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Summary

Prions are unconventional pathogens that cause transmissible spongiform

encephalopathies (TSEs). According to the "protein only" hypothesis, prions consist of an

infectious protein that is capable of converting a normal host protein termed PrPc into a

protease resistant form termed PrPSc. PrPSc is poorly degraded by the host and

accumulates in the CNS. Normal biological functions of PrPc and mechanisms involved

in neurodegeneration remain obscure. During the past two decades, considerable efforts

have been made to elucidate prion diseases and in particular to identify PrP interactors for

a better understanding in prion biology. A major break-through was the identification of

the 37 kDa laminin receptor (LRP), which represents the precursor of the human 67 kDa

high-affinity laminin receptor (LR), as the cell surface receptor for the cellular prion

protein.

We investigated the role of LRP/LR in the propagation of PrPSc in chronically

infected cells by different approaches. Three strategies resulted in downregulation or

blocking of LRP and prevented PrPSc accumulation in different scrapie infected neuronal

cell lines (i) transfection with an antisense LRP RNA expression plasmid (ii) transfection

with small interfering (siRNAs) specific for the LRP mRNA and (iii) incubation with the

polyclonal anti-LRP antibody, W3. We observed that the treatment with W3 abolished

PrPSc deposition and reduced PrPc levels after one week of incubation. PrPSc did not

reappear in cells being cultured for 14 additional days without therapeutic antibody

treatment. Taken together, these results indicate that LRP is not only required for PrPc

metabolism under non-pathological conditions but also has a pivotal role in prion

propagation in a cell culture model. LRP/LR appears then to be a promising potential

target for the development of therapeutics for the treatment of prion disease.

Due to these encouraging cell culture data, we decided to select single chain

antibodies (scFv) encompassing a suitable format for therapy. ScFvs are composed of

variable parts of heavy and light chains of an immunoglobulin that are connected by a
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peptidic linker. The antibodies were screened on recombinant GST::LRP employing a

phage display strategy. Two scFvs termed N3 and S18 were screened and selected by

ELISA. Both antibodies were further characterized by western blotting and FACS

analysis: both N3 and S18 specifically recognized mouseLRP and humanLRP

overexpressed in mammalian cells under denaturating conditions (western blot) and

under native conditions at the cell surface (FACS). Epitope mapping revealed that as

expected both scFvs are directed against the extracellular part of LRP: S18 and N3

recognized amino acid residues 225-233 and 273-278, respectively. The ability of N3 and

S18 to interfere with LRP/PrP interaction was tested by pull-down assays. In contrast to

the control scFv C9 directed against the pre-S1 coat-protein of hepatitis B virus, both

anti-LRP scFvs were able to block the specific LRP/PrP binding. In order to investigate a

potential curing effect of scFv S18 in vivo, this scFv was tested in a scrapie mouse model

by passive immunization. The application of S18 by intra-peritoneal injection was able to

reduce PrPSc deposition in the spleen in comparison to mice injected with PBS or C9.

However the survival times of S18 treated animals was not increased. Anti-LRP scFv S18

seems to contribute to block prion propagation in the periphery but it is likely that this

effect was not enough strong to have an impact on the CNS invasion. Thus, we

hypothesized that a strategy targeting directly the brain should be more effective. In this

context, an approach based on the expression of single chain antibodies as secretory

molecules in the brain via an adeno-associated virus (AAV) vector was initiated.

To assure secretion of the scFv expressed in mammalian cells, a signal sequence

was fused to the scFvs. Tranfection experiments demonstrated that neuronal cells were

able to express and secrete high quantities of both scFvs. Furthermore, the generated

scFvs were still functional as shown by western blotting. To find the appropriate AAV

serotype for scFv expression, neuronal cells were transduced with varying serotypes

carrying a GFP. AAV serotype 2 was chosen due to (i) its good transduction performance

in two neuronal cell lines and (ii) the possibility of its purification by affinity

chromatography. The sequences encoding for the scFvs N3, S18 and C9 have been

cloned in an AAV-based vector. The AAV system was also able to drive high expression

of scFvs into the supernatant by transfection or transduction. rAAV-scFv particles were
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produced and purifed for further stereotaxic injections into mice. Although the

investigation of this therapeutic strategy is still in progress in a murine scrapie model, we

already proved that a single injection of rAAV led to the expression of scFvs into the

brain of mice 30 days post injection. This study represents the first gene therapeutic

approach for the treatment of prion diseases.
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CHAPTER I

Prion and prion diseases: an overview
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1 Historical background and the prion hypothesis

• The first transmissible spongiform encephalopathy (TSE) was described in 1732

in sheep and called scrapie. The german neurologists Creutzfeldt and Jakob

observed in the 1920s patients with brain lesions such as spongiosis, astrocytosis

and gliosis. This disease was termed Creutzfeldt-Jakob disease (CJD). In the

1950s, an epidemy termed Kuru decimated an aborigine population in New

Guinea with similar histological patterns to these previously observed in CJD

patients (Gajdusek and Zigas, 1959). Although the presence of viral particles or

nucleic acids coud not be convincingly demonstrated, this group of disorders was

classified at that time in the group of slow viral diseases (Gajdusek, 1977).

Nevertheless, the idea that the causative agent might be a protein began to emerge

in 1967, and was in complete contradiction with the very foundations of

molecular biology (Griffith, 1967). This suggestion was developed by Prusiner in

the prion hypothesis that paved the way into a fascinating new biological

phenomenon. In 1982, he coined the term Prion to describe the proteinascous

infectious particles responsible for scrapie in sheeps and hamsters. Prusiner

suggested that scrapie and some other close diseases, some inherited, some

infectious and some sporadic were due to an unique mechanism : a misfoled

protein that propagates and kills neuronal cells. The non-infectious cellular

protein termed PrPc converts to a misfolded infectious protein termed PrPSc

(Prusiner, 1982; Prusiner, 1984). This theory was first greeted with great

skepticism but is now favoured and accepted in the scientific community. It is

now accepted that the causing agent of TSEs is the result of the conformational

change or conversion of the cellular prion protein. The final proof of the so called

"protein only" hypothesis was recently brought by Prusiner: infectious prions that

have been created in vitro from a recombinant mouse prion protein allow

transmission of the disease when inoculated in mice (Legname et al., 2004).
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• The BSE crisis :

Although, scientific efforts to understand and fight TSEs began have been initiated in the

middle of the 20th century, mass concern over TSEs raised with the occurence of bovine

spongiform encephalopathy (BSE) also called mad cow disease is quite new. The first

case of BSE was confirmed in 1987 and overall the UK about 180000 mad cows were

identified (Figure 2). It is thought that prions were transmitted to cattle through meat and

bone food prepared from sheep, cattle, pigs etc...processed for industrial use. Classical

pathogens are eliminated by high temperature but prions need high temperatures plus

high pressure or solvents such as sodium hydroxide for inactivation, so when in the

animal food industry for economical reasons, the sterilization temperature was decreased

from 130°C to 110°C, the agent was not inactivated anymore. Ingestion of BSE-

contaminated tissue that had entered the food chain lead to a new form of

Creutzfeldtjacob disease (vCJD) in humans. The ten first cases were detected in UK in

1996 (Bradley and Liberski, 2004) and meanwhile approximately 160 vCJD cases

appeared worldwide.

Figure 1. A  N M R
spectroscopy structure of
human PrPc. Note the
presence of three α -
helices and a ß-strand B
Speculative conformation
of PrPSc (no structural data
is avalaible until now)
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• Interestingly, one prion like element, het-s, could be found in a fungus (Coustou

et al., 1997) and two in yeast. The non-Mendelian elements in Saccharomyces

cerevisiae [PSI+] and [URE3] (representing respectively the protein Sup35p* and

Ure2p*) are equivalent to mammalian prions (Wickner et al., 1995). Although the

conversion of these proteins changes their function, these events are not harmful

to the yeast.

2 One protein - 2 stories:

2.1 Prion protein terminology

All prion diseases are associated with accumulation of an abnormal isoform of a

host coded protein (PrP), the cellular isoform of PrP is noted PrPc and the disease related

PrP isoform PrPSc (Sc for Scrapie).The truncated version of PrPSc lacking approx. 60

amino acids at the N-terminal part generated by proteolysis is termed PrP27-30 (the 27-

30 refers to the estimated size of the protein bands when analyzed by gel electroporesis)

Figure 2. Number of BSE cases reported in the UK since 1987.
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or PrPres (Res for resistant) and polymerizes into amyloids. The term amyloid is used to

describe various types of protein aggregation or deposit that shares specific

characteristics. The core protein may be visualized by electron microscopy as scrapie-

associated fibrils (SAF) also known as prions rods.

2.2 Structure and conversion mechanism

PrP is expressed as a precursor with a signal peptide (N-terminus) and a signal

sequence (C-terminus). After processing, PrPc is secreted and remains attached at the cell

surface via its glycosyl-phosphatidylinositol (GPI) anchor (Stahl et al., 1987). Moreover,

PrPc can be glycosylated at positions 181 and 197. Subsequently 3 forms can be

visualized by westernblot: the unglycosylated form, mono- and di-glycosylated forms.

PrP also contains an octapeptide repeat motif which can bind copper.

PrPc and PrPSc have the same primary structure but harbor conformational

differences as shown by spectroscopic methods, PrPc has a α-helix content a bit higher

than PrPSc(42% versus 30%) and their ß-sheet content is drastically different: 3% for PrPc

and 43% for PrPSc (see Table 1, α-helix and ß-sheet contents are given for hamster PrP).

The conversion is then thought to involve structural rearrangment of the polypeptide from

α-helix to ß-sheet (Caughey et al., 1991; Pan et al., 1993).

PrPc PrPSc

α-helices

β-strand

Protease resistance

Infectious
properties

NO Partially resistant

NO YES

42%

43%3%

30%

Table 1. Specific features of PrPc and PrPSc.
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Two models have been proposed for the replication process of prions: (i) the

heterodimer model suggests that PrPSc forms an heterodimer with PrPc followed by its

conversion, the two states being separated by an activation energy barrier (Prusiner,

1991) (ii) the seeding model proposes that a small seed of PrPSc binds to PrPc initiating a

polymerization reaction (Jarrett and Lansbury, 1993) (Figure 3)

Refolding model
PrPc PrPSc

PrPc PrPSc
Seeding model

Fragmentation
into several
infectious seedsSlow Fast

Equilibrium
between both

forms

conversion prevented
by energy barrier

Amyloid

Amyloid

A

B

Figure 3. Model for the conformational conversion of PrPc to PrPSc A Refolding model: the
conformational change is kinetically controlled, a high activation energy barrier preventing
spontaneous conversion. Interaction with PrPSc leads to PrPc conversion B Seeding model: PrPc

and PrPSc or a PrPSc-like molecule are in equilibrium with PrPc that is strongly favoured. PrPSc is
only stabilized when it is integrated into a crystal-like structure seed or aggregates of PrPSc. Seed
formation is rare; however, once a seed is formed, incorporation of monomer is rapid. Aggregates
must fragment to generate increasing surfaces for aggregation.

The three-dimensional structure of PrPc from different organisms has been solved

by nuclear magnetic resonance (NMR) spectroscopy and reveals a highly conserved

structure : mouse (Riek et al., 1996; Riek et al., 1997), syrian hamster (Donne et al.,

1997), human (Zahn et al., 2000) (Figure 1), cattle (Lopez Garcia et al., 2000), chicken,

turtle, frog and elk (Calzolai et al., 2005; Gossert et al., 2005). The core region is a

globular domain containing three α-helices and a short anti-parallele ß-sheet, the N-

terminal part is a disordered and flexible tail (Figure 1). The crystal structure of human
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PrPc reveals an oligomerisation mechanism resulting in a conformational swapping at the

dimer interface. As suggested in the seeding model, such PrP dimers could accelerate the

formation of a nucleus acting as a seed for the formation of PrPSc aggregates. The seeding

model is supported in part by a very recent publication showing that non-fibrillar

particles of 14-28 PrP are the most efficient initiator of TSE diseases (Silveira et al.,

2005).

3 Cell biology of prion proteins

3.1 Physiological function of PrPc

• Knock-out models

The physiological function of PrPc is still enigmatic and poorly understood. The role

of PrPc has been investigated in knock-out mice leading to controversial results. Several

lines of mice devoid of PrPc have been generated by homologous recombination in

embryonic stem cells. In some murine lines either no obvious phenotype (Bueler et al.,

1992; Manson et al., 1994) or minor phenotypes such as altered circadian activity rythms

and sleep pattern (Tobler et al., 1996) and anomalies in specific neuronal excitablility

have been observed (Collinge et al., 1994; Manson et al., 1995). In contrast, other

investigators reported symptoms of ataxia and extensive loss of Purkinje cells in another

line (Moore et al., 1999; Sakaguchi et al., 1996). These contradictory results might be

explained by (i) the different methods used: either disruption of the open reading frame or

deletion of the open reading frame together with flanking regions (ii) the genetical

background and (iii) the potential upregulation of the PrPc homolog Doppel (Rossi et al.,

2001; Silverman et al., 2000). The only clear function of the prion protein is its absolute

necessity to propagate infectivity since PrP-knock-out mice generated are resistant to

scrapie (Bueler et al., 1993).

• Proposed role of PrPc

Synaptic function
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PrPc is found at the cell surface in neuronal cells in lipid rafts and has been

detected in presynaptic nerve endings (Fournier et al., 1995; Herms et al., 1999). Though

PrPc is a GPI anchored protein, PrPc seems to be also associated with synaptic vesicles.

Therefore PrPc is likely to cycle between these compartments. Interestingly, synaptin I

which is associated with small synaptic vesicles is a PrPc interacting protein and is

located together with Grb2 in neuronal microsomal vesicles as well as PrPc (Spielhaupter

and Schatzl, 2001). This suggests a direct role in synaptic activity and/or in vesicles

recycling.

Copper binding properties: for transport or anti-oxidative activity?

The PrP protein shows copper binding features and can bind four ions via the

histidine-containing octarepeat region at the N-terminus of the protein (Brown et al.,

1997; Viles et al., 1999) (Figure 4). The region is also implied in interaction of PrPc to

different ligands.Thus copper may be of structural importance and influence binding of

PrPc to other proteins. It has been reported that mice devoid of PrPc show synaptosomal

copper concentrations diminished by 50% as compared to normal mice (Kretzschmar et

al., 2000). Therefore, PrPc may serve as a copper buffer or may play a role in the re-

uptake of copper into the presynaptic compartment. Based on in vitro experiments, an

alternative role of PrPc was proposed : a copper-dependent superoxide activity has been

described for PrPc suggesting a contribution against anti-oxidative stress (Brown et al.,

1999).

Signalling properties

The activation of the tyrosine kinase Fyn might represent a pathway by which

PrPc influence synaptic function (Mouillet-Richard et al., 2000). Another interactor of

PrPc identified in signal transduction processes is Grb2 which is a connector between

signals from extracellular receptors and intracellular proteins. Another contradictory

point is the role of PrPc in cell survival, indeed it has been referred to be involved either

in apoptosis or neuroprotection. Nevertheless, more evidences have been accumulated

that PrPc has a neuroprotective function (Bounhar et al., 2001; Chiarini et al., 2002;

Kuwahara et al., 1999). Concerning in vivo studies, PrPc has been demonstrated to protect
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the brain against Doppel-mediated cell death (Atarashi et al., 2003). Some other studies

stated that PrP knock-out mice are more susceptible to brain injury and seizures

compared to wild-type mice (Hoshino et al., 2003; Walz et al., 1999).

Long-term memory

A new notion emergedfrom studies on the sea urchin Aplysia california:

conformational replication of prions might provide a durable form of molecular memory.

Sophisticated experiments were carried out on cytoplasmic polyadenylation element

binding protein (CPEB) from the sea-slug Aplysia california, which is a sequence

specific RNA binding protein considered as a candidate for synaptic translational

regulation (Richter, 2001). The authors demonstrated that this protein behaves as a prion

in yeast and is required for cementing long-term memories in neurons from Aplysia.

Their proposal, yet far from being proven, is that the memory storage is based on prion-

like switches of CPEB (Si et al., 2003a; Si et al., 2003b). Although this protein has no

homologies with PrPc, other investigators examined long-term memory on humans with

different PrP polymorphisms and carriers of either the 129(MM) or the 129(MV) (see

paragraph 4.4) genotype recalled 17% more information than 129(VV) carriers

(Papassotiropoulos et al., 2005). These data represent the first hint for a potential role for

PrPc in the formation of long-term memory in humans.

3.2 Trafficking of  PrPc

PrPc is synthetized in the rough endoplasmic reticulum (ER) and after passing the

secretory pathway, including the Golgi and secretory vesicles, reaches the cell surface

where it is anchored via its GPI moiety. So far, the internalization pathway and the exact

intracellular pathway taken by PrPc arestill unclear. PrPc is found in lipid-rafts that consist

of specialized and organized sites at the plasma membrane rich in cholesterol and

sphingolipids (Brown and London, 1998; Vey et al., 1996). Several informations have led

to the suggestion that PrPc/PrPSc might be internalized via caveolaelike domains which

are organelles with features related to rafts : (i) PrPc/PrPSc are found in these domains

(Vey et al., 1996) and (ii) perturbation of cholesterol synthesis changes PrPc trafficking
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(Marella et al., 2002). However, the classical internalization pathway involving clathrin-

pits may be impaired by cholesterol depletion (Rodal et al., 1999; Subtil et al., 1999).

