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1. Introduction 

Whirling disease and its associated myxosporean agent, Myxobolus cerebralis, were first 

described in Europe in 1898 among farmed rainbow trout (Hofer 1903). The disease spread 

throughout Europe and eventually to the USA through the international fish trade 

(Hoffman 1970, El-Matbouli et al. 1992). Whirling disease is considered not only a 

problem in the fish culture industry but is also a major threat to the survival of wild 

rainbow trout in North America (Hedrick et al. 1998). The disease has been recognised as 

a central cause of the catastrophic decline of wild rainbow trout populations in the states of 

Idaho, Montana, Colorado and Utah, USA (Nehring & Walker 1996, Hedrick et al. 1998). 

Brown trout are considered the natural host of Myxobolus cerebralis, for even though they 

become infected, they remain asymptomatic (Hoffman et al. 1962). The severe decline in 

wild rainbow trout populations has stimulated a renewed interest in exploring the 

pathobiology and host-parasite interaction of M. cerebralis (El-Matbouli et al. 1999b). 

Myxobolus cerebralis requires an invertebrate host to complete its life cycle and only a 

single species of oligochaete worm is susceptible, Tubifex tubifex (Markiw & Wolf 1983). 

The parasite alternates between two spore forms: an actinosporean (triactinomyxon) that 

develops in the oligochaete, and a myxosporean (Myxobolus cerebralis) in salmonid fish 

(Wolf & Markiw 1984; El-Matbouli & Hoffmann 1998; El-Matbouli et al. 1995). 

Myxobolus cerebralis attacks young rainbow trout before their cartilage hardens to bone, 

causing skeletal deformities and neurological disruption giving rise to the disease’s chief 

symptoms of black tail, tail-chasing behavior (whirling) and cranial, jaw and opercular 

deformities (Schäperclaus 1931). 

From a molecular biological point of view, little is known about the genetics of either 

triactinomyxon or Myxobolus spore stages. The sequence of the parasite’s small subunit 

18S ribosomal DNA gene (18S rDNA) is known, as are some other sequences coding for 

actins and proteases. Without the parasite’s complete DNA sequence or some other point 

of reference, we can’t know if a discovered gene even belongs to M. cerebralis. This 

paucity of information is an obstacle to researchers seeking to probe specific M. cerebralis 

genes and their functions. 

Construction of a cDNA library for the parasite would therefore represent a major research 

advance, and is the central goal of this study. The library will establish a genetic 

information base for M. cerebralis, containing protein-encoding sequences from the 

genome, which can then be used by researchers to analyse functions of specific genes. The 
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process of constructing the cDNA library encompasses several topics of research. The 

library must be screened for positive M. cerebralis clones, from which some are selected 

for in vivo excision of the pBK-CMV phagemid vector (containing the insert) from the 

ZAP Express vector. Plasmid DNA containing the insert must be isolated from the vector, 

and then analysed to determine the sequence of the cloned cDNA. A full-length cDNA 

sequence can then be constructed using Rapid Amplification of cDNA Ends (RACE). 

Finally, bioinformatics programs are used to analyse the DNA sequences in order to 

predict corresponding protein sequences, which can be compared with other genes whose 

functions are known. 
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2. Literature Review 

2.1 Myxozoa 

2.1.1 Taxonomy of Myxobolus cerebralis 

Myxobolus cerebralis, the parasite that causes whirling disease in salmonid fish (Hofer 

1903), is the most intensively studied member of the phylum Myxozoa (Hedrick et al. 

1998). It is one of more than 1,350 myxozoan parasites known to infect fish (Lom & 

Dykovà 1992).  

Myxozoans are morphologically simple and as such were long regarded as protists; 

however rDNA and Hox gene sequences now indicate they are metazoans (Smothers et al. 

1994, Anderson et al. 1998). In their hosts, myxozoans form plasmodia in which infective 

spores develop. After release into the environment, these spores attached to new hosts 

using penetrative filaments everted from polar capsules (El-Matbouli et al. 1995, Monteiro 

et al. 2002). These filaments are analogous to the cnidocycts of cnidarians (El-Matbouli et 

al. 1992; Siddall et al. 1995). 

Within the Phylum Myxozoa, M. cerebralis falls within order Bivalvulidae, suborder 

Platysporina and genus Myxobolus – the most speciose of 52 genera (Kent et al. 2001). 

Myxobolus cerebralis possesses unique phenotypic and genotypic characteristics when 

compared with other histozoic parasites from the phylum (Hedrick & El –Matbouli 2002) 

and is arguably the most pathogenic Myxobolus species, causing significant disease in 

young salmonid fish (Lom & Dykovà 1992). Molecular phylogenetic comparisons of the 

ribosomal DNA (rDNA) of Myxozoa, demonstrate that M. cerebralis branches uniquely, 

reflecting an evolution distinct from other histozoic Myxobolus species found in fish 

(Hedrick & El-Matbouli 2002). Cursory genetic studies of M. cerebralis isolates from 

diverse geographic regions suggest little variation in the internal transcribed spacer (ITS) 

region of its rDNA, supporting the theory of its recent introduction into North America 

(Andree et al. 1999). 

The discovery of the definitive oligochaete worm host of M. cerebralis by Wolf & Markiw 

(1984; El-Matbouli & Hoffmann 1989) radically changed the taxonomy of Phylum 

Myxozoa and provided a model for two-host life cycles for myxozoan parasites of fish. 

Most myxozoans are assumed to alternate between a myxospore stage developing in a fish, 

and an actinospore stage in an oligochaete. Myxozoans have been shown to have a number 

of life cycle strategies including direct transmission, alternation into annelids and other 

invertebrate hosts e.g. bryozoans. Several members of genus Myxobolus have been 
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demonstrated to utilise oligochaetes, including Tubifex tubifex as essential hosts (El-

Matbouli et al. 1992; Hedrick & El-Matbouli 2002). Some of the mechanisms that underlie 

this complex developmental cycle, including host response (both fish and oligochaete) and 

resistance factors were investigated by El-Matbouli et al. (1995, El-Matbouli & Hoffmann 

1998). 

2.1.2 Development of Myxobolus cerebralis in its hosts 

2.1.2.1 Development of myxospores in fish 

A. Attachment and initial invasion: following release from the oligochaete host, 

waterborne actinospore stage (triactinomyxons) of M. cerebralis can remain viable at 7-

15°C for 6-15 days (El-Matbouli et al. 1999b). Once a spore encounters the fish host 

(salmonid), attachment and penetration of the host epidermis occurs (Markiw 1992a, El-

Matbouli et al. 1999b). Triactinomyxons can cause significant damage to the epidermis by 

three mechanisms: piercing of host cells by extruded polar filaments; migration of the 

infective sporoplasm between cells - a process facilitated by release of proteases present in 

the sporoplasm; and intracellular development and release of parasite daughter cells from 

infected host cells (Hedrick & El-Matbouli 2002). Mechanisms that control extrusion of 

the polar filaments appear to depend on chemical and mechanical cues, as dead or 

anesthetised fish or fish parts are not effective targets (El-Matbouli et al. 1999a). 

Subsequent damage to the epidermis by the attachment and invasion of large number of 

triactinomyxon stages in a short but heavy exposure can lead to the death of young 

salmonids (Markiw 1991). Attachment and penetration is a very rapid process, occurring 

within seconds of first contact with the fish host. By five minutes post-exposure, 

sporoplasms (the infective packets containing up to 64 germ cells surrounded by an 

enveloping cell) have egressed from the valve cells of the triactinomyxon into the 

epidermis of the fish. The migration of the sporoplasm packet through the epidermis may 

be facilitated by both mechanical damage to the epidermis and the effects of released 

enzymes (El-Matbouli et al. 1995). Enzymes such as serine and cysteine proteases 

influence parasite virulence factors and subvert the host defenses (Que et al. 2003). 

Cysteine and serine protease genes MyxCP-1 and MyxSP-1, respectively, were identified 

by Kelley et al. (2003; 2004) from M. cerebralis. These were shown to play an enzymatic 

role in penetration and invasion through the cellular matrix of the host tissues, as well as 

lysis of target cartilage.  
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B. Presporogonic and sporogonic stages: one hour post-exposure, individual germ cells 

from the sporoplasm disperse and begin to penetrate the host epidermis. After two hours, 

the sporoplasm cells begin to multiply in the epidermis, then migrate to the dermis and 

peripheral nerves (El-Matbouli et al. 1995). After 24 hours, there are few parasites 

remaining in the epidermis. By 4-24 days post-exposure, parasites can be found in the 

nervous tissue, initially in peripheral nerves but later migrating and replicating between 

nerve bundles in ganglia and the central nervous system, exploiting the nerves as paths to 

reach larger deposits of cartilage found in the spinal column and cranial regions (El-

Matbouli et al. 1995). The first parasite stages appeared in the cartilage after 20 days or 35 

days post exposure according to water temperature 16-17, 12-13 respectively (Halliday 

1973). Presporogonic development ends and sporogony begins with autogamy: the union 

of two cells to form a generative cell surrounding a sporogonic cell; a phenomenon typical 

of myxozoans, which signals a shift from vegetative development to sporogenesis (Lom & 

Dykovà 1992). 

The sporogonic cell gives rise to all of the cells comprising the multicellular myxospore 

stage. A myxospore has two cells for the polar capsules, two cells for each of the two shell 

valves and two cells that will later fuse to form a binucleate sporoplasm; together they 

make an elliptically-shaped myxospore ~10µm in diameter. More than one million 

myxospores may develop per fish over a period of 52-121 days depending on water 

temperature (Halliday 1973). The spores have thick, protective valve cells and can lie 

resident in the ossified fish skeleton, where cartilage was once present. Spores can exit the 

host through several pathways: if the fish is ingested by another fish, a fish-eating bird or 

another animal, spores are expelled in faeces (El-Matbouli & Hoffmann 1991b); severely 

crippled fish may die and decompose in the sediments directly; Nehring et al. (2002) found 

that spores of M. cerebralis can be released by living brown trout. Myxospores may remain 

viable for as long as 12 years (Schäperclaus 1954) before they infect their next host, an 

oligochaete worm. 

2.1.2.2 Development of Myxobolus cerebralis spores in oligochaetes 

A. Attachment and Invasion: susceptible aquatic oligochaetes, T. tubifex, become 

infected after ingestion of myxospores. Following stimuli that may be similar to those 

responsible for triggering the triactinomyxon stage when it encounters the fish host, the 

myxospore polar filaments are extruded and attach the spore to the worm gut epithelium. 

The spores’ valves then open and the binucleate sporoplasm cell migrates between the gut 

epithelial cells where it will remain throughout all stages of subsequent development, in 



Construction of cDNA Library from the Triactinomyxon spores 
Literature Review 
 

                                                                                                                        

Page 6

contrast to the migratory behavior in the fish host (El-Matbouli & Hoffmann 1998, 

Antonio et al. 1999).  

B. Schizogony: 5-25 days post-infection, many uni- or bi-nucleated cells which arose from 

the bi-nucleated amoeboid cells, undergo multiple divisions to produce numerous daughter 

cells. This cycle may continue throughout the development of the parasite, providing a 

reservoir of undifferentiated cells that can later contribute to gametogony and sporogony 

(El-Matbouli & Hoffmann 1998). 

C. Gametogony: between 25-46 days, oval binucleate cells give rise, through multiple 

divisions, to pansporocysts. Pansporocysts consists of somatic cells surrounding two 

generative cells. The somatic cells divide to form the pansporocyst wall, while the two 

generative cells further divide to form gametocytes that further differentiate into haploid 

alpha and beta gametocytes. The mitotic divisions that give rise to the gametes are the only 

phase in the parasite life cycle where it exists in a haploid state (El-Matbouli et al. 1998). 

The fusion of alpha and beta gametocytes to form a zygote is the only truly sexual phase of 

the life cycle of M. cerebralis and signals the beginning of sporogony. 

D. Sporogony: beginning at 50 days, fusion of gametocytes to form zygotes is evident. 

Eight zygotes are formed within each pansporocyst, with each zygote in turn dividing to 

eventually form four sporoblast cells (three surround the other). A further division of the 

surrounding cells makes a total of seven cells in the developing spore: three cells 

differentiate to form the polar capsules; three produce the valves; one undergoes multiple 

divisions to give rise to a cell which envelops up to 64 germ cells. After 90 days, the fully-

formed triactinomyxon spores are ready to be released into the lumen; the spores are folded 

and deflated while present in the pansporocyst but as the pansporocyst emerges to the 

surface of the intestinal lumen and ruptures they are released. Once in the lumen, spores 

are passed towards the anus and expelled into the environment. A fully inflated 

triactinomyxon spore measures from 135-155µm in length and 11.5-14.5µm in width (El-

Matbouli & Hoffmann, 1998). 

2.2 Whirling disease 

Development of the myxospore stage of M. cerebralis in the salmonid host gives rise to 

whirling disease. The disease was first observed among introduced, farmed-raised rainbow 

trout Oncorhynchus mykiss, by Bruno Hofer of the University of Munich in 1898 (Hofer 

1903).  
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2.2.1 Symptoms and pathogenicity 

The most obvious clinical sign is tail-chasing behaviour - from which the disease derives 

its name – which occurs 2-3 months after infection (Schäperclaus 1931). According to 

Hoffman et al. (1962) whirling can last a year after infection; however Halliday (1974) 

studied outbreaks of the disease where whirling initially appeared in yearlings. Whirling 

was at one time thought to be caused by toxins released by the parasite (Plehn 1904, 1924) 

but it seems more likely to be caused by erosion of the cartilage surrounding the auditory 

organ (Hoffman & Dunbar 1961). In addition, observations by Christensen (1966) & 

Halliday (1974) suggest that granulated tissue produced by the host 8-12 months after 

infection (Lucky 1970) puts pressure on the auditory capsule and thereby induces whirling. 

Halliday (1974) suggests that when this is produced in response to an earlier sub-clinical 

infection, it can initiate whirling in yearlings and prolong whirling in survivors. 

The parasite can also infect the cartilage of the spinal column, and when this occur 

posterior to the 26th vertebra, it puts pressure on the caudal nerves which control pigment 

cells in the tail. This produces a black tail in the fish (Plehn 1904, Schäperclaus 1954, 

Hoffman et al. 1962, Hoffman 1966) and causes permanent spinal deformities in survivors 

(Hoffman 1966, Havelka et al. 1971). Other characteristic signs of the disease include 

cranial deformities due to interference with osteogenesis (Hoffman et al. 1962, Christensen 

1966, Hoffman 1970), deformities of the jaws and opercula (Christensen 1966, Havelka & 

Volf 1970, Lucky 1970), disintegration of the fins (Havelka & Volf 1970) and opercular 

cysts (Taylor & Haber 1974). 

The presence of abundant cartilage in the skeleton of young trout renders them highly 

susceptible to the disease (Schäperclaus 1986). Parasite trophozoites, or feeding stages, 

digest cartilage and destroy the structural framework needed for subsequent healthy bone 

formation, leaving the fish with permanent skeletal disfigurement (Schäperclaus 1986). 

While structural deformation of cartilage due to necrosis is clear, the causes of the more 

acute neurological signs - whirling behaviour & black tail - have been debated. These 

symptoms were thought to result from destruction of cartilage and pressure on nerves of 

the vestibular organ (Schäperclaus 1986). Rose et al. (2000) found that granulomatous 

inflammation, associated with the parasite invasion of skull and vertebral column, 

extended into the perineural cerebrospinal-fluid-containing space, producing ring-like 

constrictions of the upper spinal cord and sometimes compressing and deforming the lower 

brain stem, which lead to abnormal swimming behaviour. 
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The cumulative effect of disease - behavioural effects and skeletal deformities - 

compromise the swimming and feeding functions of the fish, which may lead directly or 

indirectly to death of heavily infected trout ( Hedrick et al. 1998). 

2.2.2 Host susceptibility 

The earliest reports of whirling disease among farmed rainbow trout in Germany 

documented the high susceptibility of these fish, a species recently introduced from North 

America, compared with indigenous brown trout (Hofer 1903). Brown trout become 

infected but remains asymptomatic and are thought to be a natural host for the parasite 

(Hoffman et al. 1962). Surveys and experimental studies confirmed that rainbow trout are 

one of the most susceptible species of salmonid to M. cerebralis (Hofer 1903, Hoffman & 

Putz 1969, O`Grodnick 1979, MacConnell & Vincent 2002). This is due in part to the 

independent evolution of the parasite and rainbow trout (Hedrick et al. 2003); it was only 

in the late 19th century when rainbow trout were introduced to Europe from North 

America, that the parasite and new host first came into contact (Hofer 1903). 

Triactinomyxon spores have the ability to recognise, attach to and penetrate the epidermis 

of all salmonid fish tested, and to a much lesser extend some non-salmonid fish (El-

Matbouli et al. 1999a). It is the development of the parasite after entry that varies greatly 

between fish species: following penetration in non-salmonid fish, the invading sporoplasm 

cells are destroyed within hours, but in rainbow trout active multiplication of parasite 

stages begins rapidly (El-Matbouli et al. 1995).  

Hedrick et al. (1998) found that in controlled laboratory exposure to graded doses of the 

infectious stages, resistance to the disease in certain species, e.g. brown trout, can be 

overwhelmed by exposure to high concentrations of the infectious stages. This can explain 

the occurrence of disease among wild and hatchery- reared brown trout in the US and 

Europe respectively. Comparison between M. cerebralis-infected brown trout and rainbow 

trout, where they coexist in a Montana wild trout stream, showed that rainbow trout not 

only exhibited a much higher lesion severity and rate of infection than brown trout, but 

also that the parasite tended to concentrate in the cranial cartilage in rainbow trout versus 

gill arches in the brown trout (Baldwin et al. 2000). In a controlled laboratory exposure 

(Hedrick et al. 1999a) found rainbow trout to be much more susceptible to whirling disease 

infection when compared with either west slope cutthroat trout (Oncorhynchus clarki 

lewisi) or Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri).In contrast, Lake 
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trout Salvelinus namaycush and Arctic grayling Thymallus arcticus were found to 

experience only low-level disease effects.  

