

Aus der Abteilung für Infektions- und Tropenmedizin Innenstadt Leiter: Prof. Dr. med. T. Löscher Medizinische Poliklinik, Ludwig-Maximilians-Universität München Direktor: Prof. Dr. med. D. Schlöndorff

Molekulare Charakterisierung des Gens des Sporenwandproteins von *Encephalitozoon hellem* durch inverse und verankerte Polymerasekettenreaktion

Dissertation zum Erwerb des Doktorgrades der Medizin an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München

> vorgelegt von Stefan Propping

> > aus Heidelberg

> > > 2006

Mit Genehmigung der Medizinischen Fakultät der Universität München

Berichterstatter:	PD Dr. Dr. H. Rinder
Mitberichterstatter:	PD Dr. W. Fischer
Dekan:	Prof. Dr. D. Reinhardt
Tag der mündlichen Prüfung:	09.02.2006

Meinen Eltern und meinen Schwestern

1.	EINLEITUNG	1
1.1	Mikrosporidien als parasitäre Krankheitserreger	1
1.1.1	Biologie der Mikrospridien	2
1.1.2	Epidemiologie der Mikrosporidiosen beim Menschen	6
1.1.3	Klinik der humanen Mikrosporidiosen	7
1.1.4	Diagnostik der Mikrosporidiosen	9
1.2	Das Sporenwandprotein von Encephalitozoon cuniculi und	
	Encephalitozoon intestinalis	10
2.	PROBLEMSTELLUNG UND ZIELSETZUNG DER ARBEIT	13
3.	MATERIAL UND METHODEN	16
3.1	Materialien	16
3.1.1	Geräte	16
3.1.2	Chemikalien	17
3.1.3	Enzyme	17
3.1.4	Nukleotide	18
3.1.5	PCR-Primer	18
3.1.6	Kommerzielle "Kits"	19
3.1.7	Weitere Materialen und Software	19
3.1.8	Herkunft der Erreger	19
3.2	Methoden	20
3.2.1	DNA-Isolation	20
3.2.2	DNA-Amplifizierung durch Polymerasekettenreaktion (PCR)	21
3.2.3	"Inverse" PCR	23
3.2.3.1	Restriktion und Ligation der DNA von Encephalitozoon hellem	23
3.2.3.2	"Inverse" PCR bei <i>E. hellem</i>	26
3.2.4	"Verankerte" PCR	27
3.2.4.1	Restriktion und Ligation bei E. hellem	28
3.2.4.2	"Verankerte" PCR bei <i>E. hellem</i>	30
3.2.5	"Halb-geschachtelte" ("semi-nested") und "geschachtelte"	
	("nested") PCR	30

3.2.6 3.2.7	Agarose-Gelelektrophorese Isolierung der PCR-Produkte aus Agarose-Gelen und	31
5.2.1	DNA-Sequenzierung	32
4.	ERGEBNISSE	34
4.1	Homologieuntersuchungen zur Konstruktion "universeller" SWP-Primer	34
4.2	Vorversuch zur direkten Amplifikation des SWP-Gens aus Enterocytozoon bieneusi	38
4.3	Charakterisierung des SWP-Gens von	
	Encephalitozoon hellem	42
4.3.1	Amplifikation eines ersten E. hellem-spezifischen SWP-Genabschnitts	
	durch Anwendung degenerierter Primer	42
4.3.2	Charakterisierung "upstream" und "downstream" gelegener SWP-	
	Genabschnitte von <i>E. hellem</i> durch "inverse" PCR	45
4.3.3	Charakterisierung weiterer SWP-Genabschnitte von E. hellem durch	
	"verankerte" PCR	54
4.3.4	Bestimmung der vollständigen kodierenden SWP-Gensequenz von E.	
	hellem, benachbarter genomischer Bereiche und der abgeleiteten	
	Aminosäuresequenz	57
5.	DISKUSSION	60
5.1	Vorversuche zur direkten Amplifikation des SWP-Gens aus	
	Enterocytozoon bieneusi mittels "degenerierter" Primer	60
5.2.	Methodische Aspekte der Ermittlung der DNA-Sequenz des	
	SWP-Gens aus Encephalitozoon hellem	61
5.2.1	"Inverse" und "verankerte" PCR	62
5.2.2	Konstruktion der PCR-Primer	64
5.3	Charakterisierung des SWP-Gens von Encephalitozoon hellem	66
5.4.	Ausblick	72

6.	ZUSAMMENFASSUNG	74
7.	LITERATURVERZEICHNIS	76
8.	ABKÜRZUNGEN	80
9.	LEBENSLAUF	81
10.	DANKSAGUNG	82

1. Einleitung

1.1 Mikrosporidien als parasitäre Krankheitserreger

Parasiten sind zum Tierreich gehörende, ein- oder mehrzellige eukaryontische Organismen, die ganz oder teilweise auf Kosten eines anderen Lebewesens existieren. Sie lassen sich in Protozoen (Einzeller), Helminthen (Würmer) und Arthropoden (Insekten und Spinnentiere) unterteilen und können Menschen oder Tiere als Endo- oder Ektoparasiten besiedeln. Unter den Protozoen stellen die Mikrosporidien eine Gruppe von Parasiten dar, die erst in jüngerer Zeit humanmedizinische Bedeutung erlangt hat. Seit ihrer Erstbeschreibung in Seidenraupen im Jahre 1857 (Nägeli, 1857), wurden 100 über Mikrosporidiengattungen mit mehr als 1000 Spezies als Parasiten bei zahlreichen wirbellosen und Wirbeltieren beschrieben (Canning, 1993).

Bis jetzt werden 7 Genera von Mikrosporidien als humanpathogen beschrieben: Encephalitozoon, Enterocytozoon, Pleistophora, Tachypleistophora, Nosema. Vittaforma, Septata sowie eine taxonomisch nicht valide und nicht näher charakterisierte Mikrosporidiengruppe ("Microsporidia" sp.) (Franzen und Müller, Die wichtigsten humanpathogenen Mikrosporidiengattungen 1999). sind Enterocytozoon, mit dem bisher einzigen bekannten Vertreter E. bieneusi und Encephalitozoon, mit den humanpathogenen Arten E. intestinalis, E. hellem und E. cuniculi (Tabelle 1).

Taxon		
Stamm	Microspora	
Klasse	Haplophasea	
Ordnung	Glugeida	Chytridiopsida
Familie	Encephalitozoonidae	Enterocytozoonidae
Gattung	Encephalitozoon	Enterocytozoon
Art	E. intestinalis E. hellem E. cuniculi	E. bieneusi

Tabelle1: Taxonomische Klassifikation der häufigstenhumanpathogenen Mikrosporidien (nach Sprague *et al.*, 1992)

Infektionen mit anderen Mikrosporidiengattungen sind beim Menschen sehr selten. Der bei Mikrosporidieninfektionen des Menschen am häufigsten identifizierte Erreger ist *E. bieneusi*. Am zweithäufigsten wird *E. intestinalis* und am dritthäufigsten *E. hellem* gefunden Infektionen mit *E. cuniculi* sind selten. Alle diese Erreger werden ganz überwiegend bei Patienten mit HIV-bedingter Immunschwäche nachgewiesen.

Als erste Encephalitozoon-Spezies wurde Encephalitozoon cuniculi 1923 als Krankheitserreger bei Kaninchen entdeckt (Levaditi et al., 1923). In der folgenden Zeit wurden Infektionen auch bei anderen Säugetieren, einschließlich des Menschen, beschrieben (Übersicht in: Weber et al., 2000). Enterocytozoon bieneusi wurde erstmals 1985 bei einem Patienten mit AIDS und chronischer Diarrhöe beschrieben (Desportes et al., 1985). Die beim Menschen zweithäufigste Mikrosporidienspezies des Menschen, Encephalitozoon intestinalis, wurde erst 1992, ebenfalls bei einem Patienten mit AIDS zum ersten Mal nachgewiesen (Weber et al., 1992). Im Jahr zuvor wurde Encephalitozoon hellem bei einem Patienten mit AIDS und Keratokonjunktivitis identifiziert (Didier et al., 1991). Diese Spezies ist die bei Patienten mit AIDS am dritthäufigsten auftretende Mikrosporidienart (Haro et al., 2003). Sie verursacht Keratokonjunktividen, respiratorische Erkrankungen, urogenitale Infektionen, systemische Infektionen und prostatische Abszesse (Kotler et al., 1998). Der Mensch ist vermutlich der Hauptwirt von E. hellem. Allerdings ist diese Spezies auch bei Vögeln nachgewiesen worden. Es wird vermutet, dass Vögel die Rolle eines Reservoirwirtes spielen könnten (Franzen et al., 1999).

1.1.1 Biologie der Mikrospridien

Mikrosporidien werden dem Stamm Mikrospora zugeordnet (Canning und Lom, 1986). Sie vermehren sich ausschließlich intrazellulär. In den Zellen entwickeln sich über im Folgenden näher beschriebenen, komplexen Entwicklungszyklus die umweltresistenten Sporen, die vom Wirtsorganismus ausgeschieden werden und andere Lebewesen infizieren können. Die Sporen der Mikrosporidien sind sehr resistent gegen Umwelteinflüsse. So können die Sporen von *E. intestinalis* bis zu 12 Monaten in feuchter Umgebung infektiös bleiben. Sporen von *E. cuniculi* bleiben bis zu 9 Monaten und die von *E. hellem* bis zu 3 Monaten infektiös (Li *et al.*, 2003). Die Sporen der Mikrosporidien sind oval bis birnenförmig, haben eine Länge von 2 bis 7

um und eine Breite von 1.5 bis 5 um. Die Sporenwand der Mikrosporidien besteht aus zwei Schichten, der glykoproteinreichen Exospore und der chitinreichen Endospore, innerhalb derer die Zellmembran anliegt. Die Endospore ist am vorderen Pol, durch den während der Infektion der Polfaden austritt, verdünnt. In der dadurch gebildeten Vertiefung liegt die Ankerplatte des Polfadens (Abbildung 1). Vor der Ankerplatte des Polfadens liegt der Polaroplast. Dabei handelt es sich um lamellenartig angeordnete Membranen, die in die äußere Membran des Polfadens übergehen und den Inhalt der Spore, das Sporoplasma, umhüllen, wenn diese durch den Polfaden in die Wirtszelle geschleust wird. Die Mitte der Spore wird von einem (Enterocytozoon, Encephalitozoon, Pleistophora, Trachipleistophora) oder zwei (Nosema, Thelohenia, Vittaforma) dicht aneinander gelagerten, als Diplokaryon bezeichneten Kernen eingenommen. Das den Kern umgebende Zytoplasma enthält Ribosomen und einige Zisternen rauen endoplasmatischen Retikulums. Mikrosporidien besitzen keine Mitochondrien, keine Peroxisomen und keinen für einen Golgi-Apparat typischen Membranstapel. Der hintere Bereich reifer Sporen kann eine Vakuole aus verschmolzenen Vesikeln des nur rudimentär ausgebildeten Golgi-Apparats enthalten (Canning, 1993; Didier et al., 1998). Diese lichtmikroskopisch als intrazelluläre Struktur noch am ehesten erkennbare posteriore Vakuole der Mikrosporidiensporen kommt bei Enterocytozoon bieneusi jedoch meist nicht vor (McDougall et al., 1993).

Abbildung 1: schematischer Aufbau einer Mikrosporidienspore (nach Didier *et al.*, 1998).

Die Sporen von *E. intestinalis*, *E. hellem* und *E. cuniculi* sind lichtmikroskopisch nicht zu unterscheiden. Nur anhand unterschiedlicher antigener und genetischer Eigenschaften können diese Spezies differenziert werden (Franzen *et al.*, 1999).

Die Sporen besitzen im reifen Stadium ein einzigartiges, nur bei Mikrosporidien gefundenes Organell, den "Polschlauch" oder "Polartubulus" (Abbildung 2). Dieser entwickelt sich wahrscheinlich aus dem endoplasmatischen Retikulum und kann ausgeworfen eine Länge von 50-100 µm erreichen, ist innerhalb der Spore jedoch kürzer, dicker und aufgewunden (Didier et al., 1998). Die Anzahl der Windungen innerhalb der Spore variiert von Art zu Art und ist ein taxonomisch verwertbares Merkmal. Unter geeigneten Bedingungen, z.B. bei Änderung des pH-Wertes im alkalischen Milieu des Dünndarmes, wird der Polschlauch explosionsartig ausgeworfen und durchschlägt wahrscheinlich rein mechanisch die Zellmembran der Wirtszelle (Weiss, 2003). Anschließend wandert der Inhalt der Spore, das Sporoplasma, einschließlich des Zellkerns durch den Polschlauch in die Wirtszelle. Der auf diese Art und Weise in das Wirtszytosol eingeschleuste Parasit wird dann entweder von einer parasitophoren Vakuole eingeschlossen (bei Encephalitozoon, Pleistophora, Trachipleistophora und Vittaforma) oder liegt frei im Zytosol der Wirtszelle (bei Enterocytozoon, Nosema und Brachiola). Dort beginnt die ungeschlechtliche Vermehrung, die Merogonie.

Abbildung 2: Rasterelektronenmikroskopische Aufnahme von *E. cuniculi*-Sporen, eine davon mit ausgeworfenem Polfaden (Foto: Heidrun Schöl)

Der Entwicklungszyklus von Mikrosporidien lässt sich in drei Phasen einteilen: eine proliferative Phase (ungeschlechtliche Vermehrung, Merogonie), die Sporenproduktion (Sporogonie) sowie die einzige extrazelluläre Phase, nämlich die Sporen- oder infizierende Phase. Das in die Wirtszelle eingedrungene und von der Zellmembran der Spore umschlossene Sporoplasma wird als Meront (oder Schizont) bezeichnet, der sich mehrfach teilt. Die Zellteilung kann entweder parallel zur Kernteilung erfolgen (Encephalitozoon, Nosema, Thelohenia, Vittaforma) oder erst im mehrere Anschluss an Kernteilungen (Enterocytozoon, Pleistophora, Trachipleistophora), wodurch zunächst mehrkernige Zellen, genannte SO "Plasmodien", entstehen.

Die Phase der Differenzierung hin zur Spore, die Sporogonie, beginnt mit der Bildung einer elektronenmikroskopisch dichten Auflagerung auf die Zellmembran der Meronten, aus der sich die spätere Exospore entwickelt. Die Zellen, die nun Sporonten genannt werden, teilen sich, wie die Meronten, entweder direkt oder über Plasmodienformen. Die entstehenden Zellen heißen Sporoblasten. Ihre Anzahl pro Sporont ist charakteristisch für die Gattung. Die Ausreifung der Sporoblasten zu Sporen umfasst die Bildung sporentypischer Organellen und wird durch die Ausbildung der Endospore zwischen Exospore und Plasmamembran abgeschlossen (Canning *et al.*, 1993; Didier *et al.*, 1998).

Mikrosporidien wurden früher als primitive Eukaryonten angesehen (Vossbrinck *et al.*, 1987). Das Fehlen von Mitochondrien, Zentriolen, Peroxisomen und eines echten Golgi-Apparates unterscheidet sie von höheren Eukaryonten. Überdies besitzt *E. cuniculi* mit 2,9 Megabasen das kleinste bekannte eukaryontische Genom (Katinka *et al.*, 2001). Auch das Gen der ribosomalen RNA entspricht in seinem Aufbau eher dem von Bakterien. So fehlt die für Eukaryonten ansonsten typische 5,8S große, kodierende Region zwischen den für die 18S- und 28S-RNA kodierenden Bereichen, wodurch statt zweier nur ein einziger interner transkribierter "Spacer" (ITS), wie bei Prokaryonten, vorhanden ist. Die rRNA-Produkte der kleinen und großen ribosomalen Untereinheit entsprechen bei Mikrosporidien in ihrer Größe ebenfalls am ehesten denen der bakteriellen 16S- bzw. 23S-rRNA. Mikrosporidien wurden aus diesem Grund als die ältesten Eukaryonten überhaupt angesehen (Vossbrinck und Woese, 1986; Vossbrinck *et al.*, 1987). Neuere Untersuchungen weiterer Gene

rückten die Mikrosporidien taxonomisch in jüngster Zeit allerdings eher in die Nähe von Pilzen (Weiss, 2003; Keeling, 2002).

1.1.2 Epidemiologie der Mikrosporidiosen beim Menschen

Bis Mitte der 90er Jahre wurden weltweit Mikrosporidien in Stühlen und Dünndarm-Biopsaten von 10-25%, in einigen Untersuchungen von bis zu 50% HIV-positiver Patienten mit chronischer Diarrhö gefunden (van Gool *et al.*, 1990; Eefftinck-Schattenkerk *et al.*, 1991; Field *et al.*, 1996; Molina *et al.*, 1993; Franzen *et al.*, 1994; Franzen *et al.*, 1999; Kotler und Orenstein, 1994; Bernard *et al.*, 1995; van Gool *et al.*, 1995; Schottelius *et al.*, 2003). Der Großteil dieser Infektionen wurde durch *E. bieneusi,* ein kleinerer Anteil durch *E. intestinalis* verursacht und hauptsächlich bei Patienten mit AIDS und niedrigen CD4-Zellzahlen (<100/µl) beobachtet. Erst durch die Einführung der so genannten hochaktiven antiretroviralen Chemotherapie (HAART) konnte die Zahl klinisch apparenter Mikrosporidieninfektionen signifikant herabgesetzt werden. Da mit der genannten antiviralen Therapie aber keine Heilung der Immunschwäche erreicht wird, bleibt abzuwarten, ob es in einigen Jahren wieder zu einem Anstieg von Mikrosporidieninfektionen kommen wird.

Mikrosporidien wurden jedoch nicht nur bei immunsupprimierten Patienten, sondern auch bei immunkompetenten Menschen nachgewiesen (Sobottka *et al.*, 1995), z. B. bei Tropenreisenden mit Diarrhöe. Auch sind Fälle bekannt geworden, die auf Infektionen durch kontaminiertes Trinkwasser zurückgeführt wurden (Deplazes *et al.*, 1996).

Der Infektionsweg der Mikrosporidien ist bis heute jedoch nicht vollständig geklärt. Sporen von Mikrosporidien wurden in der Umwelt in Oberflächengewässern (Dowd *et al.*, 1998) sowie in Fischen und Säugetieren nachgewiesen (Wittner *et al.*, 1999). Die Erreger sind ebenfalls in Stuhl, Urin und Gewebebiopsien nachweisbar. Es liegt der Verdacht nahe, dass die Mikrosporidiose zu den wasser- und nahrungsgebundenen Infektionen gehört (Sanski, 2003). Als Risikofaktoren wurden der Verzehr von ungenügend gekochtem Fleisch und nicht abgekochtem Wasser angeschuldigt (Deplazes *et al.*, 1996). Als Ansteckungsweg wurde die orale Aufnahme der Sporen durch einen empfänglichen Wirt postuliert (Sobottka *et al.*, 2003). Als weiterer Übertragungsweg wird die Inhalation von Sporen mit anschließendem Verschlucken diskutiert, da sowohl in Sputum und Bronchiallavage als auch im broncho-alveolären Epithel Mikrosporidien nachgewiesen werden konnten (Didier *et al.*, 1998). Unklar ist bis heute, ob die Mikrosporidiose eine Zoonose ist. Zwar konnte gezeigt werden, dass eine Übertragung der Erreger von Tier zu Tier möglich ist (Didier *et al.*, 1998), doch bisher konnte nur in sehr wenigen Fällen eine Übertragung von Mikrosporidien von einem Tier auf den Menschen als wahrscheinlich beschrieben werden (McInnes und Stewart, 1991).

1.1.3 Klinik der humanen Mikrosporidiosen

Infektionen mit Mikrosporidien können beim Menschen zu sehr unterschiedlichen klinischen Manifestationen führen (Tabelle 2). Bei immunkompetenten Menschen nehmen sie oft einen selbstlimitierenden oder völlig asymptomatischen Verlauf. Deshalb wurden sie bei immunkompetenten Personen nur in Einzelfällen nachgewiesen. Klinisch manifeste Mikrosporidieninfektionen betreffen hauptsächlich Menschen mit angeborenen oder erworbenen Immundefekten sowie immunsupprimierte Patienten und gewannen mit der AIDS-Pandemie besondere Bedeutung.

Die wichtigste klinische Manifestation der beim Menschen am häufigsten gefundenen Mikrosporidienart, E. bieneusi, ist die Diarrhöe. Weitere Symptome sind Blähungen, unspezifische Oberbauchbeschwerden und Gewichtsverlust. Die Diarrhöe äußert sich in häufigen, wässrigen Stuhlentleerungen ohne Blutoder Schleimauflagerungen. Oft wechseln sich auch Phasen der Diarrhöe mit Phasen normalen Stuhlgang ab. Selten ist diese Durchfallerkrankung unmittelbar lebensbedrohlich, kann aber im Verlauf von Monaten zu einer lebensbedrohlichen Kachexie führen (Canning 1993; Kotler und Orenstein, 1998; Franzen und Müller, 1999).

Mikrosporidienspezies	Klinische Manifestation bei Immunsupprimierten	Klinische Manifestation bei Immunkompetenten	
Enterocytozoon bieneusi	Chronische Diarrhöe Cholangitis Cholezystitis	selbstlimitierende Diarrhöe	
Encephalitozoon intestinalis	Chronische Diarrhöe Cholangitis Cholezystitis Nephritis Zystitis Sinusitis Generalisierte Infektionen	selbstlimitierende Diarrhöe	
Encephalitozoon hellem	Keratokonjunktivitis Sinusitis Nephritis Harnwegsinfektionen Prostatitis	selbstlimitierende Diarrhöe	
Encephalitozoon cuniculi	Keratokonjunktivitis Sinusitis Nephritis Harnwegsinfektionen	bisher noch nicht nachgewiesen	

Tabelle 2: Die häufigsten klinischen Manifestationen von Infektionen mit den wichtigsten humanpathogenen Mikrosporidien (Schottelius *et al.*, 2003)

Bei etwa 10% immungeschwächter Patienten, die mit *E. bieneusi* infiziert sind, kommt es neben einer chronischen Diarrhöe auch zu einer Cholangitis oder Cholezystitis. Die Erkrankung kann dann einen schweren Verlauf nehmen, der mit Gewichtsverlust und Fieber einhergeht. Darmferne Manifestationen sind selten. Dennoch wurde beschrieben, dass *E. bieneusi* auch Pneumonie, Bronchitis, Sinusitis und Rhinitis verursachen kann (Weber *et al.*, 1992; Hartskeerl *et al.*, 1993).

Im Gegensatz zu den Infektionen mit *E. bieneusi* verlaufen Infektionen mit *E. intestinalis* generalisierter. Neben einer fieberhaften Diarrhöe kann es zu Cholezystitis, Sinusitis und Nephritis kommen. Abdominelle Schmerzen können Hinweis auf eine Papillenstenose sein. Durch Malabsorption von Fett kann es zu Hypovitaminosen fettlöslicher Vitamine kommen (Franzen und Müller, 1999). Auch bei generalisierten Infektionen mit anderen *Encephlitozoon*-Arten kann es bei

Patienten mit AIDS zu einer Mitbeteiligung der Harnwege kommen. Als Symptome können Zeichen einer Zystitis beobachtet werden, bis hin zu Nephritiden mit oder ohne Makrohämaturie. Selten werden Infektionen des ZNS, der Muskulatur oder pulmonale Komplikationen beobachtet (Franzen und Müller, 1999; Weber *et al.* 2000).

Infektionen des Menschen mit *E. hellem* und *E. cuniculi* sind selten. Am häufigsten werden Keratokonjunktivitis, Sinusitis und Rhinitis beschrieben. Häufig lassen sich Sporen im Urin nachweisen. Bei Infektionen mit *E. hellem* wurden in Einzelfällen Pneumonie und Bronchiolitis beschrieben, bei Infektionen mit *E. cuniculi* Enzephalitis und Hepatitis (Franzen *et al.* 1995). Die Infektion des Menschen mit anderen Mikrosporidiengattungen ist auf Einzelbeschreibungen beschränkt. So wurden bei Patienten mit AIDS *"Pleistophora-*ähnliche" Erreger beschrieben, die eine Myositis verursachten (Ledford *et al.*; 1985; Chupp *et al.*; 1996; Grau *et al.*, 1996).

1.1.4 Diagnostik der Mikrosporidiosen

Der Nachweis einer Mikrosporidiose ist bis heute sehr schwierig. Die in diagnostischen häufigsten Labors am angewendete Methode ist die Lichtmikroskopie. Allerdings färben sich Mikrosporidien nur schwer und unspezifisch an. Eine Verbesserung gelang mit der so genannten "modifizierten Trichromfärbung" nach Weber (Weber et al., 1992) sowie mit Fluoreszenzfarbstoffen, zum Beispiel mit dem optischen Aufheller "Calcofluor White" (van Gool et al., 1993) oder "Uvitex 2B" (Vavra et al., 1993). Die "modifizierte Trichromfärbung" gilt dabei als die spezifischere, die Anfärbung mit Fluoreszenzfarbstoffen als die sensitivere Methode. Die Elektronenmikroskopie wird wegen des methodischen Aufwands nur selten eingesetzt und bleibt vor allem histologischen Untersuchungen vorbehalten.

Für die Diagnostik kommen auch molekularbiologische Methoden, insbesondere die PCR, zum Einsatz. Damit gelang es, die Nachweisgrenze der Lichtmikroskopie von 10⁴-10⁶ Sporen/ml auf 10² Sporen/ml zu senken. In einer geblindeten, extern kontrollierten multizentrischen Studie zur Evaluierung von Lichtmikroskopie und PCR zeigte sich, dass die Sensitivität des PCR-basierten Nachweises mit 89% höher war

als die der Mikroskopie mit 80%. Die Spezifität beider Methoden erwies sich mit 98% bzw. 95% als vergleichbar gut (Rinder *et al.*, 1998).

Im Gegensatz zu *E. bieneusi* können *E. hellem*, *E. cuniculi* und *E. intestinalis* in vitro kultiviert werden, was jedoch keine diagnostische Bedeutung besitzt. Die Anzüchtung erfolgt bis heute hauptsächlich zu wissenschaftlichen Zwecken, da sie zeitaufwendig ist und Erfahrung erfordert. Die serologische Diagnostik spielt bis heute aufgrund von Kreuzreaktionen unter den Mikrosporidien und fehlender kommerzieller "Testkits" keine Rolle (Franzen *et al.*, 1999).

1.2 Das Sporenwandprotein von *Encephalitozoon cuniculi* und *Encephalitozoon intestinalis*

Das Sporenwandprotein ("spore wall protein", SWP) ist das Hauptantigen der Mikrosporidiensporen. Es macht sie gegen Umwelteinflüsse resistent. Dieses Protein ist nicht nur Bestandteil der Sporenwand selbst und schützt die Sporen vor mechanischen Einflüssen, sondern ist wahrscheinlich durch eine im Detail noch nicht verstandene Wechselwirkung mit dem Polartubulus auch an der Infektion von Wirtszellen beteiligt (Bohne *et al.*, 2000; Haymann *et al.*, 2001).

Während der ersten intrazellulären, parasitophoren Phase wird das SWP noch nicht exprimiert, so dass es in Meronten nicht nachweisbar ist. Erst in der folgenden frühen Phase der Sporogonie wird das SWP exprimiert und der Wirtsorganismus kann dagegen spezifische Antikörper bilden. In der indirekten Immunfluoreszenz binden monoklonale Anti-SWP-Antikörper aus Mäusen an fixierte und abgetötete *E. cuniculi* Sporen. Auf den Infektionsprozess haben diese Antikörper gegen SWP jedoch wahrscheinlich keinen Einfluss (Bohne *et al.*, 2000).

Die kodierende Sequenz des Gens für SWP von *E. cuniculi* (Gendatenbank-Nummer: AJ133745) ist 1350 Basenpaare lang und kodiert für ein Protein von 450 Aminosäuren mit einer Größe von 51 kDa. Die N-terminale Region (Aminosäure 1-18) zeigt die typischen Charakteristika eines Signalpeptids zur Ausschleusung über das endosplasmatische Retikulum (so genannte "von Heijne"-Sequenz). Charakteristisch für das SWP ist ein hoher Anteil an Serin (19%) und Glycin (14%). Nach Abtrennung des Signalpeptids lassen sich drei Abschnitte unterscheiden: eine hydrophile N-terminale Region (Aminosäuren 19-150), eine hydrophobe Kernregion (Aminosäuren 151-357) und ein hydrophiles, carboxy-terminales Ende mit repetitiven Sequenzen (Aminosäuren 358-450). Die carboxyterminale Region des Proteins besteht aus fünf glycin- und serinreichen, jeweils 17 Aminosäuren umfassenden repetitiven Elementen (GSGSGGSSGGSSGSGSD). Transmembrane Domänen werden nicht gefunden.

Im Gegensatz zu *E. cuniculi* besitzt *E. intestinalis* zwei Sporenwandproteine: SWP1 und SWP2. Jedes der beiden 1164 bp, bzw. 3006 bp großen Gene kodiert für ein Protein mit 388 (SWP1) bzw. 1002 (SWP2) Aminosäuren. Die 18 Aminosäuren lange Signalsequenz ist bei beiden Proteinen identisch. Transmembrane Domänen konnten bei keinem der beiden Proteine identifiziert werden. Die N-terminalen Domänen von SWP1 (Aminsäuren 1-354) und SWP2 (Aminosäuren 1-351) sind nahezu identisch. In den übrigen Regionen beider Proteine (SWP1: Aminosäuren 355-388 und SWP2: Aminosäuren 352-1002) lassen sich dagegen kaum Homologien finden. Vergleicht man beide Sequenzen mit der des Sporenwandproteins von *E. cuniculi* so sind diese zu 65% (SWP1) bzw. 61% (SWP2) identisch.

In Mäusen konnte gezeigt werden, dass bei *E. intestinalis* sowohl gegen SWP1 als auch gegen SWP2 Antikörper gebildet werden. Sie sind aber zu unterschiedlichern Zeitpunkten der Sporenentwicklung nachweisbar. SWP1 ist während der späten Phase der Sporogonie auf der Oberfläche nachweisbar, nicht jedoch in voll entwickelten Sporen. Dagegen ist SWP2 auf der Oberfläche reifer Sporen nachweisbar. Da es nicht möglich ist, mit monoklonalen Antikörpern beide Proteine während der Entwicklung der Sporen gleichzeitig nachzuweisen, besteht die Möglichkeit, dass SWP2 die relevante Bindungsstelle des Antikörpers von SWP1 blockiert.

