order-

ing was considered to be more time-efficient. For example, the constrained

4. Improving Parameter Confidence 132

D-optimal objective function became:

)
JV(t)dt VYV (t) > 5.0,if anyV (t) > 5.0
F=q [X,(t)dt VX, (t) > Xyarax, if any X (t) > X;arax

—det(FIM) if all constraints satisfied

\

where X,(t) is the total biomass concentration at time ¢ and X, pax is the
biomass constraint value (30g/1 for our purposes). In practice, the integrated
values for V'(¢) and X,(t) were approximated by summating over all values

for which their respective constraints were exceeded.

Implementation detail

Since objective function evaluation is the major contributor to the time taken
to carry out a genetic algorithm search, the objective function was coded in
such a way as to avoid carrying out the time consuming numerical integration
of the model and its associated information matrix calculations in cases where
constraints were violated.

Firstly, the feed profile values were checked to see whether or not the

volume constraint would be breached as follows:

e calculate the net feed rate in each 8 hour period, by adding the precur-
sor addition rate to the glucose feed rate and subtracting the sample

removal rate

e calculate the total volume change in each 8 hour period (by multiplying

the net feed rate by 8)

4. Improving Parameter Confidence 133

e calculate the cumulative sum of the volume changes

The resulting vector of volume changes was then compared to the permis-
sible change in volume (11), and only if all elements of the vector satisfied
the constraint was the model numerically integrated. In the early stages of
the genetic algorithm search, this quick check saves a lot of time, since the
proportion of individuals which breach the volume constraint is initially high.

The possibility of numerically integrating the model without its associated
information matrix calculations was considered, but was not implemented,

due to time constraints.

4.9 Results

Three sets of optimal experiment designs were produced for three differing
sets of search criteria, all using two-rate FIMs as the basis for determinant

calculations.

e 20 bit (‘real-valued’) search constrained only on feed and working vol-

ume
e 5 bit search constrained only on feed and working volume

e 5 bit search constrained on feed, working volume and on total biomass

concentration

Five replicate genetic algorithm searches were run for each design criterion,
using genetic algorithm routines from the GEAT (Pohlheim, 1996), with the

genetic algorithm operating parameters specified in Table 4.2.

4. Improving Parameter Confidence 134

The values used for these constraints are described above. Although the
20 bit search was superseded, for reasons of speed and achievability, by the 5
bit search, its results are presented for comparison with those achieved using
the 5 bit search method. The results obtained using the first two sets of search
criteria are given briefly, with those obtained using the third, most realistic,
set of search criteria being given in more detail. In the summary table of
determinant values found, Table 4.3, determinant values based on a single-
rate FIM sampling at 8 hour intervals are given for the same experiment

designs as were produced for the 5 bit constrained design criterion.

4.9.1 Experiment designs — real-valued

The experiments were designed to be optimal with respect to the D optimal
experiment design criterion given above in Table 4.1. The only constraints
on the GA search were the minimum and maximum input feed rates, and the
total volume permissible in the fermenter. The resulting determinant values
are given in Table 4.3. The corresponding feed profiles and volumes over the
course of fermentation are shown in Figure 4.9, and the simulated values for
the biomass states and for the modelled soluble species (glucose, lactose and

penicillin) are shown in Figure 4.10.

4.9.2 Experiment designs — 5 bit binary-valued, unconstrained

The only constraints on the GA search were the minimum and maximum
input feed rates, and the total volume permissible in the fermenter. The
experiments were designed to be optimal with respect to the D optimal ex-

periment design criterion given above in Table 4.1. The resulting determinant

4. Improving Parameter Confidence 135

Coding Determinant
Runl| Run2 | Run 3 | Run 4 | Run 5
20 bit 0.5e31 | 1.9e31 | 2.8e31 | 3.1e31 | 4.5e31

5 bit (unconstrained) | 8.4e¢26 | 1.0e28 | 7.1e29 | 8.6e29 | 1.3e30
5 bit (constrained) 1.0e26 | 1.9¢26 | 3.9¢26 | 6.9¢26 | 1.9¢27
5 bit (single-rate) 0.2ell | 1.1el1 | 2.0ell | 2.8ell | 1.7el2

Tab. 4.3: Determinant values for five experiment designs for the 20 bit (‘real-
valued’) coding, and for the 5 bit binary valued genetic algorithm coding,
both with and without the constraint on total biomass concentration,
sorted into ascending order

— 4.5e+031
— - — 3.1e+031
- = 2.8e+031
1.9e+031

+ 5.2e+030

Feed Rate

100 120

— 4.5e+031
4 — - - 3.1e+031
- — 2.8e+031

1.9e+031
q . - 5.2e+030

20 40 60 80 100 120
Time (hours)

Fig. 4.9: Input feed rates and simulated volume profiles for 20 bit D optimal ex-
periment designs based on the model of Paul et al. (1998) (Feed rate in
g/hr at 500g(glucose)/L, Volume in L)

4. Improving Parameter Confidence 136

10

0 24 48 72 96 120

0 24 48 72 96 120

X3

0 24 48 72 96 120

0 24 48 72 96 120

0 24 48 72 96 120
Time (hours)

Fig. 4.10: Simulated biomass and soluble species concentrations for a 20 bit D
optimal experiment design based on the model of Paul et al. (1998)

4. Improving Parameter Confidence 137

— 1.3e+030

- - — 8.6e+029

N - = 7.1e+029
1e+028

- 8.4e+026

Feed Rate

100 120

— 1.3e+030

- - - 8.6e+029

- = 7.1e+029
1e+028

+ 8.4e+026

L
20 40 60 80 100 120
Time (hours)

Fig. 4.11: Input feed rates and simulated volume profiles for unconstrained 5 bit
D optimal experiment designs based on the model of Paul et al. (1998)
(Feed rate in g/hr at 500g(glucose)/L, Volume in L)

values are given in Table 4.3. The corresponding feed profiles and volumes
over the course of fermentation are shown in Figure 4.11, and the simulated
values for the biomass states and for the modelled soluble species (glucose,

lactose and penicillin) are shown in Figure 4.12.

4.9.3 Experiment designs — 5 bit binary-valued, constrained

In addition to the minimum and maximum input feed rate constraint, and
the total permissible volume constraint, an additional constraint on simulated

total biomass concentration was added in the hope of avoiding low dissolved

4. Improving Parameter Confidence 138

0 24 48 72 96 120
Time (hours)

Fig. 4.12: Simulated biomass and soluble species concentrations for unconstrained
5 bit D optimal experiment designs based on the model of Paul et al.

(1998)

4. Improving Parameter Confidence 139

oxygen concentrations during the practical experiment. The experiments
were designed to be optimal with respect to the D optimal experiment design
criterion given above in Table 4.1. The resulting determinant values are given
in Table 4.3, and the input profile corresponding to the best determinant
value is given in Table 4.4. The corresponding feed profiles and volumes over
the course of fermentation are shown in Figure 4.13, and the simulated values
for the biomass states and for the modelled soluble species (glucose, lactose
and penicillin) are shown in Figure 4.14.

The D optimal experiment design criterion is derived from the Fisher In-
formation Matrix, which in turn depends on the sensitivities of the states to
the model parameters at the sample intervals. Graphs showing the sensitiv-
ities of the model states {Xo, X, X, X3, 5, L, P} are shown in Figures 4.15
to 4.21. These state sensitivity profiles were calculated using Equation 4.15
from Section 4.2.1 and so depend on the variation of the glucose concentra-
tion with time during the simulation.

Indirect effects may be observed in, for example, the sensitivity profile
for 0X,/0ps (the sensitivity of the concentration of hyphal tips to a vacuole
degeneration coefficient). The equation describing the change in X with time
does not contain ps3; p3 only occurs in the equations describing the variation
with time of X, X5 and X3. However, the change in X, does depend on X7,
which depends more directly on the value of u3, and so changes in the value
of p3 have an indirect effect on X,.

The graphs of state sensitivities to parameters shown in Figures 4.15 to 4.21

may be divided into three categories.

1. those in which the state is largely insensitive to the parameter, such as

4. Improving Parameter Confidence 140

0Xo/0us, 0S/0uy, and OP/0pu,

2. those in which the sensitivity of the state to the parameter changes
gradually throughout the fermentation, such as 0X;/day, 0X5/0my,
and 0X3/0m,

3. those in which the graph shows three phases, corresponding, broadly,

to changes in the glucose concentrations

(a) the initial, high glucose concentration (for times less than 30

hours)
(b) intermediate values (for times between 30 and 90 hours)

(c) the final, low glucose concentration (for times greater than 90

hours)

(The sensitivities of the lactose concentration to the parameters depend
more strongly on the lactose concentration itself, with the lactose con-

centration having ‘intermediate’ values for fermentation times between

30 and 60 hours.)

The sensitivity traces are related to the substrate concentrations. Were
this not the case, attempting to design improved experiments for model pa-
rameter estimation by modifying the glucose feed profile to the fermentation

would be impossible.

4.10 Discussion

Although the determinant values obtained for the 20 bit design are greater
(better) than those obtained for the corresponding 5 bit design, it is not

4. Improving Parameter Confidence

141

Tstart (hr) | Tstop (hr) | Feed Rate (g)/hr)
0 8 13.7

8 16 1.4
16 24 0.0
24 32 0.0
32 40 13.0
40 48 9.4
48 56 7.9
56 64 3.6
64 72 0.7
72 80 2.9
80 88 7.9
88 96 0.0
96 104 0.0
104 112 0.0
112 120 18.1

Tab. 4.4: Feed profile specification for the best 5 bit constrained D optimal exper-

iment design (glucose fed at a concentration of 500g/L)

4. Improving Parameter Confidence 142

25
20f B
— 1.9e+027
- — — 6.9e+026
2 i —-—- 3.9e+026
& 1~ 1.9e+026
- i - 1e+026
3 |
{3} -
w l
|
- - |
I | ,
| i
| |
HEI |
100 120
Time (hours)
4.8
4.7 /]
46 A | —— 19ev027
o~ - — — 6.9e+026
o451 e E - - 3.9e+026
£ P Tt N 1.9e+026
S4.4F s ' B . - 1e+026
S ”
> s
431 Loy 4
7
421 & B
Ry
4.1k ’ B q
R A
gl 7 | | | | |
0 20 40 60 80 100 120

Time (hours)

Fig. 4.13: Input feed rates and simulated volume profiles for constrained 5 bit D
optimal experiment designs based on the model of Paul et al. (1998)
(Feed rate in g/hr at 500g(glucose)/L, Volume in L)

4. Improving Parameter Confidence 143

0 24 48 72 96 120

0 24 48 72 96 120
Time (hours)

Fig. 4.14: Simulated biomass and soluble species concentrations for constrained
5 bit D optimal experiment designs based on the model of Paul et al.
(1998)

4. Improving Parameter Confidence 144

X0 1o IXyloK, IXyl0 1y IXyloK,
200 10 0+ 30
++
T L + +
100f Of++,, L+[100 20 o
RN + ooty + o4
+ + i + + +
oft = T —10 + T+ 200 Lo 10 . .
+ ++ + ++ N
f
-100 -20 300 04++
0 9Xfope 12070 OXJOK, 120 0 OXfIM, 120 0 9Xfou; 120
5 10 - 10 50
o T+ o4
0 o 5 +y . O+t ++++++++ O |+t o+
+ +
4
-5 +, of+++" *+ -10 -50
+ T 1
10—~ 5 20 100]
0 0Xfopy 120 0 9XIM, 120 0 9XJIoy, 120 0 9XJda, 120
20 1 0+ K 0+ yei
e
O [+ Lo+
0 | ++HHt+++-0.5 ++ + -1 + 7T
-20 o + T
4 +++
-40 -1 -1 -2
0 OXgdmg 120 0 9Xfomy 120 "0 9XJfIK, 120 "0 X o, 120
Or+++ ++ Or+++ ++ OH{Jr T
4+ F Tt . + +
—_ + + 4
2 N + |02 e L+
L0 L -5 4+ -0.2 + 7,
-4 +++ N ot + 1
+ +
+ +
-6 -10 0%+ -0.4
0 Xfop, 12070 OXIK, 120 0 9XIK; 120 0 9XfoW 120
O+ T 3 e O+ e 1
++ + +
+ + T + +.7
+ * 2 o+ + of+++ T T
-5 oy . 10.05 + N
AR | + + T
+ o +
+
-10 0 LEE -0.1 -2
0 XKy 120 0 OXJIKg 120 0 IXdpy, 120 O 120
0.2 " 200 . 1
.t
. 0f+++ T
+ + O
O+t +++1-200
.
* 400 -1
0 120 0 120 0 120

Fig. 4.15: Sensitivity of Xy to the model parameters for a 5 bit constrained D
optimal experiment design based on the model of Paul et al.(1998).
The ‘+’ correspond to the 8-hour sample intervals.

4. Improving Parameter Confidence

9X,/0 g X, 10K, 9X,/9 v, OX, 19K,
200— 100 500 40
+
of+ 50 et 20
* | S Ofra ++++
200 Pt AT ol el ol o *
e
-400 -50 500 T 20
0 9XJope 1200 OXJIK, 120 0 9Xop, 1200 0 9XJop 120
30 O+ 0 = O =
*y ++++ +++
20f T 1-10 R 4 200 o
+ + 4+ -50 +4+ +++
100, e, -20 o+ +1, 400 1
ot il 30 100 600
0 0XJop; 12070 OXop, 120 0 9XJdoy, 120 0 9Xda, 120
O+ 1 O+ 0+
+, .
+ +
+ i
-100 + O [+ =2 + -5 X
+ + +17
+
+,, +++++++,, + H*H
-200 - -4 -10
0 9Xyomg 120 0 9Xfomy 120 0 OXJfOK, 12070 9Xfdo, 120
Or++t O+t 1.5 O+
N
* ot
-10 . -10f + 1 - 05 +
+ +
-20 o —20] 4 .l 05 + -1 +
++ S ++
it +
+ A+l
_30 -30 S -1.5 =+
0 OXJop, 12070 OXJIK, 120 0 OXJIK; 12070 9Xow 120
O+t 15 0+ 4
+ +
ot
+ 10 j 2 +
4
-20 N o -0.2 N F
HJr . 5 + . e Of+++t it
e N - ++H
-40 =T -0.4 -
0 XKy 120 0 OXJOKg 120 0 0% /op, 120 ‘0 120
0+ 1 500 s 1
+ + .o+
st of+++F T O [
-0.2
4
500 -1
0 120 0 120 0 120

Fig. 4.16: Sensitivity of X; to the model parameters for a 5 bit constrained D
optimal experiment design based on the model of Paul et al.(1998).

The ‘+’ correspond to the 8-hour sample intervals.

4. Improving Parameter Confidence

146

9%,/ g X, 10K, X9, IX,I9K,
100 40 100 10 1
+
A+
o+ %, el o S 5 +
T tr +
+ 20 + + + 4
BRI + + +
-100 et -100 1 0of+tty
+ o+
+ +
-200 b 200 -5
0 9XJoue 120 0 IXSIK, 120 0 9XfIW, 120 O 9XJfou; 120
10 0+ O 400 ”
+y + + + ey
+, -5 . -100 *, ++ +,
5 . PR | + 200 1
+ + -10 4t 1200 *y +
T Tt +
+ o
oL -15 300 -
0 9XJou; 12070 KoM, 120 0 9XJOop 120 0 9XJdo 120
200 1 01H++ 0+
+ +
H
+++ +,, -1 ++ -2 +
100 + O | HA+H +++ ++
j -2 Tt -4 ot
.
bt -1 -3 -
0 0Xlomg 120 "0 9Xidmy 120 0 IXJdK, 120 0 9Xfoo, 120
0+ O+ = OHHEr
+ 0.5 s
+ + *
-5 + -5 + +
+ + + -0.5 .
+ 1 +
-10 +t] 710 + . * 1
] N .
it N
-15 -15 e -1
0 OXJou, 1200 OXJIK, 120 0 OXJOKi 120 "0 9Xou 120
O 10 O+ 1
+ * ++
+ L + +
-10 +, 5 01 N 0.5 .
+, o . 4
20 ++W 0 FRat ‘¢+++ 0 2 +++H+” 0 1 A;++ ++”
0 OXJKy 120 0 OXfoKg 12070 9XJm, 120 O 120
Ot 1 200 1
++ ++
+ + + N T T B B B B |
-0.05 . | 100 - O |-
+ + *
+ +
_O 1 + ey x+ +” —
o 120 0 120 0 120

Fig. 4.17: Seunsitivity of Xy to the model parameters for a 5 bit constrained D
optimal experiment design based on the model of Paul et al.(1998).
The ‘+’ correspond to the 8-hour sample intervals.

4. Improving Parameter Confidence 147

X4/ g IX,10K, X101, IX4/0K,
20 10 10 R 2
e e + 1
of++ T+ N Of++++t * 1
++ 5 . + ++
-20) + -10 O, +
et + 1 + e
—40 0H——* -20 -1
0 OXfou. 120 0 IXSIK, 12070 OXdIW, 120 "0 IXIu; 120
2 T 0+ e 30 150
v+ F + ++
kR + 20 + *+. | 100 L
1 + + -2 + * + +
+, 10 + * 50 +
4T + T +
+ ++ +
oLt -4 ol oLt
0 IXfou; 120 0 KoM, 120 0 9XfIop 120 0 9Xgdo. 120
60 O 1 0+t 0 +H++
-l ++ ++ ++
+ + +
40 ++ * a -0.5 +
. -50 + |-05 T, +
20 + i -1 +
+ Iy +
+]
0L+t 100 -1 -15 +
0 OXgfomg 120 0 9Xgdmy 120 "0 IXg0K, 120770 dXifdo, 120
0+ 0+ 0.2 0 -+
+ + e ty
+) + + +
+ + + +
-2 . + 0.1 + ++
_ + + -
++ 4 + ot N 0.2 ++,,
T o
-4 -6 0 b
0 OXJou, 120 0 XK, 120 0 OXJOKi 120 0 X 120
0+ 2 O
i jﬁ +
- + + +
2 . . . 0.2 Rt
+ 1 4+ 10.05] +
-4 + + ++ + +,,
++,, ++ +
N
-6 0 it -0.1 0+
0 OXJfKg 120 0 JKg 120 70 OXgop, 120 0 120
0 - 60 1
i
-0.01 + 1 40 ++
+ +
P + 0 [
-0.02 120 vt
. +t 1
+
-0.03 0 Lt -1
0 120 0 120 0 120

Fig. 4.18: Seunsitivity of X3 to the model parameters for a 5 bit constrained D
optimal experiment design based on the model of Paul et al.(1998).
The ‘+’ correspond to the 8-hour sample intervals.

4. Improving Parameter Confidence

9S/9 1, 0S/oK, 0S/0 v, 9S/oK,
500 10 1000 50
O+ +rHH O O |
+ 500
-500| 1-10 -50
-1000 -20 il 0 S++=++++++-100
0 0SOp. 12070 0SIK, 120 0 9SlAm, 120 0 9SPW, 120
50 20 100 500 1
Of4 T
+ | 10 T 50 0|+t
-50|
+ + +
-100 0¢+#4*HH¢#H 0 “H+—tt+++++++-500
0 0SPp; 120 0 0SlM, 120 0 9S00, 120 0 0SRa, 120
200 1 1 5
0 n B o e e o 0 + i e o o e
100 0 HH + +
-1 5|
+
0 e -1 -2 -1
0 aé/amo 120 0 JsS/lom; 120 0O dSIK, 12070 9S00, 120
10 20 0.5 2
ol, T 0,] O[T 1
L +
-10 =20 L -0.5 O [+
+ T 4
-20 -40 -1 -1
0 9SOu, 120 0 9SIOK, 120 "0 9SMK; 120 0 9SOl 120
40 10 0.05 0.1
20 0
0 ++4—H—0—H—H—h, o
O |+ =10 ﬁ O+t +
-20 -20 0.05—*
0 1O,§S/BKS‘ 12070 9SIKg 1207 0 9SO, 120 0O 120
51 20 1
Of+++ + ++HH+++ 10 0
+ +
* +
-5 []
0 120 0 120 "0 120

Fig. 4.19:

‘4’ correspond to the 8-hour sample intervals.

Sensitivity of S to the model parameters for a 5 bit constrained D op-
timal experiment design based on the model of Paul et al.(1998). The

4. Improving Parameter Confidence

149

oL/9 g oL/oK, oL/o y, oL/oK,
100 20 100 2
O+++ - + . 0 4_¢_Hr+ 4+ |
10 50 +
-100 + . -2
ey ++ . N
-200 -+ #K‘#HH O#HJr -+ 4
0 oJlldp, 120 0 OLOK, 120 0 dLOM, 120 o IO 120
10 20 5 20
+
Of+++ bbb h
10 + Of+++ 10 +
-10 T +
+y +t
++
-20 -+ -+ -5 0+ -+
0 oJlldp; 120 0 dLIdp, 120 0 dLPa; 120 0 dLPae 120
4 1 O+ - 1
. Of+H g+
2 0| B | N .
+ -0.2 + -1 ++
++ +
04+ -+ -1 + -2
0 JaL/om, 120 0 oL/om; 120 0 JdLIOK, 120 0 dlld oy, 120
2 2 0.1
Of++t bbbt Ot Tt 0f+++ R
. . 0.05 + +++
-2 o -2 +F +
+
-4 -4 + +++ H—++—+++—0.
0 dop, 120 0 OLOK, 120 0 OLOK; 120 0 dLlw 120
2 2 0.02 = 5
0f+++ ERRRRRREY 0f+++ A O AT
+ N i
++ 1 i
-2 *, + 10.02 + -5 *
-+
N
-4 0L+ H—+++++0.04 -10
0 dUoKy 120 0 dLIKg 1200 0 dLldw, 12070 120
1 1000 1
* Of++t
-+
05 . 0 [+
N -1000
+ +
oueJr H-+++++2000 -
0 120 0 120 0 120

Fig. 4.20: Sensitivity of L to the model parameters for a 5 bit constrained D op-
timal experiment design based on the model of Paul et al.(1998). The
‘4’ correspond to the 8-hour sample intervals.

4. Improving Parameter Confidence

oP/d 1, oP/9K, Py, 9P/OK,
50 40 100 5
+ e s o
of++ + 20 + 50 o+ T 0+ 4
+ " N + 1
-50 ++ 0 [+t OfH++ | -5 Tt
+ 1
100) 0 50 ' 10
0 dPlOp, 1200 OPOK, 12070 OPlOp, 12070 IPOW 120
4 5 +++++ 5 FF 0 HHJr
N ++ T + T +
2 i . ++ -20 o
+ Of+++ 4 Of++++ +++ +
of+++ 4+ | + -40 N
E)
-2 - -5 -60
0 OdPOp; 120 0 OPOu, 120 0 OdPPo, 120 0 OPdo, 120
0+ 1 0.5 1
++
=+ O+, 0 ++++
.
-10 0 | A+ ++ ++
4 4+t -0.5 +4 -1 +
+ + 1 +t s
-20 -1 -1 e ad il
0 dPlomy 120 "0 dP/om; 120 0 doPIOK, 120 "0 dPlo, 120
5 5
O ++++ +++++” O ++++T
+ +
O f++++ +, Fins +
L -5 T O T ++
+ +
-5 MAFEELL g o]
0 JP@p, 12070 JPOK, 120 0 OPPK; 120 0 dPOW 120
150 - 0 s 15 1
el + e T
100 iy -20 + | B 0.5 +
+ s
50 + 40 " 05 of+++"
- + Lo 1
N - ++ . + ++4—H—F
0= -60 0t -0.5
0 OPIOKy 120 0 OPIOKg 120 0 PO, 120 "0 120
0.05 200 0
F, ++
100 + 100 +,
0f+++ +F +
ot of++" 200 *
* T ++,,
-0.05 + 100 300
0 120 0 120 0 120

Fig. 4.21: Seusitivity of P to the model parameters for a 5 bit constrained D
optimal experiment design based on the model of Paul et al.(1998).

The ‘“+’ correspond to the 8-hour sample intervals.

4. Improving Parameter Confidence 151

possible to precisely implement the designed 20 bit feed profile. Discussions
with Paul (1998) suggested that the feed rate could be controlled in steps of
around 0.5 to 1.0 g(glucose)/hr. The upper bound on the input feed profile
corresponds approximately to a feed rate of 22g(glucose) /hr, and so dividing
the range into 22 to 44 divisions would correspond to the achievable intervals.
On this basis, using 5 bit designs, having 2°(= 32) divisions of the input range
was considered to be adequate for practical purposes.

The difference of 5 orders of magnitude between the 5 bit and 20 bit
designs corresponds, on average, to reducing the range over which each of
the 23 model parameters may vary for a given error value, for the 20 bit case,
to two thirds of the corresponding range for the 5 bit case. The addition of
the total biomass concentration constraint to the 5 bit design crierion results
in a further decrease in the determinant values obtained.

The difference in the range of determinant values obtained for the con-
strained and unconstrained 5 bit experiment designs may be due to changes
in the size and shape of the search space containing acceptable feed profiles.
For the unconstrained design, the whole of the search space is acceptable,
but adding constraints reduces the size of the search space and may produce
an acceptable search space which is non-convex or discontinuous. Since the
search space for the constrained case is smaller than for the unconstrained
case, the range of possible determinant values is narrower and this may go
some way towards explaining the narrower range of determinant values found
in the constrained case.

The determinant values obtained for the experiment designs have been

compared with those obtained for a number of simpler input profiles. These

4. Improving Parameter Confidence 152

are:

e a constant feed rate, feeding the same total volume to the fermenter as

the best 5 bit constrained designed profile

e two square profiles, stepping between values that are half of and one

and a half times the constant feed rate value:

— low-high, starting with the feed rate set to half the constant feed

rate value

— high-low, starting with the feed rate set to one and a half times

the constant feed rate value

e a ramped feed rate, starting from zero feed and rising over the 120
hours of the fermentation to a final value double the constant feed rate

(therefore delivering the same total feed to the fermenter)

All these simple feed profiles result in determinant values which are less
than those for the designed experiments (see Table 4.5). The square wave
profiles are the best performing of the simple feed profiles with respect to the
D optimal experiment design criterion, but even they give rise to determinant
values which are several orders of magnitude smaller than the designed feed
profiles. The reason for the extremely poor performance of the ramped feed
profile is not clear, but may be due to such a profile causing much smaller
changes in the values of the biomass, substrate and penicillin concentrations
during the fermentation than the other inputs, and so producing data over

a smaller portion of the model’s state space than the other input profiles.

4. Improving Parameter Confidence 153

Feed Profile Determinant

two-rate FIM | single-rate FIM
Constant feed 8.2e12 6.7e-3
Square wave (low-high) 1.7¢18 2.7e5
Square wave (high-low) 8.6e18 4.9eb
Ramped feed 7.0e-2 2.4e-15

Tab. 4.5: Determinant values for simple feed profiles, calculated for both single-
rate and two-rate information matrices

One way of assessing the effectiveness of this experiment design process
would be by examining the parameter values obtained, and their confidence
intervals, on tuning to data obtained from actually running the optimal ex-
periment designs. Work on running such a design has been planned, and is
intended to be carried out in the near future. Parameter estimation based
on the data obtained should be carried out using SIMUSOLV and an exist-
ing ACSL model, since SIMUSOLV may be used to produce estimates of the
parameter confidence intervals for the model parameters. Comparing the
parameter confidence intervals obtained in tuning to data from the experi-
ment design with those for the parameters tuned from earlier experiments
will provide a means of assessing whether or not the designed experiments

may lead to an improvement in the parameter confidence intervals.

4.11 Notation

A diagonal matrix

CPR carbon dioxide production rate, g(COq)h~?

D diagonal matrix with eigenvalues along the diagonal
E summed squared error

4. Improving Parameter Confidence 154

=5
=

<< <wuldwzbtm

=
+

ax=1,2...n

minimum value of the summed squared error
Fisher Information Matrix

a schema

lactose concentration, g(L)1™1

number of individuals in a genetic algorithm’s population
concentration of Penicillin, g(P)1~!

probability that an allele in a chromosome is fixed
glucose concentration, g(S)lI™!

matrix made up, row-wise, of eigenvectors of the FIM
volume in the fermenter, 1

binary alphabet of alleles, {0,1}

augmented binary alphabet, {0, 1, x}

weighting matrix

weighting matrix for measurement rate 1
weighting matrix for measurement rate 2

biomass concentration, g(DW)1~*

total biomass concentration, g(DW)I™!
concentration of hyphal tips, g(DW)I!
concentration of subapicial regions, g(DW)1™*
effective concentration of vacuoles, g(DW)1*
concentration of degenerated regions, g(DW)1™

length of axis of a confidence ellipsoid
nominal model parameter

first element on the diagonal of matrix A
second element on the diagonal of matrix A
position along a chromosome

optimum parameter set

length of axis of a confidence ellipsoid
nominal model parameter

nominal model parameter

function relating rate of change of the model states
x(t) to the states, x(t), parameters, 3, and

inputs, u(t)

fitness of individual 7

frequency of allele having value p in generation ¢
function relating the model output y(t) to

4. Improving Parameter Confidence 155

the states, x(t), parameters, 3, and
inputs, u(t)

g(x) general genetic algorithm fitness function

ho mean Hamming distance of initial population

hi(x) constraint function

k cardinality of alphabet (number of characters)

[length of axis of error ellipsoid

[length of chromosome

m measured value

my value measured at rate 1

Mo value measured at rate 2

m(H,t) number of members of schema H in generation t

n number of individuals in genetic algorithm’s population
o(H) order of schema H

p(7) probability of string ¢ being selected for reproduction
De probability of crossover at a given point

Dse probability of a schema surviving single point crossover
DPm probability of mutation occuring at a given point

Dsm probability of a schema surviving mutation

S0 standard deviation of Hamming distances in initial population
t time, h

t; measurement time ¢

U inputs

x model states

x first model state

1 first element of x vector

To second element of x vector

1 simulated values sample at measurement rate 1

T simulated values sample at measurement rate 2

Ty Tpy Te derivatives of first model state wrt. nominal parameters
Yas Y, Ye derivatives of second model state wrt. nominal parameters
Y model outputs

Y second model state

z* modified parameter space in Newton-Raphson method

Greek Symbols
r constant modifying length of step in gradient descent

4. Improving Parameter Confidence 156

O[h;(z)] penalty function applied for constrained genetic algorithm
Q coefficient relating CPR to X

B coefficient relating C PR to X

I} parameter set

B estimate of parameters, (3

Af* modified distance from optimum parameter set
0% coefficient relating C PR to P

d(H) length of schema H

A eigenvalue of the FIM

1 variable modifier used in Marquardt’s method
143 vacuole degeneration coefficient in model of

Paul et al. (1998)

* wildcard

5. CONSIDERING MODEL IDENTIFIABILITY

The problem of model identifiability is that of determining whether or not,
for a given model structure, there is in theory only one set of parameters
for which given model input(s) will generate given model output(s). This is
important as the model parameters may be physically significant, and there
may be interest in knowing whether or not they can be estimated uniquely
for a given set of experimental measurements, or there may be difficulties in
using numerical search techniques if there is more than one possible set of
parameters for which the model will fit the data (Ljung and Glad, 1994). It
may also be true that only a few variables are available for measurement;
when fitting a model to even a limited set of data, parameter estimation
will always give some kind of answer. However, if there exist more than
one possible set of parameters (possibly even an infinite number of sets of
parameters), the parameter estimates obtained may be of little practical use
(Vajda et al., 1989).

In this chapter, the problem of model identifiability is introduced, ap-
proaches to tackling the identifiability problem taken from the engineering
literature are described, and a new approach to assessing the global identifia-
bility of models is introduced. Examples then demonstrate that the new ap-

proach produces results comparable with those obtained using the approaches

5. Considering Model Identifiability 158

taken from the literature, and this chapter concludes with an identifiability
analysis, using the new approach, of the model of Paul et al. (1998). The
analysis shows that the model is theoretically globally identifiable.

5.1 The Problem

Assuming a typical structure for the nonlinear model:

#(t) = fx(t),ult),t,0) 2(t),u(t),0 € R",t € [0,T]

with x(t),y(t) and u(t) being vector-valued, time-varying model states, out-
puts and inputs and 6 being a vector of parameter values. The derivatives
of the states, @(t) are given by the set of nonlinear differential equations
f(z(t),u(t),td) and the outputs by the nonlinear relations g(x(t),6). R"
denotes a real-valued, n-dimensional vector space.

For this model structure, the parameter vector 0 is locally identifiable if
for almost any solution 0 the solution is unique in some neighbourhood of
6. A model is globally identifiable if the conditions for local identifiability
apply over the whole of the parameter space, not just a neighbourhood of 0
(Jacquez and Greif, 1985).

For a model to be of use in describing a fermentation process, or in
the development of estimators and controllers, or in the optimisation of the
economic performance of a process, it must first be tuned against measured

experimental data. There are three possible outcomes of this process.

e The model is globally identifiable; there is a single, unique set of pa-

5. Considering Model Identifiability 159

rameters for which the model fits the data.

e The model is locally identifiable; within a given range of parameter
values (all positive, for example) there is only one set for which the

model fits the data.

e The model is unidentifiable; there exist more than one set of parameter
combinations for which the model can fit the data (possibly an infinite

number).

The range of feasible parameter values can often be restricted, especially
in the case of fermentation models, where parameters are related to physi-
cal concepts and properties of the process. Specific growth rates and yield
coefficients must have positive values, for example. That being the case, the
goal is to show that the models being used here to describe the fermentation
are either locally identifiable within the range of feasible parameter values or

globally identifiable, and hence suitable for our purposes.

5.2 'Theoretical Identifiability

There are a number of techniques available in the engineering literature for
assessing the identifiability properties of a model. Three of these are the
Taylor series expansion approach (Pohjanpalo, 1978), the state isomorphism
method (Vajda and Rabitz, 1989), and a differential algebra based method
(Ljung and Glad, 1994).

5. Considering Model Identifiability 160

5.2.1 The Taylor series approach

This method is based on solving the set of equations generated by taking
successively higher derivatives of the basic model equations to give expres-
sions for the parameters in terms purely of measurable quantities - typically
the measured inputs and outputs of the process.

Assuming a typical structure for the nonlinear model:

#(t) = fz(t),u(t),t,0) a(t) € R",t € [0,T]

then taking derivatives and inserting assumed ‘known’ values for their initial

conditions, the following set of equations is obtained:
g (@(0),0) = a(0) k=0,...,00

(g'®) is the kth time derivative of g, and a,(0) is the (theoretically obtainable)
initial value for the kth derivative.)
This method, based on the Taylor series expansion of the model equations

may, in theory at least, be easily performed (Chappell et al., 1990).

1. Differentiate x(t,0) and y(t,).

2. Evaluate 4y (0%, 0) by substitution of quantities already known from

y(0%,) and lower derivatives of z (< 7).

3. Check on the independence of the equations in successive derivatives

and on what parameters, if any, can be identified at each stage in the

5. Considering Model Identifiability 161

differentiation.

4. If not all parameters have been identified, then repeat the procedure

from step 1.

Although the above method seems simple enough, in practice it rapidly
becomes algebraically involved, especially where models are nonlinear in the
parameters. The use of computational algebra packages, such as Maple, helps
to a certain degree, but even so this method is limited in practice to simpler

models with few state equations and few parameters.

5.2.2 The state isomorphism approach

The following is taken from the paper of Vajda and Rabitz (1989).

Consider a parametrised nonlinear system.

g0 @(t,0) = f(x(t,0),0) + uh(x(t,0),0) 5.1)

y(t, 9) = g(fl?(t, 0)70)7 .’E(O,H) = 1‘0(0)

Let M and €2 be bounded, connected and open sets in R™ and R?, re-
spectively, such that x € M and 6 € 2, where 0 represents the constant
parameter vector. It is assumed that the vector fields f(-,6) and h(-,), and
the function g(-,0) : M — R™ are real analytic on M for all § € Q. Vajda and
Rabitz (1989) considered the problem of identifiability of the above model
system in the experiments with given initial condition z¢(#) and bounded
inputs U[0, t;], defined over the range [0,#;]. Let Zgo(a) denote the input-
output map of the system. Then parameter values 6,0 € Q are said to

be indistinguishable (denoted by 6 ~ 5) in the set of possible experiments

5. Considering Model Identifiability 162

(z0(6), U0, t1]), if 522 (u) = Eg(’(é) (u) for all u € U[0,t]. (That is to say,
two experiments with different parameter sets are indistinguishable if the
same inputs produce the same measured outputs for all permissible inputs.)
The system is globally identifiable at 0 if 6 ~ 0,0 € Q implies = 0. The
system is locally identifiable at @ if there exists an open neighbourhood W of
0 in) such that 6 = 0,6 € W implies 6 = 6.
Vajda and Rabitz (1989) referred to previous work on identifiability, in

which three factors had been considered:

1. the relationship between the local identifiability and the local observ-
ability of a system

2. the functional expansion of the input-output map, eg. using a Taylor

series expansion
3. the local state isomorphism approach of nonlinear realisation theory

Of these three, the first was discounted as being explicitly local, the
second was considered to result in conditions for identifiability which were
sufficient, but not necessary, from a practical point of view (for Vajda and
Rabitz), and so Vajda and Rabitz (1989) concentrated on the third approach,
aiming to extend the state isomorphism approach to the global identifiability
of nonlinear systems.

In addition to assuming the analyticity of the system, it is assumed that
the system satisfies both the controllability rank criterion (CRC) and the
observability rank criterion (ORC). (The CRC and ORC are covered well in
(Ray, 1989).) The problem of global identifiability may then be summarised

5. Considering Model Identifiability 163

as follows: Given the model system (5.1) and 6 € Q, find all § € Q and

systems of the form
#o(0) .
Y5 (5.2)

such that
Ego(e) (u) _ 2570(5) (53)

for all u € UJ0, ¢,].

Vajda and Rabitz (1989) describe this as a highly restricted problem of
system equivalence. First, both (5.1) and (5.2) are locally reduced and have
the same subset M in R™ as their state spaces. Second, in addition to the
input-output map, the known system structure is also invariant under the
feasible class of local state isomorphisms. The analysis is based on the con-
struction of all such transformations. This idea had previously been applied
to linear systems, where equivalence transformations are linear; although lo-
cal state isomorphisms between (5.1) and (5.2) generally are solutions of a
set, of partial differential equations, their construction is relatively simple for
certain locally identifiable systems of practical interest. Vajda and Rabitz
(1989) also showed that any local state isomorphism preserving the struc-
ture of a homogeneous system is linear, and suggested that, because of this,
the local state isomorphism method is very simple for this class of systems,
and that the known conditions for global identifiability of linear and bilinear

systems are special cases of their results.

5. Considering Model Identifiability 164

The condition for identifiability advanced by Vajda and Rabitz (1989)
was as follows.

Consider 0,0 € Q, an open neighbourhood V' of z((#) in R", and any
analytic map A : V' — R” defined on V such that

Awo(8)) = 20(6) (5.4

rank% —nforallicV (5.5)
FO@).0) = 2 1(.0) (5:5)
PA@)L0) = T30 67)
9(\(#),0) = g(&,0) (5.8)

for all £ € V. Then there exists ¢; > 0 such that (5.1) is globally identifiable
at 6 in the experiments (zo(6),U[0,¢]) if and only if the above conditions
imply 6 = 6.

5.2.3 The differential algebraic approach

A recent paper (Ljung and Glad, 1994) advances a technique for assessing the
identifiability of nonlinear models by using methods pioneered in the field of
differential algebra, in particular an algorithm indicated by Ritt (Ritt, 1950;
Kolchin, 1973). This algorithm enables the generation of a set of character-
wstic sets of prime differential ideals from a set of differential polynomials.
In the paper (Ljung and Glad, 1994), a naive description of the method is
provided, which gives an overview of how this differential algebra based tech-

nique works. A summary of that is given here, in preference to the far more

5. Considering Model Identifiability 165

involved and abstruse more mathematically complete and correct version,
also offered in Ljung and Glad (1994).

Start from a set of differential polynomials describing the model

gi(u,x,y,0,p) =0 i=1,2,...,r (5.9)

where u(t) and y(t) are the measured input and output values, z(¢) are non-
measurable state variables, 6 is a vector of time-invariant parameters and p is
a differentiation operator. (Note that the formal development of the method
is based around polynomial descriptions. Other types of relationship would
need to be replaced with a suitable polynomial approximation. Ljung and
Glad (1994) give the illustration of replacing z = sin(y) with 22 = §?(1—2?).)

From this set of differential polynomials an infinite number of other poly-
nomials may be formed by differentiating, adding, scaling and multiplying
the original differential polynomials. If the infinite set of all these expressions
is denoted by G, then any solution u, y satisfying the original set of differen-
tial polynomials will satisfy all equations in G. Ljung and Glad (1994) state
that it is sufficient to select a finite subset of G that has the same solution set
as the original set of differential polynomials, and ask whether there might
exist a set of differential polynomials that would make it easier to establish
identifiability.

An analogy may be drawn with linear algebra and linear spaces and bases.
A finite basis is sufficient to describe infinitely many vectors in the space,
and there are infinitely many bases, each defined by a finite set of vectors.
Certain questions are more easily answered in one basis than another Three

criteria are given to define a ‘good’ basis (Ljung and Glad, 1994).

5. Considering Model Identifiability 166

e Expressions should not contain the variable z, since it is not known to

us.

e Expressions should not contain higher powers of 6, since this would

make it more difficult to assess the identifiability.

e [t is OK if the expressions contain powers and derivatives of v and v,

since these anyway are known to us.

