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Summary

Ion channels are integral membrane proteins present in all cells. They are highly selective and assure

a high rate for transport of ions down their electrochemical gradient. In particular, small-

conductance calcium-activated potassium channels (SK) are conducting potassium ions and are

activated by binding of calcium ions to calmodulin, which is constitutively bound to the carboxy-

terminus of each SK channel α-subunit.

Until now, only three SK channel subunits have been cloned, SK1, SK2 and SK3. Sequence

alignment shows that the transmembrane and pore regions are highly conserved, while a high grade

of divergence is observed in the amino- and carboxy-termini of the three subunits. In order to

determine the expression of the different SK channel subtypes, pharmacological tools such as

apamin and d-tubocurarine have been widely used.

In this work, I show the characterization of a novel toxin, tamapin, isolated from the scorpion

Mesobuthus tamulus, which targets SK channels. Our experiments show that this toxin is more

potent in blocking SK2 channels than apamin. Furthermore, tamapin only blocked the SK1 and SK3

channels at higher concentrations, with a higher efficiency to block SK3 than SK1. Therefore,

tamapin should be a good pharmacological tool to determine the molecular composition of native

SK channels underlying calcium-activated potassium currents in various tissues.

Secondly, I determined the molecular mechanism that prevents the formation of functional

SK1 channels cloned from rat brain (rSK1). Until now, little information was available on the rSK1

channels. rSK1 shows a high sequence identity (84%) with the humane homologue, hSK1. hSK1

subunits form functional potassium channels that are blocked by apamin and d-tubocurarine.

However, when I expressed rSK1 in HEK-293 cells no potassium currents above background were

observed, although immunofluorescence experiments using a specific antibody against the rSK1

protein showed expression of the channel. I generated rSK1 core chimeras in which I exchanged the

amino-and/or the carboxy-terminus with the same region of rSK2 or hSK1. Exchange of amino- and

carboxy-terminus or only of the carboxy-terminus resulted in the formation of functional potassium

channels. Furthermore, I used these functional chimeras to determine the toxin sensitivity of rSK1

for apamin and d-tubocurarine. Surprisingly, when these blockers were applied, no sensitivity was

observed, although hSK1 and rSK1 show a complete sequence identity in the pore region, which is

suggested to contain the binding site for apamin.

Finally, I characterized a novel splice variant of the calcium-activated potassium channel

subunit rSK2, referred to as rSK2-860. The rSK2-860 cDNA codes for a protein which is 275 amino



acids longer at the amino-terminus when compared with the originally cloned rSK2 subunit.

Transfection of rSK2-860 in different cell lines resulted in a surprising expression pattern of the

protein. The protein formed small clusters around the cell nucleus, but no membrane stain could be

observed. This data shows that the additional 275 amino acid-long stretch at the amino-terminus is

responsible for retention and clustering of the rSK2-860 protein. In order to narrow down the region

responsible for this phenotype, I generated truncated proteins. This resulted in the isolation of an

100 amino acid-long region that seems to be responsible for the retention and clustering of rSK2-

860 channels. Further truncations and deletions could help us to find the exact signal which is

responsible for this characteristic behavior of the rSK2-860 protein.
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1 Introduction

1.1 Classification and structure of ion channels, in particular of potassium

channels.

Ion channels are responsible for generating and propagating electrical signals in excitable

tissues such as the brain, heart, and muscle and for setting the membrane potential of both excitable

and non-excitable cells. Channels form pores that allow selective passage of millions of ions per

second across the cell membrane.  Upon opening of the channels, ions will flow down their electro-

chemical gradient generating an ionic current across the membrane. Ion channels can be divided into

different classes dependent on their ion selectivity, such as Na+ channels, Ca2+ channels, Cl- channels

and K+ channels.

Potassium channels set the resting membrane potential (Adrian, 1969), and the duration of

action potentials, terminate periods of intensive activity, time the inter-spike intervals during

repetitive firing (Meech, 1978), and modulate the effectiveness of synaptic inputs on neurones. They

can be separated into several classes based on the topology of the α-subunit, which forms the pore,

thereby constituting the basis for functional channels. Depending on membrane topology and on the

number of putative transmembrane (TM) spanning segments, the channels can be divided in 2TM,

6TM, 7TM and 4TM-2P  (Fig 1). The first class are the 2TM proteins which include the inward

rectifiers (Kir) (Bond et al., 1994, Takumi et al., 1995, Bredt et al., 1995) (Fig 1A). The amino- and

carboxy-termini of these channels are located cytoplasmatically, and the functional channel is

formed by the tetramerization of the 2TM proteins. The second class of K+ channels are the 6TM

proteins (Fig 1B). 6TM proteins can be further separated into voltage-gated channels, called the KV

channels, such as Shaker (Tempel et al., 1987), or into calcium-activated, voltage-independent

channels, such as SK- (small-conductance, calcium-activated K+ channels) (Kohler et al., 1998) and

IK channels (intermediate-conductance, calcium-activated K+ channels) (Ishii et al., 1997, Joiner et

al., 1997 and Logsdon et al., 1997). Functional channels are formed by the tetrameric association of

6TM subunits (MacKinnon, 1991). The third class has 7 transmembrane domains (7TM) (Fig 1C)

and encodes the large-conductance, voltage- and Ca2+-activated channel, BK (Marty, 1983, Atkinson

et al., 1991, Adelman et al., 1992). In contrast to the 6TM and 2TM, the 7TM α-subunit has its

amino-terminus located extracellularly, but the channel also functions as a tetramer. The last class of
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potassium channels consist of the four transmembrane domains and 2 pores proteins (4TM-2P, Fig

1D), such as TREK and TASK (Fink et al., 1996, Duprat et al., 1997).

FIG 1.1.  αααα-Subunit topology of the different classes of K+ channel. Functional channels are formed by
tetrameris of alpha-subunits. A, Two transmembrane domain protein. B, Alpa subunit of the six transmembrane
domain protein. C, Structure of the seven transmembrane domain protein. D, Four transmembrane domain
subunit, most likely envolved from two 2TM proteins by gene duplication.  Blue, P-region, stands for pore
region, S1-S6 are the transmembrane segments.

Throughout their maturation in the ER and Golgi, α-subunits can become glycosylated

(Michikawa et al., 1994, Nagaya and Papazian, 1997). Furthermore, channels can also be modulated

by the interaction with accessory subunits (β-subunits). These subunits have varying structures, they

may cross the lipid membrane one or more times or be entirely cytosolic. The general roles for the

β-subunits identified to date include: 1) stabilization of the channel complex in the membrane,

thereby enhancing channel expression and current (Fink et al., 1996, Shi et al., 1996, Trimmer J.S.,

1998); 2) altering the voltage dependence of the channel (Casellino et al., 1995, Barhanin et al.,

1996, Sanguinetti et al., 1996); 3) providing for, or increasing inactivation (Rettig et al., 1994,

Morales et al., 1995); and 4) enabling the binding of toxins or drugs that block the channel

(McManus et al., 1995, Kaczorowski et al., 1996).

Potassium channels share a distinctive feature, all of them present in the pore region (P-

region) a consensus amino acid sequence “GXG” , which has been termed the K+ channel “signature

sequence“ (Heginbotham et al., 1994, Ketchum et al., 1995). These residues, GXG, repeated in the 4



Introduction                                                                                                                                page 3

α-subunits, line the selectivity filter of the potassium channel. The first insights into the

tridimensional structure of the potassium channel pore came after the crystallization of the 2TM

protein, KcsA, cloned from Streptomyces lividans (Doyle et al., 1998). The 2 membrane segments

(α-helices) of each subunit span the lipid layer (Fig 2B), while the inner α-helices face the central

pore of the channel (Fig 2A). The selectivity filter for potassium is located at the extracellular

surface of the pore formed by a tight alignment of the 4 GXG motifs present in each subunit (Fig

2C). Although this K+ channel contains only 2 transmembrane segments, the amino acid sequence of

the pore region is very close to that of potassium channels with six transmembrane segments, for

example there is more than 60% homology between KcsA and Shaker (Doyle et al., 1998, Capener

et al., 2002).

FIG 1.2.  Structure of the 2TM potassium channel KcsA. A, Stereoview of the ribbon
representation illustrating the 3D fold of the KcsA tetramer. B, Presentation of the channel as an
integral membrane protein. C, Side view of 2 of the 4 α-subunits,  showing the formation of the
selectivity filter by the GYG motifs (From Doyle et al., 1998).

The 6TM calcium-activated potassium channels (KCa) represent a family of proteins that are

distinct from KV channels. They can be categorized according to their biophysical properties, the

most prominent of these features is the single channel conductance. KCa are classified as small (2-25

pS) (Kohler et al., 1996) and intermediate (25-100 pS) (Ishii  et al., 1997, Joiner et al., 1997,

Logsdon et al., 1997) conductance K+ channels.

1.2 Gating of small-conductance, calcium-activated potassium channels.

The 6TM K+-channels include channels with different mechanisms of activation. One group

are the voltage gated potassium channels, KV, which are activated by a change in the potential across

the cell membrane. Another group are the calcium-dependent K+ channels, KCa  are activated by the

interaction of calcium with calmodulin bound to the carboxy terminus of the KCa α-subunit.
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To date, 3 members of the small-conductance, calcium-activated potassium channels (SK)

family have been cloned, SK1, SK2 and SK3 (Kohler et al., 1996). Their sequences are highly

conserved across the transmembrane segments, but diverge in amino acid composition and length

within their amino- and carboxy-termini (see appendix 2.1). SK channels are voltage independent

but are activated by submicromolar concentrations of intracellular calcium. The calcium

concentration required for half maximal activation (EC50) of SK channels is approximately 300 nM

(Xia et al., 1998, Hirschberg et al., 1998)

In order to determine which amino acids in the SK α-subunit are responsible for the calcium

binding, Xia and colleagues (Xia et al., 1998) performed several mutation studies. They found that

SK channels are not gated by calcium binding directly to the channel α-subunits. Instead, SK

channels are activated by binding of calcium ions to calmodulin, which is in turn constitutively

bound to the carboxy-terminus of the α-subunit in a calcium-independent manner (Xia et al., 1998,

Keen et al., 1999, Fanger et al., 1999, Zhang et al., 2001). This calmodulin/α-subunit complex is

located in the intracellular carboxy-terminal domain of the protein, just downstream from the S6

transmembrane segment. Their studies also revealed that the carboxy-terminal part of calmodulin

(containing EF hands 3 and 4) binds to the α-subunit in a calcium independent manner, while the N-

terminal part (containing EF hands 1 and 2) only interacts with the α-subunit in the presence of

calcium ions. Furthermore, mutations in the EF hands 1 or 2 of calmodulin resulted in a decrease in

calcium sensitivity. In contrast, mutation in EF hands 3 or 4 did not change the calcium sensitivity

of SK channels. These results suggest that calcium gating of SK channels results from Ca2+ binding

to EF hands 1 and 2 of calmodulin, and that either EF hand 1 or 2 is sufficient for channel activation

(Xia et al., 1998, Keen et al., 1999).

The elucidation of the X-ray structure of the calmodulin/α-subunit complex confirmed these

findings (Schumacher et al., 2001). The crystal structure of this complex showed the presence of the

calmodulin binding domain, CaMBD,  in the proximal carboxy-terminal domain of each α-subunit.

The interaction between the CaMBD and calmodulin (in the presence of calcium) revealed a dimeric

complex. Two CaMBDs, each comprised of a short α-helix, a β-turn, and a longer extended α-helix,

are arranged with the longer  helices in an antiparallel configuration and do not make direct contacts.

Two CaMs are symmetrically woven around the CaMBDs with each CaM making multiple contacts

with the two CaMBDs. Although the crystallization was performed in the presence of calcium, only

the amino-terminal EF hands (1 and 2) of CaM contain Ca2+ ions, while the carboxy-terminal EF
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hands (3 and 4) did not, giving a view of both calcium-dependent and –independent CaM/protein

interactions (Fig 3, Schumacher et al., 2001).

FIG 1.3. Structure of CaMBD/Ca2+-CaM complex. Formation of a dimeric CaMBD/Ca2+-CaM complex. A. Upper
view of the complex. Green are the calmodulin proteins interacting with the CaMBDs, blue and yellow. amino-
termini of CaM  contain the calcium ions, while carboxy-termini are uncalcified. B, Site view of the same complex in
A (From Schumacher et al., 2001).

The binding between CaM and CaMBD is predicted to occur, through electrostatic

interactions between negatively charged residues in the CaM linker region and positively charged

residues on the CaMBD,  and by hydrophobic interactions (Keen et al., 1998, Wissmann et al., 2002,

Lee et al., 2003). Furthermore, biochemical data showed that in the absence of calcium the

CaM/CaMBD interaction is monomeric (Schumacher et al., 2001).

 Taken together, the data suggest a model for Ca2+ gating of SK channels where CaM is

bound through the C-terminus to the proximal portion of the CaMBD. Upon calcium binding to the

N-lobe of CaM, a large rearrangement occurs in which the N-lobe of CaM contacts the distal

domain of the CaMBD on a neighbouring subunit (Fig. 4). This rearrangement results in a

conformational change of the channel and opens the ion-conducting pore (Schumacher et al., 2001).

FIG 1.4. Proposed gating
model for calcium-activated
potassium channels. CaM is
bound to the C-terminus of the α-
subunit in a calcium independent
manner (yellow circles). Upon
interaction with calcium, CaM
binds to the neighboring α-
subunit, forming a dimeric
complex. This movement will
result in a conformational change
of the channel and open the ion-
conduc t ion  pore  (From
Schumacher et al., 2001)
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Besides activation of SK channels upon binding of calcium ions, a second important role for

CaM is trafficking of functional SK channel to the membrane (Joiner et al., 2001, Lee et al., 2003).

Experiments which prevented or weakened  binding of endogenous CaM to the α-subunits by

mutating the CaMBD or by depleting the CaM pool using dominant negative proteins abolished the

cell membrane expression of the SK channels. Although the α-subunits were generated, as observed

by immunofluorescence and western-blot analysis, the channels were not inserted into the plasma

membrane (Miller et al., 2001, Lee et al., 2003).

1.3 Physiological role of SK channels

In situ hybridization has revealed that SK channels are highly expressed in the central nervous

system (Stocker and Pedarzani, 2000). These channels are present in most neurons and upon

activation by calcium, due to calcium influx through voltage gated calcium channels during an

action potential, they contribute to the afterhyperpolarization (AHP) following action potentials.

This AHP can be dissected into two main components, the medium and the slow AHP.

The medium afterhyperpolarization (mAHP) follows a single or train of action potentials,

presents a rather fast activation ( ≤ 5ms), and a time course of decay in the range of hundreds of

milliseconds. The Ca2+-activated K+ current that underlies part of the mAHP is described as IAHP, and

is voltage insensitive and blocked by the bee venom toxin apamin (Sah, 1996). mAHP limit the

firing frequency of neurons by slowing the return of the membrane potential to the firing treshold,

thereby prolonging the interspike interval. Given its pharmacological profile, IAHP is likely to be

mediated by SK channels (Villalobos et al., 2004).

The slow afterhyperpolarization (sAHP) only appears after a burst  of action potentials, is

characterized by a slow time course of activation (~ 500 ms), and decays in 1-4 s. The sAHP is

mediated by slow calcium-activated potassium channels underlying a current known as sIAHP. In

contrast to IAHP, the sIAHP  is apamin insensitive and is responsible for the late phase of spike

frequency adaptation. The sAHP leads to a strong reduction or a complete cessation of action

potential firing, thereby controlling the repetitive firing of neurons and limiting the numbers of

action potentials generated in response to stimuli (Madison and Nicoll, 1982, Madison and Nicoll,

1984). The channels underlying the sIAHP are not known yet.

Furthermore, the AHP and in particular the sAHP have been hypothesized to play a role in

controlling the level of excitability of neurons and thus synaptic plasticity. As neuronal activity
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plays a role in the processing of information within the central nervous system, it would not be

surprising that changes in both the medium and slow AHP may be involved in aspects of learning

and memory (Messier et al., 1991).

1.4 Pharmacology of SK channels

A specific toxin used to characterize different SK subtypes is apamin. Apamin is a 18 amino-

acid peptide, isolated from the venom  of the bee, Apis mellifera (Habermann et al., 1972,

Habermann and Fischer, 1979). Initial studies, performed in Xenopus oocytes, showed that rat SK2

(rSK2) and rat SK3 (rSK3) homomeric channels were blocked by apamin, while the human SK1

(hSK1) channel was not affected by the toxin at concentrations up to 100 nM (Kohler et al., 1996,

Ishii et al., 1997b, Table 1). However, further pharmacological studies in different heterologous

expression systems have revealed that in mammalian cell lines also hSK1 channels are blocked by

apamin (Shah and Haylett, 2000, Strobaek et al., 2000, Table 1), and one study has reported the

presence of two apamin binding affinities (IC50 = 0.7 nM and 196 nM) upon hSK1 expression in

Xenopus oocytes (Grunnet et al., 2001a, Table 1). Thus, SK channel subtypes can be distinguished

on the basis of their different level of sensitivity for apamin, with hSK1 being the least sensitive

(IC50: 0.7-12 nM in mammalian cell lines, Table 1), SK2 channels the most sensitive (IC50: 27-140

pM, Table 1), and SK3 channels presenting an intermediate sensitivity (IC50: 0.6-4 nM, Table 1). In

contrast, the intermediate conductance potassium channels (IK or SK4) present a distinct

pharmacological profile, being insensitive to apamin, but blocked by charybdotoxin (IC50: 2-28 nM,

Joiner  et al., 1997, Logsdon et al., 1997, Ishii et al., 1997a, Jensen et al., 1998, Table 2).

Beside apamin, other toxins from scorpion venoms target specifically SK channels and

provide useful tools for their pharmacological characterization. These include scyllatoxin

(Leiurotoxin I), isolated from the scorpion Leiurus quinquestriatus (Castle and Strong, 1986,

Chicchi et al., 1988, Auguste et al., 1990) and PO5 from Androctonus mauretanicus (Zerrouk et al.,

1993).
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Table 1:

IC50 SK1 SK2 SK3

Apamin nM 0.707,a, 1.314,c, 2.94, 5.14,
7.75, 813,b, 12.25, >1001,2

0.0277, 0.0631, 0.0714,c,
0.0834, 0.1413

0.6310, 114,c, 1.113,1.411, 22,
47, 13.28,d, 19.18

PO5 nM 2512

Scyllatoxin
(Leiurotoxin)

nM 804, 32512 0.294 1.112, 8.311

Reported are IC50 values obtained from electrophysiological recordings, rubidium flux and functional fluorescence
assays. Underlined values have been obtained from human SK channel clones, all other values from rat SK channel
clones.

a: second component with IC50 of 196 nM, b: up to 39% residual current, c: Rubidium flux measurements and d:
fluorescence assays.

(1) Kohler et al., 1996; (2) Ishii et al., 1997b; (3) Khawaled et al., 1999; (4) Strobaek et al., 2000; (5) Shah and Haylett,
2000; (6) Dreixler et al., 2000; (7) Grunnet et al., 2001a; (8) Terstappen et al., 2001; (9) Fanger et al., 2001; (10)
Grunnet et al., 2001b; (11) Hosseini et al., 2001; (12) Shakkottai et al., 2001; (13) Dale et al., 2002; (14) Castle et al.,
2003

In addition to peptide toxins, several organic compounds, like curare, quaternary salts of

bicuculline, dequalinium, UCL 1684 and UCL 1848, block all three SK channel subtypes in

expression systems (Table 2).

Table 2:

IC50 SK1 SK2 SK3

Quaternary
Bicuculline salts

1.43, 15.94 1.13, 254 6.610

Dequalinium 0.444, 0.485 0.164, 0.356 308,d

d-tubocurarine 23.55, 274, 76.21, 3542 2.41, 5.42, 174 2108,d

UCL 1684 0.764 0.289, 0.364 5.811, 9.59

UCL 1848 1.15 0.1211 2.111

Besides SK channel blockers, also enhancers of SK channel activity have been identified. The

prototypical SK channel enhancer is 1-ethyl-2-benzimidazolinone (1-EBIO), first characterized as

an activator of native IK channels in colonic epithelial cells (Devor et al., 1996), and subsequently

shown to enhance the activity of recombinant IK channels in transfected cultured cells (Jensen et al.,
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1998, Pedersen et al., 1999). When tested on SK1 and SK2, 1-EBIO enhanced their activity by

increasing their apparent Ca2+ sensitivity by almost an order of magnitude (Pedarzani et al., 2001).

Structurally related compounds, such as the muscle relaxant chlorzoxazone and zoxazolamine, have

been shown to also enhance the activity of IK and SK2 channels (Syme et al., 2000, Cao et al.,

2001). The neuroprotective drug riluzole (2-amino-6-trifluoromethoxy benzothiazole), which has

some structural resemblance to 1-EBIO, similarly enhances the activity of SK2 (Cao et al., 2002)

and SK3 channels (Grunnet et al., 2001b).

Finally, SK channels have been shown to be the targets of a number of neuroactive drugs

suppressing channel activity and including tricyclic antidepressants, Prozac (fluoxetine) and

antipsychotic phenothiazines (Dreixler et al., 2000, Terstappen et al., 2001, Grunnet et al., 2001b,

Terstappen et al., 2003).

1.5 Aim of this work

The aim of this work was to analyze the structure and function of the small conductance

calcium-dependent potassium channels (SK). To date, three SK channels have been cloned, SK1,

SK2 and SK3. I generated stable cell lines expressing the rSK2, rSK3 and hSK1 α-subunits and

characterized them using immunofluorescence and/or patch-clamp techniques. The SK channels can

be distinguished from each other using specific blockers.I screened for novel blockers and

characterized the scorpion toxin tamapin. In contrast to rSK2, rSK3 and hSK1, which form

functional homomeric channels the rat SK1 (rSK1) does not form functional channels when

expressed in HEK-293 cells, although the protein is made, as shown by immunoblot analyses and

immunofluorescence. I investigated the molecular determinants of rSK1 channel expression using

chimeric subunits in combination with immunocytochemistry and electrophysiology. Finally, I

studied the expression of a novel splice variant of rSK2, which reveals a distinct expression pattern

of protein aggregates in the perinuclear region when expressed in HEK-293, CHO or COS cells. In

order to assess which domain is responsible for the retention and clustering of this splice variant, I

have generated truncated forms of the channel and visualized them using immunofluorescence in

order to detect differences in expression pattern.



