
Max-von Pettenkofer-Institute and Gene Center,

Ludwig Maximilians University, Munich

Prof. Dr. Karl-Klaus Conzelmann

Institute of Molecular Animal Breeding and Biotechnology, Gene Center

Faculty of Veterinary Medicine of the Ludwig Maximilian University, Munich

Prof. Dr. Eckhard Wolf

Interferon Escape of Respiratory Syncytial Virus:

Functional Analysis

of the Nonstructural Proteins NS1 and NS2

Thesis for the attainment of the title Doctor in Veterinary Medicine

from the Faculty of Veterinary Medicine of the Ludwig Maximilian University, Munich

by

Sabrina Marozin

from Milan, Italy

Munich, 2005



Aus der

Abteilung für Virologie des Max-von Pettenkofer-Institutes,

Genzentrum, München

Arbeitsgruppe Prof. Dr. Karl-Klaus Conzelmann

Leiter Prof. Dr. Ulrich Koszinowski

Vorgelegt über

das Institut für Tierzucht der Tierärztlichen Fakultät

der Ludwig-Maximilians-Universität München

Lehrstuhl für Molekulare Tierzucht und Biotechnologie, Genzentrum

Univ.-Prof. Dr. Eckhard Wolf

Unterdrückung der Interferon-vermittelten Immunantwort

durch das Respiratorische Synzitial Virus:

Funktionelle Analyse der Nicht-Strukturproteine

NS1 und NS2

Inaugural-Dissertation

zur Erlangung der tiermedizinischen Doktorwürde

der Tierärztlichen Fakultät

der Ludwig-Maximilians-Universität München

von

Sabrina Marozin

aus Mailand, Italien

München 2005



Gedruckt mit Genehmigung der Tierärztlichen Fakultät der

Ludwig-Maximilians-Universität München

Dekan: Univ.-Prof. Dr. E. P. Märtlbauer

Referent: Univ.-Prof. Dr. E. Wolf

Korreferent: Priv.-Doz. Dr. H.-Ch. Siebert

Tag der Promotion: 10. Februar 2006



Part of this work is published:

Bossert B., Marozin S., Conzelmann K.K., 2003, Non structural proteins NS1 and NS2 of bovine

respiratory syncytial virus block activation of interferon regulatory factor 3, J. Virol., 77: 8661-

8668

Schlender J., Hornung V., Finke S., Gunthner-Biller M., Marozin S., Brzozka K., Moghim S.,

Endres S., Hartmann G. and Conzelmann K.K. , 2005, Inhibition of toll-like receptor 7- and 9-

mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory

syncytial virus and measles virus, J. Virol., 79: 5507-5519

Other publications:

Gregory V., Lim W., Cameron K., Bennett M., Marozin S., Klimov A., Hall H., Cox N., Hay

A. and Lin Y.P., 2001, Infection of a child in Hong Kong by an influenza A H3N2 virus closely

related to viruses circulating in European pigs, J. Gen. Virol., 82: 1397-1406

Marozin S., Gregory V., Vallette M., Aymard M., Barigazzi G., Y. P. Lin and Hay A., 2002,

Recent evolution of influenza A H1N1 and H1N2 subtypes in European pigs, J. Gen. Virol., 83:

735-745

Marozin S., Prank U. and Sodeik B., 2004, Herpes simplex type I infection of polarized epithelial

cells requires microtubules and access to receptors present at cell-cell contact sites, J. Gen. Virol.,

85: 775- 786



If a man will begin with certainties, he shall end in doubts,

but if he will content to begin with doubts, he shall end in certainties.

Francis Bacon
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1 INTRODUCTION AND OBJECTIVES

Respiratory Syncytial Virus (RSV) is recognised as the most frequent cause of severe lower

respiratory tract infections in infants and cattle worldwide. Human Respiratory Syncytial

Virus (HRSV) infects around 50% of infants during the first year and almost all the children

by age of two, resulting in the most common factor of paediatric hospitalizations in particular

of subjects between 2 and 6 months of age (Collins P.L. et al., 2001; Hoffman S.J. et al.,

2004). Bovine Respiratory Syncytial Virus (BRSV)-associated disease has been observed in

young calves at less than 6 months of age and also associated with outbreaks in dairy cows

(Elvander M., 1996). Seroprevalence among the adult human population and cattle is around

70% (Van der Poel W.H. et al., 1994). BRSV and HRSV are closely antigenically related and

in both cases serological subgroups have been identified (Mallipeddi S.K. et al., 1993; Furze

J.M. et al., 1994; Mufson M.A. et al., 1985). Human and bovine respiratory syncytial viruses

share common epidemiological, clinical and pathological characteristics. RSV is spread from

respiratory secretion via close contact with infected persons or contaminated materials.

Infections follow a seasonal periodicity and typical pathological manifestations of RSV-

related illness are tracheobronchitis, peri-bronchiolitis, bronchiolitis and pneumonia.

Bronchiolitis is associated with long term impairment of pulmonary functions and histamine

hyper responsiveness can last for many years after RSV-infection in infancy probably leading

to the development of asthma and general allergic sensitisation in children (Sigurs N. et al.,

2000).

The presence of maternal antibodies gives neither efficacious protection nor reduces viral-

shedding after infection. RSV infection does not lead to a complete and durable immunity and

human and cattle of all ages can be re-infected throughout life. Current treatments of RSV are

based on supportive care and antiviral therapy. An antiviral compound, which is approved for

RSV treatment in humans, is Ribavirin, a nucleoside analog. Ribavirin aereosol can be used in

the treatment of some patients with severe disease. However, limited clinical benefits have

been observed. Controversy on the significance of passive RSV prophylaxis, using RSV

Immunoglobulin (RespiGam) or genetically engineered humanized monoclonal antibodies

against F glycoprotein (Palivizumab), is also stated. However, combination of

immunoglobulin intravenously (IGIV) with neutralizing RSV antibody (RSV IGIV) and

Ribavirin has been used to treat patients with compromised immune system. Development of
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an RSV vaccine is a high research priority, but none is yet available. In conclusion, no

effective treatments for RSV infection are available at the moment. Moreover the

development of a successful vaccine has been hampered by the fact that natural infection does

not provide complete protection against re-infections. Besides, previous immunization can

enhance the severity of the disease in naturally infected individuals. A safe effective RSV

vaccine and/or the development of efficient therapeutic interventions is crucial and relies on a

proper understanding of RSV disease pathogenesis and virus host-cell interactions. In this

respect, studies of the innate immunity, which plays a critical role at the time of maximum

severity of illness and influences the subsequent adaptive response, as well as viral counter

measurements must be elucidated.

RSV, as well as many negative strand RNA viruses (e.g. Measles, Mumps, Parainfluenza and

Influenza virus) has evolved several strategies to hinder IFN response.

IFN treatment of RSV infected cells does not inhibit viral replication, indicating RSV ability

to circumvent the action of IFN. RSV NS1 and NS2 proteins are responsible for the

pronounced resistance to exogenous interferon and their ability to inhibit activity of cellular

IFN-induced antiviral proteins is exerted in a host-adapted manner (Schlender J. et al., 2000;

Bossert B. et al., 2002). RSV nonstructural proteins (NS) as other viral accessory proteins in

Influenza or Bunyamwera viruses, are also strong inhibitors of IFN / production.

Interferon type I synthesis is regulated at a transcriptional level. In response to viral infection,

the transcription factors AP-1, NF-kB and Interferon Regulatory Factor 3 (IRF3) become

activated following protein phosphorylation, bind to designated positive regulatory domains

(PRD) present in the IFN- promoter and form a transcriptional enhancer complex which

stimulates transient activation of IFN- transcription. Nonstructural proteins of RSV

specifically impair IRF3 activation by preventing its phosphorylation (Bossert B. et al., 2003)

but how this occurs is still unclear.

My attempt is to gain more insight into the mechanisms leading to NS protein-mediated

inhibition of IRF3 factor. My approach includes analysis of both cellular and viral elements

that play an active role in this complex mechanism. The aim of my work is to identify

possible cellular targets within the signalling pathway activating IFN production and to

determine specific amino acid motifs in the HRSV NS proteins involved in their interferon-

inhibitory activity.



                                                                                                             Review of the Literature 
___________________________________________________________________________

3

2  REVIEW OF THE LITERATURE 

2.1  Structure and genome 

2.1.1  Virion structure 

Bovine (BRSV) and human (HRSV) respiratory syncytial viruses are members of the genus 

Pneumovirus, subfamily Pneumovirinae, family Paramyxoviridae.

RSV virions have an irregular spherical shape of about 150-300 nm in diameter and consist in 

a nucleocapsid embedded within a lipid envelope. 

The nucleocapsid (RNP complex) is composed of the nucleocapsid protein N, the 

phosphoprotein P, the large polymerase subunit L and the M2-1 protein and it has a 

symmetrical helical structure of 12-15 nm. 

G (attachment)

SH protein 

F (fusion)

M matrix protein 

Envelope

RNP complex:
ssRNA
N protein 
P protein 
M2 protein 
L protein 

Fig. 1: Respiratory syncytial virus structure. The major nucleocapsid protein N, the phosphoprotein P, the 
anti-termination factor M2, the large polymerase subunit L and a single-stranded RNA genome of negative 
polarity compose RNP complex. Three transmembrane surface glycoproteins are present on the surface: the 
attachment protein G, the fusion protein F and the small hydrophobic SH protein. The matrix protein M forms a 
scaffold on the inner layer of the envelope connecting  the viral membrane with the RNP complex. 

The envelope is a lipid bilayer derived from the host plasma membrane and containing on the 

surface virally encoded transmembrane glycoproteins (G), the fusion protein (F) and the small 

hydrophobic (SH) protein. The inner layer is scaffold by the matrix protein M.  
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These viral glycoproteins are assembled in “spikes” closely spaced on the surface and exert 

attachment functions. 

2.1.2  Genome organization 

The RSV genome is a non-segmented single-stranded negative RNA of about 15.000 

nucleotides. RSV genome contains 10 genes, transcribed in 11 major subgenomic mRNAs. 

All mRNAs are capped at the 5’-end and polyadenylated at the 3’-end presumably by the viral 

polymerase. Instead, genomic and anti-genomic RNA, the latter represents the intermediate in 

RNA replication, are neither capped nor polyadenylated and are component of the 

nucleocapsids. Transcription is initiated from the 3’-end in an obligatory sequential manner 

with only a fraction of the polymerase moving to the next gene. This mechanism creates a 

gradient of transcriptional attenuation with distance from the transcriptional start-site, 

indicating the required relative abundance of the encoded proteins (fig.2). 

NS1

Matrix protein: viral assembly

Non structural proteins: anti IFN type I.  
Deletant mutants are viable but attenuated in vitro and in vivo

Nucleocapsid protein: structural protein essential for transcriptional activity 

Phosphoprotein protein: essential  structural protein and cofactor of the polymerase

Small hydrophobic protein with unknow  function 

Transmembrane protein: attachment function; membrane bound and 
secreted forms; neutralizing antigen.

Fusion glycoprotein: responsible for syncytia formation, penetration, 
neutralization and protection

M2-1 protein (upstream ORF): transcription and antitermination factor 
M2-2 protein (downstream ORF): regulation of transcription and RNA replication

Major polymerase subunit

NS1
NS2

N

P
M

SH

G

F

M2-1
M2-2

L

NS2

N

P

M

SH

G

F

M2 

L

3’

5’

Genome Proteins Functions 

Fig. 2: RSV genes and encoded viral proteins.
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At the genes junctions, semi-conserved gene-end (GE signal: 12-13 nucleotides) and 

conserved gene-start (GS signal: 10 nucleotides) sequences are separated by non-conserved 

intergenic sequences of different length lacking consensus sequence motifs. 

The first 54 nucleotides at the 3’ -end of the genome represent a conserved promoter sequence 

containing the essential signals for transcription and replication. The leader sequence (Le) 

within this region is necessary, together with the GS signal, for synthesis of the antigenome 

during RNA replication (McGivern D.R. et al., 2005).

2.1.3  Viral proteins 

The RSV F protein is a transmembrane glycoprotein and it is thought to form trimers. It plays 

a role in viral entry, mediating surface fusion of the virion envelope with the host cellular 

plasma membrane.  

Late in infection, it is also involved in viral spread by syncytia formation. Like in 

other Paramyxoviruses, the RSV fusion protein is synthesized as a precursor F0 that is 

activated by cellular protease, such as furin. The cleavage results in the generation of 

disulfide-linked F2 and F1 subunits. This process leads to the exposure of the hydrophobic 

“fusion peptide” at the N-terminus of the F1 subunit which inserts in the cell membrane. 

Moreover, as a consequence of the furin-cleavage, an intervening peptide of 27 amino acids 

(pep27) is released. Recent data indicate pep27 importance in intracellular transport, 

maturation and biological activity of the fusion protein F (Konig P. et al., 2004). Syncytia 

formation seems to be also coadjuvated by G and SH proteins. Together with the glycoprotein 

G, it is the major protective and neutralizing agent. In fact, antibodies raised against F or G 

protein are able to neutralize infectivity in vitro and to confer resistance to RSV infection in 

vivo (Taylor G. et al., 1984; Walsh E.E. et al., 1984). Hints of an immunosuppressive activity 

of the F protein derive from its ability to arrest T cell cycle by contact in a species-specific 

manner (Schlender J. et al., 2002). 

The RSV G protein is a type II transmembrane protein extensively N- and O-

glycosylated and seems to form trimers or tetramers. It mediates viral attachment but it is not 

essential for propagation in vitro and in vivo. Antibodies raised specifically against the G 

protein can prevent virus binding to HeLa cells. In addition to a membrane-bound form, a 

truncated soluble G protein arises from translational initiation at the second AUG in the ORF. 

This secreted form is involved in counteraction of the immune response. RSV viruses 

deficient in soluble G protein ( sG) induce an increase of certain chemokines, such as IL-8 
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and Rantes in comparison to wild-type strains (Arnold et al., 2004). Moreover, an activity in 

trapping RSV-neutralizing antibodies cannot be excluded (Collins P.L. et al., 2001). Deletion 

mutant RSV viruses for the G protein ( G) are viable but display a host range restriction in 

growth.

The small hydrophobic SH protein is a short integral transmembrane protein and it is 

present in glycosylated and non-glycosylated species in form of oligomers. Its function is so 

far unknown. Recombinant RSV viruses lacking SH protein fully replicate in vitro but 

attenuation in the lower respiratory tract in vivo has been reported (Jin H. et al., 2000). Since 

expression of SH protein in bacteria increased permeability of small molecular-weight 

compounds, it has been speculated its involvement in membrane channels formations (Perez 

M. et al., 1997). 

 The matrix protein M is a non-glycosylated protein forming a sheet on the inner side 

of the viral envelope. It plays an important role in virus assembly and budding by mediating 

the association between viral nucleoprotein (vRNP) and cell plasma membrane (Peeples M.E., 

1991; Ghildyal R. et al., 2002). Apart from inactivating transcription activity of the 

nucleoprotein before packaging, early in infection M protein it localises into the nucleus 

where it possibly inhibits host-cell transcription (Ghildyal R. et al., 2003). RSV M protein has 

also RNA-binding capacity as recently described (Rodriguez L. et al., 2004) but the real 

function of this interaction is still unclear. 

 RSV N, P and L proteins co-purify with nucleocapsid. They are necessary and 

sufficient for RNA replication. The major nucleocapsid protein is the nucleoprotein N. It 

binds to genomic and antigenomic RNA conferring RNase resistance to the nucleocapsids. 

The phosphoprotein P is the major phosphorylated species. It functions as a chaperonin for 

soluble N and it is essential together with N protein for encapsidation activity. P protein is 

also a polymerase cofactor. It seems to convert initiated polymerase into a stable complex and 

its phosphorylation is mandatory for this function (Dupuy L.C. et al., 1999). The L protein is 

the major RNA-dependent RNA polymerase subunit and it is bound to its cofactors, the 

phosphoprotein P and M2-1 by the N protein. 

The M2-1 protein is a transcription processivity factor and it is essential for viral 

replication. It prevents premature termination during transcription (Fearns R. and Collins P.L., 

1999; Zhou et al., 2003) and enhances read-through at the gene junctions (Hardy R.W. and 

Wertz G.W., 1998; Hardy R.W. et al., 1999). The M2-1 protein interacts with the 

nucleocapsid N protein through RNA mediation (Cuesta I. et al., 2000; Cartee T.L. and Wertz 
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G.W, 2001) and with the P protein (Mason S.W. et al., 2003). Phosphorylation of M2-1 

appears to be indispensable for the interaction with the P protein. RSV infection is 

characterised by persistent NF-kB activation and recently M2-1 protein has been identified as 

inducer of Rel A (p65), a protein of the mammalian NF-kB complex (Reimers K. et al., 

2005). The M2 mRNA encodes for the M2-1 protein by the 5’-proximal ORF, while the M2-2 

protein originates by the 3’-proximal open reading frame. M2-2 protein has a possible role in 

RNA synthesis regulation mediating the switch from transcription to genome replication 

(Collins P.L. et al., 1996). Recombinant viruses lacking M2-2 protein expression ( M2-2) are 

attenuated in vitro and in vivo compared to wild type (Jin H. et al., 2000 b). 

NS1 and NS2 are proteins with an estimated mass of about 14-15 kDa. They are found 

only in pneumoviruses and they have been classified as nonstructural proteins since they are 

found only in traces in purified virions (Evans J.E. et al., 1996). Their subgenomic mRNAs 

are the most abundant among the transcripts due to the typical gradient of transcription being 

their promoter the most proximal in the RSV genome. From the functional point of view, NS1 

and NS2 proteins, despite enhancing growth, are not essential. Single and double deletion 

mutants are viable although displaying an attenuated phenotype both in vitro and in vivo

(Buchholz U.J. et al., 1999; Jin H. et al., 2000; Teng M.N. and Collins P.L., 1999; Teng M.N. 

et al., 2000). NS1 protein has been reported to be a potent negative regulatory factor of 

transcription and synthesis of genome and antigenome RNA, most likely acting at early stages 

of promoter initiation by the viral polymerase (Atreya P.L. et al, 1998).  

2.2  Replicative cycle 

Binding and entry of RSV into targeted cells are mediated by the interaction between the G 

and the F proteins with host cell molecules. The specific RSV cellular-receptor has not been 

identified so far but there are data indicating an interaction of the RSV G protein with cell 

surface glycosaminoglycans (GAGs), such as heparan sulphate and chondroitin sulphate B 

(Feldman S.A. et al., 1999). Cell surface GAGs are essential for RSV binding in vitro and are 

therefore important for infectivity (Martinez I. and Melero J.A., 2000). Interestingly, 

recombinant RSV viruses lacking the G protein are infectious in cell cultures, however they 

show attenuation in vivo, both in human and mouse airway cells (Karron R.A. et al., 1997; 

Teng M.N. et al., 2001). These results imply that G protein is dispensable for cell attachment 

but it has other functions that might influence the efficiency of the process. For example, a 
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putative binding domain to CX3C receptor (CX3CR1), which could favour infection, has 

been shown (Tripp R.A et al., 2000 and 2001). 

Protein F alone can mediate attachment. It is responsible for fusion of the virus envelope with 

the host plasmame mbrane and for syncytium formation, therefore it is absolutely required 

during the virus life cycle.  

Assembly

Budding of a mature virion 

Nucleus

Cell to cell fusion and 
syncytia formation 

Ribosomes

mRNA transcription Genomic RNA
synthesis

RSV attachment

dsRNA

RSV fusion

.

Fig. 3: RSV replicative cycle. The attachment protein G and the fusion protein F mediate RSV entry/uptake. 
After fusion of the viral envelope with the host plasmamembrane, nucleocapsids are released into the cytoplasm, 
where the entire replication takes place. RNA transcription and replication is followed by encapsidation and 
budding on the cell surface of the newly formed virions. 

RSV uptake seems to occur by fusion rather than endocytosis although several studies 

indicate an interaction between RSV and caveolae-enriched membranes (Gingras D. et al., 

1998; McCurdy L.H. and Graham B.S., 2003). For example, entry of RSV in bovine dendritic 

cells (DC) and subsequent antigen presentation to T lymphocytes appears occurs via a 

caveolae-dependent mechanism (Werling D., 2002a/b). 
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RSV requires cytoskeletal elements. The microtubule and actin networks play a role in several 

aspects of the viral life cycle. Perturbation of cytoskeletal functions is negatively reflected on 

RSV entry, release, cell-cell spreading and syncytia formation (Kallewaard N.L. et al., 2005). 

The entire RSV replicative cycle takes place in the cytoplasm and begins with transcription of 

the genome into 5’-capped and 3’-polyadenylated mRNAs by the viral RNA-dependent 

polymerase complex. RNA synthesis occurs in a sequential manner from the 3’-end of the 

genome with the polymerase complex terminating and reinitiating mRNA transcription at 

each junction. Reinitiating can be occasionally inefficient and this results in a gradient of 

mRNA decreasing proportionally to the distance of the gene from the 3’-end of the genome. 

