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Abstract

In this work, statistical analyses and tests of Faraday rotation measure (RM ) maps
are developed in order to determine the properties of the magnetic fields which are
associated with the plasma in clusters of galaxies.

Whenever linearly polarised radio emission passes through a magnetised medium,
the plane of polarisation is rotated – an effect called Faraday rotation effect. It is
sometimes debated which magnetised medium is mainly responsible for this Fara-
day rotation. Does the magnetised medium close to the source of the polarised radio
emission dominate or does the Faraday rotation mainly take place in the magnetised
medium which is located between the source and the observer, the intra-cluster gas?
After investigations which provide confidence that the Faraday rotation is mainly due
to the magnetised medium which is external to the source, the question arises how one
can analyse the observed Faraday rotation maps to gain insight into cluster magnetic
field properties. Therefore, a statistical approach to analyse the RM maps in terms of
autocorrelation function and power spectrum is developed and applied to the data. Re-
alising that map making artefacts and noise in the data have a noticeable effect on this
analysis, especially for measuring power spectra, a new RM map making algorithm
called Pacman is introduced. Pacman provides high quality RM maps which allow
precise estimates of power spectra. In order to use the full potential of these maps, an
accurate power spectrum estimator based on Bayesian maximum likelihood methods
is developed and successfully applied to characterise cluster magnetic field properties
such as magnetic field strength, magnetic field autocorrelation length and the shape of
the magnetic power spectrum.

In this work, the origin of the high Faraday rotation measures found for polarised
radio galaxies in clusters is investigated. The two most likely sites of Faraday rotation
are within magnetic fields local to the radio source, or within magnetic fields located
in the foreground intra-cluster medium (ICM). In order to distinguish these two sce-
narios in the data, a gradient alignment statistic aimed to find correlations between the
intrinsic polarisation angle ϕ0 and RM maps is introduced. Such correlations were
proposed to result in the case of source local RM screens. The statistic is applied
to a number of extended radio sources in galaxy clusters (PKS 1246-410, Cygnus A,
Hydra A, and 3C465). In no case, a significant large-scale alignment of ϕ0 and RM
maps is detected. However, a significant small-scale co-alignment is found in all cases.
This co-alignment can be fully identified with map making artefacts through a suitable
statistical test. At present, there is no existing evidence for Faraday rotation local to
radio lobes. Given the existing independent pieces of evidence, it is concluded that the
observed Faraday screens are produced by intra-cluster magnetic fields.

Having realised this, a statistical analysis of RM maps is developed. The auto-
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xii ABSTRACT

correlation function and similarly the Fourier power spectrum of an RM map of an
extended background radio source can be used to measure the components of the mag-
netic autocorrelation and power spectrum tensor within a foreground Faraday screen.
It is possible to reconstruct the full non-helical part of this tensor in the case of an
isotropic magnetic field distribution statistics. The magnetic field strength, the energy
spectrum and the autocorrelation length λB can be obtained from this non-helical part
alone. It is demonstrated that λB can differ substantially from λRM , which is the
characteristical scale of an RM map. In typical astrophysical situations λRM > λB .

Strategies to analyse observational data are discussed, taking into account – with
the help of a window function – the limited extent of the polarised radio source, the
spatial distribution of the electron density and the average magnetic energy density in
the screen, and allowing for noise reducing data weighting. The effects of possible
observational artefacts, and strategies to avoid them are briefly discussed.

This technique of Faraday rotation measure map analysis is applied to three galaxy
clusters, Abell 400, Abell 2634 and Hydra A, in order to estimate cluster magnetic field
strengths, length scales and power spectra under the assumption that typical field val-
ues scale linearly with the electron density. The difficulties involved in the application
of the analysis to observational data are investigated. Magnetic power spectra are de-
rived for the three clusters and influences on their shapes caused by the observational
nature of the data such as limited source size and resolution are discussed. Various
tests are successfully applied to validate the assumptions of the analysis.

It is shown that magnetic fluctuations are probed on length scales ranging over at
least one order of magnitude. Using this range for the determination of the magnetic
field strengths of the central cluster gas yields 3 µG in Abell 2634, 6 µG in Abell 400
and 12 µG in Hydra A as conservative estimates. The magnetic field autocorrelation
length λB is determined to be 4.9 kpc for Abell 2634, 3.6 kpc for Abell 400 and
0.9 kpc for Hydra A. For the three clusters studied, it is found that λRM ' 2...4λB .
Furthermore, in a response analysis it is investigated if it is possible to determine
the spectral slopes of the power spectra. It is found that the integrated numbers can
be reliably determined from this analysis but differential parameters such as spectral
slopes have to be treated differently.

Realising that such a statistical analysis can be corrupted by map making artefacts,
a new method to calculate Faraday rotation measure maps from multi-frequency po-
larisation angle data sets is proposed. In order to solve the so called nπ-ambiguity
problem which arises from the observational ambiguity of the polarisation angle de-
termined only up to additions of ±nπ, where n is an integer, it is suggested to use a
global scheme. Instead of solving the nπ-ambiguity for each data point independently,
the proposed algorithm, which was chosen to be called Pacman (Polarisation Angle
Correcting rotation Measure ANalysis), solves the nπ-ambiguity for a high signal-to-
noise region “democratically” and uses this information to assist the computations in
adjacent low signal-to-noise areas.

The Pacman algorithm is tested on artifically generated RM maps and applied to
two polarisation data sets of extended radio sources located in the Abell 2255 and Hy-
dra A cluster. The RM maps obtained using Pacman are compared to RM maps ob-
tained employing already existing methods. The reliability and the robustness of Pac-
man is demonstrated. In order to study the influence of map making artefacts, which
are imprinted by wrong solutions to the nπ-ambiguities, and of the error treatment of
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the data, magnetic field power spectra were calculated from various RM maps. The
sensitivity of the statistical analysis to artefacts and noise in the RM maps is demon-
strated and thus, the importance of an unambiguous determination of RM values and
of an understanding of the nature of the noise in the data. Statistical tests are pre-
sented and performed in order to estimate the quality of the derived RM maps, which
demonstrate the quality improvements due to Pacman.

In order to take the window function properly into account in the measurement of
the magnetic power spectrum of clusters of galaxies, a Bayesian maximum likelihood
analysis of RM maps of extended radio sources is developed. Using this approach,
it is also possible to determine the uncertainties in the measurements. This approach
is applied to the RM map of Hydra A North and the power spectrum of the cluster
magnetic field is derived. For Hydra A, a spectral index of a Kolmogorov type turbu-
lence is observed over at least one order of magnitude in k-space. A dominant scale at
about 3 kpc is found on which the magnetic power is concentrated. Furthermore, the
influence of the assumptions about the sampling volume (described by a window func-
tion) on the magnetic power spectrum is investigated and it is found that the typical
magnetic energy density scales approximately linearly with the electron density (and
not with the field strength as assumed before). The central magnetic field strength is
determined to be 7 ± 2µG for the most likely geometries.
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Chapter 1

Introduction

Magnetic fields are ubiquitous throughout the Universe. It is the magnetic field of the
planet earth which prevents the solar wind and the high energy particles ejected by the
Sun from reaching the atmosphere and thus, making life possible on Earth. It is the
magnetic field of the Sun which strongly influences the appearance of Sun’s surface
and generates stunning events such as sun spots, arches and flares. It is the magnetic
field of pulsars which drives the exactly timed radio pulses coming from these objects
on the sky.

However, magnetic fields are detected not only on small scales such as planets,
like Earth or Jupiter, or stars, but also on large scales in galaxies and on even larger
scales in clusters of galaxies. They are also observed on intermediate scales, i.e. in
molecular clouds which are the progenitor of proto stars, thus, magnetic fields are
detected in the interstellar medium (ISM) where the star forming takes place. Magnetic
fields are believed to be important for these star forming processes but to what extent
and during what stages the magnetic fields become important is still under debate.
However, magnetic fields remove angular momentum from proto stellar clouds making
star formation possible (for a review, see Bourke & Goodman 2004).

For the ISM, the magnetic energy density is at least comparable to the energy den-
sity of the thermal gas, it is comparable to the energy of cosmic rays and it is also
comparable to the energy of the turbulent motion of the ISM. On larger scales in clus-
ters of galaxies, magnetic fields also introduce an additional pressure component to
the energy balance of the cluster gas, which is a hot plasma. The dynamical impor-
tance of magnetic fields for this plasma is still under debate. However, a complete
description of the state of the plasma, and in particular the role of particle transport
processes, requires knowledge of the strength and the morphologies of intra-cluster
magnetic fields.

Related to these processes magnetic field constrain the heat conductivity. Trans-
port coefficients, e.g. heat conduction, are determined by the rate of change of (ther-
mal) electron momenta. In a fully magnetised plasma, particles experience momentum
changes not only through mutual collisions but perhaps primarily due to the Lorentz
force which leads to a confinement of their motion mainly along field lines. These
field lines may be tangled on scales less than the Coloumb mean free path, which is
about tens of kilo parsecs in a cluster atmosphere. Treating the field tangling scale in
a simple approximation as an effective mean free path, one can estimate the change
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2 CHAPTER 1. INTRODUCTION

in heat conductivity due to the field. The comparison of the actual heat conductiv-
ity with the Spitzer value which relies on the Coulomb interaction will determine the
value of the effective mean free path. However, if the heat conductivity is too high,
observed phenomena such as cooling cores and cold fronts of clusters cannot be sus-
tained. Therefore, thermal conduction must be inhibited by sufficiently strong mag-
netic fields ordered on small scales.

Magnetic fields are also fundamental to the observed properties of jets and lobes
in radio galaxies. They might be a primary element in the generation of relativistic
outflows from accreting black holes. One important property of magnetic fields related
to this and other processes is that magnetic fields couple relativistic gas with non-
relativistic gas dynamically.

Cosmologically, magnetic fields might not have influenced the formation of the
large scale structures of the universe. However they shaped and supported the galaxy
formation and evolution and therefore it is necessary to understand the influences the
magnetic fields have on astrophysical processes.

And yet, other key questions which remain to be answered are: Where did these
fields come from? When were the first magnetic fields generated? Which mecha-
nisms did amplify the fields to the strength of which they are observed? Knowing the
present day structure, strength and coherence length scales is important to discrimi-
nate between the theoretical models for amplification mechanisms – mostly described
as dynamo mechanisms – and models for magnetic field seeding.

In order to determine the properties of magnetic fields, the observation of the Fara-
day rotation effect is a very powerful tool. It is observed whenever linearly polarised
radio emission passes through a magnetised plasma (such as the cluster gas). It mani-
fests itself by rotation of the plane of polarisation. In this work, the analysis of Fara-
day rotation observations is used to shed light on the properties of the effect producing
magnetic fields, and thus, to shed light on possible influences of magnetic fields on
astrophysical processes and objects.

Before the observation of astrophysical magnetic fields, in particular the detection
of the Faraday rotation effect is explained in Sect. 1.2, some basics about magnetised
plasma is described in Sect. 1.1. Since this work focuses on the analysis of Faraday
rotation data in order to derive properties of cluster magnetic fields, a short review of
the current knowledge about magnetic fields in clusters of galaxies is given in Sect. 1.3.
Since this work made extensive use of statistics in order to understand observations and
to fit models to them, Sect. 1.4 is devoted to statistical tools.

1.1 Magnetised Plasma

Plasma is often referred to as the ’fourth’ state of matter. In a plasma, electrons and
ions can move independent from each other. Since there are positive and negative
charges moving freely, electrical currents are easily induced. Therefore a plasma is
very sensitive to electrical and magnetic fields. On the other side, the free charges can
also produce electrical and magnetic fields.

Assuming a globally neutral plasma of electrons and protons being all at the same
temperature T0 with a mean particle density n0 and assuming for this plasma local
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thermodynamical equilibrium, the charge densities are given by

nq(φ) = n0 exp(
−q φ
T0

) '
(

1 − qφ

T0

)

, (1.1)

where φ is the electrostatic potential, q = e,−e is the charge of the particle. Further-
more, it is assumed that the plasma is weakly coupled, i.e. |qφ/T0| � 1. A test charge
qt placed at the origin would experience an electrostatic potential φ following from the
Poisson equation

∇2φ = 4πe[ne(φ) − np(φ)] − 4π qt δ
(3)(~x), (1.2)

where ne and np indicate the electron and the proton density, respectively. Substituting
Eq. (1.1) into Eq. (1.2) results in

∇2φ− 1

λ2
D

φ = −4πδ(3)(~x), (1.3)

where

λD =

√

T0

8πn0e2
(1.4)

is the Debye length. This length can be interpreted such that for a test particle the
Coulomb potential has the usual Coloumb form but it will be suppressed at large dis-
tances r > λD by a Yukawa term (exp(−r/λD)).

There are two other quantities, the plasma frequency ωp and the gyrofrequency or
Larmor frequency ωL, which characterise a magnetised plasma. The plasma frequency
ωp is the oscillations frequency of the electrons when they are displaced from their
equilibrium configuration in a background of approximately fixed ions

ωp =

√

4π n0 e2

m2
e

, (1.5)

where me is the electron mass. The gyrofrequency ωL is found by considering the
particle motion in a static uniform magnetic field. The particle is spiralling around the
magnetic field line with the frequency

ωL =
|q| B
γme c

, (1.6)

where γ = 1/
√

1 − v2/c2 is the Lorentz factor.
As mentioned already, plasma and electromagnetic fields interact strongly. Mag-

netohydrodynamics (MHD) describes this interaction on macroscopic time and length
scales (see, for example, Jackson 1975; Sturrock 1994). This description is an approx-
imation that holds when charge separation effects are negligible. In this approach, the
matter is described as a single conducting fluid. Furthermore, it assumes that the sim-
ple form of Ohm’s law is valid but it ignores the displacement current of Ampère’s
Law, i.e. ∂ ~E/∂t = 0. Under these assumption and expressed in Gaussian units,
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Maxwell’s equations take the following pleasant form

∇ · ~E = 4π%, (1.7)

∇ · ~B = 0, (1.8)

∇× ~E = −1

c

∂ ~B

∂t
, (1.9)

∇× ~B =
4π

c
~j, (1.10)

where ~E is the electrical field strength, ~B is the magnetic field strength, % is the charge
density and ~j is the current density.

In this description, Ohm’s law is given by

~j′ = σ ~E′, (1.11)

where σ is the conductivity and the primed quantities refer to the rest frame of the fluid.
Since most astrophysical fluids are electrically neutral and nonrelativistic, ~j′ = ~j and
~E′ = ~E + (~v × ~B)/c. Thus, Ohm’s law becomes

~j = σ

(

~E +
1

c
~v × ~B

)

. (1.12)

Multiplying this expression by ∇× and substituting Maxwell’s Eq. (1.9) and Eq. (1.10)
into Ohm’s law1 results in the magnetic diffusivity equation

∂ ~B

∂t
= ∇×

(

~v × ~B
)

+ η
(

∇2
)

~B, (1.13)

where η = c2/σ4π is the magnetic diffusion coefficient as approximated here to be
spatially constant. The first term ∇×

(

~v × ~B
)

in the equation above is the dynamo or
convective term. It describes the tendency of magnetic fields lines to be frozen in and
the amplification of magnetic fields. The second term η

(

∇2
)

~B on the right hand side
of Eq. (1.13) is the diffusive term which represents the resistive leakage of magnetic
field lines across the conducting fluid. Thereby, it describes the dissipation of magnetic
fields since it allows dilution and cancellation of magnetic fields.

Since the diffusive and the convective term are competing, it is useful to introduce
a dimensionless parameter, the magnetic Reynolds number RM ,

RM ' |convective term|
|diffusive term| =

L−1vB

ηL−2B
, (1.14)

so that RM ' Lv/η, where L is a length characteristic of the spatial variation of the
magnetic field. Note that this equation only refers to orders of magnitude. Depending
on whether RM � 1 or RM � 1 the convective or the diffusive term, respectively,
dominates. In typical astrophysical situations, RM is a large number and thus, the dif-
fusive term is negligible. An interesting regime to note is an infinite magnetic Reynolds
number being equivalent to infinite conductivity (ideal MHD). In this regime, the mag-
netic field lines are frozen in the plasma and thus, follow the movements of the fluid.

1while using the equality for (∇2) ~B = ∇(∇· ~B)−∇×(∇× ~B) and Maxwell’s Equation ∇· ~B = 0.
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1.2 Observing Astrophysical Magnetic Fields

There are several methods in order to measure strength and structure of astrophys-
ical magnetic fields (e.g. Ruzmaikin et al. 1988; Kronberg 1994; Beck et al. 1996;
Widrow 2002, for reviews). The four widely used methods are the observation of the
Zeeman effect, the analysis of the observed polarisation of optical starlight scattered
on dust particles, the observation of synchrotron emission and, the analysis of multi-
wavelength studies of linearly polarised radio sources in order to measure the Faraday
rotation effect. Their use for different scales and objects in the universe is strongly de-
pendent on the sensitivity of the signal which is aimed to be detected by these methods
as briefly described in the following.

1.2.1 The Zeeman Effect

One of the most obvious possibilities is the effect of magnetic fields on spectral lines
named after and discovered by Pieter Zeeman in 1896. Twelve years after its discovery,
it was used by Hale (1908) to detect magnetic fields in sun spots which was the first
observations of extraterrestrial magnetic fields. Bolton & Wild (1957) proposed to use
the Zeeman splitting of the 21 cm line of neutral hydrogen to detect magnetic fields in
the ISM. Ten years later, this measurement was realised by Verschuur (1968).

In the absence of external fields, the electronic energy levels of atoms are indepen-
dent on the direction of the total angular momentum J (orbital angular momentum L
plus spin S) of electrons. The energy levels are degenerate. An external magnetic field
removes the degeneracy and leads to a dependence of the energy levels on the orien-
tation of the angular momentum with respect to the magnetic field. The energy levels
are split into 2j +1 equidistant levels, where j is the quantum number associated with
the total angular momentum J.

The energy difference between neighbouring levels which are split by the influence
of the magnetic field is

∆E = gµB, (1.15)

where µ = eh̄/2mec = 9.3 × 10−21 erg G−1 is Bohr’s magneton and g is the Lande
factor, which relates the angular momentum of an atom to its magnetic moment. Once
this energy difference ∆E is measured, the magnetic field can be determined without
the need of any further assumption. Furthermore, Zeeman splitting is sensitive to the
total magnetic field strength in contrast to other methods such as synchrotron emission
and Faraday rotation which are sensitive to the magnetic field component perpendicu-
lar and parallel to the line of sight, respectively. Thus, the observation of the Zeeman
effect is the most direct way to detect astrophysical magnetic fields strength.

Unfortunately, the Zeeman effect is extremely difficult to detect. The line shift
resulting from the energy splitting is

∆ν

ν
= 1.4 g

B

ν

Hz
µG

. (1.16)

For the two most commonly used spectral lines for Zeeman splitting observations in
astrophysics, which are the 21 cm neutral hydrogen absorption line and the 18 cm
OH molecule line, ∆ν/ν ' 10−9g(B/µG) and thus, assuming a magnetic field of 10
µG, the line shift is only about 30 MHz. The line shift due to thermal Doppler line
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broadening is ∆ν/ν ' vT /c ' 6 × 10−7(T/100K)1/2, where vT and T are the mean
thermal velocity and temperature of the atoms, respectively. Thus, the line half-width
is about ∆ν = 104 MHz at T = 100 K. Therefore, Zeeman splitting is described
rather as a change in the shape of a thermally broadened line (abnormal broadening).

Given these observational constraints, the detection of the Zeeman effect is con-
fined to regions of low temperatures and high magnetic fields such as molecular clouds
in our own Galaxy. Observation of the Zeeman effect in Galactic neutral hydrogen (HI)
regions lead to magnetic field strengths of B ' 2 . . . 10 µG, where the higher values
were detected in dark clouds and HI shells (Heiles 1990, and references therein). At
present however, due to its weakness the Zeeman effect has not been detected in extra-
galactic sources yet.

1.2.2 Polarisation of Optical Starlight

Davis & Greenstein (1951) proposed a connection between polarised optical star light
and the galactic magnetic field. Optical starlight is polarised by elongated dust grains
orientating in a preferred direction in an interstellar magnetic field. For prolate grains,
one of the short axis aligns parallel to the magnetic field direction. The dust grains
absorb star light which is polarised along the long axis of the grains, i.e. perpendic-
ular to the magnetic field direction. As a result, the transmitted radiation possesses a
polarisation direction parallel to the magnetic field.

The polarising mechanism can also be understood by considering that scattering
and absorption of starlight on dust grains occurs differently at different planes. There-
fore the correlation between the degree of polarisation due to absorption and the degree
of starlight reddening due to scattering is a good argument for the connection between
polarised optical starlight and magnetic fields. Light of unreddened stars is usually
non-polarised. In a typical situation the degree of star light polarisation is increased
by 3% along a path of 1 kpc in the Galactic plane.

So far, some attempts have been made to interpret starlight polarisation measure-
ments with respect to the interstellar field. The classical study of polarisation direc-
tions of 1800 stars in the Galactic plane was performed by Mathewson & Ford (1970).
Starlight polarisation for external galaxies have also been performed (e.g. for M51,
Scarrott et al. 1987). One can statistically analyse such maps for fluctuations in the
polarisation direction in order to get information on the chaotic magnetic field compo-
nent. However, the starlight polarisation data alone cannot distinguish between field
directions allowing reversals of the polarity without observable consequences.

For a more comprehensive understanding of starlight polarisation data, one needs
to understand how grains align with the magnetic field (see e.g. Martin 1978, Chap. 9)
which would be based on concepts of the dust particle structure. Unfortunately, this
understanding does not exist yet. However, a simple statement about the compositions
of the dust grains can be drawn from the fact that the particle align with their long axis
perpendicular to the magnetic field line direction. Ferromagnetic particles, such as
iron filings, would exactly align the opposite way and therefore dust grains can not be
ferromagnetic. The most favoured alignment mechanism is paramagnetic relaxation
proposed by Davis & Greenstein (1951).

Apart from the need of better theories describing the alignment of dust particles in
a magnetic field, the interpretation of starlight polarisation observation is limited due
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to two other effects. Firstly, the polarisation can be obscured by the anisotropic scat-
tering of starlight on dust. This polarising scattering and the polarising absorption of
optical star light can not be observationally distinguished. Secondly, since the starlight
polarisation effect is depending on extinction, it is self-obscuring leading to a decrease
in luminosity (for a more detailed discussion, see Scarrott et al. 1987). On the other
hand, optical measurements have normally higher resolution than radio observations
allowing the detection of small-scale fluctuations in galactic magnetic fields.

1.2.3 Synchrotron Emission

Relativistic electrons which are spiralling around magnetic field lines radiate syn-
chrotron emission in the direction of their movement (Rybicki & Lightman 1979),
which is partially polarised. Therefore, synchrotron emission is a direct indicator for
magnetic fields. The total synchrotron emission is used as an estimate of the magnetic
field strength and its polarisation indicates the uniformity and structure of magnetic
fields.

The emissivity J(ν,E) of a single relativistic electron spiralling around a magnetic
field line depending on frequency ν and electron energy E is determined by

J(ν,E) ∝ B⊥

(

ν

νc

)1/3

f

(

ν

νc

)

, (1.17)

where B⊥ is the component of the magnetic field perpendicular to the line of sight,
the critical frequency νc ≡ νL(E/mec

2)2, the Larmor frequency νL = (eB⊥/2πmec)
and the cut-off function f(ν/νc) approaches unity for (ν/νc) → 0 and vanishes rapidly
for (ν/νc) � 1. Furthermore, from this equation it can be seen that the synchrotron
emission at frequency ν is dominated by electrons possessing energies of about E '
mec

2
√

ν/νL.
The relativistic electron energy distribution ne(E) is normally described by a

power law which is valid over some range of energy

ne(E)dE = ne0

(

E

E0

)−α

dE, (1.18)

where α is the spectral index (e.g. α = 2.6, . . . , 3.0 for a typical spiral galaxies) and
ne0 ≡ ne(E0) gives the normalisation.

The synchrotron emissivity of an ensemble of relativistic electrons is determined
by

jν =

∫

dEJ(ν,E)ne(E) (1.19)

As mentioned earlier, the synchrotron emission at frequency ν is dominated by elec-
trons with energy E ' mec

2
√

ν/νL which allows to approximate Eq. (1.17) by
J(ν,E) ∝ B⊥νcδ(ν − νc). One can now substitute E ∝

√

νc/νL and dE ∝
dνc/

√
νLνc into this approximation. From the equation for the Larmor frequency, it

also follows that νL ∝ B⊥. Inserting this into Eq. (1.19) and integrating the resulting
expression with respect to νc yields

jν ∝ ne0ν
(1−α)/2B

(1+α)/2
⊥ . (1.20)
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This synchrotron emission spectrum can then be related to the energy density of
relativistic electrons εre =

∫

dE ne(E)E and the magnetic field B⊥ (Burbidge 1956;
Pacholczyk 1970; Leahy 1991). Suppose that the total flux density Sν emitted by the
source in a frequency range ν1 < ν < ν2 and the angular size of the source Θ are
measured, one can obtain the relativistic energy density εre

εre =

∫ ν2

ν1

dE ne(E)E = aB−3/2Θ2Sν(ν0), (1.21)

where ν0 is a characteristic frequency between ν1 and ν2 and the proportionality factor
a is a known function which depends on ν1, ν2 and α (see e.g. chap. 7, Pacholczyk
1970).

If the relativistic particle energy can be determined by an additional method, the
estimation of the magnetic field strength follows from Eq. (1.21). Often this necessary
information is not directly available. Therefore, an additional assumption is often used
by considering the total energy budget

εtot = εre + εrp + εB , (1.22)

where εB = B2/8π is the magnetic energy density, εre and εrp are the relativistic
energy density of the electrons and of the heavy particles, respectively. Assuming
that the energy density of heavy particles is proportional to the energy density of the
relativistic electrons εrp = kεre, where k ∼ 100 for relativistic particles in our Galaxy
(Beck et al. 1996), Eq. (1.22) reduces to

εtot = (1 + k)εre + εB . (1.23)

In order to estimate the magnetic field strength, one can either assume equipartition
between the energies (1 + k)εre = εB or minimise εtot with respect to B. The latter
results in

∂εtot

∂B
= 0 = −(1 + k)

3c

2
Θ2Sν(ν0) B

−5/2 +
1

4π
B, (1.24)

where Eq. (1.21) was used, leading to a magnetic field estimate of the form B 7/2 ∝
Θ2Sν(ν0). However, the equipartition assumption leads to a similar result which de-
viates only by a factor of 8/6. As an example using equipartition arguments, Niklas
(1995) determined a mean magnetic field strength of 9 ± 3µG from a sample of 74
spiral galaxies, however larger field strength have been locally detected in Galaxies
(Beck et al. 1996).

The assumption of equipartition or minimum energy is continously under debate.
It is not clear if this assumption is valid over all length and time scales. On large length
scales or long time scales equilibrium might have developed whereas on small length
or short time scales this may not be true. However, in our Galaxy the assumption of
equipartition can be tested, since independent measurement of the relativistic electron
energy density and of the relativistic proton energy density exist. A combination of
these information yields an excellent agreement with the estimates using the equipar-
tition assumption (Beck 2001).

Another possibility to use synchrotron emission in order to estimate the mag-
netic field strength for extragalactic sources is the comparison between inverse Comp-
ton (IC) X-ray emission and radio synchrotron emission (Harris & Grindlay 1979;
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Rephaeli et al. 1987). The presumption for this case is that the X-ray emission is a
result from the inverse Compton scattering of fossil cosmic microwave background
photons with the synchrotron radiation producing relativistic electrons.

The IC X-Ray emissivity is proportional to the energy density in the photon field of
the fossil photons εCMB . On the other hand, the synchrotron emissivity is proportional
to the magnetic energy density εB . This leads to a simple proportionality between IC
X-Ray LIC and synchrotron radio Lsyn luminosity: Lsyn/LIC ∝ εB/εCMB . Since
the IC X-ray and synchrotron emission are generated by the same relativistic particle
population, IC X-ray and synchrotron emission share the same spectral index Γ which
is related to the α of the relativistic electron energy distribution by Γ = 2α + 1.
Assuming Γ = −1, the magnetic field can be expressed by (e.g. Harris & Grindlay
1979; Rephaeli et al. 1987)

B = 1.7 (1 + z)2
(

Srνr

Sxνx

)0.5

µG, (1.25)

where Sr and Sx are the radio and the X-ray flux densities at observed radio νr and
X-ray νx frequencies, respectively.

In order to use this method for the estimation of magnetic fields in galaxy cluster
atmospheres, the principal difficulty in this approach is the confusion due to thermal
emission from the galaxy cluster gas. One can separate these two components by
spectroscopical means in X-ray observations. The IC emission has a harder power law
spectrum in comparison with the thermal bremsstrahlung emission. However, lower
limits on cluster magnetic field strength of about 0.2 . . . 0.4 have been determined by
studying IC emission by Rephaeli et al. (1994, 1999) and Fusco-Femiano et al. (2000,
2001).

So far the discussion was concentrated on the estimation of the magnetic field
strength. As mentioned earlier the observation of polarisation of synchrotron emission
can be used as an indicator for the structure of the magnetic field in which the syn-
chrotron radiating particle are moving. Synchrotron emission of a single relativistic
electron is elliptically polarised. For any distribution of particles that varies smoothly
with the pitch angle (angle between magnetic field and velocity), the elliptical compo-
nent will cancel out. Thus, the radiation will be partially linearly polarised.

The degree of polarisation p can be defined as the ratio of the linearly polarised
emission intensity and the total intensity. For a homogenous magnetic field and a
homogenous electron distribution following Eq. (1.18) and if the source is optically
thin to synchrotron radiation (valid for galaxies and clusters), the degree of polarisation
is

pmax =
α+ 1

α+ 7/3
, (1.26)

where α is the spectral index of the electron energy distribution (Eq. 1.18), (Ginzburg
& Syrovatskii 1964; Ruzmaikin et al. 1988). For α = 2.7 for our Galaxy, the degree
of polarisation would be pmax = 0.73. However, in normal spiral galaxies where
the magnetic field is never strictly homogeneous, values for a degree of polarisation
of p = 0.3 were measured in the upper limit, values between p = 0.1 . . . 0.2 are
normal. The difference between the intrinsic polarisation of synchrotron emission and
the observed one can be explained by various effects which lead to the depolarisation
of the synchrotron emission. These effects can be explained by the presence of a
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fluctuating magnetic field component along the line of sight, inhomogeneities in the
electron distribution and the magnetised medium, Faraday depolarisation (see next
section) and beam smearing (e.g. Sokoloff et al. 1998).

Based on heuristic arguments, Burn (1966) proposed a simple expression for the
depolarisation by a fluctuating magnetic field component

p = pmax
B

2

B2
, (1.27)

where B2 is the energy density in the regular field component and B2 is the energy
density in the total field. This expression is to be treated in a statistical sense. Ignoring
for the moment other depolarising effects, this means that only about 20% of the total
magnetic field in spirals is associated with the large scale/regular component of the
field. This ratio would be higher if other depolarising effects were included.

1.2.4 Faraday Rotation

When linearly polarised radio emission propagates through a magnetised plasma, the
polarisation plane of the radiation is rotated. This phenomenon is called Faraday rota-
tion effect. Its detection is one of the most powerful methods to study magnetic field
structure and strength.

An electromagnetic wave is usually described as

~E(~x, t) = ~E0 exp i(~k~x− ωt), (1.28)

where ~k is the wave vector and ~E0 is the amplitude of the wave. For the study of
wave propagation in a uniform cold magnetised plasma, where for convenience ~B =
(0, 0, B), one has to evaluate the following wave equation

~k × (~k × ~E) +
ω2

c2
K · ~E = 0, (1.29)

where K is the dielectric tensor (see e.g. chap. 6, Sturrock 1994). If the wave prop-
agation along the magnetic field in a plasma is considered the dispersion relation is
different for right and left hand circularly polarised waves introducing a phase velocity
difference as the waves pass through it. A linearly polarised wave propagating along
the magnetic field in a magnetised plasma can be decomposed into opposite-handed
circularly polarised waves which are then characterised by different wave vectors

kR,L =
ω

c

[

1 −
ω2

p

ω(ω ± ωg)

]1/2

, (1.30)

where R and + corresponds to right hand, L and − corresponds to left hand polari-
sation, respectively, (as seen by the observer receiving the waves), ωp is the plasma
frequency (Eq. 1.5) and ωg is the gyrofrequency ωg = eB/mec. Assuming the same
amplitude E0, their wave description is

E1 = 2E0 cos

(

kL + kR

2
z − ωt

)

cos

(

kL − kR

2
z

)

(1.31)

E2 = 2E0 sin

(

kL + kR

2
z − ωt

)

sin

(

kL − kR

2
z

)

. (1.32)
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The combined wave will be still linearly polarised but the direction of the electric field
vector will change with distance z.

If ϕ denotes the angle between electric field vector and the x-axis so that tanϕ =
E2/E1, one can derive

ϕ =
kL − kR

2
z, (1.33)

and thus,
dϕ

dz
=

1

2
(kL − kR). (1.34)

In radio astronomy, propagation over large distances are considered over which ωp and
ωg are slowly varying, i.e. kR,L are also changing slowly with distance d. Therefore,
ϕ can be expressed by

ϕ =

∫ d

0
dl

dϕ

dl
=

∫ d

0
dl

1

2
(kL − kR). (1.35)

In the intra-cluster space, magnetic fields of the order of ∼ µG are observed lead-
ing to gyro-frequencies of about ωg ∼ Hz. Furthermore, the electron density in the
plasma is about ne ∼ 10−3 cm−3 causing plasma frequencies of a few ωp ∼ kHz.
Radio astronomy detects radiation at frequencies from 10 MHz to 10 GHz. Thus, the
wave vector kR,L can be approximated (using ωg, ωp � ω) by

kR,L =
ω

c

[

1 −
ω2

p

2ω2

(

1 ∓ ωg

ω

)

]

. (1.36)

Inserting this expression into Eq. (1.34) yields

dϕ

dl
=
ω2

pωg

2c ω2
(1.37)

and substituting the expressions for ωg and ωp yields

dϕ

dl
=

2πnee
3B

m2
ec

2ω2
. (1.38)

Hence, integrating this expression gives the total rotation of the plane of polarisation
over the path of propagation of radio waves

ϕ =
e3

2πm2
ec

2

1

ν2

∫ d

0
dl neB‖ + ϕ0, (1.39)

where the frequency of the wave is expressed as ν = ω/2π and ϕ0 is the intrinsic
polarisation angle. So far it was assumed that the electromagnetic wave propagates
parallel (or anti-parallel) to the magnetic field. If one considers a more general di-
rection of propagation and still uses the approximation ω � ωg, ωp, one would find
that the rotation of the plane of polarisation is still expressed by Eq. (1.39), where B‖

represents then the magnetic field component parallel to the wave vector ~k.
Equation (1.39) can be written in a more convenient way

ϕ = a0λ
2
∫ d

0
dl neB‖ + ϕ0, (1.40)
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where a0 = e3/(2πm2
ec

4) is a constant, the wavelength λ = c/ν. The proportionality
constant between the polarisation angle and the wavelength squared is called rotation
measure (RM ):

RM = a0

∫ d

0
dl neB‖, (1.41)

and thus,
ϕ = RMλ2 + ϕ0. (1.42)

By convention, RM is positive (negative) for a magnetic field directed toward (away
from) the observer. In order to determine the RM values for a given source, one usu-
ally observes the linearly polarised source at at least three different wavelengths. The
RM value is then determined for each point of the source using Eq. (1.42) employing
a least-squares fit. One major difficulty involved in performing this fit is that the po-
larisation angle is observationally only constrained to values between 0 and π leaving
a freedom of additions of ±nπ which leads to the so called nπ-ambiguity. This prob-
lem is illustrated in Fig. 1.1. In this work, a method is proposed in order to solve this
problem (see Chapter 4).

