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Zusammenfassung

Modelle für Infektionskrankheitszahlen aus der Krankheitsüberwachung müssen die spe-

zifischen Charakteristika dieser Daten berücksichtigen. Während sie über einen längeren

Zeitraum ein reguläres, häufig saisonales Muster aufweisen, gibt es gelegentliche Unregel-

mäßigkeiten oder Ausbrüche.

Ein Modell, das ein Kompromiss zwischen einem mechanistischen und einem empiri-

schen Modell ist, wird vorgeschlagen. Ein entscheidendes Konzept ist die Unterscheidung

zwischen einer endemischen und einer epidemischen Komponente, was es ermöglicht das

reguläre Muster von den Unregelmäßigkeiten und Ausbrüchen zu trennen. Das ist von be-

sonderem Vorteil für die Ausbruchserkennung im Rahmen der Krankheitsüberwachung des

öffentlichen Gesundheitswesens. Während die endemische Komponente parametergesteu-

ert ist, basiert die epidemische Komponente auf einem beobachtungsgesteuerten Ansatz,

einschließlich einer Autoregression auf vergangene Beobachtungen.

Eine besondere Herausforderung von Infektionskrankheitszahlen ist die Modellierung

der Ausbrüche und Unregelmäßigkeiten in den Daten. Wir modellieren den Autoregressi-

onsparameter der epidemischen Komponente durch ein bayesianisches Bruchpunktmodell,

welches ein adaptives Maß an Glättung aufweist und in der Lage ist sowohl die Sprünge und

schnellen Anstiege als auch die langsamen Rückgänge der Fälle zu modellieren. Während

sich das Modell als allgemeiner Ansatz zur Modellierung von Infektionskrankheitszahlen

verwenden lässt, ist es insbesondere geeignet für die Ausbruchserkennung im Rahmen der

Krankheitsüberwachung des öffentlichen Gesundheitswesens. Des weiteren ermöglichen die

Vorhersageeigenschaften des bayesianischen Bruchpunktmodells kurzfristige Vorhersagen

der Kranheitsfälle, die von besonderem Interesse im öffentlichen Gesundheitswesen sind.

Eine sequentielle Schätzmethode des Modells durch einen ”particle filter”wird bereitge-

stellt, die für eine prospektive Analyse des Bruchpunktmodells, bedingt auf feste Werte der

übrigen Parameter, verwendet werden kann, was von besonderem Vorteil für die Krank-

heitsüberwachung im öffentlichen Gesundheitswesen ist.

Eine geeignete multivariate Erweiterung wird bereitgestellt, die in der Lage ist die Inter-

aktionen zwischen den Einheiten, z.B. Altersgruppen oder räumlichen Regionen, zu erklä-

ren. Eine Anwendung auf Influenza- und Meningokokkendaten zeigt, dass die gelegentlichen

Meningokokkenausbrüche weitgehend durch den Einfluß von Influenza auf Meningokokken

erklärt werden können. Das Risiko eines durch Influenza bedingten Meningokokkenaus-

bruchs kann vorhergesagt werden. Der Vergleich der verschiedenen Modelle, einschließlich

eines auf Gauss Markov Zufallsfeldern basierten Modells, zeigt, dass sowohl die Einbezie-



hung einer epidemischen Komponente, als auch eines zeitlich variierenden epidemischen

Parameters die Modellanpassung und die Vorhersagefähigkeit des Modells verbessert.

Abstract

Models for infectious disease surveillance counts have to take into account the specific

characteristics of this type of data. While showing a regular, often seasonal, pattern over

long time periods, there are occasional irregularities or outbreaks.

A model which is a compromise between mechanistic models and empirical models is

proposed. A key idea is to distinguish between an endemic and an epidemic component,

which allows to separate the regular pattern from the irregularities and outbreaks. This

is of particular advantage for outbreak detection in public health surveillance. While the

endemic component is parameter-driven, the epidemic component is based on observation-

driven approaches, including an autoregression on past observations.

A particular challenge of infectious disease counts is the modelling of the outbreaks and

irregularities in the data. We model the autoregressive parameter of the epidemic com-

ponent by a Bayesian changepoint model, which shows an adaptive amount of smoothing,

and is able to model the jumps and fast increases as well as the smooth decreases in the

data. While the model can be used as a generic approach for infectious disease counts, it is

particularly suited for outbreak detection in public health surveillance. Furthermore, the

predictive qualities of the Bayesian changepoint model allow for short term predictions of

the number of disease cases, which are of particular public health interest.

A sequential update using a particle filter is provided, that can be used for a prospective

analysis of the changepoint model conditioning on fixed values for the other parameters,

which is of particular advantage for public health surveillance.

A suitable multivariate extension is provided, that is able to explain the interactions be-

tween units, e.g. age groups or spatial regions. An application to influenza and meningococ-

cal disease data shows that the occasional outbreaks of meningococcal disease can largely

be explained by the influence of influenza on meningococcal disease. The risk of a future

meningococcal disease outbreak caused by influenza can be predicted. The comparison of

the different models, including a model based on Gaussian Markov random fields shows

that the inclusion of the epidemic component as well as a time varying epidemic parameter

improves the fit and the predictive qualities of the model.
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Chapter 1

Introduction

The history of infectious diseases is characterized by an everlasting fight between humans

and the different types of viruses. While some diseases are widely under control, as polio

or measles, new threats arise as HIV or new types of the consistently mutating influenza

virus, e.g. the currently impending avian influenza.

Statistical models can help to control and prevent diseases. Outbreak detection systems,

that are based on statistical models, can lead to an early detection of outbreaks. Control

measures as vaccination or isolation and treatment of infected can then be initiated at an

early stage and help to prevent further cases and to get the disease under control.

While bigger outbreaks will sooner or later be recognized, this is not necessarily the

case for smaller outbreaks in less frequently observed diseases as hepatitis or meningitis,

especially if cases spread over a wide area. Statistical models can detect such outbreaks

and give rise to further investigations to find the reason of the disease, which can help to

prevent further cases by eliminating the source.

Aside from these features, statistical models can help to understand the nature of the

disease, e.g. the velocity of spread and ascertain factors, that have an influence on the

disease, e.g. other types of diseases. Based on these models, the further spread of the

disease can be predicted, which can give an idea of the magnitude of an outbreak.

We will propose a range of models, that partly address all considered features of infec-

tious disease modelling.



2 1. Introduction

1.1 Data

Counts of infectious diseases have particular characteristics, that have to be taken into

account, when modeling this specific type of data. While these data often show a regular

pattern over large periods, e.g. seasonality or trends, they have occasional irregularities

or outbreaks. These two characteristics of infectious diseases data are related with two

characteristics of infectious diseases: endemics and epidemics. Infectious diseases typically

show both of them, when observed over a longer time period. It is therefore meaningful to

distinguish between endemic and epidemic periods.

Outbreaks show different characteristics depending on the type of infectious disease.

These characteristics depend mainly on the mode of transmission, where direct transmis-

sion, i.e. from person to person, and indirect transmission, e.g. via food, water or a vector

as insects, can be distinguished. While directly transmitted diseases, as influenza, usually

show outbreaks with an exploding number of cases, predominantly indirectly transmitted

diseases, as the different types of hepatitis, usually show short or longer periods of a slightly

increased number of cases, typically caused by a point source.

Another common feature of infectious disease counts is overdispersion with respect to

the usual Poisson assumption. In directly transmitted diseases, this may be caused by

the fact that the generation time of the disease does not equal the observation time. In

indirectly transmitted diseases the regular pattern is usually given by a cumulation of

smaller outbreaks and does therefore often not follow the Poisson assumption.

Beside these features, infectious disease counts, that usually arise in surveillance systems

often show underreporting and reporting delays.

1.2 Models

1.2.1 Models for chronic diseases

Models for chronic diseases have found a brought interest in the last two decades. Although

chronic diseases do not show the same characteristics as infectious diseases, in particular

they do not show seasonality and epidemic outbreaks, these kind of models can be used for

infectious diseases in the rare case that the data do not show seasonality and outbreaks,

and are therefore of interest as a basis for more general infectious disease models.

The first models for spatial chronic disease data were developed for the purpose of

disease mapping, which consists in smoothing disease rates and finding disease clusters,
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which can be used to draw disease atlases and be helpful e.g. for etiological or health

service research. One can distinguish two approaches for disease mapping, those based on

Gaussian Markov random fields (GMRF) (e.g. Rue and Held, 2005) and those based on

cluster models estimated via the reversible jump algorithm of Green (1995).

Model based disease mapping goes back to Clayton and Kaldor (1987) who smoothed

the mortality rates of lip cancer observed in Scotland by a spatially structured effect using a

GMRF prior. This model was extended by Besag et al. (1991) who introduced an additional

unstructured effect, to adjust for unobserved heterogeneity in the data. This purely spatial

model was extended to a space-time model assuming a linear (Bernardinelli et al., 1995;

Xia and Carlin, 1998), and a structured (Knorr-Held and Besag, 1998) time trend. Addi-

tionally different types of space-time interactions were proposed, assuming linear time and

unstructured space (Bernardinelli et al., 1995), linear time and structured space (Assunção,

2003), structured time and unstructured space (Xia and Carlin, 1998) unstructured/linear

time and unstructured space (Sun et al., 2000) unstructured time and un-/structured space

(Waller et al., 1997). Knorr-Held (2000) compares the four combinations of un-/structured

time and space interactions.

Another purpose for modeling space-time data is the prediction of space-time trends

(Berzuini et al., 1993; Besag et al., 1995; Knorr-Held and Rainer, 2001; Assunção, 2003;

Schmid and Held, 2004). Particularly suited for this task are age period cohort (APC)

models (Berzuini et al., 1993; Besag et al., 1995; Knorr-Held and Rainer, 2001; Schmid and

Held, 2004), which will be described later in this section.

While models based on GMRFs show a constant amount of smoothing, given by the

variance of the GMRF prior, cluster models allow the correlation structure to vary over

space or time (Ferreira et al., 2002). A purely spatial cluster model is e.g. proposed by

Knorr-Held and Raßer (2000). A space-time cluster model has recently been proposed by

Yan and Clayton (2006).

A different purpose of models for chronic diseases is ecological regression, which aims to

investigate the influence of risk factors, and the assessment of environmental justice by the

introduction of covariates. Clayton et al. (1993) investigate the influence of urbanization

and industrialization on cancer in Sardinia. Further models are proposed by Waller et al.

(1997); Xia and Carlin (1998); Knorr-Held and Besag (1998); Natário and Knorr-Held

(2003). A special type of models including covariate information are the age period cohort

(APC) models which include these three effects, where period is the time of infection or

death and cohort is the time of birth (Berzuini et al., 1993; Besag et al., 1995; Lagazio
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et al., 2003; Knorr-Held and Rainer, 2001; Schmid and Held, 2004).

1.2.2 Models for infectious diseases

Models for infectious diseases can be divided into mechanistic and empirical models. Mech-

anistic models are not applicable to infectious disease count data, since they require to

observe the complete infection process, including the exact infection time and duration

and the number of susceptibles, which are only available in very special cases. Beside this,

they are only applicable to directly transmitted diseases. However, given this information,

mechanistic models provide insights about characteristics of diseases which may be helpful

for building empirical models.

Mechanistic Models

Mechanistic models try to model the infection mechanism of a disease, based on data of a

completely observed infection process. Given this information these models can give answer

to questions as ”How fast does the disease grow?” ”How many people will be affected?” and

”How can vaccination affect the spread?”. We will introduce mechanistic models by the

example of the SIR model, which assumes that a person is first susceptible (S), is infectious

(I) for a while, if he or she gets infected, and is then recovered (R), i.e. immune or dead,

and plays no further role in the spread of the disease. One of the central insights of the SIR

model is that the speed of the spread of a disease depends of the number of infected and the

number of susceptibles. Only if both numbers are high the disease can spread fast. Since the

number of susceptibles in a closed population decreases with the spread of the disease, the

lack of susceptibles stops the disease usually before the whole population has been infected.

A key quantity in the SIR model is the basic reproduction number, which is the rate with

which one infectious person infects other persons in a ’virgin’ population, i.e. a population

consisting entirely of susceptibles. This rate, together with the number of infectious and

susceptibles, gives information about the number of infected by one infectious. Based on

this rate, the vaccination coverage necessary to stop the disease and the final size of the

disease can be estimated.

The SIR model assumes that a susceptible person gets immediately infected by the

contact with an infectious person. Additionally it assumes that after having been infected

a person can not become susceptible anymore. There is a variety of models assuming

different characteristics of disease, e.g. the SEIR model, that includes a state exposed (E)

or the SIS and SIRS models that allow a person to become susceptible after an infectious
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period. Further models include heterogeneity of the population or spatial spread of the

disease. For an overview of mechanistic modes see e.g. Diekmann and Heesterbeek (2000);

Daley and Gani (1999); Becker (1989); Anderson and Britton (2000).

Empirical Models

Empirical models for infectious disease counts were mainly proposed for one or more of

the following reasons: surveillance, ecological regression, description and prediction of the

disease. These models have to deal with the particular characteristics of infectious disease

counts, the most challenging being the epidemic periods.

One of the most popular approaches for the surveillance of infectious diseases based

on count data was proposed by Stroup et al. (1989). They try to find outbreaks in the

data by comparing the number of cases of the current month with a confidence interval

based on the observed counts of the same month of the last 5 years and their surrounding

month. This avoids the deal with the seasonality in the data. However, this approach

does not account for outbreaks in the past data. This has the effect that past outbreaks

make the system less sensitive for the detection of future outbreaks. Farrington et al.

(1996) improved this model by allowing for a time trend and tackled the problem of past

outbreaks by downweighting counts from possible past outbreaks. Watier and Richardson

(1991) and Williamson and Hudson (1999) based surveillance systems on ARIMA models

under the assumption of normal distributed data. While the inclusion of an autoregression

and thereby dependence between the counts seems to be a sensible extension, the normality

assumption does often not hold, since many diseases show small counts. Kleinman et al.

(2004) proposed a generalized linear mixed model (GLMM) approach for the surveillance of

space-time counts. The model assumes a binomial distribution for the counts and includes

independent seasonal and spatial effects. However, it does not assess the problem of past

outbreaks. A review and discussion of prospective statistical surveillance in public health

is given in Sonesson and Bock (2003), however, the authors do not discuss the typical

features of infectious disease counts, and most models considered do not take into account

seasonality or past outbreaks in the data.

The most sophisticated models for infectious disease counts were proposed for the pur-

pose of describing or predicting the disease. Zeger (1988) used a GLMM to analyse count

data of polio infections in the USA from 1970-1983. These data were reanalysed be several

authors using a GLMM, see Nelson and Leroux (2005) for an overview. Jørgensen et al.

(1999) assumed a Poisson state space model where the mean depends on a Gamma Markov
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process, which can be seen as a random walk with drift. While these models are able to

model the seasonality and overdispersion in the data by seasonal covariates and random

effects, the latent process may not be able to capture outbreaks in the data adequately.

Lindbäck and Svensson (2001) proposed a log linear Poisson model for campylobacter data

of Sweden, including a stepwise linear trend and a seasonal term with varying amplitude,

peak and form from year to year. Counts from putative outbreak periods were excluded

from the analysis. Mugglin et al. (2002) proposed a log linear Poisson model for space-time

influenza data of Scotland assuming the logarithm of the mean to depend on a multivariate

Gaussian AR(1) process, where the innovation can switch between 3 levels, an endemic level

an epidemic level, in case of an outbreak, an a third level for the decline of the cases after

the outbreak. Knorr-Held and Richardson (2003) propose a model for space-time meningo-

coccal disease data distinguishing an endemic pattern for periods of no outbreaks and a

”hyperendemic” pattern that models possible outbreaks in the data. While the endemic

pattern is build in the spirit of chronic diseases models including structured time, space

and seasonal effects, the hyperendemic pattern allows for an autoregression on functions

of counts of the same and neighboring regions which can be switched on and off according

to a two-stage hidden Markov model. Morton and Finkenstädt (2005) proposed a discrete

time version of the SIR model allowing for immigration of cases from outside the considered

region and underreporting in the data, see also Finkenstädt et al. (2002); Finkenstädt and

Grenfell (2000). The influence of meningococcal disease on influenza is analysed by Hubert

et al. (1992) and Jensen et al. (2004).

1.3 Scope of thesis

The thesis is organized as follows: Chapter 2 gives a short introduction to different simula-

tion techniques for Bayesian inference that will be used in the following chapters: Markov

chain Monte Carlo (MCMC) methods, including reversible jump MCMC and two sequential

Monte Carlo (SMC) methods: a particle filter and the forward-backward algorithm.

Chapter 3 describes the Bayesian changepoint model, that will be used in Chapter 5-7,

and the estimation using MCMC and SMC methods.

Chapter 4 is based on the model proposed in Held et al. (2005). This model is a compro-

mise between a mechanistic and an empirical approach. While a mechanistic modelling of

the data is not possible the approach is based on a branching process, which is an approx-

imation of the mechanistic chain binomial model (see e.g. Anderson and Britton, 2000).
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This allows to capture the characteristics of an infectious disease. A key idea of the model

is the distinction between an endemic and an epidemic component. A Bayesian version

of the model is established and compared with a model based on GMRF including space

and time effects and seasonal covariates. Furthermore, a new approach for the epidemic

component is proposed, showing the best fit, compared to the other approaches.

In Chapter 5 the time constant epidemic parameter of the univariate model considered

in Chapter 4 is replaced by a time varying parameter following a Bayesian changepoint

model. This allows the model to capture the epidemic characteristics of infectious diseases

clearly better and makes the model particularly suited for outbreak detection in public

health surveillance.

In Chapter 6 two types of sequential Monte Carlo methods for the estimation of the

model proposed in Chapter 5 are considered: The forward-backward algorithm and the

particle filter. The forward-backward algorithm can be used as an alternative to the re-

versible jump algorithm, applied in Chapter 5, for the update of the changepoint model

within the MCMC algorithm. The particle filter can be used for a prospective analysis of

the changepoint model conditioning on fixed values for the other parameters, which is of

particular advantage for public health surveillance, where data arise sequentially.

In Chapter 7 a multivariate version of the model described in Chapter 5 is established,

making use of the dependence structures in the epidemic component proposed in Chapter

4. We apply the model to study the influence of influenza on meningococcal disease and

the spatial spread of influenza in the districts of Germany and compare it to the models

considered in Chapter 4.
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Chapter 2

Bayesian inference

In this chapter some basic ideas of Bayesian inference are introduced, that will be used

throughout this thesis.

Bayesian inference is based on the subjectivist view of probability. From the subjectivist

view the only relevant thing is uncertainty. ”The actual fact of whether or not the events

considered are in some sense determined, or known by other people, and so on, is of no

consequence” (de Finetti, 1974). The uncertainty may be expressed by probability. In

parametric models there is not only uncertainty about the data D but also about the

parameters θ, which can both be expressed by probability. The starting point of Bayesian

inference consists of setting up a joint distribution over all random quantities P (D, θ). We

will refer to P as a probability as well as a density. This joint distribution is given by

P (D, θ) = P (D|θ)P (θ),

where P (D|θ) is the likelihood and P (θ) is the prior distribution. Thus in Bayesian in-

ference not only a distribution for the data, but also for the parameters, has to be found.

Having observed the data D, the interest in Bayesian inference is the distribution of the

parameters given the data P (θ|D), which is called the posterior distribution. This can be

found by Bayes theorem,

P (θ|D) =
P (D|θ)P (θ)

P (D)
=

P (D|θ)P (θ)∫
P (D|θ)P (θ)dθ

.

The posterior distribution is, up to the marginal distribution of the data in the denomina-

tor, also called the marginal likelihood, proportional to the joint distribution of data and
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parameters, or their representation by the likelihood and the prior distribution,

P (θ|D) ∝ P (D|θ)P (θ).

The marginal likelihood does not depend on the parameters and is therefore also called

normalization constant. Any features of the posterior distribution that may be of inter-

est, e.g. moments, quantiles or highest posterior density regions can be calculated by the

posterior expectation of functions of θ,

E(f(θ)|D) =

∫
P (D|θ)P (θ)f(θ)dθ∫
P (D|θ)P (θ)dθ

.

For further details on Bayesian inference see Bernardo and Smith (1994).

