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Abstract

In this thesis, we investigate how protocols in quantum communication theory are
influenced by noise. Specifically, we take into account noise during the transmis-
sion of quantum information and noise during the processing of quantum infor-
mation. We describe three novel quantum communication protocols which can
be accomplished efficiently in a noisy environment: (1) Factorization of Eve: We
show that it is possible to disentangle transmitted qubits a posteriori from the
quantum channel’s degrees of freedom. (2) Cluster state purification: We give
multi-partite entanglement purification protocols for a large class of entangled
quantum states. (3) Entanglement purification protocols from quantum codes:
We describe a constructive method to create bipartite entanglement purification
protocols form quantum error correcting codes, and investigate the properties of
these protocols, which can be operated in two different modes, which are related
to quantum communication and quantum computation protocols, respectively.

In dieser Arbeit wird untersucht, wie Quantenkommunikationsprotokolle durch
Rauschen beeinflusst werden. Insbesondere berücksichtigen wir Rauschen während
der Übertragung der Quanteninformation und Rauschen während ihrer Verar-
beitung. Wir beschreiben drei neue Quantenkommunikationsprotokolle, die in ei-
ner verrauschten Umgebung effizient umgesetzt werden können: (1) Abfaktori-
sierung von Eve: Wir zeigen, dass es möglich ist, bereits übertragene Qubits
nachträglich von Freiheitsgraden des Kommunikationskanals zu entschränken. (2)
Cluster-Zustands-Reinigung: Wir geben viel-parteien Verschränkungsreinigungs-
protokolle für eine große Klasse von verschränkten Quantenzuständen an. (3)
Verschränkungsreinigungsprotokolle von Quantencodes: Wir beschreiben eine kon-
struktive Methode, um bipartite Verschränkungsreinigungsprotokolle aus Fehler
korrigierenden Codes zu erzeugen, und untersuchen die Eigenschaften dieser Pro-
tokolle, die in zwei Betriebsarten existieren, die mit Quantenkommunikationspro-
tokollen bzw. mit Quantenrechenprotokollen in Verbindung stehen.



xii Abstract



Chapter 1

Introduction

‘I can’t believe that!’ said Alice.
‘Can’t you?’ the Queen said in a pitying tone. ‘Try again: draw
a long breath, and shut your eyes.’ Alice laughed. ‘There’s no use
trying,’ she said; ‘one cannot believe impossible things.’ ‘I daresay
you haven’t had much practice,’ said the Queen. ‘When I was your
age, I always did it for half-an-hour a day. Why, sometimes I’ve
believed as many as six impossible things before breakfast.’

Lewis Carroll, Through the Looking Glass

Quantum mechanics and its interpretation During the last century,
quantum theory has proved to be a very successful theory, which accurately
describes the physical reality of the microscopic and mesoscopic world. To-
day, no physical experiment is known which contradicts the predictions made
by quantum theory. This is even more remarkable, since measurement ac-
curacy has increased, and the size of the systems under consideration has
decreased at a fast pace.

The fact that quantum theory allows for an accurate description of real-
ity is obvious from many physical experiments, and has probably never been
seriously disputed. On the other hand, for the interpretation of quantum
mechanics, things could not be more different: ever since the theory of quan-
tum mechanics has been developed, the question How can the mathematical
formulation of quantum mechanics be interpreted? lead to a discussion, in
which people with different philosophical backgrounds gave different and of-
ten contradicting answers. The point at issue was that the theory of quantum
mechanics does not account for single measurement outcomes in a determin-
istic way. The most widely accepted interpretation of quantum mechanics
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was the so-called Copenhagen interpretation, which was developed mainly by
Bohr and Heisenberg in the 1920’s. It is argued that a measurement causes
an instantaneous collapse of the wave function which describes the quantum
system, the result of this collapse being intrinsically random.

The most prominent opponent to the Copenhagen interpretation was Al-
bert Einstein, who had developed “away from positivistic instrumentalism
to a rational realism” [42]. Consequently, Einstein did not like the idea
of genuine randomness in nature, which was an important element of the
Copenhagen interpretation. Instead, he considered quantum mechanics to
be incomplete, and suggests that there had to be “hidden” variables which
would account for the random measurement results.

In fact, it was the famous paper “Can quantum mechanical description
of physical reality be considered complete?”, authored by Einstein, Podolsky
and Rosen (EPR) in 1935 [31], which condensed the philosophical discussion
into a physical argument. They claim that given a specific experiment, in
which the outcome of a measurement could (in principle) be known before
the measurement takes place, there must exist something in the real world,
an “element of reality”, which determines the measurement outcome. In
addition, they claim that these elements of reality are local, in the sense that
they belong to a certain point in space-time, and may only be influenced by
events which are located in the backward light cone of this point in space-
time. Even though these claims sound reasonable and convincing, they are
assumptions about nature, which are nowaday called the assumption of local
realism.

EPR continue their argument by giving a thought experiment, which
employs pairs of entangled particles. Their analysis of this experiment shows
that both position and momentum of the particles are elements of reality;
however, quantum mechanics does not include states for which position and
momentum are well-defined simultaneously. From this, EPR conclude that
quantum mechanics is incomplete: it lacks a description of variables, which
correspond to the elements of reality. For this reason, these variables were
later called hidden variables, or, more precisely, local hidden variables.

Bell’s theorem For three decades, it remained a matter of “philosophical
taste”, whether to believe in the existence of local hidden variables or not: no
empirical method to prove the existence or non-existence of hidden variables
was known, and many physicists believed that no such method would exist.
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In 1964, however, J. S. Bell noticed [9] that the existence of local hidden
variables implies a certain inequality (the Bell inequality) between measure-
ment outcomes, while quantum mechanics predicts measurement outcomes
which violate this inequality. In so-called Bell experiments, it is thus possi-
ble to check whether the predictions of quantum mechanics are correct (in
which case local hidden variable theories were ruled out), or whether nature
obeys the Bell inequality (in which case quantum mechanics would predict
wrong measurement results): quantum mechanics would be wrong rather
than incomplete.

Bell experiments have been performed many times (see, e. g., [35, 8, 82,
65]), and they were in excellent agreement with the predictions of quantum
mechanics. However, the importance of Bell’s experiment is not due to the
fact that quantum mechanics has one more time shown to give a precise
description of nature; it shows that the microscopic world is guided by laws
which are inherently non-classical; it is not possible (and, as a consequence,
not necessary) to add something to quantum mechanics which would make
it a classical theory.

Bell’s inequality and its experimental violation destroyed the hope that
quantum mechanics can be described by a classical theory. However, the
insight that quantum mechanics is a non-classical theory did not only destroy
hopes, but also allowed the dawn of a new era in quantum physics: Physicists
started to realize that if quantum physics is non-classical, it might also allow
us to do things which are not possible or at least not feasible in a classical
world.

Quantum information theory The theory of quantum information is
being developed as a result of the effort to generalize (classical) information
theory to a quantum world. Quantum information theory aims to answer
the question: What happens to the concept of information if information is
stored in the state of a quantum system?

It is a strength of classical information theory that it does not need to
ask the questions about the physical representation of information; there is
no need for a ink-on-paper information theory, or a floppy disk information
theory. This is due to the fact that it is always possible to efficiently transform
information from one representation to another representation.

For this reason, one might be tempted to believe that it is not important
whether information is stored in classical or in quantum systems. However,
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this is not the case: it is, e. g., not possible to write down the previously
unknown information contained in the polarization of a photon in ink on
paper. In general, quantum mechanics does not allow us to read out the
state of an quantum system with arbitrary precision. Moreover, the existence
of Bell correlations between quantum systems shows that the (quantum)
information content of a quantum system cannot be converted into classical
information.

However, Schumacher showed in 1995 [70] that it is in principle possible
to transform quantum information between quantum systems of sufficient
quantum information capacity. The quantum information content of a quan-
tum message M can for this reason be measured in terms of the minimum
number n of two-level systems which are needed to store the message: M
consists of n qubits [70].

In its original quantum information theoretical sense, the term qubit is
thus a measure for the amount of quantum information. A two-level quantum
system can carry at most one qubit, in the same sense as a classical binary
digit µ ∈ {0, 1} can carry at most one classical bit. However, the term qubit
is very often used as a synonym for two-level quantum systems.

Noise and quantum information A (pure) one-qubit state is specified by
two real parameters. In this sense, quantum information is similar to analog
(in contrast to digital) classical information. Analog information processing
seems, on the first sight, to be much more efficient than digital informa-
tion processing, since an analog information carrier could contain an infinite
amount of information. However, analog information processing is being (or
already has been) replaced by digital information processing. From this one
can see that, in practice, analog information processing performs worse than
digital information processing.

It is the presence of noise, which is responsible for this gap between the
theoretical promises and the practical applicability of analog information:
First, in the presence of noise, the information content of an analog informa-
tion carrier is no longer infinite, but finite. This is a consequence of Shannon’s
noisy coding theorem [72]. Second, it is very difficult to protect the remaining
finite information content of analog information carriers against noise.

The example of classical analog information shows that quantum informa-
tion processing schemes must necessarily be tolerant against noise; otherwise,
there would not be a chance for them to ever become useful. It was thus a



5

major break-trough for the theory of quantum information, when quantum
error correction codes and fault-tolerant quantum computation schemes were
discovered (see Section 2.5 and references therein).

In quantum communication theory, one is interested in scenarios where
distant parties exchange quantum messages. Of course, the transmission
of quantum messages may be regarded as trivial special cases of quantum
computation, and fault tolerant quantum computation would solve the prob-
lem of noise in quantum communication. However, it has been shown that
there exists a different method to deal with noise in bipartite communica-
tion scenarios, the so-called quantum repeater [17, 29, 36]. The advantage
of the quantum repeater over fault tolerant quantum computation methods
is that the “threshold” noise level, i. e. the noise level up to which quantum
communication is possible, is allowed to be two orders of magnitude higher.

Quantum communication in noisy environments is for this reason a promis-
ing topic, which is discussed in the present thesis. After introducing ba-
sic concepts of quantum information theory and quantum communication
(Chapter 2), we present three novel quantum communication protocols or
scenarios:

• Factorization of Eve (Chapter 3): We show that it is possible to ac-
tively disentangle qubits, which have been sent through a noisy quan-
tum channel, from the channel’s degrees of freedom. Entanglement
purification and the quantum repeater can thus be used as tools for
quantum cryptography (published in [3, 4]).

• Cluster state purification (Chapter 4): A novel class of multi-partite
entanglement purification protocols is discussed, which allow n distant
parties to purify a large class of n-party entangled states. It is shown
that this protocol works in a noisy environment even if the number n
of parties is large (published in [28, 7])

• Entanglement purification protocols from quantum codes (Chapter 5):
We give a constructive method which is capable of translating quantum
error correcting or detecting codes into entanglement purification pro-
tocols, and investigate the efficiency and noise tolerance of several such
protocols. In addition, we find that it is the availability of two-way
communication which is responsible for the high fault-tolerance of the
quantum repeater. The results in this chapter are unpublished.
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In Chapter 6, we give a short introduction into the qtensorspace software
library, which has been used to produce most of the numeric results in this
thesis. Chapter 7 supplements the other chapters by introducing a different
notation for quantum states.1 We show that in this notation, the subsystem
structure of multi-partite quantum systems is very transparent, and use it to
give a novel multi-partite entanglement criterion (published in [6]).

1In fact, this notation has already been introduced by J. Schwinger in 1960 [71].



Chapter 2

Noisy quantum operations and
channels

2.1 Quantum states, operations, and measure-

ments

In quantum mechanics, like in many other theories in physics, the state of a
system is a mathematical quantity, which summarizes the information about
the system accessible to the theory. The dynamics of systems can thus be
completely described in terms of state transformations. In this section, we
give a brief overview of states and their transformations in quantum mechan-
ics, and conclude with a description of measurements in quantum mechanics.

2.1.1 Quantum states

A state is usually defined as a mathematical object, from which all empirical
data can be derived. Associated to this object is a preparation process, i. e. a
physical setup which allows an experimentalist to prepare a system such that
it is described by the given state. In many classical theories, the empirical
data consist of measurement outcomes, i. e. given a state and a measurement,
one can calculate the result of the measurement. The result consists then of a
single real number. In quantum mechanics (as well as in statistical physics),
the situation is different: Given a fixed preparation an measurement setup,
one does not necessarily get fixed measurement results for a given state.
However, one does get measurement results according to a fixed probability
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distribution. For this reason, empirical data does in general not consist of
individual measurement outcomes, but of probability distributions for the
results.

In quantum mechanics, a state ρ is given by a so-called density operator,
i. e. a non-negative hermitian operator acting on a Hilbert space H, which
is obeys the normaliziation condition tr ρ = 1. If the density operator ρ is
a projector, it is called a pure state. In this case, there exists a state vector
|ψ〉 such that ρ = |ψ〉〈ψ|. When it does not lead to ambiguities, we also call
state vectors states.

2.1.2 Quantum operations

The time evolution of a physical system is mathematically described by an
operation on the state space. These transformations can be either infinites-
imal or finite. Infinitesimal transformations usually describe a continuous
time evolution, and are then given by a differential equation. Finite trans-
formation, on the other hand, describe a non-continuous shift in the state
space, which might be the net effect of a continuous transformation acting
for a given time.

The Schrödinger equation

i~
∂

∂t
ρ = −[ρ,H] (2.1)

describes the continuous time evolution of a closed quantum mechanical sys-
tem. For finite time intervals [ti, tf ], one can easily check (by integrating
Eq. 2.1) that the time evolution of a state ρ is given by

ρ −→ ρ′ = UρU † (2.2)

with a unitary operator U = U(t1, t2), which does not depend on the state ρ.
Throughout this thesis, we will concentrate on finite transformations.

Whenever we use terms like “a unitary operation U is applied to a state
ρ”, we bear in mind that this requires a suitable Hamiltonian, which has to
govern the evolution of the system for a given time.

Most generally, finite quantum operations are given by so-called com-
pletely positive trace conserving maps (CP-map).1This means that any CP-
map can, in principle, be implemented experimentally, and any operation,

1Positivity means that positive operators are mapped onto positive operators. Complete
positivity means that an extension of the map to a larger system (which contains the
original system as a sub-system) is still positive.
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which is given by some experimental setup, can be described by a CP-map.
A well-known representation of CP-maps is the operator-sum representation,
which is given in terms of so-called Kraus operators Ai [50]. Kraus operators
are linear operators with the only restriction that they obey the normaliza-
tion condition

∑
iAiA

†
i = I. Using these operators, the map is then given by

ρ −→ ρ′ =
∑

i

A†iρAi. (2.3)

A different representation of CP-maps is the so-called unitary representa-
tion: Consider a quantum system A in the state ρA, and a quantum system
B in the state ρB. Now we assume that there exists an interaction between
both subsystems; however, the total system is considered to be closed. If this
interaction acts for some finite time, it will result in a unitary transforma-
tion of the total state, ρ = ρA ⊗ ρB → ρ′ = U(ρA ⊗ ρB)U †. If we are only
interested in how the interaction affects the subsystem A, we can calculate
the state of system A after the interaction by tracing out system B,

ρA → ρ′A = trB U(ρA ⊗ ρB)U †, (2.4)

which is clearly a CP-map. But also the converse is true: One can show that
any CP-map which acts on a system A, there exists a system B, a state ρB,
and a unitary operations U , such that the CP-map is given by Eq. 2.4.

2.1.3 Quantum state measurements

Measurements are operations on quantum systems, in which the experimen-
talist gains information about the state of the system. Mathematically, the
effect of a measurement operation on the state of a quantum system cannot
be described in terms of a CP-map,2 but, rather, in terms of a positive opera-
tor valued measure (POVM) [61]. A POVM is given by a set Pi of projection
operators, which act on the Hilbert space of the quantum system, with the
property ∑

i

Pi = I. (2.5)

2This implies that a measurement cannot be described by a unitary operation which
acts jointly on the measured quantum system and the measurement apparatus. This
impossibility is the reason for the so-called measurement problem in the interpretation of
quantum mechanics.
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Each projection operator Pi corresponds to a measurement result mi, which
occurs in the measurement with probability pi = trPiρ.

A special case of a POVM is given by a projective measurement, where
the projectors Pi are pairwise orthogonal, i. e. PiPj = δijI. It is convenient
to describe a projective measurement in terms of a hermitian operator O,
so that the projectors Pi are the projectors onto the eigenspaces of O. The
operator O is then called an observable, which is associated with the measured
physical quantity. Usually, the eigenvalues of O are chosen such that they
represent the measurement results.

In an experiment, operations and measurements are usually combined.
Such a combination is called a selective quantum operation, and the state
transformation is given by the expression

ρ→





ρ′(1) = p1

∑
iA

(1)
i

†
ρA

(1)
i

...

ρ′(n) = pn

∑
iA

(n)
i

†
ρA

(n)
i

, (2.6)

where the upper index denotes the measurement result, and the probability
pi is the probability for the result i.

2.2 Entanglement and quantum channels

2.2.1 Composite quantum systems

If a quantum system is completely described by several independent proper-
ties (degrees of freedom), the Hilbert space of the total system is given by
the tensor product of the Hilbert spaces of the individual degrees of freedom.
However, in general, the elementary factors of such a product space are not
fixed; in many cases, it is a matter of convenience which degrees of freedom
are chosen to be elementary. A well-known example for this freedom in choice
is a quantum system which consists of two angular momenta: in some cases
it is useful to describe the system in terms of the individual angular mo-
menta, in other cases, when there exists a specific “coupling” between both
momenta, it is advantageous to choose the total angular momentum.

A special case of composite quantum systems are systems, which consist
of spatially separated subsystems. Spatially separated means in this context,
that there are no interactions between the individual subsystems (parties).
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In this case, there is a natural tensor space structure of the Hilbert space.
In Chapter 7 we review a formalism which allows us to write the state space
of multi-party states as a real vector space. This vector space can be decom-
posed into orthogonal subspaces, each of which represents knowledge about
correlations between a specific subset of parties, or about a single party.

The natural tensor space structure in multi-partite scenarios is also obeyed
by operations and measurements: each subsystem evolves individually, and a
selective quantum operation (Eq. 2.6) of the total system is always a product
of selective quantum operations on the subsystems (local operations).

It is obvious that a scenario where we do not allow for any interaction
between distant subsystems is too restricted in order to show many interest-
ing features. We can, however, allow for interaction in a very controlled way,
using the concept of a communication channel. A communication channel
allows distant parties to coordinate their local operations, if they are allowed
to exchange classical information through the channel (local operations and
classical communication, LOCC). In this case, the Kraus operators (Eq. 2.3)
which describe the coordinated quantum operations, and projectors (Eq. 2.5)
are still products of local Kraus operators, while the CP-map is no longer
necessarily a product map.

If the distant parties are allowed to exchange quantum information (in
addition to classical information) through the communication channel, one
can easily show that they can implement any quantum operation, i. e. any
CP-map. However, such quantum communication scenarios differ in many
aspects from scenarios, where the subsystems are not separated:

• Quantum communication may be considered expensive, so that one is
interested in minimizing the amount of quantum information which
is required for a given task (quantum communication complexity (see,
e. g., [2]).

• Quantum information carriers may be intercepted when they are sent
from a party A to a party B, while A and B require that the transmit-
ted (quantum) information remains secret (quantum cryptography, see
Section 2.6 and Chapter 3).

• The quantum channel may not allow for perfect transmission of quan-
tum information, i. e. it may introduce noise. Quantum error correcting
codes (see Section 2.5), entanglement purification (see Section 2.4), or
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a combination of both (see Chapter 5) can be used to overcome the
detrimental effects of noise.

2.2.2 Separable and entangled states

If n separated parties a, b, c. . . start with quantum systems which have been
prepared locally and independently, it is an interesting question which global
quantum states they can generate, if they are only allowed to use local op-
erations and classical communication. States which can be created in this
way are called separable. One can verify that a n-party quantum state is
separable if and only if it can be written in the form

ρ =
∑

i

piρ
(a)
i ⊗ ρ

(b)
i ⊗ ρ

(c)
i · · · , (2.7)

where the weights pi are non-negative and sum up to unity.

States which are not separable are called entangled. Entangled states are
thus quantum states, which cannot be created without interaction between
the distant sub-systems, or without quantum communication between the
distant parties.

Given a n-party density operator ρ, it is generally a hard problem to
decide whether ρ represents a separable or an entangled state.

Bipartite entangled quantum systems are often called EPR pairs, due to
the famous paper by Einstein, Podolsky and Rosen [31]. In the context of
quantum information theory, EPR pairs usually consist of two entangled two-
level systems (qubits), one owned by Alice, and the other by Bob. Maximally
entangled two-qubit states are called Bell states ; one can find four orthogonal
Bell states, which form a basis of the two-qubit Hilbert space, the Bell basis :

∣∣Φ+
〉 ≡ |B00〉 = 1/

√
2 (|00〉+ |11〉)∣∣Φ−〉 ≡ |B10〉 = 1/

√
2 (|00〉 − |11〉)∣∣Ψ+

〉 ≡ |B01〉 = 1/
√

2 (|01〉+ |10〉)∣∣Ψ−〉 ≡ |B11〉 = 1/
√

2 (|01〉 − |10〉)

(2.8)
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2.2.3 Quantum teleportation: entanglement as a re-
source

In quantum communication, the importance of entanglement lies in the fact
that, supplemented by classical communication, it is a resource which is
equivalent to a quantum channel: If Alice and Bob are connected with a
quantum channel, Alice can create an EPR pair locally and send one half
through the quantum channel to Bob. On the other hand, if Alice and Bob
own EPR pairs, they can use them to teleport [11] qubits, even when they
are not connected via some “real” quantum channel.

Let us briefly review the quantum teleportation protocol. In the begin-
ning, Alice has two qubits in her hands, A1 and A2. The former is the qubit
which she is going to teleport (|ψA1〉), the latter is one have of an EPR pair
(
∣∣Φ+

A2B

〉
= 1/

√
2 (|0A20B〉+ |1A21B〉)). The other half of this EPR pair is in

Bob’s hands. The protocol consists of two steps:

Step 1: Alice performs a Bell measurement on her two qubits, i. e. she projects
them onto one of the four Bell states. Since the qubits were not entan-
gled, the measurement result is completely random.

Step 2: Alice tells Bob her measurement result. Conditioned on the result, Bob
performs one of four unitary operations on his remaining qubit.

In order to sketch the analysis of this protocol, we concentrate on the case
that Alice measures a Φ+-state in her Bell-measurement. The state after the
Bell-measurement, modulo normalization, is given by

〈Φ+
A1A2

|ψA1〉|Φ+
A2B〉 = 〈ψA2|Φ+

A2B〉 = |ψB〉. (2.9)

In this equation, we used the convention that |ψX〉 is the state of the tele-
ported qubit, carried by qubit X.3

As we have seen above, in order to teleport one qubit, Alice and Bob
need to share one perfect EPR pair, say in the state |Φ+〉. Conceptually, the

3Note that it actually makes sense to talk about a given state carried by different
quantum systems X and Y , since the existence of the Bell state |Φ+

XY 〉 requires to fix
the computational basis for both qubits; states on qubit X and Y are called equal, if the
have the same expansion coefficients in both computational bases. More generally, given a
Hilbert space isomorphism between two quantum systems X and Y , the conjugate of the
isomorphism can be interpreted (modulo normalization) as a maximally entangled state
|Φ+

XY 〉, and vice versa.
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easiest way for them to create this shared pair is the following: Alice creates
the EPR pair locally and sends one of its components to Bob, through a
perfect, i. e. noiseless, quantum channel. The EPR pairs can then be used as
a resource, which allows Alice and Bob to exchange quantum information,
even if they are not connected by a physical quantum channel. For this
reason, a shared EPR pair is often called a quantum teleportation channel.

2.3 Noise in quantum mechanics

2.3.1 Noise channels

In real-world experiments, a quantum system A cannot be completely closed;
it interacts inevitably with its surroundings, the environment. By definition,
this interaction results in a CP-map on system A; indeed, it is a physical
realization of the unitary representation of CP-maps (Eq. 2.4). Consequently,
given a suitable environment and a suitable interaction, the interaction with
the environment can result in any CP-map, i. e. in any quantum operation.

If we accept that the interaction with the environment is the source of
noise in quantum mechanics, we are left in a dilemma: it is obvious that it
does not make sense to identify noise with arbitrary quantum operations. For
this reason, we restrict ourselves to a specific class of quantum operations,
when we are interested in the effects of noise. The maps in this class are called
noise channels.4 Noise channels are often described in terms of an operator
sum representation, which contains few parameters in order to accommodate
for the “amount” and kind of noise which is to be introduced.

With respect to composite quantum systems, we require noise channels
to fulfil the following properties:

• Noise acts locally, i. e. the noise does not introduce correlations between
remote quantum systems. Mathematically, this means that the noise
channel which describes the total system is a product of local noise
channels.

• Noise may introduce correlations between quantum systems, on which

4Note that a noise channel is quite different from a quantum channel. A noise channel
does not connect distant parties, it merely describes the time evolution of a system. If
a (physical realization of a) quantum channel is the source of noise, we call it a noisy
quantum channel
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a joint operation is performed; e. g. a unitary operation which acts on
two subsystems jointly is in general accompanied by correlated noise
on both subsystems.

• Noise channels are memoryless, i. e. if it acts repeatedly on the same
or on different quantum systems, these actions are independent. Note
that this property is always fulfilled by the definition of noise channels
as a CP-map. If we were interested in noise channels with memory,
we would need to define a enlarged (memoryless) noise channel which
acts on the state space of all quantum systems under consideration
simultaneously.