The polymerase complex is also responsible for antigenomic RNA synthesis. In this case, all 

the junction signals are completely ignored and the result is a complementary positive-sense 

copy of the viral genome. The antigenomic RNA represents a replicative intermediate and it is 

less abundant in comparison to the genomic RNA of about 10-20 fold. Both RNAs are packed 

into virions in an equal proportion. Antigenomic and genomic RNA synthesis correlates with 

protein translation indicating a need for cosynthetic encapsidation. In contrast to other 

Paramyxoviruses, the switch between RSV transcription and RNA replication seems to 

implicate M2-2 protein and not to depend on the intracellular levels of N and P proteins 

(Fearns R. et al., 1997). At the early stages of infection, low levels of M2-2 correlates to a 

high transcriptional rate. Afterwards, when the intracellular levels of M2-2 protein increased, 

transcription is inhibited in favour of replication (Bermingham A. and Colllins P.L., 1999). 

Assembly of the nucleocapsids is entirely cytoplasmatic. N protein associates first with 

genomic and antigenomic RNA followed by P and L. Once assembled, nucleocapsids are 

transported close to the cell surface and bud at specific plasma membrane patches where 

glycoprotein G clusters. Association of the nucleocapsids with the nascent envelope is 

mediated by M protein, which makes contacts with the cytoplasmatic tails of the viral 

glycoproteins. However, efficient viral formation in vitro is not affected by deletion of G and 

SH proteins. On the contrary F protein seems to be essential in this context. Assembly is also 

related to an intact cellular cytoskeleton. (Ulloa L. et al., 1998; Burke E. et al., 2000; Gower 

T.L. et al., 2001). 
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2.3  Epidemiology and Pathogenesis 

Respiratory syncytial virus (RSV) infection is one of the most important health problems in 

infancy accounting for about 85% of cases of bronchiolitis and approximately 20% of cases of 

childhood pneumonia (Wright P.F. and Cutts F.T., 2000). It significantly contributes to 

hospitalisation of infants in developed countries. Only in the United States, it has been 

estimated that more than 120.000 children younger than 1 year are hospitalised annually, with 

about 200 deaths as a results of this illness (Shay D.K. et al., 2001). Of course the scenario in 

countries with less well-developed medical care programs is even more serious. Bronchiolitis 

and pneumonia occur most frequently between the 6 weeks and 9 months of age, showing a 

peak in coincidence of the dropping of maternal antibody titers around the second-seventh 

month. Fortunately, the risk of severe illness related to RSV is quite low in developed 

countries. However, several groups of infants might be more predisposed to a severe outcome, 

like in the case of infants with chronic lung disease of prematurity, congenital heart disease or 

compromised immunity. In addition RSV is an important pathogen in the elderly. 

RSV has a worldwide distribution and it is a seasonal infection, with peaks around winter 

and/or spring (Stensballe L.G. et al., 2003). Persistence, in vivo, has been postulated to 

explain the apparent absence of the virus between epidemics. There are experimental 

indications demonstrating that, for example BRSV-infected B lymphocyte can be isolated in 

calves 10 weeks after infection and that B-lymphocytes cell-lines show persistent infection in 

vitro for 6 months (Streckert H.J. et al., 1996; Valarcher J.F. et al., 2001). 

Transmission occurs via contact with respiratory secretions. The incubation period can vary 

between 2-8 days and it is followed by symptoms related to upper and lower respiratory tract 

infection.

Veterinary pathogens, belonging to the same subfamily of the human respiratory syncytial 

virus (HRSV), have been identified. The avian metapneumovirus (APV) is the causative agent 

of the turkey rhinotracheitis (Njenga M.K. et al., 2003) and probably of the swollen head 

syndrome in chickens (Cook J.K., 2000). Outbreaks follow a seasonal pattern and wild 

migratory birds might be involved in virus spreading. APV causes severe upper respiratory 

infections with high mortality and big economic loss for the industry as seen in the late 

nineties in USA (Panigrahy B. et al., 2000; Jirjis F.F. et al., 2002). The pneumonia virus of 

mice (PMV) was isolated for the first time in 1938 and it seems not to be an important disease 
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in wild mice, with the exception of immunocompromised subjects. PMV represents an 

alternative model to study pneumovirus-related disease in rodents (Cook P.M. et al., 1998) 

and recently its full genome has been published (Krempl C.D. et al., 2005). APV is closely 

related to a newly described human metapneumovirus (HMPV), which is responsible for a 

clinical syndrome practically indistinguishable from the one related to HRSV (van den 

Hoogen B.G. et al., 2001; van den Hoogen B.G. et al., 2002; Kahn J.S., 2003).   

Sheep and goats have also distinct RSV pathogens (Trudel M. et al., 1989; Brogden K.A. et 

al., 1998). Bovine pneumovirus (BRSV) has been isolated in the 70s and research on this 

virus has been encouraged by the fact that BRSV represents the most close phylogenetic- 

relative of HRSV. BRSV shares with the human counterpart the same way of transmission 

and the seasonality of the outbreaks, but, unlike HRSV, bovine pneumovirus infections are 

often complicated by concomitant bacterial infection, e.g. Pasteurella multocida, 

Haemophilus somnus (Woolums A.R. et al., 2004; Gershwin L.R. et al., 2005).

RSV-illness usually begins with infection of the upper respiratory tract and it is characterised 

by non-specific symptoms: fever and rhinorrhea that can last several days. When the lower 

respiratory tract gets involved, the outcome can be pneumonia with tachypnea, difficulties in 

breathing, wheezing upon auscultation or bronchiolitis that might impair pulmonary functions 

for long time and/or predispose to asthma (Psarras S. et al., 2004). Morbidity can be increased 

by many predisposing conditions like premature birth, heart diseases, immunodeficiency 

(Welliwer R.C., 2002). Host factors, especially related to aberrant inflammatory response, 

have been associated to severe RSV disease. Particular emphasis has been paid to the 

potential role of  proinflammatory chemokines and cytokines, whose expression is up-

regulated in RSV-related disease and, in some cases, contributes to exacerbate the detrimental 

effects of  the primary infection. High levels of IL-1 , IL-6, IL-8, TNF- , MIP1

(macrophage inflammatory protein), RANTES and adhesion molecule ICAM-1 have been 

detected in respiratory secretions. The productions of these factors follow a biphasic pattern 

with an early peak during RSV active infection and a later peak not related to viral replication 

(Miller A.L. et al., 2004; Kong X. et al., 2005). 

Prominent pathological features of severe RSV infections are necrosis of the airway 

epithelium, interstitial inflammation with lymphocytes, plasma cell and macrophages 

infiltrations, mucus secretion leading to obstruction of the airways and a general respiratory 

compromise.  
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Similarly, BRSV induces mild to severe respiratory signs especially among calves and it has 

shown to be involved in the paroxystic respiratory distress syndrome (PRDS) (Jolly S. et al., 

2004).

2.4  Immunity 

Natural infection with RSV does not provide efficient protection against reinfections, 

indicating that the acquired immunity in this case is neither complete nor durable. 

Ineffectiveness of the immune response against RSV infection has hampered the development 

of effective vaccines against BRSV and HRSV. The other major problem is that prior 

vaccination can enhance the severity of the disease during subsequent natural infection. This 

has been already observed in children in the 60s during trials with formalin-inactivated (FI) or 

alum-adjuvant vaccines (Kim H.W. et al., 1969). Similarly, in animals inactivated vaccines 

were responsible for immunopathological states in calves infected with BRSV (Schreiber P. et 

al., 2000; Antonis A.F. et al., 2003; Kalina W.V. et al., 2005).  

Severe RSV-disease following natural infection or immunization can be attribute to 

impairment of type 1/2 phenotype balance with a dominance of Th2 lymphocyte response. 

Infants and mice with severe bronchiolitis show an augmented eosinophilia and an increase in 

type 2 cytokine levels, e.g. IL-4, IL-5, and IL-13 (Roman M. et al., 1997; Boelen A. et al., 

2002; Johnson T.R.et al., 2005).

Other studies have emphasised more the potential role of chemokine production than the Th2 

cytokines levels as a key factor of RSV immunopathogenesis. In particular the beta 

chemokine macrophages inflammatory protein-1alpha (MIP1 ), the monocyte chemotactic 

protein 1 (MCP-1) and the regulated on activation normal T lymphocyte expressed and 

secreted (RANTES) are known to attract lymphocytes, basophils and eosinophils and they are 

associated with greater inflammatory response in severe RSV-illness (Hornsleth A. et al., 

2001; Garofalo R.P. et al., 2001 and 2005).

2.4.1  Humoral immunity 

Partially protective antibodies against F and G proteins are produced during natural infection. 

Passive immunization with immunoglobulin preparations containing human RSV-specific Ig 
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or monoclonal anti-F antibodies have shown to be able to attenuate the severity of the disease 

(Prince G.A. et al., 2000; Simoes E.A. and Groothuis J.R., 2002; Sastre P. et al., 2004). 

Unfortunately not all humoral responses are favourable. RSV-specific IgE for example may 

also contribute to increase the severity of the disease (Welliver R.C. et al., 1981; Tumas D.B. 

et al., 2001; Dakhama A. et al., 2004). RSV is able to infect infants in the presence of 

moderate titers of maternal antibodies. Secretory antibodies (IgA) are defective in neutralizing 

the virus in vitro (McIntosh K. et al., 1978), which could explain the failure of natural 

immunity during early ages. In adults, higher levels of IgA are produced as a result of 

reinfections and in experimental trials immunity showed to better correlation with RSV-

neutralizing secretory antibodies than with serum neutralizing immunoglobulin. Nevertheless 

secretory IgA gives only partial protection and do not confer resistance to reinfections 

(Gleeson M. et al., 2004; Walsh E.E. and Falsey A.R., 2004). Humoral immunity seems not to 

provide complete protection against RSV infection and current hypotheses point the 

importance of the cell-mediated immune response in viral clearance.  

2.4.2  Cell-mediated immunity 

Infants with a primary RSV infection develop a cellular immune response within 10 days. In 

the BALB/c mouse model the first to appear are natural killer (NK) cells followed by CD8+

cytotoxic T cells (CTL), which can further modulate the immunity by secretion of 

lymphokines, especially IFN  (Chiba Y. et al., 1989; Graham B.S. et al., 1991; Johnson T.R. 

et al., 2002). Human cytotoxic T lymphocytes recognize mainly HRSV N protein and also 

SH, F, M, NS1, M2, and NS2 but not G protein (Cherrie A.H. et al., 1992; Heidema J. et al., 

2004). In a mouse model, where BALB/c mice were infected with HRSV, CTLs major target 

was M2 followed by F and N proteins (Openshaw P.J. et al., 1990; Jiang S. et al., 2002). 

Similar studies have been carried out also in cattle. The recognition pattern of bovine CD8+ T 

lymphocytes includes F, N, M2 proteins and, differently from human and mice, the G protein 

may also elicit CTL activation (Gaddum R.M. et al. 1996 and 2003). 

Vaccination with recombinant vaccinia virus (rVV) expressing RSV proteins or with 

recombinant viral proteins prime CD8+ T cell response and  can mediate protection (Connors 

M. et al, 1992; Taylor G. et al., 1997; Zeng R.H. et al., 2005). However, the derived immunity 

has a short duration and this is due to the capacity of RSV to interfere with T-cell receptor 

(TCR)-mediated signalling (Connors M. et al, 1991; Chang J. and Braciale T.J., 2001). In 
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conclusion CD8+ and also CD4+ T-lymphocytes appear to play important roles in virus 

clearance but, also may also contribute to lung pathology (Alwan W.H. et al., 1991; Taylor G. 

et al., 1995; Rutigliano J.A. and Graham B.S., 2004). 

2.4.3  Innate immunity 

Due to the difficulties to induce an efficient and safe protection towards RSV-infection via 

induction of the adaptive immune response, many recent studies have been focusing on the 

innate antiviral host defences. Respiratory epithelial cells, as well as being the principal target 

of RSV-infection, represent also the first line of defence of the innate immune response 

before the involvement of professional antigen presenting cells (APC), namely macrophages 

(M ) and dendritic cells (DC). 

Respiratory epithelial cells release nitric oxide (NO) upon infection, produce opsonins and 

collectins, which are important in virus clearance, and secrete inflammatory mediators, such 

as chemokines, leucotrienes and cytokines (Olszewska Pazdrak B. et al., 1998; Barr F.E. et 

al., 2000; Hacking D. et al., 2002; LeVine A. et al., 2004). Release of such inflammatory 

factors initiates maturations of neutrophils, eosinophils, macrophages and CD4+ T helper 

chemiotaxis. Alveolar macrophages are very important in the innate immune defence against 

RSV. They regulate the ensuing immune response by releasing proinflammatory cytokines: 

tumor necrosis factor (TNF) and interleukin 10 (IL-10) which synergistically enhance 

opsonization; IL-6 and IL-8. Alteration of macrophages (M ) and dendritic cells (DC) upon 

RSV infection has been observed. In particular, RSV-induced release of IL-10 is responsible 

for a local immunosuppressive activity and a Th2 bias shift. Thus, increased production of IL-

10 concomitant with a reduction in IL-12 levels, which instead supports Th1-type immune 

response, leads to a reduced production of interferon gamma by T cells (Bartz H. et al., 2003; 

Schauer U. et al., 2004). 

In macrophages and epithelial cells, RSV induces activation of NF-kB, which in turn 

stimulates transcription of genes linked to antiviral response (Bitko V. et al., 1997; Tian B. et 

al., 2004). NF-kB is an ubiquitously expressed transcription factor that is present in the cell 

cytoplasm as a complex of homo- and heterodimers of Rel family members (p65/RelA; RelB; 

c-Rel; p100/p52 and p105/p50). In unstimulated cells, NF-kB is held into an inactive state by 

the inhibitory IkB  proteins. Phosphorylation and proteasomic degradation of IkB  mediates 



                                                                                                             Review of the Literature 
___________________________________________________________________________

15

NF-kB activation. Activation consists in NF-kB translocation to the nucleus and binding to 

the promoter/enhancer of targeted genes (Baldwin A.S. et al., 1996). 

NF-kB regulates expression of cytokines in response to ligation of many receptors involved in 

immunity. Numerous pathways lead to NF-kB activation. The so-called “classical” pathway 

has inputs from tumor necrosis factor receptors (TNFR1/2), T and B cell receptors, Toll-like 

and IL-1 receptors (TRL/IL-1R). The “alternative or noncanonical” pathway, which goes 

through NIK (NF-kB inducing kinase) activation, responds to ligands to lymphotoxin-

receptor and CD40 (Bonizzi G. and Karin M., 2004). Interestingly, early in infection RSV 

induces NIK activity and consequent activation of the “noncanonical” NF-kB activation 

pathway. This pathway is independent of activation of IKK- , which occurres only later in the 

course of the infection with involvement of the “classical” pathway (Choudhary S. et al., 

2005). NF-kB plays an essential role in early stages of innate immune response especially via 

the Toll-like receptor (TLR) signalling pathway (Haeberle H. et al., 2002; Cusson-Hermance 

N. et al., 2005). Toll-like receptors are evolutionary conserved pattern recognition receptors, 

which are responding to pathogen-associated molecular patterns (PAMPs). PAMPs include 

lipopolysaccharids (LPS), nonmethylated CpG DNA and dsRNA (Medzhitov R., 2001; 

Barton G.M. and Medzhitov R., 2003; Gelman A.E. et al., 2004).  

Cytokine and chemokine production in RSV-infected cells involves the Toll-like receptor 

signalling pathway. RSV is known to express potent activators of Toll-like receptors and the role 

of several TLRs is currently under extensive examination. Up-regulation of TLR3 in human lung 

fibroblasts and epithelial cells has been shown, while involvement of TLR4 is still under 

controversy (Haynes L.M. et al., 2001; Ehl S. et al., 2004 and Rudd B.D et al., 2005). Recently, 

RSV has been reported to switch off the activation of TLR-7 and -9 in PDCs. (Schlender J. et al., 

2005).

2.4.4  The interferon /  system  

The interferons (IFN) are heterogeneous family of inducible cytokines, originally identified 

on the basis of their biological activity in determining antiviral resistance in cell culture. 

Interferons are commonly classified into two types, which are functionally not redundant in 

host antiviral defence. The type II interferon is known as IFN-  and it is considered to be a 

regulator of the adaptive immune response. IFN  is induced upon mitogenic or antigenic 

stimuli mainly by haematopoietic-derived stemm cells, like T cells (CD4+ Th1 and CD8+) or 
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natural killer cells (NK).Type I interferons are the main cytokines  for innate immune 

responses against viral infection. They are produced by many types of cells, from leucocytes 

to fibroblasts, in response to different viruses and their induction is primarily controlled at the 

transcriptional level. The type I interferons include IFN- I-II, IFN- , IFN-  and IFN-  and 

their genes cluster on chromosome 9 in humans and chromosome 4 in the mouse. Most of the 

type I interferons are posttranslationally glycosilated, except human IFN- , and they can 

function as mono- or homodimers (reviewed in Samuel C.E., 2001). Spontaneous production 

of IFN- /  in absence of viral infection has been reported. There are indications that 

interferonmight be involved in antitumoral activities and cell-growth regulation (Gresser I., 

1990).
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Many viruses can induce activation of IFNA/B genes transcription. Activation occurs when 

members of the IRF (Interferon Regulatory Factors) family bind to regulatory sequences in 

the IFN- /  gene promoters. The IRF family consists in 9 transcriptional activators of which 

IRF3 and IRF7 are essential for IFN- /  expression. IRF3 is constitutively expressed in all 

cells and resides into the cytoplasm of unstimulated cells in a latent form. IRF3 activation is 

mediated by dsRNA and virus infection. Upon activation, IRF3 undergoes serine/threonine 

phosphorylation, dimerization, nuclear translocation, and after association with p300/CBP 

coactivator, DNA-binding at consensus sites (Lin R. et al., 1998). Transcriptional activity of 

IRF3 is controlled by C-terminal phosphorylation, which is carried out by a newly identified 

virus-activated kinase complex, whose components are the IKK-related kinases TBK1 and 

IKK-i/  (Fitzgerald K.A. et al., 2003; Sharma S.et al., 2003; McWhirter S.M. et al., 2004).  

Activation of the TBK1/IKK- -mediated IFN-  signalling pathway is mediated by the 

retinoic-acid inducible gene I (RIG-I) and the melanoma differentiation associated gene 5 

(MDA5). RIG-I and MDA5 are cytoplasmatic RNA elicases responsible for dsRNA 

recognition. By gene targeting, it has been shown that RIG-I is essential for induction of type 

I interferons after infection of fibroblasts and conventional dendritic cells (DCs). RIG-I 

activates IRF3 via TBK1 and IKK-  (Yoneyama M et al., 2004; Hiroki K. et al., 2005). 

Moreover, RIG-I and MDA5 interact with the newly identified interferon-beta promoter 

stimulator 1 (IPS-1) and the virus-induced signalling adaptor VISA in sensing viral infection 

and in the activation of IFN- /  induction signalling pathway (Kawai T. et al., 2005; Xu L.G. 

et al., 2005). 

IFN- /  signalling pathway is mediated by a common receptor complex IFNAR, which 

consists in two subunits, IFNR1 and IFNR2. Upon ligand-induced stimulation of IFNAR, two 

receptor-associated Janus protein tyrosine kinases, Jak1 and Tyk2, become cross-activated. 

This is followed by tyrosine phosphorylation of two members of the family of signal 

transducers and activators of transcription (STATs), namely STAT1 and STAT2. Activation 

of STATs leads to the formation of two transcriptional-activator complexes, IFN- -activated 

factor (AAF) and IFN-stimulated gene factor 3 (ISGF3). ISGF3 consists of activated STAT1, 

STAT2 and the interferon regulatory factor (IRF) 9. This trimeric complex locates into the 

nucleus and binds to a cis-acting DNA element, designated ISRE, which is present in IFN- /

inducible genes. Among these IFN-inducible genes, some encode for proteins implicated in 
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antiviral activities: the RNA-dependent protein kinase (PKR); the 2’, 5’-oligoadenylate 

synthetase (OAS); RNase L and the Mx protein GTPases (Lau J.F. and Horvarth C.M., 2002).

2.5  Viral antagonists of IFN type I response 

Both DNA and RNA viruses encode for proteins and have developed strategies to impair IFN 

response. Circumventing or blocking IFN activity delays the generation of an acquired 

immunity and allows viruses to successfully establish infection. Viral countermeasures can 

affect IFN production or target IFN signalling. Several viruses have been reported to prevent 

IFN induction by sequestration of dsRNA activators of PKR or 2’,5’oligoadenylate

synthetase/Rnase L system. dsRNA-binding proteins are encoded by vaccinia virus (E3L), 

reovirus (capsid protein 3), rotavirus (NSP3) and influenzavirus (NS1) (Chang H.W. et al., 

1992; Lu Y. et al. 1995; Bergeron J. et al., 1998). A direct antagonism of PKR has been also 

observed in poliovirus, adenovirus, SV40 and hepatitis C virus (HCV) (Black T.L. et al.1993; 

Gale M. and Katze M.G., 1998). Encephalomyocarditis virus (EMCV) and HIV instead  

downregulate RNase L (Martinand C.et al., 1998 and 1999). Another common strategy to 

block IFN production consists in repressing transcriptional activation of IFN- /  promoter. 

