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Notation

Mixed model notation

yit = xT
itβ + zT

itbi + ǫit = xT
itβ +

Pc
j=1 zitjb

(j)
i + ǫit, i ∈ {1, . . . , n} t ∈ {1, . . . , Ti}

yi = Xiβ + Zibi + ǫi, i ∈ {1, . . . , n}

y = Xβ + Zb + ǫ = Xβ +
Pc

j=1 Z.(j)b
(j) + ǫ

y(i) = xT
(i)β + zT

(i)b + ǫ(i), i ∈ {1, . . . , N}

yit Response of clusteri at observationt

h(.) Response function, inverse of link-functiong

xit Design vector for fixed effects (cluster i, measurement t)

zT
it = [zit1, . . . , zitc] design vector (cluster i, measurement t)

Xi Design matrix for fixed effects ( cluster i )

Zi Design matrix for random effects ( cluster i )

Z = (ZT
1 , . . . , ZT

n )T Design matrix for random effects ( stacked version )

n Clusters in total

XT = (XT
1 , . . . , XT

n ) Design matrix for fixed effects (complete dataset)

Z Design matrix for random effects (usually block-diagonal version, complete dataset)

Z = bdiag(Z1, . . . , Zn) in longitudinal settings

xT
(i) i-th row of X

zT
(i) i-th row of Z

yT
(i) i-th element ofy

βT = (β1, . . . , βp) Parameter vector for fixed effects

bi Vector of random effects for clusteri

b = (bT
1 , . . . , bT

n )T Vector of random effects

N =
Pn

i=1 Ti Observations in total



Notation

p(b; ρ) Mixing density

p̃(a; ρ) Standardized mixing density with standardized random variablea

ρ Parameter vector for the covariance structure of random effects

θ ρ and nuisance parameters

Q(ρ) Covariance matrix for the random effectbi

Q(ρ) Covariance matrix for the random effectb

Vi := Vi(θ) Marginal covariance of the clusteri

V := V (θ) Marginal covariance over all clusters

̺ Correlation between two covariates

f(.) Density or conditional density ofy or y given b

q =
Pc

j=1 qj Dimension ofb, dimension ofb(j)

E(.) Expectation

σ2
ǫ Error term,eit ∼ N(0, σ2

ǫ )

θ d-dimensional vector of parameters for variance components

trace() Trace of a matrix

f(y, b) = f(y|b)p(b; ρ) Joint density ofy andb

rows(A, i, j) Submatrix of matrixA from row i to row j

elem(y, i, j) Subvector of vectory from elementi to elementj

vec(A) Symmetric direct operator on symmetric matrixA.

Vector from the lower triangular entries of matrixA

vech(A) Vech operator on symmetric matrixA

Vector from rows of matrixA.

c Random design matrix hasc components of the

Z.(j) Partitioned random effect design matrix associated with component

b(j) Partitioned random effect associated with componentj



Notation

Additve mixed model notation

yit = xT
itβ +

Pm
j=1 φT

itjαj + zT
itbi + ǫit , i ∈ 1, . . . , n t ∈ {1, . . . , Ti}

yi = Xiβ +
Pm

j=1 Φijαj + Zibi + ǫi = Xiβ + Φi.α + Zibi + ǫi, i{∈ 1, . . . , n}

Y = Xβ + Φα + Zb + ǫ = Xβ +
Pm

j=1 Φ.jαj + Zb + ǫ

y(i) = xT
(i)β + ΦT

(i)α + zT
(i)b + ǫ(i) = xT

(i)β +
Pm

j=1(φ
(j)(u(i)j))

T αj + zT
(i)b + ǫ(i), i ∈ {1, . . . , N}

= xT
(i)β +

Pm
j=1 φT

(i)jαj + zT
(i)b + ǫ(i), i ∈ {1, . . . , N}

α(j)(.) Unspecifiedj-th function

uitj Measured covariate for the j-th unspecified

function in cluster i at measurement t

α(j)(uitj) Function evaluation of the measured covariate for

j-th functionα(j)(.) in cluster i at measurement t

M Dimension of the spline basis

m Number of unspecified functions

φ
(j)
s (.) s-th basis function for variable j

φ(j)(.)T = (φ
(j)
1 (.), . . . , φ

(j)
M (.)) Basis functions for variable j (M-dimensional, vector)

φitj = φ(j)(uitj) Function evaluation of covariateuitj (vector)

uT
i.j = (ui1j , . . . , uiTij) Vector of covariates needed for functionj in cluster i

Φij = Φi.j = (φi1j , . . . , φiTij)
T Matrix for elementwise basis Function evaluations for the

j-th function of covariatesui.j

uT
..j = (uT

1.j , . . . , u
T
n.j) Vector of covariates needed for functionj (complete dataset)

Φ.j := Φ..j = (ΦT
1.j , . . . , Φ

T
n.j)

T Matrix for elementwise basis function evaluations

for thej-th function of covariatesu..j

Φi. := Φi.. = (Φi.1, . . . , Φi.m) Matrix for basis function evaluation for

Covariatesui.1, . . . , ui.m in clusteri

Φ := Φ... = (ΦT
1.., . . . , Φ

T
n..)

T = (Φ..1, . . . , Φ..m) Matrix for basis function evaluation of all covariates

αj M-dimensional vector of basis coefficients needed for

approximationα(j)(u) = (φ(j))T αj

αT = (αT
1 , . . . , αT

m) Vector of all basis coefficients

Φ(i) i-th row of matrixΦ...

Kα Penalty matrix for all components including fixed effects

u(i)j i-th entry of vectoru..j

λ Smoothing parameter

XΦi = [Xi, Φi1, . . . , Φim] Generalized design matrix for fixed and smooth effects

φ(i,j)(.) = φ(i)(.) ⊙ φ(j)(.) Elementwise Kronecker product ofφ(i)(.) andφ(j)(.)

α
(j)
s Coefficients for thej-th smooth component

φ(i)j i-th row ofΦ.j



Notation

Boosted additive mixed model notation

Xi(r) = [Xi, Φi.r] Designmatrix for ther-th component including fixed effects

Kr Penalty matrix for ther-th component including fixed effects

δ̂r Weak learner for ther-th component including fixed effects in a boosting step

β̂(l), α̂(l), δ(l), η(l) Ensemble estimates in thel-th boosting step

η
(l)

i(r) Predictor using ther-th component in boosting stepl in clusteri

M
(l)
r Projection matrix for residuals on componentr of l-th boosting step

to the weak learner̂δr, given the selection before

H
(l)
r Local hat matrix for projection for residuals on componentr of l-th boosting step

to the predictor̂η(l)
r , given the selection before

G
(l)
r Global hat matrix for projection fory on componentr in thel-th boosting step

to the predictor̂η(l)
r , given the selection before

jl Selected component in thel-th boosting step

S
(l)
r Selection criterion in thel-th boosting step using the trace ofG

(l)
r

M (l) := M
(l)
jl

Short notation, ifj was selected in thel-th boosting step

H(l) := H
(l)
jl

Short notation, ifj was selected in thel-th boosting step

G(l) := G
(l)
jl

Short notation, ifj was selected in thel-th boosting step

k Number of flexible splines

Ri := [Φi1α1, . . . , Φikαk] Random design matrix for flexible splines

R
(l)
i := [Φi1α

(l)
1 , . . . , Φikα

(l)
k ] Random design matrix for flexible splines in thel-th boosting step

Design matrix for unspecified functions

Z̃
(l)
i = [Zi, R

(l)
i ] Random design matrix for clusteri for parametric and smooth covariates

X.(r) = [XT
1(r), . . . , X

T
n(r)]

T Design matrix for componentr (complete dataset)

η.(r) Predictor with componentr (complete dataset)



Preface

This thesis has been written during my activities as research assistant at theDepartment
of Statistics of, Ludwigs-Maximilians-University, Munich. The financial support from
Sonderforschungsbereich 386is greatfully acknowledged.

First I would like to express my thank to my doctoral advisor Gehard Tutz, who gave
the important impulse and and advised this thesis. I would also like to thank all profes-
sors, all other colleagues, other research assistants and everybody, who was accessible for
questions or problems.

I thank Prof. Brian Marx to agree to be the external referee.

In addition I want to thank Dr. Christian Heumann for being my second referee. The
discussions around mixed models were important for the ingredients of this thesis. Espe-
cially Stefan Pilz was a big help as a personal mentor.

An useful aid was the Leibniz-Rechenzentrum in Munich, which allowed me todo my
computations on the high-performance-cluster. The computations around the simulation
studies did approximately take ten-thousand hours, where only the time on the cpu unit
was measured. Around three-thousand datasets of different length were analyzed here.
The number crunshers of the department did not deliver enough powerto compute most
of the settings which were checked in this thesis.

Special thanks to my parents who supported my interests in mathematics and to my wife
Daniela, who spent patiently a lot of time at home with me on statistical papers, work and
managed with our sonVinzenz.



Chapter 1

Introduction

1.1 Mixed Models and Boosting

The methodology of linear mixed model in combination with penalized splines has be-
come popular in the past few years.

The idea of mixed models was originally developed in 1953 by Henderson (1953). He
derived the mixed models to analyze longitudinal data by assuming a latent, unobserved
structure in the data. The response was continuous and the structure wasassumed to be
linear. An example for longitudinal data may be patients with many repeated measures
on each patient. The latent structure in this case may be on the individual level of the
patient. So individuality is getting important in this context. For the statistical analysis,
the observed covariates are considered to be conditionally independentgiven the patient
and the patients are themselves are assumed to be independent. The latent structure may
be only at the individual level of the patients (random intercept) or individual level and
slope of these patient (random intercept and slope). A nice overview onmixed models
is given by Verbeke & Molenberghs (2001). Another way of modeling longitudinal data
with weak assumptions is using the generalized estimation equations (GEE), see, Liang
& Zeger (1986). In this thesis, only mixed models are investigated.

The influence of covariates is often reflected insufficiently because the assumed parame-
trization for continuous covariates is usually very restrictive. For models with continuous
covariates, a huge repertoire of nonparametric methods have been developed within the
past few years. The effect of a continuous covariate on the response is specified by a
smooth function. A smooth function is meant to be sufficient differentiable. Representa-
tives of the nonparametric methods are kernel regression estimators, see, Gasser & Müller
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(1984), Staniswalis (1989), for regression splines is Eubank (1988), Friedman & Silver-
man (1989), for local polynomial fitting is Hastie & Loader (1993), Fan & Gijbels (1996)
and for smoothing splines is Silverman (1984), Green (1987). A nice overview on non-
parametric methods may be found in Simonoff (1996).

The used representation for smooth effects in this thesis combines the different approaches
for spline regression. When polynomial splines are used one has to specify the degree of
its polynomial pieces as well as the decomposition of the range by a finite numberof
knots. The decomposition of polynomial splines can be expressed by a vector space.
There exists a basis representation for every element of this space. That is why the ap-
proximated smooth effects can be parameterized. The regression spline can be reduced to
a strict parametric structure, which is a great benefit of this approach.

The goodness of the approximation by polynomial splines is determined by the decom-
position of the range. A large number of knots increase the fit of the data but for data
with huge noise, the estimated curves are very wiggly. One way to control thevariability
of the estimated function is the adaptive selection of knots and positions, see Friedman
(1991) and Stone, Hansen, Kooperberg & Truong (1997). An alternative approach is to
use penalization techniques. In the latter case the penalty terms are focusedon the basis
coefficients of the polynomial spline representation. Two concepts for penalization have
been established in recent years. One concept encompasses the truncated power series as
suggested in Ruppert, Wand & Carroll (2003). In this case, one uses the ridge penalty.
The other concept is maintained by Eilers & Marx (1996). They use the B-spline basis
together with a penalization of neighboured basis coefficients which is calledP-splines.
Both concepts have the advantage that the estimation of parameters can be obtained by
the maximizing of a penalized likelihood function.

The crucial part of a penalized likelihood is that the smoothing parameterλ, which con-
trols the variability of the estimated functions, has to be optimized . One idea suggested
by Eilers and Marx (Eilers & Marx (1996)) is to optimize the AIC criterion whichmea-
sures the likelihood of the model given the fixed smoothing parameterλ. The likelihood
is penalized by the effective degrees of freedom in the model, see Hastie &Tibshirani
(1990). Another idea is to use the cross-validation criterion which is a computational bur-
den in many data situation. Another driven criterion is the generalized crossvalidation
criterion established by Craven & Wahba (1979). Recent investigations on this criterion
are documented in Wood (2004). Another strategy to optimize this tuning parameter is
based on mixed models.

The reason for the popularity of mixed models in the 90’s is the comment of Terry Speed
(Speed (1991)) on Robinson’s article ( Robinson (1991)) on BLUP equations. Terry Speed
states that the maximization of a penalized likelihood is equivalent to the solutions of the
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BLUP equations in a linear mixed model. These statements were picked up by Wand
(2000), Parise, Wand, Ruppert & Ryan (2001), Ruppert, Wand & Carroll (2003) and Lin
& Zhang (1999). So nowadays smoothing is often connected to penalized splines or it is
seen as a suitable method to find reliable estimates for the smoothing parameter.

Boosting originates in the machine learning community where it has been proposed as a
technique to improve classification procedures by combining estimates with reweighted
observations. Recently it has been shown that boosting is also a way of fitting an additive
expansion in basis functions when the single basis functions represent the results of one it-
eration of the boosting procedure. The procedure is quite similar to the methodof gradient
descent by the use of specific loss functions, see Breiman (1999) and Friedman, Hastie &
Tibshirani (2000). Since it has been shown that reweighting corresponds to minimizing a
loss function iteratively (Breiman (1999), Friedman (2001)), boosting has been extended
to regression problems in aL2-estimation framework by Bühlmann & Yu (2003). Tutz
& Binder (2006) introduced the likelihood-based boosting concept for all kinds of link
functions and distributions.

The aim of this thesis it to combine the mixed model methodology with boosting ap-
proaches. Especially the concept of componentwise boosting is introduced where in each
iteration step, only one variable is allowed to be updated. This is a useful strategy if one
tries to optimize a huge number of continuous variables. It is a very robust method in
terms of algorithmic optimization. Part of the algorithmic structure is that one can do
variable selection since among all covariates, only one is selected to be optimized which
is a nice add-on in the boosting methodology.

Often the application of an additive mixed model is too restrictive because each cluster
may have its own specific function. So one idea is to compute a joint smooth function
of the continuous covariates and a random, cluster-specific smooth function as suggested
by Ruppert, Wand & Carroll (2003), Wu & Liang (2004) or Verbyla, Cullis, Kenward
& Welham (1999). If a joint additive structure with a random intercept is not sufficient
to capture the variation of subjects, then one may extend the model by cluster specific
modifications on the joint spline function, which is realized by a random effect. This kind
of model is simply structured and needs only two additional parameters, the variance of
the slope and the covariance between slope and intercept. It is thereforevery parsimonious
and allows simple interpretation. By using few additional parameters it has a distinct
advantage over methods that allows subjects to have their own function, yielding as many
functions as subjects (see for example Verbyla, Cullis, Kenward & Welham(1999) and
Ruppert, Wand & Carroll (2003)).

An adequate formulation, investigation and interpretation of regression models needs an
explicit consideration of the feature space of response variables. So insome areas the
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assumption of a normal distribution, which is part of the classical regression models, has
to be generalized to regression models for discrete responses. The statistical concept for
these regression models was build by Nelder & Wedderburn (1972). They introduced the
Generalized Linear Models. Many publications based on these models were published
by Kay & Little (1986), Armstrong & Sloan (1989) in the medical research, Amemiya
(1981), Maddala (1983) in economics and many other areas.

Heavy numerical problems arise if one tries to do inference in generalized linear models
for longitudinal data. And the problems are not only restricted to the generalized linear
mixed models. In the generalized estimation equations, the optimization is not a trivial
thing, see Liang & Zeger (1986). These problems originate in the fact thatthe marginal
distribution is not analytically accessible for generalized linear mixed models. Therefor
complicate integrals have to be solved. In the mixed model one can do analyticalintegra-
tion by using some nice properties of gaussian random variables. But in generalized linear
mixed models numerical integration has to be done. This can be either done by using the
Laplace approximation (Breslow & Clayton (1993), Schall (1991), Wolfinger (1994)) us-
ing a normal approximation or either using integration points based methods like Gauss-
Hermite quadrature (Hedeker & Gibbons (1996), Pinheiro & Bates (1995)), or Monte-
Carlo integration (McCulloch (1997), McCulloch (1994), Booth & Hobert(1999)). One
may use direct methods or the EM algorithm to get parameter estimates.

In the context of categorial the adequacy is not only restricted to the consideration of a
discrete response structure. Properties of the variables are often reflected in a bad way
using linear assumptions on the covariates, see Lin & Zhang (1999). Again, aim of this
thesis is to extend generalized linear mixed models by nonparametric effects. The two re-
maining strategies for optimization is on the one side the approach discussed byRuppert,
Wand & Carroll (2003) and on the other side boosted generalized semi-parametric mixed
models pictured in this thesis.

1.2 Guideline trough This Thesis

Chapter two gives a short introduction of linear mixed models. The different strategies of
optimizing a linear mixed model as well as a robust variant of a linear mixed modelare
proposed.

The semi-parametric mixed models are part of the third chapter. The nonparametric mod-
els are sketched briefly as well as how nonparametric approaches are handled. It is men-
tioned that which of the problems arise if nonparametric modeling is used.
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In the fourth chapter, the semi-parametric mixed models are extended to the flexible mixed
models where all clusters have a common development of the covariate and each cluster
has its distinct modifications in the sense that the effect of a covariate are strengthened or
attenuated individually.

The generalized linear mixed models are the topic of the fifth chapter. An overview of
the most popular methods are given here since there is no canonic way to estimate a
generalized linear mixed model.

The sixth chapter deals with generalized semi-parametric mixed models. The Laplacian
approximation is used to implement the boosting idea into the generalized linear mixed
model framework. In simulation studies the results are compared to the optimized model
based on the mixed model approach for additive models (see Ruppert, Wand & Carroll
(2003)).

A short summary on the results, the given problems as well as an outlook on further
development and questions are given which have been accumulated in the course of this
thesis in the last.



Chapter 2

Linear Mixed Models

2.1 Motivation: CD4 Data

The data was collected within the Multicenter AIDS Cohort Study (MACS), which fol-
lowed nearly 5000 gay or bisexual men from Baltimore, Pittsburgh, Chicagoand Los
Angeles since 1984 (see Kaslow, Ostrow, Detels, Phair, Polk & Rinaldo (1987), Zeger
& Diggle (1994)). The study includes 1809 men who were infected with HIV at study
entry and another 371 men who were seronegative at entry and seroconverted during the
follow-up. In the study 369 seroconverters (n = 369) with 2376 measurements in total
(N = 2376) were used and two subjects were dropped since covariate information was
not available. The interesting response variable is the number or percentof CD4 cells
(CD4) by which progression of disease may be assessed. Covariates include years since
seroconversion (time), packs of cigarettes a day (cigarettes), recreational drug use (drugs)
with expression yes or no, number of sexual partners (partners), age (age) and a mental
illness score (cesd).

In this study, we have a repeated measurement design because every seroconverter has
several measurement of covariates at different time points. For thei-th seroconverters,Ti

repeated measurement were observed. For example the first seroconverter in the dataset
has three repeated measurements, so in this case isTi = 3. The described observations
for the i-th seroconverter at repeated measurementt can then be addressed byCD4it for
the response and for the corresponding covariatesageit, partnersit, drugsit, cesdit and
timeit.

If one has only one observation on each seroconverter, thenTi = 1 for all seroconverters
(i ∈ 1, . . . , n). So one can use standard cross sectional methods, because the measurement
error for each seroconverter can be assumed to be independent. In the case of repeated
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measurements (Ti 6= 1) one has clusterd observations with error term (ǫi1, . . . , ǫiTi) for
thei-th person.

One approach to modeling data of this type is based on mixed models. Here the obser-
vations (CD4it, t = 1, . . . , Ti) for the i-th seroconverter are assumed to be conditional
independent. In other words, given the level of thei-th seroconverter, the errors for re-
peated measurements of this person may assumed to be independent. The unknown level
for thei-th seroconverter is expressed in mixed models by the so called random intercept
bi. A common assumption on random intercepts is that they are Gausssian distributed
with bi ∼ N(0, σ2

b ). σ2
b is the random intercept variance.

A mixed model with linear parameters age, partners, drugs, time and cesd the form is
given by

CD4it = β0 + β1ageit + β2drugsit + β3timeit + bi + ǫit

for i = 1, . . . , n andt = 1, . . . , Ti, whereǫit is the error term. This can also be rewritten
in vector notation for thei-th seroconverter as

CD4i = β0 + β1agei + β2partnersi + β3drugsi + β4timei + 1Tibi + ǫi

where CD4T
i = (CD4i1, . . . , CD4iTi), ageT

i = (agei1, . . . , ageiTi), drugsT
i =

(drugsi1, . . . , drugsiTi), timeT
i = (timei1, . . . , timeiTi) andǫT

i = (ǫi1, . . . , ǫiTi). 1Ti

is a vector of the lengthTi with ones. The assumption on the model may be
(

ǫi

bi

)
= N

((
0

0

)
,

(
σ2

ǫ ITi 0

0 σ2
b

))
,

where the errors and random intercepts of thei-th person are not correlated with those of
thej-th person (j 6= i). If the vector notation without an index is preferred, one can also
write

CD4 = β0 + β1age + β2partners + β3drugs + β4time + Zb + ǫ,

where CD4T = (CD4T
1 , . . . , CD4T

n ), ageT = (ageT
1 , . . . , ageT

n ), drugsT =

(drugsT
1 , . . . , drugsT

n ), timeT = (timeT
1 , . . . , timen)T , ǫT = (ǫT

1 , . . . , ǫT
n ) andbT =

(b1, . . . , bn) The matrixZ is then a blockdiagonal matrix of1T1 , . . . , 1Tn . The assump-
tion on the mixed model can than reduced to

(
ǫ

b

)
= N

((
0

0

)
,

(
σ2

ǫ IN 0

0 σ2
b In

))
.

Since one may use a short notation without addressing the variable namesCD4,
age, drugs, cesd, time, then one set generally response toyit := CD4it. The
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variables that are responsible for the fixed effects are put into the vector xT
it :=

(1, ageit, drugsit, timeit).. The variables associated with the random effect are stacked
in blockdiagonal entries in the matrixZ. The short term notation is withXT

i =

(xi1, . . . , xiT ), XT = (XT
1 , . . . , XT

n ), yT
i = (yi1, . . . , yiT ), yT = (yT

1 , . . . , yT
n ) and

βT = (β0, . . . , β4)

y = Xβ + Zb + ǫ.

For example, one might extend the mixed model to a mixed model with random slopesas

CD4it = β0 + β1ageit + β2drugsit + β3timeit + b
(1)
i + timeitb

(2)
i + ǫit,

allowing a random variation in the slope for the linear time effect. Using the vector
zT
it := (1, timeit), ZT

i := (zi1, . . . , ziTi), Z = bdiag(Z1, . . . , Zn) andbT
i = (b

(1)
i , b

(2)
i ),

whereb
(1)
i is the random intercept andb(2)

i is the random slope, one can write

y = Xβ + Zb + ǫ.

The assumption on the random effects of thei-th seroconverter may bebi ∼ N(0, Q),
whereQ is a2 × 2-covariance matrix. This covariance matrix may be assumed to be the
same for all persons. The random effects of the persons are not correlated within each
other. This may be denoted by

(
ǫ

b

)
= N

((
0

0

)
,

(
σ2

ǫ IN 0

0 Q

))

with Q being the n-times blockdiagonal matrix ofQ.

2.2 The Model

The linear mixed model for longitudinal data was introduced by Henderson (1953). Let
the data be given by(yit, xit), i = 1, . . . , n, t = 1, . . . , Ti with yit connected to obser-
vation t in clusteri andxit denoting a vector of covariates which may vary across the
observations within one cluster.N =

∑n
i=1 Ti is the number of observations in total.

For the simplicity of presentation, let the number of observations within one clusterT do
not depend on the cluster. Letxit andzit are design vectors composed from given co-
variates. We setXT

i = (xi1, . . . , xiT ), ZT
i = (zi1, . . . , ziT ), yT

i = (yi1, . . . , yiT ), XT =

(XT
1 , . . . , XT

n ), yT = (yT
1 , . . . , yT

n ), , Z = bdiag(Z1, . . . , Zn). The basic idea of the ran-
dom effect models it to model the joint distribution of the observed covariatey and an
unobservable random effectb.
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The assumption on the distribution ofy given the random effectb is

y|b ∼ N(Xβ + Zb, σ2
ǫ IN ).

Here the (conditional) distributionf(y|b) follows a Gaussian normal distribution with
meanXβ + Zb and covarianceσ2

ǫ IN .

The assumption on the random effectsb and the error componentǫ is
(

ǫ

b

)
= N

((
0

0

)
,

(
σ2

ǫ IN 0

0 Q(ρ)

))
.

Here the distributionp(b; ρ) of the random effects is Gaussian distribution with mean
zero and covariance matrixQ(ρ). In this case the structural parameterρ specifies the
covariance matrixQ(ρ) = cov(b). Since the mean ofp(b; ρ) is assumed to be zero,
so p(b) is fully specified up to the unknown covariance matrixQ(ρ). An overview on
parameterized covariance matrices and its derivatives is given in the appendix.

If one assumes that the observations within and between clusters given therandom effects

are independent, the joint density ofy, f(y | b)=
n∏

i=1
f(yi | bi) with f(yi | bi) =

Ti∏
t=1

f(yit |
bi) reduces to product densities, which can be handled easily. Heref(yi | bi) andf(yit |
bi) are also Gaussian densities with meanXiβ + Zibi andxT

itβ + zT
itbi and covariance

σ2
ǫ ITi andσ2

ǫ .

One reason for the popularity of this assumption is that it is easy to understand and its
usefulness in the context of longitudinal data. More complex structures are possible, i.e.,
clusters are correlated or the observations within the clusters are correlated in a distinct
way. Since correlation problems can easy be expressed in the Gaussian framework we
start with the linear mixed model specified by Gaussian mixing densities and conditional
outcomes that are normally distributed.

One gets the marginal densities as

f(y) =
n∏

i=1

f(yi) =
n∏

i=1

∫
f(yi|bi)p(bi; ρ)dbi,

wherep(bi; ρ) is the density ofN(0, Q(ρ)). In this caseQ(ρ) = bdiag(Q(ρ), . . . , Q(ρ)).
In other word, each cluster has the same structureQ(ρ). So onlyQ(ρ) has to be estimated
to getQ(ρ).

Let θ be the vector of variance parametersθT = (σ, ρ)T . The result of this consideration
is the marginal form of a Gaussian random effects model

yi ∼ N(Xiβ, Vi(θ)),
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where
Vi(θ) = σ2

ǫ IT + ZiQ(ρ)ZT
i .

In matrix notation
y ∼ N(Xβ, V(θ))

with V(θ) = bdiag(V1(θ), . . . , Vn(θ)). The joint density of y and b is reduced to a mar-
ginal density by integrating out the random effect b.

As already mentioned, the advantage of this restriction is that this parametrization is easy
to handle regarding numerical aspects. The operations on huge covariance matrices and
design matrices can be reduced to operations on block matrices of the block diagonal
matrix. This is a well conditioned problem in the numerical sense. Here,Q(ρ) is the
covariance matrix of the random effects within one cluster which is assumed tobe the
same in each cluster.

Gaussian random effect models have an advantage, because on the basis of

f(y) =
n∏

i=1

f(yi) =
n∏

i=1

∫
f(yi|bi)p(bi; ρ)dbi,

one can easily switch between the marginal and conditional views. Then integrals can
be solved analytically by using the marginal distribution. For arbitrary mixturesof condi-
tional and random distribution, it is not possible, in general. The log-likelihood forβ and
θ is given by

l(β, θ|y) =

n∑

i=1

log(f(yi)) = −1

2

n∑

i=1

log(|Vi(θ)|) +

n∑

i=1

(yi −Xiβ)T Vi(θ)
−1(yi −Xiβ).

So the estimator̂β is obtained by solving the following equation, which is derived from
the log-likelihood by differentiating with respect toβ

(
n∑

i=1

(XT
i V −1

i Xi)

)
β =

(
n∑

i=1

XT
i V −1

i yi

)
. (2.1)

As shown in Harville (1976) and described in Harville (1977)bi can be estimated by

b̂i = Q(ρ)ZT
i Vi(θ)

−1(yi − Xiβ̂). (2.2)

Harville (1976) shows, that the solutions of equation 2.1 and 2.2 are equivalent to the
solution of the BLUP-equation

[
XT WX XWZ

ZT WX ZT WZ + Q(ρ)−1

](
β

b

)
=

[
XT Wy

ZT Wy

]
(2.3)
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with W = 1
σ2

ǫ
I.

The estimator̂b is called BLUP (best linear unbiased predictor) which minimizesE((b̂ −
b)T (b̂ − b)), see Harville (1976). Additional effort is necessary ifQ(ρ) or the structural
parametersρ are not known. A usual way to solve these problems are often based on
the restricted log-likelihood. Therefore profile likelihood concepts are used, which alter-
natingly plug in the estimate for the variance components and the estimate for the fixed
effects.

A detailed introduction in linear mixed models is given by Robinson (1991), McCulloch
& Searle (2001). Especially on longitudinal mixed models, information can be found in
Verbeke & Molenberghs (2001) and Harville (1976) and Harville (1977).

2.3 The Restricted Log-Likelihood

The restricted log-likelihood is based on Patterson & Thompson (1971) . Itwas reviewed
by Harville (1974), Harville (1977) and by Verbeke & Molenberghs (2001). It is given by

lr(β, θ) = −1

2

n∑

i=1

log(|Vi(θ)|) +
n∑

i=1

(yi − Xiβ)T Vi(θ)
−1(yi − Xiβ)

− 1

2

n∑

i=1

log(|XT
i Vi(θ)Xi|).

The restricted log-likelihood differs from the log-likelihood by an additionalcomponent,
since

lr(β, θ) = l(β, θ) − 1

2

n∑

i=1

log(|XT
i Vi(θ)Xi|). (2.4)

Differentiating lr(β, θ) with respect toβ results in the same equation as differentiating
l(β, θ) with respect toβ. An important question is now whylr(β, θ) should be used for the
further computation. By plugging in the estimates alternatingly, degrees of freedom for
the estimate of the variance componentsθ are lost. The loss of degrees is compensated by
the additional component in the restricted log likelihood. Details can be found inHarville
(1977)

Sincelr(β, θ) is nonlinear inθ , lr(β, θ) has to be maximized by a Fisher-Scoring algo-
rithm.
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The estimation of the variance components is based on the profile log-likelihoodthat is
obtained by plugging in the estimatesβ̂ in the marginal log-likelihood formula 2.4.

Differentiation with respect toθT = (σε, ρ
T ) = (θ1, . . . , θd) yields

s(β̂, θ) =
∂l(β̂, θ)

θ
= (s(β̂, θ)i)i=1,...,d

and

F (β̂, θ) = −E(
∂2l(β̂, θ)

∂θ∂θT
) = (F (β̂, θ)i,j)i,j=1,...,d

with

s(β̂, θ)i =
∂l(β̂, θ)

∂θi
= −1

2

∑n
k=1 trace

(
(Pk(θ))

−1 ∂Vk(θ)

∂θi

)

+1
2

∑n
k=1(yk − ηk)

T Vk(θ)
−1 ∂Vk(θ)

∂θi
Vk(θ)

−1(yk − ηk).

Pk is defined in Harville (1977).

Pk(θ) = Vk(θ)
−1 − Vk(θ)

−1Xk

(
n∑

k=1

XT
k Vk(θ)

−1Xk

)−1

XT
k Vk(θ)

−1

and

F (β̂, θ)i,j =
1

2

n∑

k=1

trace

(
(Pk(θ))

−1 ∂Vk(θ)

∂θi
(Pk(θ))

−1 ∂Vk(θ)

∂θj

)
,

where

∂Vk(θ)

∂θi
=





2σǫITk

if i = 1

Zk
∂Q(ρ)
∂θj

ZT
k if j = i, i 6= 1.

The estimator̂θ can now be obtained by running a common Fisher scoring algorithm with

θ̂(s+1) = θ̂(s) + F (β̂, θ(s))−1s(β̂, θ̂(s)).

wheres denotes the iteration index of the Fisher scoring algorithm. If Fisher scoringhas
converged, the resultinĝθ represents the estimates of variances for the considered step.

2.3.1 The Maximum Likelihood Method

In special cases, it is necessary to use the ML instead of the REML, because the Fisher-
Scoring in the REML-methods may be affected by numerical problems. Especially when
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there are many covariates, which have no effect on the response, the REML estimator then
do not converge.

On the other hand it is criticized that the maximum likelihood estimator forσ2 does not
take into account the loss of degrees of freedom when plugging inβ̂.

The estimation of the variance components is based on the profile log-likelihoodthat is
obtained by plugging in the estimatesβ̂ in the marginal log-likelihood

l(β̂; θ) = −1
2

∑n
i=1 log(|Vi(θ)|) +

∑n
i=1(yi − η̂)T Vi(θ)

−1(yi − η̂).

Differentiation with respect toθT = (σε, ρ
T ) = (θ1, . . . , θd) yields

s(β̂, θ) =
∂l(β̂, θ)

∂θ
= (s(β̂, θ)i)i=1,...,d

and

F (β̂, θ) = −E(
∂2l(β̂, θ)

∂θ∂θT
) = (F (β̂, θ)i,j)i,j=1,...,d

with

s(β̂, θ)i = ∂l(β̂,θ)
θi

= −1
2

∑n
k=1 trace

(
(Vk(θ))

−1 ∂Vk(θ)
θi

)

+1
2

∑n
k=1(yk − ηk)

T Vk(θ)
−1 ∂Vk(θ)

θi
Vk(θ)

−1(yk − ηk)

and

F (β̂, θ)i,j =
1

2

n∑

k=1

trace

(
(Vk(θ))

−1 ∂Vk(θ)

∂θi
(Vk(θ))

−1 ∂Vk(θ)

∂θj

)
,

where

∂Vk(θ)

∂θi
=





2σǫITk

if i = 1

Zk
∂Q(ρ)
∂θj

ZT
k if j = i, i 6= 1.

2.4 Estimation with Iteratively Weighted Least Squares

The estimation algorithm can be described as following:

Compute good start valueŝβ0 andθ̂0. The value ofβ̂0 can be the estimator from a linear
model. The elements ofθ0 are set to be small values, i.e. 0.1.

1. setk = 0
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2. computeβ̂(k+1) by solving the equationl(β, θ̂(k)) above with plugged in̂θ(k)

3. computeθ̂(k+1) in l(β̂, θ) by running a Fisher scoring algorithm with plugged in
β̂(k+1).

4. stop, if all stopping criteria are reached, else start in 1 withk = k + 1.

This algorithm corresponds to the iteratively weighted least squares algorithms. Alter-
natively, the variance parameters can be obtained by using the EM-algorithm originally
described in Laird & Ware (1982). Later, Lindstrom & Bates (1990) suggested that the
Newton-Raphson-algorithm should be preferred over the EM-algorithm.

2.5 Estimation with EM-Algorithm - The Laird-Ware Method

The idea of this maximization method is based on Laird & Ware (1982). Indirectmax-
imation of the marginal density starts from the joint log-density of the observeddata
y = (y1, . . . , yn) and the unobservable effectsδ = (β, b1, . . . , bn). The joint log-
likelihood is

log f(y, δ|θ) = log f(y|δ; σ2
ǫ ) + log p(b1, . . . , bn; ρ)

From the model assumptions one obtains, up to constants,

S1(σ
2
ǫ ) ∝ −1

2N log σ2
ǫ − 1

2σ2
ǫ

∑n
i=1 ǫT

i ǫi,

S2(Q(ρ)) ∝ −n
2 log det(Q(ρ)) − 1

2

∑n
i=1 bT

i Q(ρ)−1bi

= −n
2 log det(Q(ρ)) − 1

2

∑n
i=1 tr(Q(ρ)−1bT

i bi)

Next we start in the EM-framework with building the conditional expections withrespect
to θ(p)

M(θ|θp) = E{S1(σ
2
ǫ )|y; θ(p)} + E{S2(Q(ρ))|y; θ(p)} (2.5)
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which is called the E-step. In detail are the E-equations

E{S1(σ
2
ǫ )|y; θ(p)} = −1

2

∑n
i=1 Ti log(σ2

ǫ )

− 1
2σ2

ǫ

∑n
i=1[(ǫ

(p)
i )T ǫ

(p)
i + trcov(ǫi|yi; θ

(p)],

E{S2(Q(ρ))|y; θ(p)} = −n
2 log det(Q(ρ(p)))

−1
2

∑n
i=1[tr[Q(ρ(p))−1b

(p)
i (b

(p)
i )T ] + cov(bi|yi; θ

(p))

(2.6)

with current residualsǫ(p)
i = yi − Xiβ̂

(p) − Zib̂
(p)
i . Differentiation of (2.6) with respect

to σǫ andQ(ρ) yields the M-equations (Equations that maximize the E-equations)

σ2
ǫ
(p+1)

= − 1
N

∑n
i=1(ǫ

(p)
i )T ǫ

(p)
i + trcov(ǫi|yi; θ

(p)]

Q(ρ(p+1)) = 1
n

∑n
i=1[b

(p)
i (b

(p)
i )T + cov(bi|yi; θ

(p))].

(2.7)

We use projection matrices according Laird, Lange & Stram (1987)

P (θ(p)) =
(
Vi(θ

(p)
)−1

(2.8)

in ML-Estimation and

P (θ(p)) =
(
Vi(θ

(p)
)−1

−
(
Vi(θ

(p)
)−1

Xi(X
T
i

(
Vi(θ

(p)
)−1

Xi)
−1XT

i

(
Vi(θ

(p)
)−1

(2.9)
in REML-Estimation withV (ρp) = σ2

ǫ
(p+1)

+ ZiQ(ρ(p+1))ZT
i .

Therefore we can denote with with projection matrix (2.8) or (2.9) as described in Laird,
Lange & Stram (1987)

σ2
ǫ
(p+1)

= − 1
N

∑n
i=1(ǫ

(p)
i )T ǫ

(p)
i + σ2(p)

tr(I − σ2(p)
Pi(θ

(p))]

Q(ρ(p+1)) = 1
n

∑n
i=1[b

(p)
i (b

(p)
i )T + Q(ρ(p))(I − ZT

i Pi(θ
(p))Zi)Q(ρ(p))]

(2.10)

The estimateŝβ(p) andb̂
(p)
i are obtained in the usual way

β̂(p) =
(∑n

i=1 Xi(Vi(θ
(p)))−1Xi

)−1∑n
i=1 XT

i (Vi(θ
(p)))−1yi

b̂
(p)
i = Q(ρ(p))ZT

i (Vi(θ
(p)))−1(y − Xβ̂(p)).

(2.11)
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The EM-Algorithm is now

1. Calculate start valueθ(0) = (σǫ
(0), ρ(0)).

2. For p = 1, 2, . . . computeδ̂(p) = (δ̂(p), b̂
(p)
1 , . . . , b̂

(p)
n ) with variance-covariance

components replaced by their current estimatesθ(p) = (σǫ
(p), ρ(p)), together with

current residualsǫ(p)
i = yi − Xiβ̂

(p) − Zib̂
(p)
i and posterior covariance matrices

cov(ǫi|yi; θ
(p)) and cov(bi|yi; θ

(p)). This step may be seen as the E-step.

3. Do the M-step to compute updates with 2.10.

4. If the condition
||θ(p+1) − θ(p)||

||θ(p)||
is accomplished, convergence of the EM-algorithm is achieved. If not start in step
2 with θ(p+1) as update forθ(p).

More information on the estimation of mixed models via EM-algorithm can be found in
Laird & Ware (1982). Later, Lindstrom & Bates (1988) compare the Newton-Raphson
method to EM-estimation. Especially fast algorithm reparametrization can be found here.
Laird, Lange & Stram (1987) gave detailed information on EM-estimation and algorith-
mic acceleration. Alternatively, the gradient algorithm as described in Lange (1995), can
also be used which is closely related to the EM-Algorithm.

2.6 Robust Linear Mixed Models

The marginal distribution of a linear mixed models is

yi ∼ N(Xiβ, Vi(θ)). (2.12)

This assumption on the distribution is now replaced by the robust variant as suggested in
Lange, Roderick, Little & Taylor (1989)

yi ∼ tT (Xiβ,Ψi(θ), ν), (2.13)

wheretk(µ,Ψ, ν) denotes the k-variate t-distribution as given in Cornish (1954),Ψ is the
scaling matrix which has the function ofΣ in the mixed model concept. The additional
parameterν must be positive and can be noninteger. It has the funtion of a robustness
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parameter, since it downweights outlying cases. We set nowµ = Xβ. The marginal
density is

f(y|µ,Ψ, ν) = |Ψ|−1/2Γ((ν+k)/2)

(Γ(1/2)))kΓ(ν/2)νk/2(
1 + (y−µ)T Ψ−1(y−µ)

ν

)−(ν+k)/2
.

(2.14)

Important properties forν ≥ 2 are:

• y ∼ tk(µ,Ψ, ν)

• E(y) = µ and Cov(y) = Σ = νΨ
ν−2 for (ν > 2)

• b|y ∼ χ2
ν+k

ν+δ2 with δ2 = (y − µ)T Ψ−1(y − µ),
χ2

k(.) denotes the Chi-Square distribution withk degrees of freedom

• δ2

k ∼ Fk,ν

According to these properties, the model can be derived from multivariatenormal-
distribution with scaling variablebi

yi|bi ∼ NT (µi,
Ψ(θ)

bi
) wherebi ∼

χ2
T

T
. (2.15)

The log-likelihood for model (2.13) ignoring constants is

l(β, ρ, ν) ≈∑n
i=1 li(β, ρ, ν)

with

li(β, ρ, ν) = 1
2 log |Ψi(ρ)| − 1

2(ν + T ) log
(
1 +

δ2
i (β,ρ)

ν

)

−1
2T log(ν) + log

[
Γ
(

ν+T
2

)]
− log Γ(ν

2 ).

(2.16)

The likelihood-equations regardingβ are closely related to the likelihood-equations of a
linear mixed model. Setting the first derivative of (2.16) regardingβ zero yields

n∑

i=1

wiX
T
i Ψ(ρ)−1(yi − µi) = 0 (2.17)

with the weightwi = ν+T
ν+δ2

i
.
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The log-likelihood (2.16) can be maximized via a Fisher-Scoring-Algorithm. First we
collect all necessary parameters inγ = (β, ρ, ν).

One has to rewrite (2.14) into

f(y|γ) = |Ψ(ρ)|−1/2g((y − µ)T Ψ(ρ)−1(y − µ), ν) (2.18)

with

g(s, ν) =
Γ((ν + k)/2)

Γ(1/2)kΓ(ν/2)νk/2

(
1 +

s

ν

)−(ν+k)/2
. (2.19)

The first derivatives are

l(γ)
∂β = −2∂g(σ2,ν)

∂σ2
1

g(σ2,ν)
∂µ
β Ψ(ρ)−1(y − µ),

l(γ)
∂ρi

= −1
2 tr
(
Ψ(ρ)−1 Ψ(ρ)

∂ρi

)
− ∂g(σ2,ν)

∂σ2
1

g(σ2,ν)
(y − µ)T Ψ(ρ)−1)∂Ψ(ρ)

∂ρi
Ψ(ρ)−1(y − µ),

l(γ)
∂ν = ∂g(σ2,ν)

∂ν
1

g(σ2,ν)
.

