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1. Abstract 

 
The vesicle inducing protein in plastids 1 (Vipp1) is an essential factor for the 

development and maintenance of the thylakoid membrane. Depletion of Vipp1 in both 

Arabidopsis and Synechocystis mutants severely affects their ability to form thylakoids and 

consequently to perform photosynthesis. This work focuses on structural and functional 

properties of Vipp1. It was shown that Vipp1 assembles into a homooligomeric complex of 

ca. 2000 kDa. The presence of the Vipp1 complex was detected in cyanobacteria, green 

algae and higher plants, thereby identifying oligomerization as an essential feature for the 

function of Vipp1. A detailed computer analysis of Vipp1 secondary structure in different 

organisms revealed functionally important characteristics of the protein and allowed to 

discern specific features of its C-terminal domain. Based on the structural analysis, 

biochemical characterization of Vipp1 domains was carried out. It appeared that the PspA-

like domain of Vipp1 is responsible for both complex formation and localisation of Vipp1 

at the inner envelope of chloroplasts while the C-terminal domain is not involved in these 

processes. In order to closer elucidate the function of Vipp1, an analysis of Arabidopsis 

plants with moderate deficiency in Vipp1 protein level was performed. From results 

obtained in this analysis it can be proposed that Vipp1 acts at the initial stages of thylakoid 

biogenesis. Oligomerization of Vipp1 appeared to be a prerequisite for the process of 

thylakoid formation to commence. Moreover, the extent of thylakoid membrane formation 

is directly correlated to the amount of Vipp1 protein available in the chloroplast. 
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2. Zusammenfassung 
 

Das Vipp1 (vesicle inducing protein in plastids 1) Protein ist eine essentielle Komponente 

der Thylakoidbiogenese in Cyanobakterien und Chloroplasten. Eine signifikante 

Reduzierung des Gehalts an Vipp1 sowohl in Arabidopsis als auch Synechocystis führt zu 

einem fast vollständigen Verlust an Thylakoiden und damit zur Beeinträchtigung der 

Photosynthese. Der Schwerpunkt dieser Arbeit war die Untersuchung struktureller und 

funktionaler Eigenschaften des Vipp1 Proteins. Es konnte gezeigt werden, dass Vipp1 

homooligomere Komplexe von ca. 2000 kDa bildet. Diese Komplexe wurden in 

Cyanobakterien, Grünalgen und höheren Pflanzen gefunden. Dies legt nahe, dass die 

Oligomerisierung eine wesentliche Eigenschaft der Funktion von Vipp1 darstellt. Eine 

detaillierte Analyse der Sekundärstruktur verschiedener Vipp1 Proteine ermöglichte die 

Identifizierung funktional wichtiger Charakteristika von Vipp1, sowie spezifischer 

Eigenschaften der C-terminalen Domäne. Basierend auf diesen strukturellen Daten wurden 

biochemische Untersuchungen der Vipp1 Domänen durchgeführt. Diese ergaben, dass die 

PspA-ähnliche Domäne für die Komplexbildung und die Lokalisierung des Proteins an der 

inneren Hüllmembran von Chloroplasten notwendig ist. Im Gegensatz dazu spielt die 

C-terminale Domäne für diese Prozesse keine Rolle. Weiterführende funktionelle 

Untersuchungen an Arabidopsis Pflanzen mit einer nur teilweisen Verringerung des Vipp1-

Gehaltes ergaben, dass Vipp1 in den frühen Stadien der Thylakoidbiogenese fungiert. Eine 

Mindestmenge an Vipp1 scheint dabei für die Oligomerisierung des Proteins notwendig zu 

sein, welche wiederum eine Voraussetzung dafür ist, dass die Thylakoidbiogenese einsetzt. 

Danach korreliert die weitere Ausbildung der Thylakoidmembran mit der Menge von 

Vipp1, die diesem Prozess zur Verfügung steht. 
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3. Introduction 
 

3.1. Evolution of oxygenic photosynthesis 
Oxygenic photosynthesis, i.e. the conversion of light energy into chemical energy 

accompanied by CO2-fixation and oxygen release, is an important characteristic of plants 

and cyanobacteria. Oxygenic photosynthesis developed from a simpler anoxygenic, or non-

oxygen-evolving form of photosynthesis, in which bacteria use reduced molecules such as 

H2, H2S, S and small organic molecules as an electron source to generate NADH and 

NADPH with the help of a single photosystem (Xiong and Bauer, 2002). The appearance 

of oxygenic photosynthesis, utilizing two photosystems working in tandem together with 

the oxygen evolving complex, allowed for the efficient usage of water as a source of 

electrons, producing oxygen as a by-product. The oxygen generated during photosynthesis 

is the source of virtually all oxygen in the atmosphere and thus enabled life on earth in its 

present form. 

According to current knowledge, oxygenic photosynthesis first evolved in the ancestor 

of present-day cyanobacteria (Xiong et al., 2000). In the course of evolution the ability to 

perform oxygenic photosynthesis was passed on to the eukaryotic cell in a singular 

endosymbiotic event, in which an ancestral cyanobacterium was engulfed by a 

heterotrophic host cell (Margulis, 1970; Moreira et al., 2000; Palmer, 2000). This resulted 

in the appearance of a new organelle, the chloroplast, and enabled the host cell to exploit 

the energy of oxygenic photosynthesis for its needs. Beside photosynthesis, a number of 

other metabolic processes, indispensable for the cell, take place in the chloroplast. These 

include the biosynthesis of amino acids, fatty acids and porphyrines as well as sulphate and 

nitrite reduction. 

A great part of chloroplast genes have been transferred to the nucleus in the course of 

evolution (Martin et al., 1998). Thereby, the host cell took control over the biological 

processes taking place in the cyanelle. Only about 5-10% of the chloroplast proteins are 

now organelle-encoded. They generally include a number of key components of the 

photosynthetic apparatus as well as a major part of the chloroplasts transcription and 

translation machinery. Therefore, the regulation of chloroplast development is very 

complex and requires a tight coordination between the nuclear and plastid genomes. 

Cyanobacteria, as the evolutionary progenitor of chloroplasts, propagate by simple 

divisions. In a similar fashion, the chloroplasts of most algae are distributed into the 
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daughter cells. In land plants, chloroplasts develop from a non-differentiated plastid type, 

the proplastid (Mühletaler and Frey-Wyssing, 1959). This organelle contains only very few 

residual membranes, lacking a structured thylakoid membrane system. Indeed, plastids 

represent a whole organelle family, including several non-photosynthetic forms, namely 

amylo-, leuko-, chromo- and etioplasts, a feature, which cannot be attributed to the 

cyanobacterial ancestor. Instead, these plastid forms must be the result of a newly 

generated developmental program. Moreover, plastids do not only differentiate into 

specialized types but also posses a remarkable capacity for interconversion.  

A very important evolutional acquisition of organisms performing oxygenic 

photosynthesis is the thylakoid system, the site of location of their photosynthetic 

machinery. The development of thylakoids strongly correlates with the occurrence of 

oxygenic photosynthesis, and almost all organisms performing this process posses this 

specialized membrane system. Whereas the nature of the photosynthetic reaction and the 

principle architecture of the thylakoid membrane are by now reasonably well understood, 

many aspects of the evolution and progression of thylakoid biogenesis remain elusive. 
Despite a detailed structural and biochemical characterization of the thylakoid membrane, 

our knowledge about the molecular processes involved in its formation and maintenance 

remains unsatisfactory. 

 

3.2. Structure and composition of the thylakoid membrane  
The thylakoid membrane system of cyanobacteria as well as of many algae is built up 

of long lamellae that enclose an aqueous compartment, the lumen. This relatively simple 

organisation becomes more complex in the course of evolution. The first signs of thylakoid 

differentiation appear in green algae (Stefansson et al., 1997; Bhattacharya and Medlin, 

1998). This process further continues in mosses, which already posses a thylakoid structure 

similar to that of higher plants. The thylakoid membrane of higher plants is subdivided into 

grana stacks and stroma lamellae, which connect the granas. Such architecture allows the 

chloroplast to significantly increase the surface utilized for the photosynthetic process and 

thereby to achieve a more efficient exploitation of light energy. Moreover, the 

compartmentalization and flexibility of the thylakoid system allows for a finer regulation. 

There are four major protein complexes embedded into the thylakoid membrane: 

photosystem I and II (PSI and PSII, respectively) with their antenna proteins, the 

cytochrome b6f complex and the ATP synthase. They include a variety of co-factors and 
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pigments, and require multiple assembly steps. Moreover, the photosynthetic complexes 

are not equally distributed along the thylakoid membrane but have preferential locations. 

PSI and ATP synthase are more abundant in stroma lamellae while PSII and LHCII are 

predominantly found inside the grana stacks (Andersson and Anderson, 1980; van Roon et 

al., 2000). The cytochrome b6f complex is most likely equally distributed (Albertsson, 

2001; Allen and Forsberg, 2001), although there is no general agreement on this question 

(Vallon et al., 1991; van Roon et al., 2000). The spatial separation of photosynthetic 

components may serve as a means of fine-tuning the photosynthetic process (Horton, 

1999). Taking into consideration a faster excitation energy trapping in PSI, separate 

location of both photosystems may prevent an uncontrollable spill-over of the excitation 

energy from PSII to PSI (Trissl and Wilheim, 1993). It may also help in balancing between 

the linear and the cyclic electron transfer (Joliot and Joliot, 2002; Joliot et al., 2004). The 

stacking provides PSII with large functional antennae and facilitates regulation of the light 

requirement for photosynthesis (Anderson et al., 1986; Dekker and Boekema, 2005). 

Moreover, the distribution of photosynthetic membrane components changes in response to 

short- and long-term adaptation stimuli (Allen, 1992; Depege et al., 2003; Bellafiore et al, 

2005; Walters, 2005). 

Thylakoids have an unusual lipid composition, which is similar in cyanobacteria and 

higher plants (Dilley et al., 2001; Kelly and Dormann, 2004). Their main components are 

unsaturated galactolipids, namely monogalactosyl diacylglycerol (MGDG), which makes 

up more then 50% of the total thylakoid lipids, and digalactosyl diacylglycerol DGDG 

(about 25%). Additionally, the thylakoids contain phosphatidylglycerol and 

sulfoquinovosyl diacylglycerol together with other minor components. The protein to lipid 

ratio in the thylakoid membrane is very high (Block et al., 1983). Moreover, the 

distribution of the lipids in the thylakoid membrane is not equal in the leaflets facing 

lumen and the stroma, which is probably important for the function of the thylakoids 

(Douce et al., 1996). 

 

3.3. Formation of the thylakoid membrane 
Little is known about the initial steps of thylakoid development during the maturation 

of chloroplasts from undifferentiated proplastids. In the presence of light proplastids 

develop into chloroplasts, and the thylakoid system has to be built up more or less de novo. 

The development seems to begin by invagination of the inner envelope (Muehletaler and 
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Frey-Wyssing, 1959). These invaginations give rise to lamellar structures that are 

afterwards complemented by disc-shaped grana stacks. The formation of the thylakoid 

lipid bilayer is tightly coupled to the accumulation of photosynthetic protein components. 

These proteins play a role in stabilizing the newly evolving membrane, about half of which 

is constituted by non-bilayer forming lipids. It was shown that the association of purified 

MGDG (which is known to form an inverted hexagonal phase in an aqueous solution) with 

LHCII resulted in the formation of ordered lamellae structures (Simidjiev et al., 2000). 

Some of the photosynthetic components are believed to be inserted into the inner 

envelope before being transferred to the thylakoids. It is proposed that in Chlamydomonas 

the insertion of LHCs is coupled to chlorophyll biosynthesis and occurs at the inner 

envelope (Hoober and Eggink, 2001). Similarly, cytokinin-stimulated synthesis and 

accumulation of the ATP synthase in the inner envelope was shown for etioplasts of 

Lupinus luteus (Sherameti et al., 2004). Interestingly, a number of photosynthetic proteins 

in fully assembled state were also found in the plasma membrane of Synechocystis, 

implying their possible involvement in the initial steps of the cyanobacterial thylakoid 

biogenesis (Zak et al., 2001; Huang et al., 2002). It is important to notice that a 

surprisingly large set of the photosynthetic proteins, such as the subunit F0II of the ATP 

synthase and subunits W and X of the PSII reaction center, are believed to use a 

spontaneous mechanism for membrane insertion (Michl et al., 1994; Kim et al., 1998; Kim 

et al., 1999), which can be considered as a means of rapid initiation of thylakoid membrane 

formation at the stage when thylakoid protein transport pathways have not yet been 

assembled. Moreover, some of the thylakoid membrane proteins cannot be assigned to any 

of the identified thylakoid protein transport pathways. They either require yet unidentified 

assistance factors or the inner envelope as an intermediate location for their insertion 

(Fincher et al., 2003). Interestingly, several key components of the translocation 

machineries, such as SecY and TatC, belong to this group of proteins (Fincher et al., 2003; 

Mant and Robinson, 2005).  

During early stages of chloroplast development, a physical link can be observed 

between the inner envelope and the evolving thylakoid membrane (Muehletaler and Frey-

Wyssing, 1959; Hoober et al., 1991). Once the thylakoids have matured, this connection 

seems to be lost. This raises the question of how the biogenesis of mature thylakoid 

membrane is maintained. It is still controversial how the lipids, synthesised at the 

envelope, are delivered to thylakoids. One cannot exclude the presence of temporary 
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connections between the thylakoids and the inner envelope. Another possible way to 

transport the lipids would be trafficking by vesicles. Vesicle flow was observed between 

the inner envelope and the thylakoid membrane of chloroplasts in several higher plants as 

well as in some ferns and mosses (Westphal et al., 2001b; Westphal et al., 2003). A closer 

look at this phenomenon revealed that its features are similar to the vesicle traffic in yeast 

homotypic vacuole fusion (Westphal et al., 2001b). While vesicular transport is a feature 

common to all eukaryotic organisms, the vesicle flow between chloroplast membranes is 

the only known example of such a system utilized by a life form of a prokaryotic origin. It 

is also possible that, beside lipids, other components of the thylakoid membrane that are 

synthesized at the envelope or have to cross it en route to the thylakoids could be 

transported by the vesicle system. Hydrophobic components would be especially likely 

candidates to take an advantage of a system that allows avoiding contact with the aqueous 

stroma environment (Vothknecht and Westhoff, 2001). 

 

3.4. Vipp1 is an ubiquitous component of thylakoid biogenesis 
One of the components shown to be important for thylakoid development and 

maintenance is the vesicle inducing protein in plastids 1 (Vipp1). Vipp1 (original name 

IM30) was first identified as a protein targeted to chloroplasts, which is synthesised as a 37 

kDa precursor and processed to the mature form with a molecular mass of 30 kDa (Li et 

al., 1994). Vipp1 was originally found associated with both the inner envelope and 

thylakoid membrane of Pisum sativum. In contrast, in the cyanobacterium Synechocystis 

Vipp1 was identified only in the plasma membrane (Westphal et al., 2001a). Interestingly, 

despite the fact that Vipp1 is found associated with membrane fractions, hydropathy 

analysis shows that it should be a soluble protein (Li et al., 1994; Westphal et al., 2001a). 

Further structural analysis performed on the Vipp1 from pea revealed its strong tendency 

to form α-helices throughout the entire polypeptide as well as two potential coiled-coil 

regions (Li et al., 1994). 

First indications that Vipp1 plays a role in thylakoid biogenesis came from an analysis 

of the hcf155 (Δvipp1) mutant of Arabidopsis, which contained a T-DNA insertion in the 

promoter region of the vipp1 gene (Kroll et al., 2001). The mutation resulted in a more 

then 80% reduction of the Vipp1 protein content. Such plants were only able to grow 

heterotrophically and exhibited an albino phenotype. Interestingly, the lack of 

pigmentation became especially apparent with ageing of the plants, and the colour of 
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leaves displayed a change from pale green to almost white in the course of growth.  The 

high chlorophyll fluorescence phenotype, observed for Δvipp1 is often a characteristic of 

mutants with an impaired photosynthetic electron transport chain. Indeed, the spectroscopic 

analysis of Δvipp1 plants revealed a general dysfunction of their photosynthetic apparatus. 

Electron microscopy showed that the thylakoid system of mutant plants is severely 

distorted and mostly consists of unstructured lamellae and some membranous inclusions. 

Moreover, the vesicle flow, typically observed between the inner envelope and the 

thylakoid membrane of chloroplasts, was absent in the Δvipp1 plants (Kroll et al., 2001). 

This phenotype pointed toward a role of Vipp1 in the process of thylakoid formation. 

Disruption of the VIPP1 gene in Synechocystis further confirmed this assumption, since 

it also caused an almost complete loss of the thylakoid system in the mutant (Westphal et 

al., 2001a). Remarkably, the complete segregation of Δvipp1 Synechocystis cells could not 

be achieved. This, together with the fact that no vipp1 knock-out has been identified for 

Arabidopsis, indicates that at least minor amounts of Vipp1 are necessary to maintain the 

viability of these organisms, and the complete absence of Vipp1 would be lethal. 

Moreover, the similarity of phenotypes caused by Vipp1 depletion in the higher plant 

Arabidopsis and cyanobacterium Synechocystis implies that the role of Vipp1 in the 

thylakoid biogenesis is evolutionary conserved. 