There is a generally accepted ranking of relative susceptibilities that places rainbow trout 

Oncorhynchus mykiss as highly susceptible; Sockeye salmon Oncorhynchus nerka, 

Chinook salmon Oncorhynchus tshawytscha, Atlantic salmon Salmo solar, Cutthroat trout 

Oncorhynchus clarki, and brook trout Salvelinus fontinalis intermediate in their 

susceptibility; and brown trout Salmo trutta and Coho salmon Oncorhynchus kisutch as 

having low susceptibility to the disease (Sollid et al. 2002). Most resistant are lake trout 

Salmo namaycush, which are considered refractory to infection (O’Grodnick 1979). 

Recent research on whirling disease has been directed towards finding naturally acquired 

resistance to the parasite among strains of rainbow trout in North America. So far both 

field and laboratory studies have demonstrated no more than marginal resistance to the 

parasite among the many stocks of rainbow trout in North America (Hedrick et al. 1998, 

1999a, b, Thompson et al.1999, Densmore et al. 2001). Laboratory studies have shown that 

the Hofer strain (GR) of rainbow trout reared in Bavaria, Germany have a higher resistance 

to whirling disease when compared with the Trout Lodge (TL) strain from North America 

(El-Matbouli et al. 2003). Hedrick et al. (2003) measured susceptibility of those 2 strains 

following exposure to triactinomyxons at different exposure doses. Severity of infection 

was evaluated 5 months post-exposure by presence of clinical signs, prevalence of 

infection, severity of microscopic lesions and spore count. It was found that the prevalence 

of infection, spore numbers and severity of microscopic lesions due to M. cerebralis 

among GR trout were less at all doses compared with TL. It is assumed that the German 

GR strain has been exposed to the parasite for up to 120 years, which is possibly sufficient 

time to have developed resistance to whirling disease (El-Matbouli et al. 2004).  

2.2.3 Diagnosis 

The importance of diagnosing whirling disease and detection of this sometimes cryptic 

parasite has grown as a result of increased outbreaks of the disease in wild trout 

populations in North America, and with the economic importance of commercial trout 

farming. For these reasons, whirling disease is listed with the International Office of 

Epizootics as an important disease of fresh water fishes (El-Matbouli et al. 1992). 

Presumptive diagnosis includes the demonstration of a previous history of the disease and 

the presence of acute signs (active tail-chasing behaviour and caudal melanosis) or chronic 

pathological changes (skeletal malformation) among affected fish (Thoesen 1994). 
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Detection and identification of the causative agent M. cerebralis, is based on definitive 

description of spores (Lom & Hoffman 1970): the spore is 9.7µm long, 8.5µm wide, with 

two equally-sized polar capsules 4.2 x 3.1µm. The polar filaments make 5 to 6 turns within 

the polar capsules. The posterior of the spore is covered by a mucous envelope which can 

be visualised by negative staining with dyes such as India ink (Lom & Hoffman 1971). 

There is a parasutural groove visible by electron microscopy along each side of the suture 

line where the two protective valves join, in addition, two pores for the extrusion of the 

polar filaments are visible at the anterior of the spore (Hoffman & Hoffman 1972). 

Definitive description of spores is followed by confirmation of developmental stages or 

spores in cartilage of tissue sections stained with haematoxylin and eosin (H&E) (Thoesen 

1994). Spores can be enumerated after extraction from host tissues; the most widely used 

method is the pepsin-trypsin digest or PTD (Markiw & Wolf 1974 a, b). PTD involves 

sequential digestion of the bony elements of the skeleton after removal of the flesh. The 

digested tissues are filtered and concentrated prior to examination by light microscopy for 

the presence of spores. An alternative method of spore enumeration is plankton 

centrifugation (O’Grodnick 1975). In this procedure fish heads are homogenised and the 

homogenate filtered through gauze. This crude filtrate is then passed through a Plankton 

centrifuge and the resulting pellet examined. 

Taxonomic classification of members of genus Myxobolus to species level is difficult 

(Lom 1987; Yoder 1972). This has lead to misdiagnosis of whirling disease, sometimes 

with costly consequences (Margolis et al. 1996). Even when spores are detected it may 

take an experienced parasitologist to determine which species is present. Serologic 

techniques have been employed to identify M. cerebralis spores with more certainty 

(Markiw & Wolf 1978); however attempts to demonstrate the practicality of this technique 

have met with mixed results. Griffin & Davis (1978) demonstrated the presence of 

antibodies in the serum of infected fish using an indirect fluorescent antibody test (IFAT). 

The IFAT using polyclonal anti-sera prepared in rabbits injected with spores was also used 

by Markiw (1989) to show conservation of antigens between the myxosporean and 

actinosporean stages. Hamilton & Canning (1988) used mouse anti-M. cerebralis anti-sera 

to confirm conservation of antigens among pre-spore and spore stages. Cross-reactivity 

with the IFAT and direct fluorescent antibody test (DFAT) were observed between M. 

cerebralis and M. cartilaginis (Markiw & Wolf 1978). Enzyme linked immunosorbent 

assay (ELISA) was developed by (Adkison et al. 2005) as a non-lethal method for 
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detection of M. cerebralis-infected fish. The specificity and sensitivity of the ELISA assay 

in detection of infected fish is still under investigation. 

Interest has increased in the use of DNA-based diagnosis for fish pathogens, particularly 

those that are difficult or impossible to culture. One of these approaches is polymerase 

chain reaction (PCR): amplification of a DNA sequence unique to M. cerebralis. Andree et 

al. (1998) describe a nested (two-round) PCR test for detection of M. cerebralis that is 

currently in use by several fish disease laboratories. This method involves the 

amplification of a 415 base pair (bp) segment of the 18S rDNA gene from M. cerebralis. 

The primary advantage of this technique over traditional testing methods is its ability to 

amplify to detectable levels the equivalent of a single sporoplasm of M. cerebralis as found 

in a tissue sample. It can detect the presence of the parasite in both hosts, in all known 

stages of its life cycle; and at lower thresholds than currently used diagnostic methods. 

These advantages were demonstrated by Schisler et al. (2001): PCR identified M. 

cerebralis significantly more often than PTD testing. 

For confirmation of the identity of myxospores obtained from pepsin-trypsin digest, a 

single-round PCR is preferred to a nested PCR, as it minimises the risk of false positive 

that may result from contaminants. However, for definitive diagnosis of digest preparations 

containing low numbers of myxospores (or none), or where microscopic examination 

reveals sparse structures that may, or may not be, actual myxospores, an assay with greater 

sensitivity is preferred - such as the original nested procedure described by Andree et al. 

(1998) and Baldwin & Myklebust (2002), although, as is normal in PCR preparations, the 

cell sample is destroyed during the extraction process and consequently it is impossible to 

know which specific cells in a mixed cell suspension were infected (Taylor & Logan 

1995). 

Another set of useful techniques involve molecular hybridisation, which is especially 

suited for detection of all stages of M. cerebralis, including early developmental stages that 

may be present well before clinical signs are evident. In situ Hybridisation (ISH) is the 

specific annealing of labelled DNA probes complementary to the target sequence in fixed 

tissue or cells; followed by visualisation of the probe location. However, as it does not 

involve amplification of the target sequence it is not as sensitive as PCR, and is limited by 

the number of copies of the target sequence per cell (Nuovo 1994). A non-radioactive ISH 

protocol was developed by Antonio et al. (1998) to detect M. cerebralis in target tissues of 

subclinically and clinically infected fish, as well as tubificid oligochaetes after exposures 
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of these hosts to triactinomyxons and myxospores, respectively. The significant advantage 

of ISH over other methods of detecting M. cerebralis is its capability to anatomically 

locate all stages of the parasite, from early developmental forms to mature spore stages, at 

low-level infections. A unique application of the procedure is its use to detect and localise 

parasite stages in the oligochaete host; stages which cannot be identified by any extraction-

concentration procedure used for the spore stages in fish. Additionally, ISH should be able 

to distinguish oligochaetes infected with M. cerebralis from those infected with other 

myxosporeans.  

2.2.4 Factors influencing infection and disease 

2.2.4.1 Age of fish host 

Severity of infection decreases with increased age of fish (Markiw 1992b). In older fish, 

much of the cartilage susceptible to infection has been converted to bone, making fish 

more resistant to disease (Halliday 1976). Other reasons for the increased resistance of 

older fish may include physiological changes in the skin (Markiw 1992a) and acquired 

immunity (El-Matbouli et al. 1995). While younger fish are generally more vulnerable to 

disease, eggs and newly hatched sac-fry exposed to infective units do not develop infection 

(Putz & Hoffman 1966; Markiw 1991). Either those infected with early stages of M. 

cerebralis did not survive, or their underdeveloped organs did not provide conditions that 

lead to a persistent infection (Markiw 1991). 

2.2.4.2 Environmental stress 

Environmental stressors such as pollution, crowding, or abnormal temperatures will make 

fish more susceptible to the disease (Goede 1986). The parasite develops more rapidly and 

disease signs are more common in fish held at higher water temperature (Halliday 1973). 

2.2.4.3 Infective dose 

Parasitism (as measured by spore numbers) becomes more severe as fish are exposed to 

increasing dosages of triactinomyxon (Markiw 1992a). The myxospore burden appears to 

plateau at doses of 10,000-100,000 triactinomyxon/fish. In exposure tests with 2-day old 

rainbow trout, increasing doses of triactinomyxon resulted in increasing mortality: from 

68% at 10 triactinomyxon/fish to 100% mortality at 1000 triactinomyxon/fish; 4% of 

uninfected control fish perished (Markiw 1991). 

2.2.4.4 Fish species 

Salmonid species differ in their susceptibility to whirling disease. Rainbow trout are 

considered among the most susceptible species while brown trout and Coho salmon have 

considerably more resistance (Hedrick et al. 1999b, O’Grodnick 1979). Adkison et al. 
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(2001) compared these 3 species in their response to the whirling disease. Microscopic 

examination of the rainbow trout and brown trout show significantly more sporoplasm 

cells in the epidermis in the first few hours post-exposure compared with Coho salmon. 

Later in the infection there is a reduction in the number of parasite stages and associated 

pathology in brown trout compared with rainbow trout. Other species that can become 

infected include: Snake River, greenback, Colorado River, and Rio Grande cutthroat trout 

 (Thompson et al. 1998), Yellowstone and westslope cutthroat trout (Vincent 1997), bull 

trout (McDowell et al. 1997), steelhead (Horsch 1987), arctic grayling (MacConnell et al. 

1997), Atlantic salmon (Hoffman 1990), golden trout (Anonymous 1988), sockeye, Coho, 

and Chinook salmon (O’Grodnick 1978a, 1979), and mountain whitefish (Baldwin et al. 

1997). Clinical signs of whirling disease were emerged in experimentally infected rainbow 

trout, brook trout, sockeye salmon, and Chinook salmon, while no clinical signs were 

found in brown trout, lake trout, and Coho salmon, and no spores were found in lake trout 

(O’Grodnick 1978a, 1979). Rainbow trout were most susceptible to disease. Brook trout, 

sockeye salmon, and Chinook salmon had intermediate susceptibility. Coho salmon were 

usually refractory to infection (but occasional spores were found), while lake trout were 

always refractory (O’Grodnick 1979).  

Sentinel fish studies in Colorado (Thompson et al. 1999) found evidence of infection in 

brown trout, rainbow trout, and four subspecies of cutthroat trout (Colorado River, 

Greenback, Rio Grande, and Snake River). Whirling behaviour, a clinical sign thought to 

indicate more severe infection, was observed in rainbow trout in Colorado River, 

Greenback and Rio Grande cutthroat trout. Snake River cutthroats appeared to be 

somewhat more resistant to disease, while brown trout were the most resistant species 

(based on spores counts and clinical signs). Previous studies had found brook trout to be 

highly vulnerable to infection, as well (Thompson et al. 1997). Sentinel fish studies in 

Idaho found that rainbow trout and Yellowstone cutthroat trout were both vulnerable to 

infection with M. cerebralis. Based on spore counts, clinical signs, and histology, it 

appeared that the cutthroat trout were somewhat less affected by the parasite than rainbow 

trout (Elle 1997). In contrast, studies in Montana found Yellowstone cutthroat trout to be 

highly affected by whirling disease, as were west slope cutthroat trout and three strain of 

rainbow trout (DeSmet, Deschutes, Eagle Lake), brown trout were relatively unaffected 

(Vincent 1997). Other studies in Montana (MacConnell et al. 1997) and at the University 

of California, Davis, (McDowell et al. 1997) found grayling to be quite resistant to 

whirling disease, though the Montana studies indicated that they could become infected. 
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Studies in Utah evaluated the susceptibility of several salmonid hybrids. Brownbows 

(rainbow female x brown male), splake (lake female x lake male), brake (brown female x 

lake male) and tiger trout (brook female x brown male) were exposed in two reservoirs. 

Each type of hybrid proved capable of becoming infected with M. cerebralis, though a 

hierarchy of resistance has not yet been developed (Wilson et al. 1997).  

 
2.2.4.5 Ecological factors 

The cumulative effects of environmental stresses likely play an important role in 

influencing infection and disease. Some specific factors that have been examined include: 

2.2.4.5.1 Stream productivity: infectivity of M. cerebralis appeared to be greater in high 

productivity streams (O’Grodnick 1978b). Despite the stocking of infected fish in several 

relatively infertile mountain streams with low trout numbers, whirling disease did not 

become established in wild populations of rainbow, brown, or brook trout. In contrast, 

infection became established among brown trout in a highly productive limestone stream to 

which the parasite had been introduced. 

2.2.4.5.2 Sediment/organic material: more sediment and organic load can lead to greater 

disease because it provides more favourable habitat for the oligochaete host. Modin (1998) 

noted a serious outbreak of whirling disease in a California hatchery that uses a 

contaminated high-gradient stream as a water supply. Infection was barely detectable in 

fish from the stream; however fish in the hatchery reared in water that had passed through 

sediment-laden settling pools, suffered from severe clinical disease. Gustafson (1997) 

found that T. tubifex oligochaetes in Montana were generally found in greatest abundance 

in polluted sites where normal benthic community diversity had been reduced. 

2.2.4.5.3 Seasonality and water temperature: water temperature can have profound 

effects on the development of M. cerebralis in T. tubifex worms and on the release of 

triactinomyxon spores. Most parasite developmental stages in the gut epithelium of Tubifex 

worms are destroyed after 24h at 30°C, after three days at 25°C and after 10 days at 20°C 

(El-Matbouli et al. 1999b). In contrast, complete development of triactinomyxon spores 

was observed in worms held at 5, 10, and 15°C. In worms already producing 

triactinomyxons, release of spores ceased within four days when worms were held at 25 

and 30°C, and within 15 days at 20°C. It appears that 15°C may be optimal for production 

of triactinomyxon, with release continuing, albeit at a lower rate, when water temperature 

is lower (El-Matbouli et al. 1999b). Field studies have also indicated that water 

temperature may be an important factor. In young-of-the-year rainbow trout exposed in 
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sentinel cages at different times of the year, infection rates showed a seasonal pattern with 

significant correlation to the average water temperatures when fish were exposed. Fish 

began to exhibit more sever infections when they were exposed at water temperatures of 

9°C, with infection peaking at about 14°C and declining when water temperature exceeded 

17°C (Vincent 1998). 

2.2.4.5.4 Infection “point sources”:  Schisler et al. (1997) found that the percentage of 

trout fry displaying clinical signs of whirling disease in the Colorado River decreased with 

distance downstream from Windy Gap Reservoir. They suggest that disease in wild 

populations may be influenced by specific “point sources” for infectivity, such as Windy 

Gap Reservoir. 

2.2.5 Vectors for the spread of whirling disease 

Movement of live fish carrying M. cerebralis is considered one of the major vectors for 

spread of whirling disease. Once established in a natural system, the parasite can spread as 

infected fish move up- or downstream and as waterborne triactinomyxons are carried 

downstream. Whirling disease spread 9.6km downstream and 500m upstream from a point 

of initial infection at a Michigan hatchery over a three year period (Yoder 1972). In the 

United States, whirling disease is likely to have been spread primarily through the transfer 

of live fish and by movement of infected fish within streams (Hoffman 1990). Whirling 

disease could also have been spread through shipments of fresh, frozen, or brined food fish 

infected with M. cerebralis. Spores remain viable when frozen at -20°C for at least three 

months (El-Matbouli & Hoffmann 1991b). Brined fish also retain viable spores, through 

hot-smoking at 66°C deactivates spores (Wolf & Markiw 1982). Predators may also spread 

the parasite to new waters. Spores of M. cerebralis survive passage through the alimentary 

canal of avian predators (Meyers et al. 1970; Taylor & Lott 1978; El-Matbouli & 

Hoffmann 1991b). Transfer of fish eggs is not a likely means for transfer of parasite as M. 

cerebralis is not transmitted vertically, from infected brood fish to eggs (O’Grodnick 

1975a). Markiw (1991) also found that eyed eggs exposed to triactinomyxon do not 

become infected. The parasite could be spread, however, through contamination of egg 

shipments (Hoffman 1990).  

2.2.6 Fish immune response to Myxobolus cerebralis 

Trout display some immune response to infection by M. cerebralis. Griffin & Davis 

(1978) detected circulating antibodies in infected rainbow trout. Hoffmann & El-Matbouli 

(1996) observed parasite stages in trout subcutis become surrounded by round cells and 
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macrophages five days post-exposure. Apparently, parasites that have not yet reached 

nerve cells within five days are removed by immune cells. There was also no evidence of 

contact of the parasite with blood or immunocompetent cells (which could trigger an 

immune response) during its migration (El-Matbouli et al. 1995).Once in nervous tissue; 

the parasite is effectively shielded from attack by the immune system. Even highly 

susceptible rainbow trout can acquire some resistance upon re-exposure to M. cerebralis 

but this occurs only after exposure to significant numbers of triactinomyxons and after 

clinical signs has begun to develop as a result of the primary exposure (Ryce et al. 2002). 