2

φ

λλλ 22
1 2 3

RM2

RM1

RM3

φ

φ
01

02

φ03

2
λ

Figure 1.1: The so-called nπ-ambiguity arising in the determination of the RM is
illustrated. The RM is the slope of the linear regression expressed by Eq. (1.42).
Clearly, additions of ±π change the slope significantly. This plot is adapted from
Ruzmaikin & Sokoloff (1979); Giovannini (2004).

As mentioned in Sect. 1.2.3, the observed degree of polarisation of radiation dif-
fers from the expected value meaning that it is substantially depolarised between its
origin and the observer. One depolarising effect mentioned is Faraday depolarisation
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which is discussed in the following. A first mechanism is observed when the emis-
sion region of the polarised radiation coincides with the Faraday rotating region – the
Faraday screen. If this region is spatially extended along the line of sight, the emission
of polarised radiation by relativistic electrons within the source will occur at different
depths experiencing different Faraday rotation angles caused by different path lengths.
Eventually this results in a depolarisation of radiation and it is called internal or dif-
ferential depolarisation.

If the source is represented by an optically thin slab where magnetic field and
thermal electron distribution are both homogeneous, the degree of polarisation can be
expressed by (Razin 1958; Burn 1966)

p = p0









sin(RMλ2)

RMλ2









, (1.43)

where p0 is the intrinsic polarisation degree and RM is the total rotation measure
produced in the whole slab. If the field is also characterised by a random component,
the dependence of polarisation and wavelength λ is smoothed.

A second depolarising effect due to Faraday rotation is caused by the combined
action of random magnetic fields and the finite size of a telescope beam. Consider
several cells being encompassed by the telescope beam which have differently directed
internal magnetic fields and thus, their Faraday rotation differs from cell to cell. Hence,
this effect, which is called external or beam depolarisation, diminishes the resulting
polarisation.

It is rather difficult to distinguish between internal and external Faraday depolari-
sation. However, there are some general rules. If the depolarisation were internal, the
most depolarised region should be those with highest |RM | (Garrington & Conway
1991). There should also be a correlation between surface brightness and depolarisa-
tion if it were internal. Furthermore, a considerable deviation from the λ2 - law within
a 90◦ rotation of the polarisation angle should be observed (Burn 1966).

A third depolarising effect is observed due to the finite transmission bandwidth
of a telescope receiver. Since any radio telescope receives radiation within a certain
wavelength interval ∆λ centred around the observation wavelength λ. This effect is
called bandwidth depolarisation.

So far the origin of the Faraday rotation effect, its detection and the consequences
it has on the polarisation of radiation has been explained. It is left to understand the in-
terpretation of the RM data. In the following, it is assumed that the emission region of
polarised radiation is well separated from the Faraday screen and is located behind the
screen. This assumption has been challenged by Bicknell et al. (1990) and Rudnick &
Blundell (2003). In Chapter 2, this question is discussed in more detail and arguments
in favour of the assumption that the Faraday rotation is external to the source will be
given.

Considering the Faraday rotation to be external, Eq. (1.41) enables the study of
large-scale fields being responsible for the RM together with a model for the thermal
electron density distribution normally derived from independent X-ray measurements.
A fast estimate of a minimum field strength can be derived by assuming a uniform
magnetic field and a constant electron distribution throughout the Faraday screen

〈RM〉 = a0B‖neL, (1.44)
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where L is the size of the Faraday screen along the line of sight. However, Faraday
rotation distribution are normally patchy indicating a small-scale structure of the mag-
netic field. In Fig. 1.2, an example of an RM distribution for the source Hydra A is
shown where this patchiness clearly can be seen.

Figure 1.2: Faraday rotation measure distribution of the cluster source Hydra A
(adapted from Taylor & Perley 1993). Note that the shape of the RM distribution
is due to the shape of the region with polarised emission. However, the Faraday screen
is situated in the foreground and goes beyond the shape of the source.

The patchiness of RM distributions indicates that the magnetic fields are not reg-
ularly ordered having a coherence length on kpc scale. The simplest model assumes
the Faraday screen to consist of cells with a uniform length scale λc having a uniform
magnetic field B but random directions. The RM for each line of sight through such
a Faraday screen would build up in a random walk process. Assuming a Gaussian
distribution of the field directions yields a mean value 〈RM〉 = 0 and the dispersion
〈

RM2
〉

is non zero. Under the assumption of a constant electron density distribution:

〈

RM2
〉

= a2
0λc

∫

(neB‖)
2dl. (1.45)

For this cell model, one can use a more realistic description for the electron density
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distribution, the so called β-profile (Cavaliere & Fusco-Femiano 1976):

ne(r) = ne0(1 + r2/r2c )
−3β/2, (1.46)

where n0 is a characteristic electron density (i.e. at the cluster centre ne0 = ne(0)), rc
is the cluster radius, and the β parameter fit to the X-ray observations. Assuming this
density profile in the calculation of the RM dispersion, the following relation can be
derived by integrating Eq. (1.45) (Felten 1996; Feretti et al. 1995)

√

〈RM2(r⊥)〉 =
KBn0r

1/2
c Λ

1/2
c

(1 + r2
⊥/r

2
c )

(6β−1)/4

√

Γ(3β − 0.5)

Γ(3β)
, (1.47)

where r⊥ is the projected distance from the cluster centre, Γ is the Gamma function,
the constant K = 624 if the source lies completely beyond the cluster and K = 441
if the source is halfway embedded in the cluster. Usually, the cell size λc and the RM
dispersion is estimated from the observed RM distribution and the electron density is
given by X-ray measurements. The only unknown in Eq. (1.47) is the magnetic field
strength B which is then easy to determine.

Crusius-Waetzel et al. (1990) and Goldshmidt & Rephaeli (1993) propose a similar
method based on a cell model to evaluate Eq. (1.45) directly. They assume that the field
correlation length l0 � rc and that the characteristic scale for variations of the electron
density is small compared to the field correlation length l0 resulting in

〈

RM2
〉

= a2
0

l0
3

∫

ds1n
2(s1)

〈

B2(s1)
〉

, (1.48)

where s1 is some location at the RM distribution. Their analysis also employs a single
correlation scale.

This analysis of RM distributions is very oversimplified. A Faraday screen which
is build up of uniform cells with uniform fields but random field directions violates
Maxwell’s equation ∇ · ~B = 0. Furthermore, it is most likely that a distribution of
length scales exist. In that case, it is also not clear how the cell size λc is defined.
It might differ significantly from the coherence length of the RM distribution λRM

which in turn is not necessarily equivalent to the coherence length of the magnetic
field λB .

A completely different method compared to the ones mentioned above was sug-
gested by Kolatt (1998) who proposes to apply a maximum likelihood method to anal-
yse Faraday rotation correlation in order to derive the primordial magnetic field.

In this work, a statistical analysis of RM distributions is proposed. First, the
concept of RM autocorrelation and its relation to magnetic field autocorrelation and
power spectrum are derived. This analysis relies on the condition ∇ · ~B = 0 and
thus, incorporates one important property of magnetic fields directly. Furthermore,
a definition of field and RM correlation length is given. This approach has been
successfully applied to data and the results are discussed in Chapter 3. In Chapter
5, a Bayesian maximum likelihood approach is suggested in order to determine the
power spectrum of the magnetic field fluctuations from observed RM distributions.
This method also allows the calculation of error bars.
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1.3 The state of the Art - Cluster Magnetic Fields

Clusters of galaxies are the largest gravitationally bound systems and the largest viri-
alised structures in the Universe. At optical wavelengths, clusters appear as over-
densities of galaxies with respect to the field average density. Apart from the galaxies,
they contain a hot (T ' 108 K) and low density (ne ' 10−3 cm−3) plasma – the intra-
cluster medium (ICM). This plasma is observed through its luminous X-ray emission
(LX ' 1043 · · · 1045 erg s−1) which is produced by thermal bremsstrahlung radiation.

The ICM is magnetised which is directly demonstrated by the observation of large-
scale diffuse synchrotron sources as shown in Fig. 1.3. Relativistic electrons of the
energy ' GeV spiralling around in µG magnetic fields emit synchrotron radiation in
the radio wavelength range. For the observation of cluster magnetic fields, this dif-
fuse large-scale synchrotron emission observed as radio haloes and relics (Sect. 1.3.1)
and Faraday rotation measurements of points sources and individual extended radio
sources (Sect. 1.3.2) in or behind cluster environments can be used. In the following, a
short review is given about our knowledge of the magnetic field strength and structure
in the ICM (for detailed reviews see Kronberg 1994; Carilli & Taylor 2002; Widrow
2002).

1.3.1 Radio Haloes and Relics

Willson (1970) observed diffuse radio emission in the centre of the Coma cluster which
could not be associated with any cluster source (see Fig. 1.3). A detailed study revealed
that the emission is characterised by a steep spectral index. No structure on scales less
than 30’ were detected. Willson (1970) proposed that the diffuse emission is syn-
chrotron radiation. By applying equipartition arguments a field strength of 2 µG was
deduced. Various sky surveys have increased the number of such large-scale diffuse
sources to the present day (e.g. Giovannini et al. 1999; Hunstead & The Sumss Team
1999; Venturi et al. 2000; Kempner & Sarazin 2001). Still the number is quite small
(∼ 50).

However, a couple of properties have been derived for radio haloes. They are
located in the cluster centre and are of roughly spherical shape extending about ∼ 1
Mpc. They are characterised by steep spectral indeces (α ≥ 1, if Sν ∝ ν−α), by a
low surface brightness (∼ 10−6 Jy arcsec−2 at 1.4 GHz) and by low polarised flux
(≤ 5%). This low degree of polarisation suggests strong depolarisation due to internal
Faraday depolarisation since emission region and Faraday screen coincide. Since this
sources are very extended, only low resolution observations are possible, therefore
also beam depolarisation might play a role when the magnetic fields are disordered on
smaller scales than the resolution. The low resolution observations prevent detailed
investigations of the magnetic field structure on small scales.

However, minimum/equipartition arguments for the synchrotron emission yield
field strength estimates averaged over the radio halo volume (∼ 1 Mpc). For this
analysis as described in Sect. 1.2.3, usually a low energy cut-off of 10 MHz, a high
energy cut-off of 10 GHz are used and a scaling factor between relativistic proton and
electron energy density k = 1 is assumed. These arguments lead to field strengths of
0.1 . . . 1µG (Feretti 1999).

Another type of diffuse large-scale synchrotron sources are the radio relics. In
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Figure 1.3: A Westerbork Synthesis Radio Telescope map at 327 MHz of the Coma
cluster from Giovannini et al. (1991). The central extended radio source C is a so
called radio halo and a radio relic 1253+275 is observed at the periphery. The capital
letters indicate extended Coma cluster galaxies, A = NGC 4839, B = NGC 4827, C =
NGC 4789. 10’ correspond to 400 kpc h−1

50

contrast to haloes, radio relics are observed at the periphery of clusters and show elon-
gated or irregular shape. They are strongly polarised which can be understood by low
internal Faraday depolarisation due to the expected lower magnetic field strength and
lower electron densities at the periphery of the clusters.

The prototype for such a relic is the source 1253+275 at the periphery of the Coma
cluster (see Fig. 1.3), which was first classified by Ballarati et al. (1981). At 20 cm,
its polarisation is 25 . . . 30% and the magnetic field is oriented along the source major
axis. Minimum energy arguments yield a magnetic field strength ∼ 0.55µG for the
synchrotron emitting plasma (Giovannini et al. 1991).

Another example of complex large-scale radio emission in a cluster can be found
in Abell 2256 (Bridle & Fomalont 1976; Röttgering et al. 1994). Several head-tail
radio galaxies, a central radio halo and two large relic sources are detected in this
cluster. The relics are highly polarised, on average 20-30 % but values of up to 50 %
are observed (Clarke & Enßlin 2001). The intrinsic magnetic field direction traces the
bright filaments in the relics and it appears that there is a large scale order to the fields.
Other large relic sources have been detected for instance in Abell 2255 (Burns et al.
1995; Feretti et al. 1997), in Abell 1300 (Reid et al. 1999), in Abell 2744 (Govoni et al.
2001a), in Abell 754 (Kassim et al. 2001) and in Abell 3667 (Röttgering et al. 1997;
Johnston-Hollitt et al. 2003). In the latter cluster, there are two almost symmetric
relics.
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In general, equipartition magnetic fields in relics are determined to be ∼ 0.5 . . . 2µG
(Govoni et al. 2001a). However due to the believed origin of the relics, the magnetic
fields might be compressed (as discussed below) in these sources and, thus, might not
be indicative for the overall magnetic field in the peripheral regions of the cluster.

There is growing evidence that relics are results of ongoing merger events. Enßlin
et al. (1998) suggest that relics are caused by first order Fermi acceleration of rela-
tivistic particles in shocks produced during cluster merger events. Another scenario
suggests that relics are fossil radio sources which were revived by compression asso-
ciated with mergers (Enßlin & Gopal-Krishna 2001). Both types of relics might exist
in reality.

As described in Sect. 1.2.3, apart from equipartition arguments there is also the
comparison of synchrotron radio emission with the Inverse Compton X-ray emission.
Hard X-ray excess was detected in the spectrum of Coma (e.g. Fusco-Femiano et al.
1999; Rephaeli et al. 1999). A measurement using BeppoSAX data detected a non-
thermal excess with respect to the thermal radiation of Hard X-ray at a ∼ 4.8σ level
(Fusco-Femiano et al. 2004). Although, this detection is currently under debate (see
footnote in Enßlin & Hansen 2004), applying Eq. (1.25), however, yields a volume
averaged intra-cluster magnetic field of ∼ 0.2µG. The IC and equipartition estimates
for the Coma cluster agree very well with each other.

Another example where excess Hard X-ray emission has been detected is in the
cluster Abell 2256 (Fusco-Femiano et al. 2000; Rephaeli & Gruber 2003). The analysis
of this excess leads to magnetic field strength of 0.05µG in the relic region at the
periphery. Higher fields of about ∼ 0.5µG in the region of the halo in the cluster
centre could be present.

1.3.2 Rotation Measures

In order to study cluster magnetic fields through RM measurements, polarised radio
sources embedded or behind cluster environments have to be observed. In principle,
any extragalactic RM consists of different components

RM = RMintr +RMICM +RMgal +RMionsp, (1.49)

where RMintr is the source intrinsic Faraday rotation, RMgal is the Faraday rotation
due to the galactic foreground, RMionosp is the Faraday rotation due to the ionosphere
of the Earth and RMICM is the Faraday rotation associated with the cluster gas. The
contribution from the Ionosphere of the Earth is in general very small and can be
neglected. The galactic component can be subtracted by comparison with RM point
source catalogues of pulsars tracing the RM distribution of our Galaxy which is of
the order of 10 rad m−2 up to 300 rad m−2 for sources at low galactic latitudes (e.g.
Simard-Normandin et al. 1981; Han et al. 1999).

Once the galactic contribution is subtracted from the RM signal, the contribution
from the ICM should dominate the residual RM signal. High resolution RM studies
of Cygnus A (Dreher et al. 1987) reveal high RM values with large gradients on arcsec
scale which cannot be attributed to a galactic origin or to a thermal gas mixed with the
synchrotron emitting plasma. It is concluded that the RM must arise in an external
screen of magnetised, ionised plasma. This high resolution studies have been per-
formed on several other extended sources resulting in the same conclusion. Another
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strong argument for the dominance of the RM signal from the ICM is the detected
asymmetrical depolarisation found in double radio lobes located within galaxy clus-
ters. This asymmetry can be understood as a result from differing Faraday depths of
the two lobes – known as the Laing-Garrington effect (Laing 1988; Garrington et al.
1988). In fact, the lobe pointing toward to the observer is less depolarised.

The observing strategy in order to get insight into magnetic field strength and struc-
ture is twofold. High resolution RM studies of extended sources located at different
cluster impact parameter can be performed by means of determining the mean 〈RM〉
and the dispersion

〈

RM2
〉

as described in Sect. 1.2.4. On the other hand, RM sam-
ples of point sources located behind or within clusters can be compared to control RM
samples of sources whose line of sight does not intersect a cluster.

Concerning the latter method, Lawler & Dennison (1982) were the first to success-
fully statistically demonstrate Faraday rotation from radio sources observed through
cluster atmospheres. They detected a broadening of RM in cluster sources with re-
spect to sources in a control sample. For the Coma cluster, this analysis has been
performed by Kim et al. (1990). They evaluated a sample of 18 radio sources and
found a significant enhancement of the RM in the inner parts of the cluster. They
deduced a magnetic field of 2µG assuming a cell size of λc = 10 . . . 30 kpc. Using a
sample of 106 radio sources, Kim et al. (1991) deduced a magnetic field strength of
about ∼ 1µG in the cluster gas.

A more recent study of point sources has been performed by Clarke et al. (2001).
The RM ’s for a representative sample of 16 cluster radio sources were analysed with
respect to a control sample consisting of radio sources being not associated with a clus-
ter atmosphere. The result of this study is shown in Fig. 1.4. A significant broadening
of the RM distribution in the cluster sample is detected. Furthermore, an increase in
the width of the RM distribution toward smaller impact radii b is observed. Clarke et
al. deduce a magnetic field strength of ∼ 4 . . . 8µG in the cluster gas assuming a cell
size λc = 15 kpc.

Studies of individual, extended RM sources have been first performed on cooling
flow clusters since they host powerful radio sources. Extreme values of up to several
thousands rad m−2 have been detected in these sources (e.g. in Hydra A, see Fig. 1.2).
For Hydra A, Taylor & Perley (1993) deduced a magnetic field strength of 5 µG up to
30 µG in the innermost regions of this cluster assuming cell sizes λc ∼ 100 . . . 4 kpc.
Similar high magnetic field strengths were derived for Cygnus A (Dreher et al. 1987),
for 3C295 (Perley & Taylor 1991; Allen et al. 2001), for Abell 1795 (Ge & Owen
1993) and the Centaurus cluster (Taylor et al. 2002). For the cooling core cluster
3C129, Taylor et al. (2001) could not detect such high magnetic fields. They derived a
field strength of 6 µG on coherence scales of ∼ 5 kpc observed out to ∼ 450 kpc.

Extended sources without a cooling core have also been analysed which are not
necessarily located in the cluster centre. The analysis of the RM distribution of
NGC4869 in the Coma cluster performed by Feretti et al. (1995) resulted in mag-
netic field strength of 7 µG tangled on scales of ∼ 1 kpc and a weaker field component
of 0.2 µG ordered on a scale of a cluster radius. Extended RM distributions in other
non-cooling clusters have also been analysed, i.e. in Abell 119 (Feretti et al. 1999a), in
Abell 514 (Govoni et al. 2001b), in Abell 400 and in Abell 2634 (Eilek & Owen 2002).
The patchiness of the observed RM distributions indicates magnetic field strengths of
2 . . . 8µG on scales ∼ 5 . . . 15 kpc.
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Figure 1.4: RM cluster sample taken from Clarke et al. (2001). For the sample of 16
Abell clusters, galaxy-corrected rotation measure are plotted as a function of source
impact parameter b in kiloparsec. The open points represent the cluster sources located
behind or embedded in the thermal cluster gas while the closed points are the control
sources at impact parameters beyond the cluster gas. Note the broadening in the width
of the RM distribution toward smaller impact parameters.

In general for all these sources, it is observed that the amplitude of the mean
| 〈RM(r)〉 | and the dispersion

〈

RM2(r)
〉

increase with smaller impact radii r. Espe-
cially the overall mean 〈RM〉 is non-zero even if the galactic foreground is subtracted
indicating a magnetic field component which is ordered on larger scales than the radio
source size. However, the RM distribution in most of the observed extended sources
show a Gaussian distribution and appear to be patchy suggesting a field component
which is ordered on scales ∼ 10 kpc or less.

The magnetic field strengths derived for the cluster gas from RM measurements
differ from the field strength derived using the equipartition/minimum energy argu-
ments and the hard X-ray excess emission whereas the results derived from the latter
two methods agree generally very well with each other. Synchrotron and IC emission
originate from a large cluster volume and magnetic field estimates are averaged over
the whole cluster volume. In contrary, RM measurements correspond to line-of-sight
integrations and thus, two different sets of measurements will, in general, yield differ-
ent field values (Goldshmidt & Rephaeli 1993). Furthermore, more realistic electron
spectra should be considered in the analysis of synchrotron and IC emission (Enßlin
et al. 1999; Petrosian 2001), which would allow for higher field strengths.

Another unrealistic scenario is the assumption of a uniform field throughout the
cluster. If the field values detected in the centre of the cluster would extend to several
core radii than the magnetic pressure would exceed the thermal pressure in the outer
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parts of the cluster, Jaffe (1980) suggested that the magnetic field distribution in a
cluster could depend on the thermal gas density

B(r) ∝ ne(r)
αB . (1.50)

Interesting clues about the magnetic field distribution in clusters can also be gained
by magneto-hydrodynamic cosmological simulations (Dolag et al. 1999, 2002). One
of their result is that the magnetic field strength at any point within galaxy clusters is
proportional to the gas density.

In the case of an only adiabatically compressed field which is frozen-in within the
gas, one expects that the exponent αB = 2/3. Crusius-Waetzel et al. (1990) propose
that the magnetic to gas pressure ratio is constant throughout the cluster indicating
αB = 1/2. Finally, Dolag et al. (2001) find in their analysis an αB = 0.9 for Abell
119. However, there is no known argument which would exclude any value for the
exponent αB in Eq. (1.50).

In conclusion, cluster magnetic fields show a complex structure, i.e. are filamen-
tary and/or have substructure with a range of coherence scales. Hence, the interpreta-
tion of RM data by a simple cell model is oversimplified and thus, it is necessary to
consider in any analysis more realistic magnetic field distributions which fluctuate over
a wide range of spatial scales and whose global distribution might obey Eq. (1.50).

1.4 Some Statistical Tools

Experience tells us that not all the events that could happen, or all conceivable hy-
potheses are equally likely. Statistic tries to measure the uncertainty involved.

Given a set of observations, one normally wants to condense and summarise these
data sets by fitting a model to them with adjustable parameters. These models can
be just straight lines, power laws or something different. Different statistical methods
have been developed to fit models to data sets in a proper way (Lupton 1993; Bevington
& Robinson 2003).

Ideally, such a method should provide an estimate of the uncertainty of the sta-
tistical analysis. In Sect. 1.4.1, the idea of least-squares fitting is presented. Often
the power spectra and the autocorrelation function are needed which cannot be mea-
sured via a least-squares method. The concept of these two very important functions
and their properties will be presented in Sect 1.4.2. A very powerful statistical tool to
calculate power spectra is the Bayesian analysis of data in terms of a maximum likeli-
hood approach. In Sect. 1.4.3, the ideas of Bayesian statistics and its applications are
described.

1.4.1 Least-Squares & Error Weighting

A widely used method in order to fit models to data sets is least-squares fitting. It is
important to note that one of the assumptions of this method is that the data follow a
Gaussian probability distribution. An explanation of this is given in Sect. 1.4.3 where
the Bayesian approach is discussed.

Suppose n data points (xi, yi) to which a model y(x) = y(xi, a1, a2, . . . , am) has
to be fitted, where the a1, a2, . . . , am are m model depending parameters. Further-
more, assuming that the standard deviation σi of each data point is known and that the
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standard deviations are uncorrelated, then the following function has to be minimised
in order to find the best fitting model parameter

χ2 ≡
n
∑

i=1

(

yi − yi(xi; a1, a2, . . . , am)

σi

)2

, (1.51)

where the function y(x) = yi(xi; a1, a2, . . . , am) is the expectation or a guess of the
function which fits the data. This expression has to be minimised for the parameter
a1, a2, . . . , am.

Assume now the special case of a simple linear model y(x) = a1x+ a2. Particu-
larly important for this work is the χ2-least squares fitting of the measured polarisation
angle ϕi at different wavelengths λi in order to determine RM and the intrinsic po-
larisation angle ϕ0 by fitting Eq. (1.42) to the observed data. Using Eq. (1.51), the
function which has to be minimised with respect to the model parameters RM and ϕ0

is

χ2(RM, ϕ0) =
n
∑

i=1

(

ϕi − ϕ0 − RMλ2
i

σi

)2

. (1.52)

Thus, the following conditions have to be fulfilled.

∂χ2

∂RM
= 0 = λ2ϕ− λ2ϕ0 − λ4RM (1.53)

and
∂χ2

∂ϕ0
= 0 = ϕ− Sϕ0 − λ2 RM, (1.54)

where the following abbreviations were introduced

S =
n
∑

i=1

1

σ2
i

, λ2 =
n
∑

i=1

λ2
i

σ2
i

, λ4 =
n
∑

i=1

λ4
i

σ2
i

, ϕ =
n
∑

i=1

ϕi

σ2
i

, λ2ϕ =
n
∑

i=1

λ2
iϕi

σ2
i

,

Solving Eq. (1.53) and Eq. (1.54) for RM and ϕ0 leads to the following expres-
sions

RM =
Sλ2ϕ− λ2 ϕ

Sλ4 − λ22 (1.55)

and

ϕ0 =
ϕλ4 − λ2 λ2ϕ

Sλ4 − λ22 . (1.56)

The standard error for RM and ϕ0 can be calculated using the Gaussian propaga-
tion of errors which is given by:

σ2
f =

n
∑

i=1

σ2
i

(

∂f

∂yi

)2

, (1.57)

where f = f(yi) and σf are the errors. Finally, this leads to the standard errors for
RM and ϕ0, respectively,

σ2
RM =

S

Sλ4 − λ22 (1.58)
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and

σ2
ϕ0

=
λ4

Sλ4 − λ22 . (1.59)

Another quantity worth to consider is the covariance defined as

cov(yi, yj) = 〈(yi − 〈yi〉)(yj − 〈yj〉)〉 = 〈yiyj〉 − 〈yi〉 〈yj〉 , (1.60)

where the brackets <> denote the expectation value. The variance is defined as
var(yi) = cov(yi, yi). The square root of the variance is the standard deviation σi

in a measurement. However, one can understand the covariance cov(yi, yj) as ele-
ments of a covariance matrix which describes correlations among the yi’s. If the yi

and yj were totally uncorrelated the off-diagonal elements of the covariance matrix
would be zero.

Another interesting point related to the interpretation of measurements is the op-
timal error weighting of any data set. Consider a data set xi, xj , ..., xn with given
standard errors σ1, σ2, ..., σn. Then any error weighted mean x can be expressed as

x =

∑n
i=1 xi/σ

α
i

∑n
i=1 1/σα

i

, (1.61)

where the exponent α is a parameter for which the above expression has to be opti-
mised. Following Gaussian error propagation, the standard error of the mean would
be

σx
2 =

n
∑

i=1

(

σi
∂x

∂xi

)2

. (1.62)

The evaluation of the derivation in Eq. (1.62) using Eq. (1.61) leads to

σx
2 =

∑n
i=1 σ

2−2α
i

(
∑n

i=1 1/σi
α)2

(1.63)

The best data weighting is achieved when the resulting error is the smallest. There-
fore, the minimum with respect to α of Eq.(1.63) is required

0 =
∂σx

∂α
=





n
∑

i=1

lnσi σ
2−2α
i

n
∑

j=1

σ−α
j



 −




n
∑

i=1

σ2−2α
i

n
∑

j=1

lnσj σ−α
j



 . (1.64)

For this equation to be true the condition 2 − 2α = −α has to be fulfilled. Therefore,
the optimal error weighting for the calculation of the mean of a data set is achieved for
α = 2.

1.4.2 Autocorrelation and Power Spectra

As discussed in the previous section, the magnetic field in clusters of galaxies seems
to consist of a large-scale component and of a fluctuating component (see Sect. 1.3).
This fluctuating component can be statistically described by using the power spectrum
and the autocorrelation function. The concept of these descriptive statistics and their
properties is introduced in the following (for a review see Kaiser 2003).
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Consider a random scalar function of position in an n-dimensional space f(~r). The
following arguments also apply for a vector function or functions of different variables.
Furthermore, a statistically homogeneous process which specifies the fluctuations of
f(~r) is considered. Homogeneity means that the statistical character of the fluctuations
does not vary with location. The statistical description of such a random function is
provided by the N-point distribution functions. The 1-point distribution function

p(f)df (1.65)

gives the probability to observe a field value f at some randomly chosen location in
space. The 2-point distribution function

p(f1, f2)df1df2 (1.66)

describes the probability to observe f(~r1) = f1 and f(~r2) = f2 at two positions
~r1 and ~r2. For a statistically homogeneous process, the 2-point distribution function
only depends on the separation ~r1 − ~r2 and for a statistically isotropic process, it only
depends on the modulus of the separation |~r1−~r2|. Higher order distribution functions
can easily be derived following the scheme above.

The integration of the distribution functions results in correlation functions. The
most important one is the 2-point correlation function or autocorrelation function

ξ(~r12) = 〈f1f2〉 =

∫

df1

∫

df2 f1f2 p(f1, f2), (1.67)

where ~r12 = ~r1 − ~r2. This function again only depends on the separation given the
assumption of statistical homogeneity. The N-point correlation functions are moments
of the corresponding distribution functions. However, the autocorrelation function is
extremely useful since it allows to calculate the variance

〈

f2
〉

= ξ(0) of any linear
function of the random field.

The autocorrelation function ξ(r) is a real space statistic. Since the statistically
homogeneous fields imply translational invariance, Fourier space statistic may also be
useful

f̃(~k) =

∫

dnr f(~r)ei~k·~r. (1.68)

The power spectrum per volume P (~k) is defined as P (~k) = (1/V )〈f̃(k)f̃∗(k)〉, where
f̃∗ is the complex conjugate of f̃ . Consider the average of the following expression:

P (~k,~k′) =
1

V
〈f̃(~k)f̃∗(~k ′)〉 =

1

V

∫

dnr

∫

dnr′〈f(~r)f(~r ′)〉ei~k·~re−i~k ′·~r ′

. (1.69)

Under the condition of statistically homogeneity 〈f(~r)f(~r ′)〉 = ξ(~r − ~r ′) and chang-
ing the second integration variable ~r ′ to ~z = ~r − ~r ′ yields

P (~k,~k′) =
1

V
〈f̃(~k)f̃∗(~k ′)〉 =

1

V

∫

dnr ei(
~k−~k ′)·~r

∫

dnz ξ(~z) ei~z·~k (1.70)

and, finally
〈f̃(~k)f̃∗(~k ′)〉 = (2π)n δn(~k − ~k ′) ξ̂(~k), (1.71)
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where δ(~k − ~k ′) denotes the Dirac δ-function and the Fourier transformed autocorre-
lation function is

ξ̂(~k) =

∫

dnr ξ(~r) ei~k·~r. (1.72)

Equation (1.71) implies that the different Fourier modes (i.e. ~k ′ 6= ~k) are com-
pletely uncorrelated. This is a direct consequence of the assumed translational invari-
ance, or the statistical homogeneity, of the field. In real space however, f(~r) will
generally have extended correlations, i.e. 〈f(~r)f(~r ′)〉 6= 0 for ~r 6= ~r ′.

Some properties of the power spectrum worth noting are:

• The Wiener-Khinchin theorem states that the power spectrum per volume and
the autocorrelation function are related by a Fourier transform: P (~k) = V ξ̂(~k).

• Using the power spectrum, the variance of the field can be determined by taking
the inverse transform of Eq. (1.72) at ~r = 0 which gives

〈

f2
〉

= ξ(0) =

∫

dnk

(2π)3
ξ̂(~k) =

1

(2π)nV

∫

dnk P (~k), (1.73)

thus, by integration of the power spectrum, the total variance of the field can be
derived.

• If the field can be considered to be statistically isotropic then the power spectrum
only depends on the modulus of the wave vector: P (~k) = P (k).

• If the field f(~r) is incoherent, i.e. ξ(~r) ∝ δ(~r), then the power spectrum is
constant. Such fields are referred to as ’white noise’.

In real situation, one is faced with the problem of estimating the power spectrum
from a finite sample of the infinite random field (e.g. the RM distributions which are
limited by the finite radio source size even though the magnetised cluster gas extends
beyond that). One can write such samples as fs(~r) = W (~r)f(~r), where the function
W (~r) describes the sample geometry and is often referred to as the ’window function’.

The Fourier transform of such a finite sample of the field is the convolution of the
transforms f̂ and Ŵ , following the convolution theorem:

f̂s(~k) =

∫

dnk ′

(2π)n
f̂(~k ′)Ŵ (~k − ~k ′). (1.74)

This means that the transform of the sample is a somewhat smoothed version of the
intrinsically incoherent f̂(~k). The width of the smoothing function Ŵ is ∆k ∼ 1/L,
where L is the size of the sampling volume. Hence, the transform f̂s will be coherent
over scales δk � L but will be incoherent on larger scales. Thus, the act of sampling
introduces finite range correlations in the Fourier transform of the field.

1.4.3 Bayesian Statistics

A method in order to quantify uncertainties in a measurement are given by Bayesian
ideas (for a review, see D’Agostini 2003). The two crucial aspects of these ideas are

• Probability is understood as the degree of belief that an event will occur.
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• Probability depends on our state of knowledge, which is different for different
people. Therefore probability is necessarily subjective.