(2.20)

So one can write

s(γ) =




l(γ)
∂β
l(γ)
∂ρ
l(γ)
∂ν


 (2.21)

with l(γ)
∂ρ

T
= ( l(γ)

∂ρ1
, . . . , l(γ)

∂ρd
).

The elements of the expected Fisher-matrix are
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Fββ = −E

(
l(γ)

∂βT ∂β

)
= ν+k

ν+k+2
∂µT

∂βT Ψ(ρ)−1 ∂µ
∂β ,

Fρiρj = −E

(
l(γ)

∂ρi∂ρj

)
= ν+k

ν+k+2
1
2 tr
(
Ψ(ρ)−1 Ψ(ρ)

∂ρi
Ψ(ρ)−1 Ψ(̺)

∂ρj

)
,

− 1
2(ν+k+2)

(
Ψ(ρ)−1 Ψ(ρ)

∂ρi

)(
Ψ(ρ)−1 Ψ(ρ)

∂ρj

)
,

Fρiν = −E

(
l(γ)

∂ρi∂ν

)
= 1

(ν+k+2)(ν+k) tr
(
Ψ(ρ)−1 Ψ(ρ)

∂ρi

)
,

Fνν = −E

(
l(γ)
∂ν∂ν

)
= −1

2 [12TG
(

ν+k
2

)
− 1

2TG
(

ν
2

)

+ k
ν(ν+k) −

1
ν+k + ν+2

ν(ν+k+2) ],

Fβρi = −E

(
l(γ)

∂β∂ρi

)
= E

(
l(γ)

∂β∂ν

)
= 0,

(2.22)

where TG(x) = d2

d2x
log(Γ(x)) is the trigamma function. The partitioned Fisher matrix is

F (γ) =




Fββ 0 0

0 Fρρ Fρν

0 Fνρ Fνν


 .

The log-likelihood function (2.14) can be maximized using Fisher-Scoring-Algorithm.
Lange, Roderick, Little & Taylor (1989) compare Fisher-Scoring to EM-estimation. Al-
gorithmic details and proofs for Score and Fisher matrix are given in this paper as well as
alternative assumptions on robust linear mixed models.

In the literature, one can find the extension of linear random effect modelsto semiparamet-
ric linear mixed models, see Ishwaran & Takahara (2002) and Zhang & Davidian (2001).
The semiparametric term refers to the unknown density of the random effects density or a
random measure with unknowns random effects. This terminology is often misleading be-
cause semiparametric modeling also refers to additive modeling of continuous covariates,
which underlying structure is deterministic.

For more flexibility in the random effects structure, mixture models got very popular in
the past. A mixture model is obtained by finitely mixing the conditional distribution. For
non-Bayesian semiparametric approaches to linear mixed models, see Verbeke & Lessafre
(1996) and Aitkin (1999) who have used a finite mixture approach with implementation
by the EM algorithm.

A more Bayesian based framework is founded on the Dirichlet process asdiscussed in
Ferguson (1973). It is applied on random effect models by the idea of random partition
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structures and Chinese Restaurant processes (CR process). Later, Brunner, Chan, James &
A.Y.Lo (2001) extended these ideas to the weighted Chinese Restaurant Processes which
they applied to Bayesian Mixture models. Brunner, Chan, James & A.Y.Lo (1996) pro-
vided the general methodology related to i.i.d weighted Chinese Restaurant algorithms
(WCR-Algorithms). Ishwaran & Takahara (2002) combined the iid WCR algorithm with
REML estimates for inference in Laird-Ware random effect models. Naskar, Das &
Ibrahim (2005) used WCR and EM algorithm for survival data.



Chapter 3

Semi-Parametric Mixed Models

There is an extensive amount of literature on the linear mixed model, starting from Hen-
derson (1953), Laird & Ware (1982) and Harville (1977). Nice overviews including more
recent work is described in Verbeke & Molenberghs (2001), McCulloch & Searle (2001).
Generally, the influence of covariates is restricted to a strictly parametric form in linear
mixed models. While in regression models, much work has been done to extend the strict
parametric form to more flexible forms of semi- and nonparametric regression, but much
less has been done to develop flexible mixed model. For overviews on semiparametric re-
gression models, see Hastie & Tibshirani (1990), Green & Silverman (1994) and Schimek
(2000).

A first step to more flexible mixed models is the generalization to additive mixed models
where a random intercept is included. With responseyit for observationt on individ-
ual/clusteri and covariatesui1, . . . uim, the basic form is

yit = β0 + α(1)(ui1) + · · · + α(m)(uim) + bi0 + εit, (3.1)

whereα(1)(.), . . . , α(m)(.) are unspecified functions of covariatesui1, . . . , uim, bi0 is a
subject-specific random intercept withbi0 ∼ N(0, σ2

b ) andεit is an additional noise vari-
able. Estimation for this model may be based on the observation that regression models
with smooth components may be fitted by mixed model methodology. Speed (1991) in-
dicated that the fitted cubic smoothing splines is a best linear unbiased predictor. Subse-
quently the approach has been used in several papers to fit mixed models,see e.g. Ver-
byla, Cullis, Kenward & Welham (1999), Parise, Wand, Ruppert & Ryan(2001), Lin
& Zhang (1999), Brumback & Rice (1998), Zhang, Lin, Raz & Sowers (1998),Wand
(2003). Bayesian approaches have also been considered, see e.g.,by Fahrmeir & Lang
(2001), Lang, Adebayo, Fahrmeir & Steiner (2003), Fahrmeir, Kneib &Lang (2004) and
Kneib & Fahrmeir (2006).
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3.1 Short Review on Splines in Semi-Parametric Mixed Mod-
els

In linear mixed models the strict linear and parametric terms can be extended by incor-
porating a continuous covariateu which has an additive functional influence in the sense
of

yit = xT
itβ + α(uit) + zT

itbi + ǫit. (3.2)

In the following, we consider several ways to approximated an unknown functionα(.).

3.1.1 Motivation: The Interpolation Problem

For simplicity, we first consider the approximation of a functionα(.) with known values
at measurement points (knots)uit. Then we start with observations(uit, α(uit)), i =

1, . . . , n.

The interpolation problem is given by finding a functions(.) with property

s(uit) = α(uit), i = 1, . . . , n t = 1, . . . , Ti.

Spline theory is a common way to solve this problem. The functionα(.) may be approx-
imated by a Spline functions(.). A spline is based on a set of knotsK = {k1, . . . , kM̃}
in the range[k1, kM̃ ]. K is the set of ordered observationsK = {kj |kj ≤ kj+1}. It has
elementskj which are ordered. The smallest value isk1

The spline is of degreed, d ∈ N0 onK, if s(.) is d − 1 times continuously differentiable
and for everyu ∈ [kj , kj+1) s(u) is a polynomial of degreed, j = 1, . . . , M̃−1. A spline
on [kj , kj+1) of degree d or order d+1 may be represented by

s(u) = a
[d]
j ud + a

[d−1]
j ud−1 + · · · + a

[1]
j u1 + a

[0]
j .

The vector space for splines with degreed for the given knotsK is denoted bySd(K).

Splines interpolate given data pointsuit and their known function evaluationsα(uit) by
using piecewise polynomials to connect these data points. Other interpolation strategies
are also possible, i.e., trigonometric interpolation or classical polynomial interpolation,
but these methods often have disadvantages in the numeric sense. In Figure 3.1, such an
interpolation problem is given for known pairs(uit, s(uit)). Since the data points are the
given knots,s(.) is a polynomial between successive u-values. In the case of cubic splines
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first and second derivative are continuous at the observation points.The interpolation
spline is given in Figure 3.2.

The set of all splines of degreed on the knots K is aM̃ + d − 1 = M subspace of the
vector space, which contains thed−1 times differentiable functions. That is why a spline
can be expressed by a set ofM linear independent basis functionsφj(.), j ∈ 1, M . So
Sd(K) can be described by the spline basisB = {φ1(u), . . . , φM (u)}.

-4 -3 -2 -1 0 1 2 3 4 5

-40

-20

0

20

Figure 3.1: Interpolation problem - The valuesuit are on the x-axis and the corresponding
s(uit) are on the y-axis. These observed points should be part of continous functins(.)

Functionα(u) with u ∈ [a, b] may be approximated by a splines(u) using basis functions
so that

α(u) ≈ s(u) =

M∑

j=1

φj(u)αj = φ(u)T α.

The problem in (3.2) for known function evaluationsα(uit) can be written as

yit = xT
itβ + φ(uit)

T α + zT
itbi + ǫit, (3.3)

sinces(uit) = φ(uit)
T α is the spline interpolation ofα(uit).

3.1.2 Popular Basis Functions

Truncated Power Series One basis forSd(K) for a given set of knotsK with degreed
is

φ1(u) = 1, φ1(u) = u, . . . , φd+1(u) = ud,

φd+2(u) = (u − k2)
d
+, . . . , φd+M̃−1(u) = (u − kM̃−1)

d
+,

(3.4)
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-4 -2 0 2 4

-40

-20

0

20

Figure 3.2: Spline solution of the interpolation problem. ( The solid points arethe given
points, the blue line is the spline function (interpolation spline)

where

(u − kj)
d
+ =





(u − kj)

d , if u ≥ kj

0 , else
.

The basis is
B = {φ1(u), . . . , φM (u)}.

B-splines B-splines for degreed with M̃ inner knots in the range[a, b] can be recur-
sively defined by

"De Boor" recursion for B-splines

φ0
j (u) = χ[kj ,kj+1](u) =





1 , if kj ≤ u < kj+1

0 , else
,

φd
j (u) =

kj+d−1−u
kj+d−1−kj+1

φd−1
j+1(x) +

u−kj

kj+d−kj
φd−1

j (u).

(3.5)

For the construction of the B-spline basis with the recursion (3.5), outer knots are nec-
essary in the form ofk1 <= · · · <= kd−1 <= a1 anda2 <= kM̃+d <= · · · <=

kM̃+2∗d−1, which are usually based on equidistant knots. Then the B-splines basis for
Sd(K) is

B = {φ1(u), . . . , φM (u)}.
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3.1.3 Motivation: Splines and the Concept of Penalization - Smoothing
Splines

A main problem in statistics is that the function evaluationα(uit) is not observable from
the data. Instead, only the responseyit is observable, which is a sum of the unknown
valuesα(uit) andǫit. These values have to be estimated from the data.

In this subsection, all observation are taken as knots(M̃ == N). K is the set of ordered
observationsK = {kj |kj ≤ kj+1}. It has elementsuit, which are ordered. It is also
possible that a (equidistant) grid of knots is given. This is a useful condition, especially
in the regression spline context . That is whỹM was used instead ofN .

We change the cluster representation of the simple semi-parametric model (3.2)

yit = xT
itβ + φ(uit)

T α + zT
itbi + ǫit,

which is in matrix form
Y = Xβ + Φα + Zb + ǫ, (3.6)

to the elementwise measurement representation

y(i) = xT
(i)β + φ(u(i))

T α + zT
(i)b + ǫ(i),

where.(i) indicatesi-th row vector for matrixZ,X or .(i) indicates thei-the element of
vectorY ,u,ǫ andφ(u(i))

T = (φ1(u(i)), . . . , φM (u(i))) is the basis function evaluation of
u(i).

The job of spline smoothing is primary to find a good estimations(uit) = φT (uit)α̂

for the unknown function evaluationsα(uit) ≈ ŝ(uit). The difficulty of equation (3.6)
is that it is not identifiable sincedim(y) = N anddim(Φ) = N × (N + d − 1). To
solve this problems further restrictions to the estimation concepts have to be made. Since
equation (3.6) is the equation of a mixed model with assumptionǫ ∼ N(0, σ2

ǫ I) andb ∼
N(0, Q(ρ)) the estimates for fixed effectsβ, α and structural parametersθT = (σ2

ǫ , ρ)

would normally be obtained by ML or REML for casesdim(y) > dim((βT , αT )T ).

That is why the idea of penalizing the roughness of estimated curves was born. The
roughness of curvess(.) is controlled by a penalty term and a smoothing parameterλ.
Consider the minimization problem forβ, α, θ

N∑

i=1

li(β, α, θ) − 1

2
λ

∫
(α′′(u))2du → min (3.7)
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wherel(i)(β, α, θ) is the likelihood contribution of observationy(i). It is assumed that
α(.) has continuous first and second derivativesα′(.) andα′′(.) with α′′(.) is quadrati-
cally integrable. That is in detail the function class described by the Sobolevspace (see
Alt (1985) and Adams (1975)). In other words,α(.) can be approximated by a spline
functionss(.) that is based on an smoothing parameterλ. To show the dependence ofλ

let sλ(u) the spline function, which is the result of the minimization problem in formula

3.7 for givenλ. l(β, α, θ) =
N∑

i=1
li(β, α, θ) is the marginal likelihood for model (3.6).

The bias(ŝ(u), α(u)) of α(u) and ŝ(u) is increasing for bigλ’s. The principal trade-off
between the bias and the variance of the estimated is reflected by the mean squared error

E(sλ(u) − α(u))2 = var(ŝλ(u)) + [E(ŝλ(u)) − α(u))]2

= var(ŝλ(u)) + (bias(ŝλ(u), α(u)))2.

In other words large values ofλ lead to underfitting, to small values to overfitting. Getting
an optimalλ and an optimal splines is a difficult statistical problem to solve.

The maximization problem (3.7) may be solved by a natural cubic smoothing splineas
described in Reinsch (1967) without the need of a basis function representation ofs(.).
The concept of Reinsch (1967) and De Boor (1978) can be transferred to the mixed model
methology where minimizing (3.7) for givenρ is equivalent to

N∑

i=1

li(β, α, θ)2 − 1

2
λs′K̃s → min, (3.8)

whereŷ(i) = xT
(i)β̂ + sλ(u(i)) + zT

(i)b̂, sT = (s(k1), . . . , s(kM )). For details on the cubic

spliness(.) and penalty matrix̃K see Fahrmeir & Tutz (2001).

3.1.4 Motivation: The Concept of Regression Splines

The basic idea of regression splines is to work with only a small number of knots(M̃ <<

N).

One has to find suitable knotsK in that sense that the placement and also the number
of knots are responsible for the roughness of the curve. This concept my be understood
as adaptive selection of knots and their placement. Here the number and position of
knots strongly determine the degree of smoothing. The position of knots may bechosen
uniformly over the data, at appropriate quantiles or by more complex data-driven schemes.
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For a detailed discussion of these issues see Friedman & Silverman (1989),Wand (2000)
or Stone, Hansen, Kooperberg & Truong (1997)

Another idea is to take a (equidistant) fixed grid of knots. That is the main difference to
smoothing splines, since the knots are chosen individually ( how many knots,range of
the interval where the knots coming from ). A spline function for a fixed gridwithout
penalization is visualized in Figure 3.4. For this Figure and Figure 3.3, a random effects
model with only one smooth covariate (α(u) = sin(u)) was used. Therefore forty clusters
with five repeated measurements each were simulated. The random effect was assumed
to beN(0, σ2

b ), σ
2
b = 2 and the error term was assumed to beN(0, σ2

ǫ ), σ
2
ǫ = 2. In Figure

3.3 and 3.3, the concept of regression splines was used. In Figure 3.3,the smoothing
parameterλ was set to zero and in Figure 3.4, it was set to sixty. It is obvious that the
roughness of the curve has to be penalized. On the other hand a spline function is desired
that is independent of the placement and the number of knots.

0 1 2 3 4 5 6
-1.5

-1.0

-0.5

0.0

0.5

1.0

Figure 3.3: The red points describe the given data, the blue line in the figure is a spline
computed with 40 knots and B-splines of degree 3. (no penalization)

Again the penalization problem for givenρ is

N∑

i=1

li(β, α, θ) − λP (s(.)) → min, (3.9)

wheres(u) has the functional forms(u) =
∑M

j=1 φj(u)αj andP (s(.)) is a roughness
functional. A widely used roughness functional is the integrated squaredsecond derivative
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Figure 3.4: The spline in the figure is the optimal spline with respect to the penalty andλ.
Using the penalty term reduces the influence of knots. Here 40 knots and B-splines of degree
3 were used.

P (s(.)) =
∫

(s′′(u))du as an measure for the curvature or the roughness of the function
s(.). If the basis function representation of a spline is used the penalty term hasthe form

P (s(.)) = αT Kα (3.10)

whereK is a matrix with entriesKij =
∫

φ′′
i (u)φ′′

j (u)du.

Eilers & Marx (1996) introduced a penalty term where adjacent B-spline coefficients
are connected to each other in a very distinct way. The penalty term is based on
K̃ = (Dl)T Dl, whereDl is a contrast matrix of orderl which contrasts polynomials
of the orderl. Using B-splines with penalizationK one penalizes the difference between
adjacent categories in the formλαT Kα = λ

∑
j{△lαj}2. △ is the difference operator

with △αj = αj+1 − αj , △2αj = △(△αj) etc., for details see Eilers & Marx (1996).
Usually the order of the penalized differences is the same as the order of the spline (B-
Spline).

In Figure 3.4, one can see that penalization reduces the influence of knots, which has an
effect on the roughness of the curve. So penalization reduces also theinfluence of the
number and placement of the knots. Another number of knots with differentplacements
would deliver a quite similar spline function solution.

The difference matrixD is needed to compute the difference matrix of thel-th order
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Dl corresponding to B-Spline penalization (see Eilers & Marx (1996)) in an recursive
scheme. WithD being the(M − 1) × (M) contrast matrix

D =




−1 1

−1 1
.. . .. .

−1 1




one obtains higher order differences by the recursionDl = DDl−1 which is a(M−l)×M

matrix. This can be used for a more simple and intuitive definition of the penalty than
equation 3.10.

A similar argumentation is used for the truncated Power Series basis where thepenalty
matrix is simply set to

K = bdiag(0(d)×(d), IM−d).

where0(d)×(d) is a d-dimensional quadratic zero matrix, andI(M−d) is the identity matrix
of dimension(M − d).

3.1.5 Identification Problems: The Need of a Semi-Parametric
Representation

Problems in additive modeling based on splines arise, if intercepts or splines for other
covariates are used. If no further restriction of the splines is made, the resulting splines
are not clearly identifiable. This is illustrated in the following example

Example 3.1 : Rewriting an additive term to a semi-parametric term

One can write the additive term without parametric terms

α(u) = 10 + u2, for u ∈ [−3, 3]

to a semi-parametrical representation

α(u) = β0 + α̃(u) = 10 + u2, for u ∈ [−3, 3]

with β0 = 10 andα̃(u) = u2. But alsoβ0 = 5 andα̃(u) = 5 + u2 is a valid semiparametric

parametrization for the additive termα(u).

The interest is often in the population mean level and in the absolute deviations from this mean

as a function of a continuous covariates. It is a natural ideato center the continuous covariates
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Figure 3.5: (a) may be seen as pure additive spline smoothing, (b) maybe seen thatα(u)

describes the absolute deviation from zero. In this case the level is˜̃
β0 =

R
b
a

α(u)du

b−a
. The

desired property of the additive term̃̃α(u) is
R b

a
˜̃α(u) = 0

around zero. Figure (3.5) shows the difference in the interpretation. Nice benefit of this restriction

is that the semi-parametrical representation is identifiable. 2

Also two or more additive terms have to be rewritten to semi-parametric terms, since
additive terms should be identifiable. This is illustrated in the

Example 3.2 : Rewriting additive terms to semi-parametric terms

One can write additive terms

α(1)(u) = 10 + u2, for u ∈ [−3, 3] = [a(1), b(1)]

α(2)(v) = −5 + v3, for v ∈ [−3, 3] = [a(2), b(2)]

to the additive predictor

µadd(u, v) = α(1)(u) + α(2)(v).

Again α̃(1)(u) = 5 + u2 and α̃(2)(v) = v3 corresponds to the same additive predictor since

µadd(u, v) = α̃(1)(u) + α̃(2)(v). Using the same idea described in example 3.1, one gets identifi-

able additive terms by the reparametrization of the additive predictor to semi-parametric terms

µadd(u, v) = β0 + ˜̃α(1)(u) + ˜̃α(2)(v)

with properties
∫ b(1)

a(1)

˜̃α(1)(u) = 0,
∫ b(2)

a(2)

˜̃α(2)(v) = 0 and ˜̃
β =

R b(1)
a(1)

α(u)du

b(1)−a(1)
+

R b(2)
a(2)

α(v)dv

b(2)−a(2)
. 2

So the basic idea for the identifiable additive termsα̃(u) is to rewrite additive termsα(u)

to a semi-parametric consideration with
∫ b
a α̃(u) = 0. Soα̃(u) has the form

α̃(u) = α(u) −
∫ b

a

α(u)

b − a
du. (3.11)



3.1 Short Review on Splines in Semi-Parametric Mixed Models 31

Using simple analysis, one can show that equation (3.11) holds
∫ b
a α̃(u) = 0.

Sinceα(u) is often approximated by a spline function that is composed of basis functions
α(u) ≈ φT (u)α, whereφT (u) = (φ1(u), . . . , φM (u)), the discrete version using the
coefficients of basis functions can also used to get regularizedα̃T = (α̃1, . . . , α̃M ) with
restriction

∑M
j=1 α̃j = 0. A regularized version may be obtained by

α̃ = α −
∑M

j=1 αj

M
, α̃m = −

M−1∑

j=1

α̃j .

There term
PM

j=1 αj

M is often understood as shift in the level of the functionα(u). For
detailed information on these restrictions, see the Appendix A.1.

3.1.6 Singularities: The Need of a Regularization of Basis Functions

Let a semi-parametrization be given by

y(i) = xT
(i)β +

M∑

j=1

φj(u(i))αj + zT
(i)b + ǫ(i) =

[
1 x̃(i) φ(u(i))

T
]



β0

β̃

α


+ zT

(i)b + ǫ(i)

wherexT
(i) = (1, x̃(i)) andβT = (β0, β̃

T ). For a truncated power series bases, the column
corresponding to the intercept is absolute linear dependent onφ1(u) = 1. The rows for the

design matrix for fixed effects can be written as
[
1 x̃(i) 1 φ2(u(i)) . . . φM (u(i))

]
.

It is obvious that the design matrix has not full rank. The same problem affects also B-
splines. A B-spline basis is a specific decomposition of1. A main property of B-splines
is that one has

∑M
j=1 φj(u) = 1. There exists the linear combination of the design matrix[

1 x̃(i)

∑M
j=1 φj(u(i))

]
, which shows once again problems in the rank of the design

matrix.

The same problem is arising when more than one additive functions are used. For trun-
cated power series one has columnsφ

(k)
1 = 1 and φ

(l)
1 = 1 in the design matrix for

additive componentsk andl. For B-splines the corresponding sums
∑M

j=1 φ
(k)
j = 1 and

∑M
j=1 φ

(l)
j = 1 are absolute linear dependent.

To solve these singularities specific transformationsT must be applied toΦ(u) with

Φ̃(u) = TΦ(u),

whereTΦ(u) has full rank. Generally these transformations also affects the penalty ma-
trix K that occur in a penalized likelihood function. See the Appendix A.1 for a detailed
discussion on these transformations.
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3.2 The Model

Let the data be given by(yit, xit, uit, zit), i = 1, . . . , n, t = 1, . . . , Ti, whereyit

is the response for observationt within cluster i and xT
it = (xit1, . . . , xitp), uT

it =

(uit1, . . . , uitm), zT
it = (zit1, . . . , zits) are vectors of covariates, which may vary across

clusters and observations. The semi-parametric mixed model that is considered in the
following has the general form

yit = xT
itβ +

m∑

j=1

α(j)(uitj) + zT
itbi + ǫit

= µpar
it + µadd

it + µrand
it + ǫit (3.12)

where

µpar
it = xT

itβ is a linear parametric term,

µadd
it =

∑m
j=1 α(j)(uitj) is an additive term with unspecified influence functions

α(1), . . . , α(m),

µrand
it = zT

itbi contains the cluster-specific random effectbi, bi ∼ N (0, Q(ρ)), where
Q(ρ) is a parameterized covariance matrix and

ǫit is the noise variable,ǫit ∼ N(0, σ2I), ǫit, bi independent.

In spline methodology, the unknown functionsα(j) are approximated by basis functions.
A simple basis is known as the truncated power series basis of degreed, yielding

α(j)(u) = γ
(j)
0 + γ

(j)
1 u + . . . γ

(j)
d ud +

M̃∑

s=1

α(j)
s (u − k(j)

s )d
+ ,

wherek
(j)
1 < . . . < k

(j)

M̃
are distinct knots. More generally, one uses

α(j)(u) =
M∑

s=1

α(j)
s φ(j)

s (u) = αT
j φ(j)(u), (3.13)

whereφ
(j)
s denotes thes-th basis function for variablej, αT

j = (α
(j)
1 , . . . , α

(j)
M ) are un-

known parameters andφ(j)(u)T = (φ
(j)
1 (u), . . . , φ

(j)
M (u)) represent the vector-valued

evaluations of the basis functions.
For semi- and nonparametric regression models, Eilers & Marx (1996), Marx & Eilers
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(1998) proposed the numerically stable B-splines which have also been used by Wood
(2004). For further investigation of basis functions, see also Wand (2000), Ruppert &
Carroll (1999).

By collecting observations within one cluster the model has the form

yi = Xiβ + Φi1α1 + . . . + Φimαm + Zibi + ǫi,[
ǫi

bi

]
∼ N

((
0

0

)
,

(
σ2

εI

Q(ρ)

))
, (3.14)

whereXiβ contains the linear term,Φijαj represents the one additive term andZiβ

the random term. Vectors and matrices are given byyT
i = (yi1, . . . , yiTi), XT

i =

(xi1, . . . , xiTi), Φ
T
ij = (φ(j)(ui1j), . . . , φ

(j)(uiTij)), ZT
i = (zi1, . . . , ziTi), ǫT

i =

(ǫi1, . . . , ǫiTi). In the case of the truncated power series the "fixed" termγ
(j)
0 + γ

(j)
1 u +

. . . + γ
(j)
d ud is taken into the linear termXiβ without specifyingXi andβ explicitly.

In matrix form one obtains

y = Xβ + Φ.1α1 + . . . + Φ.mαm + Zb + ǫ

whereyT = (yT
1 , . . . , yT

n ), bT = (bT
1 , . . . , bT

n ), ǫT = (ǫT
1 , . . . , ǫT

n ),

XT = (XT
1 , . . . , XT

n ), ΦT
.j = (ΦT

1j , . . . ,Φ
T
nj), ZT = (ZT

1 , . . . , ZT
n ).

Parameters to be estimated are the fixed effects, which are collected inδT =

(βT , αT
1 , . . . , αT

m) and the variance specific parametersθT = (σε, ρ
T ) which determine

the covariancescov(ǫit) = σ2
εITi andcov(bi) = Q(ρ). In addition one wants to estimate

the random effectsbi. Sincebi is a random variable, the latter is often called prediction
rather than estimation. We setXΦi. = [Xi, Φi1, . . . ,Φim].

3.3 Penalized Maximum Likelihood Approach

Starting from the marginal version of the model

yi = Xiβ + Φi1α1 + . . . + Φimαm + ǫ∗i
or

yi = XΦiδ + ǫ∗i ,

(3.15)

ǫ∗i ∼ N(0, Vi(θ)), Vi(θ) = σ2
ǫ ITi + ZiQ(ρ)ZT

i ,

estimates forδ may be based on thepenalized log-likelihood

lp(δ; θ) = −1

2

n∑

i=1

log(|Vi(θ)|) −
n∑

i=1

1

2
(yi − XΦi.δ)

T (Vi(θ))
−1(y − XΦi.δ) −

1

2
δT Kδ,

(3.16)
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whereδT Kδ is a penalty term which penalized the coefficientsα1, . . . , αn. For the trun-
cated power series an appropriate penalty is given by

K = Diag(0, λ1I, . . . , λmI),

whereI denotes the identity matrix andλj steers the smoothness of the functionα(j).
For λj → ∞ a polynomial of degreed is fitted. P-splines ((Eilers & Marx, 1996)) use
K = DT D whereD is a matrix that builds the difference between adjacent parameters
yielding the penaltyδT Kδ = ΣjλjΣs(α

(j)
s+1 − α

(j)
s )2 or higher differences.

From the derivative oflp(δ, θ), one obtains the estimation equation∂lp(δ, φ)/∂δ = 0

which yields

n∑

i=1

(XT
Φi.(Vi(θ))

−1yi) = (

n∑

i=1

(XT
Φi.(Vi(θ))

−1XΦi. + K)−1)δ̂

and therefore

δ̂ = (
n∑

i=1

(XT
Φi.(Vi(θ))

−1XΦi. + K))−1
n∑

i=1

XT
Φi.(Vi(θ))

−1yi

which depends on the variance parametersθ. It is well known that maximization of the
log-likelihood with respect toθ yields biased estimates since maximum likelihood does
not take into account that fixed parameters have been estimated (see Patterson & Thomp-
son (1974)). The same holds for the penalized log-likelihood (3.16). Therefore for the
estimation of variance parameters often restricted maximum likelihood estimates (REML)
are preferred which are based on the log-likelihood

lr(δ, θ) = −1

2

n∑

i=1

log(|Vi(θ)|) −
1

2

n∑

i=1

(yi − XΦi.β)T Vi(θ)
−1(yi − XΦi.β)

−1

2

n∑

i=1

log(|XT
Φi.Vi(θ)XΦi.|),

see, Harville (1974), Harville (1977) and Verbeke & Molenberghs (2001).
The restricted log-likelihood differs from the log-likelihood by an additionalcomponent.
One has

lr(δ, θ) = l(δ, θ) − 1

2

n∑

i=1

log(|XT
Φi.Vi(θ)XΦi.|).

It should be noted that for the estimation ofθ, the penalization termδT Kδ may be omitted
since it has no effect. Details on REML is given in the Appendix.
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BLUP Estimates
Usually one also wants estimates of the random effects. Best linear unbiased prediction
(BLUP) is a framework to obtain estimates forδ andb1, . . . , bn for given variance com-
ponents. There are several ways to motivate BLUP (see Robinson (1991)). One way is to
consider the joint density ofy andb which is normal and maximize with respect toδ and
b. By adding the penalty termδT Kδ one has to minimize

n∑

i=1

1

σ2
(yi − XΦi.δ − Zibi)

T (yi − XΦi.δ − Zibi) + bT
i Q(ρ)−1bi + δT Kδ, (3.17)

whereXΦi. = [Xi, Φi1, . . . ,Φim], Q(ρ) = Diag(Q(ρ) . . . Q(ρ)).
With XT

Φ = (XT
Φ.1 . . . XT

Φ.m) the criterion (3.17) may be rewritten as

1

σ2
(y − XΦδ − Zb)T (y − XΦδ − Zb) + bT Q(ρ)−1bT + δT Kδ

which yields the "ridge regression" solution

[
δ̂

b̂

]
=
(
CT 1

σ2
ε
IC + B

)−1
CT 1

σ2
ε

Iy

with C = (XΦ, Z) and

B =

(
K 0

0 Q(ρ)−1

)
.

Some matrix derivation shows thatδ̂ has the form

δ̂ = (XT
ΦV (θ)−1XΦ + K)−1XT V (θ)−1y,

whereV (θ) = Diag(V1(θ) . . . Vn(θ)), and for the vector of random coefficientsbT =

(bT
1 , . . . , bT

n ) one obtains

b̂ = Q(ρ)ZT V (θ)−1(y − XΦδ̂).

In simpler form BLUP estimates are given by

δ̂ = (
n∑

i=1

(XT
Φi.(Vi(θ))

−1XΦi. + K))−1
n∑

i=1

XT
Φi.(Vi(θ))

−1yi,

b̂i = QZT
i Vi(θ)

−1(yi − XΦi.δ̂).
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3.4 Mixed Model Approach to Smoothing

It is necessary to specify the smoothing parametersλ1, . . . , λm for the computation of̂δ.
Using cross-validation techniques, problems arise, if the number of smooth covariates is
high. An approach that works for moderate number of smooth covariates uses the ML
or REML estimates of variance components. The basic concept ist to reformulate the
estimation as a more general mixed model. Let us consider again the criterion for BLUP
estimates (3.17) which has the form

1

σ2
(y − XΦδ − Zb)T (y − XΦδ − Zb) + αT Kαα + bT Q(ρ)−1b

=
1

σ2
(y − Xβ − Φα − Zb)T (y − Xβ − Φα − Zb) + (αT bT )

(
Kα 0

0 Q(ρ)−1

)(
α

b

)

(3.18)

whereΦ = [Φ.1 . . .Φ.m] and Kα for the truncated power series has the formKα =

Diag(λ1I, . . . , λmI).
Thus (3.18) corresponds to the BLUP criterion of the mixed model

y = Xβ +
[
Φ Z

](α

b

)
+ ǫ

with




α

b

ǫ


 ∼ N







0

0

0


 ,




K−1
α 0 0

0 Q(ρ) 0

0 0 σ2
εI





 .

SinceKα = Diag(λ1I, . . . , λmI) the smoothing parametersλ1, . . . , λm correspond to
the variance of the random effectsα1, . . . , αm for whichcov(αj) = λjI is assumed. Thus
α1, . . . , αm are treated as random effects for the purpose of estimation. REML estimates
yield λ̂1, . . . , λ̂m. For alternative basis function like B-splines some reformulation is nec-
essary to obtain the simple independence structure of the random effects (see Appendix
A.1).

3.5 Boosting Approach to Additive Mixed
Models

Boosting originates in the machine learning community where it has been proposed as a
technique to improve classification procedures by combining estimates with reweighted
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observations. Since it has been shown that reweighting corresponds tominimizing iter-
atively a loss function (Breiman (1999), Friedman (2001)) boosting has been extended
to regression problems in aL2-estimation framework by Bühlmann & Yu (2003). In the
following boosting is used to obtain estimates for the semiparametric mixed model. In-
stead of using REML estimates for the choice of smoothing parameters, the estimates
of the smooth components are obtained by using "weak learners" iteratively. The weak
learner is the estimate ofδ based on a fixed, very large smoothing parameterλ, which is
used for all components. By iterative fitting of the residual and selection ofcomponents
(see algorithm) the procedure adapts automatically to the possibly varying smoothness of
components.

3.5.1 Short Review of Likelihood Boosting

Basic idea was to improve the misclassification rates, see Schapire (1990). The basic
concept is to use a classifier iteratively with differing weights on the observations and
to combine the results in a committee. It has been shown the misclassification errorcan
be reduced dramatically. Recently it has been shown that boosting is a way of fitting an
additive expansion in basis functions when the single basis functions represent the results
of one iteration of the boosting procedure. The procedure is based on gradient descent by
the use of specific loss functions, see Breiman (1999) and Friedman, Hastie & Tibshirani
(2000).

Example 3.3 : Functional Gradient Descend

The objective is to minimizeE[L(y, f(x))] for general loss functionL(y, f(x)) in a simple

regression context wherey is the response andf(x) is a function of the predictorx.

1. Initialization

2. Fit f̂0(x) = B(x, γ) to data(yi, xi), whereB is a (parameterized) regressor function

(learner) Setm = 0.

3. Negative gradient

Determine the negative gradientri = −∂L(yi, f
(m−1))/∂f and fitB(x, γ) to data(ri, xi)

4. Determine the step sizeν by minimizing
∑

i L(yi, f
(m−1)(xi) + νB(xi, γ̂))

5. Increasem by one and repeat steps 2 and 3
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2

From this view it is no longer restricted to classification problems. Friedman, Hastie &
Tibshirani (2000) replace the exponential loss function, which underlies the classical Ad-
aboost, by the binomial log likelihood yielding LogitBoost. Bühlmann & Yu (2003)inves-
tigateL2 loss, which yields theL2-Boost algorithm. Tutz & Binder (2006) introduced the
likelihood-based boosting concept for all kinds of link functions and exponential family
distributions. As in generalized linear models letyi|xi have a distribution from a simple
exponential familyf(yi|xi) = exp{(yiθi − b(θi))/φ + c(yi, φ)}, whereθi is the canon-
ical parameter andφ is a dispersion parameter. Instead of assuming a linear predictor
ηi = xT

i β in each boosting step the fitting of a simple learnerηi = η(xi, γ) is assumed,
whereγ is a finite ore infinite-dimensional parameter. If the learner is a regression spline,
γ describes the coefficients of the spline functions. The likelihood to be maximized is
given by

l(γ) =
n∑

i=1

l(yi, ηi) =
n∑

i=1

(yiθi − b(θi))/φ + c(yi, φ),

where the canonical parameterθi is a function ofηi = η(xi, γ).

Example 3.4 : Likelihood-Based Boosting for Regression Models

1. Initialization: For given data(yi, xi), i = 1, . . . , n, fit the intercept modelµ(0) = h(η(0))

by maximizing the likelihoodl(γ) yielding η̂(0) = η(0), µ̂(0) = h(η̂(0)).

For l = 0, 1, . . . ,

2. Fit the model

µi = h(η̂(l)(xi) + η(xi, γ)) (3.19)

to data(yi, xi), i = 1, . . . , n, whereη̂(l)(xi) is treated as an offset andη(xi) is estimated

by the learnerη(xi, γ̂
(l)). Setη̂(l+1)(xi) = η̂(l)(xi) + η̂(xi, γ̂

(l)).

3. Stop, if the chosen information criterion could not be improved in the following step

The estimateη(xi, γ̂) may represent a spline or some other learner determined byγ. 2

The structure of the algorithm in Example 3.4 is used to incorporate variable selection by
componentwise learners. Bühlmann & Yu (2005) proposed the concept of sparse boost-
ing. In each iteration, only the contribution of a single variable is determined. Asimple
learner of this type, which has often been used in boosting, is a tree with onlytwo terminal
nodes (stumps). With stumps the selection of the variable to be updated is done implicitly
by tree methodology. When using regression splines, model fitting within the algorithm
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contains a selection step in which one variable is selected and only the corresponding
function is updated. The componentwise update has the advantage that the selection of
variables is performed by the fitting of simple models, which contain only one variable.

Example 3.5 : Componentwise Boosting

Step 2 (Model fit)

1. Fit the model

µis = h(η̂(l)(xi) + η(xi(s), γs)) = h(ηis) (3.20)

to data(yi, xi), i = 1, . . . , n, whereη̂(l)(xi) is treated as an offset andη(xi(s)) is estimated

by the learnerη(xi(s), γ̂
(l)
s ). xi(s) stands for the s-th covariate, andγs for the corresponding

coefficient.

2. Selection: Select froms ∈ {1, . . . , p} the variablej that leads to the smallestIC
(l)
s . The

chosen information criterionIC in thel-th boosting step for variabless, IC
(l)
s is computed

commonly by using the log-likelihood
∑n

i=1 l(yi, ηis) and by using a suitable measure for

the effective degrees of freedom. A suitable measure is the trace of the projection matrix,

which is responsible for the projection ofy to η̂is. Common information criteria, based on

the trace of the projection matrix, areAIC or BIC.

3. Update:

η̂(l+1)(xi) = η̂(l)(xi) + η(xi(s), γ̂s)

2

The estimation step in example 3.5 is similar to the generic functional gradient descend
in example3.3. For details see Bühlmann & Yu (2003), but it is not an example inthe
strict sense. Hereν is set to an constantν = 1. Functional gradient descend uses the
negative gradient of a global loss function evaluated at observations as response in the
next iteration. However, the negative derivative of the likelihood yields values that may be
considered as responses only in special cases, for example, if the response is unrestricted
and continuous. Therefore in the general case the algorithm is a one stepimprovement
of the given estimate represented by the offset that uses the derivativeof a penalized
likelihood.
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3.5.2 The Boosting Algorithm for Mixed Models

The following algorithm uses componentwise boosting. Componentwise boosting means
that only one component of the predictor, in our case one smooth termΦijαj , is refit-
ted at a time. That means that a model containing the linear term and only one smooth
component is fitted in one iteration step. For simplicity we will use the notation

Xi(r) = [Xi Φir] , δT
r = (βT , αT

r )

for the design matrix with predictorXi(r) = Xiβ + Φirαr.
The corresponding penalty matrix is denoted byKr, which for the truncated power series
has the form

Kr = Diag(0, λI).

One wants to optimize model (3.12) in the following.
BoostMixed

1. Initialization
Compute starting valueŝβ(0), α̂

(0)
1 , . . . α̂

(0)
m and setη(0)

i = Xiβ̂
(0)+Φi1α̂

(0)
1 + . . .+

Φimα̂
(0)
m .

2. Iteration
For l=1,2,. . .

(a) Refitting of residuals

i. Computation of parameters
For r ∈ {1, . . . , m} the model for residuals

yi − η
(l−1)
i ∼ N(ηi(r), Vi(θ))

with
ηi(r) = Xi(r)δr = Xiβ + Φirαr

is fitted, yielding

δ̂r = (
n∑

i=1

(XT
i(r)(Vi(θ

(l−1)))−1Xi(r)+Kr))
−1

n∑

i=1

XT
i(r)(Vi(θ

(l−1)))−1(yi−η
(l−1)
i ).

ii. Selection step
Select fromr ∈ {1, . . . , m} the componentj that leads to the smallest
AIC

(l)
r or BIC

(l)
r as given in Section 3.5.3.
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iii. Update
Set β̂(l) = β̂(l−1) + β̂,
and

α̂(l)
r =





α̂

(l−1)
r if r 6= j

α̂
(l−1)
r + α̂r if r = j,

δ̂(l) = ((β̂(l))T , (α̂
(l)
1 )T , . . . (α̂(l)

m )T )T .

Update fori = 1, . . . , n

η
(l)
i = η

(l−1)
i + Xi(j)δ̂j .

(b) Computation of Variance Components
The computation is based on the penalized log-likelihood

lp(θ|η(l); δl) = −1
2

∑n
i=1 log(|Vi(θ)|) +

∑n
i=1(yi − η

(l)
i )T Vi(θ)

−1(yi − η
(l)
i )

−1
2(δ̂(l))T Kr δ̂

(l).

Maximization yieldsθ̂(l).

This algorithm was inspired by the concept of an boosted Information-Criterion as
developed in Bühlmann & Yu (2005) which they call sparse boosting. The objec-
tive of the selection of starting values is to select the most relevant variablesin or-
der to avoid huge variances for the error term in the beginning of the iteration. The
computation of the starting values is very similar to the boosting algorithm itself. It
starts with β̂(0) = α̂

(0)
1 = · · · = α

(0)
m = η

(0)
i = 0 but the iterations forl =

1, 2, . . . , in 2. are slightly modified. The first modification is that in (a) the covari-
anceVi(θ) is replaced by the simpler covariance matrixσ2I. Therefore, step (b) is
replaced by the variance estimate(σ̂2)(l) = 1

N

∑n
i=1(yi − η

(l)
i )T (yi − η

(l)
i ). The iter-

ation stops if|(σ̂2)(l) − (σ̂2)(l−1)| < 10. The variables that have been selected un-
til this crude stopping criterion is met form a subset{s1, . . . , sm̃}. The initial esti-
mates then are set to(β̂(0), α̂

(0)
s1 , . . . , α̂

(0)
sm̃)T = (

∑n
i=1(X̃

T
i X̃i + K̃))−1

∑n
i=1 X̃T

i yi with
X̃i = [Xi, Φis1 , . . . ,Φism̃ ] andK̃ = diag(0, λKs1 , . . . , λKsm̃). The other components
are set to zero.