This second possible pathway is supported by numerous reports (Laine et al., 2001;

Shyng et al., 1994; Sunyach et al., 2003), indicating that multiple internalization

pathways for PrPc cannot be excluded. A very recent publication proposes that following

copper binding to the octapeptide repeats of PrPc dissociates from lipid rafts, whereas the

N-terminal region mediates its interaction with a transmembrane adaptor protein that

engages the clathrin endocytic machinery (Taylor et al., 2005). This very interesting

model might reconcile previous contradictory hypotheses. PrPc has been demonstrated to

be both in classical endosomes (Magalhaes et al., 2002) and in caveolin-containing

endosomes (Peters et al., 2003). The need of an endocytic PrPc receptor has been

postulated years ago. Up to now, two molecules have been confirmed to mediate PrPc and

even PrPSc endocytosis: the 37 kDa/ 67 kDa laminin receptor (LRP/LR) and heparan

sulfate proteoglycans (HSPGs).

Signal
peptide

Octorepeats GPI

Copper binding
domain

Laminin receptor
binding domain

GPI

α αα

α αα

1 23 231 256

23 231181 197

S S

Primary translation product

Mature PrPc

Laminin receptor precursor

N C

N

NC
1295 101 86

Laminin and PrP
binding domain

Cell membrane

CYTOPLASM

Asn-linked carbohydrate

α α-helices in PrPc

Repeats of almost
identical sequences of 8
amino acids

S S Disulfide bonds

Figure 4. Organization of  the human PrPc and the laminin precursor protein (LRP).
Maturation on the PrP precursor protein involves cleavage of the signal sequence,
attachment of a GPI anchor and glycosylation at two sites (Asn 181 and Asn 197). The
mature PrPc is anchored at the outer surface of the plasma membrane



19

4 An overview of animal and human Transmissible

Spongiform encephalopathies

4.1 Spread of PrPSc: the prion invasion

Although pathological damage in TSEs occurs in the central nervous system

(CNS), the most likely natural port of entry of non experimental TSEs such as BSE and

vCJD is via the gastro-intestinal tract (Terry et al., 2003). Supported by experimental

data, a domino model for PrPSc propagation emerged : spread of PrPSc in the CNS occurs

per continuitatem through conversion of PrPc by adjacent PrPSc rather than a migration of

PrPSc to the CNS. The spread is then based on a PrPc-paved chain of cells that should not

be interrupted by interposed cells lacking PrPc for efficient propagation. The propagation

consists of two aspects : lympho-invasion (Hilton et al., 2004; Jeffrey et al., 2000) and

neuro-invasion. Elegant series of experiments performed by Aguzzi and colleagues have

demonstrated the role of the immune system in scrapie propagation (Aguzzi and

Heikenwalder, 2005). There are now strong evidences that PrP expressing hematopoietic

cells (B and T cells, follicullar dendritic cells) facilitate prion transport from the entry site

to secondary lymphoid organs (ganglions, spleen) where prions accumulate and replicate

(Aucouturier et al., 2001; Huang et al., 2002; Klein et al., 1997; Montrasio et al., 2000).

In a second step, PrPSc migrates from the periphery to the central nervous system. This

transfer is thought to implicate peripheral nerves and be PrPc dependent (Beekes et al.,

1996; Beekes et al., 1998; Glatzel and Aguzzi, 2000). After gaining contact with the

CNS, PrPSc propagates further in the brain leading to a progessive neurodegeneration.

How PrPSc passes through the gastrointestinal tract remains speculative, it could be

mediated by non specific endocytosis in lymphoid follicles present in the intestine

(Peyer´s patches) thanks to M cells (Heppner et al., 2001a) or require a specific receptor

and co-factors (Figure 5). A recent work performed on human enterocytes has shown that

the internalization of BSE-prions is mediated by LRP/LR (Morel et al., 2005).

Barrier species and prions strains:
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Passage of prions between species is characterized by prolonged incubation times,

low rate of transmission or no transmission at all. Differences in Prn-p gene sequences

have been demonstrated to be responsible for the species barrier (Race et al., 1995;

Raymond et al., 2000).

One remarkable features of prion disease is the existence of distinct prions strains.

Such strains harbor different biochemical properties such as susceptibility to proteinase K

(PK) digestion or electrophoretic mobility after PK treatment (Bessen and Marsh, 1994).

According to the "protein only" hypothesis, each strain is assumed to be associated with

different PrP pathological conformation or isoform. Recently different phenotypes of

CJD have been attributed to distinct human PrPSc types (Parchi et al., 1996). However,

Parchi mentioned that prion strains or prion types could be artefacts, migration conditions

and specially pH conditions of the samples may lead to different migration patterns (oral

communication, international Prion Conference 2005, Düsseldorf).

Figure 5. Model for the spread of prions in the organism following oral infection. The
prion uptake might be mediated by M cell endocytosis and/or specific LRP/LR dependent
internalisation by enterocytes.
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4.2 Mechanism of neurotoxicity

How and why prion leads to neurodegeneration is one of the issues that are still

obscure and controversial. Contrary to the dogma that PrPSc accumulation directly results

in neuro-destruction, several lines of evidence suggest that PrPSc itself is innocuous.

Although PrPSc is toxic to primary cultured neurons (Forloni et al., 1993; Muller et al.,

1993), it has no effect on PrPc-null neurons when inoculated in PrPc-null mice (Bueler et

al., 1993; Sailer et al., 1994). Furthermore neurotoxicity is restricted to PrPc-expressing

neurons grafted into the brain of PrP0/0 mice despite accumulation and migration of PrPSc

demonstrating that PrPc is necessary for neurotoxicity (Brandner et al., 1996). Different

hypothesis can be proposed:

- the adverse effects are due to PrPc loss of function : distorting signalling events that

PrPc normally controls might lead to neuronal apopotosis. This hypothesis is

conflicting because conditional PrP knock-out studies suggest that PrPc depletion is

not sufficient to mediate neurodegeneration.

- during prion invasion, aberrant forms of PrP with deleterious action are produced :

In a transgenic model, Ma et al showed that forced cytosolic expression of PrPc leads

to severe neurodegeneration (Ma et al., 2002). This idea is illustrated by studies on

naturally occuring prion diseases : a mutated form of PrPc found in inherited forms

have been demonstrated to be translocated to the cytoplasm to a greater degree than

wild-type PrPc (Ma and Lindquist, 2001; Ma and Lindquist, 2002). Moreover,

mutations in a central hydrophobic region of PrP generating increased transmembrane

forms of PrP cause neurodegeneration in some genetic diseases as well as in

transgenic mice (Hegde et al., 1998; Hegde et al., 1999). This transmembrane form

can also be subjected to degradation by cytoplasmic proteasomes involving access of

PrPc to the cytoplasm. In the last international prion conference (october 2005,

Düsseldorf), different speakers reported that high infectious material in some cases is

not associated with the presence of high quantity of PrPRes but rather with low PK

resistant PrP forms (Barron, Weissmann). Charles Weissmann proposed an updated

protein only hypothesis which includes a protease sensitive form of PrP (PrP*) which
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might be the pathogenic/replicative form rather than PrPSc (Figure 6).

PrPc

PrP*

PrPSc

Protease
sensitive

Protease
resistantInert form

Pathogenic/replicative form

4.3 Animal disease

• Scrapie

Scrapie is a naturally occuring disease in sheep and very rarely in goat. It has been

present in Europe for more than 200 years. It owes its name to the phenomenon that the

infected sheep animals scrape off their wool. Scrapie was the first TSE disease to be

shown as experimentally transmissible (Cuille, 1938). Although there are no known case

of genetic TSEs in animal comparable to human, allelic variations in the PrP sequence of

sheep seem to influence the susceptibility to scrapie infection (Baylis and Goldmann,

2004). The allelic variants responsible for scrapie susceptibility are more efficiently

converted to PrPSc by in vitro system (Sabuncu et al., 2003). However, the exact

mechanism of pathogenesis is unknown.

• Chronic Wasting disease (CWD)

This form of TSEs affects cervids in North America such as mule-deer, white-taile

deer. There are two distinct epidemics, one affecting free-ranging cervids, the other one

Figure 6. Modified protein-only hypothesis proposed by C. Weissmann (Prion
conference, Düsseldorf, 2005)
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farmed cervids. The infection is believed to have occured by oral exposure under natural

conditions via excreta or decomposed carcasses (Miller and Williams, 2003; Miller et al.,

2004). It has been hypothetized that these epidemics have originally emerged from a

sporadic form.

• Transmissible Mink encephalopathy (TME)

TME appears in farmed mink populations in different ranches in USA. The origin is

not identified but it seems to be a food-borne disease (Marsh and Hadlow, 1992).

• Bovine Spongiform encephalopathy (BSE or mad cow disease)

After the confirmation of the first case of BSE in 1987, the epidemic raised its

maximum with 3500 new infections per month in 1992/93. There are three hypotheses

regarding the origin (i) "the sheep origin hypothesis" proposes that the causative agent of

the disease was transmitted from sheep to cattle by feeding of meat and bone meal

prepared from sheep infected with the scrapie agent (ii) "the bovine origin hypothesis"

postulates that BSE emerged spontaneously in cattle (sporadic case) and was further

incorporated into the food chain (iii) the very new still speculative "human origin

hypothesis" assumes that human corpses found in indian rivers after funerals were

incorporated into animal feed (Colchester and Colchester, 2005). In any case, it seems

evident that recycling of infected bovine material within the cattle population amplified

the epidemic.

• Other diseases

Some other cases of spongiform encephalopathies in captive and zoo animal have

been detected including :Exotic ungulate encephalopathy (captive antelope,, bison etc...)

and Feline spongiform encephalopathy (puma, tiger...) (Sigurdson and Miller, 2003).

No natural occuring transmissible spongiform encephalopathy has ever been identified in

non-mammalian species, nevertheless prion-like elements exists in yeast, fungi and the

sea urchin aplysia.
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4.4 Human diseases

Human prion diseases occur in sporadic, transmitted and genetic (inherited) forms

(Table 2). Polymorphism at codon 129 of the prion protein gene, where methionine or

valine may be encoded (Goldfarb et al., 1994), is implicated both in susceptibility and

phenotype of human prion diseases. In vitro experiments performed on both PrP variants

revealed that the methionine 129 variant has a higher propensity to form ß-sheet-rich

oligomers (Tahiri-Alaoui et al., 2004).

• Sporadic form (sCJD)

The most common disorder is the sporadic form of CJD which accounts for approx.

85% of all cases of human prion disease. This disorder occurs with an incidence rate of

approx. 1 case/1 million/year with no epidemiological link with scrapie or other animal

prion disease. The exact origin of the pathogenesis is unknown  but it has been speculated

that a random event may occur in the brain where PrPc spontaneously converts to the

abnormal isoform triggering the process in the absence of exogenous PrPSc (Prusiner et

al., 1998) or alternatively that somatic mutations within the Prn-p gene may facilitate the

conversion. No epidemical risk factor has been identified for sCJD. The disease affects

mainly elderly individuals (peak onset at 60-69 years of age). Characteristic symptoms

are rapidly progressive dementia, associated with disordered movement, visual

disturbance and cerebellar ataxia. Most patients die within 6 months after onset of the

disease.

The sporadic cases affect mainly patients homozygous for methionine with regards to

a common PrP polymorphism at the amino acid at codon 129 (M/M) (Palmer et al., 1991)

• Genetic forms

Inherited or familial forms are autosomal dominant diseases and they are linked with

pathogenic mutations or insertion in the octorepeat region of the prion protein gene (Prn-

p) (Goldfarb et al., 1994; Goldfarb et al., 1992). These disorders have usually a specific

clinical phenotype.



25

-familial CJD :genetic forms of CJD termed familial CJD (fCJD) represent 10-

15% of CJD cases. The pathogenesis results of point mutations in the Prn-p gene and

insertions/deletions in the octarepeat region.

-other familial forms of human prion disease:

Fatal familial insomnia (FFI) is mainly associated with a mutation at the codon

178(D→N) in conjonction with methionine homozygosity at codon 129 (Gambetti and

Lugaresi, 1998). Patients show symptoms in form of progressive insomnia.

Gerstmann-Sträussler-Scheinker (GSS) syndrom occurs in five forms that are each

related to a point mutation within the human Prn-p gene (Cervenakova et al., 1999; Doh-

ura et al., 1989). The incidence rate is really low (1 case /10 million / year). In contrast to

CJD, GSS is a slow progressive disease, ataxia is the dominant clinical sign and

dementia is usually observed at a later stage.

• Transmitted forms

-Iatrogenic CJD: the larger number of iatrogenic cases have occured in the

recipients of human growth hormons extracted from cadaveric glands. In rare cases, CJD

has been transmitted by neurosurgical instruments, intracerebral electrodes and by dura

mater graft.

-Kuru is a disorder among a tribe in Papua New Guinea, occuring chiefly in

children and women, that has been postulated to be the results of cannibalism. Indeed

children and women consumed mainly brains of deceased family members. Recent

studies indicate that individuals homozygous for methionine at a polymorphic position

129 of the prion protein were preferentially affected during the kuru epidemic. The

carriers of the alternative 129(M/V) and 129(V/V) genotypes had a longer incubation

period and thus developed the disease at a later stage of the epidemic (Cervenakova et al.,

1998).

-New variant form of CJD (nvCJD/vCJD): This new form emerged about 10 years

after the first case of BSE (Deslys et al., 1997; Will et al., 1996). The early age of onset

was unusual (average age of 26 years), as well as the duration of the disease (15 months

vs 6 months for sCJD patients) and the histopathological features (presence of florid

plaques in the brain). All patients tested so far for codon 129 polymorphism were
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homozygous for methionine (Zeidler et al., 1997). There are now series of convincing

findings suggesting that nvCJD is a new disease resulting from human exposure to BSE :

(i) the isotype of PrP deposited in the brain of nvCJD has a similar glycosylation pattern

to experimentally transmitted BSE (Collinge et al., 1996)(ii) florid plaques are present in

the brain of macaque monkeys inoculated with BSE (Lasmezas et al., 1996) (iii) human

PrPc can be converted by bovine PrPSc into proteinase K resistant state (Raymond et al.,

1997) (iv) transgenic mice expressing human PrPc are infectable by the BSE agent (Hill

et al., 1997). Interestingly, Asante et al published that two distinct disease patterns have

been identified in mice challenged with BSE, one similar to nvCJD and the other one

closely related to sporadic CJD (Asante et al., 2002). This finding might clarify the

increasing number of sCJD cases reported in some countries, especially in Switzerland

(Glatzel et al., 2002) that may be in fact caused by BSE.

sporadic forms

genetic forms

acquired forms

sporadic Creutzfeldt-Jakob
disease

unknown : spontaneous
conversion of PrP or somatic
mutation in Prn-p gene ?

familial Creutzfeldt-Jakob
disease

Fatal familial insomnia

Gerstmann-Sträussler-
Scheinker syndrom

Iatrogenic forms

Kuru

new variant of Creutzfeldt-
Jakob disease

inherited mutation in Prn-p gene

inherited mutation in Prn-p gene

inherited mutation in Prn-p gene

ORIGINDISEASE

cadaveric growth hormons
treatments, electrodes, dura
mater graft

consumption of brain during
funeral feast

consumption of meat from BSE
infected cattle

Table 2. Classification of human transmissible spongiform encephalopathies
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5 Role of a cellular prion protein receptor

To better understand TSEs, strong efforts have been done to identify molecules

able to interact with PrP and so far a lots of interactors have been found. David Harris

proposed the existence of a cellular receptor for prions, his idea was that a prion receptor

should participate in the propagation of prions through its intenalization. The endocytosis

of the GPI anchored PrPc has been predicted to be mediated by a transmembrane protein

which might connect PrPc to clathrin. Two membrane proteins have been proposed to act

as a receptor for PrPc (1) the murine stress inducible protein I (STI1) (2) the 37kDa

laminin receptor (LRP). Moreover, several groups established that HSPGs (heparan

sulfate proteoglycans) present at the cell surface can also bind to PrPc and act as a

receptor for PrPSc.

5.1 The murine stress inducible protein I

A brazilian group identified a 66kDa membrane protein as a putative prion

receptor by complementary hydropathy (Martins et al., 1997). Several years later, they

determined that this PrPc ligand was mSTI1, a heat shock protein, first described in a

macromolecular complex with Hsp70 and Hsp90 chaperone family members. They could

demonstrate a specific binding in vitro by pull-down assays and at the cellular level and

observed that STI1 induce neuroprotective signals that rescue cells from apoptosis

(Zanata et al., 2002). More recently, another group assigned that STI1 is involved in PrPc

dependent SOD activation (Sakudo et al., 2005). Nevertheless, though the authors

detected a small fraction of STI1 at the cell surface (6%) of non-neuronal cells, so far no

transmembrane domain or signal peptide have been recorded for this protein.

Furthermore, since chaperonins oftenly bind all manner of probe (at least ten other

chaperonins have been reported to interact with PrPc: Hsp70, Hsp 90, GroEL...), this

findings need further confirmation.

