
Efficient and Effective

Similarity Search on Complex

Objects

Dissertation im Fach Informatik
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

von

Stefan Brecheisen

Tag der Einreichung: 16.01.2007
Tag der mündlichen Prüfung: 22.02.2007

Berichterstatter:
Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München

Prof. Dr. Ralf Hartmut Güting, Fernuniversität Hagen

ii

Acknowledgments

Many people supported and encouraged me in the past years while I was

working on this dissertation. I would like to thank them here, even if I

cannot mention them all by name.

First of all, I extend my warmest thanks to my supervisor, Prof. Dr. Hans-

Peter Kriegel. He initiated and supported this work with his long standing

experience and the organizational background and gave me the opportunity

to work on this challenging domain. Without the inspiring, productive and

supportive working environment, he created in the database research group,

this work could never have come into existence. I am also very grateful to

Prof. Dr. Ralf Hartmut Güting for his interest in my work and his immediate

willingness to act as the second referee.

This work would not have been initiated and matured without the cooper-

ation of and discussion with my colleagues in the database research group. In

particular, I want to thank Peer Kröger, Peter Kunath, Martin Pfeifle, Alexey

Pryakhin, and Matthias Schubert for constructive and productive teamwork,

as well as Elke Achtert, Prof. Dr. Christian Böhm, Eshref Januzaj, Karin

Kailing, Matthias Renz, Stefan Schönauer, and Arthur Zimek for many help-

ful discussions.

I also appreciate the substantial help of the students who worked on

tasks like implementation, data processing, and testing while preparing their

project thesis or diploma thesis. In particular, I wish to thank Felix Leis,

Maximilian Viermetz, Christian Mahrt, and Michael Gruber.

I am extremely grateful for the background support of Susanne Grien-

berger, who managed much of the administrative work. Furthermore, I want

iv ACKNOWLEDGMENTS

to express special thanks to Franz Krojer for taking care of our technical en-

vironment and unhesitatingly providing me with all the technical tools aiding

the progress of this work.

Last but not least, I want to thank my family and friends for their support

and encouragement during the time that I was engaged in this study. In par-

ticular, I thank my parents who always supported my career and encouraged

me to find my way.

Stefan Brecheisen

Munich, January 2007

Abstract

Due to the rapid development of computer technology and new methods for

the extraction of data in the last few years, more and more applications

of databases have emerged, for which an efficient and effective similarity

search is of great importance. Application areas of similarity search include

multimedia, computer aided engineering, marketing, image processing and

many more. Special interest adheres to the task of finding similar objects

in large amounts of data having complex representations. For example, set-

valued objects as well as tree or graph structured objects are among these

complex object representations. The grouping of similar objects, the so-

called clustering, is a fundamental analysis technique, which allows to search

through extensive data sets.

The goal of this dissertation is to develop new efficient and effective meth-

ods for similarity search in large quantities of complex objects. Furthermore,

the efficiency of existing density-based clustering algorithms is to be improved

when applied to complex objects.

The first part of this work motivates the use of vector sets for simi-

larity modeling. For this purpose, a metric distance function is defined,

which is suitable for various application ranges, but time-consuming to com-

pute. Therefore, a filter refinement technology is suggested to efficiently

process range queries and k-nearest neighbor queries, two basic query types

within the field of similarity search. Several filter distances are presented,

which approximate the exact object distance and can be computed efficiently.

Moreover, a multi-step query processing approach is described, which can be

directly integrated into the well-known density-based clustering algorithms

vi ABSTRACT

DBSCAN and OPTICS.

In the second part of this work, new application ranges for density-based

hierarchical clustering using OPTICS are discussed. A prototype is intro-

duced, which has been developed for these new application areas and is

based on the aforementioned similarity models and accelerated clustering

algorithms for complex objects. This prototype facilitates interactive semi-

automatic cluster analysis and allows visual search for similar objects in

multimedia databases. Another prototype extends these concepts and en-

ables the user to analyze multi-represented and multi-instance data. Finally,

the problem of music genre classification is addressed as another application

supporting multi-represented and multi-instance data objects.

An extensive experimental evaluation examines efficiency and effective-

ness of the presented techniques using real-world data and points out advan-

tages in comparison to conventional approaches.

Abstract (in German)

Aufgrund der rasanten Entwicklung der Computertechnik und der neuen

Methoden der Datengewinnung sind in den letzten Jahren immer mehr Da-

tenbankanwendungen entstanden, für die eine effiziente und effektive Ähn-

lichkeitssuche von großer Bedeutung ist. Zu den Anwendungsgebieten der

Ähnlichkeitssuche gehören Multimedia, Computer Aided Engineering, Mar-

keting, Bildverarbeitung und viele weitere Bereiche. Besonderes Interesse

kommt dabei der Aufgabenstellung zu, ähnliche Objekte in großen Mengen

von Daten mit komplexer Darstellung zu finden. Zu diesen komplexen Ob-

jektdarstellungen zählen beispielsweise mengenwertige Objekte und Objekte

mit Baum- oder Graph-Struktur. Das Zusammenfassen ähnlicher Objekte,

das sogenannte Clustering, stellt eine wichtige Analysetechnik dar, um um-

fangreiche Datenmengen durchsuchen zu können.

Das Ziel dieser Doktorarbeit ist, neue effiziente und effektive Verfahren für

die Ähnlichkeitssuche in großen Mengen komplexer Objekte zu entwickeln.

Außerdem soll die Effizienz vorhandener dichtebasierter Clustering-Verfahren

bei Anwendung auf komplexen Objekten verbessert werden.

Der erste Teil der Arbeit motiviert zunächst den Einsatz von Vektor-

mengen zur Ähnlichkeitsmodellierung. Dazu wird eine metrische Distanz-

funktion definiert, die für verschiedene Anwendungsbereiche geeignet ist,

deren Berechnung allerdings aufwendig ist. Zur effizienten Beantwortung

von Bereichsanfragen und k-nächste-Nachbarn-Anfragen, zwei grundlegen-

den Anfragetypen im Bereich der Ähnlichkeitssuche, wird deshalb eine Filter-

verfeinerungstechnik vorgeschlagen. Mehrere Filterdistanzen werden präsen-

tiert, die die exakte Objektdistanz abschätzen und effizient berechnet werden

viii ABSTRACT (IN GERMAN)

können. Des Weiteren wird ein Verfahren zur mehrstufigen Anfragebearbei-

tung beschrieben, das direkt in die bekannten dichtebasierten Clustering-

Algorithmen DBSCAN und OPTICS integriert werden kann.

Im zweiten Teil der Arbeit werden neue Anwendungsbereiche für das

dichtebasierte hierarchische Clustering mit OPTICS diskutiert. Es wird ein

Prototyp vorgestellt, der für diese neuen Anwendungsbereiche entwickelt

wurde und auf den entwickelten Ähnlichkeitsmodellen und beschleunigten

Clustering-Verfahren für komplexe Objekte basiert. Dieser Prototyp erleich-

tert die interaktive semi-automatische Clusteranalyse und ermöglicht die vi-

suelle Suche nach ähnlichen Objekten in Multimedia-Datenbanken. Ein wei-

terer Prototyp entwickelt diese Konzepte weiter und ermöglicht die Analyse

von multirepräsentierten und multiinstanziierten Datenbeständen. Schließ-

lich wird das Problem der Genre-Klassifikation von Musikstücken behandelt,

eine weitere Anwendung mit Unterstützung für Datenobjekte mit mehreren

Repräsentationen und Instanzen.

Effizienz und Effektivität der vorgestellten Techniken werden ausführlich

untersucht und die Vorteile gegenüber herkömmlichen Verfahren werden mit-

tels Realdaten experimentell belegt.

Survey of Chapters

Part I Preliminaries 3

1 Introduction 3

2 Similarity Search 13

3 Density-Based Clustering 31

Part II Multi-Step Similarity Search and Clustering 41

4 Efficient Similarity Search on Vector Sets 41

5 Multi-Step Density-Based Clustering 71

6 Parallel Density-Based Clustering of Complex Objects 101

Part III Advanced Similarity Search Applications 117

7 Visual Density-Based Data Analysis 117

8 Hierarchical Music Genre Classification 147

Part IV Conclusions 161

9 Summary and Outlook 161

x SURVEY OF CHAPTERS

Contents

Acknowledgments iii

Abstract v

Abstract (in German) vii

Survey of Chapters ix

I Preliminaries 1

1 Introduction 3

1.1 Challenges for Modern Database Systems 3

1.2 Complex Objects . 5

1.2.1 Representation as Vector Data 5

1.2.2 Representation as Arbitrary Metric Data 6

1.3 Outline . 8

2 Similarity Search 13

2.1 Similarity Models . 13

2.1.1 The Feature Vector Approach 13

2.1.2 Feature Vectors of Complex Objects 15

2.1.3 Distance-Based Similarity 16

2.1.4 Invariance against Transformations 17

2.1.5 Adaptable Similarity Search 18

2.2 Similarity Query Types . 19

2.2.1 Similarity Range Query 20

2.2.2 Nearest-Neighbor Query 21

xii CONTENTS

2.2.3 k-Nearest-Neighbor Query 22

2.2.4 Similarity Ranking Query 24

2.3 Efficient Similarity Search . 24

2.3.1 Index Structures . 24

2.3.2 Multi-Step Query Processing 26

2.4 Requirements for Similarity Measures 28

2.5 Summary . 29

3 Density-Based Clustering 31

3.1 Foundations . 32

3.2 Partitioning Clustering . 32

3.3 Hierarchical Clustering . 33

II Multi-Step Similarity Search and Clustering 39

4 Efficient Similarity Search on Vector Sets 41

4.1 Application Ranges for Vector Sets 42

4.2 Distance Measures on Vector Sets 45

4.3 Filters for Vector Sets . 48

4.3.1 Closest Pair Approach 48

4.3.2 Centroid Approach . 52

4.3.3 Norm Vector Approach 54

4.3.4 Discussion . 59

4.4 Experimental Evaluation . 60

4.4.1 Settings . 60

4.4.2 Complete Similarity Search 61

4.4.3 Partial Similarity Search 66

4.5 Summary . 69

5 Multi-Step Density-Based Clustering 71

5.1 Related Work . 73

5.1.1 Exact Clustering . 73

5.1.2 Approximated Clustering 75

5.2 Accelerated Density-Based Clustering 76

CONTENTS xiii

5.2.1 Basic Idea . 76

5.2.2 Extended OPTICS . 77

5.2.3 Extended DBSCAN . 81

5.2.4 Length-Limitation of the Predecessor Lists 83

5.3 Similarity Measures for Clusterings 84

5.3.1 Similarity Measure for Clusters 85

5.3.2 Similarity Measure for Partitioning Clusterings 86

5.3.3 Similarity Measure for Hierarchical Clusterings 88

5.4 Experimental Evaluation . 90

5.4.1 Settings . 90

5.4.2 Exact Clustering Experiments 92

5.4.3 Approximated Clustering Experiments 96

5.5 Summary . 98

6 Parallel Density-Based Clustering of Complex Objects 101

6.1 Related Work . 103

6.2 Server-Side Data Partitioning 104

6.3 Client-Side Clustering . 107

6.4 Server-Side Merging . 108

6.5 Experimental Evaluation . 110

6.6 Summary . 113

III Advanced Similarity Search Applications 115

7 Visual Density-Based Data Analysis 117

7.1 Application Ranges . 118

7.1.1 Visual Data Mining . 119

7.1.2 Similarity Search . 121

7.1.3 Evaluation of Similarity Models 123

7.2 Cluster Recognition . 123

7.2.1 Related Work . 124

7.2.2 Gradient Clustering . 126

7.3 Cluster Representatives . 131

7.3.1 The Extended Medoid Approach 131

xiv CONTENTS

7.3.2 Minimizing the Core-Distance 132

7.3.3 Maximizing the Successors 132

7.4 Browsing Cluster Hierarchies 135

7.5 Visualizing Connected Object Orderings 136

7.5.1 Analysis of Complex Data Spaces 138

7.5.2 Architecture and Implementation 139

7.6 Experimental Evaluation . 140

7.6.1 Cluster Recognition . 140

7.6.2 Cluster Representation 142

7.6.3 Discussion . 144

7.7 Summary . 145

8 Hierarchical Music Genre Classification 147

8.1 Related Work . 148

8.2 Efficient Hierarchical Genre Classification 151

8.3 Practical Music Classification with User Feedback 154

8.4 Experimental Evaluation . 155

8.5 Summary . 158

IV Conclusions 159

9 Summary and Outlook 161

9.1 Summary of Contributions . 162

9.2 Future Work . 163

List of Figures 165

List of Tables 169

List of Definitions 171

References 173

Curriculum Vitae 185

Part I

Preliminaries

Chapter 1

Introduction

Database systems are key components of today’s information technology in-

frastructure. With the enormous growth of this infrastructure in the past

decade, new challenges for database systems have arisen. In both, science

and industry, new applications of database systems have been developed and

their importance in practice is rapidly increasing. In this introductory chap-

ter, we will discuss some of the new challenges for database systems, present

our approach to tackle these challenges and outline the scope of this thesis.

Furthermore, we will introduce the basic concepts behind our approach and

some example applications in the following chapters.

1.1 Challenges for Modern Database Systems

The challenges for modern database systems are manifold, including topics

like increased need for data security in e-commerce or integration of world-

wide distributed databases. One very important challenge is the support

for tasks like knowledge discovery in databases (KDD). KDD is the process

of extracting new, valid and potentially useful knowledge from databases

[FPSS96]. Particularly in a world of large and fast growing databases, a

process to automatically or at least semi-automatically extract knowledge

from those databases is essential.

4 1 Introduction

Pre-
processing

Trans-
formation

Data

Selection
Data
Mining

Interpretation/
Evaluation

Patterns Knowledge

Figure 1.1: The KDD process.

The KDD process, as defined by Fayyad, Piatetsky-Shapiro and Smyth

[FPSS96], has several steps which are depicted in Figure 1.1. After a selec-

tion and preprocessing of the relevant data, it is transformed in a suitable

format. In the data mining step, patterns in the data are extracted and

later evluated by the user, to gain knowlwedge. At the center of the KDD

process is the data mining step, where the automatic detection of the in-

formation takes place. Several different subtasks of data mining have been

identified, including clustering and object classification. Clustering is the

task of grouping objects, where the similarity of objects within a group has

to be maximized, while the similarity of objects in different groups has to

be minimized. Obviously, the clustering of objects in a database depends on

efficient and effective methods to identify similar objects in the database, or

in other words, it depends on similarity search methods. But those methods

also play a major role in object classification, where new objects have to

be assigned to a class based on the knowledge extracted from a database of

already classified objects. In this context, so-called nearest neighbor classi-

fiers were successfully used, which assign an object to the class of its nearest

neighbors in the database. This means that similarity search is an important

basic technique for data mining in general. In this thesis, we will concentrate

on the efficient and effective support for complex data types in advanced

similarity search and data mining applications.

1.2 Complex Objects 5

1.2 Complex Objects

In recent years, an increasing number of applications has emerged, processing

large amounts of complex, application specific data objects [Jag91, AFS93,

FRM94, BK97, KKS98, AKKS99a, KBK+03, KKM+03]. To provide a no-

tion of similarity among database objects, an appropriate similarity measure

must be defined for each application domain. However, defining the similar-

ity of complex objects, such as car parts, proteins or text documents, is not a

trivial task. In the following, we will shortly review two common techniques

to define the similarity between complex objects. A widely used class of sim-

ilarity models is based on the paradigm of feature vectors. The basic idea

is that by a feature transformation, the objects are mapped onto a feature

vector in an appropriate multidimensional feature space. The similarity be-

tween two objects is then measured through the proximity of the respective

feature vectors.

If this feature-based approach is not able to capture the intuitive notion

of similarity between objects, more complex similarity measures like the edit

distance for graphs or trees are necessary. Usually, complex objects are

then represented in some sort of application specific metric space. In this

thesis, we concentrate on application domains which belong to one of the

two approaches and do not regard application domains where non-metric

data spaces are involved.

1.2.1 Representation as Vector Data

A common solution in application domains such as multimedia, medical imag-

ing, molecular biology, computer aided design, marketing, purchasing assis-

tance, etc. is the so-called feature transformation. For each data object, a

given number d of numeric features is extracted (see Figure 1.2 for an illus-

tration). Thus, the objects of a database are transformed into d-dimensional

feature vectors, i.e. data objects are represented by points in a d-dimensional

vector space. Then, the similarity between two objects is measured through

the proximity of the respective feature vectors, e.g. using the Euclidean dis-

6 1 Introduction

(h, w, a, b, c)

ax2+bx+c

h

w
h

w
a

bc

Figure 1.2: The idea of feature transformation.

tance measure. Examples of feature-based similarity include color histograms

for image data [HSE+95], Fourier coefficients for time series data [AFS93] or

3D shape histograms for 3D objects [AKKS99a].

1.2.2 Representation as Arbitrary Metric Data

Sometimes the similarity between complex objects can not be captured by a

feature transformation. The internal structure of complex data objects varies

from application to application, but often it can be described by using the

abstract concepts of graphs and trees. In this case, the use of more complex

similarity models like the edit distance for graphs or trees is necessary. The

remainder of this section presents three metric similarity models for complex

objects. As this is an extremely broad field, we do not make any claim to

completeness. The main purpose of this section is to motivate that there are

lots of applications where the objects can no longer be represented as one

single feature vector. In the following, we shortly review three examples of

complex similarity models used in the evaluation parts of this thesis.

Sets of Feature Vectors. For CAD applications, suitable similarity

models can help to reduce the cost of developing and producing new parts

by maximizing the reuse of existing parts. In [KBK+03], an effective and

flexible similarity model for complex 3D CAD data is introduced which helps

to find and group similar parts. It is not based on the traditional approach of

describing one object by a single feature vector. Instead an object is mapped

onto a set of feature vectors, i.e. an object is described by a vector set (see

1.2 Complex Objects 7

Figure 1.3: Examples of complex metric data.

Figure 1.3 left for an illustration). The cover sequence model introduced

in [Jag91, JB92] is extended by generating several representations for each

object, resulting in a set of feature vectors for each object. The experimental

evaluation shows that this approach is superior to techniques using only one

feature vector for each object.

Tree-Structured Data. In addition to a variety of content-based at-

tributes, complex objects typically carry some kind of internal structure

which often forms a hierarchy. Examples of such tree-structured data include

chemical compounds, CAD drawings, XML documents or websites (see Fig-

ure 1.3 center for an illustration). For similarity search and therefore cluster-

ing, it is important to take into account both, the structure and the content

features of such objects. A successful approach is to use the edit distance for

tree structured data. However, as the computation of this measure is NP-

complete [ZSS92], constrained edit distances like the degree-2 edit distance

[ZWS96] have been introduced. They were successfully applied to trees for

web site analysis [WZCS02], structural similarity of XML documents [NJ02],

shape recognition [SKK01] or chemical substructure search [WZCS02].

Graphs. Attributed graphs are another natural way to model structured

data (see Figure 1.3 right for an illustration). As graphs are a very general

object model, graph similarity has been studied in many fields. Similarity

8 1 Introduction

Table 1.1: Overview of publications the chapters are based on.

Part II Multi-Step Similarity Search and Clustering

4 Efficient Similarity Search on Vector Sets [BKP05]
5 Multi-Step Density-Based Clustering [BKP04, BKP06a]
6 Parallel Density-Based Clustering of Complex Objects [BKP06b]

Part III Advanced Similarity Search Applications

7 Visual Density-Based Data Analysis [BKKP04, BKK+04, BKSG06]
8 Hierarchical Music Genre Classification [BKKP06, BKK+06]

measures for graphs have been used in systems for shape retrieval [HCH99],

object recognition [KKV90] or face recognition [WFKvdM97]. For all those

measures, graph features, specific to the graphs in the application, are ex-

ploited in order to define graph similarity. Most known similarity measures

for attributed graphs are either limited to a special type of graph or computa-

tionally extremely complex, i.e. NP-complete. Therefore, they are unsuitable

for searching or clustering large collections. In [KS03], the authors present a

new similarity measure for attributed graphs, called edge matching distance.

They demonstrate how the edge matching distance can be used for efficient

similarity search in attributed graphs.

1.3 Outline

In this chapter, we presented some of the challenges of modern database

systems. Those challenges include support for complex data types and new

applications for database systems. The aim of this thesis is to improve the

efficiency of known similarity search methods and to provide new approaches

to solve the efficiency and effectiveness problems of existing methods. Many

of the algorithms and ideas discussed in the different chapters have already

been published. For clearness and convenience, we list these publications by

chapter in Table 1.1, while refraining from citing them repeatedly throughout

the thesis.

1.3 Outline 9

The remainder of this thesis is organized as follows.

Chapter 2 presents important concepts of similarity search. This includes

query types, similarity models and index structures to support efficient query

processing in similarity search systems. Furthermore, we develop a set of

requirements which similarity search methods for complex objects have to

fulfill in order to meet the demands of modern database applications.

Chapter 3 provides an overview of the notion of density-based cluster-

ing. After introducing basic notations and concepts, we present an partition-

ing density-based clustering algorithm as well as an hierarchical extension

thereof.

Part II presents innovative filter refinement techniques to efficiently pro-

cess similarity queries and to accelerate clustering algorithms.

Chapter 4 motivates the use of sets of feature vectors as a promising way

between too simple and too complex object representations for complete ob-

ject similarity search as well as for partial object similarity search. After

introducing a distance measure between vector sets, suitable for many dif-

ferent application ranges, we present and discuss different filters which are

indispensable for efficient query processing. In an experimental evaluation

based on artificial and real-world test datasets, we show that our approach

considerably outperforms both the sequential scan and metric index struc-

tures.

Chapter 5 demonstrates how the paradigm of multi-step query process-

ing which relies on exact as well as on lower-bounding approximated distance

functions can be integrated into the two density-based clustering algorithms

DBSCAN and OPTICS resulting in a considerable efficiency boost. We also

extend our approach to approximated clustering allowing the user to find

an individual trade-off between quality and efficiency. In order to assess the

quality of the resulting clusterings, we introduce suitable quality measures

which can be used generally for evaluating the quality of approximated parti-

tioning and hierarchical clusterings. In a broad experimental evaluation, we

demonstrate that our approach accelerates the generation of exact density-

based clusterings by more than one order of magnitude. Furthermore, we

10 1 Introduction

show that our approximated clustering approach results in high quality clus-

terings where the desired quality is scalable w.r.t. the overall number of exact

distance computations.

In Chapter 6, we will show how lower-bounding distance functions can be

used to parallelize the density-based clustering algorithm DBSCAN. First,

the data is partitioned based on an enumeration calculated by the hierarchi-

cal clustering algorithm OPTICS, so that similar objects have adjacent enu-

meration values. We use the fact that clustering based on lower-bounding

distance values conservatively approximates the exact clustering. By inte-

grating the multi-step query processing paradigm directly into the clustering

algorithms, the clustering on the slaves can be carried out very efficiently.

Finally, we show that the different result sets computed by the various slaves

can effectively and efficiently be merged to a global result by means of cluster

connectivity graphs. In an experimental evaluation based on real-world test

data sets, we demonstrate the benefits of our approach.

Part III presents new application ranges for similarty search and density-

based hierarchical clustering.

Chapter 7 shows how visualizing the hierarchical clustering structure of

a database of objects can aid the user in his time consuming task to find

similar objects. We present related work and explain its shortcomings which

led to the development of our new methods. Based on reachability plots, we

introduce approaches which automatically extract the significant clusters in a

hierarchical cluster representation along with suitable cluster representatives.

We implemented our algorithms resulting in prototype systems which were

used for the experimental evaluation. This evaluation is based on real world

test data sets and points out that our new approaches to automatic cluster

recognition and extraction of cluster representatives create meaningful and

useful results in comparatively short time.

In Chapter 8, we propose a novel approach for hierarchical classification

of pieces of music into a genre taxonomy. To provide a versatile description

of the music content, several kinds of features like rhythm, pitch or timbre

characteristics are commonly used. Taking the highly dynamic nature of

music into account, each of these features should be calculated up to several

1.3 Outline 11

hundreds of times per second. Thus, a piece of music is represented by a

complex object given by several large sets of feature vectors. Our approach

is able to handle multiple characteristics of music content and achieves a high

classification accuracy efficiently, as shown in our experiments. Furthermore,

we present MUSCLE, a prototype tool which allows the user to organize large

music collections in a genre taxonomy and to modify class assignments on

the fly.

Part IV concludes the thesis.

Chapter 9 summarizes and discusses the major contributions of this work

and concludes the thesis by pointing out some potentials for future research.

12 1 Introduction

Chapter 2

Similarity Search

The basic task of a similarity search application is to find objects in the

database which are similar to a query object. In this chapter, we will discuss

the different aspects of this task.

2.1 Similarity Models

The first important aspect of similarity search is the concept of similarity it-

self. A formal concept of similarity is a necessary basis for any application in

this field. In the literature, two concepts of similarity have been applied suc-

cessfully which are the feature vector approach and the concept of distance-

based similarity. We will present the two concepts in this section and discuss

invariance and adaptability issues of similarity models.

2.1.1 The Feature Vector Approach

A very common way to define the similarity of objects is the feature vector

approach. For this approach, a domain expert chooses a set of single-valued

object features that describe an object from that application domain. Those

features span a so-called feature space and objects are represented as points

in this space. This is done by creating a feature vector for each object which

contains the feature values of the specific object. Then, the similarity or

14 2 Similarity Search

object space feature space

Figure 2.1: Similarity based on the feature vector approach.

dissimilarity of two objects is defined as their distance in the feature space.

The feature vector approach for similarity, whose idea is illustrated in Figure

2.1, has been successfully applied in several application domains like medical

imaging [KSF+98] and protein similarity [AKKS99b].

To determine the distance between two points in the feature space, several

measures are used. Most often it is a variant of the Lp norms, which are

defined as follows:

Definition 1 (Lp norms). Let there be two vectors x = (x1, . . . , xn), x ∈
Rn, and y = (y1, . . . , yn), y ∈ Rn. The Lp norms between x and y are defined

as:

Lp(x, y) = ‖x− y‖p = (
n∑

i=1

|xi − yi|p)
1
p

For p = 1 and p = 2 the Lp norms are the well-known Manhattan distance

and the Euclidean distance, respectively. Most often, the Euclidean distance

is used in similarity search applications based on the feature vector approach.

A problem of the Lp norms is that all dimensions of the feature space are

considered to be independent of each other. Consequently, no relationships

between the features, for example substitutability, may be regarded by the

similarity process. But often such relationships exist, like in the case of color

features where orange is certainly more similar to red or yellow than to blue.

2.1 Similarity Models 15

To overcome this disadvantage, Niblack et al. [NBE+93] suggested to use

the quadratic form distance instead of the usual Euclidean distance. The

quadratic form distance of two vectors x and y is defined as

d2
A(x, y) = (x− y) · A · (x− y)T

where A is a positive definite similarity matrix and (x− y)T is the transpose

of (x−y). When using the identity matrix as similarity matrix, the quadratic

form distance becomes the classic Euclidean distance since

(L2(x, y))2 = (x− y) · (x− y)T

By altering the similarity matrix A, it is possible to express relationships

between the dimensions of the feature space which is the desired effect. For

methods to ensure efficient query processing with the quadratic form distance

see [Sei97].

2.1.2 Feature Vectors of Complex Objects

It is often difficult to extract useful feature vectors from datasets consisting

of complex objects. For example, the set-like internal structure of a graph

makes it difficult to apply the feature vector approach to data modeled as

attributed graphs. This internal structure prevents a unique description of

the graph structure with few feature values. The same is the case for the

attribute part of an attributed graph. Consequently, many features have

to be extracted from a graph in order to yield a description with sufficient

discriminatory power to distinguish between separate objects. This leads to

extremely high-dimensional feature vectors. But the high dimensionality of

the feature vectors can make efficient similarity search in the database impos-

sible due to a number of effects. For example, an increasing dimensionality

leads to a larger volume of the data space and to higher distances between

the data objects. Those and other effects are usually described by the term

“curse of dimensionality”.

Additionally, when choosing the features one has to take into account

that any of the simple Lp norms or the quadratic forms distance yield sensible

16 2 Similarity Search

distance = 2.5

distance = 1distance = 3

object space

Figure 2.2: The concept of distance-based similarity.

results for a similarity search. This fact even worsens the problem of picking

the right features. The distance-based similarity model, which we describe

in the following section, avoids the choice of any features at all.

2.1.3 Distance-Based Similarity

The distance-based similarity model is a generalization of the feature vector

model. Instead of transforming the data objects into a feature space and

measuring the distance of the objects in the feature space, a distance mea-

sure for the data objects themselves is defined. This means that no feature

extraction and no choice of features is necessary. Furthermore, a distance

measure which is defined for complex data objects can take all object prop-

erties into account. The concept of distance-based similarity is illustrated in

Figure 2.2.

Obviously, the increased flexibility also leads to a higher complexity, since

the complete objects have to be managed and, therefore, the computational

complexity of the similarity measure has to be chosen carefully to ensure

efficiency.

2.1 Similarity Models 17

The great flexibility of the distance-based approach is founded in the sim-

ilarity distance measure. If O is the domain of the objects in the database,

a similarity distance dsim : O × O 7→ R0
+ is needed which means the only

restriction for the similarity measure is positivity. While this very high flex-

ibility may be useful in certain special applications, it usually makes sense

to impose some restrictions on the similarity distance measure in order to

ensure that efficient query processing is possible.

The restrictions imposed on the similarity measure can be summarized

by demanding the measure to be a metric, which also justifies to call it a

similarity distance. This requirment implies that the similarty measure has

to fulfill the four metric properties:

1. Positivity: ∀x, y : dsim(x, y) ≥ 0

2. Definiteness: ∀x, y : dsim(x, y) = 0 ⇔ x = y

3. Symmetry: ∀x, y : dsim(x, y) = dsim(y, x)

4. Triangle inequality: ∀x, y, z : dsim(x, z) ≤ dsim(x, y) + dsim(y, z)

The requirements of positivity and definiteness for the similarity distance

reflect the idea that a low distance means high similarity and, therefore,

identical objects should be assigned the lowest possible similarity distance.

The idea that objects are mutually similar is expressed by the symmetry

requirement. The triangle inequality ensures that no object can be very

similar to two very dissimilar objects at the same time.

Demanding metric properties from a similarity distance also has the ad-

vantage that efficient access methods and search algorithms can be applied,

as described in Section 2.3.

2.1.4 Invariance against Transformations

Another important topic in the context of similarity models is robustness

against geometric transformations of the original data objects. Similarity

18 2 Similarity Search

search is often done in databases containing geometric descriptions of real-

world objects, like molecules, images or mechanical parts. Our example

applications are also from such application domains, so we discuss the ro-

bustness against geometric transformations.

By “robustness against geometric transformations” we mean invariance

against transformations such as translation, rotation or scaling. Depend-

ing on the application, specific invariances are either necessary or have to

be avoided. An example application is similarity search in a database of

proteins. Since there is no standard position or orientation of proteins de-

fined, the proteins in the database have arbitrary orientation and position

in 3D space. Consequently, invariance against translation and rotation are

essential to identify similar proteins. On the other hand, invariance against

scaling is unwanted, because proteins with different size but similar shape

have different properties and should not be considered as similar.

2.1.5 Adaptable Similarity Search

In the previous sections, the adaptability of the different models and tech-

niques was highlighted several times. This adaptability is of great importance

for similarity search applications, because the exact definition of what is to be

considered similar depends on two factors, which are the application domain

and the user. An example of application requirements is our protein docking

application, where we saw that invariance against translation and rotation is

necessary while invariance against scaling has to be avoided. Therefore, the

similarity model and the similarity measure have to provide enough flexibility

to allow adaption to the specific needs of an application.

Apart from the application needs, the notion of similarity can differ be-

tween individual users or even for a single user in different situations. Simi-

larity search is often an explorative process during which the user refines his

notion of similarity more and more. The adaption to the application’s needs

can be considered during the design phase of the application and an adaption

of the similarity model is possible in this phase. This approach can not be

followed for the adaption to the users needs, since those can change between

2.2 Similarity Query Types 19

two similarity queries. Consequently, the similarity measure has to provide

the flexibility to allow the necessary adaption at runtime. Obviously, this

should be possible with as little influence on query runtimes as possible, to

support the explorative nature of the similarity search process. We already

discussed the quadratic form distance as an example for such a measure.

In [Sei97] efficient query processing techniques are presented which allow an

adaption of the similarity matrix for this measure without influencing the

processing time negatively.

But for a purposeful adaption of the similarity measure, another point

gains importance. The user has to be able to understand why objects are

considered similar by the application in order to change parameters appropri-

ately. Consequently, the user should be provided with an explanation of the

similarity distance value to support his understanding. Obviously, a simple

numerical value does not fulfill this requirement. Instead, an explanation how

this value comes about is necessary, which is preferably presented visually

for a quick and easy understanding.

2.2 Similarity Query Types

In similarity search applications, the query types differ from those in standard

database applications. Questions like which database objects are most similar

to a query object or which database objects are similar to a certain degree,

cannot be answered by using exact-match or partial-match queries. Instead,

query algorithms returning database objects in a certain similarity distance

to a query object are needed. In this section, we will present those query

types which are most important in similarity search applications. For the

presentation of the query types, we assume that O is the universe of all

objects that may appear in a database and that a similarity distance function

dsim : O × O 7→ R0
+ is defined on the universe O. Furthermore, we presume

that there is a database DB ⊆ O given. It has to be noted that we do

not assume a specific similarity model and the discussions below hold for

applications based on the feature vector model as well as for applications

using the distance-based similarity model.

20 2 Similarity Search

q

Figure 2.3: Result of a range query for object q.

2.2.1 Similarity Range Query

A basic task in similarity search is to find all objects which are within a

certain similarity distance from a query object. Examples where this prob-

lem has to be solved are density-based clustering methods like DBSCAN

[EKSX96] or OPTICS [ABKS99], which are described further in Chapter

3. In density-based clustering, an object o is put into a cluster if there are

enough other objects within a predefined similarity distance to o. To deter-

mine a clustering of a database, for each object in the database the objects

within the predefined similarity distance have to be found. This is done by

using similarity range queries. Figure 2.3 illustrates the idea of the similarity

range query.