Consider two events A and B where P (A) and P (B) are the probabilities of the
event A or B, respectively. It is clear that for the probability P (A) the following holds
0 ≤ P (A) ≤ 1. Furthermore, for two events A and B

P (A ∪B) = P (A) + P (B) − P (A ∩B) (1.75)

P (A ∩B) = P (B|A)P (B) = P (B|A)P (A), (1.76)

where ∪ denotes the logical OR and ∩ denotes the logical AND. The probability
P (A ∪B) is the logical sum and P (A∩B) is the logical product of two probabilities
P (A) and P (B). The latter is also often called the joint probability. The term P (A|B)
describes the probability of A under the condition that B is true and is shortened by
saying probability of A given B.

Another important property is the probabilistic independence of events. If the
probability of A does not change the status of B, the events A and B are said to be
independent. In that case P (A|B) = P (A), and P (B|A) = P (B). Inserting this into
Eq. (1.76) yields

P (A ∩B) = P (A)P (B). (1.77)

From Eq. (1.76), Bayes Theorem is easily derived:

P (B|A) =
P (A|B)P (B)

P (A)
, (1.78)

where P (B) is called the prior probability, P (B|A) is called the posterior probability
and P (A|B) is the likelihood. If one identifies event A with an observation and event
B with some set of model parameters, the likelihood can be literally described as the
probability of the observation A given the specific hypotheses B. In the same context,
the probability of the observation P (A) is a constant although it is unknown leaving
the proportionality

P (B|A) ∝ P (A|B)P (B), (1.79)

the prior probability P (B) is a statement about our knowledge of the hypotheses and is
mostly assumed to be uniform when one does not know anything about the probability
of the hypotheses. However, Bayes postulates that all priors should be treated as equal.

So far, it was implicitly assumed that the variable x is discrete and a probability
function p(x) is interpreted as the probability of the proposition P (A), where A is
true when the value of the variable is equal to x. However in most cases, continuous
variables x have to be considered and the probability will be a continuous function
interpreted as a probability density function p(x)dx. In terms of the probability P (A),
it is understood as A is true when the value of the variable lies in the range x+ dx. In
the further discussion, the latter perspective is assumed.

Assuming a set of data being the observations d and a set of models θ describing
our expectations, then Eq. (1.79) becomes

p(θ|d) ∝ p(d|θ)p(θ). (1.80)
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If the data di are independent, then the likelihood L(θ;d) = p(d|θ) can be expressed
as

L(θ;d) = p(d|θ) =
∏

i

L(θ; di). (1.81)

As mentioned, if one knows so little about the appropriate values of the hypotheses
parameter that for the prior p(θ) a uniform distribution is a practical choice and using
the independence described by Eq. (1.81), Eq. (1.80) becomes

p(θ|d) ∝ p(d|θ) =
∏

i

L(θ; di). (1.82)

Therefore, the maximum of the posterior probability p(θ|d), which is the interesting
probability of the model given the data, can be found by maximising the likelihood
L(θ;d) – maximising the probability of the data given the model. This consideration
leads to the maximum likelihood principle.

In order to derive a least-squares formulae (Eq. 1.51) as presented in Sect. 1.4.1,
one considers the likelihood to be described by a Gaussian distribution. Assuming that
the data are independent consisting of pairs {xi, yi}, whose true value {µxi , µyi} are
related by a deterministic function µyi = y(µxi ,θ) and with Gaussian errors σi only
in yi (i.e. xi ≈ µxi) then the likelihood function is a multivariate Gaussian

p(θ|x,y) = L(θ;x,y) ∝
∏

i

exp

[

−(yi − y(xi,θ))2

2σ2
i

]

(1.83)

= exp

[

−1

2
χ2(θ)

]

, (1.84)

where

χ2(θ) =
∑

i

(yi − y(xi,θ))2

σ2
i

, (1.85)

which is the same as Eq. (1.51). Maximising the likelihood function is equivalent to
minimising χ2(θ) with respect to θ. The interesting point is that this equation holds for
independent variables and Gaussian distributions. One should keep these assumptions
in mind when applying this method to data sets.

The uncertainty in θ is determined by considering the covariance matrix V

(V −1)ij(θ) =
1

2

∂2χ2

∂θi∂θj









θ=θm

, (1.86)

where θm is the set of parameters which minimise the χ2-function. This is a con-
sequence of the assumed multi-variate Gaussian distribution of θ. Expanding χ2 in
series around its minimum χ2(θm)

χ2(θ) ≈ χ2(θm) +
1

2
∆θT ∂2χ2

∂θi∂θj
∆θ, (1.87)

where ∆θ is the difference θ − θm. Using Eq. (1.86), and inserting Eq. (1.87) into
Eq. (1.83) and applying an appropriate normalisation results in the Likelihood function

L(θ;x,y) ≈ 1

(2π)n/2(det V )1/2
exp

[

−1

2
∆θT V −1

∆θ

]

, (1.88)
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where n is the dimension of θ and detV indicates the determinant. It is noteworthy
that Eq. (1.88) is exact when y(µxi ,θ) depends linearly on the various θi.

The likelihood function can also be used as a power spectrum estimator since such
an estimator has to minimise the variance. If one identifies the covariance matrix as
defined by Eq. (1.60) and assuming the mean to be zero 〈yi〉 = 0, the likelihood
function changes

L(θ;x) =
1

(2π)N/2(det C)1/2
exp

[

−1

2
∆

T C−1
∆

]

, (1.89)

where C is the covariance matrix, which expresses the theoretical expectations and
dependents on the model parameters, ∆i are the data and N is the dimension of the
covariance matrix.

1.4.4 Structure of the Thesis

The interpretation of the Faraday rotation data as being associated with an external
Faraday screen has been challenged several times and is subject to a broad discus-
sion. Therefore, Chapter 2 is devoted to this question. After being confident of the
interpretation as Faraday rotation being external to the source, Chapter 3 describes
the application of autocorrelation and power spectrum analysis to the Faraday rotation
data. However, it was realised that the map making algorithm might produce artefacts
related to the mentioned nπ-ambiguity influencing this analysis significantly. There-
fore, in Chapter 4 a new RM map-making algorithm called Pacman is introduced
and compared to the standard algorithms. Finally, motivated by the recent and great
success of maximum likelihood methods in the determination of power spectra, this
method is applied to Faraday rotation data in Chapter 5.



Chapter 2

Is the Faraday Rotation
Source-Intrinsic or not?

For clusters of galaxies, the interpretation of Faraday rotation data relies on the as-
sumption that the Faraday rotation medium and the source of the linearly polarised
emission are well separated. This assumption has been challenged by Bicknell et al.
(1990) and more recently by Rudnick & Blundell (2003). This chapter is aimed to
give evidence in favour for the validity of the assumption of an external Faraday screen
which is presumed in the following chapters. This work is published in Enßlin et al.
(2003). My part in this work was the application of the statistics to several observa-
tional and generated data sets.

2.1 A Long Lasting Debate

As already mentioned in Sect. 1.2.4, it is difficult to distinguish between source intrin-
sic and source external Faraday depolarisation. Most authors argue in favour for the
Faraday screen being external to an extragalactic extended radio source and identify
the Faraday screen with the surrounding intra-cluster medium. Another scenario has
also been widely discussed. In this scenario, the dominating Faraday rotating region
is located in a dense, thin mixing layer around the radio source. The consequence of
this scenario is that the estimated field strengths for the intra-cluster medium would be
lower by at least one order of magnitude.

Bicknell et al. (1990) argue in favour of the latter scenario. They performed a three-
dimensional smoothed particle hydrodynamical simulation of a transonic shear layer
so that large-scale nonlinear surface waves can form on the lobes of extragalactic radio
sources through the successive merging of smaller waves generated by the Kelvin-
Helmholtz instability. They propose a theory which relates the surface waves develop-
ing to substantial variations in rotation measures. They argue, that such a model being
a surface effect would also give rise to a dependence of the polarisation angle ϕ on the
wavelength squared as observed.

Recently, Rudnick & Blundell (2003) proposed a different method in order to find
arguments for the scenario of the Faraday rotating region being a thin dense layer
around the radio source. They compare the intrinsic polarisation angle ϕ0 with the
RM at each point of the source PKS 1246-410 in the Centaurus cluster observed by

29
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Figure 2.1: This plot is adapted from Rudnick & Blundell (2003) and shows polarisa-
tion structures of the source PKS 1246-410. The source is ≈ 30 ” long. Left column:
Original data from Taylor et al. (2002) after applying a median weight filter. Top:
polarised intensity at 8 GHz, peak flux density 4 mJy/beam (red); middle rotation
measures ≈ − 1300 (blue) to 1300 (red) rad/m2; bottom: intrinsic polarisation angle
ϕ0 − 90◦ (blue) to 90◦ (red). Right Column: three different simulations of rotation
measures having the same colour coding as the actual rotation measures have. Note the
different patchiness of the simulated rotation measure images compared to the original
data although they share the same RM power spectrum.

Taylor et al. (2002), which is shown in the middle left panel of Fig. 2.1 after applying
a smoothing algorithm. If the RM is generated in a thin dense mixing layer enclosing
the radio source, co-spatial structures in the ϕ0 and RM distributions are expected. On
the other hand, if the Faraday rotation is generated in an external intra-cluster medium
than there should be no correlation observed between RM and ϕ0.

Rudnick & Blundell (2003) search for co-spatial structures in the distribution of
RM and ϕ0. For that, they derive RM -ϕ0 scatter plots in which they compare these
two quantities at each point of the image. For the source PKS 1246-410, this scatter
plot is shown in the upper middle panel of Fig. 2.2. Rudnick & Blundell argue that
local co-alignment of ϕ0 and RM should lead to strongly clustered point distributions
in such a scatter plot. Since also statistically independent RM and ϕ0 distributions
may produce such clustering Rudnick & Blundell generate synthetic RM maps having
the same power spectrum as the observed one, but random phases. They repeat their
analysis with these simulated images and find that the scatter plots for the simulated
maps show less clustering. They conclude that the scenario of a mixing layer is the
most likely one.
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2.2 The Argument Reconsidered

The conclusion of Rudnick & Blundell (2003) is statistically questionable since the
human eye will detect in any data set apparent correlations. Furthermore, ϕ0 and RM
carry correlated noise as noted by Rudnick & Blundell since these two quantities are
generated from the same set of polarisation angle distributions. In the worst case, this
correlation will produce step-function like artefacts in the distributions at the same
location. These artefacts are present in the original data.

The analysis performed by Rudnick & Blundell is designed to have the same RM
power spectrum as the observation but higher order correlations are neglected by the
random phase realisation. Unfortunately, the statistic used by Rudnick & Blundell is
very sensitive to higher order correlations. Any clustering in the RM -ϕ0 scatter plot
is a result of patches of nearly constant values in the RM and ϕ0 images. A special
relation in the Fourier phases (or in higher order correlations) is required in order to
recover the appearance of patches in the RM and ϕ0 distributions.

The strength of the clustering in the scatter plot is indeed strongest if the ϕ0 and
RM features are correlated. However, the clustering does not disappear if the RM
and ϕ0 patches have independent distributions, since every ϕ0 patch is still overlaid
by a small number of RM patches, so that the associated clustering in the scatter plot
only gets split into a corresponding number of smaller clusters. These clusters happen
to be co-aligned on a vertical constant ϕ0 line in the plot, since they all belong to the
same ϕ0 coherence patch. A corresponding mechanism splits the pixels of an RM
cell into a horizontal constant RM line. Such vertical and horizontal features can be
indeed seen in the scatter plot of PKS 1246-410 (upper middle panel of Fig. 2.2).

In order to perform an experiment which maintains also higher order statistics, one
can simply exchange subregions of the RM image from one lobe to the other. This
should keep the same RM correlation functions but it will destroy any real correlation
between ϕ0 and RM , since the different regions of the source are independent. This
simple experiment was done by diving the source in roughly two equal regions about
the centre and shifting the coordinates in right ascension such that two subregions
overlap. The ϕ0 distribution of the east (west) lobe is plotted against the RM data of
the west (east) lobe. The shifting of lobes is preferable to a reflection about the centre
eliminating possible radial influences on any correlation. The result of this experiment
is shown in the upper right panel of Fig. 2.2. The clustering of points does not vanish
even though the distributions should be independent.

By going a step further, one can generate patchy RM and ϕ0 maps consisting of
patches with nearly constant values but which are statistically independent from each
other. For both maps similar recipes were used. First a number N of random seed
points ~Xi (i ∈ {1...N}) within a square area is drawn, and then the area is split into
cells around the seed points by means of a Voronoi-tessellation: Each point ~x of the
area belongs to the cell of its nearest seed ~Xi. Then each seed is attributed a random
value ψi (ψ stands in the following for both RM and ϕ0) and a small two-dimensional
random vector ~∇ψi (= auxiliary RM or ϕ0 gradients within the patches, only used for
the map construction). Each pixel ~x within the cell of seed i gets a value

ψ(~x) = ψi + ~∇ψi · (~x− ~Xi) + σ(~x) , (2.1)

where σ(~x) is a small random noise term. The resulting map consists of patches with
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Figure 2.2: This plot is adapted from Enßlin et al. (2003). Upper left panel: Uncor-
rected ϕ-RM scatter plot of PKS 1246-410. The underlying maps were smoothed by
a median weight filter. Upper middle panel: ϕ0-RM scatter plot of PKS 1246-410.
Upper right panel: ϕ0-RM scatter plot of PKS 1246-410, but with the RM maps of
the Eastern and Western radio lobe exchanged as an independent experiment. Lower
left panel: Simulated ϕ0 (white lines) and RM (grey scale) maps with independent
coherence patches. Lower middle panel: ϕ0-RM scatter plot of the simulated inde-
pendent ϕ0 and RM maps shown on the left. Lower right panel: ϕ0-RM scatter plot
of simulated maps with co-aligned ϕ0 and RM coherence patches.

nearly constant values, but which exhibit some internal trends and noise.
The ϕ0 and RM maps were slightly smoothed, a 20% border region was cut away

in order to suppress edge effects, and a ϕ0-RM scatter plot is generated. A typical
realisation of such a map and its scatter plot is shown in the lower left and lower middle
panel of Fig. 2.2, respectively. A strongly clustered distribution is visible even though
the individual ϕ0 and RM maps were completely independent. Furthermore, nearly
horizontal and vertical chains of clusters are visible for the reasons given above. The
map smoothing produces bridges between these clusters, since it gives intermediate
values to pixels which are at the boundaries of ϕ0 and RM cells.

The deviations from the strict horizontal and vertical directions visible in the scat-
ter plot of PKS 1246-410 should be caused by trends within the coherence cells. Note
that such structures are also visible in the simulated scatter plots of Rudnick & Blun-
dell, although the smooth realisations of their RM maps have smeared them out (see
their Fig. 2 for a comparison of the patchiness of observed and simulated RM maps).

Therefore, one can conclude that the data of PKS 1246-410 favours statistically
independent ϕ0 and RM maps. The occurrence of vertical and horizontal lines in the
scatter plot of the observational data demonstrates that the ϕ0 and RM patches are
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indeed misaligned.
In order to further investigate this, a model is constructed in which the ϕ0 and RM

patch positions are absolutely identical. This is constructed by moving the Voronoi-
tessellation seed points of the RM map to the locations of nearby seed points of the ϕ0

map, thereby assuring that there is a one-to-one mapping. All other variables (RMi,
ϕ0i etc) were kept as before. The recomputed RM map has therefore exactly the same
patch locations as the ϕ0 map. The horizontal and vertical cluster alignments and
stripes are absent there (see the lower right panel of Fig. 2.2). There are now several
stripes with diagonal orientations due to pixels at the ϕ0-RM cell boundaries which
received simultaneously intermediate values in ϕ0 and RM by the smoothing.

2.3 Statistics Comes to Aid

The comparison of absolute values such as RM and ϕ0 as suggested by Rudnick &
Blundell does not seem to be a reliable statistical test. It relies on the one hand on the
human eyes and thus, it is extremely subjective. On the other hand, the more pixels
have a value in the RM and ϕ0 maps the more the RM -ϕ0 scatter plot will be covered
by points and eventually no conclusion can be drawn anymore.

It is preferable to chose a statistic which fulfils the following requirements:

1. The statistic should be sensitive to the presence of correlated spatial changes of
ϕ0 and RM , independent of the local values of these quantities.

2. The statistic should not require a comparison between simulated and observed
data, since it is problematic to reproduce the same statistical properties of the
observed data set.

3. The statistic should provide unique expectation values, i.e. being equal to zero
for the uncorrelated case and being unity for fully correlated maps.

4. The statistic should be analytic and sufficiently simple, allowing the derivation
of basic properties and its analytical understanding.

5. The significance of the statistic should increase monotonically with the map size.

For the construction of such a statistic, a gradient alignment statistic A of different
maps can be introduced. This statistic compares the gradients ~p = ~∇RM and ~q =
~∇ϕ0 and checks for alignment of these gradients indicating correlated changes in ϕ0

and RM . The absolute values are of no significance for the question of co-alignment
and thus, the comparison of the gradients should give the same signal for parallel and
anti-parallel gradients. Hence, instead of the scalar product

~p · ~q = p q (cosφp cosφq + sinφp sinφq) = px qx + py qy, (2.2)

where ~p = (px, py) = p (cosφp, sinφp) and ~q = (qx, qy) = q (cos φq, sinφq), an
alignment product can be constructed

〈~p, ~q〉 = p q (cos 2φp cos 2φq + sin 2φp sin 2φq)

=
(p2

x − p2
y)(q

2
x − q2y) + 4 px py qx qy

√

p2
x + p2

y

√

q2x + q2y
. (2.3)
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This alignment product has the following properties

〈~p, α~p〉 = |α|p2, (2.4)

〈~p, ~q〉 = −p q, if ~p ⊥ ~q (2.5)

where α is a real (positive or negative) number. An isotropic average of the alignment
product of two 2-dimensional vectors leads to a zero signal, since the positive (aligned)
and negative (orthogonal) contributions cancel each other out.

Then the alignment statistics of the vector fields ~p(~x) = ~∇RM(~x) and ~q =
~∇ϕ0(~x) can be defined as

A = A[~p, ~q] =

∫

d2x 〈~p(~x), ~q(~x)〉
∫

d2x |~p(~x)| |~q(~x)| , (2.6)

which fulfils the required properties mentioned above:
No. 1: The statistic does not depend on any global relation between ϕ0 and RM .

This can be demonstrated by changing a potential functional dependence using non-
linear data transformations. Any non-pathological1 , piecewise continuous and piece-
wise monotonic pair of transformations RM ∗ = S(RM) and ϕ∗

0 = T (ϕ0) do not
destroy the alignment signal due to the identity

〈~∇RM∗, ~∇ϕ0
∗〉 =

∣

∣S′(RM)T ′(ϕ0)
∣

∣ 〈~∇RM, ~∇ϕ0〉. (2.7)

Inserted into Eq. (2.6), one finds that the weights of the different contributions to the
alignment signal might be changed by the transformation, but except for pathological
cases any existing alignment signal survives the transformation and no spurious signal
is produced in the case of uncorrelated maps.

No. 2 & 3: A simple calculation shows that the expectation value for A is zero for
independent maps and it is unity for aligned maps. For illustration, the simulated pair
of independent maps has A = −0.03, which can be regarded as a test of the statistic
with a case where the statistic of Rudnick & Blundell incorrectly detects co-alignment.
The simulated pair of co-aligned maps has A = 0.89 illustrating A’s ability to detect
correlations. Property No. 3 implies requirement No. 2.

No. 4: From the discussion so far, it should be obvious that many essential prop-
erties of the alignment statistics can be derived analytically. However, as an additional
useful example the effect of a small amount of noise present in both maps can be es-
timated. Each noise component is assumed to be uncorrelated with RM , to ϕ0, and
also to the other noise component. For small noise levels, it can be found that

A[~p+ δ~p, ~q + δ~q] ≈ A[~p, ~q]

(1 + δp2/p2) (1 + δq2/q2)
, (2.8)

where the bar denotes the statistical average. This relation holds only approximately,
since the non-linearity of A prevents exact estimates without specifying the full prob-
ability distribution of the fluctuations. As can be seen from Eq. (2.8), uncorrelated
noise reduces the alignment signal, but does not produce a spurious alignment signal,
in contrast to correlated noise, which usually does.

1A pathological transformation would e.g. split the RM or ϕ0 value range into tiny intervals, and
randomly exchange them or map them all onto the same interval.
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No. 5: If the RM and ϕ0 maps are enlarged by an additional region with the same
statistical properties the expectation value of A is unchanged, due to the averaging
property of Eq. (2.6), and fluctuations in A decrease due to the central limit theorem.

Practically, gradients of a quantity ψ defined on RM and ϕ0 maps by assign-
ing the pixel position (i, j) were calculated by ~∇ψ = (ψi+1,j + ψi+1,j+1 − ψi,j −
ψi,j+1, ψi,j+1 + ψi+1,j+1 − ψi,j − ψi+1,j), where ψi,j denotes the value of ψ at the
pixel position (i, j). Neither the small diagonal shift by 1/2 pixel in i and j directions,
nor the missing normalisation of the so defined gradient have any effect on the statis-
tic. ϕ0-gradients are calculated using subtraction modulo 180◦ in order to account for
the cyclic nature of ϕ’s. This scheme was directly applied to the maps, even though
for the synthetic maps gradient-like auxiliary quantities were defined and used during
their construction.

However, before the gradient alignment statistic can be applied to real datasets, it
has to be noted that it is very sensitive to correlations on small scales, since it is a gra-
dient square statistic. Observed RM and ϕ0 maps will always have some correlated
fluctuations on small scales, since they are both derived from the same set of radio
maps, so that any imperfection in the map making process leads to correlated fluctua-
tions in both maps. Therefore, the strength of signal contamination by such correlated
errors has to be estimated, and – if possible – minimised before any reliable statement
about possible intrinsic correlations of ϕ0 and RM can be made. This point can not be
overemphasised! Therefore, the next Sect. 2.4 is devoted to the estimation of the level
of expected correlated noise.

Fortunately, the noise correlation is of known functional shape, which is a linear
anti-correlation of the ϕ0 andRM errors. This allows to detect this noise via a gradient
vector-product statistic V defined as

V = V [~p, ~q] =

∫

d2x ~p(~x) · ~q(~x)
∫

d2x |~p(~x)| |~q(~x)| . (2.9)

This statistic is insensitive to any existing astrophysical ϕ0-RM correlation, since the
latter should produce parallel and anti-parallel pairs of gradient vectors with equal
frequency, thereby leading to V = 0. A map pair without any astrophysical signal,
which was constructed from a set of independent random ϕ maps, will give V =
r ∼> −1, where −1 ≤ r ≤ 0 is the correlation coefficient of the noise calculated in
the following Sect. 2.4. The statistic V as a test for correlated noise fulfils therefore
requirements similar to the ones formulated for A, with the only difference that a
requirement like No. 1 is not necessary, since the functional shape of noise correlations
is known.

It can be expected that correlated noise leads to a spurious ϕ0-RM co-alignment
signal of the order A ≈ |V |, since for perfectly anti-parallel gradients these quantities
are identical. Therefore, it can be proposed to use the quantity A + V as a suitable
statistic to search for a source intrinsic ϕ0-RM correlation: The spurious signal in A
caused by the map making process should be roughly compensated by the negative
value of V , whereas any astrophysical co-alignment ϕ0-RM signal only affects A,
and not V , since there should be no preference between parallel and anti-parallel RM
and ϕ0 gradients, leading to cancellation in the scalar-product average of V .

The statistic developed was applied to the RM and ϕ0 maps of PKS 1246-410
from Taylor et al. (2002), Cygnus A from Dreher et al. (1987) and Perley & Carilli
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(1996), Hydra A from Taylor & Perley (1993), and 3C465 from Eilek & Owen (2002).
Ignoring any considerations about correlated noise, an application of the alignment
statistic reveals co-spatial structures in the set of observed maps. The following values
are found A = 0.34, 0.56, 0.64, and 0.8, which have to be regarded as significant
co-alignment signals. These values are anonymised here by numerical ordering. As
long as the signal is dominated by map imperfections (correlated noise, artefacts), it
is not specified which map gives which A and V values, since this could be regarded
as a ranking of the quality of the maps. However, this would be improper, since the
observations leading to these maps were driven by other scientific questions than is in-
vestigated here. Therefore the maps can not be expected to be optimal for the purposes
discussed.

If one uses the uncorrected ϕ maps instead of ϕ0, one gets only A = 0.24, 0.35,
and 0.36 for the three sources for which ϕ maps were provided. These lower values
indicate that the correlation signal is mostly due to noise in the RM maps, which im-
prints itself to the ϕ0 map during the ϕ to ϕ0 = ϕ−RM λ2 correction. This is verified
by the gradient vector-product statistics, which leads to V = −0.32, −0.36, −0.58,
and −0.69 for the set of maps, which clearly reveals a preferred anti-correlation ofRM
and ϕ0 fluctuations. Visual evidence for this can be seen in the upper middle panel of
Fig. 2.2, where diagonal stripes decreasing from left to right exhibit the presence of
such anti-correlated noise. As argued above, any real astrophysical ϕ0-RM correla-
tion should be best detectable in A+V , for which one gets values of A+V = −0.02,
−0.02, 0.11, and 0.32. This indicates that at most in one case there could be an astro-
physical correlation, however, its significance has to be investigated since one cannot
always expect exact cancellation of V and A for correlated noise.

2.4 Avoidable and Unavoidable Correlated Noise in RM and
ϕ0 Maps

As mentioned in the last section, RM and ϕ0 maps are generated from the same set of
radio maps being subject to observational noise. Therefore, the noise of the RM and
ϕ0 maps should be expected to be correlated. In order to understand this correlation,
one has to investigate the map making procedure in more detail.

In order to derive the RM maps, one requires a number m of polarisation angle
ϕ maps at different wavelengths λi, which can be denoted by ϕi(~x). As mentioned in
Sect. 1.2.4, the first crucial step is to solve the so called nπ-ambiguity, which arises
from the fact that the ϕ is only defined modulo π, whereas the determination of RM
requires absolute polarisation angle ϕ values, since

ϕi(~x) = ϕ0(~x) +RM(~x)λ2
i (2.10)

(see Eq.(1.42)) allows ϕi values which deviate more than π from ϕ0. Any mistake in
solving this ambiguity leads to strong step-function like artefacts in RM , and corre-
lated with these, steps in ϕ0 maps. The impact of such steps on any sensitive corre-
lation statistics can be disastrous. Fortunately, such nπ ambiguities can be strongly
suppressed by using map-global algorithms to assign absolute ϕ’s (see Chapter 4).

However, even if the nπ-ambiguity is solved, observational noise δϕi in individ-
ual maps, which is assumed to be independent from map to map, leads to correlated
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noise in RM and ϕ0, as described by the following analysis. Typical RM mapping
algorithms use a χ2 statistic, giving

RMobs = (λ2 ϕ− λ2 ϕ)/(λ4 − λ2
2
) , and ϕobs

0 = ϕ−RM λ2 , (2.11)

where Y =
∑n

i=1 Yi/n in order to denote an average of a quantity Y over the different
observed wavelengths (compare with Sect. 1.4.1). For the sake of simplicity, one can
assume similar noise levels in all maps: 〈δϕ2

i 〉 = 〈δϕ2〉 . Here, the brackets denote the
statistical average and should not be confused with the alignment product. The errors
can be written as δRM = RM obs −RM and δϕ0 = ϕobs

0 − ϕ0. Inserting Eq. (2.11)
into these expressions yields

〈δRM2〉 = 〈δϕ2〉/(n (λ4 − λ22
)) , 〈δϕ2

0〉 = λ4 〈δRM2〉 , (2.12)

and
〈δRM δϕ0〉 = −λ2 〈δRM2〉 , (2.13)

which implies an anti-correlation between ϕ0 and RM noise, with a correlation coef-
ficient of

r = 〈δRM δϕ0〉/
√

〈δRM2〉 〈δϕ2
0〉 = −λ2/

√

λ4 . (2.14)

For the set of frequencies used to derive the RM map of PKS 1246-410, one finds
r = −0.89, therefore, the noise in theRM and ϕ0 maps of PKS 1246-410 are expected
to be highly anti-correlated. The scalar products of the gradients, which enter the
gradient scalar-product statistic V , have expectation values of

〈~∇RMobs · ~∇ϕobs
0 〉 = 〈~∇δRM · ~∇δϕ0〉 = −〈|~∇δϕ|2〉λ2/(n(λ4 − λ22

)). (2.15)

Similarly, one finds

〈|~∇δRM |2〉 = 〈|~∇δϕ|2〉/(n(λ4 − λ22
)) , (2.16)

and
〈|~∇δϕ0|2〉 = 〈|~∇δϕ|2〉λ4/(n(λ4 − λ22

)) (2.17)

so that for noise dominated maps there is a strong signal in the gradient scalar-product
statistic V = r = −λ2/

√

λ4. In the case of non-constant astrophysical RM and ϕ0

values, |V | will be smaller. However, since noise is usually strongest on the smallest
scales, the gradient of the noise can easily be stronger than the gradient of the astro-
physical signal, leading to V ∼ r.

2.5 Results

In order to suppress the spurious signal, which should be mostly located on small
spatial scales of the order of the observational beam, in the following analysis the RM
maps are smoothed with a Gaussian, leaving hopefully only the astrophysical signal
carrying large-scale fluctuations. However smoothing a circular quantity like a ϕ0

angle is not uniquely defined. A summary of the results are given in Tab. 2.1 which
are discussed in more detail in the following.
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source FWHMbeam A V A+ V

PKS 1246-410 4” 0.07 − 0.17 − 0.10
Cygnus A 2” 0.07 − 0.07 0.00
Hydra A 1” 0.05 − 0.03 0.02
3C465 9.5” 0.13 0.03 0.16
ϕeast

0 -RMwest − 0.02 − 0.02 − 0.21
ϕwest

0 -RM east 0.10 − 0.30 − 0.20
independent 0.06 0.05 0.11
co-aligned 0.89 − 0.03 0.86

Table 2.1: The values for the statistics A and V obtained for various data sets. In the
upper part of the table the resulting values for the statistics of the observational data
are presented. For this data the FWHM is given to which the maps were smoothed. In
the middle part, the values obtained for the exchanged subregions of PKS 1246-410
are given which can serve as an estimate of the statistical uncertainty. For comparison
the lower part summarises the values obtained for a realisation of independent and
co-aligned RM and ϕ0 maps.

Applying the statistics to the data at hand (see the end of Sect. 2.3) yields for
PKS1246-410 A = 0.07, V = −0.17, A + V = −0.10 (after smoothing to a 4′′

FWHM beam), for Cygnus A A = 0.07, V = −0.07, A + V = 0.00 (FWHM
= 2′′), for Hydra A A = 0.05, V = −0.03, A + V = 0.02 (FWHM = 1′′), and
for 3C465 A = 0.13, V = 0.03, A + V = 0.16 (FWHM = 9.5′′). Only 3C465
shows a marginal signature of source intrinsic co-alignment. However, its map size
in terms of resolution elements is significantly smaller than e.g. the maps of Hydra A
and Cygnus A, therefore a larger statistical variance of the alignment measurement is
plausible.

In contrast to the observed maps, the synthetic maps are free of correlated noise.
This is clearly revealed by the statistics, which give for the independent pair of maps
A = 0.06, V = 0.05, A + V = 0.11, and for the co-aligned pair of maps A = 0.89,
V = −0.03, A + V = 0.86. This illustrates the ability of the statistics introduced to
discriminate between spurious and astrophysical signals.

In order to have an estimate of the statistical uncertainties, the approach was also
applied to the swapped RM map of PKS 1246-410. This yields for the ϕeast

0 -RMwest

comparison A = −0.02, V = −0.19, A + V = −0.21, and for the ϕwest
0 -RM east

comparison A = 0.10, V = −0.30, A+V = −0.20. This indicates that the statistical
error is of the order δA ∼ 0.1 and δV ∼ 0.2 for this dataset, taking into account that
the swapped maps have less corresponding pixel pairs compared to the original pair of
maps.

Note that an inspection by eye reveals several sharp steps in the original RM map
of PKS 1246-410, which are on length-scales below the beam size and therefore very
likely map making artefacts (see Sect. 2.4). Thus, it is uncertain if this dataset has
sufficiently high signal-to-noise to make it suitable for a ϕ0-RM alignment analysis.

In summary it can be concluded that no evidence for a significant large-scale co-
alignment of ϕ0 andRM maps of polarised radio sources in galaxy clusters was found.
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Independent evidence for the validity of the assumption of an external Faraday
screen can be found in the detection of the Laing-Garrington effect which was already
mentioned in Sect. 1.3.2. It manifests itself by an asymmetric Faraday depolarisation
of double radio lobes located within galaxy clusters (Garrington et al. 1988; Laing
1988). This asymmetry is caused by different path lengths for radio emission through
the Faraday active medium between source and observer as suggested by Garrington
& Conway (1991). However, this effect could also be explained by an asymmetric
mixing layer being thin close to the head side of a FR II while getting thicker on the
back-flow side of it. However, this explanation fails to give a convincing explanation
for the large RM and depolarisation asymmetry observed for the FR I source Hydra
A (Taylor & Perley 1993).

Further independent evidence for cluster wide magnetic fields is provided by the
recent statistical RM investigation of point sources performed by Clarke et al. (2001)
mentioned in Sect. 1.3.2. As described, it revealed larger RM values for sources
observed through the intra-cluster gas in comparison to a control sample of sources
where no intra-cluster gas was located between source and observer. This suggests
that the enhancement of the RM towards the cluster centre results most probably from
the magnetised cluster gas.

2.6 Conclusions

It was investigated if there is evidence for co-aligned structures in RM and ϕ0 maps
of extended radio sources in galaxy clusters as claimed by Rudnick & Blundell (2003)
in order to argue for source-local RM generating magnetic fields.

First, it was demonstrated that the experiment performed by Rudnick & Blundell
was poorly designed for testing the correlation between ϕ0 and RM in PKS 1246-
410. The lack of phase coherence in their simulated data resulted in less clustering in
the simulated ϕ0-RM scatter plots compared to the observational scatter plots. Using
independent, patchy distributions of ϕ0 and RM it was shown that the correlations due
to the mutual overlap of theRM and ϕ0 patches produce horizontal and vertical chains
of clusters as seen in the PKS 1246-410 data, whereas co-aligned ϕ0 and RM patches
produce diagonal stripes. The observed clustering therefore favours independent ϕ0

and RM maps as expected from foreground intra-cluster magnetic fields.
Second, a novel gradient alignment statistic A was introduced. This statistic re-

veals ϕ0 and RM correlations regardless of whether they are source intrinsic or due to
artefacts in the observation or the RM map making process. Applying this statistic to
a number of radio galaxies (PKS 1246-410, Cygnus A, Hydra A, and 3C465) does not
reveal any significant large-scale co-alignment of ϕ0 andRM maps. Significant small-
scale co-alignment is found in all observed map pairs, but they can be fully identified
with map making artefacts by another new suitable statistical test, the gradient vector
product statistic V . Thus, two new tools were introduced in order to analyse data of
Faraday rotation studies of extended radio sources. They are powerful in revealing
and discriminating observational or map making artefacts (by V ), and source-intrinsic
ϕ0-RM correlations (by A + V ), both are indicators of potential problems for RM
based intra-cluster magnetic field estimates.

