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Abstract

Probabilistic modeling for data mining and machine learning problems is a fundamental
research area. The general approach is to assume a generative model underlying the
observed data, and estimate model parameters via likelihood maximization. It has the
deep probability theory as the mathematical background, and enjoys a large amount of
methods from statistical learning, sampling theory and Bayesian statistics. In this thesis
we study several advanced probabilistic models for data clustering and feature projection,
which are the two important unsupervised learning problems.

The goal of clustering is to group similar data points together to uncover the data clus-
ters. While numerous methods exist for various clustering tasks, one important question
still remains, i.e., how to automatically determine the number of clusters. The first part
of the thesis answers this question from a mixture modeling perspective. A finite mixture
model is first introduced for clustering, in which each mixture component is assumed to
be an exponential family distribution for generality. The model is then extended to an
infinite mixture model, and its strong connection to Dirichlet process (DP) is uncovered
which is a non-parametric Bayesian framework. A variational Bayesian algorithm called
VBDMA is derived from this new insight to learn the number of clusters automatically,
and empirical studies on some 2D data sets and an image data set verify the effectiveness
of this algorithm.

In feature projection, we are interested in dimensionality reduction and aim to find a
low-dimensional feature representation for the data. We first review the well-known prin-
cipal component analysis (PCA) and its probabilistic interpretation (PPCA), and then
generalize PPCA to a novel probabilistic model which is able to handle non-linear pro-
jection known as kernel PCA. An expectation-maximization (EM) algorithm is derived
for kernel PCA such that it is fast and applicable to large data sets. Then we propose
a novel supervised projection method called MORP, which can take the output informa-
tion into account in a supervised learning context. Empirical studies on various data sets
show much better results compared to unsupervised projection and other supervised pro-
jection methods. At the end we generalize MORP probabilistically to propose SPPCA
for supervised projection, and we can also naturally extend the model to S2PPCA which
is a semi-supervised projection method. This allows us to incorporate both the label
information and the unlabeled data into the projection process.

In the third part of the thesis, we introduce a unified probabilistic model which can
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handle data clustering and feature projection jointly. The model can be viewed as a clus-
tering model with projected features, and a projection model with structured documents.
A variational Bayesian learning algorithm can be derived, and it turns out to iterate the
clustering operations and projection operations until convergence. Superior performance
can be obtained for both clustering and projection.
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Data clustering and feature projection are two fundamental problems for data mining and
machine learning. They both try to uncover the intrinsic structure of the underlying data,
and are in general referred to as unsupervised learning problems. This is in contrast to
supervised learning, where the target is to learn a supervised task like classification and
regression.

Probabilistic modeling for unsupervised learning is an important research area. The
basic assumption of probabilistic modeling is that there is a generative model underlying
the observed data, which reflects the intrinsic structure of the data. The generative model
is determined by some model parameters, and one task of probabilistic modeling is learning
which aims to identify these parameters given the model assumption and the observations.
The other task is inference, by which we can predict how likely a new data point can be
generated from this underlying model.

In this thesis we are interested in probabilistic modeling for two important unsupervised
learning problems, namely, clustering and projection. For clustering we focus on mixture
models, and for projection we consider the so-called latent variable models. These basic
models are both well-known in statistics, but in this thesis we study the advanced models
and consider, for instance, infinite mixture models and non-linear latent variable models.
We then propose a unified framework at the end and solve the two problems simultaneously.

The organization of this thesis is as follows. We study probabilistic models for clus-
tering in Part I, which covers the following chapters:

• Chapter 1 provides an overview of clustering models. The well-known flat clustering
and hierarchical clustering algorithms are briefly discussed, which can be categorized
into model-based clustering and similarity-based clustering. The following chapters
mainly discuss model-based clustering algorithms.

• Chapter 2 studies the well-known finite mixture models for clustering. To allow
enough flexibility of the model, we introduce mixture of exponential family distri-
butions and the conjugate family, and study finite mixture models from a Bayesian
perspective. A Gibbs sampling method as well as the variational Bayesian approx-
imation are used for inference and learning, and mixture of Gaussians and mixture
of Multinomials are illustrated as examples.

xvii
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• Chapter 3 goes beyond finite mixture models and consider the asymptotic case where
the number of mixture components goes to infinity. This chapter builds the connec-
tion to the Dirichlet process, a non-parametric Bayesian prior for random measures.
Both Gibbs sampling methods and efficient variational mean-field algorithms are
described for inference in the model, and empirical studies show the effectiveness of
the model.

Then in Part II we turn to probabilistic projection models and discuss the following
topics:

• Chapter 4 gives an overview of different projection methods like PCA, kernel PCA
and projection models for discrete data.

• Chapter 5 reviews the probabilistic model for PCA and generalizes the model for
non-linear projection such as kernel PCA. An efficient EM learning algorithm is
derived for kernel PCA in this context, and the incremental and online learning
versions are briefly discussed for extensions.

• Chapter 6 considers supervised projection problem where we have both input features
and some output labels like classification labels or regression values. A multi-output
regularized projection (MORP) algorithm is introduced to solve this problem which
is motivated from the latent variable view of PCA. The algorithm turns out to be a
generalized eigenvalue problem, and can also be generalized to non-linear projections.

• Chapter 7 provides a probabilistic explanation to MORP and furthermore considers
the semi-supervised projection problem where we have unlabeled data as well. An
efficient EM algorithm is derived for inference and learning, and various experiments
show that the proposed method outperforms the competitors.

The last part discusses a unified model for clustering and projection. After a brief
overview of joint clustering-projection models in Chapter 8, we discuss in detail the prob-
abilistic clustering-projection (PCP) model for discrete data in Chapter 9. The models de-
fines a generative process for both clustering and projection, and the standard variational
Bayesian learning algorithm corresponds to an iterative process of performing clustering
and projection operations. We show that we can obtain both better clustering structure
for data points, and better projection model for features.
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Probabilistic Clustering Models
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Chapter 1

Overview of Clustering Models

Clustering aims to group similar data points together, and is a fundamental problem for
data mining, machine learning and statistics. Apart from the clear intuition which is
just data grouping, it is well-known that clustering is not a well-defined problem, and
there exists a large amount of work on both theoretical analysis of clustering algorithms
and their usage in different application domains. In this part we are more interested in
the algorithm level, and the derived models can be applied in principal to any suitable
domains.

The most well-known clustering algorithm is probably the k-means, which partitions
the data into k disjoint parts (see, e.g., [8]). Mathematically it can be shown that k-
means is minimizing an information criterion of the data, and it implicitly assumes that
the data are distributed as a mixture of isotropic Gaussians. The easy implementation
and good scalability makes it popular in almost all clustering applications. It belongs to
the category of flat clustering , in which all the clusters are at the same level and have
no overlap. In Section 1.1 we review the two different types of flat clustering algorithms,
i.e., model-based clustering and similarity-based clustering . k-means can however be viewed
from both perspectives.

A different way of organizing clusters is to build a cluster hierarchy, where upper-
level clusters contain lower-level clusters. Clustering algorithms which can generate such
a tree structure are called hierarchical clustering algorithms [34], and each level of the
hierarchy can be viewed as a flat clustering of the data. To generate such a hierarchy,
we can gradually merge nearby data points until we obtain one cluster for all the data
(agglomerative methods), or start from the top of the tree and each time split one big
cluster into several smaller ones (partitioning methods). The well-known linkage methods
such as single-linkage and complete-linkage belong to the former type and are widely used
for hierarchy generation. In Section 1.2 we briefly review these algorithms. Finally in
Section 1.3 we point out the road-map of our contributions in the following chapters of
this part.

3
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Figure 1.1: Illustration of a Gaussian mixture model on a 2D toy data.

1.1 Flat Clustering

Flat clustering groups the data points into a small number of clusters. It can in general be
divided into two categories: model-based clustering and similarity-based clustering. Some
algorithms like k-means can be viewed from both perspectives.

1.1.1 Model-based Clustering

In model-based clustering, we need to assign a generative model to the data and train a
mixture model with some distributional assumptions [26]. Then each mixture component
corresponds to one cluster of the data. One popular choice is to make Gaussian assump-
tions to the data and train a Gaussian mixture model (GMM) for clustering (see, e.g., [4]).
Figure 1.1 models a 2D toy data with 5 Gaussians, in which each Gaussian is denoted as
a blue ellipse to visulize the mean (the center of the ellipse) and covariance (the shape of
the ellipse). Clearly, we can see that there are 5 clusters, and each Gaussian denotes one
cluster.

As the output of model-based clustering, we obtain soft cluster assignments for every
data point, as well as the soft weight for each cluster. That is, model-based clustering is a
soft clustering . Sometimes this property is desired because we can model the uncertainty
of the whole corpus, and the model is generalizable to new data points as long as they
follow the same distributional assumptions. However, these assumptions can sometimes be
restrictive, and the model performs not very well if any of the assumptions is violated. For
data with high dimensionality like images and texts, model-based clustering may lead to
overfitting, and this is why some researchers project the data into some low-dimensional
space first (using, e.g., principal component analysis [46]), and then train a clustering
model on that space.

The learning algorithm for model-based clustering is just standard parameter estima-
tion for probabilistic models. The expectation-maximization (EM) [18] is one popular
approach since it is easily understood and reasonable fast. In EM we randomly initialize
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Figure 1.2: Illustration of a k-means clustering on a 2D toy data.

the cluster-specific parameters (e.g., mean and covariance for each component in a GMM),
and then iterate the E-step in which soft data-cluster memberships are estimated, and M-
step in which cluster-specific parameters are optimized. The data likelihood is guaranteed
to increase along EM iterations until convergence.

1.1.2 Similarity-based Clustering

While model-based clustering is soft and theoretically sound, similarity-based approaches
are widely applied due to its simplicity. Here one defines a similarity function (or reversely,
a dissimilarity or distance function) for every pair of data points, and then groups similar
data points together or splits the whole corpus into dissimilar subsets to form clusters. The
different algorithms differ in similarity definitions or the way of grouping and splitting.

The k-means algorithm originally belongs to similarity-based methods, where Eu-
clidean distance is used as the distance function. The number of clusters K is pre-defined,
and each data point is assigned to the cluster whose center is the closest to this data
point. Then the cluster centers are re-calculated, and the memberships are re-assigned
until these two steps do not change the current status. After the convergence we have a
partition of the whole corpus, as can be seen from the cluster boundaries in Figure 1.2.
Each cluster is represented through the center point which is the sample mean of the data
points belonging to this cluster.

Euclidean distance can only lead to isotropic clusters. If local distance functions are
used, e.g., geodesic distance which is calculated along the surface of the data manifold,
clustering can be formulated as finding a partitioning or a cut of the adjacency graph.
This technique is called spectral clustering and can lead to arbitrarily shaped clusters [66].
Different cut criteria lead to different spectral clustering algorithms, and all of them turn
out to solve a certain (generalized) eigenvalue problem after relaxing the constraints.

Another way of considering local similarity is to use the notion of density, which
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measures the local connectivity and counts the number of neighbors surrounding each
data point with a certain distance. One good example is the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) algorithm [23] which explicitly explores
the densities and defines one cluster as a maximal set of density-connected points. Two
parameters, the maximal radius of the neighborhood and the minimum number of points
in the neighborhood, help to define the density connectivity. The algorithm is very efficient
and can also learn arbitrarily shaped clusters, but the drawback is that it is not applicable
to high dimensional data due to curse of dimensionality.

A common problem of similarity-based methods is that we can only obtain a hard
cluster assignment for each document. No uncertainty of the data is modeled, and there
is no principled way to calculate the weight of obtained clusters.

Remark 1.1.1. It is shown that the popular k-means algorithm implicitly assumes a
Gaussian mixture model for the data, where all the mixture components have the same
isotropic covariance matrices [8]. The iterative learning algorithm for k-means is actually
an EM algorithm, except that hard memberships (instead of soft ones) are calculated in
the E-step, via a winner-take-all strategy.

1.2 Hierarchical Clustering

Both model-based and similarity-based flat clustering algorithms can be extended to hi-
erarchical clustering, but similarity-based methods are more popular. According to the
way in which the hierarchy is built, i.e., top-down or bottom-up, hierarchical clustering
algorithms can be divided into partitioning methods and agglomerative methods.

A flat partitioning method relies on some pre-defined criteria functions and partitions
the corpus into a pre-given number of subsets. For top-down hierarchical clustering, one
or several big clusters are chosen at each level of the hierarchy, and a flat partitioning
algorithm such as k-means or spectral clustering is run to partition each of these clusters.
Since we can stop at a certain level of the hierarchy, partitioning methods are usually fast
and need less space. But it has to choose a number of clusters at each level.

Unlike partitioning methods which are top-down, agglomerative methods are bottom-
up and each time merge two nearby clusters until one big cluster is obtained at the top of
the hierarchy. The similarity-based agglomerative methods are also called linkage methods
and have many variants depending on how to define a similarity function sim(ci, cj) for
two clusters. In single-linkage this is the maximal point-wise similarity of the two clusters,
and in complete-linkage it is the minimal one:

sims(ci, cj) = max
x∈ci,y∈cj

{sim(x, y)}, (1.1)

simc(ci, cj) = min
x∈ci,y∈cj

{sim(x, y)}. (1.2)

A compromise of these two is average-linkage and defines the similarity to be the average
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Figure 1.3: Illustration of a dendrogram for hierarchical clustering.

element-wise similarities of the two clusters:

sima(ci, cj) =

∑
x∈ci,y∈cj

sim(x, y)

|ci| · |cj |
, (1.3)

where |c| denotes the number of data points that belong to cluster c. Other similarity
measures are also available [48]. Agglomerative methods have the advantage that we do
not need to pre-define any cluster numbers, but they have time complexity O(N2 logN)
and space complexity O(N2) for a corpus with N data points, which are very high and
make these methods hard to apply for large-scale problems.

One way of visualizing the results of hierarchical clustering algorithms is to organize the
clusters hierarchically as a tree. This kind of diagram is sometimes called a dendrogram,
and in Figure 1.3 we show a dendrogram for complete-linkage on 20 randomly sampled
2D data points. The indices of the data are illustrated horizontally, and the distance of
each merge is shown vertically. This provides a very sensible way for cluster analysis.

Other hierarchical clustering models include, e.g., [1, 83]. There also exists some work
on extending model-based flat clustering to hierarchical clustering [31, 38], but one has
to make assumptions for splitting or merging, and the scalability of these methods is not
very good.

1.3 Organization of the Following Chapters

In the following two chapters we investigate the model-based clustering approach and
propose a general mixture modeling framework from Bayesian perspective. Unlike most
of the research works which only focus on mixture of Gaussian distributions, in Chapter 2



8 CHAPTER 1. OVERVIEW OF CLUSTERING MODELS

we consider more general settings and give solutions to mixture of exponential family
distributions. A variational Bayesian algorithm is introduced for learning which fits each
component distribution and the soft data-to-component memberships iteratively, in the
same manner as the k-means algorithm.

Identifying the number of clusters is an important problem in clustering analysis. In
Chapter 3 we extend the finite mixture models and build connections to non-parametric
Bayesian models with Dirichlet process (DP) priors. This allows us to use the same
variational solution as in Chapter 2 to obtain a sparse mixture model, which indicates
that we can automatically learn this number from the data. A single hyperparameter is
seen to control the sparsity of the mixture modeling.



Chapter 2

Finite Mixture Models for
Clustering

In this chapter we introduce the well-known finite mixture modeling framework for data
clustering. As discussed in Chapter 1, one cluster denotes a group of similar data points,
and different similarities lead to different clustering structures. From Bayesian perspective,
one cluster is interpreted as one component distribution of a mixture model, and the data
points which belong to this cluster are assumed to be sampled from this same component
distribution. This indicates that finite mixture model defines a generative process for data
with clustering structure. Under this interpretation, learning clustering structure reduces
to the following two steps in mixture model learning:

• Parameter Estimation: Learn the parameters for each component distribution.
This is to learn the structure (e.g., position, shape, size) of each cluster.

• Inference: Predict for each data point which component it belongs to. By this
means we can cluster newly observed data points.

It can be shown that the similarity measure used for clustering is implicitly defined in a
mixture model, which mainly depends on the distributional assumption of each component.
The clustering structure induced by a mixture model is soft, which means one data point
belongs to each cluster with a certain weight. This is useful in many applications where,
for instance, we need to sort the data points within each cluster.

We consider finite mixture modeling in this chapter, i.e., there are a fixed number of
components in the mixture. This corresponds to learning a fixed number of clusters for
the given data. In Chapter 3 we will relax this limitation and let the system automatically
adapt this number. To show the flexibility of mixture models, we assume each compo-
nent distribution belongs to the very general exponential family (Section 2.1), and derive
parameter estimation and inference algorithms for mixture of exponential family distribu-
tions (Section 2.2). Special models of mixture of Gaussians and mixture of Multinomials
are illustrated for continuous data and discrete data, respectively.

9
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2.1 Mixture of Exponential Family Distributions

We start with the definitions of exponential family distributions and the conjugate family,
and then introduce a Bayesian framework for mixture of exponential family distributions.
Mixture of Gaussians and mixture of Multinomials are illustrated as two examples.

2.1.1 Exponential Family Distributions and the Conjugate Family

A probability distribution of x ∈ X given parameters θ is in the exponential family if it
takes the form

P (x|θ) = h(x) exp
{
θ>φ(x)−A(θ)

}
, (2.1)

where θ ∈ Θ are called the natural parameters, and φ(x) the sufficient statistics. The
quantity A(θ), known as the log partition function, is defined as a normalization factor
independent of x:

A(θ) = log
∫
X

exp
{
θ>φ(x)

}
h(x) dx.

It is well-known that A(θ) plays an important role for exponential family distributions. In
particular, it can be identified as the cumulant generating function of φ(x). For instance,
its first derivative gives the expectation (i.e., the first moment) of the sufficient statistics:

∂A(θ)
∂θ

= Eθ[φ(x)] :=
∫
X
φ(x)P (x|θ) dx, (2.2)

where notation Eθ[φ(x)] denotes the expectation of φ(x) with respect to distribution
P (x|θ). This can be easily verified from the definition of A(θ). Exponential family covers
many well-known distributions such as Bernoulli, Poisson and Gaussian. Table 2.1 lists
some of them with domains X and Θ.

From the Bayesian perspective, we need to assign a prior distribution to the natural
parameter θ. One such prior is defined as follows and is called the conjugate family in the
literature:

P (θ|µ, ν) =
1

Z(θ, µ, ν)
exp

{
θ>µ− νA(θ)

}
. (2.3)

Here (µ, ν) are called the hyperparameters, i.e., the parameters for the prior distribution,
with µ having dimensionality dim(θ) and ν a scalar. Z(θ, µ, ν) is a normalization factor
such that the distribution is well-defined, i.e.,

∫
P (θ|µ, ν) dθ = 1. This distribution is

conjugate to exponential family in the sense that, after we observe a set of i.i.d. data
points {xi}Ni=1, the a posteriori distribution of θ takes the same parametric form as the
prior. This can be shown by applying Bayes’ rule as:

P (θ|{xi}Ni=1, µ, ν) ∝
N∏

i=1

P (xi|θ)P (θ|µ, ν) ∝ exp

{
θ>
(
µ+

N∑
i=1

φ(xi)
)
− (ν +N)A(θ)

}
,

(2.4)
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Table 2.1: Examples of exponential family distributions. For some distributions we use
canonical notations instead of x and θ.

Family Definition P (x|θ) X Θ

Bernoulli θx(1− θ)1−x {0, 1} [0, 1]

Binomial
(
n
x

)
θx(1− θ)n−x {0, 1, . . . , n} [0, 1]

Poisson 1
x!λ

x exp(−λ) {0, 1, 2, . . .} λ > 0

Exponential β exp(−βx) (0,+∞) β > 0

Beta Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1 [0, 1] α > 0, β > 0

Gamma βα

Γ(α)x
α−1 exp(−βx) (0,+∞) α > 0, β > 0

Multinomial n!∏
i xi!

∏
i θ

xi
i xi ∈ {0, 1, . . . , n}, θi ∈ (0, 1),

x ∼ Mult(θ)
∑

i xi = n
∑

i θi = 1

Dirichlet Γ(
∑

i αi)∏
i Γ(αi)

∏
i x

αi−1
i xi ∈ (0, 1), αi > 0

x ∼ Dir(α)
∑

i xi = 1

Gaussian (2π)−d/2|Σ|−1/2 Rd µ ∈ Rd,
x ∼ N (µ,Σ) × exp

(
− 1

2 (x− µ)>Σ−1(x− µ)
)

0 ≺ Σ ∈ Rd×d

Wishart
(
2νk/2πk(k−1)/4

∏k
i=1 Γ(ν+1−i

2 )
)−1

|S|−ν/2 0 ≺W ∈ Rk×k ν > 0,

W ∼ W(S, ν) ×|W|(ν−k−1)/2 exp
(
− 1

2trace
(
S−1W

))
0 ≺ S ∈ Rk×k

where in the posterior we have the new parameters µ̂ = µ +
∑N

i=1 φ(xi) and ν̂ = ν +N .
Therefore, µ and ν are sometimes viewed as the pseudo-counts (i.e., pseudo-observations
without any samples) of sufficient statistics for exponential family distributions.

The conjugate family defined in (2.3) is minimal in the sense that it requires the
minimal number of hyperparameters. In this chapter we make a further assumption and
write the conjugate family as

P (θ|µ, ν) = g(θ) exp
{

(µ>, ν)
(

θ
−A(θ)

)
−B(µ, ν)

}
, (2.5)

which basically means the normalization term in (2.3) contains a factorized form for θ and
the hyperparameters. Now the conjugate family is also in the exponential family, with
sufficient statistics

(
θ

−A(θ)

)
and natural parameter

(
µ
ν

)
. Applying (2.2) in this case yields

∂B(µ, ν)
∂µ

= Eµ,ν [θ],
∂B(µ, ν)

∂ν
= Eµ,ν [−A(θ)]. (2.6)

These results turn out to be useful for subsequent calculations. This assumption is not
strong and turns out to be true for many well-known exponential-conjugate family pairs.
We list some of them in Table 2.2 for clarity.
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Table 2.2: The conjugate family for some exponential family distributions.

Exponential Family Notation Conjugate Family Notation

Binomial x ∼ Bi(θ) Beta θ ∼ Beta(α, β)

Multinomial x ∼ Mult(θ) Dirichlet θ ∼ Dir(α)

Gaussian (fix Σ) x ∼ N (µ,Σ0) Gaussian µ ∼ N (m,C)

Gaussian (fix µ) x ∼ N (µ0,Σ) (Inverse) Wishart Σ−1 ∼ W(S, ν)

Gaussian x ∼ N (µ,Σ) Gaussian-Wishart (µ,Σ−1) ∼ Nµ(m, 1
β Σ)WΣ−1(S, ν)

2.1.2 Mixture of Exponential Family Distributions

In mixture modeling, each data point is sampled from a fixed but unknown component
distribution, which we assume belongs to exponential family in this chapter. For finite
mixture modeling we fix the number of components to be K, a finite positive integer.
We also focus on the case that all the component distributions take the same form, for
instance, Gaussian. Then the likelihood of N i.i.d. data points D := {x1, . . . ,xN} is
formally written as

P (D|π,Θ) =
N∏

i=1

K∑
k=1

P (ci = k|π)P (xi|θk), (2.7)

where P (ci = k|π) is a Multinomial distribution with parameters π, and P (xi|θk) takes
the general form (2.1). The K-dimensional vector π := {πk}Kk=1 gives the weights for
the component distributions and sums to 1, i.e.,

∑K
k=1 πk = 1. The other parameter

Θ := {θk}Kk=1 contain the natural parameters of all component distributions. ci is seen
as a random variable of indicator for data xi, saying which of the K components xi is
sampled from. From the definition of Multinomial distribution we know that P (ci = k|π)
is simply πk. Finite mixture model as in (2.7) is in general not a member of exponential
family.

To complete the model from Bayesian perspective, we assign priors to all the param-
eters. For Θ we assign conjugate prior (2.5) to each θk independently, with the same
hyperparameters (µ0, ν0):

P (Θ|µ0, ν0) =
K∏

k=1

{
g(θk) exp

{
θ>k µ0 − ν0A(θk)−B(µ0, ν0)

}}
. (2.8)

From the perspective of hierarchical Bayesian modeling, this essentially means that each
component in the mixture is not independent of other components, but correlated in the
sense of a common prior. Information from other components can therefore be integrated
out for inference in a specific component.
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(a) (b) (c)

Figure 2.1: Plate models of proposed mixture models. Rectangles (with a number on the
bottom-left corner) indicate independent sampling with that specific number of samples,
and hidden variables and model parameters are denoted as circles and squares, respectively.
Observed quantities are marked in gray. Black arrows denote statistical dependency.
(a) shows mixture of exponential family distributions in general, where G0 denotes the
conjugate family distribution (2.5); (b) and (c) show mixture of Gaussians and mixture
of Multinomials, respectively.

For the Multinomial parameters π, we assign a symmetric Dirichlet prior with a (scalar)
hyperparameter α:

P (π|α) =
Γ(α)

[Γ( α
K )]K

K∏
k=1

π
α
K
−1

k , (2.9)

where Γ(·) is the Gamma function. That is, we define π ∼ Dir( α
K , . . . ,

α
K ). Here we make

a constraint that all the parameters in this Dirichlet are the same and sum to a scalar
that is independent of K, the number of components in the mixture.

With these priors, the final data likelihood can be obtained by integrating out the
latent variables π and Θ:

P (D|α, µ0, ν0) =
∫
π
P (π|α)

∫
Θ
P (Θ|µ0, ν0)

{
N∏

i=1

K∑
k=1

P (ci = k|π)P (xi|θk)

}
dΘ dπ.

(2.10)

The model has two parameters: α is a positive scalar, and (µ0, ν0) has dimensionality
dim(φ(x)) + 1. The plate model is illustrated in Figure 2.1(a), where G0 denotes the
conjugate prior distribution (2.5).

Remark 2.1.1. The mixture model defined above takes a Bayesian perspective: The mix-
ture parameters π and Θ are assigned hyperpriors and are integrated out in the likelihood
model. This is in contrast to the frequentist view of mixture modeling, in which the model
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depends on parameters π and Θ only. We will mention their difference in terms of learn-
ing and inference in subsequent sections.

Remark 2.1.2. The Dirichlet hyperprior for π has parameter at each dimension α
K in-

stead of α. This will make the model easily generalize to infinite mixture models and
connect to Dirichlet process mixture models. This point will be clarified in Chapter 3.

2.1.3 Examples

Here we give two concrete examples of the proposed mixture model. The first one is
mixture of Gaussians for continuous data, and the second one is mixture of Multinomials
for discrete data.

Mixture of Gaussians

Mixture of Gaussians is perhaps the most studied mixture model in the literature. Different
Gaussian mixture models exist depending on different modeling complexity. Here we
illustrate the most flexible Gaussian mixture model and assume a complete conjugate
prior to both the means and covariances. This model is studied, e.g., in [3, 16]. For easy
understanding, we do not stick to the canonical form given in (2.1) and (2.5) for Gaussian
distributions.

Suppose we have K Gaussians in the mixture, and the k-th Gaussian is associated
with mean vector µk and precision matrix Λk, where the precision matrix is the matrix
inverse of the covariance matrix Σk.1 Let the dimensionality of the feature space be d,
i.e., X ⊂ Rd, then µk is a column vector of length d, and Λk is a d × d positive definite
symmetric matrix. Following the notations in Table 2.1 we denote the k-th Gaussian as
N (µk,Λ

−1
k ). Then the complete generative model for mixture of Gaussians is shown as

follows:

xi|ci,Θ
ind∼ N (µci

,Λ−1
ci

), i = 1, . . . , N

ci|π
iid∼ Mult(π), ci = 1, . . . ,K

µk|Λk,m0, β0
ind∼ N (m0, β

−1
0 Λ−1

k ), k = 1, . . . ,K

Λk|W0, ν0
iid∼ W(W0, ν0),

π|α ∼ Dir
( α
K
, . . . ,

α

K

)
,

where Mult,W and Dir follow the distribution notations in Table 2.1. We follow statistics
conventions and use ind∼ and iid∼ for independently sampling and i.i.d. sampling, respectively.
The natural parameters Θ include all µk and Λk, k = 1, . . . ,K. All the hyperparameters

1Note that we follow the convention and use bold face µ to denote the mean of a Gaussian. This
should be distinguished from the normal form µ which is used along with ν as the hyperparameters in the
conjugate family.
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for the model include α,m0, β0,W0 and ν0. Here m0 is a length-d column vector, W0 is
a d × d positive definite symmetric matrix, and α, β0, ν0 are positive scalars. The plate
model is shown in Figure 2.1(b).

As is well-known for Gaussians, the mean vector and covariance matrix have clear
geometrical interpretations. In terms of Gaussian mixture model for clustering, the mean
vector of each Gaussian component denotes the center of each cluster, and the covariance
matrix determines the (elliptical) shape and coverage of each cluster. The Gaussian mix-
ture model proposed above allows an arbitrarily shaped Gaussian for each cluster, and is
thus very flexible.

In Figure 2.2 we show a toy data in two-dimensional space from a mixture of 5 Gaus-
sians. 50 data points are sampled from each Gaussian, so the true weights of all the
Gaussians are equal, i.e., π = {0.2, 0.2, 0.2, 0.2, 0.2}. The mean vectors and covariance
matrices of these Gaussians are

µ1 =
(

3
3

)
,Σ1 =

(
0.4 −0.3
−0.3 0.6

)
, µ2 =

(
3
8

)
,Σ2 =

(
1 0
0 0.2

)
,

µ3 =
(

5
6

)
,Σ3 =

(
0.4 −0.3
−0.3 0.8

)
, µ4 =

(
7
7

)
,Σ4 =

(
0.7 0.3
0.3 0.6

)
,

µ5 =
(

8
4

)
,Σ5 =

(
0.3 −0.2
−0.2 0.8

)
.

To show these Gaussians graphically, we draw each of them in Figure 2.2(b) with a blue el-
lipse which shows the mean vector and standard deviations. It is seen that these Gaussians
are somehow mixed together in the boundaries, which makes the problem a bit harder.

Remark 2.1.3. One can also define simpler Gaussian mixture models to reduce modeling
complexity. For instance, one can fix a same covariance matrix for all the Gaussians.
This corresponds to a clustering model in which all the clusters share the same shape
and coverage but have different centers. Another popular choice is to assume that the
covariance matrix takes a diagonal form. This constrains each axis of the cluster ellipsoid
to be parallel to one of the coordinate axes.

Mixture of Multinomials

Mixture of Multinomials has been widely applied to model discrete data. For instance
in language modeling, it is used to model a text corpus of documents with discrete word
occurrences. This is also known as mixture of unigrams, and each mixture component is
called a topic. In this model, the k-th topic takes a Multinomial distribution over all the
words, and the natural parameter θk denotes these word-generating probabilities. Let V
be the number of words in the vocabulary set V, then θk is a column vector of length
V and satisfies

∑V
v=1 θk,v = 1, for all k = 1, . . . ,K. Denote Ni the number of words in
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(a) (b)

Figure 2.2: A toy 2D data with a mixture of 5 Gaussians. 50 data points are sampled
from each Gaussian. Each Gaussian is drawn with a blue ellipse in (b) to show the truth.

document xi, the generative model for mixture of Multinomials is as follows:

xi(n)|ci,Θ
ind∼ Mult(θci), n = 1, . . . , Ni

ci|π
iid∼ Mult(π), ci = 1, . . . ,K

θk|ξ0
iid∼ Dir(ξ0), k = 1, . . . ,K

π|α ∼ Dir
( α
K
, . . . ,

α

K

)
,

where the first line is sometimes written more concisely as xi|ci,Θ ∼ Mult(θci , Ni). Here
the hyperparameters are the positive scalar α and the Dirichlet parameter ξ0 of length V .
The plate model for Multinomial mixtures is illustrated in Figure 2.1(c).

Remark 2.1.4. In this model we do not explicitly model Ni for each document xi and
instead assume it is known and fixed. One can extend this model by assigning a same
Poisson prior to all these Ni’s.

2.2 Model Inference and Parameter Estimation

For inference in the proposed mixture model, we need to calculate the a posteriori distri-
bution of all the latent variables given observations and model parameters. This can be
done via Bayes’ rule as

P (π,Θ, c|D, α, µ0, ν0) =
P (D|Θ, c) · P (Θ|µ0, ν0) · P (c|π) · P (π|α)

P (D|α, µ0, ν0)

=
∏N

i=1 P (xi|θci) ·
∏K

k=1 P (θk|µ0, ν0) ·
∏N

i=1 πci · P (π|α)
P (D|α, µ0, ν0)

,

where c denote the indicator variables {c1, . . . , cN}, one for each data point. This re-
quires us to calculate the big integral P (D|α, µ0, ν0) (as given in (2.10)), which is however
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intractable. If one would like to optimize the model parameters α and (µ0, ν0), he/she
would have to deal with this big integral as well. This is a common problem for Bayesian
analysis, and one popular solution in statistics is to perform Markov chain Monte Carlo
(MCMC) sampling like Gibbs sampling to approximate the integral. The nice property of
MCMC is that the approximated posterior is guaranteed to converge to the true one if we
have enough samples, but in practice this could be very slow due to model complexity or
bad starting points.

For the proposed mixture model, we first describe a straightforward Gibbs sampling
method for model inference, and then focus on a fast approximation method called the
variational Bayesian method. It will be seen that the variational Bayesian solution is like a
deterministic version of the corresponding Gibbs sampler. We then discuss the connection
of this learning algorithm to clustering, and give the solutions to mixture of Gaussians
and mixture of Multinomials.

2.2.1 Gibbs Sampling

The basic idea of Gibbs sampling is to sequentially sample one latent variable at a time
to collect a set of samples from the joint distribution [28]. This normally leads to much
easier sampling process for each variable. Therefore, all we should do is to derive the a
posteriori distribution of each latent variable given the data and all the other variables.
This can be easily done via Bayes’ rule for the proposed model. Since we also need
to learn the hyperparameters, for Gibbs sampling we should also assign priors to α and
(µ0, ν0) and sample them as well. The current joint distribution of the posterior is therefore
P (π,Θ, c, α, µ0, ν0|D). In Gibbs sampling we choose a starting point for all these variables,
and then repeat the following sampling process until a stable situation is achieved:

1. (Θ|µ0, ν0, c,D): For k = 1, . . . ,K, draw (θk|µ0, ν0, c,D) from the density

P̂ (θk|µ0, ν0, c,D) ∝ P (θk|µ0, ν0)
∏

{j:cj=k}

P (xj |θk). (2.11)

2. (c|π,Θ,D): For i = 1, . . . , N , draw values

P̂ (ci|π,Θ,D) ∝ P (ci|π)P (xi|θci), ci = 1, . . . ,K. (2.12)

3. (π|α, c): The posterior is calculated as P̂ (π|α, c) ∝ P (π|α)P (c|π). By the conju-
gacy of Dirichlet distribution to Multinomial, the posterior is now

P̂ (π|α, c) ∼ Dir

(
α

K
+

N∑
i=1

δ1(ci), . . . ,
α

K
+

N∑
i=1

δK(ci)

)
, (2.13)

where

δk(ci) =

{
1 if ci = k,

0 otherwise.
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4. (α|π): Assign a prior to α, and draw

P̂ (α|π) ∝ P (α)P (π|α).

5. (µ0, ν0|Θ): Assign a prior to (µ0, ν0), and draw

P̂ (µ0, ν0|Θ) ∝ P (µ0, ν0)
K∏

k=1

P (θk|µ0, ν0).

All the distributions in this sampling process are known, and there exist efficient ways to
obtain random samples from them. In (2.11) the posterior is still in the conjugate family,
as seen from (2.4). In (2.12) we normalize such that

∑K
ci=1 P̂ (ci|π,Θ,D) = 1. In Steps

4 and 5, the new priors P (α) and P (µ0, ν0) really depend on prior knowledge and can in
principal take any form.

