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Wenn wir anfangen, etwas zu glauben,
so nicht einen einzelnen Satz, sondern
ein ganzes System von Sätzen.
Nicht einzelne Axiome leuchten mir ein,
sondern ein Sytem worin sich Folgen und
Prämisen gegenseitig stützen.

L. Wittgenstein (1950)
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Chapter 1

Introduction

Great has been the interest man has shown for his environment and for the data his
senses can perceive, since we can remember. This fact, combined with a strong desire
for predictability of events, has led to what is known today as science. Of course, it
has to be stressed, that mainly the name ”science” has remained the same, its meaning
and techniques have changed during the history.

If people thought that ”the earth rests on the back of an elephant which rests on
the back of a giant tortoise which rests on the face of a limitless sea” as documented
about 1800 B.C. in the Indian writings of Upanishadic Apocryphia, some time later, in
the ancient Greece, the pre–Socratic philosophers began to analytically criticize such
images: they continued asking the question of origins, but also added some others,
as e.g. ”What is reality”, ”Where does the variety of things we observe comes from”
and finally what are the patterns, or laws if we want, which govern nature. At that
time also the basic language, in which science shall be later formulated, was settled
and given rigor1, the mathematics. The immediate question arose wether there is any
way in which we might describe nature by mathematical language. Mathematics was
born from natural concepts, such as distinct, numerable objects and various sets with
their intersections and unifications; those incipient ideas were first idealized and then
generalized: the idealization came as the continuation of natural numbers to infinity
or later, as the infinite exactness of rational and real numbers; the generalization was
and still is today the definition of new objects inspired by the older: from natural
to whole numbers and then to rationals, reals, complex and so on,[1]. It shouldn’t
though be surprising that similarities between nature and mathematics arose. Even
at that time various natural observations could be mapped to mathematical concepts,
which was rather looked at as a mystery. However, the ”mathematical” rigor as known
today, was still missing, such that great mathematical discoveries were rejected for their
”incompatibility” with the natural way of thinking2, although the notion of ”proof”

1Although mathematics was ”invented” earlier, at the end of the summerish period and during the
babylonian time, its notion of exactness was first settled about 500 B.C. Then, the notion of truth was
introduced as a consequence of the mathematical proof, thus making possible the separation between
conjecture and truth.

2The most famous example, if also very embarrassing, took place in the Pythagorean school, where

1



2 1 Introduction

was known at that time.
Throughout the years one feature though persisted, being maybe the thread of

science: the notion of ”law” and its manner of definition. People have simply observed
regularities in nature and after a number of repetitions (which had to be high enough),
named these as ”laws” or even as ”nature laws”. Neither the number of repetitions
not the boarder between a simple law and a natural law is defined sharply.

A best example for the establishing of such a law, is the oldest of the sciences, the
science of celestial bodies. It’s not easy to overlook the strong regularities governing
the movement of extraterrestrial bodies, which naturally leads us to the concept of
law. Also its mapping to mathematics is quite tempting and even the creation of
”new” mathematics was inspired by it, as known from the first theoretical physicist
ever, Isaac Newton.

It was this period which marked the beginning of the new scientific era, as known
today. The scheme of ”doing physics” was implicitly accepted and can be described
as the following: experimental work leads to better and better understanding of the
phenomena studied which finally can be described by a proposed theory, formulated
in terms of mathematical equations. In newer times, this scheme has been reversed,
one starts very often with one or more conjectured theories which are then ”proved”
by the experiment.

It was maybe for the first time in the mid of the 20th century, when science was
more rigorously analyzed and even casted into a definition. It was K.R. Popper to
whom we owe these merits he presented in his major work ”The logic of scientific
discovery”, [2]. For the first time a sharp limitation was drawn between science and
metaphysics. His strongest discovery was the unprovability of a theory. Although very
surprising, this idea is still today not very spread, or at least not as it should be.
Popper gave some simple, basic criteria for a conjectured theory such that it can be
named a scientific theory:

• self consistency

• consistency with valid existing theories

• power of predictability

• falsifiability

(1.1)

I will comment a little on those criteria and on their critics. First of all, those
properties are definitions and not god given qualities. They have been stated in order
to establish a system in which we can work together and understand each other. They
cannot be proved nor can they be deduced from more basic assumptions: they are
something like an ”ethics” for scientific behavior.

The first criteria given, states that a theory should be free of any inconsistencies
which can be achieved by only applying the mathematical apparatus on it: thus no

for the first time a proof for the existence of nonrational numbers was given but not accepted and its
proponent even killed.
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comparison with any experiment or observational data is needed just applying the
mathematical logic should single out theories which are inconsistent. For sure such
an agreement is of value, since if any inconsistency is observed inside the theory, than
the whole mathematical language is not any more usable for describing that theory.
So nothing is said about the nature, just the mathematical language we are using for
describing theories would have to be rejected, surely a very dramatic consequence!

The second property of a scientific theory, its compatibility with already established
theories, is an argumentative issue. For sure, ideally, a new proposed theory should
be in total agreement with other existing theories and also explain and predict new
phenomena. However, quite often, especially in latter times, a new proposed theory is
a radical change of point of view or even a change of paradigm, which is contradictory
to older theories. In former centuries, when scientific theories where established for the
first time, this criterion was for sure more simple to be applied: since one phenomenon
was attacked for the first time, no other conjectures about it (or at least conjectures of
mathematical nature) could be contradicted. Nowadays, various generations of conjec-
tures have been established about all possible phenomena, such that an inconsistency
with other theories is unavoidable. Examples are the special relativity or the quantum
principle, which both couldn’t be consistent with newtonian mechanics, if the latter
was considered a fundamental theory. Many other examples can be given, but the
situation stays the same: we don’t have an applicable rule to decide which theory has
to be kept and which has to be abandoned. For instance, all theories formulated today
have to be ”lorentz invariant”, i.e. in accordance with the special theory of relativity.
If they aren’t, they will be automatically rejected. It is the sensibility of the scien-
tist which guides one between experimental evidence and willingness of changing the
paradigm.

The third criterion, is maybe beyond any controversy, since it states that a theory
should make some predictions or at least explain more than the others did. It is almost
a tautology, since the very (implicit) definition of the scientific theory is such that it
explains deeper or predicts more phenomena than its ancestors did.

We turn now our attention to the last and maybe the most known and important
criterion proposed by Popper for a scientific theory: its falsifiability. Simply stated, it
just means, that a theory has to be build such that it can be proven as false: thus its
predictions have to be measurable and the experimenter has to be in the position to
prove those prediction as false. The accent is here clearly on the falsification and not
on the provability. The reason for that is that such a complex topic as a theory cannot
be proven. In order to understand this counterintuitive statement let’s look at some
explicit example: Newton’s attraction of massive bodies. It states that bodies attract
according to the law proportional to the inverse square of their distance. We further
suppose we don’t know that this law is false in order for our game to be played. If we
try to prove this theory we have to show first that the 1

r2 –law holds. To do this, we
have to rule out any other law, in which for example other polynomials involving the
distance can show up, even with tiny suppressing factors. The consequence is we have
to measure the experimental data with infinite accuracy! This is a first impossibility
of proving Newton’s attraction law. But even supposed we could measure with infinite
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accuracy, we aren’t done, since Newton’s law makes a prediction about all bodies in the
universe, we have thus to check this law for every single pair of bodies! We see, in order
to prove a law we are faced with many impossibilities. A theory’s failure however, can
be shown with a small amount of energy. So the way science works is in principle the
following: the theoretician either simply guesses new theories, guided by experimental
evidence or the physicist is inspired by already stated, older theories and deforms those
in order to fit them to experimental data or to his wishes. This way, we obtain a rich
spectrum of different theories which are then consecutively exposed to tests and ruled
out one after the other, until new theories are available, the latter going the very same
way as the former. At this point, we cannot disregard a very obvious similarity with
the biological evolution governed by genetic mutation and natural selection: given the
incipient theory, it undergoes some processes of (external) mutation, since it doesn’t
change itself but it is changed by the physicist. Furthermore, those changes aren’t
random, since the physicist has either discovered some intrinsic inconsistency, or has a
higher sense of beauty which the actual theory doesn’t satisfy yet, or finally has strong
hints from the experimental side. The latter reason clearly represents the natural
selection, although the other two mutation mechanisms can also be regarded as natural
selection. Thus, physics is as ”cruel” to its theories as nature is to its life forms. With
every new, accepted theory we get one step nearer to the absolute truth (assumed such
a thing exists), but uncountable trials have been thrown away, and are often regarded
as useless, although they represent inevitable rungs of an (infinite) ladder.

Much more can be said on upper criteria for a reasonable scientific theory, we shall
however limit ourself to what we have already said.

Although the type of science defined above seems to be quite reasonable and ac-
cepted by all scientists there could be strong evidence for its failure to characterize a
scientific behavior. Or the other way around, it seems that we are faced in the last
years with a deep paradigm change concerning the way in which we attack physical
topics.

We refer now to a possible revolution in physics, which has started latently in the
late 1980ies, supposed string theory is the right and only way we can describe nature.
Then, for the first time, Candelas, Horowitz, Strominger and Witten, [3], proposed
compactifications for space–time emergent from the string theory in order to make
contact with the observed four–dimensional space–time. This process has been carried
on until today when we are faced with a single theory with a huge number of vacua, of
which every describing a possible world, with its own natural constants and coupling
strengths. We stress again: should string theory be truth, then the so called landscape
involves a number of vacua of the order of 10500 which destroys every desired uniqueness
of our world. Many physicists today regard this phenomena as the single one able to
deliver an explanation of the fine tuning observed in our Standard Model.

Accepting this point of view means a very drastic change of paradigm, since we have
to give up the predictability of a scientific theory and further give up the uniqueness
of our world regarding it as just a possible realization of the huge number of allowed
vacua. The whole nature of this paradigm is not even worked out, since there are
still unclear effects accompanying it: once we reject the falsifiability then we can never
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prove string theory to be false. So we have to accept it without any reason. On the
other hand side it is exactly string theory which induced this change of paradigm,
since it predicts those various numbers of vacua. We can’t neglect this circularity,
which maybe might be cured in the future.

We stop our general introductory exposition about science and its nature here and
dedicate ourself in the next section to the theory accepted by most physicists today.
We will try to keep the explanations in that introductory section as simple as possible,
for we would like to emphasize the physical concepts and reveal them as good as we
can and not hide them behind technicalities.

Standard model and the theory of gravity

Now, before going on, time has come to reveal the main ideas of the ”standard model”,
that is the model widely accepted today and used to predict nature at its smallest and
also largest scales.

At this stage ones attention will immediately be attracted by the clear decompo-
sition of the theories. Thus on the one hand we have a classical theory formulated in
terms of geometrical means, being not described with quantum mechanical principles,
the theory of gravity, and the other hand, we have a quantum mechanical field theory,
composed of three distinct pieces, each concerned with the description of elementary
particles. This might seem a little bit unsatisfactory, but on this just a little later.
Let us first describe in more detail each of those theories, and then concern about the
structure of the whole construction of the standard model.

Special and general relativity

Gravity is best described nowadays by the Einstein’s General Theory of Gravity,[4,
5, 6], whose mathematical formulation was first given by A. Einstein, in 1916. This
is the logical continuation and generalization of the special theory of relativity, first
formulated in 1905 by the same person. The restricted version of the relativity has
as its basic physical principles two axioms, the constance of the speed of light and
the generality of physical laws in all inertial systems3, but has a much more greater
underlying change of paradigm, which revolutionized physics until that time. This
paradigm states the existence of a new four–dimensional space–time, the unification
of three–dimensional Newtonian space with time, which should be the real frame in
which we live. Since descriptions of the same physical event in different inertial frames
should lead to the same mathematical form, the transformations which arise naturally
predict new effects such as time dilatation or space contractions. At that time those
predictions were nearly incredible and hard to digest. This is also the reason why he
never got a Nobel Prize for that work. However, the physical community was confident
with his competency and also the power of his theories, reason for which he was finally

3An inertial system of reference is a coordinate system which is not accelerated with respect to
some other coordinate system, thus moving with constant velocity or being in rest.
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given after all the Nobel prize, however for his photoelectrical effect, to be discussed
later.

The nature of the definition of inertial frames is at its very heart quite restrictive,
since no acceleration is at all allowed. Thus, at least in principle, the way to gen-
eralizations was given. The latter were achieved as already stressed, in 1916, when
Einstein related the curvature of space–time with the total energy contained in it, this
being the general theory of relativity. Its description is given in terms of differential
geometry, where the unified space–time is described by an real Riemannian manifold
R

4, η. Furthermore, the space–time is highly dynamic, i.e. it reacts on the matter
filling it and also gets back reacted from it. This interplay is described by differential
tensor equations which are extremely nonlinear. They relate essentially the Einstein
tensor Gµν , being responsible for the curvature of the space–time manifold, with the
momentum–energy tensor Tµν coming from the presence of matter. Unfortunately the
theory cares just about the ”mechanical” properties of matter, such as mass distri-
bution, momentum, angular momentum, never being concerned with microscopical
attributes of matter. Usually matter is simply put into the theory and one observes
the evolution of the space–time–matter complex. For sure this is in practice by far
not easily to be solved exactly, but in principle it is solvable, and this is achieved by
computer aid. The theory was created almost one century ago, and none of its parts
have been changed during the decades. Today we still work with the same formulation
left by Einstein.

The quantum world

Roughly at the same time as relativity was developed, accurate experimental results
gave strong evidence for (at least partial) quantization of matter. First M. Planck,
postulated 1900 the appearance of energy in discrete quantities, hν4, and five years
later Einstein again described photons, as discrete entities of light and also postulated
that the other kinds of matter should be quantized. Thus, two deeply different de-
scriptions of matter were given, on the one hand the classical wave representation, on
the other the newer quantum representation. This fact was later on generalized by L.
de Broglie, who postulated for all matter or radiation a dual description in terms of
particles and waves, given by λ = h

p
, where λ is the wavelength and p the momentum of

the described entity. Already those thoughts have lead to simple atomic models which
could roughly describe some of the properties encountered when dealing real atoms.
More directed work and intuitional postulates which culminated with W. Heisenberg’s
uncertainty principle ∆x ·∆p ≥ ~

2
, which states that the accuracy of the measurement

of the momentum multiplied by the accuracy of the measured position of the one and
same entity cannot be smaller than the quantity on the right. This is a constraint with
respect to the accuracy of measurement involving one quantum entity, which eventu-
ally lead to reformulation of the momentum and space coordinates as non commuting
operators. This paradigm completed somehow the principles of quantum mechanics.

4Here h denotes the basic unit in which energy can be measured, of magnitude h = 6.6 · 10−34J s,
named after his postulator, and ν the frequency of radiation.
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For more on that subject see e.g. [13, 14]. Thus simple state equations could be
constructed allowing for an toy theory which could deliver simple and exact measure-
ments and predictions. However, for a more accurate and appropriate microscopic
description of matter this wasn’t enough. One soon understood that the principles
of special relativity, the old field theoretical descriptions dating from Newton and the
new quantum mechanics should be unified, in the same manner Newtonian physics was
unified with the quantum principles to the quantum mechanics. This was eventually
achieved in the framework of quantum field theory, [7, 8, 10], were we essentially have
an infinite, uncountable, set of quantum mechanical systems, for we take the contin-
uum limit from (quantum) mechanics to (quantum) fields. So quite a straightforward
quantization method arose: in the existing Lorentz-invariant field theory5 the involved
fields were expanded in modes, and those were imposed (anti-)commutation relations
on, such that momentum and position became operator valued functions of the space–
time. This procedure is nowadays known as ”canonical quantization”. Success soon
crowned the work and people were able to calculate for example the radiation of quan-
tum transitions. Decades later, more sophisticated and powerful techniques were put
into the theory, from all of which maybe the path integral technique, [11], is most
powerful and intuitive. This way, just two axioms about quantum mechanics and a
strong mathematical apparatus allow for various, precise and elegant results. The first
axioms states that the probability from evolving from some initial state |i > to a final
state |f > is given by the square of the absolute value of a transition amplitude, call
it K(i, f). The second axioms states that this transition amplitude is the sum over all
possible paths from |i > to |f > weighted with eiS/~, as best described in [12]:

P (i, f) = |K(i, f)|2, (1.2)

with

K(i, f) =
∑

paths

eiS/~ =

∫
Dx(t)eiS/~. (1.3)

The rest of the story is concerned with the implementation of that formal sum,
technique which rests on an old idea from P. Dirac. This way, we can think of the
path integral approach as the continuum generalization of the two–slit experiment
to the n–slit experiment with m screens,[15]. Once quantization is done we have to
eliminate the encountered infinities by the techniques of renormalization. One is then
able to successfully calculate scattering cross sections, decay times of bound states and
other intrinsic quantum properties such as the anomalous magnetic momentum of the
electron, which is one of the very best examples showing the accuracy of the quantum
field theories. Moreover, intuitive scenarios are even able to recover the mechanisms of

5At that time, the only developed field theory was the theory of light, the electrodynamics. Gravi-
tation was (and still is) described in a geometrical manner, the other two nuclear forces weren’t known
at that time.)
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general like charge repulsion in Maxwell theory and mass attraction in gravity, see e.g.
[16]! Moreover, quantum electrodynamics, the quantum version of Maxwell’s theory,
proved as one of the most accurate and best describing theories ever treated.

More experiments in the late fifties and beginning sixties lead to the discovery of a
huge amount of particles, the so called particle zoo. Initiated by those discoveries two
more forces of nuclear nature (the strong and the weak nuclear force) were postulated
on order to better describe subatomic and nuclear structures and also to incorporate
all the particles already encountered. The description proved to be a very straight-
forward generalization of the quantum electrodynamics if the latter was formulated as
a Yang–Mills theory with gauge group U(1), the former being a gauge theory, i.e. a
theory describing interactions between fermions (which are half integer spin particles,
making up the ”matter”) by minimally coupling them to bosons (integer spin particles
responsible for interactions) – the force particles, also known as gauge bosons. The
gauge boson arise almost naturally within the theory of fermions by just imposing
invariance under gauge transformations, see e.g. [17]. Then, the weak nuclear fore is
described as a SU(2) Yang–Mills theory and the strong force as a SU(3) Yang–Mills
theory. Thus the standard model can be written U(1)×SU(2)×SU(3) as an acronym
of its governing gauge transformation properties.

After this grand unification, all particles discovered until then proved to be mainly
resonances of the few underlying basic particles, which could be described by only
three fundamental forces: the electro–magnetic, the weak and strong nuclear force!
They were formulated in terms of Yang–Mills theories, This is what we call the stan-
dard model, the model accepted today as describing all particles that have been sofar
observed6.

Criticism of the Standard Model

For sure, this is a great step man has done but we cannot neglect its shortcomings.
The greatest maybe, it’s the incompatibility of gravitation with quantum effects. This
testifies the incompleteness of either one of the two theories or even both. The general
theory of relativity is a purely deterministic, ”mechanic” theory, where in principle
everything can be approximated to desired order. This highly violates the quantum
principles, where ”particles” are described by their wave functions and any observable
quantity is a probabilistic value. (An explicit path followed by a ”particle” doesn’t even
make sense here.) Great effort has been made in order to cure this problem but they
remained mainly unfruitful. One promising solution might be Loop Quantum Gravity
[18, 19], which applies the techniques of loop quantization to diffeomorphic invariant
theories aiming a resulting quantum gravity. However, this project is still in work and
no evidence for a breakthrough yet exists.

$ 1.000.000 has been offered to the person who might be able to solve the ”hierarchy
problem” of the Yang–Mills theories. The very prize signalizes the importance of the
problem and its difficulty. There are big mass gaps in the spectrum of ”elementary”

6An additional mechanism for conferring mass to certain force particles has been put in the theory,
known as Higgs mechanism .
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particles coming from Yang–Mills theories which nobody can explain and also don’t
seem to be deductible from the theory alone. This is a big shortcoming of the standard
model on which intense work is spent. A possible outcome may be the existence of
supersymmetry 7.

Another weakness is the required use of the technique called renormalization. When
performing those mathematical operations it often looks as some ”undesired”, infinite
quantities were simply hidden for convenience. The whole apparatus has often been
criticized and the encountered infinities are a strong hint for the standard model just
being an approximation, some effective theory, build on top of a more basic underlying
theory. This is reason enough to search for that conjectured theory.

Mass emergence is another misunderstood topic. Yang–Mills theories predict the
right number of particles with the right properties except their mass: after it, all gauge
bosons should be massless. This is unfortunately not the case, thus a mechanism for
mass ”acquisition” was proposed, the Higgs mechanism. Also a massive Higgs–particle
should exist, which has never been discovered.

The particle observation basis Super–Kamiokande has detected in 1998 neutrino
oscillations. Those are clear signs for the non–zero mass of neutrinos, which are pre-
dicted as massless in the standard model. One more inconsistency which has to be
solved.

As a last remark, the number of parameters inserted into the theory8, are about
19 (!). It is expected from a scientific theory to have relatively few parameters, such
that by minimal input one gets maximal output, i.e. experimental predictions. Fur-
thermore under those 19 parameters a lot of them are masses of particles, and those
should really be predicted, i.e. come from the output of the theory and not viceversa.

These problems, some of which are of aesthetical nature, others of computational
nature and some are of deeply comprehensive nature cannot be neglected. For sure, the
standard model together with gravity have excellently served the science and predicted
many useful and unexpected events. This should however, hardly be a reason to keep
those theories up, despite their shortcomings and inconsistencies. As long as no better
theory is known, the standard model and gravity is the best we have, so we have to
keep it. On the other hand, we have something new, then it’s time to throw away
the old habits and accommodate for the newer. This may seem very ”egoistic” and
”selfish”, but this is how science works. Thus, after the short summary and outline of
the work, the next chapter should be dedicated to a new and alternative theory, which
might be a way out of the labyrinth of inconsistencies presented above.

Summary and outline

Main part of this work is the calculation of the six–gluon superstring scattering am-
plitude on the disk in order to extract the relevant part for the effective action, which

8Those parameters are simply real numbers, which allow for an numerical computation of desired
quantities with the rules given by theory.
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describes the behavior of the scattered states. There have been already indirect ap-
proaches in order to achieve that, see e.g. [20, 21], which aimed to match the spectrum
coming from string theory with that from higher order Yang–Mills theories. Another
approach has recently been made in [22], considering BPS-solutions to the equations of
motion in gauge theories. All those methods being indirect emphasize the importance
of the topics presented here, since they might be a direct check for the former. Nev-
ertheless it will become clear that scattering amplitudes with more than five external
gluons [23, 24, 25], are extremely complicated to compute. Moreover, this amplitude
has only once been computed in [26], thus it is the one and only string scattering
amplitude with six external states. The difficulties encountered in the case of the
five–point amplitude become in our case insuperable, such that a completely new and
powerful method will be presented, which not only solves the six–gluon problem but
also exhibits marvelous relations between triple hypergeometric functions and gener-
ally speaking makes a strong connection between string theory and number theory.
The method can shortly be described as equating all the permutations of the position
of the six vertex operators (representing the external states), of which two are in the
(−1)–ghost picture and the rest are in the 0–ghost picture, since those permutations
although looking different they describe the same S–matrix and thus are same. This
will generate a huge system of algebraic equations, thus translating the problem of
the six–point amplitude to the solving of the system of equations. Variables of that
system are various triple hypergeometric functions, the system establishing this way
mathematical relations between those functions, which turn out to be mathematical
identities, one being able to prove that with the necessary amount of time and math-
ematical skills. Since those identities are also extremely difficult to establish, they
cannot be found in the literature, see e.g. [27]. Those relations are also written ex-
plicitly down for the first time in [26]. Furthermore, in order to expand the string
expression in the momenta9 of the six gluon deep mathematical work will be done
involving (triple) hypergeometric functions. That way, using different representations
for those functions, like integral or sum representations, remarkable relations between
string theory (represented by hypergeometric functions) and number theory (multiple
zeta functions) will be established. To give a taste of that, a simple and already many
years known example is

∫ 1

0

dx

∫ 1

0

dy (1 − xy)α′s−1 =
Hα′s

α′s
= ζ(2) − α′s ζ(3) + (α′s)2 ζ(4) − (α′s)3 ζ(5) + . . . .

On the left hand side we have the integral which appears in certain expressions
during the computation of five–gluon scattering amplitudes, α′s being one Mandel-
stam variable multiplied by the string tension. On the right hand side we have the
harmonic number Hα′s, which is finally series expanded in an alternative infinite sum
of consecutive values of the Riemann zeta–function, ζ. When now looking at similar
simple expressions in the six–point case we derive

9Much more should one speak about the Mandelstam variables, since only those kinematic invari-
ants will be used.
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∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz (1 − xyz)α′s−2 = ζ(2) + α′s [ ζ(2) − 2 ζ(3) ]

+ (α′s)2 [ ζ(2) − 2 ζ(3) +
5

4
ζ(4) ] + . . .

where again s is some kinematic invariant and ζ(p) is the Riemann zeta–function,
often encountered in number theory and defined by

ζ(p) =
∞∑

n=1

n−p , s ≥ 2.

Its generalization is straightforward and given by so called multiple zeta–function,
of which e.g. the triple one is given in the following equation:

ζ(s1, s2, s3) =
∞∑

mi=1
m3<m2<m1

1

ms1
1 m

s2
2 m

s3
3

, s1 ≥ 2 , s2, s3 ≥ 1 .

Such multiple zeta–sums are encountered in various integral representations show-
ing up in the six–gluon scattering like is the case in

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
(1 − xy)α′s

(1 − xyz)2
= ζ(2) − α′s ζ(3) + (sα′)2 ζ(2, 1, 1) + . . . .

Those were simple examples encountered in the computations and are given as a
pedagogical foretaste for the mathematics to come. The next degree of complexity is
an integral with two Mandelstam variables

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
(1 − xy)α′s (1 − yz)α′t

(1 − xyz)2
= ζ(2) − α′ (s+ t) ζ(3)

+ α′2 [ s2 + t2 +
7

4
st ] ζ(4) + . . . .

which requires already a much more thorough treatment. Although the right hand
side looks quite innocent, hard work has been spent in order to establish the result,
which is the consequence of evaluating following triple sum

∞∑

mi=1

m3

m1 m2 (m1 +m3) (m2 +m3) (m1 +m2 +m3)
=

7

4
ζ(4),
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which is of much more bigger degree of complexity than its nice ”cousin” the triple
zeta–sum. They are related to Witten zeta–functions10 and Euler/Zagier sums. In
general, they cannot be simply expressed in terms of basic zeta–numbers.

Thus, to sum up, the main results presented in this work are

• An efficient method to calculate supersymmetric N−point tree − level string

amplitudes is presented.

• The six gluon open superstring disk amplitude can be expressed through a basis

of six triple hypergeometic functions, which encode the full α′ − dependence.

• Material to obtain the α′ − expansion of these functions is derived : We calculate

many multiple Euler − Zagier sums including multiple harmonic series.

Those results will be presented as follows: after this short introduction a more
technical one will follow and throw some light on the topic of superstrings. There, the
main building blocks of string theory (actions, supersymmetry, quantization, D–branes)
are introduced and after that, superstring theory is considered as a whole, giving a
close look to the main predictions coming out of it. This part will be concerned on
establishing the contact between theory and experiment, thus compactification will be
discussed and some realistic model shown. Also the topic of dualities in string theory
and its landscape will be discussed, since this is of high interest from the theoretical
point of view. In the second chapter, the notion of low energy effective action will
be set in relation with string theory. First, the concept of effective theory will be
defined as the low energy limit with respect to some parameter incorporated in the
theory and then some very prominent examples are given. The latter will be widely
spread over the broad spectrum of physics. Finally, the technique of taking this limit
are presented and then a first more technical look is given to Born–Infeld action, an
example of special interest under the effective actions. Further on, some light is shed
on the techniques of computing superstring tree–amplitudes in chapter three. After
introducing the basic concepts of amplitudes which naturally arises from summing over
all paths of the string function, more general features of the S–matrix are revealed and
finally, as a pedagogical step and preparation for what shall come, the four gluon
superstring tree amplitude is exposed in great detail. Already here, we can grasp the
main new technique used later to compute the six–point function.

The author has tried to keep those first three chapters as basic and comprehensive
as possible. The number of equations is reduced to a minimum and formulated as
straightforward as possible. Those chapters might serve as a basic of the respective
subjects treated there. However, since also other such introductions exist, a variety of
literature sources is given.

The six–gluon scattering amplitude, being the main topic of that work, will finally
be introduced in chapter four. Since its complexity is rather high, the whole theme
will be an intricate interrelation between physics and mathematics. This chapter deals

10Witten zeta–functions are defined by W (a, b, c) =
∑

∞

m,n=1
1

ma nb (m+n)c
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with the physics involved and thus the general expression from superstring theory will
be derived. This way, the S–matrix for six gluons is written down and its kinematics
analyzed: after showing how, in principle, the S–matrix can be obtained with the help
of the new ghost–picture method, few remarks are made about the integration regions
involved in the scattering, since those are in one to one correspondence to the different
representations of the S–matrix. Further, the system of equations which is equivalent
to solving the problem is presented and its six–dimensional solution displayed. The
S–matrix will then expanded in its Mandelstam variables.

The next large chapter is devoted to the mathematics encountered and used to
solve the problems presented in the antecedent chapter. There we just listed the var-
ious mathematical results which will be now derived in detail. Thus, a very first step
is to exactly define the functions encountered in the S–matrix, the triple hypergeo-
metric functions, and analyze their properties. This is done in the frame of special
functions, where also generalized hypergeometric functions are treated and various
higher generalizations thereof. Expanding those functions will automatically lead to
an exposition of infinite sums. Thus, departing from the basic definition of harmonic
numbers and the Riemann zeta function we will analyze euler sums, multiple sums and
triple zeta functions. Also the dual representations thereof, the series and the integral
representation, are treated and set in relation to special functions.

The last chapter will be dedicated to field theory, where a more thorough look at
the Born–Infeld action will be given and also the difficulties shown, when extracting
it from string theory. Thus, starting from the expanded S–matrix, we analyze it with
respect to its momentum structure and also the encountered transcendental numbers.
Next, we will set up the field theory ansatz, and deal with various Feynman diagrams
categorized with respect to their topology. Finally, all used Feynman diagrams are
collected and presented and the way is shown how to get to the effective action from
the calculated S–matrix.
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Chapter 2

Superstring theory – a survey

2.1 Ingredients

Rather innocent is the main assumption of string theory, i.e. it states the one–
dimensionality of the ”basic matter” (which was former known as particles), contrary
to the traditional point of view, where particles are zero-dimensional points. This will
have unimagined consequences, like the higher dimensionality of our space–time or the
very large spectrum of models which can be extracted from string theory, also known
as string landscape. We will try to treat those topics here and also completely intro-
duce the superstring with all its features. A lot of good introductions on that topic
exist, our being even one of the shortest. Thus, for further reading there are a lot of
good introductions and overviews. Without claiming to be complete I shall refer to
following works: [28, 29, 32, 34, 35], although there is plenty of literature on the net.
In the following we will give a short introduction, the main emphasize being on the
techniques used there and also on the underlying ideas and concepts.

2.1.1 Actions

In classical relativistic theories, i.e. those not being quantized, a particle is described by
a Lagrangian which is set to be the trace marked by the particle when moving in space–
time. In a more physical language this is nothing else then describing the motion of that
particle by giving its position in space–time within a k–tuple of coordinates specifying
its position and momentum, where k is the degree of freedom of the underlying particle.
This will create a D–dimensional curve. Afterwards we will take the action be the
length of that world line. As usual in mechanics, the variation of that Lagrangian will
reveal the equations of motion, and concomitant the minimal length of that curve.
This action shows automatically parametrization invariance and of course Poincaré
invariance, for being constructed in such a way.

When moving now to the concept of extended ”particles”, the string, we will go a
similar way in order to set up a Lagrangian. Since we are dealing now with strings,
opposite to zero–dimensional particles, the former being two dimensional objects in

17
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space-time, their classical action, call it Nambu-Goto, is taken to be the area integral
over the world–sheet1 mimicking the relativistic action of a classical particle

SNG = − 1

2πα′

∫
d2σ (−det ∂aX

µ∂bXµ)1/2 (2.1)

Here, α′ is related to the string tension, which is defined as mass per unit length
of string, and is given in terms of the tension as T = 1

2πα′ . This ”mechanical”2 action
has again two symmetries: the Poincaré–invariance which is somehow obvious for we
started from the relativistic one–dimensional particle, and the diffeomorphic invariance
allowing one to choose the preferred parametrization, which is again given by the very
construction of the action. The latter is also intuitionally expected, since the action,
and hence the physics, should be independent of the chosen way to parameterize the
surface. On the one hand, the action above is quite intuitive and thus seems familiar,
since we started with the zero–dimensional particle and generalized it to the one–
dimensional string. However, for from the technical point of view, the Nambu–Goto
action is very hard to treat because of its nonlinearity. Especially later on, when we
will quantize the theory this will be an impossible thing to do with that action. This
was soon recognized, and a classically equivalent form for the action was chosen. This
was done by adding a new field γab, an explicit metric on the world–sheet. This action,
called Polyakov action, is given by

SP =
1

4πα′

∫
d2σ(−γ)1/2γab∂aX

µ∂bXµ. (2.2)

In the formula above, γab is the newly introduced world–sheet metric, and its de-
terminant is named γ. Haven got rid of the square root, this form has the enormous
advantage of being linear. This is the only reason one has chosen the Polyakov action
to work with instead of the older Nambu–Goto action. Additionally, it has on more
invariance typical for two dimensional objects, the Weyl–invariance, which will play an
important role when quantizing. It is worth to emphasize again that two action are at
classical level fully equivalent. This can easily be shown when analyzing the equations
of motion of the metric γab which follow from the Polyakov–action (2.2) when varying
it with respect to its metric:

δγSP [Xµ, γab] → ∂aX
µ∂bXµ =

1

2
γabγ

cd∂cX
µ∂dXµ . (2.3)

Here we just have the equations of motion for the metric which can further be mas-
saged to show that the induced metric from the Nambu–Goto action is proportional to

1By world–sheet we denote the trace which a string leaves in the space–time, similar to that a
particle leaves in field theory, the only difference being its dimension.

2I am speaking about a mechanical action in order to emphasize we have here a classical, non-
quantized object, which is really a (massless) string
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Figure 2.1: Closed string and open one with charges at its ends

the world–sheet metric. Maybe we should emphasize that the two are just proportional,
since the metric from the Polyakov action can still be rescaled with one multiplicative
factor such that the action stays the same, this just being the Weyl symmetry.

Since we are just analyzing a string which has the ability to vibrate, one might
wish to see that mathematically, fact which can be establish in the same manner as
the equality of the two actions: varying the Polyakov–action this time with respect
with the string coordinates Xµ leads to their equations of motion

δXSP [Xµ, γab] → (−γ)1/2∇2Xµ = 0, (2.4)

which can clearly be recognized as the equation of a vibrating string. One more
important fact is hidden in the derivation of the last equation: we had to use boundary
conditions in order to eliminate the the surface term in the varied action. There are
basically two different of boundary conditions: one that allows the string ends to freely
move in the space, this allowing for an open string, and such conditions that close the
string. We see, that, the two kinds of strings, open and closed, arise naturally out of
the equations of motion. No additional supposition is made on the theory to become
that. Those open and closed strings are depicted in figure 2.1. Furthermore the former
boundary conditions can also be modified such that the string ends are fixed! Those
conditions will break the Poincaré invariance in the D–dimensional space–time, but we
will worry about that later.

We should give as a last remark on the classical string its mode expansion:

Xµ(τ, σ) = xµ + 2α′pµτ +
√

2α′
∑

k 6=0

αµ
k

k
e−ikτ cos(k σ). (2.5)

Upper equation displays the mode expansion of the open string, as the open and
closed string are different, since they obey different boundary conditions. We recognize
the string position xµ, its momentum pµ and the oscillator modes αµ

k , which after
quantization, will become different string states, thus they will represent the particles
in the string spectrum, like e.g. the photon, graviton, and so on.



20 2 Superstring theory – a survey

2.1.2 Supersymmetry

This section is dedicated to supersymmetry3, one of the very important and beautiful
assumptions and concomitant of highly theoretical interest. This basic symmetry is
put by hand into the theory. However, strong theoretical reasons and advantages are in
favor of that symmetry, like the hope for one possible solution of the hierarchy problem
in Yang–Mills theories4, symmetry which basically doubles the spectrum of particles,
requiring a supersymmetric partner to each standard particle. For more literature on
that see e.g. [37, 38, 39, 40]. Another more appropriate reason for requiring super-
symmetric invariance in the string action5 is the absence of any fermionic states in
the bosonic string; supersymmetry will ensure us the presence of fermionic particles
coming from the superstring.

The mathematical framework of supersymmetry is given by the minimal relaxation
of the requirements on the Poincaré algebra, such that the S–matrix6 still preserves
its unitarity and other possible internal symmetries. It was shown by Coleman and
Mandula (1967), [42], that those are the only possible reasonable properties a S–matrix
could have. Now, the already mentioned relaxation consists in introducing anticommu-
tators in the Poincaré algebra of the corresponding symmetry shown by the S–matrix,
since those changes still preserve its attributes. It was shown later on, by Haag, Lo-
puszánski, Sohnius (1975) [43], that supersymmetry is the only possible symmetry
compatible with the new requirements. So this step is quite easy to understand but
again with very deep reaching consequences. The algebra describing Poincaré invari-
ance of the S–matrix is enlarged by also considering some anticommuting quantities,
which are to be specified and thus constrained just in a while. In mathematical lan-
guage the anticommutators change the usual algebra to an Z2–graded algebra, meaning
that additional, fermionic charges are put into the Poincaré algebra and have nontrivial
(anti-)commutation relations with themselves and the Poincaré charges. We can give
a closer look at that algebra in the Appendix A, where it is exactly listed for the case
of one supersymmetric partner, i.e. the case N = 1 supersymmetry. Representations
of the new algebra are bosonic and fermionic states, with the attribute of being pared
with each other: as stated at the beginning of that section, every (fermionic) bosonic
particle existing until supersymmetry gets a twin particle with the same quantum
properties except spin which is in that case (integer) half integer. The number of those
additional charges ( the number of supersymmetric partners) can be varied, though
it cannot exceed eight. For sure, in realistic models, the number of supersymmetries
should be one, since not even those super partners have been yet discovered. This is
also a good motivation for searching for mechanisms of breaking supersymmetry. Some

3Again, there are a lot of good overviews on that topic but still a very best one is the classical
book of Wess and Bagger,[36]. See also [41]

4See previous discussion about that topic in the critics about the standard model.
5Since the superstring inherits its name from supersymmetry we will talk from now on about the

superstring opposite to the bosonic string
6This notion designates in its explicit form a function depending on energy, spin, polarization,

charge and other quantum numbers, giving the intensity distribution with respect to the angle of the
outcome of a scattering experiment.



2.1 Ingredients 21

of them will be presented little later. With that symmetry given the Polyakov action
looks like the following

S =
1

4πα′

∫ √
γ

[
γab∂aX

µ∂bXµ +
i

2
ψµ ∂/ψ

µ +
i

2
(χa γ

4 γa ψµ)

(
∂bX

µ − i

4
χb ψ

µ

)]
.