For example, human herpesvirus 8 (HHV8) synthesizes an IRF homologue that is able to 

block the transcriptional complex CBP/p300-IRF3 (Gao S.J. et al., 1997). The E6 protein of 

human papillomavirus type 16 (HPV-16) binds IRF3 and therefore inhibits its activity (Ronco 

L.V. et al., 1998). The nonstructural proteins (NS1 and NS2) of  BRSV antagonize IRF3 

phosphorylation (Bossert B. et al., 2003). 

The IFN signalling pathway can be targeted as well by several viruses and its block can be 

achieved by multiple mechanisms. Poxviruses, for example, encode soluble IFN receptor 

homologues (vIFN-Rc). These secreted viral proteins sequester cellular IFNs, antagonizing 

their binding to natural receptors (Smith G.L. et al., 1998). Simian 5 virus (SV5) or mumps 

virus (MV) induce degradation of STAT1, while parainfluenza virus type 2 elicits degradation 

of STAT2 , thereby preventing the formation of ISGF3 complexes (Dideock L. et al., 1999; 

Young D.F. et al., 2000). Adenovirus affects DNA-binding of ISGF3 via the E1A protein 

(Leonard G.T. and Sen G.C., 1997). Among Herpesviruses, varicella-zoster virus (VZV) 

inhibits expression of STAT1 and JAK2, whereas human cytomegalovirus (HCMV) blocks 

STATs phosphorylation by inducing degradation of JAK1 and IRF9 (Miller D.M.et al., 1998; 

Abendroth A. et al., 2000). 
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Respiratory syncytial virus is resistant to type I IFN but conflicting results about its ability to 

affect type I IFN-signalling have been reported. Most of the data indicate that inhibition of the 

IFN-signalling pathway is not involved. IFN-mediated MxA expression is maintained in 

epithelial cells infected with HRSV or BRSV. Besides no decrease of STAT1 and STAT2 

levels has been observed (Atreya P.L. and Kulkarni S.,1999; Young D.F. et al., 2000; Bossert 

B. et al., 2003). Other groups have been arguing that RSV does block JAK/STAT pathway by 

decreasing STAT2 expression (Ramaswamy M. et al., 2004; Lo M.S. et al., 2005). 

2.6  The RSV nonstructural proteins NS1 and NS2 

Pneumovirus is the only genus in the Paramyxoviridae family whose members encode the 

NS1 and NS2 proteins. The two NS genes are located at the 3’ end of the negative-strand 

RNA genome and, due to a characteristic transcriptional gradient, the transcripts of these 

genes are abundantly expressed in infected cells. NS proteins are not essential for RNA 

replication, however recombinant RSV lacking NS genes are severely attenuated in vitro and 

in vivo (Teng M.N. and Collins P.L., 1999; Schlender J. et al., 2000; Valarcher J.F. et al., 

2004). The NS1 and NS2 genes of HRSV subgroup A are 528 and 499 nucleotides long with 

single open reading frames encoding polypeptides of 139 and 124 amino acids, respectively. 

Similarly, NS1 and NS2 genes of BRSV strain A51908 have 524 and 489 nucleotides which 

encode for polypeptides of 136 and 124 amino acids, respectively. Comparison of the 

sequences of HRSV NS proteins with the corresponding BRSV revealed amino acid identity 

of 69% for NS1 and 84% for NS2 protein (Collins P.L. and Wertz G.W., 1985; Pastey M.K. 

and Samal S.K., 1995). HRSV NS1 protein coprecipitates with M protein and interacts with 

the C-terminal region of phosphoprotein P. The NS2 protein, despite colocalizing with N and 

P proteins in cytosolic “inclusion bodies”, does not coprecipitate with any viral protein (Evans 

J.E. et al., 1996; Hengst U. and Kiefer P., 2000; Bossert B. et al., personal observation). 

Nonstructural proteins of pneumoviruses do not show common features of other known 

proteins or functional domains that would suggest their function. NS proteins are abundantly 

transcribed in RSV-infected cells and can block induction of IFN- / . Conzelmann and 

colleagues generated BRSV mutants in which NS1 and NS2 genes have been deleted singly 

( NS1; NS2) or in combination ( NS1/NS2). All three mutant viruses display a slight 

attenuation in their growth in BSR T7/5 and Vero cells. Similar results have been also 

obtained with the human counterpart HRSV. These results suggest that NS proteins are 
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dispensable for viral growth but they also indicate their involvement in viral replication 

(Buchholz U. et al., 1999; Teng M. and Collins P.L., 1999). In cultured cell lines that are 

competent for type I IFN production, as in vivo, deletion HRSV and BRSV viruses are 

severely impeded in their replication providing evidence that NS1 and NS2 proteins 

independently or cooperatively subvert IFN- / -mediated antiviral state (Jin H. et al., 2000 

and 2003; Valarcher J.F. et al., 2003). NS proteins can therefore be considered as potent 

antagonists of IFN induction. 

Our studies demonstrate that BRSV impairs type I IFN production by preventing the 

activation of IRF3. In wild-type BRSV-infected cells, but not in cells infected with the double 

deletion mutant BRSV NS1/NS2, phosphorylation of IRF3 is selectively blocked. This leads 

to the suppression of IRF3 transcriptional activity in infected cells and compromises the 

subsequent establishment of an IFN-mediated immune response (Bossert B. et al., 2003).

Similarly to BRSV, wild-type HRSV poorly induces type I interferons, in contrast 

recombinant viruses lacking NS1 and NS2 genes do increase dramatically expression levels of  

IFN-  (Spann K.M. et al., 2004). 
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3 MATERIALS AND METHODS

3.1 Cells culture and viruses

3.1.1 Cells

Vero and HEp2 cells were obtained by the American Type Culture Collection (ATCC;

Rockville, MD) and maintained in Dulbecco’s modified Eagle’s medium (DMEM, Gibco

BRL) supplemented with 5% fetal calf serum (FCS) and 1% Penicillin/Streptomycin 100x

(Sigma cell culture). For Vero-p125Luc cells, stably transfected with the IFN-

promoter/enhancer, 1 mg/ml of G418 were added to the medium. 293 and A549 cells were

cultured in DMEM containing 10% FCS and antibiotics. For 293 cells the medium was

additionally supplemented with 1% L-glutamine (Gibco BRL) . Baby hamster kidney cells

stably expressing T7 RNA polymerase (BSR T7/5) were propagated in BHK-21 medium

(Glasgow MEM, Gibco) containing 10% newborn calf serum (CS), 2% MEM amino acids

(Gibco BRL), 2% Tryptose phosphate broth 50x (Gibco BRL), 1% Penicillin/Streptomycin

and 1 mg/ml of G418 .

3.1.2 RSV propagation and titer determination

Human respiratory syncytial virus (HRSV) subgroup A strains A2 and Long, were obtained

by the American Type Culture Collection. Recombinant bovine respiratory syncytial virus

(rBRSV) was derived from BRSV strain A51908 (American Type Culture Collection) variant

Atue51908 (GeneBank accession no AF092942). For production of RSV stocks, 80%

confluent Vero cells grown in a 75 cm
2
tissue culture flask were infected at a multiplicity of

infection (MOI) of 0.1 in serum-free DMEM. After absorption for 1-1.5 hours, the inoculum

was removed and cells were incubated in DMEM supplemented with 2.5% FCS. When an

extensive cytopathic effect (syncytia formation) was observed, virus was released by freezing

and thawing. After centrifugation at 3,500 rpm (Heraeus Varifuge 3R) for 5 min to remove

cellular debris, the supernatant was aliquoted and stored at 70°C. Virus titers were

determined by limiting dilution in microwell plates. A confluent 75 cm
2
flask of Vero cells

was trypsinized and resuspended in 20-30 ml of DMEM containing 5% FCS, 100 µl were

distributed in each well of a 96-well microtiter plate. Virus stocks were stepwise 10-fold
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diluted in serum-free DMEM and 100 µl of each dilution were pipetted into the wells. After 4

days, cells were fixed with 80% acetone for 20 min at 4°C and air-dried. Infected cell foci

were stained with a monoclonal antibody recognizing the RSV nucleoprotein N (Serotec,

diluted 1:75 in PBS) for 60 min at room temperature. After washing with PBS for three times,

a FITC-conjugated anti-mouse antibody (dilution 1:100 in PBS) was applied for 60 min at

RT. Wells were washed three times with PBS and once with dH2O; foci were counted using a

fluorescent microscope (Olympus, IX71).

3.1.3 Rabies virus (RV) stocks and titer determination

A recombinant rabies virus carrying nucleotide sequence of Street Alabama Dufferin B19

(rRV SAD L16), a recombinant RV where the P coding sequence was replaced with eGFP-P

fusion protein (SAD eGFP-P) and mutant SAD eGFP-Ps harbouring the HRSV NS1 and NS2

genes (SAD eGFP-Ph2/1 and SAD eGFP-Ph2*
T26I
/1) were propagated in BSR T7/5 cells.

A 25 cm
2
tissue culture flasks 80% confluent were infected at an MOI of 0.1 for 1 hour. Cells

were then incubated in Glasgow MEM supplemented with 10% CS and supernatants were

harvested after 3 and, when possible, 6 days post infection. Supernatants were centrifuged 5

min at 3.500 rpm, aliquoted and freezed at 70°C. Determination of virus titers was carried

out on BSR T7/5 cells by limiting dilutions as described for RSV. Virus foci were visualised

by immunostaining with a fluorescein isothiocyanate conjugate (Centocor ) recognizing RV

N protein. For recombinant SAD eGFP-P viruses, fluorescence of infected cells was detected

directly by fluorescence microscopy.

3.2 General cloning procedures

3.2.1 Restriction enzyme digest

Restriction endonuclease digests were performed according to the supplier’s manual using the

recommended buffer and 10 units (U) of the chosen enzyme for each microgram of DNA.
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3.2.2 Extraction of DNA fragments from agarose gel

Restriction fragments were separated by electrophoresis on 1%-1.5% agarose gel using 1 x

TAE buffer containing 0.1 µg/ml of ethidium bromide. Addition of ethidium bromide solution

permitted visualization of nucleic acids under UV light.

x TAE buffer: Tris 40 mM

CH3COONa x 3 H2O 5 mM

EDTA 1 mM

Samples were diluted in 1x DNA loading buffer, loaded into the slots and electrophoresis was

performed for 45-60 min at 120 V.

DNA loading buffer: Ficoll 400 15%

TAE 5%

Orange G

Fragments were visualised under UV light at 366 nm (BIO-RAD, Universal Hood II) and

DNA fragments were recovered by gel excision. DNA was purified using QIAquick gel

extraction kit (Qiagen) following the supplier’s manual. Concentration of purified DNA

(µg/µl) was estimated by measuring the OD of 100 µl of a 1:50 dilution of the sample at 260

and 280 nm in a spectrophotometer (BioPhotometer, Eppendorf). Only samples with a ratio

between 1.7 and 2.0 were considered as appropriately pure.

3.2.3 DNA ligation

A ratio of vector/insert DNA of 1:5 or 1:10 was used in any ligation. 100 ng of vector were

mixed, in a sterile 1.5 ml centrifuge tube, with the appropriate amount of insert DNA, 2 µl of

10x ligation buffer, 2 U/µl of T4 DNA ligase (MBI) and bidistilled water up to 20 µl. The

ligation mix was incubated at room temperature for 3-4 hours or alternatively over night at

16°C.
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3.2.4 Transformation into competent bacteria

Competent XL-1 Escherichia coli were prepared by calcium chloride method. Bacteria were

thawed on ice and 50 µl were transferred to a semisterile centrifuge tube. About 10 ng of

plasmid or up to 20 µl of a ligation mix were added. After mixing by pipetting, bacteria were

incubated on ice for 20 min. The tube was than transferred for 2 min to a heating block,

preheated at 42°C and then rapidly returned to ice for 1-2 min. 250 µl of LB++ medium were

added to each tube and cultures were incubated at 37°C for 1 hour on a shaker.

LB
++
Medium: LB medium 1 l

MgSO4 19 ml of 1 M solution

KCl 3,2 ml of 3 M solution

An appropriate volume of culture (10-50 µl for plasmids and 250 µl for ligation) was

distributed onto agarose-LB plates containing 100 µg/ml of ampicillin. Transformed bacteria

were spread over the agarose plate by using a sterile metal rod and incubated over night at

37°C.

Agarose-LB: LB medium 1 l

Agar, in granules 15 g

After autoclaving the solution, swirl carefully to dissolved the agarose. When the solution

cools down to 50°C, add the antibiotic and pour directly in 90 mm Petri dishes. Wait until the

medium has solidified completely, turn the plates up side down and store at 4°C.

3.2.5 Preparation of minipreps and midipreps

To screen for positive clones, colonies were picked with pipette tips from the agarose-LB

plate and cultured in 1 ml of LB media supplemented with 100 µg/ml of ampicillin overnight

under constant agitation.
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LB
++
Medium: NaCl 5 g

Yeast extract 5 g

Bactotrypton 10 g

MgSO4 1 ml of 1 M solution

Bidistilled water up to 1 l

Dissolved the solute, adjust the pH at 7.5 and autoclave

Cultures were centrifuged for 5 min at 4000 x g (Ependorf table centrifuge). The supernatant

was discharged and the pellet resuspended in 0.2 ml of Flexi I buffer. Flexi II buffer (0.2 ml)

was added to lyse the cells for 5 min at room temperature, followed by the addition of 0.2 ml

of Flexi III buffer to precipitate chromosomal DNA and cellular debris. After an incubation

on ice for 5 min, tubes were centrifuged for 10 min at 8000 x g and the supernatant was

transferred to a fresh 1.5 ml. A volume of 0.42 ml of isopropanol was added to precipitate

plasmid DNA and the solution was mixed by pipetting before centrifugation at 8000 x g for

10 min at room temperature. The supernatant was removed and the pellet was washed with 1

ml of 70% ethanol, centrifuged as before and, after being air-dried, dissolved in 50 µl of

dH2O. Restriction enzyme analysis was performed. Larger amounts of plasmid DNA were

prepared by midipreps. Overnight cultures of 100 ml of LB medium supplemented with 100

µg/ml of ampicillin were used and DNA was purified with Nucleobond plasmid purification

kit AX 100 (Macherey-Nagel) according to the manifacturer’s instructions.

Flexi I: Tris-HCl 100 mM [pH 7.5]

EDTA 10 mM

Rnase I 400 g /ml

Flexi II: NaOH 200 mM

EDTA 1%

Flexi III: KCH3COO (aq) 300 mM [pH 5.75]
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3.3 Reverse Transcription and PCR conditions

3.3.1 Extraction of RNA from cells and reverse transcription

For reverse transcription (RT) reactions, RNA was isolated from confluent mock and infected

cells seeded into 6-well plates using Qiagen Rneasy kit (Qiagen). For IFN- mRNA isolation

cells were infected at MOI of 1 for 16-18 hours. A DNase digest was performed during the

RNA extraction process using RNase-free DNase set (Qiagen). RNA was resuspended in 50

µl of DEPC-H2O and the concentration was determined as described for the DNA

concentration. 1 µg of DNase-treated RNA was mixed with 3 µl (30 pmol) of the desired

antisense primer and 0.5 µl of Rnasin (Amersham-Pharmacia) in a total volume of 42 µl.

After an incubation of 10 min at 65 °C followed by 10 min at 37°C, 2 µl of dNTP mix (25

mM each), 5 µl of 10x RT buffer (provided by the manufacturer) and 1 µl of StrataScript

reverse transcriptase were added. The reaction was incubated for 1 hour at 37°C followed by

inactivation of enzyme activity at 95 °C for 5 min. 5 µl were used in a PCR reaction.

DNase digested RNA x µl (1 µg)

Antisense primer 3 µl (30 pmol)

dNTPs (25 mM) 2 µl

10x reaction buffer 5 µl

Rnasin 0.5 µl

reverse transcriptase 1 µl

bidistilled water up to 50 µl

The following primers were used to amplify:

Human IFN-

h 3’ (antisense): 5’-aag atg ttc tgg agc atc tga tag atg-3’

Actin

-actin 3’ (antisense): 5’-ccg cca gac agc act gtg ttg gcg ta-3’

HRSV NS1:

hNS1-EcoRI (antisense): 5’-att gag aat tct tat gga tta aga tca aa-3’

HRSV NS2:
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hNS2-EcoRI (antisense): 5’-att gag aat tct tat gga tta aga tca aa-3’

BRSV NS2:

BNS2HA-EcoRI (antisense): 5’-gca ata gaa ttc cta ttt atc gtc atc atc ttt ata atc tgg att

taa atc ata ctt ata-3

3.3.2 PCR conditions

Standard PCR reactions were prepared with 100 ng of template DNA, 25 pmol of each sense

and antisense primers, 1 µl of dNTPS mix (25 mM of each dATP, dCTP, dGTP and dTTP),

10 µl of DMSO, 10 µl of 10x buffer (supplied by the manufacturer and containing 50mM of

MgSO4) and 1 µl of Taq Polymerase in a total volume of 100 µl.

For detection of human IFN- , the following primers were used:

h 5’ (sense): 5’-ctc ctc caa att gct ctc ctg ttg tg-3’

h 3’ (antisense) 5’-aag atg ttc tgg agc atc tga tag atg-3’

To confirm integrity of the DNA and to verify infection, sequences of the -actin and RSV

NS genes were amplified, respectively, using the primers listed below:

-actin 5’ (sense): 5’-ggc atc gtg atg gac tcc-3’

-actin 3’ (antisense): 5’-ccg cca gac agc act gtg ttg gcg ta-3’

hNS1-NcoI (sense): 5’-att gac cat ggg cag caa ttc att-3’

hNS1-EcoRI (antisense): 5’-att gag aat tct tat gga tta aga tca aa-3’

bNS2-BamHI (sense): 5’-aag cgg atc ccc aac cag cca tga gca cc-3’

bNS2FL-EcoRI (antisense): 5’-gca ata gaa ttc cta ttt atc gtc atc atc ttt ata atc tgg att
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taa atc ata ctt ata-3’

hNS2-NcoI (sense): 5’-att gac cat gga cac aac cca ca -3’

hNS2-EcoRI (antisense): 5’-gga att cga atc ttg tgt tga aat t-3’

The reactions were prepared on ice in a sterile 0.5 ml tube and contained:

DNA sample 5 µl

Sense primer 2.5 µl (10 pmol)

Antisense primer 2.5 µl (10 pmol)

dNTPs (25mM) 2.0 µl

10x reaction buffer + MgSO4 10 µl

DMSO 10 µl

Taq Polimerase (5U) 1 µl

Bidistilled water 64 µl

PCR reaction was carried out in a Biometra T3 thermocycler including the following steps:

1
st
step: denaturation (95 °C, 5 min)

2
nd
step: denaturation (94 °C, 1 min)

3
rd
step: annealing ( x °C, 1min)

4
th
step: extension (72 °C, 1 min 30 sec)

5
th
step: extension (72 °C, 10 min)

6
th
step: cooling/pause to 4°C

Step 2 to 4 were repeated 35 times, before step 5 and 6, for a total number of 36 cycles. The

temperature of the annealing step depended on the length and GC-content of the primers:

62°C were used for IFN- and for -actin, 58°C for HRSV NS2, 52°C for and 63°C for

HRSV and BRSV NS1 gene, respectively. The resulting DNA fragments were mixed with

DNA loading buffer and run on a 1.5 % agarose TAE gel with ethidium bromide and

visualised with UV light. If required, purification of PCR products was performed by Qiagen

PCR purification kit or by QIAquick gel extraction kit (Qiagen).
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3.4 Generation of recombinant BRSV viruses expressing HRSV NS1 and NS2 proteins

3.4.1 Construction of rBRSV viruses expressing NS proteins of HRSV strain Long

(rBRSVh1/2)

Construction of the recombinant BRSV virus harbouring HRSV Long NS1 and NS2

(rBRSVh1/2) has been previously described (Bossert B. and Conzelmann K.K., 2002).

Briefly, cDNA encompassing both HRSV Long NS genes was obtained by RT-PCR of

infected Vero cells and subcloned in a plasmid, generating the phNS1hNS2cass. This plasmid

was digested with NotI and Acc65I and the resulting fragment containing the HRSV Long NS

genes was inserted in a full length BRSV cDNA, resulting in rBRSVh1/2.