2.2.2 Variational Bayesian Solution

The variational Bayesian algorithm is motivated by approximating the a posteriori distri-
bution of latent variables with a tractable family, and then maximizing a lower-bound of
the log data likelihood with respect to some variational parameters [47, 29]. For model
(2.10), by applying Jensen’s inequality we have the following lower-bound of the log like-
lihood logP (D|α, µ0, ν0):

L(D) ≡
∫
π

∫
Θ

K∑
c1=1

· · ·
K∑

cN=1

Q(π,Θ, c) log
P (π|α)P (Θ|µ0, ν0)

{∏N
i=1 πciP (xi|θci)

}
Q(π,Θ, c)

dΘ dπ.

Here Q(π,Θ, c) can be any function of π, Θ and c, and L(D) remains a lower bound
for logP (D|α, µ0, ν0) regardless of any form for Q. To make the integral tractable, in
variational Bayesian method we can assume a simpler family for Q, which is called a
variational distribution. The most popular form is the factorized form, which constrains
independency for all latent variables: each latent variable is independent of the others in
this approximated a posteriori distribution. As will be seen shortly, this leads to tractable
updates for inference. We therefore use the following variational distribution

Q(π,Θ, c|λ,µ,ν,Ψ) = Q(π|λ)
K∏

k=1

Q(θk|µk, νk)
N∏

i=1

Q(ci|ψi)

to approximate the true posterior P (π,Θ, c|D, α, µ0, ν0), with variational parameters λ,
µ := {µk}Kk=1, ν := {νk}Kk=1 and Ψ := {ψi}Ni=1.

2 In principal we can use any distribution
for each of these latent variables, but to facilitate learning later on we also use a conjugate
distribution for each function Q on the right hand side. Here Q(π|λ) is K-dimensional

2Note that we use (µk, νk) to denote variational parameters for each θk (k > 0), and use (µ0,ν0) as the
hyperparameters.
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Dirichlet, Q(θk|µk, νk) takes the conjugate form as in (2.5), and Q(ci|ψi) is N -dimensional
Multinomial. Due to the factorized form for Q(π,Θ, c), the lower-bound can now be
written as:

L(D) = EQ[logP (π|α)] +
K∑

k=1

EQ[logP (θk|µ0, ν0)] +
N∑

i=1

EQ[logP (ci|π)]

+
N∑

i=1

EQ[logP (xi|Θ, ci)]− EQ[logQ], (2.14)

where all the expectations are with respect to variational distributionQ(π,Θ, c|λ,µ,ν,ψ).
In the literature, variational Bayesian methods maximize this lower bound only with re-
spect to variational parameters λ,µ,ν,Ψ, and thus fix the model parameters α, µ0, ν0

(see, e.g., [3, 29]). In this chapter we will however treat it as the E-step of the algorithm,
and estimate the model parameters in the M-step.

Calculation of the Lower Bound

The lower bound (2.14) can be calculated directly using the properties of the exponential
family distributions. We discuss them in detail in this subsection.

In the first term, the distribution P (π|α) is given in (2.9). A directly calculation yields

EQ[logP (π|α)] = EQ

[
log Γ(α)−K log Γ

( α
K

)]
+
( α
K
− 1
) K∑

k=1

EQ[log πk]

= log Γ(α)−K log Γ
( α
K

)
+
( α
K
− 1
) K∑

k=1

EDir(π|λ)[log πk]

= log Γ(α)−K log Γ
( α
K

)
+
( α
K
− 1
) K∑

k=1

[
Ψ(λk)−Ψ

(
K∑

k′=1

λk′

)]
,

where Ψ(·) is the digamma function, the first derivative of the log Gamma function.
In the second equality, the first expectation is simply the constant inside, and the second
expectation turns out to need only the variational distribution Q(π|λ) which is a Dirichlet.
The third equality comes from a direct calculation of the expectation using (2.2) for
Dirichlet.

For the second term, we have, for each k = 1, . . . ,K,

EQ[logP (θk|µ0, ν0)] = EQ[log g(θk)] + µ>0 EQ[θk] + ν0EQ[−A(θk)]−B(µ0, ν0)

= EQ[log g(θk)] + µ>0 Eµk,νk
[θk] + ν0Eµk,νk

[−A(θk)]−B(µ0, ν0),

where in the second equality the expectation is with respect to the variational distribution
P (θk|µk, νk) and can be calculated using (2.6).
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The third term uses the properties of Multinomial and Dirichlet distributions:

N∑
i=1

EQ[logP (ci|π)] =
N∑

i=1

EMult(ci|ψi)

{
EDir(π|λ)[logP (ci|π)]

}
=

N∑
i=1

K∑
k=1

Q(ci = k|ψi)EDir(π|λ)[log πk]

=
N∑

i=1

K∑
k=1

ψi,k

[
Ψ(λk)−Ψ

(
K∑

k′=1

λk′

)]
.

There are two expectations to calculate here and we need to do it one by one.

For each i = 1, . . . , N in the fourth term, we also have two twisted expectations:

EQ[logP (xi|Θ, ci)] = EMult(ci|ψi)

{
EQ[logP (xi|Θ, ci)]

}
=

K∑
k=1

Q(ci = k|ψi)Eµk,νk
[logP (xi|θk)]

=
K∑

k=1

ψi,k

{
log h(xi) + Eµk,νk

[θk]>φ(xi) + Eµk,νk
[−A(θk)]

}
.

The fifth term is a bit more complex since it is itself sum of three terms:

EQ[logQ] = EQ[logQ(π|λ)] +
K∑

k=1

EQ[logQ(θk|µk, νk)] +
N∑

i=1

EQ[logQ(ci|ψi)]

= log Γ

(
K∑

k=1

λk

)
−

K∑
k=1

log Γ (λk) +
K∑

k=1

(λk − 1)

[
Ψ(λk)−Ψ

(
K∑

k′=1

λk′

)]

+
K∑

k=1

{
EQ[log g(θk)] + µ>k Eµk,νk

[θk] + νkEµk,νk
[−A(θk)]−B(µk, νk)

}
+

N∑
i=1

K∑
k=1

ψi,k logψi,k,

where in the last equality each row is the direct calculation of each of the three terms.

E-step

In the E-step, we can obtain the update equations for variational parameters λ, µ, ν and
Ψ by setting the partial derivatives of the lower bound with respect to each of them to be
zero. For Ψ, we should also consider the constraints

∑K
k=1 ψi,k = 1, for all i = 1, . . . , N .
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This can be easily accomplished by introducing a Lagrange parameter τi and change the
lower bound to

Lψi
(D) =

K∑
k=1

ψi,k

[
Ψ(λk)−Ψ

(
K∑

k′=1

λk′

)
+ log h(xi) + Eµk,νk

[θk]>φ(xi) + Eµk,νk
[−A(θk)]

]

−
K∑

k=1

ψi,k logψi,k − τi

(
K∑

k=1

ψi,k − 1

)
+ C,

where C does not depend on the interested parameter ψi. Setting the derivative with
respect to ψi,k to be zero yields

ψ̂i,k ∝ exp

{[
Ψ(λk)−Ψ

(
K∑

k′=1

λk′

)]
+ Eµk,νk

[θk]>φ(xi) + Eµk,νk
[−A(θk)]

}
, (2.15)

where we normalize such that
∑K

k=1 ψ̂i,k = 1, for all i = 1, . . . , N . Using results in (2.6),
we can easily calculate the expectations in the equation.

The update equations for the other variational parameters can be similarly derived,
and we omit the details and only give the results here:

µ̂k = µ0 +
N∑

i=1

ψi,kφ(xi), (2.16)

ν̂k = ν0 +
N∑

i=1

ψi,k, (2.17)

λ̂k =
α

K
+

N∑
i=1

ψi,k. (2.18)

All these equations recover the theorem in [29] in terms of the exponential family
mixture models, and turn out to be very intuitive and explainable. They are like a
deterministic version of the Gibbs sampling process in the previous subsection.

• ψ̂i,k denote the posterior probabilities P̂ (ci = k) in the Multinomial. In (2.15) they
are updated as a product of two factors P1 and P2, where

P1 ∝ exp

{
Ψ(λk)−Ψ

(
K∑

k′=1

λk′

)}
,

P2 ∝ exp
{

Eµk,νk
[θ>k φ(xi)−A(θk)]

}
,

with other parameters fixed. Since in the variational form λ is the parameters of a
Dirichlet, it follows from (2.2) that for Dirichlet distribution, we have

P1 ∝ exp {Eλ[log πk]} ;
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because we have logP (xi|θk) ∝ θ>k φ(xi)−A(θk), we have

P2 ∝ exp {Eµk,νk
[logP (xi|θk)]} .

Therefore, equation (2.15) can be written as

ψ̂i,k = P̂ (ci = k) ∝ exp {Eλ[logP (ci = k|π)]} · exp {Eµk,νk
[logP (xi|θk)]} .

Compare this equation with (2.12), P1 is like a prior for ci = k, and P2 measures the
likelihood of ci = k. The differences are that we calculate the expectation of these
quantities with other parameters fixed, and that we approximate the expectation as
the exponential of expected log values.

• (µ̂k, ν̂k) are the posterior natural parameters for the k-th component exponential
family distribution in the mixture. In (2.16) and (2.17), it turns out that they are
both the sum of two factors: the priors or pseudo-counts in the first term, and the
empirical observations in the second term. Note that they are very similar to the
posterior illustrated in (2.4), except that the empirical observations are weighted by
the belongingness of each data point to the specific mixture component. They are
also explicit updates as given in (2.11) in Gibbs sampling, with ψi,k fixed.

• λ̂k are the posterior parameters of the Dirichlet for π, and take similar form as in
(2.13). The hard assignments in Gibbs sampling in (2.13) are replaced by soft ones
with fixed belongingness ψi,k.

Since these equations are coupled, they should be updated iteratively until conver-
gence. In variational Bayes, (2.15) is called variational E-step, and (2.16)∼(2.18) are
called variational M-step. This yields the algorithm given in [3] for mixture of Gaussians.

M-step

In the M-step, we fix the variational parameters and maximize the lower bound with
respect to the model parameters. All the derivations are similar to those for the E-step.
Here we find a point estimate for each hyperparameter.

For α we maximize the following part of the lower bound:

Lα(D) = log Γ(α)−K log Γ
( α
K

)
+
( α
K
− 1
) K∑

k=1

[
Ψ(λk)−Ψ

(
K∑

k′=1

λk′

)]
.

Setting the derivative with respect to α to be zero, we obtain the following equation for
the update α̂:

K

[
Ψ
(
α̂

K

)
−Ψ(α̂)

]
=

K∑
k=1

[
Ψ(λk)−Ψ

(
K∑

k′=1

λk′

)]
,
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which is equivalent to
K∑

k=1

Eα̂[log πk] =
K∑

k=1

Eλ[log πk].

That is, we are seeking an optimal α̂ to match the expectation of log πk for the corre-
sponding hidden variable π. This turns out to be the sufficient statistics of the Dirichlet
distribution P (π|α).

Similar results hold for µ0 and ν0. Setting the corresponding derivatives to zero yields

K
∂B(µ, ν)
∂µ

∣∣∣∣
µ=µ̂0,ν=ν̂0

=
K∑

k=1

∂B(µk, νk)
∂µk

,

K
∂B(µ, ν)

∂ν

∣∣∣∣
µ=µ̂0,ν=ν̂0

=
K∑

k=1

∂B(µk, νk)
∂νk

,

which are just matching the sufficient statistics:
K∑

k=1

Eµ̂0,ν̂0 [θk] =
K∑

k=1

Eµk,νk
[θk], (2.19)

K∑
k=1

Eµ̂0,ν̂0 [−A(θk)] =
K∑

k=1

Eµk,νk
[−A(θk)]. (2.20)

This means the partial derivatives of the normalization factor with respect to the true prior
parameters, (µ0, ν0), should be the average of that with respect to the variational param-
eters of each component, (µk, νk)’s. We are therefore seeking the best trade-off between
all these mixture components, in the sense of matching the expectations of parameters of
all the components.

Analytical solutions to these parameters are, however, normally unobtainable. We have
to use computational methods such as Newton-Raphson method to solve the problems.
After we obtain the new hyperparameters, we then run the E-step again and repeat the
whole process until convergence.

Remark 2.2.1. The variational Bayesian method in the machine learning literature is
often only referred to as the E-step in the proposed learning process. Part of the reason
is that when the observations are insufficient, it could be very dangerous to obtain point
estimates for the hyperparameters. In this case to obtain the hyperparameters, one has to
do MCMC to integrate them out, or cross-validation to select the best parameter values.
However when data are sufficient, updating the hyperparameters in this way is reasonable
and formally referred to as the ML-II method [53].

Remark 2.2.2. The difference between the proposed learning algorithm and the maximal
likelihood (ML) algorithm is clear. In ML algorithm, there are no hyperpriors with param-
eters α and (µ0, ν0), and we simply directly find the best estimates for π and θk’s given
the data, normally using an expectation-maximization (EM) algorithm. In some sense the
Bayesian solution given above can be viewed as a smoothed version of the ML algorithm.
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2.2.3 Model Fitting as Clustering

The whole variational Bayesian learning algorithm can be naturally viewed as a clustering
algorithm. We can interpret the E-step using the clustering language as follows:

1. Randomly initialize all the cluster-specific information (µk, νk)’s and cluster weights
λk’s;

2. Repeat the following two steps until convergence:

(a) Based on the current cluster information, assign each data point to all the
clusters softly (update as (2.15));

(b) Update the cluster weights using (2.18), and cluster-specific information using
(2.16) and (2.17);

3. After convergence, the soft cluster membership that data point xi belongs to cluster
k is given in ψi,k, the k-th cluster is determined via (µk, νk), and the soft cluster
weights are given in the normalized vector [λ1/λ̃, . . . , λK/λ̃], with λ̃ :=

∑K
k=1 λk.

The whole algorithm looks like a probabilistic version of the well-known k-means algorithm,
except that we do not have a hard cluster assignment for each data point, and that the
clusters now take much more general form. It is seen from Step 3 that all the clustering-
specific information is given in the variational parameters, and the hyperparameters α
and (µ0, ν0) correspond to smooth terms in the E-step updates. In particular, the soft
cluster weights are determined here as the expectations of π with respect to the variational
distribution Q(π|λ). It will be seen in the next chapter that the hyperparameters will
lead to a sparse clustering structure if K is large.

Clustering for New Data

When there is a new data point x∗ available, we can calculate its soft membership to each
cluster k using Bayes’ rule as

P (c∗ = k|x∗,π,Θ) =
P (x∗|θk)P (c∗ = k|π)

P (x∗|π,Θ)
=

πkP (x∗|θk)∑K
k′=1 πk′P (x∗|θk′)

.

That is, this soft weight depends on the weight of this cluster (πk), and also the explain-
ability of this cluster to this data point (i.e., likelihood P (x∗|θk)). If one would like to
calculate the likelihood of the new data, one has to deal with integral like (2.10), and an
alternative is to calculate the lower bound using the variational distribution Q.

2.2.4 Variational Bayes for Example Models

As two concrete examples, we apply the variational Bayesian solution to mixture of Gaus-
sians and mixture of Multinomials. All the update equations can be directly derived form
the general solution, and we only give the main results here.
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Variational Bayes for Mixture of Gaussians

Following the general learning framework in the previous subsection, for mixture of Gaus-
sians we take the following factorized posterior distribution for all the variables

Q(π,µ,Λ, c) = QD(π|λ)
K∏

k=1

[
QN (µk|mk, β

−1
k Λ−1

k )QW (Λk|Wk, νk)
] N∏

i=1

QM (ci|ψi),

where QD, QN , QW and QM denote Dirichlet, Gaussian, Wishart and Multinomial, respec-
tively. All the variational parameters are λ, Ψ and {mk,Wk, βk, νk}Kk=1. To simplify the
notation and build connections to our general solution above, we apply (2.2) to Dirichlet
and Wishart distributions and obtain the following expectation equations for the sufficient
statistics:

Eλ[log πk] := EDir(π|λ)[log πk] = Ψ(λk)−Ψ

(
K∑

k′=1

λk′

)
,

EWk,νk
[Λk] := EW(Λk|Wk,νk)[Λk] = νkWk,

EWk,νk
[log |Λk|] := EW(Λk|Wk,νk)[log |Λk|] =

d∑
`=1

Ψ
(
νk + 1− `

2

)
+ d log 2 + log |Wk|.

Using short-hand notations

Nk :=
N∑

i=1

ψi,k, x̄k :=
1
Nk

N∑
i=1

ψi,kxi,

we have the E-step as follows:

ψ̂i,k ∝ exp
{

Eλ[log πk]−
d

2βk
+

1
2

EWk,νk
[log |Λk|]−

1
2
(xi −mk)>EWk,νk

[Λk](xi −mk)
}
,

m̂k =
1

β0 +Nk
(β0m0 +Nkx̄k),

Ŵ
−1
k = W−1

0 +
N∑

i=1

ψi,k(xi − x̄k)(xi − x̄k)> +
β0Nk

β0 +Nk
(x̄k −m0)(x̄k −m0)>,

β̂k = β0 +Nk, ν̂k = ν0 +Nk, λ̂k =
α

K
+Nk,

which are quite understandable. For instance, the mean vector of each cluster mk is the
weighted average of the prior mean m0 and all the data points, where the weights for each
data point xi is just the soft cluster membership ψi,k.
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The M-step turns out to be

m̂0 =

(
K∑

k=1

νkWk

)−1 K∑
k=1

νkWkmk, Ŵ0 =
∑K

k=1 νkWk

Kν0
,

1

β̂0

=
1
K

K∑
k=1

1
βk

+
1
dK

K∑
k=1

νk(mk −m0)>Wk(mk −m0),

d∑
`=1

Ψ
(
ν̂0 + 1− `

2

)
=

1
K

K∑
k=1

EWk,νk
[log |Λk|]− d log 2− log |W0|,

where the last equation needs numerical method to solve. It is easily seen that all of the
M-step equations are just matching the expectations of certain quantities.

In Figure 2.3 we show the true Gaussian mixtures in (a) and the learned Gaussians in
(b) and (c). For learning we set K = 5, α = 1, β0 = 0.01, ν0 = 2, m0 the sample mean,
and W0 the inverse of the sample covariance divided by β0. For computational simplicity
we fix ν0 in the whole learning process. The lower bound of the log likelihood (2.14) after
each iteration in the fist E-step (i.e., iterating updates for latent variables ψi,k, mk, Wk,
βk, νk, λk with pre-chosen parameters) is shown in (g), and it is seen that it is always
increasing, and it converges after about 40 steps. Here we run the iterations until the sum
of element-wise changes of membership matrix Ψ is less than 0.0001. The lower bound at
this convergence is -949.73. Running more EM iterations (until convergence after 3 steps)
does not improve the lower bound much and yields the final number -922.14. The learned
5 Gaussians and the cluster memberships (see (e) and (f )) are also almost the same. For
clarity we give the learned results for the mean vectors and the covariance matrices of
these Gaussians as follows:

µ̂1 =
(

3.03
3.02

)
, Σ̂1 =

(
0.38 −0.33
−0.33 0.51

)
, µ̂2 =

(
2.96
7.93

)
, Σ̂2 =

(
0.99 −0.02
−0.02 0.21

)
,

µ̂3 =
(

5.14
5.69

)
, Σ̂3 =

(
0.37 −0.19
−0.19 0.39

)
, µ̂4 =

(
7.05
7.03

)
, Σ̂4 =

(
0.51 0.13
0.13 0.53

)
,

µ̂5 =
(

8.00
3.75

)
, Σ̂5 =

(
0.35 −0.18
−0.18 0.54

)
.

To calculate these quantities we have the mean vector µk = mk, and covariance matrix
Σk = (νkWk)−1.

Variational Bayes for Mixture of Multinomials

For mixture of Multinomials we take the following form for Q:

Q(π,Θ, c) = QD(π|λ)
K∏

k=1

QD(θk|ξk)
N∏

i=1

QM (ci|ψi),



2.2. MODEL INFERENCE AND PARAMETER ESTIMATION 27

(a) (b) (c)

(d) (e) (f )

(g)

Figure 2.3: Learning for the toy Gaussian mixture data. (a) and (d) show the true
Gaussians and the true (hard) cluster membership for each data point. (b) and (e) show
the learned Gaussians and soft cluster membership of variational Bayesian learning after
1 EM iteration (with the E-step itself 77 iterations). (c) and (f ) show the final results
(after 3 EM steps) of variational Bayesian learning. (g) shows the log likelihood after each
iteration in the first E-step.

where QD and QM denote Dirichlet and Multinomial distributions, respectively. Now all
the variational parameters are λ, Ψ and {ξk}Kk=1. As before we apply (2.2) to Dirichlet
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and obtain the following expectation equations for sufficient statistics:

Eλ[log πk] := EDir(π|λ)[log πk] = Ψ(λk)−Ψ

(
K∑

k′=1

λk′

)
,

Eξk
[log θk,v] := EDir(θk|ξk)[log θk,v] = Ψ(ξk,v)−Ψ

(
V∑

v′=1

ξk,v′

)
.

The E-step is as follows:

ψ̂i,k ∝ exp

{
Eλ[log πk] +

Ni∑
n=1

V∑
v=1

δv(wn)Eξk
[log θk,v]

}
,

ξ̂k,v = ξ0,v +
N∑

i=1

Ni∑
n=1

V∑
v=1

δv(wn)ψi,k,

λ̂k =
α

K
+

N∑
i=1

ψi,k,

where wn denote the index of the n-th word (n = 1, . . . , Ni for data point xi), and δv(wn)
takes value 1 if wn = v and 0 otherwise. For the M-step we have to solve the following
equation numerically for ξ0:

Ψ(ξ̂0,v)−Ψ

(
V∑

v′=1

ξ̂0,v′

)
=

1
K

K∑
k=1

Eξk
[log θk,v].

2.3 Summary

In this chapter we introduce the mixture of exponential family distributions for clustering,
and illustrate mixture of Gaussians and mixture of Multinomials as two concrete examples.
The mixture model is proposed from a Bayesian perspective, with hyperparameters (µ0, ν0)
identifying the conjugate prior for the natural parameters of each mixture component, and
α constraining the mixing weights of these component distributions. For inference and
learning in the proposed model, a straightforward Gibbs sampler is shown for clarity, and
more efforts are given to a variational Bayesian solution which is an approximated but fast
algorithm. Popular clustering algorithms like k-means are special cases of this method.
Some toy problems are used to evaluate the algorithm, and more empirical studies will
be performed in the next chapter in which we will answer an important question in finite
mixture modeling: How should we choose the number of mixture components K?



Chapter 3

Infinite Mixture Models

A common problem in finite mixture modeling is how to choose the number of mixture
components K. In the language of clustering, this corresponds to choosing the number
of clusters beforehand. This is a highly non-trivial problem, because one can in principal
assign to K any integer from 1 to the number of data points N , and the system can
always learn a mixture model for this K. One way of measuring the quality of each K
is to compute the generalization performance of the model with a specified K on some
held-out data, i.e., data that are not used for training. It is also known that this number
has strong connections to the model complexity in Bayesian theory.

There has been a lot of research on this issue, but the solution is still open if one
does not do expensive MCMC sampling. The most straightforward idea is to train the
model with different K’s (with independent repeats on different sets of training data),
and then pick the K with the highest (average) likelihood on some held-out data. This is
in general referred to as cross-validation and is a standard technique for model selection.
However, this leads to high computational labor because we need to train the model many
times with different K’s. Another solution is to assign a prior to K, i.e., P (K), and
then calculate the a posteriori distribution of K to determine this number [14]. But it
remains unclear which parametric form to use for P (K). There also exist many information
criteria, e.g., Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)
and Minimum Description Length (MDL) (see, e.g., [21]). The basic idea of these criteria
is to penalize complicated models (i.e., models with large K), and thus we come up with
an appropriate K to trade-off data likelihood and model complexity [26].

In this chapter we start from the finite mixture model and extend it to infinite mixtures
in the same framework (Section 3.1).1 It is known in statistics that this leads to a Dirichlet
process (DP) mixture model [25]. The new model not only replaces the parametric prior
(i.e., the conjugate family) with a more flexible one, but also have a nice way to determine
the number of mixture components automatically (Section 3.2). While DP mixture model
normally relies on a MCMC sampling scheme, in Section 3.3 we introduce a variational

1This chapter is an extension of the paper [86].

29
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Bayesian solution called the variational Bayesian Dirichlet-Multinomial allocation (VB-
DMA) for model learning and inference. Apart from the other variational solution, the
proposed method is naturally connected to learning in finite mixture models, and it is
shown that the hyperparameter α controls the sparsity of the mixtures (Section 3.3.4).
Therefore, the variational solution leads to an easy way of determining the component
number in the mixture. Some empirical studies are given in Section 3.4 to verify this
approach.

3.1 Infinite Mixture Models

Let us start from the finite mixture model with K components. Using the notation of
Chapter 2, the likelihood of a given data point xi ∈ X is written as

P (xi|π,Θ) =
K∑

k=1

P (ci = k|π)P (xi|θk) =
K∑

k=1

πkP (xi|θk), (3.1)

with mixture weights π = {π1, . . . , πK} satisfying
∑K

k=1 πk = 1, and the set of K natural
parameters Θ = {θk}Kk=1. We can equivalently write (3.1) as

P (xi|π,Θ) =
∫
θ
P (xi|θ)GK(θ) dθ, (3.2)

with notation

GK(θ) := P (θ|π,Θ) =
K∑

k=1

πkδθk
(θ) (3.3)

where δθk
(θ) is the point mass distribution and takes value 1 for θ = θk and 0 otherwise.

It is seen here that distribution GK(θ) defines a discrete prior for θ, which means θ can
only take one of the K values from Θ, with weights defined by π. The final likelihood for
i.i.d. data D = {x1, . . . ,xN}, with π and Θ integrated out, can be written with this new
notation as

P (D|α,G0) =
∫

GK

P (GK |α,G0)

(
N∏

i=1

∫
θi

P (xi|θi)GK(θi) dθi

)
dGK , (3.4)

in which K is only kept in the discrete distribution GK . Note that here we use θi to
denote the natural parameter for the i-th data point, which is one of the K parameters in
Θ. In this notation, model parameters α and G0 now take the role of tuning the discrete
but unknown distribution GK(θ). The plate model is shown in Figure 3.1(a), with dashed
rectangle GK denoting the discrete prior GK(θ).

When we let K → ∞, it is known in statistics that the unknown distribution GK

tends to be a sample from a Dirichlet process (DP), which is a distribution over random
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measures. Following the convention for Dirichlet processes, we have the following sampling
process for data D:

xi|θi
ind∼ P (·|θi), for i = 1, . . . , N

θi
iid∼ G,

G ∼ DP(α,G0).

As will be formally defined in the next section, a DP has two parameters: the concentration
parameter (a positive scalar) and a base distribution. In our model, the concentration pa-
rameter is just α, and the base distribution is G0 := P (θ|µ0, ν0). This model is illustrated
in Figure 3.1(b).

Dirichlet process is well-known for the property of obtaining a nonparametric and
discrete prior, and thus is widely applied for mixture modeling (see, e.g., [44]). When
K is finite, however, the model is not equivalent as defining a Dirichlet process prior
for θi’s, but is shown to be a good approximation if K is sufficiently large. This finite
approximation is sometimes referred to as Dirichlet-Multinomial allocation (DMA), and
is used for approximated sampling for Dirichlet processes [33]. In both DP and DMA,
model selection can be done automatically via sampling methods, and the concentration
parameter α is known to control the flexibility of generating new mixture components.

We give the formal definition for DP in the next section, and then turn to inference and
learning for DP models. We will give a Gibbs sampling algorithm and several variational
Bayesian solutions. We will show that the proposed VBDMA algorithm can detect an
appropriate mixture number K under the control of parameter α.

3.2 Dirichlet Processes

Dirichlet process is a nonparametric Bayesian framework for mixture modeling. In this
section we give the formal definition, and discuss the various views of sampling from a DP
such as Pólya urn sampling, Chinese restaurant process and stick-breaking process. For
more details about DP please refer to [25, 2, 64, 22, 44].

Definition 3.2.1. Let (Ω,B) be a measurable space, with G0 a probability measure on the
space, and let α be a positive real number. A Dirichlet process is the distribution of a
random probability measure G over (Ω,B) such that, for any positive integer r and any
finite partition (A1, . . . , Ar) of Ω, the random vector (G(A1), . . . , G(Ar)) is distributed as
a finite-dimensional Dirichlet distribution:

(G(A1), . . . , G(Ar)) ∼ Dir
(
αG0(A1), . . . , αG0(Ar)

)
.

We write G ∼ DP(α,G0) if G is a random probability measure distributed according to the
Dirichlet process. G0 is called the base distribution of G, and α is called concentration
parameter.
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(a) (b)

Figure 3.1: Plate models from finite mixture to infinite mixture. (a) shows the finite
mixture of exponential family distributions, with GK denoting the discrete prior for θi’s;
(b) shows Dirichlet process mixture model. See text for the different prior distributions
to GK and G in the two plate models.

When the random measure G ∼ DP(α,G0), sampling θ from G can be done analyt-
ically with G integrated out, using the Pólya urn sampling . Suppose we have observed
θ1, . . . ,θN from G, then the (N + 1)-th sample θN+1 takes distribution

P (θN+1|θ1, . . . ,θN , α,G0) =
N∑

i=1

1
N + α

δθi
(·) +

α

N + α
G0(·), (3.5)

which means the new sample takes each old sample θi with probability proportional to 1,
and takes a new one from base distribution G0 with probability proportional to α. This
is like we have a fixed color distribution (G0) of all the balls in an urn, and each time we
randomly pick up one (θi) from the urn, and put this ball and a new one with the same
color into the urn. α in this ball-picking game denotes the initial number of balls in the
urn.

A grouped version of Pólya urn sampling is sometimes called the Chinese restaurant
process (CRP). Let Θ∗ := {θ∗1, . . . ,θ∗M} denote the M distinct samples out of the total N
samples, and Nj the number of samples which take θ∗j . Note that by definition we have∑M

j=1Nj = N . In Chinese restaurant process the (N + 1)-th sample takes distribution

P (θN+1|θ1, . . . ,θN , α,G0) =
M∑

j=1

Nj

N + α
δθ∗j (·) +

α

N + α
G0(·). (3.6)

To get a flavor of the name of the process, imagine there is a Chinese restaurant with
infinite number of tables. The first customer comes and randomly choose a table (θ∗1)
and sit down. Then a second customer comes, with probability 1

1+α sit at the same table
(θ∗1), and with probability α

1+α choose a new table (θ∗2). When the (N + 1)-th customer
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comes, suppose there are M table occupied, with Nj customers sitting at table j. Then
the new customer sit at table j with probability proportional to Nj , and choose a new
table with probability proportional to α. More popular tables get even more popular as
new customers keep coming.

Previous two sampling processes integrate out the distribution G and directly sample
from the posterior. There also exists an explicit form for G, which can be obtained through
stick-breaking process. This allows us to directly sample a distribution G from DP(α,G0).
Let Vj , j = 1, 2, . . ., be i.i.d. samples from Beta distribution Beta(1, α), and define (infinite
number of) positive scalars

π1 = V1, πj = Vj

j−1∏
`=1

(1− V`), j > 1. (3.7)

Then a sample from the DP, i.e., G, can be written as an infinite sum:

G(·) =
∞∑

j=1

πjδθ∗j (·), (3.8)

where θ∗j are i.i.d. sampled from G0. The sampling for all the weights πj ’s is called a stick-
breaking process because it is like breaking a unit-length stick successively independently.
It is shown that the finite discrete distribution (3.3) converges to the infinite sum (3.8)
under an appropriate definition of convergence.

All these three sampling processes can be used to obtain samples from the following
generative model:

θi
iid∼ G,

G ∼ DP(α,G0).

Pólya urn sampling and Chinese restaurant process obtain samples without directly sam-
pling distribution G, and stick-breaking process sample G first using (3.8), and then
sample all the θi’s from the infinite mixture G. As can be seen from all the three sam-
pling processes, base distribution G0 is used to obtain locations of all the distinct samples
θ∗1,θ

∗
2, . . ., and concentration parameter α controls the grouping effect or the sparsity of

all the obtained samples. If α is small, new samples will have high probabilities to pick
up a previously chosen location, and grouping happens frequently. On the other hand if
α is large, each time a new location will be chosen at high probability, and we do not
have a sparse structure of the samples. Figure 3.2 shows a sampling of 10,000 θ’s from a
Dirichlet process DP(α,G0). In this toy illustration each θ is just a one-dimensional real
number. The top figure shows the base distribution G0 which is a Gaussian N (0, 1), and
the middle and bottom figures show the number of samples at the distinct locations with
α = 10 and α = 10000, respectively. When α is relatively small, all the samples occur at
a small number of locations, and we see a clear grouping effect in the middle figure; on
the other hand if α is large, all the locations are occupied with the counts proportional to
their likelihood values in the base distribution G0, as shown in the bottom figure.
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Figure 3.2: Sampling of 10,000 θ’s from a DP with base distribution G0 a Gaussian
N (0, 1) (top), and concentration parameter α = 10 (middle) and α = 10000 (bottom).

As mentioned in the very first paper about Dirichlet processes, one natural application
of DP is mixture modeling, which is called Dirichlet process mixture model . In this model,
the DP prior is assigned to the parameter of the likelihood, i.e., θi in our notation, and
observations xi are sampled given these parameters. The generative model for DP mixture
models is as follows (which we have mentioned in the previous section):

xi|θi
ind∼ P (·|θi), for i = 1, . . . , N

θi
iid∼ G,

G ∼ DP(α,G0).

The plate model is shown in Figure 3.1(b). The key difference here is that we do not
directly observe the samples from a DP, i.e., θi’s, but treat them as latent variables. The
likelihood of observations D = {x1, . . . ,xN} is now

P (D|α,G0) =
∫

G
P (G|α,G0)

{
N∏

i=1

∫
θi

P (xi|θi)G(θi) dθi

}
dG,

similar to the finite mixture model (3.4). To facilitate sampling and variational inference,
we choose G0 such that it is conjugate to the likelihood model P (x|θ). In the case of
exponential family distribution, we choose G0 to be the conjugate family P (θ|µ0, ν0) with
hyperparameter µ0 and ν0.
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This directly leads to a clustering interpretation of DP mixture model. Since DP
prior induces a grouping structure on the set of all θi’s, two data points which share
the same parameter can be thought to belong to the same cluster. The nice property of
DP mixture model is that there is no need to pre-choose a number of clusters, since the
sparsity automatically occurs in DP sampling. In another word, we can infer this number
automatically from the data. The hyperparameter α is now controlling the sparsity of the
mixture, i.e., the number of clusters in the data.

Remark 3.2.1. In parametric Bayesian analysis, one puts a (conjugate) parametric prior
on the likelihood parameters. Examples of this include Gaussian prior for the mean of a
Gaussian likelihood, and Dirichlet prior for the parameters of Multinomial observations.
In terms of an exponential family likelihood with parameter θ, we assign the conjugate
family, i.e., G0 = P (θ|µ0, ν0), as the parametric prior for θ. However, it is often argued
that this parametric prior is too strong to maintain enough flexibility of Bayesian modeling.
Non-parametric Bayes emerges in this context and replaces the parametric prior G0 with
a non-parametric one, G, and put G0 in a higher level of the hierarchy. The prior G
for θ is now flexible enough, but still controlled by G0 and a sparsity parameter α. This
change from parametric models to non-parametric models is sometimes called Dirichlet
enhancement, and the new model is equivalent to an infinite mixture of the underlying
parametric models.

In the following sections we review the Gibbs sampling methods for DP mixture models,
and then introduce truncation to DP and two variational Bayesian methods.