With this intuitive understanding of a similarity range query, we can

define it formally in the following way:

Definition 2 (similarity range query). For a query object q ∈ O and a

query range ε ∈ R0
+, the result of a similarity range query is defined as

Nε(q) = {o ∈ DB | dsim(q, o) ≤ ε}

Obviously, with this definition the number of results for a similarity range

query is not fixed in advance, but can be anything between zero and the size

2.2 Similarity Query Types 21

q

Figure 2.4: Result of a nearest-neighbor query with two nearest neighbors

for query object q. The gray circle represents the equivalent range query.

of the database. Consequently, the choice of an inappropriate value for the

query range ε leads to very few or too many query results and it remains to

the user to rerun the query with an adapted query range. This problem is

another reason, why a similarity measure should also include an explanation

of the distance value to allow an adaption of the query range.

2.2.2 Nearest-Neighbor Query

Another important task in similarity search applications is to find the da-

tabase object which is most similar to a query object. An example for this

query type is to find the most similar protein with known function in a da-

tabase, given a query protein with unknown function. This type of query is

called nearest-neighbor query and can be defined informally as the task to

find the database object with the smallest similarity distance to the query

object. Figure 2.4 illustrates the idea of the nearest-neighbor query.

But this informal definition ignores the problem that the database object

with the smallest distance may not be unique. In this case, one of the ob-

jects with the smallest similarity distance to the query object may be chosen

randomly. But then query processing is no longer deterministic and impor-

tant results may be missed. Therefore, the nearest-neighbor query is defined

22 2 Similarity Search

in a way that allows a set of results which possibly contains more than one

element.

Definition 3 (nearest-neighbor query). For a query object q, the result

of a nearest-neighbor query is defined as

NN (q) = {o ∈ DB | ∀p ∈ DB : dsim(q, o) ≤ dsim(q, p)}

With this definition, it remains to the user to resolve the ambiguity prob-

lem, but still, the result is at least a non-empty set. Especially when ex-

ploring a database manually, the guaranteed result is an advantage over the

similarity range query for the user. The following lemma reveals another

relationship between nearest-neighbor and range queries.

Lemma 1. For every query object q ∈ O, the following holds:

εnn = min{dsim(q, o), o ∈ DB} ⇒ NN (q) = Nεnn(q)

Proof. For every object o ∈ DB the following equivalences hold:

o ∈ NN (q)

⇔ ∀p ∈ DB : dsim(q, o) ≤ dsim(q, p)

⇔ dsim(q, o) ≤ min{dsim(q, p), p ∈ DB}
⇔ dsim(q, o) ≤ εnn

⇔ o ∈ Nεnn(q)

�

The lemma shows that every nearest-neighbor query can be transformed

into a similarity range query, although the nearest-neighbor distance εnn is

generally not known in advance.

2.2.3 k-Nearest-Neighbor Query

The k-nearest-neighbor query is an extension of the nearest-neighbor query in

case, a result set with more than one element is desired. An example of such

2.2 Similarity Query Types 23

q

Figure 2.5: Result of a k-nearest-neighbor query for object q and k = 5.

The gray circle represents the equivalent range query.

a case is the functional classification of proteins. To improve classification

accuracy for nearest-neighbor classification, a protein is not assigned to the

functional class of the most similar protein in the database but to the class

of the majority of the k most similar proteins. The idea of the k-nearest-

neighbor query is illustrated in Figure 2.5.

Like the nearest neighbor for a query object, the k-th nearest neighbor

may not be unique and, therefore, the result of a k-nearest-neighbor query

may contain more than k elements.

Definition 4 (k-nearest-neighbor query). For a query object q ∈ O and

a query parameter k, the k-nearest-neighbor query returns the smallest set

NN k(q) ⊆ DB that contains (at least) k objects from the database, and for

which the following condition holds:

∀o ∈ NN k(q)∀p ∈ (DB − NN k(q)) : dsim(q, o) < dsim(q, p)

Obviously, Lemma 1 holds analogously for the k-nearest-neighbor query

which means that every k-nearest-neighbor query can also be transformed

into a similarity range query with the same result.

24 2 Similarity Search

2.2.4 Similarity Ranking Query

A final important similarity query type is the similarity ranking query which

is needed in cases where the exact number of desired results is not known

in advance. The idea of this query type is to iteratively retrieve the next

closest objects of a query object from the database, starting at the nearest

neighbor. This type of query appears, for example when the user interactively

explores the database and retrieves the nearest neighbors of a query object

one after another. Such queries could be done by issuing k-nearest-neighbor

queries with increasing parameter k. But this would result in retrieving

the nearest neighbor and other objects several times, i.e. again and again

for each k-nearest-neighbor query. Therefore, an algorithm for similarity

ranking queries should not start over again for each request of a new object

and should not perform all the similarity searching while processing the first

request to ensure interactive response times. Hijaltason and Samet presented

an algorithm with those properties in [HS95].

2.3 Efficient Similarity Search

The size of modern databases and the complexity of the similarity searching

task make efficiency an important issue for any similarity search application.

In this section, we will present two techniques to speed up the query process-

ing in similarity search applications. The two techniques, the use of index

structures, and the use of a multi-step query processing architecture, are not

meant to be mutually exclusive. Instead, they can both be applied in parallel

or at different stages of the query processing.

2.3.1 Index Structures

The use of index structures is a standard technique to improve query pro-

cessing times in database systems. Numerous different index structures have

been proposed for many different data types and applications. For similarity

search applications two types of structures are important: structures for high-

2.3 Efficient Similarity Search 25

dimensional vector spaces and for metric spaces. The first category is pri-

marily useful whenever the feature vector approach is used as the similarity

model.

Metric index structures, on the other hand, can be applied if the distance-

based similarity model is chosen, provided that the similarity measure ful-

fills the metric properties. But especially for the distance-based similarity

model, where the similarity measure is often complex, speeding up the query

processing is essential.

In the following, we will present the principles of important index struc-

tures for vector spaces as well as metric spaces.

Indexing Vector Spaces

The two main paradigms for index structures are hashing and tree structures.

While there exist hashing approaches for vector spaces [NHS84, KS86], the

vast majority of index structures for vector spaces are hierarchical data orga-

nizing structures. The idea behind those structures is to organize the vector

data in a tree like directory to ensure logarithmic time complexity of index

updates and search accesses. To achieve a tree structure for the index, the

data vectors are grouped into pages which are described by a page region

covering the entire subspace occupied by the data vectors on the page. The

data pages are grouped into directory pages in the same manner until this

recursive process yields a single root page. The many index structures follow-

ing this approach differ in the shape and size of the page regions, the strategy

for splitting pages and the insertion strategies. Examples of index structures

following this paradigm are, among many others, the members of the R-tree

family [Gut84, BKSS90], the X-tree [BKK96] and the IQ-tree [BBJ+00].

Indexing Metric Spaces

Index structures for metric spaces are more general than structures for vector

spaces in the sense that they can also be applied to vector spaces, since every

vector space is also a metric space. Like structures for vector spaces, index

26 2 Similarity Search

structures for metric spaces also group the data objects into data pages. But

since there is only a distance measure given between pairs of objects, no

arbitrarily formed page regions are possible. The limitation of the distance

measure results in ball-shaped or ring-shaped page regions. For the descrip-

tion of the page regions, one or more representatives from the data objects

together with a radius have to be chosen. The many index structures for

metric spaces mainly differ in the way, those representatives are chosen. Ex-

amples of index structures for metric spaces are GNAT [Bri95] or the family

of vantage-point trees [Uhl91, Yia93, BÖ97]. Chávez et al. give an overview

over existing approaches for indexing metric spaces in [CNBYM01].

Since even in data mining applications regular updates of the database

are common, dynamic index structures for metric spaces are the most im-

portant variants for our similarity search applications. The M-tree [CPZ97]

and its variant the Slim-tree [TJTSF00] are specifically designed to allow

dynamic updates. Furthermore, those structures are also designed to reduce

the number of similarity distance calculations which is especially important

for costly similarity measures like they are common for complex data.

2.3.2 Multi-Step Query Processing

The complexity of the similarity distance measure is often a problem for effi-

cient query processing in similarity search applications. Index structures are

one way to exclude unnecessary parts of the database from scanning, which

reduces the number of necessary similarity distance calculations. Another

way to reach this reduction goal is to employ a multi-step query processing

architecture.

To reduce the number of necessary distance calculations, the query pro-

cessing in a multi-step query processing architecture, as depicted in Figure

2.6, is performed in two or more steps. The first step is a filter step which re-

turns a number of candidate objects from the database. For those candidate

objects, the exact similarity distance is then determined in the refinement

step and the objects fulfilling the query predicate are reported. To reduce the

overall search time, the filter step has to fulfill certain constraints. First, it is

2.3 Efficient Similarity Search 27

Figure 2.6: Schema of a multi-step query processing architecture.

essential that the filter predicate is considerably easier to evaluate than the

exact similarity measure. Second, a substantial part of the database objects

must be filtered out. Obviously, it depends on the complexity of the similar-

ity measure which filter selectivity is sufficient. Only if both conditions are

satisfied, the performance gain through filtering is greater than the cost for

the extra processing step.

Additionally, the completeness of the filter step is essential. Completeness

in this context means that all database objects satisfying the query condition

are included in the candidate set or in other words, it must be guaranteed

that no false drops occur during the filter step. Available similarity search

algorithms guarantee completeness if the distance function in the filter step

fulfills the lower-bounding property.

Definition 5 (lower-bounding property). For any two objects p and q,

a lower-bounding distance function Df (p, q) in the filter step has to return

a value that is not larger than the exact object distance Do of p and q, i.e.

∀p, q : dlb(p, q) ≤ de(p, q).

With a lower-bounding distance function it is possible to safely filter out

all database objects which have a filter distance larger than the current query

range, because the similarity distance of those objects cannot be less than

the query range.

28 2 Similarity Search

Using a multi-step query architecture requires efficient algorithms that

actually use the filter steps. Agrawal, Faloutsos and Swami proposed such

an algorithm for range queries [AFS93]. In [SK98] and [KSF+98] multi-step

algorithms for k-nearest-neighbor search were presented which are optimal

in the sense that the minimal number of exact distance calculations are per-

formed during query processing.

2.4 Requirements for Similarity Measures

In the preceeding sections, we discussed several aspects of similarity search

applications. From those discussion, we can now derive a few requirements

which a similarity measure for complex data should fulfill.

One requirement for a similarity measure for complex data is that struc-

tural as well as content-related information has to be taken into account.

Therefore, in the case of graphs, the measure should also be defined for at-

tributed graphs and not only for simple graphs.

In Section 2.1.5, we showed that the similarity measure should be adapt-

able to the needs of specific applications and to the needs of the users. This

adaption should be possible between two queries without negative effects on

the performance of the query processing step.

Another requirement is closely related to the first one. It is necessary

to provide an explanation of the similarity distance value between two data

objects, to allow the user a purposeful and easy adaption of the parameters

of the similarity distance measure.

The final two requirements are concerned with the efficiency of the query

processing in similarity search applications. First, the measure should be

of moderate time complexity, since it has to be evaluated often, especially

in today’s large and fast growing databases. Finally, a similarity distance

measure should be a metric in order to allow the use of index structures and

multi-step query processing techniques.

2.5 Summary 29

2.5 Summary

In this chapter, we discussed several aspects of similarity search applications.

In the beginning, we presented two different models for the similarity of ob-

jects, namely the feature vector approach and the distance-based model. We

discussed the strengths and weaknesses of those models and showed that the

distance-based model has advantages especially for complex data. Further-

more, the problems of invariance against transformations and of adaptability

to application and user needs were discussed.

Afterwards, we presented query types which are important in similarity

search applications. Those query types form the basis for the evaluation of

the similarity measures in the later chapters. Two different techniques to

ensure efficient query processing were presented in Section 2.3.

Finally, the discussions lead to five requirements which a similarity mea-

sure for complex objects should fulfill in order to be useful in modern database

systems.

30 2 Similarity Search

Chapter 3

Density-Based Clustering

Clustering is the task of grouping objects of a database into classes, such

that objects within one cluster are most similar to each other while object

of different clusters are most dissimilar to each other. Many clustering algo-

rithms have been proposed in recent years. This thesis will base on density-

based clustering which turned out to be one of the most effective and also

efficient clustering approaches. The clustering algorithms described in this

chapter have in common that they are based on the successive computation

of similarity range queries as introduced in Section 2.2.1 for each object in the

database. Therefore, clustering relies on computing the distance between ob-

jects and, thus, the complexity of the underlying similarity model has a severe

influence on the efficiency of clustering algorithms. Especially for density-

based clustering, similarity range queries must be supported efficiently to

reduce the runtime of clustering.

In this chapter, we will first give basic notations in Section 3.1 to estab-

lish the foundations of density-based clustering. After that, in Sections 3.2

and 3.3, we provide a detailed introduction to the density-based notions of

clusters. In particular, we introduce the notion of flat density-connected sets

as proposed in [EKSX96] providing the basis of the algorithm DBSCAN and

discuss the hierarchical extensions leading to the notion of density-based clus-

ter orderings as proposed in [ABKS99] which constitutes the central concept

of the algorithm OPTICS.

32 3 Density-Based Clustering

3.1 Foundations

The key idea of density-based clustering is that for each object of a cluster the

neighborhood of a given radius ε has to contain at least a minimum number

MinPts of objects, i.e. the cardinality of the neighborhood has to exceed a

given threshold. In the following, we will present the basic definitions of

density-based clustering.

Definition 6 (directly density-reachable). An object p is directly density-

reachable from an object q w.r.t. ε and MinPts in a set of objects DB , if

p ∈ Nε(q) and |Nε(q)| ≥ MinPts , where Nε(q) denotes the subset of DB

contained in the ε-neighborhood of q.

The condition |Nε(q)| ≥ MinPts is called the core object condition. If

this condition holds for an object q, then we call q a core object. Other

objects can be directly density-reachable only from core objects.

Definition 7 (density-reachable and density-connected). An object p

is density-reachable from an object q w.r.t. ε and MinPts in a set of objects

DB , if there is a chain of objects p1, . . . pn, p1 = q, pn = p, such that pi ∈ DB

and pi+1 is directly density-reachable from pi w.r.t. ε and MinPts . Object p

is density-connected to object q w.r.t. ε and MinPts in a set of objects DB ,

if there is an object o ∈ DB , such that both p and q are density-reachable

from o in DB w.r.t. ε and MinPts .

Density-reachability is the transitive closure of direct density-reachability

and does not have to be symmetric. On the other hand, density-connectivity

is symmetric (cf. Figure 3.1).

3.2 Partitioning Clustering

A flat density-based cluster is defined as a set of density-connected objects

which is maximal w.r.t. density-reachability. Then the noise is the set of

objects not contained in any cluster. A cluster contains not only core objects

but also objects that do not satisfy the core object condition. These border

3.3 Hierarchical Clustering 33

(a) p density-reachable from q, but q not
density-reachable from p.

(b) p and q density-connected to each other
by o.

Figure 3.1: Density-reachability and density-connectivity.

objects are directly density-reachable from at least one core object of the

cluster.

The algorithm DBSCAN [EKSX96], which discovers the clusters and the

noise in a database, is based on the fact that a cluster is equivalent to the set

of all objects in DB which are density-reachable from an arbitrary core object

in the cluster (cf. Lemmas 1 and 2 in [EKSX96]). The retrieval of density-

reachable objects is performed by iteratively collecting directly density-reach-

able objects. DBSCAN checks the ε-neighborhood of each point in the da-

tabase. If the ε-neighborhood Nε(q) of a point q has more than MinPts

elements, q is a so-called core point, and a new cluster C containing the

objects in Nε(q) is created. Then, the ε-neighborhood of all points p in C

which have not yet been processed is checked. If Nε(p) contains more than

MinPts points, the neighbors of p which are not already contained in C are

added to the cluster and their ε-neighborhood is checked in the next step.

This procedure is repeated until no new point can be added to the current

cluster C. Then the algorithm continues with a point which has not yet been

processed trying to expand a new cluster.

3.3 Hierarchical Clustering

While the partitioning density-based clustering algorithm DBSCAN can only

identify a “flat” clustering, the newer algorithm OPTICS [ABKS99] com-

34 3 Density-Based Clustering

core-distance(o)
reachability-distance(o,p)
reachability-distance(o,q)

o

pq

MinPts = 5

Figure 3.2: Illustration of core-distance and reachability-distance.

putes an ordering of the points augmented by additional information. In the

following, we will shortly introduce the definitions underlying the OPTICS

algorithm, the core-distance of an object p and the reachability-distance of

an object p w.r.t. a predecessor object o.

Definition 8 (core-distance). Let p be an object from a database DB ,

let Nε(p) be the ε-neighborhood of p, let MinPts be a natural number and

let MinPtsDist(p) be the distance of p to its MinPts-th neighbor. Then,

the core-distance of p, denoted as CoreDist(p) is defined as MinPtsDist(p) if

|Nε(p)| ≥ MinPts and INFINITY otherwise.

Definition 9 (reachability-distance). Let p and o be objects from a da-

tabase DB , let Nε(o) be the ε-neighborhood of o, let dist(o, p) be the dis-

tance between o and p, and let MinPts be a natural number. Then the

reachability-distance of p w.r.t. o, denoted as ReachDist(p, o), is defined as

max(CoreDist(o), dist(o, p)).

Figure 3.2 illustrates both concepts: The reachability-distance of p from

o equals to the core-distance of o and the reachability-distance of q from o

equals to the distance between q and o.

The OPTICS algorithm is given in (cf. Figure 3.3). It creates an order-

ing of a database, along with a reachability-distance for each object. The

main data structure is the so-called seedlist, containing tuples of points and

reachability-distances. The seedlist is organized w.r.t. ascending reachability-

distances. Initially the seedlist is empty and all points are marked as not-

done.

3.3 Hierarchical Clustering 35

algorithm OPTICS
begin

repeat
if the seedlist is empty

if all points are marked “done”, terminate;
choose “not-done” point q;
add (q, INFINITY) to the seedlist;

end if;
(o1, r) = seedlist entry having the smallest reachability value;
remove (o1, r) from seedlist;
mark o1 as “done”;
output (o1, r);
update-seedlist(o1);

end repeat;
end;

Figure 3.3: The OPTICS algorithm.

The procedure update-seedlist(o1) executes an ε-range query around the

point o1, i.e. the first object of the sorted seedlist, at the beginning of each

cycle. For every point p in the result of the range query, it computes r =

ReachDist(p, o1). If the seedlist already contains an entry (p, s), it is updated

to (p, min(r, s)), otherwise (p, r) is added to the seedlist. Finally, the order

of the seedlist is reestablished.

In contrast to DBSCAN, OPTICS does not assign cluster memberships

but computes an ordering in which the objects are processed and addition-

ally generates the information which would be used by an extended DB-

SCAN algorithm to assign cluster memberships, i.e. the core-distance and

the reachability-distance. The original output of OPTICS is the so-called

cluster ordering :

Definition 10 (cluster ordering). Let MinPts ∈ N, ε ∈ R, and CO

be a totally ordered permutation of the database objects. Each o ∈ D has

additional attributes o.P , o.C and o.R, where o.P ∈ {1, . . . , |CO |} symbolizes

the position of o in CO . We call CO a cluster ordering w.r.t. ε and MinPts

if the following three conditions hold:

1. ∀p ∈ CO : p.C = CoreDist(p)

36 3 Density-Based Clustering

1

2

A
1

A
2 B

A B

Figure 3.4: Reachability plot computed by OPTICS for a 2D data set.

2. ∀o, x, y ∈ CO : o.P < x.P ∧ x.P < y.P ⇒
ReachDist(o, x) ≤ ReachDist(o, y)

3. ∀p, o ∈ CO : R(p) = min{ReachDist(o, p) | o.P < p.P},
where min ∅ = ∞.

Intuitively, Condition (2) states that the order is built on selecting at each

position i in CO that object o having the minimum reachability to any object

before i. o.C symbolizes the core-distance of an object o in CO whereas o.R

is the reachability-distance assigned to object o during the generation of CO .

We call o.R the reachablity of object o throughout the following discussion.

Note that o.R is only well-defined in the context of a cluster ordering.

The cluster structure can be visualized by so called reachability plots

which are 2D plots generated as follows: the clustered objects are ordered

along the x-axis according to the cluster ordering computed by OPTICS

and the reachabilitiy distances assigned to each object are plotted along the

abscissa. An example reachability plot is depicted in Figure 3.4. Valleys

in this plot indicate clusters: objects having a small reachability value are

closer and thus more similar to their predecessor objects than objects having

a higher reachability value.

The reachability plot generated by OPTICS can be cut at any level εcut

parallel to the abscissa. It represents the density-based clusters according

to the density threshold εcut : A consecutive subsequence of objects having a

smaller reachability value than εcut belongs to the same cluster. An example

3.3 Hierarchical Clustering 37

is presented in Figure 3.4: For a cut at the level ε1 we find two clusters

denoted as A and B. Compared to this clustering, a cut at level ε2 would

yield three clusters. The cluster A is split into two smaller clusters denoted by

A1 and A2 and cluster B decreased its size. Usually, for evaluation purposes,

a good value for εcut would yield as many clusters as possible.

38 3 Density-Based Clustering

Part II

Multi-Step Similarity Search

and Clustering

Chapter 4

Efficient Similarity Search on

Vector Sets

In the last ten years, an increasing number of database applications has

emerged for which efficient and effective support for similarity search is sub-

stantial. The importance of similarity search grows in application areas such

as multimedia, medical imaging, molecular biology, computer aided engineer-

ing, marketing, purchasing assistance, and others [Jag91, AFS93, FBF+94,

FRM94, ALSS95].

As distance functions form the foundation of similarity search, we need an

object representation which allows efficient and meaningful distance compu-

tations. A common approach is to represent an object by a numerical feature

vector. In this case, a feature transformation extracts distinguishable char-

acteristics which are represented by numerical values and grouped together

in a feature vector. On the basis of such a feature transformation and under

the assumption that similarity corresponds to feature distance, it is possible

to define a distance function between the corresponding feature vectors as

a similarity measure for two data objects. Thus, searching for data objects

similar to a given query object is transformed into proximity search in the

feature space. Most applications use the Euclidean metric (L2) to evaluate

the feature distance, but there are several other metrics commonly used, e.g.

the Manhattan metric (L1) and the maximum metric (L∞).

42 4 Efficient Similarity Search on Vector Sets

Furthermore, there exist quite a few much more complex similarity models

based on graphs [KS03] and trees [KKSS04]. Generally, the more complex

and precise these models are, the more exact are the results of a similarity

search, but at the same time, its computation cost rises as well.

In this chapter, we present a distance measure for an approach somewhere

in between single feature vectors and complex trees and graphs. We model an

object by a set of feature vectors which is a very suitable object representation

for many different application ranges. In order to achieve efficient query

processing we present three different lower-bounding filters and discuss their

properties.

The remainder of this chapter is organized as follows. In Section 4.1, we

motivate the use of vector set represented objects by presenting various ap-

plication ranges which benefit from this modeling approach. In Section 4.2,

we introduce the minimal matching distance between vector sets which is a

suitable distance measure for partial and complete similarity search. In Sec-

tion 4.3, we sketch the paradigm of multi-step query processing and present

appropriate filter techniques for the minimal matching distance on vector

sets. In Section 4.4, we present the results of our experimental evaluation.

The chapter concludes in Section 4.5 with a short summary.

4.1 Application Ranges for Vector Sets

Using sets of feature vectors is a generalization of the use of just one large

feature vector. It is always possible to restrict the model to a feature space, in

which a data object will be completely represented by just one feature vector.

But in some applications the properties of vector set representations allow us

to model the dependencies between the extracted features more precisely. As

the development of conventional database systems in the recent two decades

has shown, the use of more sophisticated ways to model data can enhance

both the effectiveness and efficiency for applications using large amounts of

data. Another advantage of using sets of feature vectors is the better storage

utilization. It is not necessary to force objects into a common size, if they are

4.1 Application Ranges for Vector Sets 43

represented by sets of different cardinality. In the following, we will shortly

sketch different application ranges which benefit from the use of vector set

data.

CAD databases. In [KBK+03] voxelized spatial objects were modeled by

sets of feature vectors, where each feature vector represents a 3D rectangular

cover which approximates the object as good as possible. The vector set

representation is able to avoid the problems that occur by storing a set of

covers according to a strict order, i.e. in one high-dimensional feature vector.

Thereby, it is possible to compare two objects more intuitively compared to

the distance calculation in the one-vector model. In a broad experimental

evaluation it was shown that the use of sets of feature vectors greatly enhances

the quality of the similarity model compared to the use of a single feature

vector.

Soccer teams. As another example, let us assume that we want to measure

the similarity between two soccer teams. It is beneficial to represent each

player by a feature vector and the complete team as a set of feature vectors. A

feature vector for one player may consist of attributes like his age, his salary,

the number of goals in the last season, etc. We can compare two players by

computing the Euclidean distance between the corresponding feature vectors.

This measures the similarity between two players rather well. But, what is

a suitable distance for comparing two teams? Assuming we have a team A

consisting of 10 very young players having a low salary and having scored

only a few goals in the last season. Furthermore, team A has one highly paid,

rather experienced and successful player. On the other hand, we have a team

B where we have 10 rather old, highly paid successful players and one young

low-budget player. If we compare each player of team A to the most similar

player in team B and vice versa, this yields that the two teams are very

similar. This straightforward approach does not reflect the intuitive notion

of similarity. On the other hand, if we compare each player from team A to

a different player in team B trying to minimize the average distance between

two “matched” players, this results in a very accurate similarity measure.

44 4 Efficient Similarity Search on Vector Sets

For partial similarity, it is advisable not to compare all players from team

A to a different player in team B, but only the s most similar players. For

low values of s, e.g. s = 2, the two teams A and B are very similar, as each

team has an old player with a high salary and a young low-budget player.

In this case, the distance between the teams A and B would be very small.

For higher values of s, the two teams become more and more dissimilar. Let

us note that for s = 11 the two notions of partial and complete similarity

coincide. This behavior reflects the intuitive perception of similarity. To

sum up, the use of vector sets allows us to adjust the degree of the partial

similarity in k discrete steps, if we represent the objects by vector sets of

cardinality k.

Further application areas. There exist a lot of further possible applica-

tion fields for sets of feature vectors, e.g.:

• stock portfolios, where each stock is represented by the value of one

share, the overall number of shares, how many days ago the shares

were bought, the risk category, etc.

• shopping carts, where each consumer product corresponds to a feature

vector containing the category, the price, the quantity, etc.

• multimedia CDs, where each media file is represented by the publisher,

the artist, the title, the filesize, the kind of content, etc.

• research teams, where each researcher is modeled by the number of

publications, his age, his salary, etc.

• school classes, where each student is represented by a feature vector

consisting of his marks in Mathematics, English, etc.

• car manufacturers, where each car model is represented by the list price

of a new car, the number of produced cars from this model, the average

mileage, etc.

4.2 Distance Measures on Vector Sets 45

• galaxies, where each star is modeled by a single feature vector con-

taining attributes reflecting the luminance of the star, its size, its age,

etc.

• married couples, where each person is modeled by his/her size, age,

weight, skin color, nationality, education, salary, etc.

To sum up, sets of feature vectors are a natural way to model a lot of complex

real-world objects.

4.2 Distance Measures on Vector Sets

Effective distance functions which allow both complete and partial similarity

search as well as suitable filter techniques for efficient query processing are

indispensable for the general use of the powerful concept of “sets of feature

vectors”.

There are already several distance measures proposed on sets of vectors.

In [EM97] the authors survey the following four measures, which are com-

putable in polynomial time: the Hausdorff distance, the sum of minimum

distances, the (fair-)surjection distance and the link distance. The Hausdorff

distance does not seem to be suitable as a similarity measure, because it re-

lies too much on the extreme positions of the elements of both sets. The last

three distance measures are suitable for modeling similarity, but are not met-

ric. This circumstance makes them unattractive, since there are only limited

possibilities for processing similarity queries efficiently when using a non-

metric distance function. In [EM97], the authors also introduce a method

for expanding the distance measures into metrics, but as a side effect the

complexity of distance calculation becomes exponential. Furthermore, the

possibility to match several elements in one set to just one element in the

compared set is questionable in the application areas presented in Section

4.1.

A distance measure on vector sets that demonstrates to be suitable for

defining similarity is based on the minimum weight perfect matching of sets.

46 4 Efficient Similarity Search on Vector Sets

This well known graph problem can be applied here by building a complete

bipartite graph G = (X ∪ Y,E) between the vector sets X and Y . The

weight of each edge (x, y) ∈ E, where x ∈ X and y ∈ Y , in this graph G

is defined by the distance d(x, y). A perfect matching is a subset M ⊆ E

that connects each x ∈ X to exactly one y ∈ Y and vice versa. A minimum

weight perfect matching is a matching with a minimum sum of weights of its

edges. Contrary to the second example of Section 4.1, where we considered

vector sets of equal cardinality, i.e. soccer teams consisting of 11 players, there

are a lot of application ranges, where objects are naturally represented by a

varying number of vectors. Since a perfect matching can only be found for

sets of equal cardinality, we need to introduce suitable weights as a penalty

for the unmatched vectors when defining a distance measure between objects

of varying cardinality.

Definition 11 (permutation of a set). Let A be any finite set of arbitrary

elements. Then π is a mapping that assigns a ∈ A a unique number i ∈
{1, .., |A|}. This is written as π(A) = (a1, .., a|A|). The set of all possible

permutations of A is denoted by Π(A).

Definition 12 (minimal matching distance). Let V ⊂ Rd and let X =

{~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V be two vector sets. We assume w.l.o.g.

|X| ≤ |Y | ≤ k. Let D : Rd × Rd → R be a distance function between

two d-dimensional feature vectors. Furthermore, let W : V → R be a

weight function for unmatched elements. Then the minimal matching dis-

tance DD,W
mm : 2V × 2V → R is defined as follows:

DD,W
mm (X, Y) = min

π∈Π(Y)

 |X|∑
i=1

D(~xi, ~yπ(i)) +

|Y |∑
i=|X|+1

W (~yπ(i))

The weight function W provides the penalty given to every unassigned

element of the set having larger cardinality. Let us note that the minimal

matching distance is a specialization of the netflow distance which is proven

to be a metric in [RB01]. The minimal matching distance DD,W
mm is a metric,

if the distance function D is a metric and the weight function W meets the

following conditions:

4.2 Distance Measures on Vector Sets 47

(1) W (~x) > 0 for ~x ∈ V

(2) W (~x) + W (~y) ≥ D(~x, ~y) for ~x, ~y ∈ V

The Kuhn-Munkres algorithm [Kuh55, Mun57] can be used to calculate the

minimal matching distance in polynomial time. In a primary initialization

step, a distance matrix between the two vector sets containing k d-dimen-

sional vectors is computed. If D is an Lp-distance, this initialization takes

O(k2d) time. The method itself is based on the successive augmentation

of an alternating path between both sets. Since it is guaranteed that this

path can be expanded by one further match within each step taking O(k2)

time and there is a maximum of k steps, the overall complexity of a distance

calculation is O(k3 + k2d) in the worst case.

The minimal matching distance can be adapted for partial similarity

search in vector set represented data. The distance measure defined in the

following is based on a partial minimal matching. Given two vector sets X

and Y , |X| ≤ |Y |, we only match s ≤ |X| vectors to calculate the distance

between X and Y .

Definition 13 (partial minimal matching distance). Let V ⊂ Rd and

let X = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V be two vector sets. We assume

w.l.o.g. |X| ≤ |Y | ≤ k. Let D : Rd×Rd → R be a distance function between

two d-dimensional feature vectors. Let s ≤ |X|. Then the partial minimal

matching distance DD,s
pmm : 2V × 2V → R is defined as follows:

DD,s
pmm(X, Y) = min

π1∈Π(X),π2∈Π(Y)

(
s∑

i=1

D(~xπ1(i), ~yπ2(i))

)

Unlike the minimal matching distance the partial variant is not a metric.

As the Kuhn-Munkres algorithm produces a partial minimal matching in

each step as an intermediate result, we can use it to calculate the partial

minimal matching distance DD,s
pmm(X, Y). But we have to take into account

all
(|X|

s

)
combinations of vectors in X to match with vectors in Y . Therefore,

the time complexity for a single distance calculation is O(
(

k
s

)
sk2+k2d). Thus,

a filtering technique to speed up query processing is essential.

48 4 Efficient Similarity Search on Vector Sets

4.3 Filters for Vector Sets

Complete similarity search on vector set data can be accelerated by using

metric index structures, e.g. the M-tree [CPZ97]. For a detailed survey on

metric index structures we refer the reader to [CNBYM01]. Another ap-

proach is to use the multi-step query processing paradigm which, in contrast

to metric index structures, is also suitable for partial similarity search. The

main goal of multi-step query processing is to reduce the number of complex

and therefore time consuming distance calculations in the query process. In

order to guarantee that there occur no false drops the used filter distances

have to fulfill a lower-bounding distance criterion. As defined in Definition

5, for any two objects o1 and o2, a lower-bounding distance function Df in

the filter step has to return a value that is not greater than the exact object

distance Do of o1 and o2. With a lower-bounding distance function, it is

possible to safely filter out all database objects which have a filter distance

greater than the current query range because the exact similarity distance of

those objects cannot be less than the query range.

The computation of the minimal matching distance on vector sets is a

rather expensive operation. Thus, the employment of selective and efficiently

computable filter distance functions for similarity search is very important.

In the following, we present three different filter types for query processing

on data objects represented by vector sets, namely the closest pair filter, the

centroid filter and the norm vector filter.

4.3.1 Closest Pair Approach

The closest pair distance between two vector sets X and Y can be used as

a filter distance for the minimal matching distance DD,W
mm and is defined as

follows.