5.2 The 37/67kDa laminin receptor
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LRP was first identified as a PrPc interactor in a yeast-two-hybrid screen by our

group (Rieger et al., 1997). This interaction was confirmed by co-infection and co-

transfection assays in insect and mammalian cells. It has been further demonstrated that

LRP is present in higher amounts in several organs and tissues of scrapie-infected mice

and hamsters such as brain, spleen and pancreas compared to uninfected animals

suggesting a good correlation between LRP levels and prion propagation. These findings

were further strenghtened by a series of experiment: (1) LRP is located at the cell surface

(2) PrP and LRP colocalize in neuronal and non-neuronal cells (3) PrP internalization is

LRP-dependent (Gauczynski et al., 2001b). A more recent work in our laboratory

postulates that LRP is not only the receptor for PrPc but also for  PrPSc (Gauczynski et al.,

submitted). This finding was confirmed by a french research group demonstrating that

human enterocytes internalize BSE prions in a LRP/LR dependent manner (Morel et al.,

2005).

The observation that laminin binds to the cancer cell surface led several groups to

attempt to purify the putative laminin receptor by affinity chromatography. In 1983,

independent laboratories reported the characterization of an apparently unique 67kDa

protein isolated from membrane fraction of cancer and muscle cells (Malinoff and Wicha,

1983; Rao et al., 1983). This molecule was called high affinity 67kDa laminin receptor

(LR). Nevertheless the cDNA isolated only contains a coding sequence for a smaller

polypeptide with a molecular weight of 37kDa acting as a precursor of the LR termed

laminin receptor precursor (LRP, Figure 4) (Rao et al., 1989). The maturation mechanism

is still controversial and different scenarios have been postulated to explain this

37kDa/67kDa polymorphism: homodimerization, heterodimerization, fatty acid

interaction (Buto et al., 1998; Landowski et al., 1995)...but the relationship between LRP

and LR remains still a mystery. LRP/LR is a multifunction protein and might be involved

in three cellular functions:

-cell-matrix interaction due to its laminin binding capacity: increased level of LR

correlates with the progression of solid tumors since adhesion to the basement membrane

and invasion are critical steps in the metastatic cascade (Cioce et al., 1991; Sanjuan et al.,

1996). Thus this protein is a useful prognostic marker in different cancers (de Manzoni et

al., 1998; Waltregny et al., 2001).
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-translational function in  association with ribosomes: LRP is identical to the p40

ribosomal protein and is thought to be a component of the translational machinery, being

specifically associated with the 40S ribosomal subunit (Auth and Brawerman, 1992;

Demianova et al., 1996).

-DNA-binding protein suggested to be involved in maintenance of nuclear

structures: this function is less documented and awaits further elucidation but LRP was

shown to localize in the nucleus and be tightly associated with nuclear structures

(Kinoshita et al., 1998; Salama et al., 2001; Sato et al., 1996).  Salama et al speculate that

LRP might be a shuttle protein which might clarify its localization in different

compartments.

Regarding evolutionary studies, LR is considered to originate from a ribosomal protein

that progressively acquires new roles (Ardini et al., 1998). The LRP sequence shows a

high degree of homology among mammalian species and the gene has been identified in

different species: Saccharomyces cerevisiae (Davis et al., 1992; Demianova et al., 1996),

Arabidopsis thaliana(Garcia-Hernandez et al., 1994), Drosophila melanogaster(Melnick

et al., 1993), the archaebacterium Haloarcula marismortui (Ouzonis et al., 1995).

In additon to these functions, LRP/LR have been charaterized as the receptor for

various pathogens: prions, Venezuelan equine encephalitis virus (Ludwig et al., 1996),

Sindbis virus (Wang et al., 1992), Dengue virus (Thepparit and Smith, 2004; Tio et al.,

2005), bacterial toxin CNF1 (Chung et al., 2003). On the other hand the presence of

laminin-specific receptor on the surface of micro-organisms may influence their

pathogenicity, and laminin binding protein related to LRP have been observed on the

surface of Candida albicans (Lopez-Ribot et al., 1996) and the parasite Leishmania

donovani (Bandyopadhyay et al., 2003).

5.3 Heparan sulfate proteoglycans (HSPGs)

Glycoaminoglycans (GAGs) such as heparan sulfate (HS) are long unbranched

side chains of proteoglycans that are found in several cellular compartments including the

cell surface. HS are directly connected to prion pathogenesis since they accumulate in

cerebral prion amyloid plaques as it does in Alzheimer´s disease (Fukuchi et al., 1998;
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Snow et al., 1989). Furthermore, a work conducted in our laboratory suggested that

beside the direct interaction site between PrP and LRP, there is an indirect binding site

implicating HSPGs (Hundt et al., 2001). Since HSPGs are involved in PrP binding, we

suggested that they act as co-factors or co-receptors for PrP. HSPGs are initial attachment

receptors for a series of virus such as AAV, HIV-1 and many more (Coombe and Kett,

2005). The group of Taraboulos recently published that heparan sulfate are binding and

uptake receptors for prions in agrement with another work from other investigators (Ben-

Zaken et al., 2003; Hijazi et al., 2005).

5.4 Neural cell adhesion molecule (NCAM)

NCAM has been identified as a PrP interactor at the surface of neuronal cells

although this receptor has neither a role in PrPSc propagation in animals nor in PrP

internalization (Schmitt-Ulms et al., 2001). NCAM is reported to enhance neurite

outgrowth via activation of p59fyn (Beggs et al., 1997; Beggs et al., 1994), PrPc

contributes to this mechanism by recruiting NCAM to lipid rafts, which is essential for

promotion of neurite outgrowth (Santuccione et al., 2005).
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CHAPTER II

Therapeutic approaches for the

treatment of prion diseases

Published in a german version as:

Clémence Rey and Stefan Weiss

Therapeutische Ansätze zur Behandlung von Prionerkrankungen Nova Acta Leopoldina

(2005), in press.
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Abstract

Prion diseases are a group of lethal neurodegenerative disorders associated with

misfolding of a host protein, the prion protein PrPc. But despite increasing knowledges

concerning this class of disease, up to now no therapeutic approach has been found to

cure the disease or stabilize the pathogenesis in humans. A variety of potential

therapeutic compounds have been tested in experimental models and some of them have

been proven to prevent prion infection in rodents. However, none of them was successfull

to cure the disease at a late stage. Nevertheless since the BSE crisis that might have

infected a number of humans by dietary exposure, increased efforts have been done in the

scientific community both in experimental therapy and basic research.

1 Introduction

Transmissible spongiform encephalopathies (TSEs) or prion diseases are

neurodegenerative lethal disorders. This class of illnesses includes Creutzfeldt-Jakob

disease (CJD) in humans and bovine spongiform encephalopathy (BSE) in animals.

Prions are remarkable pathogens since they represent a new class of agents, infectious

proteins. The disease-associated prion protein termed PrPSc results from the

confomational change of the host cellular prion protein PrPc. Due to its protease

resistance PrPSc is not degraded by the host proteolysis systems (i.e the proteasomal or the

lysosomal degradation pathways) and accumulates in the central nervous system (CNS).

In humans, these diseases occur in infectious, sporadic and genetic forms. The attempts to

develop an effective means of treatment began after the UK BSE epidemic, initially

amplified by feeding cattle with meat and bone meal that was suspected to be responsible

for the emergence of the new variant form of CJD (vCJD) in humans. Since many aspects

in prion biology remain unclear, prion diseases are fascinating biological enigma. The

physiological function of the prion protein and the mechanisms leading to neuronal

damage are still poorly understood.

2 Curing of TSEs: a challenge?
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Only a few drugs have been tested in patients suffering from CJD and up to now,

no efficient therapy is available and TSEs are invariably lethal. The disease is rapidly

progressive and when the first symptoms appear, there are already irreversible brain

damages, the absence of an early diagnosis is then the first limitation. Moreover clinical

studies are rendered really difficult due to the rarity of the disease and the variablity of

the pattern of the disease and as these diseases are lethal, ethically no placebo can be

accepted. Because of unusual properties of TSEs, standard approaches (antiviral or

antibacterial substances) are useless. Hence, it is necessary to develop new strategies for

the treatment of prion diseases.

When the infection source is peripheric, the scrapie agent rises to lymphoid

organs before to transfer to the CNS (Jeffrey et al., 2000), then a post-exposure

prophylaxis may be feasible preventing neuro-invasion. After the neuro-invasion began,

the compounds used should cross the non-permeable blood brain barrier or be

administered directly into the brain.

The challenge to cure TSEs or improve the survival time is dual: it will require

both improvement in diagnostics and identification of efficient compounds that are non-

toxic and able to cross the blood brain barrier. So far more than 20 compounds able to

enhance prion clearance in cultured cells have been identified and several of them have

been shown to extend the incubation times of mice or hamsters but only when

administered around the time point of prion inoculation. Nervertheless, regarding

increasing investigations and knowledge concerning TSE, prion therapy seems to be

feasible. Multi-therapy might also be required for therapy of prion diseases as done in the

treatment of HIV.

3 Models for therapeutic investigation

3.1 In vitro models
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The development of a cell-free conversion assay, binding or polymerisation

assays allow the evaluation of putative inhibitory effect of compounds interacting either

with PrPc or PrPSc. Since protein misfolding cyclic amplification (PMCA) reactions

performed on brain homogenates gives higher yields of misfolded PrP than in vitro

conversion (Supattapone, 2004), it might be adapted to high-throughput screening.

3.2 Cellular models

Cell culture systems represent relevant experimental models for TSEs: the scrapie

agent can chronically infect some neuronal cell lines such as murine neuroblastoma cell

lines (e.g. N2a) which are frequently used as well as hypothalamic neural cell lines (i.e.

GT1) (Solassol et al., 2003). These cells have contributed to the screening and the study

of potential therapeutic compounds. The cells are infected with a scrapie brain inoculum

from the same species. Nevertheless, these models are limited: (i) the cell lines employed

are mainly from murine origin and might not be transposable to humans, (ii) the

infectivity is not always stable and can be lost after several passages lacking obvious

reasons, (iii) they constitute a simplified model compared to in vivo propagation (role of

immune system, nervous system) and as a consequence not all compounds with in vitro

activity are effective in vivo.

3.3 Animal models

TSE agent can be transmitted to laboratory animals such as mice and hamsters by

using rodent adapted strains. These models are most relevant for evaluation of drugs

although (i) the incubation times are relatively long (several months), (ii) the strains are

not natural and (iii) the physiology is different from humans. The incubation times

depend on the inoculation route: mice die approx. 150 and 200 days, respectively, after

intracerebral and intraperitoneal administration of the scrapie agent. The spleen, the main

location of peripheral PrPSc propagation can be analyzed approx. 90 days after PrPSc

inoculation: here early signs of a prion infection reflected by the presence of PrPres, can

be monitored.  The primate system, however, is probably the closest model to the human
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situation, since these animals can be inoculated with CJD. However, the primate model

require huge cost regarding animal care facilities and the incubation times are in the

range of several years.

4 Targets and Strategies for the treatment of TSEs

Different ways for the intervention in prion diseases are possible and many are

under investigation. Many investigators tried to target PrPc or PrPSc itself but it is also

possible to interfere with lympho-invasion that implicates the immune system or to target

PrP specific receptors or co-receptors (Table 1).

Effect in scrapie
infected cells

Effect in rodent models
RemarksTargets/Compounds

PrPc

PrPSc

Raft domains

Immune system

Heparan mimetics

LRP

 anti-PrP antibodies

IDX

 anti-PrP scFv antibodies
Yes Yes
Yes Yes

 binding compounds

 ß sheet breakers
 increasing clearance

Tetracycline
Congo Red

(branched polyamines)

 polyene antibiotics
amphotericin B
MS-8209

 FDC maturation inhibition
(soluble lymphotoxin ß receptor)

(DS500, pentosan polysulfate)

 anti LRP antibodies

delivery by passive immunization
 transgenic expression

Yes Yes

Yes
less toxic than amphotericin B

Yes

Yes
Yes peptides are added to scrapie inoculum

 immunization against PrP Yes

Yes

 Complement inhibition Yes

DS500 is toxic

prophylactic therapeutic

?
Quinacrine
Chlorpromazine

Yes
Yes

No

Yes
Yes

Yes
Yes

Effect restricted to certain
scrapie strains

?

No
?
?

? ?
?

?
?

Yes drug is preincubated with
scrapie inoculum

?

Yes

Yes Yes ?

?
No

? ?
Controversial results in

human trials

Table 1. Therapeutic strategies for the treatment of prion diseases investigated in scrapie infected

cells and experimental models.
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4.1 PrP as a target

• Molecules that act on PrPc

As shown in PrP-knock-out mice, depletion of PrPc prevents scrapie infection (Bueler

et al., 1993). Hence, PrPc is of great interest as a target for intervention in TSEs. As a

proof of principle it was elegantly demonstrated that transgenic mice expressing anti-PrP

antibodies are protected against peripheral prion infection (Heppner et al., 2001b).

Moreover, antibodies against PrP inhibit propagation of PrPSc in cell culture (Enari et al.,

2001; Peretz et al., 2001b; Perrier et al., 2004). Other investigators have reported that

passive immunization with anti-PrP monoclonal antibodies reduces the infectivity in the

spleen of mice peripherally infected with prions (White et al., 2003). However, another

group pointed out that the injection of large amounts of anti-PrP antibodies caused

massive neuronal apoptosis and the authors speculate that this might be due to PrP cross-

linking via the antibodies (Solforosi et al., 2004). A very recent study proposes to use

miniantibodies (single chain antibodies) as an alternative approach (Donofrio et al.,

2005). Animals with TSEs do no elicit immune response against PrPSc but active

immunization or vaccination have been actively investigated. This approach implicates to

break immune tolerance to PrP that might be achieved by different strategies (e.g. PrP

dimerization, PrP cross-linking to a bacterial protein) (Gilch et al., 2003; Koller et al.,

2002; Rosset et al., 2004). Different groups reported low protective effects on infected

mice (Polymenidou et al., 2004; Schwarz et al., 2003; Sigurdsson et al., 2003). However,

innovative strategies are emerging such as expression of PrP at the surface of viral

particles (Nikles et al., 2005) and these might contribute to increase the levels of auto-

antibodies which might act as the limiting factor.

• Molecules that interact with PrPSc

A key feature for prion diseases is the conversion of PrPc to PrPSc. Chemicals able to

bind to PrPSc may sequester and enable it from serving as a template for replication.

Several molecules which are able to interact specifically with PrPSc or amyloids have

been tested: iodoxorubicin (Tagliavini et al., 1997), tetracycline (Forloni et al., 2002;
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Tagliavini et al., 2000) and Congo Red (Caughey and Race, 1992; Ingrosso et al., 1995)

might act by sequestering the template for conversion.

Another group of anti-TSE compounds consists of specifically designed synthetic PrP

peptides termed ß-sheet breakers. These peptides with sequence homologies to PrPc and

an increase in proline content are able to interact with PrPSc and change its secondary

structure (Chabry et al., 1998). As a consequence, they lead to a decrease in the protease

resistance of PrPSc allowing a better clearance of PrPSc. The ß-sheet breakers indeed

mediate prolongation of the life span of PrPSc-infected mice when the scrapie inoculum is

mixed with such ß-sheet breakers (Soto et al., 2000).

• Enhancement of PrPSc clearance

PrPSc is partially resistant to proteolytic degradation as assayed by proteinase K in

vitro but there are obviously natural mechanisms to destroy it. Indeed, PrP knock-out

mice inoculated with high-dosis of prions, revealed clearance of PrPSc within 2 weeks.

The half-life of PrPSc is evaluated at 24h in scrapie-infected cells  (Ertmer et al., 2004).

To increase PrPSc clearance by the organism represents a reasonable strategy. Branched

polyamines that are thought to stimulate PrPSc clearance in endolysosomes result in

curing of chronically infected cells (Supattapone et al., 1999; Supattapone et al., 2001).

An inhibitor of the tyrosine kinase c-abl also activates PrPSc lysosomal degradation

(Ertmer et al., 2004).

• Indirect effect : disturbance of raft biology

Some polyene antibiotics such as amphotericin B and MS 8209 normally used as anti-

fungal agents are cholesterol interactors, which might interfere with raft integrity. They

are believed to impair PrPc or PrPc/PrPSc endocytosis and thus slow-down PrPSc

accumulation as proved in chronically infected cells (Mange et al., 2000). MS 8209 is

particularly efficient in infected hamsters (Adjou et al., 1999; Adjou et al., 2000;

Demaimay et al., 1997).

4.2 Drugs able to cross the blood brain barrier

Drugs licensed for humans for some other indications have been tested: that is the

case of chlorpromazine and quinacrine which are efficient in infected cells (Korth et al.,
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2001) but failed to prolong survival times in rodent models (Barret et al., 2003; Collins et

al., 2002). Quinacrine has been evaluated in different small clinical trials for CJD patients

but no significant effect has been observed although some studies reported a transient

improvement in visual stimulation (Benito-Leon, 2004; Furukawa et al., 2002; Kobayashi

et al., 2003; Nakajima et al., 2004). Furthermore quinacrine treatments led to liver

dysfunctions.

4.3 Immune system

Follicular dendritic cells (FDC) play an important role in peripheral infection

since they are responsible for PrPSc accumulation in the germinal centres of secondary

lymphoid organs. They may be directly involved in the connection between lympho-

invasion and neuro-invasion since they are closely located to sympathetic nerve endings.