It was suggested that the ‘best’ expression in G’ would take the following

form:

Uo(y,u,p) =0 (5.10)

i.e. a differential algebraic expression in terms only of v and y. The next

best would be of the type:

q)l(yauap) +0\I’1(yauap) - 0 (511)

from which it was suggested that the value of 6 could be uniquely determined

only if the function

Wy (y, u, p)

has full rank.
Determining whether or not equations of the form of Equation 5.11 may
be found is determined by searching over G with a procedure reminiscent of

the Gauss-elimination algorithm. Take an arbitrary element. If it contains

5. Considering Model Identifiability 167

unwanted features, try to eliminate them by the allowed algebraic manipu-
lations. In this way, a ‘better’ element is created in each step, and finally
the existence or otherwise of equations of the type shown in Equation 5.11
is determined. Formally, this is Ritt’s algorithm.

In the original paper, step-by-step details of the working of the version of
Ritt’s algorithm used are not given (Ljung and Glad, 1994), but a few simple
illustrations of the inputs and outputs of the algorithm are shown. One of

these is shown later, in Section 5.5.

5.3 A New Approach to Identifiability

This section outlines a new approach to assessing the identifiability of non-
linear models, based broadly on the notion of finding a ‘linear regression’ for
each parameter in terms of measurable states and inputs only, as advanced
by Ljung and Glad (1994). The method outlined here is similar to that first
advanced by Pohjanpalo (1978), with the exception that here no attempt
is necessarily made to solve explicitly for each parameter for which an at-
tempt is being made to assess identifiability. The approach here may also be
considered as marginally more generic than that of Pohjanpalo (1978), as it
does not focus exclusively on the information contained in the ‘germ’ of the

dynamic system behaviour (its initial conditions and derivative values).

5.3.1 The test

A model system is considered to be globally identifiable if the following state-
ments are true. Starting from the model equations, a set of expressions can

be obtained in which all the parameters present in the original model are

5. Considering Model Identifiability 168

found, and in which the only states, inputs and outputs present are measur-
able, each expression including at least one term made up only of measurable
states, inputs and outputs. Assuming that the groups of parameters present
in each expression may be equated to distinct, non-zero constants, the set of
simultaneous equations which can be formed, relating the parameters to the
constants may be solved uniquely to give each parameter as being linearly
related to a function made up solely of constants.

One possible procedure to follow to determine identifiability according to

the above is as follows.

1. multiply throughout each equation in turn, so as to eliminate divisor

terms
2. substitute between expressions to eliminate unmeasurable quantities

3. collect together the terms in each expression, grouping them by unique

groups of measurable states and outputs

4. assuming that the groups of parameters associated with each unique
group of measurable states and outputs can be equated to distinct,

non-zero constants, generate a set of simultaneous equations

5. attempt to solve the resulting simultaneous equations for the individ-
ual parameters (as solutions are generated for each parameter in turn,

substitute an assumed constant value for the parameter)

If any parameters are present in the set of simultaneous equations only as

powers other than unity, then there exists the possibility of more than one

5. Considering Model Identifiability 169

feasible set of equations, and global identifiability may not be shown. How-
ever, the system may still have only a single feasible parameter set.

This approach to determining model identifiability has been based on
the assumption that the measurable quantities may be approximated, as
functions of time, by high order polynomials, differentiable at least one more
time than there are terms in the longest expression.

This new approach to determining the identifiability has advantages over
the existing approaches. The theory on which it is based is simpler than that
underlying the approaches of Vajda et al (1989) or Ljung and Glad (1994),
and the approach does not call for the repeated calculations which are a
feature of the approach of Pohjanpalo (1978).

The approach of Pohjanpalo (1978) suggests that constant values be de-
fined for all measurable initial conditions, and their progressive derivatives,
whilst the new approach merely assumes that expressions made up solely of
measurable states and their derivatives will evaluate to constants, which as-
sumption may be justified, since such expressions are to be equated to groups

made up solely of parameters, which are assumed to be time-invariant.

5.3.2 The problem

What are sufficient conditions for it to be possible to obtain independent
expressions for parameters in terms solely of states and inputs/outputs?

Consider a general differential polynomial expression:

kiCi + koCo+ -+ kG, = 0 (5.12)

5. Considering Model Identifiability 170

where the k; are expressions made up only of parameters (assumed constants),
and the (; are distinct groups of states and their derivatives (or inputs or out-
puts), i.e. no two terms k;(;, k;(; have the same (,, assumed to be multiply
differentiable. (A differential polynomial of the form given above may al-
most always be formed from the equations given in a fermentation model.
Multiplying through by divisor terms, such as (K,, + S) from the Monod
expression, will eventually give a ‘simple’ differential polynomial of the form
above.)

Differentiating a differential polynomial containing distinct groups of states
produces a new differential polynomial containing distinct groups of states

and their derivatives.
G+ kaGo+ o+ kG = 0 (5.13)

When any differential polynomial in which the groups of states are distinct
is multiplied by any group of states, the groups of states in the resulting
differential polynomial remain distinct. Multiplying Equation 5.12 by él and
Equation 5.13 by (; gives the following pair of equations.

lelél + k2<2é1 +-- knCnél =0 (5.14)
lelél + széz +- knClCn =0 (5.15)

Subtracting the second of these equations from the first results in a differen-

tial polynomial with one fewer parameter group than the original, in which

5. Considering Model Identifiability 171

all the groups of states are distinct.

k2(€:1C2 - C1Q12) +- 4+ kn(ClCn - ClCn) =0 (5.16)

It is not possible for more than parameter group to be eliminated in one
step following this procedure, since the groups of states are distinct. Given

a differential polynomial with distinct groups of states:
at™ 4+ bt" =0
Differentiating with respect to time gives:
mat™ ' +nbt""! =0
Multiplication and subtraction give:
mbt"Hm= _ pppmt=l) —

Assuming that m,n and b are all non-zero, the only case for which the left-
hand side of this expression equals zero is that for which m and n are equal,
which cannot be true if the groups of states are distinct, as was assumed.
The procedure of differentiation, multiplication and subtraction may be
repeated, eliminating one parameter group at a time until only a single pa-
rameter group remains, at which point an expression may be formed for that
parameter solely in terms of states, inputs, outputs and their derivatives,

provided that a term consisting only of groups of states is present in the

5. Considering Model Identifiability 172

original expression.
For a differential polynomial of the type in Equation 5.12, there are four

possible structures:

e Case 1 all terms in the differential polynomial are made up of groups

of parameters multiplied by groups of inputs/outputs/states

e Case 2 one term in the differential polynomial is made up only of

parameters

e Case 3 one term in the differential polynomial is made up only of

inputs/outputs/states

e Case 4 there is one term in the differential polynomial made up only

of parameters, and one made up only of inputs/outputs/states

The four cases are not all identifiable. A simple illustration of each case is

given here.

Case 1

Consider the simple Case 1 system:

aX +bY =0 (5.17)

where (a,b) are parameters and (X,Y") are inputs/outputs/states.

Differentiating:

aX 4+ bY =0 (5.18)

5. Considering Model Identifiability 173

Cross-multiplying by the inputs/outputs/states associated with a:

aXX +bYX =0 (5.19)

aXX +bXY =0 (5.20)

Subtracting the second from the first:

HYX —YX) =0 (5.21)

This last equation is only true if either b = 0 or (Y X —Y X) = 0, and so this

simple Case 1 system is not identifiable.

Case 2

Consider the simple Case 2 system:
aX +b0Y +¢=0 (5.22)

where (a, b, ¢) are parameters and (X,Y") are inputs/outputs/states.

Differentiating:
aX +bY =0 (5.23)

which is equivalent to a Case 1 system and so, again, the system is not

identifiable.

5. Considering Model Identifiability 174

Case 3

Consider the simple Case 3 system:
aX +0Y +7 =0 (5.24)

where (a,b) are parameters and (X,Y, Z) are inputs/outputs/states.

Differentiating:

aX 4+ bY + Z =0 (5.25)

Cross-multiplying by the inputs/outputs/states associated with a:

aXX +0YX +ZX =0 (5.26)

aXX +0YX +ZX =0 (5.27)

Subtracting the second from the first, and solving for b:

ZX - ZX
b=—r— (5.28)
YX-YX
and solving for a:
ZX - ZX)YX : .
a= (—) - ZX | /XX (5.29)
YX-YX

So, with the exception of those cases for which any of the denominators in

the expressions of a and b is zero, this Case 3 system is identifiable.

5. Considering Model Identifiability 175

For Case 3 systems, if all (; are unique and differentiably analytic, then
each k; may be found as an expression made up solely of the ¢(; and their

derivatives.

Case 4

Consider the simple Case 4 system:
aX+b+Y =0 (5.30)

where (a, b) are parameters and (X,Y) are inputs/outputs/states. Differen-

tiating the above produces a Case 3 system,

aX +0+Y =0 (5.31)
and so can be solved for a,
(5.32)
and, substituting for a, can be solved for b,

b=-Y + % (5.33)

and so Case 4 systems are identifiable.

5. Considering Model Identifiability 176

5.3.3 What if not all (; are measurable?

Clearly the chances of identifying all k; are less if all the data described by
the model are not available. Can (; be eliminated without eliminating k;?
Consider a differential polynomial expression made up of n terms, as in

Equation 5.12. For some (;, 1 <1 < mn,

i—1 n

—k;(; = ij(j + Z ijj (534)

=1 j=itl
(ZE kiGi + Xjmin ’ijj)

G = - - (5.35)

(Note that k, = 0 for a Case 3 system.)

With a single differential polynomial, this gets us nowhere. However,
with a set of differential polynomials, such as those which make up a typical
fermentation model, it may be possible to substitute progressively for the
unknown states, provided that the differential polynomials are linearly inde-
pendent. In that case, given at least one more differential polynomial than
there are unmeasurable states, it should be possible to obtain a differential
polynomial which contains only parameters and (expressions made up only
of measurable states, inputs and outputs.

At this point the original differential polynomial expressions have been
converted, by substituting for unmeasurable quantities, into a set of equiva-

lent expressions, now made up of groups of the original k; and (;,

kicCe + kacCec + -+ + kngCuc = 0 (5.36)

5. Considering Model Identifiability 177

where the k;; are the new ‘groups’ of parameters, and the (;; are the new
‘eroups’ of measurable quantities and their derivatives. Again, k,g = 0 is
necessary for an identifiable, Case 3, system.

Given a differential polynomial made up of parameters and measurable
quantities only, expressions can be obtained for each group of parameters,

kic, Thus:

kic = fic(C,p) (5.37)

for all the k;o present in the differential polynomial used to obtain the pa-
rameter group expressions. p is the differential operator. Expressions may
be obtained for each of the k;; in terms only of groups of measurable states,
inputs and derivatives ((;q).

It is not necessary to evaluate the f;5(C.,p). These expressions are only
needed to check for conditions for which the k;; have undetermined values.
Since all the k;q expressions will be expressed as the quotient of one expres-
sion made up of measurable quantities and another expression of the same
type, there will be conditions for which the divisors have the value zero, and

for those cases it is not possible to solve for the k;q.

5.3.4 Finding k; from k;q

This is not enough, yet, to ensure that unique expressions can be obtained
for all the parameters present in the original model equations (k;). That
can only be done if all the original parameters are present in the k;g groups,

and they are either present singly in the k;; expressions, or present only

5. Considering Model Identifiability 178

in conjunction with other parameters that may be obtained individually by
substitutions from other k;; groups.

After obtaining a differential polynomial with the form of Equation 5.36,
it is necessary to be able to solve the set of polynomials given by setting
the k;q expressions present in the differential polynomial equal to constant
values which would be obtained by evaluating the f;q((,,p). These constant
values are denoted by the ®; in the expression below. In other words it is

necessary to solve the set of equations:

gi(ki, ko, -+ k1) = @ (5.38)

where there exists one equation for each group of parameters in Equation 5.36,
for the assorted k; parameters from the original model equations. (The above
expression is simply a rewritten form of Equation 5.37). The types of solu-
tions obtained from these expressions will determine the number of sets of
parameter values for which the model may display identical behaviour. If all
(k;) are linearly related to the ®;, then there will be single unique solutions
for each; higher powers will have more roots, but these may lie outside the
range of valid parameter values. Most fermentation model parameters are
defined to be positive, for example.

If it is not possible to obtain distinct linear expressions for all (k;) inde-
pendent of the other model parameters, then there will exist a set of possible
parameter values, possibly infinite, although bounded by physical feasibility.
For example, if ki + kg = Py, then there are an infinite number of solutions
for k1 and kg, but the constraint that k; > 0, kg > 0 means that both k; and

ks must lie in the range 0 < value < ®,,. In this case, although the system

5. Considering Model Identifiability 179

does not exhibit global identifiability, it does exhibit bounded identifiability.

5.4 Pohjanpalo’s Compartmental Model

Pohjanpalo (1978) gave the example of a compartmental model which was
unidentifiable when all rates were considered to be linear, but which be-
came identifiable when one of the compartments was considered to possess
only a limiting number of binding sites for entering molecules, giving rise
to Langmuir saturation. This example is used here to check that the new
identifiability test gives results consistent with the approaches used before,
showing unidentifiability for the linear model and identifiability for the non-

linear model.

5.4.1 The linear model

The linear model was as follows.

1"1(1‘;) = —()\10 +)\12)1‘1(t) (539)
9 () = Moz1 (£) — Aoo2(t) (5.40)
y(t) = z1(t) (5.41)

In this case, only one of the two compartments (x;(t) and z5(t)) is con-
sidered to be measurable, and an attempt is being made to demonstrate
identifiability for {A1g, A2, Ao }-

However, there is no immediately evident way of eliminating x(¢) from
the set of expressions, and so only the summed pair of parameters present in

the 41 (t) expression, Ajg + A2, may be identified.

5. Considering Model Identifiability 180

5.4.2 The nonlinear model

Adapting the linear equations to describe Langmuir saturation in the second

compartment, the model equations become:

1(t) = —A1021(t) — A2l — soxo(t)]x1(2) (5.42)
.'L'g(t) =)\12[1 — 82.’1)2(25)]1‘1@) - /\20.’1)2(25) (543)
y(t) = 1 (t) (5.44)

In the case of the nonlinear model, there is one additional parameter to
identify, so, the saturation factor for compartment 2.

Solving Equation 5.42 for z5(t), the following is obtained:
' A A
Ty — @1 + (Ao + Aiz)7 (5.45)

A12521

The explicit time dependence of the states x; and x5 has been omitted from
here on to attempt to make the equations simpler and clearer.

Differentiating this expression gives:

.. .2
= A128901%1 — A125227
9 =
()\1252301)2

(5.46)
Substituting for x5 and @2 in Equation 5.43, and simplifying, gives:
- 22 2 3 2 3 . 2

11 — 1‘1 =)\1282.'1,'1 —)\1282.’1)11'1 —)\12)\282.’1)1 -)\201‘11‘1 — /\20/\2.’1)1 (547)

where Ay, = (Ao + Ai2). Since the measurement vector y is identical to state

vector xq, expressions in x; and its derivatives are equivalent to expressions

5. Considering Model Identifiability 181

in the measured variable y and its derivatives, and so no substitution has
been made for ;.
Collecting together terms in the same powers of x; and its derivatives,

the following table is generated.

) —A1252(A1z + An) (5.48)
i AaoAs (5.49)
riiy Ai252 (5.50)
17 A20 (5.51)
L1 1 (5.52)
i -1 (5.53)

The last two rows in this table show that the nonlinear model is a Case
3 system, and so is identifiable, provided that expressions for each of the
parameters in the original model can be formed from the parameter groups
in the above table.

Since successive groups of terms can be eliminated, expressions can be
obtained for each group of associated parameters in terms only of the mea-
surable state (1) and its derivatives. Attempting then to obtain expressions
for the individual parameters, it would be possible to proceed as follows,
working with the right-hand expressions from the rows mentioned in the

following:

1. from expression 5.51 an expression may be obtained for Ay

2. dividing expression 5.49 by expression 5.51 it is possible to solve for Ay,

5. Considering Model Identifiability 182

3. dividing expression 5.48 by expression 5.50 it is possible to obtain an

expression for (A2 + Ay) from which it is possible to solve for Ao

4. since there now exist expressions for Ay and A, it is possible to solve

for Aig, as Az = (A9 + A12)

5. given Ay , it is possible to solve for s, from expression 5.50

And so solutions have been found for all parameters in the nonlinear
model,
{A10, A2, Ago, S2}. The new method for assessing model identifiability has
been shown to give the same results for this pair of related examples as did

the earlier method of Pohjapalo (1978).

5.5 An Example from Ljung and Glad (1994)

The following example, taken from an earlier paper on identifiability (Chap-
pell et al., 1990), was used in Ljung and Glad (1994) to illustrate the dif-
ferential algebraic approach(using Ritt’s algorithm). Chappell et al. (1980)
applied the Taylor series expansion approach of Pohjanpalo (1978) and the
similarity transform method of Vajda and Rabitz (1989) to the example of
a biological system modelled as having biomass growth described by Monod

kinetics and a first order death kinetic, and showed that both methods found

5. Considering Model Identifiability 183

the system to be theoretically identifiable.

Vinz(t)

t(t) = Tt a0 ko1z(t) (5.54)
#(0) = D (5.55)
y(t) = cx(t) (5.56)

Here the goal is to identify the set of parameters {Vj,, kn,, ko1, c}. D, the
initial biomass concentration, is initially assumed to be unknown. Both the
Ritt algorithm method and the new approach given above in Section 5.3
lead to the same conclusions regarding the identifiability or otherwise of the

system as did the methods applied by Chappell et al.(1980).

5.5.1 'The Ritt’s algorithm results

The results from applying Ritt’s algorithm to this problem are somewhat
lengthy. Here y™ denotes the n'® derivative of y, with and § being the

first and second derivatives as normal.

=325 + 2070y V5% — 20292y W i + 3y%yy®)

+12y5%5° — 14yiPy i + 2yy'y™ — 695 (5.57)
+67°y®) =0

V,, =0 (5.58)

5. Considering Model Identifiability 184
(4Viut® — 8yViniii® + 4942y BV,
—45"y"y Vo + 7y Vg + 4575 Vi
(5.59)
— 2y iVt + y4me)e
+49° — 129597 + 125%y%0° — 4i3y>y® =0
Py P9 — v*i? — 290 + 29" ko
(5.60)
+yiPy® — 3ygii® + 24 =0
(49° — 124jyy" + 12y5 257 — 49°y° 5) km
+20°y iy OV, — 20°yPy IV, + 20557V,
(5.61)

— Py V0 — 2y2y4y3Vm + 22"y OV,,9
— y5V =0

From the above equations, the following results were deduced (Ljung and

Glad, 1994).

e The structure is neither locally nor globally identifiable, as a conse-

quence of the Vip =0 expression. (This expression shows that V}, is a

constant, but does not fix its value. Since V,, is present in Equations

5.59 and 5.61, the values of ¢ and k,, depend on the value of V,,, and

so the system is not identifiable.)

e ko, is globally identifiable, from Equation 5.60.

e If V,, were known, then ¢ would be globally identifiable, according to

Equation 5.59.

e If V,, were known, then k,, would be globally identifiable, according to

Equation 5.61.

5. Considering Model Identifiability 185

In other words, the system as it stands is not globally identifiable, but would

be, if the value of any of {c, k,, Vi } were known.

5.5.2 Results following the new approach to identifiability

After substituting y(t)/c¢ throughout for x(t), and rearranging the original

equations, the following equation is obtained.

Ckmy + yy + Cme + Ckmk()ly + k01y2 =0 (562)

Collecting together groups of terms in the same powers of y and its deriva-

tives, the following table can be constructed.

gy +1 (5.63)
y? ko1 (5.64)
Y ¢ * ky, (5.65)
y ¢ % Vi + € % ki % koo (5.66)

The first row in the above table shows that this is a Case 3 system, and
so could be identifiable. From the table, it can immediately be seen that
ko1 is globally identifiable. It may also be seen that it should be possible to
derive expressions for ¢ x k,,, and, hence, for ¢ x V,,,. Given the value of any
one of the three remaining unidentifiable parameters {c, k,,, V;,}, it should
be possible to uniquely identify the other two.

If the initial = concentration, D had been known, then a value for ¢ could

immediately be obtained from the ratio of y(0) to z(0). Thus, for known ini-

5. Considering Model Identifiability 186

tial conditions, the system is theoretically identifiable. This is the conclusion
reached with all methods applied; the Ritt’s algorithm approach (Ljung and
Glad, 1994), the Taylor series and similarity transform approaches considered

in Chappell et al. (1990) and the new approach given above in Section 5.3.

5.6 Identifiability Analysis of the Model of Paul et al. (1998)

The new method for assessing identifiability is here applied to the model
of Paul et al. (1998). This method involves attempting to find expressions
in terms only of states, outputs and their derivatives for the following 23

parameters.

{p0, mue, m0, m1,~1, mup, muh, a0, alphae, alphap,

Ko0,Ke,K1,K2,Kp, Ki, ul, u2, mua, Ksl, Ksi, mul, u3}

Maple has been used to perform algebraic manipulations on the model
equations, and output taken from Maple was then fed into a program written
in the programming language Perl, which collected together terms containing
identical groups of measured quantities (inputs and outputs) and produced
tabular output with the groups of measured quantities in one column and
the associated groups of parameters in the other. The results of the Maple
session are shown in the body of the following text, with the Perl output
being used as the basis for the tables also given in the following. (Details of
the Perl program are given in Appendix C.)

The Maple commands used to perform what would otherwise be tedious

hand-cranked algebra are ‘simplify’, to rearrange the original equations, ‘col-

5. Considering Model Identifiability 187

lect’, to group equations by parameter-containing expressions and ‘sort’, to
make things easier to make sense of.

It should be noted that the following simple Maple examples do not use
subscripts consistently. What is shown here is how Maple interprets the
commands typed, without too much concern for the cosmetic appearance of
the mathematics being performed. Commands typed at the Maple prompt

will be shown as in the following example:
> restart;
The equations that define the model were set up one by one, checking each

to see which parameters are identifiable, based on that particular equation.

The expressions here are based on those given in Paul et al..

5.6.1 The X0 expression

The illustration of the new method starts with the equation describing the
rate of change of concentration of the growing tips, X0(t) (XOexpr). The
expressions for rhol(t) and vle(t) are defined first, to ensure their availability
later.

> rhol(t) := X1(t)/((X1(t)/rho)+X2(t)):

X1(t)/(2*rhol(t)) - X2(t):

> vic(t)

> XOexpr := - diff(X0(t),t) + muO*S(t)*X1(t)/(KO0+S(t))
- gammal*X0(t)/(K1+S(t)) - Sigmal*X0(t)/V(t):

> XOexpr := sort(collect(simplify(XOexpr * (KO+S(t)) * (K1+S(t))
* V(t)), [mu0,gammal,K0,K1] ,distributed),{X0(t) ,X1(t),S(t),V(t)});

5. Considering Model Identifiability 188

XOexpr := p0X1(t) S(¢)2 V(t) 4+ p0 K1 X1(t) S(t) V(1)
0

— X1X0(t) S(t)* — y1X0(t) S(t) V(t) — (E X0(t)) S(t)* V(t)
— 1 K0 X0(t) V(t) + (~21X0(t) — (% X0(t)) V(t)) K0 K1
+ (=21 X0(t) S(t) — (% XO0(1)) S(t) V(t)) K0
+ (=21 X0(t) S(t) — (% XO0(1)) S(t) V(t)) K1

The term X1 is the summed feeding and sampling terms, all of which
affect the concentrations of the insoluble states.

At this point, the equation describing the rate of change of the concen-
tration of the growing tips has been entered, multiplied throughout by the
denominator terms from the Monod expressions in order to form a polyno-
mial without quotient terms (which is easier to manipulate, and easier to
interpret), collected together terms containing particular parameters, and fi-
nally sorted the terms in the equation according to the measurable states
that they contain.

Using the Perl program from Appendix C to combine groups in like states
and inputs, a table is produced relating the groups of states to their associ-

ated collections of parameters.

S(t)? * X1 X0(t) -1
S(t)? * V(t) * <%X0(t)> -1
S(t)?* V(t) * X1(t) + 10

- <%X0(t)> £V () * S(t) = 1% X0(t) x S(t) +KO0+ K1

5. Considering Model Identifiability 189

_ <%X0(t)> * V() — X1 % X0(t) +K0x* K1
S(t) = V(t) « X0(t) -1

S(t) = V(t) * X1(¢) +K1 % u0

V(t) * X0(t) —KO0* 1

The first two rows of the above table show that the X Oexpr expression defines
a Case 3 system, and so by differentiating the original rate expression, a series
of expressions can be obtained, containing successive derivatives of the states
and inputs, with the original collections of parameters being associated with
derivatives of the original groups of states.

By performing Gauss-elimination on the set of derivative expressions thus
obtained (multiplying equations by groupings of states, inputs and deriva-
tives), it is possible to eliminate successively the original groups, so as to
obtain expressions in which the collections of parameters in the right-hand
column above are expressed in terms only of states, inputs and derivatives.

To determine whether or not the individual parameters are uniquely iden-
tifiable, it is necessary to determine whether or not expressions can be found
for each parameter, solely in terms of states, inputs and derivatives. For
the above case, expressions can be obtained for each collection of parame-
ters in the right-hand column. Since the model parameters are assumed to
be constants, independent of the fermentation time, each of the expressions
to which groups of parameters are equated must also be constant. These
constants should not be evaluated, however, as they may contain high-order

derivatives of measurable quantities, whose estimation is likely to be prone to

5. Considering Model Identifiability 190

affected by the noise generated in calculating derivatives. If an attempt were
to be made to estimate parameter values (say, for use as an initial guess to be
used in parameter estimation) then calculating the values of these constants
at a number of measurement times should reduce the error in the parameter

estimates thus obtained.

©0
71
HOK1
v1K0
KO0+ K1
KOK1

Treating these as equations with each of the above equal to a constant,

these become:

p0 = ¢
1=c
HOK1 = c3
Y1K0 = ¢y
KO0+ K1 =¢5
KOK1 =c¢q

Expressions have immediately be obtained for 0 and ~1, and using these

5. Considering Model Identifiability 191

expressions for K0 and K1 can be derived,

K1 = 03/61

KO =c¢q/co

Hopefully, these will be consistent with the expressions obtained for K0 + K1
and KOK1.

From the X0 expression, it has been possible to obtain expressions for
the four parameters {0, K0,v1, K1} and so these parameters may now be
reasonably considered to be ‘known’, and so it is not necessary to solve for
them again. Thus there now remain 19 parameters for which expressions are

sought.

{mue, m0, m1, mup, muh, a0, alphae, alphap,

Ke,K2,Kp, Ki,ul, p2, mua, Ksl, K si, mul, u3}

5.6.2 The X1 expression

The sequence of operations is repeated for the expression describing the rate
of change of the concentration of the subapical regions (Xlexpr), starting
by multiplying through, collecting and sorting the terms from the original
expression.

> Xlexpr := - diff(X1(t),t) + muexS(t)*X0(t)/(Ke+S(t))

-muO*S (t)*X1(t)/(KO+S(t)) + gammal*X0(t)/(K1+S(t))
- mu2*rho*X2(t) - Sigmal*xX1(t)/V(t):

5. Considering Model Identifiability 192

> Xlexpr := sort(collect(simplify(Xlexpr * (Ke+S(t)) * (KO+S(t))
* (K1+S(t)) * V(t)), [mue,Ke,mu0,K0,gammal,K1,mu2],distributed),
{X0(t) ,X1(¢),X2(t),S (£),V(£)});

Xlezpr := —p0X1(t) S(t)® V() — u2 pX2(t) S(¢)® V(¢)
+ mue X0(¢) S(¢)3 V(t) — B1X1(¢) S(¢)3
— 0 K1 X1(t) S(£)? V(t) — 0 Ke X1(t) S(t)? V(¢)
—u2p K1 X2(t)S(t)* V(t) — u2 p K0 X2(t) S(t)* V()
— 12 p KeX2(t) S(t)? V(t) + mue K1 X0(t) S(t)* V()
+ mue K0 X0(t) S(t)? V() + 1 X0(t) S(t)? V(t)

— (2 X1(0) S

S(
S(

V(t) — p0 Ke K1 X1(t) S(t) V(¢)
—p2p Ke KOX2(t)S(t) V() — u2p K0 K1 X2(t) S(t) V(t)
— 12 Ke K1 X2()S(8) V(#) + 1 Ke X0(8) (1) V(1)

+ 1 K0 X0(t) S(t) V(t) + mue KO K1 XO0(t)S(t) V(t)
—p2pKe KO K1 X2(t) V() +~v1 Ke K0 X0(t) V(t)
+ %2 Ke + %2 K1 + %2 K0 + %1 Ke KO + %1 Ke K1

(t)V
(t)V

+ (=21 X1(t) — (% X1(t)) V(t)) Ke K0 K1 + %1 K0 K1
%1 := —X1X1(t) S(t) — (gt X1(t)) S(t) V(¢)
%2 := —X1X1(t) S(t)? — (gt X1(t)) S(t)* V(t)

This is a more complicated result than that obtained by manipulations
on the first expression, but the same sequence of operations can still be
carried out. Starting by combining groups containing like groups of states,
inputs and derivatives, a table can be made as before. Since the %1 and
%2, returned by Maple, contain no parameters, they are treated as single

units for the purposes of the following. This makes the task a little easier.

5. Considering Model Identifiability 193
Running the Perl parsing program, the following are obtained.
S(t)* * 1% X1(¢t) —-1
0
S(t)? * V(t) * <—X1(t)> -1
ot
S(t)* V() * X0(t) +pe
S(t)* * V() * X1(t) — 110
S(t)? * V(t) * X2(¢t) — 2% p

— <%X1(t)> * V(1) * S(t)?
—¥1 % S(t)** X1(¢)

- (%Xl(t)) £V (1) — B1% X1(2)

+K0+ K1+ Ke

+K0x K1+ Ke

—K1x Kex* p0

+K0*x Kexvl

—K1 % p0— Kex p0
—KO0x K1x Kexu2x*p

+K0x K1+ KO0xKe+ K1 % Ke

+KO0* pe + K1 % pe+ 1
+K0x K1xpe+ KOxvyl+ Kexvl

—u2*px* (KO+ K1+ Ke)

—u2%px (KOx K14+ KO0 Ke + K1 % Ke)

5. Considering Model Identifiability 194

Again, the first two rows of the above table shows that the Xlexpr is a
Case 3 system. Assuming that each of the right hand sides can be equated
to some parameter-free expression obtained by repeatedly differentiating the
original expression and performing Gauss-elimination on the resulting set of
expressions, each element of the right-hand column can be set equal to a

constant.

mue = dy (5.67)

40 = ds (5.68)

—p2p = ds (5.69)

mue(K0 + K1) +v1 =dy (5.70)
—u0(Ke + K1) = dj (5.71)
—u2p(K0+ Ke+ K1) = dg (5.72)
Y1(K0+ Ke) + mueK0K1 = dy (5.73)
—0KeK1 = dg (5.74)

—12p(KOK1 + K1Ke + KeK0) = dy (5.75)
Y1KeK0 = dy (5.76)

—12pKeK0OK1 = dy; (5.77)

(KO+ Ke + K1) = dys (5.78)

(KOK1+ K1Ke + KeK0) = dy (5.79)
_KeKO0K1 = diy (5.80)

5. Considering Model Identifiability 195

Assuming that p, the biomass density, has been measured by some other
method, independent of the fermentation dynamics, then expressions for
mue, ;0 and p2 may immediately be obtained.

Thereafter, a little more work is needed. K0 may be obtained by dividing
Equation 5.77 by Equation 5.74, giving K0 = (u0pdy1)/(112ds).

Obtaining an expression for Ke is only a little more complicated. Multi-
plying Equation 5.70 by (K0 + Ke), and subtracting Equation 5.73 gives us

the following expression.
peK0? + ueK0Ke + peK1Ke = dy(K0 + Ke) — dy

Substituting into this for K1Ke from Equation 5.74 (K1Ke = —dg/p0), an
expression can be obtained solely in terms of Ke and the already known p0,
mue and K0. Since this expression is linear in Ke, there can only be one
solution for Ke.

From this point on, it is relatively simple to obtain expressions for the
remaining parameters K1 and 71, using Equations 5.71 and 5.76.

If the expressions obtained for p0, v1, K0, and K1 from working on
the expression X Oexpr had been reused, then it would only be necessary to
have obtained expressions for ue, 42 and Ke from the expression Xlexpr.
If it were not possible to assume prior knowledge of the value of p, then it
would only have been possible to obtain an expression for p2p, but this would
not have been important as p2 and p only occur in the X1lexpr expression
combined as u2p.

From the X1 expression, further expressions for the three parameters

{mue, u2, Ke} have been obtained, and so these parameters may now rea-

5. Considering Model Identifiability 196

sonably be considered to be ‘known’, and so there is no need to solve for them
again. Thus there are now 16 parameters remaining for which expressions

are sought.

{m0, m1, mup, muh, a0, alphae, alphap,

K2,Kp, Ki, ul, mua, Ksl, Ksi, mul, u3}

5.6.3 The X2 expression

The next expression illustrates a difficulty which may arise in attempting to
use this technique to show identifiability of a model structure.

> X2expr := - diff(X2(t),t) + mul*X1(t) - mu2*X2(t) + mu3*X2(t)
- Sigmal*X2(t)/V(t):

> X2expr := sort(collect(simplify(X2expr * V(t)), [mul,mu2,mu3],
distributed),{X0(t),X1(t),X2(t),S(t),V(t)});

X2expr = pl X1(t) V(t) — p2 X2(t) V() + 3 X2(t) V(¢)

_B1X2(t) — (%X2(t))V(t)

Collecting together terms with like groups of states and inputs, the fol-

lowing table can be produced:

Y1 % X2(t) -1
V(t) % <%X2(t)> -1
V(t) * X1(t) +pl

V() = X2(t) +p3 — p2

5. Considering Model Identifiability 197

It may be immediately seen that it is possible to obtain an expression for u1.
However, using only this one equation, it would not be possible to obtain
independent expressions for ;2 and p3. However, an expression for pu2 was
obtained by analysing the X1 expression, and so an expression can now be
obtained for u3.

Thus there now remain 14 parameters for which expressions are sought.

{m0, m1, mup, muh, a0, alphae, alphap,
K2, Kp, Ki,mua, Ksl, Kst,mul}

5.6.4 The X3 expression

Starting in the same way as for the previous expressions, with the following:

> X3expr := - diff(X3(t),t) + mud*rho*X2(t) - mua*X3(t)
- Sigmal*X3(t)/V(t):

> X3expr := sort(collect(simplify(X3expr * V(t)), [mu3,mual,
distributed),{X0(t),X1(t),X2(t),X3(t),S(t),V(t)});

X3expr = pu3 pX2(t) V(t) — mua V(t) X3(t)

- (%X?)(t))\/(t) — X1X3(t)

Collecting together terms in like groups of states and inputs, and produc-

ing the following table:

$1 % X3(¢) ~1

V(t) * <%X3(t)> 1

5. Considering Model Identifiability 198

V(t) = X3(t) —pa

V() * X2(t) +u3 % p

From which it can be seen that it should be possible to obtain independent
expressions for mua and p3, assuming that p is known. Using the expression
thus obtained for 3, an expression may then be obtained for u2.

As an example, the steps involved in obtaining expressions for mua and p3
are shown. First the original expression (X 3expr) is differentiated, obtaining

two equations in the two ‘unknowns’.

—mualVX3] + p3[VX2] — [S1X3 — (%XB) V] =0 (5.81)
—mua[VX3] + 3V X2 — [E1X3 — <%X3> V] =0 (5.82)

The (¢) have been dropped, and dot notation has been used to denote dif-
ferentiation, for compactness. The —— denotes differentiation of the term(s)

under the line.

Multiplying Equation 5.81 by [V X2] and Equation 5.82 by [V X2], the

following are obtained:

“muaV X3|[VX2] + u3[V X2V X2 — [E1X3 — (%X?)) VIIVX2] =0

(5.83)

—mualVX3|[VX2] + u3[VX2][VX2] - [¥1X3 — (%XB) VI[VX2]=0

(5.84)

5. Considering Model Identifiability 199

Subtracting Equation 5.84 from Equation 5.83, an expression is obtained
containing only terms with mua as a parameter.
—mualVX3]VX2] + mua[VX3][VX2] - [S1X3 + (%X:&) VIVX2]
0
+[X1X3 + §X3 VI[VX2] =0

(5.85)

Rearranging the above expression, the following expression is obtained

for mua:

mua = +[X1X3 + (%X?)) V]m — [X1X3 + (%X?’) Vi[VX2] (5.86)

[VX3][VX2] - [VX3][VX2]

To obtain an expression for u3, substitute for mua in Equation 5.81.

CH[E1IX3 4 (FX3) VIVX2] - [B1X3 + (§X3) V][V X2 VX3

[VX3|[VX2] - [VX3][VX2]

+u3[VX2] - [S1X3 — (%X:&) V]=0

(5.87)
and hence:
o ol B
[C1X3 - (2X3) V] +[Elx3+(at[§2vls[vv;]1_ [[VE;;?;)E ;X?’)VHVX” [V X3]
3 =
a [VX2]

(5.88)

5. Considering Model Identifiability 200

From the X3 expression, the only parameter for which an expression can be
obtained, for which an expression had not already been obtained, is mua.

Thus there now remain 13 parameters for which expressions are sought.

{m0, m1, mup, muh, a0, alphae, alphap,
K2,Kp, Ki, Ksl, Ksi,mul}

5.6.5 The X4 expression

The following X4expr contains only a single parameter, but cannot be used
in determining the identifiability of the model, as the state X4(¢), the de-

generated biomass, is not measurable.

> Xdexpr := - diff(X4(t),t) + muaxX3(t) - Sigmal*X4(t)/V(t):

> Xdexpr := simplify(X4expr*V(t));

Xeapr = _(% XA4(£)) V(£) + mua V(£) X3(t) — $1 XA4(2)

5.6.6 The S expression

When evaluated, the glucose expression (Sexpr) runs to several pages (listed
in Appendix C). Perhaps some conclusions may be drawn about its likely

identifiability by looking at the initial differential expression.

> Sexpr := - diff(S(t),t) -alphaO*muO*S(t)*X1(t)/(KO+S(t))
- alphae*muexS(t)*X0(t)/(Ke+S(t)) - mO*xX0(t)*S(t)/(K1+S(t))
- mlxrho*vic(t)*S(t)/(K2+S(t))

- alphap*mup*rho*vic(t)*S(t)/(Kp+S(t)*(1+S(t)/Ki))

+ mul*L (%) *(X0(£)+X1(t))/ ((Ks1+L(t))*(1+(S(t)/Ksi)))

5. Considering Model Identifiability 201

Sigma2*S(t)/V(t) + (Ff*xsf)/V(t):

Vv

Sexpr := sort(collect(simplify(Sexpr * (KO+S(t))* (Ke+S(t))
(K1+8(t)) * (K2+S(t)) * (Kp+S(t)*(1+5(t)/Ki))
((Ks1+L(t))*(1+(S(t)/Ksi))) * V(t)),[alphal,mu0,K0,alphae,mue,
Ke,m0,m1,K1,K2,alphap,mup,Kp,Ki,mul ,Ksl,Ksi],distributed),
{X0(£),X1(t),8(¢),L(t),V(t) }):

*

*

_08(t) agpoS(t) X1(t) alphaemue S(t) X0(t)

ot KO0+ S(t) Ke+ S(t)
Mo XO0(t) S(t) _my pule(t) S(t) B alphap mup pvle(t) S(t) (5.89)
K1+ S(t) K2+5(t) Kp+S(t)(1+S(t)/Ki) '

mul L(t) (XO(t) + X1(t)) S,8(t) _ Ffsf
(Ksl+ L) (1 + (S@)/Ks))) V() V{)

=0

Examining the above equation with regard for how the model’s param-
eters are distributed among the terms reveals that there are three pairs of
parameters which do not occur singly, and which, therefore, cannot occur
singly when the expression is multiplied throughout by the quotient expres-
sions, so as to obtain a differential polynomial without quotients. These are
(o o), (alphae mue) and (alphap mup). Unless expressions can be obtained
for one parameter from each of these three pairings, it will not be possible to
uniquely identify a parameter set, and it will only be possible to derive an ex-
pression for the product of two parameter terms. That being the case, there

will be an infinite number of possible solutions for each pair of parameters.

5.6.7 The L expression

The lactose expression (Lexpr), however, has been evaluated.

5. Considering Model Identifiability 202

> Lexpr := - diff(L(t),t) - mul*L(t)*(X0(t)+X1(t))/((Ksl+L(t))
*(1+(S(t)/Ksi)))- Sigma2+L(t)/V(t):

> Lexpr := sort(collect(simplify(Lexpr
* ((Ksl+L(t))*(1+(S(t)/Ksi))) * Ksi * V(t)), [mul,Ksl,Ksi],
distributed),{X0(t),X1(t),S(t),L(t),V(t)});

Leapr += —(5- L)) S(1) V(1) L(1) — 228(1) L(1)?
+ (—(% L(t))S(t) V() — X2S(t) L(t)) Ksl
(L) VO L) ~ S2L(1)) Ksi
+ (—(% L(1)) V() — $2L(t)) Ksi Ks]

+ (—=X1(¢) V(t) L(t) — X0(t) V(t) L(t)) Ksi mul

Collecting together groups of like states, inputs and derivatives, the fol-

lowing table can be constructed:

L(t) « S(t) =« V(t) * <%L(t)> -1

L(t)? % S(t) * X2 -1

— <%L(t)> « V(1) * L(t) — £2 % L(t)* +Ksi

— <%L(t)> * V(1) S(t) — X2+ S(t) * L(1) +Ksl
=V (t) * X0(t) * L(t) — V(t) » X1(t) * L(t) +Ksix pl
_ <%L(t)> x V() — X2 x L(t) +Ksi* Ksl

All parameters are present independent of one another and so expressions

may be obtained from Lexpr for each of Ksl, Ksi, and mul. It may well be

5. Considering Model Identifiability 203

simpler, however, to obtain an expression for 1/Ksi, rather than for Ksi.