Definition 14 (closest pair distance). Let V ⊂ Rd and ~ω ∈ Rd \ V . Let

X = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V be two vector sets. We assume

w.l.o.g. |X| ≤ |Y | ≤ k. Let D : Rd × Rd → R be a distance function. Let

X ′ = {~x1, . . . ~x|Y |} be a multiset where ~xi = ~ω for i ∈ {|X|+1, . . . |Y |}. Then

4.3 Filters for Vector Sets 49

the closest pair distance DD,~ω
cp (X, Y) : 2V × 2V → R is defined as follows.

DD,~ω
cp (X, Y) = max

 |Y |∑
i=1

min
j=1,...|Y |

D(~xi, ~yj),

|Y |∑
i=1

min
j=1,...|Y |

D(~xj, ~yi)

Let us note that the closest pair filter works directly on the set of vectors,

i.e. on the original data, and not on approximated data. The filter distance

can be computed by scanning the matrix of distance values between each

pair of vectors in X and Y for the closest pairs. We will now show that the

closest pair distance between two vector sets is a lower bound for the minimal

matching distance.

Theorem 1. Let V ⊂ Rd and ~ω ∈ Rd \ V . Let X = {~x1, . . . ~x|X|}, Y =

{~y1, . . . ~y|Y |} ∈ 2V be two vector sets. We assume w.l.o.g. |X| ≤ |Y | ≤ k. Let

D : Rd × Rd → R be a distance function. Furthermore, let W~ω : V → R,

W~ω(~v) = D(~v, ~ω), be a weight function for unmatched elements. Then the

following inequality holds:

DD,~ω
cp (X,Y) ≤ DD,W~ω

mm (X, Y)

Proof. Let π ∈ Π(Y) be the permutation of Y that results from the minimum

weight perfect matching of X and Y , i.e.

DD,W~ω
mm (X, Y) =

|X|∑
i=1

D(~xi, ~yπ(i)) +

|Y |∑
i=|X|+1

D(~ω, ~yπ(i))

The proof consists of two cases.

Case 1: DD,~ω
cp (X, Y) =

∑|Y |
i=1 minj=1,...|Y | D(~xi, ~yj).∑|Y |
i=1 minj=1,...|Y | D(~xi, ~yj) =∑|X|

i=1 minj=1,...|Y | D(~xi, ~yj)+
∑|Y |

i=|X|+1 minj=1,...|Y | D(~ω, ~yj) ≤∑|X|
i=1 D(~xi, ~yπ(i)) +

∑|Y |
i=|X|+1 D(~ω, ~yπ(i))

The inequality holds, if it holds for every pair of i-th addends. This is

obviously the case, as we always pick the ~yj ∈ Y which minimizes D(~xi, ~yj).

Case 2: DD,~ω
cp (X, Y) =

∑|Y |
i=1 minj=1,...|Y | D(~xj, ~yi).

50 4 Efficient Similarity Search on Vector Sets

x2
x1

y1

y2b3

a3

b3a3

x3c3

c3

c3b3

a3’

a3’

y3

(a) Closest pair.

x2
x1

y1

y2b1

a1

c1

c1 c1

b1a1

(b) Centroid.

x1

y1

y2b2

a2

x2

b2’
a2’

(c) Norm vector.

Figure 4.1: Filters for the minimal matching distance.

4.3 Filters for Vector Sets 51

∑|Y |
i=1 minj=1,...|Y | D(~xj, ~yi) =

∑|Y |
i=1 minj=1,...|Y | D(~xj, ~yπ(i)) =∑|X|

i=1 minj=1,...|Y | D(~xj, ~yπ(i))+
∑|Y |

i=|X|+1 minj=1,...|Y | D(~xj, ~yπ(i)) ≤∑|X|
i=1 D(~xi, ~yπ(i)) +

∑|Y |
i=|X|+1 D(~ω, ~yπ(i))

Again, the inequality holds, if it holds for every pair of i-th addends. This is

obviously the case, as we always pick the ~xj ∈ X ′ which minimizes D(~xj, ~yπ(i))

(note that ~ω ∈ X ′ if |X| < |Y |). �

A 2-dimensional example for the closest pair filter is depicted in Fig.

4.1(a), where |X| = |Y | = 3 and

a′3 + b3 + c3 = DL2,~0
cp (X,Y) ≤ D

L2,W~0
mm (X, Y) = a3 + b3 + c3.

As a′3 < a3, ~x3 is matched to both ~y1 and ~y3 during the filter distance

calculation, whereas the minimal matching distance is based on one-to-one

matchings.

We adapt the closest pair filter to partial similarity search by adding up

just the distances of the s closest pairs of vectors. Thus, the partial closest

pair distance is defined as follows.

Definition 15 (partial closest pair distance). Let V ⊂ Rd and let X =

{~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V be two vector sets. We assume w.l.o.g.

|X| ≤ |Y | ≤ k. Let D : Rd × Rd → R be a distance function. Let s ≤ |X|.
Then the partial closest pair distance DD,s

pcp(X, Y) : 2V × 2V → R is defined

as follows.

DD,s
pcp(X, Y) = max

(
min

π∈Π(X)

s∑
i=1

min
j=1,...|Y |

D(~xπ(i), ~yj),

min
π∈Π(Y)

s∑
i=1

min
j=1,...|X|

D(~xj, ~yπ(i))

)

The partial closest pair distance is a lower bound for the partial minimal

matching distance.

Theorem 2. Let V ⊂ Rd and let X, Y ∈ 2V be two vector sets. We assume

w.l.o.g. |X| ≤ |Y | ≤ k. Let D : Rd × Rd → R be a distance function. Let

52 4 Efficient Similarity Search on Vector Sets

s ≤ |X|. Then the following inequality holds:

DD,s
pcp(X, Y) ≤ DD,s

pmm(X, Y)

Proof. Analogous to the proof of Theorem 1. �

As the partial closest pair distance can be computed rather efficiently

by scanning the matrix of distance values between each pair of vectors in

X and Y for the closest pairs and organizing the s closest distances in a

heap structure, it is a very beneficial filter for the partial minimal matching

distance. The overall runtime complexity is O(k2d) for the complete version

and O(k2d log s) for the partial version of the clostest pair distance, when

an Lp-distance is used between vectors. Although this is more complex than

the closest pair approach on norm vectors (cf. Section 4.3.3), it is a more

selective filter that saves more of the very expensive calculations of the exact

partial minimal matching distance.

4.3.2 Centroid Approach

This filter step is based on the relation between a set of feature vectors and

its extended centroid [KBK+03].

Definition 16 (extended centroid). Let V ⊂ Rd and ~ω ∈ Rd \ V . Let

X = {~x1, . . . ~x|X|} ∈ 2V be a vector set where |X| ≤ k. Then the extended

centroid Ck,~ω(X) is defined as follows:

Ck,~ω(X) =

∑|X|
i=1 ~xi + (k − |X|) ~ω

k

Note how the vector ~ω is used as a “dummy” vector to fill up vector sets

with a cardinality of less than k.

Theorem 3. Let V ⊂ Rd and ~ω ∈ Rd \ V . Let X = {~x1, . . . ~x|X|}, Y =

{~y1, . . . ~y|Y |} ∈ 2V be two vector sets where |X|, |Y | ≤ k and let Ck,~ω(X),

Ck,~ω(Y) be their extended centroids. Furthermore, let W~ω : V → R, W~ω(~v) =

4.3 Filters for Vector Sets 53

‖~v − ~ω‖p, be a weight function for unmatched elements. Then the following

inequality holds:

k ‖Ck,~ω(X)− Ck,~ω(Y)‖p ≤ DLp,W~ω
mm (X, Y)

Proof. Let π be the enumeration of the indices of X that groups the xi to

yi according to the minimum weight perfect matching. We assume w.l.o.g.

|X| = m ≥ n = |Y |.

k · ‖Ck,~ω(X)− Ck,~ω(Y)‖p

= k · ‖
Pm

i=1 ~xπ(i)+(k−m)·~ω
k

−
Pn

i=1 ~yi+(k−n)·~ω
k

‖p

= ‖
∑m

i=1 ~xπ(i) −
∑n

i=1 ~yi − (m− n) · ~ω‖p

= ‖
∑n

i=1 ~xπ(i) −
∑n

i=1 ~yi +
∑m

i=n+1 ~xπ(i) −
∑m

i=n+1 ~ω‖p

tri. ineq.

≤ ‖
∑n

i=1(~xπ(i) − ~yi)‖p + ‖
∑m

i=n+1(~xπ(i) − ~ω)‖p

tri. ineq.

≤
∑n

i=1 ‖~xπ(i) − ~yi‖p +
∑m

i=n+1 ‖~xπ(i) − ~ω‖p

=
∑n

i=1 ‖~xπ(i) − ~yi‖p +
∑m

i=n+1 w~ω(~xπ(i))

= DL2,W~ω
mm (X, Y)

�

We have shown that the Lp-distance between the extended centroids mul-

tiplied by k is a lower bound for the minimal matching distance under the

named preconditions. Therefore, when computing e.g. ε-range queries, we

do not need to examine objects whose extended centroids have a distance to

the query object q that is larger than ε
k
. Often a good choice of ~ω is ~0, since

~0 /∈ V holds for a lot of applications. Thus, Conditions (1) and (2) for the

metric character of the minimal matching distance D
L2,W~0
mm are satisfied.

A 2-dimensional example for the extended centroid filter is depicted in

Fig. 4.1(b), where |X| = |Y | = 2 and

2c1 = 2 ‖Ck,~0(X)− Ck,~0(Y)‖2 ≤ D
L2,W~0
mm (X, Y) = a1 + b1.

54 4 Efficient Similarity Search on Vector Sets

The centroid approach is not suitable as a filter for the partial minimal

matching distance, as the centroid invariably aggregates information of all

vectors contained in a vector set.

4.3.3 Norm Vector Approach

Another possible filter for vector set represented data is based on the Lp-

norms of all vector elements of a vector set. The idea is as follows: For all

vectors ~x in a vector set X, |X| ≤ k, we compute the Lp-norms ‖~x‖p and

organize these norm values in descending order in a k-dimensional vector.

We call this filter the norm vector filter.

Definition 17 (norm vector). Let V ⊂ Rd. Let X ∈ 2V be a vector set

where |X| ≤ k. Let (‖~x1‖p, . . . ‖~x|X|‖p) be the sequence of the Lp-norm values

of the vectors in X in descending order, i.e. for all i < j ∈ {1, . . . |X|} holds

‖~xi‖p ≥ ‖~xj‖p. Then the norm vector Vk(X) = (v1, . . . vk)
t ∈ Rk is defined

as follows:

vi =

‖~xi‖p for i = 1, . . . |X|

0 for i = |X|+ 1, . . . k

Note that if X has a cardinality smaller than k, dimensions |X|+ 1 to k

of the norm vector will get filled with 0. We employ the Manhattan distance

as a distance function between two norm vectors Vk(X) and Vk(Y). This

distance measure fulfills the lower-bounding property with respect to the

minimal matching distance, if the Lp-norm is used as the weight function

W . Before we show this result in Theorem 4, we derive the following three

lemmas.

Lemma 2. Let ~x, ~y ∈ Rd be two d-dimensional feature vectors. Then the

difference between the Lp-norms of ~x and ~y underestimates the Lp-distance

between ~x and ~y: ∣∣‖~x‖p − ‖~y‖p

∣∣ ≤ ‖~x− ~y‖p

Proof. ‖~x‖p = ‖~x−~0‖p

tri. ineq.

≤ ‖~x− ~y‖p + ‖~y−~0‖p = ‖~x− ~y‖p + ‖~y‖p follows

‖~x‖p − ‖~y‖p ≤ ‖~x− ~y‖p.

4.3 Filters for Vector Sets 55

‖~y‖p = ‖~y − ~0‖p

tri. ineq.

≤ ‖~x − ~y‖p + ‖~x − ~0‖p = ‖~x − ~y‖p + ‖~x‖p follows

‖~y‖p − ‖~x‖p ≤ ‖~x− ~y‖p.

Then
∣∣‖~x‖p − ‖~y‖p

∣∣ = max(‖~x‖p − ‖~y‖p, ‖~y‖p − ‖~x‖p) ≤ ‖~x− ~y‖p. �

Lemma 3. Let V ⊂ Rd. Let X = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V

be two vector sets. We assume w.l.o.g. |X| ≤ |Y | ≤ k. Then the following

inequality holds:

|X|∑
i=1

∣∣‖~xi‖p − ‖~yi‖p

∣∣ ≤ |X|∑
i=1

‖~xi − ~yi‖p

Proof. The proposition holds if ∀i ∈ {1, . . . |X|} :
∣∣‖~xi‖p−‖~yi‖p

∣∣ ≤ ‖~xi−~yi‖p

and this follows directly from Lemma 2. �

Lemma 4. Let V ⊂ Rd and let X, Y ∈ 2V be two vector sets. We assume

w.l.o.g. |X| ≤ |Y | ≤ k. Their norm vectors are denoted by Vk(X) and

Vk(Y). Let the sequences of the Lp-norm values of the vectors in X and Y

in descending order be denoted by (‖~x1‖p, . . . ‖~x|X|‖p) and (‖~y1‖p, . . . ‖~y|Y |‖p).

Let π ∈ Π(Y). Then the following inequality holds:

‖Vk(X)− Vk(Y)‖1 ≤
|X|∑
i=1

∣∣‖~xi‖p − ‖~yπ(i)‖p

∣∣+ |Y |∑
i=|X|+1

‖~yπ(i)‖p

Proof. (Sketch) Let Vk(X) = (x1, . . . xk)
t, Vk(Y) = (y1, . . . yk)

t.

We first show that the following holds:

‖Vk(X)− Vk(Y)‖1 =
k∑

i=1

|xi − yi| ≤
k∑

i=1

|xi − yπ(i)| (*)

Every given permutation π can be constructed from adjacent permutations

π1, . . . πn, such that π = π1 ◦ . . . ◦ πn and for each πl there is some q ∈
{1, . . . |X|}, such that πl(q) = q + 1, πl(q + 1) = q and ∀q′ /∈ {q, q + 1} :

πl(q
′) = q′. Given πl, we show that |xq − yπl(q)| + |xq+1 − yπl(q+1)| ≥ |xq+1 −

yq+1|+ |xq − yq|. There are in total six cases, because of the ordering within

the norm vectors:

56 4 Efficient Similarity Search on Vector Sets

1. xq ≤ xq+1 ≤ yπl(q+1) ≤ yπl(q) 4. yπl(q+1) ≤ xq ≤ xq+1 ≤ yπl(q)

2. xq ≤ yπl(q+1) ≤ xq+1 ≤ yπl(q) 5. yπl(q+1) ≤ xq ≤ yπl(q) ≤ xq+1

3. xq ≤ yπl(q+1) ≤ yπl(q) ≤ xq+1 6. yπl(q+1) ≤ yπl(q) ≤ xq ≤ xq+1

We exemplarily show the third case. The proofs of the other five cases are

very similar.

|xq − yπl(q)|+ |xq+1 − yπl(q+1)| = xq+1 − yq + yq+1 − xq =

(xq+1 − yq+1) + (yq+1 − yq) + (yq − xq) + (yq+1 − yq) =

|xq+1 − yq+1|+ |xq − yq|+ 2|yq+1 − yq| ≥ |xq+1 − yq+1|+ |xq − yq|

As for each application of a πl the sum on the right side of proposition (*)

will grow or remain equal, the sum will grow or remain equal when applying

π. Thus, proposition (*) holds. Then the following holds:

‖Vk(X)− Vk(Y)‖1

(*)

≤
∑k

i=1|xi − yπ(i)| =
∑|X|

i=1

∣∣‖~xi‖p − ‖~yπ(i)‖p

∣∣+∑|Y |
i=|X|+1

∣∣‖0‖p − ‖~yπ(i)‖p

∣∣+∑k
i=|Y |+1

∣∣‖0‖p − ‖0‖p

∣∣ =∑|X|
i=1

∣∣‖~xi‖p − ‖~yπ(i)‖p

∣∣+∑|Y |
i=|X|+1‖~yπ(i)‖p

�

Theorem 4. Let V ⊂ Rd and let X, Y ∈ 2V be two vector sets. Their norm

vectors are denoted by Vk(X) and Vk(Y). Furthermore, let W~0 : V → R,

W~0(~v) = ‖~v‖p, be the Lp-norm used as a weight function for the minimal

matching distance. Then the following inequality holds:

‖Vk(X)− Vk(Y)‖1 ≤ D
Lp,W~0
mm (X, Y)

Proof. Let the sequences of the Lp-norm values of the vectors in X and Y in

descending order be denoted by (‖~x1‖p, . . . ‖~x|X|‖p) and (‖~y1‖p, . . . ‖~y|Y |‖p).

We assume w.l.o.g. |X| ≤ |Y | ≤ k. Let π ∈ Π(Y) be the permutation of

Y that results from the minimum weight perfect matching of X and Y . We

4.3 Filters for Vector Sets 57

combine the results from Lemmas 3 and 4.

‖Vk(X)− Vk(Y)‖1

Lemma 4

≤

|X|∑
i=1

∣∣‖~xi‖p − ‖~yπ(i)‖p

∣∣+ |Y |∑
i=|X|+1

‖~yπ(i)‖p

Lemma 3

≤

|X|∑
i=1

‖~xi − ~yπ(i)‖p +

|Y |∑
i=|X|+1

‖~yπ(i)‖p = D
Lp,W~0
mm (X, Y)

�

A 2-dimensional example for the norm vector filter is depicted in Fig.

4.1(c), where |X| = |Y | = 2 and

a′2 + b′2 = ‖Vk(X)− Vk(Y)‖1 ≤ D
L2,W~0
mm (X,Y) = a2 + b2.

An approach for partial similarity search is to apply a parallel scan

through the norm vectors Vk(X) and Vk(Y) and to build a heap structure

containing the distances between the closest pairs of norm values found dur-

ing the parallel scan. Finally, the sum of the top s elements of the heap

is reported as the distance measure. This can be done very efficiently in

O(k log s) time using the algorithm in Fig. 4.2. The algorithm corresponds

to a closest pair approach on the norm values of the feature vectors, which

lower bounds the partial minimal matching distance.

Theorem 5. Let V ⊂ Rd and let X = {~x1, . . . ~x|X|}, Y = {~y1, . . . ~y|Y |} ∈ 2V

be two vector sets. We assume w.l.o.g. |X| ≤ |Y | ≤ k. Let s ≤ |X|. Let

X̂ = {‖~x1‖p, . . . ‖~x|X|‖p}, Ŷ = {‖~y1‖p, . . . ‖~y|Y |‖p} be multisets containing the

Lp-norm values of the vectors in X and Y . Then the following inequality

holds:

DLp,s
pcp (X̂, Ŷ) ≤ DLp,s

pmm(X, Y)

Proof. According to Theorem 2, D
Lp,s
pcp (X̂, Ŷ) ≤ D

Lp,s
pmm(X̂, Ŷ) holds.

58 4 Efficient Similarity Search on Vector Sets

algorithm PartialNormVectorFilter;
input: VectorSet X, VectorSet Y , Integer k, Integer s;
output: Real;

begin
return max(Distance(X, Y, k, s),Distance(Y, X, k, s));

end;

algorithm Distance;
input: VectorSet X, VectorSet Y , Integer k, Integer s;
output: Real;

begin
// initialize

(x1, . . . xk) := Vk(X);
(y1, . . . yk) := Vk(Y);
j := 1;

// parallel scan
for i in 1..k do

while j < k ∧ |xi − yj | ≥ |xi − yj+1| do
j := j + 1;

end while;
heap.insert(|xi − yj |);

end for;
// add up the distance

dist := 0;
for i in 1..s do

dist := dist + heap.top();
end for;
return dist ;

end;

Figure 4.2: The partial norm vector filter algorithm.

To obtain D
Lp,s
pmm(X̂, Ŷ) ≤ D

Lp,s
pmm(X, Y) we have to show that

min
π1∈Π(X),π2∈Π(Y)

(
s∑

i=1

∣∣‖~xπ1(i)‖p − ‖~yπ2(i)‖p

∣∣) ≤

min
π1∈Π(X),π2∈Π(Y)

(
s∑

i=1

‖~xπ1(i) − ~yπ2(i)‖p

)

and this follows from Lemma 3. �

4.3 Filters for Vector Sets 59

Table 4.1: Runtime complexity of the proposed filters.

distance function complete similarity partial similarity

exact distance O(k3 + k2d) O(
(

k
s

)
sk2 + k2d)

clostest pair O(k2d) O(k2d log s)

centroid O(d) n/a

norm vector O(k) O(k log s)

4.3.4 Discussion

As the computation of the minimal matching distance is rather time-con-

suming, we introduced three different filters. The centroid and the norm

vector filtering techniques can be profitably combined. The exact distance

computation is only performed if the results of both filter distance compu-

tations on the centroids and the norm vectors are small enough. This way,

a good deal of the information in the vector sets is incorporated in the filter

distance computation. Given d-dimensional data, the centroid filter maps

each dimension to a single value, resulting in a d-dimensional vector. On the

other hand, the norm vector filter maps each vector to a single value resulting

in a k-dimensional vector. Thus, the combined filter contains aggregated in-

formation over both the dimensions and the vectors and is therefore suitable

for a lot of different data distributions. The time complexity for a combined

filter distance evaluation is O(d + k). As the centroid approach is not appli-

cable for partial similarity search, we cannot use the combined filter for this

purpose.

In contrast to the other two approaches, which derive a single feature

vector for approximating a vector set, the closest pair filter works directly

on the vector sets. The resulting distance measure lower bounds the mini-

mal matching distance and can be computed more efficiently. The runtime

complexities for partial and complete similarity distance calculations based

on the three different filters are summed up in Table 4.1, where we assume

vector sets containing k d-dimensional vectors, a partial similarity parameter

s ∈ {1, . . . k}, and an Lp-distance between vectors.

60 4 Efficient Similarity Search on Vector Sets

4.4 Experimental Evaluation

In this section, we present our experimental results.

4.4.1 Settings

We generated and used two artificial datasets, each containing 100,000 ran-

dom vector sets. The first dataset consists of vector sets containing 10 2-

dimensional vectors each. The other dataset consists of vector sets contain-

ing 2 10-dimensional vectors each. The vectors are generated so that all of

their components are uniformly distributed in the interval between 0 and 1.

All distance measures between vector sets were implemented in Java 1.4 and

the experiments were run on a workstation with a Xeon 2.4 GHz processor

and 2 GB main memory under Linux.

Furthermore, we used the similarity model presented in [KBK+03], where

CAD objects were represented by a vector set consisting of either 3, 5 or

7 vectors in 6D. All experiments were carried out on a dataset containing

5,000 CAD objects from an American aircraft producer. We conducted our

experiments on top of the Oracle9i Server using PL/SQL for the computa-

tional main memory based programming. We compared our different filters

for vector set represented data to a PL/SQL implementation of the M-tree

[CPZ97]. For the M-tree based k-nearest neighbor queries the ranking algo-

rithm of [HS95] was used. The experiments were performed on a Pentium

III/700 machine with IDE hard drives. The database block cache was set to

500 disk blocks with a block size of 8 KB and was used exclusively by one

active session.

The minimal matching distances between sets of feature vectors were com-

puted using an implementation of the Kuhn-Munkres algorithm. Throughout

our experiments we used the Euclidean distance as the distance measure be-

tween two single vectors. The range queries were based on a sequential scan.

The k-nn queries with exact distance calculations were also based on a se-

quential scan. For the filtered k-nn queries the filter distances between the

query object and all vector sets in the database were calculated and sorted in

4.4 Experimental Evaluation 61

ascending order. Then the optimal multi-step k-nn search algorithm [SK98]

was used. In all tests, we processed 10 different similarity range queries as

well as k-nn queries. The presented figures depict the average results from

these tests.

4.4.2 Complete Similarity Search

Range queries. In a first experiment, we carried out range queries on the

two artificial datasets. Figure 4.3 shows rather good results for the norm

vector filter, while the centroid filter performs rather badly. The superiority

of the norm vector filter is due to the fact that more information is preserved

by approximating a vector set by a 10-dimensional vector in contrast to the

2-dimensional centroid computed by the centroid approach. As expected,

the situation is reversed in Fig. 4.4 where each vector set contains 2 10-

dimensional vectors. In both tests, the closest pair filter has good to optimal

selectivity, but due to its computational complexity the overall runtime is

rather high especially for high ε-values.

Using the CAD datasets, we carried out different range queries on a vector

set consisting of 5 6-dimensional vectors. Figure 4.5 shows that the selectivity

of the closest pair filter is almost optimal, i.e. few unnecessary candidates

are produced. Nevertheless, the overall runtime of this filter-step is very

high as the runtime complexity of the filter-step is almost as high as the

computation of the minimal matching distance itself (cf. Fig. 4.5). Good

results were obtained by using the centroid approach. The good performance

of the centroid approach can slightly be increased by using the combined

filter, i.e. the combination of the norm vector filter and the centroid filter,

which can also be efficiently computed and has a slightly higher selectivity.

Note that both the selectivity as well as the runtime behavior of the M-tree

are outperformed by this combined filter for all ε-values.

k-nn queries. Figure 4.6 shows the average results we obtained for car-

rying out different k-nn queries on CAD objects represented by vector sets

containing 7 vectors. Basically, we made the same observations as for range

62 4 Efficient Similarity Search on Vector Sets

Figure 4.3: Complete range queries, artificial dataset, cardinality 10, di-

mensionality 2.

4.4 Experimental Evaluation 63

Figure 4.4: Complete range queries, artificial dataset, cardinality 2, dimen-

sionality 10.

64 4 Efficient Similarity Search on Vector Sets

Figure 4.5: Complete range queries, CAD dataset, cardinality 5, dimen-

sionality 6.

4.4 Experimental Evaluation 65

Figure 4.6: Complete k-nn queries, CAD dataset, cardinality 7, dimension-

ality 6 (the sequential scan took about 1014 sec. for each k).

66 4 Efficient Similarity Search on Vector Sets

queries. Although the closest pair filter has a rather good selectivity, it is

rather expensive. The best trade off is achieved by using the combination of

the norm vector filter and the centroid filter. All filters have a rather good

selectivity and accelerate the query process enormously. For instance, for

k-nn queries where k is smaller than 20, the combined filter accelerates the

query process on the 6-dimensional vector sets by more than one order of

magnitude compared to the sequential scan. Again, the selectivity as well as

the runtime behavior of the M-tree is clearly outperformed by this combined

filter for all values of k, e.g. for k=5 the combined filter outperforms the

M-tree by an order of magnitude. We made the same observations for the

CAD datasets with 3 and 5 vectors per vector set, except that the absolute

runtime is higher for the larger vector sets. The average runtime for 7 vectors

is about four times the average runtime for 3 vectors.

4.4.3 Partial Similarity Search

In this section, we tested the norm vector filter and the closest pair filter.

Let us note that detecting partial similarity is a very expensive operation.

Furthermore, we cannot apply the M-tree as the distance function is not a

metric (cf. Definition 13).

Range queries. Figure 4.7 shows the average of 10 range queries for vary-

ing ε-values on a vector set of 7 vectors. The partial similarity parameter

s was set to 2. Again, the closest pair filter is very selective. As the exact

distance function is very expensive, the closest pair filter can be beneficially

used for small ε-values. For higher ε-values, the rather high evaluation cost

of the closest pair filter carry into weight. On the other hand, the norm vec-

tor can safely be used for all values of ε, as there is no noteworthy overhead.

For rather small ε-values, it even outperforms the closest pair filter, although

the norm vector has a lower selectivity than the closest pair filter. This is

because the lower computational cost of the norm vector filter still pays off,

compared to the slightly more exact distance computations which have to be

carried out.

4.4 Experimental Evaluation 67

Figure 4.7: Partial range queries for s = 2, CAD dataset, cardinality 7,

dimensionality 6.

68 4 Efficient Similarity Search on Vector Sets

Figure 4.8: Partial k-nn queries for s = 3, CAD dataset, cardinality 5,

dimensionality 6 (the sequential scan took about 2123 sec. for each k).

4.5 Summary 69

k-nn queries. Figure 4.8 shows the average of 10 k-nn queries for vector

sets of 5 vectors each having a dimensionality of 6 and a partial similarity pa-

rameter s = 3. For small values of k, the norm vector filter outperforms the

exact distance computation by almost one order of magnitude. For higher

values of k, the selectivity of the norm vector filter decreases and thus the

overall response time increases. For values of k equal to 100, the norm vector

filter still accelerates the query process by 100%. As already mentioned, the

closest pair filter is rather expensive. Although it has an excellent selectivity,

the norm vector filter is better for rather small values of k. For increasing

values of k, the closest pair filter outperforms the norm vector filter because

of the much better selectivity and the very expensive exact distance calcula-

tions.

4.5 Summary

In this chapter, we motivated the use of vector set data by pointing out the

different application areas of this promising representation technique. We

introduced a suitable distance function on vector sets, which reflects the in-

tuitive notion of similarity for the presented application ranges. Furthermore,

we presented different filtering techniques with different runtime complexi-

ties. Our experimental evaluation and our analytical reasoning showed that

the closest pair filter is the most selective filter. As this filter is rather ex-

pensive, it only pays off for partial similarity queries which are extremely

expensive themselves. For complete similarity queries, the combination of

the norm vector filter and the centroid filter is the method of choice for

a lot of different data distributions, as it can be computed efficiently and

the information of each vector and each dimension is taken into considera-

tion. The experimental evaluation on real world datasets demonstrates that

the presented filtering techniques accelerate similarity range queries and k-nn

queries by up to one order of magnitude compared to metric index structures

and the sequential scan.

70 4 Efficient Similarity Search on Vector Sets

Chapter 5

Multi-Step Density-Based

Clustering

In recent years, the research community spent a lot of attention to the clus-

tering problem resulting in a large variety of different clustering algorithms

[JMF99]. One important class of clustering algorithms is density-based clus-

tering which can be used for clustering all kinds of metric data and is not

confined to vector spaces. Density-based clustering is rather robust concern-

ing outliers [EKSX96] and is very effective in clustering all sorts of data, e.g.

multi-represented objects [KKPS04a]. Furthermore, the reachability plot cre-

ated by the density-based hierarchical clustering algorithm OPTICS serves

as a starting point for an effective data mining tool described in Chapter 7,

which helps to visually analyze cluster hierarchies.

Density-based clustering algorithms like DBSCAN and OPTICS, which

were introduced in Chapter 3, are based on ε-range queries for each database

object. Each range query requires a lot of distance calculations, especially

when high ε-values are used. Therefore, these algorithms are only applicable

to large collections of complex objects, e.g. trees, point sets, and graphs (cf.

Figure 1), if those range queries are supported efficiently. When working with

complex objects, the necessary distance calculations are the time-limiting

factor. Thus, the ultimate goal is to save as many of these complex distance

calculations as possible.

72 5 Multi-Step Density-Based Clustering

In this chapter, we present an approach which helps to compute density-

based clusterings efficiently. The core idea of our approach is to integrate the

multi-step query processing paradigm directly into the clustering algorithm

rather than using it “only” for accelerating range queries. Our clustering ap-

proach itself exploits the information provided by simple distance measures

lower-bounding complex and expensive exact distance functions. Expensive

exact distance computations are only performed when the information pro-

vided by simple distance computations, which are often based on simple

object representations, is not enough to compute the exact clustering. Fur-

thermore, we show how our approach can be used for approximated clustering

where the result might be slightly different from the one we compute based

on the exact information. In order to measure the dissimilarity between the

resulting clusterings, we introduce suitable quality measures.

The remainder of this chapter is organized as follows. In Section 5.1, we

look at different approaches presented in the literature for efficiently com-

puting these algorithms. We will explain why the presented algorithms are

not suitable for expensive distance computations if we are interested in the

exact clustering structure. In Section 5.2, we will present our new approach

which tries to use lower-bounding distance functions before computing the

expensive exact distances. The new approach integrates the multi-step query

processing paradigm directly into the clustering algorithms rather than using

it independently. As our approach can also be used for generating approx-

imated clusterings, we introduce objective quality measures in Section 5.3

which allow us to assess the quality of approximated clusterings. In Section

5.4, we present a detailed experimental evaluation showing that the pre-

sented approach can accelerate the generation of density-based clusterings

on complex objects by more than one order of magnitude. We show that

for approximated clustering the achieved quality is scalable w.r.t. the overall

runtime. Section 5.5 summarizes the chapter.

5.1 Related Work 73

5.1 Related Work

DBSCAN and OPTICS determine the local densities by performing repeated

range queries. In this section, we will sketch different approaches from the

literature to accelerate these density-based clustering algorithms and discuss

their unsuitability for complex object representations.

5.1.1 Exact Clustering

In the following we will present some approaches leading to exact density-

based clusterings.

Multi-Dimensional Index Structures. The most common approach to

accelerate each of the required single range queries is to use multi-dimen-

sional index structures. For objects modelled by low-, medium-, or high-

dimensional feature vectors there exist several specific R-tree [Gut84] vari-

ants. For more detail we refer the interested reader to [GG98].

Metric Index Structures. In contrast to Figure 1.3(a) where the objects

are modelled by a high-dimensional feature vector, the objects presented in

the example of Figure 1.3(b)–(d) are not modelled by feature vectors. There-

fore, we cannot apply the index structures mentioned in the last paragraph.

Nevertheless, we can use index structures, such as the M-tree [CPZ97] for

efficiently carrying out range queries as long as we have a metric distance

function for measuring the similarity between two complex objects. For a de-

tailed survey on metric access methods we refer the reader to [CNBYM01].

Multi-Step Query Processing. The main goal of multi-step query pro-

cessing is to reduce the number of complex and, therefore, time consuming

distance calculations in the query process. In order to guarantee that there

occur no false drops, the used filter distances have to fulfill a lower-bounding

distance criterion. For any two objects p and q, a lower-bounding distance

function df in the filter step has to return a value that is not greater than

74 5 Multi-Step Density-Based Clustering

the exact object distance do of p and q, i.e. df (p, q) ≤ do(p, q). With a lower-

bounding distance function it is possible to safely filter out all database ob-

jects which have a filter distance greater than the current query range because

the exact object distance of those objects cannot be less than the query range.