The differentiation and maturation of FDCs that are mediated via a molecular dialogue

with B-cells represent two steps required for splenic PrPSc accumulation. Both

lymphotoxin ß and TNF are implicated in this process, suggesting that they are potential

targets (Aguzzi and Heikenwalder, 2005; Brown et al., 2000). The maturation

mechanisms can be impaired by neutralization of the lymphotoxin ß receptor using a

soluble form of it (Mabbott et al., 2003; Mohan et al., 2005). When applied to i.p.

infected mice, a single injection is efficient to prevent early PrPSc accumulation within the

spleen but not after oral challenging.

4.4 Neuronal damage rescue

• Neurons grafting

Therapeutic approaches involving replacement or rescue of damaged neurons may

help to delay clinical symptoms of disease. Brown et al. reported that grafting of

embryonic cell graft devoid of PrP in hippocampus protects against scrapie neuronal loss.

Despite no prolongation in the incubation period of the disease it has been observed that

the treated area retains 50% more neurons than controls in mice grafted at a relatively late
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stage of the disease (Brown et al., 2001). Transplantation of cells to multiple sites in the

brain might further extend the incubation times.

• Neuroprotective molecules

Since the main feature of TSEs is neuronal death, any drug with the ability to impair

the cascade associated with this event would be of interest.

4.5 PrP receptors

• Heparan Sulfate Proteoglycans (HSPGs) / Glycoaminoglycans (GAGs)

HSPGs consist of a protein core covalently linked to glycoaminoglycans. These

molecules that are either secreted or inserted into the plasma membrane are important

components of the extracellullar matrix and many of them act as co-receptors. Viruses

such as HIV-1 (Saphire et al., 2001), Dengue virus (Hilgard and Stockert, 2000) , Adeno-

associated virus (AAV) (Summerford and Samulski, 1998) and Sindbis Virus (Ryman et

al., 2004) use HSPGs or GAGs as initial attachment receptors.

HSPGs have a binding affinity to PrP and have been shown to play an active role in

PrPc/PrPSc internalization (Hijazi et al., 2005; Horonchik et al., 2005). For this reason

heparan sulfate mimetics (HMs) may be good candidates for therapeutic interventions

(Caughey and Raymond, 1993). However their in vivo use was first limited by toxicity

(e.g. Dextran sulfate 500 (Farquhar and Dickinson, 1986) and pentosan sodium

polysulfate (Diringer and Ehlers, 1991)). New compounds optimized by group

substitutions emerged and have been shown to hamper PrPSc formation both in cell

culture and in animals (Adjou et al., 2003).

• The 37 kDa/67 kDa laminin receptor (LRP/LR) as a target

We identified the laminin receptor (LRP/LR) as the cell surface receptor for PrPc

(Gauczynski et al., 2001b; Rieger et al., 1997). According to our working model (Figure

1), we postulate that interfering in LRP-PrPc/PrPSc interaction might first decrease prion

entry in the intestinal tract, but also hamper PrPc internalization leading to a reduction of

PrPSc formation in the endocytic pathway. We hypothesize that LRP may also promote

cell to cell propagation of PrPSc.
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Figure 1. Role of the laminin receptor in the biogenesis of prions. The cellular isoform of the
prion protein PrPc is synthetized and glycosylated in the ER where the GPI anchor is added. PrPc

is transported to the plasma membrane where it interacts with the 37 kDa/67 kDa laminin
receptor. During prion infection, the abnormal prion isoform PrPSc binds to PrPc that is converted
to PrPSc by a conformational change. This process occurs on the cell surface or in endocytic
vesicles such as endosomes, lysosomes or endolysosomes. The prion propagation is thought to be
affected by factors such as the laminin receptor and heparan sulfate proteoglycans (HSPGs).
LRP/LR  and HSPGs  act as co-factors/co-receptors for PrPC and for the infectious prion protein
PrPSc. PrPSc is thought to accumulate in lysosomes and in extracellular deposits rather than in the
plasma membrane.

LRP is necessary for PrPSc propagation in scrapie infected cells as reported

previously. Thus, the knock-down of LRP by antisense LRP RNAs or by siRNA

technology eradicates PrPSc in chronically infected cells. This can also been achieved by

polyclonal antibodies directed against LRP leading to the possibility of development of

new experimental therapies based on antibodies (Leucht et al., 2003). Recently, it was

shown that the polyclonal antibody W3 directed against LRP blocked the internalization

of the bovine infectious prion protein by human enterocytes, demonstrating that LRP/LR

acts as a receptor for infectious prions (Morel et al., 2005). Because polyclonal antibodies
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are not applicable for therapeutic purposes, an alternative approach is to take advantages

of a new technology: single chain antibody fragments (scFvs) (Bird et al., 1988) (Figure

2). The development of a TSEs therapy based on scFvs directed against LRP/LR is a

promising alternative or a complementary approach to anti-PrP antibodies.

5 Single chain antibodies as therapeutical tools

Antibody-based therapeutics are beginning to realize the promise enclosed in their

earlier denomination "magic bullets".

Monoclonal antibodies have found applications in diagnosis and in treatment of

various diseases, including cancer. Approx. 20 of them have the approval for therapeutic

use in humans such as Rituxan® for lymphoma and Herceptin® for breast cancer.

However, to improve this technology smaller antibodies have been engineered which

exhibit better tissue penetration and enable binding specificity encoded by a single

polypeptide gene. Among these novel antibodies, single chain antibodies are the smallest

one with sizes of approx. 30kDa versus 150kDa for entire immunoglobulins. A scFv

comprises the variable domain of the heavy and light chains (VH and VL) of a monoclonal

antibody joined by a linker peptide (Figure 2). The advantages of scFvs compared to Igs

make them interesting tools for therapy of neurodegenerative diseases: (i) they can be

easily selected and expressed in bacterial systems, (ii) they should better penetrate brain

tissues, (iii) they can be delivered by gene therapy, and (iv) they do not induce immune

responses due to the lack of the Fc part. ScFvs already proved great potential in several

publications and clinical trials predominantly in the cancer field. Nevertheless, new scFvs

are emerging for neurodegenerative diseases. Lui et al developed scFvs directed against ß

amyloids as an alternative to monoclonal antibodies that provoke dangerous side effects

in patients. These scFvs can eliminate toxic effect of aggregated Aß-peptides causing

Alzheimer’s disease in cells (Liu et al., 2004). ScFvs directed against huntingtin have

been engineered and might be helpful to treat Huntington disease (Khoshnan et al., 2002).

Transgenic animals overproducing scFvs against PrPc are protected against TSEs. Very
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recently, it was shown that anti-PrP scFvs produced by genetically modified cells

contribute to block prion propagation in chronically infected cells in co-culture (paracrine

inhibition) (Donofrio et al., 2005).

VH

VLFv

Fc

Fab

Disulfide bonds

Linker peptide

6 Delivery of antibodies for TSEs

6.1 Passive immunotransfer

The easiest way to deliver the antibody is by intraperitoneal or intravenous

injections. However, huge amounts of recombinant antibodies are required and due to the

blood brain barrier, it is likely that only a small quantity of them might act in the brain

where most of PrPSc accumulates. It has been previously estimated that 0,1% of injected

Immunglobulins (Igs) might enter the brain (Bard et al., 2000), but no data concerning

scFv have been reported so far. Therefore this approach will be favoured for prophylactic

treatment or at early stage of the disease to delay the peripheral invasion. Nevertheless,

intracerebral infusion might be an alternative route for delivery. A single injection of

antibody in the third ventricule of mouse brain led to diffusion throughout the entire brain

within 24h (Chauhan et al., 2001). This strategy has been tested for the administration of

Figure 2. Schematic representation
of an entire IgG molecule and a
single chain antibody.
Ig are composed of two similar
light chains (L) and 2 similar
heavy chains (H). Light chains
contain one constant domain and
one variable domain (VL), whereas
heavy chains consist of three
constant domains and one variable
domain (VH). A heterodimer of VH
and VL linked by a peptide is
called single chain Fv fragment
(for fragment variable) and is still
capable to bind the antigen. Single
chain antibodies directed against
PrP or LRP might be powerful
tools in therapy of prion diseases.
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the anti-prion drug pentosan polysulfate by implanting a continuous intraventricular drug

infusion device (Doh-ura et al., 2004).

6.2 Gene transfer via viral vectors

Vector Inflammatory
potential

Limitations Advantages Use in experimental model of
neurodegenerative diseases

 adeno-associated
virus

lentivirus

herpesvirus

adenovirus

low

low

high

high inflammatory
response

integration may
induce
oncogenesis

inflammatory
response

small packaging
capacity 5kb

strong tropism
for neurons

persistent gene
transfer

persistent gene transfer,
non inflammatory, non
pathogenic

Park
inson

Alzh
eim

er

Huntington

-

GDNF7

-

GDNF3

CNTF

-

ApoE6GDNF5

GDNF1

GDNF4

GDNF8 BDNF9

ApoE2

Table 2. Overview of advantages and disadvantages of viral vectors suitable for brain targeting.
The experimental delivery of therapeutic molecules via viral vectors for three neurodegenative
diseases are mentioned in this table. Viral vectors are oftenly used to express neurotrophic factors
in the CNS such as BDNF (brain derived neurotrophic factor), GDNF (glial cell line-derived
neurotrophic factor), CNTF (ciliary neurotrophic factor) and ApoE (apolipoprotein E).
1(Azzouz et al., 2004), 2 (Dodart et al., 2005), 3 (Regulier et al., 2003), 4 (Fink et al., 2003),
5(Wang et al., 2002), 6(Feng et al., 2004), 7(Kells et al., 2004), 8(Chen et al., 2003), 9(Bemelmans
et al., 1999)

The use of scFvs for TSEs is limited by large scale production and biodistribution.

In order to circumvent these limitations antibody based gene therapy can be used for

instance via in vivo gene transfer using viral vectors. Vectors carrying a therapeutical

gene can be packaged into a viral coat allowing efficient gene transfer in the absence of

viral gene expression in target cells. Several viral vector system are suitable to infect cells
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of the nervous system: adeno-associated viruses, lentiviruses, herpesviruses and

adenoviruses (Table 2). A single micro-injection of a recombinant virus into the brain

might support continuous and sustained transgene expression.

6.3 Engineered cells producing antibodies

Genetically engineered cells might be the source of sustained concentrations of

soluble antibody fragments, capable of achieving long-term expression. The cells can be

encapsulated in immunoprotective devices to avoid rejection. The use of hybridoma cells

producing monoclonal antibodies is an obvious option. Nevertheless, this approach is

limited by the short life span of hyridoma cells. Muscle cells are good candidates since

they are long-living cells and are capable to sustain secretion of monoclonal antibodies

for several months in vivo (Noel et al., 1997).

Although we are far away to cure TSEs in humans, interventions in the

progression of TSEs in animal models, particularly with the development of

immunotherapy, is a source of optimism. It is likely that increasing experimental data on

prion biology will contribute to the emergence of novel therapeutic approaches in the

future.
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The 37kDa/67kDa laminin receptor is

required for PrPSc propagation in

scrapie-infected neuronal cells
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Abstract

The accumulation of PrPSc in scrapie-infected neuronal cells has been prevented by three

approaches: (i) transfection of ScMNB cells with an antisense laminin receptor precursor

(LRP) RNA-expression plasmid, (ii) transfection of ScN2a cells and ScGT1 cells with

small interfering RNAs (siRNAs) specific for the LRP mRNA, and (iii) incubation of

ScN2a with an anti-LRP/LR antibody. LRP antisense RNA and LRP siRNAs reduced

LRP/LR expression and inhibited the accumulation of PrPSc in these cells. The treatments

also reduced PrPc levels. The anti-LRP/LR antibody, W3, abolished PrPSc accumulation

and reduced PrPc levels after seven days of incubation. Cells remained free of PrPSc after

being cultured for 14 additional days without the antibody, whereas the PrPc level was

restored. Our results demonstrate the necessity of the laminin receptor (LRP/LR) for

PrPSc propagation in cultured cells and suggest that LRP/LR-specific antibodies could be

used as powerful therapeutic tools in the treatment of transmissible spongiform

encephalopathies.

Introduction

Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative

disorders that include Creutzfeldt-Jakob disease (CJD) in humans, bovine spongiform

encephalopathy (BSE) in cattle, and scrapie in sheep (Aguzzi and Weissmann, 1998;

Lasmézas and Weiss, 2000; Lasmézas, 2000; Prusiner et al., 1998; Weissmann, 1999).

The main pathogenic event in the development of TSEs is the conversion of PrPc, the

normal cellular form of the prion protein, to PrPSc. An important feature of PrPSc is its

partial resistance to proteases, which makes it biochemically distinguishable from PrPc

(Caughey and Raymond, 1991). Recently, we identified the laminin receptor (LRP/LR)

as the cell-surface receptor for PrPc (Gauczynski et al., 2001b). Heparan sulfate

proteoglycans (HSPGs) have been shown to function as cofactors or co-receptors for the



47

binding of PrPc to the LRP/LR (Hundt et al., 2001). The LRP/LR has been shown to

interact directly with PrPc in the yeast two-hybrid system (Rieger et al., 1997). This

interaction was confirmed by pull-down assays in cotransfected COS-7 cells and co-

infected insect cells (Rieger et al., 1997). Furthermore, increased levels of the LRP were

found in the brain, spleen and pancreas of scrapie-infected mice and hamsters, as well as

in scrapie-infected neuroblastoma cells, which are a well characterized in vitro model for

scrapie infection (Rieger et al., 1997). These data suggest a link between the LRP/LR and

prion propagation.

The non-integrin LRP/LR is a multifunctional protein that is required for cell

differentiation, movement and growth (for review see (Gauczynski et al., 2001a)). The

LRP cDNA encodes a 37-kDa precursor protein (LRP), also known as p40, and has been

cloned from different species by several groups. This protein has been reported to be

ribosome-associated, to bind to the histones H2A, H2B and H4 and to be the precursor of

the metastasis-associated 67 kDa mature high-affinity laminin receptor (LR) (for review

(Gauczynski et al., 2001a; Leucht, 2002)). The 67-kDa LR is consistently upregulated in

aggressive carcinomas, suggesting a role in cell homeostasis and cohesion. The amino-

acid sequence of the receptor is highly conserved through-out evolution, with at least

98.3% homology between the mouse, human and bovine sequences and 99% homology

between the rat and human sequences (for review (Gauczynski et al., 2001a; Leucht,

2002)). Published data suggest the existence of at least six LR genes in the mouse

genome; one of these is localized on chromosome nine and at least two copies are

thought to be functional (Douville and Carbonetto, 1992). Using TRIBE-MCL, an

algorithm for the detection of protein families (Enright et al., 2002), five LR genes were

identified when the program was used to search the latest mouse draft genome sequence

(Mouse Genome Sequencing Consortium, 2003, available at http://www.ensembl.org).

The LRP gene on chromosome nine has seven exons and six introns but, in contrast with

earlier results (Douville and Carbonetto, 1992), no LRP/LR gene on chromosome six has

been identified. Interestingly, genes that affect susceptibility to prions have been

identified on mouse chromosome nine (Stephenson et al., 2000).

PrP-specific antibodies have successfully been used in preventing prion propagation in

vitro and in vivo as follows: first, the accumulation of PrPSc in scrapie-infected
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neuroblastoma cells was inhibited by PrP-specific antibodies (Peretz et al., 2001a),

second scrapie infection was abolished by transgenic expression of PrP-specific

antibodies in mice (Heppner et al., 2001b). The epitope recognized by the antibody that

has the most potent effect on PrPSc, D18, consists of amino-acid residues 132-156 of PrP,

which includes helix A (residues 145-155). Because PrP residues 144-179 have been

shown to constitute a binding site for the LRP/LR, we investigated whether antibodies

directed against the LRP/LR, the cellular receptor of PrPc, can also be used to interfere

with the metabolism of PrPSc. To ablate LRP/LR expression from all putative LRP/LR-

encoding genes we used an antisense RNA and a small interfering RNA (siRNA)

approach. We investigated whether these strategies had an effect on prion propagation in

several scrapie-infected cells systems.

Results and Discussion

Antisense LRP RNA prevents PrPSc propagation

To produce LRP antisense messenger RNA, we cloned a region of LRP

complementary DNA from nucleotide position -65-901 into the expression plasmid pCI-

neo in the antisense orientation to produce the pCI-neo-asLRP plasmid. After transient

transfection of pCI-neo-asLRP into ScMNB cells we confirmed antisense LRP RNA

expression in these cells (Fig. 1A). The level of the LRP mRNA was greatly reduced 48 h

after transfection (Fig. 1B). Using phosphoimaging, this reduction was quantified and

LRP mRNA levels were found to be 80-85% of normal LRP/LR mRNA expression

levels. A similar reduction in target mRNA has been shown in other studies that have

used the antisense RNA method to downregulate the expression of myelin basic protein

(Katsuki et al., 1988) (80% reduction), and Wnt-1 (Erickson et al., 1993)  (up to 98%

reduction). At the level of protein expression, no LRP protein was detected by western

blotting 48 h after transfection (Fig. 1C). Analysis of cells 72 h after transfection showed

an absence of the PrPSc propagation (Fig.1D) in cells with reduced LRP levels  (Fig.1C).
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Levels of PrPSc were unaffected in cells transfected with pCI-neo as compared with

untransfected cells (Fig 1D). In ScMNB cells we were able to detect only the detect only

the diglycosylated form of PrP using the SAF70 antibody, whereas in ScN2a cells and

ScGT1 cells we observed the classic three-band pattern. We observed a reduction in PrPc

level after antisense LRP RNA transfection (Fig. 1D), which might be caused by an

altered PrPc metabolism. Previous studies have indicated that PrPc internalization is

highly dependent on the presence of the LRP/LR at the cell surface (Gauczynski et al.,

2001b), where the LRP/LR binds PrPc through two distinct domains: the octapeptide

region and the region encompassing amino acids 144-179 of PrPc (Hundt et al., 2001).