A most important and well-known example of a noise channel is the so-
called depolarizing channel, which introduces white noise. The depolarizing
channel is given by the map

ρ→ ρ′ = pρ+
1− p

d
I, (2.10)

where d is the dimension of the quantum system, and p is called the reliability
of the channel. If the noise channel acts on one subsystem A of a composite
system, we have to take into account the reduced density operator trA ρ, i. e.
the state of the subsystems, which are not affected by the noise channel:

ρ→ ρ′ = pρ+
1− p

dA

IA ⊗ trA ρ (2.11)

Here, dA is the dimension of the subsystem A. If A itself is a composite
system comprised by n qubits a1, . . . an, we call the noise channel an n-qubit
depolarizing channel. In this case, we can rewrite Eq. 2.11 using Kraus
operators which are proportional to products of Pauli matrices σ0 ≡ I, σ1 =
σx, σ2 = σy, σ3 = σz, which act on qubits ai:

ρ→ ρ′ =
3∑

i1,...in=0

fi1...inσ
(a1)
i1

· · · σ(an)
in

ρ σ
(a1)
i1

· · ·σ(an)
in

, (2.12)

where f0···0 = (4n−1)p+1
4n and fi1···in = 1−p

4n for (i1, . . . , in) 6= (0, . . . , 0).
If we allow the coefficients fi1...in to be arbitrary non-negative numbers

which sum up to unity, Eq. 2.12 describes the n-qubit correlated Pauli chan-
nel, which is the most general noise channel which is studied in this thesis
explicitly.
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Noisy quantum operations The noise channels, as described above, are
constructed so that they describe the effect of noise alone. This is what we
observe if quantum states are stored (quantum memory) or sent between
parties at distant locations (quantum communication), where the aim is to
keep the state as it is.

On the other hand, the detrimental effects of noise are also visible in
quantum operations, where quantum information is being processed. In this
case, the interaction, which gives rise to the desired quantum operation, is
accompanied by the interaction with the environment — they “happen at the
same time”. Nevertheless, we can formally decompose an imperfect unitary
operation into the application of a noise channel and the desired quantum
operation: be Û the superoperator of the desired unitary operation U (i. e.
Ûρ ≡ UρU †), and be V̂ the superoperator, which describes the imperfect
unitary operation. The time evolution is then given by

ρ→ ρ′ = V̂ ρ = Û Û−1V̂︸ ︷︷ ︸
≡Ŵ

ρ, (2.13)

where we interpret Ŵ as the superoperator of a noise channel, which is
applied before the unitary operation Û .

A more general approach to describe noisy quantum operations is given in
[36], where noise is discussed in terms of arbitrary quantum operations, with
the restriction that they are close (in terms of a suitable measure on the space
of all CP-maps) to an ideal quantum operation. Due to its generality, this
approach is very appealing. It is, on the other hand, technically involved,
and many effects of noise can be studied using noise channels of the form
2.12.

2.3.2 Teleportation with imperfect EPR pairs

In the discussion of the teleportation protocol in Section 2.2.3, we assumed
that Alice and Bob share perfect EPR pairs, i. e. pairs of qubits in a maxi-
mally entangled state. However, for all practical purposes, Alice and Bob are
only able to share approximately perfect EPR pairs, and thus the question
arises how well quantum teleportation works with imperfect EPR pairs.

For the analysis, we assume that Alice and Bob are connected by a noisy
quantum channel, which is a one-qubit depolarizing channel with reliability
p (see Eq. 2.10). In a first step, Alice creates one Bell pair in the state ρ =
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|Φ+〉〈Φ+| locally, and sends one half of the pair through the quantum channel
to Bob. Under the action of the noise channel, the state is transformed into
the state ρ′ = p |Φ+〉〈Φ+| + (1 − p)/4 I. Note that ρ′ is of the Werner form
[83].

As the second step, they the imperfect EPR pair ρ′ in order to teleport a
state |ψ〉 from Alice to Bob. By a calculation similar to Eq. 2.9, one can easily
find that the state of the teleported qubit is ρteleported = p |ψ〉〈ψ|+(1−p)/2I,
which is the same state as if Alice had sent the state |ψ〉 through the physical
quantum channel directly.

In other words, the EPR pair stores the properties of the quantum channel
through which it had been distributed.5 In the next Section, however, we
will see that it is possible to enhance the entanglement properties of the EPR
pairs after they have been distributed, which leads to a teleportation channel
of a better quality than the physical channel which connects Alice and Bob.

2.4 Entanglement purification

In this section, we will see that it is possible for two communicating parties,
Alice and Bob, to create highly entangled pairs of qubits, even if they are con-
nected by a rather noisy quantum channel. Note that the channel should not
be too noisy — it must still be possible to distribute entanglement through
the channel.

The method which allows Alice and Bob to create these highly entan-
gled pairs of qubits is called entanglement purification. [13, 14, 25]. Simply
speaking, entanglement purification protocols create an ensemble of highly
entangled pairs out of a larger ensemble of pairs with low fidelity. The fidelity
of a quantum state ρ is defined as its overlap with a given Bell state |Φ+〉,
say, i. e. F = 〈Φ+| ρ |Φ+〉.

The purified pairs provide Alice and Bob with a purified quantum tele-
portation channel. If this channel is used for quantum communication, the
already transmitted qubits are a posteriori protected against an unwanted
interaction with the channel. In Chapter 3, we will see that this fact can be
exploited for quantum cryptographic protocols.

5Given an imperfect EPR pair, the action of the corresponding noise channel can, in
general, be recovered probabilistically. This result is a special case of the isomorphism
between states and quantum operations [22, 30].
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In order to perform an entanglement purification protocol, classical com-
munication between Alice and Bob is necessary. This means, that both Alice
and Bob perform measurements on their respective qubits, and tell each
other the measurement outcomes. For some protocols only one-way com-
munication is required, i. e. only Alice will send classical messages to Bob.
It has been shown by Bennett et al. [14], that these one-way entanglement
purification protocols are equivalent to quantum error correcting codes (see
Section 2.5).

2.4.1 2-Way Entanglement Purification Protocols

The two-way entanglement purification protocols (2-EPP) which we present
here have been developed by Bennett et al. [13] and, later, by Deutsch
et al. [25]. Since these protocols work in recursive way, they are often
referred to as recurrence protocols. In order to distinguish between both
protocols, we will call them IBM and Oxford protocol, respectively. The
IBM protocol introduces a twirling operation after each purification step,
which transforms the state of the EPR pairs into the Werner form. Since
Werner states [83] are described by only one real parameter, all calculations
can be done analytically. A disadvantage of the IBM protocol is that it is less
efficient in producing pure states from noisy ones than the Oxford protocol.
Qualitatively, there is no difference between both protocols.

To be precise, we want to distinguish between the purification protocol
and the distillation process (see Fig. 2.1).

In each step, the purification protocol acts on two pairs of qubits. In
order to illustrate the protocol, we shall assume — in this section — that
these two pairs are described by the density operator ρAB ⊗ ρAB, which is
thus a four-qubit density operator. The Oxford protocol (see Fig. 2.1) consist
of the following steps:

1. Alice and Bob perform one-qubit π/4 rotations about the x-axis on
each of their qubits (in opposite directions). If the qubits were stored
e. g. in atomic/ionic degrees of freedom inside a trap, this could be
implemented by (simple) laser pulses.

2. Both Alice and Bob perform a CNOT-operation (controlled NOT) [15],
where they use their respective particle of pair one (two) as the source
(target). This is the part of the protocol which is most difficult to
perform experimentally.
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Figure 2.1: (a) The entanglement purification protocol is a (probabilistic)
protocol, which creates a stronger entangled pair of qubits out of two pairs
with weaker entanglement. Conventionally, these pairs are called source and
target pair, respectively. Through an interaction between the qubits of the
source and the target pair, realizing a so-called CNOT operation on each side,
the states of all four qubits become correlated. By measuring the qubits of
the target pair, the source pair is probabilistically projected into a new state
ρ′AB, which is more entangled than the original state ρAB.(b) The distillation
process consists of several rounds. In each round, the pairs are combined into
groups of two at a time, and the purification protocol is applied to them.
From round to round, the entanglement of the remaining pairs is increased.
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3. Finally, both Alice and Bob measure the qubits which belong to pair
two in the σz-basis, and tell each other the results (two-way commu-
nication). Whenever the results coincide, the keep pair one, otherwise
they discard it. In either case, they have to discard the second pair,
because it is projected onto a product state by the measurement.

In order to see how this protocol works, it is useful to write the density
matrices in the Bell basis, i. e. in the basis of the two-qubit Hilbert space,
which consists of the four Bell states |Φ±〉 = 1/

√
2 (|00〉 ± |11〉) and |Ψ±〉 =

1/
√

2 (|01〉 ± |10〉):

ρAB = A
∣∣Φ+

〉〈
Φ+

∣∣ +B
∣∣Ψ−〉〈

Ψ−∣∣ + C
∣∣Ψ+

〉〈
Ψ+

∣∣ +D
∣∣Φ−〉〈

Φ−∣∣ +
off-diag.

elements
(2.14)

The coefficients A,B,C, and D are called the Bell diagonal elements of the
density matrix ρAB. For any physical state, these coefficients have to fulfill
the normalization condition tr ρAB = A+B + C +D = 1.

As it turns out, the Bell diagonal elements A′, B′, C ′ and D′ of the re-
maining pair do not depend on the off-diagonal elements of ρAB. For this
reason, we can find a recurrence relation for the Bell diagonal elements, which
describes their evolution during the distillation process (the index n belongs
to the state of the pairs at the beginning of round number n in the distillation
process):

An+1 =
A2

n +B2
n

N
, Bn+1 =

2CnDn

N

Cn+1 =
C2

n +D2
n

N
, Dn+1 =

2AnBn

N

(2.15)

The normalization Nn = (An +Bn)2 +(Cn +Dn)2 is equal to the probability,
psuccess, that Alice and Bob obtain the same measurement results in step
3 of the protocol. Even though no analytical solution has been found for
this recurrence relation, it has been shown (numerically in [25] and later
analytically [53]) that it converges to the fixpoint A∞ = 1, B∞ = C∞ =
D∞ = 0, if and only if the initial fidelity is greater than 1/2. In this case,
also the off-diagonal elements will vanish, since the density matrix has to
remain positive. In other words, whenever Alice and Bob are supplied with
EPR pairs with a fidelity of more than 50%, they can distill (asymptotically)
perfect EPR pairs.
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For the IBM protocol, one only needs one recurrence relation, since (one-
parametric) Werner states, described by A = F,B = C = D = (1 − F )/3
and vanishing off-diagonal elements in (2.14), are mapped onto Werner states.
This map is shown in Fig. (2.2a). The map has tree fixpoints. Two of these
fixpoints are attractive (at F = 1/4 and F = 1), and the remaining one
(at F = 1/2) is repulsive. Thus, if one starts the distillation process with a
fidelity greater than 1/2, one will finally reach EPR pairs in a pure state. If
the initial fidelity is smaller than 1/2, one will finally be left with completely
depolarized pairs, which correspond to a Werner state with a fidelity of 1/4.

2.4.2 Purification with imperfect apparatus

Up to now, we have assumed that the only source of decoherence is the quan-
tum channel which connects Alice and Bob. For practical implementations,
however, this is an over-simplification. Indeed, there are many operations in-
volved in the distillation process: Qubits have to be stored for a certain time,
one- and two-qubit unitary operations will act on them, and there are mea-
surements. Each of these operations is a source of noise by itself. It would be
inconsistent to ignore this source of noise. So the following question arises:
What are the conditions which we have to impose on the apparatus so that
entanglement distillation works at all?

As we have mentioned in the context of fault-tolerant quantum compu-
tation, there exists a certain noise threshold for the elementary operations,
below which fault-tolerant quantum computation is possible. In the case
of 2-EPP we will find a threshold which is much more favorable than the
threshold for fault-tolerant quantum computation.

In order to get a qualitative understanding of the influence of noisy opera-
tion on the entanglement distillation process, we look again at the purification
curve (Fig. (2.2)). The curve shows how the fidelity after a purification step
depends on the previous fidelity. If noise is introduced in the purification
process itself, it is intuitively clear that only a smaller increase in fidelity can
be achieved: the purification curve is “pulled down”. In Fig. (2.2b) this is
shown schematically. We thus expect that in the case of noisy operations,
one has to start with a greater initial fidelity in order to purify at all, and
that the maximum fidelity which can be reached will be smaller than unity.

If the noise level is increased, one reaches the situation that two of the
fixpoints will merge. At even higher noise levels, the purification curve has
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Figure 2.2: The purification curve for the IBM protocol [13, 14] for perfect
(i. e. noiseless) apparatus (a). The staircase denotes how the fidelity increases
from round to round in the distillation process of Fig. 2.2b). If the apparatus
is imperfect, the purification curve is “pulled down” (b) and the fixpoints
move towards each other. The upper fixpoint of the curves indicates the
maximum achievable fidelity Fmax, which can be reached asymptotically by
the respective purification protocols; Fmax decreases with an increasing noise
level. Attractive fixpoints are denoted by black circles, repulsive fixpoints by
white circles.
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only the trivial fixpoint which corresponds to completely depolarized pairs:
the distillation process breaks down and does not work any longer.

The quantitative investigation of entanglement purification with noisy ap-
paratus [36, 17] shows that the above considerations are qualitatively correct.
For the calculation, the following noise model has been assumed [17]:

• The unitary evolution of the qubits is accompanied by a depolarizing
channel. It is well-known that this can be written in a time-integrated
form

ρAB → p UAρABU
−1
A +

1− p

d
IA ⊗ trA ρAB. (2.16)

Here, ρAB is the density operator which describes the state of a bipartite
quantum system, UA is the desired unitary operation (which is assumed
to act only on the quantum system at party A), d is the dimension of
the Hilbert space of A’s system, and p is the reliability of the quantum
operation. For p = 1, there is no noise at all, and for p = 0, the
quantum system at A becomes completely depolarized.

• Measurements give the correct results only with a certain probability
η. This can be conveniently described in terms of a POVM (positive
operator valued measure, see Section 2.1.3),

M0 = η |0〉〈0|+ (1− η) |1〉〈1|
M1 = η |1〉〈1|+ (1− η) |0〉〈0| , (2.17)

for one-qubit measurements in the σz basis. Here, tr(Mjρ) describes
the probability with which the detector indicates the result “j” for the
measured qubit.

As one can see from Eq. (2.16), we have to distinguish between one- and
two-qubit operations, if they are accompanied by noise: a two-qubit depo-
larizing channel is different from two one-qubit depolarizing channels. The
first is an example of a correlated noise channel, the latter of an uncorrelated
noise channel. The reliability of one- and two-qubit operations is referred
to as p1 and p2, respectively. Whether or not entanglement purification is
possible with a certain protocol, depends on the three parameters p1, p2, and
η. For all these parameters, one gets a noise threshold in the percent regime,
which is about two orders of magnitude better than the noise threshold for
fault-tolerant quantum computation.
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2.4.3 The quantum repeater

We have seen in the previous section that for a moderate noise level (of the
order of a few percent for the recurrence protocols of Refs. [13, 26]), en-
tanglement purification remains an efficient tool for establishing high-fidelity
(although not perfect) EPR pairs. This means that using entanglement pu-
rification, quantum communication is possible up to distances of the order of
coherence length of a noisy channel. The restriction to the coherence length
is due to the fact that the fidelity of the initial ensemble needs to be above
the value Fmin(> 1/2).

Long-distance quantum communication Long-distance quantum com-
munication describes a situation where the distance between the parties is
typically much greater than the coherence- and absorption length of a quan-
tum channel. As the depolarisation errors and the absorption losses scale
exponentially with the length of the channel, one cannot send qubits directly
through the channel.

To solve this problem, there are two solutions known. The first is to
treat quantum communication as a (very simplistic) special case of quantum
computation. The methods of fault tolerant quantum computation [63, 48]
and quantum error correction (see Section 2.5) could then be used for the
communication task. An explicit scheme for data transmission and stor-
age has been discussed by Knill and Laflamme [46], using the method of
concatenated quantum coding. While this idea shows that it is in principle
possible to get polynomial or even polylogarithmic [45, 1, 49] scaling in quan-
tum communication, it has an important drawback: long-distance quantum
communication using this idea is as difficult as fault tolerant quantum com-
putation, despite the fact that short distance QC is (from a technological
point of view) already ready for practical use.

The other solution for the long-distance problem is the entanglement
based quantum repeater (QR) [17, 29] with two-way classical communica-
tion. It employs both entanglement purification [13, 14, 26] and entanglement
swapping [11, 86, 59] in a meta-protocol, the nested two-way entanglement
purification protocol (NEPP, see below). The apparatus used for quantum
operations in the NEPP tolerates noise on the (sub-) percent level. As this
tolerance is two orders of magnitude less restrictive than for fault tolerant
quantum computation, it seems to make the quantum repeater a promising
concept also for practical realization in the future. It should be noted that
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the quantum repeater has been designed not only to solve the problem of
decoherence, but also of absorption. For the latter, the possiblity of quantum
storage is required at the repeater stations. An explicit implementation that
takes into account absorption is given by the photonic channel of Ref. [78, 79]
(see also [16]).

The nested entanglement purification protocol In the following de-
scription of the nested entanglement purification meta-protocol, we assume
that Alice and Bob are seperated by a distance L. Several repeater stations
are placed between Alice and Bob, at distances l0 (see Fig. 2.3). For simplicity
we assume that the number of repeater stations, including Bob, is a power of
two, i. e. N ≡ L/l0 = 2n. The distance l0 is chosen such that it is possible to
distribute pairs of entangled qubits with a certain fidelity F0 > Fmin (dashed
lines in Fig. 2.3) and with not too high absorption losses between adjacent
repeater stations. Using an entanglement purification protocol [13, 26], en-
tangled pairs with a fidelity F1 (solid lines in Fig. 2.3) are created between
the adjacent repeater stations. Entanglement swapping [11, 86, 59] is em-
ployed to create pairs of entangled qubits which are seperated by a longer
distance of l1 = 2l0, with a reduced fidelity F . For simplicity, we assume
that F = F0.

By iterating this process, one can now create entangled pairs over a dis-
tance l2 = 4l0 = 22l0. Finally, after n iteration steps, pairs of entangled
qubits are created which are seperated by the distance L = Nl0 = 2nl0. In
other words, Alice and Bob now share entangled EPR pairs.

For an estimation of the resources needed to create one entangled pair
of qubits connecting Alice and Bob, we assume that the entanglement pu-
rification process consumes k pairs of fidelity F0 in order to create one pair
with fidelity F1. It is thus easy to see that the number K of entanglement
purification steps grows exponentially with the number n of nesting levels.
Under the conditions given above, we have K = kn, if we further assume that
entanglement purification in different segments is carried out in parallel. On
the other hand, also the distance between both parts of the entangled pair
grows exponentially in the number of nesting levels, i. e. d(n) = 2nl0. By
eliminating n in both formulas, we get K(d) = klog2 d/l0 = (d/l0)

log2 k, i. e.
the number K of purification steps is polynomial in the distance d between
Alice and Bob. A similar polynomial relation is obtained if the full analysis
(without simplifying assumptions) is performed [17].
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Figure 2.3: The nested entanglement purification protocol of the quantum
repeater. Alice and Bob are separated by the distance L = 4l0. Initially, k3

low-fidelity pairs (dashed lines) are shared between adjacent stations. Using
entanglement purification, the fidelity of the pairs is increased (solid lines),
and with entanglement swapping, the distance between the end-points of
entangled pairs is increased. Entanglement purification and swapping form
one nesting step in the NEPP.
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2.5 Quantum error correcting codes

In the previous section, we introduced entanglement purification as a tool
which can be used to get rid of the detrimental effects of noise in quantum
protocols. Even earlier than entanglement purification, in 1995, quantum er-
ror correcting codes (QECC) have been invented by Shor [73] in order to solve
the same problem. It has been shown by Bennett et al. [14], that quantum
error correcting codes and entanglement purification protocols which involve
only one-way communication are equivalent. In Chapter 5, we analyze this
relation in detail.

2.5.1 Classical codes

The idea to protect quantum states against noise with the help of codes has
been inspired by classical coding theory. Indeed, in many cases classical error
correcting codes can be used to build quantum error correcting codes. In the
following, we show how this is accomplished for the Shor code.

Let us start with the definition of classical codes. In mathematical terms,
classical error correcting codes are given by a map

fC : {0, 1}k → {0, 1}n, (2.18)

where k is the number of bits which are encoded, and n is the dimension of the
code space, or the number of bits into which the information is encoded. For
the special case of linear codes, fC is a linear map.6 The image C = Im(fC)
is the set of codewords, or the code. A linear code is thus a linear subspace
of {0, 1}n of dimension k.

In order to characterize the error correction properties of a code, the min-
imum distance d of the code is introduced, which is the minimum Hamming
distance between any two codewords. The Hamming distance of two code-
words is defined as the number of bits which have to be flipped, in order to
transform one codeword into the other. A code with minimum distance d
can correct at most b(n− 1)/2c errors.

The three numbers n, k, and d are important for the characterization of
a code (even though there may exist more than one code for given values for
n, k, and d); such codes are called ((n, k, d)) codes.

6In this case, we interpret the sets {0, 1}k and {0, 1}n as vector spaces over the field
F2.
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The simplest classical error correcting code is probably the repetition
code. Assume that a sender (Alice) wants to transmit a classical message,
which consists of one classical bit i, to the receiver (Bob). Since they are
connected by a noisy communication channel, sometimes the bit gets flipped
(inverted) during the transmission. In order to overcome this problem, Alice
sends her bit to Bob n times. After receiving the n bits, Bob performs a
“majority vote” in order to restore the original message: if more than half of
the bits are in state i′, Bob assumes that Alice has sent the message bit i′.
Clearly, the minimum distance of this code is n: the n bit repetition code is
a ((n, 1, n)) code.

2.5.2 The Shor code

The no-cloning theorem [84] disallows a straightforward translation of the
repetition code into a quantum error correcting code: Already the first step
of the encoding operation (copy the qubit n times) would fail. However,
quantum mechanics allows us to create imperfect copies of a given input state:
if the qubit which we want to copy is in a basis state |i〉 of the computational
basis, we can copy it in an ancilla |0〉A. The map |0〉A|i〉 → |i〉A|i〉 can be
implemented using a CNOT gate. Note that, for some input states, this
cloning quantum network does not produce copies of the input at all: if we
consider the input state |±〉 = 1/

√
2(|0〉 ± |1〉), we find that the result of

the CNOT operation produces a maximally entangled Bell state |Φ±〉, for
which the individual density operators of both qubits are maximally mixed.
However, there exist quantum cloning networks which perform better that
the CNOT gate; the optimal (but, of corse, not perfect) cloning network has
been given in [19, 20].

For n = 3, we have depicted the encoding circuit, the quantum channel,
and the decoding circuit in Fig. 2.4(a). After the decoding operation has
been performed, both ancilla qubits are measured in the computational basis.
One can easily see that one spin-flip operation σ

(j)
x , applied to an arbitrary

qubit j = 1, 2, 3, can be identified: if one of the ancilla qubits yields the
measurement result “1”, it is clear that this ancilla qubit has been flipped
during the transmission, and no action has to be taken. However, if both
ancilla qubits yield the measurement result “1”, the central qubit must have
been flipped; this error can be corrected by applying an additional spin flip
operation to the central qubit.

Note that spin flip operations are not the only non-trivial error operations
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that can be applied to quantum states; in fact, an error operation could be
any CP-map (see Section 2.1.2). Nevertheless, for the analysis of noise, it is
enough to consider an error model where random Pauli rotations are applied
to the individual qubits with a certain “error rate”, which is a realization of
the one-qubit Pauli channel (see Eq. 2.12). This model is more general than
it appears to be at first sight but it needs a justification to which we shall
return below.

While this so-called quantum repetition code is able to correct one spin
flip error which has been applied to an arbitrary transmitted qubit, it is not
able to correct phase flip errors. If the dotted Hadamard transformations are
applied to the qubits before and after the transmission, the role of spin flip
and phase flip errors is exchanged, so that the code can correct one phase
flip error.

If each of the three code qubits of the repetition code (in its phase-flip
correcting version) is encoded once more, again using the repetition code,
one has created a code which is capable of correcting one arbitrary spin-flip,
phase-flip, or combined spin- and phase-flip error (see Fig. 2.4 (b)): the Shor
code [73].

After the decoding operation, the eight ancilla qubits |εj〉 (with j =
1, 2, 3, 4, 6, 7, 8, 9 are measured in the σz basis, with measurement results εj
(error syndrome). The central qubit is in state |φ′〉 = U(ε1 . . . ε4, ε6 . . . ε9)|φ〉,
where the unitary transformation U(ε1 . . . ε4, ε6 . . . ε9) ∈ {I, σx, σy, σz}, is
uniquely determined by the error syndrome: A spin flip error, which has
been applied to an arbitrary qubit during the transmission, can be identified
by the values ε1, ε3, ε4, ε6, ε7, and ε9, and a phase flip error can be identified
by ε2 and ε8.

For a mathematical description of quantum error correcting codes, we are
interested in the (unitary) map realized by the encoding operation,

ENC : (α|0〉+ β|1〉)|0〉|0〉 · · · |0〉 7−→ α|0〉S + β|1〉S (2.19)

in which the states

|0〉S = 2−3/2(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
|1〉S = 2−3/2(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉) . (2.20)

denote the so-called code words of the (9-bit) Shor code. Unlike classical
codes, the quantum code is defined as the linear span of the codewords,
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Figure 2.4: Coding circuit, transmission of encoded data through a noisy
channel, and decoding circuit for the (a) quantum repetition code and (b)

the Shor code. A “random rotation” σ
(j)
µ on qubit j in the encoded state

translates into a certain “error syndrome” ε1, ε2 (for the repetition code) and
ε1, . . . , ε4, ε6, . . . , ε9 (for the Shor code) and a corresponding unitary operation
U = U(~ε) on the central qubit (see text). The networks uses the Hadamard-

RotationHj = 1/
√

2(σ
(j)
x +σ

(j)
z ) and the CNOT gate ( = CNOTi,j = 1+σ

(i)
z

2
+

1−σ
(i)
z

2
σx,j). If the dotted Hadamard gates are inserted into the coding circuits

of the repetition code, it protects against one phase flip operation.
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which is a subspace of the nine qubit Hilbert space. This subspace is often
also refereed to as the code space.

