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durch fruchtbare Gespräche sehr geholfen hat, neue Ideen entstehen zu lassen und diese

zu verwirklichen. Er hat mir dabei viele Freiheit und Vertrauen geschenkt. Ein beson-

derer Dank gilt meinem zweiten Betreuer Korbinian Strimmer, der mir insbesondere am

Anfang meiner Promotion sehr hilfsbereit zur Seite stand und als Zimmernachbar für

gutes Arbeitsklima gesorgt hat.

Ich bedanke mich auch bei Ludwig Fahrmeir und Ursula Gather, die sich freundlicherweise
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ZUSAMMENFASSUNG

Klassische Microarray Datensätze enthalten in der Regel bei Beobachtungszahlen im

zweistelligen Bereich Tausende von Prädiktoren. Daher ist es eine große Herausforderung,

den hochdimensionalen Prädiktorenraum so zu transformieren, daß damit die Klassifika-

tion wie zum Beispiel die Krebsdiagnose möglich wird. In dieser Arbeit werden ver-

schiedene Ansätze zur Dimensionsreduktion solcher Daten untersucht.

Das Kapitel 2 ist eine Einführung in die Klassifikation mit Microarray Daten und weit-

erhin enthält es auch einen Überblick einiger spezifischer Probleme (Variablenselektion,

Vergleich mehrerer Klassifikationsmethoden). Im Kapitel 3 untersuche ich besondere In-

teraktionsstrukturen im Kontext der Klassifikation: ’Emerging Patterns’. Ich führe eine

neue und allgemeinere Definition, die auf den unterliegenden Wahrscheinlichkeiten beruht,

ein und stelle eine neue auf dem CART-Algorithmus basierende einfache Suchmethode,

die die entsprechenden empirischen Patterns in konkreten Datensätzen findet, vor. Ich

habe den Suchalgorithmus sowie die Klassifikationsmethode in der Programmiersprache

R implementiert. Einige dieser Programme sind auf meiner Homepage frei verfügbar. Im

Kapitel 4 geht es um die klassische lineare Dimensionsreduktion. Im Rahmen der binären

Klassifikation mit stetigen Prädiktoren beweise ich die Zusammenhänge zwischen der Par-

tial Least Squares (PLS) Methode, der ”between-group” Hauptkomponentenanalyse und

der linearen Diskriminanzanalyse. Die PLS Dimensionsreduktion wird im Kapitel 5 im

Detail untersucht. Die Klassifikationsmethode der PLS Dimensionsreduktion kombiniert

mit der linearen Diskriminanzanalyse wird für neun Microarray Datensätze mit den besten

bekannten Methoden verglichen und erweist sich als der beste Ansatz. Außerdem wende

ich einen Boosting Algorithmus auf diese Klassifikationsmethode an. Ebenso schlage ich

auch einen einfachen Ansatz zur Wahl der Anzahl der PLS Komponenten vor. Zum

Schluss untersuche ich den theoretischen Zusammenhang zwischen PLS Dimensionsre-

duktion und Variablenselektion: ich beweise eine Equivalenzeigenschaft zwischen einem

bekannten Kriterium zur Variablenselektion und einem auf der ersten PLS Komponente

basierenden Ansatz.



SUMMARY

Usual microarray data sets include only a handful of observations, but several thousands

of predictor variables. Transforming the high-dimensional predictor space to make clas-

sification (for instance cancer diagnosis) possible is a major challenge. This thesis deals

with various dimension reduction approaches which can handle such data.

Chapter 2 gives an introduction into classification with microarray data as well as an

overview of a few specific problems such as variable selection and comparison of classi-

fication methods. In Chapter 3, I discuss a particular class of interaction structures in

the classification framework: ”emerging patterns”. I propose a new and more general

definition referring to underlying probabilities and present a new simple method which is

based on the CART algorithm to find the corresponding empirical patterns in concrete

data sets. In addition, the detected patterns can be used to define new variables for

classification. Thus, I propose a simple scheme to use the patterns to improve the per-

formance of classification procedures. I implemented the search algorithm as well as the

classification procedure in the language R. Some of these programs are publicly available

from my homepage. Chapter 4 deals with classical linear dimension reduction methods.

In the context of binary classification with continuous predictors, I prove two properties

concerning the connections between Partial Least Squares (PLS) dimension reduction,

between-group PCA and between linear discriminant analysis and between-group PCA.