Bei *E. hellem* ist ein Sporenwandprotein bis heute nicht beschrieben worden. Die Existenz des entsprechenden Gens wurde jedoch im Jahr 2000 grundsätzlich nachgewiesen: Es wurde genomische DNA aller drei *Encephalitozoon*-Spezies (*E. cuniculi, E. intestinalis* und *E. hellem*) mit *Bam*HI und *Hind*III verdaut und anschließend einer so genannten "Southern-Blot"-Analyse zum Nachweis homologer

Gene unterworfen. Die Hybridisierung mit einem SWP-cDNA-Fragment von *E. cuniculi* führte bei allen drei Spezies zu Banden (Bohne *et al.*, 2000). Bei *E. cuniculi* und *E. hellem* zeigte sich je eine Bande, bei *E. intestinalis* zwei. Es ist nahe liegend, dass auch das Genprodukt aus *E. hellem*, wie die Proteine der beiden anderen *Encephalitozoon*-Spezies, antigene Eigenschaften besitzen sollte (Bohne *et al.*, 2000; Hayman *et al.*, 2001).

2. Problemstellung und Zielsetzung der Arbeit

Die diagnostischen Möglichkeiten zum Nachweis von Infektionen mit Mikrosporidien sind derzeit noch unbefriedigend. Der lichtmikroskopische Nachweis aus Stuhl ist aufgrund ihrer unspezifischen Färbeeigenschaften und ihrer geringen Größe schwierig, denn sie können in der Praxis nicht immer eindeutig von Bakterien, Pilzsporen und anderen Stuhlbestandteilen oder Färbungsartefakten unterschieden werden. Der Nachweis mittels PCR aus Stuhl ist möglich, jedoch aufgrund fehlender kommerzieller PCR-Diagnostika für Mikrosporidien nur einigen wenigen Forschungslabors vorbehalten.

Überaus wünschenswert wäre daher die Entwicklung eines ELISA-Tests zum Mikrosporidien-Antigenen aus Stuhl. Diese Nachweis von SO genannten Koproantigen-ELISA werden bei anderen Darmparasiten, zum Beispiel Entamoeba *histolytica*, bereits erfolgreich angewendet und sind als diagnostischer "Kit" erhältlich. Als Zielgen böte sich das so genannte Sporenwandprotein ("spore wall protein", SWP), das Hauptantigen der Mikrosporidienspore, an. Die Entwicklung derartiger Mikrosporidien-Koproantigen-ELISA ist bisher jedoch daran gescheitert, dass die beim Menschen am häufigsten gefundenen Mikrosporidienart, Enterocytozoon bieneusi, nicht kultivierbar ist. Es war deshalb bisher nicht möglich, E. bieneusi-Antigen in ausreichender Menge und Reinheit zu gewinnen, um damit die für einen Koproantigen-ELISA benötigten Antikörper durch Immunisierung von Mäusen oder anderen Tieren mono- oder polyklonal generieren zu können.

Diese Schwierigkeit ließe sich jedoch durch die Herstellung rekombinanter SWP-Antigene von *E. bieneusi* lösen, wozu allerdings die Isolierung des Gens oder die Kenntnis dessen Sequenz Voraussetzung wäre. Aufgrund der fehlenden Kultivierbarkeit von *E. bieneusi* und einer, wie Vorarbeiten dieser Dissertation zeigten, geringen Homologie der SWP-Gene zwischen den verschiedenen Mikrosporidienspezies, ist es weltweit bisher nicht gelungen, das SWP-Gen von *E. bieneusi* auf dem üblichen Weg durch Anlegen und "Screenen" einer genomischen oder einer cDNA-Bank von *E. bieneusi* mittels einer SWP-Sonde einer anderen Mikrosporidienart zu "fischen", also einen homologen cDNA-Klon aus einer cDNA-Bank zu isolieren.

Problemstellung und Zielsetzung

Eine Alternative zum Anlegen und Screenen von Genbanken stellt der in der vorliegenden Arbeit beschrittene Weg dar, konservierte Genabschnitte zu identifizieren, um für diese Bereiche geeignete PCR-Primer konstruieren zu können mit dem Ziel, homologe Genabschnitte aus verwandten Mikrosporidienarten und -gattungen zu amplifizieren. Kodiert ein solcher Genabschnitt eine immunogene SWP-Domäne bei *E. bieneusi*, könnte dann ein Antigen in ausreichender Menge und Qualität für eine Immunisierung und damit zur Herstellung von Antikörpern für einen Koproantigen-ELISA erzeugt werden.

Problematisch ist jedoch der ausgeprägter Sequenzpolymorphismus zwischen SWP-Genen der verschiedenen Mikrosporidienspezies und deshalb die Identifizierung konservierter Genabschnitte. Bis zur vorliegenden Arbeit waren die SWP-Gensequenzen von zwei Mikrosporidienarten, Encephalitozoon cuniculi und Encephalitozoon intestinalis, bekannt. In Vorversuchen scheiterten umfangreiche direkte Versuche, aus Homologieanalysen der SWP-Gene dieser beiden Spezies PCR-Primer zu konstruieren, die einen homologen Genabschnitt aus Enterocytozoon *bieneusi* zu amplifizieren vermocht hätten. Es zeigte sich, dass die Sequenzhomologie der beiden Encephalitozoon-Spezies zu gering war, um bereits allein aufgrund von Homologievergleichen dieser beiden Sequenzen die in der Evolution tatsächlich funktionell konservierten Genabschnitte, von denen homologe Sequenzen auch bei anderen Mikrosporidienspezies zu erwarten wären, von anderen, zufällig zwischen den SWP-Gensequenzen von E. cuniculi und E. intestinalis wenig mutierten Bereichen unterscheiden zu können.

Ziel der vorliegenden Arbeit war deshalb, zunächst das SWP-Gen einer dritten *Encephalitozoon*-Spezies, *Encephalitozoon hellem*, zu charakterisieren, um durch den Homologievergleich mit einer dritten Spezies zu ermöglichen, die tatsächlich in der Evolution konservierten Genabschnitte von den nur zufällig wenig mutierten zu unterscheiden. Damit sollte die Voraussetzung geschaffenen werden, auch für *E. bieneusi* geeignete PCR-Primer konstruieren zu können, um in Folgeprojekten auch aus dieser für den Menschen wichtigsten Mikrosporidienspezies homologe Genabschnitte amplifizieren zu können, die für immunogene Domänen kodieren. Um die mögliche Auswahl solcher Domänen bei *E. bieneusi* später nicht im Vorhinein ungünstig zu beschränken, war ein wichtiges Ziel der vorliegenden Arbeit, das

14

vollständige SWP-Gen aus *Encephalitozoon hellem* zu charakterisieren. Da in der vorliegenden Arbeit als ein weiteres Ziel bereits die Techniken für eine geplante Charakterisierung des SWP-Gens aus der nicht kultivierbaren Mikrosporidienspezies *E. bieneusi* etabliert werden sollten, sollte auf ein "Fischen" des Gens aus einer Genbank verzichtet werden. Ohne die Möglichkeit eine Genbank zu screenen waren diese Untersuchungen jedoch nicht trivial und erforderten die Anwendung von PCR-Spezialtechniken.

Zusammengefasst waren die Ziele der vorliegenden Arbeit:

- 1. die Konstruktion so genannter "degenerierter" PCR-Primer aufgrund publizierter Sequenzen von *E. cuniculi* und *E. intestinalis*, die dazu geeignet sein sollten, homologe SWP-Genabschnitte von *E. hellem* zu amplifizieren
- 2. diese Abschnitte zu charakterisieren und mit *E. hellem*-spezifischen Primern die dazwischen liegenden Bereiche zu amplifizieren
- durch Anwendung spezieller PCR-Techniken (so genannte "inverse" und "verankerte" PCR) die "upstream" und "downstream" liegenden Genbereiche außerhalb der zuvor amplifizierten SWP-Genabschnitte zu amplifizieren und zu sequenzieren
- 4. den kodierenden Bereich des SWP-Gens von *E. hellem* vollständig und einschließlich angrenzender, nicht-kodierender Abschnitte zu charakterisieren.
- zur methodischen Vorbereitung auf Folgeprojekte mit den nicht kultivierbaren Erreger *E. bieneusi* gänzlich auf das Anlegen und Screenen von Genbanken zu verzichten und das SWP-Gen von *E. hellem* ausschließlich durch PCR-Techniken zu charakterisieren.

3. Material und Methoden

3.1 Materialien

3.1.1 Geräte

Gelelektrophoresekammer:	Größe 10 x 11 cm "Bioplex", Strehlau und Kruse, Freiburg		
Kühlzentrifuge:	"5417 R", Eppendorf Gerätebau, Hamburg		
PCR-Gerät:	"UNO II", Biometra, Göttingen		
Sofortbildkamera:	"MP 4", Polaroid Cooperation, Cambridge, Massachusetts, USA		
Tischzentrifugen:	"Biofuge 13", Heraeus Instruments, Hanau "Mikroliter", Hettich, Tuttlingen		
UV-Leuchttisch:	"B IL-350 312 nm", Bachofer Laboratoriumsgeräte, Reutlingen		
Schüttler ("Vortex"):	"Genie 2", Bender & Hobein AG, Zürich Schweiz		
Waagen:	Tischwaage "Sartorius 3716", Sartorius GmbH, Göttingen Tischwaage "Sartorius BP 210 D", Sartorius GmbH, Göttingen		
Wasserbäder:	"2209 Multicool", LKB, Bromma "Julabo SW 1", Julabo Labortechnik, Seelbach		

3.1.2 Chemikalien	
Roth, Karlsruhe:	Ethanol 99,6% und 70%
Sigma, Deisenhofen:	Ethidiumbromid Mineralöl "light white oil"
3.1.3 Agar- und Gelmaterialien	
Appligene, Heidelberg	Agarose "molecular biology upgrade"
Sigma, Deisenhofen:	Gelatine

3.1.3 Enzyme

Taq DNA-Polymerase 5 U/µl, Peqlab Biotechnologie GmbH, Erlangen, mit 10X Reaktionspuffer Y (200 mM Tris•HCl, pH 8,55; 160 mM (NH₄)₂SO₄, 0,1% Tween 20; 20 mM MgCl₂)

T4 DNA-Ligase 1 U/µl, United States Biochemical (USB), Bad Homburg, mit 10X T4 DNA-Ligase Puffer (660 mM Tris•HCl, pH 7,6; 66 mM MgCl₂, 100 mM DTT, 660 μ M ATP)

Restriktionsendonukleasen: *Bfa*l, 5 U/µl, New England Biolabs, GmbH, Freiburg, mit Puffer NEB4 (50 mM Kaliumacetat, 20 mM Trisacetat, 10 mM Magnesiumacetat, 1 mM DTT, pH 7,9)

> *Csp*6I, 10 U/µI, MBI Fermentas GmbH, St. Leon-Rot, mit Puffer B^+ (10 mM Tris•HCl, 10 mM MgCl₂, 0,1 mg/ml BSA, pH 7,5)

> *Nla*III, 10 U/µl, New England Biolabs GmbH, Freiburg mit Puffer NEB4 (50 mM Kaliumacetat, 20

mM Trisacetat, 10 mM Magnesiumacetat, 1 mM DTT, pH 7,9)

Sau3AI, 10 U/µI, Amersham Pharmacia Biotech, Freiburg, mit Puffer NEB4 (50 mM Kaliumacetat, 20 mM Trisacetat, 10 mM Magnesiumacetat, 1 mM DTT, pH 7,9)

*Taq*I, 20 U/μl, New England Biolabs GmbH, Freiburg, mit Puffer NEB4 (50 mM Kaliumacetat, 20 mM Trisacetat, 10 mM Magnesiumacetat, 1 mM DTT, pH 7,9)

*Tsp*509I, 10 U/µI, New England Biolabs GmbH, Freiburg, mit Puffer NEB1 (10 mM Bis Tris Propan HCl, 10 mM MgCl₂, 1 mM Dithiothreitol)

3.1.4 Nukleotide

Desoxynukleotide: dATP, dCTP, dGTP, dTTP: 100 mM (verwendet als äquimolare Mischung mit je 25 mM), Amersham Pharmacia Biotech, Freiburg

3.1.5 PCR-Primer

Oligonukle	otide: Thermo Electron GmbH, Ulm:	
PCR-Prime	er je 50 μM in 10 mM Tris•HCl, pH 8,0	
SWP-1:	5'-GAA ATT AAA GAT GAT (A,G)AA GC-3'	(Sense-Primer)
SWP-2:	5'-CTT CTT GTA CTG (A,G)TC CTC-3'	(Antisense-Primer)
SWP-3:	5'-GGA (C,T)CA GTA CAA GAA GGC-3'	(Sense-Primer)
SWP-4:	5'-CTG GAA CAC (G,T)GC CAT CTG-3'	(Antisense-Primer)
SWP-5:	5'-TCA GAG GTG TAG GTG TGG-3'	(Antisense-Primer)
SWP-6:	5'-GCG ATG CTG AGC TCA GAG-3'	(Sense-Primer)
SWP-7:	5'-CCT ATA ATC AAT ATG GGT G-3'	(Sense-Primer)

SWP-7plus:	5'-CCT ATA ATC AAT ATG GGT GAA AGG A-3'	(Sequenzierprimer)
SWP-16:	5'-AGC GGA CTG CTG CAA TGT-3'	(Sense-Primer)
SWP-17:	5'-TGC TAA TGG CTC CAG GTA-3'	(Sense-Primer)
SWP-18:	5'-AGG ATT GCA GTG AAA TTT-3'	(Antisense-Primer)
SWP-19:	5'-AGG ATC TCT CTC CAC CTG-3'	(Antisense-Primer)
SWP-20:	5'-TGA GGC TCG TGA TAT CTG-3	(Antisense-Primer)
SWP-21:	5'-GCT GTT GAT GAG GCT CGT-3	(Antisense-Primer)
SWP-22:	5'-TTC GCC AGC CAG ATT TCA-3'	(Sense-Primer)
SWP-23:	5'-CAG ATT TCA AGC GCA TTC-3'	(Sense-Primer)
SWP-24:	5'-CTC CTA CAA GAC CTG TAA ACA-3'	(Antisense-Primer)
T3plus:	5'-CAA TTA ACC CTC ACT AAA G-3'	(Antisense-Primer)

3.1.6 Kommerzielle "Kits"

"MinElute" Kit, Qiagen, Hilden

"QIAamp DNA Stool Mini Kit", Qiagen, Hilden

3.1.7 Weitere Materialen und Software

1 kb-DNA Leiter: 1,0 µg/µl, Gibco BRL, Eggenstein

Filme: Sofortbildfilm "667", Polaroid, Vertrieb Sigma, Deisenhofen

"DNA-Man": Computerprogramm zur DNA-Sequenzanalyse, Lynnon Corporation, Quebec, Canada

3.1.8 Herkunft der Erreger

Die Mikrosporidien der Spezies *Encephalitozoon cuniculi* (Stamm: CH-H14), *Encephalitozoon hellem* (Stamm: CH-H3) und *Encephalitozoon intestinalis* (Stamm: D-H11) wurden von Herrn Prof. Dr. P. Deplazes, Institut für Parasitologie der Universität Zürich, zur Verfügung gestellt. Die Anzahl der zur Verfügung stehenden Sporen ist in Tabelle 3 dargestellt. Die in den Vorversuchen eingesetzten Sporen von *E. bieneusi* aus Stuhlproben von HIV-Patienten wurden von Herrn Dr. M. Mungthin, Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, zur Verfügung gestellt.

Spezies	Volumen	Sporenanzahl gesamt	
E. cuniculi (CH-H14)	1,0 ml	300 · 10 ⁶	
<i>E. intestinalis</i> (D-H11)	1,1 ml	40 · 10 ⁶	
E. hellem (CH-H3)	1,1 ml	160 · 10 ⁶	

Tabelle 3: Spezies und Anzahl der zur Verfügung stehendenEncephalitozoon-Sporen

3.2 Methoden

3.2.1 DNA-Isolation

Als Ausgangsmaterial für die DNA-Isolierung dienten die in 3.1.8 beschriebenen Sporensuspensionen der Mikrosporidienspezies E. cuniculi, E. intestinalis und E. hellem. Um die DNA der Mikrosporidien für den Einsatz in der Polymerasekettenreaktion (PCR) zu isolieren, wurden je 200 µl der in Tabelle 3 beschriebenen Suspensionen mit 1,4 ml Puffer ASL des "QIAamp DNA Stool Mini Kit" (Firma Qiagen, Hilden) versetzt und 1 min mit einem Schüttler ("Vortex") geschüttelt. Dabei kamen bei E. cuniculi 6 · 107 Sporen zum Einsatz, bei E. *intestinalis* $8 \cdot 10^6$ und bei *E. hellem* $3 \cdot 10^7$ Sporen. Die Suspensionen wurden 5 min bei 70°C erhitzt, um einen Zellaufschluss zu erreichen. Als nächstes wurden die Ansätze 1 min in einer Tischzentrifuge bei 12000 rpm zentrifugiert, um größere Partikel und Sporentrümmer zu sedimentieren. Um unspezifische Inhibitoren zu binden und zu blockieren wurden 1,2 ml des Überstandes mit der gelösten DNA in ein neues Reaktionsgefäß überführt und eine Tablette "InhibitEX" (gleiches Kit) hineingegeben. Es wurde dann sofort 1 min geschüttelt, um die Tablette vollständig zu lösen. Danach wurden die Reaktionsgefäße 1 min bei Zimmertemperatur inkubiert. Um die festen Bestandteile und die gebundenen Inhibitoren wieder zu entfernen wurden die DNA-Suspensionen danach 3 min zentrifugiert. Der Überstand wurde abgenommen und erneut 1 min zentrifugiert. 200 µl des Überstandes wurden dann in ein Reaktionsgefäß gegeben, in dem sich 15 µl Proteinase K (gleiches Kit, Konzentration wird von der Herstellerfirma nicht angegeben) befanden. Im nächsten Schritt wurden 200 µl Puffer AL (gleiches Kit) hinzugegeben, gut gemischt und für 10 min bei 95°C inkubiert. Zu dem Lysat wurden 200 µl Ethanol (100%) hinzugegeben und die gesamte Lösung auf die im Kit enthaltenen Säulen pipettiert. Diese Säulen besitzen Membranen mit Siliciumdioxid, das die Eigenschaft besitzt in Gegenwart von Alkoholen und hohen Salzkonzentrationen DNA zu adsorbieren. So können durch Waschen der Membran unter diesen Bedingungen Kontaminationen einfach und schnell entfernt werden. Anschließend kann die DNA mit einem Puffer niedriger Ionenstärke und ohne Alkohol eluiert werden. Dementsprechend wurden zum Waschen erst 500 µl Puffer AW 1 (gleicher Kit) auf die Säule pipettiert und bei höchster Geschwindigkeitsstufe 1 min in einer Tischzentrifuge zentrifugiert. Im folgenden Schritt wurden 500 µl Puffer AW 2 (gleicher Kit) auf die Säule gegeben, 3 min zentrifugiert und die DNA zuletzt mit 200 µl Puffer AE (Firma Qiagen, Hilden) eluiert. Die genaue Zusammensetzung der Reagenzien des Kits wird von der Herstellerfirma nicht bekannt gegeben.

3.2.2 DNA-Amplifizierung durch Polymerasekettenreaktion (PCR)

Die PCR dient der Vervielfältigung (Amplifizierung) definierter DNA-Abschnitte (Saiki *et al.*, 1988). Die Reaktionsbedingungen und die Zusammensetzungen der Reaktionsansätze wurden in der vorliegenden Arbeit systematisch variiert, um die jeweils optimalen Reaktionskonditionen für die verschiedenen PCR-Reaktionen zu finden.

Die Reaktionsansätze enthielten jeweils 1 μ l der beiden Primer ("Sense"- und "Antisense"-Primer je 50 μ M in 10 mM Tris•HCI), 1 μ l (200 μ g/ml) BSA und je nach PCR 2 mM oder 5 mM Magnesiumchlorid. Dem einzelnen PCR-Ansatz wurde 5 μ l der in Abschnitt 3.2.1 beschriebenen DNA-Lösung der Spezies *E. cuniculi, E. intestinalis* oder *E. hellem* zugesetzt und mit demineralisiertem Wasser auf ein Volumen von 44 μ l ergänzt, um zusammen mit dem 6 μ l "Master-Mix" (siehe unten) ein Endvolumen von 50 μ l pro PCR-Reaktion zu erreichen. Überschichtet wurde

jeder Ansatz mit zwei Tropfen Mineralöl, um eine Verdunstung während des Reaktionsablaufs zu verhindern.

Zum Einsatz in der PCR kamen die Primerpaare SWP-1/SWP-2, SWP-3/SWP-4, SWP-1/SWP-4 sowie SWP-6/SWP-4 (siehe 3.1.5). Die Konzentration an MgCl₂ betrug 2 oder 5 mM. Die Optimierungsstrategie ist in Tabelle 4 dargestellt.

Das "Master-Mix" enthielt 5 µl 10X Reaktionspuffer Y (Peglab Biotechnologie GmbH, Erlangen), 0,5 µl dNTP-Mix (je 25 mM) und 0,5 µl (1 U/µl) Taq-DNA-Polymerase. Es wurde dem PCR-Reaktionsansatz nach einer zweiminütigen Denaturierungsphase bei 96°C und Abkühlung auf 85°C hinzugegeben. Danach folgten 60 Zyklen mit einer zusätzlichen Probenentnahme bei 40 Zyklen, bestehend aus einem Denaturierungsschritt bei 92°C für 60 sec, einer Primer-Hybridisierung ("Annealing") bei 40°C, 48°C, 56°C oder 64°C für 60 s, sowie einer anschließenden Primer-Extension bei 72°C für 60 s. Die unterschiedlichen Reaktionsbedingungen, die angewandt wurden, sind in Tabelle 4 zusammengefasst. Der Denaturierungsschritt bei 96°C diente einer möglichst vollständigen Denaturierung der genomischen Doppelstrang-DNA, die Zugabe des "Master-Mix" bei 85°C (so genannter "Hot Start") vor dem ersten PCR-Zyklus diente der Vermeidung einer unspezifischen Paarung der Primer.

Tabelle 4: Optimierungsstrategie der PCR-Reaktionen für E. cuniculi, E. intestinalis und E. hellem.

3.2.3 "Inverse" PCR

Die "inverse" PCR (Ochman *et al.*, 1990) schafft die Möglichkeit, unbekannte DNA-Sequenzen, die außerhalb einer bekannten "Kern"-Sequenz liegen, zu amplifizieren (Abbildung 3). Dazu wird zunächst die genomische DNA mit Restriktionsenzymen geschnitten. Am geeignetsten sind Restriktionsenzyme, die überhängende ("kohäsive") Enden schaffen, um die anschließende Ligation zu erleichtern. Im anschließenden Schritt werden die entstandenen Fragmente zu zirkulären Molekülen ligiert. Im Gegensatz zur "konventionellen" PCR werden die Primer so konstruiert, dass nicht ihre 3'-Enden sondern ihre 5'-Enden benachbart sind. Im zirkulären Molekül liegt dann die unbekannte Sequenz zwischen den 3'-Enden der Primer. Als Reaktionsprodukt entsteht dann eine DNA-Sequenz, die am 3'- und 5'-Ende eine bekannte DNA-Sequenz besitzt. Dazwischen liegt die bisher unbekannte Sequenz. In den anschließenden Zyklen wird dann dieses Produkt amplifiziert.

Abbildung 3: Schematische Darstellung der "inversen" Polymerasekettenreaktion.

3.2.3.1 Restriktion und Ligation der DNA von Encephalitozoon hellem

Um die genomische DNA von *Encephalitozoon hellem* mit Restriktionsenzymen zu schneiden, wurden insgesamt sechs Reaktionen mit je 41 µl der in Abschnitt 3.2.1

beschriebenen DNA-Lösungen [oder, sofern für das jeweilige Restriktionsenzym notwendig, 40,5µl DNA-Lösung und 0,5 µl (200 µg/ml) BSA], 4 µl des jeweiligen Restriktionsenzyms [NIaIII (10 U/µI), Sau3AI (10 U/µI), Tsp509I (10 U/µI), Csp6 I (10 U/µl), Bfal (5 U/µl) oder Tagl (20 U/µl)] und 5 µl des zugehörigen 10X Puffers angesetzt. Diese Lösungen wurden 90 min bei 37°C (Reaktionen, die Tsp509l oder Tagl enthielten, bei 65°C) inkubiert. Um ein erneutes Zerschneiden des Ligationsproduktes zu verhindern, wurden die Enzyme anschließend durch Erhitzen (Reaktionen mit Csp6I, Sau3AI und NlaIII bei 65°C, Reaktionen mit Bfal und Tagl bei 80°C) inaktiviert. Da Tsp509I hitzestabil ist, wurde die DNA dieses Ansatzes wie auch zusätzlich die fünf anderen DNA-Lösungen mit dem "MinElute"-Kit (Firma Qiagen, Hilden) vom Restriktionsenzym und anderen Reaktionsbestandteilen gereinigt. Das Protokoll des Herstellers des "MinElute" Kits wurde dabei wie folgt abgeändert: Es wurden jeder Reaktion 300 µl Puffer QG (gleiches Kit) und 100 ml Isopropanol (100%) zugesetzt, durch Invertieren gut gemischt und auf die Säulen des Kits gegeben. Nach 1 min Zentrifugieren bei höchster Geschwindigkeit wurde der Durchfluss verworfen und die Membran der Säule erst mit 500 µl Puffer QG (gleiches Kit) und danach mit 750 µl Puffer PE (gleiches Kit) gewaschen. Im nächsten Schritt wurden Flüssigkeitsreste durch 1 min Zentrifugation bei Höchstgeschwindigkeit entfernt. Um die DNA hochkonzentriert in einem möglichst kleinen Volumen zu eluieren, wurden 12 µl 2 mM Tris•HCl (und nicht, wie im Kit beschrieben, Puffer EB), auf die Membran der Säule gegeben und 1 min auf höchster Stufe zentrifugiert. Die genaue Zusammensetzung der Reagenzien des Kits wird von der Herstellerfirma nicht bekannt gegeben.

Da die optimalen Reaktionsbedingungen der nachfolgenden PCR nicht bekannt waren, wurden diese durch systematische Variation der Reaktionsbedingungen bestimmt. Dazu wurden in je zwei Ansätzen je 1 μ l oder 9 μ l der Lösungen der DNA-Fragmente der sechs Restriktionsenzymsreaktionen mit je 5 μ l 10X Ligasepuffer versetzt (United States Biochemical, USB, Bad Homburg) und mit demineralisiertem Wasser auf ein Volumen von 50 μ l aufgefüllt. Die Lösungen wurden 5 min bei 50°C inkubiert, um möglicherweise bereits aneinander gelagerte DNA-Enden ("annealed sticky ends") wieder zu trennen. Danach wurden je 2 μ l T4 DNA-Ligase (1 U/ μ l, United States Biochemical, Bad Homburg) hinzugegeben und die Reaktionen 16 h bei 16°C inkubiert, um die geschnittenen DNA-Stränge zu Ringen zu verbinden.

Nach der Ligation wurden sowohl je 5 μ l direkt für einen PCR Ansatz verwendet, als auch die restlichen 45 μ l mit demineralisiertem Wasser auf 100 μ l aufgefüllt und mit dem "MinElute" Kit, wie oben beschrieben, gereinigt und in 10 μ l Puffer EB (gleiches Kit) eluiert, wovon 9 μ l in die PCR eingesetzt wurden. Die unterschiedlichen Reaktionsansätze zur Generierung zirkulärer DNA-Produkte sind in Tabelle 5 dargestellt.

Reaktionsansatz	Inkubation	Inaktivierung und Reinigung	Zirkuläre Ligation	Reinigung	
4 µl <i>Csp</i> 6l (10 U/µl) 5 µl 10X Puffer B⁺ 41 µl DNA Lösung	90 min bei 37°C	20 min bei 65°C und Reinigung mit "MinElute"-Kit	1. Ansatz: 1 μ l verdaute DNA-Lösung, 5 μ l 10X Ligase Puffer, 42 μ l H ₂ O 2. Ansatz: 9 μ l verdaute DNA-Lösung, 5 μ l 10X Ligase Puffer, 34 μ l H ₂ O	DNA-Lösung A: 5 µl des Ligationsproduk tes aus 1. Ansatz abgenommen	
4 μl <i>Bfa</i> l (5 U/μl) 5 μl 10X Puffer NEB4 40,5 μl DNA Lösung 0,5 μl 100X BSA	90 min bei 37°C	20 min bei 80°C und Reinigung mit "MinElute"-Kit		1. Ansatz: 1 µl verdaute	
4 μΙ <i>Tsp</i> 509Ι (10 U/μΙ) 5 μΙ 10Χ Puffer NEB1 40,5 μΙ DNA Lösung 0,5 μΙ 100Χ BSA	90 min bei 65°C	Reinigung mit "MinElute"-Kit		DNA-Lösung C: 45 µl des Ligationsproduk tes aus 1. Ansatz mit "MinElute" Kit von Ligase gereinigt und Elution in 10 µl Puffer EB DNA-Lösung D: 45 µl des Ligationsproduk tes aus 2. Ansatz mit "MinElute" Kit von Ligase gereinigt und Elution in 10 µl Puffer EB	
4 μΙ <i>Taq</i> Ι (20 U/μΙ) 5 μΙ 10X Puffer NEB4 40,5 μΙ DNA Lösung 0,5 μΙ 100X BSA	90 min bei 37°C	20 min bei 80°C und Reinigung mit "MinElute"-Kit			
4 μl <i>Nla</i> III (10 U/μl) 5 μl 10X Puffer NEB4 40,5 μl DNA Lösung 0,5 μl 100X BSA	90 min bei 37°C	20 min bei 65°C und Reinigung mit "MinElute"-Kit	16 h Inkubation bei 16°C		
4 μΙ <i>Sau</i> 3AI (10 U/μΙ) 5 μΙ 10X Puffer NEB4 40,5 μΙ DNA Lösung 0,5 μΙ 100X BSA	90 min bei 37°C	20 min bei 65°C und Reinigung mit "MinElute"-Kit			

Tabelle 5: Übersicht der verschiedenen Reaktionsansätze zur Generierung zirkulärer DNA-Produkte.

3.2.3.2 "Inverse" PCR bei E. hellem

Die "inverse" PCR wurde als so genannte "Touch Down"-PCR durchgeführt, bei der die Anlagerungstemperatur ("Annealing-Temperatur") von 68°C innerhalb von 25 Zyklen um je 0,5 Grad pro Zyklus auf 55°C gesenkt wird. Danach folgten 20 weitere Zyklen bei 55°C. Benutzt wurden die Primerpaare SWP-5/SWP-6, SWP-16/SWP-19 sowie SWP-21/SWP-22 (alle Primer 50 µM) mit einem Volumen von je 1 µl pro Primer. Außerdem wurden je 0,5 µl (200 µg/ml) BSA hinzugegeben. Für die PCR wurden pro Restriktionsenzym jeweils vier DNA-Lösungen verwendet, die sich in Konzentration und Reinheitsgrad unterschieden (Tabelle 5). Die Ansätze wurden mit demineralisiertem Wasser auf ein Endvolumen von 44 µl aufgefüllt und danach mit je Tropfen Mineralöl überschichtet, um ein Verdunsten während der zwei nachfolgenden PCR zu vermeiden. Nach einem "Hot Start", wie in 3.2.2 beschrieben durchgeführt, wurde der "Master-Mix" hinzugefügt, der sich aus 5 µl Reaktionspuffer Y (Firma Peglab, Erlangen) mit 20 mM MgCl₂ (Endkonzentration 2 mM), 0,5 µl dNTP Mix (je 25 mM) und 0,5 µl Taq DNA-Polymerase (5 U/µl, Peqlab Biotechnologie GmbH, Erlangen) zusammensetzte. Tabelle 6 zeigt eine Übersicht über die unterschiedlichen Reaktionsansätze der durchgeführten "inversen" PCR-Reaktionen.