Recent advances in genome sequencing made it possible to obtain information about 

Vipp1 and its homologues in a wide range of organisms. The analysis of fully sequenced 

genomes showed that genes encoding Vipp1 proteins are found in almost all organisms 

performing oxygenic photosynthesis. Moreover, homologues of Vipp1 can be found in 

many bacteria in form of the phage shock protein PspA. Vipp1 of Pisum sativum has 31% 

identity and 53% similarity with PspA from E. coli (Li et al., 1994) and both proteins share 

the highly α-helical structure. The most apparent difference between Vipp1 and PspA is 

the presence of an additional C-terminal extension of about 30 amino acids found in all 

Vipp1 proteins. Phylogenetic analysis indicated that the VIPP1 gene originated from PSPA 

by a gene duplication and was then passed on from the cyanobacterial endosymbiont to the 

plant genome (Westphal et al., 2001a). Whereas cyanobacteria mostly posses both PSPA 

and VIPP1, the PSPA gene seems to have been eliminated in plants. 

The similarity of both proteins could imply a redundancy of their functions. This, 

however, is ruled out by the phenotype of the Synechocystis vipp1 mutant, which displays a 

severe defect of the thylakoid system despite the presence of a functional PSPA gene in its 
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genome. Moreover, the fact that Vipp1 is found exclusively and ubiquitously in organisms 

performing oxygenic photosynthesis, i.e. in organisms possessing thylakoid membranes, 

implies special importance of this protein in the generation of the thylakoid system. In this 

respect, the additional C-terminal extension of Vipp1 is of particular interest, as a 

distinctive feature of all Vipp1 proteins. Due its similarity to PspA, Vipp1 can be regarded 

as a PspA-like protein with a specific C-terminal domain. The generation of this domain is 

in direct connection with the novel function of the PspA homologue in thylakoid 

biogenesis. 

 

3.5. Phage shock protein A (PspA) of bacteria 

Despite a detailed phenotypic analysis of the Δvipp1 mutant, the function of Vipp1 in 

the thylakoid biogenesis remains elusive. Considerable progress was, however, made in the 

investigation of its bacterial homologue, PspA. A significant structural similarity of both 

proteins suggests that even though their functions are different, they might be based on 

similar principles of action. Thus, the current knowledge about PspA might provide a basis 

for the understanding of Vipp1 function. 

PspA is a protein that is produced in bacterial cells under various stress conditions and 

plays a critical role in maintaining membrane integrity. Filamentous phage infection 

(Brissette et al., 1990), inhibition of lipid biosynthesis (Bergler et al., 1994) and 

misinsertion or blockage of the protein export machinery (Kleerebezem and Tommassen, 

1993; Hardie et al., 1996; Kleerebezem et al., 1996; Jones et al., 2003; DeLisa et al., 2004) 

are among the stimuli triggering PSPA induction. More general stress conditions, such as 

heat and osmotic shock (Brissette, 1990), exposure to organic solvents (Kobayashi et al., 

1998) and ionophores (Weiner and Model, 1994) have also been reported to induce PSPA 

expression. All of these stresses can be linked to the dissipation of the proton motive force 

(PMF), and there is mounting evidence that PspA is crucial for the maintenance of the 

PMF over the bacterial membrane. Consistently, ΔpspA mutants of E. coli appeared to be 

incapable of sustaining the PMF under stress conditions (Kleerebezem and Tommassen, 

1993). 

The involvement of PspA in the regulation of bacterial protein import has first been 

studied for the general secretory pathway (Sec pathway). It was shown that the blocking of 

the bacterial Sec translocation with excess of a prePhoE precursor leads to PSPA induction 
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(Kleerebezem and Tommassen, 1993). Moreover, enhanced PspA level was also observed 

in conditional mutants of several Sec components (Kleerebezem and Tommassen, 1993). 

The discovery of SRP, Tat and YidC-dependent translocation systems in bacteria posed 

the question whether PspA is involved in their regulation as well. In this regard, it was 

recently shown that the depletion of YidC results in enhanced PspA level (van der Laan et 

al., 2003; Jones et al., 2003). YidC plays a dual role in translocation by working either in 

cooperation with the Sec translocase or independently, and has a direct effect on the 

insertion of a Sec machinery component, SecE, as well as on the insertion of subunits a and 

c of the F0 part of F0F1 ATPase and cytochrome o oxidase (Yi et al., 2003). Depletion of 

YidC was shown to be accompanied by dissipation of the proton motive force (van der 

Laan et al., 2003). This is most probably due to defects in the assembly of cytochrome o 

oxidase and F0F1 ATPase, since the insertion of the purified F0 c-subunit into YidC-

containing inner membrane vesicles was shown to be PMF-independent (van der Laan, 

2004). Thus, the primary reason for PSPA induction under these conditions remains to be 

elucidated. 

In a recent work of DeLisa and colleges, it was shown that the overexpression of PspA 

from a multi-copy plasmid relieved saturation of the Tat pathway and increased the 

translocation rate of the heterologous TorA-GFP-SsrA and the native Tat substrates SufI 

and CueO (DeLisa et al., 2004). Consistently, deletion of the PSPA gene affected the 

translocation of the TorA-GFP-SsrA. These results imply a possible regulating role for 

PspA in a Tat-dependent bacterial translocation. However, the data concerning PspA 

expression in tat mutants are contradictory (DeLisa et al., 2004, Jones et al., 2003) and it is 

not clear if defects in Tat pathway lead to the PspA induction. 

Interestingly, no involvement of PspA in SRP-dependent translocation could be shown, 

and the mutations in all SRP components did not result in an induction of PSPA (Jones et 

al., 2003). It is important to notice that mutations in the SRP affect only the presentation of 

substrates to the Sec translocon. Therefore, these results are consistent with the observation 

made in studies of sec mutants that the entry of a precursor into the translocation pore, i.e. 

conditions potentially leading to a PMF dissipation, is necessary to induce PspA synthesis 

(Kleerebezem and Tommassen, 1993). All in all, PspA rather seems to help in the 

protection of membrane integrity per se than to be involved in specific steps of protein 

translocation. 
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The PSPA gene is part of the pspABCDE operon, which is conserved in many Gram-

negative bacteria. Transcription of the pspABCDE operon is initiated from a promoter 

located upstream of the PSPA gene by σ54-dependent RNA polymerase (Brissette et al., 

1991). The PSPF gene, which is located upstream of the pspABCDE operon and 

transcribed in the opposite direction, encodes an activator of the psp operon (Jovanovic et 

al., 1996). PspF binds to sites overlapping its own promoter, thereby simultaneously 

regulating its own expression (Weiner et al., 1995; Jovanovic and Model, 1997). In 

addition to PspF, other proteins appear to influence the transcription of the psp operon. 

PspA was shown to serve as a negative regulator of PspF (Dworkin et al., 1999; Elderkin et 

al., 2002; Elderkin et al., 2005). The PspB and PspC proteins were shown to act 

cooperatively as positive regulators of the psp operon, possibly by relieving the PspA-

mediated repression (Weiner et al., 1991; Weiner and Model, 1994). Recently, one more 

member of the PSPF regulon, PspG, was identified (Lloyd et al., 2004). Expression of 

PSPG is activated by PspF and negatively regulated by PspA (Lloyd et al., 2004; Green 

and Darwin, 2004). The exact function of PspG, as well as of PspD and PspE proteins so 

far remains unclear. Intriguingly, no homologues of the psp operon proteins, except PspA, 

have been identified in cyanobacteria. 

In E. coli cells PspA is found both in a soluble form as well as associated with the inner 

membrane (Brissette et al., 1990; Kleerebezem and Tommassen, 1993), and shuttling 

between the cytoplasm and the inner membrane presumably reflects different functional 

states of the protein (Adams et al., 2003). Recently, PspA was shown to assemble into an 

oligomeric complex with an estimated molecular mass of 1023 kDa (Hankamer et al., 

2004). The rotationally symmetric PspA ring consists of nine subunits, each containing 

four PspA molecules, and has the outer diameter of 200 Å. PspA complex assembly and 

disassembly is believed to modulate PspA activity via a number of protein/protein 

interactions. Firstly, it has been shown that in the assembled state the PspA complex 

completely inhibits the activity of PspF, which is the transcriptional activator of PspA. The 

membrane-associated function of PspA is modulated via its interactions with the 

transmembrane proteins PspB and PspC (Model et al., 1997; Adams et al., 2003). 

According to the current model (Hankamer et al., 2004), alteration in the membrane 

stability and dissipation of the proton motive force leads to the disassociation of PspC 

homodimers in the inner membrane and promotes its interaction with PspB. The 

PspC/PspB complex preferentially binds to oligomerized PspA shifting it to a membrane-
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associated form. This, in turn, inhibits the interaction of PspA with PspF resulting in 

enhanced PspA synthesis.  

It remains enigmatic how exactly PspA protects the membrane. The large size of the 

PspA complex leads to the supposition that, being recruited to a “damaged” membrane, 

PspA-complex attaches to it and seals the damaged region, thereby somehow maintaining 

membrane integrity under stress conditions. Yet, this assumption needs to be 

experimentally confirmed. It is also unclear how the change in membrane stability is 

sensed by the proteins of the psp operon, and the primary signal for PspA-dependent 

membrane protection still has to be identified. Moreover, although organisation in the psp 

operon has been shown for a wide range of gram-negative bacteria (Darwin, 2005), in 

other bacterial systems, such as cyanobacteria, most of the PSP genes appear to be lost and 

PSPA represents the only known component of the psp response. 

 

The evolution of oxygenic photosynthesis, which is correlated with the appearance of 

the thylakoid membrane as a structural platform for this process, necessitated the 

development of a PspA-like protein with a novel function, Vipp1. Despite its evident 

importance for the formation of the thylakoid system, the exact function of Vipp1 so far 

remains elusive. The aim of the present work was a detailed characterization of structural 

and functional properties of Vipp1 in order to provide an insight into the role it plays in 

biogenesis of the thylakoid system in cyanobacteria and plants.  
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4. Materials 
 
4.1. Chemicals 
All chemicals were purchased from Sigma Aldrich (München, Germany), Roth (Karsruhe, 

Germany) and Merck (Darmstadt, Germany). Bis[Sulfosuccinimidyl]suberate (BS3) was 

from Pierce (Bonn, Germany) and n-Decyl-β-D-maltoside (DM) was from Glycon GmbH 

(Luckenwalde, Germany). Nitrocellulose membrane was purchased from Protran 

(Schleicher&Schuell, Germany), Ni-NTA Superflow column was from Qiagen (Hilden, 

Germany), and Superose 6 HR 10/300 was from Amersham biosciences (Freiburg, 

Germany). 

 

4.2. Enzymes and kits 
Restriction enzymes were purchased from Fermentas (St. Leon-Rot, Germany) and T4-

DNA ligase was purchased from Eppendorf (Hamburg, Germany). For plasmid DNA 

isolation in a small scale FastPlasmidTM Mini (Eppendorf, Hamburg, Germany) was used. 

Large scale DNA isolation was performed with NucleobondR AX (Macherey-Nagel 

(Düren, Germany). In-gel purification of DNA-fragments was made using NucleospinR 

Extract II (Macherey-Nagel (Düren, Germany). 

 

4.3. Primers 
For Vipp1-GFP and Vipp1-RFP: 

V-forward                           5’-ggactagtatggctctcaaagcttca-3’  

V-reverse                            5’-cggggtacccaaagtcgttagctttc-3’ 

Vm-reverse                         5’-ggggtaccccaattctttcttcaag-3’ 

 

For α-Vcterm antibody: 

V-C-forward                        5’-ggagagcttcctcctggaaga-3’ 

V-C-reverse                         5’-ttaaagctcctttgatctttttct-3’ 

 

For 6xHis-Vipp1: 

Vipp1gate-f-st                     5’-ggggacaagtttgtacaaaaaagcaggctctatgaatctttttgaacgattttgtag-3’ 

Vipp1gate-rev-stop             5’-ggggaccactttgtacaagaaagctgggtcctaaaagtcgttagctttccttcgc-3’ 
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For analysis of VIPP1-PROTA plants: 

Gene specific primers for the wild type VIPP1 gene 

At155-RB3                           5'-cttgaagctatcactgagatgcgcc-3' 

At155-LB4rev                      5'-gttctgagaggggaatcctgagg-3' 

 

T-DNA specific primer 

LBTAG14                             5'-ggtaataggacactgggattcgtc-3' 

 

CaMV-35S specific primer 

35-S2                                    5'-gtaagggatgacgcacaatcc-3' 

 

All primers were purchased from MWG-Biotech AG (Ebersberg, Germany). 

 

4.4. Vectors 
pOL-LP (GFP) (gift from Dr. J. Meurer) 

pOL-RFP (gift from Dr. J. Meurer) 

pCR T7/NT-TOPO (Invitrogen GmbH, Germany) 

pDEST17 (Invitrogen GmbH, Germany) 

 

4.5. E. coli strains 
JM-109                              New England Biolabs (Frankfurt, Germany) 

BL21(DE3)lysS                 Novagen (Madison, USA) 

Top10                                Invitrogen (Karsruhe, Germany) 

 

4.6. Antibodies 
The primary antibodies α-LHCB, α-PsbP, α-Tic110, α-Tic32, α-Tic40, α-Tic55, α-

Tic62, α-Toc75, α-Vipp1 were raised against heterologously expressed full-length protein 

of Pisum sativum. α-Vcterm, α-α-CT and α-HCF136 were raised against Arabidopsis 

polypeptides. α-PspA was raised against heterologously expressed full-length protein of 

E. coli. α-AtpB, α-AtpC, α-AtpH, α-AtpG, α-AtpF, α-PsbO, α-PsaD, α-PsbD and α-Cytf 

were raised against Chlamydomonas or spinach polypeptides. α-PsbP was raised in chicken 

and all other antisera were raised in rabbit. 
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4.8. Plant material and growth conditions 
Seedlings of Arabidopsis thaliana were grown either on soil or on MS-plates 

(Murashige and Skoog, 1962) supplemented with 1% (w/v) sucrose as described before 

(Kroll et al., 2001). In both cases the plants were grown in a climate chamber at 20°C with 

a 14 h/10 h daylight cycle at a photon flux density of 20 µmol photons m–2 s–1. Prior to 

illumination, plates were placed for 2 days at 4 °C to induce germination. Propagation of 

both Δvipp1 and Vipp1-ProtA plants occurred via heterozygous offspring. All comparisons 

between mutant and wild type plants were carried out with leaf material of the same 

developmental stage. 

Pisum sativum (sort “Arvica”, Praha, Czech Republik) was grown on soil under day-

night cycle (12 h of light) in a climate chamber, at 20°C. 

 

4.9. Synechocystis growth conditions 
Synechocystis sp. PCC 6803 liquid culture was grown in BG11 medium (Ono and 

Murata, 1981) under continuous light (30-40µEm-2, s-1) at 30°C for 3-4 days.  
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5. Methods 
 

5.1. Molecular biological methods 
5.1.1. Polymerase Chain Reaction (PCR) 

DNA fragments for cloning into plasmid vectors were generated by the polymerase 

chain reaction (PCR) (Saiki et al., 1988). The restriction sites for cloning were integrated 

in the primers used for PCR. Arabidopsis cDNA library was used as template. PCR 

reaction was carried out as recommended by polymerase supplier (TripleMaster PCR 

System, Eppendorf, Hamburg, Germany). 

 

5.1.2. Cloning techniques 

Plasmid DNA isolation, restriction of plasmid DNA and PCR-amplified fragments, as 

well as agarose gel electrophoresis were carried out according to standard procedures 

(Sambrook et al., 1989). Standard techniques were applied for ligation of pVipp1 and 

pVipp1m into pOL-LP vector. Vipp1Δα-helix-GFP was created by restriction of pVipp1-

GFP with Eco72I at positions 475 bp and 637 bp followed by re-ligation of the plasmid. 

pVipp1-RFP was created by subcloning vipp1 into pOL-LP where the GFP sequence was 

replaced with RFP (Mollier et al., 2002). Cloning of VIPP1 from Arabidopsis into pCR 

T7/NT-TOPO and pDEST-17 (Invitrogen GmbH, Germany) was performed according to 

 

 
Table 1: List of constructs used in this study. The name (column 1), the vector used for cloning (column 

2), the biological source (column 3) and the purpose of cloning (column 4) are given for each construct. 

 

Construct Vector Organism Purpose 
pVipp1-GFP pOL-LP Arabidopsis 

thaliana 
protoplast 
transformation 

pVipp1-RFP pOL-RFP Arabidopsis 
thaliana 

protoplast 
transformation 

pVipp1m-GFP pOL-LP Arabidopsis 
thaliana 

protoplast 
transformation 

pVipp1Δα-helix-
GFP 

pOL-LP Arabidopsis 
thaliana 

protoplast 
transformation 

6xHis-Vipp1 pDEST17 Arabidopsis 
thaliana 

expression 

Vcterm pCR T7/NT-TOPO Pisum sativum expression 
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manufacturer’s recommendations. To create Vcterm, base pairs 915-1041 of VIPP1 gene 

from Pisum sativum amplified by PCR were cloned into the pCR T7/NT-TOPO. All 

constructs used in this study (Table 1) were verified by sequencing (Sequence laboratories, 

Göttingen, Germany). 