(2.6)

Remembering this is a classical action one would like to quantize it, in order to
make the transition from mechanics to quantum systems which should deliver the
microscopic description of the matter.

2.1.3 Quantization

This process is carried exactly as discussed in the introduction referring to quantum
field theories, although we will encounter some difficulties, which are related with the
additional degrees of freedom we have, i.e. the Weyl symmetry. Also, for the sake of
brevity we will restrict ourself to the bosonic string, since conceptually the superstring
is handled the same way. We will begin with the usual commutation relation imposed
on the conjugated variables

[xµ(σ, τ), pν(σ, τ)] = iηµνδ(σ − σ′), (2.7)

which translates into commutation relation between their modes

[αµ
m, αnν] = mδm+n,0η

µν

[ᾱµ
m, ᾱnν] = mδm+n,0η

µν (2.8)

However, we are not finished yet. Since we started with a system with a highly
degree of symmetry, we still have to preserve that symmetry after quantization, which
will translate into physical constraints on an arbitrary given state |φ >. What we
exactly mean here is the conformal symmetry, also known as Weyl symmetry, which
will be imposed in the following manner, see e.g. [30], [31], [33]: given the momentum–
energy tensor calculated with the usual technique form the superstring Lagrangian, we
define the Virasoro operators as its modes

Lm =

∫ π

0

dσT−−e
−im(τ−σ) , L̄m =

∫ π

0

dσT++e
−im(τ+σ), (2.9)

where we have given the energy–momentum tensor in conformal coordinates

T++ =
1

2
∂+X · ∂+X , T−− =

1

2
∂−X · ∂−X , T+− = T−+ = 0 , (2.10)
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and also have used the derivative with respect with conformal coordinates
∂± = 1

2
(∂τ ± ∂σ). Now we want to impose energy–momentum conservation and the

equations of motion of Tµν (derived again as current conservation from diffeomorphism
invariance of the string Lagrangian)

∇αTαβ = 0 , Tαβ = 0 (2.11)

which finally translate as conditions on the physical string quantum states via the
Virasoro operators:

Ln |φ〉 = 0 , n > 0 ,

(L0 − a) |φ〉 = 0 , (2.12)

where Ln are conformal operators generators of the conformal transformation and
also of the group SL(2,C) as mentioned before. However, when computing their
algebra, also known as Virasoro algebra, which is then the algebra of the conformal
symmetry we see that it doesn’t close anymore as in the classical case, for we have
picked up an anomaly from quantization

{Lm, Ln} = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 , (2.13)

Though the right hand side of (2.13) has a second term which is somehow unusual:
the algebra isn’t closed anymore with that term, but this is nothing else than the
already presented conformal anomaly. It can be and it has to be removed, fact which
will put constraints on the theory! Fixing up this anomaly will eventually determine
the coefficient a and also restore the conformal symmetry. However, we shall mention
that this anomaly is just the result of the violation of a classical symmetry when
going over to the quantized version. This process should always save the classical
symmetries and in our special case concerning the conformal symmetry tremendous
consequences follow: additional constraints about the embedding Minkowsky space–
time arise, coming exactly from the anomaly caused by the Weyl–invariance; it turns
out for the space–time to be 10-dimensional in the case of supersymmetric strings! This
was for sure and still is one of the predictions of string theory with greatest impact for
our knowledge about the world, even if not verified yet. To read more about conformal
field theory see [77]. The process of quantizing gauge theories, which certainly is the
case for the superstring theory, is a very well understood issue today. We will argue
more on that topic in section 4.1, where we will also present some other quantization
procedure which proves more convenient for introducing interactions in the theory.

2.1.4 D–branes

Before going on and looking how one can bring together the predicted ten-dimensional
Minkowsky with our observed space–time, it is worth to present one capital concept in
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Figure 2.2: Open strings with different boundary conditions seen as ending on a D–
brane

string theory, the D–brane. We have already mentioned in section 2.1.1, that various
boundary conditions can be imposed on the open string, as depicted in figure 2.1 in
order to derive its equation of motion: its ends, being free, can obey different boundary
conditions, as imposed when solving mathematically the equation of a vibrating string.
These boundaries can either let the ends free, such that momentum flowing along the
string will be conserved, or they can confine the string ends to some subspace (which
can be imagined as a hypersurface) of the 10–dimensional space they are living in.
Further, it has been proven worth to let those hypersurfaces, call them D–branes, have
a life of their own, i.e. one interprets the boundary conditions as emerging from objects
already existing, on which open strings can end, see fig. 2.2. For more on that see
[44, 45, 46, 47].

Beyond its ability to vibrate as a genuine string, the open string can also carry some
charges attached to its ends, the Chan–Paton–charges, for those are compatible with
Poincaré–invariance and don’t affect the world sheet symmetries. Since each single
string state will be enhanced to a matrix |ij〉, depending in which state the ends of
that string are, the string amplitudes will be invariant under a U(N) transformation.
This way, a global symmetry of the world sheet emerges to a gauge symmetry in the
space–time. So when taking into consideration the massless modes7 of the open string
we will be talking about some massless gauge particles in the space–time. So we are at
the point we could start a discussion about possible models for the observed nature as
emerging out of string theory. Before doing that, however, we still have to take care of
the extra dimensions arising in a consistent string theory as explained in section 2.1.3.

7Since we started with a vibrating string the modes will be grouped into an infinite tower of
excitations, of which the lowest is massless.
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Figure 2.3: Three dimensional slice through a six dimensional particular Calabi–Yau
space

2.1.5 Compactification

Given that richness of particles and also the promising gauge counterparts for the
standard model particles, we’re aiming now to make contact with the four dimensional
Minkowsky space–time. Since string theory should be a description of our nature it lives
in the same space–time as we live in. We remember, that the 10–dimensional space–
time, in which strings are embedded, arose from canceling the conformal anomaly.
Thus this space–time property is crucial for the strings if we want them to be anomaly
free, i.e. to be well defined and free of inconsistencies. On the other hand side,
our Minkowsky space–time is known (from a reach experimental palette) to be four
dimensional. However those experiments have a finite accuracy, so from a rigorous
point of view, all what we can say is, our world seems to be four dimensional until
the energy scale it was probed. This way one possibility arises to cure the apparent
contradiction: We may compactify the rest six dimensions present in string theory,
such that they will not be ruled out by actual experiments. The radius, if we choose to
have some circular compact dimensions, of the six coordinates should be just smaller
than the distance which can be probed by actual experiments.

This for sure, seems a little bit arbitrary and also a kind of cheating, since a
real experiment will never be able to exclude every arbitrary tiny distance, so it may
seem we are just hiding our theory behind the non vanishing experimental limits.
However, we will see in a while, this is not that hopeless. String theory is powerful
enough to also give constraints on the size and even on the shape of the compactified
space. Thus a first property of the six–dimensional compactified space should be its
compactness, which is required by empirical reasons8. Furthermore, also its shape
is constrained by e.g. preservation of supersymmetry and also simplicity arguments
lead theoreticians to chose Calabi–Yau spaces as the prototype of the underling space.
This way our Minkowsky space–time becomes a direct product R

1,3 × CY3 consisting

8for if there had been non–compact dimensions in our space–time, they would have been discovered
long time ago, which is not the case
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Figure 2.4: Possible brane scenario for the standard model: strings stretching between
different brane stacks confer the ”particles” desired quantum properties, like coupling
to different gauge groups.

of the observed, infinitely extended four dimensional space–time and a compact six
dimensional manifold CY3. A Calabi–Yau space is an extremely mathematically rich
manifold, i.e. there are lots of freedoms for designing its shape. A glimpse of such
a object is given in picture 2.3, where a slice through this six–dimensional space is
shown. For more on the mathematics of those spaces, see e.g. [48, 49, 50, 51]. We will
inspect in more detail now the degrees of freedom of those spaces and thus of the new
string theory, which is now quite similar to our world. As it will turn out, those degrees
of freedom can be used to fine tune the model and eventually to get a description for
a real world9.

2.2 Results and predictions

2.2.1 Models

Additional to the internal degrees of freedom of a given Calabi–Yau, which are the
size and the shape of it, additional nontrivial space ”properties”, like e.g. orbifolds
and orientifolds (see for example [52]) can be added to the Calabi–Yau space leading
to a very rich spectrum of possible compact manifolds. This originates from following
very interesting effect: although the space–time is ”just” a direct product of the four
dimensional Minkowsky and Calabi-Yau manifold it turns out that the effective physics

9In order to make oneself a better image of those circumstances, we might imagine a radio, the
buttons of which can be turned in order to reach the desired effect. However, our ”string theory
radio” has lots of buttons such that searching for a special effect might prove quite long–dated



26 2 Superstring theory – a survey

in our experienced world will get influenced by the choice of the Calabi-Yau, the
orbifolds, respective orientifolds imposed on it10 and also on the manner the D–branes
are arranged and curved in the Calabi–Yau space (e.g. they can be wrapped around
cycles). We would like now to extract the particle content out of the string and see
different mechanisms by which the standard model could be reproduced. In contrast to
Quantum Field Theory we do not add up the different ”matter” and ”force” particles
by putting together the corresponding Lagrangian. The string is supposed to be the
essence of everything, for the ”matter” as well as for the ”force” particles. Thus the
whole spectrum should arise just from the intrinsic degrees of freedom of the string and
its excitations. It should thus be clear that D–branes play a crucial role, since they
were the support of open strings with Chan–Paton factors, which on their part created
the massless gauge particles. Furthermore the gauge group SU(N) is given by the
number of D–brans N on top of each other. Remembering that our standard model
was given by the gauge group U(1) × SU(2) × SU(3) we can imagine that forming
an intersecting brane model, with different stack of three, two and one D–branes on
top of each other, will simulate quite good the standard model. Such a scenario is
depicted in figure 2.4. But even in this model, not every freedom has been chosen, for
also the intersecting angles can for example preserve or not supersymmetry. For such
models consult the work [53] and also the references therein. However, if we were at
the beginning searching desperately for a theory to embrace the standard model and
also cure its shortcomings, we have found now an apparatus with a lot of parameters
and thus degrees of freedom, which are responsible for creating different vacua! So we
have now plenty of models and have to search for the right one in the huge number
of possibilities. General agreement hasn’t yet been established, so the numbers still
vary, but it is generally accepted that the possible number of different vacua should
range from about 10500 until even infinity. This high sensitivity of the effective action,
which should describe our world, is very dramatic insofar every choice of an CY3 gives
one ”possible world” with its own matter content, its own interactions and its own
coupling strength. So we still have just a few highly constricted theories, but we have
a huge, maybe not even finite, number of vacua (for more on that see [54, 55, 56]). The
problem is known as the ”Landscape problem” and causes great worries to the string
theory community. Different ways has been searched for, in order to be able to hold
up string theory, even philosophical points of view haven’t been spared in physics, e.g.
the anthropic principle11.To read more on that see e.g. [57, 58, 59, 60] So far we could
try to categorize the different string theories, however the landscape problem remains.
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Figure 2.5: String theories and supergravity as different limits of an conjectured un-
derlying basic theory

2.2.2 Dualities

When we analyzed the spectrum of string theory in order to attempt making a model for
the physical world, we encountered closed and open strings, the latter with Chan–Paton
charges attached to their ends. This former property of being closed or open will be a
very important classification tool for our theories: open strings can make loops when
interacting, and form closed strings, but closed strings remain closed without breaking
ever. Furthermore, constraints are imposed on the gauge group U(N) emerging from
D–branes, by consistency requirements. These reduce the gauge group to SO(32). As
specified before closed and open strings are part of two different theories. Also the
quality of being orientable or not is one criterium of categorizing string theories. Thus,
the string world–sheet swept out by the evolving string in the space–time can have one
orientation, such that one of its surfaces keeps always pointing outwards, or it may not
be orientable, like the Moebius strip or Klein bottle in the case of open respectively
closed strings. Already now, we have some distinct, clear delimited theories: the one
containing open and thus also closed strings, we will call it ”Type I” theory, with
gauge group SO(32); two types of closed string theories, called ”Type IIA” and ”Type
IIB”, depending if the world–sheet is orientable or not; finally there are two heterotic
string theories with gauge groups SO(32) respectively E8 × E8. These types of string
theories are a mixture between a bosonic string and a superstring, as already the
adjective ”heterotic” suggests. Such a variety of different string theories (not vacua!)
may not necessary be desired, for we started unifying the different interactions and
wanted just one theory to describe the whole nature and ended up with five theories
(despite the huge amount of the possible vacua). However, a rich web of dualities has

10Those have the property to project out some of the string states, fact which has very dramatic
effects, like reducing the degree of supersymmetry or even breaking it completely

11The anthropic principle declares that under the many possibilities of universes our has been chosen
just by chance and no wondering is necessary about that lucky choice, since hadn’t been that the
case, we couldn’t have notice anything by the simple reason of not being created!



28 2 Superstring theory – a survey

been discovered, relating all upper theories to each other. Dualities relate different
regimes of coupling strengths of the five theories12. This is eventually a strong hint
for an underlying, more basic, theory, whereas the five string theories are just effective
theories of different limits of the underlying theory, call it M–Theory, see fig. 2.5. The
whole network of dualities and its implications are thoroughly discussed in [65, 66, 67].
See also [64] for more technical examples of dualities in string theory. The theory named
Sugra(abbreviation of Supergravity) depicted in the figure should also be one limit of
M–Theory and is a supersymmetric formulation of Einstein’s general relativity. Thus
there are strong hints that string theory is just some corner of a much more richer M–
theory. This M–theory contains the already developed five string theories and also the
supergravity. Thus, there is still hope that somehow, this more powerful theory could
concretely be formulated and be also restringing enough to cure maybe the landscape
problem by just delivering some pick up mechanism for the right vacuum.

12The notion of dualities is very nicely introduced in field theory in [61, 62, 63]



Chapter 3

The concept of effective theories

As we saw in the previous chapter superstring theory may contain a lot of information
about our environment. The number of particles, their quantum mechanical properties
like charge, spin, mass, color and so on can be recovered from the right model of
superstring theory. The number of gauge groups and their kind and dimension can
also emerge from strings and even the properties of particles to couple to different
forces, i.e. to be sensitive to different gauge particles is possible. All those different
possibilities give rise to different (world)–scenarios which maybe could be extracted out
of the rich string landscape. However, even if we find or we are able to predict the right
landscape, i.e. the right vacuum, the full connection between theory and reality is not
established, since the theory is separated from experiment by a huge energy barrier.
We need thus a very last piece to connect the two regimes. We will qualitatively
analyze this last piece in this chapter. Given one vacuum chosen out of the landscape
it will surely contain more information about our world than we posses at this time,
for string theory should predict new effects and also explain old ones which weren’t
understood. Since we describe today all phenomena by quantized field theories, which
on their part are encoded in the language of Lagrangians we expect the new information
from the string theory as new Lagrangians describing the dynamics of new particles
and/or as corrections in some parameter to the Lagrangians we already have. Exactly
those Lagrangians, respectively the corrections thereof we want to extract from string
theory. This principle is known under the name of effective theory.

3.1 Definition and examples

Almost everywhere in physics the concept of ”effective theory” finds its place. In
almost all cases, the underlying (microscopic) theory is very complicated, nonlinear
and hard or even impossible to solve. In order to still describe the system or at least
say something about it, a new theory is build with new parameters which describe more
”roughly” the system. This way, not all degrees of freedom are taken over and the new
effective theory describes the phenomena at a new length scale (which is in one to one
correspondence with the energy scale) being bigger than the microscopic one, whatever

29
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this one may be. It’s important to notice that possible microscopic structures are fully
neglected, such that the system under consideration is seen as ”atomic”, without any
substructure. Of course, when doing such assumptions, the effective theory will show
infinities when going too high with the energy: since the scale at which that theory
is defined, is finite (for we neglected any substructure of constituent system, and this
means per definitionem we look somehow diffuse at our system), we cannot go deeper
since there we encounter effects given by the substructure of the systems. Also the new
defined parameters of the effective theory may not even exist in the microscopic ”exact”
theory, but they work very well in the framework, i.e. at the scale at which they were
introduced. This is also the reason for potential divergencies of those parameters when
increasing the energy, since then we probe scales at which those parameters are not
defined, this being signalized by infinities. Now we will analyze some examples such
that all those abstract facts will become quite clear and even familiar.

Prominent examples there are many, but one of the very oldest and thus classical
is thermodynamics. In order to describe one particle, classically, there aren’t any
problems encountered, two particles are described with the same easiness, but in the
case of 1023 particles the situation changes drastically. One cannot keep anymore
the individual degrees of freedom of every particle since not even a supercomputer
could master that. Instead effective measurable quantities are introduced, such as
temperature, pressure of entropy which don’t even make sense in systems with a few
particles1: they are genuinely effective quantities. This way a description of such a
system is possible at all. On the other hand, that description is a very good and
accurate one, despite the fact that all microscopic properties of the single particle
are neglected. We thus easily understand that ”pressure” is defined only in the case
of many particles. Gradually reducing the number of the particles will at some point
create problems since we reach scales where the quantities cease to be properly defined.

Somehow orthogonal to that example is the following one: in nuclear physics, when
describing nuclei of heavy elements on makes use of quantum hadrodynamics. In that
case, the number of particles is not necessary large but the underlying, basic theory, the
quantum chromodynamics2, is very complicated making it impossible to treat hadron
compound systems. This is also the reason we called this example orthogonal to the
last one: there we had very simple descriptive methods but a huge number of particles.
Here we have relatively few particles but an enormous rich and complicated interaction.
(From the point of view of thermodynamics this theory may even not work well, for
we might be exactly at the boarder where the particle number is high enough such
that the microscopic theory breaks down but the effective theory still doesn’t work
properly). One single hadron has a substructure being made up by at least two quarks.
So an interaction between two ore more hadrons is actually an interaction between
quarks which is best described by quantum chromodynamics. Effective potentials are

1There arises immediately the question which is the limit where the effective theory ceases to work
properly. This should however not concern us, since we are dealing always with systems which can
be doubtlessly described by effective quantities.

2Quantum chromodynamics is a SU(3)–gauge theory describing the strong nuclear interaction
between the ”colored quarks” by means of exchanged gluons.
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introduced with the effect that even an effective field theory is created: thus the force
between the observed particles is mediated by ”mesons”. Those particles are at their
own also compound of quarks, but here they are regarded as being the ”elementary”
force carrying entities. Thus one neglects the quarks and treats the hadron as being
”atomic” and described by an effective theory which gives them effective properties,
without asking where they come from.

Another example is the BCS–theory which describes superconductivity in metals.
The underlying theory in that case is the quantum mechanics of solid bodies, and
especially of electrons and phonons3 Those interact with the effect of binding two
electrons in a Cooper–pair. This pair of electrons behaves as a bosonic particle, not
obeying the rules for fermionic states.

3.2 Techniques

Despite the number of particles and that of gauge groups emergent from string theory,
the latter also makes predictions which can be analyzed within the respective low
energy effective action. The energy scale set in the framework of effective theories will
also be the battle field where all the concepts introduced before, i.e. string theory, and
effective actions will meet together supplied by some other mathematical ideas, to be
presented in next chapters. As stated before, string theory has infinitely many vibrating
modes, almost all of which are massive. So if would like to set up an effective theory
and consider all those excitations, it would require an infinite number of differential
equation coming from the effective action in order to describe them. The solution is
just to neglect the majority of the string states. Since the string tension is in the region
of the Planck mass ( 1019 GeV) the massive modes are extremely heavy such that we
can be sure that this simplification will not affect the effective theory, at least not at
the scale we are looking at. It would require enormous energies to come in the regime
where also the massive states would show up in the action with new effects. Thus,
the heavy modes can simply be integrated out, such that in the effective action just
the massless modes contribute. It is worth to notice that the number of the massless
modes is finite and even rather small.

Several ways exist in which we can come to that effective theory beginning with
string theory. One way is to formulate string theory from the beginning on in an given
background. A background denotes just the fields describing the space–time in which
the string evolves, thus the well known metric. Generally, this background is usually
given in terms of an traceless metric Gµν , its antisymmetric part Bµν and the trace
Φ. These quantities are respectively called the graviton, antisymmetric tensor field
and the dilaton. The formulation of string theory is, as already said, very restrictive,
since we have to preserve all the symmetries from the classical action. This way
also the background fields are constrained. When imposing conformal invariance on

3A phonon denotes a vibrating mode of a lattice in a solid body. It proves that such vibrations
can propagate and even stay localized showing particle properties, fact which animated physicists to
describe it as a (quasi)particle.
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string theory in that background, also the background defined above has to fulfill
some requirements. That consistency is nothing else than differential equations which
are exactly the equations of motion for the named fields, see e.g. [68]. We shall
though not follow that method because its difficulty but will approach another method,
somehow more simpler to calculate the effective action. We will make use of the fact
that correlation functions calculated in field theory are equal to the corresponding
amplitudes in string theory. By ”corresponding amplitudes” it is meant that one takes
the same topology of the interaction4, same number and sort of interacting particles
and of course the same background. This method we will use in the present work.

As a next step we shall have some thoughts on the field theory. Since we have
to compare the field theory with string theory (by computing the same scattering
process) we could try to guess a Lagrangian for the field theory and then compare
it with string theory and finally just adjust it. Thus one could write down the most
general, non–redundant ansatz. The non–redundancy should be emphasized here, for
a field theory Lagrangian is not unique, since field shifts and redefinitions don’t change
the physics (S–matrix). (More specific field operations which let the physics unchanged
will be presented in the Born–Infeld section). So when an ansatz is written down, great
attention is to be paid in order not to count the same term twice or often, just because
it is written different! Such an ansatz, which is also valid for D space–time dimensions,
could be of the following form

Seff = α′ −D/2
∑

n,m

′

α′ 1/2(n+m)
cnm ∂

nΦm, (3.1)

where the coefficients cnm are unknowns, to be determined from the corresponding
string scattering amplitudes. Actually those are the quantities which are wishful to
be determined, for they exactly encode the ratio between the consecutive terms in the
action. As the notation already suggests, cnm are ordered with respect to the number
of derivatives acting on the number of fields. Each term is a combination of derivatives
and the respective fields under consideration. Thus cnm exactly determines how many
terms contain just powers of Φ or how many contain a number of derivatives acting
on the specific number of fields Φ. As stated above, the prime on the sum indicates
we have built the expression such that each term present is unique, i.e. every term
is counted once and no field transformation or Lagrangian symmetry is able to relate
two different terms in the expansion (3.1). Furthermore, the expression is organized
as a power series in the string tension α′, which will necessary be encountered when
computing the amplitudes. Possible other constants may enter the series, like the
string coupling constant gString. The latter organizes also the string loop expansion.
Last but not least, each term is in one to one correspondence with a specific Feynman–
diagram.The correspondence can be established when considering solely the number

4Feynman graphs can be classified in tree–, one loop–, two loop–, etc, diagrams with N external
particles. Further, tree–diagrams can be reducible or not, depending wether some internal states are
propagated in the process.
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of interacting fields given in one specific term (thus neglecting possible derivatives)
and also writing just the contact diagrams for that term. The series can thus also be
”written” pictorially as

which is the same expression written as the corresponding sum of Feynman graphs.
Thus the first term in the ”Feynman representation” stands for the terms
Φ3, ∂2Φ3, ∂4Φ3, . . . , and all other higher derivative terms with only three fields5 Φ.
Correspondingly, the next Feynman diagram represents all four–field interactions, re-
gardless of the number of derivatives acting on them.

We are not yet familiar with string amplitudes, but when given they are a product
of momenta ki and fields Φi. In order to establish the equality between string and
field theory the string momenta have to be replaced with derivatives ∂i and in case of
non abelian theories with the corresponding covariant derivative D = ∂i +[Ai, ∗]. This
method is usually used in field theory.

3.3 Born-Infeld–action: a first look

In this section we will look very carefully at a special example of an effective action,
namely at the Born–Infeld action. This field theory describes approximately the dy-
namics of D–branes in string theory. Since the Lagrangian given by that effective
theory is the only one which describes D–branes in the low energy regime it is worth
to be studied. We will first list the known form of this Lagrangian and corrections to
it will be discussed in chapter 7.

As we already know, open strings carry Chan–Paton charges attached at their
ends. Those charges with the corresponding massless vector modes of the string are
responsible for the gauge group. Ignoring the massive modes, we aim obtaining an
effective theory for the massless gauge modes of the string which are confined to the
surface of the D–brane. This will naturally describe the excitations and consequently
the oscillations of the latter, as well as the modes dynamics. It is then naturally
expected, since we are dealing with gauge modes coming from the superstring, when
looking at the corresponding low energy effective action, to obtain some Yang–Mills
theory. This is indeed the case, a highly nonlinear gauge theory is obtained, named
Born–Infeld action. This action describes the low energy behavior of open strings or

5As a matter of fact we have just chosen such terms which are Lorentz invariant. This is the reason
we have written just even numbers of derivatives connected with each other. In the case of vector
fields Φµ there is also the possibility of contracting the derivative with the fields itself. This will be
the case when treating the non abelian Born–Infeld action.
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equivalently the action for the corresponding D–brane to which the open strings are
attached. As the gauge group under which the Chan–Paton charges transforms can
vary, one obtains different gauge theories. For the simplest case of an U(1) gauge
group the low energy theory will contain nonlinear corrections to the well known U(1)
gauge theory, which is just electrodynamics! Historically, Born and Infeld searched for
a nonlinear extension of electrodynamics, arriving at the same non linear U(1)–theory
which also describes a single D–Brane. This is the reason for the nomenclature in case
of effective actions for Dp–branes. The action for the abelian string, was derived 1986
by Tseytlin, [69] and is of following form:

α′ −1/2−p/2

∫
dp+1x

√
1 + (2πα′Fµν)2. (3.2)

The space–time integral is performed in ten dimensions since this is the condition
for an anomaly free superstring theory. Further, inside the square root, which causes
the high degree of nonlinearity, we recognize the squared gauge field strength Fµν

6

multiplied by the string tension α′. Series expanding this action in α′, the first term
will describe ”usual” electrodynamics, FµνFµν being the action for the U(1)–gauge
boson. Consecutive terms are corrections to that classical action. One very interesting
and enormous useful property of (3.2), is its closed form. So one in principle knows
the correction to arbitrary order in α′, one just needs to series expand the formula 3.2
to desired order.

Since the Born–Infeld action is the only theory describing the behavior of D–branes,
it is of burning interest to see how the action for more D–branes at top of each other
looks like, this being the case for non abelian gauge group. As explained before, when
dealing with more D–branes at top of each other, the gauge group of the massless vector
particle generated by the open string gets enhanced to U(N), where N is the number
of D–branes. So in that case, the Born–Infeld–actin has to describe a non abelian,
nonlinear gauge theory. This action is of high interest and until now, unfortunately,
just a perturbative expression (in α′) has been obtained. Thus, for each higher order
term big effort has to be done, i.e. the corresponding string amplitudes is to be
calculated, and then the effective action to that order can be extracted. Up to α′2–
order this action has been computed to (see [69])

LDp
effective = Tr

{
F 2

mn − 1

3
(2πα′)2

(
FabFbdFcaFdc +

1

2
FabFbcFcdFda

−1

4
FabFbaFcdFdc −

1

8
FabFcdFbaFdc

)
+ O(α′3)

}
. (3.3)

In this formula,Tr denotes the trace over the gauge indices(which for the sake
of clarity have been suppressed) since we deal with non abelian fields. The explicit

6As usual in field theory the field strength is given by the exterior derivative of the one–form
field dA, or in components by ∂µAν − ∂νAµ. In the case of non–abelian fields there is an additional
commutator [Aµ, Aν ]
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indices in the formula are just space–time indices coming from both the field Aµ and
the derivative ∂µ, respectively the momentum kµ. For the more exact definitions of
the non–abelian objects see Appendix J. As a first remark, one should notice that
the action 3.3 can be obtained by just series expanding equation 3.2. However, when
going further with the expansion in α′ the non abelian series departs from 3.3, already
at α′4–order. This is not fully unexpected since in the non–abelian action the field
definition is different as the one in the abelian case. The action given in 3.3 is the naive
generalization of the action 3.2 for the non–abelian case, however it proves not to be
a valid one. When calculating properly the non–abelian action (as will be intensively
presented in the present work), terms like D2F 4 appear at the respective order in α′,
which cannot be anymore neglected as in the abelian case7. Furthermore those terms
are multiplied by transcendental numbers, like ζ(3), ζ(4)8, etc, which could never arise
from the expansion of a square root! Those terms can uniquely be computed with
the help of string amplitudes. While D2F 4–term comes just from a higher momentum
expansion of the four–point amplitude [71], terms like F 5 have to be extracted from
the five–gluon amplitude in string theory, [72, 73, 74]. To conclude, the non abelian
Born–Infeld is today fully known until α′3. In order to have the full result also from
the α′4–order the six–gluon amplitude from superstring is needed, which will be the
main topic of that thesis. This amplitude will make possible to have full control about
all terms of the form D2nF 6, like shown in following table:

α′0 1 F2

α′1 0 F 3 D2F 2

α′2 ζ(2) F4 D2F 3 D4F 2

α′3 ζ(3) F5 D2F4 D6F 2

α′4 ζ(4) F6 D4F4 D2F5

α′5 ζ(5) F7 D6F4 D4F5 D2F6

... . . . . . . . . . . . . . . .

Table 1: Higher order F–terms appearing at a

given α′–order in the supersymmetric D–brane action .

In the table, just the bold terms have to be considered, since the the other ones
either can be derived from the bold terms or simply vanish by requirements coming
from string theory, as is the case for the term F 3. This term is found to be nonexistent
when computing the corresponding superstring three–point function. Furthermore, the
dependence of the other terms may be proven by using Bianchi identities, equations of
motion of the on–shell gauge fields, partial integration and finally field redefinitions.
This is a tedious work to be done but very important in order to obtain the correct
field theory. Further, the left column shows the α′–order and the zeta factor by which

7Due to [Dµ, Dν ] Fρσ = −i [Fµν , Fρσ] derivative terms can be converted into commutators of
non–derivative terms and viceversa. Derivative terms could be fully neglected in the abelian case, see
[69].

8ζ(3) is the Riemann ζ–function evaluated at the real number 3.
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the term is multiplied. As a last remark it’s worth to notice that in the case of odd
powers of the field strength Fµν the zeta factors are atomic numbers, i.e. there is not
some more basic expression for them in terms of other mathematical constants, as is
the case for the even zeta numbers which can be expressed in terms of powers of π.
This fact is a good criterion for organizing the odd terms from string theory, since the
zeta numbers do not mix as is the case for even zeta numbers: for that we can look
at terms coming from the α′4–order multiplied by ζ(4) = π4

96
and at terms from the

second order in α′ multiplied by ζ(2) = π2

6
. A product of two terms of second order

is also multiplied by π4 and some rational numbers exactly as terms from the fourth
order do. This makes it harder to disentangle them and exactly trace them back to
their origins.



Chapter 4

Tree–level scattering of open

superstrings on Dp–branes

4.1 Tree–level amplitudes: the basics

This section should serve as a very introduction to the topic of superstring scattering
at the tree-level. For that we will study in some detail one more quantization method,
namely the functional integral. Since the consequent full approach would require a
huge amount of time and knowledge in mathematics, we will restrict ourself to the
basic ideas and results and sometimes derive them rather heuristically, without being
very precise mathematically. Also, for the sake of brevity we will dedicate the following
considerations the bosonic string, its supersymmetric generalization being not that
complicated and reviewed in the next section.

4.1.1 Path integral formulation

As mentioned already in the introduction, one very elegant although quite formal pro-
cedure to deal with in quantum field theories is the Feynman path integral. However,
when treating interactions in string theory one is more or less ”forced” to use that tech-
nique, since processes involving more strings are automatically included in the theory,
they just being splitting and/or joining of strings, which on their own are just different
topologies of the world–sheet, one being eventually able to express those topologies in
terms of computable mathematical quantities.

In field theory, path integration means representing amplitudes as a sum over all
possible paths occurring between initial and final states, weighted with the classical
action.

It turns now out, that this same tool will be a quite natural way to introduce
interactions in string theory. In the language of string theory, the path integration will
run over all different world–sheets which connect the initial state with the final one.
Thus there will be, as in the case of field theory, uncountable infinitely many world–
sheets, forming all possible shapes, which connect the initial string states with the

37
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final configuration. But since we are summing over all world–sheets, we are summing
over all possible topologies, and exactly those topologies can be interpreted as strings
merging and diverging, fact which is exactly what we imagine under interaction in
string theory. Of course the question arises, how is this sum to be implemented? the
formal answer is

∫
[dXdg] e(−S). (4.1)

We see the weight e(−S) being the classical action of the string, which is just the
Polyakov–action, and the path integration is performed, similarly to field theory, over
all fields encountered in the action: the metric g 1, which is responsible for the world–
sheet topology and the field X, this being the string itself.

Now we have to remember that our theory had a very strong local symmetry, namely
the Weyl× diffeomorphism–invariance, which allowed for arbitrary local transforma-
tions of the metric. Thus different looking metrics are connected by that symmetry
and identified. This way different world–sheets are related to each other, the conse-
quence of that being that we perform the path integral over infinitely many metrics
which are in fact the same. Thus the path integral over all metrics gµν , will surely
overcount the number of world–sheets and our path integral will be infinite! This is
nothing else than the conformal anomaly encountered in the canonical quantization
and which we have fixed by imposing the closure of the Virasoro algebra, (2.13). We
will fix it here again, by imposing an explicit gauge choice. This procedure is already
very well known in gauge theories where one faces the same problem, see more on
that in [9]. There, the action is symmetric under some continuous space–dependent
transformation of the fields which relates the latter to each other. It will thus be clear
that a naive path integration over the fields will be divergent since overcounting. We
recognize thus the problem described above in string theory. The way out is to sim-
ply consider solely independent metrics, so the ones not being related by Weyl and
diffeomorphic transformations:

∫
[ dXdg ]

Vdiff×Weyl

e(−S). (4.2)

Here we have denoted by Vdiff×Weyl the volume of the conformal group, by which
we divided the functional integral, signaling we have fixed that symmetry. For sure
this is a highly formal expression but using the Faddeev–Popov determinant, one can
eliminate the volume and eventually introduce a correlation function of three bosonic
ghosts, which allows us to fix the position of three vertices of those involved in the
string scattering.

1We have performed here a Wick rotation: the Minkowski world–sheet metric γ is replaced with a
Euclidean metric g, changing signature from (−,+) to (+,+).
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4.1.2 Gauge fixing

In order to brake the symmetry we have to choose an explicit gauge. Thus we will
require the metric satisfy some condition F (gµν) = 0 and after that multiply the
functional by the respective delta functional

∫
[ dXdg ] δgauge (F (gµν)) e

(−S). (4.3)

We shall choose for F the expression (g − ĝ), where ĝ is just the flat Minkowski
metric. However, the naive insertion of the delta function will change the integration
measure, thus we will also have to insert its corresponding determinant such that the
expression in its whole equals one:

1 = ∆FP (g)

∫
[dµ] δ(g − ĝµ) (4.4)

In upper formula we integrate over all gauge transformations, i.e. Weyl and diffeo-
morphism transformation of the metric. ∆FP denotes the corresponding determinant
coming from the variable transform in the delta functional, and is named after Fad-
deev and Popov. This is the correct expression we want to insert into (4.2), such that
the integral won’t be changed, and we arrive at the final formal formula for the string
functional:

Z[ĝ] =

∫
[ dµ dX dg ]

Vdiff×Weyl

∆FP (g) δ(g − ĝµ) e(−S). (4.5)

This way we have succeeded in eliminating the superfluous world–sheets, for the
delta functional will exactly filter out just the ones satisfying the desired condition
F . We can thus carry out the path integral over the metric and rename the variables.
Moreover, we have inserted before the identity into the string functional as an integral
over gauge transformations with measure dµ. The volume of the PSL(2,C)–symmetry
which is the (diff×Weyl)–symmetry in the denominator of our formula will be exactly
canceled by that integral, and we are left with

Z[ĝ] =

∫
[ dX ] ∆FP (ĝ) e(−S). (4.6)

The Faddeev–Popov determinant will be analyzed in more detail in appendix B.

4.1.3 Gauge anomaly and ghosts

Of course we want now to evaluate the expression (4.6) which is still a little bit difficult
because of the formal determinant of Faddeev and Popov. Though it can be computed:
starting with the general conformal transformation
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gµ
ab = e[ 2ω(σ) ] ∂σ

c

∂σ′a

∂σd

∂σ′b
gcd, (4.7)

which we have separated into pure diffeomorphisms and pure Weyl transformations,
we can expand it near the identity and invert relation (4.4) for the determinant. Rep-
resenting it as an integral over ghost fields, as explained in appendix B will eventually
lead us to following form of the string functional

Z[ĝ] =

∫
[ dX db dc ] e−SX−Sg , (4.8)

where we have integrated over ghost fields b and c as explained in the appendix
and the action Sg denotes

Sg =
1

2π

∫
d2σ ĝ1/2bab∇̂acb, (4.9)

the action for the ghost fields. The hat on the Nabla–operator indicates we have
used the gauged metric, i.e. the unit flat Minkowski metric. More about the ghost
integration over the corresponding Lagrange density will be said just in the next sub-
section, where its consequences will be a fixing of positions of three vertices. However,
before we shall treat the vertices one open question still remains: to what extent is
the Weyl symmetry preserved after quantization? i.e. is the string functional Z[g]
independent of the gauge imposed on the metric gab?

The Weyl invariance means classically that the energy–momentum tensor Tab is
traceless. In the path integral case, we obtain Tab by varying the Polyakov action with
respect to the metric gab, which eventually gives for the operator trace

T a
a = f R, (4.10)

with f some proportionality constant and R the Ricci scalar. To check this equal-
ity in the quantum case and also to determine the constant f we can look at the
transformation properties of both sides of equation (4.10). Comparing the two trans-
formations and also setting them equal will set the Minkowski space–time dimension
for the bosonic string to 26 and in the case of supersymmetric strings the space–time
dimension proves to be ten. So again, this is the dimension in which superstring theory
is free of any anomalies. String theory can also be formulated in different dimensions,
though the price to be paid is the loss of consistency. This is again a confirmation of
the results already achieved in the introduction, where we have quantized the string
with another method. Hence, the equivalence of the two methods and also the cor-
rectness of the results is proved. Now we shall move to vertices and finally to string
interactions.
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4.1.4 Ghosts and moduli

Time has come to care about the ghost and the determinant coming from integration
them out. We started with an diverging integral over redundant metrics

Z[ĝ] =
∑

Topologies

∫
[ dX db dc ] e−SX−Sg , (4.11)

caused by the strong conformal symmetry which the theory shew. After fixing that
symmetry, such that the integral became finite, (4.8) we expect now an integral over
metrics, which are somehow parameterized by a variable; this parameter we will call
”modulus”. In our case it exactly describes different metrics, such that they cannot
be related to each other by an conformal transformation,

Z[ĝ] =
∑

Topologies

∫
[ dX db dc ]

∫
dfp e−SX−Sg , (4.12)

Here we have signalized that, by introducing an integral over some f moduli p,
which are to describe the metric of the associated world–sheet geometry. A simple
case will deliver a good example of how one can pictorially imagine that.