Hedrick et al. (1997) also observed evidence of some acquired immunity, finding that fish 

exposed to a high dose of triactinomyxons (1,350 per fish) developed resistance to re-

infection between 24-36d after initial exposure (at 15°C). Fish exposed to a lighter dose 

(200 triactinomyxons per fish) did not display resistance to re-infection. Thompson et al. 

(1998) exposed two groups of sentinel rainbow trout: one spawned from wild trout in the 

Colorado River recruited prior to population effects of whirling disease, and the other 

spawned from trout recruited after whirling disease effects began to appear. The offspring 

of the pre-whirling disease parents had significantly higher spores loads than the progeny 

of post–whirling disease parents. Although survival rates were similar for the two groups, 

the lower spore loads in post-whirling disease trout may indicate that some level of 

resistance has been developed in the population of surviving fish. 

2.3 Control and eradication of whirling disease 

A great deal of research has been directed at developing ways to control whirling disease 

in fish culture settings. The worm host, T. tubifex, can be eradicated from ponds by 

allowing them to dry out; it does however have the ability to form resistant cysts, living for 

up to 14d in dried mud (Kaster & Bushnell 1981). Facilities can be disinfected using 0.25-

1% calcium oxide or 0.5-1% potassium hydroxide (Hoffman & Hoffman 1972). Other 

effective reagents include: calcium hydroxide 0.5%-2.0%; sodium hypochlorite (1600ppm 

available chlorine); 200-800ppm Roccal (alkyl dimethylbenzylammonium chloride) 

(Hoffman & Putz 1969). Heat also deactivates spores: 90°C for 10 min, or 70°C for 100 

min (Hoffman & Markiw 1977) or hot-smoking of fish at 66°C (Wolf & Markiw 1982) 

renders spores nonviable. Hoffman (1974, 1975) demonstrated that ultraviolet light (UV) 

treatments with 253.7nm wavelength at 35 mWs/cm2 were effective in protecting rainbow 

trout from whirling disease; lower dosages reduced, but did not completely eliminate 

infection. Hedrick et al. (2000) found that a dose of 1300 mWs/cm2 was required to 
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inactivate 100% of triactinomyxons held under a static collimated UV beam, as determined 

by vital staining. The use of medicated feed has also been proposed for controlling the 

disease: orally administered Fumagillin dicycloheyxlamine could prevent clinical 

outbreaks of whirling disease in rainbow trout and also cause distinct morphological 

defects in M. cerebralis (El-Matbouli & Hoffmann 1991a).  

2.4 Polyacrylamide gel electrophoresis (PAGE) and western blot (Electroblotting) 

Electrophoresis is the migration of charged molecules in solution in response to an electric 

field. The rate of migration depends on several factors, including: strength of the electric 

field, net charge, size and shape of the molecule and the viscosity and temperature of the 

medium in which the molecules are moving (Rybicki & Purves 1996a). The sample is run 

in a support matrix such as polyacrylamide gel which not only inhibits convective mixing 

caused by heating but also act as a sieve by retarding the movement of large molecules 

while allowing smaller ones to migrate freely; it can be stained and digitally scanned, or 

stored, providing a record of the electrophoretic run (Rybicki & Purves 1996a). In order to 

separate mixtures of complex proteins by electrophoresis, the protein structures have to be 

denatured through the use of a compound such as sodium dodecyl sulphate (SDS), an 

anionic detergent, which wraps around the polypeptide backbone. SDS binds to proteins 

quite specifically in a mass ratio of 1.4:1, allowing easy back-calculation of fragment size 

from the gel. It is also usually necessary to reduce disulphide bridges in the proteins before 

they can adopt the randomly coiled configuration necessary for separation; this can be 

accomplished with 2-mercaptoethanol or dithiothreitol. The separation of proteins by 

PAGE provides high resolution of complex protein mixtures, and has proved to be very 

useful in classification and identification of a range of organisms (Kersters& Ley 1980).  

Blotting is a technique for the electrophoretic transfer of Protein, DNA or RNA to a 

suitable membrane. Transfer of proteins to membranes is widely used for creation of an 

“imprint” of proteins separated by SDS-PAGE; this can then be used for identification of 

antigens, detection of glycoprotein, detection of interacting species, or protein sequencing. 

The method most commonly used for electrotransfer of proteins to nitrocellulose is that 

reported by Towbin et al. (1979): proteins are first separated by mass using SDS-PAGE, 

and then specifically detected in an immunoassay step (see also Rybicki & Purves 1996b).  

Williams & Hoole (1995) used immunoblotting, SDS-PAGE and western blotting 

procedures to demonstrate cross-reactivity of a polyclonal anti-carp IgM antibody with 

components of roach serum. This cross-reaction has been exploited in immunofluorescence 
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and immunogold labelling studies to localise fish host molecules on the tegumental 

membrane of Ligula intestinalis (Cestoda: Pseudophyllidea) freshly removed from roach 

fry. Monni & Cognetti-Varriale (2002) studied the antibody response of European eels 

(Anguilla anguilla) to the branchial parasites Pseudodactylogyrus anguillae and P. bini 

under hyperoxygenation conditions; the antigenic fractions of parasites were detected by 

means of electrophoretic techniques (SDS-PAGE) and by Western blot analysis. They 

found that the eels responded to a greater number of proteins, and that this was correlated 

with a decrease in the level of infestation. 

2.5 Complementary DNA (cDNA) library 

The genetic material of the cell is composed of nucleic acids present in two forms:   

deoxyribonucleic acid (DNA) which makes up the chromosomes, and ribonucleic acid 

(RNA) which decodes the genetic information encoded in the DNA and produces proteins 

for the cell. If we reverse this process and artificially build DNA from the RNA, it reveals 

the original protein-coding information contained in the genes; because this DNA is a copy 

of RNA, it is called cDNA. cDNA has two advantages over chromosomal DNA: there are 

no introns - non-coding sequences that often occur within eukaryotic gene sequences - so it 

is easier to identify and characterise genes; and cDNA only represents those genes that are 

being actively used by the cell, since RNA polymerase only transcribes activated genes in 

the first place. To synthesise cDNA from RNA, a reverse transcriptase (RT) enzyme is 

used. 

Building a ‘library’: to speed up the process of identifying complete genes from a cell’s 

DNA, the genome can be divided into a ‘library’ of smaller fragments, each with the 

ability to be independently replicated when spliced into a vector and cloned in a cell. The 

library of fragments can be efficiently searched for the required gene, as it takes less time 

to search the length of a fragment, than it would to search the entire genome. There are two 

types of libraries: 

• Gene (Genomic) library: a random collection of DNA fragments, typically 

representing the entire genome of an organism that has been inserted into a cloning 

vector.      

• cDNA library: a random collection of cDNA fragments, typically representing the 

entire mRNA of a target tissue, that have been inserted into a cloning vector. If a 

particular gene sequence is required, it may be easier to find it in a cDNA library 

rather than a gene library, which is larger. However, the cDNA library screened 



Construction of cDNA Library from the Triactinomyxon spores 
Literature Review 
 

                                                                                                                        

Page 19 

would have to be from a tissue where the gene in question was being expressed, i.e. 

mRNA was being transcribed. 

cDNA libraries are simpler to construct, because cDNA fragments, like their parental 

mRNAs, are already fairly short, so an entire cDNA can be spliced into a single vector. 

Other advantages over genomic libraries include: there are no introns, so there is no danger 

of pieces of the target gene being chopped onto separate clones; the library is enriched for 

a target gene, since instead of one or two copies, as in the genomic library, there are as 

many copies as the cell could produce mRNA’s for that gene (Onken 1997, Old & 

Primrose 1994). 

Chen et al. (2002) constructed a cDNA library from Schistosoma japonicum cercariae. The 

primary library titre was 1.8 X 107 pfu /ml and the titre of amplified library was 2.5 X 1010 

pfu/ml. The average size of inserts was 1.075kb and the recombinant efficiency was 

94.4%. A lambda ZAP Express cDNA library was constructed using mRNA from Eimeria 

tenella sporulated oocysts. The library contained 6 X 106 clones and the titre of amplified 

library was 1x1011pfu/ml; PCR identified that the library contained approximately 96% 

recombinant phages (Han et al. 2001). A high quality and highly representative cDNA 

library of Necator americanus third stage larvae has also been constructed, and some 

functional genes identified from the library by Expressed Sequence Tags (ESTs). The titre 

of un-amplified library was 1 x107 and the size of insert was about 750-3000bp. Seven out 

of 11 ESTs obtained from the library have a significant homology with certain functional 

genes (Zhan et al. 2000). 

The aim of the present study is the construction of cDNA library from Myxobolus 

cerebralis, the causative agent of salmonid whirling disease.    
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3. MATERIALS AND METHODS 

3.1   MATERIALS 

3.1.1 Specimens 

3.1.1.1 Tubifex tubifex oligochaetes worms 

T. tubifex worms from our institute’s SPF culture were kept in an aerated aquarium at a 

water temperature of 14-15°C. The bottom of the aquarium was covered with a 5cm layer 

of sterilised sand.  

3.1.1.2 Myxobolus cerebralis triactinomyxon spores 

Triactinomyxon spores were obtained from a population of T. tubifex worms that had been 

previously infected by the parasite. 

3.1.2 Media 
 
3.1.2.1 Solid media 

3.1.2.1.1 LB agar plates 

40g of LB-Agar powder (AppliChem GmbH, Darmstadt, Germany) was dissolved in 1L 

deionised water, the pH adjusted to 7.0, and then autoclaved at 121°C for 15min. After 

cooling, it was poured into Petri dishes.  

3.1.2.1.2 LB top agar 

32g of LB-Top Agar (Fluka ,BioChemika, Neu-Ulm, Germany) was dissolved in 1L 

deionised water, the pH adjusted to 7.0, and autoclaved at 121°C for 15min. 

3.1.2.1.3 LB tetracycline 

1L of LB-agar was prepared as described, cooled to 55°C after autoclaving, and then 1.5ml 

of 10mg/ml filter-sterilised tetracycline (Sigma-Aldrich chemie GmbH, Steinheim, 

Germany) dissolved in the agar prior to it being poured into Petri dishes, and stored in a 

refrigerator, 4°C, until use. 

3.1.2.1.4 LB kanamycin 

1L of LB-agar was prepared as described, cooled to 55°C after autoclaving, and then 6.6ml 

of 7.5mg/ml filter-sterilised kanamycin (Sigma-Aldrich, Chemie GmbH, Steinheim, 

Germany) was dissolved in the agar prior to it being poured into Petri dishes, and stored in 

the refrigerator until use.   

3.1.2.2 Liquid media 

3.1.2.2.1 LB broth 

25g of LB-Medium powder (AppliChem GmbH, Darmstadt, Germany) was dissolved in 

1L deionized water and the pH adjusted to 7.0, and then autoclaved at 121°C for 15min. 
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3.1.2.2.2 S.O.C. medium 

Ready-to-use medium contained: 2% trypton, 0.5% yeast extract, 10mM NaCl, 2.5mM 

KCl, 10mM MgCl2, 10mM MgSO4, 20mM glucose. (Invitrogen, Groningen, The 

Netherlands).   

3.1.2.2.3 NZY broth 

5g NaCl, 2g MgSO4.7H2O, 5g of yeast extract and 10g NZ amine (casein hydrolysate) 

were dissolved in 1L deionized water and the pH adjusted to 7.0, then autoclaved at 121°C 

for 15 min. 

3.1.3 Bacterial strains 

XL1-Blue MRF` strain (Stratagene, Amsterdam Zuidoost, The Netherlands) 

XLOLR strain (Stratagene, Amsterdam Zuidoost, The Netherlands) 

3.1.4 Antiserum 

Triactinomyxon antiserum, propagated in rabbits, was kindly provided by: Dr. M.E. 

Markiw, U.S. Fish and Wildlife Service, National Fish Health Research Laboratory. 

Kearneysville, West Virginia. USA; and Prof. Ronald P. Hedrick, University of California, 

Davis, Department of Medicine and Epidemiology, School of Veterinary Medicine. Davis, 

CA 95616.  

 The antiserum was produced according to Markiw (1989). Briefly, the triactinomyxon 

spores antiserum was produced in New Zealand white rabbit that had been immunized 

with antigen from 1.7X 107 disrupted spores containing 1.6mg of soluble protein 

(Bradford 1976). Initial inoculation was with 1.3 X 107 disrupted spores in 2ml of Hanks’ 

balanced salt solution emulsified with an equal volume of Freund’s incomplete adjuvant. 

An initial dose of 1ml was given subcutaneously in each foreleg and intramuscularly in 

each hind leg. After 12 days, the rabbit was desensitized with an inoculum of 0.2ml and 

boosted 4h later by an intraperitoneal injection of 2ml of pooled antigen (1X107 disrupted 

and 3 X107 intact spores) without adjuvant. After 6 days, the rabbit was bled by cardiac 

puncture and 2ml aliquots of the serum were lyophilized.  

3.1.5 Primer Sequences 

Primer Sequence 5 -̀--- 3  ̀

T3 AAT TAA CCC TCA CTA AAG GG 

T7 GTA ATA CGA CTC ACT ATA GGG C 
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M13 Forward (-20) GTA AAA CGA CGG CCA G 

M13 Reverse CAG GAA ACA GCT ATG AC 

SMART II A 

Oligonucleotides 
AAG CAG TGG TAT CAA CGC AGA GTA CGC GGG 

SMART CDS primer IIA AAGCAGTGGTATCAACGCAGAGTACT(30)N-1N 

PCR primer II A AAGCAGTGGTATCAACGCAGAGT 

Oligo d(T)-anchor primer GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTV 

PCR anchor primer GACCACGCGTATCGATGTCGA 

Oligo d (T)-linker primer 
GAGAGAGAGAGAGAGAGAGAACTAGTCTCGAGTTTT 

TTTTTTTTTTTTTT 

46-5 forward CAAAGAAGCAGCTAAACCAAAA 

46-5 reverse GTTGACCTTGGAGACCTGGATGT 

GSP1 TCCTTGGGTTTCGGGGCTTCCTTAG 

GSP2 CTTCTTTGGCAGCAGGAGCAGCAGC 

GSP5 TCTCCAAGGTCAACACGCTCATCAG 

N.B.: N=  A, C, G or T;   N-1 = A, G, or C;  V= A, C, G 

 

3.1.6 Reagents used                           

Reagents  Company 

Super SMART™ PCR cDNA synthesis kit Clontech, Heidelberg, Germany 

QIAprep Spin Miniprep Kit QIAGEN, Hilden, Germany 

Plasmid extraction Kit QIAGEN, Hilden, Germany 

MinElute ™ Gel extraction kit QIAGEN, Hilden, Germany 

cDNA synthesis kit Stratagene, Amsterdam ,The Netherlands 

Oligotex mRNA mini kit QIAGEN, Hilden, Germany 

RNeasy Mini kit QIAGEN, Hilden, Germany 

Protesilver™ silver Staining kit  Sigma-Aldrich, Steinheim,Germany 
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Coomassie® Brilliant blue R 250 SERVA, Heidelberg,Germany 

Acrylamide/Bis 30% solution 29:1 Bio-Rad, Munich, Germany 

Sodium dodecyl sulfate, SDS Bio-Rad, Munich, Germany 

Ammonium persulfate  Bio-Rad, Munich, Germany 

Magnesium sulfate heptahydrate Sigma-Aldrich, Steinheim, Germany 

NZ amine , Casein hydrolysate  Sigma-Aldrich, Steinheim, Germany  

Tris base Bio-Rad, Munich, Germany 

Maltose Carl Roth. , Karlsruhe, Germany 

Glycine Bio-Rad, Munich, Germany 

Non-fat dried milk AppliChem, Darmstadt, Germany 

Agarose Carl Roth. , Karlsruhe, Germany 

Tetracycline powder Sigma-Aldrich, Steinheim, Germany  

Kanamycin Sigma-Aldrich, Steinheim, Germany 

ECL western blotting detection reagents Amersham, Freiburg, Germany 

Kodak developer & fixer Sigma-Aldrich, Steinheim, Germany 

NucleoSpin® Extraction kit  Clontech, Heidelberg, Germany 

Advantage® 2 PCR kit Clontech, Heidelberg, Germany 

5`/3`RACE kit Roche, Mannheim, Germany 

High pure PCR product purification kit Roche, Mannheim, Germany 

TOPO TA cloning® kit  Invitrogen, Groningen,The Netherlands 

ZAP Express vector Stratagene, Amsterdam, The Netherlands 

Gigapack® III Gold packaging extract Stratagene, Amsterdam, The Netherlands 

Size-select-400 SPUN columns Amersham, Freiburg, Germany 

Escherichia Coli phage lysate Stratagene, Amsterdam ,The Netherlands 

ExAssist interference, resistant helper phage Stratagene, Amsterdam ,The Netherlands 

SDS-PAGE standards high molecular weight  Bio-Rad, Munich, Germany 
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SDS-PAGE pre-stained standards, broad 

range 

Bio-Rad, Munich, Germany 

SDS-PAGE pre-stained standard, broad 

range  

BioLab, Frankfurt, Germany 

Ready-load 1kb plus DNA ladder Invitrogen, Groningen,The Netherlands 

Reddy Mix PCR Master Mix ABgene, Hamburg, Germany 

AmpliTaq® DNA polymerase Roche, Mannheim, Germany 

Protran BA 85, nitrocellulose  membrane Schleicher& schuell,Dassel,Germany 

Protran, nitrocellulose transfer membrane Schleicher& schuell,Dassel,Germany 

Anti-Rabbit IgG peroxides conjugate  Sigma-Aldrich, Steinheim, Germany 

Hyperfilm ECL 18 x24 cm Amersham, Freiburg, Germany 

DEPC,Diethylpyrocarbonate  Carl Roth. , Karlsruhe, Germany 

RNAlater Ambion, Cambridgeshire, U K  

RnaseZAP™ Sigma-Aldrich, Steinheim, Germany 

Prime RNase inhibitor Eppendorf, Köln, Germany 

X-gal  Sigma-Aldrich, Steinheim, Germany 

IPTG  Sigma-Aldrich, Steinheim, Germany 

Rotisol, Ethanol Carl Roth. , Karlsruhe, Germany 

Methanol  AppliChem, Darmstadt, Germany 

Chloroform Carl Roth. , Karlsruhe, Germany 

DMF, dimethylformamide  Sigma-Aldrich, Steinheim, Germany 

2-Mercaptoethanol Bio-Rad, Munich, Germany 

Acetic acid, Glacial Sigma-Aldrich, Steinheim,Germany 

Formaldehyde solution 37%  Sigma-Aldrich, Steinheim, Germany 

Tween-20 Bio-Rad , Munich, Germany 

LaemmLi sample buffer Bio-Rad, Munich, Germany 

RNA sample loading buffer Sigma-Aldrich, Steinheim, Germany 



Construction of cDNA Library from the Triactinomyxon spores 
Materials and Methods 
 

                                                                                                                        

Page 25 

MOPS ,formaldehyde gel buffer  Eppendorf, Köln, Germany 

STE buffer  Stratagene, Amsterdam ,The Netherlands 

1.5 M Tris-HCl buffer (pH 8.8)  

1 M Tris-HCl buffer (pH 6.8)  

Tris buffer saline& SM buffer  

TEMED N,N,N',N'Tetramethylethylenediamine 

 
Bio-Rad, Munich, Germany 
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3.2 METHODS 

3.2.1   Experimental production of triactinomyxon spores 

3.2.1.1 Experimental infection of oligochaetes 

Myxobolus cerebralis myxospores were obtained from the skulls of clinically diseased 

rainbow trout. Bone fragments were excised, homogenised in an Ultra Turax mixer, then 

suspended in phosphate buffer saline (PBS) and passed through successive screens with 

mesh sizes of 1000, 500, 250 and 100µm. The final filtrate was centrifuged and the 

resulting pellets containing M. cerebralis spores were re-suspended in PBS and spores 

counted (El-Matbouli et al. 1995). 150g (about 10,000) infection-free T. tubifex from the 

institute’s SPF culture were kept in a 10L plastic aquarium, in a 5cm layer of sterilised 

sand covered with aerated, de-chlorinated tap water at 14-15°C, and fed Algamac-2000. 

