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Abstract 

As a fly flies around in the world the visual scene moves constantly across its eyes. 

Depending on its path, this elicits a particular large-field motion pattern called ‘flow field’. 

Since the flow-fields are characteristic for particular flight trajectories they can be used to 

guide behavior, in particular to control the course of the fly. In the blowfly, these visual 

motion cues are mediated by a set of 60 motion-sensitive neurons called lobula plate 

tangential cells (LPTCs). The directionally selective response of the LPTCs has been 

ascribed to the integration of local motion information across their extensive dendritic 

trees. As the lobula plate is organized retinotopically the receptive fields of the tangential 

cells ought to be determined by their dendritic architecture. This appears not always to be 

the case. Recent experiments have revealed many lateral connections among tangential 

cells that appear to mediate their often complex receptive fields. Here single cells were 

ablated in order to determine which lateral connections are functionally important. I found 

that the ablation of a single cell, or class of cells revealed that the lateral connections 

among LPTCs can be the source of their local motion input, or augment the feedfoward 

input from local motion elements through either dendro-dendritic and axonal-axonal 

connections. Other connections between LPTCs were found to have no discernable 

functional significance and suggest that the lobula plate circuitry is yet to be fully 

revealed. The specific projects are outlined below. 

Input Circuitry to the HS- and CH-cells 

A single class of the lobula plate tangential cells the CH (centrifugal horizontal) neurons, 

play an important role in two pathways: figure-ground discrimination and flow-field 

selectivity. As was recently found, the dendrites of CH-cells are electrically coupled to the 

dendritic tree of another class of neurons sensitive to horizontal image motion, the 
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horizontal system cells (HS). However, whether motion information arrives independently at 

both of these cells or is passed from one to the other is not known.  Here I examine the 

ipsilateral input circuitry to HS and CH neurons by selective laser ablation of individual 

interneurons. I find that the response of CH neurons to motion presented in front of the 

ipsilateral eye is entirely abolished after the ablation of HS-cells. In contrast the motion 

response of HS-cells persists after the ablation of CH-cells. I conclude that HS-cells receive 

direct motion input from local motion elements, whereas CH-cells do not; their motion 

response is driven by HS-cells. This connection scheme is discussed with reference as to how 

the dendritic networks involved in figure-ground detection and flow-field selectivity might 

operate. 

Rotational Flow-Field Selectivity 

The group of neurons that processes horizontal motion forms a symmetric bilateral network 

that is able to combine information about motion presented in front of both eyes. Here I 

consider a group of 16 neurons whose connections have been explicitly identified. Each of 

these neurons has a large dendritic tree receiving information about ipsilateral local 

motion events that is spatially pooled to produce a directionally selective response. In 

addition, some of the lobula plate neurons are also sensitive to motion cues in front of the 

other eye. This information is carried by the spiking neurons H1, H2 and Hu that send their 

axons to the other side of the brain, where the H1- and H2-cells synapse onto 2 of the 3 

HS-cells, and all three contralaterally projecting cell provide input to both CH-cells. The 

CH-cells are known to provide inhibitory input to the H1- and H2-cells. These network 

interactions appear to amplify the response to rotational stimuli and reduce the response 

to translation. I ablate either single HS-cells or both CH-cells in order to break the path 

whereby information about the opposite eye reaches the H1- and H2-cell. I did not find 

that these ablations affected the flow-field selectivity of either H1- and H2-cells. Network 

modeling showed that although the described circuitry does support rotational flow-field 

selectivity for the HS- and CH-cells, the model H2-cell does not show the expected flow-

field selectivity. This suggests that the circuitry or cellular mechanisms underlying the 

response properties of the H2-cell are not completely understood.  

Basis of the Broad Receptive Field of VS-cells 

As the lobula plate is organized retinotopically the receptive fields of the tangential cells 
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ought to be determined by their dendritic architecture. This appears not always to be the 

case. One compelling example is the exceptionally wide receptive fields of the vertical 

system (VS) tangential cells. Using dual intracellular recordings Haag and Borst (2004) 

found VS-cells to be mutually coupled in such a way that each VS-cell is connected 

exclusively to its immediate neighbours. This coupling may form the basis of the broad 

receptive fields of VS-cells. Here I tested this hypothesis directly by photo-ablating 

individual VS-cells. The receptive field width of VS-cells indeed narrowed after the 

ablation of single VS-cells, specifically depending on whether the receptive field of the 

ablated cell was more frontal or more posterior to the recorded cell. In particular, the 

responses changed as if the neuron lost access to visual information from the ablated 

neuron and those VS-cells more distal than it from the recorded neuron. These experiments 

provide compelling evidence that the lateral connections amongst VS-cells are a crucial 

component in the mechanism underlying their complex receptive fields, augmenting the 

direct columnar input to their dendrites.  

Vertical-Horizontal Interactions 

Two heterolaterally spiking cells, the H1- and H2-cells have been shown to be sensitive to 

vertical motion presented in the frontal portion of their receptive fields. Receptive field 

measurements performed here show that the H1-, VS1- and VS2-cells all respond to 

vertical downward motion across an almost completely overlapping portion of the frontal 

visual field. Using dual intracellular recordings Haag and Borst (2003) demonstrated that 

the VS1-cell but not the VS2-cell supplies input to both these cells. Through current 

injections into different compartments of the VS1-and VS2-cells I have provided 

physiological evidence that the output of VS1-cell near its dendritic arbors is the likely site 

of its input to the H1-cell. This coupling may form the basis of the vertical sensitivity of the 

H1- and H2-cell. I tested this hypothesis directly by recording the sensitivity of the H1-cell 

to horizontal and vertical motion in the frontal visual field both before and after the 

ablation of single VS1-cells. After the ablation of the VS1-cell the response of the H1-cell 

to vertical motion disappeared but its response to horizontal motion remained robust. 

These experiments demonstrate that the VS1-cell provides the input to the H1-cell that 

makes it sensitive to vertical motion in the frontal visual field likely through connections in 

their dendritic trees.  
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1 Introduction 

The ability of animals to navigate in the world relies heavily on the processing of visual 

information. Whenever an animal moves through its environment or an object moves past it 

the visual system is challenged with motion. By examining large sections of the changing 

retinal image it is possible to make good estimates of ones self motion in comparison to 

both the landscape and moving objects of interest (Fig 1.1). Two fantastic examples that 

highlight the speed and sophistication of visually guided behavior in insects involve pursuit 

maneuvers. First, when in pursuit of flying conspecifics, it takes as little as 30 ms for a fly to 

execute a corrective turn once its target has changed course (Collett and Land, 1975), and 

second, dragonflies actively use motion camouflage to disguise themselves during  aerial 

pursuit (Mizutani et al., 2003). The optic flow information needed to execute these 

behaviors is not explicitly represented in the two-dimensional brightness patterns of the 

retinal image. This information needs to be computed from the temporal brightness 

changes in the retina. This raises an interesting question for visual neuroscientists: how is the 

brain organized to analyze visual patterns and extract the relevant motion information 

that is used to guide behavior?  

 

In flies, the processing of large field motion starts in the retina. From here the time varying 

brightness patterns, detected by the array of photoreceptors, are passed through 3 

retinotopically arranged neuropile layers, including the lamina, medulla and the lobula 

complex. In these layers information about motion is extracted (Buchner et al., 1984; 

Strausfeld, 1984; Bausenwein and Fischbach, 1992). In a subdivision of the lobula 

complex, the lobula plate, there exist a set of large field motion sensitive cells that are 

only a few synapses away from both the retina and the muscles responsible for head and 

body movements. These cells, the lobula plate tangential cells (LPTCs), are ideally placed 

to guide behavior.  
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In general, LPTCs are sensitive to visual motion in a direction selective (DS) way. They are 

excited by motion in one direction, their preferred direction (PD), and inhibited by motion 

in the opposite direction, their null direction (ND). Based on a combination of ablation 

experiments (Heisenberg et al., 1978; Geiger and Nässel, 1981; Geiger and Nässel, 

1982; Hausen and Wehrhahn, 1983; Hausen and Wehrhahn, 1990), as well as the 

similarities between the LPTCs response properties and various types of motion-driven 

response behavior of flies (Borst and Bahde, 1988; Borst, 1991) it has been concluded 

that LPTCs are involved in the fly’s visual course control. Here I investigate what role the 

lateral connections among LPTCs have in shaping their receptive field structures to extract 

relevant optic flow information. 

 

Below I will first describe the most basic computation necessary to start extracting direction 

selective motion information from the brightness patterns on the retina. This discussion will 

describe some of the behavioral, neurophysiological and theoretical experiments that have 

been performed to determine the form this computation likely takes. Second, I will describe 

Figure 1.1: Optic Flow and Flow Fields. The top row shows the view from above as an 
insect moves forward (A) or turns to the right (B). The bottom row is from the point of view 
of the insect, with the 360 degree field of view flattened onto the page. A) Insect 
traveling forward. The optic flow travels from the forward to backward direction, and is 
generally faster on the left and right than in the front or back. The optic flow diverges in 
the frontal visual field and contracts in the rear B) Insect rotating to the right. Here the 
optic flow is to the left in all directions and at every point in the visual world. If the insect 
were flying a curved path, the optic flow patterns would be a combination of these two 
patterns. Figure adapted from www.centeye.com. 

A B 
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the basic anatomy of the fly visual system with particular focus on the lobula plate and its 

tangential cells. Finally, I will describe the connections among the lobula plate tangential 

cells and the complex receptive fields that they putatively mediate. 

Orientation Behavior in the Fly 

Generally, during locomotion ones visual system is subjected to continuous changes of the 

retinal images termed ‘optic flow’. In order to get an initial understanding of how flies 

respond to different optic flow patterns behavioral experiments have concentrated on 

compensatory optomotor behavior in response to the movement of large vertically or 

horizontally striped backgrounds. When the background is oscillated during tethered 

flight, where the fly cannot actually move, the fly attempts to turn, both its body and head, 

in order to follow the background (Fermi and Reichardt, 1963; Götz, 1964; Reichardt, 

1969; Poggio and Reichardt, 1976; Reichardt and Poggio, 1976; Hengstenberg, 1984; 

Hengstenberg et al., 1986; Egelhaaf and Borst, 1993). During free flight these movements 

would act to reduce retinal slip and serve to help the fly maintain a straight course by 

compensating for undesired deviations: a gust of wind that causes the fly to veer to the 

left would create a rightward image motion in the eyes and cause the insect to generate a 

compensatory turn to the right. Investigations of this optomotor response have unveiled 

some of the characteristics of motion perception by the fly’s visual system (Reichardt, 

1969). 

Mechanisms of Direction Selectivity 

The most significant aspect of the optomotor response and its mediating cells , the  LPTCs, 

is their directionally selective response to visual motion. In contrast the initial sensory cells, 

the photoreceptors, respond to a moving grating with modulations in accordance with the 

number of stripes passing by per second. It is only when a minimum of two photoreceptor 

signals, displaced along the path of image motion are considered that the direction of 

motion be derived. The most successful theories developed to account for motion selectivity 

are based on a delay and compare principal that was first proposed by Exner (1894). A 

formal algorithm to compute the direction of motion from time varying brightness patterns 
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was developed after observing the optomotor behavior in the Chlorophanus beetle by 

Reichardt and Hassenstein (Reichardt, 1961). This model has become known as the 

correlation type motion detector (Reichardt, 1961; Reichardt, 1987; for review see: Borst 

and Egelhaaf, 1993; Clifford and Ibbotson, 2003). 

Theory 

The Reichardt motion detector model consists of two arms that perform two essential 

operations, including: 

 

1. Asymmetric temporal filtering that acts to delay the signal in one arm as compared 

to the other. 

2. A non-linear interaction where a low-pass filtered (delayed) signal is multiplied 

with a high-pass filtered (non-delayed) from a neighbouring image location.  

 

The difference between the output signals of both subunits results in the final detector 

response. It is the combination of a temporal delay and a multiplication allows this type of 

detector to measure the degree of coincidence between its input channels. This process is 

on average a spatio-temporal crosscorrelation.  

 

Generally, when an pattern passes the detector from left to right, bright features in the 

pattern activate the left input channel before the right input channel (Fig 1.2). The time 

interval between activation depends both on the velocity of the object and the distance 

between the two inputs. If one delays the left input signal correctly, then both signals will 

arrive simultaneously at the multiplication stage of the left subunit, resulting in a large 

response (Fig 1.2D). For the right subunit, the asymmetric temporal filtering increases the 

time-shift between the input signals, leading to a smaller detector response (Fig 1.2D). 

After subtracting the output signals of both subunits, the final output response is obtained. 

In the example shown here pattern motion from left to right is called the PD of the motion 

detector, while motion in the opposite direction will result in a sign-inverted response. This 

is called the ND of the detector. 
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Experimental Evidence 

There are key 2 characteristics of an animal or cell that produce its directionally selective 

response by integrating input from an array of correlation type motion detectors that 

include: 

1. The mean response amplitude should depend on the structure of the pattern. For a 

moving grating pattern the response will depend on the spatial wavelength, its 

contrast and overall brightness. In particular, the velocity leading to a maximum 

response should increase with the spatial wavelength of the pattern, such that the 

ratio of the spatial wavelength and velocity are constant, i.e. at the same temporal 

frequency.  

2. The structure of the pattern should be visible in the response if there is insufficient 

integration across the spatial pattern. For a moving grating oscillation should be 

apparent, where the modulation frequency is equal to the temporal frequency of 

Figure 1.2: Motion Detector. Left Side. Elaborated version of the correlation-type motion 
detector with its component responses (A–E) to a square wave grating that moves with a 
constant velocity in the PD. The time of stimulation is indicated by the solid bar in A. Note 
that M  is the nonlinear combination, multiplying the delayed/low-pass filtered signal from 
the high-pass/instantaneous signal from neighbouring photoreceptors. Right Side.  An 
array of detectors is used to simulate the neural layers between the photoreceptors and 
tangential cells. The amplitude of the summed responses of all synapses reflects the 
pattern velocity (f). Adapted from Haag et al. (1999). 
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the stimulus.  

 

The predicted pattern dependant changes in the optimal velocity have been recorded not 

only in LPTCs but also in the optomotor behavior of flies. Optomotor behavior has been 

shown to follow a temporal frequency, i.e. the velocity (deg/s) divided by the spatial 

frequency (deg), tuning rather than the pure velocity of the pattern (Fermi and Reichardt, 

1963; Götz, 1964; Buchner, 1976). To summarize, when a fly is placed in a large drum 

covered with vertical stripes the strength of the optomotor response has been found to 

vary on a variety of stimulus parameters. If the angular period of the stripes is kept 

constant and the rotational speed of the drum is varied, the strength of the optomotor 

behavior varies in a bell-shaped curve with a velocity peak. If the angular period is 

double and the rotational speed of drum again varied one finds again the bell shaped 

response, except now the peak response occurs at a velocity twice as high. The optomotor 

response of flies is actually tuned to the temporal frequency of the stimulus. Analogous 

results have been observed for the mediating interneurons in the lobula plate (Haag et al., 

2004).  

 

In addition, optical and electrophysiological recordings from LPTCs have confirmed that 

during motion stimulus there are indeed oscillations in the neural response reflecting the 

spatial structure of the stimulus pattern. These oscillations are visible only when a neuron 

has insufficiently large stimulus to allow spatial integration across many local motion inputs 

to cancel them out, or if one specifically looks at the consequence of the local motion input 

in a cell’s dendrites. Indeed, oscillations in the membrane potential of HS-cells (Egelhaaf 

and Borst, 1989) have been noted that depend on the temporal frequency of the stimulus 

when presented through a thin slit. Also, calcium concentration oscillations have been seen 

in the dendrites of LPTCs, before spatial integration takes place (Single and Borst, 1998; 

Haag et al., 2004). These oscillations increase with the contrast level and do not 

disappear as the light intensity increases (Haag et al., 2004). 

 

Further evidence for the correlation-type of motion detector also comes from apparent 

motion experiments where, instead of actually moving a grating pattern, local luminance 

was changed in a stepwise manner in neighbouring areas of the H1-cell’s receptive field. 

These studies used sophisticated optics to sequentially stimulate single ommatidia (Schuling 

et al., 1989) or even single photoreceptors within an ommatidium (Riehle and Franceschini, 
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1984; Franceschini et al., 1989). These studies revealed that successive stimulation of 

photoreceptors R1 and R6 within one ommatidium is sufficient to elicit directionally 

selective responses in H1 (Riehle and Franceschini, 1984; Franceschini et al., 1989). In 

addition, interactions between ommatidia separated by up to eight time the inter 

ommatidial angle were shown to contribute to the response of the neuron (Schuling et al., 

1989; Egelhaaf and Borst, 1992).  

 

It has also been demonstrated that when an LPTC is presented with a random velocity 

distribution with a mean of zero it alters the input-output relationship to maximize 

information transfer based on the width of the distribution (Brenner et al., 2000; Fairhall et 

al., 2001; Borst, 2003b). This property has been demonstrated to be inherent in the 

structure of the correlation type motion detector (Borst et al., in press). 

 

How the motion detector is implemented is currently an intense focus of research. However, 

it is thought that there exist at least four separate units at each point in the visual world 

with four distinctly orientated preferred directions: up, down, right and left. Each LPTC is 

thought to receive input from two such units, with opposite preferred directions, one 

provided by excitatory the other by inhibitory input, at each point in the retinotopic map 

on to their dendrites. It has been shown that by integrating across a large number of these 

units many of the response properties of LPTCs and visually guided behavior can be 

explained (Fig 1.2). Below the circuitry of the visual system of the fly is described focusing 

on pathways that have been shown to be activated during motion stimulation and thus are 

likely involved in motion detection.  

Anatomy of the Fly Visual System 

The first stage of visual processing starts with the sensation of brightness by light sensitive 

cells in the eye. In flies, this structure is built from an array of facets or ommatidia. Each 

ommatidium possesses its own lens and set of photoreceptors. The photoreceptors send 

their axons to a set of brain structures, the ‘visual ganglia’, devoted exclusively to image 

processing. These visual ganglia are organized into columns that retinotopically represent 

positions in the world. This means that in each neural layer the neighborhood relationships 

between image points are conserved. The different neuropile are called the lamina, 
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medulla and lobula complex. The latter can be divided into the lobula and the lobula 

plate. Each column of these layers is formed by a group of stereotyped set of neurons that 

are repeated throughout the layer. These columnar elements have been anatomically 

described in Calliphora, Musca and Drosophila. 

The Retina 

The initial sensation of the visual world is by light sensitive cells. In blowflies the eye is 

constructed from a vast array of ~5000 hexagonal ommatidia (Hardie, 1984). The 

spatial resolution of light detected by the retina is about 100 times poorer then ours. This 

is because the resolution of each lens is limited by diffraction to ~10 (Land and Eckert, 

1985; For review see: Land, 1997). In addition visual acuity is not uniform across the 

whole retina. In the female blowfly Calliphora the spatial resolution is about twice as high 

in the frontal visual field as in the lateral part (Petrowitz et al., 2000). The orientation of 

Figure 1.3: Retina and the Origins of Retinotopy. A. A schematic of the fly retina 
illustrates the basic structure of the light capturing device of a fly. B. An electron micro-
graph of the faceted eye of a blowfly at a magnification of ~375. C. Schematic of how 
light from different facets is combined in single columns of neurons in the fly. Figure A 
adapted from Hardie (1984). Figure B from www.bath.ac.uk/ceos/Insects1. Figure C 
adapted from Land (1997). 

A 

C

B 
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the ommatidial rows along the eye lattice varies in a characteristic that has been 

suggested to be an adaptation for efficient evaluation of optic flow induced by self-

motion (Land, 1997; Petrowitz et al., 2000). 

 

Each ommatidium is a functional unit consisting of an inert cornea and a pseudocone that 

together makes up the lens that focuses light onto a group of eight photoreceptors, R1-R8 

(Fig 1.3). The photoreceptors R1-R6 are arranged around the outside of the ommatidia, 

while R7 and R8 lay centrally one above the other. The output of photoreceptors R1-6 

project to the lamina, while photoreceptor cells R7 and R8 project to the medulla (layers 

M6 and M3 respectfully). After precisely measuring the receptive fields of individual 

rhabdomeres (Kirschfeld, 1967) and anatomical mapping of rentinula cell axons 

(Braitenberg, 1967) it was realized that the projection of photoreceptors R1-R6 to the 

lamina is such that 6 photoreceptors from neighbouring ommatidia that view the same 

point in space converge onto a single column in the lamina (Fig 1.3c) (For review see: 

Hardie, 1984). This maximizes photon capture and improves signal-to-noise ratio 

(Kirschfeld, 1967; for review see: Laughlin, 1981).  In order to achieve this projection 

pattern the photoreceptor axons have to twist 1800, which exactly counteracts the image 

inversion produced by the facet lens. 