Two dimensional spaces are simple enough such that they can be completely cat-
egorized in terms of Riemann surfaces, [75, 76]. Fortunately, the string sweeps out
a compact two dimensional surfaces, which can thus be easily analyzed. In the case
of closed strings, the situation is even simpler, since the surfaces ca be conformally
mapped to the sphere or to tori with different numbers of handles, thus those surfaces
being enumerable by just the numbers of handles, g, they have. When dealing with
close strings, the sum over topologies in formula (4.12) will run over g, and thus in
the language of Feynman diagrams will organize the interactions in tree– and loop–
interactions.

z
2π

2πτ

a a'

b

b'

0

2π(τ+1)

Figure 4.1: Generating basic vectors for the algebraic torus with complex modulus τ .
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Lets pick up one simple interaction though non trivial, the simplest loop–diagram,
thus lets fix g = 1. In that case we will have to do with a torus which will be
the world–sheet swept out by the string. Above we have depicted the ”algebraic”
torus, which is defined as identifying the opposite sides of the upper parallelogram,
(σ1, σ2) ∼ (σ1, σ2)+2π(p, q). As usual, (σ1, σ2) denote the two coordinates of the string
world–sheet, thus time and one–dimensional space. Further we have (p, q) ∈ Z × Z.
Thus its curvature is that of the flat space. Further, we can use our (diff × Weyl)–
symmetry to bring the metric to the form

d2s = |dσ1 + τdσ2|2 . (4.13)

Here we have introduced a complex parameter τ , which is nothing else than the
modulus described earlier, which should pick us exactly the inequivalent metrics gab.
The parameter is defined as having its real part positive, consequently it lives in the
complex upper half–plane. However, one immediately notices in formula (4.13) that
the metric is still invariant under two transformation of the modulus, namely

T : τ → τ + 1 , S : τ → τ = −1

τ
(4.14)

Those two transformations form the group PSL(2,Z). This is found when noticing
that the T and S transformations are equivalent to

τ → aτ + b

cτ + d
, (4.15)

where (a, b, c, d) are all integers and (ad − bc) = 1. Thus we can form a matrix U
which acts on τ as τ → Uτ with the requirement U ∈ PSL(2,Z)2. Since this symmetry
produces redundant metrics we should also fix it. This is formally done by requiring
the modulus τ to be constrained in C/PSL(2,Z), thus in complex plane modulo the
symmetry group. This new space can also be computed and is shown in the figure 4.2.

We thus arrive at the following form for an string scattering function

AN =

∫
[ dX dg ]

VDiff×Weyl

∫
dτ e(−SX)

N∏

i=1

∫
d2σi Vi(ki, σi) , (4.16)

where the integration over τ is taken to be within the region C/PSL(2,Z). However
when we have vertices inserted as above, thus not dealing with the ”naked” partition
function, there is another physical way in order to avoid that symmetry. We can fix
the position of κ vertices, where κ is related to the Euler χ number and the genus g as

2This group is also known as the modular group for obvious reasons. A highly interesting and
very nowadays very active branch of mathematics is concerned with modular groups, generalizations
thereof and also modular functions and forms, [99]–[102].
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Figure 4.2: Fundamental region of the complex modulus τ of a torus.

2κ = 3χ , −3χ = 6g − 6 . (4.17)

In the case of tree–amplitudes, g will be set to zero and κ will equal three, allowing
us thus to fix the position of three arbitrary vertices. This terminates our discussion
about moduli integration. Next section will serve as a definition of vertex operators
and after that we will be in the position to calculate simple tree–amplitudes.

4.1.5 From vertices to amplitudes

In order to calculate scattering amplitudes between different states, we will follow the
same procedure used in usual quantum field theory together with the path integral
representation. There we insert vertex operators into the path integral, thus obtaining
correlation functions. We were concerned in the last section with the anomaly free
and thus consistent formulation of the path integral function of string theory with
no vertices inserted. This functional, (4.8), is also known as a partition function.
Mimicking the programm usual in quantum field theories we will insert now string
vertices into the partition function, the former representing different string states.
The corresponding relation for N external states is given by following formula

AN =

∫
[ dX dg ]

VDiff×Weyl

e(−SX)

N∏

i=1

∫
d2σi Vi(ki, σi) (4.18)

=

∫
[ dX db dc ] e(−SX−Sg)V1(k1, z1) V2(k2, z2) V3(k3, z3)

N−3∏

i=1

∫
d2σi Vi(ki, σi) .

In this expression we recognize the ”empty” path integral 4.2, which is just the
string partition function. Beyond that we have included additional vertices Vj(kj, σj)
integrated over their positions and which will be defined in a while. As argued in the
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Figure 4.3: Four-point amplitude and its corresponding conformal mapping.
Left – open states; right – closed states.

previous section, of all the vertices three are fixed at arbitrary positions, such that the
additional encountered symmetry PSL(2,Z) of the metric moduli space is also fixed.

A pictorial description of this scattering process can be seen in figure 4.3. For the
sake of concreteness we have picked up the special example of four external states. Also
the genus has been reduced from g = 1 to g = 0 such that we have a tree–amplitude.
Moreover this simple amplitude will also serve us introducing the computational tech-
niques. Back to the figure, the world–sheet is conformally mapped to the upper half of
the complex plane, which further is isomorph to the disk. The same procedure is ap-
plied to the closed string, as seen in the same picture, where the world–sheet is mapped
to the sphere. Furthermore, in the case of open strings, external states are mapped
to regions of the disk boundary. Since the closed string world–sheet doesn’t have any
boundaries, its external states are mapped to so called punctures on the sphere. Thus
we can think of vertices as being inserted either on the sphere or at the boundary of
the disk.

We can now ”convert” the path integral expression to Wick contractions of opera-
tors inserted into the functions, in a similar manner as done in conformal field theory,
thus arriving at following expression for the N–point string interaction

AN =

〈
V1(k1, z1) V2(k2, z2) V3(k3, z3)

N−3∏

i=1

∫
d2σi Vi(ki, σi)

〉
〈 c(z1) c(z2) c(z3) 〉 .

(4.19)

New about this formula is the fact that we have converted the ghost–determinant
into an expectation value of the three ghosts ci, which are in one to one relation to
the number of positions fixed. Since we have now an explicit expression for computing
string amplitudes, the very last step towards their calculation is the specification of
the string vertices. We should find a suitable definition for them and see how different
external states, which we have already interpreted as different particles, i.e. graviton,
gauge boson, etc., can be expressed by vertices.
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First of all, since vertices are string states φ, they have to obey the consistency re-
quirements imposed on string theory, this being the conformal invariance, as explicitly
stated in the old covariant quantization method in (2.12):

Ln|φ〉 = L̄n|φ〉 = 0,

(L0 − 1)|φ〉 = (L̄0 − 1)|φ〉 = 0, (4.20)

(L0 − L̄0)|φ〉 = 0, (4.21)

Those were conditions imposed for the sake of consistent quantization. In this chap-
ter though, we have already quantized the string with the means of path integration,
without imposing the conditions (4.21). However,a major fact of quantization was the
(re)establishing of conformal invariance which we have done. So conditions (4.21) will
hold also now. This technique will just reveal to us the form of the string states, and
not fix any inconsistencies.

We will thus define the string states as conformal fields3, i.e.

|φ〉 = φ(0)|0〉 = lim
z,z̄→0

φ(z, z̄)|0〉. (4.22)

Since we map string states to conformal fields, this operation is being also known
as the state/field mapping. Further, since all conformal fields are generated by the
conformal operators and since we have all those operators, we can reproduce the whole
string spectrum by just acting on the vacuum with the conformal operators Ln. Field
representations of the latter can be worked out, see e.g. [77]. The lowest mode of the
string is a scalar, known as Tachyon, with momentum kµ:

|k〉 = lim
z,z̄→0

: eikµXµ

: |0〉. (4.23)

By applying to it the requirements 4.21 it can be shown that its momentum obeys
k2 = 2 and thus not surprisingly m2 = −2. Its negative mass is the reason this particle
is called Tachyon.

Higher excitation states will be defined in complete analogy. We let the creation
operators act on the vacuum, the lowest string state, and then apply to them the
consistency conditions coming from conformal invariance.

Since the work of finding the vertices has in principle been done, we are in the
position of calculating tree amplitudes, at least some of the simple ones. The three-
tachyon amplitude on the disk, for example, is given by

SD2(k1, k2, k3) = 〈: c1eik1·X(y1) :: c2eik2·X(y2) :: c3eik2·X(y3) :〉
+ (k2 ↔ k3) (4.24)

3Conformal fields are fields which transform in a special well defined way when acted with conformal
operators, see [78]
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Formula 4.24 might appear a little bit unexpected and a lot of new notation has
been introduced. First of all, the expression on the right hand side is an expectation
value of operators, as already encountered in quantum field theory. The double point
notation : φ : is just a signal for normal ordering, the pendant of the ”time ordering”
encountered in field theory. As explained earlier, the contraction of operators is to be
viewed as in quantum field theory where exactly the same happens: one starts with
a path integral over a number of fields and at the end this expression is equivalent
to contracting the respective fields. Those contractions are calculated using the usual
Wick–contraction techniques. Now to the fields involved: c1, c2, c3 are the bosonic
ghosts, already mentioned before. They are responsible for the gauging of the position
of exactly three vertices but not for fixing their cyclic order, that’s why we have the
additional last term on the right hand side with the two momenta k1, k2 exchanged.
Finally, eikj ·X(y) is the tachyon at position y.

Notice that all integrals over the positions have disappeared, since we deal with an
three–point function, but from gauging the conformal symmetry we are free to fix the
position of exactly three vertices, thus the three–point function is somehow trivial.
Last ingredient is now the correlation function of the the fields present in 4.24, those
being given by

〈c(y1)c(y2)c(y3)〉 = (y1 − y2)(y1 − y3)(y2 − y3)

and

〈
∏

j

eikj ·X(yj)〉 =
∏

i<j

|yi − yj|ki·kj (4.25)

We can now evaluate the amplitude. Last thing to consider is conservation of
momentum

∑
ki = 0 and k2

i = 2, where the latter relation was found before by
conformal requirements. With those relations implemented, we obtain:

SD2(k1, k2, k3) = δD(Σiki) × |y12|1+2α′k1·k2 × |y13|1+2α′k1·k3 × |y23|1+2α′k2·k3 (4.26)

= δD(k1 + k2 + k3),

with |yij| = (yi − yj). Generalizing to the four–point tachyon amplitude on the
disk, is almost trivial, this one being given by

SD2(k1, k2, k3, k4)

=

∫ ∞

−∞

dy4〈
3∏

j=1

: cj(yj)e
ikj ·X(yj) :: eik4·X(y4)(y4) :〉 + (k2 ↔ k3). (4.27)

We recognize all the ingredients already studied in the last amplitude, with the
single difference we have now four vertices, thus the last one cannot anymore be fixed,
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such that an integral over its position has appeared. Introducing the Mandelstam
variables

s = (k1 + k2)
2 t = (k1 + k3)

2 u = (k1 + k4)
2, (4.28)

which can be seen to be just simple scalar products of different momenta. Their
conservation relation holds

s+ t+ u =
∑

mi = −8. (4.29)

Again performing the Wick contractions and after that fixing the values of the
vertices positions at y1 = 0, y2 = 1, and y3 → ∞ gives

SD2(k1, k2, k3, k4) = δD(Σiki)

[∫ ∞

∞

dy|y|−α′u−2|1 − y|−α′t−2 + (t→ s)

]
. (4.30)

The integral is a standard one and found in every formulary, see e.g.[79]. For that,
we have to divide the integration interval into three pieces

(−∞,+∞) = (−∞, 0] ∪ [0, 1] ∪ [1,∞),

and perform the variable transform x′ = 1
x
. The result will be the famous Euler–

Beta integral:

B(a, b) ≡ Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0

dy ya−1(1 − y)b−1,

with Γ(x) being the known Gamma function obeying the functional relation
Γ(x+ 1) = xΓ(x). The field of such functions, their generalization and various rep-
resentations thereof will thoroughly be covered in part II of the present work.

4.2 Tree-level amplitudes of open superstrings

4.2.1 Setting the stage

Now that we have introduced string amplitudes and successfully computed a simple
one we should talk in more detail about the frame in which we will calculate to main
amplitude this work is concerned with. This section thus will set up the frame in which
future work will be done, namely the dynamics of Yang–Mills fields fixed on D–branes
preserving maximal supersymmetry. This discussion holds in all types of superstring
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theories except the heterotic ones. As roughly explained in the introductional chap-
ter about the superstring, Yang–Mills fields are the massless modes of superstrings
attached to D–branes. As in quantum field theory, they are named Aµ and originate
from the bosonic string sector, opposite to their superpartners, the gauginos ψµ, which
come from the fermionic sector. Since D–branes have various dimensions, we will de-
note their dimension by p and include it in the name, i.e. call them Dp–branes. As
already known, Dp–branes are boundary conditions of the open string interpreted as
infinitely extended objects4. Those boundary conditions will make them observable
also in the superstring modes, such as Aµ and ψµ. It soon becomes clear that when
dealing with Dp–branes where p < 9 we also have to consider fields obeying Dirichlet
boundary conditions, though being transversal to the brane. In this work though we
will not consider those cases; this is not a simplification since the effects can easily be
obtained from the D9–brane by T–duality. For more on T–duality, see [80, 81]. Thus,
our setup will be given by gauge fields living on D9–branes with maximal supersym-
metry and gauge group SO(32).

We have now to treat scatterings of gauge states, which will be just a slightly
generalization of the amplitude (4.27), the difference coming from the fact that we have
now to insert the vertices responsible for gauge states. The amplitude will generally
look as in quantum chromodynamics, namely

AN(k1, ξ1, a1; . . . ; kN , ξN , aN) =
∑

π ∈ (1,2,...,N) ′

Tr(λπ(1)λπ(2) . . . λπ(N)) Aπ. (4.31)

Few words have to be said about that formal expression: it symbolizes an S–
matrix of N gluons, characterized by their polarizations ξi and momenta ki. The
function Aπ will fully capture the dynamics of the interaction, thus depending on
momenta and polarization and being the straightforward generalization of the four
point amplitude. The sum multiplying it is though new, but known from quantum
chromodynamics where one also deals with gluons. It is the sum over all cyclically
inequivalent (symbolized by the prime) permutations (π(1), π(2), . . . , π(N)) over all
color gluon indices. Thus the elements of the sum are taken from the permutation
group SN modulo the cyclically equivalent ones, ZN . Since the dimension of that
group is dim(SN/ZN) = (N− 1)! we have exactly (N − 1)! elements. Also the trace Tr
goes over the color indices of the Chan–Paton factors λk.

Before setting the full frame one more piece is needed. We have to specify the
topology of our world–sheet (which will be the disk, since we calculate tree–amplitudes)
on which the vertices are to be inserted, this being done by fixing the ghost number
to be (−2). We are free to choose the ghost–picture in which the vertices are given
and this we use to take two vertices in ghost picture (−1) and the rest of them in
ghost picture 0, this ensuring a total ghost number of (−2). This requirement is a

4Two types of boundary conditions are possible, one that fixes the position of the string called
Dirichlet condition (this is also where the D–brane inherits its name) and one which allows the string
to move freely, called Neumann condition
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direct implication of the superdiffeomorphism invariance of the superstring action. On
the disk the conformal Killing volume V −1

CKG is accounted for by fixing three positions
and introducing the respective c–ghost correlator, as we have already seen before. The
(−1)–ghost picture gauge boson vertex in superstring theory is given by

V
(−1)
Aa (z, k) = λa ξµ e

−φ(z) ψµ(z) eikρXρ(z) (4.32)

and the one in zero–ghost picture by

V
(0)
Aa (z, k) = λa ξµ [ ∂Xµ(z) + i (kψ) ψµ(z) ] eikρXρ(z). (4.33)

Since those vertices represent gauge particles, they carry a group charge called color,
λi; in order to fully specify the kinematic of the particle we introduce their polarization
ξµ and momentum kµ. As usual the scalar product of a polarization vector with its
momentum is zero, ξµ · kµ = 0 and momentum is conserved

∑
ki = 0. Thus, now we

are ready to set up an S–matrix for open string gluons by just inserting in (4.19) two
(−1)–ghost vertices and (N − 2) vertices in the zero-ghost picture arriving at

AN(k1, ξ1, a1; . . . ; kN , ξN , aN)

=
3∏

r=1

∫
d2zr 〈V (−1)

Aa1 (z1) V
(−1)
Aa2 (z2) V

(0)
Aa3 (z3) . . . V

(0)
AaN (zN)〉. (4.34)

We notice that the first two vertices are put in the (−1)–ghost picture while the
rest of them is in the zero–ghost picture. This is an arbitrary choice as will be seen
in a while. We also have to specify the ordering of the Chan–Paton factors and much
more important the integration region. Since we are calculating tree–diagrams in open
string theory, our world–sheet is conformally equivalent to a disk and the vertices are
inserted at the boundary as depicted in figure (4.3). This immediately implies we
have real integrals along the boundary of the upper complex plane, thus along the
real axis R. But one more constraint is put on the integration order: we have to
integrate the position of each vertex from the position of the antecedent one until the
next vertex, while the first is integrated from minus infinity until the second and the
last is integrated until plus infinity. Thus the region of integration is in one to one
correspondence with the Chan–Paton order Tr(λπ(1)λπ(2) . . . λπ(N)) and the former may
be specified as

Iπ = { Im(zj) = 0 | zπ(1) < zπ(2) < . . . < zπ(N) }, (4.35)

the constraint Im(zj) = 0 being equivalent to a real integration.
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4.2.2 A review of the four–point function

With the tools studied in the last section we are now in the position to fully understand
and compute the four open string gluon S–matrix on the disk, which now simplifies
from the formula (4.31) to

A4(k1, ξ1, a1; k2, ξ2, a2; k3, ξ3, a3; k4, ξ4, a4) =
∑

π ∈ (1,2,3,4)
6 permutations π

Tr(λπ(1)λπ(2)λπ(3)λπ(4)) Aπ .

(4.36)

In order to compute the kinematics of that amplitude we have to start with equation
(4.34). After inserting the vertices we have simply to evaluate the Wick contractions
between the conformal fields. Those can be found in every standard book on the
subject and are collected in following expression

〈Xµ(z1)X
ν(z2)〉 = −gµν ln(z1 − z2) ,

〈ψµ(z1)ψ
ν(z2)〉 = − gµν

z1 − z2

,

〈eik1X(z1)eik2X(z2)〉 = | z1 − z2 |k1k2 ,

〈e−φ(z1)e−φ(z2)〉 =
1

z1 − z2

,

〈c(y1)c(y2)c(y3)〉 = (y1 − y2)(y1 − y3)(y2 − y3) . (4.37)

We notice first the new field φ which is just the superpartner of the bosonic ghost c5.
It’s important to notice that the correlators decouple, i.e. the bosonic fields Xµ have
independent contraction rules from that of the fermionic modes ψµ or the super–ghost
fields φ and the ghosts c. This fact causes a factorization of the correlation function
which facilitates the computation. Before doing the integrals we have to specify an
integration order, and this is given, as seen in last section, by the ordering of the
Chan–Paton factors in the trace, before the kinematic function Aπ. Without loss of
generality we choose the ordering π = (1, 2, 3, 4). Then the function Aπ is given

A(1,2,4,3) =
Γ(s) Γ(t)

Γ(1 + s+ t)
[ tu (ξ1ξ2) (ξ3ξ4) + su (ξ1ξ3) (ξ2ξ4) + st (ξ1ξ4) (ξ2ξ3) + . . . ] ,

(4.38)

where as expected, the result only depends on the four polarization vectors ξµ and
the Mandelstam variables, defined in last chapter. For a more detailed computation,
and also for slightly different scenarios, consult e.g. [82, 83]. First of all, the result

5Since in the superstring all the fields have superpartners, so does also the metric of the bosonic
field. The ghost field associated with it is just φ.
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presented in (4.38) is not the entire kinematics as the dots on the right hand side may
suggest. We have just listed the first three contractions, namely those entirely between
polarization vectors. The whole kinematics contains also mixed scalar products, i.e.
scalar products between momenta and polarization vectors, as encoded in the t8–
tensor, see [28]. Taking into account that also the Mandelstam variables depend on
the momenta, the full string S–matrix, i.e. also the other five orderings of the Chan–
Paton factors λi can be obtained by simply taking the corresponding permutations
of the momenta and polarization. This, however, won’t generate any new terms, the
t8–tensor being invariant under such permutations, the only difference being in the
factor of six which will multiply then the result. Further on is it worth to point on
the beta–function which depends on the momenta and multiplies the t8–tensor. This
function also encodes dependence on the momenta but much more important, all the
poles are encoded solely in that function. So all the exchange diagrams cannot be
seen until we series expand the gamma–functions. In that case although, this is not a
problem, since every standard book on mathematics will furnish that expansion

Γ(x) =
1

x
− γE +

γ2
E + ζ(2)

2
x− γ3

E + γE ζ(2) + 2ζ(3)

6
x2 +O(x3). (4.39)

This expansion can then be inserted into the equation (4.38) and then we can obtain
the arbitrary momentum order of the four–point gluon interaction.

4.3 Same calculation, different technique

We should remember that we have chosen by chance one combination of the ghost–
picture operators, i.e. one special manner which dictates which the four vertices is put
into the (−1)–ghost picture. Since all choices are equivalent, for nobody gives us a
prescription of how to do that, we are free to put every two vertices into that picture.

4.3.1 The ghost picture changing

Let’s introduce first some notation: let Aπ(a, b, i1, i2, . . . , iN−2) indicate that the first
two vertices (a, b) are in the (−1)–ghost picture and that the other have been chosen to
be in the zero–picture. While the ordering of the vertices is important we have named
every vertex explicitly. It should be clear that this procedure is fully independent of the
ordering of the Chan–Paton factors λi. Further we could calculate the S–matrix in just
one ghost–picture Aπ(a, b, i1, i2, . . . , iN−2) since all the ghost pictures are equivalent as
already stressed; but relaxing this constraint will lead to highly non trivial relations.

Let’s study thus all the other permutations of ghost–pictures, as depicted formal in
the following formula, where no particular choice has been made about the permutation
of vertices (a, b, i, j) ∈ (1, 2, 3, 4)
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Tr(λπ(1)λπ(2) . . . λπ(N)) Aπ(a, b, i, j) (4.40)

=

∫

Iπ

d2z 〈V (−1)
Aaa (za) V

(−1)
Aab (zb) V

(0)
Aai (zi) V

(0)

Aaj (zj)〉.

If we now do the contractions between the fields as done before in order to obtain
equation (4.38), with the only difference that we do not specify the vertices, we arrive
at following result

Aπ(a, b, i, j) = Aπ
2 (a, b, i, j) (ξaξb) (ξiξj)

+ Aπ
1 (a, b, i, j) (ξaξi) (ξbξj) + Aπ

1 (a, b, j, i) (ξaξj) (ξbξi)

+Bπ
2 (a, b, i, j) (ξaξb) +Bπ

3 (i, j, a, b) (ξiξj) +Bπ
1 (a, i, b, j) (ξaξi)

+Bπ
1 (a, j, b, i) (ξaξj) +Bπ

1 (b, i, a, j) (ξbξi) +Bπ
1 (b, j, a, i) (ξbξj) .(4.41)

The functions Aπ
i and Bπ

j encode the different polynomials as well as the kinematic
variables ξµ and kµ coming from the contractions. It is worth to notice that no spec-
ification has been made about the Chan–Paton ordering π hence we are still free to
chose one color permutation. However choosing one permutation π ∈ (1, 2, 3, 4) will
uniquely specify the integration prescription Iπ. Finally, the polynomials have to be
integrated and the integrals look like

Aπ
1 (a, b, i, j) =

∫

Iπ

dz4 〈c(z1)c(z2)c(z3)〉 E
kikj

zai zjb zij

(−1)

zab

,

Aπ
2 (a, b, i, j) =

∫

Iπ

dz4 〈c(z1)c(z2)c(z3)〉 E
1

z2
ab z

2
ij

(1 − kikj) ,

Bπ
1 (a, i, b, j) =

∫

Iπ

dz4 〈c(z1)c(z2)c(z3)〉 E
1

zab zij

(4.42)

×
{

(ξbki)(ξjka)

zajzbi

+
(ξbki)(ξjkb)

zaizbj

− (ξbkj)(ξjki)

zaizbj

}
,

Bπ
2 (a, b, i, j) =

∫

Iπ

dz4 〈c(z1)c(z2)c(z3)〉 E
(−1)

z2
ab z

2
ij

{
(ξikb)(ξjkb) − (ξikb)(ξjka)

zbjzia

zajzib

+(ξika)(ξjka) + (ξika)(ξjkb)
zajzib

zbjzia

− (ξikj)(ξjki)

}
,

Bπ
3 (i, j, a, b) =

∫

Iπ

dz4 〈c(z1)c(z2)c(z3)〉 E
1

zab zij

{
(ξaki)(ξbkj)

zaizbj

− (ξakj)(ξbki)

zajzbi

}
.

As usual we encounter the bosonic ghost correlator 〈c(z1)c(z2)c(z3)〉 which fixes the
position of three vertices. We have decided to fix the first three vertices, whose positions
will be explicitly specified in a while, and the only integral is performed over the
fourth variable z4. Further we recognize scalar products between momenta which will
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later be translated into Mandelstam variables and also products between polarizations
and between polarizations and momenta. As usual zij means the difference (zi − zj)
and we have abbreviated E =

∏
r<s

|zrs|krks , those being the contractions between the

exponents of the string functionXµ. Further analysis will reveal that specific kinematic
contractions are always accompanied by the same function Ai or Bj, those being

Aπ
1 (a, b, i, j) (ξaξi)(ξbξj) , Aπ

2 (a, b, i, j) (ξaξb)(ξiξj) , (4.43)

and further

Bπ
1 (a, i, b, j) (ξaξi) , Bπ

2 (a, b, i, j) (ξaξb) , Bπ
3 (i, j, a, b) (ξiξj) . (4.44)

A first major difference between the two functions A and B is that A contains just
(ξ · ξ)–contractions, i.e. no contractions between momenta and polarizations, on the
other hand the B–function also captures those contractions. Simply said, the kinematic
in equation (4.38) which can bee seen is fully captured by the A–functions, the rest of
it being encoded in the B–functions.

Referring now to the the vertex ghost–picture a subtlety can be observed in the
cases of Aπ

1 and Aπ
2 : in the second case just polarization vectors ξ from (−1)–ghost

picture vertices are contracted with each other whereas in the first case we have only
mixed contractions, i.e. polarizations from (−1)–ghost picture vertices contracted with
those coming from zero–ghost picture vertices. Essentially the same difference exists
in the case of the B–functions when we also observe the higher degree of freedom in
combining the polarizations, since now we are also allowed to have contractions of the
form (ξikj), when also the special case occurs when both polarizations coming from
(−1)–ghost picture vertices are contracted with momenta.

4.3.2 System of linear equations

Now a very interesting phenomenon emerges: when computing the string S–matrix
with the functions A and B we obtain seemingly different expressions for the same
result! First of all, let’s concentrate on one specific functions, e.g. Aπ

1 . We should
remember that this is nothing else than a specific choice for the distribution of the
ghost–picture over the vertices. For sure, this function will give us all the kinematics
made up solely by products between polarization vectors, i.e. (ξ1ξ2)(ξ3ξ4), (ξ1ξ3)(ξ2ξ4)
and (ξ1ξ4)(ξ2ξ3).

Now we still can take other choices and then for the same kinematic

(ξAξB) (ξCξD) (4.45)

we have three expressions given by the functions
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Aπ
1 (A,C,B,D) , Aπ

1 (A,D,B,C) , Aπ
2 (A,B,C,D) . (4.46)

But they are equal. Thus we might try to equate them, and not only restrict to
them, but take the whole S–matrix as given in one particular choice namelyAπ

2 (1, 2, 3, 4)
in (4.38) and evaluate all other choices which might eventually lead to following system
of equations:

(ξ1ξ2)(ξ3ξ4) : Aπ
2 (1, 2, 3, 4) = Aπ

1 (1, 3, 2, 4) = Aπ
1 (1, 4, 2, 3) ,

(ξ1ξ3)(ξ2ξ4) : Aπ
2 (1, 3, 2, 4) = Aπ

1 (1, 2, 3, 4) = Aπ
1 (1, 4, 3, 2) ,

(ξ1ξ4)(ξ2ξ3) : Aπ
2 (1, 4, 2, 3) = Aπ

1 (1, 2, 4, 3) = Aπ
1 (1, 3, 4, 2) . (4.47)

We can thus notice that every kinematic is produced three times, by the three
different ghost choices and on the other hand every function produces each of the
three kinematics in in the first column of the upper systems of equations once, thus
showing that the generated system is complete. Sofar we have just given a look at
the kinematics concerning the polarizations. In order to also calculate the momentum
dependencies we have to integrate the polynomials which are encoded in the three
functions Aπ

j . For that we should make a decision what concerns the Chan–Paton
ordering π, since this choice is in one to one correspondence with the integration
prescription. Let us decide for the choice π = (1, 2, 4, 3). This translates into the trace
factor multiplying the Beta–function in (4.38), i.e. Tr(λ1λ2λ4λ3). We have again to
stress that this choice isn’t constrictive since by just permuting the ”names”, i.e. all
the indices in the result (1, 2, 3, 4), we can recover each Chan–Paton combination we
desire.

Furthermore, since we have the ghost correlators which allow for fixing three po-
sitions of the involved vertices, we should also specify those positions to z1 → −∞,
z2 = 0 and finally z3 = 1. This choice is also equivalent to other positions but it turns
out that this one is more convenient, simplifying the computations. Now we can for-
mally integrate the polynomials and try to find the functions in mathematical books,
this leading to

Aπ
2 (1, 2, 3, 4) = (s− 1) F4 , Aπ

1 (1, 3, 2, 4) = −t F3 , Aπ
1 (1, 4, 2, 3) = u F1 ,

Aπ
2 (1, 3, 2, 4) = (t− 1) F5 , Aπ

1 (1, 2, 3, 4) = −s F3 , Aπ
1 (1, 4, 3, 2) = −u F2 ,

Aπ
2 (1, 4, 2, 3) = (u− 1) F0 , Aπ

1 (1, 2, 4, 3) = s F1 , Aπ
1 (1, 3, 4, 2) = −t F2 ,

(4.48)

where we have made the abbreviations

Fj =

∫ 1

0

dx Pj x
t(1 − x)s . (4.49)



4.3 Same calculation, different technique 55

This integral is, as expected, different for each kinematic, since each kinematic was
created by a unique contraction between some conformal fields from the operators,
thus also the polynomials will be different, like shown in next equation:

P0 = 1 , P1 =
1

x− 1
, P2 =

1

x
,

P3 =
1

x(x− 1)
, P4 =

1

(x− 1)2
, P5 =

1

x2
. (4.50)

We plug in now the functions from (4.48) into the system (4.47) which leads to

(s− 1) F4 = u F1 , (s− 1) F4 = −t F3

(t− 1) F5 = −s F3 , (t− 1) F5 = −u F2

(u− 1) F0 = s F1 , (u− 1) F0 = −t F2 . (4.51)

This system allows now for a solution, or you may also call it parametrization,
where we are free to chose each function as a parameter. For sure we will take the
simplest one, namely the one where the integral over the corresponding polynomial is
the simplest, for all the other functions will be related to that:

F1 =
u− 1

s
F0 , F2 =

1 − u

t
F0 ,

F3 =
u (1 − u)

st
F0 , F4 =

u (1 − u)

s (1 − s)
F0 , F5 =

u (1 − u)

t (1 − t)
F0 . (4.52)

After integrating the F0–function to

F0 =
Γ(s+ 1) Γ(t+ 1)

Γ(2 + s+ t)
(4.53)

we have all other functions already given just in terms of one single function.
We don’t even have to integrate the other ones. For sure in this simple case, all the
other integrals may as well be done for they are just different versions of the Beta–
integral. But a much more important detail should be noticed: the function F0 has
been chosen such that it hasn’t poles for the argument approaching zero6! This is
of enormous importance since all the poles, as can be checked in the result (4.52)
are factorized in front of F0! This means, that we can simply expand our pole–free
function F0 and obtain automatically the poles of the other functions. Those relations
aren’t something ”metaphysical” since they can be proved analytically and are true

6The Γ–function has infinitely many poles, for they occur at every negative integer. But we are
concerned only of the poles at zero, since when doing field theory we have positive momenta, and can
expand results in small positive Mandelstam variables!
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mathematical identities. Beyond that they are stated in every mathematical book
about Beta–functions. This will though dramatically change when dealing with the
six–point function, where no such relations are established and also just little work has
been done about substraction of poles from the functions involved.

We should remember that we considered solely the kinematics involving only (ξξ)–
contractions. This should be now trivially generalized, since a similar system of equa-
tions can be established for the full t8–tensor, also involving kinematics as (ξξ)(ξk)(ξk).

Those contractions are captured by the six functions

Bπ
2 (A,B,C,D) , Bπ

1 (A,B,C,D) , Bπ
1 (A,B,D,C) ,

Bπ
1 (B,A,C,D) , Bπ

1 (B,A,D,C) , Bπ
3 (A,B,C,D). (4.54)

Before solving the systems, some characterizing words about the new Bπ
j –functions

should be said: they symbolize the distribution of the ghost–pictures on the vertices as
(A,B), (A,C), (A,D), (B,C), (B,D) or (C,D), this meaning that exactly those pairs
of vertices are put into the (−1)–ghost picture respectively.

In full analogy to the last system we set up a bigger system with the additional
polynomials

P6 =
1

x(x− 1)2
, P7 =

x

(x− 1)2
, P8 =

1

x2(x− 1)

P9 =
x− 1

x
, P10 =

x− 1

x2
, P11 =

x

x− 1
, (4.55)

of which solution (the relevant part) is

F6 = F4 − F3 , F7 = F1 + F4 , F8 = F3 − F5 ,

F9 = F0 − F2 , F10 = F2 − F5 , F11 = F0 + F2 + F3 . (4.56)

This again leads to a one–dimensional solution where all the functions can be related
to just one, chosen at will, in our case the F0–function. Again, the poles factorize in
front of it in every case, such that just expansion of F0 will suffice. Thus, formally, we
may write

Fj = Λj(s, t, u) F0

(4.57)

for the solution of the system with the function F0 given by

F0 = 1 − s− t+ s2 + 2 s t− ζ(2) s t+ t2 + . . . (4.58)

It is worth to say that the ”basis function” F0 remains the same, while the co-
efficients Λj depending on the Mandelstam variables will vary with the ”unknowns”
Fj, j 6= 0, in order to capture in every case the right pole behavior.



Chapter 5

Six gluon open superstring

S–matrix

5.1 Setting up the amplitude

This chapter is dedicated to the main computation published in [26], which is the
six–point open superstring amplitude. In principle we have acquired all the tools we
need in order to attack the problem. Unfortunately the degree of complexity is that
high that a lot of results cannot be integrally given here (they being to large for that
purpose) and excerpts from them will be given in the appendix.

5.1.1 General expression of the six–gluon S–matrix

In accordance with the results achieved in the last chapter, our starting point will be
the formula

A6(k1, ξ1, a1; k2, ξ2, a2; k3, ξ3, a3; k4, ξ4, a4; k5, ξ5, a5; k6, ξ6, a6) (5.1)

=
6∏

r=4

∫
d2zr 〈V (−1)

Aa1 (z1) V
(−1)
Aa2 (z2) V

(0)
Aa3 (z3) V

(0)
Aa4 (z4) V

(0)
Aa5 (z5) V

(0)
Aa6 (z6)〉 ,

which describes a tree–level scattering amplitude of six open strings with vertices
already presented in (4.32) for the (−1)–ghost picture respectively in (4.33) for the
zero–ghost picture. The ordering of the distribution of the ghost pictures on the
vertices as well as the ordering of the group factors λi in the trace are not specified,
since in the former case, we are not going to calculate the S–matrix only in one specific
picture but in all possible ones, in order to use the advantages presented in last chapter
and in the latter case we just need one specific choice for the λ s for performing the
integrals.

The next step is to simply do the conformal Wick contractions between the fields,
which might be a little lengthy but nevertheless straightforward. Before doing that

57
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Six open strings (Tree−Level) Disk

Figure 5.1: Six open string vertices inserted on the world–sheet and mapped to the
disk (upper half complex plane)

though, let us look a little closer to the picture (5.1), where the string world–sheet
with the six vertices inserted is depicted and also its conformal mapping to the disk is
shown: on the left hand side we have the string world–sheet of six open external states,
which in our case are chosen to be six gluons with U(N) gauge group, denoted AN in
the picture. Exactly opposite to it, on the right hand side, we have the half sphere
which is isomorphically equivalent to the string world–sheet. With a bit of fantasy
we can deform the figure on the left and obtain the half sphere. Further, the half
sphere is isomorphic to the upper half plane, at whose boundary the scattering states
are attached. All those transformations can be done using the conformal symmetry,
which characterizes the string action. We can see also pictorially, that the integral of
the vertices over the world-sheet is equivalent to a real integral.

5.1.2 Kinematics and pictures

The contractions can be divided into classes according to the number of polarization
vectors multiplied either with each other or with some momenta. Thus we differen-
tiate between (ξξ)(ξξ)(ξξ), (ξξ)(ξξ)(ξk)(ξk) and (ξξ)(ξk)(ξk)(ξk)(ξk) whose function
multiplying them will be named A, B and C respectively. Those are to be considered
as the analogues of the functions A and B in the four–point case. As a side remark
it should be said that the last two kinematics can fully be inferred from the first one
(ξξ)(ξξ)(ξξ) by simple gauge invariance. Moreover, the full information about the
Born–Infeld action, i.e. the Lagrangian at α′4–order involving interaction of six glu-
ons is fully settled by the first kinematic. The only reason the other kinematics are
calculated is to capture all the possible functions which occur in the S–matrix and to
involve all those functions into the complex system of equations, which eventually will
be solved in terms of just few simple functions. So we invest now more energy doing
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more contractions, but later we collect the earnings in form of not being obliged to
series expand some functions, not even being obliged to integrate them all.

Finally, the full string S–matrix is given in full analogy to (4.41) by

Aπ(a , b , i , j , k , l) =

∫

Iπ

6∏

r=4

d2zr

∑

(i1,i2,i3,i4)

∈(i,j,k,l)

{
1

2
A1(a, b, i1, i2, i3, i4) (ξaξi1) (ξbξi4) (ξi2ξi3)

+
1

8
A2(a, b, i1, i2, i3, i4) (ξaξb) (ξi1ξi2) (ξi3ξi4) +

1

4
B2(a, b, i1, i2, i3, i4) (ξaξb) (ξi1ξi2)

+
1

2
B1(a, b, i1, i2, i3, i4) (ξaξi1) (ξbξi2) +

1

8
B4(i1, i2, i3, i4, a, b) (ξi1ξi2) (ξi3ξi4)

+
1

2
B3(a, i1, i2, i3, b, i4) (ξaξi1) (ξi2ξi3) +

1

2
B3(b, i1, i2, i3, a, i4) (ξbξi1) (ξi2ξi3)

+
1

24
C1(a, b, i1, i2, i3, i4) (ξaξb) +

1

4
C3(i1, i2, a, b, i3, i4) (ξi1ξi2)

+
1

6
C2(a, i1, b, i2, i3, i4) (ξaξi1) +

1

6
C2(b, i1, a, i2, i3, i4) (ξbξi1)

}
.