2 Material & Methods

2.1 Materials

2.1.1 Equipment

Abbott Dial-A-Flo Emergency Medical Supply Inc. (EMS), USA

Amplifier EPC9, HEKA Electronic

Antivibration table Technical Manufacturing Corporation (TMC), USA

Air pressure component MPCU-3, Lorenz

CCD camera SPOT, Diagnostic Instruments

QImaging, Micropublisher

Cell culture incubator Heraeus Instruments

Centrifuge J2-MI, Beckman

5415 D, Eppendorf

Computer Power Macintosh 7100/66

Electrode puller List medical, Germany

PP-830, Narishige, Japan

Megafuge 1.0R Heraeus Instruments

Micromanipulator Mini 25, Luigs & Neumann

Microscope Axioskop2, Zeiss

Multiple Solution perfusion system MP-6 chamber manifold, Warner Instruments

corp.

PCR System 2400 GeneAmp, Applied Biosystems

Sequencer 377 DNA sequencer, ABIprism

Shaker Innova 4230, New Brunswick Scientific, USA

Spectrophotometer SmartSpec 3000, BIO RAD

UV-light 4W Model UVL-24, Long Wave (365 nm),  230 V,

50 Hz, UVP, Upland,USA

Vacuum pump Dymax 30, Charles Austen pumps
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2.1.2 Consumables

Cryo tube vials Nunc

Glass coverslips 10 mm BDH

Glass coverslip 22x22 mm BDH

Kimax-51 capillary tubes Kimble products, USA

Multiple well plates; 6, 12 & 96 Nunc

Petri dish, 92X19 mm Sarstedt

Slides 76x26 mm, Menzel-Glässer

Stericup, 150 & 500 ml Millipore

Serological pipette; 5, 10 & 25 ml Sarstedt

Tissue culture flask; 25 & 75 cm2 Nunc

1.5, 15 & 50 ml tubes Sarstedt

35 mm dishes Nunc

Syringe filters, Millex-GP, Millipore

 0.22 µm

2.1.3 Kits

Flp-InTM System Invitrogen

FuGENE 6 Roche

LipofectAMINETM Reagent Invitrogen

LipofectAMINE PLUSTM Reagent Invitrogen

NucleoSpin Plasmid Macherey-Nagel

Nucleospin Extract Macherey-Nagel

Nucleobond PC 100 & PC 500 Macherey-Nagel

pGEM-T vector system Promega

ProLong Antifade kit Molecular Probes

Slowfade Light Antifade kit Molecular Probes

Sequencing BigDyeTM Terminator (version 2) with

AmpliTaq DNA polymerase, Applied Biosystems

2.1.4 Enzymes, antibodies and proteins

Alkaline Phosphatase Roche
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Ampicillin Roche

anti-c-myc (clone 9E10) Roche

anti-Ubiquitin (clone FK12) Affiniti

anti-Vimentin (clone V9) Sigma

Brefeldin A Epicentre

BSA, protease free, fraction V Sigma

Cy-3 conjugated Goat anti-rabbit Jackson ImmunoResearch

Cy-5 conjugated Goat anti-rabbit Jackson ImmunoResearch

FITC-conjugated Swine anti-rabbit DAKO

Lamin A/C sc-7292, Santa Cruz Biotechnology

Lysozyme Roche

Pfu DNA-polymerase (2.5U/µl) Stratagene

RNase A Sigma

Taq DNA Polymerase (5U/µl) Gibco-BRL

T4-DNA ligase (1U/µl) Roche

T4-DNA Polymerase Roche

Restriction enzymes were obtained from Roche, New England Biolabs and Amersham

Biosciences

2.1.5 Plasmids

Bluescript II KS+, SK+ Stratagene

pcDNA3 Invitrogen

pcDNA5/FRT Invitrogen

pEGFP-C2 Clontech

pEGFP-ENDO Clontech

pEGFP-F Clontech

pEYFP-ER Clontech

pEYFP-Golgi Clontech

pGEM-T Promega

pOGG44 (recombinase) Invitrogen
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2.1.6 Channel blockers and enhancers

Apamin Latoxan

1-EBIO Tocris

d-tubocurarine chloride Research Biochemicals Incorporated

Charybdotoxin Latoxan

2.1.7 Cell culture

DMEM/F-12 Invitrogen

Fetal Calf Serum (FCS) Invitrogen

Ham’s F-12 Invitrogen

L-glutamine 200 mM Invitrogen

Opti-MEM1 Invitrogen

PBS Invitrogen

Penicillin/Streptomycin (10000U/ml) Invitrogen

Trypsin-EDTA Invitrogen

2.1.8 Chemicals

Acetonitrile Sigma

Agar powder BDH

Agarose Ultra-Pure, Gibco-BRL

Ampicillin Roche

Calcium chloride Fluka

Dimethylsulfoxid (DMSO) Sigma

EGTA Fluka

Ethidium bromide Sigma

G418 CalBiochem

HEPES Fluka

Kanamycin Sigma

Luria Broth (LB) Gibco BRL

Paraformaldehyde (PFA) Electron Microscopy Sciences

Poly-D-Lysine  Sigma
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Potassium chloride Merck

Sodium chloride Merck

TAE (50X) National diagnostics

Triton X-100 Fluka

All other chemicals have been purchased from BDH, Fluka, Merck and Sigma

2.1.9 DNA-ladders

1 kb DNA-ladder 12.216, 11.198, 10.180,  9.162,  8.144, 7.126, 6.108, 5.090, 4.072, 3.054,

2.036, 1.636, 1.018, 506, 396, 344, 298, 220, 201, 154, 134, 75 [bp]

1 Kb+ DNA-ladder 12.000, 11.000, 10.000, 9.000, 8.000, 7.000, 6.000, 5.000, 4.000, 3.000,

2.000, 1.650, 1.000, 850, 650, 500, 400, 300, 200, 100 [bp]

100 bp DNA-ladder 2.072, 1.500, 1.400, 1.300, 1.200, 1.100, 1.000, 900, 800, 700, 600, 500,

400, 300, 200, 100 [bp]

All DNA-ladders were obtained from Gibco BRL

2.1.10 Buffers and solutions

Buffer S1 50 mM Tris-HCl, pH 8.0
10 mM EDTA
100 µg/ml RNase

Buffer S2 200 mM NaOH
1 % SDS

Buffer S3 2.8 mM KAc, pH 5.1

Buffer N3 100 mM Tris-H3PO4, pH 6.3
15 % ethanol
1.150 mM KCl

Buffer N5 100 mM Tris-H3PO4, pH 8.5
15 % ethanol
1.000 mM KCl
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Buffer NE 5 mM Tris-Cl, pH 8.5

Blocking solution (in PBS) 10 % FCS
2-3 % BSA(10% BSA stock solution)

Freezing medium 70 % medium (with glutamate and antibiotics)
20 % FCS
10 % DMSO

G-418 (100 mg/ml) 1 ml Hepes-NaOH (1M, pH 7.3)
9 ml H2O
1 g G418

sterile filtration, store at –20 °C

LB-plates with 1 l H2O
Ampicillin 25 g LB
for 1 l solution 15 g Agar

autoclave and cool to 50-55 °C
add Ampicillin (100 µg/ml)

LB-plates with 1 l H2O
Kanamycin 25 g LB
for 1 l 15 g Agar

autoclave and cool down till 50-55 °C
add Kanamycin (30 µg/ml)

Ligation buffer (5X) 100 mM Tris-HCl (pH 7.5)
50 mM MgCl2

50 mM DTT
5 mM ATP

Loading buffer 5 µl deionised formamide
1 µl blue dextran
1 µl EDTA (50 mM)

adjust pH 8.0

One-Phor-All buffer (10X) 500 mM KAc
100 mM Tris-Ac (pH 7.5)
100 mM MgAc

PBS (10X) 1.3 M NaCl
70 mM Na2HPO4

30 mM Na2H2PO4

adjust to pH 7.3
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4% PFA 80 ml H2O
200 µl NaOH

heat to 65°C and add 4g PFA, stir until dissolved
10 ml 10X PBS
200 µl HCl

adjust to pH 7.3, and store at -20°C

Sample buffer (5X) 20 % Ficoll 400
100 mM EDTA (pH 8.0)
0.25 % Bromphenolblau
0.25 % Xylencyanol

SOB-Medium 20 g Bacto-Trypton
for 1 l 5 g Yeast-Extract

10 mM NaCl
5 mM KCl
10 mM MgCl2

10 mM MgSO4

adjust to pH 6.8-7.0
autoclave without Mg-salts. Sterile filter Mg-salts and add before
use of medium.

TB-medium 10 mM MOPS, pH 6.7 with KOH
250 mM KCl
15 mM CaCl2

55 mM MnCl2

TE-buffer (pH 8.0) 10 mM Tris-HCl (pH 8.0)
1 mM EDTA

autoclave

STET (total volume of 50 ml) 100 mM NaCl
10 mM Tris-HCl (pH 8.0)
1 mM EDTA
5 % Triton X-100

Extracellular recording solutions:

4 mM K+ 4 mM KCl
140 mM NaCl
2 mM CaCl2

1 mM MgCl2

10 mM Hepes
adjust to pH 7.4 with NaOH
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20 mM K+ 20 mM KCl
124 mM NaCl
2 mM CaCl2

1 mM MgCl2

10 mM Hepes
adjust to pH 7.4 with NaOH

144 mM K+ 144 mM KCl
2 mM CaCl2

1 mM MgCl2

10 mM Hepes
adjust to pH 7.4 with KOH

Intracellular recording solutions:

nominal [Ca2+] free 130 mM KCl
10 mM Hepes
20 mM BAPTA
1.08 mM MgCl2

100 nM free Ca2+ 130 mM KCl
10 mM Hepes
10 mM EGTA
1.08 mM MgCl2

4.11 mM CaCl2

500 nM free Ca2+ 130 mM KCl
10 mM Hepes
10 mM EGTA
1.08 mM MgCl2

7.75 mM CaCl2

1 µM free Ca2+ 130 mM KCl
10 mM Hepes
10 mM EGTA
1.08 mM MgCl2

8.75 mM CaCl2

10 µM free Ca2+ 130 mM KCl
10 mM Hepes
10 mM EGTA
1.08 mM MgCl2

9.87 mM CaCl2

All intracellular solutions are adjusted to pH 7.2 with KOH

Extracellular and  intracellular solutions have an osmolarity of 280-300 mOsm
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2.2 Methods

2.2.1 Cell culture and transfection

2.2.1.1 Cell types

HEK-293, HEK-SK2, HEK-SK3, HEK-IK and FlpIn-HEK. Human Embryonic Kidney

(HEK) cells were cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented with 2

mM L-Glutamin; 5 ml Penicillin/Streptomycin (10.000 U/ml) and 10% FCS. Except from the

wild type HEK cell (HEK-293), all other cell lines were maintained in the presence of

antibiotica. Cell lines expressing SK2, SK3 and IK were grown in the presence of 400 µg/ml

G418. FlpIn-HEK cells were maintained in 100 µg/ml Zeocin. HEK-FlpIn-rSK2 lines generated

with FlpIn-HEK  cells were cultured in regular medium with 100 µg/ml Hygromycin B.

CHO-K1 and FlpIn-CHO. Chinese Hamster Ovary (CHO) cells were grown in Ham’s F-12

supplemented with 5 ml Penicillin/Streptomycin (10.000 U/ml) and 10% FCS. FlpIn-CHO cells

were maintained in the presence of 100 µg/ml Zeocin. CHO-FlpIn-hSK1, CHO-FlpIn-rSK2 and

CHO-FlpIn-rSK3, generated by using the FlpIn-CHO cell system, were grown in medium

containing 100 µg/ml Hygromycin.

COS-7 African green monkey kidney cells were maintained in DMEM supplemented with

2 mM L-Glutamin, 5 ml Penicillin/Streptomycin (10.000 U/ml) and 10% FCS. Cells were grown

till 80-90% confluence at 37°C and 5% CO2 before they were splitted (see 2.2.1.2)

2.2.1.2 Splitting cell lines

Cells were grown in a humidified atmosphere at 5% CO2 and 95% air at 37°C. All cell

lines were cultured in 25 cm2 culture flasks until they reached 90-100% confluence. Then the

medium was aspirated and the cell monolayer was washed once with 1xPBS. The washing step

was followed by a brief application of 1ml Trypsin-EDTA. Trypsin-EDTA was gently added to

the cell monolayer using a pipette, shaken gently for a few seconds, and then removed. Treated

cells were placed for a short time in the incubator. After 1 minute the cells were resuspended in 5

ml of fresh medium. A few drops of the suspension was added to 5 ml fresh medium with or

without antibiotics and transferred into a new 25 cm2 culture flask. When the cells reached 80-

90% confluence, they were split again.
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2.2.1.3 Frozen cultures

From each cell line, wild type as well as stable cell lines, frozen cultures were made. The

cells were split as described in 2.2.1.2 and counted in a “Neubauer” counting chamber, using the

following formula to estimate the number of cells per µl:

After counting, the cells were collected and resuspended in freezing medium. HEK and CHO

cells were frozen in cryo tubes at concentrations of 3x106 and 2x106 cells/ml, respectively. For

freezing, cryo tubes were placed for 24 hours at –80°C in a Cryo 1C freezing container filled

with isopropanol to achieve a –1 °C/min rate of cooling. Afterwards the frozen samples were

transferred to a liquid nitrogen storage container.

2.2.1.4 Transfection of cells

Transient transfections of constructs for immunocytochemistry and electrophysiology.

HEK-293 or CHO-K1 cells were grown to 60-70% confluency in 6 well plates or 35 mm dishes.

In general, for transfection, different ratios of cDNA were transfected, although an end

concentration of 2 µg DNA was always used. For co-localisation experiments 1 µg of specific

channel DNA (rSK2 or rSK2-860) was incubated with 1 µg of cellular marker DNA (pEGFP-F,

pEYFP-Golgi, see 2.2.2.13). Measuring of different constructs or chimeras were performed by

co-transfecting the cells with 1.5 µg cDNA (see 2.2.2.14, rSK1, hSK1 and rSK2 chimeras) and

0.5 µg pEGFP-C2. In all cases the 2 µg DNA and 10.5 µl of LipofectAMINE  were each

incubated in 100 µl OptiMEM for 15 min at room temperature (RT). Then the LipofectAMINE

was added to the DNA. This mixture was kept for 15 min at RT. After rinsing the cells once with

OptiMEM, 0.8 ml of OptiMEM was added to the cells, followed by the DNA/Lipofectamine

mixture. The cells were incubated for 3-5 hours at 37°C in a CO2 incubator. At the end of the

incubation, 1 ml of growth medium containing twice the normal concentration of serum was

added and cells were further incubated under the same conditions as above. After 12-16 hours

the cells could be split (see 2.2.1.2).

COS-7 cells were plated in regular medium (see 2.2.1.1) in 35 mm dishes at a density of 1x105

and incubated overnight at 37°C and 5% CO2. Following incubation, 3.5 µl FuGENE 6 and 1 µl

DNA were mixed and stored at RT for 20 min. The mixture was added to the cells, without

No of cells No of cells in 16 squares

16 x 0.100 x 0.065µL
=
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replacing the medium, for 24 hours and the cells were subsequently replated for

immunocytochemistry (see 2.2.3.2).

Stable transfection using LipofectAMINE. HEK-293 cells were transfected with 2 µg

pcDNA3-rSK2 or pcDNA3-rSK3, as described for the transient transfections. Subsequently, 24

hours after transfection, the cells were split and divided equally over a 6 well plate and grown

overnight in an incubator (5% CO2, 37°C). The following day the cells were subjected to normal

medium containing G418 (400 µg/ml). In parallel, control HEK-293 cells, not transfected, were

also grown in a 35 mm dish in the presence of selection medium (contains 400 µg/ml G418).

When all control cells died, after 4-6 days, the dish containing the transfected cells was checked

for surviving cell clusters. A few cell colonies were isolated, same procedure as described in

2.2.1.2, except that trypsin-EDTA (~5 µl) was locally applied to the colony. Subsequently, the

colony was resuspended in selection medium and the cells were divided over a 96 well plate.

Wells containing a single cell were used to grow the stable cell line. After 4-5 days the cells

which survived and had divided were transferred to a 12 well plates. The stable cells were grown

till 80-90% confluence. From the 12 well plate the cells were cultured in 25 cm2 flasks. After

reaching 90-100% confluence the stable cells were split and a part was used to make frozen

cultures. The other part was transferred to a culture flask and used to check for rSK expression.

Stable transfection using the FlpIn system. FlpIn-HEK or FlpIn-CHO cells were grown in

35 mm dishes till 70% confluence. The cells were transfected using LipofectAMINE PLUS

reagent. Briefly, in 100 µl OptiMEM 1 µg DNA (hSK1, rSK2-JPA or rSK3-Goe in

pcDNA5/FRT, see cloning strategies) was mixed with 9 µg pOG44 and 7 µl PLUS reagent and

incubated for 15 min at RT. 12 µl LipofectAMINE was mixed with 100 µl OptiMEM. Then the

pre-complexed DNA and LipofectAMINE were combined and incubated for 15 min at RT. The

cells were rinsed with OptiMEM and supplied with 0.8 ml of fresh OptiMEM. Now the DNA-

PLUS-LipofectAMINE mixture was added drop by drop onto the cells. After a 5 hours

incubation 1ml of medium containing 2X serum was added and incubated for 24 hours. After 2

days, the medium was replaced by medium containing the appropriate concentration of

Hygromycin B. 3-4 days later, cells were split and maintained under selection medium. After 3-4

weeks the stable cell line was generated and cells were frozen (see 2.2.1.3).

2.2.1.5 Testing G418

In each well of a 6-well plate, 1x105 cells were plated and grown overnight in an incubator.

Then six different G418 concentrations (from 50 – 800 µg/ml) were applied to the wells. The
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concentration which killed all cells after 6 days of incubation was used to maintain stable cell

lines. In general, a concentration of 400 µg/ml was used for the maintenance of stable cell lines.

2.2.2 Standard molecular biology techniques

2.2.2.1 Restriction enzyme digest of plasmid DNA

For miniprep digestion 200-300 ng of isolated DNA, for digest of vector and fragment

isolation 1 µg of DNA, was added to an eppendorf tube containing: H2O, appropriate restriction

enzyme and specific digest buffer. The total volume of the mixture was 20 µl for miniprep

digestion and 40 µl for vector digestion and fragment isolation. The digest was incubated at

37°C for 1 hour or, in case of special restriction enzymes, the digest was performed according to

the manufacturer’s protocol. Subsequently, the cloning vector, but not DNA fragments, was

subjected to dephosphorylation. The dephosphorylation mixture contained the digest mixture, 1

µl alkaline phosphatase, buffer and was incubated for 1 hour at 37°C. The digest as well as the

dephosporylation reaction was stopped by adding sample buffer to the mixtures. Afterwards the

mixture was run on an agarose gel (see 2.2.2.2) and DNA fragments were isolated (see 2.2.2.3).

2.2.2.2 Agarose gel electrophoresis of cDNA

DNA was analysed on gels containing 0.7-1.5% agarose dissolved in 1xTAE and  ethidium

bromide (0.4 µg/ml). The running buffer was 1xTAE with 40 µg/ml ethidium bromide. The

electrophoreses was performed at 70-100 mV for 40-100 minutes. 1kb, 1kb plus and/or 100bp

DNA ladders were used as markers (see 2.1.9). The bands were visualized under UV light.

2.2.2.3 Gel extraction of DNA fragments

Bands containing DNA fragments were excised from the agarose gels using a 365 nm UV

light to visualize the bands and purified using the Nucleospin Extract kit. Briefly, agarose slices

were melted at 56°C in buffer NT1 (300 µl/100 mg agarose), the dissolved mixture was loaded

on a column. The DNA was washed two times with buffer NT3 and finally eluted from the

column with buffer NE, pre-heated to 70°C to increase the yield of fragment elution.
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2.2.2.4 Phenol/Chloroform extraction of DNA

Phenol/Chloroform extraction was used to remove proteins from DNA, following PCR or

restriction digestion. Samples were mixed with an equal volume of phenol and some drops of

chloroform (10 µl/60 µl), vortexed for 30 seconds and centrifuged for 2 min at maximum speed

(12.000xg). The aqueous phase was transferred to a new tube and the same volume of

chloroform was added. The mixture was vortexed again and centrifuged under the same

conditions. The upper layer (aqueous phase) containing the DNA was transferred into a fresh

reaction tube and subjected to ethanol precipitation (see 2.2.2.5).

2.2.2.5 Ethanol precipitation of DNA

DNA samples were mixed with 1/20 of the volume of 8M LiCl and 3 volumes of 100 %

ethanol. Precipitation was performed at –80°C for at least 30 minutes or overnight at –20°C and

collected by centrifugation (15 min., 12.000xg). The pellets were washed twice with 75%

ethanol, air dried and resuspended in 30 µl sterile water.

2.2.2.6 Fill-In reaction of overhanging DNA ends

The experiment was performed using T4-DNA polymerase which catalyses the synthesis

of DNA in the 5’→3’ direction and has a 3’→5’exonuclease activity. A total volume of 30 µl

containing 100 ng digested DNA, 100 µM dNTP’s, enzyme buffer, 2 µg T4-DNA polymerase

was placed for 15 min at 14°C followed by 15 min at 37°C. The mixture was heat inactivated (15

min at 75°C) and ligated followed by transformation.