Future, sensitive searches for potential, weak source-intrinsic ϕ0-RM correlations
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with the statistics developed above, or similar statistics would require observational
datasets with a much higher signal to noise ratio, and a very well defined observational
(dirty) beam. Note such datasets would also be crucial for detailed measurements of
the magnetic power spectra of the intra-cluster medium, as proposed in the following
Chapter 3.

In conclusion, the observed RM signals of radio galaxies embedded in galaxy
clusters seem to be dominated by ∼ µG cluster magnetic fields in accordance with
independent evidence.



Chapter 3

Measuring the Cluster Magnetic
Field Power Spectra of Three
Galaxy Clusters

In the last chapter, evidence was given for the validity of the assumption that the Fara-
day rotating medium is external to the radio source and can be identified with the
intra-cluster gas – the ICM. Thus, the analysis of Faraday rotation maps of extended
polarised radio sources located behind or embedded in galaxy clusters allows to un-
derstand the magnetic field strength and to get some hints about the structure of cluster
magnetic fields.

A method relying on statistical methods in order to derive the magnetic field power
spectrum from the RM autocorrelation function is developed in this chapter. The ap-
plication of this approach to observational data and the difficulties involved are de-
scribed. Emphasis is given to a critical discussion of the strengths and limits of the
approach.

This work is published as Enßlin & Vogt (2003) and Vogt & Enßlin (2003). My
part in this work was the contribution to the development of the formalism and the
complete implementation in a computer code and the data handling involved.

3.1 Introduction

As mentioned in Sect. 1.2.4, the traditional analysis of RM maps assumes that the
Faraday screen consists of cells which have a uniform size and a constant magnetic
field strength with from cell to cell randomly varying field directions. The mean RM
which would be produced by such a screen builds up in a random walk process and
thus, has a zero mean but a non vanishing dispersion. This dispersion will be propor-
tional to the square root of the number of cells along the line of sight, the cell size, the
electron density profile and the magnetic field strength (see Eq. (1.47)).

However, there are some drawbacks to such a cell model. First of all, the diver-
gence of the magnetic field in such a Faraday screen would be nonzero which contra-
dicts Maxwell’s equations. Secondly, a spectrum of scales for the cell sizes is more
likely than a single scale.

41
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Another important issue in previous analyses is the assumption that theRM order-
ing scale read off RM maps is equivalent to the magnetic field’s characteristic length
scale, the autocorrelation length λB . This might have lead to underestimations of field
strengths in the past since another simpler equation than Eq. (1.47) often used for the
derivation of the magnetic field strength is

〈B2
z 〉 =

〈RM2〉
a2

0 n
2
e Lλz

, (3.1)

where 〈RM 2〉 is the RM dispersion, L is the depth of the Faraday screen, a0 =
e3/(2πm2

ec
4), ne is the electron density and λz is a characteristic length scale of the

fields. At this point it becomes clear that the definition of the characteristic length
scale λz is crucial for the derivation of magnetic field strength. The assumption of a
constant magnetic field throughout the cluster leads to a definition of λz = L and thus,
〈B2

z 〉 ∝ L−2. The characteristic length scale for the cell model would be the size of
each cell λz = lcell. Another definition one could think of is the RM ordering scale,
λz = λRM . However, the correct length scale is the autocorrelation length λz of the
z-component of the magnetic field measured along the line of sight.

In order to overcome such limitations, a purely statistical approach which incorpo-
rates the vanishing divergence of the magnetic field is developed in Sect. 3.3 whereas
its philosophy is outlined in Sect. 3.2. This approach relies on the assumption that
the fields are statistically isotropically distributed in Faraday screens such that the
z-component is representative for all components. Starting from this assumption, a
relation between the observationally accessible RM autocorrelation function and the
magnetic autocorrelation tensor is established in real and in Fourier space such that
one gains access to the power spectrum of the magnetic field inhabited by the Faraday
screen.

In Sect. 3.4, this statistical analysis is applied to observational data by reanalysing
the Faraday rotation measure maps of three extended extragalactic radio sources: Hy-
dra A (Taylor & Perley 1993), 3C75 and 3C465 (Eilek & Owen 2002) which were
kindly provided by Greg Taylor, Jean Eilek and Frazer Owen, respectively. The results
are presented and discussed in Sect. 3.5.

Throughout the rest of this chapter a Hubble constant of H0 = 70 km s−1 Mpc−1,
Ωm = 0.3 and ΩΛ = 0.7 in a flat universe is assumed.

3.2 The Philosophy

If magnetic fields are sampled in a sufficiently large volume, they can hopefully be
regarded to be statistically homogeneous and statistically isotropic. This means that
any statistical average of a quantity depending on the magnetic fields does not depend
on the exact location, shape, orientation and size of the used sampling volume.

The quantity which is of interest is the autocorrelation (or two-point-correlation)
function (more exactly: tensor) of the magnetic fields. The information contained
in the autocorrelation function is equivalent to the information stored in the power
spectrum, as stated by the Wiener-Khinchin Theorem (WKT) (compare Sect. 1.4.2).
Therefore, two equivalent approaches are presented, one based in real space, and one
based in Fourier space. The advantage of this redundancy is that some quantities are
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easier accessible in one, and others in the other space. Further, this allows to cross-
check computer algorithms based on this work by comparing results gained by the
different approaches.

Faraday rotation maps of extended polarised radio sources located behind or em-
bedded in a Faraday screen are the observables which can be used to access the mag-
netic fields. Since an RM map shows basically the line-of-sight projected magnetic
field distribution, the RM autocorrelation function is mainly given by the projected
magnetic field autocorrelation function. Therefore, measuring theRM autocorrelation
allows to measure the magnetic autocorrelation, and thus, provides a tool to estimate
magnetic field strength and correlation length.

The situation is a bit more complicated than described above, due to the vector
nature of the magnetic fields. This implies that there is an autocorrelation tensor in-
stead of a function, which contains nine numbers corresponding to the correlations
of the different magnetic components against each other, which in general can all be
different. The RM autocorrelation function contains only information about one of
these values, the autocorrelations of the magnetic field component parallel to the line-
of-sight. However, in many instances the important symmetric part of the tensor can
be reconstructed and using this information the magnetic field strength and correlation
length can be obtained. This is possible due to three observations:

1. Magnetic isotropy: If the sampling volume is sufficiently large, so that the lo-
cal anisotropic nature of magnetic field distributions is averaged out, the (volume
averaged) magnetic autocorrelation tensor is isotropic. This means, that the di-
agonal elements of the tensor are all the same, and that the off-diagonal elements
are described by two numbers, one giving their symmetric, and one giving their
anti-symmetric (helical) contribution.

2. Divergence-freeness of magnetic fields: The condition ~∇ · ~B = 0 couples
the diagonal and off-diagonal components of the symmetric part of the autocor-
relation tensor. Knowledge of one diagonal element (e.g. from an RM mea-
surement) therefore specifies fully the symmetric part of the tensor. The trace
of the autocorrelation tensor, which can be called scalar magnetic autocorrela-
tion function w(r), contains all the information required to measure the average
magnetic energy density εB = w(0)/(8π) or the magnetic correlation length
λB =

∫∞
−∞ dr w(r)/w(0).

3. Unimportance of helicity: Although helicity is a crucial quantity for the dy-
namics of magnetic fields, it does not enter any estimate of the average magnetic
energy density, or magnetic correlation length, because helicity only affects off-
diagonal terms of the autocorrelation tensor. The named quantities depend only
on the trace of the tensor and are therefore unaffected by helicity. One cannot
measure helicity from a Faraday rotation map alone, since it requires the com-
parison of two different components of the magnetic fields, whereas the RM
map contains information on only one component.

In a realistic situation, the sampling volume is determined by the shape of the
polarised radio emitter and the geometry of the Faraday screen, as given by the elec-
tron density and the magnetic field energy density profile. The sampling volume can
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be described by a window function, through which an underlying virtually statistical
homogeneous magnetic field is observed. The window function is zero outside the
probed volume, e.g. for locations which are not located in front of the radio source.
Inside the volume, the window function scales with the electron density (known from
X-ray observations), with the average magnetic energy profile (guessed from reason-
able scaling relations, but testable within the approach), and – if wanted – with a noise
reducing data weighting scheme.

The effect of a finite window function is to smear out the power in Fourier-space.
Since this is an unwanted effect one either has to find systems which provide a suf-
ficiently large window or one has to account for this bias. The effect of a too small
window on the results depends strongly on the shape and the size of the window.
However, one can assess the influence of a finite window but it has to be done for each
application at hand separately. In general, the analysis is sensitive to magnetic power
on scales below a typical window size, and insensitive to scales above.

The same magnetic power spectrum can have very different realisations, since all
the phase information is lost in measuring the power spectrum (for an instructive visu-
alisation of this see Maron & Goldreich 2001). Since the presented approach relies on
the power spectrum only, it is not important if the magnetic fields are highly organised
in structures like flux-ropes, or magnetic sheets, or if they are relatively featureless
random-phase fields, as long as their power spectrum is the same.

The autocorrelation analysis is fully applicable in all such situations, as long as
the fields are sampled with sufficient statistics. The fact that this analysis is insensitive
to different realisations of the same power spectrum indicates that the method is not
able to extract all the information which may be contained in the map. Additional
information is stored in higher order correlation functions, and such can in principle
be used to make statements about whether the fields are ordered or purely random
(chaotic). The information on the magnetic field strength ( ~B2, which is the value
at origin of the autocorrelation function), and correlation length (an integral over the
autocorrelation function) does only depend on the autocorrelation function and not on
the higher order correlations.

The presented analysis relies on having a statistically isotropic sample of magnetic
fields, whereas MHD turbulence seems to be locally inhomogeneous, which means
that small scale fluctuations are anisotropic with respect to the local mean field. How-
ever, whenever the observing window is much larger than the correlation length of the
local mean field the autocorrelation tensor should be isotropic due to averaging over
an isotropic distribution of locally anisotropic subvolumes. This works if not a pre-
ferred direction is superposed by other physics, e.g. a galaxy cluster wide orientation
of field lines along a preferred axis. However, even this case can in principle be treated
by co-adding the RM signal from a sample of clusters, for which a random distribu-
tion of such hypothetical axes can be assumed. In any case, it is likely that magnetic
anisotropy also manifests itself in the Faraday rotation maps, since the projection con-
necting magnetic field configurations and RM maps will conserve anisotropy in most
cases, except alignments by chance of the direction of anisotropy and the line-of-sight.

There are cases where already an inspection by eye seems to reveal the existence of
magnetic structures like flux ropes or magnetic sheets. As already stated, the presence
of such structures does not limit the analysis, as long as they are sufficiently sampled.
Otherwise, one has to replace e.g. the isotropy assumption by a suitable generalisation.
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In many cases, this will allow an analysis similar to the one described here.

3.3 The Method

3.3.1 Real Space Formulation

For a line of sight parallel to the z-axis and displaced by ~x⊥ from it, the Faraday
rotation measure arising from polarised emission passing from the source at zs(~x⊥)
through a magnetised medium to the observer located at infinity is expressed by

RM(~x⊥) = a0

∫ ∞

zs(~x⊥)
dz ne(~x)Bz(~x), (3.2)

where a0 = e3/(2πm2
ec

4), ~x = (~x⊥, z), ne(~x) is the electron density and Bz(~x) is
the magnetic field component parallel to the line of sight. In the following, any redshift
effects are neglected, which can be included by inserting the factor (1+zredshift(z))

−2

into the integrand.
The focus of this work is on the statistical expectation of the two-point, or auto-

correlation function of Faraday rotation maps which can be defined as

CRM (~r⊥) = 〈RM(~x⊥)RM(~x⊥ + ~r⊥)〉~x⊥
, (3.3)

where the brackets indicate the map average with respect to ~x⊥. However, an observed
RM map is limited in size which leads to noise in the calculation of the correlation
function on large scales since less pixel pairs contribute to the correlation function
for larger pixel separations. In order to suppress this under-sampling, the observable
correlation function can be defined as

Cobs
RM (r⊥) =

1

AΩ

∫

dx2
⊥RM(~x⊥)RM(~x⊥ + ~r⊥), (3.4)

where the area AΩ of the region Ω for which RM ’s are actually measured is used as
normalisation assuming that RM(~x⊥) = 0 for ~x⊥ /∈ Ω. Furthermore, it is required
that the mean RM is zero since statistically isotropic divergence free fields have a
mean RM of zero to high accuracy. A non vanishing mean RM in the observational
data stems from foregrounds (e.g. the galaxy) which are of no interest here or has its
origin in large scale fields to which the approach is insensitive by construction in order
to suppress statistically under-sampled length scales.

As stated in Sect. 3.2, the virtually homogeneous magnetic field component can be
thought to be observed through a window function f(~x) which describes the sampling
volume. One would chose a typical position in the cluster ~xref (e.g. its centre) and
define ne0 = ne(~xref) and ~B0 = 〈 ~B2(~xref)〉1/2. The window function can then be
expressed as

f(~x) = 1{~x⊥∈Ω} 1{z≥zs(~x⊥)} h(~x⊥) g(~x)ne(~x)/ne0, (3.5)

where 1{condition} is equal to one if the condition is true and zero if not. The dimen-
sionless average magnetic field profile g(~x) = 〈 ~B2(~x)〉1/2/B0 is assumed to scale
with the density profile such that g(~x) = (ne(~x)/ne0)

αB . Reasonable values for the
exponent αB range between 0.5 and 1 (see Sect. 1.3.2).
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The function h(~x) allows to assign different pixels in the map different weights. If
h(~x⊥) 6= 1 for some ~x⊥ ∈ Ω the corresponding weight has to be introduced into the
analysis. The most efficient way to do this is to make the data weighting virtually part
of the measurement process, by writing RM(~x⊥) → RMw(~x⊥) = RM(~x⊥)h(~x⊥) .
For convenience, the superscriptw is dropped again in the following, and just noted
that the analysis described here has to be applied to the weighted data RM w(~x⊥).

In cases where the noise is a function of the position one might want to down-
weight noisy regions. If σ(~x⊥) is the noise of theRM map at position ~x⊥, a reasonable
choice of a weighting function would be h(~x⊥) = σ0/σ(~x⊥). If the noise map itself
could have errors, the danger of over-weighting noisy pixels with underestimated noise
can be avoided by thresholding: If σ0 is a threshold below which the noise is regarded
to be tolerable, one can use h(~x⊥) = 1/(1 + σ(~x⊥)/σ0). Another choice would be
h(~x⊥) = 1{σ(~x⊥)<σ0} which just cuts out regions which are recognised as too noisy.
If no weighting applies, h(~x⊥) = 1 everywhere.

The expectation of the observed RM correlations are

〈Cobs
RM (~r⊥)〉 =

a2
0 n

2
e0

AΩ

∫

d3x

∫ ∞

−∞
drzf(~x) f(~x+ ~r) 〈B̃z(~x) B̃z(~x+ ~r)〉, (3.6)

with ~r = (~r⊥, rz), and ~̃B(~x) = ~B(~x)/g(~x) is the rescaled magnetic field. If prop-
erly rescaled, the average strength of the field is independent of the position. In that
case, the rescaled magnetic field autocorrelation tensor should also be independent of
position:

Mij(~r) = 〈B̃i(~x) B̃j(~x+ ~r)〉. (3.7)

If the spatial variation of the window function is on much larger scales than the corre-
lation length λB of the magnetic fields, then Eq. (3.6) can be approximated to be

CRM (~r⊥) = 〈Cobs
RM (~r⊥)〉=a1 C⊥(~r⊥), with a1 =a2

0 n
2
e0 L,

C⊥(~r⊥) =

∫ ∞

−∞
drzMzz(~r), and ~r=(~r⊥, rz). (3.8)

where the characteristic depth of the Faraday screen L = V[f ]/AΩ was introduced,
where V[f ] =

∫

dx3 f2(~x) is the probed effective volume. The normalised RM auto-
correlation function C⊥ which differs from CRM only by a geometry dependent factor
a1 is introduced for convenience.

In the following, the influence of the window function is ignored in the discussion,

since for sufficiently large windows it only affects a1. Therefore, ~B is written for ~̃B
and one has to keep in mind that the measured field strength B0 is estimated for a
volume close to the reference location ~xref . At other locations, the average magnetic
energy density is given by εB(~x) = g2(~x)B2

0 . This approach assumes implicitly
that typical length scales are the same throughout the Faraday screen. For sufficiently
extended screens, this assumption can be tested by comparing results from different
and separately analysed regions of the RM map.

The magnetic autocorrelation tensor for homogeneous isotropic turbulence, as as-
sumed throughout the rest of this chapter, can be written as

Mij(~r)=MN(r)δij + (ML(r) −MN(r))
rirj
r2

+MH(r) εijk rk (3.9)
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(e.g. Subramanian 1999) where the longitudinal, normal, and helical autocorrelation
functions, ML(r), MN(r), and MH(r), respectively, only depend on the distance, not
on the direction. The condition ~∇ · ~B = 0 leads to ∂/∂ri Mij(~r) = 0 (here and
below the sum convention is used). This allows to connect the non-helical correlation
functions by

MN(r) =
1

2r

d

dr
(r2ML(r)) (3.10)

(Subramanian 1999). The zz-component of the magnetic autocorrelation tensor de-
pends only on the longitudinal and normal correlations, and not on the helical part:

Mzz(~r) = ML(r)
r2z
r2

+MN(r)
r2⊥
r2

with ~r = (~r⊥, rz) , (3.11)

which implies that Faraday rotation is insensitive to magnetic helicity. It is also useful
to introduce the magnetic autocorrelation function

w(~r) = 〈 ~B(~x) · ~B(~x+ ~r)〉 = Mii(~r) , (3.12)

which is the trace of the autocorrelation tensor, and depends only on r (in the case
of a statistically isotropic magnetic field distribution, in the following called briefly
isotropic turbulence):

w(~r) = w(r) = 2MN(r) +ML(r) =
1

r2
d

dr
(r3ML(r)) . (3.13)

In the last step, Eq. (3.10) was used. Since the average magnetic energy density is given
by 〈εB〉 = w(0)/(8π) the magnetic field strength can be determined by measuring the
zero-point of w(r). This can be done by Faraday rotation measurements: The RM
autocorrelation can be written as

C⊥(r⊥) =
1

2

∫ ∞

−∞
drz w(

√

r2⊥ + r2z) =

∫ ∞

r⊥

dr
r w(r)

√

r2 − r2⊥

. (3.14)

and is therefore just a line-of-sight projection of the magnetic autocorrelations. Thus,
the magnetic autocorrelations w(r) can be derived from C⊥(r⊥) by inverting an Abel
integral equation:

w(r) = − 2

π r

d

dr

∫ ∞

r
dy

y C⊥(y)
√

y2 − r2
(3.15)

= − 2

π

∫ ∞

r
dy

C ′
⊥(y)

√

y2 − r2
, (3.16)

where the prime denotes a derivative. For the second equation, it was used that w(r)
stays bounded for r → ∞.

Now, an observational program to measure magnetic fields is obvious: From a
high quality Faraday rotation map of a homogeneous, (hopefully) isotropic medium of
known geometry and electron density (e.g. derived from X-ray maps) the RM auto-
correlation has to be calculated (Eq. (3.8)). From this an Abel integration (Eq. (3.15) or
(3.16)) leads to the magnetic autocorrelation function, which gives 〈B 2〉 at its origin.
Formally,

〈B2〉 = w(0) = − 2

π

∫ ∞

0
dy

C ′
⊥(y)

y
, (3.17)
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but this formulation is notoriously sensitive to noise. More stable methods are pre-
sented later.

The magnetic autocorrelation length λB can be calculated by integrating the cor-
relation functions:

λB =

∫ ∞

−∞
dr

〈B(~x+ r~e) · B(~x)〉~x,~e

〈B2(~x)〉

=

∫ ∞

−∞
dr
w(r)

w(0)
= 2

C⊥(0)

w(0)
, (3.18)

where ~e and ~e⊥ are 3- and 2-dimensional unit vectors, respectively, over which the av-
eraging takes place. For the derivation of the last expressions, Eq. (3.14) or (3.16) can
be used. Even in globally homogeneous turbulence, there is always a preferred direc-
tion defined by the local magnetic field. One can ask for the correlation length along
and perpendicular to this locally defined direction and gets λ‖ = 3

2λB , and λ⊥ =
3
4λB so that λB = 1

3(λ‖ + 2λ⊥).

An observationally easily accessible length scale is the Faraday rotation autocor-
relation length λRM

λRM =

∫ ∞

−∞
dr

〈RM(~x+ r ~e⊥)RM(~x)〉~x, ~e⊥

〈RM2(~x)〉

=

∫ ∞

−∞
dr⊥

C⊥(r⊥)

C⊥(0)
= π

∫∞
−∞ dr r w(r)
∫∞
−∞ dr w(r)

(3.19)

From the comparison of Eq. (3.18) and (3.19), it is obvious that the RM correlation
length-scale is not identical to the magnetic field autocorrelation length. As shown
later, the RM correlation length is more strongly weighted towards the largest length-
scales in the magnetic fluctuation spectrum than the magnetic correlation length. This
is crucial, since in some cases these scales have been assumed to be identical, which
could have led to systematic underestimates of magnetic field strengths.

3.3.2 Fourier Space Formulation

The following convention for the Fourier transformation of a n-dimensional function
F (~x) is used:

F̂ (~k) =

∫

dnxF (~x) ei~k·~x (3.20)

F (~x) =
1

(2π)n

∫

dnk F̂ (~k) e−i~k·~x. (3.21)

Then the Fourier transformed isotropic magnetic autocorrelation tensor reads

M̂ij(~k) = M̂N (k)

(

δij −
ki kj

k2

)

− iεijm
km

k
Ĥ(k) , (3.22)

where it is directly used that ~∇ · ~B = 0 in the form ki M̂ij(~k) = 0 to reduce the
degrees of freedom to two components, a normal and helical part. The two corre-
sponding spherically symmetric functions in k-space are given in terms of their real
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space counterparts as:

M̂N (k) =

∫

d3rMN (r) ei
~k·~r = 4π

∫ ∞

0
dr r2MN (r)

sin(k r)

k r
(3.23)

Ĥ(k) =
d

dk
M̂H(k) =

d

dk

∫

d3rMH(r) ei
~k·~r,

=
4π

k

∫ ∞

0
dr r2MH(r)

k r cos(k r) − sin(k r)

k r
. (3.24)

One can also introduce the Fourier transformed trace of the autocorrelation tensor
ŵ(~k) = M̂ii(~k) = 2 M̂N (k). A comparison with the transformed zz-component of
the autocorrelation tensor

M̂zz(~k) = M̂N (k)
(

1 − k2
z/k

2
)

(3.25)

reveals that in the kz = 0 plane, these two functions are identical (up to a constant
factor 2). Since the 2-d Fourier transformed normalised RM map is also identical to
this, as a transformation of Eq. (3.8) shows, one can state

Ĉ⊥(~k⊥) = M̂zz(~k⊥, 0) =
1

2
ŵ(~k⊥, 0). (3.26)

This Fourier-space version of Eq. (3.14) says, that the 2-d transformed RM map re-
veals the kz = 0 plane of M̂zz(~k), which in the isotropic case is all what is required to
reconstruct the full magnetic autocorrelation ŵ(k) = 2 Ĉ⊥(k).

A power spectrum P[F ](~k) of a function F (~x) is given by the absolute-square
of its Fourier transformation P[F ](~k) = |F̂ (~k)|2. The WKT states that the Fourier
transformation of an autocorrelation function C[F ](~r), estimated within a window with
volume Vn (as in Eq. (3.4)), gives the (windowed) power spectrum of this function, and
vice versa:

P[F ](~k) = Vn Ĉ[F ](~k) . (3.27)

The WKT allows to write the Fourier transformed autocorrelation tensor as

M̂ij(~k) =
1

V
〈B̂i(~k) B̂j(~k)〉 , (3.28)

where V denotes the volume of the window function, which is for practical work with
RM maps often the probed effective volume V = V[f ] as defined in Sect. 3.3.1.

Thus, the 3-d magnetic power spectrum (the Fourier transformed magnetic auto-
correlation function w(~r)) can be directly connected to the one-dimensional magnetic
energy spectrum in the case of isotropic turbulence:

εB(k) dk =
4π k2

(2π)3
ŵ(k)

8π
dk =

k2 ŵ(k)

2 (2π)3
dk , (3.29)

where ŵ(~k) = ŵ(k) is due to isotropy. The WKT also connects the 2-dimensional
Fourier transformed RM map with the Fourier transformed RM autocorrelation func-
tion:

Ĉ⊥(k⊥) =
〈| ˆRM(k⊥)|2〉

a1AΩ
. (3.30)
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Thus, by comparing Eqs. (3.26), (3.29), and (3.30), one finds that the magnetic
energy spectrum is most easily measured from a given observation by simply Fourier
transforming the RM(~x⊥) map, and averaging this over rings in ~k⊥-space:

εobs
B (k) =

k2

a1AΩ (2π)4

∫ 2 π

0
dφ | ˆRM(~k⊥)|2 (3.31)

where ~k⊥ = k (cosφ, sinφ). Eq. (3.31) gives a direct model independent observa-
tional route to measure the turbulent energy spectrum. The average magnetic energy
density can be easily obtained from this via

εobs
B =

∫ ∞

0
dk εobs

B (k) =

∫

d2k⊥
k⊥ | ˆRM(~k⊥)|2
a1AΩ (2π)4

, (3.32)

where the last integration extends over the Fourier transformed RM map and can be
done in practice by summing over pixels.

Also the correlation lengths can be expressed in terms of ŵ(k):

λB = π

∫∞
0 dk k ŵ(k)
∫∞
0 dk k2 ŵ(k)

, (3.33)

λRM = 2

∫∞
0 dk ŵ(k)

∫∞
0 dk k ŵ(k)

. (3.34)

Thus, the RM correlation length has a much larger weight on the large-scale fluc-
tuations than the magnetic correlation length has. Equating these two length-scales,
as sometimes done in the literature, is at least questionable in the likely case of a
broader turbulence spectrum. In typical situations (e.g. for a broad maximum of the
magnetic power spectrum as often found in hydrodynamical turbulence), one expects
λB < λRM .

The isotropic magnetic autocorrelation function can be expressed as

w(r) =
4π

(2π)3

∫ ∞

0
dk k2 ŵ(k)

sin(k r)

k r
. (3.35)

Similarly, the RM autocorrelation function can be written as

C⊥(r⊥) =
1

4π

∫ ∞

0
dk k ŵ(k) J0(k r⊥) , (3.36)

where Jn(x) is the n-th Bessel function. In order to analyse the behaviour of the RM
autocorrelations close to the origin, it is useful to rewrite the last equation as:

C⊥(r⊥) =

∫ ∞

0
dk

k ŵ(k)

4π
−
∫ ∞

0
dk

k ŵ(k)

4π
(1 − J0(k r⊥)). (3.37)

The first term gives C⊥(0), and the second describes how C⊥(r⊥) approaches zero for
r⊥ → ∞.
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3.3.3 Testing the Model & Influences of Observational Artefacts

Now, all the necessary tools are introduced to test if the window function f(~x) was
based on a sensible model for the average magnetic energy density profile g2(~x)
and the proper geometry of the radio source within the Faraday screen zs(~x⊥) (see
Eq. (3.5)). Models can eventually be excluded a-posteriori on the basis of

χ2(x⊥) =
RM(~x⊥)2

〈RM(~x⊥)2〉 , (3.38)

where for the expected RM dispersion

〈RM(~x⊥)2〉 =
1

2
a2

0 n
2
0B

2
0 λB

∫ ∞

−∞
dz f2(~x) (3.39)

has to be used. As shown before B0 (e.g. by Eq. (3.17)), and λB (e.g. by Eq. (3.18))
can be derived for a given window function f(~x) using C obs

RM (~r⊥). For a good choice
of the window function, one gets

χ2
av =

1

AΩ

∫

dx2
⊥ χ

2(~x⊥) ≈ 1 , (3.40)

and larger values if the true and assumed models differ significantly. The model dis-
criminating power lies also in the spatial distribution χ2(x⊥), and not only in its global
average. If some large scale trends are apparent, e.g. that χ2(x⊥) is systematically
higher in more central or more peripheral regions of the Faraday screen, then such a
model for f(~x) should be disfavoured. This can be tested by averaging χ2(x⊥), e.g.
in radial bins for a roughly spherical screen, as a relaxed galaxy cluster should be, and
checking for apparent trends.

This method of model testing can be regarded as a refined Laing-Garrington effect
(Laing 1988; Garrington et al. 1988): The more distant radio cocoon of a radio galaxy
in a galaxy cluster is usually more depolarised than the nearer radio cocoon due to the
statistically larger Faraday depth. This is observed whenever the observational resolu-
tion is not able to resolve the RM structures. Here, it is assumed that the observational
resolution is sufficient to resolve the RM structures, so that a different depth of some
part of the radio source observed, or a different average magnetic energy profile leads
to a different statistical Faraday depth 〈RM(~x⊥)2〉. Since this can be tested by suitable
statistics, e.g. the simple χ2 statistic proposed here, incorrect models can be identified.

It may be hard in an individual case to disentangle the effect of changing the total
depth zs of the used polarised radio source if it is embedded in the Faraday screen, and
from the effect of changing Bobs

0 , since these two parameters can be quite degenerate.
However, there may be situations in which the geometry is sufficiently constrained
because of additional knowledge of the source position, or statistical arguments can be
used if a sufficiently large sample of similar systems were observed.

The isotropy which is an important assumption for the proposed analysis can be
assessed by the inspection of the Fourier transformed RM maps. The assumption of
isotropy is valid in the case of a spherically symmetric distribution of | ˆRM(k)|2.

Observational artefacts might also influence the shape of the RM autocorrelation
function and thus, the magnetic power spectrum. These artefacts are related to beam
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smearing, to unavoidable observational noise and RM steps due to the nπ-ambiguity
explained in Sect. 1.2.4. These artefacts are described in more detail in the following.

Beam Smearing: The finite size lbeam of a synthesised beam of a radio interfer-
ometer should smear outRM structures below the beam size, and therefore can lead to
a smooth behaviour of the measured RM autocorrelation function at the origin, even
if the true autocorrelation function has a cusp there. Substantial changes of the RM
on the scale of the beam can lead to beam depolarisation, due to the differentially ro-
tated polarisation vectors within the beam area (Conway & Strom 1985; Laing 1988;
Garrington et al. 1988). Since beam depolarisation is in principal detectable by its
frequency dependence, the presence of sub-beam structure can be noticed, even if not
resolved (Tribble 1991; Melrose & Macquart 1998). The magnetic power spectrum
derived from a beam smeared RM map should cut-off at large k ∼ π/lbeam.

Noise: Instrumental noise can be correlated on several scales, since radio interfer-
ometers sample the sky in Fourier space, where each antenna pair baseline measures a
different k⊥-vector. It is difficult to understand to which extend noise on a telescope
antenna baseline pair will produce correlated noise in the RM map, since several in-
dependent polarisation maps at different frequencies are combined in the map making
process. Therefore only the case of spatially uncorrelated noise is discussed, as it may
result from a pixel-by-pixel RM fitting routine. This adds to the RM autocorrelation
function

Cobs
noise(~x⊥, ~r⊥) = σ2

RM,noise(~x⊥) δ2(~r⊥) . (3.41)

In Fourier space, this leads to a constant error for ŵ(k)

ŵnoise(k) = 2 〈σ2
RM,noise〉 (3.42)

and therefore to an artificial component in the magnetic power spectrum εobs
B (k) in-

creasing by k2.
If it turns out that for an RM map with an inhomogeneous noise map (if provided

by an RM map construction software) the noise affects the small-scale power spec-
trum too severely, one can try to reduce this by down-weighting noisy regions with a
suitable choice of the data weighting function h(~x⊥) which was introduced in Sect.
3.3.1 for this purpose.

RM steps due to the nπ-ambiguity: An RM map is often derived by fitting the
wavelength-square behaviour of the measured polarisation angles. Since the polarisa-
tion angle is only determined up to an ambiguity of nπ (where n is an integer), there
is the risk of getting a fitted RM value which is off by m∆RM from the true one,
where m is an integer, and ∆RM = π (λ2

min − λ2
max)

−1 is a constant depending on
the used wavelength range from λmin to λmax.

This can lead to artifical jumps in RM maps, which will affect the RM autocor-
relation function and therefore any derived magnetic power spectrum. In order to get
an idea of its influences, the possible error by an additional component in the derived
RM map can be modelled by

RMamb(~x⊥) =
∑

i

mi ∆RM ~1{~x⊥∈Ωi} , (3.43)

where Ωi is the area of the i-th RM patch, and mi is an integer, mostly +1 or -1.
Assuming that different patches are uncorrelated, the measured RM autocorrelation
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function is changed by an additional component, which should be asymptotically for
small r⊥

Camb
RM (r⊥) = ∆RM2 ηamb

(

1 − r⊥
lamb

)

, (3.44)

where ηamb is the area filling factor of the ambiguity patches in the RM map, and
lamb a typical patch diameter. Thus, the artificial power induced by the nπ-ambiguity
mimics a turbulence energy spectrum with slope s = 1, which would have equal power
on all scales. A steep magnetic power spectrum can therefore possibly be masked by
such artefacts.

Fortunately, for a given observation the value of ∆RM is known and one can
search an RM map for the occurrence of steps by ∆RM over a short distance (not
necessarily one pixel) in order to detect such artefacts.

3.3.4 Assessing the Influence of the Window Function

A completely different problem is the assessment of the influence of the window func-
tion on the shape of the magnetic power spectrum and thus, on the measured magnetic
energy spectrum. As stated above, the introduction of a finite window function has the
effect to smear out the power spectrum and Eq. (3.26) becomes

Ĉexp
⊥ (~k⊥) =

1

2

∫

d3q ŵ(q)
q2⊥
q2

|f̂(~k⊥ − ~q)|2
(2π)3V[f ]

. (3.45)

The term q2
⊥/q

2 ≤ 1 in the expression above states some loss of magnetic power.
Without this term, the expression would describe the redistribution of magnetic power
within Fourier space, where in this case the magnetic energy would be conserved.