3.4.2 Construction of rBRSV expressing a mutated HRSV NS2 protein (rBRSVh1/2*
T26I
)

3.4.2.1 Quick site-directed mutagenesis of HRSV Long NS2 gene

phNS1hNS2 was used for mutagenesis. Threonine (T) at position 26 of NS2 protein was

substituted with an Isoleucine (I) residue, mimicking the situation in HRSV A2 strain. An

additional restriction site for the endonuclease SpeI was inserted for subsequent restriction

digest analysis. Mutagenesis was performed by using a modified Quickchange-Mutagenesis

protocol. PCR was done using the following primers:

hNS2*
T26I

(sense): 5’-ttg tca ctt gag act att ata act agt cta acc aga-3’

hNS2*
T26I

(antisense): 5’-agt ctc aag tga caa tgg tct cat g-3’

The restriction recognition site is underlined and the mutated codon is in bold.
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PCR reaction was performed as previously described (3.3.2):

DNA sample x µl (about 100 ng)

Sense primer 2.5 µl (10pmol)

Antisense primer 2.5 µl (10pmol)

dNTPs (25mM) 1.0 µl

10x reaction buffer 10 µl

Pfu Polimerase 1 µl (2.5 U)

Bidistilled water up to 100 µl

The following steps were used:

1
st
step: denaturation (95 °C, 30 sec)

2
nd
step: denaturation (95 °C, 30 sec)

3
rd
step: annealing (50 °C, 1 min)

4
th
step: extension (68 °C, 8 min)

5
th
step: extension (68 °C, 10 min)

6
th
step: cooling/pause to 4°C

PCR product was digested over night at 37°C with DpnI (10 U) endonuclease to eliminate

residual DNA template and purified by Qiagen PCR purification kit. 5 µl of purified DNA

were transformed in competent XL-1 bacteria, which were spread on agarose plates over night

at 37°C as described in paragraph 3.2.4. Positive clones were screened by restriction digest,

using in combination the following endonucleases: SpeI with NotI and NotI with Acc65I.

Positive clones were sequenced to confirm the presence of the desired mutation and large

scale amount of DNA were prepared at least from two different positive clones by midipreps.

3.4.2.2 Generation of rBRSVh1/2*
T26I

virus

The plasmid phNS1hNS2*
T26I

was digested with NotI and Acc65I. The resulting fragment of

1094 nt was inserted by DNA ligation into the full length BRSV cDNA, previously digested

with the same restriction enzymes, resulting in pBRSVhNS1hNS2*
T26I

(rBRSVh1/2*
T26I
)

18 cycles
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3.5 Recovery of recombinant BRSV viruses

Recombinant rBRSVh1/2*
T26I
, as well as rBRSVh1/2 and BRSV wild-type, were rescued as

described before (Buchholz U.J. et al., 1999). BSR T7/5 cells were transfected with the

corresponding full length cDNA plasmid after calcium phosphate precipitation (Mammalian

transfection kit, Stratagene) as specified by the supplier. 1x 10
6
cells/dish were seeded in 35

mm-diameter dishes in BHK-21 medium supplemented with 10% CS and grown over night.

Cells were then washed with serum-free DMEM and 1 ml of the medium was added to each

dish. After 1 hour, transfection was performed using a plasmid mixture containing 10 µg of

pBRSVhNS1hNS2*
T26I

(or pBRSVwt or pBRSVhNS1hNS2) and the plasmids pTITB-N

(4 µg), pTITB-P (4 µg), pTITB-L (2 µg) and pTITB-M2 (2 µg). Four hours post transfection,

the medium was removed and cells were incubated in BHK-21 medium containing 10% FCS.

Three days later cells were split (ratio 1:3) and they were maintained in 2.5% FCS BHK-21

medium. Cells were further split every 4-5 days until the formation of syncytia was observed.

Virus stocks were obtained as described previously in 3.1.2.

3.6 Generation of recombinant SAD eGFP-P viruses expressing HRSV NS proteins

3.6.1 Generation of recombinant SAD eGFP-P viruses

Recombinant rabies virus (SAD eGFP-P), coding for a eGFP-P fusion protein and carrying

RSV NS1 and NS2 genes of different origin were constructed. RSV NS genes were inserted

into the intergenic region between G and L genes.

For BRSV NS genes, a full length RV cDNA containing an extra transcriptional stop-restart

sequence in the 3’ non coding region of G gene and harbouring BRSV NS1 and NS2 genes

(pSAD VB NS2FL/NS1HA) was used (Mebatsion T. et al., 1996; Bossert B. and Conzelmann

K.K., 2002). The plasmid was digested with PpMI and MluI endonucleases and the large

fragment of about 5,000 bp was inserted in the full length SAD eGFP-P cDNA resulting in

pSAD eGFP-PbNS2flbNS1ha (eGFP-Pb2/1). Similarly, the full length cDNA pSAD eGFP-

PhNS2hNS1 (eGFP-Ph2/1) was constructed using in this case a RV cDNA plasmid

harbouring HRSV Long NS genes (pSAD VBhNS2hNS1). In the case of the recombinant RV

expressing a mutated HRSV NS2 gene (eGFP-Ph2*
T26I
/1), I used a different strategy as

follows. A plasmid containing HRSV-Long NS genes (phNS2hNS1) was mutagenised as
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described in 3.4.2.1. The resulting plasmid phNS2*
T26I
hNS1 was digested with NotI and

Acc65I and treated with Klenow polymerase to generate blunt ends. The DNA fragment,

which encompassed the NS genes, was inserted into the unique SmaI site of pSAD VB

resulting in pSAD VBhNS2*
T26I
hNS1. Positive clones were screened by restriction analysis

and sequenced to confirm the presence of the inserted mutation and the correct orientation. At

this point the procedure was the same used for the previous two recombinant RVs. pSAD VB

hNS2
T26I
hNS1 was digested with PpMI and MluI and the purified DNA fragment was

inserted in the full length SAD eGFP-P cDNA resulting in pSAD eGFP-PhNS2*
T26I
/hNS1

(eGFP-Ph2*
T26I
/1).

3.6.2 Rescue of recombinant eGFP-P viruses expressing RSV NS proteins

Recovery of recombinant eGFP-Pb2/1, eGFP-Ph2/1, eGFP-Ph2*
T26I
/1 was performed using

the CaPO4-method as previously described for recovery of RSV. In this case plasmids

encoding for RV protein N (pTIT-N, 5 µg), P and L (pTIT-P and pTIT-L, 2.5 µg each) with

10 µg the respective cDNA (pSAD eGFP-PbNS2flbNS1ha, pSAD eGFP-PhNS2hNS1 or

pSAD eGFP-PhNS2*
T26I
/hNS1). After transfection, cells were maintained in BHK-21

medium supplemented with 10% CS and cell-culture supernatants were harvested 3 and 6

days post transfection. Fluorescence of the recombinant eGFP-P viruses was monitored to

detect virus infection and to determine viral titers of the stocks.

3.7 Growth characteristics of recombinant BRSV and eGFP-P viruses

3.7.1 rBRSV viruses expressing HRSV NS proteins

Recombinant rBRSVh1/2 and rBRSVh1/2*
T26I

were analysed for their ability to grow in

different cells systems and compared to the HRSV prototypes Long and A2. 4x 10
5
Vero

(interferon-deficient) and human HEp2 (interferon-active) cells were infected with the

recombinant BRSVh1/2 and BRSVh1/2*
T26I

and with Long and A2 strains at an MOI of 0.3.

Infection was performed in suspension, in serum-free DMEM medium for 1-1.5 hours in 15

ml falcon tubes. Cells were kept in suspension by gently shaking each 15 min. Afterwards,

cells were transferred into 12-well plate in 1 ml of DMEM containing 2.5% of FCS.
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Supernatants were harvested daily for 3 days, centrifuged to remove cell debris and stored at

–70°C before virus titers were determined on Vero cells as already described. Cell lysates

were also collected to monitor viral protein expression at the different time points and to

verify the correct translation of NS proteins in the recombinant BRSVs.

3.7.2 Recombinant rabies eGFP-P viruses expressing RSV NS proteins

Growth characteristics of eGFP-Pb2/1, eGFP-Ph2/1 and eGFP-Ph2*
T26I
/1 were determined in

BRS T7/5 cells, which are defective the type I IFN induction pathway, and in Hep2 cells.

Wild-type SAD L16 and SAD eGFP-P were included as control viruses, since they have been

shown to differ in their ability to induce IFN- .

BSR T7/5 and HEp2 cells, at a concentration of 1x 10
6
, were infected with the viruses

mentioned above at an MOI of 0.01 and maintained in BHK-21 medium containing 10%CS

or DMEM with 5% FCS. Supernatants were collected for 3 days and virus titers were

determined on BSR T7/5 as described before.

3.8 IFN treatment of rBRSV viruses

To analyse the effect of IFN type I on the replication of HRSVs and rBRSVs, HEp2 cells

were infected at an MOI of 0.3 as described for growth kinetic analysis and IFN- A/D (PBL

Biomedical Laboratories) was added to the culture medium directly after seeding.

Concentrations of 500, 1000 and 5000 IU/ml were assayed using a working dilution of 100

IU/µl IFN- in PBS. Virus titers were determined 2 or 3 days post infection depending on the

extent of the observed CPE.

3.9 Cloning of the human TANK-binding kinase 1 (TBK1) and TRAF-binding protein

(TANK)

The human kinase TBK1 and TANK genes were amplified by PCR reaction from a human

lung cDNA library. PCR reaction was performed as previously described using the following

oligonucleotide primers:

hTBK1 BamHI (sense): 5’-atg gat ccc atg cag agc act tct aat cat ctg-3’
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hTBK1 NotI (antisense): 5’-ata tgc ggc cgc cta aag aca gtc aac gtt gcg aag gcc-3’

hTANK BamHI (sense): 5’-atg gat ccc atg gat aaa aac att ggc gag-3’

hTANK NotI (antisense): 5’-ata tgc ggc cgc tta agt ctc tcc att gaa gtg-3’

Inserted restriction sites are underlined

Restriction sites for the endonucleases BamHI and NotI were inserted at the 5’ and 3’ ends of

the amplified ORF respectively to allow subsequent cloning in the expression vector pCR3-

Ig.

The reaction was carried out according to the following steps:

1
st
step: denaturation (95 °C, 5 min)

2
nd
step: denaturation (94 °C, 1 min)

3
rd
step: annealing ( °C, 1min)

4
th
step: extension (72 °C, 1 min 30 sec)

5
th
step: extension (72 °C, 10 min)

6
th
step: cooling/pause to 4°C

The obtained DNA fragments were subjected to restriction digest with BamHI and NotI and

purified by gel extraction (QIAquick gel extraction kit, Qiagen). The sequence of DNA

fragment obtained by PCR was confirmed by DNA sequencing. To construct the expression

vectors expressing the wild type TBK1 and TANK genes, the cDNA fragments were ligated

into pCR3-Ig vector plasmid, previously digested with the appropriate restriction enzymes. In

this way, N-terminal Ig-tagged TBK1 and TANK fusion proteins were generated (IgTBK1

and IgTANK). Correct expression of the recombinant IgTBK1 and IgTANK were assayed by

Western blot and immunofluorescence analysis. Functional activity was tested by gene

reporter assay.

35 cycles
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3.10 Gene Reporter Assay

3.10.1 Modified Gene Reporter Assay in Vero-p125Luc cell line

Vero cells, stably transfected with the IFN- gene promoter/enhancer (p125-Luc), were

seeded in 24-well-plates, using 2x 10
5
cells/well, and infected with RSV viruses at an MOI of

0.3. After an absorption of 90 min in serum-free DMEM, cells were incubated in DMEM

supplemented with 5% FCS. At 48 hours post infection cells were harvested in 200 µl of

luciferase lysis buffer [20 mM Tris HCl pH (7.8), 2 mM DTT, 2 mM CDTA, 10% glycerol,

1% triton X-100; incubation 10 min at 37°C]. Samples were than assayed for reporter gene

activity in a luciferase assay, that was performed as follows. Aliquots were shortly

centrifuged to remove unsoluble parts and 20 µl of each cell lysate were diluted in 80 µl of

luciferase lysis buffer. 100 µl of luciferase substrate buffer [20 mM Tricine, 2.67 mM MgSo4,

0.1 mM EDTA, 33.3 mM DTT, 1.07 mM MgCO3 x Mg(OH)2 x 5 H2O] supplemented with

470 µM AcetylCoA and 530 µM ATP were added to the cell lysates directly through the

luminometer (LUMAT LB9501, Perkin Helmer Wallac GmbH). The light emission was

measured as relative light units (RLU). Infection was verified by Western blot analysis using

the same cell lysates.

3.10.2 Dual luciferase assay and transfection of reporter plasmids

For experiments aimed to verify the biological activity of the non-canonical kinases TBK1

and IKK- to induce IFN, BSR T7/5 cells were transfected with a reporter plasmid expressing

the firefly luciferase gene under the control of the IFN- gene promoter/enhancer (p125Luc)

and a plasmid containing a Renilla luciferase gene under the control of the CMV promoter

was used as internal control (pCMV-RL). Additionally, plasmids containing wild type human

IRF3 (pEF-haIRF3), human TBK1 (pCR3-IgTBK1) or IKK- (pFlagIKK- ) or the kinase

inactive form of IKK- (pFlagIKK- K38A) were cotransfected. BSR T7/5 cells were seeded

in a 24-well plate using 1x 10
5
cells/well and grown over night. Transfection was performed

with FuGENE 6 reagent (Roche) as indicated by the manifacturer using 0.1 µg of the reporter

construct p125Luc, 0.02 µg pCMV-RL, 0.1 µg of the transcription factor IRF3 and 0.1 µg of

the indicated kinases. Luciferase activity was measured 48 hours post transfection.



Materials and Methods

___________________________________________________________________________

36

The relative light units (RLU) were standardised based on the Renilla luciferase activity and

converted in fold induction.

Similar experiments were also conducted in 293 cells, but in this case cotransfections were

carried out using reporter plasmids for IRF3 promoter (pCIB55Luc), pCMV-RL and TBK1 or

IKK- .

.

3.10.3 Transcription factor activation and TBK1 inhibition by RSV infection

To assay the activities of the transcription factors AP-1, NF-kB and IRF3, 2x 10
5
293 cells

were transfected with 0.1 µg of the respective reporter construct (pAP-1Luc, pNF-kBLuc or

p55CIBLuc) and 0.02 µg pCMV-RL using FuGENE 6. At 24 hours post transfection, cells

were infected with the indicated viruses at an MOI of 0.3. At 24 hours post infection,

luciferase activity was measured by DL (Dual Luciferase Reporter Assay System, Promega)

as indicated by the supplier. To investigate the capacity of the different RSVs to inhibit

TBK1-dependent induction of the IFN- gene promoter, 2x 10
5
293 cells were infected in

serum-free DMEM medium with the corresponding viruses at different MOIs. After 90 min of

incubation on gently shaking, cells were seeded in 24-well plate and maintained in DMEM

containing 10% of FCS. At 24 hours post infection, cells were transfected with 0.1 µg of

p125Luc, 0.02 µg of pCMV-RL and 0.1 µg of pCR3-IgTBK1. Viral protein expression was

then assessed by Western blot on the remaining cell lysates used to perform the luciferase

assay. The same experiment was performed in BSR T7/5 cells with the only difference that

infected cells were transfected with the above mention plasmids plus pEF-haIRF3, being the

endogenous IRF3 being defective in this cell line.

3.11 Protein expression analysis

3.11.1 Extraction of proteins from cells

Extraction of proteins from cells was performed using an appropriate amount of lysis buffer

(500 µl for a 6-well plate, or 250 µl for a 12-well plate). Cell extracts were incubated at 95°C

for 5 min, centrifugated at maximum speed (8000 x g) in a Eppendorf table centrifuge for 5

min and equal amounts were loaded onto a sodium dodecyl sulfate-polyacrylamide gel (SDS).
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Protein extraction buffer: Tris pH 6.8 6.25 mM

sodium dodecyl sulfate (SDS) 2%

glycerol 10%

urea 6 M

methanol 5%

bromophenol blue 0.01%

bromophenol red 0.01%

2-mercaptoethanol 0.5%

3.11.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Proteins were separated using the Penguin
TM
Model P9DS (OWL scientific). The separating

gel, containing 10% or alternatively 12% acrylamid, was poured into the gap between the two

glass plates of the system and a space of about 3 cm was left to allow the adding of the

stacking gel. The gel was overlaid with 2-iso-propanol to ensure a levelled surface and left for

polymerisation for about two hours.

Separating gel: 10% gel 12% gel

Polyacrylamide 9.0 ml 10.8 ml

Gel buffer 12.0 ml 12.0 ml

dH2O 12.9 ml 11.1 ml

glycerol 2.0 ml 2.0 ml

TEMED 0.017 ml 0.017 ml

APS (ammonium persulfate) 0.175 ml 0.175 ml

The indicated amounts of gel mix were sufficient for one 14x 16 cm gel

Gel Buffer: Tris 364 g

SDS 15 ml of a 20% solution

After complete polymerisation the 2-iso-propanol was discarded and the stacking gel was

prepared and added on the top of the separating gel. The comb was immediately inserted

carefully avoiding to trap air bubbles under the teeth.
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Stacking gel: Polyacrylamide 1.4 ml

(for two gels) Gel buffer 3.5 ml

dH2O 9 ml

TEMED 0.116 ml

APS 0.018 ml

After polymerisation (1-2 hours), the comb was removed and the plates mounted in the

electrophoresis apparatus, which was filled with anode and cathode SDS-PAGE

electrophoresis buffer.

Jagow-Anode buffer: Tris 242 g

dH2O 1 l

The pH was adjusted to a value of 8.9 by HCl addition

Jagow-Cathode buffer: Tris 121 g

pH [8.25] Tricine 179.2 g

SDS 10 g

dH2O 1 l

Samples were loaded and the electrophoretic run was performed at 40-60 V until the

bromophenol blue left the separating gel at the bottom (about 15-16 hours) depending on the

gel percentage. A molecular weight standard (Precision Plus Protein
TM
Standards, BIO-RAD)

was pipetted onto the gel to estimate protein size.

3.11.3 Electroblotting

When the electrophoretic run was completed, gels were removed from the glass plates and

incubated in 1x semi-dry buffer for 10-15 min. The separated proteins were transferred to a

nitrocellulose membrane in a semidry transfer apparatus (The Panther
TM
Model HEP-1; OWL

Scientific).



Materials and Methods

___________________________________________________________________________

39

Semi-dry transfer buffer (10x): Tris 58 g

Glycine 29 g

SDS 2.5 ml of a 20% solution

dH2O 1 l

For electrophoretic blotting 1x Semi-dry buffer was used; 180 ml of methanol were added to

1 l of fresh 1x solution

One sheet of Whatman blotting paper of the same size as the gel was soaked in transfer buffer

and placed on the bottom electrode and pressed to remove air bubbles. The gel and the

nitrocellulose membrane, which were also soaked in transfer buffer, were positioned exactly

over the bottom paper and covered with another soaked blotting paper. After having placed

the upper electrode the system was connected to a power supply (Standard power Pack P25,

BIOMETRA) and the transferred was performed at 400 mA for each gel for 120 min.

3.11.4 Western blotting

After the transfer, the membrane containing the separated proteins was incubated at room

temperature for 60 min in constant agitation with a blocking solution.

Blocking solution: 5% instant skimmed milk

0.05% Tween 20

1x PBS

After the blocking, the membrane was washed 3 times for about 15 min at RT with PBS

containing 0.05% Tween 20 (PBS-T). Incubation with the primary antibody diluted in PBS-T

took place over night at 4°C in constant agitation. The membrane was then washed 3 times for

about 15 min at RT with PBS-T and the incubation with peroxide-conjugated secondary

antibody diluted 1:10000 in PBS-T occurred for 90 min at RT. Finally the membrane was

washed 3 times with PBS-T and once in PBS for 10 min at RT. For detection, the membrane

was incubated with 1 ml of ECL Western blotting detection reagent (Perkin Helmer) and

exposed to an Hyperfilm ECL (Amersham) for varied times depending on the strength of the

signal.
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3.12 Immunofluorescence

BSR T7/5 cells were seeded overnight on coverslips in 6-well plate and transfected the day

after with FuGENE 6 (Roche). 4 µg of each expressing plasmid where used. At 48 hours post-

transfection, cells were washed with phosphate-buffered saline (PBS) and fixed with 3%

(w/v) paraformaldehyde in PBS for 30 min followed by treatment with 50 mM NH4Cl in PBS

for 20 min. Cells were permeabilized with 0.5% Triton X-100 for 10 min and blocked for 1

hour at room temperature (RT) with 1% goat serum and 0.5% BSA in PBS. Cells transfected

with FlagIKK- were incubated for 40 min at RT with the primary antibody anti-mouse Flag

(M2, Sigma) diluted 1:1000 in blocking reagent. In the case of Ig-TANK and Ig-TBK1 goat

FITC-tagged anti-human Ig were used at dilution 1:50. After primary-antibody incubation, for

cells transfected with FlagIKK- , a Cy3-conjugated anti-mouse antibody was used at dilution

1:200 in PBS. After 40 min incubation at RT, cells were washed with PBS and nuclei were

stained with DAPI (Hoechst) at the concentration of 1 µl/ml. Coverslips were mounted in

with Mounting Medium-Vectashield for fluorescence (LINARIS) and examined with a

fluorescence microscope equipped for laser-scanning confocal light microscopy (Zeiss,

LSM510). Digitalized images were further processed using Adobe Photoshop version 7.0.