Restriktions- enzym	DNA Volumen	Reinigung mit "MinElute Kit"	Primerpaar	Reaktionsbedingungen
Csp6l	5 µl	ја	SWP-16 und SWP-19	"Touch Down"-PCR von 68°C in 25 Zyklen auf 55°C und 20 Zyklen bei 55°C.
	5 µl	nein		
	9 µl	ја		
	9 µl	nein		
Nlalli	5 µl	ја	SWP-16 und SWP-19	"Touch Down"-PCR von 68°C in 25 Zyklen auf 55°C und 20 Zyklen bei 55°C.
	5 µl	nein		
	9 µl	ја		
	9 µl	nein		
Nlalli	5 µl	ја	SWP-6 und SWP-7	"Touch Down"-PCR von 68°C in 25 Zyklen auf 55°C und 20 Zyklen bei 55°C.
	5 µl	nein		
	9 µl	ја		
	9 µl	nein		
Bfal	5 µl	ја	SWP-21 und SWP-22	"Touch Down"-PCR von 68°C in 25 Zyklen auf 55°C und 20 Zyklen bei 55°C.
	5 µl	nein		
	9 µl	ја		
	9 µl	nein		
Taql	5 µl	ја	SWP-21 und SWP-22	"Touch Down"-PCR von 68°C in 25 Zyklen auf 55°C und 20 Zyklen bei 55°C
	5 µl	nein		
	9 µl	ја		
	9 µl	nein		
<i>Tsp</i> 509I	5 µl	ја	SWP-6 und SWP-7	"Touch Down"-PCR von 68°C in 25 Zyklen auf 55°C und 20 Zyklen bei 55°C.
	5 µl	nein		
	9 µl	ја		
	9 µl	nein		

Tabelle 6: Unterschiedliche Reaktionsansätze der "inversen" PCR bei E. hellem.

3.2.4 "Verankerte" PCR

Wie die "inverse" PCR schafft die "verankerte" PCR (Zietkiewicz *et al.*, 1994) die Möglichkeit, unbekannte DNA-Abschnitte zu amplifizieren. Dafür wird die DNA mit Restriktionsenzymen geschnitten und die entstandenen Fragmente in einer anschließenden Ligation mit DNA-Molekülen bekannter Sequenz ("Anker") verbunden. Als PCR-Primer werden nun ein Primer, der in der bekannten DNA-Sequenz liegt, sowie ein zweiter Primer, der mit der "Anker"-DNA hybridisieren kann, verwendet. Die dazwischen liegende DNA kann so amplifiziert werden (Abbildung 4).

Abbildung 4: Schematische Darstellung der "verankerten" PCR.

3.2.4.1 Restriktion und Ligation bei E. hellem

Der Verdau wurde wie in 3.2.3.1 beschrieben mit den Restriktionsenzymen Sau3AI, Tsp509I und Tagl durchgeführt. Als Anker für die Ligation diente der Vektor pBluescript II SK⁻ (20 ng/µl). Dieser war zuvor in fünf Ansätzen mit fünf verschiedenen Restriktionsenzymen geschnitten worden. Die mit Sau3AI verdaute genomische DNA wurde mit einem Vektor ligiert, der mit BamHI (gleicher Überhang wie Sau3AI) geschnitten worden war oder einem Gemisch aus bereits vorhandenen Lösungen von Vektoren, die zusätzlich mit einem zweiten Restriktionsenzym (Clal, EcoRI, KpnI oder PstI) geschnitten worden waren, was den Vorteil hatte, dass so nur das "richtige" Ende des Ankers, nämlich dasjenige mit der PCR-Primer-Bindungsstelle, mit der genomischen DNA hybridisierte. Die mit Tsp509I verdaute genomische DNA von E. hellem wurde in gleicher Weise mit einem mit EcoRI (gleicher Überhang wie Tsp509I) verdautem Vektor oder einem Gemisch von doppelt verdauten Vektoren (zweites Enzym Kpnl oder HindIII) ligiert. Die mit Tagl verdaute genomische DNA von E. hellem wurde mit Vektoren-DNA ligiert, die mit Clal (gleicher Überhang) geschnitten worden war. Für den Ligationsansatz kamen 6 µl der geschnittenen genomischen DNA und 2 µl der jeweiligen verdauten Vektorenlösung (50 ng/µl) zum Einsatz. Dieser Ansatz wurde zur Trennung etwaiger bereits angelagerter kohäsiven Enden zunächst 5 min bei 50°C inkubiert. Danach
erfolgte die Zugabe von 1 μ l 10X Ligase Puffer und 1 μ l T4 DNA-Ligase (1 U/ μ l, Firma United States Biochemical, Bad Homburg). Die Ligation erfolgte 16 h bei 16°C. Anschließend wurde die DNA-Ligase bei 65°C inaktiviert (Tabelle 7).

Tabelle	7:	Übersicht	der	verschiedenen	Reaktionsansätze	zur	Generierung	"verankerter"	DNA-
Produkte	è								

Reaktions -ansatz	Inkuba- tion	Inaktivierung und Reinigung	Verankerung mit Vektor-DNA	Reinigung	
4 μl <i>Tsp</i> 509I (10 U/μl) 5 μl 10X Puffer NEB1	90 min bei 65°C	Reinigung vom Restriktionsenzy m mit "MinElute"	2 μl mit <i>Eco</i> RI und <i>Kpn</i> I oder <i>Hind</i> III doppelt geschnittener Vektor (50 ng/μl) (gemischt 1:1) 6 μl <i>Tsp</i> 509I-geschnittene DNA von <i>E.</i> <i>hellem</i> 1 μl 10X Ligase Puffer 1 μl T4 DNA-Ligase 16 h Inkubation bei 16°C	Reinigung vom Restriktions- enzym mit "MinElute" Kit, Elution in 10 µl Puffer EB	
40,5 µl DNA Lösung 0,5 µl 100X BSA	Del 65°C	Kit Elution in 12 µl Puffer EB	2 μl <i>Eco</i> RI-geschnittener Vektor (50 ng/μl) 6 μl <i>Tsp</i> 509I-geschnittener DNA von <i>E.</i> <i>hellem</i> 1 μl 10X Ligase Puffer 1 μl T4 DNA-Ligase 16 h Inkubation bei 16°C		
4 μl <i>Taq</i> l (20 U/μl) 5 μl 10X Puffer NEB4 40,5 μl DNA Lösung 0,5 μl 100X BSA	90 min bei 37°C	20 min bei 80°C und Reinigung vom Restriktionsenzy m mit "MinElute" Kit Elution in 12 µl Puffer EB	2 μl <i>Cla</i> l-geschnittener Vektor (50 ng/μl) 6 μl <i>Taq</i> l-geschnittene DNA von <i>E.</i> <i>hellem</i> 1 μl 10X Ligase Puffer 1 μl T4 DNA-Ligase 16 h Inkubation bei 16°C	Reinigung vom Restriktions- enzym mit "MinElute" Kit, Elution in 10 µl Puffer EB	
4 μl Sau3Al (10 U/μl) 5 μl 10X Puffer NEB4 40,5 μl DNA Lösung 0,5 μl 100X BSA	90 min bei 37°C	20 min bei 65°C und Reinigung vom Restriktionsenzy m mit "MinElute" Kit Elution in 12 µl Puffer EB	2 μl mit BamHl und Clal, EcoRl, Kpnl oder Pstl doppelt geschnittener Vektor (50 ng/μl) (gemischt 1:1:1:1) 6 μl Sau3Al-geschnittene DNA von E. hellem 1 μl 10X Ligase Puffer 1 μl T4 DNA-Ligase 16 h Inkubation bei 16°C 2 μl BamH I geschnittener Vektor (50 ng/μl) 6 μl Sau3Al geschnittene DNA von E. hellem 1 μl 10X Ligase Puffer 1 μl T4 DNA-Ligase 16 h Inkubation bei 16°C	Reinigung vom Restriktions- enzym mit "MinElute" Kit, Elution in 10 µl Puffer EB	

3.2.4.2 "Verankerte" PCR bei E. hellem

Zum Einsatz in der PCR kamen je 2 µl der DNA-Lösungen. Die restlichen 8 µl wurden, wie in 3.2.3.1 beschrieben, mit dem "MinElute" Kit von der Ligase gereinigt und die DNA in 11 µl Puffer EB (Firma Qiagen, Hilden) eluiert. Anschließend kamen 2 µl der ungereinigten bzw. 8 µl der gereinigten DNA-Lösungen in der PCR zum Einsatz. Die nachfolgende PCR wurde als so genannte "Touch Down"-PCR durchgeführt, bei der die Anlagerungstemperatur ("Annealing-Temperatur") von 68°C innerhalb von 25 Zyklen auf 55°C gesenkt wurde. Danach folgten weitere 20 Zyklen bei 55°C. Die einzelnen Schritte jedes Zyklus waren zu denen in 3.2.3.2 beschrieben identisch.

Als Primerpaar kamen SWP-6 und T3plus (beide 50 μ M) in einem Volumen von je 1 μ l zum Elnsatz. Primer SWP-6 bindet an die bekannte DNA-Sequenz und Primer T3plus an den "Anker". Es wurden je 0,5 μ l (200 μ g/ml) BSA hinzugegeben und mit demineralisiertem Wasser auf ein Endvolumen von 44 μ l aufgefüllt. Danach wurde mit zwei Tropfen Mineralöl überschichtet, um Verdunstung während der Reaktion zu verhindern.

3.2.5 "Halb-geschachtelte" ("semi-nested") und "geschachtelte" ("nested") PCR

Bei der Polymerasekettenreaktion besteht grundsätzlich die Möglichkeit, dass Primer nicht nur spezifisch auf einen bestimmten Abschnitt der DNA binden, sondern auch auf anderen Abschnitten mit ähnlichen DNA-Sequenzen. Dadurch entstehen unspezifische, so genannte "Neben"-Produkte. In einer "halb-geschachtelten" oder "geschachtelten" Polymerasekettenreaktion wird die Möglichkeit geboten, die Spezifität der PCR durch eine anschließende, zweite Amplifizierung mit neuen Primern zu erhöhen.

Bei einer "geschachtelten" Polymerasekettenreaktion liegen die beiden Primer der zweiten PCR-Reaktion innerhalb des Produktes der ersten PCR. Nur die "richtigen" Produkte der ersten PCR werden so auch in der zweiten weiter amplifiziert. Bei einer "halb-geschachtelten" PCR wird nur ein einziger neuer Primer verwendet, der Gegenprimer ist der gleiche wie in der ersten PCR.

Für die "geschachtelte" bzw. "halb-geschachtelte" Polymerasekettenreaktion wurden 2 µl der ersten PCR Reaktion, 0,5 µl (200 µg/ml) BSA und je 1 µl (50 µM) der beiden Primer verwendet (Tabelle 8). Der Ansatz wurde mit demineralisiertem Wasser auf ein Volumen von 44 µl aufgefüllt. Das "Master-Mix" setzte sich aus 0,5 µl *Taq* DNA-Polymerase (1U/µl), 0,5 µl dNTP-Mix (je 25 mM) und 5 µl 10X Reaktionspuffer Y (Firma Peqlab, Erlangen) zusammen. Die anschließende PCR-Reaktion wurde als "Touch Down"-PCR mit einem "Hot Start" durchgeführt. Dabei wurde die Annealing-Temperatur in 20 Zyklen in jedem Schritt um 0,5°C von 68°C auf 57,5°C gesenkt. Anschließend folgten noch einmal 20 Zyklen bei 57,5°C. Die einzelnen Schritte jedes Zyklus sind in 3.2.3.2 beschrieben.

 Tabelle
 8:
 Primerkombinationen
 und
 Reaktionsbedingungen
 der
 "halb-geschachtelten"
 und
 "geschachtelten"
 PCR.

	Eingesetzte DNA	1. Primerpaar	2. Primerpaar	PCR-Programm
halb-geschachtelte PCR		SWP-5/SWP-6	SWP-5/SWP-7	"Touch Down"-PCR
halb-geschachtelte PCR	2 µl aus vor- angegangener	SWP-6/T3plus	SWP-7/T3plus	mit Absenkung der Annealing-
geschachtelte PCR	PCR	SWP-16/SWP-19	SWP-17/SWP-18	Temperatur von 68°C auf 57,5°C, 10 Zykkap bei 57,5°C
geschachtelte PCR		SWP-21/SWP-22	SWP-23/SWP-20	Zykien dei 57,5 C

3.2.6 Agarose-Gelelektrophorese

Mit Hilfe der Gelelektrophorese ist es möglich, unterschiedlich große, geladene Moleküle, z.B. DNA, aufzutrennen. Diese laufen je nach Größe, Ladung und Form unterschiedlich schnell in einem angelegten elektrischen Feld. Nukleinsäuren wandern, bedingt durch die negative Ladung ihrer Phosphatgruppe, zur positiven Elektrode.

Zur Herstellung eines 2%igen Gels wurden 0,88 g Agarose in 44 ml TAE Puffer (40 mM Tris-Acetat, pH 8,0; 1 mM EDTA) durch Aufkochen gelöst und nach Abkühlung auf ca. 40°C mit 1 µl einer 1%igen Ethidiumbromidlösung versetzt. Nach gleichmäßiger Durchmischung wurde das zähe Gel blasenfrei in eine Elektrophoresekammer gegossen und die beiden Kämme eingesetzt. Nach

vollständigem Aushärten der Gelmasse wurde die Kammer mit 1x TAE-Puffer bis ca. 0,3 cm über der Geloberfläche befüllt.

Von den PCR-Ansätzen wurden nach der Amplifikation jeweils 9 µl mit 1 µl 10X Agarosepuffer (15% Ficoll 400, 0,1 M EDTA, 1% SDS, 0,25% Bromphenolblau) versetzt, auf das Agarosegel aufgetragen und durch anschließende Elektrophorese in einer Elektrophoresekammer bei maximal 35 V und 40 mA getrennt. Die Spannung wurde solange angelegt, bis die Bromphenolblau-Bande etwa zu 2/3 die jeweilige Gelhälfte durchwandert hatte. Durch Interkalation des Ethidiumbromids mit dem DNA-Doppelstrang wurde die DNA im UV-Licht (312 nm) sichtbar und photographiert. Zur genaueren Bestimmung der Bandengröße liefen in jedem Gel eine 100 bp-DNA-Leiter (in 10 mM Tris•HCl, pH 7,5 und 0,1 mM EDTA; Gibco-BRL, Eggenstein) als Größenstandard mit.

3.2.7 Isolierung der PCR-Produkte aus Agarose-Gelen und DNA-Sequenzierung

Die zu charakterisierenden PCR-Banden wurden aus dem Agarosegel mit einem ausgeglühten Skalpell knapp an ihren Grenzen ausgeschnitten, in bereits beschriftete 1,5 ml Reaktionsgefäße überführt und abgewogen. Alle Banden, aus denen die DNA nicht isoliert wurde, wurden für eine ggf. spätere Verwendung bei -20°C gelagert. Die ausgeschnittenen Banden im Agarosegel wurden mit dem sechsfachen Volumen ihres Gewichtes mit Puffer QG (Firma Qiagen, Hilden) versetzt. Um das Gel im Puffer aufzulösen, wurden die Reaktionsgefäße bei 50°C inkubiert und ungefähr alle 3 min kurz gevortext, um ein vollständiges Lösen zu beschleunigen. Im nächsten Schritt wurde jeder Lösung ein mit dem ursprünglichen Gelstück identisches Volumen an Isopropanol hinzugefügt und durch Invertieren der Reaktionsgefäße gemischt. Die gesamte Lösung wurde auf eine Säule des "MinElute"-Kits (Firma Qiagen, Hilden) gegeben und 1 min bei höchster Stufe zentrifugiert, um die PCR-Produkte an die Silica-Gel-Membran zu adsorbieren. Der Durchfluss wurde verworfen und die Membran zunächst mit 500 µl Puffer QG und anschließend mit 750 µl Puffer PE (Firma Qiagen, Hilden) gewaschen. Nach dem Abzentrifugation der letzten Waschlösung wurde die DNA mit 50 µl Puffer EB (Firma Qiagen, Hilden) eluiert.

Vor der Sequenzierung der Amplifikate durch einen Dienstleister (MWG Biotech, Ebersberg), musste die DNA gefällt werden, da sie getrocknet eingeschickt werden sollte. Dafür wurden 12,5 µl 10 M Ammoniumacetat und 100 µl Ethanol (100%) hinzugegeben und die DNA 2 h bei -20°C gefällt. Anschließend wurden die PCR-Produkte in einer Kühlzentrifuge bei 4°C bei Höchstgeschwindigkeit 15 min zentrifugiert. Danach wurde der Überstand abdekantiert und das Pellet mit 200 µl Ethanol (70%) überschichtet ("gewaschen") und erneut bei 4°C 10 min zentrifugiert. Im letzten Schritt wurde die Flüssigkeit abdekantiert, kurz anzentrifugiert, restliche Flüssigkeit pipettiert und das Pellet etwa 15 Minuten an der Luft getrocknet.

Als Sequenzierprimer wurden die PCR-Primer in einer Konzentration von 10 µM dem Dienstleister zur Verfügung gestellt. Als Sequenzierprimer dienten SWP-1, SWP-2, SWP-3, SWP-5, SWP-6, SWP-7, SWP-7plus, SWP-18, SWP-19, SWP-20, SWP-22, SWP-23 und SWP-24.

4. Ergebnisse

4.1 Homologieuntersuchungen zur Konstruktion "universeller" SWP-Primer

Der Homologievergleich der drei bisher bekannten SWP-Gensequenzen, nämlich der des einzigen SWP-Gens von *E. cuniculi* (Genbank-Nr. AJ133745; Bohne *et al.*, 2000) und *E. intestinalis* mit zwei SWP-Genen (Genbank-Nr. AF355749 und AF355750; Hayman *et. al.*, 2001), ergab sieben Bereiche, in denen Abschnitte mit mindestens 16 bp Länge (kürzere Primer eignen sich erfahrungsgemäß nicht für eine PCR) und mit höchstens einer nicht konservierten Position (eigene Anforderung) zu finden waren (Abbildung 5). Zur Amplifikation homologer SWP-Genabschnitte aus anderen Mikrosporidienspezies wurden aus diesen sieben Bereichen drei Regionen mit besonders hoher Identität zur Konstruktion von vier "degenerierten" Primern (SWP-1, SWP-2, SWP-3 und SWP-4) ausgewählt. Ihre Positionierung und Orientierung sind in Abbildung 6 schematisch und in Abbildung 7 mit ihren genauen Positionen innerhalb der drei SWP-Gene dargestellt.

```
E. intestinalis SWP1 71 GAAATTAAAGATGATAAAGCTCTCACTTCTCCTAAGTCTA 111
E. intestinalis SWP2
                     71 GAAATTAAAGATGATAAAGCTCTCACTTCTCCTAAGTCTA 111
E. cuniculi
                          AATTAAAGATGATGAAGCTTTCACTGCTGCTAGGTCTA 38
                     1
                          ***** ***** ***** ***** ** *** ****
Primer SWP-1
                     5'-GAAATTAAAGATGATRAAGC-3'
E. intestinalis SWP1 445 CTCCTATAATCCTGATGGGAGAAAGGATCTACGCGAATTC 485
E. intestinalis SWP2 445
                        CTCCTATAATCCTGATGGGAGAAAGGATCTACGCGAATTC 485
E. cuniculi
                    394
                        CACCTATTATCAACATGGGAGAAAGGATATTTGTGAGTTC 434
                                      *************
                         * ***** ***
                                                      * ** ***
E. intestinalis SWP1 466 GAATTCCTCAAGAACTACGAGGACCAGTACAAGAAGGCTG 516
E. intestinalis SWP2 466 GAATTCCTCAAGAACTACGAGGACCAGTACAAGAAGGCTG 516
                    415 GAGTTCCTTAAGAACTACGAGGATCAGTACAAGAAGGCCG 465
E. cuniculi
                         E. intestinalis SWP1 487 GAACTACGAGGACCAGTACAAGAAGGCTGTTCTTCTTTC 527
E. intestinalis SWP2 487
                        GAACTACGAGGACCAGTACAAGAAGGCTGTTCTTCTTTC 527
                    436
E. cuniculi
                        GAACTACGAGGATCAGTACAAGAAGGCCGTCGTTCTTTC 476
                         ********** **************
                                                     ******
                            3'-CTCCTRGTCATGTTCTTC-5' (komplementär)
Primer SWP-2
Primer SWP-3
                              5'-GGAYCAGTACAAGAAGGC-3'
```

686 686 635	ACAAGGGCCATTCAGGCCAATGCACAGAAGGTAATTAGCG 726 ACAAGGGCCATTCAGGCCAATGCACAGAAGGTAATTAGCG 726 GCAGGAACTATCAGAGCTAATGCACAGAAGGTGATAGGCG 675 ** * * * ** ** ** *******************
857 857 766	CAACAACATCCAGCCAATAATCACCATTACCGGAAATGAT 897 CAACAACATCCAGCCAATAATCACCATTGCCGGAAATGAT 897 CAGTAATACACAGCCAATAATTACCATCGCAGGAAATGAT 806 ** ** * * ********** ***** * ********
867 867 816	AAACAGATGGCAGTGTTCCAGAAGATACCAGGAACTCTGC 907 AAACAGATGGCAGTGTTCCAGAAACTATCCAAGACTTTGA 907 AAGCAGATGGCCGTGTTCCAGAGATTACCAGGGACTCTAC 856 ** ******* ********* ** ** ****
	686 635 357 357 766 367 316

Abbildung 5: Sieben zwischen *E. intestinalis* (SWP1 und SWP2) und *E. cuniculi* konservierte Abschnitte des SWP-Gens und die Position der daraus abgeleiteten Primer (R = G + A; Y = C + T; K = G + T). Die angegebenen Nukleotid-Positionen entsprechen der Nummerierung in der Datenbank "Genbank".

	SWP-1♦	♦SWP-2		
		SWP-3+	♦SWP-4	
Primer				

Abbildung 6: Schematische Anordnung der Primer und Orientierung SWP-1, SWP-2, SWP-3 und SWP-4 auf dem SWP-Gen

E.i. S	SWP1	TCTTCAATGATTTCTTCATCTAGAACATATTCTTTGTAGTTTAAATGTATAAATAGAATG	60
E.i. S	SWP2	ТААБААААААААСАТСТАБСТАБААСАТАТТСТТТБТАБТТТАААТБТАТАААТАБААТБ	60
		Primer SWP-1	
E.i. S	SWP1	CAATAGGAAGGAAATTAAAGATGATAAAGCTCTCACTTCTCCTAAGTCTAGCGAGCTTCA	120
E.i. S	SWP2	CAATAGGAAG <mark>GAAATTAAAGATGATAAAGC</mark> TCTCACTTCTCCTAAGTCTAGCGAGCTTCA	120
E. cur	n.	AATTAAAGATGATGAAGCTTTCACTGCTGCTAGGTCTAGTAAGCTTCA	48

E.i. S	SWP1	CTGCAGTTCTTGCAAACCAAAGGCCTCGCTGCCAAAGATGCCCAGTGAGCAGCA	174
E.i. S	SWP2	CTGCAGTTCTTGCAAACCAGAGGCCTCGCTGCCAAAGATGCCCAGTGAGCAGCA	174
E. cur	n.	GTGCAGTGCTTGCAAGCGAGAACAGAAGGGGGGAATTGCCAGATGTGCCCTGAAGGTACCA	108
		***** ****** * * * * * ***** * ***** * *	
E.i. S	SWP1	GTAAGTACTTCCAACAAAATAATCTTCTTGGTAGCAGGTTCCAAAACGAGGTACAGAGAC	234
E.i. S	SWP2	GTAAGTACTTCCAACAAAATAATCTTCTTGAAAGCAGGTTCCAAAACGAGGTACAGAGAC	234
E. cur	n.	GATACTTCGAAAAAAACAATCTTCTTGGAAGGAGGTTCAAGAACGATGTGAGAAAGC	165
		* ***** ** **** ******* ** ****** * ****	
E.i. S	SWP1	TTTGCGCCCGCCGTGTGCGAGAAGAAGTTCTTCTGAATCATCCTCTTCCTCTAGCT	291
E.i. S	SWP2	TTTGCGCCCGCCGTGTGCGAGAAGAAGTTCTTCTGAATCATCCTCTTCCTCTAGCT	291
E. cur	n.	TCTGCGGTGACGGAATGAGCAGTGATGTCCATGATGAATCTTCATCTCACTCCTCTTCCT	225
		* **** * * ** ** * * ***** ** *********	

E.i. SWP1 E.i. SWP2 E. cun.	CTGAAGACTGCTCCCGAAGAAGGAGAAGACCCCACAGAGAATGGGAGGACAGCTGTTCAT CTGAAGACTGCTCCCGAAGAAGGAGAAGACCCCACAGAGAATGGGAGGACAGCTGTTCAT CTTCTGACTGCAAACCAAGAAGAAGGAGACACCATAGAAGATACGAGGATAGCTGCTCAT ** ***** * ***** ** **** *** *** *** *	351 351 285
E.i. SWP1 E.i. SWP2 E. cun.	CATCATATTCTTCTTGCAGTAGCACAGATAGCTGCTCTTCAAGCGCCCCCTGCC CATCATATTCTTCTTGCAGTAGCACAGATAGCTGCTCTTCAAGCGCCCCCTGCC TTGGTTCTTCAGACTGCGATGATTCAAGCACCTATTCATCGTGTGTCTCCTCGGAATGCA * *** *** * ** * ** *** ** ** *** ***	405 405 345
E.i. SWP1 E.i. SWP2 E. cun.	CACCTCCAGTGGCTCAAAGGTGTGATATCGAACTCAAGACTCCTATAATCC CACCTCCAGTGGCTCAAAGGTGTGATATCGAACTCAAGACTCCTATAATCC GTCCCCCATGCCGACCCGTGCCTCTGAACTGCGACTATGAGCTGAAGACACCTATTATCA ** *** *** *** *** *** **************	456 456 405
E.i. SWP1 E.i. SWP2 E. cun.	TGATGGGAGAAAGGATCTACGAATTCCTCAAGAACTACGAGGACCAGTACAAGAAGGCTG TGATGGGAGAAAGGATCTACGAATTCCTCAAGAACTACGAGGACCAGTACAAGAAGGCTG ACATGGGAGAAAGGATATTTGAGTTCCTTAAGAACTACGAGGATCAGTACAAGAAGGCCG ***************************	516 516 465
E.i. SWP1 E.i. SWP2 E. cun.	TTCTTCTTTTCTTGACCAATATCCTTTCGCAGATCTCAGGATTCAACCCAGTCTTCCCTG TTCTTCTTTGACCAATATCCTTTCGCAGATCTCAGGATTCAACCCAGTCTTCCCTG TCGTTCTTTTCCTGACCAGGATTCTCTCTCAGATTGATGGATTTGCTCCCTCTTACCCAA * ******* ***** ** ** ** ** ***** ***** ** ** ** ****	576 576 525
E.i. SWP1 E.i. SWP2 E. cun.	GTGGAGACTACGATGCTCTGATTGAACAACTCAAGACACTTGGAGTCACTGTCCCAGCAA GTGGAGACTACGATGCTCTGATTGAACAACTCAAGACACTTGGAGTCACTGTCCCAGCAA GTGCAGATTACGAGCCCCTGATCGAACAGCTTGAGACGCTCGGGGGTTACTGTTCCGTCCA *** *** ***** * ***** * ***** ** *** *	636 636 585
E.i. SWP1 E.i. SWP2 E. cun.	ACACTGCTGCCGAGCTTGCCGCCATAGATGCTGCTGAGTCGTCAGCCCTCACAAGGGCCA ACACTGCTGCCGAGCTTGCCGCCATAGATGCTGCTGAGTCGTCAGCCCTCACAAGGGCCA ACATGGCAGCTGATCTCGCAGCCCTGGATGCTGCTGAGGCGACCTCACTTGCAGGAACTA *** ** ** ** ** ** ** ** ** *** * ******	696 696 645
E.i. SWP1 E.i. SWP2 E. cun.	TTCAGGCCAATGCACAGAAGGTAATTAGCGATCTACTTACCAGGGTCAGTGCCATGTGCT TTCAGGCCAATGCACAGAAGGTAATTAGCGATCTACTTACCAGGGTCAGTGCCATGTGCT TCAGAGCTAATGCACAGAAGGTGATAGGCGACCTACTCGCCAGAGTCAACACAATGTGCT * ** ********************************	756 756 705
E.i. SWP1 E.i. SWP2 E. cun.	ACTTGGACATCATGAGCCTTGTCAACAGTGGTCTTCTAGCCAGCC	816 816 765
E.i. SWP1 E.i. SWP2 E. cun.	TCAACAACATCCAGCCAATAATCACCATTACCGGAAATGATTTGTTTG	876 876 825
E.i. SWP1 E.i. SWP2 E. cun.	CAGTGTTCCAGAAGATACCAGGAACTCTGCCCTCCGCTGCCATCACAGCTATCACCAATG CAGTGTTCCAGAAACTATCCAAGACTTTGATTTCTACAGCGGTCACTAATG CCGTGTTCCAGAGATTACCAGGGACTCTACCCTCTGCAGCTATTACTGCCATCACTAATG * ***********************************	936 927 885
E.i. SWP1 E.i. SWP2 E. cun.	CTCTCCAAGGCAACAGGACCAACTTTGTCACATTCTTTACAACTCAGACAAGCAATCTGC CTCTCCAAGGCAACAGAGCCAAATTTACTAGATTCTATACAACTCAGACAAGCAATCTGC CTCTTCAAGCAAACAAGAACAATTTCGTTACATTCTTCACAACTCAAACGACCAACCTAC **** **** **** **** **** ************	996 987 945