(5.2)

The first two terms are concerned solely with the kinematics (ξξ)(ξξ)(ξξ) , where
the functions A1 and A2 capturing the momentum behavior are respectively given by

A1(a, b, i, j, k, l) = − E
zab zai

{
(kikj) (kkkl)

zlb zjk zij zkl

− (kikk) (kjkl)

zlb zjk zik zjl

− (kikl) (1 − kjkk)

zlb zil z2
jk

}
,

A2(a, b, i, j, k, l) = − E
z2

ab

{
(1 − kikj) (1 − kkkl)

z2
ij z

2
kl

− (kikk) (kjkl)

zij zkl zik zjl

+
(kikl) (kjkk)

zij zkl zil zjk

}
.

(5.3)

Here we have again made the abbreviation

E =
6∏

r<s

|zrs|krks , (5.4)

for the six exponentials eikµ·Xµ

.
The rest of the functions multiplying the mixed contractions look similar to A1 and

A2. However the expressions are much more lengthy, so for aesthetical reasons they
are listed in the appendix, in equations (C.1–C.6).

We come now back to equation (5.2), where we analyze the first part of it, namely
the ξ–contractions. Given six ξ–polarizations we have exactly 6·5·4·3·2·1

6·2·2·2
= 15 combina-

tions of three pairs. This quantity arises from the total permutation of six different
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polarizations divided by the cyclic combinations and the pair redundancy of the three
pairs. Those fifteen combinations are:

Ξ1 := (ξ1ξ2) (ξ3ξ4) (ξ5ξ6) , Ξ2 := (ξ1ξ2) (ξ3ξ5) (ξ4ξ6) , Ξ3 := (ξ1ξ2) (ξ3ξ6) (ξ4ξ5),

Ξ4 := (ξ1ξ3) (ξ2ξ4) (ξ5ξ6) , Ξ5 := (ξ1ξ3) (ξ2ξ5) (ξ4ξ6) , Ξ6 := (ξ1ξ3) (ξ2ξ6) (ξ4ξ5),

Ξ7 := (ξ1ξ4) (ξ2ξ3) (ξ5ξ6) , Ξ8 := (ξ1ξ4) (ξ2ξ5) (ξ3ξ6) , Ξ9 := (ξ1ξ4) (ξ2ξ6) (ξ3ξ5),

Ξ10 := (ξ1ξ5) (ξ2ξ3) (ξ4ξ6) , Ξ11 := (ξ1ξ5) (ξ2ξ4) (ξ3ξ6) , Ξ12 := (ξ1ξ5) (ξ2ξ6) (ξ3ξ4),

Ξ13 := (ξ1ξ6) (ξ2ξ3) (ξ4ξ5) , Ξ14 := (ξ1ξ6) (ξ2ξ4) (ξ3ξ5) , Ξ15 := (ξ1ξ6) (ξ2ξ5) (ξ3ξ4).
(5.5)

As in the four–point case they are multiplied by the two different Aj–functions
which distinguish weather the polarization vectors from the (−1)–ghost vertices are
contracted among themselves, i.e. (ξaξb) (ξiξj) (ξkξl), those being multiplied by
A2(a, b, i, j, k, l), or if they are contracted with zero–ghost picture polarizations
(ξaξi) (ξbξl) (ξjξk), those being consequently multiplied by A1(a, b, i, j, k, l). More-
over, the functions Aj share also symmetries which can directly be extracted from the
ξ–products. Those symmetries are exactly the interchange in indices which let the
three scalar products invariant. For example, A2 has the symmetries (a→ b), (i→ j)
and (k → l) and A1 has the symmetries (j → k) and (a → b, i → l). Also pairs of in-
dices can be exchanged, again according to the picture found in the ξ–products. From
that it should be clear that when exchanging the ghost–picture exactly that way the
appearance of the strings S–matrix (5.2) won’t change. On the other hand side, when
doing all the other permutations which are not exactly those symmetries, then we will
obtain different functions in front of the same kinematic. And since the functions A
(as well as B and C) are complete, i.e. every possible combination out of the fifteen in
eq. (5.5) are reproduced exactly once, we obtain different expressions which are identi-
ties and can be equated. So specializing to a given ξ–product (ξAξB) (ξCξD) (ξEξF ) we
have exactly

(
6
2

)
= 15 possibilities to express the function in front of that contraction,

following the scheme

(a, b) ∈ { (A,B), (A,C), (A,D), (A,E), (A,F ), (B,C), (B,D), (B,E),

(B,F ), (C,D), (C,E), (C,F ), (D,E), (D,F ), (E,F ) } . (5.6)

Here we have chosen every combination in which the (a, b)–pair of vertices is put
in the (−1)–ghost picture. This way, we arrive at the fifteen different functions which
show up in front of the same contraction (ξAξB) (ξCξD) (ξEξF ), given by

Aπ
1 (A,C,B,E, F,D) , Aπ

1 (A,D,B,E, F, C) , Aπ
1 (A,E,B,C,D, F ) ,

Aπ
1 (A,F,B,C,D,E) , Aπ

1 (B,C,A,E, F,D) , Aπ
1 (B,D,A,E, F, C) ,

Aπ
1 (B,E,A,C,D, F ) , Aπ

1 (B,F,A,C,D,E) , Aπ
1 (C,E,D,A,B, F ) ,

Aπ
1 (C,F,D,A,B,E) , Aπ

1 (D,E,C,A,B, F ) , Aπ
1 (D,F,C,A,B,E) ,

Aπ
2 (A,B,C,D,E, F ) , Aπ

2 (C,D,A,B,E, F ) , Aπ
2 (E,F,A,B,C,D) . (5.7)
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We have to stress that upper expressions are different looking functions expressing
the same object. This is again the consequence of the fact that no prescription is given
for the possible distribution of the (−1)–ghost picture operators among the vertices
in the correlation function. Thus all the fifteen arising ”pictures” can be set equal,
creating following system of linear equations:

Aπ
2 (1, 2, 3, 4, 5, 6) = Aπ

2 (3, 4, 1, 2, 5, 6) = Aπ
2 (5, 6, 1, 2, 3, 4) (5.8)

= Aπ
1 (1, 3, 2, 5, 6, 4) = Aπ

1 (1, 4, 2, 5, 6, 3) = Aπ
1 (1, 5, 2, 3, 4, 6) = Aπ

1 (1, 6, 2, 3, 4, 5)

= Aπ
1 (2, 3, 1, 5, 6, 4) = Aπ

1 (2, 4, 1, 5, 6, 3) = Aπ
1 (2, 5, 1, 3, 4, 6) = Aπ

1 (2, 6, 1, 3, 4, 5)

= Aπ
1 (3, 5, 4, 1, 2, 6) = Aπ

1 (3, 6, 4, 1, 2, 5) = Aπ
1 (4, 5, 3, 1, 2, 6) = Aπ

1 (4, 6, 3, 1, 2, 5) .

In order to set up the exemplary equations we have explicitly chosen the kinematic
Ξ1, i.e. (ξ1ξ2)(ξ3ξ4)(ξ5ξ6). The rest of the S–matrix, i.e. the kinematics of the type
(ξξ) (ξξ) (ξk) (ξk) and (ξξ) (ξk) (ξk) (ξk) (ξk), is treated in full analogy to the
discussion so far. Again, for the sake of aesthetics we list the results for those kinematics
in Appendix D.

5.2 Integrating the S–matrix

Until now, we treated only the functions Aj , Bj, Cj, without concerning about the fact
that they are actually polynomials under an integral, and thus have to be integrated.
We cannot anymore neglect this, and have to look at the integrals

Aπ
i =

∫

Iπ

6∏

r=4

d2zr Ai , Bπ
i =

∫

Iπ

6∏

r=4

d2zr Bi , Cπ
i =

∫

Iπ

6∏

r=4

d2zr Ci , (5.9)

which we will develop partially in this section.
It should be clear, that since we have thousands of functions, we will not do every

integral here. In fact we will just have to solve very few integrals, i.e. only six, as will
become clear in a moment, in the next section. The reason for that, is the powerful
system of equations which we have generated in last section. It relates all the integrals
or functions with each other such that knowing a few of them we will know all!

5.2.1 Specific choice for the fixed operators

The conformal invariance of the superstring action allows for fixing three positions of
the vertices. Those are chosen by convenience to be

z1 = −z∞ , z2 = 0 , z3 = 1 , (5.10)

similar to the case of the four–point function. The value of the z1–coordinate should
not worry since it will exactly be canceled by the ghost correlator
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< c(z1)c(z2)c(z3) > ∼ −∞2. Now, according to (4.28) we should also define our
kinematic invariants, which of course, will be more numerous, because of the higher
number of particles. They are given by

s1 = k2k4 , s2 = k2k5 , s3 = k2k6 ,

s4 = k3k4 , s5 = k3k5 , s6 = k3k6 ,

s7 = k4k5 , s8 = k4k6 ,

s9 = k5k6 . (5.11)

Those invariants are found by finding the minimal number of parameters in the
equations generated by momentum conservation for all scalar products between mo-
menta. With those ”parameters”, which we call Mandelstam variables, we can express
all other momentum products, and analyzing the structure of the polynomials encoun-
tered in the expressions for the A, B and C–functions, we arrive at a very first, rough
picture of the integral:

F̃

[
n24, n25, n26, n34, n35

n36, n45, n46, n56

]
:=

∫

Iπ

dz4 dz5 dz6 |z4|α24 |z5|α25 |z6|α26 (5.12)

× |1 − z4|α34 |1 − z5|α35 |1 − z6|α36 |z4 − z5|α45 |z4 − z6|α46 |z5 − z6|α56 .

We cannot say anything about that general integral, until we don’t know the struc-
ture of the exponentials and also the region of integration. The first problem is solved
immediately, for the exponentials can be captured by the formula

α24 = s1 + n24 , α25 = s2 + n25 , α26 = s3 + n26 ,

α34 = s4 + n34 , α35 = s5 + n35 , α36 = s6 + n36 ,

α45 = s7 + n45 , α46 = s8 + n46 ,

α56 = s9 + n56 , (5.13)

where we recognize the Mandelstam variables defined above and the natural num-
bers nij ∈ {±2,±1, 0} being just the exponentials of the respective polynomials in the
denominator.

If those numbers might appear strange, we should look at equation 4.30 where
we find exactly this simplified situation. The exponentials are sums of Mandelstam
variables and some negative integers, which come from the contractions (4.37). So they
aren’t that mysterious, for they mechanically arise when doing the Wick–contractions
and then collecting all powers of the same polynomial.

The second major piece missing is the integration region. Again, we will focus
on the Chan–Paton sequence π = (1, 2, 3, 4, 5, 6) which translates in the trace as
Tr(λ1λ2λ3λ4λ5λ6). We stress that this implies no loss of generality, since every other
choice can be immediately obtained by just changing the numbers of all quantities
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labeled with indices ranging from one to six. It is worth to say that there are exactly
6!
12

= 60 independent choices, resulting from the total number of permutations divided
by the cyclic redundancy 6 and also the equivalent inverse direction of the respective
order. With that choice we have fixed our integration region completely since the
Chan–Paton factors λa are in one to one correspondence with the integration order, as
explained in section 4.3. The former is given by

Iπ = { z4, z5, z6 ∈ R | 1 < z4 < z5 < z6 <∞} , (5.14)

as intuitively expected from the very first formula (5.1).

5.2.2 First explicit integrals

Having fully specified the integration range we are ready to attack the integral of the
six–point function. This integral expression is given in following formula:

A6(k1, ξ1, a1; k2, ξ2, a2; k3, ξ3, a3; k4, ξ4, a4; k5, ξ5, a5; k6, ξ6, a6) (5.15)

=

∫

R

dx

∫

R

dy

∫

R

dz x2y 〈V (−1)
Aa1 (−∞) V

(−1)
Aa2 (0) V

(0)
Aa3 (1) V

(0)
Aa4 (x) V

(0)
Aa5 (xy) V

(0)
Aa6 (xyz)〉.

In that integral we have made the change of variables

z4 = x , z5 = xy , z6 = xyz , (5.16)

which prove very convenient to later calculations.The change induces the Jacobian

det
(

∂(z4,z5,z6)
∂(x,y,z)

)
= x2y. With the new variables we have thus the simple integration

region 1 < x, y, z < ∞ and our new integral with the Chan–Paton factors considered,
is

Tr(λ1λ2λ3λ4λ5λ6) A(1,2,3,4,5,6) ≡ Tr(λ1λ2λ3λ4λ5λ6) A(1,2,3,4,5,6)(1, 2, 3, 4, 5, 6) (5.17)

=

∞∫

1

dx

∞∫

1

dy

∞∫

1

dz x2y 〈V (−1)
Aa1 (−∞) V

(−1)
Aa2 (0) V

(0)
Aa3 (1) V

(0)
Aa4 (x) V

(0)
Aa5 (xy) V

(0)
Aa6 (xyz)〉.

One last change of variables, namely (x → 1/x), (y → 1/y), (z → 1/z) will bring
us finally to our desired integral form

F̃

[
n24, n25, n26, n34, n35

n36, n45, n46, n56

]
−→ F

[
a, b, d, e, g

c, f, h, j

]
, (5.18)

with



64 5 Six gluon open superstring S–matrix

F

[
a, b, d, e, g

c, f, h, j

]
:=

1∫

0

dx

1∫

0

dy

1∫

0

dz (5.19)

× xa yb zc (1 − x)d (1 − y)e (1 − z)f (1 − xy)g (1 − yz)h (1 − xyz)j.

According to the variable transform the exponentials get shifted to

a = −4 − α24 − α25 − α26 − α34 − α35 − α36 − α45 − α46 − α56 ,

b = −3 − α25 − α26 − α35 − α36 − α45 − α46 − α56 ,

c = −2 − α26 − α36 − α46 − α56 ,

d = α34 , e = α45 , f = α56

g = α35 , h = α46 , j = α36 , (5.20)

which completely specifies the integrals, on which a lot more will be said in part II
of the present work. They will be fully analyzed and solved there; we treat them here
just as if they were already known. So we are in the position to give the expression for
the homogeneous ξ–kinematics as

Aπ
1 (a, b, i, j, k, l) = σlbσaiσab

{
σjkσijσkl (kikj) (kkkl) F̃

[
nlb, njk = −1, nai = −1

nij, nkl = −1, nab = −1

]

− σjkσikσjl (kikk) (kjkl) F̃

[
nlb, njk = −1, nai = −1

nik, njl = −1, nab = −1

]

−σil (kikl) (1 − kjkk) F̃

[
nlb, nil = −1, nai = −1

njk = −2, nab = −1

]}
,

Aπ
2 (a, b, i, j, k, l) = (1 − kikj) (1 − kkkl) F̃

[
nij = −2

nkl = −2
, nab = −2

]

− σijσklσikσjl (kikk) (kjkl) F̃

[
nij, nkl = −1

nik, njl = −1
, nab = −2

]

+ σijσklσilσjk (kikl) (kjkk) F̃

[
nij, nkl = −1

nil, njk = −1
, nab = −2

]
,

(5.21)

with the useful conventions σij = sign(i − j), and nij :=
{

nij , i<j
nji , i>j

. The numbers

nij
are to be understood such that they are only of relevance if they show up in the

definition equation (5.13). The number n12, for example, can fully be neglected since it
doesn’t was defined as such, due to our specific choice for the fixed vertices positions.

We said that one specific trace combination of Chan–Paton factors, e.g.
Tr(λ1λ2λ3λ4λ5λ6) is invariant under cyclic permutations and thus should’n be counted
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twice. This implies that also the functions in front of every kinematics should also be
invariant under cyclic permutation of indices,(j → j + 1), which indeed is true. Under
such a shift of indices the Mandelstam variables transform according the transforma-
tion of the momenta (kj → kj+1). Furthermore, in order to show this invariance also
some variable substitution has to be done, but when done it proves for the equation
to be a mathematical identity. Beyond this, also some of the kinematics Ξj already
given in (5.5) stay invariant under this permutation, especially Ξ8 which is invariant
under all five cyclic permutations. When looking more closely to that invariance we
may notice that all the other Ξj could actually be generated from a minimal number
of such products when performing permutations of their indices, which are exactly
Ξ1,Ξ2,Ξ5,Ξ7 and Ξ8. Thus they can be regarded as the generators of the whole string
matrix, which consequently can be written as

−
{

(1 − s4)(1 − s9)F̃

[
0, 0, 0,−2, 0

0, 0, 0,−2

]
+ s6s7 F̃

[
0, 0, 0,−1, 0

−1,−1, 0,−1

]
− s5s8 F̃

[
0, 0, 0,−1,−1

0, 0,−1,−1

]}
Ξ1

−
{

(1 − s5)(1 − s8)F̃

[
0, 0, 0, 0,−2

0, 0,−2, 0

]
− s6s7 F̃

[
0, 0, 0, 0,−1

−1,−1,−1, 0

]
− s4s9 F̃

[
0, 0, 0,−1,−1

0, 0,−1,−1

]}
Ξ2

−
{
s5(1 − s8)F̃

[
0,−1, 0, 0,−1

0, 0,−2, 0

]
+ s6s7 F̃

[
0,−1, 0, 0, 0

−1,−1,−1, 0

]
+ s4s9 F̃

[
0,−1, 0,−1, 0

0, 0,−1,−1

]}
Ξ5

−
{
−s4(1 − s9) F̃

[
0, 0, 0,−1, 0

0, 0, 0,−2

]
+ s6s7 F̃

[
0, 0, 0, 0, 0

−1,−1, 0,−1

]
− s5s8 F̃

[
0, 0, 0, 0,−1

0, 0,−1,−1

]}
Ξ7

+

{
−s7 (1 − s6) F̃

[
0,−1, 0, 0, 0

−2,−1, 0, 0

]
− s5s8 F̃

[
0,−1, 0, 0,−1

−1, 0,−1, 0

]
+ s4s9 F̃

[
0,−1, 0,−1, 0

−1, 0, 0,−1

]}
Ξ8 .

(5.22)

Here we have already inserted the ”integrated” functions and also the multiplicative
momentum factors. Also is it worth to notice we are using here again the ”old”
functions F̃ before the last variable transform. This is just a matter of convenience.
After doing the integrals in chapter 6 we will of course replace at the end the functions
F̃ with F .

5.3 Solution of the equations and its basis

We can now move on, and look at the equations already generated from the S–matrix
by permuting the ghost–operators.

5.3.1 Some simple examples

It turns out that those coming from the C–system are the simplest and shortest ones.
A typical example may be
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F̃

[
0,−1, 0, 0,−1

−1,−1,−1, 1

]
= F̃

[
0, 0,−1, 0,−1

−1,−1,−1, 1

]
− F̃

[
0,−1,−1, 0,−1

−1,−1,−1, 2

]
. (5.23)

which, because of its simplicity, may even be shown to hold with low mathematical
input. When inserting the mathematically convenient functions F , given in (5.19), the
relation boils down to

y (1 − z)

(1 − y) (1 − xy) z (1 − yz) (1 − xyz)
(5.24)

=
y (1 − z)

(1 − y) (1 − xy) (1 − yz) (1 − xyz)
+

y (1 − z)2

(1 − y) (1 − xy) z (1 − yz) (1 − xyz)
.

which can almost be ”seen” to hold with partial fraction techniques. So this is the
first example of identities obtained out of the system of equations which we have also
proved mathematically. A little more involved example, but still manageable is the
following one

F̃

[−1,−1,−1, 0, 0

−1, 0, 0, 0

]
= F̃

[−1, 0,−1, 0,−1

−1,−1,−1, 0

]
− F̃

[−1, 0,−1, 0,−1

−1,−1, 0, 1

]
− F̃

[−1, 0, 0, 2,−1

−1,−1,−1, 0

]

− F̃

[
1,−1,−1,−1, 0

0,−1,−1, 0

]
+ F̃

[
2,−1,−1,−1, 0

0,−1,−1, 0

]
− 2 F̃

[
0,−1,−1,−1, 1

−1,−1, 0, 0

]

+ 2 F̃

[
0,−1,−1,−1, 0

−1,−1, 1, 0

]
− 2 F̃

[
0,−1,−1,−1, 0

−1,−1, 0, 1

]

− F̃

[
0,−1,−1, 0,−1

−1, 0,−1, 1

]
+ F̃

[
0,−1,−1, 0, 0

−1,−1,−1, 1

]
.

(5.25)

whose polynomial origin is

1

1 − xyz
= − y

(1 − y)(1 − yz)(1 − x)
− y(1 − x)2

x(1 − y)(1 − xy)(1 − yz)(1 − xyz)
(5.26)

+
1 − yz

(1 − y)(1 − xy)z(1 − xyz)
− 1 − z

(1 − y)(1 − xy)z(1 − xyz)

+
y(1 − z)

(1 − y)(1 − yz)(1 − xyz)
− y(1 − z)

(1 − xy)(1 − yz)(1 − xyz)
+

y

x(1 − y)(1 − yz)(1 − x)

− 2
1 − xy

(1 − y)(1 − xyz)(1 − x)
+ 2

1 − yz

(1 − y)z(1 − xyz)(1 − x)
− 2

1 − z

(1 − y)z(1 − xyz)(1 − x)
.

Moreover, as mentioned before, all the equation coming from the C–system are
short and of ”polynomial” kind, i.e. thy all can be easily proved by partial fraction
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techniques, when the functions are inserted into the equations. No higher mathematical
tools are needed, such as variable transform, partial integration, etc.

All the other examples are in principle similar to that one, with the difference
that they are much more involved: on the one hand the identities contain much more
functions, e.g. 20 or 30 functions, so in order to prove their equality laborious work
has to be done; on the other hand side, also the techniques used may exceed those
used before, so it is usually necessary to make complicated variable transforms and
partial integrations which are by far not obvious, when considering also the fact that
the functions involved may also have some poles! Some more involved equalities, which
still can be proven by partial integration are given below

(1 − s6)

(
F̃

[−1, 0, 0, 0, 0

−2,−1, 0, 0

]
− F̃

[
0,−1, 0, 0, 0

−2,−1, 0, 0

] )
− s8 F̃

[−1,−1, 0, 0, 0

−1, 0,−1, 0

]

= s9F̃

[−1,−1, 0, 0, 0

−1, 0, 0,−1

]
+ s3

(
F̃

[−1, 0,−1, 0, 0

−1,−1, 0, 0

]
− F̃

[
0,−1,−1, 0, 0

−1,−1, 0, 0

] )
,

(1 + s4) F̃

[
0,−1,−1,−2, 0

0, 0, 0, 0

]
= s1

(
F̃

[−1,−1, 0,−1, 0

0, 0, 0,−1

]
− F̃

[−1, 0,−1,−1, 0

0, 0, 0,−1

] )

− s7 F̃

[
0,−1,−1,−1, 0

0,−1, 0, 0

]
− s8F̃

[
0,−1,−1,−1, 0

0, 0,−1, 0

]
,

s2 F̃

[
0,−1, 0,−1, 0,

0, 0,−1, 0

]
= (5.27)

− (s4 + s5 + s6 + s7 + s8 + s9)

(
F̃

[
0, 0, 0,−1, 0

0,−1, 0,−1

]
− F̃

[
0, 0, 0,−1, 0

0, 0,−1,−1

] )

− s3 F̃

[
0, 0,−1,−1, 0

0,−1, 0, 0

]
− (1 + s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9) F̃

[
0, 0, 0, 0, 0

0,−1,−1, 0

]
,

s2 F̃

[
0, 0,−1, 0,−1

0,−1,−1, 1

]
= s3 F̃

[
0,−1,−1,−1, 0

−1,−1, 0, 1

]
+ (s1 + s2 − s7) F̃

[
0,−1,−1, 0, 0

−1,−1,−1, 1

]

+ (s2 − s3 − s4 + s9) F̃

[
0,−1,−1, 0,−1

−1,−1,−1, 2

]
.

5.3.2 The final system of linear equations

We have produced a huge amount of such equations, i.e about 50, 000 of them, which
qualitatively look exactly as (5.27) but are in general much more complex and thus
involved. This system can be solved, by first plugging in the simplest equations,
namely those polynomial equations coming from the C–system; this way we are able
to dramatically reduce the number of equations and also the number of functions.
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Starting with 1, 270 F̃–functions we end up at this stage with just 576 functions.
Further solving of the system eventually leads to the conclusion that all the functions
occurring there can be expressed in terms of just six functions! This we call the base
of the system. This is of course to be seen as the complete analogy of the four–point
case and its solution given in (4.57). Moreover, exactly as in the four–point case, we
are still free to choose which functions we are willing to take as parameters. By the
same arguments as in the section 4.3 we chose our six–dimensional basis to be made out
of functions entirely without poles, this being a very good feature for the momentum
expansion of the S–matrix.

Thus again as in the four–point case we can summarize the solution in the following
abstract formula

F̃
[

n24,n25,n26,n34,n35

n36,n45,n46,n56

]
= Λ1

{nij}
(si) F̃

[
−1,−1,−2,0,0

0,0,0,0

]
+ Λ2

{nij}
(si) F̃

[
−1,−1,0,0,0
−2,0,0,0

]

+Λ3
{nij}

(si) F̃
[
−1,0,−2,0,−1

0,0,0,0

]
+ Λ4

{nij}
(si) F̃

[
−1,0,−2,0,0
−1,0,0,0

]

+Λ5
{nij}

(si) F̃
[

0,−2,−1,0,0
−1,0,0,0

]
+ Λ6

{nij}
(si) F̃

[
−2,−1,−1,0,0

−1,0,0,0

]
.

(5.28)

with the following important qualities: the six functions there, which will be treated
with high precision in the mathematical section, are known and relatively simple to ex-
pand in their momenta. Furthermore, for they have no poles, the whole pole structure
is encoded solely in the multiplicative coefficients Λj

{nij}
(si) which are highly complex

polynomials in the momenta sj. Furthermore, since the basis of functions F̃j, j = 1, ..6,

is chosen once and for all, the coefficients are specific for each unknown functions F̃
which will be expressed through the basis, and thus is on the left hand side of the
equation (5.28). This is also symbolized by the fact the coefficients Λj

{nij}
(si) have also

a dependency on the numbers nij which uniquely characterize the functions on the left

hand side F̃
[

n24,n25,n26,n34,n35

n36,n45,n46,n56

]
.

One may wonder, in how far the choice for one particular Chan–Paton order
Tr(λaλbλcλdλeλf ) and thus, by direct implication, for one specific integration region
Iπ will influence the solution (5.28). Changing the integration region will just lead to
another representation of the same function, as given in (5.19). Then exactly the same
relations as shown in (5.28) will hold between exactly the same functions, the only
difference being the various integral representation those function will have. There-
fore we may conclude that our solution and thus the mathematical relations found are
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completely general, independent of any choice of integration, just depending on the
functions they involve.

The basic functions on the right hand side of the system can now be given as

F̃

[−1,−1,−2, 0, 0

0, 0, 0, 0

]
=

1∫

0

dx

1∫

0

dy

1∫

0

dz P(x, y, z) ,

F̃

[−1,−1, 0, 0, 0

−2, 0, 0, 0

]
=

1∫

0

dx

1∫

0

dy

1∫

0

dz
P(x, y, z)

(1 − xyz)2
,

F̃

[−1, 0,−2, 0,−1

0, 0, 0, 0

]
=

1∫

0

dx

1∫

0

dy

1∫

0

dz
P(x, y, z)

1 − xy
,

F̃

[−1, 0,−2, 0, 0

−1, 0, 0, 0

]
=

1∫

0

dx

1∫

0

dy

1∫

0

dz
z P(x, y, z)

1 − xyz
,

F̃

[
0,−2,−1, 0, 0

−1, 0, 0, 0

]
=

1∫

0

dx

1∫

0

dy

1∫

0

dz
y P(x, y, z)

1 − xyz
,

F̃

[−2,−1,−1, 0, 0

−1, 0, 0, 0

]
=

1∫

0

dx

1∫

0

dy

1∫

0

dz
x P(x, y, z)

1 − xyz
. (5.29)

with

P(x, y, z) = x−s1−s2−s3−s4−s5−s6−s7−s8−s9 y−s2−s3−s5−s6−s7−s8−s9 z−s3−s6−s8−s9

× (1 − x)s4 (1 − y)s7 (1 − z)s9 (1 − xy)s5 (1 − yz)s8 (1 − xyz)s6

= xk2k3 yk2k3+k2k4+k3k4 zk1k6 (1 − x)k3k4 (1 − y)k4k5 (1 − z)k5k6

× (1 − xy)k3k5 (1 − yz)k4k6 (1 − xyz)k3k6 , (5.30)

stemming from the contractions E of the exponentials defined in equation (5.4).
So one last piece missing is the momentum expansion of upper functions. This will

enable us finally to expand the whole S–matrix in its momenta, since all the unknown
functions are then series expanded, as a direct consequence of (5.28), and then they
can be inserted in the appropriate expressions (5.21) or (5.22)

5.4 Momentum expansion of the S–matrix

Since we wish to express the whole S–matrix as an expanded relation in the nine
Mandelstam invariants sj, we now will give the expansion of our basis functions from
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(5.28) and then be able to insert that expansion in the appropriate expression leading
us directly to our goal. In order to series expand the basis we will use a different choice
of kinematical variables given as

s1 = k1k2 , s2 = k2k3 , s3 = k3k4 ,

s4 = k4k5 , s5 = k5k6 , s6 = k6k1 ,

s7 =
1

2
(k1 + k2 + k3)

2 , s8 =
1

2
(k2 + k3 + k4)

2 , s9 =
1

2
(k3 + k4 + k5)

2 .(5.31)

This turns out to be more convenient for the calculation and doesn’t have any
consequences on the expansion, since the functions remain the same. The deeper reason
is to be found in the cyclic symmetry, which now just acts as a simple permutation
within the two sets {s1, s2, s3, s4, s5, s6} and {s7, s8, s9}.

The basis, expanded in its small parameter, being the Mandelstam variables, reads

Φ1 = F̃

[−1,−1,−2, 0, 0

0, 0, 0, 0

]
= 1 − 3 s1 − s2 + s3 + s5 − s6 + s7 − s8 + s9

+ (s1 − s3 − s4 − s5) ζ(2) + (s1 + s4 − s7 − s9) ζ(3) + . . . ,

Φ2 = F̃

[−1,−1, 0, 0, 0

−2, 0, 0, 0

]
= (1 + s1 + s4 − s7 − s9) ζ(2)

− (2 s1 + s2 + s3 + 2 s4 + s5 + s6 − s7 + s8 − s9) ζ(3) + . . . ,

Φ3 = F̃

[−1, 0,−2, 0,−1

0, 0, 0, 0

]
= (1 − s1 + s2 + s3 + 3 s4 + s5 + s7 − s8 − s9) ζ(2)

+ (s1 − s2 − 2 s3 − 4 s4 − s5 − s7 + 2 s8 + 2 s9) ζ(3) + . . . ,

Φ4 = F̃

[−1, 0,−2, 0, 0

−1, 0, 0, 0

]
= −1 + ζ(2) + s1 − s2 − s4 + s5 + 3 s6 + s7 − s8 − s9

+ (s2 − s3 − s4 − s5 − 2 s6 + s8 + 2 s9) ζ(2)

− (s1 + s2 − s3 − 2 s4 + s7 + s8 + 2 s9) ζ(3) . . . ,

Φ5 = F̃

[
0,−2,−1, 0, 0

−1, 0, 0, 0

]
= −1 + ζ(2) + s1 − s2 − 2 s3 − 2 s5 − s6 + s7 + 3 s8 + s9

+ (s2 + s3 − s4 + s5 + s6 − 2 s8) ζ(2)

− (s1 + s2 − s4 + s6 + s7 + s9) ζ(3) + . . . ,

Φ6 = F̃

[−2,−1,−1, 0, 0

−1, 0, 0, 0

]
= −1 + ζ(2) + s1 + 3 s2 + s3 − s4 − s6 − s7 − s8 + s9

− (2 s2 + s3 + s4 + s5 − s6 − 2 s7 − s8) ζ(2)

− (s1 − 2 s4 − s5 + s6 + 2 s7 + s8 + s9) ζ(3) + . . . . (5.32)

This ad hoc result will be the extended subject of the next mathematics chapter
and will especially be derived in section 6.4.
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Now, we can regard our S–matrix as completely solved, since it is expanded in its
momenta, and may be given in short notation by the following formula

A(1,2,3,4,5,6) =
6∑

j=1

Pj(s1, . . . , s9) Φj .

(5.33)

where we have chosen again, by no loss of generality, the group structure
Tr(λ1λ2λ3λ4λ5λ6) in order to explicitly state upper result. P j(s1, . . . , s9) are prod-
ucts of the kinematics (ξξ)(ξξ)(ξξ), (ξξ)(ξξ)(ξk)(ξk) and (ξξ)(ξk)(ξk)(ξk)(ξk) and the
coefficients Λj

{nij}
(sj) as given in (5.28). We expect those P j to be of large complexity,

and indeed they are.
At this point, we are in the position to extract the necessary information for the

low energy effective action of N D-branes on top of each other, i.e. the Born–Infeld
action. Also the rich pole structure will give important information about the reducible
diagrams which have to be subtracted from the Born–Infeld action, but more on this
will be said in chapter 7. At this point we will list the S–matrix expansion up to some
order in the momentum kµ. We start with the kinematic (ξξ) (ξk) (ξk) (ξk) (ξk), the
other two are given in the appendix, again for the sake of aesthetics. The contractions
coming from the C–system of equations are various, hence we will show some repre-
sentative ones, without being able to list all of them, this requiring hundreds of pages!
Thus after eliminating on shell some superfluous kinematics (this being done by using
momentum conservation

∑
i k

µ
i = 0 and ξµ

1 k
1
µ = 0) we obtain results of the form

(ξ2ξ3)(ξ1k3)(ξ4k1)(ξ5k1)(ξ6k1)

{
1

s2 s6 s8

−
(

s4

s2 s6

+
s5

s2 s8

+
s3

s6 s8

)
ζ(2)

+

(
s4

s2

+
s5

s2

+
s3

s6

+
s4

s6

+
s4

2

s2 s6

− s7

s2

+
s5

2

s2 s8

+
s2 s3

s6 s8

+
s3

2

s6 s8

+
s5 s6

s2 s8

+
s4 s8

s2 s6

− s9

s6

)
ζ(3)

}
+ O(k6) .(5.34)

for the kinematics (ξ2ξ3)(ξ1k3)(ξ4k1)(ξ5k1)(ξ6k1) up to order O(k6) in the momen-
tum kµ or

(ξ1ξ2)(ξ3k6)(ξ4k2)(ξ5k2)(ξ6k2)

{
ζ(3) −

(
1

4
s1 + s2 +

3

4
s3 +

1

2
s4 +

3

4
s5 + s6

+
1

4
s7 + s8 +

1

4
s9

)
ζ(4)

}
+ O(k8) , (5.35)

for the kinematics (ξ1ξ2)(ξ3k6)(ξ4k2)(ξ5k2)(ξ6k2), up to the order O(k8). If one
wishes to go higher in the momentum expansion, this will be just a matter of time and
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work since all the ingredients for obtaining those results are completely given in the
next chapter. All the kinematics which occur in the S–matrix either from the A–, B–
or the C–system have been calculated and the only reason for not listing them entirely
here is their overwhelming length! Nevertheless some more representative examples
are given in the Appendix E.
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Multiple Hypergeometric Functions

and Euler–Zagier Sums
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Chapter 6

Mathematical tools

As calculating the six–point open string amplitude in [26], we were faced with great
mathematical problems, which could not be solved instantaneously. Thus we were
forced to acquire a great amount of techniques and even develop some new results, in
order to reach our goals. Those results, their full derivation and also introduction to
the subject will be given in that part II. It is as such self contained and may be read
independently of the previous work.

This chapter should serve as a good and complete introduction to the topic of
hypergeometric functions. Beyond their definition and properties, there will also be
presented different representation as the integral one or the sum representation. Fur-
thermore, a lot will be said in general about sums and their evaluation, since they are
indispensable tools for the analysis of hypergeometric functions. Finally, we should
success in expanding the hypergeometric functions in their parameters (to be defined
in short), fact which is by far non trivial and even not to be found in mathematical
literature.

6.1 Special functions

In this subsection we will define all types of generalized functions, generalization thereof
and connect them with other special function, arriving finally at the analytic function
presented in (5.19), which is the very heart of every six point function.

6.1.1 Generalized hypergeometric functions pFq

Although the functions involved in the calculations done sofar, i.e. during the compu-
tation of the six–point S–matrix are much more involved than simple hypergeometric
functions or even their generalization, we find it pedagogically worth to introduce first
those ones and then gradually to generalize until we reach our goal.

Let’s start then with the simplest case involving string amplitudes. As seen already
in this case, the four–point scattering, we encounter there an integral, which, when

75
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evaluated, eventually leads to the Euler–Beta1 function

B(a, b) =

∫ 1

0

dx xa (1 − x)b =
1

1 + a
2F1 [1 + a,−b, 2 + a; 1]

=
Γ(1 + a) Γ(1 + b)

Γ(2 + a+ b)
, Re a > −1 , Re b > −1 , (6.1)

with Γ(x) being the usual Gamma–function, of which one possible definition is

Γ(x) =

∫ ∞

0

e−ttx−1dt. (6.2)

As seen on the right hand side of the first line in equation (6.1), the Euler–Beta
integral is just a simplification, a special value of the underlying 2F1 hypergeometric
function. The family of such functions will be defined in a while, but we see that for
the special value of one for the argument of this function we get the Beta–function.

Now a few more words on the Gamma function. Its definition is of course inspired
from the corresponding integral for integer arguments n, I(n)=

∫∞

0
e−ttn−1dt which

obeys the functional equality I(n) = n · I(n− 1) and is of course the definition of the
faculty function for integers, I(n) = n!. A very comprehensive and complete treatment
of the Γ–function can be found in [84, 85].

The very next step, is to generalize this Beta-function. As a motivation, this
generalization especially shows up in the five–point scattering, where we have following
integral

C(a, b, c, d, e) :=

∫ 1

0

dx

∫ 1

0

dy xa yb (1 − x)c (1 − y)d (1 − xy)e . (6.3)

In both cases (6.1) and (6.3), the parameters entering the functions are exactly the
kinematic invariants involved in the corresponding physical problem, thus the number
of polynomials which have to be integrated, is in one to one correspondence with the
number of Mandelstam variables describing that physical process.