 

5.2. Biochemical methods 
5.2.1. Determination of chlorophyll concentration 

Determination of chlorophyll concentrations in higher plants was carried out as 

described by Arnon (1949). For Synechocystis, the method of Williams (1988) was used. 

 

5.2.2. Determination of protein concentration 
Concentration of total protein in E. coli cells expressing 6xHis-Vipp1 was determined 

by Bio-Rad Protein Essay Kit (Bio-Rad Laboratories GmbH, Munich, Germany). 

 

5.2.3. SDS-polyacrylamid electrophoresis (SDS-PAGE) and Western-blotting 

The electrophoretical separation of proteins in denaturing polyacrylamid gels was 

carried out according to the method of Laemmli (1970). Separating gels with 

polyacrylamid concentration ranging from 8% to 15% were used. Before being applied to 

the gel, proteins were solubilized in sample buffer (Laemmli-buffer) and incubated for 

2 min at 95 C°. Gels were stained either by Coomassie Brilliant Blue R250 or silver 

stained as described (Sambrook et al., 1989).  

For immunodetection, proteins were transferred onto a nitrocellulose membrane in a 

“semi-dry-blot” apparatus (Amersham Pharmacia Biotech, Freiburg) as described (Towbin 

et al., 1979). Nitrocellulose with bound proteins was first incubated for 30 min in blocking 

buffer (100 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.3% skim milk powder, 0.03% BSA, 

0,1% Tween-20) and then with primary antibody diluted in blocking buffer (the dilution 

varied with the choice of antibody) for 1.5 h – 2 h at RT or overnight at 4°C. Non-bound 

antiserum was removed from the membrane by 3x15 min wash in wash buffer (100 mM 

Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Tween-20). The choice of secondary antibody 

depended on the method of visualization. 

For colorimetric reaction with alkaline phosphatase substrate, the secondary antibody 

(anti-rabbit or anti-chicken alkaline phosphatase conjugate) was applied to the membrane 

for 1 h. After the excess of antibody was removed from the membrane (3x15 min in wash 
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buffer) immunoreaction was visualized by incubation with 100 mM Tris-HCl, pH 9.5, 

100mM NaCl, 5M MgCl2, 0.035% NBT (w/v), 0.0175% BCIP (w/v). 

For chemiluminescent method of protein detection (ECL), HRP-conjugated goat anti-

rabbit antibody was used as secondary antibody. Proteins were visualized with ECL 

Advanced TM Western Blot Detection Kit (Amersham Biosciences, Freiburg, Germany). 

 
5.2.4. Blue-Native electrophoresis (BN-PAGE) 

Blue-Native polyacrylamid gel electrophoresis (BN-PAGE) was carried out on 3%-13% 

gradient gels, basically according to the method of Schägger and von Jagow (1991) for 

separation of native protein complexes. Fractions corresponding to 50 µg chlorophyll for 

chloroplasts, 10 µg chlorophyll for Synechocystis and 100 µg of total protein for E. coli 

were used per 1 cm wide gel lane. In case of Vipp1-ProtA and Δvipp1 plants analysis, 

chlorophyll concentration was determined for wild type and the amounts of fresh leaf 

tissue corresponding to 50 µg/ml in the wild type were taken for each sample. 

The samples were solubilized in 60 µl buffer containing 750 mM aminocaproic acid, 

50 mM Bis-Tris pH 7.0, 0.5 mM EDTA-Na2 and incubated for 3-5 min on ice. n-Decyl-β-

D-maltoside (DM) was added to a final concentration of 1% and samples were incubated 

on ice for further 10 min. After a 10 min centrifugation at 4°C and 21000xg the 

supernatant was collected and loading buffer (5% Serva Blue G, 750 mM aminocaproic 

acid) was added to 1/10 of the sample volume. 

 

5.2.5. Isolation of intact chloroplasts from Arabidopsis thaliana 

Arabidopsis chloroplasts were isolated from 3-4 week old plants grown in a climate 

chamber at 20°C under constant light. The leaves were grinded in isolation buffer (50 mM 

Tris-HCl, pH 8.0, 20 mM EDTA, 0.33 M Sorbitol, 14.3 mM β-mercaptoethanol) and 

suspension was filtered through mull and 25 µm gauze. Chloroplasts were collected after 

centrifugation (3 min at 3500 rpm, 4°C) and purified on 40%-80% Percoll gradient (9000 

rpm for 15 min, 4°C). Intact chloroplasts were collected from 80% interface, washed twice 

with isolation buffer and centrifuged at 3500 rpm for 4 min. All procedures were carried 

out on ice. 
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5.2.6. Isolation of intact chloroplasts from Pisum sativum 
Intact chloroplasts were isolated from the leaves of 10-12 day old garden pea. The 

plants were grown on soil under day-night cycle (12 h of light) in a climate chamber, at 

20°C. Isolation of chloroplasts was performed as described in Bölter et al. (1998). 

 

5.2.7. Isolation of inner envelope from chloroplasts of Pisum sativum 

Chloroplast inner envelope membranes from pea were purified according to the method 

of Keegstra and Yousif (1986) modified by Waegemann and Soll (1995). 

 

5.2.8. Isolation of Synechocystis membranes 
Logarithmic-growth phase culture (OD750=0.7-0.8) was harvested by centrifugation 

(3000 rpm, 15 min, 4°C). Cells were washed with Buffer A (50 mM Hepes-NaOH, 0.5 M 

sucrose, 15 mM NaCl, 5 mM MgCl2, pH 7.0) and pelleted again. Cells were broken by 

vortexing with glass beads (120 - 210 micron, Sigma) in Buffer A. Glass beads were used 

in the ratio 1:2 to the sample volume. The sample was vortexed 3 times for 2 min each, 

with 1 min incubation on ice between each vortex. Unbroken cells were removed by brief 

centrifugation (4000xg for 5 min at 4°C). Membranes were sedimented by centrifugation at 

22000 rpm for 30 min at 4°C and washed twice in BufferA. 

 

5.2.9. Isolation of total membranes of Chlamidomonas reinhardtii 

The Chlamidomonas reinhardtii wild-type strain 137c was grown on Tris-acetated 

medium (Gorman and Levine, 1965) at 25°C and 40 µE m-2s-1 to the cell density of 2x106 

cell/ml. Membrane extraction was performed as described in Ossenbühl et al., 2004. 

 

5.2.10. Preparation of Echerichia coli total lysate 

E. coli cells were collected by centrifugation at 6000xg for 5 min. The pellet was 

resuspended in 50 mM Hepes-KOH, pH 7.6 and sonicated 3 times for 15 sec. The sample 

was supplemented with Laemmli-buffer and incubated for 2 min at 95 °C. 

 

5.2.11. Preparation of thylakoid membranes from wild type, K2 and Δvipp1 

Arabidopsis plants 

Several leaves of 3-4 week old heterotrophically grown Arabidopsis plants were 

weighed out and equal amount of material was used for each preparation. The leaves were 
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grinded with mortar and pestle in TMK buffer (10 mM Tris-HCl, 10 mM MgCl2, 20 mM 

KCl, pH 6.8), filtered through 25 µm gauze and the filtrate was centrifuged at 6000 rpm in 

a table top centrifuge for 10 min. 

 

5.2.12. Cross-linking of pea inner envelope proteins with 

Bis[Sulfosuccinimidyl]suberate (BS3) 

Isolated inner envelope membranes were resuspended in 50 mM Hepes-KOH, pH 7.6 

and incubated with non-membrane permeable cross-linker Bis[Sulfosuccinimidyl]suberate 

(BS3). Total protein concentration in each sample was 0.2 µg/µl. BS3 was added to the 

final concentration of 0.5 mM. Samples were incubated on ice or at room temperature for 

different periods of time, from 5 min to 1 h. The reaction was stopped by the addition of 

10 mM Tris, pH 7.5. Proteins were separated on 12.5% SDS-PAGE and analyzed by 

Western blot analysis using α-Vipp1 and α−Vcterm antisera. 

 

5.2.13. Trypsin-digest 

Inner envelope membrane of pea (approx. 3 µg/µl of total protein) and total E. coli 

membranes were incubated with different concentrations of trypsin (3.3 µg/ml, 10 µg/ml 

and 20 µg/ml) at 25°C for 90 s in buffer containing 50 mM Hepes, 5 mM CaCl2. To stop 

the reaction, PMSF was added to 10 mM and the samples were incubated for 10 min on 

ice. Proteins were subsequently separated on 12.5% SDS-PAGE and analyzed by Western 

Blotting using α−Vipp1, α−Vcterm, α-PspA antisera. 

 

5.2.14. Media for protoplast isolation and transformation 

 
F-PCN medium 

Murashige and Skoog (MS) mineral salts (as in Gamborg B5 medium (Gamborg et al., 

1998)), supplemented with PC-vitamins (200 mg/l Myo-inositol, 1.0 mg/l thiamin-HCl, 

2.0 mg/l Ca-panthotenat, 2.0 mg/l nicotine acid, 2.0 mg/l pyridoxin-HCl, 0.02 mg/l biotin), 

1.0 mg/l 6-benzylaminopurin (BAP), 0.1 mg/l α-naphtaleneacetic acid (NAA), 20 mM 

MES, pH 5.8 (KOH) and 80 g/l glucose. Osmomolarity was adjusted to 550 mOsm with 

glucose. 
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F-PIN medium 

MS mineral salts and PC-vitamins like for F-PCN medium, 20 mM MES, pH 5.8 

(KOH) and 130 g/l sucrose. Osmomolarity was adjusted to 550 mOsm with sucrose. 

 

Transformation medium 

15 mM MgCl2x6H2O, 0.1% MES, 0.5 M mannitol, pH 5.8 (KOH). Osmolarity was 

adjusted to 550 mOsm with mannitol. 

 

40% PEG 

40% PEG 1500, 70 mM Ca(NO3)2, 550 mM mannitol, pH 9.75 (KOH) 

 

5.2.15. Isolation of protoplasts from tobacco leaves 

Transient transformation of tobacco protoplasts with constructs carrying GFP- or RFP-

tags was carried out according to the modified method of Koop et al (1996). Seedlings of 

Nicotiana tabacum cv. petite Havana were germinated on B5-modified medium (Gamborg 

et al., 1976) and leaves of 3-4 week old plants were used in all experiments. The leaves 

were cut with a razor blade in 0.1 cm wide stripes and incubated with 0.5% cellulase and 

0.5% macerase in F-PIN medium for 12-14 h. Resulting suspension was filtered through 

100 µM gauze. The gradient for separating intact protoplasts was created by overlaying F-

PCN medium on the filtered suspension. After centrifugation at 70xg for 10 min intact 

protoplasts were collected from the interface between F-PIN and F-PCN mediums, washed 

with transformation medium and sedimented at 50xg for 10 min. Protoplasts were counted 

in Fuchs-Rosenthal counting chamber and cell density was adjusted to 5x106 

protoplasts/ml. 50 µg of DNA was used for one transformation. When same aliquot of 

protoplasts was transformed with two different constructs (co-transformation), 25 µg of 

each DNA was used. 25 µl of DNA (2 µg/µl DNA in 10 mM Tris-HCl, 1mM EDTA, pH 

5.6) was put to 100 µl of protoplasts in a 30 mm Petri dish and gently mixed by shaking, 

after which the suspension was supplemented with 125 µl of 40% PEG, gently mixed again 

and incubated for 7.5 min. This followed by adding 125 µl of F-PCN medium and 

incubation for two further minutes. Protoplasts were diluted with 2.5 ml of F-PCN medium 

and incubated in dark at 25°C. Specific GFP- and RFP-fluorescence could be observed 

between 24 h and 72 h after transformation. 
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5.2.16. Isolation of protoplasts from Arabidopsis leaves 

Leaves of 3-4 week old Arabidopsis plants grown on soil were cut up into small pieces 

with a sharp razor blade in 10 ml of buffer containing F-PIN supplied with 0,1 g cellulase, 

0,03 g mazerase and 10% BSA. The leaves were transferred into 100 ml flasks, infiltrated 

under vacuum for ca. 30 sec and incubated in dark for ca. 90 min with agitation (40 rpm). 

Protoplasts were released from the leaf tissue by centrifugation at 80 rpm for 1 min. 

Further steps were performed as in 5.2.15. 

 

5.2.17. Isolation of chloroplasts from tobacco protoplasts 

2x106 protoplasts transformed with GFP- or RFP-fusion constructs were collected by 

centrifugation at 100xg for 10 min and resuspended in isolation medium (330 mM Sorbit, 

20 mM MOPS, 13 mM Tris-HCl, pH 7.9, 1 mM MgCl2, 0,02% BSA, 1 mM β-

mercaptoethanol, 0.1 mM PMSF). Cells were lysed on ice for 30 minutes and chloroplasts 

were isolated by filtering the suspension through 25 µm gauze.  

 

5.2.18. Heterologous protein expression 

Protein overexpression was carried out in E. coli strain BL21(DE3)lysS. Transformed 

with a corresponding construct bacteria were incubated at 37°C in LB-medium 

supplemented with antibiotics ampicillin and chloramphenicol for selection (Sambrook et 

al., 1989). Cells were grown to the mid-log phase (OD550=0.5-0.8) after which the protein 

was expressed by induction with 0.4 mM IPTG during 2 h to 4 h at 37°C. 

 

5.2.19. Protein purification and production of polyclonal antibody 

α-Vcterm antiserum was prepared against the C-terminal 42 amino acids of the pea 

Vipp1 protein. Corresponding DNA sequence was cloned into the pCR T7/NT-TOPO 

expression vector (Invitrogen, Karlsruhe, Germany), which carries an N-terminal 6xHis 

tag. Heterologously expressed protein was purified on a Ni-NTA Superflow column 

(Qiagen, Hilden, Germany) under denaturing conditions following the manufacturer’s 

instruction. Antisera were made by injection of purified protein into rabbit by Pineda 

antibody service (Waldbronn, Germany). 
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5.2.20. Purification of Vipp1 complex under native conditions 

E. coli cells overexpressing Vipp1-6xHis were collected after centrifugation at 8000xg 

for 10 minutes, resuspended in lysis buffer (100 mM Tris-HCl, pH 7.6; 50 mM NaCl, 

75 mM NaSCN) and lysed using a French press cell. The suspension was centrifuged at 

15000xg for 10 minutes, the pellet was resuspended in lysis buffer supplemented with 

1.1% CHAPS, 600 mM NaCl and incubated for 2 h at 4°C with agitation, followed by a 

centrifugation for 1 h at 15000xg. The supernatant, containing solubilized proteins, was 

applied onto a Ni-NTA column (Qiagen, Hilden, Germany) in binding buffer (50 mM 

Hepes-KOH, pH 7.6, 300 mM NaCl, 10 mM imidazole, 75 mM NaSCN, 0.05% CHAPS) 

and Vipp1-6xHis was purified under native conditions according to the manufacturer’s 

instructions with the exception that 75 mM NaSCN was added to washing and elution 

buffer. Eluted Vipp1 was centrifuged for 10 min at 21000xg and analysed on Superose 

6 HR 10/300 column. 

 

5.2.21. Purification of Vipp1 complex under denaturing conditions with subsequent 

renaturation 

E. coli cells overexpressing Vipp1-6xHis were harvested by centrifugation at 8000xg 

for 10 min, resuspended in 50 mM Hepes-KOH, pH 7.6 and lysed by passage through a 

French pressure cell. The suspension was centrifuged at 15000xg for 10 min, the pellet was 

resuspended in urea buffer (4 M urea, 50 mM NaCl, 50 mM NaH2PO4, 10 mM Hepes, 

5 mM Tris-HCl, pH 8.0) and incubated for 20 min at RT with agitation. Non-solubilized 

and aggregated protein was removed by centrifugation (10 min, 15000xg, 4°C). Protein 

concentration was estimated and adjusted to 20 mg/mg with urea buffer, then the 

supernatant was diluted 1:20 (v/v) in renaturation buffer (55 mM Tris-HCl, pH 8.2, 

10.56 mM NaCl, 0,44 mM KCl, 0.055% PEG 3350, 550 mM guanidine-HCl, 1.1 mM 

EDTA, 440 mM sucrose, 1 mM DTT, 0.3 mM DM) to yield a final concentration of 

1 mg/ml protein and incubated for 14 h at 4° with rotating. The sample was centrifuged at 

15000 g for 10 min to remove aggregated proteins. The supernatant was dialysed against 

20 mM Hepes-KOH, pH 7.6, 50 mM NaCl, 300 µM PMSF and centrifuged again 

(21000xg, 10 min, 4°) before being applied to the Superose 6 10/300. 
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5.2.22. Size-exclusion chromatography  

Size-exclusion chromatography was performed on Superose 6 HR 10/300 column 

(Amersham biosciences, Freiburg, Germany) with FPLC system (Amersham biosciences, 

Freiburg, Germany). 

For the examination of the Vipp1-complex purified under native conditions, the 

column was equilibrated with 20 mM Tris-HCl, pH 7.6, 50 mM NaCl, 75 mM NaSCN. 