2.1 Markov chain Monte Carlo

In most practical applications neither the posterior distribution nor the posterior expecta-

tion of functions of θ can be calculated analytically, since one has to solve the integrals in

the expressions. Probably the most universal way to solve this problem are Markov chain

Monte Carlo (MCMC) methods. This allows to approximate the posterior distribution by

a sample Xt, t = 1, . . . , n from the posterior distribution P (θ|D), where the sample size n

can be determined by the user. Based on this sample features of the posterior distribution

can be approximated by

E(f(θ)|D) ≈ 1

n

n∑
t=1

f(Xt).

One can usually not sample from the posterior distribution directly, since it is not possible

to evaluate the integral of the normalization constant. The idea of MCMC is to construct a

Markov chain that converges to a stationary distribution which coincides with the posterior

distribution. Once converged the samples of the Markov chain come from the posterior

distribution. Such a Markov chain can be constructed without knowledge about the nor-

malization constant using the Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953;

Hastings, 1970).
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2.1.1 Metropolis-Hastings algorithm

Starting from some staring value X0, at each time t, a candidate X∗ is sampled from a

proposal distribution q(X∗|Xt), which may depend of the current state Xt. This candidate

is then accepted with probability

α(Xt, X
∗) = min

(
1,
P (D|X∗)P (X∗)

P (D|Xt)P (Xt)

q(Xt|X∗)

q(X∗|Xt)

)
.

If the candidate is accepted the next state becomes Xt+1 = X∗. If the candidate is rejected,

the chain does not move, Xt+1 = Xt. The second term in the minimum function is the

posterior ratio of the candidate and the current state multiplied by the proposal ratio. The

normalization constant of the posterior distribution cancels out in the acceptance rate.

The so constructed Markov chain converges to the posterior distribution.

2.1.2 Single-component Metropolis-Hastings

Instead of updating all parameters θ en block, it is possible to divide θ to components

θ1, . . . , θh and update the components one by one. This is often computationally more

efficient. A single-component Metropolis-Hastings step consists of h single steps, i.e. one

for each component. Assume that all components up to i are already updated. A candidate

X∗
i is sampled from a proposal distribution qi(X

∗
i |Xt,i, Xt,−i), that may depend on the

current state of component i, Xt,i and the current state of the other components Xt,−i =

(Xt+1,1, . . . , Xt+1,i−1, Xt,i+1, . . . , Xt,h). The candidate is accepted with probability

α(Xt,i, Xt,−i, X
∗
i ) = min

(
1,
P (X∗

i , Xt,−i|D)q(Xt,i|X∗
i , Xt,−i)

P (Xt,i, Xt,−i|D)q(X∗
i |Xt,i, Xt,−i)

)
.

If the candidate is accepted the next state becomes Xt+1,i = X∗
i . If the candidate is

rejected, the chain does not move, Xt+1,i = Xt,i. The posterior ratio reduces to the ratio

of the full conditional distributions P (θi|θ−i, D).

2.1.3 Gibbs sampler

If the full conditional of component i of the single-component Metropolis-Hastings al-

gorithm, P (θi|D, θ−i) ∝ P (D|θi)P (θi), is known, the update of this component can be

simplified. Using this distribution as proposal distribution, the terms in the acceptance

probability cancel down and the acceptance probability is equal to unity. The step then
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just consists of sampling from the full conditional distribution.

2.1.4 The reversible jump algorithm

The reversible jump algorithm proposed by Green (1995) is a generalization of the Metropolis-

Hastings algorithm to the case that the dimension of the parameters is not fixed. The

algorithm works similar to the MH algorithm. Let P (θ|D) be the posterior distribution of

the parameter vector θ. The dimension of the parameters k is part of the parameter vector

θ. A candidate X∗ is proposed from a proposal distribution q(X∗|X). The time index t of

the Markov chain is omitted here. In contrast to the MH algorithm this candidate may be

from a parameter vector θ∗, that is of different dimension than the parameter vector θ of

the current state X. The candidate is then accepted with probability

α(X,X∗) = min

(
1,
P (X∗|D)q(X|X∗)

P (X|D)q(X∗|X)

)
,

or otherwise the current state is retained. A common way to propose a candidate of

different dimension is to first propose a new dimension k∗ from a proposal q(k∗|k) and

then the candidate for the other parameters X∗
−k conditioned on the proposed dimension

q(X∗
−k|X−k, k

∗). The proposal distribution has then the form q(X∗
−k|X−k, k

∗)q(k∗|k).
It is often helpful to let the proposal depend on the current state. However, in the

case that the candidate is of different dimension, it is not straightforward how the proposal

distribution should depend on the current state. A way has to be defined how the proposal

distribution should depend on the current state and this has to be done in a way that

detailed balance is retained. Beside this, the acceptance probability has to be adjusted by

an additional term.

However, it is not always necessary or helpful to let the proposal depend on the current

state. Especially when the full conditional is a known distribution one can use this as

proposal distribution as in the Gibbs sampler.

2.1.5 Effective sample size

Since MCMC samples are usually correlated, it is useful to estimate the effective sample

size (ESS) (see Kass et al., 1998). The effective sample size is an estimate of the number

of independent samples needed to obtain a parameter estimate with the same precision as

the MCMC estimate considered based on M dependent samples. For one parameter this is
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calculated as

ESS = M/(1 + 2
k∑
j=1

ρ(k)),

where M is the sample size and
∑k

j=1 ρ(k) is the sum of the first k sample autocorrelations,

where k is chosen based on the initial monotone sequence estimator (Geyer, 1992).

2.1.6 Deviance information criterion

To assess the model fit the deviance can be used, which is based on the log-likelihood,

D = −2 log(L).

If the data Y depend on some index r, e.g. time or space, and are assumed to be indepen-

dent given the parameters θ, the deviance can be factorized,

D = −2 log(L) = −2
∑
r

d2
r,

with the squared deviance residuals defined as

d2
r = log(P (Yr|θ)).

Model comparison can be based on the deviance information criterion (DIC) proposed in

Spiegelhalter et al. (2002), which combines the posterior mean deviance D̄ with a measure

of complexity pD, that penalizes overfitting. This is defined as

pD = D̄ −D(θ̄),

where θ are the parameters of interest, that should be chosen with respect to the purpose

of the investigation. The DIC can then be calculated as the sum of the posterior mean of

the Deviance D̄ and pD,

DIC = D̄ + pD.

For further details on MCMC see Gilks et al. (1996) or Denison et al. (2002).
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2.2 Sequential Monte Carlo

An alternative to MCMC methods, in some special cases, e.g. if the model is a Markov state-

space or a hidden Markov model, are sequential Monte Carlo methods. These methods

estimate the posterior distribution sequentially over time. We will consider two types of

sequential Monte Carlo methods: particle filters and the forward-backward algorithm.

2.2.1 Particle filter

If the model is a Markov state-space model, particle filters can be used to update the model

sequentially in time. This is especially of advantage if the data are observed sequentially in

time. It is then not necessary to estimate the complete model each time a new observation

is obtained, as it is necessary e.g. in the case of the MCMC algorithm. Instead, the estimate

of the model up to the current time point can be based on the estimate up to the last time

point. We will outline some basic ideas of particle filters that can be used to estimate a

Markov state-space model sequentially in time.

Markov state-space models

A Markov state-space model assumes that the observations yt, t = 1, . . . , n depend on

latent parameters xt, t = 1, . . . , n. The latent parameters or hidden states build a Markov

process, i.e. P (xt|x1:t−1) = P (xt|xt−1), t = 2, . . . , n, with initial distribution P (x1), where

x1:t stands for (x1, . . . , xt). The observations yt, t = 1, . . . , n are assumed to be independent

conditioned on the hidden states xt, t = 1, . . . , n, where the full conditional distribution of

yt is P (yt|y1:n, x1:n) = P (yt|xt). The model has then the following components

P (x1)

P (xt|xt−1) t = 2, . . . , n

P (yt|xt) t = 1, . . . , n,

which determine the joint distribution

P (x1:n, y1:n) = P (x1)
n∏
t=2

P (xt|xt−1)
n∏
t=1

P (yt|xt),

where the latent parameters xt, t = 1, . . . , n build the signal process and the observations

yt, t = 1, . . . , n build the observation process. The structure of a Markov state-space
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model can be visualized by the graphical model shown in Figure 2.1. For more details on

graphical models see e.g. Cowell et al. (1999). The full conditional of any node just depends

on the nodes which it is connected to, e.g. P (yt|y1:n, x1:n) = P (yt|xt) and P (xt|y1:n, x1:n) =

P (xt|yt, xt−1, xt+1). Additionally the graph implies that P (xt|xt+1, y1:n) = P (xt|xt+1, y1:t)

and P (xt|xt−1, y1:n) = P (xt|xt−1, yt:n).

v v v v vv v v v v
xt

yt

xt−1

yt−1

xt−2

yt−2

xt+1

yt+1

xt+2

yt+2

q q q q q q

Figure 2.1: Graphical model of the Markov state-space models. The circles represent the
nodes and the lines between the nodes represent undirected links.

Importance sampling

A weighted sample of the posterior distribution P (x1:t|y1:t) can be obtained by importance

sampling. A sample of size N , x
(i)
1:n, i = 1, . . . , N , is obtained from a importance distribu-

tion, also called proposal distribution, q(x1:n|y1:n), which may or may not depend on y1:n.

The N samples or particles are then weighted by the normalized importance weights

w̃(x
(i)
1:n) =

w(x
(i)
1:n)∑N

j=1w(x
(j)
1:n)

which are obtained from the importance weights

w(x
(i)
1:n) =

P (x
(i)
1:n|y1:n)

q(x
(i)
1:n|y1:n)

.
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Features of the posterior distribution can then be approximated by a weighted average of

functions of the samples,

E(f(x1:n)|y1:n) ≈
N∑
i=1

w̃(x
(i)
1:n)f(x

(i)
1:n).

Sequential importance sampling

By using a proposal distribution with the following property

q(x1:t|y1:t) = q(x1:t−1|y1:t−1)q(xt|x1:t−1, y1:t),

it is possible to calculate the importance weights recursively in time,

w̃(x
(i)
1:t) = w̃(x

(i)
1:t−1)

P (yt|x(i)
t )P (x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
1:t−1, y1:t)

. (2.1)

One can then estimate the posterior sequentially in time. A weighted sample x
(i)
1 , i =

1, . . . , N of the posterior up to time 1, P (x1|y1), is obtained using a proposal q(x1|y1).

Given that a weighted sample x
(i)
1:t−1, i = 1, . . . , N of the posterior up to time t − 1,

P (x1:t−1|y1:t−1), has already been calculated, a weighted sample x
(i)
1:t, i = 1, . . . , N of the

posterior up to time t, P (x1:t|y1:t), can be obtained by extending the sample up to time

t−1, x
(i)
1:t−1, i = 1, . . . , N , by a sample x

(i)
t , i = 1, . . . , N from q(xt|x1:t−1, y1:t). The weights

can then be calculated using Equation (2.1).

Resampling step

A problem that arises, when the weights are calculated recursively is that the weights

become more and more skewed. For the sample most of the probability mass will then

concentrate on few samples, while the other samples have weights close to 0. A way to

overcome this problem is to include a resampling step. This creates unweighted samples

from the posterior by resampling from the weighted samples according to the importance

weights. The weights w̃(x
(i)
1:t), i = 1, . . . , N are replaced by integer valued N(x

(i)
1:t), i =

1, . . . , N , where
∑N

i=1N(x
(i)
1:t) = N . Then the samples are replicated according toN(x

(i)
1:t). If

N(x
(i)
1:t) = 0 the sample dies out. There are several ways to obtain the N(x

(i)
1:t), i = 1, . . . , N .

The most popular is the one proposed by Gordon et al. (1993), which corresponds to

sampling the N(x
(i)
1:t), i = 1, . . . , N from a multinomial distribution with parameters N
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and w̃(x
(i)
1:t), i = 1, . . . , N .

The particle filter including an importance sampling step and a resampling step is called

the bootstrap filter.

Markov transition step

While in sequential importance sampling the distribution of the weights becomes more

skewed, the further one gets from the starting time point of the model, using the bootstrap

filter one has the reverse problem: the number of distinct samples gets smaller with in-

creasing distance to the end time point, since in every step some of the samples die out. To

overcome this problem Andrieu et al. (2001) propose to include a Markov transition step,

e.g. a MCMC step. For every of the N samples, a new sample is obtained e.g. by the MH

algorithm, where the proposal is conditioned on the current sample. Since the distribution

of the old sample is from the posterior distribution, which is the stationary distribution of

the MCMC algorithm, the new sample is from the posterior distribution as well. However,

the new samples are likely to be distinct after the Markov transition step.

The particle filter algorithm is summarized in Figure 2.2. The weights w̃(x
(i)
1:t−1) do

not appear in (2.2) since the weights of the samples are uniform after the resampling step.

Figure 2.3 illustrates the procedure of the considered particle filter. For further details on

particle filters see e.g. Doucet et al. (2001b).

2.2.2 Forward-backward algorithm

If the model is a hidden Markov model, the forward-backward algorithm can be used to

update the model sequentially. A hidden Markov model is a Markov state space model,

where the parameters build a Markov chain with finite state space {1, . . . , S}. Since a

hidden Markov model is a special case of a Markov state space model, it has the same

graph, shown in Figure 2.1.

The forward-backward algorithm consists of two steps: a forward and a backward step.

In the forward step the distributions that are required for the backward step are calculated

sequentially in time. In the backward step, the distributions that were calculated in the

forward step are used to calculate the posterior distribution of the parameters sequentially

in time.
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Forward step

In the forward step the distributions P (xt, y1:t), t = 1, . . . , n are calculated. Note, that

these are discrete distributions with finite sample space {1, . . . , S}. Due to the structure

of the hidden Markov model the following distributions are already known: The prior

distributions given by P (x1) and P (xt|xt−1), t = 2, . . . , n, and the distributions of the

observations P (yt|xt), t = 1, . . . , n. Using these distributions, and given that P (xt−1, y1:t−1)

has already been calculated, we can calculate

P (xt = s, xt−1 = r, y1:t) = P (yt|xt = s, xt−1 = r, y1:t−1)P (xt = s|xt−1 = r, y1:t−1)

·P (xt−1 = r, y1:t−1)

= P (yt|xt = s)P (xt = s|xt−1 = r)P (xt−1 = r, y1:t−1),

for r, s = 1, . . . , S. Since the state space is finite this distribution can easily be marginalized

with respect to xt−1 and we get

P (xt = s, y1:t) =
S∑
r=1

P (yt|xt = s)P (xt = s|xt−1 = r)P (xt−1 = r, y1:t−1),

for s = 1, . . . , S. So, the distributions given by P (xt, y1:t), t = 2, . . . , n can be calculated

recursively, starting with

P (x1 = s, y1) = P (y1|x1 = s)P (xt = s).

As a byproduct the marginal likelihood of the observations can be calculated as

P (y1:n) =
S∑
r=1

P (xn = r, y1:n).

Backward step

In the backward step, the distributions that were calculated in the forward step are used

to calculate the posterior distribution P (x1:n|y1:n) of the parameters sequentially in time.

First, the distributions P (xn = r|y1:n) and P (xt−1 = r|xt = s, y1:n), t = n − 1, . . . , 1, are

calculated. The distribution for t = n can be calculated as

P (xn = r|y1:n) =
P (xn = r, y1:n)

P (y1:n)
.
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The rest of the distributions are calculated by

P (xt−1 = r|xt = s, y1:n) = P (xt−1 = r|xt = s, y1:t)

=
P (xt = s, xt−1 = r, y1:t)

P (xt = s, y1:t)

=
P (yt|xt = s)P (xt = s|xt−1 = r)P (xt−1 = r, y1:t−1)

P (xt = s, y1:t)
,

for t = n− 1, . . . , 1. The backward step makes thereby use of the following property of the

hidden Markov model:

P (xt−1 = r|xt = s, y1:n) = P (xt−1 = r|xt = s, y1:t).

The posterior distribution can then be calculated as

P (x1:n = s1:n|y1:n) = P (xn = sn|y1:n)
n−1∏
t=1

P (xt−1 = st−1|xt = st, y1:n)

for st = 1, . . . , S, t = 1, . . . , n. If the algorithm is part of a MCMC algorithm, samples of the

posterior of the parameters xt, t = 1, . . . , n can be obtained by recursively sampling from

the distributions P (xn|y1:n) and P (xt−1|xt, y1:n), t = n − 1, . . . , 1. Due to the symmetry

of the dependence structure of the model one could also start the algorithm at the end,

i.e. at t = n, instead of the beginning, t = 1. For further details on the forward-backward

algorithm see e.g. Scott (2002).
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1. Initialisation

• Start at t = 1.

2. Importance sampling step

• If t = 1: For i = 1, . . . , N , sample x̃
(i)
1 ∼ q(x1|y1).

• If t > 1: For i = 1, . . . , N , sample x̃
(i)
t ∼ q(xt|x1:t−1, y1:t) and set x̃

(i)
1:t =

(x
(i)
1:t−1, x̃

(i)
t ).

• For i = 1, . . . , N , calculate the importance weights

w̃(x
(i)
1:t) =

P (yt|x(i)
t )P (x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
1:t−1, y1:t)

. (2.2)

• Normalize the importance weights.

3. Resampling step

• Sample N integers (N(x
(1)
1:t ), . . . , N(x

(N)
1:t )) ∼ Mu(N, w̃

(i)
1:t).

• Obtain ẍ
(i)
1:t, i = 1, . . . , N by replicating the particles x̃

(i)
1:t, i = 1, . . . , N ac-

cording to the integers N(x
(i)
1:t), i = 1, . . . , N .

4. Markov transition step

• For i = 1, . . . , N , sample x
(i)
1:t ∼ Ξ(x1:t|ẍ(i)

1:t), where Ξ(·|·) is a transition kernel
of invariant distribution P (x1:t|y1:t), as the transition kernel of the MCMC
algorithm.

• Set t← t+ 1 and go to step 2.

Figure 2.2: The considered particle filter.
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i = 1, . . . , N = 10 samples

Importance
step

Resampling
step

Markov
transition
step
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−1}
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Figure 2.3: Starting with N = 10 unweighted and distinct samples x
(i)
1:t−1, i = 1, . . . , N of

the posterior distribution P (x1:t−1|y1:t−1) at time 1 : t−1, N = 10 unweighted and distinct

sample x
(i)
1:t, i = 1, . . . , N of the posterior distribution P (x1:t|y1:t) at time 1 : t are obtained

after applying the three steps of the particle filter: the importance step, the resampling
step and the Markov transition step. The importance step gives weighted samples x̃

(i)
1:t,

i = 1, . . . , N of the posterior distribution P (x1:t|y1:t) at time 1 : t. The resampling step

gives unweighted, but usually not distinct samples ẍ
(i)
1:t, i = 1, . . . , N of the posterior

distribution P (x1:t|y1:t) at time 1 : t. The Markov transition step gives unweighted and

distinct samples x
(i)
1:t, i = 1, . . . , N of the posterior distribution P (x1:t|y1:t) at time 1 : t.



22 2. Bayesian inference



Chapter 3

Bayesian changepoint models

The analysis of Bayesian changepoint models, assuming an unknown number of change-

points, goes back to Yao (1984) who estimates a discrete-time changepoint model with

Gaussian noise by a sequential algorithm. Barry and Hartigan (1993) propose a sequential

algorithm for the estimation of a discrete-time changepoint model based on the product

partition model proposed by Barry and Hartigan (1992). A continuous-time changepoint

model was analysed by Green (1995) using the reversible-jump algorithm. Fearnhead (2006)

extends the sequential algorithm of Barry and Hartigan (1993) to the case of prior that

can be factorized to a prior on the number of changepoints and a prior on the location of

the changepoints given the number of changepoints, as used in Green (1995).

Changepoint models can be used to estimate effects that vary over time. In contrast to

random walks or splines, that assume a constant correlation structure, changepoint models

allow the correlation structure to vary over time (Ferreira et al., 2002). In other words,

the amount of smoothing is adaptive rather than constant. An additional advantage of

changepoint models is that no prior for the correlation structure has to be assumed. For

more details on changepoint models see e.g. Denison et al. (2002).