3.3 Inference and Parameter Estimation

Since we cannot directly sample a distribution G from a DP, the inference in the DP mix-
ture model remains intractable. There exist various Markov chain Monte Carlo (MCMC)
methods to this problem [55], but in this section we are more interested in variational
methods. In the following we briefly review certain Gibbs sampling methods, and then
investigate corresponding variational methods.

3.3.1 Gibbs Sampling with Pólya Urn Process

The Gibbs sampling for DP mixture model is a natural extension of the Pólya urn sampling
for DP. The key point here is that sampling of a parameter θi depends not only on all
the other samples Θ−i := {θ`}N`=1 \ θi, but also on the observation xi. Based on the
exchangeability, we iteratively sample one θi conditioned on the other parameters Θ−i,
hyperpriors α,G0 and data D as

P̂ (θi|Θ−i, α,G0,D) ∝ P (xi|·)P (·|Θ−i, α,G0)

∝
∑
` 6=i

P (xi|θ`)δθ`
(·) + αP (xi|·)G0(·), (3.9)
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where the final normalization factor can be calculated as

Z =
∑
` 6=i

P (xi|θ`) + α

∫
θ
P (xi|θ)G0(θ) dθ.

With a conjugate prior G0, the integral here is tractable. Now a sample of θi takes a
previously known θ` with probability proportional to its “interpretability” to data xi,
i.e., P (xi|θ`), and takes a new sample from G0 with probability proportional to α times
the interpretability of this new sample to xi. Equation (3.9) can also be written using
Chinese restaurant process with grouped parameters. By assigning priors to α and G0,
we can also Gibbs-sample these hyperparameters. Then iterating the sampling process we
can solve the problem.

3.3.2 Truncated Dirichlet Process

The Pólya urn process defines a clear sampling structure for the posterior of θ and avoids
the difficult problem of sampling the unknown distribution G. However, the sampling
process denoted in (3.9) could be very slow to converge because we update the θi’s one by
one. There are methods in which G is considered explicitly using stick-breaking process,
and the updates for Gibbs sampling can be done in block. This is applicable if we truncate
the stick-breaking process, which is called truncated Dirichlet process (TDP) [45].

In TDP we choose a positive integer M which is large enough, and force VM = 1 in
the stick-breaking process (3.7). Then it is easily seen that πj = 0 for all j > M , and
distribution G is now a finite sum with M point-mass functions:

G(·) =
M∑

j=1

πjδθ∗j (·), (3.10)

with the weights π = {πj}Mj=1 satisfying
∑M

j=1 πj = 1. It can be shown that with a
sufficiently large M , TDP approaches a true DP.

Under the approximation of TDP, the DP mixture model is now similar to a finite
mixture model, with a stick-breaking prior on π. With notation Θ∗ = {θ∗j}Mj=1, the
likelihood of the data D is now

P (D|α,G0) =
∫
π
P (π|α)

∫
Θ∗

P (Θ∗|G0)

{
N∏

i=1

M∑
ci=1

P (ci|π)P (xi|ci,Θ∗)

}
dΘ∗ dπ, (3.11)

with M the truncation number. This is to say in the beginning we have at most M
mixture components. Here P (π|α) is the stick-breaking process defined in (3.7) with
truncation number M , and P (Θ∗|G0) =

∏M
j=1 P (θ∗j |G0) =

∏M
j=1 P (θ∗j |µ0, ν0) in which

all θ∗j ’s are i.i.d. sampled from G0. In the curly brackets, P (ci|π) is an M -dimensional
Multinomial, and P (xi|ci,Θ∗) = P (xi|θ∗ci

), which means ci is the indicator variable saying
which component data point xi takes out of the M mixture components.



3.3. INFERENCE AND PARAMETER ESTIMATION 37

Blocked Gibbs Sampling by TDP

Under TDP, a blocked Gibbs sampling method exists to solve the inference problem [45].
The joint distribution of the posterior is now P (π,Θ∗, c, α, µ0, ν0|D).

1. (Θ∗|µ0, ν0, c,D): Assume {c∗1, . . . , c∗m} are the unique values of the indicator vector
c, then draw (θ∗c∗k |µ0, ν0, c,D) from the density

P̂ (θ∗c∗k |µ0, ν0, c,D) ∝ P (θ∗c∗k |µ0, ν0)
∏

{i:ci=c∗k}

P (xi|θ∗c∗k);

For θ̃ ∈ Θ∗\{θ∗c1 , . . . ,θ
∗
cm
}, draw P̂ (θ̃|µ0, ν0, c,D) = P (θ̃|µ0, ν0).

2. (c|π,Θ∗,D): For i = 1, . . . , N , draw values

P̂ (ci|π,Θ∗,D) ∝ P (ci|π)P (xi|θ∗ci
), ci = 1, . . . ,M.

3. (π|α, c): The posterior is calculated as P̂ (π|α, c) ∝ P (π|α)P (c|π). It is known
that after the stick-breaking process, the likelihood of π given α has a generalized
Dirichlet distribution which is conjugate to Multinomial [15]. Therefore, we can
draw values from the posterior

π1 = V ∗
1 , πj = V ∗

j

j−1∏
`=1

(1− V ∗
` ) for j = 2, . . . ,M,

where V ∗
M is fixed as 1, and

V ∗
j ∼ Beta

1 +
N∑

i=1

δj(ci), α+
M∑

`=j+1

N∑
i=1

δ`(ci)

 , for j = 1, . . . ,M − 1.

4. (α|π): Assign a prior to α, and draw

P̂ (α|π) ∝ P (α)P (π|α).

5. (µ0, ν0|Θ∗): Assign a prior to (µ0, ν0), and draw

P̂ (µ0, ν0|Θ∗) ∝ P (µ0, ν0)
M∏

j=1

P (θ∗j |µ0, ν0).

This Gibbs sampler is said to be blocked because sampling of each distinct θ∗j is done
once for a group of data points (which share this parameter). This yields faster sampling
because the number of distinct parameters is much smaller than the number of data points.
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Variational Bayesian TDP

Based on TDP, Blei and Jordan proposed a variational Bayesian method in [9] to directly
approximate the a posteriori distribution of all the latent variables V,Θ∗, c, with V :=
{Vj}Mj=1. In this chapter we call this method variational Bayesian TDP (VBTDP). They
do not model π because π is completely determined by V. A fully factorized variational
distribution is imposed on the posterior as follows:

Q(V,Θ∗, c|Λ,µ,ν,Ψ) =
M∏

j=1

Q(Vj |λj)
M∏

j=1

Q(θ∗j |µj , νj)
N∏

i=1

Q(ci|ψi),

whereQ(Vj |λj) is a Beta distribution Beta(λj,1, λj,2), Q(θ∗j |µj , νj) takes the conjugate form
(2.5), and Q(ci|ψi) is N -dimensional Multinomial. The Jensen’s inequality is applied to
(3.11), and the following lower bound can be derived based on the variational distribution
Q:

LTDP =
M∑

j=1

EQ[logP (Vj |α)] +
M∑

j=1

EQ[logP (θ∗j |µ0, ν0)] +
N∑

i=1

EQ[logP (ci|V)]

+
N∑

i=1

EQ[logP (xi|Θ∗, ci)]− EQ[logQ(V,Θ∗, c)].

Calculation of this lower bound is very similar to the case of finite mixture model in the
last chapter. Here we just give the exact equations for the first and third terms. Applying
(2.6) to Beta distribution leads to

M∑
j=1

EQ[logP (Vj |α)] =
M∑

j=1

{
logα+ (α− 1)EQ(Vj |λj)[log(1− Vj)]

}

= M logα+ (α− 1)
M∑

j=1

[Ψ(λj,2)−Ψ(λj,1 + λj,2)].

The third term can be similarly calculated as that for each i = 1, . . . , N ,

EQ[logP (ci|V)] =
M∑

j=1

Q(ci = j|ψi)EQ(V|Λ)

[
log

(
Vj

j−1∏
`=1

(1− V`)

)]

=
M∑

j=1

ψi,j

{
EQ(Vj |λj)[log Vj ] +

j−1∑
`=1

EQ(V`|λ`)[log(1− V`)]

}

=
M∑

j=1

ψi,j

{[
Ψ(λj,1)−Ψ(λj,1 + λj,2)

]
+

j−1∑
`=1

[
Ψ(λ`,2)−Ψ(λ`,1 + λ`,2)

]}
.
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Following the recipe of variational Bayesian method which we introduce in the previous
chapter, in E-step we maximize the lower bound with respect to the variational parameters
(Λ,µ,ν,Ψ). It is not hard to obtain the following update equations:

ψ̂i,j ∝ exp
{[

Ψ(λj,1)−Ψ(λj,1 + λj,2)
]

+
j−1∑
`=1

[
Ψ(λ`,2)−Ψ(λ`,1 + λ`,2)

]
+ Eµj ,νj [θ

∗
j ]
>φ(xi) + Eµj ,νj [−A(θ∗j )]

}
, (3.12)

µ̂j = µ0 +
N∑

i=1

ψi,jφ(xi), ν̂j = ν0 +
N∑

i=1

ψi,j , (3.13)

λ̂j,1 = 1 +
N∑

i=1

ψi,j , λ̂j,2 = α+
N∑

i=1

M∑
`=j+1

ψi,`, (3.14)

where in the first equation we normalize such that
∑M

j=1 ψ̂i,j = 1, for all i = 1, . . . , N .

If a direct update of the hyperparameter is desired, we can do it in the M-step and
maximize the lower bound with respect to the model parameters α and (µ0, ν0). For α
the update is analytical:

α̂ =
M∑M

j=1

[
Ψ(λj,1 + λj,2)−Ψ(λj,2)

] , (3.15)

and for (µ0, ν0) we have

M
∂B(µ, ν)
∂µ

∣∣∣∣
µ=µ̂0,ν=ν̂0

=
M∑

j=1

∂B(µj , νj)
∂µj

, (3.16)

M
∂B(µ, ν)

∂ν

∣∣∣∣
µ=µ̂0,ν=ν̂0

=
M∑

j=1

∂B(µj , νj)
∂νj

, (3.17)

which are the same as equations (2.19) and (2.20). We need to use computational methods
such as Newton-Raphson to find the optimal values for µ0 and ν0. In the paper of Blei
and Jordan, the M-step is not derived. Model parameters α and G0 remains the same in
their method. The whole algorithm is summarized in Algorithm 3.1 for clarity.

3.3.3 Dirichlet-Multinomial Allocation

TDP is not the only approximation to DP. Another approximation is called the Dirichlet-
Multinomial allocation (DMA) [33]. In DMA we also have a large truncation num-
ber M , and have similar truncation form as TDP in (3.11). The only difference is
that the prior P (π|α) now takes an exchangeable M -dimensional Dirichlet distribution
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Algorithm 3.1 VBTDP Algorithm for Dirichlet Process Mixture Model
Require: N observed data points D = {x1, . . . ,xN}.
Require: Initial model parameters α, µ0 and ν0.
1: Choose a large enough mixture number M (e.g., set M = N). Initialize Ψ = {ψi,j}

randomly and normalize such that
∑M

j=1 ψi,j = 1, for all i = 1, . . . , N .
2: repeat
3: {E-step}
4: repeat
5: Update component-specific variables µj , νj , λj,1, λj,2 via (3.13) and (3.14);
6: Update membership variables ψi,j via (3.12);
7: until the improvement of log-likelihood is smaller than a threshold.
8: {M-step} (optional)
9: Update concentration parameter α via (3.15);

10: Update hyperparameters µ0 and ν0 via (3.16) and (3.17);
11: until the improvement of log-likelihood is smaller than a threshold.
Output: Mixture component parameters (µj , νj)’s, mixing weights calculated in (3.21),

and data-component membership ψi,j ’s.

Dir(α/M, . . . , α/M), not a stick-breaking prior as in TDP. It is shown that as M → ∞,
DMA approaches a true DP.

It is not hard to see that this approximation to DP is equivalent to the finite mixture
model we have discussed in detail in the last chapter. This provides a very nice connection
between finite mixture models and DP mixture models, and allows us to achieve similar
sparsity in finite mixtures. In the following we will first review the Gibbs sampling al-
gorithm under DMA, and then introduce the variational Bayesian Dirichlet-Multinomial
allocation (VBDMA) method which is novel for approximated inference in DP mixture
models. A qualitative analysis of the functionality of α in VBDMA is given after that,
which shows that VBDMA can also learn the mixture numbers automatically for finite
mixture models.

Blocked Gibbs Sampling by DMA

Since the key difference between DMA and TDP is the prior for π, the blocked Gibbs
sampling under DMA approximation is the same as that for TDP except Step 3, the
sampling of π given α and c. By the conjugacy of Dirichlet distribution to Multinomial,
the posterior is now

P̂ (π|α, c) ∼ Dir

(
α

M
+

N∑
i=1

δ1(ci), . . . ,
α

M
+

N∑
i=1

δM (ci)

)
,

without any sampling of Vj ’s from the Beta distribution. It shares the same property of
blocked sampling as that for TDP.
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Variational Bayesian DMA

Different from VBTDP, the proposed VBDMA algorithm assigns a variational distribu-
tion to latent variables π, Θ∗ and c, motivated by the DMA approximation to DP. The
variational form is now

Q(π,Θ∗, c|λ,µ,ν,Ψ) = Q(π|λ)
M∏

j=1

Q(θ∗j |µj , νj)
N∏

i=1

Q(ci|ψi),

in which we directly assign a variational distribution on π instead of Vj ’s. Q(π|λ) is now
M -dimensional Dirichlet, with parameter λ of length M . This is in contrast to VBTDP
where the variational parameter λ has length 2M . Using less variational parameters will
be shown to be more robust. Other variational distributions remain the same as those for
VBTDP. The lower bound of the log likelihood is now

LDMA = EQ[logP (π|α)] +
M∑

j=1

EQ[logP (θ∗j |µ0, ν0)] +
N∑

i=1

EQ[logP (ci|π)]

+
N∑

i=1

EQ[logP (xi|Θ∗, ci)]− EQ[logQ(π,Θ∗, c)],

the same as (2.14) in Chapter 2 with slightly different notations. The E-step, which we
repeat here with new notations, is given as follows:

ψ̂i,j ∝ exp

{[
Ψ(λj)−Ψ

(
M∑
`=1

λ`

)]
+ Eµj ,νj [θ

∗
j ]
>φ(xi) + Eµj ,νj [−A(θ∗j )]

}
, (3.18)

µ̂j = µ0 +
N∑

i=1

ψi,jφ(xi), ν̂j = ν0 +
N∑

i=1

ψi,j , λ̂j =
α

M
+

N∑
i=1

ψi,j . (3.19)

As can be seen clearly, the main differences of this E-step compared to that for VBTDP
are the updates to mixture memberships ψi,j ’s and cluster weights λj ’s. In the M-step
we maximize the lower bound with respect to the model parameters α and (µ0, ν0). The
updates for (µ0, ν0) are the same as those for TDP, and for α we need to solve

K

[
Ψ
(
α̂

M

)
−Ψ(α̂)

]
=

M∑
j=1

Ψ(λj)−Ψ

 M∑
j′=1

λj′

 . (3.20)

The algorithm is summarized in Algorithm 3.2.

3.3.4 Comparison of Variational Bayesian Methods for DP

In this section we compare the two variational Bayesian methods for DP mixture models.
They are based on two different finite approximations to a true DP, and assume different
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Algorithm 3.2 VBDMA Algorithm for Dirichlet Process Mixture Model
Require: N observed data points D = {x1, . . . ,xN}.
Require: Initial model parameters α, µ0 and ν0.
1: Choose a large enough mixture number M (e.g., set M = N). Initialize Ψ = {ψi,j}

randomly and normalize such that
∑M

j=1 ψi,j = 1, for all i = 1, . . . , N .
2: repeat
3: {E-step}
4: repeat
5: Update component-specific variables µj , νj , λj via (3.19);
6: Update membership variables ψi,j via (3.18);
7: until the improvement of log-likelihood is smaller than a threshold.
8: {M-step} (optional)
9: Update concentration parameter α via (3.20);

10: Update hyperparameters µ0 and ν0 via (3.16) and (3.17);
11: until the improvement of log-likelihood is smaller than a threshold.
Output: Mixture component parameters (µj , νj)’s, mixing weights calculated as πj =

λj/
∑M

j′=1 λj′ , and data-component membership ψi,j ’s.

variational priors for the mixing weight π. Starting from the finite mixture modeling
perspective, VBDMA is more attractive because it yields the same variational updates
as that for finite mixture model. It also explains the functionality of α in finite mixture
modeling which we analyze qualitatively in the following.

Sparsity of Infinite Mixture under VBDMA

Let us first fix α and focus on the VBDMA solution (3.18)∼(3.19) with a large enough
M (by setting, e.g., M = N). With an uninformative initialization of all the variational
parameters (e.g., we set µj = µ0, νj = ν0 and λj = α/M for all j = 1, . . . ,M), we
first fit the mixture membership ψi,j using (3.18), and then update the other parameters
using (3.19). Since all the components have the same prior terms Eλ[log πj ] = Ψ(λj) −
Ψ
(∑N

j′=1 λj′

)
initially, in (3.18) the assignment probabilities ψi,j will solely depend on the

empirical explanation of xi given component parameter θj , i.e., Eµj ,νj [θ
∗>
j φ(xi)−A(θ∗j )].

This will make the updated ψi,j unevenly distributed, and after normalizing such that∑
j ψi,j = 1 for each i, we can observe small assignment probabilities

∑N
i=1 ψi,j for those

“unlikely” components. When these values are fed into (3.19), these components will get
smaller values for λj , and thus the prior term Eλ[log πj ] in (3.18) will also get smaller,
which makes ψi,j more sharply distributed. Eventually, these components will get ψi,j = 0,
for all data points xi. This in turn leads to µj = µ0, νj = ν0 and λj = α/M , all equal to
the hyperparameters. When M is very large, α/M is very small, and these components
almost have no chance to get bigger ψi,j in the future for some data xi, as seen from
(3.18). Finally when the algorithm converges, we obtain only a small number of effective
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α = 1,M = 10 α = 1,M = 20 α = 1,M = 100 α = 1,M = 250

Figure 3.3: Fitting the toy Gaussian mixture data using VBDMA with fixed α but different
M values. The middle row shows the log likelihood with respect to each iteration in
VBDMA, and the bottom row shows the effective numbers of mixtures along all iterations.
Initialization is done with β0 = 0.01, ν0 = 2 and random initialization for Ψ.

components.

This phenomenon is illustrated in Figure 3.3 for the mixture of 5 Gaussians we studied
in the last chapter. When we fix α = 1, sparsity is obtained for all the M ’s in the figure,
ranging from 10 to 250 which is the total number of data points. When M becomes larger,
the fitted number of mixtures does not vary too much, but tends to be stable (upper row).
The middle row shows the curve of log likelihood with respect to each iteration, and we
also show the effective number of mixtures for each iteration in the bottom row for each
M . It can be seen that each time the effective number decreases, the log likelihood is
improved. Therefore, VBDMA can be used to find this effective number. As will be seen
next, the strength of sparsity is not random, but depends strongly on the parameter α.

Functionality of α in VBDMA

Now we investigate the situation in which M is fixed, but α is allowed to change. When
α is small, updates for λj will mostly depend on the empirical assignments

∑N
i=1 ψi,j in

(3.19), and thus quickly get unbalanced. Then similar to the previous discussion, ψi,j will
get an even sharper distribution in the next update, and the algorithm quickly converges
to a small number of components that fit the data best. In the limiting case that α = 0,
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α = 1,M = 250 α = 10,M = 250 α = 100,M = 250 α = 1000,M = 250

Figure 3.4: Fitting the toy Gaussian mixture data using VBDMA with fixed K but dif-
ferent α values. The middle row shows the log likelihood with respect to each iteration in
VBDMA, and the bottom row shows the effective numbers of mixtures along all iterations.
Initialization is done with β0 = 0.01, ν0 = 2 and random initialization for Ψ.

λj ’s are purely determined by empirical updates, and we are making a maximum likelihood
estimate for the mixing weights π.

On the other hand when α is relatively large, the prior term α/M will dominate the
update equation (3.19), and thus λj will not be very unbalanced in one step. This will in
turn make the update equation (3.18) smooth for ψi,j , and more components will survive
than that with small α. As the iteration continues, certainly some components will be
“dead” because of their poor fit to the data, but the death rate is much slower and we
could expect more components left after convergence. A limiting case for this is to let
α→∞, which corresponds to fix the π a priori to be { 1

M , . . . , 1
M }, and does not change

it in the whole learning process. This leads to non-sparsity of the learned model.

Figure 3.4 shows the results with different α values. With M fixed as 250 which is the
total number of data points, smaller α (e.g., 1 or 10) leads to higher sparsity, and larger α
(e.g., 1000) results in more components. Therefore, choosing a suitable α means choosing
a desirable number of mixtures.

Our final experiment on this toy data is to randomize the learning algorithm 20 times
with different α’s and M ’s, and investigate the number of mixtures after learning. The
results are given in the top table in Table 3.1, with means and standard deviations. Spar-
sity is obtained for almost all the M ’s with small α values, but for large α’s sparsity is not
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α = 1,M = 10 α = 1,M = 20 α = 1,M = 100 α = 1,M = 250

α = 1,M = 250 α = 10,M = 250 α = 100,M = 250 α = 1000,M = 250

Figure 3.5: Fitting the toy Gaussian mixture data using VBTDP with different α and
M values. The second and fourth rows show the effective numbers of mixtures along all
iterations. Initialization is done with β0 = 0.01, ν0 = 2 and random initialization for Ψ.

always achieved. This is because the large α value induces a strong prior and almost all
the components survive after learning. When α becomes larger and larger, the curve will
approach the line y = x with small deviations, which indicates that we are exactly fitting
M components without model selection.

Discussion

We also tested the VBTDP on this Gaussian mixture data, and the results are shown in
Figure 3.5 and the bottom table of Table 3.1. Sparsity is also achieved for VBTDP, but
its behavior is different from VBDMA. With fixed α = 1, improving M will lead to a
slightly more number of mixtures, as seen in the figure and the table. When α is increased
with fixed M = 250, we cannot obtain a non-sparse mixture model as in VBDMA. From
our experience, the model fitting of VBTDP is not as good as VBDMA (as can be seen
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Table 3.1: The number of learned mixture components (means and standard deviations)
in VBDMA (top) and VBTDP (bottom) for the toy Gaussian data with different initial
K and α values. The experiments are repeated 20 times randomly.

K = 5 K = 10 K = 20 K = 50 K = 100 K = 250
α = 1 4.45± 0.60 6.00± 1.03 6.70± 0.86 7.15± 1.27 6.85± 1.42 6.25± 1.16
α = 10 4.95± 0.22 7.80± 1.01 8.65± 1.14 7.35± 1.04 7.10± 1.37 6.45± 1.10
α = 100 5.00± 0.00 10.00± 0.00 19.90± 0.31 21.20± 1.58 11.40± 1.76 7.80± 1.40
α = 1000 5.00± 0.00 10.00± 0.00 20.00± 0.00 49.65± 0.49 69.05± 2.19 45.05± 2.06
α = 10000 5.00± 0.00 10.00± 0.00 20.00± 0.00 49.90± 0.31 85.10± 2.47 87.75± 2.07

K = 5 K = 10 K = 20 K = 50 K = 100 K = 250
α = 1 4.50± 0.61 6.30± 1.03 7.35± 1.46 8.15± 1.39 8.55± 1.23 9.00± 1.62
α = 10 4.65± 0.49 6.75± 0.91 7.85± 1.14 8.50± 1.24 8.80± 1.32 9.15± 1.09
α = 100 4.60± 0.60 7.55± 1.15 8.95± 1.79 9.60± 1.70 9.90± 1.21 10.10± 1.33
α = 1000 4.65± 0.49 7.80± 1.01 10.45± 1.47 10.80± 2.07 11.15± 2.06 11.10± 2.31
α = 10000 4.60± 0.50 7.75± 1.02 10.20± 1.32 11.05± 2.01 11.50± 1.82 11.40± 2.19

from Figure 3.3, 3.4 and 3.5), but due to the local minima problem and sensitivity to the
initialization, it is difficult to make a general conclusion.

It is known that the stick-breaking variational form in VBTDP induces a generalized
Dirichlet distribution to the weight π, and uses twice as many parameters as a Dirich-
let distribution [15]. Let us rewrite αj = λj,1 and βj = λj,2 to replace the variational
parameter Λ in VBTDP, the density for π can now be written as

P (π|Λ) = π
βM−1−1
M

M−1∏
j=1

Γ(αj + βj)
Γ(αj)Γ(βj)

π
αj−1
j (1− π1 − · · · − πj)

βj−αj+1−βj+1 .

The generalized Dirichlet distribution is also conjugate to Multinomial distribution, and
it reduces to the Dirichlet distribution if βj = αj+1 + βj+1, for j = 1, . . . ,M − 1. After
convergence in VBTDP, the weight vector π, which is the soft weights of the clustering
structure, can be obtained as the expectation with respect to the generalized Dirichlet
distribution, calculated as

E[π1] =
α1

α1 + β1
, E[πj ] =

αj

αj + βj

j−1∏
`=1

β`

α` + β`
, for j = 2, . . . ,M. (3.21)

Given this result, in the E-step VBDMA can be viewed as doing the same approximation
as VBTDP, except that extra constraints are maintained such that βj = αj+1 + βj+1, for
j = 1, . . . ,M−1. Although the general Dirichlet distribution is more flexible than Dirichlet
distribution, using it as the variational distribution to approximate the true posterior is
more likely to overfit. Other properties of generalized Dirichlet distribution include that
each dimension of π is not always negatively correlated to other dimensions (i.e,. observing



3.4. EMPIRICAL STUDIES 47

a sample from one dimension will surely increase the expected value of the parameter for
this dimension, but decrease those for the other dimensions) as in Dirichlet distribution,
and that the order of these dimensions is important for sampling and learning [76]. Both
properties are unnecessary for mixture modeling, and the latter is even contradictory to
Bayesian exchangeability in this context. In the next section we will compare these two
methods using some real data to show the difference.

3.4 Empirical Studies

In this section we study the proposed model on some real data with Gaussian mixture
models. We use the following two data sets. One is the “Old Faithful” data that contains
272 observations from the Old Faithful Geyser in the Yellowstone National Park.2 The data
is two-dimensional, and each observation consists of the duration of the eruption and the
waiting time to the next eruption. The other data set is a subset of Corel image database
and contains 1021 images.3 Color histogram features for each image are extracted, and
then mapped to a five-dimensional space (using standard PCA) for mixture modeling.

3.4.1 Old Faithful Data

We fit a mixture of Gaussians to the “Old Faithful” data, with K set to 272 initially,
identical to the number of data points. Other parameters are initialized as β0 = 0.1,
ν0 = 2, m0 the sample mean, and W0 the inverse of the sample covariance divided by
β0. The results for some α’s are shown in top row of Figure 3.6. It can be seen that
small α leads to small number of Gaussians, and larger α leads to more. Choosing α to
be 100, 500 and 1000 results in 3, 6 and 15 Gaussians, respectively. All of them fit the
data very well, but in different granularities. The final log likelihoods of the three model
fitting are -1174.55, -1187.75 and -1253.17, respectively. One can do a model selection
using this likelihood value and prefer the first one, but now there is no need to choose K
a priori because this number is automatically determined by the VBDMA algorithm with
a suitable α. In the bottom figure we also illustrate the curves of log likelihood and the
effective number of components with respect to each iteration for α = 100, and it can be
seen that each time the effective mixture number decreases, the likelihood has a noticeable
increase (we mark three of them using dashed lines). Model fitting based on VBTDP is
shown in the middle row with the same initial parameters, and it is seen that the α values
does not affect the number of learned Gaussians that much. As discussed before, we lose
the sparsity control of the mixture modeling.

2The data is available at http://www.uvm.edu/∼dhowell/StatPages/More Stuff/geyser2a.dat.
3The Corel images are originally from http://elib.cs.berkeley.edu/corel/.
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α = 100,K = 272 α = 500,K = 272 α = 1000,K = 272

α = 100,K = 272 α = 500,K = 272 α = 1000,K = 272

Likelihood and mixture numbers of all iterations for α = 100

Figure 3.6: Fitting a mixture of Gaussians on the “Old Faithful” data set using VBDMA
(top row) and VBTDP (middle row) with fixed K = 272 and different α values. The
bottom plot shows the log-likelihood and the number of effective mixture components
with respect to each iteration in E-step of VBDMA.

3.4.2 Image Data

The images are fitted with Gaussian mixtures with K pre-defined to be 1021, the number
of images in the whole data set. Model parameters are set as β0 = 0.1, ν0 = 5, with
m0 and W0 defined as above. Using VBDMA method, we obtain respectively 18 and
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α = 1,K = 1021 α = 500,K = 1021

Figure 3.7: Component weights after learning with VBDMA on the Corel image data set.

56 mixture components with α = 1 and α = 500, for which the soft weights are shown
in descending order in Figure 3.7. It can be read that for α = 1, only 5 out of the 18
components have weights larger than 0.01. For α = 500 this number is 13. To show the
characteristic of each component, we illustrate the 10 images which have the highest weight
for each component, one row per component, in Figure 3.8 and Figure 3.9, respectively
for α = 1 and α = 500. It can be seen that images of different color histograms can be
grouped reasonably, especially for α = 1. Setting α = 500 will lead to more components,
among which, for instance, castles are split into two components 1 and 3 due to different
colors. In general, larger α leads to more but still meaningful components in the mixture
modeling. There are noises in this mixture modeling, since fitting such a flexible Gaussian
mixture model in image data with a reasonable number of dimensionality is not an easy
task.

The same parameter settings are used for the VBTDP method, and the results are
shown in Figure 3.10. For the two different α values, VBTDP obtains 16 and 20 compo-
nents, respectively, and among them 10 and 11 have weights larger than 0.01. We also
show the images of each component in Figure 3.10, and it can be seen that...

3.5 Summary

This chapter answers the important question of how to identify the number of mixture
components, and builds connections to infinite mixture modeling with Dirichlet processes.
It turns out that the symmetric Dirichlet prior proposed in the last chapter for the mixing
weights is the key point to approximate a DP in the limiting case of K →∞. While this
prior has been used in several previous works [30, 16], its connection to non-parametric
Bayesian framework with Dirichlet process is never uncovered. Several researchers have
observed the phenomena that their models (which use this prior) can automatically detect
the number of mixtures, but they either provide no explanation for this [16], or give the
wrong one [30].
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Figure 3.8: The 5 clusters of largest weights using VBDMA with α = 1, one per row with
10 images of largest membership weights.

We emphasize that this connection to Dirichlet process is important, in that:

• This explains why parametric Bayesian modeling of finite mixtures obtains similar
results as non-parametric modeling. Automatically detecting number of mixtures is
one important result among others.

• This makes it possible to borrow known results about Dirichlet process from statistics
community and apply them on finite parametric modeling. For example, the con-
centration parameter α in DP is known for controlling the flexibility of generating
new mixtures. It is also the case in finite modeling, as seen in this chapter.

• Variational methods originally developed for finite mixture models can (in general)
be applied for model inference and learning with DP prior. This makes it possible to
propose complicated models with possibly infinite number of mixtures, and then use
the known variational methods to solve it with the approximation of finite mixtures.
This can be applied, for instance, for infinite mixtures of probabilistic PCA [69] and
infinite mixtures of latent Dirichlet allocation (LDA) [10]. These are however left as
future works.

Another variational Bayesian method for infinite mixture model is VBTDP which is
based on TDP as a finite approximation to DP. Some empirical studies are performed in
this chapter to compare these two variational solutions. VBDMA is shown to be superior
to VBTDP, and has a nice property of controlling the sparsity of mixture modeling with
a single hyperparameter α.

For future work one can apply the proposed model to more complex exponential family
distributions for various applications, e.g., infinite mixture of probabilistic PCA models
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Figure 3.9: The 13 clusters of largest weights using VBDMA with α = 500, one per row
with 10 images of largest membership weights.

and infinite mixture of latent Dirichlet allocation models. The usage of Dirichlet processes
in relational learning is also worth investigating [78].
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α = 1,K = 1021 α = 500,K = 1021

Figure 3.10: Results of VBTDP on the Corel image data set.



Part II

Probabilistic Projection Models
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Chapter 4

Overview of Projection Models

Dimensionality reduction aims to find a low-dimensional representation of the data. This
is important for many machine learning and data mining problems, either because the
original dimensionality is too high to apply certain algorithms, or because there are noisy
dimensions which we want to remove. Other motivations include improving the efficiency
of learning, and accelerating certain algorithms. One typical example of high-dimensional
data is the text document corpus for information retrieval. In the vector space model
(VSM), each document is represented as a vector of terms, and each term defines one
dimension in the space. Hence the dimensionality of the space is the number of distinct
terms in the corpus, which could easily reach ten thousands for a middle-sized corpus.
Another example is in face recognition, where each face image is cropped to 32× 32 pixels
and has at least one feature for each pixel. This also generates a very high dimensional
space for the face images.

One way of reducing the number of features is to select a subset of features which
are informative enough or sufficient for the learning algorithms. This is in general called
feature selection and has been extensively studied in the data mining community. For
information retrieval, removing the stop-words (which are the common words like the and
of ) is one popular feature selection technique. Feature selection is in general fast and
easy to implement, but in many applications it is not the individual features that are
important, but a (weighted) combination of them. Extracting these features is not only
important for the learning algorithms, but also useful for understanding the data. This
so-called feature transformation or projection is the main topic of this overview.

Most of the research on projection methods works on continuous data, i.e., each feature
dimension can take a real number in some domain. The face image data belongs to this
category. In this chapter, however, we consider both continuous data and discrete data,
where for discrete data the domain of each feature dimension is the set of (non-negative)
integers. One typical example is the bag-of-words representation of the document-word
matrix, where each entry denotes the occurrences of the corresponding word in the docu-
ment. In the rest of this chapter we summarize different projection methods for these two

55
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types of data (in Section 4.1 and Section 4.2 respectively), and in Section 4.3 we point out
the road-map of our contributions in the following chapters.

We summarize our notations here for clarity. In what follows we consider a set of
N data (e.g., documents or images), and each data i is described by an M -dimensional
feature vector xi ∈ X . For continuous data X ⊂ RM , and for discrete data X ⊂ ZM

+ . For
projection we aim to derive a mapping Ψ : X 7→ Z which maps the input features into a
K-dimensional space Z.

4.1 Projection Models for Continuous Data

In this section we give an overview of projection models for continuous data, mostly from
the perspective of global projection. Some local projection methods are summarized at
the end of this section.

4.1.1 Principal Component Analysis (PCA)

Probably the most popular projection method for continuous data is the principal com-
ponent analysis (PCA), which performs a singular value decomposition (SVD) to the
data matrix and obtains the sub-eigenspace with large singular values [46]. Denote
X := [x1, . . . ,xN ]> the input matrix after centralization, i.e., we subtract the sample
mean x̄ := 1

N

∑N
i=1 xi from each input. Let X = VDU> be the SVD of X, where V and

U are N × N and M ×M column orthogonal matrices, respectively, and D is N ×M
diagonal matrix with singular values sorted in descending order along the diagonal. Then
it is known that the first K columns of U, which we denote UK , defines the mapping Ψ for
PCA. This means that for any data point x∗, its projection onto the principal component
space is calculated as z∗ = U>

Kx∗. It is easy to verify that the projections of input data
X onto the principal component space can be calculated as Z := VKDK ∈ RN×K , where
VK contains the first K columns of V, and DK is the top left K ×K sub matrix of D.

PCA has many important properties. The most well-known property of PCA, which
also motivates the name principal components, is that the K principal axes uk, k ∈
{1, . . . ,K}, are those orthonormal axes onto which the retained variance under projection
is maximal [41]. This can be done by eigen-decomposing the sample covariance matrix S :=
1
N X>X, and taking the K dominant eigenvectors (i.e., those with the largest associated
eigenvalues) as the projection axes. It is easy to verify that this is equivalent to the
SVD interpretation we illustrated above. Figure 4.1 shows the two principal axes for a
two-dimensional toy data.

