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Notation

Mixed model notation

yie =ahB+ 2Kbi+ e = xﬁﬁ—&—Z;:l Zitjbgj) + €t ie{l,...,n} te{1,...,T;}
Yi = X,0+ Zib; + €, ie{l,...,n}

y  =XB+Zbte=XB+Y 5 Z;bY +e

Y(i) ng;)ﬂ—l-za)b—&-e(i),ie{L...,N}

Yit Response of clustérat observatior
h(.) Response function, inverse of link-functign
Tit Design vector for fixed effects (cluster i, measurement t)
25 =[zi1,...,20c]  design vector (cluster i, measurement t)
X; Design matrix for fixed effects ( clusteri)
Z; Design matrix for random effects ( cluster i)
Z=(zF,...,Zz""  Design matrix for random effects ( stacked version )
n Clusters in total
XT=(xT, ...,XF) Design matrix for fixed effects (complete dataset)
7 Design matrix for random effects (usually block-diagonal versiompmlete dataset)
Z = bdiag Z1, ..., Z,) in longitudinal settings
) i-th row of X
) i-th row of Z
) i-th element ofy
BT = (B1,...,Bp) Parameter vector for fixed effects
b; Vector of random effects for cluster
=7, ..., b7 Vector of random effects

N=Y" T Observations in total



Notation

p(b; p) Mixing density
p(a; p) Standardized mixing density with standardized random variable
p Parameter vector for the covariance structure of random effects
0 p and nuisance parameters
Q(p) Covariance matrix for the random effdgt
Q(p) Covariance matrix for the random effdct
Vi = V;(0) Marginal covariance of the cluster
V:=V(0) Marginal covariance over all clusters
0 Correlation between two covariates
70 Density or conditional density af or y given b
4=, Dimension ofb, dimension ob'?)
E(.) Expectation
o? Error term,e;; ~ N(0,02)
0 d-dimensional vector of parameters for variance components
trace) Trace of a matrix
fly,b) = f(ylb)p(b; p)  Joint density ofy andb
rows(A, i, 7) Submatrix of matrix4 from row: to row j
elem(y, i, j) Subvector of vectoy from element to element;
vec(A) Symmetric direct operator on symmetric matrix
Vector from the lower triangular entries of mattik
vech(A) Vech operator on symmetric matrik
Vector from rows of matrixA.
c Random design matrix hascomponents of the
Z (5 Partitioned random effect design matrix associated with component

b Partitioned random effect associated with component



Notation

Additve mixed model notation

Yit :xﬁﬁ—&—zgf;l ¢£j0{j +2hbi e ie€l,...,n
Yi = X8+ Z;n:l i + Zibi + € = XiB+ Qi+ Zib; + €,
Y =XpB+dPa+Zb+e =XB+ 3, Qo +Zb+te

te{l,...,Ti}
i{el,...,n}

Yoy =B+ o+ zinb+ e

g ()

Uity
agjy(wity)

M

m

6 ()

OV = (0 (), 5 )
bitj = &9 (wit;)

ul; = (Witg, ..., ir,j)
Dij = ®ij = (birj,-- -, $imii) "

u

gw"vunj

=

U T T )
D=9, = ((I)’{jv .. -7(I)£j)T

4

i =0 = (i, ..., Pim)

U(i)j

A

Xq:.i = [Xu (bi17 ey q)zm]
o) =9 () @8 ()
o)

D)

= xa)ﬂ + Z£1(¢<j)(u(i)‘j))Taj + z(Ti>b+ €qy,t €{1,...

N}

= xa)ﬁ—‘r Z;'n:1 (ﬁ(j;)jaj + Z(q;)b—f— e(i),i S {1, .. .,N}

Unspecifiedj-th function

Measured covariate for the j-th unspecified

function in cluster i at measurement t

Function evaluation of the measured covariate for

j-th functionay; (.) in cluster i at measurement t
Dimension of the spline basis

Number of unspecified functions

s-th basis function for variable |

Basis functions for variable j (M-dimensional, vector)
Function evaluation of covariate.; (vector)

Vector of covariates needed for functigin cluster i

Matrix for elementwise basis Function evaluations for the
j-th function of covariates.;.;

Vector of covariates needed for functigricomplete dataset)
Matrix for elementwise basis function evaluations

for the j-th function of covariates.. ;

Matrix for basis function evaluation for

Covariatesu; 1, . . . , u;.m in clusters

Matrix for basis function evaluation of all covariates
M-dimensional vector of basis coefficients needed for
approximationx (u) = (¢) " a;

Vector of all basis coefficients

i-th row of matrix® .

Penalty matrix for all components including fixed effects
i-th entry of vectoru. ;

Smoothing parameter

Generalized design matrix for fixed and smooth effects
Elementwise Kronecker product ¢f” (.) and¢)(.)
Coefficients for the j-th smooth component

i-th row of @ ;



Notation

Boosted additive mixed model notation

Xiry = [Xi, ®ir]
K-

by

CCIPYORPIORNG!
0

i(r)

MY

HY

e

Ji

i

MO = MY

0 = i)

6 =Gl

k

Rl‘ = [‘I)ﬂoq, .

REZ) = [@ilagl), .

7\ =12, R{"]

X =Xy

M.(r)

) ézkak]

o @ikag)

T T
?Xn('r)]

]

Designmatrix for the-th component including fixed effects

Penalty matrix for the--th component including fixed effects

Weak learner for the-th component including fixed effects in a boosting step
Ensemble estimates in tth¢h boosting step

Predictor using the-th component in boosting stépn cluster:

Projection matrix for residuals on componeruf [-th boosting step

to the weak learnet,, given the selection before

Local hat matrix for projection for residuals on componeiof I-th boosting step
to the predictorf}ﬁl), given the selection before

Global hat matrix for projection foy on component in thel-th boosting step
to the predictorf}ﬁ”, given the selection before

Selected component in tlieéh boosting step

Selection criterion in thé-th boosting step using the trace@f"

Short notation, ifj was selected in theth boosting step

Short notation, ifj was selected in theth boosting step

Short notation, ifj was selected in theth boosting step

Number of flexible splines

Random design matrix for flexible splines

Random design matrix for flexible splines in theéh boosting step

Design matrix for unspecified functions

Random design matrix for clustéfor parametric and smooth covariates
Design matrix for component(complete dataset)

Predictor with component (complete dataset)
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Chapter 1

Introduction

1.1 Mixed Models and Boosting

The methodology of linear mixed model in combination with penalized splines has be
come popular in the past few years.

The idea of mixed models was originally developed in 1953 by Henders&8]1¥He
derived the mixed models to analyze longitudinal data by assuming a latensarmet
structure in the data. The response was continuous and the structuassuased to be
linear. An example for longitudinal data may be patients with many repeated ragasu
on each patient. The latent structure in this case may be on the individubbfee
patient. So individuality is getting important in this context. For the statistical aisalys
the observed covariates are considered to be conditionally indepegidentthe patient
and the patients are themselves are assumed to be independent. The latarestnay
be only at the individual level of the patients (random intercept) or indadidevel and
slope of these patient (random intercept and slope). A nice overviewixed models
is given by Verbeke & Molenberghs (2001). Another way of modelingyitudinal data
with weak assumptions is using the generalized estimation equations (GEH)jssag

& Zeger (1986). In this thesis, only mixed models are investigated.

The influence of covariates is often reflected insufficiently becausesthered parame-
trization for continuous covariates is usually very restrictive. For modeelsa@ntinuous
covariates, a huge repertoire of nonparametric methods have bedopael/evithin the
past few years. The effect of a continuous covariate on the respsrspecified by a
smooth function. A smooth function is meant to be sufficient differentiabl@rédenta-
tives of the nonparametric methods are kernel regression estimatqQiSasser & Muller
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(1984), Staniswalis (1989), for regression splines is Eubank (1$8&dman & Silver-
man (1989), for local polynomial fitting is Hastie & Loader (1993), Fan & @lifi(1996)
and for smoothing splines is Silverman (1984), Green (1987). A nicevigyeilon non-
parametric methods may be found in Simonoff (1996).

The used representation for smooth effects in this thesis combines thenlifigproaches
for spline regression. When polynomial splines are used one has tiflyghecdegree of
its polynomial pieces as well as the decomposition of the range by a finite nwhber
knots. The decomposition of polynomial splines can be expressed bytar @pace.
There exists a basis representation for every element of this spaceisWiay the ap-
proximated smooth effects can be parameterized. The regression splibe zduced to

a strict parametric structure, which is a great benefit of this approach.

The goodness of the approximation by polynomial splines is determined byetivend
position of the range. A large number of knots increase the fit of the datoibdata
with huge noise, the estimated curves are very wiggly. One way to contreatiability
of the estimated function is the adaptive selection of knots and positionsyiseengn
(1991) and Stone, Hansen, Kooperberg & Truong (1997). An atemapproach is to
use penalization techniques. In the latter case the penalty terms are focuedbasis
coefficients of the polynomial spline representation. Two concepts fualjzation have
been established in recent years. One concept encompasses theetipaver series as
suggested in Ruppert, Wand & Carroll (2003). In this case, one usesdile penalty.
The other concept is maintained by Eilers & Marx (1996). They use thpliBesbasis
together with a penalization of neighboured basis coefficients which is daikalines.
Both concepts have the advantage that the estimation of parameters camihedby
the maximizing of a penalized likelihood function.

The crucial part of a penalized likelihood is that the smoothing parametghich con-
trols the variability of the estimated functions, has to be optimized . One ideastadge
by Eilers and Marx (Eilers & Marx (1996)) is to optimize the AIC criterion whrolea-
sures the likelihood of the model given the fixed smoothing paramet&he likelihood

is penalized by the effective degrees of freedom in the model, see Hadtilesirani
(1990). Another idea is to use the cross-validation criterion which is a ctatipoal bur-
den in many data situation. Another driven criterion is the generalized gedistion
criterion established by Craven & Wahba (1979). Recent investigatioiisi® criterion
are documented in Wood (2004). Another strategy to optimize this tuning pemaise
based on mixed models.

The reason for the popularity of mixed models in the 90’s is the comment of $peed
(Speed (1991)) on Robinson’s article ( Robinson (1991)) on BLUR&oNS. Terry Speed
states that the maximization of a penalized likelihood is equivalent to the solufitims o
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BLUP equations in a linear mixed model. These statements were picked up iy Wan
(2000), Parise, Wand, Ruppert & Ryan (2001), Ruppert, Wand &allg§2003) and Lin

& Zhang (1999). So nowadays smoothing is often connected to penapliedssor it is
seen as a suitable method to find reliable estimates for the smoothing parameter.

Boosting originates in the machine learning community where it has been ppss
technique to improve classification procedures by combining estimates witighee
observations. Recently it has been shown that boosting is also a way of ittiadditive
expansion in basis functions when the single basis functions represeastiits of one it-
eration of the boosting procedure. The procedure is quite similar to the meftcatlient
descent by the use of specific loss functions, see Breiman (1999Yi@olian, Hastie &
Tibshirani (2000). Since it has been shown that reweighting cornelsoim minimizing a
loss function iteratively (Breiman (1999), Friedman (2001)), boostirggtdeeen extended
to regression problems in & -estimation framework by Bihlmann & Yu (2003). Tutz
& Binder (2006) introduced the likelihood-based boosting concept lfddirzds of link
functions and distributions.

The aim of this thesis it to combine the mixed model methodology with boosting ap-
proaches. Especially the concept of componentwise boosting is intedEre in each
iteration step, only one variable is allowed to be updated. This is a usefidgstri& one

tries to optimize a huge number of continuous variables. It is a very robusiothén
terms of algorithmic optimization. Part of the algorithmic structure is that one can do
variable selection since among all covariates, only one is selected to be opitintiizh

is a nice add-on in the boosting methodology.

Often the application of an additive mixed model is too restrictive becausechaster
may have its own specific function. So one idea is to compute a joint smooth fanctio
of the continuous covariates and a random, cluster-specific smooth fuastsuggested
by Ruppert, Wand & Carroll (2003), Wu & Liang (2004) or Verbyla, i3y Kenward
& Welham (1999). If a joint additive structure with a random intercept issufficient
to capture the variation of subjects, then one may extend the model by clpstdfics
modifications on the joint spline function, which is realized by a random tefidds kind
of model is simply structured and needs only two additional parameters, fia@ca of
the slope and the covariance between slope and intercept. Itis tharefpmarsimonious
and allows simple interpretation. By using few additional parameters it hadiactlis
advantage over methods that allows subjects to have their own functionngiekimany
functions as subjects (see for example Verbyla, Cullis, Kenward & Welti&99) and
Ruppert, Wand & Carroll (2003)).

An adequate formulation, investigation and interpretation of regressionisioeeds an
explicit consideration of the feature space of response variables. Sumria areas the
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assumption of a normal distribution, which is part of the classical regressaulels, has

to be generalized to regression models for discrete responses. Thicatatncept for
these regression models was build by Nelder & Wedderburn (1972y. imtreduced the
Generalized Linear ModelsMany publications based on these models were published
by Kay & Little (1986), Armstrong & Sloan (1989) in the medical researcmetniya
(1981), Maddala (1983) in economics and many other areas.

Heavy numerical problems arise if one tries to do inference in generalizeal Imodels
for longitudinal data. And the problems are not only restricted to the giretdinear
mixed models. In the generalized estimation equations, the optimization is not & trivia
thing, see Liang & Zeger (1986). These problems originate in the facthbanharginal
distribution is not analytically accessible for generalized linear mixed modélsrefor
complicate integrals have to be solved. In the mixed model one can do analyticah-
tion by using some nice properties of gaussian random variables. Buténajzed linear
mixed models numerical integration has to be done. This can be either dosegythe
Laplace approximation (Breslow & Clayton (1993), Schall (1991), WgHin(1994)) us-
ing a normal approximation or either using integration points based methodsdikesG
Hermite quadrature (Hedeker & Gibbons (1996), Pinheiro & Bates (3985 Monte-
Carlo integration (McCulloch (1997), McCulloch (1994), Booth & Hob@r999)). One
may use direct methods or the EM algorithm to get parameter estimates.

In the context of categorial the adequacy is not only restricted to thedssation of a
discrete response structure. Properties of the variables are oftectedfin a bad way
using linear assumptions on the covariates, see Lin & Zhang (1999). Aajairof this
thesis is to extend generalized linear mixed models by nonparametric effaetbvd re-
maining strategies for optimization is on the one side the approach discusBegbpgrt,
Wand & Carroll (2003) and on the other side boosted generalized searp#ric mixed
models pictured in this thesis.

1.2 Guideline trough This Thesis

Chapter two gives a short introduction of linear mixed models. The diffeteategies of
optimizing a linear mixed model as well as a robust variant of a linear mixed naodel
proposed.

The semi-parametric mixed models are part of the third chapter. The nomg@i@amod-
els are sketched briefly as well as how nonparametric approachearatieth. It is men-
tioned that which of the problems arise if nonparametric modeling is used.
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In the fourth chapter, the semi-parametric mixed models are extended to thieffaked
models where all clusters have a common development of the covariate@ndlester
has its distinct modifications in the sense that the effect of a covariate angtstened or
attenuated individually.

The generalized linear mixed models are the topic of the fifth chapter. Awiewepf
the most popular methods are given here since there is no canonic watnatesa
generalized linear mixed model.

The sixth chapter deals with generalized semi-parametric mixed models. Tlezilaap
approximation is used to implement the boosting idea into the generalized linear mixed
model framework. In simulation studies the results are compared to the optimizid mo
based on the mixed model approach for additive models (see Rupped, &/@arroll
(2003)).

A short summary on the results, the given problems as well as an outloolrierf
development and questions are given which have been accumulated outise of this
thesis in the last.



Chapter 2

Linear Mixed Models

2.1 Motivation: CD4 Data

The data was collected within the Multicenter AIDS Cohort Study (MACS), tviod-
lowed nearly 5000 gay or bisexual men from Baltimore, Pittsburgh, ChieagoLos
Angeles since 1984 (see Kaslow, Ostrow, Detels, Phair, Polk & Rinal@®7(1 Zeger
& Diggle (1994)). The study includes 1809 men who were infected with HIStady
entry and another 371 men who were seronegative at entry and seeosal during the
follow-up. In the study 369 seroconverters £ 369) with 2376 measurements in total
(N = 2376) were used and two subjects were dropped since covariate informaton wa
not available. The interesting response variable is the number or pafc€m4 cells
(CD4) by which progression of disease may be assessed. Covaridteteiyears since
seroconversion (time), packs of cigarettes a day (cigarettes), tieci@alrug use (drugs)
with expression yes or no, number of sexual partners (partnems)aagg) and a mental
illness score (cesd).

In this study, we have a repeated measurement design because evepngerter has
several measurement of covariates at different time points. Fafttheeroconverterd;;
repeated measurement were observed. For example the first senteonvthe dataset
has three repeated measurements, so in this cdse=s3. The described observations
for the i-th seroconverter at repeated measuremeanh then be addressed 6y)4;, for
the response and for the corresponding covariajes, partners;;, drugs;:, cesd; and
timeg.

If one has only one observation on each seroconverter,thenl for all seroconverters
(s € 1,...,n). Soone can use standard cross sectional methods, because theemeasu
error for each seroconverter can be assumed to be independené dasé of repeated
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measurementslf # 1) one has clusterd observations with error teem,( . . , €;7,) for
thei-th person.

One approach to modeling data of this type is based on mixed models. Herestre ob
vations CD4,,t = 1,...,T;) for thei-th seroconverter are assumed to be conditional
independent. In other words, given the level of i@ seroconverter, the errors for re-
peated measurements of this person may assumed to be independent. ridverulekel

for thei-th seroconverter is expressed in mixed models by the so called randooeptter
b;. A common assumption on random intercepts is that they are Gausssian thsitribu
with b; ~ N(0,07). o} is the random intercept variance.

A mixed model with linear parameters age, partners, drugs, time and cesolrnesf
given by
C D4y = Bo + Prage;s + Badrugsi + Bstime;; + by + €;¢

fori =1,...,nandt = 1,...,T;, wheree; is the error term. This can also be rewritten
in vector notation for the-th seroconverter as

CD4; = By + Prage; + Papartners; + Bsdrugs; + Batime; + 11,b; + €;

where CD4T = (CD4j,...,CD4;r,), agel = (ageq,...,age;ir,), drugs! =
(drugs;i, . .., drugs;r,), tz’meiT = (time;1, ..., time;r;) andeiT = (€i1,..-,6&1,). 113

is a vector of the lengtid; with ones. The assumption on the model may be

-+ (() (2 3)

where the errors and random intercepts ofitlle person are not correlated with those of
the j-th person { # 7). If the vector notation without an index is preferred, one can also
write

CD4 = By + Brage + Papartners + Bsdrugs + Batime + Zb + ¢,

where CD4T = (CD4Y, ... ,CDAL), age’ = (agel,... agel), drugs’ =
(drugs?, ... drugsl), time? = (timel, ... time,)T, & = (F,...,el) andb? =
(b1, ...,b,) The matrixZ is then a blockdiagonal matrix dfr,, ..., 17,. The assump-

tion on the mixed model can than reduced to

o) (G5 0)

Since one may use a short notation without addressing the variable n@iés
age, drugs, cesd, time, then one set generally responseitp := CD4;. The
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variables that are responsible for the fixed effects are put into the rvegio:=
(1, agei, drugsi, timey).. The variables associated with the random effect are stacked
in blockdiagonal entries in the matriX. The short term notation is witl] =
(i1, xir), XT = (XT, .., XD, vl = (was-uir), y5 = (wi,...,yl) and
BT = (Bo,...,Bs)

y=XpB+7Zb+e.

For example, one might extend the mixed model to a mixed model with random slepes
CD4; = Bo + Pragei + Podrugsi; + Batime;; + bz(»l) + timeith@) + €,

allowing a random variation in the slope for the linear time effect. Using the wecto
L= (1, timey), Z1 = (2i1,...,21,), Z = bdiag(Zs, ..., Z,) andb! = (bm b(2)),

i 07

Wherebgl) is the random intercept ar&zélz) is the random slope, one can write
y=X0+7Zb+e.

The assumption on the random effects of ikt seroconverter may bg ~ N(0,Q),
where( is a2 x 2-covariance matrix. This covariance matrix may be assumed to be the
same for all persons. The random effects of the persons are metated within each
other. This may be denoted by

()65 2)

with Q being the n-times blockdiagonal matrix Qt

2.2 The Model

The linear mixed model for longitudinal data was introduced by Henderk@®3). Let

the data be given byy;:, z¢),i = 1,...,n,t = 1,...,T; with y;; connected to obser-
vationt in cluster: andz;; denoting a vector of covariates which may vary across the
observations within one clusteN = > | T; is the number of observations in total.

For the simplicity of presentation, let the number of observations within oneecllisio
not depend on the cluster. Le}; andz;; are design vectors composed from given co-
variates. We SGKZ-T = (fl'ila e xiT), ZZ-T = (Zilu L. aZiT),yiT = (yil, C ,yiT), XT =
(XT, . XDyt = @h, .. y)),,Z = bdiag 71, . . ., Z,). The basic idea of the ran-
dom effect models it to model the joint distribution of the observed covagiated an
unobservable random effelct
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The assumption on the distribution @fiven the random effedtis
ylb ~ N(X3 +Zb,o2Iy).

Here the (conditional) distributiotf(y|b) follows a Gaussian normal distribution with
meanX 3 + Zb and covariance?1y.

The assumption on the random effektnd the error componeanis

) (00 o)

Here the distributiorp(b; p) of the random effects is Gaussian distribution with mean
zero and covariance matri@(p). In this case the structural parametespecifies the
covariance matrixQ(p) = cov(b). Since the mean ob(b; p) is assumed to be zero,
sop(b) is fully specified up to the unknown covariance mat@ixp). An overview on
parameterized covariance matrices and its derivatives is given in thadippe

If one assumes that the observations within and between clusters givamtioen effects

are independent, the joint density@ff (v | b)=[] f(v: | b:) with f(v; | b;) = T1 f (v |
=1 t=1
b;) reduces to product densities, which can be handled easily. Here b;) and f (y;; |

b;) are also Gaussian densities with me&yp + Z;b; and xﬁﬁ + ngi and covariance
o2Ir, ando?.

One reason for the popularity of this assumption is that it is easy to underatehits
usefulness in the context of longitudinal data. More complex structueggsaasible, i.e.,
clusters are correlated or the observations within the clusters are tedrélaa distinct
way. Since correlation problems can easy be expressed in the Gaussawbrk we
start with the linear mixed model specified by Gaussian mixing densities andioaat!
outcomes that are normally distributed.

One gets the marginal densities as
1) =1L 1) =TI [ fllbon(es pyiv
i=1 i=1

wherep(b;; p) is the density ofV (0, Q(p)). In this case€d(p) = bdiag Q(p), - .., Q(p)).
In other word, each cluster has the same strucf(y®. So onlyQ(p) has to be estimated

to getQ(p).

Let # be the vector of variance parametéfs= (o, p)”. The result of this consideration
is the marginal form of a Gaussian random effects model
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where
Vi(0) = 02Tt + Z:Q(p) 2]
In matrix notation
y~ N(XB,V(0))
with V(0) = bdiag Vi (), ..., V,(0)). The joint density of y and b is reduced to a mar-
ginal density by integrating out the random effect b.

As already mentioned, the advantage of this restriction is that this parametriza¢iasy
to handle regarding numerical aspects. The operations on huge coeanwtrices and
design matrices can be reduced to operations on block matrices of the lidguinal
matrix. This is a well conditioned problem in the numerical sense. Hg(p) is the
covariance matrix of the random effects within one cluster which is assumiee tioe
same in each cluster.

Gaussian random effect models have an advantage, because osithef ba

1) =1L 1) =TT [ ftlbon(oss oy
=1 =1

one can easily switch between the marginal and conditional views.nTihegrals can
be solved analytically by using the marginal distribution. For arbitrary mixtoresndi-
tional and random distribution, it is not possible, in general. The log-liketiHor 3 and
0 is given by

1B, 0ly) = 2)% =—f§)%W’ }j = XiB)"Vi(0) 7 (i — Xi3).

So the estimatog is obtained by solving the following equation, which is derived from
the log-likelihood by differentiating with respect b

(i(X;IVFIXi>> p= <§n: XZ-TV;‘lyz) . (2.1)

i=1 i=1

As shown in Harville (1976) and described in Harville (19%;7¢an be estimated by
bi = Q) Z] Vi(6) " (yi — Xif). (2:2)

Harville (1976) shows, that the solutions of equation 2.1 and 2.2 areaegunivto the
solution of the BLUP-equation

XTwXx XWZ B\ | XTwy 2.3)
ZTWX ZTWzZ+Q(p) "t \b)  [ZTWy '
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with W = =

The estimatob is called BLUP (best linear unbiased predictor) which minimigé& —

b)T (b — b)), see Harville (1976). Additional effort is necessaryifp) or the structural
parameters are not known. A usual way to solve these problems are often based on
the restricted log-likelihood. Therefore profile likelihood concepts aeel uahich alter-
natingly plug in the estimate for the variance components and the estimate foretie fix
effects.

A detailed introduction in linear mixed models is given by Robinson (1991), io€Ch
& Searle (2001). Especially on longitudinal mixed models, information carobed in
Verbeke & Molenberghs (2001) and Harville (1976) and Harville (3977

2.3 The Restricted Log-Likelihood

The restricted log-likelihood is based on Patterson & Thompson (197 Waslreviewed
by Harville (1974), Harville (1977) and by Verbeke & MolenberghsQ2) It is given by

:—fZIOg‘V Z - XiB)"Vi(0) " (yi — XiB3)

_ % 3 log(IXTVi(6) Xi).

The restricted log-likelihood differs from the log-likelihood by an additioc@ponent,
since

1 n

1(8,0) = 1(8,0) — 5 > _log(I X[ Vi(0) Xil). (2.4)
=1

Differentiatingl,.(3, ) with respect ta5 results in the same equation as differentiating
(3, 0) with respect tgs. Animportant question is now why(3, #) should be used for the
further computation. By plugging in the estimates alternatingly, degreeseaafdne for
the estimate of the variance componehgse lost. The loss of degrees is compensated by
the additional component in the restricted log likelihood. Details can be fourdrnville
(2977)

Sincel, (3, 0) is nonlinear ind , 1,.(3,0) has to be maximized by a Fisher-Scoring algo-
rithm.
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The estimation of the variance components is based on the profile log-likelthab@
obtained by plugging in the estimatgsn the marginal log-likelihood formula 2.4.

Differentiation with respect t6” = (0., p”) = (01, .., 6y) yields

S(Ba 0) = 8l(§, f) = (5(/3, G)i)izl,...,d
and
~ 2 3 A
F(3,0) = —E(W) = (F(B,0)ij)ij=1,..d
with
s(4.0) = L0 = 45 wace( (o) T )
+5 > (e — ﬁk)Tka)_lMVk(@)_l(yk — k)

Py is defined in Harville (1977).

N 1
Py(0) = Vi(0) ! = Vi(0) ' Xy, (Z XZVk(G)‘le) XEVe(0)~!

k=1
and :
F3.0); = 5 Y- waee( (o) T (o) ).
k=1
where
oVi(0) | 20, ifi—=1
o0 {Zkae?éf)Zif it j = i,i# 1.

The estimato# can now be obtained by running a common Fisher scoring algorithm with
0+ = 600 4 F(3,609)715(3,60).

wheres denotes the iteration index of the Fisher scoring algorithm. If Fisher scheag
converged, the resultigrepresents the estimates of variances for the considered step.

2.3.1 The Maximum Likelihood Method

In special cases, it is necessary to use the ML instead of the REMLy$edtae Fisher-
Scoring in the REML-methods may be affected by numerical problems. Edlpechen
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there are many covariates, which have no effect on the response; e &timator then
do not converge.

On the other hand it is criticized that the maximum likelihood estimatosfodoes not
take into account the loss of degrees of freedom when pluggifig in

The estimation of the variance components is based on the profile log-likelthabds
obtained by plugging in the estimai;één the marginal log-likelihood

18;0) =—3 320 log([Vi(O)]) + o0y (i — )T Vi(0) ™ (ys — ).

Differentiation with respect t6” = (0., p*) = (01,...,0,) yields

. o1(B,6 .
(3.0 = 220 _ ((3.0))i,
and
A 821(37 9) A
F(p,0) = _E(W) = (F(B,0)ij)ij=1,..4
with
(8,00 = 20 = 357 wrace((Vi(6)) " 252
30 (e — ) TVe(0) T 2DV (0) " (g — i)
and
. 1« 1 OVi(0 A
F(j3,0);; = 2Ztrace<(vk(9)) 1 6%(' ) (Viu(6))! ;9(_ )) 7
k=1 v J
where
6Vk(0) . QUEITk If =1
00; 2280 7T =i

2.4 Estimation with Iteratively Weighted Least Squares

The estimation algorithm can be described as following:

Compute good start valugs andd,. The value of3, can be the estimator from a linear
model. The elements ¢f, are set to be small values, i.e. 0.1.

1. setk =0
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2. compute3*+1) by solving the equatlot(ﬁ, k)) above with plugged i (%)

3. computed*+1) in Z(B, ) by running a Fisher scoring algorithm with plugged in
[k+1)

4. stop, if all stopping criteria are reached, else startin 1 with & + 1.

This algorithm corresponds to the iteratively weighted least squaresthiger Alter-
natively, the variance parameters can be obtained by using the EM-afgaritginally
described in Laird & Ware (1982). Later, Lindstrom & Bates (1990)gested that the
Newton-Raphson-algorithm should be preferred over the EM-algorithm.

2.5 Estimation with EM-Algorithm - The Laird-Ware Method

The idea of this maximization method is based on Laird & Ware (1982). Indinest
imation of the marginal density starts from the joint log-density of the obsedata
y = (y1,...,yn) and the unobservable effecis= (53,b1,...,b,). The joint log-
likelihood is

log f(y,0|0) = log f(y|d; 02) +log p(b1, . - ., bn; p)

From the model assumptions one obtains, up to constants,

S1(02) o< —5Nlogo? — 503 Y1 €] i,
SQ<Q(p)) logdet ( ) 222 1 z ( )71bi

— % logdet(Q(p)) — 3 2iy tr(Q(p)~'b] by)

Next we start in the EM-framework with building the conditional expections vadpect
to 9(17)

M(8|67) = E{S)(02)|y; 6P} + E{S2(Q(p))y; 0P} (2.5)
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which is called the E-step. In detail are the E-equations

E{S1(02)]y;0®)} =331, Tilog(o?)

—5ts I ()T e+ treov(eilys; 00,
(2.6)
E{S2(Q(p))|y; 0} = —2logde(Q(p®)))

—L5n QP (57) ] 4 cov(bilyi; 0))

with current residuals”) = y; — X;3®) — z,h\". Differentiation of (2.6) with respect
to o, andQ(p) yields the M-equations (Equations that maximize the E-equations)

a?(pﬂ) = —% ?zl(egp))Tegp) + treov(e;|yi; 0P)]
(2.7)
QD) =L P (6T + cov(bilyi; 6P)].
We use projection matrices according Laird, Lange & Stram (1987)
-1
PP = (vi(evﬂ) (2.8)
in ML-Estimation and
-1 -1 -1 -
POW) = (VW) = (Vo) xi(x! (o) x0) kT (vigow)
(2.9)

in REML-Estimation withV' (o?) = 02" + 2,Q (")) 27

Therefore we can denote with with projection matrix (2.8) or (2.9) as destiibLaird,
Lange & Stram (1987)

J3(:0+1) _ _% ?:1<Ez(p))T€l(p) + 02(p)tr(l . 0_2(p)Pi(9(p))]
(2.10)
QYD) = L L) + QW) — 2] Pie®) Z)Q(o)]
The estimateg(®) andb”’ are obtained in the usual way
B = (S Xi(VeP) 7 X) T S X (GOP) My,
(2.11)

b = Q) ZT (Vi(9)) T (y - X)),
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The EM-Algorithm is now

1. Calculate start valug®) = (o), p(0)).

2. Forp = 1,2,... computed® = (5@ 3% 3)y with variance-covariance
components replaced by their current estimatés = (o), p(?)), together with
current residualsﬁp) =y — XiB(P) - ZZ-ZQEP) and posterior covariance matrices
cov(e;|y;; 0P)) and covb;|y;; 0)). This step may be seen as the E-step.

3. Do the M-step to compute updates with 2.10.

4. If the condition
|6+ — (@)

16@]]

is accomplished, convergence of the EM-algorithm is achieved. If ndtistatep
2 with 1) as update fof®).

More information on the estimation of mixed models via EM-algorithm can be found in
Laird & Ware (1982). Later, Lindstrom & Bates (1988) compare the NaviRaphson
method to EM-estimation. Especially fast algorithm reparametrization can hd faare.
Laird, Lange & Stram (1987) gave detailed information on EM-estimation &guatith-

mic acceleration. Alternatively, the gradient algorithm as described ind_1@05), can
also be used which is closely related to the EM-Algorithm.

2.6 Robust Linear Mixed Models

The marginal distribution of a linear mixed models is
yi ~ N(Xi3,Vi(0)). (2.12)

This assumption on the distribution is now replaced by the robust varianggested in
Lange, Roderick, Little & Taylor (1989)

yi ~ tp(Xi8,¥;(0),v), (2.13)

wheret(u, ¥, v) denotes the k-variate t-distribution as given in Cornish (1994} the
scaling matrix which has the function &f in the mixed model concept. The additional
parameterr must be positive and can be noninteger. It has the funtion of a robgstnes
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parameter, since it downweights outlying cases. We set mow X (3. The marginal
density is

_ _YTVRr (k) /2)
f(y‘:ua \Ijv V) - (F(1/2)))kF(V/2)z/k/2

(v 2.14
(1 + (y—u)T‘I”l(y—u)) ( +k)/2. ( )

v

Important properties for > 2 are:

oy~ tp(p,¥,v)

e E(y) = pand Coyy) = ¥ = 2L for (v > 2)

2
o bly ~ 25 with 62 = (y — )T~ (y — p),

X%(-) denotes the Chi-Square distribution witldegrees of freedom

52
* %~ Fhy

According to these properties, the model can be derived from multivaniateal-
distribution with scaling variablé;

ve) X

)

The log-likelihood for model (2.13) ignoring constants is
(B, p,v) =2 LB, p,v)
with
82(3,
L(B,p,v) = $log [Wi(p)] = b(v+ T)log (1+ Z02) (2.16)

v

3T log(v) +log [ (457)] ~ logI(3).

The likelihood-equations regardirigjare closely related to the likelihood-equations of a
linear mixed model. Setting the first derivative of (2.16) regardirzgro yields

> wiXTU(p) " yi — ) =0 (2.17)
=1

with the weightw; = V’jg;
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The log-likelihood (2.16) can be maximized via a Fisher-Scoring-Algorithmst ke
collect all necessary parametersyin= (3, p, v).

One has to rewrite (2.14) into

Fly) = 19() 7 29((y — )" ¥(p) " (y — ), v) (2.18)
with

L((v+k)/2) (1 N s>—(1f+k)/2 '

g(s,v) = T(1/2)"T (v 2) 72 = (2.19)

v

The first derivatives are

dg(o?,v _
% = -2 gégz )g(glzyy)%\l’(p) 1(3/_:“)7

O'2 14 — —
S0 =t (o)) = 2y~ )T (p) ) 252w () (y - ),

1) _ dglo®w) 1

ov v g(o2v)” (2 20)
So one can write
{60
op
s(y) = |52 (2.21)
{60)
T l I
Wlthé—'yp) = (8%),...,%).

The elements of the expected Fisher-matrix are
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_ l _ vtk ouT -1,
oo =-E(5500) = 5 dhrv(0) '8,
_ () _ vtk 1 -1¥%(p) -1¥(o)
Fpipj - _E <8pigpj> - l/-‘r—};—i-Q Etr <\Ij(p) \Ij(af))pl \I](p) 8p§l())7
1 — _
T 2w tkt2) (‘I’(P) "0 ) (‘I’(p) ", ) ’

Fow =-E (al,gja)y) = mtr (‘I’(P)fl%ifn : (2.22)
o =-E(53) =-13TG (") 476G (3)
o~ vE )

B —-E(i5L) —E() -0

where TGz) = % log(T'(x)) is the trigamma function. The partitioned Fisher matrix is

Fsgg 0 0
F(’}/) = 0 Fpp Fpu
0 F, Fu.

The log-likelihood function (2.14) can be maximized using Fisher-Scorilyp#thm.

Lange, Roderick, Little & Taylor (1989) compare Fisher-Scoring to ESdireation. Al-

gorithmic details and proofs for Score and Fisher matrix are given in thisr@apwell as
alternative assumptions on robust linear mixed models.

In the literature, one can find the extension of linear random effect mtmisdsniparamet-
ric linear mixed models, see Ishwaran & Takahara (2002) and Zhangvédiaa (2001).

The semiparametric term refers to the unknown density of the randomseffexsity or a
random measure with unknowns random effects. This terminology is ofté@adisg be-

cause semiparametric modeling also refers to additive modeling of continocaisates,

which underlying structure is deterministic.

For more flexibility in the random effects structure, mixture models got vepulao in
the past. A mixture model is obtained by finitely mixing the conditional distributiom. Fo
non-Bayesian semiparametric approaches to linear mixed models, seke/&rbessafre
(1996) and Aitkin (1999) who have used a finite mixture approach with imple&atien

by the EM algorithm.

A more Bayesian based framework is founded on the Dirichlet procedsasssed in
Ferguson (1973). It is applied on random effect models by the ideanalfom partition



2.6 Robust Linear Mixed Models 20

structures and Chinese Restaurant processes (CR process)Buateer, Chan, James &
A.Y.Lo (2001) extended these ideas to the weighted Chinese Restauvaes&es which
they applied to Bayesian Mixture models. Brunner, Chan, James & A.Y.L@6(19r0-
vided the general methodology related to i.i.d weighted Chinese Restaurarithaits
(WCR-Algorithms). Ishwaran & Takahara (2002) combined the iid WCRritlgm with
REML estimates for inference in Laird-Ware random effect models. &ladBas &
Ibrahim (2005) used WCR and EM algorithm for survival data.



Chapter 3

Semi-Parametric Mixed Models

There is an extensive amount of literature on the linear mixed model, stamimgHen-

derson (1953), Laird & Ware (1982) and Harville (1977). Nice oiemg including more
recent work is described in Verbeke & Molenberghs (2001), McChl&Searle (2001).
Generally, the influence of covariates is restricted to a strictly parametritifolinear

mixed models. While in regression models, much work has been done to ex¢estdc¢h
parametric form to more flexible forms of semi- and nonparametric regredsiomuch

less has been done to develop flexible mixed model. For overviews on samgdarc re-
gression models, see Hastie & Tibshirani (1990), Green & SilvermardjEtl Schimek
(2000).

A first step to more flexible mixed models is the generalization to additive mixed models
where a random intercept is included. With respoggdor observationt on individ-
ual/clusteri and covariates;1, . . . u;m, the basic form is

Yit = Bo + aqy(uin) + -+ + ) (wim) + bio + €it, (3.1)

whereay(.), ..., aum)(.) are unspecified functions of covariates, . . . , winm, bio is a
subject-specific random intercept with, ~ N (0, oZ) ande;; is an additional noise vari-
able. Estimation for this model may be based on the observation that regressiels
with smooth components may be fitted by mixed model methodology. Speed (1991) in
dicated that the fitted cubic smoothing splines is a best linear unbiased pre8ichse-
qguently the approach has been used in several papers to fit mixed nsmeks.g. Ver-
byla, Cullis, Kenward & Welham (1999), Parise, Wand, Ruppert & R{001), Lin
& Zhang (1999), Brumback & Rice (1998), Zhang, Lin, Raz & Sowet898),Wand
(2003). Bayesian approaches have also been considered, sd®/ d=ghrmeir & Lang
(2001), Lang, Adebayo, Fahrmeir & Steiner (2003), Fahrmeir, Knelta&g (2004) and
Kneib & Fahrmeir (2006).