3.13 Immunoprecipitation of IgTANK and IgTBK1

BSR T7/5 cells were seeded overnight in 60 mm petri dishes at a concentration of 1x 10
6
cells

per dish and transfected the day after with 15 µg of each of the following expression

plasmids: pCR3-Ig (empty vector), pCR3-IgTANK and pCR3-IgTBK1 by CaPO4 method

(Mammalian Transfection Kit, Stratagene). At 48 hours post transfection, cells were lysed for

30 min on ice with 300 µl of immunoprecipitation buffer (IP buffer). Lysates were

centrifuged at 14.000 rpm for 15 min at 4°C to precipitate nuclei and cell debris, followed by

transfer of the clean supernatants to fresh 1.5 ml Eppendorf tubes.
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IP buffer: TRIS 50 mM pH 7.6

NaCl 150 mM

NP-40 1%

EDTA 1 mM

EGTA 2 mM

NaF 20 mM

Protease inhibitor cocktail (Complete, Roche) was freshly added to the buffer before use

100 µl of Sepharose A beads (Protein A SepharoseTM 4 Fast Flow, Amersham), previously

washed 3 times in IP buffer, were added and the lysates were incubated overnight at 4°C in

continuous rotation. After incubation, lysates were centrifuged at 8000 x g at 4°C for 15 min

to precipitate the beads. The pellets were then washed 3 times in IP buffer. Once the washing

step was completed, the beads were pelleted down and resuspended in 100 µl of protein lysing

buffer. The lysates were analysed by Western blotting.

3.14 Materials and equipment

3.14.1 Serological reagents

Primary antibodies:

abCam, Rabbit -human IFN- , polyclonal

Cambridge, UK

BFAV

Insel Reims, Germany Rabbit -RV N and P proteins (S50), polyclonal

Biogenesis, Goat -RSV serum, polyclonal

c/o Quartett GmbH,

Berlin, Germany

Dianova, Normal goat serum

Hamburg,Germany

Santa Cruz Biotec. Inc. Rabbit -TBK1, polyclonal

Heidelberg, Germany Rabbit -PCNA, polyclonal

Rabbit -IRF-3, polyclonal

Rabbit -HA (Y11), polyclonal
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Serotec, Mouse -RSV N protein, monoclonal

Düsseldorf, Germany

Sigma-Aldrich, Rabbit -actin (20-33), polyclonal

Taufkirchen, Germany Mouse -FLAG (M2), monoclonal

J.A. Melero, Rabbit -HRSV NS1/NS2 ( -IC/C), polyclonal

University of Madrid, Spain

Freiburg, Germany Mouse -Mx A, monoclonal

All secondary antibodies (FITC-, Cy3-, peroxidase-conjugated anti-mouse, anti-rabbit and

anti-human Igs) were obtained from Dianova ()

3.14.2 Chemicals

Boehringer /Roche DTT (1,4-dithioerythreitol)

Mannheim, Germany

Fluka, NP40 (nonidet P40)

Deisenhofen, Germany tricine

ICN Biochemical Inc APS (ammonium persulfate)

Cleveland, Ohio-USA

Merk, CaCl2
Darmstadt, Germany EDTA

Ethidium bromide

CH3COOK

KCl

MgSO4
MgCl2
CH3COONa

NaCl

NH4Cl

Orange G

Paraformaldehyde

Phenol red

Propidium iodide

Triton X-100
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Amersham-Pharmacia, Ficoll

Freiburg, Germany

Riedel-de-Haen, Ethanol

Deisenhofen, Germany Methanol

NaOH

Carl Roth GmbH, Acetone (tech)

Karlsruhe, Germany DMSO (dimethylsulfoxide)

Glycerol

Glycine

HCl

Hepes

Methanol

SDS

Tris

Tween 20

Urea

Sigma, ATP

Taufkirchen, Germany bromophenol blue

CDTA

MgCO3xMg(OH)2
TEMED

3.14.3 Enzymes

MBI Fermentas, Klenow polymerase

St. Leon-Rot, Germany

New England Biolabs, Restriction endonucleases

Frankfurt am Main, Germany T4 DNA ligase

endonucleases

Roche Biochemicals, Shrimp alkaline phosphatase

Mannheim, Germany

Stratagene, pfu polymerase

Amsterdam, Netherland Reverse transcriptase
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3.14.4 Kits

Machrey & Nagel, Nucleobond AX100

Düren, Germany

Qiagen, Rneasy kit

Hilden Germany QIAquick PCR purification/Gel

extraction/Nucleotide removal

Perkin Elmer, Western lightning Chemiluminescence Reagent

Plus

Freiburg, germany

Promega GmbH, Dual Luciferase Reporter Assay System

Mannheim, Germany

Stratagene, Mammalian transfection kit

Amsterdam, Holland

3.14.5 Miscellaneous

Amersham Bioscience Gmbh, Hyperfilma ECL

Freiburg, Germany Protein A Sepharose
TM
4 Fast Flow

BD, Bacto yeast extract

Heidelberg, Germany

BIO-RAD, Precision Plus Protein
TM
Standards

Munich, Germany

Difco, Bacto Tryptone peptone

Hamburg, Germany

Gibco BRL, Agarose

Karlsruhe, Germany Ampicillin

DNA 1kb ladder

LINARIS GmbH, Mounting Medium-Vectashield for fluorescence

Wertheim, Germany

Merck, Acrylamid/Bisacrylamid solution (29:1)

Darmstadt, Germany Skimmed milk powder
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New England Biolabs, dNTPs

Frankfurt am Main, Germany

PBL Biomedical Lab, IFN- A/D

NJ, USA

Amersham Pharmacia, Rnasin

Freiburg, Germany

Roche Diagnostics GmbH, FuGENE 6

Mannheim, Germany Complete (protease inhibitor cocktail)

Carl Roth GmbH, Whatman paper

Karlsruhe, Germany

Schleicher & Schuell, Nitrocellulose membrane (0.5 µm)

Dassel, Germany

Sigma, AcetylCoA

Taufkirchen, Germany Luciferin

Poly I/C

3.14.6 Tissue culture reagents

Roche Biochemicals, Foetal calf serum (FCS)

Mannheim, Germany

Gibco BRL, BHK-21 medium

Karlsruhe, Germany Dulbecco´s modified medium (DMEM)

L-Glutamine 20 mM 100x

MEM amino acids (AA)

Newborn calf serum (CS)

Phosphate-buffered saline (PBS)

Trypsin-EDTA 1x

Tryptose phosphate broth 50x (TP)

Nunc GmbH, Tissue culture flasks and plates

Wiesbaden, Germany

Sigma, Penicillin/Streptomycin 100x (P/S)

Taufkirchen, Germany
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3.14.7 Equipment

Biometra, T3 Thermocycler

Goettingen, Germany Standard Power Pack P25

BIO-RAD, Universal Hood II

Munich, Germany

Eppendorf, BioPhotometer

Hamburg, Germany Centrifuge 5417R

Table centrifuge

Olympus, Microscope, IX71

Hamburg, Germany

OWL Scientific/Nunc GmbH, The Panther
TM
Model HEP-1

Wiesbaden, Germany

Perkinelmer Wallach Gmbh, Luminometer LUMAT LB9501

Freiburg, Germany

Zeiss GmbH, Confocal laser microscope, LSM 510

Jena, Germany

3.14.8 Bacteria and plasmids

E.coli XL1 (blue) were used for preparation of plasmid DNA

All constructs and full-length cDNAs of rabies and BRSV are based on the Bluescript SKII-

vector from Pharmacia and subsequently cloned into pTIT vectors controlled by a T7

promoter.

pTIT-N, pTIT-P, pTIT-L plasmids containing RV N, P or L genes

pTITB-N, pTITB-P, pTITB-M2, pTITB-L plasmids containing BRSV N, P, M2 or L

genes
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pSAD VB plasmid harbouring the full-length RV

cDNA under T7-promoter control with

additional stop-restart sequence between

the G and L gene

pSAD VBhNS2hNS1 pSAD VB harbouring HRSV-Long NS1

and NS2 genes between G and L gene.

phNS1hNS2 plasmid harbouring HRSV-Long NS1 and

NS2 genes

phNS1hNS2*
T26I

plasmid harbouring HRSV-Long NS1 and

NS2 genes, where Threonine 26 of NS2

was mutated in an Isoleucin

phNS2*
T26I

hNS1 plasmid harbouring HRSV-Long NS2 and

NS1 genes, where Threonine 26 of NS2

was mutated in an Isoleucin

pSAD VBhNS2*
T26I
/ hNS1 pSAD VB harbouring HRSV-Long NS1

and NS2* (T26I) genes between G and L

gene.

pSAD GFP-P plasmid harbouring the full-length SAD

L16 expressing eGFP fusion P protein

pSAD GFP-PhNS2hNS1 pSAD GFP-P harbouring HRSV-Long

NS1 and NS2 genes.

pSAD GFP-PhNS2*
T26I

/hNS1 pSAD GFP-P harbouring HRSV-Long

NS1 and NS2*(T26I) genes

prBRSVhNS1hNS2 plasmid harbouring the full-length BRSV

cDNA and HRSV-Long non structural

protein genes.

prBRSVhNS1hNS2*
T26I

prBRSV hNS1hNS2 where Threonine at

position 26 of NS2 was mutated to an

Isoleucine

p125Luc Firefly luciferase gene under the control of

the IFN- gene promoter/enhancer

(kindly provided by by T. Fujita,

University of Kyoto, Japan)
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p55CIBLuc Luciferase gene under the control of

positive regulatory domain (PRDI/IRF3

binding site) of the IFN- gene

promoter/enhancer (kindly provided by by

T. Fujita, University of Kyoto, Ja

pCMV-RL Renilla luciferase gene under the control

of the CMV promoter/enhancer

pNF-kBLuc luciferase gene controlled by a synthetic

promoter containing 5 direct repeats of

NF-kB binding sites (Stratagene)

pAP-1Luc luciferase gene controlled by a synthetic

promoter containing 7 direct repeats of

NF-kB binding sites (Stratagene)

pEF-haIRF3 plasmid encoding human IRF3 gene

(kindly provided by T. Fujita, University

of Kyoto, Japan)

pFlag IKK- plasmid encoding the N-terminus Flag-

tagged kinase IKK- gene(kindly provided

by Prof. R. Ruckdeschel, Max von

Pettenkofer Institute, Munich)

pFlag IKK- K38A plasmid encoding kinase-dead mutant of

IKK- gene with an amino acid

substitution at position 38 (K38 A)

(kindly provided by Prof. R. Ruckdeschel,

Max von Pettenkofer Institute, Munich)

pIg-TBK1 plasmid encoding an N-terminus Ig-tagged

version of the human TANK-binding

kinase1 (TBK1)

pIg-TANK plasmid encoding N-terminus Ig-tagged

gene of the human TRAF family member-

associated NF-kB activator (TANK)
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4  RESULTS 

4.1  Nonstructural proteins (NS) of BRSV block activation of interferon regulatory

       factor 3 

We have previously provided evidence that BRSV nonstructural proteins NS1 and NS2 

prevent induction of IFN-  by interfering with the activation of interferon regulatory factor 

(IRF)-3 (Bossert B. et al., 2003). We demonstrated that IFN-  is expressed in HEp2 cells 

infected with a double deletion mutant (BRSV NS1/2), lacking both the NS proteins, but not 

in wild-type BRSV-infected cells.

Mock

Mock+IFN -
BRSV wt
BRSV

NS1/2

IFN-

N

NS2 mRNA

Fig. 1 A recombinant BRSV lacking both NS proteins (BRSV NS1/2) induces interferon synthesis in 
contrast to wild-type BRSV. HEp2 cells were mock-infected and infected with BRSV wt and BRSV NS1/2.
IFN-  and BRSV N protein were detected by Western blotting using a polyclonal anti-human IFN-  and anti-
RSV serum, respectively. NS2 mRNA was demonstrated by an NS2-specific cDNA hybridisation probe. 

Human respiratory syncytial virus (HRSV) displays a similar capacity to block type I 

interferon expression. Intriguingly, we have found that HRSV strain Long has lost the 

capacity to inhibit induction of IFN-  in contrast to HRSV strain A2 (Schlender J. et al.,

2005). This finding encouraged me to investigate further these two HRSV strains in the 

attempt to elucidate the reasons of their different behaviour in IFN induction.
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4.2  HRSV prototypes, A2 and Long, differ in their ability to induce type I IFN 

4.2.1  Detection of IFN-  induction 

To investigate type I IFN induction by different HRSV strains, Vero cells, stably transfected 

with the IFN-  gene promoter/enhancer (p125-Luc) were infected at an MOI of 0.3 with the 

subgroup A HRSV prototype viruses: A2 and Long. Reporter gene activity was assayed 24 

and 48 hours post infection. Cells infected with the strain Long led to an increase in the IFN-

promoter activity compared to cells infected with A2 virus or mock-infected.
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Fig. 2 (A) HRSV Long, but not A2, induces IFN -promoter activity. Vero-p125Luc cells were infected with
the indicated viruses at an MOI of 0.3. At 24 and 48 hours p.i cells were lysed and a luciferase assay was 
performed. (B) IFN-  mRNA expression in cells infected with HRSV A2 and Long. HEp2 cells were infected 
with the indicated viruses at an MOI of 1 for 16-18 hours. IFN-  mRNA was detected by RT-PCR, as well as 
Actin mRNA as control. 
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To verify the previous findings, RT-PCR was applied to detect IFN-  mRNA in infected 

cells. HEp2 cells were infected with A2 and Long at an MOI of 1. RNA was extracted 16-18 

hours post infection and subjected to RT-PCR analysis. Clearly, strain Long induced IFN-

mRNA expression, while strain A2 did not. Taken together, these data  indicate that the two 

HRSV strains, A2 and Long differ in their ability to induce IFN-  or more correctly, HRSV 

strain Long lacks the capacity to inhibit IFN-  induction upon infection. The same results 

were obtained in infected plasmacytoid dendritic cells (PDC). We were able to show that 

RSV strain A2 but not strain Long was able to shut down IFN-  production in both epithelial 

cells and PDCs (Schlender J. et al., 2005). 

4.2.2  Analysis of activation of IFN-  transcription factors AP-1, NF-kB and IRF3 

Investigation of the activation of the transcription factors responsible for IFN-  gene 

induction (AP-1, NF-kB and IRF3) was performed in HRSV-infected cells.
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Fig. 3 HRSV-induced activation of IFN-  transcription factors. Luciferase constructs under the control of 
promoters containing AP-1, NF-kB and IRF3 binding sequences were transfected in 293 cells. After 24 hours 
cells were infected with the indicated viruses at an MOI of 0.3. At 24 hrs p.i. cells were harvested and luciferase 
assay was performed. Results show the mean of at least two independent experiments. All the RLU of the firefly
luciferase were standardized based on Renilla luciferase activity, which was used as internal control for non-
specific transcription  SD. 
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Reporter constructs, harbouring the binding sequences for each transcription factors 

controlling the expression of the downstream firefly luciferase gene were transfected in 293 

cells together with the Renilla (pCMV-RL). Renilla gene is under the control of a CMV 

promoter and it was used as a control for non specific (IRF3-independent) regulation of gene 

expression in the reporter assays. Twenty four hours later, cells were mock-infected and 

infected with HRSV A2 and Long at MOI of 0.3. HRSV A2 and Long strains activated NF-

kB reporter activity of 4.9-fold and 5.4-fold, respectively, while AP-1 was not significantly 

induced. Interestingly, infection with HRSV-Long resulted in a 16-fold increase of the 

luciferase activity in cells transfected with IRF3 reporter construct. In contrast, HRSV A2 

caused an 1.5-fold induction. Thus virus-specific activation of IRF3 appeared to be selectively 

blocked in the presence of HRSV A2, resembling the situation in BRSV wild-type infected-

cells previously described (Bossert B. et al., 2003). 

4.3  Sequence comparison of RSV NS1 and NS2 proteins 

4.3.1  Sequence analysis of HRSV A2 and HRSV Long nonstructural proteins 

Since our previous studies identified RSV nonstructural proteins as crucial antagonists of type 

I IFN induction, nucleotide sequences of the complete NS1 and NS2 genes from HRSV A2 

and Long were determined and compared with those of two, out of seven, clinical isolates, 

namely patients 86 and 112. Clinical isolates were shown to block induction of IFN-  and for 

this reason they were considered comparable to strain A2 in their inhibitory capacity 

(Schlender J. et al., 2005). The NS1 protein sequence was highly conserved among the 

different HRSV viruses analysed. Only two amino acid differences were detected: one in the 

clinical isolate number 86 (N76S) and the other in HRSV A2 (I115L). None of these changes 

was considered significant. At the N-terminus of NS2 protein variable residues were 

identified. At position 7, the clinical isolates displayed a Glycine (G) instead of an Aspartic 

acid (D). HRSV A2 differed from the other viruses by the presence of an Asparagine (N) and 

a Lysine (K) at position 8 and 38. The only amino acid which distinguished HRSV Long 

strain from clinical isolates and HRSV A2 was a Threonine at position 26 instead of an 

Isoleucine. Threonine is a neutral amino acid like Isoleucine but, differently from the latter, 

its side chain can undergo O-linked glycosylation and it can become phosphorylated through 

the action of a threonine kinase. For these peculiar characteristics and its unique presence in 
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HRSV Long strain, I considered this amino acid change to be potentially involved in the 

different ability of A2 and Long viruses to inhibit IFN-  production. 
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Fig. 4 Multiple alignment of NS1 (A) and NS2 (B) amino acid sequences. Identical or similar amino acids are
shadowed. Unique amino acids are indicated in white and the arrow indicates an unique amino acid change 
present in NS2 HRSV Long sequence. 
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4.4  Chimeric BRSV viruses expressing HRSV NS genes 

4.4.1  Construction of recombinant BRSV virus harbouring Long-derived NS1 and a mutated

          form of NS2 

To study the functional implication in IFN-  antagonism by the residue 26 (Threonin vs 

Isoleucine) of NS2 protein, a recombinant BRSV viruses harbouring Long-derived or A2-like 

NS proteins were generated. Recombinant BRSV (rBRSVh1/2) possessing NS1 and NS2 

genes from HRSV strain Long was previously constructed (Bossert B. and Conzelmann K.K., 

2002). In addition, a recombinant BRSV (rBRSVh1/2*T26I) carrying an Isoleucine at position 

26 of Long-NS2 protein was created by site-directed mutagenesis as described in Materials 

and Methods. Chimeric viruses were recovered by cotransfection of BSR T7/5 cells with the 

rBRSV full length cDNAs and the support plasmids encoding for BRSV N, P, L and M2 

genes as described previously. Viruses were viable and comparable in growth.

Spe I

proteins
vRNA

rBRSVh1/2 (Long)

...SLETTITSLT...

...SLET SLT...IIT

Not I Acc65 I

hNS1 hNS2 NN

Not I Acc65 I

hNS1 hNS2 NN

NS1NS1 NS2NS2 NN PP MM SHSH GG FF M2-1M2-1
M2-2M2-2

LL

rBRSVwt

SIETEIISLT

rBRSVh1/2* (T26I)

Fig. 5 Chimeric rBRSVs harbouring HRSV NS genes. Viral genome (vRNA) and gene ORF encoded proteins
are shown. In the enlargement: BRSV NS proteins were replaced by HRSV Long NS proteins (rBRSVh1/2). An 
amino acid exchange was subsequently introduced into the NS2 protein at position 26 (T26I) generating the
recombinant virus rBRSVh1/2*T26I

.
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4.4.2  HRSV NS protein expression  and cDNA restriction analysis

Western blot analysis was used to confirm the correct translation of NS proteins in Vero cells 

infected with HRSV prototypes, A2 and Long, and with the chimeric rBRSVs. 

Restriction digest analysis was performed on HRSV NS2 cDNA obtained by RT-PCR 

reaction of virus-infected HEp2 cells. The NS2 ORF of the rBRSVh1/2*T26I contained an 

additional restriction site for Spe I endonuclease, which is absent in the wild-type sequences. 

After the digest, only NS2 cDNA derived from rBRSVh1/2*T26I showed a lower migrating

band.

A

HRSV
Long

BRSV
h1/2

BRSV
h1/2*
(T26I)

Mock HRSV
A2

NS2
NS1

B
HRSV
Long

BRSV
h1/2

BRSV
h1/2*
(T26I)

MarkerHRSV
A2

Fig. 6 Analysis of chimeric BRSVs expressing HRSV NS genes. (A) Western blot analysis for NS protein
expression in Vero infected cells. NS proteins were detected using a polyclonal antibody ( -IC/C) recognizing
HRSV NS proteins (kindly provided by J.A. Melero, Spain). (B) Restriction analysis of NS2 cDNA obtained 
from HEP2 cells infected with HRSV A2, HRSV Long and recombinant BRSVh1/2 and BRSVh1/2T26I . 
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4.4.3  Growth kinetics of recombinant BRSV viruses 

Growth properties of rBRSVh1/2 and rBRSVh1/2*T26I and HRSV strains were analysed in 

parallel in Vero and HEp2 cells. 