Another important property of PCA is regarding to the reconstruction error of each
data point from its projection [56]. Let zi ∈ RK be the projection of data point xi onto
a K-dimensional subspace, and W ∈ RM×K be the orthonormal loading matrix which
maps from the subspace back to the original feature space. Then the reconstruction error
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Figure 4.1: Illustration of PCA on a 2D toy data.

of this projection can be calculated using vector 2-norm as

N∑
i=1

‖xi −W>zi‖2 = ‖X− ZW>‖2F ,

where ‖ · ‖F denotes the Frobenius norm for matrix, and Z := [z1, . . . , zN ]>. It can be
proved that the following optimization problem

min
W,Z

‖X− ZW>‖2F (4.1)

subject to: W ∈ RM×K ,W>W = I (4.2)

has solution W = UK and Z = VKDK , which recovers the PCA solutions. This indicates
that the subspace obtained in PCA projection, which is called the principal subspace, is
optimal under the criteria of minimizing the reconstruction error in vector 2-norm.

Due to the clean mathematical formulation and the nice properties, PCA has been used
in various data mining applications. For instance, the principal components are known
as eigenfaces in face recognition [71], and latent semantics in information retrieval [17].
Both of them provide essential information about the underlying data. In the latter case,
the PCA formulation is in general called latent semantic indexing (LSI) or latent semantic
analysis (LSA).

4.1.2 Kernel Principal Component Analysis (Kernel PCA)

As can be seen from the SVD formulation, PCA is looking for a linear projection of the
data, where each principal axis is a linear combination of the original feature dimensions.
In some applications like image retrieval and bioinformatics, it makes sense to consider
non-linear projections, because linear projections are too restrictive. One straightforward
idea of extending linear PCA to non-linear PCA is to first map the original data points
into a new feature space F , i.e., define φ : x ∈ X 7→ φ(x) ∈ F , and then perform linear
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PCA to the new data matrix φ(X) := [φ(x1), . . . ,φ(xN )]> in the new space. One can, for
example, define a set of basis functions on the original feature dimensions to obtain the
mapping φ(·), but there exists a technology called kernel PCA in which we do not need to
know the explicit mapping φ(·). This is based on a dual formulation of the SVD solution
to linear PCA [61].

Let K := XX> be the N ×N matrix with the (i, j)-th entry Kij = x>i xj = 〈xi,xj〉,
the inner-product of xi and xj in X . This matrix is sometimes called the Gram matrix .
Then if the SVD of data matrix X is VDU>, the eigen-decomposition of K would be

K = VD2V>,

because U is an orthonormal matrix satisfying U>U = I. From this starting point, we
can solve PCA in the dual form as follows:

1. Construct the Gram matrix K using the inner-product in X ;

2. Calculate the eigen-decomposition of K to get the eigenvectors in V and square
roots of eigenvalues in D, sorted in descending order;

3. The projections onto the principal subspace for X are Z = VKDK , where VK

contains the first K columns of V, and DK the top left K ×K sub matrix of D.

To make projection for a new data point x∗, we can calculate the projection as

z∗ = U>x∗ = D−1V>(VDU>)x∗ = D−1V>Xx∗ = D−1V>k(X,x∗),

where the vector k(X,x∗) := [〈x1,x∗〉, . . . , 〈xN ,x∗〉]> also depends only on the inner-
product. Then we truncate z∗ at lengthK to obtain the projection onto theK-dimensional
principal subspace.

The key observation from this dual formulation is that the whole PCA algorithm can
be derived using only the inner-product in the feature space X . If we have a mapping φ(·)
which maps x ∈ X into φ(x) ∈ F , and define an inner-product 〈·, ·〉F in the new space F ,
then PCA can be performed with Gram matrix K defined as Kij = 〈φ(xi),φ(xj)〉F . Fur-
thermore, the reproducing kernel Hilbert space (RKHS) theory tells us that we can directly
define this inner-product using a kernel function κ(·, ·), i.e., 〈φ(xi),φ(xj)〉F = κ(xi,xj), if
κ(·, ·) satisfies the Mercer conditions [62]. Therefore, for non-linear PCA we just need to
choose a kernel function (e.g., the popular RBF kernel κ(xi,xj) = exp

(
−α‖xi − xj‖2

)
),

calculate the kernel matrix K as Kij = κ(xi,xj), and perform the dual form PCA. Since
K is N ×N , we can in principal project the data up to N dimensions.

Since we are now working in the new space F , we need to make all the data points
centered in this space. We can also do this without knowing the explicit mapping φ(·), by
modifying the kernel matrix K as

K̂ = K− 1
N

1N1>NK− 1
N

K1N1>N +
1
N2

1N1>NK1N1>N , (4.3)
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Figure 4.2: Illustration of kernel PCA on a 2D toy data. RBF kernel function is used with
α = 10. The first 8 principal components are shown here, with eigenvalues shown on top of
each figure. Blue lines are contours, with white and dark color indicating high and low val-
ues, respectively. This toy example for kernel PCA is provided by Bernhard Schölkopf with
the MATLAB code available at http://www.kernel-machines.org/code/kpca toy.m.

where 1N denotes the all one column vector [1, . . . , 1]> of length N . For the kernel vector
k(X,x∗) given test data x∗, it can also be centered by

k̂ = k− 1
N

1N1>Nk− 1
N

K1N +
1
N2

1N1>NK1N . (4.4)

Figure 4.2 illustrates the first eight kernel PCA components for a 2D toy data, gener-
ated from three symmetric Gaussian distributions with standard deviation 0.1 and means
(−0.5,−0.2), (0, 0.6) and (0.5, 0). Since the projection is non-linear, we show the contours
of each principal component on the 2D surface, with white and dark regions indicating
high and low values, respectively. The RBF kernel function with α = 10 is used here. It
can be seen that the data points in different clusters can be detected using the first two
components, and more detailed structures are shown in the other components. The data
itself have only two dimensions, but in kernel PCA we can obtain up to N projection
dimensions.

Remark 4.1.1. The non-linear PCA reduces to linear one if we choose the linear kernel
function κ(xi,xj) = x>i xj, i.e., the normal inner-product in Euclidean space. In the case
of N > M , we can still calculate the eigen-decomposition of K, but the N −M smallest
eigenvalues will be zero, leaving the effective projection dimensions to be M . In the case
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of M > N , this dual form with linear kernel function leads to a more efficient solution for
linear PCA because we only need to solve a N ×N eigenvalue problem.

4.1.3 Local Projection Methods

PCA is known to be a global projection method because each principal axis maximizes the
global variance of the data. There also exist local projection methods, in which the re-
construction is done locally instead of globally. For instance, the locally linear embedding
(LLE) [60] looks for a projection that preserves the local geometry in the neighborhood
of each data point. Isomap [67] generalizes the multi-dimensional scaling (MDS) [50] to
consider an approximation of the geodesic distance for projection construction. Lapla-
cian eigenmap [7] considers the Laplacian operator on the affinity graph to build the
low-dimensional projection. All of these embedding methods take into account the local
manifold structure of the data, instead of the global structure with Euclidean distance.

4.2 Projection Methods for Discrete Data

Discrete data can be viewed as a special case of continuous data, and all the projection
methods can be applied here. But the intrinsic structure of discrete data makes projection
a more interesting problem. Without loss of generality, we consider non-negative discrete
data here, where each feature value is a positive integer or zero.

Let us take the document-word matrix in text information retrieval as an example,
where its (i, j)-th entry denotes the number of occurrences of word j in document i.
Compared to the general projection (e.g., PCA) of the word features into a subspace, it is
more natural to constrain that each dimension of the subspace is a positive combination
of the word features. This means that each dimension of the subspace, which we call a
topic, should only have positive associations with (a subset of) all words.

This extra constraint can be added to the optimization view of PCA to obtain the
following problem:

min
W,Z

`(X,ZW>) (4.5)

subject to: W ∈ RM×K
+ ,Z ∈ RN×K

+ , (4.6)

where `(·, ·) denotes a divergence function, and the only constraint we have is that both
the projection matrix Z and the mapping matrix W have only non-negative entries. We
do not need orthogonality for W, because it is not possible for an non-negative matrix
to be orthogonal. The divergence function has two input matrices with the same size, is
non-negative, and equals zero if and only if the two matrices are identical. A family of
such divergence functions is called the Bregman divergence [11], which include popular
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choices like the matrix Frobenius norm, matrix 2-norm, and the following I-Divergence:

`I(A,B) =
∑
ij

(
Aij log

Aij

Bij
−Aij + Bij

)
.

I-Divergence is a generalization of the Kullback-Leibler divergence for probabilistic distri-
butions, and is not a distance function since it is not symmetric.

Problem (4.5) is in general called the non-negative matrix factorization (NMF) and is
studied in [51]. An EM-like iterative algorithm exists to solve this optimization problem
for some divergence functions like Frobenius norm and I-Divergence, and unlike the PCA
solution, NMF solutions are only local minima. For I-Divergence, the update equations
can be derived as

Ẑik ∝ Zik

M∑
j=1

Xij

(ZW>)ij

Wjk, (4.7)

Ŵjk = Wjk

N∑
i=1

Xij

(ZW>)ij

Zik, (4.8)

where to remove the ambiguity we normalize in (4.7) such that
∑N

i=1 Zik = 1, for all
k = 1, . . . ,K. A random initialization of Z and W will lead to a reasonable solution.

When we choose K < M , we can view the columns of W as the component axes or the
new bases, and each row of Z denotes the projection or the weights on these bases for each
data point. This view of projection is different from PCA and is more like a clustering
model for features, where each data point takes a weighted combination on these feature
clusters. Put in the context of document-word data, each column of W defines a projection
basis which maps all the words onto a topic; in this projected space, each row of Z gives
the coordinate for each document.

4.2.1 Probabilistic Latent Semantic Indexing (pLSI)

Independently of [51], Hofmann [39] proposed the probabilistic latent semantic indexing
(pLSI) which is applied for document modeling. In pLSI, a generative model for the
documents and their word occurrences is introduced as follows. For a document-word pair
(d,w),

1. A latent class variable z is sampled from P (z);

2. A document is sampled from distribution P (d|z);

3. A word is sampled from distribution P (w|z).

Therefore, the joint probability of the pair (d,w) can be calculated as

P (d,w) =
∑

z

P (z)P (d,w|z) =
∑

z

P (z)P (d|z)P (w|z), (4.9)
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Figure 4.3: Plate model for pLSI model

which means the document d and the word w are independent given the latent semantic
class label z. The graphical model of pLSI is shown in Figure 4.3.

In pLSI, the latent variable z identifies the joint probability of a given document-word
pair. Let us assume the number of documents N and words M are both fixed, thus z have
a Multinomial distribution with dimension N ×M . When we limit this latent variable to
be K-dimensional distributed, the latent variable actually identifies a clustering process
in the joint space of documents and words. In [39] Hofmann interprets z as the topics for
words, which correspond to projection space for words.

EM Learning Algorithm for pLSI

Treating z as the latent variable, we can easily learn parameters for pLSI model with an
EM algorithm. The log-likelihood for maximization can be written as

LpLSI =
∑

d

∑
w

n(d,w) logP (d,w) =
∑

d

∑
w

n(d,w) log
∑

z

P (z)P (d|z)P (w|z),

where n(d,w) denotes the number of occurrences of w in d.

In the E-step, the latent class membership for the given document-word pair is calcu-
lated using Bayes’ rule with the current estimated parameters:

P (z|d,w) =
P (z)P (d|z)P (w|z)∑

z′ P (z′)P (d|z′)P (w|z′)
. (4.10)

In the M-step, all the parameters are updated using the estimated class membership
for each document-word pair. That is,

P (z) =

∑
d,w n(d,w)P (z|d,w)∑

d,w n(d,w)
, (4.11)

P (d|z) =
∑

w n(d,w)P (z|d,w)∑
d′,w n(d′, w)P (z|d′, w)

, (4.12)

P (w|z) =
∑

d n(d,w)P (z|d,w)∑
d,w′ n(d,w′)P (z|d,w′)

. (4.13)
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Finally we repeat the EM steps until convergence. In [39] Hofmann shows better
performance of pLSI over PCA for document modeling.

Equivalence of NMF and pLSI

While both NMF and pLSI are applied for positive observations, the relationships be-
tween them are not discovered. In this subsection we show that they are equivalent
when I-Divergence is used for NMF, and that the iterative updating algorithm for NMF
(4.7)∼(4.8) is equivalent to the EM learning for pLSI.

To simulate PLSA in NMF, we make a preprocessing to the data matrix X and divide
each entry by the element-wise sum of X, i.e., Xij ← Xij/

∑
i′j′ Xi′j′ , which corresponds

to the assumption in PLSA that pairs (d,w) are independently sampled. Then if we add
a more constraint to the NMF problem,∑

ij

(ZW>)ij = 1, (4.14)

minimizing I-Divergence is now identical to maximizing the likelihood

`I(X,ZW>) =
∑
ij

Xij log(ZW>)ij .

The probabilistic interpretation to this NMF is to define

P (di, wj) = Xij , P (wj |zk) = Wjk, P (di, zk) = Zik,

then the NMF is now

P (di, wj) =
∑

k

P (di, zk)P (wj |zk) =
∑

k

P (di|zk)P (wj |zk)P (zk),

identical to PLSA model. To borrow the optimization problem from PLSA, we rewrite
the NMF problem as:

factorize XN×M = ZN×K · diag(z1, . . . , zk)︸ ︷︷ ︸
DK×K

·W>
M×K

maximize
∑
ij

Xij log(ZDW>)ij

subjectto
∑

i

Zik = 1,
∑

j

Wjk = 1,
∑

k

zk = 1.

where the constraints here are identical to constraints (4.14). Standard EM algorithm in
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PLSA corresponds to the following iterative algorithm for NMF:

Ẑik ∝ Zik

∑
j

Xij

(ZDW>)ij

DkkWjk, (4.15)

Ŵjk ∝Wjk

∑
i

Xij

(ZDW>)ij

DkkZik, (4.16)

D̂kk = Dkk

∑
ij

Xij

(ZDW>)ij

ZikWjk, (4.17)

where in (4.15) and (4.16) we normalized such that
∑N

i=1 Zik = 1 and
∑M

j=1 Wjk = 1,
respectively, for all k = 1, . . . ,K. Note that here we directly substitute the E-step into
the M-step updates. Compared to the standard algorithm (4.7)∼(4.8) for NMF, these
updates are the same except an extra diagonal matrix D. One advantage of this modified
algorithm is that the weight of each topic can be directly read from the matrix D.

From above we can see that PLSA is actually calculating a non-negative decomposition
of the word count matrix X after we make the element-wise normalization. This is not a
limitation of the algorithm since it is only a factor of constant and does not change the
factorization structure.

4.2.2 Latent Dirichlet Allocation (LDA)

It is argued that pLSI is not a well-defined model, since it treats each document as an index
and thus is not generalizable to new documents. Another problem of pLSI is that longer
documents get higher weights in the model, which also indicates that the documents are
not independently sampled. To solve the problem, Blei et al. [10] introduced the latent
Dirichlet allocation (LDA) model which shows better performance than pLSI.

The plate model for LDA is shown in Figure 4.4. Given the Dirichlet prior α, document
i is sampled independently through a topic mixture θi which defines the mixing weights for
this document. Then all the Ni words within this document are sampled independently
by first choosing a topic z given the topic mixture θi, and then sampling the word based
on the projection matrix β. Since not document indices but the contents are modeled
directly, the model is generalizable to new documents.

Since there is a coupling between latent variables θi and zi,n, learning and inference are
not tractable for LDA model. Blei et al. [10] adopts a variational EM learning algorithm
which updates the posterior of θi and zi,n iteratively through a variational distribution.

Remark 4.2.1. The LDA-type models are “correct” for document modeling since it has
the correct independence assumptions compared to pLSI model. This is called the discrete
PCA in [12] because it can be viewed as using Multinomial distribution instead of Gaussian
in a PCA-type representation, as clarified in the beginning of this section.
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Figure 4.4: Plate model for LDA model

4.3 Organization of the Following Chapters

In Chapter 5 we review a probabilistic explanation of PCA which is known as PPCA, and
then extend it to kernel PCA which can handle non-linear projections. An EM learning
algorithm is derived for this model which is faster and has potential to apply to large data
sets. An incremental kernel PCA can also be straightforwardly derived.

Then in Chapter 6 we go beyond unsupervised projection and introduce the MORP
algorithm for supervised projection. Here we assume there are not only features associated
with each data point, but also some output labels. MORP is motivated from a latent
variable model and can handle both linear projection and non-linear projection. Experi-
ments show that the model outperforms other supervised projection methods in various
data sets.

Finally in Chapter 7 we consider a probabilistic version of MORP and introduce the
SPPCA and S2PPCA models for supervised and semi-supervised projections, respectively.
An efficient EM algorithm can be derived which can handle large data sets. The semi-
supervised effect of S2PPCA model makes it applicable to many applications like face
recognition and text classification.

Projection models for discrete data will be considered in Part III where we jointly
perform clustering and projection for discrete data.
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Chapter 5

Probabilistic Kernel Principal
Component Analysis

Various projection methods exist for continuous data, among which the principal compo-
nent analysis (PCA) is a linear projection method and becomes very popular in the last
several decades. To relax the linearity of PCA, kernel PCA is introduced to generalize lin-
ear PCA to non-linear mappings via non-linear kernel functions. Both of the two methods
turn out to solve an eigenvalue problem and have clear mathematical formulations, but
the following questions occur for some real-world problems:

• How to apply PCA if the input data have missing entries?

• How to apply these methods if the dimensionality M or the number of data points
N is too large?

• Is it possible to perform PCA locally instead of globally?

For deterministic methods like PCA and kernel PCA, it is difficult to deal with these
questions directly. A probabilistic model, on the other hand, can handle them easily:
the missing entries can be integrated out for learning; the EM algorithm can be used to
solve the problem iteratively and possibly incrementally; localized PCA can be done via
a mixture model.

At the end of the last century, several authors proposed a probabilistic version of
PCA, which in this thesis we call the probabilistic PCA (PPCA) [70, 59]. They show
that their models achieve the canonical linear PCA in the asymptotic case, and that
PPCA provides these many benefits that canonical PCA does not have. However, this
probabilistic interpretation is only for linear PCA, and there is no similar model which gives
the same benefits for kernel PCA. This is exactly the goal of this chapter. In Section 5.1 we
first review the PPCA framework and discuss the EM algorithm for learning with PPCA
model. This algorithm is extended in Section 5.2 to non-linear cases and is proved to solve
a kernel PCA problem. Some discussions are given thereafter, along with the benefits of

67
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Figure 5.1: Illustration of the PPCA model. X denotes the input matrix, where each row
is one data point. f1

x , . . . , f
M
x are the M input features. On the top f1

z , . . . , f
K
z are the

K latent variables. They are all in circles because they are variables in the probabilistic
models. The arrows denote probability dependency.

the proposed framework. To show one of these benefits, we discuss an incremental version
of the algorithm in Section 5.3 and illustrate its usage on some toy data.

5.1 Probabilistic Principal Component Analysis (PPCA)

While PCA originates from the analysis of data variances, the PPCA model emerges from
the statistics community and acts as a probabilistic explanation for PCA [70, 59]. PPCA
is a latent variable model and defines a generative process for each data point x as (see
Figure 5.1 for an illustration)

x = Wz + µ+ ε,

where z ∈ RK are called the latent variables, and W is a M × K matrix called factor
loadings. In this probabilistic model, latent variables z are conventionally assumed as a
Gaussian distribution with zero mean and unit variance, i.e., z ∼ N (0, I), and ε defines a
noise process which also takes an isotropic Gaussian form as ε ∼ N (0, σ2I), with σ2 the
noise level . Additionally, we have parameters µ ∈ RM which allow non-zero means for
the data.

The PPCA model indicates that given the latent variable z, x is Gaussian distributed:

x|z ∼ N (Wz + µ, σ2I).

With z integrated out, it turns out that observation x is also Gaussian distributed:

x ∼ N
(
µ,WW> + σ2I

)
. (5.1)
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Based on the Bayes’ rule, the a posteriori distribution of z given observation x is also a
Gaussian:

z|x ∼ N
(
(W>W + σ2I)−1W>(x− µ), σ2(W>W + σ2I)−1

)
. (5.2)

Remark 5.1.1. The generative model for PPCA is similar to the factor analysis [5]. The
only difference is the noise process: In factor analysis the noise levels for different dimen-
sions can be different, leading to a noise process ε ∼ N (0,Σ) with Σ = diag(σ2

1, . . . , σ
2
M ).

Both models assume that in the noise process every two dimensions are independent. For
a detailed comparison of these two models please refer to [70].

It is shown that PPCA has strong connections to PCA. We summarize the related
results in the following proposition without proof, since this is a corollary of Theorem 7.3.1
in the later Chapter 7. A detailed proof can also be found in the Appendix of [70].

Proposition 5.1.1. Let S = 1
N

∑N
i=1(xi − µ)(xi − µ)> be the sample covariance matrix

for data {xi}Ni=1, and λ1 ≥ . . . ≥ λM be its eigenvalues with eigenvectors u1, . . . ,uM , then
if the latent space in PPCA model is K-dimensional,

(i) The maximum likelihood estimates of the mean µ and the noise level σ2 are respec-
tively

µ =
1
N

N∑
i=1

xi, σ2 =
1

M −K

M∑
j=K+1

λj . (5.3)

(ii) The maximal likelihood estimate of W is given as

W = UK(ΛK − σ2I)
1
2 R, (5.4)

where ΛK = diag(λ1, . . . , λK), UK = [u1, . . . ,uK ], and R is an arbitrary K × K
orthogonal matrix.

(iii) The mean projections z∗ for new input x∗ is given as

z∗ = R> (ΛK − σ2I
) 1

2 Λ−1
K U>

K(x∗ − µ).

It is seen that the mean vector µ is simply the sample mean, and the noise level σ2

is the average of the minor M −K eigenvalues. The loading matrix W has an arbitrary
factor R which is an orthogonal matrix. This indicates that the latent space is invariant
under an arbitrary rotation. One can perform an SVD to W>W to recover R if necessary.
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5.1.1 Connection to PCA

When σ2 → 0, projection (5.2) is seen to become a singular at the mean(
W>W

)−1
W>(x− µ),

which can be further simplified by plugging in the ML estimate of W to obtain

z = R>Λ
− 1

2
K U>

K(x− µ).

The result can also be directly obtained from Theorem 5.2.1(iii), and it is seen to be

equivalent to PCA up to a scaling factor Λ
− 1

2
K and a rotation factor R>. This indicates

that the principal subspace obtained in PCA is the same as that in PPCA, and the
projections of data x onto the K-dimensional principal subspace in PCA are identical to
the latent variables z up to a scaling and rotation factor.

5.1.2 EM Learning for PPCA model

Learning in probabilistic models reduces to maximizing the data (log) likelihood with
respect to all the model parameters. In the case of PPCA model, the log likelihood of the
whole observation D := {xi}Ni=1 is

L(D) =
N∑

i=1

logP (xi) =
N∑

i=1

log
∫
P (xi|zi)P (zi) dzi

= −N
2

{
M log(2π) + log |WW> + σ2I|+ trace

(
(WW> + σ2I)−1S

)}
. (5.5)

In this section we describe an expectation-maximization (EM) learning procedure for
PPCA model. EM iterates the two steps expectation (E-step) and maximization (M-
step) until convergence, and it is guaranteed to find a local minima of the data likelihood.
In the E-step, we fix the model parameters (W, µ and σ2 for PPCA model) and calculate
the expected distributions of latent variables (all the zi’s for PPCA model), and in the
M-step we fix this distribution and maximize the complete data likelihood with respect to
the model parameters. As will be discussed later, EM learning for PPCA models is im-
portant because it can deal with very large data sets, and it has, in particular when there
are no missing entries, no local minima problem up to a rotation factor. For simplicity
we only outline the update equations in the following and omit details (see [70] for all the
derivations).

In the E-step, for each data point i, we estimate the distribution of zi given observation
xi. This is done using (5.2), and we calculate the sufficient statistics as

〈zi〉 =
(
W>W + σ2I

)−1
W>(xi − µ), (5.6)

〈ziz>i 〉 = σ2
(
W>W + σ2I

)−1
+ 〈zi〉〈zi〉>, (5.7)
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where 〈·〉 denotes the expectation under the posterior distribution P (zi|xi) given in (5.2).

In the M-step, we maximize the complete log-likelihood

L̃(D) =
N∑

i=1

∫
P (zi|xi) log

(
P (xi|zi)P (zi)

)
dzi

with respect to the model parameters, holding P (zi|xi) fixed from the E-step. This can
be done by setting the partial derivative with respect to each parameter to be zero. For
the mean vector µ we have

µ =
1
N

N∑
i=1

xi, (5.8)

which is simply the sample mean of the data. For the other two parameters W and σ2,
we can obtain the following updates:

Ŵ =

[
N∑

i=1

(xi − µ)〈zi〉>
][

N∑
i=1

〈ziz>i 〉

]−1

, (5.9)

σ̂2 =
1

MN

N∑
i=1

[
‖xi − µ‖2 + trace

(
〈ziz>i 〉Ŵ

>
Ŵ
)
− 2〈zi〉>Ŵ

>
(xi − µ)

]
. (5.10)

Iterating these EM steps yields in convergence the ML estimates given in (5.4) and (5.3).
One version of the proof for Theorem 5.2.1 is to look for the stationary point of the iterative
algorithm. It is well-known that EM algorithm often finds a local minima, and different
initializations lead to different solutions. But from Theorem 5.2.1 we know that the EM
algorithm for PPCA will lead to the same solution up to a rotation factor, with different
matrix R from different starting points. As mentioned before one can easily recover R
from the obtained W.

Computational Issues

The time complexity for the EM algorithm is O
(
mMNK

)
, with m the number of EM

iterations.1 It is linear in the number of data points N and the input dimension M . The
space complexity is O

(
MN

)
, which is also linear both in N and M . The projection for a

test data point is just a linear operation and costs O(MK) time.

5.1.3 Discussion

The equivalence of PPCA and PCA provides an important insight to PCA projections:
PCA implicitly assumes that the data are distributed as a Gaussian in the original feature

1Note that we only need to calculate the diagonal entries for matrix trace when updating the noise
level.
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space. In another word, if the data are not Gaussian distributed, PCA is not guaranteed
to provide a meaningful solution. Therefore, one should check the Gaussianity before
applying PCA. Sometimes a pre-transformation or re-scaling of some feature dimensions
are necessary to approximate Gaussianity.

As a probabilistic framework, PPCA also provides additional benefits over PCA. The
EM learning procedure is one key benefit among others. There is no need to calculate
and store the M ×M sample covariance matrix S, so the EM algorithm can be used for
PCA projections of very high dimensional data (e.g., M > 10000). The EM algorithm
also provides a principled way of handling missing entries in X if any, since the missing
entries can be estimated in the E-step and are integrated out for the M-step. It is also
possible to consider mixture of PCA models and achieve a local PCA modeling [69]. In
the next section we will bring these advantages to kernel PCA as well.

5.2 Probabilistic Kernel PCA

PPCA can be viewed as a probabilistic model for linear PCA, but however up to now
there is no probabilistic interpretation for kernel PCA. In this section we start from the
PPCA model and extend it for kernel PCA. We call this model the probabilistic kernel
PCA (PKPCA). The key point is to derive the dual form of the EM algorithm for PPCA.

5.2.1 Dual Form of EM Learning

To get a non-linear extension of the EM learning algorithm, we first rewrite the EM learner
in its dual form. For this we need some notations. Since µ is directly obtainable from
(5.8), we can subtract this sample mean from each data point before we launch the EM
algorithm. Therefore for simplicity, in the following we denote x the centered data vector
x− µ. Let X denote the N ×M centered input matrix [x1, . . . ,xN ]>, and Z the N ×K
latent variable matrix [〈z1〉, . . . , 〈zN 〉]>. We further define C :=

∑N
i=1〈ziz>i 〉, then we can

rewrite (5.9) in matrix form as

Ŵ = X>ZC−1. (5.11)

From this we can calculate

Ŵ
>
Ŵ = C−1Z>XX>ZC−1 = C−1Z>KZC−1, (5.12)

Ŵ
>
x = C−1Z>Xx = C−1Z>k(X,x), (5.13)

which are the building blocks for the non-linear extension. The matrix K := XX> has
each entry the inner-product of data points of corresponding row and column,

Kij = 〈xi,xj〉 = x>i xj ,
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and is once again the Gram matrix of input data. As defined for kernel PCA, k(X,x) = Xx
is a N -dimensional column vector with the i-th entry 〈xi,x〉. Therefore these quantities
are related to input X and x only via the inner-product 〈·, ·〉.

Applying (5.12) and (5.13) into sufficient statistics (5.6), we get

〈zi〉 =
(
C−1Z>KZC−1 + σ2I

)−1
C−1Z>k(X,xi), (5.14)

or equivalently,

Ẑ = KZC−1
(
C−1Z>KZC−1 + σ2I

)−1
, (5.15)

by collecting 〈zi〉 in columns and transposing it. Sufficient statistics (5.7) can be written
in terms of C:

Ĉ =
N∑

i=1

〈ziz>i 〉 = Nσ2
(
C−1Z>KZC−1 + σ2I

)−1
+ Ẑ

>
Ẑ. (5.16)

Updates for variances σ2 can be written in terms of the updated Z and C as

σ̂2 =
1

MN

[
trace (K)− trace

(
Ẑ
>
KẐĈ

−1
)]
, (5.17)

which can be easily verified from (5.10). Therefore, it can be seen that all the interested
terms in the EM algorithm take input data into account only via the Gram matrix K,
except for the mapping matrix W. This is not a problem, because the inference task (5.2)
can be written in terms of Gram matrix K instead of mapping W, if we apply equations
(5.12) and (5.13).

With this dual form, we can pre-define some basis functions for inputs, or directly
work in the reproducing kernel Hilbert space (RKHS) induced by a kernel function κ(·, ·),
like what we did to extend linear PCA to kernel PCA. This implicitly defines a mapping
φ : x ∈ X 7→ φ(x) ∈ F , which maps x into a high-dimensional feature space F . Then the
kernel function is basically

κ(xi,xj) = 〈φ(xi),φ(xj)〉F =: Kij ,

and we can directly work with kernel matrix K and kernel function κ(·, ·), without knowing
φ(·) explicitly. This results in a non-linear mapping from input x to latent variable z.

As in the case of kernel PCA, we need to center the data points in the new feature
space F . We can do this by modifying the kernel matrix K and vector k(X,x) without
knowing the explicit mapping φ(·), as in (4.3) and (4.4).

5.2.2 Analytical Solution of Dual Form

We can derive the analytical solution for PKPCA from the stationary point of the dual
E-step (5.15), (5.16) and M-step (5.17). The main result is given in the following theorem.
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Theorem 5.2.1. Let K be the centered kernel matrix, and λ1 ≥ . . . ≥ λN be its eigenvalues
with eigenvectors v1, . . . ,vN . If the latent space is K-dimensional, in PKPCA the dual
EM algorithm leads to the following solution:

Z =
√
NVK

(
I−Nσ2Λ−1

K

) 1
2 R, (5.18)

σ2 =
1

N(M −K)

N∑
j=K+1

λj , (5.19)

where ΛK = diag(λ1, . . . , λK), VK = [v1, . . . ,vK ], and R is an arbitrary K ×K orthog-
onal matrix.

Proof. We first find the stationary point of the dual learning algorithm, at which the
updates (5.15) and (5.16) will not change the sufficient statistics Z and C. Using the
notation B := ZC−1, we rewrite these two updates as

Z = KB
(
B>KB + σ2I

)−1
,

C = Nσ2
(
B>KB + σ2I

)−1
+
(
B>KB + σ2I

)−1
B>K2B

(
B>KB + σ2I

)−1
.

Putting them into the definition B = ZC−1, we obtain the following equation for B after
some mathematics:

NB
(
σ2I + B>KB

)
= KB. (5.20)

In the following we solve this equation for the N × K matrix B. Denote the eigen-
decomposition of K × K square matrix B>KB as R>LR, where L = diag(l1, . . . , lK)
is a diagonal matrix, and R = [r1, . . . , rK ]> a K × K orthonormal matrix. Then left
multiplying B> and right multiplying R> on both sides of (5.20) yield

NB>BR> (σ2I + L
)

= R>L,

which simplifies to

B>Brk =
lk

N(σ2 + lk)
rk, k = 1, . . . ,K,

if we write in columns. This clearly indicates that the rk’s are also eigenvectors of B>B,
with corresponding eigenvalues given in the diagonal matrix 1

N L
(
σ2I + L

)−1. This means
we can write the eigen-decomposition of B>B as

B>B =
1
N

R>L
(
σ2I + L

)−1 R. (5.21)

Recall that by definition,

B>KB = R>LR, (5.22)
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and use the new notation V :=
√
NBR>L−

1
2

(
σ2I + L

) 1
2 , from (5.21) and (5.22) we have:

V>V = I,

V>KV = N
(
σ2I + L

)
,

by simple matrix multiplication. It is clear now that the N × K matrix V is column
orthonormal and contains the eigenvectors of K in columns. The corresponding eigenvalues
are contained in the diagonal matrix Λ := N

(
σ2I + L

)
. Then solving for B from V and

Λ yields

B =
1√
N

V
(
I−Nσ2Λ−1

) 1
2 R.

As a consequence of this result, the stationary point for the latent variable matrix Z can
be obtained as

Z = KB
(
B>KB + σ2I

)−1
=
√
NKV

(
I−Nσ2Λ−1

) 1
2 Λ−1R

=
√
NV

(
I−Nσ2Λ−1

) 1
2 R,

where the second equality holds because KV = VΛ. To calculate the noise level, first
note that left multiplying B>K on both sides of (5.20) yields

B>K2B = NB>KB(σ2I + B>KB) = NR>L(σ2I + L)R,

where the second equality is obtained with definition (5.22). Then a direct calculation
(using the definition of V) leads to

V>K2V =
(
σ2I + L

) 1
2 L−

1
2

√
NR

[
B>K2B

]
R>√NL−

1
2
(
σ2I + L

) 1
2

= N
(
σ2I + L

) 1
2 L−

1
2 R
[
NR>L(σ2I + L)R

]
R>L−

1
2
(
σ2I + L

) 1
2

= N2(σ2I + L)2 = Λ2.

Plugging this into (5.17), we obtain

σ2 =
1

MN

[
trace (K)− trace

(
Z>KB

)]
=

1
MN

[
trace (K)− trace

(
V>K2V

(
Λ−1 −Nσ2Λ−2

))]
=

1
MN

[
trace (K)− trace

(
Λ−Nσ2

)]
=

1
MN

[
trace (K)− trace (Λ) +NKσ2

]
.

This leads to the stationary point for the noise level as

σ2 =
1

N(M −K)

N∑
j=K+1

λj , (5.23)

where λj are now the remaining eigenvalues of the kernel matrix K.
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The last step is to prove that the K eigenvectors denoted in the columns of V are the
leading eigenvectors. For this we need to directly calculate the log-likelihood (5.5) in dual
form. First notice that

W>W + σ2I = B>KB + σ2I = R>LR + σ2I = R>(L + σ2I)R =
1
N

R>ΛR.

Then for the second term in (5.5) we have

log |WW>+σ2I| = log
(
σ2(M−K)|W>W+σ2I|

)
= (M−K) log σ2 +

K∑
j=1

log λk−K logN.

The last trace term can be calculated using S = 1
N X>X as

trace
(
(WW> + σ2I)−1S

)
=

1
Nσ2

trace
((

I−W(W>W + σ2I)−1W>)X>X
)

=
1

Nσ2

{
trace

(
XX>

)
− trace

(
XW(W>W + σ2I)−1W>X>

)}
=

1
Nσ2

{
trace (K)− trace

(
KB(W>W + σ2I)−1B>K

)}
=

1
Nσ2

{
trace (K)− trace

(
Λ−Nσ2I

)}
=

1
Nσ2

N∑
j=K+1

λj +K.