We chose componentwise boosting techniques because they turn out to be very stable in
the high dimensional case where many potential predictors are under consideration. In
this case, the procedure automatically selects the relevant variables and maybe seen as a
tool for variable selection with respect to unspecified smooth functions. Inthe case of few
predictors, one may also use boosting techniques without the selection step by refitting
the residuals for the full model with design matrix [XiΦi1 . . .Φim].
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3.5.3 Stopping Criteria and Selection in BoostMixed

In boosting, often cross-validation is used to find the appropriate complexityof the fitted
model (e.g. Dettling & Bühlmann (2003)). In the present setting cross-validation turns
out to be too time consuming to be recommended. An alternative is to use the effective
degrees of freedom which are given by the trace of the hat matrix (compare Hastie &
Tibshirani (1990)). In the following the hat matrix is derived.
For the derivation of the hat matrix the matrix representation of the mixed model ispre-
ferred (see (3.15))

y = Xβ + Φ1α1 + . . . + Φmαm + ǫ∗,

where ǫ∗ ∼ N(0, V ), V (θ) = Diag(V1(θ), . . . , Vn(θ)).

Since in one step only one component is refitted one has to consider the modelfor the
residual refit of therth component

residual = X.(r)δr,

where XT
.(r) = (XT

1(r) . . . XT
n(r)), Xi(r) = [Xi Φir], δT

r = (βT , αT
r ).

The refit in thelth step is given by

δ̂r =
(
XT

.(r)V (θ(l−1))−1X.(r) + λKr

)−1
XT

.(r)V
−1(θ(l−1))(y − η(l−1)) (3.21)

= M (l)
r (y − η(l−1)),

where
M (l)

r =
(
XT

.(r)V (θ(l−1))−1X.(r) + λKr

)−1
XT

r V −1(θ(l−1))

refers to therth component in thelth refitting step. Then the corresponding fit has the
form

η̂(l)
r = Xr δ̂r = XrM

(l)
r (y − η̂(l−1)) = H(l)

r (y − η(l−1)),

where
H(l)

r = X.(r)M
(l)
r .

Let now jl denote the index of the variable that is selected in thelth boosting step and
H(l) = H

(l)
je denote the resulting "hat" matrix of the refit. One obtains with starting

matrixH(0)

η(1) = H(0)y + H(1)(y − η̂(0)) = (H(0) + H(1)(I − M (0)))y

and more general
η̂(l) = G(l)y,
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where

G(l) =
l∑

s=0

H(s)
s−1∏

k=0

(I − H(k))

is the global hat matrix after thelth step. It is sometimes useful to rewriteG as

G(l) = I −
l∏

k=0

(I − H(k))

(compare Bühlmann & Yu (2003)).
For the selection step one evaluates the hat matrices for candidates which for the rth
component in thelth step have the form

G(l)
r = G(l−1) + H(l)

r

l−1∏

k=0

(I − H(k)).

Given the hat matrixG(l)
r , complexity of the model may be determined by information

criteria. When considering in thelth step therth component one uses the criteria

AIC(l)
r = −2

{
−1

2

n∑

i=1

log(V (θ̂(l−1))) +
n∑

i=1

(yi − η̂(l−1))T Vi(θ̂
(l−1))−1(yi − η̂(l−1))

}

+ 2 trace (G(l)
r ),

BIC(l)
r = −2

{
−1

2

n∑

i=1

log(V (θ̂(l−1))) +
n∑

i=1

(yi − η̂
(l−1)
i )(Vk(θ)

(l−1))−1(yi − η
(l−1)
i )

}

+ 2 trace(G(l)
r )log(n).

In therth step, one selects fromr ∈ {1, . . . , m} the component that minimizesAIC
(l)
r (or

BIC
(l)
r ) and obtainsAIC(l) = AIC

(l)
jl

if jl is selected in therth step. IfAIC
(l)
r (or

BIC
(l)
r ) is larger than the previous criterionAIC(l−1) iteration stops. It should be noted

that in contrast to common boosting procedures, the selection step reflects the complexity
of the refitted model. In common componentwise boosting procedures (e.g. Bühlmann &
Yu (2003)) one selects the component that maximally improves the fit and then evaluates
if the fit including complexity of the model deteriorates. The proposed procedure selects
the component in a way that the new lack-of-fit, including the augmented complexity, is
minimized. In our simulations the suggested approach showed superior performance.

In the following, the initialization of the boosting algorithm is shortly sketched. The basic
concept is to select few relevant variables in order to obtain stable estimatesof variance
components. Therefore for largeλ (in our applicationλ = 1000), the total model is fitted
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using the full design matrixXΦ = [X, Φ1, . . . ,Φm] and covariance matrixVi(θ) = I.
Then in a stepwise way the variables are selected (usually up to 5) that yield the best fit.
These yield the initial estimateŝβ(0), α

(0)
1 , . . . , α

(0)
m and the initial hat matrixG(0).

3.5.4 Standard Errors

Approximate standard errors for the parameterβ and the functionsα(j)(u) = Φ(j)(u)T αj

may be derived by considering the iterative refitting scheme. For the estimatedparameter
in thel − th stepδ(l) one obtains

δ̂(l) = δ̂(l−1) + M (l)(y − η̂(l−1))

whereM (l) is a matrix that selects the componentsβ andαjl
which are updated in the

l − th step. It is given by

(M (l))T =
(

(M
(l)
jl,1

)T , 0, . . . , (M
(l)
jl,2

)T , . . . , 0
)

,

whereMjl,1, Mjl,2 denote the partitoning ofM (l)
jl

into components that refer toβ andαjl

respectively, i.e.

M
(l)
jl

=

(
Mjl,1

Mjl,2

)
.

One obtains for the refitting ofδ with starting matrixM (0)

δ̂(1) = M (0)y + M (1)(y − η̂(0))

= M (0)y + M (1)(I − H(0))y,

and more general
δ̂(l) = D(l)y,

where

D(l) =

l∑

s=0

M (s)
s−1∏

k=0

(I − H(k)).

With L denoting the last refit one obtains withδ̂ = δ̂(L), D = D(L), for the covariance of
δ̂

cov(δ̂) = D cov(y)DT

= D V (θ)DT .
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Approximate variances follow by usinĝθ = θ̂(L) to approximateV (θ). Standard errors
for β andα(j)(u) = ΦT

ijαj are then easily derived sincêδT = (β̂T , α̂T
j ).

In boosting, the crucial tuning parameter is the number of iterations. The smoothing
parameter that is used in the algorithm should be chosen large to obtain a weaklearner.
The number of iterations increases for largeλ. In order to limit the number of iterations
we modified the algorithm slightly. If more than 1000 iterations are needed until the
stopping criterion is met, then the algorithm is restarted withλ/2; the halving procedure
is repeated ifλ/2 also needs more than 1000 iterations.

3.5.5 Visualizing Variable Selection in Penalty Based Approaches

In spline methodology, the unknown functionsα(j) are often approximated by basis func-
tions. A simple basis is known as the truncated power series basis of degreed, yielding

α(j)(u) ≈ γ
(j)
0 + γ

(j)
1 u + . . . γ

(j)
d ud +

M̃∑

s=1

α(j)
s (u − k(j)

s )d
+ ,

wherek
(j)
1 < . . . < k

(j)

M̃
are distinct knots.

If one uses
α(j)(u) = uαj

the underlying function is approximated by an linear term. So in this case the basis func-
tion approach encompasses only one knot andΦ

(j)
1 (u) = u is the identity function. In

the shrinkage theory the likelihood is penalized by−(αj)
2. So the corresponding penalty

matrix for the boosted linear effects is anm × m identity matrix.

One can study the coefficients build-up in a similar way as in LASSO ( see Tibshirani
(1996) ) since the linear model is a special case with one knot and identity asbasis func-
tion. Using ridge penalty, the result is a linear mixed model with parametric main effects.
So many variables may be included, but only few contain information on the response.
Smooth effects can be compared by consideringα̃j =

∫ 1
0 |α(j)(uj)|duj , j = 1, . . . , m

in build-up graphics. For parametric effects, the variables are transformed to the interval
[0, 1] and centering the effects around zero yieldsβ̃k = βk

2 ∗ 0.25, k = 1, . . . , p. The
integral corresponds to the area of the centered functions, see Figure3.6.

Example 3.6 : Generalization of build-up graphics
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Figure 3.6: The red area is the integral for|sin(u)| on the left side and foru on the right side.
It measures the strength of influence on the response

To demonstrate the generalization of build-up graphics we used the underlying random intercept

model

yit = bi +

19∑

j=1

α(j)(uit) + ǫit, i = 1, . . . , 80, t = 1, . . . , 5

with the smooth components given by

α(i)(u) = 5
i ∗ sin(u) u ∈ [−3, 3], i = 1, . . . , 5

α(i)(u) = 0 u ∈ [−3, 3], i = 6, . . . , 19.
(3.22)

The variances for error term and random intercepts were taken to beσ2
ǫ = σ2

b = 2. Figure 3.7

show the build-up graphic for smooth effects. Figure 3.8 shows the true underlying functions

(α(1), . . . , α(6)) and their corresponding estimates. For this study the smooth functionsα(i), i =

1, . . . , 19 wer specified in the model. What is getting obvious is that the strength of functions are

reflected in the build up graphics. The area under the curves may be interpreted as that part of

the response which could be explained by these curves. It is also a measure for the importance of

curves according the order of the estimated valuesα̃j , j = 1, . . . , 19.

2
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Figure 3.7: Build-up graphic for the smooth effects. On the right side one can see the true
values

R
|α(i)(u)|du for the coefficients build ups.

3.6 Simulation Studies

3.6.1 BoostMixed vs. Mixed Model Approach

Study 1 and 2
We present part of a simulation study in which the performance of BoostMixed models is
compared to alternative approaches. The underlying model is the randomintercept model

yit = bi +
40∑

j=1

c ∗ α(j)(uit) + ǫit, i = 1, . . . , 80, t = 1, . . . , 5

with the smooth components given by

α(1)(u) = sin(u) u ∈ [−3, 3],

α(2)(u) = cos(u) u ∈ [−2, 8],

α(3)(u) = u2 u ∈ [−3, 3],

α(u) = 0 u ∈ [−3, 3], j = 4, . . . , 40.

(3.23)

The vectorsuT
it = (uit1, . . . , uit40) have been drawn independently with components

following a uniform distribution within the specified interval. For the covariatesconstant
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Figure 3.8: The red line are the estimated effects, the black lines are the true underlying
functions.



3.6 Simulation Studies 49

correlation is assumed, i.e.corr(uitr, uits) = ρ. In study 1,ρ is set toρ = 0.1. For
study 2,ρ was chosen to beρ = 0.5. The constantc determines the signal strength of
the covariates. The random effect and the noise variable have been specified byǫit ∼
N(0, σ2

ǫ ) with σ2
ǫ = 2 andbi ∼ N(0, σ2

b ) with σ2
b = 2. In the part of the study which is

presented the number of observations has been chosen byn = 80, T = 5.

The fit of the model is based on B-splines of degree 3 with 15 equidistant knots. The
performance of estimators is evaluated separately for the structural components and the
variance. By averaging across 100 datasets we consider mean squared errors forη, σ2

b , σ
2
ε

given by

mseη =
∑n

i=1

∑T
t=1(ηit − η̂it)

2, η̂it = xT
itβ̂, mseβ = ||β − β̂||2,

mseσ2
b

= ||σ2
b − σ̂2

b ||2, mseσ2
ǫ

= ||σ2
ǫ − σ̂2

ǫ ||2.

as well as the mean squared error for the smooth components

mseα =
n∑

i=1

Ti∑

t=1

p∑

j=1

(α(j)(uitj) − α̂(j)(uitj))
2,

which corresponds to the estimation of parameters in linear mixed models.

For illustration, in Figure 3.9, the Mixed Model approach to smooth components(MM)
from study 1 is compared with BoostMixed for 30 datasets. It is seen that both methods
detect the underlying smooth functions fairly well. However, it is seen that the mixed
model approach has higher variability. For example for some datasets the componentα(1)

has been strongly oversmoothed yielding straight lines (rather than thesin function).

In Tables 3.1 and 3.2 the resulting mean squared errors are given for thelow correlation
case(ρ = 0.1) (study 1) and the medium correlation case(ρ = 0.5) (study 2). It is seen
that for all components mean squared errors are smaller when BoostMixedis used. The
difference is rather large for high dimensional predictors which include noisy covariates.
But it should be noted that also in the case, where only the variables are included which
carry information, the mean squared errors are still smaller when BoostMixed is used. For
higher number of predictors (p>20), the Mixed Model fit did not work and therefore, no
values are shown in Table 3.1 and 3.2. The strongest reduction in terms of mean squared
error is found for the estimation ofmseη the effect becomes stronger with increasing
signalc and parametersp, see for examplemseη = 41.946 for BoostMixed andmseη =

50.448 for the additive model withc = 1, p = 3. In Figure 3.10 and 3.11 the mean
squared errors are given for the pure information case (p=3) and thecase that includes
several noise variables (p=15).
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Figure 3.9: Study 1: Thirty functions computed with mixed model methods(left panels) and
boosting (right panels)(c = 1, p = 3)
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MM BoostMixed

c p mseη mseα mseσb
mseσǫ Steps Time mseη mseα mseσb

mseσǫ Steps Time FalsePos FalseNeg Initial Selected

0.5 3 45.791 37.701 0.026 0.117 13 0.09 42.079 36.867 0.026 0.115 9.9 0.0 0.0 0.1 2.0 2.9

0.5 6 55.721 48.399 0.030 0.117 18 0.41 48.666 45.112 0.028 0.114 10.2 0.0 0.4 0.1 2.0 3.3

0.5 15 88.005 85.470 0.031 0.129 25 7.03 62.501 62.270 0.029 0.114 9.7 0.1 0.9 0.2 2.0 3.7

0.5 25 73.134 74.790 0.030 0.116 9.8 0.1 1.2 0.3 2.0 3.9

1.0 3 50.448 37.422 0.024 0.126 8 0.06 41.946 31.226 0.026 0.119 19.7 0.0 0.0 0.0 2.0 3.0

1.0 6 60.520 48.547 0.024 0.120 15 0.33 42.773 32.237 0.026 0.120 19.7 0.1 0.0 0.0 2.0 3.0

1.0 15 92.705 85.021 0.028 0.120 21 6.05 46.662 36.725 0.029 0.120 20.0 0.2 0.2 0.0 2.0 3.2

1.0 25 50.440 41.102 0.028 0.118 20.2 0.3 0.3 0.0 2.0 3.3

5.0 3 71.243 60.651 0.032 0.187 12 0.08 53.399 47.592 0.031 0.181 144.6 0.4 0.0 0.0 1.9 3.0

5.0 6 82.051 72.296 0.031 0.185 14 0.32 55.396 49.947 0.031 0.182 146.9 0.4 0.1 0.0 1.9 3.1

5.0 15 116.472 113.781 0.036 0.190 20 5.87 57.510 52.545 0.032 0.182 145.2 2.3 0.2 0.0 1.9 3.2

5.0 25 58.533 53.910 0.034 0.182 145.5 3.4 0.2 0.0 1.9 3.2

10.0 3 88.045 71.694 0.027 0.264 14 0.10 62.981 59.701 0.029 0.139 495.6 1.1 0.0 0.0 3.0 3.0

10.0 6 98.669 84.396 0.026 0.226 17 0.40 62.981 59.701 0.029 0.139 495.6 2.6 0.0 0.0 3.0 3.0

10.0 15 132.549 125.730 0.033 0.239 24 7.11 65.726 62.807 0.033 0.139 492.1 6.7 0.1 0.0 3.0 3.1

10.0 25 66.588 63.895 0.033 0.139 490.9 12.0 0.1 0.0 3.0 3.1

Table 3.1: Study 1: Comparison between additive mixed model fit and BoostMixed(ρ = 0.1).
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MM BoostMixed

c p mseη mseα mseσb
mseσǫ Steps Time mseη mseα mseσb

mseσǫ Steps Time FalsePos FalseNeg Initial Selected

0.5 3 46.503 34.107 0.022 0.133 13 0.09 45.416 36.576 0.026 0.136 9.9 0.0 0.0 0.1 2.0 2.9

0.5 6 57.421 48.626 0.024 0.133 18 0.42 50.530 43.280 0.028 0.139 10.3 0.0 0.3 0.1 2.0 3.2

0.5 15 90.615 92.066 0.029 0.135 28 8.30 64.707 61.314 0.032 0.140 11.0 0.1 0.8 0.2 2.0 3.7

0.5 25 72.285 70.857 0.035 0.141 11.5 0.2 1.1 0.2 2.0 3.9

1.0 3 49.449 40.515 0.033 0.146 9 0.06 40.716 34.440 0.035 0.145 17.4 0.0 0.0 0.0 2.0 3.0

1.0 6 60.771 54.728 0.037 0.148 16 0.37 42.105 36.107 0.037 0.143 17.6 0.1 0.1 0.0 2.0 3.0

1.0 15 93.651 97.541 0.038 0.151 21 6.41 43.327 37.663 0.037 0.144 17.7 0.2 0.1 0.0 2.0 3.1

1.0 25 46.404 41.527 0.036 0.145 17.9 0.4 0.2 0.0 2.0 3.2

5.0 3 72.155 62.797 0.023 0.153 12 0.09 53.174 49.862 0.025 0.153 109.6 0.3 0.0 0.0 3.0 3.0

5.0 6 82.856 77.115 0.025 0.157 14 0.33 53.663 50.515 0.026 0.154 109.5 0.6 0.0 0.0 3.0 3.0

5.0 15 114.390 118.645 0.028 0.156 18 5.25 54.918 51.990 0.026 0.154 109.4 1.5 0.1 0.0 3.0 3.1

5.0 25 56.471 53.814 0.027 0.154 109.1 2.6 0.1 0.0 3.0 3.1

10.0 3 93.000 77.369 0.029 0.230 14 0.09 68.369 63.423 0.030 0.184 430.2 1.1 0.0 0.0 3.0 3.0

10.0 6 103.896 92.147 0.028 0.225 15 0.34 69.027 64.432 0.030 0.184 430.0 2.2 0.0 0.0 3.0 3.0

10.0 15 70.142 65.935 0.031 0.180 428.9 5.7 0.1 0.0 3.0 3.1

10.0 25 73.504 70.497 0.031 0.181 427.1 7.9 0.2 0.0 3.0 3.2

Table 3.2: Study 2: Comparison between additive mixed model fit and BoostMixed(ρ = 0.5).
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For a more extensive analysis of BoostMixed five further simulation studies with same
setting (3.23) (except study 7), but different values forT, n, ρ were made. In all studies
100 datasets were generated

Study 3 - medium cluster
The random effect and the noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with
σ2

ǫ = 3 andbi ∼ N(0, σ2
b ) with σ2

b = 3. In the part of the study which is presented the
number of observations has been chosen byn = 40, T = 5. Pairwise correlation was
taken to becorr(uitr, uits) = 0.1. Details can be found in Table C.3 and Figure C.3.

Study 4 - big clusters
The random effect and the noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with
σ2

ǫ = 3 andbi ∼ N(0, σ2
b ) with σ2

b = 6. In the part of the study which is presented the
number of observations has been chosen byn = 20, T = 10. Pairwise correlation was
taken to becorr(uitr, uits) = 0.1. Details can be found in Table C.4 and Figure C.4.

Study 5 - small clusters
The random effect and the noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with
σ2

ǫ = 3 andbi ∼ N(0, σ2
b ) with σ2

b = 6. In the part of the study which is presented the
number of observations has been chosen byn = 100, T = 2. Pairwise correlation was
taken to becorr(uitr, uits) = 0.1. Details can be found in Table C.5 and Figure C.5.

Study 6 - big dataset
The random effect and the noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with
σ2

ǫ = 9 andbi ∼ N(0, σ2
b ) with σ2

b = 12. In the part of the study which is presented the
number of observations has been chosen byn = 250, T = 20. Pairwise correlation was
taken to becorr(uitr, uits) = 0.1. Details can be found in Table C.6 and Figure C.6.

Study 7 - many additive covariates
The random effect and the noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with σ2
ǫ =

2 andbi ∼ N(0, σ2
b ) with σ2

b = 2. In the part of the study which is presented the number
of observations has been chosen byn = 40, T = 5. Pairwise correlation was taken to be
corr(uitr, uits) = 0.1. The additive term have functionsα(1)(u) = c

s in(u), u ∈ [−3, 3],
α(2)(u) = c

2cos(u), u ∈ [−2, 8], α(3)(u) = c
3u2, u ∈ [−3, 3],α(4)(u) = c

4sin(u), u ∈
[−3, 3], α(5)(u) = c

5cos(u), u ∈ [−2, 8], α(6)(u) = c
6u2, u ∈ [−3, 3]. The other func-

tions are set toα(j)(u) = 0, u ∈ [−3, 3], j = 7, . . . , 40. Details can be found in Table
C.7.

If one wants to summarize the results of the studies BoostMixed seems to be a powerful
competitor to the mixed model approach. In studies 3 to 5 which are simulation studies
with only 200 observations in total BoostMixed delivers comparable, sometimesworse
MSEη than the mixed model approach for small signals (c=0.5). Especially in these
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cases the selection aspect in BoostMixed is important since some relevant variables were
not selected which downgrades theMSEη. For large signals BoostMixed is in most cases
superior to the mixed model approach. The mixed model approach seems to bemore sen-
sitive to higher signals for the influence of covariates. One may see a difference of the
performance in datasets with small and huge clusters. Therefore in study 3one can see
worse selection for small signals and good results for huge signals. Instead, in study 4
the differences in theMSEη are not as noticeable as in study 3, theMSEσǫ show much
better results for BoostMixed. If one switches now to studies 1 and 2 which have 400
observations in total, the efficiency of selecting relevant variables is improved for small
signals which is reflected in the comparableMSEη for c = 0.5. Also for correlated data
the results did not change. The difference of both methods disappear using large datasets
as in study 6. In this case all relevant variables were selected. BoostMixed shows only
slight better results for huge signals. Study 7 is a little bit different from the other stud-
ies, since this study has more relevant covariates and this study encompasses a forward
selection procedure. In this sense, BoostMixed is compared to the mixed model approach
with all covariates (MM) and to mixed model approach with an integrated forward selec-
tion (forward). It is quite similar to the BoostMixed algorithm since one starts withthe
intercept model. In every step all remaining covariates are fitted separately. The covariate
characterized by the best improvement of the BIC-Criterion is taken into the model and
seen as relevant. The selection is stopped if the complexity criterion can not improved
any more. Compared to the forward selection procedure BoostMixed selects more rele-
vant variables. On the other side BoostMixed delivers slightly bad results intheMSEη

compared to the mixed model approach. The time and computation complexity is getting
tremendous if putting many covariates (p>20) in the forward selection procedure. For
small covariates BoostMixed is a very fast selection strategy compared to theforward
selection procedure.

Simulation studies for linear effects with a short discussion (Study 9 - Study 14 ) can be
found in Appendix C.3. The results of the common linear models are compared tothe
boosted versions. Details on the underlying structure and the results are inAppendix C.3.

3.6.2 Pointwise Confidence Band for BoostMixed

In the following the focus is to get reliable confidence bands for smooth components. In
this section estimated confidence bands are compared to the empirical confidence bands,
that were computed from 250 datasets.
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The underlying model is the random intercept model

yit = bi +

40∑

j=1

c ∗ α(j)(uit) + ǫit, i = 1, . . . , 80, t = 1, . . . , 5

with a setting of covariates as described in (3.23).

The vectorsuT
it = (uit1, . . . , uit3) have been drawn independently with components fol-

lowing a uniform distribution within the specified interval. For the covariates constant
correlation is assumed, i.e.corr(uitr, uits) = 0.1. The constantc determines the signal
strength of the covariates. The random effect and the noise variable have been specified
by ǫit ∼ N(0, σ2

ǫ ) with σ2
ǫ = 2 andbi ∼ N(0, σ2

b ) with σ2
b = 2. On the presented study

the number of observations has been chosen byn = 80, T = 5 andn = 40, T = 5. The
smoothing parameter was fixed toλ = 1000.

The pointwise confidence intervals were computed using the covarianceˆcov(δ̂). Since
δT = (β, αT

1 , . . . , αT
m) one can obtainˆcov(δ̂j) by a decomposition ofˆcov(δ̂). So easily

the pointwise confidence intervals for componentj can be computed bycov(Xj δ̂j). Tak-
ing the diagonal elements and multiplying the square root together with the 0.975 percent
and 0.025 percent quantile of the normal distribution on the estimatesΦjα̂ delivers the
upper and lower 0.95 pointwise estimated confidence bands.

The empirical 0.95 percent pointwise confidence intervals were computed by getting the
empirical 0.975 and 0.025 percent quantiles of all estimated functions. As one can see in
Figures 3.12 and 3.6.2 the estimated pointwise confidence intervals are an good approxi-
mation to the empirical confidence bounds.
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Figure 3.12: 0.95 percent pointwise confidence bands. The blue oneare the averaged esti-
mated confidence bands. The solid in the middle is the averaged smooth component. Upper
and lower solid lines are the empirical pointwise confidence bands. The upper tree compo-
nents are for signalc = 0.5, the middle components are forc = 1.0 and the bottom functions
are for signalc = 5. There aren = 80 clusters.
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Figure 3.13: 0.95 percent pointwise confidence bands. The blue oneare the averaged esti-
mated confidence bands. The solid in the middle is the averaged smooth component. Upper
and lower solid lines are the empirical pointwise confidence bands. The upper tree compo-
nents are for signalc = 0.5, the middle components are forc = 1.0 and the bottom functions
are for signalc = 5. There aren = 40 clusters.
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3.6.3 Choosing an Appropriate Smoothing Parameter and an
Appropriate Selection Criterion

The focus is in the following on getting reliable confidence bands for smooth compo-
nents. In this section estimated confidence bands are compared to the empirical confi-
dence bands, that were computed from 250 datasets.

Study 8 The underlying model is the random intercept model

yit = bi +
40∑

j=1

c ∗ α(j)(uit) + ǫit, i = 1, . . . , 80, t = 1, . . . , 5

with a setting of covariates as described in (3.23).

The vectorsuT
it = (uit1, . . . , uit3) have been drawn independently with components fol-

lowing a uniform distribution within the specified interval. For the covariates constant
correlation is assumed, i.e.corr(uitr, uits) = 0.1. The constantc determines the signal
strength of the covariates. The random effect and the noise variable have been specified
by ǫit ∼ N(0, σ2

ǫ ) with σ2
ǫ = 2 andbi ∼ N(0, σ2

b ) with σ2
b = 2. In the part of the study

which is presented the number of observations has been chosen byn = 80, T = 5 and
n = 40, T = 5. c was set toc = 0.5.

The smoothing parameters were chosen on a grid from[0, 2400] with steps of 50 for
3,5,15, and 25 smooth covariates. Then the distributions of the mean squarederrors is
considered and compared to the distribution of the mixed model approach. Selection and
stopping criterion were chosen to be BIC or AIC.

As Figure 3.14 demonstrates the influence of takingλ different from 1000 is marginal.
One has only to choose a lambda that is appropriate large. We found 1000 tobe a good
choice. Figure 3.15 includes also the selection aspect.

For detailed graphics for different signal strengthsc = 0.5, 1 andc = 5 , see Figures C.7,
C.8 and C.9 for BIC, Figures C.10, C.11 and C.12 for AIC.
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Figure 3.14: The errors for 3 smooth effects in the model are presented by boxplots. BIC
was used as selection and stopping criterion. The red points are the meansfor the MSEs
depending on different lambdas. On the right side the distribution of the MSEs of the mixed
model approch is plotted. The blue point is the mean of the MSEs of the mixedmodel
approach.c was chosen to bec = 0.5
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Figure 3.15: The distributions of the mean squared errors for different counts of smooth
effects in the model are presented by boxplots. BIC was used as selection and stopping
criterion. The red points are the means for the MSEs depending on differentλ. On the right
side the distribution of the MSEs of the mixed model approach is plotted. The blue point is
the mean of the MSEs of the mixed model approach. (a) 3 smooth effectsused (b) 5 smooth
effects used (c) 15 smooth effects used and (d) 25 smooth effects used. c was chosen to be
c = 0.5



3.6 Simulation Studies 62

3.6.4 Surface-Smoothing

As described in Hämmerlin & Hoffmann (1992) and Dierckx (1993) the concept of one-
dimensional splines can be extended to d-dimensional splines by using tensor products on
the spline basisB1, . . . ,Bd.

In this context only the cased = 2 is considered. Therefore a spline basis is needed which
can be derived with the elementwise Kronecker product⊙ which is defined for aN ×M1

matrixA and aN × M2 matrixB.

c(i) is a vector of thei-th row of C,a(i) is thei-th row of A andb(i) is thei-th row of B.

The elementwise Kronecker product can be described

C := A ⊙ B with c(i) = aT
(i) ⊗ bT

(i).

So one can write

φ(1,2)(u(i)1, u(i)2) = φ(1) ⊙ φ(2) := φ(1)(u(i)1) ⊙ φ(2)(u(i)2)

with φ(1)(u(i)1) being the basis functions for the covariateu(i)1 (first covariate, i-th mea-
surement) andφ(2)(u(i)1). The resulting spline basis is

B := {φ(1)
(1,2), . . . , φ

(M1∗M2)
(1,2) }.

Instead of using the⊙ operator, the Kronecker product⊗ delivers the same result. The⊙
product is especially useful for matricesΦ(1) andΦ(2), where the products are computed
row-wise.

So any interactionα(u(i)1, u(i)2) between two covariatesu(i)1 andu(i)2 can be approxi-
mated by splines

α(u(i)1, u(i)2) ≈ φ(1,2)(u(i)1, u(i)2)
T α

with φ consisting of columnsφ(1)
(1,2), . . . , φ

(M1∗M2)
(1,2) andα as a vector of coefficients with

lengthM1 ∗ M2.

The only difficulty is to get an corresponding penalty matrix that penalizes thedifferences
of adjacent basis functions. In 2-dimensional settings the definition of adjacent basis
functions is not unique. The adjacent basis functions may be seen as the one on the
main-axis (4 neighbors ) or all surrounding basis functions ( 8 neighbors ). For details on
the construction of tensor splines see Marx & Eilers (2005) and Eilers, Currie & Durban
(2006)
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Four neighbors For the first case the penalty matrix is easily obtained forM1 = M2

by
D(1) = D(M1−d)×M1

⊗ I(M1) andD(2) = I(M1) ⊗ D(M1−d)×M1
.

The penalty term is then

−λ(1)α
T K(1)α − λ(2)α

T K(2)α = −αT

[
λ(1)K

(1) 0

0 λ(1)K
(1)

]
α = −αT Kα

with K(1) = (D(1))T D(1) andK(2) = (D(2))T D(2).

Eight neighbors Penalizing with more than four neighbors is difficult to derive. Still
M1 = M2 is assumed. Therefore a location matrix L (M1 × M1 matrix) is needed with
Li,j = i ∗ M1 + j. Next necessary item is vectorpT = △dI(d+1), where△d is the
d-dimensional difference operator.

So one can penalize the diagonal differences with((M1−d)∗M1)× (M1 ∗M1) matrices
D(3) andD(4) by recursion ink = 1, . . . , d+1, i = 1, . . . , M1−d andj = 1, . . . , M1−d

D(3) = D(3)(i, j, k) = DLi,j ,Li+k,j+k
= pk

and
D(4) = D(4)(i, j, k) = DLi,j ,Li+d+2−k,j+k

= pk,

wherepk is thek-th element ofpT

The penalty term is then

−λ(1)α
T K(1)α − λ(2)α

T K(2)α − λ(3)α
T K(3)α − λ(4)α

T K(2)α

= −αT Kα

with K(3) = (D(3))T D(3) andK(4) = (D(4))T D(4).

In the simulation the underlying model is an random intercept model with

yit =
5∑

j=1

6∑

l=j+1

α(j,l)(uitj , uitl) + bi0 + ǫit (3.24)

whereǫit is independentN(0, σ2) with σ2 = 0.5, bi0 is independentN(0, σ2
b ) with σ2

b =

1.0. T = 5 andi = 4000.

α(1,2)(uit1, uit2) is the density function for the two-dimensional normal distribution with
correlationρ = 0.5. α(3,4)(uit3, uit4) = sin(uit3) ∗ sin(uit3) andα(5,6)(uit5, uit6) =
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exp(uit5) ∗ uit6. All covariates were drawn uniformly from the interval[−3, 3]. All other
interactions of covariates have influence zero on the response. 100 datasets of the model
(3.24) were generated. Comparisons to the R-functiongammfrom the R-Packagemgcv
( Version 1.3.12) were tried. Since computations did not lead to stable estimators, only
the relevant effectsα(1,2)(uit1, uit2), α(3,4)(uit3, uit4), α(5,6)(uit5, uit6) was specified in
estimation. For the simulation study only the main axes were penalized ( four neighbors
). Estimates for one dataset is given in Figure 3.16 and 3.17.

The result of the study is given in Table 3.3.

MM BoostMixed

c MSEη MSEσb
MSEσǫ Steps MSEη MSEσb

MSEσǫ Selected Steps

0.5 50.605 0.133 0.023 16.1 44.400 0.133 0.025 2.9 27.9

1 53.324 0.147 0.034 11.3 39.049 0.147 0.034 3.0 55.2

5 76.088 0.155 0.024 12.8 52.205 0.155 0.025 3.0 385.0

Table 3.3: Comparison between additive mixed model fit and BoostMixed.

One can see in Table 3.3 that the results are quite comparable. BoostMixed does perform
better than the mixed model approach in theMSEη. The mean squared errors for the ran-
dom effects variance are nearly the same. The mean squared error forthe error component
is sometimes larger using BoostMixed.
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Figure 3.16: Surfaceplot for smoothed Interactions for 6 covariatesfor one selected dataset
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Figure 3.17: Levelplot for smoothed interactions for 6 covariates for one selected dataset
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3.7 Application

3.7.1 CD4 data

Zeger & Diggle (1994) motivate extensively the interest in the typical time course of
CD4 cell decay and the variability across subjects. Since the forms of the effects is not
known, time since seroconversion, age and the mental illness score may be considered
as unspecified additive effects. Figure 3.18 shows the smooth effect oftime on CD4
cell decay for a random intercept model together with the data, Figure 3.19shows the
observations for three men with differing number of observed time points (dashed lines)
and the fitted curves for individual time decay.
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Figure 3.18: Smoothed time effect on the CD4 cell from Multicenter AIDS Cohort Study
(MACS)

For the AIDS Cohort Study MACS we considered the semi-parametric mixed model from
Section 1

yit = µpar
it + µadd

it + bit + ǫit,

whereyit denotes the square root CD4 counts of cells for subjecti on measurementt
(taken at irregular time intervals). The parametric and nonparametric term are given by



3.7 Application 68

−2 −1 0 1 2 3 4

15
20

25
30

35
40

45

1

2

Figure 3.19: Smoothed time effect on the CD4 cell from Multicenter AIDS Cohort Study
(MACS) and the decay of CD4 cells of 3 members of the study over time

µ
par
i = β0 + drugsiβD + partnersiβP ,

µadd
it = αT (time) + αA(agei) + αC(cesd).

wherecesd is a mental illness score. The square root transformation has been used since
the original CD4 cell number varies over a wide range. The estimated effect of time was
modelled smoothly with the resulting curve given in Figure 3.18. This smooth curve can
be compared to the results of Zeger & Diggle (1994) who applied generalized estimation
equations. In Figure 3.20 the smooth effects of age, the mental illness scoreand time
are given. It is seen that there is a slight increase in CD4 cells for increasing age and a
decease with higher values of the mental illness score. Table 3.4 shows the estimates for
the parameters. Comparison between BoostMixed and the mixed model approach shows
that the estimates are well comparable.
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BoostMixed Mixed Model

Intercept 24.6121 (0.294) 24.8233 (0.286)

Drugs 0.5211 (0.279) 0.5473 (0.292)

partners 0.0633 (0.049) 0.0595 (0.034)

σǫ 4.2531 - 4.26138 -

σb 4.3870 - 4.43180 -

Table 3.4: Estimates for the AIDS Cohort Study MACS with BoostMixed and mixed model
approach (standard deviations given in brackets)
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Figure 3.20: Estimated effect of age, the illness score cesd and time based on BoostMixed



Chapter 4

Extending Semi-Structured Mixed
Models to incorporate
Cluster-Specific Splines

The semiparametric additive model (3.12) allows for additive effects of covariates, includ-
ing multivariate random effects. For example random slopes for linear termsare already
included. Settingzit = xit model (3.12) is a random slope model

yit =
m∑

j=1

α(j)(uitj) + xT
itβ + zT

itbi + εit,

wherebi represents random slopes on the variablesxit. Quite a different challenge is
the incorporation of random effects in additive terms. For simplicity of presentation we
restrict consideration to one smooth effect. Let the smooth random intercept model

yit = β0 + α(ui) + bi0 + εit, bi0 ∼ N(0, σ2),

be extended to
yit = β0 + α(ui) + α(ui)bi1 + bi0 + εit, (4.1)

with
(
bi0, bi1

)
∼ N(0, Q(ρ)).

As usual the smooth component has to be centered for reasons of identifiability of effects,
in our applications

∑
i α(ui) = 0 has been used. That means the "random slope"bi1 in

model (4.1) is a parameter that, quite similar to random slopes in linear mixed models,lets
the strength of the variable vary across subjects. The dependence on variableui becomes

α(ui) + α(ui)bi1 = α(ui)(1 + bi1)
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showing thatα(ui) represents the basic effect of variableui but this effect can be stronger
for individuals if bi1 > 0 and weaker ifbi1 < 0. Thusbi1 strengthens or attenuates
the effect of the variableui. If the variance ofbi1 is very large it may even occur that
bi1 < 1 meaning that the effect ofui is "inverted" for some individuals. Ifα(ui) is linear
with α(ui) = βui, the influence term is given byα(ui)(1 + bi1) = ui(β + b̃i1) where
b̃i1 = βbi1 represents the usual term in linear mixed models with random slopes. Thus
comparison with the linear mixed model should be based on the rescaled random effect
β̃i1 with E(β̃i1) = 0, Var(β̃i1) = β2Var(βi1).

The main problem in model (4.1) is the estimation of the random effects. Ifα(u) is
expanded in basis functions byα(u) =

∑
s αsφs(u) one obtains

α(ui)bi =
∑

s

αsbiφs(u),

which is a multiplicative model sinceαs and bi are unknown and cannot be observed.
However, boosting methodology may be used to obtain estimates for the model. The
basic concept in boosting is that in one step the refitting ofα(ui) is done by using a weak
learner which in our case corresponds to largeλ in the penalization term.

Thus in one step the change from iterationα(l) to α(l+1) is small. Consider the model in
vector form with predictorηT

i = (ηi1, . . . , ηiTi) with

ηi = 1β0 + Φi.α + (1Φi.α)

(
bi

bi1

)
,

where1T = (1, . . . , 1) is a vector of 1s,Φi. is the corresponding matrix containing eval-
uations of basis functions andαT = (α1, . . . αM ) denotes the corresponding weights.
Then the refitting of residuals in the iteration step is modified in the following way.

Let η
(l−1)
i denote the estimate from the previous step. Then the refitting of residuals

(without selection) is done by fitting the model

yi − η
(l−1)
i ∼ N(ηi, Vi(θ))

with

ηi = 1β0 + Φi.α + (1, Φi.α̂
(l−1))

(
bi0

bi1

)
, (4.2)

whereβ0, α are the parameters to be estimated and the estimate from the previous step
α̂(l−1) is considered as known parameter. With resulting estimatesβ̂0, α̂ the correspond-
ing update step takes the form

α̂(l) = α̂(l−1) + α̂ , β̂
(l)
0 = β̂

(l−1)
0 + β̂0.
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The basic idea behind the refitting is that forward iterative fitting procedures like boosting
are weak learners. Thus the previous estimate is considered as known in the last term of
(4.2). Only the additive termΦi.α is refitted within one iteration step. Of course after the
refit the variance components corresponding to (bi0, bi1) have to be estimated.

4.1 General Model with Cluster-Specific Splines

Let the data be given by(yit, xit, uit, zit), i = 1, . . . , n, t = 1, . . . , Ti, whereyit

is the response for observationt within cluster i and xT
it = (xit1, . . . , xitp), uT

it =

(uit1, . . . , uitm), zT
it = (zit1, . . . , zitqi) are vectors of covariates, which may vary across

clusters and observations. The semi-parametric mixed model with cluster-specific splines
that is considered in the following has the form

yit = xitβ +
∑m

j=1 α(j)(uitj) + zT
itb

(1)
i +

∑k
j=1 α(j)(uitj)b

(2)
i(j) + ǫit

= µpar
it + µadd

it + µrand
it + µcl

it + ǫit

wherebi = [b
(1)
i , (b

(2)
i )T ]T ∼ N(0, Q(ρ)) is a partitioned random effect andQ(ρ) is a

parameterized covariance matrix and

µpar
it = xT

itβ is a linear parametric term,

µadd
it =

∑m
j=1 α(j)(uitj ) is an additive term with unspecified influence functions

α(1), . . . , α(m),

µrand
it = zT

itb
(1)
i contains the cluster-specific random effectb

(1)
i ,

µcl
it =

∑k
j=1 α(j)(uitj)b

(2)
i(j) is a modification of additive termsα(1), . . . , α(k) by cluster

specific linear random effectsb(2)
i(j) with (b

(2)
i )T = (b

(2)
i(1), . . . , b

(k)
i(k)), and

ǫit is the noise variable,ǫit ∼ N(0, σ2
ǫ I), ǫit, bi independent.

To approximate the nonlinear functions one uses

α(j)(u) =
M∑

s=1

α(j)
s φ(j)

s (u) = αT
j φ(j)(u) (4.3)

where φ
(j)
s denotes thes-th basis function for variablej, αT

j = (α
(j)
1 , . . . , α

(j)
M ) are

unknown parameters andφj(u)T = (φ
(j)
1 (u), . . . , φ

(j)
M (u)) represent the vector-valued
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evaluations of the basis functions.