Thus there now remain 10 parameters for which expressions are sought.
{m0, m1, mup, muh, a0, alphae, alphap, K2, Kp, K1}

5.6.8 The P expression
Finally, the identifiability of parameters in the penicillin expresion (Pexpr)
is investigated.

> Pexpr := - diff(P(t),t) + mup*rhoxvic(t)*S(t)/(Kp+S(t)
*(1+5(t) /Ki)) - muh*P(t)- Sigma2+*P(t)/V(t):

> Pexpr := sort(collect(simplify(Pexpr * (Kp+S(t)
*(1+5(t) /Ki)) * Ki * V(t)), [mup,Kp,Ki,muh], distributed),
{X0(£),X1(£),S(t),P(), V() D) ;

Pexpr := —muh S(t)* V(t) P(t) — (2 P(t))S(t)* V(t)

— %28(t)? P(t) — muh Ki S(t) ?;(t) P(t)

— muh Kp Ki V() P(¢)

+ (—(% P(£)) S() V(1) — 52S(t) P(1)) Ki

+ (% X1(£) S(t) V(t) — %XZ(t) pS(8) V(£)) Ki mup
+ (—(% P(£)) V() — 52 P (1)) Kp Ki

Collecting together terms containing like groups of states, inputs and

derivatives, the following is obtained:

P(t) * S(t)? + ¥2 -1

5. Considering Model Identifiability 204
S(t)% = V(t) * (%P(t)) -1
0 .
¥+ P(1)+ 5() (amzﬁ)) V(D) 5() e
St *V —ph
=32 x P(t < +Kix Kp
1/2% V(t) « S(t) « X1(t) — 1/2 % X2(t) x px V() * S(t) + K * pp
P(t) = S(t) = V(t) —Kix ph
P(t)«V(t) —Kix Kpx*uh

Again, all parameters are associated independently with different groups of

states, inputs and derivatives, and so expressions may be obtained for each

in terms only of measurable quantities. (Assuming that p is known.) That is

to say, expressions can be obtained for the parameters {muh, mup, Kp, Ki}

from the P expression.

Thus there now remain 6 parameters for which expressions are sought.

{mO0, m1, a0, alphae, alphap, K2}

5.6.9 Identifiability result for the model of Paul et al. (1998)

Having examined all bar one of the expressions in the model of Paul et al.

(1998) to see for which parameters expressions can be obtained solely in

terms of states, outputs and their derivatives, six parameters remain, all of

which are found in the S expression.

5. Considering Model Identifiability 205

{mO0, m1, a0, alphae, alphap, K2}

By examining the output of a Perl program written to decompose the
expressions generated from Maple into unique groups of states, outputs and
derivatives, and their associated groups of parameters, it is possible to de-
termine whether or not these remaining six parameters are identifiable (see
Appendix C).

Upon analysing the S expression, the parameter ml is found to be the
lone parameter associated with one group of states: the parameter o0 is
found associated only with the known parameter p0; K2 is found to be the
only ‘unknown’ parameter in a number of expressions, as is alphap; thus two
parameters remain, m0 and alphae. These two may be solved by eliminating
between a pair of linearly independent expressions in which they are the only
unknown parameters. Thus it has been shown that it is possible to form
expressions for each of the model’s parameters in terms solely of measurable
states and inputs, and their derivatives, and so the model of Paul et al. (1998)

is theoretically globally identifiable.

5.7 Notation

D initial biomass concentration in example from
Ljung and Glad (1994)

Ky, Monod denominator term, g(S)l1™*

KO0 Monod denominator coefficient, g(S)l1™*

K1 denominator coefficient, g(S)I=*

K2 denominator coefficient, g(S)I=*

Ke differentiation denominator coefficient, g(S)I™!

Ki inhibited penicillin production coefficient, g(S)I™*

5. Considering Model Identifiability

206

Kp
Ksi
Ksl

]

§<<%Cﬂ"m§h

ialals
=
N

inhibited penicillin production coefficient, g(S)I™!
inhibited lactose conversion coefficient, g(S)I™!
inhibited lactose conversion coefficient, g(S)1™!
concentration of lactose x, g(L)I™*

system’s state space

concentration of penicillin *, g(P)17!
concentration of glucose *, g(S)1~!

set of possible experimental inputs
neighbourhood around a parameter set

volume in the fermenter, 1

Monod numerator coefficient in example from

Ljung and Glad (1994)

neighbourhood around a parameter set

concentration of biomass fraction x, g(DW)1~!

groups of states, inputs and outputs for the novel
identifiability method

nominal constant parameters for the novel identifiability
method

value of k-the derivative at time 0

constant relating output to state in example from
Ljung and Glad (1994)

nominal constant

function defining rate of change of model states
expression relating some group of group of constant
parameters to system states, input and outputs, and
the differentiation operator in the novel identifiability
method

function defining model outputs

function defining system output for Vajda et al. (1989)
differential polynomial as defined in the method of
Ljung and Glad (1994)

k-th derivative of output function g¢()

function defining system input influence on rate of

of change of model states after Vajda et al. (1989)
group of constant parameters in the novel identifiability
method

group of groups of constant parameters in the novel

5. Considering Model Identifiability

207

km

ko1

Greek Symbols

Ego(p)

¥

o,

q>* (ya U, p)

U, (y,u,p)

Q

a0
alphae
alphap
gammal

G
C*G

identifiability method

Monod denominator coefficient in example from
Ljung and Glad (1994)

death rate coefficient in example from

Ljung and Glad (1994)

nominal powers of time

maintenance coefficient, g(S)g(DW)~'h~*
maintenance coefficient, g(S)g(DW) th™!

differential operator

parameter vector

constant in Pohjanpalo’s compartmental model

time, h

inputs to model

model state vector

first model state in Pohjanalo’s compartmental model
second model state in Pohjanalo’s compartmental model
outputs from model

i-the derivative of the output vector at time
marginally greater than zero (limiting case)
n-dimensional space of real-valued numbers

system as defined by Vajda et al. (1989)
summed feeds and abstractions, 1h~!

nominal constant in novel identifiability method
differential algebraic expression in the method of
Ljung and Glad (1994)

differential algebraic expression in the method of
Ljung and Glad (1994)

system’s parameter space

inverse yield coefficient for biomass on glucose, g(S)g
inverse yield coefficient for biomass on glucose, g(S)g
inverse yield coefficient for penicillin on glucose, g(
differentiation numerator coefficient, g(S)h™*
group of time-varying states, input and output in the
novel identifiability method

group of groups of time-varying states, input and output

@)
~—

5. Considering Model Identifiability

208

mua
mue
muh

in the novel identifiability method

vector of model parameters

analytic map in state isomorphism method
constant in Pohjanpalo’s compartmental model
constant in Pohjanpalo’s compartmental model
constant in Pohjanpalo’s compartmental model
Ao + A2

Monod numerator coefficient, h—!
vacuole formation coefficient, m3g—*h~
vacuolation rate coefficient,h~!
vacuole formation coefficient, h=!
autolysis rate coefficient, h=!

Monod numerator coefficient, h~!
hydrolysis rate coefficient, h™!
biomass density, gm 3

1

6. CONCLUSIONS AND FURTHER WORK

The work described in this thesis has contributed to the aims of the University
of Birmingham Biochemical Engineering Centre Rolling Grant Project B:
"Monitoring and Physiological Control of Productive Fermentations’, and
towards the goal of providing a control implementation, designed on the basis
of differential-equation based fermentation models which may then serve as
a base case against which the performance of Artificial Neural Network and

hybrid models may be compared.

6.1 This Thesis

The literature was examined for existing models of the penicillin fermenta-
tion, and these were built and tuned using data supplied by Paul (1996),
and their abilities to predict fermentation data were compared (Chapter 2).
The best performing of these models, that of Paul and Thomas (1996), was
simplified to increase its simulation speed, removing, for the time being, a
description of the vacuolation process which involved a number of states and
made the model numerically ‘stiff’, and extended to include a description of
the way in which lactose present in the inoculum is consumed in the fermen-
tation, thus producing the model of Paul et al.(1998) (Chapter 3).

Attention then switched to the confidence with which the parameters

6. Conclusions and Further Work 210

of the model are known, and to ways of designing experiments to improve
confidence in the parameter values. In this work, genetic algorithms were
applied to the problem of finding feed profiles for the fermentation which
would give rise to data that would, when used in parameter estimation,
decrease the size of the joint confidence volume (the region of parameter space
across which parameters may vary with the error remaining below a certain
value). It was shown that the addition of constraints derived from practical
considerations reduced the extent to which the parameter confidence could
be improved (Chapter 4).

In parallel with this work, the problem of the identifiability of model
parameters was considered. Reviewing the available literature on identifia-
bility criteria for nonlinear models suggested a novel approach to assessing
the theoretical identifiability of models, closely related to and inspired by
existing approaches (Chapter 5). This approach was compared with existing
approaches, and found to give the same results for a number of specimen
problems, before being applied to the problem of assessing the identifiability
of the model of Paul et al.(1998), which, according to the new approach,
turns out to be theoretically identifiable, provided that the density of the

biomass is known, and all model states are measurable.

6.2 Future Work

Now that the best existing model describing the penicillin fermentation has
been identified, this model’s parameters have been shown to be theoretically
identifiable, and experiments have been designed to improve the confidence

with which the model’s parameters are known, attention should focus on the

6. Conclusions and Further Work 211

use of the model in developing control-related applications: the open-loop
economic optimisation of the model, the construction of estimators and the

design of controllers.

6.2.1 Open-loop economic optimisation

Searching for a feed profile that maximises the profitability of the fermen-
tation, subject to practical constraints is a task to which genetic algorithms
seem to be well suited. Recent work (Simutis and Liibbert, 1997) has sug-
gested that:

“it does not make much sense to use the very complicated classical
optimisation procedures like Pontryagin’s maximum principle for

most optimisation tasks in practical bioengineering”

and showed that the chemotaxis algorithm, simulated annealing and evolu-
tionary programming gave results that were comparable with those obtained
using classical approaches in earlier work. Iterative dynamic programming
has also been applied to the optimisation of fermentation feed profiles (Luus,
1992), with the results obtained over a range of fermentation durations sug-
gesting that the function relating performance index (total mass of product
at the end of the fermentation) to time passes through a number of maxima.
It may well be the case that genetic algorithms also produce comparable
results for open-loop optimisation, given a similar input feed profile param-
eterisation. Applying genetic algorithms to searching for an economically
optimal input feed profile should involve only minor modifications to exist-

ing MATLAB routines.

6. Conclusions and Further Work 212

6.2.2 FEstimators

Extended Kalman filters have often been used in constructing estimators for
bioprocess applications, particularly in estimating biomass concentrations
between sample intervals. For the penicillin fermentation as described by
the model of Paul et al. (1998), these would presumably be attempting to
estimate the individual biomass fractions, Xy, X7, X9 and X3 from available
online measurements of offgas composition and, via HPLC, of the concentra-
tions of the soluble states S, L, and P. (The model of Paul et al. (1998)
would need to be augmented with the addition of a carbon dioxide production
rate term before offgas composition measurements were useful.)

One problem with the construction of extended Kalman filters for nonlin-
ear systems is that of determining the identifiability of the nonlinear systems
in question (Ray, 1989). In Ray (1989), the observability is defined in the fol-

lowing way. Recalling the general noise-free model structure from Chapter 4:

#(t) = f(2(t), 5, u(t)) (6.1)
y(t) = g(z(t), 5, u(t)) (6.2)

If these model equations are linearised about a nominal state trajectory z(t),
which satisfies the model equations and has the initial conditions Z(0) = Zo,

defining;:

6. Conclusions and Further Work 213

then the noise-free linearised system becomes:

5i(t) = A(t)ox(t) 52(0) = 62 (6.5)
Sy(t) = C(t)ox(t) (6.6)

Defining the fundamental matrix solution (mapping from the initial states

xg to the current states z(t):

B(t,) = A(t)D(t, 1) Bty o) = I (6.7)

the criterion for the observability of our general nonlinear system is the ma-

trix M(0,s), given by:
M0, 1) = / Y B(t.0)C ()C(1)D (. 0)d (6.9)

is positive definite for t; > 0, i.e. that all the eigenvalues of M (0,tf) are
positive.

This observability test depends on the model’s parameter set, and, more
critically, on the input to the system. Ray (1989) states that: “simple lin-
earised observability tests are usually adequate for nonlinear problems”, but
perhaps an alternative approach could be taken.

Genetic algorithms could be applied to the problem of searching for in-
puts, constrained as for experiment design in Chapter 4, that gave rise to
conditions where M (0,t) had the minimum eigenvalues over as much of the
fermentation as possible. The results of such a search would either find in-

put scenarios for which the fermentation model is not observable, or increase

6. Conclusions and Further Work 214

confidence in the model being observable. (Due to their probabilistic nature,
genetic algorithms cannot show that the model is observable.) Whether or
not the existence of feed profiles for which the model was not observable was
important or not would depend on how close the unobservable profiles were
to any open-loop economic optimum feed profiles that were developed, as

optimal feed profiles are the ones of greatest potential interest and benefit.

6.2.3 Controllers

Having designed open-loop optimal feed profiles, and constructed estimators,
the task of controller development remains. Presumably such controllers
would regulate the fermentation so as to follow a predefined optimal state
trajectory.

Montague et al. (1986) presented the combination of estimators and
controllers in following predefined state trajectories and showed that adaptive
controllers performed better than proportional plus integral control. In their
conclusions, they suggested that the generalised predictive control law is
particularly applicable to fermentation systems, and indicated the need for
an optimised biomass profile, based on applying optimisation methods to a
process model.

The best performing differential equation based physiological model of the
penicillin fermentation has been identified. It has been shown that this model
has, theoretically, uniquely identifiable model parameters, and experiments
have been designed to improve the confidence with which the model param-
eters have been estimated. Thus the best currently achievable position has

been reached, from which optimisation, estimator construction and controller

6. Conclusions and Further Work 215

design may be done on the basis of differential equation based physiological
fermentation models. The provision of a base case against which the perfor-
mance of artificial neural networks and hybrid models may be compared is

now simply a matter of time.

6.3 Notation

A of |ox

C dg/0x

I identity matrix

M(0,ty) observability test matrix

f0 model state derivative function
g() model output function

t time, h

u model inputs

x model states

x model states on nominal state trajectory
Y model outputs

Greek Symbols

(¢, o) state transition matrix from time ty to time ¢
z(t) = ®(t, to)x(to)

Iv) model parameter vector

APPENDIX

A. MODELS CONSIDERED IN THIS WORK

A.1 Unstructured Models

Symbols used in the models are defined in the above notation list.

A.1.1 Fishman and Biryukov (1974)

Fishman and Biryukov (1974) used an extended version of the model of
Rambkrishna et al. (1967) in a theoretical study of optimal control of the
penicillin fermentation. This is the first study of this type that we have been
able to find. The extension to the original model was an additional term
describing a postulated penicillin production mechanism, relating penicillin
production to both the amount of biomass present and its mean age. This
model does not contain a expression to describe the rate of consumption of

substrate related to penicillin production.

e _KIX Al
dt Ks+5 (A1)
s _ b A2
dt Yxs Ks + S (4-2)
A xS e (A.3)

dt Ks+ S

A. Models Considered in This Work 218

dP K K1)?
E = X a0+a1¥1+a2(§) (A4)
d

My (A.5)

dt

A. Models Considered in This Work

219

A.1.2 Heijnen et al. (1979)

Heijnen et al. (1979) took a different approach to the modelling of the sys-

tem from that used in the other models considered thus far.

Their model

development method concentrated on consideration of reactions involving

chemical species known to be involved in the fermentation. This resulted in

the following set of equations, expressed in terms of concentration of species

in moles per kg of broth.

d(Vy - Xnu)
dt

d(Vy - Si)
dt

d(Vir - Py)
dt

dVy

dt

rs

(Tp + ’I“po)

rpo

rx

To

dVy dXy
Xn—go Vg
rx

dVy dSy
S g a TV
rs + ¢g

dVy d Py
Pr=qm Vg
rp

(A.8)

Z(feeds — evaporation) + 0.032r¢ + 0.044r¢ (A.9)

N SHXHVH
QS,mam (KS + SH)

3.3x10°%. XuVy
3.3 x 107 XpVigghs p < 0.01 h~!

0.002Py Vi

{_TS - msHXHVH -

6
< — 1044> Tx+6msHXHVH

YXSH

1> 0.01 ht!

(Tp+Tpo)

A. Models Considered in This Work 220

+ < 6 _ 9.5) (re +7pro0)

PSy

6
re = < —1> Tx+6msHXHVH
YXSH

+< 0 —8) (rp +rpo)

YPSH

Here, Vg represents the mass of broth present in the reactor, whilst X,
S, and Py are concentrations in moles kg=!. ¢g is the rate of glucose feed
to the reactor (moles h™1). The numbers used in the equations are values
taken from Heijnen’s paper. These numbers are not dimensionless, but have
the dimensions of the ratios which they represent, obtained from elemental
balancing.

The form of the expression for the penicillin production rate shows an
increase in penicillin production rate with increasing substrate concentration,

rising to a maximum (Figure 2.1).

A. Models Considered in This Work 221

A.1.3 Bajpai and Reuf}(1980/1981)

This model contains differential equations for the biomass, substrate, product
and dissolved oxygen concentrations. The biomass growth rate is described
by Contois type kinetics, giving a growth rate dependent on the concentration
of biomass as well as substrate and oxygen concentrations. This could be
important for high concentrations of biomass, where diffusional limitations
in transport of substrate to the surface of the hyphae, could possibly limit
the growth rate.

The equations used by Bajpai and Reufl to describe the system are as

follows.
dX xS O,
pnla— X A.10
dt (KxX +5) (Ko,X + Os) ()
dt Yxs(KxX +S)(Ko,X + 0,)
ppSO5 X
_ —msX (A1l
Yps(Kp + S(1+ (S/Kp))(KopX + OF) (A1)
dP 1pSOF X
R — — K, P A.12
dt (Kp+S(1+ (S/K))(KopX +0F) " (412
@ . MXsOQX
dt Yyo(KxX 4 5)(Ko,X + O,)
1pSO5 X

" Ypo(Kp +S(1+ (S/K;))(KopX + OF)
—moX + kLCL(O; - 02) (A13)

A. Models Considered in This Work 222

A.1.4 Montague et al. (1986)

Montague et al. (1986) took the model proposed by Bajpai and Reufl(1980),
and used it as a basis for the development of a form of parameter adaptive
control. They used the original model, removing the dissolved oxygen con-
centration term, and including a term for the generation of carbon dioxide by
the system. Measurements of the carbon dioxide production rate were used
as a part of an inferential scheme for estimating the biomass concentration.

Their equations, unsurprisingly, strongly resemble those of Bajpai and Reuf3.

dX . ,qu

—_— = = A14
dt (KxX +95) ()
s pxSX _ ppSX
dt — Yxs(KxX+S) VYps(Kp+ S(1+(S/K;))
—ms X (A.15)
dP ppSX
— = — K,P A.16
dt (Kp+ S+ (S/Kp) " (8.16)
= |—— X Al
dt Ty e e +k5(Kp+S(1+(S/K1)) V(AT

In the original paper by Montague et al., it is suspected that there is a
misprint, as the given expression for C'O, generation in the paper is described

as including a term proportional to the rate of penicillin synthesis. The term

upSX
Kp+S(1+(S/Ky))

given in equation A.17 as k5(is given in the paper as ks.

A. Models Considered in This Work 223

A.1.5 Nicolai et al. (1991)

This model was presented as an update to the models of Heijnen et al. (1979)
and Bajpai and Reuf}(1980), attempting to fuse the two and account for both
endogenous and maintenance metabolism, with a smooth transition between
the two.

The specific growth rate of the biomass in this model is calculated from
the substrate uptake rate, after deductions for biomass maintenance and
penicillin production substrate requirements. At low substrate concentra-
tions, the resulting low substrate uptake rate leads to a negative growth rate
for the biomass, equivalent to the consumption of part of the biomass to meet

maintenance and production requirements.

dX
- = X (A.18)
ds

P
a2 x_ kP (A.20)
dt

s

””KP+S+S2/KI

exp(—S/E
B = [substr — Yxs <€.Z‘p(—S/EM)ms + p(/ P)7r>

Yps
_ xS
Msubstr KxX+S
substr 1 - _S E
o = Houbstr | ms(1 — exp(—=S/Ewn)) + m(l — ezp(=5/Ep))
Yxs Yps

A. Models Considered in This Work

224

A.1.6 Menezes et al. (1994)

This is another model based on that of Bajpai and Reuf}(1980). The model

uses the same Contois kinetics to describe the biomass growth as did the ear-

lier model, and has the same inhibited penicillin production kinetics. How-

ever, there is an additional term to describe the conversion of biomass from

a live to a dead state. Both biomass states are modelled, total biomass being

the sum of the live and dead fractions.

The equations used are as follows.

dX
dt
ds
dt

dpP

dt
dXdead

dt

xS

(KxX +5)

X - K;X

pxSX

ppSX

_YXS(KXX +5) B Yps(Ks +S)
mgSX

Kml +
ppSX

Ks+ S
K, X

S
— KpP

(A.21)

(A.22)
(A.23)

(A.24)

A. Models Considered in This Work 225

A.1.7 Tiller et al. (1994)

The model proposed by Tiller et al. (1994) is based on that of Bajpai and
Reuf(1980), distinguishing between ‘growing and producing’ X; and ‘non-
growing and producing’ X, cells. It also includes a term for cell lysis, by
which the concentration of the non-growing biomass state is decreased.

The given equations are as follows.

Xm Hs maa:S 123308 maa:PM
— = : : Xy — k1o X A.25
dt <K5+S Kpy+PM) 70 (A.25)
dX
—dt2 == k12X1 - klyX2 (A26)
ﬁ _ ,uS,maa:SXl B W(Xl + XZ)
dt YXS(KS + S) YPS
—ms(Xl + XQ) (A27)
dPM 1 NPMmawPM
—_— = - ’ X Ky X A2
dt Yot Kpuy + Par- T ko (4.28)
dP
o = (X)) - KP (A.29)

In the above set of equations, the coefficients k;y, k12 and m are dependent

on the mean age of the hypha, as follows.

kly = aly+bly’f2
ko = f121‘f2

ms = by, + amko
1 t
ky = —— | X(r)dr
' = x@), X0

As Tiller et al. did not observe glucose inhibition, they described the

A. Models Considered in This Work 226

product formation rate 7 as a function of the specific growth rate p. The

shape of the relationship used is plotted in Figure 2.2.

A. Models Considered in This Work 227

A.1.8 Kluge et al. (1992)

Kluge et al. (1992) outline a model for penicillin production which is unstruc-
tured, and has a complex expression for penicillin production. It considers
nutrient uptake for multiple substrates (glucose, lactose and lysed biomass).
Nutrient uptake is modelled using Michaelis-Menten kinetics, with main-
tenance and penicillin production substrate requirements being subtracted
from the uptake rate, and the result used to calculate the biomass growth
rate.

The biomass is divided into active and inactive portions. Biomass de-
activation is modelled as being linearly proportional to the concentration of
active biomass. The lysis rate is modelled similarly, being linearly propor-
tional to the concentration of inactive biomass.

The rate of change of the penicillin production rate is subject to a first
order lag term, thus delaying the production of penicillin.

The given equations are as follows.

% = X4 — kX, (A.30)
% _ g YysXa — uXa (A.31)
% = RokyyX; — gy Xa (A.32)
L (A.33)
&= X, (A.34)
S S Y < (A.35)

dt

A. Models Considered in This Work 228

djp (%Mm (grYxs + Ka) — MP) A6
rrae T (4.36)
where
gr = qs+oaqr + Bgy —m — ;j—p (A.37)
PS
_ qyvoY
o Ky +Y
G = qsoS
s Ks+ S
qrolL
qr. =

(KL + L)(l + C’L,sqg)

The Tp acts as the time constant in a first order lag. If allowed to come
to steady state, the value of the specific production rate would be (neglecting

lactose and lysed biomass terms):

B ppS + A
Hhss = K.+ S+ S/K,)

where

KrYpsppo(Yxs(gso — ms) + Ka)

fe = Kr(Yps + Yxspro) + KsYps
K, = KrKs(Yps + Yxsiipo)
Kr(Yps + Yxspro) + KsYpgs
K, = Kr(Yps + Yxspro) + KsYps
Yps
A KrYpsppo(KaKg — Yxsm,Ksg)

Kr(Yps + Yxsppo) + KsYps

A. Models Considered in This Work 229

A.2 Morphologically Structured Models

A.2.1 Megee et al. (1970)

Megee et al. (1970) were the first to present a morphologically structured
model, with four hyphal states being identified by association with differ-
ent products (X;, Xo, X3, Xy). In addition, the growing hyphal tips were
modelled as a distinct hyphal state Xj, as was a dormant state(.

In using this model, originally applied to Aspergillus awamori, to describe
the penicillin fermentation we have assumed that product states P; and P;
represent penicillin. Product state P, is growth associated, and so is unsuited
to representing penicillin.

The equations given in the paper are as follows.

dXg & v X;S CoXo
— = - A.38
dt Zz; &+ S Ao+ S ()
dX1 . /,LlX()S M2X15P1 . 1/1X15
dt K +S (Ky+9)(Ks+P) &+8
Xy w1 SX, CoXo
_ _ A.39
AM+S AM+S N+ S ()
dX2 . MgXQSPl . Z/QXZS i w15X1
dt (K3 +9)(Ks+P) &+S M+S
. (2X waS Xy (A.40)

+S M+ S

dX3 1/3X35 (.UQSXZ <3X3 W3SX3
= - - A4l
dt G515 T MtS MtS MatS (A.41)

A. Models Considered in This Work 230
dX4 W3SX3
A.42
dt A3+ S ()
Q I mXoS Z Eir11Mi XS
dt YXS K1 + S Al + S
2
_ Z Qi1 i1 XS Py (A.43)
— (Kis1 + 5) (K3 + P1)
dP1 ’YLulX()S . O'2X1P1 . 03X2P1 (A 44)
dt Ki+S Ke¢e+P K;+P '
dP3 ’)/3(.4)2X25
A.45
dt Ao+ S ()
dP, Yawz X3S
A4
dt A3+ S (4.46)
d@ L GX,
% A.47
2y v

The terms in the differential equations for the biomass states may be

thought of as describing the following processes.

e Branching — the formation of new hyphal tips.

e Differentiation — the ‘aging’ of the hyphae from one state to another.

e Dormancy — the process by which hyphal material enters the dormant

state. (Here material may pass from any but the hyphal tip state

directly to the dormant state.)

e Assimilation — this process is ill-defined.

A. Models Considered in This Work 231

Of these processes, all but assimilation are found in the other morpho-
logically structured models.
Note that the dormant biomass state () is regarded, for our purposes, as
being lysed biomass, and is not included when calculating the total biomass

concentration.

A. Models Considered in This Work 232

A.2.2 Nestaas and Wang (1983)

Nestaas and Wang (1983) proposed a model which built on the foundations
of the model of Megee et al. (1970), applying Megee et al.’s proposed mor-
phological structure to measurable quantities. In this model, three hyphal

states were identified:
1. tips (Xo)
2. producing cells (X)
3. degenerated cells (X3)

The substrate concentration during the fermentation is not modelled in
the paper. Instead, as glucose is ‘never allowed to accumulate in the broth’,
an expression is given for the rate of glucose consumption. This expression
is independent of the glucose concentration in the medium.

Penicillin production is modelled as being formed via a precursor. ‘The
precursor conversion is expressed by ‘masked’ second-order kinetics [pP?/X]
in order to minimize the role of this postulated component in the overall
carbon balance’ (Nestaas and Wang, 1983). Hydrolysis of penicillin in the
medium is assumed to follow first order kinetics.

The model is divided into two sets of equations, one for use during an
initial rapid growth phase, and one for use during a subsequent production
phase.

The model equations are as follows.

A. Models Considered in This Work 233

For rapid growth.

4x,

T toXo (A.48)
dX
d—tl = Ml,manO (A49)
For the production phase.
dX
d—to =0 (A.50)
dX .
—dtl = /’LIXO — k2X1 (A51)
dX
d—tZ = kX, (A.52)
dP (pP)?
— = kpen — K,P A.b3
dt PP X+ X1+ Xy (A.53)
dpP (pP)?
— kX, — Rskyen A54
dt P IEIN + X + X (A4.54)

The following equation describing the substrate concentration in the fer-
mentation has been constructed using expressions given by Nestaas and
Wang. This differs slightly from the formulation given by Nestaas and Wang
in that the product formation related substrate consumption term has been

corrected from that given in the original paper.

dsS Xo+ X+ X k, X
o _:u(0+ 1+ 2) _ms(X0+X1)— p<+1
dt Yxs Y,ps

(A.55)

A. Models Considered in This Work

234

A.2.3 Cagney et al. (1983)

Cagney et al. (1983) used an updated form of the model described by Nes-

taas and Wang (1983), in conjunction with a filtration probe, to attempt to

provide additional information regarding the different morphological states

defined in the model. The Cagney model represents the whole course of the

fermentation, and is not divided into ‘growth’ and ‘production’ phases.

Again the biomass is divided into three fractions:

1. tips (Xo)

2. producing cells (X)

3. degenerated cells (X3)

The model equations are as follows.

d Xy
dt
dX 1
dt
dXs

dt
dsS

dt

dpP
dt

vX,S GoXo
Ks+S M+S
p1XoS v XS GoXo Xy
Ks+S Ks+S MA+S A+S
(X1
A+ S

1 XS 1 upX1S

Yys Ks+S YpsK,+S(1+S/K))
meX1S9
K+ S

ppXiS
K,+S(1+ S/K)

— KpP

(A.56)
(A.57)

(A.58)

(A.59)

(A.60)
(A.61)

A. Models Considered in This Work 235

A.2.4 Paul and Thomas (1996)

Paul and Thomas (1996) proposed a morphologically structured model sim-
ilar in format to the original model of Megee et al. (1970).

The following morphological states are distinguished in the model.
1. growing tips (Xp)

2. non-growing regions (X;)

3. vacuoles (notionally Xo—not shown here)

4. degenerated regions (X3)

5. autolysed biomass (X,)

The relative quantities of the first four portions of the biomass were as-
sessed using image analysis techniques, thus facilitating the validation of the
model. The autolysed biomass state is included to keep track of the amount
of biomass lysed.

The equations given are as follows.

dX, nX1S (Xo

— = — A .62
dt &+S M+S (A.62)
dX; psXoS 1 Xy1S GoXo m(rg +1)? _
— = — — kg A.63
dt Ks+5 &+5 M+S g Pk (A63)
dX w(ry +1)3 -
d—1:3 = %pﬂ%nk — [aX3 (A.64)
dX
dt4 = 1.X3 (A.65)
ds 1 1 X,S 1 psXoS myXoS — mg1pevicS

dt — Yyg, Eo+S Yys. Ks+S A+S M+ S

A. Models Considered in This Work 236

1 HpPeVicS
_ A.66
Yps K, + S(1+ S/Kp) (4.66)
dp HpPeVicS
— = — K,P A.67
dt K,+S(1+5S/K;) " (4.67)
dVv
— = F A.68
m (A.68)

This model also incorporates a representation of the process by which
vacuoles form and grow, giving rise to the inactive biomass state, X3. Vac-
uoles were not considered to contribute to the overall biomass concentration,
but are significant in estimating the volume (and therefore the mass) of non-
growing regions X; from the total hyphal volume. For full details of this see
Paul and Thomas (1996).

A. Models Considered in This Work 237

A.3 Model Simplification

The original model of Paul and Thomas (1996), given in appendix A.2.4 has
been simplified in this work so as to reduce the time taken per simulation,
and also to make the model easier to analyse.

Two types of simplification were considered;

e two step models, in which subapical regions are modelled as forming
vacuoles, which subsequently give rise to degenerated regions of the

biomass
e one step models, in which subapical regions are modelled as forming
degenerated regions directly
A.3.1 The two step models

The two step models retain the division of biomass into distinct fractions
that was used in the original model.

The equations are as follows.

dX() l/(]XlS (-UOXO

—0 — - A.69
dt G+S MN+S (A.69)

dX, ps X1.S 1 X1S woXo . .

—1 = - — Kinetic2X. A.70
dt Ki+S GtS dogs meticads (A.70)
X

% = KineticlX; — Kinetic2X, (A.71)
X

% = Kinetic2X, — y1,X3 (A.72)
dx

d—t4 = e X3 (A.73)
ﬁ 1 l/()XlS 1 ILLSX()S msz()S mlelS

dt Yy, Go+S Yys, K,+S X+S M+ S

A. Models Considered in This Work 238

1 uleS
_ A.74
Yps K, +S(1+ S/Ky) ()

dP /Lles
— = — K, P A.
dt K,+S(1+S/K;) " (A.75)
dV
- _- F A.
P (A.76)

In the above set of equations, Kinetics 1 and 2 are those describing vacuole
formation and destruction, respectively. These are chosen from the three
candidate kinetics, first order, &, conversion, k/(L+S), and inhibition kinetic,
kS/(L+ S+ (S?/M)).

The symbol X, represents some numerical measure of the total amount
of vacuoles present. (This state was not considered in tuning the simplified

models.)

A. Models Considered in This Work

239

A.3.2 The one step models

The one step models retain the division of biomass into distinct fractions

that was used in the original model.

The equations are as follows.

dXo
dt
dX,
dt
dX;

dt
ax,

dt
@
dt

dp
dt
dv
dt

l/(]XlS . (-UOXO
CG+S XN+S
ps X1.S 1 X1S woXo ..
— — Kinetic3X
K,+S G+S MN+S ?
KinetiC3X2 - Man
,uaXB
1 l/()XlS 1 ILLSX()S

MmeoXoS — maX,1S

CYyxs, G0+ S Yxs, K, +S AN+S
1 Hp X1 S
Yps K, + S+ S/K))
ppX1.S
K, +S(1+ S/K;)

F

— KyP

(A.77)
(A.78)

(A.79)

(A.80)

(A.81)
(A.82)

(A.83)

In the above set of equations, Kinetics 3 describes the conversion of

biomass from non-growing regions to degenerated regions. This is chosen

from the three candidate kinetics, first order, k, conversion, k/(L + S), and
inhibition kinetic, kS/(L + S + (S?/M)).

There is no model state in the one step model representing vacuoles.

A. Models Considered in This Work 240

A.4 Paul and Thomas (1998)

The original model of Paul and Thomas (1996), has been simplified and
extended in the course of the work described in this thesis, so as to give a
new form of the model, that published in Paul et al. (1998).

The same morphological states are distinguished in this model as in the

original model of Paul and Thomas (1996).
1. growing tips (Xp)
2. non-growing regions (X;)
3. vacuoles (notionally Xy—not shown here)
4. degenerated regions (X3)

5. autolysed biomass (X,)

In addition to the soluble species modelled in the original model, terms
have been added to describe the consumption of lactose.

The equations are as follows.

dX, nX1S (Xo

At &+ S MN+S (4.84)

% = fléfﬁss - ZZ?? N Aiofos HaXop (4.85)

% = X7 — poXo + 3 Xo (A.86)

% = poXop — X3 (A.87)

% — 11X (A.88)
g 1 XS 1 pusXoS mgXoS mg1pevieS

dt ~ Yyg, Eo+S Yxs,Ks+S A+S A+ S

A. Models Considered in This Work

241

dL
dt
dP
dt
dV
dt

1 HpPeVicS

/LLL (X0+X1)

Yps K, + S(1+ S/K))

/LLL (X0+X1)

(Ks;, + L) (1+ S/Kgy)

,uppcvics
K, +S(1+ S/K)

F

- K,P

T K+ L) 1+ 5/Ks1)

(A.89)
(A.90)
(A.91)

(A.92)

A. Models Considered in This Work 242

A.5 Notation

A Numerator term in steady state simplification of the
penicillin production term in Kluge et al. (1992),
5(P)5(S)g(DW)~h-11-!

CO, Volume of C'O,,1

Crs Constant allowing for lactose uptake repression in the
presence of glucose uptake, g(DW)hg(S) !

Ey Endogenous maintenance coefficient, g(S)1™*

Ep Endogenous production coefficient, g(S)1=*

F Feed rate to fermenter, lh=*

I Concentration of inhibitor, g(I)1™*

K Deactivation constant, lg(I)"th*

Ky Biomass growth offset term, h™*

K; Inhibition coefficient, g(S)1™!

Ky, Monod coefficient for lactose, g(L)1™!

Ko, Contois constant for Oy, g(O9)1!

Kop Contois coefficient for penicillin production, g(S)g(DW)~*

Kp Inhibition coefficient, g(S)1!

Kpuy Monod coefficient for pharmamedia, g(PM)1~*

Kpg Constant for catabolite repression by glucose, g(S)I™!

Kg Monod coefficient for glucose, g(S)1™!

Kg inhibited lactose conversion coefficient, g(S)1™!

Ky, inhibited lactose conversion coefficient, g(S)I™!

Kx Contois constant, g(S)g(DW)~!

Ky Monod coefficient for lysed material, g(Y)1~!

K, Death coefficient for active biomass, h™=!

K, Monod coefficient for biomass growth, h™*

K, Penicillin hydrolysis coefficient, h™!

Ko Michaelis-Menten maintenance coefficient, g(S)1™*

Ky, Ky, K; Monod type denominator (glucose) terms, g(S)I~!

Ky, K5, K¢, K; Monod type denominator (P;) terms, g(P;)17!

L second order biomass conversion coefficient

L Concentration of lactose, g(L)1™!

M inhibition coefficient for biomass conversion

O, Concentration of Oy, g(0y)17!

(0 Interfacial oxygen concentration Oy, g(O9)1~!

or Concentration of Oy affecting penicillin production, g(O)1™?

A. Models Considered in This Work 243

Concentration of penicillin, g(P)1~!

Concentration of penicillin in the model of
Heijnen et al. (1979), moles(P)kg ™!
Concentration of product P,, g(P,)1™*
Concentration of pharmamedia, g(PM)1~*
Concentration of dormant biomass state, g(DW)I™
Effective Pharmamedia:lysed biomass ratio, g(PM)g(DW)™!
Effective lysed biomass:viable biomass ratio, g(Y)g(DW) !
Precursor to penicillin conversion coefficient, g(pP)g(P) !
Note that the three ratios R, were not present in the
original models. but are included here for dimensional
consistency.

Concentration of glucose, g(S)I™!

Concentration of glucose in the model of

Heijnen et al. (1979), moles(S)kg ™!

Time constant for rate of change of penicillin

production rate, h

Volume of broth in fermenter, |

Mass of broth in fermenter in the model of

Heinen et al. (1979), kg

Concentration of biomass, g(DW)I™!

Concentration of active biomass, g(DW)1™!
Concentration of biomass in the model of

Heijnen et al. (1979), moles(X)kg !

Concentration of inactive biomass, g(DW)1™!
Concentration of dead biomass, g(DW)I™!

Concentration of biomass fraction *, g(DW)1~*
Concentration of biomass fraction 0 at the end of

the growth phase

in the model of Nestaas and Wang (1983), g(DW)1!
Concentration of lysed material, g(Y)1™*

Yield of biomass with respect to pharmamedia,
g(DW)g(PM)~!

Yield coefficient for penicillin with respect to oxygen,
g(P)g(0z) "

Yield coefficient for penicillin with respect to substrate,
5(P)(S) !

Yield coefficient for penicillin with respect to substrate in

A. Models Considered in This Work 244

YX So
Yxs,

Y,ps

meas
sim
Qo
ay
%)

aly
biy

am

ar
ari

fi2
k

the model of Heijnen et al. (1979), moles(P)moles(S)~!
Yield coefficient for biomass with respect to oxygen,
g(DW)g(0y)

Yield of biomass with respect to glucose, g(DW)g(S)*
Yield of biomass with respect to glucose in the model of
Heijnen et al. (1979), moles(DW)moles(S)™!

Yield of biomass with respect to glucose for state 0,
g(DW)g(S)™

Yield of biomass with respect to glucose for state e,
g(DW)g(S)™

Yield coefficient for penicillin precursor with respect to
substrate, g(pP)g(S)™!

Concentration of a model state, gl™*

Subscript denoting measured value

Subscript denoting simulated value

Coefficient of age function, g(P)g(DW)~'h~!
Coefficient of age function, g(P)(g(DW)~'h=2
Coefficient of age function, g(P)lg(DW)2?h*

Area for gas—liquid mass transfer, m?

Polynomial coefficient for lysis rate, h™*

Polynomial coefficient for lysis rate, h=2

Polynomial coefficient for maintenance rate, h=2
Polynomial coefficient for maintenance rate, h—!
Stoichiometric coefficient, g(I)g(DW)~!

Stoichiometric coefficient, g(I)g(DW)~!

Inactivation rate parameter, h=2

first order biomass conversion coefficient

Degeneration coefficient, h=!

CO, ‘yield’ on biomass growth, g(DW)1~2

Penicillin production related coefficient for C'O,
formation, 1%g(P)~"

Inactivation coefficient, h=1

Gas—liquid mass transfer coefficient, m=2h=!

Lysis coefficient, h™!

Precursor formation coefficient, g(pP)g(DW) th~!
Coefficient for rate of formation of penicillin from
precursor, g(P)g(DW)g(pP)2h™")

Vacuole growth rate constant, 1=th=!

A. Models Considered in This Work 245

mso

dro

qs

dso
qs,max

qr

qy
dyo
rc
To
s
rp
PO
rx
T

Vie

Greek Symbols

«

Qn

Maintenance coefficient for oxygen, g(O,)g(DW)~'h~!
Maintenance-related coefficient for C'Oy formation,
g(COz)g(DW)~'h"

Maintenance coefficient, g(S)g(DW) 'h™!
Maintenance coefficient in the model of Heijnen et al.
(1979), moles(S)moles(DW)~'h~!