2.2.2.7 Hybridization of oligonucleotides

A set of primers was hybridized by adding 2 µl primer A (40 pmol/µl), 2 µl primer B (40

pmol/µl),  4 µl One-Phor-All buffer (10X), to 32 µl H2O. The mixture was transferred to a metal

container, submersed for 5 min in boiling water, and incubated until the water reached RT. Then

the annealed oligonucleotides were ligated into the vector (see 2.2.2.8).
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2.2.2.8 Ligation of DNA fragments

Ligation was carried out in a total volume of 20 µl containing 3 µl dephosphorylated

vector (20 ng/µl), 1 µl DNA fragments, 1 µl ligase, 5 µl ligation buffer and H2O. The ratio of

dephosphorylated vector versus DNA fragments was 1/3. The amount of background colonies

was controlled by ligation of dephosphorylated vector under the same conditions but without

DNA fragments. The mixtures were submersed in a 14°C water bath for at least 1 hour. 10 µl

ligation product was used for transformation of competent bacteria, the rest was placed back in

the water bath for 12-24 hours.

2.2.2.9 Generation of competent bacteria, DH5α

 

Bacteria were plated onto LB-plates without antibiotics and incubated overnight at 37°C.

The following morning a single colony was inoculated into 25 ml SOB medium and was

incubated at 37°C in a shaker (220 rpm) for 6-8 hours. From this culture, 2 ml, 4 ml and 10 ml

was inoculated into 1- or 2 liter flasks containing 250 ml SOB medium and shaken (150 rpm) at

18°C overnight. Then the OD was monitored until an OD of 0.55 was reached. The culture with

the appropriate density was transferred to an ice-water bath for 10 min. The bacteria were

harvested by centrifugation at 2.500xg for 10 min at 4°C, followed by aspirating the medium and

resuspension of the bacteria in 80 ml ice cold TB buffer. Again the bacteria were harvested as

described above and resuspended in 20 ml ice cold TB buffer. Under gentle swirling, 1.5 ml of

DMSO was added to the bacterial suspension and stored for another 10 min in the ice bath. Then

the suspension was aliquoted in microfuge tubes (100 µl/tube) and immediately snap-frozen by

immersing the tubes in a bath of liquid nitrogen and stored at -80°C.

2.2.2.10 Transformation of competent bacteria, DH5α

10 µl of ligation product was mixed with 100 µl competent bacteria and placed on ice for

15 min. Meanwhile 100 µl LB medium was warmed to 37 °C. The ligation/bacteria mixture was

transferred to a heating block at 37 °C for 5 minutes. The pre-heated LB medium was added to

the mixture and incubated for 15 min at 37 °C. After the incubation, the mixture was plated onto

LB-plates containing Ampicillin or Kanamycin. The plates were placed in an incubator (37 °C)

for 12-15 hours and 4-8 single colonies were picked to start bacterial cultures.
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2.2.2.11 Isolation of DNA from bacteria cultures

Single colonies were grown overnight in 5 ml (miniprep) or 150 ml (midiprep) LB medium

with appropriate antibiotics and DNA was isolated using the Nucleobond Plasmid kit,

Nucleobond AX kit or the STET method.

Nucleobond Plasmid (for minipreps). Briefly,  5 ml bacterial cultures were pelleted (5 min,

3.200xg) and resuspended in buffer A1. Then lysis buffer A2 was added to the cell suspension

and gently mixed by inverting the tubes. Buffer A3 was added to the lysate and incubated for 5

min at RT. The cell debris was precipitated by centrifugation (10 min, 11.000xg), the clear lysate

was transferred to a NucleoSpin column (silica membrane) and centrifuged for 30 sec at

10.000xg. The flow-through was discarded and the column was washed with buffer A4. Plasmid

DNA was eluted from the column with buffer AE and stored at 4°C.

Nucleobond AX (for midipreps). The 150 ml bacterial culture was harvested by centrifugation at

7.000xg for 10 min at 4°C and resuspended in buffer S1. Subsequently, the cells were lysed in

buffer S2 and buffer S3 was added followed by precipitation of chromosomal DNA at 3.200xg

for 10 min at 4°C. Directly after centrifugation, the clear lysate was poured through a filter. The

flow-through was collected and  loaded on a nucleobond AX cartridge. The cartridge was

washed with buffer N3 and the DNA was subsequently eluted with buffer N5. The plasmid DNA

was precipitated with 0.7-0.8 volumes of isopropanol, centrifuged at 16.000xg for 30 min at 4°C

and washed with 75% ethanol, followed by a final centrifugation step  (15.000xg for 10 min at

4°C). Finally the DNA was redissolved to a final concentration of 1 µg/µl in sterile water.

STET method. 1.5 ml of the bacterial culture was collected (30 sec at 16.000xg) and the medium

was gently aspirated. Bacterial precipitates were resuspended in 350 µl STET and 25 µl

lysozyme (10mg/ml) was added. The mixture was placed for exactly 40 seconds in boiling water

and the lysate was centrifuged for 15 min at 16.000xg. The supernatant was transferred to a new

1.5 ml tube, 40 µl NaAc (3M) and 420 µl isopropanol was supplemented to precipitate the DNA.

Subsequently the mixture was vortexed, incubated for 5 min at RT and centrifuged (16.000xg)

for 10 min at RT or 4°C. The DNA/RNA precipitate was rinsed with cooled (4°C ) 75% ethanol

and resuspend in 50 µl TE (pH 8.0), store at 4°C (short time) or at -20°C (long term). Restriction

enzyme digestion (see 2.2.2.1) of the DNA samples obtained with the STET method were

performed in the presence of RNase (2mg/ml).
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2.2.2.12 Amplification of DNA using PCR

Amplification of DNA fragments from plasmid DNA using Pfu. In a 200 µl reaction tube,

60 µl sterile water contained 200-300 ng template DNA, 1µM of each primer and 0.2 mM

dNTP’s. This mixture was denaturated for 3 minutes at 92°C, paused and a second mixture,

containing 1 µl Pfu, 10 µl buffer (10X) and 29 µl H2O, was added. Then the PCR was started,

the setting for one PCR cycle was: denaturation: 30 sec at 94°C; annealing: 30 sec at X °C (TM);

and elongation: 1 min/kilobase at 72°C. The annealing temperature (TM) was depending on the

melting temperature of the primer with the lowest TM and was calculated using the following

formula: TM = 4x(G+C) + 2x(A+T). The amount of cycles during amplification was varied from

15-25. When all cycles were completed there was a final elongation of 7 min at 72°C followed

by cooling to 4°C.

2.2.2.13 Overview vectors

Overview cellular marker vectors

pEGFP-F vector

Vector encodes for a farnesylated enhanced green fluorescent protein. EGFP is tagged at

the C-terminus with the farnesylated signal of c-Ha-Ras. The fusion protein is targeted to the

plasma membrane.
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pEYFP-Golgi

81 amino acids of the precursor of the human beta 1,4-galactosyltransferase are fused to

the EYFP protein. The fusion protein allows specific labeling of the trans-medial region of the

Golgi apparatus.

Overview cloning and expression vectors

pcDNA5/FRT

pcDNA5/FRT is a cloning vector used to incorporate channel DNA. The generated

construct and pOG44 (coding for the Flp recombinase) are used together with Flp-In cell lines to

generate cell lines stably expressing the channel. The integration of the gene of interest occurs

between the FRT site in the plasmid, which will recombine with the FRT site in the FlpIn cells

chromosome. This integration is catalyzed by the Flp recombinase. Furthermore, the vector

contains the Hygromycin B resistance marker under the control of the SV40 early promotor. The

ampicillin resistance gene is used to amplify the plasmid in bacteria.
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pEGFP-C2

pEGFP-CII is an expression vector used in cotransfection for electrophysiological

measurements, it is also used to tag channels and study their distribution in the cell.

pGEM-T

pGEM-T vector is very convenient for cloning PCR products. When competent bacteria

are transformed with vector containing an insert, this results in the formation white of colonies

due to the interruption of the lacZ gene. If the vector does not  contain an insert, the colonies will

be blue.

2.2.2.14 Cloning strategies

Abbreviations of restriction enzymes

ACCI = ACCI NotI = N

Alw44I = Alw44I NsiI = NsiI
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BamHI = B PstI = P

BglII = GII PvuII = VII

BstEII = EII SacI, SstI = S

BstXI = XI SacII, SstII = SII

ClaI = C SalI = L

EcoRI = E SspBI = SspBI

EcoRV = EV SmaI = M

HindIII = H XbaI = X

KpnI, Asp718 = K XhoI = O

NdeI = Nd Xma1 = XmI

NheI = Nh

Oligonucleotides

T7: 5’ TAATACGACTCACTATAGGG 3’

T3: 5’ ATTAACCCTCACTAAAGGGA 3’

SP6: 5’ GATTTAGGTGACACTATAG 3’

p0973: 5’ TGTTCGAGCCTGTCAGGTAC 3’

p1605: 5’ GACCGTACCGACCTGCCGC 3’

p2000: 5’ GGGTTCCATGTCAGATCTGTTAAAGC 3’

p2001: 5’ CGGAAGATCTGACATGCACCACCCGCACCCGGCGCACCACC

AGC 3’

p2002: 5’ CTCAATGTGCTCGAGCTGACGCCGTC 3’

p2003: 5’ GGCCTCGAGGTGCGGGTGGTGGTGAG 3’

p2019: 5’ CCGCGGATCCCACCATGGAAACCCCATTGCAGTTC 3’

p2020: 5’ GATCCCACCATGTT 3’

p2021: 5’ CCGGAACATGGTGG 3’

p2022: 5’ GTACCTGCAGGAGCTCATGGCTATTTCG 3’

p2026: 5’ TGTTGTACACGCCCACGACAGCTCGGTCTCGGTGACCATGAC

CAC 3’
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Cloning SK channels into pcDNA5/FRT

pcDNA5/FRT vector was used for the cloning the SK channel gene into the genome of the

CHO-FlpIn or HEK-FlpIn cells.

Cloning of hSK1 in pcDN5A/FRT

Cloning of rSK3-Goe in pcDNA5/FRT
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Cloning of rSK2-JPA into pcDNA5/FRT
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Cloning rSK1, hSK1 and rSK2 chimeras

Overview of the generated chimeras. The 6 black boxes in the middle represent the

membrane spanning segments of the channels. Corresponding amino acid sequences are

presented in the appendix (appendix 1.2., 1.3. and 1.5.).
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rSK1CrSK2 in pcDNA3

rSK1NrSK2 in pcDNA3
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rSK1N-C_rSK2 in pcDNA3

rSK1ChSK1 in pcDNA3
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rSK1NhSK1 in pcDNA3

hSK1CrSK1 in pcDNA3
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hSK1NrSK1 in pcDNA3

hSK1N-C_rSK1 in pcDNA3
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Truncations, deletion and substitutions of rSK2-860

Overview of the generated amino-terminal rSK2-860 constructs. The 6 black boxes in the

middle represent the membrane spanning segments of the channels. Corresponding amino acid

sequences are presented in the appendix.
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rSK2-829 in pcDNA3

rSK2-794 in pcDNA3
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rSK2-695 in pcDNA3

rSK3NrSK2-860 in pcDNA3
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rSK2-N7-del in pcDNA3
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EGFP constructs of amino-terminal regions of rSK2-860

Overview of the EGFP tagged  amino-terminal rSK2-860 constructs. Corresponding amino

acid sequences are presented in the appendix .
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rSK2-N2 in pEGFP-C2

rSK2-N7 in pEGFP-C2
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rSK2-N9 in pEGFP-C2

rSK2-N10 in pEGFP-C2
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rSK2-N12 in pEGFP-C2

2.2.2.15 DNA sequencing

Purified plasmid DNA was sequenced using the BigDye terminator cycle sequencing kit

combined with automated sequencing (ABI 377 and ABI 310 sequencers, ABI Perkin Elmer).

The sequencing reaction was performed in a total volume of 10 µl containing 200 ng DNA,

2 µl BigDye, 3.2 µM primer and H2O. The reaction was started with 1 min denaturation at 96°C

followed by 25 cycles of denaturating (30 sec at 96°C), annealing (15 sec at 50°C) and an

extension step (4 min at 60°C) in an AB GeneAmp PCR system 2400. The reaction was stopped

by cooling to 4°C. The PCR product was precipitated by mixing 2µl NaAc (3M pH 4.6) and 50

µl EtOHabs for 10 min on ice. The mixture was centrifuged for 15 min at 4°C at max speed.

Supernatant was discarded and 75% EtOH was added. Second centrifugation was performed for

5 min at 4°C maximum speed. Ethanol was removed and the pellet was air dried and

resuspended in 4 µl (for ABI 377) or 10 µl Hi-Di formamide (for ABI 312) loading buffer.

Samples were heated for 2 min at 93°C before loading on the sequencing gel.

2.2.3 Immunocytochemistry

2.2.3.1 Coating coverslips

Coverslips (22x22 mm) were washed for 45 min with absolute ethanol, rinsed three times

with 75% ethanol and followed by baking for 6 hours at 200°C. Before use, the coverslips were

coated for 10-60 min with poly-D-lysine (1 mg/10 ml) and rinsed three times with sterile water.
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2.2.3.2 Immunofluorescence

Transiently transfected cells were plated onto poly-D-lysine coated coverslips 24 hours

after transfection and incubated at 37°C (5% CO2, 95% air) overnight.  Cells expressing stably

hSK1, rSK2 and rSK3 were plated on treated coverslips 24 hours before immunofluorescence

was performed. HEK cells were grown in medium without serum in order to obtain nicely

shaped cells the following day. CHO and COS cells were grown in the presence of serum. After

overnight incubation, coverslips were processed by rinsing the cells three times with 1xPBS

followed by fixation for 10 min with 4% PFA. Subsequently the cells were washed 2 times with

PBS, permeabilized in 0.2% Triton X-100 in PBS for 2 min and washed 4 times for 5 minutes.

Only for the experiments where the anti-Ubiquitin antibody was used, the cells were fixed for 10

min with cold methanol (-20°C) at RT followed by a 4 washing steps of 5 min each. Then the

cells were transferred to a humidified box and incubated in blocking buffer at 37°C for 30 min.

Afterwards, the blocking buffer was replaced by the primary antibody: 1/500 anti-NSK1, 1/1000

anti-NSK2, 1/500 anti-CSK2, 1/1000 N7-SK2 or 1/500 anti-NSK3, diluted in blocking solution.

For colocalisation experiments the anti-SK channel antibodies were used in combination with

anti-bodies against cellular markers; 1/1000 Lamin A/C, 1/1000 anti-Ubiquitin or 1/200 anti-

Vimentin. The primary antibodies were applied to the cells for 1 hour at 37°C. The coverslips

were washed 3 times for 5 min and the secondary antibody, fluorescein-linked donkey anti-rabbit

antibody (1/500 dilution), Cy3-conjugated Goat anti-rabbit, Cy3-conjugatd Goat anti-mouse or

Cy5-conjugated Goat anti-rabbit, diluted in blocking buffer was applied. Cells were incubated

for 30 min at 37 °C.  Cy-conjugated antibodies were applied in 1/600 dilution onto the cells.

Finally the cells were washed three times 5 min with PBS in the dark. Following the last washing

step the cells were mounted with “Prolong” or “Slowfade” anti-fading solution. After the

solution had dried the coverslips were sealed with nail polish. The immunostaining was

visualized  with a fluorescence microscope  and pictures were taken with a CCD camera or a

confocal microscope (filter settings for the confocal microscope are illustrated in the appendix).

2.2.4 Electrophysiology

2.2.4.1 Introduction

The patch-clamp technique was developed by the Nobel Prize winners Neher and

Sakmann in the seventies (Neher and Sakmann, 1976, Hamill et al., 1981) and is used to measure
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currents flowing through ion channels. In the voltage clamp mode a voltage is imposed on the

patch on the cell under investigation and the changes in the current response are recorded. This

configuration is commonly used to investigate ion channels. The method has been improved

throughout the years, resulting in  the establishment of different recording configurations (Fig

2.2 and point 2.2.4.3).

2.2.4.2 Electrophysiology recording equipment

The setup

The recording setup consists of a fluorescence microscope (Zeiss, axiovert 200) which is

mounted on an air-table (TMC) in order to reduce the vibrations. Microscope and air-table are

surrounded by a Faraday cage (custom made) to reduce the electrical noise from surroundings. A

special carrier plate is mounted onto the microscope, in which the measuring chamber containing

the cells is placed. The patch electrode is fixed in a holder which is connected to the headstage.

An electrical micromanipulator (Luigs and Neumann) was used to control the movements of the

patch electrode. Recordings were performed with an EPC9 patch-clamp amplifier (HEKA) using

the acquisition software Pulse (HEKA) on a Macintosh computer.

Patch pipettes

Borosilicate glass (Kimax) was pulled using a vertical patch electrode puller, resulting in

patch pipettes with a tip diameter of 2-3 µm. The pipettes were filled with intracellular solution

(see material and methods 2.1.10) and showed a resistance of 2-3 MOhm. A chlorided silver

wire inside the patch pipette formed an Ag/AgCl electrode allowing ionic currents flowing in the

patch pipette solution to be seen as electrical currents by the headstage.

Electrical circuit

To measure the ionic currents, a second Ag/AgCl pellet in the recording bath is connected

to the headstage ground point and completes the circuit from the bath solution to the headstage

and back to the bath (Fig 2.1).  To measure current flowing through ion channels expressed in

the cell membrane, the cell can be approached in different ways, resulting in the formation of

different patch configurations.
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FIG 2.1 Electrical circuit.  The current will flow in a closed circuit between the pipette
electrode and the bath electrode. [adapted from The Axon Guide]

2.2.4.3 Patch-clamp measurement configurations

There are four basic patch-clamp recording configurations: cell-attached, inside-out,

outside-out and whole cell patch. The first three configurations are mainly used to measure

single channel currents in membrane patches, while the fourth is used to record currents through

the whole cell membrane.

In order to obtain one of these configurations, a patch pipette (2-3 µm), filled with a salty

intracellular solution, is lowered into the bath solution (extracellular solution, see 2.1.10). Before

the patch pipette comes into contact with the extracellular solution a small positive pressure

(pipette pressure between 7-12 cm H2O) is applied to the patch pipette by giving a short blow

into a tube which is in contact with the patch pipette. The positive pressure prevents the clogging

of the patch pipette when it is lowered into the extracellular solution. Then the pipette tip is

brought gently against the cell membrane, the positive pressure is released and immediately

followed by a negative pressure (pipette pressure between –25 and -35 cm H2O), resulting in the

formation of a tight seal between the patch pipette and the cell membrane, also called gigaohm

seal (normally ranging between 1-4 GOhm). This configuration is called the cell-attached patch

configuration. When the cell-attached configuration is obtained, the pipette can be pulled away

and the patch of membrane can be excised  from the cell, forming the inside-out patch

configuration. In this configuration the internal surface of the cell membrane is exposed to the

bath solution. Another possibility after obtaining the cell-attached configuration is to disrupt the

membrane patch, which was preventing the intracellular solution in the pipette to diffuse into the

cell, by applying short pulses of suction (by mouth). This configuration is called the whole-cell

patch recording . The last configuration, the outside-out patch configuration, is formed from the

whole-cell configuration by simply pulling the pipette very slowly away from the cell.
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FIG 2.2 Simplified patch-clamp configuration. The cell-attached configuration is obtained
when the pipette tip makes a tight seal on the cell membrane. Pulling back a back a patch of
the cell membrane leads to the inside-out configuration. Alternatively, disrupting the
membrane patch results in the whole-cell configuration. By withdrawing slowly the pipette
from the whole-cell configuration, a small vesicle can be formed on the pipette tip resulting
in the outside-out configuration. Blue circles represent the free calcium ions (normally 1 µM
free calcium was in the pipette).

2.2.4.4 Recording of cells expressing channels

Preparation of cells for recording

Cells stably expressing hSK1, rSK2, rSK3 or transiently expressing the constructs of

interest were plated on 10 mm coverslips. Then the coverslips were placed back in the incubator

for 12-16 hours, in order to let the cells attach to the coverslips. The following day the coverslips

were transferred one at a time to a customized recording chamber.

Measuring of the channels

SK channels and related constructs (SK chimeras) were measured in the whole-cell patch-

clamp configuration (see patch-clamp measurement configuration). In the whole-cell

configuration, the intracellular “pipette” solution diffuses into the cell after disrupting the

membrane patch under the pipette tip. The intracellular solution contained, in the majority of the
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experiments, 1 µM free calcium which is a saturating concentration to activate the calcium-

dependent, voltage-independent SK channels (EC50 is 300 nM, Xia et al., 1998, Hirschberg et al.,

1998). The amount of free calcium was calculated using the program Eqcal (Biosoft). In order to

see a current we applied voltage changes (see further for ramp and step protocols) which

changed the driving force for the ions.

SK currents were elicited using two different stimulation protocols, ramps and steps. The

first and mostly used protocol was the ramp protocol (Fig 2.3A): currents were evoked by

clamping the membrane potential from the membrane holding potential (Vm) to –100 mV

followed by a 400ms-long ramp to +40 mV and returning to Vm for 10ms. This protocol was

applied every 10 s. In the step protocol (Fig 2.3B), currents were elicited by the application of

30ms-long voltage steps from –100 mV to +40 mV with increments of 20 mV.

FIG 2.3 Schematic overview of the protocols. A, representation of the ramp protocol. The ramp was
elicited after holding the cell  for 10 ms at the membrane potential, followed by changing the voltage from
–100 mV to +40mV over a  time span of 400ms and then stepped back to the membrane potential for 10
ms, this was repeated every 10sec. B,  Overview of a step protocol, starting from the holding potential,
30ms pulses are applied from –100mV  to +40 mV  with increments of 20 mV.