We will consider the following model for the data Y = (Y1, . . . , Yn),

Yt ∼ Po(λtXt), t = 1, . . . , n,

where Xt is a positive valued covariate and λ = (λ1, . . . , λn) is assumed to follow a change-

point model with unknown number K and locations θ(1) < . . . < θ(K) of changepoints. For

convenience we define θ(0) = 0, θ(K+1) = n and θ = (θ(0), . . . , θ(K+1)). The parameters λ
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are then defined as

λt = λ(k) if t = θ(k−1) + 1, . . . , θ(k)

One value of the changepoint effect is then a step function, as shown in Figure 3.1. We will

call the data vectors S(k) = (Yθ(k−1)+1, . . . , Yθ(k)), that lie between two successive change-

points, segments, and the rates of the segments λ(k) segment means or segment rates. The

segments are assumed to be independent conditioned on the changepoints. Estimating a

changepoint model is a model selection problem, since the number 2K + 1 of changepoints

θ(1), . . . , θ(K) and rates λ(1), . . . , λ(K+1), i.e. the number of parameters, is assumed to be

unknown. However, instead of a decision for one model or number of changepoints, as

usually done in model selection, one can get a distribution of the different models or num-

ber of changepoints. More precisely one gets the posterior distribution for the number of

changepoints K, the changepoints θ and the rates λ. The effect is then the marginal pos-

terior distribution of the rates λ, which is a mixture of different step functions. However,

it may also be interesting to look at the marginal distribution of the number of change-

points K or the location of the changepoints θ, or even on the conditional distributions,

e.g. the distribution of the rates given a concrete number of changepoints, e.g. the number

of changepoints with the highest posterior probability.

For λ(k), k = 1, . . . , K + 1 we assume independent Gamma priors, which are conjugate

to the Poisson distribution of the data,

λ(k) ∼ Ga(α, β), k = 1, . . . , K + 1

For the number of changepoints and for the location given the number of changepoints we

assume uniform priors,

P (K) =
1

n
, K = 0, 1, . . . , n− 1 (3.1)

P (θ|K) =

(
n− 1

K

)−1

. (3.2)

The prior probability of a changepoint at a certain location t conditioned on a certain

number of changepoints is then

P (t ∈ θ|K) =
K

n− 1
(3.3)
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Figure 3.1: Structure of the changepoint effect.

and the unconditioned prior probability of a changepoint at a certain location t is hence

P (t ∈ θ) =
n−1∑
K=0

K

n− 1
· 1
n

=
1

2
,

(Held et al., 2006).

3.1 Model extensions

Additionally we will consider two extensions of the model. First we introduce a hyperprior

on the second parameter of the prior of λ(k),

β ∼ Ga(a, b),

resulting in a Gamma-Gamma prior for λ(k) (see Bernardo and Smith, 1994, p. 120). This

gives a more robust estimate of the rates λ(k).

Secondly, we adjust for overdispersion by introducing time-dependent random effects ωt,
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t = 1, . . . , n, that act multiplicative on the the mean µt = λtXt,

Yt ∼ Po(ωtλtXt), t = 1, . . . , n.

The random effects are assumed to be Gamma distributed ωt ∼ Ga(ψ, ψ) with ψ as shape

and rate parameter. The marginal distribution of Yt|µt, integrating out ωt, is then a Neg-

ative binomial distribution with mean µt and dispersion parameter ψ, Zt|µt ∼ Nb(µt, ψ),

which has variance σ2
t = µt(1−µt/ψ). A smaller value of ψ corresponds to a higher amount

of overdispersion. For ψ → ∞ the variance converges to the mean σ2
t → µt and we get

back to the Poisson case. Figure 3.2 shows the relation of the mean µt and the standard

deviation σt for different values of ψ. The relation is not linear, however, for a smaller

value of ψ, there is more overdispersion independent of the value of µt.
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Figure 3.2: Relation of µt and σt for different values of ψ.

3.2 Application to coal-mining disaster data

Figure 3.3 shows an application of the changepoint model to the yearly number of observed

coal-mining disasters in Britain from 1851 to 1962, that have been previously studied by

various authors (e.g. Green, 1995; Denison et al., 2002), assuming Xt to be simply an

intercept. For λk we used a Ga(1.705, 1) prior with mean and variance 1.705, which is

equal to the data mean. Figure 3.4 shows the results for the extended model, where a
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Ga(1, 1) prior has been used for β and a Ga(1, 0.1) prior for ψ. The mean and the variance

of the prior for λk do not exist for this choice. As we will see later it is possible to estimate

one step ahead predictions of the changepoint model. The Figures therefore include the

predicted probability of a changepoint at time t = 1962 (which means that there is a

change between the years 1962 and 1963) in Figure 3.3(c) and 3.4(c) and the predicted

number of disasters in the year t = 1963 (Figure 3.3(d) and 3.4(d)). The estimation of λ

in the extended model is a bit smoother, and the number of changepoints is slightly lower.

The predictive distribution of the number of disasters is a little more dispersed showing a

higher probability for very small and very high values.
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Figure 3.3: The changepoint model applied to the coal-mining disaster data.
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Figure 3.4: The changepoint model with extensions applied to the coal-mining disaster
data.

3.3 Posterior distribution

The posterior distribution of the model has the following form,

P (λ,θ, K|Y ) =
P (Y |λ)P (λ|θ)P (θ|K)P (K)

P (Y )
.

If a conjugate prior is used for the segment rates λ, it is possible to get a analytic expression

for the distribution of the data conditioned on the changepoints P (Y |θ, K) by marginaliz-

ing the joint distribution of the data and the segment rates conditioned on the changepoints

P (Y ,λ|θ, K) = P (Y |λ)P (λ|θ, K) with respect to the segment rates λ. This simplifies
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the update of the changepoints, as we will see later. We get the following expression,

P (Y |θ, K) =

∫
P (Y ,λ|θ, K)dλ =

K+1∏
k=1

∏θ(k)

t=θ(k−1)+1(Xt)
Ytβαλ

λ Γ(αλ,k−1,k)∏θ(k)

t=θ(k−1)+1 Yt!Γ(αλ)(βλ,k−1,k)
αλ,k−1,k

, (3.4)

where

αλ,k−1,k = αλ +
θ(k)∑

t=θ(k−1)+1

Yt,

βλ,k−1,k = βλ +
θ(k)∑

t=θ(k−1)+1

Xt.

The distribution P (Y |θ, K) is factorized with respect to the segments, i.e. the segments

are independent conditioned on the changepoints even after averaging over λ.

3.4 Markov state space form of the changepoint model

The considered changepoint model is a Markov state space model. This is of particular

advantage for the calculation of the predictive distribution and allows for a sequential

update of the model.

Let Kt be the number of changepoints within time 1 : t, i.e. K = Kn−1, and θt = 1 if

there is a changepoint at time t and θt = 0 otherwise. For convenience we define θ0 = 1

and θn = 1. The distribution P (λ|θ) can then be written as

λt|(θt−1 = 0) = λt−1 (3.5)

λt|(θt−1 = 1) ∼ Ga(αλ, βλ). (3.6)

We set K0 = 0. This representation is in analogy to Yao (1984). The following probabilities

are already known from (3.1) and (3.3),

P (Kt = l) =
1

t+ 1
. (3.7)

and

P (θt = 1|Kt = l) =
l

t
. (3.8)
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The probability in (3.7) can only be derived from (3.1) in this way if the marginal prior

distribution of Kt in the model for time 1 : n, is the same, as the prior for K in the model

for time 1 : (t+1). The probability P (Kt = l) does then not depend on n. This is the case

for a uniform distribution. Using these probabilities we can calculate

P (θt = 1|Kt−1 = k) =
t∑

j=0

P (θt = 1, Kt = j|Kt−1 = k)

= P (θt = 1, Kt = k + 1|Kt−1 = k) (3.9)

=
P (θt = 1, Kt = k + 1, Kt−1 = k)

P (Kt−1 = k)

=
P (θt = 1, Kt = k + 1)

P (Kt−1 = k)

=
P (θt = 1|Kt = k + 1)P (Kt = k + 1)

P (Kt−1 = k)
, (3.10)

=
k + 1

t+ 1
. (3.11)

The model has then the following Markov representation. Defining the parameter vector

xt = (λt, θt−1, Kt−1) at time t we get

P (xt|x1:t) = P (λt, θt−1, Kt−1|λ1:(t−1), θ1:(t−2), K1:(t−2))

= P (λt, θt−1, Kt−1|λt−1, θt−2, Kt−2)

= P (xt|xt−1).

This can be further decomposed,

= P (λt|θt−1, λt−1)P (θt−1, Kt−1|Kt−2)

= P (λt|θt−1, λt−1)P (θt−1|Kt−2).
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3.5 Markov structure of the changepoints

The changepoints build a priori a Markov chain, P (θ(k+1) = s|θ(k) = t, θ(1:k−1)) = P (θ(k+1) =

s|θ(k) = t), with finite state space {0, . . . , n− 1}. Using (3.11) we get

P (θ(k+1) = s|θ(k) = t) =
k + 1

s+ 1
, s = t+ 1, (3.12)

P (θ(k+1) = s|θ(k) = t) =
s−1∏
i=t+1

(
1− k + 1

i+ 1

)
k + 1

s+ 1

=
s−1∏
i=t+1

(
i− k
i+ 1

)
k + 1

s+ 1
, s > t+ 1. (3.13)

As mentioned before, the segments S(k), k = 1, . . . , K + 1 are independent given the

changepoints, and for their distribution conditioned on the changepoints applies

P (S(k)|θ) = P (S(k)|θ(k−1), θ(k)).

The model of the data and the changepoints marginalized by the segment means can

therefore be represented by the graphical model shown in Figure 3.5.
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Figure 3.5: Graphical model of the changepoint model marginalized by the segment means
λ. The circles represent the nodes and the lines between the nodes represent undirected
links.
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3.6 Estimation of the changepoint model

We consider three ways to estimate the changepoint model: the reversible jump algorithm

(2.1.4), the particle filter (2.2.1) and the forward-backward algorithm (2.2.2).

3.6.1 Reversible jump MCMC

We make use of the decomposed proposal by first proposing a new dimension, by proposing

a new number of changepoints K∗ from the proposal q(K∗|K), and then a new parameter

vector (λ∗,θ∗) from the proposal q(λ∗|θ∗)q(θ∗|θ, K∗), which is decomposed to a proposal

for the location of the changepoints θ∗, that depends on the current location and the

proposed number of changepoints q(θ∗|θ, K∗) and a proposal for the segment rates λ∗,

depending on the proposed locations of the changepoints, q(λ∗|θ∗). For the number of

changepoints we use a random walk proposal, where a split, K∗ = K + 1, is proposed with

probability 0.5 or otherwise a merge, K∗ = K − 1, is proposed. If K = 0 a split is always

proposed and if K = n − 1 a merge is always proposed. The proposal of the locations of

the changepoints has then the following form, depending on the proposed candidate for

the number of changepoints:

split: Add a uniformly chosen new changepoint.

merge: Remove a uniformly chosen existing changepoint.

Since the full conditional of the segment rate P (λ(k)|θ, K,Y ) is a Gamma distribution,

i.e. know, we use this as proposal distribution. This does not depend on the current state

of the segment rates and, as we will see, this is enough to avoid the additional difficulties

that may arise by letting the proposal depend on the current states.

The acceptance probability α((λ,θ, K), (λ∗,θ∗, K∗)) is then

min

(
1,
P (Y |λ∗)P (λ∗|θ∗)P (θ∗|K∗)P (K∗)q(λ∗|θ∗)q(θ∗|θ, K∗)q(K∗|K)

P (Y |λ)P (λ|θ)P (θ|K)P (K)q(λ|θ)q(θ|θ∗, K)q(K|K∗)

)
.

The full conditional of λ can be expressed as

P (λ|θ, K,Y ) =
P (Y |λ)P (λ|θ)

P (Y |θ, K)
.
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Substituting this into the acceptance probability, as proposed in (Holmes and Mallick,

2000), and cancelling leaves

α((λ,θ, K), (λ∗,θ∗, K∗)) = min

(
1,
P (Y |θ∗, K∗)P (θ∗|K∗)P (K∗)q(θ∗|θ, K∗)q(K∗|K)

P (Y |θ, K)P (θ|K)P (K)q(θ|θ∗, K)q(K|K∗)

)
.

The acceptance probability is now independent of the rates λ. The probability P (Y |θ, K)

is given in (3.4). The prior ratio of the number of changepoints, and the prior ratio and

the proposal ratio of the location of the changepoints reduce to 1. The proposal ratio of

the number of changepoints, that we call c, is

c =


0.5 for K = 0 and K = n− 1

1 for 2 ≤ k ≤ n− 3

2 for (K = 1, K∗ = 0) and (K = n− 2, K∗ = n− 1)

The acceptance probability α((λ,θ, K), (λ∗,θ∗, K∗)) for a new changepoint m is then

min

(
1,

cβαΓ(αλ,m−1,m)Γ(αλ,m,m+1)(βm−1,m+1)
αλ,m−1,m+1

Γ(α)Γ(αλ,m−1,m+1)(βλ,m−1,m)αλ,m−1,m(βλ,m,m+1)αλ,m,m+1

)
. (3.14)

If a changepoint m is removed, the second term in the minimum function has to be replaced

by its inverse.

Since the acceptance probability does not depend on the segment means λ(k) k =

1, . . . , K+1, the update of the changepoint model can be decomposed to two steps. First the

changepoints are updated using a reversible jump algorithm with the acceptance probability

in (3.14). Then the parameters λ(k) k = 1, . . . , K + 1 are updated in a Gibbs step. The

full conditional of λ(k), k = 1, . . . , K + 1 is

λ(k)| . . . ∼ Ga (αλ,k−1,k, βλ,k−1,k) .

Predictive distribution

Due to the Markov structure of the changepoint model it is possible to get the predic-

tive distribution P (λt+1, θt|Y1:t) by sampling in every iteration from the predictive dis-

tribution conditioned on the current sample of the parameters P (λt+1, θt|Y1:t, λt, Kt−1) =
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P (λt+1|θt, λt)P (θt|Kt−1), which can be obtained from (3.11), (3.5) and (3.6),

P (θt = 1|Kt−1 = k) =
k + 1

t+ 1
, (3.15)

λt+1|θt = 0, λt = λt, (3.16)

λt+1|θt = 1, λt ∼ Ga(αλ, βλ). (3.17)

This corresponds to averaging P (λt+1, θt|Y1:t, λt, Kt−1) over λt and Kt−1.

Model extensions

The two model extension considered for the changepoint model at the beginning of this

chapter can be easily handled within an MCMC algorithm. The hyperparameter β can be

drawn from its full conditional

β| . . . ∼ Ga

(
a+K + 1, b+

K+1∑
k=1

λ(k)

)
, (3.18)

as well as the random effects of the overdispersion

ωt| . . . ∼ Ga(ψ + Yt, ψ + λtXt). (3.19)

For ψ a MH step has to be designed, since the full conditional is no known distribution.

Since ψ > 0 we prefer to update ψ̃ = log(ψ) with a simple Metropolis-Hastings Gaussian

random walk proposal. The full conditional of ψ is

p(ψ| . . .) ∝ p(ψ)
n∏
t=1

p(ωt|ψ)

and the corresponding full conditional of ψ̃ can be obtained through a change of variables.

The variance of the random walk proposal is tuned automatically within the algorithm in

order to obtain a suitable acceptance rate between 30 and 50% (Gelman et al., 1996). The
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changepoints can be updated in the same way as in the simple cases, but with

αλ,k−1,k = αλ +
θ(k)∑

t=θ(k−1)+1

Yt,

βλ,k−1,k = βλ +
θ(k)∑

t=θ(k−1)+1

ωtXt.

The reversible jump algorithm is very fast compared to the update of the other parameters.

However, due to the simple design of the steps, the algorithm mixes very slow, which leads

to very long runs of the MCMC algorithm. We will therefore update the changepoints and

steps 10 times per iteration. This clearly improves the mixing and leads to shorter runs

and run times.

3.6.2 Particle filter

Since the considered changepoint model is a Markov state space model, the particle filter

described in Section 2.2.1 can be used to estimate the model sequentially in time. To

establish the algorithm for the considered changepoint model we have to define the im-

portance distribution and the Markov transition step. Taking the predictive distribution

(3.15)-(3.17) as importance distribution we get the following importance weights for t > 1,

using the Markov state space form (3.4) of the model,

w̃(x
(i)
1:t) =

P (Yt|x(i)
t )P (x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
1:t−1, Y1:t)

=
P (Yt|λ(i)

t )P (λ
(i)
t |θ

(i)
t−1, λ

(i)
t−1)P (θ

(i)
t−1|K

(i)
t−2)

P (λ
(i)
t |θ

(i)
t−1, λ

(i)
t−1)P (θ

(i)
t−1|K

(i)
t−2)

= P (Yt|λ(i)
t ).
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For t = 1 the prior distribution is used as proposal distribution. This leads to the same

importance weights as in the case t > 1,

w̃(x
(i)
1 ) =

P (Y1|x(i)
1 )P (x

(i)
1 )

q(x
(i)
1 |Y1)

=
P (Y1|λ(i)

1 )P (λ
(i)
1 )

P (λ
(i)
1 )

= P (Y1|λ(i)
1 ).

As Markov transition step a reversible jump step is used to generate a new value for every

particle.

Model extensions

By the inclusion of the hyperparameter and the adjustment for overdispersion, time con-

stant parameters, namely β and ψ, are introduced to the model. However, the update of

time constant parameters causes difficulties in the update using particle filters. The algo-

rithm proposed in Andrieu et al. (2001) can be used, where the time constant parameters

are replaced by time varying parameters. However, the number of samples needed increases

over time, eventually exponentially (Crisan and Doucet, 2002).

To avoid these problems on can alternatively fix the time constant parameters. We will

use the following proceeding. First the MCMC algorithm is run until time nMCMC . A

point estimate of the time constant parameters can thereby be obtained, e.g. the posterior

mean. From time nMCMC + 1 until time n the model is estimated sequentially using the

described particle filter, where the time constant parameters are fixed, taking the values

obtained from the MCMC run.

The algorithm changes as follows. The Poisson distribution for the data P (Yt|λ(i)
t ),

used in the importance step, is replaced by a Negative Binomial distribution. This avoids

the update of the random effects ωt in this step. In the Markov transition step, however,

these random effects are updated, since they allow to use the reversible jump step for the

changepoints.

3.6.3 Forward-backward algorithm

Due to their Markov property (3.5), the forward-backward algorithm, described in Section

2.2.2, can be used to estimate the posterior distribution of the changepoints. To update
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the complete model, the update of the changepoints in the reversible jump MCMC algo-

rithm can be replaced by sampling one time from the posterior of the changepoints using

the forward-backward algorithm. Since the forward-backward algorithm allows to sample

directly from the posterior, the resulting algorithm is a simple Monte Carlo algorithm,

giving independent samples from the posterior of the complete model. The algorithm is

computational inexpensive, since the forward step has to be calculate just once.

Forward step

For the update of the changepoints we will start the algorithm at the end t = n instead

of the beginning t = 1. We will calculate the distributions P (Yt:n|θ(k) = t − 1), for

k = 1, . . . , n − 1 and t = k + 1, . . . , n. The following probabilities are already known:

the probability of the segments S(k) = (Yθ(k−1)+1, . . . , Yθ(k)), k = 1, . . . , K + 1 given the

changepoints form (3.4),

P (S(k)|θ(k−1), θ(k)) =

∏θ(k)

t=θ(k−1)+1(Xt)
Ytβαλ

λ Γ(αλ,k−1,k)∏θ(k)

t=θ(k−1)+1 Yt!Γ(αλ)(βλ,k−1,k)
αλ,k−1,k

,

αλ,k−1,k = αλ +
θ(k)∑

t=θ(k−1)+1

Yt,

βλ,k−1,k = βλ +
θ(k)∑

t=θ(k−1)+1

Xt,

and the prior probabilities of the changepoints from (3.20) and (3.13),

P (θ(k+1) = s|θ(k) = t) =
k + 1

s+ 1
s = t+ 1,

P (θ(k+1) = s|θ(k) = t) =
s−t−1∏
i=1

(
t+ i− k
t+ 1 + i

)
k + 1

s+ 1
s > t+ 1.