3.1 Short Review on Splines in Semi-Parametric Mixed Models 22

3.1 Short Review on Splines in Semi-Parametric Mixed Mod-
els

In linear mixed models the strict linear and parametric terms can be extendeddsy in
porating a continuous covariatewhich has an additive functional influence in the sense
of
_ T T
Yit = ;0 + a(wir) + 25, b; + €4 (3.2)

In the following, we consider several ways to approximated an unknanetibna(.).

3.1.1 Motivation: The Interpolation Problem

For simplicity, we first consider the approximation of a functien) with known values
at measurement points (knots). Then we start with observations,;, a(u;)),i =
1,...,n.

The interpolation problem is given by finding a functief) with property

s(uy) = aluy),i=1,....n t=1,...,T;.

Spline theory is a common way to solve this problem. The functioh may be approx-
imated by a Spline functios(.). A spline is based on a set of kndt&& = {ky,...,ky}
in the ranggk, k,;]. K is the set of ordered observatioAs= {k;|k; < kji1}. It has
elements:; which are ordered. The smallest valué:is

The spline is of degreé, d € Ny on K, if s(.) isd — 1 times continuously differentiable
and for everyu € [k, kjy1) s(u) is a polynomial of degreé, j =1, ... ,M—1. Aspline
on [k;, kj;1) of degree d or order d+1 may be represented by

d, d_, 1d

;U +aj

1
J

[0]

s(u) =a Tyt 4 ]u1+aj :

The vector space for splines with degeefor the given knotds is denoted bys;(K).

Splines interpolate given data pointg and their known function evaluationgu;;) by
using piecewise polynomials to connect these data points. Other interpolatiteyes

are also possible, i.e., trigopnometric interpolation or classical polynomial oitgrpn,

but these methods often have disadvantages in the numeric sense. m3iywsuch an
interpolation problem is given for known paifs;;, s(u;;)). Since the data points are the
given knotss(.) is a polynomial between successive u-values. In the case of cubicspline
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first and second derivative are continuous at the observation palifis.interpolation
spline is given in Figure 3.2.

The set of all splines of degrekon the knots K is @/ + d — 1 = M subspace of the
vector space, which contains tlie- 1 times differentiable functions. That is why a spline
can be expressed by a set/df linear independent basis functiops(.),j € 1, M. So
Sq(K) can be described by the spline baBis= {¢1(u), ..., ¢ (u)}.

201 o ®

2201 .

-40 °

Figure 3.1: Interpolation problem - The values are on the x-axis and the corresponding
s(us¢) are on the y-axis. These observed points should be part of continociss(.)

Functiona(u) with u € [a, b] may be approximated by a splinéu) using basis functions
so that

M
a(u) ~ s(u) = Z dj(u)aj = o(u)la.
7j=1
The problem in (3.2) for known function evaluatioméu;;) can be written as
Yir = 2B+ ¢lui) o+ 25 + e, (3.3)

sinces(uy) = ¢(ui)” a is the spline interpolation af (u;).

3.1.2 Popular Basis Functions

Truncated Power Series One basis foiS;(K) for a given set of knot#” with degreel
IS
gbl(“) = 1’ qbl(u) = Uy ey ¢d+1(U) = ud; (34)

¢d+2(u) = (u - k?)ia .- -7¢d+]§1_1(u) = (u - k]\?[_l)ia
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201

-20 1

-40 1

-4 -2 0 2 4
Figure 3.2: Spline solution of the interpolation problem. ( The solid pointsteegiven
points, the blue line is the spline function (interpolation spline)

where
_ ..\d i .
(u— k)L — (u—kj) ,Ifuzk:].
, else

The basis is

B ={¢1(u),....on(u)}-

B-splines B-splines for degred with A/ inner knots in the rang@, b] can be recur-
sively defined by

"De Boor" recursion for B-splines

1 ,if ki <u< k'+1
(b?(u) = X[kj,kj+1]<u) - ! ! )
0 ,else (3.5)

d . k‘" de1—U d—1 u—Fk; d—1
5(u) = % (0 + g 4 (W)

For the construction of the B-spline basis with the recursion (3.5), outaslare nec-
essary in the form ok <= --- <= k41 <= a1 anday <= kyprg <= - <=
k10441 Which are usually based on equidistant knots. Then the B-splines basis f
Sd(K) is

B={¢1(u),...,om(u)}.
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3.1.3 Maoativation: Splines and the Concept of Penalization - Smoothing
Splines

A main problem in statistics is that the function evaluatidi;; ) is not observable from
the data. Instead, only the responggis observable, which is a sum of the unknown
valuesa(u;;) ande;;.. These values have to be estimated from the data.

In this subsection, all observation are taken as kfbfs== ). K is the set of ordered
observationdX = {k;|k; < k;y1}. It has elements;;, which are ordered. It is also
possible that a (equidistant) grid of knots is given. This is a useful condigispecially
in the regression spline context . That is whiywas used instead d¥'.

We change the cluster representation of the simple semi-parametric model (3.2)
Yir = 248+ ¢plui) o+ 255 + e,

which is in matrix form
Y =X0+ Qo+ 7Zb+e, (3.6)

to the elementwise measurement representation
y(z) = x%’;)ﬁ + ¢(U(Z))TO£ + Z(j;)b + 6(1‘)7

where. ;) indicatesi-th row vector for matrixZ,X or .; indicates the-the element of
vectorY ,u,e and¢>(u(i))T = (¢1(ug)), - - -, om(u)) is the basis function evaluation of
lt(i).

The job of spline smoothing is primary to find a good estimation;;) = ¢’ (u;)a
for the unknown function evaluations(u;;) ~ §(u;). The difficulty of equation (3.6)
is that it is not identifiable sincéim(y) = N anddim(®) = N x (N +d —1). To
solve this problems further restrictions to the estimation concepts have to be $iacke
equation (3.6) is the equation of a mixed model with assumptionN (0, 021) andb ~
N(0,Q(p)) the estimates for fixed effects o and structural parametet’ = (o2, p)
would normally be obtained by ML or REML for caséan(y) > dim((37,a”)7).

That is why the idea of penalizing the roughness of estimated curves was bhhe
roughness of curves(.) is controlled by a penalty term and a smoothing paramketer
Consider the minimization problem fo¥; o, 0

N

Zli(ﬁ, a,0) — ;)\/(o//(u))%lu — min (3.7)

i=1
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wherel(;)(3, a, 0) is the likelihood contribution of observatiagp;. It is assumed that
a(.) has continuous first and second derivativé§) anda”(.) with «(.) is quadrati-
cally integrable. That is in detail the function class described by the Sobpbme (see
Alt (1985) and Adams (1975)). In other words(.) can be approximated by a spline
functionss(.) that is based on an smoothing parameteifo show the dependence bf

let s\ (u) the spline function, which is the result of the minimization problem in formula

N
3.7 for given\. I(3, «, 0) = > 1;(5, «, 0) is the marginal likelihood for model (3.6).
i=1

The biags(u), a(u)) of a(u) ands(u) is increasing for big\’s. The principal trade-off
between the bias and the variance of the estimated is reflected by the meiaat sTuar

In other words large values aflead to underfitting, to small values to overfitting. Getting
an optimal\ and an optimal spline is a difficult statistical problem to solve.

The maximization problem (3.7) may be solved by a natural cubic smoothing ssine
described in Reinsch (1967) without the need of a basis function espeg®n ofs(.).
The concept of Reinsch (1967) and De Boor (1978) can be tramdftr the mixed model
methology where minimizing (3.7) for givenis equivalent to

N
1 -
211(57 o, 0)? — 5)\5’Ks — min, (3.8)

i=1

wherej;) = x%;)ﬁ + sa(ug)) + z(Ti)B, s = (s(k1),...,s(kar)). For details on the cubic
spliness(.) and penalty matri¥< see Fahrmeir & Tutz (2001).

3.1.4 Motivation: The Concept of Regression Splines

The basic idea of regression splines is to work with only a small number ¢ kivd <<
N).

One has to find suitable knofs in that sense that the placement and also the number
of knots are responsible for the roughness of the curve. This congepe understood

as adaptive selection of knots and their placement. Here the number atidrnpog
knots strongly determine the degree of smoothing. The position of knots metyolsen
uniformly over the data, at appropriate quantiles or by more complex daendichemes.



3.1 Short Review on Splines in Semi-Parametric Mixed Models 27

For a detailed discussion of these issues see Friedman & Silverman (1888)(2000)
or Stone, Hansen, Kooperberg & Truong (1997)

Another idea is to take a (equidistant) fixed grid of knots. That is the mairreiite to
smoothing splines, since the knots are chosen individually ( how many kiaoige of
the interval where the knots coming from ). A spline function for a fixed grithout
penalization is visualized in Figure 3.4. For this Figure and Figure 3.3, anaredfects
model with only one smooth covariate(u) = sin(u)) was used. Therefore forty clusters
with five repeated measurements each were simulated. The random effeassumed
to beN(0,07), o = 2 and the error term was assumed ta¥@), 02), o2 = 2. In Figure
3.3 and 3.3, the concept of regression splines was used. In Figurth&.8moothing
parameter\ was set to zero and in Figure 3.4, it was set to sixty. It is obvious that the
roughness of the curve has to be penalized. On the other hand a splitieris desired
that is independent of the placement and the number of knots.

'1.5 A T T T T T T
0 1 2 3 4 5 6

Figure 3.3: The red points describe the given data, the blue line in thesfigua spline
computed with 40 knots and B-splines of degree 3. (no penalization)

Again the penalization problem for givens
N
> 1i(B,a,0) = AP(s(.)) — min, (3.9)
i=1

wheres(u) has the functional forms(u) = Z;Vil ¢j(u)a; and P(s(.)) is a roughness
functional. A widely used roughness functional is the integrated sqsacmhd derivative
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'1.5 A T T T T T T
0 1 2 3 4 5 6

Figure 3.4: The spline in the figure is the optimal spline with respect to thalfyeand \.
Using the penalty term reduces the influence of knots. Here 40 knots-aptirgs of degree
3 were used.

P(s(.)) = J(s"(u))du as an measure for the curvature or the roughness of the function
s(.). If the basis function representation of a spline is used the penalty terthdem

P(s(.) =o' Ka (3.10)
whereK is a matrix with entried<;; = [ ¢ (u)¢’f (u)du.

Eilers & Marx (1996) introduced a penalty term where adjacent B-sploedficients
are connected to each other in a very distinct way. The penalty term isl lmase
K = (DY)TD!, whereD! is a contrast matrix of orderwhich contrasts polynomials
of the order. Using B-splines with penalizatioR’ one penalizes the difference between
adjacent categories in the forha” Ko = )\Zj{Alaj}Q. A is the difference operator
with Aa; = aji1 — o, A?a; = A(Aay) ete., for details see Eilers & Marx (1996).
Usually the order of the penalized differences is the same as the ordex splihe (B-
Spline).

In Figure 3.4, one can see that penalization reduces the influencetsf lwoch has an
effect on the roughness of the curve. So penalization reduces alsaflttence of the
number and placement of the knots. Another number of knots with diffelenements
would deliver a quite similar spline function solution.

The difference matrixD is needed to compute the difference matrix of tith order
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D' corresponding to B-Spline penalization (see Eilers & Marx (1996)) ineaninsive
scheme. WithD being the(M — 1) x (M) contrast matrix

-1 1

one obtains higher order differences by the recuribrs= D D!~! whichis a(M —1)x M
matrix. This can be used for a more simple and intuitive definition of the penalty tha
equation 3.10.

A similar argumentation is used for the truncated Power Series basis wheperihky
matrix is simply set to

K= bdiag(O(d)X(d), IM,d).
where0 ) (q) is @ d-dimensional quadratic zero matrix, aipg_4) is the identity matrix
of dimension(M — d).

3.1.5 Identification Problems: The Need of a Semi-Parametric
Representation

Problems in additive modeling based on splines arise, if intercepts or spiineshier
covariates are used. If no further restriction of the splines is made, $h#ing splines
are not clearly identifiable. This is illustrated in the following example

Example 3.1 : Rewriting an additive term to a semi-pararogenm
One can write the additive term without parametric terms

a(u) = 10 +u?, foru € [—3,3]
to a semi-parametrical representation
a(u) = By + a(u) = 10 +u?, foru € [-3,3]

with By = 10 anda(u) = u?. But alsoB, = 5 anda(u) = 5 + u? is a valid semiparametric
parametrization for the additive termi{u).

The interest is often in the population mean level and in ieohite deviations from this mean

as a function of a continuous covariates. It is a natural idezenter the continuous covariates
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@) (b)

Figure 3.5: (a) may be seen as pure additive spline smoothing, (bjomagen thatv(u)
= b
describes the absolute deviation from zero. In this case the leyil is f“':i&. The

a

desired property of the additive terr{u) is [ é&(u) = 0

around zero. Figure (3.5) shows the difference in the imé&tgdion. Nice benefit of this restriction

is that the semi-parametrical representation is identdiab O

Also two or more additive terms have to be rewritten to semi-parametric terms, since
additive terms should be identifiable. This is illustrated in the

Example 3.2 : Rewriting additive terms to semi-paramegiais
One can write additive terms

a(l)(u) =10+ u2, foru € [*3, 3] = [a(l), b(l)]
Oé(g)(l)) = -5+ 1}3, forv € [*3,3] = [a(g), b(g)]

to the additive predictor

Madd(

u,v) = oy (u) + agz)(v).
Again & 1y(u) = 5+ u* andas)(v) = v* corresponds to the same additive predictor since
1% (u, v) = a1y (u) + é2)(v). Using the same idea described in example 3.1, one getsfident

able additive terms by the reparametrization of the adelfpredictor to semi-parametric terms

4 (u,v) = Bo + Gy (1) + dg) (v)

N = fa (11) a(u)du faf) a(v)dv
with propertlesf ) a(l) f 2) a(z) =0ands = if(f) 0 lj(;) —aa 0
So the basic |dea for the |dent|f|able additive teidis) is to rewrite additive terma(u)

to a semi-parametric consideration Wﬁﬁo}(u) = 0. Soa(u) has the form

b
a(u) = alu) — / ) g, (3.11)
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Using simple analysis, one can show that equation (3.11) rﬁé’ldcéu) = 0.

Sincea(u) is often approximated by a spline function that is composed of basis functions

a(u) ~ ¢ (u)a, wheregp” (u) = (é1(u),...,¢r(u)), the discrete version using the
coefficients of basis functions can also used to get regulatized (aj, ..., dys) with
restrictionzj]‘i1 a; = 0. Aregularized version may be obtained by
- Z]j\il Qj - —
Oé:Oé—T, Oém:—ZOéj.
M )
There term# is often understood as shift in the level of the functiefu). For

detailed information on these restrictions, see the Appendix A.1.
3.1.6 Singularities: The Need of a Regularization of Basis Functions

Let a semi-parametrization be given by
= z(y8+ Z & (ugiy)aj + 2(yb + €y = [ T (j) ¢(U(i))T} B |+ 2b+ e

where:c( )= = (1,%;) andg’ = (8o, 37). For a truncated power series bases, the column

corresponding to the intercept is absolute linear dependepit(@n = 1. The rows for the

design matrix for fixed effects can be written‘[as I 1 ¢2(u(i)) ¢M(u(i))}.

It is obvious that the design matrix has not full rank. The same problesatafhlso B-

splines. A B-spline basis is a specific decomposition.oA main property of B-splines

is that one hagj]‘il ¢j(u) = 1. There exists the linear combination of the design matrix
1 Zg Ejj‘/il ¢j(u(i))}, which shows once again problems in the rank of the design

matrix.

The same problem is arising when more than one additive functions are kesettun-
cated power series one has colurmi? = 1 and ¢§l) = 1 in the design matrix for
additive components and!. For B-splines the corresponding su@ﬁl ¢§.’“) =1land

ij‘il ¢§.l) = 1 are absolute linear dependent.
To solve these singularities specific transformatidnaust be applied t@ (u) with
b(u) = TO(u),

whereT'®(u) has full rank. Generally these transformations also affects the penalty ma-
trix K that occur in a penalized likelihood function. See the Appendix A.1 for dlddta
discussion on these transformations.
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3.2 The Model

Let the data be given by, xi, wit, zit), @ = 1,...,n, t = 1,...,T;, wherey;

is the response for observatiorwithin clusteri and %, = (i, ..., Tip), ul =
(Wit1s - -+ Uitm), Zth = (zit1,- - -, 2its) @re vectors of covariates, which may vary across

clusters and observations. The semi-parametric mixed model that is causidethe
following has the general form

m
Yit = 3717;/8 + Z a(j)(uitj) + Zggbi + €t

j=1
= " 4 g "+ e (3.12)

where

par

pb" = 2} 3 is a linear parametric term,

padd - — YT g (uig) is an additive term with unspecified influence functions

prand = 2T'b; contains the cluster-specific random effect b; ~ N (0,Q(p)), where
Q(p) is a parameterized covariance matrix and

ei¢ is the noise variable,; ~ N(0,0%I), ¢;,b; independent.

In spline methodology, the unknown functionsg;, are approximated by basis functions.
A simple basis is known as the truncated power series basis of dégyietding

agy() =1 + W u+ .. P u +Za -k,
wherekzgj) <...< k%) are distinct knots. More generally, one uses
agy(w) = Yo 6{) () = aj ¢\ (u), (3.13)
s=1
where{) denotes the-th basis function for variablg, af = (a§j>, . a§v}) are un-
known parameters and") (u)” = (¢§j> (u),..., S\]}(u)) represent the vector-valued

evaluations of the basis functions.
For semi- and nonparametric regression models, Eilers & Marx (1996) Bld&ilers
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(1998) proposed the numerically stable B-splines which have also beenbysWood
(2004). For further investigation of basis functions, see also Wan@0j2@Ruppert &
Carroll (1999).

By collecting observations within one cluster the model has the form

vi = XiB4 Pior + ...+ Ponam + Zib; + €,

H o <<g) | (03[ Q<p>>> | o

where X; contains the linear termd;;c; represents the one additive term a#gh
the random term. Vectors and matrices are giverypy= (vi1,...,vir;), X} =
(mil,...,xiTi),@g = ((ﬁ(j)(uﬂj),...,(b(j)(uiTij)), ZZ-T = (Zil,...,ZiTi), GZT =
(€i1,- .., €1;). In the case of the truncated power series the "fixed" teéjﬁw fyfj)u +
oo %(lj)ud is taken into the linear ternX; 3 without specifyingX; andg explicitly.

In matrix form one obtains

y=XB+®101+... + P am+ Zb+e

wherey” = (yI,...,yl), T =0F,...;0L), € = (... €l),
XT=(x{,....x}), oL =(of,....0L), Z"=(Z{,...,Z])).

Parameters to be estimated are the fixed effects, which are collectéd in=
(BT, af, ..., al) and the variance specific parametéts= (0., p*) which determine
the covariancesov(e;;) = o2l andcov(b;) = Q(p). In addition one wants to estimate
the random effects;. Sinceb; is a random variable, the latter is often called prediction
rather than estimation. We s&t;. = [ X, ®i1, ..., Pim].

3.3 Penalized Maximum Likelihood Approach

Starting from the marginal version of the model

yi = Xif+ Poar + ...+ Pipouy, + €
or (3.15)

Y = Xoid + € ,
e ~ N(0,Vi(0), Vi(0) = I, + ZiQ(p) 2L,

estimates fob may be based on theenalized log-likelihood

1,(5:0) = —5 S los(Vi(O)) — 3 (4 — Xai )" (Vi(0)) ™ (y — Xai.0) — 20" KD
=1 =1
(3.16)
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wheres” K¢ is a penalty term which penalized the coefficients. . . , «,,. For the trun-
cated power series an appropriate penalty is given by

K = Diag(0,\1,..., A1),

where denotes the identity matrix ankl; steers the smoothness of the functiep,.
For A\; — oo a polynomial of degreé is fitted. P-splines ((Eilers & Marx, 1996)) use

K = DT D whereD is a matrix that builds the difference between adjacent parameters
yielding the penalty? K§ = Ej)\jzs(agﬁl — )2 or higher differences.

From the derivative of, (9, #), one obtains the estimation equatioh,(d, ¢)/06 =
which yields

n n

D (Xg (Vi) ) = O (X (Vil0)) ™ X, + K) 7)o
=1 =1
and therefore

0= (Xgi.(Vi(0) " Xas. + K))™ "> Xy (Vi(0) s
i=1 i=1

which depends on the variance parametert is well known that maximization of the
log-likelihood with respect t@ yields biased estimates since maximum likelihood does
not take into account that fixed parameters have been estimated (sesdPa&dhomp-
son (1974)). The same holds for the penalized log-likelihood (3.16)reftre for the
estimation of variance parameters often restricted maximum likelihood estimatisd jRE
are preferred which are based on the log-likelihood

n

b0 = - > log(%(6)) - % S (0 = Xai Vi) (31 — Xoi)

i=1

_7210g ‘bez X‘I)Z |)

see, Harville (1974), Harville (1977) and Verbeke & Molenbergh9(30
The restricted log-likelihood differs from the log-likelihood by an additioc@nponent.
One has

1:(5,0) = 1(5,0) — Zlog | X§:.Vi(0) Xai |).

It should be noted that for the estimatiorfpthe penalization termi’ K6 may be omitted
since it has no effect. Details on REML is given in the Appendix.
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BLUP Estimates

Usually one also wants estimates of the random effects. Best linear uthipigesiction
(BLUP) is a framework to obtain estimates fbandb, .. ., b, for given variance com-
ponents. There are several ways to motivate BLUP (see Robinsoh)j1@he way is to
consider the joint density af andb which is normal and maximize with respectd@and
b. By adding the penalty terd K6 one has to minimize

n

1
> ;(yi — Xoi.0 — Zibi)" (yi — Xai.6 — Zibi) + b Q(p) 'bi + 6T K6, (3.17)

i=1

whereXg; = [Xl, D, ..., ‘I)Zm}, Q(p) = Dzag(Q(p) ce Q(p))
with X2 = (xT, ... XTI ) the criterion (3.17) may be rewritten as

oy Xab — Zb)" (g~ Xab — Zb) + 57 Q(p) b + 57K

which yields the "ridge regression” solution

B
b

= (c7 10 + B>_1 CT%Iy

B:<K 0 >
0 Qp)*

Some matrix derivation shows th&has the form

with C' = (X¢, Z) and

6= (XEXv(e) ' Xe + K)'XTV(0) 1y,

whereV (0) = Diag(V1(0)...V,(0)), and for the vector of random coefficierits§ =
(bT', ... bl") one obtains

b=Q(n)Z"V(6) ' (y — Xad).

In simpler form BLUP estimates are given by

0= (Z(Xgi.(W(e))_le +K)™! Z X, (Vi(0) i,
i—1 i—1
bi = QZ]Vi(0) (i — X4i.0).
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3.4 Mixed Model Approach to Smoothing

It is necessary to specify the smoothing parameters. . , A, for the computation ob.
Using cross-validation techniques, problems arise, if the number of smoedhiates is
high. An approach that works for moderate humber of smooth covariatssthe ML
or REML estimates of variance components. The basic concept ist tomaftte the
estimation as a more general mixed model. Let us consider again the critarBbhU@
estimates (3.17) which has the form

%(y — Xod — Zb)"(y — Xod — Zb) + a" Kaa + b7 Q(p)~'b
g

_i__a_T__a_ aTTKaO “
- 02(3/ Xp— Zb) (y Xp— Zb)+( b )<0 Q(p)l> (b)

(3.18)

where® = [®;...d,,] and K, for the truncated power series has the folfp =
Diag(MI, ..., \pn1).
Thus (3.18) corresponds to the BLUP criterion of the mixed model

y= X5+ [@ Z] (Z) te

! 0 K;' o0 0
with bl ~N|[lo|.] 0 Qp o
€ 0 0 0 oI

£

SinceK, = Diag(Ail,...,  \,I) the smoothing parametels, ..., A, correspond to

the variance of the random effeets, . . . , oy, for whichcov (o) = A;1 is assumed. Thus
a1,...,q, are treated as random effects for the purpose of estimation. REML estimates
yield M., .., \m. For alternative basis function like B-splines some reformulation is nec-
essary to obtain the simple independence structure of the random effeetdfpendix
A.l).

3.5 Boosting Approach to Additive Mixed
Models

Boosting originates in the machine learning community where it has been ppss
technique to improve classification procedures by combining estimates witigreecd
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observations. Since it has been shown that reweighting corresponusitoizing iter-
atively a loss function (Breiman (1999), Friedman (2001)) boosting leas lextended

to regression problems ina-estimation framework by Bihlmann & Yu (2003). In the
following boosting is used to obtain estimates for the semiparametric mixed model. In-
stead of using REML estimates for the choice of smoothing parameters, thetestima
of the smooth components are obtained by using "weak learners" iteratiMedyweak
learner is the estimate éfbased on a fixed, very large smoothing paramgtevhich is

used for all components. By iterative fitting of the residual and selecti@momiponents
(see algorithm) the procedure adapts automatically to the possibly varyingrsmes of
components.

3.5.1 Short Review of Likelihood Boosting

Basic idea was to improve the misclassification rates, see Schapire (1988)basic
concept is to use a classifier iteratively with differing weights on the ohsens and
to combine the results in a committee. It has been shown the misclassificatioaror
be reduced dramatically. Recently it has been shown that boosting is af\iitiing an
additive expansion in basis functions when the single basis functiorssesygrthe results
of one iteration of the boosting procedure. The procedure is basecdiegt descent by
the use of specific loss functions, see Breiman (1999) and Friedmatie BaEbshirani
(2000).

Example 3.3 : Functional Gradient Descend
The objective is to minimizeZ|L(y, f(x))] for general loss functio.(y, f(x)) in a simple
regression context whetgeis the response anflx) is a function of the predictat.

1. Initialization

2. Fit fo(x) = B(x,~) to data(y;,z;), whereB is a (parameterized) regressor function
(learner) Setn = 0.

3. Negative gradient
Determine the negative gradient= —0L(y;, f™~1)/0f and fit B(x,~) to data(r;, x;)

4. Determine the step sizeby minimizing

5. Increasen by one and repeat steps 2 and 3
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d

From this view it is no longer restricted to classification problems. Friedmastidi&
Tibshirani (2000) replace the exponential loss function, which unddtie classical Ad-
aboost, by the binomial log likelihood yielding LogitBoost. Blihimann & Yu (2008gs-
tigate L> loss, which yields thé.;-Boost algorithm. Tutz & Binder (2006) introduced the
likelihood-based boosting concept for all kinds of link functions andoexmtial family
distributions. As in generalized linear modelsdgtr; have a distribution from a simple
exponential familyf (v;|z;) = exp{(yi0; — b(0;))/¢ + c(vi, )}, whered; is the canon-
ical parameter ang is a dispersion parameter. Instead of assuming a linear predictor
n; = ! B in each boosting step the fitting of a simple learnee= 1(x;,~) is assumed,
wherev is a finite ore infinite-dimensional parameter. If the learner is a regresgioe s

~ describes the coefficients of the spline functions. The likelihood to be maxdnsze
given by

n

) = Wyim) =Y (il — b(6:)) /¢ + c(yi, ),
=1

=1

where the canonical parametgris a function ofy; = n(x;, ).

Example 3.4 : Likelihood-Based Boosting for Regression bled

1. Initialization: For given datéy;,x;),i = 1,...,n, fit the intercept modek(®) = h(n())
by maximizing the likelihood(~) yielding/(®) = (®) 4(©) = p(75().
Forl =0,1,...,

2. Fit the model
i = h(O (x;) + n(2i,7)) (3.19)

to data(y;, z;),i = 1,...,n, wheren") (z;) is treated as an offset amdz;) is estimated
by the learnen(xz;,4#V). Setqh™1 (z;) = 7 (z;) + 7z, 5D).

3. Stop, if the chosen information criterion could not be ioyed in the following step

The estimate)(x,;, ) may represent a spline or some other learner determined by O

The structure of the algorithm in Example 3.4 is used to incorporate varidblgise by
componentwise learners. Buhlmann & Yu (2005) proposed the conEspaose boost-
ing. In each iteration, only the contribution of a single variable is determinesimfsle
learner of this type, which has often been used in boosting, is a tree wittvamtgrminal
nodes (stumps). With stumps the selection of the variable to be updated is ddicélymp
by tree methodology. When using regression splines, model fitting within tloithlg
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contains a selection step in which one variable is selected and only thepmrdasy
function is updated. The componentwise update has the advantage thelettt®os of
variables is performed by the fitting of simple models, which contain only oriablar

Example 3.5 : Componentwise Boosting

Step 2 (Model fit)

1. Fit the model
ptis = (D () + (2306 7s)) = h(nis) (3.20)

to data(y;, z;),i = 1,...,n, wheren)) (z;) is treated as an offset anl; s)) is estimated
by the learnen(z;s), &ﬁl)). Ti(s) Stands for the s-th covariate, angfor the corresponding
coefficient.

2. Selection: Select from € {1,...,p} the variablej that leads to the smalleECﬁ”. The
chosen information criteriohC' in thel-th boosting step for variables I cW s computed
commonly by using the log-likelihoo¥;_, I(y;,n:s) and by using a suitable measure for
the effective degrees of freedom. A suitable measure is#loe f the projection matrix,
which is responsible for the projection gfto 1j;s. Common information criteria, based on
the trace of the projection matrix, atd C' or BIC.

3. Update:

A () = 5D (5) + n(@igs), Vs)

d

The estimation step in example 3.5 is similar to the generic functional gradiergrdkesc
in example3.3. For details see Bihlmann & Yu (2003), but it is not an examglein
strict sense. Here is set to an constamnt = 1. Functional gradient descend uses the
negative gradient of a global loss function evaluated at observat®nssponse in the
next iteration. However, the negative derivative of the likelihood yieldseas that may be
considered as responses only in special cases, for example, if fomsess unrestricted
and continuous. Therefore in the general case the algorithm is a onengejyement

of the given estimate represented by the offset that uses the derightavgpenalized
likelihood.



3.5 Boosting Approach to Additive Mixed
Models 40

3.5.2 The Boosting Algorithm for Mixed Models

The following algorithm uses componentwise boosting. Componentwise bgosdans
that only one component of the predictor, in our case one smooth®gfay, is refit-

ted at a time. That means that a model containing the linear term and only onéhsmoo
component is fitted in one iteration step. For simplicity we will use the notation

X’L(T) = [Xl (I)zr] ) 5? = (/GT7O[Z—')

for the design matrix with predictaX;,) = X;3 + ®;-c..
The corresponding penalty matrix is denotedy, which for the truncated power series
has the form

K, = Diag(0, XI).

One wants to optimize model (3.12) in the following.
BoostMixed

1. Initialization

Compute starting valug&®, a\” ... 4 and set)” = X, +da” + ..+
¢zma$2)-

2. Iteration
Forl=1,2,...

(a) Refitting of residuals

i. Computation of parameters
Forr € {1,...,m} the model for residuals

yi— Y~ N(nigry, Vi(0))
with
Ni(r) = ‘XZ(T)(ST‘ = XiB + ®irar
is fitted, yielding

n

Op = (Z( z(r)(V(e(l 1))) lX T)+K ! ZXz(r) e(l Y )) (yz—ﬁfl_l))'
i=1
ii. Selection step
Select fromr € {1,...,m} the componenj that leads to the smallest
AIC’,SI) or BIC,,(” as given in Section 3.5.3.
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iii. Update
Set AU = =1 + 3,
and
L (1-1) ; ;
. if
=" "
&'V ya ifr=j
5([) _ ((/é)(l))T7 (@gl))T’ ”.(@%))T)T.

Update fori = 1,...,n

l [— e
) =g+ Xi(j)05-

(b) Computation of Variance Components
The computation is based on the penalized log-likelihood

LOMD;6) = =237 log([Vi(0)]) + 20, (s — ™) TVi(0) (i — ")

_%(5(1))TK7,5(1)'

Maximization yieldsd").

This algorithm was inspired by the concept of an boosted Informationf(oriteas
developed in Buhlmann & Yu (2005) which they call sparse boosting. Thijece
tive of the selection of starting values is to select the most relevant variables

der to avoid huge variances for the error term in the beginning of the iterafidhe
computation of the starting values is very similar to the boosting algorithm itself. It
starts with 3@ = &% = ... = oY = 5 = 0 but the iterations for =
1,2,...,in 2. are slightly modified. The first modification is that in (a) the covari-
anceV;(0) is replaced by the simpler covariance matsix/. Therefore, step (b) is
replaced by the variance estimg@®)) = L5 (y; — n")7(y; — o). The iter-
ation stops if|(52)® — (62)=1| < 10. The variables that have been selected un-
til this crude stopping criterion is met form a subdet,...,s;s}. The initial esti-
mates then are set t3®, 6\” ..., a)T = (S (XTX, + K))~' 32, XTy; with

X; = [Xi, Pisys ..., Pys,. ] and K = diag(0, \K,, ..., \K,_ ). The other components
are set to zero.

We chose componentwise boosting techniques because they turn outdrytstable in
the high dimensional case where many potential predictors are undede@t®n. In
this case, the procedure automatically selects the relevant variables ar ®agn as a
tool for variable selection with respect to unspecified smooth functiortbelnase of few
predictors, one may also use boosting techniques without the selectionystefittng
the residuals for the full model with design matriX[®;; . .. ®;,,].
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3.5.3 Stopping Criteria and Selection in BoostMixed

In boosting, often cross-validation is used to find the appropriate compleixihe fitted
model (e.g. Dettling & Buhimann (2003)). In the present setting crossataia turns
out to be too time consuming to be recommended. An alternative is to use thiveffec
degrees of freedom which are given by the trace of the hat matrix (centpastie &
Tibshirani (1990)). In the following the hat matrix is derived.
For the derivation of the hat matrix the matrix representation of the mixed mogetis
ferred (see (3.15))

y=XB+Pra1 +...+ Py, + €,

where € ~ N(0,V), V(0)= Diag(V1(0),...,V,(0)).
Since in one step only one component is refitted one has to consider the fmothed
residual refit of theth component

residual = X ()0,

where X7, = (X{, ... X1 ), Xipy=[Xi @], & =(6",0)).

The refit in thelth step is given by
A -1
b = (XL VO X )+ AR, ) XV - nY) (B2D)
= MUy —n'Y),
where »
MO — (Xfr)v(e(l—l))—lX'(r) " AKT) Xy (g

refers to therth component in théth refitting step. Then the corresponding fit has the
form
771(}) = X0, = X?“Mvgl) (y — ﬁ(lil)) = Hr(l) (y — 77(171))7

where
HY =X MY,

Let now j; denote the index of the variable that is selected inithéboosting step and
HO = H](? denote the resulting "hat" matrix of the refit. One obtains with starting
matrix H©)

nM =HOy 4 H(l)(y _ 77(0)) - (H(O) + H(l)([ _ M(O)))y

and more general
7AW =G0y,
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where z )
G0 — Z H® 81_[(] _ H(k))
5=0 k=0
is the global hat matrix after thigh step. It is sometimes useful to rewriteas

1
GO =1-T[(-H®W)
k=0
(compare Buhlmann & Yu (2003)).
For the selection step one evaluates the hat matrices for candidates whitie foh
component in théth step have the form

-1
GO =gl 4 g® H([ — H®),
k=0

Given the hat matribxG\”, complexity of the model may be determined by information
criteria. When considering in tHéh step the-th component one uses the criteria

AIC,SU = —2{—2[09 Z A(l 1) TV(é(l 1)) (yz_ﬁ(l_l))}

+ 2trace (GY),

1 & A -
(O - 11 A(l 1 I-1)\—1¢,, _, (-1)
BIc!) = 2{ 221 log(V (6" § V(@) (i =y )}

+ 2trace( GY )log(n).

In therth step, one selects frome {1,...,m} the component that minimizeéaIC (or
BIOﬁl)) and obtainsA7C() = AIC’](.ZI) if j; is selected in theth step. IfAIC (or

BICﬁl)) is larger than the previous criterioh/ C'~1) jteration stops. It should be noted
that in contrast to common boosting procedures, the selection step refeectsplexity
of the refitted model. In common componentwise boosting procedures (ehtm&in &
Yu (2003)) one selects the component that maximally improves the fit and vhkrages
if the fit including complexity of the model deteriorates. The proposed piweeselects
the component in a way that the new lack-of-fit, including the augmented cgityple
minimized. In our simulations the suggested approach showed superiormparice.

In the following, the initialization of the boosting algorithm is shortly sketchede Basic
concept is to select few relevant variables in order to obtain stable estinfatesance
components. Therefore for largg(in our application\ = 1000), the total model is fitted



3.5 Boosting Approach to Additive Mixed

Models 44
using the full design matriXs = [X, ®4,...,®P,,] and covariance matri¥;(0) = I.
Then in a stepwise way the variables are selected (usually up to 5) that yadbesh fit.
These yield the initial estimate¥®, a\”), ... o)) and the initial hat matrix;(©).

3.5.4 Standard Errors

Approximate standard errors for the paramgtand the functions ;) (u) = @m(u)Taj
may be derived by considering the iterative refitting scheme. For the estipeiaheter
inthel — ¢th stepd) one obtains

§O = §0=D 1 a0y — -1y

where M () is a matrix that selects the componeftanda;, which are updated in the
[ — th step. Itis given by

T _ l l
O = ()70, )T 0 )

whereM;;, 1, M;, » denote the partitoning df/[}ll) into components that refer fanday,
respectively, i.e.
O [ Mia )
" M, 2

One obtains for the refitting @f with starting matrixA/ (?)

60 = MOy MWy — 7O
MOy 4 M (1 — HO)Yy,

and more general
50 = pWy,

where
!

s—1
DO — ZM(S) H(] — H®).
k=0

s=0

With L denoting the last refit one obtains with= (), D = D), for the covariance of
)

cov(d) = D cov(y)D”
= D V(DT
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Approximate variances follow by usiry= 6(~) to approximaté/ (¢). Standard errors
for 3 anday ;) (u) = ®Lq; are then easily derived sineé = (57, a7).

In boosting, the crucial tuning parameter is the number of iterations. Thetkmgo
parameter that is used in the algorithm should be chosen large to obtain deasads.
The number of iterations increases for largeln order to limit the number of iterations
we modified the algorithm slightly. If more than 1000 iterations are needed uetil th
stopping criterion is met, then the algorithm is restarted wijth; the halving procedure

is repeated if\/2 also needs more than 1000 iterations.

3.5.5 Visualizing Variable Selection in Penalty Based Approaches

In spline methodology, the unknown functiomg, are often approximated by basis func-
tions. A simple basis is known as the truncated power series basis of degrekling

M
a(j)(u) ~ fyé]) + "y&j)u + .. .fyéj)ud + Zagj)(u — kgj))i ,
s=1

wherek{j) <...< k:gé) are distinct knots.

If one uses
a(j)(u) = uw;

the underlying function is approximated by an linear term. So in this case tiefbas-
tion approach encompasses only one knot @H&(u) = wu is the identity function. In
the shrinkage theory the likelihood is penalized-byx;)?. So the corresponding penalty
matrix for the boosted linear effects is anx m identity matrix.