 

Evidence suggesting that it is the information passed on by R1-R6 that is important for 

motion detection has come from the Drosophila mutants sev (sevenless) and ora (outer 

rhabdomere absent (Harris et al., 1976; Heisenberg and Buchner, 1977). They report that 

the Drosophila mutant sev, which has its R7 destroyed, exhibits qualitatively normal 

behavior during optomotor behavior (Heisenberg and Buchner, 1977). On the other hand, 

in the ora mutant, which has R1-R6 destroyed, the optomotor behavior is severely affected 

(Heisenberg and Buchner, 1977). Hence, it has been presumed that circuitry involved in 

motion detection starts with light detection by R1-R6. 
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The Lamina 

This neuropile is very regularly structured. For each point in the visual world there is one 

column comprising of 5 laminar monopolar cells (L1-L5). Each column is encapsulated by 

glia cells and hence each group has been termed a ‘cartridge’. Each optic cartridge 

receives one input from single R1, R2, R3, R4, R5 and R6 photoreceptors that view the 

same point in the visual world but arrive from neighbouring ommatidia. Photoreceptors R1-

R6 make synaptic contact with laminar monopolar cells (L1 and L2). 

 

The lamina monopolar cells (L1/L2-type) have been shown to amplify signals arriving from 

photoreceptors, have narrow dynamic ranges at single mean intensity levels that shift 

quickly according to the mean luminance and, in general act as high pass filters that 

extract information about contrast (Laughlin, 1981). The receptive fields of laminar 

monopolar cells have been shown to have single narrow peaked receptive fields like those 

of the photoreceptors (Järvilehto and Zettler, 1973; Dubs, 1982). The L1 and L2 

monopolar cells project to different layers within the medulla. The L1-cell projects to both 

Figure 1.4: Pathways from the Retina to the Lobula Plate.  Two different pathways 
leading from photoreceptors R1-6 to the lobula plate tangential cells. Both pathways pass 
through the lamina and medulla. Pathway one finishes with projection directly from layer 
10 of the medulla to the lobula plate. Pathway 2 continues to layer 1 of the lobula and 
then projects to the lobula plate. Figure modified from Bausenwein et al. (1992). 
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layer M1 and M5 of the medulla, while the L2-cell project to layer M2 (Bausenwein et al., 

1992). The L1- and L2-cells are the beginning of two separate motion sensitive pathways 

that provide input to the lobula plate (fig 1.4).  

The Medulla 

The medulla surrounds the lobula complex and can be divided into 10 layers. In the 

medulla the motion sensitive pathways are continued. Using the 2-Deoxy-Glucose (2-DG) 

method it has been shown that specific layers are labeled during motion stimulation 

(Bausenwein et al., 1992; Bausenwein and Fischbach, 1992). Generally, the pathways 

carrying motion information can be divided in two: one initiated by input from L1-cells and 

the other by L2-cells. The input to the medulla from L1 monopolar cells synapses on the 

intrinsic medulla neurons Mi1, in layer M1 and M5, which in turn synapse on medullary 

output T4-cells in layer M10 that project directly to the lobula plate. The second important 

pathway passing through the medulla arrives in layer M2 from L2-cells. Here, the L2-cells 

connect to the trans-medulla Tm1-cell that connects to the most posterior stratum of the 

lobula.  

Figure 1.5: Retinotopy in the Fly Visual System. Schematic of the retinotopic pathway 
from the retina, through the optic lobes to a tangential cell in the lobula plate. A) Visual 
information from the eyes is processed in three successive layers called the lamina, the 
medulla, and the lobula complex, the latter being divided into an anterior lobula and a 
posterior lobula plate. Each layer is divided into a series of columns. The columns in each 
layer can be seen to represent the facets of the retina in a one-to-one fashion leading to 
a retinotopic projection of the visual scene onto the dendrites of an LPTC. B) In the lobula 
plate, large tangential cells spatially integrate the output of local motion-sensitive 
elements and produce an increase in activity for PD motion and decrease in activity to ND 
motion. Here the graded membrane potential of a VS3-cell is shown. Figure A courtesy of 
Cuntz and Borst. Figure B adapted from Single et al. (1997). 

A B 
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The Lobula 

Like the medulla the lobula is made up of many layers, in this case 6 (Fischbach and 

Dittrich, 1989). During motion stimulus 3 layers within the lobula are labeled using the 2-

DG method (Buchner et al., 1984). The most posterior layer is where trans-medulla (Tm1) 

cells terminate. This layer also contains the T5-cell arborizations. T5-cells come in four 

flavours depending to which layer of the lobula plate they project (Fischbach and Dittrich, 

1989). The layer where they terminate corresponds to the four preferred direction of 

motion of the lobula plate tangential cells. 

The Lobula Plate 

The lobula plate can be divided, in addition to the retinotopic organization present 

throughout the visual ganglia, by the preferred direction of motion of its composite cells. 

Using the 2-DG method four separate layers can be distinguished depending on the 

direction of motion presented to the fly (Buchner et al., 1984; Bausenwein et al., 1992; 

Bausenwein and Fischbach, 1992). This has also been seen using a combined 

electrophysiological and light microscope investigation (Hausen, unpublished). These layers 

correspond to horizontal motion (anterior two strata) and vertical motion (posterior two 

strata). Anatomical investigations have revealed that the neurons that putatively supply 

input to the LPTCs, the T4- and T5-cells also terminate in each of the four strata of the 

lobula plate (Strausfeld and Lee, 1991). Additionally,  the LPTCs extend their dendrites to 

the four different strata of the lobula plate according to their preferred direction (Hausen 

et al., 1980; Eckert, 1982; Hausen, 1982; Hengstenberg et al., 1982; Hausen, 1984; 

Krapp et al., 1998).  

Lobula Plate Tangential Cells 

The lobula plate contains approximately 60 tangential cells that extend their dendrites 

across many columns. Generally, LPTCs can be grouped according to their response 

characteristics and anatomy. Each class of cells has a specific combination of the following 

characteristics: 

 

1. Preferred orientation: whether they respond primarily to horizontal or vertical 
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image motion. 

2. Prevalent electrical response mode: whether they respond to image motion with a 

graded shift of membrane potential, a change in firing rate or a mixture of both 

(Fig 1.7). 

3. Projection area: whether the neurons send their axons to the contralateral brain 

hemisphere (heterolateral LPTCs), the ipsilateral side (ipsilateral LPTCs), or both. 

4. Spatial integration properties: whether their response increases with visual pattern 

size, or whether they are tuned to small moving patterns.  

 

When the LPTCs are grouped according to preferred orientation one can find two groups: 

horizontally and vertically sensitive cells. These two groups can be further divided. 

Horizontal System (HS) Cells 

In each lobula plate there are three horizontal system (HS) cells (Hausen, 1982), the 

northern (HSN), equatorial (HSE) and southern (HSS) cells. These three cells view the upper, 

middle and lower parts of the visual field respectively. The dendritic tree of each cell 

covers approximately 1/3 of the lobula plate, such that the HSN covers the dorsal third, 

the HSE the middle third and the HSS the ventral third (Fig 1.6). Each HS-cell responds to 

front-to-back motion in front of the ipsilateral eye with a graded depolarization in 

membrane potential decorated with high frequency events called spikelets. Additionally, 

back-to-front motion presented in front of the contralateral eye causes an increase in the 

EPSP activity recorded in the HSN- and HSE-cells but not the HSS-cell. During spatially 

restricted motion stimulation presented in front of the ipsilateral eye local calcium 

accumulation occurs in their dendritic trees (Borst and Egelhaaf, 1992; Egelhaaf et al., 

1993; Dürr and Egelhaaf, 1999; Haag and Borst, 2002). 
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Centrifugal Horizontal (CH) Cells 

The lobula plate contains two CH-cells per hemisphere. The dorsal (dCH) and ventral (vCH) 

cells have large aborizations covering the dorsal and ventral halves of the lobula plate 

respectfully. Consequently the dCH-cell views the upper visual field while the vCH-cell 

views the lower visual field. These cells are so named as it has been demonstrated that 

they have input synapses at what would normally be thought of as their axon terminal and 

Figure 1.6: Lobula Plate Tangential 
Cells. Top. Schematic outline of a 
horizontal section through the fly’s head 
highlighting the visual ganglia. 
Below. Enlarged frontal view of fly 
brain highlighting the position of 
different LPTCs within the lobula plate. 
The dotted lines indicate the dendritic 
extent of the different LPTCs. Figure 
adapted from Borst and Haag (1996). 
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both input and output synapses in their extensive ‘dendritic’ trees (Gauck et al., 1997). 

CH-cells are selectively activated by front-to-back motion presented in front of the 

ipsilateral eye that elicits a graded depolarization of the membrane potential. Like the 

HS-cells, back-to-front motion presented in front of the contralateral eye causes an 

increase in the EPSP activity. Also, during spatially restricted motion stimulation presented 

in front of the ipsilateral eye local calcium accumulation occurs in the dendritic trees of CH-

cells (Borst and Egelhaaf, 1992; Egelhaaf et al., 1993; Dürr and Egelhaaf, 1999; Haag 

and Borst, 2002) that covers a larger extent of its dendritic tree than in the HS-cell (Haag 

and Borst, 2002).  

Vertical System (VS) Cells 

There are at least 10 VS-cells in each lobula plate (Hengstenberg et al., 1982; Krapp et 

al., 1998), but an eleventh may exist medial to the VS10-cell (Hengstenberg et al., 1982). 

Each VS-cell is characterized by its bifurcating axon resulting in a dorsal and ventral main 

dendrite. They all respond maximally to downward motion, presented at a particular 

frontal-posterior position, with a graded depolarization of the membrane potential 

(Hengstenberg, 1982; Haag et al., 1997; Krapp et al., 1998). Generally, the more 

medial a cell’s dendritic tree, the more posterior the slice of the visual world it views. From 

Figure 1.7: Response Properties of LPTCs. LPTCs respond to motion stimuli presented in 
the ipsilateral visual field in three distinct modes: pure graded depolarization (CH-cells), a 
mixed depolarization superimposed with spikelets (HS- and VS-cells) or with an increase in 
spiking frequency (V1-, H1-, H2- and the FD-cells). Figure adapted from Borst and Haag 
(2003). 
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the area of the lobula plate that each cell’s dendrites cover, 12-29% for VS2-VS9 

(Hengstenberg et al., 1982), the expected width of the receptive field should amount to 

about 300-400.  

Heterolateral Spiking Cells 

There are a number of LPTCs that connect the two lobula plates. These cells respond to 

motion invariantly with modulations in firing rate. Of these there is a minimum of 6 cells 

that prefer large field horizontal motion, H1-H6 (Hausen, unpublished; Douglass and 

Strausfeld, 1996) and two cells that prefer vertical motion, V1-V2 (Hausen, unpublished; 

Hausen, 1984). Of these cells, the H1-, H2- and V1-cells have all been shown to have 

complex receptive fields. The H1- and H2-cells respond, in addition to back-to-front 

horizontal motion, to downward motion in the frontal receptive fields (Haag and Borst, 

2003), while the V1-cell is sensitive to horizontal motion in its upper visual field (Karmeier 

et al., 2003). 

Figure 1.8: Complex Receptive Fields. Shown is the receptive fields of a VS8- (Top) or 
dCH-cell (Bottom) as measured using a local motion stimulus presented at many points 
within the visual world. Each arrow represents the PD, indicated by its direction, and its 
relative strength, by its length. Figures adapted from Krapp et al. (1998) and Krapp et 
al. (2001). 
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Figure-Detection Cells 

In addition to the large-field motion cells there exists a set of cells, which are also spiking 

interneurons, but prefer motion of small fields. These cells were first described by Egelhaaf 

(1985). He identified a set of 4 cells (FD1-FD4) that each respond much better to motion 

of relatively small targets as compared to extended patterns. In addition each FD-cell was 

found to be inhibited by motion in front of the contralateral eye (Egelhaaf, 1985). Another 

set of small field selective neurons have been described that are also inhibited by motion 

in front of the contralateral eye; contralateral inhibited, CI-cells (Gauck and Borst, 1999). 

These cells are also selective for small targets. 

Complex Receptive Fields 

During free flight the entire retinal image is continuously shifted. This optic flow,  which 

guides orientation behavior, depends in a characteristic way on the trajectory of the 

animal and the three-dimensional structure of the environment it is moving through 

(Koenderink, 1986). For example, the optic flow induced by an object is dependent on 

both the direction and distance of that object from the subject. If an insect doubles its 

speed, the magnitude of the optic flow it sees will double. Similarly, if an object is brought 

twice as close the magnitude of the optic flow will again double. Optic flow also depends 

on the angle of orientation between an insect’s direction of flight and the object it is 

looking at. If a flying in a straight line, the optic flow is fastest when the object is 

perpendicular orientated, i.e. 90 degrees to ones side, or directly above or below the fly. 

If the object is brought closer to the forward or backward direction, the optic flow will be 

less, while an object directly to the front will have no optic flow and appear to stand still. 

The useful information needed to guide behavior cannot be discerned by examining small 

areas of the visual field, but rather one must determine its global features. This means that 

the neurons that mediate orientation behaviors need to combine measurements of local 

motion across large areas of the visual field. In addition, it is helpful to combine 

information arriving on both eyes. This is particularly useful when attempting to distinguish 

between rotational and translational flow-fields. Rotational flow-fields are made up of 

local motion cues that point in the same direction on both eyes, while translational flow-

fields contain motion signals that are orientated in opposite directions (Fig 1.1). Not 

surprisingly, the LPTCs in flies have complex receptive fields that not only extend across 
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wide swaths of the ipsilateral visual field but also often include input from the opposite 

eye as well.  

 

It has long been noted that some LPTCs combine information arriving from both eyes. 

However, each LPTCs’ receptive field has only recently been mapped in detail (Krapp and 

Hengstenberg, 1996; Krapp et al., 1998; Haag and Borst, 2001; Krapp et al., 2001; 

Haag and Borst, 2003; Karmeier et al., 2003). They have been found to be quite 

complex, often containing different PD in different parts of their receptive fields and 

extending across extremely wide areas of the visual field (Fig 1.8). In particular, the set of 

VS-cells has surprisingly extensive receptive field that often extent across the whole 

ipsilateral visual field. For example, the VS8-cell has a preferred response to downward 

motion in the posterior visual field, back-to-front motion in the upper lateral visual field 

and upward motion in the frontal visual field (Krapp et al., 1998).  In addition, a set of 

primarily horizontally sensitive cells, the HS- and CH-cells, combine information arriving on 

both eyes such that they are selective for rotational stimuli as compared to stimuli 

simulating a translational movement. The neural interactions that allow these cells to 

combine information from disparate parts of the visual field rely on a combination of local 

motion information arriving on the dendritic trees of each LPTC from outside the lobula 

plate and network connections among the LPTCs themselves. 

Lobula Plate Circuitry 

As previously described each LPTC has a large dendritic tree that receives information 

about ipsilateral local motion events. There, local motion cues are spatially pooled such 

that each neuron produces a directionally selective response to motion presented in front 

of the ipsilateral eye. The circuitry that connects LPTCs to each other has been revealed to 

be surprisingly complex: consisting both of bilateral elements that allow each lobula plate 

to talk to one another, as well as intra lobula plate connections. The intra lobula plate 

connections can either be axon-axonal or dendro-dendritic. The lobula plate connections 

have been implicated in the building of complex receptive fields of individual LPTCs.  
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Interactions of Horizontal Sensitive Cells 

The groups of neurons that process horizontal motion form a symmetric bilateral network 

that is able to combine information about motion presented in front of both eyes. Here I 

consider a group of 16 neurons whose connections have been explicitly identified (Haag 

and Borst, 2001; Haag and Borst, 2002). It has been demonstrated that some of the 

lobula plate neurons are sensitive to motion cues in front of both eyes. The information 

arriving from the contralateral eye is carried by the spiking neurons H1, H2 and Hu that 

send their axons to the opposite hemisphere, where they synapse onto 2 of the 3 HS-cells 

(Horstmann et al., 2000; Haag and Borst, 2001) and both centrifugal horizontal (CH) 

neurons (Haag and Borst, 2001). These network interactions appear to amplify the 

response to rotational stimuli and reduce the response to translation. The nature of the 

input from Hu is likely through GABAergic synapses (Gauck et al., 1997). However, the 

nature of the input of H1, and H2 input to CH- and HS-cells may be either through 

chemical input synapses (Gauck et al., 1997) or via electrical coupling.  

Figure 1.9: Bilateral Horizontal Interactions. Circuit diagram of the interactions among 
LPTCs on both sides of the brain. The connectivity between a group of 16 tangential cells 
sensitive to horizontal image motion is shown. Excitatory and inhibitory connections are 
displayed as triangles and circles, respectively. Electrical coupling between cells is 
indicated by black resistors. Adapted from Haag and Borst (unpublished) 
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Within a single lobula plate the extensive aborizations of CH-cells are the site of both 

input and output synapses. One of the inputs to CH-cells occurs via an electrical coupling 

with the overlapping dendritic trees of HS (horizontal system) cells (Haag and Borst, 

2002). CH-cells also possess GABAergic output synapses that are spread across their 

extensive lobula plate aborization (Gauck et al., 1997). This inhibitory output is involved in 

separate computations that contribute to the detection of objects, via FD (figure-detection) 

cells (Egelhaaf, 1985; Warzecha et al., 1993f; Haag and Borst, 2002; Cuntz et al., 

2003) and flow-field selectivity, via H1 and H2 neurons (Haag and Borst, 2001). 

 

In regard to this circuits involvement in flow-field selectivity, the H2-cell exhibits a non-

linear combination of motion presented in front of the different eyes. Specifically, it is not 

responsive to motion presented in front of the contralateral eye on its own, but its response 

to ipsilateral motion is influenced by contralateral stimuli, such that its response to rotation 

is larger than its response to translation (Haag and Borst, 2001). The H2-cell putatively 

receives ipsilateral information directly from local motion detectors. In addition, it has been 

shown that the H2-cell receives inhibitory input from ipsilateral CH-cells, such that injections 

of positive current inhibit the activity of the H2-cell (Haag and Borst, 2001). As the CH-

Figure 1.10: VS-Cell Network. Each VS-cell is connected to its neighbour via electrical 
synapses. This putatively results in a broad vertical sensitivity for downward motion. In 
addition the medial VS-cell (VS7, 8, 9 and 10) receives inhibitory input from VS1 which 
itself is excited by downward motion in the frontal visual field. This may causes the 
upward sensitivity found in VS8-, VS9- and VS10-cells. One of the medial cells also sends 
an inhibitory connection to the VS1-cell. In addition, the VS1-, VS2- and VS3-cells synapse 
onto the V1-cell which provides input to the opposite lobula plate. Adapted from Cuntz 
(2004) 
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cells receive synaptic input from contralaterally projecting spiking H1-, H2- and Hu-cells, 

they may provide a pathway for information from the other brain hemisphere to influence 

the activity of the H2-cell (Fig 1.9). The contralaterally projecting H2-cell and Hu-cell 

synapse on the CH-cell in the protocerebrem while the H1-cell provides input via its large 

axonal arborizations in the lobula plate. The CH-cells then make dendro-dendritic 

connections with the H1- and H2-cells. 

Vertical-Vertical Interactions 

A recent dual intra-cellular recording study has demonstrated that within a single lobula 

plate VS-cells are electrically connected, putatively via their overlapping axons (Haag 

and Borst, 2004). Haag and Borst (2004) demonstrated that each VS-cell is connected to 

the VS1-cell, such that the strength of the connection diminished as the cells move further 

apart, actually becoming negative for the most separated cells. This implies that each VS-

cell is connected exclusively to its immediate neighbours; forming a row of cells starting 

with the VS1-cell whose dendrites reach the lateral edge of the lobula plate and moving 

to the VS10-cell at the medial edge and including at least one inhibitory loop linking the 

medial and lateral cells. This connection scheme has been proposed to be responsible for 

the extremely wide receptive fields of VS-cells and the responsiveness of the medial VS-

cells to frontal visual stimuli. 

Horizontal-Vertical Interactions 

Some of the VS-cells’ dendritic trees, VS1, VS7, VS8, VS9 and VS10, stratify in more than 

one layer of the lobula plate (Eckert, 1982; Hengstenberg et al., 1982). Not coincidently 

these cells, in addition to being sensitive to vertical downward motion, are also sensitive to 

horizontal front-to-back motion (Krapp et al., 1998). The source of this sensitivity to 

horizontal motion is not clear. It may arise from direct input from horizontally orientated 

local motion detectors or from the network connection among LPTCs. For VS7- and VS8-

cells the source of horizontal sensitivity in the dorsal visual field likely arises from input 

from the HSN-cell. Current injections into the HSN-cell, of both positive and negative 

current, are positively correlated with the EPSP frequency of VS7- and VS8-cells (Haag 

and Borst, 2004). It is not just cells of the vertical system that demonstrate a sensitivity to 

motion in more than one direction.  
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The heterolaterally spiking cells H1 and H2 also demonstrate this property. It has been 

found that the H1- and H2-cells show a strong response to downward motion presented in 

the frontal receptive field (Haag and Borst, 2003). Current injections into the VS1-cell, 

which also responds to downward motion in the frontal visual field, are positively 

correlated with the firing rate of both the H1- and H2-cells (Haag and Borst, 2003). 