As stated already before, the Euler–Beta integral proves to be just a simple case of
the more general hypergeometric function 2F1

2F1[−c, 1 + a, 2 + a+ b; y ]
Γ(1 + a) Γ(1 + b)

Γ(2 + a+ b)
=

∫ 1

0

dx xa (1 − x)b (1 − xy)c ,

(6.4)

1It should be clear that the Beta function is encountered all over in physics not just in string
theory. Moreover, in general, the hypergeometric functions very often describe solutions to physical
problems. It is also possible to describe all known ”elementary” functions, like sin, log or Γ, by special
parameter choices of the hypergeometric functions.
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whose generalization is given by

p+1Fq+1

[
1 + a, a1, . . . , ap

2 + a+ b, b1, . . . , bq
;λ

]
Γ(1 + a) Γ(1 + b)

Γ(2 + a+ b)
=

∫ 1

0

dx xa (1 − x)b
pFq

[
a1, . . . , ap

b1, . . . , bq
;λx

]
,

(6.5)

with Re a > −1, Re b > −1, and p ≤ q + 1. For the case of a p+1Fp function the
parameter λ has to obey the condition |λ| ≤ 1. Also note that equation (6.5) is not
just the simple generalization of the 2F1 function, but instead it defines all the family
of hypergeometric functions, {pFq | p , q ∈ N }. Thus the generic integral which arises
in the five–point case turns out to be just a 3F2 hypergeometric function,

C(a, b, c, d, e) =
Γ(1 + a) Γ(1 + b) Γ(1 + c) Γ(1 + d)

Γ(2 + a+ c) Γ(2 + b+ d)
3F2

[
1 + a, 1 + b, −e

2 + a+ c, 2 + b+ d
; 1

]
,

(6.6)

with Re(a),Re(b),Re(c),Re(d) > −1. Again, we have evaluated the hypergeomet-
ric function at the special argument value of one. The series representation of such a
function2 can easily be obtained from the integral: first we series expand the polyno-
mials in their small variables x, y, z, ..., which have to be integrated. Of course, since
those variables are ranging between zero and one the series will be infinite. After that
we can interchange summation and integration, thus integrating the infinite series and
obtaining a series solely given in terms of the exponentials of the original polynomials.
This series looks like [86]:

pFq

[
a1, . . . , ap

b1, . . . , bq
; x

]
=

∞∑

s=0

1

s!

(a1, s) · . . . · (ap, s)

(b1, s) · . . . · (bq, s)
xs . (6.7)

The notation (a,m) = Γ(a+m)
Γ(a)

is usual an was introduced by Pochhammer, this being

also the reason for which (a,m) is called the Pochhammer–symbol. As a consequence
of the divergence of the Γ-function at negative integers, the sum 6.7 will be not defined
for bj = 0,−1,−2, .... A good criteria of convergence for upper sum is

ω := Re

(
q∑

i=1

bi −
p∑

i=1

ai

)
. (6.8)

In the case of p+1Fp the series converges for |x| < 1 and in the case of |x| = 1 the
series is absolute convergent for ω > 0 and diverges for ω ≤ −1.

2It is worth mentioning that for the first time hypergeometric functions were discovered when
studying hypergeometric differential equations, see [79], from where they also inherited their name.
Thus they were first written in the series representation, and later on as integrals of polynomials.
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A lot more can be said on the hypergeometric functions, we will restrict us however
to that. The information collected above should be enough for an introduction and
also for understanding the present work. More on that topic can be read in the special
literature about it.

6.1.2 Triple hypergeometric functions

Unfortunately, the hypergeometric functions treated before, are not complex enough
to capture the six–point function. Although our integral functions encountered in
the six–point amplitude were given by a triple integral which is also the case for the
generalized hypergeometric 4F3 function, they prove not to be the same; the structure
of the integrated polynomial in the 4F3 function is simpler than the one we are faced
with. Hypergeometric functions will have to be further generalized until we reach the
desired degree of complexity, which eventually captures the physical problems. For
that we will start with our complete general integral

F

[
a, b, d, e, g

c, f, h, j

]
:=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz (6.9)

× xa yb zc (1 − x)d (1 − y)e (1 − z)f (1 − xy)g (1 − yz)h (1 − xyz)j.

Here we recognize the nine kinematic invariants which uniquely determine the num-
ber of the nine polynomials, the latter being under the integral to be done. This is
also a sign that, since the nine invariants characterize all the six–point processes, this
integral is the most general, thus occurring in all scatterings where six external states
coming from open strings are involved. It is thus worth to study it well, for all results
can also be used in similar processes!

Properties of the function can be already extracted from its integral representation.
Thus we see for example that following symmetry is present

F

[
a, b, d, e, g

c, f, h, j

]
= F

[
c, b, f, e, h

a, d, g, j

]
. (6.10)

The proof of this exchange is very simple to establish, since we immediately see
that the integral in (6.9) stays invariant under it. We would like now to obtain the
series representation of that function. This is a straight forward task; first we have to
expand following polynomials in their exponents:

(1 − xy)g (1 − yz)h =
∞∑

m,n=0

(−g,m) (−h, n)

(1,m) (1, n)
xm zn ym+n , |x| < 1 ; |y| < 1 ; |z| < 1 .

(6.11)

We recognize them as the two polynomials with the respective exponentials in our
integral (6.9). Note that this expansion is actually a product of the single expansions
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of the polynomials.We can now insert those expanded polynomials in our integral (6.9),
which then will look something like

F

[
a, b, d, e, g

c, f, h, j

]
:=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∞∑

m,n=0

(−g,m) (−h, n)

(1,m) (1, n)
(6.12)

× xa+m yb+m+n zc+n (1 − x)d (1 − y)e (1 − z)f (1 − xyz)j .

The integrand can though now easily be integrated with the help of formula (6.5)
to give

F

[
a, b, d, e, g

c, f, h, j

]
= Γ(1 + d) Γ(1 + e) Γ(1 + f)

∞∑

m,n=0

(−g,m) (−h, n)

(1,m) (1, n)
(6.13)

× Γ(1 +m+ n+ b) Γ(1 +m+ a) Γ(1 + n+ c)

Γ(2 +m+ n+ b+ e) Γ(2 +m+ a+ d) Γ(2 + n+ c+ f)

× 4F3

[
1 +m+ n+ b, 1 +m+ a, 1 + n+ c, −j

2 +m+ n+ b+ e, 2 +m+ a+ d, 2 + n+ c+ f
; 1

]
.

where the sum is only defined when the conditions Re(d),Re(e),Re(f) > −1 and
m + Re(a) > −1, n + Re(c) > −1, Re(b) +m + n > −1 hold. It will prove that the
function (6.13) has already a name in the literature although very less is known about
it. Before concerning about it, it will prove a good idea to first study some simplified
cases of it, this giving us the opportunity to learn more about this special function.

For the beginning let us set h = g = 0. In this case, the sums over the 4F3

hypergeometric function vanish, since the identity (−g,m)
(1,m)

→ δm for g → 0 and similarly
for the other sum, holds. This fact can also be seen in a different way. When we look
at the integral (6.9), we can already there set the exponents g and h equal to zero
such that the polynomials reduce to one, which confirms the result established with
the sums. When the two sums cancel, we end up with the result

F

[
a, b, d, e, 0

c, f, 0, j

]
=

Γ(1 + a) Γ(1 + b) Γ(1 + c) Γ(1 + d) Γ(1 + e) Γ(1 + f)

Γ(2 + b+ e) Γ(2 + a+ d) Γ(2 + c+ f)

× 4F3

[
1 + b, 1 + a, 1 + c, −j

2 + b+ e, 2 + a+ d, 2 + c+ f
; 1

]
. (6.14)

Those mathematical simplifications, which may be seen as games, show a very
interesting fact about the physics, fact which is also expected: when, by some reason,
the scattering matrix gets simplified, for example by fixing some particles through a
special D–brane configuration, and the number of kinematic invariants gets reduced,
automatically the integrals become easier, and eventually, in special cases they can be
expressed by ”normal” hypergeometric functions, in contrast to the most general case.

Some other simplifying scenario, though more complex than the last one, might be
h = 0, which translates in the language of functional representation as
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F

[
a, b, d, e, g

c, f, 0, j

]
= Γ(1 + d) Γ(1 + e) Γ(1 + f)

∞∑

m=0

(−g,m)

(1,m)

× Γ(1 +m+ b) Γ(1 +m+ a) Γ(1 + c)

Γ(2 +m+ b+ e) Γ(2 +m+ a+ d) Γ(2 + c+ f)

× 4F3

[
1 +m+ b, 1 +m+ a, 1 + c, −j

2 +m+ b+ e, 2 +m+ a+ d, 2 + c+ f
; 1

]
. (6.15)

We notice here that one sum is gone, as expected, but we still have one sum running
over the hypergeometric function, matter which definitely complicates the problem
when compared with just one hypergeometric function. The function represented in
(6.15) can also be seen as a simplified version of the Kampé de Fériet function which
is a function in N variables with following definition

FA:B
C:D

[
a1, . . . , aA : b1,1, . . . , b1,B; b2,1, . . . , b2,B; . . . ; bN,1, . . . , bN,B

c1, . . . , cC : d1,1, . . . , d1,D; d2,1, . . . , d2,D; . . . ; dN,1, . . . , dN,D

; x1, . . . , xN

]

=
∞∑

m1,...,mN=0

A∏
j=1

(aj,m1 + . . .mN)
B∏

j=1

(b1,j ,m1) · . . . (bN,j,mN)

C∏
j=1

(cj,m1 + . . .mN)
D∏

j=1

(d1,j,m1) · . . . (dN,j,mN)

xm1
1 · . . . · xmN

N

m1! · . . . ·mN !
.

(6.16)

The Kampé de Fériet function is a generalization of the four Lauricella functions
which again are closely connected with Appell’s hypergeometric functions. More on
that topic can be found in [87, 88]. Thus our result may be rewritten in the language
of a Kampé de Fériet function as

F

[
a, b, d, e, g

c, f, 0, j

]
=

Γ(1 + a) Γ(1 + b) Γ(1 + c) Γ(1 + d) Γ(1 + e) Γ(1 + f)

Γ(2 + a+ d) Γ(2 + b+ e) Γ(2 + c+ f)

× F 2:2
2:1

[
1 + a, 1 + b : 1 + c, −j ; −g, 1

2 + a+ d, 2 + b+ e : 2 + c+ f ; 1
; 1, 1

]
. (6.17)

The last case, which we should mention is g = 0; this is similar to the last one
and may be treated in full analogy to that, as expected. Our goal though, is the full
integral (6.9) or, equivalently the full sum (6.13). The latter reads, when also the series
representation for the 4F3 hypergeometric function is inserted:

F

[
a, b, d, e, g

c, f, h, j

]
=

Γ(1 + d) Γ(1 + e) Γ(1 + f)

Γ(−g) Γ(−h) Γ(−j)

∞∑

mi=0

Γ(−g +m1) Γ(−h+m2) Γ(−j +m3)

m1! m2! m3!

× Γ(1 +m1 +m2 +m3 + b)

Γ(2 +m1 +m2 +m3 + b+ e)

Γ(1 +m1 +m3 + a)

Γ(2 +m1 +m3 + a+ d)

Γ(1 +m2 +m3 + c)

Γ(2 +m2 +m3 + c+ f)
.

(6.18)
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Another convenient expression for the upper sum may be one also with three sums,
two of which are though terminating:

F

[
a, b, d, e, g

c, f, h, j

]
=

Γ(1 + d) Γ(1 + e) Γ(1 + f)

Γ(−g) Γ(−h) Γ(−j)

×
∞∑

n1=0

n1∑

n2=0

n1∑

n3=n1−n2

Γ(−g + n1 − n3)

Γ(1 + n1 − n3)

Γ(−h+ n1 − n2)

Γ(1 + n1 − n2)

Γ(−j − n1 + n2 + n3)

Γ(1 − n1 + n2 + n3)

× Γ(1 + n1 + b)

Γ(2 + n1 + b+ e)

Γ(1 + n2 + a)

Γ(2 + n2 + a+ d)

Γ(1 + n3 + c)

Γ(2 + n3 + c+ f)
(6.19)

In order to express our triple sum (6.18) in terms of an existing function we may use
the general triple hypergeometric function with three variables F 3[x, y, z] introduced
for the first time by Srivastava

F (3)[x, y, z] ≡ F (3)

[
(a) :: (b); (b′); (b′′) : (c); (c′); (c′′)

(e) :: (g); (g′); (g′′) : (h); (h′); (h′′)
; x, y, z

]

=
∞∑

m,n,p=0

Λ(m,n, p)
xm

m!

yn

n!

zp

p!
, (6.20)

where the coefficients Λ(m,n, p) are defined as

Λ(m,n, p) =

A∏
j=1

(aj,m+ n+ p)
B∏

j=1

(bj,m+ n)
B′∏
j=1

(b′j, n+ p)
B′′∏
j=1

(b′′j ,m+ p)

E∏
j=1

(ej,m+ n+ p)
G∏

j=1

(gj,m+ n)
G′∏

j=1

(g′j, n+ p)
G′′∏
j=1

(g′′j ,m+ p)

×

C∏
j=1

(cj,m)
C′∏

j=1

(c′j, n)
C′′∏
j=1

(c′′j , p)

H∏
j=1

(hj,m)
H′∏
j=1

(h′j, n)
H′′∏
j=1

(h′′j , p)

. (6.21)

Thus, this monstrous looking function is the simplest one, which may be used in
order to cast our function into following closed form:

F

[
a, b, d, e, g

c, f, h, j

]
=

Γ(1 + a) Γ(1 + b) Γ(1 + c) Γ(1 + d) Γ(1 + e) Γ(1 + f)

Γ(2 + a+ d) Γ(2 + b+ e) Γ(2 + c+ f)

× F (3)

[
1 + b :: 1; 1 + c; 1 + a : −g, 1;−h, 1;−j, 1
2 + b+ e :: 1; 2 + c+ f ; 2 + a+ d : 1; 1; 1

; 1, 1, 1

]
. (6.22)

We have actually at the moment enough functional knowledge to start to look
a little bit closer to the parameter expansion of our integral (6.9) or equivalently our
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series (6.13). It is important now not to mix up two different things: our function (6.13)
is given as a triple infinite sum in (6.18), but what we need is a finite expansion in its
momenta a, b, c, .... This can be better visualized in the integral picture. Again our
function is given as a triple infinite integral (6.9) (this being expected, since integrals
are equivalent to sums, thus every integral being convertible into a sum and viceversa)
of which we would like to have a finite expansion in the parameters a, b, c, ..., which
show up in the exponentials of the integrated polynomials.

This task proves to be a very complicated one, and by far not to be found in the
mathematical literature. Special functions as the lowest hypergeometric functions are
well treated in reference books but the knowledge diminishes very fast with increasing
complexity. In order to attack this series expansion a well–founded knowledge about
sums is inevitable, fact which will be treated in the next section.

6.2 Some convergent infinite sums

The most natural way to get started with the problem is looking back at the series
representation of a general hypergeometric function as given in (6.7), since the general
six–point integral is expressed as an infinite double sum over a 4F3 hypergeometric
function. Thus we might try to expand each of the single Pochhammer symbols leading
to

pFq

[
a1 + ε α1, . . . , ap + ε αp

b1 + ε β1, . . . , bq + ε βq

]
=

∞∑

s=0

1

s!

p∏
i=1

(ai + ε αi, s)

q∏
j=1

(bj + ε βj, s)

(m+ α ε, s)

(m, s)
= e

−
∞
P

k=1

(−α ε)k

k (Hm+s−1,k−Hm−1,k)
. (6.23)

In upper formula nothing mysterious has happened: we have just rewritten the
function as a product of Pochhammer symbols which finally are series expanded in
small parameters by standard procedures. We see, that for each term

∑
s() in the

overall sum a set of infinite sums appears, known as Euler sums which involve the so
called harmonic numbers and their generalizations; those infinite sums are precisely
the expansions of the single Pochhammer symbols encounterd. It is worth to stress
here a very important fact: supposed we had the values of the various sums in (6.23),
which we will indeed calculate thoroughly in this chapter, we still couldn’t expand
general hypergeometric functions. The reason for that is these functions have a lot of
poles at different values of their parameters. So when using the technique presented
above on a singular function, we will obtain genuinely divergent series which cannot
be cured! The only possibility to evade this problem: one should subtract the poles,
i.e. subtract the infinities and also encode them in terms of other objects3.

3This technique will be also presented very thoroughly in this work, see section 6.5
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6.2.1 Harmonic numbers and the polygamma function

Before going on with Euler sums, it is worth to define properly the harmonic numbers,
which are given by following expression:

Hn =
n∑

k=1

1

k
, Hn,a =

n∑

k=1

1

ka
, (6.24)

where Hn is the harmonic number and Hn,a is the generalized harmonic number of
power a, obeying the functional identity

Hn = Hn−1 +
1

n
Hn,a = Hn−1,a +

1

na
. (6.25)

Thus, harmonic numbers are finite sums which have a definite value. Exactly as the
Γ–function interpolates the factorial function n! the polygamma functions interpolates
the harmonic numbers and its generalization is thus defined as

ψn(z) =
dn+1

dzn+1
log(Γ(z)) =

dn

dzn

Γ′(z)

Γ(z)
=

dn

dzn
ψ0(z), (6.26)

or alternatively, for (n > 0) as

ψn(z) = (−1)n+1 n!
∞∑

k=0

1

(z + k)n+1
. (6.27)

When evaluated on integers, we get immediate relations between the polygamma
and harmonic function

ψ(n) = −γE +Hn−1 ,

ψ(1)(n) = ζ(2) −Hn−1,2 , (6.28)

or for the general case

ψ(b−1)(n) = (−1)b (b− 1)! [ ζ(b) −Hn−1,b ] , b > 1 (6.29)

with γE being the Euler-Mascheroni constant defined by the famous equation γE =
limn→∞(Hn − log(n)) and ζ(2) being the Riemann zeta function obeying the definition
ζ(s) =

∑∞
k=1

1
ks , evaluated at integer 2.
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6.2.2 Euler sums

Now we are prepared to attack the Euler sums, which we remember to appear in the
expansion of the general hypergeometric functions (6.23). There is a whole rich family
of Euler sums, which are more or less well understood; however we will be faced with
two classes of them, which are relevant for us:

sh(m,n) =
∞∑

k=1

Hm
k

(k + 1)n
,

σh(m,n) =
∞∑

k=1

Hk,m

(k + 1)n
. (6.30)

for m ≥ 1, n ≥ 2. With a little work invested we can establish following relations,
which are obtained by shifting the corresponding denominator and then reevaluating
the arizing sums:

∞∑

k=1

Hk,m

kn
= σh(m,n) + ζ(m+ n) ,

∞∑

k=1

Hm
k

kn
= sh(m,n) −

m−1∑

j=0

(
m

j

) ∞∑

k=1

(−1)m−j Hj
k

km+n−j
. (6.31)

From the last equation, by plugging the appropriate expressions for the sums on
the right hand side, we obtain the identity:

∞∑

k=1

H2
k

kn
= sh(2, n) + 2 sh(1, n+ 1) + ζ(2 + n) . (6.32)

Since we now want to evaluate those sums, in order to be able to write down the
expansion for (6.23), we should worry about the method of evaluating such Euler sums.
Unfortunately this is a matter of high proficiency and no general, mechanical method
can be presented. However, recent work on that subject, see e.g. [89, 90] has lead to
fruitful results, of which we will list some here:

sh(2, 2) =
3

2
ζ(4) +

1

2
ζ(2)2 =

11

4
ζ(4) ,

sh(3, 2) =
15

2
ζ(5) + ζ(2) ζ(3) ,

sh(2, 4) =
2

3
ζ(6) − 1

3
ζ(2) ζ(4) +

1

3
ζ(2)3 − ζ(3)2 , (6.33)

as well as
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σh(1, 2) = ζ(3) ,

σh(1, 3) =
3

2
ζ(4) − 1

2
ζ(2)2 ,

σh(2, 2) =
1

2
ζ(2)2 − 1

2
ζ(4) ,

σh(1, 4) = 2 ζ(5) − ζ(2) ζ(3) ,

σh(2, 3) = −11

2
ζ(5) + 3 ζ(2) ζ(3) ,

σh(2, 4) = −6 ζ(6) +
8

3
ζ(2) ζ(4) + ζ(3)2 ,

σh(1, 5) =
5

2
ζ(6) − ζ(2) ζ(4) − 1

2
ζ(3)2 ,

σh(4, 2) = 5 ζ(6) − 5

3
ζ(2) ζ(4) − ζ(3)2 . (6.34)

Another interesting and useful formula is

sh(1, n) = σh(1, n) =
1

2
n ζ(n+ 1) − 1

2

n−2∑

k=1

ζ(n− k) ζ(k + 1). (6.35)

A so called reflection formula involving the Euler sum is also known

σh(s, t) + σh(t, s) = ζ(s) ζ(t) − ζ(s+ t) , s, t ≥ 2 . (6.36)

The latter formula derives its name from the fact that on the left hand side we have
the same Euler sum, however with its two parameters reversed. An immediate conse-
quence of this fact can be established when taking the same value for the arguments;
we then obtain

σh(a, a) =
1

2
ζ(a)2 − 1

2
ζ(2a) , a ≥ 2 . (6.37)

The definition for σh(m,n) is given in (6.30)and we can plug it in upper formula,
which leads us to

∞∑

n=1

Hn,a

na
=

1

2
ζ(a)2 +

1

2
ζ(2a) , a ≥ 2 . (6.38)

We have sofar collected some very useful formulas, which will constitute some basic
tools in order to reach our goal. If we look back more closely at our initial expansion
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(6.23), some sums will appear which we are already able to calculate with the tools
collected until now. They are

∞∑

n=1

Hn

n2
= 2 ζ(3) ,

∞∑

n=1

H2
n

n2
=

11

2
ζ(4) − 1

2
ζ(2)2 =

17

4
ζ(4) ,

∞∑

n=1

Hn

n3
=

5

4
ζ(4) ,

∞∑

n=1

Hn

n4
= 3 ζ(5) − ζ(2) ζ(3) ,

∞∑

n=1

Hn

n5
= ζ(2) ζ(4) − 1

2
ζ(3)2 .

(6.39)

We can immediately derive more complex results from upper formulas, which will
also find their contribution later on:

∞∑

n=1

Hn,2

n4
= σh(2, 4) + ζ(6) = −5 ζ(6) +

8

3
ζ(2) ζ(4) + ζ(3)2 ,

∞∑

n=1

Hn,2

n3
= σh(2, 3) + ζ(5) = −9

2
ζ(5) + 3 ζ(2) ζ(3) ,

∞∑

n=1

Hn,4

n2
= σh(4, 2) + ζ(6) = 6 ζ(6) − 5

3
ζ(2) ζ(4) − ζ(3)2 . (6.40)

A particulary and also for us interesting sum which we shall need later is

∞∑

k=1

1

ka
ψ(b)(k) = (−1)b+1 b! [ ζ(a) ζ(1 + b) − σh(1 + b, a) ] . (6.41)

Here we recognize the former defined polygamma function, (6.26), which addition-
ally obeys the relation

ψ(b)(x) = (−1)b+1 b! ζ(b+ 1, x) , (6.42)

where we have introduced the generalized Riemann zeta function. This latter func-
tion was introduced by Hurwitz, and given by:

ζ(s, a) =
∞∑

k=0

1

(k + a)s
. (6.43)

If we thus write down explicitly upper definition we encounter no troubles in es-
tablishing formula (6.42). If we now specialize to the case a = 1 + b in equation (6.41)
with the sums collected before, we obtain
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∞∑

k=1

1

k1+b
ψ(b)(k) =

1

2
(−1)b+1 b!

[
ζ(2b+ 2) + ζ(b+ 1)2

]
. (6.44)

Another important series is

∞∑

n=1

1

n(n+ 1)α
= α−

α∑

i=2

ζ(i), (6.45)

whose proof is not very hard; it might be done by induction. The first step is
chosing α = 1, which leads to

∞∑

n=1

1

n(n+ 1)
= ψ(1) + γE + 1 = 1, ψ(1) = −γE . (6.46)

This relation again, can be proven by partial fractions: We easily see then, that
each term of the sum will be splited in two, according to the partial fraction technique.
In each case infinitely many pairs of terms cancel except the first one, which is 1. The
induction can be successfully be continued for every value of α. Another some more
complex identity is

∞∑

n=1

1

n(n+ 1)α
Hn−1 =

1

2
α(α + 1) − 1

2

α∑

i=2

i ζ(i+ 1) −
α∑

i=2

(α− i+ 1) ζ(i)

+
1

2

α−3∑

k=0

k∑

i≥0

ζ(2 + i) ζ(2 + k − i) . (6.47)

One way to prove it, is again induction, with the first step being
∞∑

n=1

1
n(n+1)

Hn−1 = 1.

This, on his part, can be proven by partial fraction; we may however face the case when
we have to shift the argument of the harmonic number, in order to be able to cancel the
some terms. Special values of α and also partial fractionats, will enrich our colletion
of relations with

∞∑

n=1

1

(n+ 1)4
Hn−1 = −4 + ζ(2) + ζ(3) + ζ(4) − ζ(2) ζ(3) + 2 ζ(5) ,

∞∑

n=1

1

n(n+ 1)4
Hn−1 = 10 − 3 ζ(2) − 3 ζ(3) − 5

4
ζ(4) + ζ(2) ζ(3) − 2 ζ(5) ,

∞∑

n=1

1

n2(n+ 1)4
Hn−1 = −20 + 6 ζ(2) + 7 ζ(3) +

3

2
ζ(4) − ζ(2) ζ(3) + 2 ζ(5) .(6.48)
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Furthermore, also occurring in the expansion of the hypergeometric function and
its generalization, are the following two sums

(i)
∞∑

n=1

ψ(1)(n)

n (n+ 1)3
= 10 − 3 ζ(2) − 1

2
ζ(2)2 − ζ(3) − 1

2
ζ(4) + 2 ζ(2) ζ(3) − 11

2
ζ(5) ,

(ii)
∞∑

n=1

H2
n−1

n (n+ 1)3
= 10 − 1

2
ζ(2)2 − 5 ζ(3) − 2 ζ(4) − ζ(2) ζ(3) +

3

2
ζ(5),

(6.49)

which can again be both proven by using partial fraction techniques, and especially
using the identity

1

n(n+ 1)3
=

1

n(n+ 1)
− 1

(n+ 1)2
− 1

(n+ 1)3
. (6.50)

More on their derivation will be said in a little wile. We can also prove with upper
decomposition, assumed we accept them as correct, the following more involved series:

∞∑

n=1

Hn,2

n(n+ 1)3
= ζ(3) − 1

2
ζ(2)2 +

1

2
ζ(4) +

11

2
ζ(5) − 3 ζ(2) ζ(3) , (6.51)

which splits up when using (6.50), into

∞∑

n=1

Hn,2

n(n+ 1)
=

∞∑

n=1

(
1

n
− 1

n+ 1

)
Hn,2 =

∞∑

n=1

(
Hn,2

n
− Hn−1,2

n

)
=

∞∑

n=1

1

n3
= ζ(3) ,

∞∑

n=1

Hn,2

(n+ 1)2
=

∞∑

n=1

Hn−1,2

n2
=

∞∑

n=1

Hn,2

n2
−

∞∑

n=1

1

n4
=

1

2
ζ(2)2 − 1

2
ζ(4) ,

∞∑

n=1

Hn,2

(n+ 1)3
= σh(2, 3) = −11

2
ζ(5) + 3 ζ(2) ζ(3) .

(6.52)

Now simply adding them, will resemble the result established in (6.51).

As promised, for the sake of completeness, we should prove the series in (6.49). The
first of them, (i) may be transformed to
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∞∑

n=1

ψ(1)(n)

n(n+ 1)3
=

∞∑

n=1

1

n(n+ 1)3

∞∑

k=0

1

(n+ k)2
=

∞∑

n=1

1

n(n+ 1)3

(
∞∑

k=1

1

k2
−

n−1∑

k=1

1

k2

)

= ζ(2)
∞∑

n=1

1

n(n+ 1)3
−

∞∑

n=1

Hn−1,2

n(n+ 1)3

= ζ(2) [3 − ζ(2) − ζ(3)] −
∞∑

n=1

Hn,2

n(n+ 1)3
+

∞∑

n=1

1

n3(n+ 1)3
.

(6.53)

In the second line, the first series can be red off from equation (6.45), and the
second has been rewritten as the last two terms in line three, using the functional
identity (6.25). The last two terms are easy to calculate, the first one from (6.51) and
the second with the relation

∞∑

n=1

1

n3(n+ 1)3
= 10 − π2 , (6.54)

which on his part can easily be computed. We can now add all the pieces collected
until now and arrive at the result established in (6.49) under (i). The second sum (ii)
is even more tricky, we shall thus need following intermediary results:

∞∑

n=1

H2
n

n(n+ 1)3
= 3 ζ(3) − 3

2
ζ(4) − 1

2
ζ(2)2 +

3

2
ζ(5) − ζ(2) ζ(3). (6.55)

The following sums are calculated more or less straightforward; partially we can
also see their derivations below:

∞∑

n=1

H2
n

n(n+ 1)
=

∞∑

n=1

(
1

n
− 1

n+ 1

)
H2

n =
∞∑

n=1

(
H2

n

n
− H2

n−1

n

)

= 2
∞∑

n=1

Hn

n2
−

∞∑

n=1

1

n3
= 3 ζ(3) ,

∞∑

n=1

H2
n

(n+ 1)2
= sh(2, 2) =

3

2
ζ(4) +

1

2
ζ(2)2 ,

∞∑

n=1

H2
n

(n+ 1)3
= sh(2, 3). (6.56)

The last of the sum involving sh(2, 4) is not among the results collected until now.
For that, we shall derive it using following identity
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∞∑

n=1

1

na
Hn−1,b Hn−1,c = ζ(a, b, c) + ζ(a, c, b) + σh(b+ c, a). (6.57)

The symbol ζ(a, b, c) which is new here, denotes the triple Euler sum, defined as

ζ(a, b, c) =
∞∑

n=1

n−1∑

m=1

m−1∑

k=1

1

nambkc
. (6.58)

For more values of the triple Euler function one may consult the reference [91],
where also the specially useful formula ζ(3, 1, 1) = 2 ζ(5)−ζ(2) ζ(3) is derived. There-
fore, we can write

sh(2, 3) =
∞∑

n=1

H2
n

(n+ 1)3
=

∞∑

n=1

H2
n−1

n3
= 2 ζ(3, 1, 1) + σh(2, 3) = −3

2
ζ(5) + ζ(2) ζ(3) .

(6.59)

We have now calculated everything in order to establish the result in (6.55). We
recover it from (6.56) and also using the decomposition (6.50). And this is the last
step in order to prove the result (ii) in (6.49). We make first following conversion

∞∑

n=1

H2
n−1

n(n+ 1)3
=

∞∑

n=1

H2
n

n(n+ 1)3
+

∞∑

n=1

1

n3(n+ 1)3
− 2

∞∑

n=1

Hn

n2(n+ 1)3
. (6.60)

We have already just calculated the first two sums, wile the last one is relatively
easy to calculate and yields

∞∑

n=1

Hn

n2(n+ 1)3
= −3 ζ(2) + 4 ζ(3) +

1

4
ζ(4) . (6.61)

As a last remark, we should use the relation (6.57) to derive following equality

∞∑

n=1

H2
n−1,b

na
= 2 ζ(a, b, b) + σh(2b, a) , (6.62)

by simply setting b = c. With the additional value of the triple Euler function

ζ(a, a, a) =
1

6
ζ(a)3 − 1

2
ζ(a) ζ(2a) +

1

3
ζ(3a) , (6.63)
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we recover this last important identity

∞∑

n=1

H2
n−1,2

n2
= 2 ζ(2, 2, 2) + σh(4, 2) =

1

3
ζ(2)3 − ζ(3)2 − 8

3
ζ(2) ζ(4) +

17

3
ζ(6) .

(6.64)

We have derived in this section a lot of very useful relations which will be used
in the next section to series expand hypergeometric functions, their generalizations as
well as triple hypergeometric functions. The main results were calculated here, however
some particular values of special functions have been used since their derivation might
have taken much more space. Nevertheless, they are partially derived in [91]. Also
a very good lecture on that topic are the papers [89, 90], without claiming to give a
complete list of refferences here.

6.3 Series expansion of higher hypergeometric func-

tions

We are now in the position to write down series expansions of various generalized
hypergeometric functions. In this section we will adopt following convention: all the
parameters of the considered functions, denoted by a, b, c, ..., should be regarded as
small, i.e. close to zero, such that we can expand the respective functions in those
small parameters. The first function we want to look at, is the general 3F2 occurring
in the five–point integral (6.3):

C(a, b, c, d, e) =
Γ(1 + a) Γ(1 + b) Γ(1 + c) Γ(1 + d)

Γ(2 + a+ c) Γ(2 + b+ d)
3F2

[
1 + a, 1 + b, −e

2 + a+ c, 2 + b+ d

]

= 1 − a− b− c− d− 2 e+ e ζ(2) + a2 + a b+ b2 + b c+ c2 + a d+ c d+ d2

+ 3 a e+ 3 b e+ 3 c e+ 3 d e+ 3 e2 + 2 ac+ 2 bd

− (a c+ b d+ a e+ b e+ e2) ζ(2) − (a e+ b e+ 2 c e+ 2 d e+ e2) ζ(3)

− a3 − a2 b− a b2 − b3 − 3 a2 c− 2 a b c− b2 c− 3 a c2 − b c2 − c3 − a2 d− 2 a b d− 3 b2 d

− 2 a c d− 2 b c d− c2 d− a d2 − 3 b d2 − c d2 − d3 − 4 a2 e− 4 a b e− 4 b2 e− 8 a c e

− 4 b c e− 4 c2 e− 4 a d e− 8 b d e− 4 c d e− 4 d2 e− 6 a e2 − 6 b e2 − 6 c e2 − 6 d e2 − 4 e3

+ (a2 c+ a b c+ a c2 + a b d+ b2 d+ a c d+ b c d+ b d2 + a2 e+ a b e+ b2 e+ 3 a c e+ 3 b d e

− c d e+ 2 a e2 + 2 b e2 + e3) ζ(2) + (a2 c+ a c2 + b2 d+ b d2 + a2 e+ a b e+ b2 e+ 2 a c e

+ 2 b c e+ 2 a d e+ 2 b d e+ 2 a e2 + 2 b e2 + 2 c e2 + 2 d e2 + e3) ζ(3)

+

(
a2 e+ a b e+ b2 e+ 3 a c e+

5 b c e

4
+ 3 c2 e+

5 a d e

4
+ 3 b d e+

17 c d e

4
+ 3 d2 e+

a e2

4

+
b e2

4
+ 3 c e2 + 3 d e2 + e3

)
ζ(4) + . . . .

(6.65)
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We may wonder, which benefit we have from series expanding the 3F2 function, for
it just represents the five–point scattering in string theory. First of all we put to work
for the first time the sums we have calculated so far in the last section. However, this
expansion is more than just a pedagogical exposition, since we will use (6.65) and (6.66)
in section 6.5 in order to series expand the much more complex triple hypergeometric
function, which will be related to the upper 3F2 functions and the following one:

C(a, b, c, d, e− 1) =
Γ(1 + a) Γ(1 + b) Γ(1 + c) Γ(1 + d)

Γ(2 + a+ c) Γ(2 + b+ d)
3F2

[
1 + a, 1 + b, 1 − e

2 + a+ c, 2 + b+ d

]

= ζ(2) − (a+ b+ 2 c+ 2 d+ e) ζ(3)

+

(
a2 + a b+ b2 +

a c

2
+

5 b c

4
+ 3 c2 +

5 a d

4
+
b d

2
+ 3 d2 +

a e

4
+
b e

4
+ 3 c e

17 c d

4
+ 3 d e+ e2

)
ζ(4) + . . . .

(6.66)

When we look at the last tow functions we notice immediately that they don’t
have any poles at zero4. This can be seen with difficulty when analyzing the right
hand side in the first line of upper equations. The reason for that is that we are faced
with complicated hypergeometric functions, whose pole behaviour is not easy to see
at once. However, on the left hand side, the function denoted by C(a, b, c, d, e), has
its definition as exactly being the integral of polynomials with the powers (a, b, c, d, e).
Thus, sice the integral defined in (6.3) is taken from zero to one, and the exponents
are infinitesimal, we immediately see its convergence.

However, we are now able to relate these ”harmless” functions to a hypergeometric

3F2 function which has poles, namely to the 3F2

[
α1,α2,α3

β1,β2

]
. Exactly as in the case of the

four–point function and its exemplary system of equations, we will have all the pole
structure factorized in front of the two functions (6.65) and (6.66). So, when switching
to the notation of the integral presented in (6.3) or equivalently in (6.6) we have:

4For sure hypergeometric functions have infinitely many poles and not just those at zero param-
eters. But remember, we are just looking at the special region where the parameters are strictly
positive and very small, i.e. that what is known in mathematics as being ε
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3F2

[
α1, α2, α3

β1, β2

]
=

1

α1 α2 (α1 − β1) (α2 − β2) (α1 + α2 + α3 − β1 − β2)

=
{

(1 − α3 + β1) (1 − α3 + β2) [ β1 β2 (α1 + α2 + α3 − β1 − β2) − α1 α2 α3 ]

× C(α1, α2, β1 − α1, β2 − α2, −α3)

− α3

[
α2

1 (α2 − β1) (α2 − β2) − β1 β2 (α2 + α3 − β1 − β2) (1 − α2 − α3 + β1 + β2) +

+ α1 α2 α3 − α1 α2 α
2
3 − α1 α

2
2 β1 + α1 α2 β

2
1 − α1 α

2
2 β2 − α1 β1 β2

+3 α1 α2 β1 β2 + 2 α1 α3 β1 β2 − 2 α1 β
2
1 β2 + α1 α2 β

2
2 − 2 α1 β1 β

2
2

]

× C(α1, α2, β1 − α1, β2 − α2, −α3 − 1)
} Γ(β1) Γ(β2)

Γ(α1) Γ(α2) Γ(β1 − α1) Γ(β2 − α2)

= 1 − α1α2α3

β1 β2 (α1 + α2 + α3 − β1 − β2)

×
{
1 +

[
(α2 − β1) (α3 − β1) + α1 (α2 + α3 − β1 − β2) − (α2 + α3 − β1) β2 + β2

2

]
ζ(2)

+
[
α2

1 α2 + α1 α
2
2 + α2

1 α3 + 4α1 α2 α3 + α2
2 α3 + α1 α

2
3 + α2 α

2
3 − α2

1 β1 − 4α1 α2 β1

− α2
2 β1 − 4α1 α3 β1 − 4α2 α3 β1 − α2

3 β1 + 3α1 β
2
1 + 3α2 β

2
1 + 3α3 β

2
1 − 2 β3

1 − α2
1 β2

− 4α1 α2 β2 − α2
2 β2 − 4α1 α3 β2 − 4α2 α3 β2 − α2

3 β2 + 4α1 β1 β2 + 4α2 β1 β2

+4α3 β1 β2 − 3 β2
1 β2 + 3α1 β

2
2 + 3α2 β

2
2 + 3α3 β

2
2 − 3 β1 β

2
2 − 2 β3

2

]
ζ(3) + . . . .