E.i. SWP1					
E.I. SWP2 E. cun.	AGACTGATGTTCAAAATGCTCTTAGTAAAACCCTGACTTCTGAGCTTAAGAAGCTGGCCACCG AGACTGATGTTCAAAATGCTCTTACAGCACTGATTACGGCGCTTACAACACTGACAAGTA * ** ** ** ** ** ** ** ** ** ** ** ** *	1047 1005			
E.i. SWP1 E.i. SWP2 E. cun.	ACACGGAGACTGCCTTCACAGCTTTTGCAAATGCAGAAATTTCAGCACTTATAAGCAGAA ACACAGAGACTGCCTTCACAGCTTTTGCAAATGCAGAAATTTCGACACCTGTAAGAAGAA CCACATCAACAGAATTCACACAGTTTGCAAACTCTGAAATTGGAGCACTTACAGGGAGAA *** ** ****** ****** ******* ******	1116 1107 1065			
E.i. SWP1 E.i. SWP2 E. cun.	TCTTCCCAACATCCACCACATCTTCGGGATCCGGAGACTCTACAGGGTCTGGAAGCACGGTCTTCCGAAGATCCATCACATCTTCTGGATTTGAAGATGCCGAAGAAGGTGAAGATAAGGTCTTTGGATCAAGCGGAAGCGGATCAGGCGGGTCATCTGGTGGATCAAGTGGAAGCGG*** <tr< th=""><th>1176 1167 1123</th></tr<>	1176 1167 1123			
E.i. SWP1 E.i. SWP2 E. cun.	GAGATGCAGGAGATGCGGGAGATACAGGAGAGGACGGCGGAGATGATGAGGGTACAGAAG ATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAG ATCAGATGGAAGCGGATCAGGCGGGTCATCTGGTGGATCAAGTGGAAGCGGATCAGATGG * * * * * * * * * * * * * * * * * * *	1236 1227 1183			
E.i. SWP1 E.i. SWP2 E. cun.	GAACTGGTTAGAACTACCTATCCTAATGTCT-GAGTCCGGAATCGGCTGTTATAAAGCAT GCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAG AAGCGGATCAGGCGGGTCATCTGGTGGATCAAGTGGAAGCGGATCAG-ATGGAAGCGGAT * * **	1295 1287 1242			
E.i. SWP1 E.i. SWP2 E. cun.	AGCAAAATATCAGCCAGGACTCAAATGGCCTCGTGGTTAGAATATGCCCATATA AAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGG CAGGCGGGTCATCTGGTGGATCAAGTGGAAGCGGATCAGGGGAGCGGATCAGGCGG * * * * * * * * * *	1349 1347 1300			
E.i. SWP1 E.i. SWP2 E. cun.	CTATCTTCGCTGATATCAAGG ATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAG GTCATCTGGTGGATCAAGCGGAAGCGGATCAGGAGGTGAATCTGGTGGATCTTCTTCATA * * * * * *	1370 1407 1360			
E.i. SWP2 E. cun.	GCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACAC-CGGA ATCAGAGCCAACCATCCTAATGTGTGAGTCCAAATCTAAATCATCCATAAGGCACAGG	1466 1418			
E.i. SWP2 E. cun.	GAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGTGAAGAAGGTGAAGATAAG GAATACCAACAAAGGGGCAAGAATCTCGACAGGTCTTGTGGTTAGATGTACGACCCACAT	1526 1478			
E.i. SWP2 E. cun.	GATAACACCGGAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGTGAAGAA GCTATTTTCGTTGGCGTCAGGATTTTTTCACTAGGCTGTAAATAAAACTGATTCCAAA	1586 1536			
E.i. SWP2 E. cun.	GGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGA AAAAAAAAA	1646 1546			
E.i. SWP2 E.i. SWP2 E.i. SWP2 E.i. SWP2 E.i. SWP2 E.i. SWP2 E.i. SWP2 E.i. SWP2 E.i. SWP2	GAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAG GATAACACCGGAGAAGGTGAAGAAGGTGAAGATAAGGATAACACCGGAGAAGGTGAAGAAG GGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGAAGGCGAAGATAAGGAT AACACCGGAGAAGGTGAAGAAGGTGAAGATAAGGATAACGACGGAGAAGGCGAAGAAGGCGAAGAAGGCGAAGAAG	1706 1766 1826 1886 1946 2006 2066 2126			
<i>E.i.</i> SWP2 <i>E.i.</i> SWP2 <i>E.i.</i> SWP2 <i>E.i.</i> SWP2 <i>E.i.</i> SWP2 <i>E.i.</i> SWP2	AAGGATAACACCGGAGAAGGTGAAGAAGGGGAAGAAGGCGAAGATAAGGATAACACCGGA GAAGGTGAAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGTGAAGAAGGC GAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAAC ACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGTGACGAAGGTGAA GATAAGGATAACACCGGAGAAGGTGAAGAAGGCGAAGAAGGCGAAGATAAGGATAACACC	2186 2246 2306 2366 2426			
E.1. SWP2 E.i. SWP2 E.i. SWP2	GGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGTGAAGAAGGCGAAGAA GGCGAAGATAAGGATAACACCGGAGAAGGTGAAGAAGGCGAAGAAGGCGAAGATAAGGAT AACACCGGAGAAGGTGAAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGC	2486 2546 2606			

E.i.	SWP2	GAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGTGAAGAAGGCGAAGATAAGGATAAC	2666
E.i.	SWP2	ACCGGAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGTGAAGAAGGCGAA	2726
E.i.	SWP2	GAAGGCGAAGATAAGGATAACACCGGAGAAGGTGAAGAAGGCGAAGATAAGGATAACACC	2786
E.i.	SWP2	GGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGAT	2846
E.i.	SWP2	AAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAA	2906
E.i.	SWP2	${\tt GAAGGCGAAGATAAGGATAACACCGGAGAAGGTGAAGAAGGTGAAGAAGGCGAAGATAAG$	2966
E.i.	SWP2	GATAACACCGGAGATGCCGAAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAT	3026
E.i.	SWP2	GCCGAAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGAAGAAGGCGAAGAAACAACT	3086
E.i.	SWP2	${\tt TAAAGATTCTGTGACTTGTATTAAATTCATCTTTGTACTTTTCAAAAAGATTCAGATGTC$	3146
E.i.	SWP2	${\tt TAGTATCTAATCTTGTCGTTCTTTTTGAGGGGCCTTTAGGAGGGAAACAAAC$	3206
E.i.	SWP2	AGGGTC	3212

Abbildung 7: Alignment der drei bekannten DNA-Sequenzen der SWP-Gene der Mikrosporidienspezies *E. cuniculi* und *E. intestinalis* (SWP1 und SWP2). Eingezeichnet ist die Lage und Orientierung der Primer SWP-1, SWP-2, SWP-3 und SWP-4.

4.2 Vorversuch zur direkten Amplifikation des SWP-Gens aus *Enterocytozoon* bieneusi

Zunächst wurde die Funktionsfähigkeit der im Kapitel 4.1 beschriebenen "universellen" Primer SWP-1, SWP-2, SWP-3 und SWP-4 durch Amplifikation genomischer DNA aus *E. cuniculi* und *E. intestinalis* unter den im Kapitel 3.2.2 beschriebenen Bedingungen geprüft. Die erwarteten Größen der jeweiligen Amplifikationsprodukte sind in Tabelle 9 dargestellt. Es konnten mit beiden Primerpaaren (SWP-1 mit SWP-2 und SWP-3 mit SWP-4) aus der genomischen DNA beider Spezies Amplifikationsprodukte der erwarteten Größe gewonnen werden (Abbildung 8 und 9). Die Reaktionsbedingungen bei denen das Verhältnis zwischen spezifischem Produkt und unerwünschten Nebenprodukten am besten war, sind in Tabelle 10 zusammengefasst.

	Erwartete Größe des Amplifikats			
Primerpaar	E. cuniculi	<i>E. intestinalis</i> SWP1 und SWP2		
SWP-1 und SWP-2	463 bp	441 bp		
SWP-3 und SWP-4	390 bp	391 bp		

Tabelle 9: Erwartete Bandengrößen der PCR-Produkte mit denPrimern SWP-1, SWP-2, SWP-3 und SWP-4.

Tabelle 10: Zusammenfassung der besten Reaktionsbedingungen zur Amplifikation von SWP-Genabschnitten mit den Primern SWP-1, SWP-2, SWP-3 und SWP-4 aus *E. cuniculi* und *E. intestinalis*.

		SWP-1/	'SWP-2	SWP-3/S	WP-4	
	Annealing-Temperatur	56°C	Danda	64°C	Danda	
E. cuniculi	Mg ²⁺ -Konzentration	5 mM	SWP1"	2 mM	"SWP22"	
	Zyklenanzahl	40	"σττι	50		
	Annealing-Temperatur	56°C	Danda	48°C	Danda	
E. intestinalis	Mg ²⁺ -Konzentration	5 mM	SWP2"	5 mM	Bande SWP14"	
	Zyklenanzahl	40	"	35	"OWI I T	

Abbildung 8: Gelelektrophoretische Auftrennung der PCR-Produkte von *E. cuniculi* und *E. intestinalis* bei Verwendung der Primer SWP-1 und SWP-2 (Annealing-Temperatur 56°C, 40 Zyklen, 2 mM und 5 mM MgCl₂).

Abbildung 9: Gelelektrophoretische Auftrennung der PCR-Produkte von *E. cuniculi* und *E. intestinalis* bei Verwendung der Primer SWP-3 und SWP-4 (Annealing-Temperatur 64°C [links] und 48°C [rechts], 40 Zyklen, 2 mM und 5 mM MgCl₂).

Die Sequenzierung der aus *E. cuniculi* amplifizierten Produkte "SWP1" (Abbildung 8 und 10) und "SWP22" (Abbildung 9 und 11) ergab jeweils zur publizierten *E. cuniculi*-Sequenz (Genbank-Nr. AJ133745) identische DNA-Sequenzen. Die entsprechenden Produkte aus *E. intestinalis*, "SWP2" (Abbildung 8 und 12) und "SWP14" (Abbildung 9 und 13), waren beide zu über 99% mit den Genen SWP1 und SWP2 von *E. intestinalis* (Genbank-Nr. AF355749 bzw. AF355750) identisch. Damit konnte die Anwendbarkeit der degenerierten Primer SWP-1, SWP-2, SWP-3 und SWP-4 bei *E. cuniculi* und *E. intestinalis* bestätigt werden.

```
1AGCGAGAACAGAAGGGGGAATTGCCAGATGTGCCCTGAAGGTACCAGATACTTCGAAAAA61AACAATCTTCTTGGAAGGAGGTTCAAGAACGATGTGAGAAAGCTCTGCGGTGACGGAATG121AGCAGTGATGTCCATGATGAATCTTCATCTCACTCCTCTTCCTCTTCTGACTGCAAACCA181AGAAGAAGGAGACACCATAGAAGATACGAGGATAGCTGCTCATTTGGTTCTTCAGACTGC241GATGATTCAAGCACCTATTCATCGTGTGCTCCTCGGAATGCAGTCCCCATGCCGACCC301GTGCCTCTGAACTGCGACTATGAGCTGAGACACCTATTATCAACATGGGAGAAAGGATA361TTTGAGTTCTTAAGAACTACGAGGATCAGTACAAGAAGAAA
```

Abbildung 10: E. cuniculi: Lesbarer Abschnitt der Bande "SWP1", sequenziert mit Primer SWP-1

1TCAGATTGATGGATTTGCTCCCTCTTACCCAAGTGCAGATTACGAGCCCTGAACAAACA61GCTTGAGACGCTCGGGGTTACTGTTCCGTCCAACATGGCAGCTGATCTCGCAGCCCTGGA121TGCTGCTGAGGCGACCTCACTTGCAGGAACTATCAGAGCTAATGCACAGAAGGTGATAGG181CGACCTACTCGCCAGGAGTCAACACAATGTGCTATCTGGATCTCATGAGCCTCGTCACTAG241CGGACTCTTTGCCAGCCAGGTCACAAGTGCATTCAGTAATACACAGCCAATAATTACCAT301CGCAGGAAATGATCTGTTTACCAAGCAGATGGCCGTGTTCCAAGCAGATCCAAGCAGAT

Abbildung 11: E. cuniculi: Lesbarer Abschnitt der Bande "SWP22", sequenziert mit Primer SWP-3

1	CAGGTTCCAA	AACGAGGTAC	AGAGACTTTG	CGCCCGCCGT	GTGCGAGAAG	AAAGTTCTTC
61	TGAATCATCC	TCTTCCTCTA	GCTCTGAAGA	CTGCTCCCGA	AGAAGGAGAA	GACCCCACAG
121	AGAATGGGAG	GACAGCTGTT	CATCATCATA	TTCTTCTTGC	AGTAGCACAG	ATAGCTGCTC
181	TTCAAGCGCC	CCCTGCCCAC	CTCCAGTGGC	TCAAAGGTGT	GATATCGAAC	TCAAGACTCC
241	TATAATCCTG	ATGGGAGAAA	GGATCTACGA	ATTCCTCAAG	AACTACGAGG	ACCAGTACAA
301	GAA					

Abbildung 12: E. intestinalis: Lesbarer Abschnitt der Bande "SWP2", sequenziert mit Primer SWP-1

1	CAGCAAACAC	TGCGTGCCGA	GCTTGCCGCC	ATAGATGCTG	CTGAGTCGTC	AGCCCTCACA
61	AGGGCCATTC	AGGCCAATGC	ACAGAAGGTA	ATTAGCGATC	TACTTACCAG	GGTCAGTGCC
121	ATGTGCTACT	TGGACATCAT	GAGCCTTGTC	AACAGTGGTC	TTCTAGCCAG	CCAAGTCTCA
181	AGTGTTTTCA	ACAACATCCA	GCCAATAATC	ACCATTGCCG	GAAATGATTT	GTTTGCCAAA
241	CAGATGGCCG	TGTTC				

Abbildung 13: *E. intestinalis*: Lesbarer Abschnitt der Bande "SWP14", sequenziert mit Primer SWP-3

In einem weiteren Vorversuch sollte geprüft werden, ob diese Primer bereits in der Lage waren, genomische DNA der Spezies *E. bieneusi* zu amplifizieren. Als Ausgangsmaterial wurden gereinigte Sporen von *E. bieneusi* verwendet (siehe 3.1.8). Insgesamt wurden 48 unterschiedliche PCR-Reaktionsbedingungen getestet, die aus Kombination von vier unterschiedlichen Annealing-Temperaturen, drei Primerpaaren, zwei Zyklenzahlen und 2 Magnesiumkonzentrationen bestanden (Abbildung 14). Insgesamt wurden 51 Reaktionsprodukte sequenziert, von denen 23 eine lesbare DNA-Sequenz ergaben (Tabelle 11). Keines der charakterisierten Produkte zeigte eine DNA-Sequenz-Homologie zu den bekannten SWP-Sequenzen aus *E. cuniculi* oder *E. intestinalis*.

Abbildung 14: Übersicht die zum Versuch der Amplifikation von Genabschnitten des SWP-Gen von *E. bieneusi* angewendeten Reaktionsbedingungen.

		Banden Größe [kb]	Zum Vo erwartete Pro	ergleich: duktgrößen bei	
Bande	Primer SWP		E. cuniculi [kb]	E. intestinalis [kb] SWP1/ SWP2 (in diesem Bereich identische Längen)	Ergebnis der Sequenzierung
SWP7	-1/-4	1	0,85	0,83	nicht homolog
SWP8	-1/-4	0,8	0,85	0,83	nicht homolog
SWP12	-1/-4	1	0,85	0,83	nicht homolog
SWP17	-3/-4	0,7	0,39	0,39	nicht homolog
SWP21	-1/-4	0,7	0,85	0,83	nicht homolog
SWP24	-1/-2	0,4	0,46	0,44	nicht homolog
SWP37	-1/-2	0,4	0,46	0,44	nicht homolog
SWP40	-1/-2	0,5	0,46	0,44	nicht homolog
SWP43	-1/-2	0,4	0,46	0,44	nicht homolog
SWP44	-1/-2	0,4	0,46	0,44	nicht homolog
SWP48	-1/-4	1,1	0,85	0,83	nicht homolog
SWP49	-1/-4	0,4	0,85	0,83	nicht homolog
SWP54	-1/-4	1	0,85	0,83	nicht homolog
SWP56	-1/-4	1	0,85	0,83	nicht homolog
SWP57	-1/-4	1	0,85	0,83	nicht homolog
SWP62	-1/-4	0,4	0,85	0,83	nicht homolog
SWP63	-1/-4	1	0,85	0,83	nicht homolog
SWP64	-1/-4	1	0,85	0,83	nicht homolog
SWP68	-1/-2	0,6	0,46	0,44	nicht homolog
SWP69	-1/-2	0,2	0,46	0,44	nicht homolog
SWP70	-1/-2	0,6	0,46	0,44	nicht homolog
SWP71	-1/-2	0,35	0,46	0,44	nicht homolog
SWP72	-1/-2	0,35	0,46	0,44	nicht homolog

Tabelle	11:	Sea	uenzier	te F	<i>bieneusi</i> -Am	plifikate
Tabelle		UUY	uchzici	ю <i>с</i> .	DICITCUSTAT	ipinikate.

4.3 Charakterisierung des SWP-Gens von Encephalitozoon hellem

4.3.1 Amplifikation eines ersten *E. hellem*-spezifischen SWP-Genabschnitts durch Anwendung degenerierter Primer

Da die Amplifikation von Abschnitten des Gens des Sporenwandproteins der beiden anderen *Encephalitozoon*-Spezies bei den zuvor genannten Bedingungen erfolgreich war, wurde zunächst versucht, die zu *E. cuniculi* bzw. *E. intestinalis* homologen Abschnitte des Sporenwandproteins von *E. hellem* unter gleichen Reaktionsbedingungen zu amplifizieren. Mit Primerpaar SWP-1/SWP-2 gelang es bei einer Annealing-Temperatur von 56°C, 5 mM MgCl₂ und 40 Zyklen, ein Produkt ("SWP3") mit einer Größe von etwa 0,4 kb zu erzeugen. Dabei war die Produktausbeute bei 5 mM Magnesiumchloridkonzentration deutlich höher als bei 2 mM (Abbildung 15).

Abbildung 15: PCR-Produkt aus *E. hellem*-DNA mit dem Primerpaar SWP-1/SWP-2 bei einer Annealing-Temperatur von 56°C, Magnesiumchloridkonzentrationen von 2 und 5 mM und 40 Zyklen.

Nach Ausschneiden der Bande und Isolation der DNA konnte die Sequenz vollständig ermittelt werden (Abbildung 16 und 17), da das PCR-Produkt von beiden Seiten mit den für die PCR verwendeten Primern sequenziert wurde. Die Sequenz war zu 62% mit dem homologen Abschnitt des SWP-Gens von *E. cuniculi* und zu 57% und 58% zu denen von SWP1 bzw. SWP2 von *E. intestinalis* identisch. Eine Datenbanksuche in der "Genbank" erbrachte keinen weiteren Treffer mit höherer Homologie. Mutmaßlich war damit der erste Abschnitt der Nukleotidsequenz des Sporenwandproteins von *E. hellem* identifiziert.

Abbildung 16: Schematische Darstellung der Lage der Primer SWP-1 und SWP-2 auf dem SWP-Gen von *E. hellem* und Lage der DNA-Sequenz der Bande "SWP3".

1	AAGCTCTCGT	TGCTCCTAGG	тстассаат	TTCACTGCAA	TCCTTGCAGG	TGGAGAGAGA
- 61	AGGAGAAGCG	GACTGCTGCA	ATGTAGTGCT	AATGGCTCCA	GGTATTTCCG	CGAACAAAAT
121	CTCCTTGGAA	TTAGGTACAA	AGATGATGTA	AAGAGGCTCT	GTGGCGAAAG	GCCCGAAGGA
181	CCTCATCCGT	CTGAATCTTC	CTCATGCTCT	TCTTCGTACT	CTGAGGAGTG	CAGCCGAAGG
						Primer
241	AGATTCCCTG	GAATCAGAGA	TGACTGCGAG	TACAGCTCTT	GGGATGCATG	CTGCAGCTCG
	SWP-6					
301	TCATGGGATG	AATGCACCGA	CTCTTCCCCA	TGCGCCACAC	CTACACCTCT	GAGATGCGAT
361	GCTGAGCTCA	GAGTCCCTAT	AATCAATATG	GGTGAAAGGA	TATACGAGTT	CCTCAAGAAC
421	TAC GAGGACC	AGTACAAG				

Abbildung 17: Lesbare Nukleotidsequenz von Bande "SWP3", sequenziert mit den Primern SWP-1 und SWP-2 (mit-sequenzierte Primeranteile sind fett gedruckt) sowie die Lage des Primers SWP-6.

Die PCR-Reaktionen mit den anderen Primerpaaren SWP-3/SWP-4 und SWP-1/SWP-4 führten trotz Variierung der Reaktionsbedingungen zwar zu mehreren PCR-Produkten, die sich jedoch alle in der Sequenzierung als nicht homolog herausstellten (eine Erklärung wird in Kapitel 5.2.2 diskutiert). Um dennoch zu versuchen unter Verwendung des Primers SWP-4 unbekannte Nukleotidseguenzen weiter strangabwärts zu identifizieren, wurde ein spezifisch für E. hellem konstruierter Primer (SWP-6) am 5'-Ende der zuvor ermittelten Sequenz (Abbildung 17) eingesetzt. Das Primerpaar SWP-6/ SWP-4 wurde in einer so genannten "Touch Down"-PCR eingesetzt, bei der die Annealing-Temperatur von 68°C in 25 Zyklen schrittweise um 0,5°C auf 55°C gesenkt wurde, wonach anschließend noch 20 Zyklen bei 55°C folgten. Nach insgesamt 45 Zyklen konnte in der Gelelektrophorese ein etwa 0,4 kb großes PCR-Produkt sichtbar gemacht werden. Nach Ausschneiden der Bande ("SWP91") und Sequenzierung des Reaktionsproduktes konnte eine lesbare Nukleotidsequenz mit einer Gesamtlänge von insgesamt 262 Basenpaaren identifiziert werden, deren erste 35 Nukleotide mit der zuvor ermittelten Sequenz (Abbildung 17) identisch waren (Abbildung 18 und 19).

Abbildung 18:Schmematische Darstellung der Lage der Primer SWP-6 und auf dem SWP-6 und SWP-4 auf dem SWP-Gen von E. hellem und Lage der sequenzierten DNA der Bande "SWP91".

1	TGGGTGAAAG	GATATACGAG	TTCCTCAAGA	ACTA CGAGGA	CCAGTACGAG	AGTGCCGTTA
61	CTCTTGCACT	GAACAACATC	CTCTCCCAGG	TCTCGGGATT	CAACCCCATC	TTCGCAGGTG
121	CAGACTATGC	AGCCCTTGTC	GAGCAGCTGG	AAACACTTGG	CGTAAGTGTC	CCGGCCAACA
181	CCGCTGCCGA	GCTTGCATCA	ATAGACTCTT	CTGAGTCTGC	TGCCCTCTCC	AGGGCCATCC
241	AGGGCAATGC	ACAGAAGATA	AT			

Abbildung 19:Lesbare Nukleotidsequenz von Bande "SWP91", sequenziert mit Primer SWP-6. Der bereits aus PCR-Produkt "SWP3" bekannte Bereich (Abbildung 17) ist fett gedruckt (ohne Primeranteile)

Durch die Ausrichtung der Nukleotidsequenzen anhand des überlappenden Bereichs ("Alignment") der PCR Produkte "SWP3" und "SWP91", gelang es so die identifizierte Basenfolge des SWP von *E. hellem* auf 607 bp auszudehnen.

4.3.2 Charakterisierung "upstream" und "downstream" gelegener SWP-Genabschnitte von *E. hellem* durch "inverse" PCR

Um auch die Genbereiche zu charakterisieren, die der bis dahin bekannten DNA-Sequenz in 5'-Richtung ("upstream") und 3'-Richtung ("downstream") benachbart sind, wurde die Methode der "inversen" PCR angewandt (siehe 3.2.3). Damit wird es möglich, DNA, die zuvor mit Restriktionsenzymen geschnitten und zu zirkulären DNA-Molekülen ligiert wurde, in einer PCR zu amplifizieren. Unter Verwendung des Restriktionsenzyms *NIa*III und dem Primerpaar SWP-5/SWP-6, bei dem nicht wie sonst in einer "klassischen" PCR die 3'-Enden, sondern die 5'-Enden benachbart sind, konnte ein Reaktionsprodukt ("SWP82") generiert werden, das eine Größe von 0,4 kb hatte. Durch Sequenzierung mit dem Primer SWP-6 konnte eine 261 bp lange Sequenz ermittelt werden, von der 238 Nukleotide mit "SWP91" identisch waren. Die bis dahin ermittelte Sequenz konnte um 20 Basen erweitert werden (Abbildung 20 und 21).

Abbildung 20: Schematische Darstellung der Lage der Primer SWP-5 und SWP-6 und Lage der Bande "SWP82" (Das zirkuläre Molekül des Ligationsproduktes ist hier an der *Nla*III-Schnittstelle geöffnet dargestellt).

		Primer	SWP-3			
1	TCAAGAACTA	CGAGGACCAG	TACGAGAGTG	CCGTTACTCT	TGCACTGAAC	AACATCCTCT
61	CCCAGGTCTC	GGGATTCAAC	CCCATCTTCG	CAGGTGCAGA	CTATGCAGCC	CTTGTCGAGC
121	AGCTGGAAAC	ACTTGGCGTA	AGTGTCCCGG	CCAACACCGC	TGCCGAGCTT	GCATCAATAG
181	ACTCTTCTGA	GTCTGCTGCC	CTCTCCAGGG	CCATCCAGGG	CAATGCACAG	AAGATAAT CA
241	GTGACCTGTT	TGCTAGAG				

Abbildung 21: Lesbare Nukleotidsequenz der Bande "SWP82", sequenziert mit Primer SWP-6 und Lage des Primers SWP-3. Der bereits aus PCR-Produkt "SWP91" bekannte Bereich (Abbildung 19) ist fett gedruckt.

Weitere Versuche, auch mit den Restriktionsenzymen Sau3AI und Tsp509 in analoger Art und Weise "inverse" PCR-Reaktionen mit den gleichen Primern (SWP-5 und SWP-6) durchzuführen, führten zu keinen weiteren seguenzierbaren Produkten (Tabelle 12). Stattdessen sollte mit einer zweiten, "halb-geschachtelten" ("seminested") PCR (siehe 3.2.5), die der "inversen" PCR angeschlossen wurde, versucht werden, PCR-Produkte in größeren Mengen und mit weniger Nebenprodukten zu erzielen. Für die "halb-geschachtelte" PCR wurde der gleiche Primer SWP-5 wie in der ersten PCR verwendet sowie ein weiterer mit einem Abstand von zwei Nukleotiden gegenüber dem zu Primer SWP-6 weiter "downstream" gelegenem Primer SWP-7. So konnte aus einer "inversen" PCR mit DNA, die mit dem Reaktionsenzym Nlall verdaut und re-ligiert wurde, in der "halb-geschachtelten" PCR ein Produkt mit einer Größe von 0,3 kb generiert werden ("SWP97"). Nach der Sequenzierung mit Primer SWP-7 konnte eine Nukleotidseguenz mit einer Länge von 297 bp bestimmt werden (Abbildung 22 und 23). Diese enthielt jedoch keine neue Sequenzinformation, da sie vollständig in PCR-Produkt "SWP82" (Abbildung 21) enthalten und zu diesem vollständig identisch war.

ja

_

-

_

-

_

-

_

Banden- Nummer SWP	Primer- paar SWP	Größe [kb]	PCR-Art, Temperatur, Zyklenanzahl	Restriktions- enzym, PCR- Bedingungen	Sequenz- analyse	Homologie
77	-5/-6	0,5		<i>Nla</i> III; U + [K]↓	nicht durchgeführt	-
78	-5/-6	0,35		<i>Nla</i> III; U +[K]↓	nicht durchgeführt	-
79	-5/-6	0,7		<i>Nla</i> III; U + [K]↑	nicht durchgeführt	-
80	-5/-6	0,55	"Touch	<i>Nla</i> III; U + [K]↑	nicht durchgeführt	-
81	-5/-6	0,35	Down"-PCR: Annealing-	<i>Nla</i> III; U + [K]↑	nicht durchgeführt	-

NlaIII; G + [K]↓

NlalII; G + [K]↑

Sau3AI; U + [K]↑

Sau3AI; G + [K]↓

Sau3AI; G + [K]↓

Sau3AI; G + [K]↓

Sau3AI; G + [K]↓

Sau3AI; G + [K]↑

Tsp509I; U + [K]↓

erfolgreich

nicht lesbar

nicht lesbar

nicht lesbar

nicht lesbar

nicht lesbar nicht

durchgeführt

nicht lesbar

nicht

durchgeführt

wird innerhalb

von 25 Zyklen

von 68°C auf

55°C gesenkt.

Anschließend

20 Zyklen bei 55°C.

82

83

84

85

86

87

88

89

90

-5/-6

-5/-6

-5/-6

-5/-6

-5/-6

-5/-6

-5/-6

-5/-6

-5/-6

0,35

0,35

1,5

1.8

1.5

0,6

0.45

1,5

0,5

Tabelle 12: Beschreibung der PCR-Produkte, die aus der "inversen" PCR mit Primern SWP-5 und

Abbildung 22: Schematische Darstellung der Lage der Primer SWP-5, SWP-6 und SWP-7 und Lage der Bande "SWP97" auf dem SWP-Gen von E. hellem. (Das zirkuläre Molekül des Ligationsproduktes ist hier an der NlaIII-Schnittstelle geöffnet dargestellt).

1 AGAGTGCCGT TACTCTTGCA CTGAACAACA TCCTCTCCCA GGTCTCGGGA TTCAACCCCA TCTTCGCAGG TGCAGACTAT GCAGCCCTTG TCGAGCAGCT GGAAACACTT GGCGTAAGTG 61 TCCCGGCCAA CACCGCTGCC GAGCTTGCAT CAATAGACTC TTCTGAGTCT GCTGCCCTCT 121 CCAGGGCCAT CCAGGGCAAT GCGCCACACC TACACCT 181

Abbildung 23: Lesbare Nukleotidsequenz der Bande "SWP97", sequenziert mit Primer SWP-7.

Banden- Nummer SWP	Primerpaar SWP	Größe [kb]	PCR Art, Temperatur, Zyklenanzahl	Restriktionsenzym- verdau der DNA	Sequenz- analyse	Homologie
92	-5/-6 + -5/-7	0,45		Nlalli	nicht lesbar	-
93	-5/-6 + -5/-7	0,5	"Touch Down"- PCR: Annealing- Temperatur wird innerhalb von 20 Zyklen von 68°C	Sau3AI	nicht lesbar	-
94	-5/-6 + -5/-7	0,3		Sau3AI	nicht lesbar	-
95	-5/-6 + -5/-7	0,45		<i>Tsp</i> 509I	nicht lesbar	-
96	-5/-6 + -5/-7	0,3	auf 57,5°C gesenkt. Anschließend 10	<i>Tsp</i> 509I	nicht lesbar	-
97	-5/-6 + -5/-7	0,3	Zyklen bei 57,5°C	Nlalli	erfolgreich	ја
98	-5/-6 + -5/-7	0,3		Tsp509I	zu wenig PCR- Produkt	-

Tabelle 13: Beschreibung der PCR-Produkte, die aus den "inversen", "halb-geschachtelten" PCR-Reaktionen hervorgegangen waren.