Vipp1 purified under denaturing-renaturing conditions was analyzed on the column 

equilibrated with 20 mM Hepes-KOH, pH 7.6, 50 mM NaCl. The column was calibrated 

with the following molecular weight markers: blue dextran (2000 kDa), catalase 

(232 kDa), aldolase (158 kDa), bovine serum albumin (67 kDa) and chymotrypsinogen 

(25 kDa) in the appropriate buffer. Size exclusion was performed with a flow rate of 0.3 

ml/min. Fractions (0.25 ml) were collected and analyzed by Western blotting with α-Vipp1 

antiserum.  

 

5.3. Fluorometric and absorption studies 
5.3.1. Measurement of chlorophyll fluorescence emission at 77K 

For 77K fluorescence spectroscopy, equal amounts of wild type, K2 and Δvipp1 leaf 

tissue (fresh weight) were ground with a mortal and pestle in isolation buffer (330 mM 

sorbitol, 50 mM Tris-HCl, pH 8.0, 20 mM EDTA, 14.3 mM β-mercaptoethanol). The 

samples were subsequently filtered through a single layer of gauze. In case of wild type 

and K2, the samples were adjusted to equal chlorophyll concentration. For Δvipp1, the 

amount of fresh leaf material equal to wild type was used. The samples were diluted with 

isolation buffer, transferred into glass capillaries, and instantly frozen in liquid nitrogen. 

The analysis was performed with a LS55 luminescence spectrometer using FL Winlab 

software (Perkin-Elmer, Buckinghamshire, UK) and an excitation light with a wavelength 

of λ = 430 nm. 

 

5.3.2. Chlorophyll a fluorescence measurements 

Chlorophyll a fluorescence was measured using a commercial pulse amplitude 

modulated fluorometer PAM 101 interfaced with the PAM data acquisition system PDA-

100 (Walz, Effeltrich, Germany). Unless noted otherwise, the detection was performed at 

20°C. Leaves were dark-adapted for 5 min prior to the fluorescence induction. The 

fluorescence induction kinetics were performed on the same leaves with increasing red 
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actinic illumination (650 nm light) with intensities of 40, 80 and 120 µE/m2s, which 

corresponds to 3.5, 16.8 and 76.0 µmol photons m-2 s-1. The intensity of saturating light 

flashes (800 ms) used for detection of the maximal fluorescence yield (Fm) and the 

maximal fluorescence during induction (Fm’) was 4000 µmol photons m-2 s-1. Saturating 

pulses determining Fm’ were given at intervals of 20 sec. F0 indicates the minimal 

fluorescence yield of dark-adapted plants. The variable fluorescence (Fv) was calculated as 

(Fm - Fo), and the ratio Fv/Fm reflects the potential yield of the photochemical reaction of 

PSII (Krause and Weis, 1991). Non-photochemical quenching (NPQ) was determined as 

described (van Kooten and Snel, 1990).  

Photosystem I activity induced by far-red light (720 nm) was measured at 830 nm. 

Plants were pre-illuminated with actinic light before the saturating white light pulse was 

applied. After the signal dropped back to the original level, actinic light was switched off 

to monitor P700 reduction, and subsequently far-red light was applied to oxidize P700. A 

saturating pulse was then given in order to re-reduce P700. The far-red light was switched 

off, followed by a flash of saturating light. The redox level of PSI was determined as 

ΔA/ΔAmax as described (Klughammer and Schreiber, 1993). 

 

5.4. Electron microscopy 
5.4.1. Transmission electron microscopy 

Pieces of leaf tissue were fixed immediately with 2.5% glutardialdehyde in fixative 

buffer (75 mM sodium cacodylate, 2 mM MgCl2, pH 7.0) for 1 h at room temperature; 

rinsed several times in fixative buffer and post-fixed for 2 h with 1% osmium tetroxide in 

fixative buffer at room temperature. After two washing steps in distilled water, the cells 

were stained en bloc with 1% uranyl acetate in 20% acetone for 30 min. Dehydration was 

performed with a graded acetone series. Samples were infiltrated and embedded in Spurr’s 

low-viscosity resin (Spurr, 1969). After polymerisation, ultra thin sections with a thickness 

between 50 and 70 nm were cut with a diamond knife and mounted on uncoated copper 

grids. The sections were post-stained with aqueous lead citrate (100 mM, pH 13.0). All 

micrographs were taken with an EM 912 electron microscope (Zeiss, Oberkochen, 

Germany) equipped with an integrated OMEGA energy filter operated in the zero loss 

mode. 
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5.4.2. Negative stain electron microscopy 
Samples for EM were prepared using the conventional negative staining procedure. 

One drop of purified Vipp1-complex diluted 1:10 was placed onto a carbon-coated grid 

hydrophylized by charge glow. After 2 min the protein solution was removed and the grid 

was dried on air. Grids spread with Vipp1-complex were treated for 1 min with 1% uranyl 

acetate and 0.01% glucose in water, briefly rinsed with a drop of water and then air dried. 

The samples were examined with a ZEISS EM 912 transmission electron microscope 

operated with the OMEGA energy filter in the zero-loss mode. 

All electron microscopy was performed in collaboration with Prof. Dr. G. Wanner. 

 

5.5. Imaging 
All fluorescence images were obtained by an epi-fluorescence microscope (polychrome 

IV System, Till Photonics GmbH, Munich, Germany) using GFP, FITC, and rhodamin 

filter sets. Pictures were taken with a cooled IR CCD camera and visualized by the 

TILLvision 4.0 software. 

 

5.6. Secondary structure analysis 
Secondary structure prediction was performed using NPS@ (Network Protein 

Sequence Analysis, France) (Combet et al., 2000) and Jnet (Cuff and Barton, 2000). 
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6. Results 
 

6.1. Analysis of the secondary structure of Vipp1 and PspA proteins 
Initial analysis of Vipp1 and PspA suggested a strong conservation in their secondary 

structure. To accurately identify and characterize the features common to these proteins, a 

detailed secondary structure prediction was performed. 

Analysis of the secondary structure of Vipp1 and PspA proteins was carried out by 

using two methods: NPS@ (Network Protein Sequence Analysis, France) (Combet et al., 

2000), which makes consensus predictions by analysing the results of eight different 

programs (DPM, DSC, GOR4, HNN, PHD, Predator, SIMPA96 and SORM), and JPRED, 

where the neural network program Jnet is used for the prediction (Cuff and Barton, 2000). 

An initial analysis was performed on Vipp1 of Arabidopsis thaliana. The cleavable 

presequence of Vipp1 was not considered and the Vipp1 amino acid sequence was 

analysed from the start of the mature protein indicated as amino acid one in figure 1. 

NPS@ results show that from amino acid position 1 to 216 Vipp1 has eight α-helices 

interrupted by short random coil regions of up to six amino acids (Fig. 1). The region from 

amino acid 217 to 243 represents the only comparatively long non-helical region of the 

protein, namely a random coil. This region is followed by an additional α-helix comprised 

of 14 amino acids (Fig.1). The results obtained by JPRED analysis principally agree with 

NPS@ with the exception that a random coil between amino acids 82 and 85 is not 

detected with the JPRED program. 

 

 

21 156 201 216 25768 188

1 163 206 24326 71 190

259

82 

85 

Figure 1: Secondary structure prediction of the Vipp1 protein of Arabidopsis thaliana.  

Dashed rectangles represent α- helical regions; lines represent unstructured coil regions. Numbers correspond

to the number of the first (above) and the last (below) amino acid of each α-helix. Underlined numbers 

indicate a random coil region predicted only by NPS@ and not by JPRED. Representation of both α-helices 

and random coil regions is in due proportion to the length of Vipp1. Amino acid 1 is the start of the mature 

protein. 
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To elucidate whether the secondary structure of Vipp1 and PspA is conserved, a 

structure comparison was performed for several different Vipp1 and PspA proteins by both 

NPS@ and JPRED programs. This analysis revealed a strong structural conservation of all 

PspA and Vipp1 proteins. It is furthermore evident that the whole of PspA and the PspA-

like part of Vipp1 show principally identical features (Fig. 2). Both consist of several α- 

 

 

helices interrupted by short unstructured regions. The position of the helices is very similar 

to those described above for Arabidopsis. Only slight shifts in the positioning of the α-

helices (two to three amino acids) are observed between different organisms. This shift can 

be explained by the differences in their amino acid sequences and does not principally 

change the described structure. 

However, a detailed comparison of the PspA proteins from non-photosynthetic and 

photosynthetic organisms revealed one difference in the secondary structure of these two 

groups. According to the NPS@ approach, PspA proteins of Escherichia coli, Bacillus 

subtilus, Methanosarcina acetivorans and Shewanella oneidensis contain a single long α-

 50            100                  150                         200                                  250 

   50            100                   150                          200  

PspA-like domain C-terminus- -C

PspA-2

Vipp1

PspA like domain terminus

PspA-1

- α-helix- α-helix- α-helix- α-helix

- random coil- random coil- random coil- random coil

non-photosynthetic

photosynthetic

Figure 2: Secondary structure analysis of PspA and Vipp1 proteins.  

Model of the secondary structure of consensus sequences of PspA and Vipp1 proteins as predicted by NPS@. 

PspA-1 and PspA-2 represent two alternative secondary structure models of PspA proteins derived from the 

analysis. Designations of α-helical and random coil regions are given in the picture. Numbers correspond to 

the number of amino acids in the sequence. 
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helix from amino acid 21 to amino acid 156-158, while in PspA of the cyanobacteria 

Synechocystis sp., Nostoc (Anabaena) sp., Thermosynechocystis elongatus and the 

photosynthetic α-proteobacterium Rhodospirillum robrum this helix is interrupted by a 

short random coil approx. at position 80. This feature is also shared by all Vipp1 proteins 

(see Fig. 2). The detection of the long α-helical region in PspA proteins of the first group is 

in agreement with the fact that they also show a higher tendency to form α-helical coiled-

coil structures in this region, when analysed by the COILS program (data not shown). At 

the same time, JPRED always predicts a short random coil region at position 80, thereby 

splitting the long α- helix into two. This may be due the fact that JPRED uses a neural 

network to make predictions and is trained on a common set of proteins possessing 

α-helices not longer than 40 to 60 amino acids. This can lead to the automatic disruption of 

the extra-long α-helical region predicted by NPS@. Assuming that the structure predicted 

by NPS@ is correct, the random coil structure at the position 80 is a later acquisition of 

PspA proteins in photosynthetic bacteria that was subsequently passed on to Vipp1. On the 

other hand, we cannot exclude that the prediction of a 130 amino acid long α-helix in 

bacterial PspA proteins might be an artefact provided by the NPS@ program. This 

question remains disputable. 

Of special consideration is a C-terminal extension of variable length that was shown to 

be characteristic for Vipp1 in the preliminary analysis. Despite considerable differences in 

the amino acid sequence, the C-terminal domain of all Vipp1 proteins analysed shows 

principally identical features on the level of secondary structure (see Fig. 2). The domain 

comprises a random coil followed by a short α-helix. The size of the random coil region 

may vary between different species ranging from 17 amino acids (Nostoc punctiforme)  to 

32 amino acids (Synechocystis sp.), and it is the major determinant of differences in total 

amino acid length of Vipp1 proteins. However, the observed structure was found in all 

Vipp1 proteins analysed. The conservative nature of the secondary structure of the C-

terminal domain indicates that its specific features are necessary for the function of Vipp1. 

The analysis of many Vipp1 and PspA proteins showed, nevertheless, that the length of the 

proteins is not a sufficient criterion to differentiate between Vipp1 and PspA, since some 

organisms have PspA proteins with a prolonged C-terminus or even posses two PspA-like 

proteins of similar length. This situation is exemplified in figure 3 for two strains of 

Nostoc. Assuming that the secondary structure of the C-terminus is important for the 
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Figure 3: Sequence comparison and secondary structure comparison of PspA-like proteins of Nostoc.  

(A) Sequence comparison of ZP 00108080 and ZP 00108081 of Nostoc punctiforme PCC 731 and all2342 

and all2343 of Nostoc sp. PCC 7120. The alignment was performed using the program ClustalW 1.7. 

Identical amino acids are underlined in black using BOXSHADE. (B) Secondary structure comparison of 

ZP 00108080, ZP 00108081, all2342 and all2343. Designation of α-helical and random coil regions is given 

in the picture. Numbers correspond to numbers of amino acids in the sequence. 

 

function of Vipp1, it may be used it as a decisive factor to discern true Vipp1-proteins 

from PspA. This assumption was tested in the analysis of the PspA-like proteins of the two 
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Nostoc strains: Nostoc punctiforme PCC 731 and Nostoc sp. PCC 7120. Each of these 

species posses two proteins found in a BLAST search as homologues of PspA. In both 

cases the genes encoding these proteins are located next to each other (ZP 00108080 and 

ZP 00108081 for Nostoc punctiforme, all2342 and all2343 for Nostoc sp. PCC 7120). ZP 

00108080, ZP 00108081 and all2342 have a size of about 250 amino acids, which is 

approx. 30 amino acids longer then the PspA of E. coli. The 274 amino acid long all2343 

shows an additional N-terminal extension of 39 amino acids (Fig. 3). This extension is 

likely due to incorrect genome annotation since none of the other known Vipp1 or PspA 

proteins possess a similar region. Therefore, the first 39 amino acids of all2343 are not 

taken into consideration in the following analysis. The alignment of the four proteins 

showed that ZP 00108081 has higher similarity to all2342 (91% vs. 70% similarity to 

ZP 00108080 and all2343) while ZP 00108080 is more similar to all2343 (80% vs. 70% 

similarity to ZP 00108081 and all2342). Moreover, ZP 00108081 and all2342 share a 

conserved region in their C-terminal parts (Fig. 3 A). Therefore, it is likely that 

ZP 00108080 and all2343, as well as ZP 00108080 and all2342 are evolutionary closer 

related to each other. This, however, does not provide information whether they belong to 

the group of Vipp1 or PspA proteins. In order to distinguish between PspA and Vipp1 

proteins of Nostoc punctiforme and Nostoc sp. PCC 7120, a secondary structure 

comparison was performed as described above. The analysis revealed that ZP 00108081 

and all2342 both posses a C-terminal region with features characteristic for Vipp1, namely 

a random coil followed by a short C-terminal α−helix. 

In contrast, the C-termini of ZP 00108080 and all2343 exhibit a different secondary 

structure. The C-terminus of all2343 exhibits only a random coil structure, while in the 

case of ZP 00108080 the last α-helix of the Psp-like domain is prolonged and is followed 

by a random coil without creating an α-helical structure at the end of the protein. From this 

feature it appears that ZP 00108080 and all2343 belong to the group of PspA proteins. 

While the structural analysis appears conclusive, this assumption requires experimental 

support. 

Whereas this example illustrates that the length and the level of amino acid similarity 

in PspA-like proteins may differ, Vipp1 can most likely be distinguished from PspA due to 

the specific secondary structure of its C-terminal domain. This approach was used further 

to differentiate between PspA and Vipp1 proteins in various groups of organisms. The 

result is summarized in table 2. It supports the notion that PspA is present in diverse 
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groups of non-photosynthetic and photosynthetic bacteria. In contrast, Vipp1 was 

identified in most organisms performing oxygenic photosynthesis, from cyanobacteria to 

higher plants, with the exception of Gloebacter violaceus. Interestingly, both 

Prochlorococcus marinus MIT9313 and Synechococcus sp. WH 8102 seem to have lost 

the gene coding for PspA and thus posses only Vipp1. It is therefore tempting to speculate 

that already at this stage of evolution of oxygenic photosynthesis PspA might have become 

dispensable. 

 

Table 2: Distribution of PspA and Vipp1 proteins between different organisms. The analysed proteins 

(column 1) were assigned to the PspA or Vipp1 group according to their predicted secondary structure 

(columns 2 and 3, respectively). The gene names are given in the case of fully annotated genome, otherwise 

accession numbers are given. 

  
 PspA Vipp1 
Escherichia coli  BAA14873 - 
Bacillus subtilus str. 168 NP 388499 - 
Shewanella oneidensis MR-1 NP 717415 - 
Yersinia pestis NP 993471 - 
Vibrio cholerae O1 biovar eltor str. N16961 NP 231314 - 
Methanosarcina acetivorans C2A    NP 616394 - 
Rhodospirillum rubrum ZP 00269524 - 
Prochlorococcus marinus MIT9313 - PMT1361 
Nostoc sp. PCC 7120 all2343 all2342 
Nostoc punctiforme ZP 00108080  ZP 00108081 
Synechococcus sp. WH 8102 - SYNW1879 
Thermosynechococcus elongatus tll1692 tlr0283 
Synechococcus elongatus PCC 6301 YP 171452 YP 171453 
Synechocystis sp. PCC 6803 slr1188 sll0617 
Gloeobacter violaceus PCC 7421 grl0898 - 
Chlamydomonas reinhardtii - AAU06582 
Arabidopsis thaliana - AT1G65260 
Pisum sativum - Q03943 
Zea mais - AY105003 
Oryza sativa  - BAB90216 

 

As mentioned above, the amino acid sequience of the Vipp1 C-terminus can vary 

greatly. Nevertheless, it does display certain characteristic features. One of such features is 

the presence of a leucin and one or two conservative prolins (LP or LPP, Fig. 4, asterisk) in 

the beginning of the random coil region. These residues are also found in several PspA 

proteins, very close to the end of the protein (Fig. 4). 
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Figure 4: Sequence comparison of the C-terminal domain of different Vipp1 proteins. 