Using a multi-step query architecture requires efficient algorithms which ac-

tually make use of the filter step. Agrawal, Faloutsos and Swami proposed

such an algorithm for range queries [AFS93] which form the foundation of

density-based clustering. For efficiency reasons, it is crucial that df (p, q) is

considerably faster to evaluate than do(p, q) and, furthermore, in order to

achieve a high selectivity df (p, q) should be only marginally smaller than

do(p, q).

Using Multiple Similarity Queries. In [BBBK00] a schema was pre-

sented which transforms query intensive KDD algorithms into a representa-

tion using the similarity join as a basic operation without affecting the cor-

rectness of the result of the considered algorithm. The approach was applied

to accelerate the clustering algorithms DBSCAN and OPTICS by using an

R-tree like index structure. In [BEKS00] an approach was introduced for effi-

ciently supporting multiple similarity queries for mining in metric databases.

It was shown that many different data mining algorithms can be accelerated

by multiplexing different similarity queries.

Summary. Multi-dimensional index structures based on R-tree variants

and clustering based on the similarity join are restricted to vector set data.

Furthermore, the main problem of all approaches mentioned above is that

distance computations can only be avoided for objects located outside the ε-

range of the actual query object. In order to create, for instance, a reacha-

bility plot without loss of information, the authors in [ABKS99] propose to

use a very high ε-value. Therefore, all of the above mentioned approaches

lead to O(|DB |2) exact distance computations for OPTICS.

5.1 Related Work 75

5.1.2 Approximated Clustering

Other approaches do not aim at producing the exact hierarchical clustering

structure, but an approximated one.

Sampling. The simplest approach is to use sampling and apply the ex-

pensive data mining algorithms to a subset of the dataspace. Typically, if

the sample size is large enough, the result of the data mining method on the

sample reflects the exact result well.

Grid-Based Clustering. Another approach is based on grid cells [JMF99]

to accelerate query processing. In this case, the data space is partitioned into

a number of non-overlapping regions or cells which can be used as a filter

step for the range queries. All points in the result set are contained in the

cells intersecting the query range. To further improve the performance of the

range queries to a constant time complexity, query processing is limited to a

constant number of these cells (e.g. the cell covering the query point and the

direct neighbor cells) and the refinement step is dropped, thereby trading

accuracy for performance.

Distance Mapping. In [WWL+99], 5 different distance mapping algo-

rithms were introduced to map general metric objects to Euclidean or pseudo-

Euclidean spaces in such a way that the distances among the objects are ap-

proximately preserved. The approximated data mining algorithm is then per-

formed within the Euclidean space based on rather cheap distance functions.

If there already exist selective filters which can efficiently be computed, an

additional mapping into a feature space is superfluous, i.e. we can carry out

the approximated data mining algorithm directly on the filter information.

Data Bubbles. Finally, there exist efficient approximated versions of hier-

archical clustering approaches for non-vector data which are based on Data

Bubbles [ZS03]. These approaches augment suitable representatives with

76 5 Multi-Step Density-Based Clustering

additional aggregated information describing the area around the represen-

tatives.

Summary. All indicated approximated clustering approaches are able to

generate efficiently the corresponding clustering structure. The question at

issue is: How much quality do they have to pay for their efficiency gain?

In the following, we will propose an approach which computes exact

density-based clusterings trying to confine itself to simple distance computa-

tions lower-bounding the exact distances. Further expensive exact distance

computations are postponed as long as possible, and are only carried out at

that stage of the algorithm where they are compulsory to compute the cor-

rect clustering. Furthermore, we will also indicate how to use our algorithm

for approximated clustering.

5.2 Accelerated Density-Based Clustering

In this section, we will discuss in detail how we can efficiently compute a

flat and a hierarchical density-based clustering. We demonstrate how to in-

tegrate the multi-step query processing paradigm into the two density-based

clustering algorithms DBSCAN and OPTICS. We present our approach for

OPTICS in detail and sketch how a simplified version of this extended OP-

TICS approach can be used for DBSCAN.

5.2.1 Basic Idea

DBSCAN and OPTICS are both based on performing numerous ε-range

queries. None of the approaches discussed in the literature can avoid that we

have to compute the exact distance to a given query object q for all objects

contained in Nε(q). Especially for OPTICS, where ε has to be chosen very

high in order to create reachability plots without loss of information, we have

to compute |DB | many exact distance computations for each single range

query, even when one of the methods discussed in Section 5.1.1 is used. In

5.2 Accelerated Density-Based Clustering 77

the case of DBSCAN, typically, the ε-values are much smaller. Nevertheless,

if we apply the traditional multi-step query processing paradigm with non-

selective filters, we also have to compute up to |DB | many exact distance

computations.

In our approach, the number of exact distance computations does not

primarily depend on the size of the database and the chosen ε-value but rather

on the value of MinPts , which is typically only a small fraction of |DB |, e.g.

MinPts = 5 is a suitable value even for large databases [ABKS99, EKSX96].

Basically, we use MinPts-nearest neighbor queries instead of ε-range queries

on the exact object representations in order to determine the core-properties

of the objects. Further exact complex distance computations are only carried

out at that stage of the algorithms where they are compulsory to compute

the correct clustering result.

5.2.2 Extended OPTICS

The main idea of our approach is to carry out the range queries based on the

lower-bounding filter distances instead of using the expensive exact distances.

In order to put our approach into practice, we have to slightly extend the data

structure underlying the OPTICS algorithm, i.e. we have to add additional

information to the elements stored in the seedlist.

The Extended Seedlist. We do not any longer use a single seedlist as

in the original OPTICS algorithm where each list entry consists of a pair

(ObjectId ,ReachabilityValue). Instead, we use a list of lists, called Xseedlist ,

as shown in Figure 5.1. The Xseedlist consists of an ordered object list OL,

quite similar to the original seedlist but without any reachability information.

The order of the objects oi in OL, cf. the horizontal arrow in Figure 5.1, is

determined by the first element of each predecessor list PL(oi) anchored at

oi, cf. the vertical arrows in Figure 5.1.

An entry located at position l of the predecessor list PL(oi) belonging to

object oi consists of the following information:

78 5 Multi-Step Density-Based Clustering

Figure 5.1: The Xseedlist data structure.

• Predecessor ID. A processed object oi,l which was already added to

the reachability plot which is computed from left to right.

• Predecessor Flag. A flag Fi,l indicating whether we already com-

puted the exact object distance do(oi, oi,l) between oi and oi,l, or whether

we only computed the distance df (oi, oi,l) of these two objects based on

the lower-bounding filter information.

• Predecessor Distance. PreDist(oi, oi,l) is equal to

max(CoreDist(oi,l), do(oi, oi,l)),

if we already computed the exact object distance do(oi, oi,l), else it is

equal to

max(CoreDist(oi,l), df (oi, oi,l)).

5.2 Accelerated Density-Based Clustering 79

Throughout our new algorithm, the conditions depicted in Figure 5.1

belonging to this extended OPTICS algorithm are maintained. In the fol-

lowing, we will describe the extended OPTICS algorithm trying to minimize

the number of exact distance computations.

Algorithm. The extended OPTICS algorithm exploiting the filter infor-

mation is depicted in Figure 5.2. The algorithm always takes the first ele-

ment o1 from OL. If it is at the first position due to a filter computation,

we compute the exact distance do(o1, o1,1) and reorganize the Xseedlist . The

reorganization might displace o1,1 from the first position of PL(o1). Further-

more, object o1 might be removed from the first position of OL. On the

other hand, if the filter flag F1,1 indicates that an exact distance computa-

tion was already carried out, we add object o1 to the reachability plot with

a reachability-distance equal to PreDist(o1, o1,1). Furthermore, we carry out

the procedure update-Xseedlist(o1).

Update-Xseedlist. This is the core function of our extended OPTICS

algorithm. First, we carry out a range query around the query object q := o1

based on the filter information, yielding the result set Nfilter
ε (q). Then we

compute the core-distance of q by computing the MinPts-nearest neighbors

of q as follows:

• If |Nfilter
ε (q)| < MinPts , we set the core-distance of q to INFINITY

and we are finished. Otherwise, we initialize a list SortListε(q) con-

taining tuples (obj, flag, dist) which are organized in ascending order

according to dist. For all objects o ∈ Nfilter
ε (q), we insert an entry

(o, Filter, df (o, q)) into SortListε(q).

• We walk through SortListε(q) starting at the first element. We set

SortListε(q)[1].dist = do(SortListε(q)[1].obj, q),

SortListε(q)[1].f lag = Exact,

and reorder SortListε(q). This step is repeated until the first MinPts

elements of SortListε(q) are at their final position due to an exact

80 5 Multi-Step Density-Based Clustering

distance computation. The core-distance of q is equal to the distance

distMinPts = SortListε(q)[MinPts].dist,

if distMinPts ≤ ε holds, else it is set to INFINITY.

A tuple (objj, f lagj, distj) ∈ SortListε(q) is transferred into an Xseedlist

entry, if q is a core object and distj ≤ ε holds. If there exists no entry for

objj in OL, (objj, 〈(q, flagj, max(distj,CoreDist(q)))〉) is inserted into OL,

else (q, flagj, max(distj,CoreDist(q))) is inserted into PL(objj). Note that

in both cases the ordering of Figure 5.1 has to be maintained.

Lemma 5. The result of the extended OPTICS algorithm is equivalent to

the result of the original one.

Proof. First, the extended OPTICS algorithm computes the correct core-

distances by applying a MinPts-nearest neighbor search algorithm. Second,

in each cycle the extended and the original OPTICS algorithm add the ob-

ject o1 having the minimum reachability-distance, w.r.t. all objects reported

in the foregoing steps, to the cluster ordering. For the extended OPTICS

algorithm this is true, as we have computed do(o1, o1,1) before adding it to

the cluster ordering, due to the ordering conditions of Figure 5.1, and due to

the lower-bounding filter property. �

Note that this approach carries out exact distance computations only for

those objects which are very close to the current query object q according

to the filter information, whereas the traditional multi-step query approach

would compute exact distance computations for all objects o ∈ Nfilter
ε (q). As ε

has to be chosen very high in order to create reachability plots without loss of

information [ABKS99], the traditional approach has to compute |DB | many

exact distance computations, even when one of the approaches discussed in

Section 5.1.1 is used. On the other hand, the number of exact distance

computations in our approach does not depend on the size of the database

but rather on the value of MinPts , which is only a small fraction of the

cardinality of the database. Note that our approach only has to compute

|DB | · MinPts , i.e. O(|DB |), exact distance computations if we assume an

5.2 Accelerated Density-Based Clustering 81

algorithm ExtendedOPTICS
begin

repeat
if the Xseedlist is empty

if all points are marked “done”, terminate;
choose “not-done” point q;
add (q, empty list) to the Xseedlist ;

end if;
(o1, list) = first entry in the Xseedlist ;
if list[1].PredecessorFlag == Filter

compute do(o1, list[1].PredecessorID); (*)
update list[1].PredecessorDistance;
list[1].PredecessorFlag = Exact;
reorganize Xseedlist according to the conditions of Fig. 5.1;

else
remove (o1, list) from Xseedlist ;
mark o1 as “done”;
output (o1, list[1].PredecessorDistance);
update-Xseedlist(o1);

end if;
end repeat;

end;

Figure 5.2: The extended OPTICS algorithm.

optimal filter, in contrast to the O(|DB |2) distance computations carried out

by the original OPTICS run. Only when necessary, we carry out further

exact distance computations (cf. line (*) in Figure 5.2).

5.2.3 Extended DBSCAN

Our extended DBSCAN algorithm is a simplified version of the extended

OPTICS algorithm also using the Xseedlist as its main data structure. We

carry out an ε-range query on the lower-bounding filter distances for an

arbitrary database object q which has not yet been processed. Due to the

lower-bounding properties of the filters, Nε(q) ⊆ Nfilter
ε (q) holds. Therefore,

if |Nfilter
ε (q)| < MinPts , q is certainly no core point. Otherwise, we test

whether q is a core point as follows.

We organize all elements o ∈ Nfilter
ε (q) in ascending order according to

82 5 Multi-Step Density-Based Clustering

their filter distance df (o, q) yielding a sorted list. We walk through this

sorted list, and compute for each visited object o the exact distance do(o, q)

until for MinPts elements do(o, q) ≤ ε holds or until we reach the end. If we

reached the end, we certainly know that q is no core point. Otherwise q is a

core object initiating a new cluster C.

If our current object q is a core object, some of the objects o ∈ Nfilter
ε (q)

are inserted into the Xseedlist (cf. Figure 5.1). All objects for which we have

already computed do(o, q), and for which do(o, q) ≤ ε holds, certainly belong

to the same cluster as the core-object q. At the beginning of OL, we add the

entry (o, NIL), where PL(o) = NIL indicates that o certainly belongs to the

same cluster as q. Objects o for which do(o, q) > e holds are discarded. All

objects o ∈ Nfilter
ε (q) for which we did not yet compute do(o, q) are handled

as follows:

• If there exists no entry belonging to o in OL, (o, 〈(q, Filter, df (o, q))〉) is

inserted into OL and the ordering conditions of Figure 5.1 are reestab-

lished.

• If there already exists an entry for o in OL and, furthermore, PL(o) =

NIL holds, nothing is done.

• If there already exists an entry for o in OL and, furthermore, PL(o) 6=
NIL holds, (q, Filter, df (o, q)) is inserted into PL(o) and the ordering

conditions of Figure 5.1 are reestablished.

DBSCAN expands a cluster C as follows. We take the first element o1

from OL and, if PL(o1) = NIL holds, we add o1 to C, delete o1 from OL,

carry out a range query around o1, and try to expand the cluster C. If

PL(o1) 6= NIL holds, we compute do(o1, o1,1). If do(o1, o1,1) ≤ ε, we proceed

as in the case where PL(o1) = NIL holds. If do(o1, o1,1) > ε holds and

length of PL(o1) > 1, we delete (o1,1, F1,1,PreDist(o1, o1,1)) from PL(o1).

If do(o1, o1,1) > ε holds and length of PL(o1) = 1, we delete o1 from OL.

Iteratively, we try to expand the current cluster by examining the first entry

of PL(o1) until OL is empty.

5.2 Accelerated Density-Based Clustering 83

Lemma 6. The result of the extended DBSCAN algorithm is equivalent to

the result of the original one.

Proof. First, the determination whether an object o is a core object is correct

as o′ ∈ Nε(o) ⇒ o′ ∈ Nfilter
ε (o) holds due to the lower-bounding filter property.

We test as many elements o′ ∈ Nfilter
ε (o) as necessary to decide whether

|Nε(o)| ≥ MinPts holds. Second, similar to the proof of Lemma 5, we can

guarantee that an object o is only added to the current cluster if do(o, p) ≤ ε

holds for an object p which has already been singled out as a core object of

the current cluster. �

5.2.4 Length-Limitation of the Predecessor Lists

In this section, we introduce two approaches for limiting the size of the pre-

decessor lists to a constant lmax trying to keep the main memory footprint

as small as possible. The first approach computes additional exact distances

to reduce the length of the object reachability lists, while still computing the

exact clustering. On the other hand, the second approach dispenses with ad-

ditional exact distance computations leading to an approximated clustering.

Exact Clustering. In the case of OPTICS, for each object oi in OL,

we store all potential predecessor objects oi,p along with PreDist(oi, oi,p) in

PL(oi). Due to the lower-bounding property of df , we can delete all entries

in PL(oi) which are located at positions l′ > l, if we have already computed

the exact distance between oi and the predecessor object oi,l located at po-

sition l. So each exact distance computation might possibly lead to several

delete operations in the corresponding predecessor list. In order to limit the

main memory footprint, we introduce a parameter lmax which restricts the

allowed number of elements stored in a predecessor list. If more than lmax

elements are contained in the list, we compute the exact distance for the

predecessor oi,1 located at the first position. Such an exact distance compu-

tation between oi and oi,1 usually causes oi,1 to be moved upward in the list.

All elements located behind its new position l are deleted. So if l ≤ lmax

84 5 Multi-Step Density-Based Clustering

holds, the predecessor list is limited to at most lmax entries. Otherwise, we

repeat the above procedure.

For DBSCAN, if the predecessor list of oi is not NIL, we can limit its

length by starting to compute do(oi, oi,1), i.e. the exact distance between oi

and the first element of PL(oi). If do(oi, oi,1) ≤ ε holds, we set PL(oi) = NIL

indicating that oi certainly belongs to the current cluster. Otherwise, we

delete (oi,1, Fi,1,PreDist(oi, oi,1)) and if the length of PL(oi) is still larger

than lmax, we iteratively repeat this limitation procedure.

Lemma 7. The above length limitation approach does not change the result

of the extended DBSCAN and OPTICS algorithms.

Proof. The presented DBSCAN algorithm guarantees that no entries (oi,l, Fi,l,

PreDist(oi, oi,l)) are deleted which are necessary for determining whether an

object is directly density-reachable (cf. Definition 6) from a core object of

the current cluster. For OPTICS we do not delete any entries which are nec-

essary for computing the minimum reachability-distance w.r.t. all already

processed objects. �

Approximated Clustering. In our approximated approach, we artifi-

cially limit the length of the predecessor lists by discarding all elements which

are located at a position higher than lmax without computing any additional

exact distances. This approach might not produce the same result as the

original OPTICS and DBSCAN algorithms as the filter distances do not

necessarily have to coincide with the exact distances. Note that if we have a

very exact filter, cutting off the predecessor lists will not worsen the quality

heavily (cf. Section 5.4.3). Nevertheless, we need to know how much quality

we have to pay for the achieved efficiency gain.

5.3 Similarity Measures for Clusterings

The similarity measures introduced in this section are suitable for generally

measuring the quality between partitioning and hierarchical approximated

5.3 Similarity Measures for Clusterings 85

clusterings w.r.t. a given reference clustering. Both partitioning and hierar-

chical clustering algorithms rely on the notion of a cluster.

Definition 18 (cluster). A cluster C is a non-empty subset of objects from

a database DB , i.e. C ⊆ DB and C 6= ∅.

Definition 19 (partitioning clustering). Let DB be a database of arbi-

trary objects. Furthermore, let C1, . . . Cn be pairwise disjoint clusters of DB ,

i.e. ∀i, j ∈ {1, . . . n} : i 6= j ⇒ Ci ∩Cj = ∅. Then we call CLp = {C1, . . . Cn}
a partitioning clustering of DB .

Note that due to the handling of noise, we do not demand from a par-

titioning clustering CLp = {C1, . . . Cn} that C1 ∪ . . . ∪ Cn = DB holds.

In contrast to the partitioning structure computed by DBSCAN, OPTICS

computes a hierarchical clustering order which can be transformed into a

tree structure by means of suitable cluster recognition algorithms [ABKS99,

BKKP04, SQL+03].

Definition 20 (hierarchical clustering). Let DB be a database of arbi-

trary objects. A hierarchical clustering is a tree troot where each subtree t

represents a cluster Ct, i.e. t = (Ct, (t1, . . . tn)), and the n subtrees ti of t rep-

resent non-overlapping subsets Cti , i.e. ∀i, j ∈ {1, . . . n} : i 6= j ⇒ Cti ∩Ctj =

∅ ∧ Ct1 ∪ . . . ∪ Ctn ⊆ Ct. Furthermore, the root node troot represents the

complete database, i.e. Ctroot = DB .

Again, we do not demand from the n subtrees ti of t = (Ct, (t1, . . . tn))

that Ct1 ∪ . . . ∪ Ctn = Ct holds (cf. Figure 3.4 where A1 ∪ A2 6= A).

5.3.1 Similarity Measure for Clusters

As outlined in the last section, both partitioning and hierarchical clusterings

consist of flat clusters. In order to compare flat clusters to each other we need

a suitable distance measure between sets of objects. One possible approach

is to use distance measures as used for constructing distance-based hierar-

chical clusterings, e.g. the distance measures used by single-link, average-link

86 5 Multi-Step Density-Based Clustering

or complete-link [JMF99]. Although these distance measures are used for

the construction of hierarchical clusterings, these measures are not suitable

when it comes to evaluating the quality of flat clusters. The similarity of

two clusters w.r.t. quality solely depends on the number of identical objects

contained in both clusters which is reflected by the symmetric set difference.

Definition 21 (symmetric set difference). Let C1 and C2 be two clusters

of a database DB . Then the symmetric set difference d∆ : 2DB×2DB → [0..1]

and the normalized symmetric set difference dnorm
∆ : 2DB × 2DB → [0..1] are

defined as follows:

d∆(C1, C2) = |C1 ∪ C2| − |C1 ∩ C2|,

dnorm
∆ (C1, C2) =

|C1 ∪ C2| − |C1 ∩ C2|
|C1 ∪ C2|

.

Note that (2DB , d∆) and (2DB , dnorm
∆) are metric spaces.

5.3.2 Similarity Measure for Partitioning Clusterings

In this section, we will introduce a suitable distance measure between sets of

clusters. Several approaches for comparing two sets S and T to each other

exist in the literature. In [EM97] the authors survey the following distance

functions: the Hausdorff distance, the sum of minimal distances, the (fair-

)surjection distance and the link distance. All of these approaches rely on

the possibility to match several elements in one set to just one element in

the compared set which is questionable when comparing the quality of an

approximated clustering to a reference clustering.

A distance measure on sets of clusters that demonstrates to be suitable

for defining similarity between two partitioning clusterings is the minimal

matching distance defined in Definition 12, which is based on the minimal

weight perfect matching of sets. This graph problem can be applied here by

building a complete bipartite graph G = (Cl, Cl′, E) between two clusterings

Cl and Cl′. The weight of each edge (Ci, C
′
j) ∈ Cl × Cl′ in this graph G

is defined by the distance d∆(Ci, C
′
j) introduced in the last section between

the two clusters Ci and C ′
j. In this scenario, a perfect matching is a subset

5.3 Similarity Measures for Clusterings 87

M ⊆ Cl × Cl′ that connects each cluster Ci ∈ Cl to exactly one cluster

C ′
j ∈ Cl′ and vice versa. A minimal weight perfect matching is a matching

having maximum cardinality and a minimum sum of weights of its edges.

Since a perfect matching can only be found for sets of equal cardinality, it

is necessary to introduce weights for unmatched clusters when defining a

distance measure between clusterings.

Note that the symmetric set difference d∆ is a metric and can be used

as the underlying distance function D for the minimal matching distance.

Furthermore, the unnormalized symmetric set difference allows us to define a

meaningful weight function W based on a dummy cluster ∅ since the empty

set is not included as an element in a clustering (cf. Definition 19). We

propose to use the following weight function w∅(C) = d∆(C, ∅) where each

unmatched cluster C is penalized with a value equal to its cardinality |C|.
Thus the metric character of the minimal matching distance is satisfied.

Furthermore, large clusters which cannot be matched are penalized more than

small clusters which is a desired property for an intuitive quality measure.

Definition 22 (clustering distance). Let Cl = {C1, . . . C|Cl|} and Cl′ =

{C ′
1, . . . C

′
|Cl′|} be two clusterings. We assume w.l.o.g. |Cl| ≤ |Cl′|. Fur-

thermore, let π be a mapping that assigns C ′ ∈ Cl′ a unique number i ∈
{1, . . . |Cl′|}, denoted by π(Cl′) = (C ′

1, . . . C
′
|Cl′|). The family of all possible

permutations of Cl’ is called Π(Cl′). Then the clustering distance D
d∆,w∅
mm is

defined as follows:

Dd∆,w∅
mm (Cl, Cl′) = min

π∈Π(Cl′)

 |Cl|∑
i=1

d∆(Ci, C
′
π(i)) +

|Cl′|∑
i=|Cl|+1

w∅(C
′
π(i))

 .

Based on Definition 22, we can define our final quality criterion. We

compare the costs for transforming an approximated clustering Cl≈ into a

reference clustering Clref to the costs piling up when transforming Cl≈ first

into ∅, i.e. a clustering consisting of no clusters, and then transforming ∅ into

Clref .

Definition 23 (quality measure QAPC). Let Cl≈ be an approximated par-

titioning clustering and Clref the corresponding reference clustering. Then,

88 5 Multi-Step Density-Based Clustering

the approximated partitioning clustering quality QAPC(Cl≈, Clref) is equal to

100% if Cl≈ = Clref = ∅, else it is defined as(
1− d

D∆,w∅
mm (Cl≈, Clref)

D
d∆,w∅
mm (Cl≈, ∅) + D

d∆,w∅
mm (∅, Clref)

)
· 100%.

Note that our quality measure QAPC is between 0% and 100%. If Cl≈

and Clref are identical, QAPC(Cl≈, Clref) = 100% holds. On the other hand,

if the clusterings are not identical and the clusters from Cl≈ and Clref have

no objects in common, i.e. ∀C≈ ∈ Cl≈, Cref ∈ Clref : C≈ ∩ Cref = ∅,
QAPC(Cl≈, Clref) is equal to 0%.

5.3.3 Similarity Measure for Hierarchical Clusterings

In this section, we present a quality measure for approximated hierarchical

clusterings. To the best of our knowledge, the only quality measure for

an approximated hierarchical clustering was introduced in [ZS03]. A simple

heuristic was applied to find the “best” cut-line, i.e. the most meaningful εcut-

value (cf. Figure 3.4), for a reachability plot resulting from an approximated

OPTICS run. The number of clusters found w.r.t. εcut was compared to the

maximum number of clusters found in the reachability plot resulting from an

exact clustering. This quality measure has two major drawbacks. First, it

does not reflect the hierarchical clustering structure, but compares two flat

clusterings to each other. Second, the actual elements building up a cluster

are not accounted for. Only the number of clusters is used for computing the

quality. In the following, we will present a quality measure for hierarchical

clusterings which overcomes the two mentioned shortcomings.

As already outlined, a hierarchical clustering can be represented by a

tree (cf. Definition 20). In order to define a meaningful quality measure for

approximated hierarchical clusterings, we need a suitable distance measure

for describing the similarity between two trees t≈ and tref . Note that each

node of the trees reflects a flat cluster, and the complete trees represent the

entire hierarchical clusterings.

A common and successfully applied approach to measure the similarity

5.3 Similarity Measures for Clusterings 89

between two trees is the degree-2 edit distance [ZWS96]. It minimizes the

number of edit operations necessary to transform one tree into the other using

three basic operations, namely the insertion and deletion of a tree node and

the change of a node label. Using these operations, we can define the degree-2

edit distance between two trees.

Definition 24 (cost of an edit sequence). An edit operation e is the

insertion, deletion or relabeling of a node in a tree t. Each edit operation

e is assigned a non-negative cost c(e). The cost c(S) of a sequence of edit

operations S = 〈e1, . . . em〉 is defined as the sum of the cost of each edit

operation, i.e. c(S) = c(e1) + . . . + c(em).

Definition 25 (degree-2 edit distance). The degree-2 edit distance is

based on degree-2 edit sequences which consist only of insertions or deletions

of nodes n with degree(n) ≤ 2, or of relabelings. Then, the degree-2 edit dis-

tance ED2 between two trees t and t′ is the minimum cost of all degree-2 edit

sequences that transform t into t′ or vice versa, i.e. ED2(t, t
′) = min{c(S) |S

is a degree-2 edit sequence transforming t into t′}.

It is important to note that the degree-2 edit distance is well defined.

Two trees can always be transformed into each other using only degree-

2 edit operations. This is true because it is possible to construct any tree

using only degree-2 edit operations. As the same is true for the deletion of an

entire tree, it is always possible to delete t completely and then build t′ from

scratch resulting in a distance value for this pair of trees. In [ZWS96] the

authors presented an algorithm which computes the degree-2 edit distance

in O(|t| · |t′| · D) time, where D denotes the maximum fanout of the trees,

and |t| and |t′| the number of tree nodes.

We propose to set the cost c(e) for each insert and delete operation e to

1. Furthermore, we propose to use the normalized symmetric set difference

dnorm
∆ as introduced in Definition 21 to weight the relabeling cost. Using

the normalized version allows us to define a well-balanced trade-off between

the relabeling cost and the other edit operations, i.e. the insert and delete

operations. Based on these costs, we can define our final quality criterion. We

compare the costs for transforming an approximated hierarchical clustering

90 5 Multi-Step Density-Based Clustering

Cl≈ modelled by a tree t≈ into a reference clustering Clref modelled by a

tree tref , to the costs piling up when transforming t≈ first into an “empty”

tree tnil and then transforming tnil into tref .

Definition 26 (quality measure QAHC). Let tref be a tree representing a

hierarchical reference clustering Clref , and tnil a tree consisting of no nodes

at all, representing an empty clustering. Furthermore, let t≈ be a tree repre-

senting an approximated clustering Cl≈. Then, the approximated hierarchical

clustering quality QAHC(Cl≈, Clref) is equal to(
1− ED2(t

≈, tref)

ED2(t≈, tnil) + ED2(tnil, tref)

)
· 100%.

As the degree-2 edit distance is a metric [ZWS96], the approximated

hierarchical clustering quality QAHC is between 0% and 100%.

5.4 Experimental Evaluation

In this section, we present a detailed experimental evaluation which demon-

strates the characteristics and benefits of our new approach.

5.4.1 Settings

Test Data Sets. As test data, we used real-world CAD data represented by

81-dimensional feature vectors [KKM+03] and vector sets where each element

consists of 7 6D vectors [KBK+03]. Furthermore, we used graphs [KKSS04]

to represent real-world image data. If not otherwise stated, we used 1,000

complex objects from each data set, and we employed the filter and exact

object distance functions proposed in [KBK+03, KKM+03, KKSS04]. The

used distance functions can be characterized as follows:

• The exact distance computations on the graphs are very expensive. On

the other hand, the used filter is rather selective and can efficiently be

computed [KKSS04].

5.4 Experimental Evaluation 91

• The exact distance computations on the feature vectors and vector sets

are also very expensive as normalization aspects for the CAD objects

are taken into account. We compute 48 times the distance between two

81-dimensional feature vectors, and between two vector sets, in order to

determine a normalized distance between two CAD objects [KBK+03,

KKM+03]. As a filter for the feature vectors we use their Euclidean

norms [FJ03] which is not very selective, but can be computed very

efficiently. The filter used for the vector sets is more selective than the

filter for the feature vectors, but also computationally more expensive

[KBK+03].

Implementation. The original OPTICS and DBSCAN algorithms, along

with their extensions introduced in this chapter and the used filter and exact

object distances were implemented in Java 1.4. The experiments were run

on a workstation with a Xeon 2.4 GHz processor and 2 GB main memory

under Linux.

Parameter Setting. As suggested in [ABKS99], for an OPTICS run we

used a maximum ε parameter in order to create reachability plots containing

the complete hierarchical clustering information. For DBSCAN, we chose

an ε parameter, based on the reachability plots (cf. the εcut-values in Figure

3.4), yielding as many flat clusters as possible. Furthermore, if not otherwise

stated, the MinPts parameter is set to 5, and the length of the predecessor

lists is not limited.

Comparison Partners. As a comparison partner for extended OPTICS,

we chose the full table scan based on the exact distances, because any other

approach would include an unnecessary overhead and is not able to reduce

the number of the required |DB |2 exact distance computations. Furthermore,

we compared our extended DBSCAN algorithm to the original DBSCAN al-

gorithm based on a full table scan on the exact object distances, and we

compared it to a version of DBSCAN which is based on ε-range queries ef-

ficiently carried out according to the multi-step query processing paradigm

92 5 Multi-Step Density-Based Clustering

[AFS93]. According to all our tests, this second comparison partner out-

performs a DBSCAN algorithm using ε-range queries based on an M-tree

[CPZ97] and the DBSCAN algorithm according to [BEKS00].

5.4.2 Exact Clustering Experiments

In this section, we first investigate the dependency of our approach on the

filter quality, the MinPts parameter, and the maximum allowed length of

the predecessor lists. For these tests, we concentrate on the discussion of

the overall number of distance computations. Furthermore, we investigate

the influence of the ε-value in the case of DBSCAN, and, finally, we present

the absolute runtimes, in order to show that the required overhead of our

approach is negligible compared to the saved exact distance computations.

Dependency on the Filter Quality. In order to demonstrate the depen-

dency of our approach on the quality of the filters, in a first experiment we

utilized artificial filter distances df lower bounding the exact object distances

do, i.e. df (o1, o2) = κ · do(o1, o2) where κ is between 0 and 1. Figure 5.3(a)

depicts the number of distance computations ndist w.r.t. κ. In the case of

DBSCAN, even rather bad filters, i.e. small values of κ, help to reduce the

number of required distance computations considerably, indicating a possi-

ble high speed-up compared to both comparison partners of DBSCAN. For

good filters, i.e. values of κ close to 1, ndist is very small for DBSCAN and

OPTICS indicating a possible high speed-up compared to a full table scan

based on the exact distances do.

Dependency on the MinPts Parameter. Figure 5.3(b) demonstrates the

dependency of our approach for a varying MinPts parameter while using the

filters introduced in [FJ03, KBK+03, KKM+03]. As our approach is based

on MinPts-nearest neighbor queries, obviously the efficiency of our approach

increases with a decreasing MinPts parameter. Note that even for rather

high MinPts-values around 10 = 1% · |DB |, our approach saves up to one

order of magnitude of exact distance computations compared to a full table

5.4 Experimental Evaluation 93

0

100

200

300

400

500

600

0,2 0,4 0,6 0,7 0,8 0,85 0,9 0,95 0,99

κ

no
. o

f d
is

ta
nc

e
co

m
pu

ta
tio

ns
 [x

1,
00

0] OPTICS: vector set
OPTICS: feature vector
OPTICS: graph
DBSCAN: vector set
DBSCAN: feature vector
DBSCAN: graph

(a) Dependency on the filter quality df (o1, o2) = κ ·
do(o1, o2).

0

50

100

150

200

250

300

2 5 10 20

MinPts

no
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns
 [x

1,
00

0]

(b) Dependency on the MinPts parameter.

0

100

200

300

400

500

0 200 400 600 800 1000

lmax

no
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns
 [x

1,
00

0]

(c) Dependency on the maximum allowed length of the
predecessor lists.

Figure 5.3: Distance calculations for exact clusterings.