For the Shor code, the code words |0〉S and |1〉S are tensor products of en-
tangled three-qubit states of the form |000〉±|111〉, the so-called Greenberger-
Horne-Zeilinger (GHZ) states [40], which play a prominent role for the inter-
pretation of quantum mechanics. [40, 57]. One can easily check that after the
encoding (see dotted line in Fig. 2.4), the reduced density operator of each
of the qubits is totally mixed; that is, the individual state of the particles
carries no information about |φ〉.7

By reading off the error syndrome, and subsequently applying the correc-
tion operation U−1(ε1 . . . ε4, ε6 . . . ε9), the central qubit is transformed back to
its initial state. Please note that the central qubit remains unmeasured, and
no information about the state |φ〉 is obtained at any step of the protocol.
By iteration of the sequence decoding → syndrome measurement & correction
→ encoding [51] an unknown quantum state can thus be protected against
decoherence over a time significantly longer than the decoherence time.

The effect of the random rotations σ
(j)
µ is to map the code space HS to

a set of orthogonal error spaces σ
(j)
µ HS⊥HS. The images of the code words

thereby satisfy the following orthogonality relations S〈0|σ(j)
µ σ

(k)
ν |1〉S = 0 and

S〈0|σ(j)
µ σ

(k)
ν |0〉S = 〈1|σ(j)

µ σ
(j)
ν |1〉S for all j, k, µ, ν. Theses relations ensure

[14, 47], that all errors σ
(j)
µ can, in fact, be corrected.

2.5.3 CSS codes and stabilizer codes

The Shor code was the first quantum error correcting code found that can
correct all of the four errors (spin flip, phase flip, spin&phase flip, identity)
on any one of the qubits. As we have seen, the Shor code uses two coding
steps. Both steps consist of codes, which are capable of correcting phase
flip errors and spin flip errors, respectively. Both codes are in fact classical
linear codes; their properties guarantee that both encoding steps do not in-

7Quantum error correcting codes are indeed constructed in such a way that the state
of individual qubits in a codeword becomes completely undetermined. As was shown by
DiVincenzo and Peres [27], the codewords satisfy generalized Mermin relations [57] that
exclude the possibility of consistently assigning a predetermined value to complementary
observables of each qubit. From the measurement of an individual qubit one can thus not
gain any information about |φ〉. In the positive sense this means that an uncontrolled
interaction of the environment with one of the qubits does not (necessarily) lead to an
irreversible loss of information.
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terfere. Calderbank and Shor [21], and, independently, Steane [75] found the
conditions which two classical codes have to obey, so that their combination
leads to a quantum error correcting code: The orthogonal complement of the
second code has to be a subset of the first code. Quantum error correcting
codes, which are constructed in this way, are called Calderbank-Shor-Steane
(CSS) codes.

Besides the fact that the CSS construction can be used to create quantum
error correcting codes, the simple structure of CSS codes makes them suitable
for a security proof of quantum cryptography (see Section 2.6) which has been
given by Shor and Preskill [74]. This proof employes and requires CSS codes;
more general quantum error correcting codes would not work for this proof.

A number of other codes were found, which do not belong to the CSS
class, among them a so-called ‘perfect’ code using a minimum number of
only 5 qubits [51, 14]. For general quantum error correcting codes, it is
useful to introduce the stabilizer of the code, which can be defined using the
decoding operation Udecode = U−1

encode: Be σ
(j)
z the z Pauli-Operator of the

ancilla qubit j. The stabilizer operator Mj is then given by

Mj = Udecodeσ
(j)
z . (2.21)

In the case of the Shor code, the eight ancilla qubits have the numbers
j = 1, 2, 3, 4, 6, 7, 8, 9, and one can easily show that the stabilizer operators
are given by

M1 = σ(1)
z σ(2)

z ,

M2 = σ(1)
x σ(2)

x σ(3)
x σ(4)

x σ(5)
x σ(6)

x ,

M3 = σ(2)
z σ(3)

z ,

M4 = σ(4)
z σ(5)

z ,

M6 = σ(5)
z σ(6)

z ,

M7 = σ(7)
z σ(8)

z ,

M8 = σ(4)
x σ(5)

x σ(6)
x σ(7)

x σ(8)
x σ(9)

x ,

M9 = σ(8)
z σ(9)

z .

(2.22)

As in the case of classical codes, it is possible to construct codes which
encode k > 1 qubits, and codes which are able to correct more than a single
qubit error. The code words are entangled states of an increasing number
n of qubits. Analogous to the case of classical codes, the number of single
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qubit errors that can be corrected is determined by the minimum distance
d of the code; in order to correct one error, a minimum distance of d ≤ 3 is
necessary. The distance of a pair of codewords is defined as the number of
Pauli operations which are required to transform one codeword into the other
codeword. A general quantum code which encodes k qubits into codewords of
length n, and which has a minimum distance d, is called a [[n, k, d]] quantum
code.

2.5.4 Errors and quantum error correcting codes

Let us return to the question whether the model of an error as a random
unitary rotation is reasonable. As we have described in Section 2.3, the in-
teraction of the qubits with the environment can be described as a unitary
evolution in the Hilbert space of the total system consisting of both the
qubits and the environment. In this sense, errors do not happen, noise is a
continuous process. The effect of noise is a CP-map, which can be written
in a Kraus representation (Eq. 2.3), i. e. as a convex combination of “error”-
operations acting on the qubits. In general, the error operations are different
from the Pauli rotations. However, one can show that it is possible to find
a Kraus representation which is an expansion in the interaction strength. In
this expansion, the term of zeroth order is proportional to the identity oper-
ator, the terms of first order are proportional to one-qubit Pauli rotations,
etc. [76].

The measurement of the ancilla qubits (i. e., the measurement of the
stabilizer operators) projects the state of the encoded quantum word into
one of the error spaces. It is this measurement which is responsible for
the “digitalization of noise” [76], i. e., the stabilizer measurements make the
errors happen.

2.6 Quantum cryptography

One of the experimentally most advanced fields in quantum communication is
quantum cryptography. In this section, we will describe the two basic proto-
cols of quantum cryptography. We show that decoherence in the (untrusted)
quantum channel as well as in the (trusted) apparatus plays an important
role in the security analysis of quantum cryptography protocols.
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The communication scenario in the cryptographic context looks as fol-
lows: Alice wants to send a confidential message (clear-text) to Bob, while
a third communication party, Eve, wants to listen in and learn as much as
possible about the message. In order to achieve her goal, Alice encrypts the
message using some cryptographic method. The encrypted message is called
ciphertext. A cryptographic protocol is considered good, if it is possible to
restrict the information which Eve can obtain to any desired level.

There exist several categories of classical cryptographic protocols; these
include symmetric key ciphers, asymmetric key ciphers and one-time pads.
All these protocols have advantages and disadvantages, but the most eminent
advantage of the one-time pad is that it has been proved to be secure in the
information theoretical sense: one can show that an eavesdropper can gain
no information (zero bits of information) about the message, even if he or she
knows every single bit of the encrypted message. To this end, it is however
necessary that Alice and Bob share a secret and random key, which must at
least be as long as the message which Alice wants to transmit, and that this
key will only be used once (thus the name one-time pad).

The one-time pad works as follows: As a key, Alice and Bob share a
secret string of zeros and ones s = (s1, s2, . . . , sN). Similarly, Alice can write
the clear-text (like any piece of information) as a string of zeros and ones,
using some encoding which Alice and Bob agree on publicly. The clear-
text is thus given in a binary representation t = (t1, t2, . . . , tN). For the
ciphertext, Alice adds the key and the clear-text bitwise modulo 2: c =
(s1 ⊕ t1, s2 ⊕ t2, . . . , sN ⊕ tN). In order to decrypt the message, Bob simply
adds the key bitwise (modulo 2) to the ciphertext, and gets back the binary
representation of the clear-text.

The key used in the one-time pad protocol is a valuable resource, to both
the legitimate communication parties and to an eavesdropper: Alice and Bob
use up the key during the communication. In order to supply themselves with
a new key, they have to meet each other physically. On the other hand, if
Eve knows the key, the communication between Alice and Bob is no longer
a secret for her; for this reason, the cryptographic key might be a valuable
target for theft or bribery. The aim of quantum cryptography is to solve
this shortcoming of classical cryptography. In most quantum cryptography
protocols, the quantum part of the protocol is related to the distribution of
a key (quantum key distribution, QKD), which can afterwards, as soon as it
is established, be used for a classical one-time pad protocol.
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2.6.1 The BB84 Protocol

The first protocol for quantum key distribution was given by Bennett and
Brassard in 1984 [10]. This so-called BB84 protocol is widely used in quantum
cryptography, since all security considerations are well analyzed, and it is easy
to understand.

The protocol works as follows: Alice prepares two random binary strings,
the key string (k1, k2, . . . , kN) and the basis string (b1, b2, . . . , bN). The ran-
domness of the bits is crucial for the security of the protocol; they must
be chosen by a really random process. If a pseudo random number gen-
erator was used for this task, the security of the protocol depends on (in
most cases unproved) assumptions about the cryptographic qualities of the
random number generator.

There are 4 different quantum states which Alice prepares: |s0〉0 = |0〉,
|s1〉0 = |1〉 , |s0〉1 = |+〉 ≡ 1/

√
2(|0〉+ |1〉), |s1〉1 = |−〉 ≡ 1/

√
2(|0〉 − |1〉). To

give an example, we will now consider the case of qubits which are represented
in the polarization degree of freedom of a photon. In this case, the four
states which Alice can prepare are horizontally, vertically, or ±45◦ polarized
photons.

Alice sends N photons through the quantum channel to Bob. The state in
which the qubits are prepared depends on the key- and and the basis string:
the ith qubit is prepared in the state |ski

〉bi
.

Bob can measure each photon that arrives in his laboratory either in the
|0〉 / |1〉-basis (i. e. in the horizontal/vertical basis), or in the |+〉 / |−〉-basis
(i. e. in the ±45◦ polarized basis). For each individual photon, he selects the
measurement basis randomly, and he writes down the chosen basis and the
measurement result. When Bob has received and measured the N photons,
he is left with two strings of N bits: the basis string and the “result” string.

Alice and Bob exchange their respective basis strings through a classical
channel, which may be public; for example, they might announce the basis
strings in a newspaper. It is no security breach if Eve knows both basis
strings. However, Alice and Bob must make sure that Eve cannot alter these
messages. One possibility to achieve this goal is that Alice and Bob posses
an initial shared secret, which can be used to check the authenticity and
integrity of the basis strings. During the key distribution task, this initial
shared secret can be recreated, so that it is not used up; rather, it plays the
role of a catalyst. By comparing their basis strings, Alice and Bob can see
which photons have been measured in the same basis in which they have
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been prepared. Whenever the preparation basis and the measurement basis
are different, Bob’s measurement result is completely random and cannot be
used. On the other hand, if the two bases are the same, Bob’s measurement
result will be strictly correlated with Alice’s key bit for the respective photon:
Alice’s key bits and Bob’s measurement results for these photons can be used
as a secret key.

Before the key can be used, Alice and Bob have to make sure that the
quantum channel has not been eavesdropped. One way to do this is the
following: Alice chooses a certain number of the key bits randomly and sends
them to Bob through the classical public channel. Bob compares Alice’s key
bits with his result bits, and if they are equal, they can be sure that there
was no eavesdropper who tapped the quantum channel. This is due to the
fact that the only quantum operation which does not disturb non-orthogonal
quantum states is the identity. In other words: if Eve does not want to
disturb the non-orthogonal quantum states which Alice sends, she has to
leave them alone.

2.6.2 The Ekert protocol

The main difference between the BB84 protocol and the so-called E91 pro-
tocol found by Ekert in 1991 [32] is that it does not use single photons which
one communication party sends to the other, but pairs of entangled photons.
While its experimental realization is more difficult than the BB84 protocol, it
has a theoretical advantage: the security of the E91 protocol is related to the
fact that there exists no local realistic theory which explains the outcomes of
Bell-type experiments (see Chapter 1). While in the BB84 protocol one has
to believe that the quantum mechanical description of photons is complete
(i. e. that there exist no (local) variables — “hidden” or not — which could be
used to predict Bob’s measurement outcomes8), the E91 protocol performs
a Bell experiment at the same time, which assures that there cannot exist

8In experiments, classical information about the state which has been prepared might
leak out of Alice’s laboratory through different degrees of freedom, like the frequency of the
photon, or the polarization of a second photon in a multi-photon pulse. This information,
which plays the role of hidden variables, could in principle be exploited by Eve without
introducing noise. For the E91 protocol, this leakage problem does not exist, since there is
no information which could leak out of the laboratories until Alice and Bob perform their
measurement. In this sense, the BB84 and E91 protocols are not equivalent, as stated in
[12].
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(local) hidden variables.
In the E91 protocol, pairs of entangled photons are prepared, for example

in the state |Ψ−〉 = (|01〉− |10〉)/√2. It does not matter whether these pairs
are produced in Alice’s or Bob’s laboratory, or by a (potentially untrusted)
source in between. One photon of each pair is sent to Alice, the other to Bob.
For each photon, Alice and Bob choose one out of a set of three measurement
directions at random, and measure the polarization of the photon in this di-
rection (see Fig. 2.5). As in the BB84 protocol, Eve must not be able to
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Figure 2.5: The measurement directions in the Ekert protocol. For each
EPR pair, Alice and Bob choose independently and randomly one of the
three measurement directions ~a1, ~a2, ~a3 and ~b1, ~b2, ~b3, respectively.

predict the choice of the measurement directions. As soon as all pairs are sent
to Alice and Bob and they acknowledge that they have performed the mea-
surements, the information about the measurement directions is exchanged
(through a public classical channel). Alice and Bob check for which pairs
their respective measurement directions were the same; for all pairs where
they have chosen different measurement directions, they also exchange the
measurement outcomes through the public classical channel. With these re-
sults, Alice and Bob check that the Bell inequalities [9, 24] are violated. If
they are violated, the measurement results for the pairs where they have
chosen the same measurement direction must be strictly anti-correlated, and
can be used as a key.

2.6.3 Security Proofs

As we have seen above, the quantum key distribution protocols allow for
secure communication, as long as Alice and Bob are connected by a noise-
less quantum channel. This is a remarkable result – however, it would be
useless for all practical purposes, since all quantum channels are a source of
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noise. Since Alice and Bob trust only the equipment in their laboratories,
they cannot be sure that the noise which they measure can be attributed
to the channel. It is in principle impossible to distinguish between noise
introduced by the quantum channel or by an eavesdropper. For this reason,
the communication parties have to deal with the worst case scenario of an
eavesdropper, who is present all the time and everywhere, except for the
laboratories, which are secure by assumption. The eavesdropper might be
hidden behind the noise of the quantum channel, and she might gain partial
knowledge of the cryptographic key and, later, of the secret message.

The simplest way to deal with this situation would be to use a better
quantum channel. In a practical setting, however, when Alice and Bob are
connected by a given quantum channel (e. g. an optical fiber), this possibility
is ruled out. In this situation, Alice and Bob can use privacy amplification
methods, where a shorter and perfectly secure key is distilled out of a longer
key, about which Eve might have had considerable knowledge. So-called
“ultimate” or “unconditional” security proofs of quantum cryptography show
that such protocols do exist.

The first of these proofs has been given by Mayers in 1996 [56] for the
BB84 protocol. Shor and Preskill gave a physical interpretation of this proof,
as they showed that it could a posteriori be understood as a restricted,
albeit sufficient, form of quantum error correction and one-way entanglement
purification.

A different approach has been taken by Deutsch et al. in 1996 [25]. They
employ a two-way entanglement purification protocol (2-EPP, see Sec. 2.4)
in order to distill almost pure EPR pairs out of many imperfect pairs. If
the purified pairs are used for teleportation, the resulting quantum channel
is perfectly secure: Since the EPR pairs are in a pure state, they cannot
be entangled with any other quantum system. The eavesdropper is thus
“factored out” in the total Hilbert space, which we write symbolically as

ρAlice,Bob,Eve
2-EPP−→

∣∣Ψ+
〉
AB

〈
Ψ+

∣∣⊗ ρEve.

As we have already seen in Sec. 2.4.2, in a realistic setting the purification
protocol does not converge to perfect EPR pairs, but to some more or less
mixed state in the Hilbert space of Alice’s and Bob’s qubits. But that means
that the argument given above does no longer guarantee that Eve is factored
out: a priori, there could exist residual entanglement with Eve.

In the next chapter, we show that this is not the case: even in the presence
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of noise, an eavesdropper is factored out in the course of an (appropriate)
entanglement distillation process.
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Chapter 3

Factorization of Eve

In this chapter, we show that entanglement distillation using realistic appa-
ratus is sufficient to create private entanglement1 between Alice and Bob,
i. e. pairs of entangled qubits of which Eve is guaranteed to be disentangled
even though they are not pure EPR pairs. If these pairs are used to teleport
quantum information from Alice to Bob, they can be regarded as a noisy but
private quantum channel.

This will also prove the security of quantum communication using the
entanglement-based quantum repeater, since it is only necessary to consider
the outermost entanglement purification step in the NEPP, which is per-
formed by Alice and Bob exclusively, i. e. without the support of the parties
at the intermediate repeater stations. In particular, it is not necessary to
analyze the effect of noisy Bell measurements on the security. In the worst
case scenario, Alice and Bob assume that all repeater stations are completely
under Eve’s control, anyway. For this reason, Alice and Bob are not allowed
to make assumptions on the method how the pairs have been distributed.

To summarize, our result implies that long-distance quantum communi-
cation, using the quantum repeater, is also secure quantum communication.

3.1 The security proof

In this section we will show that 2–EPP with noisy apparatus is sufficient
to factor out Eve in the Hilbertspace of Alice, Bob, their laboratories, and
Eve. For the proof, we will first introduce the concept of the lab demon as

1We owe the term private entanglement to Charles Bennett.
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a simple model of noise. Then we will consider the special case of binary
pairs, where we have obtained analytical results. Using the same techniques,
we generalize the result to the case of Bell-diagonal ensembles. To conclude
the proof, we show how the most general case of ensembles, described by an
arbitray entangled state of all the qubits on Alice’s and Bob’s side, can be
reduced to the case of Bell-diagonal ensembles.

3.1.1 The effect of noise

Our security proof takes into account that quantum operations are accom-
panied by noise. We assume that unitary operations, which act on one qubit
(two qubits) are preceeded by a one- (two-)qubit correlated Pauli channel (see
Section 2.3.1). This restriction is mainly due to technical reasons; however,
as we will see below, noise of an arbitrary type can be “regularized” to the
Pauli type.

In one entanglement purification step, we concentrate on two EPR pairs.
We call the qubits in Alice’s hand a1 and a2. On the other hand, we can
only describe the state of the pairs if we take Bob’s degrees of freedom into
account. For that reason, we denote these degrees of freedom by an ellipsis
(. . .). Thus, for noise in Alice’s apparatus, Eq. (2.12) can then be written as

ρa1a2... →
3∑

µ,ν=0

fµνσ
(a1)
µ σ(a2)

ν ρa1a2...σ
(a1)
µ σ(a2)

ν , (3.1)

with the normalization condition
∑3

µ,ν=0 fµν = 1. A similar expresion exist
for noise in Bob’s laboratory. Note that Eq. (3.1) includes, for an appropriate
choice of the coefficients fµν , the one- and two-qubit depolarizing channel and
combinations thereof, as studied in [17, 29]; but it is more general. Since the
Kraus operators are proportional to (products of) Pauli operators, we call
the Pauli operators error operators.

Regularization of general types of noise The proof can be extended
to more general noise models if a slightly modified protocol is used, where
a twirling operation (step 1 of the preprocessing protocol described in Sec-
tion 3.1.5) is repeated after every distillation round2. The concatenated

2We are grateful to C. H. Bennett for pointing out this possibility.
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operation, which consists of a general noisy operation followed by this reg-
ularization operation, is Bell diagonal i. e. it maps Bell-diagonal states onto
Bell-diagonal states, but since it maps all states to a Bell-diagonal state, it
clearly cannot be written in the form (3.1). However, for the purpose of the
proof, it is in fact only necessary that the concatenated map restricted to
the space of all Bell-diagonal ensembles can be written in the form (4); we
call such a map a restricted Bell-diagonal map. Clearly, not all restricted
Bell-diagonal maps are of the form (3.1), which can be seen by considering
a map which maps any Bell diagonal state to a pure Bell state. Such a
map could, however, not be implemented locally. Thus the question remains
whether a restricted Bell-diagonal map which can be implemented locally
can be written in the form (3.1). Though we are not aware of a formal proof
of such a theorem, we conjecture that it holds true: the reduced density
operator of each qubit must remain in the maximally mixed state, which is
indeed guaranteed by a mixture of unitary rotations. We also have numerical
evidence which supports this conjecture. Note that in the case of such an ac-
tive regularization procedure, it is important that the Pauli rotations which
comprise the twirling operation can be performend well enough to keep the
evolution Bell diagonal. This is, however, not a problem, since Alice and Bob
are able to propagate the Pauli rotations through the unitary operations of
the EPP, which allows them to perform the rotations just before a measure-
ment, or, equivalently, to rotate the measurement basis. This is similar to the
concept of error correctors (where the error consists in ommiting a required
Pauli operation), as described in Section 3.2.1, and to the by-product matrix
formalism developed in [64].

The lab demon The coefficients fµν in (3.1) can be interpreted as the joint
probability that the Pauli rotations σµ and σν occur on qubits a1 and a2,
respectively. For pedagogic purposes we employ the following interpretation
of (3.1): Imagine that there is a (ficticious) little demon in Alice’s laboratory
— the “lab demon” — which applies in each step of the distillation process
randomly, according to the probability distribution fµν , the Pauli rotation
σµ and σν to the qubits a1 and a2, respectively (see Fig. 3.1). The lab demon
summarizes all relevant aspects of the lab degrees of freedom involved in the
noise process.

Noise in Bob’s laboratory, can, as long as we restrict ourselves to Bell
diagonal ensembles, be attributed to noise introduced by Alice’s lab demon,
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Figure 3.1: The lab demon uses a classical random number generator in order
to choose which “error operation” he applies to the qubits. Using his pen, he
writes down which error operation he had applied to which qubit in which
step of the purification process.
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without loss of generality; this is, however, not a crucial restriction, as we
will show in Section 3.1.5. It is also possible to think of a second lab demon
in Bob’s lab who acts similarly to Alice’s lab demon. This would not affect
the arguments employed in this chapter.

The lab demon does not only apply rotations randomly, he also maintains
a list in which he keeps track of which rotation he has applied to which
qubit pair in which step of the distillation process. What we will show in the
following section is that, from the mere content of this list, the lab demon will
be able to extract – in the asymptotic limit – full information about the state
of each residual pair of the ensemble. This will then imply that, given the lab
demons knowledge, the state of the distilled ensemble is a tensor product of
pure Bell states. Furthermore, Eve cannot have information on the specific
sequence of Bell pairs (beyond their relative frequencies) — otherwise she
would also be able to learn, to some extent, at which stage the lab demon
has applied which rotation.

From that it follows that Eve is factored out, i. e. the overall state of
Alice’s, Bob’s and Eve’s particles is described a density operator of the form

ρABE =

(
1∑

i,j=0

f (i,j) |Bi,j〉AB〈Bi,j|
)
⊗ ρE , (3.2)

where
∑

i,j f
(i,j) = 1, and Bi,j describe the four Bell states as defined in

Sec. 3.1.5.

Note that the lab demon was only introduced for pedagogical reasons. In
reality, there will be other mechanisms of noise. However, all physical pro-
cesses that result in the same completely positive map (3.1) are equivalent,
i. e. cannot be distinguished from each other if we only know how they map
an input state ρi onto an output state ρf . In particular, the processes must
lead to the same level of security (regardless whether or not error flags are
measured or calculated by anybody): otherwise they would be distinguish-
able.

In order to separate conceptual from technical considerations and to ob-
tain analytical results, we will first concentrate on the special case of binary
pairs and a simplified error model. After that, we generalize the results to
any initial state.
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3.1.2 Binary pairs

In this section we restrict our attention to pairs in the state

ρAB = A
∣∣Φ+

〉
AB

〈
Φ+

∣∣ +B
∣∣Ψ+

〉
AB

〈
Ψ+

∣∣ , (3.3)

and to errors of the form

ρ
(1)
AB ⊗ ρ

(2)
AB →

∑

µ,ν∈{0,1}
fµνU

(1)
µ U (2)

ν ρ
(1)
AB ⊗ ρ

(2)
ABU

(1)
µ

†
U (2)

ν

†
(3.4)

with U
(i)
0 = id(ai) and U

(i)
1 = σx

(ai). Eq. (3.4) describes a two-bit correlated
spin-flip channel. The indices 1 and 2 indicate the source and target bit of the
bilateral CNOT (BCNOT) operation, respectively. It is straightforward to
show that, using this error model in the 2–EPP, binary pairs will be mapped
onto binary pairs.

At the beginning of the distillation process, Alice and Bob share an ensem-
ble of pairs described by (3.3). Let us imagine that the lab demon attaches
one classical bit to each pair, which he will use for book-keeping purposes.
At this stage, all of these bits, which we call “error flags”, are set to zero.
This reflects the fact that the lab demon has the same a priori knowledge
about the state of the ensemble as Alice and Bob.

In each purification step, two of the pairs are combined. The lab demon
first simulates the noise channel (3.4) on each pair of pairs by the process
described. Whenever he applies a σx operation to a qubit, he inverts the
error flag of the corresponding pair. Alice and Bob then apply the 2–EPP
to each pair of pairs; if the measurement results in the last step of the pro-
tocol coincide, the source pair will be kept. Obviously, the error flag of that
remaining pair will also depend on the error flag of the target pair, i. e. the
error flag of the remaining pair is a function of the error flags of both “par-
ent” pairs, which we call the flag update function. In the case of binary pairs,
the flag update function maps two bits (the error flags of both parents) onto
one bit. In total, there exist 16 different functions f :{0, 1}2 → {0, 1}. From
these, the lab demon chooses the logical AND function as the flag update
function, i. e. the error flag of the remaining pair is set to “1” if and only if
both parent’s error flags had the value “1”.