By collecting observations within one cluster the model has the form

yi = Xiβ + Φi1α1(1 + b
(2)
i(1)) + . . . + Φikαk(1 + b

(2)
i(k)) (4.4)

+Φi,k+1αk+1 + . . . + Φimαm + Zib
(1)
i + ǫi,[

ǫi

bi

]
∼ N

((
0

0

)
,

(
σ2

εI

Q(ρ)

))
, (4.5)

whereXiβ contains the linear term,Φijαj represents the additive term,Ziβ the ran-
dom term andbT = ((b(1))T , (b(2))T ). Vectors and matrices are given byyT

i =

(yi1, . . . , yiTi), XT
i = (xi1, . . . , xiTi), Φ

T
ij = (φ(j)(ui1j), . . . , φ

(j)(uiTij)), ZT
i =

(zi1, . . . , ziTi), ǫT
i = (ǫi1, . . . , ǫiTi). In the case of the truncated power series the

"fixed" termγ
(j)
0 + γ

(j)
1 u + . . . + γ

(j)
d ud is taken into the linear termXiβ without speci-

fying Xi andβ explicitly.
In matrix form one obtains

y = Xβ + Φ1α1 + . . . + Φmαm + Zb(1) + Rb(2) + ǫ,

y = Xβ + Φ1α1 + . . . + Φmαm + Z̃b + ǫ,

whereyT = (yT
1 , . . . , yT

n ), bT = (bT
1 , . . . , bT

n ), bT = ((b(1))T , (b(2))T ), ǫT =

(ǫT
1 , . . . , ǫT

n ),

XT = (XT
1 , . . . , XT

n ), ΦT
j = (ΦT

1j , . . . ,Φ
T
nj), ZT = diag(ZT

1 , . . . , ZT
n ), Ri. :=

Ri.(α1, . . . , αk) = [Φi1α1, . . . ,Φikαk], R = diag(R1., . . . , Rn.) and Z̃ = [Z, R]. Pa-
rameters to be estimated are the fixed effects, collected inδT = (βT , αT

1 , . . . , αT
m)

and the variance specific parametersθT = (σε, ρ
T ) which determine the covariances

cov(ǫit) = σ2
εITi andcov(bi) = Q(ρ).

4.1.1 The Boosting Algorithm for Models with Cluster-Specific Splines

The following algorithm uses componentwise boosting. Componentwise boosting means
that only one component of the predictor, in our case one smooth termΦijαj , is refit-
ted at a time. That means that a model containing the linear term and only one smooth
component is fitted in one iteration step. For simplicity we will use the notation

Xi(r) = [Xi Φir] , δT
r = (βT , αT

r )
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for the design matrix with predictorXi(r) = Xiβ + Φirαr.
The corresponding penalty matrix is denoted byKr, which for the truncated power series
has the form

Kr = Diag(0, λI).

BoostMixed

1. Initialization
Compute starting valueŝβ(0), α̂

(0)
1 , . . . α̂

(0)
m and setη(0)

i = Xiβ̂
(0)+Φi1α̂

(0)
1 + . . .+

Φikα̂
(0)
k and setR(0)

i. := Ri.(α̂
(0)
1 , . . . , α̂

(0)
k ) = (Φi1α̂

(0)
1 , . . . ,Φikα̂

(0)
k ), V

(0)
i =

(σ
(0)
ǫ )2I + Z̃

(0)
i Q(ρ(0)(Z̃

(0)
i )T , whereZ̃

(0)
i = (Zi, R

(0)
i. ).

2. Iteration
For l=1,2,. . .

(a) Refitting of residuals

i. Computation of parameters
For r ∈ {1, . . . , m} the model for residuals

yi − η
(l−1)
i ∼ N(ηi(r), V

(l−1)
i (θ(l−1)))

with
ηi(r) = Xi(r)δr = Xiβ + Φirαr

is fitted, yielding

δ̂r = (
n∑

i=1

(XT
i(r)(V

(l−1)
i (θ(l−1)))−1Xi(r)+Kr))

−1
n∑

i=1

XT
i(r)(V

(l−1)
i (θ(l−1)))−1(yi−η

(l−1)
i ).

ii. Selection step
Select fromr ∈ {1, . . . , m} the componentj that leads to the smallest
AIC

(l)
r or BIC

(l)
r as given in Section 3.5.3.

iii. Update
Set β̂(l) = β̂(l−1) + β̂,
and

α̂(l)
r =





α̂

(l−1)
r if r 6= j

α̂
(l−1)
r + α̂r if r = j,

δ̂(l) = ((β̂(l))T , (α̂
(l)
1 )T , . . . (α̂(l)

m )T )T .
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Update fori = 1, . . . , n

η
(l)
i = η

(l−1)
i + Xi(j)δ̂j

and setR(l)
i. := Ri.(α̂

(l)
1 , . . . , α̂

(l)
k ) = (Φi1α̂

(l)
1 , . . . ,Φikα̂

(l)
k ), V

(l)
i (θ) =

(σ)2I + Z̃
(l)
i Q(ρ)(Z̃

(l)
i )T , whereZ̃

(l)
i = (Zi, R

(l)
i. ).

(b) Computation of Variance Components
The computation is based on the penalized log-likelihood

lp(θ|η(l); δl) = −1
2

∑n
i=1 log(|V (l)

i (θ)|) +
∑n

i=1(yi − η(l))T V
(l)
i (θ)−1(yi − η(l))

−1
2(δ̂(l))T Kδ̂(l).

Maximization yieldsθ̂(l). SetV (l)
i (θ(l)) = (σ(l))2I + Z̃

(l)
i Q(ρ(l))(Z̃

(l)
i )T ,

whereZ̃
(l)
i = (Zi, R

(l)
i. ).

We chose componentwise boosting techniques since they turn out to be verystable in the
high dimensional case where many potential predictors are under consideration. In this
case the procedure automatically selects the relevant variables and may be seen as a tool
for variable selection with respect to unspecified smooth functions. In the case of few
predictors one may also use boosting techniques without the selection step byrefitting the
residuals for the full model with design matrix [XiΦi1 . . .Φim].

4.2 Simulation

We present part of a simulation study in which the performance of semiparametric mixed
models with cluster-specific splines is compared to semiparametric mixed models. The
underlying model is the random effects model

yit = xit1∗β1+xit2∗β2+

30∑

j=1

c∗α(j)(uit)+bi0+c∗α(1)(uit)bi1+ǫit, i = 1, . . . , 66, t = 1, . . . , 15
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with the smooth components given by

α(1)(u) = sin(u) u ∈ [−3, 3],

α(2)(u) = cos(u) u ∈ [−2, 8],

α(3)(u) = cos(u) u ∈ [−3, 3],

α(j)(u) = 0 u ∈ [−3, 3], j = 4, . . . , 30.

(4.6)

The vectorsuT
it = (uit1, . . . , uit30) have been drawn independently with components

following a uniform distribution within the specified interval. For the covariatesconstant
correlation is assumed, i.e.corr(yitr, yits) = 0.2. The constantc determines the signal
strength of the covariates. The random effect and the noise variable have been specified
by ǫit ∼ N(0, σ2

ǫ ) with σ2
ǫ = 0.6 andbi = (bi0, bi1)

T ∼ N(0, Q) with

Q =

[
8 0.1

0.1 4

]
.

In the part of the study which is presented the number of observations hasbeen chosen by
n = 66, T = 15.

The fit of the model is based on B-splines of degree 3 with 15 equidistant knots. The
performance of estimators is evaluated separately for the structural components and the
variance. The variance component for the random effects matrixQ is assumed to be
unstructured.

To show the effect of using cluster-specific splines, one dataset with setting c = 1 andp =

3 was chosen. Figure 4.2 shows the 66 clusters with their cluster-specific splines (random
intercept and modified spline curve), which are modifications ofα(1)(.). Figure 4.2 show
the estimated and true modified cluster-specific spline functions (modifiedα(1)(.) without
random intercept. It is very characteristic for this curve that it has joint cut points.

Figure 4.2 shows that cluster-specific splines can improve the mean squared error for the
predictor. If the cluster-specific spline is neglected, the variation is captured for small
signals in the random effect and for huge signals in the error term and therandom effect.
The model with cluster-specific splines seem to be more sensitive in the variable selec-
tion. Nevertheless the model with cluster-specific splines delivers the original variances
as shown in Figure 4.1 nearly independent form signals and smooth effects. For the com-
putation of these mean matrices the 100 estimated covariance matrices were summedup
and scaled by 100.
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Figure 4.1: Plots of cluster-specific splines with random intercept with respect to the different
clusters. The black lines are the estimated splines, the red ones are the truefunctions

Figure 4.2: Plots of cluster-specific splines without random intercept. Left side are the esti-
mated functions, the right side are the true functions.
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p = 3 p = 5 p = 15 p = 25

c = 0.5

"
8.008 0.209

0.209 4.735

# "
8.002 0.212

0.212 4.752

# "
7.986 0.195

0.195 4.715

# "
7.837 0.165

0.165 4.393

#
c = 1

"
7.738 0.124

0.124 4.480

# "
7.736 0.124

0.124 4.482

# "
7.725 0.123

0.123 4.491

# "
7.717 0.124

0.124 4.515

#
c = 5

"
7.794 0.134

0.134 6.687

# "
7.779 0.134

0.134 6.691

# "
7.714 0.123

0.123 6.643

# "
7.638 0.109

0.109 6.676

#
Table 4.1: Mean of the estimated covariance matricesQ̂ := Q(ρ̂) for the random effects
covariance matrixQ

cluster-specific splines BoostMixed

c par MSEη σ2
ǫ steps falsepos falseneg MSEη σ2

ǫ σ2
b steps falsepos falseneg

0.5 3 138.611 0.603 14 0.00 0.00 143.502 1.099 8.047 16 0.00 0.00

0.5 5 142.035 0.605 15 1.12 0.85 146.897 1.096 8.039 17 0.66 0.00

0.5 15 148.847 0.610 15 1.73 0.94 155.453 1.089 8.018 20 1.96 0.00

0.5 25 161.973 0.631 15 2.08 0.97 160.488 1.085 8.003 23 2.55 0.01

1.0 3 173.448 0.610 38 0.00 0.00 201.067 2.596 7.781 59 0.00 0.00

1.0 5 173.962 0.609 41 1.11 0.91 205.673 2.593 7.773 61 0.32 0.00

1.0 15 177.910 0.607 42 1.98 0.94 228.118 2.572 7.735 64 1.53 0.00

1.0 25 179.547 0.606 43 2.46 0.94 240.204 2.561 7.708 67 2.16 0.00

5.0 3 1505.018 1.006 328 0.00 0.00 2031.959 50.802 7.776 971 0.00 0.00

5.0 5 1552.813 1.058 341 1.75 0.19 2257.905 50.473 7.759 984 1.44 0.00

5.0 15 1719.956 1.181 358 9.53 0.23 3424.553 49.162 7.585 984 2.89 0.00

5.0 25 2056.678 1.424 376 16.69 0.27 4538.329 47.894 7.452 985 3.46 0.00

Table 4.2: Comparision ofMSEη for BoostMixed and cluster-specific splines

What is getting clear in Table 4.1 that is not a problem to get the true variancesfrom
the model. It is also useful to use cluster-specific splines what can be seen in theMSEη.
Neglecting the cluster-specific splines lead with increasing signal to large estimates for the
variance of the error component. However the cluster-specific splines tend to disregard
relevant variables. Except for large signals the number of irrelevant variables in the model
is quite comparable.
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4.3 Application of Cluster-Specific Splines

4.3.1 Jimma Data: Description

The Jimma Infant Survival Differential Longitudinal Study which is extensively described
in Lesaffre, Asefa & Verbeke (1999) is a cohort study examining the live births which took
place during a one year period from September 1992 until September 1993in Ethiopia.
The study involves about 8000 households with live births in that period. The children
were followed up for one year to determine the risk factors for infant mortality. Following
Lesaffre, Asefa & Verbeke (1999) we consider 495 singleton live births from the town of
Jimma and look for the determinants of growth of the children in terms of body weight
(in kg). Weight has been measured at delivery and repeatedly afterwards. In addition we
consider the socio-economic and demographic covariates age of mother in years (AGEM),
educational level of mother (0-5: illiterate, read and write, elementary school, junior high
school, high school, college and above), place of delivery (DELIV,1-3: hospital, health
center, home), number of antenatal visits (VISIT, 0,≥1), month of birth (TIME,1:Jan.-
June, 0:July-Dec.), sex of child (1:male, 0:female). For more details and motivation of
the study see Lesaffre, Asefa & Verbeke (1999). Figure 4.3 shows the overall evolution
of weight and Figure 4.4 shows the growth curve of four children (observations and fitted
curves) for an additive mixed model with random slopes on the additive ageeffect. It
is seen that random slopes are definitely necessary for modelling since speed of growth
varies strongly across children.

4.3.2 Jimma Data: Analysis with Cluster-Specific Splines

For the Jimma data we focus on the effect of age (in days) on the weight of children.
Since growth measurements usually do not evolve linearly in time the use of a linear
mixed model involves to find an appropriate scale of age. Lesaffre, Asefa & Verbeke
(1999) found that weight is approximately linearly related with the square root of age.
An even better approximation, they actually used in their analysis is the transformation
(age − log(age + 1) − 0.02 × age)1/2. Since in growth curve analysis random slopes
are needed , they had to find the scale before using mixed model methodology. The big
advantage of the approach proposed here is that the scale of age has not to be found
separately but is determined by the (flexible) mixed model itself. The model we consider
includes random slopes on the age effects, smooth effect of age of mother and several
parametric terms for the categorical variables. It has predictor

ηit = β0+αA(Agei)+bi0+bi1αA(Agei)+αAM (Age of Motheri)+ parametric term.
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Figure 4.3: Evolution of average weight(kg) as function of age
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Figure 4.4: Individual infant curves (observed and predicted)
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Figure 4.5: Effects of age of children (in days) and age of the mother (in years) in the Jimma
study

Figure 4.3 shows the overall dependence (of children). Figure 4.5 shows the (centered)
dependence on age and age of mother. It is seen that the effect of ageof mothers is
hardly linear (as assumed in the linear mixed models). Body weight of childrenseems to
increase with age of mother up to about 30 years, then the effect remains rather stable.
Table 4.3 gives the estimates of the parametric terms. For comparison the estimatesfor
the linear mixed model with random slopes on the transformed age and linear effect of
age of mother are given in Table 4.3 . As transformed age we use(age− log(age + 1)−
0.02 × age)1/2 as suggested by Lesaffre, Asefa & Verbeke (1999). It is seen thatthe
effects of the categorical covariates are quite comparable. The differing intercepts are due
to centering of variables. For age of mother the linear model shows a distinctincrease (
0.014 with standard deviation 0.004 ).

Table 4.4 shows the estimated variance of(bi0, bi1) for the flexible model and the linear
mixed model with transformed age.
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BoostMixed Mixed Model

INTER 6.819 0.174 2.664 0.176

SEX 0.304 0.049 0.296 0.081

EDUC0 -0.051 0.066 -0.085 0.118

EDUC1 -0.021 0.151 -0.044 0.236

EDUC2 0.041 0.051 0.009 0.093

EDUC3 0.036 0.029 -0.005 0.060

EDUC4 -0.005 0.019 -0.042 0.042

VISIT -0.078 0.072 -0.078 0.117

TIME -0.177 0.065 -0.169 0.107

DELIV1 -0.027 0.007 -0.019 0.010

DELIV2 -0.148 0.031 -0.141 0.052

AGE 0.886 0.004

AGEM 0.014 0.004

Table 4.3: Effects of categorical covariates in Jimma study

BoostMixed Mixed Model

0.825962 0.196618 0.171369 -0.017506

0.196618 0.057253 -0.017506 0.045134

Table 4.4: Covariance matrix for random intercept and slope for Jimmadata
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4.3.3 Jimma Data: Visualizing Variable Selection

The models compared is the semi-parametric mixed model with cluster-specific splines
given by

ηit = β0+αA(Agei)+bi0+bi1αA(Agei)+αAM (Age of Motheri)+ parametric term.

(4.7)
where the parametric term contains the categorical variables place of delivery (DELIV1-
DELIV2), education (EDUC1-EDUC4), antenatal visits (ant), the interactions of age
and delivery, as well as the interactions of sex (SEX.EDUC1-SEX.EDUC2) and edu-
cation (SEX.EDUC1-SEX.EDUC4). The competitor is the linear mixed model with same
parametric terms, but linear and quadratic age and age of the mother. The parametric
terms where shrinked withλpar = 20, the hyperparameter for smooth effects was set
to λsmooth = 1000. The x-axis of Figures 4.6 reflect the effective degrees of freedom
for the computed model which is another expression for the needed iterations. On the
y-axis one can see the development of the covariates with increasing iterations. The black
vertical line indicates where the algorithm stops. For the semi-parametric and the linear
mixed model the criterion stops around 6.5 degrees of freedom. In booth models is age
the most relevant variable. Important in both models are also the SEX, the interactions
AGE.DELIV1 and AGE:DELIV2 and the antenatal visits (ant) in the model. The only
difference is that in the semi-parametric model deliv2 was taken and in the linear mixed
model educ0.

The generalized build-up graphic is a nice tool to visualize the relevance ofvariables in
both cases, linear and semi-parametric mixed models. It shows also informationwhen
variables with small relevance enters the model.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Coefficient build up for parametric model in(a) and zoomed version in(b).
Coefficient build up for semi-parametric model (age and agem are modeled with splines) in
(c) and zoomed version in(d). (e)and zoomed version in(f) shows the parametric model for
rescaled coefficients.
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4.3.4 Ebay-Auctions: Description

The technological advancements in measurement, collection, and storage ofdata have led
to more and more complex data-structures. Examples include measurements of individu-
als’ behavior over time, digitized 2- or 3-dimensional images of the brain, andrecordings
of 3- or even 4-dimensional movements of objects traveling through space and time. Such
data, although recorded in a discrete fashion, are usually thought of ascontinuous objects
represented by functional relationships. This gives rise to functional data analysis (FDA).
In FDA Ramsay & Silverman (2002, Ramsey, & Silverman (2005) the center ofinterest is
a set of curves, shapes, objects, or, more generally, a set offunctional observations. This
is in contrast to classical statistics where the interest centers around a setof data vectors.

There is only little other work that addresses the issue of sparse and unevenly spaced
functional data. James & Sugar (2003) propose a model-based clustering approach that,
similar to our approach, borrows information from neighboring functionalobjects and
thus results in a more representative partitioning of the data.

In the following we motivate the problem of recovering sparsely and unevenly sampled
curves by considering eBay’s online auctions (seewww.ebay.com). We describe eBay’s
auction mechanism, the data that it generates, and the challenges involved in taking a
functional approach to analyzing online auction data. eBay’s Auction Mechanism eBay
is one of the biggest and most popular online marketplaces. In 2004, eBayhad 135.5
million registered users, of which over 56 million bid, bought, or sold an item, resulting
in over 1.4 billion listings for the year. Part of its success can be attributed to the way
in which items are being sold on eBay. The dominant form of sale is the auction and
eBay’s auction format is a variant of the second price sealed-bid auctionKrishna (2002)
with “proxy bidding". This means that individuals submit a “proxy bid", which is the
maximum value they are willing to pay for the item. The auction mechanism automates
the bidding process to ensure that the person with the highest proxy bid is inthe lead of the
auction. The winner is the highest bidder and pays the second highest bid. For example,
suppose that bidder A is the first bidder to submit a proxy bid on an item with a minimum
bid of $10 and a minimum bid-increment of $0.50. Suppose that bidder A places a proxy
bid of $25. Then eBay’s web page automatically displays A as the highest bidder, with a
bid of $10. Next, suppose that bidder B enters the auction with a proxy bid of $13. eBay
still displays A as the highest bidder, however it raises the displayed high-bid to $13.50,
one bid increment above the second-highest bid. If another bidder submits a proxy bid
above $25.50, bidder A is no longer in the lead. However, if bidder A wishes, he or she
can submit a new proxy bid. This process continues until the auction ends.Unlike other
auctions, eBay has strict ending times, ranging between 1 and 10 days from the opening
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of the auction, as determined by the seller.

eBay is a rich source of high-quality – and publicly available – bidding data. eBay posts
complete bid histories of closed auctions for a duration of at least 15 days on its web site1.
One implication of this is that eBay-data do not arrive in the traditional form oftables or
spreadsheets; rather, it arrives in the form of HTML pages.

Figure 4.7 shows an example of eBay’s auction data. The top of Figure 4.7 displays a
summary of the auction attributes such as information about the item for sale, theseller,
the opening bid, the duration of the auction, and the winner. The bottom of Figure 4.7
displays the bid history, that is the temporal sequence of bids placed by the individual
bidders. Figure 4.8 shows the scatter of these bids over the auction duration (a 7-day
auction in this example). We can see that only 6 bidders participated in this auction and
that most bids were placed towards the auction end, with the earlier part of the auction
only receiving one bid. Thus, if we conceptualize the evolution of price asa continuous
curve between the start and the end of the auction, then Figure 4.8 shows an example of a
very sparsely and unevenly sampled price-curve.

“Does price remain low throughout most of the early auction only to experience sharp
increases at the end? And if so, is this price pattern the same for auctions ofall types? Or
does the pattern differ between, say, electronics and antiques?" Jank &Shmueli (2005)
show that answering these questions can help profiling auction dynamics. Wang, Jank &
Shmueli (2005) build upon similar ideas to develop a dynamic forecasting system for live
auctions. (See also Shmueli, Jank, Aris, Plaisant & Shneiderman (2005) for an interactive
visualization tool for online auctions.)

One way around this problem is to borrow information from other auctions. Consider
Figure 4.9. It shows the bid histories for three individual auctions, labeled #2, #121 and
#173. We can see that the price curve in auction #6 is only sampled at the end. Conversely,
in auction #121 the price is sampled mostly at the beginning, with no information from
the middle of the auction. And finally, auction #173 contains price information from the
auction middle but only little from its start and end. While every auction individually only
contains partial information about the price curve, if we put the information from all three
auctions together, we obtain a more complete picture. This is illustrated in the bottom
right corner of Figure 4.9. The idea of semiparametric mixed model smoothing isnow
to borrow from this combined information whenever an individual auction contains only
incomplete information about its price evolution. We describe the methods more formally
next.

Our data consist of 183 closed auctions for Palm M515 personal digital assistants (PDAs)

1Seehttp://listings.ebay.com/pool1/listings/list/completed.html
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Figure 4.7: Bid history for a completed eBay auction. The top part displays auction attributes
and includes information on the auction format, the seller and the item sold; thebottom part
displays the detailed history of the bidders and their bids.
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Figure 4.8: Scatterplot for bid history in Figure 4.7. The “×" marks the opening bid; the “△"
marks the final price. Of the total of 6 bids, only one arrives before day 6.

0 1 2 3 4 5 6 7

0
10

0
20

0
30

0

Auction  6

0 1 2 3 4 5 6 7

0
10

0
20

0
30

0

Auction  121

0 1 2 3 4 5 6 7

0
10

0
20

0
30

0

Auction  173

0 1 2 3 4 5 6 7

0
10

0
20

0
30

0

All 3 combined

Figure 4.9: Three individual bid histories and their combined bids (bottomright panel).

that took place between March 14 and May 25 of 2003. In an effort to reduce as many
external sources of variability as possible, we included data only on 7-day auctions, trans-
acted in US Dollars, for completely new (not used) items with no added features, and
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where the seller did not set a secret reserve price. Furthermore, we limited the data to
competitive auctions, where there were at least two bids. These data are publicly avail-
able athttp://www.smith.umd.edu/ceme/statistics/.

The data for each auction include its opening price, closing price, and the entire series of
bids (amounts and time-stamps) that were placed during the auction. This information is
found in the Bid history, as shown in Figure 4.7.

Note that the bid values that appear in the bid history are not the actual priceshown by
eBay during the auction. The reason is that eBay uses a second-price mechanism, where
the highest bidder wins and pays the second highest bid. Therefore, at each point in
time the displayed current price is the second highest bid. For this reason,we converted
the actual bids into “current price", and therefore our final data are indeed monotone
increasing.

4.3.5 Ebay-Data: Mixed Model Approach vs. Penalized Splines:
Prognostic Performance

Although it is seen from Figure 4.11 that the more parsimonious mixed model yields
better results we wanted to investigate the two procedures with respect to prognostic per-
formance. Therefore the original data were splitter into a training dataset and a validation
dataset. for each auction the data were split into bids, which come in within2/3 of the
time and the rest. The first part of the data is considered as training data, thesecond
part as validation data for the specific auction. One get data pairs{(tis, Price(1)is )|tis <
2
3 ∗ 7 days} for the training data and{(tis, Price(2)is )|tis ≥ 2

3 ∗ 7 days} for the test

data. The number of observations for auction i in the training dataset isS
(1)
i , for the test

dataS
(2)
i . Auctions with less than 3 bids were removed and not taken into the analysis.

Thereby the data set reduces to 132 auctions. This reduction is necessary because in some
auctions not enough data were available to fit a penalized spline. For the computation of
the separate splines the set of knots were reduced to 3 since numerical problems arise in
the computation. For the flexible spline solution 14 knots were taken. For both methods
differences of order 2 and B-Splines of degree 2 were used. The estimates of the train-
ing dataset was then used to predict the values of the test dataset. For comparison the
predicted mean squared errors on the validation set have been computed.In the flexible
splines case boosting techniques as described were taken to get estimates.The square root
of the price was taken since estimation lead to rather huge variance estimations.The log
transformation was also considered but this transformation comprises a stronger reduction
of information in the data.
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The computed model using separately fitted penalized splines and the mixed model ap-
proach for auctioni were

s(Price(1)is ) = α0 + φT (t
(1)
is )αi

and

s(Price(1)is ) = α̃0 + φT (t
(1)
is )α + bi0 + φT (t

(1)
is )α̃bi.

respectively. Computation of mean squared error in the validation set yields1701507 for
separately fitted splines and 28352.5 for the mixed model approach. Therethe separately
fitted splines have mse that is about 60 times larger.

It is obvious that the mixed model approach yields much better prediction than the penal-
ized splines approach. Since the data are sparse in some auctions it is rather restrictive
to limit the number of knots only to 3 knots. Another nice feature of the mixed model
approach is that the monotonicity holds for all auctions without the implementation of
restrictions that guarantee monotonicity.

4.3.6 Ebay Data: Final model

The following mixed effects model was used for all 183 auctions

s(Priceis) = α0 + α(tis) + bi0 + bi1α(tis) + ǫis

to model the data. Figure 4.11 shows for the first 36 auctions the estimates resulting
from separate spline fitting and from using the mixed model approach. It is seen that the
separate spline fitting approach might behave erratically. When data are sparse it may
produce decreasing functions or very steep functions. In the case withone observation
the estimate does not exist. On the other hand the mixed model approach yields sensible
estimates even in sparse data situations. Even for one observation, i.e. auction 16 in
figure 4.11, the price evolution can be modeled using all other auctions. If,as is the case
auction 11 there is small but important information (bid at start, end and one some where
in between), this information is enough to fix the level of the auction (random intercept)
and the evolution of the auction (random slope for splines). In the case ofauction 20
the random slope is estimated very close to the expectation of the random slope. Here
information from other auctions is borrowed to get an idea what could havehappened.
But still the individuality of this auction is reflected in the random intercept, which allows
variation also using the expected price evolution curve. The restriction to monotonicity is
unnecessary then since for all auctions nondecreasing functions areestimated.
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Figure 4.10: spline function for all auctions for Time

Figure 4.11: Smoothed Time: The first 36 auctions with their specific behavior regarding
price and Time. Mixed model approach is shown by the solid lines, separately fitted penalized
splines are the dotted lines.
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b0 b1

b0 4.536 (1) -0.619 (-0.847)

b1 -0.619 (-0.847) 0.117 (1)
Table 4.5: Estimated covariance matrixQ(ρ̂) for random intercept and slope for Ebay data.
Correlation is given in brackets.

4.3.7 Canadian Weather Stations: Description and Model

The data were collected from 35 Canadian weather stations. Jim Ramsay offers the
monthly temperature data for canadian weather stations on his web site2. The raw data
were supplied by the Atmospheric Environment Service, Canadian Climate Centre, Data
Management Division, 4905 Dufferin Street, Downsview, Ontario, M3H 5T4. The study
includes 12 monthly measurements for each of the 35 weather station. The observed co-
variates are mean temperature (temp) in degree celsius, month (month), weather station
and precipitation (prec) inmm3. Let tempit denote the temperature for the i-th weather
station with t-th measurement.

The following model was used

tempit = αP (precit) + αM (monthit) + bi0 + bi1αM (monthit) + eit

to model the data. The assumption on the random effectsbi0, bi1 is that they are Gaussian,
independent between clusters and conditional independent for the different measures
within the cluster. Table 4.6 shows the estimated covariance structure for the random
effects. Figure 4.12 shows 16 estimated mean temperatures for weather station 20 to sta-
tion 35 modeled by cluster-specific spline curves. Figure 4.13 shows the estimated smooth
effect for the precipitation.

30.184988 -1.012974

-1.012974 0.066423
Table 4.6: Covariance matrix for random intercept and slope for Canadian Weather Stations
data

2Seeftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/SPLUS/README.txt
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Figure 4.12: Monthly temperatures for 16 selected Canadian weather stations.
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Figure 4.13: Temperatures for the Canadian weather stations depending on precipitation



Chapter 5

Generalized Linear Mixed Models

5.1 Motivation: The European patent data

The used data come form two sources. The one source is theOnline European Patent
Register provided by the European Patent Office athttp://www.epline.org. The
database covers published European patent applications as well as published international
patent applications. The second source deals with characteristics on the different com-
panies. Here 107 European firms were observed from 1993 to 2000 collecting variables
like number of employees, research and development expenses. This dataset derives from
the Global Vantage Database supported by Compustat. The information of both datasets
were put together in a panel structured dataset. The objective is the analysis in the be-
havior of firms according to their preference to do outsourcing. Using allinformation
one get the pooled data on 107 European firms in 856 firm years. Since theresearch and
development data lacks of 261 firm years (missing values), only 595 firm years are re-
maining for the analysis. So the total number of yearly patent applications (PAT_YEAR)
is part of the study as well as the patent applications that were sourced out. The response
is the number of patents that were sourced out (OUT).Moreover, a variable that opera-
tionalizes the technical diversity of patent applications is collected. It is a measure for the
technological breadth where firms show activity (BREADTH). If the applicant is focused
only on few technological fields one gets smaller measurements than if an applicant is
active in a wide range of few fields. Moreover the volatility (VOL) of patentapplications
is given by another measure which takes account of the changes and fluctuations in the
activity of patent applications. The other variables collected are the firm size measured
in employees (EMP), the expenses for research and development in Euro (R_D_EUR),
the expenses for research and development adjusted to employee (R_D_EMP) and patent
(R_D_PAT), the patent portfolio of the company (PAT_PORT). Since the data derive from
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Europe, dummy variables for the region (Germany (GER), France (FRA), United King-
dom (GBR) and others (OTH)) were introduced. For details on the construction of these
measures see Wagner (2006). For this study only companies that had lessthan 20 000
employees over the observation period are considered. Applying these restrictions the
hole dataset was reduced to 184 observations in total for 34 different companies. The re-
sponse is the number of patents that were sourced out. One may assume thatthe response
is Poisson distributed.

A simple model with only some covariates is given by

ηit = 1β0 + PAT_Y EARitβ1 + GERitβ2 + FRAitβ3 + GBRitβ4 + bi

OUTit|λit = Poisson(λit)

λit = E(OUTit) = exp(ηit)
(5.1)

where the indexPAT_Y EARit addresses companyi with measurementt andbi is the
random intercept for companyi. zit is set to1 since a simple random intercept model
is considered. For example, the first company of the dataset has measurements of all
covariates in the years 1996-1998. The measurements in total for this company isTi = 3.
A common assumption on random intercepts is that they are Gausssian distributed with
bi ∼ N(0, σ2

b ). σ2
b is the random intercept variance.

Since one may use a short notation without addressing the variable namesPA_Y EAR,
GER, FRA, GBR one set generally the response toyit := OUTit. The vari-
ables that are responsible for the fixed effects are packed into the vector xT

it :=

(1, PA_Y EARit, GERit, FRAit, GBRit). zT
it = 1. The variables associated with the

random effect are stacked in blockdiagonal entries in the matrixZ = bdiag(Z1, . . . , Zn),
whereZT

i = (zi1, . . . , ziTi). The short term notation is withXT
i = (xi1, . . . , xiT ),

XT = (XT
1 , . . . , XT

n ), yT
i = (yi1, . . . , yiT ), yT = (yT

1 , . . . , yT
n ) andβT = (β0, . . . , β4),

bT = (bT
1 , . . . , bT

n ) andηT
i = (ηi1, . . . , ηiT ) andηT = (ηT

1 , . . . , ηT
n ) for clustered data

representation
ηi = Xiβi + Zibi,

or in matrix representation
η = Xβ + Zb.

There are 595 observations in the dataset derived from 35 companies,so we setN = 595

andn = 35. In this case the dimension ofb which is denoted byq is n (q := n) and the
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random design matrix has only one component (intercept), so the number ofcomponents
are set toc = 1.

The model (5.1) can be extended to a random slope model

ηit = 1β0+PA_Y EARitβ1+GERitβ2+FRAitβ3+GBRitβ4+b
(1)
i +PA_Y EARitb

(2)
i

In this casezT
it = (1, PA_Y EARit), the number of random components are two (c=2),

the dimension for the random intercept isq1 = n and for the slopeq2 = n. This is in
short notation

η = Xβ + Zb.

The dimension ofb is 2*n. One can use the ordered design matrix for random ef-
fects with Zi(1) = 1, whereZi(1) is a Ti dimensional vector of ones, andZT

i(2) =

[PA_Y EARi1, . . . , PA_Y EARiTi ]. The ordered random design matrix is thenZ̃ =

[bdiag(Z1(1), . . . , Zn(1)), bdiag(Z1(2), . . . , Zn(2))], where

η = Xβ + Z̃b̃

with b̃T = (b(1)T , b(2)T ). In this representation the clustered structure of the data may be
neglected, since the order of random effects are important. One may talk about crossed
random effects if one has more than one component in the random design matrix ( c ≥ 2)

and it is not possible to build a clustered structure from the random design matrix.

5.2 The Model

First we consider the longitudinal formulation of a GLMM with its assumptions.

Longitudinal formulation (clustered structure) Let the data be of the form
(yit, xit), i = 1, . . . , n, t = 1, . . . , T , with yit denoting a univariate response connected
to observationt in clusteri andxit denoting a vector of covariates, that may vary across
the observations within one cluster.

Often the cluster corresponds to individuals and the observations to repeated measure-
ments. For a more simpler presentation, the number of observations within one cluster T
does not depend on the cluster.

A GLMM is specified by two components. The first assumption is, that the conditional
density ofyit, given the explanatory variablexit and the random effectbi is of exponential
family type
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f(yit | xit, bi) = {exp
(yT

itθit − κ(θit))

φ
+ c(yit, φ)}, (5.2)

whereθit denotes the natural parameter andc(.) the log normalization constant. The
second component specifies the link between response and the covariates. The structural
assumption is based on the conditional mean

µit = E(yit | xit, bi) = h(xT
itβ + zT

itbi), (5.3)

whereh : R1 7→ R1 is the response function andzit is a design vector composed from
xit.

The specification of the random effect model is completed by specifying thedistribution
p(bi, ρ) of the random effectbi whereρ is a vector of structural parameters. The necessity
of this assumption, in particular for the maximum likelihood theory follows from

f(yi | Xi) =

∫
f(yi | Xi, bi)p(bi; ρ)dbi (5.4)

with XT
i = (xi1, . . . , xiT )T whereyT

i = (yi1, . . . , yit) andf(yi | Xi, bi) is assumed to
be given by

f(yi | Xi, bi) =
T∏

t=1

f(yit | xit, bi).

General formulation (crossed random effects) In the literature (i.e. Schall (1991),
Breslow & Clayton (1993) or Lin & Breslow (1996)) a more general notation for gener-
alized linear mixed models is used. This notation allows the incorporation of crossed ran-
dom effects and is not limited to a clustered structure of the data. Lety = (y(1), . . . , y(N))

be a vector of N observations.

HereXN×p is a known design matrix,β is a vector of fixed effects, theZi are known
Ti × q matrices, whereq is the dimension of the random effects vectorb andTi is the
number for observations in clusteri. The random effectsb are assumed to be Gaussian
with expectation zero and covariancecov(b) = Q(ρ), whereρ are structural parameters.
z(i) is the design vector for random effects, which corresponds to measurementi, x(i) is
the design vector for fixed effects corresponding to measurementi, i ∈ 1 . . . , N
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Then the conditional density of an exponential family is

f(y(i) | x(i), b) = {exp
(yT

(i)θ(i) − κ(θ(i)))

φ
+ c(y(i), φ)}, (5.5)

whereθ(i) denotes the natural parameter andc(.) the log normalization constant.

Let g(.) be a monotonic function, the link (McCullagh & Nelder (1989)), such thatg(µ)

can be written as the linear model

g(µ(i))) = η(i) = x(i)β + z(i)b, i = 1, . . . , N

The matrix notation withµT = (µ(1), . . . , µ(N), ηT = (η(1), . . . , η(N)) is given by

g(µ) = η = Xβ + Zb (5.6)

with g(µ) = (g(µ(1)), . . . , g(µ(N))).

5.3 Numerical Integration Tools

In the following it is assumed thatyT = (y(1), . . . , y(N)) has covariance matrixQ(ρ)

whereρ is a vector which parameterizes the covariance matrix.

The integration of marginal densities
∫

f(y|b) ∗ p̃(b; ρ)db for Gaussian mixtures with
densities of exponential families is usually based on the integration

∫
f(y|b)p(b; ρ)db =

∫
f(y|Q(ρ)1/2a) ∗ p̃(a)da,

wherep̃(.) is the standard normal distribution,p(.) is the normal distribution with expec-
tation zero and covariance matrixQ(ρ) andb = Q(ρ)1/2a. Q(ρ)1/2 is the left Cholesky
root ofQ(ρ).

Most integration methods may be seen as a problem

I =

∫ ∞

−∞
f(a)g(a)da.

f(.) is a continuous function andg(.) is the integration function (often a density). The
functional form behind the integral is reduced to only two functionsg(.) andf(.). I is
then approximated by the arithmetic mean

Î =
m∑

j=1

f(aj)wj ,
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whereaj , j = 1, . . . , m are integration knots andwj , j = 1, . . . , m are integration
weights. The value ofaj andwj depend on the integration method and ong(.) that is
used. They can be deterministic (Gauss-Hermite) or random (Monte Carlo). In the fol-
lowing the set of integration knots (integration points)aj , j = 1, . . . , m are called grid of
integration knotsaT = (a1, . . . , am). Î is called the approximation of the integralI with
I ≈ Î.

Riemann’s sums For integration with Riemann’s sums,ai is deterministic,wj = 1
m ,

g(aj) is g(aj) = 1. Riemann’s sums can be extended to the trapezoid rule, which now
uses special weightswj , but the grid of integration knotsa is the same as for Riemann’s
sums.

Gauss quadratures Since the accuracy of Riemann’s sums is often bad one may take
Gauss-Hermite quadrature, which is described in detail in the appendix. For more infor-
mation on quadrature formulas see Deuflhard & Hohmann (1993), Davis & Rabinowitz
(1975), Stroud (1971). The tables for nodes and weights can be found in Stroud & Se-
crest (1966) and Abramowitz & Stegun (1972). For Gauss-Hermite quadraturewj are the
quadrature weights andaj are the quadrature points, which are arranged by optimizing
Hermite polynomials. One problem of Gauss-Hermite quadrature is, that the integral is
only sufficient if f(x) is centered around zero. This problem can be usually solved by
using adaptive quadrature schemes for Gauss-Hermite quadrature.

Riemann’s sums and Gauss-Hermite quadrature operates in d-dimensional integration
problems on complete integration grids which is the result of a Tensor product of one
dimensional integration grids. Therefore the d-dimensional tensor product is used. The
integration points have then an exponential order in the used dimension. Fordimensional
problems of more than five the curse of dimensionality makes computation not applicable.

Sparse grids for quadrature rules Smolyak’s formula on quadrature rules thins out
the grid in a way that quadrature points are combined together. For details see Smolyak
(1963), Petras (2000), Petras (2001), Gerstner & Griebel (1998)and Gerstner & Griebel
(2003). This is often called integration using sparse grids. That is an trade off between
the goodness of accuracy and number of integration points. The so calleddeepness of
Smolyak’s quadrature is responsible for the number of points. For a deepness of the
size of onedimensional quadrature points one obtains the described full grid. For poor
deepness one obtains an logarithmic order of quadrature points in the dimension.
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Monte Carlo Integration For Monte Carlo integration the functiong(a) is a Gaussian
density,ai are i.i.d. drawings fromg(a). For more information see Robert & Casella
(2004), Calflisch (1998) and Ripley (1987). Problem of this integration method is to
assess the goodness of accuracy in dependence of needed integration points. Usually
one uses an adaptive integrations scheme where the integration points are increased since
many times the same result is delivered.

Quasi Monte Carlo Integration The inverse cumulative d-dimensional standard nor-
mal distribution distribution function is uniformly distributed on the d-dimensional cube.
That is why one may take low discrepancy sequences ( Niederreiter (1992)) , which de-
liver highly uniform distributed, but deterministic, points in the d-dimensional unit cube.
If elementwise the one dimensional inverse normal transformation is applied onthese
sequences on the unit cube, one obtains quasi monte carlo integration points. The empir-
ical frequencies for small integration points are much closer to the uniform distribution
functions, than random drawing on the unit cube. For more information seeJudd (1992),
Calflisch (1998). On Halton’s sequence see Niederreiter (1960). On Sobol’s sequence see
Antonov & Saleev (1979) and Bratley & Fox (1988).

Since the d-dimensional standard normal distribution is a product of d one-dimensional
standard normal distributions, the d-dimensional integration grid can be visualized for
d=2 with the first two cumulative normal distribution functions. See Figure 5.1.