However, the expression can be employed as an estimator of the response of the
observation to the magnetic power on a given scale p by setting ŵ(q) = δ(q−p) in the
above equation. For an approximate treatment of a realistic window and a spherical
data average, one can derive

ŵexp
p (k⊥) =

2p

π

∫ k⊥+q

|k⊥−q|
dq
q
∫ 2π
0 dφW⊥(q(cosφ, sinφ))

√

4q2p2 − (q2 + p2 − k2
⊥)2

. (3.46)

Here the projected Fourier window was introduced

W⊥(~k⊥) =
|f̂⊥(~k⊥)|2
(2π)2A[f⊥]

, (3.47)

whereA[f⊥] =
∫

d2x⊥f
2
⊥(~x⊥) while defining the projected window function as f⊥(~x⊥)

=
∫

dzf2(~x)V[f ]/AΩ.
One can also require for the input power spectrum a field strength by setting

ŵ(q) = 2π2 (B2/p2) δ(q − p) in Eq. (3.45). The resulting power spectrum can be
treated as an observed power spectrum and thus, a magnetic field strength Bexp can
be derived by integration following Eq. (3.29). The comparison of B and Bexp for the
different p-scales yields a further estimate for reliable ranges in k-space.

So far the response power spectrum was derived for an underlying magnetic spec-
trum located only on scales p. One could also add the particular response functions
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such that the actual observed power spectrum ŵobs(k) would be matched. Typical
power spectra, e.g. for turbulence, show a power law behaviour over several orders of
magnitude. Therefore, one would choose to weight the different response functions
ŵexp

p (k⊥) derived using Eq. (3.46) by a power law while integrating over them

ŵexp(k) = w0

∫ pmax

pmin

dp ŵexp
p (k⊥)

(

p

k0

)−α−2

, (3.48)

where w0 represents a normalisation constant, k0 a typical k-space length scale and
pmin and pmax are upper and lower cutoffs for the integration over the response func-
tions. Ideally, one would choose the normalisation constant w0 = c0B

2
0/k

3
0 , where c0

is chosen such that
∫

dk3 ŵexp(k) = B2
0 . One would vary the spectral index α of the

power law, B0 or w0 and the lower cutoff of the integration pmin in order to match the
two functions, ŵobs(k) and ŵexp(k).

One has direct access to the average magnetic energy density εB by integrating
Eq. (3.48) which results in the analytic expression

εB =
w0 k

3
0

2(2π)3 (α− 1)

[

(

pmin

k0

)1−α

−
(

pmax

k0

)1−α
]

. (3.49)

Following the definition of the magnetic autocorrelation length λB (Eq. (3.33)),
one can derive an expression for this length using the parameters determined in the
analysis above

λB = π
α− 1

α

p−α
min − p−α

max

p1−α
min − p1−α

max
. (3.50)

In the calculation of the expected response Ĉexp
⊥ (~k⊥) and thus, ŵexp(~k⊥) to an

underlying magnetic power spectrum ŵ(k) seen through some window W (~k) as ex-
pressed by Eq. (3.46), it has not been considered that the mean RM is subtracted from
the observed RM maps before the analysis is applied to them in order to remove con-
tributions from foreground RM screens (e.g. our Galaxy). This is taken into account
by noting that the RM value of a pixel at ~x⊥ in the map will be changed only in the
case of ~x⊥ ∈ Ω, which can be written as

RM(~x⊥) → RM∗(~x⊥) = RM(~x⊥) −~1{~x⊥∈Ω}

∫

d2x′⊥
AΩ

RM(~x′⊥). (3.51)

Using the properties of the Fourier transform of a function with compact support,
one can show that

Ĉexp
RM∗(~k⊥) = Ĉexp

RM (~k⊥) − Ĉexp
RM (~0⊥)|∆Ω(~k⊥)|2 , (3.52)

where
∆Ω(~k⊥) =

1

AΩ

∫

d2x⊥1{~x⊥∈Ω} e
i~k⊥·~x⊥ , (3.53)

and Ĉexp
RM (~k⊥) is the expected, uncorrected response to ŵ(k). The linearity of the

problem ensures that this correction is valid for any input power spectra ŵ(k) (as long
as Ĉexp

RM (~k⊥) is calculated from it) which could be a delta-function, a power law, or
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could have any other shape. Similarly, one can write for the spherically averaged
expected observed power spectrum

ŵexp
∗ (k) = ŵexp(k) − ŵexp(0)

1

2π

∫ 2 π

0
dφ |∆Ω(k(cos φ, sinφ)|2 , (3.54)

where ŵexp(k) is given by Eq. (3.46).
The subtraction of the mean RM does not only remove unwanted homogeneous

foregrounds, it also ensures that ŵexp
∗ (k) (or Ĉexp

RM∗(~k⊥)) vanishes at the origin ŵexp
∗ (0) =

0 (similarly Ĉexp
RM∗(~0⊥) = 0). For a correct behaviour of the responses at low k this

correction is therefore crucial and will be taken into account in the following.

3.4 Application to Existing Rotation Measure Maps of Galaxy
Clusters

Before the analysis was applied to the data any mean RM value was subtracted from
theRM maps. This is necessary as mentioned above, since statistically isotropic fields
are assumed and therefore, anyRM foreground which would affect this analysis has to
be removed. Furthermore, very noisy pixels and pixel areas exhibiting huge differences
in the RM values on scales smaller than the beamsize were removed from the data to
decrease the possible influences of observational artefacts.

The origin of the z-axis was placed in the cluster centre and was used as refer-
ence point ~xref for the global distribution of electron density and magnetic energy.
The latter was assumed to scale with the electron density such that 〈 ~B2(~x)〉1/2/B0 =
(ne(~x)/ne0)

αB . Unless stated otherwise, the parameter αB was chosen to be unity.
For the electron density distribution a standard β-profile 1 was used.

3.4.1 3C75, 3C465 & Hydra A - the Data

The radio source 3C465 (or NGC 7720) is located in the Abell cluster 2634 of richness
class I. The redshift of the object is 0.0302 (Wegner et al. 1999). A detailed X-ray study
of this cluster was performed by Schindler & Prieto (1997) using ROSAT PSPC data.
They derive for the density profile a core radius of 4.9 arcmin, a β of 0.79 and an
electron density at the cluster centre of ne0 = 0.0012 cm−3. Their analysis revealed
indications of a weak cooling flow in the cluster centre. The scenario of a weak cooling
flow in Abell 2634 is also supported by White (2000) who analysed ASCA X-ray data.

The radio galaxy 3C75 which is in the centre of Abell 400 also of richness class
I has a redshift of 0.02315 (de Vaucouleurs et al. 1991). The X-ray properties of the
cluster have been studied by Reiprich & Böhringer (2002) using ROSAT PSPC data.
They determine for the gas density profile a core radius of 3.9 arcmin, a β of 0.54
and an electron density at the cluster centre of ne0 = 0.0016 cm−3. There are no
indications of a cooling flow in Abell 400 (White 2000).

The details of the radio data reduction of the RM maps for the two sources above
can be found in Eilek & Owen (2002). The typical RM values observed for them
ranging between −250 rad m−2 and 250 rad m−2. The beamsize for the map of 3C75

1defined as ne(r) = ne0(1 + (r/rc)
2)−

3

2
β , where rc is called the core radius.
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(Abell 400) is 3 arcsec which translates into 1.4 kpc and for 3C465 (Abell 2634) the
beamsize is 3.8 arcsec which is equivalent to 2.3 kpc for the cosmology chosen. Fur-
thermore, for both clusters it was assumed that the source plane is parallel to the ob-
server plane since no indication for the Laing-Garrington effect was found.

Hydra A (or 3C218) is an extended extragalactic radio source located at a redshift
of 0.0538 (de Vaucouleurs et al. 1991) in the cluster Abell 780 of richness class 0.
However, hereafter it is referred to as Hydra A cluster. Detailed X-ray studies have
been performed on it (e.g. Ikebe et al. 1997; Peres et al. 1998; David et al. 2001).
For the derivation of the electron density profile parameter, the work by Mohr et al.
(1999) done for ROSAT PSPC data was used while employing the deprojection of X-
ray surface brightness profiles as described in the Appendix A of Pfrommer & Enßlin
(2004). Since Hydra A is known to exhibit a strong cooling flow as observed in the
X-ray studies, a double β-profile 2 is assumed and for the inner profile the following
parameter were used ne1(0) = 0.056 cm−3 and rc1 = 0.53 arcmin, for the outer
profile ne2(0) = 0.0063 cm−3 and rc1 = 2.7 arcmin and a β = 0.77 was applied.

The details of the radio data reduction can be found in Taylor & Perley (1993) and
the RM map is shown in Fig. 1.2. The beamsize of the map is 0.3 arcsec translating
into 0.3 kpc. The source consists of two lobes, a northern and a southern one. Typical
RM values in the north lobe are in the range between -1000 rad m−2 and +3300 rad
m−2 whereas in the south lobe also values of down to -12000 rad m−2 were observed.

The analysis was concentrated on the north lobe of this source because the signal-
to-noise ratio in the data of the south lobe does not seem sufficient enough for our
purposes. Furthermore, the application of the data filter to remove big steps between
data pixels leads to a splitting of the RM data in the south lobe into a lot of small
spatially disconnected areas. Such a fragmented window function can heavily obscure
any power spectrum measured.

For Hydra A, there is a clear depolarisation asymmetry of the two lobes observed as
described by the Laing-Garrington effect. Taking this effect into account and following
the analysis of Taylor & Perley (1993), first the coordinate system is rotated about an
angle of 110 degrees such that the x-axis was parallel to the jet axis. Afterwards the
source plane was rotated about the new y-axis by an inclination angle θ of 45 degree
such that the north lobe would point towards the observer.

3.4.2 Real Space Analysis

After the mean RM subtraction and the noisy pixel filtering, the RM autocorrelation
function CRM (r⊥) was determined using Eq. (3.4) choosing the described normalisa-
tion scheme. The resulting correlation function for Abell 2634, Abell 400 and Hydra
A are exhibited in Fig. 3.1, where the correlation function of Hydra A was divided by
100 for better display. The integration of these functions employing Eq. (3.19) leads
to the information on the RM correlation length λRM which was determined to be 7.9
kpc for Abell 2634, 5.3 kpc for Abell 400, and 1.9 kpc for Hydra A.

The determination of the magnetic autocorrelation function in real space w(r)
achieved by the deprojection of the RM autocorrelation is numerically difficult due
to the term in the denominator

√

y2 − r2 of Eq. (3.15) and Eq. (3.16) which represents

2defined as ne(r) = [n2
e1(0)(1 + (r/rc1)

2)−3β + n2
e2(0)(1 + (r/rc2)

2)−3β ]1/2.
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Figure 3.1: RM autocorrelation function |CRM (r⊥)| of Abell 400, Abell 2634 and
Hydra A obtained using Eq. (3.4). Note that the correlation function for Hydra A was
divided by 100 for representing purposes.

an integrable singularity and can in principle be avoided by a well selected coordinate
transformation.

However, the numerical calculation, especially the determination of the value for
r = 0 of the magnetic autocorrelation function w(r) is difficult because an extrapola-
tion to r = 0 of the function w(r) being itself subject to extrapolation and data binning
is involved. Therefore, the determination of the point w(r = 0) is not accurate and
one should be careful with the interpretation of the values derived by this method. The
behaviour of the magnetic autocorrelation around r = 0 is exhibited in Fig. 3.2 for the
case of Abell 2634, where the magnetic field autocorrelation functions w(r) derived by
employing various methods are shown. One can see that the steeper the initial slope of
the function the less precise it becomes to determine w(r = 0) since slight deviations
in the slope can lead to very different results.

One should keep this in mind when calculating the value of the magnetic field
autocorrelation length λB which was determined to be 6.0 kpc for Abell 2634, 3.9
kpc for Abell 400 and 1.4 kpc for Hydra A using Eq. (3.18), where for the value of
w(r = 0) = B2

0 the extrapolation of Eq. (3.15) to r = 0 was used. Thus, the field
strengths were determined to be of about 4 µG for Abell 2634, of about 9 µG for Abell
400 and of about 12 µG for Hydra A in the real space analysis.
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Figure 3.2: The magnetic autocorrelation function w(r) for Abell 2634 calculated
using Eq. (3.15), (3.16) and (3.35). One can clearly see that the value of w(r = 0) can
deviate by a factor of two but for larger r all methods yield almost the same results.

3.4.3 Fourier Space Analysis

For the calculations in Fourier space a 2-dimensional Fast Fourier Transform (FFT)
algorithm was employed while setting all blanked values in the original RM map to
zero. The RM autocorrelation function Ĉ⊥(k⊥) was then obtained by summing over
rings in k-space. Since the magnetic field autocorrelation function ŵ(k) is related to
the RM autocorrelation function in Fourier space simply by multiplying the RM cor-
relation function Ĉ⊥(k⊥) by two (Eq. (3.26)), there is no numerical difficulty involved
deriving this function and thus, the results for the magnetic field quantities are more
precise than those obtained applying the real space analysis.

The integration of the power spectrum ŵobs(k) following Eq. (3.34) and Eq. (3.33)
yields the correlation lengths. Thus, the RM autocorrelation length λRM was calcu-
lated to be 8.0 kpc for Abell 2634, 5.3 kpc for Abell 400 and 2.0 for Hydra A. The
magnetic field correlation length λB was determined to be 4.0 kpc for Abell 2634, 2.3
kpc for Abell 400 and 0.5 kpc for Hydra A in the Fourier analysis.

No numerical problem is involved in the determination of the value of the magnetic
autocorrelation function w(r) for r = 0 if one uses Eq. (3.35) resulting in magnetic
field strengths of about 5 µG for Abell 2634, of about 11 µG for Abell 400 and of
about 23 µG for Hydra A.

The application of Eq. (3.35) to the data translates the magnetic autocorrelation
function in Fourier space to real space. The comparison of the so derived function
with the deprojected functions w(r) in real space is exhibited in Fig. 3.2 for the case of
Abell 2634. One can clearly see that at the origin there are deviations by a factor of two
due to the uncertainties connected to the extrapolation used in the real space approach.
At higher separations r all three functions shown do not differ significantly from each
other. It is remarkable that except at the origin all three independent approaches are in
such good agreement which demonstrates reliable numerics.
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Figure 3.3: Magnetic energy spectrum εobs
B (k) derived for Abell 400, Abell 2634 and

Hydra A. The Fourier transformed beamsizes (kbeam = π/lbeam) are represented by
the thick vertical lines. The other straight lines describe the slope (dashed line repre-
sents εB ∝ k and the dotted represents εB ∝ k1.2) of the increase in the energy density
for the largest k.

The knowledge of the 3-dimensional power spectrum ŵ(k) also allows calculating
the magnetic energy spectrum εobs

B (k) by employing equation (3.29). The results for
the three clusters are shown in Fig. 3.3. The magnetic energy spectra are suppressed
at small k by the limited window size and the subtraction of the mean RM (small k
in Fourier space translate into large r in real space). A response analysis as suggested
above is performed in Sect. 3.4.4 in order to understand this influence in more detail.

Another feature of these energy spectra is the increasing energy density at the
largest k-vectors in Fourier space and thus, small r in real space. They can be explained
by noise on small scales.

It seems reasonable to introduce an upper cutoff for the integration of the magnetic
energy spectra in Eq. (3.29). In Fig. 3.3, the equivalent beamsize in Fourier space
kbeam = π/lbeam (where lbeam is the beamsize in real space defined as FWHM) is
represented by a vertical line for each cluster which is 1.4 kpc−1 for Abell 2634, 2.2
kpc−1 for Abell 400 and 10.0 kpc−1 for Hydra A. One can clearly see that the noise
induced increase of the energy density lies on k-scales beyond kbeam. Therefore, a
suitable upper cutoff for any integration of the magnetic energy spectrum seems to be
kbeam.

The influence of the upper k-cutoff in the integration can be seen in Fig. 3.4 which
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Figure 3.4: Magnetic field strength B dependent on the upper k-cutoff in the integra-
tion of Eq. (3.29). The equivalent beamsizes kbeam are represented as vertical lines.

displays the magnetic field strength B =
√

8π〈εB〉 estimated from

εB(k < kc) =

∫ kc

0
dk εB(k). (3.55)

3.4.4 Test the model and assess the influence of the window function

The various possibilities to test the window function and to assess its influences on the
results outlined in Sects. 3.3.3 and 3.3.4 were also applied to the data. The χ2-function
was derived by radially averaging the χ2(~x⊥) distribution resulting from Eq. (3.38),
where for the magnetic autocorrelation length λB the value derived in the Fourier
analysis was used since this approach seems to be more accurate. The resulting radially
binned distributions are shown in Fig. 3.5 determined for the three clusters. There is no
apparent spatial large scale trend visible for Abell 400 and Abell 2634 which indicates
a reasonable model for the window function. In the case of Hydra A, there appears
to be a trend of higher values for χ2(x⊥) towards larger r, comparable to small scale
trends seen in the χ2(x⊥) distribution of Abell 2634 and Abell 400.

Furthermore, the χ2(~x⊥) distribution was integrated following Eq. (3.40) and χ2
av

was calculated to be 1.0 for Abell 2634, 1.2 for Abell 400 and 1.6 for Hydra A. A
refinement of the model describing parameter does not seem to be required for Abell
2634 and Abell 400.

Since the value for χ2
av of 1.6 for Hydra A is deviating from 1, the geometry of the

source was varied, i.e. the inclination angle θ between source and observer plane was
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Figure 3.5: Testing the window function by calculating the χ2(x⊥) distribution for all
three clusters.

varied from 30 degree up to 60 degree resulting in field strength ranging from 17 µG
to 33 µG and values for χ2

av of 1.4 to 1.8, respectively. These values were derived by
integrating over the full accessible unrestricted (without cutoffs) k-space.

Furthermore, the scaling parameter αB in the scaling relation of the electron den-
sity to the magnetic energy density was varied. A value for αB of 0.5 is still in the
limit of reasonable values (see Sect. 1.3.2). Furthermore, such a scaling parameter of
αB = 0.5 means that the magnetic energy εB(x) ∝ ne(~x) and thus, the magnetic field
would be proportional to the thermal energy of the cluster gas assuming approximately
isothermal conditions. However, in this case (αB = 0.5), one obtains for χ2

av a value
of 1.2 and the magnetic field strength is reduced to 17 µG by integrating over the full
accessible k-space.

One can not be sure that the cause of the trend in the χ2(x⊥) distribution is due
to a geometry other than assumed because it could also be explained by a fluctuation
similar to the one seen in the χ2(x⊥) distributions of Abell 2634 and Abell 400. There
is no reason to change the initial assumption for the geometry of Hydra A. However,
one should keep in mind that the central field strength given could be slightly overes-
timated for Hydra A but it is not clear to what extent if at all.

A good test for the validity of the isotropy assumption is the inspection of the
Fourier transformed RM data | ˆRM(k)|2 as shown in Fig. 3.6 for Abell 400 and Hydra
A. The FFT data look similar for Abell 2634. In this figure half of the Fourier plane is
shown since the other half is symmetric to the one exhibited. No apparent anisotropy
is present in this figure.

It was mentioned already that the magnetic energy spectrum εobs
B (k) in Fig. 3.3 is
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Figure 3.6: The power |〈 ˆRM(k)〉|2 of the Fourier transformed RM map of Abell 400
on the left side and Hydra A on the right side. The image for Abell 2634 looks similar.
Only half of the Fourier plane is exhibited the other half is point symmetric to the one
shown

suppressed by the limited window size for small k-vectors in Fourier space. Therefore,
a response analysis is necessary in order to understand the influence of the window on
the shape of the magnetic energy spectrum. For this purpose, the projected window
function was Fourier transformed by employing a FFT algorithm and inserted into
Eq. (3.46). Then the response functions ŵexp(k) obtained were compared to the ob-
served power spectrum ŵobs(k) as shown in Fig. 3.7 for the case of Abell 2634, where
for the normalisation a magnetic field strength B of 5 µG was chosen. The corre-
sponding figures look very similar for Abell 400 and Hydra A.

From Fig. 3.7, one can clearly see that the response to delta function like input
power spectra on small p scales in Fourier space (i.e. large r in real space) is a smeared
out function as one would expect. The response for larger p becomes more strongly
peaked suggesting that at k-scales larger than 0.3 kpc−1 for Abell 2634 the influence
of the window function becomes negligible. From similar plots for the other two clus-
ters under consideration, scales of about 0.4 kpc−1 for Abell 400 and 1.0 kpc−1 for
Hydra A are found. Thus, one would use this value as a lower cutoff kmin for the
determination of the magnetic field strength.

From the response power spectra ŵp(k⊥) calculated for different p requiring a
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Figure 3.7: Responses at various scales p to the window function of Abell 2634 as-
suming a B = 5µG in comparison to the observed magnetic autocorrelation function
ŵ(k).

magnetic field strength B, one can derive a magnetic field strength Bexp by integra-
tion. In Fig. 3.8, the comparison between these two field strengths is plotted for the
different p-scales. It can be seen that for the smallest p’s the deviation between ex-
pected field strength and actual observed one is significantly but for larger p they are
almost equal suggesting that on these scales the influence of the window is negligible.
Taking Fig. 3.8 into account, the values determined above as lower cutoff kmin can be
confirmed.

Another possibility to assess the influence of the window on the power spectra is
to match the added response functions and the actual observed power spectra ŵobs(k).
This was done by applying Eq. (3.48) to a set of response functions generated for
closely spaced p-scales. The resulting function ŵexp(k) was matched to the actual
observed power spectrum ŵobs(k) for each of the three clusters by varying B0, the
spectral index α of the power law in Eq. (3.48) to match the slope of the functions and
pmin as lower cutoff to fit the function at its turnover for small k-scales. The resulting
functions are shown in Fig. 3.9 in comparison to the respective observed power spectra.
The shape of the power spectra was matched for Abell 2634 for a spectral index of
α = 1.6, for Abell 400 for an α = 1.8 and for Hydra A for an α = 2.0 whereas a
lower k-cutoff of 0.09 kpc−1 was used for Abell 2634, 0.08 kpc−1 for Abell 400 and
0.3 kpc−1 for Hydra A.

The spectral index α can also be used to plot the respective power law as rep-
resented by the straight lines in Fig. 3.9. The slopes of these lines clearly deviate
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Figure 3.8: Comparison between the expected magnetic field strength B to the mea-
sured one Bexp for the particular p-scales for the three clusters.

from the respective observed power spectra suggesting that one cannot estimate differ-
ential parameters like spectral indeces directly from Fourier transformed RM maps.
More sophisticated approaches should be developed. However, the approach allows
to exclude flatter spectral slopes than α = 1.3 still leaving a Kolmogorov spectrum
(α = 5/3) as a possible description. For attempts to measure the magnetic power
spectrum from cluster simulations and radio maps see Dolag et al. (2002) and Govoni
et al. (2002) respectively3 .

3.5 Results

A summary of the values for RM autocorrelation length λRM , magnetic field auto-
correlation length λB and the central magnetic field strength B0 for the magnetised
cluster gas in Abell 2634, Abell 400 and Hydra A, derived in Fourier space and real
space is given in Tab. 3.1. The RM autocorrelation length λRM determined in both
spaces is almost equal which demonstrates reliable numerics. Furthermore, it is found
that the RM autocorrelation length λRM is larger than the magnetic autocorrelation
length λB . The deviation of the magnetic field quantities between both spaces is caused
by the numerically complicated deprojection of the magnetic autocorrelation function
w(r) in real space. Thus, the results in Fourier space are more reliable and should be
considered for any interpretation and discussion.

3The conventions describing the spectra may differ in these articles from the one used here.
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law assuming the spectral index determined from the response analysis. Note that the
data for Abell 2634 are multiplied by 0.1 and the data for Hydra A by 10 for represent-
ing purposes.

In Sect. 3.4.4, many possible influences on the power spectra were discussed. It
was verified that for intermediate k-ranges extending over at least one order of magni-
tude the power spectra are not governed by the window or the resolution of the RM
maps and thus, represent most likely the magnetic field properties of the cluster gas.
Thus, one can derive field quantities such as magnetic field strength B0 and autocorre-
lation length λB from this intermediate k-range.

The suitable cutoffs for the integration of the power spectra in order to derive
the magnetic field strength and autocorrelation length were determined in Sec. 3.4.4.
Using for Abell 2634 a lower cutoff kmin of 0.3 kpc−1 and an upper cutoff of 1.4 kpc−1

results in a magnetic field strength of 3 µG. Integrating the power spectrum of Abell
400 in the range from 0.4 kpc−1 to 2.2 kpc−1 yields a field strength of 6 µG. The same
was done for the Hydra A cluster in the range from 1 kpc−1 to 10 kpc−1 which resulted
in a field strength of 13 µG. The determination of the magnetic field autocorrelation
length λB by integration over the power spectra in limited k-space yields 4.9 kpc for
Abell 2634, 3.6 kpc for Abell 400 and 0.9 kpc for Hydra A.

In the course of the response analysis in order to estimate the influence of the win-
dow on the power spectra, the integrated response power spectra ŵexp(k) was matched
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Real Space non-restricted Fourier Space
cluster αB λRM [kpc] λB [kpc] B0 [µG] λRM [kpc] λB [kpc] B0 [µG]
Abell 400 1.0 5.2 3.9 8 5.3 2.3 12
Abell 2634 1.0 7.9 6.0 4 8.0 4.0 5
Hydra A 1.0 1.9 1.4 13 2.0 0.5 23
Abell 400 0.5 5.2 3.9 7 5.3 2.3 10
Abell 2634 0.5 7.9 6.0 3 8.0 4.0 4
Hydra A 0.5 1.9 1.4 10 2.0 0.5 17

restricted Fourier Space
cluster αB λB [kpc] B0 [µG]
Abell 400 1.0 3.6 6
Abell 2634 1.0 4.9 3
Hydra A 1.0 0.9 13
Abell 400 0.5 3.4 6
Abell 2634 0.5 4.9 3
Hydra A 0.5 0.9 18

Table 3.1: Values for the autocorrelation length scales λB and λRM and the magnetic
field strength B0 at the cluster centre obtained in real space analysis, in Fourier space
analysis and in restricted Fourier Space analysis are given for the different clusters
under consideration. The values are calculated for two different scaling parameters
αB . Note that for position other than the cluster centre the average magnetic energy is
given by 〈 ~B2(~x)〉1/2 = B0 (ne(~x)/ne0)

αB .

with the actual 3-dimensional observed power spectra ŵobs(k) and the spectral index
α, c0 and the lower cutoff pmin in Eq. (3.48) were determined. Using these val-
ues for the parameters in Eq. (3.49), the direct integration in the limits of pmin and
pmax = kbeam of the power spectra obtained by the response analysis results in mag-
netic field strengths of about 3 µG for Abell 2634, of about 6 µG for Abell 400 and
of about 11 µG for Hydra A. These field strengths are in good agreement with the re-
sults obtained by the restricted Fourier space integration of the observed 3-dimensional
power spectra.

However, the values for λB were determined for the same pmin and pmax = kbeam

applying Eq. (3.50). The resulting value is 13 kpc for Abell 2634, 17 kpc for Abell
400 and 4 kpc for Hydra A. They deviate by a factor of 4 to 5 from the magnetic field
autocorrelation length λB determined from the restricted Fourier space integration.
The reason for this behaviour could be found in the sensitivity to the lower cutoff pmin

and the power law index α. It was already mentioned that the method might not be
suitable at that stage to determine differential parameters such as a power law index α.
A more detailed discussion is necessary in order to understand this behaviour.

However, the values of the magnetic field strength B0 for Abell 400 and Abell
2634 of about 6 µG and 3 µG, respectively, are larger compared to the initial analysis
performed by Eilek & Owen (2002) for the case of a magnetic sheet with a thickness
of 10-20 kpc. They discuss a variety of magnetic field models and it is referred to
Tab. 2 of their paper for detailed numbers and description.

For the Hydra A cluster, Taylor & Perley (1993) conclude in their analysis that
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there is a random magnetic field component of about 30 µG with a correlation length
of 4 kpc. The deviation by a factor of 3 of the field strength from the value revealed by
the presented analysis might be explained by the usage of an improved electron density
profile for the analysis which also takes the cooling flow into account. The value for
the central magnetic field strength B0 might also be lower due to the conservative
approach of restricting the k-space integration range. Another explanation for the
difference could be sought in the exclusion of the south lobe from the calculation
above. Including the south lobe in the analysis leads to higher central field strengths
but given the influence of the very complicated window function in the case of the
south lobe, it is not clear to what extent the real power spectrum is resembled.

The estimation of the dynamical importance of the magnetic fields derived for the
cluster gas can be done by comparing the thermal pressure (pth = 2ne(0)kTcore) with
the magnetic pressure (pB = B2

0/(8π)). One can calculate pB/pth which yields 0.08
for the case of Abell 2634 (assuming a Tcore = 1.2 keV (Schindler & Prieto 1997)),
pB/pth = 0.19 for Abell 400 (Tcore = 1.5 keV (Eilek & Owen 2002)) and pB/pth

= 0.01 for Hydra A (Tcore = 2.7 keV (David et al. 2001)). It is astonishing that the
value of pB/pth is smaller for Hydra A, which is a cooling flow cluster, than for the
non-cooling flow cluster Abell 400 and Abell 2634. The values of pB/pth = 0.1...0.2
for the latter two clusters give an indication that for those clusters the magnetic field is
of some weak dynamical importance for the cluster gas.

3.6 Conclusions

A new analysis of Faraday rotation maps was developed in order to estimate mag-
netic field strength and autocorrelation length and to determine the magnetic power
spectra of the magnetised intra-cluster gas. This analysis relies on the assumption that
the magnetic fields are statistically isotropically distributed throughout the Faraday
screen. A window function was introduced through which any virtually statistically
homogeneous magnetic field can be thought to be observed. This window function
describes the geometry of the source and the global properties of the intra-cluster gas
such as the electron density, known from X-ray measurements, and the global average
magnetic field distribution, which is assumed to scale with the electron density. Fur-
thermore, two possible approaches in real and Fourier space were developed and tests
were outlined for the evaluation of any influence especially arising from the observa-
tional nature of the data such as limited source size, resolution and pixel noise on the
results obtained. However, the analysis allows to measure average magnetic energies
but it is not sensitive to the particular realisation of the magnetic field structure.

This approach was applied to observational data and reliable results were derived
not only for magnetic field strengths and autocorrelation lengths but also strength and
quality of any results obtained by applying this new analysis to any observational data
was assessed. In order to understand the possible impacts on the results, the Faraday
rotation maps of three extragalactic extended radio sources were reanalysed, i.e. 3C75
in the cluster Abell 400, 3C465 in Abell 2634, which were kindly provided by Frazer
Owen and Jean Eilek, and Hydra A in Abell 780, which was kindly provided by Greg
Taylor. The analysis was performed in real and Fourier space for these three Faraday
rotation maps. While discussing the difficulties involved in the application to the data,
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it was realised that the calculations in Fourier space are more reliable.
The isotropy assumption was tested for and no indication of anisotropy was found.

Furthermore a χ2-test was performed in order to assess the model adopted for the
geometry of the sampling volume incorporating the global electron density and the
average magnetic energy distribution. In the case of Abell 2634 and Abell 400, no
indication was found that the model used may be incorrect. However, in the case of
Hydra A indications were found that the window function needs refinement but the
indications were not strong enough in order to enforce this refinement.

It was realised that the magnetic energy spectra εB(k) of the three clusters investi-
gated are dominated on the largest k-scales (i.e. smallest r-scales) by noise. Therefore,
it seemed natural to introduce a higher k-cutoff kmax for any integration in k-space
necessary to derive magnetic field quantities such as field strength and autocorrelation
length. Being conservative, as a higher k-cutoff the equivalent beamsize in Fourier
space kmax = π/lbeam was used which is equal to 1.4 kpc−1 for Abell 2634, 2.2
kpc−1 for Abell 400 and 10 kpc−1 for Hydra A. This will have the effect of loosing
some power which is redistributed due to the window from smaller to these larger
k-scales.

On the smallest k-scales, i.e. the largest r-scales, power is suppressed because of
the limited size of the window. For the assessment of the influence of this suppression
on the power spectra, a response analysis as described in Sec. 3.3.3 was applied to
the observational windows. The response of the window to delta like input power
spectra on small p-scales is a wide, smeared out function whereas the response on
larger p-scales is a peaked function. This observation motivated the introduction of a
lower k-cutoff kmin in any integration in k-space. This value was determined to be 0.3
kpc−1 for Abell 2634, 0.4 kpc−1 for Abell 400 and 1.0 kpc−1 for Hydra A. However,
the magnetic field strengths derived are not sensitive to this lower cutoff due to the
small k power suppression.

It was verified that the intermediate k-ranges between kmin and kmax extending
over at least one order of magnitude can be used to determine actual magnetic field
properties of the intra-cluster gas.

Integrating over the response power spectra on particular p-scales enables to match
the so determined power spectra and the actually observed power spectra in order to
have an independent estimate for magnetic field strengths and spectral slopes. For the
three clusters under consideration, spectral indices α for the slopes of the power spec-
tra were determined to be in the range from 1.6 to 2.0. Therefore it would be possible
that the magnetic field in these clusters have a Kolmogorov power spectrum exhibiting
α = 5/3. However at present, one can not exclude steeper spectra but flatter spectra
exhibiting slopes smaller than α = 1.3 would have been recognised by the analysis.
Although, it was realised that this analysis is not suitable for the determination of dif-
ferential parameters such as the spectral slopes of power spectra directly from Fourier
transformed RM maps, the determination of integrated quantities such as the magnetic
field strength appears feasible.

Taking all these arguments into account values for the RM autocorrelation length
λRM , the magnetic field autocorrelation length λB and the central average magnetic
field strength B0 were determined by integration of the magnetic energy spectrum in
the limits between kmin and kmax. An overview of these numbers is given in Tab. 3.1
where these values are compared to those derived in real space and non-restricted
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Fourier space.
The magnetic field autocorrelation length λB was determined for the restricted

Fourier space integration to be 4.9 kpc for Abell 2634, 3.6 kpc for Abell 400 and 0.9
kpc for Hydra A. In comparison with the RM autocorrelation length λRM calculated
to be 8.0 kpc for Abell 2634, 5.3 kpc for Abell 400 and 2.0 kpc for Hydra A, it can
be said that these two characteristic length scales differ from those often assumed in
previous work.

The magnetic field strength in the cluster centre B0 was calculated for the same
limited k-space and was determined to be 3 µG for Abell 2634, 6 µG for Abell 400
and 13 µG for Hydra A. Given the assumption of isotropy and a scaling parameter
αB = 1.0, these are conservative values. The resulting magnetic pressures suggest
some small but non negligible pressure support for a dynamical influence in the case
of Abell 2634 and Abell 400 since the value of pB/pth is 0.08 and 0.19, respectively.