After each purification step, the lab demon divides all pairs into two
subensembles, according to the value of their error flags. By a straightfor-
ward calculation, we obtain for the coefficients Ai and Bi, which completely
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describe the state of the pairs in the subensemble with error flag i, the fol-
lowing recurrence relations:

A′0 =
1

N
(f00(A

2
0 + 2A0A1) + f11(B

2
1 + 2B0B1)

+ fs(A0B1 + A1B1 + A0B0))

A′1 =
1

N

(
f00A

2
1 + f11B

2
0 + fsA1B0

)

B′
0 =

1

N
(f00(B

2
0 + 2B0B1) + f11(A

2
1 + 2A0A1)

+ fs(B0A1 +B1A1 +B0A0))

B′
1 =

1

N

(
f00B

2
1 + f11A

2
0 + fsB1A0

)

(3.5)

with N = (f00 + f11)((A0 +A1)
2 + (B0 +B1)

2) + 2fs(A0 +A1)(B0 +B1) and
fs = f01 + f10.

For the case of uncorrelated noise, fµν = fµfν , we obtain the following
analytical expression for the fixpoints of the map (3.5):

A∞0 =
1

2
±

√
f0 − 3/4

f0 − 1
or A∞0 =

1

2
,

A∞1 = 0, B∞
0 = 0, B∞

1 = 1− A∞0 .
(3.6)

In the following, we will concentrate on the non-trivial fixpoint defined by
the plus sign in the expression for A∞0 above, which is the relevant fixpoint
for our discussion. Note that, while Eq. (3.6) gives a non-trivial fixpoint of
(3.5) for f0 ≥ 3/4, this does not imply that this fixpoint is an attractor. In
order to investigate the attractor properties, we calculate the eigenvalues of
the matrix of first derivatives,

MD =




∂A′0
∂A0

· · · ∂B′1
∂A0

...
. . .

...
∂A′0
∂B1

· · · ∂B′1
∂B1




∣∣∣∣∣∣∣
fixpoint

. (3.7)

We find that the modulus of the eigenvalues of this matrix is smaller than
unity for f crit

0 = 0.77184451 < f0 ≤ 1, which means that in this interval,
the fixpoint (3.6) is also an attractor. This is in excellent agreement with a
numerical evaluation of (3.5), where we found that 0.77182 < f crit

0 < 0.77188.
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We have also evaluated (3.5) numerically in order to investigate correlated
noise (see Fig. 3.2). Like in the case of uncorrelated noise, we found that
the coefficients A0 and B1 reach, during the distillation process, some finite
value, while the coefficients A1 and B0 decrease exponentially fast, whenever
the noise level is moderate.

In other words, both subensembles, characterized by the value of the
respective error flags, approach a pure state asymptotically: The pairs in
the ensemble with error flag “0” are in the state |Φ+〉, while those in the
ensemble with error flag “1” are in the state |Ψ+〉.

The sum F cond = A0 + B1 can be interpreted as the fidelity, which the
lab demon would assign to the pairs; we call this sum the conditional fidelity
of the pairs. Using this definition, the fact that both subensembles approach
a pure state translates into the fact that the conditional fidelity approaches
unity. Different from the conditional fidelity, the usual fidelity F is given by
the sum F = A0 + A1, i. e. the trace over the error flag.

A map of the fixpoints

In Fig. 3.3, the values of A∞0 , A
∞
1 , B

∞
0 , B

∞
1 , F

∞, and F cond,∞ (fixpoint values)
have been plotted as a function of the noise parameter f0. Most interesting in
this graph is the shape of the curve representing the conditional fidelity: For
all noise parameters f0 ≤ 0.75, the conditional fidelity reaches at the fixpoint
the value 0.5, while for noise parameters f0 ≥ 0.77184451, the conditional
fidelity reaches unity. In the intermediate regime (0.75 < f0 < 77184451), the
curve can be fitted by a square root function F cond(f0) = 0.5+3.4

√
f0 − 0.75.

The inset clearly shows that the values of both A1 and B0 vanish at f0 = f crit
0 .

The emergence of the intermediate regime of noise parameters, where the
2–EPP is able to purify and the lab demon does not gain full information on
the state of the pairs is somewhat surprising and shows that the factorization
of the eavesdropper is by no means a trivial consequence of (noisy) EPP. From
a mathematical point of view, it is consistent with the finding after Eq. (3.7).

The purification curve

To understand the emergence of the intermediate regime better, we have
plotted the purification curve for binary pairs, i. e. the F cond

n −F cond
n+1 -diagram.

A problem with this diagram is that the state of the pairs is specified by
three independent parameters (A0, A1, B0, B1 minus normalization), so that
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Figure 3.2: The evolution of the four parameters A0, A1, B0, and B1 in the
security regime. Note that both A1 and B0 decrease exponentially fast in
the number of steps. The initial fidelity was 80%, and the values of the noise
parameters were f00 = 0.8575, f01 = f10 = f11 = 0.0475.
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Figure 3.3: The values of A0, A1, B0, B1, F, F
cond at the fixpoint as a function

of the noise parameter f0. The inset shows the intermediate regime, with a
logarithmic scale on the y-axis.
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such plots can only show a specific section through the full parameter space.
Below we explain in detail how these sections have been constructed. Fig.
3.4 shows an overdrawn illustration of what we found: for noise parameters
close to the purification threshold, the purification curves have a point of
inflection. If the noise level increases (i. e. f0 decreases), the curves are quasi
“pulled down”. For f0 = 0.77184451, the slope of the purification curve at
the fixpoint F cond = 1 equals unity. If we further decrease f0, the fixpoint is
no longer an attractor, but due to the existence of the point of inflection, a
new attractive fixpoint appeares.

To obtain the one-parametric curves shown in Fig 3.5, we used the follow-
ing technique: starting with the point (A0, A1, B0, B1)

n=0 = (0.6, 0, 0.4, 0),
we calculated (A0, A1, B0, B1)

n=1 by applying the recursion relations (3.5)
once. The points on the straight line in parameter space connecting these
two points have then been used as input values for the map given by the nth
power of (3.5). For the plot, the resulting curve segments have been concate-
nated. This procedure has been repeated for all noise parameters f0 that
are specified in Fig. 3.5. Note that at the critical value f crit

0 = 0.77184451,
the number of iterations required to reach any ε-environment of the fixpoint
diverges. This fact will later be discussed in a more general case, see Fig. 3.9.

To conclude this section, we summarize: For all values of f0 in the inter-
val 0.77184451 ≡ f crit

0 ≤ f0 ≤ 1, the 2–EPP purifies and at the same time
any eavesdropper is factored out. In a small interval, 0.75 < f0 < f crit

0 ≡
0.77184451, just above the threshold of the purification protocol, the condi-
tional fidelity does not reach unity, while the protocol is in the purification
regime. Even though this interval is small and of little practical relevance (for
these values of f0 we are already out of the repeater regime [17] and purifica-
tion is very inefficient), its existence shows that the process of factorization
is not trivially connected to the process of purification.

3.1.3 Bell-diagonal initial states

Now we want to show that the same result is true for arbitrary Bell diagonal
states (Eq. (2.14)) and for noise of the form (3.1). The procedure is the same
as in the case of binary pairs; however, a few modifications are required.

In order to keep track of the four different error operators σµ in (3.1),
the lab demon has to attach two classical bits to each pair; let us call them
the phase error bit and amplitude error bit. Whenever a σx (σz, σy) error
occurs, the lab demon inverts the error amplitude bit (error phase bit, both
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Figure 3.4: Illustration of the purification curve for variouse noise levels f0.
In order to make the point clear, the effect has been strongly overdrawn. See
text.
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Figure 3.5: Actual data from which Fig. (3.4) has been inferred.
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error bits). To update these error flags, he uses the update function given in
Tab. 3.1. The physical reason for the choice of this flag update function will
be given in the next section.

(00) (01) (10) (11)
(00) (00) (00) (00) (10)
(01) (00) (01) (11) (00)
(10) (00) (11) (01) (00)
(11) (10) (00) (00) (00)

Table 3.1: The value (phase error, amplitude error) of the updated error flag
of a pair that is kept after a 2–EPP step, given as a function of the error
flags of P1 and P2 (left to right and top to bottom, respectively).

Here, the lab demon divides all pairs into four subensembles, according
to the value of their error flag. In each of the subensembles the pairs are
described by a Bell diagonal density operator, like in Eq. (2.14), which now
depends on the subensemble. That means, in order to completely specify the
state of all four subensembles, there are 16 real numbers Aij, Bij, C ij, Dij

with i, j ∈ {0, 1} required, for which one obtaines recurrence relations of the
form

A(00)
n → A

(00)
n+1(A

(00)
n , A(01)

n , . . . , D(11)
n ),

A(01)
n → A

(01)
n+1(A

(00)
n , A(01)

n , . . . , D(11)
n ),

...

D(11)
n → D

(11)
n+1(A

(00)
n , A(01)

n , . . . , D(11)
n ).

(3.8)

These generalize the recurrence relations (3.5) for the case of binary pairs,
and the relations (2.15) for the case of noiseless apparatus.

Like the recurrence relations (2.15) and (3.5), respectively, these rela-
tions are modulo normalization quadratic forms in the 16 state variables

~a =
(
A(00), A(00), . . . , D(11)

)T
, with coefficients that depend on the error pa-

rameters fµν only. In other words, (3.8) can be written in the more compact
form (again modulo normalization)

~a′j = ~aMj~a
T , (3.9)

where, for each j ∈ {1, . . . 16}, Mj is a real 16× 16-matrix whose coefficients
are polynomials in the noise parameters fµν .
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3.1.4 Numerical results

The 16 recurrence relations (3.8) imply a reduced set of 4 recurrence relations

for the quantities An =
∑

ij A
(ij)
n , . . ., Dn =

∑
ij D

(ij)
n that describe the evo-

lution of the total ensemble (that is, the blend [33] of the four subensembles)
under the purification protocol. Note that these values are the only ones
which are known and accessible to Alice and Bob, as they have no knowledge
of the values of the error flags. It has been shown in [17] that under the ac-
tion of the noisy entanglement distillation process, these quantities converge
towards a fixpoint (A∞, B∞, C∞, D∞), where A∞ = Fmax is the maximal
attainable fidelity [29].

Fig. 3.6 shows for typical initial conditions the evolution of the 16 co-
efficients A

(00)
n . . . D

(11)
n . They are organized in a 4 × 4-matrix, where one

direction represents the probability, with which the pair is in a specific Bell
state, and the other indicates the value of the error flag. The figure shows the
state (a) at the beginning of the entanglement purification procedure, (b) af-
ter few purification steps, and (c) at the fixpoint. As one can see, initially all
error flags are set to zero and the pairs are in a Werner state with a fidelity
of 70%. After a few steps, the population of the diagonal elements starts
to grow; however, none of the other elements vanishes. At the fixpoint, all
off-diagonal elements vanish, which means that there are strict correlations
between the states of the pairs and their error flags.

Similar to the case of binary pairs (see Section 3.1.2), we define the fidelity

Fn ≡ An, and the conditional fidelity F cond
n ≡ A

(00)
n + B

(11)
n + C

(01)
n + D

(10)
n .

Note that the first quantity is the sum over the four |Φ+〉 components in
Fig. 3.6, while the latter is the sum over the four diagonal elements. The
conditional fidelity is the fidelity which Alice and Bob would assign to the
pairs if they knew the values of the error flags, i. e.

F cond
n =

∑
i,j

〈
Φ+

∣∣ σi,jρi,jσi,j

∣∣Φ+
〉
, (3.10)

where ρi,j is the non-normalized state of the subensemble of the pairs with
the error flag (i, j). For convenience, we use the phase- and spin-flip bits i and
j as indices for the Pauli matrices, i. e. σ00 = Id, σ01 = σx, σ11 = σy, σ10 = σz.
We will utilize the advantages of this notation in Section 3.2.

The results that we obtain are similar to those for the binary pairs. We
can again distinguish three regimes of noise parameters fµν . In the high-
noise regime (i. e., small values of f00), the noise level is above the threshold
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Figure 3.6: Typical evolution of the extended state under the purification
protocol for the noise parameters f00 = 0.83981, f0j = fi0 = 0.021131 and
fij = 0.003712 for i, j ∈ {1, 2, 3}. This corresponds to a combination of one-
and two-qubit white noise, as studied in [17, 29], with noise parameters p1 =
0.92 and p2 = 0.9466, considering noise in Alice’s lab only, or p1 = 0.9592
and p2 = 0.973, considering noise in Alice’s and Bob’s laboratory.
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Figure 3.7: (a) The fidelities F and Fcond as a function of the number of
steps in the security regime of the entanglement distillation process (ana-
lytical results (lines) and Monte Carlo simulation (circles)). The noise pa-
rameters for this plot were f00 = 0.91279120, f0j = fi0 = 0.0113896 and
fij = 0.0020968 for i, j ∈ {1, 2, 3}, corresponding to white noise with noise
parameters p1 = 0.96 and p2 = 0.968 (see Fig. 3.6). The Monte Carlo sim-
ulation was started with 107 pairs; the numbers indicate how many pairs
are left after each step of the distillation process. This decreasing number
is the reason for the increasing fluctuations around the analytical curves.(b)
The differences of F cond and F and their respective fixpoints, plotted in a
logarithmic scale. Both F cond and F reach their fixpoints exponentially with
(approximately) the same exponent.
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of the 2–EPP and both the fidelity F and the conditional fidelity F cond

converge to the value 0.25. In the low-noise regime (i. e., large values of
f00), F converges to the maximum fidelity Fmax and F cond converges to unity
(see Fig. 3.7). This regime is the security regime, where we know that secure
quantum communication is possible. Like for binary pairs, there exists also an
intermediate regime, where the 2–EPP purifies but F cond does not converge to
unity. For an illustration, see Fig 3.8. Note that the size of the intermediate
regime is very small, compared to the security regime. Whether or not secure
quantum communication is possible in this regime is unknown. However, the
answer to this question is irrelevant for all practical purposes, because in the
intermediate regime the distillation process converges very slowly, as shown
in Fig. 3.9. In fact, the divergent behaviour of the process near the critical
points has features remnant of a phase transition in statistical mechanics.

To estimate the size of the intermediate regime and to compare it to the
case of binary pairs (Fig. 3.3), we consider the case of one-qubit white noise,
i.e. fµν = fµfν and f1 = f2 = f3 = (1− f0)/3. Here, this regime is known to
be bounded by

0.8983 < f crit,lower < f0 < f crit,upper < 0.8988.

Note that the size of the intermediate regime is much smaller than in the
case of binary pairs.

Regarding the efficiency of the distillation process, it is an important
question how many initial pairs are needed to create one pair with fidelity
F cond, corresponding to the security parameter ε ≡ 1 − F cond. Both the
number of required initial pairs (resources) and the security parameter scale
exponentially with the number of distillation steps, so that we expect a poly-
nomial relation between the resources and the security parameter ε. Fig. 3.10
confirms this relation in a log-log plot for different noise parameters. The
straight lines are fitted polynomial relations; the fit region is indicated by
the lines themselves.

3.1.5 Non-Bell-diagonal pairs

In the worst-case scenario, Eve generates an ensemble of N qubit pairs which
she distributes to Alice and Bob. For that reason, Alice and Bob are not al-
lowed to make specific assumptions on the state of the pairs. Most generally,
the state of the 2N qubits, of which Alice and Bob obtain N qubits each,
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Figure 3.8: The size and the location of the three regimes of the distillation
process. For fixed values of f00, the remaining 15 noise parameters fµν have
been choosen at random. Plotted is the relative frequency of finding the noise
parameters in any of the three regimes as a function of f00.
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Figure 3.9: The effect of one-qubit white noise on the fidelity F , the condi-
tional fidelity F cond and the number of iterations required for the convergence
up to an uncertainty ε = 10−12.
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Figure 3.10: Number N of pairs needed to create one pair with conditional
fidelity F cond. The initial state of the pairs was of the Werner type with
fidelity F0 = 85%. One- and two-qubit white noise (see Fig. 3.6) has been as-
sumed with the noise parameters (p1, p2) = (0.9333, 0.9466), (0.9733, 0.9786),
(0.9866, 0.9833), (0.9933, 0.9946) (from top to bottom).
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can be written in the form

ρAB =
∑

µ1...µN
µ′1...µ′

N

αµ1...µN
µ′1...µ′

N

|B(a1b1)
µ1

· · · B(aN bN )
µN

〉〈B(a1b1)

µ′1
· · · B(aN bN )

µ′N
|. (3.11)

Here, |B(ajbj)
µj 〉, µj = 00, 01, 10, 11 denote the 4 Bell states associated with the

two particles aj and bj and j = 1, . . . , N , as defined in Eq. 2.8. In general,
(3.11) will be an entangled state of 2N particles, which might moreover be
entangled with additional quantum systems in Eve’s hands; this allows for
the possibility of so-called coherent attacks [23].

Upon reception of all pairs, Alice and Bob apply a preprocessing protocol
to them, which consists of the following steps. Note that the preprocessing
protocol is only applied once to the pairs, while the purification protocol (see
2.4.1) is applied in every step of the purification process.

Step 1 On each pair of particles (aj, bj), they apply randomly one of the four

bi-lateral Pauli rotations σ
(aj)
k ⊗ σ

(bj)
k , where k = 0,1,2,3.

Step 2 Alice and Bob randomly renumber the pairs, (aj, bj) → (aπ(j), bπ(j))
where π(j), j = 1, . . . , N is a random permutation.

These preprocessing steps are required in order to treat correlated pairs
correctly. Note that they would also be required for the ideal distillation
process [26], if one requires that the process converges for arbitrary states of
the form (3.11) to an ensemble of pure EPR states. However, in [26] it is not
crucial that the distillation process works for input pairs in the most general
state (3.11), since it is possible to check whether the distillation process was
successful (by measuring the fidelity of some of the remaining pairs).

In contrast, in the case of imperfect apparatus, we do not know a way to
check whether the distillation process was successful. For instance, there is
no way to “ask” the lab demon whether the pairs are in a pure state. For
this reason, we have to ensure that the distillation process works for all input
pairs which passed the initial fidelity check.

In both preprocessing steps, Alice and Bob discard the information which
of the rotations and permutations, respectively, were chosen by their random
number generator. Thus they deliberately loose some of the information
about the ensemble which is still available to Eve (as she can eavesdrop
the classical information that Alice and Bob exchange to implement the
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preprocessing steps). After step 1, their knowledge about the state can be
described by the density operator

ρ̃AB =
∑

µ1...µN

pµ1...µN
|B(a1b1)

µ1
· · · B(aN bN )

µN
〉〈B(a1b1)

µ1
· · · B(aN bN )

µN
| (3.12)

which corresponds to a classically correlated ensemble of pure Bell states.
Since the purification protocol that they are applying in the following steps
maps Bell states onto Bell states, it is statistically consistent for Alice and
Bob to assume after step 1 that they are dealing with a (numbered) ensemble
of pure Bell states, where they have only limited knowledge about which Bell
state a specific pair is in. The fact that the pairs are correlated means that the
order in which they appear in the numbered ensemble may have some pattern,
which may have been imposed by Eve or by the channel itself. By applying
step 2, Alice and Bob (i) deliberately ignore this pattern and (ii) randomize
the order in which the pairs are used in the subsequent purification steps3.
For all statistical predictions made by Alice and Bob, they may consistently
describe the ensemble by the density operator. 4

˜̃ρAB =

(∑
µ

pµ|Bµ〉〈Bµ|
)⊗N

≡ (ρab)
⊗N (3.13)

in which the pµ describe the probability with which each pair is found in
the Bell state |Bµ〉. At this point, Alice and Bob have to make sure that
p00 ≡ F > Fmin for some minimum fidelity Fmin > 1/2, which depends on the
noise level introduced by their local apparatus. This test can be performed
locally by statistical tests on a certain fraction of the pairs.

As Alice and Bob now own an ensemble of Bell diagonal pairs, they may
proceed as described in the previous section. However, it is a reasonable
question why Eve cannot take advantage of the additional information which
she has about the state of the pairs: as she is allowed to keep the information
about the twirl operations in step 1 and 2, from her point of view all the pairs
remain in an highly entangled 2N -qubit state. Nevertheless, all predicions
made by Eve must be statistically consistent with the predictions made by

3This will prevent Eve from making use of any possibly pre-arranged order of the pairs,
which Alice and Bob are meant to follow when performing the distillation process.

4While, strictly speaking, this equality holds only for N → ∞, the subsequent argu-
ments also hold for the exact but more complicated form of (3.13) for finite N .
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Alice and Bob (or, for that matter, their lab demon), which means that the
state calculated by Eve must be the same as the state calculated by the lab
demon, tracing out Eve’s additional information. As the lab demon gets a
pure state at the end of the entanglement distillation process, this must also
be the result which Eve obtains using her additional information, simply
due to the fact that no pure state can be written as a non-trivial convex
combination of other states.

3.2 How to calculate the flag update function

In this section, we analyse how errors are propagated in the distillation pro-
cess. As was mentioned earlier, the state of a given pair that survives a given
purification step in the distillation process depends on all errors that occured
on pairs in earlier steps, which thus belong to the “family tree” of this pair.
We will show that it is possible to summarize the effect of all errors in the
family tree of each pair in an error flag, which consists of two classical bits.
The values of the error flags can be calculated in a recursive scheme, and we
call the recurrence relation the flag update function.

Each step of the distillation process consist of a number of unitary opera-
tions followed by a measurement, which we treat separately in the following
two subsections.

3.2.1 Unitary transformations and errors

Consider an error Uerr (i.e. a random unitary transformation) that is intro-
duced before a unitary transformation U is performed on a state |ψ〉. Note
that, without loss of generality, it is always possible to split up a noisy quan-
tum operation close to a unitary operation U in two parts: first, a noisy
operation close to identity, and afterwards the noiseless unitary operation
U . For that reason, it only a matter of interpretation whether we think of
a quantum operation which is accompanied by noise, e. g. as described by a
master equation of the Lindblad form, or of the combination of some noise
channel first and the noiseless quantum operation afterwards.

We call a transformation Ucorr an error corrector, if the equation

U |ψ〉 = UcorrUUerr |ψ〉 (3.14)
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holds for all states |ψ〉. Equation (3.14) is obviously solved by Ucorr =
UU−1

errU
−1.

We want to calculate the error corrector for the Pauli operators and the
unitary operation U2−EPP, which consists of the bilateral x-rotations and the
BCNOT operation, as described in Section 2.4.1.

In what follows, it is important to note that Pauli rotations and all the
unitary operations used in the entanglement purification protocol map Bell
states onto Bell states: It is expedient to write the four Bell states as

|Bij〉 =
1√
2

(|0j〉+ (−1)i |1j̄〉) , (3.15)

using the phase bit i and the amplitude bit j with i, j ∈ {0, 1} [14], which we
have implicitly employed in (3.11). In this notation, we get (ignoring global
phases): σx |Bi,j〉 = |Bi,j⊕1〉, σy |Bi,j〉 = |Bi⊕1,j⊕1〉 , and σz |Bi,j〉 = |Bi⊕1,j〉,
where σ may act on either side of the pair. The ⊕ symbol indicates addition
modulo 2. Consistent with this notation, σx is referred to as the amplitude
flip operator, σz as the phase flip operator, and σy as the phase and amplitude
flip operator.

The effect of the bilateral one-qubit rotation in the 2–EPP can be easily
expressed in terms of the phase and amplitude bit,

UA
x ⊗ UB

x

−1 |Bi,j〉 = |Bi,j⊕i〉 , (3.16)

and the same holds for the BCNOT operation:

BCNOT |Bi,j〉 |Bi′,j′〉 = |Bi⊕i′,j〉 |Bi′,j⊕j′〉 . (3.17)

The effect of the unitary part of the 2–EPP onto two pairs in the states
|Bi,j〉 and |Bi′,j′〉 can be written in the form

U2−EPP |Bi,j〉 |Bi′,j′〉 = |Bi⊕i′,i⊕j〉 |Bi′,i′⊕j′⊕i⊕j〉 , (3.18)

where the first and second pair plays the role of the “source” and the “target”
pair. Instead of (3.18), we will use an even more economic notation of the
form (i, j) ≡ |Bi,j〉. Eq. (3.18) can then be written as

(i, j)(i′, j′)
2−EPP−→ (i⊕ i′, i⊕ j)(i′, i′ ⊕ j′ ⊕ i⊕ j). (3.19)
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It is now straightforward to include the effect of the lab demon, Eq. (3.1).
Applying Pauli rotations σpa and σp′a′ to the pairs before the unitary 2–EPP
step (σ00 = Id, σ01 = σx, σ11 = σy, σ10 = σz), we obtain:

(i, j)(i′, j′)
σ−→(i⊕ p, j ⊕ a)(i′ ⊕ p′, j′ ⊕ a′)

2−EPP−→ (i⊕ i′ ⊕ p⊕ p′, i⊕ j ⊕ p⊕ a)

(i′ ⊕ p′, i′ ⊕ j′ ⊕ i⊕ j ⊕ p′ ⊕ a′ ⊕ p⊕ a).

(3.20)

Comparing Eq. (3.19) and Eq (3.20), we find that the error corrector for the
error operation σp,a ⊗ σp′,a′ is given by

Ucorr = σp⊕p′,p⊕a ⊗ σp′,p′⊕a′⊕p⊕a, (3.21)

independent of the initial state of the pairs. This is the desired result.

3.2.2 Measurements and measurement errors

As the 2–EPP does not only consist of unitary transformations but also of
measurements, it is an important question whether or not errors can be cor-
rected after parts of the system have been measured, and how we can deal
with measurement errors. It is important to note that whether or not a pair
is kept or discarded in the 2–EPP depends on the measurement outcomes.
This means that, depending on the level of noise in the distillation process,
different pairs may be distilled, each with a different “family tree” of pairs.
This procedure is conceptually different from quantum error correction, in
the following sense: In quantum error correction, it is necessary to correct
for errors before performing a readout measurement on a logical qubit. In
contrast, the lab demon performs all calculations only for bookkeeping pur-
poses. No action is taken, and thus no error correction is performed, neither
by the lab demon, nor by Alice and Bob.