Laplace Approximation The marginal log-likelihood foryT = (y(1), . . . , y(N)) is
specified by

l(β, ρ) = log(
∫

f(y|b̃; β) ∗ p(b̃, ρ)db̃), (5.7)

wheref(y|b̃; β) =
∏N

i=1 f(y(i)|b̃; β) andf(y(i)|b̃; β), i = 1, . . . , N is a density from
the exponential family and the mixing distributionp(b̃, ρ) is the Gaussian density with
expectation zero and unknown covarianceQ(ρ). Since this log-likelihood is nasty to
handle we try to find an easy approximation for the integral to do further computation.
For the Laplace Approximation two likelihood functions fory are needed. The first one
is the joint log-likelihood function

Ljoint(b̃; ρ) = −k(b̃) (5.8)

with k(b̃) = − log(f(y|b̃; β) ∗ p(b̃; ρ)). The second one is the marginal likelihood

L(b̃, ρ) =

∫
exp{−k(b̃)}db̃ (5.9)
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Figure 5.1: Integration points evaluated for the 2-dimensional standardnormal distribution.
(a) are 25 integration points for Riemann’s sums from[−3, 3] × [−3, 3], (b) are 25 quadra-
ture points from Gauss-Hermite by tensor products, (c) 17 points from Smolyak’s rule for
Gaussian quadrature, (d) 25 Monte Carlo points, (e) 25 Quasi Monte Carlo points by Hobol’s
sequence and (f) quasi Monte Carlo points by Sobol’s sequence
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The basic idea is to make a quadratic expansion of−k(b̃) about its maximum pointb
before integrating. Therefore we solve

∂k(b̃)

∂b̃
= 0 = k′(b) (5.10)

yielding b. The relation∂k(b̃)

∂b̃

∫
exp{−k(b̃)} =

∫ ∂k(b̃)

∂b̃
exp{−k(b̃)} = 0 indicates thatb

maximizes also the marginal likelihood (5.9) with respect tob̃. Then compute the curva-
ture of equation (5.8)

∂2k(b̃)

∂b̃∂b̃T
= k′′(b̃). (5.11)

A first-order Taylor-Approximation ofk(b) in b with k(b̃) ≈ k(b) + k′(b)(b̃− b) + 1
2(b̃−

b)T k′′(b)(b̃ − b)is now applied to

∫
exp{−k(b̃)}db̃ ≈

∫
exp{−k(b) − 1

2(b̃ − b)T k′′(b)(b̃ − b)}db̃

=
∫

exp{−k(b)} ∗ exp{(b̃ − b)T k′′(b)(b̃ − b)}db̃

= exp{−k(b)} ∗ (
√

2π)p/2|k′′(b)−1|1/2

(5.12)

sincek′(b) = 0. k′(b) andk′′(b) are computed in detail using log-likelihood (5.8) with
δT = (β, b)T andΣ(i) = var(y(i))

k′(b) = −∑N
i=1 z(i)D(i)(δ)Σ

−1
(i) (δ)(y(i) − µ(i)(δ)) + Q−1(ρ)b,

k′′(b) =
∑N

i=1 z(i)D(i)(δ)Σ
−1
(i) (δ)D

T
(i)(δ)z

T
(i) + Q−1(ρ) + R(δ),

(5.13)

with

R(δ) = −
N∑

i=1

[
∂

∂bT
(z(i)D(i)(δ)Σ(i)(δ))](y(i − µ(i)(δ)), (5.14)

where
η(i)(δ) = xT

(i)β + zT
(i)b + offset(i),

µ(i)(δ) = h(η(i)(δ)),

D(i)(δ) =
∂h(η(i)(δ))

∂η(i)(δ)
.

(5.15)
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For canonical link-function one hasR(β, b) = 0. Generally can be assumed that
E(R(δ)) = 0. We set

k′′(b) =
N∑

i=1

z(i)D(i)(δ)Σ
−1
i (δ)DT

(i)(δ)z
T
(i) + Q−1(ρ). (5.16)

Applying the results of (5.12) to (5.9) we get the Laplace approximated log-likelihood
with δT = (β, b)T

lLaplace(δ, ρ) = −1
2 log(|k′′(b)|) + p

2 log(2π) − k(b)

= −1
2 log(|k′′(b̃)|) + p

2 log(2π) + log(f(y|b̃; β)) − log(p(b̃; ρ))

= −1
2 log(|k′′(b)|) + p

2 log(2π)

+ log(f(y|b; β)) − p
2 log(2π) − 1

2 log(|Q(ρ)|) − 1
2bT Q(ρ)−1b

= −1
2 log(|k′′(b)| ∗ |Q(ρ)|) + log(f(y|b; β)) − 1

2bT Q(ρ)−1b

= −1
2 log(|R̃(δ, ρ)|) + log(f(y|b; β)) − 1

2bT Q(ρ)−1b

(5.17)
with R̃(δ, ρ) =

∑N
i=1 z(i)D(i)(δ)Σ

−1
(i) (δ)D

T
(i)(δ)z(i))

T Q(ρ) + I.

5.4 Methods for Crossed Random Effects

5.4.1 Penalized Quasi Likelihood Concept

There is much confusion on the terminology of penalized quasi likelihood (PQL). This
term was used by Green (1987) in a semiparametric context. The PQL is a Laplace Ap-
proximation aroundb, e.g. Lin & Breslow (1996), Breslow & Lin (1995a) and Breslow &
Clayton (1993). This is the most popular method to maximize Generalized Linear Mixed
Models. The Laplace Approximation around b andβ is implemented in the macro GLIM-
MIX and proc GLIMMIX in SAS (Wolfinger (1994)). It is just a slight modification since
k(δ̃) = − log(f(y|b̃; β̃)p(b̃; ρ) instead ofk(b̃) is used. In the glmmPQL-function in the
r-package nlme the Laplace Approximation around b is implemented. Further notes are in
Wolfinger & O’Connell (1993), Littell, Milliken, Stroup & Wolfinger (1996) and Vonesh
(1996).



5.4 Methods for Crossed Random Effects 105

In penalized based concepts the joint likelihood-functionL(δ, ρ), described in (5.9), is
specified by the parameters of the covariance structureρ and parameterδT = (βT , bT ).

The idea of the penalized quasi-likelihood is now to ignore the first term in (5.17), hoping
that there is small variation in these terms within the iterative estimation. So

lp(δ, ρ) =
N∑

i=1

log(f(y(i)|δ)) −
1

2
bT Q(ρ)−1b. (5.18)

These equations can also be derived via the log-posterior. The posteriori distribution for
δ given the datay is

g(δ|y; Q(ρ)) :=
f(y|δ)p(δ; Q(ρ))∫
p(y|δ)p(δ; Q(ρ))dδ

.

The normalization constant
∫

p(y|δ)p(δ; ρ)dδ is not needed for maximizing the posterior
regardingδ. A more convenient representation in comparison to the posterior is the log-
posterior without normalization constant, which is more easy to derive

lp(δ; ρ) =
N∑

i=1

(log(f(y(i)|δ))) −
1

2
bT Q(ρ)b.

PQL usually works within the profile likelihood concept. So we can distinguish between
the estimation ofδ given the plugged in estimation̂ρ resulting in the profile-likelihood

lp(δ, ρ̂)

and the estimation ofρ given the plugged in estimator̂δ resulting in the profile-likelihood

lp(δ̂, ρ).

Estimation of β and b for fixed ρ: First we consider the maximation oflp(δ, ρ), where
β andbi are estimated.

sβ =
∂lp(δ,ρ)

∂β =
∑N

i=1 x(i)D(i)(δ)Σ
−1
(i) (δ)(y(i) − µ(i)(δ),

sb =
lp(δ,ρ)

∂b =
∑N

i=1 z(i)D(i)(δ)Σ
−1
(i) (δ)(y(i) − µ(i)(δ)) − Q−1(ρ)b.

(5.19)

As described in Breslow & Clayton (1993) the solution ofs(δ) = s(β, b) = (sβ , sb)
T = 0

via Fisher-Scoring is equivalently to iteratively solving the BLUP-equationswith a lin-
earized version. The aspect of a linearizedỹ
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ỹ(δ) = Xβ + Zb + (D(δ)−1)T (y − µ(δ)) (5.20)

with
W = W (δ) = D(δ)Σ−1(δ)DT (δ),

D(δ) = bdiag(D(δ)(i))i=1,...,N ,

Σ(δ) = bdiag(Σ(δ)(i))i=1,...,N .

The corresponding BLUP-equations, which are iteratively solved ins, are

[
XT WX XWZ

ZT WX ZT WZ + Q(ρ)−1

](
β

b

)
=

[
XT Wỹ(δ(s))

ZT Wỹ(δ(s))

]
(5.21)

with (δ(s+1))T = (βT , bT ), whereδ(s) is the estimate in thes-th Fisher-Scoring cycle.

Example 5.1 : Special case: Estimation ofβ andb in clustered data

The components of the score functions(δ) = ∂l(δ,ρ)
∂δ = (sβ , sb1 , . . . , sbn

)T for fixed ρ are then

given by

sβ = ∂l(δ)
∂β =

∑n
i=1

∑T
t=1 XT

itDitΣ
−1
it (δ)(yit − µit),

sbi
= ∂l(δ)

∂bi
=
∑T

t=1 ZT
itDitΣ

−1
it (δ)(yit − µit) − Q−1(ρ)bi

with Dit = ∂h(ηit)
∂η ,Σit = cov(yit|β, bi) andµit = h(ηit). The expected conditional Fisher

matrix has the shape

F (δ) =




Fββ Fβ1 Fβ2 . . . Fβn

F1β F11 0

Fβ2 F22

...

Fnβ 0 Fnn




with
Fββ =

∑n
i=1

∑T
t=1 XT

itDitΣ
−1
it DT

itXit,

Fβi = FT
iβ =

∑T
t=1 XT

itDitΣ
−1
it DT

itZit,

Fii =
∑T

t=1 ZT
itDitΣ

−1
it DT

itZit + Q(ρ)−1.

The estimator̂δ can be calculated by the equation

F (δ(k))δ(k+1) = F (δ(k))δ(k) + s(δ(k)). (5.22)
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The problem 5.22 can be rewritten by linearized version

ỹ(δ) = Xβ + Zb + (D(δ)−1)T (y − µ(δ)) (5.23)

to BLUP-equations


XT DΣDT X XDΣDT Z

ZT DΣDT X ZDΣDT Z + Q(ρ)−1







β

b



 =



XT DΣDT ỹ(δ(s))

ZT DΣDT ỹ(δ(s))



 . (5.24)

2

Estimation of Q(ρ) for fixed β and b: The theory of linear mixed models within the
REML framework can be applied to estimate the variance parameters. So aV (δ, ρ) can
be constructed with

V (ρ) := V (δ, ρ) = D(δ)Σ−1(δ)DT (δ) + ZQ(ρ)ZT

which may be seen as an approximation to cov(h(Xβ + Zb) + e). The penalized quasi
likelihood can then be optimized with respect toρ using the weighted least squares equa-
tions

lp(δ, ρ) ≈ −1
2 log(|V (ρ)|) + (ỹ(δ) − Xβ)T V (ρ)−1(ỹ(δ) − Xβ).

with ỹ(δ) = Xβ + Zb + (D(δ)−1)T (y − µ(δ)). The restricted maximum log-likelihood
is obtained by adding the term−1

2 log(|XT V (ρ)X|)

lr(δ, ρ) ≈ −1
2 log(|V (ρ)|) + (ỹ(δ) − Xβ)T V (ρ)−1(ỹ(δ) − Xβ) − 1

2 log(|XT V (ρ)X|).

Differentiation with respect toρT = (ρ1, . . . , ρd) yields

s(β, ρ) = ∂lr(β,ρ)
ρ = (s(ρ)i)i=1,...,d

and

F (β, ρ) = −E(∂2lr(β,ρ)
∂ρ∂ρT ) = (F (ρ)i,j)i,j=1,...,d.

The score function has elements

s(ρ)i = ∂lr(ρ)
ρi

= −1
2 trace

(
P (ρ)∂V (ρ)

ρi

)

+1
2(ỹ(β, b) − Xβ)T V (ρ)−1 ∂V (ρ)

ρi
V (ρ)−1(ỹ(β, b) − Xβ)

with P defined in Harville (1977) and Breslow & Clayton (1993)

P (ρ) = V (ρ)−1 − V (ρ)−1X
(
XT V (ρ)−1X

)−1
XT V (ρ)−1. (5.25)
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The Fisher function has elements

F (ρ)i,j =
1

2
trace

(
P

∂V (ρ)

ρi
P

∂V (ρ)

ρj

)
.

If ML is preferred to REML thenP (ρ) from (5.25) is replaced withP (ρ) = V (ρ)−1.

The penalized quasi likelihood is maximized by the following algorithm.

Compute starting valueŝβ0 and θ̂0. β̂0 can be the estimator of a linear model. The
elements ofθ0 are set to be small values, i.e. 0.1.

1. setk = 0

2. computeβ̂(k+1) by solving the equationl(β, θ̂) above with plugged in̂θ(k)

3. computeθ̂(k+1) in l(β̂, θ) by running a Fisher scoring algorithm with plugged in
θ̂(k+1).

4. stop, if all stopping criteria are reached, else start in 1 withk = k + 1.

Example 5.2 : Special case:Estimation ofQ(ρ) in clustered data

In this case computation is simplified since one works on blockdiagonal structures.

Vi(ρ) := Vi(δ, ρ) = Di(δ)Σ
−1
i (δ)DT

i (δ) + ZiQ(ρ)ZT
i .

The corresponding restricted maximum loglikelihood lookslike

lr(δ, ρ) ≈ −1

2

n∑

i=1

log(|Vi(ρ)|)+
n∑

i=1

(ỹi(δ)−Xiβ)T Vi(ρ)−1(ỹi(δ)−Xiβ)−1

2

n∑

i=1

log(|XT
i Vi(ρ)Xi|).

The Score function simplifies to

s(ρ)i = ∂lr(ρ)
ρi

= − 1
2

∑n
k=1 spur

(
Pk(ρ)∂Vk(ρ)

ρi

)

+ 1
2

∑n
k=1(ỹ(δ(k)) − Xkβ)T Vk(ρ)−1 ∂Vk(ρ)

ρi
Vk(ρ)−1(ỹ(δ(k)) − Xkβ)

with Pk

Pk(ρ) = Vk(ρ)−1 − Vk(ρ)−1Xk

(
n∑

k=1

XT
k Vk(ρ)−1Xk

)−1

XT
k Vk(ρ)−1. (5.26)

The Fisher function simplifies to

F (ρ)i,j =
1

2

n∑

k=1

trace
(

Pk
∂Vk(ρ)

ρi
Pk

∂Vk(ρ)

ρj

)
.
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2

Schall (1991) used the idea of estimating mixed models based on working observations.
Breslow & Clayton (1993) put this idea in the framework of Laplace-Approximation and
viewed the relationship to PQL, which is often used in semiparametric context. Analter-
native introduction to PQL is given by McGilchrist (1994) or Engel & Keen(1994). For
binomial data PQL was applied by Gilmour, Anderson & Rae (1985). For ordered data
see Harville & Mee (1984). Exact covariance in logistic mixed models has been proposed
by Drum & McCullagh (1993). Their method may be seen as a method for marginal mod-
elling. In fact using PQL or using methods for marginal modelling is based on the same
equations in this context.

5.4.2 Bias Correction in Penalized Quasi Likelihood

Since PQL has been criticize in models with binary response, Breslow & Lin (1995a)
and Lin & Breslow (1996) found a method to improve the bias in PQL. An analogous
bias-corrected procedure was considered by Goldstein & Rasbash (1996) who suggested
using an adjusted second-order Laplace approximation. Lin & Breslow (1996) studies on
the bias are based on the Solomon-Cox-Approximation Solomon & Cox (1992), which is
used to find correction terms for the PQL. Therefore the integrated quasilikelihood can
be written as

L(β, ρ) = expl(β,ρ)
∝ |Q(ρ)|−1/2

∫
exp

{
N∑

i=1

l(i)(β, b) − 1

2
bT Q(ρ)−1b

}
db, (5.27)

wherel(i)(β, b) ∝

∫ µ(i)(β,b)
y(i)

Σ−1
(i) (β, b)(y(i) − b)db. Solomon and Cox approximated 5.27

by expanding
∑N

i=1 l(i)(β, b) in Taylor series aboutb = 0 before integration. The as-
sumptions are

g(µ) = η = Xβ + Zb (5.28)

with Z, which is a partitioned matrix withZ = [Z.(1), . . . , Z.(c)], whereZ.(i) is the
design matrix associated with thei-th random effectbi. b is assumed to be cov(b) =

bdiag(ρ2
1Iq1 , . . . , ρ

2
cIqc).

The Solomon-Cox approximation is given by

lsol(β, ρ) = −1
2 log |I + ZT Σ(β, b)ZQ(ρ)|

+
∑N

i=1 li(β, 0) + 1
2r(β, 0)ZQ(ρ)(I + ZT Σ(β, 0)ZQ(ρ))−1ZT r(β, 0)

(5.29)
wherer(β, b) = Σ(β, b)−1(y − Xβ − Zb) may be seen as residuals. We denoteH(2) =

{h2
ij} for any matrixH.
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Important for latter computations are

Σ̃(β, b) = diag(∂v(µi(β,b))
∂µi(β,b) v(µi(β, b)),

J = diag(1q1 , . . . , 1qc),
˜̃Σ(β, b) = diag(∂2v(µi(β,b))

∂2µi(β,b)
(v(µi(β, b)))2 + (v(µi(β,b))

∂µi(β,b) )2v(β, b)),

B = −1
2XT Σ̃(β, 0)Z(2)J,

C = 1
2JT

(
ZT Σ(β, 0)Z

)(2)
J + 1

4JT Z(2)T ˜̃Σ(β, 0)Z(2)J,

−BT
(
XT Σ(β, 0)X

)−1
B,

CP = 1
2JT

(
ZT Σ(β, 0)Z

)(2)
,

G = C−1CP .

(5.30)

Lin & Breslow (1996) propose the following algorithm

1. Get estimateŝβ(0) andρ̂(0) from penalized quasi likelihood estimation as described
in subsection 5.4.1.

2. Correctρ̂(0) by ρ̂(1) = Gρ̂(0)

3. Useρ̂(1) to estimateβ by solving the PQL-equations forβ, which leads tôβ(1).

4. Correctβ̂(1) by
β̂(2) = β̂(1) − (XT Σ(β̂(1), 0)X)−1Bρ̂(1)

and
β̂(3) = β̂(2) + XT Σ(β̂(1), 0)X)−1A(β̂(1), 0)

where

A(β, b) =
1

2

d∑

j=1

d∑

k=1

XT Σ̃(β, b)[(XjX
T
j Σ(β, b)Xk)Xk]1qk

ρ̂j ρ̂k.

β(3) is called the bias corrected estimator of a generalized linear mixed model.

5.4.3 Alternative Direct Maximization Methods

MCMC integration based methods In the general case one can use Monte Carlo Mar-
cov Chain based on a Metropolis-Hasting Algorithm as suggested by McCulloch (1997).
Alternative the Gibbs-Sampler proposed by McCulloch (1994) in connection with numer-
ical integration can be used. The main difference to Gauss-Hermite Quadrature is that the



5.4 Methods for Crossed Random Effects 111

pointsdk are not fixed in the Newton-Raphson-Algorithm. The points must be computed
new in every step.

To specify a Metropolis algorithm, the candidate distributionc(b) must be specified, from
which potential new values are drawn, as well as the acceptance functionthat gives the
probability of accepting the new value.

The analysis is based on

l(β, ρ) = log

∫
f(y|β; b)p(b; ρ)db, (5.31)

whereb is aq-dimensional vector,p(b; ρ) is the density of aq-dimensional normal distri-
bution with covarianceQ(ρ). The idea is now to generatem drawingsb1, . . . , bm from
fb|y(b|y; β, ρ) ∝ f(y|β; b) ∗ p(b; ρ).

Since
∂l(β,ρ)

∂β = ∂
∂β log

∫
f(y|β; b)p(b; ρ)du

=

R h
∂

∂β
log(f(y|β;b))

i
f(y|β;b)p(b;ρ)duR

f(y|β;b)p(b;ρ)db

∝

∫
( ∂

∂β log(f(y|β, b)))f(y|β; b)p(b; ρ)db

∝

∫
( ∂

∂β log(f(y|β; b)fb|y(b|y; β; ρ)db), ))db

(5.32)

the integral of (5.32) may be approximated by

s(β) =
∂l(β, ρ)

∂β
=

m∑

k=1

1

m

∂

∂β
log(f(y|β; bk)). (5.33)

The difficulty now is to find a good setb1, . . . , bm. This problem is solved by the Metropo-
lis algorithm. Letbk denotebk = (bk

1, . . . , b
k
q )

T . Generate a new valuebk∗
j for the j-th

component and acceptbk∗ = (bk
1, . . . , b

k
j−1, b

k∗
j , bk

j+1, . . . , b
k
q )

T as a new value with prob-
ability Aj(b

k, bk∗); otherwise retain b.Aj(b
k, bk∗) is given by

Aj(b
k, bk∗) = min

{
1,

fbk∗|y(b
k∗|y; β(p), ρ(p)) ∗ c(bk)

fbk|y(bk|y; β(p), ρ(p)) ∗ c(bk∗)

}
.

If choosingp(b; ρ) as the candidate distributionc(b), then

Aj(b
k, bk∗) = min

{
1,

f(y|β(p); bk∗)

f(y|β(p); bk)

}
.
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This procedure has to repeated for every componentbk
j , j = 1, . . . , q. For smallq bk might

be drawn and updated directly in a block. For largq the acceptance probabilities may
become very small, therefore componentwise drawings and updates as described should
be preferred. There are only small modifications in the score Function andobserved Fisher
function to do when using Monte Carlo.

Since the vectorρ must be determined,Q(ρ) is chosen to maximize
∑m

k=1
1
mfb(b

k|Q(ρ)).
This is done by a fisher scoring with

s(ρ) =
∂ log

Pm
k=1 fb(b

k|Q(ρ)
∂ρ

=
∑m

k=1

(
−1

2 trace
(
Q−1(ρ)∂Q(ρ)

∂ρ

)
+ 1

2(bk)T Q−1(ρ)∂Q(ρ)
∂ρ Q−1(ρ)bk

)

and

F (ρ)i,j =
∂ log

∑m
k=1 fb(b

k|ρ)

∂ρiρj
=

m∑

k=1

1

2
trace

(
Q−1(ρ)

∂Q(ρi)

∂ρi
Q−1(ρ)

∂Q(ρj)

∂ρj

)

The MCMC-Newton-Raphson algorithm has the form

1. Generate starting valuesβ0 andρ(0). Sets = 0.

2. Generatem valuesb1, . . . , bm from fb|y(b|y; β(s), ρ(s)) and run Fisher-Scoring with
respect toβ.

3. Maximize
∑m

k=1 fb(b
k|Q(ρ)) with respect toρ.

4. If convergence is achieved, then declareβ(s+1) andρ(s+1) to be MLE. Otherwise
start in (2).

Another idea is based on Gelfand & Carlin (1993) and Geyer & Thompson (1992) which
suggested to simulate the likelihood directly instead of using the log-likelihood. The
simulated likelihood is then maximized directly. This methods is known under the name
SML (simulated maximium likelihood).

5.4.4 Indirect Maximization using EM-Algorithm

MC-EM Algorithm - Booth and Hobert’s method This method is based on impor-
tance sampling. Important for the latter analysis is

l(β, ρ) = log

∫
−k(b̃)db̃
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with k(b̃) = − log(f(y|b̃; β) ∗ p(b̃; ρ)). The first moment with respect tob is k′(b) where
k′(b) is described in (5.10) andk′′(b) in (5.11). The second moment isk′′(b).

The problem in EM-algorithm is to evaluate

M
(
δ|δ(p)

)
= E

{
log f

(
y, b; δ)|Y ; δ(p)

)}

=

∫
log (f(y, b; δ)) f

(
b|y, δ(p)

)
db,

(5.34)

whereb is a q-dimensional vector andδT = (βT , ρT ). A natural choice for this case
is to useN(k′(b|δ(p)), k′′(b|δ(p))) for the importance sampling densityc(b; δ(p)). More
information is given in Wei & Tanner (1990). We approximate

M
(
δ|δ(p)

)
≈

m∑

k=1

wk(δ
(p), bk)

{
log f

(
y, bk; δ

)}
(5.35)

with importance weights

wk(δ
(p), bk) =

f
(
y|β(p), bk

)
p(bk; ρ(p))

c(bk; δ(p))

by drawing vectors (bk)T = ((bk
1)

T , . . . , (bk
q )

T ), k = 1, . . . , m from
N(k′(b|δ(p)), k′′(b|δ(p))). Sincef(b|y; δ) involves an unknown normalization constant,
so do the weights. Details can be found in Booth & Hobert (1999) However, the normal-
ization constant depends on the known valueδ(p) and not onδ, which means that it has no
effect on the M-Step and is therefore irrelevant (see Sinha, Tanner &Hall (1994)). The

score functions withD = D(β; bk) = diag
(

∂h(η(i))

∂η(i)

)

i=1,...,n
, ηT = (η(1), . . . , η(N))

T ,

η(i) = xT
(i)β + zT

(i)b
k, Σ = bdiag

(
Σ(i)

)
i=1,...,n

, Σ(i) = cov(y(i)|bk) are given by

∂M̃(δ|δ(p))
∂β =

∑m
k=1 wk(δ

(p), bk)
{
log f

(
y|bk; β

)}

=
∑m

k=1 wk(δ
(p), bk)XDΣ−1(y − µ),

∂M̃(δ|δ(p))
∂ρ =

∑m
k=1 wk(δ

(p), bk)
{
log p

(
bk; ρ

)}

=
∑m

k=1 wk(δ
(p), bk)

(
−1

2 trace
(
Q−1(ρ)∂Q(ρ)

∂ρ

)
+ 1

2(bk)T Q−1(ρ)∂Q(ρ)
∂ρ Q−1(ρ)bk

)
.

For the following sets(δ|δ(p))T =

((
∂M̃(δ|δ(p))

∂β

)T

,

(
∂M̃(δ|δ(p))

∂ρ

T
)T
)

.

Booth & Hobert (1999) suggest the following algorithm
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1. Choose starting valuesδ(0) and initial sample size m. Set p=0.

2. At iterationp + 1 generateuk, k = 1, . . . , m from the importance distribution

3. MaximizeM(δ, δ(p)) using the samplesbk, k = 1, . . . , m

4. Construct a 100(1-α)% confidence ellipsoid forδ∗(p+1). If (δ)(p) is inside of the
region, setm = m + [m/l], where[ ] denotes integer part

5. If convergence is achieved, setδ(p+1) to be the maximum likelihood estimatêδ;
otherwise, setp = p + 1 and return to 2.

Usually the valuesα = 0.25,l = 3 andm = 50 are chosen.δ∗(p+1) is the theoretical

value which maximizes
∂M((δ|δ(p))

∂δ = 0 with exact integration. Booth & Hobert (1999)
show thatδ(p+1) is asymptotic normally distributed withδ∗(p+1) and cov(δ(p+1)|δ(p)),
which is approximated by

cov(δ(p+1)|δ(p)) ≈ F (δ(p+1)|δ(p))−1ĉov
(
s(δ∗(p+1)|δ(p))

)
F (δ(p+1)|δ(p))−1

with

ĉov
(
s(δ∗(p+1)|δ(p))

)
= 1

m2

∑m
k=1

(
wk(δ

(p), bk) ∂
∂δ log{f(y, bk|δ(p)}

)

∗
(
wk(δ

(p), bk) ∂
∂δ log{f(y, bk|δ(p)}

)T
.

Booth & Hobert (1999) propose using a multivariate Student t importance density with
the same moments as the normal importance distributionc(b; δ).

McCulloch’s Method - MCMC-EM-Algorithm Instead of using Gauss-Hermite
Quadrature one can use Monte Carlo Markov Chain based on a Metropolis-Hasting Algo-
rithm as suggested by McCulloch (1997) or Chan & Kuk (1997). Alternative the Gibbs-
Sampler described in McCulloch (1994) can be used. The integration pointsmust be
computed new in every expectation step.

To specify a Metropolis algorithm Tanner (1993), the candidate distributionc(b) must be
specified, from which potential new values are drawn, as well as the acceptance function
that gives the probability of accepting the new value.

The analysis is based on

M
(
δ|δ(p)

)
= E

{
log f

(
y, b; δ)|y; δ(p)

)}

=

∫
log (f(y, b; δ)) f

(
b|y, δ(p)

)
db,

(5.36)
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whereb is aq-dimensional vector,p(b; ρ) is the density of aq-dimensional normal distri-
bution with covarianceQ(ρ). The idea is now to generatem drawingsb1, . . . , bm from
fb|y(b|y; β(p), ρ(p)) ∝ f(y|β(p); b) ∗ p(b; ρ(p)).

Then

∂M(δ|δ(p))
∂δ = ∂

∂δ

∫
log(f(yi|β, b)p(b; ρ))fb|y(b|y; β(p), ρ(p))db

=
∫

∂
∂δ (log(f(y|β, b)p(b; ρ))) fb|y(b|y; β(p), ρ(p))db

(5.37)

may be approximated by

∂M̃(δ|δ(p))
∂δ =

∑m
k=1

1
m

∂
∂δ

(
log(f(y|β, bk)p(bk; ρ))

)
. (5.38)

The difficulty now is to find a good setb1, . . . , bm. This problem is solved by the Metropo-
lis algorithm. Letbk denotebk = (bk

1, . . . , b
k
q )

T . Generate a new valuebk∗
j for the j-th

component and acceptbk∗ = (bk
1, . . . , b

k
j−1, b

k∗
j , bk

j+1, . . . , b
k
q )

T as a new value with prob-
ability Aj(b

k, bk∗); otherwise retain b.Aj(b
k, bk∗) is given by

Aj(b
k, bk∗) = min

{
1,

fbk∗|y(b
k∗|y; β(p), ρ(p)) ∗ c(bk)

fbk|y(bk|y; β(p), ρ(p)) ∗ c(bk∗)

}
.

If choosingc(u) = p(u) then

Aj(b
k, bk∗) = min

{
1,

f(y|β(p); bk∗)

f(y|β(p); bk)

}
.

This procedure has to repeated for every componentbk
j , j = 1, . . . , q. For smallq bk might

be drawn and updated directly in a block. For largerq the acceptance probabilities become
very small so componentwise drawings and updates as described should be preferred.
There are only small modifications in the Score Function and observed Fisher Information
Matrix to do when using Monte Carlo.

The MCMC-EM algorithm has the form

1. Generate starting valuesβ0 andρ(0). Sets = 0.

2. Generatem valuesb1, . . . , bm from fb|y(b|y; β(p), ρ(p)) to do the expectation step
with modifications described above.

3. Run a Newton-Raphson algorithm with modifications described above.

4. If convergence is achieved, then declareβ(p+1) andρp+1) to be MLE. Otherwise
start in (2).
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5.5 Methods for Clustered Data

5.5.1 Gauss-Hermite-Quadrature

This method is limited to the case of clustered data. Gauss-Hermite quadrature is one of
the most commonly used techinques in integration theory and also applied widely tosta-
tistics (e.g. Naylor & Smith (1982). Hedeker & Gibbons (1996) developed aprogramme
called MIXOR to get estimators within the Gauss-Hermite framework. The SAS proce-
dure NLMIXED (SAS Institute Inc. (1999)) uses Gauss-Hermite quadrature. Information
on the Gauss-Hermite Quadrature in the statistical context can be found in Liu& Pierce
(1994). These computer programmes apply Fisher-Scoring algorithms, withno analytical
form of the expected Fisher matrix. Then Gauss-Hermite quadrature has tobe used once
again to approximate the expectation of the second order derivatives. Itis known that
in some circumstances Fisher-Scoring algorithm may lead to invalid statistical inferences
due to the use of the expected information matrix. This point was illustrated by Lesaf-
fre & Spiessens (2001). According to Gilmour, Thompson & Cullis (1995) the observed
information matrix is preferable in GLMM.

For GLMM, the integrated likelihood can be written as

L(β, ρ) =
n∏

i=1

∫
f(yi|bi)p(bi; ρ)dbi =

n∏

i=1

∫
f(yi|β, ai)p̃(ai)dai (5.39)

with ai = Q(ρ)−1/2bi. p(ai) is the density function of aNc(0, Ic), c is the number of
random components. First one has to build sets of Gauss-Hermite quadrature points and
weights

{dk =
(
d

(1)
k1

, . . . , d
(c)
k(c)

)T
: 1 ≤ k1 ≤ m1; . . . ; 1 ≤ kc ≤ mc} (5.40)

and

{vk =
(
v

(1)
k1

, . . . , vc
kc

)T
: 1 ≤ k1 ≤ m1; . . . ; 1 ≤ kc ≤ mc}, (5.41)

whered
(j)
kj

andv
(j)
kj

denote the univariate quadrature points and weights for componentj

andmj is the number of quadrature points for thej-th component,j = 1, . . . , c. Then
the Gauss-Hermite-Approximation to the log-likelihood has the form

lGH(β, ρ) =

n∑

i=1

log




m1∑

k1=1

· · ·
mc∑

kc=1

(
v

(1)
k1√
π

)
. . .

(
v

(c)
kc√
π

)
f(yi|β, ρ, dk)



 (5.42)

with ηi(dk) = ηi(β, ρ, dk) = XT
i β + Zi

√
2Q(ρ)1/2dk. ηit(dk) = ηit(β, ρ, dk) = xT

itβ +

zT
it

√
2Q(ρ)1/2dk.
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Let ρ = vech(Q1/2) be thesymmetric direct operator for the matrixQ1/2, that is a vector
formed by all the lower triangular entries ofQ1/2 through column by column.Denote
vec(Q1/2) as thedirect operator for the matrixQ1/2, in other words, thec2 × 1 vector
formed by stacking the columns ofQ under each other. According to Nel (1980) and Pan,
Fang & van Rosen (1997) there must exist ac2×c∗ matrixSc with vec(Q) = Sc∗vech(Q)

wherec∗ = c(c + 1)/2.

∂l(β,ρ)
∂β =

∑n
i=1

∑m1
k1=1 · · ·

∑mc
kc=1 wi(dk)∗

[∑T
t=1 xitDitΣ

−1
it (yit − h(ηit(dk))

] (5.43)

whereΣit = cov(yit|ηit(dk)) and

wi(dk) := wi(β, ρ, dk) =

(
v
(1)
k1√
π

)
. . .

(
v
(c)
kc√
π

)
f(yi|ηi(dk))

∑m1
k1=1 · · ·

∑mc
kc=1

(
v
(1)
k1√
π

)
. . .

(
v
(c)
kc√
π

)
f(yi|ηi(dk))

.

Similarly
∂l(β,ρ)

∂ρ =
∑n

i=1

∑m1
k1=1 · · ·

∑mc
kc=1 wi(dk)

[∑T
t=1

∂ηit

∂ρ DitΣ
−1
it (yit − h(ηit(dk))

] (5.44)

with ∂ηij

∂ρ = ST
c (dT

k ⊗ zT
ij).

For simplicity we suppress the notationwi(dk) towi andηit(dk) toηit for the computation
of the second derivatives.

∂2l(β,ρ)

∂β∂βT =
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

xitDitΣ
−1
it (yit − h(ηit))

�
∗�

TiP
t=1

xitDitΣ
−1
it (yit − h(ηit))

�T

]

−
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

xitDitΣ
−1
it (yit − h(ηit))

�
]∗

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

xitDitΣ
−1
it (yit − h(ηit))

�
]T

−
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

xitDitΣ
−1
it DT

itx
T
it

�
],

(5.45)
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∂2l(β,ρ)

∂ρ∂βT =
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

ST
c (dT

k ⊗ zit)
T DitΣ

−1
it (yit − h(ηit))

�
∗�

TiP
t=1

xitDitΣ
−1
it (yit − h(ηit))

�T

]

−
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

ST
c (dT

k ⊗ zT
it)DitΣ

−1
it (yit − h(ηit))

�
]∗

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

xitDitΣ
−1
it (yit − h(ηit))

�
]T

−
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

ST
c (dT

k ⊗ zT
it)DitΣ

−1
it DT

itx
T
it

�
]

(5.46)

and

∂2l(β,ρ)

∂ρ∂βT =
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

ST
c (dT

k ⊗ zT
it)DitΣ

−1
it (yit − h(ηit))

�
∗�

TiP
t=1

ST
c (dT

k ⊗ zT
it)DitΣ

−1
it (yit − h(ηit))

�T

]

−
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

ST
c (dT

k ⊗ zT
it)DitΣ

−1
it (yit − h(ηit))

�
]∗

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

ST
c (dT

k ⊗ zT
it)DitΣ

−1
it (yit − h(ηit))

�
]T

−
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi

�
TiP

t=1

ST
c (dT

k ⊗ zT
it)DitΣ

−1
it DT

it(d
T
k ⊗ zT

it)
T Sc

�
].

(5.47)

The Fisher-Scoring method is based on the work of Hedeker & Gibbons (1994) and
Hedeker & Gibbons (1996). The second derivatives of the marginal likelihood (5.42) are
substituted with their expectations. Sincewi(β, ρ, dk) depends on the parametersβ and
ρ this is very cumbersome. In this case Gauss-Hermite-Quadrature has to be used once
again to solve the integral. A more straight forward way is to parameterizewi(β, ρ, dk)

by wi(β̃, ρ̃, dk), whereβ̃ andρ̃ are the estimates of the previous Fisher-Scoring-step.
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Fββ = −E( ∂2l(β,β)

∂β∂βT ) =
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi(β̃, ρ̃, dk)

�
TiP

t=1

xitDitΣ
−1
it DT

itx
T
it

�
],

Fρβ = −E( ∂2l(β,ρ)

∂ρ∂βT ) =
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi(β̃, ρ̃, dk)

�
TiP

t=1

ST
c (dT

k ⊗ zT
it)DitΣ

−1
it DT

itx
T
it

�
],

Fρρ = −E( ∂2l(ρ,ρT )

∂ρ∂βT ) =
nP

i=1

[
m1P
k1

. . .
mcP
kc

wi(β̃, ρ̃, dk)

�
TiP

t=1

ST
c (dT

k ⊗ zT
it)DitΣ

−1
it DT

itx
T
it

�
].

(5.48)

The Newton-Raphson Algorithm becomes now the Fisher-Scoring Algorithm.

5.5.2 Adaptive Gauss-Hermite Quadrature

The analysis starts with

l(δ; ρ) =
n∑

i=1

log

∫
f(yi|b̃i; β) ∗ p(b̃i; ρ)db̃i =

n∑

i=1

log

∫
exp{−ki(b̃i)}db̃i. (5.49)

Basic idea is to combine Gauss-Hermite Quadrature and the equations in the Laplace-
approximation for an adaptive approach. The terms (5.10) and (5.11) are used to refine
the grid for integration. In this approach the grid of abscissas on theb̃i scale is centered
around the conditional modesbi rather than0. Therefore we need

∂ki(b̃i)

∂b̃i

= 0 = k′
i(bi) (5.50)

yielding bi.

Then compute
∂2ki(b̃i)

∂b̃ib̃T
i

= k′′(b̃i). (5.51)

k′
i(bi) andk′′

i (bi) are in detail

k′
i(bi) = ZT

i DiΣi(yi − µi) − Q−1(ρ)b,

k′′
i (bi) = ZT

i DiΣ
−1
i DT

i Zi + Q−1(ρ) + Ri

(5.52)

with Di = Di(β, bi),Σi = Σi(β, bi) andµi = µi(β, bi) andE(Ri) = 0. Then we set
τ−1
i = E (k′′(bi)) and b̃i = τ

1/2
i ai + bi,

∂ai

∂b̃i
= |τ−1/2

i |, whereai is standard normal
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distributed. A modification is the use ofk′′(bi) instead ofQ(ρ) in the scaling of theai.
So the predictor isηi = Xiβ + Zib̃i = Xiβ + Zi(bi + τ

1/2
i ai). So (5.49) can be rewritten

to

l(β, ρ) =
∑n

i=1 log
∫
|τ1/2

i | exp{−ki(bi + τ1/2ai}dai

=
∑n

i=1

∫
|τ1/2

i | exp{−ki(bi + τ1/2ai) + p
2 log (2π) + 1

2aT
i ai}

∗ 1
(2π)p/2 exp{−1

2aT
i ai}dai.

(5.53)

Taking the quadrature points (5.40) and quadrature weights (5.41) one obtains with
ηi(dk) = Xiβ + Zib̃i = XiβZi(bi +

√
2τ

1/2
i dk) an approximation

l̃(β, ρ) =
∑n

i=1 log

[
m1∑
k1

. . .
mc∑
kc

|τ1/2
i | exp{−ki(bi +

√
2τ

1/2
i dk) + p

2 log (2π) + 1
2 ||dk||}

]

∗
(

vk

(2π)p/2

)
.

(5.54)

Since the parametersβ andbi should be obtained by maximizing (5.54) and not by solving
the Laplace-Approximation iteratively, we replacebi by bi in (5.54). The scaling matrix
τi depends onbi,β and ρ, which causes computational problems for getting the score
functions. That is whyτi is computed using provisorial estimatesβ̂, b̂i, and ρ̂, i.e. the
estimates of the last iteration cycle. The score functions withDi = Di(ηi(dk)),Σi =

Σi(ηi(dk)) andµi = µi(dk) have the form

sβ = ∂l̃(δ,ρ)
∂β =

n∑
i=1

m1∑
k1

. . .
mc∑
kc

wi(β, ρ, dk, bi)XiDiΣi(yi − µi),

sbi = ∂l̃(δ,ρ)
∂bi

=
m1∑
k1

. . .
mc∑
kc

wi(β, ρ, dk, bi)ZiDiΣ
−1
i (yi − µi) − Q−1(ρ)(bi +

√
2τ

1/2
i dk)

(5.55)
with

wi(β, ρ, dk, bi) =

(
v
(1)
k1√
π

)
. . .

(
v
(c)
kc√
π

)
f(yi|η(dk))wi,corr(β, ρ, dk)

∑m1

k1=1 · · ·
∑mc

kc=1

(
v
(1)
k1√
π

)
. . .

(
v
(c)
kc√
π

)
f(yi|η(dk))wi,corr(β, ρ, dk, bi)

and

wi,corr(β, ρ, dk, bi) = exp{(bi +
√

2τ
1/2
i dk)T Q−1(ρ)(bi +

√
2τ

1/2
i dk) + ||dk||}.
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For estimationl(δ, ρ) is profiled on thêρ on the one side to get estimates forδ and profiled
on δ̂ on the other side to get estimates forρ. This is usually realized by IWLS.

The use of Fisher scoring algorithm or Newton-Raphson givenρ̂ is difficult because the
weightswi(β, ρ̂, dk, bi) depends onβ,bi . Nevertheless, ifβ andbi in wi(β, ρ̂pr, dk, bi)

are replaced with their provisorial estimatesb̂i,, β̂, then the dependence ofwi(β̂, ρ̂, dk, b̂i)

may be ignored when calculating the second-order derivatives or the expected fisher in-
formation matrix. Instead an equation system can be solved iteratively. Therefore we
need

Wi =
n∑

i=1

m1∑
k1

. . .
mc∑
kc

wi(β, ρ, dk, bi)DiΣ
−1
i DT

i ,

W = bdiag(W1 . . . , Wn),

b∗i =
n∑

i=1

m1∑
k1

. . .
mc∑
kc

wi(β, ρ, dk, bi)(b̂i +
√

2τ1/2dk),

(b∗)T = ((b∗1)
T , . . . , (b∗n)T )T

Ri = wi(β̂, ρ, dk, bi)DiΣ
−1
i ,

R = bdiag(R1, . . . , Rn).

(5.56)

By denotingµ∗ =
m1∑
k1

. . .
mc∑
kc

Rµ andy∗ =
m1∑
k1

. . .
mc∑
kc

Ry we get the working vector

ỹ = Xβ + Zb + W−1(y∗ − µ∗).

The solutions ofδ must satisfy
[
XT WX XT WZ

ZT WX ZT WZ + Q−1

](
β

b

)
=

[
XT Wỹ

ZT Wy + Q−1(b − b∗)

]
(5.57)

The estimator forρ is obtained by using the linearized version

y∗ = Xβ + Zb∗ + W−1(y∗ − µ∗).

It should be mentioned that for using only one quadrature point, the equation is the same
that is solved in the Laplace-Approximation case. The estimation of the variance compo-
nents can be done by maximizing a linear mixed model in ML or REML equations. More
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details and refinements can be found in Pinheiro & Bates (1995),Pinheiro & Bates (2000)
and SAS Institute Inc. (1999), since SAS uses this form of adaptive Gauss-Hermite-
Quadrature in the procedure proc nlmixed.