Therefore the data log-likelihood is now

L(D) = −N
2

M log(2π) +
K∑

j=1

log λj + (M −K) log σ2 −K logN +
1

Nσ2

N∑
j=K+1

λj +K

 .

Plug in (5.23) for σ2, maximization of the data log-likelihood is equivalent to the following
minimization problem

min
λK+1,...,λN

log
N∑

j=K+1

λj −
1

M −K

N∑
j=K+1

log λj

 .

This is the equivalent problem as discussed in Appendix A.2 and A.3 of [70]. It is shown
that this quantity is minimized only if the “discarded” eigenvalues λK+1, . . . , λN are the
smallest eigenvalues of K. This means Λ and V contain the leading eigenvalues and
eigenvectors, i.e., Λ = ΛK and V = VK . Other stationary points are saddle points on
the likelihood surface. This completes the proof.

Note that for notation simplicity, in Theorem 5.2.1 we also use Λ and λj ’s to denote
the eigenvalues, the same as in Proposition 5.1.1. But their meanings are slightly different.
Let X = VDU> be the eigen-decomposition of centered data matrix X, then the sample
covariance matrix S = 1

N X>X = U( 1
N D2)U>, and kernel matrix K = XX> = VD2V>.
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Therefore, the two diagonal matrix of eigenvalues have a constant factor (N) difference.
This also explains why the two equations for σ2, (5.19) and (5.3), has a constant difference
factor of N .

In Theorem 5.2.1, M is the dimensionality of the input data for PPCA. In the dual
form, M should denote the dimensionality of the new feature space F if a first feature
mapping φ(·) is available. In some reproducing kernel Hilbert spaces this number could
be very high, or even infinite (e.g., for RBF kernel). Since the sum of eigenvalues of K
is finite, the ML estimate for σ2 therefore tends to zero, and this corresponds to kernel
PCA as will be seen in the next subsection. For the implementation of the dual form EM
algorithm, however, forcing σ2 = 0 may lead to numerical instability of matrix inverse in
(5.15), so we recommend to treat σ2 as a tunable parameter instead of a parameter to
optimize. From the proof of Theorem 5.2.1 it is seen that any such σ2 will lead to the
stationary point (5.18).

5.2.3 Connection to Kernel PCA

Plugging the matrix B back into the mean of projection (5.14), for a test data x∗ we can
calculate the mean

〈z∗〉 =
(
B>KB + σ2I

)−1
B>k(X,x∗)

= R>√NΛ−1
(
I−Nσ2Λ−1

) 1
2 V>k(X,x∗).

When σ2 → 0, the projection is seen to be a singular at

z∗ = R>√NΛ−1V>k(X,x∗),

which is equivalent to the mapping given by kernel PCA up to a rotation factor R>. The
j-th entry in the projected vector is seen to be

zj(·) =
√
N

λj

N∑
i=1

(R>vj)iκ(xi, ·),

which is known as the j-th eigen-function of kernel PCA.

5.2.4 EM Algorithm for Kernel PCA

The final EM learning algorithm for kernel PCA is shown in Algorithm 5.1. Since
σ2 > 0 and K is positive semi-definite, the matrix inversion in the algorithm is always
well-defined and numerically stable. The stopping criteria is the data log-likelihood

L̂(D) = −N
2

{
log |B>KB + σ2I| − 1

Nσ2
trace

(
KB(B>KB + σ2I)−1B>K

)}
, (5.24)
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Algorithm 5.1 EM Learning Algorithm for Kernel PCA
Require: N input data points X = [x1, . . . ,xN ]>, with xi ∈ RM .
Require: A kernel function κ and a noise parameter σ2 > 0.
1: Calculate the kernel matrix K using κ, and make it centralized using (4.3).
2: Initialize Z ∈ RN×K randomly (e.g., sample N data points from a K-dimensional

Gaussian N (0, I)), and set C = Z>Z.
3: repeat
4: Calculate B = ZC−1;
5: Update Z via (5.15): Z = KB

(
B>KB + σ2I

)−1
;

6: Update C via (5.16): C = Nσ2
(
B>KB + σ2I

)−1
+ Z>Z;

7: until the improvement of log-likelihood (5.24) is smaller than a threshold.
Output: Up to a rotation factor, projections for input data X are given in Z.
Output: Up to a rotation factor, projection for a new data point x∗ is calculated as

z∗ =
(
B>KB + σ2I

)−1
B>k(X,x∗), with k(X,x∗) centralized via (4.4).

with constant terms ignored.

If the exact kernel PCA projection is desired, one can perform a singular value de-
composition to the obtained projection matrix Z and recover the rotation matrix R. Let
Z = UZDZV>

Z be the SVD of Z, then Ẑ := ZVZ gives the exact kernel PCA projection.
One can also recover the leading eigenvalues of K as ΛK = N2σ2(NI−D2

Z)−1.

In Figure 5.2 we show the results of the EM learning algorithm on the same toy data
as given in Figure 4.2. The algorithm is initialized randomly as seen in the first column
of second to fourth rows. As the EM algorithm is running, the first three eigenvectors
approach the true ones quickly, and at 20 iterations they are almost the final results. The
algorithm finally converges within 100 steps. It is seen that the learned top eigenvectors
match the true ones very well (except a constant −1 factor for the first eigenvector).

Computational Issues

The time complexity of the algorithm is O(mN2K) plus O(N2M) which is the one-time
calculation of the kernel matrix. Here m is the number of EM steps. The space complexity
is O

(
N2
)
. Both of them are now quadratic in the number of data points N . The time for

projecting a test data point is now O(NM). The algorithm in general handles non-linear
mappings for input data, and is also applicable to linear PCA if the dimensionality of data
M is larger than the number of data N . In this case the algorithm is more efficient than
the EM algorithm for PPCA [58] in which the time complexity is O(mNMK).
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Figure 5.2: Illustration of EM algorithm for kernel PCA on the same 2D toy data as in
Figure 4.2 with the same parameters. The noise level σ2 are set to 0.01. In the first
row we show the original data and the top three eigenvectors of kernel PCA with direct
calculation. In the second to fourth rows we show the top three eigenvectors along the
EM iterations until convergence.

5.2.5 Discussion

The proposed EM algorithm for kernel PCA is important for non-linear projections. On
one hand, it can be viewed as an application of kernel trick to the EM algorithm; on the
other hand, due to the Gaussian assumption of PPCA we are in fact modeling the data
in the RKHS as a Gaussian distribution. While this assumption is problematic in some
cases, its equivalence to kernel PCA indicates that the obtained projections are reasonable.
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Other benefits of the EM algorithm for PKPCA are summarized in the following.

• Instead of solving an eigenvalue problem for a big N×N matrix, in the EM algorithm
we only calculate matrix multiplication and matrix inverse for small matrices. This
means we can handle bigger problem for kernel PCA.

• One can control the algorithm by early-stopping without full convergence, which
indicates we can solve the problem faster.

• With this iterative learning algorithm, it is possible to consider each data point one
by one and achieve an incremental learning for kernel PCA (see Section 5.3).

• With non-zero σ2, the probabilistic interpretation allows us to consider more com-
plicated models such as mixture of kernel PCA model.

It is also seen here that the iterative algorithm can be used to find the principal subspace
of a given symmetric matrix. This is useful in many applications such as non-linear
dimensionality reduction for classification, and can be applied to other kernel methods
like kernel canonical correlation analysis [35].

5.2.6 Empirical Studies

We compare the conventional kernel PCA and the proposed EM algorithm on the Reuters-
21578 text data and Corel image data. We denote them as Reuters and Corel in the
following, respectively. The Reuters data we use contains 10195 documents with 36030
words, and we extract standard TF-IDF features for each document. It is difficult to
perform PCA directly because we have too many words. The second data set is a subset of
Corel image database and contains 1021 images. We extract and combine color histogram
(216-dim.), correlagram (256-dim.), first and second color moments (9-dim.) and Pyramid
wavelet texture (10-dim.) to form 491-dimensional input features to represent the images.
All the features are then centralized and standardized with deviation 1.

For the kernel PCA solutions, we choose linear kernel κ(xi,xj) = x>i xj for Reuters
data, and RBF kernel for the Corel image data with α = 0.002. Due to the linear kernel
function, the kernel PCA solution is equivalent to linear PCA for Reuters data. For the
comparison we did two types of experiments. In the first experiment, we randomly choose
a fixed number (3000 for Reuters and 1021 for Corel) of data points N , and project the
data into various dimensions K using kernel PCA and the EM algorithm. For a second
experiment, we fix the projection dimensionality K to be 50, and choose different N to
make the projection. The comparison curve of time complexity is shown in Figure 5.3,
with left column showing the first experiment and right column the second one. The
results for Reuters data is shown in the top row, and those for Corel is in the bottom
row. In both experiments, to solve the kernel PCA eigenvalue problem directly we use
the MATLAB function eigs with default parameter settings. For the EM algorithm, σ2

is fixed as 0.01, and the algorithm converges in average within 20 iterations. We repeat
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Figure 5.3: Time comparison of kernel PCA and the EM algorithm for kernel PCA for
Reuters-21578 (top row) and Corel image data (bottom row). For the left figures we fix
the number of data points N and vary the projection dimension K, while for the right
figures we fix K and vary N . Linear kernel is used in top row, and RBF kernel is used
in bottom row with parameter α = 0.002. All the experiments are repeated 10 times
independently.

the experiments 10 times independently, and the variances are shown in the figures with
error bars.

It can be seen that the EM algorithm gets much less time than solving the eigenvalue
problem directly. We also compared the classification accuracy based on the projections,
and both versions achieve almost the same performance. This indicates that the EM
solution of kernel PCA is a good alternative for real-world applications.



82CHAPTER 5. PROBABILISTIC KERNEL PRINCIPAL COMPONENT ANALYSIS

5.3 Incremental Kernel PCA

The eigenvalue solution for kernel PCA requires a full kernel matrix K be calculated a
priori. When some additional data are available, we have to, however, re-calculate the
new kernel matrix (with more dimensions) and solve a new eigenvalue problem of larger
dimension. This is not necessary for the EM algorithm proposed in the previous section.
In this section we consider an incremental learning for kernel PCA which naturally follows
from the EM iterations.

Let

K =
[
K11 K12

K>
12 K22

]
, Z =

[
Z1

Z2

]
be the block representations of the kernel matrix K and the latent variable matrix Z,
where K11 ∈ RN1×N1 , K12 ∈ RN1×N2 , K22 ∈ RN2×N2 , and Z1 ∈ RN1×K , Z2 ∈ RN2×K .
Note that by definition we have N1+N2 = N . Then we can write the matrix multiplication
in block-wise form as

Z>KZ =
[
Z>1 Z>2

] [K11 K12

K>
12 K22

] [
Z1

Z2

]
= Z>1 K11Z1 +

(
Z>1 K12Z2 + Z>2 K>

12Z1 + Z>2 K22Z2

)
,

(5.25)

Z>Z =
[
Z>1 Z>2

] [Z1

Z2

]
= Z>1 Z1 + Z>2 Z>2 , (5.26)

both of which equal to a first term for N1 data points plus some informative terms about
the rest N2 data points. The term KZ can be calculated in a similar way:

KZ =
[
K11 K12

K>
12 K22

] [
Z1

Z2

]
=
[
K11Z1 + K12Z2

K>
12Z1 + K22Z2

]
. (5.27)

It is seen from Algorithm 5.1 that these are the terms related to Z in the whole algorithm.
Suppose we observed N1 data points at first and run Algorithm 5.1 until convergence.
Then when the extra N2 data points are available, we just need to randomly initialize
projections Z2 and use the converged Z1 as the starting point for previous N1 points. This
normally leads to faster convergence of the whole algorithm. But before the EM iterations
we need to center the whole kernel matrix K, which can also be done via incremental
kernel centering .

5.3.1 Incremental Kernel Centering

For the first N1 data points, we center the kernel using (4.3):

K̂1 = K11 − 1N1 rowmean(K11)− rowmean(K11)>1>N1
+ elemean(K11)1N11

>
N1
,

in which rowmean(K11) := 1
N1

1>N1
K11 is row-wise mean vector of K11, and elemean(K11) :=

1
N2

1
1>N1

K111N1 = 1
N2

1

∑N1
i,j=1 κ(xi,xj) is element-wise mean value of K11.
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Algorithm 5.2 EM Learning Algorithm for Incremental Kernel PCA
Require: Kernel PCA results Z1 ∈ RN1×K , C ∈ RK×K , and kernel K11 ∈ RN1×N1 for

N1 input data points.
Require: N2 new data points, kernel function κ and a noise parameter σ2 > 0.
1: Calculate new kernel matrices K12 ∈ RN1×N2 and K22 ∈ RN2×N2 using κ, and center

all the kernels using (5.28)∼(5.30).
2: Initialize Z2 ∈ RN2×K randomly, and update C← C + Z>2 Z2.
3: repeat
4: Calculate Z>KZ, Z>Z and KZ using (5.25), (5.26) and (5.27), respectively;
5: Update Z = [Z>1 ,Z

>
2 ]> as: Z← KZ

(
Z>KZ + σ2C2

)−1
C;

6: Update C as: C← Nσ2C
(
Z>KZ + σ2C2

)−1
C + Z>Z;

7: until the improvement of log-likelihood (5.24) is smaller than a threshold.
Output: Up to a rotation factor, projections are given in Z1 and Z2 for the two data

sets.
Output: Up to a rotation factor, projection for a new data point x∗ is calculated as

z∗ = C
(
Z>KZ + σ2C2

)−1
Z>k(X,x∗), with k(X,x∗) centralized via (4.4).

When the extra N2 data points are available, kernel centering should be performed to
the whole kernel matrix K. This can be written in block-wise form as

K̂11 = K11 − 1N1 rowmean1(K)− rowmean1(K)>1>N1
+ elemean(K)1N11

>
N1
, (5.28)

K̂12 = K12 − 1N1 rowmean2(K)− rowmean1(K)>1>N2
+ elemean(K)1N11

>
N2
, (5.29)

K̂22 = K22 − 1N2 rowmean2(K)− rowmean2(K)>1>N2
+ elemean(K)1N21

>
N2
, (5.30)

where rowmean1(K) and rowmean2(K) contain the first N1 and last N2 entries of the
length-N row vector rowmean(K), respectively. These equations indicate that for the “old”
kernel K11 we need to re-centralize it using (5.28), and the two “new” kernel matrices are
centered using the global mean vector and mean value. Note that

rowmean1(K) =
1
N

(
N1 rowmean(K1) +N2 rowmean(K>

12)
)

and elemean(K) is equal to the mean value of vector rowmean(K). Therefore for the new
kernel centering, we can reuse the known vector rowmean(K11) and do not need to know
the old kernel matrix K11.

5.3.2 Online Kernel PCA

The ideal solution for online kernel PCA is to process each data point one by one and
neglect the “used” kernel matrices. That is, we only store the N ×K projection matrix
Z for the N data points which have been processed, and neglect the N ×N kernel matrix
K. This will save a lot of space, but is however applicable only if the derived projection
matrix Z is fixed for future incremental learning. A trade-off is to additionally store the
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N ×K matrix KZ and fix it in the EM iterations at each incremental step, but this will
lead to a local minima and may, due to our experience, converge to some minor principal
components.

5.3.3 EM Algorithm for Incremental Kernel PCA

We summarize the incremental kernel PCA algorithm in Algorithm 5.2. In this algorithm
both Z1 and Z2 are updated, and the storage requirement is still O(N2) since we need to
store the whole kernel matrix K. If Z1 is fixed in this procedure, or as a trade-off K11Z1

is fixed in (5.27), we do not need K11 any more and the inputs should be Z1, K11Z1, C
and rowmean(K11). In this case the storage requirement is only O(NK) +O(K2).

Figure 5.4 shows an example of incremental kernel PCA on the same 2D toy data. We
use two out of the three clusters to do kernel PCA first (first row), and then each time
add 10 data points from the third cluster. Incremental kernel PCA is used to learn the
top three eigenvectors, and it is seen that it is gradually adapted to the third cluster and
finally achieves the same results as kernel PCA (fourth row).

5.4 Summary

In this chapter we proposed a probabilistic interpretation for kernel PCA. This probabilis-
tic version generalizes the idea of probabilistic PCA to non-linear PCA and provides an
iterative algorithm for kernel PCA. It also provides other new perspectives to kernel PCA
such as an incremental kernel PCA.

PPCA provides a probabilistic interpretation of linear PCA, and the essential assump-
tion is that the input data is distributed as a Gaussian. The success of PCA on many
data sets indicates that many data can be assumed Gaussian distributed. In this chapter
we generalize this idea to the feature space, and due to the success of kernel PCA this
modeling assumption is also reasonable. We illustrate an incremental kernel PCA in this
chapter, and other extensions to PPCA is also possible for probabilistic kernel PCA such
as a mixture of probabilistic kernel PCA. For some future work, we can consider a novelty
detection algorithm in the RKHS space by calculating the likelihood of each data point in
this probabilistic model, and optimize the kernel parameters (e.g., α in RBF kernel) and
dimensionality K by maximization of (penalized) data likelihood.
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Figure 5.4: Illustration of EM algorithm for incremental kernel PCA on the same 2D toy
data. The first row shows the top three eigenvectors of (probabilistic) kernel PCA on two
of the three clusters. The second to the fourth rows show the top three eigenvectors of
incremental kernel PCA where each time we add 10 data points from the third cluster.
The fourth row uses all the 30 data points from the third cluster and achieves the same
results as kernel PCA (see Figure 4.2 or Figure 5.2). For each row the EM algorithm
converges within 100 steps.
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Chapter 6

Supervised Feature Projection

In the previous chapter we only considered unsupervised projection, where only input
features X are considered. When there are some outputs available (e.g., regression values
or classification results), it is often beneficial to consider supervised projection, which is
based not only on the inputs, but also on the target values. In general this leads to
an informed or biased feature projection, which will be more relevant to the particular
supervised learning problem. In the case that we have only one output dimension, i.e., a
regression or classification task, it is ideal to have the projection function informed by
the dependency between inputs and outputs. More generally if we have multiple output
dimensions, i.e., for an input x the corresponding output is no longer a scalar but a vector
y = [y1, . . . , yL]>, the intra-correlation between different dimensions of output should also
be taken into account.

The setting is very general in real-world applications. One working example in this
chapter is to predict users’ preferences on a set of paintings, which is a typical multi-
output problem since for each painting many persons’ preferences have to be estimated.
One may treat each person separately, but a notable fact is that people’s tastes are usually
correlated. One technology, referred as collaborative filtering [6], explores people’s “like-
mindedness” to make predictions. Another example is the problem of multi-label text or
image categorization, where each document/image is allowed to be associated with more
than one category and where categories often have semantic correlations. For example, a
document talking about category car must also belong to the category vehicle; an image
in category ski is likely to be associated with snow.

In this chapter we introduce a supervised feature projection algorithm called the Multi-
Output Regularized Projection (MORP).1 We use the term “multi-output” in the name
because we want to emphasize its capability of handling multiple outputs, but it is certainly
applicable to the single-output case. The algorithm is motivated from a latent variable
model which is analogous to PPCA, and in Section 6.1 we derive an analytical solution
to the proposed optimization problem. Then we formally introduce the MORP algorithm

1This chapter is based on conference papers [82, 81] and the journal paper [85].
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in Section 6.2, in which both the primal form (linear projection) and the dual form (non-
linear projection) are discussed. In Section 6.3 we point out its connections to kernel PCA
and some supervised projection methods, and in Section 6.4 we report some experimental
results on preference prediction and multi-label classification. Both experiments show that
MORP obtains very good supervised projections.

In this chapter we motivate the algorithm from a probabilistic perspective, but all
the solutions are deterministic and exact. In the next chapter we will focus on an EM
learning algorithm to this problem and solve semi-supervised feature projection as well. For
some additional notations, for each data point i, i = 1, . . . , N , we have an M -dimensional
feature vector xi ∈ X , and in general an L-dimensional output vector yi ∈ Y. Similarly
to the input data matrix X = [x1, . . . ,xN ]> ∈ RN×M , we group the outputs in the matrix
Y = [y1, . . . ,yN ]> ∈ RN×L. For projection we still aim to derive a mapping Ψ : X 7→ Z
that projects the input features into a K-dimensional latent space Z.

6.1 Supervised Latent Variable Model

The supervised latent variable model is motivated from the unsupervised latent variable
model in PPCA, which we briefly review at first.

6.1.1 Unsupervised Latent Variable Model

In unsupervised linear projection, we aim at finding a linear mapping from the input space
X to some low-dimensional latent space Z, while most of the structure in the data can be
explained and recovered. In this sense we can turn this linear projection problem to an
optimization problem, where we are trying to minimize the reconstruction error :

min
A,Z

‖X− ZA‖2 (6.1)

subject to: Z>Z = I,

where Z ∈ RN×K gives the K-dimensional projections of objects, and A ∈ RK×M is the
loading matrix. By constraining Z>Z = I, we restrict the K latent variables to be linearly
independent, i.e., to have diagonal covariance matrix in latent space.

Since matrix product ZA has rank K, in Problem (6.1) we are indeed seeking a low-
rank approximation to the data matrix X. Please note that this problem is different
from the optimization problem for PCA (see (4.1)), because we are now constraining the
projection matrix Z to be orthonormal, not the loading matrix A. It can be shown that
Problem (6.1) is actually equivalent to the PPCA model.

The derived projection explains the covariance of input data, which is however not
necessarily relevant to the output quantity. Hence unsupervised feature projections may
or may not be beneficial to supervised learning problems. When output information is
available, it is more desired to consider the correlation between input X and output Y,
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and the intra-correlation between the L dimensions of Y if L > 1. Therefore, we turn to
supervised projection in the next subsection, incorporating both input X and output Y.

6.1.2 Supervised Latent-Variable Model

The unsupervised projection Problem (6.1) explicitly represents the projections of input
data X in matrix Z. To consider the output information, we can enforce the projections
Z in Problem (6.1) sensitive to Y as well. Thus in supervised projection we can solve the
following optimization problem:

min
A,B,Z

(1− β)‖X− ZA‖2 + β‖Y − ZB‖2 (6.2)

subject to: Z>Z = I,

where Z ∈ RN×K gives the K-dimensional projections of objects, for features of both X
and Y, and A ∈ RK×M , B ∈ RK×L are the loading matrices. 0 ≤ β ≤ 1 is a tuning
parameter determining how much the projections should be biased by the outputs. As
before, Z>Z = I restricts the K latent variables to be linearly independent. Clearly, the
cost function is a trade-off between the reconstruction error of both X and Y. We wish
to find the optimal projections that give the minimum reconstruction error.

To see the optimization problem more clearly, we rewrite the cost in (6.2) as

(1− β)‖X− ZA‖2 + β
L∑

`=1

N∑
i=1

(
(yi)` −

K∑
k=1

ZikBk`

)2

,

where (yi)` denote the `-th entry of vector yi, and Zik denote the (i, k)-th entry in matrix
Z. Then we have the following observations:

• When L = 1, the second part of the cost constrains that the output Y can be linearly
reconstructed from the latent projection Z. Therefore, in the whole optimization
problem we are minimizing the correlation between X and Y.

• When L > 1, all the columns of Y are constrained to be linearly reconstructable
from Z. Therefore they are not considered independently, but jointly. In another
word, we are minimizing the intra-correlation between columns of Y.

We would like to mention here that one can very easily generalize this cost function
to have a different weight β` for the `-th output dimension, while maintaining a proper
normalization for all β`’s. In this way one can constrain each output dimension differently,
which leads to a more flexible cost with however more free parameters. In the following
we stick to the simpler setting since all the learning algorithms can be easily generalized
to cover this case.

Remark 6.1.1. When L = 1, finding the mapping from X to Y is known as a regression
problem if yi ∈ R, or multi-class classification if yi is chosen from a finite set of integers.



90 CHAPTER 6. SUPERVISED FEATURE PROJECTION

In the general case when L > 1, the former is called multivariate regression, while the
latter is called multi-label classification. Therefore our multi-output setting covers all these
cases.2

The following proposition states the interdependency between A, B and Z at the
optimum.

Proposition 6.1.1. If Z,A and B are the optimal solutions to the problem (6.2), and let
K = (1− β)XX> + βYY>, then:

(i) A = Z>X, B = Z>Y;

(ii) At the optimum, the objective function (6.2) equals to trace (K)− trace
(
Z>KZ

)
.

Proof. Applying the rule ‖C‖2 = trace
(
CC>) for an arbitrary matrix C, we obtain

J(A,B,Z) : = (1− β)‖X− ZA‖2 + β‖Y − ZB‖2

= (1− β)trace
(
XX> − 2ZAX> + A>Z>ZA

)
+ βtrace

(
YY> − 2ZBY> + B>Z>ZB

)
.

Let the derivative of J with respect to A and B be zero, we have

∂J

∂A
= 2(1− β)(Z>X− Z>ZA) = 0⇒ A = Z>X

∂J

∂B
= 2β(Z>Y − Z>ZB) = 0⇒ B = Z>Y

which proves (i). Then we use the results (i) to replace A and B in J and obtain conclusion
(ii).

Since trace (K) is fixed, Proposition 6.1.1 suggests that Problem (6.2) can be consid-
ered to be an optimization problem only with respect to Z:

max
Z∈RN×K

trace
(
Z>KZ

)
(6.3)

subject to: Z>Z = I.

Note that an ambiguity arises in (6.2) and (6.3): If Z is the solution, then Z̃ = ZR is also
a solution, given an arbitrary rotation matrix R. The following theorem summarizes the
situation.

2In this paper we explicitly distinguish between multi-class classification and multi-label classification,
both of which classify objects into multiple categories. In “multi-class classification”, an object can only
belong to one category, while in “multi-label classification” one object can belong to several categories
simultaneously. Therefore, the former is a special case of the latter. In this paper, multi-class classification
is viewed as a single-output problem, since we can label the multiple categories as integers and assign one
integer to one object. The more general multi-label classification is considered as a multi-output setting,
where each output could be a binary or multi-class classifier. Our setting covers both cases and is thus
very general.
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Theorem 6.1.2. Suppose that [z1, . . . , zN ] are the eigenvectors of matrix K, and λ1 ≥
. . . ≥ λN are the corresponding eigenvalues. If Z̃ solves (6.3), then

(i) Z̃ = [z1, . . . , zK ]R, where R is an arbitrary K ×K orthogonal rotation matrix;

(ii) The maximum of the objective function (6.3) is
∑K

k=1 λk.

Proof. Denote Z̃ =: [z̃1, . . . , z̃K ]. The Lagrange formalism of Problem (6.3) is

L(Z̃, Λ̃) =
K∑

k=1

z̃>k Kz̃k −
K∑

k=1

λ̃k,k(z̃>k z̃k − 1)− 2
∑
k>j

λ̃k,j z̃>k z̃j ,

where (Λ̃)k,j = λ̃k,j is a symmetric matrix if we define λ̃k,j = λ̃j,k for k < j. Setting its
derivative with respect to z̃k to be zero, we obtain

∂L

∂z̃k
= 2Kz̃k − 2

K∑
j=1

λ̃k,j z̃j = 0, k = 1, . . . ,K,

which can be rewritten as KZ̃ = Z̃Λ̃. Since Λ̃ is a symmetric matrix, we have Λ̃ = R>ΛR
where Λ is a diagonal matrix and R ∈ RK×K is an orthogonal rotation matrix satisfying
RR> = R>R = I. Then

KZ̃ = Z̃R>ΛR ⇒ KZ̃R> = Z̃R>Λ.

Since Λ is diagonal, it is easy to see that the columns of Z = Z̃R> are the eigenvectors
of K. Thus the optimal Z̃ is formed by an arbitrary rotation of K’s eigenvectors, i.e.
Z̃ = ZR. Inserting Z̃ back into the objective function, we have the value of objective
function as trace (Λ), i.e., sum of the K corresponding eigenvalues of K. It is easy to
see that the maximal trace (Λ) is the sum of the K largest eigenvalues, which proves (ii).
In this case, Z̃ is an arbitrary rotation of the K largest eigenvectors, thus conclusion (i)
holds.

Theorem 6.1.2 states that the eigenvectors of K form a solution of Problem (6.2), and
any arbitrary rotation does not change the optimum. Therefore to remove the ambiguity,
we only focus on the solutions given by the eigenvectors of K, i.e., Z = [z1, . . . , zK ], and
change Problem (6.2) equivalently to:3

max
z∈RN

z>Kz (6.4)

subject to : z>z = 1.

3Solving Problem (6.4) itself only gives the first eigenvector z1 of K. The full optimization prob-
lem should be recursively computing zj by maximizing z>Kz with the constraint z>z = 1 and z ⊥
span{z1, . . . , zj−1}. Here we state the problem as (6.4) for simplicity and also because its Lagrange for-
mulism directly leads to the eigenvalue problem.
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Optimizing the Lagrange form of Problem (6.4) leads to the eigenvalue problem Kz = λz.
Let z1, . . . , zN be the eigenvectors of K with the eigenvalues sorted in a non-increasing
order. Using the first K eigenvectors, we solve Problem (6.2) as Z = [z1, . . . , zK ], A =
Z>X, and B = Z>Y.

6.2 Multi-Output Regularized Projection

The solution to the supervised latent variable model is elegant, but only applicable to
training data since for test data we do not have any output information. Therefore to
complete the MORP algorithm, we need to refine the original problem.

Linear Constraint

It is easy to see that solving Problem (6.4) only gives the projections for training data with
both input features in X and labels in Y. We wish to construct a mapping Ψ : X 7→ Z
such that it can handle new data with only the input features. To achieve this we can
constrain that the latent variables are linear mappings of the input features X:

Z = XW.

This is one key step for the proposed supervised projection algorithm. With this constraint
we turn the original problem to an optimization problem with respect to linear weight
matrix W = [w1, . . . ,wK ] ∈ RM×K , and by definition we have zi = Xwi, for i = 1, . . . ,K.
Plugging z = Xw into (6.4), we have a new optimization problem with respect to a length-
M vector w:

max
w∈RM

w>X>KXw (6.5)

subject to : w>X>Xw = 1.

Regularization

Similar to other linear systems, the learned mappings can be unstable when the linear space
span{x1, . . . ,xN} has a lower dimensionality than M , due to the small size of training
set or dependence between input features.4 As a result, a disturbance of w with an
arbitrary w∗ ⊥ span{x1, . . . ,xN} does not change the objective function of optimization
since (w + w∗)>xi = w>xi, but may dramatically change the projections of unseen test
points which are not in the spanned space. To improve the stability, we have to constrain
w in some way.

4This will be a crucial problem when we kernelize the supervised projection and consider non-linear
mapping (cf. Section 6.2.2), since the dimensionality of data point x in the reproducing kernel Hilbert
space (RKHS) could be very high, or even infinite (e.g., in case of RBF kernel). See, e.g., [62].
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Suppose rank(K) = N , then maximizing (6.4) is equivalent to minimizing z>K−1z.5

We introduce the Tikhonov regularization [68] into Problem (6.5) as the following

min
w∈RM

w>X>K−1Xw + γ‖w‖2 (6.6)

subject to : w>X>Xw = 1,

where ‖w‖2 = w>w is a penalty term which has been used in the ridge regression (see
[37]), and γ is a tuning parameter. Setting the derivative of its Lagrange formulism with
respect to w to be zero, we reach a generalized eigenvector problem:[

X>K−1X + γI
]
w = λ̃X>Xw, (6.7)

which gives generalized eigenvectors w1, . . . ,wM with eigenvalues λ̃1 ≤ . . . ≤ λ̃M . Note
we sort eigenvalues in non-decreasing order, since we take the K eigenvectors with the
smallest eigenvalues to form the mapping.

The following theorem shows that the regularization term ‖w‖2 removes the ambiguity
of mapping functions by restricting w in the span of xi, i = 1, . . . , N , and thus improves
the stability of mapping functions.

Theorem 6.2.1. If w is an eigenvector of the generalized eigenvalue problem (6.7), then
w must be a linear combination of xi, i = 1, . . . , N , i.e., there exists α ∈ RN such that

w = X>α =
N∑

i=1

(α)ixi.

Proof. Let J(w) denote the cost function in (6.6), i.e.,

J(w) := w>X>K−1Xw + γ‖w‖2.

Obviously J(w) achieves the minimum at the first eigenvector w of the generalized eigen-
value problem (6.7). Denote w‖ as the projection of w on span{x1, . . . ,xN}, then we can
write w = w‖ + w⊥, where w⊥ is orthogonal to the subspace. Now we compare J(w‖)
with J(w). Since

w>xi = w>
‖ xi + w>

⊥xi = w>
‖ xi,

we have Xw‖ = Xw, which means J(w‖) and J(w) agree on the first term. Since
‖w‖2 = ‖w‖‖2 + ‖w⊥‖2 ≥ ‖w‖‖2, J(w) ≥ J(w‖) holds. This however must be an

5One can also minimize z>(−K)z which is also equivalent, but then we lose non-negativity of its
eigenvalues which may cause problems later on in solving the generalized eigenvalue problem. For the
invertibility of K, it is easy to show that K is at least positive semi-definite, since we have u>Ku =
(1−β)u>XX>u+βu>YY>u = (1−β)‖X>u‖2 +β‖Y>u‖2 ≥ 0,∀u ∈ RN . In case that K is not positive
definite, it suffices to use pseudo-inverse instead, or makes it so by adding a tiny positive scalar to diagonal
elements. In the dual form in Section 6.2.2, K is in most cases positive definite since Kx is normally
positive definite (e.g., RBF kernel) and Ky is at least positive semi-definite.
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equality since J(w) achieves the minimum, so we have ‖w⊥‖ = 0 and hence w⊥ = 0,
which means w is a linear combination of xi, i = 1, . . . , N .

So far we have proved the theorem for the first eigenvector (with the smallest eigen-
value). Given eigenvectors wj , j = 1, . . . , n − 1, it is known that the n-th eigenvector is
obtained by first deflating the matrix K−1 with K† = K−1 −

∑n−1
j=1 λjXwjw>

j X>, and
then solving the following problem

min
w∈RM

w>X>K†Xw + γ‖w‖2

subject to : w>X>Xw = 1.

Following the same procedure we can prove the eigenvector wn also lies in the span of
xi, i = 1, . . . , N . This completes the proof.

6.2.1 Multi-Output Regularized Projection - Primal Form

In Problem (6.7) we are interested in the eigenvectors with the smallest eigenvalues, whose
computation is however the most unstable part in solving an eigenvalue problem. Thus
we let λ = 1/λ̃ and turn the problem into an equivalent one as

X>Xw = λ
[
X>K−1X + γI

]
w, (6.8)

where we are seeking theK eigenvectors with the largest eigenvalues. To solve this problem
we note that matrix Q =

[
X>K−1X + γI

]
is symmetric and positive definite, so there

exists a symmetric and positive definite matrix L such that Q = L2. Then we can change
the problem to an equivalent one as L−1X>XL−1Lw = λLw, in which we can solve an
eigenvalue problem for matrix L−1X>XL−1 with eigenvectors given as z = Lw. After
that we can recover w as w = L−1z. Note that the solution satisfies w>Qw = 1. This
leads to an additional scaling factor for the mapping.

As can be seen from the optimization problem in (6.2), MORP assumes that the
projections of all the data points in X have I as the covariance matrix. This means all
the scaling factors (i.e., the variance on each projection direction) are not maintained in
the projection values. This will cause problems since the pair-wise distances are changed.
Therefore, we add these scaling factors back after we find the projection directions, which
will recover PCA if no output information is available.

This primal form of the MORP algorithm is summarized in Algorithm 6.1. To only
extract the projection dimensions which represent the intrinsic structure of the data, we
centralize the data before performing the algorithm, i.e., subtract the sample mean from
each data point.