In the analysis of the noisy entanglement distillation process [17, 29],
not only noisy unitary operations have been taken into account, but also
the effect of noisy measurement apparatus, which is assumed to yield the
correct result with the probability η, and the wrong result with the probalility
1 − η. Surprisingly, if only the measurements are noisy (i. e. all unitary
operations are perfect), the 2–EPP produces perfect EPR pairs, as long as
the noise is moderate (η > 63.5%). The reason for this property lies in the
fact that F = 1 is a fixpoint of the 2–EPP even with noisy measurements.
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For a physical understanding of this fact, it is useful to note that in the
distillation process, while the fidelity of the pairs increases, it becomes more
and more unlikely that a pair which should have been discarded is kept due
to a measurement error. This means that the increasingly dominant effect of
measurement errors is that pairs which should have been kept are discarded.
However, this does not decrease the fidelity of remaining pairs, but only the
efficiency of the protocols.

This fact is essential for our goal to extend the concept of error correctors
to the entire 2–EPP which actually includes measurements: As was shown
in 3.2.1, noise in the unitary operations can be accounted for with the help
of error correctors, which can be used to keep track of errors through the
entire distillation process; on the other hand, the measurement in the 2–EPP
may yield wrong results due to noise which occured in an earlier (unitary)
operation. This has, however, the same effect as a measurement error, of
which we have seen that it does not jeopardize the entanglement distillation
process.

3.2.3 The reset rule

From the preceeding two sections, one can identify a first candidate for the
flag update function. The idea is the following: The error corrector Ucorr

calculated in 3.2.1 describes how errors on the phase- and amplitude bit are
propagated by the 2–EPP. For the lab demon, this means that instead of
introducing an error operation Uerr = σp,a ⊗ σp′,a′ before the unitary part of
the 2-EPP, he could, with the same result, introduce the operation U−1

corr =
Ucorr = σp⊕p′,p⊕a ⊗ σp′,p′⊕a′⊕p⊕a as an error operation afterwards.

Let us assume, motivated by the preceeding section, that the measure-
ment which follows the unitary operation U2−EPP does not compromise the
concept of error correctors (This assumption will have to be modified later).
The lab demon can then consider the error corrector as an recursive up-
date rule for errors on the phase- and amplitude bit, i. e. for the phase- and
amplitude error bits which constitute the error flag, in the following way:

At the beginning of the destillation process, the lab demon assigns two
classical bits to each of the pairs, both set to the value zero (“0”). Whenever
he applies a phase- or amplitude flip to a given pair, he inverts the first or
the second bit of its error flag, respectively. For that reason, we call the two
bits the error phase bit pe and the error amplitude bit ae.

If, for a given pair of pairs, the purification is successful, the source pair
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is kept. The error flag of the source pair is now calculated as a function of
the previous error flags of both pairs, using the part of the error corrector
(Eq. 3.21) which corresponds to the source pair: (pe, ae)(p

′
e, a

′
e) → (pe ⊕

p′e, pe ⊕ ae).
In any case, the lab demon has to discard the target-pair part of the error

corrector, as the target pair is measured and does no longer take part in the
distillation process. The knowledge of the error flag of a specific pair implies
that the lab demon could undo the effect of all errors introduced in the family
tree of this pair. For example, if the error flag has the value (i, j), the lab
demon could apply the Pauli operator σi,j in order to undo the effect of all
errors he introduced up to that point.

It is well-known that the noiseless protocol asymptotically produces per-
fect EPR pairs in the state B0,0. It follows that — in the asymptotic limit —
a pair with the error flag (i, j) must be in the state Bi,j, i. e. the error flags
and the states of the pairs are strictly correlated. This means, if the assump-
tion made earlier was true, then the flag update function would be given by
(pe, ae)(p

′
e, a

′
e) → (pe ⊕ p′e, pe ⊕ ae). However, as we will see, the assumption

does not hold; for that reason we call this update function a candidate for
the flag update function.

The candidate has already the important property that states with perfect
correlations between the error flags (i. e. only the coefficients A00, B11, C01,
and D10 are non-vanishing) are mapped onto states with perfect correlations.

A serious deficiency of the candidate function as specified above is that
perfect correlations between flags and pairs are not built up (unless they exist
from the beginning). By following the distillation process in a Monte Carlo
simulation that takes the error flags into account, the reason for this is easy to
identify: The population of pairs which carry an amplitude error becomes too
large. Now, the amplitude bit (not the amplitude error bit!) of a target pair
is responsible for the coincidence of Alices and Bobs measurement results; if
the amplitude bit has the value zero, the measurement results coincide and
the source pair will be kept, otherwise it will be discarded. If the target pair
carries an amplitude error, a measurement error will occur, and there are two
possibilities: either the source pair will be kept even though it should have
been discarded, or vice versa, then the source pair will be discarded although
it should have been kept. Obviously, the latter case does not destroy the
convergence of the entanglement distillation process (but it does have an
impact on its efficiency); as Alice and Bob do not have any knowledge of
the error flags, there is nothing that can be done in this case, and both
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pairs are discarded. The first case is more interesting. It is clear that for
pairs with perfectly correlated error flags this case will not occur (due to the
perfect correlations the amplitude error bit can only have the value one if the
amplitude bit has the value one, which is just the second case). This means
that we have the freedom to modify the error flags of the remaining pair
without loosing the property that perfectly correlated states get mapped onto
perfectly correlated states. It turns out that setting both the error amplitude
bit and the error phase bit of the remaining pair to zero (reset rule) yields
the desired behaviour of the flag update function, so that perfect correlations
are being built up.

The amplitude error bit of the target pair is given by p′⊕ a′⊕ p⊕ a. The
flag update function can thus be written as

(p, a)(p′, a′) →
{

(p⊕ p′, p⊕ a) if p′ ⊕ a′ ⊕ p⊕ a = 0
(0, 0) otherwise.

(3.22)

For convenience, the values of the flag update function are given in Tab. 3.1.
Note that the reset rule is an ad hoc solution: even though the above

arguments do not prove that the desired correlations are built up, we can
calculate the recurrence relations (3.8) using the flag update function (3.22).
Analytical considerations in the case of binary pairs with one-qubit noise (see
Sec. 3.1.2) and numerical iterations of Eq. (3.8) for all other cases show the
desired result, i. e. that strict correlations are in fact built up.

3.3 Discussion

We have shown in Section 3.1, that the two-way entanglement distillation
process is able to disentangle any eavesdropper from an ensemble of imper-
fect EPR pairs distributed between Alice and Bob, even in the presence of
noise, i. e. when the pairs can only be purified up to a specific maximum
fidelity Fmax < 1. Alice and Bob may use these imperfectly purified pairs as
a secure quantum communication channel. They are thus able to perform
secure quantum communication, and, as a special case, secure classical com-
munication (which is in this case equivalent to a key distribution scheme).

In order to keep the argument transparent, we have considered the case
where noise of the form (3.1) is explicitly introduced by a fictious lab-demon,
who keeps track of all error operations and performs calculations. However,
using a simple indistinguishability argument (see Section 3.1.1), we could
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show that any apparatus with the noise characteristics (3.1) is equivalent to
a situation where noise is introduced by the lab demon. This means that the
security of the protocol does not depend on the fact whether or not anybody
actually calculates the flag update function. It is sufficient to just use a noisy
2–EPP, in order to get a secure quantum channel.

For the proof, we had to make several assumptions on the noise that
acts in Alices and Bobs entanglement purification device. One restriction
is that we only considered noise which is of the form (3.1). However, this
restriction is only due to technical reasons; we conjecture that our results are
also true for most general noise models of the form (2.3). More generally,
a regularization procedure (c.f. Section 3.1.1) can be used to actively make
any noise Bell-diagonal. We have also implicitly introduced the assumption
that the eavesdropper has no additional knowledge about the noise process,
i. e. Eve only knows the publicly known noise characteristics (3.1) of the
apparatus. This assumption would not be justified, for example, if the lab
demon was bribed by Eve, or if Eve was able to manipulate the apparatus
in Alice’s and Bob’s laboratories, for example by shining in light from an
optical fiber. This concern is not important from a principial point of view,
as the laboratories of Alice and Bob are considered secure by assumption.
On the other hand, this concern has to be taken into account in a practical
implementation.



Chapter 4

Cluster state purification

As we have seen in the previous chapters, entanglement and entanglement
purification are fascinating and useful concepts in bipartite scenarios, and
their theories are well established. In contrast, multi-party entanglement
is still not well understood. Not surprisingly, this is reflected in the fact
that there are only a few protocols known which are capable of distilling
multi-party entangled states.

One well-known multi-party entanglement purification protocol has been
described by Murao et al. [58], which is able to purify n-qubit GHZ states
[40]. Later, Maneva and Smolin [55] gave a description of this protocol in
terms of the stabilizer of GHZ states, which is useful in order to understand
why this protocol works.

Recently, attention has been directed to a class of highly entangled multi-
party states, which contains the class of GHZ states. However, there are
many states in this class which are different from GHZ states, e. g., with
respect to their entanglement properties. The preparation processes (and
thus the states themselves) are completely described by undirected graphs.
For this reason, these states are called graph states [37, 68]. In this chapter,
we will show how one can construct an entanglement purification protocol
for all graph states, which correspond to a bi-colorable graph. Note that the
protocol is similar1 to the purification protocol of n party GHZ states.

Linear cluster states [18] are special graph states. In the following section,
we describe the purification protocol for linear cluster states. As a non-ideal
case, we also take into account the noise which is introduced by the purifi-

1In fact, it is a generalization of the GHZ purification protocol, as we will see in Sec. 4.4



72 4. Cluster state purification

cation apparatus itself (Sec. 4.2). We find that in this case, it is impossible
to distill perfect cluster states; however, we can show that the entanglement
of the purified cluster states is completely private (Sec. 4.3). In Section 4.4,
we generalize the results to the class of bi-colorable graph states.

A more detailed description of the purification of graph states can be
found in [28].

4.1 The cluster purification protocol

4.1.1 Cluster states

Cluster states are defined in terms of eigenvalue equations of correlation
operators; the specific form of these equations is given by a cluster — or, more
generally, a graph — which indicates which qubits have interacted during the
creation of this state. Note that there exist in general many graphs which
generate a given cluster or graph state (up to local unitary operations). In
the special case of n-qubit linear cluster states, which we will consider in the
following section, they are given by

Ka = σa−1
z σa

xσ
a+1
z (4.1)

for a ∈ {1 . . . n}, where σµ
x and σµ

z are the Pauli operators acting on qubit µ
(µ ∈ {1, . . . n}). Note that we use as a shorthand notation σ0

z = σn+1
z = I.

We call the correlation operator Ka centered at qubit a, i. e. at the qubit,
where Ka has the σx operator. As one can easily see, these n operators com-
mute, and none of them can be written as a product of the others. In fact,
they constitute a complete set of commuting observables of the n-qubit sys-
tem. Thus, there exists a basis of the n-qubit Hilbert space of simultaneous
eigenstates of the correlation operators Ka, which we call the cluster basis ;
each element of the cluster basis is called a cluster state |(k1, k2, . . . , kn)〉,
which is uniquely identified by the eigenvalues k1, k2, . . . , kn of the correla-
tion operators (ki ∈ {−1, 1}). We call the cluster state |C0〉 = |(1, 1, . . . , 1)〉
the standard cluster state, and the eigenvalue ki of a given cluster state its
i-th cluster bit.
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Figure 4.1: Alice, Bob, Charlie and Dora perform an alternating n-party
CNOT operation (CNOTs) operation on two cluster states. Afterwards, the
qubits of the second cluster state are measured in the σz and σx-basis, respec-
tively (boxes). In protocol (a), they measure the products of the correlation
operators with even numbers, in (b) with odd numbers.

4.1.2 Description and analytical treatment of the pro-
tocol

Let us now consider the following n-party protocol P1: Two n-party cluster
states

∣∣Ψ(1)
〉

= |(k1, k2, . . . , kn)〉 and
∣∣Ψ(2)

〉
= |(l1, l2, . . . , ln)〉 are distributed

to the n parties Alice, Bob, . . ., Norbert, in such a way that Alice gets the
first qubits of both cluster states (a1 and a2), Bob gets the second qubits (b1
and b2), and so on.

Step 1: Each of the parties performs a controlled NOT (CNOT) operation
on his or her pair of qubits, with alternating roles of source and target bit
(see Fig. 4.1). In total, they perform the unitary operation

CNOTs = CNOTa2
a1
⊗ CNOTb1

b2
⊗ CNOTc2

c1
⊗ CNOTd1

d2
⊗ · · · . (4.2)

The resulting state is again a product of cluster states; to be specific,

|Ψ〉CNOTs ≡CNOTs
∣∣Ψ(1)

〉 ∣∣Ψ(2)
〉

=

= |(k1l1, k2, k3l3, k4, . . .)〉 |(l1, k2l2, l3, k4l4, . . .)〉 .
(4.3)

For the proof, we use the following well-known identities, where i1 and i2
denote the source and target qubits of a CNOT operation:

σi1
z CNOTi2

i1
= CNOTi2

i1
σi1

z , σi2
z CNOTi2

i1
= CNOTi2

i1
σi1

z σ
i2
z ,

σi2
x CNOTi2

i1
= CNOTi2

i1
σi2

x , σi1
x CNOTi2

i1
= CNOTi2

i1
σi1

x σ
i2
x .

(4.4)
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We have to show that |Ψ〉CNOTs is an eigenstate of the correlation operators

K
(µ)
i (i ∈ {a, . . . n}) of both cluster states (µ = 1, 2). We have to distinguish

four cases:

1. µ = 1 and i = a, c, . . .: K
(1)
i |Ψ〉CNOTs = CNOTs K

(1)
i K

(2)
i

∣∣Ψ(1)
〉 ∣∣Ψ(2)

〉
=

kili |Ψ〉CNOTs

2. µ = 1 and i = a, c, . . .: K
(1)
i |Ψ〉CNOTs = CNOTs K

(1)
i

∣∣Ψ(1)
〉 ∣∣Ψ(2)

〉
=

ki |Ψ〉CNOTs

3. µ = 2 and i = b, d, . . .: K
(2)
i |Ψ〉CNOTs = CNOTs K

(2)
i

∣∣Ψ(1)
〉 ∣∣Ψ(2)

〉
=

li |Ψ〉CNOTs

4. µ = 2 and i = b, d, . . .: K
(2)
i |Ψ〉CNOTs = CNOTs K

(1)
i K

(2)
i

∣∣Ψ(1)
〉 ∣∣Ψ(2)

〉
=

kili |Ψ〉CNOTs

In all cases, the formulae can be easily checked by using the definitions (4.2)
and (4.1) of the CNOTs operation and the correlation operators and applying
Eq. (4.4). ¤

Step 2: All parties measure the qubit which belongs to the second cluster
state, again in alternating directions. Alice, Charlie, . . .measure σz, and
Bob, Dora,. . .measure σx. Since K2 = σa

zσ
b
xσ

c
z, K4 = σc

zσ
d
xσ

e
z, and so on, all

parties can now cooperatively (using classical communication) calculate the
(eigen)values of all even correlation operators, i. e. k2l2, k4l4 and so on. They
keep the cluster state 1 if k2l2 = k4l4 = . . . = 1, otherwise it is discarded.

There exists a similar protocol P2 which allows one to measure the prod-
ucts of the odd values of the correlation operators, i. e. k1l1, k3l3 and so on
(see Fig. 4.1b). Similar to the purification protocol for GHZ states[58], we
will use a combination of both protocols in an recursive process in order to
distill asymptotically perfect cluster states |C0〉 from an ensemble of imperfect
cluster states. We assume that all of these imperfect cluster states are de-
scribed by the density operator ρ(0), with an initial fidelity F (0) = 〈C0| ρ(0) |C0〉
greater than some minimum initial fidelity Fmin.

2

The combined protocol P1+P2 works as follows (see Fig. 4.2(a)): the
n parties start with four (imperfect) cluster states, which are described by
the density operator ρ(0). First, they apply protocol P1 to two pairs of these
cluster states, which (probabilistically) yield two cluster states ρ(0)′ . The

2As we will see below, the minimum fidelity Fmin depends on the number n of parties.
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P1
P2

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P2

P2

P2

P2

P2

ρ(0)

ρ(0)

ρ(0)

ρ(0)

ρ(0)′

ρ(0)′

ρ(1)

(a) (b)

Figure 4.2: (a) The combination of the protocols P1 and P2. Each line
represents n qubits, which form a cluster state, while the blocks P1 and P2
symbolize the protocols shown in Fig. 4.1(a) and Fig. 4.1(b), respectively.
(b) The entanglement purification process is a recursive scheme, where the
protocol P1+P2 is applied repeatedly. In the figure, two recursion steps are
shown, which map 16 input states onto one output state.

two output states are then used as input states for the protocol P2, which
yields ρ(1). The combined protocol can then be used in an recursive process
(Fig. 4.2(b)).

4.1.3 Numerical analysis of the protocol

For the analysis of the protocol, it is sufficient to concentrate on density
matrices which are diagonal in the cluster basis, because in all operations,
the cluster diagonal elements of the density operators do not mix with non-
diagonal elements. As we will see, the protocol converges to a state with one
diagonal element equal to unity, and all other diagonal elements vanishing.
From that it follows that in the final state, all off-diagonal elements also
vanish.

In the case of cluster diagonal initial states

ρ(µ) =
∑

k1...kn

b
(µ)
k1...kn

|k1 . . . kn〉〈k1 . . . kn| (4.5)

(with µ = 1, 2), the states 1 and 2 are completely described by the vectors
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~b(1) =
(
b
(1)
k1···kn

)
and ~b(2) =

(
b
(2)
l1···ln

)
of the diagonal elements of the density

operators ρ(1) and ρ(2). Using these vectors, we are able to calculate the
outcome ~b′ of the protocol P1 or P2 with the following algorithm:

1: ~b′ := 0
2: for all indices (k1, . . . kn) do
3: for all indices (l1, . . . ln) do
4: (k′1, . . . , k

′
n) := (k1l1, k2, k3l3 . . .)

5: if k2l2 = 1 and k4l4 = 1 and k6l6 = 1 and . . . then
6: b′k′1,...,k′n

= b′k′1,...,k′n
+ b

(1)
k1...kn

b
(2)
l1...ln

7: end if
8: end for
9: end for

Algorithm 1: The algorithm with which the result of the protocol P1 is
calculated.

The non-normalized result vector ~b′ defines the state of the resulting clus-
ter state. The algorithm for the protocol P2 is analogous, mainly exchanging
the role of even and odd numbers. Note that in these algorithms, it is not
necessary to store the tensor product of the two cluster states, rather the
tensor product and the projection are calculated “on the fly”. For n-qubit
cluster states, the required memory scales like 2n (only the vector of diagonal
elements needs to be stored), and the run-time scales like 22n.

4.1.4 Results

In order to test the purification protocol, we start with noisy n-party linear
cluster states of the form

ρinitial = p |(1, . . . , 1)〉〈(1, . . . , 1)|+ 1− p

2n
I,

i. e. with cluster states of fidelity F = p+ (1− p)/2n.
If the fidelity F is not too small, the entanglement purification process

is in the purification regime, and yields (in the asymptotic limit) perfect
cluster states. We find that the minimum fidelity for which the cluster states
can still be purified, decays exponentially with the number n of parties (see
Fig. 4.3).
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For n = 2 and n = 3, the minimum required fidelity coincides with the
values found for the purification of GHZ-states [58]. The reason for this
coincidence is that the two- and tree-party linear cluster states are (up to
local unitary operations) equal to two- and tree-qubit GHZ states, and that
the cluster purification protocol is (in these two cases) equivalent to the GHZ
purification protocol.
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Figure 4.3: The required initial fidelity as a function of the number n of
parties. The dotted curve is an exponential fit to the exact values (circles).

4.2 Noisy operations

In a realistic scenario, the n parties have to use some physical apparatus in
order to perform the purification protocol. However, no physical apparatus
can ever work perfectly, i. e. it will introduce noise by itself. In the case of
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bipartite entanglement purification, the influence of noisy operations is well-
understood (see Section 2.4.2, Chapter 3, and Refs. [17, 36]). The main result
is that bipartite entanglement purification still works with noisy apparatus,
as long as its reliability is above a certain threshold value. However, there
is a price which one has to pay: it is not possible to get perfectly entangled
pairs using noisy apparatus; the fidelity will converge to a maximum fidelity
Fmax < 1, which depends on the reliability of the quantum operations.

For the cluster purification protocol, one expects that the situation is
quite similar. However, it is not a priori clear how the required reliability
scales with the number n of parties. In particular, if the required reliability
would approach unity (i. e., perfect operations) exponentially with growing
n, the cluster purification protocol would not be of any practical use for large
n. However, as we will see, the reliability threshold seems to be independent
of n.

For the analysis of the purification process using noisy apparatus, we
again concentrate on density operators which are diagonal in the cluster basis.
On the one hand, this is not really a restriction since it is always possible
to get rid of the off-diagonal elements using a twirling operation. On the
other hand, it greatly simplifies the calculation; without this simplification,
the number n of parties for which it is possible to perform the calculations
in a given amount of time and memory would be smaller by a factor of two.

4.2.1 One-qubit white noise

In order to keep the influence of noise computable, we restricted our attention
to one-qubit white noise (uncorrelated one-qubit depolarizing channel, see
also Eq. 2.10). If we start with a n-qubit state ρa···n (which later on will be
“close” to a pure cluster state), the depolarization of qubit i with reliability
p can be written in the form

ρa···n → ρ′a···n = pρa···n +
1− p

2
Ii ⊗ tri ρa···n

= pρa···n +
1− p

4

3∑

l=0

σ
(i)
l ρa···nσ

(i)
l

≡ D(i)
p ρa···n,

(4.6)

where we defined the (linear) partial depolarization super-operator D(i)
p of

qubit i. The application of noise to all qubits of a cluster state is then given
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by

ρa···n →
n∏

i=1

D(i)
p ρa···n. (4.7)

The partial depolarization super-operators are convex combinations of
the actions of the Pauli operators. One can easily check that for a cluster
state |(k1, . . . , ki−1, ki, ki+1, . . . kn)〉, a phase flip on qubit i (σ

(i)
x ) inverts the

eigenvalue ki of the correlation operator Ki, and a spin flip on qubit i (σ
(i)
x )

inverts the eigenvalues ki−1 and ki+1 of the adjacent correlation operators.
The Pauli operator σy inverts thus (up to an irrelevant phase) the eigenvalues
ki−1, ki, and ki+1.

If the density operator ρa···n is diagonal in the cluster basis (which we

conveniently write as ρa···n =c diag(~d)), a flip of the i-th cluster bit (ki → −ki)
changes the diagonal vector in the following way:

~d −→ σ̃(i)
x
~d (4.8)

Here, σ̃
(i)
x is the i-th cluster bit flip operator, which looks in the cluster

basis like the Pauli operator σx in the computational basis. Note that, in
general, it is necessary to apply the squared modulus of a unitary operation
to the diagonal vector (see Section 6.3). However, the σx spin flip operation
coincides with its squared modulus.

Since each of the Pauli operators flips zero, one, two or three cluster bits,
we get (in the cluster basis)

D(i)
p diag (~d) = diag

((
3p+ 1

4
I+

1− p

4

(
σ̃(i)

x + σ̃(i−1)
x σ̃(i+1)

x + σ̃(i−1)
x σ̃(i)

x σ̃(i+1)
x

))
~d

)

≡ diag
(
D(i)

p
~d
)
.

(4.9)

The effect of a partial depolarization, applied to all n qubits, on the diagonal
vector is now given by the product Dp =

∏n
i=1D

(i)
p . For a n-qubit cluster

state, Dp is a real 2n × 2n-matrix, while a general super-operator would be
described by a 22n × 22n-matrix. While this is already a simplification, we
can still do better, as we will see in the next paragraphs.

For a given number of qubits n and a reliability parameter p, it is now
possible to calculate Dp once and re-use it for each application of the depo-
larizing channel. However, for large n, it is numerically advantageous to store
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the one-qubit depolarizing matrices D
(i)
p separately, which can be effectively

be described by 8 × 8-matrices (for 1 < i < n) or 4 × 4-matrices for i = 1

or i = n. We define the components of vector ~d = (dk1k2···kn) and the matrix

D
(i)
p =

(
δ

k′i−1k′ik
′
i+1

ki−1kiki+1

)
. All indices take the values −1 or 1, so D

(i)
p is really a

8× 8-matrix. The components of the vector ~d′ = D
(i)
p
~d are then given by

d′k1k2···kn
=

∑

k′i−1k′ik
′
i+1

δ
k′i−1k′ik

′
i+1

ki−1kiki+1
dk1···ki−2k′i−1k′ik

′
i+1ki+2kn . (4.10)

This method reduces the n(2n)3-overhead for the calculation of the matrix
Dp, which has to be done once, and the 22n-overhead for the calculation of

the product Dp
~d, which has to be calculated for each application of the depo-

larizing channel, to a n2n-overhead for each application of the depolarization.

4.2.2 Results

For bipartite entanglement purification protocols, it is well-known that there
exists a threshold value for the reliability of the operations used in the pu-
rification process. If the apparatus is worse than this reliability value, then
the purification process does not produce any entanglement. If the appara-
tus is above the threshold, the purification process works, and one can reach
entangled quantum states up to some maximum fidelity (which depends on
the reliability of the apparatus). Of course, one expects that the situation is
quite similar in the case of multi-partite purification protocols. However, it is
crucial how the threshold reliability pthreshold of the noisy apparatus depends
on the number n of the parties. If the required reliability approached unity
for increasing n (maybe even exponentially), the protocol would be practi-
cally useless for a large number of parties. However, as it turns out, this is
not the case, and the threshold reliability seems to approach a value of about
0.933 for increasing n (see Table 4.1).

4.3 On the security of the protocol

As we have seen in the previous section, it is not possible to distill perfect
cluster states using noisy apparatus. For bipartite protocols, however, we
have shown in Chapter 3 that even using noisy apparatus it is possible to



4.3 On the security of the protocol 81

n = 3 pthreshold = 0.938
n = 4 pthreshold = 0.933
n = 5 pthreshold = 0.934
n = 6 pthreshold = 0.933
n = 7 pthreshold = 0.933

Table 4.1: Threshold values pthreshold for the reliability of one-qubit depo-
larizing channel. For values greater than the threshold values, the n-party
cluster purification protocols are in the purification regime.

distill (asymptotically) private Bell pairs, i. e. Bell pairs which are only en-
tangled with the laboratories of the communication parties, but not with any
other degree of freedom. In a cryptographic scenario, this means that the
Bell pairs are actively disentangled from any eavesdropper who may have,
in the worst case, created the Bell pairs. This would allow him or her to
intentionally entangle them with additional degrees of freedom which he or
she controls.