 

 

 

Figure 1.11: Horizontal-Vertical Interactions. A circuit diagram highlighting the 
interactions between tangential cells where one is primarily horizontally sensitive and the 
other vertically. The HSN-cell provides indirect excitatory input to the VS7- and VS8-cells 
via a spiking cell. The VS1-cell provides excitatory input to both the H1- and H2-cell. 
Finally, the V1-cell provides excitatory input to the vCH-cell in the opposite lobula plate. 
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Goals 

Here I use a single cell ablation technique to investigate the role of the interactions among 

LPTCs in processing optic flow information. I will focus on 6 of the connections described 

above. Single cells, or classes of cells, are ablated to determine if particular cells play a 

role in shaping the receptive fields of other LPTCs. First, the role of the dendro-dendrtic 

electric coupling between HS- and CH-cells will be investigated. These experiments will 

attempt to determine whether HS-cells, CH-cells or both receive direct input from local 

motion detectors. Second, I will attempt to determine if the dendro-dendritic inhibitory 

input of CH-cells to H2-cells is indeed responsible for their flow-field selectivity. Next, the 

role of coupling between neighbouring VS-cells will be examined. In particular, single VS-

cells will be ablated to determine if the electrical coupling between neighbouring VS-cells 

forms the basis of their wide receptive fields. In addition, by ablating the VS1-cell I will 

attempt to resolve whether the inhibitory input of this cell is responsible for the upward 

sensitivity of the medial VS-cells (VS8, 9 and 10) in the frontal visual field. Finally, the 

input of the VS1-cell to H1-cell will be dissected in order to determine if the VS1-cell is 

responsible for the H1-cell’s sensitivity to vertical motion in the frontal visual field. 
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2 Methods 

Preparation 

Female blowflies, Calliphora Vicina, were briefly anesthetized with CO2 and mounted 

ventral side up with wax on a small platform. Generally flies were 1-10 days old. 

Younger flies, 2-5 days old, were used for experiments where no extra cellular recordings 

were made, while older flies, 4-10 days old, when experiments involving extra cellular 

recordings were performed. In order to get access to the back of the flies head their head 

was bent forward and waxed to its thorax. The head capsule was then opened from 

behind and the trachea and air-sacs that normally cover the lobula plate were removed. 

The head capsule was filled with Case-Ringers solution of pH 7.2 (NaCl 110 mM, KCl 5.4 

mM, CaCl2.H20 1.9 mM, MaHCO3 20 mM, TRIS/HCl 15 mM, Glucose 13.9 mM, Sucrose 

73.7 mM and Fructose 23 mM).  To reduce movements of the brain caused by peristaltic 

contractions of the esophagus either one or both of the following was performed: 

1. The abdominal cavity was pressed flat and waxed to the glass, and/or, 

2. The proboscis of the animal was cut away and the gut was pulled out. 

The second procedure was only performed for experiments describing the input circuitry to 

HS and CH-cells. It was found that for prolonged extracellular recordings the removal of 

the gut was followed by a marked increase in the firing rate of both H1, and H2-cells. By 

leaving the gut in the firing rates of these neurons remained stable for much longer. In 

cases where the proboscis and gut were not removed the proboscis was pulled taut and 

waxed to the thorax.  For additional recording stability the antennae were removed and 

underlying tissue waxed. This preparation allowed for stable intracellular recordings of up  
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Figure 2.1: Visual Stimulus Setup. Shown is a fly looking at the visual stimulus for the 
different experiments. The cuticle has been removed to gain access to the lobula 
plate. All cells recorded received their local motion input from the right eye. To the 
right of each screen is a sample recording from each type of experiment. A) Input 
circuitry to HS- and CH-cells. Recording is of a HS-cell to Ipsilateral motion. Recording 
of HSN-cell to ipsilateral motion. B) Flow Field Selectivity of Horizontally Sensitive 
Cells. Recording of a dCH-cell and H2-cell (shown in picture) to a rotational stimulus. 
The vertical extent of the ipsilateral stimulus was either restricted (black) or full screen 
(grey) C) Vertical Receptive Fields. Recording of a VS1-cell (top) and a VS9-cell 
(bottom) to downward motion then upward motion in the frontal visual field. 
Recording from the same fly. Pictures of fly heads in A and C are courtesy of Jürgen 
Haag. 

Midline

IpsilateralContralateral 
A 

B 

C 
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to 45 minutes and extracellular recordings of 2-3 hours.  

 

The flies were then mounted in an upright position on a heavy recording table facing one 

or two monitors that displayed grating patterns, which could be moved in various 

directions. The flies were aligned in reference to their deep pseudopupile. 

Visual Stimulation 

Visual stimuli were presented on Tektronix CRT monitors (width: 10 cm, height: 13 cm). The 

images presented consisted of a square grating where the spatial frequency, spatial 

extent, contrast, brightness and orientation were all controlled by an image synthesizer 

(Picasso, Innisfree Inc., USA) at a frame rate of 200 Hz.  The image synthesizer was 

controlled by a Pentium III PC via a DAS16/12 board (Computer Boards, Inc.) such that 

various velocity patterns (e.g. white noise, velocity steps …) could be used. The stimulation 

software was written in Delphi (Borland) by Jürgen Haag. The details of the visual stimuli 

used for each project are described below (Fig 2.1). 

Ipsilateral Motion for Input Circuitry Analysis 

The monitor was located 6 cm in front of the fly. The centre of the screen was at 0° 

elevation from the equator of the fly’s eyes and orientated 55° lateral from the midline. 

As seen by the fly, the monitor had a horizontal angular extent of 79° and a vertical 

extent of 94°.  The pattern consisted of a square wave grating with a spatial wavelength 

of 28°. The pattern presented was a constant velocity pulse of 1s that moved at a 

temporal frequency of 1.7 Hz, which is defined as the angular velocity of the pattern 

divided by its spatial wavelength. The pattern contrast was 96 %.  The mean luminance of 

the pattern amounted to 12 cd/m2.  

Horizontal Rotation and Translational Flow Fields 

Here two stimulation monitors were used, one stimulating the ipsilateral and the other the 

contralateral eye. The centre of each screen was situated 8 cm from the fly eye 55° to the 

left or right of the fly’s midline. The screens had a horizontal angular extent of 64° and a 
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vertical extent of 78°. The pattern consisted of a square wave grating with a spatial 

wavelength of 21°. The pattern was moved with either a constant velocity for 1, 1.5 or 2s 

at a temporal frequency of 1.6 Hz, or with a white noise velocity profile. The white noise 

stimulus consisted of sweeps 9 s long.  The patterns had either a contrast of 95% or 5%. 

The mean luminance of the pattern was 12 cd/m2. 

Vertical Receptive Field Analysis 

Visual stimuli were presented on two Tektronix CRT monitor located 9.5 cm in front of the 

fly. The center of each screen was at 0O elevation from the equator of the fly’s eyes. As 

seen by the fly, the monitor had a horizontal angular extent of 143O (-30O frontally to 

113O laterally) and a vertical extent of 69O.  The pattern consisted of a square wave 

grating with a spatial wavelength of 18°, produced by an image synthesizer (Picasso, 

Innisfree Inc., USA) at a frame rate of 200 Hz.  The pattern moved at a temporal 

frequency of 1.5 Hz, which is defined as the angular velocity of the pattern divided by its 

spatial wavelength. The pattern contrast was 96 %.  The mean luminance of the pattern 

amounted to 12 cd/m2. The stimulation and acquisition software was written in Delphi 

(Borland). 

 

While recording a single cell the pattern was presented at 10 different locations moving 

from left to right.  The stripes were 18.5O wide on the front screen and 18O wide on the 

side screen. At each location the pattern moved vertically. This setup allowed us to 

stimulate the full primary receptive fields’ of VS1-6 robustly. In addition I could test the 

response of VS7-10 in their frontal receptive field: their complete primary receptive fields 

were not in the range of our monitors. 

Horizontal-Vertical Interactions 

The Tektronix CRT monitors were located 7.5 cm from the fly eye. One was centered 25O 

right of the fly, stimulating the flies ipsilateral frontal visual field. A second monitor was 

positioned at 90O. The vertical extent of each screen was 82O, while the horizontal extent 

was 67O. The pattern consisted of a square grating that was moved either horizontally or 

vertically at 1.7 Hz and had a spatial wavelength of 230. The pattern contrast was 94 % 

with a mean luminance of 11 cd/m2. 
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Electrical Recording 

For data analysis the output signals of the amplifiers (NPI-SEL10 in case of intra-cellular 

recordings, or threshold device in case of extracellular recordings) were fed to a PIII PC 

via a 12-bit A/D converter (DAS-1602/12, Computerboards, Middleboro, Mass., USA) at 

a sampling rate of 1 kHz, during white noise stimuli, or, 5 kHz during velocity steps and 

double recording, and stored to hard disc.  

Intra-Cellular 

Glass electrodes were pulled on a Brown-Flaming micropipette puller (P-97) using thin-

wall glass capillaries with an outer diameter of 1 mm (Science Products GMBH, Hofheimer, 

Germany). The tip of the electrode was filled with either 10 mM Alexa 568 (Alexa Fluor 

568 hydrazide; Molecular Probes, Eugene, OR) or 6-carboxy-flourescein (Fluorescein; 

Molecular Probes). Alexa 568 and 6-carboxy-fluorescein fluoresce as red and green 

respectively, allowing us to identify more than one cell at time. The shaft of the electrode 

was filled with 2 M KAc plus 0.5 M KCl. Electrodes had resistances of either 10-15 MΩ or 

15-20 MΩ for Alexa and 6-carboxy-flourescein filled electrodes respectively. Recorded 

signals were amplified using an SEL10 amplifier (NPI Electronics, Tamm, Germany). All 

recordings were made in the main thick branches of the neurons.  

Extra-Cellular 

Extracellular recordings were used to record from both H1 and H2-cells. I used standard 

tungsten electrodes with a resistance of about 1 MΩ. Extracellular signals were amplified; 

band pass filtered and subsequently processed by a threshold device delivering a 100-

mV pulse of 1 ms duration as each spike was detected (Workshop of MPI Tübingen).  

Laser Ablations 

The selective ablation of single neurons was performed by laser illumination of the lobula 

plate with a 15-30 mW blue (488 nm) laser (Spectra Physics, 163-E11) for 90-120 secs. 

The cell to be ablated was filled with a saturated solution of 6-carboxy-fluorescein in 1 M 

potassium acetate (-2 to –10 nA; 1-15 min). The neuron to be recorded was filled with 
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Alexa 568 or recorded extracellularly.  This allowed for the selective ablation of the 

Fluorescein filled neuron as, unlike 6-carboxy-fluorescein, Alexa 568 is only weakly 

excited by blue light (488 nm) and therefore is not toxic to the neuron while it fluoresces. 

This procedure was first developed for single cell ablation in the lobster (Miller and 

Selverston, 1979; Selverston and Miller, 1980; Selverston et al., 1985) and was later 

successfully applied in the auditory system of crickets (Selverston et al., 1985; Jacobs and 

Miller, 1985) as well as the visual system of the blowfly (Warzecha et al., 1992; 

Warzecha et al., 1993). 

Data Analysis 

Measurement of Neural Responses 

All data were analyzed off line using a custom built GUI in MATLAB 6.5. The GUI allowed 

one to load and sort through the various sweeps in a data set. It also allowed the 

calculation of graded potential and firing rate responses with mean and standard 

deviation calculations over selected time divisions. In addition, one could extract the EPSPs, 

IPSPs from the response and also prefilter the signals with low-, high or band-pass filters. 

The EPSP extraction was aided by a program written by Hermann Cuntz that picked out 

local maxima and minima in a one dimensional array. 

Graded Neural Response 

Graded neural responses were calculated by taking an average of the steady-state 

portion of the response minus the baseline. The steady-state portion of the response was 

determined to begin 0.5 s after the application of the stimulus. Typically during the first 

0.5 s the response experiences an overshoot, whose amplitude depends on the 

characteristics of the stimulus, such as contrast and speed (Reisenman et al., 2003). 

Spiking Neural Response 

The response of spiking neurons to velocity steps stimuli was calculated by counting the 

average number of spikes present during the stimulus and then divided by the length of 

the stimulus. This was accomplished by first constructing a peristimulus time histogram (Fig 
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2.2).   

Information Theory 

In order to test the response of the neurons to a richer stimulus than velocity steps, white 

noise velocity profiles were presented to the flies. From these it was possible to measure 

an information rate. For spiking neurons this was not done to the raw data but to a matrix 

of data where each element was a 1 or 0, representing the presence or absence of a 

spike in that time bin respectfully. Each row of the matrix represented single sweeps, while 

each column represented time bins of 1 ms. This data was converted to an information rate 

using the direct method (Strong et al., 1998; Borst and Theunissen, 1999) The basic 

equations tell us that the information contained in the response (R) about the stimulus (S), 

I(R,S) can be calculated in three ways: 

)|()(),( SRHRHSRI −=   

)|()(),( RSHSHSRI −=  

),()()(),( SRHSHRHSRI −+=  

Here the first equation was used to calculate the information rates. This equation states 

that the information contained in the response about the stimulus is equal to the total 

entropy (H) of the response minus the entropy in each response given the specific stimulus. 

The entropy is calculate as: 

 ∑−=
i

ii rrpRH )(log)()( 2  

where p(ri) is the probability of word ri occurring in the data set. Words are sequential 

sets of response in the data. Since our data was initially represented as a series of 0’s and 

Figure 2.2: Creating a Peristimulus 
Histogram. Recording of an H1-cell to 
ipsilateral PD motion starting at 2s for a 
duration of 2 seconds. Top) Each dash 
represents a spike recorded at a 
particular time. Each row represents one 
sweep or presentation of the stimulus. 
Bottom) The number of spike recorded 
in each 10 s bin were averaged across 
sweeps. 
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1’s sequential sets of values were represented by their binary value.  

 

In order to avoid overestimating the entropy rate from slow signal dynamics long words 

were used. This becomes difficult because the number of possible words grows 

exponentially with the word length, leading to insufficiently filled probability density 

distributions (Treves and Panzeri, 1995; Panzeri and Treves, 1996). Here I used a dual 

extrapolation method to get account for this problem (Strong et al., 1998), where for a 

given temporal resolution and word length the total and noise distributions are built using 

subsets of the dataset. When the entropy rate is plotted as a function of the fraction of the 

data sample used the entropy rate for infinitely large data samples at a given word 

length can be read off from the graphs Y-intercept. This procedure is repeated for 

increasing word lengths, by plotting the information rates as a function of the inverse word 

length and extrapolating the rate to infinitely long words. In summary, when the 

information is considered as a function of the, wordlength l and sample size j , i.e. I = f ( l, 

j ) the procedure consists in finding: 

))),((lim(lim jlII
jl ∞→∞→

= . 

Seven different lengths of response strings were chosen: l = 4, 5, 6, 7, 8, 9 and 10. Thus, 

the response strings used for the extrapolation to infinitely long responses were between 4 

and 10 msec long. To extrapolate to infinitely long words, the calculations were based on 

data fractions of 1/5, 1/4, 1/3, 1/2 and 1 of the original sample size. These were 

picked randomly from all samples. The program to calculate the information rate was 

written in MATLAB 6.5. 

Network Modeling 

In order to better understand how the interactions between network elements affect their 

response properties I have constructed a network of single compartment elements in 

Matlab 6.5. This work was initiated by Alexander Borst. I modified code he created in IDL 

as the starting point of the model shown here. In particular, the integration routine, general 

appearance of the GUI, summed motion detector response and method for calculating the 

steady-state properties of the individual cells were integrated into my version of the 
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model from Alexander Borst’s IDL code.  

 

The network model uses the experimentally determined characteristics of voltage- and ion-

gated currents in LPTCs, these currents were incorporated into single compartmental 

models of the respective cells. The starting point for determining the parameters were  

taken from previously constructed multi-compartmental models of the HS- and CH-cell 

either in isolation (Borst and Haag, 1996; Haag et al., 1997; Haag et al., 1999) or  

connected in a dendritic network (Cuntz et al., 2003). Following the formalism of Hodgkin 

and Huxley (1952) each current was treated as a combination of subunits that denoted the 

activation and inactivation characteristics. The synaptic connections among the LPTCs were 

taken from double recording experiments (Haag and Borst, 2001; Haag and Borst, 2002). 

 

The HS-cell was modeled with an inward sodium (INa), outward potassium (IK) and outward 

potassium dependent sodium current (INa,K). The CH-cell was modeled as a passive 

compartment with no active currents, while the spiking cells contained an inward sodium 

current (INa) and an outward potassium (IK).  The active currents took the following forms: 

• hmgEtVtI revNa
3

max))(()( ⋅⋅−= ;     4max =HSg , 100max =Spg ;      100=revE  

• 
4

max))(()( ngEtVtI revK ⋅⋅−= ;     1max =HSg , 40max =Spg ;     30−=HS
revE , 30−=Sp

revE  

• hmgEtVtI revKNa
3

max, ))(()( ⋅⋅−= ;    2max =HSg ;     25−=revE  

Where gmax is the maximum conductance, Erev is the reversible potential, m and n are 

activation variables, h is an inactivation variable and V(t) is the time varying membrane 

potential. The resting membrane potential for each cell was 0. The activation and 

inactivation variables were set to change with the membrane potential with the dynamics 

of a first order low-pass filter: 

• msmsms
txx

dt
tdx

nhm
x

3,2,1;
)()( ===−= ∞ τττ

τ
 

Where the steady-state response of m, n and h are of the form: 

• 

slope
e xMidVxf )(1

1
)( −+

= ; see Table 2.1.  

In order to model the resting firing rates of the spiking neurons Gaussian white noise was 

added to the membrane potential of varying levels. This allowed the H1-cells to have a 

baseline firing rate of ~20 Hz and the Hu- and H2-cell to firing spontaneously at ~5 Hz. 
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The individual cells were given the appropriate inputs according to the connections 

deduced through double recordings and the ablation experiments in section 3.1 (Haag 

and Borst, 2001; Haag and Borst, 2002). The electrical synapses were modeled as linear 

first-order low-pass filters with time constants of 50 ms. This time constant takes into 

account the low-pass filter characteristics of signals being passed from the axon of the HS-

cell to the axon of the CH-cell (Haag and Borst, 2002; Cuntz et al., 2003).   The driving 

force was the voltage gradient between the two cells, such that if the membrane potential 

 

  MidV (mV) Slope (mV) τ (ms) 

m -1 6 1 

h -11 -8 4 HS 

n 14 11 15 

m 11 8 7 

h -3 -10 10 CH 

n 8 16 10 

m 8 35 1 

h -3 -15 2 Hx 

n 8 15 3 

Table 2.1: Variables defining the steady-state responses of the activation and 
 inactivation variable for the HS-, CH- and the spiking cells (Hx). 
 

in the HS-cell was higher than in the CH-cell current would flow into the CH-cell and vice 

versa. The PSP input to CH- and HS-cells from spiking cells was modeled as a current 

injection (duration=1 ms, decay time constant=2 ms) whenever a spike occurred in the 

relevant neuron. A table of the synaptic weights is shown below (Table 2.2). The input from 

HS- and CH-cells to H1-, H2- and Hu-cells was also modeled as a current injection. The 

magnitude of the current was the membrane potential of the HS- or CH-cell multiplied by 

the synaptic weight. For the CH-cell, current was only passed if the CH-cells membrane 

potential was above rest, 0 mV. 

 

The ipsilateral visual input to the cells was supplied through an array of motion detectors. 

The summed output of which was fed into the one compartment cells with a sign denoting 

their PD. The simulated visual stimulus represented a spatial sine grating that was moved 

with step velocities of 2 Hz with a time resolution of 1 ms. At each time step, I modeled 

photon noise by contaminating the grating with Gaussian white noise. This pattern 
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stimulated an array 

 HSL HSR CHR CHL H1L H1R H2L H2R HuL HuR

HSL  0 2 0 0 1 0 2 0 0 

HSR 0  0 2 1 0 2 0 0 0 

CHL 2 0  0 0 1.5 0 3 0 -1 

CHR 0 2 0  1.5 0 3 0 -1 0 

H1L 0 0 -0.3 0  0 0 0 0 0 

H1R 0 0 0 -0.3 0  0 0 0 0 

H2L 0 0 -0.3 0 0 0  0 0 0 

H2R 0 0 0 -0.3 0 0 0  0 0 

HuL 0.5 0 0 0 0 0 0 0  0 

HuR 0 0.5 0 0 0 0 0 0 0  

Table 2.2: The weights of the connections between the various model neurons. 

 

of 5 motion detectors. The motion detectors consisted of two mirror-symmetrical subunits. In 

each subunit, the local luminance level at one image location was filtered by a first-order 

low-pass (time constant 20 msec) and subsequently multiplied with the high-pass filtered 

luminance of the neighboring location (time constant 50 msec). The signals from the subunits 

were subtracted, and the output of all five motion detectors was summated. The whole 

network was simulated at 1 ms time steps. At each time step the currents and membrane 

potential in each model cell was calculated. The network model simulations were written in 

MatLab 6.5. 
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3 Results 

The lobula plate tangential cells respond to motion presented to the ipsilateral eye with 

either a graded shift in membrane potential superimposed with high frequency events or a 

modulation in firing. The basic directionally selective response of each LPTC can be 

attributed to the integration of local motion information arriving on their dendrites. The 

response of each cell to such stimuli results in a primary response. However, it is clear that 

the responses of most LPTCs are more complex than this and respond to motion presented 

both outside their expected receptive fields, as predicted by their dendritic extent, and in 

directions different from the preferred direction of motion arriving on their dendrites. 