However, the approach so far is not able to separate the influence of noise on
the maps from the astrophysically interesting signal of intra-cluster magnetic fields.
Investigations aiming to detect (see Chapter 2) and to minimise such spurious signals
are presented in the next Chapter 4.
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Chapter 4

Pacman - A new RM Map Making
Algorithm

The statistical analysis of RM measurements in terms of correlation functions and
equivalently power spectra requires that the RM ’s are unambiguously determined as
discussed in the last chapter. Thus, any ambiguous RM can lead to misinterpreta-
tion of the data investigated. This ambiguity results from the observational fact that
the polarisation angles are only determined up to additions of ±nπ. In this chap-
ter, a new map making algorithm - called Pacman - is described. Instead of solving
the nπ-ambiguity for each data point independently, the proposed algorithm solves
the nπ-ambiguity for a high signal-to-noise region and uses this information to assist
computations in adjacent low signal-to-noise areas.

This work is submitted to Mon. Not. Roy. Astron. Soc. as two papers (Dolag et al.
2004; Vogt et al. 2004). My part in this work was the contribution to the development
of the algorithm, the data handling, the statistical characterisation and tests of the var-
ious RM maps and describing the algorithm in the two scienfic publications. Pacman
was implemented by Klaus Dolag.

4.1 Introduction

For the calculation of rotation measures (RM ) and intrinsic polarisation angles (ϕ0)
using the relationship ϕ = RM λ2 +ϕ0 (see Eq. (1.42)), a least squares fit is normally
applied to the polarisation angle data. Since the measured polarisation angle ϕ is
constrained only to values between 0 and π leaving the freedom of additions of ±nπ,
where n is an integer, the determination of RM and ϕ0 is ambiguous, causing the so
called nπ-ambiguity. Therefore, a least squares fit has to be applied to all possible nπ-
combinations of the polarisation angle data at each data point of the polarised radio
source while searching for the nπ-combination for which χ2 is minimal.

In principle, χ2 can be decreased to infinitely small numbers by increasing RM
substantially. Vallée & Kronberg (1975) and Haves (1975) suggested to avoid this
problem by introducing an artificial upper limit for |RM | ≤ RMmax. Since this is
a biased approach, Ruzmaikin & Sokoloff (1979) proposed to assume that no nπ-
ambiguity exists between the measurements of two closely spaced wavelengths taken
from a whole wavelength data set. The standard error of the polarisation measurements
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is then used to constrain the possible nπ-combinations for the least squares fit for
the subsequent observed frequencies. To these methods is refered as the “standard
fit” algorithms, as they are currently the most widely used methods. However, these
methods might still give multiple acceptable solutions for data with low signal-to-
noise, requiring the solution to be flagged and all the information carried by these data
is lost. Furthermore, it still can happen that the algorithm chooses a wrong RM and
imprints spurious artefacts on the RM and the ϕ0 maps.

Recently, a completely different approach was proposed by Sarala & Jain (2001)
which takes the circular nature of the polarisation angle into account. The authors
apply a maximum likelihood method to spectral polarisation data. Although this ap-
proach is not biased towards any RM value, it is rather designed for a large number of
observed wavelengths. Similarly, de Bruyn (1996) and Brentjens & de Bruyn (2004)
propose an RM -synthesis via wide-band low-frequency polarimetry. However, typi-
cally the observations are only performed at three or four wavelengths especially for
extended (diffuse) radio sources.

For a new approach for the unambiguous determination of RM and ϕ0, it is as-
sumed that if regions exhibit small polarisation angle gradients between neighbouring
pixels in all observed frequencies simultaneously, then these pixels can be considered
as connected. Note, that the gradient is calculated modulo π, which implies that po-
larisation angles of 0 and π are regarded as having the same orientation and thus, the
cyclic nature of polarisation angles is reflected. Information about one pixel can be
used for neighbouring ones and especially the solution to the nπ-ambiguity should be
the same.

In cases of small gradients, assuming continuity in polarisation angles allows to
assign an absolute polarisation angle for each pixel with respect to a reference pixel
within each observed frequency. This assignment process has to be done for each
spatially independent patch of polarisation data separately, such as each side of a
double-lobed radio source. The reference pixel is defined to have a unique absolute
polarisation angle and the algorithm will start from this pixel to assign absolute po-
larisation angles with respect to the reference pixel while going from one pixel to its
neighbours. Figuratively, the algorithm eats its way through the set of available data
pixel. It might become clear now why the algorithm was named Pacman1 (Polarisation
Angle Correcting rotation Measure ANalysis).

Pacman reduces the number of least squares fits in order to solve for the nπ-
ambiguity. Preferably, the reference point is chosen to have a high signal-to-noise
ratio so that in many areas, it is sufficient to solve the nπ-ambiguity only for a small
number of neighbouring pixels simultaneously and to use this solution for all spatially
connected pixels. Pixels with low signal-to-noise will profit from their neighbouring
pixels allowing a reliable determination of the RM and ϕ0.

Faraday rotation measure maps are analysed in order to get insight into the prop-
erties of the RM producing magnetic fields such as field strengths and correlation
lengths. Artefacts in RM maps which result from nπ-ambiguities can lead to misin-
terpretation of the data. In Chapter 3, a method was proposed to calculate magnetic
power spectra fromRM maps and to estimate magnetic field properties. It was realised

1The computer code for Pacman is publicly available at
http://dipastro.pd.astro.it/˜cosmo/Pacman
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that map making artefacts and small scale pixel noise have a noticeable influence on
the shape of the magnetic power spectra on large Fourier scales – small real space
scales. Thus, for the application of these kind of statistical methods it is desirable
to produce unambiguous RM maps with as little noise as possible. This and similar
applications are motivations for designing Pacman and to quantify its performance.

In order to detect and to estimate the correlated noise level in RM and ϕ0 maps, a
gradient vector product statistic V was proposed in Chapter 2. It compares RM gradi-
ents and intrinsic polarisation angle gradients and aims to detect correlated fluctuations
on small scales, since RM and ϕ0 are both derived from the same set of polarisation
angle maps.

In Sect. 4.2, the idea and the implementation of the Pacman algorithm is described
in detail. In Sect. 4.3, Pacman is tested on artificially generated RM maps and its
ability to solve the nπ-ambiguity properly is demonstrated.

In Sect. 4.5, this algorithm is applied to polarisation observation data sets of two
extended polarised radio sources located in the Abell 2255 (Govoni et al. 2002) cluster
and the Hydra cluster (Taylor & Perley 1993). Using these polarisation data, the stabil-
ity of the Pacman algorithm is demonstrated and the resulting RM maps are compared
to RM maps obtained by a standard fit algorithm.

The importance of the unambiguous determination of RM ’s for a statistical anal-
ysis is demonstrated by applying the statistical approach developed in Chapter 3 to
the RM maps in order to derive the power spectra and strength of the magnetic fields
in the intra-cluster medium. The influence of error treatment in the analysis is also
discussed. The philosophy of this statistical analysis and the calculation of the power
spectra is briefly outlined in Sect. 4.4.3 whereas the results of the application to the
RM maps are presented in Sect. 4.5.

In addition, the gradient vector product statistic V is applied as proposed in Chap-
ter 2 in order to detect map making artefacts and correlated noise. The concept of this
statistic is briefly explained in Sect. 4.4.1 and in Sect. 4.5, it is applied to the data.
After the discussion of the results, the conclusions and lessons learned from the data
during the course of this work are given in Sect. 4.6.

Throughout the rest of the chapter, a Hubble constant of H0 = 70 km s−1 Mpc−1,
Ωm = 0.3 and ΩΛ = 0.7 in a flat universe is assumed.

4.2 The new Pacman algorithm

4.2.1 The Idea

As described in the introduction, the Faraday rotation measure RMij at each point
with map pixel coordinate (ij) of the source, is usually calculated by applying a least
squares fit to measured polarisation angles ϕij(k) observed at frequency k ∈ 1...f
such that

ϕij(k) = RMij λ
2
k + ϕ0

ij , (4.1)

where ϕ0
ij is the intrinsic polarisation angle at the polarised source.

Since every measured polarisation angle is observationally constrained only to a
value between 0 and π, one has to replace ϕij(k) in the equation above by ϕ̃ij(k) =
ϕij(k) ± nij(k)π, where nij(k) is an integer, leading to the so called nπ-ambiguity.
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Taking this into account, a least squares fit to calculate RMij and ϕ0
ij at each pixel has

to be applied by allowing all possible combinations of nij(k)π while determining the
nij(k) for which the χ2

ij is minimal. The presence of observational noise might cause
a standard least squares fit, as suggested by Vallée & Kronberg (1975), Haves (1975)
or Ruzmaikin & Sokoloff (1979), to choose a spurious RM value especially for areas
of low signal-to-noise.

The idea of Pacman is to reduce the number of pixels for which the nπ-ambiguity
has to be individually solved. This is done by splitting the solution of the nπ-problem
into two problems, a local and a global one,

nij(k) = ñij(k) + n(k), (4.2)

where ñij(k) is the local solution, linking polarisation angles of neighbouring pixels
within a frequency map, and n(k) is the global solution to the problem, linking po-
larisation angles of the different frequencies. The local part ñij(k) is determined by
construction of absolute polarisation angle maps for each frequency with respect to
a high signal-to-noise reference pixel being defined to possess a unique polarisation
angle. The term absolute polarisation angle is to be understood as a value determined
relative to the reference pixel by adding ±nπ to the measured polarisation angles in
order to remove jumps of the order of π in the measured polarisation angle map of
each observed frequency. The global nπ ambiguity is solved for a high signal-to-noise
area surrounding the reference pixel resulting in n(k). This is then also the solution of
the global nπ-problem for all spatially connected points which are assigned absolute
polarisation angles with respect to this reference area.

The splitting of the problem in a local and a global one is possible if the real
polarisation angle ϕ̄ij(k) (ϕ̄ij(k) = RMij λ

2
k + ϕ0

ij) is a smooth quantity which does
not change more than ±π/2 between neighbouring pixels. In Sect. 4.2.2, it is described
how Pacman ensures that only pixels fulfilling this condition are used.

The source might consists of several spatially independent areas of polarisation, to
which hereafter is refered to as patches. The nπ-ambiguity has to be solved for each
of these patches separately, requiring separate reference pixels to be defined for the
construction of absolute polarisation angles.

The advantage of Pacman is that the global nπ-ambiguity is solved only for pixels
having the highest signal-to-noise ratios. Therefore, noisier pixels which are situated
at the margin of the source profit from an already defined global solution n(k) to the
nπ-ambiguity, making a reliable determination of RMij and the intrinsic polarisation
angle ϕ0

ij for these pixels possible.

4.2.2 The Basic Algorithm

The algorithm starts with reading the maps of polarisation angles and of its errors,
processes them, and when finished, it saves the different calculated maps. A flow
chart of the Pacman algorithm is exhibited in Fig. 4.1, which shows schematically the
procedure the algorithm follows in order to determine the solution to the nπ-ambiguity
and to calculate the various maps.

After loading the various polarisation data for the different frequencies, the algo-
rithm calculates a quality measure map. Different actions are involved in the process-
ing of the data. One of the processes is building a patch which involves the construction
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Figure 4.1: A flow chart representing the individual steps involved in the calculation
of RM and ϕ0 maps as performed by the algorithm Pacman.



76 CHAPTER 4. PACMAN – A NEW RM MAP MAKING ALGORITHM

of absolute polarisation angle maps. First, the reference pixel for a patch of polarisa-
tion is determined from the quality measure map. This step is followed by solving the
local nπ-ambiguity in each frequency map for pixels being spatially connected to the
defined patch reference pixel and having small gradients in polarisation angle to the
neighbouring pixels at all frequencies. This process is mainly governed and stopped
by quality requirements.

When the patch building process is stopped then the algorithm solves the global
nπ-ambiguity across the frequency maps individually for a selected set of superior
quality pixels (voters) within the patch. The majority of votes is used as the global
patch nπ-solution and the resulting RM and ϕ0 values are stored. If there are still
unprocessed high quality pixel left, the algorithm starts again to build a new patch.
Otherwise Pacman finishes and saves the resulting complete maps.

The values for RM and ϕ0 are calculated following a weighted least squares fit
expressed by

RMij =
Sij λ2ϕij − λ2 ϕij

Sij λ4 − λ22 (4.3)

ϕ0
ij =

ϕij λ4 − λ2 λ2ϕij

Sij λ4 − λ22 (4.4)

where Sij =
∑f

k=1 1/σ2
kij

, ϕij =
∑f

k=1 ϕij(k)/σ
2
kij

, λ2 =
∑f

k=1 λ
2
k/σ

2
kij

, λ2ϕij =
∑f

k=1 λ
2
k ϕij(k)/σ

2
kij

and λ4 =
∑f

k=1 λ
4
k/σ

2
kij

(see Eq. (1.55) and Eq. (1.56)). In these
relations, σkij

is the standard error of the polarisation angle ϕij(k) at the pixel coordi-
nate (ij) at the kth wavelength λk.

Since the performance of the algorithm is mainly governed by quality require-
ments, some quality measure is needed in order to rank the map pixels. One good
candidate is the expected uncertainty σRM

ij of any RM value obtained in an error
weighted least squares fit which is calculated by

σRM
ij =

√

√

√

√

Sij

Sij λ4 − λ22 , (4.5)

where the terms are defined as above.
The uncertainty σRM

ij of theRM value is used to assign each pixel an initial quality
qij = σRM

ij since σRM
ij accounts for the statistic used to determine the RM maps.

Hence, small values of qij indicate high quality pixels. The quality is then used to
determine the way Pacman goes through the data which will be preferably from high
to low quality data pixels.

For the construction of absolute polarisation angle maps for each frequency, Pac-
man starts at the best quality pixel having the smallest value qij , which is defined to
be the reference pixel. For this first point, the measured polarisation angle ϕij(k) is
defined to possess a unique polarisation angle value ϕ̄ij(k) = ϕij(k) for each ob-
served frequency. It is important to note that the reference pixel is the same for all
frequencies.

Then, Pacman compiles what is called the border list (BL). It contains pixels being
direct neighbours to points which have been already assigned an absolute polarisation
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angle. In the following, the set of adjacent pixels (i ± 1 j ± 1) to the pixel (ij) will
be referred to as direct neighbours (i′j′). Beginning with the direct neighbours of the
reference pixels, the border list is continuously updated during the progression of the
algorithm. A pixel can be rejected from the border list if the standard error σkij

of the
polarisation angle for any frequency at this pixel exceeds a certain limit σmax

k which is
set at the beginning of the calculation. However, this requirement can be relaxed (see
Sect. 4.2.7).

Having defined the reference pixel, Pacman assigns absolute polarisation angles to
pixels within the border list always starting with the pixel having the best quality, i.e.
the lowest qij value. For this pixel, the algorithm solves the local nπ-ambiguity with
respect to ñij(k) ∈ Z by minimising the expression

σ ∆
ij =

∑

{i′j′}∈Dij

[

(ϕij(k) ± ñij(k)π) − ϕ̄i′j′(k)
]2
, (4.6)

where Dij is the set of all direct neighbours (i′j′) to the pixel (ij) which have already
been assigned an absolute polarisation angle. The resulting ñij(k) value determines
the absolute polarisation angle ϕ̄ij(k) = ϕij(k)± ñij(k)π which has the smallest dif-
ference to the already defined absolute polarisation angles of adjacent pixels ϕ̄i′j′(k).
For each pixel, this is done at each frequency k ∈ 1....f independently but simulta-
neously. Thus, Pacman goes the same way through the data in each frequency. Note
that one can introduce a value σ∆

max which causes Pacman to reject the pixel if σ ∆
ij

exceeds σ∆
max (see Sect. 4.2.6). Additionally the border list is updated to include direct

neighbours to the recently processed pixel (ij) which have not yet been assigned an
absolute polarisation angle.

Pacman repeats this process for the best remaining pixel in the border list which
has the lowest qij and so on, until the whole patch consists of spatially connected pix-
els with assigned absolute polarisation angles and no acceptable neighbouring pixels
remain in the border list.

At this stage, Pacman solves the global nπ-ambiguity n(k) by applying a standard
least squares fit to a set of best constrained pixels within the patch (i.e. the surrounding
area of the reference pixel). Pacman solves for each of these best constrained pixels
the global nπ-ambiguity independently by either using the method of Haves (1975);
Vallée & Kronberg (1975) or of Ruzmaikin & Sokoloff (1979) minimising the χ2 for
all possible combinations of nπ. It searches then for the solution n(k), which has been
derived for the majority of pixels. This democratically determined solution n(k) is
used to perform a least squares fit of the other pixels defined within this patch. Note
that in an extreme case, only the reference pixel could be used to solve the global
nπ-ambiguity.

If there are still good quality pixels left in the map which were not connected
to the first patch of good quality data, the algorithm begins a new patch of absolute
polarisation angles, starting again with the best remaining pixel with smallest qij . A
new patch of absolute polarisation angles is constructed. As a result, the source will
be divided in a set of spatially independent polarisation patches, and the global nπ-
ambiguity is solved once for each patch separately. A qthresh

ij can be introduced to
prevent Pacman from starting new patches if the pixels remaining have quality values
above that threshold value whose value is chosen in the beginning.
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4.2.3 Improving Quality

The solution of the local nπ-ambiguity for pixel (ij) becomes more reliable as more
direct neighbours of these pixels have their absolute polarisation angle ϕ̄i′j′ defined.
This is taken into account by modifying the quality qij of the pixels added to the border
list to

1/qij = 1/σRM
ij +

α

nβ
Dij





∑

i′j′ ∈Dij

1/σRM
i′j′



 , (4.7)

where nDij is the number of already defined neighbours (i′j′), and α and β are free
parameters. This ensures that pixels having more already defined neighbours are con-
sidered before others although the original data point might have a smaller signal qual-
ity, i.e a higher qij . Values between 0 and 1 for the free parameter β are reasonable
and yield good results. An α = β = 1 was used and it was observed that Pacman goes
through the acceptable data points of the polarisation patches in a uniform manner.

4.2.4 Restricting Gradients

The algorithm might be faced with a situation where a high quality pixel can be in-
fluenced by a very poor quality pixel, for example when the polarised radio source
consists of two radio lobes each having a good signal-to-noise ratio which are con-
nected by a bridge containing only low quality pixels. The Pacman algorithm would
start by defining absolute polarisation angles from one of the two lobes, eventually
reaching the bridge of low signal-to-noise and entering the second lobe from there. In
such cases, it might happen that within the area of low quality data pixels a distinct
determination of absolute polarisation angles by solving the local nπ-ambiguity using
Eq. (4.5) is no longer possible. The entire second lobe would then suffer, and wrong
solutions would be introduced.

In order to avoid such situations, the algorithm is restricted to accept in the border
list only neighbours which have a lower quality than the one under consideration.
This forces the algorithm to go always from high to low quality pixels, leading to
an artificial splitting of connected regions in the map into different patches.

However, such a strict rule would lead to heavy fragmentation and is not preferable.
Therefore, a parameter g is introduced to relax this strict limitation such that a new
pixel is only accepted in the border list when the relation

qi′j′ > g ∗ qij (4.8)

is fulfilled. This relation is always accounted for when adding a new pixel to the border
list. It is found that g between 1.1 and 1.5 is a good choice.

4.2.5 Topological Defects

The algorithm can also be faced with situations which is called hereafter topological
defects. These defects can be understood by supposing a ring-like polarised structure
for which all polarisation angles point towards the centre of the ring. Starting at any
point of the ring to define absolute polarisation angles and following the ring structure,
a jump will appear on the border of the first to the last defined absolute polarisation
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angles after having performed a full circle. Scheuer et al. (1977) describe this problem
which they encountered by their analysis of polarisation data.

In the observational data, topological defects are often more complex structured.
The artificial jump introduced will cause difficulties in the solution of the local nπ-
ambiguity because this procedure relies on already defined absolute polarisation angles
of neighbouring pixels. When confronted with this situation, the algorithm divides
the list of direct neighbours into sublists possessing similar polarisation angles. The
sublist containing the most pixels is then used to assign the absolute polarisation angle
by solving the local nπ-ambiguity for the pixel under consideration.

The locations of the polarisation angle steps of topological defects are somewhat
artificial since they depend on the actual path of the algorithm through the data. Since
the algorithm processes all frequencies simultaneously, the steps of topological defects
are at the same positions within all frequency maps, and therefore do not cause any
further problems. However, if Pacman encounters a jump in the polarisation angle to
all possible neighbour sublists in any of the frequencies under consideration, Pacman
will reject this pixel and this pixel will not be considered for this patch but queued back
for consideration for the next patches to be constructed. However, these topological
defects are rare events, but it is necessary to take them into account for the solution of
the local nπ-ambiguity.

4.2.6 Spurious Points

The intrinsic polarisation angle distribution might show strong gradients extending
over a few pixels. This could lead to situations, where the algorithm can not solve the
local nπ-ambiguity at all frequencies simultaneously. Therefore, Pacman refuses to
assign an absolute value ϕ̄ij to pixels when Eq. (4.6) yields a value σ∆

ij above a certain
threshold σ∆

max, which can be set at the beginning of the calculation.
The pixels in the regions where this might occur most often have a low signal-

to-noise ratio. Such situations always occur at strongly depolarised areas, leading to
blanked regions in the RM distribution.

4.2.7 Multi-Frequency Fits

The aim of any RM derivation algorithm should be to calculate RMs for an area as
large as possible using as much information as is available. On the other hand, for ra-
dio observations the total radio intensity decreases with increasing frequency. This can
lead to the problem that the area of acceptable polarisation data at a high frequency is
much smaller than at a lower frequency. This is especially true for (diffuse) extended
radio sources. Furthermore, the limit of allowed standard errors σmax

k of the polarisa-
tion angle might be exceeded for only one frequency leaving the values for the other
frequencies still in the acceptable range.

Pacman can take this into account and performs the RM fit by omitting the polar-
isation angles at frequencies which do not meet the quality requirements. In order to
do that, Pacman uses the standard errors σkij

of polarisation angles to define indepen-
dently for each frequency, areas in which the RM map is permitted to be produced.
An additional parameter kmin ≤ f is introduced which describes the minimum num-
ber of frequencies allowing the freedom to use any combination of the minimum of
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frequencies.
In cases of kmin < f , Pacman will start to determine the solution to global and

local nπ-ambiguity only for the pixels fulfilling the quality requirements at all f fre-
quencies. After finishing that, the algorithm proceeds to include pixels satisfying the
quality criteria in less than f frequencies. For these pixels, the same patch build-
ing procedure as described in Sect. 4.2.2 applies with some modification in order to
prevent the final maps from heavy fragmentation. The best quality pixel among the re-
maining pixel is picked but before starting a new patch, Pacman tests if the pixel under
consideration adjoins a patch which has already been processed before. If the pixel
adjoins such a patch, Pacman tries to solve the local nπ-ambiguity following Eq. (4.6)
and applies the patch solution of the global nπ-ambiguity to the pixel. If the pixel
is neither adjoined to an already processed patch nor the local nπ-ambiguity solvable
(i.e. σ∆

ij exceeds σ∆
max) then a new patch is initialised by this pixel.

Another possibility is to force Pacman to use certain frequencies in all circum-
stances. Thus, if the quality requirements are not fulfilled for these particular frequen-
cies, there will be no RM value determined for the pixel under consideration. This
has the advantage that one can use relatively close frequencies as a basis and then in-
clude other frequencies at points when a reliable polarisation signal is detected. The
advantage of this technique is discussed in Sect. 4.5.

4.2.8 Additional Information

Apart from the resulting RM and ϕ0 maps, Pacman provides sets of additional infor-
mation about the data in order to estimate the reliability of the results. A patch map
which contains all patches used is one example. Such a map is very useful, especially
if one requires a minimal number of pixels in a patch in order to accept any calculated
RM values from a particular patch. A map which includes rejected and thus flagged
pixels, can also be obtained. Probably more important are the final χ2- and σRM -
maps which are also provided by Pacman. This information allows one to understand
the reliability of the RM maps obtained and can be used for further evaluation and
analysis of the RM maps.

4.3 Testing the Algorithm

In order to demonstrate the ability of Pacman to solve the nπ-ambiguity, artificially
generated maps were used. To generate them, it is started from a polarisation data set
from Abell 2255 (Govoni et al. 2002), which was kindly provided by Federica Gov-
oni. The RM and ϕ0 maps were calculated from this data set and it was assumed
that these two maps consist of exact values. Then polarisation maps were generated at
four different frequencies which would exactly result from the RM and ϕ0 maps. As
error maps, Gaussian deviates were generated for each frequency which were multi-
plied by the original error maps provided by Federica Govoni. The so generated error
maps were added to the generated frequency maps in order to provide realistic mock
observations.

Pacman and the standard fit algorithm were used to calculate the corresponding
’observed’ RM and ϕ0 maps which then were compared pixel-by-pixel to the initial
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Figure 4.2: Comparison between the simulated RMsim values for an artificially gen-
erated set of polarisation angle maps of four frequencies and values derived by Pac-
man RMpacman and the standard fit algorithm RMstdfit. The scatter is due to noise
which was added to the polarisation angle maps. Note the wrong solutions of the nπ-
ambiguity results which were calculated by the standard fit indicated by the points
around ± 1000 rad m−2.

exact maps. The result of this comparison is shown in Fig. 4.2. On the right panel, the
comparison between the RMpacman values of the Pacman map and the values RMsim

of the initial map is shown. The scatter in the data is due to the noise which was added
to the frequency maps. On the left panel of Fig. 4.2, the pixel by pixel comparison
between the values of the standard fit RMstdfit map and the initial RMsim map is
shown. Again the scatter is due to the added noise. However, one can clearly see the
points at ± 1000 rad m−2 which deviate from the initial data and are due to the wrongly
solved nπ-ambiguity in the case of the standard fit. Thus, this test demonstrates that
the Pacman algorithm yields reliable results to the nπ-ambiguity.

4.4 Statistical Characterisation of Improved RM Maps

4.4.1 Gradient Vector Product Statistic

In Chapter 2, a gradient vector product statistic V was introduced to reveal correlated
noise in the data. Observed RM and ϕ0 maps will always have some correlated fluctu-
ations on small scales, since they are both calculated from the same set of polarisation
angle maps, leading to correlated fluctuation in both maps. The noise correlation be-
tween ϕ0 and RM errors is an anti-correlation of linear shape and can be detected by
comparing the gradients of these quantities. A suitable quantity to detect correlated
noise between ϕ0 and RM is therefore

V =

∫

d2x ~∇RM(~x) · ~∇ϕ0(~x)
∫

d2x |~∇RM(~x)||~∇ϕ0(~x)|
, (4.9)
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where ~∇RM(~x) and ~∇ϕ0(~x) are the gradients of RM and ϕ0. A map pair, which was
constructed from a set of independent random polarisation angle maps ϕ(k), will give
a V ≥ −1. A map pair without any correlated noise will give a V ≈ 0. Hence, the
statistic V is suitable to detect especially correlated small scale pixel noise.

The denominator in Eq. (4.9) is the normalisation and enables the comparison of V
for RM maps of different sources, since V is proportional to the fraction of gradients
which are artefacts. Since, the comparision of the quality between maps calculated for
the same source using the two different algorithms is desired, it is useful to introduce
the unnormalised quantity

Ṽ =

∫

d2x ~∇RM(~x) · ~∇ϕ0(~x). (4.10)

The quantity Ṽ gives the absolute measure of correlation between the gradient align-
ments of RM and ϕ0. The smaller this value is the smaller is the total level of corre-
lated noise in the maps.

4.4.2 Error Under or Over Estimation

One problem, one is faced with is the possibility that the measurement errors are under
or overestimated. Such a hypothesis can be tested by performing a reduced χ2

ν test
which is considered to be a measure for the goodness of each least squares fit and
calculates as follows

χ2
νij

=
1

ν

f
∑

k=1

[

ϕobsij
(k) − (RMij λ

2
k + ϕ0

ij)
]2

σ2
kij

=
s2ij

〈σkij
〉k
, (4.11)

where ν = f−nc is the number of degrees of freedom and f is the number of frequen-
cies used and nc is the number of model parameters (here nc = 2). The parameter s2 is
the variance of the fit and 〈σkij

〉k is the weighted average of the individual variances:

〈σkij
〉k =





1

f

f
∑

k=1

1

σ2
kij





−1

(4.12)

If one believes in the assumption of Gaussian noise, that the data are not corrupted
and that the linear fit is an appropriate model then any statistical deviation from unity
of the map average χ2

ν of this value indicates an under or over error estimation. For
a χ2

ν > 1, the errors have been underestimated and for a χ2
ν < 1, they have been

overestimated.
Unfortunately this analysis does not reveal in its simple form at which frequency

the errors might be under or overestimated. However, one can test for the influence of
single frequencies by leaving out the appropriate frequency for the calculation of the
RM map and comparing the resulting χ2

νij
values with the original one.

It is advisable to evaluate the reduced χ2
νij

-maps in order to locate regions of too
high or too low values for χ2

ν by eye.
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4.4.3 Magnetic Power Spectra

The Pacman algorithm is especially useful for the determination of RM maps of ex-
tended radio sources. RM maps of extended radio sources are frequently analysed
in terms of correlation length and the RM producing magnetic field strength. One
analysis relying on statistical methods in order to derive magnetic field power spec-
tra was developed in Chapter 3. It was realised that the method is sensitive to map
making artefacts and pixel noise, which can lead to misinterpretation of the data at
hand. Therefore this method is a good opportunity to study the influences of noise and
artifacts on the resulting power spectra.

The observational nature of the data is taken into account by introducing a window
function, which can be interpreted as the sampling volume. Especially, a noise reduc-
ing data weighting scheme can be introduced to account for observational noise. One
reasonable choice of weighting is to introduce a factor σRM

0 /σRM
ij , which is called

simple window weighting in the following. Another possible weighting scheme is a
thresholding scheme described by 1/(1 + σRM

0 /σRM
ij ), which means that the noise

below a certain threshold σRM
0 is acceptable and areas of higher noise are down-

weighted.
Note, that magnetic power spectra, which are calculated using the approach ex-

plained above, are used as a valuable estimator for magnetic field strengths and corre-
lation lengths. However, since the spectra are shaped by and are very sensitive to small
scale noise and map making artefacts, they are used here to quantify the influence of
noise and artefacts rather than as an estimator for characteristic properties of the RM
producing magnetic fields.

4.5 Application to Data

For the calculation of what is called further on the standard fit RM maps, the least
squares method was used as suggested by Vallée & Kronberg (1975) and Haves (1975).
Also for the individual RM fits, this method was adopted. As an upper limit for
the RM values |RM |ij = RMmax ± 3σRM

ij was used, where σRM
ij was calculated

following Eq. (4.5). The least-squares fit for the individual data points were always
performed as error weighted fits as described by Eq. (4.3) and (4.4), if not stated oth-
erwise. For the Pacman calculations, α = β = 1 was used for the free parameters in
Eq. (4.7).

However, the method suggested by Ruzmaikin & Sokoloff (1979) was also used
as standard fit algorithm. The results did not change substantially.

4.5.1 Abell 2255E

The Abell cluster 2255, which has a redshift of 0.0806 (Struble & Rood 1999), has
been studied by Burns et al. (1995) and Feretti et al. (1997). The polarised radio source
B1713+641, which is called hereafter A2255E, has a two sided radio lobe structure and
is not directly located in the cluster centre. Polarisation observations were performed
using the Very Large Array (VLA) at 4535, 4885, 8085, and 8465 MHz. The data
reduction was done with standard AIPS (Astronomical Imaging Processing Software)
routines (Govoni et al., in prep.). The polarisation angle maps and their standard error
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maps for the four frequencies were kindly provided by Federica Govoni. A preliminary
analysis of an RM map of this source in order to determine the properties of the
magnetic field in the intra-cluster gas in Abell 2255 is presented in Govoni et al. (2002).

Using the polarisation angle data, an RM map employing the standard fit algo-
rithm was calculated, where the maximal allowed error in polarisation angle was cho-
sen to be σmax

k = 25◦. The resulting RM map is shown in the upper left panel of
Fig. 4.3. The overlaid contour indicates the area which would be covered if polarisa-
tion angle errors were limited by σmax

k = 10◦. For these calculations, it was assumed
that RMmax = 1500 rad m−2.

As can be seen from this map, typical RM values range between -100 rad m−2

and +210 rad m−2. Since this cluster is not known to inhabit a cooling core in its
centre (Feretti et al. 1997), these are expected values. However, the occurrence of
RM values around 1000 rad m−2, which can be seen as grey areas in the standard fit
map of A2255E, might indicate that for these areas the nπ-ambiguity was not properly
solved. One reason for this suspicion is found in the rapid change of RM values
occurring between 1 or 2 pixel from 100 to 1000 rad m−2. All these jumps have a
∆RM of about 1000 rad m−2 indicating nπ-ambiguities between 4 GHz and 8 GHz
which can be theoretically calculated from ∆RM = π/(λ2

2 − λ2
1). Another important

point to note is that parts of the grey areas lie well within the σmax
k = 10◦ contour, and

hence, contribute to the results of any statistical analysis of such a parametrised RM
map.

Therefore, the polarisation data of this source provide a good possibility to demon-
strate the robustness and the reliability of the proposed algorithm. The RM map
calculated by Pacman is shown in the middle left panel. The same numbers for the
corresponding parameters were used; σmax

k = 25◦, RMmax = 1500 rad m−2.
An initial comparison by eye reveals that the method used in the standard fit proce-

dure produces spurious RM ’s in noisy regions (manifested as grey areas in the upper
left panel of Fig. 4.3) as previously mentioned while the RM map calculated by Pac-
man shows no such grey areas. The apparent jumps of about 1000 rad m−2 observed
in the standard fit map have disappeared in the Pacman map. Note, that in principle
by realising that these steps are due to nπ-ambiguities, one could re-run the standard
fit algorithm with a lower RMmax and this wrong solutions would disappear. How-
ever, by doing this a very strong bias is introduced since there might also be large RM
values which are real. This bias can be easily relaxed by using Pacman.

A pixel-by-pixel comparison is shown in Fig. 4.4. In this figure theRMstdfit values
obtained for pixels using a standard fit are plotted on the y-axis against the RMPacman

values obtained at the same corresponding pixel locations using the Pacman algorithm
on the x-axis. The black points represent the error weighted standard fit whereas the
red points represent the non-error weighted standard fit. Note that Pacman applied
only an error weighted least-squares fit to the data. From this scatter plot, one can
clearly see that both methods yield the same RM values for most of the points which
is expected from the visual comparison of both maps. However, the points forRMstdfit

values at around ± 1000 rad m−2 are due to the wrong solution of the nπ-ambiguity
found by the standard fit algorithm.