5.5.3 Gauss-Hermite-Quadrature using EM-Algorithm

The marginal likelihood depends only on the structural parameters of the model. These
are given byβ andQ = cov(bi). Let Q be decomposed byQ = Q1/2QT/2 whereQ1/2

denotes the left Cholesky factor. By simple matrix algebra the linear predictormay be
written in the usual linear form withbi = Q1/2ai

ηit = xT
itβ + zT

itQ
1/2ai

=
[
xit, a

T
i ⊗ zT

it

]
[
β

θ

]
(5.58)

whereai ∼ N(0, I) is the standardized random variable andθ = vec
(
Q1/2

)
is the

symmetric diagonal operator. For univariate random effects the Kronecker product sim-
plifies to aiz

T
it and θ =

√
var(bi). By utilizing all of the parameters are collected in

δT = (βT θT ).

The indirect approach which is based on the EM algorithm avoids calculationof difficult
derivatives in the case of Newton-Raphson algorithm or another approximation of the
expected Fisher matrix in direct approaches. Since it is often used in literature is given
more explicitly. In theE-step of the(p + 1)th cycle one has to determine

M
(
δ|δ(p)

)
= E

{
log f

(
y, b; δ)|y; δ(p)

)}

=

∫
log (f(y, b; δ)) f

(
b|y, δ(p)

)
db

,

where

log f(y, b; δ) =

n∑

i=1

log f(yi|ai, δ) +

n∑

i=1

log (p̃(ai))

is the complete penalized data log likelihood withy = (y1, . . . , yn) denoting the observed
data andb = (b1, . . . , bn) denoting the unobserved data anda = (a1, . . . , an) the stan-
dardized unobserved data.̃p(.) is the mixture distribution of the standardized random
effectsai. Basic idea is to use the theorem of Bayes

p̃(a|y, δ(p)) ∗
∫

f(y, a; δ(p))da = f(y|a, δ(p)) ∗ p̃(a).
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Rewriting the problem the posterior has the simple form

f
(
a|y, δ(p)

)
=

n∏

i=1

f
(
yi|ai, δ

(p)
) n∏

i=1

p̃(ai)

/ n∏

i=1

∫
f
(
yi|ai, δ(p)

)
p̃(ai)dai

M
(
δ|δ(p)

)
simplifies to

M
(
δ|δ(p)

)
=
∫

log (f(y, a; δ)) p
(
a|y, δ(p)

)
da

=
∫

log (
∏n

i=1 f(yi, ai; δ))
Qn

j=1 f(yj |aj ,δ(p))
Qn

j=1 p̃(aj)Qn
j=1

R
f(yj |aj , δ(p))p̃(aj)daj

da

=
∑n

i=1

∫
. . .
∫

log (f(yi, ai; δ))
Qn

j=1 f(yj |aj ,δ(p))
Qn

j=1 p̃(aj)Qn
j=1

R
f(yj |aj , δ(p))p̃(aj)daj

da1 . . . dan

=
∑n

i=1

∫
log (f(yi, ai; δ))

f(yi|ai,δ
(p))p̃(ai)R

f(yj |aj , δ(p))p̃(aj)daj
dai

=
∑n

i=1

∫ [
log f(yi|ai, δ) + log p̃(ai)

] f(yi|ai,δ
(p))p̃(ai)R

f(yj |aj , δ(p))p̃(aj)daj
dai.

Then we need sets of Gauss-Hermite quadrature points and weights

{dk =
(
d

(1)
k1

, . . . , dc
k(c)

)T
: 1 ≤ k1 ≤ m1; . . . ; 1 ≤ kc ≤ mc}

and

{vk =
(
v

(1)
k1

, . . . , v
(c)
kc

)T
: 1 ≤ k1 ≤ m1; . . . ; 1 ≤ kc ≤ mc}

whered
(j)
kj

andv
(j)
kj

denote the univariate quadrature points and weights for componentj

andmj is the number of quadrature points for thej-th component,j = 1, . . . , c.

In a Gauss-Hermite type approximation which is used in the following one has theap-
proximation

M
(
δ|δ(p)

)
≈ M̃

(
δ|δ(p)

)
, (5.59)

where

M̃
(
δ|δ(p)

)
=

n∑

i=1

[
m1∑

k1=1

· · ·
mc∑

kc=1

wik [log (f(yi|δ, dk)) + log(p̃(ai))]

]
(5.60)

with ηitk = xT
itβ + [

√
2dT

k ⊗ zit]θ, andηT
i.k = (ηi1k, . . . , ηiTik)

wik := wi(δ
(p), dk) =

(
v
(1)
k1√
π

)
. . .

(
v
(c)
kc√
π

)
f (yi|δ, dk))

∑m1
k1=1 · · ·

∑mc
kc=1

(
v
(1)
k1√
π

)
. . .

(
v
(c)
kc√
π

)
f(yi|δ, dk)

.
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The beauty of this approximation is thatM(δ|δ(p)) again corresponds to the penalized
weighted log-likelihood of a generalized linear model and therefore maximization (the
M step of the EM algorithm) is simply realized within the framework of GLMs. For
simplicity we drop the notation ofδ in brackets, soηitk = xitβ +

√
2zT

itQ(̺)−1/2dk,
Ditk = ∂ηitk

∂δ andΣitk = cov(yit|δ, dk). According to Nel (1980) and Pan, Fang & van
Rosen (1997) there must exist ac2 × c∗ matrix Sc with vec(Q) = Sc ∗ vech(Q) where
c∗ = c(c + 1)/2. The score functions are

s(β|δ(p)) = ∂M̃(δ|δ(p))
∂β =

∑n
i=1

∑m1
k1=1 · · ·

∑mc
kc=1 wik

∑Tj

t=1 xitDitkΣ
−1
itk(yit − h(ηitk))

and

s(̺|δ(p)) = ∂M̃(δ|δ(p))
∂̺ =

∑n
i=1

∑m1
k1=1 · · ·

∑mc
kc=1 wik

∑Tj

t=1 ST
c (dT

k ⊗ zT
it)DitkΣ

−1
itk(yit − h(ηitk)).

(5.61)

The corresponding expected Fisher matrices are

∂2M̃(δ|δ(p))
∂β∂βT =

n∑
i=1

m1∑
k1

. . .
mc∑
kc

wik

Tj∑
t=1

xitDitΣ
−1
itkDT

itkx
T
itk,

∂2M̃(δ|δ(p))
∂β∂̺T =

n∑
i=1

m1∑
k1

. . .
mc∑
kc

wik

Tj∑
t=1

xitDitkΣ
−1
itkDT

itk(d
T
k ⊗ zit)

T Sc

and

∂2M̃(δ|δ(p))
∂̺∂̺T =

n∑
i=1

m1∑
k1

. . .
mc∑
kc

wik

Tj∑
t=1

ST
c (dT

k ⊗ zT
it)DitkΣ

−1
itkDT

itk(d
T
k ⊗ zT

it)
T Sc.

(5.62)

The EM-Fisher-Scoring-Algorithm in this case is characterized by the form

1. calculate startvalueδ(0).

2. for p = 1, 2, . . . approximateM(δ|δ(p)) by M̃(δ|δ(p)) and compute weights
wik(δ

(p)) with respect ofδ(p)

3. for s = 1, 2, . . . run the Fisher-Scoring-Algorithm till

||δ(s+1) − δ(s)||
||δ(s)||

4. if the condition
||δ(s+1) − δ(p)||

||δ(p)||
is accomplished, convergence of the EM-Algorithm is achieved. If not start in step
2 with δ(p+1) = δ(s+1) as update forδ(p).
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Im & Gianola (1988) used the EM-Algorithm with Gaussian-Quadrature in binary data,
as well as Bock & Aitkin (1981) and Anderson & Aitkin (1985). Stiratelli, Laird & Ware
(1984) and Steele (1996) use the Laplace-Approximation to approximate theconditional
expectation. Stiratelli, Laird & Ware (1984) use the first-order Laplace-Approximation,
Steele (1996) uses a modified second-order Laplace-Approximation with the Newton-
Raphson Algorithm. Meng & Rubin (1993) introduced the ECM Algoritm (Expecta-
tion/Conditional Maximation) which is a generalization of the EM-Algorithm. This algo-
rithm takes advantage of the simplicity of complete data conditional maximum likelhood
estimation by replacing a complicated M-Step of the EM with several computationally
simpler CM-Steps (Conditional Maximization Steps). The ECME-Algorithm (Expec-
tation/Conditional Maximization Either) based on Liu & Rubin (1994) replaces some
CM-Steps of the ECM, which maximize the constrained expected complete-data likeli-
hood function, with steps that maximize the correspondingly constrained actual likelihood
function. Other variants are described in Rai & Matthews (1993), McLachlan & Krishnan
(1997) and Meng & van Dyk (1997).

Not mentioned in this context is the full Bayesian approach as mentioned in Zeger &
Karim (1991), which is based on MCMC. Further Waclawiw & Liang (1993)use modified
GEE to estimate GLMM’s. In the recent years specifying a random effectsdensity with
no further restrictions became popular. One approach is the nonparametric maximum
likelihood for finite mixtures as described in Aitkin & Francis (1998) and Aitkin (1999).
Another way of modeling smooth random effects is given by Davidian & Gallant (1993),
Chen, Zhang & Davidian (2002) and Gallant & Nychka (1987), who usea modified Monte
Carlo EM algorithm for estimation. Similarly is the approach of Chiou, Müller & Wang
(2003). Ghidey, Lesaffres & Eilers (2004) use penalized Gaussian Mixtures in a similar
way as P-spline smoothing for the estimation of a linear mixed model with smooth random
effects distribution.



Chapter 6

Generalized Semi-Structured Mixed
Models

6.1 The Model

It is simpler to derive the generalized semi-structured mixed model in the notationof
general model, since the representation of clusters together with basis function expansions
is not easy.

Suppose that the data are composed of N observations, with responsey(i), covariate
vectorsx(i) associated with fixed effects, covariate vectorsu(i) associated with non-
parametric effects covariate vectorsz(i) associated with random effects. LetuT

(i) =

(u(i)1, . . . , u(i)m)T consists ofm different covariates. It is assumed that the observa-
tions y(i) are conditionally independent with meansµ(i) = E(y(i)|b) and variances
var(y(i)|b) = φv(µ(i)), wherev(.) is a known variance function andφ is a scale pa-
rameter. The generalized semiparametric mixed model that is considered in the following
has the form

g(µ(i)) = xT
(i)β +

m∑

j=1

α(j)(u(i)j) + zT
(i)b (6.1)

= ηpar
(i) + ηadd

(i) + ηrand
(i) , (6.2)

whereg(.) is a monotonic differentiable link function,

ηpar
(i) = xT

(i)β is a linear parametric term,
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ηadd
(i) =

∑m
j=1 α(j)(u(i)j) is an additive term with unspecified influence functions

α(1), . . . , α(m),

ηrand
(i) = zT

(i)b contains the cluster-specific random effectb ∼ N (0, Q(̺)), whereQ(̺)

is a parameterized covariance matrix.

An alternative form that is used in the following isµ(i) = h(η(i)), η(i) = ηpar
(i) + ηadd

(i) +

ηrand
(i) , whereh(.) = g−1(.) is the inverse link function. If the functionsα(j)(.) are linear ,

the model reduces to the generalized mixed model of Breslow & Clayton (1993). Versions
of the additive model (6.1) have been considered by Zeger & Diggle (1994) and Lin &
Zhang (1999), Zhang, Lin, Raz & Sowers (1998).

While Lin & Zhang (1999) used natural cubic smoothing splines for the estimation of
the unknown functionsα(j), in the following regression splines are used. In recent years
regression splines have been used widely for the estimation of additive structures, see
Marx & Eilers (1998), Wood (2004) and Wand (2000).

In regression spline methodology the unknown functionsα(j)(.) are approximated by
basis functions. A simple basis is known as the truncated power series basisof degreed,
yielding

α(j)(u(i)j) = γ
(j)
0 + γ

(j)
1 u(i)j + . . . γ

(j)
d ud

(i)j +
M∑

s=1

α(j)
s (u(i)j − k(j)

s )d
+ ,

wherek
(j)
1 < . . . < k

(j)
M are distinct knots. More generally one uses

α(j)(u(i)j) =

M∑

s=1

α(j)
s φj

s(u(i)j) = αT
j φ(i)j , (6.3)

whereφ
(j)
s denotes thes-th basis function for variablej, αT

j = (α
(j)
1 , . . . , α

(j)
M ) are un-

known parameters andφT
(i)j = (φ

(j)
1 (u(i)j), . . . , φ

(j)
M (u(i)j)) represents the vector-valued

evaluations of the basis functions.
The parameterized model for (6.1) is given in the form

g(µ(i)) = xT
(i)β + φT

(i)1α1 + · · · + φT
(i)mαm + zT

(i)b

or the matrix form

g(µ) = Xβ + Φ.1α1 + · · · + Φ.mαm + Zb

where the matricesX andZ have rowsxT
(i) andzT

(i), andΦ.j has rowsφT
(i)j , which again

can be reduced to
g(µ) = Xβ + Φα + Zb
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with αT = (αT
1 , . . . , αT

m)) and Φ = (Φ.1, . . . ,Φ.m) where Φ has rowsφT
(i) =

(φT
(i)1, . . . , φ

T
(i)m).

6.1.1 The Penalized Likelihood Approach

Focusing on generalized semiparametric mixed models we assume that the conditional
density ofy(i), given the explanatory variablex(i) and the random effectb is of exponential
family type

f(y(i) | x(i), b) = {exp
(yT

(i)γ(i) − κ(γ(i)))

φ
+ c(y(i), φ)}, (6.4)

whereγi denotes the natural parameter,c(.) the log normalization constant andφ the
dispersion parameter.

The most popular method to maximize generalized linear mixed models is penalized quasi
likelihood (PQL), which has been suggested by Breslow & Clayton (1993), Breslow &
Lin (1995b) and Breslow & Lin (1995a). It is implemented in the macro GLIMMIX and
proc GLIMMIX in SAS (Wolfinger (1994)) or the gamm-function in the R-package mgcv.
Further notes are in Wolfinger & O’Connell (1993), Littell, Milliken, Stroup &Wolfinger
(1996) and Vonesh (1996).

In penalized based concepts the joint likelihood-function is specified by theparameters of
the covariance structure̺together with the dispersion parameterφ which are collected in
θT = (φ, ̺T ) and parameter vectorδT = (βT , αT , bT ). The corresponding log-likelihood
is

l(δ, θ) =
∑

log(

∫
f(y(i)|δ) ∗ p(b, ̺)db). (6.5)

wherep(b, ̺) denotes the density of the random effects.

For the case of few basis functions and therefore low-dimensional parameter vectorα, the
log-likelihood may be approximated as proposed by Breslow & Clayton (1993). However,
the form of the unknown functionsα(.) is severely restricted. A more flexible approach
which is advocated here is to use many basis functions, say about 20 for each function
α(j), and add a penalty term to the log-likelihood. Then one obtains the penalized log-
likelihood

lp(δ, θ) =
N∑

i=1

log(

∫
f(y(i)|δ) ∗ p(b; ̺)db) − 1

2

m∑

j=1

λjα
T
j Kjαj . (6.6)

whereKj penalizes the parametersαj . When using P splines one penalizes the difference
between adjacent categories in the formλjα

T Kjα = λj
∑

j{△dαj}2 where△ is the
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difference operator with△αj = αj+1 − αj , △2αj = △(△αj) etc., for details see Eilers
& Marx (1996). The log-likelihood (6.6) has also been considered by Lin& Zhang (1999)
but with Kj referring to smoothing splines. For smoothing splines the dimension ofαj

increases with sample size whereas the low rank smoother used here does not depend on
n.

Approximation of (6.6) along the lines of Breslow & Clayton (1993) yields the double
penalized likelihood

lp(δ, θ) =
N∑

i=1

log(f(y(i)|δ)) −
1

2
bT Q(̺)−1b − 1

2

m∑

j=1

λαT
j Kjαj . (6.7)

The first penalty termbT Q(̺)−1b is due to the approximation based on the Laplace
method, the second penalty term

∑m
j=1 λjα

T
j Kjαj determines the smoothness of the

functionsα(j)(.) depending on the chosen smoothing parameterλj .

PQL usually works within the profile likelihood concept. So we can distinguish between
the estimation ofδ given the plugged in estimation̂θ resulting in the profile-likelihood
lp(δ, θ̂) and the estimation ofθ given the plugged in estimator̂δ resulting in the profile-
likelihood lp(δ̂, θ).

Estimation of β, α and b for fixed θ: First we consider the maximation oflp(δ, θ) with
respect toδ = (βT , αT , bT ). As described in Breslow & Clayton (1993) the solution
of the score functions(δ) =

∂lp(δ,θ)
∂δ = 0 for (6.7) via Fisher-Scoring is equivalent to

iteratively solving the BLUP-equations with a linearized version. For derivations to follow

the motivationΣ(δ, θ)i = cov(y(i)|δ, θ) andD(i)(δ) =
h(η(i))

∂η(i)
are necessary. The matrix

versions areD(δ) = diag(D(i)(δ))i=1,...,N andΣ(δ, θ) = diag(Σ(i)(δ, θ))i=1,...,N . The
linearized version is given by

ỹ(i) = xT
(i)β + φT

(i)α + zT
(i)b + D−1

(i) (δ)(y(i) − µ(i)).

In matrix notation one obtains

ỹ = Xβ + Φα + Zb + D−1(δ)(y − µ).

For the linearized version the approximated covariance is given by

W = W (δ) = D(δ)Σ−1(δ)DT (δ).

The estimation problem using weighted least squares is equivalent to the estimation prob-
lem of the mixed model

ỹ|b approx∼ N(Xβ + Φα + Zb, W−1). (6.8)
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Estimation of θ for fixed β, α and b: If we assume (6.8) and ifb is normally distributed
the random effect can integrated out analytically. The theory of linear mixed models
within the REML framework can be applied to estimate the variance parameters. So a
V (δ, θ) can be constructed with

V (θ) := V (δ, θ) = W−1 + ZQ(̺)ZT

The corresponding REML-equation has the form

lp(δ, θ) ≈
∫

f̃(ỹ|b) ∗ p(b; ̺)

≈ −1
2 log(|V (θ)|) + (ỹ − Xβ − Φα)T V (θ)−1(ỹ − Xβ − Φα) − 1

2 log(|XT V (θ)X|)
(6.9)

wheref̃(.|b) andp(.) are Gaussian densities forỹ andb as described in (6.8).

6.2 Boosted Generalized Additive Mixed Models - bGAMM

The following algorithm uses componentwise boosting. Componentwise boosting means
that only one component of the predictor, in our case one smooth termφ(i)jαj , is refit-
ted at a time. That means that a model containing the linear term and only one smooth
component is fitted in one iteration step. For simplicity we will use the notation

xT
(i)(r) := [xT

(i), φT
(i)r, zT

(i)] , δT
r = (βT , αT

r , bT )

for the design matrix. For the predictor without random part we denoteη̃T
(i)r = xT

(i)β +

φT
(i)rαr.

bGAMM

1. Initialization
Compute starting valueŝβ(0), α̂

(0)
1 , . . . α̂

(0)
m , b(0) and set̃η(0)

(i) = xT
i β̂(0)+φT

(i)1α̂
(0)
1 +

. . . + φT
(i)mα̂

(0)
m .

2. Iteration
For l=1,2,. . .

(a) Refitting of residuals

i. Computation of parameters
For r ∈ {1, . . . , m} fit the model

g(µ(i)r) = η̃
(l−1)
(i) + x(i)β + φ(i)rαr + zT

(i)b
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yielding δT
r = (βT , αT

r , bT ) where η̃
(l−1)
(i) is treated as an offset using

ỹ(i) = η
(l)
(i) + zT

(i)b + D−1
i (δ)(yi − η̃

(l)
i − zT

(i)b) with only one iteration.

ii. Selection step
Select fromr ∈ {1, . . . , m} the componentj that leads to the smallest
BIC

(l)
r .

iii. Update
Set β̂(l) = β̂(l−1) + β̂,
and

α̂(l)
r =





α̂

(l−1)
r if r 6= j

α̂
(l−1)
r + α̂r if r = j,

δ̂(l) = ((β̂(l))T , (α̂
(l)
1 )T , . . . (α̂(l)

m )T , (b̂(l))T ).

Update fori = 1, . . . , N

η̃
(l)
(i) = η̃

(l−1)
(i) + xT

(i)β + φT
(i)jαj .

(b) Computation of Variance Components
The computation is based on the penalized quasi likelhood and its score and
fisher functions 6.9

lp(θ|η(l); δl) = −1
2 log(|V (θ)|) − 1

2(ỹ − η̃(l))T V (θ)−1(ỹ − η̃(l))

−1
2(δ̂(l))T Kδ̂(l).

The corresponding penalty matrix is denoted byKr, which for the truncated
power series has the form

Kr = Diag(0, λI, 0).

Maximization yieldsθ̂(l).

6.2.1 Stopping Criteria

With starting valueδ̂(0) and W̄ (0) = W (δ̂(0), θ(0)), Σ(0) = Σ(δ̂(0), θ(0)), D(0) =

D(δ̂(0), θ(0)) denoting evaluations at valuêη(0) + Xδ̂(0) one step Fisher Scoring is given
by

δ̂(1) = F (δ̂)−1s(δ̂(0))

= (XT W̄ (0)X + K)−1XW̄ (0)D(0)−1
(y − µ̂(0)).
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Settingµ̂(l) = h(η̂(l) + Xjδ
(l)) one obtains

η̂(l+1) + Zb(l) = Xj δ̂j + η̂(l)

η̂(l+1) + Zb(l) − η̂(l) = Xj δ̂j

= Xj(X
T
j W (l)Xj + K)−1XT

j W (l)D(l)−1
(y − µ̂(l)).

Taylor approximation of first orderh(η̂ + Zb) = h(η) + ∂h(η)
∂ηT (η̂ + Zb − η) yields

µ̂(l+1) ≈ ˆ̃µ(l) + D̃l(η̂(l+1) + Zb(l) − η̂(l))

η̂(l+1) + Zb(l) − η̂(l) ≈ D̃(l))−1(µ̂(l+1) − µ̂(l))

and therefore

(W̃ (l))1/2(D̃(l))−1(µ̂(l+1)−µ̂(l)) ≈ (W̃ (l))1/2Xj(X
T
j W (l)Xj+K)−1XT

j W (l)D(l)−1
(y−µ̂(l)).

Since(W (l))1/2(D(l))−1 = (Σ(l)))1/2 and (W̃ (l))1/2(D̃(l))−1 = (̃Σ(l))1/2 this can be
transformed to

µ̂(l+1) − ˆ̃µ
(l) ≈ M (l+1)(y − µ̂(l))

with M (l+1) = (Σ̃(l))1/2(W̃ (l))1/2Xj(X
T
j W̄ (l)Xj + K)−1XT

j (W (l))1/2Σ(l)1/2
.

Defineµ̂(l) = ˆ̃µ(l) + C(l). For simplicity one can use

µ̂(l+1) − µ̂(l) ≈ M (l+1)(y − µ̂(l)) + C(l).

So one obtains

µ̂(l+1) − µ̂(l) ≈ M (l+1)(y − µ̂(l) + C(l)

= M (l+1)(y − µ̂(l−1) − (µ̂(l) − µ̂(l−1))) + C(l) − M (l+1)C(l−1)

≈ M (l+1)(y − µ̂(l−1) − M (l)(y − µ̂(l−1))) + C(l) − M (l+1)C(l−1)

= M (l+1)(I − M (l))(y − µ̂(l−1)) + C(l) − M (l+1)C(l−1).

So one gets

µ̂(m) ≈
m∑

j=0

M (j)
j−1∏

i=0

(I − M (i)) y + R(m)

with R(m) =
∑m

j=1 S(j). S(j) is defined by
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S(j) = C(j−1) −
j∑

k=1

M (k)
k−1∏

i=1

(I − M (k−i))C(k−i−1).

For interpretation the version

µ̂(m) − R(m) ≈
m∑

j=0

M (j)
j−1∏

i=0

(I − M (i)) y

should be used wherêµ(m) −R(m) is the result of the projection ofy. R(m) is the correc-
tion term associated with the random effects. So one can write

µ̂(m) − R(m) ≈ H(m)y

The corresponding projection matrix is given by

H(m) =
m∑

j=0

M (j)
j−1∏

i=0

(I − M (i)). (6.10)

6.2.2 Simulation Study

Poisson Link We present part of a simulation study in which the performance of Boost-
Mixed models is compared to alternative approaches. The underlying modelis the random
intercept model

ηit = bi +
∑20

j=1 c ∗ α(j)(uit), i = 1, . . . , 40, t = 1, . . . , 5

E(yit) = exp(ηit)
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with the smooth components given by

α(1)(u) = sin(u) u ∈ [−3, 3],

α(2)(u) = cos(u) u ∈ [−2, 8],

α(3)(u) = u2 u ∈ [−1, 1],

α(4)(u) = u3 u ∈ [−1, 1],

α(5)(u) = −u2 u ∈ [−1, 1],

α(j)(u) = 0 u ∈ [−3, 3], j = 6, . . . , 20.

The vectorsuT
it = (uit1, . . . , uit20) have been drawn independently with components

following a uniform distribution within the specified interval. For the covariatesconstant
correlation is assumed, i.e.corr(uitr, uits) = 0.1. The constantc determines the signal
strength of the covariates. The random effect and the noise variable have been specified
by bi ∼ N(0, σ2

b ) with σ2
b = 0.6. In the part of the study which is presented the number

of observations has been chosen byn = 40, T = 5.

The fit of the model is based on B-splines of degree 3 with 15 equidistant knots. The
performance of estimators is evaluated separately for the structural components and the
variance. By averaging across 100 datasets we consider mean squared errors forη, σ2

b

given by

mseη =
∑n

i=1

∑T
t=1(ηit − η̂it)

2, η̂it = xT
itβ̂,

mseσ2
b

= ||σ2
b − σ̂2

b ||2

Additional information on the stability of the algorithms is collected innotconv, which
indicates the sum over the datasets, where numerical problems occurred during estima-
tion. falseneg is the mean over the count of variablesα(i)(u), i = 1, . . . , 5, that were
not selected.falsepos is the mean over the count of variablesα(i)(u), i = 6, . . . , 20, that
were selected.

In Table 6.1 the resulting mean squared errors are given for increasingsignals and increas-
ing number of parameters. Since for a large number of covariates the Generalized Addi-
tive Mixed Model strategy (GAMM) did not converge for many cases, i.e.for c = 0.7

andp = 15 only 18 of 100 datasets lead to feasible results using GAMM. Only the cases
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that lead to convergence were compared with the boosted Generalized Additive Mixed
Model (bGAMM) on the one side and the cases that lead to convergence using bGAMM
were compared to GAMM on the other side. That means only datasets which lead on
both sides to convergence were chosen to be compared. It becomes obvious that for many
parameters (p>=10) GAMM is not a suitable method to handle many unspecifiedpara-
meters. FalsePositive (FalsePos) are the unspecified variables that were selected by the
algorithm but have no real effect on the response. Instead FalseNegative (FalseNeg) are
those variables that should have been selected by the algorithm but were not selected. For
Table 6.1 the BIC-Criterion was chosen to be the stopping and selection criterion.

GAMM bGAMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 15.417 0.020 4 15.403 0.015 0 72.2 0.0 0.4

0.5 10 18.503 0.007 71 18.271 0.020 0 63.6 1.2 0.5

0.5 15 22.694 0.009 88 21.772 0.006 0 71.3 1.6 1.0

0.5 20 22.116 0.017 0 63.1 2.2 0.7

0.7 5 14.537 0.027 1 13.415 0.018 0 87.4 0.0 0.0

0.7 10 16.702 0.016 72 15.427 0.026 0 126.3 1.2 0.0

0.7 15 22.466 0.009 92 17.799 0.012 0 66.8 1.7 0.1

0.7 20 20.496 0.016 0 99.6 2.4 0.1

1.0 5 15.746 0.025 0 14.123 0.015 0 104.5 0.0 0.0

1.0 10 18.121 0.006 68 16.399 0.009 0 104.4 1.3 0.0

1.0 15 19.626 0.001 95 13.758 0.017 0 118.0 2.0 0.0

1.0 20 22.138 0.012 0 108.7 2.9 0.0

Table 6.1: Generalized additive mixed model and boosted generalized additive mixed model
on poisson data

For a more extensive analysis of BoostMixed six simulation studies with different settings
were made. In all studies 100 datasets were generated. AIC-Criterion and BIC-Criterion
were compared.

Study 15 - small clusters and small random effect
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
σ2

b = 0.6. In the part of the study which is presented the number of observations has been
chosen byn = 100, T = 2. Pairwise correlation was taken to becorr(uitr, uits) = 0.1.
Details can be found in Table C.14 and Table C.15.

Study 16 - few clusters and large random effect
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
σ2

b = 1.2. In the part of the study which is presented the number of observations has been



6.2 Boosted Generalized Additive Mixed Models - bGAMM 136

chosen byn = 40, T = 5. Pairwise correlation was taken to becorr(uitr, uits) = 0.1.
Details can be found in Table C.16 and Table C.17.

Study 17 - big clusters, few clusters
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
σ2

b = 0.6. In the part of the study which is presented the number of observations has been
chosen byn = 20, T = 10. Pairwise correlation was taken to becorr(uitr, uits) = 0.1.
Details can be found in Table C.18 and Table C.19.

Study 18 - many clusters and small random effect
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
σ2

b = 0.6. In the part of the study which is presented the number of observations has been
chosen byn = 80, T = 5. Pairwise correlation was taken to becorr(uitr, uits) = 0.1.
Details can be found in Table C.20 and Table C.21.

Study 19 - many clusters and huge random effect
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
σ2

b = 1.2. In the part of the study which is presented the number of observations has
been chosen byn = 80, T = 5. Pairwise correlation was taken to becorr(uitr, uits) =

0.1.Details can be found in Table C.22 and Table C.23.

Study 20 - big clusters, many clusters, correlated data
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
σ2

b = 0.6. In the part of the study which is presented the number of observations has been
chosen byn = 40, T = 10. Pairwise correlation was taken to becorr(uitr, uits) = 0.5.
Details can be found in Table C.24 and Table C.25.

If one wants to summarize the results of study 15 to study 20 the boosted GAMM
(bGAMM) seems to be a good competitor to the generalized additive mixed model
(GAMM) for cases with more than 400 observations in total, see study 17 to study 20.
Only the cases that lead to convergence were compared with the boosted Generalized Ad-
ditive Mixed Model (bGAMM) on the one side and the cases that lead to convergence
using bGAMM were compared to GAMM on the other side. Nevertheless it is remarked
that for small dataset with small clusters (200 observations in total, study 15 and 16) that
numerical problem affects the GAMM method. In study 15 the GAMM method did not
converge in 17 of 100 cases for strengthc = 0.5 and five variables. For more than 15
variables GAMM did not lead to convergence in at least 84 of 100 datasetsfor strength
c = 0.5, c = 0.7 andc = 1 for AIC. These problems also arise in all studies. In al-
most all studies the BIC criterion delivered betterMSEη than the AIC criterion in cases
with many irrelevant variables (p ≥ 10). In cases with just relevant variables AIC was in
most cases superior to the BIC criterion. Responsible for theMSEη in studies 15 and 16
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may be the selection of relevant variables. In these studies not all relevant variables were
selected. In study 16 averaged 0.71 relevant variables of 5 possible were not selected in
the case of AIC (c = 0.5 andp = 5) , 1.37 in the case of BIC. In study 17 to 20 nearly
all relevant variables were selected using AIC or BIC but with more irrelevant variable in
the case of AIC. The problem of AIC is that it allows to select more irrelevant variables
which is reflected in a remarkable downgrade in terms ofMSEη. In most of the studies
bGAMM has betterMSEb than GAMM.

Binomial Link We present part of a simulation study in which the performance of
BoostMixed models is compared to alternative approaches. The underlyingmodel is the
random intercept model

ηit = bi +
∑20

j=1 c ∗ β(j) ∗ uitj , i = 1, . . . , 80, t = 1, . . . , 5,

E(yit) = h(ηit)

with the smooth components given byβ(1) = 2.0, β(2) = 2.5, β(3) = 3.0, β(4)(u) =

3.5, β(5)(u) = 4.0, β(j) = 0 j = 6, . . . , 20., whereh(.) is the logistic function.

The vectorsuT
it = (uit1, . . . , uit20) have been drawn independently with components

following a uniform distribution within the specified interval. For the covariatesconstant
correlation is assumed, i.e.corr(uitr, uits) = ρ. The constantc determines the signal
strength of the covariates. The random effect and the noise variable have been specified
by bi ∼ N(0, σ2

b ) with σ2
b = 0.6. In the part of the study which is presented the number

of observations has been chosen byn = 60, T = 5. For Table 6.2 the AIC-Criterion was
used.

In Table 6.2 the resulting mean squared errors are given for increasingsignals and increas-
ing number of parameters. In this case an implicit variable selection procedure makes
sense since for increasing number of parameters the Generalized Mixed Model strategy
(GLMM) deliver very instable estimates or a dramatic loss in the accuracy of the pre-
dictions. FalsePositive (FalsePos) are the unspecified variables that were selected by the
algorithm but have no real effect on the response. Instead FalseNegative (FalseNeg) are
those variables that should have been selected by the algorithm but were not selected.
Nevertheless there a some datasets where the boosted Mixed Model (bGLMM) did not
find all relevant variables. On the other side the boosted Mixed Model method helps to
reduce the irrelevant variables. In the case for signal c=1.0 and 15 parameters only aver-
aged 1.49 from 10 possible irrelevant variables were selected which have no effect on the
response. Remarkable is that for small signals in this study the mean squarederrors for
the random effects variance are quite smaller.
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GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 72.003 0.031 0 87.475 0.056 0 100.5 0.00 0.02

0.5 10 146.845 0.038 0 102.632 0.066 0 102.6 0.23 0.02

0.5 15 210.027 0.058 0 119.176 0.059 0 98.2 0.36 0.02

0.5 20 283.818 0.071 0 123.898 0.077 0 106.2 0.55 0.02

0.7 5 141.793 0.142 0 141.322 0.123 0 123.5 0.00 0.01

0.7 10 279.357 0.161 0 170.764 0.152 0 112.5 0.25 0.01

0.7 15 416.436 0.165 0 220.872 0.161 0 106.4 0.57 0.01

0.7 20 696.907 0.187 0 244.113 0.161 0 120.7 0.83 0.01

1.0 5 673.332 0.256 0 532.380 0.336 1 128.6 0.00 0.02

1.0 10 1906.076 0.251 0 535.680 0.353 0 114.1 0.64 0.02

1.0 15 3563.036 0.277 0 636.291 0.504 0 105.7 1.49 0.02

1.0 20 4198.591 0.301 0 698.534 0.509 0 139.6 2.88 0.02

Table 6.2: Generalized mixed model and boosted generalized mixed model on binomial data

For a more extensive analysis of BoostMixed six simulation studies with different settings
were made. In all studies 100 datasets were generated. AIC-Criterion and BIC-Criterion
were compared.

Study 21 - small dataset and small random effect
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
σ2

b = 0.6. In the part of the study which is presented the number of observations has been
chosen byn = 159, T = 2. Pairwise correlation was taken to becorr(uitr, uits) = 0.1.
Details can be found in Table C.26 and Table C.27.

Study 22 - small dataset and large random effect
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
σ2

b = 1.2. In the part of the study which is presented the number of observations has been
chosen byn = 60, T = 5. Pairwise correlation was taken to becorr(uitr, uits) = 0.1.
Details can be found in Table C.28 and Table C.29.

Study 23 - big clusters, small dataset
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
σ2

b = 0.6. In the part of the study which is presented the number of observations has been
chosen byn = 30, T = 10. Pairwise correlation was taken to becorr(uitr, uits) = 0.1.
Details can be found in Table C.30 and Table C.31.

Study 24 - many clusters and small random effect
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
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σ2
b = 0.6. In the part of the study which is presented the number of observations has been

chosen byn = 80, T = 5. Pairwise correlation was taken to becorr(uitr, uits) = 0.1.
Details can be found in Table C.32 and Table C.33.

Study 25 - many clusters and big dataset
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
σ2

b = 0.6. In the part of the study which is presented the number of observations has
been chosen byn = 100, T = 5. Pairwise correlation was taken to becorr(uitr, uits) =

0.1.Details can be found in Table C.34 and Table (C.35.

Study 26 - big clusters and big dataset
The random effect and the noise variable have been specified bybi ∼ N(0, σ2

b ) with
σ2

b = 0.6. In the part of the study which is presented the number of observations has been
chosen byn = 50, T = 10. Pairwise correlation was taken to becorr(uitr, uits) = 0.1.
Details can be found in Table C.36 and Table C.37.

The results can be summarized as follows. In all studies except study 26 theboosted
generalized linear mixed model (bGLMM) was superior in theMSEη for signalsc = 1.
For signalc = 0.5 and 5 relevant variables the generalized linear mixed model could not
be further improved by the boosted variant. In only two cases (Study 21 withAIC and
Study 23 with BIC) theMSEη could be improved for signalc = 0.7 and 5 variables in the
model. Except study 21 the right amount of relevant variables were found by the boosted
version of the generalized linear mixed model. For models based on just relevant variables
the AIC criterion seems to perform best. In models with many irrelevant variables the BIC
seems to deliver better results in theMSEη. However in models with large signals the
accuracy of the adjustment is decreasing using the generalized linear mixedmodel. Quite
impressing is the influence of irrelevant variables on theMSEη which is reflected in study
22 (for c = 0.7 andp = 10) which has double the value of the model without irrelevant
variables (c = 0.7 andp = 5). In the context of binary data the boosted generalized
linear mixed model may be a suitable tool to do variable selection in datasets with many
covariates.

6.3 Application of the European Patent Data

For a detailed description of the dataset see Chapter 5.1. Descriptive statistics for the re-
sponse (OUT) are given in the Table 6.3 and for the covariates in Table 6.4. The estimates
can be found in Table 6.5 and the smooth estimates in Figure 6.1.

The variables BREADTH, PA_EMP, EMP and R_D_PAT were not selectedby the
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Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 1.000 5.000 9.701 12.000 169.000

Table 6.3: Summary statistics for the response considering small campanies

Covariate Mean Minimum Maximum

YEAR 1993 2000

PA_YEA 20.21 1.00 202.00

BREADTH 0.58 0.12 0.90

PAT_PORT 144.47 0.00 1836.00

VOLATILITY 0.44 0.00 2.00

EMP (000s) 6.11 0.07 17.71

COUNTRY 2.74 1.00 4.00

R_D_EUR (Mio. EUR) 44.04 0.23 454.69

R_D_PAT (Mio. EUR/ Patent) 3.67 0.00 26.48

R_D_EMP (Mio. EUR/ Employee) 16.30 0.02 215.69

PA_EMP (PAT / EMP) 20.76 0.19 989.58

GER 0.29

FRA 0.07

GBR 0.23

OTH 0.40

Table 6.4: Summary statistics for the covariates considering small campanies

boosted generalized semi-structured mixed model (bgssmm). An huge numberof patents
a year seems to influence the outsourcing process positive. On the other side an increasing
number of research and development expenses shortens the tendencyto source out. The
effect of the time in the study may be neglected. Companies which are very volatile in
their patent portfolio seem to fancy with outsourcing.

The model computed is given by
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Covariate Estimated Effect

Intercept 3.749

GER: -0.236

FRA: 0.329

GBR: -0.794

Random Effect Estimate

σ2
b 2.574

Table 6.5: Estimated Fixed Effects and Random Effects Variance

ηit = ηadd
it + η

par
it + bi,

ηadd
it = α(1)(PA_Y EARit) + α(2)(BREADTHit) + α(3)(PAT_PORTit) + α(4)(EMPit)

+α(5)(R_D_EURit) + α(6)(R_D_PATit) + α(7)(PA_EMPit) + α(8)(V OLit)

+α(9)(Y EARit) + α(10)(R_D_EMPit),

η
par
it = GERitβ1 + FRAitβ2 + GBRitβ2,

OUTit|λit = Poisson(λit),

λit = E(OUTit) = exp(ηit)
(6.11)

with h(ηit) = log(ηit.

The mixed model method was not applicable since numerical problems occurred in the
estimation.
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Figure 6.1: Patent data: estimated smooth effects for the patent data



Chapter 7

Summary and Perspectives

One can observe that likelihood boosting in mixed models is an important competitor
to the mixed model strategy for getting estimates of additive smooth functions or linear
parameters.

One conceptual disadvantage of the mixed model approach for smooth covariates is that
the estimation of the smoothing parameter is quite sensitive to the signal strength in the
data. For a large signal, which means only a small perturbation, the mixed modelapproach
delivers only a rough approximation. The variance that has to be estimated isinversely
proportional to the smoothing parameter which causes this phenomenon. So infact, for
a very small smoothing parameter, the variance of the random effects is very large and
therefore good estimates for the variance are difficult to obtain. This effect is not restricted
to the semi-structured mixed model but also for the generalized semi-structured mixed
model which is shown in the simulation studies for additive covariates.

Another nice aspect of boosting in mixed models is that one can optimize many addi-
tive functions using the componentwise selection strategy. So high-dimensional function
spaces can be optimized without the lack of stability and time which is a part of many
classical simultaneous optimization procedures. This property of boosting isbased on the
similarity to the functional gradient descend algorithm, where the step-size for the direc-
tion are adjusted by the data. ForL2-loss the likelihood boosting concept can be described
by a fixed step-size for the optimization direction. In the generalized semi-structured
mixed models using Poisson data and many additive covariates the mixed model based
optimization scheme did not converge for most of the datasets.

However for small signals, the mixed model approach provides better estimates of the
parameters in many cases. One reason might be that the variables with small signals
can not easily be separated from the error in the data. Since componentwise boosting is
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an integrated selection algorithm for relevant variables, it might happen, that important
variables that should have been selected, are not selected by the boosting algorithm. On
the one side, this is bad for prediction which is visible in the mean squared error for
the predictor. One the other side, if one is interested in relevant variables then some
important variables are suppressed. The difference to classical selection strategies based
on p-values is that the selection is based on the improvement of the likelihood. The
improvement is corrected downward with a large penalty if the variable entersthe model
for the first time and only a small penalty if the variable has already been chosen. The
penalty term originates in the selection criterion. So each variable has to compete with all
other variables given the variable was selected or not. According to this idea one gets a
natural order in increasing boosting steps from highly relevant to less relevant variables.
Critics might be expressed by the choice of the selection and stopping criterion.

In this thesis, AIC and BIC were used to model the complexity of the data. In thiscon-
nection, the objective is to find a model with relevant variables but not to muchsince one
might over-parameterize the model. The boosting algorithm is stopped if the complexity
criterion can not be improved any more by increasing boosting iterations. The problem
now to choose a suitable complexity criterion. This is done empirically in this thesis .In
the semi-structured mixed model cases, BIC showed generally better resultsin terms of
MSE, AIC did not converge for settings with many additive covariates. Oneshould men-
tion that there exists no theory-based definition of the AIC-Criterion or BIC-Criterion in
the mixed model methodology. The context is just transferred from the theory of cross
sectional experiments and P-splines. But in this context, these criterions were only used
as a crude criterion to scan for relevant variables and to stop the scanning process.