These receptive field properties are likely a consequence of the dendritic architecture of 

each LPTC but to a larger degree it appears that network interactions among the LPTCs 

play a significant role. Below a set of experiments is described where a single LPTC or 

single class of LPTCs is ablated in order to determine whether its/their input helps augment 

the primary receptive field of connected cells. 
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Ablation Assessment 

The ablation technique employed here takes advantage of the fact that Fluorescein but 

not Alexa568 is toxic to cells when illuminated by a powerful blue light. Individual neurons 

were filled with either Fluorescein or Alexa568. The affect of ablating the Fluorescein 

filled cell/s on the response properties of the Alexa568 filled cell was probed. In order to 

assess the effectiveness and specificity of our ablation technique on the visual response to 

PD motion, membrane potential and input resistance of a neuron, filled with either 6-

carboxy-fluorescein or Alexa568, was measured before and after exposure of the neuron 

to laser illumination (15 mW, 488 nm) for periods of 30s. Between exposure periods I 

waited 1 minute before testing the input resistance and visual response of the neuron. I 

found that after 4 epochs of laser exposure, i.e. a total of 120 seconds, the input 

resistance of an HSE neuron filled with 6-carboxy-flourescein was reduced from ~4 to 1 

MΩ (Fig 3.1C, green line), while its resting membrane potential increased from –49 to –15 

mV (Fig 3.1A , green line). In addition the visual response of the HSE neuron fell from 3.5 

to 0.2 mV (Fig 3.1B, green line). Similar results were found in HSS-, dCH-, VS4-, and VS2-

cells.  

 

Figure 3.1: Ablation Assessment. Response of an HSE neuron, filled with Fluorescein 
(black line), or a dCH neuron, filled with Alexa568 (gray line), after illumination with a 15 
mW laser for periods of 30 seconds. These cells were recorded separately in different 
flies. The input resistance (A), membrane potential (B) and visual response to ipsilaterally 
presented PD motion (C) of each neuron was measured 1 minute after each epoch of laser 
illumination. Each point is the mean +/- SEM.
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When a dCH neuron was filled with Alexa568, instead of Fluorescein, the input resistance, 

visual response and resting membrane potential remained constant for as long as I were 

able to hold the neuron (Fig 3.1, red line). This was also true in one other CH-cell tested as 

well as a VS3-cell filled with Alexa488. In addition extracellularly recorded cells did not 

show any significant changes after exposure to the 15 mW laser for up to 120 s. When 

H1-cells were recorded in response to ipsilateral PD motion their baseline firing rate and 

response magnitude remained unperturbed (Fig 3.2). 

 

In general, I was only able to ablate cells densely filled with Fluorescein. Unfilled cells, or 

cells filled with Alexa568 or Alexa488 were unaffected by laser irradiation of up to 300 

seconds. The above experiments demonstrate that I can selectively ablate single neurons. 

Figure 3.2: Firing Rate Controls. The response 
of H1-cells (n=5) was measured after 30 s 
epochs of 15 mW laser illumination. After each 
epoch both the baseline firing rate (black 
squares) and response to ipsilateral back-to-
front-motion was measured. No differences 
were seen after 4 exposures, or a total of 
120s. 
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Input Circuitry to the HS- and CH-cells 

HS and CH neurons not only share many visual response properties but are also 

electrically connected (Haag and Borst, 2002). Each CH-cell has a dendritic field that 

overlaps with two of the three HS-cells. The dCH-cell receives input from HSN and HSE 

neurons via their overlapping dendritic trees, whereas the vCH-cell is connected to HSE 

and HSS neurons (Haag and Borst, 2002. see also Fig 1.9). The responses of HS- and CH-

cells to preferred direction (PD) motion presented in front of the ipsilateral eye are similar. 

Each neuron responds with a graded shift in membrane potential (Eckert and Dvorak, 

1983). In Figure 3.4, the response of an HSE and vCH neuron to ipsilaterally presented PD 

motion is shown. Here, a square wave grating, with its vertical extent restricted to the 

receptive field of the HSE neuron, was moved in the PD during which the neurons 

responded with a graded shift in average membrane potential of 7mV (HSE) or 4mV 

(vCH). In addition, the HS-cell also produced small action potential-like events, called 

spikelets (Hengstenberg, 1977; Haag and Borst, 1996; Haag et al., 1997). The high-

frequency events seen in the vCH trace are EPSPs caused by input from contralateral H1 

and H2 cells. During spatially restricted motion stimulation local calcium accumulation 

occurs in the dendritic trees of both HS- and CH-cells (Borst and Egelhaaf, 1992; Egelhaaf 

et al., 1993; Dürr and Egelhaaf, 1999; Haag and Borst, 2002). Hence, local motion 

Figure 3.3: Possible Input Circuitry to HS- and CH-cell. Three possible connection 
schemes that can explain the response of both HS- and CH-cells to ipsilateral motion 
stimuli. A) Both HS and CH neurons might receive input from retinotopically arranged 
columnar motion-sensitive elements. B) Only HS neurons might receive motion input from 
columnar elements. C) Only CH neurons might receive input from local motion elements. 
The data presented here supports the scheme presented in B. 
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elements must either synapse directly on the dendritic trees of HS- and CH-cells or local 

motion information is passed between these neurons via an electrical coupling of their 

dendritic trees (Haag and Borst, 2002). The direct local motion input to HS neurons may 

arrive in part via chemical synaptic input from columnar T4-cells located in the medulla 

(Strausfeld and Lee, 1991). Chemical input synapses have also been found on the 

dendritic tree of CH-cells (Gauck et al., 1997). However, whether these synapses form the 

input pathway for local motion elements is not known. The experimental data available at 

present lead to three possible input schemes, outlined as both CH and HS-cells receive 

input from local motion elements and each other (Fig 3.3A), the motion response of CH-

cells is due entirely to input from HS-cells (Fig 3.3B), or CH-cells drive the response of HS-

cells (fig 3.3C). To investigate whether the response of CH-cells is solely attributable to 

input from HS-cells or a combination of HS-cell input and parallel input from columnar 

elements, a single HS neuron was selectively ablated while a CH-cell located in the same 

hemisphere, with an overlapping dendritic field was recorded by means of intracellular 

electrodes. 

HS-Cell Ablations 

In figure 3.5A one can see the average response of a vCH neuron to a preferred direction 

(PD) motion stimulus both before (green line) and after (red line) the ablation of an HSE 

neuron. Here the HSE was filled with 6-carboxy-flourescein and the vCH with Alexa568. 

The average response of the vCH neuron to PD motion was 3.0 +/- 0.2 mV (mean +/- 

SEM) in the intact animal, while this response was reduced to 0.4 +/- 0.1 mV after the 

selective ablation of the HSE-cell (Fig 3.5B, third column). The visual stimulus was restricted 

Figure 3.4: Response Similarities Between 
HS- and CH-cells. Response of 
simultaneously recorded HSE- and vCH-
cells to an ipsilaterally presented motion 
stimulus in the preferred direction, i.e. from 
front to back. Both neurons responded with 
a graded membrane shift of either 7 mV 
(HSE) or 4 mV (vCH) superimposed by 
EPSPs. In addition the HSE-cells response 
appears nosier due to the active properties 
present in HS-cells. The bar underneath the 
response traces indicates stimulus period. 
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to receptive field of the HSE neuron and had a vertical extent of 14.25 deg. After the 

ablation the response of the vCH neuron had not completely disappeared, which may be 

due to a residual response of the HSS neuron. Similar results were found in three other 

experiments (Fig 3.5B). In Figure 3.5B one can see the response of vCH-cells before and 

after the ablation of either the HSE or HSS-cell, as well as the effect of the ablation of an 

HSN-cell in the response of a dCH-cell. On average the response of the CH neurons fell to 

11 % +/- 4% (+/- SEM, n=4) of the pre ablation response (Fig 3.5C). The average 

response fell from 1.69 +/- 0.56 to 0.17 +/- 0.09 mV (mean +/- SEM, n=4; Fig 3.5C). 

CH-Cell Ablations 

In order to test whether HS-cells are driven directly by local motion elements or via input 

from CH-cells HS-cells were recorded both before and after the ablation of a single CH 

neuron. In figure 3.6A the average response of an HSN-cell is shown both before (green 

line) and after (red line) the selective ablation of a dCH neuron. Here the dCH was filled 

with 6-carboxy-flourescein and the HSN with Alexa568. The visual stimulus was again 

restricted to 14.25 deg. After the ablation of the dCH neuron the response of the HSN 

neuron did not change. Its response before the ablation of the dCH neuron was 2.67 +/- 

0.03 mV; while after the ablation it was 2.75 +/- 0.03 mV (mean +/- SEM). Figure 3.6B 

Figure 3.5: HS-cell Ablations. A) Average response of a vCH neuron to PD motion both 
before (black line) and after (gray line) the selective ablation of an HSE neuron. The bar 
underneath the response traces indicates stimulus period. The response dropped from 3.01 
+/- 0.15 mV to 0.42 +/- 0.1 mV (mean +/- SEM). B) Average response of CH neurons 
before and after the selective ablation of single HS neurons. There are 2 examples of a 
vCH neuron before and after the ablation of an HSE neuron (columns 1 and 3). One 
example of a vCH-cell before and after a HSS neuron ablated (column 4). Also shown is 
the average response of a dCH-cell after the ablation of an HSN neuron (column 2). C) 
The average response of these 4 neurons went from 1.69 +/- 0.56 to 0.17 +/- 0.09 mV 
(mean +/- SEM) after the ablation of a single HS neuron, which corresponds to a 
reduction of 89 +/- 4 %. 
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shows the response of a HSE-cell both before and after the ablation of either a dCH- or 

vCH-cell. Also shown is the effect of ablating a dCH-cell on the response of an HSN-cell. In 

Fig 3.6C the average response (mean +/- SEM) of 3 HS-cells to ipsilaterally presented PD 

motion is shown both before (2.28 +/- 0.51 mV) and after (2.26 +/- 0.59 mV) the 

ablation of a single CH neuron. This is a change of only 0.66 % as compared to a 

reduction of 89 % in the response of CH neurons after the ablation of HS neurons. The 

response of HS neurons appears to be independent of input from CH-cells.  

Conclusions 

The above experiments demonstrate that the response of CH cells to visual motion 

presented in front of the ipsilateral eye is entirely dependent on input from electrically 

coupled HS-cells. In contrast, the response of HS cells turned out to be independent of 

input from CH cells. These two results provide convincing evidence that HS neurons receive 

local motion information directly from local motion elements and pass this information on to 

CH neurons. Such a connection scheme has implications for understanding the visual 

response properties of CH cells, including their spatial integration properties, dendritic 

calcium signals during null direction motion stimuli, and the spatial blurring of motion 

Figure 3.6: CH-cell Ablations. A) Average response of an HSN neuron both before (black 
line) and after (light grey line) the selective ablation of a dCH neuron. The bar underneath 
the response traces indicates the stimulus period. The response changed from 2.63 +/- 
0.03 mV to 2.73 +/- 0.03 mV (mean +/- SEM) after ablating the dCH neuron. B) 
Average response of HS neurons before and after the selective ablation of single CH 
neurons. Two examples of an HSE-cell are shown with the ablation of either a dCH- 
(column 1) or a vCH-cell (column 2). In addition the mean response of an HSN-cell is shown 
both before and after the ablation of a dCH-cell (column 3). The error bars represent the 
standard error of the mean.  C) The average response of these 3 neurons before the 
ablation was a graded shift in membrane potential of 2.28 +/- 0.51 (mean +/- SEM). 
The response after the selective ablation of a CH neuron was 2.26 +/- 0.59 (mean +/- 
SEM), which responds to a decrease of   only 0.66 +/- 10 %. 
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signals on their dendrites. 

Rotational Flow-Field Selectivity 

Within the lobula plate there are cells that respond to motion in front of both eyes, the 

basis of which includes both connections between the two lobula plates as well as 

interactions among LPTCs within the same lobula plate. This network of horizontal sensitive 

cells has been shown to comprise positive feedback loops such that the activity of a single 

cell reinforce its own activity after passing around the loop (Haag and Borst, 2001; Haag 

and Borst, 2002). Some of the LPTCs integrate binocular information in a non-linear 

manner. Here flow-field selectivity is defined as the non-linear combination of information 

from both eyes. One example of this is the flow-field selectivity demonstrated by the H2-

cell. The H2-cell is not responsive to motion presented in front of the contralateral eye on 

its own.  However, its response to ipsilateral motion is influenced by contralateral stimuli, 

such that its response to rotation is larger than its response to translation (Haag and Borst, 

2001). Another heterolaterally projecting cell, the H1-cell, has the same network 

connectivity as the H2-cell (Haag and Borst, 2001). However unlike the H2-cell, its 

response to high-contrast velocity steps is not influenced by the contralateral stimuli. Both 

the H1- and H2-cells are spiking cells, and each receives information from the opposite 

hemisphere via CH-cells. This information is carried from the other brain hemisphere by the 

partner heterolateral spiking cells, H1, H2 and Hu. The H2-cell and Hu-cell synapse on the 

CH-cell in the protocerebrum while the H1-cell provides input via its large axonal 

aborizations in the lobula plate. The CH-cells then make dendro-dendritic inhibitory 

connections with the H1- and H2-cells (see Fig 1.9). 

Flow Field Selectivity of H1 and H2 

In previous experiments it has been shown that H2-cells, but not H1-cells, are flow-field 

selective for rotation at high contrast (Haag and Borst, 2001). Here I show that the H1-cell 

is also selective for rotation when presented with a more diverse set of stimuli. First, the 

flow-field selectivity was tested with velocity steps at both high (95%) and low (5%) 

contrast (Fig 3.7). Second, the flow-field selectivity was examined using a white noise 

velocity profile (Fig 3.8).  
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In response to a high contrast velocity step, presented to the ipsilateral eye, the H1-cell 

responds with an increase in firing frequency of ~120 Hz. On the other hand, the H1-cell 

does not respond to motion presented in front of the contralateral eye. When tested with 

high-contrast velocity steps that mimic a rotational flow-field the response remains the 

same as that of the ipsilateral response. This is also true for translational velocity steps 

from the front to the back in front of each eye; the response is 97% of the ipsilateral 

response. The difference between the response to rotation and translation was not 

statistically different (p>0.2). However, when the contrast of the stimulus is reduced to 5% 

the response of the H1-cell becomes selective, although only slightly, such that the response 

to rotation is significantly larger than that to translation (p<0.001). In addition, the H1-cell 

Figure 3.7: Contrast Dependent Flow-Field Selectivity. A) H1-cells do not show flow-
field selectivity during velocity steps at high contrasts (dark bars). However, at low 
contrast (grey bars) the relative response during a translational stimulus is significantly 
smaller (p<0.001) than during rotational stimuli, although the affect is small. B) H2-cells, 
unlike H1-cells, show obvious flow-field selectivity during high contrast velocity steps (black 
bars). This selectivity is enhanced at low contrasts (grey bars). 

H1-Cells H2-Cells 
A B 
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is selective for rotation when stimulated with a white noise velocity profile. Here the 

response was measured as an information rate in bits/s. Each eye was stimulated with the 

same velocity profile, where rotation consisted of velocity profiles presented in phase on 

the two screens and translational of velocity profiles 1800 out of phase. The response to 

rotational stimuli produced a response of 64 bits/s, while that to translation was 45 bits/s.  

The average firing rate during rotation and translation was 32.8 and 23.7 Hz 

respectively. These results show that although during simple high contrast stimuli the 

response of the H1-cell is unaffected by what the contralateral eye sees, during more 

challenging stimuli (low contrast or white noise velocity profiles) the H1-cell becomes flow-

field selective, if only to a small degree. 

 

Unlike the H1-cell, the H2-cell shows a highly non-linear summing response of inputs from 

both eyes that makes the H2-cell selective for rotational motion during high-contrast 

velocity steps (Haag and Borst, 2001). Although the H2-cell does not respond to motion 

presented exclusively in front of the contralateral eye, contralateral motion does modulate 

the response to ipsilateral stimulation (Haag and Borst, 2001). In 6 cells I found the same 

pattern for high contrast stimuli. The response to rotation and translation was 120.0 % and 

75.1 % that to ipsilateral stimulation. In the same 6 cells the selectivity for rotation 

significantly increased in response to velocity steps when the contrast was low, 5%. Here 

the response to rotation was 147.3 % and 64.5 % that of the response to ipsilateral 

Figure 3.8: H1 Flow-Field Selectivity to White Noise Stimulus. Here each eye was 
presented with the identical white noise velocity profiles. The difference is that during 
translation the sign of the velocity is reversed in front of the contralateral eye. A) H1-cells 
(n=6) show flow-field selectivity during white noise stimulus, p < 0.05 (rotation > 
translation). B) The mean firing rate in the two circumstances drops from 32.8 +/- 4.8 and 
23.7 +/- 3.4, which by convention is not considered significant, p = 0.15. However, a 
trend is apparent. 

A B
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stimulation respectively.  

 

It is evident that the heterolaterally projecting cells, H1 and H2, are both to some degree 

selective for rotational stimuli. The source of this selectivity has been proposed to be 

inhibitory input from CH-cells, via GABAergic output synapses, that carries information 

from the contralateral hemisphere (Haag and Borst, 2001). The activity of CH-cells 

contains both information from the opposite lobula plate, carried by contralaterally 

projecting H1-, H2-, and Hu-cells, and signals originating from dendritically linked HS-

Figure 3.9: Single HS- and CH-Cell Ablations. The ablation of single HS- or CH-cells had 
no affect on the response of H1- or H2-cells. Here the ipsilateral stimulus was spatially 
restricted so as to only stimulate the HS- or CH-cell that was ablated. A) The ablation of 
CH-cell had no affect on the baseline firing rate or flow-field selectivity of H1-cell (n=6) 
to PD motion. The mean response to ipsilateral, rotational and translational PD motion 
remained the same after the ablation of a single HS-cell. B) This was also true of H2-cells. 
H2-cells remained flow-field selective after the ablation of single CH-cells. C) As HS- and 
CH-cell have opposite PD then the H1-cell and the CH-cell provides a rectifying input to 
the H1-cell that would only inhibit during back-to-front motion, ND for the H1-cell, I looked 
specifically at the ipsilateral ND response of the H1-cell at low contrast (5%). I found no 
difference in the ND of the H1-cell after single cell ablations of either HS- or CH-cells. 

A B 

C 
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cells. From coupled HS-cells, CH-cells receive local motion information with a PD opposite 

to that of ipsilateral H1- and H2-cells. This means that activity in HS-cells inhibits the H1- 

and H2-cells during front-to-back motion indirectly via CH-cells. Thus, CH-cells may play a 

role in both the rotational selectivity and ND response to ipsilaterally presented motion.  

 

Here the function of this input scheme to H1- and H2-cells is tested either by ablating 

single HS- and CH-cells, or ablating both CH-cells. 

Firing Rate Control 

CH-cells have GABAergic output synapses in their large lobula plate aborization that 

supplies inhibitory input to H1- and H2-cells that may contribute to their baseline firing 

rate. In order to make sure that ablating CH- or HS-cell did not affect the resting firing 

rate of post synaptic cells I ablated single HS- or CH-cells and measured the resting firing 

rate of the H1-cell. I found that the firing rate remained essentially the same after the 

ablation of either a HS- or CH-cell. After the ablation of an HS-cell the firing rate of H1 

remained constant (Pre=17.8 +/- 3.4 Hz; Post=19.6 +/- 3.7 Hz (P=0.74, N=6). Similarly 

after the ablation of single CH-cells the firing rate of the H1-cells did not change 

(Pre=19.7 +/- 2.4 Hz; Post=20.2 +/- 3.2 Hz; P=0.90, N=6). These results imply that the 

CH-cell does not continuously release GABA under normal conditions that would keep the 

firing rate of the H1-cell low. 

Single Ipsilateral HS- and CH-Cell Ablations 

Here I ask whether the inhibitory input from CH-cells plays a role in the ND response of the 

H1-cell. The CH-cells pass on information, received from ipsilateral HS-cells, to the H1- 

and H2-cells about ipsilateral motion. As the HS- and CH-cells have the opposite PD, front-

to-back, to that of the H1- and H2-cells, back-to-front, the CH-cells depolarize and in turn 

release GABA during back-to-front motion, the ND for the H1- and H2-cells. Here, I test 

this proposal by ablating single HS- or CH-cells cells, which should result in a decrease 

response of H1- and H2-cells to front-to-back motion in front of the ipsilateral eye. The 

ablation of either single HS- or CH-cells was found to have no effect on the H1-cells 

response to ipsilaterally presented front-to-back velocity steps at high contrast. The pre vs 

post difference after the ablation of single HS-cells was found to be 0.98 +/- 2.7 Hz. The 

pre vs post difference after the ablation of single CH-cells was -0.75 +/- 1.1 Hz. Neither 
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of these changes were significantly different from zero, with P= 0.73 and P= 0.53 

respectively (Fig 3.9C).    