In this section, we show that this is also possible with the cluster pu-
rification protocol: if the parties only have imperfect apparatus which they
use to purify cluster states, they will not be able to create perfect cluster
states; however, the final state will be disentangled from all channel degrees
of freedom.

The proof is analogous to the proof of Chapter 3. In a first step, the noise
which the apparatus introduces during the purification process is replaced by
a simple toy-model, the lab demon. The lab demon is an intelligent source
of noise, which uses a classical random number generator in order to apply
spin- and phase-flip operations on qubits, according to a given probability
distribution fµν . The result of the action of the lab demon is thus the average
of the “flipped” quantum states:

ρab... → ρ′ab =
∑
µν

σ(a)
µ σ(b)

ν ρab...σ
(a)
µ σ(b)

ν (4.11)

Here, ρab... is a density operator of a quantum system, which includes two
qubits a and b that are located at one specific party; however, it will include
other qubits, which is indicated by the ellipsis (. . .). The lab demon acts
on the two qubits at the same time, since the quantum operations in the
purification protocols are two-qubit operations; for that reason it would be
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an over-simplification if we assumed that the noise acting on two qubits is
uncorrelated.

The lab demons keep notes on which Pauli operators they applied to
which qubits in which step of the purification process. As we will show, the
mere knowledge of this list will, in the asymptotic limit, suffice to perfectly
predict the state of the purified quantum systems. In other words, from the
lab demons’ point of view, all purified quantum systems end in a pure state.
Note that it is not a priori clear that the lab demon’s knowledge would suffice
for the prediction, since the protocol includes measurements, and by intro-
ducing errors, the measurement outcomes will be changed, possibly leading
to different choices by communicating parties, who might throw away qubits
which they should have kept and vice versa.

From the list of errors, the lab demons calculate the so-called error flags.
An error flag as a piece of classical information, which is “attached” to each
cluster state. In case of a n qubit cluster state, we need n classical bits
~λ(j) = (λ

(j)
1 , . . . λ

(j)
n ) ∈ {−1, 1}n for the error flag. Here, the index j denotes

the number of the cluster state in the ensemble of all cluster states. Initially,
before the first step of the purification process, all error flags are set to unity,
i. e. ~λ(j) = (1, . . . , 1) for all j. Whenever the ith lab demon applies a phase
flip operation (σz) to the ith qubit of cluster state j, in the error flag j the
ith bit is flipped, i. e.

~λ(j) = (λ
(j)
1 , . . . λ

(j)
i , . . . , λ(j)

n ) → ~λ′(j) = (λ
(j)
1 , . . .− λ

(j)
i , . . . λ(j)

n ). (4.12)

If he applied an amplitude flip operation (σx), the adjacent bits of the error
flag are flipped, i. e.

~λ(j) = (λ
(j)
1 , . . . λ

(j)
i−1, λ

(j)
i , λ

(j)
i+1, . . . , λ

(j)
n )

→ ~λ′(j) = (λ
(j)
1 , . . . ,−λ(j)

i−1, λ
(j)
i ,−λ(j)

i+1, . . . , λ
(j)
n ).

(4.13)

In both purification sub-protocols P1 and P2, two cluster states are
combined, one of which (probabilistically) survives. The error flag of the
remaining (output) pair is then given by a function of both error flags of
the input cluster states. This function is called the flag update function for
protocol P1 and P2, respectively.

4.3.1 The flag update function

The error flags of the first and second cluster state are given by the vectors
(κ1, κ2, . . . κn) and (λ1, λ2, . . . λn), respectively. For the sub-protocol P1, the
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flag update function maps these 2n classical bits onto n classical bits, i. e.

fflup : {−1, 1}2n → {−1, 1}n,

with

(κ1, . . . κn, λ1, . . . λn)

7→
{

(κ1λ1, κ2, κ3λ3, κ4, . . .) if κ2λ2 = 1 and κ4λ4 = 1 and . . .
(1, 1, . . . , 1) otherwise

(4.14)

The first line of the definition takes into account how errors are prop-
agated through the CNOTs operation. This means, that having applied a
certain pattern of error operations (given by the error flag vectors) before the
CNOTs operation is equivalent to applying a different pattern of error oper-
ations (given by the new error flag vector, ~κ′ = fflup(~κ,~λ)) after the CNOTs
operation. The second line in the definition is the so-called reset rule (see
Section 3.2.3).

It is necessary to introduce the reset rule, otherwise the security proof
does not work. The reset rule is found by the following heuristics, which is
equivalent to the heuristics used for the bipartite protocol:

The flag update function is only used if in the protocol the first cluster
state is kept. This is the case if the values of all even eigenvalues of the second
cluster state are equal to unity, i. e. k2l2 = k4l4 = . . . = 1 (see description of
the protocol, step 2). If this is the case, and, at the same time, at least one
of the “new” error flags associated with the even qubits of the second cluster
state, has the value “-1”, then the errors in the history of the protocol have
summed up in such a way that the first cluster state is kept, even though
it would have been discarded, if there had not been introduced any errors.
In that case, the error flag of the remaining cluster state is set (re-set) to
(1, 1, . . . 1). Note that this coincidence of the two before-mentioned conditions
happens infrequently; in fact, in the course of the purification process, the
probability for this coincidence converges to zero.

For the sub-protocol P2, the flag update function can be constructed by
exchanging even and odd numbers. Using this method, an error flag can be
calculated for each cluster state in each step of the purification process. By
construction, the error flags only depend on the errors introduced by the lab
demons.
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4.3.2 The conditional fidelity

Using the error flag of each cluster state, it is now possible to divide the
ensemble of all cluster states into 2n sub-ensembles. The state of the sub-
ensemble, which belongs to the error flag ~λ, is labeled ρ(~λ). It is convenient to
normalize the density operators of the sub-ensembles to the relative frequency
of the respective error flags, so that the (normalized) total density operator
is just the sum of the density operators of the sub-ensembles. Using this
convention, we define the conditional fidelity

F cond =
∑

~λ

〈(~λ)|ρ(~λ)|(~λ)〉; (4.15)

here, the state |(~λ)〉 = |(λ1, . . . , λn)〉 denotes the cluster state as defined in
Sec. 4.1.1. The conditional fidelity is a measure for the purity of the cluster
states from the lab demons point of view: since the lab demons know the
error flags of all cluster states, they can use this information to transform the
ensemble of all cluster states into an ensemble with fidelity F cond. In contrast,
the usual fidelity, which is just the overlap of the total density operator with
the cluster state |(1, . . . , 1)〉, is given by F = 〈(1, . . . , 1)| ρtotal |(1, . . . , 1)〉.

In order to investigate the behavior of the conditional fidelity in the course
of the purification process, it is necessary to calculate the states of all 2n sub-
ensembles in each step of the purification process. Again, it is useful to note
that all sub-ensembles are diagonal in the cluster basis; the states of all sub-
ensembles is thus given by a real 2n × 2n-matrix M . The columns of this
matrix are the vectors of the diagonal elements of the density matrices de-
scribing the sub-ensembles. Using this convention, physical action on the
qubits is described by a matrix multiplication from the left, and a modi-
fication of the error flags is described by a matrix multiplication from the
right.

Applying a one-qubit depolarizing channel is thus formally equivalent to
a super-operator acting on the matrix of the diagonal vectors. To be specific,
an error operation on qubit i results in flips of the cluster bit i−1, i, or i+1,
respectively (see Eq. 4.8). Simultaneously, bit i − 1, i, or i + 1, of the error
flag is flipped (Eq. 4.12 and 4.13). The result of applying the error operator
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σ
(i)
ν ) is thus (for ν = x, y, z)

M (i)
z = σ̃(i)

x Mσ̃(i)
x

M (i)
x = σ̃(i−1)

x σ̃(i+1)
x Mσ̃(i−1)

x σ̃(i+1)
x

M (i)
y = σ̃(i−1)

x σ̃(i)
x σ̃(i+1)

x Mσ̃(i−1)
x σ̃(i)

x σ̃(i+1)
x .

(4.16)

Under the action of the depolarizing channel on qubit i, the matrix M is
thus transformed into a convex combination of matrices M

(i)
z ,

M → f0M +
∑

ν=1,2,3

fνM
(i)
ν . (4.17)

1: M ′ := 0
2: for all indices ~k = (k1, . . . kn) do

3: for all indices ~l = (l1, . . . ln) do
4: if k2l2 = 1 and k4l4 = 1 and k6l6 = 1 and . . . then
5: ~k′ := (k1l1, k2, k3l3 . . .)
6: for all flags ~κ = (κ1, . . . κn) do

7: for all flags ~λ = (λ1, . . . λn) do

8: ~λ′ = fflup(~κ,~λ)

9: M
~λ′
~k′
′
= M

~λ′
~k′
′
+M~κ

~k
M

~λ
~l

10: end for
11: end for
12: end if
13: end for
14: end for

Algorithm 2: The algorithm with which the (non-normalized) result of the
application of sub-protocol P1 can be calculated, taking the error flags into
account.

The application of the CNOTs operation and the following measurement
can be implemented by the following algorithm. M is the matrix of the
diagonal elements of the sub-density-matrices before the sub-protocol P1
is applied (see Algorith 4.3.2), and M ′ is the result matrix. Lower indices
indicate the physical degrees of freedom, and upper indices indicate the error
flags, i. e. the number of the sub-ensemble.
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The algorithm calculates for all combinations of cluster states the results
of the CNOTs operation (Eq. 4.3). In line 4, we check the result of the
measurement of cluster state 2; if the results are such that the first cluster
state is kept, it calculates its state |~k′〉, and performs for all combinations of

error flags the following steps: (i) calculate the value of the new error flag ~λ′,

using the flag update function (line 8), (ii) add to the matrix element M
~λ′
~k′
′

the joint probability that cluster state one was in the state |(~k)〉 with error

flag ~κ and that the cluster state two was in the state |(~l)〉 with error flag ~λ
(line 9).

The result of this algorithm is the new matrix M ′, which containes the
(non-normalized) states of all sub-ensembles after one step in the purification
process.

For the sub-protocol P2, a similar algorithm can be given. As a result,
we find that the conditional fidelity converges to unity in the course of the
protocol, while the usual fidelity converges to some value Fmax (see Fig. 4.4).
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Figure 4.4: The fidelity and the conditional fidelity

4.4 Generalized cluster states

In the previous definition of the correlation operators of cluster states, it was
necessary to know which qubits are adjacent to each other. For a linear chain
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Figure 4.5: (a) Linear cluster states. As an example, the correlation op-
erator K3, which is centered on qubit 3, is shown. (b) Generalized cluster
state. Two qubits are neighbors, if they are connected by a line (edge) The
correlation operator which is centered at qubit 3 (white circle) is given by

K3 = σ
(3)
x σ

(4)
z σ

(5)
z σ

(7)
z σ

(8)
z . (c) GHZ-states are special kinds of cluster states,

where one central qubit is connected to all other qubits.

of qubits, this is obvious: in Fig. 4.5 (a), adjacent qubits are connected by
a line. However, we may also think of sets of qubits which are not arranged
in a linear chain, or of qubits which are not arranged at all (Fig. 4.5 (b)).
In this case, we have to explictly define which qubits are neighbors. In the
figure, adjacent qubits are connected by a line, like in the case of a linear
chain. Most generally, a neighborship relation is given by an (undirected)
graph G = (N,E), where the set N of qubits are the nodes of the graph,
and the lines which connect the qubits are given by the set E of edges of the
graph. In mathematical terms, E ⊂ {{n1, n2}|n1, n2 ∈ N andn1 6= n2}. For
each i ∈ N , we define the set of neighbors N (i) = {j ∈ N |{i, j} ∈ E}.

For a graph G = (N,E) and a qubit i ∈ N , we define a correlation

operator K(i) = σ
(i)
x

∏
j∈N (i) σ

(j)
z . As in the case of linear cluster states, the

correlation operators form a complete set of commuting operators, which
define a basis of cluster states associated with the graph G.

A special graph is shown in Fig. 4.5 (c). The associated cluster states is
– up to local unitaries – a GHZ state. This can be easily seen by looking
at the correlation operators, after applying a Hadamard transformation to
all but the central qubits. The correlation operators take then the form
K(1) = σ

(1)
x σ

(2)
x . . . σ

(n)
x and K(i) = σ

(1)
z σ

(i)
z for i ∈ {2, 3, . . . n}, which are the
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correlation operators of GHZ states in the canonical form.
A subclass of all (generalized) cluster states are the so-called bi-colorable

graph states. A graph is called bi-colorable, if there exist two subsets of
nodes N1, N2 ⊂ N with N1 ∩N2 = {}, N1 ∪N2 = N and E ⊂ {{n1, n2}|n1 ∈
N1 andn2 ∈ N2}. This subclass of cluster states is interesting, since it is pos-
sible to generalize the cluster purification protocol to bipartite graph states.

As in the case of linear cluster states, the protocol consists of two sub-
protocols. We only describe one of the sub-protocols, say P1; the other
sub-protocol can be easily obtained by exchanging the indices 1 and 2. Two
bipartite graph states are distributed to n parties, each of which corresponds
to a node of the graph. We call the qubits which belong to the first and
the second state a1, b1, . . . n1 and a2, b2, . . . n2, respectively. In a first step,
all parties apply a CNOT operation to their pair of qubits, in alternating
directions; in total, they apply the operation

CNOTs =
⊗

k∈N1

CNOTk2
k1
⊗

⊗

k∈N2

CNOTk1
k2

(4.18)

to all qubits. After this operation, all qubits of the second cluster state
are measured: the qubits which belong to the subset N1 are measured in
the z-direction, and the remaining qubits are measured in the x-direction;
the measurement results are m

(i)
z for i ∈ N1 and m

(i)
x for i ∈ N2, respec-

tively. From these results, the n parties may now calculate the quantities
li = m

(i)
x

∏
j∈N (i)m

(j)
z for all i in N2. If all these quantities are equal to unity,

the first cluster state is kept, otherwise it is discarded.
As we have shown [28], using this protocol it is possible to purify all

bi-colorable graph states. It is a very interesting open question how the
noise threshold depends on the structure of the graph; as we have seen in
Section 4.2.2, the noise threshold does not depend on the mere size, i. e. the
number of qubits of the graph state. However, for n-qubit GHZ states (see
Figure 4.5 (c)) the threshold for allowed noise approaches unity exponentially
with increasing number n of parties [28].



Chapter 5

Entanglement purification
protocols from quantum codes

It has been shown by Bennett et al. [14], that quantum error correcting codes
(see Section 2.5) are equivalent to one-way entanglement purification proto-
cols, i. e. that it is possible to convert a one-way entanglement purification
protocols into a quantum code and vice versa. However, the purification
protocol which one gets as a result of this procedure does not fit into the
“standard scheme” of entanglement purification protocols, which involves
(a) distribution of EPR pairs through a noisy channel, (b) local unitary
operations on the pairs, (c) measurements, and (d) operations which are
conditioned on the measurement results (see Fig. 5.1 (b)). Note that the
conditional action in step (d) is not necessarily trace conserving — it often
consists of a “keep or throw away” decision. In contrast, the more elaborate
protocols which we introduce in this chapter are derived from quantum codes
which allow for error correction (in contrast to error detection); in this case
it is possible to perform a conditional error correction operation

In this chapter, we show that a standard encoding/decoding procedure
using quantum error correcting codes is equivalent to the standard scheme
of entanglement purification. Here, we take advantage of the fact that for
many quantum codes, encoding and decoding circuits are known explicitly
[38]. This allows us to analyze how well the resulting protocols work if the
unitary operations cannot be performed perfectly, but are subject to noise.
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5.1 Creating purification protocols from

coding circuits

5.1.1 Encoding and decoding

Fig. 5.1(a) shows an example of a standard encoding/decoding scheme, where
the sender (Alice) wants to transmit the quantum state |ψ〉 of a qubit to the
receiver, Bob. In order to protect the quantum information against errors
in the transmission, Alice encodes it in a quantum code using a [[5, 1, 3]]
quantum error correcting code. This is done by an encoding circuit (see
Fig. 5.2) which performs the unitary operation Uenc on the transmitted qubit
and some ancilla qubits. The ancilla qubits are initially in the states |ai〉 ,
with ai ∈ {0, 1} (in the computational basis). It is possible for Alice and Bob
to agree on the values ai beforehand, e, g. ai = 0 for all i; in this case, no
classical communication is required at all. However, if for some reason Alice
and Bob did not agree on these values, Alice has to tell Bob which values
she chooses. In the figure, this classical one-way communication channel is
indicated by the thick line.

Upon receiving all qubits, Bob performs the decoding operation Udec =
U−1

enc on the qubits and measures the ancilla qubits in the computational basis.
The measurement results, together with the initial values ai of the ancilla
qubits, allow Bob to infer a correction operation Ocorr. If there have not
been too many errors in the transmission of the qubits (the numbers depend
on the quantum code used), the correction operation will restore the initial
state |ψ〉 of the transmitted qubit.

[[n, k, d]]-purification protocols

In Fig. 5.1(b), the setting is different: maximally entangled pairs of qubits in
the state |Φ+〉 = 1/

√
2(|00〉+ |11〉) are created somewhere between Alice and

Bob; one qubit of each pair is sent to Alice, the other to Bob. Note that the
in this figure, there are two time axes: On Bob’s side, time increases from
left to right, while on Alice’s side, time increases from right to left.

Alice performs the transpose of the encoding operation of (a), and mea-
sures the “ancilla”-qubits in the computational basis (measurement results
ai). The remaining qubit could be measured in an arbitrary basis (e. g., the
σz- or the σx-basis), thereby projecting it and its partner onto some state
|ψ〉. However, as we will see below, it will be useful to leave this qubit
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Figure 5.1: The equivalence between a quantum coding/decoding scheme (a)
and an entanglement purification protocol (b). Note that on the right-hand
side of the dotted line, both figures are identical.
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Figure 5.2: An example of an encoding circuit Uenc for the code [[5, 1, 3]] (from
[38]).

unmeasured.

Since Alice’s qubits were initially entangled with Bob’s, the unitary op-
erations and measurements on Alice’s side project Bob’s qubits into some
state. In order to calculate this state, we use the UU∗-invariance of the state
|Φ+〉⊗n

AB, i. e. UA ⊗ U∗B |Φ+〉⊗n
AB = |Φ+〉⊗n

AB, where UA and UB is the same uni-
tary operation, performed on Alice’s and Bob’s qubits, respectively. Note
that this invariance implies UA |Φ+〉⊗n

AB = UAU
−1
A U t

B |Φ+〉⊗n
AB = U t

B |Φ+〉⊗n
AB.

For Bob’s state, we thus get

|ψ〉B = A〈a|U∗dec,A|Φ+〉⊗n
AB = A〈a|U t

enc,A|Φ+〉⊗n
AB = Uenc,B|a〉B, (5.1)

where |a〉B = |a1, . . .〉 ⊗ |ψ〉.
In other words, in Fig. 5.1(b), Alice can prepare a posteriori the same

type of state which she had prepared in Fig. 5.1(a), so that on the right-
hand side of the dotted line, both parts of the figure show the very same
situation; after applying the correction operation, Bob’s qubit would be in
the state |ψ〉, if Alice had measured her remaining qubit earlier. However,
if Alice and Bob do not measure their qubits of the last pair, they are left
with a pair which shows perfect σx- and σz-correlations, if there were not too
many errors in the transmission of all qubits: Alice and Bob have created one
perfect EPR-pair in the state |Φ+〉 from several “noisy” pairs. Fig. 5.1(b) is
thus an entanglement purification protocol, which has been derived from a
quantum code.
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It should be noted that Bob may choose to discard his qubit (as a special
case of a correction operation). In this case, he has to tell Alice to also dis-
card her remaining qubit, and the protocol becomes a two-way entanglement
purification protocol.

In general, quantum codes do not only protect one qubit, as in the exam-
ple of Fig. 5.1; rather, a quantum error correcting code [[n, k, d]] encodes the
state of k ≥ 1 logical qubits into n > k physical qubits. Such quantum codes
will be converted into entanglement purification protocols, which create k
more entangled pairs from n less entangled pairs. We call such protocols
[[n, k, d]] entanglement purification protocols.

5.1.2 Error detection vs. error correction

Like classical codes, quantum codes can be used for error detection and for
error correction. As a general rule, a quantum code [[n, k, d]] (minimum dis-
tance d) can detect d errors, and correct b(d− 1)/2c errors. For this reason,
using the same code, error detection is possible at higher error rates than er-
ror correction. On the other hand, error detection without correction requires
two-way classical communication between sender (encoder) and receiver (de-
coder) of the quantum message, in order to guarantee a reliable transmission
of the quantum information: whenever the receiver detects an error, he or
she needs to send a “please discard and send again”-message to the sender.

In many settings of quantum communication, two-way classical commu-
nication is a cheap resource, and a restriction to one-way protocols seems to
be artificial. In quantum computation, however, the situation is different,
since the encoding takes place before the decoding, and the one-way commu-
nication is imposed by the temporal order of the encoding/decoding process.
For this reason, it is necessary that errors can not only be detected, but also
corrected. The error correction has to be performed in a fault tolerant way,
and the theory of fault tolerant quantum computation shows that this goal
can be achieved efficiently, using concatenated quantum codes and quantum
gates, which act on encoded (“logical”) qubits.

Clearly, quantum communication is a (trivial) quantum computation.
However, the fact that in quantum communication two-way classical com-
munication is available might be of advantage. In fact, it has been shown
by Bennett et al. [14] that there exist quantum states which can be puri-
fied by quantum protocols with two-way classical communication, but by no
one-way purification protocol.
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To summarize, entanglement purification protocols, which are run
in error detecting mode (EDM), are 2-EPP, and protocols which
are run in error correcting mode (ECM), are 1-EPP.

The equivalence between quantum codes and purification protocols allows
us to examine more closely the relation between 1-EPP and 2-EPP, and by
comparing [[n, k, d]] EDM and ECM protocols, we will answer the questions:
Which of the protocols are more efficient? Which of the protocols are more
robust in a noisy environment?

5.2 The hashing protocol and quantum codes

The hashing protocol [14] is – in the asymptotic limit of large numbers N of
pairs – a very efficient one-way entanglement purification protocol (1-EPP).
However, it is not a priori clear how large N has to be in order to get close
to the asymptotic limit. Further, the gate complexity of a circuit which
implements the hashing protocol increases with increasing N . It is then not
clear how the hashing protocol performs if the quantum gates are subject to
noise themselves.

Recurrence protocols [13, 25], on the other hand, are two-way entangle-
ment purification protocols (2-EPP). They are less efficient than the hashing
protocol, but very tolerant regarding noisy apparatus. Quantum circuits
which implement recurrence protocols involve, in general, only few qubits
and are thus easy to analyze. Recently, a first experimental realization has
been reported [60, 5].

The [[n, k, d]] EPP are a class of entanglement purification protocols, which
interpolate between the hashing protocol and the recurrence protocols: On
the one hand, one can choose whether to run them as 1-EPP (ECM) or 2-
EPP (EDM). On the other hand, both the IBM recurrence protocol and the
hashing protocol belong to the class of [[n, k, d]]-EPP.

The quantum error correcting codes which belong to the hashing protocol
are very interesting: the fact that the hashing protocol exists implies that
there exist, in the asymptotic limit n→∞, quantum error correcting codes
[[n, k, d]]′ with a relation between the parameters n, k, and d which we derive
below. Note that in this case, d is not the minimum distance of the code, but
the minimum likely distance, which we denote by the prime in the notation
of the code parameters. By definition, in such codes there may exist pairs
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of codewords with a distance of less then d. However, with increasing n, the
number of such pairs of codewords has to grow slower than n, so that in the
asymptotic limit, it is unlikely to meet such a pair. Note that the minimum
likely distance is not defined for a given code with a finite n, but in the
asymptotic limit n→∞.

Assume that the hashing protocol is applied to n EPR pairs, which are
in a Werner state with fidelity F,

ρ = F
∣∣Φ+

〉〈
Φ+

∣∣ + (1− F )/3
(∣∣Ψ+

〉〈
Ψ+

∣∣ +
∣∣Ψ−〉〈

Ψ−∣∣ +
∣∣Φ−〉〈

Φ−∣∣) .

For large n, the properties of this initial ensemble can be translated into the
fact that, during the distribution of the pairs, on average nerror = n(1 − F )
errors have been introduced. The hashing protocols allows us to obtain

k = n

(
F log2 F + (1− F ) log2

1− F

3

)
(5.2)

perfect EPR pairs from the initial ensemble. The error correcting code related
to the hashing protocol is capable of correcting nerror errors, i. e. the minimum
likely distance of this code is at least d = 2nerror + 1 = 2n(1− F ) + 1. This
allows us to express the initial fidelity in terms of the code parameters,

F = 1− (d− 1)/2n. (5.3)

By inserting this expression into Eq. 5.2, we obtain the desired relation be-
tween the code parameters.

In the discussion above, we assumed that n is very large. For finite n, we
have to take into account the fact that the parameters k and d are integer
numbers, while the expressions for k and d which one obtains from Eq. 5.2
and Eq. 5.3 do not, in general, yield integer numbers.

Theorem 1 Be ε1, ε2 (arbitrarily small) real numbers. Then there exists a
lower bound N ∈ IN such that the following statement holds:

For all n > N and k̃ < n there exists a quantum error correcting code
[[n, k̃, d̃]]′ with (k − k̃)/n < ε1 and (d − d̃)/n < ε2. k and d are such that
Eq. 5.2 and Eq. 5.3 hold.

Proof: We consider an ensemble of n EPR pairs which consists of close to,
but not less than, 1− nerror Bell pairs in the Φ+-state, while the other pairs
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are in one of the other three Bell states so that this ensemble belongs to the
set of typical ensembles.