The probabilities of no further changepoint is given by

P (θ(k+1) = n|θ(k) = t) =
n−t−1∏
i=1

(
t+ i− k
t+ 1 + i

)
.
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The desired probabilities can be calculate sequentially by first calculating the probabilities

P (Yt:n, θ
(k+1) = s|θ(k) = t− 1) = P (Yt:n|θ(k+1) = s, θ(k) = t− 1)P (θ(k+1) = s|θ(k) = t− 1)

= P (S(k)|θ(k+1) = s, θ(k) = t− 1)P (Ys+1:n|θ(k+1) = s)

·P (θ(k+1) = s|θ(k) = t− 1),

starting with the known probability P (Yn:n|θ(n−1) = n−1) = P (S(K+1)|θ(n−1) = n−1, θ(n) =

n), and then marginalizing by θ(k+1),

P (Yt:n|θ(k) = t− 1) =
n−1∑
s=t

P (S(k)|θ(k+1) = s, θ(k) = t− 1)P (Ys+1:n|θ(k+1) = s)

·P (θ(k+1) = s|θ(k) = t− 1),

for k = n−1, . . . , 1 and t = n, . . . , k+1. The marginal likelihood is given by P (Y1:n|θ(0) = 0).

Backward step

Using the following probabilities,

P (θ(k+1) = s|θ(k) = t− 1, Y1:n)

= P (θ(k+1) = s|θ(k) = t− 1, Yt:n)

=
P (θ(k+1) = s, Yt:n|θ(k) = t− 1)

P (Yt:n|θ(k) = t− 1)

=
P (Yt:n|θ(k+1) = s, θ(k) = t− 1)P (θ(k+1) = s|θ(k) = t− 1)

P (Yt:n|θ(k) = t− 1)

=
P (Yt:s|θ(k+1) = s, θ(k) = t− 1)P (Ys+1:n|θ(k+1) = s)P (θ(k+1) = s|θ(k) = t− 1)

P (Y1:n|θ(k) = t− 1)
,

we can sample from the posterior distribution of the changepoints as follows:

• Sample the first changepoint from P (θ1 = t|Y1:n) using the efficient algorithm of

Carpenter et al. (1999).

• If the k-th changepoint is at time t − 1, sample the next changepoint k + 1 from

P (θ(k+1) = s|θ(k) = t− 1, Y1:n).

The algorithm is analog to the algorithms presented in Fearnhead (2006). However, in

contrast to the algorithm of Fearnhead (2006) for this prior type, we perform the simulation
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of the changepoints without conditioning the recursions on the number of changepoints.

This leads to a faster estimate, since the computational complexity of the forward step

is of order O(n3), due to the dependence of the probabilities on k = n − 1, . . . , 1 and

t = n, . . . , k+1 and the summation over s = t, . . . , n−1, instead of O(n4) for the additional

dependence on the number of changepoints K = 0, . . . , n− 1.

To further reduce the computational complexity of our algorithm, we follow Fearnhead

(2006) by truncating the sums from the marginalization in the forward step at term l + 1

when

P (S(k)|θ(k−1), θ(k))P (Yl+1:n|θ(k+1) = l)P (θ(k+1) = l|θ(k) = t− 1)∑l
s=t P (S(k)|θ(k−1), θ(k))P (Ys+1:n|θ(k+1) = s)P (θ(k+1) = s|θ(k) = t− 1)

is less then 10−20. If the number of changepoints is proportional to the observation time n,

this reduces the computational cost to O(n2), since the length of the sums do not increase

with n. Figure 3.6 shows 10 independent samples of the changepoints sampled by the

forward-backward algorithm.

1860 1880 1900 1920 1940 1960

Figure 3.6: Ten independent samples of the changepoints.
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Model extensions

In case of the considered model extensions the forward-backward algorithm is not applicable

directly, since the changepoint problem depends on the hyperparameter β and the random

effects ωt, t = 1, . . . , n. However, the algorithm can be included in a MCMC algorithm.

The changepoints are then sampled from their full conditional, which is conditioned on

the hyperparameter β and the random effects ωt, t = 1, . . . , n. This means that the

changepoint model is updated in a Gibbs step. Since the forward step has to be run every

iteration, the update of the changepoints by forward-backward algorithm is much more

time consuming than by the reversible jump algorithm. However, the use of the forward-

backward algorithm leads to a better mixing of the MCMC algorithm and therefore to

shorter runs of the Markov chain.



Chapter 4

A model for multivariate infectious

disease counts based on a branching

process with immigration

4.1 Introduction

Modelling disease counts has been frequently tackled by the use of generalize linear mixed

models (GLMM) (e.g. Zeger, 1988; Kleinman et al., 2004), as used for chronic diseases (e.g.

Waller et al., 1997; Knorr-Held and Besag, 1998), which are based on latent parameters

assuming Gaussian Markov random field (GMRF) priors. While these kind of models are

well suited under the assumption of a purely endemic disease, the smooth effects, assuming

a constant amount of smoothing, may not be able to capture the epidemic characteristics

that are present in infectious disease data.

A promising approach to this problem is given in Held et al. (2005) and Toschke and

Held (2006), who base their model on a branching process, which is an approximation of a

mechanistic model, namely the chain binomial model (see e.g. Becker, 1989). A key idea

of the model is the distinction between an endemic component, which models the regular

pattern of the disease and an epidemic component, which explains for the outbreaks in the

data. The epidemic component includes an autoregression directly on the disease counts

and interactions between the units, e.g. regions or age groups, based on past disease counts

of related units, e.g. neighbours in a spatial setting. This observation-driven approach

should be better suited for modelling outbreaks in the data than the purely parameter-

driven GLMM approaches. However, the model is relatively simple in the way of modelling



42 4. A model for multivariate infectious disease counts

the endemic cases, consisting of independent spatial random effects, a linear trend and a

seasonal term based on independent sine and cosine curves of different frequencies.

The aim here is to bring together the branching process based model proposed by Held

et al. (2005) and GLMMs. While the epidemic part is based on the branching process

as in Held et al. (2005) the endemic part is now based on GLMMs, including structured

time effects. Since the dependence between units should be explained by the epidemic

component we do not introduce dependence between the spatial random effects of the

endemic component. We adjust for overdispersion by introducing random effects that act

multiplicatively on the mean. The marginal distribution of the disease counts, integrating

out the random effects, is then a negative binomial distribution.

We will compare seven models for the interactions between the units in the epidemic

component, where four are similar to Held et al. (2005) and Toschke and Held (2006). We

then examine the benefits of the inclusion of a random walk and an epidemic component,

by comparing the different models including a random walk, an epidemic component and

both, a random walk and an epidemic component.

In Section 2 and 3 we will present the univariate model formulation and the implemen-

tation using MCMC algorithms. In Section 4 the univariate version of the model is applied

to five disease time series and compared to the two models without random walk and epi-

demic component. In Section 5 and 6 the model is extended to the multivariate case. In

Section 7 the multivariate model is applied to data of the 2001/02 outbreak of measles,

observed in the seven districts of Bavaria and the seven epidemic model formulations are

compared to each other and with and without the inclusion of a random walk. The chapter

concludes with a discussion and an outline of possible extensions.

4.2 The univariate case

Let Zt, t = 1, . . . , n be the observed number of counts at time t. We assume the data to

be Poisson distributed, conditioned on the auxiliary variables ωt,

Zt|ωt ∼ Po(ωtµt),

where the auxiliary variables are Gamma distributed with shape and rate parameter ψ,

ωt ∼ Ga(ψ, ψ). As described in Chapter 3 this leads to a negative binomial distribution

for Zt integrating out ωt, with mean µt and dispersion parameter ψ, Zt ∼ Nb(µt, ψ). A

Gamma prior is assumed for the dispersion parameter, ψ ∼ Ga(αψ, βψ). The mean µt is
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assumed to be the sum of an endemic part νt, that explains the regular amount of cases

and can be interpreted as a baseline and an epidemic part ηt, that explains for epidemic

activity or irregularities in the data, and the interaction between units,

µt = ηt + νt.

4.2.1 The endemic component

The logarithm of endemic part of the mean νt, also referred to as endemic mean, is assumed

to be the sum of a time trend βt and a seasonal part ζt,

log νt = βt + ζt.

For the time trend β = (β1, . . . , βn) we assume a random walk prior of second order. This

assumes that conditional on the past the parameter βt has a normal distribution depending

only on the two preceding parameters βt−1 and βt−2,

βt ∼ N(2βt−1 − βt−2, σ
2
β), t = 3, . . . , n,

where the parameters of the first two time points are assumed to have a diffuse distribution,

β1 ∝ const and β2 ∝ const. The density of the joint distribution of the parameters

β = (β1, . . . , βn) is then

p(β|σ2
β) = (2πσ2

β)
(n−2)/2 exp

(
− 1

2σ2
β

n∑
t=3

(βt − 2βt−1 + βt−2)
2

)

= (2πσ2
β)

(n−2)/2 exp

(
− 1

2σ2
β

β′Rβ

)
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with penalty matrix

R =



1 -2 1

-2 5 -4 1

1 -4 6 -4 1

1 -4 6 -4 1
. . . . . . . . . . . . . . .

1 -4 6 -4 1

1 -4 5 -2

1 -2 1


.

The variance of the random walk is assumed to be inverse Gamma distributed,

σ2
β ∼ IG(ασ, βσ).

We follow Natário and Knorr-Held (2003) by using ασ = 1 and βσ = 0.00005.

The seasonal part ζt is assumed to be the sum of L harmonic waves, an intercept and,

in case of no random walk, a centered linear time trend. This can be represented in the

following form (e.g. Diggle, 1990),

ζt =
J∑
j=0

γjstj, (4.1)

with J = 2L+ 1 and

st0 = 1,

st1 = t− (n+ 1)/2,

stj =

{
sin(ρt(j+1)

2
) for j = 2, 4, . . . , 2L,

cos(ρtj
2

) for j = 3, 5, . . . , 2L+ 1,

where ρ is the base frequency, e.g. ρ = 52
2π

for weekly observed data. Independent normal

priors are assumed for the parameters γj, j = 0, . . . , J ,

γ = (γ0, . . . , γJ) ∼ N(0, σ2
γI), σ2

γ = 106.
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4.2.2 The epidemic component

The epidemic component is modeled by an autoregression on the number of cases Zt−1 at

the last time point,

ηt = λZt−1.

For the rate parameters λ we assume a Gamma prior with a Gamma hyperprior on the

second parameter,

λ ∼ Ga(αλ, βλ),

βλ ∼ Ga(a, b).

The model is a branching process with immigration, which is ergodic in the case λ < 1

and increases exponentially for λ > 1. In the ergodic case λ < 1 the mean number of

cases at time t is νt/(1 − λ) (Guttorp, 1995), and the mean number of epidemic cases

is νt/(1 − λ) − νt = λνt/(1 − λ). The parameter λ can therefore be interpreted as the

proportion of epidemic cases from the total number of cases.

4.3 Estimation by MCMC

The key to a successful application of MCMC methods to the specified models lies in a

suitable decomposition of the model using auxiliary variables.

4.3.1 Alternative representation using auxiliary variables

We therefore introduce auxiliary variables for the endemic component Xt ∼ Po(ωtνt) and

epidemic component Yt ∼ Po(ωtηt), where Zt = Xt + Yt. These can be interpreted as the

number of endemic cases Xt and the number of epidemic cases Yt.

4.3.2 Update of the parameters

Conditioned on Xt the estimation of the endemic parameters βt and γj is equivalent to

the estimation in a Bayesian log-linear Poisson regression model with response variable Xt.

This can be done in a Metropolis-Hastings (MH) step, where a normal approximation of

the full conditional by a Taylor expansion of second order is used as proposal distribution,
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see for example Rue and Held (2005, Section 4.4). While the parameters of the time trend

β and σβ can be updated jointly, the parameters γj are updated individually, since a joint

update leads to very poor acceptance rates.

The full conditional of the parameter λ is, conditioned on the corresponding auxiliary

variable Yt, a Gamma distribution, which makes it possible to update it in a simple Gibbs

step, as the hyperparameter βλ,

λ|Yt, βλ, Zt, . . . ∼ Ga(αλ +
n∑
t=1

Yt, βλ +
n∑
t=1

ωtZt),

βλ|λ, Zt, . . . ∼ Ga(αλ(a+ 1), b+ λ).

Since ψ > 0 we prefer to update ψ̃ = log(ψ) with a simple Metropolis-Hastings Gaussian

random walk proposal. The full conditional of ψ is

p(ψ| . . .) ∝ p(ψ)
n∏
t=1

p(ωt|ψ)

and the corresponding full conditional of ψ̃ can be obtained through a change of variables.

The variance of the random walk proposal is tuned automatically within the algorithm in

order to obtain a suitable acceptance rate between 30 and 50% (Gelman et al., 1996). The

full conditionals of the parameters ωit are Gamma distributions ωit| . . . ∼ Ga(ψ+Zt, ψ+µt)

allowing for an update in a Gibbs step.

The full conditional distribution of the auxiliary variables can be factorised as

P (Xt, Yt|Zt, . . .) = P (Yt|Xt, Zt, . . .)P (Xt|Zt, . . .),

where the first term P (Yt|Xt, Zt, . . .) is deterministic: Yt = Zt − Xt. Due to the Poisson

assumption the second term is binomial,

Xt| . . . ∼ Bin

(
Zt,

νt
µt

)
.

4.4 Application to univariate disease time series

We will apply the three models, a model with epidemic component, a model with ran-

dom walk and a model with both, epidemic component and random walk, to five disease

time series shown in Figure 4.1, that are collected in the German infectious disease sur-
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Figure 4.1: Five disease counts time series.

veillance system, administrated by the Robert Koch Institute in Berlin (obtained from

SurvStat@RKI, http://www3.rki.de/SurvStat): the weekly observed disease counts in

Germany from 2001 until 2004 of hepatitis A and B, and from 2001 until 2005 of meningo-

coccal disease and influenza, and the disease counts of the measles outbreak of 2001 and

2002 in Bavaria, that are aggregated to a basis of two weeks, which is closer to the gener-

ation time.

Hepatitis A and B do not show considerable person to person transmission, however,

the hepatitis A data may show some outbreaks. Meningococcal disease shows both char-

acteristics. While usually cases are not caused by person to person transmission due to

health care measures, there is always a risk of a bigger outbreak caused by person to person

transmission. Influenza and measles are almost entirely transmitted from person to person

causing bigger outbreaks in the absence of health care measures. We will compare the three

models, the model with random walk, with epidemic component and with both, random

walk and epidemic component, for the five time series. The deviance summaries together

with the median and 95% credibility interval of the estimates of the epidemic parameter

λ and the dispersion parameter ψ for the five time series are shown in Table 4.1-4.5. For

hepatitis A, hepatitis B and measles the model with random walk and the model with
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λ̂(SD) ψ̂(SD) D̄ pD DIC
epid. comp. 0.59(0.08) 14.4(2.2) 1538 13 1550
random walk − 22.5(4.3) 1473 22 1494
epid. comp. & random walk 0.12(0.1) 22.3(4.1) 1475 22 1497

Table 4.1: Hepatitis A

λ̂(SD) ψ̂(SD) D̄ pD DIC
epid. comp. 0.48(0.06) 36.6(7.6) 1396 6 1402
random walk − 46.8(11.5) 1368 13 1381
epid. comp. & random walk 0.26(0.09) 50.3(11.8) 1360 13 1373

Table 4.2: Hepatitis B

λ̂(SD) ψ̂(SD) D̄ pD DIC
epid. comp. 0.17(0.07) 26.7(7) 1486 6 1493
random walk − 27.9(7.4) 1483 14 1497
epid. comp. & random walk 0.11(0.08) 28.2(7.9) 1481 15 1496

Table 4.3: Meningococcal disease

λ̂(SD) ψ̂(SD) D̄ pD DIC
epid. comp. 0.97(0.06) 2.4(0.3) 1838 4 1842
random walk − 36.9(14.3) 1504 81 1585
epid. comp. & random walk 0.96(0.06) 2.5(0.3) 1833 9 1842

Table 4.4: Influenza

λ̂(SD) ψ̂(SD) D̄ pD DIC
epid. comp. 0.86(0.09) 4.1(1.1) 433 5 438
random walk − 24(10.5) 364 18 382
epid. comp. & random walk 0.01(0.03) 24.5(10.5) 366 18 383

Table 4.5: Measles
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both, random walk and epidemic component show almost the same DIC, while both are

better in terms of DIC than the model with epidemic component. For meningococcal dis-

ease there is no considerable difference between the three models. For influenza the model

with random walk is the best, while the model with epidemic component, and the model

with both, random walk and epidemic component, show approximately the same DIC. It

is surprising that although both components are included in the third model the model

including just a random walk shows a much better fit. This is due to the fact that model

3 explains the outbreaks in the data by the epidemic component rather than the random

walk (Figure 4.2), although the random fits the data better. An explanation may be that

the autoregressive structure is better suited for modelling outbreaks of influenza. Due to

the absence of an explosion of the number of cases, the value of λ can not take values

beyond 1. The temporary fast increases of the cases, however, can just be explained by

a bigger λ, clearly exceeding the value 1. To allow for a time varying λt would therefore

be a promising extension. Figure 4.3 shows the results for meningococcal disease. The

model with epidemic component shows a permanently increased number of epidemic cases,

which does not coincide with our intuition of the epidemic component, since we expect

outbreaks to be occasional events. This can also be observed for other time series. The
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of µt plotted against the data Zt (points).

Figure 4.2: Results for influenza for the model with random walk and epidemic component.

model including both, random walk and epidemic component, in contrast shows just two

little increases of the epidemic cases, where an outbreak is visible in the data. However,
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many of the cases that we would expect to be part of the outbreak are explained by the

random walk. It seems that the fact that the epidemic component is close to 0 most of the

time, leads to a too low estimate of λ to explain the fast increase of cases at the beginning

of the outbreaks. This reinforces the benefit of allowing for a time depending epidemic

parameter. The expected cases of the model without epidemic component do not explain

for the two outbreaks, that can be seen in the data, while the expected cases of the two

model with epidemic component show at least a little increase during the outbreaks. This

can also be seen in the predicted cases, where prediction is based on the whole time series

(Z1, . . . , Zn).

In Figure 4.4 the deviance residuals based on a negative binomial assumption for the

data are considered, i.e. the squared deviance residuals are defined as

d2
t = log(Γ(Zt + ψ))− log(Γ(ψ))− log(Zt!)− (Zt + ψ) log(µt + ψ)

+ψ log(ψ) + Zt log(µt).

The deviance residuals of all three models show little autocorrelation, where the model

with random walk and epidemic component shows slightly less autocorrelated residuals.

4.5 The multivariate case

Let Zit, i = 1, . . . , I, t = 1, . . . , n be the observed number of counts in unit i at time t. We

assume the data to be Poisson distributed, conditioned on the auxiliary variables ωit,

Zit|ωit ∼ Po(ωitµit),

where the auxiliary variables are Gamma distributed with shape and rate parameter ψ,

i.e. ωit ∼ Ga(ψ, ψ). As described in Chapter 3 this leads to a negative binomial distribution

for Zit integrating out ωit, with mean µit and dispersion parameter ψ, Zit ∼ Nb(µit, ψ). A

Gamma prior is assumed for the dispersion parameter, ψ ∼ Ga(αψ, βψ). The mean µit is,

as in the univariate case, assumed to be the sum of an endemic part νit, that explains for

the regular amount of cases and an epidemic part ηit, that explains for epidemic activity

or irregularities in the data,

µit = ηit + νit.
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95% credibility interval of νt, t =
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(g) Post. mean, ptw. (grey area)
and simult. (dashed line) 95% CI
of µt vs. Zt (points).
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(h) Post. mean, ptw. (grey area)
and simult. (dashed line) 95% CI
of µt vs. Zt (points).
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(i) Post. mean, ptw. (grey area)
and simult. (dashed line) 95% CI
of µt vs. Zt (points).
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(j) Post. mean, ptw. (grey area)
and simult. (dashed line) 95% CI
of the pred. cases vs. Zt (points).
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(k) Post. mean, ptw. (grey area)
and simult. (dashed line) 95% CI
of the pred. cases vs. Zt (points).
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(l) Post. mean, ptw. (grey area)
and simult. (dashed line) 95% CI
of the pred. cases vs. Zt (points).

Figure 4.3: Results for meningococcal disease for the model with epid. comp.(left), random
walk(middle), epid. comp. & random walk (right).
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(b) Deviance residuals.
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(c) Deviance residuals.
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Figure 4.4: Deviance residuals for meningococcal disease for the model with epid.
comp.(left), random walk(middle), epid. comp. & random walk (right).

4.5.1 The endemic component

The logarithm of endemic part of the mean νit is assumed to be the sum of a unit dependent

part αi, a time trend βt and a seasonal part ζt,

log νit = αi + βt + ζt,

The unit dependent effects αi are assumed to be independent normal distributed with a

large variance

α = (α1, . . . , αI) ∼ N(0, σ2
αI), σ2

α = 106.