Weitere Versuche, auch mit den Restriktionsenzymen *Sau*3AI und *Tsp*509I in analoger Weise "inverse", "halb-geschachtelte" PCR-Reaktionen mit den gleichen Primerpaaren durchzuführen, führten zu keinen weiteren sequenzierbaren Produkten (Tabelle 13). Nachdem es jedoch gelungen war, mittels einer "verankerten" PCR (siehe 3.2.4) die DNA-Sequenz des SWP-Gens von *E. hellem* weiter in "downstream"-Richtung zu bestimmen, konnten für den neu charakterisierten Genabschnitt weitere PCR-Primer für weitere "inverse" PCR-Reaktionen konstruiert werden.

Zunächst wurden "inverse" PCR-Reaktionen mit den Restriktionsenzymen NlaIII, Sau3AI und Tsp509 I sowie den Primern SWP-21 und SWP-22 durchgeführt, die jedoch zu keinen deutlichen Banden nach gelelektrophoretischer Auftrennung der PCR-Produkte führten. Deshalb wurde versucht, durch "geschachtelte" ("nested") PCR-Reaktionen (siehe 3.2.5) mit zwei zusätzlichen weiter innen liegenden Primern (SWP-20 und SWP-23) weitere sequenzierbare PCR-Produkte zu generieren. Diese "nested" PCR wurde als "Touch Down"-PCR (siehe 3.2.5) durchgeführt. Dabei wurde die Annealing-Temperatur von 68°C innerhalb der ersten 20 Zyklen schrittweise auf 57,5°C gesenkt, anschließend wurden noch 10 Zyklen bei 57,5°C durchgeführt. Als Ausgangsmaterial diente dabei die DNA aus der "inversen" PCR, die mit den Primern SWP-21 und SWP-22 amplifiziert worden mit den war und zuvor Restriktionsenzymen *Bfal*, *Taql* und *Tsp*509l verdaut und re-ligiert wurde.

Bei zwei "inversen", "geschachtelten" PCR-Reaktionen, in denen mit Bfal verdaute und re-ligierte DNA verwendet und die als Doppelansatz durchgeführt wurden, zeigte sich in der Gelelektrophorese bei beiden Reaktionsansätzen eine deutliche Produktbande mit einer Größe von 0,9 kb (Produkte "SWP140" und "SWP141", Tabelle 14). Das Produkt "SWP140" wurde sowohl mit den Primern SWP-20 und SWP-23 als auch mit eigens konstruierten. einem zentral gelegenem Sequenzierprimer (SWP-24) sequenziert und ergab eine lesbare Nukleotidsequenz von 936 bp (Abbildung 24 und 25).

Abbildung 24: Schematische Darstellung der Lage der für die "inverse", nested PCR verwendeten Primer SWP-20 bis SWP-23 sowie des zusätzlichen Sequenzierprimers SWP-24 und Lage der sequenzierten Abschnitte des PCR-Produktes "SWP140".

1	ATTTCAAGCG	CATTCA GCAA	CACCCAGCCG	GTGATCACGA	TTGCATCAAA	CGATCTATAT
61	GCCAAGCAGA	TGGCCGTGTT	CCAGAGAATC	CCAGGGACTC	TGCCGGCAGC	TGCAGTCACT
121	GCAATCACCA	ATGCTCTCCA	GACAAACAGG	AACAACTTTG	CCACGTTCTT	CACAACCCAG
		-	Primer SWP-	24		
181	GCAACCACTC	TGCAGACAAA	TGTCCAGAAC	ATCCTCACGG	CCCTGACAAC	GGCCCTCACG
241	GCCCTGACGA	ACAACACATC	AACAGAGTTC	ACCACATTTG	CAAACTCTGA	GATTGCTGCG
301	CTTGCGGCCA	GGATTTTCCC	AGCCACGACT	GCGTCCGGCG	ACGACAACAG	TGGGTCAACG
361	GGAGGAGACA	ACACCGGAAA	TGGCGGAACA	GTAACACCTC	CAGAGCAAGA	TGAAGAGGGA
421	GAAGAAACTC	CAGAGGAAGA	TGAAGAGGAA	GAAGAAACTC	CAGAGGAAGA	TGAAGAGGAG
481	GAAAAAGATG	TTATAGCCGC	TCTATTGAAT	ACAATAAAGG	AAGAGGGTGA	GAAGCTTGGA
541	AAGGCTGCAA	TGAAAGAGGT	GATGGATGCG	ATAAAACAAG	AAGGAACAAC	GCAGGGAACC
601	GAGGCAGTAC	AAGAAATGAT	GAATGCAGTA	AAAGACGAAG	TAGATACAAA	GAAAACTGAG
661	ACAGTGACTG	ATATCATGGA	CAAGGTGAAG	ACAGAGGCAG	AAACAAAGAA	GACCACAACA
721	GCACAGGAAA	TCATGGATGC	AGTAAAGACA	GAGGCAGAAG	GAAAGAAAAC	CGAGACAGTG
781	ACTGAAATCA	TGGAAAAAGC	AAAGGAAACG	TGGGAGGCTG	GTAAATCGCA	GTAGATTCTA
841	ACACCCTAAT	ATGCGAGTCT	GAGTGTCCAC	AAGACACTTA	AGGTGTCAGC	AGGGAATAAG
901	GACTCAATAA	CCTTGTGGCC	ATAAGCATCC	TCATA		

Abbildung 25: Lesbare Nukleotidsequenz der Bande "SWP140", sequenziert mit den Primern SWP-20, SWP-23 und SWP-24, mit-sequenzierte Primeranteile sind fett gedruckt und die Lage des Primers SWP-24.

Bei "inversen", "geschachtelten" PCR-Reaktionen mit DNA, die mit *Taq*l verdaut und re-ligiert worden war, konnten 1,4 kb große Produkte ("SWP142" und "SWP143") erzeugt werden (Tabelle 14). Nach dem Ausschneiden aus dem Agarosegel und der Isolierung der DNA erfolgte auch hier eine Sequenzanalyse. Mit dem Primer SWP-23 konnte ein 278 bp großer Abschnitt charakterisiert werden (Abbildung 26 und 27). Dieser Abschnitt lag vollständig innerhalb des zuvor sequenzierten Produktes "SWP140" und war zu diesem vollständig identisch.

Abbildung 26: Schematische Darstellung der Lage der für die "inverse", nested PCR verwendeten Primer SWP-20 bis SWP-23 und Lage des sequenzierten Abschnitts des PCR-Produkts "SWP142" und Lage des Primers SWP-24.

1	CAGATGGCCG	TGTTCCAGAG	AATCCCAGGG	ACTCTGCCGG	CAGCTGCAGT	CACTGCAATC				
Primer SWP-24										
61	ACCAATGCTC	TCCAG <mark>A</mark> CAAA	CAGGAACAAC	TTTGCCTCGT	TCTTCACAAC	CCAGGCAACC				
121	ACTCTGCAGA	CAAATGTCCA	GAACATCCTC	ACGGCCCTGA	CAACGGCCCT	CACGGCCCTG				
181	ACGAACAACA	CATCAACAGA	GTTCACCACA	TTTGCAAACT	CTGAGATTGC	TGCGCTTGCG				
241	GCCAGGATTT	TCCCAACCAC	GACTGGCGTC	TGGCGACG						

Abbildung 27: Lesbare Nukleotidsequenz der Bande "SWP142", sequenziert mit Primer SWP-23

Banden- Nummer SWP	Primer- paar SWP	Größe [kb]	PCR Art, Temperatur, Zyklenanzahl	Restriktionsenzym- verdau der DNA	Sequenz- analyse	Homologie
140	-21/-22 + -20/-23	0,9	"Touch Down"-PCR: Annealing- Temperatur wird innerhalb von 20 Zyklen von 68°C auf 57,5°C gesenkt. Anschließend 10 Zyklen bei 57,5°C	Bfal	erfolgreich	ja
141	-21/-22 + -20/-23	0,9		Bfal	nicht durchgeführt	-
142	-21/-22 + -20/-23	1,4		Taql	erfolgreich	ja
143	-21/-22 + -20/-23	1,4		Taql	nicht durchgeführt	-

 Tabelle 14:
 Beschreibung der PCR-Produkte, die aus der "geschachtelten" PCR hervorgegangen waren

Mittels "inverser" PCR sollte auch der noch unbekannte, weiter "upstream" gelegene Bereich des SWP-Gens bis zum Start-Codon und darüber hinaus amplifiziert werden. Dazu wurde die DNA von *E. hellem* zunächst in zwei Reaktionen mit *NlallI* oder *Csp*6I verdaut und anschließend wie zuvor zu zirkulären Molekülen ligiert. Die "inverse" PCR mit den Primern SWP-16 und SWP-19 ergab jedoch weder aus der mit *Csp*6I noch der mit *Nla*III behandelten *E. hellem*-DNA sequenzierbare Produkte (Tabelle 15).

Tabelle 15: Beschreibung der PCR-Produkte, die aus der "inversen" PCR hervorgegangen waren. R= gereinigte, U= nicht gereinigte DNA (siehe 3.2.3.1), [K]↑= hohe DNA-Konzentration [K]↓= niedrige DNA-Konzentration in der PCR-Lösung (siehe 3.2.3.1)

Banden- Nummer SWP	Primer- paar SWP	Größe [kb]	PCR Art, Temperatur, Zyklenanzahl	Restriktions- enzym, PCR- Bedingungen	Sequenz- analyse	Homologie
130	-16/-19	0,6	"Touch Down"-PCR: Annealing-Temperatur wird innerhalb von 25	<i>Csp</i> 6l; U + [K]↑	nicht lesbar	-
131	-16/-19	0,35	2ykien von 68°C auf 55°C gesenkt. Anschließend 20 Zyklen bei 55°C.	<i>Nl</i> aIII; U + [K]↑	nicht lesbar	-

Deshalb wurden auch hier zwei weitere PCR-Primer (SWP-17 und SWP-18) konstruiert, um damit, wie bei den Produkten "SWP140" und "SWP141", eine "geschachtelte" ("nested") PCR durchzuführen. In der Gelelektrophorese konnten zwei Banden mit der Größe 0,5 kb ("SWP133") und 0,7 kb ("SWP137") aus DNA, die zuvor mit C*sp*6I geschnitten und re-ligiert worden war, sichtbar gemacht werden

(Tabelle 16). Die Sequenzanalyse von Produkt "SWP133" ergab eine lesbare Sequenz von 506 Basenpaaren, die sich lückenlos an den bisher identifizierten Abschnitt des SWP-Gens von *E. hellem* anschließen ließ (Abbildung 28 und 29). Das Produkt "SWP137" war in der Sequenzierung nicht lesbar.

Abbildung 28: Schematische Anordnung der Bande "SWP133" auf dem SWP-Gen zur Verlängerung der Sequenz in "upstream"-Richtung.

1	GCCTGCCGGA	TGTTCTTGTA	GGCCCACACA	ACATGCTCAG	GGTTGCCCAT	GTCCAGTCTG
61	TCTATTCTCG	AAGAAAAATC	TCGGAAATTC	GCGTCCACAG	CCTCCTTGAT	TCTACTCCCC
121	TCCATCTCAG	TGGGGTTAAA	AAACAGCACA	TATTTCCAAT	CCTGCAGTGG	CGCCAGATTC
181	AAACCACATC	TGCTGCACCT	TCCGTTGGCG	GACTCGTCGC	ACGGCTGCGA	TTAATCCCAT
241	TAATCTACTA	TATGATAAAT	GCTATTGATT	TTTGTCCATC	AAGAAATATT	CCTATTCATC
301	ACAGATTTAA	TATGCCTAGC	CTAAACACTG	CCTAAACAGG	CCTGTCAGCA	TCCAGATTAA
361	TTGCAAATAT	TTCCAAAATA	AGGAAAAGAA	CACATCCATG	GAACACATTC	CTCGGGGCAA
421	AAACATATAA	ATAAGCAGGC	GCCGAGAG <mark>GA</mark>	AAATTAAAGA	<u>TGATGATG</u> CT	CTCGTTGCTC
				Primer SW	P-1	
481	CTAGGTCTAG	CAAATTTCAC	TGCAAT			

Abbildung 29: Lesbare Nukleotidsequenz von PCR-Produkt "SWP133", sequenziert mit den Primern SWP-17 und SWP-18 (mit-sequenzierte Primeranteile sind fett gedruckt) und die Lage des Primers SWP-1.

Mit den gleichen Primern wurde eine "inverse", "geschachtelte" PCR durchgeführt, in der genomische DNA von *E. hellem* eingesetzt wurde, die mit *Nla*III anstelle von *Csp*6I geschnitten und re-ligiert worden war. Dadurch konnte ein 0,25 kb großes PCR-Produkt ("SWP139") erzeugt werden (Tabelle 16). Die anschließende Sequenzierung mit SWP-17 und SWP-18 ergab einen 270 bp großen Bereich, der innerhalb der zuvor mit dem PCR-Produkt "SWP133" bestimmten Sequenz lag (Abbildung 30 und 31).

Abbildung 30: Schematische Anordnung der Bande "SWP139" auf dem SWP-Gen, der sequenzierte Bereich war mit der homologen Region des bereits charakterisierten Produktes "SWP3" bzw. "SWP133" identisch.

1	GAACACATTC	CTCGGGGCAA	AAACATATAA	ATAAGCAGGC	GCCGAGAGGA	AAATTAAAGA
61	TGTTGAAGCT	CTCGTTGCTC	CTAGGTCTAG	CAAATTTCAC	TGCAATCCTT	GCAGGTGGAG
121	AGAGATCCTG	AAGCGGACTG	CTGCAATGTA	GTGCTAATGG	CTCCAGGTAT	TTCCGCGAAC
181	AAAATCTCCT	TGGAATTAGG	TACAAAGATG	ATGTAAAGAG	GCTCTGTGGC	GAAAGGCCCG
241	AAGGACCTCA	TCCGTCTGAA	TCTTCCTCAT			

Abbildung 31: Lesbare Nukleotidsequenz von PCR-Produkt "SWP139", sequenziert mit den Primern SWP-17 und SWP-18 (mitsequenzierte Primeranteile sind fett gedruckt). Grau unterlegt ist die nicht mitsequenzierte bereits bekannte DNA-Sequenz zwischen den Primern SWP-17 und SWP-18. Zusätzlich ist die *Nla*III-Schnittstelle eingezeichnet.

Tabelle 16: Beschreibung der PCR-Produkte, die aus der "inversen", "geschachtelten" PCR hervorgegangen waren.

Banden- Nummer SWP	Primer- paar SWP	Größe [kb]	PCR Art, Temperatur, Zyklenanzahl	Restriktionsenzy m verdau der DNA	Sequenz- analyse	Homologie
133	-16/-19 + -17/-18	0,5		Csp6l	erfolgreich	ja
134	-16/-19 + -17/-18	0,5		Csp6I	nicht durchgeführt	-
135	-16/-19 + -17/-18	0,5	"Touch Down"-PCR: Annealing-	Csp6l	nicht durchgeführt	-
136	-16/-19 + -17/-18	0,5	innerhalb von 20 Zyklen von 68°C auf	Csp6l	nicht durchgeführt	-
137	-16/-19 + -17/-18	0,7	57,5°C gesenkt. Anschließend 10	Csp6l	nicht lesbar	-
138	-16/-19 + -17/-18	0,7	Zykien bel 57,5 C	Csp6I	nicht durchgeführt	-
139	-16/-19 + -17/-18	0,25		Nlalli	erfolgreich	ja

4.3.3 Charakterisierung weiterer SWP-Genabschnitte von *E. hellem* durch "verankerte" PCR

Die "verankerte" PCR (siehe 3.2.4) wurde als Alternative zur "inversen" PCR (siehe 4.3.2) durchgeführt, und zwar wiederum zunächst zur Erweiterung des aus den Produkten "SWP3" und "SWP91" bekannten Genabschnitts in "downstream"-Richtung. Dazu wurden die bereits in der "inversen" PCR benutzten "downstream"-PCR-Primer SWP-6 und SWP-7 eingesetzt. Als Gegenprimer wurde ein zu dem als "Anker" eingesetzten Vektor (pBluescript II SK⁻) passender Primer ("T3plus") verwendet. Zunächst wurden verankerte PCR-Reaktionen mit den Primern SWP-6 und T3plus als "Touch Down"-PCR durchgeführt, die jedoch sowohl unter Verwendung von mit Sau3AI geschnittener und verankerter DNA, als auch unter Verwendung von mit Tsp509I geschnittener und verankerter DNA zu keinem sequenzierbaren Produkt führten (Tabelle 17). Deshalb wurde, wie zuvor bei der "inversen" PCR, unter Verwendung des Primers SWP-7 eine "halb-geschachtelte" ("semi-nested") PCR angeschlossen. Auch diese Reaktion wurde als "Touch Down"-PCR durchgeführt, bei der die Annealing-Temperatur innerhalb der ersten 20 Zyklen von 68°C auf 57,5°C gesenkt und anschließend noch 10 Zyklen bei 57,5°C durchgeführt wurden.

Bei der DNA, die über eine *Sau*3AI-Schnittstelle mit dem "Anker" verbunden worden war, zeigten sich Banden mit einer Größe von 0,4 kb ("SWP118") und 0,5 kb ("SWP117", Tabelle 18). Die Sequenzanalyse gelang bei PCR-Produkt "SWP117" mit dem Sequenzierprimer SWP-7plus (Abbildung 32 und 33). Das Produkt "SWP118" konnte nicht sequenziert werden. Auch die "halb-geschachtelte" PCR unter Verwendung von *Tsp*509I verdaut blieb ohne sequenzierbare Produkte.

Tabelle 17: Beschreibung der PCR-Produkte, die aus der "verankerten" PCR hervorgegangen waren. R= gereinigte, U= nicht gereinigte DNA (siehe 3.2.3.1), [K]↑= hohe DNA-Konzentration, [K]↓= niedrige DNA-Konzentration in der Lösung (siehe 3.2.3.1)

Banden- Nummer SWP	Primer- paar	Größe [kb]	PCR Art, Temperatur, Zyklenanzahl	Restriktionsenzym, PCR-Bedingungen	Sequenz- analyse	Homologie
108	SWP- 6/T3plus	0,5		Sau3AI und verankert mit Vektor (einfach verdaut mit BamH1) U; [K]↓	nicht durchgeführt	-
109	SWP- 6/T3plus	0,5	"Touch Down"-	Sau3AI und verankert mit Vektor (einfach verdaut mit BamH1) U; [K]↓	nicht durchgeführt	-
110	SWP- 6/T3plus	0,5	Annealing- Temperatur wird innerhalb von 25 Zyklen von 68°C auf 55°C gesenkt. Anschließend 20	Sau3AI und verankert mit Vektor (einfach verdaut mit BamH1) U; [K]↑	nicht lesbar	-
111	SWP- 6/T3plus	0,5	Zyklen bei 55°C.	Sau3AI und verankert mit Vektor (unterschiedlich verdaut mit Cla I, EcoR I, Kpn I oder Pst I) G; [K]↓	nicht durchgeführt	-
112	SWP- 6/T3plus	0,5		Sau3AI und verankert mit Vektor (mehrfach verdaut mit Cla I, EcoR I, Kpn I oder Pst I) G; [K]↑	nicht lesbar	-

Abbildung 32: Zum Schließen der "Lücke" zwischen den bis dahin bekannten Bereichen wurde Bande "SWP117" sequenziert.

1	CGAGAGTGCC	GTTACTCTTG	CACTGAACAA	CATCCTCTCC	CAGGTCTCGG	GATTCAACCC
61	CATCTTCGCA	GGTGCAGACT	ATGCAGCCCT	TGTCGAGCAG	CTGGAAACAC	TTGGCGTAAG
121	TGTCCCGGCC	AACACCGCTG	CCGAGCTTGC	ATCAATAGAC	TCTTCTGAGT	CTGCTGCCCT
181	CTCCAGGGCC	ATCCAGGGCA	ATGCACAGAA	GATAATCAGT	GACCTGTTTG	CTAGAGTTGG
241	GTCAATGTGC	TACTCAGATA	TCACGAGCCT	CATCAACAGC	GGGCTCTTCG	CCAGCCAGAT
301	TTCAAGCGCA	TTCAGCAACA	CCCAGCCGGT	GATCCACTAG	TTCTAGAGCG	GCCGCCACCG
361	CGGTGGAGTC	TCCAGCTTTT	GTTCC CTTTA	GTGAGGGTTA	AT	

Abbildung 33: Lesbare Nukleotidsequenz von PCR-Produkt "SWP117", sequenziert mit Primer SWP-7plus. Grau unterlegt ist der über die *Sau*3AI-Schnittstelle (Kasten) gebundene Teil der DNA-Sequenz des "Ankers" bis zum Primer "T3plus" (fett gedruckt, 3'-Ende).

Tabelle 18: Beschreibung der PCR-Produkte, die aus der "verankerten", "halb-geschachtelten" PCR hervorgegangen waren.

Banden- Nummer SWP	Primer- paar SWP	Größe [kb]	PCR Art, Temperatur, Zyklenanzahl	Restriktions- enzyme	Sequenz- analyse	Homologie
115	-6/T3plus + -7/T3plus	0,5		Sau3AI und verankert mit Vektor (einfach verdaut mit BamH1)	nicht durchgeführt	-
116	-6/T3plus + -7/T3plus	0,4		Sau3AI und verankert mit Vektor (einfach verdaut mit BamH1)	nicht durchgeführt	-
117	-6/T3plus + -7/T3plus	0,5		Sau3AI und verankert mit Vektor (einfach verdaut mit BamH1)	erfolgreich	ja
118	-6/T3plus + -7/T3plus	0,4	"Touch Down"- PCR:	Sau3AI und verankert mit Vektor (einfach verdaut mit BamH1)	nicht lesbar	-
119	-6/T3plus + -7/T3plus	0,5	Annealing- Temperatur wird innerhalb von 20 Zyklen von 68°C auf 57, 5°C gesenkt.	Sau3AI und verankert mit Vektor (unterschiedlich verdaut mit Cla I, EcoR I, Kpn I oder Pst I)	nicht durchgeführt	-
120	-6/T3plus + -7/T3plus	0,4	Zyklen bei 57, 5°C	Sau3AI und verankert mit Vektor (unterschiedlich verdaut mit Cla I, EcoR I, Kpn I oder Pst I)	nicht durchgeführt	-
121	-6/T3plus + -7/T3plus	0,5		Sau3AI und verankert mit Vektor (mehrfach verdaut mit Cla I, EcoR I, Kpn I oder Pst I)	nicht durchgeführt	-
122	-6/T3plus + -7/T3plus	0,4		Sau3AI und verankert mit Vektor (mehrfach verdaut mit Cla I, EcoR I, Kpn I oder Pst I)	nicht durchgeführt	-

4.3.4 Bestimmung der vollständigen kodierenden SWP-Gensequenz von *E. hellem*, benachbarter genomischer Bereiche und der abgeleiteten Aminosäuresequenz

Durch Zusammenfügen ("assembly") der sequenzierten DNA-Abschnitte (Abbildung 34) wurde eine Gesamtsequenz von 2132 Nukleotiden Länge ermittelt, die die vollständige, kodierende Region sowie benachbarte genomische Abschnitte des Sporenwandproteins von *E. hellem* umfasste (Abbildung 35). Durch Vergleich der drei Leserahmen (Abbildung 36) konnte eine längste, ununterbrochene kodierende Sequenz mit eine Länge von 1569 Nukleotiden gefunden werden (in Abbildung 35 fett gedruckt), die für ein Protein mit 523 Aminosäuren kodiert (Abbildung 37).

Abbildung 34: Schematische Darstellung der Lage der PCR-Primer und den DNA-Abschnitten

				NlaIII	NlaI	II
1	GCCTGCCGGA	TGTTCTTGTA	GGCCCACACA	ACATGCTCAG	GGTTGCCCAT	GTCCAGTCTG
	Taq	Ľ	<i>Tsp</i> 50	91		
61	TCTATTCTCG	AAGAAAAATC	TCGGAAATTC	GCGTCCACAG	CCTCCTTGAT	TCTACTCCCC
121	TCCATCTCAG	TGGGGTTAAA	AAACAGCACA	TATTTCCAAT	CCTGCAGTGG	CGCCAGATTC
181	AAACCACATC	TGCTGCACCT	TCCGTTGGCG	GACTCGTCGC	ACGGCTGCGA	TTAATCCCAT
241	TAATCTACTA	TATGATAAAT	GCTATTGATT	TTTGTCCATC	AAGAAATATT	CCTATTCATC
		BfaI				
301	ACAGATTTAA	TATGCCTAGC	CTAAACACTG	CCTAAACAGG	CCTGTCAGCA	TCCAGATTAA
	<i>Tsp</i> 5091			NlaII	I	
361	TTGCAAATAT	TTCCAAAATA	AGGAAAAGAA	CACATCCATG	GAACACATTC	CTCGGGGCAA