It is remarkable that componentwise boosting is a nice way to check complexity criteria in
simulation studies. If one neglects the selection aspect, the job of the complexity criterion
is to stop the algorithm at the right boosting step. In boosting the complexity is increasing
from boosting step to another boosting step with small improvements which guarantees
the weak learner concept. So once again one can use relevant and irrelevant variables
to check if the complexity criterion finds out the right amount of relevant variables and
rejects the irrelevant ones. For the additive models BIC was quite a good complexity or
stopping criterion. But in this case a complexity criterion might be found via boosting that
improves the results of BIC. Especially the BIC criterion provide for comparable results,
one obtains by the mixed model approach for settings, that have only relevant additive
variables. This idea of boosted information criterion follows the idea of Bühlmann and
Yu, where the complexity of the model should be optimized. Just from parametric ap-
proaches, the AIC criterion showed better results than BIC for both types, mixed model
and generalized linear mixed models.



145

So one idea might be to distinguish the selection criterion from the stopping criterion.
One might think of threshold concepts or information criterion based concepts which
seem to have a connection among each other. The selection concept might be improvable
in the first step. Here, thee aspects of concurvity or multicollinearity can be plugged
in the selection criterion as another penalty on the likelihood. The complexity criterion
reflects just the best adjustment to the data which can be clearly separated from the former
question.

Another nice point to be mentioned is that the componentwise selection strategy isespe-
cially suitable for high dimensional covariates. It combines the idea of a forward selection
strategy without the iteration until convergence. Instead, the relevance of a candidate vari-
able is judged by the selection criterion given all other covariates. The computation of the
next candidate variables is based on the variables that were already selected. Effects on
other variables by taking in a new variable is corrected in the consecutive boosting steps.
A forward selection strategy is highly sensitive to the variables that enters the model. On
the other side for high dimensional covariates, the computational effort is almost unbear-
able. For just a few covariates the forward selection strategy delivers comparable results,
but take more time.

One may criticize the use of the Laplacian approximation for generalized semi-structured
mixed models. For small datasets and binary data, one gets heavy biased estimates some-
times and another point for the accuracy of the estimates is the number of measurements
in the cluster. The less measurements one has, the harder it is to compute the random
effects variances. What is getting evident is that, if one studies the literaturefor general-
ized linear mixed models that one operates in areas where matrix algebra is justa small
part to solve estimation problems. Concepts like quadrature or Monte-Carlo-Integration
use weighted version of linear equations which are computer intense to solve. Moreover
getting a hint on effective degrees of the computed model is only possible in some very
special cases. Therefore the Laplacian approximation uses the idea of alinearized gener-
alized mixed models. The computations are made using this framework but they are just
necessary approximations to utilize the already developed concept. Theseapproxima-
tions might be improved by better ones. But this also affects the mixed model approach
to generalized semi-structured mixed models which uses the same approximation toget
estimates. It should be noted, that the mixed model approach need not to compute a quasi
hat-matrix, which is costly in computational effort. For the semi-structured mixedmodel,
fast decompositions of the hat-matrix can be found. For the generalized semi-structured
mixed model, efficient decompositions of hat-matrices in boosting are not known. On
the other hand a crossed random effects model has to be computed wherethe marginal
variances are not diagonal any more. This problem makes the mixed model approach also
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very computer intensive.

This thesis encompasses only covariates that have a metric or binary covariates. Variables
that have an ordinal and categorial scheme or cause interactions with metricvariables are
not handled. But further research on these aspects would be precious. Stratified variables
are also a problem in mixed models so one can do research about this as wellas on
variable selection in varying coefficient models. Is a varying coefficientmodel necessary
for getting additional information or is just a normal mixed model suitable to the problem.
Variable selection strategies and special complexity criteria have to be developed in these
cases. Boosting may be a nice toolkit in further research.

Last aspect to summarize is the idea of flexible splines. In the literature, one can find
proposals where each cluster is characterized by its individual functionin semi-parametric
mixed models. So the individuality grows by allowing separate developments of these
functions in the same covariate. Another interest focused in this context is toreduce the
individuality to a common spline function and detached cluster specific function. The
parameters in the last case are estimated by fitting the unknown random effects vector.
The assumption here is that the mean of all these coefficients are derived from a density
function with unknown diagonal variance. In the example of Ebay data where only a few,
sometimes only one observation was collected, this idea is hard to implement, because
limited observations are available to estimate the already described random coefficients
of a random effects model. On the other side, one gets a large number of parameters to
estimate. A sparse alternative is suggested in this thesis . The common spline function is
modified by one random effect which disperses the spline function from the zero function
or shorten the spline function towards zero. It may be seen as a generalization of random
slopes to smooth functions. In this case only the coefficients for the common effects
and additionally a random effects matrix for intercept and modifications on thefunctions
have to be estimated. Since for this concept one has to optimized multiplicative effects it
became apparent that using boosting techniques may be a way of handling such problems.



Appendix A: Splines
A.1 Solving Singularities

The problem is given by
η(i) = β0 + ΦT

(i)α,

whereΦ(i) = φT (u(i)) = [φ(1)(u(i)), . . . , φ
(M)(u(i)). HereΦ has dimensionN × M . In

matrix notation one can write withηT = (η(1), . . . , η(N)), ΦT = [Φ(1), . . . ,Φ(N)]

η =
[
1 Φ

] [β0

α

]
= Xδ.

The spline matrixΦ has to be reparametrized by a matrixT to a nonsingularX̃ =[
1 Φ̃(u)

]
.

A.1.1 Truncated Power Series for Semi-Parametric Models

Since for Truncated Power Series the Spline basisB has an elementΦ1 which consists of
ones, the necessary transformation has simply to delete the first entry of thisbasis.

The transformation matrix doing this job has the form

T =
[
0(M−1)×(1)|I(M−1)

]T
.

So one gets
α = T α̃,

Φ̃ = ΦT,

K̃ = T T K̆T.

A.1.2 Parametrization of α and Φ Using Restrictions

Identification problems and singularities may be solved by a suitable transformations of
the centered basis coefficients.

M∑

i=1

αi = 0 can be expressed byαM = −
M−1∑

i=1

αi

The consequence of this representation is that designmatrix and difference penalty have to
be modified accordingly. So one estimates withM−1 parameters̃αj , j ∈ {1, . . . , M−1}
which are collected iñα. So the difference matrixDd has to rewritten inD̃d.
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The transformation matrix doing this job has the form

T =
[
I(M−1)| − 1(M−1)

]T
.

So one gets
α = T α̃,

Φ̃ = ΦT,

K̃ = T T KT = (D̃D)T D̃d

Detailed information of reparametrization by incorporating restrictions on P-splines is
given in Scholz (2003) for one and more dimensional B-Splines. So incorporating the
described restriction delivers

Φα = Φ̃α̃

A.1.3 Parametrization of α and Φ Using Mixed Models

The use of B-Splines is sketched in the following . For simplicity, only one smooth
component is considered withΦ1(u), . . . ,ΦM (u) denoting the B-Splines for equidistant
knotsk1, . . . , kM . First the spline basisB is transformed by an orthogonal decomposition
to another spline basis̆B , consisting of̆Φi, i = 1, . . . , M .

Example A.1 : Changing the B-Spline basis

First the difference matrixDd is considered corresponding to B-Spline penalization (seeEilers &

Marx (1996)). WithD being the(M − 1) × M contrast matrix

D =




−1 1

−1 1

. ..
.. .

−1 1




one obtains higher order differences by the recursionDd = DDd−1 which is a(M − d) × M

matrix. The penalty term is based oñK = (Dd)T Dd. New matricesX̃(d), depending on the order

of the penalized differences are defined by

X̃(1) =




1
...

1


 , X̃(2) =




1 k1

...
...

1 kM


 , X̃(3) =




1 k1 k2
1

...
...

...

1 kM k2
M


 .
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For differences of order d one consider the(M − d) × M matrix Z̃T
(d) = (Dd(Dd)T )−1Dd. In

the following we drop the notation of d and setD := Dd,Z̃ := Z̃(d) andX̃ := X̃(d). SoZ̃ and

X̃ have the propertiesDX̃ = 0, Z̃T X̃ = (DDT )−1DX̃ = 0,X̃T KX̃ = 0 = X̃T DT DX̃ =

(DX̃)T (DX̃). Important is the equation

Z̃T KZ̃ = (DDT )−1DDT DDT (DDT )−1 = I(M−d).

sinceα can be decomposed intoα = X̃ᾰ1 + Z̃ᾰ2. The orthogonal matrices̃X andZ are used in

the following way

Φα = Φ[X̃ᾰ1 + Z̃ᾰ2] = [ΦX̃,ΦZ]ᾰ = Φ̆ᾰ

with ᾰT = (ᾰT
1 , ᾰT

2 ). The new spline basis̆B = {Φ̆1, . . . , Φ̆M} consists of the columns of̆Φ.

The corresponding penalty matrix is̆K = bdiag(0(d)×(d), I(M−d)×(M−d)). 2

Benefit of using the spline basis̆B is that singularities can be avoided by deletingΦ̆1,
which holdsΦ̆1 = 1.

The transformation matrix doing this job has the form

T =
[
0(M−1)×(1)|I(M−1)

]T
.

So one gets
ᾰ = T α̃,

Φ̃(u) = Φ̆(u)T,

K̃ = T T K̆T.

For details on this reparametrization see Green (1987).

A.2 Smoothing with Mixed Models

The use of B-Splines is sketched in the following . For simplicity only one smooth com-
ponent is considered withΦ(1)(u), . . . ,Φ(M)(u) denoting the B-Splines for equidistant
knotsk1, . . . , kM andyi = Xiβ + Φiα denoting the predictor.

We use the transformed spline basisB̆ as described in example A.1
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The predictor can now be rewritten in the form

yi =
[
Xi, Φi

] [β
α

]
+ Zibi =

[
Xi, Φi

] [ β

X̃ᾰ1 + Z̃ᾰ2

]
+ Zibi

=
[
Xi, Φ(ui)X̃, Φ(ui)Z̃

]



β

ᾰ1

ᾰ2


+ Zibi

=
[
Xi, ΦiX̃

] [ β

ᾰ1

]
+
[
ΦiZ̃, Zi

] [ᾰ2

bi

]

with Φ(ui) as a matrix for a vectoruT
i = (ui1, . . . , uit). Φ(ui) has rowsφ(uij)

T =

(φ1(uij), . . . , φM (uij)).

The penalized log-likelihood of the linear mixed model simplifies to

lp(δ) =
∑n

i=1 log(f(yi|δ; bi)p(bi)) − λδT Diag(0(p×p), λK)δ

=
∑n

i=1 log(f(yi|δ; bi)p(bi)) − λ((X̃ᾰ1 + Z̃ᾰ2)
T K(X̃ᾰ1 + Z̃ᾰ2

=
∑n

i=1 log(f(yi|δ; bi)p(bi)) − 1
2 ᾰT

2 2 ∗ λI(M−d)ᾰ2.

with δT = (β, α).

This corresponds to the BLUP criterion of the mixed model

yi = X̃iβ̃ +
[
Φ(ui)Z̃ Z

](ᾰ1

bi

)
+ ǫi

with




α̃

bi

ǫ


 ∼ N







0

0

0


 ,




1
2λI 0 0

0 Q(ρ) 0

0 0 σ2
ǫ I







andβ̃T = (βT , ᾰ1), X̃i = [Xi, Φ(ui)X̃]. Thus, from decompositionα = X̃ᾰ1 + Z̃ᾰ2

one obtains a mixed model with uncorrelated parametersᾰ2.



Appendix B: Parametrization of covariance
structures
To make sure, that the notation is clear in all parts of the paper, a short sketch of handling
covariances and its parametrization is proposed.

B.1 Independent Identical

This structure is has only one parameter, soρT = (ρ1)
T . So

Q(ρ) = ρ2
1 ∗ I

The elementwise derivative is
∂Q(ρ)

∂ρ1
= 2ρ1 ∗ I

B.2 Independent but Not Identical

If d is the dimension of the covariance matrix, then the structure has d parameters,so
ρT = (ρ1, . . . , ρd)

T . So

Q(ρ) =




ρ2
1

.. .

ρ2
d




The elementwise derivative is

∂Q(ρ)

∂ρi
= DQi =





(DQi)jj = 2 ∗ ρj if j = i

0 sonst

B.3 Unstructured

SinceQ(ρ) is a symmetric, positive semidefinite Matrix,Q(ρ) can be parametrisized

Q(ρ) = L ∗ LT

whereL is the Cholesky root ofQ(ρ). Soρ = vec(L) is the adequate parametrisation of
Q(ρ).

For example

L =

[
L11 0

L12 L22

]

Sovec(L)T = (L11, L12, L22)
T = ρT . The zeros are omitted.
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d is the dimension of the covariance matrix. Ifρi = (L)jj , j ∈ {1, . . . , d} (is diagonalele-
ment of L) the elementwise derivative are

∂Q(ρ)

∂ρi
=

∂Q(ρ)

∂Ljj
= DQi =






(DQi)jj = 2 ∗ Ljj if k = j

(DQi)kj = (DQi)jk = Lkj if k > j

0 else

If ρi ∈ (L)ij , i = 1, . . . , d, i 6= j (is not diagonal element of L) the elementwise derivative
are

∂Q(ρ)

∂ρi
=

∂Q(ρ)

∂Ljk
= DQi =






(DQi)ll = 2 ∗ Ljk if l = j

(DQ)lj = (DQ)jl = Llk if l 6= j

0 else



Appendix C: Simulation Studies
C.1 Mixed Model Approach vs. BoostMixed

Figure C.1: Simulation study 5:MSEη of BoostMixed (y-axis)and mixed model approach
(x-axis)
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MM BoostMixed

c p mseη msef mseσb
mseσǫ Steps Time mseη msef mseσb

mseσǫ Steps Time FalsePos FalseNeg Initial Selected

0.5 3 45.791 37.701 0.026 0.117 13 0.09 42.079 36.867 0.026 0.115 9.9 0.0 0.0 0.1 2.0 2.9

0.5 6 55.721 48.399 0.030 0.117 18 0.41 48.666 45.112 0.028 0.114 10.2 0.0 0.4 0.1 2.0 3.3

0.5 15 88.005 85.470 0.031 0.129 25 7.03 62.501 62.270 0.029 0.114 9.7 0.1 0.9 0.2 2.0 3.7

0.5 25 73.134 74.790 0.030 0.116 9.8 0.1 1.2 0.3 2.0 3.9

1.0 3 50.448 37.422 0.024 0.126 8 0.06 41.946 31.226 0.026 0.119 19.7 0.0 0.0 0.0 2.0 3.0

1.0 6 60.520 48.547 0.024 0.120 15 0.33 42.773 32.237 0.026 0.120 19.7 0.1 0.0 0.0 2.0 3.0

1.0 15 92.705 85.021 0.028 0.120 21 6.05 46.662 36.725 0.029 0.120 20.0 0.2 0.2 0.0 2.0 3.2

1.0 25 50.440 41.102 0.028 0.118 20.2 0.3 0.3 0.0 2.0 3.3

5.0 3 71.243 60.651 0.032 0.187 12 0.08 53.399 47.592 0.031 0.181 144.6 0.4 0.0 0.0 1.9 3.0

5.0 6 82.051 72.296 0.031 0.185 14 0.32 55.396 49.947 0.031 0.182 146.9 0.4 0.1 0.0 1.9 3.1

5.0 15 116.472 113.781 0.036 0.190 20 5.87 57.510 52.545 0.032 0.182 145.2 2.3 0.2 0.0 1.9 3.2

5.0 25 58.533 53.910 0.034 0.182 145.5 3.4 0.2 0.0 1.9 3.2

10.0 3 88.045 71.694 0.027 0.264 14 0.10 62.981 59.701 0.029 0.139 495.6 1.1 0.0 0.0 3.0 3.0

10.0 6 98.669 84.396 0.026 0.226 17 0.40 62.981 59.701 0.029 0.139 495.6 2.6 0.0 0.0 3.0 3.0

10.0 15 132.549 125.730 0.033 0.239 24 7.11 65.726 62.807 0.033 0.139 492.1 6.7 0.1 0.0 3.0 3.1

10.0 25 66.588 63.895 0.033 0.139 490.9 12.0 0.1 0.0 3.0 3.1

Table C.1: Study 5
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MM BoostMixed

c p mseη msef mseσb
mseσǫ Steps Time mseη msef mseσb

mseσǫ Steps Time FalsePos FalseNeg Initial Selected

0.5 3 46.503 34.107 0.022 0.133 13 0.09 45.416 36.576 0.026 0.136 9.9 0.0 0.0 0.1 2.0 2.9

0.5 6 57.421 48.626 0.024 0.133 18 0.42 50.530 43.280 0.028 0.139 10.3 0.0 0.3 0.1 2.0 3.2

0.5 15 90.615 92.066 0.029 0.135 28 8.30 64.707 61.314 0.032 0.140 11.0 0.1 0.8 0.2 2.0 3.7

0.5 25 72.285 70.857 0.035 0.141 11.5 0.2 1.1 0.2 2.0 3.9

1.0 3 49.449 40.515 0.033 0.146 9 0.06 40.716 34.440 0.035 0.145 17.4 0.0 0.0 0.0 2.0 3.0

1.0 6 60.771 54.728 0.037 0.148 16 0.37 42.105 36.107 0.037 0.143 17.6 0.1 0.1 0.0 2.0 3.0

1.0 15 93.651 97.541 0.038 0.151 21 6.41 43.327 37.663 0.037 0.144 17.7 0.2 0.1 0.0 2.0 3.1

1.0 25 46.404 41.527 0.036 0.145 17.9 0.4 0.2 0.0 2.0 3.2

5.0 3 72.155 62.797 0.023 0.153 12 0.09 53.174 49.862 0.025 0.153 109.6 0.3 0.0 0.0 3.0 3.0

5.0 6 82.856 77.115 0.025 0.157 14 0.33 53.663 50.515 0.026 0.154 109.5 0.6 0.0 0.0 3.0 3.0

5.0 15 114.390 118.645 0.028 0.156 18 5.25 54.918 51.990 0.026 0.154 109.4 1.5 0.1 0.0 3.0 3.1

5.0 25 56.471 53.814 0.027 0.154 109.1 2.6 0.1 0.0 3.0 3.1

10.0 3 93.000 77.369 0.029 0.230 14 0.09 68.369 63.423 0.030 0.184 430.2 1.1 0.0 0.0 3.0 3.0

10.0 6 103.896 92.147 0.028 0.225 15 0.34 69.027 64.432 0.030 0.184 430.0 2.2 0.0 0.0 3.0 3.0

10.0 15 136.460 137.261 0.035 0.184 20 5.81 70.142 65.935 0.031 0.180 428.9 5.7 0.1 0.0 3.0 3.1

10.0 25 73.504 70.497 0.031 0.181 427.1 7.9 0.2 0.0 3.0 3.2

Table C.2: Study 2
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Figure C.2: Simulation study 6:MSEη of BoostMixed (y-axis)and mixed model approach
(x-axis)
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MM BoostMixed

c p mseη msef mseσb
mseσǫ Steps Time mseη msef mseσb

mseσǫ Steps Time FalsePos FalseNeg Initial Selected

0.5 3 59.357 41.040 0.150 0.862 17 0.04 61.277 46.459 0.154 0.811 15.3 0.1 0.0 0.3 2.0 2.7

0.5 6 73.025 56.516 0.170 0.860 21 0.20 76.980 65.766 0.173 0.813 13.6 0.5 0.9 0.4 2.0 3.5

0.5 15 127.888 127.512 0.188 0.947 28 6.92 106.143 103.125 0.182 0.848 11.4 0.9 1.8 0.8 2.0 4.0

0.5 25 121.971 123.515 0.203 0.841 12.4 1.6 2.2 1.0 2.0 4.2

1.0 3 72.348 56.262 0.158 0.702 13 0.03 64.580 51.397 0.172 0.672 28.8 0.5 0.0 0.0 2.0 3.0

1.0 6 90.224 77.686 0.173 0.714 18 0.17 81.472 73.019 0.191 0.697 28.9 1.1 0.7 0.0 2.0 3.6

1.0 15 150.190 158.350 0.256 0.710 26 6.32 102.419 99.349 0.253 0.715 36.5 2.9 1.2 0.1 2.0 4.2

1.0 25 112.858 112.811 0.299 0.713 34.0 3.9 1.5 0.1 2.0 4.4

5.0 3 96.755 82.750 0.123 0.797 13 0.03 70.340 58.043 0.156 0.607 202.0 3.3 0.0 0.0 3.0 3.0

5.0 6 112.757 102.820 0.128 0.738 15 0.14 71.819 59.890 0.159 0.609 203.2 2.1 0.1 0.0 3.0 3.0

5.0 15 167.118 179.655 0.186 0.779 19 4.72 83.092 75.498 0.202 0.613 206.0 6.7 0.4 0.0 3.0 3.4

5.0 25 94.376 90.400 0.261 0.643 212.6 11.7 0.7 0.0 3.0 3.7

Table C.3: Study 3
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Figure C.3: Simulation study 1:MSEη of BoostMixed (y-axis)and mixed model approach
(x-axis)
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MM BoostMixed

c p mseη msef mseσb
mseσǫ Steps Time mseη msef mseσb

mseσǫ Steps Time FalsePos FalseNeg Initial Selected

0.5 3 98.413 38.248 0.114 5.338 15 0.02 101.372 45.198 0.139 4.780 46.1 0.8 0.0 0.3 2.0 2.7

0.5 6 113.736 54.938 0.118 5.381 19 0.13 121.564 69.512 0.166 4.833 37.6 1.2 1.1 0.5 2.0 3.6

0.5 15 160.835 116.182 0.132 5.380 30 5.66 146.019 101.852 0.211 4.834 27.2 2.0 2.1 0.8 2.0 4.2

0.5 25 166.688 130.291 0.297 4.817 37.5 4.8 2.8 0.9 2.0 4.8

1.0 3 99.531 51.153 0.108 4.211 12 0.02 89.402 43.097 0.115 3.805 48.8 0.8 0.0 0.0 2.0 3.0

1.0 6 113.800 68.266 0.120 4.206 16 0.11 100.060 56.704 0.135 3.810 51.6 1.4 0.6 0.0 2.0 3.6

1.0 15 163.859 133.089 0.123 4.335 28 5.34 123.632 86.472 0.191 3.812 57.8 3.9 1.4 0.0 2.0 4.4

1.0 25 141.182 110.096 0.256 3.821 58.3 2.2 2.0 0.1 2.0 5.0

5.0 3 143.293 78.221 0.102 4.096 13 0.02 120.386 57.729 0.146 3.747 303.8 1.9 0.0 0.0 2.8 3.0

5.0 6 156.224 93.300 0.108 4.077 15 0.10 124.271 62.650 0.158 3.733 303.4 3.5 0.2 0.0 2.8 3.2

5.0 15 205.228 160.784 0.135 4.363 24 4.66 138.146 82.855 0.224 3.809 308.5 9.0 0.7 0.0 2.9 3.7

5.0 25 157.296 109.001 0.317 3.767 304.0 11.3 1.5 0.0 2.9 4.5

Table C.4: Study 4
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Figure C.4: Simulation study 2:MSEη of BoostMixed (y-axis)and mixed model approach
(x-axis)



A
P

P
E

N
D

IX
C

:S
IM

U
LAT

IO
N

S
T

U
D

IE
S

161

MM BoostMixed

c p mseη msef mseσb
mseσǫ Steps Time mseη msef mseσb

mseσǫ Steps Time FalsePos FalseNeg Initial Selected

0.5 3 66.286 52.069 0.209 1.722 16 0.11 71.142 62.030 0.210 2.096 8.3 0.0 0.0 0.3 2.0 2.7

0.5 6 86.792 75.244 0.230 1.772 22 0.49 95.563 92.137 0.230 2.398 7.2 0.4 1.1 0.5 2.0 3.6

0.5 15 167.329 174.776 0.337 2.046 30 13.06 136.678 144.482 0.204 2.979 8.1 0.9 2.2 1.2 2.0 4.0

0.5 25 158.212 171.764 0.219 3.297 6.5 1.2 2.5 1.4 2.0 4.1

1.0 3 91.187 78.666 0.200 2.097 14 0.10 81.414 74.290 0.209 2.379 30.9 0.7 0.0 0.0 2.0 3.0

1.0 6 112.376 104.646 0.229 2.107 19 0.43 107.823 107.660 0.216 2.590 20.9 1.0 0.8 0.1 2.0 3.8

1.0 15 189.637 205.956 0.310 2.124 30 13.18 140.558 150.621 0.241 2.905 20.6 2.3 1.3 0.2 2.0 4.0

1.0 25 157.894 174.234 0.281 3.182 20.2 3.3 1.5 0.4 2.0 4.1

5.0 3 125.484 121.703 0.261 2.343 13 0.09 81.755 77.670 0.251 2.031 167.6 3.2 0.0 0.0 2.8 3.0

5.0 6 150.929 152.391 0.285 2.704 15 0.34 86.438 83.302 0.276 2.008 170.6 0.7 0.1 0.0 2.8 3.1

5.0 15 234.111 267.276 0.364 2.104 23 10.08 97.044 97.570 0.308 2.045 166.8 1.7 0.3 0.0 2.8 3.3

5.0 25 100.519 102.959 0.314 2.005 166.9 3.5 0.4 0.0 2.8 3.4

Table C.5: Study 5
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Figure C.5: Simulation study 3:MSEη of BoostMixed (y-axis)and mixed model approach
(x-axis)
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MM BoostMixed

c p mseη msef mseσb
mseσǫ Steps Time mseη msef mseσb

mseσǫ Steps Time FalsePos FalseNeg Initial Selected

0.5 3 406.115 134.189 0.027 1.153 8 0.79 399.614 137.878 0.027 1.134 5.1 2.9 0.0 0.0 2.0 3.0

0.5 6 449.401 177.529 0.027 1.155 12 2.77 451.231 195.191 0.028 1.136 5.5 5.1 0.8 0.0 2.0 3.8

0.5 15 590.300 320.097 0.026 1.155 18 28.04 482.218 229.798 0.028 1.134 5.8 0.4 1.0 0.0 2.0 4.0

0.5 25 496.580 245.561 0.029 1.131 5.9 0.6 1.0 0.0 2.0 4.0

1.0 3 409.284 167.122 0.037 1.442 7 0.75 378.237 150.048 0.038 1.460 5.3 0.1 0.0 0.0 2.0 3.0

1.0 6 454.819 213.754 0.038 1.444 12 2.64 403.424 178.154 0.039 1.462 6.2 0.2 0.3 0.0 2.0 3.3

1.0 15 592.514 355.240 0.038 1.443 16 25.53 445.306 223.659 0.040 1.461 7.5 0.4 0.7 0.0 2.0 3.7

1.0 25 465.749 245.175 0.040 1.459 8.0 0.8 0.9 0.0 2.0 3.9

5.0 3 499.925 253.122 0.031 1.442 11 1.03 432.461 232.640 0.032 1.450 74.2 0.9 0.0 0.0 3.0 3.0

5.0 6 541.312 295.061 0.031 1.445 12 2.76 446.733 248.923 0.033 1.450 75.4 1.5 0.1 0.0 3.0 3.1

5.0 15 672.337 428.405 0.031 1.443 16 24.61 462.807 266.004 0.033 1.452 76.1 3.3 0.3 0.0 3.0 3.3

5.0 25 481.958 288.545 0.034 1.451 77.3 5.8 0.4 0.0 3.0 3.4

Table C.6: Study 6
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Figure C.6: Simulation study 4:MSEη of BoostMixed (y-axis)and mixed model approach
(x-axis)
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MM BoostMixed

c p mseη mseσb
mseσǫ Steps Time mseη mseσb

mseσǫ Steps Time FalsePos FalseNeg Initial Selected

0.5 6 55.883 1.049 1.135 23 0.44 63.562 1.941 1.924 4.6 0.0 0.0 2.4 2.0 3.6

0.5 15 86.980 1.077 1.140 30 9.12 78.204 1.924 1.901 5.2 0.1 0.8 2.9 2.0 4.0

0.5 25 85.125 1.918 1.888 5.1 0.1 1.1 3.1 2.0 4.0

1.0 6 71.221 1.079 1.074 18 0.33 79.341 1.945 1.961 11.6 0.1 0.0 1.8 2.0 4.2

1.0 15 105.589 1.117 1.081 29 8.24 87.140 1.935 1.955 11.7 0.2 0.2 1.8 2.0 4.4

1.0 25 91.876 1.931 1.949 11.7 0.3 0.4 1.9 2.0 4.5

5.0 6 94.113 1.136 1.109 11 0.21 78.574 1.872 1.962 79.8 0.3 0.0 0.0 2.9 6.0

5.0 15 125.063 1.152 1.110 17 4.78 80.397 1.866 1.963 79.6 0.9 0.1 0.0 2.9 6.1

5.0 25 81.504 1.862 1.963 79.8 1.4 0.1 0.0 2.9 6.1

Forward

c p mseη mseσb
mseσǫ Time FalsePos FalseNeg Selected

0.5 6 58.894 0.027 0.139 1.084 1.0 4.0 3.0

0.5 15 65.833 0.027 0.140 2.789 1.0 4.0 3.0

0.5 25

1.0 6 81.499 0.027 0.133 1.932 2.0 3.0 5.0

1.0 15 88.720 0.027 0.136 5.915 2.0 3.0 5.0

1.0 25

5.0 6 97.554 0.027 0.132 2.699 4.0 3.0 7.0

5.0 15 106.336 0.031 0.135 11.466 4.0 3.0 7.0

5.0 25

Table C.7: Study 7
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C.2 Choosing an Appropriate Smoothing Parameter and an Appropriate
Selection Criterion

C.2.1 BIC as Selection/Stopping Criterion
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Figure C.7: The distributions of the mean squared errors for different counts of parameters in
the model are presented by boxplots. BIC was used as selection and stopping criterion. The
red points are the means for the mses depending on different lambdas.On the right side the
distribution of the mses of the mixed model approach is plotted. The blue point is the mean
of the mses of the mixed model approach. (a) 3 parameters used (b) 5parameters used (c) 15
parameters used and (d) 25 parameters used.c was chosen to bec = 0.5
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Figure C.8: The distributions of the mean squared errors for different counts of parameters in
the model are presented by boxplots. BIC was used as selection and stopping criterion. The
red points are the means for the mses depending on different lambdas.On the right side the
distribution of the mses of the mixed model approach is plotted. The blue point is the mean
of the mses of the mixed model approach. (a) 3 parameters used (b) 5parameters used (c) 15
parameters used and (d) 25 parameters used.c was chosen to bec = 0.1
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Figure C.9: The distributions of the mean squared errors for different counts of parameters in
the model are presented by boxplots. BIC was used as selection and stopping criterion. The
red points are the means for the mses depending on different lambdas.On the right side the
distribution of the mses of the mixed model approach is plotted. The blue point is the mean
of the mses of the mixed model approach. (a) 3 parameters used (b) 5parameters used (c) 15
parameters used and (d) 25 parameters used.c was chosen to bec = 5
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C.2.2 AIC as Selection/Stopping Criterion
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Figure C.10: The distributions of the mean squared errors for different counts of parameters
in the model are presented by boxplots. BIC was used as selection and stopping criterion.
The red points are the means for the mses depending on different lambdas. On the right side
the distribution of the mses of the mixed model approach is plotted. The blue point is the
mean of the mses of the mixed model approach. (a) 3 parameters used(b) 5 parameters used
(c) 15 parameters used and (d) 25 parameters used.c was chosen to bec = 0.5
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Figure C.11: The distributions of the mean squared errors for different counts of parameters
in the model are presented by boxplots. AIC was used as selection and stopping criterion.
The red points are the means for the mses depending on different lambdas. On the right side
the distribution of the mses of the mixed model approach is plotted. The blue point is the
mean of the mses of the mixed model approach. (a) 3 parameters used(b) 5 parameters used
(c) 15 parameters used and (d) 25 parameters used.c was chosen to bec = 0.1
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Figure C.12: The distributions of the mean squared errors for different counts of parameters
in the model are presented by boxplots. AIC was used as selection and stopping criterion.
The red points are the means for the mses depending on different lambdas. On the right side
the distribution of the mses of the mixed model approch is plotted. The blue point is the mean
of the mses of the mixed model approach. (a) 3 parameters used (b) 5parameters used (c) 15
parameters used and (d) 25 parameters used.c was chosen to bec = 5
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C.3 Linear BoostMixed

We present simulation studies in which the performance of BoostMixed is compared the
the common mixed model. The underlying model is the random intercept model

yit = bi + xT
itβ + ǫit, t = 1, . . . , 5, i = 1, . . . , 80

with xT
it = (xit1, . . . , xitp), wherexits, s = 1, . . . , p a realizations of a random variable

Xit with a uniform distribution with variance 10 for each component andp = 40. The
elements ofβT = (β1, . . . , βp) are set to

βi =





c ∗ 5

i if , i ≤ 5

0 else
.

For the covariates constant pairwise correlation is assumed, i.e.xit has the correlation
structure, i.e.

cor(Xit) =




1 ̺ . . . ̺

̺ 1 . . .
. .. . .. . . . ̺

. . . . . . ̺ 1




.

The constant signalc determines the signal of the covariates. The random effect and the
noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with σ2
ǫ = 2 andbi ∼ N(0, σ2

b )

with σ2
b = 2. The shrinkage parameterλ was set to 100 . The performance of estimators

is evaluated separately for the structural components and variance. By averaging across
100 datasets we consider mean squared errors forη, σ2

ǫ , σ
2
b given by

mseη =
∑n

i=1

∑T
t=1(ηit − η̂it)

2, η̂it = xT
itβ̂, mseβ = ||β − β̂||2,

mseσ2
b

= ||σ2
b − σ̂2

b ||2, mseσ2
ǫ

= ||σ2
ǫ − σ̂2

ǫ ||2.

For a more extensive analysis of BoostMixed six simulation studies with different settings
were made. In all studies 100 datasets were generated

Study 9 - Start setting
The random effect and the noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with
σ2

ǫ = 3 andbi ∼ N(0, σ2
b ) with σ2

b = 3. In the part of the study which is presented the
number of observations has been chosen byn = 100, T = 5. Pairwise correlation was
taken to be̺ = 0.1. Details can be found in Table C.8.
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Study 10 - small variances
The random effect and the noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with
σ2

ǫ = 2 andbi ∼ N(0, σ2
b ) with σ2

b = 1. In the part of the study which is presented the
number of observations has been chosen byn = 80, T = 5. Pairwise correlation was
taken to be̺ = 0.1. Details can be found in Table C.9.

Study 11 - big clusters
The random effect and the noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with
σ2

ǫ = 1 andbi ∼ N(0, σ2
b ) with σ2

b = 2. In the part of the study which is presented the
number of observations has been chosen byn = 50, T = 10. Pairwise correlation was
taken to be̺ = 0.1. Details can be found in Table C.10.

Study 12 - big dataset, small variances
The random effect and the noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with
σ2

ǫ = 2 andbi ∼ N(0, σ2
b ) with σ2

b = 1. In the part of the study which is presented the
number of observations has been chosen byn = 200, T = 5. Pairwise correlation was
taken to be̺ = 0.1. Details can be found in Table C.11.

Study 13 - big dataset, huge variances
The random effect and the noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with
σ2

ǫ = 3 andbi ∼ N(0, σ2
b ) with σ2

b = 3. In the part of the study which is presented the
number of observations has been chosen byn = 200, T = 5. Pairwise correlation was
taken to be̺ = 0.1. Details can be found in Table C.12.

Study 14 - correlated data
The random effect and the noise variable have been specified byǫit ∼ N(0, σ2

ǫ ) with
σ2

ǫ = 3 andbi ∼ N(0, σ2
b ) with σ2

b = 3. In the part of the study which is presented the
number of observations has been chosen byn = 100, T = 5. Pairwise correlation was
taken to be̺ = 0.5. Details can be found in Table C.13.

BoostMixed is compared to the classical mixed model with all covariates (MM) and to
the mixed model with an integrated forward selection (forward). It is quite similar to the
BoostMixed algorithm since one starts with the intercept model. In every step all remain-
ing covariates are fitted separately. The covariate characterized by the best improvement
of the AIC-Criterion is taken into the model and seen as relevant. The selection is stopped
if the complexity criterion can not improved any more. So the extreme case is thatfor
25 covariates with 25 relevant covariates. Here

∑20
i=1 i = 210 models have to be com-

puted for the forward selection. For the simulation study with 20 covariates thenumber
of computed models is quite moderate with up to

∑20
i=14 i = 119 (6 variables selected).

For 100 covariates with 5 relevant covariates nearly 585 models have to becomputed if
6 variables are selected. It seen in Tables C.8 - C.13 that forward selection procedures
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take a very long time. For example in Table C.8 it took averaged 1.8 minutes for 20co-
variates (strength=5) to get an estimate. In comparison the BoostMixed approach took
3.6 seconds to find the relevant variables. But unfortunately a small mountof irrelevant
variables were selected which downgrade the mseη. Along the mean squared error for
the predictor mseη, the mean squared errors for the parameters mseβ , for the noise and
random variance mseσǫ and mseσb

, the steps (Steps) until convergence, the variables that
were selected but have no relevance (FalsePos) and the variables thathave relevance but
were not selected (FalseNeg) were collected and averaged.
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MM BoostMixed

c p mseη mseβ mseσb
mseσǫ Steps Time mseη mseβ mseσb

mseσǫ Selected Steps Time FalsePos FalseNeg

0.5 5 35.812 0.001 0.042 0.257 8.0 0.020 35.804 0.004 0.038 0.248 5.0 10.9 0.010 0.0 0.0

0.5 10 52.825 0.001 0.043 0.257 8.0 0.021 46.832 0.006 0.037 0.248 6.1 12.9 0.163 1.1 0.0

0.5 15 72.676 0.001 0.044 0.264 8.0 0.023 59.206 0.008 0.039 0.255 7.0 13.9 0.025 2.0 0.0

0.5 20 90.250 0.001 0.044 0.262 8.0 0.025 68.894 0.010 0.039 0.252 7.7 15.5 0.043 2.7 0.0

1.0 5 41.067 0.001 0.050 0.227 9.0 0.021 41.107 0.004 0.049 0.227 5.0 10.4 0.505 0.0 0.0

1.0 10 57.843 0.001 0.050 0.226 9.0 0.024 51.628 0.006 0.049 0.224 6.1 12.5 0.011 1.1 0.0

1.0 15 74.845 0.001 0.049 0.224 9.0 0.026 62.178 0.008 0.051 0.223 7.0 13.8 0.018 2.0 0.0

1.0 20 92.257 0.001 0.050 0.223 9.0 0.027 71.030 0.010 0.054 0.227 7.7 15.1 0.034 2.7 0.0

5.0 5 35.824 0.001 0.048 0.238 10.9 0.029 35.820 0.004 0.047 0.231 5.0 12.3 0.008 0.0 0.0

5.0 10 54.534 0.001 0.047 0.242 11.0 0.031 47.547 0.006 0.048 0.235 6.0 15.0 0.021 1.1 0.0

5.0 15 72.608 0.001 0.046 0.243 11.0 0.034 58.047 0.009 0.050 0.234 6.9 15.7 0.023 1.9 0.0

5.0 20 90.507 0.001 0.046 0.241 10.9 0.037 67.930 0.011 0.053 0.231 7.7 16.5 0.060 2.7 0.0

Forward

c p mseη mseσb
mseσǫ Time FalsePos FalseNeg

0.5 5.0 35.812 0.042 0.257 0.234 0.0 0.0

0.5 10.0 45.693 0.041 0.259 0.776 1.0 0.0

0.5 15.0 51.182 0.041 0.264 1.326 1.0 0.0

0.5 20.0 53.436 0.040 0.261 1.869 1.0 0.0

1.0 5.0 41.067 0.050 0.227 0.253 0.0 0.0

1.0 10.0 50.052 0.049 0.226 0.837 1.0 0.0

1.0 15.0 53.781 0.048 0.225 1.427 1.0 0.0

1.0 20.0 56.495 0.048 0.225 2.007 1.0 0.0

5.0 5.0 35.824 0.048 0.238 0.229 0.0 0.0

5.0 10.0 46.174 0.047 0.241 0.767 1.0 0.0

5.0 15.0 50.244 0.046 0.243 1.301 1.0 0.0

5.0 20.0 52.772 0.046 0.238 1.840 1.0 0.0

Table C.8: Study 9
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MM BoostMixed

c p mseη mseβ mseσb
mseσǫ Steps Time mseη mseβ mseσb

mseσǫ Selected Steps Time FalsePos FalseNeg

0.5 5 17.634 0.000 0.020 0.040 8.1 0.021 17.644 0.002 0.020 0.038 5.0 11.4 0.479 0.0 0.0

0.5 10 28.488 0.000 0.020 0.040 8.1 0.024 24.482 0.004 0.022 0.038 6.0 12.5 0.014 1.0 0.0

0.5 15 39.756 0.000 0.021 0.040 8.1 0.025 30.840 0.005 0.024 0.038 6.8 13.6 0.024 1.8 0.0

0.5 20 52.100 0.000 0.022 0.040 8.1 0.026 37.945 0.007 0.026 0.038 7.6 14.2 0.021 2.6 0.0

1.0 5 18.083 0.000 0.018 0.041 9.0 0.025 18.092 0.002 0.018 0.039 5.0 11.1 0.010 0.0 0.0

1.0 10 29.109 0.000 0.018 0.041 9.0 0.027 25.384 0.004 0.020 0.040 6.0 11.8 0.019 1.0 0.0

1.0 15 40.983 0.000 0.019 0.043 9.1 0.029 32.865 0.005 0.021 0.040 6.9 13.3 0.059 1.9 0.0

1.0 20 52.068 0.000 0.018 0.043 9.2 0.031 39.054 0.007 0.023 0.041 7.6 13.9 0.037 2.6 0.0

5.0 5 17.603 0.000 0.019 0.037 11.1 0.029 17.605 0.002 0.019 0.036 5.0 12.7 0.007 0.0 0.0

5.0 10 29.539 0.000 0.019 0.037 11.2 0.032 25.041 0.004 0.020 0.037 6.0 14.2 0.013 0.9 0.0

5.0 15 40.185 0.000 0.019 0.037 11.2 0.034 30.561 0.005 0.022 0.037 6.7 15.6 0.019 1.7 0.0

5.0 20 52.018 0.000 0.020 0.038 11.2 0.035 37.263 0.007 0.024 0.036 7.5 17.1 0.030 2.5 0.0