This is consistent with a very recent study, in which it was found that the octarepeat

region is essential for internalization of PrPc (Nunziante et al., 2002). Hence, the altered

PrPc levels seen in this study are likely to be due to perturbed metabolism of the protein.

LRP-specific siRNAs prevent PrPSc propagation

SiRNAs were used to verify the results obtained using the LRP antisense RNA

construct. This method has been used successfully in other studies to knock down target-

gene expression levels (Elbashir et al., 2001a). We tested four different LRP-specific

siRNAs for their ability to repress LRP expression in ScN2a cells. All of them repressed

LRP synthesis (Fig. 2A). Figure 2B shows data from a time-course experiment carried

out to analyse the effect of siRNA-LRP3 on PrPSc propagation in ScN2a cells. Seventy-

two hours after transfection, PrPSc propagation was completely abolished by siRNA-

LRP3, whereas siRNA-LRP4 and a control siRNA (lamin A/C, described in Elbashir et

al., 2001) had a smaller effect (siRNA-LRP1 + siRNA-LRP4) or no effect (control) on

PrPSc levels. PrPc levels were reduced in the presence of siRNA-LRP3. The same effects

were observed with LRP antisense RNA 72h after transfetction. In contrast to PrPSc, PrPc

levels increased 96h after transfection, probably due to a decrease in siRNA effectiveness

with time.

We also tested the efficiency of the reduction of LRP expression using siRNAs in

ScGT1 cells, which show a robust PrPSc phenotype (that is, these cells propagate PrPSc
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over a long period of time). The results were consistent with those obtained using ScN2a

cells, with a strong reduction of PrPSc correlated with LRP downregulation (Fig. 2C).

Anti-LRP/LR antibody W3 prevents PrPSc accumulation

LRP/LR-specific antibodies have been used successfully to compete with

recombinant prion proteins for binding to the LRP/LR in different mammalian cell types

(Gauczynski et al., 2001b), showing that the LRP/LR has a crucial role in the metabolism

of PrPc. Using the LRP/LR-specific antibody, W3 (Rieger et al., 1997), in ScN2a cells we

observed a reduction of PrPSc to undetectable levels (Fig. 3A, B). The antibody was used

at concentrations of 6-64 µg ml-1. At a concentration of 12 µg ml-1 a reduction in PrPSc

levels was observed. At a higher concentration (64 µg ml-1), PrPSc accumulation was

completely abolished after incubation for three days, indicating a dose-dependent effect

(Fig. 3A). In a time course experiment, we found a complete clearance of PrPSc after

incubation for one week, using an antibody concentration of 32 µg ml-1 (Fig. 3B). These

results are consistent with a previous study, in which different anti-PrP antibodies were

used to reduce PrPSc levels in cultured cells (Peretz et al., 2001b)(Table I). In that study,

PrP antibody concentrations of 1.2-10.0 µg ml-1 were sufficient to clear PrPSc from ScN2a

cells after one week of incubation (Table 1).

We also incubated ScN2a cells in which PrPSc had been previously cleared by W3

for a further two weeks without any antibody, and showed that no PrPSc reappeared (Fig.

3B). PrPc levels in W3-treated cells were reduced after seven days of incubation with W3,

but were completely restored after a further two-weeks incubation in the absence of the

antibody (Fig. 3B).
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Role of the LRP/LR in PrPSc propagation in cultured cells

The knock down of the LRP/LR on the cell surface by LRP antisense RNAs or by

siRNAs, and the blockage of LRP/LR binding sites by the W3 anti-LRP/LR antibody are

most likely to interfere with the PrP levels by blocking the PrP internalization process.

However, some PrPc can still be synthesized and transported through the secretory

pathway to the cell surface (Figures 1D, 2B, 3). Conversion of PrPc into PrPSc is thought

to take place either at the cell membrane or in the endocytic pathway. Thus, it is possible

that due to the lack of PrPc within the endocytic pathway no PrPSc can be formed,

resulting in a time-dependent reduction of PrPSc (Fig. 2B, 3B). It is also possible that the

LRP/LR has a function in the conversion of PrPc to PrPSc, and that the absence of the

LRP/LR from the cell surface affects PrPSc formation. PrPSc propagation cannot be

restored after cessation of the incubation with anti-LRP/LR antibody (Fig. 3 B) due to the

absence of any PrPSc to re-initiate the conversion process. In contrast, PrPc levels were

completely restored after cessation of incubation with the anti-LRP/LR antibody (Fig. 3

B). Furthermore, depletion or blockage of the LRP/LR on the cell surface might directly

prevent PrPSc binding and internalization. In summary, our results show that the LRP/LR

is not only involved in PrPc metabolism, as demonstrated in previous reports (Gauczynski

et al., 2001b; Hundt et al., 2001), but also has a crucial role in prion propagation. The fact

that LRP/LR-specific antibodies are able to clear PrPSc from neuroblastoma cells provides

possibilities for the development of new experimental therapies for TSEs.
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Methods

Construction of pCI-neo-asLRP. Base -65-901 of the LRP cDNA were amplified by

PCR with reverse transcription (RT-PCR) from total RNA isolated from N2a cells,

introducing the restriction sites NheI and SmaI. The LRP cassette was cloned in antisense

orientation into the plasmid pCI-neo using the NheI and SmaI sites to produce pCI-neo-

asLRP. Cloning was confirmed by sequencing.

Cell culture. ScMNB and ScN2a cells (both lines are neuroblastoma cells chronically

infected with scrapie) were grown in DMEM, 10% fetal bovine serum, 2mM Glutamax

(Invitrogen), 100 units ml-1 penicillin and 10 µg ml-1 streptomycin sulfate, at 37°C with

5% CO2. ScN2a cells were generated as described previously (Bosque and Prusiner,

2000). ScGT1-7 cells(GT1 hypothalamic neuronal cells, chronically infected with the

Chandler scrapie isolate) were provided by S. Lehmann, and were cultured as described

previously (Mange et al., 2000), with the exception that DMEM was replaced with Opti-

MEM (Gibco Life Sciences).

Inhibition studies using the W3 antibody. ScN2a cells (1x106) were incubated in

normal growth medium (DMEM, 10% fetal bovine serum, 2mM Glutamax)

supplemented with the purified polyclonal anti-LRP/LR antibody, W3, at varying

concentrations. After incubation with the antibody, the cells were harvested, lysed and

analysed by western blotting.

Inhibition studies using LRP antisense RNA. ScMNB cells were grown in a six-well

plates to 60% confluence. Cells were transfected with pCI-neo-asLRP and pCI-neo

(control plasmid) using Lipofectamine (Invitrogen) in accordance with the

manufacturer´s instructions. Transfection efficiencies were determined using a

chloramphenicol acetyltransferase construct, and were estinated to be approximatively

80% on average (data not shown). Cells were harvested 72 h after transfection, lysed and

analysed by western blotting.
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Inhibition studies using small interfering RNAs. Four pairs of complementary 21-

nucleotide RNA corresponding to regions of the LRP cDNA were made (Ambion). As a

control, the lamin A/C RNA duplex was used (Elbashir et al., 2001b). The single-

stranded complementary RNAs (Ambion) were annealed in annealing buffer (provided

by the manufacturer) for 1 min at 90 °C, followed by incubation for 1 h at 37 °C. The

RNA duplexes were transfected into ScN2a cells (cultured in Opti-MEM medium,

Invitrogen) using Oligofectamine (Invitrogen) in accordance with the manufacturer´s

instructions. ScGt1-7 cells were seeded in 60-mm Petri dishes (5x105 cells per dish) and

transfected the following day with 10 µg of each of the 21-nucleotide RNA pairs using

Exgen 500 (Fermentas) in accordance with the manufacturer´s instructions.

Ribonuclease protection assays. Total RNA was purified from transfected ScMNB cells

and used in a ribonuclease protection assay using the RPA III kit (Ambion). An antisense

riboprobe was made by in vitro transcription from pCI-neo-asLRP, following

linearization of the plasmid with EcoRI, in the presence of [α-32P]UTP. The antisense

riboprobe was combined with the total RNA and the mixture was then precipitated. The

precipitates were dissolved in hybridization buffer, denatured and hybridized with the

total RNA. This was followed by incubation with Rnase for 30 min at 37°C,followed by

inactivation of the Rnase and ethanol precipitation of the RNA. Protected RNA fragments

were separated on an 5% acrylamid/urea gel and visualized using a Storm 860

phosphorimager equipped with ImageQuant software.

Reverse-transcriptase-PCR

Total RNA was purified from transfected ScMNB cells and cDNA was carried out using

an oligo  (dT) primerin a RT reaction.. The resulting cDNA was then amplified by PCR

using a 5´-oligodeoxyribonucleotide corresponding to the 3´-end of the cytomegalovirus

promoter and a 3´-oligodeoxyribonucleotide corresponding to a sequence in the 5´-region

of the simian virus 40 polyadenylation signal. PCR products were separated on 1%

agarose gel and stained with ethidium bromide.



54

Western blot analysis. Cytoplasmic lysates were made using a buffer containing 10 mM

Tris/HCl pH 7.5, 100 mM NaCl, 10 mM EDTA, 0.5 % Triton X-100, 0.5 % sodium

desoxycholate. After centrifugation, the total protein content of the lysates was measured

(BCA-Protein Assay, Pierce)and equal amounts of protein were analysed. For PrPSc

detection,. cell lysates were digested with proteinase K (20 µg ml-1) for 1 h at 37°C . The

reaction was stopped by the addition of Pefabloc (1mM) and the proteins were denatured

with 6 M guanidine hydrochloride. Samples were boiled in SDS sample buffer and

analysed on an SDS-polyacryamide gel containing 12.5% acrylamide. For PrPc and

PrPSc detection (from ScN2a cells), 10% Bis-Tris gels with MES running buffer

(NuPAGE, Invitrogen) were used. Proteins were blotted on a polyvinyllidene difluoride

membrane, blocked and incubated overnight with the monoclonal antibody SAF70, SAF

32 or SAF84 (diluted 1:5000 in blocking solution) or A7 (diluted 1:2.500 in blocking

solution) for PrP detection. The polyclonal anti LRP/LR antibody W3 (Rieger et al.,

1997) (1:2000), or the monoclonal antibody 43512 (1 µg ml-1) were used for LRP/LR

detection and anti-ß Actin antibody (chemicon) (1:5000) for ß-actin detection.. After

washing with TBS/0.05% Tween 20 the blot was incubated for 1 hwith a peroxidase-

conjugated secondary antibody (Sigma) (1:2500). Detection was carried out by enhanced

chemiluminescence  (Western Lightning, NEN).
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Figure 1. Abolition of PrPSc propagation using laminin receptor precursor (LRP) antisense RNA.

(A) Analysis by PCR with reverse transcription of total RNA extracts from transfected ScMNB

cells. Oligodesoxythymidine-primed complementary DNA was amplified by PCR using specific

primers for the plasmid pCI-neo plasmid. This gave a 322-bp cDNA fragment for the pCI-neo

transfected cells and a 1115-bp cDNA fragment for the pCI-neo-asLRP transfected cells. (B) A

ribonuclease protection assay was carried out on total RNA from cells transfected either with

pCI-neo or pCI-neo-asLRP; the RNA was then separated using a 5% acrylamide/urea gel. 5 µg or

10 µg of total RNA was used, and in both cases the level of LRP messenger RNA was reduced by

80-85% in cell transfected with pCI-neo-asLRP (quantified by posphorimaging). (C) Western

blot analysis of cell lysates from pCI-neo and pCI-neo-asLRP-transfected ScMNB cells assayed

48 hours after transfection. LRP was detected using the polyclonal anti-LRP/LR antibody, W3. β-

actin was detected using an anti-β-actin antibody as loading control. (D) ScMNB cells were

transfected with pCI-neo and pCI-neo-asLRP. The PrPSc content of ScMNB cells was determined

72 h after transfection. The monoclonal anti-PrP antibody SAF70 was used for PrPSc detection

and the SAF32 was used for detection of PrPc.
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Figure 2. Inhibition of PrPSc propagation using small interfering RNAs. (A) Western blot analysis

of ScN2a cells transfected with small interfering RNAs (siRNA). cells were analysed 72h after

transfection using the polyclonal anti-laminin receptor (LRP/LR) antibody W3. (B) The effect of

siRNAs on PrPSc propagation was assayed 72h after transfection (left panel). The time-dependent

effect of siRNA-LRP3 on PrPSc propagation (right panel)was analysed using the SAF70 antibody;

PrPc was detected using the SAF32 antibody. β-actin was detected using an anti-β-actin antibody

as loading control.
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Figure 3. The effect of the W3 anti-laminin receptor (LRP/LR) antibody on PrPSc propagation.

(A) ScN2a cells were incubated with W3 at varying concentrations. The PrPSc content was

determined after a 72h incubation with W3. An anti VLA-6 (integrin-type laminin receptor)

antibody was used as control. PrPSc was detected with the A7 polyconal antibody, PrPc was

detected with the SAF32 antibody. (B) ScN2a cells were incubated with W3 at 32µg ml-1 for

varying durations. The last lane shows W3-treated ScN2a cells after an additional 2-week

incubation without any antibody. PrPSc was detected with the SAF 70 antibody, PrPc was detected

with the SAF32 antibody. β-actin was detected using an anti-β-actin antibody as a loading

control.
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CHAPTER IV

Single chain Fv antibodies directed

against the 37kDa/ 67kDa laminin

receptor reduce peripheral PrPSc

propagation
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Abstract

Transmissible spongiform encephalopathies are a group of disorder associated

with the deposition of PrPSc, an abnormal form of the cellular prion protein PrPc. The 37

kDa/67 kDa laminin receptor (LRP/LR) has been identified as the prion protein receptor

and several lines of evidence strongly suggest that this protein plays a role during prion

pathogenesis. A recent in vitro study indicates that anti-LRP antibodies are able to

abolish PrPSc propagation in chronically infected cells. We therefore developed

recombinant single chain antibodies (scFvs) directed against LRP suitable for therapeutic

use. The specific LRP/LR recognition of two of the selected scFvs S18 and N3 was

confirmed by Western blotting and FACS analysis. Both scFvs were capable to abrogate

PrP/LRP interactions in vitro. After passive immunotransfer of the scFv S18 antibody via

intraperitoneal injection into C57BL6 mice one day prior to intraperitoneal RML prion

inoculation, reduced PrPSc levels were observed in the spleen 90 days post scFv injection.

Although intraperitoneal injection of scFv S18 did not prolong the incubation times in

RML inoculated mice, the in vivo data concerning the peripheral PrPSc propagation are

encouraging and illustrate that immunotherapeutic approaches targeting LRP are worth

pursuing

Introduction

Prion diseases are slow, invariably fatal neurodegenerative diseases with no

known therapy. This group of infectious disorders includes Creutzfeldt-Jakob disease in

humans, scrapie in sheep, and bovine spongiform encephalopathy (BSE) in cattle. This

class of disease is remarkable since the causative agent is not a classical pathogen such as

bacteria or viruses but an infectious protein. Prions are an abnormally folded form of the

benign cellular prion protein (PrPc). A key event in the disease pathology is the

conversion of PrPc into the infectious isoform referred to as PrPSc that accumulates in the

brain. PrPSc has distinct biochemical properties including insolubility and partial

resistance to proteolytic digestion (Caughey and Raymond, 1991). It is not yet clear
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where the conversion process takes place but it is thought to occur either at the plasma

membrane (Kaneko et al., 1997) where PrPc is anchored via GPI or after internalization

(Arnold et al., 1995). The molecules leading to PrP binding and internalization are thus a

prerequesite for prion replication.

We identified the non-integrin 37 kDa/67 kDa laminin receptor (LRP/LR) as the

cell-surface receptor for PrPc together with heparan sulfate proteoglycans (HSPG) as

cofactors (Gauczynski et al., 2001b; Hundt et al., 2001) and showed that LRP/LR is

required for PrPSc propagation in scrapie infected cells (Leucht et al., 2003). LRP/LR is

expressed in the human small intestinal mucosa (Shmakov et al., 2000), suggesting that

LRP might be directly implicated in prion invasion. Very recently, we proved that bovine

prions are endocytosed by human enterocytes via 37 kDa/67 kDa LRP/LR (Morel et al.,

2005). These data were confirmed by the fact that moPrP27-30 binds LRP/LR dependent

to mammalian cells (Gauczynski et al., submitted). A polyclonal anti-LRP specific

antibody (Rieger et al., 1997) is able to interfere with (i) PrPBSE internalization, (ii)

PrP27-30 cell binding (Gauczynski et al., submitted) and (iii) with PrPSc propagation in

cultured neuronal cells, the classical model to investigate the therapeutic potential of

compounds in prion diseases (Leucht et al., 2003). These data strongly suggest that LRP

might act as a promising target in the prophylaxis and/or therapy of prion diseases with

anti-LRP/LR specific antibodies as powerful therapeutic/prophylactic tools. Since

polyclonal antibodies are inappropriate for therapeutic applications, we developed

monoclonal single chain antibodies (scFv) (Bird et al., 1988) directed against LRP.