Ergebnisse

				<i>Tsp</i> 5091		
				Primer S	WP-1	
421	AAACATATAA	ATAAGCAGGC	GCCGAGAGGA	AAATTAAAGA	TGTTGAAGCT	CTCGTTGCTC
	<u>Bfal</u> <u>Bfal</u>	<i>Tsp</i> 5091				Primer
481	CTAGGTCTAG	CAAATTTCAC	TGCAATCCTT	GCAGGTGGAG	AGAGATCCTG	AAGCGGACTG
		Primer SV	VP-18	Primer	SWP-19	
	SWP-16	Primer S	SWP-17			<i>Tsp</i> 5091
541	CTGCAATGTA	GTGCTAATGG	CTCCAGGTAT	TTCCGCGAAC	AAAATCTCCT	TGGAATTAGG
	Csp6I					
601	TACAAAGATG	ATGTAAAGAG	GCTCTGTGGC	GAAAGGCCCG	AAGGACCTCA	TCCGTCTGAA
661			Csp61	63 6 7663 666	~	
66T	TCTTCCTCAT	GCTCTTCTTC	GTACTCTGAG	GAGTGCAGCC	GAAGGAGATT	CCCTGGAATC
701	3C3C3mC3Cm		CHCHHCCCAH			
/21	AGAGATGACT	GCGAGTACAG	CTCTTGGGAT	GCATGCTGCA	GCTCGTCATG	GGATGAATGC
701	3000300000		CA CA COMA CA	000000000000000000000000000000000000000	Primer	SWP-6
101	ACCGACTCIT		Drimon Sh	D-5	GCGATGCIGA	GUTUAGAGIU
	Drimor St	7_7	Primer Sw	P-5		Brimor
841		ATATCCCTCA	ΔΔCCΔͲΔͲΔC	Састтсстса	ACAACTAC	CCACCACTAC
041	CULTAINAICA	AIAIGGGIGA	ANGGAIAIAC	GAGIICCICA		Drimer
	SMD-3					I I IMEI
901	GAGAGTCCCG	ͲͲϪϹͲϹͲͲϾϹ	астсаасаас	ATCCTCTCCC	AGGTCTCGGG	ΑͲͲϹΑΑϹϹϹϹ
501	SWP-2	11110101100	1101011101110	TagT	11001010000	
961	ATCTTCGCAG	GTGCAGACTA	TGCAGCCCTT	GTCGAGCAGC	TGGAAACACT	TGGCGTAAGT
1021	GTCCCGGCCA	ACACCGCTGC	CGAGCTTGCA	TCAATAGACT	CTTCTGAGTC	TGCTGCCCTC
					B	faI
1081	TCCAGGGCCA	TCCAGGGCAA	TGCACAGAAG	ATAATCAGTG	ACCTGTTTGC	TAGAGTTGGG
						Deter
						Primer
					Prim	er SWP-22
1141	TCAATGTGCT	ACTCAGATAT	CACGAGCCTC	ATCAACAGCG	Prima GGCTCTTCGC	er SWP-22 CAGCCAGATT
1141	TCAATGTGCT	ACTCAGATAT	CACGAGCCTC	ATCAACAGCG	Prim GGCTCTTCGC	er SWP-22 CAGCCAGATT
1141	TCAATGTGCT	ACTCAGATAT Prin	CACGAGCCTC Mer SWP-20 Primer	ATCAACAGCG	Prim GGCTCTTCGC	er SWP-22 CAGCCAGATT
1141	TCAATGTGCT SWP-23	ACTCAGATAT Prim	CACGAGCCTC er SWP-20 Primer	ATCAACAGCG SWP-21	Prim GGCTC <mark>TTCGC</mark>	er SWP-22 CAGCCAGATT
1141	TCAATGTGCT	ACTCAGATAT Prin	CACGAGCCTC her SWP-20 Primer Sa	ATCAACAGCG SWP-21 uJAI	Prim GGCTCTTCGC Sau	er SWP-22 CAGCCAGATT
1141 1201	TCAATGTGCT SWP-23 TCAAGCGCAT	ACT <u>CAGATAT</u> Prin	CACGAGCCTC her SWP-20 Primer Sa CCAGCCGGTG	ATCAACAGCG SWP-21 u3AI ATCACGATTG	Prim GGCTCTTCGC Sau CATCAAACGA	CAGCCAGATT CAGCCAGATT
1141 1201 1261	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG	ACT <u>CAGATAT</u> Prin TCAGCAACAC CCGTGTTCCA	CACGAGCCTC her SWP-20 Primer Sa CCAGCCGGTG GAGAATCCCA	ATCAACAGCG SWP-21 uJAI ATCACGATTG GGGACTCTGC	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC	CAGCCAGATT CAGCCAGATT 3AI TCTATATGCC AGTCACTGCA
1141 1201 1261	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime	ACT <u>CAGATAT</u> Prin TCAGCAACAC CCGTGTTCCA	CACGAGCCTC her SWP-20 Primer Sa CCAGCCGGTG GAGAATCCCA	ATCAACAGCG SWP-21 UJAI ATCACGATTG GGGACTCTGC	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC	CAGCCAGATT CAGCCAGATT 3AI TCTATATGCC AGTCACTGCA
1141 1201 1261 1321	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG	ACT <u>CAGATAT</u> Prin TCAGCAACAC CCGTGTTCCA er SWP-4 CTCTCCAGAC	CACGAGCCTC her SWP-20 Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC	ATCAACAGCG SWP-21 uJAI ATCACGATTG GGGACTCTGC AACTTTGCCA	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC CGTTCTTCAC	CAGCCAGATT CAGCCAGATT CAGCCAGATT CTATATGCC AGTCACTGCA AACCCAGGCA
1141 1201 1261 1321 1381	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC	ACT CAGATAT Prin TCAGCAACAC CCGTGTTCCA CCGTGTTCCA CTCTCCAGAC AGACAAATGT	CACGAGCCTC er SWP-20 Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAACATC	ATCAACAGCG SWP-21 au3AI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC CGTTCTTCAC TGACAACGGC	ACCCAGGCA AACCCAGGCA
1141 1201 1261 1321 1381	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC	ACT CAGCAACAC CCGTGTTCCA TCAGCAACAC CCGTGTTCCA TCTCCCAGAC AGACAAATGT Prim	CACGAGCCTC Der SWP-20 Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAACATC Der SWP-24 AGAGTTCACC	ATCAACAGCG SWP-21 uJAI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC CGTTCTTCAC TGACAACGGC	ACCCAGGCA AACCCAGGCA TCTCACAGGCA
1141 1201 1261 1321 1381 1441	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA	ACTCAGATAT Prin TCAGCAACAC CCGTGTTCCA TCTCCCAGAC ACTCTCCAGAC AGACAAATGT Prin ACACATCAAC	CACGAGCCTC her SWP-20 Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGACATC her SWP-24 AGAGTTCACC CACGACTCCC	ATCAACAGCG SWP-21 uJAI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT	ACCCAGGCA AACCCAGGCA CCTCACGGCC
1141 1201 1261 1321 1381 1441 1501	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GCGGCCAGGA	ACT CAGCAACAC CCGTGTTCCA TCAGCAACAC CCGTGTTCCA TCAGCAACAC CTCTCCAGAC AGACAAATGT Prim ACACATCAAC TTTTCCCAGC	CACGAGCCTC her SWP-20 Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAACAGGAAC CCAGAACATC her SWP-24 AGAGTTCACC CACGACTGCG CCCAACACCGCTA	ATCAACAGCG SWP-21 u3AI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT ACAACAGTGG	ACCCAGGCA AACCCAGGCA TGCTGCGCCTT GTCAACGGGA
1141 1201 1261 1321 1381 1441 1501 1561	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GCGGCCAGGA GGAGACAACA	ACT CAGCAACAC CCGTGTTCCA Prin TCAGCAACAC CCGTGTTCCA Prin ACACAATGA TTTTCCCAGC CCGGAAATGG ACCAACATCAAC	CACGAGCCTC her SWP-20 Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAACAGCA AGAGTTCACC CACGAACAGTA AGAGTTCACC CACGAACAGTA AGAGTACAGAA	ATCAACAGCG SWP-21 uJAI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACTCCAG	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT ACAACAGTGG AGCAAGATGA	AACCCAGGCA CTCTATATGCC AGTCACTGCA AACCCAGGCA CCTCACGGCC TGCTGCGCTT GTCAACGGGA AGAGGGAGAA ACACCCAG
1141 1201 1261 1321 1381 1441 1501 1561 1621 1681	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GCGGCCAGGA GGAGACAACA GAAACTCCAG AAAGATGTTA	ACT CAGCAACAC CCGTGTTCCA Prin TCAGCAACAC CCGTGTTCCA Prin ACACAATGT Prin ACACATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA TAGCCGCTCT	CACGAGCCTC Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAAGGAACA CCAGACAGGA AGAGTTCACC CACGACTGCG CGGAACAGTA AGAGGAAGAA ATTGAATACA	ATCAACAGCG SWP-21 au3AI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACCTCCAG GAAACTCCAG	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT ACAACAGTGG AGCAAGATGA AGGAAGATGA	AGTCACTGCA TGCTGCGCCTT GTCAACGGGA AGAGGGAGAA AGAGGGAGGAA AGAGGGAGG
1141 1201 1261 1321 1381 1441 1501 1561 1621 1681 1741	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GCGGCCAGGA GGAGACAACA GAAACTCCAG AAAGATGTTA GCTGCAATGA	ACT CAGCAACAC CCGTGTTCCA TCAGCAACAC CCGTGTTCCA TCTCCCAGAC AGACAAATGT Prim ACACATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA TAGCCGCTCT AAGAGGTGAT	CACGAGCCTC her SWP-20 Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAACAGGAAC CCAGAACATC her SWP-24 AGAGTTCACC CACGACTGCG CGGAACAGTA AGAGGAAGAA ATTGAATACA GGATGCGATA	ATCAACAGCG SWP-21 au3AI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACCTCCAG GAAACTCCAG ATAAAGGAAG AAACAAGAAG	Prim GGCTCTTCGC Sau CATCAAACCA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT ACAACAGTGG AGCAAGATGA AGGAAGATGA AGGGTGAGAA	AGTCACTGCA AGTCACTGCA AGTCACTGCA AACCCAGGCA CCTCACGGCC TGCTGCGCTT GTCAACGGGA AGAGGGAGAA AGAGGAGGAA AGAGGAGGAA GCTTGGAAAG GGGAACCGAG
1141 1201 1261 1321 1381 1441 1501 1561 1621 1681 1741	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GCGGCCAGGA GGAGACAACA GAAACTCCAG AAAGATGTTA GCTGCAATGA Csp61	ACT CAGCAACAC CCGTGTTCCA TCAGCAACAC CCGTGTTCCA TCTCCCAGAC AGACAAATGT Prim ACACATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA TAGCCGCTCT AAGAGGTGAT	CACGAGCCTC Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAACAGGAAC CCAGAACATC Ner SWP-24 AGAGTTCACC CACGACTGCG CGGAACAGTA AGAGGAAGAA ATTGAATACA GGATGCGATA	ATCAACAGCG SWP-21 AU3AI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACCTCCAG GAAACTCCAG ATAAAGGAAG AAACAAGAAG	Prim GGCTCTTCGC Sau CATCAAACCA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT ACAACAGTGG AGCAAGATGA AGGGAGAAGATGA AGGGTGAGAA	AGTCACCAGGCA AGTCACCAGGCA CCTCACGGCC TGCTGCGCCTT GTCAACGGGA AGAGGGAGAA AGAGGAGGAA AGAGGAGGAA AGAGGAG
1141 1201 1261 1321 1381 1441 1501 1561 1621 1681 1741 1801	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GCGGCCAGGA GGAGACAACA GAAACTCCAG AAAGATGTTA GCTGCAATGA <i>Csp61</i> GCAGTACAAG	ACT CAGCAACAC CCGTGTTCCA TCAGCAACAC CCGTGTTCCA TCACCAGAC CCGTGTTCCA AGACAAATGT Prim ACACATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA TAGCCGCTCT AAGAGGTGAT	CACGAGCCTC Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAACATC CCAGAACATC AGAGTTCACC CACGACTGCG CGGAACAGTA AGAGGAAGAA ATTGAATACA GGATGCGATA	ATCAACAGCG SWP-21 AU3AI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACCTCCAG GAAACTCCAG ATAAAGGAAG AAACAAGAAG	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT ACAACAGTGG AGCAAGATGA AGGGAGAAGAA AGGGTGAGAA AGGACAACGCA	AGTCACTGCA AGTCACTGCA AGTCACTGCA AGTCACTGCA AGTCACTGCA CCTCACGGCC TGCTGCGCTT GTCAACGGGA AGAGGAGGAA AGAGGAGGAA AGAGGAGGAA GCTTGGAAAG GGGAACCGAG AACTGAGACA
1141 1201 1261 1321 1381 1441 1501 1561 1681 1741 1801	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GCGGCCAGGA GGAGACAACA GGAGACAACA GAAACTCCAG AAAGATGTTA GCTGCAATGA Csp61 GCAGTACAAG	ACT CAGCAACAC CCGTGTTCCA TCAGCAACAC CCGTGTTCCA TCAGCAACAC CCGTGTTCCAGAC AGACAAATGT Prim ACACATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA AAGAGGTGAT AAATGATGAA NLAIII	CACGAGCCTC Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGACAGGAAC CCAGACAGGA AGAGTTCACC CACGACTGCG CGGAACAGTA AGAGGAACAAT AGAGGAACAAT AGAGGAACAAT AGAGGAACAAT AGAGGAACAAT AGAGGAACAAT AGAGGAACAAA ATTGAATACA GGATGCGATA	ATCAACAGCG SWP-21 UJAI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCCC ACATTTGCAA TCCGGCGACG ACACTTCCAG GAAACTCCAG ATAAAGGAAG AAACAAGAAG GACGAAGTAG	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT ACAACAGTGG AGCAAGATGA AGGAAGATGA AGGAAGATGA AGGAAGATGA AGGAAGATGA AGGAAGATGA AGGAAGATGA	AGGGAACCGAG AACTGAGACA
1141 1201 1261 1321 1381 1441 1501 1561 1681 1741 1801 1861	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GGAGACAACA GGAGACAACA GAAACTCCAG AAAGATGTTA GCTGCAATGA Csp61 GCAGTACAAG	ACT CAGCAACAC CCGTGTTCCA Prin TCAGCAACAC CCGTGTTCCA Prin ACACAATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA TAGCCGCTCT AAGAGGTGAT AAATGATGAA NIaIII TCATGGACAA	CACGAGCCTC Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGACAGGAAC CCAGAACATC Der SWP-24 AGAGTTCACC CACGACTGCG CGGAACAGTA AGAGGAAGAA ATTGAATACA GGATGCGATAAA GGTGAAGACA	ATCAACAGCG SWP-21 UJAI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACTCCAG GAAACTCCAG GAAACTCCAG ATAAAGGAAG AAACAAGAAG GACGAAGTAG GAGGCAGAAA	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT ACGAACAGTGG AGCAAGATGA AGGGTGAGAA AGGGTGAGAA AAGAACAACGCA ATACAAAGAAGAC	ACTGAGACA CACACAGCA
1141 1201 1261 1321 1381 1441 1501 1561 1681 1741 1801 1861	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GGAGACAACA GGAGACAACA GAAACTCCAG AAAGATGTTA GCTGCAATGA Csp61 GCAGTACAAG GTGACTGATA	ACT CAGCAACAC CCGTGTTCCA Prin TCAGCAACAC CCGTGTTCCA Prin ACACAATCAAC TTTTCCCAGAC AGACAAATGT Prin ACACATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA TAGCCGCTCT AAGAGGTGAT AAATGATGAA NIaIII TCATGGACAA	CACGAGCCTC Der SWP-20 Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAACAGGAAC CCAGAACAGTC Der SWP-24 AGAGTTCACC CACGACTGCG CGGAACAGTA AGAGGAAGAA ATTGAATACA GGATGCGATAAAA GGTGAAGACA	ATCAACAGCG SWP-21 AJAI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACCTCCAG GAAACTCCAG ATAAAGGAAG ATAAAGGAAG AAACAAGAAG GACGAAGTAG GAGGCAGAAA	Prim GGCTCTTCGC Sau CATCAAACCA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT ACAACAGTGG AGCAAGATGA AGGAAGATGA AGGAAGATGA AGGAAGATGA AAGGAAGATGA AAGGAAGAAGA CAAAGAAGAA	ACTGAGACA GGGAACGGA ACTGAGACA CACAACAGCA
1141 1201 1261 1321 1381 1441 1501 1561 1621 1681 1741 1801 1861 1921	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GCGGCCAGGA GGAGACAACA GAAACTCCAG AAAGATGTTA GCTGCAATGA Csp61 GCAGTACAAG GTGACTGATA N12 CAGGAAATCA	ACT CAGCAACAC CCGTGTTCCA Prin TCAGCAACAC CCGTGTTCCA TCTCCCAGAC AGACAAATGT Prin ACACATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA TAGCCGCTCT AAGAGGTGAT AAATGATGAA NIAIII TCATGGACAA aIII	CACGAGCCTC Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAAGGAAC CCAGAAGGAAC CCAGAACATC Ner SWP-24 AGAGTTCACC CACGACTGCG CGGAACAGTA AGAGGAAGAA ATTGAATACA GGTGAAGACA AAAGACAGAG AAAGACAGAG	ATCAACAGCG SWP-21 AJAI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACTCCAG GAAACTCCAG GAAACTCCAG GAAACTCCAG GAAACTCCAG GAAACTCCAG GAAACTCCAG ATAAAGGAAG AAACAAGAAG GACGAAGTAG GAGGCAGAAA	Prim GGCTCTTCGC Sau CATCAAACGA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT ACAACAGTGG AGCAAGATGA AGGAAGATGA AGGAAGATGA AAGGAAGATGA AAGGAAGATGA AAGGAAGATGA AAGGAAGAAGAC	ACTGAGGAGAA GGGAACCGAG ACTGAGACA CACACAGCA
1141 1201 1261 1321 1381 1441 1501 1561 1681 1741 1801 1861 1921	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GCGGCCAGGA GGAGACAACA GAAACTCCAG AAAGATGTTA GCTGCAATGA CSP61 GCAGTACAAG GTGACTGATA NIAIIII	ACTCAGATAT Prin TCAGCAACAC CCGTGTTCCA ar SWP-4 CTCTCCAGAC AGACAAATGT Prin ACACATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA TAGCCGCTCT AAGAGGTGAT AAATGATGAA NIaIII TCATGGACAA aIII	CACGAGCCTC Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAAGGAAC CCAGAAGGAAC CCAGAACATC Ner SWP-24 AGAGTTCACC CACGACTGCG CGGAACAGTA AGAGGAAGAA ATTGAATACA GGTGAAGACA AAAGACAGAG	ATCAACAGCG SWP-21 AJAI ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACTCCAG GAAACTCCAG GAAACTCCAG GAAACTCCAG ATAAAGGAAG AAACAAGAAG GACGAAGTAG GACGCAGAAA	Prim GGCTCTTCGC Sau CATCAAACCA CGGCAGCTGC CGTTCTTCAC TGACAACGGC ACTCTGAGAT ACAACAGTGG AGCAACAGTGA AGGAAGATGA AGGGTGAGAA AGGAAGATGA AGAAAACCGA	ACTGAGACA GACAGTGACT
1141 1201 1261 1321 1381 1441 1501 1561 1621 1681 1741 1801 1861 1921 1981	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GCGGCCAGGA GGAGACAACA GAAACTCCAG AAAGATGTTA GCTGCAATGA CSP61 GCAGTACAAG GTGACTGATA N1a CAGGAAATCA N1aIII GAAATCATG	ACTCAGATAT Prin TCAGCAACAC CCGTGTTCCA ar SWP-4 CTCTCCAGAC AGACAAATGT Prin ACACATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA TAGCCGCTCT AAGAGGTGAT AAATGATGAA NIaIII TCATGGACAA aIII TGGATGCAGT	CACGAGCCTC Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAAGGAAC CCAGAACATC AAACAGGAACATC CACGAACATC CACGACTGCG CGGAACAGTA AGAGGAAGAA ATTGAATACA GGTGAAGACA AAAGACAGAG GGAAACGTGG	ATCAACAGCG SWP-21 ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACTTCCAG GAAACTCCAG GAAACTCCAG GAAACTCCAG ATAAAGGAAG AAACAAGAAG GACGAAGTAG GACGCAGAAA GCAGAAGGAA	Prim GGCTCTTCGC	ACTGAGACA GACAGTGACA GATTCTAACA
1141 1201 1261 1321 1381 1441 1501 1561 1621 1681 1741 1801 1861 1921 1981 2041	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Prime ATCACCAATG ACCACTCTGC CTGACGAACA GGAGACAACA GGAGACAACA GGAGACAACA GAAACTCCAG AAAGATGTTA GCTGCAATGA GTGACTGATA GTGACTGATA CAGGAAATCA NIaIII GAAATCATGG CCCTAATATG	ACT CAGCAACAC CCGTGTTCCA TCAGCAACAC CCGTGTTCCA TSWP-4 CTCTCCAGAC AGACAAATGT Prim ACACATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA TAGCCGCTCT AAGAGGTGAT AAAAGAGACAAA NIaIII TGGATGCAGT AAAAAGCAAA CGAGTCTGAG	CACGAGCCTC Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAACAGCA CCAGAACAGCA CCAGAACAGCA CCAGAACAGAA	ATCAACAGCG SWP-21 ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACTTCACG GAAACTCCAG GAAACTCCAG ATAAAGGAAG AAACAAGAAG GACGAAGTAG GACGCAGAAA GCAGAAGGAA GCAGAAGGAA	Prim GGCTCTTCGC	ACTGAGACA GACAGTGACA GATTCTAACA GATTCTAACA CACAACAGCA
11141 1201 1261 1321 1381 1441 1501 1561 1561 1681 1741 1801 1861 1921 1981 2041 2101	TCAATGTGCT SWP-23 TCAAGCGCAT AAGCAGATGG Drime ATCACCAATG ACCACTCTGC CTGACGAACA GGAGACAACA GGAGACAACA GGAGACAACA GGAGACAACA GCTGCAATGA CSp61 GCAGTACAAG GTGACTGATA GTGACTGATA NIaIII GAAATCATGG CCCTAATATG TCAATAACCT	ACTCAGATAT Prin TCAGCAACAC CCGTGTTCCA ar SWP-4 CTCTCCAGAC AGACAAATGT Prin ACACATCAAC TTTTCCCAGC CCGGAAATGG AGGAAGATGA TAGCCGCTCT AAGAGGTGAT AAAAGGACAAA NIAIII TCATGGACAA AIII TGGATGCAGT	CACGAGCCTC Primer Sa CCAGCCGGTG GAGAATCCCA AAACAGGAAC CCAGAAGGAAC CCAGAACATC CACGAACATC CACGACTGCG CGGAACAGTA AGAGGAAGAA AGAGGAAGAA ATTGAATACA GGATGCGATA AGAGAAGACAGAG GGAAACGTGG TGTCCACAAG AGCATCCTCA	ATCAACAGCG SWP-21 ATCACGATTG GGGACTCTGC AACTTTGCCA CTCACGGCCC ACATTTGCAA TCCGGCGACG ACACTTCCAG GAAACTCCAG GAAACTCCAG GAAACTCCAG GAAACTCCAG GACGAAGTAG GACGAAGTAG GAGGCTGGTA ACACTTAAGG TA	Prim GGCTCTTCGC	AGTCAACAGCA GACAGTGACA GATTCTAACA CACACAGGAA AGTCACTGCA AGTCACTGCA AGTCACTGCA CTCACGGCC TGCTGCGCTT GTCAACGGCA AGAGGAGGAA AGAGGAGGAAA GCTTGGAAAG GGGAACCGAG AACTGAGACA GACAGTGACT

Abbildung 35: Gesamtsequenz aus den einzelnen, in Abbildung 34 dargestellten Einzelsequenzierungen einschließlich der Lage der Primer und relevanter Restriktionsschnittstellen (*Nla*III: CATG; *Sau*3AI: GATC; *Tsp*509I: AATT; *Bfa*I: CTAG; *Taq*I: TCAG; *Csp6I*: GTAC). Der kodierende Bereich ist fett dargestellt.

Abbildung 36: Mögliche Leserahmen der gefundenen Nukleotidsequenz

1	Met	Leu	Lys	Leu	Ser	Leu	Leu	Leu	Gly	Leu	Ala	Asn	Phe	Thr	Ala	Ile	Leu
18	Ala	Gly	Gly	Glu	Arg	Arg	Arg	Ser	Gly	Leu	Leu	Gln	Cys	Ser	Ala	Asn	Gly
35	Ser	Arg	Tyr	Phe	Arg	Glu	Gln	Asn	Leu	Leu	Gly	Ile	Arg	Tyr	Lys	Asp	Asp
52	Val	Lys	Arg	Leu	Cys	Gly	Glu	Arg	Pro	Glu	Gly	Pro	His	Pro	Ser	Glu	Ser
69	Ser	Ser	Cys	Ser	Ser	Ser	Tyr	Ser	Glu	Glu	Cys	Ser	Arg	Arg	Arg	Phe	Pro
86	Gly	Ile	Arg	Asp	Asp	Cys	Glu	Tyr	Ser	Ser	Trp	Asp	Ala	Cys	Cys	Ser	Ser
103	Ser	Trp	Asp	Glu	Cys	Thr	Asp	Ser	Ser	Pro	Cys	Ala	Thr	Pro	Thr	Pro	Leu
120	Arg	Cys	Asp	Ala	Glu	Leu	Arg	Val	Pro	Ile	Ile	Asn	Met	Gly	Glu	Arg	Ile
137	Tyr	Glu	Phe	Leu	Lys	Asn	Tyr	Glu	Asp	Gln	Tyr	Glu	Ser	Ala	Val	Thr	Leu
154	Ala	Leu	Asn	Asn	Ile	Leu	Ser	Gln	Val	Ser	Gly	Phe	Asn	Pro	Ile	Phe	Ala
171	Gly	Ala	Asp	Tyr	Ala	Ala	Leu	Val	Glu	Gln	Leu	Glu	Thr	Leu	Gly	Val	Ser
188	Val	Pro	Ala	Asn	Thr	Ala	Ala	Glu	Leu	Ala	Ser	Ile	Asp	Ser	Ser	Glu	Ser
205	Ala	Ala	Leu	Ser	Arg	Ala	Ile	Gln	Gly	Asn	Ala	Gln	Lys	Ile	Ile	Ser	Asp
222	Leu	Phe	Ala	Arg	Val	Gly	Ser	Met	Cys	Tyr	Ser	Asp	Ile	Thr	Ser	Leu	Ile
239	Asn	Ser	Gly	Leu	Phe	Ala	Ser	Gln	Ile	Ser	Ser	Ala	Phe	Ser	Asn	Thr	Gln
256	Pro	Val	Ile	Thr	Ile	Ala	Ser	Asn	Asp	Leu	Tyr	Ala	Lys	Gln	Met	Ala	Val
273	Phe	Gln	Arg	Ile	Pro	Gly	Thr	Leu	Pro	Ala	Ala	Ala	Val	Thr	Ala	Ile	Thr
290	Asn	Ala	Leu	Gln	Thr	Asn	Arg	Asn	Asn	Phe	Ala	Thr	Phe	Phe	Thr	Thr	Gln
307	Ala	Thr	Thr	Leu	Gln	Thr	Asn	Val	Gln	Asn	Ile	Leu	Thr	Ala	Leu	Thr	Thr
324	Ala	Leu	Thr	Ala	Leu	Thr	Asn	Asn	Thr	Ser	Thr	Glu	Phe	Thr	Thr	Phe	Ala
341	Asn	Ser	Glu	Ile	Ala	Ala	Leu	Ala	Ala	Arg	Ile	Phe	Pro	Ala	Thr	Thr	Ala
358	Ser	Gly	Asp	Asp	Asn	Ser	Gly	Ser	Thr	Gly	Gly	Asp	Asn	Thr	Gly	Asn	Gly
375	Gly	Thr	Val	Thr	Pro	Pro	Glu	Gln	Asp	Glu	Glu	Gly	Glu	Glu	Thr	Pro	Glu
392	Glu	Asp	Glu	Glu	Glu	Glu	Glu	Thr	Pro	Glu	Glu	Asp	Glu	Glu	Glu	Glu	Lys
409	Asp	Val	Ile	Ala	Ala	Leu	Leu	Asn	Thr	Ile	Lys	Glu	Glu	Gly	Glu	Lys	Leu
426	Gly	Lys	Ala	Ala	Met	Lys	Glu	Val	Met	Asp	Ala	Ile	Lys	Gln	Glu	Gly	Thr
443	Thr	Gln	Gly	Thr	Glu	Ala	Val	Gln	Glu	Met	Met	Asn	Ala	Val	Lys	Asp	Glu
460	Val	Asp	Thr	Lys	Lys	Thr	Glu	Thr	Val	Thr	Asp	Ile	Met	Asp	Lys	Val	Lys
477	Thr	Glu	Ala	Glu	Thr	Lys	Lys	Thr	Thr	Thr	Ala	Gln	Glu	Ile	Met	Asp	Ala
494	Val	Lys	Thr	Glu	Ala	Glu	Gly	Lys	Lys	Thr	Glu	Thr	Val	Thr	Glu	Ile	Met
511	Glu	Lys	Ala	Lys	Glu	Thr	Trp	Glu	Ala	Gly	Lys	Ser	Gln				

Abbildung 37: Aminosäuresequenz nach Translation des längsten offenen Leserahmens aus Abbildung 36.

5. Diskussion

5.1 Vorversuche zur direkten Amplifikation des SWP-Gens aus *Enterocytozoon bieneusi* mittels "degenerierter" Primer

Die Ergebnisse der in Kapitel 4.1 beschriebenen Vergleiche der bereits bekannten SWP-Gene aus *E. cuniculi* und *E. intestinalis* ergaben einen geringen Konservierungsgrad der DNA-Sequenzen zwischen den beiden Spezies. Es fanden sich nur wenige, kurze Abschnitte, die sich zur Konstruktion "universeller" Primer anboten. Aber auch in den aussichtsreichsten in Kapitel 4.1 beschriebenen Abschnitten waren die DNA-Sequenzen über eine Länge von 16-18 Nukleotiden, die erfahrungsgemäß als Mindestgröße von PCR-Primern zu fordern ist, nicht 100%ig identisch. Es war daher notwendig, Mischungen von Primern zu konstruieren, deren eine Hälfte an einer bestimmten Position eines von zwei in Frage kommenden Nukleotiden besaß, die andere Hälfte das zweite in Frage kommende Nukleotid. Solche Primermischungen werden auch als "degenerierte" Primer bezeichnet.

Allerdings war es mit keiner der drei möglichen Kombinationsmöglichkeiten der vier degenerierten Primer SWP-1, SWP-2, SWP-3 und SWP-4 auch bei umfangreichen Kombinationen der PCR-Parameter möglich, einen Abschnitt des SWP-Gens direkt aus E. bieneusi zu amplifizieren (siehe Kapitel 4.2). Eine nahe liegende Erklärung für diesen Befund ist der niedrige Konservierungsgrad des SWP-Gens zwischen den verschiedenen Mikrosporidienspezies, der es auch beim Einsatz "degenerierter" Primer verhinderte, den evolutionären Unterschied zwischen den Gattungen Encephalitozoon und Enterocytozoon zu überwinden. Damit stellte sich die Frage, wie das Ziel der Charakterisierung des homologen SWP-Gens aus E. bieneusi auf einem anderen Weg erreicht werden könnte. Denkbar wäre die Hybridisierung ("Screenen") einer genomischen oder cDNA-Bank aus E. bieneusi mit einer zu Sporenwandprotein homologen Sonde aus einer anderen Mikrosporidienspezies. Ein Vorteil dieser Vorgehensweise wäre, dass mit Sonden auch Sequenzen mit niedrigerer Homologie "gefischt" werden können als bei der Verwendung degenerierter Primer, da Sonden bei wenig stringenten Reaktionsbedingungen oft noch Produkte liefern, während bei PCR-Primern jeder der zwei Primer "funktionieren" muss und schon bei einer Mutation von einem der zwei bis drei letzten Nukleotide des 3'-Endes auch bei sehr niedrig-stringenten Bedingungen kein Reaktionsprodukt entsteht (Sommer *et al.*, 1989). Da *E. bieneusi* jedoch nicht kultivierbar ist, ist es kaum praktikabel, die zur Herstellung einer genomischen Bank benötigte Menge und Reinheit genomischer DNA aus *E. bieneusi* zu gewinnen. Dies gilt erst recht für die Gewinnung von mRNA zur Herstellung einer cDNA-Bank. Aus dem gleichen Grund ist es bisher auch nicht gelungen, eine Expressionsklonbank von *E. bieneusi* herzustellen, die dann mit Antikörpern aus dem Serum infizierter Wirte "gescreent" werden könnte.

Vor diesem Hintergrund sollte deshalb versucht werden, die in der Evolution zwischen verschiedenen Mikrosporidienspezies und -gattungen konservierten Abschnitte des SWP-Gens durch weitere Untersuchungen genauer zu bestimmen, geeignete "degenerierte" Primer zur Amplifikation besser homologer um Genabschnitte aus E. bieneusi generieren zu können. Dazu sollte zusätzlich zu den beiden Mikrosporidienspezies mit bereits bekannten SWP-Genen, E. cuniculi und E. intestinalis, das SWP-Gen aus einer dritten Art der Gattung Encephalitozoon charakterisiert und mit den SWP-Genen der beiden erstgenannten Spezies verglichen werden, um dadurch funktionell konservierte Bereiche besser von den nur zufällig zwischen E. cuniculi und E. intestinalis konservierten Abschnitten unterscheiden zu können. Aufgrund dieser neuen Information sollte es dann möglich werden, verbesserte "universelle" Primer zu entwickeln, die mit einer größeren Wahrscheinlichkeit als die Primer SWP-1, SWP-2, SWP-3 und SWP-4 auch aus E. bieneusi homologe Abschnitte des SWP-Gens zu amplifizieren vermögen. Als geeignete Spezies wurde die dritte humanpathogene Encephlitozoon-Art, E. hellem, ausgewählt.

5.2. Methodische Aspekte der Ermittlung der DNA-Sequenz des SWP-Gens aus Encephalitozoon hellem

Zur Identifizierung der Sporenwandproteine der *Encephalitozoon*-Spezies *E. cuniculi* und *E. intestinalis* im Jahr 2000 bzw. 2001 waren cDNA-Banken zur Exprimierung des SWP-Gens in *E. coli* angelegt worden (Bohne *et al.*, 2000; Hayman *et al.*, 2001). Anschließend folgte die Sequenzierung positiver Klone. Zur Charakterisierung des

SWP-Gens aus *E. hellem* wäre ein analoges Vorgehen denkbar gewesen. Doch für diese Methode muss eine große Menge der Erreger als Ausgangsmaterial zur Verfügung stehen, was bei *E. bieneusi* kaum realisiert werden kann. Zur Vorbereitung eines späteren Projektes zur Charakterisierung des SWP-Gens aus *E. bieneusi* sollte deshalb bereits jetzt *E. hellem* als Modell dienen, um den Einsatz der PCR-Spezialtechniken "inverse" und "verankerte" PCR zu erproben. Als "proof of principle" sollte gezeigt werden, dass es auch ohne die Herstellung einer genomischen oder einer cDNA-Bank alleine durch Anwendung unterschiedlicher PCR-Techniken möglich ist, das vollständige Gen für das Sporenwandprotein einer weiteren Mikrosporidienart zu charakterisieren.

5.2.1 "Inverse" und "verankerte" PCR

Die "inverse" und die "verankerte" PCR (siehe 3.2.3 und 3.2.4) sind Methoden, die sich von der "klassischen" PCR durch einen Kunstgriff unterscheiden. Es ist nämlich nicht notwendig, zur Konstruktion der PCR-Primer mehr oder weniger weit entfernte Abschnitte in dem zu amplifizierenden Gen zu kennen, um dann mittels PCR den dazwischen liegenden Bereich zu amplifizieren. Es ist vielmehr möglich, ausgehend von nur einem bekannten DNA-Abschnitt benachbarte unbekannte DNA-Abschnitte zu amplifizieren und anschließend zu sequenzieren. Durch Wiederholung der genannten Techniken kann der charakterisierte Bereich theoretisch beliebig weit nach beiden Seiten ausgedehnt werden.