6.2.2 Multi-Output Regularized Projection - Dual Form

So far we have considered linear mappings which project inputs x into latent space Z.
However, Theorem 6.2.1 implies that we can also derive a non-linear mapping.
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Algorithm 6.1 Multi-Output Regularized Projection in Primal Form
Require: A set of N data points with input features X = [x1, . . . ,xN ]> ∈ RN×M and

outputs Y = [y1, . . . ,yN ]> ∈ RN×L.
Require: Projection dimension K > 0, parameters 0 ≤ β ≤ 1, γ ≥ 0.
1: Centralize data: xi ⇐ xi − x̄, yi ⇐ yi − ȳ where x̄ = 1

N

∑
i xi, ȳ = 1

N

∑
i yi.

2: Calculate K = (1− β)XX> + βYY>.
3: Set P = X>X and Q =

[
X>K−1X + γI

]
. Solve the generalized eigenvalue problem:

Pw = λQw, obtain eigenvectors w1, . . . ,wK with largestK eigenvalues λ1 ≥ . . . ≥ λK

such that w>Qw = 1.
Output: Projection function for the k-th dimension as ψk(x) = w>

k x, k = 1, . . . ,K.

Let κx(·, ·) be the inner product in X , i.e., κx(xi,xj) = 〈xi,xj〉 = x>i xj , then from
Theorem 6.2.1 we obtain

z = Xw = XX>α = Kxα,

where Kx is the N×N Gram matrix with (Kx)ij = κx(xi,xj). ‖w‖2 can also be calculated
using Kx:

‖w‖2 = w>w = α>XX>α = α>Kxα.

Similarly, we can define κy(·, ·) for inner product in Y and obtain a Gram matrix Ky =
YY>. Then we can calculate the matrix K using these Gram matrices as:

K = (1− β)Kx + βKy, (6.9)

and express the dual form of Problem (6.6) with respect to coefficients α as

min
α∈RN

α>KxK−1Kxα+ γα>Kxα (6.10)

subject to : α>K2
xα = 1.

The Lagrange solution of this problem leads to a generalized eigenvalue problem[
KxK−1Kx + γKx

]
α = λ̃K2

xα. (6.11)

We obtain the generalized eigenvectors α1, . . . ,αN , with λ̃1 ≤ . . . ≤ λ̃N . The first K
eigenvectors are applied to form the mappings. Without the scaling factor, the k-th
mapping function, k = 1, . . . ,K, is given by

ψk(x) = w>
k x =

N∑
i=1

(αk)iκx(xi,x).

As before we define λ = 1/λ̃ and change (6.11) to the following equivalent form:

K2
xα = λ

[
KxK−1Kx + γKx

]
α, (6.12)

and hence we can choose the K eigenvectors with the largest eigenvalues.
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Algorithm 6.2 Multi-Output Regularized Projection in Dual Form
Require: A set of N data points with input features X = [x1, . . . ,xN ]> ∈ RN×M and

outputs Y = [y1, . . . ,yN ]> ∈ RN×L.
Require: Kernel functions κx(·, ·) and κy(·, ·) for input space X and output space Y.
Require: Projection dimension K > 0, parameters 0 ≤ β ≤ 1, γ ≥ 0.
1: Calculate two N ×N matrices (Kx)ij = κx(xi,xj), (Ky)ij = κy(yi,yj).
2: Centralize the kernel matrices Kx and Ky using (4.3).
3: Calculate K = (1− β)Kx + βKy.
4: Set P = K2

x and Q = KxK−1Kx + γKx. Solve the generalized eigenvalue problem:
Pα = λQα, obtain eigenvectors α1, . . . ,αK with largest eigenvalues λ1 ≥ . . . ≥ λK

such that α>Qα = 1.
Output: Projection function for the k-th dimension as ψk(x) = k(X,x)>αk, k =

1, . . . ,K, where k(X,x) := [κx(x1,x), . . . , κx(xN ,x)]> and centralized via (4.4).

The algorithm is ready to deal with non-linear mappings. For this we consider a non-
linear mapping φ : x ∈ X 7→ φ(x) ∈ F , which maps x into a high-dimensional or even
infinite-dimensional feature space F , and change X to be [φ(x1), . . . ,φ(xN )]>. Then the
kernel function is accordingly defined as

κx(xi,xj) = 〈φ(xi),φ(xj)〉F ,

where we still have Kx = XX>. Therefore, we can directly work with kernels (e.g., RBF
kernel κx(xi,xj) = exp(−α‖xi − xj‖2)), without knowing φ(·) explicitly.

Similarly, we can define a non-linear mapping for Y and directly work on the cor-
responding kernel matrix Ky. Although this paper mainly considers the linear kernel
to explore the linear correlation of multivariate outputs, the formulism implies that the
method can generally handle more complex outputs by using some other suitable kernels.

For centering of the data, as seen in Chapter 4 we can achieve this in the new feature
space F without knowing the explicit mapping φ(·). The final dual form of the algorithm
is summarized in Algorithm 6.2.

6.2.3 Discussions

MORP defines a general solution for supervised projection, i.e., minimization of an output-
regularized cost function. In general one can go beyond Frobenius norm and consider more
general cost for X and Y:

(1− β)f(X,Z) + βg(Y,Z),

where f and g define the input-specific cost and output-specific cost respectively, with
respect to the observation (X or Y) and the projection Z. There may be some parameters
involved (like A and B in the Frobenius norm case), and in general there is no analytical
solution to this optimization problem. For instance, f could be matrix 1-norm (like the
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case for sparse PCA [88]), and g could be hinge-lose for binary classification problem [72].
For simplicity and tractability we stick to the Frobenius norm in this chapter.

As a natural extension of Problem (6.2), we can have different output sets, say Y1 and
Y2, associated with all input data. In this case we can add the reconstruction error of Y1

and Y2 to the cost function, but with different weights β:

(1− β1 − β2)‖X− ZA‖2 + β1‖Y1 − ZB1‖2 + β2‖Y2 − ZB2‖2,

and potentially Y1 and Y2 could have different intra-correlations. Both of these two
output sets can be incorporated into MORP by defining possibly different kernels for Y1

and Y2, and including them into the matrix K. Therefore, MORP introduces an elegant
way to take into account various supervised information and allows great flexibility and
generalization ability.

It is also possible to regularize the normal PCA projection using other types of super-
vised information, such as a hierarchy of outputs [43]. This information can be viewed as
a different kind of cost in the MORP model.

Computational Issues

MORP solves a generalized eigenvalue problem for M ×M matrices in the primal form,
and for N ×N matrices in the dual form, which in computational complexity is similar to
unsupervised projection PCA and kernel PCA (see [32] for details of generalized eigenvalue
problems). For implementation it is very easy and just takes several lines with Matlab.
The calculations of kernels and matrix multiplications are the most time-consuming parts
of the algorithm, as well as the matrix inversion in kernel form. But in general, the
projection is quite acceptable and takes less than one minute for about 1000 data points
with 500 input features (RBF kernel) and 50 output features (linear kernel).6

Parameters

MORP has three tuning parameters: K, β and γ. They should be chosen beforehand and
probably be determined by cross-validation.

K is the dimensionality of the latent space and controls the reconstruction capability
of the projection. In linear MORP, K ≤M holds, while in the kernel case K is only upper
bounded by number of the data points. Selection of K depends on the applications built
on the learned mapping. Small K is sometimes preferred because it may be sufficient to
recover the structure behind input and output data, and it is helpful to cut down the
computational burden.

β satisfies 0 ≤ β ≤ 1 and controls the trade-off between reconstruction errors of X
and Y. Special cases when β = 0 and β = 1 will be discussed in Section 6.3. In real

6We test the algorithm using Matlab on a PC with 2.0GHz CPU and 512M memory.
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Algorithm 6.3 Simplified MORP Algorithm in Dual Form
Require: A set of N data points with input features X = [x1, . . . ,xN ]> ∈ RN×M and

outputs Y = [y1, . . . ,yN ]> ∈ RN×L.
Require: Kernel functions κx(·, ·) and κy(·, ·) for input space X and output space Y.
Require: Projection dimension K > 0, parameters 0 ≤ β ≤ 1.
1: Calculate two N ×N matrices (Kx)ij = κx(xi,xj), (Ky)ij = κy(yi,yj).
2: Centralize the kernel matrices Kx and Ky using (4.3).
3: Calculate K = (1− β)Kx + βKy.
4: Solve eigenvalue problem: Kz = λz, obtain eigenvectors z1, . . . , zK with largest eigen-

values λ1 ≥ . . . ≥ λK .
5: Calculate αk = K−1

x zk, k = 1, . . . ,K.
Output: Projection function for the k-th dimension as ψk(x) =

√
λkk(X,x)>αk, k =

1, . . . ,K, where k(X,x) := [κx(x1,x), . . . , κx(xN ,x)]> and centralized via (4.4).

world applications, the value of β should depend on the quality of input and output with
respect to the learning tasks. If input data are already enough or many of the outputs are
missing, β should be relatively small; on the other hand if correlations among the multiple
outputs are very strong, β is usually large and we are forcing the mapping to align more
with principal components of Y. β should also take into account the balance of traces of
Kx and Ky, since otherwise the matrix with large eigenvalues will dominate the matrix
sum. From our experience, β = 0.5 is normally a good choice after we balance the traces
of Kx and Ky to be the same. Performance comparison in the next section will give more
details.

The non-negative scalar γ is set to prevent overfitting of the mapping functions. We
found in our experiments that the quality of mappings is insensitive to γ if it is not too
large. This is especially true for the dual form solution, because for positive definite
matrices Kx and K, matrix Q in Algorithm 6.2 is already very stable. Therefore we
fixed it to be 0 for simplicity. In this case the whole learning algorithm can be greatly
simplified, and the whole MORP algorithm can be viewed as a slightly modification of the
kernel PCA algorithm. It is summarized in Algorithm 6.3 for clarity.

6.3 Connections to Related Works

The proposed algorithm MORP is a supervised projection from the input space to the
latent space and aims at minimizing the reconstruction errors of both input data X and
output data Y. The algorithm is naturally generalizable to non-linear mappings and can
explore the intra-correlation of multiple outputs.

In the literature there are some other well-known supervised projection methods, such
as linear discriminant analysis (LDA) (see, e.g., [37, 65]), canonical correlation analysis
(CCA) [42, 36], partial least squares (PLS) [74, 57], and kernel dependency estimation
(KDE) [73]. In this section we briefly review these methods and point out the substantial
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differences as well as possible connections between MORP and these methods. Other
recent works include kernel dimensionality reduction [27], multi-task learning (e.g., [24,
79, 63]) and will also be briefly discussed.

6.3.1 Kernel Principal Component Analysis (Kernel PCA)

As discussed in Chapter 4, kernel PCA performs linear PCA in the reproducing ker-
nel Hilbert space [61]. Let Kx denote the centered kernel matrix, kernel PCA solves
the following eigenvalue problem: Kxα = λα. After the eigenvectors α1, . . . ,αK with
largest eigenvalues λ1 ≥ . . . ≥ λK are obtained, the non-linear mappings ψk(x) =

1√
λk

∑N
i=1(αk)iκx(xi,x), k = 1, . . . ,K project the input data x to a K-dimensional la-

tent space.

The proposed method MORP is motivated from optimization problem (6.2) and is also
performing an unsupervised projection when β = 0, which is identical to Problem (6.1).
In this case we have K = XX>, which is just the kernel matrix Kx for X in dual form,
as revealed by (6.9). Then from Theorem 6.1.2 and remarks after Problem (6.4), it is
clear that when β = 0, MORP is also solving the eigenvalue problem for Kx and thus
is identical to kernel PCA. This also clarifies the connection between kernel PCA and
Problem (6.1): The optimal solution Z to Problem (6.1) corresponds to, up to a rotation
and scaling factor, the K non-linear principal components of kernel PCA in columns.

When β = 0, the equivalence of MORP and kernel PCA can also be shown from (6.10)
which changes to

min
α∈RN

(1 + γ)α>Kxα

subject to : α>K2
xα = 1

since K = Kx holds. Under this situation, the regularization term controlled by γ is just a
rescaling of the cost function and therefore does not change the cost function at all. Hence
γ is just a nuisance parameter. On the other hand, if we let γ → ∞, the regularization
term in (6.10) dominates the cost function and MORP tends to be kernel PCA, whatever
β is.

When β > 0, MORP actually performs output regularized kernel PCA or supervised
kernel PCA, since it can be viewed as directly modifying the kernel matrix K with output
information. With moderate β, the mapping takes into account the kernel of Y, but is
meanwhile restricted to the input space X . No information of y is required for calculating
MORP projection of a new data point x.

6.3.2 Linear Discriminant Analysis (LDA)

LDA or Fisher Discriminant Analysis (FDA) is a canonical supervised projection for in-
put data X and conceptually can only handle binary classification problems (see [37]).
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It chooses a projection direction w that maximizes inter-distance of projected means,
and meanwhile minimizes intra-variances of both classes. Therefore it is focusing on sin-
gle classification problem where the output is one-dimensional, while in contrast MORP
considers predictions with multivariate outputs and is thus more general.

A recently proposed approach Kernel Dimensionality Reduction (KDR) [27] is also
a supervised method and aims to find a low-dimensional effective subspace that retains
the statistical relationship between input data and output data. However, it has similar
limitations and can only handle one-dimensional output.

6.3.3 Canonical Correlation Analysis (CCA) and Partial Least Square
(PLS)

CCA has a long history in the statistics community (back to [42]) and aims at discover-
ing the correlations between two representatives of the same objects (e.g., inputs X and
outputs Y in our setting). The optimization problem solving CCA can be written as:

max
zx,zy∈RN

Corr(zx, zy)

subject to : zx = Xwx, zy = Ywy,

which is equivalent to minimization of ‖zx − zy‖2 when both zx and zy have norm 1 (see
a recent discussion in [36]). In this sense CCA is a certain kind of supervised projection,
but it does not require the projections zx and zy to guarantee low-reconstruction error of
X and Y. Therefore CCA only considers the inter -correlation between zx and zy, but
ignores the intra-correlation of either (especially y). Instead, MORP takes into account
all the inter- and intra-dependencies, since the projections minimize the reconstruction
error of inputs and outputs simultaneously.

Another related approach is PLS, which is originally developed for regression prob-
lems in chemometrics [74, 75]. PLS aims at finding orthogonal projection directions for
inputs X, each of which maximizes the covariance between the outputs Y and a linear
combination of X:

max
zx∈RN

Cov(zx,Y)

subject to : zx = Xwx,w>
x wx = 1.

PLS can be seen as a penalized CCA, since covariance is simply correlation weighted
by square root of variance. Fukumizu et al. [68] pointed out that PLS cannot find a
space of larger dimensionality than that of Y, thus its generalization performance on new
dimensions of outputs is restricted. Instead, our method can find in principle N orthogonal
dimensions (if Kx is positive definite).
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6.3.4 Kernel Dependency Estimation (KDE)

MORP is also related to kernel dependency estimation, a two-stage method for discovering
dependency between possibly non-linear mappings of inputs and outputs [73]. In the first
step, KDE performs kernel PCA on output Y and obtains some principal components zy;
then a regression model with kernels (kernel ridge regression in [73]) is applied to X, for
projections of Y to each zy. No explicit mappings for X are available and a certain cost
function has to be defined and minimized to find the output for a text point (so-called
“pre-image” problem).

If applied to regression, MORP has similar behavior if β = 1: We are looking for a
projection of X that seems enforced to entirely explain the dependency of outputs, as
can be seen from Problem (6.2). However, it turns out to be not true if we introduce
the regularization to prevent overfitting, since the Lagrange formalism of minimizing the
regularizer α>Kxα, under the constraint α>K2

xα = 1, tends to a kernel PCA of input
features. To see it more clearly, recall that z = Kxα and thus we can write the cost
function in (6.10) equivalently as

max
z∈RN

z>
(
K−1

y + γK−1
x

)−1 z, (6.13)

where K = Ky holds when β = 1 and we change the minimization to maximization by
adding inversion to the matrix sum. Geometrically, (6.13) enforces z to be close to the
eigenvector of Ky as well as that of Kx, both with the largest eigenvalue. Therefore in
this special case, MORP is performing input regularized kernel PCA for output Y, while
finally obtaining a mapping for X explicitly. Compared to the two-step approach taken
by KDE, MORP can be a feature mapping step for regression models and provides a more
elegant and direct way for multi-output regression.

6.3.5 Multi-task Learning

The work is also related to the recent research on multi-task learning (e.g., [24, 79, 63]),
which learns many related predictive tasks together by exploring their dependency. We
can first use the proposed algorithm to map the input features into a new space and then
treat each task independently using the new representatives as input features. This two-
stage solution can more easily deal with new tasks while multi-task learning has to retrain
all the tasks once new tasks need to be handled.

6.4 Empirical Study

In this section we evaluate the proposed MORP algorithm based on two settings. The
first is prediction of user preferences, in which we predict users’ preferences on some data
based on both the content features and rankings of other users. If we take each user as one
output for all the data, we can think this setting as a natural multi-output problem, where
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common interests of users stand for the intra-correlation among outputs. The second is to
perform multi-label classification on the projected space, taking MORP as a preprocessing
or feature transformation step. In this setting, we allow one data object to belong to
multiple categories, and therefore different classification problems could have correlations
between each other. This information will be utilized in MORP for deriving the mapping.

6.4.1 Prediction of User Preferences

Our first experiment is performed on a painting database which contains 642 paintings
from 47 artists. A web-based online survey is built to gather user ratings. For all the
paintings, we extract and combine color histogram (216-dim.), correlagram (256-dim.),
first and second color moments (9-dim.) and Pyramid wavelet texture (10-dim.) to form
491-dimensional input features to represent the images. All the features are then centered
and standardized with deviation 1. For the online survey, each user gave ratings, i.e., “like”
or “dislike”, to a randomly selected subset of paintings. Finally we obtained a total of
L = 190 users’ ratings encoded as +1 and −1. On average, each user had rated 89
paintings, and each painting was rated by 30 users.

In the experiment, a set of users are selected as test users, and 10-fold cross-validation
is preformed for each test user with one fold training and 9 folds testing. A SVM using
RBF kernel with all the 491 image features can be trained for each test user, and this
is denoted Original Features and serves as the baseline. We will basically compare
three projection methods. Kernel PCA performs unsupervised projection and maps
the input data into a low-dimensional space. The two supervised methods, MORP and
Kernel CCA, additionally make use of the rating information of the other users. All of
the three competing methods use the same RBF kernel as in Original Features and
same dimensionality. The new features given by these methods are then fed into a linear
SVM for classification.

These algorithms are evaluated using two metrics. One is Top-N accuracy, i.e., the
proportion of truly liked paintings among the N top-ranked paintings. Since normal users
only care about the quality of first returned items, this quantity reflects the subjective
quality of an information filtering system. The other is the ROC (receiver operating
characteristics) curve, which plots sensitivity versus 1-specificity. Sensitivity is defined
as the probability that a good painting is recommended by the system, and specificity is
the probability that a disliked painting is rejected by the system. By changing the cut
point (e.g. return top 10 or 20 paintings), a curve can be plotted. The area under the
curve (AUC) measures the objective quality of ranking. A higher AUC indicates a better
ranking.

We choose all the parameters for these algorithms as follows. The RBF kernel width
σ = 25, which gives Original Features the best performance and is then fixed for all
the projection methods. Different values for dimensionality K yield similar comparison
results between these projection methods, and for simplicity we fix K = 50. In MORP, β
is simply chosen as 0.5 to give equivalent weights to Kx and Ky, after we scale Kx and Ky
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(a) (b)

(c) (d)

Figure 6.1: Comparison of algorithms for predicting user preferences. Figures on the left
((a),(c)) show the mean and standard deviation of prediction accuracy at different top
number of returned images, and figures on the right ((b),(d)) show the corresponding
ROC curve, i.e., Sensitivity versus 1-Specificity. The upper row compares four methods:
MORP (β = 0.5, γ = 1), Kernel PCA, Kernel CCA (regularization parameter 0.9)
and Original Features (with SVM). RBF kernel is used with σ = 25 for all kernel
methods. All the projection methods use latent space with K = 50. The lower row
compares MORP algorithms with different β values, where we have scaled Kx and Ky to
ensure they have equal traces for balance. γ and K are chosen the same as in upper row.

to ensure they have equal traces for balance. γ is insensitive to the result and is simply
fixed as 0. For Kernel CCA we tune the regularization parameter for best performance
and set it to be 0.9.

The performances of the four algorithms are shown in Figure 6.1(a) and (b), which
clearly indicate that MORP significantly outperforms the rest in terms of both Top-N
accuracy and ROC curve. The unsupervised methods Original Features and Kernel
PCA give unsatisfying results due to their ignorance of the correlation between user
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ratings. Original Features performs better than Kernel PCA, because it considers
all the features for paintings. The other supervised method Kernel CCA is unsuccessful
in this setting, but obtains slightly better results than unsupervised methods in terms of
ROC curve.

Our method can be seen as a way to combine content-based filters and collaborative
filters. The two-stage treatment first learns a feature mapping based on many users’
ratings, and then uses the new features to feed content-based filters. The parameter β
controls the trade-off between the content-based kernel Kx and the preference kernel Ky.
In the second experiment, we study the impact of β in the performance of preference
prediction, as shown in Figure 6.1(c) and (d) (as before, we scale Kx and Ky to ensure
they have equal traces for balance). With β = 0, MORP is indeed kernel PCA and making
an unsupervised projection, which gives a bad performance. As β increases gradually, the
performance improves significantly, as shown here when β = 0.05. This clearly shows that
the quality of projection has been improved by exploring the correlation among users.
β = 0.5 gives the best results, corresponding to an even balance between the eigenspaces
of the two matrices. And when β increases further, the performance drops down and
overfitting occurs if no information of input is considered.

In the last experiment, we visualize the projections of paintings in the first two dimen-
sions and see if we observe interesting distributions. As shown in Figure 6.2, we visualize
four artists’ paintings, Dali, Van Gogh, Monet and Asian (an anonymous asian painter).
We denote points with different shapes and colors for paintings of different painters, and il-
lustrate some images for clear explanation. The annotation beside each image clarifies the
corresponding painter. For Kernel PCA (Figure 6.2(a)), projections are built based on
the low-level features of images, and paintings of different painters are somehow departed
from each other (e.g., Dali’s on the right, and Asian’s on the left). This recovers the unsu-
pervised characteristic of Kernel PCA. However, for the specific task of user preferences
prediction, this is not sufficient. It is more interesting to investigate the patterns found by
MORP (Figure 6.2(b)), which forces the projection to reflect user correlations. Let’s take
a close look at the differences between Figure 6.2(a) and (b). Roughly speaking, there
are three groups: left, middle and right, in Figure 6.2(b). First of all, it appears that the
paintings of Van Gogh and Monet are frequently staying close (in left group), indicating
that people often have similar preferences to these two artists’ works, i.e., a user either
likes both or dislikes both. Secondly, Van Gogh’s self portraits (annotated as Z1, Z2 and
Z3) stay very close from users’ preferences (middle group), but it is interesting that they
seem to be outliers in his paintings, and people’s preferences to them are more correlated
to the opinions for Dali’s works. Furthermore, Dali’s paintings in early years (e.g., the
two marked out as D1 and D2 painted in 1922) substantially differ from the majority
of his works in style. Instead, D1 and D2 stay close to the Asian’s paintings, which are
mainly about houses and buildings in countryside. Though a rigorous interpretation of
the visualized distribution is lacking, we can still conclude that MORP maps paintings
into a very meaningful space which will be beneficial for predicting interests for new users.
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(a)

(b)

Figure 6.2: Visualization of paintings in the first two projected dimensions for Kernel
PCA (a) and MORP (b). Four painters are compared, and several images are shown
with annotations (‘D’ for Dali, ‘Z’ for Van Gogh, ‘M’ for Monet, and ‘A’ for the Asian
painter. Numbers show indexes for each painter). Parameter settings are the same as
Figure 6.1(a).
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6.4.2 Multi-label Classification

The experiment in this subsection is based on two text and one image data sets. The first
text data is taken from Reuters-21578, which contains all the documents with multiple cat-
egories. Eliminating those minor categories that contain less then 50 documents, we have
47 categories to work with. Picking up all the words that occur at least in 5 documents,
we finally obtain 1600 documents with 6076 words. The second text data is a subset of
the RCV1-v2 data set, provided by Reuters and corrected by [52]. Since it is common
that one document is assigned to multiple topics, this is an ideal data set for multi-label
classification. After the same preprocessing, we finally obtain 9726 documents with 8997
words, and have 79 topics left. Standard TF-IDF features are then computed for these
two text data sets. Our last data is a subset of the Corel image database that contains
1021 images. We manually labeled them into 37 categories. In average each image belongs
to 3.6 categories and each category contains 98 images. As in the previous painting case,
we extract the same 491-dimensional features as the input features for images and cen-
tralize them. In the following we denote “Reuters”, “RCV1” and “Corel” for these data
sets, respectively.

In the first setting (I), we randomly pick up 70% categories for classification and employ
5-fold cross-validation with one fold training and 4 folds testing. This is a standard classi-
fication setting, and our goal is to evaluate whether the feature mappings are generalizable
to new data points. We will test the four algorithms described in the previous subsection,
i.e., Original Features, Kernel PCA, MORP and Kernel CCA. Original Fea-
tures still serves as the baseline, Kernel PCA defines unsupervised mappings, and the
latter two give supervised mappings. Note that this setting is actually a batch version of
many single-output binary classification tasks, where the performance is averaged over all
tasks.

We also have a second setting (II), which aims to test the generalization ability of the
projection methods on new categorization tasks. For this we consider the classification
problems for the rest 30% categories. To make a fair comparison, we perform 5-fold cross-
validation on previous unseen data, using the feature mappings derived from setting (I).
We will also compare all the four methods in this setting.

The classification performance is compared using F1 measure and AUC score. F1

measure defines a trade-off between precision and recall, and is known to be a good metric
for classification evaluation. Alternatively, AUC score measures the quality of ranking
for specific classification problems. Both of these scores are averaged over all the output
dimensions. We also tried classification accuracy, but didn’t get informative comparison
because most of the classification problems are very unbalanced (more than 90% of data
are negative examples).

We use RBF kernel with width σ = 25 for the Corel data (which gives Original Fea-
tures the best performance), and use linear kernels for the text data sets. For MORP
we set the parameter β to 0.5 after rescaling Kx and Ky, and fix γ as 0, same as pre-
vious painting experiment. The regularization parameter for Kernel CCA is tuned for
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(a) (b)

(c) (d)

Figure 6.3: Classification performance on Reuters data set. Upper rows ((a),(b)) show
results with setting (I), and lower rows ((c),(d)) show results with setting (II).

each data set and set to 0.9, 0.3 and 0.3 for Reuters, RCV1 and Corel, respectively. For
both settings we repeat the experiments 10 times with randomization, and the perfor-
mance versus dimensionality of projection is shown with means and standard deviations
in Figure 6.3, Figure 6.4, Figure 6.5 for Reuters, RCV1, Corel, respectively.

The first observation from these figures is that MORP outperforms Kernel PCA in
almost all the cases. This indicates that the mapping functions in MORP are generalizable
to new test data for setting (I), and also generalizable to new related prediction tasks, as
seen in setting (II). The difference is especially big for setting (I), where the predictions are
made for the known categories. By incorporating the output information for the training
data, MORP can obtain more informative mappings for these specific tasks.

Kernel CCA also performs a supervised projection, and in general it obtains worse
but comparable results as MORP in setting (I). However, the performance is quite bad
for setting (II), and in most cases it is even worse than Kernel PCA. This indicates
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(a) (b)

(c) (d)

Figure 6.4: Classification performance on RCV1 data set. Upper rows ((a),(b)) show
results with setting (I), and lower rows ((c),(d)) show results with setting (II).

that Kernel CCA suffers from overfitting and is not generalizable to new prediction
tasks. It can also be seen that Kernel CCA approaches a constant performance after a
small number of dimensions. The reason is that Kernel CCA could only extract pairs
of mappings (one for X and the other for Y), and thus could not obtain more dimensions
than the number of outputs for training. This is very limited when we want the mappings
generalizable to new outputs. In contrast, MORP does not have this problem and in
general could extract N directions.

Another observation from these figures is that projected data can lead to better classi-
fication performance than Original Features that simply uses all the original features.
This is especially the case in setting (II), where a large gap can be observed for all pro-
jection methods, even for the unsupervised method Kernel PCA. This suggests that
projecting input data into a low-dimensional space can not only accelerate the classifi-
cation tasks, but also improve the performance. Therefore, it is of great importance to
derive a good projection method for supervised learning. MORP is seen to outperform all
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(a) (b)

(c) (d)

Figure 6.5: Classification performance on Corel data set. Upper rows ((a),(b)) show results
with setting (I), and lower rows ((c),(d)) show results with setting (II).

the other methods in setting (II), and thus is a very good choice.

MORP has a tunable parameter β that controls the combination weights of the two
kernels Kx and Ky. For previous figures it is set to be 0.5 after rescaling the two kernels,
and in this last experiments we study the classification performance when β is varied.
Since we can see similar results for the three data sets, we only show in Figure 6.6 the
illustrations for Reuters. The dimensionality K is also insensitive to the results and is
simply fixed as 50.

A first impression from Figure 6.6 is that the two metrics have similar trends, and the
curves are rather smooth (except when β approaching 1 in setting (II)). This indicates
that the performance is not very sensitive to small changes of β value. When β increases
from 0 to 1, it is seen that all the curves first increase and then decrease, indicating that
a good trade-off should be identified for best performance. When β approaches 0, MORP
tends to be kernel PCA and thus unsupervised. Outputs are ignored in this case, and
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(a) (b)

(c) (d)

Figure 6.6: Performance of MORP with respect to β for Reuters data set. Upper rows
((a),(b)) show results with setting (I), and lower rows ((c),(d)) show results with setting
(II). Dimensionality K is chosen to be 50. All the β values are chosen after we scale Kx

and Ky to have equal traces.

poor performance is observed for both settings. On the other hand when β approaches 1,
the mappings tend to solely explain outputs Y, ignoring the intrinsic structure of inputs
X. This also leads to poor performance, especially for setting (II) because the mappings
are not good to generalize to new outputs. Overfitting occurs in this case, where a sharp
decrease can be observed with even a much worse performance than kernel PCA (β = 0).
Finally, β = 0.5 is seen to be a good trade-off for both settings. From our experiences, a
slightly larger β (e.g., 0.6) is better for setting (I), and a slightly smaller β (e.g., 0.4) is
more stable for setting (II). One can also do model selection to select the best β for real
world applications, and we hope this observation could be a good guidance.
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6.5 Summary

In this chapter we introduce a supervised feature projection method called the MORP for
multi-output regularized projection. It is based on a supervised latent variable model, and
the projections retain the statistical information of not only input features but also the
(possibly multivariate) outputs. We present both the primal and the dual formalisms for
the linear mappings such that non-linear mappings can be derived by using reproducing
kernels. The final solution ends up as a simple generalized eigenvalue problem that can
be easily solved. The great advantage of proposed algorithm is that, given the learned
projections, each dimension of outputs can then be modeled independently and multi-
ple predictive problems can be solved simultaneously. The algorithm is applied for user
preference prediction and multi-label classification, both with very encouraging results.

The MORP algorithm in this chapter solves a generalized eigenvalue problem. As
discussed in Chapter 5, this deterministic algorithm has certain drawbacks and cannot
be applied to large-scale problems. In the next chapter we will present a probabilistic
solution, and this allows us to elegantly model unlabeled data as well and achieves semi-
supervised projection. It also provides a means to learn β from the data. For future work,
it is worth trying other loss functions for reconstruction errors, and applying other types
of kernels to explore richer structured outputs.
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Chapter 7

Supervised Probabilistic Principal
Component Analysis

In this chapter we introduce a probabilistic framework for supervised feature projection.
This is a probabilistic extension of the MORP algorithm proposed in the previous chapter,
and an EM learning algorithm replaces the eigen-decomposition solution for MORP. The
motivations of this new framework are as follows:

• Similar to the advantages of PPCA over PCA, the probabilistic framework allows
the algorithm to be applicable to large-scale data sets and to data sets with missing
data.

• The parameters in MORP can be learned from the inputs and outputs if the training
data are sufficient.

• The probabilistic model provides an elegant way of incorporating the unlabeled data
into projection learning. That is, we can derive a semi-supervised feature projection
which is difficult in MORP.

We would emphasize that semi-supervised projection is quite novel in feature projection
community. To the best of our knowledge, there is no other elegant solution to this
problem. The semi-supervised setting is often true in real world problems, because labeling
is expensive or unlabeled data are very easy to obtain. The popular supervised projection
algorithms like linear discriminative analysis (LDA) and partial least square (PLS) cannot
incorporate the unlabeled data into the mapping, which will cause problems when we
have only very few labeled points. An ideal projection method should be able to take into
account both the observed labeling information and the unlabeled inputs.

We call the new supervised projection model the supervised probabilistic principal com-
ponent analysis (SPPCA), and the semi-supervised version the semi-supervised probabilis-

113
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tic principal component analysis (S2PPCA).1 Both of them can be viewed as an extension
of the PPCA model for unsupervised projection (Section 7.1). For parameter estimation
we derive an efficient EM learning algorithm for both models (Section 7.2), and provide
some theoretical justifications for the model behaviors (Section 7.3). Experimental results
on various learning tasks show promising performance for both SPPCA and S2PPCA
models (Section 7.4).

7.1 The SPPCA Model

In this section we first review the PPCA model with some new notations, and then present
our supervised models.

7.1.1 Probabilistic PCA (PPCA)

The PPCA model is a latent variable model and defines a generative process for each
object x as

x = Wxz + µx + εx,

where z ∈ RK are the latent variables, and Wx is a M ×K factor loading matrix. The
latent variables z are assumed to satisfy z ∼ N (0, I), and the noise process εx also takes an
isotropic Gaussian form as εx ∼ N (0, σ2

xI), with σ2
x the noise level. Additionally, µx ∈ RM

allows non-zero means for the inputs. Note here that we use subscript x to denote the
model parameters with respect to input x. See Figure 7.1(a) for an illustration of PPCA.

Proposition 5.1.1 gives the analytical solution of PPCA, and it is shown that when
σ2

x → 0, the projections of data x onto the K-dimensional principal subspace in PCA are
identical to the latent variables z up to a rotation and scaling factor [70]. This result can
be seen as a special case of the more general Theorem 7.3.1 in Section 7.3.

7.1.2 Supervised PPCA (SPPCA)

The key point of PPCA model is that all the M dimensions of x are conditionally inde-
pendent given the latent variables z, due to the isotropic property of the noise process.
This indicates that the principal components in PPCA are the K latent variables which
best explain the data covariance.

When supervised information is available, each object x is associated with an output
value y ∈ Y, e.g., y ∈ R for regression task and y ∈ {+1,−1} for classification task. In
general we believe there are covariances between input space X and output space Y (since
otherwise the supervised learning task is not learnable), and it is reasonable to extend
PPCA to model this covariance as well. Furthermore, when there are more than one

1This chapter is based on [87].
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(a) PPCA (b) SPPCA (c) S2PPCA

Figure 7.1: Illustrations of the three models PPCA, SPPCA and S2PPCA. X and Y denote
respectively the input and output matrices, where each row is one data point. f1

x , . . . , f
M
x

are the M input features, and f1
y , . . . , f

L
y are the L outputs. On the top f1

z , . . . , f
K
z are

the K latent variables in each model. They are all in circles because they are variables in
the probabilistic models. The arrows denote probabilistic dependency.

learning tasks (i.e., in a multi-task learning setting [24]), the covariances between different
tasks can also be modeled by latent variables.