The majority of experiments are performed in symmetrical conditions (similar potassium

concentrations inside and outside the cell). The intracellular solution contained 130 mM K+

while the extracellular solution contained 144 mM K+, this results, according to the Nernst

equation in a reversal potential of ~ 0 mV, and represented in the figures by the ramp crossing x-

axis (current, expressed in nanoAmpere, versus voltage, expressed in millivolt) at 0 mV. When

testing the effect of tamapin, we also used asymmetrical conditions (different potassium

concentrations inside and outside) to determine the effect of extracellular potassium on the

binding of tamapin to the channel. Under this condition, the intracellular solution contained 130

mM K+ but the extracellular solution was changed to 20 mM K+, resulting in a reversal potential

of approximately -47 mV, seen in the figures by the ramp trace crossing the x-axis at

approximately -47 mV. Furthermore, all experiments were  finished by changing the

extracellular solution to a solution with minimal K+ concentration (4 mM K+), resulting in a
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reversal potential of approximately - 80 mV. This gave use an indication of the stability of the

seal of the cell after the recordings had been made and the residual K+-dependent leak current.

All these reversal potentials for the different K+ concentrations were estimated using the Nernst

equation:

with Erev; reversal potential, R; the gas constant, T; absolute temperature, F; the Faraday constant,

Co; potassium concentration outside and Ci; potassium concentration inside.

Toxins and drugs were diluted in the extracellular solution and applied to the cell 3-5

minutes after obtaining a stable current baseline. After maximal block had occurred, the

extracellular solution was replaced by solution without drugs, to allow for wash-out and to

monitor the recovery of the current.

Data were sampled at 20 kHz and filtered at 5 kHz.

2.2.4.5 Data analysis

Data were acquired using the Pulse/Pulsefit software (HEKA electronic, Germany) and

analyzed with Igor.

All the obtained data had to be corrected for the voltage error before we determined the IC50

values. Correction for the voltage error was needed due to the very large currents we recorded,

therefore we assumed a simple circuit called the voltage divider (Fig 2.4).

Erev =
RT

F
ln

Co

Ci
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FIG 2.4 Overview a the circuit of a voltage divider in which two resistors are
connected in series.  R1 and R2 can be regarded as the pipette and cell resistance
respectively. R1 causes a voltage drop resulting in the application of a voltage to the
cell which differs from the originally applied potential [adapted from The Axon
Guide].

This circuit describes the proportion of the total applied voltage to the pipette and the cell

membrane. Using this approach we could determine the voltage which was really applied to the

cell membrane, presented in the figure by ∆V2. ∆V2 can be obtained from the formula:

with E; the applied voltage, Rtot = E / Amplitude (comes from the Ohms law V=IR) and R2 =

Rtot- R1 with R1 the pipette resistance.

To determine the IC50 values (half maximal block of the channels) of apamin and d-tubocurarine

on the stable cell lines, the following formula was used:

with Imax; the maximal current before block, I; current after maximal block had occurred and [T];

toxin concentration.

∆V2  =  E
R2

Rtot

I

Imax

1 -

[toxin]

IC50  =

x

I

Imax
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To determine the IC50 value for tamapin on the stable cell lines, the dose-respons curve was fitted

with the DoseRespons function:

with Imax; the maximal current before block, I; current after maximal block had occurred;

[tamapin]; tamapin concentration and n; the Hill coefficient

I

Imax

=
1

1 +
[tamapin]

IC50

n



3 Results

3.1 Characterization of stable cell lines expressing SK channels

3.1.1 Immunocytochemistry

3.1.1.1 rSK2 α-subunit expression in HEK-293 and CHO-FlpIn cells

Cell lines stably expressing ion channels are useful: 1) to screen for different drugs; 2) to

determine the interaction of the expressed subunit with other α-subunits and examine how this

influences the pharmacological properties of the channel; 3) or to generate dominant negative α-

subunits, which will then eliminate or reduce the current (current density, amount of current per

surface area) elicited by the channels expressed in the stable cell lines. The advantage of stable

cell lines is that every cell expresses the relevant ion channel, in our case one of the small

conductance calcium-activated potassium (SK) channels. HEK-SK2 and HEK-SK3 stable cell

lines were generated by transfecting HEK-293 cells with rSK2 or rSK3 (see material and

methods). Each HEK-SK2 and HEK-SK3 cell line was generated from a single cell, guarantying

genetically identical cells. To verify the stable expression of the rSK2 protein in HEK-293 cells,

specific rabbit antibodies against the amino- and carboxy- terminus of rSK2 were used. Fig 3.1A

shows the localization of the α-subunit, a membrane and cytoplasmic stain was observed when

cells were incubated with the amino-terminal antibody (anti-NSK2), and similar results were

obtained when the same cell line was incubated with the carboxy-terminal antibody (anti-CSK2)

(Fig 3.1D). No signal was observed when the anti-NSK2 and anti-CSK2 antibodies were used on

untransfected HEK-293 cells (Fig 3.1B, C, E and F). In all these experiments, a Cy3-conjugated

goat anti-rabbit secondary antibody was used.
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FIG 3.1. Immunofluorescence of HEK-293 cells stably expressing rSK2. A, Staining of rSK2 with
the amino-terminal antibody, anti-NSK2 (1/1000 dilution). B, Empty HEK-293 cells exposed to the
same antibody, no signal was detected. C, Bright field picture of cell reported in B. D,
Immunofluorescence staining with the anti-CSK2 antibody (1/1000 dilution). E, Empty HEK-293 cell
treated with the carboxy- terminal antibody, no signal was detected. F, Bright field picture of cell in
E. A-F, the secondary antibody was Cy3-conjugated (1/600). Scale bar: 10 µm.

In order to determine if the host has no influence on the expression and properties of the

SK2 α-subunits, a second stable cell line was generated in CHO cells by using the FlpIn system.

FlpIn-CHO cells contain a single integrated Flp Recombination Target (FRT) site in the cell

genome. Cells were transfected with a FlpIn expression vector containing the gene of interest

(rSK2, rSK3 or hSK1) and the Flp recombinase expression plasmid. Stable cell lines expressing

the channels were grown in a selection medium containing 100 µg/ml hygromycin B.

Expression of rSK2 in the CHO-FlpIn cells was tested by using anti-NSK2 (Fig 3.2A). No signal

was detected when CHO-FlpIn cells stably expressing rSK2 were stained with an antibody

directed against the amino terminus of rSK3 (anti-NSK3) (Fig 3.2B and C).

FIG. 3.2 CHO-FlpIn cells stably expressing rSK2. A, Immunostaining of rSK2 using the anti-
NSK2 antibody (1/1000). B, CHO-FlpIn-SK2 cell incubated with antibody against the N-terminus of
rSK3 (1/1000). C, Bright field picture of the cell shown in panel B. Scale bar: 10 µm
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3.1.1.2 rSK3 α-subunit expression in HEK-293 and CHO-FlpIn cells

Throughout the generation of the SK3 stable HEK-293 cell lines, more than 10

independent SK3 expressing stable cell lines were generated. All of them were subjected to

immunocytochemistry, and only one cell line was used for the experiments described on the

following pages. This cell line had the highest expression level when the immunostaining was

compared to the other generated rSK3 stable cell lines.

Stable expression of the rSK3 protein in HEK-293 was examined using an anti-SK3

carboxy terminal antibody (anti-CSK3), directed against a short specific C-terminal SK3 peptide.

The secondary antibody used for this experiment was conjugated with fluorescein isothiacynate.

Fig 3.3A reveals a clear membrane stain when cells were incubated with the anti-CSK3

antibody. However, when the same conditions were used for empty HEK-293 cells, no

immunostain was observed (Fig 3.3B).

FIG 3.3. Immunostaining of HEK-SK3 stable cell line. A, Specific SK3 staining by the anti-CSK3
antibody. B, Control experiment of HEK-293 cells with the anti-CSK3 antibody, no signal was
observed. C, Bright field picture of same cell as in B. Scale bar: 10 µm

Stable expression of rSK3 in CHO-FlpIn cells was tested by using the same anti-CSK3

antibody (Fig 3.4 A), resulting in the detection of a signal in the stable expressing cells, while

empty CHO-FlpIn cells did not show any signal (Fig 3.4B).

FIG 3.4. Immunostaining of CHO-Flp-SK3. A, Specific staining of rSK3 α-subunits in CHO-FlpIn
cells using the anti-CSK3 antibody (1/500). B, Empty CHO-FlpIn cells treated with the anti-CSK3
antibody, no signal detected. C, Bright field picture of the same cell as in panel B. Scale bar: 10 µm.
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3.1.2 Pharmacology

3.1.2.1 Characterization of HEK-rSK2 stable cell line.

SK2 currents were activated by dialyzing the cell with 1µM free calcium and were

recorded by applying ramp protocols from –100 mV to +40 mV repeated every 10 sec (Fig

3.6A). Activation of rSK2 channels in HEK-293 cells is obtained by interaction of intracellular

calcium with the constitutively bound calmodulin (CaM). Calcium was present in the patch

pipette and diffused into the cell upon disrupting of the membrane patch, which was established

after a formation of a gigaseal between the pipette tip and the cell membrane. The majority of the

experiments were performed in high K+ (144 mM) on the extracellular side of the cell.

According to the Nernst equation, this would result in a reversal potential for K+ of

approximately – 2 mV, as observed in the experiments.  To control the stability of the cell patch,

the experiment was finished by switching the extracellular solution to a more physiological

solution, containing 4 mM potassium. This results in a change of the reversal potential to –80

mV and an I-V curve going through –80 mV could be observed (Fig 3.6A).

In the presence of a calcium concentration close to the physiological resting one (100 nM

free calcium), SK2 channels were not activated. However, application of EBIO (1 mM), a

compound known to enhance the calcium sensitivity of SK channels (Pedarzani et al., 2001), to

the bath solution induced a robust activation of rSK2 current even at low calcium concentrations

(Fig 3.5B). To examin if HEK-293 cells contained endogenous SK channels, EBIO (1 mM) was

applied to the empty cells. No detectable current could be observed (Fig 3.5A), suggesting that

the HEK-293 cells are not expressing any endogenous SK channels. A set of experiments using

different concentrations of free calcium in the pipette showed that rSK2 channels were

maximally activated when 500 nM free calcium diffused into the cell. EBIO was not able to

increase any further the SK2 current in the presence of 500 nM calcium (Fig 3.5C). For this

reason, in most experiments an intracellular solution containing 1µM free calcium was used. 1

µM free calcium is a saturating concentration,  presumably activating all the SK channels in the

cell (Fig 3.5D).



Results                                                                                                                                   page 56

FIG 3.5. Calcium dependent activation of rSK2 channels. SK currents were recorded in
symmetrical high K+ conditions. A, Empty HEK-293 cells are not responding to the SK channel
enhancer, EBIO. Inset: ramp protocol, 400 ms ramps from –100 mV to +40 mV are repeated every 10
sec. B, HEK-293 cells stably expressing rSK2 are not activated by 100 nM Ca2+, but in the presence
of 1 mM EBIO a SK2 current can be observed. C, 500 nM free Ca2+ maximally activates SK2
channels. In the presence of this calcium concentration, EBIO did not further increase the current. D,
EBIO did not increase the amplitude of SK2 currents at the saturating Ca2+ concentration of 1 µM.

SK currents can be blocked by  several SK channel blockers. One of the most commonly

used and well characterized SK channel blockers is apamin. Apamin has been shown to block

SK2 channels with high affinity, with an IC50 varying in different studies between 27 and 140 pM

(see table 1 in Introduction). Application of 100 pM apamin reduced the SK2 current to 32.2  ±

2.48% of its original amplitude (n=3). The calculated IC50 was 47.3 ± 4.9 pM (Fig 3.6B).

d-Tubocurarine (dTC), a small organic compound, also reduced rSK2 currents. 10 and 20

µM dTC reduced the SK2 current by 64.5 and 84.2% respectively (Fig 3.6C). The calculated

IC50 was 5.1 ± 0.3 µM (n=6). IC50 values for dTC reported by other groups varied between 2.4

and 17 µM (see table 2 in Introduction).
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FIG 3.6. Pharmacological characterization of SK2 currents. A, Typical current elicited by a ramp
protocol from –100 mV to 40 mV. Application of 4 mM extracellular K+, results in a left wards shift
of the reversal potential to –80 mV. B, Reduction of the SK2 current (control) upon application of
apamin (100 pM). C, Inhibition of rSK2 current by d-tubocurarine (20 µM).

3.1.2.2 Characterization of HEK-rSK3 stable cell line

To characterize SK3 channels with respect to their basic pharmacology, the channels were

expressed in HEK-293 cells. SK3 currents were activated by a pipette solution having 1 µM free

calcium. Fig 3.7A shows the whole-cell current elicited by a voltage ramp in symmetrical high

K+ solutions. The inward current was reduced by application of low K+ outside resulting in a

small background inward K+ current.

Application of apamin to the extracellular solution resulted in a reduction of the rSK3

current (Fig 3.7B). 100 pM and 500 pM apamin reduced the currents by 76% (n=3) and 83.2%

(n=6), respectively. The calculated IC 50 of apamin for rSK3 channels was 95.6 ± 28.4 pM. To

further characterize the cell line, the sensitivity for d-tubocurarine was measured using 10 and 20

µM dTC (Fig 3.7C). Application of 10 µM dTC reduced the rSK3 current by 30.1%, 20 µM dTC

by 45.9%. The calculated IC50  of dTC for rSK3 channels was 28.3 ± 6.2 µM (n=6).
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FIG 3.7. Expression of rSK3 in HEK-293 cells. A, rSK3-current recorded upon application of
voltage ramps from –100 mV to +40 mV. B, Inhibition of rSK3-current by 100 pM apamin. C, 20
µM dTC reduced the current by 45.9%.

3.1.2.3 Characterization of CHO-Flp-hSK1 stable cell lines

In recent years different groups have shown that expression of hSK1 in mammalian cell

lines gave rise to apamin-sensitive channel (Shah and Haylett, 2000, Strobaek et al., 2000).

Although hSK1 can be blocked by apamin, it is the least sensitive SK subunit, with IC50 values

between 0.7-12 nM (see table 1 in Introduction). Thus, SK1, 2 and 3 channels can be

distinguished  on the basis of their different level of apamin sensitivity.

hSK1 channels stably expressed in CHO-FlpIn cells were activated by dialyzing the cells

with 1 µM free calcium. As previously shown for rSK2 and rSK3, the hSK1 current was elicited

by voltage ramps from –100 mV to +40 mV. When the extracellular high K+ solution was

exchanged for high Na+ solution, the hSK1 inward current was decreased, demonstrating a high

selectivity for K+ over Na+ of hSK1 (Fig 3.8A). Application of low K+ solution leaves a small

inward potassium current.

10 nM apamin blocked 65.1 ± 4.1% of the initial hSK1 current (Fig 3.8B). The IC50 value

was 6 ± 1.3 nM (n=5).

d-Tubocurarine (50 µM) blocked the hSK1 current by 66% (Fig 3.8C). The estimated IC50

value was 23.8 ± 2.8 µM (n=5).
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FIG 3.8 Characterization of CHO-FlpIn cells expressing hSK1. A, hSK1 current elicited by
application of voltage ramps from –100 mV to +40 mV. 4 mM K+ decreased the inward current
dramatically and shifted the reversal potential to –80 mV. B, Inhibiton of hSK1 current in the
presence of 10 nM apamin. C, 50 µM dTC blocked 66% of the hSK1-current.
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3 . 2  Tamapin: a venom peptide from the Indian red scorpion

(Mesobuthus tamulus) which targets SK channels.

3.2.1 Introduction

The Indian red scorpion (Mesobuthus tamulus) causes annually a large number of deaths,

especially among young children on the Indian subcontinent. Its venom has been a rich source

for highly specific potassium channel blockers such as iberiotoxin and tamulustoxin (Galvez et

al., 1990, Strong et al., 2001). The venom was screened for other selective ion channel blockers

and one of the isolated peptides proved to be highly efficient in inhibiting the binding of

monoiodo-125I-apamin to rat brain synaptic plasma membranes (Pedarzani et al., 2000). This last

technique is well established and commonly used to determine the presence of SK channel

blockers in venoms.

Two active peptides, tamapin and tamapin-2 were isolated. Both are 31 amino acids long

and tamapin-2 differs by a single amino acid residue from tamapin. Tamapin and tamapin-2,

contain at position 31 a tyrosine and a histidine, respectively. Tamapin shares 77% amino acid

sequence similarity with scyllatoxin and contains six cysteine residues at the same positions (Fig

3.9). Scyllatoxin was isolated from the scorpion Leiurus quinquestriatus and is a SK channel

blocker which has an IC50 of 240 pM for rSK2 channels (Castle and Strong, 1986, Auguste et al.,

1990, Cao et al., 2001; see table 2 in Introduction).

FIG 3.9. Alignment of tamapin, tamapin-2 and scyllatoxin. All 3 toxins are 31 amino acids long
and contain at the same positions the cysteines (bold and underlined). Different amino acids between
tamapin and scyllatoxin are given in italic.

Knowing that tamapin was able to displace 125I-apamin and that it shared a high similarity

with scyllatoxin, it was of great interest to determine the specificity and efficiency of tamapin in

blocking the different cloned SK channels.



Results                                                                                                                                   page 61

3.2.2 Effect of acetonitrile on SK αααα-subunit

The concentrated stock of purified tamapin (2 µM) was stored in a 30% acetonitrile

solution. Therefore, as control the maximal concentration of  acetonitrile (0.3%) to which the

cells were exposed during tamapin application was applied (n=9, 3 for each SK channel

subtype). No significant effect of acetonitrile on the SK currents was observed (Fig 3.10).

FIG 3.10. Effect of 0.3% acetonitrile on cells stably expressing SK channels. SK currents were
elicited by applying a ramp from –100 to +40 mV, channels were activated by dialyzing the cells
with 1 µM free calcium. No effect of 0.3% acetonitrile was observed on CHO-FlpIn cells expressing
hSK1 (A), HEK-293 stably expressing rSK2 (B) and rSK3 (C).

3.2.3 Effect of tamapin on rSK2 channels stably expressed in HEK-293

rSK2 channels were activated by dialyzing the cell with intracellular solution containing 1

µM free calcium, as previously described. All the experiments were performed in symmetrical

conditions (144 mM K+ outside). SK2 currents were elicited by applying voltage ramps or

voltage steps.

Fig 3.11A shows that in the presence of 500 pM tamapin the rSK2 current was

dramatically reduced. The block was rather fast and partially reversible (Fig 3.11C). rSK2

currents elicited by voltage steps were likewise blocked by 500 pM tamapin (Fig 3.11B). In

order to obtain the IC50 value for tamapin on SK2 channels, a range (1 pM to 10 nM) of different

concentrations of tamapin were tested on HEK-rSK2 cells (n=45). After fitting the

concentration-response curve with the Hill equation (see Methods), an IC50 value of 24 pM and a

Hill coefficient of 1.0 were obtained (Fig 3.11D).
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FIG 3.11. Effect of tamapin on rSK2 currents. A, The whole-cell SK2 current triggered by a
voltage ramp, before and after addition of 500 pM tamapin. B, Example of the block by tamapin on
the currents produced by voltage steps C, Current versus time plot for a single dose experiment in
which 500 pM tamapin was applied to a rSK2 expressing cell during the time indicated by the bar.
Fast block of rSK2 current followed by a partial wash-out. D, Concentration-response curve for
tamapin on HEK-293 cells stably expressing rSK2.

3.2.4 Influence of external K+ and voltage on tamapin block

To elucidate the influence of external potassium on toxin binding, the extracellular

potassium concentration was lowered from 144 mM K+ to 20 mM K+, by exchanging KCl with

NaCl. As a result the equilibrium potential for K+ shifted to a more negative value and was

estimated to be around –49 mV. When the cell was hold at –49 mV no net ion flux will occur

instead at voltages above –49 mV an outward current was observed, and at more negative

voltages an inward current occurred. Fig 3.12 presents rSK2 current through the activated rSK2

channels in an extracellular solution containing 20 mM K+ after applying a ramp protocol. The

channels were activated by 1 µM free calcium. A profound inward rectification of the current at

positive potentials was observed under these ionic conditions, as reported by Soh and Park

(2001). Characteristic for the inward rectifying I-V relationship is the reduction or decrease of

the current at potential more positive than the equilibrium potential. No further experiments were

performed to explain this phenomenon.

Fig 3.12A shows that in the presence of 10 pM tamapin (n=4) the rSK2 current was

reduced by 24% at –70mV, 26% at 0mV and 28% at 10mV. After application of 100 pM (Fig

3.12B) only  29% current was left at –70mV, 29% at 0mV and  30% at 10mV. The calculated
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IC50 at the voltages –70mV, 0mV and 10mV were respectively 38.5 ± 4.5 pM, 36.8 ± 4.0 pM and

35.4 ± 4.3 pM (n=21, 7 for each voltage). IC50 values at potentials higher than 10 mV were not

calculated due to the pronounced inward rectification. Fig 3.12C shows a plot of the IC50 values

obtained at different voltages in the symmetrical (full circles) and asymmetrical K+ conditions

(open circles). No significant difference was observed between the IC50 values in symmetrical

and asymmetrical K+. This result suggests not only that the block was not voltage dependent, but

also that it was not significantly influenced by external potassium.

FIG 3.12. Voltage and potassium dependent block of rSK2 currents by tamapin.  A, B, Effect of
10 pM and 100 pM tamapin on HEK-293 cells expressing rSK2. Measurements were performed
under assymetrical K+ conditions and currents were elicited by application of voltage ramps. C, IC50

versus voltage plot. IC50 values in symmetrical K+ conditions are shown as full circles, IC50 values in
assymetrical conditions are displayed as open circles. A regression line was fitted through the points.