The time trend βt and the seasonal part ζt are defined as in the univariate case, where

ζt does not include an intercept to avoid identification problems. Instead, αi is now the

intercept of unit i.
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4.5.2 The epidemic component

For the epidemic part ηit we consider the following models shown in Table 4.6. Model 1 is

the simplest model assuming an autoregression on the number of cases in the same unit,

where the rate is the same in every unit. There is no interaction between the units. Model

2 assumes an additional regression on the sum of the cases of related units at the last time

point, where the rate is the same in each unit. Model 3 and 4 are generalisations of model

1 and 2, respectively, allowing for a different rate for each unit. Model 5 allows for an

individual effect from each unit on each unit and can be seen as a generalisation of model

4. Model 6 assumes that the cases of the last time point of each unit have an influence on all

units, including the own, with total rate λ, which is the same for all units. The influence is

distributed on the related units, including the own, according to the proportions πji, where∑
(i=j)∨(i∼j) πji = 1. Model 7 is a generalisation of model 6 allowing for individual rates λj.

Model ηit
1 λZi,t−1

2 λZi,t−1 + φ
∑

j∼i Zj,t−1

3 λiZi,t−1

4 λiZi,t−1 + φi
∑

j∼i Zj,t−1

5
∑

(j=i)∨(j∼i) λjiZj,t−1

6
∑

(j=i)∨(j∼i) λπjiZj,t−1

7
∑

(j=i)∨(j∼i) λjπjiZj,t−1

Table 4.6: The epidemic component.

For the rate parameter λ of model 1, as well as for all other rate parameters, we assume

a Gamma prior with a Gamma hyperprior on the second parameter,

λ ∼ Ga(αλ, βλ),

βλ ∼ Ga(a, b).

We will use αλ = 1, a = 1 and b = 0.01. For the proportions πj = (πj1, . . . , πjI) we assume

a Dirichlet prior (Denison et al., 2002, p. 243)

πj ∼ Di(απj1, . . . , απjI),

where απjj = 99, απji = 1/Ij if i ∼ j, where Ij is the number of related units and απji = 0



54 4. A model for multivariate infectious disease counts

otherwise. This means that we expect a proportion of 0.99 of the cases to be caused in the

same region on average, with a standard deviation of around 0.01 and, in case of Ij = 4

related units, a two-sided 95% credibility interval of (0.97, 1).

4.6 Estimation by MCMC

The key to a successful application of MCMC methods to the specified models lies, as in

the univariate case, in a suitable decomposition of the model using auxiliary variables.

4.6.1 Alternative representation using auxiliary variables

We again introduce auxiliary variables for the endemic component Xit ∼ Po(ωitνit) and

epidemic component Yit ∼ Po(ωitηit) where Zit = Xit+Yit. Additionally we define auxiliary

variables for the components of the epidemic component, related to the different units j

that cause the cases, Yjit ∼ Po(ωitηjit) where for example in model 3, ηiit = λZi,t−1, and

ηjit = 0 if j 6= i, and for model 4, ηiit = λiZi,t−1, ηjit = φiZj,t−1 if j ∼ i and ηjit = 0

else. For the rest of the models ηjit is defined analogous. We get Yit =
∑I

j=1 Yjit. For

the number of observed cases we get the representation Zit = Xit +
∑I

j=1 Yjit. We use the

index i for the unit where the cases arise and j for the unit that causes the cases.

4.7 Update of the parameters

Conditioned on Xit the estimation of the endemic parameters αi, βt and γj is equivalent to

the estimation in a Bayesian log-linear Poisson regression model with response variable Xit,

and can be updated as in the univariate case. The parameters αi are, as the parameters

γj, updated individually, since a joint update leads to poor acceptance rates.

The full conditional of the parameter λ of model 1, as well as all other rates of model 2

to 7, is, conditioned on the corresponding auxiliary variable, a Gamma distribution, which

makes it possible to update it in a simple Gibbs step, as the hyperparameter βλ,

λ|Yit, βλ, Zit, . . . ∼ Ga(αλ +
I∑
i=1

n∑
t=1

Yit, βλ +
I∑
i=1

n∑
t=1

ωitZit),

βλ|λ, Zit, . . . ∼ Ga(αλ(a+ 1), b+ λ).
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The parameters πj of model 6 and 7 are updated in a MH step. Their full conditional is

p(πj| . . .) ∼
I∏
i=1

(π
απji+

Pn
t=1 Yjit−1

ji ) exp(−
I∑
i=1

n∑
t=1

ωitπjiλjZj,t−1).

We use the following Dirichlet distribution (Denison et al., 2002, p. 243) as proposal

π∗
j ∼ Di(α∗πj1, . . . , α

∗
πjI), j = 1, . . . , I,

where α∗πji = απji +
∑n

t=1 Yjit, which has the density

p(π∗
j) =

I∏
i=1

π
απji+

Pn
t=1 Yjit−1

ji .

This leads to a relatively simple acceptance probability, since the terms of the proposal

cancel with the corresponding terms in the full conditional,

acc = max

1,
exp

(
−
∑I

i=1

∑n
t=1 ωitπ

∗
jiλjZj,t−1

)
exp

(
−
∑I

i=1

∑n
t=1 ωitπjiλjZj,t−1

)
 .

Since ψ > 0 we prefer to update ψ̃ = log(ψ) with a simple Metropolis-Hastings Gaussian

random walk proposal. The full conditional of ψ is

p(ψ| . . .) ∝ p(ψ)
I∏
i=1

n∏
t=1

p(ωit|ψ)

and the corresponding full conditional of ψ̃ can be obtained through a change of variables.

The variance of the random walk proposal is tuned automatically within the algorithm in

order to obtain a suitable acceptance rate between 30 and 50% (Gelman et al., 1996). The

full conditionals of the parameters ωit are Gamma distributions ωit| . . . ∼ Ga(ψ+Zit, ψ+µit)

allowing for an update in a Gibbs step. The full conditional distribution of the auxiliary

variables can be factorised as

P (Xit, Yit, Y1it, . . . , YIit|Zit, . . .) = P (Y1it, . . . , YIit|Yit, Xit, Zit, . . .)P (Yit|Xit, Zit, . . .)

·P (Xit|Zit, . . .),
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where the second term P (Yit|Xit, Zit, . . .) is deterministic: Yit = Zit − Xit. Due to the

Poisson assumption the first and third term are multinomial and binomial respectively:

(Y1it, . . . , Y1it)| . . . ∼ Mu

(
Yit,

(
η1it

ηit
, . . . ,

ηIit
ηit

))
,

Xit| . . . ∼ Bin

(
Zit,

νit
µit

)
.

4.8 Measles in the districts of Bavaria

We will now apply the seven models and a model without an epidemic component to

the data of the measles outbreak of Bavaria (Figure 4.5), observed in the years 2001/02

in the seven districts of Bavaria. Every model is estimated with and without a random

walk. Table 4.7 shows the deviance summaries of the different models. All models with an
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Figure 4.5: Measles in the seven districts of Bavaria.

epidemic component show a clearly better fit than the models without epidemic component

with model 6 being the best model in terms of DIC. While the inclusion of the random walk
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D̄ pD DIC
linear trend 1853 8 1861
random walk 1742 15 1757
model 1 1587 10 1597
model 2 1595 15 1610
model 3 1576 16 1592
model 4 1565 23 1589
model 5 1557 23 1580
model 6 1565 12 1577
model 7 1561 20 1580
model 1 with random walk 1585 11 1596
model 2 with random walk 1592 16 1609
model 3 with random walk 1574 17 1591
model 4 with random walk 1559 23 1582
model 5 with random walk 1556 27 1582
model 6 with random walk 1562 13 1575
model 7 with random walk 1558 21 1579

Table 4.7: Deviance summaries

leads to a clearly better fit in the model without epidemic component, it has little effect on

the DIC in the models with epidemic component. The posterior median of the parameters

πji of model 6 with random walk are shown in Table 4.8. While for all regions the highest

proportion of the cases is caused within the region, there is considerable interaction between

the regions. The posterior median of the epidemic parameter λ is 0.84 and the two-sided

credibility interval is (0.72, 0.95). Most of the cases are therefore explained by the epidemic

component. Figure 4.6 shows the results for model 6 with random walk. The estimated

1 2 3 4 5 6 7
1 0.99 − 0 0 0 0 0
2 − 1 0 − 0 − −
3 0.03 0 0.96 − 0 0.01 −
4 0 − − 1 0 − 0
5 0 0 0 0 0.98 − −
6 0 − 0.1 − − 0.9 −
7 0.03 − − 0.18 − − 0.79

Table 4.8: Matrix of the posterior median of πji of model 6 with random walk.

time trend is actually linear, which is possibly the reason for the little effect of the random
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walk on the fit. The estimated cases fit the data quite well, which can also be seen by

the predicted cases, where prediction is again based on the whole time series, and by the

deviance residuals, which show little autocorrelation for region 1.
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Figure 4.6: Results of model 6 with random walk.

4.9 Discussion

In the multivariate cases the inclusion of an epidemic component leads to a clearly better

fit, which is reached by the inclusion of an autoregression as well as interactions between

the units. In the univariate case it can be seen that the inclusion of an autoregression

is not flexible enough to apparently improve the fit. A promising extension of the model

would be to allow the parameter of the epidemic component to vary over time.



Chapter 5

A two-component model for counts

of infectious diseases

5.1 Introduction

The distinction between an endemic and an epidemic component introduced in Chapter

4 has shown to be a promising concept. However, the time constant parameter of the

epidemic component λ shows some limitations: (a) if the observed number of cases Zt does

not explode, what is rarely the case, the epidemic parameter is restricted to λ < 1; (b) in the

regular case λ ≤ 1 the epidemic parameters is just the proportion of the epidemic cases Yt

from the total number of cases Zt. The latter means that the proportion of epidemic cases

is constant over time, i.e. the same in outbreaks and periods of no outbreak. However, the

observation-driven form of the epidemic component, with an autoregression on the number

of cases of the previous time point, gives the model some flexibility to explain for outbreaks.

A promising extension of the model described in Chapter 4 is to allow the epidemic

parameter to vary over time, λ = (λ1, . . . , λn), as proposed in Held et al. (2006). This

leads to the following improvements of the model: (a) the epidemic parameter λ is no

longer restricted to be lower or equal unity, but can exceed unity for some time period,

where the number of cases indeed explodes, and then go back to a value below or equal

to unity; (b) the proportion of the epidemic cases Yt from the total number of cases Zt is

no longer forced to be constant over time, but can switch between different levels, even to

values greater than unity.

These improvements allow to capture the epidemic characteristics of an infectious dis-

ease clearly better. Direct, i.e. person to person transmitted diseases, on the one hand,
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show big outbreaks with an indeed exponentially increasing number of cases in the begin-

ning and a slow decrease of the cases due to the reduction of susceptible individuals towards

the end of the outbreak. Additionally, control measure as vaccination of susceptible indi-

viduals and the isolation of infected individuals, can lead to a reduction of the number of

cases. Between the outbreaks there are often long periods with no or just some sporadic

cases, until a new outbreak arises. At the beginning of the outbreak, the epidemic para-

meter jumps from a value below unity to a value that usually clearly exceeds unity. The

reduction of susceptible individuals and control measures lead to a usually slow reduction

of the epidemic parameter to a value below unity. Indirect transmitted infectious disease,

as food or water borne infectious diseases, on the other hand, usually show a pronounced

endemic component. Outbreaks are usually caused by point sources as contaminated food

from a hotel or a food distributor. Outbreaks are often characterized by a short or perma-

nently slightly increased number of cases. In case of an outbreak, the epidemic parameter

jumps upwards to a value, that is usually below unity.

To capture the characteristics of the epidemic parameter λ, which are sudden changes

at the beginning of an outbreak as well as smooth decreases during the outbreak, it is

useful to allow for an adaptive amount of smoothing. A state-space or dynamic model (e.g.

Jørgensen et al., 1999; Fahrmeir and Knorr-Held, 2000) with an autoregressive or random

walk prior on λ shows a constant amount of smoothing due to the time-constant correlation

structure and is therefore not appropriate, since it does not allow for sudden changes. A

Bayesian changepoint model with unknown number of changepoints (e.g. Denison et al.,

2002) described in Chapter 3 is better suited for this setting, since it allows the correlation

to vary over time. Through Bayesian model averaging, the estimated epidemic parameter

λ may still be smooth, because it is obtained through averaging over different changepoint

models of variable dimension with different location of the changepoints (Green, 1995;

Clyde, 1999).

This chapter is based on the work in Held et al. (2006). In Section 2 we will present the

model and the estimation using MCMC methods. In Section 3 the behavior of the model

is examined by an application to simulated data and in Section 4 the model is applied

to the hepatitis A, hepatitis B and meningococcal disease data, introduced in Chapter 4,

and possibilities to build a outbreak detection system on the model are considered. The

chapter concludes with a discussion of the results and an outline of possible extensions in

Section 5.
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5.2 Model

Let Zt, t = 1, . . . , n be the observed number of counts at time t. We assume the data to

be Poisson distributed, conditioned on the auxiliary variables ωt,

Zt|ωt ∼ Po(ωtµt),

where the auxiliary variables are Gamma distributed with shape and rate parameter ψ,

ωt ∼ Ga(ψ, ψ). As described in Chapter 3 this leads to a negative binomial distribution for

Zt integrating out ωt, with mean µt and dispersion parameter ψ, Zt ∼ Nb(µt, ψ). A Gamma

prior is assumed for the dispersion parameter, ψ ∼ Ga(αψ, βψ). We will use ψ ∼ Ga(1, 0.1)

assuming ψ to have a mean of 10 and a large variance of 100. The mean µt is assumed to

be the sum of an endemic part νt, that explains the regular amount of cases and can be

interpreted as a baseline and an epidemic part ηt, that explains for epidemic activity as

outbreaks or irregularities in the data,

µt = ηt + νt.

As in Chapter 4 we define an endemic component Xt and an epidemic component Yt giving

the number of endemic and epidemic cases, where Xt|ωt ∼ Po(ωtνt) and Yt|ωt ∼ Po(ωtηt).

5.2.1 The endemic component

The logarithm of the endemic mean νt is defined, analog to Chapter 4, as the sum of L

harmonic waves of different frequencies an intercept and a linear time trend. Due to the

complexity of the epidemic component, we will not include a random walk. Even the linear

time trend will not be included in the applications in Section 3 and 4.

5.2.2 The epidemic component

The mean of the epidemic component ηt is defined by an autoregression on the number

of cases at the previous time point, ηt = λtZt−1, where the epidemic parameter λ =

(λ1, . . . , λn) is now assumed to follow a Bayesian changepoint model (see Chapter 3) with

unknown number K and locations θ(1) < . . . < θ(K) of changepoints. For convenience we

define θ(0) = 0, θ(K+1) = n and θ = (θ(0), . . . , θ(K+1)). The parameters λ are then defined
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as

λt = λ(k) if t = θ(k−1) + 1, . . . , θ(k).

We can use the interpretation of the time constant epidemic parameter λ of Chapter 4, to

obtain insight to the characteristics of the time-varying epidemic parameter λ. In the time

constant case, we can distinguish two cases, λ < 1 and λ > 1. In the first case, λ < 1,

the epidemic parameter can be interpreted as the proportion of the epidemic cases Yt from

the total number of cases Zt. In the second case, λ > 1, the number of cases increases

exponentially. These properties can be transferred to the time-varying case. If λt > 1 the

number of cases increases exponentially. If λt < 1 the process converges to a state where λt

is the proportion of the epidemic cases Yt from the total number of cases Zt. However, due

to the autoregression on Zt−1 the number of epidemic cases Yt need some time to converge,

especially if the process has grown exponentially for a long time, before reaching a state

with λt < 1.

For λ(k), k = 1, . . . , K + 1 we assume independent Gamma priors, with a Gamma

hyperprior on the second parameter,

λ(k) ∼ Ga(αλ, βλ), k = 1, . . . , K + 1

βλ ∼ Ga(a, b)

This choice implies that the marginal prior distribution of λ(k) is Gamma-Gamma (see

Bernardo and Smith, 1994, page 120). In our applications we use αλ = 1, a = 10, b = 10

where the Gamma-Gamma marginal of λ(k) turns out to be simply an F -distribution with

degrees of freedom equal to 2 and 20. This choice gives a marginal prior probability of 0.39

to the event λ(k) ≥ 1, while always favouring smaller values of λ(k) (the density function

has a unique mode at zero and is monotonically decreasing).

The number of changepoints and the location given the number of changepoints are

assumed to be uniformly distributed,

P (K = k) = 1/n, k = 0, 1, . . . , n− 1,

P (θ|K) =

(
n− 1

K

)−1

.
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5.2.3 Statistical analysis via MCMC

The key to a successful application of MCMC methods to the specified model lies again

in the decomposition of Zt into Xt and Yt. The parameters of the endemic component the

overdispersion parameters and the auxiliary variables are updated similar to Chapter 4.

The parameters of the epidemic component are updated using the reversible jump

algorithm of Green (1995) applied to the changepoint model in Chapter 3. The acceptance

probability α((λ,θ, K), (λ∗,θ∗, K∗)) of a new changepoint m is

min

(
1,

cβαλ
λ Γ(αλ,m−1,m)Γ(αλ,m,m+1)(βλ,m−1,m+1)

αλ,m−1,m+1

Γ(αλ)Γ(αλ,m−1,m+1)(βλ,m−1,m)αλ,m−1,m(βλ,m,m+1)αλ,m,m+1

)
,

where

αλ,k−1,k = αλ +
θ(k)∑

t=θ(k−1)+1

Yt,

βλ,k−1,k = βλ +
θ(k)∑

t=θ(k−1)+1

ωtZt−1,

and c is the proposal ratio defined in Chapter 3. The full conditional of the parame-

ters λ(k), k = 1, . . . , K + 1 and βλ are λ(k)| . . . ∼ Ga (αλ,k−1,k, βλ,k−1,k) and βλ| . . . ∼
Ga
(
a+K + 1, b+

∑K+1
k=1 λ

(k)
)
.

The reversible jump algorithm is very fast compared to the update of the other para-

meters. However, due to the simple design of the steps, the algorithm mixes very slowly,

which leads to very long runs of the MCMC algorithm. We will therefore update the

changepoints and steps 10 times per iteration. This clearly improves the mixing and leads

to shorter runs and run times.

5.2.4 One-step ahead prediction

Of particular interest in infectious disease surveillance are short-term predictions, in par-

ticular one-step-ahead predictions. Our model is well suited for this setting, since it is

based on the entire available time series and does not assume that there are no outbreaks

in the past. While outbreak detection could be based e.g. on the posterior probability

P (λn ≥ 1), the predictive distribution of the number of new cases Zn+1 is perhaps of more

direct public health importance.
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We omit the technical details here, but note only that with obvious modifications,

the model can be written down for data Z1, . . . , Zn+1 where the counts Zn+1 are missing.

This allows us to simulate from the posterior predictive distribution of νn+1 and λn+1

and subsequently of Zn+1|Zn ∼ Po(νn+1 + λn+1Zn) in the Poisson case. If we include

overdispersion, samples from ωn+1 ∼ Ga(ψ, ψ) based on the posterior samples of ψ are

generated and subsequently Zn+1|Zn ∼ Po(ωn+1(νn+1 + λn+1Zn)) is simulated.

However, due to the Markov structure of the changepoint model (see Chapter 3) there

is a simpler way to obtain the posterior predictive distribution of λn+1 and Zn+1 based on

a model for Z1, . . . , Zn only. One step ahead predictions of the epidemic parameter λn+1

can easily be obtained using the predictive distribution (3.15)-(3.17).

Note, that the predictive distribution of λn+1 is a mixture of two components. One

component (which corresponds to the case that there is a changepoint between Zn and

Zn+1) is, due to the independence of λ(k), k = 1, 2, . . . , K+2, the conditional prior distrib-

ution λ(K+2)|βλ ∼ Ga(1, βλ). Here the posterior samples of βλ enter. The other component,

which corresponds to the case of no changepoint between Zn and Zn+1 is the posterior of

λ(K+1). The mixing weights are determined by the probability p, say, for a changepoint

between Zn and Zn+1.