 

Similarly the flow-field selectivity of both H1- and H2-cells was unaffected by the 

ablation of single HS- or CH-cells (Fig 3.9A and B). In the case of HS-cells this is 

unsurprising as visual information from the contralateral eye need not pass through HS-

cells to reach the spiking cells. For single CH-cells this result could be explained by the 

steep saturation of the spatial integration properties of H1-cells (Single et al., 1997). H1-

cells are maximally responsive to all patterns with a horizontal extent of 250 wide and 

higher (Single et al., 1997). As a single CH-cell covers a much larger area than 250, then 

the input from one CH-cell should have the same influence as the input from two. 

Double CH-Cell Ablations 

As the spatial information from the opposite eye is collapsed into the spiking activity of the 

contralaterally projecting neurons that provide input to both CH-cells, and LPTCs have 

been found to have highly saturating spatial integration properties, I performed ablations 

of both ipsilateral CH-cells that provide synaptic input to the dendritic tree the H2-cell. 

These double ablations should completely break the path of information transferred from 

the contralateral eye and thus render the H2-cell unselective for rotation.  

Figure 3.10: Double CH-Cell Ablations. H2-cells remained selective for rotational 
flow-fields after the ablation of both CH-cells. A) The response of the H2-cell to either 
rotational (red bars) or translational (blue bars) of 2 second long velocity steps. B) The 
normalized response of the the experiments shown in three. The flow-field selectivity 
did not change significantly after the ablation of both CH-cells. All values are mean 
+/- SEM. 
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I managed to perform this experiment in three separate flies. In each case one of the CH-

cells was recorded during the ablation and its death confirmed, while simultaneously 

recording the H2-cell. The average response in the intact fly to rotational stimulation was 

51.6 Hz, while that to translation was 38.2 Hz. After the ablation of both CH-cells the 

response to both rotation and translation dropped to 37.5 +/- 10.2 and 22.2 +/- 6.5 Hz 

respectively. However, the H2-cells remained selective for rotation such that its response to 

translation was 59.3 +/- 6.2 % that of its response to rotational stimuli. This selectivity was 

true for all three flies tested (fig 3.10). Contrary to our predictions, in each experiment the 

H2-cell remained selective for rotation after the ablation of both CH-cells.  

Modeling Horizontal Flow-Field Selectivity 

In an attempt to better understand how the horizontal network described above functions, 

modeling work was initiated. This took two forms. First, a simple analytical model was 

constructed in order to understand how the basic circuitry operates to shape the response 

of the different cells at different positions within the network. Second, a more elaborate 

A 

Figure 3.11: Analytical Lobula Plate. A simplified model of the lobula plate circuitry 
illustrates some of the basic behavior seen in the real neurons. A) Here the set of HS- and
CH-cells were collapsed into single IP units, while the heterolaterally projecting H1-, H2-, 
and Hu-cell are represented by the CP units. The weights are signified by a and b and 
can range from 0 to 1. v represents the velocity input from each eye and the sign in front 
indicates whether the input prefers front-to-back or back-to-front. B) The gain of the 
network for the CPL unit. In the top graph the weight of a is increased from zero to 1 while 
b is held constant at 0.5. Below, a=0.5 while b is increased from 0 to 1. Note in all cases 
that the gain for rotation is the largest and translation smallest. Also in all cases increasing 
a causes an increase in the gain, while increasing b causes a decrease in the gain during 
translation. 

B
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numerical model was built to see if a realistic connection scheme could account for the 

responses seen in vivo, and, in addition, check if the negative finding of the ablation 

experiments were reasonable. The network model presented here is based on an earlier 

version created by Alexander Borst (Borst, 2003a). 

 

The analytical model was constructed by collapsing the known network into a four cell 

linear system. This step was taken to gain intuition about how the basic circuitry operates 

to amplify signals in comparison to the response to motion input alone (Fig 3.11). The 

system contained 4 individual units: 2 ipsilaterally projection units (IP) and 2 

contralaterally projecting units (CP). The system was divided into two halves, a left and 

right side that contained one IP and CP unit respectively. The IP unit represented the 3 HS- 

and 2 CH-cells on each side of the brain, while the CP unit represented the H1-, H2-, and 

Hu-cells.  Together, the simplified network consists of four processing units that each have 

first order low-pass characteristics. The IP units make inhibitory connections to one of the 

CP units, while the CP units project across the midline and make contact with the IP unit on 

the other side of the midline. The strength of the connections are represented by two 

variables, a and b, which are scaled between 0 and 1. In addition each unit receives 

motion information directly with the IP units having a PD of front-to-back, positive values of 

inputv , and each CP unit having a back-to-front PD. 

 

The basic system can be expressed as a set of four differential equations, which in matrix 

form is: 
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Where the form of the input vectors for rotation, translation and ipsilateral input 

respectively are: 
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When I solve this system for its steady-state solution (i.e. the time derivative is 0) given the 

different ipsilateral, rotational and translation input I find that the network amplifies the 
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signals most for rotation. Following are the three steady-state solution for the three linear 

networks for the CP units: 

1. lIpsilatera
ba
a

vCPL →⎟
⎠
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⎝
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−
+−= 221

1
 

2. RotationCPR
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The gain of the system is defined as: stimulusresponsegain = . As a and b are positive 

values between 0 and 1 then abbaab −≥−≥+ 111 22 . Also, the value of v  is a constant 

velocity and hence the gain for rotation is always larger then that for ipsilateral 

stimulation, which is larger than for translation stimulation (Fig 3.11). In addition, this 

steady-state solution illustrates that during rotational stimuli the activity on each side of the 

network is of the same magnitude but opposite sign, while during translation the 

magnitude of the response will be equal on both sides of the network. 

 

To elaborate on the analytical model a network model was constructed where each cell 

was represented by a single isopotential compartment with Hodgkin-Huxley like currents. 

The details of the model are described in the methods section. Due to the finding of the 

ablation experiments described above, I attempted to model the flow-field selectivity of 

the H1- and H2-cells and see if the combination of the basic circuitry and realistic signals 

present in each cell could account for the flow-field selectivity found in vivo.  

 

Figure 3.12: Current Flow Rectification 
between CH- and H1-cells. The response 
of the H1-cell to current injections into CH-
cell in the same side reveals a rectification 
such the current of positive but not negative 
current is transferred.  
 



Results 

F 
54 

This model consisted of a single HS-, CH-, H1-, H2, and Hu-cell on each side of the brain. 

The connectivity of the cells, outlined in figure 3.14, was based in the double recordings of 

Haag and Borst (2001, 2002) and the ablation experiments performed here (Input 

Circuitry to HS- and CH-cells, pg 44). Each cell, except for the CH-cells, receives the 

summed input from an array of 5 motion detectors. The PD of the HS- and Hu-cells is front-

to-back, while the PD of the H1- and H2-cells is back-to-front. Within a single lobula plate 

the HS-, and CH-cells are connected together electrically; the CH-cells supply inhibitory 

Figure 3.13. Signals Driving H2-cell Flow-Filed Selectivity. Left) Schematic diagram of 
the input-output pathways of HS- and CH-cells. An array of local motion detectors 
supplies HS, H1and H2 cells with local motion information (grey arrows). The preferred 
direction for local motion input to HS-cells is front-to-back while that of H1 and H2 is 
back--to-front. HS- and CH-cells are connected electrically via their dendritic trees. CH-
cells inhibit H1and H2 via GABAergic synapses (black arrows). In addition HS and CH 
cells receive excitatory input(red arrows) from the contralateral H1 and H2 neurons. Solid 
lines indicate known connectivity and dashed lines indicated putative connections. Right) 
Example traces of a  HS-, CH-, H1- and a H2-cell to different visual stimuli at high 
contrast. Note that H2 but not H1 is preferentially selective to rotational vs translation 
motion. Note that HS- and CH-cells respond with graded shifts in membrane potential, 
while H1- and H2- cells are spiking neurons. The HS- and H1-cells were recorded 
simultaneously, as were the CH- and H2-cells.
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input to the H1- and H2-cells and the HS-cell makes excitatory connections to the Hu-cell. 

The two lobula plates are connected together by the contralaterally projecting spiking 

cells. The H1- and H2-cells make excitatory input to both the HS- and CH-cells on the 

opposite side, while the Hu-cell supplies inhibitory input to the CH-cell.  

 

The Hodgkin-Huxley currents for the HS- and CH-cells were adjusted to those measured in 

experiments such that each model responded as expected to current injections and visual 

stimulus, see methods (Borst and Haag, 1996; Haag et al., 1997; Haag et al., 1999). The 

synaptic characteristics were then adjusted to fit the current injection experimental data 

(Haag and Borst, 2001; Haag and Borst, 2002). The electrical coupling between the HS- 

and CH-cells was adjusted so that the response of CH-cells to ipsilateral motion was ~70 

% that of the HS-cell. The strength of the input from H1-, H2 and Hu-cells to the 

contralateral HS- and CH-cells was adjusted such that the EPSP sizes evoked by the arrival 

of an action potential was as measured (Haag and Borst, 2001). The rectifying input from 

Figure 3.14: Model Network Response to Rotation. The model is shown in the middle 
without its motion detector input. The sign of the synaptic connections is indicated with 
a + or – for excitatory or inhibitory, respectively. The response of the 5 different 
LPTCs on each side sensitive to horizontal motion are displayed as a function of time 
around the outside. The stimulus consists of a binocular image simulating rotation, first 
clockwise for 1s, then counterclockwise for 1 s. Form of figure 3.14, 3.15 and 3.16 is 
adapted from Borst (2003) 
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CH-cells to H1- and H2-cell was adjusted such that current injections of positive but not 

negative current inhibited the H1- and H2-cells. The weights were adjusted such that +10 

nA caused the H1- and H2-cells to be silenced, but current injections of – 10 nA had no 

affect. This was an amplification of the effects seen in current injection experiments 

performed by Haag and Borst (2001) as well as those performed here (Fig 3.12). A 

summary of the synaptic weights is shown in table 2.2. 

 

After making the above adjustments the individual circuit elements responded to both 

monocular and binocular motion stimuli in a similar manner as the corresponding neurons in 

in vivo (compare recording in Fig 3.13 with model results in Fig 3.14, 3.15 and 3.16). First, 

in response to rotational motion stimuli, all neuronal responses change polarity when the 

stimulus is switched from clockwise to counterclockwise (Fig 3.14). If a cell is depolarized or 

increased its firing rate during clockwise stimulus it hyperpolarized or decreased its firing 

rate during counterclockwise stimulus. In addition, the circuitry of the network amplifies the 

response of the two neurons that respond with graded potential shifts, the HS- and CH-

cells. For example, during counterclockwise movement the left CH-cell will be excited via 

Figure 3.15: Model Network Response to Translation. Same as figure 3.14 except the 
stimulus is simulating translation, first backwards for 1 s, then forwards for 1 s. 
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input from the left HS-cell causing a depolarizing shift in the membrane potential. 

Additionally during such stimuli, the front-to-back stimuli in front of the right eye will excite 

the H1- and H2-cells that make excitatory connection with the CH-cell on the left side and 

superimpose the depolarizing shift, caused by back-to-front motion in front of the left eye, 

with EPSPs. The responses of the same type of neuron in the opposite lobula plate shifts its 

membrane potential in the opposite direction from baseline during rotational stimuli. The 

amplifying effects of the circuitry seen during rotation act to reduction the neural 

responses during translation. Here, during contractory stimuli the CH-cells on both sides of 

the brain are hyperpolarized by their input from HS-cells, but the EPSP input arriving from 

the H1- and H2-cells from the opposite hemisphere render the final response close to zero. 

The individual affects of motion of the ipsilateral and contralateral eye can be seen in 

figure 3.16. Although, the flow-field selectivity of the HS- and CH-cells is well explained 

by the network presented above, the flow-field selectivity of the H2-cell is not. 

 

The key to the flow-field selectivity of H2-cells is the difference in the signal being passed 

from the CH-cell during rotation and translation (Fig 3.13). In the analytic network one can 

Figure 3.16: Model Network Response to Ipsilateral Motion. Same as figure 3.14
except the stimulus is simulating ipsilateral motion; first back-to-front for 1 s, then front-to-
back for 1 s. 
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see the importance of the weight of the ipsilaterally projecting unit; as a is increased the 

separation between the gain of the CPL unit to rotation and translation separate quickly 

(Fig 3.11). This is analogous to examining the strength of the connection between CH-cells 

and the H1- or H2-cells. Also, if one examines double recording of a CH-cell and an 

extracellular recording of an H2-cell, one can see that they have opposite PD (Fig 3.13). 

Additionally, their responses during rotation and translation differ. During counterclockwise 

rotation the H2-cell, in the right lobula plate, is excited while the CH-cell hyperpolarizes 

from its resting membrane potential. During translation, a contraction, the same H2-cell is 

still excited but to a lesser degree then during rotation. If one looks at the signal in the 

axon of the CH-cell it is apparent that the mean membrane potential remains near rest but 

there are high frequency events that cause the signal to be depolarized for brief time 

periods. As the input from CH- to H2-cells only allows positive current to be passed it is the 

high frequency EPSP activity that has the ability to inhibit the H2-cell and could form the 

basis of its flow-field selectivity. 

 

The response of H2-cells in my model exhibited almost no flow-field selectivity when the 

weights were set to 0.3, the weight that was determined to be most realistic (Fig 3.17). In 

order to test if this result was sensitive to the weight of the synapse between the CH- and 

H2-cells I increased the weight from 0.3 to 1.8 and 3, an increase of 6 and 10 fold 

respectively. I found that during simulated current injections into the CH-cell that this shut 

the H2-cell down even at small current injections of 1 nA (Fig 3.18). Even with such a 

sensitive connection the response of the H2-cell to translation was still 85 % of that found 

during rotational stimulus (3.16). This is in contrast to the flow-field selectivity seen in vivo, 

where the response of the H2-cell to translation is between 50 and 70 % of that seen 

Figure 3.17: Flow-Field Selectivity of 
model H1- and H2-cells. The flow-field 
selectivity of the H1- and H2-cells in our 
network depending on the weight of the 
connection between the CHL and 
H1L/H2L cells. W is the synaptic weight 
between the CH- and the H1- and H2-
cells. Even at a synaptic weight, W=3, ten 
times as big as our baseline weight, the 
flow-field selectivity is small. In addition 
the flow-field selectivity is not different 
for the H1- or H2-cells in the model. 
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during rotation (Fig 3.7, 3.9 and 3.10). These simulations seem to suggest that the basic 

circuitry described here does not account for the strong flow-field selectivity of the H2-

cells. 

Conclusion 

The combination of ablation experiments and modeling demonstrate that the CH-cell is 

likely not to be responsible for the flow-field selectivity of ipsilaterally connected H2-cells. 

The network connections described by the Haag and Borst (2001, 2002) are not 

adequate to account for the flow-field selectivity found in the H2-cell. In addition, in the 

network model there is no difference between the flow-field selectivity in the H1- and H2-

cells (Fig 3.17). Any future model should include a network architecture that allows H2-cells 

to be selective for rotational flow-fields but leave the H1-cell relatively unselective.  

 

 

 

 

 

 

 

 

A B 

Figure 3.18: Current Injections into Model CH-cell. Current of varying magnitudes 
was injected into the model CH-cell for a period of 1s and the firing rate of the H1- 
(A) or H2-cell (B) was measured. The percent difference from rhe baseline firing rate 
is reported here. We find that as the weight, W, of the  CH-H1and CH-H2 connection 
is increased the baseline firing rate in the H1- and H2-cells are silenced by currents as 
small as 1 nA. 
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Basis of the Broad Receptive Fields of VS-cells 

VS-cells respond to motion presented in front of the ipsilateral eye with a graded shift in 

membrane potential superimposed with high frequency events that are due to either active 

currents or synaptic input. Active properties are present in each VS-cell and produce 

spikelets that are particularly prominent in the VS1-cell (Hengstenberg, 1977; 

Hengstenberg, 1982; Haag et al., 1997), while EPSP activity in medial VS-cells (VS7-10) 

is due to excitatory input, putatively from a spiking interneuron (Haag and Borst, 2004). In 

figure 3.20A, a schematic of the receptive fields of a VS2-, VS4- and VS6-cell is shown 

together with the connectivity among VS-cells as determined via double intracellular 

recordings (Haag and Borst, 2004). Each VS-cell has a receptive field centre (black 

arrows) that is attributed to the integration of local motion information across its dendrites 

(Borst and Egelhaaf, 1992; Haag et al., 1992; Single and Borst, 1998; Haag et al., 

2004a). The location of the dendrites within the lobula plate corresponds to the position 

receptive field centre: as one moves laterally in the lobula plate the receptive fields of the 

cells shift frontally. In addition, each cell responds to motion stimuli outside its central 

receptive field (Krapp et al., 1998. See also Fig 1.8A). For example, all the VS-cells 

respond to downward motion across a much broader slice of visual space than predicted 

by the extent of their dendrites (grey arrows in fig 3.20).  

Neural Identification 

Each VS-cell has a unique anatomy and location within the lobula plate (Hengstenberg et 

al., 1982; Krapp et al., 1998). However, to identify a single VS-cell can be ambiguous 

unless a cautious analysis of its dendritic structure is done: it helps greatly if more than one 

VS-cell is stained. In order to add a quantitative variable to the qualitative list defining 

each VS-cell I have measured the relative location of each VS-cell’s main ventral dendrite 

in the lobula plate. To calculate the position of each cells thick ventral dendrite I used data 
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acquired from 9 flies where a minimum of 3 VS-cells were stained. The cells were either 

filled with a fluorescent dye during intracellular recordings (n=7; In 5 of the flies cells 

were filled by me and in 2 by Jürgen Haag), or with Neurobiotin (n=2; filled by Renate 

Gleich. Data from Haag and Borst, 2005). Each thick ventral dendrite was assigned a 

location between 0 and 100 as determined by its relative position between the medial (0) 

and lateral (100) edges of the lobula plate. By assigning a relative position for each 

ventral branch I avoid the ambiguities caused by rotations of the pictures (Fig 3.19). I 

found that the order of the ventral dendrite is from lateral to medial occurs, except for the 

VS1-cell, as expected by the naming system. Each thick ventral branch shifts ~10 % across 

the lobula plate per cell. I marked each recorded VS-cell by dye injection and used the 

above measurements combined with a qualitative analysis of each cell’s dendritic structure 

to determine the identity of each recorded cell. By combining the subjective anatomical 

information with a quantification of the location of each VS-cell’s main ventral dendrite I 

could unambiguously identify each filled VS-cell.  

The Receptive Fields of VS-cells 

In figure 3.20B sample traces of a VS2- and VS4-cell recorded from the same fly are 

shown. Notice that both cells respond to downward motion with a depolarizing shift in 

membrane potential. However, the azimuthal stimulus position where they are maximally 

responsive differs: while the maximum response of the VS2-cell is obtained at a horizontal 

position of 5P

0
P, the VS4-cell responds most strongly to pattern motion at 52P

0
P. In addition, 

both cells exhibit at least small responses at all stimulus locations. 

Figure 3.19: Neural Identification. A) A picture 
of the the lobula plate where the VS-cells have 
been stained with Neurobiotin. The position of 
each ventral dendrite is marked with a red dot. 
The edges of the lobula plate are marked with 
vertically orientated black lines. The relative 
position between the two edges was measured. 
B) The average position of each ventral 
dendrite in the lobula plate. Data was taken 
from 9 flies where 3 to 10 VS-cells were labels 
with either Neurobiotin or fluorescent dyes. Each 
point is the mean +/ SEM. Neurobiotin stained 
brains courtesy of Renate Gleich, Dietmute 
Büringer and Jürgen Haag. 