3.2.5 Effect of tamapin on rSK3 and hSK1 expressing cell lines

To examine if the other SK α-subunits were sensitive to tamapin, the cells expressing

rSK3 and hSK1 channels were measured in the presence of this toxin. In both cases the

experiments were performed in symmetrical K+ conditions. As previously done for rSK2,

currents were elicited by dialyzing the cells with 1 µM free calcium and ramp voltage protocols

were applied. When 50 nM tamapin was applied to hSK1 expressing cells, the current was

partially inhibited (Fig 3.13A). The IC50 for tamapin on hSK1 was 41.6 ± 7.8 nM (n=6). The

SK3-mediated current was partly inhibited by 1 nM tamapin (Fig 3.13B), and the estimated IC50
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was 1.7 ± 0.5 nM (n=7). The inhibition of rSK3 and hSK1 channels by tamapin was reversible

(insets in Fig 3.13B and C).

FIG 3.13. Inhibition of hSK1-mediated and rSK3 mediated currents by tamapin. A, CHO-FlpIn
cells stably expressing hSK1 were activated by 1 µM free calcium. Currents were elicited by voltage
ramps from –100 mV to +40 mV for 400 ms, and repeated every 10 sec. The SK1-mediated current
was partially inhibited by 50 nM tamapin. The calculated IC50 value was 41.6 ± 7.8 nM. B, The same
protocol as in A was applied to HEK-rSK3 cells. The rSK3 current was partly blocked by 1 nM
tamapin. The estimated IC50 for the block of SK3 channels by tamapin was 1.7 ± 0.5 nM. Inset in A,
shows that 50 nM tamapin blocked hSK1 almost instantaneously upon toxin application. The toxin
block was completely and fast reversible. Inset in B, 1 nM tamapin reduced the rSK3 current upon
application and the block was also completely reversible.

3.2.6 Effect of tamapin on IK channels stably expressed in HEK-293 cells

HEK-293 cells expressing IK channels were a kind gift of W.J. Joiner and L.K.

Kaczmarek. IK channels are intermediate conductance calcium-activated potassium channels.

The amino acid sequence is related to, but distinct from, the small conductance calcium-

activated potassium channel subfamily (Joiner et al., 1997, Logsdon et al., 1997, Ishii et al.,

1997a). Like SK channels, these IK channels are activated by submicromolar concentrations of

intracellular calcium (300 nM). It has been shown that IK channels are insensitive to apamin

(100 nM) but are blocked by charybdotoxin (Joiner et al., 1997, Logsdon et al., 1997, Ishii et al.,

1997a, Jensen et al., 1998).

Fig 3.14 presents the effect of apamin (A), charybdotoxin (CTX) (B) and tamapin (C) on

IK channels. Measurements were performed in symmetrical K+ conditions (144 mM K+), and IK-

mediated currents were elicited by voltage ramps after the cells were dialyzed with 1µM free

calcium. In the presence of 100 nM apamin (A), no effect on the current was observed (n=3).

When 50 nM CTX (B) was applied (n=5), the IK current was reduced  and resulted in a

calculated IC50 of 28.9 ± 2.4 nM. Finally tamapin was tested on IK channels stably expressed in

HEK-293 cells. The IK current was not affected by 50 nM tamapin (n=3, Fig 3.14 C).
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FIG 3.14. Characterization of HEK-293 cells stably expressing hIK. IK currents were elicited by
a ramp protocol from –100 to +40 mV, with 1 µM free Ca2+ in the pipette. A, Application of 100 nM
apamin did not affect the current. B, 50 nM CTX decreased the IK current. C, IK current was not
affected by 50 nM tamapin. Upon application of 4 mM K+, the reversal shifted to –80 mV, as
predicted.

3.2.7 Conclusion

We have characterized a new toxin, tamapin, which is more potent in blocking rSK2 than

apamin (Fig 3.11 and see table 1 Introduction). In spit of the a high similarity between tamapin

and scyllatoxin (77% similarity), tamapin has shown to be more efficient in blocking the SK

channels (Fig 3.11, fig 3.13, see table 1 Introduction). Tamapin showed different efficiency in

blocking the different SK subtypes (Fig 3.11 and 3.12). Furthermore, the block by tamapin was

neither voltage dependent nor potassium dependent (Fig. 3.12). Therefore, tamapin should be a

good pharmacological tool to determine the native molecular basis of SK currents in various

tissues. It could also be a helpful tool to design similar peptides, which could result in more

efficient SK channel blockers, possible even more selective for SK channel subtypes.
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3.3 Domain analysis of the calcium-activated potassium channel SK1

from rat brain: Functional expression and toxin sensitivity.

3.3.1 Introduction

In the last years, work by our group and others has focused on the rSK2, rSK3 and hSK1

channels expressed in different types of expression systems and displaying different

pharmacological profiles (see paragraph 1.3 in Introduction).

However, only little information was available on the SK1 channels from rat brain (rSK1).

Although this channel was originally cloned with the other SK subunits (Kohler et al., 1996,

Joiner et al., 1997), only one report mentioned that it could not be functionally expressed

(Bowden et al., 2001). The human homologue (hSK1) was instead able to form functional

channels with a sensitivity to apamin that varied depending on the expression system (Strobaek

et al., 2000, Shah and Haylett, 2000, See table 1 in Introduction). When compared to hSK1, the

rSK1 subunits presents a 84% sequence identity  (Fig 3.15).

In order to determine the molecular mechanism that prevents the formation of functional

rSK1 channels, a set of chimeras containing different regions of rSK1 were made. All clones

were transiently transfected into HEK-293 cells, while for the pharmacology on hSK1 the CHO-

Flp-hSK1 stable cell lines was used. Expression of the native channels or the chimeras was

determined by immunocytochemistry and/or by electrophysiology.

3.3.2 Expression of rSK1 in HEK-293 cells

Our group generated an antibody against the amino-terminal portion of the rat SK1 subunit

(anti-NSK1) to identify and localize the rSK1 channel subtype. HEK-293 cells were transiently

transfected with the rSK1 subunit in three independent transfections. Anti-NSK1 (1/500 dilution)

detected a diffuse pattern of rSK1 protein in the cell, with a higher concentration in intracellular

structures, most likely corresponding to the endoplasmatic reticulum and the Golgi apparatus

(Fig 3.16B). The anti-NSK1 antibody did never generate any signal when applied to non-

transfected HEK-293 cells (Fig. 3.16C).
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FIG 3.15 Alignment of the primary sequences of rSK1 and hSK1. rSK1 shows 84% sequence identity
with hSK1. S1-S6 are the putative transmembrane domains (yellow boxes); P-region is the pore region
(green box). In black boxes are the amino acids that differ in the two sequences.

FIG 3.16. Expression of rSK1 αααα-subunit in HEK-293 cells. A, Nomenclature and schematic drawing of
rSK1. B, Specific rSK1 stain by anti-NSK1 antibody. C, No signal was observed with anti-NSK1 on
HEK-293 cells. D, Bright field picture of the same cells as mentioned in panel C. Scale bar: 10 µm
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To determine the specificity of anti-NSK1 and anti-NSK2 antibodies, the antibodies were

applied to cells transfected with rSK2 and rSK1 α-subunits, respectively. Anti-NSK2 antibody

(1/1000 dilution) did not detect any signal in cells expressing rSK1 protein (Fig 3.17B), neither

did the anti-NSK1 antibody (1/500 dilution) detect any signal in cells transfected with rSK2 (Fig

3.17C). This result demonstrates that the anti-NSK1 and the anti-NSK2 antibodies do not display

any unspecific cross-reactivity.

FIG 3.17. Specificity of anti-NSK1 and anti-NSK2 antibodies. A, D, Schematic overview of rSK1
and rSK2 α-subunits. Thin black lines correspond to rSK1, blue thick lines correspond to rSK2. B,
No signal detected with anti-NSK2 on HEK-293 cells transfected with rSK1. C, bright field picture
corresponding to the cell in B. E, No staining was observed with anti-NSK1 on HEK-293 cells
transfected with rSK2. F, bright field picture of the cell in panel E. Scale bar: 10 µm.

3.3.3 Expression of rSK1  and rSK1 core chimeras.

In order to assess the functional properties of rSK1 channels, electrophysiological

measurements in the whole cell configuration were performed. The channels were activated by 1

µM free Ca2 + in the pipette. In spite of the presence of rSK1 protein as detected by

immunofluorescence (Fig 3.16B), no current above background could be measured in rSK1

transfected cells. (Fig 3.19A and 3.22).

The biggest differences between rSK1 and rSK2 lie in their amino- and carboxy-terminal

regions. To identify the molecular determinants responsible for the lack of functional expression

of rSK1, a chimera containing the rSK1 transmembrane domains (S1-S6) and the amino- and

carboxy- terminal of rSK2 was generated (Fig 3.18E). The rSK1N-CrSK2 protein was detected using

the anti-NSK2 antibody (Fig 3.18F). Furthermore, electrophysiological recordings demonstrated
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that the rSK1N-CrSK2 chimera formed a functional channel. When transfected cells were dialysed

with 1µM free Ca2+, the channels were activated and a K+ current was observed (Fig 3.19D). To

narrow down the region responsible for the lack of expression of the rSK1 α-subunit, chimeras

containing rSK1 and either the amino- or the carboxy-terminus of rSK2 were generated (Fig

3.18A, D). The chimeras rSK1NrSK2 and rSK1CrSK2 were transfected in HEK-293 cells. Expression

of the proteins rSK1NrSK2 and rSK1CrSK2 was tested by using anti-NSK2 and anti-NSK1

antibodies, respectively. A diffuse expression pattern of both proteins was observed (Fig 3.18B,

C). Although both chimeras showed expression, only one chimera was functional. Activation of

rSK1NrSK2 and rSK1CrSK2 by 1µM Ca2+ resulted in a K+ current only for the chimera rSK1CrSK2 (Fig

3.19C), showing that, like rSK1N-CrSK2, rSK1CrSK2 assembled into functional K+ channels.

However, the substitution of the amino-terminus of rSK1 by the amino-terminus of rSK2 was

not sufficient for formation of functional channels (Fig 3.19B). Furthermore, exchange of the

carboxy-terminus of rSK1 by the corresponding region of hSK1 in the chimeric rSK1ChSK1 (Fig

3.19H) resulted in the formation of functional K+ channels (Fig 3.19F) which were detected with

the anti-NSK1 antibody (Fig 3.18G). In contrast, replacement of the amino-terminus of rSK1 by

hSK1 amino-terminal region, rSK1NhSK1 did not yield a rescue of rSK1 functional expression (Fig

3.19E).

FIG 3.18. Expression of  rSK1 chimeras. A ,D, E and H, Schematic overview of the chimeras, thin
lines correspond to rSK1 regions, dark blue lines correspond to rSK2 regions and violet lines
correspond to hSK1 parts. B, Immunofluorescence of the rSK1CrSK1 construct as pictured in A, protein
was visualized using the anti-NSK1 antibody. C, rSK1NrSK2 was detected with the anti-NSK2
antibody. F, Specific staining of rSK1N-CrSK2 with the anti-NSK2 antibody. G, Expression of rSK1ChSK1

was detected with the anti-rSK1 antibody. Scale bar; 10 µM
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FIG 3.19. Recordings of rSK1 and chimeras. All measurements were performed in the whole cell
configuration of the patch clamp technique. K+ currents were elicited by voltage pulses from –100 to
+40 mV in 20 mV steps, lasting 30 ms, in the presence of 1 µM free Ca2+. In A, B and E no current
above background was observed. In C, D and F, K+ currents were observed upon application of
voltage steps.

3.3.4 Expression of hSK1 core chimeras.

     In the attempt to elucidate whether the carboxy-terminus of rSK1 is per se capable of

hindering the formation of functional channels when attached to normally expressing SK

subunits, a chimera containing the hSK1 core and the carboxy-terminus of rSK1 was generated.

Suprisingly, transfection of this chimera, hSK1CrSK1, into HEK-293 cells resulted in the formation

of functional channels. K+ currents were observed after transfected cells were dialyzed with 1

µM free Ca2+ (Fig 3.21B). Similarly, replacing the amino-terminus of hSK1 by that of rSK1 in

hSK1NrSK1 led to the formation of functional channels (Fig 3.21C). Expression of the hSK1NrSK1

α-subunit was detected by the anti-NSK1 antibody  (Fig 3.20B). By contrast, functional

expression was hindered when both amino- and carboxy-termini of rSK1 were substituted for the

corresponding regions of hSK1 (Fig 3.20D). Fig 3.20C shows a specific stain by anti-NSK1 for

the hSK1N-CrSK1 chimera expressed in HEK-293 cells.
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FIG 3.20 Immunocytochemistry of hSK1 chimeras. A, D, Schematic drawings of the hSK1
constructs. Thick violet lines correspond to the hSK1 region. Thin black line corresponds to the rSK1
parts. B, Specific anti-NSK1 stain of hSK1NrSK1 transiently transfected in HEK-293 cells. C, hSK1N-

CrSK1 protein expression was detected with anti-NSK1 antibody.

FIG 3.21 Expression of hSK1 and hSK1 core chimeras. Measurements were performed in the
whole cell patch clamp technique. Channels were activated by 1 µM free Ca2+ in the pipette and K+

currents were evoked after applying voltage pulses from –100 mV to 40 mV with 20 mV steps for 30
ms. A, hSK1 currents through hSK1 channels stably expressed in CHO–FlpIn cells. B and C, hSK1
core chimeras reveal K+ currents upon application of voltage steps. D, No K+ currents above
background were observed for chimera hSK1N-CrSK1.

Fig 3.22 represents an overview of the absolute current (A) and of current density (B)

(amount of current per surface area) for all the different constructs. The data showed that rSK1,

rSK1NrSK2, rSK1NhSK1 and hSK1N-CrSK1 expression in HEK-293 cells did not result in the formation

of functional channels,  although rSK1 and the chimeras rSK1NrSK2 and hSK1N-CrSK1 were

expressed in the cells, as shown by immunocytochemistry. The currents were not different from

the background K+ currents measured in non-transfected HEK-293 cells. In two occasions, for

constructs rSK1NrSK2 and hSK1N-CrSK1, also 10 µM free calcium was tested in an attempt to

activate the channels (black diagrams Fig 3.22A and B). However, a 10-fold increase in

intracellular calcium concentration did not alter the current amplitude or current density .
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FIG 3.22 Summary of the current amplitudes and current densities of all constructs. A, Bar
diagram of the maximum current of all constructs measured at –80 mV. B, current densities at –80
mV. Black bars represents cells measured with 10 µM free calcium. “n” corresponds to the number of
cells measured; error bars are SEM.

3.3.5 Effect of apamin and d-tubocurarine on the chimeras

The pharmacological properties of rSK1 could not be investigated so far because this

subunit does not form functional channels. Thanks to the chimeras, it was possible to determine

the apamin and d-tubocurarine sensitivity of channels containing large portions of rSK. The

chimeras used in the experiments contained the pore as well as the transmembrane domains of

rSK1, while only the intracellular amino- and/or carboxy-terminals were exchanged for those

rSK2 or hSK1. As shown in earlier experiments, rSK1CrSK2, rSK1ChSK1 and rSK1N-CrSK2 expression

resulted in the formation of functional channels. To our surprise these chimeric channels did not

show sensitivity for the SK channel blockers apamin (Fig 3.23A, B, C) and d-tubocurarine (Fig

3.24A, B, C). Even high apamin (100 nM) and d-tubocurarine (50 µM) concentrations did not

alter the KCa currents through the rSK1CrSK2 and rSK1N-CrSK2 chimeras. By contrast, the chimeras

hSK1CrSK1 and hSK1NrSK1, which contain the pore and transmembrane domains of hSK1, were

sensitive to the applied drugs. 10 nM apamin was sufficient to block more than half of the hSK1,

hSK1CrSK1 and hSK1NrSK1 current (Fig 3.23D, E, F). Also application of 50 µM d-tubocurarine

resulted in a reduction of the hSK1 and hSKCrSK1 current (Fig 3.24D, E).



Results                                                                                                                                   page 73

FIG 3.23  Effect of apamin on chimeric rSK1 and hSK1 channels. All experiments were performed in the
whole cell configuration of the patch-clamp technique. K+ currents were evoked by voltage ramps with 1µM
free calcium in the pipette. A, B and C, Application of 100 nM apamin to chimeras with transmembrane and
pore regions of rSK1 did not affect the currents. Low potassium (4 mM K+) was applied after each
experiment to determine the stability of the seal, the reversal potential was approximately around –80 mV
under these conditions. D, E and F, 10 nM apamin was sufficient to reduce K+ currents mediated by chimeras
containing the hSK1 transmembrane and pore regions.
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FIG 3.24  Effect of d-tubocurarine on chimeric rSK1 and hSK1 channels. HEK-293 cells expressing SK
channels and chimeras were measured in the presence of 1 µM intracellular Ca2+. Voltage ramps from –100
mV to +40 mV (duration: 400 ms) were applied. A-C, The rSK1CrSK2 (A), rSK1ChSK1 (B) and the rSK1N-CrSK2

chimeras (C) yielded currents that were not suppressed by 50 µM dTC. Application of low K+ resulted in a
shift of the K+ equilibrium potential to –80 mV. D-E, hSK1 (D) as well as hSK1CrSK1 generated currents that
were largely blocked by  50 µM dTC.

3.3.6 Conclusion

We generated a novel antibody against a unique sequence in the amino-terminal region of

rSK1, which specifically recognized the rSK1 α-subunits expressed in HEK-293 cells (Fig 3.17).

We also showed that the rSK1 protein is expressed in the cells (Fig 3.16), however

electrophysiological measurements of HEK-293 transfected with rSK1 did not show the

formation of functional K+ channels. Furthermore, when the amino- and carboxy-terminus of

rSK1 subunits were swapped for the same region of rSK2, functional K+ channels were formed,

characterized by the evoked K+ currents after dialyzing the cells with 1 µM free calcium (fig

3.19D). When the amino-terminus of rSK1 was exchanged for the amino-terminus of  hSK1 or

rSK2, no functional K+ channels were formed (Fig 3.19B, E), although immunofluorescence

showed that the chimeras were expressed (Fig 3.18A, H). When only the carboxy-terminus of

rSK1 was replaced by the corresponding region of hSK1 or rSK2, functional K+ currents were

observed (Fig 3.19 C, F). In addition, when the amino-terminal region of hSK1 was exchanged

for the corresponding region of rSK1, functional chimeric channels were formed (Fig 3.21C).

Surprisingly, substitution of the carboxy terminus of hSK1 by the carboxy-terminus of rSK1 also
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resulted in the formation of functional K+ channels (Fig 3.21B), but when the amino- as well as

the carboxy-termini of hSK1 were exchanged for the amino- and carboxy-termini of rSK1, no

functional chimeric channels were formed (Fig 3.21D).

Although hSK1 and rSK1 α-subunits share the same pore region sequence (Fig 3.15),

functional chimeras containing the rSK1 core domain (transmembrane regions and the pore) did

not show any sensitivity for apamin (Fig 3.23A, B, C) and d-tubocurarine (Fig 3.24A, B, C).

However, the functional chimeras expressing the core domain of hSK1 proved to be sensitive to

apamin (Fig 3.23E, F) as well as to d-tubocurarine (Fig 3.24E).

In conclusion, rSK1 transfected in the HEK-293 cells forms α-subunits, but is not able to

form functional homotetrameric K+ channels. Furthermore, chimeras containing the rSK core

domain (transmembrane domains and pore region) were not sensitive to apamin and d-

tubocurarine.
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3.4 Characterization of a novel splice variant of the calcium-activated

potassium channel rSK2, rSK2-860.

3.4.1 Introduction

Our group has recently identified a new splice variant of rSK2, called rSK2-860, because

the expressed protein is 860 amino acids (aa) long (Manuscript in preparation; Dr. Stocker’s

personal communication). The rSK2-860 cDNA codes for a protein which is 275 amino acids

longer at the amino terminus when compared to the rSK2 channel originally cloned (Kohler et

al., 1996).

Transfection of rSK2-860 in different cell lines resulted in a surprising expression pattern

of the protein. Immunofluorescence as well as electrophysiological recordings have shown that

rSK2 expresses in the cell membrane of different cell lines. However, transfection of the new

splice variant in HEK-293, CHO or COS cells resulted in the formation of intracellular clusters,

particularly numerous around the cell nucleus. The 275 aa additional stretch in the amino-

terminus of the rSK2 protein resulted in an apparent retention and clustering of the rSK2-860 α-

subunits.

Several studies have focused on the identification of signal sequences, which are

responsible for the retention of proteins in the ER or Golgi (see for example: Munro and Pelham,

1987, Munro, 1991, Lewis and Pelham, 1992, Nilsson and Warren, 1994, Sharma et al., 1999,

Zerangue et al., 1999). Besides these specific signals, recent studies have shown that trafficking

of channels or other proteins to special compartments are regulated by interactions with other

proteins, such as ubiquitin, through specific sequences (Bachmai and Varshavsky, 1989, Hicke,

1997, Laney and Hochstrasser, 1999, Hicke, 2001, Bishop et al., 2002, Polo et al., 2002,

Lelouard et al., 2002, Raiborg et al., 2002). Recently it has been shown that a specific motif,

RXR, at the carboxy-terminus of an α-subunit or between transmembrane domains, is

responsible for the retention of the channel in the ER (Zerangue et al., 1999, Margeta-Mitrovic et

al., 2000). Thorough investigation of the primary sequence of rSK2-860 revealed the presence of

RXR motifs at the amino-terminus of the α-subunit, but no other signal sequences were found.

The aim of the work described in the following part was to identify in which cell

compartment the rSK2-860 α-subunit clusters occur and to determine the molecular mechanism

responsible for the distinct behaviour of this subunit, in the hope that this might help elucidating

its functional role.
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3.4.2 Primary sequence of the new splice variant of rSK2

The difference between the new splice variant and the originally cloned rSK2 α-subunit is

situated in the amino-terminus of the protein. The splice variant contains 275 amino acids more

than rSK2. The rest of the sequence behind the longer amino acid stretch is completely identical.