One can study the coefficients build-up in a similar way as in LASSO ( seeiiabsh
(1996) ) since the linear model is a special case with one knot and idenbgsasfunc-
tion. Using ridge penalty, the result is a linear mixed model with parametric maoteff
So many variables may be included, but only few contain information on tipemes.
Smooth effects can be compared by consideting= fol oy (ug)|dugj, j = 1,...,m
in build-up graphics. For parametric effects, the variables are transfbto the interval
[0, 1] and centering the effects around zero yiekis= %’“ x0.25,k = 1,...,p. The
integral corresponds to the area of the centered functions, see Bigure

Example 3.6 : Generalization of build-up graphics
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Figure 3.6: The red area is the integral fein(u)| on the left side and for on the right side.
It measures the strength of influence on the response

To demonstrate the generalization of build-up graphics sexitthe underlying random intercept
model

19
yit =bi + > _ag)(ui) +ei=1,...,80,t=1,...5
j=1
with the smooth components given by

agy(u) = 2 xsin(u) we[=3,3,i=1,...,5
agy(u) =0 we[-3,3,i=6,...,19.

(3.22)

The variances for error term and random intercepts werentekéeo? = o2 = 2. Figure 3.7
show the build-up graphic for smooth effects. Figure 3.8nshthe true underlying functions
(aqy,---,a()) and their corresponding estimates. For this study the smfaattionso;y,i =
1,...,19 wer specified in the model. What is getting obvious is that thength of functions are
reflected in the build up graphics. The area under the cunasbe interpreted as that part of
the response which could be explained by these curves. IBasaaneasure for the importance of
curves according the order of the estimated valugg =1, ..., 19.
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Figure 3.7: Build-up graphic for the smooth effects. On the right sideeam see the true
values| |a;)(u)|du for the coefficients build ups.

3.6 Simulation Studies

3.6.1 BoostMixed vs. Mixed Model Approach

Study 1 and 2
We present part of a simulation study in which the performance of BoostMnadels is
compared to alternative approaches. The underlying model is the ranteept model
40
Yit = bi—l-Zc*a(j)(uit) +é€,0=1,...,80,t=1,...,5
j=1
with the smooth components given by

aqy(u) = sin(u) u € [-3,3],

a)(u) = cos(u) u € [-2,8],

(3.23)
sy (u) = u? u € [-3,3],
a(u) =0 ue€[-3,3],7j=4,...,40.
The vectorSuﬁ = (w1, - .., ui40) have been drawn independently with components

following a uniform distribution within the specified interval. For the covariai@sstant
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Figure 3.8: The red line are the estimated effects, the black lines are theriderlying
functions.
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correlation is assumed, i.eorr(u;,, uys) = p. In study 1,p is set top = 0.1. For
study 2,p was chosen to bg = 0.5. The constant determines the signal strength of
the covariates. The random effect and the noise variable have beeifiexh bye;; ~
N(0,02) with 02 = 2 andb; ~ N(0,07) with o = 2. In the part of the study which is
presented the number of observations has been choser80, T = 5.

The fit of the model is based on B-splines of degree 3 with 15 equidistan$.kiThe
performance of estimators is evaluated separately for the structural cemgcand the
variance. By averaging across 100 datasets we consider meandsgrrars for, ag, o?
given by

. . . R .
mse, = Yoy Doy (i — nit)2777it = :rZ;ﬂ, mse; = ||f — ﬁ|’27

msez = |loj — 317, mse; = ||o? — 67|

as well as the mean squared error for the smooth components

n Ti P

mse, = > > > (o (i) = g (uieg))?,

i=1 t=1 j=1
which corresponds to the estimation of parameters in linear mixed models.

For illustration, in Figure 3.9, the Mixed Model approach to smooth comporfiiy
from study 1 is compared with BoostMixed for 30 datasets. It is seen tllarbethods
detect the underlying smooth functions fairly well. However, it is seen thatritxed
model approach has higher variability. For example for some datasetstipooenty;)
has been strongly oversmoothed yielding straight lines (rather thasstHfanction).

In Tables 3.1 and 3.2 the resulting mean squared errors are given flomtloerrelation
case(p = 0.1) (study 1) and the medium correlation cdpge= 0.5) (study 2). It is seen
that for all components mean squared errors are smaller when BoostMixedd. The
difference is rather large for high dimensional predictors which includgyrcovariates.
But it should be noted that also in the case, where only the variables &daédonhich
carry information, the mean squared errors are still smaller when BoosiNéixesed. For
higher number of predictors §20), the Mixed Model fit did not work and therefore, no
values are shown in Table 3.1 and 3.2. The strongest reduction in termsanofsgeared
error is found for the estimation ofise,, the effect becomes stronger with increasing
signalc and parameters, see for examplense, = 41.946 for BoostMixed andnse,, =
50.448 for the additive model withe = 1, p = 3. In Figure 3.10 and 3.11 the mean
squared errors are given for the pure information case (p=3) ancatethat includes
several noise variables (p=15).
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Figure 3.9: Study 1: Thirty functions computed with mixed model methefig{anels) and
boosting (right panels)c = 1,p = 3)
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MM [ BoostMixed
c p mse, ‘ mse, ‘ mse,, ‘ mse; . ‘ Steps ‘ Time ‘ mse,; ‘ msey ‘ mse,, ‘ mse; ‘ Steps ‘ Time ‘ FalsePos FalseNeg‘ Initial ‘ Selected
0.5 3 45.791 37.701 0.026 0.117 13 0.09 42.079 36.867 0.026 0.115 9.9 0.0 0.0 0.1 2.0 29
0.5 6 55.721 48.399 0.030 0.117 18 0.41 48.666 45.112 0.028 0.114 10.2 0.0 0.4 0.1 2.0 3.3
0.5 15 88.005 85.470 0.031 0.129 25 7.03 62.501 62.270 0.029 0.114 9.7 0.1 0.9 0.2 2.0 3.7
0.5 25 73.134 | 74.790 0.030 0.116 9.8 0.1 1.2 0.3 2.0 3.9
1.0 3 50.448 37.422 0.024 0.126 8 0.06 41.946 31.226 0.026 0.119 19.7 0.0 0.0 0.0 2.0 3.0
1.0 6 60.520 48.547 0.024 0.120 15 0.33 42.773 32.237 0.026 0.120 19.7 0.1 0.0 0.0 2.0 3.0
1.0 15 92.705 85.021 0.028 0.120 21 6.05 46.662 36.725 0.029 0.120 20.0 0.2 0.2 0.0 2.0 3.2
1.0 25 50.440 41.102 0.028 0.118 20.2 0.3 0.3 0.0 2.0 3.3
5.0 3 71.243 60.651 0.032 0.187 12 0.08 53.399 47.592 0.031 0.181 144.6 0.4 0.0 0.0 19 3.0
5.0 6 82.051 72.296 0.031 0.185 14 0.32 55.396 49.947 0.031 0.182 146.9 0.4 0.1 0.0 1.9 3.1
5.0 15 116.472 113.781 0.036 0.190 20 5.87 57.510 52.545 0.032 0.182 145.2 2.3 0.2 0.0 19 3.2
5.0 25 58.533 53.910 0.034 0.182 1455 3.4 0.2 0.0 19 3.2
10.0 3 88.045 71.694 0.027 0.264 14 0.10 62.981 59.701 0.029 0.139 495.6 11 0.0 0.0 3.0 3.0
10.0 6 98.669 84.396 0.026 0.226 17 0.40 62.981 59.701 0.029 0.139 495.6 2.6 0.0 0.0 3.0 3.0
10.0 15 132.549 125.730 0.033 0.239 24 7.11 65.726 62.807 0.033 0.139 492.1 6.7 0.1 0.0 3.0 3.1
10.0 25 66.588 63.895 0.033 0.139 490.9 12.0 0.1 0.0 3.0 3.1

Table 3.1: Study 1: Comparison between additive mixed model fit amdt®bxed(p = 0.1).
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MM ‘ BoostMixed
c p mse, ‘ mse, ‘ mse,, ‘ mse, ‘ Steps ‘ Time ‘ mse, ‘ mse, ‘ mse,, ‘ mse, ‘ Steps ‘ Time ‘ FalsePos | FalseNeg ‘ Initial ‘ Selected
0.5 3 46.503 34.107 0.022 0.133 13 0.09 45.416 | 36.576 0.026 0.136 9.9 0.0 0.0 0.1 2.0 29
0.5 6 57.421 48.626 0.024 0.133 18 0.42 50.530 | 43.280 0.028 0.139 10.3 0.0 0.3 0.1 2.0 3.2
0.5 15 90.615 92.066 0.029 0.135 28 8.30 64.707 61.314 0.032 0.140 11.0 0.1 0.8 0.2 2.0 3.7
0.5 25 72.285 70.857 0.035 0.141 11.5 0.2 11 0.2 2.0 3.9
1.0 3 49.449 40.515 0.033 0.146 9 0.06 40.716 | 34.440 0.035 0.145 17.4 0.0 0.0 0.0 2.0 3.0
1.0 6 60.771 54.728 0.037 0.148 16 0.37 42.105 | 36.107 0.037 0.143 17.6 0.1 0.1 0.0 2.0 3.0
1.0 15 93.651 97.541 0.038 0.151 21 6.41 43.327 37.663 0.037 0.144 17.7 0.2 0.1 0.0 2.0 3.1
1.0 25 46.404 41.527 0.036 0.145 17.9 0.4 0.2 0.0 2.0 3.2
5.0 3 72.155 62.797 0.023 0.153 12 0.09 53.174 | 49.862 0.025 0.153 109.6 0.3 0.0 0.0 3.0 3.0
5.0 6 82.856 77.115 0.025 0.157 14 0.33 53.663 | 50.515 0.026 0.154 109.5 0.6 0.0 0.0 3.0 3.0
5.0 15 114.390 118.645 0.028 0.156 18 5.25 54.918 51.990 0.026 0.154 109.4 1.5 0.1 0.0 3.0 3.1
5.0 25 56.471 | 53.814 0.027 0.154 109.1 26 0.1 0.0 3.0 3.1
10.0 3 93.000 77.369 0.029 0.230 14 0.09 68.369 | 63.423 0.030 0.184 430.2 11 0.0 0.0 3.0 3.0
10.0 6 103.896 92.147 0.028 0.225 15 0.34 69.027 | 64.432 0.030 0.184 430.0 22 0.0 0.0 3.0 3.0
10.0 15 70.142 65.935 0.031 0.180 428.9 5.7 0.1 0.0 3.0 3.1
10.0 25 73.504 70.497 0.031 0.181 427.1 7.9 0.2 0.0 3.0 3.2

Table 3.2: Study 2: Comparison between additive mixed model fit andt®bxed(p = 0.5).
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For a more extensive analysis of BoostMixed five further simulation studittsssame
setting (3.23) (except study 7), but different values’fon, p were made. In all studies
100 datasets were generated

Study 3 - medium cluster

The random effect and the noise variable have been specifieg by N(0,02) with

o2 = 3 andb; ~ N(0,07) with o7 = 3. In the part of the study which is presented the
number of observations has been chosemby 40,7 = 5. Pairwise correlation was
taken to becorr(ug,, uits) = 0.1. Details can be found in Table C.3 and Figure C.3.

Study 4 - big clusters

The random effect and the noise variable have been specifieg by N(0,c2) with

o2 = 3 andb; ~ N(0,07) with o7 = 6. In the part of the study which is presented the
number of observations has been chosem by 20,7 = 10. Pairwise correlation was
taken to becorr (uii, uirs) = 0.1. Details can be found in Table C.4 and Figure C.4.

Study 5 - small clusters

The random effect and the noise variable have been specifieg by N(0,c2) with

02 = 3 andb; ~ N(0,02) with ¢ = 6. In the part of the study which is presented the
number of observations has been chosemby 100, T = 2. Pairwise correlation was
taken to becorr(ug., uirs) = 0.1. Details can be found in Table C.5 and Figure C.5.

Study 6 - big dataset

The random effect and the noise variable have been specifieg by N (0, c2) with

o2 = 9andb; ~ N(0,02) with o = 12. In the part of the study which is presented the
number of observations has been chosem by 250, T = 20. Pairwise correlation was
taken to becorr(ug,., uirs) = 0.1. Details can be found in Table C.6 and Figure C.6.

Study 7 - many additive covariates

The random effect and the noise variable have been specifiedbyN (0, o2) with o2 =

2 andb; ~ N(0,0}) with 02 = 2. In the part of the study which is presented the number
of observations has been chosenby 40, T = 5. Pairwise correlation was taken to be
corr(uir, uits) = 0.1. The additive term have functiong(u) = $in(u),u € [-3, 3],
agg)(u) = Scos(u),u € [-2,8], ag)(u) = Su,u € [-3,3,am)(u) = §sin(u),u €
[=3,3], az)(w) = gcos(u),u € [-2,8], ag)(u) = ¢u?,u € [-3,3]. The other func-
tions are set toy;)(u) = 0,u € [-3,3],j = 7,...,40. Details can be found in Table
C.7.

If one wants to summarize the results of the studies BoostMixed seems to bedyow
competitor to the mixed model approach. In studies 3 to 5 which are simulationsstudie
with only 200 observations in total BoostMixed delivers comparable, sometioese
MSE, than the mixed model approach for small signals (c=0.5). Especially in these
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cases the selection aspect in BoostMixed is important since some relekiabtesawere
not selected which downgrades theSE,,. For large signals BoostMixed is in most cases
superior to the mixed model approach. The mixed model approach seems\twdeen-
sitive to higher signals for the influence of covariates. One may see aetiffe of the
performance in datasets with small and huge clusters. Therefore in sty &an see
worse selection for small signals and good results for huge signals.adhstestudy 4
the differences in th@/ SE,, are not as noticeable as in study 3, &5 E,;, show much
better results for BoostMixed. If one switches now to studies 1 and 2 wtaeh A00
observations in total, the efficiency of selecting relevant variables is iredror small
signals which is reflected in the comparableS £, for ¢ = 0.5. Also for correlated data
the results did not change. The difference of both methods disappegrage datasets
as in study 6. In this case all relevant variables were selected. BoostMdir@avs only
slight better results for huge signals. Study 7 is a little bit different from thercstud-
ies, since this study has more relevant covariates and this study encespassward
selection procedure. In this sense, BoostMixed is compared to the mixed appideach
with all covariates (MM) and to mixed model approach with an integrated fahaalec-
tion (forward). It is quite similar to the BoostMixed algorithm since one starts thigh
intercept model. In every step all remaining covariates are fitted separBbelgovariate
characterized by the best improvement of the BIC-Criterion is taken into tlielnand
seen as relevant. The selection is stopped if the complexity criterion can naiviedp
any more. Compared to the forward selection procedure BoostMixedsetece rele-
vant variables. On the other side BoostMixed delivers slightly bad resulkein/ S £,
compared to the mixed model approach. The time and computation complexity is getting
tremendous if putting many covariates (p>20) in the forward selection guoee For
small covariates BoostMixed is a very fast selection strategy compared forthard
selection procedure.

Simulation studies for linear effects with a short discussion (Study 9 - Stddycan be
found in Appendix C.3. The results of the common linear models are compatbd to
boosted versions. Details on the underlying structure and the results/Appaemdix C.3.

3.6.2 Pointwise Confidence Band for BoostMixed

In the following the focus is to get reliable confidence bands for smooth cnengs. In
this section estimated confidence bands are compared to the empirical coefideds,
that were computed from 250 datasets.
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The underlying model is the random intercept model

40
it =bi+ Y cragy () +eni=1,...,80,t=1,...,5
j=1

with a setting of covariates as described in (3.23).

The vectorSu}; = (w1, -..,u;3) have been drawn independently with components fol-
lowing a uniform distribution within the specified interval. For the covariatesstant
correlation is assumed, i.eorr(ui,-, uis) = 0.1. The constant determines the signal
strength of the covariates. The random effect and the noise varial@ebean specified
by € ~ N(0,02) with 02 = 2 andb; ~ N(0,07) with o2 = 2. On the presented study
the number of observations has been chosen by80, T = 5 andn = 40,7 = 5. The
smoothing parameter was fixed Xo= 1000.

The pointwise confidence intervals were computed using the covariﬁm(gé). Since
5T = (3,aT,...,al) one can obtaimov(d;) by a decomposition afdv(5). So easily
the pointwise confidence intervals for compongonan be computed bwv(Xj5j). Tak-
ing the diagonal elements and multiplying the square root together with the Ge8d&np
and 0.025 percent quantile of the normal distribution on the estindat@sdelivers the
upper and lower 0.95 pointwise estimated confidence bands.

The empirical 0.95 percent pointwise confidence intervals were computgdtting the
empirical 0.975 and 0.025 percent quantiles of all estimated functions. @&samsee in
Figures 3.12 and 3.6.2 the estimated pointwise confidence intervals are agmoxi-

mation to the empirical confidence bounds.



3.6 Simulation Studies

57

mbeta.

mbeta

02

00

2 1 0 1 2 3 2 0 2 4 6 8 3 2 1 ] 1 2

Figure 3.12: 0.95 percent pointwise confidence bands. The bluarenthe averaged esti-
mated confidence bands. The solid in the middle is the averaged smogplorent. Upper

and lower solid lines are the empirical pointwise confidence bands. Tier tiige compo-

nents are for signal = 0.5, the middle components are for= 1.0 and the bottom functions
are for signat = 5. There arex» = 80 clusters.
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Figure 3.13: 0.95 percent pointwise confidence bands. The bluarenthe averaged esti-
mated confidence bands. The solid in the middle is the averaged smogplorent. Upper

and lower solid lines are the empirical pointwise confidence bands. Tier tiige compo-

nents are for signal = 0.5, the middle components are for= 1.0 and the bottom functions
are for signat = 5. There arex = 40 clusters.
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3.6.3 Choosing an Appropriate Smoothing Parameter and an
Appropriate Selection Criterion

The focus is in the following on getting reliable confidence bands for smamtipo-
nents. In this section estimated confidence bands are compared to the dropinica
dence bands, that were computed from 250 datasets.

Study 8 The underlying model is the random intercept model
40
Yit = bi—i—Zc*a(j)(uit) +e,0=1,...,80,t=1,...,5
j=1

with a setting of covariates as described in (3.23).

The vectormﬁ = (w1, - - -,u;s3) have been drawn independently with components fol-
lowing a uniform distribution within the specified interval. For the covariatasstant
correlation is assumed, i.eorr(u;,, uis) = 0.1. The constant determines the signal
strength of the covariates. The random effect and the noise varial@eblean specified
by €, ~ N(0,02) with o2 = 2 andb; ~ N(0,07) with 7 = 2. In the part of the study
which is presented the number of observations has been chosen=b§0, 7 = 5 and

n =40,T = 5. cwas setta = 0.5.

The smoothing parameters were chosen on a grid fi@®400] with steps of 50 for
3,5,15, and 25 smooth covariates. Then the distributions of the mean sguereslis
considered and compared to the distribution of the mixed model approdelctiGe and
stopping criterion were chosen to be BIC or AIC.

As Figure 3.14 demonstrates the influence of takindjfferent from 1000 is marginal.
One has only to choose a lambda that is appropriate large. We found 18@atgood
choice. Figure 3.15 includes also the selection aspect.

For detailed graphics for different signal strengths 0.5,1 andc = 5, see Figures C.7,
C.8 and C.9 for BIC, Figures C.10, C.11 and C.12 for AIC.
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Figure 3.14: The errors for 3 smooth effects in the model are preddry boxplots. BIC
was used as selection and stopping criterion. The red points are the foedns MSEs
depending on different lambdas. On the right side the distribution of thEdvi$ the mixed
model approch is plotted. The blue point is the mean of the MSEs of the mmncetél
approachc was chosen to be= 0.5
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Figure 3.15: The distributions of the mean squared errors for diffezeunts of smooth
effects in the model are presented by boxplots. BIC was used as selaatibstopping
criterion. The red points are the means for the MSEs depending onediffer On the right
side the distribution of the MSEs of the mixed model approach is plotted. [Tieeplvint is
the mean of the MSEs of the mixed model approach. (a) 3 smooth effeetis(b) 5 smooth
effects used (c) 15 smooth effects used and (d) 25 smooth effesds aievas chosen to be
c=0.5
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3.6.4 Surface-Smoothing

As described in Hammerlin & Hoffmann (1992) and Dierckx (1993) the ephof one-
dimensional splines can be extended to d-dimensional splines by usingpeodocts on
the spline basi$, ..., By.

In this context only the casé= 2 is considered. Therefore a spline basis is needed which
can be derived with the elementwise Kronecker produethich is defined for av x M;
matrix A and aN x My matrix B.

c(; is a vector of the-th row of C,a ;) is thei-th row of A andb;) is thei-th row of B.

The elementwise Kronecker product can be described

- H _ T T

So one can write

D(1,2) (U1, Ugy2) = d1) © P2y = Py (U@y) © by (ugi2)
with ¢(1)(u(;)1) being the basis functions for the covariatg), (first covariate, i-th mea-
surement) ancb(Q (u(;1)- The resulting spline basis is

My «Mos)
B::{QZ)E’ ,...,¢El2} 2,

Instead of using the operator, the Kronecker produgtdelivers the same result. The
product is especially useful for matricég;) and® ), where the products are computed
row-wise.

So any interactiom(u ), u(;)2) between two covariates;); andu ), can be approxi-
mated by splines
(g, ug2) & da2) (U, taez) o

(My%Ma)

(1.2) anda as a vector of coefficients with

with ¢ consisting of column$>8)2), R
length My x M.

The only difficulty is to get an corresponding penalty matrix that penalizeditfezences
of adjacent basis functions. In 2-dimensional settings the definition otewljdasis
functions is not unique. The adjacent basis functions may be seen asdghenahe
main-axis (4 neighbors ) or all surrounding basis functions ( 8 neighbdfor details on
the construction of tensor splines see Marx & Eilers (2005) and EilensjeC Durban

(2006)
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Four neighbors For the first case the penalty matrix is easily obtainedir= M,
by
D(l) = D(Ml_d)XMl & I(M1) andD(z) = I(]Vll) & D(M1—d)><M1'

The penalty term is then
—)\(1)aTK(1)a — )\(g)aTK(Q)a = —al [

with KO = (DT DM and K2 = (D@)TDE),

Eight neighbors Penalizing with more than four neighbors is difficult to derive. Still
My = M, is assumed. Therefore a location matrix g x M; matrix) is needed with
Lij = i M + j. Next necessary item is vectpf = A%l(;,), whereA? is the
d-dimensional difference operator.

So one can penalize the diagonal differences Wifll; — d) = M7 ) x (M, = M;) matrices
D®) andD® by recursionink =1,...,d+1,i=1,...,My—dandj =1,..., M, —d

D(g) :D(S)(Z7]7k) DL L

igoLitk g+ = Pk
and
DW = DW(i,j,k) = DL, L, a0 1sn = Phs
wherep;, is thek-th element ofp”
The penalty term is then
f)\(l)ozTK(l)a — )\(g)aTK(z)oz — )\(3)aTK(3)a — )\(4)aTK(2)oz
= —-al'Ka

with K©) = (DBHTDG) and K4 = (DU)YT D),

In the simulation the underlying model is an random intercept model with

5 6
Yit = Z Z Q) uzt]7 uztl) + bio + €t (3.24)
Jj=li=j+1

wheree;; is independeniV (0, %) with o = 0.5, b;o is independendV (0, o) with o7 =
1.0. T = 5 andi = 4000.

a(m)(um, ui2) is the density function for the two-dimensional normal distribution with
correlationp = 0.5. g 4)(wit3, wita) = sin(uyz) * sin(uys) and s g) (Lies, wis) =
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exp(uis) * uye. All covariates were drawn uniformly from the interval3, 3]. All other
interactions of covariates have influence zero on the response. 3@ tkaof the model
(3.24) were generated. Comparisons to the R-funag@mmfrom the R-Packageigcv

( Version 1.3.12) were tried. Since computations did not lead to stable estimadys
the relevant effect&(m) (uiﬂ, uitg), Q(3,4) (uitg, Uit4)1 Q(5,6) (Uit57 Uz‘tG) was SpeCiﬁed in
estimation. For the simulation study only the main axes were penalized ( foutboesggh
). Estimates for one dataset is given in Figure 3.16 and 3.17.

The result of the study is given in Table 3.3.

MM ‘ BoostMixed
¢ | MSE, | MSE, | MSE,, | Steps| MSE, | MSE,, | MSE,, | Selected| Steps
0.5| 50.605] 0.133 | 0.023 | 16.1 | 44.400| 0.133 | 0.025 | 2.9 27.9
1 | 53.324| 0.147 | 0.034 | 11.3 | 39.049| 0.147 | 0.034 | 3.0 55.2
76.088| 0.155 | 0.024 | 12.8 | 52.205| 0.155 | 0.025 | 3.0 385.0

Table 3.3: Comparison between additive mixed model fit and BoostMixed

One can see in Table 3.3 that the results are quite comparable. BoostMe®@eltorm
better than the mixed model approach in #i& ;. The mean squared errors for the ran-
dom effects variance are nearly the same. The mean squared et éoror component
is sometimes larger using BoostMixed.



3.6 Simulation Studies

) |6
&

,\




3.6 Simulation Studies

66

™ "
x e % @ ow x e % @ ow S R S R
e % @ ow x w % @ ow e wm oW w
: : : .
x e % @ ow x w % @ ow x w % @ ow

Figure 3.17: Levelplot for smoothed interactions for 6 covariatesiierselected dataset
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3.7 Application

3.7.1 CD4 data

Zeger & Diggle (1994) motivate extensively the interest in the typical time ssoof
CD4 cell decay and the variability across subjects. Since the forms of fémetseis not
known, time since seroconversion, age and the mental illness score maydidered
as unspecified additive effects. Figure 3.18 shows the smooth efférh@fon CD4
cell decay for a random intercept model together with the data, FiguresBd®s the
observations for three men with differing number of observed time poinshédhlines)
and the fitted curves for individual time decay.

40 50
|

sqrtcd4

time

Figure 3.18: Smoothed time effect on the CD4 cell from Multicenter AIDS®@t Study
(MACS)

For the AIDS Cohort Study MACS we considered the semi-parametric mixeelfroth
Section 1

Yir = piy + H by + e
wherey;; denotes the square root CD4 counts of cells for subjest measuremertt
(taken at irregular time intervals). The parametric and nonparametric tergivan by
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Figure 3.19: Smoothed time effect on the CD4 cell from Multicenter AID$h@t Study
(MACS) and the decay of CD4 cells of 3 members of the study over time

E)ar = [y + drugs;Bp + partners;Bp,
Mgedd = ar(time) + aa(age;) + ac(cesd).

wherecesd is a mental illness score. The square root transformation has beeninused s
the original CD4 cell number varies over a wide range. The estimated efféme was
modelled smoothly with the resulting curve given in Figure 3.18. This smootle aan
be compared to the results of Zeger & Diggle (1994) who applied genetaditénation
equations. In Figure 3.20 the smooth effects of age, the mental illness awdrigme
are given. It is seen that there is a slight increase in CD4 cells for isiaiggage and a
decease with higher values of the mental iliness score. Table 3.4 shovwdithates for
the parameters. Comparison between BoostMixed and the mixed model @pphmavs
that the estimates are well comparable.
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BoostMixed Mixed Model
Intercept| 24.6121 (0.294) 24.8233 (0.286)
Drugs 0.5211 (0.279) 0.5473 (0.292)
partners | 0.0633  (0.049) 0.0595 (0.034)
O¢ 42531 - 426138 -
op 43870 - 443180 -

Table 3.4: Estimates for the AIDS Cohort Study MACS with BoostMixed airdethmodel
approach (standard deviations given in brackets)

age time

05 1.0 15

-0.5
|

-15

cesd

0 10 20 30 40 50

Figure 3.20: Estimated effect of age, the illness score cesd and tirad baBoostMixed



Chapter 4

Extending Semi-Structured Mixed
Models to incorporate
Cluster-Specific Splines

The semiparametric additive model (3.12) allows for additive effects adriates, includ-
ing multivariate random effects. For example random slopes for linear wmenalready
included. Setting;; = x;; model (3.12) is a random slope model

m
Yit = Z o) (uitg) + ah B+ 2, + et
j=1

whereb; represents random slopes on the variahigs Quite a different challenge is
the incorporation of random effects in additive terms. For simplicity of priedé®n we
restrict consideration to one smooth effect. Let the smooth random intenceie!

yit = Bo + a(u;) + bio + i, bio ~ N(0,0?),

be extended to
yit = Po + a(u;) + au;)bi + bio + €4, (4.1)

with (bio,bﬂ) ~ N(0,Q(p))-

As usual the smooth component has to be centered for reasons of itdit}ifed effects,

in our applicationsy ", a(u;) = 0 has been used. That means the "random slépeh
model (4.1) is a parameter that, quite similar to random slopes in linear mixed metkels,
the strength of the variable vary across subjects. The dependenegiabnlen; becomes

a(uz) + a(ui)bﬁ = a(uz)(l —+ bzl)
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showing thaiv(u; ) represents the basic effect of variablebut this effect can be stronger

for individuals if b;1 > 0 and weaker ifb;; < 0. Thusb;; strengthens or attenuates
the effect of the variable;. If the variance of;; is very large it may even occur that

bi1 < 1 meaning that the effect af; is "inverted" for some individuals. K (u;) is linear

with a(u;) = Bu;, the influence term is given by(w;)(1 + bi1) = u; (8 + Bﬂ) where

bin = Bbi represents the usual term in linear mixed models with random slopes. Thus
comparison with the linear mixed model should be based on the rescalednrafigat

Bil with E(ﬁzl) =0, Var(Bﬂ) = 52Var(ﬂi1).

The main problem in model (4.1) is the estimation of the random effectsv(dj is
expanded in basis functions byu) = ) a¢,(u) one obtains

a(ui)bi = Z asbid)s (u),

which is a multiplicative model since; and b; are unknown and cannot be observed.
However, boosting methodology may be used to obtain estimates for the model. Th
basic concept in boosting is that in one step the refitting(af ) is done by using a weak
learner which in our case corresponds to lakge the penalization term.

Thus in one step the change from iteratigf to a!*1) is small. Consider the model in
vector form with predicton! = (n1, ..., mir;) With

bi1

b;
;= 1[30 + (IDZ‘_Ot + (1(1%‘_0[) ( ) s

wherel” = (1,...,1) is a vector of 1s@;. is the corresponding matrix containing eval-
uations of basis functions and = (aq,...ay,) denotes the corresponding weights.
Then the refitting of residuals in the iteration step is modified in the following way.

Let n(l_l) denote the estimate from the previous step. Then the refitting of residuals

7

(without selection) is done by fitting the model
yi—n )~ N, Vi(0))
with
m =18 + ®ia+ (1, @;.a07Y) (Z()) : (4.2)
i1
wherefy, o are the parameters to be estimated and the estimate from the previous step

&=V is considered as known parameter. With resulting estimage& the correspond-
ing update step takes the form

al=al a5 =5+ b
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The basic idea behind the refitting is that forward iterative fitting procedike boosting
are weak learners. Thus the previous estimate is considered as knoverlasttterm of
(4.2). Only the additive tern®; « is refitted within one iteration step. Of course after the
refit the variance components correspondingig ;1) have to be estimated.

4.1 General Model with Cluster-Specific Splines

Let the data be given by, i, uit, zie), @ = 1,...,n, t = 1,...,T;, wherey;

is the response for observatierwithin cluster: and ng = (Tit1s - - Titp), uz; =
(Witdy - -+ Witm), z£ = (2it1, - - -, Zitg;) Are vectors of covariates, which may vary across
clusters and observations. The semi-parametric mixed model with clustafispplines
that is considered in the following has the form

m 1 2
yir =B+ Y0y ag (uig) + 2500 + Th O‘(J')(“itj)bg(}) + et

par

= " A i " e

whereb; = [bgl), (bl(.z))T]T ~ N(0,Q(p)) is a partitioned random effect ar@(p) is a
parameterized covariance matrix and

par

pb" =zl 3 is alinear parametric term,

podd - — YoM g (uir,) is an additive term with unspecified influence functions

prond = 2T bgl) contains the cluster-specific random effégéf,

st = Z?Zl () (uitj)bgé?) is a modification of additive termsy,), ..., o) by cluster
specific linear random effecb%) with (bZ@))T = (55(21))7 Cey bgflz)), and
€i¢ is the noise variabley; ~ N(0,02I), e, b; independent.
To approximate the nonlinear functions one uses
ag(u) =Y el (u) = af 69 (u) (4.3)
s=1
where ¢ denotes thes-th basis function for variablg, al = (agj) ...,a%}) are

unknown parameters ang(u)? = (¢§j>(u), e %}(u)) represent the vector-valued
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evaluations of the basis functions.

By collecting observations within one cluster the model has the form

i o= X+ aon(1+00) + . + a1 +b)) (4.4)
+@; pr10,1 + oo+ Py, + Zibﬁl) + €,

0 o2l
~ N N : 4.5
((0> < Q(P))) @9

€

b;
where X; 3 contains the linear termp;;«; represents the additive tern#; 3 the ran-
dom term andb” = ((bM)7, (b)), Vectors and matrices are given gy =
(yily"wyiTi)? X;T — (xila"'vxiTi)a(I)z;‘ = (¢(j)(ullj)a7¢(J)(ulT2]))a Z;T —
(zit, - 2iTy), eiT = (€1,.. "eiTi)' In the case of the truncated power series the

"fixed" term 7(();‘) + ﬂj)u +...+ wc(lj)ud is taken into the linear ternX; 3 without speci-

fying X; and s explicitly.
In matrix form one obtains

y= XB+ a1+ ...+ Ppam, +ZbY + RHP) 4 ¢,

Yy = Xﬂ—i—@lal—l—...—i—@mam—l—Zb—i—e,

WhereyT = (y?a"wyg)v bl = (b?’bg), bl = ((b(l))Ta (b(Q))T)v el =

(6’{7 7627
X = (x{,....xD), of = (of,...,0L), Z' = diag(2Z{,...,2Z]), Ri =

Rl‘.<a1, ceey ak) = [<I>i1041, ceey CI)ikOék], R = diag(Rl_, cey Rn) andZ = [Z,R] Pa-
rameters to be estimated are the fixed effects, collecte#f in= (37,af,... al)

and the variance specific parametéfs = (0., p!) which determine the covariances
cov(e;r) = o2Ir, andcov(b;) = Q(p).

4.1.1 The Boosting Algorithm for Models with Cluster-Specific Splines

The following algorithm uses componentwise boosting. Componentwise bgoséans
that only one component of the predictor, in our case one smooth®gfay, is refit-

ted at a time. That means that a model containing the linear term and only onghsmoo
component is fitted in one iteration step. For simplicity we will use the notation

Xi(r) = [Xl (I)iT] ) 57’? = (ﬂTaaZ)
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for the design matrix with predictaX;,) = X;3 + ®;-c..
The corresponding penalty matrix is denotedy, which for the truncated power series
has the form

K, = Diag(0, XI).

BoostMixed

1. Initialization

Compute starting valuef's(O al ), &Y andse)” = X0 + 344" 4.+
0,0\ and setr” = R, (a\”,..., A(O)) = (®nal”,..., 050", VO =
O21 4 Z0Q(0( 2O, wherez‘ )= (2:,RY)).
2. Iteration
Forl=1,2,...
(a) Refitting of residuals
i. Computation of parameters
Forr € {1,...,m} the model for residuals
yi = 1~ N, VP (007))
with
Ni(r)y = Xz(r)éT = XiB + ®irar
is fitted, yielding
b= QX ()X 1sz VRO ) ),
=1
ii. Selection step
Select fromr € {1,...,m} the componenj that leads to the smallest
AIC’ﬁl) or BIC’ﬁl) as given in Section 3.5.3.
iii. Update
Set BO = =1 4 3
and
~(1-1)
N if
&1(}) ) . T# ]
a1 a4, if r =17,
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Update fori = 1,...,n

m(l) = 771(1_1) + Xi(j)gj
and seth) = Ri,(fig”, . ,a,(j){: (@nal”, ... ®palh), v (g) =
(021 + 2 Q(p)(Z")T, whereZ{" = (z;, R").
(b) Computation of Variance Components
The computation is based on the penalized log-likelihood

n l n ! _
LOID:s) = -1 1og(IV(0)) + 20, (wi — n®) TV ()" (ys — n®)

A~

(6T 5D,

NO[—=

Maximization yieldsd®). SetV"(00) = (60)21 + ZPQ(p0)(ZT,
whereZ!" = (z,, R").

We chose componentwise boosting techniques since they turn out to b&takels/ in the
high dimensional case where many potential predictors are under caigde In this
case the procedure automatically selects the relevant variables and negnbessa tool
for variable selection with respect to unspecified smooth functions. Inabe of few
predictors one may also use boosting technigues without the selection sefjiting the
residuals for the full model with design matriX{®;; ... ®;,,].

4.2 Simulation

We present part of a simulation study in which the performance of semipaiaméxed
models with cluster-specific splines is compared to semiparametric mixed mode&s. Th
underlying model is the random effects model

30

Yit = :Eitl*ﬂl—l—:ritg*ﬂg—l—z cxoy5) (uit)—kbio—i—c*a(l)(uit)bﬂ—i—eit,z' =1,...,66,t=1,...,15
j=1
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with the smooth components given by

aqy(u) = sin(u) u € [-3,3],

a)(u) = cos(u) u € [-2,8],

(4.6)
a)(u) = cos(u) u € [-=3,3],
agy(u) =0 ue[-3,3,7=4,...,30.
The vectorSuﬁ = (ui1,-..,uy30) have been drawn independently with components

following a uniform distribution within the specified interval. For the covariai@sstant
correlation is assumed, i.eorr(y;i, yits) = 0.2. The constant determines the signal
strength of the covariates. The random effect and the noise variadedean specified
by Eit ™~ N(O, 062) with 062 =0.6 andbi = (bio, bil)T ~ N(O, Q) with

8 0.1
9= !0.1 4]'

In the part of the study which is presented the number of observationekashosen by
n = 66,7 = 15.

The fit of the model is based on B-splines of degree 3 with 15 equidistans.kihe

performance of estimators is evaluated separately for the structural cemgaand the
variance. The variance component for the random effects m@trix assumed to be
unstructured.

To show the effect of using cluster-specific splines, one dataset viithgse= 1 andp =
3 was chosen. Figure 4.2 shows the 66 clusters with their cluster-spetiifiessrandom
intercept and modified spline curve), which are modifications@f(.). Figure 4.2 show
the estimated and true modified cluster-specific spline functions (modified) without
random intercept. It is very characteristic for this curve that it has jaihpoints.