PLS dimension reduction for classification is examined thoroughly in Chapter 5. The

classification procedure consisting of PLS dimension reduction and linear discriminant

analysis on the new components is compared favorably with some of the best state-of-

the-art classification methods using nine real microarray cancer data sets. Moreover, I

apply a boosting algorithm to this classification method, which is a novel approach. In

addition, I suggest a simple procedure to choose the number of PLS components. At

last, I examine the connection between PLS dimension reduction and variable selection

and prove a property concerning the equivalence between a common univariate selection

criterion and a variable selection approach based on the first PLS component.
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Chapter 1

Introduction

1.1 High-dimensional microarray data

Microarray technology allows to measure the expression level of thousands of genes simul-

taneously using gene chips. Typically, a gene is a variable and a chip is an observation

from the point of view of statisticians. In the context of cell-cycle experiments, each chip

measures the gene expression levels at a different time point during the cell cycle. In

cancer studies, each chip measures the gene expression levels of a different cancer patient.

In all applications of microarray technology, the number of variables (genes) p is much

larger than the number of observations (chips) n: a typical study includes from 1000 to

20000 genes for only 10 to 200 chips. Discovering e.g. interactions between genes, asso-

ciation of gene expression levels with specific clinical outcomes or clusters of functionally

related genes in such high-dimensional data is a difficult and challenging task. In the

last few years, multivariate statistics for microarray data analysis has been the subject

of thousands of publications in statistics, machine learning, bioinformatics and biology.

Most of the classical topics of multivariate statistics have been studied in the context of

high-dimensional microarray data.

1



2 CHAPTER 1. INTRODUCTION

Clustering can be used to find groups of similarly expressed genes, in the hope that

they also have a similar function. Different methods have been applied for this task

e.g. hierarchical clustering (Eisen et al., 1998), self-organizing maps (Tamayo et al.,

1999) or model-based clustering (Yeung et al., 2001). Another application of clustering

is the identification of new groups of patients, for instance new tumor subclasses (Golub

et al., 1999). Another topic of interest is the prediction of the survival time of a patient

using gene expression levels. Nguyen and Rocke (2002b) and Park et al. (2002) answer

this question by using a PLS-based method. Other authors (O’Neill and Song, 2003)

dichotomize the survival time and transform the problem into a classification problem.

Biologists are often interested in finding genes which are related to the survival time.

Log-rank statistics can be used to identify these genes (Beer et al., 2002). Methods of

times series analysis may also be useful for microarray data analysis, e.g. to identify

differentially expressed genes in time-course microarray experiments (Park et al., 2003)

or periodically expressed genes in the context of cell-cycle experiments (Wichert et al.,

2004). Dimension reduction methods such as principal component analysis (PCA) and

related methods have been applied for different purposes. Whereas Yeung and Ruzzo

(2001) use it to perform clustering, Alter et al. (2000) propose a PCA-based approach for

data processing and elimination of noise. Another PCA-related method is ’gene-shaving’

(Hastie et al., 2000), which can be seen as a semi-supervised clustering method with

possibly overlapping clusters. Classification methods are widely used for tumor diagnosis,

which is one of the most important applications of microarray technology. A related issue

is the identification of differentially expressed genes, i.e. genes which have significantly

different levels in two or more classes. An overview of classification is given in Section

2.1.

While some authors claim that microarray data require to develop new specific statisti-

cal methods, others report good results obtained with well-known standard methods. I

think that known approaches, especially classical linear methods, should be emphasized

because they are often preferable to new ad-hoc purpose-built procedures. However, the

high-dimensionality (n < p) should not be overcome by performing a dramatic variable se-
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lection. Thus, statisticians should make an effort to develop and adapt methods which can

handle a very large number of possibly noisy variables. Such methods could be applied in

various fields of natural and engineering sciences, since recent technologies produce data

with more and more variables.

1.2 Guideline through the thesis

This thesis deals with one of the major applications of microarray technology: prediction

of a categorical variable (such as the tumor type of a patient) using gene expression data.

It is divided into four independent chapters. An overview of classification with gene

expression data is given in Chapter 2. Chapter 2 discusses some important aspects of

classification, such as evaluation of classification methods and variable selection.