Fig 3.25 presents a schematic drawing of the alignment of both rSK2 subunits. The yellow and

blue part of the drawing corresponds to the originally cloned rSK2 subunit. The white box

represents the extended  275 amino acid-long part at the amino terminus of rSK2, resulting in the

expression of a protein of 860 amino acids. The red box on top of the drawings marks the region

used to generate the anti-NSK2 antibody. The green box shows the region used to generate a

specific antibody against rSK2-860, called anti-N7-SK2. Throughout the thesis, I used mainly

the anti-NSK2 antibody to detect rSK2-860, unless otherwise stated.

FIG 3.25. Schematic illustration of the rSK2 and rSK2-860. Upper part presents the originally
cloned rSK2 α-subunit, with the transmembrane domains, S1-S6 (blue). Lower drawing shows the
rSK2-860 subunit. The only difference between both subunits lies in the longer amino terminus of
rSK2-860 (white box).

3.4.3 Expression of rSK2 and rSK2-860 in HEK-293 cells

HEK-293 cells were transfected with rSK2 or rSK2-860, and 48 hours later they were

fixed with PFA and the expression of protein was detected by using the anti-NSK2 antibody,

which detected rSK2 as well as rSK2-860 α-subunits. Pictures were made with a confocal

microscope at different levels through the z-axis (depth) of the cell. Fig 3.26 shows the

expression pattern of rSK2 channels in two transiently transfected HEK-293 cells. As seen from

the picture, the channel has a diffuse pattern throughout the cell but does not result in the

formation of protein clusters.
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FIG 3.26. Expression of rSK2 αααα-subunits in HEK-293 cells. This panel shows 6 sections of the
same cells expressing rSK2. HEK–293 cells were transfected with rSK2 and detected using the anti-
NSK2 antibody (1/1000 anti-NSK2). A diffuse pattern of rSK2 subunits in cytoplasm and cell
membrane was detected. Scale bar: 10 µm

Cells expressing rSK2-860 showed a distinct pattern. The protein was not detected in the

cell membrane and there was no diffuse expression in the cytoplasm. As visible in Fig 3.27,

clusters of protein were observed intracellularly and especially around the nucleus of the cells.

FIG 3.27. Expression of rSK2-860 subunits in HEK-293 cells. HEK-293 cells were transfected 48
hours before immunocytochemistry. The expression of rSK2-860 proteins were detected with anti-
NSK2. The stain shows the formation of clusters around the nucleus. Scale bar: 10 µm
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3.4.4 Expression of rSK2 and rSK2-860 in COS and CHO cells.

To eliminate the possibility that this distinct expression pattern of rSK2-860 was related to

the HEK cell expression system, COS and CHO cells were transiently transfected with rSK2-

860, and with rSK2 as a control. Transfection of COS cells with different lipidic transfection

reagents, FuGENE or LipofectAMINE, did not change the expression pattern of rSK2 or rSK2-

860. COS cells transfected with rSK2 showed a diffuse expression pattern of the protein. No α-

subunit clusters were observed in the cells (Fig 3.28).

FIG 3.28. Expression of rSK2 in COS cells. rSK2 α-subunits were detected in transiently
transfected COS cells by the anti-NSK2 antibody (1/1000). The immunostaining showed a diffuse
pattern of expression in the cell. The six panels correpond to confocal optical sections of one
transfected COS cell. Scale bar: 10 µm

However, when rSK2-860 was expressed in COS cells, a change in the protein expression

was observed (Fig 3.29). Instead of the characteristic diffuse pattern of expression, clusters of

protein were observed, especially around the cell nucleus, similarly to what observed in HEK-

293 cells.
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FIG 3.29. Immunostaining of rSK2-860 in COS cells. A specific rSK2-860 signal was obtained
using the anti-NSK2 antibody. The six panels are consecutive confocal optical sections across a
single COS cell transfected with rSK2-860. The protein formed clusters throughout the cell. Scale
bar: 10 µm

Finally, rSK2 and rSK2-860 channels were expressed in CHO cells and analyzed by

immunofluorescence, with the anti-NSK2 antibody. As previously shown in HEK-293 and COS

cells, the expression of rSK2 in CHO cells resulted in a uniform distribution of rSK2 α-subunits

throughout the cytoplasm and cell membrane (Fig 3.30).

FIG 3.30. Immunofluorescence of CHO cells transiently expressing rSK2. This picture presents 6
different levels (stacks) of the same cell expressing rSK2. A signal was detected using the anti-NSK2
(1/1000). Scale bar: 10 µm
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Expression of rSK2-860 in CHO cells confirmed the pattern observed in COS or HEK-293

cells. As in the other cell lines, rSK2-860 expression resulted in numerous protein clusters,

apparently intracellular (Fig 3.31).

FIG 3.31. Expression of rSK2-860 in CHO cells. Immunocytochemistry was performed using
1/1000 dilution of the anti-NSK2 antibody. Protein clusters were observed throughout the cytoplasm
of the two CHO cells. Scale bar: 10 µm.

3.4.5 Role of the rSK2-860 amino-terminus in protein trafficking: chimera

To address the question whether the specific sequence of the amino-terminus of rSK2-860

is alone responsible for the expression pattern of rSK2-860, a rSK3 chimera containing the

amino-terminus of rSK2-860 was generated. As shown in figure 3.3A, rSK3 is highly expressed

in the cell membrane. In order to determine if the amino-terminus of rSK2-860 is capable of

altering the membrane expression of rSK3, the 275 aa-long stretch was cloned in frame with the

amino-terminus of rSK3. The resulting chimera rSK3NrSK2-860 was transfected in HEK-293 cells

and detected with a specific anti-CSK3 antibody (1/500 dilution) (Fig 3.32) and with the

antibody generated against the long amino-terminus of rSK2, anti-N7-SK2 (1/1000 dilution) (Fig

3.33). The substitution of the amino-terminus of rSK3 for the amino-terminus of rSK2-860

resulted in the formation of clusters, especially around the cell nucleus. This result suggests that

the amino-terminus of rSK2-860 contains a specific signal which is able to retain proteins in

clusters in the cytoplasmatic compartment.
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FIG 3.32. Detection of rSK3NSK2-860 using the anti-CSK3 antibody. The chimera was detected
using a specific  antibody against the carboxy-terminus of rSK3. Shown are three confocal optical
sections through a HEK-293 cell transiently transfected with rSK3NrSK2-860. Scale bar: 10 µm.

FIG 3.33. Expression of rSK3NrSK2-860 in HEK-293 cells. Cells were immunostained 48 hours after
transfection with the chimera. Expression was detected with a specific antibody generated against the
amino-terminus of rSK2-860, anti-N7-rSK2. The expression pattern of the chimera was similar to the
one of rSK2-860 expressed in HEK-293 cells. The three panels represent consecutive confocal optical
sections of a single transfected cell.  Scale bar: 10 µm

3.4.6 Role of rSK2-860 amino-terminus in protein trafficking: truncations and

deletion.

In order to assess which domain of the amino-terminus of rSK2-860 is responsible for the

intracellular retention and clustering of the channel, a set of truncated α-subunit constructs were

generated. Fig 3.34 shows an overview of the truncated proteins.
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FIG 3.34. Representation of the truncated rSK2-860 subunits. The upper construct corresponds to
the original rSK2-860. Dashed lines in the white box represent the positions where the truncated
proteins start. rSK2-860 codes for a protein of 860 amino acids. rSK2-829 has the first 31 amino
acids at the amino terminus truncated, resulting in a protein that is 829 amino acids long. rSK2-795
misses the first 65 amino acids and expression results in a protein of 795 aa. The last construct codes
for a protein of 695 aa. 165 aa have been eliminated at the amino terminus of rSK2-860 in order to
obtain rSK2-695.

The first construct, rSK2-829, missed the first 31 amino acids at the beginning of the

protein. At position 21-23 in the amino acid sequence of rSK2-860 is a RTR motif. It has been

reported that this sequence at the carboxy-terminus or in the lobes between transmembrane

domains of certain channels is responsible for their retention in the ER (Zerangue et al., 1999,

Margeta-Mitrovic et al., 2000). We wondered whether this motif at the amino terminus of rSK2-

860 had the same function, and used the rSK2-829 subunit, which is missing this RTR motif, to

test this hypothesis.

Expression of rSK2-829 in HEK-293 cells did not result in an altered expression pattern

(Fig 3.35). The truncated channel resulted in the formation of clusters around the cell nucleus,

similar to the pattern obtained for rSK2-860 expressed in various expression systems.
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FIG 3.35. Expression of rSK2-829. Expression rSK2-860, missing the first 31 amino acids at its amino
terminal did not alter the expression pattern. Intracellular clusters were still observed, especially around the
cell nucleus. Six panels present different confocal sections of the same transfected HEK-293 cell. The protein
was detected using anti-NSK2 antibody. Scale bar: 10 µm.

In order to narrow down the domain responsible for the retention of the protein, a larger

part of the amino-terminus of rSK2-860 was eliminated (rSK2-795). This resulted in a truncated

protein missing the first 65 amino acids at its amino-terminus. However, transfection of this

protein in HEK-293 cells did not change the expression pattern. As shown in Fig 3.36, the

protein was still clustering intracellularly, particularly around the cell nucleus. This result

suggests that the first 65 amino acids are not responsible for clustering of the protein.

FIG 3.36. Immunofluorescence staining of rSK2-795 expressed in HEK-293 cells. Protein was detected
using the specific anti-NSK2 antibody. Shown are the channel clusters surrounding  nuclei of 2 cells. Six
different confocal optical sections are shown, from the bottom of the cells to the top. Scale bar: 10 µm
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Next, an even longer stretch of the amino-terminus was eliminated. In total 165 amino

acids were truncated from rSK2-860, leaving a final protein of 695 amino acids. This protein still

contained 110 amino acids more at its amino-terminus than the originally cloned rSK2 protein.

When this protein was expressed in HEK-293 cells, a difference in expression pattern was

observed (Fig 3.37). Instead of the formation of intracellular clusters mainly around the nucleus,

a faint membrane stain was observed. However a very small amount of protein clusters could

still be detected in the cell cytoplasm. Furthermore, preliminary electrophysiological recordings

revealed the presence of functional rSK2-695 channels in the membrane, characterized by the

presence of K+ currents upon activation of the channels with 1µM free calcium (data not shown).

This result suggests that the intracellular clustering and retention of rSK2-860 is mediated by  a

region comprising this last truncated 100 amino acids.

FIG 3.37. Transient expression of rSK2-695 in HEK cells. rSK2-695 was detected with the anti-
NSK2 antibody (1/1000). An clear membrane stain was detected, while a small amount of protein
clusters was still observed. Presented are six panels of confocal sections of the same cell. Scale bar:
10 µm.

Therefore, a deletion mutant, rSK2-N7-del, was generated in which more than 183 amino

acids were eliminated, including this 100 amino acid stretch (Fig 3.38). Fig 3.39 presents the

specific stain of the rSK2-N7-del protein using the anti-NSK2 antibody. As observed, a high

expression of the protein was visible in the cell plasma membrane. These data are supported by

preliminary electrophysiological experiments which reveal K+ currents after the cells have been

dialyzed with 1 µM free calcium, suggesting that rSK2-N7-del forms functional channels in the

membrane. These data confirms that this 100 amino acid long sequence is involved in the

intracellular clustering of the α-subunit.
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FIG 3.38. Schematic overview of rSK2-860 deletion construct. The upper construct represents the
original long variant of rSK2-860, rSK2-860. White box corresponds to the longer amino-terminus.
The lower construct, rSK2-N7-del, codes a protein in which 183 aa are deleted in the amino-
terminus, represented by the black line in the white box.

FIG 3.39 Detection of rSK2-N7-del with the anti-NSK2 antibody. Transiently transfected
cells were incubated with the specific antibody against the amino terminus of rSK2 (anti-
NSK2, 1/1000 dilution). Shown are six different confocal sections through the same cell. A
clear signal is observed in the membrane. Scale bar: 10 µm.

3.4.7 Role of the rSK2-860 amino-terminus in protein trafficking: targeting of fusion

proteins containing different parts of the amino-terminus of rSK2-860.

A second strategy to determine which part of the amino-terminus of rSK2-860 is involved

in the retention and formation of intracellular clusters is by using fusion proteins. The fusion

proteins contained an amino-terminal enhanced green fluorescent protein–tag (EGFP) followed

by a certain part of the amino-terminus of rSK2-860. Five different constructs were generated

(Fig 3.40) and expressed in HEK-293 cells. Upon expression of each of these fusion proteins, a

green signal was observed after excitation. As a control, HEK-293 cells were transfected with

the plasmid coding for the EGFP protein alone. This resulted in the homogenous expression of

EGFP throughout the cell cytoplasm (Fig 3.41F). Expression of some constructs in HEK-293

cells resulted in the formation of intracellular protein clusters (Fig 3.41A, B and D), while other

constructs did not form these characteristic clusters (Fig 3.41C and E).
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FIG 3.40 Schematic drawing of the EGFP-rSK2-860 fusion proteins. The upper drawing present
the first part of rSK2-860 until the first transmembrane segment. The black line represents the amino-
terminus of rSK2-860 followed by  the yellow line  which is the originally cloned rSK2 part. The
lower drawings are the amino-terminal portions of the amino-terminus of rSK2-860 fused to EGFP.

Thus, expression of SK2_N2-EGFP in HEK-293 cells resulted in the formation of protein

clusters concentrated at one side of the cell (Fig 3.41A). This pattern was visible in more than

70% of transfected cells. The rest of the transfected cells showed a more distributed pattern of

protein clusters.

A similar pattern was observed for HEK-293 cells transfected with SK2_N7-EGFP, 70-

80% of the cells displayed a diffuse pattern of EGFP tagged protein with strong accumulation of

clusters at one side of the cell (Fig 3.41B). In the remaining 20% of the cells a very faint diffuse

pattern of distribution of the fusion protein was observed.

SK2_N9-EGFP transfected in HEK-293 cells resulted in a diffuse expression pattern of the

protein in the cells (Fig 3.41C). More than 95% of the cells presented this type of distibution. No

clusters could be detected for this fusion protein.

Transfection of SK2_N10-EGFP yielded a diffuse pattern of EGFP tagged protein with the

formation of a cluster at one side of the cell (Fig 3.41D).  This pattern was similar to the one

obtained after transfection of HEK cells with SK2_N7-EGFP.

Finally expression of rSK2_N12-EGFP did not result in the formation of clusters, a diffuse

pattern of EGFP-tagged protein was observed throughout the cell cytoplasm (Fig 3.41E). The

data obtained using the GFP- tagged amino-terminal rSK2-860 constructs is in good agreement

with the data from the truncations and deletion study. It shows that constructs which contain the

critical100 amino acid long stretch identified by truncations are forming protein clusters in the

cytoplasm.
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FIG 3.41. Expression of EGFP-tagged amino-terminal portions of the N-terminus of rSK2-860.
A1-E1, Fluorescence of EGFP-tagged proteins. A2-E2 Bright field pictures of the corresponding cells.
Expression of SK2_N2-pEGFP (A), SK2_N7-pEGFP (B), SK2_N9-pEGFP (C), SK2_N10-pEGFP
(D) and SK2_N12-pEGFP (E). F, Control, HEK-293 cells transfected with the EGFP protein alone,
F1 Distribution of EGFP in HEK cells. F2, Bright field picture of the cell presented in F1. Scale bars:
10 µm

3.4.8 Interaction of rSK2-860 with rSK2

An important question for the possible functional relevance of rSK2-860 is its capability of

interaction with the rSK2 α-subunits. To address this question, rSK2-860 was co-expressed with

rSK2-myc, constructed by tagging the rSK2 protein at its carboxy-terminus with a myc epitope.

The tagged rSK2 protein could be detected with a specific anti-myc antibody, while for the

rSK2-860 protein the specific anti-N7-SK2 antibody was used. The secondary antibodies were

conjugated with Cy3 and Cy5 to detect rSK2-myc and rSK2-860, respectively.

When both, rSK2 and rSK2-860 were expressed in HEK-293 cells, a partial overlap in

their cellular localization was observed. This suggested that the interaction between both α-

subunits was not hindered by the longer amino-terminus of rSK2-860. Interestingly, rSK2

subunits were partially localized in clusters (Fig 3.41C). However, a certain portion of rSK2 α-

subunits escaped from these protein clusters (Fig 3.41B). An explanation could be that the
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expression of rSK2-myc protein was higher and, after the protein clusters formed by rSK2-rSK2-

860 complexes reached saturation, the remaining rSK2-myc protein diffused into the cytoplasm

and possibly the cell membrane. The distribution pattern of rSK2-860 was not changed upon

interaction with the rSK2 subunit (Fig 3.42A).

FIG 3.42. Co-expression of rSK2-long with rSK2-myc. A, Immunostaining of rSK2-860; the
protein was detected using the anti-N7-rSK2 antibody (1/1000 dilution). B, Expression of rSK2-myc
detected with an anti-myc antibody (1/400 dilution) in the same cell as in A. C, Overlay of rSK2-long
and rSK2-myc immunostaining. Scale bar: 10 µm

3.4.9 Subcellular localization of rSK2-860

To determine in which intracellular organelle or compartments the rSK2-860 clusters are

formed, rSK2-860 was co-expressed with various EGFP or enhanced yellow fluorescent protein

(EYFP) tagged subcellular markers (see Material and Methods ). The marker protein and rSK2-

860 were co-transfected in HEK-293 cells in a ratio of 1:1. 48 hours after transfection, the cells

were immunostained using the specific antibody, anti-NSK2. Cy5 was used as a fluorophore

conjugated to the secondary antibody to avoid cross emission of the different dyes.

First, rSK2-860 was co-expressed with the pEGFP-F vector. The vector is encoding a

farnesylated EGFP. EGFP is fused at its C-terminus to the farnesylation signal of c-Ha-Ras,

which directs the EGFP to the plasma membrane. Fig 3.43 shows the co-expression of rSK2-860

with pEGFP-F; no overlap between the two proteins could be observed, suggesting that the

rSK2-860 protein was not expressed in the plasma membrane.
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FIG 3.43. Co-expression of rSK2-long with pEGFP-F. A, Specific immunostain of rSK2-860
using the anti-NSK2 antibody (1/1000 dilution). The secondary antibody was conjugated with Cy5.
B, Expression of pEGFP-F, showing a plasma membrane stain due to the tagged EGFP containing a
specific plasma membrane signal. C, Merged picture of A and B. Presented is a confocal section.
Scale bar: 10µm

In some of the HEK-293 cells overexpressing of rSK2-860 a rather big cluster of protein

was observed. This observation suggested that the proteins could be partially trapped in the

Golgi-apparatus. In order to test this hypothesis, rSK2-long was co-expressed with pEYFP-

Golgi. In pEYFP-Golgi, the amino-terminus of EYFP is fused to the amino-terminal 81 amino-

acids of the human β1,4-galactosyltransferase, thereby resulting in an EYFP which is targeted to

the Golgi. No overlap in the cellular distribution of pEYFP-Golgi and the rSK2-860 protein was

detected (Fig 3.44).
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FIG 3.44. Localization of rSK2-860 with respect to the Golgi apparatus.  Transient co-
transfection of HEK-293 cells with rSK2-long and pEYFP-Golgi. A, Expression of rSK2-long was
detected with anti-NSK2 (1/1000 dilution). B,  Specific Golgi-apparatus stain, obtained by
transfection of cells with a yellow fluorescent protein which is targeted to the Golgi. C, Merge of
rSK2-long (A) and pEYFP-Golgi (B) images. Presented is a confocal section. Scale bar: 10 µm

None of the previous experiments gave a clear answer as to where the rSK2-860 protein is

localized. From all the pictures shown, it seemed that the α-subunits are localized close to the

nucleus of the cell. To characterize better the spatial relation between rSK2-860 and the nucleus,

rSK2-860 transfected cells were incubated with the primary antibodies anti-NSK2 and anti-lamin

A/C. The anti-lamin A/C antibody detects the nuclear lamin which is localized at the inner side

of the nuclear membrane. The primary antibodies, anti-NSK2 and anti-lamin A/C, were detected

with Cy5- and Cy3-conjugated secondary antibodies, respectively. Cy3 and Cy5 were chosen to

prevent cross emission when they were excited.  Fig 3.45 presents the expression pattern of

rSK2-860 and of the nuclear protein lamin. Although the signal rSK2-860 is very close the one

of lamin, no clear co-localization of the two proteins was observed (Fig 3.45D, E, F).  These data

suggest that the rSK2-860 protein clusters are located in the perinuclear region.
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FIG 3.45. Immunostaining of rSK2-860 and lamin. HEK-293 cells were transfected with rSK2-
860 and immunostaining of the α-subunits and lamin was obtained with the anti-NSK2 (1/1000) and
anti-lamin A/C (1/800) antibodies. Presented is a confocal section of he cell. A, Specific expression
pattern of rSK2-860. B, Immunofluorescence staining of lamin A/C. C, Overlay of A and B, no
obvious overlap was detected. D,E and F, Signal intensity profiles along the lines A to B (D), A’ to
B’ (E) and A’’ to B’’ (F), presented in panel C. Scale bare: 10 µm.

3.4.10 Role of the Golgi-apparatus in the trafficking of rSK2-860

At this point, an intriguing question was where and when in the protein biogenesis the

rSK2-860 protein clusters were generated. Did they occur after the protein was processed in the

endoplasmatic reticulum (ER) or did they form after they had been modified in the Golgi-

apparatus? To address this question, we decided to use Brefeldin A (BFA). Brefeldin A is known

to disrupt the Golgi-apparatus and relocate Golgi-specific proteins to the ER (Lippincott-

Schwartz et al., 1989, Doms et al., 1989). If our protein was targeted to the perinuclear

aggregates after it had gone through the Golgi, a BFA treatment of the cells could disrupt the

trafficking pathway. Disruption of the Golgi would cause the retention of the protein in the ER,

giving an ER specific stain, which is characterized by a diffuse pattern of the protein in the cell.