C-termini of Vipp1 of Oryza sativa (Osa), Zea mais (Zma), Arabidopsis thaliana (Ath), Pisum sativum (Psa), 

Nostoc (Anabaena) sp. (Ana), Nostoc punctiforme (Npun), Synechococcus sp. (Msyn) and Synechocystis sp. 

(Syn) as well as C-termini of PspA of Synechocystis sp. and Nostoc (Anabaena) sp. were aligned with 

ClustalW 1.7 program. Identical amino acids are shown in black, similar amino acids are shown in grey. 

Motifs characteristics are depicted in red. An asterisk marks the position of the conservative LPP/LP. The 

scheme above the sequence represents the secondary structure prediction. The box designates the α-helical 

region. The random coil region is drawn as a line. 

 

 

Apart from the presence of the LPP/LP motif, the amino acid sequence as well as the 

length of the Vipp1 C-terminal random coil is quite diverse in different organisms. The C-

terminal α-helix, on the contrary, shows higher amino acid similarity and carries a 

conserved motif (I/V---EL--LR). The functional importance of the described structure 

remains unclear. One can speculate that the variable random coil region serves as a linker 

between the PspA-like part of Vipp1 and its C-terminal α-helical domain. The presence of 

prolins in the beginning of the random coil would allow it to bend against the rest of the 

protein making the C-terminal α-helix more flexible and thereby facilitating its interactions 

with the stromal or inner envelope partners. 

 

6.2. Analysis of Vipp1 topology 
6.2.1. Cross-linking experiments with inner envelope vesicles 

Although Vipp1 is nominally a soluble protein, it was shown to be tightly associated 

with the inner envelope of pea (Li et al., 1994). This could be due to an interaction of 
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Vipp1 with membrane-embedded proteins in a fashion similar to PspA. To find out 

whether in chloroplasts the Vipp1 molecule is indeed in close proximity to other proteins, 

inner envelope membrane vesicles purified from pea chloroplasts were cross-linked with 

the membrane-impermeable cross-linker BS3. After separating the proteins by SDS-PAGE 

they were analyzed by Coomassie staining and Western blotting with a Vipp1-specific 

antibody (Fig. 5). 

 
 

 

 

Figure 5: Cross-linking of inner envelope vesicles from pea with BS3. 

Proteins of purified inner envelope vesicles of pea were incubated with BS3 for given periods of time, either 

at 4°C or at room temperature. The cross-linking reaction was analysed by SDS-PAGE and 

immunodecoration with an α-Vipp1-antibody. (A) Coomassie-stained gel. (B) Immunodecoration with 

α−Vipp1. Specific cross-link products are indicated by arrows. 

 

 

The Coomassie-stained gel (Fig. 5 A) demonstrates that samples incubated with BS3 

for different periods of time do not show drastic changes in the protein pattern, indicating 

that no unspecific cross-linking event occurred. The immunodecoration with the α-Vipp1 

specific antibody, on the other hand, showed that incubation with BS3 results in the 

formation of several new immunoreactive bands (Fig. 5 B). 

The monomeric Vipp1 can be detected as a band of 33 kDa, in accordance with its 

deduced molecular mass (Li et al., 1994; Kroll et al., 2001). A second band of about 35 
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kDa is frequently observed after long exposure to reducing conditions and was identified 

previously as Vipp1 by protein sequencing (Kroll et al., 2001). A band of approx. 66 kDa 

becomes visible early on during the cross-linking reaction (Fig. 5 B, min incubation 

at 4°C) and remains the most prominent cross-link product even after prolonged incubation 

with BS3 (Fig. 5 B, 15 min and 30 min at 4°C, 30 min and 1 h at RT). The reaction also 

results in two other well pronounced immunoreactive bands, of about 100 kDa and over 

200 kDa in size. The intensity of the 66 kDa and 100 kDa bands increases with time of 

incubation at 4°C (Fig. 5 B, compare 5, 15 and 30 min at 4°C). The largest cross-link 

product especially accumulates after long incubation at room temperature, indicating that 

under these conditions the reaction shifts toward formation of high-molecular weight 

products. The described pattern of cross-link products was observed repeatedly, supporting 

the specificity of the cross-linking reaction. These results indicate that Vipp1 is in close 

proximity to other proteins to which it can be cross-linked. The sizes of the cross-linking 

products are implicative of the formation of Vipp1 homodimer, -trimer and -octamer. This 

would suggest that Vipp1 primarily forms a homodimer or that it interacts with a protein of 

a very similar molecular mass. 

 

6.2.2. BN-PAGE analysis of cyanobacterial and chloroplastidal Vipp1 

The presence of new immunoreactive Vipp1 bands after cross-linking indicates that 

Vipp1 might be present in a protein complex. To investigate a possible complex formation 

by Vipp1, native protein complexes from chloroplasts of several higher plants or from total 

membranes of Chlamydomonas reinhardtii and Synechocystis sp. were analyzed by blue 

native polyacrylamid gel electrophoresis (BN-PAGE). Isolated Arabidopsis chloroplasts 

were solubilized with 1% n-Decyl-β-D-maltoside (DM) and non-solubilized proteins were 

removed by centrifugation. Under these conditions, most of the proteins were found in the 

supernatant including at least 95% of the Vipp1 protein as determined by Western Blot 

analysis (Fig. 6). 

The solubilized proteins and protein complexes were subsequently separated on a 3%-

13% gradient BN-PAGE in the first (Fig. 7 A, upper panel) and a 10% SDS-PAGE in the 

second dimension. Proteins were transferred onto a nitrocellulose membrane and 

immunodecorated with α−Vipp1 serum. Under these conditions Vipp1 could be identified 

in two distinct positions (Fig. 7 A, lower panel). A minor part of Vipp1 was found slightly 

below the first green band, which contains the monomeric light harvesting chlorophyll 
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binding proteins and corresponds to a size of about 66 kDa. This part of the Vipp1 protein 

is therefore most likely monomeric. The major part of Vipp1 was found clearly above the 

PSI super-complex corresponding to a size of well over 1000 kDa, indicating that most of 

the Vipp1 is present in a high molecular weight complex. Similar results were obtained 

from BN-PAGE analyses of isolated chloroplasts of Pisum sativum and Nicotiana tobacco 

(data not shown) providing evidence that this feature of Vipp1 is common to chloroplasts 

of all higher plants. 

 

 

 

To elucidate whether such a Vipp1 complex is also found in algae, BN-PAGE analysis 

was performed on total membranes of Chlamydomonas reinhardtii. Total membranes were 

isolated and as before solubilized with DM. Solubilized proteins were subjected to BN-

PAGE (Fig 7B, upper panel) and subsequently to SDS-PAGE. After Western blotting, 

Vipp1 was visualized by the α-Vipp1 made against the pea protein. As with higher plants, 

part of Vipp1 could be identified in a position indicative of a high molecular weight 

complex (Fig. 7 B, lower panel). In comparison with Arabidopsis, more of Vipp1 was 

found in the monomeric form. This can either reflect a slightly different in vivo situation in 

Chlamydomonas cells or could be caused by a higher susceptibility of Chlamydomonas 

protein complexes to disintegrate upon solubilisation with DM. 

 
 

DM - +

α-Vipp1
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α-Lhcp

S P S PS P

Figure 6: Solubilisation of Vipp1 with n-Decyl-β-D-maltoside. 

Arabidopsis chloroplast lysates without (-) or after (+) treatment with DM were separated into soluble

fraction (S) and pellet (P) by centrifugation at 21000xg for 10 min. The samples were applied to SDS-PAGE, 

transferred onto nitrocellulose membrane and immunodecorated with α-Vipp1, α-Tic110 and α-LHCB 

antibodies. 

LHCBLHCB
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Figure 7: Vipp1 is assembled in a high-molecular-weight complex of over 1000 kDa size. 

Freshly isolated Arabidopsis thaliana chloroplasts (A) or total membranes of Chlamydomonas reinhardtii 

(B) and Synechocystis sp. 6803 (C) were solubilized with 1% DM and separated on 3%-13% BN-PAGE in 

the first (upper panels of A, B and C) and 10% SDS-PAGE in the second dimension. Positions of main 

photosynthetic complexes are shown for Arabidopsis (upper panel). Immunodecoration shows Vipp1 in two 

distinct positions corresponding to the likely monomeric protein and a complex of well over 1000 kDa (lower 

panels). 
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The data obtained for higher plants and algae indicate that the presence of Vipp1 in a 

complex is common for chloroplasts. Since cyanobacteria are the ancestor of these 

organelles and also require Vipp1 for their thylakoid biogenesis (Westphal et al., 2001a), it 

was studied whether a similar organization of Vipp1 can be found in Synechocystis cells. 

Total membranes of Synechocystis sp. PCC 6803 were isolated and solubilized with DM. 

BN-analysis was performed as described for Arabidopsis and Chlamydomonas. Western 

Blot with α-Vipp1 showed very little Vipp1 in the monomeric form, while most of the 

Vipp1 was present in a position of similar size compared to higher plants and 

Chamydomonas (Fig. 7 C). Thus, like in higher plants and algae, Vipp1 of Synechocystis is 

part of a high molecular weight complex. 

 
6.2.3. Trypsin digestion of inner envelope vesicles of Pisum sativum 

Hydropathy analysis of Vipp1 does not reveal any membrane-spanning domains. 

Nevertheless, Vipp1 is found tightly associated with both the inner envelope and 

thylakoids of pea (Keegstra et al., 1994) and Arabidopsis ( Kroll et al., 2000), and with the 

plasma membrane of Synechocystis (Westphal et al., 2001a). To closer elucidate the nature 

of this membrane association and the topology of Vipp1, inner envelope vesicles of pea 

were treated with trypsin. The incubation with an increasing concentration of trypsin 

results in the formation of a 25 kDa proteolytical fragment of Vipp1 that remained highly 

resistant to further proteolysis (Fig. 8, first panel). Taking in consideration the homology of 

Vipp1 and PspA and the fact that part of PspA protein is found to be peripherally bound to 

the bacterial inner membrane (Kleerebezem and Tommassen, 1993), a comparable trypsin 

digestion of E. coli lysates was performed with the trypsin concentrations as for pea inner 

envelope vesicles (Fig. 8, third panel). Partial degradation of PspA was observed under 

these conditions, which can be seen by comparing band intensities in immunoblotting 

before and after trypsin treatment. However, some part of PspA remained protected from 

degradation and other than with Vipp1 no additional proteolytical subfragments was 

detected (Fig. 8, third panel). The fact that part of PspA remains stable and part 

proteolitically degrades is in agreement with the observation that in a bacterial cell PspA is 

found in an inner membrane fraction as well as in a soluble pool. On the other hand, it 
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Figure 8: Trypsin digest and BN- PAGE analysis of Vipp1. 

Inner envelope vesicles of pea chloroplasts were treated with increasing concentrations of trypsin: 1 - no 

trypsin; 2 – 3.3 µg/ml; 3 – 10 µg/ml; 4 – 20 µg/ml. The samples were separated by SDS-PAGE and analysed 

in Western blotting with anti-Vipp1 antibody that recognize the full length protein (α-Vipp1) and with 

antibody specific for the C-terminal domain of Vipp1 (α-Vcterm). Trypsin treatment resulted in the 

formation of a proteolitically resistant 25 kDa Vipp1 fragment which was not recognized by α-Vcterm 

antibody. As a control, E. coli membranes were treated with trypsin as indicated above and immunodecorated 

with α-pspA.  

 

 

cannot be excluded that under chosen conditions the bacterial membrane is in general more 

sensitive to trypsin treatment resulting in the enhanced susceptibility of PspA in 

comparison to Vipp1. 

The 25 kDa fragment obtained after proteolysis of Vipp1 very much resembles in size 

PspA from E. coli. Moreover, secondary structure prediction of Vipp1 indicates that its N-

terminal PspA-like domain possess an α-helical structure, which is separated from the C-

terminal α-helix by a random coil spacer, a new acquisition of all Vipp1 proteins. 

Therefore, it seemed possible that the protease can access Vipp1 at this unstructured 

region, cleaving off the C-terminal extension, while the PspA-like domain remains 

protected. Indeed, a potential trypsin cleavage site is located just at the beginning of the 

random coil spacer. To test this assumption an antibody against the last 42 amino acids of 

the pea Vipp1 protein (α -Vcterm) was raised. The antiserum recognized the full length 

Vipp1 protein in untreated inner envelope. In contrast, the 25 kDa peptide that remained 

after trypsin digestion was not recognized by this antibody (Fig. 8 A, second panel). This 

result confirms that it is the PspA-like region of Vipp1 which is resistant to proteolysis. In  
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contrast, the Vipp1-specific carboxyterminal extension is accessible for other proteins and 

is cleaved from the Vipp1 protein upon trypsin treatment. The cross-link of inner envelope 

vesicles with BS3 indicates that Vipp1 can either build homodimers and –multimers or 

interact with a protein of similar size. The domain required for this interaction could be 

localized either in the N-terminal PspA-like region of Vipp1 or its C-terminal part. 

Therefore it was elucidated whether the N-terminal domain of Vipp1 derived from 

proteolysis is sufficient to promote dimer formation. To study this question, inner envelope 

vesicles were first treated with trypsin and then cross-linked with BS3. Beside the 

formation of the 25 kDa proteolitical fragment, two bands were observed in 

immunoblotting with α-Vipp1 (Fig. 9). The band of 66 kDa is identical in size to the band 

obtained when the cross-link alone is performed. This band is most probably created by a 

non-digested full-size Vipp1. The second band of about 50 kDa was observed exclusively 

when the inner envelope was treated with trypsin prior to cross-link (Fig. 9, indicated by 

arrow). The size of this band corresponds to twice the Vipp1 25 kDa proteolytical 

fragment. The presence of the 50 kDa band indicates that the proteolitically resistant N-

terminal region of Vipp1 is sufficient to form a cross-link product. Moreover, the size of 

this product, which is twice the size of the proteolitically resistant region of Vipp1, 

indirectly supports the supposition about Vipp1 homodimer formation. 

BS3
trypsin - +- + - +- +

- +

25-

30-

50-
60-

40-

20-

100-

α-Vipp1 Figure 9: Trypsin digest of pea inner envelope

followed by BS3 cross-linking.  

Pea inner envelope vesicles were treated with

15 µg/ml of trypsin for 90 sec. After the reaction was

stopped, the sample was divided in two and incubated

for 1 h with or without BS3. As control, BS3 cross-

linking without trypsin treatment was performed. The

proteins were analysed by Western blotting with α-

Vipp1 antiserum. The arrow indicates a Vipp1

immunoreactive band of approx. 50 kDa specifically

appearing in BS3 cross-linking of trypsin-treated

sample. 
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Since Vipp1 is not a transmembrane protein, the proteolitical resistance of its N-

terminal part can not be explained by its insertion into a membrane bilayer. Vipp1 could 

rather be protected from proteolysis by tight association with a membrane or by complex 

formation. To elucidate the nature of the Vipp1 proteolitical resistance, inner envelope 

proteins were first released from the membrane by treatment with 1% DM and then  

 

 
Figure 10: Analysis of Vipp1 proteolysis in the presence of detergent. 

(A) Inner envelope was solubilized with 1% DM before trypsin treatment. Proteins were separated by SDS-

PAGE and immunodecorated with α-Vipp1. (B) Inner envelope proteins treated as in A were subjected to 

BN-PAGE prior to SDS-PAGE and subsequently analysed in immunoblotting with α-Vipp1 antiserum. 

 

 

incubated with trypsin (Fig. 10). If the interaction with the membrane is the cause of Vipp1 

trypsin resistance, the 25 kDa proteolytical fragment will not be detected under these 

conditions, as Vipp1 will be devoid of the lipid environment. On the other hand, if the 

insensitivity to proteolysis is due to tight complex formation, i.e., in the manner described 

for α-helical SNARE proteins, the 25 kDa fragment will be formed even in the presence of 

detergents. Immunodecoration with α-Vipp1 revealed a 25 kDa band in the sample treated 

with trypsin after DM-solubilization, indicating that complex formation is a likely reason 

for Vipp1 proteolytical resistance (Fig. 10 A). To further support this idea, the proteins 

were separated on BN-PAGE prior to SDS-PAGE and again immunodecorated with α-

Vipp1. No reaction was detected at the low molecular weight size as it would be expected 

for a 25 kDa fragment in a monomeric form. Instead, the Vipp1 proteolytical fragment was 

exclusively found at the position of over 1000 kDa, which indicates its assembled state 
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(Fig. 10 B). These results imply that the N-terminal PspA-like domain of Vipp1 remains 

proteolytically resistant due to its assembly in a complex. The Vipp1-specific C-terminal 

extension is not buried within the complex and therefore accessible to proteolysis. 