For fixed number of changepoints K = k among n−1 possible locations, the probability

p is just (K + 1)/(n+ 1) (c.f. (3.11)). In each iteration of the algorithm we hence simulate

the posterior predictive distribution of λn+1 with probability (K + 1)/(n + 1) from the

conditional prior distribution λ(K+2)|βλ ∼ Ga(1, βλ), otherwise we set λn+1 = λ(K+1). Note

how nicely the posterior distribution of K determines the probability for a changepoint in

the future in the sense that the more changepoints there are in the past, the more likely is

it that there will be a changepoint in the future.

We finally note that m-step predictions, if required, may be obtained by sequentially

repeating this process given the current number of breakpoints up to time n +m− 1. At

this point it is worth noting that for long-term predictions, eventually only the posterior of

the endemic part ν will enter, while the epidemic part will reduce to the conditional prior

distribution with large probability.

5.3 Analysis of simulated data

To study the flexibility of the changepoint model we first present an analysis of simulated

data (n = 200, ρ = 2π/52). While the simulation in Held et al. (2006) is based on a



5.4 Analysis of real data 65

sufficient number of simulated cases and without simulating overdispersion, we will here

consider a simulation of the more adverse case of a low number of cases, implying little

information in the data, that are additionally overdispersed. It seems natural to look at

this adverse case, since it is usually the case in real data. The true λ sequence (Figure

5.2(e)) is piecewise constant with two changepoints at θ1 = 60 and θ2 = 70. The parameter

λ switches from λ(1) = 0.1 to λ(2) = 0.7 and then back to λ(3) = 0.1. This comes close to the

epidemic structure of a food or water borne disease, with little epidemic activity for longer

periods and an outbreak that equals one caused by a point source. The endemic parameters

are chosen to reflect the behaviour of a more common infectious disease with approximately

20 weekly endemic cases on average with a seasonal minimum of approximately 10 and a

seasonal maximum of approximately 41 cases: γ0 = 3, γ1 = 0.5 and γ2 = 0.5. We allowed

for overdispersion in the simulation, using ψ = 10. The data are analysed with the proposed

model and the results are shown in Figure 5.1 and 5.2.

Although there is not much information in the data, due to the relatively low number

cases, and the data are simulated with overdispersion, the model is able to detect the

changepoint structure quite well. There is some uncertainty about the number and loca-

tion of the changepoints. However, with a bit more information in the data the number

and locations of the changepoints can be identified very well (see Held et al., 2006). The

second changepoint can be detected better compared to the first. This can be explained

by the low disease incidence at the first changepoint, so the model has more information

to precisely determine the location of the second than the first changepoint. Consequently,

the estimated λ sequence is smooth around the first changepoint, but abrupt at the sec-

ond. Note also that the seasonal structure in the data has been estimated quite well, see

Figure 5.1 (c) and (d).

5.4 Analysis of real data

We analyse weekly surveillance data on hepatitis A and B from Germany from the years

2001 to 2004 (208 weeks so n = 207) and meningococcal disease from Germany from the

years 2001 to 2005 (261 weeks so n = 260) (Figure 5.3) as introduced in Chapter 4.

5.4.1 Hepatitis A

Figure 5.4 displays the results from our model applied to the hepatitis A time series. We

have used L = 4 seasonal terms. One can see that a strong seasonal pattern has been
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Figure 5.1: Simulated data for known νt and λt (left panel) and posterior estimates (right
panel).
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Figure 5.2: Post. distribution of K (left) and posterior probability for a changepoint at
time t (right)

estimated which peaks in September. This peak may be caused by travel-associated cases.

Between 13 (in July) and 38 (in September) cases per week can be attributed to the regular

endemic incidence pattern, see Figure 5.4(b).

The epidemic parameter 5.4(c) shows an increased level of around 0.5 on average, during

the first year, which can be interpreted as the result of a lower vaccination coverage. In

November 2001 the epidemic parameter decreases to values close to 0 and stays there for

a long period. In 2004 a temporary increase of the epidemic parameter can be observed,

starting with a slight increase in March to 0.4 on average followed by a second increase in

August with values up to 0.7 on average. This second increase in the high holiday season

(August) is discussed further in Anonymous (2004), and can be linked to holiday-makers

in a certain hotel in Egypt. Outbreaks occurred also in other European countries. The

increase of the epidemic cases can also be seen in Figure 5.4(a).

To illustrate the predictive capabilities of the model we show in Figure 5.5 the one-step-

ahead predictive distribution of number of counts for the weeks t = 188 and t = 189, based

on the data up to week t = 187 and t = 188, respectively. These two weeks represent the

beginning of the documented (Anonymous, 2004) outbreak: the actually observed counts

are 22 in week 187, 54 in week 188, and 99 in week 189. It is interesting to see that

the predictive distribution for week t = 188 is fairly symmetric, the actually observed

value has some borderline support with P (Z188 ≥ 54|Z1, . . . , Z187) = 0.01. However, the

model immediately reacts to this unusually high value and consequently, the predictive

distribution for t = 189 has a long tail towards larger values. The actually observed
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Figure 5.3: The three considered infectious disease counts time series.

number of counts is now well supported by the predictive distribution with P (Z189 ≥
99|Z1, . . . , Z188) = 0.13.

Considering the documented Anonymous (2004) outbreak in August 2004, we will dis-

cuss 3 approaches for an outbreak detection system, based on: 1) the probability P (λn ≥ 1);

2) the posterior median of the epidemic parameter λn; 3) the upper 99.9% credibility limit

of the predictive endemic cases Xn. We will therefore use the data up to week 187 and

188 according to a decision based on a prediction 3) or no prediction 1), 2), respectively.

For approach 1) an outbreak will be flagged if P (λ189 ≥ 1) is greater than 1%. Also other

choices could be made. Using approach 2) an outbreak is flagged if the mean of the epi-

demic parameter is above 0.2. This is a useful choice with respect to the uncertainty about

the mean of the parameter. For approach 3) an outbreak is flagged if the observed value
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Figure 5.4: Results for hepatitis A
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Figure 5.5: Predictive distribution of Z188|Z1, . . . , Z187 (left) and Z189|Z1, . . . , Z188 (right).

Z188 is above the one-sided 99.9% credibility interval of the predicted endemic cases X188

based on the data up to week 187. A false alarm is then flagged every 1000-th week on

average, i.e. approximately once in 3 years. On could also use the estimation of X188 based

on the data up to time 188. We use the one step ahead prediction of X188, since a decision

about an outbreak is then directly available as the value Z188 is observed. For compari-

son, we have applied the Farrington et al. (1996) algorithm for outbreak detection in week

t = 188. We used the implementation available in the package surveillance (Höhle and

Riebler, 2005). An eleven week window has been chosen with three years of historical data

(2001-2003). More data are not available, as the German surveillance system has been set

up in 2001. An outbreak is flagged if the actually observed number of counts is larger than

an upper threshold, defined as the 99.9% quantile of the predictive distribution (based on

a normal approximation of the transformed counts). The results depend on whether or

not a linear time trend is included in the model. If included, the observed number of cases

Z188 = 54 are flagged as an outbreak, as the upper threshold is 50.6. However, this is

mainly due to the estimated (decreasing) time trend, since the reference values in 2001 are

unusually high, with up to 70 cases, see Figure (5.3). The algorithm does downweight these

observations, but only to a certain degree, so the decreasing time trend remains significant.

If we apply the algorithm without a time trend, the upper threshold is 77.2 so no alarm is

flagged. Of course, these results also depend heavily on the nominal false positive rate.

All 3 approaches considered for our model clearly detect the outbreak at time 188. In

the case of the considered hepatitis A outbreak, we get P (λ188 ≥ 1) = 0.24 which is clearly

above the threshold value 0.01. The posterior median of the epidemic parameter is 0.48

which is also clearly above the threshold value 0.2. The upper 99.9% credibility limit of
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the predictive distribution of X188 is 41, i.e. the observed value 54 is clearly above the

limit. The latter approach is similar to the one in Farrington et al. (1996). However, we

eliminate the effect of past outbreaks by the estimation of an epidemic component instead

of an arbitrary downweight of to high values. This should give an unbiased estimation of

the endemic component. In the case of the considered hepatitis A outbreak, this leads to

a better outbreak detection.

5.4.2 Hepatitis B

Figure 5.6 now displays the results from our model applied to the hepatitis B time se-

ries. One can see that there is virtually no seasonality present, so the sinusoidal terms

could as well have been omitted in the model. The autoregressive parameter λt decreases

smoothly from values around 0.65 to values well close to 0.1, which can be interpreted as

a consequence of the increasing vaccine coverage. The posterior mode of the number of

changepoints is just three; however, the possible locations of the changepoints are more

dispersed than in the hepatitis A example, so the estimated λt’s are smoother than for he-

patitis A. This nicely illustrates the smoothing capabilities of the model through Bayesian

model averaging.

5.4.3 Model comparison

Table 5.1 shows the mean deviance D̄, the estimated number of parameters pD and the

deviance information criterion (DIC) (Spiegelhalter et al., 2002) for the hepatitis A, he-

patitis B and additional for the meningococcal disease data, that were also analyzed in

Chapter 4. There is a clear improvement compared to the model with time-constant

D̄ pD DIC
Hepatitis A 1472 30 1501
Hepatitis B 1376 16 1392

Meningococcal disease 1473 16 1488

Table 5.1: Deviance summaries

epidemic parameter of Chapter 4, especially for the hepatitis A data. Compared to the

model with random walk of Chapter 4, there is no considerable difference in terms of DIC.

To further compare the model with the one in Chapter 4 we consider the expected and

predicted cases for the meningococcal disease data (Figure 5.7 (a),(b)), where prediction is
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Figure 5.6: Results for hepatitis B
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based on all observations. The flexibility of the time-varying epidemic parameter modeled

by a changepoint model allows for a clearly better prediction of the outbreaks, especially

of the 2003 outbreak, compared to the model with time constant epidemic parameter

and random walk (Figure 4.3). The Pearson residuals (Figure 5.7 (c),(d)) show little

autocorrelation.

5.5 Discussion

In this chapter we have introduced a generic model for time series of infectious disease

counts. The central assumption of the model is, like in Chapter 4, that the disease counts

can be viewed as the sum of an endemic and an epidemic component. The proportion of the

epidemic component λt is now allowed to vary over time according to a Bayesian multiple

changepoint model with an adaptive amount of smoothing. This allows for better modelling

of the outbreaks in the data. Analyses of simulated and real data have illustrated how the

model can be used for modelling diseases with increasing vaccination coverage (hepatitis

B) and for detecting and predicting outbreaks (hepatitis A). Furthermore, the comparison

with the models considered in Chapter 4 shows that the model fits the data quite well,

especially the outbreaks in the data. While the model can be seen as a general approach to

model infectious diseases, it is also particularly suited for the challenging task of outbreak

detection.

We now comment on some other extensions. For routine use in prospective disease

surveillance, a sequential algorithm for inference will be helpful (Sonesson and Bock, 2003).

Note in this context that the changepoint model used here has indeed such a sequential

representation, based on the Markov structure of the changepoint problem (Chapter 3),

whereas our current implementation in twins is based on a retrospective analysis, given a

fixed amount of data. Sequential updating of the parameter estimates could be based, for

example, on particle filtering (e.g. Berzuini and Gilks, 2003; Andrieu et al., 2001; Doucet

et al., 2001a) or the forward-backward algorithm (e.g. Scott, 2002; Fearnhead, 2006) and we

will consider such an algorithmic modification in Chapter 6. For example, we might simply

fix the estimates of the global model parameters ν and update only λ. A similar approach

has been advocated in Brix and Diggle (2001) and Diggle et al. (2005) for spatiotemporal

prediction, see also Diggle et al. (2003). However, we note that all (retrospective) analyses

in this chapter take only little time compared to the weekly resolution in which surveillance

data are typically collected. Nevertheless, a fast sequential algorithm will be useful for a
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detailed study of the predictive qualities of our model.

A multivariate or perhaps even spatial extension of our model is the other area with a

lot of potential in applications. For example in ecological regression one might be interested

to relate the endemic incidence ν or the epidemic parameter λ to area-level covariates. Also

the area of monitoring disease outcomes across multiple units is of great interest in practice

(Marshall et al., 2004; Kleinman et al., 2004). We will consider a multivariate extension of

the model in Chapter 7.
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Figure 5.7: Posterior median and pointwise 95% credibility interval (grey area) of the data
mean µi,t, t = 1, . . . , n (top, left) and the predicted cases (top, right) plotted against the
data (points), Pearson residuals (bottom, left), and autocorrelation of the Pearson residuals
(bottom, right), for meningococcal disease.
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Chapter 6

Sequential Monte Carlo methods for

the estimation of the two component

model

We will consider two types of sequential Monte Carlo methods for the estimation of the two

component model proposed in Chapter 5: the forward-backward algorithm and the particle

filter. Both methods are described in Chapter 2 and applied to a Bayesian changepoint

model in Chapter 3. While the forward-backward algorithm can be used as an alternative to

the reversible jump algorithm for the update of the changepoint model for the retrospective

analysis within the MCMC algorithm, the particle filter can be used for a prospective

analysis of the changepoint model conditioning on fixed values for the other parameters.

6.1 Retrospective analysis using the forward-backward

algorithm

The changepoint problem of the two component model proposed in Chapter 5 is updated

using a reversible jump algorithm. This algorithm is very fast. However, due to the simple

design of the steps, the algorithm mixes very slow, which leads to very long runs of the

MCMC algorithm. In Chapter 5 this problem is tackled by updating the changepoint

problem 10 times per iteration, which leads to shorter runs and run times.

However, instead of sampling from the full conditional of the changepoints using a slow

mixing reversible jump algorithm, one can sample directly from the full conditional using
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the forward-backward algorithm described in Chapter 3. The reversible jump step is then

replaced by a simple Gibbs step. This clearly improves the mixing of the algorithm.

6.1.1 Update of the changepoints using the forward-backward

algorithm

The algorithm proceeds in analogy to the algorithm described in Chapter 3. The probabil-

ities of the segments S(k) = (Yθ(k−1)+1, . . . , Yθ(k)), k = 1, . . . , K + 1 given the changepoints

are now

P (S(k)|θ(k−1), θ(k)) =

∏θ(k)

t=θ(k−1)+1(Zt−1)
Ytβαλ

λ Γ(αλ,k−1,k)∏θ(k)

t=θ(k−1)+1 Yt!Γ(αλ)(βλ,k−1,k)
αλ,k−1,k

,

αλ,k−1,k = αλ +
θ(k)∑

t=θ(k−1)+1

Yt,

βλ,k−1,k = βλ +
θ(k)∑

t=θ(k−1)+1

Zt−1.

The probability of the changepoints are the same as in Chapter 3. The full conditional of

the changepoints depends now additionally on the auxiliary variables Yt, t = 1, . . . , n.

6.1.2 Performance of the forward-backward algorithm

We will now compare the forward-backward with the reversible jump algorithm. We have

estimated the model for the hepatitis A data (Figure 5.3) using the two algorithms. A

sample of size 2500 has been obtained by taking every 10-th iteration after a burn in of

2000 samples. Table 6.1 shows the the effective sample size (see Section 2.1.5) of K and

the calculation time in seconds. Calculations were done on a 2.80 GHz PC.

reversible jump forward-backward
ESS CPU (s) ESS CPU (s) Rel. ESS
105 116 380 12928 0.026

Table 6.1: Effective sample size of K and estimation time in seconds for the reversible
jump algorithm (column 1 and 2) and the forward-backward algorithm (column 3 and 4),
and the relative effective sample size standardized by the CPU time of the two algorithms
(ESS(rj)/CPU(rj))/(ESS(fb)/CPU(fb)) (column 5), for the hepatitis A data.
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Additionally, the relative effective sample size of the two algorithms has been calculated.

This is the ratio of the effective sample sizes of the two algorithms, each standardized by

the CPU time, i.e. (ESS(1)/CPU(1))/(ESS(2)/CPU(2)).

The forward-backward algorithm shows a better mixing than the reversible jump algo-

rithm, which can be seen in a higher effective sample size. However, the reversible jump

algorithm is clearly faster, resulting in a clear advantage in terms of relative effective sample

size.

Figure 6.1 shows the trace and the autocorrelation of the parameter K and the overdis-

persion parameter ψ. It can be seen that the improved mixing of the changepoints also

affects the mixing of the other parameters, since also the overdispersion parameter ψ shows

a slightly improved mixing.

6.2 Particle filter for prospective surveillance

The two component model described in Chapter 5 has proved to be a promising approach

to tackle the problem of infectious disease surveillance. However, as mentioned in Chapter

5, one disadvantage of the model with respect to the surveillance of a disease is that the

estimation using Markov chain Monte Carlo (MCMC) methods is retrospective. In other

words, the problem is treated as fixed sample situation. Since the data collected in public

health systems are observed sequentially in time, the model has to be estimated for the

complete time series, as a new observation arrives. For the use in prospective disease

surveillance, a sequential algorithm for inference would therefore be helpful (Sonesson and

Bock, 2003). As proposed in Chapter 5 the model could be estimated for the currently

observed time series, and then the time-constant parameter of the endemic component

could be fixed for a prospective analysis. The posterior mean of this parameter could

for example be used. This procedure can also be an advantage in terms of outbreak

detection, as mentioned in Diggle et al. (2003), who proceed in a similar way by fixing

the baseline of their model, since fixing this parameter reduces the variation in the model

and may lead to more sensitivity in the outbreak detection. We will show that by fixing

the parameter of the endemic component and two further parameters, the overdispersion

parameter and the hyperparameter of the epidemic component, a sequential analysis of the

epidemic parameter, that is used for the outbreak detection in Chapter 5, can be realized

using particle filters, as described in Andrieu et al. (2001). This is further simplified by the

fact that the signal process of our model, that is the changepoint model, has the Markov
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Figure 6.1: Trace and autocorrelation of K and ψ for the reversible jump algorithm (top)
and the forward-backward algorithm (bottom).
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property, as shown in Chapter 3.

6.2.1 Sequential update using the particle filter

We will use the particle filter described in Chapter 3. As proposed in that chapter the

model can be first estimated up to the current time nMCMC using the MCMC algorithm

described in Chapter 5 to get point estimates of the parameters to fix, γ, ψ and βλ. As

new observations arrive, these parameters are fixed to the posterior mean, and the model

is estimated sequentially using the particle filter.

6.2.2 Application to the hepatitis A data

We will now apply the particle filter to the hepatitis A data introduced in Chapter 4. The

model is first estimated up to time nMCMC = 107 using the MCMC algorithm, to obtain

point estimates of the parameters, that have to be fixed. We then fix these parameters

and estimate the models up to time n = 108, . . . , 207 using the particle filter. It took

approximately 6.5 minutes on a 2.80 GHz PC to obtain 2500 samples of each of the 100

models, which is 4 seconds per model on average. For comparison, the MCMC algorithm

for the model up to time 107 needed approximately 13.5 minutes.

It is now possible to perform model validation using the predictive distribution, which

has been estimated for each of the 100 models. We will illustrate this by calculating

the probability integral transform (PIT) values ut (Frühwirth-Schnatter, 1996) which are

obtained from the predictive probabilities P (Zpred
t ≤ Zt) of the observed value Zt. By a

randomization of these probabilities one obtains PIT values, that are uniformly distributed

on [0, 1] if the model is true, ut = (1 − αt)P (Zpred
t ≤ (Zt − 1)) + αtP (Zpred

t ≤ Zt), where

αt is uniformly distributed on [0, 1]. Corresponding histograms can be ”de-randomized” by

adding rectangles between P (Zpred
t ≤ (Zt−1)) and P (Zpred

t ≤ Zt) with height 1/(P (Zpred
t ≤

Zt)− P (Zpred
t ≤ (Zt − 1))) (Held, 2006).

Figure 6.2 shows the ”de-randomized” histogram of the PIT values for t = 108, . . . , 207.

The distribution of the PIT values is neither concave nor convex, i.e. the variance of the

predictive distribution has been estimated well. A slight decrease of the PIT values can

be noted, i.e. the predictive distribution overestimates the number of cases. However, 100

predictive distributions are relatively few to get insights about the predictive performance

of the model.

As supposed, the model is now more sensitive in terms of outbreak detection, which can
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Figure 6.2: Histogram of the PIT values ut, t = 108, . . . , 207.

be seen by the probability P (λ188 ≥ 1) which is 0.42 now, compared to 0.28 in Chapter 5.