94 5 Multi-Step Density-Based Clustering

1

10

100

1000

0 0,2 0,4 0,6 0,8 1

normalized ε-parameter

ru
nt

im
e

tra
di

tio
na

l m
ul

tis
te

p
ap

pr
oa

ch
 /

ru
nt

im
e

ne
w

 in
te

gr
at

ed
 m

ul
ti-

st
ep

 a
pp

ro
ac

h

DBSCAN: vector set
DBSCAN: feature vector
DBSCAN: graph

Figure 5.4: Speed-up dependent on the ε parameter.

scan based on do, if selective filters are used, e.g. the filters for the vector

sets and the graphs. Furthermore, even for the filter of rather low selectivity

used by the feature vectors, our approach needs only 1/9 of the maximum

number of distance computations in the case of DBSCAN and about 1/4 in

the case of OPTICS.

Dependency on the Maximum Allowed Length of the Predecessor

Lists. Figure 5.3(c) depicts how the number of distance computations ndist

depends on the available main memory, i.e. the maximum allowed length

lmax of the predecessor lists. Obviously, the higher the value for lmax, the less

exact distance computations are required. The figure shows that for OPTICS

we have an exponential decrease of ndist w.r.t. lmax, and for DBSCAN ndist is

almost constant w.r.t. changing lmax parameters, indicating that small values

of lmax are sufficient to reach the best possible runtimes.

Dependency on the ε parameter. Figure 5.4 shows how the speed-up for

DBSCAN between our integrated multi-step query processing approach and

the traditional multi-step query processing approach depends on the chosen ε

parameter. The higher the chosen ε parameter, the more our new approach

5.4 Experimental Evaluation 95

1

10

100

1000

10000

500 1000 2000 3000

no. of objects

ru
nt

im
e

[s
ec

.]

1

10

100

1000

10000

500 1000 2000 3000

no. of objects
ru

nt
im

e
[s

ec
.]

100

1000

10000

500 1000 2000 3000

no. of objects

ru
nt

im
e

[s
ec

.]

100

1000

10000

500 1000 2000 3000

no. of objects

ru
nt

im
e

[s
ec

.]

1

10

100

1000

10000

500 1000 2000 3000

no. of objectsru
nt

im
e

[s
ec

.]

1

10

100

1000

10000

500 1000 2000 3000

no. of objects

ru
nt

im
e

[s
ec

.]

Figure 5.5: Absolute runtimes w.r.t. varying database sizes.

96 5 Multi-Step Density-Based Clustering

outperforms the traditional one which has to compute the exact distances

between o and q for all o ∈ Nfilter
ε (q). In contrast, our approach confines

itself to MinPts-nearest neighbor queries on the exact distances and computes

further distances only if compulsory to compute the exact clustering result.

Absolute Runtimes. Figure 5.5 presents the absolute runtimes of the new

extended DBSCAN and OPTICS algorithms which integrate the multi-step

query processing paradigm compared to the full table scan on the exact object

representations. Furthermore, we also compare our extended DBSCAN to

a DBSCAN variant using ε-range queries based on the traditional hmulti-

step query processing paradigm. Note, that this comparison partner would

induce an unnecessary overhead in the case of OPTICS where we have to use

very high ε parameters in order to detect the complete hierarchical clustering

order. In all experiments, our approach was always the most efficient one.

For instance, for DBSCAN on the feature vectors, our approach outperforms

both comparison partners by an order of magnitude indicating that rather

bad filters are already useful for our new extended DBSCAN algorithm. Note

that the traditional multi-step query processing approach does not benefit

much from non-selective filters even when small ε-values are used. In the

case of OPTICS, the performance of our approach improves with increasing

filter quality. For instance, for the graphs we achieve a speed-up factor of

more than 30 indicating the suitability of our extended OPTICS algorithm.

5.4.3 Approximated Clustering Experiments

In this section, we carry out experiments where we just cut off the predecessor

lists PL(o) after the lmax-th element without computing any additional exact

distance computations between o and the discarded potential predecessor

objects. Note that this approach might lead to an information loss. Figure

5.6 shows that the maximum number of needed distance calculations only

marginally increases for higher lmax-values for the graphs and the vector sets

indicating that we can cut off the object reachability lists at small lmax-values

without a considerable information loss. On the other hand, for the feature

5.4 Experimental Evaluation 97

0

20

40

60

80

100

120

1 5 10 20

lmaxno
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns
 [x

1,
00

0]

OPTICS: vector set
OPTICS: feature vector
OPTICS: graph
DBSCAN: vector set
DBSCAN: feature vector
DBSCAN: graph

Figure 5.6: Distance calculations for approximated clusterings.

vectors we have to compute more exact distance computations the higher the

lmax-value is. The additionally needed exact distance computations (cf. line

(*) in Figure 5.2) are due to the rather low filter selectivity of the used filter.

Next, we examine the quality of our approximated clustering algorithms

by using the quality measures introduced in Section 5.3. For extracting

the hierarchical tree structure, we used the cluster recognition algorithm

presented in [BKKP04]. Figure 5.7 depicts the quality measures QAPC for

DBSCAN and QAHC for OPTICS for our three test data sets w.r.t. varying

lmax values. Our quality measures indicate a very high quality for the graphs

and the vector sets over the full range of the investigated lmax values. On the

other hand, when using the feature vectors both quality measures QAPC (for

DBSCAN) and QAHC (for OPTICS) increase with increasing lmax values.

These tests not only indicate that we can cut off the predecessor lists at

small values of lmax without considerably worsening the clustering quality

when using selective filters. The tests also demonstrate the suitability of our

quality measures QAPC and QAHC which indicate low quality when filters of

low selectivity are combined with small lmax values.

98 5 Multi-Step Density-Based Clustering

70

75

80

85

90

95

100

1 5 10 20

lmax

qu
al

ity
 m

ea
su

re
s

Q
AP

C
 a

nd
 Q

AH
C
 [%

]

OPTICS: vector set DBSCAN: vector set
OPTICS: feature vector DBSCAN: feature vector
OPTICS: graph DBSCAN: graph

Figure 5.7: Quality measures for approximated clusterings.

5.5 Summary

In many different application areas, density-based clustering is an effective

approach for mining complex data. Unfortunately, the runtime of these data

mining algorithms is rather high, as the distance functions between complex

object representations are often very expensive. In this chapter, we showed

how to integrate the well-known multi-step query processing paradigm di-

rectly into the two density-based clustering algorithms DBSCAN and OP-

TICS. We replaced the expensive exact ε-range queries by MinPts-nearest

neighbor queries which themselves are based on ε-range queries on lower-

bounding filter distances. Further exact complex distance computations are

only carried out at that stage of the algorithms where they are compulsory to

compute the correct clustering result. Furthermore, we showed how we can

use the presented approach for approximated clustering. In order to evalu-

ate the trade-off between the achieved efficiency gain and the quality loss, we

introduced suitable quality measures for comparing the partitioning and hier-

archical approximated clusterings to the exact ones. In a broad experimental

5.5 Summary 99

evaluation based on real-world test data sets we demonstrated that our new

approach leads to a significant speed-up compared to a full table scan on

the exact object representations as well as compared to an approach, where

the ε-range queries are accelerated by means of the traditional multi-step

query processing concept. Furthermore, we showed that for approximated

clusterings we can reduce the number of required distance computations even

further. Finally, we pointed out that the resulting approximated clustering

quality heavily depends on the filter quality demonstrating the suitability of

our introduced quality measures.

100 5 Multi-Step Density-Based Clustering

Chapter 6

Parallel Density-Based

Clustering of Complex Objects

Density-based clustering algorithms like DBSCAN are based on ε-range que-

ries for each database object. Thereby, each range query requires a lot of

distance calculations. When working with complex objects, e.g. trees, point

sets, and graphs, often complex time-consuming distance functions are used

to measure similarity accurately. As these distance calculations are the time-

limiting factor of the clustering algorithm, the ultimate goal is to save as

many as possible of these complex distance calculations.

In Chapter 5 an approach was presented for the efficient density-based

clustering of complex objects. The core idea of this approach is to inte-

grate the multi-step query processing paradigm directly into the clustering

algorithm rather than using it “only” for accelerating range queries. In this

chapter, we present a sophisticated parallelization of this approach. Similar

to the area of join processing where there is an increasing interest in algo-

rithms which do not assume the existence of any index structure, we propose

an approach for parallel DBSCAN which does not rely on the pre-clustering

of index structures.

First, the data is partitioned according to the clustering result carried

out on cheaply computable distance functions. The resulting approximated

clustering conservatively approximates the exact clustering. The objects of

102 6 Parallel Density-Based Clustering of Complex Objects

ditional communication between the various clients. The presented local clustering approach also
takes advantage of the approximating lower-bounding distance functions. The detected clusters
and the detected exact merge point sets are then transmitted to the server (cf. Fig. 1b).

Finally, the server determines the correct clustering result by merging the locally detected
clusters. This final merging step is based on the exact merge points detected by the clients. Based
on these merge points, cluster connectivity graphs are created. In these graphs, the nodes repre-
sent the locally detected clusters. Two local clusters are connected by an edge if a merge point of
one cluster is a core-object in the other cluster (cf. Fig. 1c). In the following sections, we will de-
scribe each step in more detail.

4 Server-Side Data Partitioning

As indicated in the last section, we first partition the data based on a server-side clustering on
the lower bounding filter information. Before, we describe in detail how we do this partitioning
in Section 4.2, we first describe the basic concepts of density-based clustering along with the flat
density-based clustering algorithm DBSCAN and the hierarchical clustering algorithm OPTICS.

4.1 The Server-Side Clustering

The key idea of density-based clustering is that for each object of a cluster the neighborhood
of a given radius ε has to contain at least a minimum number of MinPts objects, i.e. the cardinality
of the neighborhood has to exceed a given threshold.

Definition 1 (directly density-reachable) Object p is directly density-reachable from object q
w.r.t. ε and MinPts in a set of objects D, if p ∈ Nε(q) and |Nε(q)| ≥ MinPts, where Nε(q) denotes
the subset of D contained in the ε-neighborhood of q.

The condition |Nε(q)| ≥ MinPts is called the core object condition. If this condition holds for
an object q, then we call q a core object. Other objects can be directly density-reachable only from
core objects.

C1,2,1
exact

Fig. 1. Basic idea of parallel density-based clustering.

(a) partitioning of the database based on an

(b) exact clustering

C1,1,1
exact

The server merges the
two clusters C1,1,1

exact
 and C1,2,1

exact

based on the merge point
sets M1,1,1

exact and M1,2,1
exact

(c) server-side merging of the
locally detected clusters (cf. Section 6)

noise objects (filter)
cluster objects (filter)
cluster and merging objects (filter)

server server

client 4client 3client 2client 1

approximated clustering (cf. Section 4)
C1

 filter

C2
 filter=

C3
 filter=

M1,2,1
exact

M1,1,1
exact

C2,1,1
exact C3,1,1

exact

C3,1,2
exact

C1,1
 filter

M1,2
 filter

M1,1
 filter

C1,2
 filter

C2,1
 filter

C3,1
 filter

carried out on
the local clients
(cf. Section 5)

Figure 6.1: Basic idea of parallel density-based clustering.

the conservative cluster approximations are then distributed onto the avail-

able slaves in such a way that each slave has to cluster the same amount of

objects, and that the objects to be clustered are close to each other. Note

that already at this early stage, we can detect some noise objects which do

not have to be transmitted to the local clients. In addition to the objects

to be clustered by a client, we send some filter merge points to this client.

These filter merge points are also determined based on approximated distance

functions (cf. Figure 6.1(a)).

Second, each client carries out the clustering independently of all the

other clients. No further communication is necessary throughout this second

step. The presented local clustering approach also takes advantage of the

approximating lower-bounding distance functions. The detected clusters and

the detected exact merge point sets are then transmitted to the server (cf.

Figure 6.1(b)).

Finally, the server determines the correct clustering result by merging

the locally detected clusters. This final merging step is based on the exact

merge points detected by the clients. Based on these merge points, cluster

connectivity graphs are created. In these graphs, the nodes represent the

6.1 Related Work 103

locally detected clusters. Two local clusters are connected by an edge if a

merge point of one cluster is a core object in the other cluster (cf. Figure

6.1(c)).

The remainder of this chapter is organized as follows. In Section 6.1,

we shortly sketch the work from the literature related to our approach. In

Sections 6.2, 6.3 and 6.4, we explain the server-side partitioning algorithm,

the client-side clustering algorithm, and the server-side merging of the results

from the clients, respectively. In Section 6.5, we present a detailed experi-

mental evaluation based on real world test data sets. We close the chapter

in Section 6.6 with a short summary.

6.1 Related Work

Complex Object Representations. High-dimensional feature vectors

[KKM+03], vector sets [KBK+03], trees and graphs [KS03] are helpful com-

plex object representations, which model real world objects accurately. The

similarity between these complex object representations is often measured

by means of expensive distance function, e.g. the edit distance. For a more

detailed survey on this topic, we refer the interested reader to [Kai04].

Clustering. Given a set of objects with a distance function on them, an

interesting data mining question is, whether these objects naturally form

groups (called clusters) and what these groups look like. Data mining algo-

rithms that try to answer this question are called clustering algorithms. For

a detailed overview on clustering, we refer the interested reader to [JMF99].

Density-Based Clustering. Density based clustering algorithms apply a

local cluster criterion to detect clusters. Clusters are regarded as regions in

the data space in which the objects are dense, and which are separated by

regions of low object density (noise). One of the most prominent represen-

tatives of this clustering paradigm is DBSCAN [EKSX96].

104 6 Parallel Density-Based Clustering of Complex Objects

Parallel Density-Based Clustering. In [XJK99] a parallel version of

DBSCAN has been introduced. The algorithm starts with the complete data

set residing on one central sever and then distributes the data among the

different clients. The underlying data structure is the dR∗-tree, a modifi-

cation of the R∗-tree [BKSS90]. The directory of the R∗-tree is replicated

on all available computers to enable efficient access to the distributed data.

This distributed R∗-tree is called the dR∗-tree, which has the following struc-

tural differences from a traditional centralized R∗-tree: the data pages are

distributed on different computers, the indices are replicated on all comput-

ers, and the pointer to a data page consists of a computer identifier and a

page ID. In order to distribute the different data pages onto the different

slaves, the centers of the leaf pages are ordered by their Hilbert values. Then

each client receives an equal number of data pages having adjacent Hilbert

values. The different slaves communicate via message-passing and cluster

their data separately. Finally, the server has to merge the different cluster-

ing results. This approach suffers from several drawbacks. First, the clients

have to communicate to each other after the partitioning of the data took

place. Second, the approach is only applicable to feature vector represented

objects but not generally to metric objects. Third, the existence of an in-

dex structure is presumed. In the remainder of this chapter, we will present

a more general approach for parallelizing DBSCAN which overcomes all of

these shortcomings.

6.2 Server-Side Data Partitioning

The key idea of density-based clustering is that for each object of a cluster

the neighborhood of a given radius ε has to contain at least a minimum

number of MinPts objects, i.e. the cardinality of the neighborhood has to

exceed a given threshold. A flat density-based cluster is defined as a set of

density-connected objects which is maximal w.r.t. density-reachability. Thus

a cluster contains not only core objects but also border objects that do not

satisfy the core object condition. The noise is the set of objects not contained

in any cluster. While the partitioning density-based clustering algorithm

6.2 Server-Side Data Partitioning 105

DBSCAN can only identify a flat clustering, the newer algorithm OPTICS

computes an ordering of the points augmented by the reachability-distance

introduced in Definition 9. The reachability-distance basically denotes the

smallest distance of the current object q to any core object which belongs

to the current cluster and which has already been processed. The clusters

detected by DBSCAN can also be found in the OPTICS ordering when using

the same parametrization, i.e. the same ε and MinPts values. For an initial

clustering with OPTICS based on the lower-bounding filter distances the

following two lemmas hold.

Lemma 8. Let Cexact
1 , . . . , Cexact

n be the clusters detected by OPTICS based

on the exact distances, and let Cfilter
1 , . . . , Cfilter

m be the clusters detected by

OPTICS based on the lower-bounding filter distances. Then the following

statement holds:

∀i ∈ {1, . . . , n}∃j ∈ {1, . . . ,m} : Cexact
i ⊆ Cfilter

j .

Proof. Let Nfilter
ε (o) denote the ε-neighborhood of o according to the filter

distances, and let N exact
ε (o) denote the ε-neighborhood according to the ex-

act distances. Due to the lower-bounding filter property N exact
ε (o) ⊆ Nfilter

ε (o)

holds. Therefore, each object o which is a core object based on the exact

distances is also a core object based on the lower-bounding filter distances.

Furthermore, each object p which is directly density-reachable from o ac-

cording to the exact distances is also directly density-reachable according to

the filter functions. Induction on this property shows that if p is density-

reachable from o based on the exact distances, it also holds for the filter

distances. Therefore, all objects which are in one cluster according to the

exact distances are also in one cluster according to the approximated dis-

tances. �

Lemma 9. Let noiseexact denote the noise objects detected by OPTICS based

on the exact distances and let noisefilter denote the noise objects detected by

OPTICS based on the lower-bounding filter distances. Then the following

statement holds:

noisefilter ⊆ noiseexact.

106 6 Parallel Density-Based Clustering of Complex Objects

Proof. An object p is a noise object if it is not included in the ε-neighbor-

hood of any core object. Again, let Nfilter
ε (o) and N exact

ε (o) denote the ε-

neighborhood of o according to the filter distances and the exact distances,

respectively. Due to the lower-bounding filter property N exact
ε (o) ⊆ Nfilter

ε (o)

holds. Therefore, if p /∈ Nfilter
ε (o), it cannot be included in N exact

ε (o), proving

the lemma. �

Lemmas 8 and 9 are both helpful to partition the data onto the differ-

ent slaves. Lemma 8 shows that exact clusters are conservatively approx-

imated by the clusters resulting from a clustering on the lower-bounding

distance functions. On the other hand, Lemma 9 shows that exact noise

is progressively approximated by the set of noise objects resulting from an

approximated clustering. For this reason, noise objects according to the fil-

ter distances do not have to be transmitted to the slaves, as we already

know that they are also noise objects according to the exact distances. All

other N objects have to be refined by the P available slave processors. Let

Cfilter
1 , . . . , Cfilter

m be the approximated clusters resulting from an initial clus-

tering with OPTICS. In this approach, we assign Pslave =
∑m

i=1 |Cfilter
i |/P

objects to each of the P slaves. We do this partitioning online while carrying

out the OPTICS algorithm. At each time during the clustering algorithm,

OPTICS knows the slave j having received the smallest number Lj of objects

up to now, i.e. the client j has the highest free capacity Cj = Pslave − Lj.

OPTICS stops the current clustering at two different event points: In the

first case, a cluster Cfilter
i of cardinality |Cfilter

i | ≤ Cj was completely deter-

mined. This cluster is sent to the slave j. In the second case, OPTICS

determined Cj more points belonging to the current cluster Cfilter
i . These

points are grouped together to a filter cluster Cfilter
i,j . Then, we transmit the

cluster Cfilter
i,j along with the filter merge points Mfilter

i,j to the slave j. The set

Mfilter
i,j can be determined throughout the clustering of the set Cfilter

i,j and can

be defined as follows.

Definition 27 (filter merge points). Let Cfilter
i be a cluster which is split

during an OPTICS run into n clusters Cfilter
i,1 , . . . , Cfilter

i,n . Then, the filter merge

points Mfilter
i,j for a partial filter cluster Cfilter

i,j are defined as follows: Mfilter
i,j =

{q ∈ Cfilter
i − Cfilter

i,j | ∃p ∈ Cfilter
i,j : q is directly density-reachable from p}.

6.3 Client-Side Clustering 107

The filter merge points Mfilter
i,j are necessary in order to decide whether

objects o ∈ Cfilter
i,j are core objects. Furthermore, a subset M exact

i,j ⊆ Mfilter
i,j is

used to merge exact clusters in the final merge step (cf. Section 6.4).

6.3 Client-Side Clustering

Each of the filter clusters Cfilter
i,j is clustered independently on the exact dis-

tances by the assigned slave j. For clustering these filter clusters, we adapt

the approach presented in Chapter 5, so that it can also handle the additional

merge points Mfilter
i,j . The main idea of the client-side clustering approach is

to carry out the range queries based on the lower-bounding filter distances

instead of using the expensive exact distances. Thereto, we do not use the

simple seedlist of the original DBSCAN algorithm, but we use the extended

data structure Xseedlist introduced in Chapter 5. The Xseedlist consists of

an ordered object list OL. Each entry (o, T,PL) ∈ OL contains a flag T

indicating whether o ∈ Cfilter
i,j (T = C) or o ∈ Mfilter

i,j (T = M). Each entry of

the predecessor list PL consists of the following information: a predecessor

op of o, which is a core object already added to the current cluster, and the

predecessor distance, which is equal to the filter distance df (o, op) between

the two objects.

The result of the extended DBSCAN algorithm is a set of exact clusters

Cexact
i,j,l ⊆ Cfilter

i,j along with their additional exact merge points M exact
i,j,l ⊆

Mfilter
i,j . To expand a cluster Cexact

i,j,l we take the first element (o, T,PL) from

OL and set op to the nearest predecessor object in PL.

Let us first assume that T = C holds. If PL = NIL holds, we add o to

Cexact
i,j,l , delete o from OL, carry out a range query around o, and try to expand

the cluster Cexact
i,j,l . If PL 6= NIL holds, we compute do(o, op). If do(o, op) ≤ ε,

we proceed as in the case where PL = NIL holds. If do(o, op) > ε and length

of PL > 1 hold, we delete the first entry from PL. If do(o, op) > ε and length

of PL = 1 hold, we delete o from OL. Iteratively, we try to expand the

current cluster Cexact
i,j,l by examining the first entry of OL until OL is empty.

Let us now assume that T = M holds. If PL = NIL holds, we add o

108 6 Parallel Density-Based Clustering of Complex Objects

Definition 4 (exact merge points) Let be a cluster to be refined on the slave with the cor-
responding merge point set . Let be n exact clusters determined throughout
the client-side refinement clustering. Then, we determine the set where

={q| q ∈ p ∈ : q is directly density-reachable from p}.

Based on these exact merge point sets and the exact clusters, we can define a “cluster connec-
tivity graph”.

Definition 5 (connectivity graph Gi for a cluster) Let be a cluster which was refined
on one of the s different slaves. Let be an exact cluster determined by
slave j along with the corresponding merge point sets .Then a graph Gi = (Vi, Ei)
is called a connectivity graph for iff the following statements hold:
 • Vi =
 • Ei = {

((p is a core-point))}

Note that we could leave out the additional condition which demands that we only con-
nect exact clusters by an edge if they are from different slaves. Anyway, also without this addi-
tional condition , two clusters and from the same slave j are never connected
by an edge. Such a connection of the two clusters would already have taken place throughout the
refinement clustering on the slave j. Based on the connectivity graphs Gi for the approximated
clusterings , we can determine the database connectivity graph.

Definition 6 (database connectivity graph G) Let be one of the approximated
clusters along with the corresponding connectivity graph Gi = (Vi, Ei). Then we call
G = (,) the database connectivity graph.

The database connectivity graph is nothing else but the union of the connectivity graphs of the
approximated clusters. Based on the above definition, we state the central lemma of this paper.

Lemma 4. Let G be the database connectivity graph. Then the determination of all maximal
connected subgraphs of G is equivalent to a DBSCAN clustering carried out on the exact
distances.

Proof. According to Lemma 3, the “status“ of each object o is determined correctly. Note, that we
assign a border object which is directly density-reachable from core objects of different clusters

Mi 1 1, ,
exact

Fig. 4. Server-side partitioning step (a) and merge step (b).

Ci 1,
f il ter

Mi 2,
f il ter

Ci 2,
f il ter

Mi 1,
f i lter

During the server-side partitioning step, the
cluster is split into two clusters
and with their corresponding merge
point sets.

Ci
filter Ci 1,

f il ter

Ci 2,
f il ter

Ci 1 1, ,
exact

Ci 2 2, ,
exact

Ci 2 1, ,
exact

During the server-side merge step, the cluster
, , and are merged based on

their exact merge point sets to a cluster
. Furthermore, there exists a clus-

ter .

Ci 1 1, ,
exact Ci 1 2, ,

exact Ci 2 1, ,
exact

Ci 1,
exact

Ci
fil ter⊆

Ci 2,
exact Ci 2 2, ,

exact= ⊆ Ci
filter

Ci 1 2, ,
exact

Mi 2 1, ,
exact

Mi 1 2, ,
exact

(b)(a)

Ci j,
f il ter

Mi j,
f il ter Ci j l, ,

exact Ci j,
fi l ter⊆

Mi j l, ,
exact

Mi j,
fi l ter⊆

Mi j l, ,
exact Mi j,

f il ter ∧ ∃ Ci j l, ,
exact

Ci
fil ter

Ci
fil ter

Ci j l, ,
exact Ci j,

fi l ter Ci
fil ter⊆ ⊆

Mi j l, ,
exact Mi j,

fi l ter⊆
Ci

filter

Ci 1 1, ,
exact … Ci 1 n1, ,

exact … Ci s 1, ,
exact … Ci s ns, ,

exact, , , , , ,{ }
Ci j l, ,

exact Ci j' l', ,
exact,() j∃ j' l l ', , : j j'≠() ∧,

p Mi j l, ,
exact:∈∃ p Ci j' l ', ,

exact∈ ∧

j j'≠

j j'≠ Ci j l, ,
exact Ci j' l ', ,

exact

Ci
fil ter

Ci
fil ter Ncluster

fil ter

Vi
i 1…Ncluster

f il ter
=

∪ Ei
i 1…Ncluster

f il ter
=

∪

Figure 6.2: Server-side partitioning step (a) and merge step (b).

to M exact
i,j,l , delete o from OL, and try to expand the exact merge point set

M exact
i,j,l . If PL 6= NIL holds, we compute do(o, op). If do(o, op) ≤ ε, we proceed

as in the case where PL = NIL holds. If do(o, op) > ε and length of PL > 1

hold, we delete the first entry from PL. If do(o, op) > ε and length of PL = 1

hold, we delete o from OL. Iteratively, we try to expand the current exact

merge point set M exact
i,j,l by examining the first entry of OL until OL is empty.

6.4 Server-Side Merging

Obviously, we only have to carry out the merge process for those clusters

Cfilter
i which were split in several clusters Cfilter

i,j . The client detects that each

of these clusters Cfilter
i,j contains t clusters Cexact

i,j,1 , . . . , Cexact
i,j,t . Note that t can

also be equal to 0, i.e. no exact cluster is contained in the cluster Cfilter
i,j . For

each of the t exact clusters Cexact
i,j,l there also exists a corresponding set of

exact merge points M exact
i,j,l ⊆ Mfilter

i,j (cf. Figure 6.2) defined as follows.

Definition 28 (exact merge points). Let Cfilter
i,j be a cluster to be refined

on the slave with the corresponding merge point set Mfilter
i,j . Let Cexact

i,j,l ⊆
Cfilter

i,j be an exact cluster determined during the client-side refinement cluster-

ing. Then, we determine the set M exact
i,j,l ⊆ Mfilter

i,j of exact merge points where

6.4 Server-Side Merging 109

M exact
i,j,l = {q ∈ Mfilter

i,j | ∃p ∈ Cexact
i,j,l : q is directly density-reachable from p}.

Based on these exact merge point sets and the exact clusters, we can

define a “cluster connectivity graph”.

Definition 29 (cluster connectivity graph). Let Cfilter
i be a cluster which

was refined on one of the s different slaves. Let Cexact
i,j,l ⊆ Cfilter

i,j ⊆ Cfilter
i be

an exact cluster determined by slave j along with the corresponding merge

point sets M exact
i,j,l ⊆ Mfilter

i,j . Then a graph Gi = (Vi, Ei) is called a cluster

connectivity graph for Cfilter
i iff the following statements hold:

• Vi = {Cexact
i,1,1 , . . . , Cexact

i,1,n1
, . . . , Cexact

i,s,1 , . . . , Cexact
i,s,ns

}.

• Ei = {(Cexact
i,j,l , Cexact

i,j′,l′) | ∃p ∈ M exact
i,j,l : p ∈ Cexact

i,j′,l′ ∧ p is a core point}.

Note that two clusters Cexact
i,j,l and Cexact

i,j′,l′ from the same slave j = j′ are

never connected by an edge. Such a connection of the two clusters would

already have taken place throughout the refinement clustering on the slave

j. Based on the connectivity graphs Gi for the approximated clusterings

Cfilter
i , we can determine the database connectivity graph.

Definition 30 (database connectivity graph). Let Cfilter
i be one of n ap-

proximated clusters along with the corresponding cluster connectivity graph

Gi = (Vi, Ei). Then we call G = (
⋃n

i=1 Vi,
⋃n

i=1 Ei) the database connectivity

graph.

The database connectivity graph is nothing else but the union of the con-

nectivity graphs of the approximated clusters. Based on the above definition,

we state the central lemma of this chapter.

Lemma 10. Let G be the database connectivity graph. Then the determi-

nation of all maximal connected subgraphs of G is equivalent to a DBSCAN

clustering carried out on the exact distances.

Proof. For each object the client-side clustering determines correctly, whether

it is a core object, a border object, or a noise object. Note, that we assign a

border object which is directly density-reachable from core objects of different

110 6 Parallel Density-Based Clustering of Complex Objects

redundantly to all of these clusters. Therefore, the only remaining issue is to show that two
core-objects which are directly density-reachable to each other are in the same maximal connected
subgraph. By induction, according to Definition 2, two clusters then contain the same core objects.
Obviously, two core objects o1 and o2 are directly density-reachable if they are either in the same
exact cluster or if and resulting in an edge of the database connec-
tivity graph. Therefore, depth-first traversals through all of the connectivity graphs Gi correspond-
ing to a filter cluster create the correct clustering result where each subgraph corresponds to
one cluster.

7 Experimental Evaluation

In this section, we present a detailed experimental evaluation based on real-world test data
sets. As test data, we used real-world CAD data represented by 81-dimensional feature vectors
[7] and vector sets where each element consists of 7 6D vectors [6]. Furthermore, we used graphs
[8] to represent real-world image data. The used distance functions can be characterized as fol-
lows: (i) The exact distance computations on the graphs are very expensive. On the other hand,
the used filter is rather selective and can efficiently be computed [8]. (ii) The exact distance com-
putations on the feature vectors and vector sets are also very expensive as normalization aspects
for the CAD objects are taken into account. We compute 48 times the distance between two 81-di-
mensional feature vectors, and between two vector sets, in order to determine a normalized dis-
tance between two CAD objects [6, 7]. As a filter for the feature vectors we use their Euclidean
norms [4] which is not very selective, but can be computed very efficiently. The filter used for
the vector sets is more selective than the filter for the feature vectors, but also computationally
more expensive [7]. If not otherwise stated, we used 3,000 complex objects from each data set,
and we employed the filter and exact object distance functions proposed in [6, 7, 8].

The original OPTICS and DBSCAN algorithms, along with their extensions introduced in this
paper and the used filter and exact object distances were implemented in Java 1.4. The experi-
ments were run on a workstation with a Xeon 2.4 GHz processor and 2 GB main memory under
Linux. All experiments were run sequentially on one computer. Thereby, the overall time for the
client-side clustering is determined by the slowest slave. If not otherwise stated, we chose an ε-pa-
rameter yielding as many flat clusters as possible, and the MinPts-parameter was set to 5.

Comparison of the Partitioning Strategies. In a first experiment, we found that for high ε-val-
ues PartOPTICS clearly outperforms PartDBSCAN, as PartDBSCAN does not split large clusters but
assigns them to a single slave, while other slaves may be left idle. In contrast, PartOPTICS is able
to exploit the full computational power of all slaves independent of the chosen ε-parameter. Thus,
in all following experiments, PartOPTICS is used for the server-side partitioning.

0

20
40

60
80

100

1 2 4 8 16 32 64

OPTICS filter merge points
OPTICS exact merge points
arbitrary filter merge points
arbitrary exact merge points

Fig. 5. Number of merge points w.r.t. a varying number of slaves for the graph dataset.

nu
m

be
r

of
 p

oi
nt

s

no. of slaves

[x
10

00
]

Ci j l, ,
exact

o1 Ci j l, ,
exact∈ o2 Mi j l, ,

exact∈

Ci
filter

Figure 6.3: Number of merge points w.r.t. a varying number of slaves for

the graph dataset.

clusters redundantly to all of these clusters. Therefore, the only remaining

issue is to show that two core objects which are directly density-reachable

to each other are in the same maximal connected subgraph. By induction,

according to the definition of density-reachability, two clusters then contain

the same core objects. Obviously, two core objects o1 and o2 are directly

density-reachable if they are either in the same exact cluster Cexact
i,j,l or if

o1 ∈ Cexact
i,j,l and o2 ∈ Mi,j,lexact resulting in an edge of the database connec-

tivity graph. Therefore, depth-first traversals through all of the connectivity

graphs Gi corresponding to a filter cluster Cfilter
i create the correct clustering

result where each subgraph corresponds to one cluster. �

6.5 Experimental Evaluation

In this section, we present a detailed experimental evaluation based on real-

world data sets. We used CAD data represented by 81-dimensional feature

vectors [KKM+03] and vector sets where each element consists of 7 6D vec-

tors [KBK+03]. Furthermore, we used graphs [KS03] to represent image

data. The used distance functions can be characterized as follows: (i) The

exact distance computations on the graphs are very expensive. On the other

hand, the filter is rather selective and can efficiently be computed. (ii) The

exact distance computations on the feature vectors and vector sets are also

very expensive as normalization aspects for the CAD objects are taken into

6.5 Experimental Evaluation 111

Characteristics of the PartOPTICS Approach. Fig. 5 compares the number of merge points for
different split techniques applied to filter clusters. As explained in Section 4.2, we split a filter
cluster during the partitioning step along the ordering produced by OPTICS. Note that OPTICS
always walks through a cluster by visiting the densest areas first. Fig. 5 shows that this kind of
split strategy yields considerably less merge points than a split strategy which arbitrarily groups
objects from a filter cluster together. Thus, Fig. 5 proves the good clustering properties of our
metric space filling curve “OPTICS”.