ScFvs, which consist of immunoglobulin heavy and light chain variable domains

connected by a peptide linker, are a commonly used antibody format. ScFvs are attractive

therapeutic agents in this particular case due to their small size, their high specificity and

low immunogenicity and the absence of the Fc part that is responsible for activation of

the complement cascade (Raag and Whitlow, 1995). Another major advance is the rapid

selection process by phage display technology bypassing hybridoma technology and

immunization (McCafferty et al., 1990).

In the present report, we developed tools for antibody based therapy of prion

diseases using LRP, the prion receptor as a target. ScFvs directed against LRP have been

selected by phage display using a naive and a synthetic library (Clackson et al., 1991).
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Two scFvs have been selected and further characterized by western blotting and FACS

analysis. The feasibility of this approach was confirmed by in vitro experiments proving

that the selected scFvs were able to prevent interaction between LRP and PrP.

Furthermore, treatment with S18 is able to reduce PrPSc peripheral accumulation in mice

infected with prions.

Materials and Methods

Phage display selection and enzyme-linked immunosorbent assay (ELISA)

screening. Three rounds of selection were performed on a GST::LRP fusion protein

expressed in Baculovirus infected Sf9 cells (Rieger et al., 1997). Approximately 1012

phages from each library resuspended in PBS, 0.1% tween, 2 % milk were incubated with

polystyrene immobilized GST::LRP. Phages that did not specifically bind were removed

by ten washing steps with PBS, 0.1% tween. Bound entities were eluted by using

Glycine-HCl, pH 2.2, and after neutralisation with 2 M Tris/HCl, pH 8, the eluate was

used for infection of freshly grown E. coli XL1 Blue cells. Cells successfully transduced

with phagemids encoding the human scFvs were selected for ampicillin resistance and

were subsequently infected with M13K07 helper phage to generate phage progeny

displaying scFv for the following in vitro selection. After the third round of selection

individual colonies were grown in LB medium containing 100 µg/mL ampicillin and 20

µg/mL tetracycline at 30 °C. Cells were harvested by centrifugation and resuspended in

200 mM Tris-HCl, pH 7.5, 20% Sucrose, 1 mM EDTA. During incubation on ice the

outer membrane is destroyed so that soluble periplasmic proteins including the scFv are

released into the liquid. After elimination of cellular debris by centrifugation, the crude

extracts were tested in ELISA for scFv antibody fragments binding the GST::LRP fusion

protein.

Detection of scFv bound to immobilized GST::LRP (200ng/well) was carried out by

using an anti His HRP-conjugate (Qiagen, 1µg/mL). The signal was developed with the

tetramethyl benzidine solution (TMB) (KPL) and detected at 450 nm after termination of

the reaction with 0.5 M H2SO4.



62

ScFvs expression and purification. The clones S18 and N3 were subcloned as NcoI-

NotI restriction fragments into the vector pSKK2 (Le Gall et al., 2004) resulting in the

plasmids pSKK2-S18 and pSKK2-N3, respectively. The clone C9 encoding for a scFv

antibody directed against preS1 a hepatitis B coat protein (Persing et al., 1987) was

subcloned into pSKK2 resulting in pSKK2-C9. The constructs were transformed into the

E. coli RV308 and plated onto 2 YT agar containing 100ug/mL ampicillin and 50mM

glucose. For expression, bacteria were cultured at 26°C in 2 YT medium supplemented

with ampicillin and glucose until a cell density between 0.6 and 0.8 at an optical density

of 600nm was achieved. After centrifugation bacterial pellets were resuspended in fresh

YTBS medium supplemented with 1M D-sorbitol and 2,5mM betaine with 0,2mM IPTG

and grown at 21°C overnight. The cells were resuspended in 50mM phosphate buffer pH

8, 300mM NaCl containing 20mM imidazole, ß-mercaptoethanol and protease inhibitors

(PMSF, aprotinin, leupeptin). After snap-freezing in liquid nitrogen, the lysate was

digested 1h with 1mg/mL lysozyme and centrifuged at 4°C 14500rpm for 1h. The

supernatant was incubated with equilibrated Probond Nickel-chelating resin (Invitrogen).

Beads were washed with the buffer described and finally eluted with 50mM phosphate

buffer pH 8, 300mM NaCl and 250mM imidazole. For their application in animal

experiments, scFvs were further purified by size exclusion chromatography using a

sephadex S200 column and filter sterilized.

Expression of mouse LRP::FLAG and human LRP::FLAG in the Semliki-Forest-

Virus (SFV) System. Expression of mouse and human LRP::FLAG was described

previously (Gauczynski et al., 2001b). Briefly, SFV based vectors carrying mouse

LRP::FLAG or human LRP::FLAG were used. Recombinant SFV-1 RNAs were

generated by in vitro transcription and transfected into BHK cells by electroporation.

FACS analysis (flow cytometry). Single-cell suspensions were prepared in PBS, 2%

fetal calf serum, 20 mM EDTA, 0.01% sodium azide (FACS buffer). For flow cytometry,

cells were incubated with the primary antibody at concentrations of ~1 µg/106 cells for 15

minutes at room temperature. Cells were washed in FACS buffer before incubation with



63

FITC-conjugated anti-myc or anti-rabbit antibodies for 15 minutes at room temperature.

After washing in FACS buffer, data acquisition and analysis were performed with an

EPICS XL-MCL (Coulter) flow cytometer. A polyclonal anti-gal-3 antibody (Gauczynski

et al., 2001b) and the scFvs N3 and S18 were used as primary antibodies.

Western blotting. Cells were lysed in 10mM Tris-HCl pH 7,5, 10mM NaCl, 10mM

EDTA, 0,5% TritonX-100 and 0,5% sodium Deoxycholate. After centrifugation, equal

amounts of protein were resuspended in SDS sample buffer and heated to 90°C for 10

minutes. Beads were eluted directly in SDS sample buffer. Samples were analyzed on a

12% SDS-polyacrylamide gel and blotted onto a polyvinylidene difluoride membrane,

blocked with 5% milk and incubated with the primary antibodies N3, S18 (diluted

1:1000) or anti-LRP 43512 (diluted 1:5000). The scFvs were detected with an anti-c-myc

antibody (Santa Cruz 1:1000), followed by a peroxidase conjugated anti-mouse antibody

(Santa Cruz 1:5000). Detection was performed by enhanced chemiluminescence (Perkin

Elmer Life Sciences).

Epitope mapping. The entire sequence of human LRP was covered by 92 different

synthetic peptides of 15 amino acids length. The N-terminus of each peptide was shifted

with respect to the previous peptide by three amino acids, leading to an overlap of 12

amino acids. Synthesis was performed on a cellulose membrane (AIMS, Braunschweig)

using Fmoc chemistry (PyBop/NMM activation, Trt/tBu/Pbf/Boc side chain protection)

according to the SPOT-synthesis method of Frank (Frank, 1992) using a spotting robot

(Syro, MultiSynTech GmbH, Witten, Germany). Detection was performed as described

for western blotting.

Generation of recombinant proteins. pGEX-4T (Amersham) was used for GST

expression and pGEX-2T-huPrP23-230 for GST::huPrP23-230 expression. HuPrP23-230

was cloned into pGEX2T as described for the construction of pGEX2T-haPrP23-231

(Weiss et al., 1995). The cDNA fragment encoding huLRP (aa 1-295) was amplified by

PCR and subcloned via BamHI and EcoRI into expression vector pGEX-4T. GST,

GST::huPrP23-230 and GST::huLRP were produced in E.coli BL21 cells as described for
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GST and GST::haPrP (Weiss et al., 1995). These proteins were purified by glutathione-

sepharose affinity chromatography (Amersham Biosciences). GST::LRP was digested

with 5 units biotinylated thrombin (Thrombin kit, Novagen) in a final volume of 500µL.

The supernatant was incubated with streptavidin agarose beads to remove the

recombinant thrombin according to the manufacturer´s instructions.

Pull-down assay. 4 µg LRP were pre-incubated with 100µg scFv. GST::PrP beads, GST

beads and unloaded beads were first saturated with bovine serum albumine for 1h. 25µL

beads were then added to the reaction in a final volume of 350µL binding buffer (50mM

TrisHCl pH 8, 300mM NaCl, 0,025% NP40) for 1 hour at room temperature. The beads

were washed 4 times in the same buffer. Bound proteins were eluted directly in SDS

loading buffer for SDS-PAGE analysis.

Animal Experiments. Analysis of peripheral PrPSc accumulation (spleen analysis) of

mice injected with scFvs. 3 groups of 6 C57BL/6 female mice were injected

intraperitoneally with 100 µL of a 10% RML brain homogenate prepared from the brains

of terminally sick mice. The mice were treated intraperitoneally once a week with 1mg of

antibodies (S18 or C9) diluted in PBS for a total period of 8 weeks, the first treatment

being given one day prior to RML prion inoculation. Control mice were treated with PBS

solution. 90 days after prion inoculation, mice were sacrificed and spleens were

homogenized in PBS to 10% w/v. The homogenates were adjusted to 5mg/ml and

digested with 50 µg/ml of proteinase K (1h, 37°C). 150 µg of total protein were analyzed

by SDS-PAGE followed by Western Blotting using the antibody SAF83. Undigested

lysates were used as a loading control. The density bands obtained were analyzed using

NIH software.

Analysis of the incubation times of mice treated with scFvs. 3 groups of C57BL6 female

mice were intraperitoneally injected with S18, C9 and PBS followed by inoculation with

RML prions. The same conditions were applied as for the analysis of the peripheral PrPSc

accumulation described above. Mice were sacrificed when two of the TSE-specific

symtoms described by Sethi et al. appeared (Sethi et al., 2002).

Investigation of side effects of the scFvs. To investigate side effects of scFv, 2 groups of 6

C57BL/6 mice were injected with PBS or S18 during 8 weeks. The animals were
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sacrificed 4 and 8 weeks or 120 days after beginning of treatment, blood was collected in

EDTA and analysed for immune cell content (Vet-Med-Labor, Munich). Different organs

(liver, brain, kidney, spleen) were collected and analysed.

RESULTS

Selection of scFv against LRP by phage display

Specific phage display fragments binding to GST::LRP were selected from a

naïve and a synthetic phage scFv library (Schwarz et al., 2004). After 3 rounds of affinity

selection on GST::LRP, 47 individual clones from each library were selected to test their

ability to recognize GST::LRP by ELISA. 66% of the selected clones from the naïve

library and 53% from the synthetic library showed a positive signal (Fig.1 a, b, d).

The specific LRP recognition of the selected antibodies was further confirmed by

Western Blot Analysis. The selected antibodies clearly recognized GST::LRP but not

GST (Fig. 1c), demonstrating that the antibodies specifically recognized the LRP part of

the fusion protein. A BstNI fingerprinting of the DNAs of the 13 clones selected from the

naïve library showed that 10 clones were identical. One clone was identified twice and

another one revealed an individual restriction pattern (Fig. 1d). Due to their strong

antigenic recognition, we selected the scFv clones S18 and N3 for further

characterization.

Specific recognition of native and denatured LRP by scFvs S18 and N3

expressed in E.coli

The scFvs S18 and N3 were expressed in E.coli and purified by IMAC. Fig. 2 a

shows the purified antibodies with molecular weights of approx. 35 kDa analyzed on a

polyacrylamide gel.
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To investigate the ability of the scFvs S18 and N3 expressed in E. coli to

recognize denaturated LRP, we used them to probe Western Blots of cell lysate from

BHK cells overexpressing human LRP::FLAG and murine LRP::FLAG, respectively.

Purified S18 and N3 specifically recognized mouseLRP::FLAG and humanLRP::FLAG

overexpressed in BHK cells with the Semliki Forest Virus sytem as well as the

endogenous LRP (Fig 2 b). In contrast to S18, N3 also recognized the 67 kDa LR form

(Fig. 2b). In order to use the scFvs S18 and N3 for therapeutic purposes, they should be

able to recognize LRP/LR on the cell surface under native conditions. To assess if the

antibodies were able to recognize the native LRP/LR on the cell surface, a FACS analysis

was carried out on non permeabilized LRP transfected BHK cells. The FACS profiles

obtained with both scFvs illustrate a specific staining of the cell surface for LRP/LR

whereas no staining could be detected with a control antibody directed against gal 3 (ß-

galactoside lectin galectin-3) (Fig.2 b). These data were confirmed by

immunofluorescense techniques with the same cells (data not shown). Taken together,

these results indicate that N3 and S18 specifically recognize the denatured and the native

form of LRP on the cell surface.

Epitope Mapping of scFvs S18 and N3

For therapeutic applications of the scFv antibodies, S18 and N3 should be directed

against the extracellular part of the receptor. Here the antibodies should directly compete

with the binding of PrPc and PrPSc by saturating the receptor at the cell surface. In order

to identify the epitopes on LRP for S18 and N3 an epitope mapping was performed. 92

synthetic 15 mer peptides covering the LRP sequence and overlapping by 12 amino acid

residues each were synthesized on a cellulose membrane. Under Western blot conditions,

the membrane was incubated with the scFv N3, S18 or C9. The scFv C9 is directed

against preS1, a hepatitis B coat protein and was used as a control (Persing et al., 1987).

Four intense dots were visualized for N3 and three for S18 (Fig. 3a). The control scFv C9

did not recognize any dots (data not shown). Comparing the signal position with the

corresponding peptide sequence, we identified the epitope EEFQGEWTA225-233 for S18

and TEDWSA273-278 for N3. Both epitopes are located in the extracellular part of LRP
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(Fig. 3b). However, these epitopes are not located in the direct PrP binding site stretching

from aa 161 to 179 (Hundt et al., 2001). Nevertheless, an indirect binding site via HSPGs

has been described and is thought to be located between amino acids 180-285 of LRP

(Hundt et al., 2001).

ScFvs S18 and N3 interfere with PrP/LRP interaction

We next studied the ability of these scFvs to interfere with the PrP/LRP

interaction. GST::huPrP23-230 interacts with huLRP in vitro (Fig. 4) in a pull down

assay as previously shown for FLAG::huPrP23-230 and GST::huLRP (Fig. 4 M in

(Hundt et al., 2001)). In contrast to the control antibody C9, both scFv antibodies S18 and

N3 after pre-incubation with huLRP were able to block the GST::huPrP23-230/huLRP

interaction (Fig. 4). These data suggest that the selected scFvs might be promising tools

for the treatment of prion diseases.

The scFv S18 reduced PrPSc accumulation in the spleen in a murine

scrapie model by passive immunization

We first examined whether passive immunization with anti-LRP scFv exhibit side

effect. Mice were injected with 1 mg of S18 per week or PBS during a period of eight

weeks. Animals were killed at different time points after injection and blood was

analysed. No significant differences could be observed between PBS and S18 treated

mice leading to the conclusion that scFv S18 revealed no side effects and was suitable for

passive immunization. Mice were intraperitoneally injected with 1mg of the scFvs S18

and C9, respectively, once a week for a period of 8 weeks. These mice were

intraperitoneally challenged with Rocky Mountain Laboratory (RML) scrapie brain

homogenate one day after beginning passive immunization. We determined the PrPSc

levels in the spleen, an organ known to be an early site of PrPSc deposition, 90 days after

challenging, which corresponds to the plateau phase of PrPSc accumulation. Compared to

mice injected with PBS or with the control scFv antibody C9, two (out of six) mice

injected with S18 exhibit a strong reduction of the PrPSc level in the spleen (Fig. 5).

However, no significant differences could be observed in the survival time between the
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control groups (PBS and C9) and the group treated with the anti-LRP scFv S18 (Fig. 6

Table 1). A Student-test proved that the survival time obtained are statistically equal The

differences observed in the average are likely to be due to the small size of S18 and C9

groups.

DISCUSSION

In order to develop new anti-prion therapies, we selected and characterized scFvs

directed against LRP by phage display. Two scFvs N3 and S18 were selected from a

naïve and a synthetic scFv library using recombinant human GST-LRP as a target

molecule. The capacity of the selected scFvs to block the PrP/LRP interaction in vitro (i)

and the anti-prion effect on the peripheral PrPSc accumulation in a murine model (ii),

recommend scFvs directed against LRP as potentially efficient tools in TSEs therapy.

Since a new variant form of CJD resulting from the consumption of BSE contaminated

material has been identified in the UK and several other countries (Ironside et al., 1996;

Will et al., 1996), therapeutic and prophylactic strategies have emerged with the aim to

combat TSEs.