Maintenance coefficient for state 0, g(S)g(DW)~'h~*
Maintenance coefficient for state 1, g(S)g(DW) *h~!
Number of vacuoles in bin &

Concentration of penicillin precursor, g(pP)I™!
Uptake rate of lactose g(L)g(DW)~th~!

Uptake coefficient for lactose, g(L)g(DW)~'h~!
Uptake rate of glucose, g(S)g(DW) h™!

Uptake coefficient for glucose, g(S)g(DW)'h~*
Maximum specific glucose consumption rate,
moles(S)moles(X)~'h~!

Total rate of use of glucose and equivalents for biomass growth
in the model of Kluge et al. (1992), g(S)h™!

Uptake rate of lysed material, g(Y)g(DW)'h!
Uptake coefficient for lysed material, g(Y)g(DW) th~!
Rate of consumption of carbon, moles h™*

Rate of consumption of oxygen, moles h~!

Rate of consumption of glucose, moles h™!

Rate of formation of penicillin, moles h™*

Maximum rate of formation of penicillin, moles h™*
Rate of formation of biomass, moles h~!

Radius of smallest vacuoles, m

Radius of largest vacuoles, m

Time, h

Volume of active cytoplasm, m?

Coefficient relating nutritional value of lysed material
to that of glucose, g(Y)g(S)™!

Coefficient relating substrate consumption to P;
assimilation, g(S)g(DW) !

Coefficient relating nutritional value of lactose to that

A. Models Considered in This Work 246

Tn
€n

Cn

M
K1
%)

A

)\n

7

Hr
Hr
Hp
HUPM,maz
HPo
HKPss

HSmax
Hx

1

1

M2

H3

Ha

ILLTZ
Hsubstr

-1

of glucose, g(L)g(S)
Product n production coefficient, g(P,)g(DW) !
Maintenance coefficient n (for conversion between
biomass states), g(S)g(DW) !

Degeneration numerator coefficient n, g(S)I='h~*
Degeneration numerator coefficient n, h=*
Biomass age function, g(DW)hl™*

Mean age of biomass, h

Differentiation denominator coefficient, g(S)I™!
Differentiation denominator coefficient n, g(S)I=!
Specific growth rate, h=!
Specific inactivation rate, ~
maximum lactose conversion rate

Penicillin production constant, h™!

Growth rate with respect to Pharmamedia, h™?
Penicillin production coefficient, g(P)g(DW)™*
Steady state penicillin production constant,
g(P)g(DW)~'h™

Growth rate with respect to glucose, h™!
Growth constant h™!

Growth rate, h=1

vacuole formation coefficient

vacuole growth coefficient

vacuole loss coefficient

Autolysis coefficient, h ™!

Specific growth rate n, h=!

Specific growth rate on substrate, h=?

Branching numerator coefficient, h=!

Branching numerator coefficient n, h™!
Differentiation denominator coefficient n, g(S)I™!
Penicillin production rate, g(P)g(DW)~'h™!

the constant

Density of biomass fraction 3, gm™3

Density of cytoplasm, gm 3

Substrate consumption rate, g(S)I™!

P, formation rate coefficient, g(P,)g(DW)~th~!
Time, h

Rate of feeding of glucose, moles h~!

1

A. Models Considered in This Work

247

Wn Differentiation coefficient n, h=!

B. MATLAB ROUTINES

This appendix contains sample listings of MATLAB programs typical of those
used in the course of the work described in this thesis. Examples of the

following programs are given.

e eg_tune.m—script to run least squares optimisation of model parame-

ters

e eg_targ.m—MATLAB function, called as the objective function for least

squares optimisation

e eg data.m—script to set up initial values for parameters and a typical

feed profile

e fbl4.m—script containing measured fermentation data, called to spec-

ify reference values for eg_targ.m
e eg scrga.m—script to run Genetic Algorithm based optimisation

e eg objga.m—MATLAB function to serve as the objective function for
Genetic Algorithm based optimisation (this function calls eg_targ.m,
and therefore the function being minimised by both least squares rou-

tine and Genetic Algorithm is the same

B. MATLAB Routines 249

A SiMULINK block diagram for the model used by the above example
scripts and functions is shown in Figure 2.4. This example model is that of

Paul et al. (1998).

B. MATLAB Routines 250

% This script file runs a least squares optimisation on
% an example model.

h

% MTS July 1998

% Declaring the parameters to be tuned to be global,

% so that changes made to their values by the optimisation

% routine, when calling the objective function, are reflected
% in their values, used by SIMULINK, in the MATLAB workspace.
global mu0 mue mO ml gammal mup muh

global alphaO alphae alphap KO Ke K1 K2 Kp Ki

global mul mu2 mua Ksl Ksi mul mu3

% Setting globals for initial conditions and input feed rate

% so that they may be modified along with the parameter values.
global Qi

global x0init x1init x2init x3init x4init sinit linit vinit pinit

% Creating a vector of control options
% for the optimisation routine

options = foptions; % The default vector

options(1l) = 1; % Report progress

options(16) = 0.01*sqrt(eps); % Minimum step length for df/dx
options(17) = 0.01*sqrt(eps); % Maximum step length for df/dx

% Initialising parameter values for the optimisation
eg_data

% Creating the initial parameters vector for the optimisation
x0 = [mu0 mue mO0 ml gammal mup muh alphaO ...

alphae alphap KO Ke K1 K2 Kp Ki

mul mu2 mua Ksl Ksi mul mu3];

% Creating the variable ’dataname’
dataname = ’fbl4’;

% Calling the MATLAB least squares optimisation routine
[x] = leastsq(’eg_targ’, [x0],options, [],dataname) ;

Tab. B.1: Listing for eg_tun.m

B. MATLAB Routines 251

function [error] = eg_targ(x,dataname)
% Function to simulate the updated Paul/Thomas model
% and return the errors between measured and simulated state values.

T

% Inputs

h x vector containing parameter values for optimisation

% dataname string containing the name of the data set to be used
h

% MTS July 1998

% Declare globals for optimisation

% The parameters to be optimised need to be declared global
% so that any changes to the parameter values made in this
% program (as a consequence of the optimisation algorithm)

% affect the corresponding parameter values in the MATLAB

% workspace which are used in simulating the SIMULINK model.
global mu0 mue mO ml gammal mup muh

global alphaO alphae alphap KO Ke K1 K2 Kp Ki

global mul mu2 mua Ksl Ksi mul mu3

% Setting globals for initial conditions and input feed rate

% Again, this is so that values changed here (dependent on

% the data set used) are reflected in the MATLAB workspace.
global Qi

global x0init x1init x2init x3init x4init sinit linit vinit pinit

% Running a script file to load in data values
eval (dataname)

% Avoiding negative parameter values
x=abs (x) ;

% Creating parameter values from the input x vector

muO = x(1); mue = x(2); m0 = x(3); mil = x(4);
gammal = x(5); mup = x(6); muh = x(7); alpha0 = x(8);
alphae = x(9); alphap = x(10); KO = x(11); Ke = x(12);
K1 = x(13); K2 = x(14); Xp = x(15); Ki = x(16);
mul = x(17); mu2 = x(18); mua = x(19); Ksl = x(20);

Ksi = x(21); mul = x(22); mu3 = x(23);

B. MATLAB Routines 252

% Call the simulation

% Here Gear’s algorithm is being used on the model ’eg_modl’

% running from time = O to the maximum in the reference times

% vector (T_ref), with no specified initial conditions

% ([] - initial conditions have specified above as x0Oinit, etc

% since the order of the states may change on resaving the model),
% and with tolerance le-6, minimum step length le-6, and

% maximum step length 10. (Time units for simulations are hours.)

% "fred" is used as a dummy variable to store the returned

% simulation time. If SIMULINK integration routines are called

% from the command line without output variables, the states are

% automatically plotted graphically, which takes time, and so

% is undesirable as well as unnecessary for parameter optimisation.
[fred]=gear(’eg_modl’, [0 max(T_ref)],[]1,[1le-6 1e-10 10]1);

% Interpolate to find the simulated values at measurement times

% Here we are tuning for glucose (S), penicillin (P), lactose (L),
% and all biomass states (X0, X1, X2, X3) excluding the

% unmeasurable lysed state (X4).

x0_value = interpl(fred, X0, T_ref);

x1_value = interpl(fred, X1, T_ref);

x2_value = interpl(fred, X2, T_ref);

x3_value interpl(fred, X3, T_ref);

glucose_value = interpl(fred, S, T_ref);
pen_value = interpl(fred, P, T_ref);
1_value = interpl(fred,L,T_ref);

%% Obtaining simulated values at measurement times

%% Alternative form, typically for models with hourly output
%% sampling times and reference data at hourly intervals.

% x0_value = XO(T_ref+1);

% x1_value = X1(T_ref+l);

% x2_value X2(T_ref+1);

% x3_value = X3(T_ref+l);

% glucose_value = S(T_ref+1);

% pen_value = P(T_ref+1);

% 1_value = L(T_ref+1);

% Calculate the absolute errors between measured and simulated values

B. MATLAB Routines 253

x0_error = (x0_value - XO_ref)/max(X0_ref);
xl_error = (x1_value - X1_ref)/max(X1_ref);
x2_error = (x2_value - X2_ref)/max(X2_ref);
x3_error = (x3_value - X3_ref)/max(X3_ref);

glucose_error = (glucose_value - S_ref)/max(S_ref);
pen_error = (pen_value - P_ref)/max(P_ref);
l_error = (1_value - L_ref)/max(L_ref);

% Concatenate values to form a matrix so as to return a

% single error variable to the least squares routine.

% ... indicates continuation from line to line in MATLAB

error = [x0_error,xl_error,x2_error,x3_error,...
glucose_error, pen_error, l_error];

Tab. B.2: Listing for eg_targ.m

B. MATLAB Routines 254

% This is a script to set up parameters for use in the
% SIMULINK simulation of the example model.

% Model parameters to be optimised

muO = 0.065; mue = 0.28; m0 = 0.029; ml = 0.029;
gammal = 0.01042; mup = 0.02985; muh = 0.003; alpha0 = 2.1;
alphae = 1.00; alphap = 1.00; KO 0.05; Ke = 0.05;
K1 = 0.05; K2 = 1.041; Kp = 0.0002; Ki = 0.024;
mul = 0.012; mu?2 = 0.023; mua = 5.142e-3; Ksl = 0.7371
Ksi = 1.353e-3; mul = 0.1015; mu3 = 4.461e-3;

% Fixed parameters (biomass density)

rho = 0.35;

rho3 = rho;

% Feed rate parameters

f = 0.008;

fx = 0.004;

sf = 500;

t_ref = [0 24 24 160 161]°;

Qi =6/sfx[1 111 1]°; %% Feed + precursor dilution
Qo = [0000O0];

sr = .009;

% NOTE that all SIMULINK model parameters relevant to a specific

% data set are set up in that data set’s script file, called from
% within the optimisation’s objective function. The file ’fbl4.m’
% is given as an example.

Tab. B.3: Listing for eg_data.m

b

B. MATLAB Routines 255
% Data obtained from a fixed feed rate fermentation

% FB14:

% TIME AO Al A2 A3 AT SL P

data = [

1.0 0.15 0.89 0.15 0.02 1.06 1.52 5.80 0.03
15.0 1.04 3.87 0.55 0.00 4.91 9.58 5.81 0.05
21.0 1.39 7.42 0.80 0.03 8.84 8.57 5.76 0.08
25.0 2.66 10.04 0.95 0.04 12.73 6.47 5.67 0.12
29.0 2.60 11.34 1.63 0.09 14.03 2.76 5.51 0.20
39.0 2.34 14.56 2.57 0.31 17.20 0.0 4.81 0.72
51.0 2.34 15.99 4.22 0.74 19.08 0.0 2.79 1.70
63.0 2.21 17.35 5.46 1.56 21.12 0.0 0.78 2.70
73.0 2.70 18.42 6.27 1.56 22.68 0.0 0.0 3.40
87.0 2.06 18.35 8.65 2.39 22.80 0.0 0.0 4.28
97.0 3.54 16.52 8.17 3.40 23.45 0.0 0.0 4.86

111.0 2.15 21.28 8.67 2.36 25.79 0.0 0.0 5.43
121.0 2.256 18.88 8.98 5.16 26.29 0.0 0.0 5.57
1;
% ’Unpacking’ reference vectors from the data matrix
% (Although not necessary, this makes things easier to handle)
T_ref = data(:,1);
XO_ref = data(:,2);
X1_ref = data(:,3);
X2_ref = data(:,4);
X3_ref = data(:,5);
Xt_ref = data(:,6);
S_ref = data(:,7);
L_ref = data(:,8);
P_ref = data(:,9);
% Initial Conditions and feed/sample rate information
x0init=.15; x1init=.89; x2init=.15; x3init=.02; x4init=0.0;
sinit =1.52; 1init=5.8; pinit=0.0;
vinit =4.00; FI=0.008; SRI=0.009; FXI=0.004;

Qi = (FI+FXI-SRI)*ones(size(Qi));

Tab. B.4: Listing for £b14.m

B. MATLAB Routines 256

% Script file to run Genetic Algorithm optimisation of parameter
% values in the example model.

% Declaring the parameters to be tuned to be global,

% so that changes made to their values by the optimisation

% routine, when calling the objective function, are reflected
% in their values, used by SIMULINK, in the MATLAB workspace.
global mu0 mue mO0 ml gammal mup muh

global alphaO alphae alphap KO Ke K1 K2 Kp Ki

global mul mu2 mua Ksl Ksi mul mu3

% Setting globals for initial conditions and input feed rate

% so that they may be modified along with the parameter values.
global Qi

global x0init x1init x2init x3init x4init sinit linit vinit pinit

% Customising the options for the Genetic Algorithm

goptions(1,1) = 2; % Output
goptions(14,1) = 100; % MAXGEN
goptions(20,1) = 50; % NIND
goptions(21,1) = 3; % SUBPOP
goptions(23,1) = 2; % SP
goptions(29,1) = 0; % INITFUNCTION
goptions(30,1) = 6; % STATEPLOT

goptions(5,1:5) = [0,0,3,3,3]; % selection function

goptions(6,1) = 0;
goptions(7,1:5) = [0,1,2,3,0];
goptions(28,1) = 0;

mutation function
recombination function
SAVE2FILE

% Initialising parameter values for the optimisation
eg_data

% Creating the initial parameters vector for the optimisation
x0 = [mu0 mue mO0 ml gammal mup muh alphaO ...

alphae alphap KO Ke K1 K2 Kp Ki ...

mul mu2 mua Ksl Ksi mul mu3];

% Obtaining the bounds for our Genetic Algorithm search
objfun = ’eg_objga’;

bounds = feval(objfun, [], 1,x0);

VLB = bounds(1,:); VUB = bounds(2,:);

method
Tstart =

12;
0; Tend = 2; Fmax = 5/160; Raw_Time = t_ref;

% Calling the Genetic Algorithm optimsation routine
[xnew, GOPTIONS] = tbxdbga(objfun, goptions, VLB, VUB, method);

Tab. B.5: Listing for eg_scrga.m

B. MATLAB Routines 257

function [0bjVal, t, x] = eg_objga(Chrom, switch,x0)

% This function is based on those provided with the

% Genetic and Evolutionary Algorithm Toolbox (GEAT)

% of Harmut Pohlheim

% Technical University Ilmenau, 1996

% http://www.systemtechnik.tu-ilmenau.de/ pohlheim/GA_Toolbox/index.html
b

% MTS July 1998

% global variable for setting initial bounds
% global x0

% Compute population parameters
[Nind, Nvar] = size(Chrom);

% Check size of Chrom and do the appropriate thing
% if Chrom is [], then
if Nind == 0
% lower and upper bound, identical for all n variables
ObjVal = [1le-3%x0;10%x0] ;
% compute values of function
else
% Start computation of objective function
ObjVal = zeros(Nind,1);
for indrun = 1:Nind
% Convert vector from GA into parameter vector
x = Chrom(indrun,:)’;
% Call the least squares objective function
% from conventional model tuning
% The (sum(sum(###.72)) calculates the SSE
ObjVal(indrun) = sum(sum(eg_targ(x,’fb14’).72));
end
end

Tab. B.6: Listing for eg_objga.m

C. PERL PROGRAM FOR PARSING MODEL EQUATIONS

A program written in Per]l was used to automate the processing of the output
generated from algebraic manipulations in Maple. Although distinguishing
groups of terms on the basis of the measured quantities in them is relatively
simple for small model systems, the large volume of output generated in
analysing the simplified lactose-incorporating model of Paul and Thomas
(1996) was such that the effort involved in writing a program to carry out
the sorting operation was less than that which would have been needed to
perform the sorting manually.

To generate the input for the Perl program, the model equations must
be entered into Maple, multiplied throughout by their divisor terms and
the resulting expressions sorted. Exporting the resulting Maple session as
plain text produces a .txt file which may then be used as input to the
Perl program. (Note that the output style option in Maple should be set to
linetype notation.)

The Perl program prompts for the name of a .txt file, which is then used
as input. Each Maple output line is split into its individual terms, sorting

states and parameters, and output is then written to three sets of files.

e a .out file, containing tabulated output for each expression, consisting

of a column of parameters and one of associated, distinct groups of

C. Perl Program for Parsing Model Equations 259

states

e a .all file, containing a sorted list of all parameter groups found in

the Maple output within the .txt file

e a group of .tex files, one for each expression in the Maple output,

containing tables suitable for use with KTEX

C.1 The Perl Program

The Perl program is listed here.

#!/usr/bin/perl

This script is intended to read in a text file containing

all the parameter groups generated by a differential equation,
reorder the terms in each group alphabetically,

sort the reordered groups alphabetically,
#

and then write them to an output file.

Where are we reading from and writing to?

print "Enter file to be sorted: ";chop($sourcename=<STDIN>);
Check that we have a superficially valid filename

unless ($sourcename="/txt/){

die "The input file should be a .txt file."

Create the various output file names

$outname = $sourcename; $outname =~ s/txt/out/; # Full output
$allname = $sourcename; $allname =~ s/txt/all/; # All parameter groups
$texname = $sourcename; $texname =" s/txt//; # Latex tables

Keep the user informed about progress
print "Reading from $sourcename and writing to $outname.\n";
print "Also writing parameters to $allname.\n";

print "This could take a while. Please be patient.\n";

C. Perl Program for Parsing Model Equations 260

A little light formatting

format SORTED =

7 {LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL TRLLLLLLLLLLLLLLLLLLLLLLLLLLKLKKKK
$currentlist{$ckey} $key

- 7 {<<<LLLLLLLLLLLLLLLLLLLLLLLLLLLL TKKLLLLKLLLLLLLLLLLLLLLLLLLkkkkl

$currentlist{$ckey} $key

The format lines for LISTALL originally had $listall{$key}, NOT $fred
format LISTALL =
7 €<£<<<<LL<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LKLk
$fred
- 7 €<<<<<<L<LL<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LKLk

$fred

Attempting to cheat on the permissible word breaks

$: = $:."4"; # We add "+" as another mathematically permissible line-break

Open the files involved
open(RAWLIST, "$sourcename");
open(SORTED, ">$outname");
open(LISTALL, ">$allname");

open(TEXQUT, ">$texname");

The main workhorse loop of the program
while ($nextgroup = <RAWLIST>) { # Reading a line at a time

Y%currentlist = (); # Clearing the current list

We only bother to process the line if it’s Maple output
ie, if it starts with a ">" and contains a ":="
if ((index($nextgroup,">") != 0) && ($nextgroup="/:=/)){

($name, $expr) = split(/:=/,$nextgroup); # Split the name and expression

$name =" s/\s//g; # Remove spaces from the name
$expr =" s/\s//g; # Remove spaces from the expr
print SORTED "$name := \n"; # Write the name to file

print "Parsing $name\n"; # Say what we’re doing

C. Perl Program for Parsing Model Equations 261

Break up the expression into terms, go through element by element

foreach $elem (@barray=&break_expr($expr)) { # subroutines at end

Break each element into parameters and states

($params, $states) = &split_by_stars($elem); # subroutines at end

We need to see something in the file if a group has no parameter
if (($params eq "+") || ($params eq "-") && ($states ne "")) {

$params = $params."1";

Add the parameter group to a hash indexed by state groupings
$currentlist{$states} = $currentlist{$states} . $params;

$listall{join(": ",$name,$states)} = $listall{join(": ",$name,Pstates)} . $params;

Sort the collated parameter groups in the currentlist
foreach $key (keys(Vcurrentlist)) { # Each parameter group in turn
Qparray = sort(&break_expr($currentlist{$key})); # Split and sort

$currentlist{$key} = join("",@parray); # Reassemble

Sort the keys of the hash by entry length (or alphabetically)
by_current_length is subroutine at end

Q@sortedlist = sort by_current_length keys(/currentlist);

Write suitably modified output to the TEXOUT file
open(TEXOUT, ">$texname$name.tex");
print "$texname$name.tex\n";
print TEXOUT "\\subsection{$name} \n";
print TEXOUT "\\begin{align*} \n";
foreach $key (@sortedlist) {
$texentry = &slash_greek($currentlist{$keyl});
$texkey = &slash_greek(&tex_key($key));
print TEXOUT $texkey . " && " . $texentry . "\\\\\n";
¥
print TEXOUT "\\end{align*} \n\n\n";

C. Perl Program for Parsing Model Equations 262

close (TEXQUT) ;

Write each key and entry to the SORTED output file
foreach $key (@sortedlist) {
$ckey = $key; # Dummy variable to allow array referencing

write SORTED; # Generate the .out file

Spacing out the various sections in the .out file

print SORTED "\n\n";

Sort the collated parameter groups in the overall list

foreach $key (keys(%listall)) { # Each parameter group in turn
Qparray = sort(&break_expr($listall{$key})); # Split and sort
$listall{$key} = join("",@parray); # Reassemble

Sort the keys of the overall list by entry length (or alphabetically)

Q@longsort = sort by_length keys(%listall); # by_length is subroutine
foreach $key (@longsort) { # Produce the .all file
($name, $states) = split(": ",$key);
$fred = $name . "\t" . $listall{$key}; # Dummy variable for LISTALL

write LISTALL;

Close the files involved
close(RAWLIST);

close (SORTED) ;
close(LISTALL);

close(TEXOUT);

SUBROUTINES FOLLOW

C. Perl Program for Parsing Model Equations 263

sub by_current_length {
Compare the lengths of the two strings, or their names, alphabetically
(($currentlist{$a} =~ tr///c) <=> ($currentlist{$b} =~ tr///c)) || ($a cmp $b)

sub by_length {
Compare the lengths of the two strings, or their names, alphabetically
(($1listall{$a} =" tr/-\+*/-\+*/) <=> ($1listall{$b} =" tr/-\+*x/-\+*/)) ||
(($listall{$a} =" tr///c) <=> ($listall{$b} =" tx///c)) ||
(($listall{$a} =" tr/-\+/-\+/) <=> ($listall{$b} =" tr/-\+/-\+/)) ||
($a cmp $b)

sub break_expr { # To break an expression into terms at + or -
but only if +|- is outside ()
Declare some local variables...
local($expr) = @_;
local(@barray) ;

local($counter,$breakable,$arraycount);

A more intelligent "split"

NOTE: Since the expression will always start with

a (+]|-), then $arraycount needs to be set to -1

to ensure that the first term is stored in $barray[0].
Perl numbers from 0, and we increment $arraycount

whenever we encounter a (+|-).

$counter = 0; $breakable = 1; $arraycount = -1;

In an expression, the first term may be unsigned.
Since we wish all terms to be signed, we prepend a "+" if needed.
if ((substr($expr,0,1) ne "-") && (substr($expr,0,1) ne "+")) { # If no +|-

$expr = "+" . $expr; # Prepend +

while (($test = substr($expr,$counter++,1)) ne "") { # Split at +|- not in ()
if (($test eq "+" || $test eq "-") && $breakable) { # If +|- & not in ()
$arraycount++; # New array element

} elsif ($test eq "(") { # If an opening bracket

C. Perl Program for Parsing Model Equations 264

$breakable--; # Breakable false (0)
} elsif ($test eq ")") { # If a closing bracket
$breakable++; # Breakable true (1)
}
$barray[$arraycount] = join("",$barray[$arraycount], $test); # Add character
}
@barray; # Return array of terms

} # End of subroutine...

sub split_by_stars { # To split a term into its component states and parameters
Declare some local variables...
local($expr) = @_;
local($counter,$breakable,$arraycount,$sign) ;

local(@barray,@statelist,@paramlist);

A more intelligent "split"

$counter = 0; $breakable = 1; $arraycount = 0;

First remove the +|- from the term
if (substr($expr,0,1) eq "-") {
$sign = "-";
$counter++;

} elsif (substr($expr,0,1) eq "+") {

$sign = "+";

$counter++;
} else {

$sign = "+";

while (($test = substr($expr,$counter++,1)) ne "") { # Splitting at * outside ()
if (($test eq "*") && $breakable) {
$arraycount++;
} elsif ($test eq "(") {
$breakable--;
$barray[$arraycount] = join("",$barray[$arraycount], $test);

} elsif ($test eq ")") {

$breakable++;

$barray[$arraycount] = join("",$barray[$arraycount], $test);

C. Perl Program for Parsing Model Equations

265

} else {

$barray[$arraycount] = join("",$barray[$arraycount], $test);

}
}
foreach $term (@barray) { # Going through the terms
if ((index($term,"(")>=0) || (index($term,"Sigma")>=0)) {
if (substr($term,0,1) eq "(") { # Bracketed term, special sort
$sortedterm = "";
substr($term,0,1) = ""; # Get rid of opening bracket
substr($term,-1,1) = ""; # Get rid of closing bracket
Qtermarray = &break_expr($term); # Split it up...
foreach $termkey (@termarray) { # Go through the array
($tparams,$tstates) = &split_by_stars($termkey);
if (($tparams eq "-") | ($tparams eq "+")) {
Empty parameter group
$sortedterm = $sortedterm . $tparams . $tstates;
} else {
We have some parameters
$sortedterm = $sortedterm . $tparams . "*" . $tstates;
¥
¥
#$term = "(" . $sortedterm . ")"; # Replace brackets around term
¥
@statelist = (@statelist,$term); # It’s a state term
} else {
$term =" s/(\+|-)//g; # It’s a parameter term
Qparamlist = (Qparamlist,$term);
}
}

Rejoining the components, with the sign joining the params
$states = join("*",sort(@statelist));

$params = $sign . join("*",sort(@paramlist));

Qreturnarray = ($params, $states);

} # End of subroutine...

C. Perl Program for Parsing Model Equations 266

sub slash_greek {
Subroutine to replace greek letter names with their LaTeX equivalents
local($new) = Q_;
$new =" s/(alpha)/\\$1 /g;
$new =" s/(gamma)/\\$1 /g;
$new =" s/(mu)/\\$1 /g;
$new =" s/(rho)/\\$1 /g;
$new =" s/(Sigma)/\\$1 /g;
$new;

} # End of subroutine...

sub tex_key {
Subroutine to convert the array key into LaTeX
local($new) = @_;
$new =" s/diff\(/\\left\(\\frac\{\\partial\}\{\\partial t\}/;
$new =" s/,t\)/\\right\)/;
$new;

} # End of subroutine...

C.2 A Maple Session

The portion of a Maple session related to the glucose concentration’s differ-

ential equation is given here.

> Sexpr := - diff(S(t),t) -alphaO*muO*S(t)*X1(t)/(KO+S(t)) -
alphae*mue*S(t)*X0(t)/(Ke+S(t)) - mO*X0(t)*S(t)/(K1+S(t)) -
mi*rho*vic(t)*S(t)/(K2+S(t)) - alphap*mup*rho*vic(t)*S(t)/(Kp+S(t)*(1+
S(t)/Ki)) + mul#L(t)*(X0(t)+X1(t))/((Ks1l+L(t))*(1+(S(t)/Ksi))) -
Sigma2*S(t)/V(t) + (Ff*sf)/V(t):

> Sexpr := sort(collect(simplify(Sexpr * (KO+S(t))* (Ke+S(t)) * (Ki+
S(t)) * (K2+S(t)) * (Kp+S(t)*(1+S(t)/Ki)) * ((Ksl+L(t))*(1+
(8(t)/Ksi))) * Ki * Ksi *

V(t)), [alpha0,mu0,K0,alphae,mue,Ke,m0,m1,K1,K2,alphap,mup,Kp,Ki,mul,Ks
1,Ksi],distributed),{X0(t),X1(t),S(t),L(t),V(t)});

C. Perl Program for Parsing Model Equations 267

Sexpr := -alphae*mue*xV(t)*X0(t)*S(t) "7*L(t)-mO*V(t)*X0(t)*S(t) " 7*L(t)-
alphaO*muO*V(t)*S(t) "7*X1(t)*L(t)-alphae*muexKs1*V(t)*X0(t)*S(t)"7-
mO*Ks1*V(t)*X0(t)*S(t) “7T-alphae*mue*K2*V (t)*X0 (t)*S(t) "6*L(t)-
mO*Ksi*V(t)*X0(t)*S(t) "6*L(t)-alphae*muexKi*V(t)*X0(t)*S(t) "6*L(t)-
alphaexmuexKO*V (t)*X0(t)*S(t) "6*L(t) -mO*K2*V (t) *X0(t) *S(t) "6*L(t) -
alphae*mue*Ksi*V(t)*X0 (t)*S(t) "6*L(t)-mO*Ke*V(t)*X0(t)*S(t) "6*L(t)-
mO*KO*V (t)*X0 (t)*S(t) “6*L(t) -mO*Ki*V(t)*X0(t)*S(t) "6*L(t)-
alphaexmue*K1*V (t)*X0(t)*S(t) "6*L(t)-alphaO*muO*Ks1*V(t)*S(t) "7*X1(t)-
diff (S(t),t)*V(t)*S(t) "7*L(t)-alphaO*muO*K2*V(t)*S(t) "6*X1(t)*L(t)-
alphaO*muO*Ksi*V(t)*S(t) "6*X1(t)*L(t)-
alphaO*muO*KexV (t)*S(t) "6%X1(t)*L(t) -

alphaO*muO*K1*V(t)*S(t) "6xX1(t)*L(t)-

alphaO*muO*Ki*V(t)*S(t) "6xX1(t)*L(t)-Sigma2*S(t) "8+L(t)-
alphae*mue*Ks1*Ksi*V(t)*X0 (t)*S(t) "6-mO*xKO*xKs1*V (t)*X0(t)*S(t) "6~
alphae*mue*K2*Ks1*V(t)*X0(t)*S(t) "6-
alphae*mue*Ki*Ks1*V(t)*X0(t)*S(t) "6-mO*Ks1*Ksi*V(t)*X0(t)*S(t) "6~
alphae*muexKO*Ks1*V (t)*X0 (t)*S(t) "6-mO*xK2*Ks1*V (t)*X0(t)*S(t) "6~
mO*xKe*Ks1*V (t)*X0 (t)*S(t) "6-mO*KixKs1*V(t)*X0(t)*S(t) 6~
alphaexmue*K1*Ks1*V(t)*X0(t)*S(t) "6-mO*K2*Ksi*V(t)*X0(t)*S(t) "5*L(t)-
mO*KexK2*V () *X0 (t) *S(t) "5xL(t) -
alphae*mue*Kp*xKi*V(t)*X0(t)*S(t) "5*L(t)-

mO*Kp*Ki*V (t)*X0(t)*S(t) “5*L(t)-mO*xKO*xK2xV (t)*X0(t)*S(t) "5*L(t)-
mO*KexKi*V (t)*X0(t)*S(t) "5+L(t) -mO*KO*Ki*V (t)*X0(t)*S(t) "5*L(t)-
alphae*muexK2*xKsi*V(t)*X0(t)*S(t) "5xL(t)-
alphae*muexK1*Ksi*V(t)*X0(t)*S(t) "5xL(t)-

alphae*muexK1*¥K2*V (t)*X0(t)*S(t) "5*L(t) -
alphaexmue*KO*Ki*V(t)*X0(t)*S(t) "5*L(t)-

mO*xKO*KexV (t)*X0(t)*S(t) "5xL(t)-
alphae*muexKi*Ksi*V(t)*X0(t)*S(t) "5xL(t)-
mO*Ke*Ksi*V(t)*X0 (t)*S(t) "5*L(t)-mO*Ki*xKsi*V(t)*X0(t)*S(t) "5*L(t)-

C. Perl Program for Parsing Model Equations 268

alphaexmue*KO*K2xV (t)*X0(t)*S(t) "5*L(t) -
alphae*muexK2+Ki*V(t)*X0(t)*S(t) "5*L(t)~
mO*xK2*Ki*V(t)*X0(t)*S(t) "5*L(t) -mO*KO*xKsi*V(t)*X0(t)*S(t) "5*L(t)-
alphae*muexKO*Ksi*V(t)*X0(t)*S(t) "5xL(t)-

alphaexmue*KO*K1*V (t)*X0(t)*S(t) "5*L(t)-

alphae*muexK1xKi*V (t)*X0(t)*S(t) "5*L(t)-
alphaO*muO*Ki*xKs1*V(t)*S(t) "6xX1(t)-
alphaO*muO*K1*Ks1*V(t)*S(t) "6*X1(t)-
alphaO*muO*K2+Ks1*V (t)*S(t) "6*X1(t)-
alphaO*muO*Ks1*Ksi*V(t)*S(t) "6*X1(t)-
alphaO*muO*KexKs1*V(t)*S(t) "6xX1(t)-
alphaO*muO*Ke*K2*V (t)*S(t) "5xX1(t)*L(t)-

alphaO*muO*Kp*Ki*V (t)*S(t) "5%X1(t)*L(t)-
alphaO*muO*KexKsi*V(t)*S(t) "5xX1(t)*L(t)-
alphaO*muO*K1*Ki*V(t)*S(t) "5xX1(t)*L(t)-

alpha0*muO*K1xKsi*V (t)*S(t) "5*X1(t)*L(t)-
alphaO*muO*K2*xKi*V (t)*S(t) "5+X1(t)*L(t)-
alphaO*muO*Ki*Ksi*V(t)*S(t) "5xX1(t)*L(t)-
alphaO*muO*K1*xK2*V (t)*S(t) "5xX1(t)*L(t)-

alphaO*muO*KexKi*V (t)*S(t) "5*X1(t)*L(t)-
alphaO*muO*KexK1*V (t)*S(t) "5+X1(t)*L(t)-
alphaO*muO*K2*xKsi*V(t) *S(t) "5xX1 (t)*L(t)+Ff*sf*S(t) "7*L(t)-
mO*K2*Ki*Ks1*V (t)*X0(t)*S(t) "5-mO*KO*Ke*Ks1*V (t)*X0(t)*S(t) "5~
alphae*mue*KO*xKs1*Ksi*V(t)*X0(t)*S(t) "5~
alphae*mue*K1*xKi*Ks1*V (t)*X0(t) *S(t) "5-m0*Ke*K2*Ks1*V (t)*X0(t)*S(t) "5~
mO*KO*Ks1*Ksi*V(t)*X0(t)*S(t) "5-mO*K2*¥Ks1*Ksi*V(t)*X0(t)*S(t) "5~
mO*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) "5-mO*Ke*Ks1*Ksi*V(t)*X0(t)*S(t) "5~
alphae*mue*xKO*xKi*Ks1*V (t)*X0(t)*S(t) "5~
alphae*mue*K1*xK2xKs1*V (t)*X0(t) *S(t) "5~
alphae*mue*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) "5~

C. Perl Program for Parsing Model Equations 269

alphaexmue*K0*K2xKs1*V (t)*X0(t)*S(t) "5~
alphae*mue*K2*Ks1*Ksi*V(t)*X0(t)*S(t) "5~
alphae*mue*KO*xK1xKs1*V (t)*X0(t) *S(t) "5-mO*KO*K2*Ks1*V (t)*X0(t)*S(t) "5~
alphae*mue*K1*xKs1*Ksi*V(t)*X0(t)*S(t) "5~

mO*KO*Ki*Ks1*V (t)*X0(t)*S(t) "5-alphae*mue*K2¥Ki*xKs1*V (t)*X0(t)*S(t) "5~
mO*Kp*Ki*Ks1*V (t)*X0(t)*S(t) “5-alphae*mue*Kp*Ki*xKs1*V(t)*X0(t)*S(t) "5~
mO*xKe*Ki*Ks1*V (t)*X0(t)*S(t) "5-mO*xKO*Ke*K2+V (t)*X0(t)*S(t) "4*L(t)-
mO*KO*Ki*Ksi*V(t)*X0(t)*S(t) “4*L(t)-
mO*Kp*Ki*Ksi*V(t)*X0(t)*S(t) "4*L(t)-

alphae*mue*KO*xKi*Ksi*V (t)*X0(t)*S(t) "4*L(t)-

alphae*muexKO*xK1xK2*V (t)*X0(t)*S(t) “4*L(t)-
alphae*muexKO*K2*Ki*V(t)*X0 (t)*S(t) ~4*L(t)-
mO*KO*Kp*Ki*V (t)*X0(t) *S(t) "4xL(t)-

mO*xKO*Ke*Ksi*V (t)*X0(t)*S(t) "4*L(t)-
alphae*muexKO*Kp*Ki*V (t)*X0 (t)*S(t) "4*L(t)-
mO*xKO*K2*Ksi*V (t) *X0(t)*S(t) "4*L(t)-
alphae*mue*xKO*xK2xKsi*V (t)*X0(t) *S(t) "4*L(t)-

mO*K2*Kp*Ki*V (t)*X0(t)*S(t) "4*L(t)-
alphae*muexK2*Kp*Ki*V (t)*X0 (t)*S(t) "4*L(t)-
alphae*muexKO*K1*Ki*V(t)*X0 (t)*S(t) ~4*L(t)-

alphae*mue*K1xK2xKi*V (t)*X0(t)*S(t) "4*L(t)-
mO*xKO*K2*Ki*V(t)*X0(t)*S(t) "4xL(t)-

alphae*muexK1*¥K2*Ksi*V (t)*X0(t)*S(t) "4*L(t)-

mO*xK2*Ki*Ksi*V (t)*X0(t)*S(t) "4*L(t)-

alphae*mue*KO*xK1xKsi*V (t)*X0(t)*S(t) "4*L(t)-

alphae*mue*K1*Ki*Ksi*V (t)*X0(t)*S(t) "4*L(t)-
alphae*muexK1*Kp*Ki*V(t)*X0 (t)*S(t) "4*L(t)-
mO*xKe*Ki*Ksi*V(t)*X0(t)*S(t) "4*L(t)-
mO*xKO*KexKi*V(t)*X0(t)*S(t) "4*L(t) -mO*KexK2*xKi*V(t)*X0(t)*S(t) "4*L(t)-

alphae*muexKp*Ki*Ksi*V (t)*X0(t)*S(t) "4*L(t)-

C. Perl Program for Parsing Model Equations 270

alphae*muexK2+Ki*Ksi*V (t)*X0(t)*S(t) "4*L(t)-
mO*KexKp*Ki*V(t)*X0(t)*S(t) "4xL(t)-
mO*xKe*K2*Ksi*V (t)*X0(t)*S(t) "4*L(t)-
alphaO*muO*Ki*xKs1*Ksi*V(t)*S(t) "5xX1(t)-
alphaO*muO*K1*Ks1*Ksi*V(t)*S(t) "5*X1(t)-
alphaO*muO*K1xKi*xKs1*V (t)*S(t) "5xX1(t)-
alphaO*muO*Kp*xKi*Ks1*V (t)*S(t) "5*xX1(t)-
alphaO*muO*Ke*Ks1*Ksi*V(t)*S(t) "5*X1(t)-
alphaO*muO*K2*Ks1*Ksi*V(t)*S(t) "5*X1(t)-
alphaO*muO*K2xKixKs1*V (t)*S(t) "5xX1(t) -
alphaO*muO*KexK2xKs1*V (t)*S(t) "5xX1(t) -
alphaO*muO*Ke*Ki*Ks1*V(t)*S(t) "5*xX1(t)-
alphaO*muO*K1*K2xKs1*V (t)*S(t) "5*X1(t)-
alphaO*muO*KexK1xKs1*V (t)*S(t) "5xX1(t)-
alpha0*muO*K2+Ki*xKsi*V (t)*S(t) "4*X1(t)*L(t)-
alphaO*muO*K1*K2xKsi*V (t)*S(t) "4*X1(t)*L(t)-
alphaO*muO*KexK1xK2*V (t) *S(t) “4*X1(t)*L(t)-
alphaO*muO*K1xK2xKi*V (t)*S(t) “4*X1(t)*L(t)-
alphaO*muO*Ke*K1*Ksi*V (t)*S(t) "4*X1(t)*L(t)-
alphaO*muO*Kp*Ki*Ksi*V (t)*S(t) "4*X1(t)*L(t)-
alphaO*muO*K2*xKp*xKi*V (t)*S(t) “4*X1(t)*L(t)-
alphaO*muO*KexKi*Ksi*V (t)*S(t) "4*xX1(t)*L(t)-
alphaO*muO*Ke*K2xKi*V(t)*S(t) "4*X1(t)*L(t)-
alphaO*muO*KexK1xKi*V (t)*S(t) “4*X1(t)*L(t)-
alphaO*muO*K1xKp*xKi*V (t)*S(t) “4*X1(t)*L(t)-
alphaO*muO*Ke*K2xKsi*V (t)*S(t) "4*X1(t)*L(t)-
alphaO*muO*K1*Ki*Ksi*V (t)*S(t) "4*X1(t)*L(t)-
alphaO*muO*KexKp*xKi*V (t)*S(t) “4*X1(t)*L(t)-
alphae*mue*K2*xKp*Ki*Ks1*V (t)*X0(t)*S(t) "4~
mO*KO*K2*Ks1*Ksi*V(t)*X0(t)*S(t) "4-mO*KexK2*Ks1*xKsi*V (t)*X0(t)*S(t) "4~