We now formally describe our proposed model family which we call the supervised
probabilistic principal component analysis (SPPCA). Let the number of outputs be L, and
each object x be associated with an output vector y = [y1, . . . , yL]> ∈ Y ⊂ RL. In SPPCA
the observed data (x,y) is generated from a latent variable model as

x = Wxz + µx + εx,
y = f(z,Θ) + εy,

where f(z,Θ) = [f1(z, θ1), . . . , fL(z, θL)]> encode the values of L deterministic functions
f1, . . . , fL with parameters Θ = {θ1, . . . , θL}. Here z ∼ N (0, I) are the latent variables
shared by both inputs x and outputs y, and the two noise models are independent to each
other and both defined as isotropic Gaussians: εx ∼ N (0, σ2

xI), εy ∼ N (0, σ2
yI). We use

two noise levels σ2
x and σ2

y for inputs and outputs, respectively, and it is also straightforward
to define different noise levels for different output dimensions if desired. See Figure 7.1(b)
for an illustration of the model.

In SPPCA model we keep the nice property of conditional independence, i.e., all the
input and output dimensions are conditionally independent to each other given the latent
variables. If we integrate out the latent variables z, the likelihood of observation (x,y) is
obtained as

P (x,y) =
∫
P (x,y|z)P (z) dz =

∫
P (x|z)P (y|z)P (z) dz,
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where z ∼ N (0, I), and from the latent variable model,

x|z ∼ N (Wxz + µx, σ
2
xI), y|z ∼ N (f(z,Θ), σ2

yI). (7.1)

After observing N pairs, the likelihood of all the observations D = {(xi,yi)}Ni=1, with
i.i.d. assumption, is simply P (D) =

∏N
i=1 P (xi,yi).

In the following we consider the simplest model in this family, i.e., we assume each
function f`, ` = 1, . . . , L, is linear in z:

f`(z, θ`) = w`
y
>
z + µ`

y,

where the parameters θ` = {w`
y, µ

`
y} include the linear coefficients and intercepts. Then

we can group all the f`’s and write

f(z,Θ) = Wyz + µy,

a similar form as the generative model for x where Wy = [w1
y, . . . ,w

L
y ]> and µy =

[µ1
y, . . . , µ

L
y ]>. The reason why we choose this form for f is that the EM learning is simple

(see the next section), and we have closed form solution (see Section 7.3). We will discuss
other forms of f in Section 7.3.3 which may need special approximation techniques.

Let us denote

W =
(
Wx

Wy

)
, µ =

(
µx

µy

)
, Φ =

(
σ2

xI 0
0 σ2

yI

)
,

then based on the model assumption, it is easily seen that (x,y) are jointly Gaussian
distributed, with mean µ and covariance Φ + WW>. All the parameters for the SPPCA
model are Ω = {Wx,Wy,µx,µy, σ

2
x, σ

2
y}.

7.1.3 Semi-Supervised PPCA (S2PPCA)

In SPPCA model, we assume we observe both the inputs x and outputs y for every data
point. In many real world problems, however, we may only observe the outputs for a small
portion of data, and have many unlabeled data in which only inputs x are known. This
may be because some measures are unobservable, the labeling cost is too high, or simply
we have too many unlabeled data available. Learning in this situation is in general called
semi-supervised learning. For learning a projection, an ideal model would incorporate both
the unlabeled inputs and the partially labeled outputs to define the mapping.

This can be easily done under the SPPCA framework. Let the number of labeled
and unlabeled data points be N1 and N2, respectively, with N = N1 + N2. The whole
observation is now D = D1

⋃
D2 = {(xi,yi)}

N1
i=1

⋃
{xi′}Ni′=N1+1. The likelihood, with the

independence assumption of all the data points, is calculated as

P (D) = P (D1)P (D2) =
N1∏
i=1

P (xi,yi)
N∏

i′=N1+1

P (xi′),
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where P (xi,yi) is calculated as in SPPCA model, and P (xi′) =
∫
P (xi′ |zi′)P (zi′) dzi′ .

Due to its applicability to semi-supervised projection, we call it semi-supervised PPCA or
S2PPCA in this paper. Figure 7.1(c) illustrates this model.

Under the additional assumptions that all the f`’s are linear, it can be easily checked
that all the likelihood terms in this product are Gaussians. This makes the model easy to
learn. Other forms of f will be discussed in Section 7.3.3.

When N2 = 0, S2PPCA degrades to SPPCA which is purely supervised. This means
one can view SPPCA as a special case of S2PPCA model with no unlabeled data. From
the perspective of probabilistic modeling, S2PPCA can also be viewed as an SPPCA model
where all the y’s for the N2 unlabeled points are missing. Due to this close relationship,
in the following we use SPPCA to denote both models unless clearly specified.

7.1.4 Projections in SPPCA Models

Analogous to the PPCA model, in SPPCA models the projection of data point x is directly
given in the latent variables z. If we know all the parameters Ω, calculating this projection
is simply an inference problem. To do this we can apply Bayes’ rule and calculate the
posterior distribution of z. Therefore we can obtain not only the mean projection vector,
but also the uncertainty of the projection.

Projection for Fully Observed Data

When both inputs x and outputs y are observed, we can calculate the posterior distribution
of z given (x,y) as

P (z|x,y) ∝ P (x,y|z)P (z) = P (x|z)P (y|z)P (z). (7.2)

Since all the three terms on the right hand side are Gaussians, this distribution is also
Gaussian N (µz,Σz) with

µz = A−1

[
1
σ2

x

W>
x (x− µx) +

1
σ2

y

W>
y (y − µy)

]
, Σz = A−1,

where A is a K ×K matrix defined as

A =
1
σ2

x

W>
x Wx +

1
σ2

y

W>
y Wy + I. (7.3)

This means that the projection is µz with uncertainty Σz.

Projection for Pure Input Data

For a test data x∗ that has no output information, what are the most likely latent variables
z∗? This is our ultimate goal in projection, and can also be done using Bayes’ rule

P (z∗|x∗) ∝ P (x∗|z∗)P (z∗). (7.4)



118CHAPTER 7. SUPERVISED PROBABILISTIC PRINCIPAL COMPONENT ANALYSIS

Figure 7.2: Projection directions for a 2D toy data. In the left figure, the data are fully
labeled as +1 and −1, with red and blue colors, respectively. In the right figure, only
part of the data are labeled, and unlabeled data are marked as black points. The first
projection directions of various methods are shown with different colors.

This turns out again to be a Gaussian N (µz|x,Σz|x), with

µz|x = (W>
x Wx + σ2

xI)
−1W>

x (x∗ − µx),

Σz|x = σ2
x(W>

x Wx + σ2
xI)

−1.

This result looks similar as that in PPCA model, but the projection now is supervised
because the learning of Wx is influenced by those observed outputs. This is clarified in
the next section and will be theoretically proven in Section 7.3.

In Figure 7.2 we show the PCA, SPPCA and S2PPCA projection directions for a 2D
toy data. It is seen that PCA only finds the direction with maximal data variance, and
SPPCA incorporates the label information and finds a direction which can separate the
two classes well. When there are unlabeled data (right figure), S2PPCA will also take the
structure of unlabeled data into account and find a trade-off between PCA and SPPCA.

7.2 Learning in SPPCA Model

Learning in probabilistic models reduces to maximizing the data (log) likelihood with
respect to all the model parameters. In the case of SPPCA model, the log likelihood of
the whole observation D is

L(D) =
N∑

i=1

log
∫
P (xi|zi)P (yi|zi)P (zi) dzi.
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For SPPCA analytical solution exists, and we summarize it later in Theorem 7.3.1. For
S2PPCA model, since all the outputs for the unlabeled data are missing, there is no
analytical solution. Fortunately we can derive an EM algorithm which is applicable to
both models.

As shown for PPCA model, the EM algorithm iterates the two steps expectation (E-
step) and maximization (M-step) until convergence, and it is guaranteed to find a local
minima of the data likelihood. In the E-step, we fix the model parameters (Ω for SPPCA
models) and calculate the expected distributions of latent variables (all the zi’s for SP-
PCA models), and in the M-step we fix this distribution and maximize the complete data
likelihood with respect to the model parameters. As will be discussed later, EM learning
for SPPCA models is important because it can deal with very large data sets, and it has,
in particular for SPPCA model with no unlabeled points, no local minima problem up to
a rotation factor (see Section 7.3). For simplicity we only outline the update equations in
the following and omit details which are similar to that of PPCA model.

7.2.1 EM Learning for SPPCA

In the E-step, for each data point i, we estimate the distribution of zi given observation
(xi,yi). This is done using (7.2), and we calculate the sufficient statistics as

〈zi〉 = A−1

[
1
σ2

x

W>
x (xi − µx) +

1
σ2

y

W>
y (yi − µy)

]
, (7.5)

〈ziz>i 〉 = A−1 + 〈zi〉〈zi〉>, (7.6)

where 〈·〉 denotes the expectation under the posterior distribution P (zi|xi,yi) given in
(7.2).

In the M-step, we maximize the complete log-likelihood

L̂(D) =
N∑

i=1

∫
P (zi|xi,yi) log

(
P (xi|zi)P (yi|zi)P (zi)

)
dzi

with respect to the model parameters, holding P (zi|xi,yi) fixed from the E-step. This
can be done by setting the partial derivatives with respect to each parameter to be zero.
For means of x and y we have

µ̂x =
1
N

N∑
i=1

xi, µ̂y =
1
N

N∑
i=1

yi, (7.7)

which are just sample means. Since they are always the same in all EM iterations, we can
center the data by subtracting these means in the beginning and ignore these parameters
in the learning process. So for simplicity we change the notations xi and yi to be the
centered vectors in the following.
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Algorithm 7.1 Learning in SPPCA Model - Primal Form
Require: N data points {(xi,yi)}Ni=1 with inputs xi ∈ RM and outputs yi ∈ RL.
Require: A desired dimension K < M .
1: Calculate the sample means (7.7) and center the data by xi ⇐ xi−µx, yi ⇐ yi−µy.

2: Initialize model parameters Ω randomly.
3: repeat
4: {E-step}
5: for i = 1 to N do
6: Calculate sufficient statistics (7.5) and (7.6);
7: end for
8: {M-step}
9: Update Wx and Wy via (7.8);

10: Update σ2
x and σ2

y via (7.9) and (7.10);
11: until the change of Ω is smaller than a threshold.
Output: Parameters Ω and projection vectors {zi}Ni=1 which are obtained from E-step.

For test data x∗, the mean projection z∗ = (W>
x Wx + σ2

xI)
−1W>

x (x∗ − µx).

The mapping matrices Wx and Wy are updated as

Ŵx = X>ZC−1, Ŵy = Y>ZC−1, (7.8)

where for clarity we use matrix notations X = [x1, . . . ,xN ]>, Y = [y1, . . . ,yN ]> and
Z = [〈z1〉, . . . , 〈zN 〉]>. Matrix C is defined to be a summation of all second sufficient
statistics of the data, i.e., C =

∑N
i=1〈ziz>i 〉. Finally the noise levels are updated as

σ̂2
x =

1
MN

[
N∑

i=1

‖xi‖2 + trace
(
Ŵ

>
x ŴxC

)
− 2 trace

(
XŴxZ>

)]
, (7.9)

σ̂2
y =

1
LN

[
N∑

i=1

‖yi‖2 + trace
(
Ŵ

>
y ŴyC

)
− 2 trace

(
YŴyZ>

)]
, (7.10)

where ‖ · ‖ denotes vector 2-norm. The whole algorithm is summarized in Algorithm 7.1
for clarity.

7.2.2 EM Learning for S2PPCA

The log likelihood of the observations in S2PPCA model is a sum of two parts: L1 =
logP (D1) which contains all the labeled points, and L2 = logP (D2) which includes all
unlabeled points. Therefore in E-step we need to deal with them differently. For a labeled
points (xi,yi) ∈ D1, the latent variables zi are estimated as (7.5) and (7.6), the same as in
SPPCA model. For an unlabeled point xi′ ∈ D2, the distribution of zi′ is only conditioned



7.2. LEARNING IN SPPCA MODEL 121

Algorithm 7.2 Learning in S2PPCA Model - Primal Form

Require: N1 labeled data points {(xi,yi)}
N1
i=1 and N2 unlabeled points {xi′}Ni′=N1+1, with

inputs x ∈ RM and observed outputs y ∈ RL. A desired dimension K < M .
1: Calculate the sample means (7.7) and center the data by xi ⇐ xi−µx, yi ⇐ yi−µy,

xi′ ⇐ xi′ − µx.
2: Initialize model parameters Ω randomly.
3: repeat
4: {E-step}
5: for i = 1 to N1 do
6: Calculate (7.5) and (7.6) for labeled data i;
7: end for
8: for i′ = N1 + 1 to N do
9: Calculate (7.11) and (7.12) for unlabeled data i′;

10: end for
11: {M-step}
12: Update Wx and Wy via (7.13) and (7.14);
13: Update σ2

x and σ2
y via (7.15) and (7.16);

14: until the change of Ω is smaller than a threshold.
Output: Parameters Ω and projection vectors {zi}Ni=1 which are obtained from E-step.

For test data x∗, the mean projection z∗ = (W>
x Wx + σ2

xI)
−1W>

x (x∗ − µx).

on input xi′ , which can be calculated via (7.4), with sufficient statistics (the data are
assumed centered already):

〈zi′〉 = (W>
x Wx + σ2

xI)
−1W>

x xi′ , (7.11)

〈zi′z>i′ 〉 = (W>
x Wx + σ2

xI)
−1 + 〈zi′〉〈zi′〉>, (7.12)

where here 〈·〉 denotes the expectation under the posterior distribution P (zi′ |xi′) given in
(7.4).

The M-step is similarly obtained by setting the partial derivatives of the complete log
likelihood with respect to each parameter to zero. For the two mapping matrices, we have
the updates

Ŵx = (X>
1 Z1 + X>

2 Z2)(C1 + C2)−1, (7.13)

Ŵy = Y>Z1C−1
1 , (7.14)

where X1, Z1, C1 are defined for labeled data, i.e., X1 = [x1, . . . ,xN1 ]
>, Z1 = [〈z1〉, . . . , 〈zN1〉]>,

C1 =
∑N1

i=1〈ziz>i 〉, and X2, Z2, C2 are similarly defined for unlabeled data. It is seen
that the update for Wx depends on both labeled data and unlabeled data, while Wy only
depends on the labeled data. Updates for the noise levels are similar to those in SPPCA
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model, except that for σ2
x we need to consider both labeled data and unlabeled data:

σ̂2
x =

1
MN

[
N∑

i=1

‖xi‖2 + trace
(
Ŵ

>
x Ŵx(C1 + C2)

)
− 2 trace

(
Ŵx(Z>1 X1 + Z>2 X2)

)]
,

(7.15)

σ̂2
y =

1
LN1

[
N1∑
i=1

‖yi‖2 + trace
(
Ŵ

>
y ŴyC1

)
− 2 trace

(
YŴyZ>1

)]
. (7.16)

The whole algorithm is summarized in Algorithm 7.2. When N2 = 0, i.e., we have no
unlabeled data, the learning algorithm reduces to SPPCA learning in Algorithm 7.1.

7.2.3 EM Learning in Dual Form

As discussed in Chapter 4, when the number of data points is less than the number of
features, i.e., N < M , it is more efficient to consider the dual solution for PCA in which we
perform SVD to the Gram matrix K = XX>. The canonical PCA is sometimes called the
primal solution. For SPPCA we have similar dual solution, and it can be directly derived
from the EM learning in previous subsections, similarly to the way we extend PPCA to
PKPCA in Chapter 5. Since SPPCA can be viewed as a special case of S2PPCA, we only
focus on S2PPCA model here.

Let C = C1 + C2, and

X =
(
X1

X2

)
, Z =

(
Z1

Z2

)
, K = XX> =

(
X1X>

X2X>

)
=
(
K1

K2

)
,

then (7.13) can be written as Ŵx = X>ZC−1. This leads to

Ŵ
>
x Ŵx = C−1Z>KZC−1, (7.17)

Ŵ
>
x x = C−1Z>k(X,x), (7.18)

which are the building blocks for the non-linear extension. In the E-step, we first rewrite
A as

Â =
1
σ2

x

C−1Z>KZC−1 +
1
σ2

y

C−1
1 Z>1 YY>Z1C−1

1 + I.

Applying (7.17) and (7.18) in sufficient statistics (7.5), we get

Ẑ1 =
[

1
σ2

x

K1ZC−1 +
1
σ2

y

YY>Z1C−1
1

]
Â
−1
, (7.19)

by collecting 〈zi〉 in columns and transposing it. Sufficient statistics (7.6) can be written
in terms of C1:

Ĉ1 =
N1∑
i=1

〈ziz>i 〉 = N1Â
−1

+ Ẑ
>
1 Ẑ1. (7.20)
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Algorithm 7.3 Learning in S2PPCA Model - Dual Form

Require: N1 labeled data points {(xi,yi)}
N1
i=1 and N2 unlabeled points {xi′}Ni′=N1+1, with

inputs x ∈ RM and observed outputs y ∈ RL.
Require: A kernel function κ(·, ·). A desired dimension K < M .
1: Calculate kernel matrix K via Kij = κ(xi,xj) and center it using (4.3).
2: Calculate output sample mean µy using (7.7) and let yi ⇐ yi − µy.
3: Initialize Z, C and model parameters Ω randomly.
4: repeat {The EM-step}
5: Calculate Z1 and C1 using (7.19) and (7.20);
6: Calculate Z2 and C2 using (7.21) and (7.22);
7: Update σ2

x and σ2
y via (7.23) and (7.24);

8: until the change of Ω is smaller than a threshold.
Output: Parameters Ω and projection vectors {zi}Ni=1. For test data x∗ the

mean projection z∗ = C
(
Z>KZ + σ2

xC
2
)−1

Z>k(X,x∗) with k(X,x∗) =
[κ(x1,x∗), . . . , κ(xN ,x∗)]> and centered via (4.4).

Similarly, we obtain the following two updates for unlabeled data:

Ẑ2 =
1
σ2

x

K2ZC−1

[
1
σ2

x

C−1Z>KZC−1 + I
]−1

, (7.21)

Ĉ2 = N2

[
1
σ2

x

C−1Z>KZC−1 + I
]−1

+ Ẑ
>
2 Ẑ2. (7.22)

In M-step, we only need to update variances σ2
x and σ2

y as

σ̂2
x =

1
MN

[
trace (K)− trace

(
Ẑ
>
KẐĈ

−1
)]
, (7.23)

σ̂2
y =

1
LN

[
trace

(
YY>

)
− trace

(
Ẑ
>
YY>ẐĈ

−1
)]
, (7.24)

which can be easily verified from (7.9) and (7.10).

As in the case of PKPCA, all interesting terms in the EM algorithm take input data
into account only via inner product. Then we can define a kernel function κ(·, ·) for
non-linear mappings with S2PPCA model [62]. To make the data centered in the kernel
induced feature space, we need to modify the kernel matrix the same way as in (4.3) and
(4.4). The whole algorithm is summarized in Algorithm 7.3.

In Figure 7.3 and Figure 7.4 we show the dual-form SPPCA and S2PPCA behaviors
on a 2D toy data. The data consist of 4 clusters, and we assume the classification problem
is not linearly separable. RBF kernel is used with α = 0.5. In Figure 7.3 all the data
points are labeled, but kernel PCA cannot use this information and only projects the data
based on the clustering structure. SPPCA, on the other hand, uses the class information
and can project the data into a first dimension which can exactly separate the two classes.
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Figure 7.3: Illustration of dual-form SPPCA on a 2D toy data of four clusters. RBF kernel
is used with α = 0.5. Upper row shows the results of kernel PCA, and bottom row shows
the results of SPPCA with classes (+1 for red and −1 for blue) as outputs.

The second and third dimensions are related to the clustering structure of the data. In
Figure 7.4, only 5 data points of each cluster are labeled, and they are at the higher
absolute value side of each cluster. Based on these 20 data points, SPPCA can detect
the two classes (upper left), but all the contours are circles and the projection completely
ignores the structure of unlabeled data. By considering both labeled data and unlabeled
data, S2PPCA can not only detect the two classes (bottom left), but also model the
clustering structure of the data (bottom middle and right). All the contours are not
circles and are influenced by unlabeled data.

7.2.4 Computational Issues

In the primal form (i.e., Algorithm 1 and 2), the time complexity for both algorithms is
O
(
m(M + L)NK

)
, with m the number of iterations. It is linear in the number of data

points N and the input dimension M . The space complexity is O
(
(M + L)N

)
, which is

also linear both in N and M . The projection for a test data point is just a linear operation
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Figure 7.4: Illustration of dual-form SPPCA and S2PPCA on a 2D toy data of four
clusters. Only 5 data are labeled in each cluster. RBF kernel is used with α = 0.5. Upper
row shows the results of SPPCA with only labeled data, and bottom row shows the results
of S2PPCA using both labeled and unlabeled data.

and costs O(MK) time.

In the dual form, the time complexity is O(mN2K) plus O(N2M) which is the one-
time calculation of Gram matrix, and the space complexity is O

(
N2
)
. Both of them are

now quadratic in the number of data points N . The time for projecting a test data point
is now O(NM). As the case for PCA, in situations where M > N , i.e., we have more
features than the number of data points, the dual form is more efficient than the primal
form.
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7.3 Theoretical Justification

In this section we provide some theoretical analysis for SPPCA model and show how the
supervised information influences the projection.

7.3.1 Primal Form Solution

Recall that matrix Φ is a (M + L) × (M + L) diagonal matrix with all the noise levels
in diagonal, i.e., Φ = diag(σ2

x, . . . , σ
2
x, σ

2
y , . . . , σ

2
y). We obtain the following theorem for

mapping matrix Wx and Wy in SPPCA model. This makes it easier to compare SPPCA
with related models such as PCA.

Theorem 7.3.1. Let S denote the normalized sample covariance matrix for centered ob-
servations {(xi,yi)}Ni=1,

S =
1
N

N∑
i=1

Φ− 1
2

(
xi

yi

)(
xi

yi

)>
Φ− 1

2 =

(
1
σ2

x
Sx

1
σxσy

Sxy
1

σxσy
Syx

1
σ2

y
Sy

)
,

and λ1 ≥ . . . ≥ λ(M+L) be its eigenvalues with eigenvectors u1, . . . ,u(M+L), then if the
latent space is K-dimensional, the following results hold:

(i) In SPPCA model Wx and Wy are calculated as

Wx = σxUx(ΛK − I)
1
2 R, (7.25)

Wy = σyUy(ΛK − I)
1
2 R,

where ΛK = diag(λ1, . . . , λK), Ux (Uy) contains the first M (last L) rows of
[u1, . . . ,uK ], and R is an arbitrary K ×K orthogonal rotation matrix.

(ii) Projection z∗ for centered new input x∗ is given as

z∗ =
1
σx

R> (ΛK − I)−
1
2

[
U>

x Ux + (ΛK − I)−1
]−1

U>
x x∗.

Proof. The proof is similar to the PPCA solution given in [70] and we only give a sketch
here. The mapping matrices can be obtained by finding a stationary point in the EM
algorithm in Section 7.2. For this proof we use notation

W :=
( 1

σx
Wx

1
σy

Wy

)
,

and (7.3) can be rewritten as A = W>W + I. Plugging this and (7.5), (7.6) into (7.8)
yields an update equation only related to W:

Ŵ = SW
[
W>SW + W>W + I

]−1 (
W>W + I

)
.
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At the stationary point, this simplifies to SW = WW>W+W. Let W = UDV> be the
SVD of W. Then each column u of U satisfies dSu = (d+d3)u, with d the corresponding
singular value. Following the same discussions in Appendix A.1∼A.4 of [70], we conclude
that solving an eigenvalue problem for S gives the mapping matrix W as in (i), where u’s
and d’s are from the leading eigenvectors and eigenvalues of S. Plugging them into (7.4)
gives the mapping z∗ for x∗ as in (ii).

In the special case that L = 0, the model is unsupervised and S = 1
σ2

x
Sx holds. Then

(7.25) degrades to σxUx(ΛK − I)
1
2 R, which recovers the PPCA solution. Ux is seen to be

column orthogonal in this case, and the mapping z∗ of x∗ is standard PCA mapping when
σ2

x → 0 and R = I. This proves Proposition 5.1.1 which is a corollary of this theorem.

When L > 0, SPPCA solutions explain not only the sample covariance of inputs Sx,
but also the intra-covariance of outputs Sy (if L > 1) and the inter-correlations between
inputs and outputs, Sxy and Syx. Therefore, one column of Wx is the direction that
best explains the whole system from the perspective of inputs, and thus are biased by the
outputs. Unlike the case of PCA, the learned Wx in SPPCA needs not to be column
orthogonal. This means we are only learning an affine mapping for x. If necessary, it is
straightforward to find the orthogonal basis by performing SVD to matrix Wx.

In both cases the learned Wx has an arbitrary rotation factor R. This is due to
the spherical noise model for x, and the mapping is invariant under a rotation of latent
space, as can be seen from the equation for z∗. Therefore the SPPCA model can only
find the latent principal subspace, which has also been discussed in Chapter 5 and [70] for
PPCA. Thus the EM algorithm in Section 7.2 can find different mappings with different
initializations, but they define the same subspace and do not change the structure of
projected data. If necessary, this ambiguity can be removed by eigen-decomposing

1
σ2

x

W>
x Wx +

1
σ2

y

W>
y Wy = R>(ΛK − I)R

to uncover the rotation factor R. A final comment is that it is of theoretical importance
but may be not applicable to applications, since we have to solve an eigenvalue problem
for a square matrix of size M + L.

7.3.2 Dual Form Solution

In the dual form, we do not obtain the mapping matrix Wx, but the projected vectors
directly. The following theorem gives the solution in the dual form.

Theorem 7.3.2. Let K̂ = 1
σ2

x
K + 1

σ2
y
YY>, and λ1 ≥ . . . ≥ λN be its eigenvalues with

eigenvectors v1, . . . ,vN , then if the latent space in SPPCA is K-dimensional,

(i) The projections of training data, which are encoded in rows of matrix Z, are calcu-
lated as

Z =
√
NVK(I−NΛ−1

K )
1
2 R (7.26)
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where ΛK = diag(λ1, . . . , λK), VK = [v1, . . . ,vK ], and R is an arbitrary K × K
orthogonal matrix.

(ii) Projections z∗ for new input x∗ is given as

z∗ =
√
NR>D− 1

2

(
V>

KKVK + D
)−1

V>
Kk(X,x∗),

where D = I−NΛ−1
K .

Proof. We define B = ZC−1 and rewrite (7.19) and (7.20) using only B. This leads to

NB
(
I + B>K̂B

)
= K̂B,

which is the same problem as we obtained in the proof of Theorem 5.2.1 except that matrix
K is changed to K̂. Then following that proof leads to the projections for training data
as in (i), and (ii) holds if we apply the obtained Z and C to the dual-form projection
equation.

It is seen that when there is no output in SPPCA, i.e., K̂ = 1
σ2

x
K, SPPCA reduces

to kernel PCA as desired. It recovers Theorem 5.2.1 in Chapter 5. This theorem also
presents a nice explanation for SPPCA model: We just use the output information to
modify the kernel matrix of input data, and control the trade-off via the ratio of the noise
levels. The complexity of the model remains the same (i.e., quadratic in N) no matter
how many output dimensions we have.

7.3.3 Discussion

Previous two subsections give some theoretical results for SPPCA model. There exists
however no such a closed-form solution for S2PPCA. One can only empirically analyze the
behavior of this model.

In the EM learning algorithm we are learning the maximum likelihood (ML) estimate
for the two mapping matrices Wx and Wy. In probabilistic modeling we can assign a
prior to them to reduce overfitting. For instance, we can assign an isotropic Gaussian prior
for each column of Wx, and if we consider the maximum a posteriori (MAP) estimate
this prior corresponds to a smooth term in the update equations. For simplicity we do not
consider this prior here.

In this paper we mainly discuss the simplest form for function f , which is linear in
z. One can define other forms for specific tasks, but then we lose the nice closed-form
solutions described in Theorem 7.3.1 and 7.3.2, and in the E-step of the EM learning the
posterior distribution of z is no longer a Gaussian (see (7.2)). To solve this problem we
can apply the EM-EP learning algorithm [49] to approximate each likelihood P (y`|z) =
P (y`|f`(z,Θ), σ2

y) as a Gaussian for z sequentially. Then the learning has higher time
complexity due to the expectation-propagation (EP) [54] step. Empirically comparing
this algorithm with the basic ones would be part of the future work.



7.4. EMPIRICAL STUDIES 129

Table 7.1: Statistics of the multi-class data sets
Category # Data # Dim # Class

Yale Face 165 1024 15
ORL Face 400 1024 40
PIE Face 11554 1024 68

YaleB Face 2414 1024 38
11 Tumors Gene 174 12533 11
14 Tumors Gene 308 15009 26

Lung Cancer Gene 203 12600 5
20Newsgroup Text 19928 25284 20

TDT2 Text 8692 35452 20

Table 7.2: Statistics of the multi-label data sets
Category # Data # Dim # Class

Yeast Gene 2417 103 14
RCV1 Text 23149 15500 103

7.4 Empirical Studies

In this section we empirically investigate the performance of SPPCA models. The su-
pervised tasks here are multi-class classification and multi-label classification. Our basic
setting is that we train a supervised projection model using the input features and label
information, and then test the classification performance for test data using the projected
features. Since the test data are assumed known in the training phase, for S2PPCA we
will be able to use these unlabeled data to train the mapping.

7.4.1 Data Sets

We test the proposed model on 9 multi-class and 2 multi-label classification problems.
These problems include face recognition, gene classification and text categorization. Some
statistics of these data sets are shown in Table 7.1 and 7.2.

For face recognition we use four data sets Yale, ORL, PIE and YaleB (the extended
Yale Face Database B).2 The Yale data set contains 165 grayscale images in GIF format
of 15 individuals. There are 11 images per subject, one per different facial expression
or configuration such as center-light, left-light, happy or surprised. The ORL database
contains 10 different images of each of 40 distinct subjects. For some subjects, the images
were taken at different times with varying lighting and facial details. The PIE databases
we use contains 170 images for each of 68 people. These images are the five near frontal
poses under different illuminations and expressions. For YaleB we have 38 individuals and
around 64 near frontal images under different illuminations per individual. All the faces

2These data sets can be downloaded from http://www.ews.uiuc.edu/ dengcai2/Data/data.html.
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are manually aligned, cropped and resized to 32×32 pixels. We then normalize each image
to have Euclidean distance 1.

We consider three gene expression datasets 11 Tumors, 14 Tumors and Lung Cancer
for gene classification.3 11 Tumors describes 11 various human tumor types, and 14 Tumors
describes 14 tumor types with 12 normal tissue types. For Lung Cancer we need to clas-
sify 4 lung cancer types and normal tissues. The characteristic of these data is that the
number of data points is small, but the input dimensionality is very high.

The two textual datasets we use are taken from 20Newsgroup and TDT2. 20Newsgroup
contains 20,000 news articles posted in 20 news groups. We remove the words that occur
less than 5 times, and obtain 19,928 documents with 25,284 words. The TDT2 corpus
we use consists of the documents collected during the first half of 1998 and taken from
6 sources, including 2 newswires (APW, NYT), 2 radio programs (VOA, PRI) and 2
television programs (CNN, ABC). It consists of 11,021 documents which are classified
into 96 semantic categories. In our experiments, we keep the largest 20 categories and
remove those documents that are assigned to more than one categories. This leaves us
8,692 documents with totally 35,452 words. For both of these datasets we use TF-IDF
features and normalize each document to have Euclidean distance 1.

For multi-label classification we use Yeast and RCV1. The Yeast dataset is formed by
micro-array expression data and phylogenetic profiles with 2,417 genes in total and 103
input dimensions. There are 14 groups and each gene can belong to multiple groups. The
other data is a subset of the RCV1-v2 text data set, provided by Reuters and corrected
by Lewis et al. [52]. We use the training set provided by Lewis, which contains 103 labels,
23,149 documents with 15,500 words after we remove words that occur less than 5 times.
We also extract TF-IDF features and normalize each document to have length 1.

7.4.2 Experimental Setting

For the multi-class classification tasks, we randomly pick up a small number of labeled
data points for training (2 for those datasets with less than 500 data points, and 5 for the
others), and test the classification error rate on the unlabeled data. We will in general
compare the following six algorithms if applicable:

• PCA: Unsupervised projection. Note that in our experiments we use both the labeled
and unlabeled data to perform the mapping.

• LDA: Linear discriminant analysis.

• PLS: Partial least squares.

• SPPCA: Supervised probabilistic PCA.

• S2PPCA: Semi-supervised probabilistic PCA. We allow S2PPCA to use the test data
to train the mapping.

3They are available at http://www.gems-system.org.
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• Full: All the features are used without projection.

For all the projection methods, we project the data onto 5, 10 and 20 dimensional space,
and train a nearest neighbor classifier for the test points using new features with Euclidean
distance. For Full we directly train the nearest neighbor classifier using original features.
For PLS, SPPCA and S2PPCA, we translate the one column output to the “One of C”
setting, i.e., each class has one column with binary labels.

For multi-label classification, we pick up 5 positive examples from each label to obtain
the training data. For all projection methods we project to 5, 10 and 20 dimensions, and
then train a linear SVM classifier for each label. The comparison metrics are F1-Macro,
F1-Micro and AUC (Area Under ROC Curve) score. The candidate algorithms are almost
the same as multi-class setting, except LDA which is not applicable to this task. The C
in SVM is fixed as 100, and from our experience it is not sensible for all these algorithms.

In all these comparisons, the iteration number for SPPCA and S2PPCA is set to
1000. Both the noise levels σ2

x and σ2
y are set to 10−5 initially. It turns out that PLS

gets memory problems when applied to large dimensions. We repeat each experiments 50
times independently,4 and the results are illustrated in .

7.4.3 Analysis of Results

The first observation is that in most cases the supervised PCA model is better than
unsupervised PCA model. This means by using the output information, we are able to
derive a more meaningful projection for the supervised tasks. When the dimensionality is
larger (e.g., 20), SPPCA and S2PPCA obtain the best results for most of the tasks.

When we compare SPPCA model with other supervised projection methods, SPPCA
is consistently better than PLS, but in some tasks worse than LDA (e.g., for YaleB). The
reasons may be that SPPCA models are still based on the PCA assumptions for input
features, so the mapping is strongly biased by PCA. When PCA projection directions are
almost useless for classification, like for YaleB dataset, the SPPCA projections are also
not informative enough. In this case discriminative methods like LDA can often do a good
job. In other situations where PCA does help, SPPCA can in general be better than pure
discriminative methods.

When we compare SPPCA and S2PPCA, in most cases S2PPCA gets better results.
For some tasks the difference is very big (e.g., for TDT2). This indicates that by incor-
porating the unlabeled data we can learn a better mapping. But S2PPCA is in general
slower than SPPCA because it has to consider all the test data in the training phase. In
this case 1000 iterations may be not enough to get the algorithm converge. This may also
be part of the reason why S2PPCA is inferior to other methods for some tasks like PIE.

Most of the supervised projection methods can get a better performance than Full
even if they only project the data into a very low dimensional space. This is important

4For the four face recognition tasks we use the available split versions.
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Table 7.4: Results for Multi-label Classification Tasks. Bold face indicates best perfor-
mance.