Among the numerous molecules harboring an anti-prion activity (for review:

(Gauczynski et al., 2001a)) antibodies might be promising alternative tools for the

therapy of prion diseases. Antibodies against PrP inhibit PrPSc propagation in cell culture

(Enari et al., 2001; Peretz et al., 2001b; Perrier et al., 2004) and also in mice (Heppner et

al., 2001b; White et al., 2003). Since these antibodies have no or only low affinities for

PrPSc, they might work by saturating PrPc at the cell surface thereby reducing the

availability of PrPc for conversion. Recently, however, anti-TSE strategies focusing on

PrP as the main target have been contested, since PrP antibodies injected into the brain of

mice led to rapid neuronal apoptosis (Solforosi et al., 2004). The observed toxicity might

be due to PrPc crosslinking by the anti-PrP antibodies. Thus, LRP/LR seems to be a

realistic alternative candidate to avoid secondary effects caused by an anti-PrP based

therapy.
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The selected anti-LRP scFv antibodies S18 and N3 are directed against

an epitope located within the indirect PrP/LRP binding site

We used GST::LRP as target to screen two phage-display libraries. Two of these

scFvs, S18 selected form the synthetic scFv library and N3 selected from the naïve

library, were further characterized and their specific LRP recognition was demonstrated.

The epitopes for S18 and N3 on LRP have been mapped and are located between aa225

and aa233 and aa273 and aa278, respectively. Both epitopes are within the extracellular

domain of LRP and might target an indirect HSPG dependent PrP/LRP binding site,

which is thought to stretch from aa180 to aa285 of LRP (Hundt et al., 2001). It is likely

that both scFv might interfere with PrP binding to LRP via steric hindrance.

The selected anti-LRP scFvs S18 and N3 prevent PrPc/LRP interaction

in vitro and S18 reduces peripheral PrPSc accumulation in vivo

LRP is the cellular receptor for PrPc and has been recently proven to be required

for PrPBSE internalization by human enterocytes (Morel et al., 2005) and moPrP27-30

binding to eukaryotic cells (Gauczynski et al., submitted) suggesting that LRP/LR acts as

a receptor for PrPSc. Therefore, it is likely that this protein required for PrPc and PrPSc

internalization might promote cell-to-cell propagation of infectivity. ScFvs directed

against LRP represent attractive tools in prion disease therapy. We therefore investigated

whether these anti-LRP antibodies show inhibitory effects on prion replication in vivo by

passive immunization. S18 exhibits a clear tendency to reduce PrPSc levels in the spleen

even if this effect is not pronounced. However, the treatment did not prolong the

incubation time in mice inoculated RML prions. This partial effect can be explained by

the fact that the reduction of PrPSc observed in the spleen was not sufficient to delay the

neuroinvasion. The inhibitory potential of antibodies on PrPSc propagation resulting in

prolonged incubation times might depend on the long term delivery of high antibody

levels as observed in case of monoclonal anti-PrP antibodies. Treatment of mice with

these kind of antibodies resulted in a delay of the onset of the prion disease and strongly
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reduced PrPSc levels in the spleen (White et al., 2003). However, a high antibody amount

of 2 mg had to be injected twice a week during the entire life span of the mice. Due to the

limited production yield of scFv S18 and N3 in our E.coli system, which cannot achieve

the high amounts of the hybridoma technology (Kohler and Milstein, 1975), we treated

C57BL6 mice with 1 mg of antibody per week for a period of only 8 weeks, which might

explain a weaker reduction of PrPSc levels in the spleen and no significant prolongation of

the incubation times. Furthermore, scFvs have generally a shorter half life than

immunoglobulins (Maack et al., 1979). These technical limits might be overcome by

taking advantages of scFv in vivo expression by gene transfer, e.g. employing viral vector

systems. The scFvs affinity might also be improved by mutagenesis techniques which

might be concomitant with an increase in antibody stability (Adams and Schier, 1999;

Kobayashi et al., 1999; Natarajan et al., 2005; Schier et al., 1996).

Advantages of scFvs compared to classical monoclonal antibodies for

therapy of TSEs

Monoclonal antibodies consist of a light and a heavy chain encoded by 2

individual genes, whereas single chain miniantibodies consist only of the antigen

recognition site of the light and heavy chain connected by a peptide linker. Therefore

gene transfer is facilitated by scFvs. The delivery of scFvs is also not limited by their size

and any transfer system such as a viral vector system might be applied (Afanasieva et al.,

2003; Arafat et al., 2002). In vivo transduction might contribute to continuous and

sustained scFv expression at target sites where PrPSc accumulates such as the central

nervous system or lymphoid organs. Full-size immunoglobulins can be delivered by

passive transfer, but it is unlikely that significant amounts will reach the brain due to their

large size. In contrast, scFvs exhibit better tissue penetration and can therefore rapidly

reach the clinical study phase e.g. for anti-tumoral investigations (Azemar et al., 2003;

Mayer et al., 2000). A very recent work reported that anti-PrP single chain antibodies

expressed in mammalian cells exert a paracrine anti-prion activity (Donofrio et al., 2005).

Therefore it might be interesting to consider a bi-therapy associating anti-LRP and anti-

PrP scFvs to improve the anti-prion treatment.
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In conclusion, production and selection of scFvs against the prion receptor is the first step

towards targeting therapeutic antibodies into the brain via gene therapy. The ability of the

anti-LRP scFv antibodies to abrogate LRP/PrP binding and to decrease peripheral PrPSc

accumulation makes them promising candidates for further development of protecting

molecules for prion diseases.
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Figure 1. Selection of scFvs by phage display. Clones of each library (a: naive library b:

synthetic library) were analyzed for their ability to bind GST::LRP by ELISA. c: Unique clones

were used for the detection of recombinant GST and GST::LRP by western blotting d: Selection

summary: A BstNI  fingerprinting of the DNAs of the 13 clones selected from the naïve library

revealed 10 identical clones. One clone was identified twice and another one revealed an

individual restriction pattern. All clones tested recognized specifically GST::LRP. Due to their

strong antigenic recognition, scFv clones S18 and N3 were selected for further characterization.

N: Naive library, S: Synthetic library.
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Figure 2. scFvs N3 and S18 specifically detect denatured and native LRP. a : SDS-PAGE

analysis of purified scFvs expressed in E. coli. Proteins were visualized by Coomassie brillant

blue staining. b: BHK cells were transfected with SFV RNA, SFV huLRP::FLAG RNA , SFV

huLRP::FLAG RNA. Cell lysates were analysed by western blotting, using N3, S18 or the

monoclonal anti-LRP antibody 43512 as control. c: Non-permeabilized cells were analysed by

FACS using sc Fvs N3, S18 or the anti-gal-3 antibody.
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Figure 3. Epitope mapping of scFv S18 and N3. a: Membranes covering huLRP sequence were

hybridized with N3 and S18. The sequence of the peptides detected is indicated  as well as the aa

number. b: Schematic representation of LRP, its PrP binding sites, and epitopes. Binding sites are

shown : the direct binding site to PrP between aa 161-179, the suggested indirect binding domain

between aa180-285, N3 epitope aa273-278, S18 epitope aa225-233.
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Figure 4. S18 and N3 are able to prevent the PrP/LRP interaction in vitro. a: GST::huPrP

immobilized on sepharose glutathione beads was incubated with recombinant LRP in presence or

absence of scFvs as indicated. GST immobilized on beads and unloaded beads were employed as

negative controls. After elution, LRP bound on beads was analysed by western blotting using N3

for detection. b: Quantitative analysis of western blots performed by densitometric evaluation of

the LRP level in 3 independent experiments.
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Figure 5. Spleen analysis of mice inoculated with prions after treatment with PBS, C9 or S18. Each

group consists of 6 animals. Spleens have been analysed 90 days after scrapie inoculation by western

blotting after PK digestion. The density of the bands has been measured with the NIH software and the

values have been used to produce the graph presented. The average of the PrPSc content of mice

injected with PBS was set to 100%. Bars represent the average of PrPSc levels and each individual

value is also shown. Two (out of six) mice injected with S18 exhibit a strong reduction of the PrPSc

level (below dashed line).
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Figure 6. Survival time of mice inoculated with RML prions after intraperitoneal treatment with

PBS, C9 or S18. The S18 group and the C9 group consist of 5 and 4 animals, respectively, and

the PBS group of 10 animals. There was no significant difference in survival.
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Experimental group Incubation period,
days (mean+/- SD)

Number of mice
(affected/inoculated)

SD = standard deviation

PBS

S18

C9

191 +/- 9

200 +/- 12

207 +/- 12

10/10

5/5
4/4

Table 1. Summary of survival times of C57BL6 mice infected with the single chain antibodies
S18 and C9
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 Abstract

Prion diseases are untreatable neurodegenerative disorders, associated with the deposition

of a disease-related form of prion protein (PrP). Experimental evidence suggest that

hampering the interaction between PrP and its receptor, the non integrin laminin receptor

(LRP/LR) may provide a novel therapeutic strategy to inhibit PrPSc propagation. Based on

this consideration, we previously screened anti-LRP single chain antibodies (scFv) and

proved that one of these contributes to reduce PrPSc deposition in peripheric organs. In the

present work, we have focused on the development of an in vivo expression system of

scFvs based on adeno-associated virus (AAV) vectors. As a proof of principle, we show

that neuronal cells were able to secrete high levels of functional scFvs by transient

transfection. Furthermore, our data demonstrate that rAAV serotype 2 vectors carrying

scFv enable transgene expression in their secretory form. These vectors were

administered in mice by stereotaxic intracerebral injection and the expression of scFvs

was confirmed one month post injection.

Introduction

Prion diseases are invariably lethal neurodegenerative illnesses affecting humans

and animals. None of the affected individuals can be treated or cured effectively. Brain

from affected individuals contains the abnormal form of the prion protein, PrPSc, which

propagates mainly in the brain and in the lymphoreticular system. PrPSc is distinct from

the host protein PrPc by its biochemical properties such as proteinase K sensitivity and

insolubility but harbors the same amino acid sequence. It is now accepted that the

generation of PrPSc from PrPc involves conformational changes accompanied by

modifications in the secondary structure of the protein. Prion diseases represent a unique

class of disorders caused by an infectious protein as the infectious agent.

Different studies have pointed out the pivotal role of the 37kDa/67kDa laminin receptor

(LRP) in prion infection. LRP has been shown to act as a PrPc receptor (Gauczynski et
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al., 2001b) and is responsible for bovine PrPSc internalization by human enterocytes

(Morel et al., 2005). The fact that LRP is overexpressed in tissues and organs of infected

animals strongly suggests that this protein is not only implicated in prion entrance after

oral infection but also in other aspects of pathogenesis (Rieger et al., 1997). We proposed

that the implication of LRP in PrP life cycle supports PrPSc replication. Consequently this

protein attracts particular attention as a target for prion diseases therapy. Multiple

strategies on LRP inactivation have been shown to be successfull by inhibiting PrPSc

propagation in vitro: (1) down regulation of LPR via antisense or siRNA strategies totally

blocks PrPSc propagation and (2) saturation of LRP at the cell surface with anti-LRP

antibodies also abrogates PrPSc accumulation (Leucht et al., 2003). Monoclonal

antibodies are attractive therapeutic agents and almost 20 of them obtained FDA approval

for therapeutic use in patients. Nevertheless immunotherapy is limited by the

immunogenicity of murine derived antibodies and the restricted tissue penetration.

Alternative systems have been developed by engineering e.g. single chain antibodies

(scFv). In contrast to entire immunoglobulins, scFv are much smaller in size that allows

them to penetrate into tissue and they do not provoke an immune response (for review

(Sanz et al., 2005)). Recently, we selected two scFv (S18 and N3) directed against LRP

from a human antibody phage-display library (Rey et al., submitted). These antibodies

are able to abolish the interaction between PrP and LRP. Furthermore one of them (S18)

exhibits an anti-prion effect on PrPSc peripheral accumulation in a murine model. Despite

advantages offered by scFv, due to their short half-life, passive immunization implicitates

at least weekly injections of antibodies at high doses. An alternative to obtain sustained

therapeutic concentration is to take advantage of gene transfer by viral vectors. For this

purpose, we chose to express the single chain antibodies S18 and N3 as secretory

molecules in situ via adeno-associated virus (AAV) vectors. Originally, the first AAV has

been found as a contaminant in adenovirus stocks (Atchison et al., 1965). AAV is a

member of the parvovirus family. For a productive infection AAV depends on co-

infection of an unrelated helper virus as adenovirus or herpesvirus and is therefore

classified as a Dependovirus. Up to now 11 serotypes have been identified named AAV

type 1 to AAV type 11 (Gao et al., 2002; Mori et al., 2004). Although the other

seroptypes have recently attracted increased attention, AAV type 2 is the most prominent
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and best characterized serotype utilized as vector for gene therapy. This serotype offers a

series of advantages for gene therapy: (i) they can efficiently transduce a wide variety of

dividing and non dividing cells, e.g. cells of the CNS and muscle (ii) the vector genome

persists for extended periods supplying long-term expression of the transgene (iii) AAV

show low immunogenicity when injected in vivo and are not related to any pathogenicity

(Tal, 2000). However, although the wild-type AAV specifically integrates into host

genome, current recombinant AAV vectors have lost these characteristics (Berns and

Linden, 1995). The packaging capacity of AAV is restricted to 5kb but since the genes

encoding for scFv S18 and N3 are as small as 1kb, this factor is not a limitation for scFv

expression. AAV2 based vectors have received increasing attention as candidates for

gene therapy and currently 27 gene therapeutic approaches are under investigation

worldwilde in clinical trials. Applications of AAV to treat neurodegenerative diseases are

also actively studied in experimental models (Azzouz et al., 2000; Feng et al., 2004; Fu et

al., 2002; Kirik et al., 2002).

Here we describe the first gene therapeutic attempt for prion diseases. To develop gene

immunotherapy mediated by AAV delivery, we constructed an AAV specific vector

containing anti-LRP scFv coding sequence comprising a secretion signal and driven by a

cytomegalovirus (CMV) promoter. We further generated recombinant AAV particles

carrying scFv sequences. To investigate the feasibility of AAV based gene therapy for

TSEs, we delivered the viral vectors into the hippocampus of mice by direct stereotaxic

microinjection. We show scFv expression in the brain of mice 30 days post recombinant

AAV injection.

Materials and Methods

Construction of AAV vectors carrying scFv against LRP. The sequence encoding for

each scFv (N3, S18 or C9) was subcloned from the mammalian expression vector

pSecTag2B (Invitrogen) into the AAV vector plasmid pSub/CEP4 (Wendtner et al.,

2002) together with a secretory sequence (Coloma et al., 1992), a myc tag and a
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polyhistidine tag. Briefly, the sequences were amplified by PCR and inserted into the

XbaI site of pSub/CEP4.

Production and purification of recombinant AAV vectors. For the generation of

recombinant AAV vectors, 3 plasmids are required : the vector plasmid containing the

transgene flanked by the viral ITRs (pSub/CEP4-N3, -S18 or –C9) the helper-plasmid

pRC (Wendtner et al., 2002) carrying the two AAV specific open reading frames REP

and CAP, the adenoviral plasmid pXX6-80 (Xiao et al., 1998) providing adenoviral

function necessary for AAV replication. The production and the purification of

recombinant AAV were done as previously described (Wendtner et al., 2002). Briefly,

293 cells were cotransfected with the 3 plasmids leading to the production of viral

particles devoid of wild type AAV virus or adenovirus (Grimm et al., 1998). The lysate

was purified by iodoxinol gradient followed by heparin affinity chromatography.

Titering of AAV stock. The genomic titer was determined by dot blot. An aliquot from

the elution fractions obtained after purification was digested by proteinase K (1mg/ml) in

75mM Tris-HCl pH8, 25mM EDTA for 2h. The samples were denaturated in NaOH (0,5

N) prior to immobilization onto a nylon membrane along with the plasmid standard

dilution using a dot-blot apparatus (GibcoBRL). The blots were probed with a transgene-

specific digoxigenin-11-dUTP (Roche) probe synthetized by PCR. The membranes were

further incubated with an anti-digoxigenin antibody coupled to HRP (Roche). For

detection, an enhanced chemiluminescence kit was used. To determine the genomic titer,

the signal obtained for the vector genome was compared with the signal generated from

the plasmid DNA standard curve.

Cell culture and transfection. Hela, N2a and GT1 cells were grown in DMEM

supplemented with 10% fetal bovine serum, streptomycin and penicillin at 37°C with 5%

CO2. For transfection, cells were seeded in 6-well plates and transfected the following

day with 2µg DNA using Gene Porter (Peqlab) following manufacturer´s instructions.

The cells were analysed by Westernblot or FACS analysis 48h after transfection.
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In vitro transduction. Cells were seeded one day prior to AAV transduction into 12-well

plates (1,8×105cells per well). They were infected with a multiplicity of infection (MOI)

of 10000, the supernatant and the cell lysate were analysed 3 days after transduction by

Werstern blot or FACS analysis when transduced with rAAV-GFP. For FACS, the cells

were harvested, resuspended in 0,01% sodium azide, 20mM EDTA, 2% FCS and

analysed directly.

Western blot analyses. To test the scFv expression after transfection or transduction, the

medium was collected and the cells were lysed in 10mM Tris-Hcl, pH7,5, 100mM NaCl,

10mM EDTA, 0,5% Triton X-100 and 0,5% sodium deoxycholate. 25µL of supernatant

or 25 µL of cell lysate were separated on a 12% SDS polyacrylamide gel and transferred

on to PVDF membrane. The membrane was preincubated in a blocking solution (5%

milk, 0,1% Tween in PBS) for 45 min and incubated with a murine anti-myc tag antibody

(Santa Cruz). A horseradish peroxidase-conjugated anti-mouse IgG (Santa Cruz) was

used as secondary antibody. The blot was developed with enhanced chemiluminescence

(Western lightning, NEN).