The T. tubifex were exposed to approximately 4 million viable M. cerebralis, a dose of 

about 400 spores/worm (El-Matbouli et al. 1999b). The water from the culture was 

examined weekly for the presence of triactinomyxon spores. 

3.2.1.2. Collection of triactinomyxon spores 

Following detection of waterborne triactinomyxon spores approximately three months 

post-exposure, the water over the culture was processed as described by Soliman et al. 

(2003), briefly: water was siphoned off into a bucket, and then poured through a 20µm 

Nitex screen to concentrate the spores on the screen. Spores from one aquarium were 

suspended in 20-50ml, mixed, and 0.1ml of the suspension removed for enumeration. The 

total number of spores was estimated by multiplying the number obtained by 10, then by 

the total volume filtered. The remainder of the concentrated spore sample was put back in 

the refrigerator (4°C) and allowed to settle before being purified. After 2h, the clear 

supernatant was decanted into a fresh tube and the remainder of the sample (sediment) set 

aside. Spores were separated using a screen and Percoll gradient: the supernatant was first 

filtered through a 20µm Nitex screen; spores were then washed off the screen into a 

holding vial; in a 15ml centrifuge tube 10ml 20% Percoll (in distilled water) was layered 

carefully with the filtered triactinomyxon spores (about 2ml, Percoll-to-sample ratio about 

5:1). This procedure was repeated with the sediment using an additional 10ml 20% Percoll. 

Both tubes were then centrifuged for 10min at 1250 rpm. At the end of run the spores were 

evident as a white band when the tubes were viewed in bright light against a dark 

background. The bands were carefully pipetted into separate clean tubes, filtered again, 

then washed 3-4 times to get rid of any Percoll residue. The purified triactinomyxon spores 
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were then concentrated and re-suspended in a small volume of distilled water and kept at -

20°C until required or kept in RNAlater (for RNA preservation) for isolation of RNA. 

3.2.1.3 Selection of highly triactinomyxon spores producer Tubifex tubifex 

When the infected T. tubifex reached their period of peak release of triactinomyxon spores 

between 140-160 days, individual worms were separated into multi-well plates with de-

chlorinated water (tap water leaved for 2hrs until complete evaporation of chlorin) and 

maintained for approximately one week at 14-15°C. This was both to determine which 

worms were releasing spores, and which were most productive. Worms that release high 

numbers of spores were selected and preserved in RNAlater for using in RNA extraction. 

3.2.2 Sodium Dodecyl Sulphate Polyacrylamide gel electrophoresis (SDS-PAGE) and 

western blotting of triactinomyxon spores 

Sodium Dodecyl Sulphate Polyacrylamide gel electrophoresis and western blotting 

analysis of the triactinomyxon spores was conducted as per the method of Soliman et al. 

(2003), described below. 

3.2.2.1 SDS-PAGE 

3.2.2.1.1 Protein samples 

Approximately one million purified triactinomyxon spores were sonicated in a water bath 

sonicator (Transsonic 310, Elma, West Germany) for 5 rounds of: 2 min sonication 

followed by 1 min incubation on ice. An equal volume of 2x SDS sample buffer (100mM 

Tris-HCl, pH 6.8, 200mM 2-Mercaptoethanol, 4% SDS, 0.2 % bromophenol blue, 20% 

glycerol) was then added to the sonicated sample and boiled at 95°C for 5 min. The sample 

was then centrifuged for 2.5 min at 14,000xg and kept in ice until used. The supernatant, 

which contained the soluble proteins of triactinomyxon spores, was loaded on the prepared 

gel. Infection-free T. tubifex from our institute’s SPF culture were homogenised in sterile 

water and centrifuged at 20,000xg for 5 min. The supernatant was diluted in SDS-sample 

buffer 1:2, and then treated as for the triactinomyxon sample (Roberts et al. 2003).  

3.2.2.1.2 Gel Electrophoresis 

The gel apparatus was set up according to the manufacture’s instructions. 12 % resolving 

gel monomers were prepared (8ml 30% acrylamide / Bis. solution 29:1, 5ml Tris-HCl, pH 

8.8, 0.2ml 10 % SDS, 3.3ml distilled water, 0.130ml 15% ammonium persulfate, 0.026ml 

TEMED), the gel was gently swirled, and poured into the gap between the two sandwiched 

glass plates, overlaid with distilled water and allowed to polymerise for 10 min. After 

polymerisation was complete, the distilled water was decanted off and the 5% stacking gel 

monomer was prepared (1ml 30% acrylamide / Bis. solution 29:1, 1.66ml Tris-HCl , pH 
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6.8, 0.033ml  10% SDS, 3.63ml distilled water, 0.33ml 15% ammonium persulfate, 

0.018ml TEMED), poured over the resolving gel, and the comb immediately inserted 

between the plates. The stacking gel was allowed to polymerise for 10 min before running. 

All gels were run using a BioRad Mini Protean II cell (BioRad Laboratories GmbH, 

Munich, Germany) at 130V constant voltage, in 1x running buffer (25mM Tris, 250mM 

glycine pH 8.3, 0.1 % SDS). When electrophoresis was completed, one gel was subjected 

to staining and a replicate gel was used for western blotting. 

3.2.2.1.3 Protein staining 

Proteins on the gel were visualised by staining with coomassie brilliant blue R250, and 

with a silver staining kit according to the manufacture’s instructions.   

3.2.2.2 Western blotting 

Freshly electrophoresed SDS-Polyacrylamide gel was dipped into transfer buffer (39mM 

glycine, 48mM Tris base, 0.037% SDS, 20% methanol, pH 8.3), then laid flat on pre-

wetted nitrocellulose membrane supported on three layers of transfer buffer-wetted filter 

paper and one layer of wetted porous pad resting on the anode side of the blotting cell. The 

gel was overlaid with three wetted filter papers, a wetted porous pad, and then the cathode. 

Care had to be taken to exclude bubbles between the gel and nitrocellulose membrane, and 

between the nitrocellulose membrane and filter papers. 

The samples were transferred to the nitrocellulose membrane using a BioRad Mini-Trans 

Blot Cell apparatus for 1h at a constant current of 250mA (100V). Then the assembly was 

dismantled and the nitrocellulose membranes soaked in blocking buffer (5% non-fat dried 

milk, 150mM NaCl, 10mM Tris-HCl, pH 8.0, 0.05% Tween 20) for 2h at room 

temperature with gentle agitation; this occupied all non-specific protein binding sites on 

the membrane. Membranes were then incubated with the primary antibodies - polyclonal 

rabbit anti-triactinomyxon antiserum - at various dilutions in the blocking buffer, and also 

with rabbit control antiserum, for 2h with agitation at room temperature. The membranes 

were washed three times each for 15 min with (TBST) Tris Buffer Saline + Tween 20, 

(150mM NaCl , 10mM Tris-HCl, pH 8.0, 0.05% Tween 20), to remove all of the 

unbounded antibodies, then incubated with the secondary antibodies - horseradish 

peroxidase-conjugated anti-rabbit IgGs - diluted in blocking buffer with different 

concentrations, for 2h at room temperature with agitation. The membranes were again 

washed 3 times each for 15 min with TBST. Bound antibodies were visualised using 

ECL™ chemiluminescent detection as follows: excess wash buffer was removed by 

holding the membrane vertically with forceps, and then placed in the middle of clean sheet 
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of polyethylene kitchen wrap. Equal volumes of detection reagent 1 and detection reagent 

2 were mixed and applied to the membrane to cover it. After one minute incubation, excess 

detection buffer was drained off and the membrane then exposed to Hyperfilm-ECL 

autoradiography film, in the film cassette from 30s to 1 min. The exposed film was then 

developed with developing solution, washed with distilled water, and fixed. 

3.2.3 RNA extraction 
3.2.3.1 General precautions for handling RNA 

Care was taken to avoid contamination with RNase enzymes which cause destruction of 

RNA. All glassware was baked overnight in a 180°C oven. Plastic ware was incubated 

with 0.1% DEPC overnight and then autoclaved for 30min. General lab equipments, 

pipettors and working surfaces were cleaned with RnaseZAP™ which is effective in 

eliminating RNase contamination. Gloves were frequently changed.  

The samples of infected oligochaetes were preserved directly after collection in an 

appropriate volume of RNAlater, a RNA stabilising agent. 

3.2.3.2 Extraction of Total RNA 

Total RNA, from oligochaetes producing the highest numbers of triactinomyxons, was 

isolated following the RNeasy Mini kit protocol for isolation of total RNA from animal 

tissues. Thirty milligram RNAlater-stabilised samples were placed in liquid nitrogen, and 

thoroughly ground with a mortar and pestle. The tissue powder and liquid nitrogen was 

decanted into a liquid-nitrogen-cooled 2ml tube, and the nitrogen allowed to evaporate. 

Samples were then resuspended in an appropriate volume of guanidine isothiocyanate 

buffer, and homogenised by passing the lysate 5 times through a 20-gauge needle. 70% 

ethanol was then added to the lysate to create conditions that promote selective binding of 

RNA to the RNeasy silica-gel membrane. The sample was then applied to the RNeasy 

mini–column, the RNA allowed to bind before being rinsed and then eluted in RNase-free 

water. The concentration of RNA was determined by measuring the absorbance at 260nm 

(A260), while the purity of the RNA was determined by measuring the absorbance at 260nm 

and 280 nm (A260/A280) in a spectrophotometer.  

3.2.3.3 Isolation of messenger RNA (mRNA) from total RNA 

After extraction of RNA from the oligochaetes, mRNA was isolated from the total RNA 

using Oligotex mRNA spin-column protocol as follows: the volume of total RNA was 

adjusted to 250µl with RNase-free water, and an equal amount of OBB buffer (20mM Tris-

HCl, pH 7.5, 1M NaCl, 2mM EDTA, 0.2% SDS) added with 15µl of Oligotex suspension 

(10% Oligotex particles, dC10T30  oligonucleotides covalently linked to the surface of 
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polystyrene-latex particles via a condensation reaction, 10mM Tris-HCl pH 7.5, 500mM 

NaCl, 1mM EDTA, 0.1 % SDS, 0.1% NaN3). The sample was incubated at 70°C for 3 min 

and then at room temperature for 10 min. After centrifugation the pellet was re-suspended 

in buffer OW2 (10mM Tris-HCl, pH 7.5, 150mM NaCl, 1mM EDTA), applied to the spin 

column, washed once again with the buffer OW2    before mRNA was eluted with hot 

(70°C) buffer OEB (5mM Tris-HCl, pH 7.5). The concentration of the mRNA was 

measured with spectrophotometer. Prime RNase inhibitor was added to the mRNA to 

protect it from RNase contamination. 

3.2.3.4 Formaldehyde agarose RNA gel electrophoresis 

Agarose gel (1.5%) was melted in a solution made with 10ml 10x MOPS buffer (200mM 

3-[N –morpholino] propane-sulfonic acid, 50mM sodium acetate, 10mM EDTA, pH 6.5-7) 

and 85ml sterile water (121°C). The solution was cooled to 50°C and 4.5ml 37% 

formaldehyde solution added, before the gel was well mixed and poured into the gel 

support. Samples of RNA were dried in vacuum evaporator, re-suspended in 10µl 

formaldehyde gel loading buffer, heated at 65°C for 5-10 min, chilled on ice and then 

loaded. The gel was run in 1x MOPS running buffer at 5V/cm. 

3.2.4 Construction of the cDNA library 

The cDNA library was constructed with the ZAP Express™ cDNA synthesis kit with some 

modification, as noted below. 

3.2.4.1 First-strand cDNA synthesis 

Poly A+ (5µg) was primed in the first strand cDNA synthesis with the oligo (dT) linker-

primer that contains an Xho I restriction site, then transcribed using StrataScript™ reverse 

transcriptase and 5-methyl dCTP. A reaction mixture comprised the following reagents, 

added sequentially to an RNase-free microcentrifuge tube: 

5µl 10x first-strand buffer 

3µl first-strand methyl nucleotide mixture 

2µl linker-primer (1.4µg/µl) 

7.5µl DEPC-treated water 

1µl RNase Block Ribonuclease Inhibitor (40U/µl) 

30µl poly (A) RNA (5.37µg) 
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The reaction was mixed and left 10 min at room temperature, to allow the primer to              

anneal to the template, and then 1.5µl of Strata Script RT (50U/µl) was added to the 

reaction mixture which was then incubated at 42°C for 1h. 

3.2.4.2 Second-strand cDNA synthesis 

After 1h, the first-strand synthesis reaction was placed on ice, and the following reagents 

were added: 

20µl 10x second-strand buffer 

6µl second-strand dNTP mixture 

116µl sterile distilled water 

2µl RNase H (1.5U/µl) 

11µl DNA polymerase I (9U/µl) 

The mixture was gently mixed and incubated at 16°C for 2.5h. 

3.2.4.3 Blunting the cDNA Termini 

The second-strand synthesis reaction was placed immediately on ice after 2.5h, and then 

the following reagents added: 

23µl blunting dNTP mix 

2µl cloned Pfu DNA polymerase (2.5U/µl) 

The reaction was mixed and incubated at 72°C for 30 min. After incubation, the reaction 

was purified to remove primers, nucleotides, polymerases, and salts, and concentrated 

using MinElute™ gel extraction kit protocol as per the manufacture’s instructions. The 

DNA, after elution in 10µl distilled water, was lyophilised, using a speed vac, and 

resuspended in 9µl EcoR I adapters and incubated at 4°C for 30 min, to allow the cDNA to 

resuspend.  

3.2.4.4 Ligating the EcoR I adapters 

The following components were added to the blunted cDNA and the EcoR I adapters:  

1µl 10x ligase buffer 

1µl 10 mM rATP 

1µl T4 DNA ligase (4U/µl) 

The reaction was mixed and incubated overnight at 8°C. In the morning, the ligase was 

heat-inactivated at 70°C for 30 min. 
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3.2.4.5 Phosphorylating the EcoR I ends 

After the ligase was inactivated, the reaction was cooled to room temperature for 5 min, 

and the adapter ends was phosphorylated by adding the following components: 

1µl 10x ligase buffer 

2µl 10mM rATP 

6 µl sterile water 

1 µl T4 polynucleotide kinase (10U/µL) 

The reaction was incubated for 30 min at 37 °C. 

3.2.4.6 Digesting with Xho I 

The kinase was heat inactivated at 70°C for 30 min, and then left for 5 min to equilibrate to 

room temperature. The following reagents were then added: 

28µl Xho I buffer supplement 

3µl Xho I (40U/µl)  

The reaction was incubated for 1.5h at 37 °C. 

After 1.5h the reaction was purified to remove primers, nucleotides, polymerases, and 

salts, and concentrated using the MinElute™ gel extraction kit protocol as per the 

manufacture’s instructions. The cDNA, after elution in 10µl distilled water, was 

lyophilised using a speed vac, and resuspended in 50µl 1x STE buffer (150mM NaCl, 

10mM Tris-HCl, pH 7.4, 1mM EDTA). 

3.2.4.7 Size fractionation 

To remove residual oligonucleotides, restriction enzymes, and cDNAs  < 400bp, which 

might compete or interfere with the insertion or ligation of the cDNA to the vector, the 

SizeSep™ 400 Spin Column, Sepharose CL-4B was used to selected the cDNA >400bp. 