Figure 4.2 shows that cluster-specific splines can improve the mean deuesefor the
predictor. If the cluster-specific spline is neglected, the variation is caghtiar small
signals in the random effect and for huge signals in the error term andridem effect.
The model with cluster-specific splines seem to be more sensitive in the leasilbc-
tion. Nevertheless the model with cluster-specific splines delivers the aliganiances

as shown in Figure 4.1 nearly independent form signals and smootitseffer the com-
putation of these mean matrices the 100 estimated covariance matrices were symmed
and scaled by 100.
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Figure 4.1: Plots of cluster-specific splines with random intercept witheigigo the different
clusters. The black lines are the estimated splines, the red ones are thmttiens
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Figure 4.2: Plots of cluster-specific splines without random intercefit.side are the esti-
mated functions, the right side are the true functions.
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p=3 p=>5 p =15 p =25
=05 8.008  0.209 8.002 0.212 7.986 0.195 7.837 0.165
0.209  4.735 0.212  4.752 0.195 4.715 0.165  4.393
=1 7.738 0.124 7.736  0.124 7.725 0.123 7.717  0.124
0.124  4.480 0.124  4.482 0.123  4.491 0.124  4.515
c—5 7.794 0.134 7.779  0.134 7.714  0.123 7.638  0.109
0.134  6.687 0.134  6.691 0.123  6.643 0.109 6.676

Table 4.1: Mean of the estimated covariance matriges= Q(p) for the random effects
covariance matrix)

cluster-specific splines BoostMixed

c par MSEy, af steps falsepos falseneg M SEy o'g v'g steps falsepos falsene
0.5 3 138.611 0.603 14 0.00 0.0 143.502 1.099 8.047 16 0.00 0.0
0.5 5 142.035 0.605 15 112 0.85 146.897 1.096 8.039 17 0.66 0.0
0.5 15 148.847 0.610 15 1.73 0.94 155.453 1.089 8.018 20 1.96 0.0l
0.5 25 161.973 0.631 15 2.08 0.97 160.488 1.085 8.003 23 255 0.01
1.0 3 173.448 0.610 38 0.00 0.0 201.067 2.596 7.781 59 0.00 0.0
1.0 5 173.962 0.609 41 111 0.91 205.673 2.593 7.773 61 0.32 0.0
1.0 15 177.910 0.607 42 1.98 0.94 228.118 2.572 7.735 64 1.53 0.0
1.0 25 179.547 0.606 43 2.46 0.94 240.204 2.561 7.708 67 2.16 0.0t
5.0 3 1505.018 1.006 328 0.00 0.00 2031.959 50.802 7.776 971 0.00 0.0p
5.0 5 1552.813 1.058 341 1.75 0.19 2257.905 50.473 7.759 984 1.44 0.00
5.0 15 | 1719.956 1.181 358 9.53 0.23 3424.553 49.162 7.585 984 2.89 0.00
5.0 25 2056.678 1.424 376 16.69 0.27 4538.329 47.894 7.452 985 3.46 0.0p

Table 4.2: Comparision af/ S E,, for BoostMixed and cluster-specific splines

What is getting clear in Table 4.1 that is not a problem to get the true varidrares
the model. Itis also useful to use cluster-specific splines what can heérstre M SE,,.
Neglecting the cluster-specific splines lead with increasing signal to latigeagss for the
variance of the error component. However the cluster-specific splindstoedisregard
relevant variables. Except for large signals the number of irrelexaighles in the model
is quite comparable.
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4.3 Application of Cluster-Specific Splines

4.3.1 Jimma Data: Description

The Jimma Infant Survival Differential Longitudinal Study which is exteely described
in Lesaffre, Asefa & Verbeke (1999) is a cohort study examining tleeldivths which took
place during a one year period from September 1992 until Septemberii&Biopia.
The study involves about 8000 households with live births in that peridak children
were followed up for one year to determine the risk factors for infant ritytt&ollowing
Lesaffre, Asefa & Verbeke (1999) we consider 495 singleton livihbifrom the town of
Jimma and look for the determinants of growth of the children in terms of bodyhiveig
(in kg). Weight has been measured at delivery and repeatedly afttlswlia addition we
consider the socio-economic and demographic covariates age of motears(p\GEM),
educational level of mother (0-5: illiterate, read and write, elementaryo$gamior high
school, high school, college and above), place of delivery (DELB/, hospital, health
center, home), number of antenatal visits (VISIT>0), month of birth (TIME,1:Jan.-
June, 0:July-Dec.), sex of child (1:male, 0:female). For more details andatiotivof
the study see Lesaffre, Asefa & Verbeke (1999). Figure 4.3 shosvevbrall evolution
of weight and Figure 4.4 shows the growth curve of four children (olagi®ns and fitted
curves) for an additive mixed model with random slopes on the additiveetiget. It
is seen that random slopes are definitely necessary for modelling siee¢ spgrowth
varies strongly across children.

4.3.2 Jimma Data: Analysis with Cluster-Specific Splines

For the Jimma data we focus on the effect of age (in days) on the weiglttildfen.
Since growth measurements usually do not evolve linearly in time the use of a linea
mixed model involves to find an appropriate scale of age. Lesaffre aA&eferbeke
(1999) found that weight is approximately linearly related with the squaseabage.
An even better approximation, they actually used in their analysis is the tremeion
(age — log(age + 1) — 0.02 x age)'/2. Since in growth curve analysis random slopes
are needed , they had to find the scale before using mixed model methad®logypig
advantage of the approach proposed here is that the scale of agethashe found
separately but is determined by the (flexible) mixed model itself. The modebnsder
includes random slopes on the age effects, smooth effect of age of mawitieseveral
parametric terms for the categorical variables. It has predictor

Nit = Potaa(Age;)+bio+biiaa(Agei)+aan (Ageof Mother;)+ parametric term.
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Age of children Age of Mother
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Figure 4.5: Effects of age of children (in days) and age of the mothge@rs) in the Jimma
study

Figure 4.3 shows the overall dependence (of children). Figure 4Wwsstiwe (centered)
dependence on age and age of mother. It is seen that the effect of agsthers is
hardly linear (as assumed in the linear mixed models). Body weight of chifdrems to
increase with age of mother up to about 30 years, then the effect renadlies stable.
Table 4.3 gives the estimates of the parametric terms. For comparison the estonates
the linear mixed model with random slopes on the transformed age and lieectr ef
age of mother are given in Table 4.3 . As transformed age wéagge— log(age + 1) —
0.02 x age)'/? as suggested by Lesaffre, Asefa & Verbeke (1999). It is seerttibat
effects of the categorical covariates are quite comparable. The diffietercepts are due
to centering of variables. For age of mother the linear model shows a distaneaise (
0.014 with standard deviation 0.004 ).

Table 4.4 shows the estimated variancégf, b;1) for the flexible model and the linear
mixed model with transformed age.
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BoostMixed Mixed Model
INTER 6.819 0.174| 2.664 0.176
SEX 0.304 0.049| 0.296 0.081
EDUCO | -0.051 0.066| -0.085 0.118
EDUC1 | -0.021 0.151| -0.044 0.236
EDUC2 | 0.041 0.051| 0.009 0.093
EDUC3 | 0.036 0.029| -0.005 0.060
EDUC4 | -0.005 0.019| -0.042 0.042
VISIT -0.078 0.072| -0.078 0.117
TIME -0.177 0.065| -0.169 0.107
DELIV1 | -0.027 0.007| -0.019 0.010
DELIV2 | -0.148 0.031| -0.141 0.052
AGE 0.886  0.004
AGEM 0.014 0.004

Table 4.3: Effects of categorical covariates in Jimma study

BoostMixed Mixed Model
0.825962 0.196618 0.171369 -0.017506
0.196618 0.057253 -0.017506  0.045134

Table 4.4: Covariance matrix for random intercept and slope for Jidate
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4.3.3 Jimma Data: Visualizing Variable Selection

The models compared is the semi-parametric mixed model with cluster-specifiessplin
given by

nit = Po+aa(Age;)+bio+biiaa(Age;)+aan(Ageof Mother;)+ parametric term.

4.7
where the parametric term contains the categorical variables place crgiglivVELIV1-
DELIV2), education (EDUC1-EDUCA4), antenatal visits (ant), the intiéoas of age
and delivery, as well as the interactions of sex (SEX.EDUC1-SEX.EDWDA edu-
cation (SEX.EDUC1-SEX.EDUC4). The competitor is the linear mixed model witiesa
parametric terms, but linear and quadratic age and age of the mother. Emegbac
terms where shrinked with,,, = 20, the hyperparameter for smooth effects was set
to Asmootn = 1000. The x-axis of Figures 4.6 reflect the effective degrees of freedom
for the computed model which is another expression for the needed iterat@m the
y-axis one can see the development of the covariates with increasing iteraktoe black
vertical line indicates where the algorithm stops. For the semi-parametric arideiar
mixed model the criterion stops around 6.5 degrees of freedom. In bootelsrischge
the most relevant variable. Important in both models are also the SEX, thadtibers
AGE.DELIV1 and AGE:DELIV2 and the antenatal visits (ant) in the model. Thiy o
difference is that in the semi-parametric model deliv2 was taken and in the firired
model educO.

The generalized build-up graphic is a nice tool to visualize the relevancariables in
both cases, linear and semi-parametric mixed models. It shows also informdiem
variables with small relevance enters the model.
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Figure 4.6: Coefficient build up for parametric model (&) and zoomed version ifb).
Coefficient build up for semi-parametric model (age and agem arelmddvith splines) in
(c) and zoomed version ifd). (e) and zoomed version iff) shows the parametric model for
rescaled coefficients.
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4.3.4 Ebay-Auctions: Description

The technological advancements in measurement, collection, and stocage bave led
to more and more complex data-structures. Examples include measuremenigidtiin
als’ behavior over time, digitized 2- or 3-dimensional images of the brainfegwdings
of 3- or even 4-dimensional movements of objects traveling through spddeee. Such
data, although recorded in a discrete fashion, are usually thoughtoh&inuous objects
represented by functional relationships. This gives rise to functiatal@halysis (FDA).
In FDA Ramsay & Silverman (2002, Ramsey, & Silverman (2005) the cenfatarest is
a set of curves, shapes, objects, or, more generally, a fatadifonal observations. This
is in contrast to classical statistics where the interest centers aroundfalata vectors.

There is only little other work that addresses the issue of sparse andninepaced
functional data. James & Sugar (2003) propose a model-based clgstepnoach that,
similar to our approach, borrows information from neighboring functiargécts and
thus results in a more representative partitioning of the data.

In the following we motivate the problem of recovering sparsely and urgsampled
curves by considering eBay’s online auctions (se®. ebay. con). We describe eBay’s
auction mechanism, the data that it generates, and the challenges involv&thinda
functional approach to analyzing online auction data. eBay’s Auctionhigism eBay
is one of the biggest and most popular online marketplaces. In 2004, le@h{35.5
million registered users, of which over 56 million bid, bought, or sold an itenultieg
in over 1.4 billion listings for the year. Part of its success can be attributecetavaly
in which items are being sold on eBay. The dominant form of sale is the aucin a
eBay'’s auction format is a variant of the second price sealed-bid au€tishna (2002)
with “proxy bidding". This means that individuals submit a “proxy bid", whis the
maximum value they are willing to pay for the item. The auction mechanism automates
the bidding process to ensure that the person with the highest proxy bitheslead of the
auction. The winner is the highest bidder and pays the second highestdridxample,
suppose that bidder A is the first bidder to submit a proxy bid on an item with ianmimn
bid of $10 and a minimum bid-increment of $0.50. Suppose that bidder Aptapeoxy
bid of $25. Then eBay’s web page automatically displays A as the highetgbidith a
bid of $10. Next, suppose that bidder B enters the auction with a proxyfl§iti3 eBay
still displays A as the highest bidder, however it raises the displayedbito $13.50,
one bid increment above the second-highest bid. If another bidderitsua proxy bid
above $25.50, bidder A is no longer in the lead. However, if bidder A wgishe or she
can submit a new proxy bid. This process continues until the auction &mdige other
auctions, eBay has strict ending times, ranging between 1 and 10 dayshiecopening
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of the auction, as determined by the seller.

eBay is a rich source of high-quality — and publicly available — bidding dd&ay @osts
complete bid histories of closed auctions for a duration of at least 15 deaysweb sité.
One implication of this is that eBay-data do not arrive in the traditional formaloles or
spreadsheets; rather, it arrives in the form of HTML pages.

Figure 4.7 shows an example of eBay’s auction data. The top of Figureshlays a
summary of the auction attributes such as information about the item for sakelibe
the opening bid, the duration of the auction, and the winner. The bottom ofd-#7
displays the bid history, that is the temporal sequence of bids placed bydiveliral

bidders. Figure 4.8 shows the scatter of these bids over the auction dufatiday
auction in this example). We can see that only 6 bidders participated in thisraaciib
that most bids were placed towards the auction end, with the earlier par aiittion
only receiving one bid. Thus, if we conceptualize the evolution of prica esntinuous
curve between the start and the end of the auction, then Figure 4.8 sh@waraple of a
very sparsely and unevenly sampled price-curve.

“Does price remain low throughout most of the early auction only to expegisharp
increases at the end? And if so, is this price pattern the same for auctialhsypes? Or
does the pattern differ between, say, electronics and antiques?" J&hkn&eli (2005)
show that answering these questions can help profiling auction dynaméesy, \lank &
Shmueli (2005) build upon similar ideas to develop a dynamic forecastingisystdive
auctions. (See also Shmueli, Jank, Aris, Plaisant & Shneiderman (200#%) interactive
visualization tool for online auctions.)

One way around this problem is to borrow information from other auctiorsns{der
Figure 4.9. It shows the bid histories for three individual auctions, lab#?e #121 and
#173. We can see that the price curve in auction #6 is only sampled at thE@mekrsely,

in auction #121 the price is sampled mostly at the beginning, with no informatiom fro
the middle of the auction. And finally, auction #173 contains price informatiom fihe
auction middle but only little from its start and end. While every auction indivigwaly
contains partial information about the price curve, if we put the informatiam fall three
auctions together, we obtain a more complete picture. This is illustrated in the bottom
right corner of Figure 4.9. The idea of semiparametric mixed model smoothimgwis
to borrow from this combined information whenever an individual auctiartaios only
incomplete information about its price evolution. We describe the methods nramalfp
next.

Our data consist of 183 closed auctions for Palm M515 personal dig&atants (PDAS)

1Seehttp://1istings. ebay. com pool 1/ i stings/|ist/conpleted. htn
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See eligibility

h [ Search |
Advanced Search

“recHnoLoGy !

Item number: 5847587732

Email to a friend | Watch this item in My eBay

Item title: PALM M515 COLOR PDA, 16 MB, POCKET PC, MEMO PAD, NR
Time left: Auction has ended.

Only actual bids (not automatic bids generated up to a bidder's maximum) are shown. Automatic bids may

be placed days or hours before a listing ends. Learn more about bidding.

User ID Bid Amount Date of bid

sb1220 (51 %) US $37.76 Jan-03-06 23:10:33 PST
macawbabi (248 ¥ ) US $36.76 Jan-03-06 23:10:30 PST
thbjr (112 7% ) US $30.50 Jan-03-06 23:07:31 PST
themalestripper (1665 ¥ ) US $22.00 Jan-03-06 17:39:49 PST
tmicfmat (86 ¥ ) US $20.01 Jan-02-06 20:43:58 PST
cliniquetiffany2005 (0 ) US $5.00 Dec-30-05 20:04:45 PST

Figure 4.7: Bid history for a completed eBay auction. The top part dis@agtion attributes
and includes information on the auction format, the seller and the item soltdptten part

displays the detailed history of the bidders and their bids.
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Figure 4.8: Scatterplot for bid history in Figure 4.7. The"marks the opening bid; the/t"
marks the final price. Of the total of 6 bids, only one arrives befoyetda
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Figure 4.9: Three individual bid histories and their combined bids (botight panel).

that took place between March 14 and May 25 of 2003. In an effortdoae as many
external sources of variability as possible, we included data only oty &alions, trans-
acted in US Dollars, for completely new (not used) items with no added featane



4.3 Application of Cluster-Specific Splines 89

where the seller did not set a secret reserve price. Furthermore, wellithéedata to
competitive auctions, where there were at least two bids. These dataldigypavail-
able atht t p: / / www. smi t h. und. edu/ cene/ stati stics/.

The data for each auction include its opening price, closing price, andhtine series of
bids (amounts and time-stamps) that were placed during the auction. Thimation is
found in the Bid history, as shown in Figure 4.7.

Note that the bid values that appear in the bid history are not the actualspideen by
eBay during the auction. The reason is that eBay uses a second-pdbamisn, where
the highest bidder wins and pays the second highest bid. Theretoeach point in
time the displayed current price is the second highest bid. For this reasargnverted
the actual bids into “current price", and therefore our final data afteed monotone
increasing.

4.3.5 Ebay-Data: Mixed Model Approach vs. Penalized Splines:
Prognostic Performance

Although it is seen from Figure 4.11 that the more parsimonious mixed modekyield
better results we wanted to investigate the two procedures with respecgtwoptic per-
formance. Therefore the original data were splitter into a training datadet walidation
dataset. for each auction the data were split into bids, which come in véifBiof the
time and the rest. The first part of the data is considered as training datsedbed
part as validation data for the specific auction. One get data pdirs Pricei(?)]tis <

2 %7 days} for the training data and(t;s, Pricé?)\tis > 2 %7 days} for the test
data. The number of observations for auction i in the training data§§pisfor the test
dataSi@). Auctions with less than 3 bids were removed and not taken into the analysis.
Thereby the data set reduces to 132 auctions. This reduction is ngdassause in some
auctions not enough data were available to fit a penalized spline. Forntygucation of

the separate splines the set of knots were reduced to 3 since numesigehps arise in
the computation. For the flexible spline solution 14 knots were taken. For bdtiodse
differences of order 2 and B-Splines of degree 2 were used. Thmeatss of the train-
ing dataset was then used to predict the values of the test dataset. Farisomhe
predicted mean squared errors on the validation set have been comiputiee flexible
splines case boosting techniques as described were taken to get esfihateguare root

of the price was taken since estimation lead to rather huge variance estimatiensg
transformation was also considered but this transformation comprisemgestreduction

of information in the data.
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The computed model using separately fitted penalized splines and the mixetlapede
proach for auction were

s(Pricg))) = ag + ¢7 (t!) v
and
s(Pricé?) = g + o7 (t)a + by + ¢T ()b

respectively. Computation of mean squared error in the validation set ylié@di507 for
separately fitted splines and 28352.5 for the mixed model approach. thieeseparately
fitted splines have mse that is about 60 times larger.

It is obvious that the mixed model approach yields much better prediction tegretial-
ized splines approach. Since the data are sparse in some auctions itligeattietive

to limit the number of knots only to 3 knots. Another nice feature of the mixed model
approach is that the monotonicity holds for all auctions without the implementation o
restrictions that guarantee monotonicity.

4.3.6 Ebay Data: Final model

The following mixed effects model was used for all 183 auctions
s(Priceis) = ag + atis) + bio + bira(tis) + €is

to model the data. Figure 4.11 shows for the first 36 auctions the estimatdtnges
from separate spline fitting and from using the mixed model approach. deisthat the
separate spline fitting approach might behave erratically. When data anse sp may
produce decreasing functions or very steep functions. In the casemstlobservation
the estimate does not exist. On the other hand the mixed model approach gieddses
estimates even in sparse data situations. Even for one observation, itendifin
figure 4.11, the price evolution can be modeled using all other auctioras i, the case
auction 11 there is small but important information (bid at start, end and one athere
in between), this information is enough to fix the level of the auction (randoenciept)
and the evolution of the auction (random slope for splines). In the caaeation 20
the random slope is estimated very close to the expectation of the random blepe
information from other auctions is borrowed to get an idea what could hagpened.
But still the individuality of this auction is reflected in the random intercept, Wwhitows
variation also using the expected price evolution curve. The restriction totoicity is
unnecessary then since for all auctions nondecreasing functioestarated.
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Figure 4.11: Smoothed Time: The first 36 auctions with their specificvi@heegarding
price and Time. Mixed model approach is shown by the solid lines, sepafitted penalized
splines are the dotted lines.
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bo b1
by 4.536 (1) -0.619 (-0.847)

b -0.619 (-0.847) 0.117 (1)

Table 4.5: Estimated covariance mat€X ) for random intercept and slope for Ebay data.
Correlation is given in brackets.

4.3.7 Canadian Weather Stations: Description and Model

The data were collected from 35 Canadian weather stations. Jim Ramsay ¢
monthly temperature data for canadian weather stations on his wéb Fite raw data
were supplied by the Atmospheric Environment Service, Canadian ClimateeCBata
Management Division, 4905 Dufferin Street, Downsview, Ontario, M3¥.5The study
includes 12 monthly measurements for each of the 35 weather station. Térgexbso-
variates are mean temperature (temp) in degree celsius, month (month), vatatios
and precipitation (prec) imm?. Lettemp;; denote the temperature for the i-th weather
station with t-th measurement.

The following model was used
tempy = ap(preci) + apnr(monthiy) + bio + biyans(month) + ey

to model the data. The assumption on the random eftggts;; is that they are Gaussian,
independent between clusters and conditional independent for thezediff measures
within the cluster. Table 4.6 shows the estimated covariance structure foartHem
effects. Figure 4.12 shows 16 estimated mean temperatures for weather 20atinsta-
tion 35 modeled by cluster-specific spline curves. Figure 4.13 showstthegsd smooth
effect for the precipitation.

30.184988 -1.012974

-1.012974 0.066423

Table 4.6: Covariance matrix for random intercept and slope for @lanaVeather Stations
data

2Seef t p: / / ego. psych. ntgi | | . cal pub/ ramsay/ FDAf uns/ SPLUS/ README. t xt



4.3 Application of Cluster-Specific Splines 93

20 24 28 32

temp.
10 10
Lo
temp.
10 10
L1
temp.
30 -10 10
L
temp.
30 -10 10
L

-30
-30

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
month month month month
21 25 29 33

temp.
30 -10 10
L1
temp.
30 -10 10
L L
temp.
30 -10 10
L L
temp.
30 -10 10
L1

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
month month month month
22 26 30 34
2 2 2 2

temp.

-10
temp.

-10

-30
L
-30
L
temp
-30 -10
L
temp
-30 -10
L

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
month month month month
23 27 31 35

temp.
30 -10 10
Lo
temp.
30 -10 10
Lo
temp.
30 -10 10
Lo
temp.
30 -10 10
L1

o
IS
@
®
oS
s
o
IS
@
®
oS
s
o
IS
@
®
oS
s
o
IS
@
®
oS
s

month month month month

Figure 4.12: Monthly temperatures for 16 selected Canadian weatkiensta



4.3 Application of Cluster-Specific Splines

94

10

temp
-10

0 50 100 150 200 250 300 350

prec
Figure 4.13: Temperatures for the Canadian weather stations deg@&mdprecipitation



Chapter 5

Generalized Linear Mixed Models

5.1 Motivation: The European patent data

The used data come form two sources. The one source Oriliee European Patent

Register provided by the European Patent Officehat p: / / www. epl i ne. or g. The

database covers published European patent applications as wellisg@dinternational
patent applications. The second source deals with characteristics orfféinend com-

panies. Here 107 European firms were observed from 1993 to 20i@0tow variables
like number of employees, research and development expenses. Esistdierives from
the Global Vantage Database supported by Compustat. The informatiothoddtasets
were put together in a panel structured dataset. The objective is thesianalyhe be-
havior of firms according to their preference to do outsourcing. Usingfdtmation

one get the pooled data on 107 European firms in 856 firm years. Sinoesderch and
development data lacks of 261 firm years (missing values), only 595 famnsyare re-
maining for the analysis. So the total number of yearly patent applicatioris {FRAR)

is part of the study as well as the patent applications that were sourtetheuresponse
is the number of patents that were sourced out (OUT).Moreover, eblartiaat opera-
tionalizes the technical diversity of patent applications is collected. It is aunedor the
technological breadth where firms show activity (BREADTH). If the agpitds focused
only on few technological fields one gets smaller measurements than if anaapp$ic
active in a wide range of few fields. Moreover the volatility (VOL) of patepplications
is given by another measure which takes account of the changes andfions in the
activity of patent applications. The other variables collected are the firmnseasured
in employees (EMP), the expenses for research and developmentdrn(lEuD EUR),

the expenses for research and development adjusted to employeeHRPPand patent
(R_D_PAT), the patent portfolio of the company (PAT_PORT). Since #ta derive from
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Europe, dummy variables for the region (Germany (GER), France (FB#jed King-
dom (GBR) and others (OTH)) were introduced. For details on the earigin of these
measures see Wagner (2006). For this study only companies that hdadaesz0 000
employees over the observation period are considered. Applying tessetions the
hole dataset was reduced to 184 observations in total for 34 diffevempanies. The re-
sponse is the number of patents that were sourced out. One may assute tegponse
is Poisson distributed.

A simple model with only some covariates is given by

OUTyt|\it = Poisson(\it)

it =E(OUT}) = exp(nit)

(5.1)
where the indexXP AT Y E AR;; addresses comparywith measurement andb; is the
random intercept for company z;; is set tol since a simple random intercept model
is considered. For example, the first company of the dataset has nreastseof all
covariates in the years 1996-1998. The measurements in total for this ocpmga = 3.

A common assumption on random intercepts is that they are Gausssian didtriliite
bi ~ N(0,07). of is the random intercept variance.

Since one may use a short notation without addressing the variable damésE AR,
GFER, FRA, GBR one set generally the responseifp := OUT;. The vari-
ables that are responsible for the fixed effects are packed into ther vegto.=
(1, PA.YEFAR4,GER;t, FRA;, GBRy). zgg = 1. The variables associated with the

random effect are stacked in blockdiagonal entries in the méteixbdiag(Z1, . . ., Zy),
where Z!' = (z1,...,27,). The short term notation is witk! = (z;1,...,z:7),
XT = (X,1T77Xg)v y;T = (yilv’ . '7yiT)! yT = (y{7 7%{) and/BT = (/807' "754)1
vl = (of,... b)) andn! = (mi1,...,mir) andn® = (nf,...,nL) for clustered data

representation
ni = XiBi + Zib,

or in matrix representation
n=Xp+Zb.

There are 595 observations in the dataset derived from 35 compsmieg, setN = 595
andn = 35. In this case the dimension bdfwhich is denoted by isn (¢ := n) and the
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random design matrix has only one component (intercept), so the numb@empbnents
are setta: = 1.

The model (5.1) can be extended to a random slope model
nit = 180+ PA_Y EARyf31+GERy Bo+ F RAy B3+ GBRyy B4+b\" + PA_Y EAR b

In this casez, = (1, PA_Y EAR;), the number of random components are two (c=2),
the dimension for the random interceptgis = » and for the slopge = n. This is in
short notation

n=XpB+7Zb.

The dimension ofb is 2*n. One can use the ordered design matrix for random ef-
fects with Z;,) = 1, where Z;;) is a T; dimensional vector of ones, arﬁﬂ%) =

7

[PA_YEAR;,...,PA_YEAR;1]. The ordered random design matrix is tHén=
[bdiag(Zl(l), ey Zn(l))a bdiag(Zl(Q), ey Zn(Q))}, where

n=Xp(+7Zb

with 57 = (507,57, In this representation the clustered structure of the data may be

neglected, since the order of random effects are important. One may talk @ossed
random effects if one has more than one component in the random dedigx (ea> 2)
and it is not possible to build a clustered structure from the random desigix ma

5.2 The Model

First we consider the longitudinal formulation of a GLMM with its assumptions.

Longitudinal formulation (clustered structure) Let the data be of the form
(yit,xi),s = 1,...,n,t = 1,..., T, with y;; denoting a univariate response connected
to observatiort in clusteri andx;; denoting a vector of covariates, that may vary across
the observations within one cluster.

Often the cluster corresponds to individuals and the observations tategpmeasure-
ments. For a more simpler presentation, the number of observations withitusiter @
does not depend on the cluster.

A GLMM is specified by two components. The first assumption is, that theitondl
density ofy;;, given the explanatory variablg; and the random effeét is of exponential
family type
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(yi10ir — K (0ir))
o

where6;; denotes the natural parameter arid the log normalization constant. The
second component specifies the link between response and the cavartaestructural
assumption is based on the conditional mean

F(yit | ie, b;) = {exp + c(yit, @)} (5.2)

it = B(yit | zit, b;) = h(x B + 2 bi), (5.3)

whereh : R! — R! is the response function ang is a design vector composed from

Tt

The specification of the random effect model is completed by specifyindistigbution
p(b;, p) of the random effedt; wherep is a vector of structural parameters. The necessity
of this assumption, in particular for the maximum likelihood theory follows from

£ 1 X0 = [ £l | X5l o)t (5.4)
with X' = (za,...,zir)" wherey! = (yi,...,yu) and f(y; | X;,b;) is assumed to
be given by

T

Fyi | Xi00) = T £ it | win, i)

t=1

General formulation (crossed random effects) In the literature (i.e. Schall (1991),
Breslow & Clayton (1993) or Lin & Breslow (1996)) a more general notafior gener-
alized linear mixed models is used. This notation allows the incorporation cfedtaan-
dom effects and is not limited to a clustered structure of the datay kety(i), - - -, y(v))
be a vector of N observations.

Here Xy, is a known design matrix3 is a vector of fixed effects, th&; are known
T; x ¢ matrices, where is the dimension of the random effects vectaand 7; is the
number for observations in clustér The random effects are assumed to be Gaussian
with expectation zero and covarianea (b) = Q(p), wherep are structural parameters.
z(;) 1s the design vector for random effects, which corresponds to memasoté z ;) is
the design vector for fixed effects corresponding to measureimeatl ..., N
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Then the conditional density of an exponential family is

( 1;91' —£(04)))
fay | 73, b) = {exp dOMY 3 v + (Y, 8) 1, (5.5)

wheref;) denotes the natural parameter afd the log normalization constant.

Let g(.) be a monotonic function, the link (McCullagh & Nelder (1989)), such tfia)
can be written as the linear model

9(k@))) =16 = 2B+ zabi=1,...,N
The matrix notation with.” = (1), - .., vy, 17 = (1), - - -, M) IS given by
g(p) =n=XB+Zb (5.6)

with g(u) = (9(q))s - - - 9(1(ny))-

5.3 Numerical Integration Tools

In the following it is assumed that! = (Y(1)>- - -»Y(v)) has covariance matrif(p)
wherep is a vector which parameterizes the covariance matrix.

The integration of marginal densitie§f(y|b) * p(b; p)db for Gaussian mixtures with
densities of exponential families is usually based on the integration

/ £ (ulb)p(b: p)db = / F(¥IQ(p)"2a) * p(a)da,

wherep(.) is the standard normal distributiopy,.) is the normal distribution with expec-
tation zero and covariance mat@Xp) andb = Q(p)'/2a. Q(p)'/? is the left Cholesky
root of Q(p).

Most integration methods may be seen as a problem
1= [ f@g(@ia

f(.) is a continuous function angl.) is the integration function (often a density). The
functional form behind the integral is reduced to only two functighs and f(.). I is
then approximated by the arithmetic mean

J=1



5.3 Numerical Integration Tools 100

whereaj,7 = 1,...,m are integration knots and;,; = 1,...,m are integration
weights. The value ofi; andw; depend on the integration method and«n) that is
used. They can be deterministic (Gauss-Hermite) or random (Monte Cémlthe fol-

lowing the set of integration knots (integration points)j = 1, ..., m are called grid of
integration knots:” = (a1, ..., an). I is called the approximation of the integraith
I~1.

Riemann’s sums For integration with Riemann’s sume; is deterministicw; = %

g(a;)is g(a;) = 1. Riemann’s sums can be extended to the trapezoid rule, which now
uses special weights;, but the grid of integration knoig is the same as for Riemann’s
sums.

Gauss quadratures Since the accuracy of Riemann’s sums is often bad one may take
Gauss-Hermite quadrature, which is described in detail in the appendixndte infor-
mation on quadrature formulas see Deuflhard & Hohmann (1993), Daviat&nBwitz
(1975), Stroud (1971). The tables for nodes and weights can bel fiougtroud & Se-
crest (1966) and Abramowitz & Stegun (1972). For Gauss-Hermitergtiadw; are the
quadrature weights and; are the quadrature points, which are arranged by optimizing
Hermite polynomials. One problem of Gauss-Hermite quadrature is, that tlggahie

only sufficient if f(x) is centered around zero. This problem can be usually solved by
using adaptive quadrature schemes for Gauss-Hermite quadrature.

Riemann’s sums and Gauss-Hermite quadrature operates in d-dimensiegahtion
problems on complete integration grids which is the result of a Tensor profne
dimensional integration grids. Therefore the d-dimensional tensor praglused. The
integration points have then an exponential order in the used dimensiodinremsional
problems of more than five the curse of dimensionality makes computation rimidgbe.

Sparse grids for quadrature rules Smolyak’s formula on quadrature rules thins out
the grid in a way that quadrature points are combined together. For de@insalyak
(1963), Petras (2000), Petras (2001), Gerstner & Griebel (1898)Gerstner & Griebel
(2003). This is often called integration using sparse grids. That is aa tfidbetween
the goodness of accuracy and number of integration points. The so dekguhess of
Smolyak’s quadrature is responsible for the number of points. For andssmf the
size of onedimensional quadrature points one obtains the describedidullFepr poor
deepness one obtains an logarithmic order of quadrature points in the thmens
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Monte Carlo Integration For Monte Carlo integration the functigria) is a Gaussian
density,a; are i.i.d. drawings frony(a). For more information see Robert & Casella
(2004), Calflisch (1998) and Ripley (1987). Problem of this integratiothotkis to
assess the goodness of accuracy in dependence of needed integoitits. Usually
one uses an adaptive integrations scheme where the integration pointsresséu since
many times the same result is delivered.

Quasi Monte Carlo Integration The inverse cumulative d-dimensional standard nor-
mal distribution distribution function is uniformly distributed on the d-dimensionalc
That is why one may take low discrepancy sequences ( Niederreite2)j1,92hich de-
liver highly uniform distributed, but deterministic, points in the d-dimensiomé cube.

If elementwise the one dimensional inverse normal transformation is appli¢kdese
sequences on the unit cube, one obtains quasi monte carlo integratite fdia empir-
ical frequencies for small integration points are much closer to the unifistribtadition
functions, than random drawing on the unit cube. For more informatioduse: (1992),
Calflisch (1998). On Halton’s sequence see Niederreiter (1960).0D0l'S sequence see
Antonov & Saleev (1979) and Bratley & Fox (1988).

Since the d-dimensional standard normal distribution is a product of dliomensional
standard normal distributions, the d-dimensional integration grid can balizied for
d=2 with the first two cumulative normal distribution functions. See Figure 5.1.

Laplace Approximation The marginal log-likelihood for? = Yy -+ yy) 18
specified by

1(8, p) = log([ f(ylb; B) * p(b, p)db), (5.7)

where f(y|b; 8) = TIiL, f(yq b B) and f(yg)|b; 8).i = 1,...,N is a density from
the exponential family and the mixing distributigib, p) is the Gaussian density with
expectation zero and unknown covariari@ép). Since this log-likelihood is nasty to
handle we try to find an easy approximation for the integral to do further atatipn.
For the Laplace Approximation two likelihood functions fpare needed. The first one
is the joint log-likelihood function

Lioint(b; p) = —k(b) (5.8)

with &(b) = —log(f(y|b; ) * p(b; p)). The second one is the marginal likelihood

L(b,p) = / exp{—k(b)}db (5.9)



5.3 Numerical Integration Tools

102

R S I 38
o ' o
o | ' [
ST ' o
I ' [
[ ' [
5 L ' L
g8 o1 ! [
s S ' [
£
LRI 'Y SECERRES oo +0
2 1 ' o
S 4 ' [
2 [l ' [
[ ' [
I ' [
o ' [
S ' [
I ' [
S10@---------- @®---------- * 0o
T T T T T T
0.0 0.2 04 0.6 08 10
first dimension
(@)
S
= ' [ ] '
' '
B R ®--------- o --
' ' '
2 ' ' '
' ' '
' [ ) '
- ' v '
5 ' ' '
2 2 ' ' '
g ' ' '
5 *-0---0----0----0---0--0
R X X
% S ' ' '
8 ' ' '
' '
| * |
o ' ' '
© ' ' '
' '
<] ¢ .
T T T T T T
0.0 0.2 04 06 08 10
first dimension
(©
[ ]
i [ ]
< | °
° [ ]
[ ]
[ ]
°
5 o [ ]
3 © @
g [ ]
5]
£ [ ]
5 [ ]
R b
s = °
] [}
1) ° [ ]
°
~ [
s ° )
[ ]
°
L]
T T T T
0.0 0.2 0.4 0.6 08

first dimension

(e)

second dimension

second dimension

second dimension

S
ST e - .o
A A \ A A
w @ --@------- ®------- °---0
<44 ' ' ' '
. . . . .
o | | | | |
o 1 1 ' '
A Sl S A A o---9
< | | j j |
o T 1 l 1 1
, , , , ,
o , | | |
L Rl bbbl A A o---9
. . . . .
o oo ®------- 4---6
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
first dimension
S
= °
o ©
°
o
i ° °
c|e® - °
°
°
< )
< | o o
° ° [}
°
o ©®
|
S
°
°
. . . . .
0.0 0.2 0.4 0.6 0.8 1.0
first dimension
°
S
°
°
°
@ . .
2 |
°
°
°
0| ®
g . .
°
°
< | °
S °
°
°
~ b [ ]
3
°
e ©
°
T T T T
0.2 0.4 0.6 0.8 1.0

first dimension

()

Figure 5.1: Integration points evaluated for the 2-dimensional stanaardal distribution.

(a) are 25 integration points for Riemann’s sums frpA3, 3] x

[—3,3], (b) are 25 quadra-

ture points from Gauss-Hermite by tensor products, (¢) 17 points froroly&k’s rule for
Gaussian quadrature, (d) 25 Monte Carlo points, (e) 25 Quasi Momke @znts by Hobol's
sequence and (f) quasi Monte Carlo points by Sobol’'s sequence
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The basic idea is to make a quadratic expansion-bfb) about its maximum poink
before integrating. Therefore we solve
Ok (b)

5 =0=F0) (5.10)

yieldingb. The relationag—g‘) [exp{—k(b)} = [ 8’;—g’)exp{—k:(?))} = 0 indicates thab
maximizes also the marginal likelihood (5.9) with respedi.tdhen compute the curva-
ture of equation (5.8) 3
02k(b)
ObobT
A first-order Taylor-Approximation ok (b) in b with k(b) ~ k(b) + k'(b)(b— b) +
b)Tk" (b)(b — b)is now applied to

= k" (b). (5.11)

(b~

N[ —=

[exp{—k(D)}db =~ [exp{—k(b) — +(b—b)TK"(b)(b—b)}db
= [ exp{—k(b)} * exp{(b— b)" k" (b) (b — b) }db (5.12)

= exp{—k(b)} * (vV2r)P/2|k" (b) 1|1/

sincek’(b) = 0. k/(b) andk”(b) are computed in detail using log-likelihood (5.8) with
of = (ﬂ, b)T andZ(i) = var(y(i))

K(b) ==L 20 Do 025 (06 — 1 () + Q7 (0)b,
(5.13)
K'(b) =i 2 Dy (6) 55 (6) DE (6)20) + Q@1 (p) + R(5),
with
;)
R(d) = — Z[W(Z'(i)D(i) ()X @y (ON(Yi — 1y (6)), (5.14)
i=1
where
77(2)(5) = xa)ﬁ + Z(j;)b + offset(i),
11y (8) = h(ng(9)), (5.15)



5.4 Methods for Crossed Random Effects 104

For canonical link-function one haR(3,b) = 0. Generally can be assumed that
E(R(6)) = 0. We set

N

E'(0) = 2Dy ()5 () D (9)205y + Q7 (p). (5.16)
=1

Applying the results of (5.12) to (5.9) we get the Laplace approximated legjHixod
with 67 = (3,b)T

ILaplacd 0, p) = —% log(|k"(b)]) + & log(2m) — k(b)

= —5 log(|k"(b)]) + § log(2m) + log(f (ylb; ) —log(p(b; p))

= —$ log(|k"(b)] * [Q(p)|) + log(f(y[b; B)) — 367 Q(p) b

= —3log(|R(3, p)|) +log(f(y[b; B)) — 5b7Q(p) "'

(5.17)
with R(8, p) = oI, 2 Dii) ()5 (6) D) (8)2(3) TQUp) + 1.

5.4 Methods for Crossed Random Effects

5.4.1 Penalized Quasi Likelihood Concept

There is much confusion on the terminology of penalized quasi likelihood.\PThis
term was used by Green (1987) in a semiparametric context. The PQL idacéajp-
proximation around, e.g. Lin & Breslow (1996), Breslow & Lin (1995a) and Breslow &
Clayton (1993). This is the most popular method to maximize Generalized LingadM
Models. The Laplace Approximation around b ahid implemented in the macro GLIM-
MIX and proc GLIMMIX in SAS (Wolfinger (1994)). Itis just a slight modifation since
k(6) = —log(f(y|b; 3)p(b; p) instead ofk(b) is used. In the glmmPQL-function in the
r-package nlme the Laplace Approximation around b is implemented. Furttesr an in
Wolfinger & O’Connell (1993), Littell, Milliken, Stroup & Wolfinger (1996)na Vonesh
(1996).
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In penalized based concepts the joint likelihood-functidi, p), described in (5.9), is
specified by the parameters of the covariance strugtared parametef’” = (37, b7).