Interactions between variables (genes) in classification are an important topic which is

often omitted in the context of high-dimensional microarray data. Chapter 3 deals with

a special type of interaction structures: interaction patterns. This concept is borrowed

from the machine learning community and mapped into a statistical framework. The use

of interaction patterns for classification is examined and a new CART-based discovering

method is proposed. This approach can be seen as a dimension reduction method, since it

extracts specific patterns from high-dimensional data. A version of the methods developed

in Chapter 3 has been accepted for publication in ”Computational Statistics and Data

Analysis” (Boulesteix and Tutz, 2005). This publication is an extension of a more applied

paper published in the journal ”Bioinformatics” (Boulesteix et al., 2003). I implemented

the search algorithms and the classification method in R. Some of the programs are publicly

available at the URL www.statistik.lmu.de/∼socher/ep.html.

Another approach for dimension reduction is linear dimension reduction, which is pre-

sented and discussed in Chapter 4. The connection between different dimension reduc-

tion and classification methods is examined and proved. A brief overview of other existing

approaches is given at the end of Chapter 4. A part of Chapter 4 is based on a paper

which has been accepted for publication in the journal ”International Journal of Pure and
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Applied Mathematics” (Boulesteix, 2005).

Partial Least Squares (PLS) is one of the linear dimension reduction methods mentioned

in Chapter 4. It is examined more thoroughly in Chapter 5. An extensive comparison

study including a PLS-based approach and other top-ranking classification methods is

proposed, as well as a study of PLS with boosting, which is a novel approach. The rest

of the chapter deals with the use of PLS dimension reduction as a visualization tool and

the connection between PLS dimension reduction and variable selection, including the

proof that the so-called BSS/WSS ratio is a monotonic transformation of the squared

coefficient in the first PLS component. Methods from Chapter 5 are found in a paper

published in the journal ”Statistical Applications in Genetics and Molecular Biology”

(Boulesteix, 2004).

1.3 Notations

X1, . . . , Xp denote the gene expression levels. In the whole work, they are continuous

predictor variables. x = (X1, . . . , Xp)
T denotes the corresponding random vector. Y

denotes the class membership. (xi, Yi)i=1,...,n is the observed stratified data set, with

xT
i = (xi1, . . . , xip) denoting measurements of the p predictors and Yi the class membership

for observation i. For k = 1, . . . ,K, xk1
, . . . ,xknk

denote the observations from class k,

where nk is the number of observations from class k and k1, . . . , knk
are the indices of

the observations from class k in the data set (xi, Yi)i=1,...,n. Thus, for k = 1, . . . ,K,

i = 1, . . . , nk, one has Yki
= k. X is the n× p matrix which contains xi in its ith row, for

i = 1, . . . , n.

In the following,

µ = E(x) = (µ1, . . . , µp)
T

denotes the mean vector of x and µ̂ is the empirical mean vector of x, i.e.

µ̂ =
1

n
XT1n = (µ̂1, . . . , µ̂p)

T ,
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where 1n is the vector of ones of length n. Σ is the p × p covariance matrix of x:

Σ = COV(x) = E((x − µ)(x − µ)T ).

S denotes the usual unbiased estimator of Σ:

S =
1

n − 1

n
∑

i=1

(xi − µ̂)(xi − µ̂)T ,

whereas Σ̂ is the maximum-likelihood estimator of the covariance matrix Σ:

Σ̂ =
n − 1

n
S.

For k = 1, . . . ,K, nk is the number of observations in class k. µk denotes the mean of x

within class k:

µk = E(x|Y = k) = (µk1, . . . , µkp)
T ,

and µ̂k = (µ̂k1, . . . , µ̂kp)
T is the empirical mean of x within class k:

µ̂k =
1

nk

nk
∑

i=1

xki
.

Σk denotes the within-group covariance matrix of x for class k:

Σk = COV(x|Y = k).

The within-group covariance matrix is defined as

ΣW =

K
∑

k=1

pkΣk,

where pk is the probability of class k: pk = p(Y = k). In the following,

ΣB =

K
∑

k=1

pk(µk − µ)(µk − µ)T ,

denotes the between-group covariance matrix. The decomposition

Σ = ΣW + ΣB
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is a decomposition of the type ”total variability = variability within groups + variability

between groups” and follows from the formula

COV(x) = E(COV(x|Y )) + COV(E(x|Y )).

Sk denotes the unbiased estimator of Σk:

Sk =
1

nk − 1

nk
∑

i=1

(xki
− µ̂k)(xki

− µ̂k)
T

Natural unbiased estimators for ΣW and ΣB are W/(n − K) and B/(n(K − 1)) respec-

tively, where

W =

K
∑

k=1

(nk − 1)Sk.

and

B =

K
∑

k=1

nk(µ̂k − µ̂)(µ̂k − µ̂)T

Σ̂ can be decomposed into

Σ̂ =
1

n
W +

1

n
B.