Dependency on the Number of Slaves. Fig. 6 shows the absolute runtimes of our parallel DB-
SCAN approach dependent on the number of available slaves for the vector sets and for the graph
dataset. The figure shows the accumulated times after the partitioning, client-side clustering, and
the merge step. The partitioning times also include simulated communication times for the trans-
fer of the objects to the slaves in a 100 Mbit LAN. No communication costs arise from the cli-
ent-side clustering step, as each client already received all needed fiter merge points. A growing
number of slaves leads to a significant speedup of the client-side clustering. A lower bound of the
achievable total runtime is given by the time needed for the initial partitioning step. It is worth to
note the time needed for the final merging step is negligible even for a high number of slaves.
Although the number of exact merge points grows with an increasing number of slaves (cf. Fig.
5), the merge step remains cheap.

Speed-Ups. Finally, Fig. 7 depicts the speedup achieved by our new parallel DBSCAN ap-
proach based on a server-side partitioning with OPTICS. We compared this approach to a DB-
SCAN approach based on a full table scan and compared to a DBSCAN approach based on the

0

500

1000

1500

2000

1 2 4 8 16 32 64

merge
clustering
partitioning

no. of slaves

Fig. 6. Absolute runtimes w.r.t. a varying number of slaves.

ru
nt

im
e

[s
ec

.]

0

50

100

150

200

1 2 4 8 16 32 64
no. of slaves

ru
nt

im
e

[s
ec

.]

a) vector sets b) graphs

Fig. 7. Overall speedup w.r.t. a varying number of slaves.

0

100

200

300

400

1 2 4 8 16 32 64

feature vectors
vector sets
graphs

no. of slaves

sp
ee

du
p

0
10
20
30
40
50
60
70

1 2 4 8 16 32 64

feature vectors
vector sets
graphs

sp
ee

du
p

a) speedup w.r.t. DBSCAN based on a

no. of slaves

full table scan
b) speedup w.r.t. DBSCAN based on the

traditional multi-step query processing
paradigm.

(a) Vector sets.

Characteristics of the PartOPTICS Approach. Fig. 5 compares the number of merge points for
different split techniques applied to filter clusters. As explained in Section 4.2, we split a filter
cluster during the partitioning step along the ordering produced by OPTICS. Note that OPTICS
always walks through a cluster by visiting the densest areas first. Fig. 5 shows that this kind of
split strategy yields considerably less merge points than a split strategy which arbitrarily groups
objects from a filter cluster together. Thus, Fig. 5 proves the good clustering properties of our
metric space filling curve “OPTICS”.

Dependency on the Number of Slaves. Fig. 6 shows the absolute runtimes of our parallel DB-
SCAN approach dependent on the number of available slaves for the vector sets and for the graph
dataset. The figure shows the accumulated times after the partitioning, client-side clustering, and
the merge step. The partitioning times also include simulated communication times for the trans-
fer of the objects to the slaves in a 100 Mbit LAN. No communication costs arise from the cli-
ent-side clustering step, as each client already received all needed fiter merge points. A growing
number of slaves leads to a significant speedup of the client-side clustering. A lower bound of the
achievable total runtime is given by the time needed for the initial partitioning step. It is worth to
note the time needed for the final merging step is negligible even for a high number of slaves.
Although the number of exact merge points grows with an increasing number of slaves (cf. Fig.
5), the merge step remains cheap.

Speed-Ups. Finally, Fig. 7 depicts the speedup achieved by our new parallel DBSCAN ap-
proach based on a server-side partitioning with OPTICS. We compared this approach to a DB-
SCAN approach based on a full table scan and compared to a DBSCAN approach based on the

0

500

1000

1500

2000

1 2 4 8 16 32 64

merge
clustering
partitioning

no. of slaves

Fig. 6. Absolute runtimes w.r.t. a varying number of slaves.

ru
nt

im
e

[s
ec

.]

0

50

100

150

200

1 2 4 8 16 32 64
no. of slaves

ru
nt

im
e

[s
ec

.]

a) vector sets b) graphs

Fig. 7. Overall speedup w.r.t. a varying number of slaves.

0

100

200

300

400

1 2 4 8 16 32 64

feature vectors
vector sets
graphs

no. of slaves

sp
ee

du
p

0
10
20
30
40
50
60
70

1 2 4 8 16 32 64

feature vectors
vector sets
graphs

sp
ee

du
p

a) speedup w.r.t. DBSCAN based on a

no. of slaves

full table scan
b) speedup w.r.t. DBSCAN based on the

traditional multi-step query processing
paradigm.

(b) Graphs.

Figure 6.4: Absolute runtimes w.r.t. a varying number of slaves.

account [KBK+03, KKM+03]. As a filter for the feature vectors we use their

Euclidean norms [FJ03] which is not very selective, but can be computed

very efficiently. The filter used for the vector sets is more selective than the

filter for the feature vectors, but also computationally more expensive. If not

otherwise stated, we used 3,000 complex objects from each data set.

The original OPTICS and DBSCAN algorithms, their extensions intro-

duced in this chapter, and the used filter and exact distances functions were

implemented in Java 1.4. The experiments were run on a workstation with

a Xeon 2.4 GHz processor and 2 GB main memory. All experiments were

run sequentially on one computer. Thereby, the overall time for the client-

side clustering is determined by the slowest slave. If not otherwise stated,

we chose an ε-parameter yielding as many flat clusters as possible, and the

MinPts-parameter was set to 5.

Characteristics of the partitioning step. Figure 6.3 compares the num-

ber of merge points for different split techniques applied to filter clusters. As

explained in Section 6.2, we split a filter cluster during the partitioning step

112 6 Parallel Density-Based Clustering of Complex Objects

Characteristics of the PartOPTICS Approach. Fig. 5 compares the number of merge points for dif-
ferent split techniques applied to filter clusters. As explained in Section 4.2, we split a filter cluster
during the partitioning step along the ordering produced by OPTICS. Note that OPTICS always walks
through a cluster by visiting the densest areas first. Fig. 5 shows that this kind of split strategy yields
considerably less merge points than a split strategy which arbitrarily groups objects from a filter clus-
ter together. Thus, Fig. 5 proves the good clustering properties of our metric space filling curve “OP-
TICS”.

Dependency on the Number of Slaves. Fig. 6 shows the absolute runtimes of our parallel DBSCAN
approach dependent on the number of available slaves for the vector sets and for the graph dataset.
The figure shows the accumulated times after the partitioning, client-side clustering, and the merge
step. The partitioning times also include simulated communication times for the transfer of the objects
to the slaves in a 100 Mbit LAN. No communication costs arise from the client-side clustering step,
as each client already received all needed fiter merge points. A growing number of slaves leads to a
significant speedup of the client-side clustering. A lower bound of the achievable total runtime is giv-
en by the time needed for the initial partitioning step. It is worth to note the time needed for the final
merging step is negligible even for a high number of slaves. Although the number of exact merge
points grows with an increasing number of slaves (cf. Fig. 5), the merge step remains cheap.

Speed-Ups. Finally, Fig. 7 depicts the speedup achieved by our new parallel DBSCAN approach
based on a server-side partitioning with OPTICS. We compared this approach to a DBSCAN ap-
proach based on a full table scan and compared to a DBSCAN approach based on the traditional mul-
ti-step query processing paradigm. The figure shows that for the feature vectors we achieve a speedup

0

500

1000

1500

2000

1 2 4 8 16 32 64

merge
clustering
partitioning

no. of slaves

Fig. 6. Absolute runtimes w.r.t. a varying number of slaves.

ru
nt

im
e

[s
ec

.]

0

50

100

150

200

1 2 4 8 16 32 64
no. of slaves

ru
nt

im
e

[s
ec

.]

a) vector sets b) graphs

Fig. 7. Overall speedup w.r.t. a varying number of slaves.

0

100

200

300

400

1 2 4 8 16 32 64

feature vectors
vector sets
graphs

no. of slaves

sp
ee

du
p

0
10
20
30
40
50
60
70

1 2 4 8 16 32 64

feature vectors
vector sets
graphs

sp
ee

du
p

a) speedup w.r.t. DBSCAN based on a

no. of slaves

full table scan
b) speedup w.r.t. DBSCAN based on the

traditional multi-step query processing
paradigm.

(a) Speedup w.r.t. DBSCAN based on a full table scan.

Characteristics of the PartOPTICS Approach. Fig. 5 compares the number of merge points for dif-
ferent split techniques applied to filter clusters. As explained in Section 4.2, we split a filter cluster
during the partitioning step along the ordering produced by OPTICS. Note that OPTICS always walks
through a cluster by visiting the densest areas first. Fig. 5 shows that this kind of split strategy yields
considerably less merge points than a split strategy which arbitrarily groups objects from a filter clus-
ter together. Thus, Fig. 5 proves the good clustering properties of our metric space filling curve “OP-
TICS”.

Dependency on the Number of Slaves. Fig. 6 shows the absolute runtimes of our parallel DBSCAN
approach dependent on the number of available slaves for the vector sets and for the graph dataset.
The figure shows the accumulated times after the partitioning, client-side clustering, and the merge
step. The partitioning times also include simulated communication times for the transfer of the objects
to the slaves in a 100 Mbit LAN. No communication costs arise from the client-side clustering step,
as each client already received all needed fiter merge points. A growing number of slaves leads to a
significant speedup of the client-side clustering. A lower bound of the achievable total runtime is giv-
en by the time needed for the initial partitioning step. It is worth to note the time needed for the final
merging step is negligible even for a high number of slaves. Although the number of exact merge
points grows with an increasing number of slaves (cf. Fig. 5), the merge step remains cheap.

Speed-Ups. Finally, Fig. 7 depicts the speedup achieved by our new parallel DBSCAN approach
based on a server-side partitioning with OPTICS. We compared this approach to a DBSCAN ap-
proach based on a full table scan and compared to a DBSCAN approach based on the traditional mul-
ti-step query processing paradigm. The figure shows that for the feature vectors we achieve a speedup

0

500

1000

1500

2000

1 2 4 8 16 32 64

merge
clustering
partitioning

no. of slaves

Fig. 6. Absolute runtimes w.r.t. a varying number of slaves.

ru
nt

im
e

[s
ec

.]

0

50

100

150

200

1 2 4 8 16 32 64
no. of slaves

ru
nt

im
e

[s
ec

.]

a) vector sets b) graphs

Fig. 7. Overall speedup w.r.t. a varying number of slaves.

0

100

200

300

400

1 2 4 8 16 32 64

feature vectors
vector sets
graphs

no. of slaves

sp
ee

du
p

0
10
20
30
40
50
60
70

1 2 4 8 16 32 64

feature vectors
vector sets
graphs

sp
ee

du
p

a) speedup w.r.t. DBSCAN based on a

no. of slaves

full table scan
b) speedup w.r.t. DBSCAN based on the

traditional multi-step query processing
paradigm.

(b) Speedup w.r.t. DBSCAN based on the traditional multi-step query processing
paradigm.

Figure 6.5: Overall speedup w.r.t. a varying number of slaves.

along the ordering produced by OPTICS. Note that OPTICS always walks

through a cluster by visiting the densest areas first. Figure 6.3 shows that this

kind of split strategy yields considerably less merge points than a split strat-

egy which arbitrarily groups objects from a filter cluster together. Thus, the

figure proves the good clustering properties of our metric space filling curve

OPTICS.

Dependency on the Number of Slaves. Figure 6.4 shows the absolute

runtimes of our parallel DBSCAN approach dependent on the number of

available slaves for the vector sets and for the graph dataset. The figure shows

the accumulated times after the partitioning, client-side clustering, and the

merge step. The partitioning times also include simulated communication

6.6 Summary 113

times for the transfer of the objects to the slaves in a 100 Mbit LAN. No

communication costs arise from the client-side clustering step, as each client

already received all needed filter merge points. A growing number of slaves

leads to a significant speedup of the client-side clustering. A lower bound

of the achievable total runtime is given by the time needed for the initial

partitioning step. It is worth to note the time needed for the final merging

step is negligible even for a high number of slaves. Although the number

of exact merge points grows with an increasing number of slaves (cf. Figure

6.3), the merge step remains cheap.

Speedup. Finally, Figure 6.5 depicts the speedup achieved by our new

parallel DBSCAN approach based on a server-side partitioning with OP-

TICS. We compared this approach to a DBSCAN approach based on a full

table scan and compared to a DBSCAN approach based on the traditional

multi-step query processing paradigm. The figure shows that for the feature

vectors we achieve a speedup of one order of magnitude already when only

one slave is available. In the case of the graph dataset we have a speedup of

67 compared to DBSCAN based on a full table scan. These results demon-

strate the suitability of the client-side clustering approach. For the vector

sets the benefits of using several slaves can clearly be seen. For instance, our

approach achieves a speedup of 4 for one slave and a speedup of 20 for eight

slaves compared to DBSCAN based on traditional multi-step range queries.

6.6 Summary

In this chapter, we applied the novel concept of using efficiently computable

lower-bounding distance functions for the parallelization of data mining algo-

rithms to the density-based clustering algorithm DBSCAN. For partitioning

the data, we used the hierarchical clustering algorithm OPTICS as a kind of

space filling curve for general metric objects, which provides the foundation

for a fair and suitable partitioning strategy. We showed how the local clients

can carry out their clustering efficiently by integrating the multi-step query

processing paradigm directly into the clustering algorithm. Based on the con-

114 6 Parallel Density-Based Clustering of Complex Objects

cept of merge points, we constructed a global cluster connectivity graph from

which the final clustering result can easily be derived. In the experimental

evaluation, we demonstrated that our new approach is able to efficiently clus-

ter metric objects. We showed that if several slaves are available, the benefits

achieved by the full computational power of the slaves easily outweigh the

additional costs of partitioning and merging by the master.

Part III

Advanced Similarity Search

Applications

Chapter 7

Visual Density-Based Data

Analysis

Hierarchical clustering was shown to be effective for evaluating similarity

models [KKM+03, KBK+03]. Especially, the reachability plot generated by

OPTICS is suitable for assessing the quality of a similarity model. Further-

more, visually analyzing cluster hierarchies helps the user, e.g. an engineer,

to find and group similar objects. Solid cluster extraction and meaning-

ful cluster representatives form the foundation for providing the user with

significant and quick information.

In this chapter, we introduce algorithms for automatically detecting hi-

erarchical clusters along with their corresponding representatives. In order

to evaluate our ideas, we developed a prototype called BOSS (Browsing

OPTICS Plots for S imilarity Search). BOSS is based on techniques related

to visual data mining. It helps to visually analyze cluster hierarchies by

providing meaningful cluster representatives. Furthermore, we developed a

second prototype called VICO (Visualizing Connected Object Orderings).

It allows the user to interactively compare different views on the same set of

data objects. The idea of VICO is to compare the position of data objects or

even complete clusters in a set of data spaces by highlighting them in various

OPTICS plots.

The remainder of the chapter is organized as follows. In Section 7.1 we

118 7 Visual Density-Based Data Analysis

present the application areas of hierachical clustering along with the corre-

sponding requirements in the industrial and in the scientific community which

motivated the development of BOSS. In Sections 7.2 and 7.3, we introduce

suitable algorithms for cluster recognition and cluster representatives, respec-

tively. The prototype application BOSS for browsing cluster hierarchies is

described in Section 7.4. VICO, the protorype for comparing data spaces, is

presented in Section 7.5. In Section 7.6 we evaluate our new cluster recog-

nition and representation algorithms. The chapter concludes in Section 7.7

with a short summary.

7.1 Application Ranges

In this section, we outline the application ranges which led to the develop-

ment of our interactive browsing tool, called BOSS. In order to understand

the connection between BOSS and the application requirements we first point

out the major concepts of the hierarchical clustering algorithm OPTICS and

its output, the so-called reachability plots, which served as a starting point

for BOSS. The technical aspects related to BOSS are described later in Sec-

tion 7.6.

The key idea of density-based clustering is that for each object of a cluster

the neighborhood of a given radius ε has to contain at least a minimum

number MinPts of objects. Using the density-based hierarchical clustering

algorithm OPTICS yields several advantages due to the following reasons.

• OPTICS is – in contrast to most other algorithms – relatively insen-

sitive to its two input parameters, ε and MinPts . The authors in

[ABKS99] state that the input parameters just have to be large enough

to produce good results.

• OPTICS is a hierarchical clustering method which yields more infor-

mation about the cluster structure than a method that computes a flat

partitioning of the data (e.g. k-means [McQ67]).

• There exists a very efficient variant of the OPTICS algorithm which

7.1 Application Ranges 119

is based on a sophisticated data compression technique called “Data

Bubbles” [BKKS01], where we have to trade only very little quality of

the clustering result for a great increase in performance.

• There exists an efficient incremental version of the OPTICS algorithm

[KKG03].

BOSS was designed for three different purposes: visual data mining, sim-

ilarity search and evaluation of similarity models. For the first two appli-

cations, the choice of the representative objects of a cluster is the key step.

It helps the user to get a meaningful and quick overview over a large exist-

ing data set. Furthermore, BOSS helps scientists to evaluate new similarity

models.

7.1.1 Visual Data Mining

As defined in [Ank00], visual data mining is a step in the KDD process that

utilizes visualization as a communication channel between the computer and

the user to produce novel and interpretable patterns. Based on the balance

and sequence of the automatic and the interactive (visual) part of the KDD

process, three classes of visual data mining can be identified.

• Visualization of the data mining result:

An algorithm extracts patterns from the data. These patterns are

visualized to make them interpretable. Based on the visualization, the

user may want to return to the data mining algorithm and run it again

with different input parameters (cf. Figure 7.1(a)).

• Visualization of an intermediate result:

An algorithm performs an analysis of the data not producing the final

patterns but an intermediate result which can be visualized. Then

the user retrieves the interesting patterns in the visualization of the

intermediate result (cf. Figure 7.1(b)).

120 7 Visual Density-Based Data Analysis

Figure 7.1: Different approaches to visual data mining.

• Visualization of the data:

Data is visualized immediately without running a sophisticated algo-

rithm before. Patterns are obtained by the user by exploring the visu-

alized data (cf. Figure 7.1(c)).

The approach presented in this chapter belongs to the second class. A

hierarchical clustering algorithm is applied to the data, which extracts the

clustering structure as an intermediate result. There is no meaning associ-

ated with the generated clusters. However, our approach allows the user to

visually analyze the contents of the clusters. The clustering algorithm used

in the algorithmic part is independent from an application. It performs the

core part of the data mining process and its result serves as a multi-purpose

basis for further analysis directed by the user. This way the user may obtain

novel information which was not even known to exist in the data set. This

is in contrast to similarity search where the user is restricted to find similar

parts respective to a query object and a predetermined similarity measure.

7.1 Application Ranges 121

7.1.2 Similarity Search

The development, design, manufacturing and maintenance of modern engi-

neering products is a very expensive and complex task. Effective similarity

models are required for two- and three-dimensional CAD applications to cope

with rapidly growing amounts of data. Shorter product cycles and a greater

diversity of models are becoming decisive competitive factors in the automo-

bile and aircraft market. These demands can only be met if the engineers

have an overview of already existing CAD parts. It would be desirable to

have an interactive data browsing tool which depicts the reachability plot

computed by OPTICS in a user friendly way together with appropriate rep-

resentatives of the clusters. This clear illustration would support the user

in the time-consuming task to find similar parts. From the industrial user’s

point of view, this browsing tool should meet the following two requirements:

• The hierarchical clustering structure of the dataset is revealed at a

glance. The reachability plot is an intuitive visualization of the clus-

tering hierarchy which helps to assign each object to its corresponding

cluster or to noise. Furthermore, the hierarchical representation of

the clusters using the reachability plot helps the user to get a quick

overview over all clusters and their relation to each other. As each

entry in the reachabiltity plot is assigned to one object, we can easily

illustrate some representatives of the clusters belonging to the current

density threshold εcut (cf. Figure 7.2).

• The user is not only interested in the shape and the number of the clus-

ters, but also in the specific objects building up a cluster. As for large

clusters it is rather difficult to depict all objects, representatives of each

cluster should be displayed. To follow up a first idea, these representa-

tives could be simply constructed by superimposing all parts belonging

to the regarded cluster (cf. Figure 7.3). We can browse through the hi-

erarchy of the representatives in the same way as through the OPTICS

plots.

122 7 Visual Density-Based Data Analysis

Figure 7.2: Browsing reachability plots with different density thresholds.

Figure 7.3: Hierarchically ordered representatives.

7.2 Cluster Recognition 123

This way, the cost of developing and producing new parts could be re-

duced by maximizing the reuse of existing parts, because the user can browse

through the hierarchical structure of the clusters in a top-down way. Thus

the engineers get an overview of already existing parts and are able to navi-

gate their way through the diversity of existing variants of products, such as

cars.

7.1.3 Evaluation of Similarity Models

In general, similarity models can be evaluated by computing k-nearest neigh-

bour queries. As shown in [KKM+03], this evaluation approach is subjective

and error-prone because the quality measure of the similarity model depends

on the results of a few similarity queries and, therefore, on the choice of the

query objects. A model may perfectly reflect the intuitive similarity accord-

ing to the chosen query objects and would be evaluated as “good” although

it produces disastrous results for other query objects.

A better way to evaluate and compare several similarity models is to

apply a clustering algorithm. Clustering groups a set of objects into classes

where objects within one class are similar and objects of different classes are

dissimilar to each other. The result can be used to evaluate which model is

best suited for which kind of objects. It is more objective since each object

of the data set is taken into account to evaluate the data models.

7.2 Cluster Recognition

In this section, we address the first task of automatically extracting clusters

from the reachability plots. After a brief discussion of related work in that

area, we propose a new approach for hierarchical cluster recognition based

on reachability plots called Gradient Clustering.

124 7 Visual Density-Based Data Analysis

7.2.1 Related Work

To the best of our knowledge, there are only two methods for automatic

cluster extraction from hierarchical representations such as reachability plots

or dendrograms – both are also based on reachability plots. Since clusters

are represented as valleys (or dents) in the reachability plot, the task of

automatic cluster extraction is to identify significant valleys.

The first approach proposed in [ABKS99] is called ξ-Clustering and is

based on the steepness of the valleys in the reachability plot. The steepness

is defined by means of an input parameter ξ. The method suffers from the fact

that this input parameter is difficult to understand and hard to determine.

Rather small variations of the value ξ often lead to drastic changes of the

resulting clustering hierarchy. As a consequence, this method is unsuitable

for our purpose of automatic cluster extraction.

The second approach was proposed by Sander et al. [SQL+03]. The

authors describe an algorithm called Tree Clustering that automatically ex-

tracts a hierarchical clustering from a reachability plot and computes a cluster

tree. It is based on the idea that significant local maxima in the reachability

plot separate clusters. Two parameters are introduced to decide whether

a local maximum is significant: The first parameter specifies the minimum

cluster size, i.e. how many objects must be located between two significant

local maxima. The second parameter specifies the ratio between the reach-

ability of a significant local maximum m and the average reachabilities of

the regions to the left and to the right of m. The authors in [SQL+03] pro-

pose to set the minimum cluster size to 0.5% of the data set size and the

second parameter to 0.75. They empirically show, that this default setting

approximately represents the requirements of a typical user.

Although the second method is rather suitable for automatic cluster ex-

traction from reachability plots, it has one major drawback. Many real-world

data sets consist of narrowing clusters, i.e. clusters each consisting of exactly

one smaller subcluster (cf. Figure 7.4).

Since the Tree Clustering algorithm runs through a list of all local maxima

(sorted in descending order of reachability) and decides at each local maxi-

7.2 Cluster Recognition 125

Figure 7.4: Sample narrowing clusters: data space (left), reachability plot

(center), cluster hierarchy (right).

mum m, whether m is significant to split the objects to the left of m and to

the right of m into two clusters, the algorithm cannot detect such narrowing

clusters. These clusters cannot be split by a significant maximum. Figure 7.4

illustrates this fact. The narrowing cluster A consists of one cluster B which

is itself narrowing consisting of one cluster C (the clusters are indicated by

dashed lines). The Cluster Tree algorithm will only find cluster A since there

are no local maxima to split clusters B and C. The ξ-Clustering will detect

only one of the clusters A, B or C depending on the ξ parameter but also

fails to detect the cluster hierarchy.

A new cluster recognition algorithm should meet the following require-

ments:

• It should detect all kinds of subclusters, including narrowing subclus-

ters.

• It should create a clustering structure which is close to the one which

an experienced user would manually extract from a given reachability

plot.

• It should allow an easy integration into the OPTICS algorithm. We do

not want to apply an additional cluster recognition step after the OP-

TICS run is completed. In contrast, the hierarchical clustering struc-

ture should be created on the fly during the OPTICS run without

126 7 Visual Density-Based Data Analysis

causing any noteworthy additional cost.

• It should allow an easy integration into the incremental version of OP-

TICS presented in [KKG03], as most of the discussed application ranges

benefit from such a incremental version.

7.2.2 Gradient Clustering

In this section, we introduce our new Gradient Clustering algorithm which

fulfills all of the above mentioned requirements. The idea behind our new

cluster extraction algorithm is based on the concept of inflexion points. Dur-

ing the OPTICS run, we decide for each point added to the result set, i.e.

the reachability plot, whether it is an inflexion point or not. If it is an in-

flexion point we might be at the start or at the end of a new subcluster. We

store the possible starting points of the subclusters in a list, called StartPts .

This stack consists of pairs (o.P, o.R). The Gradient Clustering algorithm

can easily be intergrated into OPTICS and is described in full detail after a

formal introduction of the new concept of inflexion points.

In the following, we assume that CO is a cluster ordering as defined in

Definition 10. We call two objects o1, o2 ∈ CO adjacent in CO if o2.P =

o1.P + 1. Let us recall, that o.R is the reachability of o ∈ CO assigned by

OPTICS while generating CO . For any two objects o1, o2 ∈ CO adjacent in

the cluster ordering, we can determine the gradient of the reachability values

o1.R and o2.R. The gradient can easily be modelled as a 2D vector where

the y-axis measures the reachability values (o1.R and o2.R) in the ordering,

and the x-axis represent the ordering of the objects. If we assume that each

object in the ordering is seperated by width w, the gradient of o1 and o2 is

the vector

~g(o1, o2) =

(
w

o2.R− o1.R

)
.

An example for a gradient vector of two objects x and y adjacent in a cluster

ordering is depicted in Figure 7.5.

Intuitively, an inflexion point should be an object in the cluster ordering

where the gradient of the reachabilities changes significantly. This significant

7.2 Cluster Recognition 127

g (x,y)

x y

x.R

y.R

w

−y.R x.R

Figure 7.5: Gradient vector ~g(x, y) of two objects x and y adjacent in the

cluster ordering.

change indicates a starting or an end point of a cluster.

Let x, y, z ∈ CO be adjacent, i.e. x.P + 1 = y.P = z.P − 1. We can

now measure the differences between the gradient vector ~g(x, y) and ~g(y, z)

be computing the cosinus function of the angle between these two vectors.

The cosinus of this angle is equal to −1 if the angle is 180◦, i.e. the vectors

have the same direction. On the other hand, if the gradient vectors differ a

lot, the angle between them will be clearly smaller than 180◦ and thus the

cosinus will be significantly greater than −1. This observation motivates the

concepts of inflection index and inflexion points:

Definition 31 (inflexion index). Let CO be a cluster ordering and x, y, z ∈
CO be objects adjacent in CO . The inflexion index of y, denoted by II (y),

is defined as the cosinus of the angle between the gradient vector of x, y

(~g(x, y)) and the gradient vector of z, y (~g(z, y)), formally:

II (y) = cos ϕ(~g(x, y), ~g(z, y)) =
−w2 + (y.R− x.R)(y.R− z.R)

‖~g(x, y)‖ ‖~g(z, y)‖
,

where ‖~v‖ :=
√

v2
1 + v2

2 is the length of the vector ~v.

Definition 32 (inflexion point). Let CO be a cluster ordering and x, y, z ∈
CO be objects adjacent in CO and let t ∈ R. Object y is an inflexion point

iff

II (y) > t.

128 7 Visual Density-Based Data Analysis

The concept of inflexion points is suitable to detect objects in CO which

are interesting for extracting clusters.

Definition 33 (gradient determinant). Let CO be a cluster ordering and

x, y, z ∈ CO be objects adjacent in CO . The gradient determinant of the

gradients ~g(x, y) and ~g(z, y) is defined as

gd(~g(x, y), ~g(z, y)) :=

∣∣∣∣∣ w −w

x.R− y.R z.R− y.R

∣∣∣∣∣
If x, y, z are clear from the context, we use the short form gd(y) for the

gradient determinant gd(~g(x, y), ~g(z, y)).

The sign of gd(y) indicates whether y ∈ CO is a starting point or end

point of a cluster. In fact, we can distinguish the following two cases which

are visualized in Figure 7.6:

• II (y) > t and gd(y) > 0:

Object y is either a starting point of a cluster (e.g. object a in Figure

7.6) or the first object outside of a cluster (e.g. object z in Figure 7.6).

• II (y) > t and gd(y) < 0:

Object y is either an end point of a cluster (e.g. object n in Figure 7.6)

or the second object inside a cluster (e.g. object b in Figure 7.6).

Let us note that a local maximum m ∈ CO which is the cluster seperation

point in [SQL+03] is a special form of the first case (i.e. II (m) > t and

gd(m) > 0).

The threshold t is independent from the absolut reachability values of the

objects in CO . The influence of t is also very comprehensible because if we

know which values for the angles between gradients are interesting, we can

easily compute t. For example, if we are interested in angles < 120◦ and

> 240◦ we set t = cos 120◦ = −0.5.

Obviously, the gradient clustering algorithm is able to extract narrowing

clusters. First experimental comparisons with the methods in [SQL+03] and

[ABKS99] are presented in Section 7.6.

7.2 Cluster Recognition 129

n o p
.

a c d x y zwb

cluster ordering

reachability

cluster Dcluster C

cluster B

cluster A

Figure 7.6: Inflexion points measuring the angle between the gradient vec-

tors of objects adjacent in the ordering.

The pseudo code of the Gradient Clustering algorithm is depicted in Fig-

ure 7.7, which works like this. Initially, the first object of the cluster ordering

CO is pushed to the stack of starting points StartPts . Whenever a new start-

ing point is found, it is pushed to the stack. If the current object is an end

point, a new cluster is created containing all objects between the starting

point on top of the stack and the current end point. Starting points are

removed from the stack if their reachablity is lower than the reachability of

the current object. Clusters are created as described above for all removed

starting points as well as for the starting point which remains in the stack.

The input parameter MinPts determines the minimum cluster size and the

parameter t was discussed above. Finally the parameter w influences the

gradient vectors and proportionally depends on the reachability values of the

objects in CO .

130 7 Visual Density-Based Data Analysis

algorithm Gradient_Clustering(ClusterOrdering CO, Integer MinPts, Real t)

StartPts := emptyStack;

SetOfClusters := emptySet;

CurrCluster := emptySet;

o := CO.getFirst(); // first object is a starting point

StartPts.push(o);

WHILE o.hasNext() DO // for all remaining objects

o := o.next;

IF o.hasNext() THEN

IF II(o) > t THEN // inflexion point

IF gd(o) > 0 THEN

IF CurrCluster.size() >= MinPts THEN

SetOfClusters.add(CurrCluster);

ENDIF

CurrCluster := emptySet;

IF StartPts.top().R <= o.R THEN

StartPts.pop();

ENDIF

WHILE StartPts.top().R < o.R DO

SetOfClusters.add(set of objects from StartPts.top() to last end point);

StartPts.pop();

ENDDO

SetOfClusters.add(set of objects from StartPts.top() to last end point);

IF o.next.R < o.R THEN // o is a starting point

StartPts.push(o);

ENDIF

ELSE

IF o.next.R > o.R THEN // o is an end point

CurrCluster := set of objects from StartPts.top() to o;

ENDIF

ENDIF

ENDIF

ELSE // add clusters at end of plot

WHILE NOT StartPts.isEmpty() DO

CurrCluster := set of objects from StartPts.top() to o;

IF (StartPts.top().R > o.R) AND (CurrCluster.size() >= MinPts) THEN

SetOfClusters.add(CurrCluster);

ENDIF

StartPts.pop();

ENDDO

ENDIF

ENDDO

RETURN SetOfClusters;

END. // Gradient_Clustering

Figure 7.7: Pseudo code of the Gradient Clustering algorithm.

7.3 Cluster Representatives 131

7.3 Cluster Representatives

In this section, we present three different approaches to determine represen-

tative objects for clusters computed by OPTICS. A simple approach could

be to superimpose all objects of a cluster to build the representative as it

is depicted in Figure 7.3. However, this approach has the huge drawback

that the representatives on a higher level of the cluster hierarchy become

rather unclear. Therefore, we choose real objects of the data set as cluster

representatives.

In the following, CO denotes the cluster ordering from which we want to

extract clusters. A cluster C ⊆ CO will be represented by a set of k objects

of the cluster, denoted as REP(C). The number of representatives k can

be a user defined number or a number which depends on the size and data

distribution of the cluster C.

7.3.1 The Extended Medoid Approach

Many partitioning clustering algorithms are known to use medoids as cluster

representatives. The medoid of a cluster C is the closest object to the mean

of all objects in C. The mean of C is also called centroid. For k > 1 we

could choose the k closest objects to the centroid of C as representatives.

The choice of medoids as cluster representative is somehow questionable.

Obviously, if C is not of convex shape, the medoid is not really meaningful.

An extension of this approach coping with the problems of clusters with

non-convex shape is the computation of k medoids by applying a k-medoid

clustering algorithm to the objects in C. The clustering using a k-medoid

algorithm is rather efficient due to the expectation that the clusters are much

smaller than the whole data set. This approach can also be easily extended

to cluster hierarchies. At any level we can apply the k-medoid clustering

algorithm to the merged set of objects from the child clusters or – due to

performance reasons – merge the medoids of child clusters and apply k-

medoid clustering on this merged set of medoids.