BFA was diluted in 100% ethanol. The same concentration of ethanol was therefore used

as a control on the cells expressing rSK2-860. The ethanol was applied to the cell culture

medium for 60 minutes. Following the ethanol treatment the cells were washed with 1XPBS and

the immunostaining was performed. As a further control, HEK-293 cells were also transfected

with the Golgi marker, pEGFP-Golgi, and handled in the same way as the rSK2-long transfected

cells. As shown in Fig 3.46, neither rSK2-860 nor pEGFP-Golgi expression was altered by

ethanol application. pEGFP-Golgi expressed in HEK-293 showed a characteristic Golgi stain
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(Fig 3.46A), while the expression of rSK2-860 resulted in the formation the typical protein

clusters (Fig 3.46B).

FIG 3.46. Ethanol effect on pEGFP-Golgi and rSK2-860 transiently expressed in HEK-293
cells. Before immunostaining the transfected cells were incubated for 60 min. in culture medium
containing ethanol. A1, Specific expression pattern of pEGFP-Golgi, EGFP is localized at one side of
the cell. A2 Bright field picture of the same cell as in A1. B, Immunofluorescence of rSK2-860
detected with the anti-NSK2 antibody (1/1000 dilution). Pictures were made with a CCD camera.
Scale bar: 10 µm

However when cells transfected with pEGFP-Golgi where subjected to the BFA treatment,

a redistribution of the Golgi marker occurred. The 60-minute treatment disrupted the Golgi-

apparatus resulting in the re-localization of the pEGFP-Golgi to the ER (Fig 3.47A). In contrast,

the same treatment did not change the expression pattern of rSK2-860 (Fig 3.47B). This result

suggests that the rSK2-860 protein clusters were formed upon leaving or during the translation of

the protein in the ER. However, it can not be excluded that the rSK2-860 proteins were

processed through the Golgi-apparatus, and that the formed clusters remained present even after

the 60-minute disruption of the Golgi.

FIG 3.47. Brefeldin A effect on HEK-293 cells expressing pEYFP-Golgi and rSK2-860.
Transfected cells were incubated with Brefeldin A for 1 hour, followed by immunostaining. A,
Expression of pEGFP-Golgi after BFA treatment, notice the redistribution of the protein in
comparison to Fig 3.46A. B, Specific staining for rSK2-860 using the anti-NSK2 antibody (1/1000
dilution). Pictures were taken with a CCD camera. Scale bar: 10 µm
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3.4.11 Does rSK2-860 code for a misfolded or inefficiently folded membrane protein?

Many misfolded and unassembled proteins inappropriately expose hydrophobic surfaces

that are normally buried in the protein’s interior or at the interface with other subunits (Wetzel,

1994). The exposure of misfolded proteins to the cytosol can lead to the interaction between the

hydrophobic stretches and formation of aggregates. Recently, a new cellular and molecular

response to the formation of aggregates of misfolded proteins have been characterized, called the

aggresome response. Characteristic for this mechanism is that the aggresome formation is

accompanied by the collapse of the intermediate filament protein, vimentin, to form a ring-like

structure around the aggregates at the centrososme (Johnston et al., 1998).

In order to determine if the characteristic rSK2-860 clusters are aggregates of misfolded

proteins, transfected cells were subjected to an anti-vimentin antibody stain. As control, HEK-

293 cells were also transfected with rSK2, which forms functional channels and therefore was

not expected to affect the vimentin distribution. In both cases, HEK-293 cells were transfected

with 2µg of rSK2 or rSK2-860. After 48 hours cells were fixed with 4% paraformaldehyde,

permeabilized and incubated with the primary antibodies anti-NSK2 (1/1000 dilution) and anti-

vimentin (1/200 dilution). The immunofluorescence data show that HEK-293 cells expressing

rSK2 did not present an altered distribution of the filamentous vimentin network (Fig 3.48). As

observed in the Fig 3.48B, the intermediate filaments are clearly distributed throughout the cell.

When compared to the HEK-293 cells transfected with rSK2-860, a similar stain for vimentin is

observed (Fig 3.49B) while the rSK2-860 clusters are expressed in the cytoplasm (Fig 3.49A).

These data show that although there is a difference in the rSK2 and rSK2-860 protein expression

pattern, there is no difference observed in the vimentin expression pattern. Therefore I suggest

that the rSK2-860 protein clusters are not aggregates of misfolded proteins.
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FIG 3.48. Effect of rSK2 on the intermediate filament network. HEK-293 cells expressing rSK2
α-subunits were immunostained with anti-NSK2 (1/1000) and anti-vimentin (1/200) antibodies.
Presented is a confocal section of the same cell. A, Characteristic expression pattern of rSK2. B,
Intermediate filament network detected with anti-vimentin, no collapse was detected. C, overlay of
pictures A and B. Scale bar: 10 µm.

FIG 3.49. Response of the vimentin network in HEK-293 cells expressing rSK2-860. Transfected
cells were double-stained for rSK2-860 (1/1000 anti-NSK2) antibody and vimentin (1/200 anti-
vimentin) antibody. Shown is a confocal stack of the same cell. A, Specific immunostain for rSK2-
860. B, Expression pattern of vimentin in the same cell. C, Merged picture of rSK2-860 (A) with
vimentin (B). Scale bar: 10 µm.

3.4.12 Ubiquitination, a new mechanism of protein targeting

Ubiquitination, a new mechanism for protein regulation, has been characterized (Ward et

al., 1995, Staub et al., 1997, Kopito, 1997, Hershko and Ciechanover, 1998, Hedge and

DiAntonio, 2002, Hicke and Dunn, 2003). Ubiquitin is a 76 amino acid protein that regulates

protein transport between membrane compartments by serving as a sorting signal on protein

cargo and by controlling the activity of the trafficking machinery.
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Two different mechanisms for ubiquitination, mono- or poly-ubiquitination, of target

proteins have been identified. Poly-ubiquitinated proteins are subjected to proteasomal

degradation (Chau et al., 1989, Finley et al., 1994, Pickart, 2000), while mono-ubiquitinated

proteins are not involved in proteasome degradation, but the single ubiquitin appears to act as a

trafficking signal in a host of processes, including endocytosis, endosome internalization and

viral budding (Hicke, 2001, Katzmann et al., 2002).

In order to determine if rSK2-860 might be subjected to ubiquitination and targeted to the

proteasome by poly-ubiquitinylation or is monoubiquitinylated and targeted to the lysosome,

transfected cells were double stained for rSK2-860 (anti-NSK2 antibody, 1/1000) and for

ubiquitin (anti-ubiquitin antibody; FK2, 1/5000). FK2 is a monoclonal antibody which

recognizes both polyubiquitinylated and monoubiquitinylated proteins, but not free ubiquitin.

For the immunofluorescence, cells were fixed using 100% cold methanol instead of the

usual paraformaldehyde fixation. As control, HEK-293 cells were transfected with Hrs-EGFP

(Hrs-EGFP, hepatocyte growth factor receptor substrate tagged to the green fluorescent protein

was a kind gift of Dr. P. Woodman) and immunostained for ubiquitination. Expression of Hrs-

EGFP in HEK-293 cells results in the formation of protein aggregates which are targeted for

destruction by using the ubiquitination pathway. Fixation with methanol allowed the anti-

ubiquitin antibody to detect the epitope. Fig 3.50A showed  the expression pattern of the EGFP

tagged Hrs protein, similar to the expression pattern reported by Bishop (Bishop et al., 2002).

When the transfected cells were co-stained for the ubiquitin protein, a complete overlapping

expression pattern was observed (Fig 3.50B, C). Thus, these data show that the anti-ubiquitin

antibody detects ubiquitinated proteins, which will be degraded using the ubiquitine/protease

pathway.
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FIG. 3.50. Detection of the ubuquitinated Hrs-EGFP protein. Presented are two confocal sections
(1 and 2) of the same cell. A, shows the expression pattern of the EGFP tagged Hrs protein. B,
detection of ubiquitinated protein using a specific anti-ubiquitin antibody (FK2, 1/5000 dilution. C,
overlay of the Hrs-EGFP stain (A) with the ubiquitin stain (B), observed is the co-localization of both
proteins. Scale bar: 10 µm.

Finally, we investigated if the rSK2-860 clusters are regulated by this ubiquitin pathway,

and thus targeted to the proteasome, by incubating transiently transfected cells with the anti-

ubiquitin antibody (FK2). Like for the Hrs-EGFP transfected cells, cells which were transfected

with rSK2-860 were fixed with 100% methanol to allow the FK2 antibody to detect the epitope.

Fig 3.51A presents the specific rSK2-860 stain using the anti-NSK2 antibody. As secondary

antibody FITC was used. However when the transfected  cells were co-stained for the ubiquitin

protein, no complete overlap between the both proteins was observed (Fig 3.51B, C). These data

suggest that the rSK2-860 protein is not targeted to the proteasome for degradation.
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FIG. 3.51 Immunostaining of rSK2-860 and ubiquitin. Shown are two optical section of the same cell (1 and
2). A, presents the immunostain of rSK2-860 using the anti-NSK2 antibody (1/1000 dilution). B, detection of
the ubiquitin protein using FK2, the anti-ubiquitin antibody (1/5000 dilution). C, Overlay of panels A and B.
Scale bar: 10 µm.

3.4.13 Conclusion

We characterized a new splice variant, rSK2-860, which encodes for a protein, which is 275

amino acids longer at its amino-terminus when compared with the originally cloned rSK2 channel.

Expression in different types of expression systems resulted in the formation of protein clusters,

which seems to form in the perinuclear region. Furthermore, several studies show that an 100 amino

acid long sequence in the 275 amino acid longer stretch is responsible for the clustering and

retention of the proteins. The studies performed with vimentin and ubiquitin suggest that these

characteristic rSK2-860 protein clusters are not clusters of misfolded proteins which would be

targeted to the proteasome for degradation.



4. Discussion

4.1 Tamapin: a novel SK channel toxin

Role of ion channel blockers. A proper understanding of many CNS diseases and

disorders requires identification of the ion channels underlying them and knowledge of their

normal physiological roles. Therefore, it is necessary to identify toxins or organic compounds

which could differentiate between different types of ion channels. A number of ion channel

blockers have been identified throughout the years and have shown to be useful tools to dissect

the physiological role of several ion channels in the CNS (Southan et al., 2000, Marinelli et al.,

2000, Pedarzani et al., 2000, Wolfart et al., 2001, Hosseini et al., 2001). The most common used

blocker to make a distinction between the different members of the SK channels is apamin.

Apamin is an 18 amino acid long peptide which was isolated from the venom of the bee, Apis

mellifera (Habermann et al., 1972). In heterologous systems, it has been shown that apamin

blocks SK2 channels more potently than SK3 and SK1 (see Introduction table 1). In this study, I

investigated the selectivity of tamapin on the different SK channels, stably expressed in

mammalian cells.

Stable expression of SK channels. In order to determine the sensitivity of tamapin for the

different SK channels, I generated stable cell lines expressing the SK channels.

Immunofluorescence experiments demonstrated the expression of the rSK2 or rSK3 protein in

HEK-293 cells. The expression of hSK1 in cell lines could not been shown by using

immuncytochemistry, since a hSK1 specific antibody is not available. Instead

electrophysiological recordings were performed and confirmed the expression of hSK1 channels.

Furthermore, HEK-rSK2 and HEK-rSK3 cell lines were also subjected to electrophysiological

experiments. The data obtained for the HEK-rSK2 cell line was similar to the data reported by

other groups (see Introduction table 1). In contrast, the data obtained for the HEK-rSK3 cell line

did not match with published data, since I obtained different values for apamin as well as for

dTC. Our measurements showed that rSK3 was more sensitive to apamin and dTC than in

previous reports. To exclude the possibility of an exchange between the different cell lines,

although immunocytochemistry confirmed the expression of only the rSK3 protein, experiments

were performed on different days and similar results were obtained. However, I do not have a

plausible explanation for this phenomenon, therefore more experiments should be performed.
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Effect of tamapin on SK channels. Tamapin is a 31 amino acid long peptide, just like

scyllatoxin and PO5. All three toxins exhibit 6 cysteine residues at the same place in the

sequence. It has been shown that these 6 cysteines in scyllatoxin shape the toxin backbone by

forming three disulfide bridges  (Chicci et al., 1988, Martins et al., 1990, Zerrouk et al., 1993,

Martins et al., 1995, Calabro et al., 1997). Amino acid sequence alignment showed that tamapin

shares 77% homology with scyllatoxin and 74% with PO5. Pharmacological studies on the

cloned SK channels showed that tamapin had a higher sensitivity for SK2 (IC50= 24 pM) when

compared to SK1 or SK3. My experiments have also revealed that tamapin is more potent to

block SK channels than scyllatoxin or PO5 (see Introduction, table 1). Several options for the

higher potency of tamapin over the other toxins can be hypothetized. 1) Stucture-function studies

of scyllatoxin showed that, when amino acids at positions 25 (K, lysine), 27 (E, glutamate) and

30 (K, lysine) are chemically modified or mutated, there is a substantial loss of potency of

scyllatoxin when applied to the muscle bands of the large intestine (taenia coli), without

affecting significantly its ability to displace apamin binding. Furthermore, it was shown that the

histidine at position 31 plays a very important role in the binding activity of the toxin and in the

induction of contractions in taenia coli (Auguste et al., 1992). By contrast, tamapin displayed full

biological activity when tested on the recombinant SK channels, in spite of the presence of

amino acids with opposite charges in the positions 25, 27 and 30, and of a tyrosine in position

31. 2) At the N-terminal region, the first amino acids (positions 1 and 2) of tamapin are identical

to those of scyllatoxin, but different from those of PO5. Those two residues have been shown to

contribute to the higher potency of scyllatoxin on SK2 and SK3 channels when compared to PO5

(Shakkottai et al., 2001), and it is therefore likely that they might be also important determinants

of the even higher potency displayed by tamapin. 3) Another noticeable difference between

tamapin and previously characterized SK channel blockers is located at the level of the LRXCQ

motif, conserved in PO5 and scyllatoxin (Shakkottai et al., 2001), but changed into LRRCE in

tamapin. It has been proposed that the methionine at position 7 of scyllatoxin is important for the

enhanced potency of this toxin compared to PO5, which contains an arginine residue in the same

position, just like tamapin. However, tamapin differs significantly from the LRXCQ motif in

having a negatively charged glutamate residue at position 9, there where the other SK channel

blockers have a glutamine. The classical LRXCQ motif is therefore not fully conserved in
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tamapin and further studies will be necessary to understand the molecular basis for the high

affinity of tamapin towards SK channels, and in particular for SK2. A first step in this direction

was made by Shakkottai and collaborators (2001), who placed small, positively charged amino

acids in position 7 of scyllatoxin and thereby enhanced the selectivity of the mutated toxin for

SK2 versus SK3. Keeping all this analysis in mind, future structure-function studies could help

to understand which determinants of tamapin are involved in binding to SK channels, and might

lead to mutant toxins with further improved selectivity for SK channel subtypes.

In conclusion, tamapin represents a novel, promising pharmacological tool, as it is the

most potent SK2 blocker characterized so far, and it blocks SK2 channels ~ 1700 fold and ~ 70

fold more potently than SK1 and SK3 channels respectively, making it the most selective SK2

channel natural toxin characterized so far. In the future it might be useful to: 1) study the

physiological role that the different SK channels play in native tissue, 2) purify SK channels

from native tissues and determine their subunit composition, and 3) develop the pharmacology of

SK channels in view of their possibility involvement in cognitive functions and diseases such as

epilepsy.
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4.2 Domain analysis of the calcium-activated potassium channel SK1

from rat brain: Functional expression and toxin sensitivity.

Expression of rSK1 in mammalian cells. Until now only two independent groups have

shown the expression of rSK1 using  antibodies specifically generated against the rSK1 channel

α-subunit. One group showed the expression of the rSK1 protein in dissociated hippocampal

pyramidal neurons using an antibody generated against the carboxy-terminus of the subunit

(Bowden et al., 2001), while the second group showed the expression of the SK1 protein in rat

brain (Sailer et al., 2002) using specific anti amino- and carboxy-terminal antibodies. In order to

understand the functional and pharmacological properties of the rSK1 channels, we transiently

transfected the rSK1  α-subunit in HEK-293 cells. To detect the expression of the rSK1 protein,

we used a novel antibody generated against a unique sequence in the amino-terminus of the rat

SK1 (anti-NSK1). The anti-NSK1 antibody detected the rSK1 protein distribution throughout the

cell (Fig 3.16B, also immunoblot experiments confirmed the expression of rSK1 protein; data

not shown, D’hoedt et al., 2004). Electrophysiological recordings of HEK-293-cells transiently

transfected with rSK1 did not show K+-currents above background (Fig 3.19A). These data

suggest that the rSK1 protein is not functionally expressed at the cell membrane, but is most

probably retained. Our findings are in good agreement with the data published by Benton et al.

(2003), who showed that the expression of rSK1 in HEK cells did not result in SK currents, and

furthermore that immunostaining showed a signal primarily  in the intracellular compartments

(Benton et al., 2003). The fact that there is a higher expression of the protein intracellularly and

no signal on the cell membrane could be the reason for the lack of current in cells expressing the

rSK1 protein. To identify molecular determinants responsible for the lack of rSK1 functional

expression, we generated chimeric subunits.

Role of amino- and carboxy- termini in the functional expression of rSK1 channels.  In

the last decade a growing amount of papers have been published showing the specialized

functions of the amino- or carboxy-termini of ion channels. It has been shown for example that

the amino-terminus in voltage gated potassium channels (KV) contains the tetramerization

domain (T1 domain). This domain was identified originally as an important site for regulating

intersubunit interactions during channel assembly, such that only a restricted number of

heterotetramers are made between KV channels (Jan L.Y and Jan Y.N., 1990, Lee et al., 1994,

Deal et al., 1994, Xu J et al., 1994, Shen N.V. and Pfaffinger P.J, 1995, Strang et al., 2001).

However, several groups have reported the functional expression of KV channels after deletion of

this T1 domain (Lee et al., 1994, Tu et al., 1996, Kobertz W.R. and Miller C., 1999), in contrast

to other reports that T1 deletion precludes channel assembly (Shen et al., 1993, Hopkins et al.,
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1994, Shen N.V. and Pfaffinger P.J, 1995, Schulteis et al., 1998). The presence of the leucine

zipper and dileucine motifs in the amino-terminus of SK4 channels have shown to be essential

for channel assembly and trafficking to the plasma membrane (Jones et al.,2004). However,

several studies have also been performed on the influence of the carboxy-terminus on SK

channels expression. This resulted in the identification of 2 domains important for assembly and

membrane targeting: the Ct1 domain, corresponding to the CaM-binding region of the channels

(Xia et al., 1998) and the Ct2 domain, corresponding to the distal part of the carboxy-terminus

containing a leucine zipper motif (Joiner et al., 1997, Joiner et al., 2001, Syme et al., 2003).

Thus, in the case of the SK/IK channels it is not entirely clear which part of the channel is

essential for the tetrameric assembly, and which parts might instead take part in the intracellular

sorting and membrane trafficking.

The biggest difference between the rSK1 and rSK2 subunit sequences lie in their amino-

and carboxy-teminal regions. According to the possibility of an amino-and/or carboxy terminus

involvement in channel assembly and functional expression, we constructed several chimeric

subunits in which the amino-and/or carboxy-region of rSK1 was exchanged. The first  chimera

rSK1N-C_rSK2 , in which both rSK1 amino- and carboxy-termini are exchanged by the

corresponding ones of rSK2, assembled and formed functional calcium-activated potassium

channels (Fig 3.18F, Fig 3.19D, Fig 3.22). Furthermore, when only the carboxy-terminus of

rSK1 was replaced by the carboxy-terminus of rSK2 or hSK1, the resulting rSK1CrSK2 and

rSK1ChSK1 assembled into functional K+ channels as demonstrated by the K+ currents elicited in

the presence of calcium (Fig 3.18B, G, Fig 3.19 C, F, Fig 3.22). However, when we exchanged

the amino-terminus of rSK1 by the corresponding region of rSK2 or hSK1, no current above

background was detected (Fig 3.19 B, E, Fig 3.22), although the protein was expressed (Fig

3.18C). These results show that substitution of the rSK1 carboxy-terminus by rSK2 or hSK1, but

not the substitution of the corresponding amino-terminus, is per se sufficient to obtain its

functional expression. This suggests that the carboxy-terminus of rSK1 is responsible for the

lack of functional rSK1 channel expression. It has been shown that obstruction of CaM binding

to the carboxy-terminus of SK channels results in the retention of the channels in the

endoplasmatic reticulum. Joiner and colleagues showed that interference with the binding of

CaM to IK α-subunits, by overexpressing the CaM binding domain Ct1 which then acted as a

dominant negative, and therefore decreased the amount of CaM bound to the full length α-

subunits, resulted in a decrease of the whole cell current and a redistribution of the IK protein

from the cell membrane to the cytoplasm (Joiner et al., 2001). Furthermore, Lee and colleagues

demonstrated that when the electrostatic interaction between rSK2 and CaM, at the CaMBD, was

disrupted by mutating the responsible amino acids, the rSK2 protein was not expressed anymore
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at the cell membrane (Lee et al., 2003). With these findings in mind, we thought that the

interaction between CaM and the rSK1 α-subunit was disrupted. Therefore, the channel did not

get expressed at the cell surface, and thus no current would be observed. Surprisingly, when we

then exchanged the carboxy-terminus of hSK1 with the corresponding part of rSK1, functional

channels were observed (Fig 3.21 B, C). This result argues against an impairment of CaM

binding and gating solely due to the rSK1 carboxy terminus. By contrast, when we substituted

the amino- and the carboxy-termini of hSK1 by the amino-and carboxy- termini of rSK1,

functional channel expression was hindered. Thus, substitution of both amino-and carboxy-

termini of rSK1 into hSK1 subunits, which normally form functional homomeric channels,

hinders their functional expression, which is in good agreement with previous evidence that both

amino- and carboxy-termini of SK channels are important for the SK channel assembly and

tetramerization (Joiner et al., 2001, Fanger et al., 2001, Miller et al., 2001, Syme et al., 2003

Jones et al., 2004).