The column was equilibrated with 1x STE buffer, and then centrifuged at 400xg for 2 min. 

The sample was applied slowly to the centre of the top of the column. cDNA was collected 

in a 1.5ml microcentrifuge tube after additional centrifugation at 400xg for 2 min. The 

product cDNA was concentrated using MinElute™ gel extraction kit protocol as per the 

manufacture’s instructions, lyophilised, and then resuspended in 5µl of sterile water. 

3.2.4.8 Ligating cDNA into the ZAP Express Vector 

The following components were added to 5µl of resuspended cDNA: 

0.6µl 10x ligase buffer 

0.5µl 10mM rATP (pH 7.5) 
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1.0µl ZAP Express vector (1µg/µl) 

0.5µl T4 DNA ligase (4U/µl) 

The reaction was incubated for two days at 4°C. 

3.2.4.9 Packaging of the ligated cDNA 

After ligation into the ZAP Express vector, the resulting DNA was packaged in vitro using 

Gigapack III gold packaging extract. A tube of packaging extract (stored at -80°C) was 

quickly thawed in the hand, then the ligated DNA was added and the mixture incubated at 

room temperature for 2h. After 2h, 500µl SM buffer (NaCl, Tris-HCl, pH 7.5, MgSO4 

Gelatine) and 20µl chloroform were added and mixed gently, then the tube was centrifuged 

briefly to remove sediment. The supernatant containing the phage was kept at 4°C until 

titred. 

3.2.4.10 Titration of the primary cDNA library 

It is important to determine the phage titre of the library being screened in order to plate 

the correct number of plaque forming units per plate. A culture of XL1-Blue MRF` host 

strain, in LB medium, supplemented with 10mM MgSO4 and 0.2% maltose, was grown to 

an OD600 of 1.0, then the bacteria was pelletised by centrifuging at 1000xg for 10 min. The 

cells were gently resuspended to half the original volume with sterile 10mM MgSO4, and 

then diluted to a final OD600 of 0.5. LB top agar was melted and cooled to 55°C in water 

bath. 1µl of lambda phage packaging material was added to 300µl of the diluted host cells. 

Also, 1µl of 1:10 dilution of packaging material in SM buffer was added to 300µl of host 

cells. The phage and bacteria were incubated 15 min at 37°C to allow the phage to attach to 

cells. The following were then added: 

4ml LB top agar 

15µl 0.5M IPTG (in water) 

50µl X-gal (250mg/ml in DMF) 

The solution was mixed, and poured immediately onto LB agar plates, pre-warmed to 37 

°C, and distributed evenly across the surface of the plate, before being left to solidify at 

room temperature. The plates were then inverted and incubated at 37°C overnight to 

develop the plaque colour: background plaques are blue, while recombinant plaques are 

white. After incubation, the plaques were counted and the ratio of blue to white calculated 

to determine the library titre. 
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3.2.5 Antibody screening of the cDNA library using ECL™ chemiluminescent 
detection 

3.2.5.1 Absorption of the primary antibody with Escherichia coli phage lysate 

Polyclonal primary antibody was treated with the E.coli phage lysate to eliminate any 

background or false positive results (polyclonal antibodies often contain antibodies that 

react with E.coli and phage proteins). 

The E.coli phage lysate was diluted 1:10(v/v) in TBST. Four nitrocellulose membranes 

were immersed into the diluted lysate and incubated for 30 min at room temperature with 

occasional agitation. The membranes were then removed, air dried on Whatman 3MM 

paper, then washed five times for 5 min each with 50ml of TBST and excess moisture 

absorbed with Whatman 3MM paper. The nitrocellulose membranes were then immersed 

in 50ml blocking buffer (5% non-fat dried milk, 150mM NaCl, 10mM Tris-HCl, pH 8.0, 

0.05% Tween 20) for 30 min at room temperature with shaking, then rinsed three times 

with 50ml TBST. The primary antibodies were diluted 1:5 in TBST and each nitrocellulose 

membrane was incubated with antibody solution at 37°C for 10 min. After removal of the 

last membrane, the primary antibodies were collected and used for library screening.  

3.2.5.2 Preparation of 10mM IPTG-soaked nitrocellulose membranes 

82mm circular nitrocellulose filters were wetted by laying them on the surface of 10mM 

IPTG in a Petri dish. Once wet, the filter was submerged and then the next filter added, and 

so on until all filters were in the solution. The filters were allowed to soak 30s to several 

min, before removing and blotting on Whatman paper to remove excess liquid, then being 

left to dry at room temperature. The filters were labelled with a pencil and stored until use. 

3.2.5.3 Preparation of host bacteria 

XL1-Blue MRF’ glycerol stock was streaked onto LB-tetracycline agar plates and 

incubated at 37°C overnight. In the morning, a 50ml LB broth, supplemented with 10mM 

MgSO4 and 0.2% (w/v) maltose, was inoculated with a single colony and grown at either 

37°C with shaking for 4-6h (OD600 =1.0), or overnight at 30°C with shaking at 200 rpm. 

Cells were collected by centrifuging at 500xg for 10 min, and the supernatant discarded. 

The cells then were gently resuspended in half the original volume with sterile 10mM 

MgSO4, and aliquots diluted to an OD600 of 0.5 with sterile 10mM MgSO4.           

3.2.5.4 Plating out the library for screening 

In a sterile, 15ml tube, 300µl of OD600 =0.5 diluted plating cells was mixed with 1000pfu 

phage and incubated at 37°C for 15 min to allow the bacteria to adsorb phage. 4ml LB top 

agar which had been melted and cooled to 55°C, was added to the phage/bacteria mixture, 

then poured immediately onto a pre-warmed (37°C) 100mm LB plate and rocked until the 
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surface of the plate was covered. The plates were kept 10 min at room temperature to 

harden and then placed inverted in a 42°C incubator. After about 3.5h plaques would begin 

to form, and the plates were overlaid with the IPTG-soaked nitrocellulose membranes and 

incubated at 37°C overnight. After incubation, the orientation of the nitrocellulose 

membrane in relation to the plate was marked by piercing the membrane in several places 

with an 18-gauge needle, then the membrane was removed carefully with forceps and 

washed three times, 10 min each, with TBST (150mM NaCl, 10mM Tris-HCl, pH 8.0, 

0.05% Tween 20) with the protein side up, to remove any remaining top agar or excess 

bacteria. Membranes then immersed in blocking buffer (5% non-fat dried milk, 150mM 

NaCl, 10mM Tris-HCl, pH 8.0, 0.05% Tween 20), with gently agitation, for 2h at 4°C. The 

plates were kept in a refrigerator until ready to core the plaques. 

3.2.5.5 Immunoscreening using ECL reagent 

After blocking any remaining protein binding sites on the nitrocellulose membranes by 

immersion in blocking solution, the membranes were incubated with the primary 

antibodies (anti-triactinomyxon antibody diluted 1:1000 in blocking solution) for 2-24h at 

4°C on a horizontal shaker platform. The membranes were then washed three times with 

TBST, 10 min each wash, to remove any residual unbounded primary antibodies, and then 

incubated with the secondary antibody (anti-rabbit antibodies conjugated with alkaline 

phosphates, diluted in blocking buffer as per the manufacture’s instructions) for 5h at 4°C 

on a horizontal shaker platform. The membranes were then washed with TBST again three 

times, 10 min each, to remove any residual unbounded conjugate. 

Individual membranes were then removed with forceps, held vertically with one corner 

touching a small pile of Kimwipies to remove excess wash buffer, before being laid 

protein-side-up in the middle of a sheet of polyethylene kitchen wrap. Two millilitres of 

each of ECL detection solutions 1 and 2, were mixed and applied to the corners and the 

middle to cover the entire membrane, which was incubated for 1 min at room temperature. 

The membrane was again then picked up with forceps, excess detection solution drained by 

again holding a fresh Kimwipe to the lower edge, then placed protein-side-down onto a 

sheet protector and the upper sheet lowered rapidly. Excess fluid around the edges was 

wiped off and the air pockets were smoothed gently to let the entire sheet dry. The 

wrapped membrane was taken into a darkroom, placed in a film cassette, protein side up, 

and a sheet of autoradiography film (Hyperfilm-ECL) placed on top of the blots and 

exposed for 1-5 min. The exposed film was then processed according to the manufacture’s 
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instructions. Comparison of the developed transparency with the original plate revealed the 

locations of positive plaques. 

3.2.5.6 Purification of plaque clones of interest and PCR confirmatory test 

Plaques identified as positive by antibody screening were removed from the gel as a plug, 

using a cut-off end of a 1000µl pipette tip. The plug was then placed into 500µl SM buffer 

(NaCl, Tris-HCl, pH 7.5, MgSO4 Gelatine) with 20µl of chloroform. Phage was allowed to 

diffuse into SM buffer overnight and then the supernatant transferred to a new tube. The 

titre of the phage was determined, and secondary and tertiary screenings carried out as 

previously described. In order to minimise inclusion of inserts in the cDNA library and to 

avoid the false positive screening results, individual plaques were selected randomly after 

tertiary screening and purification and used as a template for PCR. The PCR amplified 

cDNA insert fragments using the T3 and T7 primers, which flank the multiple cloning site 

of the vector containing the insert, according to modified protocol of Kim & Jue (1990). 

Each PCR was performed in a 50µl final volume containing 20µM of each primer, 47µl of 

ReddyMix PCR Master Mix (75mM Tris-HCl, pH 8.8, 1, 25U Taq Polymerase, 20mM 

(NH4)2SO4, 1.5mM MgCl2, 0.01 % Tween 20, 0.2mM each dNTPs) and seeded with 1µl of 

phage. PCR parameters were as follows: an initial denaturation at 95 °C for 3 min, 

followed by 35 cycles of 30s at 95°C, 45s at 48°C and 30s at 72°C. Final extension was 

carried out at 72°C for 10 min. Amplifications were performed in an Eppendorf, 

Mastercycler Gradient Thermal cycler (Eppendorf, Netheler-Hinz GmbH, Hamburg, 

Germany). Amplified products were visualised on 1% agarose gels compared against DNA 

molecular weight standard. 

3.2.6 In vivo excision of the pBK-CMV phagemid vector containing insert from the 

ZAP Express vector 

After cDNA clones of interest were identified in the intact Lambda ZAP Express vector by 

antibodies, a representative clone was selected at random (45-5) to test the specificity of 

the library to triactinomyxon spores. This was subjected to a process of in vivo biological 

excision of the insert and sub-cloning into a plasmid vector using the single-clone excision 

protocol as per the Stratagene instruction manual. A timeline of the procedure follows: 

3.2.6.1 Day 1 

1. The plaque of interest was cored from agar plate and transferred to a sterile 

microcentrifuge tube containing 500µl SM buffer and 20µl chloroform, 

vortexed, and incubated at 4°C overnight to release the phage particle into SM 

buffer. 
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2. A culture of XL1-Blue MRF` cells supplemented with 0.2% maltose and 10mM 

MgSO4 was grown overnight at 30°C. 

 

3.2.6.2 Day 2 

3. The XL1-Blue MRF` cells were spun down (1000xg) and resuspended at OD600 

of 1.0 in 10mM MgSO4.  

4. In a 50 ml Falcon tube the following were combined:  

a. 200µl of XL1-Blue MRF`cells at an OD600 of 1.0 

b. 250µl of phage stock (containing >1x105 phage particles) 

c. 1µl of ExAssist helper phage (>1 x 106pfu/µl     

5. The Falcon tube was incubated at 37°C for 15 min. 

6. 3ml of NZY broth was added to the Falcon tube and incubated at 37°C with 

shaking, overnight. 

7. XLOLR culture in NZY broth, with out supplement, was grown overnight at 

30°C with shaking. 

3.2.6.3 Day 3 

8. The XLOLR cells were spun down (1000xg) and resuspended at OD600 of 1.0 in 

10mM MgSO4. 

9. The Falcon tube was heated at 65-70°C for 20 min, and then spun at 1000xg for 

15 min. 

10. The supernatant, containing the excised pBK-CMV phagemid vector packaged 

as filamentous phage particles, was decanted into a sterile Falcon tube. 

11. 200µl of freshly grown, diluted to OD600 of 1.0, XLOLR cells were added to two 

Falcon tubes - one tube then received 100µl of the phage supernatant from step 

10, the other tube received 10µl. 

12. Both tubes were incubated at 37°C for 15 min. 

13. 300µl of NZY broth was added to each tube and incubated at 37°C for 45 min. 

14. 1µl and 200µl of the cell mixture from each tube was plated on LB- kanamycin 

agar plates (50mg/µl) and incubated at 37°C overnight. 
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3.2.7 Isolation of plasmid DNA and estimation of the cDNA insert size 

The pBK-CMV plasmids were excised in vitro as mentioned before, and colonies 

appearing on the plate contained the pBK-CMV double-stranded phagemid vector with 

cloned DNA insert. A QIAprep Spin Miniprep kit was used to prepare the selected 

recombinant plasmid. One colony was cultured overnight in LB medium containing 

50µg/ml kanamycin and incubated at 37°C with shaking. The cells were pelletised by 

centrifuging at 5000xg for 10 min, then resuspended in 250µl resuspension buffer P1. After 

complete resuspension, 250µl of lysis buffer P2, was added to the resuspended cells and 

the tube well mixed by inverting 4-6 times; the solution became viscous and slightly clear. 

350µl of neutralisation buffer N3 was added and the tube again inverted 4-6 times; the 

solution became cloudy. The tube was centrifuged at 18,000xg for 10 min. The supernatant 

was transferred to the QIAprep Spin column and centrifuged at 18,000xg for 1 min. The 

spin column was washed twice with buffer PB: first wash 500µl, second wash 750µl, with 

centrifugation at 18,000xg for 1 min for both washes. The column was centrifuged for an 

additional minute to remove residual wash buffer. The plasmid DNA was then eluted with 

50µl elution buffer EB (after standing 1 min) by centrifugation at 18,000xg for 1 min. 

The size of the insert was checked by PCR amplification of the cDNA fragments using the 

T3 and T7 primers which flanking the cloning site of the vector. 20µM from each primer 

was added to 47.5µl of ReddyMix PCR Master Mix (75mM Tris-HCl, pH 8.8, 1.25U Taq 

Polymerase, 20mM (NH4)2SO4, 1.5mM MgCl2, 0.01 % Tween 20, 0.2mM each dNTPs) 

and 0.5µl of the plasmid DNA was added to the mixture. PCR parameters were as follows: 

an initial denaturation at 95 °C for 3 min, followed by 35 cycles of 30s at 95°C, 45s at 

48°C and 30s at 72°C. Final extension was carried out at 72°C for 10 min. Amplifications 

were performed in an Eppendorf, Mastercycler Gradient Thermal cycler (Eppendorf, 

Netheler-Hinz GmbH, Hamburg, Germany). Amplified products were visualised on 1% 

agarose gels compared against DNA molecular weight standard. 

3.2.8 DNA sequencing and sequence analysis: 

After isolation of the recombinant plasmid DNA and estimation of the cDNA fragment 

size, the purified plasmid DNA was sequenced (sequencing laboratories Göttingen GmbH, 

Germany). A National Centre for Biotechnology Information (NCBI) non-redundant 

nucleotide BLASTn search was carried out to find any similarities to the edited sequences 

(Altschul et al. 1990).  
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3.2.9 Primer construction from the selected sequence  

After sequencing and alignment of the clone; primers 46-5 for and 46-5 rev were designed 

using “Oligo” software to ensure that their sequence belonged to M. cerebralis and not to 

the worm. Three other primers, GSP1, GSP2 (both 5` end) and GSP5 (3` end) were 

designed using the same software, for use with RACE amplification of the ends of the 

cDNA, to obtain the sequence of the entire clone.  

3.2.10 Triactinomyxon spores and Tubifex tubifex cDNA synthesis 

Total RNA from RNAlater-preserved triactinomyxon spores and non-infected oligochaetes 

worm was extracted using an RNeasy kit as previously described. cDNA from worms and 

spores was synthesised using a Super SMART™ cDNA synthesis kit. 

3.2.10.1 First strand cDNA synthesis 

The following reagents were combined in a sterile 0.5ml reaction tube: 1µg total RNA, 7µl 

3`SMART CDS primer II A (12µM), 7µl SMART II A oligonucleotides (12µM) and 

deionised water to 64µl total volume. The mixture was mixed, spun briefly, then incubated 

at 65°C for 2 min. Additional reagents were then added: 20µl 5x First-strand buffer, 2µl     

DTT, 10µl  50x dNTP (10mM), 5µl RNase inhibitor (20U/µl) and 5µl PowerScript reverse 

transcriptase. The tube was then incubated at 42°C for 90 min, before 2µl of 0.5M EDTA 

was added to stop the reaction. 

3.2.10.2 Column chromatography 

Column chromatography was used to remove unincorporated nucleotides and small (<0.1 

Kb) cDNA fragments from the SMART cDNA. Three volumes of binding buffer NT2 

were added to each cDNA synthesis reaction. Solutions were well mixed by pipetting, then 

transferred into the NucleoSpin extraction spin column and centrifuged at 14,000 rpm for 1 

min. 500µl of washing buffer NT3 was then added to the spin column and centrifuged at 

14,000 rpm for 1 min; this washing step was repeated twice. To elute the purified SMART 

cDNA; 50µl deionised water was added to the spin column, allowed to stand for 2 min 

with the cap open, then eluted by centrifuging at 14,000 rpm for 1 min; the elution was 

repeated using the same collection tube and an additional 35µl deionised water .The final 

elution volume was 80µl. 