 

6.2.4. BN-PAGE analysis of heterologously expressed Vipp1 

The data obtained from the cross-linking studies indicate that a Vipp1 complex might 

be formed by multiple subunits of Vipp1. Moreover, the arrangement in a large 

homooligomeric complex has been shown for PspA of E. coli (Hankamer et al., 2004). To 

elucidate whether the formation of Vipp1 complex occurs in a similar manner or requires 

specific plant components, E. coli cells overexpressing Vipp1 from Arabidopsis were 

analysed for the presence of a Vipp1 complex. 

The full length Vipp1 from Arabidopsis with an N-terminally fused 6xHis-tag was 

heterologously expressed in E. coli. The cells were disrupted and the soluble and 

membrane fractions were analysed by SDS-PAGE. The majority of the heterologously 

expressed 6xHis-Vipp1 was detected in the fraction containing insoluble proteins and only 

a minor part was found soluble (Fig. 11 A). The membrane fraction was subsequently 

treated with DM, and solubilized proteins were separated by BN-PAGE and SDS-PAGE as 

before. Western Blot analysis revealed that more than half of the Vipp1 protein  

 
 

Figure 11: Heterologously expressed Vipp1 

forms a high molecular weight complex. 

(A) E. coli cells overexpressing 6xHis-Vipp1 

were disrupted by passage through a French 

pressure cell. The sample was divided into 

soluble (S) and insoluble (P) fractions by 

centrifugation and analyzed on SDS-PAGE. 

Most of Vipp1 is found in the membrane 

fraction (indicated by arrow). (B) After 

solubilization with 1% DM, the membrane 

fraction was further analyzed by BN-PAGE 

followed by SDS-PAGE in the second 

dimension. Western blotting with α-Vipp1 

antiserum revealed a reaction at the positon of 

Vipp1 monomer as well as Vipp1 high 

molecular weight complex. 
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was present as monomeric protein. Nevertheless, a significant amount was found in a high 

molecular weight complex of approximately the same size as native Vipp1 from 

chloroplasts (Fig. 11 B). These results indicated that heterologously expressed Vipp1 

protein alone seems to be sufficient for complex formation and no particular chloroplast 

proteins are required for this process. 

 

6.2.5. Analysis of heterologously expressed Vipp1 by size exclusion chromatography  

To obtain more information about the nature of the Vipp1 complex, heterologously 

expressed Vipp1 protein was purified from E. coli cells and analyzed by size exclusion 

chromatography. Two different approaches of purification were applied and compared. 

Firstly, Vipp1 complex was purified under non-denaturing conditions. A minor part of 

heterologously expressed Vipp1 is soluble under conditions where the non-denaturing 

detergent CHAPS is used in the preparation (data not shown). Therefore, E. coli cells 

expressing 6xHis-Vipp1 were disrupted, the Vipp1-containing membrane fraction was 

incubated with 1.1% CHAPS and the solubilized proteins were collected after 

centrifugation. Solubilized Vipp1 was purified by affinity chromatography on Ni-NTA 

under non-denaturing conditions and the eluate was further separated by size exclusion 

chromatography on Superose 6 HR 10/300 (Fig. 12 A). The chromatogram displayed a 

major protein peak corresponding to a molecular mass of about 2000 kDa. Western Blot 

analysis identified Vipp1 in this high-molecular weight peak (Fig. 12 A) confirming the 

results from the BN-PAGE analysis. 

The behavior of the heterologously expressed Vipp1 protein during size exclusion is 

identical to that of Vipp1 purified from detergent-solubilized chloroplasts, providing 

confirmation that the heterologously expressed Vipp1 behaves like the native protein (data 

not shown). However, the above approach could not provide sufficient amount of protein 

for a further detailed analysis of the Vipp1-complex. Therefore, a larger quantity of 

purified Vipp1 was obtained from a non-soluble E. coli fraction by renaturing of urea-

solubilized protein. Vipp1 was first purified on Ni-NTA matrix under denaturing 

conditions and subsequently incubated in a buffer which included PEG, sucrose and 

550 mM guanidine-HCl. This buffer was chosen from the Foldlt Screen protocol for 

protein renaturation since under these conditions a significant part of Vipp1 appeared to be 

soluble (data not shown). Precipitated Vipp1 was discarded after centrifugation and the 
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Figure 12: Chromatography of heterologously 

expressed Vipp1 protein by size exclusion.  

(A) Heterologously expressed Vipp1 was purified by 

nickel affinity chromatography under native conditions 

and analyzed on Superose 6 HR 10/300 column. The 

inset depicts the column calibration. The chromatogram 

displays the major elution peak at 7.5 ml corresponding 

to a molecular weight of approximately 2000 kDa. 

Western blot analysis with α-Vipp1 antiserum 

confirmed that the majority of Vipp1 elutes in this peak. 

Protein from the peak fraction was later used for 

analysis by EM negative staining (see Fig. 13 a).  

(B) Heterologously expressed Vipp1 purified under 

denaturing conditions and subsequently renatured was 

analyzed on Superose 6. The inset depicts the column 

calibration. The majority of Vipp1 protein eluted as a 

high molecular mass complex corresponding to a size of 

approximately 2000 kDa. Protein from the peak fraction 

was later used for negative staining EM analysis (see 

Fig. 13 b). 

 
 

 

 

 

supernatant was dialysed. This fraction was then likewise analysed by size exclusion 

chromatography (Fig. 12 B). The chromatogram obtained from this fraction was very 

similar to the one from Vipp1 purified under non-denaturing conditions. The Vipp1 protein 

was again predominantly in the peak corresponding to a molecular weight of 

approximately 2000 kDa. Thus, the performed cycle of denaturation – renaturation did not 

interfere with the ability of Vipp1 to form a high molecular weight complex.  

The eluates of the high-molecular peak fractions obtained in both Vipp1 purification 

approaches were further used for electron microscopic studies. 

 

6.2.6. Analysis of purified Vipp1 complex by negative staining electron microscopy 

The purified complex was visualized by negative stain electron microscopy. The initial 

analysis was performed on the Vipp1 complex purified by size exclusion chromatography 
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under non-denaturing conditions, as this purification procedure more likely provides the 

Vipp1 complex in its native state. Due to the limited amount of protein the sample yielded 

only very few particles (Fig. 13, panel a). More data on the Vipp1 particles were obtained 

by the analysis of Vipp1 complexes isolated under denaturing conditions, subsequently 

renatured and further purified by size exclusion (Fig. 13, panel b and c). These samples 

yielded a much larger set of particles. Electon micrographs obtained from both purification 

techniques were compared in order to get an impression of the shape of the Vipp1 

complex. Both purification approaches provided a set of particles of similar size and 

appearance, therefore the images of Vipp1 complex purified by denaturation / renaturation 

technique were considered as representative and analyzed in detail.  

 

 

Figure 13: Analysis of Vipp1 complex by negative stain electron microscopy.  
Pictures were obtained from samples purified either under native conditions (a) or under denaturing 

conditions followed by renaturation (b–g). Overview pictures show the presence of single complexes as well 

as aggregated complexes in the different preparations (a–c). Enlargements of single complexes were used to 

estimate the dimension of the complexes (d–g). d, e – Top view on Vipp1 complex; f – tilted particle; g – 

side view on two Vipp1 complexes in a stack. The bar corresponds to 100 Å. 

 

 

The majority of singular particles appeared ring-shaped, with a darker area in the center 

(Fig. 13, panel a, b, d, and e) and they were classified as top view onto the complex. Other 

particles appeared tilted in reference to the plane of the grid, representing a side view on 

the complex (Fig.13, panel b, g). These particles were often found in stacks of two or 

more. It was observed that this stacking increases in the samples with a higher complex 
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concentration. In some rare cases particles could be found which were tilted at less than 90 

degree angle (Fig.13, panel c and f). In these cases the hole in the middle of the complex 

became partially visible. To get a rough estimation of the size of the Vipp1 complex, the 

dimensions of about 60 single particles were measured. Calculated from these 

measurements the Vipp1 complex has a width of about 400 Å and a height of about 140 Å. 

The hole in the middle is estimated to be about 120 Å.  

 

6.2.7. Transient expression of Vipp1 in protoplasts  

The fact that most of Vipp1 is organized in a high molecular weight complex raised the 

question of where this large complex is localized within the organelle. The localization of 

Vipp1 in chloroplasts was visualized by GFP-fusion technique. The VIPP1 gene of 

Arabidopsis including its presequence was N-terminally fused to the green fluorescence 

protein (GFP) sequence in the pOL-GFP vector. The 35S CaMV promoter allowed 

transient expression of the resulting construct (pVipp1-GFP) in tobacco protoplasts. As 

shown in figure 14 (panel b), the Vipp1-GFP fusion protein is targeted into the chloroplasts  

 

 

 
Figure 14: Localization of pVipp1-GFP in tobacco protoplasts. 

Isolated tobacco protoplasts were transformed with pVipp1-GFP and expressed Vipp1-GFP fusion was 

visualized by fluorescent microscopy. (A) Chlorophyll fluorescence. (B) Vipp1-GFP fluorescence. 

(C) Overlay of A and B. 

 

 

where it is found in many well defined spots arranged in a ring-like fashion. An overlay of 

the chlorophyll (Fig. 14 B, panel a) and the GFP fluorescence signals indicated that Vipp1-
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GFP resides outside the thylakoid membrane system (Fig. 14 B, panel c). This pattern is 

consistent with a location of the Vipp1-GFP fusion protein either inside the inner envelope  

or close to the inner surface of the chloroplasts envelope.  

To study the Vipp1 localization in more details, two further GFP-fusion constructs were 

made: pVipp1m-GFP, which comprises only the PspA-like domain of Vipp1 without its 
 

 

 

 

Figure 15: Fluorescence micrographs of protoplasts transformed with different Vipp1-GFP/RFP 

fusions. 

(A) Schematic representation of the constructs used for protoplast transformation. (B) Localization of the 

Vipp1-fusions depicted in A. a, b, - a protoplast expressing both Vipp1-RFP (a) and Vipp1m-GFP (b); c - 

transient expression of Vipp1-Δα- helix-GFP. 
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C-terminal extension, and pVipp1Δα-helix-GFP, where 54 amino acid residues of the long 

α-helical stretch inside the PspA-like domain of the protein were removed (Fig. 15 A). To 

distinguish the localization of these constructs from the full length Vipp1, pVipp1 was 

subcloned into pOL-RFP vector thereby creating pVipp1-RFP. The latter was used for co-

transformation with pVipp1m-GFP and pVipp1Δα-helix-GFP in protoplasts of tobacco 

(Fig. 15 B) and Arabidopsis (data not shown). 

The Vipp1m-GFP protein displayed the same distribution pattern as Vipp1-GFP. 

Indeed, double transformations with both constructs into the same protoplast revealed the 

proteins in indistinguishable spots indicating that they are present in identical complexes 

(Fig. 15 B). An overlay of the chlorophyll (Fig. 14 B, panel a) and the GFP fluorescence 

signals indicated that Vipp1-GFP resides outside the thylakoid membrane system (Fig. 

14 B, panel c). This pattern is consistent with a location of the Vipp1-GFP fusion protein 

either inside the inner envelope or close to the inner surface of the chloroplasts envelope. 

On the other hand, no ring-like pattern was observed with Vipp1Δα-helix-GFP (Fig. 15 B, 

panel f). Instead, the fluorescence signal was distributed evenly throughout the chloroplasts 

as would be expected from a soluble stroma protein. Thus, disruption of the central α-

helical part of the Vipp1 proteins inhibits the localization of Vipp1 to the inner envelope. 

Taken together, the GFP-fusion approach showed that the central α-helical region of Vipp1 

and not its C-terminal domain is responsible for the proper localization of Vipp1 in 

chloroplasts. 

 

6.2.8. BN-PAGE analysis of protoplasts transformed with GFP fusion proteins 

To test whether full length Vipp1 fused to GFP supports complex assembly and 

therefore reflects the behavior of endogenous Vipp1, a combination of GFP-transformation 

and BN-PAGE technique was used. The analysis of various GFP-fusion constructs on BN-

PAGE also allowed obtaining more information about the involvement of different regions 

of Vipp1 in the complex formation. 

Chloroplasts from protoplasts transformed with different GFP-fusion constructs were 

isolated, separated by BN- and subsequently by SDS-PAGE and analyzed by Western Blot 

with α-Vipp1 antiserum. Both the endogenous Vipp1 (33 kDa; Fig. 16, second panel) and 

the Vipp1-GFP fusion protein (45 kDa; Fig. 16, third panel) were visible on the blot due 

their difference in molecular weight. They both displayed a similar distribution between 

the low-molecular weight and the complex form thereby validating the functionality of 
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Vipp1-GFP. Western blot analysis of protoplasts transformed with Vipp1m-GFP construct 

gave a similar result (Fig. 16, fourth panel). In contrast, the Vipp1Δα-helix-GFP protein 

was found exclusively as a monomeric protein (Fig. 16, fifth panel) indicating that 

complex formation is abolished. Thus, the combination of fluorescence microscopy and 

BN-PAGE analysis shows that a domain (or domains) responsible for complex formation 

and its localization on the inner envelope of chloroplasts lays within the central α-helical 

region of Vipp1, while the Vipp1-specific C-terminus has no influence on either. 

 
 

 
Figure 16: BN-PAGE analysis of Vipp1-GFP fusion protein expressed in protoplasts. 

Analysis of tobacco protoplasts transiently transformed with different GFP fusion constructs is shown. 

Chloroplast proteins were isolated, separated by BN-PAGE (top panel) in the first and by SDS-PAGE in the 

second dimension and probed with α-Vipp1 antiserum. The antibody recognizes the endogenous Vipp1 

(second panel), the transiently expressed Vipp1-GFP (third panel), Vipp1m-GFP (fourth panel) and 

Vipp1Δα-helix-GFP (fifth panel). 

 
 
6.3. Analysis of Vipp1-ProtA plants 

Analysis of mutants is a powerful tool to approach the function of a specific gene. 

Disruption of the VIPP1 gene locus in Arabidopsis results in a nearly complete loss of 
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thylakoids in the chloroplasts of the mutant plants, indicating important role of Vipp1 in 

the process of thylakoid formation (Kroll et al., 2001). Consequently, the photosynthetic 

capacity of such plants is greatly reduced; they are only capable of heterotrophic growth 

and develop an albinotic phenotype (Kroll et al., 2001). As a result, Δvipp1 displays a 

number of secondary effects that cannot be directly correlated to the function of the 

mutated gene. In contrast, plants displaying a less drastic reduction in Vipp1, could provide 

a tool to elucidate the primary effects of Vipp1 deficiency thereby allowing to come closer 

to understanding of the Vipp1 function. 

 

6.3.1. Characterisation of Vipp1-ProtA plants 

Vipp1-ProtA plants were made by introducing a cDNA coding for the Arabidopsis 

VIPP1 gene (At1g65260) C-terminally fused to the IgG-binding domain of the PROTEINA 

gene from Staphylococcus aureus into Δvipp1 plants by Agrobacterium tumefaciens 

mediated transformation (Stein, 2004). The fusion construct (VIPP1-PROTA) is expressed 

under the CAMV-35S promoter. The plants were made by Bernhard Stein in the laboratory 

of Prof. Westhoff and were given to our laboratory for further characterisation. 

Transformants were initially selected for plants homozygous for the Δvipp1 mutation 

but heterozygous with respect to the VIPP1-PROTA insertion. Seeds from these plants 

segregated according to the VIPP1-PROTA insertion. Approximately 25% of the plants 

were homozygously not carrying the insertion and these plants resembled the true Δvipp1 

mutant phenotype. In contrast, about 75% of the transformants were able to grow 

photoautotrophically on soil. These plants are either heterozygous or homozygous for the 

VIPP1-PROTA insertion and they did not display a distinctive phenotype when grown 

under low light conditions (< 20 µmol photons m-2s-1), indicating that the fusion protein is 

able to substitute for Vipp1 function. Surprisingly, when grown under high light conditions 

(> 70 µmol photons m-2s-1), only a smaller fraction still resembled wild type plants 

(Fig. 17 A, No. 11). The majority of plants were reduced in growth and the leaves showed 

different shades of pale-green (Fig. 17 A, No. 5). When analysed by Western blot with a 

Vipp1-specific antibody (Fig. 17 B, No. 11, 5 and 4), the α-Vipp1 antiserum detected a 

protein of 42 kDa, which corresponds to the expected size for the fusion protein of Vipp1 

and the IgG domain of ProteinA, showing that VIPP1-PROTA construct is indeed 

expressed in these plants. From their appearance, the No. 11 plant resembled wild type, 

while both No. 4 and 5 displayed the pale-green phenotype. Since both types of plants 
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carry the VIPP1-PROTA insertion (data not shown), the observed alteration in phenotype  

 
 

Figure 17: Phenotypic variation 

between plants carrying the 

VIPP1-PROTA insertion.  

(A) Two representative Vipp1-ProtA 

plants grown on soil for 5 weeks. 

 (B) Immunodecoration of total leaf 

extracts from three Vipp1-ProtA 

plants with an α-Vipp1 antiserum. 

 

 

 

 

 

 

 

 

appears to represent the difference between plants being either homozygous or 

heterozygous for the insertion, which is in accordance with the observed number of plants 

of each type in a mendelian segregation. 