6.3 Discussion

Using the particle filter for the update of the model drastically reduces the calculation time,

if a prospective estimation of the model is the aim of the analysis. This is of particular

advantage for the surveillance of infectious diseases, where new observations arrive sequen-

tially. Another advantage is that model validation based on the predictive distribution is

now possible within moderate time. However, this is at the cost of fixing the time constant

parameters.



Chapter 7

A model for multivariate time series

of infectious disease counts

7.1 Introduction

In this chapter we propose a model for the analysis of multivariate count data of infectious

diseases, that are observed in units, e.g. spatial regions, age groups or pathogenes, and over

time. The model is a multivariate extension of the model proposed by Held et al. (2006),

which is described in Chapter 5. The characteristics of infectious disease counts differ sub-

stantially depending on the type of infectious disease. While indirect transmitted diseases,

as food or water-borne diseases often show a strong seasonality but only short outbreaks,

also called ’hyperendemic’ periods (Knorr-Held and Richardson, 2003) or longer periods of

a slightly increased number of cases, caused e.g. by contaminated food from a food manu-

facturer, direct transmitted diseases that spread from person to person show big outbreaks

with a rapidly increasing number of infected, that we call epidemic periods. However,

infectious diseases do not necessarily fit in one of these two groups, e.g. meningococcal

disease shows seasonality and small outbreaks as well as some bigger outbreaks where the

disease spreads from person to person.

Our aim is to develop a model that can handle the different types of infectious diseases

described above. As in the other chapters, we therefore include two components in our

model, an endemic and an epidemic component, where the endemic component explains a

possible baseline rate of cases, that may include seasonality and differences between units

and the epidemic component that should be able to explain for all kinds of outbreaks. The

counts are then the sum of these two components, which may, may not or may to a certain
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amount be part of a disease. A central role in our model plays the design of the epidemic

component, since it should be able to capture the characteristics of a disease that spreads

from person to person across units and over time. The most realistic models for the spread

of an infectious disease over time are mechanistic models as the chain binomial or the SIR

model (Anderson and Britton, 2000) that directly model the infection process of the spread

from person to person on an individual level. However, these models require information

that is only available in very special cases, when it was possible to observe the infection

process directly. Additionally, information on the number of susceptible individuals has to

be available. However, there is a branching process approximation of the chain binomial

model (Anderson and Britton, 2000), and the idea of a branching process (e.g. Guttorp,

1995) is used in Held et al. (2006) to model the epidemic part of a disease. While the

branching process approximation of the chain binomial model is based on the generation

time of the disease, the model proposed in Held et al. (2006) is based on the observation

time of the counts, which makes the parameters not directly comparable. However, the so

defined model should capture the characteristics of an outbreak.

The branching process approximation of the chain binomial model is based on the as-

sumption of an unlimited amount of susceptibles, and is especially a good approximation

if the disease is at an early stage. At a later stage the decreasing number of susceptibles

slows down the growth of the disease, that can not be explained by a branching process

with unchanged offspring distribution. To overcome this problem Held et al. (2006) let the

parameter of the offspring distribution, which is the parameter of the epidemic component,

vary over time, assuming a Bayesian changepoint model (Denison et al., 2002), that pro-

vides an adaptive amount of smoothing. The epidemic component can then explain the

decreasing growth due to a decreasing number of susceptibles, but also other factors that

influence the growth as control measures.

Another problem of a simple branching process is that it dies out if the number of

cases goes down to zero. The same applies for all mechanistic models, which are therefore

only used to explain one outbreak. Since the aim in Held et al. (2006) is to explain all

outbreaks that arise over a longer time, there are periods without cases and Held et al.

(2006) therefore base their model on a branching process with immigration. If there is no

outbreak, the parameter of the epidemic component should be close to zero and jump to a

higher level if there is a new outbreak.

The model proposed in Held et al. (2006) has shown to be able to model the incidence

over time of all kinds of infectious diseases, including those where person to person trans-
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mission is present. However, infectious disease counts are often available as multivariate

time series observed in different age groups or as space-time data in different regions. To

be able to make use of this additional information, a model that can explain the spread

of a disease over multiple units is needed. Another scenario, where such a model could be

useful is the influence between different disease types, as influenza and meningococcal dis-

ease, where an increased number of meningococcal disease cases is related to an influenza

outbreak.

To provide such an approach, we extend the model proposed in Held et al. (2006) to a

multivariate version, that should be suitable to explain the spread of a disease across units.

The extension is based on the multivariate model of Chapter 4.

The most challenging part of our model is the spread of the disease across units. We

propose seven different models, of different complexity, and compare them as regards con-

tent and using the DIC (Spiegelhalter et al., 2002). The models are all based on the idea

of a multivariate branching process with immigration (Mode, 1971).

There is a vast amount of models for infectious diseases counts present in the literature.

Most of them model the disease either over time (e.g. Stroup et al., 1989; Farrington et al.,

1996) or space (e.g. Besag et al., 1991; Clayton et al., 1993; Knorr-Held and Raßer, 2000).

Most approaches for space-time disease counts assume an ”endemic” setting, i.e. that

there are no outbreaks in the data. Kleinman et al. (2004) propose a generalized linear

mixed model approach including seasonality and spatial random effects under the assump-

tion of no outbreak. Knorr-Held and Besag (1998) apply a Bayesian hierarchical dynamic

model, including components for time, space and age groups, amongst others, to lung can-

cer data, that is suitable for ”endemic” disease counts. Yan and Clayton (2006) attempt

to find disease cluster in time and space. Jørgensen et al. (1999) propose a state space

model for longitudinal count data assuming the incidence rate to be the product of a time

dependent latent Markov process and time-spatial covariates. Schmid and Held (2004)

apply a Bayesian age-period-cohort model with an additional spatial component to cancer

registry data for the extrapolation of space-time trends.

Knorr-Held and Richardson (2003) propose a Bayesian hierarchical dynamic model

including components for time, season and space with an additional autoregressive com-

ponent, that allows for dependence between regions, for small outbreaks without person to

person transmission, so called ’hyperendemic’ periods, that can be switched on and off.

A model for the analysis of space-time counts of influenza, a disease where person

to person transmission plays the major role, is proposed by Mugglin et al. (2002). The
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spread of the disease over time and space is modeled by a latent multivariate Gaussian

AR(1) process, which has a similar structure as a multivariate branching process with

immigration. In contrast with the branching process with immigration, the multivariate

Gaussian AR(1) process has a continuous state space and allows for correlation, whereas

the branching process with immigration assumes independent offspring distributions for

different individuals. However, instead of allowing for outbreaks by an increase of the pa-

rameters of the autoregressive coefficient matrix, which corresponds to the offspring matrix,

leading to non stationary periods, which is the natural characteristic of an outbreak with

regard to the branching process approximation of the chain binomial model, they explain

the outbreaks by different levels of the so called ’epidemic forcing term’, which corresponds

to the branching process immigration, which explains the outbreaks by switches between

different possibly stationary distributions. The incidence can switch between three levels,

where the periods of the levels have to be predetermined. The exponent of the latent mul-

tivariate Gaussian AR(1) process enters multiplicative in the incidence rate, which seems

unnatural with regard to the branching process approximation of the chain binomial model.

The influence of influenza outbreaks on meningococcal disease is studied e.g. in Jensen

et al. (2004) and Hubert et al. (1992).

7.2 Model

Let Zit, i = 1, . . . , I, t = 1, . . . , n be the observed number of counts in unit i at time t. We

assume the data to be Poisson distributed, conditioned on the auxiliary variables ωit,

Zit|ωit ∼ Po(ωitµit).

where the auxiliary variables ωit are again introduced to adjust for overdispersion. We con-

sider two types of overdispersion. On the one hand, overdispersion could be seen identical

in every unit, assuming the random effects to be identical distributed as

ωit ∼ Ga(ψ, ψ), ψ > 0.

When the units are different types of diseases this assumption is unlikely to hold. If the

units are age-groups or regions, this may be a realistic assumption, and we may prefer the

simpler model.

On the other hand, overdispersion could be seen to differ between units. In this case,
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we assume every unit to have an individual amount of overdispersion,

ωit ∼ Ga(ψi, ψi), ψi > 0, i = 1, . . . , I.

The marginal distribution of Zit integrating out ωit is then a negative binomial distribution

Zit ∼ NegBin (µit, ψi) ,

where NegBin(a, b) is a negative binomial distribution with mean a and dispersion para-

meter b, with the same mean as in the Poisson case but a larger variance:

V [Zit] = E[Zit]

(
1 +

E[Zit]

ψi

)
.

For ψ →∞ it can be seen that V [Zit]→ E[Zit].

For the parameters ψi, i = 1, . . . , I, Gamma priors are assumed,

ψi ∼ Ga(αψ, βψ).

For the first type of overdispersion we get a negative binomial distribution with disper-

sion parameter ψ instead of ψi for Zit.

The mean µit is assumed to be the sum of an endemic part νit, that explains the

regular amount of cases and can be interpreted as a baseline and an epidemic part ηit, that

explains for epidemic activity as outbreaks or irregularities in the data, and the interaction

of epidemic cases between units,

µit = ηit + νit.

The multivariate extension of the two components is based on the multivariate design

of the model considered in Chapter 4.

7.2.1 The endemic component

The logarithm of the endemic part of the mean νit, also referred to as endemic mean, is

assumed to be decomposed to a unit dependent part αi and a time dependent part ζt,

log νit = αi + ζt,



88 7. A model for multivariate time series of infectious disease counts

where the time dependent part ζt is assumed to be the sum of L harmonic waves and an

intercept. This can be represented in the following form (e.g. Diggle, 1990),

ζt =
J∑
j=0

γjstj, (7.1)

with J = 2L and

st0 = 1,

stj =

{
sin(ρt(j+1)

2
) for j = 1, 3, . . . , 2L− 1,

cos(ρtj
2

) for j = 2, 4, . . . , 2L,

where ρ is the base frequency, e.g. ρ = 52
2π

for weekly observed data. This assumes that

the endemic components of two units i1 and i2 are proportional and just differ from each

other by the factor exp(αi1)/ exp(αi2). Independent normal priors are assumed for the

parameters γj, j = 0, . . . , J and αi, i = 0, . . . , I,

γ = (γ0, . . . , γJ) ∼ N(0, σ2
γI), σ2

γ = 106,

α = (α1, . . . , αI) ∼ N(0, σ2
αI), σ2

α = 106.

Alternatively we could assume the seasonality of the regions to differ also by a phase

shift. In this case we assume the following form of νit,

log νit = αi + ζit,

where ζit now depends on the unit i,

ζit =
J∑
j=1

γijstj. (7.2)

Note that ζit does not include an intercept.

An additional modification could be to consider the different population sizes of the

regions ni by assuming

µit = ηit +
ni
n
νit.
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where n =
∑I

i=1 ni is the total population. The proportion ni

n
is included in exp(αi) in the

original model.

7.2.2 The epidemic component

For the epidemic part we consider seven different models shown in Table 7.1, that mainly

differ from each other by the assumptions that are made on interactions between the

units. The models are similar to the models for the epidemic component of Chapter 4

Model ηit
1 λtZi,t−1

2 λtZi,t−1 + φt
∑

j∼i Zj,t−1

3 λitZi,t−1

4 λitZi,t−1 + φit
∑

j∼i Zj,t−1

5
∑

(j=i)∨(j∼i) λjitZj,t−1

6
∑

(j=i)∨(j∼i) λtπjiZj,t−1

7
∑

(j=i)∨(j∼i) λjtπjiZj,t−1

Table 7.1: The epidemic component.

but allow for time-varying rate parameters, that follow a changepoint model, as the rate

parameter λ in Chapter 5. Since the complexity of the model is now primarily determined

by the number of time-varying parameters, model 6 is now comparatively simple with

just one time-varying parameter. We will introduce the structure of the rate parameters

λji = (λji1, . . . , λjin), j = 1, . . . , n, i = 1, . . . , n for model 5, the rate parameters of the

other models being defined in analogy. That is, the parameters λji = (λji1, . . . , λjin),

j = 1, . . . , n, i = 1, . . . , n are piecewise constant over time with unknown number of

changepoints Kji and unknown location of the changepoints θ
(1)
ji < . . . < θ

(Kji)
ji . For

convenience we define θ
(0)
ji = 0, θ

(Kji+1)
ji = n and θji = (θ

(0)
ji , . . . , θ

(Kji+1)
ji ). The parameter

vectors λji, j = 1, . . . , n, i = 1, . . . , n are then defined as:

λijt = λ
(k)
ji if t = θ

(k−1)
ji + 1, . . . , θ

(k)
ji .

For λ
(k)
ji , i = 1, . . . , I, j = 1, . . . , I, k = 1, . . . , Kji + 1 we assume independent Gamma
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priors with a Gamma hyperprior on the second parameter,

λ
(k)
ji ∼ Ga(αλ, βλji), k = 1, . . . , K + 1

βλji ∼ Ga(a, b).

We used the same specification as in Chapter 5, αλ = 1, a = b = 10. For the number of

changepoints and for the location θji = (θ
(1)
ji , . . . , θ

(kji)
ji ) given the number of changepoints

we assumed a uniform prior,

P (Kji) = 1/n, k = 0, 1, . . . , n− 1

P (θji|Kji) =

(
n− 1

Kji

)−1

.

For the proportions πj = (πj1, . . . , πjI) of model 6 and 7 we assume a Dirichlet prior

(Denison et al., 2002, p. 243),

πj ∼ Di(απj1, . . . , απjI),

where απjj = 99, απji = 1/Ij if i ∼ j, where Ij is the number of related units, and απji = 0

otherwise. This means that we expect a proportion of 0.99 of the cases to be caused in the

same region on average, with a standard deviation of around 0.01 and, in case of Ij = 4

related units, a two-sided 95% credibility interval of (0.97, 1).

7.3 Statistical analysis by MCMC

The model is estimated in analogy to Held et al. (2006). To design efficient update steps,

suitable auxiliary variables are introduced analog to Chapter 4.

The overdispersion parameters, the endemic parameters and the changepoint parame-

ters are updated similar to Held et al. (2006), the latter two conditioned on the auxiliary

variables. The parameters πj of model 6 and 7 and the auxiliary variables are updated in

analogy to Chapter 4.
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7.4 The influence of influenza on meningococcal dis-

eases

Meningococcal diseases are of major interest for public health surveillance due to their

severity and epidemic nature. Meningococcal infections are caused by the Neisseria menin-

gitidis bacterium. Neisseria meningitidis is transmitted to other persons as airborne infec-

tion, e.g. by couching or sneezing. Most infected do not get a disease. These persons build

immunity by developing protective antibodies and become a healthy carrier (Knorr-Held

and Richardson, 2003). Screening studies showed a colonisation of the mucous membranes

in the rhinopharynx of more than 30%, depending on the age group, in healthy persons

(Claus et al., 2005). Under certain conditions, e.g. low immunity, damage of the mucous

membranes, viral infections or dry air, the bacterium can infiltrate through the mucous

membranes and cause a severe and perilous disease, meningococcal meningitis, meningo-

coccal sepsis or the Waterhouse-Friderichsen syndrome (Anonymous, 2005). At a macro

level, the incident cases can be viewed as resulting from a sporadic component linked to the

carriage, on which is superimposed from time to time a small unexpected increase in the

incidence, so called hyperendemic periods (Knorr-Held and Richardson, 2003). However,

Knorr-Held and Richardson (2003) base their analysis on data, where there is no person

to person transmission recorded, whereas in the data, that are analysed here, clusters of

cases, that were caused by person to person transmission could be found (Anonymous,

2005). There is a strong evidence that some of these hyperendemic or epidemic periods

can be attributed to the influence of influenza, since they regularly occur at the end of

influenza outbreaks. We will analyse the influence of influenza on meningococcal diseases

based on the weekly observed number of cases of both disease types in Germany, collected

in the German infectious disease surveillance system.

Figure 7.1 shows the weekly observed number of influenza and meningococcal disease

cases in Germany from January 2001 until December 2005 that are collected in the Ger-

man infectious disease surveillance system, administrated by the Robert Koch Institute

in Berlin (obtained from SurvStat@RKI, http://www3.rki.de/SurvStat). The influenza

data show yearly outbreaks of different severity during the winter. At a first look on

the data one is tempted to interpret this as seasonality. However, the outbreaks do have

different start and end points. Although there is some intersection, this would probably

disappear with an increasing number of observed outbreaks. The meningococcal disease

data, however, show a strong seasonality and two or three little outbreaks during the win-
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ters of 2001, 2003 and 2005. These outbreaks coincide with the three biggest outbreaks of

influenza. The influence of influenza on meningococcal diseases has previously studied by
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Figure 7.1: Weekly observed number of cases in Germany from January 2001 until Decem-
ber 2005.

Hubert et al. (1992) and Jensen et al. (2004).

The meningococcal disease data show strong seasonality. We therefore assumed season-

ality with one frequency, which should be enough with regard to the form of the seasonality.

The influenza data seem to show some seasonality due to the fact that the outbreaks

always happen during the winter. However, the start and the end of the outbreak vary

from outbreak to outbreak. We have fitted a model with four frequencies for influenza,

with respect to the short period of the outbreaks. The estimated endemic parameter of

influenza, which includes the seasonality, is shown in Figure 7.2. The estimated seasonality

might, however, be an overfitting effect, i.e. the model is better fitting the seasonality in the

data than the real seasonality of influenza. If the number of observed outbreaks increases,

we expect the estimated seasonality to disappear. We therefore choose no frequency for

influenza for all models. The two different disease types are likely to show a different

amount of overdispersion. Type 2 overdispersion has therefore be chosen.

The samples of the number of changepoints showed a higher correlation than the sam-

ples of the other parameters. On the other hand the update via reversible jump is extremely

fast compared to the update steps of the other parameters. We therefore decided to up-

date only the changepoint parameters every iteration and all other parameters every 10th

iteration. We obtained 2,500 samples from the posterior distribution after a burn in of
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Figure 7.2: Posterior median and pointwise 95% credibility interval of the endemic para-
meter νinf,t, t = 1, . . . , n plotted against the influenza data (light grey).

1,000,000, taking every 10,000 sample. This lead to a total length of 26,000,000 iterations.

Despite this extremely hight number of samples the calculation was done in a moderate

time of around 4 hours on a 2.80 GHz PC, leading to almost uncorrelated samples. Ta-

ble 7.2 shows the effective sample size (see Section 2.1.5) of Kinf,inf and the calculation

time in seconds for the estimation of model 3. We estimate model 4 and model 7 for the

ESS CPU (s) ESS/s
2334.15 17007.40 0.14

Table 7.2: Model 3: Effective sample size of Kinf,inf , estimation time in seconds and
effective samples per second.

data, since these assume an individual epidemic rate parameter for the influence within

the units. Note that model 5 is equal to model 4 in the case of two units. For both models

we assume an influence from influence on meningococcal disease. The parameters for the

influence of meningococcal disease on influenza are fixed, that is πmen,inf = 0 for model 7

and φinf,t = 0, t = 1, . . . , n for model 4. We compare these two models with model 3, that

does not allow for interactions, which is equal to an univariate analysis of the two time

series. Table 7.3 shows the mean deviance D̄, the estimated number of parameters pD and

the deviance information criterion (DIC) for the three models. Model 4 shows a slightly

better fit than model 7. Both models show a better fit than model 3 without interactions,
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while there is little difference in the estimated complexity, which is surprising since model

4 has an additional changepoint parameter, that has a relatively complex structure.

D̄ pD DIC
model 3 3116 80 3197
model 4 3089 85 3174
model 7 3102 80 3182

Table 7.3: Deviance summaries

There is considerable difference between the posterior distributions of the dispersion

parameters of the two time series, shown in Table 7.4, that show disjunct 95% credibil-

ity intervals. This confirms our supposition that the two disease types show a different

amount of overdispersion. The mean of the parameter for the influence of influenza on

mean SD 2.5% 97.5%
ψ1 12.33 3.43 7.35 20.64
ψ2 46.33 14.08 25.71 78.43

Table 7.4: Model 3: Posterior mean, standard deviation and 95% credibility interval of the
dispersion parameters.

meningococcal disease of model 4, shown in Figure 7.3, has a value around 0.006. The

posterior mean of πinf,men of model 7 is 0.00724 with a two-sided 95% credibility interval

of (0.00345, 0.01096). The mean is slightly below the prior mean 0.01. The 95% credibility

interval is smaller compared to the prior, (0.00026, 0.03658), which shows that there is

some information about the parameter in the data.