3.2.10.3 Amplification of cDNA by LD (long-distance) PCR 

 For optimisation of the PCR reaction, 2.5µl of the single stranded cDNA (sscDNA) was 

added to 77.5µl deionised water (end volume 80µl). A master mix was prepared, 

comprising: 4µl deionised water, 10µl 10x Advantage 2 PCR buffer, 2µl 50x dNTP 

(10mM), 2µl 5`PCR primer II A (12 µM) and 2µl 50x Advantage 2 polymerase Mix. 
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20µl of master mix was added to the 80µl sscDNA, and the tube placed in a pre-heated 

thermacycler (95°C) then subjected to the following program: 95°C for 1 min, then 15 

cycles of 95°C for 15s, 65°C for 30s, and 68°C for 6 min. After the 15 cycles, 70µl was 

removed and kept at 4°C, and 5µl from the remaining 30µl was removed for analysis. The 

remaining 25 µl, was then subjected to five subsequent rounds of three cycles, with 5µl 

samples removed after each round. The total number of cycles was 30 cycles. 

To determine the optimal number of cycles, all of the 5µl aliquots were run on an ethidium 

bromide-stinaed1.2 % agarose gel. 

The initial 70µl (15-cycles) PCR product was then returned to the thermocycler and 

subjected to additional cycles required to reach optimal amplification. 

3.2.10.4 Spin column purification of the PCR products 

300µl of binding buffer NT2 was added to the 70µl PCR reaction and mixed by pipetting. 

The sample was then transferred into the NucleoSpin column and centrifuged for 1 min at 

14,000 rpm. 500µl of wash buffer NT3 was added to the column and centrifuged at 14,000 

rpm for 1 min; this wash step was repeated twice. The column was the spun at 14,000 rpm 

for 1 min to remove final traces of ethanol. 50µl of elution buffer NE was added directly 

onto the column and allowed to sit for 2 min before being centrifuged at 14,000 rpm for 1 

min. The yield of each PCR reaction was determined by a biophotometer. 

3.2.11 A verification PCR test for the cDNA sequence 

To verify that the selected clone (46-5) belonged to the triactinomyxon spores, cDNA from 

both triactinomyxon spores and worms was amplified to detect the 511bp band generated 

by the 46-5for and 46-5rev primers.. The PCR mixture consisted of: 40pmol each primer, 

44.5µl ReddyMix PCR Master Mix (75mM Tris-HCl, pH 8.8, 1.25U Taq Polymerase, 

20mM (NH4)2SO4, 1.5mM MgCl2, 0.01 % Tween 20, 0.2mM each dNTPs) plus 3.5µl 

sample cDNA (250ng). The PCR used the following reaction profile: 35 cycles of 94°C for 

1 min, 59°C for 1 min and 72°C for 2 min. These cycles were preceded by a denaturation 

step of 95°C for 3 min and concluded with an elongation step of 72°C for 10 min. The 

PCR product was visualised on a 1.5 % agarose gel stained with ethidium bromide. 

3.2.12   5 ànd 3 R̀ACE amplification 

After confirmation that the selected clone (46-5) belonged to the triactinomyxon, its 5` and 

3` ends were amplified using 5`/3`RACE kit as described below. 
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3.2.12.1   5 R̀ACE amplification 

3.2.12.1.1 First –strand cDNA synthesis 

Synthesis of the first-strand cDNA was performed using the gene specific primer, GSP1, 

and a reverse transcriptase enzyme. The reaction performed in 20ml total volume, 

comprising: 12.5µM GSP1 primer, 4µl 5x cDNA synthesis buffer (250mM Tris-HCl, 

40mM MgCl2, 150mM KCl, 5mM dithiothreitol, pH 8.3), 2µl deoxynucleotide mixture 

(dATP, dCTP, dGTP, dTTP 10mM each in Tris-HCl, pH 7.5), 2µg total RNA, 20U AMV 

reverse transcriptase and PCR grade water to 20µl. The reagents were well mixed and 

incubated at 55C° for 60 min, followed by 10 min at 65°C to inactivate the enzyme.   

3.2.12.1.2 Purification of cDNA 

The PCR product was purified using the High Pure PCR Product Purification kit, as 

follows: 100µl binding buffer was added to the 20µl first–strand cDNA reaction and mixed 

well. The sample was transferred to the high pure filter column and centrifuged for 30s at 

13,000xg. 500µl wash buffer was added to the column and centrifuged for 30s at 13,000xg. 

Another 200µl wash buffer was added and centrifuged at 13,000xg for 30s. 50µl elution 

buffer was then applied and the column centrifuged at 13,000xg for 30s. The eluted 

product was stored on ice. 

3.2.12.1.3 Tailing reaction 

A known sequence was added to the 3`end of the first-strand cDNA using terminal 

transferase and ATP. 19µl of purified cDNA sample was mixed with 2.5µl 10x reaction 

buffer and 2.5µl dATP (2mM dATP in Tris-HCl, pH 7.5) and incubated at 94°C for 3 min, 

then chilled on ice. 10U terminal transferase was added to the mixture, and incubated at 

37°C for 30 min. after the reaction was heat inactivated at 70°C for 10 min then kept on 

ice. 

3.2.12.1.4 PCR amplification of the dA-tailed cDNA 

The tailed cDNA was amplified by PCR using the GSP2 and dT-anchor primers in a 50µl 

reaction volume comprising: 7µl dA-tailed cDNA, 37.5µM oligo dT-anchor primer, 

12.5µM GSP2 primer, 1µl deoxynucleotide mixture, 2.5U AmpliTaq® DNA polymerase, 

5µl 10x reaction buffer and PCR grade water to 50µl. The PCR used the following cycle 

conditions: 94C° for 2 min, 35 cycles of 94C° for 15s, 63°C for 30s and 72C° for 1 min, 

with final elongation of 72°C for 7 min. 20µl of the PCR product was analysed on an 1% 

ethidium bromide-stained agarose gel with a corresponding DNA molecular weight ladder. 
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3.2.12.2   3 R̀ACE amplification 

3.2.12.2.1 First-strand cDNA synthesis 

Synthesis of the first-strand cDNA was performed by using the oligo dT-anchor primer and 

reverse transcriptase enzyme. The reaction was performed in 20µl total volume 

comprising: 37.5µM oligo dT-anchor primer, 4µl 5x cDNA synthesis buffer (250mM Tris-

HCl, 40mM MgCl2, 150mM KCl, 5mM dithiothreitol, pH 8.3), 2µl deoxynucleotide 

mixture (dATP, dCTP, dGTP, dTTP, 10mM each in Tris-HCl, pH 7.5), 2µg total RNA, 

20U AMV reverse transcriptase and PCR grade water to 20µl. The reagents were well 

mixed and incubated at 55°C for 60 min, followed by 10 min at 65°C to inactivate the 

enzyme. 

3.2.12.2.2 PCR amplification of the cDNA 

Amplification of the cDNA was conducted using the gene specific primer, GSP5, and PCR 

anchor primers. The PCR was performed in 50µl comprising:  1 µl cDNA product, 12.5µM  

each of PCR anchor primer and GSP5 primer, 1µl deoxynucleotide mixture (10mM each), 

2.5U AmpliTaq® DNA polymerase, 5µl 10x reaction buffer and PCR grade water to 50µl. 

The PCR was performed using the following cycle conditions: 35 cycles of 15s at 94°C, 

30s at 61°C, 1min at 72°C, preceded by initial denaturation at 94°C for 2 min, and finished 

by holding at 72°C for 7min. 20µl of the PCR product was analysed on an 1% ethidium 

bromide stained agarose gel with a corresponding DNA molecular weight ladder. 

3.2.12.3 Purification of the 5  ̀and 3  ̀RACE products  

Products from the amplification of the 5`RACE and 3`RACE were run on a gel and the 

corresponding (single) bands excised and purified using a MinElute gel extraction kit as 

follows: each excised cDNA fragment was incubated with 3 volumes of buffer QG at 50°C 

for 10min (until the gel slice was completely dissolved). One volume of isopropanol was 

added, and the sample mixed by inverting several times. The sample was then applied to a 

MinElute column and centrifuged at 10,000xg for 1 min. 500µl of buffer QG was added to 

the column and centrifuged for 1 min, then 750µl of buffer PE was added and the column 

allowed to stand for 5 min before centrifuging for 1 min. Finally the purified cDNA was 

eluted with 10µl buffer EB (10mM Tris-HCl, pH 8.5). 

3.2.12.4 Cloning and sequencing of the RACE products 

To facilitate sequencing, purified 5` and 3`RACE products were cloned into the pCR 

2.1vector using TA cloning® kit, as follows:  
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3.2.12.4.1 Preparation for the cloning reaction 

Fresh RACE product, 4µl, was mixed with 1µl salt solution (1.2M NaCl, 0.06M MgCl2) 

and then 1µl vector added. The mixture was mixed gently and incubated for 5 min at room 

temperature, then placed on ice until needed. 

3.2.12.4.2 Chemical transformation of One Shot®TOPO10 competent cells 

Before starting the transformation, 40µl of 40mg/ml X-gal was spread on each of several 

LB-kanamycin plates which were then incubated at 37°C until ready for use. One vial of 

One Shot ® TOPO 10 cells was thawed on ice. 2µl of the cloning reaction was added to the 

vial mixed gently and incubated 30 min on ice. After incubation, the cells were heat-

shocked for 30s at 42°C, without shaking, and immediately transferred back to ice. 250µl 

of room temperature S.O.C medium were added to the vial, and the solution incubated at 

37°C with 200 rpm shaking. After 1h incubation, 50µl and 100µl of the transformation was 

spread on separate, pre-warmed LB-kanamycin plates and incubated overnight at 37°C and 

then checked for growth of white colonies (containing the cloned target). 

3.2.12.4.3 Analysis of positive colonies 

One white colony was cultured overnight in LB medium containing 50µg/ml kanamycin 

incubated at 37°C with shaking. Plasmid DNA was then isolated using QIAprep Spin 

Miniprep kit, as follows: cells were pelletised at 5000xg for 10 min and then resuspended 

in 250µl resuspension buffer P1. 250µl lysis buffer P2 was added to the resuspended cells 

and mixed well by inverting the tube 4-6 times; the solution became viscous and slightly 

clear. Neutralization buffer N3, 350µl, was added to the tube and mixed by inverting the 

tube 4-6 times; the solution became cloudy. The tube was centrifuged at 18,000xg for 10 

min. The supernatant was transferred to a QIAprep Spin column and centrifuged at 

18,000xg for 1 min, before being washed twice with buffer PB: once with 500µl and the 

second time with 750µl with centrifugation at 18,000xg for 1 min each wash. The column 

was centrifuged for an additional 1 min to remove residual wash buffer. The plasmid DNA 

was then eluted with 50µl elution buffer EB, after being allowed to stand for 1 min then 

centrifuged at 18,000xg for 1 min. The plasmid DNA was sequenced by a commercial 

sequencing laboratory (Göttingen GmbH, Germany). BLASTn and BLASTx searches were 

conducted, respectively, to confirm whether the sequences were unique and to search for 

translation of the sequence and protein similarities (Altschul et al. 1990). 
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4. Results 

4.1 Experimental production and collection of triactinomyxon spores 

Three months after infecting SPF T. tubifex culture with M. cerebralis myxospores, 

waterborne actinospores (triactinomyxons) were released. These were filtered from the 

water, counted, purified with Percoll, and examined microscopically to check for quality 

(Fig. 1). The triactinomyxons had their characteristic anchor-shape, with three leg-like 

appendages and an elongated style containing three polar capsules and a sporoplasm 

containing ~64 spherical sporozoites.  

 
Figure 1: Mature waterborne triactinomyxon spores released from infected T. tubifex.  
                 Fresh unstained preparation, 250X 
 

A portion of the collected spores was used for protein investigation using SDS-PAGE 

and a portion was preserved in RNAlater for RNA isolation. Oligochaetes found to be high 

triactinomyxon producers, after being individually plated-out into cell well plates, were 

preserved in RNAlater for RNA isolation. 

4.2 SDS-PAGE and western blotting of triactinomyxons 

SDS-PAGE and western blotting was conducted to demonstrate the specificity of 

the triactinomyxon antiserum and to determine the appropriate primary and secondary 

antibody dilution required for immunogenic screening of the cDNA library. Purified 

triactinomyxon spores and non-infected T. tubifex were analysed using SDS-PAGE. The T. 
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tubifex proteins were stained with the coomassie brilliant blue R 250 and produced bands 

with molecular weights ranging from 9-80 kDa (kilo Dalton) (Fig. 2). 

 
Figure 2: SDS-PAGE analysis of soluble proteins from non-infected T. tubifex stained with coomassie 

brilliant blue.  

M = Prestained protein molecular weight standard (weights as marked). Lanes 1-5 = soluble worm proteins: 

25, 20, 15, 10, 5µl. 

 

When stained with coomassie blue, triactinomyxon spore proteins gave bands which 

were too faint, so silver stain was used. Many polypeptides with weights ranging from 8-

175 kDa were detected (Fig. 3). 

Western blot analysis was conducted against both T. tubifex and triactinomyxon 

spores, using different concentrations of primary antibodies, anti-triactinomyxon 

antiserum, and secondary antibodies, peroxidase-conjugated anti-rabbit IgGs. The primary 

antibodies (anti-triactinomyxon) detected only antigens of the triactinomyxon spores (Fig. 

4). There was no reaction with the T. tubifex antigens or with the negative control. The 

optimal dilution of primary and secondary antibodies was 1:1000 and 1:2000 respectively. 

No reaction was observed between the rabbit control anti-serum and either spores or T. 

tubifex proteins. 
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Figure 3: PAGE electropherogram of triactinomyxon soluble proteins stained with silver stain. 

M = Protein molecular weight standard, KDa = kilo Dalton, Lanes 1-4 = 10, 15, 20, 25µl of spore proteins 
 

 
Figure 4: Detection of triactinomyxon spore antigens by western blot analysis using anti-

triactinomyxon antiserum, and ECL detection reagents. 
M = Prestained protein molecular weight standard, 1 = triactinomyxon protein bands 
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4.3 RNA from triactinomyxons, non-infected and highly-infected T. tubifex 

Total RNA was extracted from all three sample types: triactinomyxon spores, 

infected worm and non-infected worm, and tested by running on 1.5% formaldehyde 

agarose gel: this yielded 2 bands indicating successful extraction RNA with its both 28S 

and 18S ribosomal RNA (Fig 5).  

 

 
                                      Figure 5: Total RNA extracted from triactinomyxon spores (1) 

and from non-infected T. tubifex (2) run on 1.5 % formaldehyde agarose gel. 

 

4.4 Construction of the cDNA library 
The Poly (A) mRNA, from highly triactinomyxon spores producer oligochaetes, was 

extracted from the total RNA measured to have a concentration of 0.179µg/µl. This was 

converted into double-stranded cDNA and, following ligation of an adapter and the release 

of an Xho I restriction site, was ligated to the EcoRI /Xho I cut phosphatase-treated ZAP 

Express vector. The resulting DNA was packaged in vitro using Gigapack III gold extracts 

and introduced into E. coli XL1-blue- MRF` strain. The titre of the primary library was 

0.5x106 and its quality estimated by performing a blue/white colour selection using IPTG 

(Isopropyl-ß-D-thiogalactopyranosid) and X-gal (5-bromo-4-chloro-3-indolyl-beta-D-

galactopyranoside). 97% of the library (4.85x105) produced recombinant white plaques.  

4.5 Immunological screening for the triactinomyxon positive plaques 

The library was screened with anti-triactinomyxon antibody, diluted 1:1000 in 

blocking buffer, to select only the recombinant plaques of triactinomyxon spores and not 



Construction of cDNA Library from the Triactinomyxon spores 
Results 
 

                                                                                                                        

Page 48 

the plaques from oligochaete worms. Using horseradish peroxidase-conjugated secondary 

antibodies diluted 1:2000 in blocking buffer, positive plaques were detected by luminol-

based enhanced chemiluminescence. 

 
Figure 6: ECL-Hyperfilm showing primary screening for triactinomyxon positive plaques visible   as 
black spots on the plate. 
 

Primary screening of the library revealed only a few positives plaques out of the 1000 

plaques on the plate (Fig. 6). This low primary yield was due to the high number of 

oligochaete plaques present. Each of the positive plaques was isolated and subjected to 

secondary and tertiary screening. Significantly higher yields were obtained in the 

secondary screening, following propagation of positive clones (Fig 7). 

 
Figure 7: ECL-Hyperfilm showing the result of secondary screening. 

 

For tertiary screening, a phage plug was removed and diluted into SM buffer before 

being plated at a low titre of 20–50 particles/plate which allowed single plaques to be 
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isolated (Fig. 8). Each positive clone was screened at least three times to avoid false 

positive results and contamination with negative plaques.  

 
Figure 8: ECL-Hyperfilm showing the result of tertiary screening. 

 

4.6 Purification of clones of interest and characterisation of the library inserts 

More than 526 positive plaques from triactinomyxon spores were detected by 

immunological screening with anti-triactinomyxon antibodies. A subset of these plaques 

was then tested with PCR using the T3 and T7 primers, which flank the multiple cloning 

site of the vector, to confirm that these plaques had an insert. The PCR revealed that 

positive clones contained inserts with different molecular weights (Fig. 9), indicating 

successfully construction of the library. 

     
 

Figure 9: Gel showing results of PCR of random samples of positive plaques. 

M = 1kb DNA ladder, Lanes 1-14 = positive clones. 

 4.7 In vivo excision, plasmid isolation and size estimation of the selected clone 

After screening the cDNA library, one clone (46-5) was randomly selected and 

subjected to further study. The clone’s insert was excised and sub-cloned into a plasmid 

vector: ExAssist helper phage with XLOLR strain efficiently excised the pBK-CMV 
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phagemid vector from the ZAP Express vector. Colonies were grown that contained the 

pBK-CMV vector with the cloned DNA insert and one of these was selected, grown up and 

subjected to plasmid isolation and PCR amplification to estimate the size of the cDNA 

insert. As illustrated (Fig. 10), the PCR amplified a 750bp segment representing the cDNA 

insert of clone 46-5. This fragment was then sequenced.  