The idea of the penalized quasi-likelihood is now to ignore the first term ii7(Shbping
that there is small variation in these terms within the iterative estimation. So

N
15(6,0) = D loa(£ (o 19)) — 56" Qo). (5.18)
=1

These equations can also be derived via the log-posterior. The pastigstdbution for
0 given the datg is

f(ylo)p(9;Q(p))
p(y|6)p(6;Q(p))ds

The normalization constarftp(y|d)p(d; p)dé is not needed for maximizing the posterior
regardingd. A more convenient representation in comparison to the posterior is the log-
posterior without normalization constant, which is more easy to derive

g(0ly; Q(p)) = T

N

1(5:0) = S (1o8(F (49 |9)) — 557U

i=1

PQL usually works within the profile likelihood concept. So we can distingugivéen
the estimation ob given the plugged in estimatigiresulting in the profile-likelihood

lp(6,p)

and the estimation qgf given the plugged in estimatémresulting in the profile-likelihood

(6. p).

Estimation of 5 and b for fixed p:  First we consider the maximation bf(d, p), where
(£ andb; are estimated.

55 = 2550 = SN 2y Doy ()2 () (i) — 1y (),
(5.19)
sp = 252 = SN 2Dy () ) () (W) — 10y (8)) — Q™ (o).

As described in Breslow & Clayton (1993) the solutiors@f) = s(3,b) = (sg, sp)T =0
via Fisher-Scoring is equivalently to iteratively solving the BLUP-equatiweitls a lin-
earized version. The aspect of a linearized
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§(6) = X8+ Zb+ (D(8)™)" (y — () (5.20)
with
W =W(5) = D(6)X(5) DT (6),
D(6) = bdiag D(6) ;) )i=1,...,N
X(6) = bdiagdx(6) (i) )i=1,...,N-
The corresponding BLUP-equations, which are iteratively solved ane

XTWX XWz ] (ﬁ) _ [XTWQ((S(S))]

. . » o (5.21)
ZTWX ZTWZ + Q(p) b ZTW(8)

with (§CHNT = (5T pT"), whered®) is the estimate in the-th Fisher-Scoring cycle.

Example 5.1 : Special case: Estimatiorpodindb in clustered data
The components of the score functie(d) = %‘ig”) = (88, 8by,---,5,) L for fixed p are then
given by
ol(d n T —

g = a(ﬁ) =D im1 2t=1 Xg;DitEitl((s)(yit — Mit),

Sb; = % = 23:1 Z;J;Ditz;tl((s)(yit — Wit) — Q_l(ﬂ)bi
with D;; = %’;”, Y = covy|B,b;) andu;; = h(n;t). The expected conditional Fisher
matrix has the shape

Fig Fiy 0
F(6) = | Fs Fy

with
n T _
Fgp = Zi:l Zt:l Xi];DitEitlDz?;Xitv

Fyi = Fly = X1y X3 DXy, D] Z,

K2

Fy=1 ZDuS' DL Ziy + Q(p)~".
The estimatos can be calculated by the equation

F((;(k))é(kJrl) _ F((;(k))(;(k) + 3(5(’“)). (5.22)
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The problem 5.22 can be rewritten by linearized version

§(0) =XB+Zb+ (D)) (y — () (5.29)

to BLUP-equations

XTDyDTX XDxD'7 ] (B) B [XT DxDT g(5<5>)] (5.24)

Z'DYDTX ZDXDTZ+Q(p)~'| \ b ZT DD (5(%))

Estimation of Q(p) for fixed g and b: The theory of linear mixed models within the
REML framework can be applied to estimate the variance parametersV$@ a) can
be constructed with

V(p) = V(5,p) = DT (5)D7(6) + ZQ(p)Z"

which may be seen as an approximation to(&dX 5 + Zb) + e). The penalized quasi
likelihood can then be optimized with respeciitasing the weighted least squares equa-
tions

Lp(8,p) ~ —5log(|V(p)]) + (9(8) — XB)"V(p) " (5(8) — XP).
with §(6) = X3+ Zb + (D))" (y — u(0)). The restricted maximum log-likelihood
is obtained by adding the termi log(|X 7V (p) X|)
1:(8,p) =~ —35log(|V(p)]) + ((8) = XB)"V(p) " (5(6) — XB) — 5 log(| X"V (p) X]).
Differentiation with respect tp” = (p1, ..., pq) yields

5(8.p) = P00 = (s(p)i)in..d
and

2
F(B,p) = —B(%a0) = (F(p)i)ij=1,..a-

The score function has elements

s(p); = 8’;50) - —%trace(P(p)avp—f_”))
+1(G(8,0) — XB)TV () 2LV (o)L (5(8,b) — XB)
with P defined in Harville (1977) and Breslow & Clayton (1993)

P(p)=V(p) ™ = V(p) ' X (XTV(p)'X) " XTV(p) . (5.25)
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The Fisher function has elements

1
F(p)ij = 2trace<Pm;Ep)Pa‘;§p)> .

If ML is preferred to REML thenP(p) from (5.25) is replaced witt#(p) = V (p) L.

The penalized quasi likelihood is maximized by the following algorithm.

Compute starting value§, andy. [, can be the estimator of a linear model. The
elements of), are set to be small values, i.e. 0.1.

1 setk=0
2. compute351) by solving the equatiof( 3, ) above with plugged id(*)

3. computed*+1) in Z(B, ) by running a Fisher scoring algorithm with plugged in
GUk+1)

4. stop, if all stopping criteria are reached, else startin 1 withk + 1.

Example 5.2 : Special case:Estimatiortiifp) in clustered data

In this case computation is simplified since one works onlal@gonal structures.
Vilp) = Vi(8, p) = Di(8)E71(0) D (6) + ZiQ(p) 2]

The corresponding restricted maximum loglikelihood lobks

—leog Vilp Z XB)TVilo)™ (0 XiB)— D loa(| XTVi(o) Xil).

1=1
The Score function simplifies to
(o) = P =~ S spur(Pu(p) )
L @O — Xk B)TVi(p) "L ZEL Y (p) 7L (G(OW) — Xy 3)

n -1
Pr(p) = Vi(p) ™" = Vilp) ' X (ZXTVk 1Xk> X Vi(p) ™ (5.26)

k=1
The Fisher function simplifies to

= % Z trace(Pk OV (p) Py OVi (P) > .
k=1

Pi Py




5.4 Methods for Crossed Random Effects 109

d

Schall (1991) used the idea of estimating mixed models based on workingatises.

Breslow & Clayton (1993) put this idea in the framework of Laplace-Appration and
viewed the relationship to PQL, which is often used in semiparametric contexltém

native introduction to PQL is given by McGilchrist (1994) or Engel & Ké&A94). For
binomial data PQL was applied by Gilmour, Anderson & Rae (1985). Fagredidata
see Harville & Mee (1984). Exact covariance in logistic mixed models has pp@posed
by Drum & McCullagh (1993). Their method may be seen as a method for nargod-

elling. In fact using PQL or using methods for marginal modelling is based®same
equations in this context.

5.4.2 Bias Correction in Penalized Quasi Likelihood

Since PQL has been criticize in models with binary response, Breslow & 1985d)
and Lin & Breslow (1996) found a method to improve the bias in PQL. An amalsg
bias-corrected procedure was considered by Goldstein & Rash@86)(Who suggested
using an adjusted second-order Laplace approximation. Lin & Bresl8@6(1studies on
the bias are based on the Solomon-Cox-Approximation Solomon & Cox (1®@8&h is
used to find correction terms for the PQL. Therefore the integrated tkel#fiood can
be written as

L(B,p) = exp' ) oc [Q(p)| / exp{Zl (8,b) bT@<> }db (5.27)

wherel; (3, b) o y( )

by expandlngzz»:1 liy(B,0) in Taylor series abou = 0 before integration. The as-
sumptions are

20 L(s, b)(y@;y — b)db. Solomon and Cox approximated 5.27

g(p)=n=Xp+7Zb (5.28)

with Z, which is a partitioned matrix witt. = [Z y),...,Z )], whereZ ; is the
design matrix associated with thigh random effech;. b is assumed to be cty) =
bdiad pi1y,, - -, p21y.)-

The Solomon-Cox approximation is given by

lsol(ﬁu p) = —3 IOg|I+ZTE(ﬂ, ) Q(p)|

+Z Li(8,0) + 57(8,0)ZQ(p) (I + Z"5(B, O)ZQ(p))lzTT(ﬁ(éO%g)
wherer(3,b) = X(8,b) "' (y — X3 — Zb) may be seen as residuals. We derﬁ@ =

{h -} for any matrixH.
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Important for latter computations are

(8,b) = diag 25 (1ui(8, b)),

J =diag(1q,,. .., 1q.),

5(8,b) = diag( 22 (v w(ﬂ, b)) + (SeG)20(8,0)),

B = —1XT%(8,0)2? (5.30)

c —1JT (Z75( /5,0)2) J+ 1 JTZ<2> (5,0)Z<2>J,
—BT (XTE(ﬁ,O)X) 1B,

cp =T (zT%(B,02)?,

G = C1Cp.

Lin & Breslow (1996) propose the following algorithm

1. Get estimates® andp(©) from penalized quasi likelihood estimation as described
in subsection 5.4.1.

2. Correctp® by pM) = Gp(©)

3. Usep™) to estimates3 by solving the PQL-equations fat, which leads tg3(!)

4. Correctp™®
4O = g0 _ (xTx(3W, 0)x)"1BpY
and
BB = 5@ 4+ xTx(pM,0)x) 1 ABY,0)
where

d d
5,0 = 5 3730 XTS(8, D)X, XT S8, 0)Xe) Xel Ly s
j=1 k=1

3 is called the bias corrected estimator of a generalized linear mixed model.

5.4.3 Alternative Direct Maximization Methods

MCMC integration based methods In the general case one can use Monte Carlo Mar-
cov Chain based on a Metropolis-Hasting Algorithm as suggested by MaBull®97).
Alternative the Gibbs-Sampler proposed by McCulloch (1994) in conneetith numer-
ical integration can be used. The main difference to Gauss-Hermite Quiadisithat the
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pointsd;, are not fixed in the Newton-Raphson-Algorithm. The points must be computed
new in every step.

To specify a Metropolis algorithm, the candidate distribui@ must be specified, from
which potential new values are drawn, as well as the acceptance futitdiogives the
probability of accepting the new value.

The analysis is based on

L(B,p) =log [ f(y|B3;b)p(b; p)db, (5.31)
whereb is ag-dimensional vecton(b; p) is the density of g-dimensional normal distri-
bution with covariancé)(p). The idea is now to generate drawingsb', ..., b™ from
fojy (bly; B, p) o f(y|B;b) = p(b; p).

Since

AP0l = Dog [ f(y|B: b)p(b: p)du

S [ 25 108(F (418:0))] £ (y18:0)p(b3p) s

J F(ylB;b)p(b;p)db
(5.32)
o [ (&5 log(f(y15,b)))f (y|B; b)p(b; p)db
& f log y|ﬂ7 )fb|y(b|y7 ﬁ7 ) ) )) db
the integral of (5.32) may be approximated by
NB.p) 10 A
s(8) = =53 kZl TRt L) (5.33)
The difficulty now is to find a good sét, . . ., b™. This problem is solved by the Metropo-
lis algorithm. Letb* denoteb® = (b}, ...,bF)". Generate a new valug* for the j-th
component and accept* = (b, ..., b5 |, b?*, bk, 1,...,bk)" as a new value with prob-

ability A;(b*, b**); otherwise retain bA; (b*, b**) is given by

Syperyy 0%y 8P, pP)) 5 ()
oty (0F1y; BP), p®)) s c(bF+)

If choosingp(b; p) as the candidate distributiaitb), then

A;(b",6™) = min {1, 1wlo?: ) } .

A; (07, 05) = min {1,

f(y|B®);bF)
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This procedure has to repeated for every compobiia[jt: 1,...,q. For smally b* might
be drawn and updated directly in a block. For larthe acceptance probabilities may
become very small, therefore componentwise drawings and updatescabeshould
be preferred. There are only small modifications in the score Functiookzsilved Fisher
function to do when using Monte Carlo.

Since the vectop must be determined)(p) is chosen to maximizg_;" %fb(b’ﬂ@(p)).
This is done by a fisher scoring with

dlo o bk
S(p) — ng,éjb( |Q(p)

= S (~htrace(Q () 232 ) + S04 TQ L) ZHLQ ()0 )

and

F(p)ij = dlog 3 ity fo(W*lp) _ i ;trace<(@1(p) 6@(02‘)(@,1@) 8@(/%‘))

Opipj P Opj
The MCMC-Newton-Raphson algorithm has the form

1. Generate starting valug8 andp(?). Sets = 0.

2. Generaten valuesb!, ..., b from fy, (bly; 3, p(*)) and run Fisher-Scoring with
respect to3.

3. Maximize} "}, £,(b¥|Q(p)) with respect te.
4. If convergence is achieved, then declaf&™) andp(**?) to be MLE. Otherwise

startin (2).

Another idea is based on Gelfand & Carlin (1993) and Geyer & ThomEs@®2) which
suggested to simulate the likelihood directly instead of using the log-likelihood Th
simulated likelihood is then maximized directly. This methods is known under the name
SML (simulated maximium likelihood).

5.4.4 Indirect Maximization using EM-Algorithm

MC-EM Algorithm - Booth and Hobert's method This method is based on impor-
tance sampling. Important for the latter analysis is

1(3.p) = o | ~k()db
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with k(b) = —log(f(y|b; B) = p(b; p)). The first moment with respect tais &/ (b) where
K'(b) is described in (5.10) and’(b) in (5.11). The second momenti$(b).

The problem in EM-algorithm is to evaluate
M (5|5<p>) —E {1ogf (y b 8)|Y: 5@))}

- /log (f(y,b; 9)) f (b\% 5@)) " (5.34)

whereb is a g-dimensional vector and” = (57, p”). A natural choice for this case
is to useN (k'(b|6®), k" (b|6))) for the importance sampling densityb; 6)). More
information is given in Wei & Tanner (1990). We approximate

M (5\5@)) ~ iwk(a@, b {1ogf (y b 5)} (5.35)
k=1

with importance weights

wk((;(p) bk) ) (y‘ﬂ(p),bk) p(bk;p(P))
S c(bF; 6)

by drawing vectors (") = (®H)T,....(05)"), k£ = 1,...,m from
N (K'(b]6®), k" (b|5()). Sincef(bly; d) involves an unknown normalization constant,
so do the weights. Details can be found in Booth & Hobert (1999) Howévemormal-
ization constant depends on the known valt# and not ony, which means that it has no
effect on the M-Step and is therefore irrelevant (see Sinha, Tandal(1994)). The

score functions withD = D(3;b*) = diag(%?ii”)i:l . ' = (ays-- )’

NGy = xa)ﬂ + z(j;)bk, Y= bdiag(Z(i))i:L._m, S) = cov(y(; |b*) are given by

AN (6|5 .

PG = Sl k(1) {log £ (v )}
=30 wp (6P D X DY (y — ),

OM (5]6)) . - )

T op =D e we (Wb ){Ing(b ;p)}

- ZZL wk(5(p)7 bk) <_%trace<<@—1(p)%§)ﬂ)> + %(bk)TQ_l(p) Gggp)(@—l(p)bk) .

T(s1s)\ L (55 T\ L
For the following set(5]6®)T = ((E)M(glﬁd)> 7(8]\4(;';) ) :

Booth & Hobert (1999) suggest the following algorithm
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1. Choose starting valug$”) and initial sample size m. Set p=0.

2. Atiterationp + 1 generate/*, k = 1, ..., m from the importance distribution

3. MaximizeM (6,6")) using the samples’, k = 1,...,m

4. Construct a 100(2)% confidence ellipsoid fos* 1), If (§)®) is inside of the
region, setn = m + [m/l], where[ | denotes integer part

5. If convergence is achieved, sef+l) to be the maximum likelihood estimaﬁe
otherwise, sep = p + 1 and return to 2.

Usually the valuesr = 0.25,/ = 3 andm = 50 are chosens*+Y is the theoretical
®

value which maximizeéaw = 0 with exact integration. Booth & Hobert (1999)

show that§**1) is asymptotic normally distributed with*®*1) and coys®+1|5®)),

which is approximated by
cov(3PD[6P) ~ F(s@+D |5~ Leay (8(5*(p+1)|5(p))) FPHD |51
with

66v(s<6*<p+1>\6<P>>) = LS (wi(6@, 0F) Zlog { f(y, b*[6@)})
T
x (w (6@, 0F) 2 log{ f (y, b*16P)}) " .

Booth & Hobert (1999) propose using a multivariate Student t importarosity with
the same moments as the normal importance distributi@rm ).

McCulloch’s Method - MCMC-EM-Algorithm  Instead of using Gauss-Hermite
Quadrature one can use Monte Carlo Markov Chain based on a Metréfaditsng Algo-
rithm as suggested by McCulloch (1997) or Chan & Kuk (1997). Alteveatie Gibbs-
Sampler described in McCulloch (1994) can be used. The integration puurds be
computed new in every expectation step.

To specify a Metropolis algorithm Tanner (1993), the candidate distribatigrmust be
specified, from which potential new values are drawn, as well as treptaowce function
that gives the probability of accepting the new value.

The analysis is based on
M <5|5(P)) =E {logf (y, b; 6)|y; 5@))}

_ / log (£(s.: 8)) £ (bly, 5% db, (5.36)
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whereb is ag-dimensional vecto(b; p) is the density of g-dimensional normal distri-

bution with covariancé)(p). The idea is now to generate drawingsb', ..., b™ from
ol (Bly; BP), p®)) o f(y|B®);b) * p(b; pP)).
Then

AM (5]6P))

PG = & [1og(f (4B, b)p(b: )) fupy (bly: B, p®))d (5.37)

=[5 log (8, 0)p(b; p))) fojy (bly; BP, pP))db
may be approximated by
\/ (») m
PG = ST & (log(£(y18, 8 )p (6 ) - (5.38)

The difficulty now is to find a good sét, . . ., b™. This problem is solved by the Metropo-
lis algorithm. Letb* denoteb® = (b}, ...,bF)". Generate a new valug* for the j-th
component and accept” = (bf,..., b5 |, bg‘f*, bk, 1,...,bk)" as a new value with prob-

ability A;(b*, b%*); otherwise retain bA;(b*, b**) is given by

Fopeey 0%y 8P, p®)) 5 ()
o1y (OFy; 8P, p®)) 5 c(Dk*)

A; (b7, 0F) = min {1,
If choosingc(u) = p(u) then

o f(y|Bw; %)
Aj(bk,bk )_mm{l’f(pr);bk) .

This procedure has to repeated for every compobﬂ%n’t: 1,...,q. For smally b* might

be drawn and updated directly in a block. For largére acceptance probabilities become
very small so componentwise drawings and updates as described sleoptéfbrred.
There are only small modifications in the Score Function and observed Fisbrenation
Matrix to do when using Monte Carlo.

The MCMC-EM algorithm has the form

1. Generate starting valug8 andp(?). Sets = 0.

2. Generaten valuesb', ..., v from f,, (bly; 8%, p(*)) to do the expectation step
with modifications described above.

3. Run a Newton-Raphson algorithm with modifications described above.

4. If convergence is achieved, then declgfét?) and p?*!) to be MLE. Otherwise
startin (2).
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5.5 Methods for Clustered Data

5.5.1 Gauss-Hermite-Quadrature

This method is limited to the case of clustered data. Gauss-Hermite quadratoeedé o
the most commonly used techinques in integration theory and also applied widéy to
tistics (e.g. Naylor & Smith (1982). Hedeker & Gibbons (1996) developpbgramme
called MIXOR to get estimators within the Gauss-Hermite framework. The SA&epr
dure NLMIXED (SAS Institute Inc. (1999)) uses Gauss-Hermite quadea Information
on the Gauss-Hermite Quadrature in the statistical context can be found & Rierce
(1994). These computer programmes apply Fisher-Scoring algorithmsevithalytical
form of the expected Fisher matrix. Then Gauss-Hermite quadrature hasused once
again to approximate the expectation of the second order derivativés kriibwn that
in some circumstances Fisher-Scoring algorithm may lead to invalid statisticagricts
due to the use of the expected information matrix. This point was illustrated &gfle
fre & Spiessens (2001). According to Gilmour, Thompson & Cullis (1996)abserved
information matrix is preferable in GLMM.

For GLMM, the integrated likelihood can be written as
26,0 =11 [ 1wt s =[] [ fwls.applarde; (639
i=1 i=1

with a; = Q(p)~/2b;. p(a;) is the density function of &,.(0, I.), ¢ is the number of
random components. First one has to build sets of Gauss-Hermite quadraints and
weights

_ (/0 (© " o
{di=(diy), o dif)) s1< ki <mi. 1<k <me) (5.40)

and -
{vp, = (v&),...,vgc> 1<k <my;...51 < k. <m.}, (5.41)

whered,(é) andv,(é) denote the univariate quadrature points and weights for compgnent
andm; is the number of quadrature points for tjwth componentj = 1,...,c. Then
the Gauss-Hermite-Approximation to the log-likelihood has the form

n mi Mme ’U(l) U(c)
lau(B,p) = ) log < iz > < ke ) f (Wil B, p, di) (5.42)

k1=1 ke=1

with n;(di.) = (3, p, di) = XTI B+ Ziv/2Q(p) Y2 dpe. mie(di) = nin(B, p, di) = x5 8 +
25V2Q(p)"dy,.
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Let p = vech(Q'/?) be thesymmetric direct operator for the matrixQ'/2, that is a vector
formed by all the lower triangular entries ¢f'/2 through column by column.Denote
vec(Q'/?) as thedirect operator for the matrix@Q'/2, in other words, the? x 1 vector
formed by stacking the columns §funder each other. According to Nel (1980) and Pan,
Fang & van Rosen (1997) there must exist a c¢* matrix S, with vec(Q) = Sc*xvech(Q)
wherec* = c¢(c+ 1) /2.

ol(s3, me
lg‘)%p) = D i1 Doyt T Dot Wild )
(5.43)

|:ZtT:1 2t Dit Sy, (yit — h(nit(dk))}

(%) (2) sl

sy s () () )

whereXl;; = cov(y;t|nit(dy)) and

wi(dk) = wi(ﬁ»ﬂv dk) =

Similarly .
E?B/;p) =i D ey wildy)
(5.44)

0 it -
> o DS (yie — h(mt(dk))}

with Z = ST(d @ 2F).

For simplicity we suppress the notatief(dy ) to w; andn;; (dy) to n;; for the computation
of the second derivatives.
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Purp =5 (S S (ST 020" Dis o — o))
1= 1 c ;i T
(D e = hi)) ) |
n mi me T; .
2 BB (ST D e - now) )
i=1 k1 ke t=1 (5.46)
mi Me T; T
5 S (S ouDas - n0n)]
1 c =
n mi me T; . 1
721 [kz kal < 1Sc (dj, ®th)th22t th:vzt)]
= 1 c t=
and
5 n my me T;
Sp =% B Fe (S0l 0 Dy - ki) )
1= 1 c 7—11 T
( 1ScT(d£®Z£)th2n ylt_ nzt )
t=
n m1 me T; T T
— L) Wy Sc d ® z; Dzzl it — h(n; *
LB B (8Tl 0 e e — b)) ) 647
m1 me T; T T
[kaZwZ (t 150 (al;C ®th)thEn Yit — h(nit)) )]
o1 7 =
n my me T;
_Zl [kaZw (lef(df®ziTt)DitE;1D3;(d{®z3;)TSC)].
i= o1 ‘e t=

The Fisher-Scoring method is based on the work of Hedeker & Gibb@84jland
Hedeker & Gibbons (1996). The second derivatives of the margireiiiod (5.42) are
substituted with their expectations. Sineg 3, p, di,) depends on the parametetsaind
p this is very cumbersome. In this case Gauss-Hermite-Quadrature has sedence
again to solve the integral. A more straight forward way is to parameterige, p, dy,)
by wi(B, P, dy), wheref3 andj are the estimates of the previous Fisher-Scoring-step.
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The Newton-Raphson Algorithm becomes now the Fisher-Scoring Algorithm.

5.5.2 Adaptive Gauss-Hermite Quadrature

The analysis starts with
1(6;p) = Zlog/f uilbs: B) * p(Bis )by —Zlog/exp{ k(bbb (5.49)

Basic idea is to combine Gauss-Hermite Quadrature and the equations in thed-ap
approximation for an adaptive approach. The terms (5.10) and (5.41)sed to refine
the grid for integration. In this approach the grid of abscissas oh;tseale is centered
around the conditional modésrather thar). Therefore we need

Ok;(bi) ,
—= =0 = k;(b; 5.50
o, 1 (5:50)
yielding b;.
Then compute
82ki(62) "7
—— = k" (). 5.51
oo = F0) (5.51)

k.(b;) andk! (b;) are in detall

Ki(bi) = ZI'Di%i(yi — i) — Q(p)b,
(5.52)
K/ (bi) =2 Dix;'DI Zi + Q7' (p) + R

with D; = D;(5,0;),%; = %;(0 ) andy; = ui(8,b;) andE(R;) = 0. Then we set
1

7t = E(k" (b)) andb; = /2 + b, 2‘;1 = ’Tl-_l/Qf, whereq; is standard normal
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distributed. A modification is the use &f (b;) instead ofQ)(p) in the scaling of thex;.

So the predictor is; = X, + Zib; = X0+ Z; (b; +71/2 i)- S0 (5.49) can be rewritten
to

1(B,p) = log [ |r}"%| exp{—ki(bi + 7/2a;}da;
— 3 [ 7P exp{—ki(bi + 7/%a;) + Llog (27) + LaTa;}  (5.53)

(zn)p/2 exp{— a Ta;}da;.

Taking the quadrature points (5.40) and quadrature weights (5.41) lotatn® with
ni(di) = Xi 3 + Zib; = XiBZi(b; + ﬁril/zdk) an approximation

~ ma Me
(B,p) =31, log Lz o kzm”ﬂ exp{ —ki(bi + V21,2 dy) + Blog (27) + L||dk[}
1 c
(o)

Since the parametefsandb; should be obtained by maximizing (5.54) and not by solving
the Laplace-Approximation iteratively, we replaigeby b; in (5.54). The scaling matrix

7; depends orb;,5 and p, which causes computational problems for getting the score
functions. That is whyr; is computed using provisorial estimatésf;@ andp, i.e. the
estimates of the last iteration cycle. The score functions With= D;(n;(dy)),2; =
Yi(ni(dg)) andp; = u;(dy) have the form

(5.54)

n mi Me
S = Z:lk Zwi(ﬁ7p7dk’> )XD E ( ,uz)v
1= 1 ke
5 my
o= Tt =2 sz(ﬂ, P i b)) Z: D35 (i — ) — Qo) (bi + V272
1 c
(5.55)
with

U(.l) 'U(C)
(&%) (?) S (iln(dr))wi con(B, p, d)
e ©
Zkl 10 23:1 (%) (fﬁ) f(wiln(dr))wi cor(B, p, di, b;)

wi(ﬂapadlwbi) =

and

Wi corr(, P, dig, b;) = exp{(b; + \/éTil/Qdk)TQil(p)(bi + \/iTil/Qdk) + [Idk|[}-
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For estimatiori(d, p) is profiled on thes on the one side to get estimates dand profiled
oné on the other side to get estimates forThis is usually realized by IWLS.

The use of Fisher scoring algorithm or Newton-Raphson givendifficult because the
weightsw; (3, p, di, b;) depends or,b; . Nevertheless, iff andb; in w;(5, ppr, di, b;)
are replaced with their provisorial estimates 3, then the dependence@f(3, p, d., b;)
may be ignored when calculating the second-order derivatives or gexd fisher in-
formation matrix. Instead an equation system can be solved iteratively.efohemwe
need

b;k = E Zwl(ﬂv P, dk7 )(Z)l + \/§T1/2dk)7
Pyl (5.56)

(b*)T = ((bT)Tv R (b;)T)T

Ri :wi(ﬁA?pv dkabZ)DlEz_17
R = bdiad Ry, ..., Ry)-
mi Mme my mc
By denotingu* = > ...> Ruandy* = > ...> Ry we get the working vector
kl kc kl kc

g =XB+Zb+ Wy —p).

(ﬂ) - [ XTwg 57
b)  |Z"Wy+Q (b bY)

The estimator fop is obtained by using the linearized version

The solutions of must satisfy

XTwx XTwz
Z"TWX Z"WZ+ Q!

It should be mentioned that for using only one quadrature point, the egusatibe same
that is solved in the Laplace-Approximation case. The estimation of the var@mapo-
nents can be done by maximizing a linear mixed model in ML or REML equationse Mo
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details and refinements can be found in Pinheiro & Bates (1995),Pinheirt&sB2000)
and SAS Institute Inc. (1999), since SAS uses this form of adaptivesssidaermite-
Quadrature in the procedure proc nimixed.

5.5.3 Gauss-Hermite-Quadrature using EM-Algorithm

The marginal likelihood depends only on the structural parameters of thelmbldese
are given by3 andQ = cov(b;). Let Q be decomposed b = Q'/2Q”/? whereQ'/?
denotes the left Cholesky factor. By simple matrix algebra the linear prediegrbe
written in the usual linear form with; = Q'/2q;

Nit = $55+2£Q1/201

= [azit, aZT & zg]

g
9] (5.58)

wherea; ~ N(0,1) is the standardized random variable ghd= vec (Q'/2) is the
symmetric diagonal operator. For univariate random effects the Kkengroduct sim-
plifies to ;2 and® = y/var(b;). By utilizing all of the parameters are collected in
0T = (BT 7).

The indirect approach which is based on the EM algorithm avoids calculatidifficult
derivatives in the case of Newton-Raphson algorithm or another sippaton of the
expected Fisher matrix in direct approaches. Since it is often used in liteliatgiven
more explicitly. In theE-step of the(p + 1)th cycle one has to determine

M <5|5(P)) =FE {logf (y7 b; )|y; 5(,;))}
- /log(f(y,b; 8)) f (b\% 5(p>> b
where

log f(y,b; 6) =Y log f(yslai, §)+ D log (5(as))
=1 1=1

is the complete penalized data log likelihood wijth- (y1, . .., y,) denoting the observed
data and = (by,...,b,) denoting the unobserved data ané- (a4, ...,a,) the stan-
dardized unobserved datay.) is the mixture distribution of the standardized random
effectsq;. Basic idea is to use the theorem of Bayes

Baly, 50 « / F(y,a;6®)da = f(yla,5P) x p(a).
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Rewriting the problem the posterior has the simple form

f (a\y7 5(1’)) = ﬁf (yi|ai, Hp a; /H/f yilai, 57’ (al)daZ
i=1

M (6]6®) simplifies to

M (616%)) = [log (f(y,a; 6))p (aly, 6P)) da

o n . H] lf(yj|aj75( ))H _15(ay)
= [log (IT}y f (i, ais 5)) . [ F(yilaz, 5®))p(a;)da; da

o n . HJ 1f<y]\a],6( >)H Ty play)
=30 [log (f(yi,a; 6)) T, 17 (3 ) 30 )i, day ...day,

_\n o F(yilai,0®) )p(a;)
- Zi:l flog (f(yl> Qg 6)) ff(yj|aj,5(P>)ﬁ(aj)daj

dai

n ~ f(vilai,6P))p(a;)
= 1 J (108 £ (las.0) +logip(ar)] 7 e

dai.

Then we need sets of Gauss-Hermite quadrature points and weights

T
{dy, = <d§€11)7..., i(@) 1<k <my;...51<k.<m.}
and
{v—((l) (C)>T~1<k< 1<k <
k= (v v ) 1<k <mi;.. 1< e <me}
Whered,(j]',) andv,g) denote the univariate quadrature points and weights for compgnent
andm; is the number of quadrature points for tjxh componentj =1,...,c

In a Gauss-Hermite type approximation which is used in the following one haspthe
proximation

M (5|5<p>) ~ M (5|5<P>) : (5.59)

where

M (6|6“’)) le szk [log (f (y:l5, dk>>+log(ﬁ(ai>>]1 (5.60)

i=1 Lki=1 ke=1

with n = 28+ [V2dE ® 24)0, andn?, = ik, - - - nirk)

z(cl) UI(:)

k1 c

' ) (ﬁ)(f) (vil6, d.))

= wl(é ,dk) = Ué) © .
Zkl 1° ch 1 (f;) (fﬁ) f(ild, dy.)

Wik
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The beauty of this approximation is thaf (5|6(P)) again corresponds to the penalized
weighted log-likelihood of a generalized linear model and therefore maximie éte

M step of the EM algorithm) is simply realized within the framework of GLMs. For
simplicity we drop the notation of in brackets, soy = =0 + V225 Q(0)~/?dy,
Dy = % andX;; = cov(y;|d, di). According to Nel (1980) and Pan, Fang & van
Rosen (1997) there must existax c* matrix S, with vec(Q) = S, * vech(Q) where

c¢* = c¢(c+ 1)/2. The score functions are

OM(S 5(1)) T _
5(5|5(p)) # =i Zkl 1° ka—1 Wik Y42y witDitkzitli(yit — h(nitx))

and
AM(5|6(P) . T; _
s(0/61) % S Yl e wik >yl ST ® 28) Diak gy (yie — h(niak))-
(5.61)
The corresponding expected Fisher matrices are
2 07 (516(®) n m I
& zkz . kz@umtzannszwm,
1% - =
02 M (8|6 R 5
# = ;%: . ;wlktganltkzztk ng(dg &® Zit)TSc (562)
and
92N (5|6() LT
% => - szk ZST(dT ® zlt)DZth’Ltk thk(d{ ® zz'Tt)TSC'

o o e |
The EM-Fisher-Scoring-Algorithm in this case is characterized by thma for

1. calculate startvalug®.

2. for p = 1,2,... approximateM (5|6?)) by M (5|6()) and compute weights
w;, (6(P)) with respect of®)
3. fors =1,2,... run the Fisher-Scoring-Algorithm: till
56+ — 50
[166)]]
4. if the condition
|[o(s+D) — (@)
16|
is accomplished, convergence of the EM-Algorithm is achieved. If natistatep
2 with 61 = §(s+1) as update fo§®).
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Im & Gianola (1988) used the EM-Algorithm with Gaussian-Quadrature iargidata,

as well as Bock & Aitkin (1981) and Anderson & Aitkin (1985). Stiratelli, Lch: Ware
(1984) and Steele (1996) use the Laplace-Approximation to approximateigiional
expectation. Stiratelli, Laird & Ware (1984) use the first-order Laplappséximation,
Steele (1996) uses a modified second-order Laplace-Approximation veitheton-
Raphson Algorithm. Meng & Rubin (1993) introduced the ECM Algoritm (Eoctpe
tion/Conditional Maximation) which is a generalization of the EM-Algorithm. Thi®alg
rithm takes advantage of the simplicity of complete data conditional maximum likelhood
estimation by replacing a complicated M-Step of the EM with several computationally
simpler CM-Steps (Conditional Maximization Steps). The ECME-Algorithm @exp
tation/Conditional Maximization Either) based on Liu & Rubin (1994) replaceaes
CM-Steps of the ECM, which maximize the constrained expected complete-dealta lik
hood function, with steps that maximize the correspondingly constraineal kalihood
function. Other variants are described in Rai & Matthews (1993), Milaac& Krishnan
(1997) and Meng & van Dyk (1997).

Not mentioned in this context is the full Bayesian approach as mentioned &r Zeg
Karim (1991), which is based on MCMC. Further Waclawiw & Liang (19983 modified
GEE to estimate GLMM's. In the recent years specifying a random eftltsity with
no further restrictions became popular. One approach is the nonpa@maiimum
likelihood for finite mixtures as described in Aitkin & Francis (1998) and Aitkie49).
Another way of modeling smooth random effects is given by Davidian & Ga{lE993),
Chen, Zhang & Davidian (2002) and Gallant & Nychka (1987), whoausedified Monte
Carlo EM algorithm for estimation. Similarly is the approach of Chiou, Miller & @/an
(2003). Ghidey, Lesaffres & Eilers (2004) use penalized Gaussiatuids in a similar
way as P-spline smoothing for the estimation of a linear mixed model with smoothmand
effects distribution.



Chapter 6

Generalized Semi-Structured Mixed
Models

6.1 The Model

It is simpler to derive the generalized semi-structured mixed model in the notattion
general model, since the representation of clusters together with badi®fuexpansions
is not easy.

Suppose that the data are composed of N observations, with respgpseovariate
vectorsz; associated with fixed effects, covariate vectors associated with non-
parametric effects covariate vectorg, associated with random effects. Leg) =
(ugiyts--- ,u(i)m)T consists ofm different covariates. It is assumed that the observa-
tions y(;) are conditionally independent with meapsg;) = FE(y(;|b) and variances
var(y;)b) = ¢v(uy), whereo(.) is a known variance function anglis a scale pa-
rameter. The generalized semiparametric mixed model that is considered afidingrfg

has the form

9(pey) = xa)ﬁ + Z agy(uey;) + Z(j;')b (6.1)
j=1

__ ,par add rand
=May 06 TG (6.2)

whereg(.) is @ monotonic differentiable link function,

par

My = ma)ﬁ is a linear parametric term,
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nf‘gd > i1 agy(ugy;) is an additive term with unspecified influence functions
A)s - Am).
n(g”d 2 )b contains the cluster-specific random effeet N (0, Q(o)), whereQ(o)

is a parameterlzed covariance matrix.

par

An alternative form that is used in the followingjis,) = h(1)), niiy = nsy + i +
n@f;”d, whereh(.) = g!(.) is the inverse link function. If the functions (.) are linear,
the model reduces to the generalized mixed model of Breslow & Clayton (198@sions
of the additive model (6.1) have been considered by Zeger & Diggle4)1&8d Lin &
Zhang (1999), Zhang, Lin, Raz & Sowers (1998).

While Lin & Zhang (1999) used natural cubic smoothing splines for the estimatio
the unknown functions;, in the following regression splines are used. In recent years
regression splines have been used widely for the estimation of additivuses, see
Marx & Eilers (1998), Wood (2004) and Wand (2000).

In regression spline methodology the unknown functions(.) are approximated by
basis functions. A simple basis is known as the truncated power serieobdsiyreeal,
yielding
M
o () =W + 7w + - Pl ulp; + > aP (ugy; — k9NE

s=1

Wherekgj) <...< kg\? are distinct knots. More generally one uses

Oé(] ZO& U(Z)] —Oé gb )j, (63)
Where¢>§j) denotes the-th basis function for variablg, a;f = (agj), . (J)) are un-
known parameters amﬂ{)] gf)l ( ()j) -+ S\]j( u(;);)) represents the vector-valued

evaluations of the basis functions.
The parameterized model for (6.1) is given in the form

9(1@y) = 55%;)5 + Qb?;)loél +---+ d)%;)mam + zg;)b
or the matrix form
g(p) = XB+ P10+ + P o, + Zb

where the matriceX andZ have rOWSz(T) andz( ) and® ; has row&;s%;)j, which again
can be reduced to
g(p) = XB+ Pa+ Zb
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with of = (of,...;al)) and® = (®4,...,®,,) where ® has rows¢>%;) =

6.1.1 The Penalized Likelihood Approach

Focusing on generalized semiparametric mixed models we assume that the ocahditio
density ofy(;), given the explanatory variable;) and the random effeétis of exponential
family type

Wiy — #0vw)
fWay | 2@y, b) = {exp QLU 3 o + (Y@, )} (6.4)

where~; denotes the natural parametef,) the log normalization constant argthe
dispersion parameter.