Zum Schneiden der DNA von *E. hellem* wurden Restriktionsendonukleasen verwendet, die eine Sequenz von vier Nukleotiden erkennen, weil (unter Annahme einer zufälligen Verteilung der Nukleotide in der DNA) die gleiche Vierersequenz im Durchschnitt alle 4^4 = 256 Basenpaare auftritt. Dies ist eine für PCR-Produkte geeignete Größe. Bei einem Restriktionsenzym, das sechs Nukleotide erkennt, wäre der statistisch mittlere Abstand 4^6 = 4096 Nukleotide. Ein PCR-Produkt dieser Größe wäre sehr viel schwieriger zu erzeugen.

Außerdem wurden solche Restrikionsenzyme ausgewählt, die beim Schneiden der DNA einen Überhang von mindestens zwei, besser vier Nukleotiden erzeugen. Es wurden keine Restriktionsenzyme ausgewählt, die glatte ("blunted") Enden

Diskussion

produzieren, da diese weniger leicht zu ligieren sind als überhängende Enden. Die Lage der PCR-Primer, die auch zum Sequenzieren benutzt werden sollten, wurde so gewählt, dass noch etwa 20-30 weitere Nukleotide nach deren 3'-Ende bekannt waren, da die lesbare Sequenz bei einer DNA-Sequenzierung in der Regel nicht unmittelbar am 3'-Ende des Primers beginnt. Anschließend wurden die PCR-Primer so positioniert, dass für die spätere Zusammenfügung der einzelnen Genabschnitte ("assembly") genügend große überlappende Bereiche generiert wurden, um deren richtige Reihenfolge sowie die Lückenlosigkeit der ermittelten Gesamtsequenz zu gewährleisten.

Voraussetzung für die Anwendung der genannten Spezialtechniken ist jedoch die Kenntnis eines ersten Abschnittes des Zielgens. Dieser kann zum Beispiel mit "degenerierten" PCR-Primern gewonnen werden (siehe Kapitel 4.1). Die Qualität dieser Primer steigt mit der Kenntnis, welche Abschnitte eines Gens in der Evolution konserviert sind. Mit dem in Kapitel 4.3.1 beschriebenen "universellen" Primerpaar SWP-1/SWP-2 gelang es, das erste spezifische Amplifikat eines Abschnittes des SWP-Gens aus der Spezies *E. hellem* zu erhalten.

Eine wichtige Bedingung für eine erfolgreiche PCR war der Einsatz der so genannten "Hot Start"-Technik. Dabei wird initial vor Zugabe der *Taq*-Polymerase für 120 s bei 96°C ein Denaturierungsschritt vorgenommen. Dadurch können unspezifische Paarungen der Primer vermieden und eine vollständige Denaturierung der genomischen Doppelstrang-DNA erreicht werden. Durch Abwesenheit der *Taq*-Polymerase kann diese Temperatur hoch gewählt werden, ohne dass das Enzym einen Aktivitätsverlust erleidet. Während der PCR-Zyklen wurde zur Denaturierung eine Temperatur von 92°C für 60 s gewählt, um die *Taq*-Polymerase zu schonen. Die Halbwertszeit des Enzyms liegt bei dieser Temperatur bei mehr als 2 h, bei 95°C beträgt sie jedoch nur etwa 40 min (Innis *et al.*, 1990).

Bei der "Touch Down"-PCR wird die anfängliche Annealing-Temperatur hoch gewählt, da die Primer bei hohen Anlagerungstemperaturen an die zu vervielfältigende DNA-Sequenz spezifischer binden als bei tiefen Temperaturen. Da aber bei niedrigen Temperaturen die Produktausbeute höher ist, wurde die Temperatur in jedem Zyklus um 0,5°C gesenkt. Um nach dem "Touch Down" die

Produktmenge zu vergrößern, wurden bei der niedrigsten Annealing-Temperatur noch einmal 20 oder 25 Zyklen angehängt.

Um sowohl Sensitivität als auch Spezifität der Reaktionen weiter zu erhöhen, wurde an die PCR-Reaktionen noch jeweils eine zweite, "halb-geschachtelte" ("seminested") oder "geschachtelte" ("nested") PCR angeschlossen, um möglichst nur das spezifische Reaktionsprodukt zu erhalten.

5.2.2 Konstruktion der PCR-Primer

Für eine erfolgreiche Polymerasekettenreaktion sind bei der Konstruktion der Primer mehrere Punkte zu beachten ("Faustregeln"). In Abhängigkeit von der zu untersuchenden DNA-Sequenz müssen sie jedoch nicht immer streng gelten. Die Spezifität der Primer wird durch die Länge und den Grad der Identität mit der Zielsequenz bestimmt. Um eine zufällige Übereinstimmung mit der DNA, d. h. eine unspezifische Anlagerung, zu vermeiden, sollten die Primer eine Länge von mindestens 16-18 Nukleotiden haben. Bei einer Länge von 16 Nukleotiden tritt die gleiche Sequenz theoretisch (bei Gleichverteilung) alle $4^{16} \approx 4,3 \cdot 10^9$ Basenpaare auf. Das menschliche Genom hat beispielsweise eine Länge von etwa $3 \cdot 10^9$ Basenpaaren. Mit einem Genom dieser Größe müsste bei einer Sporenisolation aus Patientenstuhl gerechnet werden. Eine 16 Nukleotide lange Sequenz würde hier also durchschnittlich einmal "zufällig" vorliegen, eine 18 Nukleotide lange Sequenz mit einer Wahrscheinlichkeit von unter 5%. Es muss aber bemerkt werden, dass diese Annahme nur unter der Voraussetzung der zufälligen Verteilung der vier Basen im Genom zutrifft.

Die Annealing-Temperatur wird auch durch den Anteil der über drei Wasserstoffbrücken bindenden Basen Guanin (G) und Cytosin (C) gegenüber den über zwei Wasserstoffbrücken bindenden Basen Alanin (A) und Thymin (T) mitbestimmt. Der GC-Anteil sollte 40 bis 60% betragen, da bei einem Ungleichgewicht die PCR erfahrungsgemäß weniger gut gelingt. Bei einem Primerpaar sollten Länge und der GC-Gehalt beider Primer einander ungefähr entsprechen, damit auch die Annealing-Temperatur ähnlich ist. Die Annealing-Temperatur sollte eine Hybridisierung gerade noch zulassen, denn eine unnötig

64
niedrige Reaktionstemperatur erhöht die Wahrscheinlichkeit unspezifischer Anlagerungen und damit die Amplifizierung falscher Produkte.

Um eine hohe Primerspezifität zu gewährleisten, ist eine möglichst genaue Übereinstimmung der Nukleotide mit der Zielsequenz anzustreben. Dabei ist es für eine erfolgreiche Amplifikation unerlässlich, dass mindestens die letzten zwei bis drei Nukleotide am 3'-Ende zur Zielsequenz homolog sind (Sommer *et al.*, 1989). Der Grund dafür ist, dass sich die Polymerase an diesem Ende an den Primer anlagert.

Mit dem Primerpaar SWP-3/SWP-4, das als degeneriertes Primerpaar konstruiert worden war, konnte aus *E. hellem* kein homologer DNA-Abschnitt amplifiziert werden. Das später sequenzierte PCR-Produkt "SWP91" zeigte die Ursache für das Fehlschlagen der PCR. Von den letzten drei Nukleotiden am 3'-Ende des Primers stimmt nur eines mit der genomischen Sequenz überein (Abbildung 38). Deshalb war die von Sommer *et al.* (1989), beschriebene Forderung der Übereinstimmung der letzten drei Nukleotide des Primers mit der Matrize hier nicht erfüllt und es konnte kein PCR-Produkt entstehen.

E. hellem 880	AAGAACTACGAGGACCAGTACGAGAGTGCCGTTACTCTTGC	920
Primer SWP-3	5'-GGA Y CAGTACAAGAAGG-3'	
	****** *** *	

Abbildung 38: Von den letzten drei Basenpaaren des 3'-Endes des Primers SWP-3 ist nur ein Nukleotid mit der Nukleotidsequenz des Gens des Sporenwandproteins identisch (zur besseren Vergleichbarkeit ist der nicht-komplementäre Strang des Gens dargestellt). Die Nummerierung entspricht der von Abbildung 35 (Y = C oder T).

Anhand dieses Beispiels lässt sich auch erklären, warum der Versuch der Amplifikation des SWP von *E. bieneusi* fehlschlug. Im Laufe der Evolution sind wohl große Teile des SWP-Gens mutiert, so dass Primer, die für andere Mikrosporidienspezies konstruiert wurden, nur mit geringer Wahrscheinlichkeit auch auf *E. bieneusi* "passen". Wie oben bereits erwähnt wurde, reicht es aus, wenn nur eine der letzten drei Basen des 3'-Endes des Primers nicht mit der Zielsequenz übereinstimmt, um eine Amplifikation zu verhindern.

5.3 Charakterisierung des SWP-Gens von Encephalitozoon hellem

Nach dem Zusammenfügen ("assembly") der aus den unterschiedlichen PCR-Produkten ermittelten DNA-Sequenzen ergab sich eine lückenlose Gesamtsequenz von 2132 Basenpaaren. Der längste enthaltene Leserahmen ist 1569 Nukleotide lang und kodiert für ein Protein mit 523 Aminosäuren. Das Protein hätte damit eine mittels DNA-Analysesoftware prognostiziertes Molekulargewicht von etwa 56 kD.

Das erste ATG-Codon der DNA-Sequenz, das für die Aminosäure Methionin kodiert, eröffnet den Leserahmen. Alanin und Glutaminsäure sind in diesem Protein mit je 11% die am häufigsten vertretenen Aminosäuren. Gemäß einer Aminosäuresequenzanalyse (bei http://www.cbs.dtu.dk) stellen die ersten 18 Aminosäuren eine Signalsequenz dar, die für den Transport in das endoplasmatische Retikulum kodiert.

Im gesamten Sporenwandprotein von *E. hellem* kommen, wie bei den Sporenwandproteinen von *E. intestinalis*, keine Repeats vor. Dies unterscheidet *E. hellem* von *E cuniculi*, das am C-terminalen Ende fünf 16 Aminosäuren lange Repeats besitzt (Bohne *et al.*, 2000).

Ein Homologievergleich der SWP-Gene ergibt zwischen *E. hellem* und *E. cuniculi* auf DNA-Ebene eine Identität von 58%, zwischen *E. hellem* und SWP1 von *E. intestinalis* 62% und zwischen *E. hellem* und SWP2 von *E. intestinalis* 57% (Tabelle 19). Auf Aminosäureebene betragen die entsprechenden Identitäten 45%, 44% und 24% (Tabelle 19). Diese vergleichsweise niedrigen Identitäten zwischen den Spezies derselben Gattung lassen darauf schließen, dass es schwierig werden dürfte, Genabschnitte bei *E. bieneusi* zu finden, die eine hohe Homologie zu denen der Gattung *Encephalitozoon* besitzen.

	Länge der	Länge des	Identität mit E. hellem	
	kodierenden Region [bp]	SWP [Aminosäuren]	DNA-Ebene	Proteinebene (ohne Signalsequenz)
E. hellem	1569	523	-	-
E. cuniculi	1350	450	58%	43%
<i>E. intestinalis</i> (SWP1)	1164	388	62%	44%
<i>E. intestinalis</i> (SWP2)	3006	1002	57%	22%

Tabelle 19: Vergleich der Nukleinsäuresequenzen und der abgeleiteten Aminosäuresequenzen des

 SWP-Gens aus *E. hellem* mit denen von *E. cuniculi* und *E. intestinalis*.

Genau wie die Sporenwandproteine der anderen *Encephalitozoon*-Spezies kodieren die ersten 54 bp bei *E. hellem* für ein Signalpeptid mit 18 Aminosäuren; das von Bohne *et al.* (2000) als "von Heijne Signalpeptid" identifiziert wurde und das für den Transport in das endoplasmatische Retikulum verantwortlich ist. Die Signalpeptide von *E. hellem* und *E. cuniculi* sind zu 72% identisch, also hoch konserviert.

Ein Vergleich der für E. hellem ermittelten DNA-Sequenz mit den bereits bekannten Genen von Sporenwandproteinen aus *E. cuniculi* und *E. intestinalis* ist in Abbildung 39 dargestellt. Ein Vergleich der abgeleiteten Aminosäuresequenzen zeigt Abbildung 40.

E.	hellem	GCCTGCCGGATGTTCTTGTAGGCCCACACAACATGCTCAGGGTTGCCCATGTCCAGTCTG	60
E.	hellem	TCTATTCTCGAAGAAAAATCTCGGAAATTCGCGTCCACAGCCTCCTTGATTCTACTCCCC	120
E.	hellem	TCCATCTCAGTGGGGTTAAAAAACAGCACATATTTCCAATCCTGCAGTGGCGCCAGATTC	180
E.	hellem	AAACCACATCTGCTGCACCTTCCGTTGGCGGACTCGTCGCACGGCTGCGATTAATCCCAT	240
E.	hellem	TAATCTACTATATGATAAATGCTATTGATTTTTGTCCATCAAGAAATATTCCTATTCATC	300
E.	hellem	ACAGATTTAATATGCCTAGCCTAAACACTGCCTAAACAGGCCTGTCAGCATCCAGATTAA	360
	; GWD1		42
<u> </u>	L. SWPI		42
<i>E</i> .:	I. SWP2	TAAGAAAAAGAACATCTAGCTAGAACATATTCTTTGTAGTTT	42
E.	hellem	TTGCAAATATTTCCAAAATAAGGAAAAGAACACATCCATGGAACACATTCCTCGGGGCAA	420
		Start-Codon	
		Signalsequenz	
E .:	i. SWP1	AAATGTATAAATAGA-ATGCAATAGGAAGGAAATTAAAGATGATAAAGCTCTCACTTCTC	101
E .:	i. SWP2	AAATGTATAAATAGA-ATGCAATAGGAAGGAAATTAAAGATGATAAAGCTCTCACTTCTC	101
E.	hellem	AAACATATAAATAAGCAGGCGCCGAGAGGAAAATTAAAGATGTTGAAGCTCTCGTTGCTC	480
E.	cun.	AATTAAAGATGATGAAGCTTTCACTGCTG	29
		****** * * **** * * *** * * **	

	Signalsequenz	
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	CTAAGTCTAGCGAGCTTCACTGCAGTTCTTGCAAACCAAAGGCCTCGCTG CTAAGTCTAGCGAGCTTCACTGCAGTTCTTGCAAACCAGAGGCCTCGCTG CTAGGTCTAGCAAATTTCACTGCAATCCTTGCAGGTGGAGAGAGGAGAAGGAGAAGCGGACTG CTAGGTCTAGTAAGCTTCAGTGCAGTG	151 151 540 85
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	CCAAAGATGCCCAGTGAGCAGCAGTAAGTACTTCCAACAAAATAATCTTCTTGGTAGCAG CCAAAGATGCCCAGTGAGCAGCAGTAAGTACTTCCAACAAAATAATCTTCTTGAAAGCAG CTGCA-ATGTAGTGCTAATGGCTCCAGGTATTTCCGCGAACAAAATCTCCCTTGGAATAG CCAGATGTGCCCTGAAGGTACCAGATACTTCGAAAAAAACAATCTTCTTGGAAGGAG * * ** * * * * * * * * * * * * * * * *	211 211 599 142
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	GTTCCAAAACGAGGTACAGAGACTTTGCGCCCGCCGTGTGCGAGAAGAAAGTTCTTCTGA GTTCCAAAACGAGGTACAGAGACTTTGCGCCCGCCGTGTGCGAGAAGAAAGTTCTTCTGA GTACAAAGATGATGTAAAGAGGCTCTGTGGCGAAAGGCCCCGAAGGACCTCATCCGTCTGA GTTCAAGAACGATGTGAGAAAGCTCTGCGGTGACGGAATGAGCAGTGATGTCCATGATGA ** * * * * * ** ** * * * * * * * * * *	271 271 659 202
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	ATCATCCTCTTCCTCTAGCTCTGAAGACTGCTCCCGAAGAAGGAGAAGACCATCATCCTCTTCCTCTAGCTCTGAAGACTGCTCCCGAAGAAGGAGAAGACCATCTTCCTCATGCTCTTCTTCGTACTCTGAGGAGTGCAGCCGAAGGAGATTCCCTGGAATATCTTCATCTCACTCCTCTTCCTCTTCTGACTGCAAACCAAGAAGAAGGAGACA*** ** ** ** ** *** *** *** *** *** **	322 322 719 256
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	CCACAGAGAATGGGAGGACAGCTGTTCATCATCATATT-CTTCTTGCAGTAGCACAGAT- CCACAGAGAATGGGAGGACAGCTGTTCATCATCATCATATT-CTTCTTGCAGTAGCACAGAT- CAGAGATGACTGCGAGTACAGCTCTTGGGATGCATGCTGCAGCTCGTCATGGGATGAATG CCATAGAAGATACGAGGATAGCTGCTCATTTGGTTCTT-CAGACTGCGATGATTCAAGC- * * *** * **** * * * * * * * * * *	380 380 779 314
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	-AGCTGCTCTTCAAGCGCCCCCTGCCCACCTCCAGTGGCTCAAAG -AGCTGCTCTTCAAGCGCCCCCTGCCCACCTCCAGTGGCTCAAAG CACCGACTCTTCCCCATGCGCCACACCTACACCTCTGAG -ACCTATTCATCGTGTGTCTCCTCGGAATGCAGTCCCCCATGCCGACCCGTGCCTCTGAA * * ** ** ** ** ** ** ** ** ** ** ** **	424 424 818 373
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	GTGTGATATCGAACTCAAGACTCCTATAATCCTGATGGGAGAAAGGATCTACGAATTCCT GTGTGATATCGAACTCAAGACTCCTATAATCCTGATGGGAGAAAGGATCTACGAATTCCT ATGCGATGCTGAGCTCAGAGTCCCTATAATCAATATGGGTGAAAGGATATACGAGTTCCT CTGCGACTATGAGCTGAAGACACCTATTATCAACATGGGAGAAAGGATATTTGAGTTCCT ** ** ** ** ** ** ****	484 484 878 433
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	CAAGAACTACGAGGACCAGTACAAGAAGGCTGTTCTTCTTTCT	544 544 938 493
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	GCAGATCTCAGGATTCAACCCAGTCTTCCCTGGTGGAGACTACGATGCTCTGATTGAACA GCAGATCTCAGGATTCAACCCAGTCTTCCCTGGTGGAGACTACGATGCTCTGATTGAACA CCAGGTCTCGGGATTCAACCCCATCTTCGCAGGTGCAGACTATGCAGCCCTTGTCGAGCA TCAGATTGATGGATTTGCTCCCTCTTACCCAAGTGCAGATTACGAGCCCCTGATCGAACA *** * ***** ** ** *** *** *** *** ***	604 604 998 553
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	ACTCAAGACACTTGGAGTCACTGTCCCAGCAAACACTGCTGCCGAGCTTGCCGCCATAGA ACTCAAGACACTTGGAGTCACTGTCCCAGCAAACACTGCTGCCGAGCTTGCCGCCATAGA GCTGGAAACACTTGGCGTAAGTGTCCCGGCCAACACCGCTGCCGAGCTTGCATCAATAGA GCTTGAGACGCTCGGGGTTACTGTTCCGTCCAACATGGCAGCTGATCTCGCAGCCCTGGA ** * ** ** ** ** ** ** ** ** ** ** ** *	664 664 1058 613

E.i. SWP1 E.i. SWP2 E. hellem	TGCTGCTGAGTCGTCAGCCCTCACAAGGGCCATTCAGGCCAATGCACAGAAGGTAATTAG TGCTGCTGAGTCGTCAGCCCTCACAAGGGCCATTCAGGCCAATGCACAGAAGGTAATTAG CTCTTCTGAGTCTGCTGCCCTCTCCAGGGCCATCCAGGGCAATGCACAGAAGATAATCAG	724 724 1118
E. cun.	TGCTGCTGAGGCGACCTCACTTGCAGGAACTATCAGAGCTAATGCACAGAAGGTGATAGG ** ***** *<	673
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	CGATCTACTTACCAGGGTCAGTGCCATGTGCTACTTGGACATCATGAGCCTTGTCAACAG CGATCTACTTACCAGGGTCAGTGCCATGTGCTACTTGGACATCATGAGCCTTGTCAACAG TGACCTGTTTGCTAGAGTTGGGTCAATGTGCTACTCAGAATATCACGAGCCTCATCAACAG CGACCTACTCGCCAGAGTCAACACAATGTGCTATCTGGATCTCATGAGCCTCGTCACTAG ** ** * * * ** ** ** ** ** ******* ** *	784 784 1178 733
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	TGGTCTTCTAGCCAGCCAAGTCTCAAGTGTTTTCAACAACATCCAGCCAATAATCACCAT TGGTCTTCTAGCCAGCCAAGTCTCAAGTGTTTTCAACAACATCCAGCCAATAATCACCAT CGGGCTCTTCGCCAGCCAGATTTCAAGCGCATTCAGCAACACCCCAGCCGGTGATCACGAT CGGACTCTTTGCCAGCCAGGTCACAAGTGCATTCAGTAATAACACAGCCAATAATTACCAT ** ** * ******** * **** * **** ** ** **	844 844 1238 793
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	TACCGGAAATGATTTGTTTGCCAAACAGATGGCAGTGTTCCAGAAGATACCAGGAACTCTTGCCGGAAATGATTTGTTTGCCAAACAGATGGCCAGTGTTCCAGAAACTATCCAAGACTTTTGCATCAAACGATCTATATGCCAAGCAGATGGCCGTGTTCCAGAGAATCCCAGGGACTCTCGCAGGAAATGATCTGTTTACCAAGCAGATGGCCGTGTTCCAGAGATTACCAGGGACTCT* *** *** * * * **** ****************	904 904 1298 853
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	GCCCTCCGCTGCCATCACAGCTATCACCAATGCTCTCCAAGGCAACAGGACCAACTTTGT GATTTCTACAGCGGTCACTAATGCTCTCCAAGGCAACAGAGCCAAATTTAC GCCGGCAGCTGCAGTCACTGCAATCACCAATGCTCTCCAGACAAACAGGAACAACTTTGC ACCCTCTGCAGCTATTACTGCCATCACTAATGCTCTTCCAAGCAAACAAGAACAATTTCGT * *** ** ********* ** * *** ** ****** ***********************	964 955 1358 913
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	CACATTCTTTACAACTCAGACAAGCAATCTGCAAACAAGCGTCCAGAACTCTCTTACAAC TAGATTCTATACAACTCAGACAAGCAATCTGCAAACAAGTGTACAGAACTCTAGTAAAAC CACGTTCTTCACAACCCAGGCAACCACTCTGCAGACAATGTCCAGAACATCCTCACGGC TACATTCTTCACAACTCAAACGACCAACCTACAGACTGATGTTCAAAATGCTCTTACAGC * **** ***** ** * * ** ** ** ** ** ** *	1024 1015 1418 973
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	CCTGATTTCTGAGCTTGAGAAGCTGGCCACCGACACGGAGACTGCCTTCACAGCTTTTGCCCTGACTTCTGAGCTTAAGAAGCTGGCCACCGACACAGAGACTGCCTTCACAGCTTTTGCCCTGACAACGGCCCTCACGGCCCTGACGAACAACACACATCAACAGAGTTCACCACATTTGCACTGATTACGGCGCTTACAACACTGACAAGTACCACATCAACAGAATTCACACAGTTTGC***** * * * * * * * * * * * * * * * * * *	1084 1075 1478 1033
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	AAATGCAGAAATTTCAGCACTTATAAGCAGAATCTTCCCAACATCCACCACATCTTCGGG AAATGCAGAAATTTCGACACCTGTAAGAAGAATCTTCCGAAGATCCATCATCATCTTCTGG AAACTCTGAGATTGCTGCGCTTGCGGCCAGGATTTTCCCAGCCACGACTGCGTCCGG AAACTCTGAAATTGGAGCACTTACAGGGAGAATCTTTGGATCAAGCGGAAGCGGATCAGG *** * ** *** *** * * * * * * * * * *	1144 1135 1535 1093
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	ATCCGGAGACTCTACAGGGTCTGGAAGCACGGGAGATGCAGGAGATGCGGGAGATACAGG ATTTGAAGATGCCGAAGAAGGTGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGA CGACGACAACAGTGGGTCAACGGGAGGAGACAACACCGGAAATGGCGGAACAGTAAC CGGGTCATCTGGTGGATCAAGTGGAAGCGGATCAGATGGAAGCGGATCAGGCGG * * * * * *	1204 1195 1592 1147
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	AGAGGACGGCGGAGATGATGAGGGTACAGAAGGAACTGGTTAGAACTACCTATCCTAATG AGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGA ACCTCCAGAGCAAGATGAAGAGGGAGAAGAAACTCCAGAGGAAGAAGAAGAAGAA GTCATCTGGTGGATCAAGTGGAAGCGGATCAGATGGAAGCGGATCAGGCGGGTCATCT * * * * * * * * * * * *	1264 1255 1652 1205

E.i. SWP1 E.i. SWP2 E. hellem E. cun.	TCT-GAGTCCGGAATCGGCTGTTATAAAGCATAGCAAAATATCAGCCAGGACTCAAATGG CGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAA AACTCCAGAGGAAGATGAAGAGGAGGAGGAAAAAGA-TGTTATAGCCGCTCTATTGAATACAA GGTGGATCAAGTGGAAGCGGATCAGATGGAAGCGGATCAGGCGGGTCATCTGGTGGATCA * * * * * *	1323 1315 1711 1265
E.i. SWP1 E.i. SWP2 E. hellem E. cun.	CCTCGTGGTTAGAATATGCCCATATACTATCTTCGCTGATATCAAGG CACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGA TAAAGGAAGAGGGTGAGAAGCTTGGAAAGGCTGCAATGAAAGAGGTGATGGATG	1370 1375 1771 1316
E.i. SWP2	AGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGAT-AACACCGGAGAAG	1434
E. hellem	AACAAGAAGGAACAACGCAGGGAACCGAGGCAGTACAAGAAATGATGAATGCAGTAAAAG	1831
E. cun.	AGCGGAAGCGGATCAGGAGGTGAATCTGGTGGATCTTCTTCATAATCAGAGCCAACCA	1374
E.i. SWP2	GCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATA	1494
E. hellem	ACGAAGTAGATACAAAGAAAACTGAGAC-AGTGACTGATATCATGGACAAGGTGAAGACA	1890
E. cun.	TCCTAATGTGTGAGTCCAAATCTAAATCATCCATAAGGCACAGGGAATACCAACAAA	1431
E.i. SWP2	ACACCGGAGAAGGTGAAGAAGGTGAAGATAAGGATAACACCGGAGAAGGTGAAGAAGGCG	1554
E. hellem	GAGGCAGAAACAAAGAAGACCACAACAGCACAGGAAATCATGGATGCAGTAAAGACAGAG	1950
E. cun.	GGGGCAAGAATCTCGACAGGTCTTGTGGTTAGATGTACGACCCACATGCTATTTTCGTTG	1491
E.i. SWP2	AAGATAAGGATAACACCGGAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAG	1611
E. hellem	GCAGAAGGAAAGAAAACCGAGACAGTGACTGAAATCATGGAAAAAGCAAAGGAAACGTGG	2010
E. cun.	GCGTCAGGATTTTTTCACTAGGCTGTAAATAAAACTGATTCCAAAAAAAA	1546
E.i. SWP2	AAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGG	1671
E. hellem	GAGGCTGGTAAATCGCAGTAGATTCTAACACCCCTAATATGCGAGTCTGAGTGTCCAC	2067
E.i. SWP2	ATAACACCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGTGAAGAAG	1731
E. hellem	AAGACACTTAAGGTGTCAGCAGGGAATAAGGACTCAATAAC-CTTGTGGCCATAAGCATC	2126
E.i. SWP2	GTGAAGATAAGGATAACACCGGAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAG	1791
E. hellem	CTCATA	2132
E.i. SWP2 E.i. SWP2	AAGGCGAAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGTGAAGAAGGTG AAGATAAGGATAACACCGGAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAAG GCGAAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAG ATAAGGATAACACCCGGAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCG AAGAAGGCGAAGATAAGGATAACACCGGAGATGCCGAAGAAGGTGAAGAAGGCGAAGATA AGGATAGCACCGGAGAAGGCGAAGATAACGCCGAAGATAAGGATAACACCGGAGAAGGCGAAGATA AGGATAAGCACCGGAGAAGGCGAAGATAACGCCGGAGAAGGTGAAGAAGGCGAAGATAACA CCGGAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGATAAGGATAACA CCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGATAAGGATAACA CCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGATAAGGATAACA CCGGAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGAAGGCG AAGAAGGCGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGATAACACCGGAGAAGGCG AAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGATAACACCGGA AAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGATAACGA CCGGAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGATAACA CCGGAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGATAACACCG GAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGATAACGATAACACCG GAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGGCGAAGATAACGATAACACCG GAGAAGGTGAAGAAGGCGAAGATAAGGATAACACCGGAGAAGACGCGAAGATAACGCGAAG ATAACGATAACACCGGAGAAGGCGAAGATAAGGCGAAGATAACGCGAAGATAACACCG GAGAAGGTGAAGAAGGCGAAGAAGACGCGAAGATAACGCGAAGATAACACCG GAGAAGGTGAAGAAGGCGAAGATAAGGCGAAGATAACACCCGGAGAAGACGCGAAGATAACACCGGAGATAACACCCGGAGAAGACGCGAAGATAACACCCGGAGAAGATAACACCCGGAGAAGATAACACCCGGAGAAGACGAAGATAACACCGAAGATCTTAAAGATTCTTATATA ATCATCTTTCAAAAAGATTCCAACTTAACTT	1851 1911 1971 2031 2151 2211 2271 2331 2451 2571 2631 2691 2751 2811 2871 2871 2931 2991 3051 3111 3171
E.i. SWP2	TGAGGGCCTTTAGGAGGGAAACAAACTCATCCATGAGGGTC	3212

Abbildung 39: Vergleich der DNA-Sequenzen der bekannten Sporenwandproteine der Spezies *E. cuniculi* (Genbank Nr. AJ133745), *E. intestinalis* (Genbank Nr. AF355749 [SWP1] und AF 355750 [SWP2]) und die erstmals identifizierte *E. hellem*-Sequenz.