Even if the rSK1 carboxy-terminus is able to bind CaM and allow channel gating as

revealed by the functional expression of hSK1CrSK1, the role of the carboxy-terminus in assembly

might explain the lack of functional expression of homomeric channels. There are several

options why rSK1 does not form functional channels. First, rSK1 α-subunits do not assemble

properly and as consequence there is no transport of functional homotetrameric channels to the

cell membrane. As previously mentioned, there are two important domains in the carboxy-

terminus of SK channels which are important for channel assembly, Ct1 and Ct2. When the

primary sequence of rSK1 is compared with rSK2 or hSK1, which form functional channels,

there is a big difference between the carboxy-termini of the channels. This sequence divergence

might affect the proper assembly and/or transport of rSK1 channels to the cell membrane,

although the leucine zipper in the Ct2 domain of rSK1 is preserved as well as the ability to bind

CaM to the Ct1 domain (functional expression of hSK1CrSK1). Second, membrane expression of

rSK1 might require an auxiliary subunit, such as a β-subunit, which acts as a chaperone and

targets the channel to the membrane. It has been reported for some Na+, Ca2+ and KV channels,

that they require a β-subunit in order to increase channel expression at the cell surface (Isom et

al., 1994, Shi et al., 1996). The absence of this β-subunit in our expression system could then

explain the lack of rSK1 expression. Finally, it is possible that rSK1 subunits acts as other

modulatory subunits, also called “silent subunits”. This means that when the subunit is expressed

on its own it will not form functional channels, as it is the case for example for KV6.3, KV9.3,

KV10.1, KV11.1 (Kerschensteiner and Stocker, 1999, Ottschytsch et al., 2002). However, when

such a silent subunit co-assembles with another family member, it forms heteromeric channels

with peculiar functional and pharmacological features. Indeed, recently is has been shown that
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rSK1 is able to form functional heteromeric channels with rSK2 (Benton et al., 2003). Therefore

it would not be unconceivable that such an interaction would occur under native conditions,

where the different SK channel subunits are co-expressed in the same cell type (Stocker and

Pedarzani , 2000, Sailer et al., 2002).

Pharmacological properties of the rSK1 core chimeras. The difference in apamin and d-

tubocurarine sensitivity between SK channels has been attributed to some distinct amino acids in

the pore region of the α-subunits (Ishii et al., 1997, Shakkottai et al., 2001). Until now, there was

no possibility to investigate the pharmacological properties of rSK1 because it was not

functionally expressed. We used our chimeras, rSK1N-C_rSK2, rSK1CrSK2 and rSK1hSK1, which

formed functional channels (Fig 3.19C, D, F) and contained the core domain (pore region and

transmembrane domains) of rSK1, to test the apamin and dTC sensitivity of rSK1. When we

applied 100 nM apamin or 50 µM dTC to the these chimeras, no effect was observed (Fig 3.23A-

C and Fig 3.24A-C). However, when apamin (10 nM) or dTC (50 µM) were applied to the

chimeras containing the hSK1 core domains, hSK1CrSK1 and hSK1NrSK1, the currents generated by

the chimeric subunits were blocked (Fig 3.23E, F and Fig 3.24E). This finding was quite

surprising, as it was shown that the amino acids, responsible for the difference in sensitivity for

apamin and dTC between hSK1 and rSK2, were located in the pore region (Ishii, 1997).

However,  when the primary amino-acid sequences between rSK1 and hSK1 were compared

(Fig 3.15) there was no difference in amino acid sequence in the pore region between rSK1 and

hSK1. This would suggest that there is another mechanism involved, which contributes to the

drug sensitivity  of SK channels. A possible explanation for this sensitivity difference is that

amino-acids located outside the pore region may contribute to apamin and dTC binding. This

would suggest that the determinants for apamin and dTC binding are most likely located between

the S1 and S6 domains. In this region, the rSK1 and hSK1 sequences differ by 16 amino acids.

In conclusion, we showed that the rSK1 protein is synthesized but does not form functional

homotetrameric channels. Furthermore, the chimeras with the amino and carboxy termini or with

only the carboxy terminus substituted by hSK1 or rSK2 and containing the core rSK1 domain,

formed  functional channels which were not sensitive to apamin and dTC. Further experiments

need to be performed in order to understand the difference in apamin and dTC sensitivity

between rSK1 and hSK1 channels.
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4.3 Characterization of a novel splice variant of the calcium-activated

potassium channel rSK2.

 Expression of rSK2-860. The functional, structural and developmental diversity of K+

channels is generated by several mechanisms. These include gene diversity, alternative splicing,

hetero-tetramerization of α- (pore-forming) subunits, and modulation of pharmacological and

gating properties via β- (non-pore-forming) subunits. Alternative splicing is very commonly

found among Drosophila melanogaster K+ channel genes as well as among vertebrate K+ channel

genes (Timpe et al., 1988, Luneau et al., 1991). Vertebrate BK (large conductance calcium- and

voltage-activated potassium channel) channels undergo extensive alternative splicing (Butler et

al., 1993). In contrast, alternate transcripts of the IK gene cloned from human (Ishii et al., 1997),

rat (Joiner et al., 1997) and mouse (Vandorpe et al., 1998) have not been reported so far.

Furthermore, a recent study revealed that the mouse SK1 gene undergoes extensive alternative

splicing, resulting in various mSK1 polypeptides (Shmukler et al., 2001).

We showed the existence of a splice variant of the rSK2, called rSK2-860. A RNAse

protection assay showed that the transcript of this long rSK2 variant is truly existing (Dr.

Stocker’s personal communication). The transcript exhibits a longer 5’ nucleotide sequence

which encodes for a longer amino-terminal amino acid sequence. Furthermore, when we

expressed the rSK-860 cDNA into different expression systems, we obtained a very distinct

expression pattern (Fig 3.27, Fig 3.29 and Fig 3.31) in comparison to the original rSK2 (Fig

3.26, Fig 3.28 and Fig 3.30). These data suggest that the longer amino-terminus of rSK2-860

contains a specific sequence information that is necessary for clustering of the α-subunits in the

cell cytoplasm. However, when we examined the primary sequence of the amino-terminus we

could not find any specific targeting signal which could be responsible for retention and

clustering of the channel subunit. Additionally, co-expression of rSK2-860 with a Golgi marker

(pEYFP-Golgi) or a cell membrane marker (pEGFP-F), did not result in an overlap of both

proteins. Furthermore, when rSK2-860 was co-stained with a nuclear membrane antibody (anti-

lamin A/C), no co-localization was observed. However, an expression profile was made and

showed that the rSK2-860 protein clusters are closely located to the nuclear membrane. These

data suggest that the protein clusters are located in the perinuclear region.

Truncation and deletion studies of the amino-terminus of rSK2-860. In order to determine

which segment in the amino-terminus is responsible for the formation of aggregates at the

perinuclear region, we performed several truncation studies. When rSK2-829 and rSK2-795

were expressed in HEK-293 cells, the same expression pattern as with rSK2-860 was observed

(Fig 3.35 and Fig 3.36). In contrast, expression of rSK2-695 resulted in a membrane expression
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(Fig 3.37) and the formation of functional channels (preliminary electrophysiological data

confirm the formation of functional channels activated by Ca2+ in the cell membrane). These data

suggest that the segment which is responsible for the clustering of the rSK2-860 channel subunit

is localized between amino acids 67 and 166, resulting in a hundred amino acid long stretch

localized in the middle of the total 275 amino acid longer amino terminus. This finding is in

good agreement with the data obtained using the different GFP-tagged amino-terminal regions.

All the GFP constructs containing this area in the tagged segment resulted in formation of big

clusters (Fig 3.41A1, B1, D1). Furthermore, the SK2-N9 construct, which lacks this segment in

the resulting tagged protein, did not result in the formation of aggregates (Fig 3.41C1). However,

one construct was in disagreement with this hypothesis: when construct SK2-N12 was expressed

in HEK-293 cells, there was no formation of clusters, although the construct contained a part of

the suggested 100 amino acid long stretch. Two possible explanations for this result could be: 1)

Although the protein contains 50% of the segment putatively responsible for the clustering, it

could be that the signal necessary for clustering is hindered or embedded by the tertiary structure

of the GFP-tagged protein; 2) The protein contains the part of the segment which does not

include the specific signal for cluster formation. Consequently, the GFP-tagged protein is not

forming clusters and shows the diffuse GFP pattern. Therefore, future experiments, such as

tagging the proposed 100 amino acid long segment with a GFP-tag, or generating more truncated

proteins between rSK2-794 and rSK2-695 in order to narrow down the region responsible for

rSK2-860 protein clusters, might give us a better view on the region responsible for cluster

formation or reveal a new signal sequence responsible for the retention of the rSK2-860 subunit

in the cytoplasm.

 Function of rSK2-860. In the past years, researchers have shown that protein clusters in

the cell cytoplasm is a response of the cell to misfolded proteins, such as the mutations in KV1.1

resulting in the formation of protein aggregates and results in a neurological disorder (Manganas

et al., 2001). A common feature for protein aggregation is the co-localisation with ubiquitin,

which is a signal for the cell to degrade the protein via the proteasome pathway (Ward, 1995,

Hicke L, 1997, Hicke and Dunn, 2003, Aguilar and Wendland, 2003, Pickart, 2004). However,

when we transfected HEK-293 cells with rSK2-860 or with the originally cloned rSK2 subunits,

no co-localisation between the channel proteins and the ubiquitin protein was observed (Fig

3.51). This result suggests that the rSK2-860 gene products are not misfolded protein aggregates

targeted to the proteasome for degradation. A similar result was obtained when rSK2-860

aggregates were tested for the formation of aggresomes by co-staining with vimentin. Also in

this case, there was no co-localisation of the vimentin protein and the rSK2-860 protein (Fig

3.49).
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The following hypothesis could be formulated for the function of the rSK-860 protein

clusters. Experiments showed that the rSK2-860 protein was able to interact with the original

rSK2 protein (Fig 3.42), and kept it partially “trapped” in the clusters. These data shows that the

co-expression of rSK2-860 downregulates the surface expression of the original rSK2 protein in

the cell membrane. Therefore, we can assume that the rSK2-860 protein could behave as a

dominant negative subunit when it is co-expressed with the original rSK2 protein. If this

interaction would also occur in vivo, then it could have physiological consequences. As

mentioned (see Introduction 1.4), SK channels are contributing to the IAHP in several neurons.

Until now it was assumed that the IAHP current, when measured in brain slices or primary cell

culture, is the result of the total SK channel pool expressed at the cell membrane of the neuron.

However, if, as shown in our experiments, rSK2-860 also interacts with rSK2 in vivo, and thus

acts as a dominant negative subunit which suppresses a big part of the IAHP current, the observed

IAHP current is only the result of a partial expression of the SK channels at the cell membrane of

the neuron. Thus, this could have a significant impact on the firing pattern in neurons when this

rSK2-860/rSK2 complexes are released and targeted to the membrane, while the firing pattern of

neurons is controlled by the IAHP. It has been shown that the firing frequency of neurons can be

changed when the IAHP is influenced (Vergara et al., 1998, Pedarzani et al., 2001, Faber et al.,

2003). Several mechanisms could be used to target the rSK2-860/rSK2 complexes to the

membrane: 1) The complex could be targeted to the membrane after the activation of a

secondary pathway. It has been shown that Kv2.1 channels are clustered in the somata and

dendrites of cultured neurons. However, when the neurons were subjected to a glutamate

stimulation, a relocation of the clusters to the surface of the neuron was observed. The glutamate

stimulation induced a Ca2+ influx in the cell, which activated the Ca2+-dependent phosphatase,

calcineurin. Therefore, dephosphorylation of Kv2.1 resulted in the relocation of the channel to

the membrane (Misonou et al., 2004). Similar mechanisms, which activate secondary pathways,

such as kinases, proteases or as shown here, phosphatases could be necessary to relocate the

complex to the membrane. 2) The clusters need an additional β-subunit to be transported to the

cell surface. It has been shown that expression in cells of Kv1.2 results in a perinuclear staining.

However, when Kv1.2 is co-expressed with the β-subunit, Kvβ2, the channel is targeted to the

membrane (Shi et al., 1996). Therefore, it might be possible that rSK2-860 clusters are relocated

to the surface upon interaction with a β-subunit, which has not been identified yet. Future

experiments, such as yeast-two hybrid screens could reveal the existence of a β-subunit which

could be the chaperone for rSK2-860 channels. Furthermore, we will investigate how this protein

acts in native systems such as in neurons in culture.
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In conclusion, we found a new splice variant of the rSK2 channel, which displays a very

distinct expression patter in comparison with the originally cloned rSK2 channel. Furthermore,

we partially narrowed down the region responsible for the clustering of the α-subunit of rSK2-

860. We hypothesize a possible physiological role for this α-subunit.



Abbreviations

A Ampere

AHP Afterhyperpolarization

bp basepairs

CaM calmodulin

CaMBD calmodulin binding domain

CHO Chinese hamster ovary cells

COS African green monkey kidney cells

CTX charybdotoxin

dTC d-tubocurarine

EBIO 1-ethyl-2-benzimidazolinone

EC50 half maximal excitatory concentration

EF hands calcium binding domains

EGTA Ethylenglycol-bis(β-aminoethylether-)N,N,N’,N’-Tetra acetic acid

ER endoplasmatic reticulum

g gram

HEK human embryonic kidney cells

HEPES N-2-Hydroxyethylpiperazine-N’-2ethane-sulfonic acid

hSK1 (KCa2.1) small-conductance calcium-activated potassium channel from human

IC50 half maximal inhibitory concentration

IAHP afterhyperpolarization current

KCa calcium-activated potassium channel

KV voltage-gated potassium channel

l liter

M molar

mAHP medium afterhyperpolarization

min minutes

PCR polymerase chain reaction

RT room temperature

rSK1 (KCa2.1) small-conductance calcium-activated potassium channel from rat

rSK2 (KCa2.2) small-conductance calcium-activated potassium channel from rat

rSK3 (KCa2.3) small-conductance calcium-activated potassium channel from rat

s seconds

S Siemens
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sAHP slow afterhyperpolarization

sIAHP slow afterhyperpolarization current

V volt

Vm membrane potential



Appendix

Amino acid sequences of the cloned SK channels

1.1. hSK1

MNSHSYNGSV GRPLGSGPGA LGRDPPDPEA GHPPQPPHSP GLQVVVAKSE 50
PARPSPGSPR GQPQDQDDDE DDEEDEAGRQ RASGKPSNVG HRLGHRRALF 100
EKRKRLSDYA LIFGMFGIVV MVTETELSWG VYTKESLYSF ALKCLISLST 150
AILLGLVVLY HAREIQLFMV DNGADDWRIA MTCERVFLIS LELAVCAIHP 200
VPGHYRFTWT ARLAFTYAPS VAEADVDVLL SIPMFLRLYL LGRVMLLHSK 250
IFTDASSRSI GALNKITFNT RFVMKTLMTI CPGTVLLVFS ISSWIIAAWT 300
VRVCERYHDK QEVTSNFLGA MWLISITFLS IGYGDMVPHT YCGKGVCLLT 350
GIMGAGCTAL VVAVVARKLE LTKAEKHVHN FMMDTQLTKR VKNAAANVLR 400
ETWLIYKHTR LVKKPDQARV RKHQRKFLQA IHQAQKLRSV KIEQGKLNDQ 450
ANTLTDLAKT QTVMYDLVSE LHAQHEELEA RLATLESRLD ALGASLQALP 500
GLIAQAIRPP PPPLPPRPGP GPQDQAARSS PCRWTPVAPS DCG  543

1.2. rSK1

MSSRSHNGSV GRPLGSGPGF LGWEPVDPEA GRPRQPTQGP GLQMMAKGQP 50
AGLSPSGPRG HSQAQEEEEE EEDEDRPGSG KPPTVSHRLG HRRALFEKRK 100
RLSDYALIFG MFGIVVMVTE TELSWGVYTK ESLCSFALKC LISLSTVILL 150
GLVILYHARE IQLFLVDNGA DDWRIAMTWE RVSLISLELA VCAIHPVPGH 200
YRFTWTARLA FSLVPSAAEA DVDVLLSIPM FLRLYLLARV MLLHSRIFTD 250
ASSRSIGALN RVTFNTRFVT KTLMTICPGT VLLVFSISSW IVAAWTVRVC 300
ERYHDKQEVT SNFLGAMWLI SITFLSIGYG DMVPHTYCGK GVCLLTGIMG 350
AGCTALVVAV VARKLELTKA EKHVHNFMMD TQLTKRVKNA AANVLRETWL 400
IYKHTRLVKK PDQSRVRKHQ RKFLQAIHQA QKLRTVKIEQ GKVNDQANTL 450
ADLAKAQSIA YEVVSELQAQ QEELEARLAA LESRLDVLGA SLQALPSLIA 500
QAICPLPPPW PGPSHLTTAA QSPQSHWLPT TASDCG  536

1.3. rSK2

MSSCRYNGGV MRPLSNLSSS RRNLHEMDSE AQPLQPPASV VGGGGGASSP 50
SAAAAASSSA PEIVVSKPEH NNSNNLALYG TGGGGSTGGG GGGGGGGGGS 100
GHGSSSGTKS SKKKNQNIGY KLGHRRALFE KRKRLSDYAL IFGMFGIVVM 150
VIETELSWGA YDKASLYSLA LKCLISLSTI ILLGLIIVYH AREIQLFMVD 200
NGADDWRIAM TYERIFFICL EILVCAIHPI PGNYTFTWTA RLAFSYAPST 250
TTADVDIILS IPMFLRLYLI ARVMLLHSKL FTDASSRSIG ALNKINFNTR 300
FVMKTLMTIC PGTVLLVFSI SLWIIAAWTV RACERYHDQQ DVTSNFLGAM 350
WLISITFLSI GYGDMVPNTY CGKGVCLLTG IMGAGCTALV VAVVARKLEL 400
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TKAEKHVHNF MMDTQLTKRV KNAAANVLRE TWLIYKNTKL VKKIDHAKVR 450
KHQRKFLQAI HQLRSVKMEQ RKLNDQANTL VDLAKTQNIM YDMISDLNER 500
SEDFEKRIVT LETKLETLIG SIHALPGLIS QTIRQQQRDF IETQMENYDK 550
HVTYNAERSR SSSRRRRSSS TAPPTSSESS  580

1.4. rSK3

MDTSGHFHDS GVGDLDEDPK CPCPSSGDEQ QQQQQPPPPS APPAVPQQPP 50
GPLLQPQPPQ LQQQQQQQQQ QQQQQQQQQQ APLHPLPQLA QLQSQLVHPG 100
LLHSSPTAFR APNSANSTAI LHPSSRQGSQ LNLNDHLLGH SPSSTATSGP 150
GGGSRHRQAS PLVHRRDSNP FTEIAMSSCK YSGGVMKPLS RLSASRRNLI 200
EAEPEGQPLQ LFSPSNPPEI IISSREDNHA HQTLLHHPNA THNHQHAGTT 250
AGSTTFPKAN KRKNQNIGYK LGHRRALFEK RKRLSDYALI FGMFGIVVMV 300
IETELSWGLY SKDSMFSLAL KCLISLSTII LLGLIIAYHT REVQLFVIDN 350
GADDWRIAMT YERILYISLE MLVCAIHPIP GEYKFFWTAR LAFSYTPSRA 400
EADVDIILSI PMFLRLYLIA RVMLLHSKLF TDASSRSIGA LNKINFNTRF 450
VMKTLMTICP GTVLLVFSIS LWIIAAWTVR VCERYHDQQD VTSNFLGAMW 500
LISITFLSIG YGDMVPHTYC GKGVCLLTGI MGAGCTALVV AVVARKLELT 550
KAEKHVHNFM MDTQLTKRIK NAAANVLRET WLIYKHTKLL KKIDHAKVRK 600
HQRKFLQAIH QLRGVKMEQR KLSDQANTLV DLSKMQNVMY DLITELNDRS 650
EDLEKQIGSL ESKLEHLTAS FNSLPLLIAD TLRQQQQQLL TAFVEARGIS 700
VAVGTSHAPP SDSPIGISST SFPTPYTSSS SC  732
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Amino acid sequence alignments

2.1. Alignment of hSK1, rSK2 and rSK3 protein sequences

Black boxes correspond with the amino acids which differ between the three aligned

sequences. The yellow boxes (S1-S6) present the 6 transmembrane domains, and the green

corresponds with the pore region (P-region), in the α-subunit. AS observed from this alignment,

there is a high difference between the amino- and carboxy-termini of the subunits.
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Configuration for the LSM software of the confocal microscope.

In order to detect fluorescent signals using a confocal microscope (LSM 510), several scan

modules had to be programmed, as shown below. For colocalization experiments, pictures were

obtained in the multitrack mode. In this mode, 2 different fluorescence signals can be detected,

used modes were GFP/Cy3, YFP/Cy5 and Cy3/Cy5. Samples with Cy5 were excited using a

HeNe laser 633 nm, those with Cy3 were excited with a HeNe laser 543 nm. To detect signals

from samples containing EGFP or EYFP, they had to be excited with an Ar laser with

wavelength 458, 477, 488 and 514 nm. To avoid cross-talk between different secondary

antibodies, the right filter sets had to be put in place. HFT and NFT are dichroic mirrors, HFT

separates excitation (laser) and emission light (fluorescence), while NFT effects spectral division

of fluorescence light (e.g. NFT 545: reflects light of I<545 nm and transmits light of I>545 nm).

Furthermore, LP (long pass) and BP (band pass) filters were also incorporated in the

fluorescence light path.

Settings for detection of the Cy5 secondary antibody:
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Settings for the detection of the Cy3 secondary antibody:

Settings for the detection of the EYFP tagged proteins.
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Settings for EGFP tagged proteins, or for the secondary antibody FITC
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