The most popular method to maximize generalized linear mixed models is penalasd qu
likelihood (PQL), which has been suggested by Breslow & Clayton (1B@slow &

Lin (1995b) and Breslow & Lin (1995a). It is implemented in the macro GLIMMind
proc GLIMMIX in SAS (Wolfinger (1994)) or the gamm-function in the R-gage mgcv.
Further notes are in Wolfinger & O’Connell (1993), Littell, Milliken, Stroup/olfinger
(1996) and Vonesh (1996).

In penalized based concepts the joint likelihood-function is specified hyataneters of
the covariance structugetogether with the dispersion parametewhich are collected in
= (¢, o") and parameter vectéf = (57, o, b"). The corresponding log-likelihood
is
16.6) = 3 los( [ £(u100) <p(b, )b (6.5)

wherep(b, o) denotes the density of the random effects.

For the case of few basis functions and therefore low-dimensionahedeavector, the
log-likelihood may be approximated as proposed by Breslow & Clayton (1 983vever,

the form of the unknown functions(.) is severely restricted. A more flexible approach
which is advocated here is to use many basis functions, say about 2@ctoifunction
a(;), and add a penalty term to the log-likelihood. Then one obtains the penalged lo
likelihood

»(0,6) Zlog/f i16) * p(b; 0)db) — ZAaKaj (6.6)

whereK; penalizes the parameters. When using P spllnes one penalizes the difference
between adjacent categories in the fokm’ Kja = X; Y- {A%;}? whereA s the
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difference operator with\o; = a1 — aj, A2a; = A(Aay) ete., for details see Eilers
& Marx (1996). The log-likelihood (6.6) has also been considered byl Zimang (1999)
but with K; referring to smoothing splines. For smoothing splines the dimensiar) of
increases with sample size whereas the low rank smoother used hereotidepend on
n.

Approximation of (6.6) along the lines of Breslow & Clayton (1993) yields tbelde
penalized likelihood

1 m
Zlog (y(i)|9)) —beQ( )~ 1b—§ZAaJTKjaj. (6.7)

=1

The first penalty termb’Q(o)~'b is due to the approximation based on the Laplace
method, the second penalty tefm;” )\ja]TKjaj determines the smoothness of the
functionsa;)(.) depending on the chosen smoothing paramgter

PQL usually works within the profile likelihood concept. So we can distinguettvéen
the estimation of given the plugged in estimatichresulting in the profile-likelihood
lp(é,é) and the estimation of given the plugged in estimatarresulting in the profile-
likelihood ,,(, 6).

Estimation of 3, a and b for fixed §:  First we consider the maximation §f(0, ) with
respect tay = (57, a’,bT). As described in Breslow & Clayton (1993) the solution

of the score functiors(d) = oy a(g 0 = 0 for (6.7) via Fisher-Scoring is equivalent to

iteratively solving the BLUP-equations with a linearized version. For déons to follow
the motivation>:(d, 0); = cov(y(;|d,0) and D;)(5) = E(,”‘ 2) are necessary. The matrix
versions areD(§) = diag(D;(9))i=1,...n andX(,0) = d|ag(2(l-)( ,0))i=1,..~. The
linearized version is given by

Ty = ()P + Sl + 2{yb + Dy () (y) — me)-

In matrix notation one obtains
j=XB+Pa+ Zb+ DY) (y —p).
For the linearized version the approximated covariance is given by
W =W() = D)2~ 1(5)DT(6).
The estimation problem using weighted least squares is equivalent to thetestiprab-
lem of the mixed model

glb

approx
~Y

N(XB+ ®a + Zb,W 1), (6.8)
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Estimation of 6 for fixed 3, « and b:  If we assume (6.8) and ifis normally distributed
the random effect can integrated out analytically. The theory of lineardninedels
within the REML framework can be applied to estimate the variance parametera. S
V (9, 8) can be constructed with

V(0) =V (6,0) =W '+ ZQ(0)Z"
The corresponding REML-equation has the form
1p(5,0) =~ [ F(glb) * p(b; o)
~ —5log(|[V(O))) + (7 — XB — @) V(0)7H(§ — XB — Pa) — 5log(|XTV(0)X])

(6.9)
wheref(.|b) andp(.) are Gaussian densities fpandb as described in (6.8).

6.2 Boosted Generalized Additive Mixed Models - bGAMM

The following algorithm uses componentwise boosting. Componentwise bgosdans
that only one component of the predictor, in our case one smoothdgim;, is refit-

ted at a time. That means that a model containing the linear term and only onthsmoo
component is fitted in one iteration step. For simplicity we will use the notation

Tiyr) = [x(i)a <Z5(i)r, Z(Z-)] , 0, =(0",a,,b")
for the design matrix. For the predictor without random part we deﬁ@)tqu xa)g +
T
iy
bGAMM

1. Initialization
Compute starting values®_ 4{” ... a0, b(© and seﬁéz'o)) = 30 +¢6)107§0) +

7 ~(0)
o+ (b(i)mozm .
2. lteration
Forl=1,2,...

(a) Refitting of residuals

i. Computation of parameters
Forr € {1,..., m} fit the model

9(yr) = ﬁﬁ-)— Y 208+ dpar + b
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yielding 61 = (87, al’,b7) whereﬁ((ﬁ)*l) is treated as an offset using

Yoy = ngg + 2o+ DY) (i — 7" — z(»b) with only one iteration.
ii. Selection step

Select fromr € {1,...,m} the componenj that leads to the smallest
BIcY.
iii. Update
Set O = a4 §,
and
A (1-1) it
a0 = rl r#
aﬁ’” + &, ifr=yjy,

Update fori = 1,..., N

~() _ ~(-1) T T .

(b) Computation of Variance Components
The computation is based on the penalized quasi likelhood and its score and
fisher functions 6.9

(6l V58) =~} log(IVO))) — 37— 70 VO) (G- 1)

OV KO,

The corresponding penalty matrix is denotediy, which for the truncated
power series has the form

K, = Diag(0, M\, 0).

Maximization yieldsd").

6.2.1 Stopping Criteria

With starting valued©® and W(© = W (5© ¢©) %O = 55 ¢©) DO —
D(6®,9() denoting evaluations at valuig?) + X6 one step Fisher Scoring is given
by

s = FE)s(6O)

- XTWOx + k)" Lxw©OpO !

(y — ).
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Settingi) = r(7") + X;6()) one obtains
W+ 200 = X565 40
AtD 4 zp® — 0 = ngj
= X;(XTWOX; + K)" XTwO DO (y — 40).

Taylor approximation of first ordei(7) + Zb) = h(n) + a;n(g) (n+ Zb—n) yields

D x4 Dy + 260 —ig))

A 4 Z2p0 — O~ DO (0D — p0)
and therefore
~ ~ _ N N ~ _ —1 N
(W(l))l/Q(D(Z)) 1(u(l+1)—,u,(l)) ~ (W(l))l/QXj(XJTW(l)Xj—&—K) 1X]T{/V(l)D(l) (y—,u,(l)).

Since(W)/2(DW)=1 = (21))1/2 and (WM)1/2(DW)~1 = (£1)1/2 this can be

transformed to "
AL i~ M(l+1)(y _ ﬂ(l))

il

_ - - _ _ 1/2

with M (D = (SOYN2WO)2X(XTWOX; 4+ K) X T (w0)1/250 /2
Definei® = 4 + ¢, For simplicity one can use

aD = g0 = M (y — pl0) + 00,

So one obtains

G ORIV ARl (T Oy o O)
= MED -0 — (a0 = a0y 4 0O - D ot
MUYy — =D — prOy — p=Dyy 4 @ — pr+D o=
= MEYT = MOy — Dy 4+ O~y ol=1),
S0 one gets

m 7j—1
M ZM(J) H([ — M) y 4 RM

§=0 i=0

with R(™) =37 | 50, S0 is defined by
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For interpretation the version

m 7—1
am — R~ ZM(J) H(] — M%)y
j=0 i=0

should be used whefé™ — R(™) is the result of the projection af R(™ is the correc-

tion term associated with the random effects. So one can write

A g o g,

The corresponding projection matrix is given by

m J—1
Hm — ZM(J') H([ _ M(i)).
j=0 i=0

6.2.2 Simulation Study

(6.10)

Poisson Link We present part of a simulation study in which the performance of Boost-
Mixed models is compared to alternative approaches. The underlying maolderrandom

intercept model

mtzbﬂrZ?ilC*a(]’)(uit), 1=1,...,40, t=1,...

E(yi) = exp(nit)
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with the smooth components given by

aqy(u) = sin(u) u € [-3,3],

a)(u) = cos(u) u € [-2,8],

a)(u) = u? u e [—1,1],
oy (u) = u? u e [—1,1],
oy (u) =—u?  we|-1,1],
ag)(u) =0 u€[-3,3],j=6,...,20.
The vectorSul?; = (ui1,-..,uy20) have been drawn independently with components

following a uniform distribution within the specified interval. For the covariai@sstant
correlation is assumed, i.eorr(ui,, uis) = 0.1. The constant determines the signal
strength of the covariates. The random effect and the noise variadedean specified
by b; ~ N(0,07) with o7 = 0.6. In the part of the study which is presented the number
of observations has been chosenby: 40,7 = 5.

The fit of the model is based on B-splines of degree 3 with 15 equidistan$.kiThe
performance of estimators is evaluated separately for the structural cemgcand the
variance. By averaging across 100 datasets we consider meandeuanes forn,ag
given by

. o X
mse, = >0y >y (i — M) i = x5,

msegz = |loj — 3|
Additional information on the stability of the algorithms is collectechistconv, which
indicates the sum over the datasets, where numerical problems occuriegl estima-
tion. falseneg is the mean over the count of variableg)(u),i = 1,...,5, that were
not selectedfalsepos is the mean over the count of variabteg) (u),i = 6, . . ., 20, that
were selected.

In Table 6.1 the resulting mean squared errors are given for incresigimgjs and increas-

ing number of parameters. Since for a large number of covariates thedBzee Addi-

tive Mixed Model strategy (GAMM) did not converge for many cases, ficg.c = 0.7

andp = 15 only 18 of 100 datasets lead to feasible results using GAMM. Only the cases
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that lead to convergence were compared with the boosted Generalizéilé\ddixed
Model (bGAMM) on the one side and the cases that lead to convergsitgg blGAMM
were compared to GAMM on the other side. That means only datasets whatlothea
both sides to convergence were chosen to be compared. It beconiassainat for many
parameters (p>=10) GAMM is not a suitable method to handle many unspeuéiad
meters. FalsePositive (FalsePos) are the unspecified variables teaselected by the
algorithm but have no real effect on the response. Instead Falagie{f-alseNeg) are
those variables that should have been selected by the algorithm buteteedected. For
Table 6.1 the BIC-Criterion was chosen to be the stopping and selectionorriter

GAMM \ bGAMM
c p mse, mse;, | notconv | mse, mse,, | notconv | Steps | falsepos| falseneg
05| 5 | 15417| 0.020| 4 15.403 | 0.015 0 72.2 | 0.0 0.4
0.5| 10 | 18.503| 0.007| 71 18.271| 0.020 0 63.6 | 1.2 0.5
05| 15| 22.694| 0.009| 88 21.772| 0.006 0 713 | 1.6 1.0
05| 20 22.116| 0.017 0 63.1 | 2.2 0.7
07| 5 | 14537| 0.027| 1 13.415| 0.018 0 87.4 | 0.0 0.0
0.7 | 10 | 16.702| 0.016| 72 15.427 | 0.026 0 126.3| 1.2 0.0
0.7 | 15| 22.466| 0.009| 92 17.799 | 0.012 0 66.8 | 1.7 0.1
0.7 ] 20 20.496 | 0.016 0 99.6 | 24 0.1
10| 5 | 15.746| 0.025| O 14.123 | 0.015 0 104.5| 0.0 0.0
10| 10 | 18.121| 0.006 | 68 16.399 | 0.009 0 1044 | 1.3 0.0
10| 15| 19.626| 0.001| 95 13.758 | 0.017 0 118.0| 2.0 0.0
10| 20 22.138| 0.012 0 108.7 | 2.9 0.0

Table 6.1: Generalized additive mixed model and boosted generatizitiza mixed model
on poisson data

For a more extensive analysis of BoostMixed six simulation studies with diffeegtings
were made. In all studies 100 datasets were generated. AIC-CriterdoBI@ACriterion
were compared.

Study 15 - small clusters and small random effect

The random effect and the noise variable have been specifigg by N (0, 02) with
o2 = 0.6. In the part of the study which is presented the number of observatisrisciea
chosen byn = 100, 7 = 2. Pairwise correlation was taken to ber(u;,, uis) = 0.1.
Details can be found in Table C.14 and Table C.15.

Study 16 - few clusters and large random effect
The random effect and the noise variable have been specifigg by N (0, 02) with
af = 1.2. In the part of the study which is presented the number of observatigrizelea
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chosen byn = 40,7 = 5. Pairwise correlation was taken to ber(u;;, uis) = 0.1.
Details can be found in Table C.16 and Table C.17.

Study 17 - big clusters, few clusters

The random effect and the noise variable have been specifigg by N (0, 07) with
ag = 0.6. In the part of the study which is presented the number of observatigrizelea
chosen byn = 20,7 = 10. Pairwise correlation was taken to ber (s, uis) = 0.1.
Details can be found in Table C.18 and Table C.19.

Study 18 - many clusters and small random effect

The random effect and the noise variable have been specifiégd by N (0, 07) with
o7 = 0.6. In the part of the study which is presented the number of observatisrizlen
chosen byn = 80,7 = 5. Pairwise correlation was taken to ber(uis, uits) = 0.1.
Details can be found in Table C.20 and Table C.21.

Study 19 - many clusters and huge random effect

The random effect and the noise variable have been specifiégd by N (0,07) with

o2 = 1.2. In the part of the study which is presented the number of observatians ha
been chosen by = 80,7 = 5. Pairwise correlation was taken to ber(ui., uits) =
0.1.Details can be found in Table C.22 and Table C.23.

Study 20 - big clusters, many clusters, correlated data

The random effect and the noise variable have been specifigg by N (0, 02) with
o = 0.6. In the part of the study which is presented the number of observatisrisciea
chosen byn = 40,7 = 10. Pairwise correlation was taken to ber(u;,, uis) = 0.5.
Details can be found in Table C.24 and Table C.25.

If one wants to summarize the results of study 15 to study 20 the boosted GAMM
(b GAMM) seems to be a good competitor to the generalized additive mixed model
(GAMM) for cases with more than 400 observations in total, see study 17 dy &

Only the cases that lead to convergence were compared with the boosteclized Ad-
ditive Mixed Model (bGAMM) on the one side and the cases that lead toergence
using b.GAMM were compared to GAMM on the other side. Nevertheless imsurieed

that for small dataset with small clusters (200 observations in total, studgdLh6) that
numerical problem affects the GAMM method. In study 15 the GAMM method did n
converge in 17 of 100 cases for strengtk= 0.5 and five variables. For more than 15
variables GAMM did not lead to convergence in at least 84 of 100 datémessrength

¢ = 0.5, ¢ = 0.7andc = 1 for AIC. These problems also arise in all studies. In al-
most all studies the BIC criterion delivered betidiS £, than the AIC criterion in cases
with many irrelevant variable® (> 10). In cases with just relevant variables AIC was in
most cases superior to the BIC criterion. Responsible foMi#&, in studies 15 and 16
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may be the selection of relevant variables. In these studies not all relergables were
selected. In study 16 averaged 0.71 relevant variables of 5 possit#enweselected in
the case of AIC{ = 0.5 andp = 5), 1.37 in the case of BIC. In study 17 to 20 nearly
all relevant variables were selected using AIC or BIC but with more ireglevariable in
the case of AIC. The problem of AIC is that it allows to select more irrelevariables
which is reflected in a remarkable downgrade in term8/cf E,,. In most of the studies
bGAMM has bettetV S E;, than GAMM.

Binomial Link We present part of a simulation study in which the performance of
BoostMixed models is compared to alternative approaches. The undentyidg! is the
random intercept model

Mit = bi+ Y o0y % By * wij,i =1,...,80,t =1,...,5,

E(yit) = h(mit)

with the smooth components given by, = 2.0,82) = 2.5, 83 = 3.0, 84)(u) =
3.5, B5)(u) = 4.0,y =0 j=6,...,20., whereh(.) is the logistic function.

The vectorSug; = (u1,---,uy20) have been drawn independently with components
following a uniform distribution within the specified interval. For the covari@@sstant
correlation is assumed, i.eorr(ui., uits) = p. The constant determines the signal
strength of the covariates. The random effect and the noise varial@ebean specified
by b; ~ N(0,0?) with 02 = 0.6. In the part of the study which is presented the number
of observations has been choservby: 60,7 = 5. For Table 6.2 the AIC-Criterion was
used.

In Table 6.2 the resulting mean squared errors are given for incresigimgjs and increas-
ing number of parameters. In this case an implicit variable selection prazedakes
sense since for increasing number of parameters the Generalized Model btrategy
(GLMM) deliver very instable estimates or a dramatic loss in the accuracyeopr-
dictions. FalsePositive (FalsePos) are the unspecified variables tteas@lected by the
algorithm but have no real effect on the response. Instead Falagie{falseNeg) are
those variables that should have been selected by the algorithm but ateselaected.
Nevertheless there a some datasets where the boosted Mixed Model Wi not
find all relevant variables. On the other side the boosted Mixed Model médtips to
reduce the irrelevant variables. In the case for signal c=1.0 andratnpéers only aver-
aged 1.49 from 10 possible irrelevant variables were selected whiehuesffect on the
response. Remarkable is that for small signals in this study the mean seuaredfor
the random effects variance are quite smaller.
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GLMM bGLMM
c p mse, mse;, | notconv | mse, mse,, | notconv | Steps | falsepos| falseneg
05| 5 | 72.003 0.031 | O 87.475 | 0.056 | O 100.5| 0.00 0.02
05| 10 | 146.845 | 0.038 | O 102.632| 0.066 | O 102.6 | 0.23 0.02
0.5| 15| 210.027 | 0.058 | 0 119.176| 0.059 | O 98.2 | 0.36 0.02
05| 20| 283.818 | 0.071 | O 123.898| 0.077 | O 106.2 | 0.55 0.02
07| 5 | 141.793 | 0.142 | O 141.322| 0.123 | O 123.5| 0.00 0.01
0.7 | 10| 279.357 | 0.161 | O 170.764| 0.152 | O 112.5| 0.25 0.01
0.7 | 15| 416.436 | 0.165 | O 220.872| 0.161 | O 106.4 | 0.57 0.01
0.7 | 20 | 696.907 | 0.187 | O 244.113| 0.161 | O 120.7 | 0.83 0.01
10| 5 673.332 | 0.256 | O 532.380| 0.336 | 1 128.6 | 0.00 0.02
1.0 | 10 | 1906.076| 0.251 | O 535.680| 0.353 | 0 114.1| 0.64 0.02
1.0 | 15| 3563.036| 0.277 | O 636.291| 0.504 | O 105.7 | 1.49 0.02
1.0| 20 | 4198.591| 0.301 | O 698.534| 0.509 | 0 139.6 | 2.88 0.02

Table 6.2: Generalized mixed model and boosted generalized mixeel mobdinomial data

For a more extensive analysis of BoostMixed six simulation studies with diffeegtings
were made. In all studies 100 datasets were generated. AIC-CriterdoBI@ACriterion
were compared.

Study 21 - small dataset and small random effect

The random effect and the noise variable have been specifigg by N (0, 02) with
o? = 0.6. In the part of the study which is presented the number of observatisriz=ea
chosen byn = 159, T = 2. Pairwise correlation was taken to b@r (s, uis) = 0.1.
Details can be found in Table C.26 and Table C.27.

Study 22 - small dataset and large random effect

The random effect and the noise variable have been specifigg by N (0, 02) with
ag = 1.2. In the part of the study which is presented the number of observatisrizeiea
chosen byn = 60,7 = 5. Pairwise correlation was taken to ber(u;;-, uis) = 0.1.
Details can be found in Table C.28 and Table C.29.

Study 23 - big clusters, small dataset

The random effect and the noise variable have been specifiégd by N (0,07) with
o7 = 0.6. In the part of the study which is presented the number of observatisrizlen
chosen byn = 30,7 = 10. Pairwise correlation was taken to ber (s, uirs) = 0.1.
Details can be found in Table C.30 and Table C.31.

Study 24 - many clusters and small random effect
The random effect and the noise variable have been specifiégg by N (0, 02) with
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ag = 0.6. In the part of the study which is presented the number of observatigrizelea
chosen byn = 80,7 = 5. Pairwise correlation was taken to ber(u;;-, uis) = 0.1.
Details can be found in Table C.32 and Table C.33.

Study 25 - many clusters and big dataset

The random effect and the noise variable have been specifigg by N (0, 07) with

ag = 0.6. In the part of the study which is presented the number of observatians ha
been chosen by = 100,7 = 5. Pairwise correlation was taken to ber(uis, uis) =
0.1.Details can be found in Table C.34 and Table (C.35.

Study 26 - big clusters and big dataset

The random effect and the noise variable have been specifiégd by N (0,07) with
o7 = 0.6. In the part of the study which is presented the number of observatisrizien
chosen byn = 50,7 = 10. Pairwise correlation was taken to ber(u;,, uis) = 0.1.
Details can be found in Table C.36 and Table C.37.

The results can be summarized as follows. In all studies except study Z®disted
generalized linear mixed model (0GLMM) was superior in e F,, for signalsc = 1.

For signalc = 0.5 and 5 relevant variables the generalized linear mixed model could not
be further improved by the boosted variant. In only two cases (Study 21Al@hand
Study 23 with BIC) thel/ S E,, could be improved for signal= 0.7 and 5 variables in the
model. Except study 21 the right amount of relevant variables werealfbyithe boosted
version of the generalized linear mixed model. For models based on jusimelariables

the AIC criterion seems to perform best. In models with many irrelevant \iasaihe BIC
seems to deliver better results in theéSE,. However in models with large signals the
accuracy of the adjustment is decreasing using the generalized linearmixkd. Quite
impressing is the influence of irrelevant variables onthé £, which is reflected in study

22 (forc = 0.7 andp = 10) which has double the value of the model without irrelevant
variables ¢ = 0.7 andp = 5). In the context of binary data the boosted generalized
linear mixed model may be a suitable tool to do variable selection in datasets with many
covariates.

6.3 Application of the European Patent Data

For a detailed description of the dataset see Chapter 5.1. Descriptivécsdtisthe re-
sponse (OUT) are given in the Table 6.3 and for the covariates in Tabl&ltedestimates
can be found in Table 6.5 and the smooth estimates in Figure 6.1.

The variables BREADTH, PA_EMP, EMP and R_D_PAT were not seletiedhe
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Min. 1stQu. Median Mean 3rdQu. Max.
0.000 1.000 5.000 9.701 12.000 169.000

Table 6.3: Summary statistics for the response considering small o&spa

Covariate Mean  Minimum Maximum
YEAR 1993 2000
PA_YEA 20.21 1.00 202.00
BREADTH 0.58 0.12 0.90
PAT_PORT 144.47 0.00 1836.00
VOLATILITY 0.44 0.00 2.00
EMP (000s) 6.11 0.07 17.71
COUNTRY 2.74 1.00 4.00
R_D_EUR (Mio. EUR) 44.04 0.23 454.69
R_D_PAT (Mio. EUR/ Patent) 3.67 0.00 26.48
R_D_EMP (Mio. EUR/ Employee) 16.30  0.02 215.69
PA_EMP (PAT / EMP) 20.76  0.19 989.58
GER 0.29

FRA 0.07

GBR 0.23

OTH 0.40

Table 6.4: Summary statistics for the covariates considering small caespa

boosted generalized semi-structured mixed model (bgssmm). An huge nofpia¢ents
a year seems to influence the outsourcing process positive. On theidéhan $ncreasing
number of research and development expenses shortens the tet@lsaayce out. The
effect of the time in the study may be neglected. Companies which are vetjlevaia
their patent portfolio seem to fancy with outsourcing.

The model computed is given by
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Covariate Estimated Effect
Intercept 3.749

GER: -0.236

FRA: 0.329

GBR: -0.794

Random Effect Estimate
of 2.574

Table 6.5: Estimated Fixed Effects and Random Effects Variance

Nit =i+l + by,

nadd = a)(PA_YEAR:) + ap)(BREADT Hyy) + o3y (PAT_PORT) + aqay (EM Piy)
-|-Oé(5> (R_D_EURZ‘t) =+ Q) (R_D_PATZ't) + [e7%0) (PA_EMPit) + Q(s) (VOL“)
+Oé(g) (YEAth) + a(lo) (R_D_EMP“),

nftar =GERy 1 + FRA;+32 + GBRit 32,
OUTy|\it = Poisson(Ait),

it =E(OUTi) = exp(nit)
(6.11)
with h(n:¢) = log(nit.
The mixed model method was not applicable since numerical problems oténritee
estimation.
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Figure 6.1: Patent data: estimated smooth effects for the patent data




Chapter 7

Summary and Perspectives

One can observe that likelihood boosting in mixed models is an important competitor
to the mixed model strategy for getting estimates of additive smooth functions ar line
parameters.

One conceptual disadvantage of the mixed model approach for smoathates is that

the estimation of the smoothing parameter is quite sensitive to the signal streng¢h in th
data. For a large signal, which means only a small perturbation, the mixed appiebch
delivers only a rough approximation. The variance that has to be estimateatisely
proportional to the smoothing parameter which causes this phenomenon fe&&t, iior

a very small smoothing parameter, the variance of the random effectsyisavge and
therefore good estimates for the variance are difficult to obtain. Thisté$faot restricted

to the semi-structured mixed model but also for the generalized semi-stichixed
model which is shown in the simulation studies for additive covariates.

Another nice aspect of boosting in mixed models is that one can optimize manry add
tive functions using the componentwise selection strategy. So high-dimahgimetion
spaces can be optimized without the lack of stability and time which is a part of many
classical simultaneous optimization procedures. This property of boostiagésl on the
similarity to the functional gradient descend algorithm, where the step-sizkdalirec-

tion are adjusted by the data. Hos-loss the likelihood boosting concept can be described
by a fixed step-size for the optimization direction. In the generalized sentitgtea
mixed models using Poisson data and many additive covariates the mixed mseel ba
optimization scheme did not converge for most of the datasets.

However for small signals, the mixed model approach provides better estimiatee
parameters in many cases. One reason might be that the variables with smeal sig
can not easily be separated from the error in the data. Since comporehtwisting is
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an integrated selection algorithm for relevant variables, it might happanjntiportant
variables that should have been selected, are not selected by the p@bgtirithm. On
the one side, this is bad for prediction which is visible in the mean squaredferro
the predictor. One the other side, if one is interested in relevant varialdasstime
important variables are suppressed. The difference to classicdiieelstrategies based
on p-values is that the selection is based on the improvement of the likelihood. The
improvement is corrected downward with a large penalty if the variable ehiersodel
for the first time and only a small penalty if the variable has already beereshdhe
penalty term originates in the selection criterion. So each variable has to towigeall
other variables given the variable was selected or not. According to tlasoitle gets a
natural order in increasing boosting steps from highly relevant to lésgrg variables.
Critics might be expressed by the choice of the selection and stopping ariterio

In this thesis, AIC and BIC were used to model the complexity of the data. Irceimis
nection, the objective is to find a model with relevant variables but not to rsince one
might over-parameterize the model. The boosting algorithm is stopped if thdedatyp
criterion can not be improved any more by increasing boosting iterations.piidblem
now to choose a suitable complexity criterion. This is done empirically in this thésis .
the semi-structured mixed model cases, BIC showed generally better iadgitss of
MSE, AIC did not converge for settings with many additive covariates. €oelld men-
tion that there exists no theory-based definition of the AIC-Criterion or-8t{ferion in
the mixed model methodology. The context is just transferred from theytledaross
sectional experiments and P-splines. But in this context, these criteriorsowly used
as a crude criterion to scan for relevant variables and to stop the sggmoress.

Itis remarkable that componentwise boosting is a nice way to check complaigtyecin
simulation studies. If one neglects the selection aspect, the job of the compleitipa
is to stop the algorithm at the right boosting step. In boosting the complexity edsicy
from boosting step to another boosting step with small improvements whichrgeasa
the weak learner concept. So once again one can use relevant dechimtesariables
to check if the complexity criterion finds out the right amount of relevaniades and
rejects the irrelevant ones. For the additive models BIC was quite a gooplexty or
stopping criterion. But in this case a complexity criterion might be found viastiogthat
improves the results of BIC. Especially the BIC criterion provide for commiplarresults,
one obtains by the mixed model approach for settings, that have only meledditive
variables. This idea of boosted information criterion follows the idea of Buhimand
Yu, where the complexity of the model should be optimized. Just from par&anagir
proaches, the AIC criterion showed better results than BIC for both typeed model
and generalized linear mixed models.
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So one idea might be to distinguish the selection criterion from the stoppingiamiter
One might think of threshold concepts or information criterion based cosiaelpich
seem to have a connection among each other. The selection concept eigiprovable
in the first step. Here, thee aspects of concurvity or multicollinearity canlumged
in the selection criterion as another penalty on the likelihood. The complexityionite
reflects just the best adjustment to the data which can be clearly sepaoatetié former
question.

Another nice point to be mentioned is that the componentwise selection stratgpeis
cially suitable for high dimensional covariates. It combines the idea of aafolgelection
strategy without the iteration until convergence. Instead, the relevdiaceamdidate vari-
able is judged by the selection criterion given all other covariates. Thewaign of the

next candidate variables is based on the variables that were alreadigdelEffects on
other variables by taking in a new variable is corrected in the consecwiostibg steps.
A forward selection strategy is highly sensitive to the variables that enteradidel. On

the other side for high dimensional covariates, the computational effdrh@saunbear-
able. For just a few covariates the forward selection strategy delieenparable results,
but take more time.

One may criticize the use of the Laplacian approximation for generalized $eritsed
mixed models. For small datasets and binary data, one gets heavy biase tesstionze-
times and another point for the accuracy of the estimates is the number ofrereasts
in the cluster. The less measurements one has, the harder it is to computedie ra
effects variances. What is getting evident is that, if one studies the litefatugeneral-
ized linear mixed models that one operates in areas where matrix algebraassjusil
part to solve estimation problems. Concepts like quadrature or Monte-Réelgration
use weighted version of linear equations which are computer intense to siveover
getting a hint on effective degrees of the computed model is only possibtaria sery
special cases. Therefore the Laplacian approximation uses the iddiaedrized gener-
alized mixed models. The computations are made using this framework but thpysar
necessary approximations to utilize the already developed concept. @pps®ima-
tions might be improved by better ones. But this also affects the mixed modelaabp
to generalized semi-structured mixed models which uses the same approximaj&in to
estimates. It should be noted, that the mixed model approach need not tatearguasi
hat-matrix, which is costly in computational effort. For the semi-structured mmedkl,
fast decompositions of the hat-matrix can be found. For the generalin@estseictured
mixed model, efficient decompositions of hat-matrices in boosting are notrkn@m
the other hand a crossed random effects model has to be computedtihdenarginal
variances are not diagonal any more. This problem makes the mixed nppilebah also



146

very computer intensive.

This thesis encompasses only covariates that have a metric or binariatesavariables
that have an ordinal and categorial scheme or cause interactions with vagiaicles are
not handled. But further research on these aspects would be we8iatified variables
are also a problem in mixed models so one can do research about this assveell
variable selection in varying coefficient models. Is a varying coeffigismdel necessary
for getting additional information or is just a normal mixed model suitable to thiel@no.
Variable selection strategies and special complexity criteria have to be dedalothese
cases. Boosting may be a nice toolkit in further research.

Last aspect to summarize is the idea of flexible splines. In the literature,anénd
proposals where each cluster is characterized by its individual furiotssmi-parametric
mixed models. So the individuality grows by allowing separate development&esé th
functions in the same covariate. Another interest focused in this contextesitice the
individuality to a common spline function and detached cluster specific funciitne
parameters in the last case are estimated by fitting the unknown randons efetor.
The assumption here is that the mean of all these coefficients are denved fdensity
function with unknown diagonal variance. In the example of Ebay dataexdmdy a few,
sometimes only one observation was collected, this idea is hard to implementsdecau
limited observations are available to estimate the already described rand@itiemnts

of a random effects model. On the other side, one gets a large numbenraaigiars to
estimate. A sparse alternative is suggested in this thesis . The common sptitierfus
modified by one random effect which disperses the spline function freradto function
or shorten the spline function towards zero. It may be seen as a geagoaliaf random
slopes to smooth functions. In this case only the coefficients for the comnfertsef
and additionally a random effects matrix for intercept and modifications ofutiotions
have to be estimated. Since for this concept one has to optimized multiplicatatsaff
became apparent that using boosting techniques may be a way of handlngsblems.



Appendix A: Splines
A.1 Solving Singularities

The problem is given by
1) = o + ®ya,

where® ;) = ¢7 (ug)) = [¢ (ugy), - .., 9™ (u;)). Here® has dimensiodV x M. In
matrix notation one can write with” = (11), ..., mx), @7 = [®(1),. .., ()]

b= a m s

The spline matrix® has to be reparametrized by a matixto a nonsingularX =
1 ).
A.1.1 Truncated Power Series for Semi-Parametric Models

Since for Truncated Power Series the Spline bBdias an elemenk; which consists of
ones, the necessary transformation has simply to delete the first entry lbasigs

The transformation matrix doing this job has the form

T
T = O(M—l)x(l)‘I(M—l)} :

So one gets
a="Ta,
P = T,
K =TTKT.

A.1.2 Parametrization of « and ® Using Restrictions

Identification problems and singularities may be solved by a suitable transionsnaf
the centered basis coefficients.

M M-1
Z a; = 0 can be expressed by, = — Z i
1=1

=1
The consequence of this representation is that designmatrix and diégoenalty have to
be modified accordingly. So one estimates wifh- 1 parameters;, j € {1,..., M —1}
which are collected i@. So the difference matri®“ has to rewritten inD?.
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The transformation matrix doing this job has the form

T
T=\Ipn-1yl = 1-1)

So one gets
a="Ta,

o = DT,
K =TTKT = (D”)TD?

Detailed information of reparametrization by incorporating restrictions opliRes is
given in Scholz (2003) for one and more dimensional B-Splines. Sopocating the
described restriction delivers

da = da

A.1.3 Parametrization of « and ® Using Mixed Models

The use of B-Splines is sketched in the following . For simplicity, only one smooth
component is considered withy (u), ..., ®,,(u) denoting the B-Splines for equidistant
knotsky, ..., kas. First the spline basi8 is transformed by an orthogonal decomposition
to another spline basis , consisting ofb;,i = 1,..., M.

Example A.1 : Changing the B-Spline basis
First the difference matrilo¢ is considered corresponding to B-Spline penalization (Slegs &
Marx (1996)). WithD being the(M — 1) x M contrast matrix

-1 1

one obtains higher order differences by the recuréién= D D' which is a(M — d) x M
matrix. The penalty term is based &h= (DHT D, New matricesk (d), depending on the order
of the penalized differences are defined by

Xny=|:1Xo=|: : |.Xg=
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For differences of order d one consider thd — d) x M matrix Z(Td) = (DYDHTY=1D4, In

the following we drop the notation of d and set:= D,Z := Z 4 andX := X 4. SoZ and
X have the propertiepX = 0, ZTX = (DDT)"'DX = 0XTKX =0 = X"DTDX =
(DX)T(DX). Important is the equation

Z"KZ = (DD")'DDT"DDT(DDT) ! = Ijpr_a).

sincea can be decomposed into= X&, + Zdsy. The orthogonal matriceX andZ are used in
the following way
Do = DXy + Zap) = [BX, DZ]¢ = D&y

with a7 = (aT,aT). The new spline basi8 = {®,,...,®,} consists of the columns dF.
The corresponding penalty matrixis = bdiag0 4y (a), I(vr—ayx (vi—ay)- O

Benefit of using the spline basis is that singularities can be avoided by deletibg
which holds®; = 1.

The transformation matrix doing this job has the form
T= O(Mfl)x(l)‘I(Mfl)}T‘
So one gets
& =Ta,
®(u) = ()T,
K =TTKT.
For details on this reparametrization see Green (1987).
A.2 Smoothing with Mixed Models

The use of B-Splines is sketched in the following . For simplicity only one smaumtit ¢
ponent is considered witl ;) (u), ..., ® ) (u) denoting the B-Splines for equidistant
knotski, ..., kar andy; = X;8 + ®;a denoting the predictor.

We use the transformed spline baSiss described in example A.1
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The predictor can now be rewritten in the form

g

(0}

vi =X, @i} + Zib; = [XZ-,CI)J _ b _ |+ Zibs
L Xag + Zaog

9

aq

with ®(u;) as a matrix for a vector! = (u;1,...,ui). ®(u;) has rowsg(u;;)T =

(d1(uif), - - - dar(uif))-

The penalized log-likelihood of the linear mixed model simplifies to
1p,(8) = 321 log(f (yild: 0i)p(bi)) — AT Diag(0(yxp), AK)S
= Soi 1 log(f (il 0i)p(bi)) — M(X ety + Zato) " K (Xén + Zéio
= >y log(f (il 03 bi)p(bi)) — 3032 % (a1 _q)cta.

with 7 = (3, @).

This corresponds to the BLUP criterion of the mixed model

Yi = XZB + [(I)(uz)z Z:| (ab1> te
a 0 I 0 0
with b | ~N 0[.] 0 Q(p) 0
€ 0 0 0 oI

andg” = (87, &1), X; = [X;, ®(u;)X]. Thus, from decomposition = X&; + Zdy
one obtains a mixed model with uncorrelated parameters



Appendix B: Parametrization of covariance
structures

To make sure, that the notation is clear in all parts of the paper, a shtwhsKéandling
covariances and its parametrization is proposed.