Results 

F 
62 

 

The receptive fields of VS-cells (1-6) were determined in response to thin upright stripes of 

horizontal grating moving vertically (fig 3.20C). Each data point is the normalized mean 

+/- SEM. The two most striking features of the VS-cells’ receptive fields are their width 

and the amount of overlap between neighbouring cells. In particular, the VS1-, VS2- and 

VS3-cells receptive fields are almost identical. Each of these three cells shows a strong 

response, greater than 33% of maximum, at positions ranging from -8P

0
P to 52P

0
P. In 

addition, significant responses can still be detected at the most posterior stimulus positions 

(91P

0
P and 104P

0
P).  The VS4-, VS5- and VS6-cells also have highly overlapping receptive 

fields though not to the same extent as those of the VS1-, VS2- and VS3-cells. The  

Figure 3.20: VS-cell Network and Receptive Fields. A) Schematic network of VS-cells. 
Above the VS6-, VS4-, and VS2-cell is a cartoon of each cells' receptive field (grey and 
black arrows). The black arrow indicates each cell's central receptive field, while the grey 
arrows illustrate its spatial extent. As one moves laterally in the lobula plate the receptive 
fields move frontally in visual space. B) Single responses of a VS2- and VS4-cell recorded 
from the same fly illustrate the basic response properties of VS-cells. Note that both cells 
respond to downward motion with a graded shift in membrane potential. The response 
amplitude depends on the stimulus position (see arrows). For each trace the stimulus was 
applied for 1s. C) Responses of 6 VS-cells to downward motion as a function of stimulus 
position. 0 deg on the x-axis represents the position directly in front of the fly, and 
positive numbers represent positions on the same side where the cells were recorded.
Each data point is the mean response, normalized with respect to its maximum, +/- SEM. 
Note the strong overlap of VS1- (n=12), VS2- (n=7) and VS3-cells (n=9). In addition the 
responses of the VS4- (n=13), VS5- (5) and VS6-cells (n=6) shift posteriorly. 
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Figure 3.21: Proximal Cell Ablations. Three examples of the effect of ablating individual 
VS-cells (blue cell in B, E and H) on the receptive field of a neighbour or next-of-neighbour 
VS-cell (red cell in B, E and H). In A, D and G the open circles connected with the dotted 
blue line is the receptive field of the ablated cell (blue cell in picture), the filled orange 
circles is the receptive field of the VS-cell in the intact animal (red cell in picture), and the 
dark red filled squares is the receptive field after the blue cell has been ablated. The x-
axis shows the horizontal position at which the stimulus was applied. The receptive field for 
each set of recordings was normalized to the maximum response. The stars indicate 
positions at which significant changes between the pre vs post responses of the recorded 
VS-cell occurred (* p<0.05; ** p<0.001). In C, F and I the relative difference 

(
100×−

pre
prepost

, in %) between the pre (orange) and post (dark red) responses at each 
stimulus location is shown. The vertical line indicates the stimulus position where the intact 
(red) cell had its peak response. A) An example of a VS4-cell’s receptive field before and 
after the ablation of a VS2-cell. B) Picture of VS4- and VS2-cells. C) Relative difference 
(%) of pre vs post response of the VS4-cell after the ablation of the VS2-cell. D) A second 
example of a neighbour-neighbour ablation, demonstrating the deficit a VS5-cell (red cell) 
experiences after the ablation of a VS6-cell (blue cell). E) Picture of VS5- and VS4-cells. F)
Relative difference (%) of pre vs post response of the VS5-cell after the ablation of the 
VS6-cell. G) A third example of a neighbouring cell ablation, demonstrating the change of 
a VS1-cell (red cell) after the ablation of a VS3-cell (blue cell). H) Picture of VS1- and 
VS3-cells. I) Relative difference (%) of pre vs post response of the VS1-cell after the 
ablation of the VS3-cell. 
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receptive field peaks of the VS4-, VS5- and VS6-cells are located, as expected from the 

location of each cells’ dendrite, at 52P

0
P, 78P

0
P and 104P

0
P respectively. However, these three 

cells have exceptionally wide receptive fields showing significant responses at every 

stimulus position, with responses above 33% of the peak spanning 112P

0
P, 99P

0
P and 86P

0
P, 

respectively (fig 3.20C). Note that the stimulus device did not allow us to record the full 

extent of these cells receptive fields as our most posterior stimulus was centered at 104P

0
P. 

Using a different stimulation design, unambiguous responses to downward motion have 

been noted in the VS4-, VS5- and VS6-cells across the whole ipsilateral visual field 

(Krapp et al., 1998). Another interesting feature of the receptive fields is the apparent 

grouping of the different VS-cells. In particular, the separation between the receptive 

fields of the VS3- and VS4-cells is much greater than that between the receptive fields of 

VS2 and VS3 or VS4 and VS5, respectively. 

Proximal vs Distal Ablations 

The broadening of each VS-cell’s receptive field, beyond its central receptive fields, has 

been attributed to input from neighbouring cells via electrical synapses in the axons (Haag 

and Borst, 2004). These electrical connections are thought to be solely between 

neighbouring VS-cells. According to this view, for example, if the VS5-cell is influenced by 

the input to the dendrites of the VS2-cell, this information must pass through both the VS3- 

and VS4-cell before affecting the activity of the VS5-cell. In order to determine if the 

electrical coupling of neighbouring VS-cells does indeed affect the width and overlap 

between neighbouring VS-cell’s receptive fields I ablated single VS-cells and examined 

the receptive field structure of a nearby cell. In each experiment I first filled a single cell 

with Fluorescein (green cells in Figs 3.21 and 3.26). After withdrawing the electrode I 

filled a second cell with Alexa568 (red cells in Figs 3.21 and 3.26). Then I recorded the 

response of this cell to downward motion at several positions, both before and after the 

ablation of the Fluorescein filled cell. Figure 3.21A shows how the ablation of a VS2-cell 

affects the receptive field shape of a VS4-cell. Before ablating the VS2-cell, the VS4-cell 

responded strongly (~50% of its peak response) to stimuli at those positions corresponding 

to the VS2-cell’s receptive field maxima (From 0 to 30P

0
P). After the ablation (of the VS2-

cell) the response of the VS4-cell at the stimulus locations 5P

0
P, 18P

0
P and 31P

0
P dropped 

significantly (P < 0.05) from ~50% to ~15% of its peak response. This drop in response 

magnitude is also evident in the most frontal stimulus position where the VS2-cell’s response 

is only ~10% of the peak (figs 3.21A and C). In contrast, the relative response magnitude 
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of the VS4-cell was maintained in the posterior stimulus positions where the VS2-cell is not 

highly responsive and input to the VS4-cell can be both direct from local motion elements 

or via other VS-cells with more posteriorly located receptive fields (fig 3.21C). This 

example implies that the VS2-cell supplies information to the VS4-cell about its own 

receptive field and that of the VS1-cell, but not about cells with receptive fields more 

posterior than its own. 

 

This association among nearby VS-cells is not unique to the VS4-VS2 pair. Figures 3.21D-F 

contain an example of a VS5-cell, both before and after the ablation of a VS6-cell. Here, 

the ablated cell had a more posterior receptive field. Consequently, when the VS6-cell 

was ablated, the VS5-cell experienced a decline of sensitivity in the posterior, but not in 

the frontal divisions of its receptive field (fig 3.21D and F). A third example (fig 3.21G-I) 

clearly demonstrates how one cell can act as a conduit for passing information not only 

about its own activity but that of other cells further away. Figure 3.21G shows the 

Figure 3.22: VS4-cell’s Deficit after the 
Ablation of Frontal Viewing VS-cells. A) 
Schematic of the VS-cell network showing 
the relationship between the recorded cell 
(VS4) and the ablated cells (VS2 or 3). B)
Mean difference (+/- SEM) of the 
receptive fields (post minus the pre 
response) for a group of 4 VS4-cells where 
either a VS2- (n=1) or VS3-cell (n=3) was 
ablated. C) Relative difference 

( 100×−
pre

prepost
, in %) for the data shown 

in B. Note that at each stimulus location 
frontal to the peak response of the VS4-cell 
the response drops by approximately the 
same amount (~50%).
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receptive field of a VS1-cell both before and after the ablation of a VS3-cell. As in the 

previous example, the sensitivity in the VS1-cell’s receptive field fell in the posterior parts 

of its receptive field, albeit to a lesser degree (fig 3.21G and I). Nevertheless, the 

percentage change was large and significantly decreased (p < 0.05) at each stimulus 

position posterior to the peak response of the VS3-cell, thus demonstrating that the input to 

the VS1-cell about these posterior stimulus positions is relayed via the VS3-cell. 

 

To indicate the reproducibility of the effect of ablating single VS-cells on the receptive 

fields of nearby neurons I grouped four experiments of VS4-cells where one of two more 

frontally viewing VS-cells, the VS2- or VS3-cells, was ablated (fig 3.22). Figure 3.22 

shows both the absolute (fig 3.22B) and relative difference (fig 3.22C) in the responses of 

the VS4-cells after the ablation of single VS2- (n=1) or VS3-cells (n=3). Each data point is 

the mean difference (+/- SEM) between the normalized response after the ablation and 

the normalized response in the intact animal. The response of the VS4-cells at the position 

where the response of the VS2- and VS3-cell are largest, for stimulation at 5P

0
P, 18P

0
P and 

31P

0
P, dropped by 0.225 (fig 3.22B), which is a relative difference of -46 % (fig 3.22C). 

The mean relative difference for the two most frontal stimuli positions field, -5P

0
P and -21P

0
P, 

amounted to -48 % and, thus, was almost identical to that of the other three frontal 

stimulus positions. These two stimulus position are located more frontally than the peak of 

Figure 3.23: Distal Ablation. An example 
of a VS6-cell after the ablation of a 
distant VS1-cell. A)  A VS6-cell’s receptive 
field before and after the ablation of a 
VS1-cell. B) Relative difference (%) of the 
VS6-cell’s response pre vs post ablation 
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the VS2- and VS3-cells’ receptive fields and indicate that the input from more frontal 

viewing cells are also interrupted when a single VS-cell is ablated. This finding is in 

contrast to the change in the response of the VS4-cells in the more posterior stimulus 

position. Here the VS4-cells’ response did not change at all. These results show that the 

VS4-cell inherits the frontal part of its receptive field from VS2- and VS3-cells and also 

imply that the VS1-cell plays a role. 

 

In order to determine if cells whose respective receptive field peaks are widely separated 

affect each other I performed experiments where the cell pairs were between 4 and 6 

Figure 3.24: Summary of Ablations. 
A) Mean relative difference between 
post and pre ablation response shown 
for both the ablated side and intact 
side of the recorded VS-cells’ 
receptive fields. The ablated side 
consists of those stimulus positions 
under and beyond, from the point of 
view of the recorded cell, the peak of 
the ablated cell. The intact side 
comprises all other stimulus positions. In 
each graph the red data points 
represent the neighbour ablations, the 
green data points represent the distant 
ablations and the orange represent 
VS1-cell ablations while recording one 
of the medial VS-cells.  B) Peak 
responses for each experiment before 
(Pre) and after (Post) the ablation of a 
single VS-cell. The grey data points 
represent the mean +/- SEM of all 
experiments. C) Peak response position 
for each cell before and after the 
ablation of another VS-cell. The grey 
data points represent the mean +/- 
SEM. 
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cells apart.  An example of a VS6-cell with a VS1-cell ablated demonstrates that cells far 

apart do not influence each other (fig 3.23). After the VS1-cell was ablated there was no 

detectable change in the receptive field structure of the VS6-cell. Similar results were 

obtained with a VS3-VS7 pair (data not shown). These two examples illustrate that cells 

between 4 and 6 cells apart do not affect each others response. 

 

A summary of all ablations performed is shown in figure 3.24. The mean relative change 

for the intact versus the ablated side is plotted for each individual experiment (fig 3.24A). 

I define the ablated side to include all azimuthal stimulus positions on the same side of the 

recorded cell’s receptive field peak as the ablated cell, not including the position of the 

peak response. The intact side consists of the location of the peak response and those on 

the opposite side of the peak from the ablated cell. Note that for each experiment where 

a neighbouring, or neighbouring but one, cell was ablated the response on the ablated 

side dropped, whereas it remained the same on the intact side (red data points fig 

3.24A). 

 

Because of concerns that cell ablations might alter the primary visual response of VS-cells, 

I compared the peak response amplitude and the stimulus position at which this peak 

occurs for each cell (fig 3.24B and C). Before and after ablations I found no consistent 

effect of ablating a single neuron on the response of neighbouring cells. The mean peak 

response for all experiments fell from 3.9 mV to 3.3 mV, which was not significant (n=12, 

Figure 3.25: VS1- and the Medial VS-cells’ cell Receptive Fields. A) Schematic network 
of VS-cells highlights the hypotheses of Haag and Borst (2004). It is unclear to which of the 
medial VS-cells the VS1-cell provides inhibitory input too. The receptive field of the VS2-,
VS8-, and VS10-cell are shown above the respective cell. The format is the same as figure 
1A. B) The receptive fields of the VS1-cell and the 3 most medial, posterior viewing, VS-
cells in response to upward motion. See figure 1B for explanation. Note the overlap 
between the VS8- (n=2), VS9- (n=3) and VS10-cell (n=2). In addition the VS1-cell 
appears to mirror that of the medial VS-cells (n=5).  
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p=0.42). For the set of 8 ablations where a negighbour or next of neighbour cell was 

ablated, the peak response also did not change. In addition, the stimulus position of the 

peak response remained stable. These results suggest that the observed narrowing of the 

receptive fields are not due to damage done to the input from the local motion detectors 

but rather to deficits in the input from neighbouring VS-cells. 

VS1-cell Input to the Medial VS-cells 

In addition to possessing the above-mentioned broad receptive fields medial VS-cells 

(VS8-10) respond unexpectedly to vertical motion presented in the frontal visual field, far 

from their presumed local motion input (Krapp et al., 1998). Current injection into VS1-cells 

influenced the activity of the medial VS-cells (Haag and Borst, 2004), and  this connection 

has  been proposed to underlie the medial VS-cells’ sensitivity to motion in the frontal 

visual field (fig 3.25A). In line with this proposal  (Haag and Borst, 2004) the receptive 

fields of the medial VS-cells (VS8-10) and the VS1-cell have opposite polarity (fig 3.25B): 

upward motion in the frontal visual field hyperpolarizes the VS1-cell, but the same stimulus 

depolarizes the VS8- to VS10-cells. In addition, the receptive fields widths of the medial 

Figure 3.26: VS1-cell Ablation. Example recordings of a VS8-cell (red cell) before and 
after the ablation of a VS1-cell (green cell). The vertical line separates the five frontal 
stimulus positions, the ablated side, from the 5 lateral stimulus positions, the intact side. A) 
Response of a VS8-cell to upward motion before and after the ablation of a VS1-cell. B) 
Relative difference (%) of the pre versus post response of the VS8-cell to upward motion. 
C) Picture of the two recorded cells. D) Response of the same VS8-cell to downward 
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VS-cells in response to upward motion overlap, which is consistent with a common input. 

Each cell produced a response of greater than 33% spanning a minimum of 50P

0
P ranging 

from -21P

0
P to 31P

0
P.  

 

In order to determine whether inhibitory input to the medial VS-cells from the VS1-cell can 

account for their sensitivity to vertical motion in the frontal visual field I recorded the 

receptive fields of single medial VS-cells before and after the ablation of the VS1-cell. In 

figure 3.26 the receptive field to upwards (fig 3.26A) and downwards (fig 3.26D) motion 

of a VS8-cell (red cell in fig 3.26) is shown before and after the ablation of a VS1-cell 

(green cell in fig 3.26). No significant differences were found after the ablation of the 

VS1-cell (fig 3.26B, G). This was also true for another ablation experiment involving a 

VS9-cell’s response to upward motion before and after the ablation of VS1-cell. Here, 

unlike in the proximal and distal ablations, the ablated side included the 5 most frontal 

stimulus positions, while the intact side included the 5 most posterior stimulus positions. The 

grouped average response magnitude of the five frontal and five posterior stimulus 

positions did not change significantly after the ablation of a VS1-cell (fig 3.26A, orange 

points). 

 

In contrast to our expectations, these experiments show that input from the VS1-cell cannot 

be solely responsible for the sensitivity of the three medial VS-cells to vertical motion in the 

frontal divisions of their receptive fields. 

Conclusions 

VS-cells respond to stimuli presented outside of the visual space expected from the 

retinotopy of the lobula plate and the extent of their dendritic aborization. The receptive 

fields are unexpectedly wide, and in the case of the medial VS-cells (VS8-10) include 

frontal sensitivity when only posterior vision was expected (Krapp et al., 1998). The results 

of these ablation experiments show that lateral connections among VS-cells form the basis 

of their unexpectedly wide receptive fields, which substantially exceed the proportion of 

the lobula plate covered by their dendrites. I also provide evidence that VS-cells connect 

sequentially in a chain like fashion beginning with the VS1-cell on the lateral edge of the 

lobula plate and continuing through each VS-cell to the VS10-cell on the lobula plate’s 

medial edge. On the other hand, how the medial VS-cells acquire sensitivity in the frontal 

visual field remains unclear. 
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Vertical-Horizontal Interaction 

The H1- and H2-cells are spiking neurons that connect the two lobula plates, providing 

input to the HSN-, HSE, and both CH-cells. They respond to horizontal front-to-back motion 

presented in front of the ipsilateral eye with an increase in firing rate of up to 300 Hz. 

There exists one cell in each lobula plate.  In addition to their horizontal sensitivity they 

have been shown to be sensitive to vertical motion in the frontal but not posterior divisions 

of the ipsilateral visual fields (Haag and Borst, 2003). This sensitivity to vertical motion in 

the frontal receptive field has been suggested to be a consequence of excitatory input 

from the VS1-cell (Haag and Borst, 2003). Here I elaborate on the experiments of Haag 

and Borst (2003) and, additionally perform single ablations of the VS1-cell in order to 

determine if this cell is indeed responsible for the vertical sensitivity of the H1- and H2-

cells. 

 

First, I tested how reliably I could record the H1- and H2-cells using extracellular 

electrodes. When recording in the known vicinity of the axonal aborizations of H1-cells I 

found two types of cells. Both responded to horizontal front-to-back motion with a 

response of 80-100 Hz. However, in response to vertical motion the cells divided into two 

groups: one strongly responsive to vertical motion in the frontal visual field, type A, while 

the other was response in a more lateral portion of the visual field, type B (Fig 3.27C). The 

type included here in the ablation and current injection experiments was type A as it 

responded strongly to downward motion in the frontal portion of the visual field as 

previously shown (Haag and Borst, 2003). When recording near the axon terminals of the 

H2-cell I could reliably record cells that responded to horizontal and vertical motion as 

expected (Fig 3.27).  

 

In order to determine if the input from VS1-cells is a reasonable signal to drive the vertical 

sensitivity of H1- and H2-cells I recorded the receptive fields of the VS-, H1- and H2-cells 

to vertical downward motion (Fig 3.28). During a double recording of one spiking (H1 or 

H2) and one graded response (VS) cell I measured their receptive fields in response to thin 

vertically moving grating. In Fig 3.28A the relative response to the downward movement 
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of a VS1, VS2 and H1-cell from a single fly demonstrates clearly the overlapping nature 

of these cells receptive fields to vertical motion. They appear to match almost perfectly. 

This is also evident in the population averages (Fig 3.28B). These receptive field 

measurements demonstrate that either the VS1- or VS2-cell have receptive fields that 

could drive the vertical response of the H1-cell. 

 

However, it has previously been demonstrated that current injected into the VS1-cell, but 

not the VS2-cell, causes a correlated change in the firing rate of the H1-cell (Haag and 

Borst, 2003). Here, in addition to checking for the sensitivity of this connection by injecting 

different magnitudes of current, I injected current at different locations: the VS1-cell axon 

near its dendrites (n=4), the VS1-cell axon near its terminal region (n=7) and the VS2-cell 

near its terminal region (n=3)(Fig 3.29). I found current injected into the axon near the 

Figure 3.27: Horizontal vs Vertical Response of H1- and H2-cells. The response of 
extracellularly recorded H1- or H2 –cells to horizontal (back-to-front) and vertical 
(downward) motion in their frontal visual field is shown. The black circles are the response 
of individual cells, while the grey star is the population average. A) The response of H1-
cells (A) to horizontal motion in the frontal visual field was compared to its response to 
horizontal motion. B) The response of H2-cells to horizontal and vertical motion was 
compared. C) The response of two cells that responded as H1-cells to horizontal motion 
but had different responses to vertical motion. In the ablation and current injection 
experiments only H1-cells that responded strongly in the frontal and not in the posterior 
visual fields were included. 

BA

C 
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dendritic end of the VS1-cell had the greatest effect while current injected near the 

terminal end only had a consistent influence at currents of +/- 10 nA. As predicted from 

previous experiments the injection of current into VS2-cells had no influence on the firing 

rate of H1-cells. These current injection experiments provide further evidence, on top of 

the anatomical evidence, that VS1-cell supply input to H1-cells via dendro-dendritic 

connections.  

VS1-Cell Ablations 

In order to test that the vertical response of the H1-cell in the frontal visual field is indeed 

due to input from VS1-cells, VS1-cells were selectivity ablated while recording the vertical 

and horizontal responses of the H1-cell in the frontal visual field. In Fig 3.30A the PSTH of 

an H1-cell to horizontal back-to-front (black line) and vertical downward (red line) motion 

in an intact animal is shown. Note that the response to vertical motion, in the frontal visual 

field, is 47 % +/- 0.04 of the horizontal response, which is typical (Haag and Borst, 

2003). The horizontal response is 40.8 Hz +/- 1.6 while the response to vertical motion is 

19.2 Hz +/- 1.0. After the ablation of the VS1-cell in this fly the vertical response 

disappears completely; responding at 0.7 Hz +/- 0.3. This was 4.2 % +/- 2 of the 

horizontal response of 16.2 Hz +/- 1.3 (Fig 3.30C and D). On average (n=2) the post 

vertical response fell from 47.4 % +/- 3.0 to 10.0 % +/- 0.6 of the horizontal response. 

 

Figure 3.28: Receptive Fields of H1 and the Frontally Viewing VS-Cells. Each data 
point is the response to downward motion at the particular frontal-posterior azimuth. A) 
The receptive field of a H1-, VS1- and VS2-cell recorded from the same fly. B) The 
average receptive field as recorded from a population of flies. 