1 , 0 0 E + 0 2

1 , 0 0 E + 0 4

1 , 0 0 E + 0 6

1 , 0 0 E + 0 8

0 2 4 4 8 7 2

FF
U

/m
l

1 , 0 0 E + 0 2

1 , 0 0 E + 0 4

1 , 0 0 E + 0 6

1 , 0 0 E + 0 8

0 2 4 4 8 7 2

FF
U

/m
l

Vero cells

Hours p.i 

HEp2 cells

Hours p.i 

BRSV-h1/2HRSV-A2

HRSV-Long BRSV- h1/2* (T26I) 

Fig. 7 Analysis of chimeric BRSVs expressing HRSV NS genes. Growth kinetics of chimeric rBRSVh1/2 and 
rBRSVh1/2*T26I, and HRSV strains A2 and Long in Vero and HEp2 cells. Cells were infected with MOI of 0.3 
and viruses were harvested at the indicated time points.
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In Vero cells, which do not possess an intact IFN system, the two chimeric rBRSV viruses 

behaved similarly. After 3 days of infection at a MOI of 0.3, they reached titers of about 7 

x104 FFU, close to those of HRSV A2 and Long. In HEp2 cells, a human cell line competent 

for type I IFN expression, growth characteristics of rBRSVh1/2 and rBRSVh1/2*T26I were 

once again comparable. After 2 days of infection, both viruses reached similar titers of about 

1.8-2.2 x104 FFU/ml , respectively. When compared to HRSV strains, which grew to highest 

titers of about 1 x106 FFU/ml 3 days post infection, the recombinant BRSV viruses displayed 

a slightly attenuated phenotype of approximately 1 log. This might be due to the fact that 

recombinant BRSV viruses are less efficient in the context of a human cell line as a 

consequence of viral host-specific factors. 
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4.4.4  Sequence comparison of HRSV NS genes 

To verify the identity of recombinant viruses Vero cells were infected with HRSV A2 and 

Long, rBRSVh1/2 and rBRSVh1/2*T26I viruses and RT-PCR was followed by sequencing of 

the amplified NS1 and NS2 genes. Amino acid sequence comparison confirmed the presence 

of an Isoleucin residue at position 26 of the NS2 protein of the chimeric rBRSVh1/2*T26I,

while the rest of the protein remained unvaried. Amino acid sequences of the NS1 proteins 

were also analysed to exclude any unrelated mutation. Western blot analysis was used to 

confirm correct translation of NS proteins in Vero cells infected with HRSV prototypes, A2 

and Long, and with the chimeric rBRSV viruses. 
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Fig. 8 Multiple alignment of amino acid sequences of NS1 (A) and NS2 (B) proteins in recombinant BRSV
(rBRSVh1/2 and rBRSVh1/2*T26I ), HRSV strains A2 and Long and HRSV-clinical isolates. Sequence
identity for NS2 and NS1 was 99,19% and 99,82% respectively. The arrow indicates the presence of the inserted
mutation in the NS2 sequence of rBRSVh1/2*T26I
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4.4.5  rBRSVh1/2*T26I but not rBRSVh1/2 inhibits IFN  induction 

To examine the ability of the two chimeric rBRSVs to induce IFN- , a modified reporter gene 

assay was used. Vero cells harbouring the IFN-  gene promoter/enhancer (p125Luc) were 

mock-infected and infected with wild-type BRSV, rBRSVh1/2, rBRSVh1/2*T26I, HRSV A2 

and HRSV Long at an MOI of 0.3. Luciferase activity was measured 24 and 48 hours post 

infection. An induction of luciferase activity of about 9- and 12- fold was observed in cells 

infected with HRSV Long and rBRSVh1/2, respectively. A minor induction of the IFN-

gene promoter, compared to mock-infected cells, was detected for the wild-type BRSV, 

HRSV A2 and the recombinant rBRSVh1/2*T26I
.

Fig. 9 Virus-induced activation of IFN-  gene promoter. (A) Vero cells expressing the IFN-  gene 
promoter/enhancer (p125Luc) were infected with the indicated viruses at an MOI of 0.3 24 and 48 hours post
infection activity of the luciferase reporter gene was measured and the relative light units were expressed as fold
induction relative to the mock-infected control. Results represent the mean value of three independent
experiments with error bars indicating standard deviation. (B) Western blot analysis of cell lysates used in the
gene reporter assay. Blots were probed with a polyclonal -RSV serum
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These results suggest that the recombinant BRSV (rBRSVh1/2*T26I), expressing the HRSV 

NS2 protein where the Threonin in position 26 was mutated to an Isoleucine, resembles

HRSV-A2 in the capacity to block induction of IFN-  responsive gene. Therefore, 

rBRSVh1/2*T26I differs from rBRSVh1/2, which instead correlates to HRSV Long. Levels of 

IFN-  mRNA of infected cells were detected by RT-PCR. Two different human IFN-active 

cell lines, HEp2 and A549 were infected with wild-type BRSV, rBRSVh1/2, rBRSVh1/2*T26I,

HRSV A2 and HRSV Long at an MOI of 1 followed by RNA extraction at 16 hours post-

infection.

In A549 cells BRSV 1/2, lacking NS genes, was included as a positive control. 

Amplification of an IFN-  specific fragment was detectable in cells infected with HRSV 

Long, rBRSVh1/2 and BRSV 1/2 but was absent in the case of mock, HRSV A2 and 

rBRSVh1/2*T26I infected cells. These data were perfectly in line with those obtained in the 

reporter gene assay. -actin sequences were also amplified as a demonstration of DNA 

integrity, while amplification of NS2 gene was performed to evaluate the occurrence of the 

infection
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Fig. 10 RT-PCR analysis of IFN-  expression in virus infected cells. Hep2 (A) or A549 (B) were mock-  or 
infected with HRSV A2, HRSV Long, rBRSVh1/2 and rBRSVh1/2*T26I at a MOI of 1. RT-PCR analysis of IFN-

, NS2 and -actin gene expression was performed 16 hours post infection.



 Results 
___________________________________________________________________________

62

4.4.6  Recombinant BRSVh1/2 *T26I selectively reduces activation of transcriptional factor

          IRF3

Expression of IFN- /  genes is strongly induced at the transcriptional level following viral 

infection. IFN-  promoter contains binding sites for AP-1, NF-kB and IRF3 factors, which 

form a multiprotein transcriptional-promoting complex. In order to investigate whether the 

activation of these transcriptional factors is impaired upon RSV infection, 293 cells were first 

transfected with the corresponding reporter plasmids, as previously described. At 24 hours 

post transfection, cells were mock-infected and infected at an MOI of 0.3 with HRSV A2 and 

Long, BRSV wild-type and the recombinant BRSVs: BRSVh1/2 and BRSVh1/2*T26I
 .
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Fig. 11 Induced activation of IFN-   transcription factors. Luciferase constructs under the control of 
promoters containing AP-1, NF-kB and IRF3 binding sequences were transfected in 293 cells. After 24 hours 
cells were infected with the indicated viruses at an MOI of 0.3. At 24 hrs p.i. cells were harvested and luciferase
assay was performed. Results show the mean of at least two independent experiments
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Infection did not result in detectable activation of AP-1 reporter in either case. NF-kB-related 

luciferase activity showed instead a comparable increase between 4.2 and 6.7-fold in infected 

cells, with no major differences among the described viruses. Infection with HRSV Long 

increased 18-fold IRF3-promoter activity, while a very small induction was observed in 

HRSV A2 and BRSV wt infected cells, as already described. As expected, rBRSVh1/2 

promoted IRF3 activation; luciferase activity was lower than in HRSV Long infected cells but 

still an increase of about 7-fold was observed. When cells were infected with rBRSVh1/2*T26I

only a 3.2-fold increase was detected indicating a possible block of IRF3 specific activation in 

the case NS2 protein contains an Isoleucine at residue 26. 

4.4.7  Residue 26 of NS2 protein does not influence interferon resistance of recombinant    

          BRSV viruses 

Type I IFNs do not inhibit productive infection of RSV in human epithelial cells suggesting 

the existence of viral mechanisms for evasion of the airway defence-response. 

The behaviour of HRSV strains and recombinant BRSV viruses was analysed in IFN-treated 

cells. HEp2 cells, infected at an MOI of 0.3 with HRSVs or BRSV chimeras, were treated 

with increasing amounts of IFN-  A/D and viral titers were determined 3 days post infection. 

Despite protection was not complete, all four viruses were significantly resistant to IFN-

treatment. After application of 5000 IU of IFN, titers of rBRSVh1/2 and rBRSVh1/2*T26I

declined by about 1 log. Thus, both chimeric BRSV viruses were only slightly sensitive to 

IFN and in a comparable way, indicating that the exchange of Threonin 26 with an Isoleucine 

did not play a role in RSV IFN-resistance. 
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Fig. 12 Recombinant BRSV are only slightly IFN type I sensitive. (A) HEp2 cells infected at an MOI of 0.3 
with HRSV A2, HRSV Long, rBRSVh1/2 and rBRSVh1/2*T26I were incubated with the indicated amounts of 
recombinant IFN- . Infectious viral titers were determined 3 days post infection. Bars show standard deviation
of two independent experiments. (B) Western blot analysis of RSV N protein synthesis in IFN-treated HEp2 
cells

4.5  IkappaB kinase-related complex: TBK1, IKK-  and TANK 

4.5.1  Cloning of TANK-Binding Kinase 1 (TBK1) and TRAF family member-associated NF-

           kappa B activator (TANK) 

The inducible I B kinase (IKK-i or IKK- ) and the TANK-Binding Kinase 1 (TBK1) act as 

IRF3 kinases and they are involved in IFN-  expression (see Introduction).

The complete reading frame of TBK1 and TANK (which is a structural component of the 

kinase complex) were amplified by PCR from a human lung cDNA library. The TBK1 and 

TANK complete ORFs were then cloned into an expression vector, where they were coupled 

at their N-termini with a human Ig fragment.
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Correct expression of the fusion proteins was monitored in transfected BSR T7/5 cells by 

Western blot. Specific bands of about 110 kDa and 75 kDa, corresponding respectively to 

IgTBK1 and IgTANK proteins (80 kDa and 50 kDa plus 24 kDa plus the Ig fragment)

respectively, were detected 48 hours post transfection. 

IgTBK1 expression was also tested in the same cell line by immunofluorescence and 

compared with the other two components of the IKK-related complex, IgTANK and 

FlagIKK-  (which was kindly provided by  Prof. R. Ruckdeschel, MvP-Munich). All three

fusion proteins appeared to be strictly confined to the cytoplasma with a diffuse distribution, 

no structure formation was observed 

DAPI mergeA B
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Mock

FLAG-IKK-
( -FLAG ) 
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Ig-TANKIg-TANK
(  human Ig) 

Mock
(  human Ig) 
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Fig. 13 Expression of the IKK-related complex. (A) BSR T7/5 cells were transiently transfected with the
expression vectors for IgTBK1, FlagIKK-  and IgTANK. Forty-eight hours after transfection, immunostaining
was performed using the anti-Ig and anti-flag antibodies. The stained specimens were visualised by confocal
microscopy. (B) IgTBK1and IgTANK protein expression in BSR T7/5 cells was confirmed by immunoblotting.
Immunoprecipitation was performed using Sepharose-A beads and immunoprecipitates were blotted with the
anti-TBK1 and anti-human Ig antibodies.
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4.5.2  TBK1 activates IFN-  production 

Overexpression of TBK1 and IKK-  was reported to be sufficient to induce type I IFN 

production. Therefore, functional analysis of IgTBK1 in this context was carried out by 

reporter gene assay. Equal amounts of empty vector (pCR3-Ig), IgTBK1, FlagIKK- , a kinase 

dead mutant of IKK-  (FlagIKK-  dm), and an analogue of dsRNA (Poly I/C) were 

transfected in 293 cells together with the IRF3 gene promoter/enhancer (p55CIBLuc). 
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Fig. 14 IFN-  gene promoter activation by expression of IgTBK1 in different cell types. 293 cells were 
cotransfected with the IRF3 promoter (p55CIBLuc) and expression vectors coding for IgTBK1, FlagIKK- ,
FlagIKK-  dm or with dsRNA analogue Poly I/C. Cells were harvested 48 hrs post transfections followed by
luciferase assay. 
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Poly I/C is known to trigger IFN induction (Jacobs B.L. and Langland J.O., 1996), for this 

reason it was included as a positive control. IgTBK1 and FlagIKK-  mediated activation of 

the IRF3 reporter expression of 39- and 15-fold, respectively, when expressed from the 

transfected plasmids. These values were comparable to the PolyI/C-induced luciferase

activity, which was about 37-fold.Transfection of IKK-  dm, an IKK-  form in which the 

kinase domain has been disrupted by mutation of Lysin 38 to an Alanin (K38A), did not lead 

to significant activation as it was expected. 

A similar gene reporter assay, using in this case the IFN-  gene promoter/enhancer

(p125Luc), was carried out on BSR T7/5 cells.
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Fig. 15 IFN-  gene promoter activation by expression of IgTBK1 and IRF3 in BSR T7/5 cells. (A) Gene 
reporter assay on BSR T7/5 cotransfected with p125Luc and IgTBK1, FlagIKK-  or FlagIKK-  dm together
with IRF3 as indicated. (B) Western blot analysis of Mx A expression in BSR T7/5 cell lysates obtained in A 
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This cell type has beenshown to be defective in IFN induction (data not shown). 

Overexpression of the sole IgTBK1 or FlagIKK-  did not induce luciferase activation. When

IRF3 was coexpressed together with kinases stimulation up to 20-fold was reached 48 hours 

post transfection. Mx A protein expression, which is an antiviral IFN-induced intracellular 

protein (Staeheli P. et al., 1986), was detected on the cell lysates obtained in the gene reporter 

assay by Western blot analysis. Bands of 76 kDa, corresponding to the correct size of Mx A, 

were present in the samples where IRF3 was cotransfected either with the IgTBK1 or 

FlagIKK-  kinase and in which the luciferase activity was abundant.

4.5.3  HRSV strain A2 inhibits TBK1 activation 

To examine the effect of HRSV infection on TBK1-dependent IFN-  promoter stimulation,

293 cells were mock-infected and infected with HRSV A2 and Long. 
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Fig. 16 HRSV inhibits TBK1-mediated expression of IFN-  promoter in an MOI-dependent manner. 293
cells were infected at increasing MOI with HRSV A2 and Long. At 24 hours post infection cells were transfected
with the reporter plasmids, p125Luc and pCMV-RL together with IgTBK1. (A) Luciferase activity was assayed
24 hours post transfection and (B) fold reduction was extrapolated. Results show the mean of at least two
independent experiments  SD.
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Infection was performed at an MOI of 0.3 or 1 followed, after 24 hours, by cotransfection of 

the IFN-  reporter construct (p125Luc) with IgTBK1 expression plasmids. IFN-  promoter 

was responsive to TBK1 expression, resulting in an increase of luciferase activity in mock-

infected cells. 

p125Luc activation did not decrease in presence of virus infection at an MOI of 0.3 and 1, 

independently of the strains used. At higher MOI (2), TBK1-induced IFN-  activation 

resulted to be reduced of 4-fold in HRSV A2 infected cells respect to the 2-fold of Long 

strain. Inhibition of TBK1 activity by HRSV A2 appeared to be MOI-dependent and more 

marked than in HRSV Long infected cells.  

4.5.4  rBRSVh1/2*T26I inhibits TBK1 activation similarly to HRSV A2 

Recombinant BRSV viruses expressing human NS proteins differ in their ability to inhibit 

IFN-  induction upon infection and this is linked to a specific amino acid residue at position 

26 in the NS2 protein. To investigate whether the different capacity of rBRSVh1/2 and

rBRSVh1/2*T26I to induce interferon production directly involved TBK1 kinase, like in the 

corresponding HRSV prototypes Long and A2, I took advantage of the gene reporter assay 

previously described. 

293 cells were virus-infected at an MOI of 1 and 2 and cotransfected with p125Luc and 

IgTBK1. Luciferase activity was measured and the ability of the different RSV viruses to 

inhibit the IFN-  gene promoter activation by TBK1 overexpression was evaluated. When 

cells were infected at an MOI of 1, activation of TBK1-induced IFN-  promoter was slightly 

reduced: about 3-fold in HRSV infected cells and 1.5-fold in the case of rBRSVs. 

At MOI of 2, inhibition of IFN-  promoter induction was more marked and a difference could 

be seen between rBRSVh1/2 and rBRSVh1/2*T26I as well as between HRSV A2 and Long. 

HRSV Long and rBRSVh1/2 caused a reduction in luciferase activity of about 4-fold in 

contrast to 6.9- and 5.4-fold of HRSV A2 and rBRSVh1/2*T26I, respectively. 
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Fig. 17 RSV infection influences TBK1-mediated IFN-  promoter activation. 293 cells were infected at an 
MOI of 1 and 2 with the indicated viruses. At 24 hours p.i, cells were transfected with reporter plasmids,
p125Luc and pCMV-RL together with IgTBK1. Fold reductions were calculated based on the luciferase activity
measured 24 hours post transfection. Results show the mean of three independent experiments  SD

Induction of IFN-  promoter by IgTBK1 transfection in 293 cells is particularly strong and 

rapid. Since TBK1 self-activation works in a cascade-manner, activity of exogenous TBK1 is 

likely to be enforced by the presence of endogenous kinase as well as of endogenous IRF3 

factor. This might create experimental conditions that are far too different from a natural 

situation and for this reason viruses might not be able to effectively display their inhibitory 

ability in such an artificial environment. Moreover viral infection itself has some induction 

effects. Therefore, I decided to verify TBK1 inhibition by HRSV A2 and rBRSVh1/2*T26I in a 

different cell system.
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Fig. 18 TBK1-mediated IFN-  promoter activation in BSR T7/5 infected cells. BSR T7/5 cells were infected
at an MOI of 1 with HRSV A2, Long, rBRSVh1/2 and rBRSVh1/2*T26I. At 24 hours p.i., cells were transfected
with reporter plasmids p125Luc and pCMV-RL together with IgTBK1 and pEF–haIRF3. Fold reductions were
calculated based on the luciferase activity of mock-infected cells stimulated with IgTBK1. 

I performed the same experiment previously described but in BSR T7/5 cells. This cell line is 

faulty in IFN-induction signalling pathway and this may be attribute to a defective IRF3 

(overexpression of IgTBK1 does in fact not activate p125Luc) and more likely also to TBK1 

itself. In this way, I could exclude residual IFN induction by viral infection, which was 

performed before transfection, and I could induce IFN-  promoter just by exogenous TBK1 

and IRF3. BSR T7/5 cells were infected with the indicated viruses at an MOI of 1 followed 24 

hours later by transfection with the following plasmids: p125Luc, pCMV-RL, pEF-haIRF3 

and pCR3-IgTBK1. Stimulation of mock-infected cells with IgTBK1 and IRF3 led to an 

increase of luciferase activity of 113-fold. Upon infection with HRSV Long and rBRSVh1/2
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a slight reduction of about 2.5-fold was observed In contrast HRSV A2 and rBRSVh1/2*T26I

decreased significantly TBK1-dependent activation of IFN-  promoter of 21- and 15- fold, 

respectively.

4.6  Recombinant RV expressing RSV nonstructural proteins 

4.6.1  Construction of recombinant SAD eGFP-P viruses harbouring RSV NS proteins 

To determine whether NS proteins were sufficient to block IFN induction by an unrelated 

virus, I generated RV viruses expressing Long-derived NS1 protein with either NS2 from

strain Long (SAD eGFP-Ph2/1) or a mutated form of NS2 where Threonine at position 26 

was exchanged to an Isoleucine (SAD eGFP-Ph2*T26I/1).

e G F P - P
h 2 * T 2 6 I / 1

e G F P - P  h 2 / 1
( L o n g )N G F P - P M G Lh N S 2 h N S 1

N G F P - P M G Lh N S 2 * h N S 1

e G F P - P  h
b 2 /1  ( B R S V )N G F P - P M G Lb N S 2 b N S 1

Fig. 19 SAD eGFP-P viruses expressing RSV non structural proteins. Schematic genome organization of
eGFP-Ph2/1 expressing NS proteins from HRSV Long; eGFP-Ph2*T26I/1 harbouring the NS1 gene from Long 
strain and an NS2 gene derived from Long but mutated at position 26 (T26I); eGFP-Pb2/1 with insertion of NS1 
and NS2 genes from BRSV wt.

For this purpose, I used a recombinant fluorescent RV in which the fusion of eGFP to P 

protein (SAD eGFP-P) unabled the virus to block IFN induction upon infection (Brzozka K. 

et al., 2005). The additional NS genes were introduced between G and L genes of SAD eGFP-

P as described in Materials and Methods and recombinant viruses were rescued from cDNA 
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in BSR T7/5 cells. The growth kinetics of the recombinant eGFP-P viruses in BSR T7/5 cells 

did not greatly differ from that of SAD eGFP-P virus with the exception of eGFP-Pb2/1. 