Asymptotic behavior of d: The fact that the hashing protocol in the case
of finite n does not produce perfect EPR pairs has two possible reasons: (1)
For finite n, there is a non-vanishing probability that the error rate nerror/n
exceeds the expected error rate (1 − F ) by an amount which the protocol
cannot account for. For the proof, this possibility is excluded by assump-
tion. (2) There may exist pairs of ensembles of EPR pairs, which cannot be
distinguished from each other, even though they belong to the typical set
of ensembles. For increasing n, however, the number of such pairs is bound
to grow slower than n. If this was not the case, the hashing protocol would
not produce perfect EPR pairs in the asymptotic limit. This means that the
minimum likely distance of the corresponding quantum code asymptotically
obeys Eq. 5.3.

Asymptotic behavior of k: This is exactly the asymptotic number of per-
fect EPR pairs which can be produced by the hashing protocol. Note that,
for a given fidelity F , the Werner state has the maximum entropy, so that
Eq. 5.2 is indeed a lower bound for k. ¤

In order to check how existing quantum error correcting codes compare
to codes which are derived from the hashing protocol, we draw many known
QECC [[n, k, d]] [38] into a fidelity/yield diagram for the hashing protocol [14].
In this plot, the “fidelity” of a [[n, k, d]] quantum code is given by Eq. 5.3,
and the “yield” is defined as k/n. As we have seen above, these quantities
represent the actual fidelity and yield only in the asymptotic limit n → ∞,
which explains why some of the QECC are located on the left-hand side of
the hashing curve:

These quantum codes seem to lead to purification protocols which perform
better than the hashing protocol, since they have a greater yield for a given
initial fidelity F . However, it should be noted that this comparison is not
fair: for a [[n, k, d]]-EPP to yield k pairs, it must be guaranteed that not more
than (d − 1)/2 errors are introduced during the distribution of the n EPR
pairs, while a noisy quantum channel which is capable of distributing pairs
with fidelity F will introduce this amount of errors on average.

Nevertheless, it is interesting to see that quantum error correcting codes
seem not to exceed the hashing border significantly.
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Figure 5.3: A “map” of quantum error correcting codes, drawn into the stan-
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the fidelity is defined by Eq. 5.3, and the yield is defined as k/n. For some
selected codes, the parameters n, k, and d are depicted in the figure.
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5.3 Numerical results

In this section, we will show the results of our numerical analysis of [[n, k, d]]-
entanglement purification protocols, which have been constructed as ex-
plained in Section 5.1.

We restricted our attention to codes with k = 1, i. e. codes which encode
only one qubit. Such codes translate into n-to-1 purification protocols. The
reason for this restriction is that we apply the purification protocol iteratively.
However, the output states of one purification step are generally correlated,
which makes the analysis of the purification process very difficult.

All numerical calculations have been performed using the qtensorspace
software library (see Chapter 6). The elementary unitary operations of the
protocol map Bell diagonal states onto Bell diagonal states, and the measure-
ments projectors (|00〉〈00|+|11〉〈11| = |Φ+〉〈Φ+|+|Φ−〉〈Φ−| for measurement
results which coincide, and |01〉〈01| + |10〉〈10| = |Ψ+〉〈Ψ+| + |Ψ−〉〈Ψ−| for
results which do not coincide) are diagonal in the Bell basis. Similar to
the approach taken in the analysis of the cluster state purification protocol
(Sec. 4.1.3), it is thus sufficient to perform all calculations on the vector of
the diagonal elements of the density matrix. For a more detailed discussion
of these techniques, see Section 6.3.

The calculation is further simplified by the fact that the elementary uni-
tary operations involve only four qubits at a time, so that they can be ex-
pressed as 16 × 16-matrices. The tensorspace software library has been
written in order to handle such mathematical operations efficiently, where
operations are performed only on a subsystem of a (large) composite system.

5.3.1 Purification curves

If an entanglement purification protocol is applied to an ensemble of EPR
pairs with an initial fidelity F , we are left with a smaller ensemble with a
different fidelity F ′. Clearly, a single parameter, the fidelity, is not enough
to describe the state of EPR pairs. For that reason, we use the convention
that if we only write down the fidelity F of an EPR pair, we assume that this
pair is in a Werner state with fidelity F . However, this rule can be broken
by the entanglement purification protocol itself: if we start with pairs in a
Werner state, it is not necessarily the case that the resulting pairs are again
in a Werner state.

One way around this difficulty is to use a twirling operation, i. e. coordi-
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nated, but randomly chosen bilateral rotations, on the resulting EPR pairs,
which converts them into EPR pairs in the Werner state, without changing
the fidelity. This approach has been taken by Bennett et al. [14] (“IBM pro-
tocol”). The great advantage of this method is, that the entire purification
process is described in terms of one parameter, which simplifies its analytical
treatment. One great disadvantage is, however, that the twirling operation
decreases the amount of entanglement. For this reason, the IBM protocol is
not very efficient.

A different approach has been taken by the Deutsch et al. [25] (“Oxford
protocol”), which allows the ensemble to leave the space of Werner states.
Using this method, the protocol is highly efficient. However, the analytical
treatment is quite difficult.

The [[5, 1, 3]] and [[11, 1, 5]] protocols in error detection mode In this
paragraph, we examine two protocols, which do not require such techniques,
since they map Werner states onto Werner states by themselves. The two
protocols are the [[5, 1, 3]]-EPP and the [[11, 1, 5]]-EPP in error detecting mode.
The fact that they map Werner states onto Werner states is a very surprising
result, and we do not know why this is the case. In any case, this property
is not generic for [[n, k, d]]-EPP; there are [[n, k, d]]-EPP which do not map
Werner states onto Werner states.

Since for these protocols the entire purification process is described in
terms of one parameter, the purification curve, which maps F to F ′, contains
all information needed to analyze the purification process.1 In Fig. 5.4, we
have drawn the purification curves or the [[5, 1, 3]]-EPP and the [[11, 1, 5]]-EPP.

The purification regime for both protocols is 1/2 < F ≤ 1, since in this
regime the purification curve lies above the line of fixpoints. It is interesting
that, for F → 1, both purification curves become very flat. This implies
that one needs only few steps in the purification process in order to get
almost perfect EPR pairs. In order to examine the high-fidelity regime of
the protocols in more detail, the inset shows a log-log plot of 1− F ′ against
1 − F , which shows that 1 − F ′ ∝ (1 − F )d (for F → 1), with d = 3 and
d = 5 for the [[5, 1, 3]] and the [[11, 1, 5]] purification protocol, respectively.

It is no coincidence that the exponent d is equal to the minimum distance
of the respective code: Assume that n EPR pairs with fidelity F = 1−ε have

1For comparison with the purification curve of the IBM protocol and for a discussion
of the fixpoints and their relation to the purification regime, see Fig. 2.2 on page 22.
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been distributed. The probability that they do not contain any error at all
is given by p0 = F n ∼ 1 − nε. If they contain 1, . . . , d − 1 errors, this is
guaranteed to be found by the error detection process. The probability to
keep an EPR pair which ideally should have been discarded, is, to the leading
order, given by the probability pd that the ensemble contains d errors, which
is proportional to F n−d(1−F )d ∼ (1−(n−d)ε)εd. The new fidelity F ′ = 1−ε′
is thus, in leading order, given by ε′ = pd/p0, which is (again in leading order)
proportional to εd.

Note that the calculation above gives only a lower bound for the fidelity
F ′, since we have assumed that all non-detectable error situations lead to
EPR pairs which are not in the Φ+-state, which is not necessarily the case.

The fact that there are only few purification steps required in order to
reach almost perfect EPR pairs does not necessarily imply that these pro-
tocols are very efficient. On the one hand, the protocols are intrinsically
wasteful, since in each purification step only one out of n pairs is kept. On
the other hand, we have to keep in mind that the purification protocols are
probabilistic protocols, in which the remaining pair is kept only with a cer-
tain probability psucc, which is indicated by the dashed lines in Fig. 5.4. For
a detailed discussion of the efficiency of these protocols, see Section 5.3.2.

The [[n, k, d]] protocols in error detection and correction mode In
Fig. 5.5 and Fig. 5.6, we concentrate on the [[5, 1, 3]] and [[11, 1, 5]] purification
protocol, respectively. We compare the error detection mode (EDM) and the
error correction mode (ECM), both with perfect and with noisy local unitary
operations.

By comparing both modes of operation of this protocol, we will find out
whether the availability of two-way classical communication is advantageous
for entanglement purification. Moreover, if the ECM protocol is used in a
recursive purification process, this is closely related to concatenated coding,
which is an essential ingredient to fault tolerant quantum computation [63,
48].

For the case of noisy operations, we consider two-qubit white noise chan-
nels with reliabilities p2 = 0.95, 0.99, 0.995 (for the [[5, 1, 3]] EPP) and p2 =
0.9185, 0.9975, 0.998 (for the [[11, 1, 5]] EPP), which accompanies each two-
qubit operation (see Eq. 2.11 in Section 2.3.1). In order to simplify the
calculations, we applied the noise channel only on Alice’s side. For Bell di-
agonal states, however, applying a depolarizing channel with reliability p2
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on Alice’s side has the same effect as applying a depolarizing channel with
reliability

√
p2 on both sides.

The first thing to note is that the purification regime, i. e. the values of F
where the purification curve lies above the F = F ′ line, is much smaller
for protocols in ECM than in EDM, even if no noise is present; in this
case, the purification regime is 0.86245 < F ≤ 1 and 0.8635 < F ≤ 1,
for the [[5, 1, 3]] and [[11, 1, 5]] protocols, respectively. Note that for these pro-
tocols, the purification is thus smaller than it is for the hashing protocol
(0.8107103751 < F ≤ 1).

Second, we see that the ECM-protocols are far less tolerant against noise
than the EDM-protocols: The two-qubit reliability threshold values p2,threshold

for the former are 0.995 ([[5, 1, 3]]) and 0.9975, ([[11, 1, 5]]), while for the latter
they are 0.89806 and 0.9185, respectively. As it seems, the tolerable noise
value 1−p2,threshold for two-way entanglement purification protocols is almost
independent of n (and thus the gate complexity), while one-way entanglement
purification protocols tolerate less noise for larger n.

Since for a given quantum error correcting code [[n, k, d]], the correspond-
ing [[n, k, d]] entanglement purification protocols in EDM and ECM use the
same quantum gates, and differ only in whether they use two-way classical
communication or not, we get the following result:

The high level of fault tolerance of protocols in quantum com-
munication, compared to fault tolerant quantum computation, is
only due to the availability of two-way classical communication.

5.3.2 Efficiency of the protocols

The efficiency of entanglement purification protocols is usually defined in
terms of the yield Y of the protocol [14]. The yield is given by the fraction
Y = k/n, where k is the number of perfect EPR pairs which an purification
protocol creates out of n imperfect initial EPR pairs. In general, for a given
purification protocol, the yield is a function of the input state, or — if we
restrict our attention to Werner states — of the input fidelity.

While the yield of purification protocols is an interesting concept for many
applications, it has an important drawback: all purification protocols which
work on a finite ensemble of EPR pairs have a vanishing yield. In other
words, the definition of the yield is only applicable in the asymptotic limit.
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However, even in the asymptotic limit, the yield for recurrence protocols
vanishes.

If we consider a “realistic” situation, where the apparatus which performs
the purification protocol is a source of noise itself, the definition of the yield
has to be modified: there is no EPP known which has a finite yield if it is
run on noisy apparatus.

In order to overcome these problems, it is possible to define an “epsilon-
Yield” Yε = k′/n, where k′ is the number of EPR pairs of fidelity Ffinal = 1−ε,
which a given purification protocol creates out of n imperfect initial EPR
pairs. However, one can easily see that this definition has its limitations:
since the resulting EPR pairs are still imperfect, one cannot a priori exclude
the possibility that there exist correlations between the remaining pairs. As
it turns out, for all n-to-k purification protocols with k > 1 which we have
checked, the final states are correlated. In this case, the individual fidelities
of the remaining pairs does not suffice for an accurate description of the total
quantum states. Whether or not the remaining correlations are a problem
for a given quantum communication protocol is not a priori clear.

In order to avoid such difficulties, we choose a different figure of merit
for the definition of the efficiency of entanglement purification protocols: In
Fig. 5.7 we plot the number N of initial pairs which are required to create
one pair of fidelity F against ε = 1− F .

The points in the plots have been calculated as follows: for each [[n, 1, d]]
protocol under consideration, we start with an ensemble of N pairs with the
initial fidelity Finit = F (0). The number of pairs required to produce one pair
after the first purification step is given by n/psucc(F

(0)), where psucc(F
(0)) is

the probability of success of the purification protocol. For the next purifi-
cation step, n pairs in the state of the remaining pair are required as input
pairs, and so on. The total number of input pairs which is required on av-
erage to create one output pair after step i is the product of the numbers
of pairs required to produce one output pair in each individual step in the
purification process, i. e.

#pairs =
ni

∏i
ν=0 psucc(F (i))

(5.4)

In the plots, efficient protocols are close to the lower left corner, since for
these protocols, fewer pairs are needed to create one final pair with a given
fidelity.
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As a surprising result, we find that the simple quantum privacy amplifi-
cation protocol (QPA) [25] performs very well; at least, for low fidelity initial
pairs, this protocol performs better than any of the other protocols. For high
fidelity initial states, however, at least the [[5, 1, 3]] EDM protocol performs
better than QPA. In Fig. 5.7(d), we also plot the figure of merit for the
[[5, 1, 3]] ECM protocol. As one can see, this 1-EPP performs much worse
than the 2-EPP. Note that in Fig. 5.7(a-c), the initial fidelity is below the
purification threshold of the [[5, 1, 3]] ECM protocol.

Please note that data points with a value of ε < 10−15 may be inaccurate,
due to numerical cutoff errors.



Chapter 6

The tensorspace software
library

6.1 Introduction

In quantum information theory, we often think of quantum systems which
consist of several subsystems. These subsystems may be spacially seperated,
and for that reason it is quite natural to consider operations which act on
these quantum systems seperately (local operations). In mathematical terms,
the state |ψ〉p1p2...pn

of the total system is an element of the tensor product
of the Hilbert spaces of the subsystems, Htotal = Hp1 ⊗ Hp2 ⊗ · · · ⊗ Hpn ,
and a local operation Olocal = Op1 ⊗ Op2 ⊗ · · · ⊗ Opn is a tensor product of
operations which act on only one of the subsystems.1

If a local operation acts on only one subsystem, say p1, the resulting state
is given by

|ψ′〉p1p2...pn
= Op1 ⊗ Ip2 ⊗ · · · ⊗ Ipn |ψ〉p1p2...pn

(6.1)

≡ Op1 |ψ〉p1p2...pn
. (6.2)

In the latter expression (6.2), the identity operators where left out. Since
we know on which subsystem the operation Op1 acts, this notation is not
ambiguous and very easy to read.

On the other hand, if one does numerical calculations in quantum in-
formation theory, it is necessary to keep track of all the subsystems, which

1Local superoperators, which act on density operators, are in general convex combina-
tions of tensor products.
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is usually tedious and error-prone. For example, it is usually necessary to
explicitly write down all the identity matrices, as in Eq. (6.1); another com-
plication is that the parties have an implicit order, which has to be the same
for all object in a calculation. If the order is not the same, parties have to
be exchanged, which may become a non-trivial task if the number of parties
is not small.

qtensorspace is a software library which has been written to facilitate
these book-keeping tasks in numerical calculations. The design goals were:

• Ease of use. It should be possible to do simple numerical experiments
without writing full-blown programs.

• Efficiency with respect to speed and memory usage. Since the complex-
ity of the problems grows exponentially with the number of parties, this
is an obvious requirement.

• Readability of code. The code which is needed for a calculation should
resemble the mathemtical notation as far as possible.

All objects which live in or act on Hilbert spaces are internally represented
by the same type of object (“qtensors”). Qtensors are similar to complex
matrices in that they have rows and colums. Different from matrices, rows
and columns are made up by several indices. In order to use qtensorspace,
it is not necessary to know the mathematical details of the implementation.
However, for the sake of completenes, we describe the mathemtics of qtensors
in Section 6.5.

6.2 Basic concepts

The qtensorspace software library allows the programmer to define states
(bras, kets, density operators) and operations, which act on these states
(e. g., unitary operations, projections), as well as Hilbert spaces, in which
these objects live.

6.2.1 Parties

Hilbert spaces may be product spaces, which consist of several subsystems.
In qtensorspace, the “atomic” subsystems are called parties. A party is
defined, e. g., using the command
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a = Party("Alice", 3)

In this example, a is the name under which the newly defined party will be
known in the program. Alice is an identifier, which can be any string the
programmer likes. Finally, 3 is the dimension of the Alice-Hilbert space.

Please note that the software library ignores the identifier completely, so
that the command a1 = Party("Alice", 3) will define a different party.

In many cases, we are interested in qubits. For this reason, there exists
a shortcut for creating two-dimensional parties:

b = Qubit("Bob")

which is equivalent to b = Party("Bob",2), with the exception that in the
Qubit()-command, the identifier is optional, and defaults to an empty string.

6.2.2 States

In the qtensorspace library, there exist four commands in order to create
states: Ket(), Bra(), density operator, and diagonal vector. The first three
create kets, bras, and density operators, respectively, while the fourth creates
a diagonal density operator (see Section 6.3).

A ket |ψ〉 is most easily defined in its representation in the computational
basis, e. g. |ψ〉 = |001〉abc = |0a0b1c〉. In the qtensorspace library, the same
state would be defined using the command

psi = Ket([a,b,c ],[0,0,1])

The Ket() command expects, as it first parameter, a comma-separated list
of parties, which is enclosed in square brackets. The second argument is a
list of numbers, which indicates in which basis states the parties are. If this
argument is left out, it is assumed to be the list [0,. . . ,0].

Kets may be added, multiplied with (complex) scalars or multiplied with
other kets, if their sets of parties are disjoint. For example, the following
statements are perfectly legal:

phi plus = Ket([a,b ],[0,0]) + Ket([b,a ],[1,1])
psi= phi plus ∗ Ket([c ],[1]) + (1−1 j ) ∗ Ket([a,b,c ],[0,0,0])

In order to normalize this state, the commands normalize(psi) can be used.
Note that there exists the equivalent command psi .normalize().

The commands Bra() and diagonal vector() have the same syntax as the
Ket() command; the only difference is that they create bras and diagonal
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density operators, respectively. All operations, which are possible with kets,
are also possible with bras and diagonal vectors.

Density operators may be created with the density operator() command,
which takes a list of parties as its only required argument. The result of this
command is a density operator, which corresponds to a completely depolar-
ized state. To create density operators which describe different states, it is
possible to use the P() command, which takes a ket as its only argument,
and creates a projector onto this state. Like other states, density operators
can be added, multiplied (with scalars and with other density operators),
and normalized (using the normalize() command).

6.2.3 Operations

In qtensorspace general operators are linear maps which map a “source”
Hilbert Hs space onto a “destination” Hilbert space Hd. There exist no re-
strictions on the sets of parties, which make up both Hilbert spaces; we call
the source parties row parties, and the destination parties column parties,
since they correspond to row- and column-indices in the matrix representa-
tion of the operator.

General operators may be created using the operator() command. It takes
two arguments, a list of row parties and a list of column parties. The entries
of the corresponding matrix may be set using the values= keyword argument
(see below). However, this is not the recommended way of creating operators,
since it requires a detailed knowledge of the internals of the qtensorspace
library.

Alternative methods to create operators are (a) to use predefined oper-
ations, like the CNOT operation or Pauli spin operators, as building blocks
for bigger operators, or (b) to create them as sums of products of kets and
bras.

Rank-1 Projectors are easily defined using the P() command, which yields
a projector onto the ket which is passed as an argument. Higher-rank pro-
jectors can be defined as sums of rank-1 projectors onto mutually orthogonal
states.
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6.3 Diagonal density operators

In many cases, quantum systems which one wants to examine numerically
are not in a pure state, which is described by a state vector |ψ〉, but in a
mixed state, which is given in terms of a density operator ρ. If the Hilbert
space of the quantum system has d dimensions, one needs to remember d
complex numbers for the state vector, but d2 complex numbers for the density
operator.2

Since a density operator is hermitean, there always exists a basis in which
it is diagonal. However, many quantum protocols have the additional prop-
erty that they map density operators which are diagonal in a given basis
onto density operators which are diagonal in the same basis. If this is true
for each single step of the protocol, we are in the lucky situation that the
quantum state can be completely described in terms of the vector ~d of diag-
onal elements of the density operator.

As a consequence of this simplification, it is possible to double the number
of quantum systems which we can treat numerically; indeed, in this case,
calculations with density operators are no more expansive than calculations
with state vectors.

In the qtensorspace software library, vectors of diagonal elements of
density operators are created using the diagonal vector() function, which has
the same syntax as the Ket() and the Bra() function.

Unitary operations Unitary operations act on density operators as su-
peroperators. In other words, they are linear maps on the state space. A
a unitary operator U , which maps diagonal density operators onto diagonal
density operators, maps thus the vector of diagonal elements ~d linearly onto
a vector ~d′ of diagonal elements, i. e. ~d′ = Ũ ~d, for a (real) matrix Ũ . A trivial
calculation yields that Ũ is a matrix which contains element-wise the squared
modulus of the entries of the unitary matrix U , i. e.

(Ũ)ij = (U)ij(U)∗ij (6.3)

1 from tensorspace import ∗
2 a = Qubit(’a’)
3 b = Qubit(’b’)

2Since the density operator is hermitean, d2 real numbers suffice.
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4 rho = diagonal vector([a,b ],[0,0]) + diagonal vector ([a,b ],[1,1])
5 rho.normalize()
6 print "stateÃbeforeÃCNOT", basis repr(rho)
7 U tilde = abs squared (CNOT(a,b))
8 rho 1 = U tilde∗rho
9 print "stateÃafterÃCNOT", basis repr(rho 1)

10 print "tr_b(rho_1)Ã=", basis repr(trace(rho 1,[b]))

Program output:

state before CNOT 0.500 |0,0><0,0| +0.500 |1,1><1,1|

state after CNOT 0.500 |0,0><0,0| +0.500 |1,0><1,0|

tr_b(rho_1) = 0.500 |0><0| +0.500 |1><1|

6.4 qtensorspace by examples

In this section, we give a short introduction to the software library by exam-
ples. These examples should whet the reader’s appetite, but are not consid-
ered a full reference manual to the software library. It should be noted that
these examples are written in the Python [80] programming language; we do
not give a detailed intorduction into this language; however, we think that
the examples are self-explanatory and should be readable even without any
knowledge of Python (with the exception of example 4, which uses some more
sophisticated programming structures, like function definitions and loops).

6.4.1 CNOT operation

In the first example, we define a two-party state, apply unitary operations
to it and print it in the computational basis:

1 from tensorspace import ∗
2 a = Party("Alice", 2)
3 b = Party("Bob", 2)
4 psi = Ket([a,b ],[1,0])
5 print basis repr (psi)
6 print basis repr ( CNOT(a,b) ∗ psi )
7 print basis repr ( CNOT(a,b) ∗ H(a) ∗ psi )
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Program output:

1.000 |1,0>

1.000 |1,1>

0.707 |0,0> -0.707 |1,1>

In line 1, the tensorspace package is loaded. Lines 2 and 3 define two
parties, Alice and Bob, each of which is a two dimensional quantum system
(i. e. a qubit).3 line 4, a quantum state (ket) is defined (|ψ〉 = |1Alice0Bob〉),
which is printed in the computational basis (line 5). Line 6 shows how the
controlled-NOT (CNOT) operation with the source bit a and the target bit
b acts on |ψ〉, and line 7 shows that the CNOT operation creates a Bell state
|Φ−〉 = 1/

√
2(|0, 0〉− |1, 1〉), if a Hadamard operation is applied to the qubit

a first.

6.4.2 Teleportation

In the second example, we show some basic operations which can be applied
to states and operators.

1 from tensorspace import ∗
2 a1 = Qubit("AliceÃ1")
3 b = Qubit("Bob")
4 a2 = Qubit("AliceÃ2")
5 phi plus A1B = Ket([a1,b],[0,0]) + Ket([a1,b ],[1,1])
6 phi plus A1B.normalize()
7 phi plus A1A2 = normalize(Bra([a1,a2],[0,0]) + Bra([a1,a2 ],[1,1]))
8 alpha = 1.2+2j; beta = −2j
9 psi = normalize(alpha ∗ Ket([a2 ],[0]) + beta ∗ Ket([a2 ],[1]))

10 psi B = phi plus A1A2 ∗ psi ∗ phi plus A1B
11 p = psi B.dagger() ∗ psi B
12 print basis repr ( psi ), psi . get parties ()
13 print basis repr(normalize(psi B )), psi B. get parties ()
14 print "ProbabilityÃofÃsuccessfulÃteleportation:ÃpÃ=Ã",p

Program output:

3a and b are the names of the parties which are known to the program. While parties
(like all python objects) may have several names, the description string "Alice" or "Bob"
is always the same for a given party object.
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(0.391+0.651j) |0> -0.651j |1> ([], [Party (’Alice 2’, 2)])

(0.391+0.651j) |0> -0.651j |1> ([], [Party (’Bob’, 2)])

Probability of successful teleportation: p = (0.25+0j)

Let us again walk through the program line by line. In line 2-4, the
quantum systems are defined. Note the shorthand notation Qubit("xyz")

instead of Party("xyz", 2). Line 5 defines the non-normalized Bell state
|Φ+〉A1B = |0, 0〉 + |1, 1〉, which is normalized in line 6, by invoking the
normalize()-method of the ket. In line 7, we define the Bell-state A1A2 〈Φ+|,
as a bra, since we want to project onto this state. Here, we used a different
(but equivalent) method to normalize the state. Line 8 defines two arbitrary
(complex) numbers α and β (j is the imaginary unit), which define the state
|ψ〉A2

= 1/norm(α |0〉A2
+ β |1〉A2

) (line 9). Line 10 is the teleportation: we
calculate the state

|ψ〉B = A1A2〈Φ+|ψ〉A2

∣∣Φ+
〉

A1B
.

The norm p = B 〈ψ|ψ〉B of this state is the probability of successful tele-
portation (line 11 and 14). In line 12 and 13 we print the states |ψ〉A2

and |ψ〉B, and we find that the teleportation was successful. By using the
get parties()-method, we convince ourselves that the two states live on
different quantum systems.