A B
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One important caveat to these results is that after the ablation of the VS1-cell the 

horizontal response of the H1-cell is also compromised. In our two ablation experiments the 

firing rate of to horizontal motion fell from 40.8 Hz +/- 1.6 to 16.2 Hz +/- 1.3 after the 

ablation of single VS1-cells (Fig 3.30C). I found the VS1-cell more difficult to ablate than 

the other VS-cells and had to leave the laser on for an additional 90 second period at 

twice the normal power, i.e., 30 mW. As a control the affect of the extra laser illumination 

was measured without having the VS1-cell filled with Fluorescein. This lead to less robust 

spiking response in the H1-cell. In Fig 3.30G is the average response of H1-cells both 

before and after the application of the laser for 180s at 30 mW; the same as was used 

during the two ablation experiments. I found the response to horizontal motion dropped 

56 Hz +/- 10.4 to 31Hz +/- 1.5 Hz (n=3). This was not accompanied by a significant 

change in the relationship between the vertical and horizontal response, which only 

dropped from 0.61 +/- .13 to .45 +/- .15 (Fig 3.30G and H). 

Conclusions 

Here I demonstrate that the input to H1-cell from VS1-cell is responsible for the sensitivity 

of the H1-cell to vertical motion. I supply additional evidence that this input arrives via 

dendro-dendritic interactions with the VS1-cell. 

 

Figure 3.29: Horizontal Vertical Interactions. A) A schematic diagram of the interaction 
between the VS1- and H1-cell illustrate that aside from making lateral electrical 
connections with other VS-cells, the VS1-cell is also suspected to connect, via its dendrites 
to the H1-cell. The coloured electrodes indicate points at where we injected current while 
recording from the H1-cell. B) Current was injected into the VS2-cell axon (green, n=3), 
VS1-cell axon (blue, n=7) or VS1-cell thick dendritic branch (red, n=4) while recording the 
spiking activity of the H1-cell. The current injected is displayed on the x-axis while the 
resultant change in H1-cell firing rate is displayed on the y-axis. 

B A 
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Figure 3.30: VS1-cell Ablations. In A and B the 
black line represents horizontal motion and the 
red line the response to vertical motion. The 
stimulus was applied for 1s starting at 1s. In C, 
E and G the green data points represent data 
from an intact animal and red data from a fly 
where a single VS1-cell was ablate (C and E) 
or the laser was applied for 180s at 30 mW 
(G). In D, F and H the normalized vertical 
response is shown. It vertical response was 
normalized to the horizontal response from the 
same experiment. Each bar is the mean +/-
SEM. A) The response of the H1-cell to 
horizontal motion as compared to a response of 
to vertical downward motion. B) The response 
of the same H1-cell in A, but after the ablation 
of a single VS1-cell. Note that while the 
response to horizontal motion is still robust its 
response to vertical motion disappears. C) The 
mean +/- SEM response of the H1-cell shown in 
A and B, to horizontal motion dropped from 
40.8 Hz +/- 1.6 to 16.2 Hz +/- 1.3; while its 
response to vertical motion disappeared 
dropping from 19.2 +/- 1.0 Hz to 0.7 +/-  0.3 
Hz.  D) The relative vertical response of the 
same H1-cell from A and B dropped from 47.1 
+/- 4.1 % to 4.3 +/- 1.8 %. The change was 
significant, p<0.001 (*). E) The mean response 
for all our experiments (n=2) of H1-cell 
response before and after the ablation of the 
VS1-cell. The horizontal response fell from 50.4 
+/- 9.6 Hz to 23.9 +/- 4.7 Hz; while the 
vertical response fell from 19.2 +/- 3.0 Hz to 
2.2 +/- 1.5 Hz. F) The relative response for 
these two experiments dropped from 47 +/-
0.35 % to 10.3 +/- 5.9 % G) The response of 
the H1-cell to both horizontal and vertical 
motion drops after the application of the laser 
for 180s at 30 mW (n=3). The response to 
horizontal motion dropped from 56 +/- 10.4 
Hz to 33 +/- 8.6 Hz; while the response to 
vertical motion dropped from 31 +/- 1.5 Hz to 
12.6 +/- 3.8 Hz. H) The relative vertical 
response stayed statistically the same. It 
dropped from 0.61 +/- .13 to .45 +/- .15 
(p=0.44). 
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4 Discussion 

I used a single cell ablation technique to determine if the connections among LPTCs form 

the basis of their ability to process complex optic flow information. I found that some, but 

not all, of the connections between lobula plate tangential cells contributed to building 

their respective receptive fields.  In particular the response of CH-cells is due exclusively to 

input from HS-cells; electrical coupling between neighbouring VS-cells forms the basis of 

their wide receptive fields and the input of the VS1-cell is responsible for the H1-cell’s 

sensitivity to vertical motion in the frontal visual world. However, the inhibitory input from 

CH- to H1- and H2-cells is not singularly responsible for their selectivity to rotational flow-

fields and the VS1-cell’s input to the medial VS-cells (VS8, 9 and 10) is not sufficient to 

account for these cells sensitivity to vertical motion in the frontal visual field.  

 

Below the caveats, consequences and meaning of the above results will be discussed. First 

the technique of laser ablations will be addressed. The results of the ablation experiments 

will then be dealt with as a group highlighting how the blowfly extracts useful information 

from the visual world. Finally, the each set of ablations will be discussed in detail, with 

particular emphasis on the specific consequences to visual processing of the fly.  

Laser Ablation Technique 

The technique of photo-ablation makes it possible to assess the role of single cells within a 

network of neurons (Miller and Selverston, 1979). The essential principal is to fill a single 

cell with a fluorescent dye that breaks down easily when irradiated with the appropriate 

bright light. This technique was first developed by Miller and Selverston (1979) using 

Lucifer Yellow and a high-intensity blue light. Here I used Fluorescein and a blue laser with 
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a wavelength of 488 nm. The laser ablation technique has been successfully applied in 

ablating whole neurons in the lobster somatogastric ganglion (Miller and Selverston, 1979; 

Selverston and Miller, 1980), auditory system of the cricket (Selverston et al., 1985), 

cerecal system of the cockroach (Mizrahi and Libersat, 2001), optic tectum of larval 

zebrafish (Roeser and Baier, 2003) and in the visual system of the blowfly (Warzecha et 

al., 1992; Warzecha et al., 1993). In addition, this technique has been shown to be useful 

in ablating and analyzing the function of isolated parts of neurons in the cercal system of 

the cricket (Jacobs and Miller, 1985), as well as in the leech (Lytton and Kristan, 1989).  

 

One concern with this technique, however, is whether laser illumination causes unspecific 

damage to neurons not injected with the fluorescent dye explicitly excited by the laser. 

Generally, I found that the responses of both unfilled neurons (3.2) and neurons filled with 

Alexa568 (Fig. 3.1) were not damaged by laser illumination. Even neurons filled with 

Alexa488, which is selectively excited by blue light, are undamaged upon irradiation with 

the blue laser (data not shown). Perhaps not coincidently, unlike Fluorescein, Alexa488 

does not bleach (data not shown), suggesting a correlation between the break down of a 

dye and its toxicity. Warzecha et al. (1993) also found that neurons not filled with 

fluorescent dyes continued to function normally after laser illumination of the fly brain.  

 

Another line of evidence suggesting that the laser does not cause unspecific damage are 

experiments where connected cells were ablated without having a noticeable affect on 

their associated cell. The best example is when CH-cells were ablated; allowing 

electrically connected HS-cells continued to respond normally (Fig. 3.6). In addition, the 

ablation of electrically coupled VS-cells did not affect the peak response of these cells to 

stimuli in the centre of their receptive fields (Fig 3.24), demonstrating that the individual 

inputs to a single cell can be assessed separately.  The above is all true for ablations 

performed with a laser power of 15-20 mW and duration of 90-120 s.  

 

However, when attempting to ablate the VS1-cell I had to turn the laser power up to 30-

35 mW and apply it for 180 s. During such an illumination the time it took for the response 

of H1-cells to recover increased from 2 minutes, as seen for ablation performed at 15-20 

mW, to as long as 5 minutes after exposure of 30-35 mW for 180 s. After this type of 

exposure I found the response of the H1-cells was decreased. They generally had a lower 

spontaneous firing rate and their peak firing rate during PD motion stimulus also 
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decreased (Fig 3.30G). However, similar deficits were not seen in the response of VS8-, 

VS9- or VS10-cells after the ablation of VS1-cell. These cells responded normally (Fig 

3.26). Although it is better to use the minimum laser power necessary to ablate a neuron it 

is apparent that this method is relatively harmless to cells not filled with a dye that both 

selectively absorbs the irradiating light and breaks down easily when irradiated. 

 

A second issue concerns the conclusions made about ablations that have no affect on the 

circuit. This problem is particularly acute when the input and output synapses lie close 

together. One clear example of the dangers of drawing conclusions from such ablation 

experiments is the analysis of directionally selective ganglion cells in the rabbit retina (He 

and Masland, 1997). They found that after the laser ablation of an amacrine cell that the 

directionally selective response of the connected directionally selective ganglion cell 

remained. Hence, it was concluded that the mechanisms for directional selectivity lie 

postsynaptically of the starburst amacrine cell. This was later shown to be false by 

ablation techniques using toxins that were either genetically expressed in starburst 

amacrine cells (Yoshida et al., 2001) or applied extracellularly (Amthor et al., 2002). In 

addition, calcium imaging showed that a directionally selective response already existed 

in the dendrites of starburst amacrine cells (Euler et al., 2002). The ablations of He and 

Masland (1997) likely caused no deficit to the process of directionally selective motion as 

the functionally important computations and information transfer all happen locally within 

single thin processes (Euler et al., 2002; Fried et al., 2002; Ozaita et al., 2004), and their 

laser ablation only killed the large cell bodies but left the separate processes to seal and 

remain functional. This is possible as other labs have purposefully only ablated parts of 

neurons successfully (Jacobs and Miller, 1985b; Lytton and Kristan, 1989). 

 

Here, four sets of ablation experiments were performed where the input-output pathways 

were likely local dendritic processes. In two of these, i.e. the VS1-cell ablations with the 

medial VS-cells and the CH-cell ablations while recording the H2-cells, the ablation of the 

specified neurons caused no noticeable difference on the target cells. For these two cases 

it is not thought that the local processes remained intact. In the two other cases, i.e. the HS-

cell ablation with CH-cells and the VS1-cell ablations with H1-cells, the ablations caused a 

significant change to the response properties of other cells in the circuit. CH-cells lost their 

response to ipsilateral motion stimulus after the ablation of HS-cell and the H1-cell lost its 

response to vertical motion after the ablation of the VS1-cell. It is unlikely that in some 
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cases I ablated the dendritic trees and in other I did not as the dendritic trees all lie in the 

same plane at similar depths in a thin neural tissue. In addition, in the cases where the 

ablation of a specific cell had an affect on its linked neighbour it occurred for each 

ablation. This suggests that our ablation parameters were set up correctly to ablate cells 

reliably. Hence, the experiments where ablations had no affect on other LPTCs suggest 

that I do not have a complete picture of the circuitry connecting the LPTCs together.  

Building Receptive Fields 

The general model of how lobula plate tangential cells respond to motion has been 

described in great detail over the last 15 years. First anatomical evidence suggests that 

the arrangement of input to the lobula plate is arranged in retinal topic manner. Where 

the anatomy of the putative input neurons has small axonal aborizations, thus each 

dendritic input on a lobula plate should generally represent localized positions in the visual 

world. Second, it has been demonstrated that the directionally selective response of LPTCs 

is due to dendritic integration of local motion cues that arrive on their dendritic trees. This 

basic framework suggests that the receptive fields of LPTCs should then be consequence of 

the preferred direction of their local motion input and their dendritic architecture. 

However, it is clear that the whole response repertoire of many lobula plate tangential 

cells cannot be explained solely by dendritic integration of local motion cues.  

 

Anatomical and physiological studies have elucidated an extensive highly organized 

neural network among the LPTCs that may form the basis of their often complex receptive 

fields. In particular, current injection experiments have revealed connections that 

appeared to fit with the detailed receptive field structures that have been recorded using 

local motion stimulus paradigm. The ablation experiments presented here along with some 

previous ablation studies have started to reveal which connections can account for specific 

response properties of individual cells. This work has clearly shown that lateral connections 

among LPTCs play a fundamental role in shaping their receptive fields. It is now clear that 

the receptive fields of the lobula plate tangential cells are a consequence of at least three 

variables: 

1. The PD of their local motion input. 

2. Their dendritic architecture 
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3. Their lateral connections with other LPTCs. 

The lateral connections among the LPTCs appear to augment individual cells primary 

receptive fields that are determined by their dendritic architecture and the PD of their 

local motion input. In addition, dendritic integration properties, intrinsic cellular mechanisms 

as well as the adaptive properties of both the electrical and chemical synaptic connections 

are likely to play a role. Below the individual projects will be discussed.  

Input Structure to HS- and CH-Cells 

Using the single cell laser ablation technique I have demonstrated that the response of CH-

cells to visual motion presented in front of the ipsilateral eye is entirely dependent on input 

from electrically coupled HS-cells. In contrast, the response of HS-cells turned out to be 

independent of input from CH-cells. These two results provide convincing evidence that HS 

neurons receive local motion information directly from local motion elements and pass this 

information on to CH neurons (Fig. 3.3B; also see Fig 4.1). Such a connection scheme has 

implications for understanding the visual response properties of CH-cells including: their 

spatial integration properties, dendritic calcium signals during null direction motion stimuli 

and the spatial blurring of motion signals on their dendrites. 

 

The fact that input from HS-cells, rather than direct input from local motion elements drives 

Figure 4.1: Schematic diagram of the input-
output pathways of HS- and CH-cells. An 
array of local motion detectors supplies HS, 
H1, H2 and FD cells with local motion 
information (grey arrows). The preferred 
direction for local motion input to HS- and FD-
cells is front-to-back while that of H1 and H2 
is back-to-front. HS- and CH-cells are 
connected electrically via their dendritic trees. 
CH-cells inhibit H1, H2 and FD-cells 
GABAergic synapses (black arrows). In 
addition HS and CH cells receive excitatory 
(white arrows) from the contralateral H1 and 
H2 neurons. Solid lines indicate known 
connectivity and dashed lines indicated 
assumed connections. Only one half of the 
network is shown for clarity. The network is 
symmetric about the midline. 
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CH-cell activity provides an explanation for the spatial saturation properties found in 

these two neurons. The visual responses of CH- and HS-cells have been shown to saturate 

to the same degree with increasing spatial extent of the ipsilateral motion stimulus (Gauck 

and Borst, 1999; Haag et al., 1999). As HS-cells drive the CH-cells, one would expect that 

as the HS-cell response saturates so would the CH-cell. 

 

Another important aspect resolved by the current finding refers to the dendritic calcium 

measurements made in tangential cells. During null direction motion an increase in calcium 

concentration has been observed in the small dendritic branches of VS-cells (Single and 

Borst, 2002; Borst and Single, 2000) and HS-cells (Haag and Borst, unpublished), but not 

CH-cells (Haag, Single and Borst, unpublished). This increase in calcium concentration 

during null direction stimuli has been assumed to be due to the low directional selectivity of 

the excitatory input from local motion-sensitive elements, which presumably arrive on the 

dendrites via calcium-permeable nicotinic acetylcholine receptors (Brotz and Borst, 1996; 

Oertner et al., 2001). My findings explain why the dendritic calcium in CH-cells does not 

rise during null direction stimulus, because ipsilateral motion information arrives via 

electrical coupling with HS-cells and not via chemical synapses from motion-sensitive 

elements. It also points to a benefit of this type of connection scheme. The outputs of a CH-

cell are likely to be more directionally selective then if it received direct input from local 

motion elements, as the calcium signal will follow the membrane potential more closely. The 

affect of presynaptic calcium levels of other tangential cells, VS-cells, has been shown to 

be related linearly to presynaptic membrane depolarization and the firing rate of the 

postsynaptic V1-cell (Kurtz et al., 2001). If the VS1- and V1-cell are chemically coupled 

and local calcium concentrations trigger release at chemical synapses, the experiments of 

Kurtz et al. (2001) emphasizes the importance of having a calcium concentration near 

output synapses that conveys information reliably. The connection scheme found here 

would allow for dendritic calcium signals to follow the membrane potential and thus 

provide a well tuned directionally selective output in CH-cells. 

 

In addition it has been demonstrated using calcium imaging techniques that the spatial 

representation of motion stimuli on the dendrites of CH-cells is blurred relative to that of 

HS-cell dendrites (Dürr and Egelhaaf, 1999; Haag and Borst, 2002). The input blueprint to 

the two neuronal types described above has been shown to be sufficient to account for the 

blurred visual image found in CH-cells (Cuntz et al., 2003). It is likely that if CH-cells also 



Discussion 

F 
82 

received direct input from local motion elements the relative blurring of the signals 

between HS- and CH-cells would be reduced. 

 

A three neuron dendritic network has been proposed (Haag and Borst, 2002) to be 

important for the small field tuning of a class of tangential cells called FD (figure-

detection) cells (Egelhaaf, 1985; Egelhaaf et al., 1993; Gauck and Borst, 1999; Kimmerle 

and Egelhaaf, 2000b; Haag and Borst, 2002).  In this network the HS-CH electrical 

coupling allows for the creation of a blurred retinotopic image on CH dendrites (Haag 

and Borst, 2002; Cuntz et al., 2003), while the GABAergic connection from CH- onto FD-

cells mediates the subtraction of the original retinotopic signal, putatively present on FD-

cells, and the blurred signal arriving from CH-cells (Warzecha et al., 1993). The 

connection scheme determined here (Fig 4.1) demonstrates that the passing of motion 

information from the dendrites of HS- to CH-cells must be involved. However, when single 

HS neurons (HSE-cells) were selectively ablated the small field tuning of FD1 neurons was 

not affected (Warzecha et al., 1993). This might be a consequence of the large field 

visual stimulus used in the experiments of Warzecha et al. (1993). FD1-cells are selectively 

activated by front-to-back small field motion presented in the fronto-ventral part of 

ipsilateral visual space (Egelhaaf, 1985; Warzecha et al., 1993; Gauck and Borst, 1999; 

Kimmerle and Egelhaaf, 2000a). In addition FD1-cells are inhibited by back-to-front 

motion presented in front of the contralateral eye (Egelhaaf, 1985; Gauck and Borst, 

1999; Kimmerle and Egelhaaf, 2000a; Kimmerle and Egelhaaf, 2000b). In order to 

determine the small field tuning of FD1-cells, Warzecha et al. (1993) compared the 

response of FD1-cells to a small-field stimulus presented in front of the ipsilateral eye with 

a stimulus that mimicked large field rotation. This stimulus consisted of an extended 

background moving from front-to-back on the ipsilateral side, and back-to-front on the 

contralateral side. vCH-cells receive excitatory input about back-to-front motion presented 

in front of the contralateral eye via spiking neurons (H1, H2 cells) that synapse directly on 

CH-cells (Hausen, 1981; Eckert and Dvorak, 1983; Gauck et al., 1997; Horstmann et al., 

2000). Hence, the killing of an HSE-cell would not eliminate the activity of a vCH-cell when 

contralateral motion is presented. In addition, when ipsilateral stimuli are used the area of 

a CH-cell dendritic tree that is excited depends on the elevation at which the stimulus is 

presented (Egelhaaf et al., 1993; Dürr and Egelhaaf, 1999; Haag and Borst, 2002). 

Upper visual field stimulus will excite the more dorsal dendrites, while lower visual stimulus 

will stimulate the ventral dendrites. HSE- and HSS-cells are known to selectively activate 
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the dorsal and ventral halves of the vCH-cell dendritic tree respectively (Haag and Borst, 

2002). This implies that after the ablation of a single HS-cell it is important to restrict the 

stimulus to the receptive field of this cell for the effect to become visible. Taken together, 

the missing effect of HS-cell ablation on the small-field tuning of FD-cells reported by 

Warzecha et al. (1993) can be fully explained by the large-field stimulus used in their 

study. This stimulus is sufficient to activate the vCH-cell through the contralateral H1 & H2 

cells, as well as via the remaining ipsilateral HS-cells. 

 

The dendritic tree of CH-cells has more than one output target. In addition to FD-cells, CH 

neurons have been shown to influence the activity of other tangential cells, including H1 

and H2 cells (Haag and Borst, 2001). H1 and H2 cells are large field motion sensitive 

neurons that respond in a directionally selective way. Both cells respond best to PD stimuli 

moving from back-to-front. These connections appear to affect the selectivity of these 

neurons to rotational flow-fields.  

Flow-Field Selectivity of H1- and H2-cells 

It has previously been demonstrated that the H2-cell shows distinct flow-field selectivity for 

rotational stimuli as compared to translational stimuli (Haag and Borst, 2001). It was 

proposed that this selectivity was due to information being passed via CH-cells onto the 

dendrites of the H2-cells. The ablation experiments presented here demonstrate that CH-

cells are likely not a key part of the pathway that allows H2-cells to combine information 

arriving on both eyes. These results suggest that there are additional network connections 

responsible for the H2-cells flow-field selectivity. 