(6.67)

The relation (6.67) is emergent out of our system of equations (5.28). It enables
us to expand a singular hypergeometric function in its parameters in a region where
exactly those singularities occur. When we insert the expansion of the functions (6.65)
and (6.66) we see that the singular function

3F2

[
α1, α2, α3

β1, β2

]
=

Γ(β1) Γ(β2)

Γ(α1) Γ(α2) Γ(β1 − α1) Γ(β2 − α2)

× C(α1 − 1, α2 − 1, β1 − α1 − 1, β2 − α2 − 1,−α3), (6.68)

has poles at β1, β2 and α1 + α2 + α3 − β1 − β2. Furthermore, trying to simply
expand (6.68) as shown in (6.23) would automatically lead to divergent sums. Those
sums would exactly multiply the coefficients β1, β2, α1 + α2 + α3 − β1 − β2, signalizing
the singularities there. We also present the expansion of a nonsingular hypergeometric

4F3 function in Appendix G.

6.4 Parameter expansion of the triple hypergeo-

metric F (3) function

Until now we worried mainly about generalized hypergeometric functions. Those are,
as we have seen, useful when analyzing four– and five–point scattering processes in
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string theory. However, it’s time to present now the tools for the expansion of the six–
point function, i.e. the triple hypergeometric function. All the derivations we made
until now for different series are of great value since they will still be used, thus being
the basis of our next discussion.

6.4.1 Multiple zeta sums and Euler–Zagier series

Looking back at equation (6.18), we might try to expand the Γ–functions there and
finally to evaluate the three running infinite sums over the expansions, as we did it
before. Though, we will encounter a new type of series, not known yet, which is a
generalization of length k of the multiple zeta function:

ζ(s1, . . . , sk) =
∑

n1>...>nk>0

k∏

j=1

1

n
sj

j

=
∞∑

n1,...,nk=1

k∏

j=1

(
k∑

i=j

ni

)−sj

, (6.69)

with s1 ≥ 2 , s2, . . . , sk ≥ 1. It turns out that these functions are closely related
to another class of series, the polylogarithmic function, defined as, [92],

Lis1,...,sk
(x1, . . . , xk) =

∑

n1>...>nk>0

k∏

j=1

x
nj

j

n
sj

j

, (6.70)

for xj = 1, i.e. ζ(s1, . . . , sk) = Lis1,...,sk
(1, . . . , 1). As one can deduce from the

definition, the polylogarithmic function reduces to the basic zeta function for k = 1,
i.e. Lia(1) = ζ(a). Moreover, we had already to do with the special polylogarithmic
function Lis1,s2,s3(x1, x2, x3), also known as triple Euler sum, and defined in section
6.2. Thus, more numerical values can be inferred from the literature given throughout
and at the end of that section. We shall need also an integral representation of the
generalized multiple zeta function (6.69) as given in [93]:

ζ(s1, . . . , sk) =

∫ ∞

1

dx1

x1

. . .

∫ ∞

1

dxk

xk

k∏

j=1

1

Γ(sj)

(lnxj)
sj−1

j∏
i=1

xi − 1

, (6.71)

which just reduces for k = 3, our case of interest5, to

ζ(s1, s2, s3) = − (−1)s1+s2+s3

Γ(s1) Γ(s2) Γ(s3)

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz x2 y
(lnx)s1−1 (ln y)s2−1 (ln z)s3−1

(1 − x) (1 − xy) (1 − xyz)
.

(6.72)

5We should remember that the functions we are interested in are triple integrals, whose integrands
involve exactly polynomials as seen in (6.72)
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The latter formula presented is very important since it is a major connection be-
tween the two representations of the triple hypergeometric function as shown in (6.9)
and (6.18). Thus, when we expand the integral representation and integrate term by
term we will exactly recover integrals of the type (6.71). But this is just the integral
representation of the generalized multiple zeta function, whose series representation
(6.69) will exactly emerge when expanding the triple hypergeometric function in the
series representation (6.18). We see thus, there is a very deep and reach web of con-
nections between the hypergeometric functions, which describe disk processes and the
infinite sums which have their roots in number theory.

A slightly change in the form of (6.69) for the case k = 3 leads us to the class of
sums known as Euler–Zagier double series or for short Witten zeta function and are of
the type

W (r, s, t) =
∞∑

m,n=1

1

nr ms (m+ n)t
. (6.73)

It derives its name also from its occurrence in quantum field theories, where special
values of it calculate volumes of special moduli spaces of vector bundles over curves.
More on their mathematical properties can be read in [94] and [95]. In [96] also the
Pascal triangle recurrence relation can be found

W (r, s, t) = W (r − 1, s, t+ 1) +W (r, s− 1, t+ 1) , (6.74)

as well as the useful relations

2 W (a− 2, 1, 1) −W (1, 1, a− 2) = 2 ζ(a) ,

W (1, 1, a− 2) = (a− 1) ζ(a) −
a−2∑

i=2

ζ(i) ζ(a− i) ,

W (a− 2, 1, 1) =
1

2
W (1, 1, a− 2) + ζ(a) ,

W (1, 0, a− 1) =
1

2
W (1, 1, a− 2) , (6.75)

which are fulfilled by the same function (6.73). The importance of upper relations
can be immediately seen for special values for a; thus we can deduce some concrete
equalities, like the following might be

W (1, 1, 1) = 2 ζ(3) , W (1, 1, 2) =
1

2
ζ(4), (6.76)

or a more involved relation
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∞∑

m,n=1

1

m (1 + n) (1 +m+ n)α
= −α + (α + 1) ζ(α + 2) +

α∑

i=2

ζ(i) −
α∑

i=2

ζ(i) ζ(α + 2 − i),

(6.77)

whose proof is immediate using (6.45) and the relation

∞∑

m,n=1

1

m (1 + n) (1 +m+ n)α
= W (1, 1, α) −

∞∑

m=1

1

m (m+ 1)α
. (6.78)

Shall we also use (6.35) in addition to (6.45) we are able to derive following formula

∞∑

m,n=1

1

m (1 +m+ n)α
=

∞∑

m,n=1
n>m

1

m (n+ 1)α
=

∞∑

n=1

Hn−1

(n+ 1)α
=

∞∑

n=1

Hn

(n+ 1)α
−

∞∑

n=1

1

n (n+ 1)α

= −α +
1

2
α ζ(α + 1) +

α∑

i=2

ζ(i) − 1

2

α−2∑

i=1

ζ(α− i) ζ(i+ 1) ,

(6.79)

or similarly, with the same building blocks, we may deduce

∞∑

m,n=1

1

(1 +m) (1 +m+ n)α
= 1 +

1

2
α ζ(α + 1) − ζ(α) − 1

2

α−2∑

i=1

ζ(α− i) ζ(i+ 1) .

(6.80)

The last two equations can now be subtracted from each other, using partial fraction
techniques, and we arrive at

∞∑

m,n=1

1

m (1 +m) (1 +m+ n)α
= −α− 1 + 2 ζ(α) +

α−1∑

i=2

ζ(i) . (6.81)

We now present a much more involved Euler sum, whose derivation we shall need
the tools collected until now:

∞∑

m,n=1

1

n (1 +m) (1 +m+ n) (2 +m+ n)
= 2 ζ(3) − 9

4
. (6.82)

Some few words to the proof of last forula: if we look at its last two factors in the
denominator, we see that they can be partially decomposed to:
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1

(1 +m+ n) (2 +m+ n)
=

1

(1 +m+ n)
− 1

(2 +m+ n)
. (6.83)

This will increase the numnber of sums to calculate to two, but decrease their
degree of complexity; the two arising sums are

∞∑

m,n=1

1

n (1 +m) (1 +m+ n)
= −1 + 2 ζ(3) , (6.84)

∞∑

m,n=1

1

n (1 +m) (2 +m+ n)
=

∞∑

m,n=1

1

n m (1 +m+ n)
−

∞∑

n=1

1

n(n+ 2)
= 2 − 3

4
=

5

4
,

and they can be proved with 6.77 and following relation

∞∑

m,n=1

1

n m (1 +m+ n)
=

∞∑

m,n=1

(
1

n
− 1

1 +m+ n

)
1

m(m+ 1)
=

∞∑

m=1

Hm+1

m(m+ 1)
= 2 .

(6.85)

Next identity to prove is

∞∑

m,n=1

1

m n (1 +m) (1 + n) (1 +m+ n)
= 5 − 4 ζ(3) , (6.86)

which can be done using again the partial decomposition, as done before:

1

m n (1 +m) (1 + n) (1 +m+ n)
=

(
1

m
− 1

1 +m

) (
1

n
− 1

1 + n

)
1

1 +m+ n
.

(6.87)

This has as consequence again, that we increase the number of sums to four (two
of which are identical) but decrease their complexity; the sums are given by

∞∑

m,n=1

1

m n (1 +m+ n)
= 2 ,

∞∑

m,n=1

1

m (1 + n) (1 +m+ n)
= W (1, 1, 1) −

∞∑

m=1

1

m (m+ 1)
= 2 ζ(3) − 1 ,

∞∑

m,n=1

1

(1 +m) (1 + n) (1 +m+ n)
=

∞∑

m,n=1

1

n (n+ 1)

(
1

m+ 1
− 1

m+ n+ 1

)

=
∞∑

n=1

1

n (n+ 1)
(Hn+1 − 1) = 1. (6.88)
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The latter sums can easily be determined from the series already presented before.
If we now use the partial fraction decomposition

1

(1 +m) n (1 + n) (1 +m+ n)
=

(
1

n
− 1

1 + n

)
1

(1 +m) (1 +m+ n)
(6.89)

we find from (6.88)

∞∑

m,n=1

1

(1 +m) n (1 + n) (1 +m+ n)
= 2 ζ(3) − 2 , (6.90)

and additionally two more equalities

∞∑

m,n=1

1

n m (1 +m) (1 +m+ n)2
= 8 − 3 ζ(2) − 2 ζ(3) − 1

2
ζ(4) ,

∞∑

m,n=1

1

m (2 + n) (1 +m+ n)2
= −3

2
ζ(2) + 3 ζ(3) − 1. (6.91)

The first of the two sums presented in equation (6.91) may be converted to

∞∑

n=1
m≥2

1

n m (m− 1) (m+ n)2
= (6.92)

∞∑

m,n=1

1

m n (1 +m+ n)2
−

∞∑

m,n=1

1

m n (m+ n)2
+

∞∑

n=1

1

n (n+ 1)2
.

This last sum can be worked with, since the last two sums on the right hand side
are W (1, 1, 2) = 1

2
ζ(4) and 2−ζ(2) as stated in (6.73), (6.76) and respectively in (6.45),

and the first sum on the right hand side is

∞∑

m,n=1

1

m n (1 +m+ n)2
=

∞∑

m,n=1

(
1

m
+

1

n

)
1

(m+ n) (1 +m+ n)2

= 2
∞∑

m,n=1

1

m (m+ n) (1 +m+ n)2
= 2

∞∑

n=1

Hn−1

n(n+ 1)2
= 2 [ 3 − ζ(3) − ζ(2) ] .(6.93)

The second of the two equations in (6.91) can be converted and evaluated to



6.4 Parameter expansion of the triple hypergeometric F (3) function 99

∞∑

m,n=1

1

m (2 + n) (1 +m+ n)2
= 2

∞∑

m,n=1

1

m (m+ n) (m+ n− 1)2
−

∞∑

m=1

1

2 m (1 +m)2

−
∞∑

m=1

1

m3
= −1 +

1

2
ζ(2) − ζ(3) + 2

∞∑

n=1

Hn

n2(1 + n)
= −3

2
ζ(2) + 3 ζ(3) − 1 .

(6.94)

Next identity on the list which we shall prove is

∞∑

m,n=1

1

(1 + n) m2 (m+ n)2
= −1

2
ζ(4) +

1

2
ζ(2)2 + 5 ζ(3) − 4 ζ(2) . (6.95)

where we can rewrite the one in the numerator as 1 = 1 + n + m − m − n and
regrouping it as 1 = (1 + n) + m − (m + n); this leads us to following three partial
results:

∞∑

m,n=1

1

m2 (m+ n)2
=
∑

m<n

1

m2 n2
= ζ(2, 2) =

1

2
ζ(2)2 − 1

2
ζ(4) ,

∞∑

m,n=1

1

m (1 + n) (m+ n)2
=

∞∑

m,n=1

1

m (2 + n) (1 +m+ n)2
+

1

2

∞∑

m=1

1

m (1 +m)2

= −2 ζ(2) + 3 ζ(3) ,
∞∑

m,n=1

1

m2 (1 + n) (m+ n)
=

∞∑

m,n=1

1

m2

1

n (1 + n)
−

∞∑

n=1

1

n (1 + n)2
(6.96)

−
∞∑

m,n=1

1

n (1 + n) (1 +m) (1 +m+ n)
= 2 ζ(2) − 2 ζ(3).

Those sums can be either proved by standard techniques or by using results already
derived in this chapter.

We have now collected exactly as many results concerning infinite finite sums as to
be able to series expand the triple hypergeometric functions, as they stand in (5.29)
and thus arrive at (5.32). However, we have listed the expansion until the first order
in the Mandelstam variables, i.e. until the second order in their momenta kµ. And
this is also what we are able to do with the sums collected until now. Should we wish
to go higher into the momentum expansion we have to work harder and evaluate the
real complicated sums



100 6 Mathematical tools

∞∑

mi=1

m3

m1 m2 (m1 +m3) (m2 +m3) (m1 +m2 +m3)
=

7

4
ζ(4), (6.97)

∞∑

mi=1

1

m1 m2 (1 +m1 +m3) (m2 +m3) (m1 +m2 +m3)
=

19

4
ζ(4) − 4 ζ(3) ,

∞∑

mi=1

1

m1 m2 (m1 +m3) (m2 +m3) (1 +m1 +m2 +m3)
=

17

4
ζ(4) + 2 ζ(3) − ζ(2) − 5.

Those triple sums are really hard to do and very little is known about them. A
lot of energy has to be invested in order to be able to write down the results on the
right hand side of the equations (6.97). In order to compute them, some intermediary,
more simpler triple sums and also double sums involving harmonic numbers have to
be evaluated. The results are presented in Appendix H.

6.4.2 F (3) series expansion

All those sums were quite a hard job, however the results enable us to expand triple
hypergeometric functions, as the one given in (6.9); moreover, those mathematical tools
allow us to go even higher with the parameter expansion, provided that we are willing to
invest more time for solving the new arising type of series. This is of course, as we have
already stressed, equivalent to expanding the relation (6.18) in its small parameters
a, b, c, ..., since the latter is just the series representation of the triple hypergeometric
function. The effective difference is, when series expanding the formulas, we have to
evaluate the corresponding sums and not the integrals, the latter however being every
time convertible to sums, and viceversa. We shall show here in greater detail such an
expansion, until second order in the Mandelstam variables si, though not complete
because lacking of space. Thus we present some part of the expansion through second
order in sj without being complete, neither in the first order nor in the second one,
the emphasis being on the principle of tackling such problems. We will pick up one

exemplary triple hypergeometric function, namely F
[

a,b,d,e,g
c,f,h,j−2

]
. (Just a little later

we will take care of the functions (5.29), they being the six dimensional basis of the
equation system and thus vital for the S–matrix.) This function is to be regarded as
having small entries a, b, ..., j, where the last power is shifted by −2. Thus, the only non
infinitesimal quantity is the −2 in the exponential, and when we look at the integral

definition of F
[

a,b,d,e,g
c,f,h,j−2

]
, we see that this −2 implies the squared polynomial (1−x y z)

in the denominator6. As we will notice in a while, every parameter is multiplied by

6It is maybe also worth noticing that this term won’t induce poles in the integral: although we
take the integration limits from zero to one, this squared polynomial integrated in the denominator
has as result ζ(2). Since when series expanding the whole function, this polynomial will be the leading
order, we expect our parameter expansion to be finite and go on with ζ(2) which is also the case, as
can be seen in 6.98.
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one special sum, as we have treated them before, and evaluating those sums will left
us with the parameter multiplied by some (transcendental) number, the latter being
the limit of its corresponding sum:

F

[
a, b, d, e, g

c, f, h, j − 2

]
=

Γ(1 + d) Γ(1 + e) Γ(1 + f)

Γ(−g) Γ(−h) Γ(2 − j)

∞∑

mi=0

Γ(−g +m1) Γ(−h+m2) Γ(2 − j +m3)

m1! m2! m3!

× Γ(1 +m1 +m2 +m3 + b)

Γ(2 +m1 +m2 +m3 + b+ e)

Γ(1 +m1 +m3 + a)

Γ(2 +m1 +m3 + a+ d)

Γ(1 +m2 +m3 + c)

Γ(2 +m2 +m3 + c+ f)

= 1 +
∞∑

m3=1

1

(1 +m3)2

︸ ︷︷ ︸
=ζ(2)−1

−(g + h) [
∞∑

m1,m3=1

1

m1 (1 +m1 +m3)2

︸ ︷︷ ︸
=−2+ζ(2)+ζ(3)

+
∞∑

m1=1

1

m1 (1 +m1)2

︸ ︷︷ ︸
=2−ζ(2)

]

+ gh
∞∑

mi=1

m3

m1 m2 (m1 +m3) (m2 +m3) (m1 +m2 +m3)
︸ ︷︷ ︸

= 7
4

ζ(4)

+ (g2 + h2) [
∞∑

m1,m3=1

Hm1−1

m1 (m1 +m3)2

︸ ︷︷ ︸
=ζ(2,1,1)=ζ(4)

] + (a, b, c, d, e, f, j) − dependent terms + . . .

= ζ(2) − (g + h) ζ(3) +

(
g2 + h2 +

7

4
gh

)
ζ(4) + (a, b, c, d, e, f, j) − dep. terms.

(6.98)

Upper formula expresses maybe at best the expansion: we start with a special series
as given in (6.18), which uniquely determines one triple hypergeometric function; this
being done, we expand the encountered Γ–functions in the small parameters a, b, ...;
after that, we still have to run the three infinite sums over the terms of expanded Γ–
functions; this gives precisely rise to our sums treated in the last section, i.e. harmonic
number series, Euler sums, triple and triple zeta sums; evaluating those sums will
nicely lead to short, catchy numbers multiplying the parameters, as depicted in the
last line of (6.98). Exactly that way, we also write down the missing coefficients of the
function or go deeper in the order of the series expansion, the latter however being non
trivial because of the gradually increasing complexity. In Appendix I we will list the
complete needed expansion of the six base functions.

6.5 Series expansion of singular special functions

For the sake of mathematical completeness and also for reasons of convenience we shall
address in this subsection the topic of a singular triple function. Although, strictly
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speaking, we don’t have to expand such functions, since our basis (5.28) was chosen
in order to be solely made up by nonsingular functions, it is worth knowing how to
handle singular functions, for we can, e.g. prove some equations evolving from the
picture changing operation and thus have mathematical control over it. Moreover, in
order to address the question of field theory, it might prove more convenient to solve
the system of equations in terms of basic functions which have some pole structure; this
choice could throw more light on the procedure of disentangling Feynman diagrams.

6.5.1 First simple examples

We chose for that purpose following singular function

F

[
a− 1, b− 1, d, e, g

c, f, h, j

]
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz xa−1 yb−1 zc (6.99)

× (1 − x)d (1 − y)e (1 − z)f (1 − xy)g (1 − yz)h (1 − xyz)j,

and, as we can see, the integral will diverge as the parameters a and b approach
zero, since in that case, we will integrate 1

x
and 1

y
with the lower integration limit

equal to zero. Thus, we encounter a genuine singularity problem, which doesn’t have
its origin in the chosen representation but is a structural part of the function. We
want to emphasize, that since those poles are not some artifacts from an unlucky
representation, they will show up in any circumstance. As a very consequence, we
will encounter divergent sums, which are impossible to sum up: we are faced with a
new problem, which is not anymore comparable with the ones encountered in previous
sections. In order to be able to handle that, we will have to subtract the divergent part
and encode it in an object whose expansion we can master, as shown in [97]. Thus we
first rewrite our integral adding and subtracting the same singular piece. Further, we
rearrange our expression as the sum of two expressions,

F

[
a− 1, b− 1, d, e, g

c, f, h, j

]
= Ia

I + Ib
I , (6.100)

where the first expression is the original integral minus the singular piece, and the
second is just the singular piece:

Ia
I =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz xa−1 yb−1 zc (1 − x)d (1 − y)e (1 − z)f (1 − yz)h

×
{

(1 − xy)g (1 − xyz)j − 1
}

(6.101)

Ib
I =

(∫ 1

0

dx xa−1 (1 − x)d

)

︸ ︷︷ ︸
= B(a−1,d)

(∫ 1

0

dy

∫ 1

0

dz yb−1 zc (1 − y)e (1 − z)f (1 − yz)h

)

︸ ︷︷ ︸
= C(b−1,c,e,f,h)

.
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Taking now the limit (a, b) → 0 the first piece Ia
I will stay finite since when x and y

approach zero the singular term will also diverge but with an minus sign, thus canceling
the infinity. This enables us to expand the first piece in small parameters a, b, ....
However, we have now shifted the singularities to the second integral expression I b

I . If
we look though more attentive at the second piece, we recognize the first factorized out
integral: it is the notorious Beta function, whose expansion we can obtain either by an
classical computation or with every usual mathematics software. The second integral in
the last line of (6.101) we recognize again as a generalized 3F2 hypergeometric function
whose expansion we can either obtain by the same subtraction trick as just described
or just look it up in [26], where it has been expanded by using the picture changing
trick. A third possibility to write down the expansion of C(b−1, c, e, f, h) is to rewrite
it as the sum:

C(a− 1, b, c, d, e) =
(1 − a+ b+ d+ e) (1 + a+ c+ e) Φ1 − e (1 + c+ d+ e) Φ2

a (1 − a+ b+ d)
.

(6.102)

Here, we have named Φ1 and Φ2 the two functions already expanded in equations
(6.65) and (6.66). For sure, the relation (6.102) cannot be simply guessed, but was
found in [26] when using the same picture changing trick in the case of the five gluon
open superstring scattering on the disk. To this end, we arrive at:

Ia
I = j (ζ(2) − 1) − (g + j) ζ(3) + . . . , (6.103)

Ib
I =

(
1

a
− d ζ(2) + . . .

) (
1

b
− c+ f

b
+ h+

(c+ f)2

b
− ζ(2) (e+

cf

b
+ h) + . . .

)
,

and thus for (6.99) we add the two pieces obtaining:

F

[
a− 1, b− 1, d, e, g

c, f, h, j

]
=

1

a b
− c+ f

a b
+

(c+ f)2 + b h

a b
−
(
d

b
+
c f

a b
+
e+ h

a

)
ζ(2)

+ O(ε) .

(6.104)

As expected, the latter function has a pole at each, a and b as they are the exponents
of the singular integrated polynomials. The second example we want to present is again
a singular triple hypergeometric function, this time with a single pole at a:

F

[
a− 1, b, d, e, g

c, f, h, j

]
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz xa−1 yb zc (6.105)

× (1 − x)d (1 − y)e (1 − z)f (1 − xy)g (1 − yz)h (1 − xyz)j.
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We will treat it in the very same manner as the function in (6.99). Thus, the first
step is to add and subtract the relevant singular piece and then rewrite the expression
as a sum of two integrals, one finite and the other singular:

Ia
II =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz xa−1 yb zc (1 − x)d (1 − y)e (1 − z)f (1 − yz)h

×
{

(1 − xy)g (1 − xyz)j − 1
}

(6.106)

Ib
II =

(∫ 1

0

dx xa−1 (1 − x)d

)

︸ ︷︷ ︸
= B(a−1,d)

(∫ 1

0

dy

∫ 1

0

dz yb zc (1 − y)e (1 − z)f (1 − yz)h

)

︸ ︷︷ ︸
= C(b,c,e,f,h)

.

Here, we have again shifted the poles from the first expression Ia
II to the second

one Ib
II , hence the first can easily be expanded with the relations presented in sections

6.3 and 6.4. The second expression, however, is again factorized into a Beta-function,
whose poles are given in every math book on special functions or may be obtained
with usual mathematics software, and the second factor being again the generalized

3F2 hypergeometric function already expanded and given in (6.65). We find so far

Ia
II = g + 3 j − (g + 2 j) ζ(2) + . . . ,

Ib
II =

(
1

a
− d ζ(2) + . . .

)
( 1 − b− c− e− f − 2 h+ ζ(2) h+ . . . ) , (6.107)

and finally, for (6.105)

F

[
a− 1, b, d, e, g

c, f, h, j

]
=

1

a
− b+ c+ e+ f + 2h

a
+
h

a
ζ(2) + O(ε) . (6.108)

6.5.2 More involved functions

As a last example, we want to analyze a function with a much more richer pole struc-
ture, and thus more complex. It is given by following integral expression:

F

[
a− 1, b− 1, d− 1, e− 1, g

c− 1, f − 1, h, j

]
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz xa−1 yb−1 zc−1 (1 − x)d−1

× (1 − y)e−1 (1 − z)f−1 (1 − xy)g (1 − yz)h (1 − xyz)j .

(6.109)

Before going on with the expansion, it is worth to say something about its structure.
We again recognize the kind of poles encountered in the last two examples, where they
occurred at the first and/or second polynomials. In this case, we have a, b and c
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shifted by −1 and thus when taking the limit (a, b, c) → 0 we will have to integrate
1

x y z
with the lower integration limit being zero. This clearly will produce divergencies.

The three poles could be handled exactly as shown in last two examples, since they
are of the same kind. However, we also have the powers d, e and f shifted by −1
which will generate in the limit (d, e, f) → 0 again poles, for we have to integrate the
expression 1

(1−x) (1−y) (1−z)
with upper integration limit one. Those pole will occur thus

at one and not at zero as the other three did. This will surely mix up the pole structure
of the singular piece in a non trivial way. We may help us however with the system
of equations generated for the six–point function, and from there we will deduce the
expansion of the latter function:

F

[
a− 1, b− 1, d− 1, e− 1, g

c− 1, f − 1, h, j

]
=

(a+ d) (c+ f)

a b c d f
+

(a+ d) (d+ e) + d g

a c d e (d+ e+ g)
+

e+ f

a e f (e+ f + h)

+
(d+ e) (e+ f) (d+ e+ f + g) + [(d+ e) (e+ f) + e g] h

d e f (d+ e+ g) (e+ f + h) (d+ e+ f + g + h+ j)

+ O(ε−1) .

(6.110)

We should also notice, that this type of function has the maximal degree of freedom
we can encounter in this case; although the three exponentials g, h, j are not shifted
by negative integers, we haven’t chosen a simplified version, since such a shift would’t
generate any poles as seen from the integral representation: the exponentials g, h, j
belong to the polynomials 1

(1−xy)
, 1

(1−yz)
and respective 1

(1−xyz)
. A possible shift with

negative integers would place the polynomials in the denominator. However, the in-
tegral taken from zero to one over such polynomials stays finite, as can be proven by
means of a simple computation. This involved expansion should conclude the actual
chapter and we shall move to the last topic of this work, the low energy application of
the six–point S–matrix we have treated so far.
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Chapter 7

Reducible diagrams and contact

interactions

Main part of this work was the calculation of the S–matrix involving six open strings
on the disk. We have found this expression and also expanded it in its in α′, as given in
the first part of Appendix E. The S–matrix is written as an infinite power series in the
Mandelstam variables sj, of which we have of course given just a finite part, up to α′4.
This is sofar the analysis of the S–matrix from the string point of view. On the other
hand, when looking at the same matter from the field theory point of view, we will have
to deal with various Feynman diagrams, all of which have six external particles, since
we are dealing with the six–point function, but are of different ”topology”. By that we
mean that there are precisely two types of diagrams: contact diagrams and exchange
diagram. We shall be just interested in the contact diagrams, since only those reveal
new interactions at a given order. Nevertheless we still have to handle the exchange
diagrams, since these are present in the S–matrix, thus we have to separate them from
the others. Since the S–matrix is organized as power series in the momenta, we will
get the information about the type of diagrams exactly from the momentum order and
general shape of each term in the amplitude. To this end, the amplitude formally has
the momentum expansion

A6(k) ∼ k−2 + 0 k0 + ζ(2) k2 + ζ(3) k4 + ζ(4) k6 + O(k8). (7.1)

As we can deduce from upper formula, every order in the momentum is multiplied
by a specific value of the Riemann zeta function, fact which also disentangles the
diagrams, delivering a method of classification. Since we want to compute the Born–
Infeld action at order α′4 and we are going to extract those results from the six–point
function, especially from the terms D4F 4, D2F 5 and F 6, we shall be interested solely in
irreducible diagrams at order α′4, since only those will contain nontrivial information,
i.e. new interaction terms. We will turn our attention thus to the α′4–order of the
S–matrix given in Appendix E. It is worth to mention that the terms D4F 4 and D2F 5

are known from the four–point amplitude respectively from the five–point amplitude.
They represent just higher momentum expansions of the S–matrix, as in our case the

107
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Figure 7.1: General Feynman diagram with n external legs

terms of order α′5, α′6, etc, would be. Thus the corresponding Feynman diagrams can
be extracted from those interactions. However, the term F 6 is uniquely determined by
our six–point function. The terms coming with the momentum powers k−2, k2 and k4

in the six–point matrix, represent reducible diagrams of six gluons interactions. On
the other hand side, the terms beyond the order k6 stand for gluon processes such as
D2F 6, D4F 5 and D6F 4, which are only to be considered when analyzing the order α′5

as explained before for the six–point case.

In order to better understand the terms k6 we shall set up some elementary formulas
concerning field theory diagrams based on dimensional analysis. For that purpose
figure (7.1) may be quite useful. It depicts a very general Feynman diagram with an
indefinite number of external lines N , representing the number of interacting particles.
For sure, we will concentrate on the case N = 6. The shaded surface in the figure
should hide the vertices and eventual propagators if we have a reducible diagram. So
again the number of vertices and internal propagators is indefinite and will be fixed by
reasonable requirements just in short.

Thus, given the general Feynman diagram depicted in (7.1), we shall denote with
P the number of its internal propagators and V k

n the number of vertices Vk
n with n

legs and energy dimension k. The the number N of external particles of that general
Feynman diagram is

N =
∑

n≥3
k≥0

nV k
n − 2P. (7.2)

The sum should start at n = 3, since a vertex cannot have less than three legs.
The factor in of 2 in front of the propagator number P has also a simple explanation:
if we put to vertices together then each vertex will lose exactly one leg and the two
legs will form a propagator. This is why we have to subtract the double number of
Propagators per given number of vertices. A further constraint on the above sum is
our consideration of solely tree–level diagrams, since we have computed our amplitude
on the disk. This comes along with the relation
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P =
∑

n≥3
k≥0

V k
n − 1. (7.3)

We can now plug in the relation from propagator into the relation for external
particles (7.2) and find

N =
∑

n≥3
k≥0

(n− 2) V k
n + 2, (7.4)

noticing that the sum runs over all possible kind of vertices. This is still very
general, we shall impose one more constraint. Since we study six–point interactions on
the disk, the corresponding reducible Feynman diagrams are composed out of vertices
with no more than five legs. Also allowing for contact interactions, we will have vertices
with six legs. Thus the sum (7.4) runs over all vertices with at most six legs. It is
natural to also fix the number of external legs of the whole diagram to six, since we
have computed a six–point amplitude. This further reduces the sum (7.4) to

6 = 2 +
∑

k≥0

(
V k

3 + 2V k
4 + 3V k

5 + 4V k
6

)
. (7.5)

We have arrived now at a simple and useful relation, which we have to fulfil in order
to see which diagrams contribute to our string S–matrix. It turns out that there are
only five ways how we can satisfy equation (7.5). Those are summarized in Table 2.

V k
3 V k

4 V k
5 V k

6 P

a 4 0 0 0 3
b 2 1 0 0 2
c 1 0 1 0 1
d 0 2 0 0 1
e 0 0 0 1 0

Table 2: Number of vertices V k
n to

meet the condition 7.5.

The table thus tells us, we can meet the condition in equation (7.5), for example,
as in case a), by forming one reducible Feynman diagram, consisting of four vertices,
each oh which has three legs. This is just the a–row of the table. In the second case,
case b), we form our Feynman diagram out of two vertices, each with three legs and
one additional vertex with four legs. The other cases are to be read from the table
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Figure 7.2: Reducible Feynman diagrams made up of vertices as described
in cases a), b) and c) in table 7.

similarly. We have also depicted the involved diagrams in their order of appearance in
figures 7.2 and 7.3.

Looking at the vertices in table 7 and at their definition we will notice fast that V 1
3

and V4
4 are the ”usual” Yang–Mills vertices as shown in every book on the subject, e.g.

in [8]. A deeper analysis will also show that there could also be in principle possible
to count the vertices V3

3 , V2
4 and V1

5 . Those vertices are extracted from the term TrF 3.

Figure 7.3: Reducible Feynman diagrams made up of vertices as
described in cases d) and e) in table 7.

But this term is absent in the superstring theory, i.e. the respective amplitude
is zero! Thus also the vertices presented above cannot be extracted out of it and
consequently we cannot use them in building up Feynman diagrams.To conclude, we
list all vertices Vk

n with at most six external legs following from the F n– and DmF n–
terms in the effective action (see Table 1) in Table 3:

1 α′0 F 2 V1
3 V0

4

ζ(2) α′2 F 4 V4
4 V3

5 V2
6

ζ(3) α′3 F 5 V5
5 V4

6

ζ(3) α′3 D2F 4 V6
4 V5

5 V4
6

ζ(4) α′4 F 6 V6
6

ζ(4) α′4 D4F 4 V8
4 V7

5 V6
6

ζ(4) α′4 D2F 5 V7
5 V6

6

ζ(5) α′5 D6F 4 V10
4 V9

5 V8
6

ζ(5) α′5 D2F 6 V8
6

Table 3: Possible vertices Vk
n

with at most six external legs
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We have so far solely analyzed the topology of vertices. i.e. their number of legs,
vertices and internal propagators. Nothing was said about their energy dimension. A
similar computation as last few equation depict, we can done also for the energy. Thus,
given the total energy K

K =
∑

n≥3, k≥0

kV k
n − 2P , (7.6)

and using the relation (7.3) we find

K =
∑

n≥3
k≥0

(k − 2) V k
n + 2 . (7.7)

As stated before we will only be concerned with diagrams of momentum order k6,
which is equivalent to specifying the value of th energy to K = 6. Furthermore, since
we have just one single vertex with three external legs, the notorious vertex from the
Yang–Mills theories, we can pull that one out of the sum, and obtain:

4 = 4 V 6
6 − V 1

3 +
∑

k≥0

(k − 2) V k
4 +

∑

k≥0

(k − 2) V k
5 . (7.8)

The next step is of course to use this energy constraint on equation (7.5) or equiv-
alently on each of the five cases presented in Table 2. This is easily done for the cases
where we have to deal with just one type of diagrams, as the two cases a) and e). So
first to the case a): any Feynman diagram made up of four vertices V1

3 has a total en-
ergy of k−2, because of the various internal propagators which lower the energy. Thus
this case will never fulfil condition (7.8). However, this diagram contributes to the
terms involving the poles in our S–matrix momentum expansion (7.1). On the other
hand, case e) involves one single diagram composed of a V6

6–vertex, meets exactly the
requirements of equation (7.5) and (7.8).

Figure 7.4: Diagram ∼ ζ(4) k6 with one four–vertex V8
4 and two three–vertices V1

3

This should not be surprising since as we have already stressed, this vertex encodes
new interactions in the effective action at order α′4. The next case we should treat is
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case b). Here the conditions on the number of external states and total energy may be
meet choosing V8

4 for the four–vertex. The corresponding diagram is depicted in figure
7.4. Analogously we can go on and determine case c). Here it turns out that we need
V7

5 as our five–vertex. The corresponding diagram is depicted in figure 7.5.

Figure 7.5: Diagram ∼ ζ(4) k6 with one five–vertex V7
5 and one three–vertex V1

3

The last case we should deal with is case d). Here we see that the diagram should
be made up of two vertices of the same topology, namely two vertices of the type V k

4 ,
i.e. with four legs. The energy constraint imposed on the two vertices is of course
K = 8, for the connecting propagator lowers the energy two units. Thus the most
simple possibility is take twice the vertex V4

4 . The corresponding diagram is presented
in figure 7.6.

Figure 7.6: Diagram ∼ ζ(2)2 k6 with two four–vertices V4
4 and one propagator

However this is not the only solution. We can as good as in the last case meet the
energy condition K = 6 when we take one V0

4–vertex and one V8
4–vertex. They again

have a total energy of K = 8 but the connecting propagator lowers the energy with
two units, thus leading to the desired result. This diagram is depicted in figure 7.7.

Figure 7.7: Diagram ∼ ζ(4) k6 with the two four–vertices V0
4 and V8

4
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In order not to lose overview about the facts collected until now, let us summarize
what we have found out about the low energy action, its momentum expansion and
the corresponding Feynman graphs, which reproduce exactly the terms in the action.
When computing the superstring amplitude with six gluons as the external states one
finds the result (7.1). However, this formula depicts the results only partially, since
we have expanded the S–matric in its momenta. This expansion allows us to see more
structure within the result, since we find that each momentum order is multiplied by
a specific value of the Riemann zeta function, which makes it more comfortable to
distinguish between different terms. This string result is now to be matched with the
field theory ansatz. The latter is a non redundant sum of terms of the type DmF n.
Here F denotes the field strength and D the covariant derivative

Fµν = ∂µξν − ∂νξµ + ig[Aµ, Aν ]. (7.9)

Furthermore, we have introduced the coupling constant g and the the commutator
between two polarizations ξ. The latter contain the representation of the lie algebra
for the underling gauge group U(N). The explicit notation can be found in great detail
in Appendix J.

From those terms vertices can be extracted, such that the Feynman graphs made
out of them reproduce the results shown in (7.1). In order to correctly write down the
low energy field ansatz great care is required, since terms of the form DmF n might look
different but still be the same. The techniques of writing such field terms in different
ways are partial integration, the equations of motion, Bianchi identities or the specific
identity

[Dµ, Dν ]Fρσ = −[Fµν , Fρσ], (7.10)

which occurs in non–abelian Yang–Mills theories. Considering those facts only some
of the terms DmF n have to be considered, in our case namely the ones emphasized in
Table 1. They have to be equated with the string matrix giving rise to a system of
linear equations for the coefficients which multiply the terms DmF n. The solution of
this system allows for writing the exact α′4–part of the effective interaction as given
in (3.3). However before being able to do that one has to extract the vertices out of
the terms in the effective action. This is done by just multiplying out the expression
(7.9) and eventually the covariant derivatives. This will lead exactly to the vertices
presented in Table 3. This technique was pioneered in ([98]). Since we are interested
just in the new interactions occurring at order α′4 we will not match the entire string
matrix (7.1) but just the piece of interest, namely the one proportional to k6. This
restriction together with the fixed number of six external particles we want to consider
and some basic deductions from the theory of Feynman graphs will lower the number
of possibilities of diagrams. The possible cases are depicted in Table 2. Fulfilling
those constraints eventually leads to the four type of diagrams presented in the four
pictures above (7.4–7.7) which all have energy dimension K = 6. The four pictures
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exactly depict the cases b, c and d from presented in Table 2. In the last case e) we
have to deal with the vertex V6

6 coming either from the term F 6 or D4F 4. This is
actually the case of interest for us, since it gives rise to new interactions at order α′4.
This information is surely comprised in the S–matrix (7.1). In order to extract that
information we have to look at the part proportional to k6 and subtract from it all
the contributions shown in diagrams (7.4–7.7) such that just the interaction coming
from V6

6 will remain. This is in principle simple but in reality is quite technical work.
With the help of the vertices in Table 3 we have to calculate all diagrams of interest
presented above. This calculation is a pure field calculation. In practice this means
to sum over all permutations of gauge indices both when extracting the vertices from
the terms in Table 1 and when multiplying them to obtain the diagrams. All those
diagrams summed together account for the reducible part of the k6–order in the S–
matrix. The former is then to be subtracted from (7.1) leaving an expression without
any poles and representing exactly the six–point contact interaction following from F 6.