132 7 Visual Density-Based Data Analysis

7.3.2 Minimizing the Core-Distance

The second approach to choose representative objects of hierarchical clusters

uses the density-based clustering notion of OPTICS. The core-distance o.C =

CoreDist(o) of an object o ∈ CO (cf. Definition 8) indicates the density of the

surrounding region. The smaller the core-distance of o, the denser the region

surrounding o. This observation led us to the choice of the object having the

minimum core-distance as representative of the respective cluster. Formally,

REP(C) can be computed as

REP(C) := {o ∈ C | ∀x ∈ C : o.C ≤ x.C}.

We choose the k objects with the minimum core-distances of the cluster

as representatives. The straightforward extension for cluster hierarchies is

to choose the k objects from the merged child clusters having the minimum

core-distances.

7.3.3 Maximizing the Successors

The third approach to choose representative objects of hierarchical clusters

also uses the density-based clustering notion of OPTICS but in a more so-

phisticated way. In fact, it makes use of the density-connected relationships

underlying the OPTICS algorithm.

As mentioned above, the result of OPTICS is an ordering of the database

minimizing the reachability relation. At each step of the ordering, the ob-

ject o having the minimum reachability w.r.t. the already processed objects

occurring before o in the ordering is choosen. Thus, if the reachability of

object o is not ∞, it is determined by ReachDist(p, o) where p is an unique

object located before o in the cluster ordering. We call p the predecessor of

o, formally:

Definition 34 (predecessor). Let CO be a cluster ordering. For each entry

o ∈ CO the predecessor is defined as

Pre(o) =

{
p if o.R = ReachDist(p, o)

UNDEFINED if p.R = ∞.

7.3 Cluster Representatives 133

SIR
C

(C) = 0.303

SIR
C

(A) = 0.385

SIR
C

(B) = 1.067

SIR
C

(D) = 0

C

D

E

F

G

B
A

2.1

1.9 2.3

1.5

1.7

1.6

Figure 7.8: Sample successor graph for a cluster of seven objects.

Intuitively, Pre(o) is the object in CO from which o has been reached.

Let us note, that an object and its predecessor need not to be adjacent in

the cluster ordering.

Definition 35 (set of successors). Let DB be a database of objects. For

each object o ∈ DB in a cluster ordering computed by OPTICS, the set of

successors is defined as S(o) := {s ∈ DB |Pre(s) = o}.

Let us note, that objects may have no predecessor, e.g. each object having

a reachability of ∞ does not have a predecessor, including the first object

in the ordering. On the other hand, some objects may have more than one

successor. In that case, some other objects have no successors. Again, an

object and its successors need not to be adjacent in the ordering.

We can model this succsessor relationship within each cluster as a directed

successor graph where the nodes are the objects of one cluster and a directed

edge from object o to s represents the relationship s ∈ S(o). Each edge

(x, y) can further be labeled by ReachDist(x, y) (= y.R). A sample successor

graph is illustrated in Figure 7.8. Some of the corresponding SIR-values are

depicted.

For the purpose of computing representatives of a cluster, the objects

having many successors are interesting. Roughly speaking, these objects are

134 7 Visual Density-Based Data Analysis

responsible for the most density-connections within a cluster. The reachabil-

ity values of these “connections” further indicate the distance between the

objects. For example, for the objects in the cluster visualized in Figure 7.8,

object B is responsible for the most density-connections since its node in the

successor graph has the most outgoing edges.

Our third strategy selects the representatives of clusters by maximizing

the number of successors and minimizing the according reachabilities. For

this purpose, we compute for each object o of a cluster C, the Sum of the

Invers Reachability distances of the successors of o within C, denoted by

SIRC(o):

SIRC(o) :=

0 if S(o) = ∅∑
s∈S(o)∩C

1
1+ReachDist(o,s)

otherwise.

We add 1 to ReachDist(o, s) in the denominator to weight the impact

of the number of successors over the significance of the reachability values.

Based on SIRC(o), the representatives can be computed as follows:

REP(C) := {o ∈ C | ∀x ∈ C : SIRC(o) ≥ SIRC(x)}.

In Figure 7.8, the SIR-values of some objects of the depicted successor

graph for a cluster of seven objects are computed. Since D has no successors,

SIRC(D) is zero. In fact object B has the highest SIR-value indicating the

central role of B in the cluster: B has three successors with relatively low

reachability distance values. Our third strategy would select object B as

representative for the cluster.

Let us note, that there is no additional overhead to compute the reachabil-

ity distances ReachDist(o, S(o)) for each o ∈ CO since these values have been

computed by OPTICS during the generation of CO and ReachDist(o, S(o)) =

S(o).R.

If we want to select k representatives for C we simply have to choose the

k objects with the maximum SIRC-values.

7.4 Browsing Cluster Hierarchies 135

OPTICS

Cluster Recognition

Cluster Representation

Similarity Model

BOSS Client

Object Data Visualization Data

VRML JPEG

Browser

DB1 DBn

BOSS Server

Client Side

Data Repository

Server Side

Figure 7.9: The distributed architecture of BOSS

7.4 Browsing Cluster Hierarchies

The development of the industrial prototype BOSS is a first step towards

developing a comprehensive, scalable and distributed computing solution de-

signed to make the efficiency of OPTICS and the analytical capabilities of

BOSS available to a broader audience. BOSS is a client/server system al-

lowing users to provide their own data locally, along with an appropriate

similarity model (cf. Figure 7.9).

The data provided by the user will be comprised of the objects to be

clustered, as well as a data set to visualize these objects, e.g. VRML files for

CAD data or JPEG images for multimedia data. Since this data resides on

the user’s local computer and is not transmitted to the server, heavy network

traffic can be avoided. In order for BOSS to be able to interpret this data,

the user must supply his own similarity model with which the reachability

data can be calculated.

The independence of the data processing and the data specification en-

ables maximum flexibility. Further flexibility is introduced through the sup-

136 7 Visual Density-Based Data Analysis

port of external visual representation. As long as the user is capable of

displaying the visualization data in a browser, e.g. by means of a suitable

plug-in, the browser will then load web pages generated by BOSS displaying

the appropriate data. Thus, multimedia data such as images or VRML files

can easily be displayed (cf. Figure 7.10). By externalizing the visualization

procedure, we can resort to approved software components, which have been

specifically developed for displaying objects which are of the same type as

the objects within our clusters.

7.5 Visualizing Connected Object Orderings

In modern databases, complex objects like multimedia data, proteins or text

objects can be modeled in a variety of representations and can be compared

by a variety of distance or similarity functions. Thus, it quite often occurs

that we have multiple views on the same set of data objects and do not

have any intuition about how the different views on data objects agree or

disagree about the similarity of objects. VICO is a tool for comparing these

different views on the same set of data objects. Our system is heavily based

on OPTICS. The idea of VICO is to select data objects or even complete

clusters in one OPTICS plot and additionally highlight the same objects in

all other displayed views on the data. A cluster order can be considered

as an image of the data distribution in one representation. VICO has the

following three main applications: First, if more than one distance function

for a given data set is available, it allows direct comparisons of the distance

functions. Second, in a multi-represented setting, where multiple feature

transformations for an object are available, the relationships between the

given data representations can be examined by comparing the clusterings

resulting w.r.t. these representations. Third, the connection between multi-

instance objects and their single instances can be examined by comparing the

clustering of multi-instance objects to the clusterings w.r.t. single instances.

7.5 Visualizing Connected Object Orderings 137

Figure 7.10: BOSS displaying contents of OPTICS clusters.

Figure 7.11: VICO displaying OPTICS plots of multi-represented data.

138 7 Visual Density-Based Data Analysis

7.5.1 Analysis of Complex Data Spaces

The main purpose of VICO is to compare different feature spaces that de-

scribe the same set of data. For this comparison, VICO relies on the in-

teractive visual exploration of reachability plots. Therefore, VICO displays

any available view on a set of data objects as adjacent reachability plots and

allows comparions between the local neighborhoods of each object. Fig. 7.11

displays the main window of VICO. The left side of the window contains a

so-called tree control that contains a subtree for each view of the data set. In

each subtree, the keys are ordered w.r.t. the cluster order of the correspond-

ing view. The tree control allows a user to directly search for individual data

objects. In addition to the object keys displayed in the tree control, VICO

displays the reachability plot of each view of the data set.

Since valleys in the reachability plot represent clusters in the underlying

representation, the user gets an instant impression of the richness of the clus-

ter structure in each representation. However, to explore the relationships

between the representations, we need to find out whether objects that are

clustered in one representation are also similar in the other representation.

To achieve this type of comparison, VICO allows the user to select any data

object in any reachability plot or the tree control. By selecting a set of ob-

jects in one view, the objects are highlighted in any other view as well. For

example, if the user looks at the reachability plot in one representation and

selects a cluster within this plot, the corresponding object keys are high-

lighted in the tree control and identify the objects that are contained in the

cluster. Let us note that it is possible to visualize the selected objects as

well, as long as there is a viewable object representation. In addition to the

information about which objects are clustered together, the set of objects

is highlighted in the reachability plots of the other representations as well.

Thus, we can easily decide whether the objects in one representation are

placed within a cluster in another representation as well or if they are spread

among different clusters or are part of the noise. If there exist contradicting

reachability plots for the same set of data objects, it is interesting to know

which of these representations is closer to the desired notion of similarity.

Thus, VICO allows the user to label data objects w.r.t. some class value.

7.5 Visualizing Connected Object Orderings 139

The different class values for the objects are displayed by different colors in

the reachability plot. Thus, a reachability plot of a data space that matches

the user’s notion of similarity should display clusters containing objects of

the same color. Fig. 7.11 displays a comparison of two feature spaces for an

image data set. Each image is labelled with w.r.t. the displayed motive.

Another feature of VICO is the ability to handle multi-instance objects.

In a multi-instance representation, one data object is given by a set of sepa-

rated feature objects. An example are CAD parts that can be decomposed to

a set of spatial primitives, which can be represented by a single feature vector.

This way, the complete CAD part is represented by a set of feature vectors,

which can be compared by a variety of distance functions. To find out which

instances are responsible for clusters of multi-instance objects, VICO allows

us to cluster the instances without considering the multi-instance object they

belong to. Comparing this instance plot to the plot derived on the complete

multi-instance objects allows us to analyze which instance clusters are typi-

cal for the clusters on the complete multi-instance object. Thus, for multi-

instance settings, VICO highlights all instances belonging to some selected

multi-instance object.

7.5.2 Architecture and Implementation

VICO is implemented in Java 1.5 and thus, runs on any platform support-

ing the current version of the Java Runtime Environment. VICO includes

an integrated version of OPTICS allowing the user to load and cluster data

sets described in a variety of file formats like CSV and ARFF files. For this

version of OPTICS there are several distance measures already implemented

like the Euclidian, Manhattan or Cosine distance. Furthermore, VICO al-

ready implements various distance functions for multi-instance objects, e.g.

the Hausdorff distance, the Sum of Minimum Distances and the Minimal

Matching Distance. The system is based on an extensible architecture, so

that additional components like new distance functions can be integrated

easily by implementing Java interfaces.

140 7 Visual Density-Based Data Analysis

7.6 Experimental Evaluation

We evaluated both the effectiveness and efficiency of our approaches using

two real-world test data sets. The first one contains approximately 200 CAD

objects from a German car manufacturer, and the second one is a sample

of the Protein Databank [BWF+00] containing approximately 5000 protein

structures. We tested on a workstation featuring a 1.7 GHz CPU and 2 GB

RAM. In the following, three cluster recognition algorithms as well as three

approaches for generating cluster representatives are evaluated.

7.6.1 Cluster Recognition

Automatic cluster recognition is clearly very desirable when analyzing large

sets of data. In this section, we will first discuss the quality of our three

cluster recognition algorithms. For this evaluation we use the Car and the

Protein dataset. Secondly, we discuss the efficiency by using the Car and the

Plane data set.

Effectivity

Both the Car and the Protein data set exhibit the commonly seen quality of

unpronounced but nevertheless to the observer clearly visible clusters. The

corresponding reachability plots of the two data sets are depicted in Figure

7.12.

Figure 7.12(c) shows that the Tree Clustering algorithm does not find any

clusters at all in the Car data set, with the suggested default ratio parameter

of 75% [SQL+03]. In order to detect clusters in the CAR data set, we had

to adjust the ratio parameter to 95%. In this case Tree Clustering detected

some clusters but missed out on some other important clusters and did not

detect any cluster hierarchies at all. If we have rather high reachability

values, e.g. values between 5 and 7 as in Figure 7.12 for the Car data set, the

ratio parameter for the Tree Clustering algorithm should be higher than for

smaller values. In the case of the Protein data set we detected three clusters

7.6 Experimental Evaluation 141

Car data

Gradient
Clustering

Clustering

Tree
Clustering

Protein data

recognized
clusters

(a)

(b)

(c)

o.R

7

6

5

o.R

7

6

5

o.R

7

6

5

o.R

4

3

2

o.R

4

3

2

o.R

4

3

2

Figure 7.12: Sample clusters of car parts.

with the default parameter setting, but again missed out on some important

clusters. Generally, in cases where a reachability graph consists of rather high

reachability values or does not present spikes at all, but clusters are formed

by smooth troughs in the waveform, this cluster recognition algorithm is

unsuitable. Furthermore, it is inherently unable to detect narrowing clusters

where a cluster has one subcluster of increased density (cf. Figure 7.4).

On the other hand, the ξ-Clustering approach successfully recognizes

some clusters while also missing out on significant subclusters (cf. Figure

7.12(b)). This algorithm has some trouble recognizing cluster structures

with a significant differential of ”steepness”. For instance, in Figure 7.4 it

does not detect the narrowing cluster B inside of cluster A because it tries

to create steep down-areas containing as many points as possible. Thus, it

will merge the two steep edges if their steepness exceeds the threshold ξ. On

the other, it is able to detect cluster C within A.

Finally, we look at our new Gradient Clustering algorithm. Figure 7.12(a)

shows that the recognized cluster structure is close to the intuitive one, which

142 7 Visual Density-Based Data Analysis

Table 7.1: CPU time for cluster recognition.

Car data Protein data

(200 parts) (5,000 molecules)

ξ-Clustering 0.221 s 5.057 s

Tree Clustering 0.060 s 1.932 s

Gradient Clustering 0.310 s 3.565 s

an experienced user would manually derive. Clusters which are clearly dis-

tinguishable and contain more than MinPts elements are detected by this

algorithm. Not only does it detect a lot of clusters, but it also detects a lot

of meaningful cluster hierarchies, consisting of narrowing subclusters.

To sum up, in all our tests the Gradient Clustering algorithm detected

much more clusters than the other two approaches, without producing any

redundant and unnecessary cluster information.

Efficiency

In all tests, we first created the reachability plots and then applied the algo-

rithms for cluster recognition and representation. Let us note that we could

also have integrated Gradient Clustering into the OPTICS run without caus-

ing any noteworthy overhead.

The overall runtimes for the three different cluster recognition algorithms

are depicted in Table 7.1. Our new Gradient Clustering algorithm does not

only produce the most meaningful results, but also in sufficiently short time.

This is due to its runtime complexity of O(n).

7.6.2 Cluster Representation

After a cluster recognition algorithm has analyzed the data, algorithms for

cluster representation can help to get a quick visual overview of the data.

With the help of representatives, large sets of objects may be characterized

7.6 Experimental Evaluation 143

Figure 7.13: A cluster of CAD objects with representative objects.

through a single object of the data set. We extract sample clusters from both

data sets in order to evaluate the different approaches for cluster representa-

tives. In our first tests, we set the number of representatives to k = 1.

The objects of one cluster from the car data set are displayed in Figure

7.13 and the objects of one cluster from the protein data set are displayed in

Figure 7.14. The annotated objects are the representatives computed by the

respective algorithms. Both the Maximum Successor and the Minimum Core

Distance approaches give good results. Despite the slight inhomogeneity of

the clusters, both representatives sum up the majority of the elements within

both clusters. This cannot be said of the representatives computed by the

commonly used medoid method, which selects objects from the trailing end of

the cluster. These two clusters and their corresponding representatives are no

isolated cases, but reflect our general observations. Nevertheless, there have

144 7 Visual Density-Based Data Analysis

Figure 7.14: A cluster of proteins with representative objects.

been some rare cases where the medoid approach yielded the more intuitive

representative than the other two approaches.

If we allow a higher number of representatives, for instance k = 3, it might

be better to display the representatives of all three approaches to reflect the

content of the cluster, instead of displaying the three best representatives of

one single approach. If we want to confine ourselves to only one representa-

tive per cluster, the best possible choice is to use the representative of the

Maximum Successor approach.

7.6.3 Discussion

The results of our experiments show, that our new approaches for the auto-

matic cluster extraction and for the determination of representative objects

outperform existing methods. It theoretically and empirically turned out,

that the Gradient Clustering algorithm seems to be more practical than pre-

7.7 Summary 145

vious work for automatic cluster extraction from hierarchical cluster repre-

sentations. We also empirically showed that our approaches for the determi-

nation of cluster representatives is in general more suitable than the simple

(extended) medoid approach.

7.7 Summary

In this chapter, we proposed hierarchical clustering combined with automatic

cluster recognition and selection of representatives as a promising visualiza-

tion technique. Its areas of application include visual data mining, similarity

search and evaluation of similarity models. We surveyed three approaches

for automatic extraction of clusters. The first method, ξ-Clustering, fails to

detect some clusters present in the clustering structure and suffers from the

sensitivity concerning the choice of its input parameter. Tree Clustering is by

design unsuitable in the presence of narrowing clusters. To overcome these

shortcomings, we proposed a new method, called Gradient Clustering. The

experimental evaluation showed that this algorithm is able to extract nar-

rowing clusters. Furthermore, it can easily be integrated into the hierarchical

clustering algorithm. Thus, it produces no noteworthy overhead. The clus-

ter hierarchies produced by Gradient Clustering are similar to the clustering

structures which an experienced user would manually extract. Furthermore,

we presented three different approaches to determine representative objects

for clusters. The commonly known medoid approach is shown to be question-

able for real-world data, while the approaches minimizing the core-distance

and maximizing the successors both deliver good results.

146 7 Visual Density-Based Data Analysis

Chapter 8

Hierarchical Music Genre

Classification

The progress of computer hardware and software technology in recent years

made it possible to manage large collections of digital music on an average

desktop computer. Thus, modern computer systems are able to compress a

piece of music to a few megabytes in very fast time. Easy to use software that

automates this process is available. Often, this software stores meta infor-

mation, such as artist, album or title, along with the audio file. However, the

amount and quality of the available meta information in publicly accessible

online databases, e.g. freedb.org, is often limited. This meta data is espe-

cially useful when searching for a specific piece of music in a large collection.

To organize and structure a collection, additional information such as the

genre would be very useful. Unfortunately, the genre information stored in

online databases is often incorrect or does not meet the user’s expectations.

In this chapter, a content-based hierarchical genre classification frame-

work for digitized audio is presented as sketched in Figure 8.1. It is often

problematic to assign a piece of music to exactly one class in a natural way.

Genre assignment is a somewhat fuzzy concept and depends on the taste of

the user. Therefore, our approach allows multi-assignment of one song to

several classes. The classification is based on feature vectors obtained from

three acoustic realms namely timbre, rhythm and pitch. Thus, each song

148 8 Hierarchical Music Genre Classification

Features

Timbre

Rhythm

Pitch

CPiece of Music Genre Tree Node Classifier

C

C C

Genre Tree Leaf

Figure 8.1: Architecture of the genre classification framework.

is described by multiple representations, each of them containing a set of

feature vectors, so called multiple instances.

Our main contributions are:

1. A novel semi-supervised, hierarchical instance reduction (IR) technique

which enables us to use only a small number of relevant features for

each classifier.

2. An effective and efficient framework for hierarchical genre classification

(HGC) of music pieces in a multi-representation (MR) and multi-in-

stance (MI) setting. Let us note that our framework can also be used

for genre classification (GC) in flat class systems.

3. A powerful prototype implementing the proposed framework. The tool

features a graphical user interface to enable the user to easily analyze

large collections of digitized music.

8.1 Related Work

Feature extraction. Timbre features are derived from the frequency do-

main and were mainly developed for the purpose of speech recognition. The

extraction of the timbral texture is performed by computing the short time

8.1 Related Work 149

fourier transform. We use the Mel-frequency cepstral coefficients (MFCCs),

spectral flux and spectral rolloff as timbral representations [TC02]. Rhyth-

mic content features are useful for describing the beat frequency and beat

strength of a piece of music. In our framework, we use features derived from

beat histograms [TC02] as the description of the rhythmic content. Pitch

extraction tries to model the human perception by simulating the behavior

of the cochlea. Similar to the rhythmic content features, we derive pitch fea-

tures from pitch histograms which were generated by a multipitch analysis

model [TK00].

Genre classification. The general idea of hierarchical classification is

that a classifier located on an inner node of the genre tree solves only a small

classification problem and therefore achieves more effective results more effi-

ciently than a classifier that works on a large number of flat organized classes.

There exist only a few approaches for automatic genre classification of audio

data. In [CVJK04], music pieces are classified into either rock or classic using

k-nearest neighbor and MLP classifiers. Zhang [Zha03] proposes a method

for a hierarchical genre classification which follows a fixed schema and where

is only limited support for user-created genre folders. Moreover, the above

mentioned hierarchical classification methods do not take full advantage of

MI and MR music objects. In contrast, our approach handles such rich object

representations as well as an arbitrary genre hierarchy, and supports multi-

assignment of songs to classes.

Hierarchical Classification. The use of class hierarchies to improve

large scale classification problems has predominantly been applied in text

classification. Several approaches have been introduced picking up this idea.

The authors of [KKPS04b] investigated multiple representations of objects

in the context of hierarchical classification and proposed a so called object

adjusted weighting for linear combination of MR objects.

Support Vector Machines. In recent years, support vector machines

(SVMs) [CV95] have received much attention offering superior performance

in various applications. For example, [WLCS04] presents a fusion technique

for multimodal objects. Basic SVMs distinguish between two classes by cal-

culating the maximum margin hyperplane between the training examples

150 8 Hierarchical Music Genre Classification

of both given classes. To employ SVMs for distinguishing more than two

classes, several approaches were introduced [PCST99]. In order to handle

sets of feature vectors in SVMs so called kernel functions were introduced

[GFKS02]. A weakness of MI kernels is the need to calculate distances be-

tween all instances, i.e. O(n2) single distance calculations are required in

order to compare two MI objects with n instances. Thus, MI kernels seem

to be unsuitable for solving large scale classification problems in music col-

lections.

Instance Reduction Techniques. As mentioned above, a piece of

music is usually described by a set of feature vectors and is an MI object.

The number of instances can vary from tens to hundreds per second, i.e. a

song is represented by 10,000 to 50,000 feature vectors. In order to handle

such MI objects two classes of IR techniques can be distinguished, namely

higher-order and first order. Higher-order IR techniques use optimization

algorithms on feature vectors. They describe an MI object as a mix of sta-

tistical distributions or cluster representatives. In [GGM02], a higher-order

instance technique is presented which is based on Gaussian distributions.

The authors use methods such as Expectation Maximization for parameter

estimation. The authors of [CSL99] propose an IR approach that computes

the optimal representatives by minimizing the Hausdorff distance between

the original object and its representation. If the Euclidian metric is used as

a distance function on the feature vectors, the k-means method can be ap-

plied for summarization of multimedia content [ZRHM98]. In case of general

metric spaces, the k-medoid method can be applied for summarization. A

randomized first order IR technique, called signature, is proposed in [CZ02].

A multimedia sequence in the database is described by selecting a number of

its instances closest to a set of random vectors. The authors in [CZ02] also

propose a specialized distance function on the derived first order summariza-

tion vectors. Both first and higher-order techniques reduce the MI object

to a small set of feature vectors. Thus, using the reduced representations

of the MI object requires the application of kernel functions for SVMs. In

context of large databases, the use of kernel functions seems impracticable

for efficient classification.

8.2 Efficient Hierarchical Genre Classification 151

root

Rock/Pop

Hard Rock

Latin

Brazil TangoSalsa

SwingBlues JazzBig Band

Jazz

PopMetal

TropicaliaSamba

Mariachi

Figure 8.2: An example genre hierarchy.

8.2 Efficient Hierarchical Genre Classification

In this section, we describe our approach for classifying large collections of

music pieces in a genre taxonomy (cf. Figure 8.2). Since a music piece is

described by a set of feature vectors, we first describe a novel hierarchical

semi-supervised technique for instance reduction. The reduced descriptions

are used afterwards for hierarchical classification of music pieces with SVMs.

Furthermore, we use object adjusted weighting in order to take advantage

from multiple representations.

Hierarchical Instance Reduction. Let DB be a set of music objects.

We argue that an MI object X = {x1, . . . , xn} ∈ DB can be described by

a vector Xreduced containing minimal distances to a given set of so called

support objects S = {s1, . . . , sm} where m � n. Formally,

Xreduced = (min
xi∈X

dist(xi, s1), . . . , min
xi∈X

dist(xi, sm)).

The set S can either be calculated by a random selection of m instances from

DB , or it is possible to choose each si ∈ S as a centroid of a clustering that

can be calculated on a small sample of instances from DB . An example for

the instance reduction is illustrated in Figure 8.3.

The number of elements in Xreduced may still be too large for solving the

classification problem efficiently. Thus, we propose to exploit the hierarchical

organization of classes and to select only a small subset SN ⊆ S for each inner

node N of the genre taxonomy. The elements of SN should be selected so

that the subclasses CN of N can be distinguished in the best possible way.

Therefore, the subset of support objects is individual for each inner node N .

To calculate SN we suggest to apply a semi-supervised method based on

152 8 Hierarchical Music Genre Classification

X, Y: sets of feature vectors
s1, s2, s3: support objects

0.3
5.4
5.1

reducedX

0.4
5.1
0.7

reducedY

s1
s2

s3

3.0
4.0

1.5 7.0 4.5

1.5
X

Y

Figure 8.3: Instance reduction with help of support objects.

the information gain criterion. Let T (CN) be a set of all training objects

belonging to CN . The domains D(si) are discretized by using the method

described in [FI92]. After discretization the information gain criterion for

each attribute can by calculated by

InfoGain(si, T (CN)) = H(T (CN))−
∑

t∈T (CN)

|t|
|T (CN)|

·H(t),

where H(t) denotes the entropy. Finally, SN is determined as the smallest

set that contains k elements and for which the following condition holds:

∀sj ∈ SN∀a ∈ S : InfoGain(a, T (CN)) ≤ InfoGain(sj, T (CN)).

After that, SN is used for training and classification on the node N .

Hierarchical Genre Classification by Using Multiple Represen-

tations. A two layer classification process (2LCP) handles the hierarchical

classification problem on each inner node N of the genre taxonomy. This

process acts as a guidepost for the hierarchical classification. We train SVMs

in the first layer of the 2LCP that distinguishes only single classes Csingle

in each representation. Since standard SVMs are able to make only binary

decisions we apply the so-called one-versus-one (OvO) approach (cf. Figure

8.4) in order to make a classification decision for more than two classes. We

argue that for our application the OvO approach is best suitable because

the voting vectors Φi provided by this method are a meaningful intermediate

8.2 Efficient Hierarchical Genre Classification 153

dA, dB: distances between ocurr and borders of its class

Class Set C = { , , }

dA
dB

Current object

Hyper-
planes
of SVMs

ocurr

Figure 8.4: Border distance based derivation of weights for a multi-repre-

sented object.

description that is useful for solving the multi-assignment problem in the

second layer of our 2LCP. In order to perform the multi-assignment we take

advantage of the class properties in our application domain. We limit the

possible class combinations to a subset Ccombi ⊂ 2Csingle because there exist

several combinations that do not make sense, e.g. a piece of music belonging

to the class ’salsa’ is very implausible to be also in the class ’metal’. For

this purpose, we only take those c ∈ 2Csingle into account, which occur in the

training set.

The SVM classifier in the second layer of the 2LPC uses an aggregation

of the voting vectors Φi from the first layer of the 2LPC as input to assign

an object to a class c ∈ CN = Csingle ∪ Ccombi. The second task that is

handled by the classifier in the second layer is the aggregation of multiple

representations. The voting vectors Φ1, . . . , Φk provided by the first layer

SVMs for each representation R1, . . . , Rk ∈ R are aggregated by using a

weighted linear combination V =
∑k

i=1 ωiΦi. Then V is used as the input

for the classifier in the second layer. The weights ωi in the combination

are calculated by using object adjusted weighting. The intuition behind the

object adjusted weighting is that the current object ocurr used in training

or to be classified needs to have a sufficient distance from any of the other

classes. More formally, let cj be the class of ocurr determined by majority

154 8 Hierarchical Music Genre Classification

vote in Φi, then ωi = minci∈Csingle∧ci 6=cj
dist(ocurr,HyperPlane(cj, ci)), where

HyperPlane(cj, ci) denotes the maximum margin hyperplane separating the

classes cj and ci. Figure 8.4 depicts an example of weight calculation where

the weight ω should be set to dA.

8.3 Practical Music Classification with User

Feedback

To provide a powerful tool for the analysis of digitized audio, we integrated

our approach to hierarchical genre classification into a graphical prototype

called MUSCLE (Mus ic Classification Engine with User Feedback). The in-

stallation archive of MUSCLE contains a default genre taxonomy including

the necessary training data in the form of feature vectors for each song. Us-

ing aggregated information such as feature vectors makes it possible to share

the training data without having to distribute the underlying music data.

Classes and training data in the genre taxonomy can be deleted, moved or

added by the user. When the user commits the changes of the class hier-

archy or of the corresponding training data, MUSCLE trains the affected

classifiers. Note that usually only a small subset of the entire classifier hier-

archy has to be trained because a modification at a node requires a partial

adaptation of the node and all parent nodes only. It is also possible to start

the training automatically after each modification or to run the training in

the background. When the user is satisfied with the training setup, a folder

to automatically classify all contained songs can be selected. MUSCLE is

implemented in C/C++ and runs on the Windows platform.

Fig. 8.5 illustrates MUSCLE’s user interface. In the main window the

playlist containing the classification result in form of a genre tree is displayed.

An example for a multiple assignment of the song ’Anticipating’ to the classes

’pop’ and ’rhythm & base’ can be seen in Fig. 8.5(a). In case the user wants

to manually adjust the genre assignment of a song, entries can be rearranged

using drag & drop as shown in Fig. 8.5(b).

8.4 Experimental Evaluation 155

(a) Multi-Assignment of Songs (b) User Feedback

Figure 8.5: The MUSCLE User Interface

8.4 Experimental Evaluation

We implemented the classification framework in Java 1.5 and performed all

experiments on a Pentium IV workstation equipped with 2 GByte main mem-

ory. The genre hierarchy depicted in Figure 8.2 was used in all following

experiments. A music collection consisting of almost 500 songs was the basis

for the classification experiments, which results in approximately 30 songs

per class. Depending on the representation, we extracted 30 to 200 features

per second. We performed 10-fold cross-validation for evaluating the classi-

fication accuracy. In the following, we present the results of our experiments

with particular emphasis to efficiency and effectiveness.

Effectiveness. In the first experiment, we compared the quality of GC on

multiple, and HGC on single and multiple representations. Figure 8.6 depicts

the experimental results. When working with multiple representations, our

HGC approach (70.03%) achieves higher classification accuracy than using a

single representation only. Furthermore, the classification accuracy of HGC

is comparable to that of the flat GC approach (72.01%).

156 8 Hierarchical Music Genre Classification

40 50 60 70 80

AUTOCORRELATION

MFCC

ONSET

ROLLOFFS

THRESHOLD CROSSINGS

SPECTRAL CENTROID

SPECTRAL FLUX

SPECTRAL MEDIAN

SPECTRAL MEAN

SPECTRAL SKEW

SPECTRAL STDDEV

GC

HGC

Classification Accuracy %

Figure 8.6: Classification accuracy on single- and multi-representations.

In the next experiment, we investigated how the classification accuracy

of our approach is influenced by the number and the choice of the support

objects. For choosing SN , we either randomly picked the support objects

or applied our strategy described in Section 8.2. The experimental results

are depicted in Figure 8.7 and show that our approach always outperforms

the random selection. For both approaches, the accuracy increases with an

increasing number of support objects. However, especially for a low number

of support objects, the random approach achieves a lower accuracy compared

to our method. For a high number of support objects, both approaches yield

a similar classification accuracy.

Efficiency. In a last experiment, we examined the runtime performance

of GC and HCG for a varying number of support objects. As depicted

in Figure 8.8, the runtime increases with an increasing number of support

objects. The higher the number of support objects, the larger the runtime

difference. Altogether, our approach achieves a good trade-off between the

quality of the result and the required runtime when using 300 support objects.

8.4 Experimental Evaluation 157

50

55

60

65

70

75

0 100 200 300 400 500
Support Objects

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y,

 %

our approach random

Figure 8.7: Classification accuracy on single- and multi-representations.

0

50

100

150

200

250

300

350

0 100 200 300 400 500
Support Objects

C
la

ss
ifi

ca
tio

n
Ti

m
e

pe
r O

bj
ec

t [
m

se
c] HGC GC

Figure 8.8: Classification time per object.

158 8 Hierarchical Music Genre Classification

8.5 Summary

In this chapter, we introduced a framework for hierarchical music classifi-

cation using multiple representations consisting of multiple instances. We

showed that our hierarchical classification can compete with a flat class sys-

tem in terms of effectiveness and greatly surpasses it in terms of efficiency.

Part IV

Conclusions

Chapter 9

Summary and Outlook

This chapter concludes the thesis by a summary of the theoretical and prac-

tical results. After a description of the main contributions in Section 9.1, we

give an outlook on the potentials and future work in the area of similarity

search in complex data in Section 9.2.

In this work, we presented our research on efficient and effective similarity

search in large databases of complex objects. We started with an analysis of

important challenges for modern database systems. One of those challenges

is the necessity to support complex, internally structured data, which is

founded in the growing importance of database systems as knowledge bases.

Sets of feature vectors, trees and graphs are natural models for such complex

data objects and, therefore, were the main topic of this thesis.