C. Perl Program for Parsing Model Equations 271

alphaexmue*K1*Kp*xKi*Ks1*V (t)*X0(t)*S(t) "4-
mO*Kp*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) "4~
alphae*mue*xKO*K1*xKi*Ks1*V (t)*X0(t)*S(t) "4~
mO*K0*Ke*Ks1*Ksi*V(t)*X0(t)*S(t) "4~
alphaexmue*KO*Kp*xKi*Ks1*V (t)*X0(t)*S(t) "4~

alphae*muexKO*xK2xKs1*Ksi*V (t)*X0(t)*S(t) "4
alphae*mue*xKO*xK1*xK2+Ks1*V (t)*X0 (t)*S(t) "4~
mO*KO*Ke*K2*Ks1*V (t)*X0(t) *S(t) "4-mO*K2*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) "4~
alphaexmue*Kp*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) "4~
mO*xKO*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) "4~

alphae*mue*KO*xKi*Ks1*Ksi*V (t)*X0(t)*S(t) "4~
alphaexmue*K1*K2xKs1*Ksi*V(t)*X0(t)*S(t) "4~

mO*KO*Ke*Ki*Ks1*V (t)*X0(t)*S(t) "4-mO*KO*Kp*xKi*Ks1*V (t)*X0(t)*S(t) "4~
mO*Ke*Kp*Ki*xKs1*V (t)*X0(t) *S(t) "4-mO*K2*Kp*Ki*Ks1*V (t)*X0(t)*S(t) “4-
alphae*mue*KO*K1xKs1*Ksi*V(t)*X0(t)*S(t) "4~

alphaexmue*K1*K2xKi*Ks1*V (t)*X0(t)*S(t) "4-

mO*xKe*K2*Ki*Ks1*V (t)*X0(t) *S(t) “4-mO*Ke*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) 4~
mO*xKO*K2*Ki*Ks1*V (t)*X0(t)*S(t) “4-
alphae*mue*K2*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) "4~

alphaexmue*KO*K2xKi*Ks1*V (t)*X0(t)*S(t) "4~

alphae*mue*K1*xKi*Ks1*Ksi*V (t)*X0(t)*S(t) "4~

alphae*mue*xKO*xK2xKp*Ki*V (t)*X0(t)*S(t) "3*L(t)-
alphae*mue*KO*K2+Ki*Ksi*V(t)*X0(t)*S(t) "3*L(t)-

mO*KO*Ke*xKp*xKi*V (t)*X0(t)*S(t) "3*L(t)-

alphae*mue*xKO*xK1*xKp*Ki*V (t)*X0(t)*S(t) "3*L(t)-
mO*KO*Kex*K2*Ki*V (t)*X0 (t)*S(t) "3*L(t)-

alphae*mue*KO*K1*K2*Ki*V (t)*X0(t)*S(t) ~3*L(t)-

mO*KO*Kp*Ki*xKsi*V (t)*X0(t)*S(t) "3*xL(t)-

mO*xKO*K2*Ki*Ksi*V (t)*X0(t)*S(t) "3*xL(t)-

mO*KO*KexKi*Ksi*V (t)*X0(t)*S(t) "3*L(t)-

C. Perl Program for Parsing Model Equations 272

alphae*mue*KO*K1*Ki*Ksi*V(t)*X0(t)*S(t) "3*L(t)-
mO*K2*Kp*Ki*Ksi*V (t)*X0(t)*S(t) "3*L(t)-
mO*Ke*Kp*Ki*xKsi*V (t)*X0(t)*S(t) "3*xL(t)-
alphae*mue*K1xK2xKp*Ki*V (t)*X0(t)*S(t) "3*L(t)-
alphaexmue*K1*Kp*Ki*Ksi*V (t)*X0(t)*S(t) "3*L(t)-
mO*xKO*Ke*K2*¥Ksi*V (t)*X0(t)*S(t) "3*xL(t) -
mO*KO*K2*xKp*xKi*V (t)*X0(t)*S(t) "3*L(t)-
alphae*mue*K1*K2*Ki*Ksi*V(t)*X0(t)*S(t) "3*L(t)-
mO*KexK2*Kp*Ki*V (t)*X0 (t)*S(t) "3*L(t)-
mO*xKe*K2*Ki*Ksi*V (t)*X0(t)*S(t) "3*xL(t)-
alphae*mue*K2*xKp*xKi*Ksi*V (t)*X0(t)*S(t) "3*L(t)-
alphae*mue*KO*K1*K2+Ksi*V(t)*X0 (t)*S(t) "3*L(t)-
alphaexmue*KO*Kp*Ki*Ksi*V (t)*X0(t)*S(t) "3*L(t)-
alphaO*muO*KexK2xKs1*Ksi*V (t)*S(t) “4*X1(t)-
alphaO*muO*Ke*Kp*xKi*Ks1*V (t)*S(t) "4*X1(t)-
alphaO*muO*K1*Kp*xKi*Ks1*V (t)*S(t) "4*X1(t)-
alphaO*muO*Kp*xKi*Ks1*Ksi*V(t)*S(t) “4*X1(t)-
alphaO*muO*KexK1xKs1*Ksi*V(t)*S(t) "4*X1(t)-
alphaO*muO*Ke*K1*xKi*Ks1*V (t)*S(t) "4*X1(t)-
alphaO*muO*K1*K2xKi*Ks1*V (t)*S(t) "4*X1(t)-
alphaO*muO*K2*xKp*Ki*Ks1*V (t)*S(t) "4*X1(t) -
alphaO*muO*KexK1*xK2+Ks1*V (t)*S(t) "4*X1(t) -
alphaO*muO*K2*Ki*Ks1*Ksi*V(t)*S(t) "4*X1(t)-
alphaO*muO*KexK2+xKi*Ks1*V (t)*S(t) "4*X1(t) -
alphaO*muO*K1*xKi*Ks1*Ksi*V(t)*S(t) "4*X1(t)-
alphaO*muO*K1*K2xKs1*Ksi*V(t)*S(t) "4*X1(t)-
alphaO*muO*Ke*Ki*Ks1*Ksi*V(t)*S(t) "4*X1(t)-
alphaO*muO*KexK2xKp*Ki*V (t)*S(t) "3*X1(t)*L(t)-
alphaO*muO*K1xK2xKp*Ki*V (t)*S(t) "3*X1(t)*L(t)-
alphaO*muO*Ke*xK1*xK2*Ki*V (t)*S(t) "3*X1(t)*L(t)-

C. Perl Program for Parsing Model Equations

273

alphaO*muO*Ke*K1*Ki*Ksi*V(t)*S(t) "3*X1(t)*L(t)-
alphaO*muO*Ke*K1xK2*Ksi*V (t)*S(t) "3*X1(t)*L(t)-
alphaO*muO*K2*xKp*xKi*Ksi*V (t)*S(t) "3*xX1(t)*L(t)-
alphaO*muO*K1*xKp*xKi*Ksi*V(t)*S(t) "3*xX1(t)*L(t)-
alphaO*muO*K1*K2xKi*Ksi*V (t)*S(t) "3*X1(t)*L(t)-
alphaO*muO*KexK2xKi*Ksi*V (t)*S(t) "3*xX1(t)*L(t)-
alphaO*muO*KexK1xKp*Ki*V (t)*S(t) "3*X1(t)*L(t)-
alphaO*muO*Ke*Kp*Ki*Ksi*V (t)*S(t) "3*X1(t)*L(t)-
mO*KO*Ke*K2*Ki*Ks1*V(t)*X0 (t)*S(t) ~3-
alphae*mue*KO*xK2xKi*Ks1*Ksi*V(t)*X0(t)*S(t) "3~
mO*KO*Ke*xKp*xKi*Ks1*V (t)*X0(t)*S(t) "3~
alphaexmue*K1*K2xKp*Ki*Ks1*V(t)*X0(t)*S(t) "3~
alphaexmue*K2*Kp*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) "3~
mO*Ke*K2*xKp*xKi*Ks1*V (t)*X0(t)*S(t) "3~
alphae*mue*K1*Kp*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) "3~
mO*Ke*Kp*Ki*Ks1xKsi*V(t)*X0(t)*S(t) "3~
mO*xKO*K2*Ki*Ks1*xKsi*V(t)*X0(t)*S(t) 3~
alphae*mue*K1xK2xKi*Ks1*Ksi*V(t)*X0(t)*S(t) "3~
mO*KO*K2*Kp*Ki*Ks1*V(t)*X0 (t)*S(t) ~3-
alphae*mue*KO*K1*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) "3~
alphae*mue*KO*K1*xKp*Ki*Ks1*V (t)*X0(t)*S(t) "3~
mO*xKO*Ke*K2*¥Ks1*xKsi*V (t)*X0(t)*S(t) "3~
alphae*mue*KO*K1xK2*Ks1*xKsi*V (t)*X0(t)*S(t) "3~
alphae*mue*KO*K1*xK2xKi*Ks1*V (t)*X0(t)*S(t) "3~
alphae*mue*xKO*xK2*xKp*xKi*Ks1*V (t)*X0(t)*S(t) "3~
alphae*mue*KO*Kp*Ki*Ks1*xKsi*V(t)*X0(t)*S(t) "3~
mO*xKe*K2*Ki*Ks1*xKsi*V(t)*X0(t)*S(t) "3~
mO*KO*Kp*Ki*xKs1*xKsi*V(t)*X0(t)*S(t) "3~
mO*K2*Kp*Ki*xKs1*xKsi*V(t)*X0(t)*S(t) "3~
mO*KO*Ke*Ki*Ks1xKsi*V(t)*X0(t)*S(t) "3~

C. Perl Program for Parsing Model Equations 274

mO*KO*Ke*K2*Ki*Ksi*V(t)*X0 (t)*S(t) "2*L(t) -
alphae*mue*KO*K2*Kp*Ki*Ksi*V(t)*X0(t)*S(t) "2*L(t)-
mO*KO*K2*xKp*xKi*Ksi*V (t)*X0(t)*S(t) "2+L(t) -
alphae*mue*KO*K1xKp*Ki*Ksi*V(t)*X0(t)*S(t) "2*L(t)-
mO*KO*Kex*K2*Kp*Ki*V (t) *X0(t)*S(t) "2+L(t)-
mO*KO*Ke*xKp*xKi*Ksi*V (t)*X0(t)*S(t) "2+L(t)-
mO*Ke*K2*xKp*xKi*Ksi*V (t)*X0(t)*S(t) "2*L(t) -
alphae*mue*KO*K1*xK2*Ki*Ksi*V(t)*X0(t)*S(t) "2*L(t)-
alphaexmue*KO*K1xK2*Kp*Ki*V (t)*X0(t)*S(t) "2*L(t)-
alphae*mue*K1*xK2xKp*Ki*Ksi*V(t)*X0(t)*S(t) "2*L(t)-
alphaO*muO*KexK1xK2+Ks1*Ksi*V(t)*S(t) "3*xX1(t)-
alphaO*muO*Ke*K1*Kp*Ki*Ks1*V(t)*S(t) "3*X1(t)-
alphaO*muO*K1*K2xKp*Ki*Ks1*V(t)*S(t) "3*X1(t)-
alphaO*muO*Ke*xK2*xKp*Ki*Ks1*V (t)*S(t) "3*xX1(t)-
alphaO*muO*Ke*K2xKi*Ks1*xKsi*V(t)*S(t) "3*X1(t)-
alphaO*muO*K2*Kp*Ki*Ks1*xKsi*V(t)*S(t) "3*X1(t)-
alphaO*muO*Ke*xK1*xK2xKi*Ks1*V (t)*S(t) "3*xX1(t)-
alphaO*muO*K1xK2xKi*Ks1*Ksi*V(t)*S(t) "3*xX1(t)-
alphaO*muO*Ke*K1*Ki*Ks1*xKsi*V(t)*S(t) "3*X1(t)-
alphaO*muO*K1*Kp*Ki*Ks1*xKsi*V(t)*S(t) "3*X1(t)-
alphaO*muO*KexKp*Ki*Ks1*Ksi*V(t)*S(t) "3*xX1(t)-
alphaO*muO*KexK1xKp*Ki*Ksi*V(t)*S(t) "2+X1(t)*L(t)-
alphaO*muO*Ke*K2*Kp*Ki*Ksi*V(t)*S(t) "2*X1 (t)*L(t)-
alphaO*muO*K1*xK2xKp*Ki*Ksi*V(t) *S(t) "2+X1(t)*L(t)-
alphaO*muO*KexK1xK2+Ki*Ksi*V(t) *S(t) "2+X1(t)*L(t)-
alphaO*muO*Ke*K1xK2*Kp*Ki*V (t)*S(t) "2*xX1(t)*L(t)-
alphaexmue*K1*K2xKp*Ki*Ks1*Ksi*V (t)*X0(t)*S(t) "2~
mO*xKO*Ke*K2*¥Ki*Ks1*Ksi*V(t)*X0(t)*S(t) ~2-
alphae*mue*xKO*K1*Kp*Ki*Ks1*Ksi*V (t)*X0(t)*S(t) "2~

alphaexmue*KO*K1*xK2*Ki*Ks1*Ksi*V (t)*X0(t)*S(t) "2~

C. Perl Program for Parsing Model Equations 275

mO*KO*K2*Kp*Ki*Ks1*Ksi*V(t)*X0(t)*S(t) "2~
alphae*mue*KO*K1*xK2*Kp*Ki*Ks1*V (t)*X0(t)*S(t)"2-
alphae*mue*xKO*xK2*xKp*Ki*Ks1*Ksi*V (t)*X0(t)*S(t) "2~
mO*Ke*K2*xKp*xKi*Ks1*xKsi*V(t)*X0(t)*S(t) "2~

mO*KO*Ke*K2*Kp*Ki*Ks1*V (t)*X0(t)*S(t) "2~
mO*KO*Ke*xKp*xKi*Ks1*xKsi*V(t)*X0(t)*S(t) "2~
alphae*mue*KO*xK1*xK2+xKp*Ki*Ksi*V (t)*X0(t)*S(t)*L(t)-
mO*KO*Ke*K2*+Kp*Ki*Ksi*V(t)*X0(t)*S(£)*L(t)-
alphaO*muO*Ke*K1*K2*Ki*Ks1*Ksi*V (t)*S(t) " 2*xX1(t)-
alphaO*muO*K1xK2+xKp*Ki*Ks1*Ksi*V (t)*S(t) "2xX1(t)-
alphaO*muO*Ke*xK1*xK2*xKp*Ki*Ks1*V (t)*S(t) "2*X1(t)-
alphaO*muO*Ke*K2*Kp*Ki*Ks1*Ksi*V (t)*S(t) "2*xX1(t)-
alphaO*muO*Ke*K1*Kp*Ki*Ks1*Ksi*V(t)*S(t) "2*xX1(t)-
alphaO*muO*KexK1*xK2*xKp*Ki*Ksi*V (t)*S(t)*X1(t)*L(t)-
alphae*mue*KO*K1*xK2*Kp*Ki*Ks1*Ksi*V(t)*X0 (t)*S(t)-
mO*KO*Ke*K2*Kp*Ki*Ks1*Ksi*V(t)*X0(t)*S(t)-
alphaO*muO*Ke*xK1*xK2*xKp*Ki*Ksl*xKsi*V(t)*S(t)*X1(t)+(-

diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4*L(t)+

Ffxsf*S(t) "3*L(t))*Ksi*Ki*KpxKe+(-1/2xV (t)*S(t) "4*X1(t)+

1/2%X2(t) *rho*V (t) *S(t) “4) *Ks1*Ki*Kp*Ke*mi+(-

diff (S(t),t)*V(t)*S(t) "2*L(t)-Sigma2*S(t) "3*L(t)+

Ffxsf*S(t) "2*L(t)) *Ksi*Ki*Kp*K2*K1+(-diff (S(t) ,t)*V(t)*S(t) "3*xL(t)-
Sigma2+S(t) "4*L(t)+Ff*sf*S(t) "3*L(t))*Ksi*Ki*K2xKO0+ (-

diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) "3)*Ksi*Ksl*Ki*K2*K1+
(-1/2%V (£)*S(t) "4*X1(t)*L(t)+

1/2%X2(t) *rho*V (t) *S(t) "4*L(t)) *Ki*KexKO*m1+(-1/2*V (t)*S(t) "3*X1(t)+
1/2%X2(t) *rho*V (t) *S(t) "3) *Ks1*¥Ki*Kp*K1*K0*m1+(-1/2*V(t)*S(t) "7*X1(t)+
1/2%X2(t)*rho*V(t)*S(t) "7) *Ksl*ml+(-diff (S(t),t) *V(t)*S(t) "3-
Sigma2*S(t) "4+Ffxsf*S(t) "3) *Ksi*Ks1xKi*Kp*Ke+ (-

diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4*xL(t)+

C. Perl Program for Parsing Model Equations

276

Ffxsf*S(t) "3*L(t))*Ksi*Ki*KpxK1+(-diff (S(t),t)*V(t)*S(t) "3~
Sigma2+S(t) "4+Ff*sf*S(t) ~3) *Ksi*Ks1*Ki*Kp*K1+ (-

diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) "3)*Ksi*Ksl*Ki*K1*Ke+
(-diff (S(t),t)*V(t)*S(t) "2-Sigma2*S(t) "3+

Ffxsf*S(t) "2)*Ksi*Ks1*Ki*Kp*K1*Ke+(-diff (S(t),t)*V(t)*S(t) "3~
Sigma2*S(t) "4+Ffxsf*S(t) "3) *Ksi*Ks1*xKi*Kp*K2+ (-

diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+Ff*sf*S(t) ~5)*Ksl*Ki*KO0+(-
1/2+V () *S(t) "3*X1(t) *L(t)+

1/2%X2(t) *rho*V (t) *S(t) "3+L(t)) *K2*¥Ke*xKO*Ki*mup*alphap+ (-
1/2%V(t)*S(t) "5*X1(t)*L(t)+1/2%X2(t) *rho*V(t)*S(t) "5*L(t))*Ke*KO*m1+ (-
diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) "3)*Ksi*Ksl*Ki*K1*xK0+
(=1/2*V(t)*S(t) "5*X1(t)+1/2+X2(t) *rho*V (t) *S(t) "5) *Ks1*xKe*xKO*m1+ (-
1/2xV(t) *S(t) "4*X1(£)+1/2+X2(t) *rho*xV(t) *S(t) "4) *Ks1*xKi*Ke*xKO*m1+ (-
diff (S(t),t)*V(t)*S(t) "2-Sigma2*S(t) "3+

Ffxsf*S(t) "2) *Ksi*Ks1*Ki*Kp*K2+Ke+(-diff (S(t),t)*V(t)*S(t) "2~
Sigma2+S(t) "3+Ff*sf*S(t) "2) *KO*Ke*xK2*Kp*Ki*Ksl+(-

diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2*S(t) "5*L(t)+

Ffxsf*S(t) “4*L(t))*Ksi*Ki*KO+(-diff (S(t),t)*V(t)-Sigma2*S(t)+
Ff*sf)*KO*xKexK1*K2*¥Kp*Ki*Ks1*Ksi+(-diff (S(t),t)*V(t)*S(t) "5*L(t)-
Sigma2+S(t) "6*L(t)+Ff*sf*S(t) "5xL(t))*KO*xK1+(-

diff (S(t),t)*V(t)*S(t) "5*L(t)-Sigma2*S(t) "6*L(t)+

Ffxsf*S(t) "5*L(t)) *Kp*Ki+(-diff (S(t),t)*V(t)*S(t) "5*L(t)-

Sigma2%S(t) "6*L(t)+Ff*sf*S(t) "5xL(t))*KO*Ke+ (-

diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4*L(t)+

Ffxsf*S(t) "3*L(t)) *Ksi*Ki*K2xK1+(-1/2*V(t)*S(t) "3*xX1(t)*L(t)+
1/2%X2(t) *rho*V (t) *S(t) "3+L(t)) *Ki*Kp*K1*KO*mi+(-

diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4*xL(t)+

Ff*sf*S(t) "3*L(t))*Ksi*Ki*K1*xKO+(-diff (S(t),t)*V(t)*S(t) "4-
Sigma2*S(t) "5+Ffxsf*S(t) "4) *Ksi*Ks1*xKi*xK2+(-

diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2*S(t) "5*xL(t)+

C. Perl Program for Parsing Model Equations

277

FE*xsfxS(t) "4*L(t))*K0*KexK2+(-diff (S(t) ,t)*V(t)*S(t) "3-Sigma2*S(t) "4+
Ff*sf*S(t)~3) *Ks1*Ki*Kp*K1*Ke+(-diff (S(t),t)*V(t)*S(t) "2+L(t)-
Sigma2*S(t) "3*xL(t)+Ff*sf*S(t) "2+L(t))*Ksi*Ki*Kp*K2*Ke+ (-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4)*Ksi*Ksl*Ke*KO+ (-
diff(S(t),t)*V(t)*S(t) "2-Sigma2*S(t) "3+

Ffxsf*S(t) ~2) *KO*K1*#K2*+Kp*Ki*Ksl+(-diff (S(t),t)*V(t)*S(t) "2~
Sigma2*S(t) "3+Ff*xsf*S(t) "2) *Ksi*Ks1*xKi*Kp*K2*K1+ (-

diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) ~3) *Ksi*Ks1*Ki*Kp*KO+
(-1/2*%V(t)*S(t) "3*X1(t)+

1/2*X2(t) *rho*V (t)*S(t) ~3) *Ks1*K2xK1*KO*Ki*mup*alphap+ (-

diff (S(t),t)*V(t)*S(t) "2*L(t)-Sigma2*S(t) "3*L(t)+

Ffxsf*S(t) "2*L(t))*Ksi*Ki*Kp*xK2*KO+(-diff (S(t),t)*V(t)*S(t)"~3-
Sigma2+S(t) "4+Ff*sf*S(t) "3) *Ksi*Ks1*Ki*xK2xKO0+(V(t)*X0(t)*S(t) "2«L(t)+
V(t)*S(t) "2*X1(t) *L(t)) *Ki*K1*Ke*KO*Ksi*mul+ (-

diff(S(t),t)*V(t)*S(t) "2-Sigma2*S(t) "3+

Ffxsf*S(t) ~2)*Ksi*Ks1*Ki*K2xK1*K0+(-diff (S(t),t)*V(t)*S(t)-
Sigma2*S(t) "2+Ffxsf*S(t))*KO*K1*+K2*+Kp*Ki*Ksl*Ksi+ (-

1/2xV(t)*S(t) "3*xX1(t)*L(t)+

1/2%X2(t) *rho*V (t) *S(t) "3*L(t)) *Ki*Kp*Ke*KO*m1+(-

diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4*xL(t)+

Ff*sf*S(t) "3*L(t))*Ksi*Ki*Ke*xKO+(-diff (S(t),t)*V(t)*S(t) "2*xL(t)-
Sigma2*S(t) "3*xL(t)+Ff*sf*S(t) "2+L(t)) *KO*Ke*K2*Kp*Ki+ (-

diff (S(t),t)*V(t)*S(t)-Sigma2*S(t) "2+
Ffxsf*S(t))*KO*xKexK2+Kp*Ki*Ksl*Ksi+(-diff (S(t),t)*V(t)*S(t) " 2+L(t)-
Sigma2*S(t) "3*xL(t)+Ff*sf*S(t) "2+L(t)) *Ke*K1*K2*Kp*Ki+ (-

diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4*L(t)+

FfxsfxS(t) "3*%L(t))*Ksi*Ki*K1xKe+(-diff (S(t),t)*V(t)*S(t) "2*L(t)-
Sigma2*S(t) "3*xL(t)+Ff*sf*S(t) "2+L(t))*Ksi*Ki*Kp*K1*Ke+ (-

diff (S(t),t)*V(t)*S(t) "5*L(t)-Sigma2*S(t) "6*xL(t)+

Ffxsf*S(t) "5*L(t))*Ke*K1+(-diff (S(t),t)*V(t)*S(t) "6xL(t)-

C. Perl Program for Parsing Model Equations 278

Sigma2+S(t) "7*L(t)+Ff*sf*S(t) "6*L(t))*Ksi+(-

diff(S(t),t)*V(t)*S(t) "6*L(t)-Sigma2*S(t) "7*L(t)+

FEfxsf*S(t) "6*L(t)) *Ki+(-1/2xV(t)*S(t) "5*xX1(t)*L(t)+

1/2*X2(t) *rho*V (t) *S(t) “5+L(t)) *Ki*Ke*m1+(V(t)*X0(t)*S(t) “4*L(t)+
V(t)*S(t) ~4*X1(t)*L(t))*K2*xKexKsi*mul+(-diff (S(t),t)*V(t)*S(t) "2xL(t)-
Sigma2*S(t) "3*xL(t)+Ff*sf*S(t) "2+L(t))*Ksi*Ki*K2+K1*xK0+ (-

diff (S(t),t)*V(t)*S(t) "2*L(t)-Sigma2*S(t) "3*L(t)+

FExsf*S(t) "2*L(t)) *KO*K1*K2*Kp*Ki+(V(t)*X0(t)*S(t) "4*L(t)+

V(t)*S(t) ~4*X1(t)*L(t))*Ki*Kp*Ksi*mul+(-diff(S(t),t)*V(t)*S(t) "2+L(t)-
Sigma2*S(t) "3*xL(t)+Ff*sf*S(t) "2+L(t))*Ksi*Ki*Kp*Ke*KO+ (-

diff (S(t),t)*V(t)*S(t)-Sigma2*S(t) "2+
Ffxsf*S(t))*Ksi*Ksl*Ki*K2xK1*xKe*xKO+(-diff (S(t),t)*V(t)*S(t)*L(t)-
Sigma2+S(t) "2*L(t)+FE*sf*S(t)*L(t))*Ksi*Ki*Kp*K1*KexKO+ (-

diff (S(t),t)*V(t)*S(t) "2*L(t)-Sigma2*S(t) "3*L(t)+

FfxsfxS(t) "2*xL(t))*Ksi*K2*xK1*xKe*xKO+(-diff (S(t),t)*V(t)*S(t) "2-
Sigma2+S(t) "3+Ff*sf*S(t) "2) *Ksi*Ks1*K2xK1*xKe*K0+ (-

diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) ~3)*Ksi*Ksl*K1*xKe*KO+
(-diff (S(t) ,t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) “4*L(t)+

Ffxsf*xS(t) "3*%L(t))*Ksi*K1*xKexKO+(-diff (S(t),t)*V(t)*S(t) "2*L(t)-
Sigma2+S(t) "3*L(t)+FE*xsf*S(t) "2*L(t)) *Ksi*Ki*K1xKe*xKO0+ (-

diff (S(t),t)*V(t)*S(t)-Sigma2*S(t) "2+

Ffxsf*S(t)) *KO*xKexK1*xK2+xKp*Ki*Ksl+(-1/2*V(t)*S(t) “7*X1(t)*L(t)+
1/2%X2(t) *rho*V (t) *S(t) "7T*L(t)) *m1+(-diff (S(t) ,t)*V(t)*S(t)*L(t)-
Sigma2*S(t) "2*xL(t)+Ff*sf*S(t)*L (t))*Ksi*Ki*Kp*K2*xK1*Ke+ (-

diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) ~3)*Ksi*Ksl*K2*K1*xK0+
(-diff(S(t),t)*V(t)*S(t) "2-Sigma2*S(t) "3+

Ffxsf*S(t) "2) #*Ksi*Ks1*xKi*Kp*K1*KO0+(~diff (S(t),t) *V(t)*S(t) "3*L(t)-
Sigma2*S(t) "4xL(t)+Ff*sf*S(t) "3*L(t))*Ksi*K2*xKe*KO+ (-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4)*Ksi*Ksl*K1*xK0+ (-
diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+Ff*sf*S(t) "5)*Ksi*Ks1*KO+(—

C. Perl Program for Parsing Model Equations

279

1/2xV(t) *S(t) "3*X1 () *L(t)+

1/2%X2(t) *rho*V (t) *S(t) "3+L(t)) *Ksi*K2*K1*Ki*mup*alphap+ (-
diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2*S(t) "5*xL(t)+

Ffxsf*S(t) "4*L(t))*Ksi*Ke*xKO0+(-1/2*V(t)*S(t) "4*X1(t)*L(t)+
1/2%X2(t) *rho*V (t) *S(t) "4*L(t)) *Ksi*K2*Ki*mup*alphap+ (-

1/72xV () *S(t) "3*X1(t)+

1/2xX2(t) *rho*V (t)*S(t) ~3) *Ksi*Ks1*K2*Ke*Ki*mup*alphap+ (-
1/2xV(t) *S(t) "3*X1 () *L(t)+

1/2%X2(t) *rho*V (t) *S(t) "3*L(t)) *Ksi*K2*Ke*Ki*mup*alphap+ (-
1/2xV(£)*S(t) "2+X1(t) *L(t)+

1/2*X2(t) *rho*V (t) *S(t) “2+L(t)) *Ksi*K2+K1*Ke*Ki*mup*alphap+ (-
1/2xV(t) *S(t) "3*X1(t)+

1/2%X2(t) *rho*V (t) *S(t) ~3) *Ksi*Ks1*K2xK1*Ki*mup*alphap+ (-
diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2*S(t) "5*xL(t)+

FEfxsf*S(t) "4*L(t)) *KexK1*xK2+(~-1/2xV (t) *S(t) "3+X1(t) *L(t)+
1/2%X2(t) *rho*V (t) *S(t) "3+L(t)) *Ks1*K2*K0*Ki*mup*alphap+ (-
1/72xV () *S(t) "2*X1(t)+

1/2*X2(t) *rho*V (t) *S(t) “2) *Ksi*Ks1*K2*K1*Ke*Ki*mup*alphap+ (-
1/2+V () *S(t) "2*X1(t)+

1/2%X2(t) *rho*V (t) *S(t) "2) *Ksi*Ks1*K2xK1*KO*Ki*mup*alphap+ (-
1/2xV(£)*S(t) "2xX1(t) *L(t)+

1/2*X2(t) *rho*V (t)*S(t) “2+L(t)) *Ksi*K2*K1*KO*Ki*mup*alphap+ (-
1/2+V () *S(t) "2*X1(t)+

1/2*X2(t) *rho*V (t) *S(t) “2) *Ksi*Ks1*K1*Ke*KO*Ki*mup*alphap+ (-
1/2xV(£)*S(t) "2+X1(t) *L(t)+

1/2%X2(t) *rho*V (t) *S(t) "2+L(t)) *Ksi*K1*Ke*KO*Ki*mup*alphap+ (-
diff(S(t),t)*V(t)*S(t) "2-Sigma2*S(t) "3+

Ffxsf*S(t) ~2) *Ke*K1*#K2*Kp*Ki*Ksl+(-diff (S(t) ,t)*V(t)*S(t)-
Sigma2*S(t) "2+Ffxsf*S(t))*Ke*K1*#K2*+Kp*Ki*Ksl*Ksi+ (-

diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) "3) *Ksi*Ks1*K2*xK1*Ke+

C. Perl Program for Parsing Model Equations 280

(-diff(S(t),t)*V(t)*S(t) "2+L(t)-Sigma2*S(t) "3*xL(t)+
FEfxsf*S(t) "2*L(t)) *Ksi*Ki*Kp*K1*KO+(-diff (S(t),t)*V(t)*S(t) "4*L(t)-
Sigma2*S(t) "5xL(t)+Ff*sf*S(t) “4*L(t))*Ksi*K1*Ke+ (-

diff (S(t),t)*V(t)*S(t) "7-Sigma2*S(t) "8+Ff*sf*S(t) ~7)*Ksl+(-
diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4*L(t)+

Ffxsf*S(t) "3*L(t))*Ksi*K2xK1xKO+(-1/2xV(t)*S(t) "4*X1(t)+
1/2*X2(t) *rho*V (t) *S(t) “4) *Ksi*Ks1*K1*Ki*mup*alphap+(-

1/2xV (t) *S () *X1(t) +

1/2%X2(t) *rho*V (t) *S(t)) *Ksi*Ks1*K2xK1*Ke*KO*Ki*mup*alphap+ (-
1/72xV () *S(t) "2*X1(t)+

1/2*X2(t) *rho*V (t) *S(t) ~2) *Ks1*K2xK1*xKe*K0*Ki*mup*alphap+(-
1/2%V(£)*S(£)*X1(t)*L(t)+

1/2%X2(t) *rho*V (t) *S(t) *L (t)) *Ksi*K2*K1*Ke*xKO*Ki*mup*alphap+ (-
1/2%V () *S(t) "4*X1(t)*L(t)+

1/2%X2(t) *rho*V(t) *S(t) "4*L(t)) *Ksi*KO*Ki*mup*alphap+ (-
1/2xV(t)*S(t) "3*X1(t)+

1/2xX2(t) *rho*V (t) *S(t) ~3) *Ksi*Ks1*K1*KO*Ki*mup*alphap+ (-
1/2%V () *S(t) "3*X1(t) *L(t)+

1/2%X2(t) *rho*V (t) *S(t) "3*L(t)) *Ksi*K1*KO*Ki*mup*alphap+ (-
1/2+V () *S(t) ~4*X1(t)+

1/2*X2(t) *rho*V (t) *S(t) “4) *Ksi*Ks1*KO*Ki*mup*alphap+(-

1/72xV () *S(t) "3*X1(t)+

1/2%X2(t) *rho*V (t) *S(t) ~3) *Ksi*Ks1*KexKO*Ki*mup*alphap+ (-
1/2%V () *S(t) "3*X1(t) *L(t)+

1/2*X2(t) *rho*V (t)*S(t) “3*L(t)) *Ksi*Ke*KO*Ki*mup*alphap+ (-
1/2xV (t) *S(t) "5*X1 () *L(t)+

1/2%X2(t) *rho*V (t) *S(t) "5+L(t)) *K2*Ki*mup*alphap+ (-

1/72xV () *S(t) "5*X1(t)+

1/2*X2(t) *rho*V (t)*S(t) “5) *Ksi*Ksl*Ki*mup*alphap+ (-
1/2xV(t)*S(t) "3*X1 () *L(t)+

C. Perl Program for Parsing Model Equations 281

1/2%X2(t) *rho*V (t) *S(t) ~3*L(t)) *Ksi*K1*Ke*Ki*mup*alphap+(-

diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2xS(t) "5*L(t)+

Ff*sf*S(t) "4*L(t))*KO*Ke*K1+(-diff (S(t),t)*V(t)*S(t) "4*L(t)-
Sigma2*S(t) "5xL(t)+Ff*sf*S(t) “4*L(t))*Ki*Kp*K1+(-

diff (S(t),t)*V(t)*S(t)*L(t)-Sigma2+S(t) "2*L(t)+
Ffxsf*S(t)*L(t))*KO*Ke*K1*K2*Kp*Ki+(-diff (S(t) ,t)*V(t)*S(t) "3*L(t)-
Sigma2*S(t) "4xL(t)+Ff*sf*S(t) "3*L(t))*KO*Ke*K1*K2+ (-

diff (S(t),t)*V(t)*S(t) "6*L(t)-Sigma2xS(t) "T*L(t)+

FExsf*S(t) "6*L (1)) *K2+(-diff (S(t),t) *V(t)*S(t) "6xL(t)-

Sigma2*S(t) “7TxL(t)+Ff*sf*S(t) "6+L(t))*K1+(-

diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2*S(t) "5*L(t)+

Ff*xsfxS(t) "4*L(t))*KO*K1*xK2+(-diff (S(t) ,t)*V(t)*S(t) "6xL(t)-
Sigma2*S(t) ~T*L(t)+FE*sf*S(t) "6*L(t))*K0+(-1/2*V(t)*S(t) "5*xX1(t)*L(t)+
1/2*X2(t) *rho*V (t)*S(t) "5*L(t)) *K1*Ki*mup*alphap+ (-
1/2xV(t)*S(t) "3*X1 () *L(t)+

1/2%X2(t) *rho*V (t) *S(t) ~3*L(t)) *K1*Ke*xKO*Ki*mup*alphap+ (-
1/2xV(t)*S(t) "4*X1(t)*L(t)+

1/2*X2(t) *rho*V (t)*S(t) “4*L(t)) *Ki*Kp*Ke*ml+(-1/2xV (t)*S(t) "5xX1(t)+
1/2%X2(t) *rho*V (t)*S(t) ~5) *Ks1*K2*Ki*mup*alphap+ (-
1/2xV(t) *S(t) "4*X1(t)+

1/2*X2(t) *rho*V (t) *S(t) “4) *Ks1*K2*xK1*Ki*mup*alphap+ (-

1/72xV () *S(t) "3*X1(t)+

1/2%X2(t) *rho*V (t)*S(t) ~3) *Ks1*¥K2*xKe*KO*Ki*mup*alphap+ (-
1/2%V(t)*S(t) "5*X1(t)*L(t)+1/2+X2(t) *rho*V(t)*S(t) "5*L(t))*K1*Ke*ml+(-
1/2xV(£)*S(t) "3*xX1(t)*L(t)+

1/2%X2(t) *rho*V (t) *S(t) ~3*L(t)) *K2*¥K1*KO*Ki*mup*alphap+ (-
1/2xV(t)*S(t) "3*X1(t)+

1/2*X2(t) *rho*V (t)*S(t) ~3) *Ks1*xK2xK1*Ke*Ki*mup*alphap+ (-
1/2xV(t)*S(t) "3*xX1(t)*L(t)+

1/2%X2(t) *rho*V (t) *S(t) ~3*L(t)) *K2*K1xKe*Ki*mup*alphap+ (-

C. Perl Program for Parsing Model Equations 282

1/2xV(t) *S(t) "4*X1(t)+

1/2%X2(t) *rho*V (t) *S(t) ~4) *Ks1*¥K2*Ke*Ki*mup*alphap+ (-

1/2%V () *S(t) "4*X1(t)*L(t)+

1/2*X2(t) *rho*V (t) *S(t) “4*L (t)) *K2*Ke*Ki*mup*alphap+(-

1/2xV(t)*S(t) ~2*X1(t)*L(t)+

1/2*X2(t) *rho*V (t)*S(t) “2+L(t)) *K2*K1*Ke*KO*Ki*mup*alphap+ (-

1/72xV () *S(t) "2*X1(t)+

1/2*X2(t) *rho*V (t) *S (t) ~2) *Ksi*Ks1*K2*Ke*KO*Ki*mup*alphap+ (-
1/2xV(t)*S(t) ~2*X1(t)*L(t)+

1/2*X2(t) *rho*V (t) *S(t) “2+L(t)) *Ksi*K2*Ke*KO*Ki*mup*alphap+ (-

1/2%V () *S(t) "4*X1(t)*L(t)+

1/2%X2(t) *rho*V (t)*S(t) "4*L(t)) *Ksi*K1*Ki*mup*alphap+ (-
1/2xV(t) *S(t) "4*X1(t)+

1/2*X2(t) *rho*V (t) *S(t) “4) *Ksi*Ks1*Ke*Ki*mup*alphap+(-

1/2xV(t)*S(t) ~4*X1(t)*L(t)+

1/2%X2(t) *rho*V (t) *S(t) "4*L(t)) *Ksi*Ke*Ki*mup*alphap+ (-

1/72xV () *S(t) "3*X1(t)+

1/2*X2(t) *rho*V (t) *S(t) ~3) *Ksi*Ks1*K1*Ke*Ki*mup*alphap+

(V(£)*X0(£) *S(£) "2*xL(t)+V(t)*S(t) "2*X1(t) *L(t)) *Ki*K2*xKe*KO*Ksi*mul+
(V(£) *X0 (1) *S(t) "3*L(t)+V () *S(t) "3*X1(t) *L(t)) *K2*Ke*KO*Ksi*mul+
(V(t)*X0(t)*S(t) "3*xL(t)+V(t)*S(t) "3*X1(t)*L(t))*K1*xKe*KO*Ksi*mul+
(V(E)*XO(£)*S () *L(t)+V(t) *S(t) *X1(t)*L(t)) *Ki*Kp*K2*Ke*KO*Ksi*mul+
(V(£)*X0(t) *S(t) "6*L(t)+V(t) *S(t) "6*X1(t)*L(t))*Ksi*mul+

(V(t)*X0 () *S (L) *L(t)+V(t) *S(t) *X1(t)*L(t))*Ki*K2*¥K1*xKe*KO*Ksi*mul+
(V(t)*X0(t)*S(t) "2*xL(t)+V(t)*S(t) "2*%X1(t) *L(t)) *K2+xK1*Ke*KO*Ksi*mul+
(V(t)*X0(t)*S(t) "4*L(t)+V(t)*S(t) "4*xX1(t)*L(t))*K1xKe*Ksi*mul+

(V(£) *#X0 (1) *S(t) "3*L(t)+V () *S(t) "3*X1(t) *L(t)) *Ki*K1*xKO*Ksi*mul+
(V(t)*X0(t)*S(t) "4*L(t)+V(t)*S(t) "4*X1(t)*L(t))*K1*xKO*Ksi*mul+
(V(t)*XO(£)*S(t) "2xL(t)+V () *S(t) "2*X1(t) *L(t)) *Ki*xKp*K1*KexKsi*mul+
(V(£)*X0 () *S(t) "4*L(t)+V(t)*S(t) "4*X1(t) *L (t)) *Ki*K2+Ksi*mul+

C. Perl Program for Parsing Model Equations 283

(V(£)*X0 (t)*S(t) "2*L(t)+V(t)*S(t) "2*X1(t) *L(t)) *Ki*Kp*Ke*KO*Ksi*mul+
(V(£) *#X0 (1) *S(t) "3*L(t)+V () *S(t) "3*X1(t) *L(t)) *Ki*Ke*xKO*Ksi*mul+
(V(£)*X0(t)*S(t) "4*L(£)+V(t)*S(t) "4*X1(t) *L(t)) *Ke*KO*Ksi*mul+
(V(t)*X0(t)*S(t) "3*L(t)+V(t)*S(t) "3*X1(t) *L(t)) *Ki*Kp*Ke*Ksi*mul+
(V) *X0(t)*S(t) ~"4*L(t)+V(t)*S(t) ~4*X1(t) *L(t)) *Ki*Ke*Ksixmul+
(V(t)*X0(£)*S(t) "3*xL(t)+V(t)*S(t) "3*X1(t)*L(t)) *Ki*xKp*xK1*Ksi*mul+ (-
1/2%V(t)*S(t) "4*X1(t)+