It thus appears that when present in a single copy, the VIPP1-PROTA insertion is not 

sufficient to fully restore the wild type phenotype of these plants. Instead, their phenotypes 

seem to represent an intermediate state between the original Δvipp1 mutant and wild type. 

This becomes even more evident if to compare heterozygous VIPP1-PROTA plants 

(further on referred to as K2) to Δvipp1 and wild type plants, all of which were grown 

heterotrophically on agar in normal light (Fig. 18 A). Early in plant development, leaves of 

the Δvipp1 mutant are still light green but in older plants their colour changes to 

completely white. In contrast, K2 plants are significantly larger then Δvipp1 and they do 

not bleach but also do not reach the size of wild type plants and remain paler in colour. 

When analysed by PCR, the K2 plants were indeed shown to be homozygous for the 

Δvipp1 T-DNA and to carry the VIPP1-PROTA insertion (Fig. 18 B). 
 

α-vipp1

11 5 4

- Vipp1-ProtA

A

B
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Figure 18: Complementation of 

the Δvipp1 (hcf155) mutant with 

VIPP1-PROTA. 

(A) Seedlings of wild type (wt), K2 

and Δvipp1 plants heterotrophically 

grown for 3 weeks. The upper left 

panel shows a comparison of typical 

plants to illustrate the difference in 

size and pigmentation. Other panels 

show respective enlargements. (B) 

PCR analysis of wild type (wt), 

Δvipp1 (Δ) and K2 plants with 

primers specific for the vipp1 gene 

(left panel), the T-DNA insertion 

disrupting the vipp1 gene (middle 

panel) and for the VIPP1-PROTA 

insertion (right panel). 

 

 

 

 

 

 

6.3.2. Spectroscopic analysis of the photosynthetic electron-transport chain in Δvipp1 

and K2 plants 

To test whether the outward phenotype of the K2 plants is corroborated by their 

photosynthetic capacity, the activity of the photosynthetic electron transfer machinery of 

K2 plants was elucidated in comparison to both wild type and Δvipp1 mutant.  

 

6.3.2.1. Measurement of chlorophyll fluorescence emission at 77K 

In a first step, measurement of chlorophyll fluorescence was performed on isolated 

chloroplasts of wild type, K2 and Δvipp1. Extracts of K2 and wild type plants were 

adjusted to equal amounts of chlorophyll. Samples from the Δvipp1 mutant were not 
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adjusted since their chlorophyll content is already very low. Measurement of chlorophyll 

fluorescence emission at 77K shows that the characteristic emission band for PSI at 35 nm  

 

 

is highly reduced and a distinct shift to 728 nm can be observed (Fig. 19, dotted line). 

Furthermore, the characteristic PSII fluorescence peaks at 687 nm and 695 nm (CP43 and 

CP47, respectively) are not detectable, probably due to the enhanced emission at 683 nm 

overlapping with the residual PSII fluorescence. This shift in the emission peaks can be 

explained by a disruption of energy transfer from the antennae to the photosystems and 

could indicate that the light harvesting complex (LHC) antennae are no longer properly 

attached to the PSII core complex. In contrast, the chlorophyll emission spectra of K2 

plants is very much similar to the wild type (Fig. 19, dashed line compared to solid line), 

which is in accordance with the restoration of autotrophic growth. 

 

6.3.2.2. Analysis of photosynthetic activity of K2 and Δvipp1 

 Photosynthetic activity was determined by measuring non-invasive chlorophyll 

fluorescence of dark-adapted plants under different intensities of actinic light ranging from 

3.5 to 76.0 µmol photons m-2s-1 (Fig. 20). The first saturating pulse (800 ms) determined 

the maximal chlorophyll fluorescence (Fm) after dark incubation. After the application of 

actinic light, repetitive saturating flashes were given in intervals of 20 s and the efficiency 

of the light reactions during induction (Fm’) was recorded. In K2 plants the level of 

minimal fluorescence appeared to be intermediate between the low level characteristic for  

Figure 19: Analysis of 77 K chlorophyll

fluorescence emission of wild type (wt), K2 and

Δvipp1 plants. 

Leaf tissue was ground in isolation buffer, filtered

and frozen in liquid nitrogen. Equal amount of wt,

K2 and Δvipp1 leaf tissue (fresh weight) was taken

for each sample. Measurements were performed with

excitation light of  λ = 430 nm. 
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Figure 20: Comparison of the chlorophyll fluorescence induction kinetics in wild type (wt), K2 and 

Δvipp1 plants.  

Actinic light was applied to dark adapted plants (F0) and a saturating light flash of 4000 µmol photons m-2 s-1 

was given in order to record maximal fluorescence (Fm). Consecutive pulses were given at intervals of 

20 sec. F0‘ designates the minimal fluorescence level after induction, Fm’ is a maximal fluorescence level 

after induction. (A) Recording of the complete time course of a representative experiment performed with an 

actinic light intensity of 76.0 µmol photons m-2 s-1. (B) Kinetics of the photosynthetic yield after induction 

were calculated from the experiment displayed in A. (C) Kinetics of NPQ after each consecutive pulse for 

plants illuminated with 76.0 µmol photons m-2s-1 actinic light. (D) NPQ values after the last saturating pulse 

acquired for plants pre-illuminated with different intensities of actinic light ranging from 3.5 to 76.0 

µmol photons m-2 s-1. 
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wild type and the high level described for the high chlorophyll fluorescence phenotype of 

the Δvipp1 mutant (Fig. 20 A). 

The kinetics of PSII activity during induction were recorded after each flash (Fig. 

20 B) and they show that in K2 plants the PSII activity amounts to only about 60% of the 

wild type while in case of Δvipp1 the photosynthetic yield never exceeded more than 10% 

of the wild type level (Fig. 20 B). It was observed in the course of the experiment that K2 

as well as Δvipp1 is characterized by an F0’ level that is below F0 (Fig. 20 A). Therefore, 

the non-photochemical fluorescence quenching in these plants was estimated. The thermal 

dissipation processes referred to as non-photochemical quenching (NPQ) regulate 

photosynthesis when light energy absorption exceeds the capacity for light utilization.  

Firstly, the level of NPQ was calculated after each flash in the experiment presented in 

figure 20 A. The NPQ of the wild type remained constant below a relative level of 0.2, 

indicating that the amount of actinic light used in this experiment is not sufficient to induce 

strong NPQ in the wild type. In contrast, Δvipp1 displayed an increase in NPQ by approx. 

4 fold, while the NPQ of K2 plants appeared to be 2.5 times higher then in the wild type 

(Fig. 20 C). When the final level of NPQ was compared in correlation to different light 

intensities (3.5, 16.8 and 76.0 µmol photons m-2s-1), it was observed that the NPQ of 

Δvipp1 gradually rose under conditions of increasing light. The same effect was detected 

for K2 plants, although to lesser extent (Fig. 20 D), indicating that K2 plants cannot utilize 

the same amount of light energy as the wild type. 

Finally the redox state of the PSI primary donor was analysed by determining the P700 

absorption measured at 830 nm (Fig. 21). The relative ratio of the redox state of P700 was 

calculated for wild type, K2 and Δvipp1 plants pre-illuminated with actinic light of  

 
Figure 21: Analysis of the redox level of the PSI 

reaction center P700.  

Measurements of P700 were performed at 830 nm as 

described in Materials and Methods. 3.5, 16.8 and 

76.0 µmol photons m-2 s-1 actinic light intensities were 

subsequently applied to the same sample. The redox 

level of PSI was determined as ΔA/ΔAmax.   
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different intensities (3.5, 16.8 and 76.0 µmol photons m-2s-1). The P700 oxidation level of 

Δvipp1 plants clearly exceeds that of the wild type both in low and in high light and it 

displays a distinct light dependency. A similar light dependency can be observed for K2 

but not in the wild type plants, at least not to a comparable degree. While the PSI oxidation 

level of K2 is only slightly increased at low light, the difference to the wild type plants 

becomes more notable with increasing light intensities. This strong photosensitivity of the 

mutants is in agreement with the observation that Δvipp1 but also K2 plants grow much 

better under low light. Thus, expression of the Vipp1-protA fusion protein only partially 

restored the photosynthetic activity, which is strongly impaired in the original Δvipp1 

mutant. 

 

6.3.3. Analysis of Vipp1 protein level and complex assembly in K2 and Δvipp1 plants 

The analysis above suggests that while the Vipp1-ProtA fusion protein is principally 

able to substitute for Vipp1, the amount of functional Vipp1 protein produced by K2 plants 

is not adequate to fully restore the wild type phenotype under high light conditions. It 

could be either due to a limitation in expression of the Vipp1-ProtA fusion protein or 

because of a restricted functionality of the Vipp1-ProtA fusion protein. To address this 

question, the level of Vipp1-ProtA produced in the K2 plants was analysed by Western 

blot in comparison to the Vipp1 content in both wild type and Δvipp1 plants. In the original 

Δvipp1 mutant, the Vipp1 content is drastically reduced to less than 20% compared to the 

wild type level. A similar level of Vipp1 protein is also found in the K2 plants, as visible 

from the faint band at about 33 kDa (Fig. 22 A, left panel). Additionally, the K2 plants 

contain about equal amounts of the Vipp1-ProtA fusion protein as evident from the 

immunoreaction at 42 kDa. This protein is also immunodecorated with an IgG specific 

secondary antibody (Fig. 22 A, right panel). Neither the wild type plants nor the original 

mutant show any immunoreaction in this position, indicating that it is indeed Vipp1-ProtA 

fusion protein (Fig. 22 A, right panel). Nevertheless, even Vipp1 and Vipp1-ProtA together 

amount to not more than approximately 40% of the wild type level of Vipp1 protein (Fig. 

22 A, left panel). Therefore, the observed phenotype of K2 could be ascribed to a reduction 

in the overall content of Vipp1 protein. 

In chloroplasts as well as cyanobacteria a significant amount of Vipp1 protein is found 

as part of a homo-multimeric complex of approx. 2000 kDa (see Fig. 7). To test whether 

Vipp1-ProtA fusion protein preserves the ability to assemble into a complex, the presence 
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of this complex was investigated in K2 and compared with wild type and Δvipp1 plants 

(Fig. 22 B). For this analysis, total membranes from wild type, K2 and the original Δvipp1 

 

 

 

Figure 22: Analysis of Vipp1 in wild type, K2 and Δvipp1 plants. 

(A) Immunodecoration of the Vipp1 protein in total leaf extracts of wild type (wt), K2 and Δvipp1 plants. 

Equal amounts of fresh weight tissue were used in sample preparation and subsequently equal sample 

volumes were loaded. In case of the wild type 50% and 25% of the original sample volume (½ wt and ¼ wt, 

respectively) was loaded additionally. Endogenous as well as Vipp1-ProtA fusion protein was detected with 

the α-Vipp1 antibody (left panel). Additionally, the Vipp1-ProtA fusion protein in the K2 plants was detected 

with a secondary antibody (right panel), which recognizes the IgG-binding domain of ProteinA. (B) Analysis 

of complex formation by Vipp1 and Vipp1-ProtA in wild type (wt), K2 and Δvipp1 plants. Proteins from 

total membrane fractions separated first by BN-PAGE and subsequently by SDS-PAGE were 

immunodecorated with α-Vipp1 antibody. Immunoreaction with Vipp1 is found in a position corresponding 

either to the complex (>1000 kDa) or the monomeric form of Vipp1. 

 

 

mutant were separated first on BN- and then on SDS-PAGE, followed by Western blot 

analysis using an α-Vipp1 antiserum. In order to achieve a visible immunoreactive band, 

double amount of material by fresh weight from Δvipp1 plants was loaded onto the BN-
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PAGE in comparison to wild type and K2. The Western blot analysis showed very little 

difference between wild type and K2 plants. In both cases, two immunoreactive bands 

could be detected, corresponding to the monomeric and the complex form of the protein 

(Fig. 22 B, first and second panel). The fact that the Vipp1-ProtA fusion protein is found in 

both positions indicates that the phenotype of K2 plants is not caused by an inability of the 

Vipp1-ProtA fusion protein to assemble into a high molecular weight complex. 

Surprisingly, when the Δvipp1 mutant was subjected to this analysis, the residual Vipp1 

present in these plants was found exclusively in the monomeric state (Fig. 22 B, lower 

panel). It cannot be excluded that the Vipp1 complex in this mutant is much less stable 

and, therefore, dissociates during the preparation. Nevertheless, it seems more likely that 

due to the lack of critical mass of Vipp1 protein no complex is formed in the mutant. This 

would imply that complex formation of the Vipp1 protein is subject to a dose effect, which 

is quite likely since a single Vipp1 complex comprises many Vipp1 molecules.  

 

6.3.4. Content and assembly status of thylakoid proteins in Δvipp1 and K2 plants 

Previous analysis of the Δvipp1 mutant could not determine whether Vipp1 functions in 

the biogenesis of the thylakoid membrane itself or in the assembly of functional 

membranes. Due to its albinotic phenotype the original Δvipp1 mutant suffered from a 

number of secondary defects not directly connected to the loss of Vipp1. Since the VIPP1-

PROTA insertion re-established autotrophic growth and partially restored the 

photosynthetic activity of the plants in the background of moderate Vipp1 deficiency, it 

allowed for elucidating the primary effects that Vipp1 shortage has on the development of 

the thylakoid system. To investigate whether Vipp1 deficiency has an effect on the 

principal complex assembly at the thylakoid membrane, the content and assembly status of 

photosynthetic complexes in the thylakoid membrane of K2 and Δvipp1 were elucidated. 

First, total leaf samples of wild type, K2 and Δvipp1 plants were analysed in Western 

blotting for the presence and relative amount of several thylakoid membrane proteins, 

including several components of the photosynthetic apparatus as well as the ATP synthase. 

Additionally, some proteins of the inner envelope membrane were analysed, which are not 

directly related to the photosynthetic process. The comparison was based on equal fresh 

tissue weight used in sample preparation. Western blot analysis revealed that different 

proteins were affected to varying degrees in the mutant plants (Fig. 23). All PSII proteins 

analysed were reduced to about 20-30% of the wild type level in K2 plants. A similar 
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reduction could be observed for the PSII assembly factor HCF136, for Cytf, LHCB1 and 

for the PSI core subunit PsaD. In case of the chloroplast ATP synthase subunits, the K2 

plants contained at least 50% of the protein levels compared to the wild type, in some cases 

even significantly less. In comparison, levels of photosynthetic protein in Δvipp1 plants 

were much more drastically reduced and often constitute not more then 10% of the wild 

type level (Fig. 23). The amount of LHCB1 protein in the Δvipp1 plants appears rather 

high for a mutant nearly devoid of thylakoid membranes but this is in accordance with 

spectroscopic studies indicating the presence of free LHCII-trimers (compare Fig. 19). 

 

 

 
 

 

Figure 23: Analysis of the chloroplast protein content of in K2 and Δvipp1 plants. 

Total leaf extracts of wild type (wt), K2 and Δvipp1 plants were separated by SDS-PAGE, blotted and 

immunodecorated with the indicated antisera. Equal amounts of fresh weight tissue were used in sample 

preparation and subsequently equal sample volumes were loaded. In case of the wild type 50% and 25% of 

the original sample volume (½ wt and ¼ wt, respectively) was loaded additionally.  
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However, the level of proteins not involved in the photosynthetic process, such as the α-

subunit of the acetyl-CoA carboxyltransferase (α-CT), was not significantly altered in K2 

or in Δvipp1 (Fig. 23). Similarly, no significant changes in the protein amount were 

detected for most of the Toc and Tic import apparatus components, with the exception of 

Tic62 (Fig. 23 and data not shown). Some components of the Tic machinery, such as the 

protein import subunit Tic110, even displayed an increase in the Vipp1-deficient plants. 

Thus, the observed reduction in the photosynthetic proteins is not due to the overall 

reduction in the protein content in K2 and Δvipp1 plants but represents a specific effect of 

Vipp1 deficiency. Interestingly, while no reduction of Tic62 could be observed in K2 

plants, the level of Tic 62 in Δvipp1 mutant is decreased to less then 20%, when compared 

to wild type. Since Tic62 was shown to interact with FNR (Kuchler et al., 2002), which is 

sensitive to the chloroplast redox state (Pfannschmidt et al., 2001), one could assume that 

decrease in Tic62 might be a result of the redox signalling used by the chloroplast to 

modulate import activity. 

 

 
 

Figure 24: Analysis of assembly of photosynthetic complexes in wild type (wt) and K2 chloroplasts. 

Chloroplasts were isolated and protein complexes were separated on BN-PAGE in the first and SDS-PAGE 

in the second dimension. Proteins were visualized by staining with Coomassie Brillant Blue.  
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 The assembly status of photosynthetic complexes was analysed in wild type and K2 

chloroplasts separated first under native and then under denaturing conditions (Fig. 24). 

Taking into consideration a lower protein level of photosynthetic components in K2 

compared to wild type, double the amount of the K2 fresh leaf tissue was used in sample 

preparation. Δvipp1 was excluded from this analysis due to its overall low protein content, 

which makes it very difficult to detect the proteins in this type of analysis. The comparison 

of K2 with wild type did not reveal any discernable difference in the assembly status of the 

photosynthetic complexes (Fig. 24). The overall picture obtained from this analysis rather 

indicates that deficiency in Vipp1 results in a correlated shortage of photosynthetic 

proteins with very little direct impact on the assembly of the photosystems. 