For the demonstration of the effect of nπ-ambiguity artefacts and pixel noise on
statistical analysis, the cluster magnetic field power spectra were determined by em-
ploying the approach which was briefly described in Sect. 4.4.3. For detailed dis-
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A2255E Hydra (north) Hydra (south)

Faraday Rotation Faraday Rotation Faraday Rotation

Error RMError RM Error RM

Pacman

stdfit

Figure 4.3: Comparison of the standard fit RM maps (upper panels) and the Pacman
RM maps (middle panels) for A2255E (left column), the north (middle column) and
the south lobe (right column) of Hydra A.RM values not represented by the colour bar
are coloured in grey. Panels at the bottom exhibit the respective σRM -maps. For the
standard fit RM map of A2255E a σmax

k = 25◦ and kmin = f = 4 was used, contours
indicate the area covered by a standard fit RM map with σmax

k = 10◦. The parameters
used for the Pacman RM map of A2255E are σmax

k = 25◦, σ∆
max = 25◦, g = 1.2

and kmin = f = 4; for the standard fit RM maps of Hydra A are σmax
k = 25◦ and

kmin = f = 4 (at 8 GHz); for the Pacman RM map of Hydra (north) are σmax
k = 30◦,

kmin = 4, f = 5, σ∆
max = 25◦ and g = 1.5; for the Pacman RM map of Hydra (south)

are σmax
k = 35◦, kmin = f = 5, σ∆

max = 35◦ and g = 2.0.
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cussion and description of the application of the method to data, see Chapter 3. In
the calculation, it was assumed that the source plane is parallel to the observer plane.
Please note, that the application of an RM data filter in order to remove bad data or
data which might suffer from a wrong solution to the nπ-ambiguity as described in
Chapter 3 is not necessary here and not desirable. This is on the one hand due to the
use of an error weighting scheme in the window function to suppress bad data and on
the other hand due to the wish to study the influence of noise and map making artefacts
on the power spectra.

Figure 4.4: A pixel-by-pixel scatter plot ofRMstdfit values obtained using the standard
fit on the y-axis versus the RMPacman values calculated from the polarisation data of
A2255E by employing the new algorithm Pacman. Black points represent results from
an error weighted standard least-squares fit and red points from a non-error weighted
standard fit. The points for RMstdfit values of around ± 1000 radm−2 are artefacts of
a wrong solution of the nπ-ambiguity.

The RM area used for the calculation of any power spectrum is the RM area
which would be covered by the Pacman algorithm while using the same set of parame-
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ter σmax
k ,RMmax. This ensures that pixels on the border or noisy regions of the image

not associated with the source – as seen in the standard fit RM map of A2255E in the
upper left panel of Fig. 4.3 – are not considered for the analysis. (The same philosophy
also applies for the discussion of the Hydra data in Sect. 4.5.2 and Sect. 4.5.3).

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 0.01  0.1  1  10

ε B
(k

) [
G

2 cm
]

k [kpc-1]

stdfit: (σ = 20 degree)
stdfit: err weight (σ= 10 degree)
pac: err weight (σ= 20 degree)

pac: err and window weight (σ= 20 degree)

Figure 4.5: Various power spectra for the cluster Abell 2255 determined from differ-
ent RM map making scenarios are shown. The solid line represents a power spectrum
calculated from a standard fit RM map with σmax

k = 20◦ where no error weighting
was applied. The dashed power spectrum was obtained from a standard fit RM map
with σmax

k = 10◦ where error weighting was applied to the standard fit. The dashed-
dotted power spectrum was determined from a PacmanRM map with σmax

k = 20◦ and
error weighting was applied to the RM fits. The dotted line represents a power spec-
trum calculated from a Pacman RM map as above, but additionally a simple window
weighting was applied for the determination of the power spectra. For comparison, the
power spectra of pure white noise is plotted as a straight dashed line.

The power spectra calculated for various map making scenarios are shown in
Fig. 4.5. The solid and dashed lines represent power spectra calculated from standard
fit RM maps. The solid line was calculated from an RM map which was obtained
by using σmax

k = 20◦ where no error weighting was applied to the standard fit. The
possible window weighting as introduced in Sect. 4.4.3 was also not applied. This
scenario is therefore considered as a worst case. The dashed line was calculated from
an RM map employing an error weighted standard fit while only allowing errors in
the polarisation angle of σmax

k = 10◦. Again no window weighting was applied. From
the comparison of these two power spectra alone, one can see that the large k-scales –
and thus, small real space scales – are sensitive to pixel-noise. Therefore, the applica-
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tion of an error weighted least square fit in the RM calculation leads to a reduction of
noise in the power spectra. Note that in these two power spectra, the influence of the
nπ-artefacts are still present even in the error weighted standard fit RM map.

The two remaining power spectra in Fig. 4.5 allow to investigate the influence of
the nπ-artefacts. The dashed-dotted line represents the power spectra as calculated
from a Pacman RM map allowing σmax

k = 20◦ performing an error weighted fit.
Again, no window weighting was applied to this calculation. One can clearly see that
there is one order of magnitude difference between the error weighted standard fit
power spectra and the Pacman one at large k-values. Since also higher noise levels
σmax

k are allowed for the polarisation angles, this drop can only be explained by the
removal of the nπ-artefacts in the Pacman map. That there is still a lot of noise in the
map on small real space scales (large k’s), which governs the power spectra on these
scales, can be seen from the dotted power spectrum, which was determined as above
while applying a simple window weighting in the calculation. There is an additional
difference of about one order of magnitude between the two power spectra at large
k-scales determined for the two Pacman scenarios.

For comparison the power spectrum of pure white noise is plotted as straight
dashed line in Fig. 4.5. It can be shown analytically, that white noise as observed
through an arbitrary window results in a spectrum of εB(k) ∝ k2.

As another independent statistical test, the gradient vector alignment statistic Ṽ
was applied to the RM and ϕ0 maps calculated by the Pacman and the standard fit al-
gorithm. The gradients of RM and ϕ0 were calculated using the scheme as described
in Sect. 2.3. For the two RM maps shown in Fig. 4.3, a ratio of Ṽstdfit/Ṽpacman = 20
was found, which indicates a significant improvement mostly resulting from removing
the nπ-artefacts by the Pacman algorithm. The calculation of the normalised quantity
V yields Vstdfit = −0.75 and Vpacman = −0.87. Smoothing the Pacman RM map
slightly leads to a drastic decrease of the quantities Ṽ and V . This indicates that the
statistic is still governed by small scale noise. This can be understood by looking at the
RM maps of Abell 2255E in Fig. 4.3. The extreme RM values are situated at the mar-
gin of the source which is, however, also the noisiest region of the source. Calculating
the normalised quantity for the high signal-to-noise region yields Vpacman = −0.47.

4.5.2 Hydra North

The polarised radio source Hydra A, which is in the centre of the Abell cluster 780,
also known as the Hydra A cluster, is located at a redshift of 0.0538 (de Vaucouleurs
et al. 1991). The source Hydra A shows an extended, two-sided radio lobe. Detailed
X-ray studies have been performed on this cluster (e.g. Ikebe et al. 1997; Peres et al.
1998; David et al. 2001). They revealed a strong cooling core in the cluster centre.
The Faraday rotation structure was observed and analysed by Taylor & Perley (1993).
They reported RM values ranging between −1 000 rad m−2 and +3300 rad m−2 in
the north lobe and values down to −12 000 rad m−2 in the south lobe.

Polarisation angle maps and their error maps for frequencies at 7 815, 8 051, 8 165,
8 885 and 14 915 MHz resulting from observation with the Very Large Array were
kindly provided by Greg Taylor. A detailed description of the radio data reduction can
be found in Taylor et al. (1990) and Taylor & Perley (1993).

This section concentrates on the north lobe of Hydra A whereas the south lobe is
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separately discussed in Sect. 4.5.3. The south lobe is more depolarised, leading to a
lower signal-to-noise than in the north lobe. The north lobe is a good example of how
to treat noise in the data, while the south lobe gives a good opportunity to discuss the
limitations and the strength of the algorithm Pacman.

Figure 4.6: A pixel-by-pixel comparison for the Hydra north lobe of RMstdfit values
obtained using the standard fit plotted on the y-axis versus the RMPacman values cal-
culated by employing the new algorithm Pacman. The scattered points at ± 3000-4000
rad m−2 and ± 10 000 rad m−2 are a result of spurious solutions to the nπ-ambiguity
obtained by the standard fit algorithm. For the calculation of the RM maps, all five
frequencies were used.

Using the polarisation data for the four frequencies at around 8 GHz, the standard
fit RM map was calculated which is shown in the upper middle panel of Fig. 4.3.
The maximal allowed error in polarisation angle was chosen to be σmax

k = 25◦ and
RMmax = 15 000 rad m−2. A Pacman RM map is shown in the middle of the middle
panel in Fig. 4.3 below the standard fit map. This map was calculated using the four
frequencies at around 8 GHz with a σmax

k=8GHz = 30◦ and additionally where possible
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the fifth frequency at 15 GHz was used with a σmax
k=15GHz = 35◦. RMmax was chosen

to be 15 000 rad m−2. From a visual comparison of the two maps, one can conclude
that the standard fit map looks more structured on smaller scales and less smooth than
the Pacman map. This structure on small scales might be misinterpreted as small scale
structure of the RM producing magnetic field. Note that the difference in the RM
maps is mainly due to the usage of the fifth frequency for the Pacman map demon-
strating that all information available should be used for the calculation of RM maps
in order to avoid misinterpretation of the data.

Since the four frequencies around 8 GHz are close together, a wrong solution of the
nπ-ambiguity would manifest itself by differences of about ∆RM = 10 000 rad m −2.
Such jumps are not observed in the main patches of the standard fitRM map shown in
Fig. 4.3. However, including the information contained in the polarisation angle map
of the 5th frequency at 15 GHz, which is desirable as explained above, one introduces
the possibility of nπ-ambiguities resulting in ∆RM = 3000...4 000 rad m−2. There-
fore, a scatter plot of a pixel-by-pixel comparison between a standard fit and a Pacman
map, calculated both using the additional available information on the fifth frequency,
is shown in Fig. 4.6. The scattered points are spurious solutions found by the standard
fit algorithm. One can clearly see that they develop at ± 3000-4000 rad m−2 and less
pronounced at ± 10 000 rad m−2.

In order to study the influence of the noise on small scales, power spectra were
calculated from RM maps obtained using different parameter sets for the Pacman and
the standard fit algorithm. As for Abell 2255E, all calculations of power spectra were
done for RM areas which would be covered by the Pacman fit if the same parameters
were used. Again this leads to exclusion of pixels in the standard fit RM map which
are not associated with the source.

There is a clear depolarisation asymmetry of the two lobes of Hydra A observed
as described by the Laing–Garrington effect (Taylor & Perley 1993; Lane et al. 2004).
Therefore, it is assumed that for the calculation of any power spectra for the Hydra
source, the source plane is tilted by an inclination angle of 45◦ where the north lobe
points towards the observer and the south lobe away from the observer.

For a first comparison, the power spectra for two RM maps similar to the one
shown in Fig. 4.3 were calculated. They were obtained using the four frequencies at 8
GHz for the standard fit algorithm and using additionally the fifth frequency when pos-
sible for the Pacman algorithm. The other parameters were chosen to be σmax

k = 35◦

and RMmax = 15 000 rad m−2. For these two RM maps, the power spectra were
determined by applying firstly no window weighting at all and secondly threshold win-
dow weighting as described in the end of Sect. 4.4.3. The threshold was chosen to be
σRM

0 = 75 rad m−2 which represents the high signal-to-noise region. The respective
spectra are exhibited in Fig. 4.7.

For the power spectra, nπ-artefacts should play only a minor role in the calculation
of the power spectra as explained above. Therefore, any differences arising in these
spectra are caused by the varying treatment of noise in the map making process or
in the analysis. Comparing the power spectra without window weighting, the one
obtained from the Pacman RM map lies below the one from the standard fit RM
map. The difference is of the order of half a magnitude for large k’s – small real space
scales. The standard fit power spectrum seems to increase with larger k but the Pacman
one seems to decrease over a greater range in k. The reason for this difference is the
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Figure 4.7: Various power spectra calculated for the RM maps for the north lobe of
Hydra A are shown. The dashed dotted line and the dotted line represent the power
spectra calculated from the standard fit RM map and the Pacman RM map, respec-
tively, while no window weighting was applied. A threshold window weighting as-
suming a σRM

0 = 75 rad m−2 yield the dashed line power spectrum for the standard
fit map and the solid line for the Pacman map. The standard fit maps were calculated
from the four frequencies at 8 GHz whereas the Pacman maps were determined using
additionally the fifth frequency when possible. For both algorithms, σmax

k = 35◦ was
used. The influence of the small-scale pixel noise on the power spectra can clearly be
seen in this figure at large k-values.

same one which was responsible for the different smoothness in the two RM maps
shown in Fig. 4.3, namely that only four frequencies were used for the standard fit
RM map. Even introducing a window weighting scheme, which down-weights noisy
region, cannot account entirely for that difference as can be seen from the comparison
of the window weighted power spectra. This is especially true because the small-scale
spatial structures are found even in the high signal-to-noise regions when using only
four frequencies for the RM map calculation. This demonstrates again how important
it is to include all available information in the map making process.

In order to study the influence of the maximal allowed measurement error in the
polarisation angle σmax

k , power spectra were calculated for a series of Pacman RM
maps obtained for σmax

k ranging from 5◦ to 35◦. The RM maps were derived using all
five frequencies kmin= 5, not allowing any points to be considered for which only four
frequencies fulfil σkij

< σmax
k . Again an RMmax = 15 000 rad m−2 was used. The

resulting power spectra using a threshold window weighting (σRM
0 = 50 rad m−2) are
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exhibited in Fig. 4.8. One can see that they are stable and do not differ substantially
from each other even though the noise level increases slightly when increasing the
σmax

k . This demonstrates the robustness of the Pacman algorithm.
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Figure 4.8: Power spectra for the north lobe of Hydra A calculated from a series of
Pacman RM maps are shown. The various coloured dashed and dotted lines show
power spectra from RM maps calculated for σmax

k ranging from 5◦ to 35◦ using all
five frequencies kmin = 5. The spectra were determined applying threshold window
weighting (σRM

0 = 50 rad m−2). For comparison the solid red line power spectrum,
which is the largest spectrum at k > 10 kpc−1, is not window weighted for σmax

k =
35◦. The power spectrum represented by the blue stars was derived from a Pacman
RM map obtained using the four frequencies at 8 GHz and a σmax

k = 35◦.

For comparison, two more power spectra are plotted in Fig. 4.8. For the solid red
line spectrum, no window weighting was applied to an RM map which was calculated
as above having σmax

k = 35◦. One can clearly see that the spectrum is governed by
noise on large k-scales – small real space scales. Thus, some form of window weight-
ing in the calculation of the power spectra seems to be necessary in order to suppress
a large amount of noise.

Another aspect arises in the noise treatment if one considers the power spectra
represented by the blue stars which was calculated using a threshold window weighting
(σ0 = 50 rad m−2). This power spectrum represents the analysis for an RM map
obtained using only the four frequencies at 8 GHz while σmax

k = 35◦. It is striking
that the noise level on large k-scales (on small real space scales) is lower than for the
RM maps obtained for the five frequencies, one would expect it to be the other way
round. Apparently the fifth frequency has a lot of weight in the determination of σRM

ij
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Figure 4.9: On the left panel, a χ2
νij

map is shown. The yellow and green regions
have values larger than unity indicating underestimation of errors. Note that for these
regions for the RM fit five frequencies were used whereas in the outer parts of the
source only four frequencies were used. A Ṽ map for the north lobe of Hydra A is
exhibited on the right panel. The extreme negative values (red and black) correspond
to strong anti-correlation of RM and ϕ0 fluctuations, which are produced by noise in
the observed maps. However, the green and blue coloured regions have values around
zero and are therefore high signal-to-noise regions (compare with the σRM map in the
lower middle panel of Fig. 4.3).

(see Eq. (4.3)) since this frequency is almost twice as large as the other four. If the
measurement errors of the polarisation angles are underestimated this can lead to an
underestimation of the uncertainty σRM

ij in the final RM value due to Gaussian error
propagation.

One can test the hypothesis of underestimation of errors by performing a reduced
χ2

ν test as described in Sect. 4.4.2. The reduced χ2
νij

map for the Pacman RM map of
Hydra North derived by using a multi-frequency fit (see middle upper panel of Fig. 4.3)
is exhibited in the left panel of Fig. 4.9. The red values are close to unity. However
the yellow and blue regions in this map are values larger than unity indicating that
the errors are underestimated in these regions. Note that in these regions there is also
the fifth frequency used for the RM fit which might indicate that the errors for this
frequeny are underestimated by a larger factor than for the other four frequencies.

The gradient vector product statistic Ṽ was also applied to the RM and ϕ0 maps
obtained by using the RM maps as shown in the middle panel of Fig. 4.3 and the
respective ϕ0 maps. The calculation yields for the ratio Ṽstdfit/Ṽpacman = 1.2. This
corresponds to a slight decrease of correlated noise in the Pacman maps. The calcu-
lation of the normalised quantity results in Vstdfit = −0.85 for the standard fit and
Vpacman = −0.83 for the Pacman maps. This is expected since the low signal-to-noise
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areas of the north lobe of Hydra A will govern this gradient statistic and for both RM
maps these areas look very similar. In order to visualise this, a Ṽ map was calculated
which is exhibited on the right panel of Fig. 4.9. The extreme negative values ob-
served for the low signal-to-noise regions (red regions) indicate strong anti-correlation
and thus, anti-correlated fluctuations of RM and ϕ0 in these regions. For the high
signal-to-noise regions (blue and green) moderate values varying around zero are ob-
served. Note the striking morphological similarity of the RM error (σRM ) map in the
lower middle panel of Fig. 4.3 and of the Ṽ map as shown in Fig. 4.9. These two
independent approaches to measure the RM maps accuracy give a basically identical
picture. These approaches are complementary since they use independent information.
TheRM error map is calculated solely from σk maps, which are based on the absolute
polarisation errors, whereas the Ṽ map is based solely on the RM derived from the
polarisation angle ϕ(k) maps.

However, note that the results for magnetic field strengths and correlation lengths
presented in Chapter 3 are not changed substantially. This is owing to the fact that
in Chapter 3 only the power on scales which were larger than the resolution element
(beam) was considered for the calculation of the magnetic field properties. Therefore
the small scale noise was not considered for this calculation and thus, no change in the
results given is expected. The central magnetic field strength for this cluster as derived
during the course of this work is about 10 µG and the field correlation length is about
1 kpc being consistent with the results presented in Chapter 3.

4.5.3 The Quest for Hydra South

As already mentioned, the southern part of the Hydra source has to be addressed sep-
arately, as it differs from the northern part in many respects. One of them is that the
depolarisation is higher in the south lobe which especially complicates the analysis of
this part.

AnRM map obtained employing the standard fit algorithm using the four frequen-
cies at 8 GHz is shown in the upper right panel of Fig. 4.3. This RM map exhibits
many jumps in the RM distribution which seems to be split in lots of small patches
having similar RM ’s. Furthermore, RM ’s of −12 000 rad m−2 are detected (indi-
cated as red regions in the map). If one includes the fifth frequency at 15 GHz in the
standard fit algorithm, the appearance of the RM map does not change significantly,
and most importantly, the extreme values of about −12 000 rad m−2 do not vanish.

The application of the Pacman algorithm with conservative settings for the param-
eters σmax

k , σ∆
max and g, leads to a splitting of the RM distribution into many small,

spatially disconnected patches. Such a map does look like a standard fit RM map and
there are still the RM jumps and the extreme RM values present. However, if one
lowers the restrictions for the construction of patches, the Pacman algorithm starts to
connect patches to the patch with the best quality data available in the south lobe us-
ing its information on the global solution of the nπ-ambiguity. An RM map obtained
pushing Pacman to such limits is exhibited in the middle right panel of Fig. 4.3. Note
that the best quality area is covered by the bright blue regions and a zoom-in for this
region is also exhibited in the small box to the lower left of the source. In the lowest
right panel of Fig. 4.3, a σRM -map is shown indicating the high quality regions by the
red colour.
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Figure 4.10: An example for individual RM fits across an RM jump observed in
the RM maps of the south lobe of Hydra A. The solid line indicates the standard fit
solution and the dashed one represents the Pacman solution. The error bars in these
plots indicate the polarisation errors which were multiplied by 3. Note that this is
an extreme example, where Pacman chooses a solution to the individual fits in noisy
regions which has not necessarily the minimal χ2 value by construction. However, the
global statistical tests applied to the whole RM map of Hydra South indicate that the
Pacman map has less artefacts in comparison to the standard fit RM map. Note, that
for this particular local example it is not trivial to decide which algorithm is giving the
right solution.

The RM distribution in this Pacman map exhibits clearly fewer jumps than the
standard fit map although the jumps do not vanish entirely. Another feature that al-
most vanishes in the Pacman map are the extreme RM ’s of about −12 000 rad m−2.
The RM distribution of the Pacman map seems to be smoother than the one of the
standard fit map. However, if the individual RM fits for points, which deviate in their
RM values depending on the algorithm used, are compared in a ϕ(k)-λ2

k-diagram, the
standard fit seems to be the one which would have to be preferred since it does fit better
to the data at hand. Pacman has some resistance to pick this smallest χ2 solution if it
does not make sense in the context of neighbouring pixel information. As an example,
individual RM fits which are observed across the RM jumps are plotted in Fig. 4.10.
However as shown above, one has to consider that the measurement errors might be
underestimated which gives much tighter constraints on the fit than it would otherwise
be.

In order to investigate these maps further, the threshold weighted (σRM
0 = 50 rad

m−2) and the simple weighted power spectra were also calculated from the Pacman
and the standard fit RM maps of the south lobe and were compared to the one from
the north lobe. The RM maps used for the comparison were all calculated employing
σmax

k = 35◦ and kmin = f = 5. The various power spectra are shown in Fig. 4.11.
One can clearly see that the power spectra calculated for the south lobe lie well above
the power spectra from the north lobe, which is represented as filled circles.
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Figure 4.11: Various power spectra for the RM maps of the south lobe of the Hydra
source are compared with the power spectrum of the north lobe calculated from the
Pacman RM map (kmin = 5, σmax

k = 35◦) employing a threshold weighting with
σRM

0 = 50 rad m−2 represented as filled circles.

Concentrating on the comparison of the simple window weighted power spectra of
the south lobe in Fig. 4.11 (the solid line is from PacmanRM map and the dashed line
is from standard fit RM map) to the one of the north lobe, one finds that the power
spectrum calculated from the PacmanRM map is closer to the one from the north lobe
than the power spectrum derived from the standard fit RM map. This indicates that
the Pacman RM map might be the right solution to the RM determination problem
for this part of the source. However, this difference vanishes if a different window
weighting scheme is applied to the calculation of the power spectrum. This can be
seen by comparing the threshold window weighted power spectra (dotted line for the
power spectra of the Pacman RM map and dashed dotted line for the power spectra
from the standard fitRM map) in Fig. 4.11. Since the choice of the window weighting
scheme seems to have also an influence on the result the situation is still inconclusive.

An indication for the right solution of the nπ-ambiguity problem may be found in
the application of the gradient vector product statistic Ṽ to the Pacman maps and the
standard fit maps of the south lobe (as shown in Fig. 4.3). The calculations yield a ratio
Ṽstdfit/Ṽpacman = 12. This is a difference of one order of magnitude and represents
a substantial decrease in correlated noise in the Pacman maps. The calculation of the
normalised quantity yields Vstdfit = −0.69 for the standard fit maps and Vpacman =
−0.47 for the Pacman maps. This result strongly indicates that the Pacman map should
be the preferred one.
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The final answer to the question about the right solution of the RM distribution
problem for the south lobe of Hydra A has to be postponed until observations of even
higher sensitivity, higher spatial resolutions and preferably also at different frequencies
are available.

4.6 Lessons & Conclusions

A new algorithm for the calculation of Faraday rotation maps from multi-frequency
polarisation data sets was presented. Unlike other methods, this algorithm uses global
information and connects information about individual neighbouring pixels with one
another. It assumes that if regions exhibit small polarisation angle gradients between
neighbouring pixels in all observed frequencies simultaneously, then these pixels can
be considered as connected, and information about one pixel can be used for neigh-
bouring ones, and especially, the solution to the nπ-ambiguity should be the same. It
is stressed here, that this is a very weak assumption, and – like all other criteria used
within the Pacman algorithm – only depends on the polarisation data at hand and the
signal-to-noise ratio of the observations.

The Pacman algorithm is especially useful for the calculation of RM and ϕ0 maps
of extended radio sources and its robustness was demonstrated. Global algorithms as
implemented in Pacman are preferable for the calculation of RM maps and needed if
reliable RM values are desired from low signal-to-noise regions of the source.

The Pacman algorithm reduces nπ-artefacts in noisy regions and makes the unam-
biguous determination of RM and ϕ0 in these regions possible. Pacman allows to use
all available information obtained by the observation. Any statistical analysis of the
RM maps will profit from these improvements.

In the course of this work, the following lessons were learned:

1. It is important to use all available information obtained by the observation. It
seems especially desirable to have a good frequency coverage. The result is a
smoother, less noisy map.

2. For the individual least-squares fits of the RM , it is advisable to use an error
weighting scheme in order to reduce the noise.

3. Global algorithms are preferable, if reliable RM values are needed from low
signal-to-noise regions at the edge of the source.

4. Sometimes it is necessary to test many values of the parameters RMmax, σmax
k

and σ∆
max, which govern the Pacman algorithm, in order to investigate the influ-

ence on the resulting RM maps.

5. One has to keep in mind that whichever RM map seems to be most believable,
it might still contain artefacts. One should do a careful analysis by looking on
individual RM pixel fits but one also should consider the global RM distribu-
tion. The gradient vector product statistic Ṽ was presented as a useful tool to
estimate the level of reduction of cross-correlated noise in the calculated RM
and ϕ0 maps.
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6. For the calculation of power spectra it is always preferable to use a window
weighting scheme which has to be carefully selected.

7. Finally, under or overestimation of the measurement errors of polarisation angles
(which will propagate through all calculations due to error propagation) could
influence the final results. A reduced χ2

ν test was performed in order to test if
the errors are over or under estimated.

One can conclude that the calculation ofRM maps is a very difficult task requiring
a critical view to the data and a careful noise analysis. However, Pacman offers a
good opportunity to calculate reliable RM maps and to understand the data and its
limitations better. Furthermore, improved RM maps and the according error analysis
for Hydra North and A2255E were presented in this chapter.



Chapter 5

A Bayesian View on Faraday
Rotation Maps – Seeing the
Magnetic Power Spectra in Galaxy
Clusters

In the last chapter, a method was introduced in order to calculate reliable Faraday
rotation maps from multi-frequency polarisation data sets suppressing map making
artefacts. In order to use the full potential of these high quality RM maps, an ac-
curate power spectrum estimator based on Bayesian maximum likelihood methods is
developed and successfully applied in this chapter.

This work is submitted as Vogt & Enßlin to Astron. & Astrophys.

5.1 Introduction

In Chapter 3, a method in order to determine the magnetic power spectra by Fourier
transforming RM maps was proposed. Based on these considerations, this method
was applied to observational data and the magnetic power spectrum of three clusters
(Abell 400, Abell 2634 and Hydra A) was determined fromRM maps of radio sources
located in these clusters. Furthermore, field strengths of ∼ 12 µG were determined
for the cooling flow cluster Hydra A, 3 µG and 6 µG for the non-cooling flow clusters
Abell 2634 and Abell 400, respectively. This analysis revealed spectral slopes of the
power spectra with spectral indeces −2.0 . . .−1.6. However, it was realised that using
the proposed analysis, it is difficult to reliably determine differential quantities such
as spectral indeces due to the complicated shapes of the used emission regions which
lead to a redistribution of magnetic power within the spectra.

Recently, Murgia et al. (2004) proposed a numerical method in order to determine
the magnetic power spectrum in clusters. They infer the magnetic field strength and
structure by comparing simulations of RM maps as caused by multi-scale magnetic
fields with the observed polarisation properties of extended cluster radio sources such
as radio galaxies and haloes. They argue that field strengths derived in the literature
using analytical expressions have been overestimated the field strengths by a factor of

99
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∼ 2.
In order to determine a power spectrum from observational data, maximum like-

lihood estimators are widely used in astronomy. These methods and algorithms have
been greatly improved especially by the Cosmic Microwave Background (CMB) anal-
ysis which is facing the problem of determining the power spectrum from large CMB
maps. Kolatt (1998) proposed to use such an estimator to determine the power spec-
trum of a primordial magnetic field from the distribution of RM measurements of
distant radio galaxies.

Based on the initial idea of Kolatt (1998), the methods developed by the CMB
community (especially Bond et al. 1998) and the understanding of the magnetic power
spectrum of cluster gas (Enßlin & Vogt 2003), a Bayesian maximum likelihood ap-
proach is derived to calculate the magnetic power spectrum of cluster gas given ob-
served Faraday rotation maps of extended extragalactic radio sources. The power
spectrum enables to determine also characteristic field length scales and strengths.
After testing the method on artifical generated RM maps with known power spectra,
the analysis is applied to a Faraday rotation map of Hydra A North. The data were
kindly provided by Greg Taylor. In addition, this method allows to determine the un-
certainties of the measurement and, thus, one is able to give errors on the calculated
quantities. Based on these calculations, statements for the nature of turbulence for the
magnetised gas are derived.

In Sect. 5.2, a method employing a maximum likelihood estimator as suggested by
Bond et al. (1998) in order to determine the magnetic power spectrum from RM maps
is introduced. Special requirements for the analysis of RM maps with such a method
are discussed. In Sect. 5.3, the maximum likelihood estimator is applied to generated
RM maps with known power spectra in order to test the algorithm. In Sect. 5.4, the ap-
plication of the method to data of Hydra A is described. In Sect. 5.5, the derived power
spectra are presented and the results are discussed. In the last Sect. 5.6, conclusions
are drawn.

Throughout the rest of this chapter, a Hubble constant of H0 = 70 km s−1 Mpc−1,
Ωm = 0.3 and ΩΛ = 0.7 in a flat universe are assumed. All equations follow the
notation of Chapter 3.

5.2 Maximum Likelihood Analysis

5.2.1 The Covariance Matrix CRM

One of the most common used methods of Bayesian statistic is the maximum likeli-
hood method. The likelihood function for a model characterised by p parameters ap

is equivalent to the probability of the data ∆ given a particular set of ap and can be
expressed in the case of (near) Gaussian statistic of ∆ as

L∆(ap) =
1

(2π)n/2|C|1/2
· exp

(

−1

2
∆

TC−1
∆

)

, (5.1)

where |C| indicates the determinant of a matrix, ∆i = RMi are the actual observed
data, n indicates the number of observationally independent points and C = C(ap) is
the covariance matrix. This covariance matrix can be defined as

Cij(ap) = 〈∆obs
i ∆obs

j 〉 = 〈RM obs
i RMobs

j 〉, (5.2)
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where the brackets 〈〉 denote the expectation value and, thus, Cij(ap) describes the
expectation based on the proposed model characterised by a particular set of ap’s.
Now, the likelihood function L∆(ap) has to be maximised for the parameters ap. Note,
that although the magnetic fields might be non-Gaussian, the RM should be close
to Gaussian due to the central limit theorem. Observationally, RM distributions are
known to be close to Gaussian (e.g. Taylor & Perley 1993; Feretti et al. 1999a,b; Taylor
et al. 2001).

Ideally, the covariance matrix is the sum of a signal and a noise matrix term which
results if the errors are uncorrelated to true values. Writing RM obs = RM true+δRM
results in

Cij(ap) = 〈RM true
i RM true

j 〉 + 〈δRMi δRMj〉
= CRM (~x⊥i, ~x⊥j) + 〈δRMi δRMj〉 (5.3)

where ~x⊥i is the displacement of point i from the z-axis and 〈δRMi δRMj〉 indicates
the expectation for the uncertainty in the measurement. Unfortunately, while in the
discussion of the power spectrum measurements of CMB experiments the noise term
is extremely carefully studied, for the discussion here this is not the case and goes
beyond the scope of this work. Thus, this term will be neglected throughout the rest of
this chapter. However, Johnson et al. (1995) discuss uncertainties involved in the data
reduction process in order to gain a model for 〈δRMi δRMj〉.

Since one is interested in the magnetic power spectrum, one has to find an expres-
sion for the covariance matrix Cij(ap) = CRM (~x⊥i, ~x⊥j) which can be identified
as the RM autocorrelation 〈RM(~x⊥i)RM(~x⊥j)〉. This has then to be related to the
magnetic power spectra.

The observable in any Faraday experiment is the rotation measure RM. For a line of
sight parallel to the z-axis and displaced by ~x⊥ from it, the RM arising from polarised
emission passing from the source zs(~x⊥) through a magnetised medium to the observer
located at infinity is expressed by

RM(~x⊥) = a0

∫ ∞

zs(~x⊥)
dz ne(~x)Bz(~x), (5.4)

where a0 = e3/(2πm2
ec

4), ~x = (~x⊥, z), ne(~x) is the electron density and Bz(~x) is the
magnetic field component along the line of sight.

In the following, it is assumed that the magnetic fields in galaxy clusters are
isotropically distributed throughout the Faraday screen. If one samples such a field
distribution over a large enough volume they can be treated as statistically homoge-
neous and statistically isotropic. Therefore, any statistical average over a field quantity
will not be influenced by the geometry or the exact location of the volume sampled.
Following Sect. 3.3, one can define the elements of the RM covariance matrix using
the RM autocorrelation function CRM (~x⊥i, ~x⊥j) = 〈RM(~x⊥i)RM(~x⊥j)〉 and intro-
duce a window function f(~x) which describes the properties of the sampling volume

CRM (~x⊥, ~x
′
⊥) = ã0

2
∫ ∞

zs

dz

∫ ∞

z′s

dz′f(~x)f(~x′)〈Bz(~x⊥, z)Bz(~x
′
⊥, z

′)〉, (5.5)

where ã0 = a0ne0, the central electron density is ne0 and the window function is
defined by

f(~x) = 1{~x⊥∈Ω} 1{z≥zs(~x⊥)} g(~x)ne(~x)/ne0, (5.6)
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where 1{condition} is equal to unity if the condition is true and zero if not and Ω defines
the region for which RM ’s were actually measured. The electron density distribution
ne(~x) is chosen with respect to a reference point ~xref (usually the cluster centre) such
that ne0 = ne(~xref ), e.g. the central density, and B0 = 〈 ~B2(~xref )〉1/2. The dimen-
sionless average magnetic field profile g(~x) = 〈 ~B2(~x)〉1/2/B0 is assumed to scale
with the density profile such that g(~x) = (ne(~x)/ne0)

αB .
Setting ~x′ = ~x+~r and assuming that the correlation length of the magnetic field is

much smaller than characteristic changes in the electron density distribution, one can
separate the two integrals in Eq. (5.5). Furthermore, one can introduce the magnetic
field autocorrelation tensor Mij = 〈Bi(~x) ·Bj(~x+ ~r)〉 (see e.g. Subramanian 1999;
Enßlin & Vogt 2003). Taking this into account, the RM autocorrelation function can
be described by

CRM (~x⊥, ~x⊥ + ~r⊥) = ã0
2
∫ ∞

zs

dz f(~x)f(~x+ ~r)

∫ ∞

(z′s−z)→−∞
drzMzz(~r) (5.7)

Here, the approximation (z ′s − z) → −∞ is valid for Faraday screens which are much
thicker than the magnetic autocorrelation length. This will turn out to be the case in
the application at hand.