 

                                                     
Figure 10: Gel showing amplified cDNA insert fragment. 

M = 1kb DNA ladder, PL = cDNA 

4.8  Synthesis of cDNA from triactinomyxon spores and non-infected oligochaetes 

cDNA from both of non-infected T. tubifex and triactinomyxon spores was 

synthesised from the total RNA. After the first strand had been synthesised it was 

subjected to long distance PCR amplification (LD PCR) to obtain double-stranded cDNA. 

I determined 23 cycles to be the optimal number for LD PCR amplification (Fig. 11); after 

24 cycles no additional PCR product was generated, and the optimal cycle number is 

typically regarded as one cycle fewer than this to ensure that the double-stranded cDNA 

(ds cDNA) remained in the exponential phase of amplification. 
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           Figure 11: Gel showing effect of varying PCR cycles number; the double-stranded cDNA 

appears as a moderately strong smear from 500-6000bp. 

M = 1kb DNA ladder, 1 = 15 cycles, 2 = 18, 3 = 21, 4 = 24, 5 = 27, 6 = 30 

4.9 Determination of the specificity of clone 46-5 to triactinomyxon spores 
After in vivo excision, plasmid isolation and sequencing of clone 46-5, its specificity 

to triactinomyxon spores was tested by PCR using the forward and reverse primers 

constructed from its sequence. The primer pair amplified 511bp of cDNA from 

triactinomyxon spores; there was no amplification of non-infected oligochaetes or the 

negative control (Fig. 12). This confirmed that clone 46-5 was specific to triactinomyxon 

spores.  

          

     
 

Figure 12: Gel showing that the clone is specific to triactinomyxon spores. 

M = 1kb DNA ladder, 1 = cDNA from spores, 2 = cDNA from oligochaete, 3 = negative control 
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4.10 RACE amplification of the cDNA ends 

Rapid amplification of the 5`and 3` cDNA ends (RACE) was used for obtaining a 

full-length cDNA from clone 46-5. Gene specific primer 1 (GSP1) was used for first-strand 

synthesis of the 5`RACE from the total RNA. After addition of a homo-polymeric A-tail to 

the cDNA, it was subjected for PCR amplification using the GSP2 primer, resulting in a 

750bp fragment (Fig. 13, lane 2). The 3`RACE was conducted also, using oligo dT-anchor 

primer for first-strand synthesis followed by PCR amplification using primer GSP5, 

resulting in a 220bp fragment (Fig 13, lane 1). These fragments, 750bp & 220bp, were 

excised from the gel, purified, cloned in the pCR2.1 vector and transformed into competent 

cells; plasmid DNA was isolated from the resulting white colonies and sequenced. 

             

     
 

Figure 13: Gel showing RACE amplification products. 

M = 1kb DNA ladder, 1 = 3`RACE, 2 = 5`RACE. 

 

4.11 Sequence analysis of the full-length cDNA clone 46-5 

The complete sequence of the clone 46-5 is 1,483bp long (Fig. 14). A nucleotide-

nucleotide BLASTn search demonstrated a high percent similarity of the sequence with 

ribosomal protein L23a and 60S ribosomal protein L23a. GENSCAN software was used to 

predict the peptide sequence and coding sequences, if present. The program detected a 

coding sequences from 800-1375bp (Fig. 14, underlined) and predicted its peptide 

sequence (Fig. 15). 
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CTTCTTTGGCAGCAGGAGCAGCAGCGTTGGAGCAGTTAGGCCATtACTTTGACAAGGAAGCCTATTTTGGTGTTTGGTGC 80 

ACCGCCACTGCTGCAGCGCGGCACGGCACCANTGCGGTGGGCGACTCGGTGCGAGTTACGCGTTCGTGGAAGCAAAGTAT 160 

GCTCGAATTCAAAAAGCAATTGTCACGCAAATAACCGTTATATGTTATTAAATCGTTGAATTATCTAGCCTCGTACAGCT 240 

CATCCTCGTCACTGCTGTCGTATGATTCGGGTTCGGATTTCGGCGGGGCCTTGGCCGCTTTACGTTTCTTGAGCTTGGGC 320 

TCGACTTGACTAATCAAGTTCTCAATCAGATTCAACTGCGACTGCAAAGACCGCTGCATCACCTTCATGAGCCTCGTCAG 400 

CATCGTGTGGTCCGCCACTGCGCTGGTGGTGGTGGTAGTGGTTGTCGTTGTGGTTGCTGAGCTCATTTTCGCCTTCTTGG 480 

AAGAAGAAGGAGTCCCCGGCAAAGCCATGACCGTTGTGCCAGGTCCTGTGCCCGTCGCCGTTGGCTCGCGCTTCGCATCG 560 

GGTTCTCTTTTAGCCTTCTGCTTCTTCTGAGCATCCAAAGACGACCCCTGGTTCACCTTGAGCTGGAAAATAATATCATC 640 

CGCTACCTCCTCGTCCTCCTCGTCTCCACTATCATCGTTGCTACTCTTTCTCTTGCTGCTCTTGTCTATGTTGTTGTTGT 720 

TGTTGCTGTTGTTGCTGTTGTTGTTGTTGTTGTTGTTTTTGTTGCTAATGAACTTACCGCTACTGTTTCTATAGCTGCTC 800 

TTGTCTTTGTTGCTAATGTTGCTGGTCTTGCTGCTGCTCCTGCTGCCAAAGAAGCAGCTAAACCAAAAGAGGCTCCAAAA 880 

CCAAAGGAGGCACCTAAGCCTAAGGAAGCCCCGAAACCCAAGGAGGCTGCCAAGAGCAAGGATGTTGCGAAGAAGCCCGC 960 

TGTTCCTAAGCCCGTTAAGACGAAGGGTGCTGAGGGTGGAAAGAAGGCACCCAGCGGTGTGCAGGCCAAGAACAAGGATA 1040 

AGGCATTGAAGGCAAAGAAGGCCGTTCTGCGTGGTGTCCACGACAAGAGAAATCGCAAGATGCGGACTGCTGTTCATTTC 1120 

CGTCGTCCACAGACGCTGCGACTGCCACGCACGCCTAAATATCCCCGCAAAAGCACACCAAAGCGGGTGAGGTTGGACCA 1200 

GTTCAAGATCATCAAGTTCCCGCTGACGACGGAGTCTGCGATGAAGAAGATCGAGGACAACAACACGCTCGTGTTCATCG 1280 

TTGACAAGCGCGCCAACAAGCCTCAGATCAAGATGGCCGTCACGAAGCTGTACAACATCCAGGTCTCCAAGGTCAACACG 1360 

CTCATCAGCAATTAACAAATGCCATGTACTTTGTTTGATTGATAATTAAAAATAACGCTGAAATTTTATTCTTTTAGTTG 1440 

TTTTAAAAAAAAAAAAAAAAAGTCGACATCGATACGCGTGGTC 1483 

 

Figure 14: Nucleotide sequence of clone 46-5. 

Numbers on the right denote base positions. The underlined sequence is the coding sequence (CD) detected 
with GENESCAN program. 

 

XAAKPKEAPKPKEAPKPKEAPKPKEAAKSKDVAKKPAVPKPVKTKGAEGGKKAPSG 56 

VQAKNKDKALKAKKAVLRGVHDKRNRKMRTAVHFRRPQTLRLPRTPKYPRKSTPK 111 

RVRLDQFKIIKFPLTTESAMKKIEDNNTLVFIVDKRANKPQIKMAVTKLYNIQVSKVN 169 

TLISN 174 

Figure 15: GENSCAN-predicted peptide sequence of the conserved domain from the coding sequence     
                       800-1375bp. Numbers on the right denote peptide positions. 

 

A BLASTn search was conducted of the coding sequence and gave the same result as 

the search using the whole sequence. The predicted peptide sequence was subjected to a 

BLASTp protein-protein search which detected a putative conserved domain to ribosomal 

protein L23. This putative conserved domain was detected after alignment of the peptide 

sequence with the protein families’ database of alignments and hidden Markov models 
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(pfam) which produce 60 % alignment with the CD of the ribosomal protein L23 family 

(Fig 16).   

 

 
Ribosomal_L23, Ribosomal protein L23 (60% alignment) 

Query:  118  FKIIKFPLTTESAMKKIEDNNTLVFIVDKRANKPQIKMAVTKLYNIQVSKVNTLI  172 

Sbjct:   1   TDIIKYPIITEKTMNLLEKPNKYVFIVDKKANKTEIKDAVEHIFGVKVESVNTLI  55 

 

Ribosomal protein L23 [Translation, ribosomal structure & biogenesis] 60% 

alignment: 

Query:  118 FKIIKFPLTTESAMKKIEDNNTLVFIVDKRANKPQIKMAVTKLYNIQVSKVNTLI  172 

Subject: 2  YDVIKSPVVTEKAMLLMEKENKYVFIVDPDATKPEIKAAVEELFGVKVEKVNTLN  55 

 

Figure 16: Putative conserved domain as detected by BLASTp search, with protein CD alignment with 
the pfam. 

 

The BLASTp search using the peptide sequence revealed alignments with a high 

percent similarity (60-85%) to ribosomal protein L23 and 60S ribosomal proteins of 

different organisms. These results strongly suggest that the triactinomyxon sequence 46-5, 

codes for a functional protein belonging to the same family as ribosomal protein L23.  
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5. Discussion 

Whirling disease, caused by the myxozoan parasite M. cerebralis, has contributed to 

severe population declines in both wild and farmed salmonid fish (Baldwin et al. 2000, 

Hedrick et al. 1998). It has also been documented as a predominant cause of recruitment 

failures and subsequent rainbow trout population decline in North America (Nehring & 

Walker 1996, Thompson et al. 2002). The parasite has a complex lifecycle involving 

alternating spore stages: a Myxobolus spore stage developing in salmonids and a 

triactinomyxon spore stage developing in Tubifex tubifex oligochaete worms. This study 

involved construction of a cDNA library from triactinomyxon spores, which can be 

searched for genes expressed in the triactinomyxon spore stage. 

Triactinomyxon spores were collected and purified with Percoll and then denatured 

by sonication in a buffer containing Mercaptoethanol and SDS; both of which aid 

denaturation of the proteins into discrete polypeptide subunits (Sambrook et al. 1989). 

These subunits were then electrophoresed, transferred to nitrocellulose membranes and 

analysed by Western Blotting which produced strong signals with the triactinomyxon 

proteins. 

For the library to be successfully screened, it is essential to use high quality 

polyclonal antibodies to recognise the denatured proteins (Sambrook & Russell 2001). The 

SDS-PAGE and western blotting experiments were preliminary steps for establishing the 

bases; specificity, sensitivity, quality and the concentration of antibodies for optimal 

screening of the library. The antibody used in this experiment was polyclonal antiserum 

which reacts with many different epitopes and thereby facilitates detection of cDNA clones 

which express protein fragments of interest (Sambrook & Russell 2001). A Western 

blotting experiment confirmed that the chosen antibody efficiently recognised 

triactinomyxon proteins with no reaction to host oligochaete proteins. Western blotting was 

also used to determine the optimal antibody concentration for screening: a dilution of 

1:1000 for anti-triactinomyxon primary antibodies and 1:2000 for secondary antibodies. 

Using ECL detection reagent we could detect less than 1pg of triactinomyxon antigen 

(Soliman et al. 2003), which indicates the sensitivity of the immunogenic screening of the 

constructed cDNA library with polyclonal antibodies. 

The quality and quantity of the mRNA is of fundamental importance to the 

construction of a large, representative cDNA library, because the library can’t be better 

than the mRNA from which it is derived. Also, the higher the concentration of sequences 
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of interest in the starting mRNA, the easier the task of isolating relevant cDNA clones 

(Sambrook & Russell 2001). It is important, therefore, to stabilise the RNA in tissue 

immediately after harvesting, and avoid changes in subsequent gene-expression patterns 

due to degradation of the RNA. RNAlater was deemed a suitable stabilising agent 

(QIAGEN RNeasy mini kit manual 2001). Total RNA was extracted from the highly 

triactinomyxon spores producer worms (about 120 days post exposure to M. cerebralis 

spores)) to increase the chance of obtaining cDNA clones from nearly all developmental 

stages of the parasite in the oligochaetes. 

An essential step when preparing the mRNA was to separate it from the transfer 

RNA (tRNA) and ribosomal RNA (rRNA) fractions of total RNA. The amount of rRNA 

and tRNA is vastly greater than mRNA and will decrease the efficiency of the reverse 

transcription reaction; which is also why cDNA is constructed from mRNA not from total 

RNA. Fortunately, the bulk of mRNA carries strings of poly-As at their 3` termini, and can 

be separated from total RNA on an oligo (dT) cellulose column (Aviv & Leder 1972; 

Chomczyniski & Sacchi1987). Following purification, mRNA was primed in the first-

strand synthesis with the hybrid oligo (dT) linker primer, and transcribed using Strata™ 

Script reverse transcriptase and 5-methyl dCTP. The oligo (dT) linker primer “5`-

GAGAGAGAGAGAGAGAGAGAACTAGTCTCGAGTTTT TTTTTTTTTTTTTT-3`” 

was designed with a “GAGA” sequence to protect the XhoI restriction enzyme recognition 

site “CTCGAG” and 18-base poly (dT) sequence. The restriction site allows the finished 

cDNA to be inserted into the ZAP Express vector in a sense orientation (EcoR I- Xho I) 

with respect to the lac Z promoter (Short et al. 1988); while the 18-base poly (dT) region 

binds to the 3`poly (A) region of the mRNA template. The Strata™ Script enzyme is a 

genetically engineered Moloney Murine leukaemia virus reverse transcriptase without any 

detectable RNase H activity. The total yield of first-strand cDNA is substantially higher 

with this enzyme than with non-engineered reverse transcriptase and the proportion of full-

length cDNAs is significantly greater (Kotewicz et al. 1988; Gerard & D'Alessio 1993; 

Telesnitsky & Goff 1993). 

Many procedures required that the double–stranded cDNA be digested with 

restriction enzyme(s) before cloning, yet this step can be risky because the cDNA of 

interest itself may be cleaved into two or more fragments which become separated during 

the cloning process. To protect cDNA from digestion, 5-methyl dCTP was used during the 

first-strand synthesis; i.e. the nucleotide mixture for the first-strand synthesis contained 

normal dATP, dGTP, dTTP plus the analogue 5-methyl dCTP. The completes first–strands 
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then have a methyl group on each cytosine base which protects the cDNA from restriction 

enzymes used in subsequent cloning steps (Han & Rutter 1988;  Huse & Hansen 1988). 

Only the unmethylated site within the linker-primer was cleaved by Xho I. 

The product of the first-strand synthesis, a cDNA-mRNA hybrid, was used for 

second-strand synthesis. RNase H produced nicks and gaps in the mRNA strand of the 

hybrid, creating a multitude of fragments which serve as primers that are used by DNA 

polymerase I during the synthesis of the second cDNA strand (Okayama & Berg 1982; 

Gubler & Hoffman 1983). The second strand nucleotide mixture was supplemented with 

additional dCTP to reduce the probability of residual 5-methyl dCTP becoming 

incorporated in the second strand, ensuring that the restriction sites in the linker-primer 

will be susceptible to future restriction enzyme digestion. Uneven termini of the double–

stranded cDNA were ‘nibbled’ or filled in with cloned Pfu DNA polymerase to create a 

blunted ends for EcoR I adapters’ ligation. The adapters composed of 10-mer “3`-

GCCGTGCTCCp-5`” and 14-mer oligonucleotides “5`-OH-AATTCGGC ACGAGG-

3`”which are complementary to each other with an EcoR I cohesive end (AATTC). The 

10-mer oligonucleotide was phosphorylated (p) which allowed it to ligate to blunt termini 

of cDNA and other adapters; while the 14-mer oligonucleotides was kept 

dephosphorylated (OH) to prevent ligation to other cohesive ends. 

 After ligation of the adapters and inactivation of the ligase enzyme, the 14-mer 

oligonucleotide was phosphorylated to enable its ligation to dephosphorylated vector arms. 

The ligation reaction was carried out in a small volume to maintain high concentration of 

adapters in order to minimise blunt-end ligation of the cDNA (Sambrook & Russell 2001). 

Xho I digestion released the EcoR I adapter and residual linker-primer from the 3`end of 

the cDNA and thereby prepared it for insertion into the vector. This strategy greatly 

improved the efficiency of the ligation step in cDNA cloning and eliminated the need to 

digest the cDNA with restriction enzyme before insertion into the vector (Yang et al. 1986; 

Elledge et al. 1991). Before insertion, the cDNA was fractionated by gel filtration to 

remove unused adapters and residual linker-primer created by the Xho I enzyme digestion. 

This process significantly increases the number of recombinants that contain cDNA 

(Sambrook & Russell 2001). Fractionation also enabled fragments less than 400bp to be 

discarded; these were unwanted products of incomplete first-and/or second-strand 

synthesis. Discarding small fragments also reduces the number of recombinants that must 

be screened, and increases the chance of isolating full-length cDNAs corresponding to rare 

mRNAs encoding large proteins (Sambrook& Russell 2001). 
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The size fractionated cDNA was next ligated to the ZAP Express vector which 

increases both cloning capacity and the number of unique lambda cloning sites (Jerpseth et 

al. 1992). Bacteriophage lambda was used as the ZAP Express vector as it is highly 

efficient at becoming infected by phage particles packaged in vitro (Promega technical 

bulletin 2001). Inserts cloned into the vector can be rapidly excised out of the phage in the 

form of the kanamycin-resistant pBK-CMV phagemid vector allowing insert 

characterization in a plasmid system (Short & Sorge 1992; Alting-Mees et al. 1992; Short 

et at. 1988). In addition, clones in the vector can be screened with either DNA probes or 

antibody probes. 

The lambda library was then packaged in vitro by adding the recombinant lambda 

DNA to an E. coli extract containing assembly proteins and precursors required for 

encapsulating lambda DNA to produce infectious recombinant lambda phage (Becker et al. 