Another important challenge for modern database systems is the growing

demand for new methods to extract knowledge stored in databases. This

task is usually called knowledge discovery in databases. Many knowledge

discovery problems, like clustering, outlier detection or classification, are

based on some notion of similarity. This makes similarity search in databases

an important basic technology.

Finally, the size of databases in science and industry is rapidly growing

and the growth rate is often higher than the increase in computing power.

Consequently, the efficiency of search methods gains more and more impor-

tance.

162 9 Summary and Outlook

9.1 Summary of Contributions

Part I illustrates the topic and the background of this work. After a very

general introduction to KDD, data mining, and clustering, we investigate

the major aspects of similarity search in large databases of complex data.

The density-based clustering notion underlying the algorithms DBSCAN and

OPTICS is reviewed in more detail.

Part II motivates the use of vector sets for similarity modeling. For this

purpose, a metric distance function is defined, which is suitable for vari-

ous application ranges, but time-consuming to compute. Therefore, a filter

refinement technology is suggested to efficiently process range queries and

k-nearest neighbor queries, two basic query types within the field of simi-

larity search. Several filter distances are presented, which approximate the

exact object distance and can be computed efficiently. Moreover, a multi-step

query processing approach is described, which can be directly integrated into

the well-known density-based clustering algorithms DBSCAN and OPTICS.

In addition, an extended parallel version of DBSCAN is presented which is

also based on the aforementioned multi-step approach.

In Part III, new application ranges for density-based hierarchical cluster-

ing using OPTICS are discussed. Prototype systems for density-based data

analysis are introduced, which have been developed for these new application

areas and are based on the aforementioned similarity models and accelerated

clustering algorithms for complex objects. The prototypes BOSS and VICO

facilitate interactive semi-automatic cluster analysis and allows visual search

for similar objects in multimedia databases. This way, the user can navigate

through large datasets comfortably and can compare different views on com-

plex data spaces, which occur in the presence of different distance functions

defined in a data space as well as in a multi-represented or multi-instance set-

ting. Finally, a novel framework for efficient and effective hierarchical genre

classification for large music collections is introduced along with a prototype

called MUSCLE which implements the framework.

9.2 Future Work 163

9.2 Future Work

At the end of this thesis, let us emphasize the potentials of the proposed

methods for future research.

In our opinion, other data mining algorithms besides DBSCAN and OP-

TICS, which have to deal with complex object representations, would likewise

benefit from a direct integration of the multi-step query processing paradigm.

For example an extended version of k-mediod clustering incorporating filter

technology would be a valuable addition.

In many real-world databases, the data objects are distributed over sev-

eral sites. A parallel and/or distributed version of OPTICS may be required

since a centralized clustering could be impossible due to network bandwidth

constraints. This would be the first step towards a data analysis system for

a distributed database environment.

To improve the proposed data analysis tools, a quality measure for the

representatives displayed in the browsable hierarchy is needed. Such a quality

measure could be based on the concept of local outlier detection. Having such

a quality measure at hand, we could compare the generated representatives

and present a ranked list of representatives to the user.

The proposed framework for hierarchical genre classification for music

collections could be extended to handle more types of multimedia data, as

for example video data.

164 9 Summary and Outlook

List of Figures

1.1 The KDD process. 4

1.2 The idea of feature transformation. 6

1.3 Examples of complex metric data. 7

2.1 Similarity based on the feature vector approach. 14

2.2 The concept of distance-based similarity. 16

2.3 Result of a range query for object q. 20

2.4 Result of a nearest-neighbor query. 21

2.5 Result of a k-nearest-neighbor query. 23

2.6 Schema of a multi-step query processing architecture. 27

3.1 Density-reachability and density-connectivity. 33

3.2 Illustration of core-distance and reachability-distance. 34

3.3 The OPTICS algorithm. 35

3.4 Reachability plot computed by OPTICS for a 2D data set. . . 36

4.1 Filters for the minimal matching distance. 50

4.2 The partial norm vector filter algorithm. 58

4.3 Complete range queries, artificial dataset, cardinality 10, di-

mensionality 2. 62

4.4 Complete range queries, artificial dataset, cardinality 2, di-

mensionality 10. 63

4.5 Complete range queries, CAD dataset, cardinality 5, dimen-

sionality 6. 64

4.6 Complete k-nn queries, CAD dataset, cardinality 7, dimen-

sionality 6. 65

4.7 Partial range queries for s = 2, CAD dataset, cardinality 7,

dimensionality 6. 67

166 LIST OF FIGURES

4.8 Partial k-nn queries for s = 3, CAD dataset, cardinality 5,

dimensionality 6. 68

5.1 The Xseedlist data structure. 78

5.2 The extended OPTICS algorithm. 81

5.3 Distance calculations for exact clusterings. 93

5.4 Speed-up dependent on the ε parameter. 94

5.5 Absolute runtimes w.r.t. varying database sizes. 95

5.6 Distance calculations for approximated clusterings. 97

5.7 Quality measures for approximated clusterings. 98

6.1 Basic idea of parallel density-based clustering. 102

6.2 Server-side partitioning step and merge step. 108

6.3 Number of merge points w.r.t. a varying number of slaves for

the graph dataset. 110

6.4 Absolute runtimes w.r.t. a varying number of slaves. 111

6.5 Overall speedup w.r.t. a varying number of slaves. 112

7.1 Different approaches to visual data mining. 120

7.2 Browsing reachability plots with different density thresholds. . 122

7.3 Hierarchically ordered representatives. 122

7.4 Sample narrowing clusters. 125

7.5 Gradient vector ~g(x, y) of two objects x and y adjacent in the

cluster ordering. 127

7.6 Inflexion points measuring the angle between the gradient vec-

tors of objects adjacent in the ordering. 129

7.7 Pseudo code of the Gradient Clustering algorithm. 130

7.8 Sample successor graph for a cluster of seven objects. 133

7.9 The distributed architecture of BOSS 135

7.10 BOSS displaying contents of OPTICS clusters. 137

7.11 VICO displaying OPTICS plots of multi-represented data. . . 137

7.12 Sample clusters of car parts. 141

7.13 A cluster of CAD objects with representative objects. 143

7.14 A cluster of proteins with representative objects. 144

8.1 Architecture of the genre classification framework. 148

LIST OF FIGURES 167

8.2 An example genre hierarchy. 151

8.3 Instance reduction with help of support objects. 152

8.4 Border distance based derivation of weights for a multi-repre-

sented object. 153

8.5 The MUSCLE User Interface 155

8.6 Classification accuracy on single- and multi-representations. . 156

8.7 Classification accuracy on single- and multi-representations. . 157

8.8 Classification time per object. 157

168 LIST OF FIGURES

List of Tables

1.1 Overview of publications the chapters are based on. 8

4.1 Runtime complexity of the proposed filters. 59

7.1 CPU time for cluster recognition. 142

170 LIST OF TABLES

List of Definitions

Def. 1 (Lp norms) . 14

Def. 2 (similarity range query) . 20

Def. 3 (nearest-neighbor query) . 22

Def. 4 (k-nearest-neighbor query) . 23

Def. 5 (lower-bounding property) . 27

Def. 6 (directly density-reachable) . 32

Def. 7 (density-reachable and density-connected) 32

Def. 8 (core-distance) . 34

Def. 9 (reachability-distance) . 34

Def. 10 (cluster ordering) . 35

Def. 11 (permutation of a set) . 46

Def. 12 (minimal matching distance) 46

Def. 13 (partial minimal matching distance) 47

Def. 14 (closest pair distance) . 48

Def. 15 (partial closest pair distance) 51

Def. 16 (extended centroid) . 52

Def. 17 (norm vector) . 54

Def. 18 (cluster) . 85

Def. 19 (partitioning clustering) . 85

Def. 20 (hierarchical clustering) . 85

Def. 21 (symmetric set difference) . 86

Def. 22 (clustering distance) . 87

Def. 23 (quality measure QAPC) . 87

Def. 24 (cost of an edit sequence) . 89

Def. 25 (degree-2 edit distance) . 89

Def. 26 (quality measure QAHC) . 90

Def. 27 (filter merge points) . 106

172 LIST OF DEFINITIONS

Def. 28 (exact merge points) . 108

Def. 29 (cluster connectivity graph) 109

Def. 30 (database connectivity graph) 109

Def. 31 (inflexion index) . 127

Def. 32 (inflexion point) . 127

Def. 33 (gradient determinant) . 128

Def. 34 (predecessor) . 132

Def. 35 (set of successors) . 133

References

[ABKS99] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander.

OPTICS: Ordering Points to Identify the Clustering Struc-

ture. In Proc. ACM SIGMOD International Conference on

Management of Data (SIGMOD’99), Philadelphia, PA, USA,

pages 49–60, 1999.

[AFS93] R. Agrawal, C. Faloutsos, and A. Swami. Efficient Similar-

ity Search in Sequence Databases. In Proc. 4th International

Conference on Foundations of Data Organization and Algo-

rithms (FODO’93), Chicago, IL, USA, pages 69–84, 1993.

[AKKS99a] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl. 3D

Shape Histograms for Similarity Search and Classification in

Spatial Databases. In Proc. 6th International Symposium on

Large Spatial Databases (SSD’99), Hong Kong, China, pages

207–226, 1999.

[AKKS99b] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl.

Nearest Neighbor Classification in 3D Protein Databases. In

Proc. 7th International Conference on Intelligent Systems for

Molecular Biology (ISMB’99), Heidelberg, Germany, pages

34–43, 1999.

[ALSS95] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim. Fast Sim-

ilarity Search in the Presence of Noise, Scaling, and Transla-

tion in Time-Series Databases. In Proc. 21st International

174 REFERENCES

Conference on Very Large Databases (VLDB’95), Zurich,

Switzerland, pages 490–501, 1995.

[Ank00] M. Ankerst. Visual Data Mining. PhD thesis, Institute for

Computer Science, University of Munich, 2000.

[BBBK00] C. Böhm, B. Braunmüller, M. Breunig, and H.-P. Kriegel.

High Performance Clustering Based on the Similarity Join.

In Proc. 9th International Conference on Information and

Knowledge Management (CIKM’00), Washington, DC, USA,

pages 298–313, 2000.

[BBJ+00] S. Berchtold, C. Böhm, H. V. Jagadish, H.-P. Kriegel, and

J. Sander. Independent Quantization: An Index Compression

Technique for High-Dimensional Data Spaces. In Proc. 16th

International Conference on Data Engineering (ICDE’00),

San Diego, CA, USA, pages 577–588, 2000.

[BEKS00] B. Braunmüller, M. Ester, H.-P. Kriegel, and J. Sander. Ef-

ficiently Supporting Multiple Similarity Queries for Mining

in Metric Databases. In Proc. 16th International Conference

on Data Engineering (ICDE’00), San Diego, CA, USA, pages

256–267, 2000.

[BK97] S. Berchtold and H.-P. Kriegel. S3: Similarity Search in CAD

Database Systems. In Proc. ACM SIGMOD International

Conference on Management of Data (SIGMOD’97), Tucson,

AZ, USA, pages 564–567, 1997.

[BKK96] S. Berchtold, D. A. Keim, and H.-P Kriegel. The X-Tree: An

Index Structure for High-Dimensional Data. In Proc. 22nd In-

ternational Conference on Very Large Databases (VLDB’96),

Mumbai, India, pages 28–39, 1996.

[BKK+04] S. Brecheisen, H.-P. Kriegel, P. Kröger, M. Pfeifle, M. Pötke,

and M. Viermetz. BOSS: Browsing OPTICS-Plots for Simi-

larity Search. In Proc. 20th International Conference on Data

Engineering (ICDE’04), Boston, MA, USA, page 858, 2004.

REFERENCES 175

[BKK+06] S. Brecheisen, H.-P. Kriegel, P. Kunath, A. Pryakhin, and

F. Vorberger. MUSCLE: Music Classification Engine with

User Feedback. In Proc. 11th International Conf on Extending

Database Technology (EDBT’06), Munich, Germany, pages

1164–1167, 2006.

[BKKP04] S. Brecheisen, H.-P. Kriegel, P. Kröger, and M. Pfeifle. Vi-

sually Mining Through Cluster Hierarchies. In Proc. SIAM

International Conference on Data Mining (SDM’04), Lake

Buena Vista, FL, USA, pages 400–412, 2004.

[BKKP06] S. Brecheisen, H.-P. Kriegel, P. Kunath, and A. Pryakhin.

Hierarchical Genre Classification for Large Music Collections.

In Proc. IEEE International Conference on Multimedia &

Expo (ICME’06), Toronto, Ontario, Canada, pages 1385–

1388, 2006.

[BKKS01] M. M. Breunig, H.-P. Kriegel, P. Kröger, and J. Sander. Data

Bubbles: Quality Preserving Performance Boosting for Hier-

archical Clustering. In Proc. ACM SIGMOD International

Conference on Management of Data (SIGMOD’01), Santa

Barbara, CA, USA, pages 79–90, 2001.

[BKP04] S. Brecheisen, H.-P. Kriegel, and M. Pfeifle. Efficient

Density-Based Clustering of Complex Objects. In Proc. 4th

IEEE International Conference on Data Mining (ICDM’04),

Brighton, UK, pages 43–50, 2004.

[BKP05] S. Brecheisen, H.-P. Kriegel, and M. Pfeifle. Efficient Sim-

ilarity Search on Vector Sets. In Proc. 11. GI-Fachtagung

für Datenbanksysteme in Business, Technologie und Web

(BTW’05), Karlsruhe, Germany, pages 425–443, 2005.

[BKP06a] S. Brecheisen, H.-P. Kriegel, and M. Pfeifle. Multi-Step

Density-Based Clustering. Knowledge and Information Sys-

tems (KAIS), 9(3):284–308, 2006.

176 REFERENCES

[BKP06b] S. Brecheisen, H.-P. Kriegel, and M. Pfeifle. Parallel Density-

Based Clustering of Complex Objects. In Proc. 10th Pacific-

Asia Conference on Knowledge Discovery and Data Mining

(PAKDD’06), Singapore, pages 179–188, 2006.

[BKSG06] S. Brecheisen, H.-P. Kriegel, M. Schubert, and M. Gruber.

VICO: Visualizing Connected Object Orderings. In Proc.

11th International Conf on Extending Database Technology

(EDBT’06), Munich, Germany, pages 1151–1154, 2006.

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The

R∗-tree: An Efficient and Robust Access Method for Points

and Rectangles. In Proc. ACM SIGMOD International Con-

ference on Management of Data (SIGMOD’90), Atlantic City,

NJ, USA, pages 322–331, 1990.

[BÖ97] T. Bozkaya and Z. M. Özsoyoglu. Distance-Based Index-

ing for High-Dimensional Metric Spaces. In Proc. ACM

SIGMOD International Conference on Management of Data

(SIGMOD’97), Tucson, AZ, USA, pages 357–368, 1997.

[Bri95] S. Brin. Near Neighbor Search in Large Metric Spaces. In

Proc. 21st International Conference on Very Large Databases

(VLDB’95), Zurich, Switzerland, pages 574–584, 1995.

[BWF+00] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N.

Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The

Protein Data Bank. Nucleic Acids Research, 28(1):235–242,

2000.

[CNBYM01] E. Chávez, G. Navarro, R. Beaza-Yates, and J. Marroqúın.

Searching in Metric Spaces. ACM Computing Surveys,

33(3):273–321, 2001.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-Tree: An Efficient

Access Method for Similarity Search in Metric Spaces. In

Proc. 23rd International Conference of Very Large Databases

(VLDB’97), Athens, Greece, pages 426–435, 1997.

REFERENCES 177

[CSL99] H. S. Chang, S. Sull, and S. U. Lee. Efficient Video Index-

ing Scheme for Content-Based Retrieval. IEEE Transactions

on Circuits and Systems for Video Technology (TCSVT),

9(8):1269–1279, 1999.

[CV95] C. Cortes and V. Vapnik. Support-Vector Networks. Machine

Learning, 20(3):273–297, 1995.

[CVJK04] C. H. L. Costa, J. D. Valle Jr., and A. L. Koerich. Automatic

classification of audio data. In Proc. IEEE International Con-

ference on Systems, Man, and Cybernetics (SMC’04), pages

562–567, 2004.

[CZ02] S. S. Cheung and A. Zakhor. Efficient video similarity mea-

surement with video signature. In Proc. IEEE International

Conference on Image Processing (ICIP’02), Rochester, NY,

USA, pages 621–624, 2002.

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-

Based Algorithm for Discovering Clusters in Large Spatial

Databases with Noise. In Proc. 2nd International Conference

on Knowledge Discovery and Data Mining (KDD’96), Port-

land, OR, USA, pages 291–316, 1996.

[EM97] T. Eiter and H. Mannila. Distance Measures for Point Sets

and Their Computation. Acta Informatica, 34(2):103–133,

1997.

[FBF+94] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, et al. Effi-

cient and Effective Querying by Image Content. Journal of

Intelligent Information Systems (JIIS), 3(3/4):231–262, 1994.

[FI92] U. M. Fayyad and K. B. Irani. On the Handling of Continuous-

Valued Attributes in Decision Tree Generation. Machine

Learning, 8(1):87–102, 1992.

[FJ03] M. J. Fonseca and J. A. Jorge. Indexing High-Dimensional

Data for Content-Based Retrieval in Large Databases. In

178 REFERENCES

Proc. 8th International Conference on Database Systems for

Advanced Applications (DASFAA’03), Kyoto, Japan, pages

267–274, 2003.

[FPSS96] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowl-

edge Discovery and Data Mining: Towards a Unifying Frame-

work. In Proc. 2nd International Conference on Knowledge

Discovery and Data Mining (KDD’96), Portland, OR, USA,

pages 82–88, 1996.

[FRM94] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast

Subsequence Matching in Time-Series Databases. In Proc.

ACM SIGMOD International Conference on Management of

Data (SIGMOD’94), Minneapolis, MN, USA, pages 419–429,

1994.

[GFKS02] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola.

Multi-Instance Kernels. In Proc. 19th International Con-

ference on Machine Learning (ICML’02), Sydney, Australia,

pages 179–186, 2002.

[GG98] V. Gaede and O. Günther. Multidimensional Access Methods.

ACM Computing Surveys, 30(2):170–231, 1998.

[GGM02] H. Greenspan, J. Goldberger, and A. Mayer. A Probabilis-

tic Framework for Spatio-Temporal Video Representation &

Indexing. In Proc. 7th European Conference on Computer

Vision, Copenhagen, Denmark, pages 461–475, 2002.

[Gut84] A. Guttman. R-trees: A Dynamic Index Structure for Spatial

Searching. In Proc. ACM SIGMOD International Conference

on Management of Data (SIGMOD’84), Boston, MA, USA,

pages 47–57, 1984.

[HCH99] B. Huet, A. Cross, and E. Hancock. Graph Matching for

Shape Retrieval. Advances in Neural Information Processing

Systems, 11(2):866–902, 1999.

REFERENCES 179

[HS95] G. R. Hjaltason and H. Samet. Ranking in Spatial Databases.

In Proc. 4th International Symposium on Large Spatial

Databases (SSD’95), Portland, ME, USA, pages 83–95, 1995.

[HSE+95] J. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, and Niblack

W. Efficient Color Histogram indexing for Quadratic Form

Distance Functions. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 17(7):729–736, 1995.

[Jag91] H. V. Jagadish. A Retrieval Technique for Similar Shapes.

In Proc. ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD’91), Denver, CO, USA, pages

208–217, 1991.

[JB92] H. V. Jagadish and A. M. Bruckstein. On sequential shape

descriptions. Pattern Recognition, 25(2):165–172, 1992.

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering:

A Review. ACM Computing Surveys, 31(3):265–323, 1999.

[Kai04] K. Kailing. New Techniques for Clustering Complex Objects.

PhD thesis, Institute for Computer Science, University of Mu-

nich, 2004.

[KBK+03] H.-P. Kriegel, S. Brecheisen, P. Kröger, M. Pfeifle, and

M. Schubert. Using Sets of Feature Vectors for Similar-

ity Search on Voxelized CAD Objects. In Proc. ACM

SIGMOD International Conference on Management of Data

(SIGMOD’03), San Diego, CA, USA, pages 587–598, 2003.

[KKG03] H.-P. Kriegel, P. Kröger, and I. Gotlibovich. Incremental

OPTICS: Efficient Computation of Updates in a Hierarchical

Cluster Ordering. In Proc. 5th International Conference on

Data Warehousing and Knowledge Discovery (DaWaK’03),

Prague, Czech Republic, pages 224–233, 2003.

180 REFERENCES

[KKM+03] H.-P. Kriegel, P. Kröger, Z. Mashael, M. Pfeifle, M. Pötke, and

T. Seidl. Effective Similarity Search on Voxelized CAD Ob-

jects. In Proc. 8th International Conference on Database Sys-

tems for Advanced Applications (DASFAA’03), Kyoto, Japan,

pages 27–36, 2003.

[KKPS04a] K. Kailing, H.-P. Kriegel, A. Pryakhin, and M. Schubert.

Clustering Multi-Represented Objects with Noise. In Proc.

8th Pacific-Asia Conference on Knowledge Discovery and

Data Mining (PAKDD’04), Sydney, Australia, pages 394–403,

2004.

[KKPS04b] H.-P. Kriegel, P. Kröger, A. Pryakhin, and M. Schubert. Using

Support Vector Machines for Classifying Large Sets of Multi-

Represented Objects. In Proc. SIAM International Confer-

ence on Data Mining (SDM’04), Lake Buena Vista, FL, USA,

pages 102–114, 2004.

[KKS98] G. Kastenmüller, H.-P. Kriegel, and T. Seidl. Similarity

Search in 3D Protein Databases. In Proc. German Confer-

ence on Bioinformatics (GCB’98), Cologne, Germany, 1998.

[KKSS04] K. Kailing, H.-P. Kriegel, S. Schönauer, and T. Seidl. Efficient

Similarity Search for Hierarchical Data in Large Databases.

In Proc. 9th International Conference on Extending Data-

base Technology (EDBT’04), Heraklion, Greece, pages 676–

693, 2004.

[KKV90] E. Kubicka, G. Kubicki, and I. Vakalis. Using Graph Distance

in Object Recognition. In Proc. 18th ACM Computer Science

Conference (CSC’90), Washington, DC, USA, pages 43–48,

1990.

[KS86] H.-P. Kriegel and B. Seeger. Multidimensional Order Preserv-

ing Linear Hashing with Partial Expansions. In Proc. Inter-

national Conference on Database Theory (ICDT’86), Rome,

Italy, pages 203–220, 1986.

REFERENCES 181

[KS03] H.-P. Kriegel and S. Schönauer. Similarity Search in Struc-

tured Data. In Proc. 5th International Conference on

Data Warehousing and Knowledge Discovery (DaWaK’03),

Prague, Czech Republic, pages 309–319, 2003.

[KSF+98] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Pro-

topapas. Fast and Effective Retrieval of Medical Tumor

Shapes. IEEE Transactions on Knowledge and Data Engi-

neering (TKDE), 10(6):889–904, 1998.

[Kuh55] H. W. Kuhn. The Hungarian method for the assignment prob-

lem. Naval Research Logistics Quarterly, 2:83–97, 1955.

[McQ67] J. McQueen. Some Methods for Classification and Analy-

sis of Multivariate Observations. In Proc. 5th Berkeley Sym-

posium on Mathematical Statistics and Probability, Berkeley,

CA, USA, pages 281–297, 1967.

[Mun57] J. Munkres. Algorithms for the assignment and transportation

problems. Journal of the SIAM, 5:32–38, 1957.

[NBE+93] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasmann,

D. Petkovic, P. Yanker, C. Faloutsos, and G. Taubin. The

QBIC Project: Querying Images by Content Using Color,

Texture, and Shape. In Storage and Retrieval for Image and

Video Databases, volume 1908, pages 173–187. SPIE, 1993.

[NHS84] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid

File: An Adaptable, Symmetric Multikey File Structure.

ACM Transactions on Database Systems (TODS), 9(1):38–

71, 1984.

[NJ02] A. Nierman and H. V. Jagadish. Evaluating Structural Simi-

larity in XML Documents. In Proc. 5th International Work-

shop on the Web and Databases (WebDB’02), Madison, Wis-

consin, USA, pages 61–66, 2002.

182 REFERENCES

[PCST99] J. Platt, N. Cristianini, and J. Shawe-Taylor. Large Margin

DAGs for Multiclass Classification. In Advances in Neural

Information Processing Systems 12 (NIPS’99), Denver, CO,

USA, pages 547–553, 1999.

[RB01] J. Ramon and M. Bruynooghe. A polynomial time computable

metric between point sets. Acta Informatica, 37(10):765–780,

2001.

[Sei97] T. Seidl. Adaptable Similarity Search in 3-D Spatial Data-

base Systems. PhD thesis, Institute for Computer Science,

University of Munich, 1997.

[SK98] T. Seidl and H.-P. Kriegel. Optimal Multi-Step k-Nearest

Neighbor Search. In Proc. ACM SIGMOD International Con-

ference on Management of Data (SIGMOD’98), Seattle, WA,

USA, pages 154–165, 1998.

[SKK01] T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recognition of

Shapes by Editing Shock Graphs. In Proc. 8th International

Conference on Computer Vision (ICCV’01), Vancouver, BC,

Canada, pages 755–762, 2001.

[SQL+03] J. Sander, X. Qin, Z. Lu, N. Niu, and A. Kovarsky. Automatic

Extraction of Clusters from Hierarchical Clustering Represen-

tations. In Proc. 7th Pacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD 2003), Seoul, Korea,

pages 75–87, 2003.

[TC02] G. Tzanetakis and P. Cook. Musical Genre Classification of

Audio Signals. IEEE Transactions on Speech and Audio Pro-

cessing (TASLP), 10(5):293–302, 2002.

[TJTSF00] C. Traina Jr., A. Traina, B. Seeger, and C. Faloutsos. Slim-

Trees: High Performance Metric Trees Minimizing Overlap

between Nodes. In Proc. 7th International Conference on

Extending Database Technology (EDBT’00), Konstanz, Ger-

many, pages 51–65, 2000.

REFERENCES 183

[TK00] T. Tolonen and M. Karjalainen. A Computationally Efficient

Multipitch Analysis Model. IEEE Transactions on Speech and

Audio Processing (TASLP), 8(6):708–716, 2000.

[Uhl91] J. Uhlmann. Satisfying general Proximity/Similarity Que-

ries with Metric Trees. Information Processing Letters (IPL),

40(4):175–179, 1991.

[WFKvdM97] L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Mals-

burg. Face Recognition by Elastic Bunch Graph Matching.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (TPAMI), 19(7):775–779, 1997.

[WLCS04] Y. Wu, C.-Y. Lin, E. Chang, and J. R. Smith. Multi-

modal information fusion for video concept detection. In

Proc. IEEE International Conference on Image Processing

(ICIP’04), Singapore, pages 2391–2394, 2004.

[WWL+99] J. T. L. Wang, X. Wang, K. I. Lin, D. Shasha, B. A. Shapiro,

and K. Zhang. Evaluating a Class of Distance-Mapping Algo-

rithms for Data Mining and Clustering. In Proc. 5th Interna-

tional Conference on Knowledge Discovery and Data Mining

(KDD’99), San Diego, CA, USA, pages 307–311, 1999.

[WZCS02] J. T. L. Wang, K. Zhang, G. Chang, and D. Shasha. Finding

Approximate Patterns in Undirected Acyclic Graphs. Pattern

Recognition, 35(2):473–483, 2002.

[XJK99] X. Xu, J. Jäger, and H.-P. Kriegel. A Fast Parallel Cluster-

ing Algorithm for Large Spatial Databases. Data Mining and

Knowledge Discovery, 3(3):263–290, 1999.

[Yia93] P. Yianilos. Data Structures and Algorithms for Nearest

Neighbor Serch in General Metric Spaces. In Proc. 4th ACM-

SIAM Symposion on Discrete Algorithms (SODA’93), Austin,

TX, USA, pages 311–321, 1993.

184 REFERENCES

[Zha03] T. Zhang. Semi-Automatic Approach for Music Classifica-

tion. In Internet Multimedia Management Systems IV, volume

5242, pages 81–91. SPIE, 2003.

[ZRHM98] Y. Zhuang, Y. Rui, T. S. Huang, and S. Mehrotra. Adap-

tive Key Frame Extraction Using Unsupervised Clustering.

In Proc. IEEE International Conference on Image Processing

(ICIP’98), Chicago, IL, USA, pages 866–870, 1998.

[ZS03] J. Zhou and S. Sander. Data Bubbles for Non-Vector

Data: Speeding-up Hierarchical Clustering in Arbitrary Met-

ric Spaces. In Proc. 29th International Conference on Very

Large Databases (VLDB’03), Berlin, Germany, pages 452–

463, 2003.

[ZSS92] K. Zhang, R. Statman, and D. Shasha. On the editing distance

between unordered labeled trees. Information Processing Let-

ters (IPL), 42:133–139, 1992.

[ZWS96] K. Zhang, J. Wang, and D. Shasha. On the editing distance

between undirected acyclic graphs. International Journal of

Foundations of Computer Science (IJFCS), 7(1):43–57, 1996.

Curriculum Vitae

Stefan Brecheisen was born on December 19, 1975 in Munich, Germany. He

attended primary school from 1982 to 1986, and high school from 1986 to

1995. From October 1995 to October 1996, he served in the mandatory civil

service at the old people’s home Altenheim St. Elisabeth in Munich, Germany.

He entered the Ludwig-Maximilians-Universität München (LMU) in No-

vember 1996, studying Computer Science with a minor in Mathematics. His

diploma thesis is titled “Using Sets of Feature Vectors for Similarity Search

on Voxelized CAD Objects” and was supervised by Prof. Hans-Peter Kriegel.

In February 2003, Stefan Brecheisen started working at the LMU as a

teaching and research assistant in the group of Prof. Hans-Peter Kriegel, the

chair of the teaching and research unit for database and information systems

at the Department “Institute for Informatics”. His research interests include

similarity search and data mining in large standard, spatial, and multimedia

databases.

186 CURRICULUM VITAE

	Acknowledgments
	Abstract
	Abstract (in German)
	Survey of Chapters
	I Preliminaries
	1 Introduction
	1.1 Challenges for Modern Database Systems
	1.2 Complex Objects
	1.2.1 Representation as Vector Data
	1.2.2 Representation as Arbitrary Metric Data

	1.3 Outline

	2 Similarity Search
	2.1 Similarity Models
	2.1.1 The Feature Vector Approach
	2.1.2 Feature Vectors of Complex Objects
	2.1.3 Distance-Based Similarity
	2.1.4 Invariance against Transformations
	2.1.5 Adaptable Similarity Search

	2.2 Similarity Query Types
	2.2.1 Similarity Range Query
	2.2.2 Nearest-Neighbor Query
	2.2.3 k-Nearest-Neighbor Query
	2.2.4 Similarity Ranking Query

	2.3 Efficient Similarity Search
	2.3.1 Index Structures
	2.3.2 Multi-Step Query Processing

	2.4 Requirements for Similarity Measures
	2.5 Summary

	3 Density-Based Clustering
	3.1 Foundations
	3.2 Partitioning Clustering
	3.3 Hierarchical Clustering

	II Multi-Step Similarity Search and Clustering
	4 Efficient Similarity Search on Vector Sets
	4.1 Application Ranges for Vector Sets
	4.2 Distance Measures on Vector Sets
	4.3 Filters for Vector Sets
	4.3.1 Closest Pair Approach
	4.3.2 Centroid Approach
	4.3.3 Norm Vector Approach
	4.3.4 Discussion

	4.4 Experimental Evaluation
	4.4.1 Settings
	4.4.2 Complete Similarity Search
	4.4.3 Partial Similarity Search

	4.5 Summary

	5 Multi-Step Density-Based Clustering
	5.1 Related Work
	5.1.1 Exact Clustering
	5.1.2 Approximated Clustering

	5.2 Accelerated Density-Based Clustering
	5.2.1 Basic Idea
	5.2.2 Extended OPTICS
	5.2.3 Extended DBSCAN
	5.2.4 Length-Limitation of the Predecessor Lists

	5.3 Similarity Measures for Clusterings
	5.3.1 Similarity Measure for Clusters
	5.3.2 Similarity Measure for Partitioning Clusterings
	5.3.3 Similarity Measure for Hierarchical Clusterings

	5.4 Experimental Evaluation
	5.4.1 Settings
	5.4.2 Exact Clustering Experiments
	5.4.3 Approximated Clustering Experiments

	5.5 Summary

	6 Parallel Density-Based Clustering of Complex Objects
	6.1 Related Work
	6.2 Server-Side Data Partitioning
	6.3 Client-Side Clustering
	6.4 Server-Side Merging
	6.5 Experimental Evaluation
	6.6 Summary

	III Advanced Similarity Search Applications
	7 Visual Density-Based Data Analysis
	7.1 Application Ranges
	7.1.1 Visual Data Mining
	7.1.2 Similarity Search
	7.1.3 Evaluation of Similarity Models

	7.2 Cluster Recognition
	7.2.1 Related Work
	7.2.2 Gradient Clustering

	7.3 Cluster Representatives
	7.3.1 The Extended Medoid Approach
	7.3.2 Minimizing the Core-Distance
	7.3.3 Maximizing the Successors

	7.4 Browsing Cluster Hierarchies
	7.5 Visualizing Connected Object Orderings
	7.5.1 Analysis of Complex Data Spaces
	7.5.2 Architecture and Implementation

	7.6 Experimental Evaluation
	7.6.1 Cluster Recognition
	7.6.2 Cluster Representation
	7.6.3 Discussion

	7.7 Summary

	8 Hierarchical Music Genre Classification
	8.1 Related Work
	8.2 Efficient Hierarchical Genre Classification
	8.3 Practical Music Classification with User Feedback
	8.4 Experimental Evaluation
	8.5 Summary

	IV Conclusions
	9 Summary and Outlook
	9.1 Summary of Contributions
	9.2 Future Work

	List of Figures
	List of Tables
	List of Definitions
	References
	Curriculum Vitae