1/2*X2(t) *rho*V (t) *S (t) ~4) *Ks1*K2*K0*Ki*mup*alphap+

(V(£)*X0 () *S(t) "4*xL(£)+V(t)*S(t) "4*X1(t)*L (t)) *Ki*KO*Ksi*mul+
(V(£)*X0(t)*S(t) "4*L(£)+V(t)*S(t) "4*X1(t) *L(t)) *Ki*K1*Ksi*mul+
(V(t)*X0 () *S(t) "3*L(t)+V(t)*S(t) "3*X1(t) *L(t)) *Ki*Kp*K2*Ksi*mul+
(V(£)*X0 () *S(t) "2*L(t)+V(t)*S(t) "2*X1(t) *L (t)) *Ki*Kp*K1*KO*Ksi*mul+
(V(£) *X0 (1) *S(t) "3*L(t)+V () *S(t) "3*X1(t) *L(t)) *Ki*K1*Ke*Ksi*mul+
(V(t)*X0 () *L(£)+V(t)*X1(t) *L(t)) *kKi*Kp*K2*K1*Ke*KO*Ksi*mul+
(V(£)*X0 (£)*S () *L(t)+V(t) *S(t) *X1 (t)*L(t)) *Ki*Kp*K1*xKe*KO*Ksi*mul+ (-
1/2xV(t)*S(t) ~4*X1(t)*L(t)+

1/2%X2(t) *rho*V (t) *S(t) “4*L(t)) *Ki*K1*Ke*m1+(-1/2*V (t)*S(t) "5*X1(t)+
1/2%X2(t) *rho*V(t)*S(t) “5) *Ks1*K1*Ke*m1+(V(t)*X0(t) *S(t) "3+xL(t)+
V(t)*S(t) "3*%X1(t)*L(t))*Ki*K2*Ke*Ksi*mul+(V(t)*X0(t)*S(t) "2*xL(t)+
V(£)*S(t) ~2*X1(t) *L(t)) *Ki*Kp*K2*K1*Ksi*mul+(-

1/2%V(t)*S(t) "5*X1(t)*L(t)+1/2%X2(t) *rho*V(t)*S(t) "5*L(t))*K1*KO*m1+
(V(t)*X0(£)*S(t) "3*xL(t)+V(t)*S(t) "3*X1(t)*L(t)) *Ki*xKp*xKO*Ksi*mul+ (-
diff (S(t),t)*V(t)*S(t) "2-Sigma2*S(t) "3+

Ffxsf*S(t) "2) *Ksi*Ks1*Ki*K1*KexKO0+(-1/2%V(t)*S(t) "5*xX1(t)+

1/2*X2(t) *rho*V (t) *S(t) “5) *Ks1*xKixKp*m1+(-1/2+V(t)*S(t) "3*X1(t)+
1/2%X2(t) *rho*V (t)*S(t) ~3) *Ks1*Ki*K1*Ke*xKO*m1+ (-
1/2xV(t)*S(t) "3*X1 () *L(t)+

1/2%X2(t) *rho*V(t) *S(t) “3+L(t)) *Ki*K1xKe*KO*m1+(-

1/2%V(t) *S(t) "4*X1(t)+1/2%X2(t) *rhoxV (t) *S(t) ~4) *Ks1*K1*Ke*xKO*m1+ (-
1/2xV(t)*S(t) "5*X1(£)*L(t)+1/2*X2(t) *rho*V (t) *S(t) "5*L(t)) *Ki*K1*mi+ (-

C. Perl Program for Parsing Model Equations

284

diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2xS(t) “4*L(t)+

Ffxsf*S(t) "3*L(t))*Ksi*Ki*Kp*xK2+(-1/2+V(t)*S(t) "4*X1(t)*L(t)+
1/2*X2(t) *rho*V (t) *S(t) “4*L(t)) *K1*KO*Ki*mup*alphap+(-

1/72xV () *S(t) "4*X1(t)+

1/2%X2(t) *rho*V (t) *S(t) ~4) *Ks1*K1*KO*Ki*mup*alphap+ (-

1/2xV(t) *S(t) "5*X1 () *L(t)+1/2*xX2(t) *rho*V (t) *S(t) "5xL(t)) *Ki*Kp*ml+ (-
1/2%V(t)*S(t) "6*X1(t)+1/2%X2(t) *rho*V(t)*S(t) "6) *Ks1*Ki*ml+ (-

1/2xV (t)*S(t) "5*X1(t)+1/2%X2(t) *rho*V(t)*S(t) "5) *Ks1*Ki*K1*m1+

(V(£) *#X0 (1) *S(t) "3*L(t)+V () *S(t) "3*X1(t) *L(t)) *Ki*K2*K1*Ksi*mul+
(V(t)*X0(t)*S(t) "4*L(t)+V(t)*S(t) “4*X1(t)*L(t))*K2*xK1*Ksi*mul+(-
1/2xV(t) *S(t) "5*X1(t)+1/2%X2(t) *rho*V(t)*S(t) ~5) *Ks1*K1*Ki*mup*alphap+
(-1/2*V(t)*S(t) "3*X1(t)+

1/2%X2(t) *rho*V (t)*S(t) ~3) *Ks1*¥K1*Ke*KO*Ki*mup*alphap+ (-

1/72xV () *S(t) "4*X1(t)+

1/2%X2(t) *rho*V (t) *S(t) ~4) *Ks1*¥Ke*KO*Ki*mup*alphap+ (-

1/2xV(t)*S(t) ~4*X1(t)*L(t)+

1/2*X2(t) *rho*V (t) *S(t) “4*L(t)) *Ke*KO*Ki*mup*alphap+(-

1/2%V(t)*S(t) "6*X1(t)*L(t)+1/2%X2(t) *rho*V(t)*S(t) "6*L(t))*Ki*ml+ (-
1/2xV (t)*S(t) "5*X1 () *L(t)+

1/2*X2(t) *rho*V (t) *S (t) "5*L (t)) *KO*Ki*mup*alphap+ (-

1/72xV () *S(t) "4*X1(t)+

1/2*X2(t) *rho*V (t) *S(t) “4) *Ks1*K1*KexKi*mup*alphap+ (-

1/2xV(t)*S(t) ~4*X1(t)*L(t)+

1/2xX2(t) *rho*V (t) *S(t) “4*L(t)) *K1*Ke*Ki*mup*alphap+(-

1/2xV(t) *S(t) "5*X1(t)+1/2%X2(t) *rho*V(t)*S(t) ~5) *Ks1*KO*Ki*mup*alphap+
(-1/2%V(t) *S(t) "6*X1(t)+1/2%X2(t) *rho*V(t)*S(t) "6) *Ks1*Ki*mup*alphap+
(-1/2%V(£)*S(t) "5*X1 (t)*L(t)+

1/2*X2(t) *rho*V (t)*S(t) "5*L(t)) *Ksi*Ki*mup*alphap+ (-

1/72%V () *S(t) "6*X1(t)*L(t)+

1/2%X2(t) *rho*V (t) *S(t) “6*L(t)) *Ki*mup*alphap+(-1/2%V(t)*S(t) "5*X1(t)+

C. Perl Program for Parsing Model Equations 285

1/2%X2(t) *rho*V (t)*S(t) "5) *Ks1*Ke*Ki*mup*alphap+ (-
1/2xV(t) *S(t) "5*X1 () *L(t)+

1/2*X2(t) *rho*V (t)*S(t) "5*L(t)) *Ke*Ki*mup*alphap+ (-

1/2%V(t)*S(t) "5*X1(t)+1/2%X2(t) *rho*V(t) *S(t) "5) *Ks1*K1*KO*m1+ (-
1/2xV(t) *S(t) "4*X1(t)+

1/2*X2(t) *rho*V (t) *S(t) “4) *Ksi*Ks1*K2*Ki*mup*alphap+(-

1/2%V(t) *S(t) "4*X1(t)+1/2%X2(t) *rho*xV(t) *S(t) "4) *Ks1*Ki*K1*xKe*ml+ (-
1/2xV(t) *S(t) "3*X1 () *L(t)+

1/2%X2(t) *rho*V (t) *S(t) "3*L(t)) *Ki*Kp*xK1*Ke*mi+(-

1/2%V(t)*S(t) "6*X1(t)*L(t)+1/2+X2(t) *rho*V(t)*S(t) "6*L(t))*Ke*ml+ (-
diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+Ff*sf*S(t) ~5)*Ksl*Ki*Kp+(-
diff (S(t),t)*V(t)*S(t) "6-Sigma2*S(t) "7T+Ff*sf*S(t) "6) *Ksi*Ksl+(-
1/2xV(t) *S(t) "3*X1(t)+

1/2xX2(t) *rho*V (t) *S(t) ~3) *Ksi*Ks1*K2*KO*Ki*mup*alphap+ (-
diff(S(t),t)*V(t)*S(t) "5*L(t)-Sigma2xS(t) "6*L(t)+

FE*sE*S(t) "5*L(t)) *Ki*K2+(-diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+
Ffxsf*S(t) "5) #*Ks1*xKi*xK2+(-diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+
Ff*sf*S(t) ~3) *Ks1*Ki*K2*xK1*KO+(-diff (S(t) ,t)*V(t)*S(t) "4*L(t)-
Sigma2*S(t) "5*L(t)+Ffxsf*S(t) "4*L(t))*Ki*Ke*K0+(-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4) *Ks1*Ki*Ke*K0+(-
diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4)*Ks1l*Ki*K2*xKe+ (-
diff (S(t),t)*V(t)*S(t) "2*L(t)-Sigma2*S(t) "3*L(t)+

Ff*sf*S(t) "2*L(t)) *Ki*Kp*K1*Ke*K0+(-diff (S(t),t)*V(t)*S(t)"3-
Sigma2*S(t) "4+Ff*xsf*S(t) ~3) *Ks1*K2*K1*Ke*KO+ (-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4)*Ks1l*K1*Ke*xKO+ (-
diff (S(t),t)*V(t)*S(t)*L(t)-Sigma2+S(t) "2*L(t)+
Ff*sf*S(t)*L(t))*Ksi*Ki*Kp*K2+K1*K0+(-diff(S(t),t)*V(t)*S(t) "5*L(t)-
Sigma2*S(t) "6xL(t)+Ff*sf*S(t) "5+L(t))*Ksi*KO+ (-

diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4*L(t)+

Ff*sf*xS(t) "3*L(t))*Ksi*K2xK1*Ke+(-diff (S(t),t)*V(t)*S(t) "5*L(t)-

C. Perl Program for Parsing Model Equations 286

Sigma2+*S(t) "6*L(t)+Ff*sf*S(t) "5*L(t))*Ksi*Ke+(-

diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+Ff*sf*S(t) "5)*Ksi*Ksl*Ke+(-
diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4*L(t)+

Ff*sf*S(t) "3*L(t))*Ki*K2*xK1*Ke+ (-diff (S(t),t)*V(t)*S(t) " 3-
Sigma2*S(t) "4+Ff*sf*S(t) ~3) *Ks1*Ki*K2*K1xKe+ (-

diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+Ff*sf*S(t) ~5)*Ksl*Ki*Ke+ (-
diff (S(t),t)*V(t)*S(t) "5*L(t)-Sigma2*S(t) "6*L(t)+

FfxsfxS(t) "5xL(t))*K2*Ke+ (-diff (S(t),t) *V(t)*S(t) ~4*L(t)-
Sigma2*S(t) "5*L(t)+Ffxsf*S(t) "4*L(t))*Ki*K2*Ke+(-

diff (S(t),t)*V(t)*S(t) "6*L(t)-Sigma2*S(t) "7*L(t)+

Ff*xsf*S(t) "6*L(t))*Ke+(-diff(S(t),t)*V(t)*S(t) "5*xL(t)-

Sigma2*S(t) “6*L(t)+Ff*sf*S(t) "5xL(t))*KixK1+(-

diff (S(t),t)*V(t)*S(t) "5*L(t)-Sigma2xS(t) "6*L(t)+

Ffxsf*S(t) "5*L(t)) *K2*K1+(-diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+
Ff*sfxS(t) "5) *Ks1*Ki*K1+(-diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+
FE*sfxS(t) "5) *Ks1*K2*K1+(-diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+
Ff*sf*S(t) "4) *Ksi*Ks1*Ki*KO+(-diff (S(t),t)*V(t)*S(t) "4*L(t)-
Sigma2*S(t) "5xL(t)+Ff*sf*S(t) “4*L(t))*Ksi*Ki*Kp+(-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4)*Ksi*Ks1*Ki*Kp+ (-
diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2xS(t) "5*L(t)+

Ffxsf*S(t) "4*L(t))*Ksi*Ki*K2+(-1/2*V(t)*S(t) "4*X1(t)*L(t)+

1/2%X2(t) *rho*V(t)*S(t) “4*L(t))*Ki*K1*xKO*m1+ (-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4)*Ksi*Ks1*xK2*Ke+ (-
diff (S(t),t)*V(t)*S(t) "2-Sigma2*S(t) "3+

Ffxsf*S(t) "2) *Ksi*Ks1*Ki*Kp*Ke*KO+(-diff (S(t),t)*V(t)*S(t) "6~
Sigma2+S(t) “T+Ff*sf*S(t) ~6) *Ks1*Ki+(~diff (S(t),t)*V(t)*S(t) "5*L(t)-
Sigma2%S(t) "6*L(t)+Ff*sf*S (t) "5kL(t))*K2+K0+ (-

diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+Ff*sf*S(t) ~5)*Ks1l*K2*KO0+ (-
diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4)*Ks1*K2*Ke*xKO+ (-
diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+Ff*sf*S(t) "5)*Ksl*KexK0+(-

C. Perl Program for Parsing Model Equations 287

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4) *Ks1*xKi*Kp*K1+(-
diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2xS(t) "5*L(t)+

Ff*sf*S(t) "4*L(t))*Ki*K2*K1+(-diff (S(t),t)*V(t)*S(t) "3*xL(t)-
Sigma2*S(t) "4*L(t)+Ff*sf*S(t) "3*L(t))*Ki*Kp*K2*K1+ (-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4) *Ks1*xKi*K2*K1+(-
diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2*S(t) "5*L(t)+

Ffxsf*S(t) “4*L(t)) *Ki*Kp*KO+(-diff (S(t) ,t)*V(t)*S(t) "4*L(t)-
Sigma2*S(t) "5*L(t)+Ffxsf*S(t) “4*L(t))*Ki*K1*K0+(-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4) *Ks1*xKi*K1*K0+(-
diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2*S(t) "5*L(t)+

Ffxsf*S(t) “4*L(t))*Ki*Kp*Ke+(-diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+
Ff*sfxS(t) "4) *Ks1*Ki*Kp*K2+(-diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+
Ffxsf*S(t) ~4)*Ks1*Ki*Kp*Ke+(-diff(S(t),t)*V(t)*S(t) "4*L(t)-
Sigma2*S(t) "5xL(t)+Ff*sf*S(t) “4*L(t))*Ki*Kp*K2+(-

diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) ~3) *Ks1*xKi*Kp*K2xK1+
(-diff(S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4xL(t)+

Ffxsf*S(t) "3*L(t)) *Ki*Kp*K1*xKO+(-diff (S(t),t)*V(t)*S(t) "3~
Sigma2*S(t) "4+Ff*sf*S(t) ~3) *Ks1*Ki*Kp*K2*KO0+ (-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4) *Ks1*xKi*Kp*K0+(-
diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2*S(t) "5*L(t)+

Ffxsf*S(t) “4*L(t)) *Ki*K2*xKO+(-diff (S(t) ,t)*V(t)*S(t) "4-Sigma2*S(t) "5+
Ff*sf*S(t) "4) *Ks1*Ki*K2*K0+ (-diff (S(t),t)*V(t)*S(t) "3*L(t)-
Sigma2+S(t) "4*L(t)+Ff*sf*S(t) "3*L(t))*Ki*Kp*xK2*KO0+ (-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4)*Ks1*K2*xK1*Ke+ (-
diff (S(t),t)*V(t)*S(t) "5*L(t)-Sigma2*S(t) "6*L(t)+

Ffxsf*xS(t) "5xL(t))*Ki*KO+ (-diff (S(t),t)*V(t)*S(t) "3*L(t)-

Sigma2+S(t) "4*L(t)+Ff*sf*S(t) "3*L(t))*Ki*Kp*K2*Ke+ (-

diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+Ff*sf*S(t) ~5)*Ksl*K2*Ke+ (-
diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) ~3)*Ks1l*Ki*Kp*K2*Ke+
(-diff(S(t),t)*V(t)*S(t) "4*L(t)-Sigma2*S(t) "5xL(t)+

C. Perl Program for Parsing Model Equations

288

FE*xsfxS(t) "4*L(t))*Ki*K1xKe+(-diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+
Ffxsf*xS(t)~4)*Ksl*Ki*K1¥Ke+(-diff(S(t),t)*V(t)*S(t) "3*L(t)-
Sigma2*S(t) "4*L(t)+Ff*sf*S(t) "3*L(t))*Ki*Kp*K1*Ke+ (-

diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4*L(t)+

Ffxsf*xS(t) "3*%L(t))*Ksi*Ki*K2*xKe+(-diff (S(t),t)*V(t)*S(t) "5-
Sigma2*S(t) "6+Ffxsf*S(t) "5)*Ksl*K1*xKe+(-diff (S(t),t)*V(t)*S(t) "3*xL(t)-
Sigma2*S(t) "4*L(t)+Ff*sf*S(t) "3*L(t))*Ki*K2*K1*KO0+ (-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "B+Ff*sf*S(t) ~4) *Ks1*K2¥K1xKO0+ (-
diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) ~3) *Ks1*Ki*Kp*K1*KO+
(-diff(S(t) ,t)*V(t)*S(t) "3-Sigma2*S(t) "4+

Ffxsf*S(t) ~3) #*Ks1*xKi*Kp*xKe*xKO+(-diff (S(t),t)*V(t)*S(t) "6-

Sigma2*S(t) "T+Ff*sf*S(t) ~6) *Ks1*K2+(~diff (S(t),t)*V(t)*S(t) "3*L(t)-
Sigma2+S(t) "4*L(t)+Ff*sf*S(t) "3*L(t))*Ki*Kp*Ke*KO+ (-

diff (S(t),t)*V(t)*S(t) "6-Sigma2*S(t) "7T+Ff*sf*S(t) ~6)*Ks1*KO+ (-

diff (S(t),t)*V(t)*S(t) "6-Sigma2*S(t) "7T+Ff*sf*S(t) "6)*Ksl*K1+(-

diff (S(t),t)*V(t)*S(t) "6-Sigma2*S(t) "7T+Ff*sf*S(t) "6)*Ksl*Ke+ (-

diff (S(t),t)*V(t)*S(t) "2*L(t)-Sigma2*S(t) "3*L(t)+

Ff*sf*S(t) "2*L(t))*Ksi*Ki*K2*xK1*Ke+(-diff (S(t),t)*V(t)*S(t) "2-
Sigma2+S(t) "3+Ff*sf*S(t) "2) *Ksi*Ks1*Ki*xK2*xK1*Ke+ (-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4)*Ksi*KslxKi*Ke+ (-
diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2*S(t) "5*L(t)+

Ffxsf*S(t) “4*L(t)) *Ksi*K2*Ke+(-diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+
Ffxsf*xS(t)~5)*Ksi*Ksl*K1+(-diff (S(t),t)*V(t)*S(t) "5*L(t)-

Sigma2*S(t) "6xL(t)+Ff*sf*S(t) "5+L(t))*Ksi*K1+(-

diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2*S(t) "5*xL(t)+

FE*xsfxS(t) "4*L(t))*Ksi*Ki*K1+(-diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+
Ffxsf*S(t) "4) *Ksi*Ks1*Ki*K1+(-diff(S(t),t)*V(t)*S(t) " 4*L(t)-
Sigma2*S(t) "5xL(t)+Ff*sf*S(t) “4*L(t))*Ksi*K2*K1+ (-

diff (S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4*L(t)+

Ffxsf*xS(t) "3*%L(t))*Ki*K2*¥Ke*KO+(-diff (S(t),t)*V(t)*S(t) "3-

C. Perl Program for Parsing Model Equations

289

Sigma2*S(t) "4+Ff*sf*S(t) ~3) *Ks1*Ki*K2*KexKO+ (-

diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+Ff*sf*S(t) ~5)*Ks1*xK1*xKO0+ (-
diff (S(t),t)*V(t)*S(t) "2-Sigma2*S(t) "3+

Ffxsf*S(t) "2) *Ks1*xKi*Kp*xK1*Ke*xKO0+(-diff (S(t),t)*V(t)*S(t) "2*L(t)-
Sigma2+S(t) "3*L(t)+Ff*sf*S(t) "2*L(t))*Ki*K2*xK1*KexKO+ (-

diff (S(t),t)*V(t)*S(t) "5*L(t)-Sigma2*S(t) "6*L(t)+

Ffxsf*S(t) "5*L(t)) *Ki*Ke+(-diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+
Ff*xsfxS(t) ~3)*Ks1*Ki*K1*xKe*KO+(-diff (S(t),t)*V(t)*S(t) "2-

Sigma2+S(t) "3+Ff*sf*S(t) "2) *Ks1*xKi*K2*K1xKe*K0+(-

1/2xV(t)*S(t) "3*X1(t)+1/2*%X2(t) *rho*V(t)*S(t) "3) *Ks1*xKi*Kp*K1*Ke*ml+ (-
1/2xV(t) *S(t) "3*X1(t)+1/2*%X2(t) *rho*V(t)*S(t) "3) *Ks1*xKi*Kp*Ke*KO*m1+ (-
1/2xV(t) *S(t) "6*X1 () *L(t)+1/2*xX2(t) *rho*V (t) *S(t) "6*L (t)) *KO*m1+ (-
diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4)*Ksi*KslxK1*Ke+ (-
1/2%V () *S(t) "4*X1(t)*L(t)+

1/2%X2(t) *rho*V (t) *S (t) "4*L (t)) *K1*Ke*xKO*m1+(-1/2*V () *S(t) "4*X1(t)+
1/2%X2(t) *rho*V (t)*S(t) ~4) *Ks1*xKi*xK1*KO*m1+(-1/2%V(t)*S(t) "6*X1(t)+
1/2%X2(t) *rho*V(t) *S(t) “6) *Ks1*K1*ml+(-1/2*xV(t)*S(t) "6*X1(t)+
1/2%X2(t) *rho*V(t) *S(t) “6) *Ks1*KO*m1+(-1/2*V(t)*S(t) "5*X1(t)+
1/2*X2(t) *rho*V(t)*S(t) ~5) *Ks1*Ki*Ke*m1+(-1/2xV(t)*S(t) "6*X1(t)*L(t)+
1/2%X2(t) *rho*V (t) *S(t) "6+L(t)) *K1*mi+(-1/2*xV(t)*S(t) ~4*X1(t)*L(t)+
1/2*X2(t) *rho*V (t)*S(t) “4*L(t)) *Ki*Kp*K1*ml+(-1/2xV (t)*S(t) "4*xX1(t)+
1/2*X2(t) *rho*V (t)*S(t) “4) *Ks1*xKi*xKp*xK1*m1+(-1/2*V(t)*S(t) "6*X1(t)+
1/2%X2(t) *rho*V (t) *S(t) "6) *Ks1*Kexml1+(-1/2xV(t)*S(t) "5*X1(t) *L(t)+
1/2%X2(t) *rho*V(t) *S(t) "5*L(t)) *Ksi*Kikml+(-1/2%V(t)*S(t) "6*X1(t)+
1/2%X2(t) *rho*V(t) *S(t) “6) *Ksi*Ksl*mi+(-1/2*%V(t)*S(t) "5*xX1(t)*L(t)+
1/2*X2(t) *rho*V (t)*S(t) "5+L (t)) *Ki*KO*m1+ (-

diff (S(t),t)*V(t)*S(t) "4*L(t)-Sigma2xS(t) "5*L(t)+

Ff*sf*S(t) "4*L(t))*Ksi*K2*K0+(-diff (S(t),t)*V(t)*S(t) "4*xL(t)-
Sigma2*S(t) "5xL(t)+Ff*sf*S(t) “4*L(t))*Ksi*K1*xK0+ (-

diff (S(t),t)*V(t)*S(t) "4-Sigma2*S(t) "5+Ff*sf*S(t) "4)*Ksi*Ks1*xK2*K0+ (-

C. Perl Program for Parsing Model Equations 290

diff(S(t),t)*V(t)*L(t)-Sigma2*S(t)*L(t)+
Ffxsf*L(t))*Ksi*Ki*Kp*K2*xK1*Ke*xK0+(-diff (S(t),t)*V(t)*S(t) "2+L(t)-
Sigma2*S(t) "3*xL(t)+Ff*sf*S(t) "2+L(t))*Ksi*Ki*K2+Ke*KO+ (-

diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) ~3)*Ksi*Ksl*K2*xKe*KO+
(-diff(S(t),t)*V(t)*S(t) "2-Sigma2*S(t) "3+

Ff*sf*S(t) "2) *Ksi*Ks1*Ki*K2*xKe*xKO0+(-diff (S(t),t)*V(t)*S(t)*L(t)-
Sigma2*S(t) "2xL(t)+Ff*sf*S(t)*L (t))*Ksi*Ki*xKp*K2*xKe*xKO+ (-

diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) ~3) *Ksi*Ksl*Ki*Ke*KO+
(-diff(S(t),t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) "4xL(t)+

Ffxsf*S(t) "3*L(t)) *Ksi*Ki*Kp*KO+(-diff (S(t),t)*V(t)*S(t) "2~
Sigma2*S(t) "3+Ff*xsf*S(t) "2) *Ksi*Ks1*Ki*Kp*K2*K0+ (-

1/2xV(t)*S(t) ~4*X1(t)*L(t)+

1/2%X2(t) *rho*V (t) *S(t) "4*L(t)) *Ki*Kp*xKO*m1+(-1/2*V (t)*S(t) "5*X1(t)+
1/2*X2(t) *rho*V (t)*S(t) “5) *Ks1*xKi*xKO*m1+(-1/2+V(t)*S(t) "3*X1(t)+
1/2*X2(t) *rho*V (t) *S(t) ~3) *Ksi*Ks1*Ki*K1*KO*m1+ (-

1/2xV(t)*S(t) "2*X1(t)*L(t)+

1/2*X2(t) *rho*V (t) *S(t) “2+L(t)) *Ksi*Ki*Kp*K1*KO*m1+ (-

1/2%V(t)*S(t) "2*X1(t)+

1/2%X2(t) *rho*V (t) *S(t) "2) *Ksi*Ks1*Ki*Kp*K1*KO*m1+ (-

1/2+V () *S(t) "3*X1(t) *L(t)+

1/2*X2(t) *rho*V (t) *S(t) “3*L(t)) *Ksi*Ki*Ke*KO*m1+ (-

1/2xV(t)*S(t) "4*xX1(t)*L(t)+

1/2xX2(t) *rho*V (t) *S(t) "4*L(t)) *Ksi*Ke*KO*ml1+(-1/2*V () *S(t) "3*X1(t)+
1/2*X2(t) *rho*V (t) *S(t) ~3) *Ksi*Ks1*Ki*Ke*KO*m1+ (-

1/2xV(£)*S(t) "2+X1(t) *L(t)+

1/2%X2(t) *rho*V (t) *S(t) "2+L(t)) *Ksi*Ki*Kp*Ke*KO*m1+ (-

1/2+V () *S(t) "2xX1(t)+

1/2*X2(t) *rho*V (t) *S(t) "2) *Ksi*Ks1*Ki*Kp*Ke*xKO*m1+ (-

1/2xV(t) *S(t) “4*X1(t)+1/2+X2(t) *rho*xV(t)*S(t) “4) *Ksi*Ks1*K1*Ke*ml+(-
1/2+V(t) *S(t) "4*X1(t)+1/2%X2(t) *rhoxV (t) *S(t) "4) *Ks1*Ki*Kp*KO*m1+ (-

C. Perl Program for Parsing Model Equations 291

1/2%V(t)*S(t) "3*X1(t)+1/2%X2(t) *rho*V(t) *S(t) ~3) #*Ksi*Ks1*Ki*K1*xKexml+
(-1/2%V (£)*S(t) "2*X1 () *L(t)+

1/2*X2(t) *rho*V (t) *S(t) “2+L(t)) *Ksi*Ki*Kp*K1*Ke*ml+ (-

1/2%V(t)*S(t) "5*X1(t)*L(t)+1/2%X2(t) *rho*V(t)*S(t) "5*L(t))*Ksi*Ke*ml+
(-1/2%V(t)*S(t) "5*X1(t)+1/2*X2(t) *rho*V (t)*S(t) "5) *Ksi*Ks1*Ke*ml+ (-
1/2%V () *S(t) "4*X1(t)*L(t)+

1/2%X2(t) *rho*V(t) *S(t) “4+L(t)) *Ksi*Ki*Ke*ml+(-

1/2xV (£) *S(t) "6*X1 () *L(t)+1/2*xX2(t) *rho*V(t) *S(t) "6*L (t))*Ksi*ml+(-
1/2xV(t) *S(t) "2*xX1(t)+

1/2*X2(t) *rho*V (t)*S(t) "2) *Ks1*xKi*xKp*K1*Ke*KO*m1+ (-

1/2%V () *S(t) "3*X1(t) *L(t)+

1/2%X2(t) *rho*V (t)*S(t) "3*L(t)) *Ksi*Ki*Kp*Kexm1+ (-

1/2*%V(t)*S(t) "3*X1(t)+1/2+X2(t) *rho*V(t) *S(t) ~3) #*Ksi*Ks1*K1*Ke*KO*m1+
(-1/72+V(£)*S(t) *X1(t)+

1/2%X2(t) *rho*V (t) *S(t)) *Ksi*Ks1*Ki*Kp*K1*Ke*KO*m1+ (-

1/2xV(t)*S(t) ~2*X1(t)*L(t)+

1/2%X2(t) *rho*V(t) *S(t) "2+L(t)) *Ksi*Ki*K1*Ke*xKO*m1+ (-

1/2%V () *S(t) "2*%X1(t) *L(t)+

1/2*X2(t) *rho*V (£) *S (t) "2+L (t)) *Ki*Kp*K1*Ke*KO*m1+ (-

1/2xV(t)*S(t) ~4*X1(t)*L(t)+

1/2*X2(t) *rho*V (t) *S(t) “4*L(t)) *Ksi*Ki*Kp*ml+(-1/2*V(t)*S(t) "5*X1(t)+
1/2%X2(t) *rho*V(t) *S(t) "5) *Ksi*Ks1*Ki*xm1+(-1/2%V(t) *S(t) "3*xX1(t)*L(t)+
1/2*X2(t) *rho*V (t)*S(t) "3*L(t)) *Ksi*Ki*K1*Ke*ml+ (-

1/2%V(t)*S(t) "5*xX1(t)+1/2%X2(t) *rho*xV(t)*S(t) "5) *Ksi*Ksl*K1l* ml+ (-
1/2%V () *S(t) "4*X1(t)*L(t)+

1/2*X2(t) *rho*V(t)*S(t) “4*L(t)) *Ksi*Ki*K1*ml+(-1/2*V(t) *S(t) "4*X1(t)+
1/2xX2(t) *rho*V (t) *S(t) "4) *Ksi*Ks1*Ki*K1*ml+ (-

1/2%V () *S(t) "3*X1(t)*L(t)+

1/2*X2(t) *rho*V (t) *S(t) "3*L(t)) *Ksi*Ki*Kp*K1*ml+ (-

1/2*%V(t)*S(t) "3*X1(t)+1/2%X2(t) *rho*V(t) *S(t) ~3) #*Ksi*Ks1*Ki*Kp*K1*m1+

C. Perl Program for Parsing Model Equations 292

(-1/2*V(t)*S(t) "3*X1(t)+

1/2%X2(t) *rho*V (t)*S(t) ~3) *Ksi*Ks1*KixKp*Ke*mi+(-

1/2%V(t)*S(t) "5*X1(t)*L(t)+1/2+X2(t) *rho*V(t)*S(t) "5*L(t))*Ksi*K1*ml+
(-1/2%V (£)*S(t) "4*X1(t)*L(t)+

1/2*X2(t) *rho*V(t)*S(t) ~4*L(t))*Ksi*K1*Ke*ml+ (-

1/2%V () *S(t) "4*X1(t)*L(t)+

1/2%X2(t) *rho*V(t) *S(t) “4*L(t)) *Ksi*K1*KO*m1+ (-
1/2xV(t) *S(t) "3*X1 () *L(t)+

1/2%X2(t) *rho*V (t) *S(t) "3*L(t)) *Ksi*K1*Ke*KO*m1+ (-

1/2%V(t)*S(t) "4*X1(t)+1/2%X2(t) *rhoxV(t)*S(t) "4) *Ksi*Ks1*K1*KO*xm1+ (-
1/2%V () *S(t) "3*X1(t) *L(t)+

1/2%X2(t) *rho*V (t) *S(t) "3*L(t)) *Ksi*Ki*K1*K0*m1+ (-

1/2+V(t)*S(t) "4*X1(t)+1/2+X2(t) *rho*V(t)*S(t) "4) *Ksi*Ks1*Ki*Kp*ml+(-
1/2%V(t) *S(t) "4*X1(t)+1/2%X2(t) *rho*V(t)*S(t) "4) *Ksi*Ks1*Ki*KO*m1+ (-
1/2*%V(t)*S(t) "3*X1(t)+1/2+X2(t) *rho*V(t) *S(t) ~3) #*Ksi*Ks1*Ki*Kp*KO*m1+
(-1/2%V(t) *S(t) ~4*X1(t)+1/2%X2(t) *rho*V(t)*S(t) "4) *Ksi*Ks1*Ki*Kexml+ (-
1/72%V () *S(t) "3*X1(t) *L(t)+

1/2*X2(t) *rho*V (t) *S(t) “3*L(t)) *Ksi*Ki*Kp*KO*m1+ (-

1/2*%V(t)*S(t) "5*X1(t)*L(t)+1/2%X2(t) *rho*V(t)*S(t) "5*L(t))*Ksi*KO*m1+
(-1/2*%V(t)*S(t) "5*X1(t)+1/2%X2(t) *rhoxV (t)*S(t) "5) *Ksi*Ks1*KO*ml+ (-
1/2%V () *S(t) "4*X1(t)*L(t)+

1/2%X2(t) *rho*V(t) *S(t) “4*L(t))*Ksi*Ki*KO*m1+(-1/2*%V(t)*S(t) “2*X1(t)+
1/2*X2(t) *rho*V (£) *S (t) "2) *Ksi*Ks1*Ki*Kp*K1*Ke*m1+ (-

1/72xV () *S(t) "2*X1(t)+

1/2%X2(t) *rho*V(t) *S(t) “2) *Ksi*Ks1*¥Ki*K1*Ke*KO*m1+ (-

1/2xV (£) *S(t) "4*X1(£)+1/2+X2(t) *rho*V(t)*S(t) "4) *Ksi*Ks1*Ke*KO*m1+ (-
1/2%V(£)*S(£)*X1(t)*L(t)+

1/2xX2(t) *rho*V (t) *S(t) *L (t)) *Ksi*Ki*Kp*xK1*xKexKO*m1+ (-

1/2%V () *S(t) "4*X1(t)*L(t)+

1/2*X2(t) *rho*V (t) *S (t) "4*L(t)) *K2*K1*Ki*mup*alphap+

C. Perl Program for Parsing Model Equations 293

(V(£)*X0(£)*S () "B*L(£)+V (£) *S(t) "5%X1(t) *L(t)) *K2*Ksi*mul+ (-
1/2xV(t)*S(t) ~4*X1(t)*L(t)+

1/2*X2(t) *rho*V (t)*S(t) “4*L (t)) *K2*xKO*Ki*mup*alphap+

(V(t)*X0(t)*S(t) "5*xL(t)+V(t)*S(t) "5*X1(t)*L(t))*KO*Ksi*mul+
(V(£)*X0(£)*S(£) "B*L(£)+V(£)*S(t) "5xX1(t) *L(t)) *KexKsi*mul+
(V(t)*X0(t)*S(t) "5*xL(t)+V(t)*S(t) "5*X1(t)*L(t))*K1*Ksi*mul+
(V(t)*X0(t)*S(t) "5*xL(t)+V(t)*S(t) "5*X1(t)*L(t))*Ki*Ksi*mul+

(V(£)*X0 (£)*S () *L(t)+V(t) *S(t) *X1 (t)*L(t)) *Ki*Kp*K2*xK1*KO*Ksi*mul+ (-
diff (S(t),t)*V(t)*S(t) "3-Sigma2*S(t) "4+Ff*sf*S(t) ~3) *Ksi*Ks1*Ki*K2*Ke+
(=diff (S(t) ,t)*V(t)*S(t) "3*L(t)-Sigma2*S(t) “4*L(t)+

Ff*sf*S(t) "3*L(t))*Ki*K1*Ke*xKO+ (-diff (S(t),t)*V(t)*S(t) "4-
Sigma2+S(t) "5+Ff*sf*S(t) "4) *Ksi*Ks1*K2xK1+(-

diff (S(t),t)*V(t)*S(t) "5*L(t)-Sigma2*S(t) "6*L(t)+

Ffxsf*S(t) "5*L(t)) *Ksi*K2+(-diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+
Ffxsf*xS(t) ~5)*Ksi*Ksl*Ki+(-diff (S(t),t)*V(t)*S(t) "4*L(t)-

Sigma2*S(t) "5*L(t)+Ff*sf*S(t) "4*L(t))*Ksi*Ki*Ke+(-

diff (S(t),t)*V(t)*S(t) "5-Sigma2*S(t) "6+Ff*sf*S(t) "5)*Ksi*Ksl*K2+ (-
diff (S(t),t)*V(t)*S(t)-Sigma2*S(t) "2+
Ff*sf*S(t))*Ksi*Ksl*Ki*Kp*K1*Ke*KO+(-diff (S(t),t)*V(t)*S(t)*L(t)-
Sigma2+S(t) "2*L(t)+FE*sf*S(t)*L(t))*Ksi*Ki*K2*xK1*Ke*xKO+
(V(t)*X0(t)*S(t) "2*xL(t)+V(t)*S(t) "2*%X1 (t) *L(t)) *Ki*K2*K1*KO*Ksi*mul+
(V(t)*X0(t)*S(t) "3*xL(t)+V(t)*S(t) "3*X1(t)*L(t))*K2*xK1*KO*Ksi*mul+
(V(£)*X0(£)*S(t) "2*L(£t) +V(£) *S (£) "2+X1 (t) *L (£)) *Ki*Kp*K2*KO*Ksi*mul+ (-
diff (S(t),t)*V(t)*S(t) "5*L(t)-Sigma2*S(t) "6*L(t)+

Ffxsf*S(t) "5xL(t))*Ksi*Ki+(V(t)*X0(t)*S(t)*L(t)+
V(t)*S(t)*X1(t)*L(t))*Ki*Kp*K2*xK1*xKe*Ksi*mul+(V(t)*X0(t)*S(t) "4*L(t)+
V(t)*S(t) "4*X1(t)*L(t))*K2*¥K0*Ksi*mul+(V(t)*X0(t)*S(t) "2*L(t)+
V(t)*S(t) "2+X1(t) *L(t)) *Ki*K2*K1*KexKsi*mul+(V(t)*X0(t) *S(t) "3*xL(t)+
V(t)*S(t) "3*X1(t)*L(t))*K2*xK1*Ke*Ksi*mul+(V(t) *X0(t)*S(t) "3*L(t)+
V(t)*S(t) "3*%X1(t)*L(t))*Ki*K2+K0*Ksi*mul+(V(t)*X0(t)*S(t) 2L (t)+

C. Perl Program for Parsing Model Equations

V(t)*S(t) "2+X1(t) *L(t)) *Ki*Kp*K2*Ke*Ksi*mul

C.3 Output from the Perl program

The corresponding ETEX output from the Perl program was used to produce

the following.