Chapter 8

Conclusion and open problems

This work has been mainly dedicated to the calculation of the six–gluon superstring
interaction on the disk and to the mathematical methods used to tackle this problem.
A new computational method was introduced in order to make this calculation possi-
ble. A very efficient and systematic way was found to compute string disk amplitudes
in general, by equating seemingly different expressions for the same S–matrix. Those
different looking expressions are the result of the world–sheet supersymmetry which
generates a system of non trivial linear equations for the superstring matrix. In more
detail, it is the super diffeomorphism invariance of the string world-sheet which im-
poses strong conditions on the form of the superstring tree–level amplitude; we write
thus the S–matrix in different but fully equivalent ways which delivers us with a sys-
tem of equations whose solution determines the full string S–matrix. These equations
represent algebraic identities between the analytic functions involved in the six–gluon
amplitude, the triple hypergeometric functions. This technique is to be seen as similar
to the one used in loop amplitudes, where again it is the world–sheet supersymmetry
which imposes strong constraints on the S–matrix, this time in form of Riemann iden-
tities between the functions encountered there, the modular forms1. More on Riemann
identities and their application to loop amplitudes in string theory see [103]. Finally
the string S–matrix on the disk, as calculated in this work, is expressed by six triple
hypergeometric functions, which encode the full momentum behavior at every order
α′. The next part of the work concerns the series expansion of those functions, which
is vital for the determination of the effective field action. Thus, in order to extract
the interesting momentum order from the string matrix and thus from those triple
hypergeometric function a powerful mathematical formalism including the treatment
of special functions and sums is developed. The latter helps us to expand those func-
tions in their small parameters, fact which is by far nontrivial for those functions have
also poles in the parameters. However, this problem can be solved by either relating
singular functions to a linear combination of nonsingular ones through the system of
equations, where the poles are factorized in front of the nonsingular functions, or even
directly expand the singular functions with the tools from the mathematical chapter.

1The subject of modular transformation is a very active topic in mathematics. A lot of good
literature can be found about that, e.g. [99], [100], [101],
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In greater detail the latter are a basic but complete introduction to special functions,
beginning with the classical Beta integral, then generalizing this to generalized hyper-
geometric functions and finally introducing Kampé de Fériet and Lauricella functions
which are cosely related to our triple hypergeometric functions. Further the different
representations for the latter functions is studied, where the emphasize is on the series
and integral representation. The former naturally leads to infinite series which have
to be evaluated in order to obtain the series expansion of the desired functions. Those
sums involve harmonic numbers, Euler sums, triple and generalized zeta functions, and
finally the more general triple sums, which are quite complicated and at the same time
are the key to the series expansion of the triple hypergeometric function. Also differ-
ent representations of those series are studied where there is a strong relation between
these and the ones for the functions. Finally we success in expanding the functions
and writing an expanded expression of the S–matrix result. The last part of the work
deals with the field theory in more details. We collect there all the diagrams needed for
the effective action in order to be able to extract exactly the part of the S–matrix we
are interested in. This is a quite logical and straightforward work but very technical
and involved. It is still to be done in future projects.



Part III

Appendices
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Appendix A

Supersymmetry algebra

This section is inserted for the sake of completeness, neither explanations nor deriva-
tions are given. In eq. (A.1) the full algebra of N = 1 supersymmetry in D = 4 can
be contemplated.

[Pm, Pn] = 0

[Mmn, Pp] = i(ηnpPm − ηmpPn)

[Mmn,Mpq] = i(ηmpMnq − ηmqMnp − ηnpMmq + ηnqMmp)

[Pk, R] = 0

[Mmn, R] = 0{
Qα, Q̄α̇

}
= 2σm

αβ̇
Pm

{Qα, Qα} = 0{
Q̄α̇, Q̄β̇

}
= 0

{Qα, Pm} = 0{
Q̄α̇, Pm

}
= 0

{Qα,Mmn} = σ β
mnα Qβ{

Q̄α̇,Mmn

}
= σ̄α̇

mnβ̇
Q̄β̇

{Qα, R} = RQα{
Q̄α̇, R

}
= −RQ̄α̇ (A.1)

The first three rows, as the reader may recognize, represents the Poincaré algebra.
So Pm is just the momentum operator, whereas Mmn is the boost operator. In the next
two lines we introduced some generator R which generates some internal symmetry,
whose commutator with the Poincaré generators is zero.

The rest of the formula is solely concerned with the supersymmetry generators Qα

respectively Q̄α̇. They have non trivial commutation relations with the boost operators
Mmn, the internal symmetry R, and with themselves.

The generalization to higher supersymmetries N > 1 can be made, the algebra
getting slightly more complicated.
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Appendix B

Faddeev–Popov ghosts and

Grassmann variables

In this appendix we follow very nearly the first volume of Polchinski’s book on string
theory [29].

As already explained in section 4.1.3, we have to insert a gauge fixing factor into the
partition function 4.1 in order to make it finite, or equivalently to explicitly evaluate
the formula 4.2. For this purpose we will insert the identity into the path integral,
written as

1 = ∆FP (g)

∫
[dµ] δ(g − ĝµ). (B.1)

Here we formally integrate over all gauge transformations of one metric gµν with
given integration measure dµ. Since the argument of delta functional is a function of
the integration variable, we have to take care of the variable transform and thus insert
the corresponding Jacobian determinant, here denoted ∆FP (g), after its discoverers
Faddeev and Popov.

Since we need an explicit form of the determinant, we shall now derive it, by
looking at some infinitesimal gauge transformations applied near the identity. Thus
the infinitesimal version of (4.7) is

δ gµν = 2 δ ω gµν −∇a δ σb −∇b δ σa

= (2 δ ω −∇c δ σ
c − 2(P δ σ)ab , (B.2)

where in the last line we have converted the infinitesimal transformation by intro-
ducing the operator P as (P δ σ)ab = 1

2
(∇a δ σb + ∇b δ σa − gab ∇c δ σ

c).
We can now formally invert equation (B.1) to obtain

∆FP (ĝ)−1 =

∫
[ dδω dδσ ]δ

[
−(2 δ ω − ∇̂c δ σ

c)ĝ + 2 P̂ δ σ
]

(B.3)
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Here we have split the measure over gauge transformations into a measure for the
Weyl– and one for diffeomorphism transformations. Again we denote by a hat over an
operator Ô the fact that we have made use of just the gauged metric ĝ.

As in the case of delta functions, where we simply can represent δ(t) as an integral
of
∫
dxeixt, we will also introduce here the exponential of β and σ such that the integral

over them will produce a delta functional , which is the desired effect:

∆FP (ĝ)−1 =

∫
[ dδω dβ dδσ ] exp

{
2π i

∫
d2σĝ1/2 βabδ

[
−(2 δ ω − ∇̂c δ σ

c)ĝ + 2 P̂ δ σ
]

ab

}

=

∫
[ dβ ′ dδσ ] exp

{
4π i

∫
d2σĝ1/2 β′ ab(P̂ δ σ)ab

}

(B.4)

The last line of upper equality is established if we integrate over δ ω. This will
impose β to be traceless, since the prime on the beta, for from now on we will solely
integrate over traceless ghosts β.

We might recognize in (B.4) the path continuation of the classical formula

∫
dnx e−π ~x·A· ~x =

1

det(A)
, (B.5)

where ~x is a n–dimensional vector and A a n×n–matrix. We would like now to invert
the right hand side of upper equation and thus end up with the determinant of the
matrix A. We will make for that a trick, and use the Berezin integral over Grassmann
variables. For an explicit introduction to integrals over non commuting variables see
for example the relevant chapters in [12, 29]. Given a set of non commuting variables
θ1, .., θn and a n× n–matrix A we have

∫
dnθ e

~θ·A· ~θ = det(A) . (B.6)

We have formed here an n–vector out of the collection of θ’ s. Exactly as in the
bosonic, we will take the continuum limit of the latter integral and thus be able to
invert the determinant in (B.4). For that we will replace the integration variables β
and δ σ with anticommuting Grassmann variables b and c. However, we would like
to keep those variables as scalars and not as fermionic quantities, thus we will have
anticommuting scalars, which are also known as ”ghosts”. We obtain then immediately

∆FP (ĝ) =

∫
[ db dc ] exp

[
− 1

2π

∫
d2σ ĝ1/2 bab ∇̂a cb

]
=

∫
[ db dc ] e−Sg = det(P̂ ) .

(B.7)

Just a few more words on the Grassmann variables and on their integration: a set
of such variables is defined as
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{φ, χ} = 0 (B.8)

and their integrals (by deeper means of linearity and translational properties) de-
fined as

∫
dφ = 0 ,

∫
dφ φ = −

∫
φ dφ = 1 . (B.9)

Further, every function of only one Grassmann variable φ has a Taylor expansion
liner in that variable, since every higher power vanishes by anticommutativity,

f(φ) = a+ b φ . (B.10)

The last two relations lead us to the integral of a Grassmann valued function, which
is then

∫
dφ f(φ) = b (B.11)

with b the corresponding Taylor coefficient. Taking now the derivative of the func-
tion f(φ) with respect to its Grassmann variable

∂

∂ φ
f(φ) = b (B.12)

we obtain the some unexpected equality, which holds between operators of anti-
commuting variables:

∫
dφ =

∂

∂ φ
. (B.13)

It is now just a matter of time to prove the correctness of (B.6), since the exponential
can be Taylor expanded in an finite number of terms, which can finally be integrated
with the techniques presented above.
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Appendix C

String Wick contractions

B1(a, b, i, j, k, l) = −E
{
zai(ξkki)(ξlki)

z2
abzijzikzil

(
zai

zakzalzij

− zaikikj

zakzalzij

+
kjkk

zalzjk

+
kjkl

zakzjl

)

−(ξkkl)(ξlkj)

z2
abzijzjlzkl

(
zaj(1 − kikj)

zakzij

− kikk

zik

− zalkikl

zakzil

)
+

(ξkki)(ξlkb)

zabzalzblzijzik

(
zai(1 − kikj)

zakzij

+
kjkk

zjk

)

+
(ξkki)(ξlkk)

z2
abzijzikzkl

(
zai(1 − kikj)

zalzij

+
zakkjkk

zalzjk

+
kjkl

zjl

)
+

(ξkkb)(ξlkj)

zabzakzbkzijzjl

(
zaj(1 − kikj)

zalzij

− kikl

zil

)

+
(ξkkj)(ξlki)

z2
abzijzilzjk

(
zaizaj(1 − kikj)

zakzalzij

− zaikikk

zalzik

+
zajkjkl

zakzjk

+
kkkl

zkl

)
+

(ξkkb)(ξlkk)(1 − kikj)

zabzalzbkz2
ijzkl

+
(ξkkj)(ξlkb)

zabzalzblzijzjk

(
zaj(1 − kikj)

zakzij

− kikk

zik

)
+

(ξkkb)(ξlki)

zabzakzbkzijzil

(
zai(1 − kikj)

zalzij

+
kjkl

zjl

)

+
zaj(ξkkj)(ξlkj)

z2
abzijzjkzjl

(
zaj(1 − kikj)

zakzalzij

− kikk

zalzik

+
kikl

zakzil

)
+

(ξkkb)(ξlkb)(1 − kikj)

zakzalzbkzblz2
ij

+
(ξkkj)(ξlkk)

z2
abzijzjkzkl

(
zaj(1 − kikj)

zalzij

− zakkikk

zalzik

− kikl

zil

)
− (ξkkl)(ξlkb)(1 − kikj)

zabzakzblz2
ijzkl

+
(ξkki)(ξlkj)

z2
abzijzikzjl

(
zaizaj(1 − kikj)

zakzalzij

− zaikikl

zakzil

+
zajkjkk

zalzjk

− kkkl

zkl

)

− (ξkkl)(ξlki)

z2
abzijzilzkl

(
zai(1 − kikj)

zakzij

+
kjkk

zjk

+
zalkjkl

zakzjl

)}
,

(C.1)
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B2(a, b, i, j, k, l) = −E
{

(ξkkj)(ξlki)

zabzbjzilzjk

(
zajkikj

zakzalzij

+
kikk

zalzik

− zajkjkl

zaizakzjl

− kkkl

zaizkl

)
(C.2)

+
(ξkkj)(ξlkb)

zaizalzbjzblzjk

(
zajkikj

zakzij

+
kikk

zik

)
+

(ξkkl)(ξlki)

zabzbjzilzkl

(
zalkjkl

zaizakzjl

+
kjkk

zaizjk

− kikj

zakzij

)

+
(ξkkb)(ξlkj)

zaizakzbjzbkzjl

(
zajkikj

zalzij

− kikl

zil

)
+

(ξkki)(ξlki)

zabzbjzikzil

(
zaikikj

zakzalzij

− kjkk

zalzjk

− kjkl

zakzjl

)

+
(ξkkb)(ξlki)

zakzbjzbkzil

(
kikj

zalzij

− kjkl

zaizjl

)
+

(ξkkj)(ξlkj)

zabzaizbjzjkzjl

(
z2

ajkikj

zakzalzij

+
zajkikk

zalzik

+
zajkikl

zakzil

)

− (ξkkl)(ξlkj)

zabzaizbjzjlzkl

(
zajkikj

zakzij

+
kikk

zik

+
zalkikl

zakzil

)
+

(ξkki)(ξlkb)

zalzbjzblzik

(
kikj

zakzij

− kjkk

zaizjk

)

+
(ξkki)(ξlkj)

zabzbjzikzjl

(
zajkikj

zakzalzij

+
kikl

zakzil

− zajkjkk

zaizalzjk

+
kkkl

zaizkl

)
(ξkkb)(ξlkk)

zaizalzbj

kikj

zbkzijzkl

+
(ξkki)(ξlkk)

zabzbjzikzkl

(
kikj

zalzij

− zakkjkk

zaizalzjk

− kjkl

zaizjl

)
+

(ξkkb)(ξlkb)

zaizakzal

zabkikj

zbjzbkzblzij

+
(ξkkj)(ξlkk)

zabzaizbjzjkzkl

(
zajkikj

zalzij

+
zakkikk

zalzik

+
kikl

zil

)
+

(ξkkl)(ξlkb)

zaizakzbj

kikj

zblzijzkl

}

B3(a, i, j, k, b, l) = −E
{

(kjkk − 1)

z2
jk

(
(ξbki)(ξlkb)

zaizalzbizbl

+
(ξbki)(ξlki)

zabzalzbizil

+
(ξbkl)(ξlki)

zabzaizblzil

)

+
(ξbki)(ξlkj)

zabzaizjkzjl

(
(zaj)(kjkk − 1)

zalzbizjk

+
kkkl

zbizkl

)
+

(ξbkk)(ξlki)

zabzbkzilzjk

(
kikj

zalzij

− kjkl

zaizjl

)

+
(ξbkj)(ξlki)

zabzbjzilzjk

(
kkkl

zaizkl

− kikk

zalzik

)
+

(ξbki)(ξlkk)

zabzaizbizkl

(
(zak)(kjkk − 1)

zalzjk

+
kjkl

zjl

)

+
kikj

zaizijzjk

(
(ξbkk)(ξlkb)

zalzbkzbl

+
zak(ξbkk)(ξlkk)

zabzalzbkzkl

+
(ξbkl)(ξlkk)

zabzblzkl

)

− kikk

zaizikzjk

(
(ξbkj)(ξlkb)

zalzbjzbl

+
zaj(ξbkj)(ξlkj)

zabzalzbjzjl

+
(ξbkl)(ξlkj)

zabzblzjl

)

+
(ξbkk)(ξlkj)

zabzaizbkzjkzjl

(
zajkikj

zalzij

+
kikl

zil

)
− (ξbkj)(ξlkk)

zabzaizbjzjkzkl

(
zakkikk

zalzik

+
kikl

zil

) }
,

B4(i, j, k, l, a, b) = − E
zab zij zkl

{
(1 − kkkl)

zkl

(
(ξaki) (ξbkj)

zai zbj

− (ξakj) (ξbki)

zaj zbi

)

+
kikk

zik

(
(ξakj)(ξbkl)

zajzbl

− (ξakl)(ξbkj)

zalzbj

)
+
kikl

zil

(
(ξakk)(ξbkj)

zakzbj

− (ξakj)(ξbkk)

zajzbk

)

+
kjkk

zjk

(
(ξakl)(ξbki)

zalzbi

− (ξaki)(ξbkl)

zaizbl

)
+
kjkl

zjl

(
(ξaki)(ξbkk)

zaizbk

− (ξakk)(ξbki)

zakzbi

)

+
(1 − kikj)

zij

(
(ξakk)(ξbkl)

zakzbl

− (ξakl)(ξbkl)

zalzbk

) }
.

(C.3)
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Further, the three functions C1, C2 and C3 are given

C1(a,b,i,j,k,l) = −E
(ξjkb)(ξkkb)(ξlkb)zab

zaizbjzbkzbl

„

(ξikb)zab
zajzakzalzbi

−
(ξikj)

zakzalzij
−

(ξikk)

zajzalzik
−

(ξikl)

zajzakzil

«

(C.4)

+ (ξjki)(ξkkb)(ξlkb)

zajzbkzblzij

“

(ξikb)zab
zakzalzbi

−
(ξikk)

zalzik
−

(ξikl)

zakzil

”

+
(ξjkb)(ξkki)(ξlkb)

zakzbjzblzik

„

(ξikb)zab
zajzalzbi

−
(ξikj)

zalzij
−

(ξikl)

zajzil

«

+ (ξjkk)(ξkkb)(ξlkb)

zaizbkzblzjk

„

(ξikj)

zalzij
−

(ξikb)zab
zajzalzbi

+
(ξikk)zak
zajzalzik

+
(ξikl)

zajzil

«

+
(ξjki)(ξkki)(ξlkb)zai

zajzakzblzijzik

“

(ξikb)

zalzbi
−

(ξikl)

zabzil

”

+ (ξjkl)(ξkkb)(ξlkb)

zaizbkzblzjl

„

(ξikj)

zakzij
−

(ξikb)zab
zajzakzbi

+
(ξikk)

zajzik
+

(ξikl)zal
zajzak

«

+
(ξjkk)(ξkki)(ξlkb)

zajzblzikzjk

“

(ξikl)

zabzil
−

(ξikb)

zalzbi

”

+ (ξjkl)(ξkki)(ξlkb)

zakzblzikzjl

„

(ξikj)

zabzij
−

(ξikb)

zajzbi
+

(ξikl)zal
zabzajzil

«

+
(ξjkb)(ξkkj)(ξlkb)

zaizbjzblzjk

„

(ξikb)zab
zakzalzbi

−
(ξikj)zaj
zakzalzij

−
(ξikk)

zalzik
−

(ξikl)

zakzil

«

+ (ξjkl)(ξkkj)(ξlkb)

zaizblzjkzjl

„

(ξikj)zaj

zabzakzij
−

(ξikb)

zakzbi
+

(ξikk)

zabzik
+

(ξikl)zal
zabzakzil

«

+
(ξjki)(ξkkb)(ξlki)zai

zajzalzbkzijzil

“

(ξikb)

zakzbi
−

(ξikk)

zabzik

”

+ (ξjkb)(ξkkl)(ξlkb)

zaizbjzblzkl

„

(ξikj)

zakzij
−

(ξikb)zab
zajzakzbi

+
(ξikk)

zajzik
+

(ξikl)zal
zajzakzil

«

+
(ξjki)(ξkkl)(ξlkb)

zajzblzijzkl

“

(ξikk)

zabzik
−

(ξikb)

zakzbi
+

(ξikl)zal
zabzakzil

”

+ (ξjkk)(ξkkl)(ξlkb)

zaizblzjkzkl

„

(ξikb)

zajzbi
−

(ξikj)

zabzij
−

(ξikk)zak
zabzajzik

−
(ξikl)zal
zabzajzil

«

+
(ξjkb)(ξkkb)(ξlki)

zalzbjzbkzil

„

(ξikb)

zajzakzbi
−

(ξikj)

zakzij
−

(ξikk)

zajzik

«

+ (ξjkl)(ξkkl)(ξlkb)zal
zaizblzjlzkl

„

(ξikb)

zajzakzbi
−

(ξikj)

zabzakzij
−

(ξikk)

zabzajzik
−

(ξikl)zal
zabzajzakzil

«

+
(ξjki)(ξkkj)(ξlkb)

zakzblzijzjk

“

(ξikb)

zalzbi
−

(ξikl)

zabzil

”

+ (ξjkk)(ξkkb)(ξlki)

zalzbkzilzjk

„

(ξikj)

zabzij
−

(ξikb)

zajzbi
+

(ξikk)zak
zabzajzik

«

+
(ξjkl)(ξkkb)(ξlki)

zajzbkzilzjl

“

(ξikk)

zabzik
−

(ξikb)

zakzbi

”

+ (ξjkb)(ξkki)(ξlki)zai

zakzalzbjzikzil

„

(ξikb)

zajzbi
−

(ξikj)

zabzij

«

+
(ξikb)(ξjki)(ξkki)(ξlki)z

2
ai

zabzajzakzalzbizijzikzil
−

(ξkki)(ξlki)zai
zabzajzbizikzil

„

(ξikb)(ξjkk)

zalzjk
+

(ξikb)(ξjkl)

zakzjl

«

+ (ξjkb)(ξkkj)(ξlki)

zalzbjzilzjk

„

(ξikb)

zalzbi
−

(ξikj)zaj

zabzakzij
−

(ξikk)

zabzik

«

+
(ξkkj)(ξlki)

zabzakzbizilzjk

„

(ξikb)(ξjki)zai

zalzij
−

(ξikb)(ξjkl)

zjl

«

+ (ξjkb)(ξkkl)(ξlki)

zakzbjzilzkl

„

(ξikj)

zabzij
−

(ξikb)

zajzbi

«

+
(ξkkl)(ξlki)

zabzajzbizilzkl

„

(ξikb)(ξjkk)

zjk
−

(ξikb)(ξjki)zai

zakzij
+

(ξikb)(ξjkl)zal
zakzjl

«

+ (ξjkb)(ξkkb)(ξlkj)

zajzbjzbkzjl

„

(ξikb)zab
zakzalzbi

−
(ξikj)zaj

zakzal
−

(ξikk)

zalzik
−

(ξikl)

zakzil

«

+
(ξjki)(ξkkb)(ξlkj)

zalzbkzijzjl

“

(ξikb)

zakzbi
−

(ξikk)

zabzik

”

+ (ξjkk)(ξkkb)(ξlkj)

zaizbkzjkzjl

„

(ξikj)zaj
zabzalzij

−
(ξikb)

zalzbi
+

(ξikk)zak
zabzalzik

+
(ξikl)

zabzil

«

+
(ξjkb)(ξkki)(ξlkj)

zakzbjzikzjl

„

(ξikb)

zalzbi
−

(ξikj)zaj
zabzalzij

−
(ξikl)

zabzil

«

+ (ξkki)(ξlkj)

zabzalzbizikzjl

„

(ξikb)(ξjki)zai
zakzij

−
(ξikb)(ξjkk)

zjk

«

+
(ξjkb)(ξkkl)(ξlkj)

zaizbjzjlzkl

„

(ξikj)zaj
zabzakzij

−
(ξikb)

zakzbi
+

(ξikk)

zabzik
+

(ξikl)zal
zabzakzil

«

+ (ξjkb)(ξkkj)(ξlkj)zaj

zaizbjzjkzjl

„

(ξikb)

zakzalzbi
−

(ξikj)zaj

zabzakzalzij
−

(ξikk)

zabzalzik
−

(ξikl)

zabzakzil

«

+
(ξikb)(ξjki)(ξkkj)(ξlkj)zaj

zabzakzalzbizijzjkzjl

− (ξikb)(ξjki)(ξkkl)(ξlkj)

zabzakzbizijzjlzkl
+

(ξjkb)(ξkkb)(ξlkk)

zaizbjzbkzkl

„

(ξikb)zab
zajzalzbi

−
(ξikj)

zalzij
−

(ξikk)zak
zajzalzik

−
(ξikl)

zajzil

«

+ (ξjki)(ξkkb)(ξlkk)

zajzbkzijzkl

“

(ξikb)

zalzbi
−

(ξikk)zak
zabzalzik

−
(ξikl)

zabzil

”

+
(ξjkb)(ξkki)(ξlkk)

zalzbjzikzkl

„

(ξikb)

zajzbi
−

(ξikj)

zabzij

«

+ (ξjkk)(ξkkb)(ξlkk)zak
zaizbkzikzkl

„

(ξikj)

zabzalzij
−

(ξikb)

zajzalzbi
+

(ξikk)zak
zabzajzalzik

+
(ξikl)

zabzajzil

«

−
(ξikb)(ξjkl)(ξkki)(ξlkj)

zabzajzbizikzjlzkl

+ (ξjkl)(ξkkb)(ξlkk)

zaizbkzjlzkl

„

(ξikj)

zabzij
−

(ξikb)

zajzbi
+

(ξikk)zak
zabzajzik

+
(ξikl)zal
zabzajzil

«

+
(ξikb)(ξkki)(ξlkk)

zabzajzalzbizikzkl

„

(ξjki)zai
zij

−
(ξjkk)zak

zjk

«

+ (ξjkb)(ξkkj)(ξlkk)

zaizbjzjkzkl

„

(ξikb)

zalzbi
−

(ξikj)zaj
zabzalzij

−
(ξikk)zak
zabzalzik

−
(ξikl)

zabzil

«

+
(ξikb)(ξjki)(ξkkj)(ξlkk)

zabzalzbizijzjkzkl
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(ξkkb)(ξlkb)zab
zaizajzbizbkzbl

„

(ξbki)(ξjkl)

zakzjl
+

(ξbki)(ξjkk)

zalzjk
−

(ξbki)(ξjkb)zab
zakzalzbj

«

+ (ξjkl)(ξkki)(ξlkb)

zajzblzikzjl

“

(ξbki)

zakzbi
+

(ξbkk)

zaizbk

”

+
(ξbki)(ξkkl)(ξlkb)

zaizajzbizblzkl

„

(ξjkb)zab
zakzbj

−
(ξjkk)

zjk
−

(ξjkl)

zakzjl

«

− (ξkki)(ξlkb)

zalzblzik

„

(ξbki)(ξjkb)zab
zajzakzbizbj

+
(ξbkk)(ξjkb)zab

zaizajzbjzbk
+

(ξbki)(ξjki)zai
zajzakzbizij

+
(ξbkj)(ξjki)

zbjzij
+

(ξbkk)(ξjki)

zajzbkzij

«

+ (ξjkk)(ξkki)(ξlkb)

zblzikzjk

„

(ξbki)

zajzalzbi
+

(ξbkj)

zaizalzbj
+

(ξbkk)zak
zaizajzalzbk

«

+
(ξjki)(ξkkl)(ξlkb)

zakzblzijzkl

„

(ξbki)

zajzbi
+

(ξbkj)

zaizbj

«

− (ξjki)(ξkkb)(ξlkb)zab
zakzalzbkzblzij

„

(ξbki)

zajzbi
+

(ξbkj)

zaizbj

«

−
(ξjki)(ξkkj)(ξlkb)

zalzblzijzjk

„

(ξbki)

zakzbi
+

(ξbkj)zaj
zaizakzbj

+
(ξbkk)

zaizbk

«

− (ξjkb)(ξkkb)(ξlki)zab
zajzakzbjzbkzil

“

(ξbki)

zalzbi
+

(ξbkl)

zaizbl

”

+
(ξjkb)(ξkkl)(ξlki)

zajzbjzilzkl

“

(ξbki)

zakzbi
+

(ξbkk)

zaizbk
+

(ξbkl)zal
zaizakzbl

”

− (ξjki)(ξkkb)(ξlki)

zakzbkzijzil

„

(ξbki)zai
zajzalzbi

+
(ξbkj)

zalzbjzil
+

(ξbkl)

zajzblzil

«

+
(ξjkk)(ξkkb)(ξlki)

zajzbkzilzjk

“

(ξbki)

zalzbi
+

(ξbkl)

zaizbl

”

+ (ξjkl)(ξkkb)(ξlki)

zakzbkzilzjl

„

(ξbki)

zajzbi
+

(ξbkj)

zaizbj
+

(ξbkl)zal
zaizajzbl

«

−
(ξjkb)(ξkkj)(ξlki)

zakzbjzilzjk

“

(ξbki)

zalzbi
+

(ξbkl)

zaizbl

”

− (ξjkb)(ξkki)(ξlki)

zajzbjzikzil

“

(ξbki)zai
zakzalzbi

+
(ξbkk)

zalzbk
+

(ξbkl)

zakzbl

”

+
(ξbki)(ξkkj)(ξlkb)

zaizakzbizblzjk

„

(ξjkl)

zjl
−

(ξjkb)zab
zalzbj

«

− (ξjki)(ξkki)(ξlki)zai
zabzijzikzil

„

(ξbki)zai
zajzakzalzbi

+
(ξbkj)

zakzalzbj
+

(ξbkk)

zajzalzbk
+

(ξbkl)

zajzakzbl

«

+ (ξjkk)(ξkki)(ξlki)

zabzikzilzjk

„

(ξbki)zai
zajzalzbi

+
(ξbkj)

zalzbj
+

(ξbkk)zak
zajzalzbk

+
(ξbkl)

zajzbl

«

+
(ξbki)(ξjkk)(ξkkb)(ξlkj)

zaizalzbizbkzjkzjl

+ (ξjkl)(ξkki)(ξlki)

zajzikzilzjl

„

(ξbki)zai
zajzakzbi

+
(ξbkj)

zakzbj
+

(ξbkk)

zajzbk
+

(ξbkl)zal
zajzakzbl

«

−
(ξbki)(ξjkb)(ξkkb)(ξlkj)zab

zaizakzalzbizbjzbkzjl

− (ξjki)(ξkkj)(ξlki)

zabzijzilzjk

„

(ξbki)zai
zakzalzbi

+
(ξbkj)zaj

zakzalzbj
+

(ξbkk)

zalzbk
+

(ξbkl)

zakzbl

«

−
(ξbki)(ξjkb)(ξkkj)(ξlkj)zaj

zaizakzalzbizbjzjkzjl

+ (ξjkl)(ξkkj)(ξlki)

zabzilzjkzjl

„

(ξbki)

zakzbi
+

(ξbkj)zaj
zaizakzbj

+
(ξbkk)

zaizbk
+

(ξbkl)zal
zaizakzbl

«

+
(ξbki)(ξjkb)(ξkkl)(ξlkj)

zaizakzbizbjzjlzkl

+ (ξjki)(ξkkl)(ξlki)

zabzijzilzkl

„

(ξbki)zai
zajzakzbi

+
(ξbkj)

zakzbj
+

(ξbkk)

zajzbk
+

(ξbkl)zal
zajzakzbl

«

−
(ξbki)(ξjkb)(ξkkb)(ξlkk)zab

zaizajzalzbizbjzbkzkl

− (ξjkk)(ξkkl)(ξlki)

zabzilzjkzkl

„

(ξbki)

zajzbi
+

(ξbkj)

zaizbj
+

(ξbkk)zak
zaizajzbk

+
(ξbkl)zal
zaizajzbl

«

+
(ξbki)(ξjkk)(ξkkb)(ξlkk)zak

zaizajzalzbizbkzjkzkl

− (ξjkl)(ξkkl)(ξlki)zal
zabzilzjlzkl

„

(ξbki)

zajzakzbi
+

(ξbkj)

zaizakzbj
+

(ξbkk)

zaizajzbk
+

(ξbkl)zal
zaizajzakzbl

«

− (ξjki)(ξkkb)(ξlkj)

zakzbkzijzjl

„

(ξbki)

zalzbi
+

(ξbkj)zaj
zaizalzbj

+
(ξbkl)

zaizbl

«

−
(ξjkb)(ξkki)(ξlkj)

zalzbjzikzjl

“

(ξbki)

zakzbi
+

(ξbkk)

zaizbk

”

− (ξjki)(ξkki)(ξlkj)

zabzijzikzjl

„

(ξbki)zai
zakzalzbi

+
(ξbkj)zaj

zakzalzbj
+

(ξbkk)

zalzbk
+

(ξbkl)

zakzbl

«

+
(ξbki)(ξjkl)(ξkkb)(ξlkk)

zaizajzbizbkzjlzkl

+ (ξjkk)(ξkki)(ξlkj)

zabzikzjkzjl

„

(ξbki)

zalzbi
+

(ξbkj)zaj
zaizalzbj

+
(ξbkk)zak
zaizalzbk

+
(ξbkl)

zaizbl

«

−
(ξbki)(ξjki)(ξkkj)(ξlkk)

zabzalzbizijzjkzkl

− (ξjki)(ξkkj)(ξlkj)zaj
zabzijzjkzjl

„

(ξbki)

zakzalzbi
+

(ξbkj)zaj
zaizakzalzbj

+
(ξbkk)

zaizalzbk
+

(ξbkl)

zaizakzbl

«

+ (ξjki)(ξkkl)(ξlkj)

zabzijzjlzkl

„

(ξbki)

zakzbi
+

(ξbkj)zaj
zaizakzbj

+
(ξbkk)

zaizbk
+

(ξbkl)

zaizakzbl

«

−
(ξbkj)(ξjki)(ξkkj)(ξlkk)

zabzaizalzbjzijzjkzkl

− (ξjki)(ξkkb)(ξlkk)

zalzbkzijzkl

„

(ξbki)

zajzbi
+

(ξbkj)

zaizbj

«

−
(ξbki)(ξjkb)(ξkkj)(ξlkk)

zaizalzbizbjzjkzkl

− (ξjkb)(ξkki)(ξlkk)

zajzbjzikzkl

“

(ξbki)

zalzbi
+

(ξbkk)zak
zaizalzbk

+
(ξbkl)

zaizbl

”

−
(ξbkk)(ξjki)(ξkkj)(ξlkk)

zabzaizalzbkzijzjkzkl

− (ξjki)(ξkki)(ξlkk)

zabzijzikzkl

„

(ξbki)zai
zajzalzbi

+
(ξbkj)

zalzbj
+

(ξbkk)zak
zajzalzbk

+
(ξbkl)

zajzbl

«

−
(ξbkl)(ξjki)(ξkkj)(ξlkk)

zabzaizblzijzjkzkl

+ (ξjkk)(ξkki)(ξlkk)zak
zabzikzjkzkl

„

(ξbki)zaj
zalzbi

+
(ξbkj)

zaizalzbj
+

(ξbkk)zak
zaizajzalzbk

+
(ξbkl)

zaizajzbl

«

+ (ξjkl)(ξkki)(ξlkk)

zabzikzjlzkl

„

(ξbki)

zajzbi
+

(ξbkj)

zaizbj
+

(ξbkk)zak
zaizajzbk

+
(ξbkl)zal
zaizajzbl

«

, (C.5)
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(ξaki)(ξbkj)(ξkkb)(ξlkb)zab
zaizakzalzbjzbkzbl

+
(ξakj)(ξbki)(ξkkb)(ξlkb)zab

zajzakzalzbizbkzbl

−
(ξakj)(ξbki)(ξkki)(ξlkb)zai

zajzakzalzbizblzik
−

(ξakj)(ξbkk)(ξkki)(ξlkb)

zajzalzbkzblzik
+

(ξaki+ξakk)(ξbkj)(ξkki)(ξlkb)

zalzbjzblzik

−
(ξakj+ξakk)(ξbki)(ξkkj)(ξlkb)

zakzalzbizblzjk
+

(ξaki)(ξbkj)(ξkkj)(ξlkb)zaj
zaizakzalzbjzblzjk

+
(ξaki)(ξbkk)(ξkkj)(ξlkb)

zaizalzbkzblzjk

+
(ξakj)(ξbki)(ξkkl)(ξlkb)

zajzakzbizblzkl
+

(ξaki)(ξbkj)(ξkkl)(ξlkb)

zaizakzbjzblzkl
+

(ξaki+ξakk)(ξbkj)(ξkkb)(ξlki)

zakzalzbjzbkzil

−
(ξakj)(ξbkl)(ξkkb)(ξlki)

zajzakzbkzblzil
+

(ξkki)(ξlki)zai
zabzakzalzikzil

„

1
zbj

−
zai

zajzbi

«

−
(ξakj)(ξbki)(ξkkb)(ξlki)zai

zajzakzalzbizbkzil

+
(ξakk+ξakl)(ξbkj)(ξkki)(ξlki)zai

zabzakzalzbjzikzil
−

(ξakj)(ξkki)(ξlki)zai
zabzajzikzil

“

ξbkk
zalzbk

+
ξbkl

zakzbl

”

−
(ξakj+ξakk)(ξbki)(ξkkj)(ξlki)zai

zabzakzalzbizilzjk
+

(ξaki+ξakl)(ξbkj)(ξkkj)(ξlki)zaj
zabzakzalzbjzilzjk

+
(ξaki+ξakl)(ξbkk)(ξkkj)(ξlki)

zabzalzbkzilzjk
−

(ξakj+ξakk)(ξbkl)(ξkkj)(ξlki)

zabzakzblzilzjk
−

(ξakj)(ξbki)(ξkki)(ξlkk)zai

zabzajzalzbizikzkl

+
(ξakj)(ξbki)(ξkkl)(ξlki)zai

zabzajzakzbizilzkl
−

(ξaki+ξakk+ξakl)(ξbkj)(ξkkl)(ξlki)

zabzakzbjzilzkl

+
(ξakj)(ξkkl)(ξlki)

zabzajzilzkl

“

ξbkk
zbk

+
ξbkl

zakzbl

”

+
(ξkkb)(ξlkj)

zaizakzbkzjl

„

(ξaki)(ξbkj)zaj

zalzbj
+

(ξaki)(ξbkl)

zbl

«

−
(ξakj+ξakl)(ξbki)(ξkkb)(ξlkj)

zakzalzbizbkzjl
+

(ξaki)(ξlkj)zaj

zabzaizakzjl

„

(ξbkl)(ξkkj)zbl
zjk

−
(ξbkj)(ξkkl)

zbjzkl

«

+
(ξkki)(ξlkj)

zabzakzalzikzjl

„

(ξaki)(ξbkj)zaj
zbj

−
(ξakl)(ξbki)zai

zbi
−

(ξakj)(ξbki)zai

zbi

«

,

+
(ξkki)(ξlkj)

zabzikzjl

„

(ξakk)(ξbkj)zaj
zakzalzbj

−
(ξakj)(ξbkk)

zalzbk
−

(ξakl)(ξbkk)

zalzbk
+

(ξaki)(ξbkl)

zakzbl
+

(ξakk)(ξbkl)

zakzbl

«

+
(ξbki)(ξkkl)(ξlkj)

zabzakzbizjlzkl
((ξakj)+(ξakk)+(ξakl))−

(ξaki)(ξkkl)(ξlkj)

zabzaizjlzkl

“

ξbkk
zbk

+
(ξbkl)zal

zakzbl

”

+
(ξkkj)(ξlkj)zaj

zabzalzjkzjl

„

(ξaki)(ξbkk)

zbk
+

(ξaki)(ξbkj)zaj

zaizakzbj
−

(ξakl)(ξbki)

zakzbi
−

(ξakk)(ξbki)

zakzbi
−

(ξakj)(ξbki)

zakzbi

«

+
(ξkkb)(ξlkk)

zalzbkzkl

„

(ξaki)(ξbkj)

zaizbj
−

(ξakj)(ξbki)

zajzbi

«

+
(ξbkj)(ξkki)(ξlkk)

zabzalzbjzikzkl
((ξaki)+(ξakk)+(ξakl))

−
(ξakj)(ξkki)(ξlkk)

zabzajzikzkl

“

(ξbkk)zak
zalzbk

+
(ξbkl)

zbl

”

−
(ξbki)(ξkkj)(ξlkk)

zabzalzbizjkzkl
((ξakj)+(ξakk)+(ξakl))

+
(ξaki)(ξkkj)(ξlkk)

zabzaizjkzkl

„

(ξbkj)zaj
zalzbj

+
(ξbkk)zak

zalzbk
+

(ξbkl)

zbl

«ff

. (C.6)
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Appendix D

B– and C–equations

This appendix concerns with explaining how the system of equations will be created
in case of the kinematics given in the titles of the respective sections.