K Model F1-Macro F1-Micro AUC

Full 0.3813± 0.0102 0.5161± 0.0154 0.5571± 0.0094
PCA 0.2318± 0.0354 0.5600± 0.0220 0.5279± 0.0108

5 PLS 0.3432± 0.0231 0.5795± 0.0233 0.5556± 0.0094
SPPCA 0.3823± 0.0120 0.5332± 0.0188 0.5641± 0.0087
S2PPCA 0.3927± 0.0134 0.5890± 0.0126 0.5842± 0.0104

Full 0.3813± 0.0102 0.5161± 0.0154 0.5571± 0.0094
PCA 0.3113± 0.0304 0.5916± 0.0146 0.5493± 0.0101

10 PLS 0.3756± 0.0154 0.5517± 0.0177 0.5610± 0.0095
SPPCA 0.3924± 0.0117 0.5459± 0.0180 0.5685± 0.0084
S2PPCA 0.3985± 0.0103 0.5914± 0.0106 0.5896± 0.0107

Full 0.3813± 0.0102 0.5161± 0.0154 0.5571± 0.0094
PCA 0.3723± 0.0171 0.5537± 0.0204 0.5614± 0.0097

20 PLS 0.3799± 0.0123 0.5208± 0.0158 0.5585± 0.0102
SPPCA 0.3859± 0.0133 0.5517± 0.0151 0.5640± 0.0097
S2PPCA 0.3976± 0.0142 0.6012± 0.0190 0.5921± 0.0119

(a) Results for Yeast data set.

K Model F1-Macro F1-Micro AUC

Full 0.2796± 0.0055 0.5053± 0.0095 0.6030± 0.0063
PCA 0.0467± 0.0063 0.3540± 0.0106 0.5208± 0.0072

5 PLS N/A N/A N/A
SPPCA 0.1155± 0.0071 0.4433± 0.0089 0.5568± 0.0079
S2PPCA 0.1312± 0.0118 0.4620± 0.0236 0.5762± 0.0162

Full 0.2796± 0.0055 0.5053± 0.0095 0.6030± 0.0063
PCA 0.0843± 0.0124 0.4003± 0.0162 0.5347± 0.0072

10 PLS N/A N/A N/A
SPPCA 0.1797± 0.0112 0.4474± 0.0124 0.5872± 0.0087
S2PPCA 0.1956± 0.0110 0.4735± 0.0198 0.6012± 0.0098

Full 0.2796± 0.0055 0.5053± 0.0095 0.6030± 0.0063
PCA 0.1320± 0.0086 0.4419± 0.0095 0.5504± 0.0061

20 PLS N/A N/A N/A
SPPCA 0.2297± 0.0119 0.4690± 0.0126 0.6044± 0.0054
S2PPCA 0.2536± 0.0117 0.4921± 0.0102 0.6090± 0.0076

(b) Results for RCV1 data set.

because we can not only speed up the system, but also improve the performance. PCA
in our experiments uses the input features of both labeled and unlabeled data, thus it
sometimes can get better results than Full method (e.g., for Yale and Lung Cancer).

The results for multi-label classification show that S2PPCA is consistently better than
other methods. S2PPCA also shows very good scalability in our experiments, since for
20Newsgroup and RCV1 it need to handle 20,000 documents with more than 15,000 fea-
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tures. Most of the other algorithms fail on these large datasets.

7.5 Summary

In this chapter we proposed a supervised PCA algorithm and a semi-supervised PCA
algorithm, and derived an efficient EM algorithm for model learning. Empirical results
show that the proposed model obtain good performance and scale well for large data sets.
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Probabilistic
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Chapter 8

Overview of Joint
Clustering-Projection Models

Part I and Part II discuss data clustering and feature projection, respectively. For clus-
tering we aim to group similar data points together, and for projection we want to find an
informative low dimensional feature representation for the data. They are seen to model
the data from different perspectives, and most research work only focuses on one of them.
But can we model both of them simultaneously and achieve a joint clustering-projection
model?

The motivation of this idea is two-fold. If we have already a good projection model,
i.e., the data are now distributed in an informative low dimensional space, a clustering
model is more likely to obtain better results. This is because we can remove the noisy
dimensions and decrease the complexity of learning in mixture modeling, since mixture
modeling for lower dimensional data is more stable. On the other hand, if a clustering of
all the data points is known, we can also incorporate the grouping information into the
projection model and treat each cluster as a whole instead of considering each data point
individually. This extra information is likely to improve the learned feature mapping.

In real-world applications, many people take a projection model such as PCA as a
pre-processing step, and train a clustering model on the reduced space. Since the clusters
of data contain additional information, it is desired to use this information to train a
better projection model. If we continue this process, we actually have an iterative way of
adapting a projection model and a clustering model, and this algorithm can be used to
train a so-called joint clustering-projection model . At convergence, both clustering and
projection operations should not change the current status.

In the literature there exists some work on this direction, and we briefly review them
in this chapter. As projection can mean different things for continuous data and discrete
data, for this review we also explicitly separate these two types of data.
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8.1 Joint Clustering-Projection Models for Continuous Data

In [20] the authors consider to use PCA as the projection model and train a k-means clus-
tering for the data in the reduced space. After the K centroids are obtained from the
data-cluster relationship, a subspace which spans these centroids is chosen to learn a new
projection model. The whole process is repeated until a stable situation is obtained. As
discussed in Chapter 2 and Chapter 5, k-means is training a simplified version of Gaussian
mixture models, and PCA is the deterministic solution for a PPCA model. Taking this
into account, we can generalize the joint model in [20] to a pure probabilistic model which
assumes a GMM in the latent variable space of a PPCA model. More flexible covariance
matrices can be learned in this new model, and we can also allow the number of mixture
components to go to infinity to approximate the non-parametric DP prior. The iterative
updates can be obtained directly from an EM learning algorithm for this model.

Note that this joint clustering-projection model is not the same as mixture of PPCA
[69], in which several PPCA components exist and model different parts of the data. The
mixture of PPCA model assumes that each PPCA has its own projection model, and one
data point belongs to one component if this PPCA component models its local projection
very well. The joint clustering-projection model, however, assumes a global projection
model for all the data.

8.2 Joint Clustering-Projection Models for Discrete Data

As reviewed in Chapter 4, projection on discrete data differs from the case on continuous
space, where, for example, the most popular technology PCA tries to find the orthogonal
dimensions (or factors) that explains the covariance of data dimensions. However, one
cannot make the same orthogonal assumption on the low-dimensional factors of discrete
data and put the interests on the covariance anymore. Instead, it is desired to find the
independent latent factors that explain the co-occurrence of dimensions (e.g., words). In
text modeling, if we refer the factors as topics, the projections actually represent each
document as a data point in a low-dimensional topic space, where a co-occurrence factor
actually suggests more or less a cluster of words (i.e., a group of words often occurring
together). Intuitively, if the projected topic space is informative enough, it should also be
highly indicative to reveal the clustering structure of documents. On the other hand, a
truly discovered clustering structure reflects the shared topics within document clusters
and the distinguished topics across document clusters, and thus can offer evidence for the
projection side. Therefore, it is highly desired to consider the two problems in a unified
model.

From a probabilistic point of view, a Multinomial distribution is suitable to describe
the data-cluster memberships. As discussed in Chapter 4, the projection of words should
also be discrete and takes a Multinomial distribution. Buntine et al. [12] viewed the
projection for discrete data as a discrete PCA problem. They also noticed its relationship
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with clustering and pointed out that the Multinomial PCA model takes clustering and
projection as two extreme cases [13]. Another closely related work is the so-called two-sided
clustering, like [40] and [19], which aims to cluster words and documents simultaneously. In
[19] it is implicitly assumed a one-to-one correspondence between the two sides of clusters.
[40] is a probabilistic model for discrete data, but it has similar problems as in pLSI and
not generalizable to new documents.
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Chapter 9

The PCP Model for Discrete Data

As discussed in Part I and Part II, both data clustering and feature projection are im-
portant tasks and have been extensively studied in data mining and machine learning
communities. However, as discussed in Chapter 8, it is ideal to consider both of them in
a unified framework and improve the performance of both tasks.

In this chapter we propose a novel probabilistic clustering-projection (PCP) model to
jointly handle the projection and clustering for discrete data.1 The projection of words
is explicitly formulated with a matrix of model parameters. Document clustering is then
incorporated using a mixture model on the projected space, and we model each mixture
component as a Multinomial over the latent topics. In this sense this is a clustering model
using projected features for documents if the projection matrix is given, and a projection
model with structured data for words if the clustering structure is known. A nice property
of the model is that we can perform clustering and projection iteratively, incorporating
new information on one side to the updating of the other. We will show that they are
corresponding to a variational Bayesian algorithm that improves the data likelihood it-
eratively. It is a difficult problem to do model selection in clustering analysis, i.e., to
choose the correct number of clusters. We will point out the connection to the Dirichlet
process prior discussed in Chapter 3, and thus the model inherits the nice property of
automatically determining the number of clusters.

This chapter is organized as follows. Section 9.1 introduces the PCP model and explic-
itly points out the clustering and projection effects. In Section 9.2 we present inference
and learning algorithm. Then Section 9.3 presents experimental results and Section 9.4
summarizes the model.

1This chapter is based on [84] and [80].
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Figure 9.1: Informal sampling process for the PCP model. Dark arrows show dependencies
between entities and the dashed line separates the clustering and projection effects. Model
parameters α and λ are not shown for simplicity.

9.1 The PCP Model

We use some new notations in this chapter. For document modeling we consider a corpus
D containing D documents, with vocabulary V having V words. Following the notation in
[10], each document d is a sequence of Nd words that is denoted by wd = {wd,1, . . . , wd,Nd

},
where wd,n is a variable for the n-th word in wd and denotes the index of the corresponding
word in V. Note that a same word may occur several times in the sequence wd.

To simplify explanations, we use “clusters” for components in document clustering
structure and “topics” for projected space for words. Let M denote the number of clusters
and K the dimensionality of topics. Roman letters d,m, k, n, j are indices for documents,
clusters, topics, words in wd, and words in V. They are up to D,M,K,Nd, V , respectively.
Letter i is reserved for temporary index.

9.1.1 The Probabilistic Model

The PCP model is a generative model for a document corpus. Figure 9.1 illustrates the
sampling process in an informal way. To generate one document d, we first choose a cluster
from the M clusters. For the m-th cluster, the cluster center is denoted as θm and defines
a topic mixture over the topic space. Therefore θm is a K-dimensional vector and satisfies
θm,k ≥ 0,

∑K
k=1 θm,k = 1 for all m = 1, . . . ,M . The probability of choosing a specific

cluster m for document d is denoted as πm, and π := {π1, . . . , πM} satisfies πm ≥ 0,∑M
m=1 πm = 1.

When document d chooses cluster m, it defines a document-specific topic mixture θd,
which is obtained exactly from the cluster center θm. Note that everything is discrete and
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two documents belonging to the same cluster will have the same topic mixtures. Words
are then sampled independently given topic mixture θd, in the same way as in LDA. Each
word wd,n is generated by first choosing a topic zd,n given the topic mixture, and then
sampling the word given the projection β. β is the K × V matrix where βk,j specifies the
probability of generating word j given topic k, βk,j = P (wj = 1|zk = 1). Therefore each
row βk,: defines a Multinomial distribution for all words over topic k and satisfies βk,j ≥ 0,∑V

j=1 βk,j = 1.

To complete the model, we put a Dirichlet prior Dir(λ) for all the cluster centers
θ1, . . . ,θM , and a symmetric Dirichlet prior Dir(α/M, . . . , α/M) for the mixing weights
π. This prior is used similarly in Chapter 2 and will approach the Dirichlet process prior
in the asymptotic case. Note that they are sampled only once for the whole corpus.

Finally we obtain the probabilistic model formally illustrated in Figure 9.2 (left), using
standard plate model. cd takes value {1, . . . ,M} and acts as the indicator variable saying
which cluster document d takes on out of the M clusters. All the model parameters are
α,λ, β and amount to 1 + M + K × (V − 1). The following procedure describes the
sampling process for the whole corpus:

1. Choose model parameter α,λ, β;

2. For the m-th cluster, choose θm ∼ Dir(λ),m = 1, . . . ,M ;

3. Choose the mixing weight π ∼ Dir(α/M, . . . , α/M);

4. For each document wd:

(a) Choose a cluster m with mixing weights π, and obtain θd = θm;
(b) For each of the Nd words wd,n:

i. Choose a topic zd,n ∼ Mult(θd);
ii. Choose a word wd,n ∼ Mult(βzd,n,:).

Denote Θ as the set of M cluster centers {θ1, . . . ,θM}, the likelihood of the corpus D can
be written as

L(D|α,λ, β) =
∫
π

∫
Θ

D∏
d=1

P (wd|Θ,π, β)dP (Θ|λ) dP (π|α), (9.1)

where P (Θ|λ) =
∏M

m=1 P (θm|λ), and the likelihood of document d is a mixture:

P (wd|Θ,π, β) =
M∑

cd=1

P (wd|Θ, cd, β)P (cd|π). (9.2)

Given mixture component cd, likelihood term P (wd|Θ, cd, β) is then given by

P (wd|θcd
, β) =

Nd∏
n=1

K∑
zd,n=1

P (wd,n|zd,n, β)P (zd,n|θcd
). (9.3)
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Figure 9.2: The plate models of PCP model with finite mixture prior (left) and Dirichlet
process prior (right).

9.1.2 PCP as a Clustering Model

As can be seen from (9.2) and (9.3), PCP is a clustering model when the projection β is
assumed known. The essential terms now are the probabilities of clusters P (m|π) = πm,
probabilistic clustering assignment for documents P (wd|θm, β), and cluster centers θm,
for m = 1, . . . ,M . Note from (9.3) that cluster centers θm are not modeled directly
with words like P (w|θm), but with topics, P (z|θm). This means we are not clustering
documents in word space, but in topic space. This is analogous to clustering continuous
data on the latent space found by PCA [20], and K is exactly the dimensionality of this
space. To obtain the probability that document d belongs to cluster m, we project each
word into topic space, and then calculate the distance to cluster center θm by considering
all the words in wd. This explains (9.3) from perspective of clustering.

To improve generalization and avoid overfitting, we put priors to θm and π and treat
them as hidden variables, as usually done in mixture modeling. The prior distributions are
chosen to be Dirichlet that is conjugate to Multinomial. This will make model inference
and learning much easier (see Section 9.2).

9.1.3 PCP as a Projection Model

A projection model aims to learn projection β, mapping words to topics. As can be
seen from (9.3), the topics are not modeled directly with documents wd, but with cluster
centers θm. Therefore if clustering structure is already known, PCP will learn β by using
the richer information contained in cluster centers, not just individual documents. In
this sense, PCP can be explained as a projection model with structured data and is very
attractive because clustered documents are supposed to contain less noise and coarser
granularity. This will make the projection more accurate and faster.
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As a projection model, PCP is more general than pLSI because document likelihood
(9.3) is well defined and generalizable to new documents. Although LDA uses similar
equation as (9.3), the topic mixture θd is only sampled for current document and no inter-
similarity of documents is directly modeled. Documents can only exchange information
via the hyperparameter for θd’s, and thus its effect to β is only implicit. On the contrary,
PCP directly models similarity of documents and incorporate all information to learn β.

As discussed in [10], projection β can be smoothed by putting a common prior to all
the rows. If only the maximum a posteriori (MAP) estimate of β is considered, the effect
of smoothing turns out to add a common factor to each entry of β before normalization
each row. This is also straightforward in PCP model and we will not discuss it in detail
for simplicity. In the experiments we will use this smoothing technique.

9.1.4 Connections to Dirichlet Processes

In this subsection we analyze the PCP model in the limiting case that M tends to infinity,
similarly as the infinite mixture models in Chapter 3. When we fix M in our model, the
topic mixture θd for a specific document wd is equivalently seen to sample from a mixture
model:

G(θd) := P (θd|π, {θm}Mm=1) =
M∑

m=1

πmδθm(θd),

where δθm(θ) is the point mass distribution and takes value 1 for θ = θm and 0 otherwise.
In this sense, distribution G(·) defines a discrete prior for all document specific topic
mixtures θd’s, and the plate model in Figure 9.2(a) can be equivalently illustrated as in
Figure 9.2(b), where model parameters α and λ now take the role of tuning the discrete
but unknown distribution G(·).

It is shown in Chapter 3 that when M tends to infinity, the unknown distribution
G tends to be a sample from a Dirichlet process (DP), constrained by the concentration
parameter α and base distribution G0 := Dir(λ). Following the conventional notation for
Dirichlet process, in our model we sample θd as follows:

θd ∼ G, for d = 1, . . . , D;
G ∼ DP(α,G0).

The DP defines a non-parametric prior for θd’s, and as the sampled distribution G is
discrete, a natural clustering structure will occur when several documents happen to choose
the same θ in the sampling process. Moreover, concentration parameter α is able to control
the discreteness of sampled distribution G, and thus control the number of clusters. Larger
α usually results in more clusters.

Remark 9.1.1. We compare the plate model of PCP with DP prior (Figure 9.2 right)
and that of LDA (Figure 4.4 in Chapter 4). Instead of assigning a Dirichlet prior for θ’s
as in LDA, PCP model assigns a non-parametric prior G and have two hyperparameters
to control G. As mentioned in Remark 3.2.1, PCP can be viewed as a Dirichlet enhanced
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LDA model. This also explains why PCP model is more flexible than LDA (see discussions
in [80]).

When M is finite, however, our model is not equivalent to defining Dirichlet process
prior for θd’s, but it is a good approximation if we choose a sufficiently large M , due to the
Dirichlet-Multinomial allocation (DMA) approximation for Dirichlet processes. An impor-
tant property of DMA is that it demonstrates similar clustering effect as with Dirichlet
process prior, and α can also be used to control the granularity of the clustering structure
(see Section 3.3.4). This motivates us to start with a large number for M and let the
model automatically fit this number during learning procedure. It turns out that the data
likelihood is improved each time the effective cluster number decreases in the iterative
process, and that only a small number of clusters will have non-zero probabilities at con-
vergence. α can be chosen a priori for different purposes of applications, or learned to fit
the data. This so-called VBDMA algorithm is used for inference and learning in the next
section.

9.2 Inference and Learning

In this section we consider model inference and learning. As seen from Figure 9.2, for
inference we need to calculate the a posteriori distribution of latent variables

P̂ (π,Θ, c, z) := P (π,Θ, c, z|D, α,λ, β),

including both effects of clustering and projection. Here for simplicity we denote π,Θ, c, z
as groups of πm,θm, cd, zd,n, respectively. This requires to compute (9.1), where the in-
tegral is however analytically infeasible. A straightforward Gibbs sampling method can
be derived, but it turns out to be very slow and inapplicable to high dimensional discrete
data like text, since for each word we have to sample a latent variable z. Therefore in this
section we suggest an efficient variational method by introducing variational parameters
for latent variables [47]. Then we can maximize the data likelihood by iteratively updat-
ing these parameters and obtain a variational Bayesian algorithm until convergence. The
interesting thing is that this algorithm is equivalent to performing clustering and projec-
tion iteratively, which we will discuss in detail. This, on one hand, provides an intuitive
explanation to the complicated updating equations and let us gain some insight of vari-
ational method; on the other hand, it characterizes the object function of the iterative
clustering-projection procedure and theoretically guarantees convergence.

9.2.1 Variational Bayesian Learning

The idea of variational Bayesian algorithm is to propose a joint distribution Q(π,Θ, c, z)
for latent variables conditioned on some free parameters, and then enforce Q to ap-
proximate the a posteriori distributions of interests by minimizing the KL-divergence



9.2. INFERENCE AND LEARNING 147

DKL(Q‖P̂ ) with respect to those free parameters. We propose a variational distribution
Q over latent variables as the following

Q(π,Θ, c, z|η,γ,ψ,φ) = Q(π|η)
M∏

m=1

Q(θm|γm)
D∏

d=1

Q(cd|ψd)
Nd∏
n=1

Q(zd,n|φd,n), (9.4)

where η,γ,ψ,φ are groups of variational parameters, each tailoring the variational a pos-
teriori distribution to each latent variable. In particular, η specifies an M -dimensional
Dirichlet for π, γm specifies a K-dimensional Dirichlet for distinct θm, ψd specifies an
M -dimensional Multinomial for indicator cd of document d, and φd,n specifies a K-
dimensional Multinomial over latent topics for word wd,n. It turns out that minimization
of the KL-divergence is equivalent to maximization of a lower-bound of the log likelihood
lnP (D|α,λ, β), derived by applying Jensen’s inequality [47]:

LQ(D) = EQ[lnP (π|α)] +
M∑

m=1

EQ[lnP (θm|λ)] +
D∑

d=1

EQ[lnP (cd|π)]

+
D∑

d=1

Nd∑
n=1

EQ[lnP (wd,n|zd,n, β)P (zd,n|Θ, cd)]− EQ[lnQ(π,Θ, c, z)]. (9.5)

The optimum is found by setting the partial derivatives with respect to each variational
and model parameter to be zero, which corresponds to the variational E-step and M-
step, respectively. All the terms in the lower-bound can be derived similarly as those
in Chapter 2, and for simplicity we omit the details in this chapter. In the following
we separate these equations into two parts and interpret them from the perspective of
clustering and projection, respectively.

9.2.2 Updates for Clustering

As we mentioned in Section 9.1.2, the specific variables for clustering are document-cluster
assignments cd, cluster centers θm, and cluster probabilities π. It turns out that their
corresponding variational parameters are updated as follows:

ψd,m ∝ exp
{ K∑

k=1

[(
Ψ(γm,k)−Ψ(

K∑
i=1

γm,i)
) Nd∑

n=1

φd,n,k

]
+ Ψ(ηm)−Ψ(

M∑
i=1

ηi)
}
, (9.6)

γm,k =
D∑

d=1

ψd,m

Nd∑
n=1

φd,n,k + λk, ηm =
D∑

d=1

ψd,m +
α

M
, (9.7)

where Ψ(·) is again the digamma function, the first derivative of the log Gamma function.
ψd,m are the a posteriori probabilities P (cd = m) that document d belongs to cluster
m, and define a soft cluster assignment for each document. γm,k characterize the cluster
centers θm and are basically the k-th coordinate of θm on the topic space. Finally ηm

control the mixing weights for clusters and define the probability of cluster m. φd,n,k are
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the variational parameters that measure the a posteriori probability that word wd,n in
document d is sampled from topic k. They are related to projection of words and assumed
fixed at the moment.

These equations seem to be complicated and awful, but they turn out to be quite
intuitive and just follow the standard clustering procedure. In particular,

• ψd,m is seen from (9.6) to be a multiplication of two factors P1 and P2, where P1

includes the γ terms in the exponential and P2 the η terms:

P1 ∝ exp
{ K∑

k=1

[(
Ψ(γm,k)−Ψ(

K∑
i=1

γm,i)
) Nd∑

n=1

φd,n,k

]}
,

P2 ∝ exp
{

Ψ(ηm)−Ψ(
M∑
i=1

ηi)
}
.

Since ηm controls the probability of cluster m, P2 acts as a prior term for ψd,m;
P1 can be seen as the likelihood term, because it explicitly measures the probability
of generating wd from cluster m by calculating the inner product of projected fea-
tures and cluster centers. Therefore, (9.6) directly follows from Bayes’ rule, and a
normalization term is needed to ensure

∑M
m=1 ψd,m = 1.

• γm,k is updated by summing over the prior position λk and the empirical location,
the weighted sum of projected documents that belong to cluster k.

• Similar to γm,k, ηk is empirically updated by summing over the belongingnesses of
all documents to cluster k. α/M acts as a prior or a smoothing term, shared by all
the clusters.

Since these parameters are coupled, clustering is done by iteratively updating (9.6)
and (9.7). Note that the words are incorporated into the clustering process only via the
projected features

∑Nd
n=1 φd,n,k. This means that the clustering is performed not in word

space, but in the more informative topic space. Documents are first projected into a low-
dimensional space and then clustered, and in principal we can incorporate well-defined
projections into the clustering procedure to accelerate convergence.

9.2.3 Updates for Projection

If ψ,γ,η are fixed, projection parameters φ and β are updated as:

φd,n,k ∝ βk,wd,n
exp

{ M∑
m=1

ψd,m

[
Ψ(γm,k)−Ψ(

K∑
i=1

γm,i)
]}
, (9.8)

βk,j ∝
D∑

d=1

Nd∑
n=1

φd,n,kδj(wd,n), (9.9)
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where δj(wd,n) = 1 if wd,n takes word index j, and 0 otherwise. Please recall that φd,n,k is
the a posteriori probability that word wd,n is sampled from topic k, and βk,j measures the
probability of generating word j from topic k. Normalization terms are needed to ensure∑K

k=1 φd,n,k = 1 and
∑V

j=1 βk,j = 1, respectively. Update (9.9) for βk,j is quite intuitive,
since we just sum up all the documents that word j occurs, weighted by their generating
probabilities from topic k. For update of φd,n,k in (9.8), βk,wd,n

is the probability that topic
k generates word wd,n and is thus the likelihood term; the rest exponential term defines the
prior, i.e., the probability that document d selects topic k. This is calculated by taking into
account the clustering structure and summing over all cluster centers with corresponding
soft weights. Therefore, the projection model is learned via clusters of documents, not
simply individual ones. This makes it possible to integrate the rich intrinsic structure of
documents into projection learning and alleviate the impact of outlier documents. Finally
we iterate (9.8) and (9.9) until convergence to obtain the optimal projection.

9.2.4 Discussion

As guaranteed by variational Bayesian algorithm, iteratively performing the given cluster-
ing and projection operations will improve the data likelihood monotonically until conver-
gence, where a local maxima is obtained. The convergence is usually very fast, and like
other variational methods, the quality of the maxima and the convergence rate depend on
the initialization of model parameters. For a good starting point, it would be beneficial
to get an estimate of the projection matrix before starting, using other simple projection
models like pLSI.

In the last two subsections we interpret the variational Bayesian algorithm in terms
of iteratively performing clustering and projection operations. Although the intuitive
explanations are not formal, they help to understand the model as well as the variational
algorithm.

The remaining parameters α and λ control the mixing weights π and cluster centers
θm a priori, and they can also be learned by setting their partial derivatives to be zero.
However, there are no analytical updates for them and we have to use computational meth-
ods like Newton-Raphson method as in [10]. Finally we summarize the whole algorithm
in Algorithm 9.1.

9.3 Empirical Study

In this section we illustrate experimental results for the PCP model. In particular we
compare it with other models in the following three perspectives:

• Document Modeling: How good is the generalization in PCP model?

• Word Projection: Is the projection really improved in PCP model?
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Algorithm 9.1 Variational Bayesian Learning for PCP Model
Require: A corpus of D documents with V words. Document d has Nd words in total.
Require: A topic number K > 0. Model parameters α and λ.
1: Choose a large enough mixture number M (e.g., set M = D). Randomly initialize
φd,n,k, γm,k and ηk such that

∑K
k=1 φd,n,k = 1, for all d = 1, . . . , D, n = 1, . . . , Nd.

2: repeat
3: {Clustering Step}
4: Calculate sufficient projection term

∑Nd
n=1 φd,n,k for each document d;

5: repeat
6: Update cluster assignments ψd,m via (9.6);
7: Update cluster centers γm,k and mixing weights ηk via (9.7);
8: until the improvement of log-likelihood is smaller than a threshold.
9: {Projection Step}

10: Calculate sufficient clustering term
∑M

m=1 ψd,m

[
Ψ(γm,k)−Ψ(

∑K
i=1 γm,i)

]
for each

document d;
11: repeat
12: Update word projections φd,n,k via (9.8);
13: Update projection matrix β via (9.9);
14: until the improvement of log-likelihood is smaller than a threshold.
15: until the improvement of log-likelihood is smaller than a threshold.
Output: Document-cluster membership ψd,m’s, cluster weights calculated as πm =

ηm/
∑M

m′=1 ηm′ , cluster centers γm’s, and word-topic projection matrix β.

• Document Clustering: Will the clustering be better in PCP model?

We will make comparisons based on two text data sets. The first one is Reuters-21578, and
we select all the documents that belong to the five categories money-fx, interest, ship, acq
and grain. After removing stop words, stemming and picking up all the words that occur
at least in 5 documents, we finally obtain 3948 documents with 7665 words. The second
data set consists of four groups taken from 20Newsgroup, i.e., autos, motorcycles, baseball
and hockey. Each group has 1000 documents, and after the same preprocessing we get
3888 documents with 8396 words. In the following we use “Reuters” and “Newsgroup” to
denote these two data sets, respectively. Before giving the main results, we illustrate one
case study for better understanding of the algorithm.

9.3.1 Case Study

We run the PCP model on the Newsgroup data set, and set topic number K = 50 and
cluster number M = 20. α is set to 1 and λ is set with each entry being 1/K. Other
initializations are chosen randomly. The algorithm runs until the improvement on LQ(D)
is less than 0.01% and converges after 50 steps.

Figure 9.3 illustrates part of the results. In (a) 10 topics are shown with 10 words that
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1 2 3 4 5 6 7 8 9 10
car ball game gm bike team car pit car team

engin runner basebal rochest clutch hockei tire det price year
ford hit gant ahl back nhl brake bo dealer win

problem base pitch st gear leagu drive tor year morri
mustang write umpir john front game radar chi model cub

good fly time adirondack shift season oil nyi insur game
probe rule call baltimor car citi detector van articl write
write articl strike moncton time year system la write jai
ve left write hockei work star engin stl cost won

sound time hirschbeck utica problem minnesota spe buf sell clemen

(a)

(b) (c)

Figure 9.3: A case study of PCP model on Newsgroup data. (a) shows 10 topics and 10
associated words for each topic with highest generating probabilities. (b) shows 4 clusters
and the topic mixture on the 10 topics. Darker color means higher value. (c) gives the
assignments to the 4 clusters for all the documents which are sorted by their true category
labels.

have highest assigned probabilities in β. The topics are seen to be very meaningful and
each defines one projection for all the words. For instance, topic 5 is about “bike”, and 1,
7, 9 are all talking about “car” but with different subtopics: 1 is about general stuffs of
car; 7 and 9 are specifying car systems and purchases, respectively. Besides finding topic
6 that covers general terms for “hockey”, we even find two topics that specify the hockey
teams in US (4) and Canada (8). These topics provide the building blocks for document
clustering.

Figure 9.3(b) gives the 4 cluster centers that have highest probabilities after learning.
They define topic mixtures over the whole 50 topics, and for illustration we only show the
given 10 topics as in (a). Darker color means higher weight. It is easily seen that they are
corresponding to the 4 categories autos, motorcycles, baseball and hockey, respectively. If
we sort all the documents with their true labels, we obtain the document-cluster assign-
ment matrix as shown in Figure 9.3(c). Documents that belong to different categories are
clearly separated, and the clustering structure is uncovered.
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Table 9.1: Perplexity comparison for pLSI, LDA and PCP on Reuters and Newsgroup

Reuters Newsgroup
K 5 10 20 30 40 50 5 10 20 30 40 50

pLSI 1995 1422 1226 1131 1128 1103 2171 2018 1943 1868 1867 1924
LDA 1143 892 678 599 562 533 2083 1933 1782 1674 1550 1513
PCP 1076 882 670 592 555 527 2039 1871 1752 1643 1524 1493

9.3.2 Document Modeling

In this subsection we investigate the generalization of PCP model. We compare PCP
with pLSI and LDA on the two data sets, where 90% of the data are used for training
and the rest 10% are held out for testing. The comparison metric is perplexity, which is
conventionally used in language modeling and defined as

Perp(Dtest) = exp

(
− lnP (Dtest)/

∑
d

|wd|

)
,

where |wd| is the length of document d, and the sum is over all documents in the testing
set Dtest. A lower perplexity score indicates better generalization performance.

We follow the formula in [10] to calculate perplexity for pLSI. For PCP model, we
take the similar approach as in LDA, i.e., we run the variational inference and calculate
the lower bound (9.5) as the likelihood term. M is set to be the number of training
documents for initialization. As suggested in [10], a smoothing term for β is used and
optimized for LDA and PCP. All the three models are trained until the improvement is
less than 0.01%. We compare all three algorithms using different K’s, and the results are
shown in Table 9.1. PCP outperforms both pLSI and LDA in all the runs, which indicates
that the model fits the data better and has better generalization performance.

9.3.3 Word Projection

All the three models pLSI, LDA and PCP can be seen as projection models and learn the
mapping β. To compare the quality, we train a support vector machine (SVM) on the low-
dimensional representations of these models and measure the classification rate. For pLSI,
the projection for document d is calculated as the a posteriori probability of latent topics
conditioned on d, P (z|d). This can be computed using Bayes’ rule as P (z|d) ∝ P (d|z)P (z).
In LDA it is calculated as the a posteriori Dirichlet parameters for d in the variational
E-step [10]. In PCP model this is simply the projection term

∑Nd
n=1 φd,n,k which is used

in clustering.

We train a 10-topic model on the two data sets and then train a SVM for each category.
Note that we are reducing the feature space by 99.8%. In the experiments we gradually
improve the number of training data from 10 to 200 (half positive and half negative) and
randomize 50 times. The performance averaged over all categories is shown in Figure 9.4
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Figure 9.4: Classification results on Reuters (left) and Newsgroup (right).

Table 9.2: Comparison of clustering using different methods

NMF LDA+k-means PCP
Reuters 0.246 0.331 0.418

Newsgroup 0.522 0.504 0.622

with mean and standard deviation. It is seen that PCP obtains better results and learns
a better word projection.

9.3.4 Document Clustering

In our last experiment we demonstrate the performance of PCP model on document clus-
tering. For comparison we implement the original version of NMF algorithm [51] which
can be shown as a variant of pLSI, and a k-means algorithm that uses the learned features
by LDA. For NMF we tune its parameter to get best performance. The k-means and PCP
algorithms are run with the true cluster number, and we tune the dimensionality K to get
best performance.

The experiments are run on both two data sets. The true cluster number is 5 for
Reuters and 4 for Newsgroup. For comparison we use the normalized mutual information
[77], which is just the mutual information divided by the maximal entropy of the two
cluster sets. The results are given in Table 9.2, and it can be seen that PCP performs the
best on both data sets. This means iterating clustering and projection can obtain better
clustering structure for documents.
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9.4 Summary

In this chapter we proposed a probabilistic clustering-projection model for discrete co-
occurrence data, which unifies clustering and projection in one probabilistic model. Iter-
atively updating the two operations turns out to be the variational inference and learning
under Bayesian treatments. Experiments on two text data sets show promising perfor-
mance for the proposed model.
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Conclusion

Probabilistic modeling for unsupervised learning is a very important research area. In this
thesis we introduced several advanced probabilistic models for clustering and projection,
and made the following contributions:

• In the first part we studied the general finite mixture models of exponential fam-
ily distributions from a Bayesian perspective. The proposed Gibbs sampling and
variational Bayesian inference algorithms are applicable to all exponential family
distributions.

• We clarified the connection between finite mixture model with symmetric Dirichlet
prior and the Dirichlet process prior. This allows us to achieve the same sparsity in
finite mixture modeling, and to control the sparsity via a single parameter.

• We proposed a variational Bayesian learning algorithm called VBDMA for approxi-
mated inference in a DP model. We then empirically compared the proposed method
with another one called VBTDP, and showed that they are both applicable to large-
scale problems but with different obtained sparsity.

• In the second part we extended the probabilistic PCA to non-linear kernel PCA, and
derived an EM algorithm for kernel PCA which is more efficient and can deal with
larger data sets. Furthermore an incremental kernel PCA can be proposed from this
algorithm.

• We derived the MORP algorithm for supervised dimensionality reduction which is
motivated from a latent variable model. The model takes PCA and kernel PCA as
special cases and obtain better results than other supervised projection methods.

• We introduced a probabilistic version of MORP which is called SPPCA. A natural
extension of SPPCA is called S2PPCA which can handle semi-supervised projection.
To our knowledge this is the first elegant semi-supervised projection framework.
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• In the last part we considered clustering and projection jointly and introduced a
probabilistic clustering-projection model for discrete data. The model is shown to
obtain better results for both clustering of data and projection of features.

Unsupervised learning like clustering and projection is a big area, and this thesis
only addresses this problem from a probabilistic perspective. Sometimes the probabilistic
assumptions are not perfectly satisfied, and the deterministic approaches are usually more
robust. So in the future it is interesting to figure out when to apply those methods, and
to uncover the relationship between probabilistic models and the various deterministic
methods. Extending the current solutions to more complex setting and larger data sets is
also an important research problem.
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