Unexpectedly, the same was observed in IFN-competent HEp2 cells. eGFP-Ph2*T26I/1 mutant

was not able to grow productively. Its titers were almost 3 log lower than Sad L16, indicating 

that the expression of the mutated NS2*T26I protein did not effectively antagonize IFN 

induction. Addition of RSV nonstructural proteins genes did not conferred IFN resistance to 

SAD eGFP-P as it was instead reported in the case of recombinant wild-type RV (SAD 

VBh2/1).
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Fig. 20 Growth properties of recombinant SAD eGFP-P viruses. BSR T7/5 and HEp2 cells were infected 
with the indicated viruses at an MOI of 0.01. Virus titres were determined at different time points from cell
supernants. Results show the mean of at least three independent experiments  SD.

Transcription of IFN-  mRNA was analysed by RT-PCR in infected HEp2 cells. Cells were 

infected at an MOI of 1 with wild type RV (SAD L16), eGFP-P, recombinants eGFP-Ph2/1, 

eGFP-Ph2*T26I/1 and eGFP-Pb2/1 (expressing BRSV NS proteins).RNA was isolated 16-18 
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hours post infection and RT-PCR was performed with specific primer for IFN-  and -actin,

which was used as a loading control. In contrast to mock-infected and wt RV infected cells, 

IFN-  mRNA expression showed up-regulation in cells infected with eGFP-P and 

recombinant eGFP-Ps harbouring RSV non structural proteins. The inability of eGFP-P 

recombinant viruses to inhibit IFN-  gene transcription correlated to their inability to 

productively grow in HEp2 cells. 

Cells extract of BSR T7/5 cells infected with eGFP-P, eGFP-Ph2/1 and eGFP-Ph2T26I/1 at an 

MOI of 1 were analysed for protein synthesis of RV N and P together with HRSV NS1 and 

NS2 by Western blotting. The expression of the mutated NS2 protein (NS2*T26I ) was 

significantly lower than the original Long NS2 protein expressed by eGFP-Ph2/1, while levels 

of NS1 protein were comparable.
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Fig. 21 (A) RT-PCR for IFN-  mRNA expression in rabies infected HEp2 cells. HEp2 cells were mock-
infected and infected at an MOI of 1 with the HRSV NS2 mRNA expression. (B) Western blot analysis for
human NS proteins expressed by recombinant  eGFP-P viruses. BSR T7/5 cells were mock-infected (1) and 
infected with: eGFP-Ph2*T26I/1 (2); eGFP-Ph2/1 (3) and eGFP-P wt (4). Viral protein synthesis was confirmed
using the rabbit serum S50 recognizing RV nucleoprotein (N) and eGFP fusion phosphoprotein (eGFP-P). 
HRSV NS1 and NS2 proteins were detected by the polyclonal rabbit -NS1 (IC/C) antibody kindly provided by
J. Melero, Spain.
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5  DISCUSSION 

5.1  Human respiratory syncytial virus: strains A2 and Long 

5.1.1  Suppression of IFN-  induction differs in HRSV A2 and Long 

Human respiratory virus (HRSV) is the major cause of viral bronchiolitis and pneumonia in 

infants worldwide. Although RSV is commonly known as a paediatric pathogen, it can cause 

life-threatening lung disease in bone marrow recipients and elderly. The World Health 

Organization has estimated a global annual infection of something like 64 millions 

individuals, with an overall claiming of 3-5 millions human lives annually. 

RSV isolates can be classified into two subgroups, designated A and B, which exhibit 

antigenic and genetic differences, with a major divergence in the G glycoprotein. Group A 

and B can co-circulate during epidemics, which occur during winter and early spring in 

temperate climates and during the rainy season in tropical areas. 

By 2 years of age, essentially 100% of the children get infected with RSV at least once. 

Moreover re-infections can occur throughout life and are usually symptomatic. Severe RSV 

infection in infancy is often followed by recurrent childhood wheezing probably leading to 

asthma exacerbations in older children and adults. RSV-associated disease is in large part due 

to excessive immune response, and the immunopathology of RSV includes the relatively 

unique phenomenon of vaccine-enhanced disease or “immunopotentiation”. These particular 

features of RSV infection, susceptibility to repeat infections and enhanced disease during a 

recall/memory adaptive immune response to infection after vaccination, indicate that RSV 

employs several novel mechanisms of immune dysregulation to propagate within the human 

population. Understanding of RSV effects on the development and expression of both 

innative and adaptive immune response may provide important information concerning the 

formulation of effective therapies. IFN- /  (type I interferons) are inducible cytokines 

secreted by most eukaryotic cells in response to viral pathogens and they are of particular 

importance as an early line of innate immune defence. Induction of type I IFN by dsRNA or 

by virus infection is controlled at the transcriptional level. IFN-  mRNA expression level 

peaks around 15-18 hours post stimulation and dramatically decreases afterwards due to a 

negative-feedback loop. 

RSV expresses two putative nonstructural proteins, NS1 and NS2. We have previously shown 

that the NS proteins of the bovine RSV (BRSV) exert an inhibitory activity on the induction 

of IFN- /  suppressing interferon-mediated antiviral state (Bossert B. et al., 2003).
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Recently, this has been shown also for HRSV, the human counterpart of BRSV (Spam K.M et 

al., 2004). HRSV strongly inhibits activation of interferon regulatory factor 3, whereas high 

levels of activation were detected in cells infected with deletion mutants for NS1 and/or NS2 

genes (Spann K.M., et al., 2005). 

We have demonstrated that BRSV interferes with IRF3 activation by blocking its 

phosphorylation, which is an essential step for its nuclear import. It is likely that the same 

mechanism is true for HRSV. We could show that two commonly used HRSV laboratory 

strains, A2 and Long, differ fin their capacity to interfere with IFN induction. Long has been 

found to induce IFN-  in epithelial cells and plasmacytoid dendritic cells (PDC) in contrast to 

A2 and clinical isolates from hospitalised children (Schlender J. et al., 2005). In this study, I 

have analysed IFN-  induction in epithelial cells infected with the two HRSV prototypes. The 

first evaluation was performed using a Vero cell-line stably transfected with IFN-

promoter/enhancer controlling the expression of the luciferase gene (p125Luc). While 

promoter activity increased more than 12-fold after infection with Long, A2 did not elicit a 

significant increase. Interestingly, the difference in luciferase activity was greatest at 48 hours 

post infection. This might depend on accumulation of NS proteins in the cell, which is 

necessary to counteract induction by dsRNA. Spann and colleagues have in fact found that 

HRSV resembles the NS gene deletion mutants in their ability to activate IRF3 at early stages 

of infection. Later on, HRSV wt, opposite to the deletion mutants, blocks further activation 

probably when accumulation of NS1 and NS2 proteins reaches sufficient levels in the cell.  

RT-PCR for detection of IFN-  mRNA expression has been performed in HEp2 cells mock-

infected and infected with HRSV A2 and Long. Infection of HEp2 cells with HRSV Long 

strain resulted in a appreciable increase in the expression level of IFN-  mRNA compared to 

that of mock- or A2-infected cells. Thus, it was possible to confirm the results obtained in the 

luciferase assay and I concluded that Long strain is a potent IFN-  inducer in contrast to A2.

5.1.2  Activation of IFN-  transcription factors 

The IFN-  promoter contains binding sites for three distinct transcriptional factors: ATF-2/c-

Jun (AP-1), NF-kB, and IRF3. These factors form a multiprotein complex, called 

“enhanceosome”, which drives to transcription of the IFN-  gene. 
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Using reporter constructs expressing the luciferase gene under the control of either AP-1, NF-

kB or IRF3 binding sites, activation of all three transcriptional factors by infection with 

HRSV A2 and Long was assayed. 

AP-1 was not significantly activated in response to infection with both strains. The limited 

responsiveness of AP-1 to RSV infection has been already documented and it has been 

attributed to sensitivity to the cell culture redox state (Mastronarde J.G. et al., 1998). 

NF-kB plays an essential role in early events of innate immune response regulating the 

expression of inflammatory and immunomodulatory genes. RSV infection has been shown to 

potently and specifically activate NF-kB in vivo (Haeberle H.A. et al., 2002). 

Since HRSV-A2 and Long vary considerably in their ability to induce IFN- in vitro, the 

magnitude of NF-kB activation has been also investigated. The results indicate that the levels 

of NF-kB-responsive reporter gene activation were essentially the same in the case of both A2 

and Long infected cells. 

Interferon regulatory factor (IRF)-3 is the critical transcription factor regulating 

immediate/early alpha-beta IFN genes. Various pathogens activate cell signals resulting in 

phopshorylation of specific Serine and threonine residues in theIRF3 C-terminal region by 

recently identified kinases (IKK-  and TBK1). Several viral proteins have been reported to 

interfere with IRF3 activation. These proteins are encoded for example by Bunyamwera, 

Influenza A, Ebola, Bovine respiratory syncytial and Measles virus (Kohl A. et al., 2003; 

Talon J. et al., 2000; Basler C.F. et al., 2003; Bossert B. et al., 2003). In the present study, I 

investigated IRF3 activation by HRSV. In contrast to A2, Long correlates to increased 

activation of IRF3 promoter, therefore indicating a selective block of this factor in A2 

infected cells. This clearly explains the reason why IFN-  induction is compromised by 

infection with A2 virus and not with Long strain. 

5.1.3  Sequence analysis of nonstructural NS proteins in HRSV

In an effort to correlate the ability to antagonize IFN-  expression with specific viral factors, I 

have analysed and compared NS protein amino acid sequences derived from different HRSV 

strains, which had proved to differ in the achievement of a full inhibitory effect. 

In the analysis, HRSV A2 and Long and two representative clinical isolates obtained from 

hospitalised children were included. Our previous work had shown that the clinical isolates 

were able to counteract IFN-  production similarly to the laboratory strain A2. Since NS1 and 
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NS2 proteins have been already described as potent interferon antagonists, I searched for 

relevant differences in their amino acid sequences.  

NS1 protein of BRSV shares 69% identity at amino acid level with the corresponding 

sequence of HRSV subgroup A NS1. Comparison analysis of NS1 gene of HRSV laboratory 

strains A2 and Long and the clinical isolates number 86 and 112 revealed amino acid 

sequences highly similar to each other and no residue changes appeared to be peculiar for one 

or more strains. 

Only a very limited number of differences were apparent in the NS2 protein sequence as well. 

Four amino acid changes clustered at its N-terminus and among these, I could identify at 

position 26 the unique presence of a Threonine distinguishing HRSV Long sequence. A2 and 

the clinical isolates displayed at the same position an Isoleucine residue instead. This 

mutation was considered particularly interesting because the two residues greatly differ in 

terms of polarity: Threonine is a polar amino acid while Isoleucine is hydrophobic. In 

addition the presence of a Threonine results in a potential additional O-glycosylation site but, 

even more important, represents a potential phosphorylation acceptor. This observation 

prompted us to formulate the hypothesis by which the different ability to prevent expression 

of IFN-  by HRSV A2 and Long strains might be specifically linked to the nature of the 

residue at position 26 of the NS2 protein. 

5.2  A mutated Long-derived NS2 protein prevents induction of IFN-

5.2.1   Recombinant BRSV expressing HRSV nonstructural proteins 

BRSV NS1 and NS2 proteins antagonize the induction of IFN- /  interfering, at the early 

stages of virus-stimulated IFN pathway, with the activation of IRF3 (Schlender J. et al., 2000; 

Bossert B. et al., 2003). 

To investigate the interferon inhibitory functions of NS2 proteins derived from A2 and Long 

viruses, I used reverse genetics to generate recombinant BRSV expressing nonstructural 

protein of HRSV origin. A chimerical BRSV expressing HRSV Long NS proteins (rBRSV 

h1/2) has been previously generated, indicating that the HRSV nonstructural proteins are able 

to fulfil the functions of the bovine counterparts with respect to IFN resistance and in 

supporting viral replication. Notably, rBRSVh1/2 resembled HRSV Long in the ability to 

induce IFN-  opposite to wild type BRSV. To establish the importance of Threonine at 
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position 26 of the NS2 protein, I mutated this residue in the context of rBRSV h1/2 to an 

Isoleucine, resembling the situation in A2 strain and in the clinical isolates. The chimerical 

BRSV h1/2*T26I was successfully rescued; NS1 and NS2 gene were sequenced to confirm the 

correctness of the inserted mutation and the expression of NS proteins was assessed in Vero 

cells. Furthermore, I compared the growth of the recombinant BRSV viruses (rBRSV h1/2 

and BRSVh1/2*T26I) to that of HRSV A2 and Long in HEp2 cells, which are competent for 

the expression of interferon, and in Vero cells, which instead lack the genes of these 

cytokines. The chimerical BRSVs replicated efficiently and comparably to HRSVs in both 

cell lines. The virtually identical growth indicated that the mutation in the HRSV NS2 protein 

(T26 I) did not affect viral replication. 

5.2.2  rBRSVh1/2*T26I infection inhibits IFN-  induction by blocking IRF3 activation 

Induction of IFN-  promoter activity was analysed making use of a Vero cell line stably 

transfected with a reporter construct expressing the luciferase gene under the control of the 

IFN-  promoter/enhancer. A very slight increase in the promoter activity was observed in 

cells infected with HRSV A2, BRSV wt and rBRSVh1/2*T26I while HRSV Long and 

rBRSVh1/2 displayed an induction around 10-folds.

IFN-  mRNA expression was also analysed by RT-PCR in HEp2 infected cells. Even in this 

case, while the rBRSVh1/2 led to an increased of expression readily detectable 15-16 hours 

post infection, rBRSVh1/2*T26I did not. Taken together these data indicate that the presence of 

an Isoleucine instead of a Threonine at position 26 of the NS2 amino acid sequence does 

indeed contribute to the IFN inhibitory functions of the chimeric rBRSVs. 

Induction of IFN-  is controlled by three different transcription factors (AP-1, NF-kB and 

IRF3), which become activated following phosphorylation events in response to viral 

infection. Therefore I further investigated if the block of IFN-  expression by rBRSV 

h1/2*T26I was due to impairment of one or more of these transcription factor activities. I used 

reporter constructs expressing the luciferase gene under the control of either one or the other 

transcription factor binding sites. IRF3 activation was greatly compromised in rBRSV 

h1/2*T26I (the same was for HRSV A2 and BRSV wt) but not in rBRSVh1/2 infected cells. 

This pointed toward a selective block of IRF3 transcription factor activation by 

rBRSVh1/2*T26I ; no differences were in fact observed in the case of AP-1 or NF-kB. 
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BRSV and HRSV are known to be resistant to antiviral responses triggered by exogenous IFN 

and this ability once again is attributable to the nonstructural protein NS1 and NS2. 

Recombinant BRSV grew identically in HEp2 cells despite in the case of rBRSVh1/2 IFN is 

produced. To exclude any negative influence on viral IFN-resistance caused by the mutation 

in the NS2 protein, I tested viral replication of rBRSVh1/2 and rBRSVh1/2*T26I in IFN-treated 

HEp2 cells. All the viruses tested, including the chimerical BRSVs, were almost completely 

protected even against high doses of exogenous IFN-  (up to 5000 IU/ml). Therefore, I could 

exclude that residue 26 of NS2 protein playes a role in the ability of RSV to counteract IFN-

induced antiviral immune response. 

5.3  The novel IkB-related kinases (IKK): IKK-  and TBK1 

5.3.1  Cloning TANK-binding kinase 1 (TBK1) and TRAF family member–associated NF-kB     
          activator (TANK) 

Induction of IFN-  expression by viral infection requires activation of the transcription 

factors ATF-2/c-Jun (AP1), NF-kB and IRF3. In unstimulated cells, IRF3 is present in the 

cytoplasm. Activation of IRF3 by viruses or dsRNA occurs via phosphorylation of a cluster of 

Serine and Threonine residues in its carboxyterminus and particular importance has been 

attributed to Serine 386 (Mori M. et al., 2003). Phosphorylation leads to dimerization of IRF3 

and formation of a complex including CREB-binding protein (CBP) and p300. This complex 

after translocation to the nucleus, activates IFN gene transcription. The kinases responsible 

for IRF3 phosphorylation have been recently identified in the inducible IKK-  and in the 

constitutively expressed TANK-binding kinase, TBK1 (Sharma S. et al., 2003). TBK1 is an 

80-85 kDa protein which exerts kinase activity upon phosphorylation of specific Serine 

residues in its loop region. Involvement of the cytoplasmic helicases RIG-I and MDA5 has 

been recently described. RIG-I and MDA5 recognize dsRNA and this leads to downstream 

activation of IKK- /TBK1 and IKK /  via the adaptor protein IPS-1 (Kawai T. et al., 

2005).Viruses, in their attempt to evade the innate immune response, have elaborated 

sophisticated mechanisms to abrogate the production of type I IFNs. The nonstructural protein 

NS3/4-A of hepatitis C virus has been described as an inhibitor of RIG-I and MDA5 

signalling functions (Yoneyama M. et al., 2005; Breiman A. et al., 2005; Foy E. et al., 2005). 

On the same line, hepatitis A virus blocks activation of IRF3 by interaction with RIG-I 

(Fernsterl V. et al., 2005).
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Expression of TBK1, as well as IKK-  alone, is sufficient to trigger activation of IRF3 and 

therefore to induce IFN expression. 

To better understand the role of RSV nonstructural (NS) proteins in perturbing the activation 

signalling pathway of IRF3, I have cloned and expressed TBK1. Furthermore, I compared its 

biological functionality in different cell lines. Expression of the Ig-tagged TBK1 was 

confirmed by Western blotting analysis by a single band at the expected molecular mass of 

around 110 kDa. Expression of TBK1 is rather weak and difficult to visualize probably due to 

its rapid turn over, for this reason immunoprecipitation was needed. Expression of TBK1 was 

also investigated by immunofluorescence. After transfection, TBK1 appeared diffusely 

distributed into the cytoplasm. Similarly to IKK- . (Fig. 22), its expression induced 

translocation of IRF3 into the nucleus. 
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Fig. 22 Nuclear translocation of IRF3 factor upon transfection of IKK- . BSR T7/5 cells were transfected 
with expression plasmids for HA-tagged IRF3 or/and FlagIKK- . Cells were stained with the M2 antibody 
recognizing the Flag epitope while the HA-tag was detected using the antibody Y-11. Nuclei were stained with 
DAPI (Hoechst). 
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5.3.2  TBK1-dependent IFN-  induction 

As previously described (Fitzgerald K.A. et al., 2003), expression of FlagTBK1 in 293 cells 

induced activation of IRF3-regulated IFN-  promoter in a luciferase assay.

TBK1 increased luciferase activity several fold in a dose-dependant manner (Marozin S 

personal observation), comparable to cells transfected with the dsRNA analog Poly I:C. 

Furthermore, I was able to reconstitute the IFN-activation signalling pathway in BSR T7/5 

cells. This cell line is defective in expressing type I IFN by viral infection and transfection of 

dsRNA analogues. I have identified the defect in the lack of a functional IRF3 and more likely 

of TBK1 as well. By cotransfection of TBK1 with IRF3, this function was re-established and 

provided a useful tool to analyse IFN induction mechanisms in the absence of endogenous 

interferences. Expression of the IFN-induced MxA protein confirmed IFN production.  

5.4  Inhibition of TBK1 by RSV 

5.4.1  HRSV A2 blocks TBK1-induced IFN-  expression 

To investigate whether infection with HRSV had some adverse effects on TBK1-dependent 

activation of IFN-  transcription, I assayed TBK1-dependent IFN-  promoter activation in 

infected cells. My main interest was to identify variations in the inhibitory ability of HRSV 

strain A2 and Long that could be linked to the different nature of the amino acid residue at 

position 26 of the NS2 protein.. Initially, 293 cells were infected with the HRSV prototypes at 

increasing MOI of 0.3, 1 and 2. At 24 hours post infection, cells were transfected with the 

reporter plasmid for IFN-.  (p125Luc), pCMV-RL (Renilla) and IgTBK1. When infection 

was performed at MOI of 0.3 and 1 a very poor inhibition of the luciferase activity was 

observed, in the best case with less than 3-fold reduction for A2 virus. In addition no major 

discrepancies were detectable between the two strains. At the first sight this indicated that the 

interference with IRF3 activation was not at the level of the kinases responsible for its 

phosphorylation but probably the block was lying somewhere upstream. In consideration of 

the intrinsic characteristics of RSV, such as difficult growth in tissue culture and being prone 

to losing infectivity, I considered that MOI of 1 might have been not sufficient to target every 

cells with at least one viral particle. A high cell-infection was a prerequisite for the outcome 

of the experiment since artificial stimulation of IFN by transfection with TBK1 was probably 
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more efficient than in natural conditions. Moreover, it seemed that the levels of accumulation 

of NS proteins into the cytoplasm of infected cells were decisive for the exertion of a full 

inhibitory effect from RSV. For this reason, I then used an MOI of 2 to perform the same 

experiment. Unfortunately higher MOI than 2 was no applicable because infected cells after 

transfection tend to die. In this experimental condition, I was finally able to demonstrate a 

difference between A2 and Long viruses. HRSV A2 was able to significantly reduce TBK1-

induced luciferase activity of p125Luc by about 4-folds. In contrast, strain Long, which itself 

does not inhibit IFN- /  expression, had a minor effect at the same MOI (about 2-fold 

reduction).