E.i. SWP1 E.i. SWP2 E. hellem E. cuni.	SignalsequenzMIKLSLLLSLASFTAVLAN-QRPRCQRCPVSSSKYFQQNNLLGSRFQNEVQRLCARRVMIKLSLLLSLASFTAVLAN-QRPRCQRCPVSSSKYFQQNNLLESRFQNEVQRLCARRVMLKLSLLLGLANFTAILAGGERRRSGLLQCSANGSRYFREQNLLGIRYKDDVKRLCGERPMMKLSLLLGLVSFSAVLAS-ENRRGNCQMCPEG-TRYFEKNNLLGRRFKNDVRKLCGDGM*:***********************************	57 57 60 58
E.i. SWP1 E.i. SWP2 E. hellem E. cuni.	REESSSESSSSSSEDCSRRRRPHREWEDSCSSSYSSCSSTDSCSSSAPCPP REESSSESSSSSSEDCSRRRRPHREWEDSCSSSYSSCSSTDSCSSSAPCPP EGPHPSESSSCSSYSEECSRRRFPGIRDDCEYSSWDACCSSSWDECTDSSPCAT SSDVHDESSSH-SSSSSDCKPRRRHHRRYEDSCSFGSSDCDDSSTYSSCVSSECSPPCR .**** ** *.:*. *** :* * ** *: *	110 110 115 117
E.i. SWP1 E.i. SWP2 E. hellem E. cuni.	<pre>PVAQRCDIELKTPIILMGERIYEFLKNYEDQYKKAVLLFLTNILSQISGFNPVFPGGDYD PVAQRCDIELKTPIILMGERIYEFLKNYEDQYKKAVLLFLTNILSQISGFNPVFPGGDYD PTPLRCDAELRVPIINMGERIYEFLKNYEDQYESAVTLALNNILSQVSGFNPIFAGADYA PVPLNCDYELKTPIINMGERIFEFLKNYEDQYKKAVVLFLTRILSQIDGFAPSYPSADYE *** **:.*** ***********************</pre>	170 170 175 177
E.i. SWP1 E.i. SWP2 E. hellem E. cuni.	ALIEQLKTLGVTVPANTAAELAAIDAAESSALTRAIQANAQKVISDLLTRVSAMCYLDIM ALIEQLKTLGVTVPANTAAELAAIDAAESSALTRAIQANAQKVISDLLTRVSAMCYLDIM ALVEQLETLGVSVPANTAAELASIDSSESAALSRAIQGNAQKIISDLFARVGSMCYSDIT PLIEQLETLGVTVPSNMAADLAALDAAEATSLAGTIRANAQKVIGDLLARVNTMCYLDLM .*:***:****:****	230 230 235 237
E.i. SWP1 E.i. SWP2 E. hellem E. cuni.	SLVNSGLLASQVSSVFNNIQPIITITGNDLFAKQMAVFQKIPGTLPSAAITAITNALQGN SLVNSGLLASQVSSVFNNIQPIITIAGNDLFAKQMAVFQKLSKTLISTAVTNALQGN SLINSGLFASQISSAFSNTQPVITIASNDLYAKQMAVFQRIPGTLPAAAVTAITNALQTN SLVTSGLFASQVTSAFSNTQPIITIAGNDLFTKQMAVFQRLPGTLPSAAITAITNALQAN **:.***:***::*.* **:***:.***	290 287 295 297
E.i. SWP1 E.i. SWP2 E. hellem E. cuni.	RTNFVTFFTTQTSNLQTSVQNSLTTLISELEKLATDTETAFTAFANAEISALISRIFPTS RAKFTRFYTTQTSNLQTSVQNSSKTLTSELKKLATDTETAFTAFANAEISTPVRRIFRRS RNNFATFFTTQATTLQTNVQNILTALTTALTALTNNTSTEFTTFANSEIAALAARIFPAT KNNFVTFFTTQTTNLQTDVQNALTALITALTTLTSTTSTEFTQFANSEIGALTGRIFG : :*. *:***::.***.*** .:* * *:. *.* ** ***:**.: ***	350 347 355 355
E.i. SWP1 E.i. SWP2 E. hellem E. cuni.	TTSSGSGDSTGSGSTGDAGDAGDTGEDGGDDEGTEG ITSSGFEDAEEGEDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGE TASGDDNSGSTGGDNTGNGGTVTPPEQDEEGEETPEED SSGSGSGSSGSSGSSGSSGSSGSSGSSGSSGSSGSS	386 407 393 387
E.i. SWP1 E.i. SWP2 E. hellem E. cuni.	T EDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGE EEEEETPEEDEEEEKDVIAALLNTIKEEGEKLGKAAMKEVMDAIKQEGTTQGTEAVQEMM SGSDGSGSGGSSGGSSGSGSGSGSGSGSGSGSGSGSGS	387 467 453 443
E.i. SWP2 E. hellem E. cuni.	EDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEG NAVKDEVDTKKTETVTDIMDKVKTEAETKKTTTAQEIMDAVKTEAEGKKTETVTEIMEKA ESGGSSSS	527 513 451
E.i. SWP2 E. hellem	EDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEEGEDKDNTGEG KETWEAGKSQ	587 523
E.i. SWP2	EEGEDKDNTGEGEEGEDKDNTGEGEEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEDKDNT	647

E.i.	SWP2	GEGEEGEDKDNTGDAEEGEEGEDKDSTGEGEEGEDKDNTGEGEEGEEGEDKDNTGEGEEG	707
E.i.	SWP2	EEGEDKDNTGEGEEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGDEGEDKDNT	767
E.i.	SWP2	GEGEEGEEGEDKDNTGEGEEGEEGEDKDNTGEGEEGEEGEDKDNTGEG	827
E.i.	SWP2	EEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEEGEDK	887
E.i.	SWP2	DNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEDKDNTGEGEEGEDK	947
E.i.	SWP2	DNTGEGEGEGEGEDKDNTGDAEGEGEGEGEDKDNTEEGEETT	1002

Abbildung 40: Vergleich der Aminosäuresequenzen bekannter Sporenwandproteine der Spezies *E. cuniculi* (AJ133745) und *E. intestinalis* (AF355749 [SWP1] und AF 355750 [SWP2] mit der abgeleiteten *E. hellem*-Aminosäuresequenz (internationaler "one letter code").

5.4. Ausblick

Der Nachweis einer Mikrosporidieninfektion immungeschwächter Patienten ist derzeit immer noch aufwendig und zeitintensiv. Daher wäre die Verfügbarkeit einer immunologischen Nachweismethode, z.B. eines ELISA für humanpathogene Mikrosporidien, einschließlich *E. bieneusi*, eine beträchtliche Erleichterung. Aus den in Kapitel 5.1 diskutierten Gründen existieren jedoch bis heute keine zuverlässigen Verfahren zum serologischen Nachweis einer *E. bieneusi*-Infektion.

Durch die in der vorliegenden Arbeit durchgeführte Charakterisierung des Sporenwandproteins von *E. hellem* wurde nun die Möglichkeit eröffnet, in den Genen des Sporenwandproteins aller drei humanpathogenen *Encephalitozoon*-Spezies nach konservierten Bereichen zu suchen, für die es möglich sein sollte, "universelle" ("degenerierte") Primer zu entwickeln. Unter Einbeziehung der nunmehr verfügbaren *E. hellem*-Sequenz wurden die Erfolgsaussichten einer Identifizierung tatsächlich konservierter und im Laufe der Evolution wenig mutierter Bereiche verbessert. Zusätzlich wurde durch die vorliegende Arbeit bewiesen, dass es möglich ist, den vollständigen kodierenden Bereich eines SWP-Gens auch ohne Erregerkultivierung und alleine durch PCR-Techniken zu ermitteln.

Durch diese Ergebnisse wurden die Voraussetzungen für zukünftige Arbeiten zur Amplifikation und Charakterisierung des homologen Gens von *E. bieneusi* wesentlich verbessert. Nach Bestimmung der Nukleotidsequenz des kodierenden Bereichs könnte dieser vollständig oder in Fragmenten isoliert und anschließend exprimiert werden. Damit würde eine Möglichkeit eröffnet, eine einfache, spezifische und kostengünstige Nachweismethode, z.B. einen Koproantigen-ELISA, für *E. bieneusi* zu entwickeln.

Bereits aufgrund Kapitel 5.3 durchgeführten jetzt können der in Homologiebetrachtungen Vorschläge für zwei Genabschnitte gemacht werden, die sich als Zielsequenzen für die Konstruktion "universeller" Primer eignen sollten. Als Zielsequenz für den "forward"-Primer wird die "upstream" um 8 Nukleotide Signalsequenz des SWP vorgeschlagen, da diese verlängerte bei den Encephalitozoon-Spezies nur gering mutiert ist und eine Homologie von 75% aufweist (Abbildung 41).

```
E.i. SWP1ATTAAAGATGATAAAGCTCTCACTTCTCCTAAGTCTAGCGAGCTTCACTGCAGTTCTTGC133E.i. SWP2ATTAAAGATGATAAAGCTCTCACTTCTCCTAAGTCTAGCGAGCTTCACTGCAGTTCTTGC133E. hellemATTAAAGATGTTGAAGCTCTCGTTGCTCCTAGGTCTAGCAAATTTCACTGCAATCCTTG92E. cun.ATTAAAGATGATGAAGCTTTCACTGCTGCTAGGTCTAGTAAGCTTCAGTGCAGTGCTTGC61
```

Abbildung 41: Signalsequenzen der DNA des Sporenwandproteine der Spezies *E. cuniculi E. intestinalis und E. hellem.*

Als Zielsequenz des Gegenprimers wird ein Abschnitt im zweiten Drittel der SWP-Gene vorgeschlagen, da auch dieser Abschnitt im Vergleich der Gensequenzen der drei *Encephalitozoon*-Spezies besonders hoch konserviert ist (Abbildung 42). Auch der Abstand der beiden vorgeschlagenen Loci hätte mit etwa 0,4 kb (bei *Encephalitozoon* spp.) eine für die PCR geeignete Größe. Beim homologen Gen von *E. bieneusi* kann mit einer ähnlichen Größenordnung gerechnet werden, da bei Mikrosporidien bislang keine Introns gefunden worden sind.

```
E.i. SWP1 GACTCCTATAATCCTGATGGGAGAAAGGATCTACGAATTCCTCAAGAACTACGAGGACCA 502
E.i. SWP2 GACTCCTATAATCCTGATGGGAGAAAGGATCTACGAATTCCTCAAGAACTACGAGGACCA 502
E. hellem AGTCCCTATAATCAATATGGGTGAAAGGATATACGAGTTCCTCAAGAACTACGAGGACCA 476
E. cun. GACACCTATTATCAACATGGGAGAAAGGATATTTGAGTTCCTTAAGAACTACGAGGATCA 451
```

Abbildung 42: Sequenzen der DNA im zweiten Drittel der Sporenwandproteine der Spezies *E. cuniculi E. intestinalis und E. hellem.*

6. Zusammenfassung

Der labordiagnostische Nachweis von Mikrosporidieninfektionen bereitet noch immer Probleme. Aufgrund ihrer geringen Größe und ihrer unspezifischen Färbeeigenschaften ist der lichtmikroskopische Direktnachweis schwierig. Der elektronenmikroskopische Nachweis ist aufwendig und insbesondere aus Stuhl wenig sensitiv. Nicht alle Mikrosporidien können in Zellkulturen vermehrt werden. Die beim Menschen häufigste Spezies, Enterocytozoon bieneusi, ist nicht kultivierbar. Molekularbiologische Nachweisverfahren wie die PCR sind ebenfalls aufwendig, noch nicht standardisiert und derzeit noch Speziallaboratorien vorbehalten. Zuverlässige immundiagnostische Tests mit ausreichender Sensitivität und Spezifität fehlen insbesondere für E. bieneusi, da aufgrund der fehlenden Kultivierbarkeit die für eine Testentwicklung nötige Menge und Reinheit des Antigens kaum zu erzielen ist. Gene, durch deren rekombinante Expression dieses Problem gelöst werden könnte, sind bisher noch nicht bekannt. Dabei wäre zum Beispiel die Entwicklung eines Koproantigen-ELISA zum Nachweis von E. bieneusi aus Stuhl von großem praktischem Nutzen. Ziel der hier vorgelegten Arbeit war es, die Voraussetzungen hierfür zu verbessern.

Als aussichtsreichstes Antigen wurde das so genannte "Sporenwandprotein" (SWP) gewählt, der Hauptbestandteil der Sporenwand von Mikrosporidien. In eigenen Vorarbeiten konnte gezeigt werden, dass es allerdings wenig aussichtsreich ist, alleine anhand der bis dahin ausschließlich für *Encephalitozoon cuniculi* und *E. intestinalis* bekannten SWP-Gensequenzen PCR-Primer zur Amplifikation des homologen Gens aus *E. bieneusi* zu konstruieren. Deshalb wurde in der vorliegenden Arbeit zunächst der bis dahin unbekannte, vollständige kodierende Bereich des SWP-Gens einer weiteren *Encephalitozoon*-Spezies, *E. hellem*, einschließlich benachbarter Genabschnitte auf Nukleinsäureebene charakterisiert. Durch die Vergleichsmöglichkeit mit dem SWP-Gen einer dritten Mikrosporidienart wurden die Voraussetzungen zur Konstruktion "universeller" Primer, die homologe Abschnitte des wahrscheinlich auch in *E. bieneusi* vorhandenen SWP-Gens amplifizieren können, verbessert.

Ein weiteres Ziel, das in dieser Arbeit erreicht wurde, war bei dieser Charakterisierung ganz auf das Anlegen von Banken zu verzichten. Im Hinblick auf die fehlende Kultivierbarkeit von *E. bieneusi* und die damit verbundene Schwierigkeit, das Ausgangsmaterial für genomische oder cDNA-Banken (genomische DNA bzw. mRNA) in ausreichender Menge und Reinheit zu gewinnen, sollte nämlich bewiesen werden, dass es möglich ist, das SWP-Gen einer Mikrosporidienart alleine durch die Anwendung von PCR-Techniken bestimmen zu können.

Als Ausgangspunkt für die Charakterisierung des SWP-Gens aus *E. hellem* war die Amplifizierung eines ersten Genfragments. Dies konnte durch die Konstruktion so genannter "degenerierter" Primer (Primermischungen) erreicht werden. Nach Kenntnis dieser ersten *E. hellem*-spezifischen DNA-Sequenz konnten anschließend Primer konstruiert werden, die vollständig zum SWP-Gen von *E. hellem* passten. In einer "klassischen" PCR können jedoch nur DNA-Abschnitte zwischen bekannten Bereichen amplifiziert werden, da diese zur Konstruktion der beiden PCR-Primer bekannt sein müssen. Um dennoch die DNA-Sequenz aus dem ersten Genfragment nach beiden Seiten ("upstream" und "downstream") verlängern zu können, wurden "inverse" und "verankerte" PCR-Reaktion als Spezialtechniken eingesetzt und durch Kombination mit bekannten Techniken ("geschachtelte", "halb-geschachtelte" und "Touch Down"-PCR) optimiert.

Schließlich wurden in der vorliegenden Arbeit aus der Primärstruktur (Nukleotidabfolge) ableitbare Eigenschaften des SWP-Gens von *E. hellem* diskutiert. Durch Sequenzvergleich mit den bereits bekannten SWP-Genen aus *E. cuniculi* und *E. intestinalis* wurden zwei konservierte Loci identifiziert, die zur Konstruktion "universeller" SWP-Primer vorgeschlagen werden.

In der vorliegenden Arbeit wurde somit (a) das bis dahin unbekannte Gen des Sporenwandproteins aus *E. hellem* erstmals auf Nukleotidebene charakterisiert, (b) bewiesen, dass die Charakterisierung eines unbekannten SWP-Gens durch ausschließliche Anwendung von PCR-Spezialtechniken und ohne die Herstellung von genomischen oder cDNA-Banken möglich ist und (c) Methoden der "inversen" und der "verankerten" PCR in der Arbeitsgruppe etabliert und optimiert.

75

7. Literaturverzeichnis

Bernard E., Charles M., Pradier C., Boissy C., Roger P.M., Hebuterne X., Mondain V., Michiels J.F., Le Fichoux Y., Dellamonica P. (1995): Diarrhée persistante chez les patients infectés par le VIH: Place d'*Enterocytozoon bieneusi. Presse Med* 24: 671-674

Bohne W., Ferguson D. J., Kohler K., Gross U. (2000): Developmental expression of a tandemly repeated, glycine- und serine-rich spore wall protein in the microsporidian pathogen *Encephalitozoon cuniculi*: *Infect Immunol* 68, (4), 2268-2275

Canning E.U., Lom J., Dykova I. (1986): The microspora of vertebrates, *Academic,* Orlando, pp. 189-238.

Canning E.U. (1993): Microsporia. In Kreier J.P., J.R. Baker (ed.), Parasitic Protozoa, 6, *Academic Press*, New York, pp. 299-370.

Chupp G. L., Alroy J., Adelmann L.S., Breen J.C., Skolnik P.R. (1993): Myositis due to *Pleistophora* (Microsporidia) in a patient with AIDS. *Clin Infect Dis* 16: 15-21

Deplazes P., Mathis C., Muller C., Weber R. (1996): Molecular epidemiology of Encephalitozoon cuniculi and first detection of *Enterocytozoon bieneusi* in faecal samples of pigs. *J Eukaryot Microbiol*;43 (5): 93S

Desportes I., Le Charpentier Y., Galian A. Bernard F., Cochand-Priollet B., Lavergne A., Ravisse P., Modigliani R. (1985): Occurrence of a new microsporidian: *Enterocytozoon bieneusi*, n. g., n. s., in the enterocytes of a human patient with AIDS. *J Protozool*; 32: 250-254

Didier E.S., Didier P.J., Friedberg D.N., Stenson S.M., Orenstein J.M., Yee R.W., Tio F.O., Davis R.M., Vossbrinck C., Millichamp N. (1991): Isolation and characterization of a new human microsporidian, *Encephalitozoon hellem* (n. sp.), from three AIDS patients with keratoconjunctivitis: *J Infect Dis* 163 (3), 617-621

Didier E.S., Snowden K.F., Shadduck J.A. (1998): Biology of microsporidien species infecting mammals. *Adv Parasitol* 40: 283-320

Dowd S.E., Gerba C.P., Pepper I.L. (1998): Confirmation of the human-pathogenetic microsporidia *Enterocytozoon bieneusi*, *Encephalitozoon intestinalis* and *Vittaforma corneae* in water. *Applied Envirometal Microbiology* 64: 3332-3335

Eeftinck-Schattenkerk J.K.M., van Gool T., van Ketel R.J., Bartelsman J.F.W.M., Kuiken C.L., Terpstra W.J., Reiss P. (1991): Clinical signifance of small-intestinal microsporidiosis in HIV-1-infected individuals. *Lancet* 337: 895-898

Field A.S., Marriott D.J., Milliken S.T., Brew B.J., Canning E.U., Kench J.G., Darvenzia P., Harkness J.L. (1996): Myositis associated with a newly described microsporidian, *Trachipleistophora hominis*, in a patient with AIDS. *J Clin Microbiol* 34: 2803-2811

Franzen C., Fätkenheuer G., Salzberger B., Müller A., Mahrle G., Diehl V., Schrappe M. (1994). Intestinal Microsporidiosis in patients with aquired immunodeficiency syndrome – report of three more German cases. *Infection* 22: 417-419

Franzen C., Müller A. (1999): Molecular techniques for detection, species differentiation and phylogenetic analysis of microsporidia. *Clin Microbiol Rev*; 12: 243-285

Grau A., Valls M.E., Williams J.E., Ellis D.S., Mutane M.J., Nadal C. (1996): Miositis por *Pleistophora* en un paciente con SIDA. *Med Clin Barc*: 107, 779-781

Haro M., Águila C., Fenoy S., Henriques-Gil N. (2003): Intraspecies genotype variability of the microsporidian parasite *Encephalitozoon hellem*: *J Clin Microbiol*: 41 (9), 4166-4171

Hartskeerl R.A., Schuitema A.R.J., Gool van T., Terpstra W.J. (1993): Genetic evidence for the occurance of extra-intestinal *Enterocytozoon bieneusi* infections. *Nucl Acids Res* 21: 4150

Hayman J. R., Hayes S. F., Amon J., Nash T. E. (2001): Developmental expression of two spore wall proteins during maturation of the microsporidian *Encephalitozoon intestinalis*. *Infect Immun*, 69 (11) 7057-7066

Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (1990): PCR protocols. *American Press Inc* San Diego

Katinka M. D., Duprat S., Cornillot E., Méténier G., Thomarat F., Prensier G., Barbe V., Peyretaillade E. Brottier P., Wincker P., Delbac F., El Alaoui H., Peyret P., Saurin W., Gouy M., Weissenbach J., Vivares C.P. (2001): Genome sequence and gene compaction of the eukaryote parasite *Encephalitozoon cuniculi*. *Nature* 414 (6862): 450-453

Keeling P. J. (2002): Congruent evidence from α -tubulin and β -tubulin gene phylogenies for a zygomycete origin of microsporidia. *Fungal Genet Biol*, 38: 298-309

Kotler D.P. & Orenstein J.M. (1994): Prevalence of intestinal microsporidiosis in HIVinfected individuals referred for gastrointestinal evaluation. *Am J Gastroenterol* 89: 1998-2002

Kotler D. P., Orenstein J. M. (1998): Clinical syndromes associated with microsporidiosis. *Adv Parasitol* 40: 321-349

Ledford D.K., Overman M.D., Gonzalvo A., Cali A., Mester S.W., Lockey R.F. (1985): Microsporidiosis myositis in a patient with the acquired immunodeficiency syndrome *Ann Intern Med*: 102: 628-630

Levaditi C., Nicolau S., Schoen R. (1923): L'agent etiologique de l'encéphalite epizootique du lapin (*Encephalitozoon cuniculi*). C.R. *Soc Biol Paris*: 89: 984-986

Li X., Palmer R., Trout J.M., Fayer R. (2003): Infectivity of microsporidia spores stored in water at environmental temperatures. *J Parasitol*;89: 185-8

McDougall R.J., Tandy M.W., Boreham R.E., Stenzel D.J., O'Donoghue P.J. (1993): Incidental finding of a microsporidian parasite from an AIDS patient. *J Clin Microbiol* 31: 436-439

McInnes E.F., Stewart C.G. (1991): The pathology of subclinical infection of *Encephalitozoon cuniculi* in canine dams producing pups with overt encephalitozoonosis. *J S Afr Vet Assoc* 62: 51-54

Molina J.M., Sarfati C., Beauvais B., Lémann M., Lesourd A., Ferchal F., Casin I., Lagrange P., Modigliani R., Derouin F., Modai J. (1993): Intestinal microsporidiosis in human immunodeficiency virus-infected patients with chronic unexplained diarrhoea: Prevalence and clinical and biological features. *J Inf Dis* 167: 217-221

Nägeli K. (1857): Über die neue Krankheit der Seidenraupe und verwandte Organismen., *Bot Ztg* 15: 760-761

Ochman H., Ajioka J.W., Garza D., Hartl D.L. (1990): Inverse polymerase chain reaction, *Biotechnology* (N Y) 8: 759-760

Rinder H., Janitschke K., Aspöck H., Da Silva A. J., Deplazes P., Fedorko D.P., Franzen C., Futh U., Hunger F., Lehmacher A., Meyer C.G., Molina J.M., Sandfort J., Weber R., Loscher T. (1998): Blinded, externally controlled multicenter evaluation of light microscopy and PCR for detection of microsporidia in stool specimens. *J Clin Microbiol*, 36 (6): 1814-1818

Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. (1988): Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science* 239, 487-491

Sanski E.: Environmental contamination with protozoan parasite infective stages: biology and risk assessment (2003): *Acta Microbiol Pol:* 52. Suppl: 97-107

Schottelius J., Burchard G. D., Sobottka I. (2003): Microsporidiosis in humans: parasitology, clinical features and treatment. *Dtsch Med Wschr* 2003 128: 87-91

Sobottka I., Albrecht H., Schaefer H., Schottelius J., Visvesvara G. S., Laufs R., Schwartz D. A. (1995): Disseminated *Encephalitozoon intestinalis* infection in a patient with AIDS: novel diagnostic approaches and autopsy-confirmed parasitological cure following treatment with albendazol. *J Clin Microbiol* 33 (11): 2948-2952

Sobottka I., Albrecht H., Schottilius J., *et al.* (1995): Self-limited traveller's diarrhoea due to a dual infection with *Enterocytozoon bieneusi* and *Cryptosporidium parvum* in an immunocompetent HIV-negative child. *Eur J Clin Microbiol Infect Dis* 14: 919-920

Sobottka I., Schmetz D.A., Schottilius J. alle Autoren (2003): Microsporidia, In: Dionisio D. (ed.), *Textbook-atlas of intestinal infections in AIDS*, Springer Verlag

Sommer R., Tautz D. (1989): Minimal homology requirements for PCR primers: *Nucleic Acids Res* 17: 6749

Van Gool T., Hollister W.S., Eeftinck-Schattenkerk J.K., van den Bergh-Weerman M.A., Terpstra W.J., van Ketel R.J., Reiss P., Canning E.U. (1990): Diagnosis of *Entreocytozoon bieneusi* microsporidiosis in AIDS patients by recovery of spores from faeces. *Lancet* 336, 697-698

Van Gool T., Snijders F., Reiss P., Eeftinck-Schattenkerk J.K., van den Bergh-Weermann M.A., Bartelsman J.F., Bruins J.J., Canning E.U., Dankert J. (1993): Diagnosis of intestinal and dissiminated microsporidial infections in patients with HIV by a new rapid fluorescene techinque. *J Clin. Pathol.* 46, 694-699

Van Gool T., Luderhoff E., Nathoo K.J., Kiire C.F., Dankert J., Mason P.R. (1995): High prevalence of *Entreocytozoon bieneusi* infections among HIV-positive individuals with persistent diarrhoea in Harare, Zimbabwe, *Trans Roy Soc Trop Med Hyg* 89, 478-480

Vavra J., Nohynkova E., Machala L., Spala J. (1993): An extremely rapid Method method for detection of microsporidia in biopsy materials from AIDS patients. *Folia Parasitol.* 40, 273-274

Vossbrinck C. R., Woese C. R. (1986): Eukaryontic ribosomes that lack a 5,8S RNA. *Nature* 320: 287-288

Vossbrinck C. R., J. V. Maddox S. Friedmann A., Debrunner-Vossbrinck, C. R. Woese (1987): Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. *Nature* 326: 411-414

Weber R., Bryan R. T., Owen R. L., Wilcox C. M., Gorelkin L., Visvesvara G. S. (1992): Improved light-microscopical detection of microsporidia spores in stool and duodenal aspirates, *N Engl J Med* 326: 161-166

Weber R., Schwartz DA., Bryan R. (2000): Microsporidia. in Mandell G.L., Bennett J.E., Dolin R. (eds): Principles and Practice of Infectious Diseases. 5th Edition. 2920-2933 Churchill Livingstone, New York 2000.

Wittner M., Weiss L. M., (1999): The microsporidia and microsporidiosis. *ASM Press*, Washington DC

Zietkiewicz E., Rafalski A., Labuda D. (1994): Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. *Genomics* 20: 176-193

8. Abkürzungen

А	Adenin
ATP	Adenosintriphosphat
BSA	bovines Rinderalbumin
С	Cytosin
dATP	2'-Desoxyadenosin-5'-triphosphat
dCTP	2'-Desoxycytidin-5'-triphoshat
demin.	demineralisiert
dGTP	2'-Desoxyguanosin-5'triphosphat
DMSO	Dimethylsulfoxid
dNTP	Mischung aus dATP, dCTP, dGTP, dTTP zu gleichen Anteilen
dTTP	2','-Didesoxythymidin-5'-triphosphat
EDTA	Ethylendiamintetraessigsäure
G	Guanin
H_20	Wasser
К	Mischung aus G und T bei degenerierten Primern
KCI	Kaliumchlorid
Μ	Mischung aus A und C bei degenerierten Primern
min	Minute
MgCl ₂	Magnesiumchlorid
NaOH	Natronlauge
PCR	Polymerasekettenreaktion (Polymerasechainreaction)
R	Mischung aus A und G bei degenerierten Primern
RNase A	Ribonuklease A
S	Mischung aus G und C bei degenerierten Primern
sek	Sekunde
SWP	Spore Wall Protein, Sporenwandprotein
т	Thymin
Tris•HCI	Tris[hydroxymethyl]methylaminhydrochlorid
Tris	Tris[hydroxymethyl]methylamin
W	Mischung aus A und T bei degenerierten Primern
Y	Mischung aus C und T bei degenerierten Primern
Z	Zyklen

80

9. Lebenslauf

Name:	Stefan Propping
Geboren am:	21. November 1975
Geburtsort:	Heidelberg
Adrosos	Louisenstrasse 26
Auresse.	01099 Dresden
Schulbildung:	
1982–1984:	Mönchhof-Grundschule in Heidelberg
1984–1986:	Finkenhof-Grundschule in Bonn
1986-1995:	Helmholtz-Gymnasium in Bonn
20. 06. 1995:	Allgemeine Hochschulreife

Studium:

1995-1999	Ludwig-Maximilians-Universität München
1999-2002	Christian-Albrechts-Universität zu Kiel
2002-2003	Technische Universität München

beruflicher Werdegang:

01.07. bis 31.12.2003 Promotionsstudent in der Abteilung für Infektions- und Tropenmedizin der Ludwig-Maximilians-Universität München 01.01. bis 31.05.2004 Arzt im Praktikum in der Abteilung für Infektions- und Tropenmedizin der Ludwig-Maximilians-Universität München 01.10.2004 Approbation als Arzt seit 01.06.2004 bis 30.11.2005 Beschäftigung am Krankenhaus Rechts der Isar der Technischen Universität München seit 01.12.2005 Beschäftigung am Universitätsklinikum Carl-Gustav-Carus Dresden

10. Danksagung

Ich bedanke mich bei Herrn PD. Dr. med. Dr. rer. nat. H. Rinder für die Themenstellung und die Betreuung der Arbeit.

Herrn Prof. Dr. med. T. Löscher danke ich für die Bereitstellung der Labore, die Benutzung aller Geräte und für die Anstellung im Tropeninstitut.

Herrn Prof. Dr. med. vet. Pfister bin ich sehr dankbar, dass ich auch im Bereich des Instituts für Vergleichende Tropenmedizin und Parasitologie der veterinärmedizinschen Fakultät mich frei bewegen und alle Einrichtungen benutzen durfte.

Mein besonderer Dank für die Hilfe und Unterstützung gilt Frau PD Dr. med. vet. M. Rinder, die sich jederzeit von mir stören ließ und mir immer freundlich mit Rat und Tat zur Seite stand.

Herrn Prof. Dr. Deplazes aus Zürich und Herrn M. Mungthin, MD, aus Bangkok möchte ich für die freundliche Bereitstellung der Untersuchungsmaterialien danken.

Meiner Familie bin ich sehr dankbar für die liebevolle Unterstützung.

Vielen Dank allen am Tropeninstitut, die hier nicht namentlich erwähnt sind, für die nette und angenehme Arbeitsatmosphäre.

Danke Sonja.