B.1 Independent Identical

This structure is has only one parameterp$o= (p;)”. So

Qp) = pi * I
The elementwise derivative is 3
9Q(p) =2 [
op

B.2 Independent but Not Identical

If d is the dimension of the covariance matrix, then the structure has d paranseters,
T T S
pt = (p1,...,pa)". SO

The elementwise derivative is

9Q(p) - (DQi)jj=2xp; ifj=i

B.3 Unstructured

SinceQ(p) is a symmetric, positive semidefinite Matrigp) can be parametrisized

Q(p) = L+ L"

whereL is the Cholesky root of)(p). Sop = vec(L) is the adequate parametrisation of
Qp)-

For example

L:

L1 0
Lis Lo

Sovec(L)" = (L11, L1a, L22)T = pT. The zeros are omitted.
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d is the dimension of the covariance matrixplf= (L);;,j € {1,...,d} (is diagonalele-
ment of L) the elementwise derivative are

90 0Q(p) D=2ty =
P P _ ‘
dpi  OLj; DQi = (DQi)kj = (DQi)jr = Li; if k>
0 else
If p; € (L)ij,i=1,...,d,i # j (is not diagonal element of L) the elementwise derivative
are
(DQZ‘)” =2x ij If l :j

oQ 0Q |
8lgzp) - (9L(JZ) =DQi = (DQ)i; = (DQ)jy =Ly, ifl1#7

0 else




Appendix C: Simulation Studies
C.1 Mixed Model Approach vs. BoostMixed
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Figure C.1: Simulation study 5/ S E,, of BoostMixed (y-axis)and mixed model approach
(x-axis)



MM ‘ BoostMixed
c p mse, ‘ msey ‘ mse,, ‘ mse, ‘ Steps ‘ Time ‘ mse, ‘ msey ‘ mse,, ‘ mse, . ‘ Steps ‘ Time ‘ FalsePos | FalseNeg ‘ Initial ‘ Selected
0.5 3 45.791 37.701 0.026 0.117 13 0.09 42.079 | 36.867 0.026 0.115 9.9 0.0 0.0 0.1 2.0 29
0.5 6 55.721 48.399 0.030 0.117 18 0.41 48.666 45.112 0.028 0.114 10.2 0.0 0.4 0.1 2.0 3.3
0.5 15 88.005 85.470 0.031 0.129 25 7.03 62.501 | 62.270 0.029 0.114 9.7 0.1 0.9 0.2 2.0 3.7
0.5 25 73.134 | 74.790 0.030 0.116 9.8 0.1 1.2 0.3 2.0 3.9
1.0 3 50.448 37.422 0.024 0.126 8 0.06 41.946 | 31.226 0.026 0.119 19.7 0.0 0.0 0.0 2.0 3.0
1.0 6 60.520 48.547 0.024 0.120 15 0.33 42.773 32.237 0.026 0.120 19.7 0.1 0.0 0.0 2.0 3.0
1.0 15 92.705 85.021 0.028 0.120 21 6.05 46.662 | 36.725 0.029 0.120 20.0 0.2 0.2 0.0 2.0 3.2
1.0 25 50.440 | 41.102 0.028 0.118 20.2 0.3 0.3 0.0 2.0 33
5.0 3 71.243 60.651 0.032 0.187 12 0.08 53.399 | 47.592 0.031 0.181 144.6 0.4 0.0 0.0 1.9 3.0
5.0 6 82.051 72.296 0.031 0.185 14 0.32 55.396 49.947 0.031 0.182 146.9 0.4 0.1 0.0 1.9 3.1
5.0 15 116.472 | 113.781 0.036 0.190 20 5.87 57.510 | 52.545 0.032 0.182 145.2 2.3 0.2 0.0 1.9 3.2
5.0 25 58.533 | 53.910 0.034 0.182 145.5 34 0.2 0.0 1.9 3.2
10.0 3 88.045 71.694 0.027 0.264 14 0.10 62.981 59.701 0.029 0.139 495.6 1.1 0.0 0.0 3.0 3.0
10.0 6 98.669 84.396 0.026 0.226 17 0.40 62.981 59.701 0.029 0.139 495.6 2.6 0.0 0.0 3.0 3.0
10.0 | 15 132.549 | 125.730 0.033 0.239 24 7.11 65.726 | 62.807 0.033 0.139 492.1 6.7 0.1 0.0 3.0 3.1
10.0 | 25 66.588 | 63.895 0.033 0.139 490.9 12.0 0.1 0.0 3.0 3.1

Table C.1: Study 5
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MM ‘ BoostMixed
c p mse, ‘ msey ‘ mse,, ‘ mse, ‘ Steps ‘ Time ‘ mse, ‘ msey ‘ mse,, ‘ mse, . ‘ Steps ‘ Time ‘ FalsePos | FalseNeg ‘ Initial ‘ Selected
0.5 3 46.503 34.107 0.022 0.133 13 0.09 45.416 | 36.576 0.026 0.136 9.9 0.0 0.0 0.1 2.0 29
0.5 6 57.421 48.626 0.024 0.133 18 0.42 50.530 43.280 0.028 0.139 10.3 0.0 0.3 0.1 2.0 3.2
0.5 15 90.615 92.066 0.029 0.135 28 8.30 64.707 | 61.314 0.032 0.140 11.0 0.1 0.8 0.2 2.0 3.7
0.5 25 72.285 | 70.857 0.035 0.141 11.5 0.2 11 0.2 2.0 3.9
1.0 3 49.449 40.515 0.033 0.146 9 0.06 40.716 | 34.440 0.035 0.145 17.4 0.0 0.0 0.0 2.0 3.0
1.0 6 60.771 54.728 0.037 0.148 16 0.37 42.105 36.107 0.037 0.143 17.6 0.1 0.1 0.0 2.0 3.0
1.0 15 93.651 97.541 0.038 0.151 21 6.41 43.327 37.663 0.037 0.144 17.7 0.2 0.1 0.0 2.0 3.1
1.0 25 46.404 | 41.527 0.036 0.145 17.9 0.4 0.2 0.0 2.0 3.2
5.0 3 72.155 62.797 0.023 0.153 12 0.09 53.174 | 49.862 0.025 0.153 109.6 0.3 0.0 0.0 3.0 3.0
5.0 6 82.856 77.115 0.025 0.157 14 0.33 53.663 50.515 0.026 0.154 109.5 0.6 0.0 0.0 3.0 3.0
5.0 15 114.390 | 118.645 0.028 0.156 18 5.25 54.918 | 51.990 0.026 0.154 109.4 15 0.1 0.0 3.0 3.1
5.0 25 56.471 | 53.814 0.027 0.154 109.1 26 0.1 0.0 3.0 31
10.0 3 93.000 77.369 0.029 0.230 14 0.09 68.369 63.423 0.030 0.184 430.2 1.1 0.0 0.0 3.0 3.0
10.0 6 103.896 92.147 0.028 0.225 15 0.34 69.027 64.432 0.030 0.184 430.0 2.2 0.0 0.0 3.0 3.0
10.0 | 15 136.460 | 137.261 0.035 0.184 20 5.81 70.142 | 65.935 0.031 0.180 428.9 5.7 0.1 0.0 3.0 3.1
10.0 | 25 73.504 | 70.497 0.031 0.181 427.1 7.9 0.2 0.0 3.0 3.2

Table C.2: Study 2
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Figure C.2: Simulation study 61/ SE,, of BoostMixed (y-axis)and mixed model approach
(x-axis)



MM ‘ BoostMixed
c p mse, msey ‘ mse,, ‘ mse, ‘ Steps ‘ Time ‘ mse, ‘ msey ‘ mse,, ‘ mse, ‘ Steps ‘ Time ‘ FalsePos | FalseNeg ‘ Initial ‘ Selected
0.5 3 59.357 41.040 0.150 0.862 17 0.04 61.277 46.459 0.154 0.811 15.3 0.1 0.0 0.3 2.0 2.7
0.5 6 73.025 56.516 0.170 0.860 21 0.20 76.980 65.766 0.173 0.813 13.6 0.5 0.9 0.4 2.0 35
05 | 15 127.888 | 127.512 0.188 0.947 28 6.92 106.143 | 103.125 0.182 0.848 11.4 0.9 1.8 0.8 2.0 4.0
0.5 25 121.971 123.515 0.203 0.841 12.4 1.6 2.2 1.0 2.0 4.2
1.0 3 72.348 56.262 0.158 0.702 13 0.03 64.580 51.397 0.172 0.672 28.8 0.5 0.0 0.0 2.0 3.0
1.0 6 90.224 77.686 0.173 0.714 18 0.17 81.472 73.019 0.191 0.697 28.9 11 0.7 0.0 2.0 3.6
1.0 | 15 150.190 | 158.350 0.256 0.710 26 6.32 102.419 | 99.349 0.253 0.715 36.5 2.9 1.2 0.1 2.0 4.2
1.0 25 112.858 112.811 0.299 0.713 34.0 3.9 15 0.1 2.0 4.4
5.0 3 96.755 82.750 0.123 0.797 13 0.03 70.340 58.043 0.156 0.607 202.0 33 0.0 0.0 3.0 3.0
5.0 6 112.757 | 102.820 0.128 0.738 15 0.14 71.819 59.890 0.159 0.609 203.2 2.1 0.1 0.0 3.0 3.0
5.0 15 167.118 179.655 0.186 0.779 19 4.72 83.092 75.498 0.202 0.613 206.0 6.7 0.4 0.0 3.0 3.4
5.0 25 94.376 90.400 0.261 0.643 212.6 11.7 0.7 0.0 3.0 3.7

Table C.3: Study 3
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Figure C.3: Simulation study 11/ S E,, of BoostMixed (y-axis)and mixed model approach
(x-axis)



MM ‘ BoostMixed
c p mse, msey ‘ mse,, ‘ mse, ‘ Steps ‘ Time ‘ mse, ‘ msey ‘ mse,, ‘ mse, ‘ Steps ‘ Time ‘ FalsePos | FalseNeg ‘ Initial ‘ Selected
0.5 3 98.413 38.248 0.114 5.338 15 0.02 101.372 | 45.198 0.139 4.780 46.1 0.8 0.0 0.3 2.0 2.7
0.5 6 113.736 | 54.938 0.118 5.381 19 0.13 121.564 | 69.512 0.166 4.833 37.6 1.2 11 0.5 2.0 3.6
05 | 15 160.835 | 116.182 0.132 5.380 30 5.66 146.019 | 101.852 0.211 4.834 27.2 2.0 2.1 0.8 2.0 4.2
0.5 25 166.688 130.291 0.297 4.817 375 4.8 2.8 0.9 2.0 4.8
1.0 3 99.531 51.153 0.108 4211 12 0.02 89.402 43.097 0.115 3.805 48.8 0.8 0.0 0.0 2.0 3.0
1.0 6 113.800 | 68.266 0.120 4.206 16 0.11 100.060 | 56.704 0.135 3.810 51.6 1.4 0.6 0.0 2.0 3.6
1.0 | 15 163.859 | 133.089 0.123 4.335 28 5.34 123.632 | 86.472 0.191 3.812 57.8 3.9 14 0.0 2.0 4.4
1.0 25 141.182 110.096 0.256 3.821 58.3 2.2 2.0 0.1 2.0 5.0
5.0 3 143.293 | 78.221 0.102 4.096 13 0.02 120.386 | 57.729 0.146 3.747 303.8 1.9 0.0 0.0 2.8 3.0
5.0 6 156.224 | 93.300 0.108 4.077 15 0.10 124.271 | 62.650 0.158 3.733 303.4 35 0.2 0.0 2.8 3.2
5.0 15 205.228 160.784 0.135 4.363 24 4.66 138.146 82.855 0.224 3.809 308.5 9.0 0.7 0.0 2.9 3.7
5.0 25 157.296 109.001 0.317 3.767 304.0 11.3 15 0.0 29 4.5

Table C.4: Study 4
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Figure C.4: Simulation study 2}/ S E,, of BoostMixed (y-axis)and mixed model approach

(x-axis)



MM BoostMixed
c p mse, ‘ msey ‘ mse,, ‘ mse, ‘ Steps ‘ Time mse, ‘ msey ‘ mse,, ‘ mse, ‘ Steps ‘ Time ‘ FalsePos | FalseNeg ‘ Initial ‘ Selected
0.5 3 66.286 52.069 0.209 1.722 16 0.11 71.142 62.030 0.210 2.096 8.3 0.0 0.0 0.3 2.0 2.7
0.5 6 86.792 75.244 0.230 1.772 22 0.49 95.563 92.137 0.230 2.398 7.2 0.4 11 0.5 2.0 3.6
05 | 15 167.329 | 174.776 0.337 2.046 30 13.06 | 136.678 | 144.482 0.204 2.979 8.1 0.9 2.2 1.2 2.0 4.0
0.5 25 158.212 171.764 0.219 3.297 6.5 1.2 2.5 1.4 2.0 4.1
1.0 3 91.187 78.666 0.200 2.097 14 0.10 81.414 74.290 0.209 2.379 30.9 0.7 0.0 0.0 2.0 3.0
1.0 6 112.376 | 104.646 0.229 2.107 19 0.43 107.823 | 107.660 0.216 2.590 20.9 1.0 0.8 0.1 2.0 3.8
1.0 | 15 189.637 | 205.956 0.310 2.124 30 13.18 | 140.558 | 150.621 0.241 2.905 20.6 2.3 1.3 0.2 2.0 4.0
1.0 25 157.894 174.234 0.281 3.182 20.2 3.3 1.5 0.4 2.0 4.1
5.0 3 125.484 | 121.703 0.261 2.343 13 0.09 81.755 77.670 0.251 2.031 167.6 3.2 0.0 0.0 2.8 3.0
5.0 6 150.929 | 152.391 0.285 2.704 15 0.34 86.438 83.302 0.276 2.008 170.6 0.7 0.1 0.0 2.8 3.1
5.0 15 234.111 267.276 0.364 2.104 23 10.08 97.044 97.570 0.308 2.045 166.8 1.7 0.3 0.0 2.8 3.3
5.0 25 100.519 102.959 0.314 2.005 166.9 3.5 0.4 0.0 2.8 3.4

Table C.5: Study 5
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Figure C.5: Simulation study 3}/ SE,, of BoostMixed (y-axis)and mixed model approach
(x-axis)



MM BoostMixed
c p mse, ‘ msey ‘ mse,, ‘ mse, ‘ Steps ‘ Time mse, ‘ msey ‘ mse,, ‘ mse, ‘ Steps ‘ Time ‘ FalsePos | FalseNeg ‘ Initial ‘ Selected
0.5 3 406.115 | 134.189 0.027 1.153 8 0.79 399.614 | 137.878 0.027 1.134 5.1 2.9 0.0 0.0 2.0 3.0
0.5 6 449.401 | 177.529 0.027 1.155 12 2.77 451.231 | 195.191 0.028 1.136 55 5.1 0.8 0.0 2.0 3.8
0.5 | 15 | 590.300 | 320.097 0.026 1.155 18 28.04 | 482.218 | 229.798 0.028 1.134 5.8 0.4 1.0 0.0 2.0 4.0
0.5 25 496.580 245.561 0.029 1.131 5.9 0.6 1.0 0.0 2.0 4.0
1.0 3 409.284 167.122 0.037 1.442 7 0.75 378.237 150.048 0.038 1.460 5.3 0.1 0.0 0.0 2.0 3.0
1.0 6 454.819 | 213.754 0.038 1.444 12 2.64 403.424 | 178.154 0.039 1.462 6.2 0.2 0.3 0.0 2.0 3.3
1.0 | 15 | 592.514 | 355.240 0.038 1.443 16 2553 | 445.306 | 223.659 0.040 1.461 75 0.4 0.7 0.0 2.0 3.7
1.0 25 465.749 245.175 0.040 1.459 8.0 0.8 0.9 0.0 2.0 3.9
5.0 3 499.925 253.122 0.031 1.442 11 1.03 432.461 232.640 0.032 1.450 74.2 0.9 0.0 0.0 3.0 3.0
5.0 6 541.312 | 295.061 0.031 1.445 12 2.76 446.733 | 248.923 0.033 1.450 75.4 15 0.1 0.0 3.0 3.1
5.0 15 672.337 428.405 0.031 1.443 16 24.61 462.807 266.004 0.033 1.452 76.1 3.3 0.3 0.0 3.0 3.3
5.0 25 481.958 288.545 0.034 1.451 77.3 5.8 0.4 0.0 3.0 3.4

Table C.6: Study 6
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Figure C.6: Simulation study 41/ S E,, of BoostMixed (y-axis)and mixed model approach
(x-axis)



MM BoostMixed
c p mse;, ‘ mse,, ‘ mse; ‘ Steps‘ Time mse;, ‘ mses, ‘ msey ‘ Sleps‘ Time ‘ FalsePos FalseNeg‘ Initial ‘ Selected
0.5 6 55.883 1.049 1.135 23 0.44 63.562 1.941 1.924 4.6 0.0 0.0 2.4 2.0 3.6
0.5 15 86.980 1.077 1.140 30 9.12 78.204 1.924 1.901 5.2 0.1 0.8 2.9 2.0 4.0
0.5 25 85.125 1.918 1.888 51 0.1 11 31 2.0 4.0
1.0 6 71.221 1.079 1.074 18 0.33 79.341 1.945 1.961 11.6 0.1 0.0 1.8 2.0 4.2
1.0 15 105.589 1.117 1.081 29 8.24 87.140 1.935 1.955 11.7 0.2 0.2 1.8 2.0 4.4
1.0 25 91.876 1.931 1.949 11.7 0.3 0.4 1.9 2.0 4.5
5.0 6 94.113 1.136 1.109 11 0.21 78.574 1.872 1.962 79.8 0.3 0.0 0.0 2.9 6.0
5.0 15 125.063 1.152 1.110 17 4.78 80.397 1.866 1.963 79.6 0.9 0.1 0.0 2.9 6.1
5.0 25 81.504 1.862 1.963 79.8 1.4 0.1 0.0 2.9 6.1

Forward

c p mse, mse,, mse, . Time FalsePos | FalseNeg | Selected

0.5 6 58.894 0.027 0.139 1.084 1.0 4.0 3.0

0.5 15 65.833 0.027 0.140 2.789 1.0 4.0 3.0

0.5 25

1.0 6 81.499 0.027 0.133 1.932 2.0 3.0 5.0

1.0 15 88.720 0.027 0.136 5.915 2.0 3.0 5.0

1.0 25

5.0 6 97.554 0.027 0.132 2.699 4.0 3.0 7.0

5.0 15 106.336 0.031 0.135 11.466 4.0 3.0 7.0

5.0 25

Table C.7: Study 7
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C.2 Choosing an Appropriate Smoothing Parameter and an Appropriate
Selection Criterion

C.2.1 BIC as Selection/Stopping Criterion

3 g 88888888868068880608
E 27

© (d)

Figure C.7: The distributions of the mean squared errors for diff@@mts of parameters in
the model are presented by boxplots. BIC was used as selection apthgtogterion. The
red points are the means for the mses depending on different lantbdabke right side the
distribution of the mses of the mixed model approach is plotted. The blu¢ipdhe mean
of the mses of the mixed model approach. (a) 3 parameters usegébbeters used (c) 15
parameters used and (d) 25 parameters use@s chosen to be= 0.5
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Figure C.8: The distributions of the mean squared errors for diff@@mts of parameters in
the model are presented by boxplots. BIC was used as selection apihgtogterion. The
red points are the means for the mses depending on different lambdake right side the
distribution of the mses of the mixed model approach is plotted. The blu¢ipdhe mean
of the mses of the mixed model approach. (a) 3 parameters usegébabeters used (c) 15
parameters used and (d) 25 parameters users chosen to be= 0.1
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Figure C.9: The distributions of the mean squared errors for diff@@mts of parameters in
the model are presented by boxplots. BIC was used as selection apihgtogterion. The
red points are the means for the mses depending on different lambdake right side the
distribution of the mses of the mixed model approach is plotted. The blu¢ipdhe mean
of the mses of the mixed model approach. (a) 3 parameters usegébabeters used (c) 15
parameters used and (d) 25 parameters use@s chosen to be= 5
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C.2.2 AIC as Selection/Stopping Criterion
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Figure C.10: The distributions of the mean squared errors for diffe@@unts of parameters
in the model are presented by boxplots. BIC was used as selection qpihgtariterion.
The red points are the means for the mses depending on differentdam®d the right side
the distribution of the mses of the mixed model approach is plotted. The bineip the
mean of the mses of the mixed model approach. (a) 3 parameter)geparameters used
(c) 15 parameters used and (d) 25 parameters useds chosen to be= 0.5
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Figure C.11: The distributions of the mean squared errors for diff@@unts of parameters
in the model are presented by boxplots. AIC was used as selection gminsf@riterion.
The red points are the means for the mses depending on differentdam®d the right side
the distribution of the mses of the mixed model approach is plotted. The bingip the
mean of the mses of the mixed model approach. (a) 3 parameterf)geparameters used
(c) 15 parameters used and (d) 25 parameters useds chosen to be= 0.1
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Figure C.12: The distributions of the mean squared errors for diff@@unts of parameters
in the model are presented by boxplots. AIC was used as selection gminsf@riterion.
The red points are the means for the mses depending on differentdam®d the right side
the distribution of the mses of the mixed model approch is plotted. The blotipthe mean
of the mses of the mixed model approach. (a) 3 parameters usegébafbeters used (c) 15
parameters used and (d) 25 parameters use@s chosen to be= 5
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C.3 Linear BoostMixed

We present simulation studies in which the performance of BoostMixed is adexhize
the common mixed model. The underlying model is the random intercept model

yie =bi + B+ ey, t=1,....5,i=1,...,80

with a:Z; = (Ti1, ..., Titp), Wherez;s, s = 1,...,p arealizations of a random variable
X, with a uniform distribution with variance 10 for each component and 40. The
elements ofs” = (4,...,3,) are set to

c*% if,i <5
Bi = :

0 else

For the covariates constant pairwise correlation is assumeds:j.éas the correlation
structure, i.e.

L o 0
1
cor(Xy) = ¢
0
o 1

The constant signal determines the signal of the covariates. The random effect and the
noise variable have been specifieddyy ~ N(0,02) with 02 = 2 andb; ~ N(0,07)

with ag = 2. The shrinkage parametamwas set to 100 . The performance of estimators
is evaluated separately for the structural components and variance/eBygang across
100 datasets we consider mean squared errorg &g, o7 given by

mse, =" Z;le(mt — Nit)?, Nie = UCZ;B, mse; = |6 — [§H27
msg: = |lof — 7|, mse: = ||o? — &2|%.

For a more extensive analysis of BoostMixed six simulation studies with diffeegtings
were made. In all studies 100 datasets were generated

Study 9 - Start setting

The random effect and the noise variable have been specifieg by N (0,c2) with

o2 = 3 andb; ~ N(0,02) with 07 = 3. In the part of the study which is presented the
number of observations has been chosemby 100, 7 = 5. Pairwise correlation was
taken to bep = 0.1. Details can be found in Table C.8.
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Study 10 - small variances

The random effect and the noise variable have been specifieg by N(0,c2) with

o2 = 2 andb; ~ N(0,02) with 07 = 1. In the part of the study which is presented the
number of observations has been chosemby 80,7 = 5. Pairwise correlation was
taken to bep = 0.1. Details can be found in Table C.9.

Study 11 - big clusters

The random effect and the noise variable have been specifieg by N (0,c2) with

o2 = 1andb; ~ N(0,07) with 07 = 2. In the part of the study which is presented the
number of observations has been chosemby 50,7 = 10. Pairwise correlation was
taken to bep = 0.1. Details can be found in Table C.10.

Study 12 - big dataset, small variances

The random effect and the noise variable have been specifieg by N (0,02) with

o2 = 2 andb; ~ N(0,07) with 0} = 1. In the part of the study which is presented the
number of observations has been chosemby 200, 7 = 5. Pairwise correlation was
taken to bep = 0.1. Details can be found in Table C.11.

Study 13 - big dataset, huge variances

The random effect and the noise variable have been specifieg by N(0,02) with

o2 = 3 andb; ~ N(0,07) with 07 = 3. In the part of the study which is presented the
number of observations has been chosem by 200, T = 5. Pairwise correlation was
taken to bep = 0.1. Details can be found in Table C.12.

Study 14 - correlated data

The random effect and the noise variable have been specifieg by N(0,c2) with

o2 = 3 andb; ~ N(0,07) with o7 = 3. In the part of the study which is presented the
number of observations has been chosemby 100, T = 5. Pairwise correlation was
taken to bep = 0.5. Details can be found in Table C.13.

BoostMixed is compared to the classical mixed model with all covariates (MM)t@an
the mixed model with an integrated forward selection (forward). It is quite sindléhe
BoostMixed algorithm since one starts with the intercept model. In every Btegrain-
ing covariates are fitted separately. The covariate characterized bgghaertprovement
of the AIC-Criterion is taken into the model and seen as relevant. The selécttopped
if the complexity criterion can not improved any more. So the extreme case ifothat
25 covariates with 25 relevant covariates. Hgré”, i = 210 models have to be com-
puted for the forward selection. For the simulation study with 20 covariatesuhmer
of computed models is quite moderate with upE(ngi = 119 (6 variables selected).
For 100 covariates with 5 relevant covariates nearly 585 models havedontguted if
6 variables are selected. It seen in Tables C.8 - C.13 that forward sel@ctoedures
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take a very long time. For example in Table C.8 it took averaged 1.8 minutes fr-20
variates (strength=5) to get an estimate. In comparison the BoostMixedambptook

3.6 seconds to find the relevant variables. But unfortunately a small nobimélevant
variables were selected which downgrade the,mgdong the mean squared error for
the predictor msg the mean squared errors for the parameters;fee the noise and
random variance mgeand msg,, the steps (Steps) until convergence, the variables that
were selected but have no relevance (FalsePos) and the variableavbatlevance but
were not selected (FalseNeg) were collected and averaged.



MM BoostMixed
c p mse, mses msey, mse, . Steps Time mse, mses msey, mse, Selected | Steps Time FalsePos | FalseNeg
0.5 5 35.812 | 0.001 0.042 0.257 8.0 0.020 | 35.804 | 0.004 0.038 0.248 5.0 10.9 0.010 0.0 0.0
05 | 10 52.825 | 0.001 0.043 0.257 8.0 0.021 | 46.832 | 0.006 0.037 0.248 6.1 12.9 0.163 11 0.0
05 | 15 72.676 | 0.001 0.044 0.264 8.0 0.023 | 59.206 | 0.008 0.039 0.255 7.0 13.9 0.025 2.0 0.0
0.5 20 90.250 0.001 0.044 0.262 8.0 0.025 68.894 0.010 0.039 0.252 7.7 15.5 0.043 2.7 0.0
1.0 5 41.067 | 0.001 0.050 0.227 9.0 0.021 | 41.107 | 0.004 0.049 0.227 5.0 10.4 0.505 0.0 0.0
1.0 | 10 57.843 | 0.001 0.050 0.226 9.0 0.024 | 51.628 | 0.006 0.049 0.224 6.1 12.5 0.011 11 0.0
1.0 15 74.845 0.001 0.049 0.224 9.0 0.026 62.178 0.008 0.051 0.223 7.0 13.8 0.018 2.0 0.0
1.0 20 92.257 0.001 0.050 0.223 9.0 0.027 71.030 0.010 0.054 0.227 7.7 15.1 0.034 2.7 0.0
5.0 5 35.824 | 0.001 0.048 0.238 10.9 0.029 | 35.820 | 0.004 0.047 0.231 5.0 12.3 0.008 0.0 0.0
50 | 10 54534 | 0.001 0.047 0.242 11.0 0.031 | 47.547 | 0.006 0.048 0.235 6.0 15.0 0.021 11 0.0
5.0 15 72.608 0.001 0.046 0.243 11.0 0.034 58.047 0.009 0.050 0.234 6.9 15.7 0.023 1.9 0.0
50 | 20 90.507 | 0.001 0.046 0.241 10.9 0.037 | 67.930 | 0.011 0.053 0.231 7.7 16.5 0.060 2.7 0.0
Forward

c p mse, mse,, mse, . Time FalsePos | FalseNeg

0.5 5.0 35.812 0.042 0.257 0.234 0.0 0.0

0.5 10.0 | 45.693 0.041 0.259 0.776 1.0 0.0

0.5 15.0 | 51.182 0.041 0.264 1.326 1.0 0.0

0.5 20.0 53.436 0.040 0.261 1.869 1.0 0.0

1.0 5.0 41.067 0.050 0.227 0.253 0.0 0.0

1.0 10.0 | 50.052 0.049 0.226 0.837 1.0 0.0

1.0 15.0 | 53.781 0.048 0.225 1.427 1.0 0.0

1.0 20.0 56.495 0.048 0.225 2.007 1.0 0.0

5.0 5.0 35.824 0.048 0.238 0.229 0.0 0.0

5.0 10.0 | 46.174 0.047 0.241 0.767 1.0 0.0

5.0 15.0 | 50.244 0.046 0.243 1.301 1.0 0.0

5.0 20.0 52.772 0.046 0.238 1.840 1.0 0.0

Table C.8: Study 9
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MM BoostMixed
c p mse, mses msey, mse, . Steps Time mse, mses msey, mse, Selected | Steps Time FalsePos | FalseNeg
0.5 5 17.634 | 0.000 0.020 0.040 8.1 0.021 | 17.644 | 0.002 0.020 0.038 5.0 11.4 0.479 0.0 0.0
05 | 10 28.488 | 0.000 0.020 0.040 8.1 0.024 | 24.482 | 0.004 0.022 0.038 6.0 12.5 0.014 1.0 0.0
05 | 15 39.756 | 0.000 0.021 0.040 8.1 0.025 | 30.840 | 0.005 0.024 0.038 6.8 13.6 0.024 1.8 0.0
0.5 20 52.100 0.000 0.022 0.040 8.1 0.026 37.945 0.007 0.026 0.038 7.6 14.2 0.021 2.6 0.0
1.0 5 18.083 | 0.000 0.018 0.041 9.0 0.025 | 18.092 | 0.002 0.018 0.039 5.0 11.1 0.010 0.0 0.0
1.0 | 10 29.109 | 0.000 0.018 0.041 9.0 0.027 | 25.384 | 0.004 0.020 0.040 6.0 11.8 0.019 1.0 0.0
1.0 15 40.983 0.000 0.019 0.043 9.1 0.029 32.865 0.005 0.021 0.040 6.9 13.3 0.059 1.9 0.0
1.0 | 20 52.068 | 0.000 0.018 0.043 9.2 0.031 | 39.054 | 0.007 0.023 0.041 7.6 13.9 0.037 2.6 0.0
5.0 5 17.603 | 0.000 0.019 0.037 111 0.029 | 17.605 | 0.002 0.019 0.036 5.0 12.7 0.007 0.0 0.0
50 | 10 29.539 | 0.000 0.019 0.037 11.2 0.032 | 25.041 | 0.004 0.020 0.037 6.0 14.2 0.013 0.9 0.0
5.0 15 40.185 0.000 0.019 0.037 11.2 0.034 30.561 0.005 0.022 0.037 6.7 15.6 0.019 1.7 0.0
50 | 20 52.018 | 0.000 0.020 0.038 11.2 0.035 | 37.263 | 0.007 0.024 0.036 7.5 17.1 0.030 2.5 0.0
Forward

[ p mse, mse,, mse, Time FalsePos | FalseNeg

0.5 5.0 17.634 0.020 0.040 0.237 0.0 0.0

0.5 10.0 | 23.661 0.020 0.040 0.790 1.0 0.0

0.5 15.0 | 26.033 0.020 0.039 1.348 1.0 0.0

0.5 20.0 27.875 0.020 0.040 1.896 1.0 0.0

1.0 5.0 18.083 0.018 0.041 0.256 0.0 0.0

1.0 10.0 | 24.537 0.018 0.041 0.843 1.0 0.0

1.0 15.0 | 27.463 0.018 0.041 1.431 1.0 0.0

1.0 20.0 28.871 0.018 0.041 2.015 1.0 0.0

5.0 5.0 17.603 0.019 0.037 0.229 0.0 0.0

5.0 10.0 | 24.130 0.019 0.037 0.766 1.0 0.0

5.0 15.0 | 26.375 0.019 0.037 1.305 1.0 0.0

5.0 20.0 28.188 0.019 0.037 1.846 1.0 0.0

Table C.9: Study 10
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MM BoostMixed
c p mse, mses msey, mse, . Steps Time mse, mses msey, mse, . Selected | Steps Time FalsePos | TrueNeg
0.5 5 25.682 | 0.000 0.021 0.056 8.0 0.011 | 25.673 | 0.002 0.021 0.055 5.0 10.8 0.026 0.0 0.0
05 | 10 | 37.220 | 0.000 0.020 0.056 8.0 0.012 | 33.229 | 0.004 0.022 0.054 6.1 12.2 0.013 11 0.0
05 | 15 | 48.282 | 0.000 0.021 0.056 8.0 0.012 | 39.882 | 0.005 0.023 0.055 7.0 13.0 0.029 2.0 0.0
0.5 20 58.691 0.000 0.021 0.057 8.0 0.013 45.756 0.006 0.024 0.055 7.7 13.5 0.031 2.7 0.0
1.0 5 23.124 | 0.000 0.024 0.055 9.0 0.012 | 23.121 | 0.002 0.024 0.053 5.0 10.2 0.007 0.0 0.0
1.0 | 10 | 33.922 | 0.000 0.025 0.056 9.0 0.012 | 30.497 | 0.004 0.025 0.053 6.1 11.6 0.021 11 0.0
1.0 15 43.586 0.000 0.025 0.056 9.0 0.013 35.471 0.005 0.026 0.053 6.8 12.7 0.016 1.8 0.0
1.0 | 20 | 55.047 | 0.000 0.025 0.055 9.0 0.015 | 42.103 | 0.006 0.027 0.053 7.6 14.0 0.037 2.6 0.0
5.0 5 23.958 | 0.000 0.019 0.050 11.0 0.014 | 23.963 | 0.002 0.018 0.049 5.0 12.7 0.010 0.0 0.0
50 | 10 | 34.041 | 0.000 0.020 0.050 11.0 0.015 | 29.627 | 0.003 0.018 0.048 5.8 14.0 0.015 0.8 0.0
5.0 15 44.475 0.000 0.019 0.050 11.0 0.016 35.380 0.005 0.017 0.048 6.5 15.2 0.022 15 0.0
50 | 20 | 54.941 | 0.000 0.019 0.050 11.0 0.018 | 41.185 | 0.006 0.018 0.049 7.3 16.6 0.049 2.4 0.0
Forward

[ p mse, mse,, mse, Time FalsePos | FalseNeg

0.5 5.0 25.682 0.021 0.056 0.152 0.0 0.0

0.5 | 10.0 | 31.776 0.021 0.056 0.502 1.0 0.0

0.5 | 15.0 | 33.995 0.021 0.056 0.854 1.0 0.0

0.5 20.0 35.080 0.021 0.056 1.209 1.0 0.0

1.0 5.0 23.124 0.024 0.055 0.160 0.0 0.0

1.0 | 10.0 | 29.118 0.024 0.055 0.532 1.0 0.0

1.0 | 15.0 | 31.024 0.024 0.055 0.900 1.0 0.0

1.0 20.0 32.848 0.024 0.055 1.269 1.0 0.0

5.0 5.0 23.958 0.019 0.050 0.151 0.0 0.0

5.0 | 10.0 | 29.508 0.019 0.050 0.500 1.0 0.0

50 | 15.0 | 32372 0.018 0.050 0.856 1.0 0.0

5.0 20.0 33.442 0.018 0.050 1.203 1.0 0.0

Table C.10: Study 11
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MM BoostMixed
c p mse, mses msey, mse, . Steps Time mse, mses msey, mse, . Selected | Steps Time FalsePos | TrueNeg
0.5 5 17.906 | 0.000 0.012 0.022 8.0 0.086 | 17.904 | 0.001 0.013 0.022 5.0 11.7 0.010 0.0 0.0
05 | 10 | 29.418 | 0.000 0.012 0.023 8.0 0.086 | 25.838 | 0.002 0.013 0.023 6.2 12.8 0.018 1.2 0.0
05 | 15 | 39.788 | 0.000 0.012 0.023 8.0 0.101 | 30.654 | 0.003 0.014 0.023 6.8 13.2 0.027 1.8 0.0
0.5 20 50.718 0.000 0.012 0.023 8.1 0.109 36.056 0.003 0.014 0.023 7.4 13.9 0.037 2.4 0.0
1.0 5 18.852 | 0.000 0.009 0.014 9.0 0.097 | 18.863 | 0.001 0.009 0.014 5.0 11.9 0.011 0.0 0.0
1.0 | 10 | 31.039 | 0.000 0.009 0.014 9.0 0.105 | 27.166 | 0.002 0.009 0.014 6.1 12.8 0.018 11 0.0
1.0 15 43.521 0.000 0.009 0.014 9.0 0.112 34.495 0.003 0.009 0.014 7.0 13.6 0.028 2.0 0.0
1.0 | 20 | 54.969 | 0.000 0.009 0.014 9.0 0.118 | 41.612 | 0.004 0.009 0.014 7.9 15.2 0.041 2.9 0.0
5.0 5 19.249 | 0.000 0.010 0.018 11.0 0.108 | 19.249 | 0.001 0.011 0.018 5.0 13.3 0.011 0.0 0.0
50 | 10 | 30.618 | 0.000 0.010 0.018 11.0 0.114 | 25.986 | 0.002 0.011 0.018 5.9 14.4 0.019 0.9 0.0
5.0 15 41.515 0.000 0.011 0.018 111 0.127 31.936 0.003 0.011 0.018 6.6 15.5 0.031 1.6 0.0
50 | 20 | 52582 | 0.000 0.011 0.018 11.1 0.131 | 38.552 | 0.003 0.012 0.018 7.4 16.8 0.046 2.4 0.0
Forward

[ p mse, mse,, mse, Time FalsePos | FalseNeg

0.5 5.0 17.906 0.012 0.022 1.061 0.0 0.0

0.5 | 10.0 | 24.354 0.012 0.023 3.559 1.0 0.0

0.5 | 15.0 | 26.470 0.013 0.023 6.051 1.0 0.0

0.5 20.0 28.035 0.012 0.023 8.427 1.0 0.0

1.0 5.0 18.852 0.009 0.014 1.092 0.0 0.0

1.0 | 10.0 | 25.735 0.009 0.014 3.656 1.0 0.0

1.0 | 150 | 28.345 0.009 0.014 6.268 1.0 0.0

1.0 20.0 29.621 0.009 0.015 8.835 1.0 0.0

5.0 5.0 19.249 0.010 0.018 1.028 0.0 0.0

50 | 10.0 | 25.667 0.010 0.018 3.453 1.0 0.0

5.0 | 15.0 | 27.608 0.010 0.018 5.922 1.0 0.0

5.0 20.0 29.297 0.011 0.018 8.312 1.0 0.0

Table C.11: Study 12
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MM BoostMixed
c p mse, mses msey, mse, . Steps Time mse, mses msey, mse, Selected | Steps Time FalsePos | FalseNeg
0.5 5 35.544 | 0.000 0.020 0.130 8.0 0.086 | 35.550 | 0.002 0.020 0.131 5.0 113 0.037 0.0 0.0
05 | 10 | 52.303 | 0.000 0.019 0.129 8.0 0.095 | 45.491 | 0.003 0.021 0.129 6.0 12.7 0.039 1.0 0.0
05 | 15 | 71.293 | 0.000 0.020 0.129 8.0 0.099 | 56.130 | 0.004 0.022 0.131 6.8 13.9 0.042 1.8 0.0
0.5 20 92.994 0.000 0.019 0.130 8.0 0.107 69.648 0.005 0.023 0.131 7.7 15.3 0.079 2.7 0.0
1.0 5 32.546 | 0.000 0.023 0.121 9.0 0.098 | 32.550 | 0.002 0.022 0.119 5.0 11.8 0.021 0.0 0.0
1.0 | 10 | 50.598 | 0.000 0.023 0.121 9.0 0.102 | 44.052 | 0.003 0.023 0.119 6.0 13.2 0.081 1.0 0.0
1.0 15 70.189 0.000 0.024 0.122 9.0 0.110 55.896 0.004 0.024 0.119 6.9 14.3 0.049 1.9 0.0
1.0 | 20 | 89.646 | 0.000 0.023 0.125 9.0 0.117 | 68.165 | 0.006 0.024 0.121 7.9 15.8 0.063 2.9 0.0
5.0 5 36.670 | 0.000 0.022 0.150 11.0 0.110 | 36.668 | 0.002 0.021 0.149 5.0 11.9 0.017 0.0 0.0
50 | 10 | 55.584 | 0.000 0.022 0.151 10.9 0.115 | 48.853 | 0.003 0.022 0.150 6.1 13.8 0.029 11 0.0
5.0 15 73.733 0.000 0.022 0.151 11.0 0.123 59.184 0.004 0.022 0.150 6.9 15.7 0.046 1.9 0.0
50 | 20 | 91.585 | 0.000 0.022 0.151 11.0 0.130 | 69.471 | 0.005 0.023 0.150 7.8 16.3 0.073 2.8 0.0
Forward