Sexpr :=

+Ksl

+Ff*sf
+Ks1*ml

+Ksi*mul
-alpha0O*mu0
-alphae*mue-m0
-Ksl*alphaO*muO
+K0+K1+K2+Ke+Ki+Ksi

+KO*K1*K2*Ke*Ki*Kp*Ksi

-Ksl*alphae*mue-Ks1l*mO

+KO*K1*K2*Ke*Ki*Kp*Ksi*Ksl

L(t)*S(t) " 7*V(t)*diff (S(t),t)
L(t)*S(t) "8*Sigma2
-1/2*xV(t)*S(t) "7*X1(t)*L(t)+
1/2xX2(t) *rho*V (t)*S(t) "7*L(t)
-diff(S(t),t)*V(t)*S(t)"7-
Sigma2*S(t) "8+Ff*sf*S(t) "7
L(t)*S(t)"7

=1/2%V(£)*S(£) "7*X1(t)+
1/2*X2(t) *rho*xV(t)*S(t) "7
V(t)*X0(t)*S(t) "6xL(t)+
V(t)*S(t) "6xX1(t)*L(t)
L(t)*S(t) " 7xV(t)*X1(t)
L(t)*S(t) "7V (t)*X0(t)

S(t) "7*V(t)*X1(t)
-diff(S(t),t)*V(t)*S(t) "6xL(t)-
Sigma2*S(t) “7*L(t)+

Ffxsf*S(t) "6xL(t)

-diff (S(t),t)*V(t)*L(t)-
Sigma2*S(t)*L(t)+Ff*sf*L(t)
S(t)~7*V(t)*X0(t)

-diff (S(t),t)*V(t)-Sigma2*S(t)+
Ff*st

C. Perl Program for Parsing Model Equations

295

+KO*K1*K2*Ke*Ki*Kp*Ksi*mul
-K1xK2*Ke*Ki*Kp*Ksi*alphaO*muO
-K1xK2*Ke*Ki*Kp*Ksi*Ksl*alphaO*muO
+KO0*Ks1+K1*Ks1+K2*Ks1+Ke*Ks1+Ki*Ksl+
Ksix*Ksl
+KO*m1+K1*ml+Ke*ml+Ki*alphap*mup+
Ki*ml+Ksi*ml
+KO*K1*K2*Ke*Ki*Ksi*alphap*mup+
KO*K1*Ke*Ki*Kp*Ksi*ml
-KO*K1*xK2*Ki*Kp*Ksi*alphae*mue-
KO*K2*Ke*Ki*Kp*Ksi*mO
+KO*Ksi*mul+K1*Ksi*mul+K2*xKsi*mul+
KexKsi*mul+Ki*Ksi*mul
+K0*K1*K2*xKe*Ki*Ksi*Ksl*alphap*mup+
KO*K1*KexKi*Kp*Ksi*Ksl*ml
-KO*K1*K2*Ki*Kp*Ksi*Ksl*alphae*mue-
KO*K2*Ke*Ki*Kp*Ksi*Ks1*mO
+KO0*Ks1*m1+K1*Ksl*ml+Ke*Ksl*ml+
Kix*Ksl*alphap*mup+Ki*Ksl*m1l+
Ksi*Ksl*ml
-K1*alphaO*muO-K2*alphaO*muO-
Ke*alphaO*muO-Ki*alphaO*muO-

Ksi*alphaO*muO

-K1*Ksl*alphaO*muO-K2*Ksl*alphaO*muO-

KexKsl*alphaO*xmuO-
Ki*Ksl*alphaO*muO-
Ksi*Ksl*alphaO*muO
+K0*K1+K0*K2+K0*Ke+KO*Ki+KO*Ksi+
K1*K2+K1*Ke+K1*Ki+K1*Ksi+K2*Ke+

K2xKi+K2*xKsi+KexKi+Ke*Ksi+KixKp+

V(£)*X0 (£)*L(£)+V(t)*X1(t) *L(t)
L(t)*S(t)*V(t)*X1(t)
S(t)*V(t)*X1(t)
-diff(S(t),t)*V(t)*S(t) " 6-
Sigma2*S(t) "7T+Ff*sf*S(t) "6
-1/2%V(t)*S(t) "6*X1(t) *L(t)+
1/2%X2(t) *rho*V(t)*S(t) "6xL(t)
-1/2xV(t)*S(t) *X1(t)*L(t)+
1/2%X2(t) *rho*V (t) *S (t) *L (t)
L(t)*S(t)*V(t)*X0(t)

V(t)*X0(t)*S(t) "5xL(t)+
V(t)*S(t) "5xX1(t)*L(t)
-1/2*V(t)*S(t)*X1(t)+
1/2*X2(t) *rho*V (t)*S(t)
S(£)*V () *X0(t)

-1/2*%V(t)*S(t) "6*X1(t)+
1/2%X2(t)*rhoxV(t)*S(t) "6

L(t)*S(t) "6V (t)*X1(t)

S(t) 6%V (t)*X1(t)

-diff (S(t),t)*V(t)*S(t) "5xL(t)-
Sigma2*S(t) "6*L(t)+
Ffxsf*S(t) "5*L(t)

C. Perl Program for Parsing Model Equations 296

Ki*Ksi

-KO*alphae*mue-KO*mO-K1*alphae*mue-

K2*alphae*mue-K2*mO-Ke*mO-

Ki*alphae*mue-Ki*mO-
Ksi*alphae*mue-Ksi*m0
+K0*K1*K2*Ke*Ki*Kp+
KO*K1xK2*Ke*Ki*Ksi+
KO*K1*K2*Ki*Kp*Ksi+
KO*K1*Ke*Ki*Kp*Ksi+
KO*K2*Ke*Ki*Kp*Ksi+
K1*K2*Ke*Ki*Kp*Ksi
+KO*K1*K2*Ke*Ki*Ksi*mul+
KO*K1*K2*Ki*Kp*Ksi*mul+
KO*K1*KexKi*Kp*Ksi*mul+
KO*K2*Ke*Ki*Kp*Ksi*mul+
K1xK2*KexKi*Kp*Ksi*mul
-K1xK2*Ke*Ki*Kp*alphaO*muO-

K1xK2*Ke*Ki*Ksi*alphaO*muO-
K1xK2xKi*Kp*Ksi*alphaO*muO-
K1xKexKi*Kp*Ksi*alphaO*muO-
K2xKe*Ki*Kp*Ksi*alphaO*muO

+KO0*K1*K2*Ke*Ki*Kp*Ksl+
KO*K1xK2*Ke*Ki*Ksi*Ksl+
KO*K1xK2*Ki*Kp*Ksi*Ksl+
KO*K1*Ke*Ki*Kp*Ksi*Ksl+
KO*K2*Ke*Ki*Kp*Ksi*Ksl+
K1xK2*KexKi*Kp*Ksi*Ksl

-KO*Ksl*alphae*mue-KO*Ks1*mO-

K1xKsl*alphae*mue-

K2xKsl*alphae*mue-K2*Ks1l*m0O-

L(t)*S(t) 6%V (t)*X0(t)

-diff (S(t),t)*V(t)*S(t)*L(t)-
Sigma2*S(t) "2*L(t)+Ff*sf*S(t)*L(t)

V(t)*X0(t)*S(t)*L(t)+

V(t)*S(t)*X1(t)*L(t)

L(t)*S(t) " 2*V(t)*X1(t)

-diff (S(t),t)*V(t)*S(t)-
Sigma2*S(t) "2+Ff*sf*S(t)

S(t) 6%V (t)*X0(t)

C. Perl Program for Parsing Model Equations

297

Kex*Ks1*mO-Ki*Ksl*alphae*mue-
Ki*Ksl*mO-Ksi*Ksl*alphae*mue-
Ksi*Ks1l*mO
-K1xK2xKe*Ki*Kp*Ksl*alphaO*muO-
K1xK2*xKe*Ki*Ksi*Ksl*alphaO*muO-
K1xK2xKi*Kp*Ksi*Ksl*alphaO*muO-
K1xKe*Ki*Kp*Ksi*Ksl*alphaO*muO-
K2xKexKi*Kp*Ksi*Ksl*alphaO*muO
+KO*K1*Ksi*mul+KO*K2*Ksi*mul+
KO*Ke*Ksi*mul+KO*Ki*Ksi*mul+
K1*K2*Ksi*mul+K1*Ke*Ksi*mul+
K1xKi*Ksi*mul+K2*Ke*Ksi*mul+
K2xKi*Ksi*mul+Ke*Ki*Ksi*mul+
Ki*Kp*Ksi*mul
+KO*K1*Ks1+KO*K2*Ks1+KO*Ke*Ks1+
KO*Ki*Ks1+KO*Ksi*Ks1+K1*K2*¥Ksl+
K1*Ke*Ks1+K1*Ki*Ks1+K1*Ksi*Ksl+
K2*Ke*Ks1+K2*¥Ki*Ks1+K2*Ksi*Ksl+
KexKi*Ksl+Ke*Ksi*Ks1+Ki*Kp*Ksl+
Ki*Ksi*Ksl
+K0*K1*m1+K0*Ke*m1+KO*Ki*alphap*mup+
KO*Ki*m1+KO*Ksi*m1+K1*Ke*ml+
K1xKi*alphap*mup+K1*Ki*m1l+
K1*Ksi*ml+K2*Ki*alphap*mup+
KexKi*alphap*mup+Ke*Ki*ml+
KexKsi*ml+Ki*Kp*ml+
Kix*Ksi*alphap*mup+Ki*Ksi*ml
-K1*K2*alphaO*muO-K1*Ke*alphaO*muO-
K1xKi*alphaO*muO-

K1*Ksi*alphaO*muO-

S(t) 2%V (t)*X1(t)

V(t)*X0(t)*S(t) "4x*L(t)+
V(t)*S(t) "4*X1(t)*L(t)

-diff (S(t),t)*V(t)*S(t) 5~
Sigma2+S(t) "6+Ff*sf*S(t) "5

-1/2xV(t)*S(t) "5*X1(t)*L(t)+
1/2%X2(t)*rho*V(t)*S(t) "5*xL(t)

L(t)*S(t) " 5*xV(t)*X1(t)

C. Perl Program for Parsing Model Equations 298

K2xKe*alphaO*muO-
K2xKi*alphaO*muO-
K2xKsi*alphaO*xmuO-
KexKi*alphaO*muO-
KexKsi*alphaO*muO-
Ki*Kp*alphaO*muO-
Ki*Ksi*alphaO*muO
+K0*K1xK2*Ke*Ksi*mul+ V() *X0(t)*S(t) "2xL(t)+
KO*K1*K2*Ki*Ksi*mul+ V(t)*S(t) "2xX1(t) *L(t)
KO*K1*Ke*Ki*Ksi*mul+
KO*K1*Ki*Kp*Ksi*mul+
KO*K2*Ke*Ki*Ksi*mul+
KO*K2*Ki*Kp*Ksi*mul+
KO*Ke*Ki*Kp*Ksi*mul+
K1xK2*Ke*Ki*Ksi*mul+
K1xK2*Ki*Kp*Ksi*mul+
K1xKex*Ki*Kp*Ksi*mul+
K2xKe*Ki*Kp*Ksi*mul
+KO*K1*K2*xKe*Ki*alphap*mup+ -1/2*%V(t)*S(t) "2*X1(t) *L(t)+
KO*K1xK2*Ki*Ksi*alphap*mup+ 1/2%X2(t) *rho*V (t) *S(t) "2+L(t)
KO*K1*Ke*Ki*Kp*ml+
KO*K1*Ke*Ki*Ksi*alphap*mup+
KO*K1*Ke*Ki*Ksi*ml+
KO*K1*Ki*Kp*Ksi*ml+
KO*xK2*Ke*Ki*Ksi*alphap*mup+
KO*Ke*Ki*Kp*Ksi*ml+
K1xK2*KexKi*Ksi*alphap*mup+
K1xKe*Ki*Kp*Ksi*ml
-KO*K1*K2*Ki*Kp*alphae*mue— L(t)*S(t) "2*V(t)*X0(t)

KO*K1xK2xKi*Ksi*alphae*mue-

C. Perl Program for Parsing Model Equations 299

KOx*K1xKi*Kp*Ksi*alphae*mue-
KO*K2*Ke*Ki*Kp*mO-
KO*K2*Ke*Ki*Ksi*m0O-
KO*xK2*Ki*Kp*Ksi*alphae*mue-
KO*K2*Ki*Kp*Ksi*m0-
KO*Ke*Ki*Kp*Ksi*mO-
K1xK2xKi*Kp*Ksi*alphae*mue-
K2xKe*Ki*Kp*Ksi*m0
-K1*¥K2*Ks1*alphaO*muO- S(t)"5xV(t)*X1(t)

K1xKe*Ksl*alphaO*muO-
K1xKi*Ksl*alphaO*muO-

K1xKsi*Ksl*alphaO*muO
K2xKe*Ksl*alphaO*muO-
K2xKi*Ksl*alphaO*muO-

K2*Ksi*Ksl*alphaO*muO

KexKi*Ksl*alphaO*muO-

KexKsi*Ksl*alphaO*muO
Ki*Kp*Ksl*alphaO*muO-

Ki*Ksi*Ksl*alphaO*muO

+KO*K1*K2+K0*K1*Ke+KO*K1*Ki+ -diff (S(t),t)*V(t)*S(t) ~4*L(t)-
KO*K1*Ksi+KO*K2*Ke+KO*K2*Ki+ Sigma2*S(t) “5*L(t)+
KO*K2*Ksi+KO*Ke*xKi+KO*Ke*Ksi+ Ffxsf*S(t) "4*L(t)

KO*Ki*Kp+KO*Ki*Ksi+K1*K2*Ke+
K1*K2*Ki+K1*¥K2*Ksi+K1*Ke*Ki+
K1xKe*Ksi+K1*Ki*Kp+K1*Ki*Ksi+
K2xKe*Ki+K2¥Ke*Ksi+K2*Ki*Kp+
K2xKi*Ksi+Ke*Ki*Kp+Ke*Ki*Ksi+
Ki*Kp*Ksi

+KO*K1*K2*Ksi*mul+KO*K1*xKexKsi*mul+ V(t)*X0(t)*S(t)"3*xL(t)+

KO*K1*Ki*Ksi*mul+ V(t)*S(t) "3*X1(t)*L(t)

C. Perl Program for Parsing Model Equations 300

KO*K2*Ke*Ksi*mul+
KO*K2*Ki*Ksi*mul+
KO*Ke*Ki*Ksi*mul+
KO*Ki*Kp*Ksi*mul+
K1xK2*KexKsi*mul+
K1*K2*Ki*Ksi*mul+
K1xKe*Ki*Ksi*mul+
K1xKi*Kp*Ksi*mul+
K2xKe*Ki*Ksi*mul+
K2xKi*Kp*Ksi*mul+
KexKi*Kp*Ksi*mul
+KO*K1*K2*xKe*Ki+KO*K1*xK2*Ke*Ksi+ -diff (S(t),t)*V(t)*S(t) ~2*L(t)-
KO*K1*K2*¥Ki*Kp+KO*K1xK2*¥Ki*Ksi+ Sigma2*S(t) "3xL(t)+
KO*K1*¥Ke*Ki*Kp+KO*xK1xKe*xKi*Ksi+ Ff*sf*S(t) "2*L(t)
KO*K1xKi*Kp*Ksi+K0O*K2*Ke*Ki*Kp+
KO*K2*xKe*Ki*Ksi+KO*K2*Ki*Kp*Ksi+
KO*Ke*Ki*Kp*Ksi+K1*xK2*Ke*Ki*Kp+
K1*K2*Ke*Ki*Ksi+K1*K2*Ki*Kp*Ksi+
K1xKe*Ki*Kp*Ksi+K2*¥Ke*Ki*Kp*Ksi
+K0*K1xKs1*m1+KO*Ke*Ksl*ml+ -1/2xV(t)*S(t) "5*X1(t)+
KO*Ki*Ksl*alphap*mup+ 1/2*X2(t) *rho*V(t)*S(t) "5
KO*Ki*Ksl*m1+KO*Ksi*Ksl*ml+
K1xKe*Ksl*ml+
K1xKi*Ksl*alphap*mup+
K1*Ki*Ksl*m1+K1*Ksi*Ksl*ml+
K2xKi*Ksl*alphap*mup+
KexKi*Ksl*alphap*mup+
KexKi*Ksl*ml+Ke*Ksi*Ksl*ml+
Ki*Kp*Ksl*ml+

Kix*Ksi*Ksl*alphap*mup+

C. Perl Program for Parsing Model Equations 301

Ki*Ksi*Ksl*ml
-K1*K2*Ke*Ki*alphaO*muO- L(t)*S(t) "3*xV(t)*X1(t)
K1xK2*xKe*Ksi*alphaO*muO-
K1xK2xKi*Kp*alphaO*muO-
K1xK2*xKi*Ksi*alphaO*mu0-
K1xKex*Ki*Kp*alphaO*muO-
K1xKex*Ki*Ksi*alphaO*muO-
K1xKi*Kp*Ksi*alphaO*mu0-
K2xKe*Ki*Kp*alphaO*muO-
K2xKe*Ki*Ksi*alphaO*muO-
K2xKi*Kp*Ksi*alphaO*muO-
KexKi*Kp*Ksi*alphaO*muO
+KO*K1*K2xKe*Ki*Ksl*alphap*mup+ -1/2*%V(t)*S(t) "2*X1(t)+
KO*K1#K2*Ki*Ksi*Ksl*alphap*mup+ 1/2%X2(t)*rho*V(t)*S(t)"2
KO*K1*Ke*Ki*Kp*Ksl*ml+
KO*K1*Ke*Ki*Ksi*Ksl*alphap*mup+
KO*K1*Ke*Ki*Ksi*Ksl*ml+
KO*K1*Ki*Kp*Ksi*Ksl*ml+
KOxK2*xKe*Ki*Ksi*Ksl*alphap*mup+
KO*Kex*Ki*Kp*Ksi*Ksl*ml+
K1xK2*Ke*Ki*Ksi*Ksl*alphap*mup+
K1xKe*Ki*Kp*Ksi*Ksl*ml
-KO*K1*¥K2*Ki*Kp*Ksl*alphae*mue- S(t)"2xV (t)*X0(t)
KO*xK1*K2*Ki*Ksi*Ksl*alphae*mue-
KO*K1*Ki*Kp*Ksi*Ksl*alphae*mue-
KO*K2*Ke*Ki*Kp*Ks1*m0-
KO*K2*Ke*Ki*Ksi*Ksl*m0O-
KO*xK2*Ki*Kp*Ksi*Ksl*alphae*mue-
KO*K2*Ki*Kp*Ksi*Ksl*mO-
KO*Ke*Ki*Kp*Ksi*Ksl*m0O-

C. Perl Program for Parsing Model Equations 302

K1xK2*Ki*Kp*Ksi*Ksl*alphae*mue-

K2xKe*Ki*Kp*Ksi*Ksl*m0
-K1*K2*Ke*alphaO*muO- L(t)*S(t) ~4*V(t)*X1(t)

K1xK2*Ki*alphaO*muO-

K1xK2*Ksi*alphaO*muO-

K1xKe*Ki*alphaO*muO-

K1xKe*Ksi*alphaO*muO-

K1xKi*Kp*alphaO*muO-

K1xKi*Ksi*alphaO*muO-

K2xKe*Ki*alphaO*muO-

K2xKe*Ksi*alphaO*muO-

K2xKi*Kp*alphaO*muO-

K2xKi*Ksi*alphaO*muO-

KexKi*Kp*alphaO*muO-

KexKi*Ksi*alphaO*muO-

Ki*Kp*Ksi*alphaO*muO
-KO*K1*alphae*mue-KO*K2*alphae*mue- L(t)*S(t) "5*V(t)*X0(t)

KO*K2*m0-KO*Ke*m0O-

KOx*Ki*alphae*mue-KO*Ki*m0O-

KO*Ksi*alphaexmue-KO*Ksi*m0-

K1xK2*alphae*mue-

K1xKi*alphae*mue-

K1xKsi*alphaexmue-K2*Ke*m0-

K2xKi*alphae*mue—-K2*Ki*mO-

K2xKsi*alphae*mue-K2*Ksi*mO-

KexKi*mO-Ke*Ksi*m0-

KixKp*alphae*mue-Ki*Kp*mO-

Kix*Ksi*alphae*mue-Ki*Ksi*mO
-K1#K2*Ke*Ki*Ksl*alphaO*muO- S(t) "3xV(t)*X1(t)

K1xK2*xKe*Ksi*Ksl*alphaO*muO-

C. Perl Program for Parsing Model Equations 303

K1xK2xKi*Kp*Ksl*alphaO*muO-
K1xK2xKi*Ksi*Ksl*alphaO*muO-
K1xKex*Ki*Kp*Ksl*alphaO*muO-
K1xKe*Ki*Ksi*Ksl*alphaO*muO-
K1xKi*Kp*Ksi*Ksl*alphaO*muO-
K2xKe*Ki*Kp*Ksl*alphaO*muO-
K2xKe*Ki*Ksi*Ksl*alphaO*muO-
K2xKi*Kp*Ksi*Ksl*alphaO*muO-
KexKi*Kp*Ksi*Ksl*alphaO*muO
+K0*K1*K2*Ke+KO*K1*xK2*Ki+
KO*K1*K2*Ksi+KO*K1*xKe*Ki+
KO*K1*Ke*Ksi+KO*K1*Ki*Kp+
KO*K1*Ki*Ksi+KO*K2*Ke*xKi+
KO*K2xKe*Ksi+K0*K2*Ki*Kp+
KO*K2*Ki*Ksi+KO*Ke*Ki*Kp+
KO*Ke*Ki*Ksi+KO*Ki*Kp*Ksi+
K1*K2xKe*Ki+K1*K2*Ke*Ksi+
K1*K2xKi*Kp+K1*K2*¥Ki*Ksi+
K1xKe*Ki*Kp+K1*xKe*xKi*Ksi+
K1xKi*Kp*Ksi+K2*xKe*xKi*Kp+
K2*KexKi*Ksi+K2*Ki*Kp*Ksi+
KexKi*Kp*Ksi
+KO*K1*K2*Ke*Ki*Ksl+
KO*K1xK2*Ke*Ksi*Ksl+
KO*K1xK2*Ki*Kp*Ks1+
KO*K1*K2*Ki*Ksi*Ksl+
KO*K1*Ke*Ki*Kp*Ksl+
KO*K1*KexKi*Ksi*Ksl+
KO*K1xKi*Kp*Ksi*Ksl+
KOxK2*Ke*Ki*Kp*Ksl+

-diff (S(t),t)*V(t)*S(t) "3*L(t)-
Sigma2*S(t) “4*L(t)+
Ff*xsfxS(t) "3*L(t)

-diff(S(t),t)*V(t)*S(t) "2-
Sigma2*S(t) "3+Ff*sf*S(t) "2

C. Perl Program for Parsing Model Equations

304

KO*K2*Ke*Ki*Ksi*Ksl+
KO*K2*Ki*Kp*Ksi*Ksl+
KO*KexKi*Kp*Ksi*Ksl+
K1*K2*Ke*Ki*Kp*Ksl+

K1xK2*Ke*Ki*Ksi*Ksl+
K1*K2xKi*Kp*Ksi*Ksl+
K1xKexKi*Kp*Ksi*Ksl+
K2xKe*Ki*xKp*Ksi*Ksl

+K0*K1*¥K2xKs1+KO*K1*xKe*Ks1l+

KO*K1*Ki*Ks1+KO*K1*Ksi*Ksl+
KO*K2*Ke*Ks1+K0O*K2*xKi*Ks1+
KO*K2*Ksi*Ks1+KO*Ke*Ki*Ksl+
KO*Ke*Ksi*Ks1+KO*Ki*Kp*Ksl+
KO*Ki*Ksi*Ksl1+K1*K2xKe*Ksl+
K1*¥K2*xKi*Ks1+K1*K2*Ksi*Ksl+
K1xKe*Ki*Ksl+K1*xKe*Ksi*Ksl+
K1*Ki*Kp*Ks1+K1*Ki*Ksi*Ksl+
K2xKe*Ki*Ks1+K2*Ke*Ksi*Ksl+
K2xKi*Kp*Ks1+K2*xKi*Ksi*Ksl+
KexKi*Kp*Ksl+KexKi*Ksi*Ksl+
Ki*Kp*Ksi*Ksl

-K1xK2*Ke*Ksl*alphaO*muO-

K1xK2*xKi*Ksl*alphaO*mu0-
K1xK2*Ksi*Ksl*alphaO*muO-
K1xKex*Ki*Ksl*alphaO*muO-
K1xKe*Ksi*Ksl*alphaO*muO-
K1xKi*Kp*Ksl*alphaO*mu0-
K1xKi*Ksi*Ksl*alphaO*muO-
K2xKe*Ki*Ksl*alphaO*muO-

K2xKe*Ksi*Ksl*alphaO*muO-

-diff(S(t),t)*V(t)*S(t) "4-
Sigma2*S(t) "5+Ff*sf*S(t) "4

S(t) ~4*xV(t)*X1(t)

C. Perl Program for Parsing Model Equations

305

K2xKi*Kp*Ksl*alphaO*mu0-
K2xKi*Ksi*Ksl*alphaO*muO-
KexKi*Kp*Ksl*alphaO*muO-
KexKi*Ksi*Ksl*alphaO*muO-
Ki*Kp*Ksi*Ksl*alphaO*muO
+K0*K1*Kexm1+KO*K1*Ki*alphap*mup+
KO*K1*Ki*m1+KO*K1*Ksi*ml+

KO*K2*Ki*alphap*mup+

KO*KexKi*alphap*mup+KO*Ke*Ki*ml+

KO*Ke*Ksi*m1+KO*Ki*Kp*ml+
KO*Ki*Ksi*alphap*mup+
KO*Ki*Ksi*ml+

K1xK2*Ki*alphap*mup+

K1xKex*Ki*alphap*mup+K1*Ke*Ki*ml+

K1xKe*Ksi*m1+K1*xKi*Kp*m1l+
K1xKi*Ksi*alphap*mup+
K1*Ki*Ksi*ml+
K2xKex*Ki*alphap*mup+
K2xKi*Ksi*alphap*mup+
KexKi*Kp*ml+
KexKi*Ksi*alphap*mup+
KexKi*Ksi*ml1+Ki*Kp*Ksi*ml
-KO*K1*Ksl*alphae*mue-
KO*K2*Ksl*alphae*mue-
KO*K2*Ks1*m0-KO*Ke*Ks1*mO-
KO*Ki*Ksl*alphae*mue-
KO*Ki*Ks1l*mO-
KO*Ksi*Ksl*alphae*mue-
KO*Ksi*Ksl*mO-

K1xK2*Ksl*alphae*mue-

-1/2xV(t)*S(t) "4*X1(t)*L(t)+

1/2%X2(t) *rho*V (t)*S(t) ~4*L(t)

S(t) "5*V(t)*X0(t)

C. Perl Program for Parsing Model Equations 306

K1xKi*Ksl*alphae*mue-
K1xKsi*Ksl*alphae*mue-
K2*Ke*Ks1*mO-
K2xKi*Ksl*alphae*mue-
K2xKi*Ks1l*mO-
K2xKsi*Ksl*alphae*mue-
K2*Ksi*Ks1l*mO-Ke*Ki*Ksl*mO-
Kex*Ksi*Ksl*mO-
Ki*Kp*Ksl*alphae*mue-
Ki*Kp*Ksl*mO-

Ki*Ksi*Ksl*alphae*mue-

Ki*Ksi*Ks1l*mQO
+KO*K1*K2xKi*alphap*mup+ -1/2*%V(t)*S(t) "3*xX1(t) *L(t)+
KO*K1*Ke*Ki*alphap*mup+ 1/2*X2(t) *rho*V (t)*S(t) “3*L(t)

KO*K1xKe*xKi*m1+KO*K1*Ke*Ksi*ml+
KO*K1*Ki*Kp*ml+
KO*K1*Ki*Ksi*alphap*mup+
KO*K1*Ki*Ksi*ml+
KO*K2*Ke*Ki*alphap*mup+
KO*K2*Ki*Ksi*alphap*mup+
KO*Ke*Ki*Kp*ml+
KO*Ke*Ki*Ksi*alphap*mup+
KO*Ke*Ki*Ksi*ml+KO*Ki*Kp*Ksi*ml+
K1xK2xKe*Ki*alphap*mup+
K1xK2*Ki*Ksi*alphap*mup+
K1xKe*Ki*Kp*m1l+
K1xKe*Ki*Ksi*alphap*mup+
K1*Ke*Ki*Ksi*m1+K1*Ki*Kp*Ksi*ml+
K2xKe*Ki*Ksi*alphap*mup+
KexKi*Kp*Ksi*ml

C. Perl Program for Parsing Model Equations

307

+K0*K1*K2*xKe*Ks1+KO*K1*K2*Ki*Ksl+ -diff (S(t),t)*V(t)*S(t)~3-
KO*K1*K2*Ksi*Ksl+ Sigma2+S(t) "4+Ff*sf*S(t) "3
KO*K1*Ke*Ki*Ksl+
KO*K1*Ke*Ksi*Ksl+
KO*K1*Ki*Kp*Ksl+
KO*K1xKi*Ksi*Ksl+
KO*K2xKe*Ki*Ksl+
KO*K2*Ke*Ksi*Ksl+
KO*K2*Ki*Kp*Ks1l+
KO*K2xKi*Ksi*Ksl+
KO*KexKi*Kp*Ksl+
KO*Ke*Ki*Ksi*Ksl+
KO*Ki*Kp*Ksi*Ksl+
K1*K2xKe*Ki*Ksl+
K1xK2*KexKsi*Ksl+
K1*¥K2*xKi*Kp*Ksl+
K1*K2xKi*Ksi*Ksl+
K1*Ke*Ki*Kp*Ksl+
K1xKe*Ki*Ksi*Ksl+
K1xKi*Kp*Ksi*Ksl+
K2*KexKi*Kp*Ksl+
K2*KexKi*Ksi*Ksl+
K2xKi*Kp*Ksi*Ksl+
KexKi*Kp*Ksi*Ksl
-KO*K1*K2*Ki*alphae*mue- L(t)*S(t) "3*V(t)*X0(t)
KO*K1xK2*xKsi*alphae*mue-
KO*K1*Ki*Kp*alphae*mue-
KO*K1*Ki*Ksi*alphae*mue-
KO*K2*Ke*Ki*mO-KO*K2*Ke*Ksi*mO-

KOxK2*xKi*Kp*alphae*mue-

C. Perl Program for Parsing Model Equations 308

KO*K2*Ki*Kp*mO-
KOxK2xKi*Ksi*alphae*mue-
KO*K2*Ki*Ksi*mO-KO*Ke*Ki*Kp*mO-
KO*Ke*Ki*Ksi*mO-
KOx*Ki*Kp*Ksi*alphae*mue-
KO*Ki*Kp*Ksi*mO-
K1xK2xKi*Kp*alphae*mue-
K1xK2*Ki*Ksi*alphae*mue-
K1xKi*Kp*Ksi*alphae*mue-
K2xKe*Ki*Kp*mO-K2*Ke*Ki*Ksi*mO-
K2xKi*Kp*Ksi*alphae*mue-
K2xKi*Kp*Ksi*mO-Ke*Ki*Kp*Ksi*mO
-K0*K1*K2*alphae*mue- L(t)*S(t) "4xV(t)*X0(t)
KO*K1*Ki*alphae*mue-
KO*K1*Ksi*alphae*mue-
KO*K2*xKex*xm0-KO*K2*Ki*alphae*mue-
KO*K2*K1i*m0-
KO*K2*Ksi*alphae*mue-
KO*K2*Ksi*m0-KO*Ke*Ki*m0-
KO*Ke*Ksi*mO-
KO*Ki*Kp*alphae*mue-KO*Ki*Kp*mO-
KO*Ki*Ksi*alphae*mue-
KO*Ki*Ksi*mO-
K1xK2*Ki*alphae*mue-
K1xK2*Ksi*alphae*mue-
K1xKi*Kp*alphae*mue-
K1xKi*Ksi*alphae*mue-
K2*Ke*Ki*m0-K2*Ke*Ksi*m0O-
K2xKix*Kp*alphae*mue-K2*Ki*Kp*mO-

K2xKi*Ksi*alphae*mue-

C. Perl Program for Parsing Model Equations 309

K2xKi*Ksi*mO-Ke*xKi*Kp*m0O-
KexKi*Ksi*mO-

Kix*Kp*Ksi*alphae*mue-

Ki*Kp*Ksi*mO

+K0*K1*Ke*Ksl*ml+ -1/2xV(t)*S(t) "4*X1(t)+
KO*K1*Ki*Ksl*alphap*mup+ 1/2*X2(t) *rho*V (t)*S(t) "4
KO*K1*Ki*Ksl*ml+
KO*K1*Ksi*Ksl*ml+

KO*K2*Ki*Ksl*alphap*mup+
KO*Ke*Ki*Ksl*alphap*mup+
KO*Ke*Ki*Ksl*ml+
KO*Ke*Ksi*Ksl*ml+
KO*Ki*Kp*Ksl*ml+
KO*Ki*Ksi*Ksl*alphap*mup+
KO*Ki*Ksi*Ksl*ml+
K1xK2*xKi*Ksl*alphap*mup+
K1xKex*Ki*Ksl*alphap*mup+
K1*Ke*Ki*Ksl*ml+
K1xKe*Ksi*Ksl*ml+
K1xKi*Kp*Ksl*ml+
K1xKi*Ksi*Ksl*alphap*mup+
K1*Ki*Ksi*Ksl*ml+
K2xKe*Ki*Ksl*alphap*mup+
K2xKi*Ksi*Ksl*alphap*mup+
KexKi*Kp*Ksl*ml+
KexKi*Ksi*Ksl*alphap*mup+
KexKi*Ksi*Ksl*ml+
Ki*Kp*Ksi*Ksl*ml
+KO*K1*K2xKi*Ksl*alphap*mup+ -1/2xV(t)*S(t) "3*xX1(t)+
KO*K1*Ke*Ki*Ksl*alphap*mup+ 1/2%X2(t) *rho*V(t)*S(t) "3

C. Perl Program for Parsing Model Equations 310

KO*K1*Ke*Ki*Ksl*ml+
KO*K1*Ke*Ksi*Ksl*ml+
KO*K1*Ki*Kp*Ksl*ml+
KO*K1*Ki*Ksi*Ksl*alphap*mup+
KO*K1*Ki*Ksi*Ksl*ml+
KO*xK2*Ke*Ki*Ksl*alphap*mup+
KO*xK2*Ki*Ksi*Ksl*alphap*mup+
KO*Ke*Ki*Kp*Ksl*ml+
KO*Ke*Ki*Ksi*Ksl*alphap*mup+
KO*Ke*Ki*Ksi*Ksl*ml+
KO*Ki*Kp*Ksi*Ksl*ml+
K1xK2*KexKi*Ksl*alphap*mup+
K1xK2*Ki*Ksi*Ksl*alphap*mup+
K1xKe*Ki*Kp*Ksl*ml+
K1xKe*Ki*Ksi*Ksl*alphap*mup+
K1xKe*Ki*Ksi*Ksl*ml+
K1xKi*Kp*Ksi*Ksl*ml+
K2xKe*Ki*Ksi*Ksl*alphap*mup+
KexKi*Kp*Ksi*Ksl*ml
-KO*K1*¥K2*Ki*Ksl*alphae*mue- S(t)"3*xV(t)*X0(t)
KOxK1*K2*Ksi*Ksl*alphae*mue-
KO*K1*Ki*Kp*Ksl*alphae*mue-
KO*K1xKi*Ksi*Ksl*alphae*mue-
KO*K2*Ke*Ki*Ks1*m0O-
KO*K2*Ke*Ksi*Ks1l*mO-
KO*K2xKi*Kp*Ksl*alphae*mue-
KO*K2*Ki*Kp*Ks1*m0O-
KOxK2xKi*Ksi*Ksl*alphae*mue-
KO*K2*Ki*Ksi*Ksl*mO-
KO*Ke*Ki*Kp*Ks1l*m0O-

C. Perl Program for Parsing Model Equations 311

KO*Ke*Ki*Ksi*Ksl*m0O-
KO*Ki*Kp*Ksi*Ksl*alphae*mue-
KO*Ki*Kp*Ksi*Ksl*mO-
K1xK2xKi*Kp*Ksl*alphae*mue-
K1xK2*Ki*Ksi*Ksl*alphae*mue-
K1xKi*Kp*Ksi*Ksl*alphae*mue-
K2xKe*Ki*Kp*Ksl*mO-
K2xKe*Ki*Ksi*Ksl*m0O-
K2xKi*Kp*Ksi*Ksl*alphae*mue-
K2xKi*Kp*Ksi*Ksl*mO-
KexKi*Kp*Ksi*Ksl*mO
-KO0*K1*¥K2*Ksl*alphae*mue- S(t)"4xV(t)*X0(t)
KO*K1*Ki*Ksl*alphae*mue-
KO*K1*Ksi*Ksl*alphae*mue-
KO*K2*Ke*Ks1*mO-
KOxK2*xKi*Ksl*alphae*mue-
KO*K2*Ki*Ks1*mO-
KO*xK2*Ksi*Ksl*alphae*mue-
KO*K2*Ksi*Ksl*mO-
KO*Ke*Ki*Ks1l*mO-
KO*Ke*Ksi*Ksl*mO-
KO*Ki*Kp*Ksl*alphae*mue-
KO*Ki*Kp*Ks1l*mO-
KO*Ki*Ksi*Ksl*alphae*mue-
KO*Ki*Ksi*Ksl*mO-
K1xK2*xKi*Ksl*alphae*mue-
K1xK2*Ksi*Ksl*alphae*mue-
K1xKix*Kp*Ksl*alphae*mue-
K1xKi*Ksi*Ksl*alphae*mue-

K2*Ke*xKi*xKs1*mO-

C. Perl Program for Parsing Model Equations 312

K2xKe*Ksi*Ksl*mO-
K2xKi*Kp*Ksl*alphae*mue-
K2*Ki*Kp*Ks1*mO-
K2xKi*Ksi*Ksl*alphae*mue-
K2xKi*Ksi*Ksl*mO-
KexKi*Kp*Ks1l*xmO-
Ke*Ki*Ksi*Ksl*mO-
Kix*Kp*Ksi*Ksl*alphae*mue-

Ki*Kp*Ksi*Ksl*mO

D. GENERATING THE FISHER INFORMATION MATRIX
USING MAPLE

The symbolic mathematics package Maple was used to simplify the calcu-
lation of the Fisher Information Matrices used in searching for optimal ex-
periment designs. This appendix contains a listing, automatically generated
from Maple (in KTEX format), which describes how the Fisher Information
Matrix was first calculated symbolically from the model equations describ-
ing the simplified and lactose-incorporating version of the model of (Paul
and Thomas, 1996), and then illustrates the use of Maple’s C code genera-
tion facility to produce snippets of code that were subsequently spliced into
S-functions for use with SIMULINK. The raw output as obtained from Maple

has been modified slightly so as to improve its layout on the printed page.

D.1 Start of Maple Session, and Introductory Comments

> restart,;

This file needed to be modified on 8/1/98 to take into consideration the
fact that the model proper does not just make use of the feed rate (of glucose),
but also takes into consideration the rate of addition of PAA precursor,

and the rate of abstraction of filtered liquor for HPLC analysis.

D. Generating the Fisher Information Matrix Using Maple 314

The practical upshot of this is that the F in the insoluble species equations
(X0,X1,X2,X3,X4 and V) is replaced by (F+FX-SR),
and the F in the soluble species equations (S,L,P) is replaced by (F+FX).

D.2 Model Equations

We start by entering the equations defining the model.
> rhol := X1/((X1/rho)+X2):
> vlc := X1/(2xrhol) - X2:

> XOexpr := muO*X1*S/(K0+S) - gammal*X0/(K1+S)
(F+FX-SR) *X0/V:

\Y

Xlexpr := mue*X0*S/(Ke+S) -muO*X1%S/(KO0+S)
gammal*X0/(K1+S) - mu2+X2*rho - (F+FX-SR)*X1/V:

=+

> X2expr := mul*vic - mu2*X2 + mu3*X2 - (F+FX-SR)*X2/V:

> X3expr := mu2*X2*rho - mua*X3 - (F+FX-SR)*X3/V:

> X4expr := muaxX3 - (F+FX-SR)*X4/V:

> Sexpr := -alphaO*muO*X1*S/(K0+S) - alphaexmue*X0%*S/(Ke+S)

m0*X0*S/ (K1+S) - mlxrhoxvicxS/(K2+S)
alphap*mup*rho*vic*S/ (Kp+S*(1+S/Ki))
mul*L* (X0+X1)/((Ksl+L)*(1+(S/Ksi))) + Fxsf/V - (F+FX)*S/V:

=+

> Lexpr := - mul*L*(X0+X1)/((Ksl+L)*(1+(S/Ksi)))
(F+FX)*L/V:

> Pexpr := mup*rho*vic*S/(Kp+S*(1+S/Ki)) - muh*P
(F+FX)*P/V:

Vv

Vexpr := (F+FX-SR):

D. Generating the Fisher Information Matrix Using Maple 315

D.3 Nonlinear State Derivative Vector

Next we construct the nonlinear state derivative vector from the model equa-

tions.
> stateqs := array(1l..8):
> stateqs[1] := XOexpr:
> stateqs[2] := Xlexpr:
> stateqs[3] := X2expr:
> stateqs[4] := X3expr:
> stateqs[b5] := Sexpr:
> stateqs[6] := Lexpr:
> stateqs[7] := Pexpr:
> stateqs[8] := Vexpr:

> eval(stateqs);

w0 X1S ~1X0 (F+ FX —SR)X0 mueX0S

Ko+S Ki+S i% " Ke+ S
p0X1S y1X0 5 X (F + FX — SR) X1
K0+S Ki+8 Mo°P Vv :

(F + FX — SR) X2

ul %1 — p2 X2 4+ 43 X2 — 7 ,
(F+FX — SR)X3 a0p0X1S$

p2 X2 p— mua X3 —

v ’ Ko+ S
_ alphae mue X0S m0X0S mlp%hlS
Ke+ S K1+ S K2+ S

alphapmupp%15+ mul L (X0 + X1) +st

S S
Kp—i—S(l—l—E) (Ksl+L)(1+) v

Ksi

D. Generating the Fisher Information Matrix Using Maple 316

(F+FX)S mulL(X0+X1) (F+FX)L

v S v
Ksl+L) (14—
(Ksi + L) (14)
mup p %1 S —muhP—i(F—i_‘fX)P,F—i—FX—SR
Kp+S(1+-2=
p+ 51+ -)
1 X1 1
li=-2" "X
= 5 5 X2

D.4 States Vector

Then we construct the states vector; this must be in the same order as the

nonlinear state derivative vector.