Review of Results of Haag and Borst (2001) 

One of the key experiments of Haag and Borst (2001) was current injections into an HS- 

or CH-cell, while recording from the other cell type within the same lobula plate (see 

figure 6 Haag and Borst, 2001). It was demonstrated that current injections of -10 nA into 

either HS- or CH-cells reduces the number of EPSPs in the other cell by ~50 %. Haag and 

Borst (2001) proposed that this reduction in the number of EPSPs is due too positive 

feedback after the signal passes across two inhibitory and two excitatory synapses. The 
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two inhibitory synapses occur at the CH-cell input to the H1- and H2-cell dendrites located 

in the same hemisphere, while the excitatory synapses are the source of EPSP activity in 

CH- and HS-cells from H1- and H2-cell projections from the opposite side of the brain. This 

interpretation is in conflict with the rectifying input that CH-cells make onto both the H1- 

and H2-cells. Haag and Borst (2001) also showed that current injections of +10 nA but not 

-10 nA influence the activity of H1- and H2-cells whose dendrites are located in the same 

hemisphere. This means that current injections of -10 nA cannot not influence the activity of 

the cells projecting to the other hemisphere and thus cannot provide feedback via this 

route. So through what connection do current injections of negative current affect the 

spiking activity of H2-cells whose dendrites lie in the opposite hemisphere? 

Possible Explanation 

Recent double intracellular recordings of H2-cells and HS- or CH-cells (performed by 

Jürgen Haag, unpublished data), and Neurobiotin staining experiments (Haag and Borst, 

2005) provide a possible explanation for the source of flow-field selectivity of H2-cells as 

well as suggest a basis for a difference between the flow-field selectivity of H1- and H2-

cells (Fig 4.2). First, during double intracellular recording it was demonstrated that current 

can be passed of both polarities in both directions between H2-cells and either a HS- or a 

CH-cell (data not shown). In addition recordings from two H2-cells demonstrated that 

during ipsilaterally presented motion the H2-cell’s spiking rate increased and decreased 

as seen in both extracellular recordings and recording of EPSPs from HS- and CH-cells in 

the opposite hemisphere (data not shown). However, during contralateral stimulus the H2-

cell showed little modulation of spiking activity but demonstrated graded membrane 

potential shift such that front-to-back motion depolarized and back-to-front 

hyperpolarized the membrane potential. This graded potential input is consistent with idea 

that H2-cells receive electrical input from HS- and/or CH-cells, which is supported by the 

double recordings performed. Also, injection of Neurobiotin into HSE-, dCH- and vCH-cells 

illustrate that these cells are electrically coupled to the H1-cell (Haag and Borst, in press). 
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If this is true H2-cells flow-field selectivity is easily explained as hyperpolarizing the 

axonal membrane potential could reduce the spiking activity of the H2-cell in the required 

manner that would reduce spiking activity during translation and increase spiking during 

rotation. In addition, Reinterpreting the double recordings of Haag and Borst (2001) 

suggests that H2-cells might connect directly to HS-cells, via axo-axonal connections. When 

negative current is injected in an HS- or CH-cell it hyperpolarizes the axon of the H2-cell 

and decreases the spiking activity and thus reducing the EPSP activity recorded in the 

Figure 4.2: Alternative Connectivity among the Horizontal Sensitive Cells. A 
comparison of two alternative network configurations is shown that can account for the 
flow-field selectivity of H2-cells. Only one type of each cell is shown, where an L or R in 
the name indicate the left or right side of the brain, respectively.  Note that the Hu cell has 
been omitted for simplicity (see Fig 1.9). A) The connectivity of horizontal sensitive cells as 
outlined by Haag and Borst (2001, 2002). The line around the outside indicates that the 
circuit should act to positively reinforce the activity of any single cell on itself. Generally , 
information is passed from one hemisphere to the other via the H1- and H2-cells that then 
provide excitatory input to the HS- and CH-cells. B) A new proposed network based on 
double recordings of Jürgen Haag and Neurobiotin staining (Haag and Borst, 2005). 
Here the source of excitatory input to HS- and CH-cells from H1- and H2-cells takes the 
form of electrical synapses. This means, signals can also pass too the H1- and H2-cells 
from the HS- and CH-cells, allowing for an alternative pathway for  H1- and H2-cells to 
integrate information from both eyes. 



Discussion 

F 
86 

other HS- or CH-cell. 

 

Basis of the Broad Receptive Fields of VS-cells 

VS-cells respond to stimuli presented outside of the visual space expected from the 

retinotopy of the lobula plate and the extent of their dendritic aborization. The receptive 

fields are unexpectedly wide, and in the case of the medial VS-cells (VS8-10) include 

frontal sensitivity when only posterior vision was expected (Krapp et al., 1998). The results 

of our ablation experiments show that lateral connections among VS-cells form the basis of 

their unexpectedly wide receptive fields, which substantially exceed the proportion of the 

lobula plate covered by their dendrites. I also provide evidence that VS-cells connect 

sequentially in a chain like fashion beginning with the VS1-cell on the lateral edge of the 

lobula plate and continuing through each VS-cell to the VS10-cell on the lobula plate’s 

medial edge. On the other hand, how the medial VS-cells acquire sensitivity in the frontal 

visual field remains unclear. 

The VS-Cell Network 

The serial connection scheme outlined above was suggested by Haag and Borst (2004) 

based on the magnitude, bi-directionality and temporal properties of the signals passing 

between individual VS-cells. They reported that the connection strength between the VS1- 

and other VS-cells monotonically decreased with increasing distance between their 

dendritic trees within the lobula plate, and that current could be passed bi-directionally 

between cell pairs. In addition, following current injection into various VS-cells, the 

temporal dynamics of the resulting potential in the VS1-cell revealed low-pass filter 

characteristics where the order of the filter increased (3rd, 4th, and 5th) with the distance 

to the injected cell (VS2, 3 and 4). However, the results of these current injection 

experiments did not exclude the possibility that the VS-cells made reciprocal contact to the 

VS1-cell individually with disparate properties. My experiments provide additional 

evidence that the VS-cells are connected in the proposed chain like manner and examine a 

wider set of cell pairs, suggesting that this connectivity scheme generalizes to all VS-cells. 
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Here, after the ablation of a single VS-cell, the recorded VS-cell had reduced responses 

to vertical motion in specific locations of their receptive field dependent on the location of 

the ablated cell. If the VS-cells were fully interconnected such that each cell made 

reciprocal recurrent connections with all other VS-cells, the response deficit would only be 

expected to occur at stimulus positions where the peak response of the ablated cell was 

located, causing a dip in the receptive field of the recorded VS-cell. However, the 

responses of the recorded VS-cell fell significantly not only at the stimulus positions where 

the ablated cell was most responsive, but also at stimulus locations further away than the 

peak responses of the ablated cell (e.g. fig 3.21A and G). This caused a flattening of the 

receptive field of the recorded cell towards zero that was dependent on the location of 

the ablated cell. I found that even at stimulus locations where the ablated cell was not 

strongly responsive the relative deficit of the recorded cell was approximately the same 

as the deficit at the position of the ablated cell’s peak response (fig 3.22C). This was 

shown not just for the VS1-VSx pairs but for a range of cell pairs including: VS1-VS2, 

VS1-VS3, VS2-VS1, VS4-VS2, VS4-VS3 and VS5-VS6 (recorded-ablated cell). This 

implies that ablating a single cell breaks the chain of VS-cells, stopping the flow of 

information to the recorded cell from neurons beyond the ablated cell. 

Residual Responses 

One caveat of our results is that the responses of the VS-cells to stimuli putatively outside 

their dendritic receptive field were not completely abolished.  The mean relative change 

after the ablation of a single VS-cell dropped a maximum of 66% and a minimum of 21% 

(fig 3.24a). One explanation for this involves the limitations of our ablation technique.  It is 

not exactly known whether strong illumination ablates a dye-filled cell as a whole or only 

a part of it. Generally, photo-ablation causes the resting membrane potential of the cell to 

depolarize to zero and the input resistance of the neuron to vanish (Farrow et al., 2003). 

However, it has been shown that selective partial ablation of a dye filled cell is possible 

with a focused laser beam (Miller and Selverston, 1979; Jacobs and Miller, 1985). While 

our laser was not focused and illuminated the entire lobula plate, it is still conceivable that 

laser illumination ablated large parts of the VS-cells but left electrically intact those 

segments where VS-cells make contact. In such a case, although the retinotopic input from 

the ablated cell would be abolished, the remaining segments could still function as a relay 

for input from cells further away. 
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VS-cell Receptive Fields 

The receptive fields I found here using long thin stripes of horizontal grating, correspond 

well with the receptive fields previously recorded using a local motion stimulus protocol 

(Krapp et al., 1998). The widths of the VS-cells, particularly the VS4-, VS5-, and VS6, 

span an area far exceeding the proportion of the lobula plate covered by each neurons’ 

dendrites. In addition, I also found that the medial VS-cells (VS8, 9, 10) respond to motion 

presented in the frontal visual field. 

 

One of the interesting characteristics of the VS-cell receptive field‘s (fig 3.20C) is the 

obvious grouping of cells. Most striking is the almost perfect overlap between the 

receptive fields of the VS1-, VS2-, and VS3-cells. This grouping is also borne out in some 

of the synaptic connections these cells make collectively. Specifically, all three of these cells 

have been shown to provide input to the V1-cell (Kurtz et al., 2001; Haag and Borst, 

2003; Warzecha et al., 2003), a contralaterally projecting spiking neuron. These results 

suggest that common response properties may correlate with a common output. 

VS1-cell Ablation: Why No Affect? 

After the ablation of the VS1-cell I found the response of the medial VS-cells to upward 

and downward motion unchanged (figs 3.24A, 3.26A and 3.26D). This result came as a 

surprise since it has been previously demonstrated that current injections into VS1-cells 

affect both the EPSP frequency and membrane potential of the medial VS-cells (Haag and 

Borst, 2004). There are two explanations for this apparent contradiction. The first involves 

the possible connectivity among the VS-cells. Perhaps, all three frontally viewing VS-cells 

provide inhibitory input to the medial VS-cells independently. This would allow the VS2-, 

and VS3-cells to compensate for the loss of the VS1-cell. This is plausible since, as 

mentioned above, these cells have highly overlapping receptive fields and have previously 

been shown to have a common output target, the V1-cell, independent of the other VS-

cells (Kurtz et al., 2001; Haag and Borst, 2003; Warzecha et al., 2003). 

 

The second explanation is the inconsistency between the current injections performed by 

Haag and Borst (2004) and the response properties of the medial VS-cells recorded here. 

Haag and Borst (2004) showed that positive but not negative current is passed from the 

VS1- to the medial VS-cells. In addition, the medial VS-cells have been reported to be 
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selective to upward motion in the frontal visual field, without an indication as to whether 

they depolarized or hyperpolarized in response to a particular direction of motion (Krapp 

et al., 1998). These two results are consistent if during downward motion the medial VS-

cells hyperpolarized, while during upward motion the medial VS-cells remained at rest. 

However, here we find that the medial VS-cells do depolarize and hyperpolarize in 

response to upward and downward motion respectively (fig 3.25B, 3.26A and D). 

Therefore, after the ablation of the VS1-cell one would not expect a change in its 

response to upward motion since during such a stimulus the VS1-cell hyperpolarizes and 

thus its signal would not be passed onto the medial VS-cells. The results here suggest that 

the experiments of Haag and Borst (2004) did not reveal the complete circuitry 

responsible for the sensitivity of the medial VS-cells to motion in the frontal receptive field. 

Why the Broad Receptive Fields? 

What is the advantage for VS-cells to import the receptive fields of their neighbours via 

electrical synapses? Intuitively, this appears to make the output of individual neurons more 

ambiguous with respect to the location of the stimulus within the visual space and 

consequently more difficult for downstream neurons to extract useful information. However, 

electrical connections among homologous cells help reduce noise due to stochastic events 

(photon noise, channel noise, synaptic noise) and have been described at many visual 

processing stages. Examples include the cones (Raviola and Gilula, 1973; Kolb and Jones, 

1985; Owen, 1985; Tsukamoto et al., 1992), amacrine cells (Famiglietti and Kolb, 1975; 

Vaney, 1991; Stettoi et al., 1992; Feigenspan et al., 2001) and ganglion cells (Vaney, 

1991; Hidaka et al., 2004) in the vertebrate retina as well as the photoreceptors (Ribi, 

1978) and lobula plate tangential cells (Haag and Borst, 2002; Haag and Borst, 2004) of 

insects. 

 

The effectiveness of lateral connection to aid noise reduction has been clearly 

demonstrated for cone photoreceptors that are electrically coupled, without greatly 

affecting visual signal acuity (Lamb and Simon, 1976; Tessier-Lavigne and Attwell, 1988; 

DeVries et al., 2002). Similarly, in the inner retina electrical coupling among AII amacrine 

cells helps improve signal-to-noise ratios (Bloomfield and Völgyi, 2004). However, here 

the electrical coupling between AII amacrine cells is ten times larger during twilight like 

light conditions (low signal-to-noise condition) then under bright light conditions, 

corresponding with these cells receptive field sizes under the same stimulus parameters 
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(Bloomfield and Völgyi, 2004). Analogously, the receptive field centers of alpha type 

retinal ganglion cells expand in darkness beyond their dendritic fields by up to 2.8-fold 

(Peichl and Wässle, 1983). This could be explained if the electrical coupling between 

alpha type retinal ganglion cells (Hidaka et al., 2004) decreases with light adaptation.  

 

The response to motion of lobula plate tangential cells is also degraded by stochastic 

noise (Laughlin, 1987; de Ruyter van Steveninck and Bialek, 1995; de Ruyter van 

Steveninck and Laughlin, 1996; Borst and Haag, 2001; Lewen et al., 2001; Grewe et al., 

2003; Borst, 2003b). In addition, my experiments demonstrate that the lateral connections 

between VS-cells do increase the width of their receptive fields. Whether the receptive 

field widths and coupling strengths between VS-cells are also sensitive to signal-to-noise 

levels is an open question. However, there is likely a trade off between the spatial acuity 

of the VS-cells and the noise present in their responses. Hence, does the low spatial acuity 

of these cells hinder the ability of down stream neurons in extracting useful information? 

 

Along these lines, it has been suggested that broad receptive fields aid the extraction of 

information from a population of neurons. Seung and Sompolinsky (1993) found that the 

performance of a model that estimates the direction of motion in two dimensions by 

calculating a population vector from a group of neurons with various orientations is 

optimal for an intermediate tuning width. The amount of extracted information fell quickly 

to zero as the tuning width narrowed, as compared to the optimum, but fell only slowly as 

the tuning width increased (Seung and Sompolinsky, 1993). Hence, if the electrical 

coupling between VS-cells increased with decreasing signal-to-noise levels, thus increasing 

the width of their receptive field, the noise levels within VS-cells could be reduced without 

hindering the ability of downstream neurons to extract relevant flow-field information used 

for orientation behavior. 

Summary 

Our results show that the connections among VS-cells augment the columnar input from 

local motion detectors. Specifically, individual VS-cells increase the width of their primary 

receptive fields, a result of input to their dendrites, by importing the receptive fields of 

their neighbours. The indirect inhibitory input of the VS1-cell to the medial VS-cells was not 

found to be sufficient to account for the medial VS-cells sensitivity to motion in the frontal 

visual field. 
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In order to explicitly address the nature of the circuit connecting the VS-cells directly future 

studies should include: multiple VS-cell ablations in order to clarify what an individual VS-

cell views without lateral input from neighbouring VS-cells;  double recordings of VS-cells 

receptive field where information flow in a cells axon is blocked by voltage clamp, the 

putative site of connection among VS-cells;  and a quantitative comparison of the deficits 

incurred by ablating cells at different distances from a single VS-cell. Additionally, fruitful 

investigations into the information flow within single VS-cells could be carried out by 

specifically ablating small portions of individual VS-cells; thus specifying the spatial 

relationship of different input-output relationships within a single cell.  

Vertical-Horizontal Interactions 

The H1- and H2-cell respond to downward motion in their frontal receptive field. Here I 

provide compelling evidence that the basis of this sensitivity is due to input from the VS1-

cell. First, the receptive field of the H1-cell overlaps highly with that of the VS1- and VS2-

cell (Fig 3.28). Second, in addition to the anatomical evidence, current injections into 

different regions of the VS1-cell suggest that the output region providing input to the H1-

cell is located in the dendritic region of VS1-cells (Fig 3.29). Finally, the ablation of 

individual VS1-cells demonstrated that the input from the VS1-cell is indeed responsible 

for the sensitivity of the H1-cell to vertical motion (Fig 3.30). It is likely that the VS-cell is 

also responsible for the vertical sensitivity of H2-cells as the nature of their input from 

VS1-cells is similar to that of H1-cells (Haag and Borst, 2003). The form the VS1-cell to the 

H1- and H2-cells has been proposed to be electric as current of both polarities is passed 

on (Haag and Borst, 2003). However, it is also possible that VS-cells release transmitter 

constantly and just vary the amount that stimulates the H1- and H2-cells to different 

degrees. The consequence of this connectivity on the flow-field responses of other LPTCs 

and its possible role in behavior are discussed below. 

 

H1 and H2 cells are heterolateral elements that project to the opposite brain hemisphere 

where they are presynaptic to HS- (HSN and HSE) and CH-cells (Horstmann et al., 2000; 

Haag and Borst, 2001). It has been shown that H1-cells make synaptic contacts to the HS- 

and CH-cells in their lobula-plate aborizations, while H2-cells project to the protocerebral 
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branches of HS- and CH-cells (Haag and Borst 2001). This sort of connectivity should 

contribute to the HS- and CH-cells sensitivity to downward vertical motion in the frontal 

part of the contralateral visual field. Using a local motion stimulus protocol a strong 

sensitivity to downward motion has only been noted in vCH-cells but not in the dCH-, HSE- 

or HSN-cells (Krapp et al., 2001). However, the strong downward sensitivity of vCH-cells is 

more likely due to input from the contralateral V1-cell (Haag and Borst, 2003). Like H1- 

and H2-cells the analysis of the local motion stimulus down by Krapp et al. (2001) might 

not reveal the dCH-, HSE- or HSN-cells sensitivity to motion in anything but its PD at any 

particular location as only the direction of maximum response was reported. On the other 

hand, Haag and Borst (2003) reported the entire tuning curves of the H1-, H2-, as well as 

the EPSP response in the dCH-cell. The EPSP tuning of the dCH-cell is similar to that of the 

tuning of the H1- and H2-cells, all responding to downward motion with a response of 

~40 % of their peak response. The functional significance of these connections for 

behavior can only be speculated about. However, the circuitry in which these cells are 

embedded enhances the response of cells to rotatory horizontal motion compared to 

translatory motion (Haag and Borst, 2001). Since all these cells are part of this network, 

the vertical sensitivity of these neurons might affect the response of this network as a whole 

to vertical motion stimuli in the frontal visual field. 

  

During forward flight the images move across the retina pass from front-to-back. This is the 

ND for the H1- and H2-cell and thus they should be silent most of the time. The only time 

that forward motion provides a PD stimulus to the H1/2-cell would be when it is flying 

close to the ground, such during a landing maneuver. In this situation the world in the 

frontal visual space would move from up-to-down across the frontal portion of the eye. 

This is putatively within the receptive field of the VS1-cell and thus would be passed onto 

the H1-, and H2-cells and potentially cause it to start firing. This connection scheme may 

then be part of the network responsible for initiating a landing response.  

 

While the behavioral implications of this connection scheme are speculative the implications 

for the receptive field structure of H1- and H2-cells are clear. The connection between the 

VS1- and H1-cells is another example highlighting how LPTCs use lateral interactions to 

build up their receptive field structures. How flies use these complex receptive fields to 

guide behavior is not clear. In order to form good functional ideas about the benefits of 

the complex receptive field structures, a better understanding of the pattern of 
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connectivity of LPTCs on to descending neurons and then to the motor neurons is needed. 

Summary 

Here I have demonstrated that many of the connections among LPTCs help increase the 

richness of their receptive fields. This enrichment takes on a few different forms. 

Specifically, the dendro-dendritic electrical coupling between HS- and CH-cells is the 

pathway by which local motion input drives the direction selective response of CH-cells. 

The lateral electrical interactions among VS-cell neighbours forms the basis of their wide 

receptive fields and the VS1-cell was found to provide the H1-cell with its vertical 

sensitivity in the frontal visual field. These finding highlight the importance of the highly 

interconnected network formed by the tangential cells of the lobula plate.  

 

The lateral interactions among LPTCs appears to augment the feedforward input from 

local motion detectors. This allows each cell to be tuned to specific optic flow patterns. The 

building of these complex receptive fields occurs in two stages. First, the initial 

directionally selective response in each cells primary receptive field is due to the 

integration of local motion information across each cells dendritic tree. The LPTCs then pass 

this information on in an organized fashion to other LPTCs that enrich and enlarge each 

cell’s receptive field, beyond that of its local motion input. This enrichment and 

enlargement has benefits, from a theoretical point, for each cell’s ability to extract useful 

optic flow from the time varying brightness patterns arriving on the retina.  

 

While all of this still needs to be further investigated, the integration of the growing 

knowledge about the lobula plate circuitry and free flight behavior of the fly will 

eventually lead us to an in-depth understanding of how such complex receptive field 

properties of motion-sensitive large-field neurons arise in the fly visual system and are 

potentially optimized to guide behavior. 
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