Stereotaxic injection of AAV vectors into the brain of C57bl/6 mice. Animals were

maintained and treated in accordance with ethical guidelines of Bavaria. Prior to

microinjection, mice were anesthetized with an intraperitoneal injection of Xylazin,

Ketamin and Vetranquil and were placed in a stereotaxic apparatus (SR-6N Narishige).

Their head was immobilized using an adaptor. For injection into the hippocampus, a 5µL

Hamilton syringe is placed 2 mm below the surface via a burr hole, 1,7 mm to the right

and 2 mm posterior to point bregma according to Paxinos and Franklin (The mouse brain

in stereotaxic coordinates). The vectors are injected through the syringe at a rate of 1µL

/min. A total of 5×109 viral particles was delivered into each mouse brain in a volume of

5µL. At the end of injection, the needle was allowed to remain in the brain for 2

additional min before being retracted.

Pull-down Assays. Brain homogenate was diluted in 5 mL 6M guanidium-Hcl, 0,1M

Na2HPO4/NaH2PO4 pH 8. The lysates were sonicated (30 secondes, 50% power) and
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incubated for 2 hours at room temperature with 100 µL Ni2+ beads (Probond resin,

Invitrogen) in presence of 10mM imidazole. Beads were extensively washed first with

lysis buffer and then with phosphate buffer (0,1M Na2HPO4/NaH2PO4 pH 8). Bound

proteins were eluted directly in SDS-sample buffer and analysed by immunoblotting.

Results

Secretion of functional scFvs by eukaryotic cells

In order to develop a therapy against prion diseases, we have previously selected

scFv directed against the prion receptor, LRP/LR (Rey et al., submitted). The screening

have been realized by phage display. Three rounds of selection were performed by

panning on recombinant GST::LRP. Among the scFv fragments resulting from the third

round of selection, N3 and S18 showed the best performance. The cDNA encoding for

anti-LRP scFv N3 and S18 as well as a control scFv C9 directed against the coat protein

preS1 of hepatitis B virus have been configurated into the pSecTag vector for eukaryotic

expression. This vector contains a carboxy-terminal myc tag contributing to specific

detection of the expressed protein and a polyhistidine tag for rapid purification. It also

includes an Igκ leader sequence which routes proteins via cellular secretory pathway

(Figure 1a).

To confirm that scFvs could be produced and secreted by mammalian cells,

pSecTag plasmids carrying the different scFvs were transiently transfected into the

neuronal cell line N2a. The expression was analysed in the medium and in the cellular

fraction by western blotting 48h post transfection(Figure 2a). 25 µL of sample were

separated on 12% SDS polyacrylamide gel and scFv were visualized with an anti-myc

antibody. Western blot analysis demonstrated that desired proteins were expressed and

secreted at significant levels and that the migration pattern was consistent with the

expected molecular weight of approx. 35 kDa. This model system proves that single

chain antibodies can be produced by neuronal cells which is the first step towards a gene
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therapeutic approach. It is important to emphasize that the amount of secreted protein is

really high since it can be visualized in a small fraction of supernatant (25 µL out of 1ml)

without concentration or precipitation. To validate that the secreted antibodies retained

their original specificity, scFv produced by mammalian cells have been used to detect

LRP by westernblotting. Medium collected from transiently transfected cells was used.

ScFv originated from mammalian expression specifically recognized moLRP::FLAG, as

recombinant scFv produced in E. coli (Figure 2b). Together, these data provide the proof

that mammalian cells are able to secrete high quantities of functional single chain

antibody fragments.

AAV serotypes suitable to infect neuronal cells

To express the potential therapeutic antibodies in vivo within the brain, we

decided to develop recombinant AAV vectors approach. In this regard, these vectors are

able to infect a wide variety of cell types. Up to now, eleven AAV serotypes have been

described with different tropism. To test which serotype was suitable for neuronal cells,

four serotypes AAV1, AAV2, AAV3 and AAV5 carrying GFP gene have been used to

transduce 2 neuronal cell lines: N2a and GT1. The transduction efficiency has been

evaluated by FACS (Figure 3). AAV3 and AAV5 led to poor transduction efficiencies in

both cell lines. On the contrary AA1 and AAV2 achieved high transduction rate: AAV1

resulted in approximatevely 72% and 39% positive cells respectively for GT1 and N2a

cells. AAV2 generated 73% positive GT1 and 19% positive N2a cells. These analyses

revealed that both serotype 1 and serotype 2 are appropriate candidates for neuronal

transduction. Despite better results for AAV1 in N2a cells, we reasoned that AAV2 was a

better choice regarding purification. Indeed, AAV2 is the better known serotype and can

be purified via heparin affinity chromatography which is not the case for other serotypes

(Zolotukhin et al., 1999).

Expression of scFv via AAV vector in neuronal cells
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To develop an AAV-based gene therapy, we subcloned the sequence encoding for

scFv as well as the myc and oligohistidine tags and the secretion sequence into AAV-

based vector (pSub/CEP4) (Figure 1b). Transfection of N2a cells followed by analysis of

cellular supernatants confirmed that this vector system achieved high level of the

secretory scFvs (Figure 4a). The replication-defective AAV based vector pSub/CEP4

carrying transgene sequence was transfected in 293 cells together with 2 helper plasmids

to produce recombinant AAV particles. The resultant recombinant viruses were purified

by iodaxinaol gradient and heparin affinity chromatography. To verify that rAAV

directed the expression of the desired protein, N2a cells and GT1 cells were transduced at

a MOI of 10000, the supernatant was collected 3 days post-transduction and analysed for

the presence of scFvs. The level of AAV-mediated expression was sufficiently hight to

allow detection of scFv by western blot in both cell types. However since the

transduction rate is low in N2a cells, high levels of scFv could be detected in the medium

only after repeated transduction (Figure 4b).

In vivo expression of the recombinant AAV encoding scFv

PrPSc accumulates mainly in the central nervous system and particularly high

amounts could be find in the hippocampus. For that reason, we decided to target this area

of the brain directly by stereotaxic injection. 5×109 genomic particles were injected to

each mice and the presence of the secreted scFv was investigated by Western blotting 30

days after AAV treatment (Figure 5). ScFvs are detectable after concentration by pull-

down assay.

The effect of anti-LRP antibodies against TSE is under investigation in a murine model.

Mice have been microinjected with rAAV into the hippocampus, 2 weeks before intra

cerebral scrapie inoculation (Figure 6b). The quality of rAAV injected is shown Figure

6a: rAAV have been used successfully to transduced hela cells.

DISCUSSION
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Acting as the receptor for PrP (Gauczynski et al., 2001b), LRP/LR appears as a

promising target for anti-prion therapy. Therefore, we searched for potentially

neutralizing agents of LRP/LR. In the last decades, immunotherapy received growing

attention although monoclonal antibodies have limited application in human clinical trials

due to their immunogenicity.

These limitations have led to the development of alternative systems such as non-

natural antibody fragments. Single shain antibodies are the smallest fragments engineered

to date and are composed of variable regions of the heavy and light chains, respectively,

joined via a short peptide linker. In a previous study, we have described the selection of

anti-LRP scFvs. Using a passive transfer approach, one scFv termed S18 has been

reported to reduce PrPSc deposition  in the spleen of infected mice (Rey et al., submitted).

However, i.p. injection of 1 mg of this antibody weekly for a period of eight weeks does

not increase the survival time observed in treated animals compare to control animals

injected with PBS. The efficacy of the antibody treatment might be dependent on the

accessibility of highly infectious sites such as the brain and on the concentration of the

scFv fragment. In addition, when the scFvs are applied i.p., it is unlikely that they can

cross the blood brain barrier and therefore might fail to reach the brain were most of

prions replicate. Furthermore, scFvs have short half-lives in the blood (approx. 2 days).

To address limitations of the conventional delivery, we exploited a gene therapeutic

approach based on the AAV vector system. In the present work, we demonstrate proof of

principle for the first anti-prion gene therapy. We first showed that neuronal cells enable

production and secretion of scFvs retaining their specificity. Following the generation of

recombinant AAV vectors carrying a transgene encoding for scFv, C57BL/6 mice were

intracerebrally injected with the virus. Detection of the scFv in the brain has been proven

30 days post injection.

Circulation of scFvs

We were not able to detect scFvs by immunohistochemistry, the localization of

scFvs around the injection site in the hippocampus is then unknown. It has been shown
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that AAV2 infects a restricted region near the injection site of the brain and this

observation is believed to result from rapid HSPG uptake of AAV2 particles by neurons

(Bartlett et al., 1998; Wang et al., 2003). However, our therapeutic proteins comprise a

sequence specifying secretion, thus scFvs should circulate into tissue or using the brain

microvasculature. Studies on diffusion in the brain report that proteins as big as BSA are

able to diffuse efficiently in the brain extracellular space of the brain(Tao and Nicholson,

1996). Another group used AAV5 to deliver a naturally secreted lysosomal serine

protease and could detect this enzyme up to 4 mm surrounding the injection site (Haskell

et al., 2003). It is likely that our antibodies also diffuse in a similar way.

Improvement of the delivery system.

In this study, animals were treated with a single injection of rAAV2. One way to

improve the strategy is to explore multiple injection approaches. For example, injection

in the hippocampus in both hemispheres might increase the expression of the transgene. It

is also possible to combine intracerebral treatment with systemic delivery to inhibit PrPSc

invasion in peripheral organs and central nervous system in parallel. rAAVs are

promising delivery vectors because they warrant long term expression of transgenes in

absence of any toxicity and inflammatory responses. However, despite high titers the

transduction efficiency is limited compared to other viral vector systems. An alternative

is to employ adenovirus/AAV chimeras which combine efficient adenovirus-mediated

gene transfer with stable gene expression by AAV (Goncalves et al., 2001). AAV1

appears to be a good candidate for brain transduction because it has been demonstrated

that this serotype shows a wider distribution after transduction compared to AAV2

(Wang et al., 2003).

Improvement of antibodies.

Recombinant proteins that are smaller than 60kDa are taken up by the kidney and

excreted into the urine (Maack et al., 1979). Therefore, scFvs tend to have a short half-
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life. Increasing the size of the antibody fragment is thus an obvious strategy to prolong

the half-life of antibodies. Multimerization or addition of groupment Fc or CH3 from IgG

results in antibody fragments that are still suitable for gene therapy (Afanasieva et al.,

2003). Altering the charge or isoelectric point (pI) can also change the pharmacokinetics

of antibodies. For example, increasing cationic amino acids content (e.g., lysine) leads to

prolonged half-life (Adams and Schier, 1999; Kobayashi et al., 1999).

It is reasonable to assume that the therapeutic effect is dictated by antigen affinity.

Affinity maturation can be improve by site-directed mutagenesis that consists in

substitution of amino acids in CDRs . The clones with higher affinity for the antigen are

subsequently selected (Yang et al., 1995). Chain shuffling is another technique to select

antibodies with increased affinity. In this methodology, a single VH region from an

antibody with affinity to a particular antigen is paired with an entire library of VL. A new

phage display library is constructed and panned on the antigen (Marks et al., 1992).

In conclusion, we initiated the first gene therapy model for prion diseases based on

immunotherapy. We first demonstrated that our system was working in vitro: (i) anti-

LRP single chain antibodies similar to those produced in a bacterial system can be

secreted by mammalian cells due to a secretion signal. (ii) AAV2 is suitable to deliver the

same scFv in neuronal cells. The preliminary results obtained in animals established that

a single injection of rAAV carrying scFv sequence into the brain resulted in expression of

the therapeutic protein. Further experiments that are in progress in our laboratory will

reveal if the level of scFv produced in the brain is sufficient to prevent prion diseases.
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Figure 1. Schematic representation of scFv constructs. a: open-reading frame-derived scFvs were

cloned into the plasmid pSecTagB. The coding sequence contains an Igκ leader sequence to allow

secretion, the scFv cDNA consisting of  variable part of heavy and light chain, a myc epitope tag

and a polyhistidinne tag. b: a recombinant AAV vector encoding the secretory version of scFvs

was constructed. ITR : Inverted Terminal Repeats.
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Figure 2.Extracellular and intracellular expression of functional scFvs in neuronal cells. a: N2a

cells were transfected with pSecTag plasmids encoding secretory anti-LRP single-chain

antibodies S18 and N3 or the control C9. Empty vector was used as negative control. After 48h,

the supernatant and cell lysate were collected separately and analysed by SDS-PAGE, followed

by Western blotting with a monoclonal anti-myc primary antibody. 5 ng of recombinant N3

produced in E.coli were used as control. b: supernatant collected from N2a cells transfected with

pSecTag-S18 as well as S18 produced in E.coli were employed as primary antibodies to detect

mouse LRP (moLRP) overexpressed in BHK cells by Western blotting.
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 Figure 3. Comparison of neuronal transduction efficiency for AAVserotype 1, 2, 3 and 5

GT1 or N2a cells were transduced with different serotype of rAAV-GFP. After 72h, the cells

were harvested and the fluorescence was measured by FACS. Merge of non-transduced cells and

transduced cells (dashed profile) is shown with the percentage of positive cells. Fluorescence

intensity  (abscissa) is plotted against a relative cell numbers (ordinate).
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 Figure 4. Expression of scFvs with an AAV based system.

a: N2a cells were transfected with the AAV based vector pSub/CEP4 encoding scFvs N3, S18 or

C9. Empty vector was used as a mock control. 48 after transfection, medium and lysate were

immunoblotted with an anti-myc antibody. b: N2a cells and GT1 cells were transduced with

rAAV-S18. Supernatants were collected after 72h. In the case of N2a cells, the transduction was

repeated after 72h and the supernatants collected again after 72h (6 days after the first

transduction). The medium was analysed by Western blotting.
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 Figure 5. Detection of scFv in the brain after stereotaxic injection. Crude brain homogenates

and IMAC purified eluate from brain homogenates were separated by SDS-PAGE. ScFv N3

expression was detected with an anti-myc antibody 30 days post injection.
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 Figure 6. In vivo experiment schedule.

a: rAAV used for in vivo experiment were tested in Hela cells. Supernatant was analysed by

immunoblotting 72h after transduction.

b: rAAV injections were performed into hippocampus at day –15 relative to the day of PrPSc

inoculation. PrPSc content is determined in spleens at day 90 and the survival times are monitored.
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Abbreviations

aa amino acid

Amino acids

A (Ala) alanine

C (Cys) cysteine

D (Asp) aspartate

E (Glu) glutamate

F (Phe) phenylalanine

G (Gly) glycine

H (His) histidine

I (Ile) Isoleucine

K (Lys) lysine

L (Leu) leucine

M (Met) methionine

N (Asn)  asparagine

P (Pro) proline

Q (Gln) glutamine

R (Arg) arginine

S (Ser) serine

T (Thr) threonine

V (Val) valine

W (Trp) tryptophan

Y (Tyr) tyrosine

AAV adeno-associated virus

BCA bicinchoninic Acid

BHK baby hamster kidney cells

bp base pair
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BSA bovine serum albumin

BSE bovine spongiform encephalopathy

cDNA complementary DNA

CDR complementarity determining region

CJD Creutzfeldt-Jakob disease

CMV cytomegalovirus

CNS central nervous system

DNA deoxyribonucleic acid

DMEM Dulbecco´s Modified Eagle Medium

ELISA enzyme-linked immunosorbent assay

ER endoplasmic reticulum

FACS fluoresecence-activated cell sorting

FCS fetal calf serum

FDC follicular dendritic cell

Fv fragment variable

GAG glycoaminoglycan

Gal-3 galectin 3

GFP green fluorescent protein

GPI glycosyl phosphatidylinositol

GSS Gerstmann-Sträussler-Scheinker (syndrome)

GST gluthathione-S-transferase

GT1 murine hypothalamic neuronal cells

h hour

HIV human immunodeficiency virus

HRP horse radish peroxidase

HS heparan sulfate

Hsp heat shock protein

HSPG heparan sulfate proteoglycan

hu human

Ig immunoglobulin

i.p. intra peritoneal
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IPTG isopropyl-beta-D-thiogalactopyranoside

ITR inverted terminal repeat

kDa  kilodalton

kb kilobase

LB medium Luria-Bertani medium

LRP laminin receptor precursor

LR laminin receptor

M molar

min minutes

mo mouse

MOI multiplicity of infection

mRNA messenger RNA

N2a murine neuroblastoma cells

NMR nuclear magnetic resonance

nvCJD new variant CJD

PAGE polyacrylamide gel electrophoresis

PBS phosphate buffered saline

PCR polymerase chain reaction

pI isoelectric point

PK proteinase K

PMSF phenylmethylsulphonylfluoride

PrP  prion protein

PrPc cellular prion prtein

PrPSc scrapie prion protein (pathogenic isoform of PrP)

PVDF polyvinylidene fluoride

rAAV recombinant AAV

RML Rocky Mountain laboratory

RNA ribonucleic acid

Rpm rotations per minute

SAF scrapie associated fibrils

ScFv single chain antibody
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SDS sodium dodecyl sulfate

sCJD sporadic CJD

SiRNA small interfering RNA

SFV Semliki Forest virus

TNF tumor necrosis factor

TSE transmissible spongiform encephalopathy

VLA-6 very late activation antigen-6
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