The Fourier transformed zz-component of the autocorrelation tensor Mzz(~k) can
be expressed by the Fourier transformed scalar magnetic autocorrelation function w(k)
=
∑

iMii(k) and a k dependent term (see Eq. (3.25)) leading to

Mzz(~r) =
1

2π3

∫ ∞

−∞
d3k

w(k)

2

(

1 − k2
z

k2

)

e−i~k~r (5.8)

Furthermore, the one dimensional magnetic energy power spectrum εB(k) can be ex-
pressed in terms of the magnetic autocorrelation function w(k) such that

εB(k) dk =
k2w(k)

2 (2π)3
dk. (5.9)

As stated in Chapter 3, the kz = 0 - plane of Mzz(~k) is all that is required to
reconstruct the magnetic autocorrelation function w(k). Thus, inserting Eq. (5.8) into
Eq. (5.7) and using Eq. (5.9) leads to

CRM (~x⊥, ~x⊥ + ~r⊥) = 4π2ã0
2
∫ ∞

zs

dz f(~x)f(~x+ ~r) ×
∫ ∞

−∞
dk εB(k)

J0(kr⊥)

k
, (5.10)

where J0(kr⊥) is the 0th Bessel function. This equation gives an expression for the
RM -autocorrelation function in terms of the magnetic power spectra of the Faraday
producing medium.

Since the magnetic power spectrum is the interesting function, one can parametrise
εB(k) =

∑

p εBi1{k ∈ [kp,kp+1]}, where εBi is constant in the interval [kp, kp+1], lead-
ing to

CRM (εBp) = 4π2ã0
2
∫ ∞

zs

dz f(~x)f(~x+ ~r)
∑

p

εBp

∫ kp+1

kp

dk
J0(kr⊥)

k
, (5.11)

where the εBp are to be understood as the model parameter ap for which the likelihood
function L ~∆)

(ap) has to be maximised given the Faraday data ∆.
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5.2.2 Evaluation of the Likelihood Function

In order to maximise the likelihood function, Bond et al. (1998) approximate the like-
lihood function as a Gaussian of the parameters in regions close to the maximum
~a = {a}max, where {a}max is the set of model parameters which maximise the like-
lihood function. In this case, one can perform a Taylor expansion of lnL∆(~a + δ~a)
about ap and truncates at the second order in δap without making a large error.

lnL∆(~a+ δ~a) = lnL∆(~a) +
∑

p

∂ lnL∆(~a)

∂ap
δap +

1

2

∑

pp′

∂2 lnL∆(~a)

∂ap ∂ap′
δapδp′ (5.12)

With this approximation, one can directly solve for the δap that maximise the like-
lihood function L

δap = −
∑

p′

(

∂2 lnL∆(~a)

∂ap ∂ap′

)−1
∂ lnL∆(~a)

∂ap′
, (5.13)

where the first derivative is given by

∂ lnL∆(~a)

∂ap′
=

1

2
Tr

[

(

∆∆
T − C

)

(

C−1 ∂C

∂ap′
C−1

)]

(5.14)

and the second derivative is expressed by

F (a)
pp′ = −

(

∂2 lnL∆(~a)

∂ap ∂ap′

)

= Tr

[

(

∆∆
T −C

)

(

C−1 ∂C

∂ap
C−1 ∂C

∂ap′
C−1

−1

2
C−1 ∂2C

∂ap∂ap′
C−1

)]

+
1

2
Tr

(

C−1 ∂C

∂ap
C−1 ∂C

∂ap′

)

, (5.15)

where Tr indicates the trace of a matrix. The second derivative is called the curvature
matrix. If the covariance matrix is linear in the parameter ap then the second deriva-
tives of the covariance matrix ∂2C/(∂ap∂ap′) vanish. Note that for the calculation
of the δap, the inverse curvature matrix (F (a)

pp′ )
−1 has to be calculated. The diagonal

terms of the inverse curvature matrix (F (a)
pp )−1 can be regarded as the errors σ2

ap
to the

parameters ap.
A suitable iterative algorithm to determine the power spectra would be to start

with an initial guess of a parameter set ap. Using this initial guess, the δap’s have to
be calculated using Eq. (5.13). If the δap’s are not sufficiently close to zero, a new
parameter set a′p = ap + δap is used and again the δa′p are calculated and so on. This
process can be stopped when δap/σap ≤ ε, where ε describes the required accuracy.

5.2.3 Binning and Rebinning

In the used parametrisation of the model given by Eq. (5.11) the bin size, i.e. the
size of the interval [kp, kp+1], is important. Since the power spectrum is measured,



104 CHAPTER 5. A BAYESIAN VIEW ON FARADAY ROTATION MAPS

equal bins on a logarithmic scale are chosen as initial binning. However, if the bins
are too small then the cross correlation between two bins could be very high and the
two bins cannot be regarded as independent anymore. Furthermore, the errors might
be very large, and could be one order of magnitude larger than the actual values. In
order to avoid such situations, it is preferable to chose either less bins or to rebin by
adding two bins together. Note that this oversampling is not a real problem, since the
model parameter covariance matrix takes care of the redundancy between data points.
However, for computational efficiency and for a better display of the data to the human
eye, a smaller set of mostly independent data points is preferable.

In order to find a criterion for rebinning, an expression for the cross correlation of
two parameter ap and ap′ can be defined by

δpp′ =
〈σpσp′〉
〈σp〉 〈σp′〉

=
F−1

pp′
√

F−1
pp F−1

p′p′

, (5.16)

where the full range, −1 ≤ δpp′ ≤ 1, is possible but usually the correlation will be
negative indicating anti-correlation. The used criterion for rebinning is to require that
if the absolute value of the cross-correlation |δpp′ | is larger than δmax

pp′ for two bins p
and p′ then these two bins are added together in such a way that the magnetic energy
∑

p εBp ∗ ∆kp is conserved.
After rebinning the algorithm starts again to iterate and finds the maximum with

the new binning. This is done as long as the cross-correlation of two bins is larger than
required.

5.2.4 The Algorithm

As a first guess for a set of model parameters εBi , the results from a Fourier analysis
of the original RM map employing the algorithms as described in Chapter 3 were
used. However, one can also employ as first guess εBi a simple power law εBi ∝ kα

i ,
where α is the spectral index. The results and the shape of the power spectrum did not
change.

If not stated otherwise, an iteration is stopped when ε < 0.01, i.e. the change in
a parameter εBi is smaller than 1% of the error in the parameter εBi itself. Once the
iteration converges to a final set of model parameters the cross-correlation between the
bins is checked and if necessary, the algorithm will start a new iteration after rebinning.
Throughout the rest of the chapter, a |δpp′ | < 0.5 for p 6= p′ is required.

Once the power spectra in terms of εB(k) =
∑

p εBi1{[kp,kp+1]} is determined, one
can calculate the magnetic energy density εB by integration of the power spectrum

εB(ap) =

∫ ∞

0
dk εB(k) =

∑

p

εBi∆kp, (5.17)

where ∆kp = kp+1 − kp is the binsize.
Also λB and λRM are accessible by integration of the power spectrum (see Chapter

3).

λB = π

∫∞
0 dk εB(k)/k
∫∞
0 dk εB(k)

= π

∑

p εBi ln(kp+1/kp)
∑

p εBi∆kp
(5.18)
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λRM = 2

∫∞
0 dk εB(k)/k2

∫∞
0 dk εB(k)/k

= 2

∑

p εBi (1/kp − 1/kp+1)
∑

p εBi ln(kp+1/kp)
. (5.19)

Since the method allows to calculate errors σεBi
, one can also determine errors for

these integrated quantities. However, the cross-correlations δpp′ which are non-zero as
already mentioned, have to be taken into account. The probability distribution P (~a) of
a parameter can often be described by a Gaussian

P (~a) ∼ e−
1

2
δ~aT X−1δ~a, (5.20)

where X is the covariance matrix of the parameters, δ~a = ~a − ~apeak, ~a = {a}max is
the determined maximum value for the probability distribution and ~apeak is the actual
maximum of the probability function. The standard deviation is defined as

〈δε2B〉 = 〈(εB(a) − εB)2〉 =

∫

dnaP (a) (εB(a) − εB)2. (5.21)

Assuming that P (~a) follows a Gaussian distribution (as done above in Eq. (5.20)) and
using that εB(a) is linear in the ap = εBi then Eq. (5.21) becomes

〈δε2B〉 =

∫

dnaP (a)

[

δa
∂εB
∂ap

]2

(5.22)

=

∫

dnaP (a)
∑

p

δap
∂εB
∂ap

∑

p′

δap′
∂εB
∂ap′

. (5.23)

Rearranging this equation and realising that the partial derivatives are independent
on the ap since εB is linear in the ap’s this leads to

〈δε2B〉 =
∑

pp′

∂εB
∂ap

∂εB
∂ap′

∫

dnaP (a) δap δap′ (5.24)

and finally using Eq. (5.16)

〈δε2B〉 =
∑

pp′

∂εB
∂ap

∂εB
∂ap′

〈σpσp′〉, (5.25)

where 〈σp σp′〉 = F−1
pp′

A similar argumentation can be applied to the error derivation for the correlation
lengths λRM and λB , although the correlation lengths are not linear in the coefficients
ap. If one uses the partial derivatives at the determined maximum, one is still able to
approximately separate them from the integral. This leads to the following expressions
for their errors

〈δλ2
B〉 ≈

∑

pp′

∂λB

∂ap









amax
p

∂λB

∂ap′









amax

p′

〈σpσp′〉 (5.26)

and

〈δλ2
RM 〉 ≈

∑

pp′

∂λRM

∂ap









amax
p

∂λRM

∂ap′









amax

p′

〈σpσp′〉. (5.27)
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5.3 Testing the Algorithm

In order to test the algorithm, the maximum likelihood estimator was applied to gen-
erated RM maps with a known magnetic power spectrum εB(k). Eq. (3.31) gives
a prescription for the relation between the amplitude of RM , | ˆRM (k⊥)|2, and the
magnetic power spectrum in Fourier space.

εobs
B (k) =

k2

a1AΩ(2π)4

∫ 2π

0
dφ | ˆRM(~k⊥)|2. (5.28)

or

| ˆRM(k⊥)|2 =
a1AΩ(2π)3

k2
εobs
B (k), (5.29)

where AΩ is the area Ω for which RM ’s are actually measured and a1 = a2
0 n

2
e0 L,

where L is the characteristic depth of the Faraday screen.
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Figure 5.1: On the right panel, a small part (37 × 37 kpc) of a typical realisation of a
RM map which is produced by a Kolmogorov like magnetic field power spectrum for
k ≥ kc = 0.8 kpc−1 and a magnetic field strength of 5 µG. On the left panel, the RM
data used for the data matrix ∆i is shown where arbitrary neighbouring points were
averaged in order to reduce the number of independent points in a similar way as it is
done later with the observational data.

As Faraday screen, a box with sides being 150 kpc long and a depth ofL = 300 kpc
is assumed. For the sake of simplicity, a uniform electron density profile is assumed
with a density of ne0 = 0.001 cm−3. The magnetic field power spectrum used is
expressed by

εobs
B (k) =







εB

k1−α
0

k2+α
c

k2 ∀k ≤ kc

εB
k0

(

k
k0

)−5/3
∀k ≥ kc

. (5.30)
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where the spectral index was set to mimic Kolmogorov turbulence with energy injec-
tion at k = kc, and

εB =
〈B2〉
8π

=

∫ kmax

0
dk εobs

B (k), (5.31)

where kmax = π/∆r is determined by the pixel size (∆r) of the used RM map. The
latter equation combined with Eq. (5.30) gives the normalisation k0 in such a way
that the integration over the accessible power spectrum will result in a magnetic field
strength of B for which 5 µG was used. Furthermore, a kc = 0.8 kpc−1 was used.

In order to generate a RM map with the magnetic power spectrum εB(k) for the
chosen Faraday screen, the real and imaginary part of the Fourier space was filled
independently with Gaussian deviates. Then these values were multiplied by the ap-
propriate values given by Eq. (5.29) corresponding to their place in k-space. As a last
step, an inverse Fourier transformation was performed. A typical realisation of such a
generated RM map is shown in the right panel of Fig. 5.1.
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Figure 5.2: Power spectra for a simulated RM map as shown in Fig. 5.1. The in-
put power spectra is shown in comparison to the one found by the Fourier analysis as
described in Chapter 3 and the one which was derived by the maximum likelihood es-
timator developed here. One can clearly see the good agreement within one σ between
input power spectrum and the power spectrum derived by the maximum likelihood
method.

For the analysis of the resulting RM map only a small part of the initial map
was used in order to reproduce the influence of the limited emission region of a radio
source. A Fourier analysis as described in Chapter 3 was applied to this part. The
resulting power spectrum is shown in Fig. 5.2 as dashed line in comparison with the
input power spectrum as dotted line.
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The maximum likelihood method is numerically limited by computational power
since it involves matrix multiplication and inversion, where the latter is a N 3 process.
Thus, not all points of the many which are defined in the maps can be used. However, it
is desirable to use as much information as possible from the original map. Therefore, it
was chose to randomly average neighbouring points with a scheme which let to a map
with spatially inhomogeneously resolved cells. The resulting map is highly resolved
on top and lowest on the bottom with some random deviations which makes it similarly
to the error weighting of the observed data. N = 1500 independent points were used
for the analysis. On the left panel of Fig. 5.1, the averaged RM map is shown which
was used for the test.

As a first guess for the maximum likelihood estimator, the power spectra derived
by the Fourier analysis was used. The resulting power spectrum is shown as filled
circles with 1-σ error bars in Fig. 5.2. As can be seen from this figure, the input power
spectrum and the power spectrum derived by the maximum likelihood estimator agree
well within the one σ level. Integration over this power spectrum results in a field
strength of (4.7 ± 0.3)µG in agreement with the input magnetic field strength of 5µG.

5.4 Application to Hydra A

5.4.1 The Data ∆

The maximum likelihood estimator which was introduced and tested in the last sections
is applied in the following to the Faraday rotation map of the north lobe of the radio
source Hydra A (Taylor & Perley 1993). The data were kindly provided by Greg
Taylor.

For this purpose, a high fidelityRM map was used which was presented in Chapter
4 and was generated by the developed algorithm Pacman using the original polarisation
data. Pacman also provides error maps σi by error propagation of the instrumental
uncertainties of polarisation angles. The Pacman map which was used is shown in the
right panel of Fig. 5.3.

For the same reasons as mentioned in Sect. 5.3, the data were averaged. An appro-
priate averaging procedure using error weighting was applied such that

RM i =

∑

j RMj/σ
2
j

∑

j 1/σ2
j

, (5.32)

and the error calculates as

σ2
RM i

=

∑

j

(

1/σ2
j

)

(

∑

j 1/σ2
j

)2 =
1

∑

j 1/σ2
j

. (5.33)

Here, the sum goes over the set of old pixels {j} which form the new pixels {i}.
The corresponding pixel coordinates {i} were also determined by applying an error
weighting scheme

xi =

∑

j xj/σ
2
j

∑

j 1/σ2
j

and yi =

∑

j yj/σ
2
j

∑

j 1/σ2
j

. (5.34)
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Figure 5.3: The final RM map from the north lobe of Hydra A which was anal-
ysed with the maximum likelihood estimator; right: original Pacman map, left: error
weighted map. Note that the small scale noise for the diffuse part of the lobe is av-
eraged out and only the large scale information carried by this region is maintained.
Furthermore, note that each pixel has also a (not displayed) error weighted position.

The analysed RM map was determined by a gridding procedure. The original
RM map was divided into four equally sized cells. In each of these the original data
were averaged as described above. Then the cell with the smallest error was chosen
and again divided into four equally sized cells and the original data contained in the
so determined cell were averaged. The last step was repeated until the number of cells
reached a defined value N . It was decided to use N = 1500. This is partly due to the
limitation by computational power but also partly because of the desired suppression
of small scale noise by a strong averaging of the noisy regions.

The final RM map which was analysed is shown in the left panel of Fig. 5.3.
The most noisy regions in Hydra A are located in the coarsely resolved northernmost
part of the lobe. It was chosen not to resolve this region any further but to keep the
large-scale information which is carried by this region.

5.4.2 The Window Function

As mentioned in Sect. 5.2.1, the window function describes the sampling volume and,
thus, one has to find a suitable description for it based on Eq. (5.6). Hydra A (or 3C218)
is located at a redshift of 0.0538 (de Vaucouleurs et al. 1991). For the derivation of the
electron density profile parameter, the work by Mohr et al. (1999) was used which was
done for ROSAT PSPC data while using the deprojection of X-ray surface brightness
profiles as described in the Appendix A of Pfrommer & Enßlin (2004). Since Hydra A
is known to exhibit a strong cooling flow as observed in the X-ray studies, a double β-
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Figure 5.4: The comparison between the integrated squared window function f 2(r)
(lines) with the RM dispersion function 〈RM 2(r)〉 (open circles) and 〈RM 2〉 −
〈RM(r)〉2 (filled circles). Different models for the window function were assumed.
In (a) αB = 1.0, in (b) αB = 0.5 and in (c) αB = 0.1 were used, where the inclination
angle θ of the source was varied. It can be seen that models for the window function
with αB = 0.1 . . . 0.5 and θ = 10◦ . . . 50◦ match the shape of the dispersion function
very well.

profile was assumed 1 and for the inner profile ne1(0) = 0.056 cm−3 and rc1 = 0.53
arcmin was used while for the outer profile ne2(0) = 0.0063 cm−3 and rc2 = 2.7
arcmin and a β = 0.77 was applied.

Assuming this electron density profile to be accurately determined, there are two
other parameters which enter in the window function. The first one is related to the
source geometry. For Hydra A, a clear depolarisation asymmetry between the two
lobes is observed known as the Laing-Garrington effect (Garrington et al. 1988; Laing
1988) suggesting that the source is tilted against the xy-plane (Taylor & Perley 1993).
In fact, the north lobe points towards the observer. In order to take this into account, an
angle θ was introduced which describes the angle between the source and the xy-plane
such that the north lobe points towards the observer. Taylor & Perley (1993) determine
an inclination angle of θ = 45◦.

The other parameter is related to the global magnetic field distribution which is
assumed to scale with the electron density profile B(r) ∝ ne(r)

αB . In a scenario
in which an originally statistically homogeneously magnetic energy density gets adi-
abatically compressed, one expects αB = 2/3. If the ratio of magnetic and thermal

1defined as ne(r) = [n2
e1(0)(1 + (r/rc1)

2)−3β + n2
e2(0)(1 + (r/rc2)

2)−3β ]1/2.
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pressure is constant throughout the cluster then αB = 0.5. However, αB might have
any other value. Dolag et al. (2001) determined an αB = 0.9 for the outer regions of
the cluster Abell 119.

In order to constrain the applicable ranges of these quantities, one can compare the
integrated squared window function with the RM dispersion function 〈RM(r⊥)2〉 of
the RM map used since

〈RM2(r⊥)〉 ∝
∫ ∞

−∞
dz f2(r⊥, z), (5.35)

as stated by Eq. (3.39). Therefore, the shape of the two functions was compared. The
result is shown in Fig. 5.4. For the window function, three different αB = 0.1, 0.5, 1.0
were used and for each of these, five different inclination angles θ = 0◦, 10◦, 30◦, 45◦

and 60◦ were employed, although the θ = 0◦ is not very likely considering the ob-
servational evidence of the Laing-Garrington effect as observed in Hydra A by Tay-
lor & Perley (1993). The different results are plotted as lines of different style in
Fig. 5.4. The filled and open dots represent the RM dispersion function. The solid
circles indicate the binned 〈RM 2〉 function. The open circles represent the binned
〈RM2〉 − 〈RM〉2 function, which is cleaned from any foreground RM signals.

From Fig. 5.4, it can be seen that models with αB = 1.0 or θ > 50◦ are not able
to recover the shape of the RM dispersion function and, thus, one expects αB < 1.0
and θ < 50◦ to be more likely.

5.5 Results and Discussion

Based on the described treatment of the data and the description of the window func-
tion, first the power spectra for various scaling exponents αB were calculated while
keeping the inclination angle at θ = 45◦. For this investigation, the number of bins
was chosen to be nl = 5 which proved to be sufficient. For these calculations, ε < 0.1
was used. The resulting power spectra are plotted in Fig. 5.5.

In Fig. 5.5, one can clearly see that the power spectrum derived for αB = 1.0
has a completely different shape whereas the other power spectra show only slight
deviation from each other and are vertically displaced implying different normalisation
factors, i.e. central magnetic field strengths which increase with increasing αB . The
straight dashed line which is also plotted in Fig. 5.5 indicates a Kolmogorov like power
spectrum being equal to 5/3 in the prescription used. One can clearly see, that the
power spectra follow this slope over at least on order of magnitude.

In Sect. 5.4.2, it was not possible to distinguish between the various scenarios for
αB although it was found that an αB = 1 does not properly reproduce the measured
RM dispersion. However, the likelihood function offers the possibility to calculate
the actual probability of a set of parameters given the data (see Eq. (5.1)). Thus, the
log likelihood lnL∆(~a) value was calculated for various power spectra derived for
the different window functions varying in the scaling exponent αB and assuming the
inclination angle of the source to be for all geometries θ = 45◦. In Fig. 5.6, the log
likelihood is shown in dependence on the used scaling parameter αB .

As can be clearly seen from Fig. 5.6, there is a plateau of most likely scaling ex-
ponents αB ranging from 0.1 to 0.8. An αB = 1 seems to be very unlikely for the
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Figure 5.5: Power spectra for N = 1500 and nl = 5 are presented. Different ex-
ponents αB in the relation B(r) ∼ ne(r)

αB of the window function were used. The
inclination angle of the source was chosen to be θ = 45◦.

model used as already deduced in Sect. 5.4.2. The sudden decrease for αB < 0.1
might be due to non-Gaussian effects. The magnetic field strength derived for this
plateau region ranges from 9 µG to 5 µG. The correlation length of the magnetic field
λB was determined to range between 2.5 kpc and 3.0 kpc whereas the RM correla-
tion length was determined to be in the range of 4.5 . . . 5.0 kpc. These ranges have
to be considered as a systematic uncertainty since one is not yet able to distinguish
between these scenarios observationally. Another systematic effect might be given by
uncertainties in the electron density itself. Varying the electron density normalisation
parameters (ne1(0) and ne2(0)) leads to a vertical displacement of the power spectrum
while keeping the same shape.

In order to study the influence of the inclination angle on the power spectrum, an
αB = 0.5 was used being in the middle of the most likely region derived. Furthermore
for this calculations, smaller bins were used and thus, the number of bins was increased
to nl = 8. The power spectrum was calculated for two different inclination angles θ =
30◦ and θ = 45◦. The results are shown in Fig. 5.7 in comparison with a Kolmogorov
like power spectrum.

As can be seen from Fig. 5.7, the power spectra derived agree well with a Kol-
mogorov like power spectrum over at least one order of magnitude. For the incli-
nation angle of θ = 30◦, the following field and map properties were derived B =
5.7 ± 0.1µG, λB = 3.1 ± 0.3 kpc and λRM = 6.7 ± 0.7 kpc. For θ = 45◦, it was
calculated B = 7.3 ± 0.2µG, λB = 2.8 ± 0.2 kpc and λRM = 5.2 ± 0.5 kpc. The
value of the log likelihood lnL was determined to be slightly higher for the inclination
angle of θ = 30◦. The flattening of the power spectra for large k’s can be explained by
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Figure 5.6: The log likelihood lnL∆(~a) of various power spectra assuming different
αB while using a constant inclination angle θ = 45◦ is shown. One can clearly see that
αB = 0.1 . . . 0.8 are in the plateau of maximum likelihood. The sudden decrease for
αB < 0.1 in the likelihood might be due to non-Gaussian effects becoming too strong.

small scale noise which was not modelled separately.

Although the central magnetic field strength decreases with decreasing scaling pa-
rameter αB , the volume integrated magnetic field energy EB within the cluster core
radius rc2 increases. The volume integrated magnetic field energy EB calculates as
follows

EB = 4π

∫ rc2

0
dr r2 B

2(r)

8π
=
B2

0

2

∫ rc2

0
dr r2

(

ne(r)

ne0

)2αB

, (5.36)

where it is integrated from the cluster centre to the core radius rc2 of the second, the
non-cooling flow, component of the electron density distribution.

The magnetic field profile was integrated for the various scaling parameters and
the corresponding field strengths which were determined by the maximum likelihood
estimator. The result is plotted in Fig. 5.8. The higher magnetic energies for the smaller
scaling parameters which correspond to smaller central magnetic field strengths are
due to the higher field strengths in the outer parts of the cool cluster core. This effect
would be much more drastic if one had extrapolated the scaling B(r) ∝ ne(r)

αB to
larger cluster radii and integrated over a larger volume.



114 CHAPTER 5. A BAYESIAN VIEW ON FARADAY ROTATION MAPS

 1e-14

 1e-13

 1e-12

 1e-11

 0.1  1  10  100

ε B
(k

)*
k 

 [e
rg

 c
m

-3
]

k [kpc-1]

θ = 45ο

θ = 30ο

 k-2/3

Figure 5.7: Power Spectra for two different inclination angles θ = 30◦ and θ = 45◦

and an αB = 0.5 are shown. For comparison a Kolmogorov like power spectrum is
plotted as straight dashed line. One can clearly see that the calculated power spectra
follow such a power spectrum over at least one order of magnitude. Note that the error
bars are larger than in Fig. 5.5 because smaller bin size were used.
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Figure 5.8: The integrated magnetic field energy EB within the cluster core radius rc2
for the various scaling parameters αB also used in Fig. 5.6 and the corresponding cen-
tral magnetic field strengths B0 as determined by the maximum likelihood estimator.
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5.6 Conclusions

A maximum likelihood estimator was presented for the determination of cluster mag-
netic field power spectra from RM maps of extended polarised radio sources. The
covariance matrix for RM was introduced under the assumption of statistically homo-
geneously distributed magnetic fields throughout the Faraday screen. The approach
was successfully tested on simulated RM maps with known power spectra.

This approach was applied to the RM map of the north lobe of Hydra A. Dif-
ferent power spectra were calculated for various window functions being especially
influenced by the scaling parameter between electron density profile and global mag-
netic field distribution and the inclination angle of the emission region. The scaling
parameter αB was determined to be most likely in the range of 0.1 . . . 0.8.

It was realised that there is a systematic uncertainty in the values calculated due
to the uncertainty in the window parameters itself. Taking this into account, a central
magnetic field strength in the Hydra A cluster of B = (7 ± 2)µG was deduced and
for the magnetic field correlation length was determined to be λB = (3.0 ± 0.5)
kpc. If the geometry uncertainties could be removed the remaining statistical errors
are an order of one magnitude smaller. The difference of these values from the ones
found in an earlier analysis of the same dataset of Hydra A which yielded B = 12µG
and λB = 1 kpc (Chapter 3) is a result of the improved RM map using the Pacman
algorithm (Chapter 4) and a better knowledge of the magnetic cluster profile, i.e. here
αB ≈ 0.5 (instead of αB = 1.0 in Chapter 3).

The cluster magnetic field power spectrum of Hydra A follows a Kolmogorov like
power spectrum over at least one order of magnitude. However, the analysis reveals
that there is a dominant scale ∼ 3 kpc on which the magnetic power is concentrated.
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Conclusions

This work was aimed to understand observational multi-frequency polarisation data
sets of extended extragalactic radio sources, their reduction resulting in Faraday rota-
tion maps and the statistical characterisation and analyses of these maps in order to
study the properties of the magnetic fields which are associated with the plasma in
clusters of galaxies.

Since it is sometimes debated which magnetised medium is mainly responsible for
the Faraday rotation, investigations aimed to solve this problem provided confidence
that the Faraday rotation is mainly due to the magnetised medium which is external
to the source - the intra-cluster gas. In order to gain insight into the cluster magnetic
field properties, a statistical approach to analyse the Faraday rotation maps in terms of
autocorrelation function and power spectrum was developed and applied to the data.
Realising that map making artefacts and noise in the data have a noticeable effect on
this analysis, especially for measuring power spectra, a new RM map making algo-
rithm called Pacman was introduced. Pacman provides high quality RM maps which
allows precise estimates of power spectra. In order to use the full potential of these
maps, an accurate power spectrum estimator based on Bayesian maximum likelihood
methods was developed and successfully applied to characterise cluster magnetic field
properties such as magnetic field strength, magnetic field autocorrelation length, and
the shape of the magnetic power spectrum.

In this work, it was investigated if there is evidence for co-aligned structures in
RM and ϕ0 maps of extended radio sources in galaxy clusters. Such structures would
strongly argue for source-local RM generating magnetic fields. In the course of this
investigation, a gradient alignment statistic was introduced which reveals ϕ0 and RM
correlations regardless of whether there are source intrinsic or due to artefacts in the
observation or in the RM map making process. In order to identify map making arte-
facts, a gradient vector product statistic was introduced. Both are valuable indicators
of potential problems for RM based ICM magnetic field estimates.

Applying these two statistics to Faraday studies of extended radio sources (i.e.
PKS 1246-410, Cygnus A, Hydra A, and 3C465) does not reveal any significant large
scale co-alignment leading together with independent pieces of evidence to the con-
clusion that the RM generating magnetic fields are external to the source and thus, are
associated with the cluster gas.

A statistical analysis of RM measurements in terms of correlation functions and
equivalently power spectra was developed in order to estimate magnetic field strengths
and autocorrelation lengths. This analysis relies on the assumption that the magnetic
fields are statistically isotropically distributed throughout the Faraday screen. A win-
dow function describing the sampling volume was introduced through which any vir-
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tually statistically homogeneous magnetic field can be thought to be observed.
The RM maps of three radio sources (i.e. 3C75 in Abell 400, 3C465 in Abell

2634 and Hydra A in Abell 780) were reanalysed using this method. Power spectra
were successfully calculated and magnetic field strengths of 1 . . . 12µG were derived
for all three clusters. However, it was found that while this analysis is not suitable
for the determination of differential parameters, such as the spectral slopes of power
spectra, directly from the Fourier transformed map, the integrated quantities such as
the magnetic field strength appears feasible. Furthermore, this analysis is not able to
separate the influence of noise on the maps from the astrophysically interesting signal
of intra-cluster magnetic fields.

In order to reduce map making artefacts, a new algorithm – Pacman – for the
calculation of Faraday rotation maps from multi-frequency polarisation data sets was
developed. By means of several statistical tests, it was shown that the new algorithm
Pacman is robust and that it calculates reliableRM maps that suffer less from artefacts.
Any statistical analysis will profit from this improvement.

Motivated by the recent success of Bayesian maximum likelihood methods in the
determination of power spectra, a maximum likelihood estimator for the analysis of
high quality RM maps was developed. It again assumes that the magnetic fields are
statistically homogeneously distributed throughout the Faraday screen. It also allows
to calculate the statistical uncertainty of any result. Furthermore, this maximum like-
lihood method takes the limited sampling size properly into account and thus, makes
the determination of spectral slopes of power spectra possible.

The maximum likelihood estimator was applied to the Pacman RM map of the
north lobe of Hydra A. Taking the uncertainty in the geometry of the Faraday screen
into account, the central magnetic field strength for Hydra A was determined to be
7 ± 2µG. The calculated power spectrum follows a Kolmogorov like power spectrum
over at least one order of magnitude in k-space. The analysis reveals that there is a
dominant scale ∼ 3 kpc on which the power is concentrated.

This work will be continued in two directions, observationally and theoretically:

• The developed methods will be applied to further existing and upcoming high
quality RM data sets in order to gain a statistical sample of cluster field mea-
surements.

• The gained observational information will be used to understand magnetic field
generating mechanisms in clusters of galaxies such as turbulent magnetic dy-
namos and galactic outflows.



Bibliography

Allen, S. W., Taylor, G. B., Nulsen, P. E. J., et al. 2001, Mon. Not. Roy. Astron. Soc.,
324, 842

Ballarati, B., Feretti, L., Ficarra, A., et al. 1981, Astron. & Astrophys., 100, 323

Beck, R. 2001, Space Science Rev., 99, 243

Beck, R., Brandenburg, A., Moss, D., Shukurov, A., & Sokoloff, D. 1996, Ann. Rev.
Astron. & Astronphys., 34, 155

Bevington, P. R. & Robinson, D. K. 2003, Data reduction and error analysis for the
physical sciences (Data reduction and error analysis for the physical sciences, 3rd
ed., by Philip R. Bevington, and Keith D. Robinson. Boston, MA: McGraw-Hill,
ISBN 0071199268, 2003.)

Bicknell, G. V., Cameron, R. A., & Gingold, R. A. 1990, Astrophys. Journ., 357, 373

Bolton, J. G. & Wild, J. P. 1957, Astrophys. Journ., 125, 296

Bond, J. R., Jaffe, A. H., & Knox, L. 1998, Phys. Rev. D, 57, 2117

Bourke, T. L. & Goodman, A. A. 2004, ArXiv:astro-ph/0401281

Brentjens, M. A. & de Bruyn, A. G. 2004, in The Riddle of Cooling Flows in Galaxies
and Clusters of galaxies

Bridle, A. H. & Fomalont, E. B. 1976, Astron. & Astrophys., 52, 107

Burbidge, G. R. 1956, Astrophys. Journ., 124, 416

Burn, B. J. 1966, Mon. Not. Roy. Astron. Soc., 133, 67

Burns, J. O., Roettiger, K., Pinkney, J., et al. 1995, Astrophys. Journ., 446, 583

Carilli, C. L. & Taylor, G. B. 2002, Ann. Rev. Astron. & Astronphys., 40, 319

Cavaliere, A. & Fusco-Femiano, R. 1976, Astron. & Astrophys., 49, 137

Clarke, T. E. & Enßlin, T. A. 2001, in Clusters of Galaxies and the High Redshift
Universe Observed in X-rays
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