 

6.3.5. Chloroplast ultrastructure of K2 plants 

To elucidate to which extent the K2 plants are affected in thylakoid formation, the 

ultrastructure of the K2 chloroplasts was studied by transmission electron microscopy. In 

leaf tissue of K2 plants, chloroplasts at very different stages of thylakoid development 

could be observed simultaneously in one and the same cell (Fig. 25 a to e). Figure 25 a and 

b show typical examples of this situation with one chloroplast very much resembling wild 

type (Fig. 25 g) and the neighboring plastid nearly devoid of internal membranes, and 

therefore similar to the original Δvipp1 mutant (Fig. 25 f). 

Further examination of several different thin sections of K2 plants revealed a wide 

representation of plastids as displayed in figure 25 c to e. While many of them contain an 

elaborate thylakoid membrane system with extensive grana stacking, other plastids 

encompass only partially formed thylakoid systems. In some cases, properly stacked 

thylakoids are restricted to the periphery of the organelle but are not found in its center 

(Fig. 25 e). The residual membranes found in many of these chloroplasts appear to 

assemble from centers inside the organelle in a fashion not unlike the formation of 

thylakoids from prolamellar bodies when chloroplasts develop from etioplasts (Fig. 25 c). 

It appears that partial Vipp1 deficiency has the unusual consequence that some of the 

plastids can achieve a normal development while others are arrested in various stages of 

completion of thylakoid formation. 
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Figure 25: Electron microscopic analysis of the ultrastructure of K2 chloroplasts. 

(a) and (b) representative electron micrographs of K2 plants with differently chloroplasts in one and the same 

cell; (c) to (e) enlargement of different chloroplasts found in K2 plants; (f) typical chloroplast found in the 

Δvipp1 mutant; (g) typical wild type chloroplast. 

 

 

6.3.6. Expression of Vipp1-GFP fusion protein in Δvipp1 mutant protoplasts 

The data obtained in the Western blotting analysis show that the level of photosynthetic 

proteins in Δvipp1 mutant is drastically decreased. Moreover, the residual Vipp1 in Δvipp1 

mutant was found only in the monomeric form, either due to instability of the Vipp1 

complex or due to insufficient amount of Vipp1 molecules to form detectable numbers of 
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complexes. At the same time, the components of the chloroplast import machinery in 

Δvipp1 were present on the level comparable with wild type, with the only exception of 

Tic62, which was found to be highly reduced. These data, however, do not provide us with 

information about the functionality of the import apparatus in Δvipp1. It is also not clear 

whether the ability of Vipp1 to attain proper localization at the inner envelope membrane 

of chloroplasts is preserved in these mutants. 

This question was approached by means of GFP-fusion technique. Protoplasts isolated 

from wild type and Δvipp1 Arabidopsis plants were transformed with the construct Vipp1-

GFP fusion as described in 6.2.7. Changes in the pattern of chlorophyll fluorescence could 

be observed between the protoplasts of wild type and Δvipp1. In general, the thylakoids of 

wild type chloroplasts are visible in discrete dots, indicating positioning of grana stacks 

(Fig. 26 a). In Δvipp1, the distribution of chlorophyll fluorescence is more homogenous 

(Fig. 26 b) and the intensity of the fluorescence signal is low (data not shown). Some 

chloroplasts do not exhibit any detectable chlorophyll fluorescence signal at all. Also the 

area displaying the chlorophyll fluorescence signal is generally smaller than in wild type 

and more restricted to the center of chloroplasts (Fig. 26 b). This phenomenon was earlier 

observed in a number of mutants with impaired thylakoid system. As described in 6.2.7., 

transformation of Arabidopsis or tobacco wild type protoplasts with Vipp1-GFP construct 

revealed a GFP-fluorescence signal in distinct locations at the chloroplast inner envelope. 

When protoplasts isolated from Δvipp1 were transformed with the same construct, a 

similar pattern of GFP-fluorescence was observed (Fig. 26 c). Namely, Vipp1-GFP was 

found in a ring-like arrangement consisting of distinct spots emulating the shape of the 

chloroplasts, as it is demonstrated by overlaying the transmission and GFP-fluorescence 

images (Fig. 26 e). No Vipp1-GFP could be detected colocalized with chlorophyll 

autofluorescence (Fig. 26 f), i.e. with the residual thylakoid membrane. Moreover, the 

Vipp1-GFP signal could be found in mutant chloroplasts whether they exhibited 

chlorophyll autofluorescence or not.  
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Figure 26: Transformation of Δvipp1 protoplasts with Vipp1-GFP fusion construct.  

a, Chlorophyll fluorescence of a typical wild type protoplast. b-f, Expression of Vipp1-GFP in Δvipp1 

protoplasts. b, Chlorophyll fluorescence of Δvipp1 mutant; c, GFP-fluorescence; d, transmission; e, overlay 

of transmission and GFP-fluorescence; f, overlay of chlorophyll and GFP-fluorescence. 

 

 

Thus, the GFP-fusion approach shows that Δvipp1 plants are capable of importing 

Vipp1 into the chloroplasts. The Vipp1-GFP fluorescence pattern was identical to wild 

type, indicating that potentially the ability of Vipp1 to attain proper localization is 

maintained in the Δvipp1 mutant.  
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7. Discussion 
Despite the obvious importance of the thylakoid system for the photosynthetic process, 

only very little is known about the components involved in the biosynthesis of the 

thylakoid membrane. Analysis of Δvipp1 mutants of Arabidopsis and Synechocystis 

provided first indications that the Vipp1 protein plays an essential role in thylakoid 

formation. These mutants were characterized by an almost complete loss of their thylakoid 

membrane system (Kroll et al., 2001; Westphal et al., 2001a). Initial characterization of the 

photosynthetic activity in the Δvipp1 Arabidopsis plants did not reveal any specific effects 

on the photosynthetic process but rather suggested its general distortion. Remarkably, in 

Arabidopsis Δvipp1 plants, the loss of the thylakoid system was accompanied by the loss 

of vesicles in the stroma of chloroplasts (Kroll et al., 2001), which can be interpreted as an 

inability of the chloroplast to give rise to new membranes under conditions of Vipp1 

deficiency. However, the exact role of Vipp1 in the process of the thylakoid development 

remained enigmatic, and this work was performed in order to provide further knowledge 

about the function of this protein. Firstly, the structure of the Vipp1 protein was studied in 

detail, in order to get an insight into the mechanism of its action. This structural approach 

was complemented by the analysis of Arabidopsis plants with a less severe Vipp1 

deficiency, which was performed in attempt to discern the primary effects that limitation of 

Vipp1 has on the thylakoid membrane. 

When Vipp1 was first identified as a protein associated with the inner envelope and the 

thylakoid membrane in the chloroplasts of Pisum sativum, BLAST analysis revealed its 

similarity to a bacterial protein, PspA, that is essential for membrane integrity under many 

stress conditions (Li et al., 1994). Phylogenetic analysis further indicated that these two 

proteins are homologous and that Vipp1 originated from PspA (Westphal et al., 2001a). 

The region homologous to PspA covers about 70% of the Vipp1 sequence (PspA-like 

domain). However, these two proteins differ by the presence of an additional C-terminal 

extension acquired by Vipp1, which is believed to be important for its novel function in 

thylakoid biogenesis. 

In this work it is shown that Vipp1 forms a high molecular weight complex composed 

of multiple copies of the protein and located at the inner envelope membrane of 

chloroplasts and the plasma membrane of cyanobacteria. At about the time this finding was 

made, assembly in a large multimeric complex was also demonstrated for PspA from  
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Figure 27: A current model for the structure of the Vipp1 complex and its localization at the inner 

envelope membrane of chloroplasts.  

The complex is organized in a ring-like structure consisting of Vipp1-tetramers formed by two Vipp1-dimers. 

The interaction of subunits within the complex is schematically represented at an example for a Vipp1-dimer. 

PspA-like domains of two Vipp1 proteins interact with each other. These domains are also responsible for the 

membrane association of the complex. The C-terminal domain is not involved in this kind of interactions and 

protrudes out of the complex. 

 

 

E. coli (Hankamer et al., 2004). Likewise as Vipp1, the PspA complex is made of many 

copies of PspA and a minimal unit in the complex assembly is represented by homodimers. 
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Both, Vipp1 and PspA complexes are ring-shaped structures of similar appearance, even 

though different in size. Remarkably, more detailed analysis of the Vipp1-complex showed 

that its formation is carried out by the PspA-like domain. Whereas removal of the 

C-terminal part of Vipp1 did not have an effect on its assembly into a multimeric complex, 

the disruption of the PspA-like domain prevented the complex formation, and Vipp1 could 

be detected only in a monomeric form. 

This finding further accentuates the similarity between complexes build up by PspA 

and Vipp1. Such resemblance poses the question whether the function of the two proteins, 

although undoubtedly different in terms of its application and regulation, is based on 

similar principles of action. Experimental data demonstrate that at least under certain 

conditions Vipp1 is able to take over the function of PspA. In the recent work of DeLisa 

and co-workers (DeLisa et al., 2004) overexpression of Vipp1 from Synechocystis could 

substitute PspA in relieving blockage of the Tat pathway in E. coli. On the other hand, 

disruption of the VIPP1 gene in Synechocystis results in drastic effects on the thylakoid 

formation despite the presence of the functional PSPA (Westphal et al., 2001a), supporting 

the importance of the C-terminal domain for the function of Vipp1. However, the role of 

this Vipp1-specific C-terminus so far remains elusive. Computer analysis shows a 

comparatively low amino acid similarity of this domain between Vipp1 proteins from 

different organisms. Nevertheless, its secondary structure is always preserved and therefore 

is apparently important: in all Vipp1 proteins analysed, the C-terminal extension 

constitutes a random coil region followed by a short α-helix. Moreover, characteristics of 

this structure can be used for differentiating Vipp1 from PspA proteins with prolonged 

C-termini. Yet, the data accumulated up to the present rather rule out a direct involvement 

of this C-terminal extension in processes such as Vipp1 complex formation and its 

localization at the inner envelope membrane of chloroplasts. It seems more likely that these 

processes are carried out in an “old-fashioned” PspA-like manner, whereas the additional 

C-terminal domain serves the novel function of Vipp1 in the thylakoid biogenesis. The 

data presented in this work indicate that the C-terminus is not buried inside the Vipp1 

complex but rather protrudes out of it, which potentially enables it to interact with other 

partners involved in biogenesis of thylakoids. The question of how exactly the Vipp1 

molecule is orientated within the complex requires further experimental analysis. So far it 

is not clear whether the C-terminal part is directed toward the inner or the outer surface of 

the Vipp1-ring. A presence on both sides of the complex is also not excluded. Our current 
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knowledge about the structure of the Vipp1 complex is schematically presented in 

figure 27. 

As mentioned above, Vipp1 complex formation and membrane localization are 

dependent on the PspA-like domain of Vipp1. More precisely, the central, fourth α-helix 

of the protein is required for both processes. So far it is not clear whether the complex 

assembly precedes its localization at the membrane or if both processes occur 

simultaneously. More detailed analysis of the domain architecture is required to clarify this 

question. It is important to notice that attachment of PspA to the membrane is mediated via 

its interactions with two other members of the psp operon, PspB and PspC. Interestingly, 

no homologues of these proteins are found either in Synechocystis or in Arabidopsis 

genomes. Another clear difference is that PspA is present in both a soluble and membrane-

bound pool, while Vipp1, according to the data obtained in our laboratory, is most likely 

constantly attached to the membrane. It is tempting to explain this distinction by a different 

mode of regulation of these two proteins. The necessity of different regulation becomes 

apparent when we compare what is known about the functions of PspA and Vipp1. PspA 

plays a crucial role in protecting the bacterial membrane from stress-inducible alterations, 

and the function of PspA becomes critical only when membrane integrity is in danger. 

Consistently, pspA mutants do not exhibit a distinct phenotype under normal conditions but 

show incapability of coping with conditions leading to decrease or dissipation of the proton 

motive force (Kleerebezem and Tommassen, 1993). Under these conditions, PspA is 

recruited from a soluble pool to the bacterial membrane in a process mediated by 

interactions with transmembrane proteins PspB and PspC. Once the stress is over, PspA is 

no longer needed at the membrane and is dispersed to the cytoplasm. In contrast, 

involvement of Vipp1 in the process of thylakoid development, i.e. an ongoing process of 

formation of a novel membrane, could explain the need of its permanent presence at the 

inner envelope. One can assume that in this case the “shuttling”-type regulation applied for 

PspA becomes superfluous. Instead, more stable interaction of Vipp1 with the inner 

envelope membrane is required. Yet, how exactly Vipp1 conducts this interaction remains 

to be studied. Until now, no interactions of Vipp1 with transmembrane proteins, potential 

candidates for this role, could be identified. It is furthermore intriguing to speculate that 

Vipp1 may attach itself to the membrane via direct interaction with the membrane bilayer.  

So, what is the function of Vipp1 in the thylakoid biogenesis? The analysis of 

Arabidopsis plants with moderate deficiency in Vipp1 protein (K2) and their comparison 
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with the original Δvipp1 mutant strongly supports the previous supposition that Vipp1 acts 

very early in thylakoid development and is needed basically for the formation of the 

thylakoid membrane per se. The content of photosynthetic proteins in K2 and Δvipp1 is 

diminished proportionally to the overall amount of the thylakoid membrane built up by the 

chloroplasts of these plants, and analysis of the assembly state of the photosynthetic 

complexes did not reveal any considerable difference between K2 and wild type. Thus, it 

seems that the degree of the thylakoid membrane formation is the key factor for the 

amount of the photosynthetic machinery assembled under conditions of Vipp1 deficiency. 

Furthermore, the function of Vipp1 in this process appeared to be dosage-dependent, as 

follows from a comparison of the phenotypes of plants with different degrees of Vipp1 

deficiency. While the Δvipp1 mutants are able to grow only heterotrophically, the Vipp1-

ProtA insertion restores autotrophic growth. However, there is a clear phenotypic 

difference between homozygous and heterozygous Vipp1-ProtA plants, and the amount of 

Vipp1 produced by heterozygous (K2) plants seems to be insufficient to fully restore 

thylakoid formation. Instead, the K2 plants contain chloroplasts at different stages of 

thylakoid development in one and the same cell. This finding by itself is extremely unusual 

as an effect caused by deficiency of a nuclear encoded protein. If the amount of Vipp1-

ProtA is the only determining factor for the degree of thylakoid membrane formation in K2 

plants, we have to assume that the Vipp1-ProtA fusion protein is unequally distributed into 

the plastids of a cell. One can suppose that if the overall amount of Vipp1 produced by K2 

plants represents the threshold level with regard to its function, even slight differences in 

distribution of Vipp1 between the chloroplasts may have drastic influence on the thylakoid 

development. This would be consistent with the observation that under lower light, i.e. 

under conditions of slower growth, a reduced Vipp1 function is sufficient, while under 

high light conditions Vipp1 function becomes more easily limiting and the tissue becomes 

albinotic. Interestingly, although K2 plants support Vipp1 complex formation, stronger 

reduction of Vipp1 content  in the case of Δvipp1 plants seems to prevent the assembly of 

the residual Vipp1 protein into a complex. Bearing in mind how many Vipp1 molecules 

are needed to form one functional complex, this phenomenon can be regarded as another 

manifestation of a dose effect and may well account for the more drastic phenotype of 

Δvipp1 comparing to K2 plants. 

All in all, the analysis performed in this work reveals an essential role of Vipp1 in the 

formation of the thylakoid system. Future studies will have to disclose an exact mechanism 
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of Vipp1 action at the membrane. First of all, detailed analyses of the Vipp1 domain 

architecture is required to provide information about subdomains and particular amino 

acids responsible for oligomerisation of Vipp1, and to reconstruct the sequence of events 

leading to the Vipp1 complex formation. Moreover, it may help to answer the question 

which additional factors are required for the attachment of the Vipp1 complex to the 

membrane. These factors may include protein components serving as mediators for 

membrane association as well as lipid components in the case that Vipp1 interacts with the 

lipid bilayer directly. In a search for Vipp1 interacting proteins performed in our 

laboratory, we identified a chloroplast chaperone cpHsp70B (At4g24280). The interaction 

of Vipp1 with Hsp70B was independently confirmed in the work of Liu et al. (2005). The 

authors found Vipp1 as a binding partner for Hsp70B/CDJ2 chaperone pair of 

Chlamydomonas reinhardtii chloroplasts. It is proposed that interaction of CDJ2 and 

subsequently Hsp70B with Vipp1 is needed for assembly/disassembly of Vipp1 oligomers. 

Our data further indicate that this interaction takes place at the Vipp1 specific C-terminus. 

The role of the Vipp1 C-terminal domain remains the most intriguing subject of 

research. It seems unlikely that the function of this evolutionary important acquisition is 

restricted to the interaction with chaperones and regulation of the Vipp1 complex 

assembly, given that our experiments indicate dispensability of the C-terminus for Vipp1 

oligomerization. Future investigation will have to unveil the function of the Vipp1 C-

terminal domain and answer the central question: “what does make Vipp1 indispensable 

for the thylakoid formation?” 
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