Forward

c p mseη mseσb
mseσǫ Time FalsePos FalseNeg

0.5 5.0 17.634 0.020 0.040 0.237 0.0 0.0

0.5 10.0 23.661 0.020 0.040 0.790 1.0 0.0

0.5 15.0 26.033 0.020 0.039 1.348 1.0 0.0

0.5 20.0 27.875 0.020 0.040 1.896 1.0 0.0

1.0 5.0 18.083 0.018 0.041 0.256 0.0 0.0

1.0 10.0 24.537 0.018 0.041 0.843 1.0 0.0

1.0 15.0 27.463 0.018 0.041 1.431 1.0 0.0

1.0 20.0 28.871 0.018 0.041 2.015 1.0 0.0

5.0 5.0 17.603 0.019 0.037 0.229 0.0 0.0

5.0 10.0 24.130 0.019 0.037 0.766 1.0 0.0

5.0 15.0 26.375 0.019 0.037 1.305 1.0 0.0

5.0 20.0 28.188 0.019 0.037 1.846 1.0 0.0

Table C.9: Study 10
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MM BoostMixed

c p mseη mseβ mseσb
mseσǫ Steps Time mseη mseβ mseσb

mseσǫ Selected Steps Time FalsePos TrueNeg

0.5 5 25.682 0.000 0.021 0.056 8.0 0.011 25.673 0.002 0.021 0.055 5.0 10.8 0.026 0.0 0.0

0.5 10 37.220 0.000 0.020 0.056 8.0 0.012 33.229 0.004 0.022 0.054 6.1 12.2 0.013 1.1 0.0

0.5 15 48.282 0.000 0.021 0.056 8.0 0.012 39.882 0.005 0.023 0.055 7.0 13.0 0.029 2.0 0.0

0.5 20 58.691 0.000 0.021 0.057 8.0 0.013 45.756 0.006 0.024 0.055 7.7 13.5 0.031 2.7 0.0

1.0 5 23.124 0.000 0.024 0.055 9.0 0.012 23.121 0.002 0.024 0.053 5.0 10.2 0.007 0.0 0.0

1.0 10 33.922 0.000 0.025 0.056 9.0 0.012 30.497 0.004 0.025 0.053 6.1 11.6 0.021 1.1 0.0

1.0 15 43.586 0.000 0.025 0.056 9.0 0.013 35.471 0.005 0.026 0.053 6.8 12.7 0.016 1.8 0.0

1.0 20 55.047 0.000 0.025 0.055 9.0 0.015 42.103 0.006 0.027 0.053 7.6 14.0 0.037 2.6 0.0

5.0 5 23.958 0.000 0.019 0.050 11.0 0.014 23.963 0.002 0.018 0.049 5.0 12.7 0.010 0.0 0.0

5.0 10 34.041 0.000 0.020 0.050 11.0 0.015 29.627 0.003 0.018 0.048 5.8 14.0 0.015 0.8 0.0

5.0 15 44.475 0.000 0.019 0.050 11.0 0.016 35.380 0.005 0.017 0.048 6.5 15.2 0.022 1.5 0.0

5.0 20 54.941 0.000 0.019 0.050 11.0 0.018 41.185 0.006 0.018 0.049 7.3 16.6 0.049 2.4 0.0

Forward

c p mseη mseσb
mseσǫ Time FalsePos FalseNeg

0.5 5.0 25.682 0.021 0.056 0.152 0.0 0.0

0.5 10.0 31.776 0.021 0.056 0.502 1.0 0.0

0.5 15.0 33.995 0.021 0.056 0.854 1.0 0.0

0.5 20.0 35.080 0.021 0.056 1.209 1.0 0.0

1.0 5.0 23.124 0.024 0.055 0.160 0.0 0.0

1.0 10.0 29.118 0.024 0.055 0.532 1.0 0.0

1.0 15.0 31.024 0.024 0.055 0.900 1.0 0.0

1.0 20.0 32.848 0.024 0.055 1.269 1.0 0.0

5.0 5.0 23.958 0.019 0.050 0.151 0.0 0.0

5.0 10.0 29.508 0.019 0.050 0.500 1.0 0.0

5.0 15.0 32.372 0.018 0.050 0.856 1.0 0.0

5.0 20.0 33.442 0.018 0.050 1.203 1.0 0.0

Table C.10: Study 11
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MM BoostMixed

c p mseη mseβ mseσb
mseσǫ Steps Time mseη mseβ mseσb

mseσǫ Selected Steps Time FalsePos TrueNeg

0.5 5 17.906 0.000 0.012 0.022 8.0 0.086 17.904 0.001 0.013 0.022 5.0 11.7 0.010 0.0 0.0

0.5 10 29.418 0.000 0.012 0.023 8.0 0.086 25.838 0.002 0.013 0.023 6.2 12.8 0.018 1.2 0.0

0.5 15 39.788 0.000 0.012 0.023 8.0 0.101 30.654 0.003 0.014 0.023 6.8 13.2 0.027 1.8 0.0

0.5 20 50.718 0.000 0.012 0.023 8.1 0.109 36.056 0.003 0.014 0.023 7.4 13.9 0.037 2.4 0.0

1.0 5 18.852 0.000 0.009 0.014 9.0 0.097 18.863 0.001 0.009 0.014 5.0 11.9 0.011 0.0 0.0

1.0 10 31.039 0.000 0.009 0.014 9.0 0.105 27.166 0.002 0.009 0.014 6.1 12.8 0.018 1.1 0.0

1.0 15 43.521 0.000 0.009 0.014 9.0 0.112 34.495 0.003 0.009 0.014 7.0 13.6 0.028 2.0 0.0

1.0 20 54.969 0.000 0.009 0.014 9.0 0.118 41.612 0.004 0.009 0.014 7.9 15.2 0.041 2.9 0.0

5.0 5 19.249 0.000 0.010 0.018 11.0 0.108 19.249 0.001 0.011 0.018 5.0 13.3 0.011 0.0 0.0

5.0 10 30.618 0.000 0.010 0.018 11.0 0.114 25.986 0.002 0.011 0.018 5.9 14.4 0.019 0.9 0.0

5.0 15 41.515 0.000 0.011 0.018 11.1 0.127 31.936 0.003 0.011 0.018 6.6 15.5 0.031 1.6 0.0

5.0 20 52.582 0.000 0.011 0.018 11.1 0.131 38.552 0.003 0.012 0.018 7.4 16.8 0.046 2.4 0.0

Forward

c p mseη mseσb
mseσǫ Time FalsePos FalseNeg

0.5 5.0 17.906 0.012 0.022 1.061 0.0 0.0

0.5 10.0 24.354 0.012 0.023 3.559 1.0 0.0

0.5 15.0 26.470 0.013 0.023 6.051 1.0 0.0

0.5 20.0 28.035 0.012 0.023 8.427 1.0 0.0

1.0 5.0 18.852 0.009 0.014 1.092 0.0 0.0

1.0 10.0 25.735 0.009 0.014 3.656 1.0 0.0

1.0 15.0 28.345 0.009 0.014 6.268 1.0 0.0

1.0 20.0 29.621 0.009 0.015 8.835 1.0 0.0

5.0 5.0 19.249 0.010 0.018 1.028 0.0 0.0

5.0 10.0 25.667 0.010 0.018 3.453 1.0 0.0

5.0 15.0 27.608 0.010 0.018 5.922 1.0 0.0

5.0 20.0 29.297 0.011 0.018 8.312 1.0 0.0

Table C.11: Study 12
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MM BoostMixed

c p mseη mseβ mseσb
mseσǫ Steps Time mseη mseβ mseσb

mseσǫ Selected Steps Time FalsePos FalseNeg

0.5 5 35.544 0.000 0.020 0.130 8.0 0.086 35.550 0.002 0.020 0.131 5.0 11.3 0.037 0.0 0.0

0.5 10 52.303 0.000 0.019 0.129 8.0 0.095 45.491 0.003 0.021 0.129 6.0 12.7 0.039 1.0 0.0

0.5 15 71.293 0.000 0.020 0.129 8.0 0.099 56.130 0.004 0.022 0.131 6.8 13.9 0.042 1.8 0.0

0.5 20 92.994 0.000 0.019 0.130 8.0 0.107 69.648 0.005 0.023 0.131 7.7 15.3 0.079 2.7 0.0

1.0 5 32.546 0.000 0.023 0.121 9.0 0.098 32.550 0.002 0.022 0.119 5.0 11.8 0.021 0.0 0.0

1.0 10 50.598 0.000 0.023 0.121 9.0 0.102 44.052 0.003 0.023 0.119 6.0 13.2 0.081 1.0 0.0

1.0 15 70.189 0.000 0.024 0.122 9.0 0.110 55.896 0.004 0.024 0.119 6.9 14.3 0.049 1.9 0.0

1.0 20 89.646 0.000 0.023 0.125 9.0 0.117 68.165 0.006 0.024 0.121 7.9 15.8 0.063 2.9 0.0

5.0 5 36.670 0.000 0.022 0.150 11.0 0.110 36.668 0.002 0.021 0.149 5.0 11.9 0.017 0.0 0.0

5.0 10 55.584 0.000 0.022 0.151 10.9 0.115 48.853 0.003 0.022 0.150 6.1 13.8 0.029 1.1 0.0

5.0 15 73.733 0.000 0.022 0.151 11.0 0.123 59.184 0.004 0.022 0.150 6.9 15.7 0.046 1.9 0.0

5.0 20 91.585 0.000 0.022 0.151 11.0 0.130 69.471 0.005 0.023 0.150 7.8 16.3 0.073 2.8 0.0

Forward

c p mseη mseσb
mseσǫ Time FalsePos FalseNeg

0.5 5.0 35.544 0.020 0.130 1.054 0.0 0.0

0.5 10.0 44.564 0.020 0.129 3.512 1.0 0.0

0.5 15.0 49.073 0.020 0.130 5.960 1.0 0.0

0.5 20.0 52.238 0.020 0.131 8.308 1.0 0.0

1.0 5.0 32.546 0.023 0.121 1.084 0.0 0.0

1.0 10.0 42.060 0.023 0.121 3.615 1.0 0.0

1.0 15.0 47.380 0.023 0.121 6.232 1.0 0.0

1.0 20.0 50.036 0.023 0.122 8.804 1.0 0.0

5.0 5.0 36.670 0.022 0.150 1.026 0.0 0.0

5.0 10.0 46.972 0.022 0.150 3.446 1.0 0.0

5.0 15.0 50.664 0.021 0.149 5.902 1.0 0.0

5.0 20.0 52.276 0.021 0.150 8.284 1.0 0.0

Table C.12: Study 13
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MM BoostMixed

c p mseη mseβ mseσb
mseσǫ Steps Time mseη mseβ mseσb

mseσǫ Selected Steps Time FalsePos FalseNeg

0.5 5 38.899 0.001 0.052 0.324 8.0 0.021 38.905 0.005 0.054 0.308 5.0 14.8 0.006 0.0 0.0

0.5 10 54.340 0.001 0.051 0.322 8.0 0.021 47.435 0.007 0.055 0.308 5.9 16.2 0.010 0.9 0.0

0.5 15 74.793 0.001 0.052 0.328 8.0 0.023 59.391 0.010 0.060 0.312 6.9 17.9 0.016 1.9 0.0

0.5 20 92.172 0.001 0.052 0.331 8.0 0.024 67.828 0.012 0.065 0.310 7.5 19.3 0.022 2.5 0.0

1.0 5 36.129 0.001 0.041 0.261 9.0 0.023 36.098 0.004 0.040 0.260 5.0 14.8 0.006 0.0 0.0

1.0 10 53.242 0.001 0.043 0.267 9.0 0.026 45.719 0.007 0.042 0.262 6.0 16.1 0.011 1.0 0.0

1.0 15 70.668 0.001 0.045 0.266 9.0 0.028 55.420 0.009 0.045 0.256 6.8 17.4 0.017 1.8 0.0

1.0 20 87.263 0.001 0.047 0.268 9.0 0.031 63.323 0.011 0.049 0.259 7.5 18.9 0.024 2.5 0.0

5.0 5 39.595 0.001 0.039 0.255 11.0 0.029 39.596 0.005 0.042 0.248 5.0 16.9 0.008 0.0 0.0

5.0 10 57.738 0.001 0.040 0.253 11.0 0.032 49.302 0.008 0.046 0.248 5.9 18.4 0.013 0.9 0.0

5.0 15 74.932 0.001 0.041 0.252 11.0 0.034 58.447 0.010 0.049 0.246 6.7 19.9 0.020 1.7 0.0

5.0 20 94.285 0.001 0.043 0.260 11.0 0.038 68.972 0.013 0.057 0.251 7.6 21.4 0.027 2.6 0.0

Forward

c p mseη mseσb
mseσǫ Time FalsePos FalseNeg

0.5 5.0 38.899 0.052 0.324 0.236 0.0 0.0

0.5 10.0 47.058 0.051 0.325 0.783 1.0 0.0

0.5 15.0 52.103 0.053 0.325 1.335 1.0 0.0

0.5 20.0 54.950 0.054 0.326 1.885 1.0 0.0

1.0 5.0 36.129 0.041 0.261 0.258 0.0 0.0

1.0 10.0 44.834 0.041 0.264 0.858 1.0 0.0

1.0 15.0 48.623 0.041 0.258 1.455 1.0 0.0

1.0 20.0 50.367 0.041 0.261 2.045 1.0 0.0

5.0 5.0 39.595 0.039 0.255 0.235 0.0 0.0

5.0 10.0 48.836 0.040 0.252 0.791 1.0 0.0

5.0 15.0 52.163 0.041 0.252 1.340 1.0 0.0

5.0 20.0 54.772 0.042 0.254 1.879 1.0 0.0

Table C.13: Study 14
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C.4 Boosted GAMM - Poisson

GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 17.922 0.013 17 21.952 0.013 0 428.1 0.00 0.87 78.807 1.516 0

0.5 10 22.258 0.016 63 30.760 0.010 3 237.5 1.89 1.54 78.807 1.516 0

0.5 15 29.117 0.013 87 33.894 0.003 1 247.8 3.17 1.67 78.807 1.516 0

0.5 20 44.925 0.012 1 351.2 4.59 1.52 78.807 1.516 0

0.7 5 18.312 0.011 4 19.536 0.013 3 353.3 0.00 0.28 156.869 2.233 0

0.7 10 22.804 0.013 52 28.404 0.010 1 365.3 2.06 0.44 156.869 2.233 0

0.7 15 31.009 0.012 90 35.508 0.011 5 263.4 2.89 0.67 156.869 2.233 0

0.7 20 45.287 0.010 3 310.2 4.23 0.81 156.869 2.233 0

1.0 5 19.699 0.017 1 24.235 0.009 6 280.9 0.00 0.09 344.090 4.480 0

1.0 10 25.488 0.023 69 39.790 0.009 6 325.0 2.48 0.23 344.090 4.480 0

1.0 15 31.870 0.011 84 60.806 0.040 10 266.9 4.21 0.50 344.090 4.480 0

1.0 20 62.585 0.016 7 285.8 5.54 0.42 344.090 4.480 0

Table C.14: Study 15 - AIC

GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 17.922 0.013 17 27.936 0.007 0 86.8 0.00 1.78 78.742 1.516 0

0.5 10 22.258 0.016 63 34.864 0.006 0 42.6 1.03 2.32 78.742 1.516 0

0.5 15 29.117 0.013 87 36.501 0.002 0 81.8 1.54 2.46 78.742 1.516 0

0.5 20 39.921 0.006 0 71.8 1.82 2.49 78.742 1.516 0

0.7 5 18.312 0.011 4 27.485 0.010 0 112.7 0.00 0.72 155.711 2.199 0

0.7 10 22.804 0.013 52 31.346 0.008 0 121.3 1.13 0.96 155.711 2.199 0

0.7 15 31.009 0.012 90 41.412 0.022 0 76.7 1.60 1.30 155.711 2.199 0

0.7 20 45.684 0.009 0 91.3 1.92 1.50 155.711 2.199 0

1.0 5 19.699 0.017 1 29.894 0.007 0 136.3 0.00 0.27 342.556 4.417 0

1.0 10 25.488 0.023 69 49.314 0.009 0 111.5 1.45 0.58 342.556 4.417 0

1.0 15 31.870 0.011 84 51.388 0.018 0 108.1 2.25 0.75 342.556 4.417 0

1.0 20 58.984 0.011 0 124.4 2.97 0.73 342.556 4.417 0

Table C.15: Study 15 - BIC
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GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 21.392 0.301 16 22.149 0.027 12 252.0 0.00 0.71 87.632 1.729 0

0.5 10 28.089 0.428 77 31.072 0.017 8 226.2 2.09 0.82 87.632 1.729 0

0.5 15 29.445 0.512 88 46.032 0.027 6 220.0 4.33 0.92 87.632 1.729 0

0.5 20 49.440 0.025 7 229.1 4.81 1.43 87.632 1.729 0

0.7 5 19.956 0.386 5 21.600 0.054 12 305.0 0.00 0.18 170.181 2.630 0

0.7 10 26.556 0.512 75 32.915 0.020 7 261.1 2.20 0.24 170.181 2.630 0

0.7 15 32.136 0.442 83 43.682 0.028 6 300.1 3.81 0.50 170.181 2.630 0

0.7 20 53.041 0.036 5 292.5 5.24 0.63 170.181 2.630 0

1.0 5 17.939 0.230 0 17.107 0.042 24 407.4 0.00 0.00 386.764 7.731 0

1.0 10 20.273 0.313 67 21.215 0.021 24 418.3 2.46 0.00 386.764 7.731 0

1.0 15 21.729 0.391 96 29.423 0.074 18 292.8 5.50 0.00 386.764 7.731 0

1.0 20 38.480 0.039 13 47.2 9.01 0.00 386.764 7.731 0

Table C.16: Study 16 - AIC

GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 21.392 0.301 16 27.438 0.028 2 80.0 0.00 1.37 87.632 1.729 0

0.5 10 28.089 0.428 77 33.513 0.021 1 75.0 1.22 1.70 87.632 1.729 0

0.5 15 29.445 0.512 88 35.072 0.050 1 43.3 1.67 1.75 87.632 1.729 0

0.5 20 42.534 0.019 1 53.5 2.15 2.30 87.632 1.729 0

0.7 5 19.956 0.386 5 25.978 0.042 1 99.0 0.00 0.54 170.181 2.630 0

0.7 10 26.556 0.512 75 35.349 0.037 1 120.4 1.24 0.88 170.181 2.630 0

0.7 15 32.136 0.442 83 43.612 0.033 1 114.1 1.94 1.35 170.181 2.630 0

0.7 20 48.953 0.040 2 84.3 2.55 1.31 170.181 2.630 0

1.0 5 17.939 0.230 0 15.600 0.038 12 163.1 0.00 0.00 386.764 7.731 0

1.0 10 20.273 0.313 67 17.748 0.022 13 175.2 1.63 0.00 386.764 7.731 0

1.0 15 21.729 0.391 96 22.958 0.078 12 165.0 4.00 0.00 386.764 7.731 0

1.0 20 24.512 0.040 13 208.5 3.89 0.00 386.764 7.731 0

Table C.17: Study 16 - BIC
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GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 17.519 0.049 3 15.776 0.027 0 68.8 0.00 0.00 76.730 1.813 0

0.5 10 24.663 0.021 72 26.474 0.020 0 44.3 4.21 0.07 76.730 1.813 0

0.5 15 22.629 0.020 86 28.097 0.037 0 31.3 6.79 0.00 76.730 1.813 0

0.5 20 31.836 0.023 0 23.5 7.50 0.20 76.730 1.813 0

0.7 5 15.272 0.041 0 14.470 0.014 1 97.2 0.00 0.00 160.487 3.107 0

0.7 10 14.201 0.015 73 16.964 0.014 1 82.4 4.59 0.00 160.487 3.107 0

0.7 15 23.223 0.026 88 29.946 0.010 1 58.8 8.25 0.00 160.487 3.107 0

0.7 20 35.095 0.013 1 41.3 9.42 0.02 160.487 3.107 0

1.0 5 16.079 0.043 0 14.995 0.024 0 67.9 0.00 0.00 356.200 7.012 0

1.0 10 18.816 0.022 63 21.749 0.028 0 53.3 4.70 0.00 356.200 7.012 0

1.0 15 17.332 0.004 93 23.969 0.003 0 36.4 6.43 0.00 356.200 7.012 0

1.0 20 31.237 0.021 0 36.3 7.92 0.00 356.200 7.012 0

Table C.18: Study 17 - AIC

GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 17.519 0.049 3 16.277 0.028 0 99.8 0.00 0.20 76.730 1.813 0

0.5 10 24.663 0.021 72 22.178 0.022 0 93.1 1.29 0.29 76.730 1.813 0

0.5 15 22.629 0.020 86 19.210 0.038 0 75.3 2.50 0.21 76.730 1.813 0

0.5 20 23.106 0.023 0 109.6 2.97 0.39 76.730 1.813 0

0.7 5 15.272 0.041 0 14.480 0.014 1 130.5 0.00 0.01 160.487 3.107 0

0.7 10 14.201 0.015 73 14.367 0.012 1 158.1 1.56 0.00 160.487 3.107 0

0.7 15 23.223 0.026 88 24.335 0.010 1 178.1 2.83 0.00 160.487 3.107 0

0.7 20 21.650 0.014 1 139.9 3.35 0.05 160.487 3.107 0

1.0 5 16.079 0.043 0 14.695 0.023 0 184.5 0.00 0.00 356.200 7.012 0

1.0 10 18.816 0.022 63 18.487 0.032 0 190.1 1.70 0.00 356.200 7.012 0

1.0 15 17.332 0.004 93 15.105 0.005 0 179.3 2.57 0.00 356.200 7.012 0

1.0 20 21.838 0.017 0 179.5 3.80 0.00 356.200 7.012 0

Table C.19: Study 17 - BIC
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GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 15.200 0.042 0 13.935 0.009 0 44.0 0.00 0.00 152.314 1.749 0

0.5 10 18.149 0.030 62 21.544 0.010 0 39.5 4.37 0.00 152.314 1.749 0

0.5 15 21.046 0.025 89 27.093 0.008 0 14.0 4.18 0.00 152.314 1.749 0

0.5 20 28.871 0.011 0 14.5 4.55 0.08 152.314 1.749 0

0.7 5 14.347 0.038 0 13.339 0.006 0 29.0 0.00 0.00 314.264 2.788 0

0.7 10 17.605 0.030 46 21.334 0.007 0 23.4 3.81 0.00 314.264 2.788 0

0.7 15 20.467 0.010 91 26.793 0.012 0 18.0 4.33 0.00 314.264 2.788 0

0.7 20 29.873 0.006 0 19.4 5.05 0.00 314.264 2.788 0

1.0 5 14.625 0.024 0 13.316 0.010 0 69.2 0.00 0.00 704.219 5.822 0

1.0 10 17.759 0.015 48 16.007 0.009 0 67.4 1.04 0.00 704.219 5.822 0

1.0 15 19.041 0.009 91 16.132 0.003 0 76.9 1.22 0.00 704.219 5.822 0

1.0 20 15.915 0.010 0 71.8 1.30 0.00 704.219 5.822 0

Table C.20: Study 18 - AIC

GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 15.200 0.042 0 14.083 0.009 0 46.4 0.00 0.08 152.314 1.749 0

0.5 10 18.149 0.030 62 15.573 0.008 0 52.8 0.92 0.11 152.314 1.749 0

0.5 15 21.046 0.025 89 17.631 0.007 0 45.5 1.27 0.27 152.314 1.749 0

0.5 20 18.380 0.009 0 50.0 1.60 0.13 152.314 1.749 0

0.7 5 14.347 0.038 0 12.962 0.006 0 61.4 0.00 0.00 314.264 2.788 0

0.7 10 17.605 0.030 46 14.587 0.007 0 69.8 1.04 0.00 314.264 2.788 0

0.7 15 20.467 0.010 91 16.040 0.011 0 71.2 1.33 0.00 314.264 2.788 0

0.7 20 16.577 0.006 0 67.0 1.73 0.00 314.264 2.788 0

1.0 5 14.625 0.024 0 13.132 0.010 0 85.7 0.00 0.00 704.219 5.822 0

1.0 10 17.759 0.015 48 16.043 0.009 0 86.1 1.15 0.00 704.219 5.822 0

1.0 15 19.041 0.009 91 15.228 0.003 0 104.6 1.33 0.00 704.219 5.822 0

1.0 20 16.152 0.010 0 89.0 1.50 0.00 704.219 5.822 0

Table C.21: Study 18 - BIC
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GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 15.820 0.178 0 14.894 0.029 4 48.6 0.00 0.00 159.323 1.952 0

0.5 10 17.842 0.243 75 21.295 0.033 4 39.8 4.29 0.00 159.323 1.952 0

0.5 15 22.977 0.300 95 28.048 0.029 3 19.8 4.60 0.00 159.323 1.952 0

0.5 20 28.214 0.028 4 20.5 4.66 0.01 159.323 1.952 0

0.7 5 17.314 0.192 0 16.817 0.025 3 42.7 0.00 0.00 340.879 3.386 0

0.7 10 17.588 0.232 61 23.918 0.035 2 34.3 3.95 0.00 340.879 3.386 0

0.7 15 27.360 0.317 96 34.503 0.148 2 27.8 5.75 0.00 340.879 3.386 0

0.7 20 19.385 0.025 3 65.5 1.47 0.01 340.879 3.386 0

1.0 5 16.982 0.172 0 16.250 0.031 13 111.5 0.00 0.00 766.881 7.406 0

1.0 10 20.017 0.211 58 18.278 0.019 12 89.0 0.82 0.00 766.881 7.406 0

1.0 15 21.525 0.201 94 18.098 0.058 14 65.5 1.00 0.00 766.881 7.406 0

1.0 20 19.415 0.034 13 100.7 1.66 0.00 766.881 7.406 0

Table C.22: Study 19 - AIC

GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 15.820 0.178 0 15.112 0.029 4 56.6 0.00 0.05 159.530 1.952 0

0.5 10 17.842 0.243 75 15.997 0.031 4 62.4 0.83 0.00 159.530 1.952 0

0.5 15 22.977 0.300 95 20.468 0.028 4 52.8 1.00 0.00 159.530 1.952 0

0.5 20 18.542 0.027 4 61.4 1.42 0.05 159.530 1.952 0

0.7 5 17.314 0.192 0 16.201 0.025 2 76.6 0.00 0.00 342.913 3.398 0

0.7 10 17.588 0.232 61 16.462 0.031 2 77.6 0.92 0.00 342.913 3.398 0

0.7 15 27.360 0.317 96 24.600 0.149 1 74.0 2.00 0.00 342.913 3.398 0

0.7 20 19.366 0.024 2 78.6 1.63 0.00 342.913 3.398 0

1.0 5 16.982 0.172 0 16.092 0.035 12 123.8 0.00 0.00 768.000 7.463 0

1.0 10 20.017 0.211 58 18.305 0.021 14 106.8 0.85 0.00 768.000 7.463 0

1.0 15 21.525 0.201 94 18.019 0.059 13 87.3 1.00 0.00 768.000 7.463 0

1.0 20 20.418 0.034 12 114.1 1.92 0.00 768.000 7.463 0

Table C.23: Study 19 - BIC
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GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 18.272 0.061 0 16.751 0.009 0 44.1 0.00 0.00 150.653 1.819 0

0.5 10 18.791 0.053 59 21.543 0.008 0 37.6 4.49 0.00 150.653 1.819 0

0.5 15 21.249 0.035 91 28.941 0.008 0 27.9 6.44 0.00 150.653 1.819 0

0.5 20 29.053 0.008 0 15.9 4.74 0.03 150.653 1.819 0

0.7 5 16.751 0.051 0 15.742 0.010 0 30.7 0.00 0.00 308.952 3.025 0

0.7 10 19.534 0.037 50 23.283 0.011 0 27.5 4.14 0.00 308.952 3.025 0

0.7 15 23.794 0.064 94 30.113 0.009 0 16.8 3.83 0.00 308.952 3.025 0

0.7 20 28.612 0.010 0 19.8 4.64 0.00 308.952 3.025 0

1.0 5 14.422 0.061 0 13.952 0.013 1 44.4 0.00 0.00 697.360 6.863 0

1.0 10 16.749 0.033 49 21.135 0.011 1 34.1 3.96 0.00 697.360 6.863 0

1.0 15 14.982 0.007 96 19.403 0.048 3 25.0 5.00 0.00 697.360 6.863 0

1.0 20 28.838 0.012 3 28.9 5.33 0.00 697.360 6.863 0

Table C.24: Study 20 - AIC

GAMM bGAMM Reference

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg mseη mseσb
notconv

0.5 5 18.272 0.061 0 16.798 0.009 0 58.0 0.00 0.04 150.653 1.819 0

0.5 10 18.791 0.053 59 16.984 0.008 0 57.2 1.24 0.00 150.653 1.819 0

0.5 15 21.249 0.035 91 17.373 0.009 0 52.4 1.44 0.00 150.653 1.819 0

0.5 20 21.481 0.009 0 57.7 1.97 0.08 150.653 1.819 0

0.7 5 16.751 0.051 0 15.258 0.010 1 67.4 0.00 0.00 308.952 3.025 0

0.7 10 19.534 0.037 50 17.681 0.012 1 71.9 1.24 0.00 308.952 3.025 0

0.7 15 23.794 0.064 94 17.305 0.010 0 56.5 1.33 0.00 308.952 3.025 0

0.7 20 18.891 0.011 1 75.1 1.93 0.00 308.952 3.025 0

1.0 5 14.422 0.061 0 13.318 0.013 2 94.7 0.00 0.00 697.360 6.863 0

1.0 10 16.749 0.033 49 15.072 0.012 3 89.4 1.26 0.00 697.360 6.863 0

1.0 15 14.982 0.007 96 11.559 0.042 2 82.0 2.00 0.00 697.360 6.863 0

1.0 20 16.651 0.012 3 93.6 1.95 0.00 697.360 6.863 0

Table C.25: Study 20 - BIC
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C.5 Boosted GLMM - Binomial

GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 505.805 0.279 0 609.219 3.830 0 195.1 0.00 1.03

0.5 10 942.978 0.300 0 733.998 6.806 1 178.6 1.20 1.06

0.5 15 904.031 0.307 0 1091.575 12.036 0 157.9 2.35 1.08

0.5 20 652.706 0.324 0 833.776 0.304 0 122.3 3.62 1.05

0.7 5 161.824 0.163 0 158.951 0.272 0 172.1 0.00 0.01

0.7 10 288.621 0.203 0 252.622 0.324 1 173.9 1.04 0.01

0.7 15 630.741 0.215 0 328.352 0.365 1 166.5 2.08 0.03

0.7 20 713.179 0.249 0 401.971 0.967 1 143.3 3.48 0.01

1.0 5 883.756 0.267 0 430.694 0.346 1 196.9 0.00 0.03

1.0 10 1226.259 0.298 0 617.398 0.724 1 138.9 1.46 0.02

1.0 15 1479.220 0.326 0 808.421 1.958 1 123.1 3.31 0.02

1.0 20 2640.851 0.343 1 1102.831 4.932 2 114.8 5.08 0.02

Table C.26: Study 21 - AIC

GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 505.805 0.279 0 610.542 2.433 0 200.8 0.00 1.44

0.5 10 942.978 0.300 0 650.625 3.250 0 166.6 0.42 1.44

0.5 15 904.031 0.307 0 673.830 3.366 0 155.9 0.69 1.45

0.5 20 652.706 0.324 0 830.624 5.782 1 139.8 1.07 1.46

0.7 5 161.824 0.163 0 163.677 0.282 0 164.1 0.00 0.04

0.7 10 288.621 0.203 0 235.837 0.308 1 172.7 0.55 0.03

0.7 15 630.741 0.215 0 277.287 0.349 1 131.6 1.08 0.03

0.7 20 713.179 0.249 0 342.036 0.349 1 133.4 1.70 0.03

1.0 5 883.756 0.267 0 430.694 0.351 1 220.2 0.00 0.07

1.0 10 1226.259 0.298 0 513.985 0.676 1 197.4 0.81 0.06

1.0 15 1479.220 0.326 0 639.968 1.897 0 127.5 2.03 0.05

1.0 20 2640.851 0.343 1 874.884 3.928 2 104.8 3.41 0.06

Table C.27: Study 21 - BIC
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GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 69.168 0.661 0 83.962 0.248 0 163.5 0.00 0.04

0.5 10 137.148 0.722 0 124.377 0.277 0 167.8 0.74 0.06

0.5 15 225.064 0.768 0 152.428 0.306 0 168.2 1.63 0.06

0.5 20 339.263 0.832 0 195.905 0.373 0 161.6 2.64 0.06

0.7 5 196.078 1.008 0 207.807 0.550 0 255.3 0.00 0.08

0.7 10 437.570 1.042 0 291.958 0.660 0 206.2 1.18 0.03

0.7 15 590.907 1.102 1 353.126 1.012 0 165.7 2.56 0.04

0.7 20 777.063 1.191 0 459.025 2.068 1 134.3 4.36 0.07

1.0 5 890.850 1.237 0 381.598 0.678 0 157.0 0.00 0.03

1.0 10 2177.524 1.291 0 495.011 1.110 0 147.1 1.33 0.03

1.0 15 3095.759 1.336 0 868.701 2.516 0 119.5 3.34 0.03

1.0 20 2829.335 1.387 0 1041.733 2.766 4 117.5 4.88 0.05

Table C.28: Study 22 - AIC

GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 69.168 0.661 0 92.200 0.213 0 177.4 0.00 0.14

0.5 10 137.148 0.722 0 123.918 0.247 0 177.4 0.26 0.15

0.5 15 225.064 0.768 0 135.733 0.213 0 170.5 0.70 0.17

0.5 20 339.263 0.832 0 152.804 0.281 0 176.4 0.96 0.18

0.7 5 196.078 1.008 0 233.679 0.557 0 256.1 0.00 0.13

0.7 10 437.570 1.042 0 266.187 0.685 0 195.9 0.54 0.09

0.7 15 590.907 1.102 1 319.132 0.811 0 173.5 1.24 0.09

0.7 20 777.063 1.191 0 353.330 1.200 2 155.6 1.95 0.11

1.0 5 890.850 1.237 0 399.608 0.747 0 154.3 0.00 0.05

1.0 10 2177.524 1.291 0 447.823 1.122 0 134.8 0.82 0.04

1.0 15 3095.759 1.336 0 720.313 1.403 0 127.8 2.00 0.05

1.0 20 2829.335 1.387 0 939.573 3.226 1 109.0 3.17 0.04

Table C.29: Study 22 - BIC
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GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 75.410 0.014 0 76.611 0.070 0 113.0 0.00 0.00

0.5 10 121.737 0.018 0 101.686 0.067 0 97.9 0.72 0.00

0.5 15 173.560 0.026 0 119.413 0.067 0 124.2 1.68 0.01

0.5 20 254.561 0.027 0 145.157 0.082 0 111.4 2.73 0.01

0.7 5 103.782 0.049 0 140.968 0.146 0 163.9 0.00 0.02

0.7 10 193.702 0.064 0 183.950 0.148 0 178.1 0.99 0.02

0.7 15 299.595 0.087 0 217.021 0.154 0 161.2 2.01 0.01

0.7 20 463.942 0.106 0 275.414 0.165 0 137.0 3.57 0.00

1.0 5 260.046 0.188 0 277.874 0.202 0 225.2 0.00 0.04

1.0 10 606.771 0.215 0 366.292 0.235 0 153.1 1.28 0.00

1.0 15 1170.769 0.241 0 487.435 0.385 0 135.8 3.13 0.02

1.0 20 2074.060 0.273 1 661.705 0.562 0 104.8 5.00 0.00

Table C.30: Study 23 - AIC

GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 75.410 0.014 0 79.368 0.065 0 101.0 0.00 0.04

0.5 10 121.737 0.018 0 87.911 0.070 0 99.0 0.29 0.04

0.5 15 173.560 0.026 0 109.611 0.088 0 111.8 0.65 0.05

0.5 20 254.561 0.027 0 117.490 0.087 0 110.0 1.10 0.05

0.7 5 103.782 0.049 0 137.540 0.145 0 163.5 0.00 0.02

0.7 10 193.702 0.064 0 159.741 0.154 0 146.2 0.50 0.02

0.7 15 299.595 0.087 0 190.079 0.153 0 151.2 1.01 0.03

0.7 20 463.942 0.106 0 229.323 0.160 0 118.1 1.74 0.00

1.0 5 260.046 0.188 0 277.252 0.188 0 213.4 0.00 0.04

1.0 10 606.771 0.215 0 332.720 0.236 0 184.2 0.78 0.00

1.0 15 1170.769 0.241 0 475.836 0.270 0 137.5 2.05 0.01

1.0 20 2074.060 0.273 1 533.623 0.344 1 134.2 3.43 0.00

Table C.31: Study 23 - BIC
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GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 72.003 0.031 0 90.400 0.058 0 101.2 0.00 0.00

0.5 10 146.845 0.038 0 120.603 0.058 0 116.6 0.87 0.00

0.5 15 210.027 0.058 0 151.121 0.075 0 115.3 1.51 0.00

0.5 20 283.818 0.071 0 187.371 0.074 0 138.1 2.37 0.00

0.7 5 141.793 0.142 0 146.673 0.126 0 124.4 0.00 0.01

0.7 10 279.357 0.161 0 221.064 0.159 0 114.6 0.76 0.01

0.7 15 416.436 0.165 0 268.429 0.207 0 95.2 1.66 0.01

0.7 20 696.907 0.187 0 304.783 0.283 0 111.9 2.72 0.01

1.0 5 673.332 0.256 0 534.183 0.325 1 134.9 0.00 0.01

1.0 10 1906.076 0.251 0 537.176 0.335 1 138.7 1.32 0.01

1.0 15 3563.036 0.277 0 679.513 0.832 0 130.6 2.77 0.02

1.0 20 4198.591 0.301 0 1056.651 1.328 0 111.4 4.48 0.01

Table C.32: Study 24 - AIC

GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 72.003 0.031 0 87.475 0.056 0 100.5 0.00 0.02

0.5 10 146.845 0.038 0 102.632 0.066 0 102.6 0.23 0.02

0.5 15 210.027 0.058 0 119.176 0.059 0 98.2 0.36 0.02

0.5 20 283.818 0.071 0 123.898 0.077 0 106.2 0.55 0.02

0.7 5 141.793 0.142 0 141.322 0.123 0 123.5 0.00 0.01

0.7 10 279.357 0.161 0 170.764 0.152 0 112.5 0.25 0.01

0.7 15 416.436 0.165 0 220.872 0.161 0 106.4 0.57 0.01

0.7 20 696.907 0.187 0 244.113 0.161 0 120.7 0.83 0.01

1.0 5 673.332 0.256 0 532.380 0.336 1 128.6 0.00 0.02

1.0 10 1906.076 0.251 0 535.680 0.353 0 114.1 0.64 0.02

1.0 15 3563.036 0.277 0 636.291 0.504 0 105.7 1.49 0.02

1.0 20 4198.591 0.301 0 698.534 0.509 0 139.6 2.88 0.2

Table C.33: Study 24 - BIC
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GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 75.597 0.663 0 89.526 0.217 0 109.8 0.00 0.01

0.5 10 134.710 0.688 0 109.934 0.198 0 113.3 0.67 0.01

0.5 15 200.426 0.694 0 147.711 0.214 0 116.4 1.41 0.01

0.5 20 309.023 0.759 0 176.625 0.231 0 150.9 2.27 0.01

0.7 5 162.585 0.921 0 215.827 0.408 0 198.2 0.00 0.02

0.7 10 279.924 0.952 0 244.586 0.499 0 185.7 0.86 0.02

0.7 15 415.746 0.979 0 286.309 0.526 0 168.7 1.77 0.00

0.7 20 603.542 1.027 0 328.878 0.572 0 164.2 2.84 0.00

1.0 5 996.046 1.203 0 562.277 0.689 0 187.0 0.00 0.00

1.0 10 1944.526 1.244 0 589.615 0.672 0 116.0 1.43 0.00

1.0 15 4028.865 1.259 0 922.077 1.006 2 105.0 3.14 0.00

1.0 20 4950.561 1.299 0 1045.734 1.493 2 106.1 4.43 0.02

Table C.34: Study 25 - AIC

GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 75.597 0.663 0 94.786 0.215 0 110.4 0.00 0.05

0.5 10 134.710 0.688 0 107.229 0.199 0 113.6 0.20 0.05

0.5 15 200.426 0.694 0 117.090 0.219 0 113.3 0.41 0.05

0.5 20 309.023 0.759 0 134.776 0.205 0 122.3 0.62 0.05

0.7 5 162.585 0.921 0 205.430 0.409 0 199.9 0.00 0.03

0.7 10 279.924 0.952 0 227.562 0.447 0 209.3 0.35 0.01

0.7 15 415.746 0.979 0 248.913 0.521 0 206.7 0.65 0.01

0.7 20 603.542 1.027 0 255.406 0.521 0 187.0 1.04 0.01

1.0 5 996.046 1.203 0 549.455 0.699 0 178.5 0.00 0.00

1.0 10 1944.526 1.244 0 566.077 0.691 0 127.8 0.85 0.00

1.0 15 4028.865 1.259 0 836.432 0.729 2 123.1 1.88 0.00

1.0 20 4950.561 1.299 0 838.410 1.135 1 103.9 2.79 0.00

Table C.35: Study 25 - BIC
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GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 61.184 0.011 0 80.679 0.064 0 60.9 0.00 0.00

0.5 10 115.029 0.009 0 103.594 0.067 0 71.2 0.67 0.00

0.5 15 161.572 0.013 0 118.355 0.067 0 71.8 1.30 0.00

0.5 20 219.242 0.012 0 135.897 0.062 0 63.7 2.01 0.00

0.7 5 102.948 0.067 0 121.804 0.071 0 106.5 0.00 0.00

0.7 10 197.693 0.071 0 194.875 0.079 0 118.3 0.76 0.00

0.7 15 299.296 0.081 0 207.587 0.067 0 123.0 1.53 0.00

0.7 20 391.835 0.088 0 257.841 0.087 0 129.8 2.49 0.02

1.0 5 220.248 0.156 0 250.653 0.156 0 182.7 0.00 0.01

1.0 10 482.936 0.169 0 325.853 0.192 0 160.6 1.17 0.00

1.0 15 858.955 0.188 0 412.780 0.221 0 110.3 2.56 0.00

1.0 20 1116.216 0.203 0 557.111 0.274 0 117.0 4.36 0.00

Table C.36: Study 26 - AIC

GLMM bGLMM

c p mseη mseσb
notconv mseη mseσb

notconv Steps falsepos falseneg

0.5 5 61.184 0.011 0 80.679 0.064 0 61.2 0.00 0.00

0.5 10 115.029 0.009 0 90.256 0.068 0 63.1 0.25 0.00

0.5 15 161.572 0.013 0 92.554 0.068 0 64.0 0.41 0.00

0.5 20 219.242 0.012 0 99.579 0.068 0 65.2 0.62 0.00

0.7 5 102.948 0.067 0 136.216 0.075 0 100.6 0.00 0.00

0.7 10 197.693 0.071 0 175.618 0.071 0 85.9 0.27 0.00

0.7 15 299.296 0.081 0 194.787 0.081 0 107.1 0.59 0.00

0.7 20 391.835 0.088 0 210.871 0.092 0 127.1 0.89 0.00

1.0 5 220.248 0.156 0 252.390 0.160 0 196.0 0.00 0.01

1.0 10 482.936 0.169 0 285.406 0.138 0 142.7 0.60 0.00

1.0 15 858.955 0.188 0 316.506 0.178 0 143.0 1.17 0.00

1.0 20 1116.216 0.203 0 361.343 0.258 0 133.6 1.97 0.00

Table C.37: Study 26 - BIC
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