> states := array(1l..8):
> states[1] := XO0:
> states[2] := X1:

> states[3] := X2:
> states[4] := X3:
> states[5] := S:
> states[6] := L:
> states[7] := P:
> states[8] := V:

> eval(states);

(X0, X1, X2, X3, S, L, P, V]

D. Generating the Fisher Information Matrix Using Maple 317

D.5 Calculating the Derivatives wrt the States

Generating the delf_delx matrix.
> delf_delx := array(1..8,1..8):

> for i to 8 do for j to 8 do delf_delx[i,j] :=
diff (stateqs[i],states[j]) od od:

> delf_delx:

> eval(delf_delx);

91 F+FX-SR w08 0.0
K1 +S v "KO+ST T
pO0X1 p0XIS ~v1 X0 0.0 (F+ FX — SR) X0
K0o+S (KO+S)2 (K1+S5)2 77 V2
mue S 71 10.S F+FX - SR
— — —u2p,0
[Ke+S+K1+S’ K0+5 v e
mue X0 mueX0S p0X1 n poX15 — ~41X0 0
Ke+S (Ke+S8)? KO0O+S (K0O+S5)? (K1+295)2’
(F+ FX — SR) X1
707 V2
1 pl 1 F+FX - SR
— 1= 2 _ - rra PR
[,2/), 5 #l = p2 4 p3 % ,0,0,0,0,
(F+FX — SR) X2
V2
F+FX — SR
0,0,u2p,—mua—%,0,0,0,
(F+FX — SR) X3
V2
alphae mue S m0 S n mul L a0 u0 S
_ _ S
Ke+ S K1 +S§ (Ksl—i-L)(l—i-E) Ko+S
1 ml S 1 alphap mup S n mul L
2K2+S5 2 S S

Kp—i—S(l—l—E) (Ksl+L)(1+E)

D. Generating the Fisher Information Matrix Using Maple 318

1 mip$S alphap mup p S _a0p0 X1

1
Y Y S
2 K248 2Kp+S(I+E) Ko+ S

a0 X1 S _ alphae mue X0 n alphae mue X0 S
(K0 + S)? Ke+ S (Ke + S)?

B m0X0+ m0X0S miphl mip%hlS
KiI+S (KI1+5)? K2+S5 (K24 S5)?

S
alphap mup p%1 @lphap mup p%1 .5 (1 HE)
_ i -
Kp+S(1+ — Kp+S(1+—))?2
p+S0+5) (Kp+8(1+22))
mul L (X0 + X1) F+ FX
_ . A
=)2
(sl + L) (1 + 5-=)? Ksi
mul (X0 + X1) mul L (X0 + X1)
S o S ’)
K. L) (1 — K IN2 (1 &
(Ksl+ L) (14 =) (Ksl+L)?(1+ 5=)
Fsf (F+FX)S
_V2 + V2
L 1L
[_ mu - mu - 0.0,
Ksl+ L) (1 + — Ksl+ L) (1 4+ ——
(Ksl+ L) (1+ =) (Ksl+ L) (1+ 2—)

mul L (X0 4+ X1)

b

S
—
(Ksl+ L) (1+ Koi sz') Ksi
mul (X0 + X1) n mul L(X0+X1) F+FX

707

S S V
K L)(14+ — K L)2(1+ —
(Ksl+ L) (+Ksi) (Ksl + L)% (+Ksz')
(F+FX)L
V2
1 mup S 1 mup p S
07§ S 7_5 S 707
Kp—i—S(l—l—E) Kp-i—S(l-i-E)
S
15(14+2—
mup p %1 _mupp% S(1+ Ki)’O’

S S
_ —~ })2
Kp+S(1+KZ_) (Kp+S(1+”))

D. Generating the Fisher Information Matrix Using Maple 319

, _F+FX (F+FX)P
b —
% V2
[0,0,0,0,0,0,0,0]
1 X1 1
l=-2"__X
Wl =g = -5 X2

D.6 Parameters Vector

This is an arbitrary ordering of the parameters, but the same ordering should

be used in the SIMULINK model. (By this, I mean that the order in which

parameter arguments are passed to the S-function calculating the sensitivity

matrix should be the same order as that used in calculating the sensitivity

matrix in Maple. Although this is not strictly necessary, it is simpler to use

the same parameter order in both places than it is to convert from one list

order to another in moving from Maple to SIMULINK.)

> parameters :=
> parameters[1]
> parameters[2]
> parameters[3]
> parameters[4]
> parameters[5]
> parameters[6]
> parameters[7]

> parameters[8]

array(1l..23):

muO:
KO:
gammal:
K1i:
mue:
Ke:
mu?2:

mul:

D. Generating the Fisher Information Matrix Using Maple 320

> parameters[9] := mu3:

> parameters[10] := mua:

> parameters[11] := alphaO:
> parameters[12] := alphae:
> parameters[13] := mO:

> parameters[14] := ml:

> parameters[15] := K2:

> parameters[16] := alphap:
> parameters[17] := mup:

> parameters[18] := Kp:

> parameters[19] := Ki:
> parameters[20] := mul:
> parameters[21] := Ksl:
> parameters[22] := Ksi:
> parameters[23] := muh:

> eval(parameters);
(10, KO, v1, K1, mue, Ke, u2, ul, u3, mua, a0, alphae, m0,

m1, K2, alphap, mup, Kp, Ki, mul, Ksl, Ksi, muh]

D.7 Calculating the Derivatives wrt the Parameters

Generating the delf_delp matrix.

D. Generating the Fisher Information Matrix Using Maple 321

> delf_delp := array(1..8,1..23):

> for i to 8 do for j to 23 do delf_delpl[i,j] :=
diff (stateqs[i],parameters[j]) od od:

> delf_delp:

> eval(delf_delp);

X1s poX1S X0 ~v1 X0 0.0.0.0.0
Ko+S’ (KO+S8)2 Ki+S (Ki+S8)2"" 7777
0,0,0,0,0,0,0,0,0,0,0,0,0,0
X185 u0 X1 S X0 _71X0 X08
KO+S’ (K0O+8)??" Ki+S8' (KI+S8)2" Ke+ S’
mue X0 S
-, —-X2p,0,0,0,0,0,0,0,0,0,0,0,0
(K€+S)27 p? ? ? ? 9 9 9 9 9 9 ? ? 3
0,0,0,0]
[0,0,0,0,0,0, -X2, %1, X2,0,0,0,0,0,0,0,0,
0,0,0,0,0,0]
0,0,0,0,0,0,X2p,0,0,—-X3,0,0,0,0,0,0,0,
0,0,0,0,0,0]
_a0X1S a0p0X1S m0 X0S alphae X0 S
Ko+S’~ (K0O+S)?2" 7 (K1+8)?*’ Ke+S
alphae mue X0 S w0 X1 8 mue X0 S
707070707_ s 3
(Ke + S)? Ko+ S Ke+ S
_X0S p%1S mip%lS mupp%hlS
Ki+S’ K2+8° (K2+S68)2° S\’

Kp + S (1 + E)
alphap p %1 S alphap mup p %1 S

b 7

S S
K 14+ — K 14+ —))2
p+ S+ =) (Kp+S{I1+ 7))
alphap mup p %1 S3 L(X0+ X1)

b 7

S S
2 N2 g2 2
(Kp+S(1+ KZ.)) Ki* (Ksl+L)(1+ KSZ.)

D. Generating the Fisher Information Matrix Using Maple 322

 mul L(X0 + X1) mul L (X0 + X1)S

S 5
2 2 i2
(Ksl+ L) (L+ 2=) (Kl + L) (1+)2 Ksi

[0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

L (X0 + X1) mul L (X0 + X1)
5 5
Ksl+L)(1+—2) (Ksl+L)2(1+——
(Kst+ L) (1+ 4) (Ksl+ L) (1+ 2-5)

_ mulL(X0+X1)S 0

S
2 i2
(sl + L) (1+ 2=)? Ksi

[0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

p %18 mup p %1 S

b 9

S S
_)2
Kp—l—S(l—l—Ki) (Kp—i—S(l—i—Ki))

mup p %1 S3
(Kp+S(1+ K%))? Ki?
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0, 0]

1 X1 1

li=-2"—_X
Wil == — 5 X2

,0,0,0,—P

D.8 Generating C code for use in the SIMULINK S-function

Maple’s C code utilities were used to automatically produce C code describ-
ing the calculation of the delf_delp and delf_delx matrices in terms of the
stated parameters and states. This code was then be copied into a template
S-function, with the parameters used here being related to a vector of pa-
rameters passed into the S-function from SIMULINK and the states being
related to the inputs passed into the S-function in SIMULINK. This required

D. Generating the Fisher Information Matrix Using Maple 323

a few small modifications to the standard S-function template.

The Maple command to include the C utilities in the current session, mak-
ing them available for subsequent use, is readlib(C):, and the command
used to generate the two sets of optimised C code for the two derivative ma-
trices were C(delf _delp, optimized): for the derivative with respect to the
parameters, and C(delf _delx, optimized): for the derivative with respect
to the states. The outputs of these two commands, and the C S-function
produced using the Maple-generated C are not shown here, for reasons of

brevity.

E. CONFERENCE PAPER

The following paper was presented at the 7th International Conference on
Computer Applications in Biotechnology (CAB7), held in Osaka, Japan, in
June 1998.

IMPROVING THE ESTIMATION OF PARAMETERS
OF PENICILLIN FERMENTATION MODELS

M.T. Syddall* G.C. Paul* C.A. Kent *!

* Centre for Bioprocess Engineering, School of Chemical
Engineering, The University of Birmingham, Edgbaston,
Birmingham, B15 2TT, United Kingdom

Abstract: Models for use in control and estimation applications should match the
process as closely as possible. Fermentation process models are usually complex, con-
taining many states and parameters. Obtaining accurate estimates of the parameters
of such models is a costly and time-consuming process. Here we show a way of reducing
the time and cost by designing optimal experiments for parameter identification. The
method presented uses genetic algorithms to search for input profiles which optimise
scalar functions of the Fisher information matrix, thus maximising the improvement
in the parameter estimates that may be obtained from each experiment performed.
The Penicillium chrysogenum penicillin-G fermentation, a secondary metabolite fer-

mentation, is used as an example.

Keywords: Fermentation processes, Modelling, Parameter estimation, Genetic

algorithms, Optimal experiment design

1. INTRODUCTION

The use of differential equation based physio-
logical models in the design of optimal produc-
tion strategies for penicillin fermentations (Lim
et al. 1986, San and Stephanopoulos 1989) and
in the design of advanced controllers for the fer-
mentation (di Massimo et al. 1992, van Impe and
Bastin 1995) has previously been reported in the
literature.

The models on which these approaches were based
contain parameters which must be estimated from
experimental data, which can often cause diffi-
culties. Nihtild and Virkunnen (1977) reported
lack of confidence in parameter estimates obtained
tuning bacterial models with data from batch
fermentations. Holmberg (1982) demonstrated the
theoretical identifiability of a model incorporating
Michaelis-Menten kinetics, but went on to show
that, given limited samples of noisy data, this

1 Author to whom correspondence should be addressed

same model was not practically identifiable, al-
though more frequent sampling did help to im-
prove confidence in the estimates obtained. The
fact that algorithmic parameter estimation meth-
ods such as Marquardt methods do not necessarily
lead to global optima was also mentioned.

These difficulties may be related to the geome-
try of the least squares error surface on which
the parameter estimation is performed. Holmberg
and Ranta (1982) showed that the niveau curves
(contours of constant error) about the optimal
parameter set were long and narrow.

Series of experiments are often performed, gener-
ating incremental improvements in the quality of
the parameter estimates. This is typically costly
and time-consuming, particularly in the case of
fermentation modelling, where a single experi-
ment may take a week or more. Designing exper-
iments so as to gain the maximum improvement
in the parameter estimates could save time and

money in the development of models for use in
advanced fermentation control.

2. TUNING THE MODEL PARAMETERS

Throughout this work, the penicillin fermentation
is considered as being described by a nonlinear
differential equation based model of the following
form.

x(t) = £(x(t), B, u(t)) (1)
y(t) = g(x(t),8,u(?)) (2)

In the above, x(t) is a vector of model states, 3
is a set of time-invariant parameters, and u(t) is
the vector of inputs to the model. The output of
the model is y(t); this second equation is used
to relate measurements to the model states. (In
our case, for simplicity, we assume y(t) = x(t).)
The model structure used in this work is given in
section 4.1.

In order to be able to make use of the model
for practical purposes, it must first be tuned so
as to most accurately represent the fermentation.
This may be done using a least squares based
optimisation routine, with an objective function
of the following form.

1 n
=3 Z t:)) W (m(t;) — x(t:)) (3)
In the above, E is the error value, m(¢;) is a vector
of measurement values at times t;, the summation
is carried out for n sample times, and W is a
weighting matrix. In our case, W is a diagonal
matrix, with the maximum values of the measured
states along the diagonal. The prime ' denotes
vector or matrix transposition.

2.1 A geometrical interpretation of the errors

The error function E can be considered as a
hypersurface given by

E=E(B) - E|g:b (4)
where b denotes the optimal parameter set, and
hence E| p—b gives the minimum value for E.

If we assume that the error surface is smooth
and continuous with respect to the parameter
values around the optimal parameter set, we can
approximate the surface using a Taylor expansion
around the optimum.

E(B) = E|gb+aE (p-b)
+%(ﬂ—b)’%ﬂ_b(ﬂ—b) ©)

+ higher order terms

Because E has a minimum at 3 =b ...

OF
bl =0
9B |g—p
and
2
% is positive definite

Neglecting terms above the second derivative, and
substituting equation 4 into equation 5, we have

1 0’E
Exz(B-b) —
2 9B 0B |p=p
which describes a hyperparaboloid. Surfaces of
constant E are hence hyperellipsoids.

B-b) (6)

The second derivative of the error value, given
in equation 3, with respect to the parameters, is
given by the following equation (Eykhoff 1974).

3597 "2 (8’5231))'“’ (%55")
-3 (Gp) weemtey e

The second term vanishes close to the optimal
parameter set, as limg_,p(m(t;) — x(¢;)) = 0.

0x(t) /0B is given by the following equation, ob-
tained by differentiating equation 1.

ox(t)
d o5

_ Of ox(t) | Of(t)
It ox 08 | 0B (8)

3. THE FISHER INFORMATION MATRIX
AND OPTIMAL EXPERIMENT DESIGN

The Fisher Information Matrix (FIM), forms the
basis of several criteria used in the design of
optimal experiments for model identification (see
Table 1.) For a derivation of the FIM, see Eykhoff
(1974). In its discrete form, applicable for cases
where measurements are taken at discrete sample
intervals rather than continuously, the FIM may

be defined as follows.
Ix(t:)
) (%57) ©

FIM = Z(

Comparing equations 7 and 9 shows that the the
FIM is an approximation to the second derivative

Criterion Formula Interpretation

A min(tr(FIM 1)) minimise mean variance
simplified A max(tr(FIM)) minimise mean variance

C min(tr(FIM)) minimises relative (mean) volume
D max(det(FIM)) minimises ellipsoid volume

E max(Apin (FIM)) minimises longest axis

modified E min(cond(FIM) = 2max(FIM)) o orical as possible

— Apin (FIM)

Table 1. Criteria for optimal experiment design, derived from the Fisher Information
Matrix (FIM) Apin and Amax are the minimum and maximum eigenvalues of the
FIM. The above definitions are taken from Walter and Pronzato (1990)

of the error surface, being the first term in the

. f 82x(ti)
expression 1or B8

The FIM has been used in the design of exper-
imental conditions for estimating parameters of
batch fermentations (Yoo et al. 1986) and fed-
batch fermentations (Kalogerakis and Luus 1984).
Munack (1989) has shown that fed-batch fermen-
tations are better, from the point of view of iden-
tifiability, than batch fermentations and his work
was focussed on seeking out an input trajectory
that made identification as robust as possible.

4. USING GENETIC ALGORITHMS TO
SEARCH FOR OPTIMAL INPUTS

The FIM depends on the model structure and pa-
rameter set used, on the input applied to the fer-
mentation, and, in its discrete form, on the sam-
pling interval used in obtaining measurements.
Given a model structure and an estimate of its pa-
rameters, if the sampling rate is fixed, an optimal
experiment may be designed by seeking out the
input profile which maximises one of the design
criteria given in Table 1.

Munack (1989) stated that the gradient technique
used in searching for an optimal input profile
may have stopped in a suboptimal point, thereby
finding a good local optimum, but not necessarily
a global optimum. Genetic algorithms (GAs) have
been shown to behave well on multimodal func-
tions (Goldberg 1989), being less likely to become
stuck in local optima than conventional optimisa-
tion techniques. GAs only need to calculate the
objective function in the course of their search -
no use is made of derivatives, and GAs may be
used where the search surface is neither smooth
nor differentiable.

In order to use genetic algorithms, the problem
to be solved must first be encoded as a string,
which the genetic algorithm acts on as it searches.
In each generation, the algorithm evaluates the
fitness of every string in the population, mates the
strings according to their fitnesses (reproduction),
exchanges information between pairs of strings
randomly (crossover), and finally changes a small
number of string elements with a low probability
(mutation).

Here we are using GAs to search for fermentation
inputs which optimise the experiment design ac-
cording to the D and modified E criteria, two of
the more commonly used criteria. (In our work,
we have attempted to maximise the reciprocal
of the condition number, rather than minimising
the condition number itself-the two approaches
are equivalent.) For use with the genetic algo-
rithm, our input profile has been divided into
a stepped input, with discrete portions having
constant value. In this way, the input pattern is
only determined by the values of the alleles being
modified by the genetic algorithm. This stepped
input profile is simple to specify using computer
control, and may be applied by hand. The length
of each ‘step’ in the input profile was chosen to be
five hours as this was considered reasonable for
manual implementation, should that be needed.
The choice of a five hour interval also reduces
the length of the strings and hence the size of
the search space being searched by the genetic
algorithm.

4.1 Example - the Penicillin Fermentation

The results of computer studies aimed at finding
the best input for use in identifying the param-
eters of a penicillin fermentation model derived
from that of Paul and Thomas (1996), given in
Table 2, are presented here. This model is used
to illustrate the application of the GA input op-
timisation technique to a complex fermentation
model, for which conventional optimal control re-
lated methods would prove mathematically in-
volved.

The parameter set used in the model is given in
Table 3.

In this work, the Genetic and Evolutionary Algo-
rithm Toolbox for MATLAB (Pohlheim 1996) was
used. An initial population size of 100, with 3
subpopulations was selected, running over a max-
imum of 100 generations, with the feasible input
profiles bounded between 0 and 3.5/160 dm? /hr.
The upper input limit was set to be the rate which
would fill the working volume of the fermenter
(7dm® in a 10dm® fermenter) over the course

dXo poX1S B v1Xo

= (10)
dt Ko+ S Ki+S
dX X115 X1S X
1 peXiS poXa 71 Xo — haXop (11)
dt Ke+ S Ko+ S Ki+S
dX:
o = Hvie = pa Xa + s Xo (12)
dX:
22— 1p Xop — pa X3 (13)
dt
dXy
S °¢ 14
dt Ha A3 (14)
dS _ aopoX1S aepeXoS moXoS mipcvicS
dt Ko+ S Ke+ S K1+ S Ky + S
o QplpPcicS - % (15)
Kp+S(1+S/Kr) dt
ar. prL(Xo + X1) (16)
dt (Ksrp +L)(1+ S/Ksy)
P .
d_ — HpPcVicS —unP (17)
dt Kp+S(1+S8/K;)
v _p (18)
dt

Table 2. Model of Paul and Thomas
(1996), simplified to increase simula-
tion speed (equations 11 to 13), and
extended to consider lactose present
at the start of the fermentation
(equations 15 and 16), X, — morpholog-
ically distinguished biomass fractions, S
— glucose concentration, L — glucose con-
centration, P — penicillin concentration,
V — broth volume, F — input feed rate,
for clarity, dilution terms have been

omitted
Parameter Valu e Parameter Value
) 0.0333 K 0.0788
w1 0.0193 Ky 0.0413
2 0.0535 K; 0.3656
3 2.026e-3 «o 1.85
He 0.4092 Qe 1.83
La 0.0437 ap 0.85
Up 0.0287 mo 0.0256
W 0.241 mi 0.0242
Lh 0.0028 Ksr 0.0864
Ko 0.0352 Kgy 1.099e-3
K 0.0905 71 0.0122
K> 0.3017

Table 3. Table of parameters used in
simulating the model

of the fermentation (assumed to be 160 hours),
starting from a typical initial volume (3.5dm?).

5. RESULTS

Both D and modified E optimal experiment de-
signs improved over the course of the 100 gen-
erations used, giving quite distinct input profiles
at the end. Figure 1 shows the D and modified
E input designs produced, along with results of
simulations performed using these input profiles.
In Table 4, the designed inputs’ values for both

Criterion Constant D-optimal E-optimal
Input Input Input

D 1.64e4 5.18e24 3.00e19

Modified E 1.30e20 1.55e19 1.30e19

Table 4. Values of design criteria ob-
tained using GA-designed input profiles

criteria are compared with the values for a typi-
cal constant input feed profile. The two designed
inputs produce better values for the criterion for
which they were designed than does the constant
feed profile (a greater D criterion value for the D-
optimal design, and a greater E criterion value for
the E-optimal design).

However, the graphs of the simulated fermenta-
tion results suggest that a practical fermentation
carried out using the D-optimal input design could
run into difficulties with low oxygen concentra-
tion from around 40 hours on. That the ‘optimal’
design gives rise to what may be a practically
impossible situation could be because either the
model does not describe the dissolved oxygen con-
centration or the maximum feed profile permitted
is excessive.

The fact that both designed inputs produce ‘bet-
ter’ values for the criterion for which they were
not designed than for the constant input feed
profile may be because the two experiment design
criteria compared in this work are not entirely
independent (det FIM = Hii;:a" A). Geomet-
rically, the D criterion is attempting to minimise
the volume of the confidence ellipsoids, whilst the
E criterion is attempting to improve the ‘round-
ness’ of the same ellipsoids.

6. CONCLUSIONS

Genetic algorithms have been shown to be use-
ful in designing optimal experiments for param-
eter estimation for complex, nonlinear fermen-
tation models, for which optimal control based
approaches to experiment design could prove in-
volved.

In the future it is intended that the E-optimal
experiment design will be implemented; as the
current D-optimal design may encounter practical
difficulties, this should not be implemented. There
is also scope for work investigating the design of
experiments using scaled parameter values, so as
to obtain designs with equal percentage errors, as
opposed to equal absolute error magnitudes, for
all of the parameters.

Acknowledgement: The financial support of the BBSRC
is gratefully acknowledged.

D-optimal
0.02¢

0.01}

0 40 80

120

0 40 80 120 160
40 - - :
n 20t
0 N
0 40 80 120 160
10 - -
o 5t
0 A N "
0 40 80 120 160
Time

E-optimal
0.02¢ : :
LL
L M
0 40 80 120 160
0 40 80 120 160
40 - -
O . N
0 40 80 120 160
10 - -
o 5
0 N " "
0 40 80 120 160
Time

Fig. 1. Simulation results for D and modified E designs, F — input feed rate in dm?/hr, ¥X, — total
biomass concentration, S — glucose concentration, P — penicillin concentration, all concentrations in

gm/1
7. REFERENCES

di Massimo, Christine, Paul A. Lant, Aidan Saun-
ders, Gary A. Montague, Ming T. Tham and
A. Julian Morris (1992). Bioprocess applica-
tions of model-based estimation techniques.
Journal of Chemical Technology and Biotech-
nology 53, 265-277.

Eykhoff, Pieter (1974). System Identification. Wi-
ley.
Goldberg, D. E. (1989). Genetic Algorithms in

Search, Optimisation, and Machine Learning.
Addison-Wesley. New York.

Holmberg, Andrea (1982). On the practical identi-
fiability of microbial growth models incorpo-
rating Michaelis-Menten type nonlinearities.
Mathematical Biosciences 62, 23-43.

Holmberg, Andrea and Jukka Ranta (1982). Pro-
cedures for parameter and state estimation of
microbial growth process models. Automatica
18, 181-193.

Kalogerakis, Nicolas and Rein Luus (1984). Se-
quential experimental design of dynamic sys-
tems through the use of information index.

Canadian Journal of Chemical Engineering
62, 730-737.

Lim, H. C., Y. J. Tayelo, J. M. Modak and
P. Bonte (1986). Computational algorithms
for optimal feed rates for a class of fed-batch
fermentation: Numerical results for penicillin
and cell mass production. Biotechnology and
Bioengineering 28, 1408-1420.

Munack, Axel (1989). Optimal feeding strategy
for identification of Monod-type models by
fed-batch experiments. In: Computer Appli-
cations in Fermentation Technology. Elsevier.
pp- 195-203.

Nihtild, Markku and Jouko Virkunnen (1977).
Practical identifiability of growth and sub-
strate consumption models. Biotechnology
and Bioengineering 19, 1831-1850.

Paul, G. C. and C. R. Thomas (1996). A
structured model for hyphal differentiation
and penicillin production using Penicillium
chrysogenum. Biotechnology and Bioengineer-
ing 51, 558-572.

Pohlheim, H. (1996). Genetic and evolutionary al-
gorithm toolbox for use with MATLAB - doc-
umentation. Technical report. Technical Uni-

versity Ilmenau.
(http://www.systemtechnik.tu-
ilmenau.de/~pohlheim/GA_Toolbox/index.html).

San, Ka-Yiu and Gregory Stephanopoulos (1989).
Optimization of fed-batch penicillin fermen-
tation: A case of singular optimal control with
state constraints. Biotechnology and Bioengi-
neering 34, 72-78.

van Impe, J. F. and G. Bastin (1995). Opti-
mal adaptive control of fed-batch fermenta-
tion processes. Control Engineering Practice
3, 939-954.

Yoo, Young J., M. Marino-Galarraga, J. Hong
and R.T. Hatch (1986). Experimental design
for parameter estimation from batch culture.
Biotechnology and Bioengineering 28, 836—
841.

BIBLIOGRAPHY

Agarwal, A. K. and Brisk, M. L. (1985). Sequential experimental design for
precise parameter estimation 1. use of reparameterization. Industrial
Engineering Chemistry Process Design and Development, 24:203-207.

Bajpai, R. and Reuf}, M. (1980). A mechanistic model for penicillin produc-
tion. Journal of Chemical Technology and Biotechnology, 30:332-344.

Bajpai, R. and Reuf}; M. (1981). Evaluation of feeding strategies in carbon-
regulated secondary metabolite production through mathematical mod-
elling. Biotechnology and Bioengineering, 23:717-738.

Baltes, M., Schneider, R., Sturm, C., and Reuss, M. (1994). Optimal experi-
mental design for parameter estimation in unstructured growth models.
Biotechnology Progress, 10:480-488.

Benedict, R., Schmidt, W., Coghill, R., and Oleson, A. (1945). Penicillin iii,
the stability of penicillin in aqueous solution. Journal of Bacteriology,
49:85-95.

Bilardello, P., Joulia, X., Lann, M. L., Delmas, H., and B.Koehret (1993).
A general strategy for parameter estimation in differential-algebraic sys-
tems. Computers in Chemical Engineering, 17:517-525.

Bronshtein, I. and Semandyayev, K. (1985). Handbook of Mathematics. van
Nostrand Reinhold, english third edition.

Cagney, J. W., Chittur, V. K., and Lim, H. C. (1984). Use of filtration
measurements for estimation of cellular activity in penicillin production.
Biotechnology and Bioengineering Symposium, 14:619-634.

Cazzador, L. and Lubenova, V. (1995). Nonlinear estimation of specific
growth rate for aerobic fermentation processes. bb, 47:626—632.

BIBLIOGRAPHY 332

Chappell, M., Godfrey, K., and Vajda, S. (1990). Global identifiability of the
parameters of nonlinear systems with specified inputs: A comparison of
methods. Mathematical Biosciences, 102:41-73.

Chemical Market Reporter (1998). Vol. 153, No.10.

Contois, D. (1959). Kinetics of bacterial growth: Relationship between pop-
ulation density and specific growth rate of continuous culture. Journal
of General Microbiology, 21:40-50.

Davidor, Y. (1990). Genetic Algorithms and Robotics. Addison-Wesley.

De Jong, K. A. (1993). Genetic algorithms are NOT function optimisers. In
Whitley, L. D., editor, Foundations of Genetic Algorithms 2, San Mateo,
CA. Morgan Kaufmann.

di Massimo, C., Lant, P. A., Saunders, A., Montague, G. A., Tham, M. T\,
and Morris, A. J. (1992). Bioprocess applications of model-based esti-

mation techniques. Journal of Chemical Technology and Biotechnology,
53:265-277.

Espie, D. and Macchietto, S. (1989). The optimal design of dynamic experi-
ments. American Institute of Chemical Engineers, 35:223-229.

Eykhoff, P. (1974). System Identification. Wiley.

Farza, M., Othman, S., Hammouri, H., and Bilton, J. (1997). A nonlinear
approach for the on-line estimation of the kinetic rates in bioreactors.
Bioprocess Engineering, 17:143-150.

Fishman, V. M. and Biryukov, V. V. (1974). Kinetic model of secondary
metabolite production and its use in computation of optimal conditions.
Biotechnology and Bioengineering Symposium, 4:647—662.

GALESIA (1995). Genetic Algorithms in Engineering Systems: Innovations
and Applications, GALESIA ’95. Institution of Electrical Engineers.

GALESIA (1997). Genetic Algorithms in Engineering Systems: Innovations
and Applications, GALESIA ’97. Institution of Electrical Engineers.

BIBLIOGRAPHY 333

Galvanauskas, V., Simutis, R., and Liibbert, A. (1997). Model-based design
of a biochemical processes: Simulation studies and experimental tests.
Biotechnology Letters, 19:1043-1047.

Galvanauskas, V., Simutis, R., Volk, N.; and Liibbert, A. (1998). Model
based design of a biochemical cultivation process. Bioprocess Engineer-
ing, 18:227-234.

Gattu, G. and Zafiriou, E. (1995). Observer based nonlinear quadratic dy-
namic matrix control for state space and input/output models. Canadian
Journal of Chemical Engineering, 73:883-895.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimisation, and
Machine Learning. Addison-Wesley, New York.

Hardwicke, P. 1., Kent, C. A., Norton, J. P., and Veres, S. M. (1991). A
robust procedure for trend and model estimation during fermentation.
Process Biochemistry, 26:269-273.

Heijnen, J. J., Roels, J. A., and Stouthamer, A. H. (1979). Application of bal-
ancing methods in modeling the penicillin fermentation. Biotechnology
and Bioengineering, 21:2175-201.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An In-
troductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. MIT Press. First Edition (©)1975 Massachusetts Institute
of Technology.

Holmberg, A. (1982). On the practical identifiability of microbial growth
models incorporating michaelis-menten type nonlinearities. Mathemati-
cal Biosciences, 62:23-43.

Hosten, L. and Emig, G. (1975). Sequential experimental design proce-
dures for precise parameter estimation in ordinary differential equations.
Chemical Engineering Science, 30:1357—1364.

Hosten, L. H. (1974). A sequential experimental design procedure for pre-
cise parameter estimation based upon the shape of the joint confidence
region. Chemical Engineering Science, 29:2247-2252.

BIBLIOGRAPHY 334

Jacquez, J. A. and Greif, P. (1985). Numerical parameter identifiability
and estimability: Integrating identifiability, estimability, and optimal
sampling design. Mathematical Biosciences, 77:201-227.

Kalogerakis, N. and Luus, R. (1984). Sequential experimental design of dy-
namic systems through the use of information index. Canadian Journal
of Chemical Engineering, 62:730-737.

King, R. (1997). A structured mathematical model for a class of organisms:
1. Development of a model for streptomyces tendae and application of
model-based control. Journal of Biotechnology, 52:219-234.

Kluge, M., Siegmund, D., Diekman, H., and Thomas, M. (1992). A model
for penicillin production with and without temperature shift after the
growth phase. Applied Microbiology and Biotechnolog and Biotechnolo-
gyy, 36:446-451.

Kolchin, E. R. (1973). Differential Algebra and Algebraic Groups. Academic
Press.

Lee, J. H. and Ricker, N. L. (1994). Extended Kalman filter based nonlinear
model predictive control. Industrial and Engineering Chemical Research,
33:1530-1541.

Lim, H. C., Tayeb, Y. J., Modak, J. M., and Bonte, P. (1986). Computational
algorithms for optimal feed rates for a class of fed-batch fermentation:
Numerical results for penicillin and cell mass production. Biotechnology
and Bioengineering, 28:1408-1420.

Ljung, L. and Glad, T. (1994). On global identifiability for arbitrary model
parametrizations. Automatica, 30(2):265-276.

Louis, S. J. and Rawlins, G. J. E. (1993). Syntactic analysis of convergence
in genetic algorithms. In Whitley, L. D., editor, Foundations of Genetic
Algorithms, San Mateo, CA. Morgan Kaufmann.

Luus, R. (1992). Optimization of fed-batch fermentors by iterative dynamic
programming. Biotechnology and Bioengineering, 41:599-602.

Megee, R. D., Kinoshita, S., Fredrickson, A. G., and Tsuchiya, H. M. (1970).
Differentiation and product formation in molds. Biotechnology and Bio-
engineering, 12:771-801.

BIBLIOGRAPHY 335

Menezes, J. C., Alves, S. S., Lemos, J. M., and de Azevedo, S. F. (1994).
Mathematical modelling if industrial pilot-plant penicillin-g fed-batch
fermentations. Journal of Chemical Technology and Biotechnology,
61:123-138.

Monod, J. (1942). Recherches sur la Croissance des Cultures Bactériennes.
Hermann, Paris.

Montague, G. A., Morris, A. J., Wright, A. R., Aynsley, M., and Ward, A.
(1986). Modelling and adaptive control of fed-batch penicillin fermen-
tation. Canadian Journal of Chemical Engineering, 64:567-580.

Montesinos, J., Lafuente, J., Gordillo, M., Valero, F., Fola, C., Charbonnier,
E., and Cheruy, A. (1995). Structured modelling and state estimation in
a fermentation process: lipase production by candida rugosa. Biotech-
nology and Bioengineering, 48:573-584.

Munack, A. (1989). Optimal feeding strategy for identification of monod-
type models by fed-batch experiments. In Computer Applications in
Fermentation Technology, pages 195-203. Elsevier.

Murray, L. E. and Reiff, Jr., E. K. (1984). Design of transient experiments
for identification of fixed bed thermal transport propoerties. Canadian
Journal of Chemical Engineering, 62:55—61.

Myers, M. A., Kang, S., and Luecke, R. H. (1996). State estimation and
control for systems with delayed off-line measurements. Computers in
Chemical Engineering, 5:585—588.

Néhlik, J. and Burianec, Z. (1988). On-line parameter and state estimation of
continuous cultivation by extended Kalman filter. Applied Microbiology
and Biotechnology, 28:128-134.

Nestaas, E. and Wang, D. I. C. (1983). Computer control of the penicillin
fermentation using the filtration probe in conjunction with a structured
process model. Biotechnology and Bioengineering, 25:781-796.

Nicolai, B. M., van Impe, J. F., Vanrolleghem, P. A., and Vandewalle, J.
(1991). A modified unstructured mathematical model for the penicillin-
G fed-batch fermentation. Biotechnology Letters, 13:489-494.

BIBLIOGRAPHY 336

Nielsen, J. (1992). Modelling of microbial kinetics. Chemical Engineering
Science, 47:4225-4270.

Nielsen, J., Nikolajsen, K., and Villadsen, J. (1991). Structured modelling of
a microbial system: 2. experimental verification of a structured lactic-
acid fermentation model. Biotechnology and Bioengineering, 38(1):11—
23.

Nielsen, J. and Villadsen, J. (1994). Bioreaction Engineering Principles.
Plenum Press, New York.

Norton, J. P. (1986). An Introduction to Identification. Academic Press, first
edition.

Paul, G. C. (1996). Personal communication.
Paul, G. C. (1998). Personal communication.

Paul, G. C., Kent, C. A., and Thomas, C. R. (1994). Image analysis for
characterising differentiation of penicillium chrysogenum. Transactions
of the Institute of Chemical Engineers (Part C), 72:95-105.

Paul, G. C., Syddall, M. T., Kent, C. A., and Thomas, C. R. (1998). A struc-
tured model for penicillin production on mixed substrates. Biochemical
Engineering Journal. In press.

Paul, G. C. and Thomas, C. R. (1996). A structured model for hyphal
differentiation and penicillin production using penicillium chrysogenum.
Biotechnology and Bioengineering, 51:558-572.

Pinto, J. C., Lobao, M. W., and Monteiro, J. L. (1990). Sequential experi-
mental design for parameter estimation: A different approach. Chemical
Engineering Science, 45:883-892.

Pinto, J. C., Lobao, M. W., and Monteiro, J. L. (1991). Sequential experi-
mental design for parameter estimation: Analysis of relatvie deviations.
Chemical Engineering Science, 46:3129-3138.

Pohjanpalo, H. (1978). System identifiability based on the power series ex-
pansion of the solution. Mathematical Biosciences, 41:21-33.

BIBLIOGRAPHY 337

Pohlheim, H. (1996). Genetic and evolutionary algorithm toolbox for use
with MATLAB - documentation. Technical report, Technical University
Ilmenau. (http://www.systemtechnik.tu-ilmenau.de/ “pohlheim/GA _Toolbox/index.html) .

Pons, M. N., Rajab, A., Flaus, J. M., Engasser, J. M., and Cheruy, A. (1988).
Comparison of estimation methods for biotechnological processes. Chem-
ical Engineering Science, 43:1909-1914.

Primrose, S. B., editor (1987). Modern Biotechnology. Blackwell Scientific
Publications.

Ramkrishna, D., Fredrickson, A. G., and Tsuchiya, H. M. (1967). Dynamics
of microbial propagation: Models considering inhibitors and variable cell
composition. Biotechnology and Bioengineering, 9:129-170.

Ray, W. H. (1989). Advanced Process Control. Butterworth.
Ritt, J. F. (1950). Differential Algebra. American Mathematical Society.

Rodrigues, J. A. D. and Filho, R. M. (1996). Optimal feed rates strategies
with operating constraints for the penicillin production process. Chem-
ical Engineering Science, 51:2859-2864.

San, K.-Y. and Stephanopoulos, G. (1989). Optimization of fed-batch peni-
cillin fermentation: A case of singular optimal control with state con-
straints. Biotechnology and Bioengineering, 34:72-78.

Schiigerl, K. (1986). Modelling of biotechnical processes. In Modelling and
Control of Biotechnological Processes, IFAC Proceedings Series, pages
13-32. International Fedaration of Automatic Control, Pergamon Press.

Shi, Y. and Yuan, W.-K. (1988). Application of adaptive estimation in mi-
crobial fermentation processes. Chemical Engineering Science, 43:1915—
1920.

Simutis, R. and Liibbert, A. (1997). A comparative study on random search
algorithms for biotechnical process optimization. Journal of Biotechnol-
0qy, 52:245-256.

Syddall, M., Paul, G., and Kent, C. (1998). Improving the estimation of
parameters of penicillin fermentation models. In Proceedings of the 7th
Conference on Computer Applications in Biotechnology.

BIBLIOGRAPHY 338

Tarbuck, L. A., Ng, M. H., Tampion, J., and Leigh, J. R. (1986). Develop-
ment of strategies for online estimation of biomass and secondary prod-
uct formation in growth-limited batch fermentations. IFE Proceedings
Part D, 5:235-239.

Tiller, V., Meyerhoff, J., Sziele, D., Schiigerl, K., and Bellgardt, K.-H. (1994).
Segregated mathematical model for the fed-batch cultivation of a high-
producing strain of penicillium chrysogenum. Journal of Biotechnology,
34:119-131.

Vajda, S. and Rabitz, H. (1989). State isomorphism approach to global
identifiability of nonlinear systems. IEEE Transactions on Automatic
Control, 34:220-223.

Vajda, S., Rabitz, H., Walter, E., and Lecourtier, Y. (1989). Qualitative and
quantative identifiability analysis of nonlinear chemical kinetic models.
Chemical Engineering Communications, 83:191-219.

van Impe, J. F. and Bastin, G. (1995). Optimal adaptive control of fed-batch
fermentation processes. Control Engineering Practice, 3:939-954.

van Impe, J. F.; Nicolai, B. M., Vanrolleghem, P. A., Spriet, J. A., de Moor,
B., and Vandewalle, J. (1992). Optimal control of the penicillin G
fed-batch fermentation: An analysis of a modified unstructured model.
Chemical Engineering Communications, 117:337-353.

van Suijdam, J. C., Hols, H., and Kossen, N. W. F. (1982). Unstructured
model for growth of mycelial pellets in submerged cultures. Biotechnol-
ogy and Bioengineering, 24:177-191.

Versyck, K. J., Claes, J. E., and Impe, J. F. V. (1997). Practical identification
of unstructured growth kinetics by application of optimal experiment
design. Biotechnology Progress, 13:524-531.

Walter, E. and Pronzato, L. (1990). Qualitative and quantitative experiment
design for phenomenological models, a survey. Automatica, 25:195-213.

Weuster-Botz, D., Pramatarova, V., Spassov, G., and Wandrey, C.
(1995). Use of a genetic algorithm in the development of a synthetic

BIBLIOGRAPHY 339

growth medium for arthrobacter simplex with high hydrocortisone A-
dehydrogenase activity. Journal of Chemical Technology and Biotech-
nology, 64:386-392.

Whitley, L. D., editor (1993). Foundations of Genetic Algorithms 2, San
Mateo, CA. Morgan Kaufmann.

Whitley, L. D. and Vose, M. D., editors (1995). Foundations of Genetic
Algorithms 3, San Francisco, CA. Morgan Kaufmann.

Yao, L. and Sethares, W. A. (1994). Nonlinear parameter estimation via the
genetic algorithm. IEEFE Transactions on Signal Processing, 42:927-937.

Yoo, Y. J., Marino-Galarraga, M., Hong, J., and Hatch, R. (1986). Experi-
mental design for parameter estimation from batch culture. Biotechnol-
ogy and Bioengineering, 28:836-841.