5.4.2  Residue 26 of NS2 protein is important for TBK1 inhibition 

To better clarify the role of residue 26 (Threonine vs Isoleucine) of HRSV NS2 protein, I 

performed the same experiment including the recombinant BRSVs expressing HRSV NS1 

and either NS2 protein from Long (T 26) or a mutant form of it (I 26) similar to A2 strain. 

Even in this case, MOI of 2 was necessary to reveal a pronounced difference in TBK1 

antagonism by these viruses. An obvious higher reduction in luciferase activity was detectable 

in HRSV A2 infected cells. rBRSVh1/2*T26I showed a trend to better counteract TBK1 

stimulation when compared to rBRSVh1/2. Unfortunately, the difference in folds reduction 

was not so prominent as in the case of HRSV, just 5.4-folds versus 4 folds, respectively. 

Therefore, I tried to perform the same experiment in BSR T7/5 cells to better clarify the 

meaning of the results previously obtained. BSR T7/5 cells were used because they lack at 

least a functional IRF3 which compromise the endogenous TBK1-dependent IRF3-activation 

signalling pathway. It was reasonable to assume that in this cell context RSV growth was 

facilitated by the absence of an endogenous IFN-network and that the following transfection 

of exogenous TBK1 compromised less the cell viability. In this case, MOI of 1 was sufficient 

to efficiently block IFN-  promoter stimulation in the case of HRSV A2 and rBRSVh1/2*T26I

infection. In view of this data, I concluded that NS2 protein was responsible for blocking 

TBK1 activity and therefore IFN-  induction. Moreover, it was the nature of residue 26 to 

play an important role in this function probably being part of a NS2 protein domain 

responsible for interaction with the cellular kinase TBK1. It is also feasible that this amino 

acid, or the sequence stretch comprising residue 26, is crucial for interaction between NS1 

and NS2. It has been shown that these viral proteins not only form heterodimers but need to 
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cooperate to efficiently antagonize interferon induction. I could speculate that the presence of 

a Threonine instead of an Isoleucine may lead to a drastic modification of important 

recognition motif in NS2 protein and either way, this would explain the loss of inhibitory 

ability by HRSV Long or the rBRSVh1/2. To unveil the mechanisms behind the identity of 

this apparently “essential” amino acid in NS2 protein, I tried to immunoprecipitate TBK1 

with NS2 protein either from A2 or from Long infected cells. Unfortunately, no co-

precipitation was observed in any case. This might indicate that TBK1 inhibition is achieved 

indirectly by interaction of NS proteins with a third player, so far not known, or simply the 

results were imputable to technical problems. It must be reminded that expression of TBK1 is 

quite hard to detect and that expression of NS proteins is also rather difficult to observe. NS1 

and NS2 proteins can not be efficiently expressed by plasmid vectors, probably due to their 

reach content in A/T bases and NS2 in viral infected cells has a turn over of only 30 min. All 

these critical steps might have compromised the success of the experiment. Therefore, NS2 

inhibitory mechanisms remain un-revealed so far. 

Intracellular signal transduction pathways are regulated through the action of protein kinases. 

Protein Ser/Thr-kinases mediate phospho-dependent signalling networks recognizing their 

substrates by specific Ser/Thr-containing motifs. TBK1 and IKK-   themselves contain a 

unique mitogen-activated protein kinase-kinase domains (EXXXS) within their activation 

loops functioning as a substrate for upstream kinases (Ehrhardt C. et al., 2004). These IKK-

related kinases, TBK1 and IKK- , are Ser/Thr-kinases as well and they target SerXXXSer

sequences in the amino terminal domain of IkB  and in the carboxyterminus of IRF3 and 

IRF7. Viral infection or treatment with dsRNA or LPS specifically induces phosphorylation 

of Ser 386 of IRF3 by IKK-  and TBK1 (Mori M. et al., 2003). Interestingly, the Long NS2 

protein also contains a putative Ser/Thr motif. The position of Threonine as the second 

residue within a potential consensus recognition motif (SerXXXSer/Thr) for phosphorylation 

in Long NS2 protein is consistent with predicted target motifs for Ser/Thr-kinases. Moreover, 

the phosphorylation motif in the carboxyterminus of IRF3 is almost identical to the NS2 

amino acid stretch containing the Threonine residue.  
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IRF3   -------------S386 L E N T  V---------------- COOH 

NS2      NH2 -------------S     L E T T26I----------------

Fig. 23 Amino acid alignment of IRF3 and NS2 proteins potential posphorylation target motifs. Serine 386 
of IRF3, which is phosphorylated by TBK1/IKK-  is underlined. Threonine at position 26 in the NS2 amino-
terminus is indicated in bold letter. 

The implications of this analogy are not clear. Theoretically, it can be excluded that NS2 

protein from Long competes with IRF3 as a substrate for IKK-  and TBK1 because in this 

case IFN-  production should be inhibited. Residues S22 and T26 at the amino terminus of 

NS2 protein may serve as kinase recognition and/or direct phosphoacceptor sites. 

Phosphorylation by specific cellular kinases might represent the initial step of a multi-step 

process which would result in loss of IFN inhibitory activity of NS2 protein in HRSV Long 

strain. I have also considered that phosphorylation at these specific sites might enhance 

degradation of NS2 protein in Long and rBRSVh1/2 resulting in levels of expression so low 

to be insufficient to elicit antagonist functions. To rule out this possibility, I tested HRSV NS 

proteins expression in IFN-competent 293 cells. NS2 protein expression was observed in all 

the viruses analysed and NS2 levels were comparable, indicating that the presence of a 

Threonine at position 26 of HRSV Long and rBRSVh1/2 did not induce an appreciable 

degradation of NS2 protein. 

Actin 

NS2
NS1

21 3 4 5

Fig. 24 Western blot analysis of NS2 protein expression. 293 cells were mock-infected (1) and infected at an 
MOI of 0.2 with HRSV A2 (2), HRSV Long (3), rBRSVh1/2 (4) and rBRSVh1/2*T26I (5). At 48 hours post 
infection, when the cytopathic effect was apparent, cells were harvested and lysates were immunoblotted with a 
rabbit polyclonal antibody recognizing NS1 and NS2 proteins (  IC/C, kindly provided by Melero J., Spain) and 
an anti-actin antibody (Sigma). 
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5.5  Recombinant Rabies Viruses expressing RSV nonstructural proteins 

5.5.1  Generation of SAD eGFP-P viruses harbouring RSV NS1 and NS2 proteins 

To obtain more evidence that the RSV NS proteins alone are sufficient to counteract IFN 

induction, NS proteins were expressed in the context of an unrelated virus. NS1 and NS2 

genes derived from BRSV and HRSV Long were introduced into the SAD eGFP-P virus 

(eGFP-Pb2/1 and eGFP-Ph2/1). A recombinant virus expressing a Long-derived NS2 protein, 

where a mutation at position 26 was inserted (T26 I), was also generated (eGFP-Ph2*T26I/1). 

SAD eGFP-P was chosen as a vector because, in contrast to wild-type rabies, it is not able to 

inhibit interferon induction by blocking TBK1 activity. This characteristic would have 

enabled to analyse the differential ability of Long NS2 and A2-like NS2 to accomplish IFN 

antagonist activity in absence of other RSV proteins. Growth kinetics in BSR T7/5 cells 

showed that recombinant viruses expressing HRSV NS proteins were not significantly 

attenuated in their viral replication when compared to SAD eGFP-P. Only the chimeric virus 

harbouring the BRSV NS proteins (eGFP-Pb2/1) was attenuated by about 1 log. Viral titers of 

SAD eGFP-P itself are lower than of SAD L16 and this is due to a reduction in the amount of 

phosphoprotein P as a consequence of the fusion with GFP. 

5.5.2  Recombinant eGFP-P NS2/NS1 viruses do not counteract IFN production 

Growth characteristics of the recombinant eGFP-P viruses were tested in a cell system 

competent for IFN expression (HEp2). Apparently, insertion of RSV NS genes was not 

sufficient to rescue the viral replication of SAD eGFP-P. Moreover, also the presence of the 

HRSV NS2 protein having a mutation to resemble HRSVA2 NS2 protein, did not sustain 

eGFP-Ph2*T26I/1 growth as expected. IFN-  mRNA expression in HEp2 cells infected with 

eGFP-Ph2/1, eGFP-Ph2*T26I/1 and eGFP-Pb2/1 was equal to cells challenged with eGFP-P 

and greatly increased as compared to infection with wild type RV. Clearly, IFN-  was 

induced in presence of the chimerical eGFP-Ps and this explained a failure in viral growth at 

least of eGFP-Ph2*T26I/1. Surprisingly, expression of either NS protein combination did not 

confer IFN resistance to the recombinant viruses. This contrasts with previous observations: 

wild-type RVs expressing RSV nonstructural proteins had demonstrated a significantly 

enhanced resistance to IFN challenge (Bossert B. and Conzelmann K.K., 2002). Western blot 
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analysis of RSV NS proteins expressed by RV has then revealed a problem with the 

expression of NS2 by the recombinant eGFP-Ph2*T26I/1. While NS1 protein expression was 

comparable to the one of eGFP-Ph2/1, the NS2 level was significantly reduced. The reason of 

this low efficiency in expression is not yet clear. RT-PCR sequencing revealed that NS2 gene 

is correctly inserted in the RV vector and no changes of the sequence were found. Even the 

lack of detectable IFN resistance by eGFP-Ph2/1, which did express both nonstructural 

proteins, remains unsolved. I can only speculate that the amount on NS proteins produced is 

just not enough to protect eGFP-P virus from the IFN-induced antiviral state. In the RSV 

genome, the NS genes are located at the most upstream position resulting in a high level of 

expression in infected cells. Recombinant wild-type RVs (e.g RV h1/2), which are IFN 

resistant, reach very high titres in cell culture, up to 1x 108-109 ffu/ml, comparable to the 

parental strain SAD L16 and this is positively influencing the expression levels of the 

additional genes inserted in their genome. The fact that chimerical RVs are resistant to 

exogenous IFN already ruled out the need of additional RSV proteins to exert this function. 

Unfortunately, recombinant RV viruses could not be used for my purposes because wild-type 

RV itself is able to counteract IFN induction by the activity of the P protein. Therefore 

discrimination of the role played by RSV NS proteins is impossible. On the contrary, SAD 

eGFP- P does not block IFN production due to low P levels. The recombinant viruses derived 

from SAD eGFP-P (eGFP-Ph2/1and eGFP-Ph2*T26I/1) are attenuated in their growth of about 

3 logs in BSR T7/5 cells. The inefficient growth of these viruses and the fact that little NS2 

protein is expressed from the current constructs precluded the analysis of NS functions. 

In the future recombinant RVs should be generated in which high NS levels of expression are 

achieved by inserting the RSV nonstructural genes in a most proximal position in the rabies 

genome. 

5.6  Final considerations 

The results described in this work confirmed thatRSV NS2 protein plays the major role in 

blocking the IFN-  activation pathway. Hereby, I was able to characterize HRSV evasion of 

the innate immune response by identifying in the amino acid residue at position 26 of NS2 

protein a crucial determinant for this function. Despite the mechanisms by which NS2 protein 

operates its antagonism remain still to be elucidated, the data provided support to the initial 

hypothesis that RSV interferes with the very early stages of the IRF3 phosphorylation. RSV 

have shown to interfere with the activity of the IKK-related kinase TBK1 but no evidence was 
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found of a direct interaction between this kinase and RSV NS2 protein. When this thesis was 

in preparation, several publications have revealed in more detail the identity of some of the 

most upstream components of the IFN-  activation pathway, which determine TBK1/IKK-

recruitment . This opens the possibility to further elucidate the viral mechanisms involved in 

the IFN antagonist functions of HRSV NS2 protein. 
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6 SUMMARY

Interferon Escape of Respiratory Syncytial Virus:

Functional Analysis of Nonstructural Proteins NS1 and NS2

Respiratory syncytial virus (RSV) is recognised as the most frequent cause of severe lung

infections in infants and cattle worldwide. Currently, no effective treatments are available and the

development of a successful vaccine has been hampered by the fact that natural infection does not

provide complete and durable protection. RSV nonstructural proteins, NS1 and NS2, are strong

inhibitors of IFN / -production by specifically preventing interferon regulatory factor (IRF)-3

phosphorylation. However, the exact mechanisms leading to NS protein-mediated inhibition of

IRF3 remain to be unravelled.

One of the objectives of this study was to identify amino acid domains in the human

respiratory syncytial virus (HRSV) nonstructural proteins (NS) responsible for their ability to

ablate the IFN- signalling pathway. Furthermore, I wanted to find out at which level of this

signalling pathway the NS proteins exert their suppressive activity and which are their major

cellular targets. HRSV strains A2 and Long differ in their ability to block interferon type I

synthesis. Sequence analysis of their NS proteins revealed the presence of an amino acid

residue in the NS2 protein with a potential role for RSV IFN-inhibitory functions.

Two recombinant bovine respiratory syncytial (BRSV) viruses harbouring HRSV NS1 and

NS2 genes were generated and tested in their ability to restrict IFN- synthesis. These

recombinant viruses differed only in the identity of the residue at position 26 of the HRSV

NS2 protein: rBRSVh1/2 has a Threonine as in the Long strain, while in rBRS h1/2*
T26I

this

amino acid was mutated into an Isoleucin similarly to A2 virus. Sets of in vitro tests revealed

that IFN- induction was impaired by rBRSVh1/2*
T26I
when compared to rBRSV h1/2.

Analysis of the transcriptional factors (AP-1, NF-kB and IRF3) involved in the activation of

IFN- synthesis provided evidence that the inhibitory ability of rBRSVh1/2*
T26I

was

correlated to a selective block of IRF3. The mutation (T26I) in the NS2 protein did neither

effect the NF-kB activation pathway nor perturbed the IFN-resistance characteristics of the

chimeric viruses.
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IRF3 is activated upon phosphorylation mediated by IKK-related kinases (TBK1 and IKK- ).

TBK1 was therefore cloned from a human lung cDNA library and its biological activities

regarding the induction of IFN- were compared in mock-infected and infected cells.

rBRSVh1/2*
T26I

and HRSV A2 precluded virus-induced IRF3 activation by interfering with

TBK1 functions. No direct interaction between TBK1 and NS2 protein was demonstrated

indicating that the kinase TBK1 may not be the sole target involved in RSV mechanisms of

evasion of the innate immune response.

Recombinant IFN-inducible rabies viruses expressing HRSV Long-derived (rGFP-Ph2/1) or

HRSV A2-like (rGFP-Ph2*
T26I
/1) NS proteins were also generated. The HRSV NS2 protein

expressing an Isoleucin (NS2*
T26I
) at position 26 was not able to suppress IFN- induction

and to rescue the growth of the recombinant eGFP-Ph2*
T26I
/1 in interferon-competent cells.

A low expression of the mutated NS2*
T26I
protein was probably the reason of this failure.

In summary, these results show that the HRSV NS2 protein possesses an intrinsic IFN-

inhibitory activity, which is achieved throughout a selective inhibition of the IRF3 activation

pathway. The block appears to be exerted at the level of IRF3-kinase TBK1. Interferon-

antagonist functions of the HRSV NS2 protein are linked to a particular amino acid motif in

the N-terminus of the protein. Identification of this amino acid domain and of TBK1 as the

cellular target provide a better insight of how the HRSV NS2 protein prevents the

establishment of the antiviral innate immune response and therefore it might contribute to the

development of an effective vaccine.
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7 ZUSAMMENFASSUNG

Unterdrückung der Interferon-vermittelten Immunantwort durch das Respiratorische

Synzytial Virus: funktionelle Analyse der Nicht-Strukturproteine NS1 und NS2

Das Respiratorische Synzytial Virus (RSV) zählt weltweit zu den häufigsten Auslösern

schwerer Lungenentzündungen bei Kleinkindern und Rindern. Gegenwärtig gibt es dafür

keine effektive Behandlungsmethode und die Entwicklung eines erfolgreichen Impfstoffes

war nicht möglich, da auch eine natürliche Infektion keinen vollständigen und dauerhaften

Schutz gewährleistet.

Die Nicht-Strukturproteine des RSV -NS1 und NS2- wirken stark hemmend auf die

alpha/beta-Interferon ( / IFN)-Produktion, indem sie die Phosphorylierung des Interferon-

Regulierungs-Faktors (IRF)-3 verhindern. Die Mechanismen, die zu einer NS-Protein

vermittelten Hemmung des IRF3 führen, sind bisher unbekannt.

Eines der Ziele dieser Arbeit war es, Aminosäurensequenzen der HRSV Nicht-

Strukturproteine zu finden, die ausschlaggebend für die Hemmung der IFN- Signalkaskade

sind. Außerdem sollte geklärt werden, auf welchem Level der Signalkaskade die Nicht-

Strukturproteine ihre hemmende Wirkung ausüben und auf welche zellulären Komponenten

sie abzielen. Die HSV-Stämme A2 und Long hemmen die Interferon Typ I Synthese auf

unterschiedliche Weise. Mittels Sequenzanalysen ihrer Nicht-Strukturproteine wurde ein

Aminosäurerest im NS2-Protein identifiziert, der eine mögliche Rolle bei der Hemmung von

Interferon durch RSV spielt.

Es wurden zwei rekombinante bovine RS-Viren (BRSV), die Gene für NS1 und NS2 des

humanen RS-Virus beinhalteten, generiert und auf ihre Fähigkeiten untersucht, die IFN- -

Synthese zu unterdrücken. Diese rekombinanten Viren unterscheiden sich nur in der

Aminosäure an Position 26 des HRSV NS2-Proteins: rBRSVh1/2 hat ein Threonin, wie in

dem Long–Stamm, während bei rBRSVh1/2*T26I diese Aminosäure gegen ein Leucin

ausgetauscht wurden, wie es in A2 Viren natürlich vorkommt. In vitro Untersuchungen

ergaben, dass die IFN Induktion durch rBRSVh1/2*T26I im Vergleich mit rBRSVh1/2

abgeschwächt wurde.
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Die Analyse der Transkriptionsfaktoren AP-1, NF-kB und IRF3, die an der Aktivierung der

IFN Synthese beteiligt sind ergab, dass die inhibitorische Fähigkeit von rBRSVh1/2*T26I

mit einer selektiven Blockierung von IRF3 zusammenhängt. Die Mutation T26I im NS2

Protein hatte weder einen Effekt auf den NF-kB-Aktivierungs-Weg, noch störte sie die IFN-

Resistenz des Chimären Virus.

IRF3 wird durch Phosphorylierung mittels IKK-verwandten Kinasen (TBK1 und IKK- )

aktiviert. TBK1 wurde daher aus einer humanen Lungen cDNA-Bibliothek kloniert und seine

biologische Aktivität bezüglich der Aktivierung von IFN in „mock“-infizierten Zellen und

Virus-infizierten Zellen verglichen.

rBRSVh1/2*T26I und HRSV A2 verhinderten Virus-induzierte IRF3-Aktivierung durch

Beeinflussung von TBK1-Funktionen. Es wurde gezeigt, dass es keine direkte Interaktion

zwischen TBK1 und NS2 gibt. Dies deutet darauf hin, dass die Kinase TBK1 nicht das

alleinige Zielprotein der RSV-Mechanismen ist, der angeborenen Immunantwort zu entgehen.

Weiterhin wurden rekombinante IFN-induzierbare Rhabdo-Viren generiert, die entweder das

NS2 Protein aus dem HRSV Long-Stamm (rGFP-Ph2/1) oder das A2 ähnliche Protein (rGFP-

Ph2*T26I/1) exprimieren. Das HRSV NS2-Protein, dass an Position 26 ein Isoleucin besitzt,

war nicht fähig die IFN -Induktion zu unterdrücken, beziehungsweise das Wachstum von

rekombinanten eGFP-Ph2*T26I/1 in IFN-kompetenten Zellen zu ermöglichen. Die lag

vermutlich an der geringen Expressionsrate des mutierten NS2*T26I-Proteins.

Zusammenfassend zeigen die Ergebnisse, dass das HRSV NS2-Protein eine intrinsische

Aktivität als IFN-Inhibitor besitzt, die über eine selektive Hemmung des IRF3

Aktivierungs-Weges erfolgt. Die Blockade wirkt auf der Ebene der IRF3-Kinase TBK1. Die

Interferon-antagonistischen Funktionen des HRSV NS2-Proteins begründen sich in einem

speziellen Aminosäure-Motiv am N-Terminus des Proteins. Die Identifizierung dieser

Aminosäure-Domäne sowie von TBK1 als zelluläres Ziel von NS2 ermöglicht einen besseren

Überblick über die Mechanismen, durch die das HRSV NS2-Protein die angeborene antivirale

Immunantwort unterdrückt. Dies könnte ein Ansatzpunkt für die Entwicklung eines effektiven

Impfungsstoffes sein.
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