1977). I used the highly efficient Gigapack III Gold packaging system (Kretz et al. 1994). 

The library was plated using an E. coli host strain, XL1-Blue MRF`, deficient in the mcr 

system (modified cytosine restriction) which normally cleaves DNA at methylcytosine 

residues (Raleigh et al. 1988; Woodcock et al. 1989). XL1-Blue MRF` was also selected 

as it has F` episome which serves three purposes. First, is required for the ß-galactosidase-

based non-recombinant selection strategy through the lac Z gene present in the F` episome; 

when cDNA is present in polylinker, expression from the lac Z gene is disrupted and white 

plaques are produced. Without an insert the amino terminus of ß-galactosidase is expressed 

and hence non-recombinants appear as blue plaques. Second, the F` episome is required for 

in vivo excision of the pBK-CMV phagemid vector from the ZAP Express vector, as the F` 

episome expresses genes that create the F` pili found on the surface of bacteria, without 

which the filamentous phage infection could not occur for the in vivo excision. Third, the 

F` episome contains the lac repressor (lacIq gene), which blocks transcription from the lac 

Z promoter in the absence of the inducer (IPTG) (ZAP Express cDNA synthesis kit manual 

2000). Propagation medium contained 0.2% maltose to promote substantial induction of 

maltose operon including the lamb gene, which encodes the cell surface receptor to which 

bacteriophage lambda binds (Schwartz 1967). 

The primary library titre was 0.5 x 106 with 97% recombinant plaques; a result 

comparable with Stürzenbaum et al. (2003) who constructed an earthworm cDNA library 

using the same protocol, and achieved a titre of 0.5 x 106 recombinant plaques. Similarly, a 

cDNA expression library constructed for sheep louse Bovicola ovis had a primary titre of  

5 x 105, with 97% recombinant plaques (Nattrass & James 2001). 
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After construction, cDNA libraries are typically amplified to provide a near limitless 

source of cDNA clones, this was not done for the triactinomyxon cDNA library in order to 

preserve accurate representation of the mRNA in the cDNA library (Sambrook & Russell 

2001). As the library was constructed from mRNA extracted from infected worms, it 

contains clones of both triactinomyxon spores and the host. Even a single round of 

amplification could distort the representation of cDNA clones through variations in growth 

rate of recombinants skewing the proportions of cDNA in the library. After titrating, the 

library was subjected to immunological screening using the polyclonal anti-triactinomyxon 

antibody at a dilution of 1:1000, as determined by western blotting, and 1:2000 secondary 

antibodies, conjugated anti-rabbit antibodies peroxidase. Chemiluminescence detection 

method was used to select 526 positive plaques which contained the cloned triactinomyxon 

mRNA. These plaques were screened three times to screen out any contamination by 

negative plaques. In the primary screening, the antiserum selected only a few positive 

plaques as the proportion of triactinomyxon plaques was originally low compared with 

oligochaete plaques. In the second screening, after selective propagation of plaques from 

round one, the number of positive plaques was much higher. In tertiary screening the 

cultures were diluted to reduce the number of plaques on the plate to allow easy selection 

of only single plaques. Positive clones were tested by PCR, which showed that these clones 

contained inserts with different molecular weights, eliminating the probability of selecting 

a false positive plaque that has no insert and indicating the successful construction of the 

library. 

 To test whether the positive plaques were expressing genes specific to 

triactinomyxon spores, one plaque was selected at random for further investigation. Plaque 

designated 46-5 was chosen from the 526 positives, and subjected to in vivo excision of the 

insert, which was then sub-cloned into a plasmid vector in one step (Jerpseth et al. 1992; 

Short et al. 1988). The sample DNA was inserted into the lambda phage genome in the 

presence of filamentous bacteriophage-derived proteins (ExAssist helper phage proteins) 

by simultaneously infecting a strain XL1-Blue MRF` of E. coli with both the lambda 

vector and ExAssist helper phage (Short et al. 1988). Within the XL1-Blue MRF` strain, 

the ExAssist helper proteins recognised the initiator DNA at the lambda vector and 

produced a ‘nick’ in the strand. DNA synthesis began at the nick and duplicated the 

lambda vector ”downstream” (3`) of the nicked site. Synthesis of new single-strand DNA 

(ssDNA) continued along the cloned insert until it encountered the termination signal 

within the lambda vector. The ssDNA was then circularised by the gene II product from 
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the ExAssist helper phage, forming a molecule which contained: the DNA that was 

between the initiator nick and terminator signal, the pBK-CMV phagemid vector and the 

target insert. This process is considered a sub-cloning step because sequences associated 

with normal lambda vectors are located outside the region defined by the initiator and 

terminator signals, and hance are excluded from the circularised DNA; circularisation of 

the DNA also automatically recreates a functional f1 origin as found in f1 bacteriophage or 

phagemids (Short & Sorge 1992). ‘Packaging’ signals were linked to the f1 origin 

sequence to permit the circularised ssDNA to be packaged into phagemid particles and 

secreted from the XL1-Blue MRF` strain. The E. coli strain XLOLR was then infected 

with the phagemid and plated out on kanamycin-LB plates to give colonies which 

contained the sub-cloned DNA (Short et al. 1988). Co-infection with the helper phage was 

prevented because the ExAssist helper contains an amber mutation that prevents 

replication of its genome in a non-suppressing E. coli strain, such as XLOLR. This also 

means that single- stranded rescue cannot be performed with XLOLR using the ExAssist 

phage. XLOLR cells are also resistant to lambda infection, preventing lambda DNA 

contamination after excision (ZAP Express cDNA synthesis kit Manual 2001). 

After in vivo excision the XLOLR plasmid DNA containing the insert was extracted 

and sequenced. Specific primers were designed to amplify only triactinomyxon cDNA and 

not DNA from the oligochaete host. To obtain the full length of the 46-5 cDNA, rapid 

amplification was used on the mRNA template between a defined internal site, using gene-

specific primers constructed from the 46-5 clone, and unknown sequences at either the 3` 

or 5` end of the mRNA (Frohmann 1994). Sequencing revealed that 46-5 coded for 

ribosomal protein L23, and comparison with the database showed that sequence homology 

compared with different organisms ranged from 60-85%: 85% with Oncorhynchus mykiss, 

82% with Argopecten irradians 78% with Branchiostoma belcheri, 73% with Danio rerio, 

65% with Homo sapiens, and 60 % with Spincia deracea. 

Ribosomes are large ribonucleoprotein complexes present in all living cells, which 

are responsible for manufacturing proteins translated from mRNA blueprints (Maguire & 

Zimmermann 2001). Ribosomes are divided into large- and small-subunits (Öhman et al. 

2003); clone 46-5 coded for ribosomal protein L23 (denoted as L25 in some eukaryotes) 

which is a component of the large-subunit (Öhman et al. 2003). The function of L23 has 

been recently identified as the anchor point for the signal recognition particle, positioning 

the particle in such a way that it can read the signal sequence of the nascent polypeptide 

(Pool et al. 2002). Kramer et al. (2002) show that L23 can have an additional function to 
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provide a docking site for the Trigger Factor chaperone which assists the folding process of 

newly synthesised polypeptides. As ribosomal proteins are located near the opening of the 

exit tunnel it suggests a possible role in protein secretion, since such ribosomal proteins are 

in a position to associate with the translocon of the endoplasmic reticulum during protein 

secretion (Nissen et al. 2000). L23 ribosomal protein is essential for the growth of E. coli 

and the association of Trigger Factor with the ribosome; mutation of an exposed glutamate 

in L23 prevents Trigger Factor from interacting with ribosomes and nascent chains, and 

leads to protein aggregation and conditional lethality in cells which lack the protein-repair 

function of the DnaK chaperone (Kramer et al. 2002). Eukaryotic ribosomal subunits L23a 

and L35, which are close to the nascent-chain exit site, have been shown to comprise the 

ribosome attachment site for signal recognition particle 54, SPR54 (Pool et al. 2002). 

SPR54 is therefore strategically positioned to scan emerging polypeptides for the presence 

of a signal sequence (Willem et al. 2003). In E. coli, L23 (a homologue of L23a) seems to 

have an even more intricate role, functioning as an attachment site not only for the SPR 

(Gu et al. 2003; Ullers et al. 2003) but also for the chaperone and prolyl-isomerase trigger 

factor (Kramer et al. 2002). 

A conserved domain to ribosomal protein L23 was detected during the alignment 

process of the triactinomyxon predicted peptide sequence in GENBANK (Marchler-Bauer 

et al. 2003) with nearly 60% homology with the L23 ribosomal protein in the protein 

families’ database (pfam). Given the universal requirement for ribosome function, it is not 

surprising that the ribosomes of all organisms, both eukaryotic and prokaryotic, are highly 

similar. Accordingly, some ribosomal constituents have structural features that are highly 

conserved between species and across kingdoms (McIntosh & Bonham-Smith 2001). 

Further research would be required to investigate the specific function of triactinomyxon 

ribosomal protein L23. 

In conclusion, triactinomyxon spores cDNA library was successfully constructed with titre 

of 0.5x106 pfu; 97 % of the library was recombinant plaques. 526 Plaques were selected as 

positive by immunoscreening. One positive plaque was selected and subjected to further 

identification. The selected positive plaque was found to be coded for triactinomyxon 

ribosomal protein L23. 

 For further study, a short sequences run of one or both ends of the 526 positive clones can 

be done to generate an Expressed sequence Tags (EST) which provide the researchers 

with, a quick and inexpensive route for discovering new genes, obtaining data on gene 

regulation and expression, and for construction genome maps.    
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6. Summary 
 

Construction and screening of an expression cDNA library from triactinomyxon 

spores of Myxobolus cerebralis, the causative agent of 

salmonid whirling disease 

In the initial stage of the investigation, sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) and western blotting analysis of triactinomyxon spores were 

performed to confirm the quality and specificity of the antiserum, and to determine a 

suitable dilution for the primary and secondary antibodies to be used to immunoscreen the 

cDNA library. Spores were sonicated and boiled in SDS sample buffer to dissociate their 

amino acids, and then electrophoresed on a 12% polyacrylamide gel. This fractionated the 

spore proteins which were then transferred onto nitrocellulose membranes, blocked with 

skim milk, then incubated with the primary antibodies (anti-triactinomyxon antibodies) at 

different dilutions. After several washings, the membranes were incubated with the 

secondary antibodies at different dilutions. The primary anti-triactinomyxon antibodies 

reacted with spore protein at a dilution of 1:1000, and the secondary antibodies reacted at a 

dilution of 1:2000. There was no reaction between the antiserum and the control Tubifex 

tubifex oligochaete worm protein, which confirmed specificity of the antibodies to 

triactinomyxon spores, and hence their suitability for immunoscreening the library. 

The ZAP Express cDNA library was constructed using mRNA extracted from the 

triactinomyxon spores. First-strand cDNA was synthesised using an oligo (dT) linker-

primer that contained an Xho I restriction site with MMLV reverse transcriptase. Following 

second-strand cDNA synthesis by RNase H and DNA polymerase I, the uneven termini of 

the double stranded cDNA were filled in with cloned Pfu DNA polymerase and EcoR I 

adapters which were ligated to the blunt ends. The double-stranded cDNA was then 

digested with Xho I restriction enzyme, cDNA fragments less than 400bp were removed 

and the remaining cDNA was ligated with the lambda ZAP Express vector. The 

recombinants were packaged in vitro using Gigapack III gold packaging extract. An 

aliquot of the packaged phage was used to infect E. coli XL1-Blue MRF` strain for 

titration, which revealed that the primary cDNA library contained 0.5 X 106 clones, with 

97% recombinant and only 3% non-recombinant. 

The cDNA library was then screened using the anti-triactinomyxon antibodies to 

facilitate selection of triactinomyxon clones from oligochaetes clones. The recombinant 

phage was adsorbed onto the E.coli host XL1-Blue MRF` strain, then plated on LB agar 
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and incubated at 42°C for ~3.5 hrs. The plates were then overlaid with 82mm circular 

IPTG-soaked nitrocellulose membranes and incubated at 37°C overnight. The membranes 

were then blocked with 5% skim milk and incubated with primary anti-triactinomyxon 

antibodies, washed, then incubated with secondary anti-rabbit peroxidase conjugated 

antibodies. Positive clones were selected and re-screened twice more to give a final 

selection of 526 plaques.  

One clone (46-5) was selected and subjected to in vivo excision of the pBK-CMV 

phagemid from the ZAP express vector. A primer was then constructed using this sequence 

information and tested against cDNA from both triactinomyxons and oligochaetes. The 

primer bound to triactinomyxon cDNA but not oligochaete, which confirmed the clone 

represented triactinomyxon spores. The sequence of the entire clone was obtained using 

rapid amplification of the cDNA ends. A search of the clone sequence against GenBank 

revealed that it related to ribosomal protein L23 and it had a high percentage similarity to 

this protein from different species. A conserved domain for L23 was also identified in the 

clone sequence. 
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7.  Zusammenfassung 
 
Konstruktion und Skreening einer Expression cDNA Bibliothek aus Triactinomyxon 

Sporen von Myxobolus cerebralis, dem Auslöser der Drehkrankheit der Salmoniden  

Zu Beginn der Untersuchung wurden eine SDS-Polyacrylamidgelelektrophorese (SDS-

PAGE) und eine Western Blot Analyse der Triactinomyxonsporen durchgeführt, um die 

Qualität und Spezifizität des Antiserums zu untersuchen.  Darüberhinaus wurden die 

optimalen Verdünnungen der primären und sekundären Antikörper bestimmt, um 

anschließend die exprimierten Klone aus einer cDNA-Bibliothek zu selektieren, die mit 

dem Antiserum reagierten. Die Sporen bzw. die Sporen Schalen wurden in einem 

Ultraschall Wasserbad aufgebrochen,  mit dem SDS-Probenpuffer gekocht  und dann einer 

Elektrophorese auf einem 12 %igem Polyacrylamidgel unterzogen. Das auf diese Weise 

fraktionierte Protein wurde auf eine Nitrocellulosemembran transferiert, mit Magermilch 

geblockt und anschließend mit den primären Antikörpern (anti-Triactinomyxon-

Antikörper) in unterschiedlichen Verdünnungen inkubiert. Nach einigen Waschschritten 

wurde die Membran mit Sekundärantikörpern in verschiedenen Verdünnungen inkubiert. 

Die primären anti-Triactinomyxon-Antikörper reagierten mit Sporenprotein bei einer 

Verdünnung von 1:1000. Die optimale Verdünnung der sekundären Antikörper war 

1:2000. Es gab keine Reaktion zwischen dem Antiserum und aufgetrenntem Extraktprotein 

des Oligochaeten Tubifex tubifex.  Damit zeigte sich, dass die der Antikörper für 

Triactinomyxon Sporen spezifisch und für die Untersuchung einer Bibliothek geeignet ist. 

Die ZAP Express® cDNA Bibliothek wurde anhand von mRNA, die von 

Triactinomyxonsporen extrahiert wurde, konstruiert. Der erste Strang cDNA wurde mit 

einem Oligo-(dT)-primer, der eine Xho I Restriktionsstelle enthält, mit MMLV reverser 

Transkriptase synthetisiert. Nach der Synthese des zweiten cDNA Strangs durch RNase H 

und DNA Polymerase I, wurden die ungleichen Enden der Doppelstrang cDNA mit 

klonierter Pfu DNA Polymerase aufgefüllt und EcoR I Adapter in die abgestumpften 

Enden ligiert. Anschließend wurde die doppelsträngige cDNA mit dem Xho I 

Restriktionsenzym verdaut und ein cDNA Fragment, das kleiner als 400 bp war isoliert; 

die übrige cDNA wurde mit dem Lambda ZAP Express Vektor ligiert. 

Die Rekombinanten wurden mittels Gigapack III® Gold Packaging Extrakts in vitro 

verpackt. Ein Aliquot des verpackten Phagen wurde verwendet, um den E.coli- Stamm 

XL1-Blue MRF’ für eine Titration zu infizieren. Dabei zeigte sich, dass die primäre cDNA 

Bibliothek 0,5 x 106 Klone enthält; davon waren 97% rekombinant und nur 3% nicht-
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rekombinant. Die cDNA-Bibliothek wurde dann mit dem anti-Triactinomyxon Antikörper 

untersucht, um die Triactinomyxonklone von den Oligochaetenklonen zu selektieren. Der 

rekombinante Phage wurde an den E.coli Wirtsstamm XL1-Blue MRF’ adsorbiert und bei 

42°C ca. 3,5 Stunden lang auf Agarplatten inkubiert. Die Platten wurden mit runden, 

IPTG-getränkten Nitrozellulosemembranen überdeckt und bei 37°C über Nacht inkubiert. 

Die Nitrozellulosemembranen wurden dann in 5% Magermilch geblockt,  erst mit primären 

anti-Triactinomyxon Antikörpern und dann mit dem Sekundärantikörper inkubiert. 

Insgesamt konnten 526 positive Phagenplaques gezählt werden. Ein Klon (46-5) wurde 

selektiert und einer in vivo Exzision des pBK-CMV Phagemids vom ZAP Express Vektor 

unterzogen. Anhand der erhaltenen Sequenz des Klons wurde ein Primer konstruiert und 

sowohl an cDNA aus Triactinomyxonsporen als auch an cDNA aus Oligochaeten getestet. 

Der Primer reagierte nur mit Triactinomyxon- jedoch nicht mit Tubifex tubifex-cDNA. 

Somit wurde bestätigt, dass der Klon aus dem mRNA Pool der Triactinomyxonsporen 

stammt. Eine RACE-PCR ergab die komplette Sequenz, die dem ribosomalen Protein L23 

verwandt ist. Auch wurde eine conserved domain für das Ribosomale Protein L23 in den 

Klonsequenzen identifiziert.  
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