D.1 Kinematics (ξξ) (ξξ) (ξk) (ξk)

This type of combination of polarizations and momentum vectors has 1
2

(
6
4

) (
4
2

)
× 42 =

45 × 16 representants, calculation being again based on combinatorial reasons. All of
those are multiplied by the Bj–functions introduced in (C.1) and (C.2). Again the
difference between them, is the manner in which the polarization vectors coming from
the (−1)–ghost picture operators are contracted with the other ones. More precisely,
the Bj–functions multiplied by their respective kinematics look like:

Bπ
2 (a, b, i, j, k, l) (ξaξb) (ξiξj) → (ξaξb) (ξiξj) (ξkkr) (ξlks) ,

Bπ
1 (a, b, i, j, k, l) (ξaξi) (ξbξj) → (ξaξi) (ξbξj) (ξkkr) (ξlks) ,

Bπ
3 (a, i, j, k, b, l) (ξaξi) (ξjξk) → (ξaξi) (ξjξk) (ξbkr) (ξlks) ,

Bπ
4 (i, j, k, l, a, b) (ξiξj) (ξkξl) → (ξiξj) (ξkξl) (ξakr) (ξbks) . (D.1)

By the argument of completeness, i.e. considering that again, each kinematic of the
type (ξξ) (ξξ) (ξk) (ξk) occurs exactly once with each function Bj, and considering all
the non–symmetric possibilities of distributing the (−1)–ghost picture over the vertices,
we get

(
6
2

)
equations which are given in

Bπ
2 (A,B,C,D,E, F ) , Bπ

2 (C,D,A,B,E, F ) , Bπ
1 (A,C,B,D,E, F ) ,

Bπ
1 (A,D,B,C,E, F ) , Bπ

1 (B,C,A,D,E, F ) , Bπ
1 (B,D,A,C,E, F ) ,

Bπ
3 (A,B,C,D,E, F ) , Bπ

3 (B,A,C,D,E, F ) , Bπ
3 (C,D,A,B,E, F ) ,

Bπ
3 (D,C,A,B,E, F ) , Bπ

3 (A,B,C,D, F,E) , Bπ
3 (B,A,C,D, F,E) ,

Bπ
3 (C,D,A,B, F,E) , Bπ

3 (D,C,A,B, F,E) , Bπ
4 (A,B,C,D,E, F ) . (D.2)
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From that system we obtain again 14 equations. Moreover, since we also have
the contractions ξEk and ξFk (which are included in the B–functions), of which we
have 4 × 4 = 16 on–shell, we obtain a total of 14 × 16 = 224 equations for that
given kinematics. Hence in total, after taking into account all B–kinematics we obtain
45×224 = 10, 080 non–trivial relations, of which many might turn out to be the same.
In fact, the length of the set boils down to 5, 464.

D.2 Kinematics (ξξ) (ξk) (ξk) (ξk) (ξk)

In this special case, we have
(

6
2

)
× 44 = 15 × 256 possibilities of combinations, which

are multiplied by the three functions C1, C2, C3, given in (C.3,C.4,C.5,C.6).
Considering how the polarizations from different ghost pictures can be contracted

we arrive at

Cπ
1 (a, b, i, j, k, l) (ξaξb) → (ξaξb) (ξik) (ξjk) (ξkk) (ξlk) ,

Cπ
2 (a, i, b, j, k, l) (ξaξi) → (ξaξi) (ξbk) (ξjk) (ξkk) (ξlk) ,

Cπ
3 (i, j, a, b, k, l) (ξiξj) → (ξiξj) (ξak) (ξbk) (ξkk) (ξlk) . (D.3)

We have 15 different expressions for each given kinematics, those expressions being
given here:

Cπ
1 (A,B,C,D,E, F ) , Cπ

2 (A,B,C,D,E, F ) , Cπ
2 (A,B,D,C,E, F ) ,

Cπ
2 (A,B,E,C,D, F ) , Cπ

2 (A,B, F, C,D,E) , Cπ
2 (B,A,C,D,E, F ) ,

Cπ
2 (B,A,D,C,E, F ) , Cπ

2 (B,A,E,C,D, F ) , Cπ
2 (B,A, F, C,D,E) ,

Cπ
3 (A,B,C,D,E, F ) , Cπ

3 (A,B,C,E, ,D, F ) , Cπ
3 (A,B,C, F,D,E) ,

Cπ
3 (A,B,D,E,C, F ) , Cπ

3 (A,B,D, F, C,E) , Cπ
3 (A,B,E, F, C,D) . (D.4)

They give rise to 14 equations for each kinematics under consideration. More
precisely, since the functions Cj contain the contractions ξCk, ξDk, ξEk and ξFk, of
which we have 44 = 256 on–shell, we obtain a total of 14 × 256 = 3, 584 equations.
Hence in total, after taking into account all C–kinematics we end up with 15×3, 584 =
53, 760 non–trivial relations, of which many are the same. In fact, the length of the
set boils down to 6, 727. From the structure of the functions Ci, namely that they
do not involve self–contracted momenta, we deduce, that all those relations lead to
polynomial identities.



Appendix E

Momentum expansion of selected

S–matrix kinematics

E.1 Kinematics (ξξ) (ξξ) (ξξ)

We are able to list here the full homogeneous kinematics, since as shown in 5.22 those
five kinematics are the generators of the full A–system. This way, it will suffice to just
list the five kinematics Ξ1, Ξ2, Ξ5, Ξ7, and Ξ8, the rest being easily recoverable from
those by permutation of the indices.

Ξ1

{
− s9s2

s1s3s5

− s2

s1s3

+
s2

s1s5

+
s2

s3s5

− s2

s1s7

− s4s2

s1s5s7

− s6s2

s3s5s8

− s2

s3s8

+
s4

s1s3

+
s6

s1s3

− s6

s1s5

+
s6

s3s5

− s6s7

s1s3s5

− s7

s1s5

+
s7s8

s1s3s5

− s4s8

s1s3s5

− s8

s3s5

+
s7s9

s1s3s5

+
s8s9

s1s3s5

− s9

s1s3

+
1

s1

+
1

s3

+
s4

s1s5

− s4

s3s5

+
1

s5

− s4

s5s7

− 1

s7

− s6

s5s8

− 1

s8

− s4

s3s9

− s4s6

s1s3s9

− s6

s1s9

− 1

s9

+

(
s2
2

s7

− s2
2

s5

+
s4s

2
2

s5s7

+
s6s

2
2

s5s8

+
s2
2

s8

+
s2
9s2

s1s3

+
s3s2

s1

− s4s2

s1

− s5s2

s1

− s5s2

s3

− s6s2

s3

+
s1s6s2

s3s5

− s6s2

s5

+
s7s2

s1

− s3s7s2

s1s5

+
s8s2

s3

− s1s8s2

s3s5

+
s5s9s2

s1s3

+
s7s9s2

s1s5

+
s8s9s2

s3s5

− s9s2

s1

− s9s2

s3

− s9s2

s5

+
s1s2

s3

+
s3s4s2

s1s5

− s4s2

s5

+
s2
4s2

s1s7

+
s1s2

s7

+
s4s5s2

s1s7

+
s1s4s2

s5s7

+
s2
6s2

s3s8

+
s3s2

s8

+
s5s6s2

s3s8

+
s3s6s2

s5s8

− 2s2 −
s2
4

s1

− s2
6

s3

+
s6s

2
7

s1s5

+
s3s

2
7

s1s5

− s7s
2
8

s3s5

+
s4s

2
8

s3s5

+
s1s

2
8

s3s5

+
s5s

2
9

s1s3

− s7s
2
9

s1s3

− s8s
2
9

s1s3

− s1s4

s3

− 2s4 +
s4s5

s3

− s3s6

s1

− s4s6

s1

− s4s6

s3

+
s4s5s6

s1s3

+
s5s6

s1

+
s1s6

s5

− s3s6

s5

− 2s6 −
s3s7

s1

− s6s7

s1

− s6s7

s3

+
s3s6s7

s1s5

− s6s7

s5

− s3s7

s5

− s3s4s7

s1s5

+
s4s7

s5

−

(E.1)
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− s2
7s8

s1s5

− s4s8

s1

− s4s8

s3

− s1s6s8

s3s5

+
s6s8

s5

+
s6s7s8

s3s5

+
s7s8

s1

+
s7s8

s3

+
s4s7s8

s1s5

+
2s7s8

s5

− s1s8

s3

− s1s8

s5

+
s1s4s8

s3s5

− s4s8

s5

− s2
7s9

s1s5

− s2
8s9

s3s5

+
s4s9

s3

− s4s5s9

s1s3

− s5s9

s1

− s5s9

s3

− s5s6s9

s1s3

+
s6s9

s1

+
s6s7s9

s1s3

+
2s7s9

s1

+
s7s9

s3

+
s7s9

s5

+
s4s8s9

s1s3

− s7s8s9

s1s3

− s7s8s9

s1s5

− s7s8s9

s3s5

+
s8s9

s1

+
2s8s9

s3

+
s8s9

s5

− s1s4

s5

+
s3s4

s5

+
s2
4

s7

+
s4s5

s7

+
s2
6

s8

+
s5s6

s8

+
s2
4

s9

+
s4s

2
6

s3s9

+
s2
6

s9

+
s3s4

s9

+
s2
4s6

s1s9

+
s1s6

s9

+
s3s4s6

s1s9

+
s1s4s6

s3s9

)
ζ(2)

}
+

+ Ξ2

{
s2

s1s7

− 1

s1

+
1

s7

+
s6

s1s9

+
1

s9

+

(
−s

2
2

s7

− s3s2

s1

+
s5s2

s1

− s1s2

s7

− s4s5s2

s1s7

+ s2 + s1 + s4 +
s3s6

s1

− s5s6

s1

+ s6 +
s3s7

s1

−s7 +
s4s8

s1

− s7s8

s1

+
s5s9

s1

− s8s9

s1

− s9 −
s4s5

s7

− s2
6

s9

− s3s4

s9

− s1s6

s9

− s3s4s6

s1s9

)
ζ(2)

}

+ Ξ5

{
− 1

s7

+

(
s2s1

s7

− s1 − s2 − s4 − s5 + s7 + s8 + s9 +
s4s5

s7

)
ζ(2)

}

+ Ξ7

{
− s1

s2s7

− s4s1

s2s5s7

+
s9

s2s5

+
1

s2

+
1

s5

− s4

s5s7

− 1

s7

− s3

s2s8

− s3s6

s2s5s8

− s6

s5s8

− 1

s8

+

[
s4s

2
1

s5s7

+
s2
1

s7

− s4s1

s2

+
s6s1

s2

+
s6s1

s5

+
s4s8s1

s2s5

− s8s1

s5

− s9s1

s5

+
s3s1

s5

− s4s1

s5

+
s2
4s1

s2s7

+
s2s1

s7

+
s4s5s1

s2s7

+
s2s4s1

s5s7

− s1 − s2 − s3 +
s3s4

s2

− s4 − s5 −
s3s6

s2

+
s4s6

s2

− s3s6

s5

− s6

− s6s7

s2

+
s3s6s7

s2s5

− s3s7

s5

+ s7 −
s4s8

s2

+ s8 −
s4s9

s2

− s5s9

s2

− s6s9

s2

+
s7s9

s2

+
s7s9

s5

− s7s8s9

s2s5

+
s8s9

s2

+
s8s9

s5

− s2s9

s5

− s3s9

s5

+
s3s4

s5

+
s2
4

s7

+
s4s5

s7

+
s2
3

s8

+
s3s

2
6

s2s8

+
s2
6

s8

+
s2s3

s8

+
s3s5s6

s2s8

+
s5s6

s8

+
s2
3s6

s5s8

+
s2s3s6

s5s8

]
ζ(2)

}

+ Ξ8 (s1 + s2 + s3 + s4 + s5 + s6 − s7 − s8 − s9) ζ(2) + O(k4).
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E.2 Kinematics (ξξ) (ξξ) (ξk) (ξk)

The B–kinematics are again very numerous, thus we will just list some representatives
of it:

(ξ1ξ2)(ξ3ξ4)(ξ5k2)(ξ6k1)

×
{
− s2

s3s5s8

− s2

s3s6s8

− s7

s1s3s5

+
1

s1s3

− 1

s1s5

+
1

s3s5

+
1

s3s6

− 1

s5s8

− 1

s6s8

− s4

s1s3s9

− 1

s1s9

− s4

s3s6s9

− 1

s6s9

+

(
s2
2

s5s8

+
s2
2

s6s8

+
s9s2

s3s6

− s2

s3

+
s1s2

s3s5

− s2

s5

− s2

s6

+
s5s2

s3s8

+
s6s2

s3s8

+
s3s2

s5s8

+
s3s2

s6s8

+
s2
7

s1s5

− s3

s1

− s4

s1

− s4

s3

+
s4s5

s1s3

+
s5

s1

− s6

s3

− s7

s1

− s7

s3

+
s3s7

s1s5

− s7

s5

+
s7s8

s3s5

− s1s8

s3s5

+
s8

s5

+
s4s8

s3s6

+
s8

s6

− s5s9

s1s3

+
s7s9

s1s3

− s8s9

s3s6

+
s9

s1

+
s9

s6

+
s1

s5

− s3

s5

− s3

s6

− s4

s6

+
s5

s8

+
s6

s8

+
s2
4

s1s9

+
s1

s9

+
s3s4

s1s9

+
s1s4

s3s9

+
s4s6

s3s9

+
s6

s9

+
s2
4

s6s9

+
s3s4

s6s9

− 2

)
ζ(2)

+

(
− s3

2

s5s8

− s3
2

s6s8

− 2s3s
2
2

s5s8

− 2s3s
2
2

s6s8

− s2
9s2

s3s6

+
3s7s2

s5

+
s8s2

s3

− s1s8s2

s3s5

+
s8s2

s5

+
s8s2

s6

− s8s9s2

s3s6

+
s9s2

s3

− s9s2

s6

+
s1s2

s3

− s1s2

s5

+
2s3s2

s5

− s2
1s2

s3s5

+
2s3s2

s6

+
3s4s2

s6

− s2
5s2

s3s8

− s2
6s2

s3s8

− 2s5s6s2

s3s8

− s2
3s2

s5s8

− s2
3s2

s6s8

− 2s2 −
s3
7

s1s5

+
s2
3

s1

− s4s
2
5

s1s3

− s2
5

s1

+
s2
6

s3

− 2s3s
2
7

s1s5

− s7s
2
8

s3s5

+
s1s

2
8

s3s5

− s2
8

s5

− s4s
2
8

s3s6

− s2
8

s6

+
s5s

2
9

s1s3

− s7s
2
9

s1s3

+
s8s

2
9

s3s6

− s2
9

s1

− s2
9

s6

+ s1 − 2s3 +
2s3s4

s1

− 2s4 −
s4s5

s1

+
s4s5

s3

− s1s5

s3

+ s5 + 2s6 +
2s3s7

s1

+
3s4s7

s1

+
s5s7

s1

+
s5s7

s3

+
2s6s7

s3

+
s1s7

s3

− s2
3s7

s1s5

+
s1s7

s5

+
2s3s7

s5

+ s7 +
s4s8

s3

− s1s7s8

s3s5

− s7s8

s5

− s1s8

s5

+
s2
1s8

s3s5

− s4s8

s6

+ 2s8 +
s2
5s9

s1s3

+
s2
8s9

s3s6

+
s4s9

s1

+
s4s9

s3

− s4s5s9

s1s3

− s5s9

s1

− s5s7s9

s1s3

− s7s9

s1

− s8s9

s3

− s4s8s9

s3s6

− s8s9

s6

+
s4s9

s6

+ 2s9 −
s2
1

s5

+
s2
3

s5

+
s2
3

s6

+
2s3s4

s6

− s2
5

s8

− s2
6

s8

− 2s5s6

s8

− s3
4

s1s9

− s2
1

s9

− 2s3s
2
4

s1s9

− s4s
2
6

s3s9

− s2
6

s9

− s2
3s4

s1s9

− s2
1s4

s3s9

− 2s1s6

s9

− 2s1s4s6

s3s9

− s3
4

s6s9

− 2s3s
2
4

s6s9

− s2
3s4

s6s9

)
ζ(3)

}
+ O(k6) . (E.2)
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Appendix F

Some more useful evaluated series

We list in this Appendix, without proving, some more series which we shall need when
expanding the 3F2 hypergeometric function. Its relevance is given by its occurrence in
the five–point tree amplitude. Thus, every five–point process on the disk, independent
of the external states inserted on the world–sheet and of the brane setup is described
by the function 3F2. Thus the sums involved in its parameter series expansion are:

(i)
∞∑

n=0

1

(n+ 1)(n+ 2)
ψ(1)(n+ 1) = 1 ,

(ii)
∞∑

n=0

1

(n+ 1)(n+ 2)
ψ(1)(n+ 2) = ζ(2) − ζ(3) ,

(iii)
∞∑

n=0

1

(n+ 1)(n+ 2)
ψ(1)(n+ 3) = −3 + 2 ζ(2) ,

(iv)
∞∑

n=0

1

(n+ 1)(n+ 2)
Hn+1 ψ(n+ 1) = (1 − γE) ζ(2) + ζ(3) ,

(v)
∞∑

n=0

1

(n+ 1)(n+ 2)
Hn+2 ψ(n+ 1) = 3 − 2 γE ,

(vi)
∞∑

n=0

1

(n+ 1)(n+ 2)
Hn+2 ψ(n+ 2) = −2 γE + ζ(2) + 2 ζ(3) ,

(vii)
∞∑

n=0

1

(n+ 1)(n+ 2)
ψ(n+ 1)2 = (1 − γE)2 + ζ(2) ,

(viii)
∞∑

n=0

1

(n+ 1)(n+ 2)
ψ(n+ 2)2 = γ2

E − 2 γE ζ(2) + 3 ζ(3) ,

(ix)
∞∑

n=0

1

(n+ 1)(n+ 2)
ψ(n+ 3)2 = 3 − 4 γE + γ2

E + ζ(2) . (F.1)
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These identities may be proven by applying formulae shown in section 6.2. Fur-
thermore, we list the three series, which again, can be proved with the tools collected
in section 6.2:

(i)
∞∑

n=0

1

(n+ 1)2
ψ(n+ 1)2 =

11

4
ζ(4) − 2 γE ζ(3) + γ2

E ζ(2) ,

(ii)
∞∑

n=0

1

(n+ 1)2
ψ(n+ 2)2 =

17

4
ζ(4) − 4 γE ζ(3) + γ2

E ζ(2) , (F.2)

(iii)
∞∑

n=0

1

(n+ 1)2
ψ(1)(n+ 1)2 =

1

3
ζ(2)3 − ζ(3)2 − 5

3
ζ(2) ζ(4) +

17

3
ζ(6).



Appendix G

Expansion of the hypergeometric

4F3 function

The same techniques as applied in section 6.3 and collected in section 6.2 are put in the
same way to work and used to expand the following (in the positive parameter region
about zero) finite 4F3 hypergeometric function, the purpose of that being again the
collection of such finite, nonsingular functions with the aim to find again relations be-
tween singular and nonsingular functions. Although the 4F3 hypergeometric functions
is not the most general function which encodes the behavior of any scattering process,
the functions appears in the case of the six-point disk S–matrix when more special
assumptions are made in order to restrict the momenta of the involved particles:

Γ(1 + d) Γ(1 + e) Γ(1 + f) Γ(1 + b) Γ(1 + a) Γ(1 + c)

Γ(2 + b+ e) Γ(2 + a+ d) Γ(2 + c+ f)
4F3

[
1 + b, 1 + a, 1 + c, −j

2 + b+ e, 2 + a+ d, 2 + c+ f

]

= 1 − a− b− c− d− e− f − 3j + a2 + ba+ ca+ 2da+ ea+ fa+ 4ja+ b2 + c2 + d2

+ e2 + f 2 + 6j2 + bc+ bd+ cd+ 2be+ ce+ de+ bf + 2cf + df + ef + 4bj + 4cj + 4dj

+ 4ej + 4fj − a3 − ba2 − ca2 − 3da2 − ea2 − fa2 − 5ja2 − b2a− c2a− 3d2a− e2a

− f 2a− 10j2a− bca− 2bda− 2cda− 2bea− cea− 2dea− bfa− 2cfa− 2dfa− efa

− 5bja− 5cja− 10dja− 5eja− 5fja− b3 − c3 − d3 − e3 − f 3 − 10j3 − bc2 − bd2 − cd2

− 3be2 − ce2 − de2 − bf 2 − 3cf 2 − df 2 − ef 2 − 10bj2 − 10cj2 − 10dj2 − 10ej2 − 10fj2

− b2c− b2d− c2d− bcd− 3b2e− c2e− d2e− 2bce− 2bde− cde− b2f − 3c2f − d2f

− e2f − 2bcf − bdf − 2cdf − 2bef − 2cef − def − 5b2j − 5c2j − 5d2j − 5e2j − 5f 2j

− 5bcj − 5bdj − 5cdj − 10bej − 5cej − 5dej − 5bfj − 10cfj − 5dfj − 5efj

+ ζ(2)
{
j − 2j2 − aj − bj − cj − ad− be− cf + 3j3 + 3aj2 + 3bj2 + 3cj2 + a2j + b2j

+ c2j + abj + acj + bcj + 4adj + 4bej − dej + 4cfj − dfj − efj + ad2 + be2 + cf 2 + a2d

+abd+ acd+ b2e+ abe+ bce+ ade+ bde+ c2f + acf + bcf + adf + cdf + bef + cef
}
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140 G Expansion of the hypergeometric 4F3 function

+
1

4
ζ(4)

{
−j2 − 4aj − 4bj − 4cj − 5dj − 5ej − 5fj + 5j3 + 5aj2 + 5bj2 + 5cj2 + 17dj2

+ 17ej2 + 17fj2 + 4a2j + 4b2j + 4c2j + 12d2j + 12e2j + 12f 2j + 4abj + 4acj + 4bcj

+2adj + 5bdj + 5cdj + 5aej + 2bej + 5cej + 17dej + 5afj + 5bfj + 2cfj + 17dfj + 17efj}
+ ζ(3)

{
j − 2j2 − aj − bj − cj − 2dj − 2ej − 2fj + 3j3 + 3aj2 + 3bj2 + 3cj2 + 4dj2 + 4ej2

+ 4fj2 + a2j + b2j + c2j + abj + acj + bcj + 2adj + 2bdj + 2cdj + 2aej + 2bej + 2cej

+2afj + 2bfj + 2cfj + ad2 + be2 + cf 2 + a2d+ b2e+ c2f
}

+ ζ(2) ζ(3)
{
−j3 − aj2 − bj2 − cj2 + d2j + e2j + f 2j + adj − bdj − cdj − aej + bej − cej

−dej − afj − bfj + cfj − dfj − efj}

+
1

2
ζ(5)

{
4j3 + 4aj2 + 4bj2 + 4cj2 + dj2 + ej2 + fj2 + 2a2j + 2b2j + 2c2j − d2j − e2j

− f 2j + 2abj + 2acj + 2bcj − 3adj + 6bdj + 6cdj + 6aej − 3bej + 6cej + 7dej + 6afj

+6bfj − 3cfj + 7dfj + 7efj} + . . . .

(G.1)



Appendix H

Some intermediary, not very

simple, triple sums

∞∑

mi=1

1

(1 +m1 +m3) (m2 +m3) (m1 +m2 +m3)2
= −13

4
ζ(4) − 3 ζ(3) + 2 ζ(2) +

3

2
ζ(2)2 ,

∞∑

mi=1

1

m1 (1 +m1 +m3) (m2 +m3) (m1 +m2 +m3)
= −2 ζ(4) − 2 ζ(3) + ζ(2) +

3

2
ζ(2)2 ,

∞∑

mi=1

1

m1 m2 (1 +m1 +m3) (m2 +m3)
= 2 ζ(3) + ζ(2) ,

∞∑

mi=1

1

m1 m2 (m2 +m3) (m1 +m2 +m3)
= 8 ζ(4) − 2 ζ(2)2 ,

∞∑

mi=1

1

m1 m2 (m2 +m3) (m1 +m3)
=

11

2
ζ(4) − ζ(2)2 ,

∞∑

mi=1

1

m2 (m1 +m3) (m2 +m3) (m1 +m2 +m3)
= −5

2
ζ(4) +

3

2
ζ(2)2 ,

∞∑

mi=1

1

(m1 + m3) (m2 +m3) (m1 +m2 +m3)2
=

17

4
ζ(4) − 2 ζ(2) ,

∞∑

mi=1

1

m1 m2 (m1 +m3) (m2 +m3) (1 +m1 +m2 +m3)
=

17

4
ζ(4) + 2 ζ(3) − ζ(2) − 5 ,

∞∑

mi=1

1

m1 m2 (1 +m2) (m2 +m3) (1 +m1 +m2 +m3)
= 5 − 2 ζ(3) − ζ(2).

(H.1)

Also some double series involving harmonic numbers have to be computed. They
read:
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142 H Some intermediary, not very simple, triple sums

∞∑

mi=1

Hm1+m3

m1 (1 +m1 +m3)2
= −ζ(2) +

1

2
ζ(2)2 + ζ(3) +

3

2
ζ(4) ,

∞∑

mi=1

Hm3

m1 (1 +m1 +m3)2
=

9

2
ζ(4) − ζ(2)2 ,

∞∑

mi=1

Hm1−1

m1 (1 +m1 +m3)2
= −3 + ζ(2) + ζ(3) + ζ(4) ,

∞∑

mi=1

Hm3

m1 (1 +m3) (1 +m1 +m3) (2 +m1 +m3)
= 1 + ζ(2) − 2 ζ(3) ,

∞∑

mi=1

Hm1−1

m1 (1 +m3) (1 +m1 +m3) (2 +m1 +m3)
=

15

4
− ζ(2) − 2 ζ(3) ,

∞∑

mi=1

Hm1+m3

m1 (1 +m3) (1 +m1 +m3) (2 +m1 +m3)
= −3

2
− 5

2
ζ(2) +

11

2
ζ(4) ,

∞∑

mi=1

Hm1+m2−1

m1 (m1 +m2)2
=

3

2
ζ(4) +

1

2
ζ(2)2 ,

∞∑

mi=1

Hm2

m1 (m1 +m2)2
= 5 ζ(4) − ζ(2)2 ,

∞∑

mi=1

Hm2

m1 m2 (m1 +m2)
=

11

2
ζ(4) − 1

2
ζ(2)2 ,

∞∑

mi=1

Hm2

m2 (m1 +m2)2
=

1

2
ζ(4) +

1

2
ζ(2)2 ,

∞∑

mi=1

Hm1+m2−1

(1 +m1) (m1 +m2)2
=

7

4
ζ(4) +

1

2
ζ(2)2 − ζ(3) ,

∞∑

mi=1

Hm2

(1 +m1) (m1 +m2)2
= 5 ζ(4) − ζ(2)2 + 2 ζ(3) − 2 ζ(2) ,

∞∑

mi=1

Hm3

m2 (2 +m3) (1 +m2 +m3)2
= −2 ζ(2) − ζ(2)2 +

23

4
ζ(4) ,

∞∑

mi=1

Hm2−1

m2 (2 +m3) (1 +m2 +m3)2
= −3

2
+

1

2
ζ(2) − ζ(2)2 − 5

2
ζ(3) + 6 ζ(4) ,

∞∑

mi=1

Hm2+m3

m2 (2 +m3) (1 +m2 +m3)2
=

23

4
ζ(4) − 5

2
ζ(2) − 3

2
ζ(3) ,

(H.2)
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where the simplification from the reduction of the triple sum to the double one is
compensated by the presence of the harmonic number. Finally again some triple sums:

∞∑

mi=1

1

m1 (1 +m1 +m3)3
= −3 +

3

2
ζ(4) − 1

2
ζ(2)2 + ζ(2) + ζ(3) ,

∞∑

mi=1

1

m1 (1 +m3) (1 +m1 +m3)2
= −2 + 3 ζ(4) − ζ(2)2 + ζ(2) ,

∞∑

mi=1

1

m1 (1 +m3) (1 +m1 +m3) (2 +m1 +m3)
= −9

4
+ 2 ζ(3) ,

∞∑

mi=1

1

m1 (1 +m3)2 (1 +m1 +m3) (2 +m1 +m3)
=

11

4
− π2

6
+
π4

72
− 2 ζ(3) ,

∞∑

mi=1

1

m1 (1 +m3) (1 +m1 +m3) (2 +m1 +m3)2
= −29

4
+
π2

4
+ 4 ζ(3) ,

∞∑

mi=1

1

m1 (1 +m3) (1 +m1 +m3)2 (2 +m1 +m3)
=

1

4
+ 3 ζ(4) + ζ(2) − ζ(2)2 − 2 ζ(3) ,

∞∑

mi=1

1

m2 (2 +m3)2 (1 +m2 +m3)3
= −1

2
− 15

4
ζ(2) +

1

2
ζ(2)2 + 4 ζ(3) +

1

2
ζ(4) ,

∞∑

mi=1

1

m2 (2 +m3) (1 +m1 +m2 +m3)3
= −3

2
+

5

2
ζ(2) − 1

2
ζ(2)2 − 7

2
ζ(3) +

11

4
ζ(4) ,

∞∑

mi=1

1

(1 + m3) m2 (2 +m3) (1 +m2 +m3)2
= −1 + 3 ζ(4) +

5

2
ζ(2) − 3 ζ(3) − ζ(2)2 .

(H.3)
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Appendix I

Full expansion of the six base

functions

F

[
a , b , d , e , g

c , f , h , j

]
= 1 − a− b− c− d− e− f − 2 g − 2 h− 3 j + (g + h+ j) ζ(2) + j ζ(3)

+ a2 + a b+ b2 + a c+ b c+ c2 + 2 a d+ b d+ c d+ d2 + a e+ 2 b e+ c e

+ d e+ e2 + a f + b f + 2 c f + d f + e f + f 2 + 3 a g + 3 b g + 2 c g + 3 d g

+ 3 e g + 2 f g + 3 g2 + 2 a h+ 3 b h+ 3 c h+ 2 d h+ 3 e h+ 3 f h+ 5 g h

+ 3h2 + 4 a j + 4 b j + 4 c j + 4 d j + 4 e j + 4 f j + 8 g j + 8h j + 6 j2

−
(
a d+ b e+ c f + a g + b g + c g + f g + g2 + a h+ b h+ c h+ d h+ h2

+a j + b j + c j + 3 g j + 3h j + 2 j2
)
ζ(2)

−
[
g2 + 2 dg + 2 eg + 4 hg + h2 + 2 j2 + 2 eh+ 2 fh

+2 (d+ e+ f + g + h) j + a (g + j) + c (h+ j) + b (g + h+ j) ] ζ(3)

− [ j (a+ b+ c) +
j

4
(5 d+ 5 e+ 5 f + 2 g + 2 h+ j) ] ζ(4) + . . .

F

[
a, b, d, e, g − 1

c, f, h, j

]
= ζ(2) − (c+ f − h+ j) ζ(2)

(I.1)

− (a+ b+ 2 d+ 2 e+ g + 2 h− j) ζ(3) + . . . ,

F

[
a, b, d, e, g

c+ 1, f, h, j − 1

]
= −1 + ζ(2) − a− b+ 3 c+ 3 f + 2 h+ j

+ (a+ b− 2 c+ d+ e− f + 2 g) ζ(2)

− (a+ b+ 2 d+ 2 e+ 2 f + 3 g + 2 h+ j) ζ(3) + . . .

F

[
a, b+ 1, d, e, g

c, f, h, j − 1

]
= −1 + ζ(2) − a+ 3 b− c+ 3 e+ 2 g + 2 h+ j

+ (a− 2 b+ c+ d− e+ f) ζ(2)

− (a+ c+ 2 d+ 2 e+ 2 f + 2 g + 2 h+ j) ζ(3) + . . .
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146 I Full expansion of the six base functions

F

[
a, b, d, e, g

c, f, h, j − 2

]
= (1 + j) ζ(2) − (a+ b+ c+ 2 d+ 2 e+ 2 f + g + h+ 2 j) ζ(3)

+ j2 ζ(2) − j (a+ b+ c+ 2 d+ 2 e+ 2 f + g + h+ 2 j) ζ(3)

+
{
a2 + ba+ ca+ b2 + c2 + 3 d2 + 3e2 + 3 f 2 + g2 + h2 + 3 dg

+ 3 eg + 3 eh+ 3 fh+ bc+
da

2
+

5ea

4
+

5fa

4
+
ga

4
+
ha

2
+

5ja

4

+
5j2

4
+

5bd

4
+

5cd

4
+
be

2
+

5ce

4
+

17de

4
+

5bf

4
+
cf

2
+

17df

4

+
17ef

4
+
bg

4
+
cg

2
+

5fg

2
+
bh

4
+
ch

4
+

5dh

2
+

7gh

4
+

5bj

4

+
5cj

4
+

17dj

4
+

17ej

4
+

17fj

4
+

5gj

2
+

5hj

2
+

5j2

4

}
ζ(4) + . . . ,

F

[
a+ 1, b, d, e, g

c, f, h, j − 1

]
= −1 + ζ(2) + 3 a− b− c+ 3 d+ 2 g + j

− (2 a− b− c+ d− e− f − 2 h) ζ(2)

− (b+ c+ 2 d+ 2 e+ 2 f + 2 g + 3 h+ j) ζ(3)

− 6 a2 + 4 (b+ c− 3 d− 2 g − j) a− b2 − c2 − 6 d2 +
31g2

8
− j2

+ 4 cd+ 3 cg − 8 dg + 4 fg + cj − 4 dj + gj + b (−c+ 4 d+ 2 g + j)

+
{

3 a2 + [−3 b− 3 c+ 5 d− 2 (e+ f − g + 2 h) + j] a+ b2 + c2

+ d2 − g2 − 2 cd+ ce− 2 de+ 2 cf − 2 df − cg − 2 eg + 2 ch

−4 dh+ b (c− 2 d+ 2 e+ f + 2 h) − (e+ f − g + 2 h) j } ζ(2)

+
{
a2 + [b+ c+ 4 d+ 3e+ 3 f + 4 (g + h) + 2 j] a− b2 − c2 + 2 d2

− 2 e2 − 2 f 2 − 2 g2 − 3 h2 − bc− bd− cd− 3 be− 2 ce− 2 bf − 3 cf

− 3 ef − 2 bg − 2 cg + 2 dg − 2 eg − 4 fg − 4 bh− 4 ch+ dh− 6 eh

−6 fh− 4 gh− bj − cj + dj − ej − fj − 2 gj} ζ(3)

+

{
b2 + cb+

5db

4
+
eb

2
+

5fb

4
+
gb

2
+

3hb

2
+
jb

4
+ c2 + 3 d2 + 3 e2

+ 3 f 2 +
7h2

2
+ j2 − 3ad

4
+

5cd

4
+

5ce

4
+

17de

4
+
cf

2
+

17df

4
+

17ef

4

+
5cg

4
+ 6 dg + 6eg +

5fg

4
+

7ah

4
+

3ch

2
+

11dh

2
+

29eh

4
+

29fh

4

+
19gh

4
+
cj

4
+ 3 dj + 3 ej + 3 fj +

13hj

4

}
ζ(4) + . . .

F

[
a, b, d, e, g

c, f, h, j − 1

]
= ζ(3) − 1

4
(4 a+ 4 b+ 4 c+ 5 d+ 5 e+ 5 f + 2 g + 2 h+ j) ζ(4) + . . .

(I.2)



Appendix J

Basic formulas for non Abelian

Yang–Mills theories

The notation in this Appendix follows the one presented in [8]. There, the field strength
F a

µν is defined as:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (J.1)

with the structure constants f abc for an U(N) gauge group. Let us recall some
basic facts about Lie Algebras. The commutation relations of a representation T a of
the Lie Algebra read:

[T a, T b] = i fabc T c, (J.2)

with the structure constants f abc. We impose the standard normalization condition

Tr(T aT b) = C(r) δab , (J.3)

with C(r) being a constant for each representation r. Then we have the relation

fabc = − i

C(r)
Tr
(

[T a, T b] T c
)
, (J.4)

which implies, that f abc is totally anti–symmetric.
The adjoint representation r = G is given by the matrices

(T a)bc = −i fabc , (J.5)

which obviously satisfies (J.2) and (J.4). The covariant derivative Dadj.
µ acting on

fields in the adjoint representation is introduced as:
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148 J Basic formulas for non Abelian Yang–Mills theories

(Dadj.
λ )ab = ∂λ δab − i gAm

λ (Tm)ab = ∂λ δab − g fmab A
m
λ . (J.6)

Hence, we have:

Dλ F
a
µν = ∂λ F

a
µν − i g Am

λ (Tm)ab F
b
µν . (J.7)

In addition, we derive:

DκDλ F
a
µν = ∂κ∂λ F

a
µν + g fand An

κ ∂λF
d
µν − g fmac ∂κ(A

m
λ F c

µν)

+ g2 famc fmnd An
κ A

d
λ F

c
µν + g2 famc f cnd Am

λ An
κ F

d
µν . (J.8)

Finally, for Fµν ≡ T aF a
µν in the adjoint representation, we may write (J.1) as:

Fµν = ∂µAν − ∂νAµ − i g [Aµ, Aν ] , (J.9)

and (J.7) as:

Dλ = ∂λ − i g [Aλ, ? ] . (J.10)

Furthermore, equation (J.8) gives rise to:

Dκ(Dλ Fµν) = ∂κ∂λ Fµν − i g [Aκ, ∂λFµν ] − i g [∂κAλ, Fµν ]

− i g [Aλ, ∂κFµν ] − g2 [ Aκ, [Aλ, Fµν ] ] (J.11)

To this end, we may prove:

[Dµ, Dν ] Fρσ = −i g [Fµν , Fρσ] . (J.12)
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