6.4.3 Teleportation using noisy EPR pairs

Up to now, all calculations were done using pure states. In the next example,
we calculate the fidelity of the teleported state if the teleportation was done
using a noisy EPR pair. Since in this case the EPR pair is in a mixed state,
which is described by a density operator, we have to do the calculatios in the
density operator language.

1 from tensorspace import ∗
2 a1 = Qubit("AliceÃ1")
3 b = Qubit("Bob")
4 a2 = Qubit("AliceÃ2")
5 phi plus A1B = Ket([a1,b],[0,0]) + Ket([a1,b ],[1,1])
6 phi plus A1B.normalize()
7 phi minus A1B = sigma z(a1) ∗ phi plus A1B
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8 psi plus A1B = sigma x(a1) ∗ phi plus A1B
9 psi minus A1B = sigma z(a1) ∗ psi plus A1B

10 f = 0.85
11 rho A1B = f ∗ P(phi plus A1B) + (1−f)/3∗(P(phi minus A1B) +
12 P(psi plus A1B) +
13 P(psi minus A1B) )
14 phi plus A1A2 = normalize(Bra([a1,a2],[0,0]) + Bra([a1,a2 ],[1,1]))
15 alpha = 1.2+2j; beta = −2j
16 psi A2 = normalize(alpha ∗ Ket([a2 ],[0]) + beta ∗ Ket([a2 ],[1]))
17 psi B = normalize(alpha ∗ Ket([b ],[0]) + beta ∗ Ket([b ],[1]))
18 rho B = phi plus A1A2 ∗ P(psi A2) ∗ rho A1B ∗ phi plus A1A2.dagger()
19 p = trace(rho B)
20 rho B.normalize()
21 fid = format complex(psi B.dagger() ∗ rho B ∗ psi B)
22 print "TeleportationÃfidelityÃfidÃ=Ã", fid
23 print "ProbabilityÃofÃsuccessfulÃteleportation:ÃpÃ=Ã",p

Program output:

Teleportation fidelity fid = 0.900

Probability of successful teleportation: p = (0.25+0j)

In lines 5-8, we define the four Bell states, using the Pauli-matrices. The
state of the noisy EPR pair is defined in lines 11-13. Here, the function
P(psi) returns a projector onto the state psi (it is just a shorthand nota-
tion for psi*psi.dagger(), where the method dagger() returns, of course,
the hermitian transpose). In line 17, we define the reference state of the
teleported qubit, which we need to calculate the teleportation fidelity. The
result of the teleportation is calculated in line 18,

ρB = A1A2

〈
Φ+

∣∣ ρA2 ⊗ ρA1B

∣∣Φ+
〉

A1A2
.

The trace of ρB is the probability of success (line 19), and the teleportation
fidelity is calculated in ine 21. Here, we use the format complex() function,
in order to get rid of some numerical noise.

6.4.4 Cluster states

In the next example, we will see how we can check for eigenvector properties
of states. As an non-trivial example, we choose four qubit cluster states
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and their correlation operators, and we show that two such cluster states
are mapped onto a product of cluster states by a certain pattern of CNOT
operations.

1 from tensorspace import ∗
2 def cluster 4 (a,b,c ,d ):
3 psi 4 = (Ket([a ],[0]) ∗ sigma z(b) + Ket([a ],[1]) ∗ sigma 0(b)) ∗ \
4 (Ket([b ],[0]) ∗ sigma z(c) + Ket([b ],[1]) ∗ sigma 0(c)) ∗ \
5 (Ket([c ],[0]) ∗ sigma z(d) + Ket([c ],[1]) ∗ sigma 0(d)) ∗ \
6 (Ket([d ],[0]) + Ket([d ],[1]))
7 return normalize(psi 4)
8 def correlations (psi , a,b,c ,d):
9 print "EigenvaluesÃofÃtheÃcorrelationÃoperators:"

10 print psi . is eigenvector ( sigma x(a)∗sigma z(b)),
11 print psi . is eigenvector (sigma z(a)∗sigma x(b)∗sigma z(c)),
12 print psi . is eigenvector (sigma z(b)∗sigma x(c)∗sigma z(d)),
13 print psi . is eigenvector (sigma z(c)∗sigma x(d))
14 a1 = Qubit("a1");b1 = Qubit("b1");c1 = Qubit("c1");d1 = Qubit("d1")
15 a2 = Qubit("a2");b2 = Qubit("b2");c2 = Qubit("c2");d2 = Qubit("d2")
16 psi 1 = cluster 4 (a1,b1,c1,d1)
17 psi 2 = cluster 4 (a2,b2,c2,d2)
18 correlations (psi 1 , a1,b1,c1,d1)
19 CNOTs = CNOT(a1,a2)∗CNOT(b2,b1)∗CNOT(c1,c2)∗CNOT(d2,d1)
20 psi 12 = CNOTs ∗ psi 1 ∗ psi 2
21 correlations (psi 12 , a1,b1,c1,d1)
22 correlations (psi 12 , a2,b2,c2,d2)
23 rho 1 = trace( P(psi 12 ), [ a2,b2,c2,d2 ] ) #ρ1 = tra2b2c2d2 {|ψ〉12〈ψ|}
24 for evalue , evector in rho 1.eigenvectors ():
25 if abs(evalue − 1) < 1e−15:
26 correlations (evector , a1,b1,c1,d1)

Program output:

Eigenvalues of the correlation operators:

(1+0j) (-1+0j) (-1+0j) (-1+0j)

Eigenvalues of the correlation operators:

(1+0j) (-1+0j) (1+0j) (-1+0j)

Eigenvalues of the correlation operators:

(1+0j) (1+0j) (-1+0j) (1+0j)
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Eigenvalues of the correlation operators:

(1-0j) (-1-0j) (1-0j) (-1-0j)

Beginning in line 2, we define a function cluster 4, which returns a cluster
state |ψ〉abcd = (|0〉a σb

z + |1〉a σb
0)(|0〉b σc

z + |1〉b σc
0)(|0〉c σd

z + |1〉c σd
0)(|0〉d + |1〉d

on four given qubits a, b, c, and d. Note thate while an expression like |0〉a σb
z

only has a physical meaning if we multiply out the whole expression, we are
nevertheless able to write it in exactly the same way in the program.

The function correlations, defined in lines 8 - 13, prints out the eigenval-
ues of the four correlations operators for a given cluster state. To do this,
we use the is eigenvector() method, which returns the eigenvalue if psi is a
eigenvector of the operator which is passed a an argument of this method. If
it was not an eigenvector, the method would return None.

In lines 16 - 18, we create two cluster states on the qubits a1, b1, c1, d1

and a2, b2, c2, d2, respectively, and calculate the eigenvalues of the correlation
operators for one of them. The CNOTS operation, a product of CNOT
operations in alternating directions (see Fig. 4.1 in Section 4.1.2), is defined
in line 19 and applied to the 8 qubit state |ψ12〉 in line 20. As we see in lines
21 and 22, the resulting state is still an eigenstate of the eight correlation
operators, but with different eigenvalues. In other words, it is still a product
of cluster states. To check this independently, we trace out the four qubits of
the second cluster state (line 23) and look at the eigenvalues of the resulting
denisty operator, using the eigenvectors()-method. This method returns a list
of (eigenvalue,eigenvector)-pairs. Since we are only intersted in eigenvectors
which belong to the eigenvalue 1, we use a for-loop in order to check all
eigenvalues if they are equal to 1 (up to numerical noise). If this is the
case, we again print the values of the correlation operators for this state (line
24-25).

6.5 Mathematics of qtensors

A qtensor is an object similar to a complex matrix; one can think of it as a
rectangular scheme of complex numbers. Different from a matrix, individual
rows and colmuns are not addressed by single indices, but by several indices,
each of which belongs to a given quantum-subsystem or party of dimension
di, and takes values from 0 to di − 1.
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We denote row indices by lower indices, and column indices by upper
indices,

T =
(
c
{i1,...,in}
{j1,...,jm}

)
=

(
cIJ

)
. (6.4)

As symbolized by the notation in (6.4), we think of row indices and column
indices in terms of sets J and I, respectively. Consequently, each index may
appear only once as a row index or a column index, and the order of indices
does not matter. For that reason, we call the indices named indices, rather
than positional indices.

We call a qtensor

• quadratic, if the set of row indices is equal to the set of column indices,

• ket |ψ〉, if the set of column indices is empty, and

• bra 〈ψ|, if the set of row indies is empty.

Two qtensors T =
(
cIJ

)
and T ′ =

(
c′I

′
J ′

)
are of the same type, if I = I ′ and

J = J ′. For qtensors of the same type we define the sum “+” by element-wise
summation.

There is also a product “∗” for qtensors. Using the index sets S = I ∩J ′,
Ĩ = I\S, and J̃ = J ′\S, the multiplication is defined if Ĩ and I ′, as well as J
and J̃ ′ are disjoint. We further use the notation I ′′ = Ĩ∪̇I ′, and J ′′ = J∪̇J̃ ′,
and finally define

T1 ∗ T2 =
(
c′′I

′′
J ′′

)
=

(∑
S

cĨ∪S
J c′I

′
J̃ ′∪S

)
. (6.5)

The summation over the index set S means the summation over all indices
s ∈ S.

Let us discuss three important special cases for the “∗” product. If
S = I = J ′, the product reduces to the ordinary non-abelian matrix multi-
plication; if S = {}, the product is the usual tensor product T1 ⊗ T2. Third,
if T1 is quadratic (i. e. I = J) and if I ⊂ J ′, the product T1 ∗ T2 is of the
same type as T2, i. e. T1 operates on T2. In the latter case, one could think of
this product as a “smart” sparse matrix version of the product in Eq. (6.1).



Chapter 7

Local invariants for
multi-partite quantum states

Quantum mechanical states have a complex description in terms of their
density matrix, which comprises all information available about a system
under a given experimental situation. Different density matrices correspond
to different states of a system, and allow for different predictions on its future
behaviour. For many purposes, however, we are only interested in properties
of the state (such as its entropy or purity) which are invariant under unitary
transformations that correspond to a change of basis in the Hilbert space
associated with the system.

For systems composed of several parts, or subsystems, there exists a nat-
ural tensor product structur underlying the state space. For such composite
systems, the superposition principle gives rise to the phenomenon of entan-
glement which manifests itself in peculiar “quantum” correlations between
results of measurements on its different parts [31, 69, 9]. To capture the
essential features of this entanglement, we look for properties of the density
matrix that are invariant under local unitary transformations, corresponding
to a local change of basis in the Hilbert spaces of the individual subystems.
Such local invariants have attracted the attention of people working on the
foundation of quantum mechanics and, more recently, in quantum informa-
tion theory [66, 67, 52, 39, 81, 43], where entanglement is perceived as a
resource for tasks in quantum communication and computation.

In this paper, we present a family of local invariants of a multi-partite
quantum system. These invariants are derived from an invariant decompo-
sition of the state space of the system, regarded as a real vector space of
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hermitean operators with a scalar product. They have a natural geometric
interpretion in terms of the length of projections of vectors onto invariant
subspaces, which contain information either about one local subsystem or
about correlations between a given set of subsystems. Beyond their geo-
metric interpretation, these invariants have a number of merits. They can
easily be calculated – even analytically – for many states, and they are di-
rectly connected to measurement data [44, 77], i.e. they can be measured
straightforwardly in an experiment.

The representation of the density matrix as an element in the real (metric)
vector space of hermitean matrices is well known, and a number of researchers
have used a similar approach before [71, 41, 66, 67, 34, 85]. Nevertheless,
our results add to existing work in at least two respects. First, the explicit
decomposition of the state space into a direct sum of invariant sub-spaces
makes the identification of invariants quite transparent; it allowed us in fact
to find a family of new invariants. Second, from the convexity of set of sepa-
rable states, we are able to derive constraints on the invariants of separable
states. This way we can give a new entanglement criterion, which is a true
multi-partite criterion i.e. not based on bi-partite splittings.

7.1 State tomography

It is a well known fact that the four Pauli spin matrices σ0 = I, σ1 = σx, σ2 =
σy, σ3 = σz form a real basis of the vector space of the hermitean operators
which act on one qubit. With respect to the scalar product 〈A,B〉 = tr(AB),
the basis vectors are orthogonal. More generally, for a d-dimensional quan-
tum system, there exists a set of 2d− 1 traceless hermitean generators of the
SU(d), which we call σ1, . . . σ2d−1. One specific choice of these generators is
the so-called Cartan-Weyl-construction (see, e. g. [66]). Combined with the
unit operator I ≡ σ0, they form a real non-normalized orthogonal basis of
the vector space of hermitean operators in d dimensions,

〈σi, σj〉 = tr(σiσj) = δi,jd (7.1)

Be P = {1, 2, . . . , n} a set of parties and V the vector space of hermitean
operators acting on the n-partite Hilbert space H(1) ⊗ H(2) ⊗ · · · ⊗ H(n),
where H(a) is a Hilbert space of the (finite) dimension da. Clearly, the tensor
products of the basis operators form a basis

B = {σ(1)
i1
σ

(2)
i2
· · · σ(n)

in
|0 ≤ ia ≤ d2

a − 1 for all a ∈ P} (7.2)
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of V .
Any n-partite density operator ρ ∈ V can thus be expanded in the product

basis

ρ =
1

d

∑
i1,i2,...in

(
ci1i2...inσ

(1)
i1
σ

(2)
i2
· · ·σ(n)

in

)
, (7.3)

where d =
∏n

a=1 da, and

ci1i2...in = tr
(
ρ σ

(1)
i1
σ

(2)
i2
· · · σ(n)

in

)
=

〈
σ

(1)
i1
σ

(2)
i2
· · · σ(n)

in

〉
ρ
. (7.4)

In other words, the expansion coefficients ci1i2...in are expectation values of
products of hermitean operators. Since these expectation values can, in prin-
ciple, be measured by local measurements (given a sufficiently large ensemble
of copies of ρ), one can use this method in order to determine an unknown
n-partite quantum state with the help of local measurements and classical
communication (quantum state tomography).

7.2 Invariant decomposition of the state space

Be σ = σ
(1)
i1
σ

(2)
i2
· · · σ(n)

in
an arbitrary element of the product basis B, and

S = {a|ia 6= 0} the set of parties, where σ acts non-trivially. Using this
definition, we call σ a S-correlation operator, and the set of all S-correlation
operators BS. It is clear that B can be written as the union of the (disjoint)
sets of S-correlation operators, i. e.

B =
⋃̇

S⊂P
BS. (7.5)

Example: In the case of three qubits, we have eight such sets (with a, b ∈
{1, 2, 3}): B{} = {I}, B{a} = {σ(a)

i |i = 1, 2, 3}, B{a,b} = {σ(b)
i σ

(a)
j |i, j =

1, 2, 3}, and B{1,2,3} = {σ(1)
i σ

(2)
j σ

(3)
k |i, j, k = 1, 2, 3}.

Theorem 2 For each set S of parties, the vector space VS = span(BS) is
invariant under local unitary transformations, which act as isometries on VS.

Proof: Be U (a) a unitary operation which acts on party a. If a 6∈ S, all
elements of BS remain unchanged under the action of U (a). If, on the other
hand, a ∈ S, then the orthogonal set of traceless generators σ

(a)
i (i > 0) is
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transformed into a different set of orthogonal traceless generators, i. e. for
1 ≤ i ≤ d2

a − 1,

σ
(a)
i → σ̃

(a)
i =

∑

k

(
O(U (a))

)
ik
σ

(a)
k

with an orthogonal matrix O(U (a)) ∈ SO(d2
a − 1) [11, 4]. Obviously, both

sets of generators span the same set of all traceless operators. ¤
Given a density operator ρ and a set S of parties, the projection of ρ onto

the subspaces VS is given by

ρS =
1

d

∑
σ∈BS

〈ρ, σ〉σ =
1

d

∑
σ∈BS

〈σ〉ρ σ. (7.6)

Note that ρS is not the partial trace of ρ over all parties a ∈ P\S, but we
have

trP\S ρ =
∑

S′⊂S

ρS′ . (7.7)

Due to Theorem 1, local unitary operations rotate a projection ρS only
within the subspace VS. Ignoring the normalization constant 1/d leads us to

Corollary 2.1 For each set S of parties, the squared length of the projection
of a state ρ onto the span VS of BS,

LS(ρ) =
∑
σ∈BS

〈σ〉2ρ (7.8)

is invariant under local unitary transformations. We call LS(ρ) the S-correlation
strength of ρ.

For pure product states, the S-correlation strength is given by

Lpure
S =

∑

S′⊂S

(−1)|S|−|S
′| ∏

a∈S′
da, (7.9)

where we set
∏

a∈{} da = 1. In the special case when ρ is a pure multi-qubit
product state, all S-correlation strengths are equal to unity.

Proof: It is enough to show Eq. 7.9 for the case S = P , since for all subsets
of P , the respective reduced density operators are also pure states.
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First we note that, according to (7.5) and (7.8), we have Lpure
P +

∑
S(P L

pure
S =∏

a∈P da = d, i. e. we can calculate Lpure
P for a n-partite quantum system, if we

know Lpure
S for all S ( P . For S = {}, (7.9) holds trivially. Now we assume

that (7.9) holds for all S ( P . Using the shorthand notation m = |P | − |S ′|,
we get

Lpure
P =

∏
a∈P

da −
∑
S(P

∑

S′⊂S

(−1)|S|−|S
′| ∏

a∈S′
da

(∗)
=

∏
a∈P

da −
∑

S′(P

m−1∑

k=0

(−1)k
(m
k

)

︸ ︷︷ ︸
(−1)m

∏

a∈S′
da

=
∑

S′⊂P

(−1)|P |−|S
′| ∏

a∈S′
da .

(7.10)

For (∗), we counted all sets S with S ′ ⊂ S ( P and with a total of |S ′| + k
elements, and used 0 = (−1 + 1)m =

∑m
k=0

(
m
k

)
(−1)k. ¤

If S does not contain party a, we note that LS(ρ) is only a function of
the reduced density operator tra ρ. Thus, the only invariant which contains
information about the total state is LP (ρ).

A strategy to gain further information about the entanglement properties
of a given state ρ uses the concept of partitions of the set of parties. To do
this, we allow several parties b1 . . . bk to apply joint operations. Technically,
this is equivalent to a situation where these parties are replaced by a single
higher-dimensional quantum system a. In this case, one can calculate the
required traceless generators for the new party a as products of the generators
of the old parties b1 . . . bk,

σ̃
(a)
i1...ik

= σ
(b1)
i1

σ
(b2)
i2

· · · σ(bk)
ik

, (7.11)

with (i1, . . . , ik) 6= (0, . . . , 0).
Any partitioning can be realized by iteratively joining parties pairwise,

say b1, b2 → a. Using Eq. (7.11), one can easily verify that the correlation
strength for a set S = {a} ∪ S ′ = {a} ∪ {bµ, bν , . . .} of parties, is given by

L{a}∪S′ = L{b1}∪S′ + L{b2}∪S′ + L{b1,b2}∪S′ , (7.12)

which means that the correlation strengths for coarse partitions are functions
of the correlations strengths of the finest partition.



126 7. Local invariants for multi-partite quantum states

A special partition is obtained if we allow all parties to operate jointly, i. e.
if the set of parties S̃ consists of a single super-party. LS̃ is then invariant
under all unitary operations, and thus describes a global property of the
state. Indeed, we have

LS̃(ρ) =
∑
σ∈B

〈σ〉2ρ − 〈I〉ρ = d tr
(
ρ2

)− 1, (7.13)

so that LS̃ is a measure for the purity of the state ρ.

Using Eq. 7.5 and 7.8, we can re-write the left-hand side of Eq. 7.13 as
the sum of all S-correlation strengths,

∑

{}6=S⊂P

LS = d tr
(
ρ2

)− 1, (7.14)

which allows us to state

Corollary 2.2 For any state ρ, the sum of all correlation strengths is given
by the purity of the state. This implies, in particular, that for states with
the same purity, there is a trade-off between local and the different non-local
correlations.

For a pure state ρ = |ψ〉〈ψ|, we have tr(ρ2) = tr(ρ) = 1, so that Corol-
lary 2.2 can be regarded as a quantitative expression of the folklore saying
that in entangled states, the information about the state is contained in its
correlations rather than its local properties.

It is a useful fact that the convex structure of the space V of states is
obeyed by the subspaces VS separately, in the following sense: If a state is
given by a convex sum of states ρl, i. e. ρ =

∑
l plρl with pl > 0 for all l

and
∑

l pl = 1, then the projection of ρ onto each of the subspaces VS is the
convex sum of the projections of the states ρl onto VS. If ρ is a separable
state, it can be written as a convex sum of pure product states. In this case,
the projection of ρ onto each of the subspaces VS is a convex sum of vectors
with the squared length Lpure

S , so that the squared length LS(ρ) cannot exceed
Lpure

S . This allows us to formulate the entanglement criterion:

Corollary 2.3 If, for a state ρ there exists a subset S of parties, so that the
S-correlation strength is greater than Lpure

S , then ρ is entangled.
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It is interesting to note that the entanglement criterion is strongest for the
finest partition, in the following sense: Be b1, b2 → a a coarsening as in
Eq. (7.12), and be LS(ρ) < Lpure

S for all S ⊂ {b1, b2} ∪ S ′ ⊂ P . Using (7.12)
for the state ρ and for product states, we find

L{a}∪S′ = L{b1}∪S′ + L{b2}∪S′ + L{b1,b2}∪S′

≤ Lpure
{b1}∪S′ + Lpure

{b2}∪S′ + Lpure
{b1,b2}∪S′

= Lpure
{a}∪S′ .

(7.15)

This means that we do not detect entanglement in any coarse partition, if
we do not detect it in the finest partition.

For all states of n qubits, which are diagonal in the basis of so-called
graph states [28], the correlation strengths can easily be calculated analyti-
cally. This is useful since any n-qubit state can be depolarized to this form
by local operations and classical communication [28]. Moreover, many en-
tangled multi-partite states which are useful for practical applications, such
as generalized GHZ-states [40], quantum error correcting codes [68, 37] or
cluster states [18], belong to the class of graph states.

As an illustration, consider the particular case of the state

ρ = p |GHZn〉〈GHZn|+ 1− p

2n
I

, where |GHZn〉〈GHZn| is the n-qubit GHZ state. Corollary 2.3 yields
L{a1,...,an}(ρ) = p2(2n−1 + δ), where δ = 0, 1 for odd or even n, respectively.

That is, ρ is definitely entangled, if p > 1/
√

2n−1 + δ.
For multi-qubit states, the entanglement criterion of Corollary 2.3 looks

very similar to a criterion for local-realistic descriptions of these states which
has been found recently [85]. Despite their similarity, however, the two cri-
teria state different things. While the first is a sufficient criterion for non-
separability, the latter is a sufficient criterion for the existence of a local-
realistic description of a given state.

Presently, we cannot report an example where the entanglement criterion
of Corollary 2.3 is stronger than the criterion found by Peres [62]. Neverthe-
less, we think that our criterion is of interest. First, our criterion is a real
multi-partite entanglement criterion, and as such it is stronger than when
it is applied to bipartite splittings (see Eq. 7.15). Second, it can easily be
checked experimentally, since the correlation strengths are directly connected
to measurement data. This is especially useful for almost-pure states, where
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Corollary 2.3 becomes tight; on the other hand, their density matrices (and
their partial transposes) have, by definition, small eigenvalues so that for
checking the Peres criterion those states have to be measured very precisely.

7.3 Other invariants

The local invariants LS do not form a complete set of invariants, i. e. they
do not contain all information about the entanglement properties of a given
state. However, the formalism used in this paper allows us identify a larger
class of invariants, many of which also have a straight-forward geometrical
interpretation.

From the proof of Theorem 2, it follows that the transformation properties
of the subspaces VS are closely related. In order to show how this can be used
for the construction of invariants, we first define the S-correlation tensor CS,
which is composed of the components of the projection ρS in (7.6),

CS =




〈∏
a∈S

σ
(a)
ia

〉

ρ




ia>0

. (7.16)

One can easily see that a contraction of two such tensors with respect to a
index iν at the same position is invariant under local unitary operations, i. e.
under orthogonal transformation O which affect this index:

∑
iν

c...iν ...c...iν ... =
∑

iν ,i′′ν

δiν ,i′′ν c...iν ...c...i′′ν ...

=
∑

i′ν ,iν ,i′′ν

Oi′ν iνc...iν ...Oi′ν i′′ν c...i′′ν ...

=
∑

i′ν

c̃...i′ν ...c̃...i′ν ...

(7.17)

Any complete contraction of correlation tensors, i. e. a polynomial in the
expansion coefficients, in which indices are either zero or summed up pairwise,
is thus a local invariant. Examples for such polynomials are c0jkcij0ci0k,
c0j00cij0lcij′k0ccj′kl (where, as usual, the sum is taken over all indices which
occur twice), the correlation strengths LS, and other objects which can be
interpreted as scalar products, such as the scalar product of ρa1a2a3 with the
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tensor product of ρ{a1}, ρ{a2} and ρ{a3},

〈ρ{a1} ⊗ ρ{a2} ⊗ ρ{a3}, ρ{a1a2a3}〉 =
∑

i,j,k>0

ci00c0j0c00kcijk. (7.18)

Unfortunately, it seems to be not possible to construct a complete set of local
invariants using the construction above; for the case of two qubits, there are
seven independent invariants which can be written as contraction of correla-
tion tensors; the two remaining invariants are functions of the determinant
and sub-determinants of the correlation tensor [34]. A different approach
to finding local invariants is to expand the d independent global invariants
tr(ρk) (0 ≤ k < d) [54] into the operator basis (7.2). For k = 0, this yields the
(trivial) invariant tr ρ, and for k = 2 one finds all LS(S ⊂ P ) (see Eq. 7.14).
For the case of two qubits, it is thus possible to identify all nine independent
local invariants in those expansions.
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ßerhalb des Fachgebietes oder außerhalb der Physik. Prof. Schenzle nahm
mich freundlich in seine Arbeitsgruppe auf und bereicherte außerdem den
Forschungsalltag um Episoden aus Wissenschaft und Hochschulpolitik. Ro-
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