The model also gives us the posterior distribution of the number of meningococcal dis-

ease cases caused by influenza, given by the auxiliary variables Yinf,men,t, t = 1, . . . , 260,

shown in Figure 7.4. There is an increase of the mean number of meningococcal disease

cases caused by influenza every year that is largest in the three years with the biggest

outbreaks of influenza, explaining a maximum of 22 meningococcal disease cases in the

biggest meningococcal disease outbreak in 2003, in the estimation of model 4. The lower

97.5% credibility interval rises above 0 in the two biggest meningococcal disease outbreaks

in the winters of 2003 and 2005, reaching a maximum value of 9, for model 4, in the 2003

outbreak.

The number of epidemic meningococcal disease cases cased by meningococcal disease

for model 4, Figure 7.5(e), decrease from a mean value of around 3 to 0. This decrease can
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Figure 7.3: Post. median and pointwise 95% credibility interval of φmen,t, t = 1, . . . , n for
model 4.
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Figure 7.4: Post. median and pointwise 95% credibility interval of Yinf,men,t, t = 1, . . . , n
for model 4 (left) and 7 (right).
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also be seen in the posterior of the epidemic parameter of meningococcal disease, Figure

7.5(b). The two peaks in the posterior of the epidemic parameter of meningococcal disease

at the times of the outbreaks of 2003 and 2005 in model 3 disappear in the estimation of

model 4 and 7. While model 3 explains the 2003 meningococcal disease outbreak by λmen

and Ymen,men (Figure 7.5), model 4 and 7 explain the outbreak primarily by the influence

of influenza.
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Figure 7.5: Post. median and pointwise 95% credibility interval of λmen,t (top) and
Ymen,men,t (bottom), t = 1, . . . , n for model 3 (left), 4 (middle) and 7 (right).

The results of model 7 are similar to those of model 4, with a slightly higher number

of epidemic meningococcal disease cases caused by meningococcal disease in the outbreak

of 2003 and a slightly lower number of meningococcal disease cases caused by influenza in

the 2005 outbreak. This may be a result of the lower flexibility of model 7, that assumes

the epidemic rate of the influenza and meningococcal disease cases caused by influenza to

be proportional.

Figure 7.6 shows the expected cases and the deviance residuals for model 4. The model

gives a good fit to the data and is able to explain the seasonality and the three outbreaks in

the meningococcal disease data, as well as the different severity of the influenza outbreaks.

The deviance residuals support this, with a slightly better fit for the meningococcal disease
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data.
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(d) Observed vs. expected cases
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Figure 7.6: Model 4. Posterior median and pointwise 95% credibility interval of the data
mean µi,t, t = 1, . . . , n plotted against the data (left), deviance residuals (middle), and
autocorrelation of the deviance residuals (right), for influenza (top) and meningococcal
disease (bottom).

Figure 7.7 show the predicted number of cases for model 3, 4, and 7, where the prediction

is based on all observations. Model 4 and 7 provide a clearly better prediction of the

three meningococcal disease outbreaks, especially at the beginning. Model 3 predicts the

outbreaks with delay. The short outbreak in 2005 is therefore not predicted.

We have estimated the three models for the data up to time 109, 110, 111 and 112,

which is at the beginning of the 2003 meningococcal disease outbreak, to compare the

prediction of this outbreak for the three models. The predictive distributions for the three

models, now based on the past observations, are shown in Figure 7.8. For model 4 and

7, the predictive distribution becomes a longer tail towards larger values. The increase in

the predicted number of cases shows that there is an increased risk for a meningococcal

disease outbreak already before the real outbreak is observed. The observed values lie

clearly inside the 95% credibility interval. In model 3 there is no increase in the predictive
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(a) model 3
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(b) model 4
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(c) model 7

Figure 7.7: Posterior median and pointwise 95% credibility interval of the predicted number
of cases plotted against the observed number of cases for meningococcal disease.

distribution based on the data up to time 109, 110 and 111. The observed number of cases

therefore trend towards the upper limit of the predictive distribution, where for time 112

the observed value lies at the upper bound of the 95% credibility interval. At time 113 the

predictive distribution shows a slight increase, due to the high number of cases observed

at time 112, with the observed value inside the 95% credibility interval.

The additional influence of influenza on meningococcal disease in model 4 and 7 allows

for a better prediction of the meningococcal disease outbreaks. The two models also suggest

that the risk of a meningococcal disease outbreak is present for a longer time period, even

if there is no outbreak observed at a certain time point.
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Figure 7.8: Predictive distribution ( 4 = median, [ ] = 95% credibility interval and
observed value (vertical line)) for meningococcal disease based on the past observations
Zmen,n+1|Zmen,1, . . . , Zmen,n, n = 109, . . . , 112 for the model 3 (left), model 4 (middle) and
model 7 (right).
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7.5 Influenza in the federal states of Germany

We now analyse the influenza data observed in the 16 federal states of Germany from

January 2001 until December 2005 that are again collected in the German infectious disease

surveillance system, administrated by the Robert Koch Institute in Berlin (obtained from

SurvStat@RKI, http://www3.rki.de/SurvStat). Model 3, 4, 5 and 7 are too complex

with respect to the number of regions. We therefore consider model 1, 2 and 6, where model

2 and 6 allow for interactions between the regions. Two states are defined to be neighbours,

i.e related i ∼ j, if they share a common border. The numbering of the states that we used

is shown in Table 7.8. We obtained 1,000 samples from the posterior distribution after a

burn in of 1,000,000, taking every 10,000 sample. This lead to a total length of 11,000,000

iterations. The calculation took around 20 hours. Table 7.5 shows the effective sample size

(see 2.1.5) of K and the calculation time in seconds for the estimation of model 6. Table

ESS CPU (s) ESS/s
1002.01 80038.40 0.01

Table 7.5: Model 5: Effective sample size of K, estimation time in seconds and effective
samples per second.

7.6 shows the mean deviance D̄, the estimated number of parameters pD and the deviance

information criterion (DIC) for the three models. Model 6 is the best in terms of DIC,

however, both models with interactions, model 2 and 6, are better than model 1 without

interactions. The estimation of the parameter λ, shown in Figure 7.9, is now based on a

D̄ pD DIC
model 1 10668 83 10751
model 2 10355 137 10492
model 6 10380 98 10478

Table 7.6: Deviance summaries

higher amount of data compared to the univariate case (Figure 7.9(d)). This additional

information leads to a better estimate of the parameter, with smaller credibility intervals

especially during the outbreak periods. Table 7.7 shows the results for the interaction

parameters πji of model 6. Although most states cause the highest proportion of cases

within the own state, there is considerable interaction between neighbours. Figure 7.10

and 7.11 show the space-time spread of influenza in the outbreak of 2002 estimated by
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Figure 7.9: Posterior median and pointwise 95% credibility interval of the parameter λ of
model 1 (a), 2 (b), 6 (c) and in the univariate model (d) and φ of model 2 (e).



102 7. A model for multivariate time series of infectious disease counts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0.75 0.12 − − − − 0 − − − 0.12 − − − − −
2 0 0.81 − − − − 0.01 − − − − − 0.11 − − 0.06
3 − − 0.89 0.11 − − − − − − − − − − − −
4 − − 0.25 0.61 − − − 0 0 − − − 0 0.13 − −
5 − − − − 0.99 − − − 0.01 − − − − − − −
6 − − − − − 0.96 − − 0.02 − − − − − 0.01 −
7 0 0.16 − − − − 0.77 − 0 0.05 0 − − − − 0
8 − − − 0.11 − − − 0.85 0 − − − − − 0.03 −
9 − − − 0.02 0 0.01 0 0.02 0.9 0 − − − 0.02 0.03 0

10 − − − − − − 0.07 − 0.12 0.78 0.02 − − − − −
11 0.18 − − − − − 0 − − 0.08 0.72 0.01 − − − −
12 − − − − − − − − − − 0.02 0.98 − − − −
13 − 0 − 0 − − − − − − − − 0.9 0.1 − 0
14 − − − 0 − − − − 0 − − − 0.22 0.78 − 0
15 − − − − − 0 − 0.08 0.05 − − − − − 0.87 −
16 − 0 − − − − 0 − 0 − − − 0.23 0 − 0.75

Table 7.7: Matrix of the posterior median of πji.

Federal states of Germany
1 Baden-Württemberg
2 Bayern
3 Berlin
4 Brandenburg
5 Bremen
6 Hamburg
7 Hessen
8 Mecklenburg-Vorpommern
9 Niedersachsen

10 Nordrhein-Westfalen
11 Rheinland-Pfalz
12 Saarland
13 Sachsen
14 Sachsen-Anhalt
15 Schleswig-Holstein
16 Thüringen

Table 7.8: Federal states of Germany.

model 6. Since the growth of the disease is exponential we show the logarithm of the mean

of µit, which is standardized by the population size. The scale goes from green(low number

of cases) to red(high number of cases). Besides this, the velocity of growth, calculated in

analogy to Mugglin et al. (2002) as log(µi,t+1) − log(µi,t), is shown, where red means a

positive growth and green a negative. If the disease is neither growing nor shrinking, the

color is yellow. The disease starts in the north east and south west of Germany. In the first

weeks of the outbreak, the number of cases are still moderate, however, the disease spreads

with considerable velocity. While the velocity is generally high in the first weeks of the

outbreak, there is considerable difference in the states. The peak of the disease is reached

in most states in week 64. This can be seen by the velocity of growth, that changes from

positive in week 64 to negative in week 65 in most states. The states where the disease

started, reach the highest number of cases compared to the other states. While in most

states the number of cases shrinks after week 64, some states of the north east and south
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west show another growth. This local outbreak spreads further, reaching again the center

of Germany in week 69.

(a) week 55 (b) week 56 (c) week 57 (d) week 58 (e) week 59 (f) week 60

(g) week 61 (h) week 62 (i) week 63 (j) week 64 (k) week 65 (l) week 66

(m) week 67 (n) week 68 (o) week 69 (p) week 70

Figure 7.10: Model 6: Expected number of cases.
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(a) week 55 (b) week 56 (c) week 57 (d) week 58 (e) week 59 (f) week 60

(g) week 61 (h) week 62 (i) week 63 (j) week 64 (k) week 65 (l) week 66

(m) week 67 (n) week 68 (o) week 69 (p) week 70

Figure 7.11: Model 6: Velocity of growth.
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7.6 Model comparison

We will compare model 6 with the model based on a GMRF including unstructured spa-

tial effects, structured time effects and seasonal covariates, the model with time constant

epidemic parameter and the model with an endemic component based on a GMRF and a

time constant epidemic parameter proposed in Chapter 4. Table 7.9 and 7.10 show the de-

viance summaries of the three models for the influenza data and the measles data analysed

in Chapter 4 and model 6 of this chapter. The models with epidemic component are all

D̄ pD DIC
model with random walk 10953 84 11037
model 6 with time const. epid. parameters 10975 27 11002
model 6 with time const. epid. parameters and random walk 10412 79 10491
model 6 with time varying epid. parameters 10380 98 10478

Table 7.9: Deviance summaries for influenza

D̄ pD DIC
model with random walk 1742 15 1757
model 6 with time const. epid. parameters 1565 12 1577
model 6 with time const. epid. parameters and random walk 1562 13 1575
model 6 with time varying epid. parameters 1539 29 1568

Table 7.10: Deviance summaries for measles

better in terms of DIC than the model purely based on a GMRF. However, the model with

time varying epidemic parameter is the best model, even if the model with time constant

epidemic parameter includes an additional structured time effect in the endemic compo-

nent. Figure 7.12 show the predicted influenza cases of region 9 for the four models, where

prediction is based on all data. The model with time varying epidemic parameter shows

clearly the best prediction of the four models. As the estimate of the epidemic parameter

of influenza (Figure 7.9 (b)), the estimate of the epidemic parameter of measles (Figure

7.13) is clearly not constant.

7.7 Discussion

In this chapter we have introduced a multivariate version of the model proposed in Chapter

5. The basic concept is again the distinction of an endemic and an epidemic component.
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(a) model with random walk
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(b) model 6 with time
const. epid. parameters
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(c) model 6 with time
const. epid. parameters and
random walk
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(d) model 6 with time varying
epid. parameters

Figure 7.12: Posterior median and pointwise 95% credibility interval of the predicted num-
ber of cases plotted against the observed number of influenza cases of region 9.
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Figure 7.13: Posterior median and pointwise 95% credibility interval of the epidemic para-
meter λ for measles of model 6.
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The endemic component is extended by independent unit effects. The seasonality and

the amount of overdispersion may be assumed either dependent or independent of the

unit. The epidemic component includes now dependencies between the units to model the

interactions between the units.

The model has shown to be applicable to a wide range of problems. The applica-

tion to influenza and meningococcal disease data shows that the occasional outbreaks of

meningococcal disease can largely be explained and predicted by the influence of influenza

on meningococcal disease. The risk of a future meningococcal disease outbreak caused by

influenza can be predicted.

The application to the spatial influenza and measles data shows that the model fits the

data quite well and gives an idea of the extent of interaction between different regions. The

comparison with a model based on a GMRF and the model proposed in Chapter 4 with a

constant epidemic parameter shows that the inclusion of the epidemic component as well

as a time varying epidemic parameter improves the fit and the prediction of the model.

It would be interesting to compare the model with a more sophisticated GMRF model,

including space-time interactions.

A possible alternative to the current approaches would be to model the epidemic para-

meter by a Bayesian cluster model e.g. the one proposed by Yan and Clayton (2006).
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Chapter 8

Conclusion

Models for infectious disease surveillance counts have to take into account the specific

characteristics of this type of data. While showing a regular, often seasonal, pattern over

long time periods, there are occasional irregularities or outbreaks. The wide range of

mechanistic models is not applicable to this kind of data. Standard empirical models as

log-linear Poisson regression models or Gaussian Markov random fields (GMRF) models,

as used for chronic diseases, on the other hand, are not able to capture the infectious

disease specific characteristics of the data. A compromise between mechanistic models and

empirical model is needed. We therefore based the models on a branching process, which

is an approximation to the mechanistic chain binomial model. A further key idea is to

distinguish between an endemic and an epidemic component, which allows us to separate

the regular pattern from the irregularities and outbreaks. This is of particular advantage

for outbreak detection in public health surveillance. While the endemic component is

modeled using standard empirical models, including spatial, time and seasonal components,

which can be seen as parameter-driven models, the epidemic component is based on an

observation-driven approach, including an autoregression on past observation, which is

more appropriate for this setting.

A particular challenge of infectious disease counts is the modelling of the outbreaks

and irregularities in the data. These often show jumps or fast increases at the beginning

on the one hand and smooth decreases on the other hand. Models assuming constant

correlation structures as GMRF are not appropriate for this task. We therefore modeled

the autoregressive parameter of the epidemic component by a Bayesian changepoint model,

which shows an adaptive amount of smoothing, and is able to model the jumps and fast

increases as well as the smooth decreases in the data. While the model can be used as
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a generic approach for infectious disease surveillance counts, it is particularly suited for

outbreak detection in public health surveillance. Besides, the predictive qualities of the

Bayesian changepoint model allow for short term predictions of the number of disease cases,

which are of particular public health interest.

The Markov state space form of the changepoint model and the Markov structure of the

changepoints allow for the use of sequential Monte Carlo (SMC) methods. We considered

two types of sequential Monte Carlo methods: the forward-backward algorithm and a

particle filter. While the forward-backward algorithm can be used as an alternative to

the reversible jump algorithm, for the update of the changepoint model within the MCMC

algorithm, the particle filter can be used for a prospective analysis of the changepoint model

conditioning on fixed values for the other parameters, which is of particular advantage for

public health surveillance, where data arise sequentially.

Infectious disease surveillance data are often available as longitudinal data, observed in

units, e.g. age groups or spatial regions. These data provide more information than time

series data. To make the model applicable to these kind of data, multivariate versions

of the model were considered. Special attention has been paid to the modelling of the

dependencies and interactions between the units. These models have shown to be applicable

to a wide range of problems. The application to influenza and meningococcal disease data

showed that the occasional outbreaks of meningococcal disease can largely be explained

by the influence of influenza on meningococcal disease. The risk of a future meningococcal

disease outbreak caused by influenza can be predicted. The application to spatial influenza

and measles data showed, that the model fits the data quiet well and gives an idea of the

extent of interaction between different regions. The comparison of the different models,

including a model based on GMRF, showed that the inclusion of the epidemic component

as well as a time varying epidemic parameter improves the fit and the predictive qualities

of the model.



Appendix A

Twins

The software twins was developed within the scope of this work. Twins is a software to

estimate the model described in Chapter 5 and is available at

http://www.stat.uni-muenchen.de/∼mhofmann.

On the following pages you find the twins-manual.
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twins

A two-component model for counts

of infectious diseases

Leonhard Held, Mathias Hofmann, Michael Höhle, Volker Schmid

Department of Statistics, Ludwig-Maximilians-Universität München,
Ludwigstr. 33, 80539 München, Germany

Version 1.0

twins is available at http://www.stat.uni-muenchen.de/∼mhofmann

Licence agreement

The authors of this software grant to any individual or non-commercial organization the

right to use and to make an unlimited number of copies of this software. Usage by commer-

cial entities require a licence from the authors. You may not decompile, disassemble, reverse

engineer, or modify the software. This includes, but is not limited to modifying/changing

any icons, menus, or displays associated with the software. This software cannot be sold

without written authorization from the authors. This restriction is not intended to ap-

ply for connect time charges, or flat rate connection/download fees for electronic bulletin

board services. The authors of this program accept no responsibility for damages resulting

from the use of this software and make no warranty on representation, either express or

implied, including but not limited to, any implied warranty of merchantability or fitness

for a particular purpose. This software is provided as is, and you, its user, assume all risks

when using it.
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A.1 General information

Twins is a software for estimating the stochastic model for time series count data of infec-

tious diseases proposed in Held et al. (2006). The model is based on a Poisson or negative

binomial observation model with two components: A parameter-driven component that

relates the disease incidence to latent parameters describing endemic seasonal patterns,

which are typical for infectious disease surveillance data, and an observation-driven or

epidemic component that explains for possible outbreaks.

A.2 Starting twins

After you have installed twins, edit the twins.ini file or write your own ini-file. Then start

the program by typing

twins ini-file

or (if you use twins.ini) just type

twins

in the command line. On window-based OS you can also start twins with a double click

on the twins-icon. Twins then will use the twins.ini file.

A.3 Input files

A.3.1 The data

The data file must containing the number of observations followed by the observations that

have to be integers. The entries have to be separated by the new line command.

A.3.2 The parameters

All parameters for the algorithm are specified in an ini-file, by default called twins.ini,

which contains the following information



114 A. Twins

datafile path of the data file

logfile path of the first output file; the estimation results are written

to the two output files as explained in Section A.4.

logfile2 path of the second output file

burnin burnin; total number of iterations = burnin + filter*sampleSize.

filter filter

sampleSize sample size

seed seed

alpha xi first parameter of the prior of ξ

beta xi second parameter of the prior of ξ

season season of the endemic component

frequencies number of frequencies of the endemic component

psiRWSigma starting value for the tuned standard deviation of the proposal of ψ

alpha psi first parameter of the prior of ψ

beta psi second parameter of the prior of ψ

The ini-file must have 14 lines. The two columns have to be separated by a colon.

A.4 Output files

The output is written to three output files:

• The first output file, contains the samples of the posterior distributions of ψ, γ, K,

ξ, λ, Zn+1 and the Deviance.

• The second output file contains the posterior means of X, Y and ω and the posterior

probabilities of the changepoints.

• The acc file, ”output file name”.acc, contains the acceptance rates.

For a better handling with R, the time index starts at t = 1 instead of t = 0.

A.5 Figures

The R-program figures.R reads the output files of the estimation and creates some figures.
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xyz.pdf Posterior means of the components X and Y

tms-lambda.pdf Posterior mean and pointwise 95% credibility interval of λ

tms-nu.pdf Posterior mean and pointwise 95% credibility interval of ν

theta.pdf Posterior probabilities of the changepoints

lambdage1.pdf Posterior probability of λ > 1

histogram-K.pdf Posterior probability of K

histogram-psi.pdf Posterior probability of ψ

histogram-Znp1.pdf Posterior predictive probability of Zn+1

traj-gamma-i.pdf Trajectory of γi

traj-K.pdf Trajectory of K

traj-psi.pdf Trajectory of ψ

traj-xi.pdf Trajectory of ξ

autocorrelation.pdf Autocorrelation of K and ψ
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