[ p mse, mse,, mse, Time FalsePos | FalseNeg

0.5 5.0 35.544 0.020 0.130 1.054 0.0 0.0

0.5 | 10.0 | 44.564 0.020 0.129 3.512 1.0 0.0

0.5 | 15.0 | 49.073 0.020 0.130 5.960 1.0 0.0

0.5 20.0 52.238 0.020 0.131 8.308 1.0 0.0

1.0 5.0 32.546 0.023 0.121 1.084 0.0 0.0

1.0 | 10.0 | 42.060 0.023 0.121 3.615 1.0 0.0

1.0 | 15.0 | 47.380 0.023 0.121 6.232 1.0 0.0

1.0 20.0 50.036 0.023 0.122 8.804 1.0 0.0

5.0 5.0 36.670 0.022 0.150 1.026 0.0 0.0

50 | 10.0 | 46.972 0.022 0.150 3.446 1.0 0.0

5.0 | 15.0 | 50.664 0.021 0.149 5.902 1.0 0.0

5.0 20.0 52.276 0.021 0.150 8.284 1.0 0.0

Table C.12: Study 13
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MM BoostMixed
c p mse, mses msey, mse, . Steps Time mse, mses msey, mse, Selected | Steps Time FalsePos | FalseNeg
0.5 5 38.899 | 0.001 0.052 0.324 8.0 0.021 | 38.905 | 0.005 0.054 0.308 5.0 14.8 0.006 0.0 0.0
05 | 10 54.340 | 0.001 0.051 0.322 8.0 0.021 | 47.435 | 0.007 0.055 0.308 59 16.2 0.010 0.9 0.0
05 | 15 74.793 | 0.001 0.052 0.328 8.0 0.023 | 59.391 | 0.010 0.060 0.312 6.9 17.9 0.016 1.9 0.0
0.5 20 92.172 0.001 0.052 0.331 8.0 0.024 67.828 0.012 0.065 0.310 7.5 19.3 0.022 2.5 0.0
1.0 5 36.129 | 0.001 0.041 0.261 9.0 0.023 | 36.098 | 0.004 0.040 0.260 5.0 14.8 0.006 0.0 0.0
1.0 | 10 53.242 | 0.001 0.043 0.267 9.0 0.026 | 45.719 | 0.007 0.042 0.262 6.0 16.1 0.011 1.0 0.0
1.0 15 70.668 0.001 0.045 0.266 9.0 0.028 55.420 0.009 0.045 0.256 6.8 17.4 0.017 1.8 0.0
1.0 | 20 87.263 | 0.001 0.047 0.268 9.0 0.031 | 63.323 | 0.011 0.049 0.259 75 18.9 0.024 2.5 0.0
5.0 5 39.595 | 0.001 0.039 0.255 11.0 0.029 | 39.596 | 0.005 0.042 0.248 5.0 16.9 0.008 0.0 0.0
50 | 10 57.738 | 0.001 0.040 0.253 11.0 0.032 | 49.302 | 0.008 0.046 0.248 59 18.4 0.013 0.9 0.0
5.0 15 74.932 0.001 0.041 0.252 11.0 0.034 58.447 0.010 0.049 0.246 6.7 19.9 0.020 1.7 0.0
50 | 20 94.285 | 0.001 0.043 0.260 11.0 0.038 | 68.972 | 0.013 0.057 0.251 7.6 21.4 0.027 2.6 0.0
Forward

[ p mse, mse,, mse, Time FalsePos | FalseNeg

0.5 5.0 38.899 0.052 0.324 0.236 0.0 0.0

0.5 10.0 | 47.058 0.051 0.325 0.783 1.0 0.0

0.5 15.0 | 52.103 0.053 0.325 1.335 1.0 0.0

0.5 20.0 54.950 0.054 0.326 1.885 1.0 0.0

1.0 5.0 36.129 0.041 0.261 0.258 0.0 0.0

1.0 10.0 | 44.834 0.041 0.264 0.858 1.0 0.0

1.0 15.0 | 48.623 0.041 0.258 1.455 1.0 0.0

1.0 20.0 50.367 0.041 0.261 2.045 1.0 0.0

5.0 5.0 39.595 0.039 0.255 0.235 0.0 0.0

5.0 10.0 | 48.836 0.040 0.252 0.791 1.0 0.0

5.0 15.0 | 52.163 0.041 0.252 1.340 1.0 0.0

5.0 20.0 54.772 0.042 0.254 1.879 1.0 0.0

Table C.13: Study 14

S3IANLS NOILYININIS *O XIAN3IddV

08T



APPENDIX C: SIMULATION STUDIES 181
C.4 Boosted GAMM - Poisson
GAMM bGAMM Reference
c p mse, msey, notconv mse, mse, notconv Steps | falsepos | falseneg | mse, msey,, notconv
0.5 5 17.922 0.013 17 21.952 0.013 0 428.1 0.00 0.87 78.807 1.516 0
0.5 10 22.258 0.016 63 30.760 0.010 3 237.5 1.89 1.54 78.807 1.516 0
0.5 15 29.117 0.013 87 33.894 0.003 1 247.8 3.17 1.67 78.807 1.516 0
0.5 20 44.925 0.012 1 351.2 4.59 1.52 78.807 1.516 0
0.7 5 18.312 0.011 4 19.536 0.013 3 353.3 0.00 0.28 156.869 | 2.233 0
0.7 10 22.804 0.013 52 28.404 0.010 1 365.3 2.06 0.44 156.869 2.233 0
0.7 15 31.009 0.012 90 35.508 0.011 5 263.4 2.89 0.67 156.869 | 2.233 0
0.7 20 45.287 0.010 3 310.2 4.23 0.81 156.869 | 2.233 0
1.0 5 19.699 0.017 1 24.235 0.009 6 280.9 0.00 0.09 344.090 | 4.480 0
1.0 10 25.488 0.023 69 39.790 0.009 6 325.0 2.48 0.23 344.090 | 4.480 0
1.0 15 31.870 | 0.011 84 60.806 0.040 10 266.9 4.21 0.50 344.090 | 4.480 0
1.0 20 62.585 0.016 7 285.8 5.54 0.42 344.090 | 4.480 0
Table C.14: Study 15 - AIC
GAMM bGAMM Reference
c p mse, msey, notconv mse, mses, notconv Steps | falsepos | falseneg | msg, msey, notconv
0.5 5 17.922 0.013 17 27.936 0.007 0 86.8 0.00 1.78 78.742 1.516 0
0.5 10 22.258 0.016 63 34.864 0.006 0 42.6 1.03 2.32 78.742 1.516 0
0.5 15 29.117 0.013 87 36.501 0.002 0 81.8 1.54 2.46 78.742 1.516 0
0.5 20 39.921 0.006 0 71.8 1.82 2.49 78.742 1.516 0
0.7 5 18.312 0.011 4 27.485 0.010 0 112.7 0.00 0.72 155.711 2.199 0
0.7 10 22.804 | 0.013 52 31.346 0.008 0 121.3 1.13 0.96 155.711 | 2.199 0
0.7 15 31.009 0.012 90 41.412 0.022 0 76.7 1.60 1.30 155.711 | 2.199 0
0.7 20 45.684 0.009 0 91.3 1.92 1.50 155.711 2.199 0
1.0 5 19.699 0.017 1 29.894 0.007 0 136.3 0.00 0.27 342.556 | 4.417 0
1.0 10 25.488 0.023 69 49.314 0.009 0 1115 1.45 0.58 342.556 | 4.417 0
1.0 15 31.870 | 0.011 84 51.388 0.018 0 108.1 2.25 0.75 342.556 | 4.417 0
1.0 20 58.984 0.011 0 124.4 2.97 0.73 342.556 | 4.417 0

Table C.15: Study 15 - BIC




APPENDIX C: SIMULATION STUDIES 182
GAMM bGAMM Reference
c p mse, mse,, notconv | mse, mse,, notconv | Steps | falsepos | falseneg | mse, mse,, notconv
0.5 5 21.392 0.301 16 22.149 0.027 12 252.0 0.00 0.71 87.632 1.729 0
0.5 10 28.089 | 0.428 7 31.072 | 0.017 8 226.2 | 2.09 0.82 87.632 1.729 0
0.5 15 29.445 | 0.512 88 46.032 | 0.027 6 220.0 | 4.33 0.92 87.632 1.729 0
0.5 20 49.440 0.025 7 229.1 4.81 1.43 87.632 1.729 0
07 | 5 19.956 | 0.386 5 21.600 | 0.054 12 305.0 | 0.00 0.18 170.181 | 2.630 0
0.7 10 26.556 | 0.512 75 32.915 | 0.020 7 261.1 | 2.20 0.24 170.181 | 2.630 0
0.7 15 | 32.136 | 0.442 83 43.682 | 0.028 6 300.1 | 3.81 0.50 170.181 | 2.630 0
0.7 20 53.041 0.036 5 292.5 5.24 0.63 170.181 2.630 0
10 | 5 17.939 | 0.230 0 17.107 | 0.042 24 407.4 | 0.00 0.00 386.764 | 7.731 0
1.0 10 20.273 | 0.313 67 21.215 | 0.021 24 418.3 | 2.46 0.00 386.764 | 7.731 0
1.0 15 21.729 0.391 96 29.423 0.074 18 292.8 5.50 0.00 386.764 7.731 0
1.0 20 38.480 0.039 13 47.2 9.01 0.00 386.764 7.731 0
Table C.16: Study 16 - AIC
GAMM bGAMM Reference
c p mse, mse, notconv | mse, mse,, notconv | Steps | falsepos | falseneg | mse;, msey, notconv
0.5 5 21.392 0.301 16 27.438 0.028 2 80.0 0.00 1.37 87.632 1.729 0
0.5 10 28.089 0.428 7 33.513 0.021 1 75.0 1.22 1.70 87.632 1.729 0
0.5 15 29.445 | 0.512 88 35.072 | 0.050 1 43.3 1.67 1.75 87.632 1.729 0
05 | 20 42.534 | 0.019 1 53.5 2.15 2.30 87.632 1.729 0
0.7 5 19.956 0.386 5 25.978 0.042 1 99.0 0.00 0.54 170.181 2.630 0
0.7 10 26.556 | 0.512 75 35.349 | 0.037 1 1204 | 1.24 0.88 170.181 | 2.630 0
0.7 15 | 32.136 | 0.442 83 43.612 | 0.033 1 1141 | 1.94 1.35 170.181 | 2.630 0
0.7 | 20 48.953 | 0.040 2 84.3 255 131 170.181 | 2.630 0
1.0 5 17.939 0.230 0 15.600 0.038 12 163.1 0.00 0.00 386.764 7.731 0
1.0 10 20.273 0.313 67 17.748 0.022 13 175.2 1.63 0.00 386.764 7.731 0
1.0 15 21.729 | 0.391 96 22958 | 0.078 12 165.0 | 4.00 0.00 386.764 | 7.731 0
1.0 20 24512 0.040 13 208.5 3.89 0.00 386.764 7.731 0

Table C.17: Study 16 - BIC




APPENDIX C: SIMULATION STUDIES 183
GAMM bGAMM Reference
c p mse, mse,, notconv | mse, mse,, notconv | Steps | falsepos | falseneg | mse, mses, notconv
05 | 5 17.519 | 0.049 3 15.776 | 0.027 0 68.8 0.00 0.00 76.730 1.813 0
0.5 10 24.663 | 0.021 72 26.474 | 0.020 0 443 4.21 0.07 76.730 1.813 0
0.5 15 22.629 | 0.020 86 28.097 | 0.037 0 31.3 6.79 0.00 76.730 1.813 0
0.5 20 31.836 0.023 0 235 7.50 0.20 76.730 1.813 0
0.7 5 15.272 0.041 0 14.470 0.014 1 97.2 0.00 0.00 160.487 3.107 0
0.7 10 14.201 | 0.015 73 16.964 | 0.014 1 82.4 4.59 0.00 160.487 | 3.107 0
0.7 15 23.223 | 0.026 88 29.946 | 0.010 1 58.8 8.25 0.00 160.487 | 3.107 0
0.7 20 35.095 0.013 1 41.3 9.42 0.02 160.487 3.107 0
10 | 5 16.079 | 0.043 0 14.995 | 0.024 0 67.9 0.00 0.00 356.200 | 7.012 0
1.0 10 18.816 | 0.022 63 21.749 | 0.028 0 53.3 4.70 0.00 356.200 | 7.012 0
1.0 15 17.332 0.004 93 23.969 0.003 0 36.4 6.43 0.00 356.200 7.012 0
1.0 20 31.237 0.021 0 36.3 7.92 0.00 356.200 7.012 0
Table C.18: Study 17 - AIC
GAMM bGAMM Reference
c p mse, mse, notconv | mse, mse,, notconv | Steps | falsepos | falseneg | mse;, msey, notconv
0.5 5 17.519 0.049 3 16.277 0.028 0 99.8 0.00 0.20 76.730 1.813 0
0.5 10 24.663 0.021 72 22.178 0.022 0 93.1 1.29 0.29 76.730 1.813 0
0.5 15 22.629 | 0.020 86 19.210 | 0.038 0 75.3 2.50 0.21 76.730 1.813 0
05 | 20 23.106 | 0.023 0 109.6 | 2.97 0.39 76.730 1.813 0
0.7 5 15.272 0.041 0 14.480 0.014 1 130.5 0.00 0.01 160.487 3.107 0
0.7 10 14.201 0.015 73 14.367 0.012 1 158.1 1.56 0.00 160.487 3.107 0
0.7 15 23.223 | 0.026 88 24335 | 0.010 1 178.1 | 2.83 0.00 160.487 | 3.107 0
0.7 | 20 21.650 | 0.014 1 139.9 | 3.35 0.05 160.487 | 3.107 0
1.0 5 16.079 0.043 0 14.695 0.023 0 184.5 0.00 0.00 356.200 7.012 0
1.0 10 18.816 | 0.022 63 18.487 | 0.032 0 190.1 | 1.70 0.00 356.200 | 7.012 0
1.0 15 17.332 | 0.004 93 15.105 | 0.005 0 179.3 | 257 0.00 356.200 | 7.012 0
1.0 20 21.838 0.017 0 179.5 3.80 0.00 356.200 7.012 0

Table C.19: Study 17 - BIC




APPENDIX C: SIMULATION STUDIES 184
GAMM bGAMM Reference
c p mse, mse,, notconv | mse, mse,, notconv | Steps | falsepos | falseneg | mse, mses, notconv
05 | 5 15.200 | 0.042 0 13.935 | 0.009 0 44.0 0.00 0.00 152.314 | 1.749 0
0.5 10 18.149 | 0.030 62 21.544 | 0.010 0 39.5 4.37 0.00 152.314 | 1.749 0
0.5 15 21.046 | 0.025 89 27.093 | 0.008 0 14.0 4.18 0.00 152.314 | 1.749 0
0.5 20 28.871 0.011 0 14.5 4.55 0.08 152.314 1.749 0
07 | 5 14.347 | 0.038 0 13.339 | 0.006 0 29.0 0.00 0.00 314.264 | 2.788 0
0.7 10 17.605 | 0.030 46 21.334 | 0.007 0 23.4 3.81 0.00 314.264 | 2.788 0
0.7 15 20.467 | 0.010 91 26.793 | 0.012 0 18.0 4.33 0.00 314.264 | 2.788 0
0.7 20 29.873 0.006 0 19.4 5.05 0.00 314.264 2.788 0
10 | 5 14.625 | 0.024 0 13.316 | 0.010 0 69.2 0.00 0.00 704.219 | 5.822 0
1.0 10 17.759 | 0.015 48 16.007 | 0.009 0 67.4 1.04 0.00 704.219 | 5.822 0
1.0 15 19.041 0.009 91 16.132 0.003 0 76.9 1.22 0.00 704.219 5.822 0
1.0 20 15.915 0.010 0 71.8 1.30 0.00 704.219 5.822 0
Table C.20: Study 18 - AIC
GAMM bGAMM Reference
c p mse, mse, notconv | mse, mse,, notconv | Steps | falsepos | falseneg | mse;, msey, notconv
0.5 5 15.200 0.042 0 14.083 0.009 0 46.4 0.00 0.08 152.314 1.749 0
0.5 10 18.149 | 0.030 62 15.573 | 0.008 0 52.8 0.92 0.11 152.314 | 1.749 0
0.5 15 21.046 | 0.025 89 17.631 | 0.007 0 455 1.27 0.27 152.314 | 1.749 0
05 | 20 18.380 | 0.009 0 50.0 1.60 0.13 152.314 | 1.749 0
0.7 5 14.347 0.038 0 12.962 0.006 0 61.4 0.00 0.00 314.264 2.788 0
0.7 10 17.605 | 0.030 46 14.587 | 0.007 0 69.8 1.04 0.00 314.264 | 2.788 0
0.7 15 20.467 | 0.010 91 16.040 | 0.011 0 71.2 1.33 0.00 314.264 | 2.788 0
0.7 | 20 16.577 | 0.006 0 67.0 1.73 0.00 314.264 | 2.788 0
1.0 5 14.625 0.024 0 13.132 0.010 0 85.7 0.00 0.00 704.219 5.822 0
1.0 10 17.759 | 0.015 48 16.043 | 0.009 0 86.1 1.15 0.00 704.219 | 5.822 0
1.0 15 19.041 | 0.009 91 15.228 | 0.003 0 104.6 | 1.33 0.00 704.219 | 5.822 0
1.0 20 16.152 0.010 0 89.0 1.50 0.00 704.219 5.822 0

Table C.21: Study 18 - BIC




APPENDIX C: SIMULATION STUDIES 185
GAMM bGAMM Reference
c p mse, mse,, notconv | mse, mse,, notconv | Steps | falsepos | falseneg | mse, mse,, notconv
05 | 5 15.820 | 0.178 0 14.894 | 0.029 4 48.6 0.00 0.00 159.323 | 1.952 0
0.5 10 17.842 | 0.243 75 21.295 | 0.033 4 39.8 4.29 0.00 159.323 | 1.952 0
0.5 15 22.977 | 0.300 95 28.048 | 0.029 3 19.8 4.60 0.00 159.323 | 1.952 0
0.5 20 28.214 0.028 4 20.5 4.66 0.01 159.323 1.952 0
07 | 5 17.314 | 0.192 0 16.817 | 0.025 3 42.7 0.00 0.00 340.879 | 3.386 0
0.7 10 17.588 | 0.232 61 23918 | 0.035 2 343 3.95 0.00 340.879 | 3.386 0
0.7 15 27.360 | 0.317 96 34503 | 0.148 2 27.8 5.75 0.00 340.879 | 3.386 0
0.7 20 19.385 0.025 3 65.5 1.47 0.01 340.879 3.386 0
10 | 5 16.982 | 0.172 0 16.250 | 0.031 13 1115 | 0.00 0.00 766.881 | 7.406 0
1.0 10 20.017 | 0.211 58 18.278 | 0.019 12 89.0 0.82 0.00 766.881 | 7.406 0
1.0 15 21.525 0.201 94 18.098 0.058 14 65.5 1.00 0.00 766.881 7.406 0
1.0 20 19.415 0.034 13 100.7 1.66 0.00 766.881 7.406 0
Table C.22: Study 19 - AIC
GAMM bGAMM Reference
c p mse, mse, notconv | mse, mse,, notconv | Steps | falsepos | falseneg | mse;, msey, notconv
0.5 5 15.820 0.178 0 15.112 0.029 4 56.6 0.00 0.05 159.530 1.952 0
0.5 10 17.842 | 0.243 75 15.997 | 0.031 4 62.4 0.83 0.00 159.530 | 1.952 0
0.5 15 22.977 | 0.300 95 20.468 | 0.028 4 52.8 1.00 0.00 159.530 | 1.952 0
05 | 20 18.542 | 0.027 4 61.4 1.42 0.05 159.530 | 1.952 0
0.7 5 17.314 0.192 0 16.201 0.025 2 76.6 0.00 0.00 342.913 3.398 0
0.7 10 17.588 | 0.232 61 16.462 | 0.031 2 77.6 0.92 0.00 342.913 | 3.398 0
0.7 15 27.360 | 0.317 96 24600 | 0.149 1 74.0 2.00 0.00 342913 | 3.398 0
0.7 | 20 19.366 | 0.024 2 78.6 1.63 0.00 342913 | 3.398 0
1.0 5 16.982 0.172 0 16.092 0.035 12 123.8 0.00 0.00 768.000 7.463 0
1.0 10 20.017 | 0.211 58 18.305 | 0.021 14 106.8 | 0.85 0.00 768.000 | 7.463 0
1.0 15 21.525 | 0.201 94 18.019 | 0.059 13 87.3 1.00 0.00 768.000 | 7.463 0
1.0 20 20.418 0.034 12 114.1 1.92 0.00 768.000 7.463 0

Table C.23: Study 19 - BIC
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GAMM bGAMM Reference
c p mse, mse,, notconv | mse, mse,, notconv | Steps | falsepos | falseneg | mse, mses, notconv
05 | 5 18.272 | 0.061 0 16.751 | 0.009 0 44.1 0.00 0.00 150.653 | 1.819 0
0.5 10 18.791 | 0.053 59 21.543 | 0.008 0 37.6 4.49 0.00 150.653 | 1.819 0
0.5 15 21.249 | 0.035 91 28.941 | 0.008 0 27.9 6.44 0.00 150.653 | 1.819 0
0.5 20 29.053 0.008 0 15.9 4.74 0.03 150.653 1.819 0
07 | 5 16.751 | 0.051 0 15.742 | 0.010 0 30.7 0.00 0.00 308.952 | 3.025 0
0.7 10 19.534 | 0.037 50 23.283 | 0.011 0 275 4.14 0.00 308.952 | 3.025 0
0.7 15 23.794 | 0.064 94 30.113 | 0.009 0 16.8 3.83 0.00 308.952 | 3.025 0
0.7 20 28.612 0.010 0 19.8 4.64 0.00 308.952 3.025 0
10 | 5 14.422 | 0.061 0 13.952 | 0.013 1 44.4 0.00 0.00 697.360 | 6.863 0
1.0 10 16.749 | 0.033 49 21.135 | 0.011 1 34.1 3.96 0.00 697.360 | 6.863 0
1.0 15 14.982 0.007 96 19.403 0.048 3 25.0 5.00 0.00 697.360 6.863 0
1.0 20 28.838 0.012 3 28.9 5.33 0.00 697.360 6.863 0
Table C.24: Study 20 - AIC
GAMM bGAMM Reference
c p mse, mse, notconv | mse, mse,, notconv | Steps | falsepos | falseneg | mss, msey, notconv
0.5 5 18.272 0.061 0 16.798 0.009 0 58.0 0.00 0.04 150.653 1.819 0
0.5 10 18.791 | 0.053 59 16.984 | 0.008 0 57.2 1.24 0.00 150.653 | 1.819 0
0.5 15 21.249 | 0.035 91 17.373 | 0.009 0 52.4 1.44 0.00 150.653 | 1.819 0
05 | 20 21.481 | 0.009 0 57.7 1.97 0.08 150.653 | 1.819 0
0.7 5 16.751 0.051 0 15.258 0.010 1 67.4 0.00 0.00 308.952 3.025 0
0.7 10 19.534 | 0.037 50 17.681 | 0.012 1 71.9 1.24 0.00 308.952 | 3.025 0
0.7 15 23.794 | 0.064 94 17.305 | 0.010 0 56.5 1.33 0.00 308.952 | 3.025 0
0.7 | 20 18.891 | 0.011 1 75.1 1.93 0.00 308.952 | 3.025 0
1.0 5 14.422 0.061 0 13.318 0.013 2 94.7 0.00 0.00 697.360 6.863 0
1.0 10 16.749 | 0.033 49 15.072 | 0.012 3 89.4 1.26 0.00 697.360 | 6.863 0
1.0 15 14.982 | 0.007 96 11.559 | 0.042 2 82.0 2.00 0.00 697.360 | 6.863 0
1.0 20 16.651 0.012 3 93.6 1.95 0.00 697.360 6.863 0

Table C.25: Study 20 - BIC
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C.5 Boosted GLMM - Binomial

GLMM bGLMM
c p mse; mse,, notconv mse, mse,, notconv Steps | falsepos | falseneg
05| 5 505.805 0.279 0 609.219 3.830 0 195.1 | 0.00 1.03
0.5 10 942.978 0.300 0 733.998 6.806 1 178.6 | 1.20 1.06
0.5 15 904.031 0.307 0 1091.575 12.036 0 157.9 2.35 1.08
05 | 20 652.706 0.324 0 833.776 0.304 0 122.3 | 3.62 1.05
07 | 5 161.824 0.163 0 158.951 0.272 0 172.1 | 0.00 0.01
0.7 10 288.621 0.203 0 252.622 0.324 1 173.9 1.04 0.01
0.7 15 630.741 0.215 0 328.352 0.365 1 166.5 2.08 0.03
0.7 | 20 713.179 0.249 0 401.971 0.967 1 143.3 | 3.48 0.01
10 | 5 883.756 0.267 0 430.694 0.346 1 196.9 | 0.00 0.03
1.0 10 1226.259 | 0.298 0 617.398 0.724 1 138.9 1.46 0.02
1.0 15 1479.220 | 0.326 0 808.421 1.958 1 123.1 3.31 0.02
1.0 | 20 2640.851 | 0.343 1 1102.831 | 4.932 2 114.8 | 5.08 0.02
Table C.26: Study 21 - AIC
GLMM bGLMM
c p mse, mse,, notconv mse;, mse,, notconv | Steps | falsepos | falseneg
05 | 5 505.805 0.279 0 610.542 | 2.433 0 200.8 | 0.00 1.44
0.5 10 942.978 0.300 0 650.625 3.250 0 166.6 0.42 1.44
0.5 15 904.031 0.307 0 673.830 | 3.366 0 1559 | 0.69 1.45
0.5 20 652.706 0.324 0 830.624 | 5.782 1 139.8 | 1.07 1.46
07 | 5 161.824 0.163 0 163.677 | 0.282 0 164.1 | 0.00 0.04
0.7 10 288.621 0.203 0 235.837 0.308 1 172.7 0.55 0.03
0.7 15 630.741 0.215 0 277.287 | 0.349 1 1316 | 1.08 0.03
0.7 20 713.179 0.249 0 342.036 | 0.349 1 1334 | 1.70 0.03
1.0 5 883.756 0.267 0 430.694 0.351 1 220.2 0.00 0.07
1.0 10 1226.259 0.298 0 513.985 0.676 1 197.4 0.81 0.06
1.0 15 1479.220 | 0.326 0 639.968 | 1.897 0 1275 | 2.03 0.05
1.0 20 2640.851 | 0.343 1 874.884 | 3.928 2 104.8 | 3.41 0.06

Table C.27: Study 21 - BIC
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GLMM bGLMM
c p mse, mse,, notconv mse, mse,, notconv Steps | falsepos | falseneg
0.5 5 69.168 0.661 0 83.962 0.248 0 163.5 0.00 0.04
0.5 10 137.148 0.722 0 124.377 0.277 0 167.8 0.74 0.06
0.5 15 225.064 0.768 0 152.428 0.306 0 168.2 1.63 0.06
0.5 20 339.263 0.832 0 195.905 0.373 0 161.6 2.64 0.06
0.7 5 196.078 1.008 0 207.807 0.550 0 255.3 0.00 0.08
0.7 10 437.570 1.042 0 291.958 0.660 0 206.2 1.18 0.03
0.7 15 590.907 1.102 1 353.126 1.012 0 165.7 2.56 0.04
0.7 20 777.063 1.191 0 459.025 2.068 1 134.3 4.36 0.07
1.0 5 890.850 1.237 0 381.598 0.678 0 157.0 0.00 0.03
1.0 10 2177.524 | 1.291 0 495.011 1.110 0 147.1 1.33 0.03
1.0 15 3095.759 | 1.336 0 868.701 2.516 0 119.5 3.34 0.03
1.0 20 2829.335 1.387 0 1041.733 | 2.766 4 117.5 4.88 0.05
Table C.28: Study 22 - AIC
GLMM bGLMM
c p mse, msey, notconv mse, msey, notconv Steps falsepos | falseneg
0.5 5 69.168 0.661 0 92.200 0.213 0 177.4 0.00 0.14
0.5 10 137.148 0.722 0 123.918 | 0.247 0 177.4 0.26 0.15
0.5 15 225.064 0.768 0 135.733 | 0.213 0 170.5 0.70 0.17
0.5 20 339.263 0.832 0 152.804 0.281 0 176.4 0.96 0.18
0.7 5 196.078 1.008 0 233.679 | 0.557 0 256.1 0.00 0.13
0.7 10 437.570 1.042 0 266.187 | 0.685 0 195.9 0.54 0.09
0.7 15 590.907 1.102 1 319.132 0.811 0 173.5 1.24 0.09
0.7 20 777.063 1.191 0 353.330 1.200 2 155.6 1.95 0.11
1.0 5 890.850 1.237 0 399.608 | 0.747 0 154.3 0.00 0.05
1.0 10 2177524 | 1.291 0 447.823 | 1.122 0 134.8 0.82 0.04
1.0 15 3095.759 1.336 0 720.313 1.403 0 127.8 2.00 0.05
1.0 20 2829.335 | 1.387 0 939.573 | 3.226 1 109.0 3.17 0.04

Table C.29: Study 22 - BIC
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GLMM bGLMM
c p mse, mses, notconv | mse, mse,, notconv | Steps | falsepos | falseneg
0.5 5 75.410 0.014 0 76.611 0.070 0 113.0 0.00 0.00
0.5 10 121.737 0.018 0 101.686 | 0.067 0 97.9 0.72 0.00
0.5 15 173.560 0.026 0 119.413 | 0.067 0 124.2 1.68 0.01
0.5 20 254.561 0.027 0 145.157 | 0.082 0 111.4 2.73 0.01
0.7 5 103.782 0.049 0 140.968 | 0.146 0 163.9 0.00 0.02
0.7 10 193.702 0.064 0 183.950 | 0.148 0 178.1 0.99 0.02
0.7 15 299.595 0.087 0 217.021 | 0.154 0 161.2 2.01 0.01
0.7 20 463.942 0.106 0 275.414 | 0.165 0 137.0 3.57 0.00
1.0 5 260.046 0.188 0 277.874 | 0.202 0 225.2 0.00 0.04
1.0 10 606.771 0.215 0 366.292 | 0.235 0 153.1 1.28 0.00
1.0 15 1170.769 | 0.241 0 487.435 | 0.385 0 135.8 3.13 0.02
1.0 20 2074.060 | 0.273 1 661.705 | 0.562 0 104.8 5.00 0.00
Table C.30: Study 23 - AIC
GLMM bGLMM
c p mse, msey, notconv mse, msey, notconv Steps falsepos | falseneg
0.5 5 75.410 0.014 0 79.368 0.065 0 101.0 0.00 0.04
0.5 10 121.737 0.018 0 87.911 0.070 0 99.0 0.29 0.04
0.5 15 173.560 0.026 0 109.611 | 0.088 0 111.8 0.65 0.05
0.5 20 254.561 0.027 0 117.490 | 0.087 0 110.0 1.10 0.05
0.7 5 103.782 0.049 0 137.540 | 0.145 0 163.5 0.00 0.02
0.7 10 193.702 0.064 0 159.741 | 0.154 0 146.2 0.50 0.02
0.7 15 299.595 0.087 0 190.079 | 0.153 0 151.2 1.01 0.03
0.7 20 463.942 0.106 0 229.323 | 0.160 0 118.1 1.74 0.00
1.0 5 260.046 0.188 0 277.252 | 0.188 0 213.4 0.00 0.04
1.0 10 606.771 0.215 0 332.720 | 0.236 0 184.2 0.78 0.00
1.0 15 1170.769 | 0.241 0 475.836 | 0.270 0 1375 2.05 0.01
1.0 20 2074.060 | 0.273 1 533.623 | 0.344 1 134.2 3.43 0.00

Table C.31: Study 23 - BIC
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GLMM bGLMM
c p mse, mse,, notconv mse, mse,, notconv Steps | falsepos | falseneg
0.5 5 72.003 0.031 0 90.400 0.058 0 101.2 0.00 0.00
0.5 10 146.845 0.038 0 120.603 0.058 0 116.6 0.87 0.00
0.5 15 210.027 0.058 0 151.121 0.075 0 115.3 1.51 0.00
0.5 20 283.818 0.071 0 187.371 0.074 0 138.1 2.37 0.00
0.7 5 141.793 0.142 0 146.673 0.126 0 124.4 0.00 0.01
0.7 10 279.357 0.161 0 221.064 0.159 0 114.6 0.76 0.01
0.7 15 416.436 0.165 0 268.429 0.207 0 95.2 1.66 0.01
0.7 20 696.907 0.187 0 304.783 0.283 0 111.9 2.72 0.01
1.0 5 673.332 0.256 0 534.183 0.325 1 134.9 0.00 0.01
1.0 10 1906.076 | 0.251 0 537.176 0.335 1 138.7 1.32 0.01
1.0 15 3563.036 | 0.277 0 679.513 0.832 0 130.6 2.77 0.02
1.0 20 4198.591 | 0.301 0 1056.651 1.328 0 111.4 4.48 0.01
Table C.32: Study 24 - AIC
GLMM bGLMM

c p mse, msey, notconv mse, msey, notconv Steps falsepos | falseneg
0.5 5 72.003 0.031 0 87.475 0.056 0 100.5 0.00 0.02
0.5 10 146.845 0.038 0 102.632 | 0.066 0 102.6 0.23 0.02
0.5 15 210.027 0.058 0 119.176 | 0.059 0 98.2 0.36 0.02
0.5 20 283.818 0.071 0 123.898 0.077 0 106.2 0.55 0.02
0.7 5 141.793 0.142 0 141.322 | 0.123 0 1235 0.00 0.01
0.7 10 279.357 0.161 0 170.764 | 0.152 0 112.5 0.25 0.01
0.7 15 416.436 0.165 0 220.872 0.161 0 106.4 0.57 0.01
0.7 20 696.907 0.187 0 244113 0.161 0 120.7 0.83 0.01
1.0 5 673.332 0.256 0 532.380 | 0.336 1 128.6 0.00 0.02
1.0 10 1906.076 | 0.251 0 535.680 | 0.353 0 114.1 0.64 0.02
1.0 15 3563.036 0.277 0 636.291 0.504 0 105.7 1.49 0.02
1.0 20 4198.591 | 0.301 0 698.534 | 0.509 0 139.6 2.88 0.2

Table C.33: Study 24 - BIC
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GLMM bGLMM
c p mse, mse,, notconv mse, mse,, notconv Steps | falsepos | falseneg
0.5 5 75.597 0.663 0 89.526 0.217 0 109.8 0.00 0.01
0.5 10 134.710 0.688 0 109.934 0.198 0 113.3 0.67 0.01
0.5 15 200.426 0.694 0 147.711 0.214 0 116.4 141 0.01
0.5 20 309.023 0.759 0 176.625 0.231 0 150.9 2.27 0.01
0.7 5 162.585 0.921 0 215.827 0.408 0 198.2 0.00 0.02
0.7 10 279.924 0.952 0 244,586 0.499 0 185.7 0.86 0.02
0.7 15 415.746 0.979 0 286.309 0.526 0 168.7 1.77 0.00
0.7 20 603.542 1.027 0 328.878 0.572 0 164.2 2.84 0.00
1.0 5 996.046 1.203 0 562.277 0.689 0 187.0 0.00 0.00
1.0 10 1944526 | 1.244 0 589.615 0.672 0 116.0 1.43 0.00
1.0 15 4028.865 | 1.259 0 922.077 1.006 2 105.0 3.14 0.00
1.0 20 4950.561 1.299 0 1045.734 1.493 2 106.1 4.43 0.02
Table C.34: Study 25 - AIC
GLMM bGLMM
c p mse, msey, notconv mse, msey, notconv Steps falsepos | falseneg
0.5 5 75.597 0.663 0 94.786 0.215 0 110.4 0.00 0.05
0.5 10 134.710 0.688 0 107.229 | 0.199 0 113.6 0.20 0.05
0.5 15 200.426 0.694 0 117.090 | 0.219 0 113.3 0.41 0.05
0.5 20 309.023 0.759 0 134.776 0.205 0 122.3 0.62 0.05
0.7 5 162.585 0.921 0 205.430 | 0.409 0 199.9 0.00 0.03
0.7 10 279.924 0.952 0 227.562 | 0.447 0 209.3 0.35 0.01
0.7 15 415.746 0.979 0 248.913 0.521 0 206.7 0.65 0.01
0.7 20 603.542 1.027 0 255.406 0.521 0 187.0 1.04 0.01
1.0 5 996.046 1.203 0 549.455 | 0.699 0 178.5 0.00 0.00
1.0 10 1944526 | 1.244 0 566.077 | 0.691 0 127.8 0.85 0.00
1.0 15 4028.865 | 1.259 0 836.432 0.729 2 123.1 1.88 0.00
1.0 20 4950.561 | 1.299 0 838.410 | 1.135 1 103.9 2.79 0.00

Table C.35: Study 25 - BIC
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GLMM bGLMM
c p mse, mse,, notconv | mse, mse,, notconv | Steps | falsepos | falseneg
05 | 5 61.184 0.011 0 80.679 0.064 0 60.9 0.00 0.00
0.5 10 115.029 0.009 0 103.594 | 0.067 0 71.2 0.67 0.00
05 | 15 | 161.572 0.013 0 118.355 | 0.067 0 71.8 1.30 0.00
05 | 20 | 219.242 0.012 0 135.897 | 0.062 0 63.7 2.01 0.00
0.7 5 102.948 0.067 0 121.804 | 0.071 0 106.5 0.00 0.00
0.7 10 197.693 0.071 0 194.875 | 0.079 0 118.3 0.76 0.00
0.7 | 15 | 299.296 0.081 0 207.587 | 0.067 0 123.0 | 153 0.00
0.7 | 20 | 391.835 0.088 0 257.841 | 0.087 0 129.8 | 2.49 0.02
1.0 5 220.248 0.156 0 250.653 | 0.156 0 182.7 0.00 0.01
1.0 | 10 | 482.936 0.169 0 325.853 | 0.192 0 160.6 | 1.17 0.00
1.0 | 15 | 858.955 0.188 0 412.780 | 0.221 0 1103 | 2.56 0.00
1.0 | 20 | 1116.216 | 0.203 0 557.111 | 0.274 0 117.0 | 4.36 0.00
Table C.36: Study 26 - AIC
GLMM bGLMM
c p mse; mse,, notconv mse, mse,, notconv | Steps | falsepos | falseneg
05 | 5 61.184 0.011 0 80.679 0.064 0 61.2 0.00 0.00
05 | 10 | 115.029 0.009 0 90.256 0.068 0 63.1 0.25 0.00
0.5 15 161.572 0.013 0 92.554 0.068 0 64.0 0.41 0.00
05 | 20 | 219.242 0.012 0 99.579 0.068 0 65.2 0.62 0.00
07 | 5 102.948 0.067 0 136.216 | 0.075 0 100.6 | 0.00 0.00
0.7 10 197.693 0.071 0 175618 | 0.071 0 85.9 0.27 0.00
0.7 15 299.296 0.081 0 194.787 | 0.081 0 107.1 0.59 0.00
0.7 | 20 | 391.835 0.088 0 210.871 | 0.092 0 127.1 | 0.89 0.00
10 | 5 220.248 0.156 0 252.390 | 0.160 0 196.0 | 0.00 0.01
1.0 10 482.936 0.169 0 285.406 | 0.138 0 142.7 0.60 0.00
1.0 | 15 | 858.955 0.188 0 316.506 | 0.178 0 1430 | 117 0.00
10 | 20 | 1116.216 | 0.203 0 361.343 | 0.258 0 1336 | 1.97 0.00

Table C.37: Study 26 - BIC
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