Chapter 2

Classification with application to

microarray data

2.1 Overview of classification with high-dimensional microar-

ray data

Suppose we have n patients which belong to one of the different classes 1, . . . ,K, where

K ≥ 2. Let Y denote the categorical random variable ’class membership’. In cancer

studies, Y is the tumor class. X1, . . . , Xp denote the gene expression levels and x =

(X1, . . . , Xp)
T is the corresponding random vector. X1, . . . , Xp are continuous variables.

(xi, Yi)i=1,...,n is the observed data set, with xT
i = (xi1, . . . , xip) denoting measurements

of the p predictors and Yi the class membership for observation i. X is the n × p matrix

which contains xi in its ith row, for i = 1, . . . , n.

Statisticians know a lot of methods to predict a class membership using continuous pre-

dictor variables. Linear and quadratic discriminant analysis, Fisher’s linear discrimi-

nant, generalized linear models (e.g. logistic or probit regression, ridge logistic regression

splines), nearest-neighbor classification, kernel density estimation, classification trees and

related methods (bump hunting, multivariate adaptive regression), neural networks and

7



8 CHAPTER 2. CLASSIFICATION WITH MICROARRAY DATA

support vector machines are among the most well-known approaches. An overview of the

methods mentioned above can be found in Hastie et al. (2001).

For financial and practical reasons, microarray studies rarely involve more than 200 ex-

periments. Since several thousands of gene expression levels are measured, one faces the

problematic situation ’n << p’. The number of experiments is expected to grow in the

next few years, since the price of microarrays tends to decrease and the experimental

protocols are getting easier. However it is unrealistic to expect this number to grow expo-

nentially, for both ethical and practical reasons. At the same time, the number of genes

included in a microarray study is steadily increasing because of daily progress in the area

of sequence analysis. Thus, the number of observations n will not get greater than the

number of genes p in the near future, hence the need for statistical methods to handle

many variables at the same time or to reduce the dimension p.

There are three main ways to handle high-dimensional data in the classification frame-

work.

• The first approach consists to select a handful of relevant genes and apply a classi-

cal classification method on this small subset of genes. In the microarray literature,

this approach is often denoted as gene selection, gene screening, variable selection,

subset selection or gene filtering. Classical classification methods which have al-

ready been used in microarray data analysis are e.g. linear discriminant analysis,

quadratic discriminant analysis, Fisher’s linear discriminant, nearest-neighborhood

classification (Dudoit et al., 2002), artificial neural networks (Kahn et al., 2001),

Support Vector Machines (Furey et al., 2000). Some of the classical classification

methods, like nearest-neighborhood classification, do not require explicitly n > p

but give poor classification accuracy in practice when the number of irrelevant vari-

ables is too large, as in microarray data. Other methods can not be applied if n < p:

in classical discriminant analysis, empirical covariance matrices have to be inverted

for the estimation of the discriminant function. This can not be done in the ’small

n, large p’ framework. A brief overview of current gene subset selection methods is

given in section 2.3.
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• An alternative approach is dimension reduction: instead of selecting a small subset

of genes and eliminating the other, one can create new components which summarize

the data as well as possible in some sense. The new components are then used as

predictor variables with a classical classification method. This topic is examined in

chapters 4 and 5.

• Alternatively, one can use a classification method which performs variable selection

or variable weighting intrinsically and does not necessitate any preliminary variable

selection. For example, variable selection is intrinsic in classification trees (CARTs).

However, using CARTs on the whole microarray data set is not recommended for

at least three reasons. First, it is very slow. Second, it lacks robustness: the ob-

tained trees are very sensitive to small changes in the data. Third, trees obtained

from microarray data with few observations often have few splittings: thus, many

possibly interesting genes are ignored. In the context of classification trees, aggrega-

tion methods such as bagging (Breiman, 1996), boosting (Freund, 1995) or random

forests (Breiman, 2001) often lead to spectacular improvements of the classification

accuracy. They can also be seen as methods which perform variable selection intrin-

sically. Another method which performs variable selection intrinsically is the nearest

centroid classifier which was especially designed for classification with microarray

data (Tibshirani et al., 2002). Each observation from the test set is assigned to

the nearest shrunken class centroid. Shrunken centroids are determined using only

genes with a high d score, where d is a statistic of the type ’signal to noise’. The

number of genes included in the analysis depends on the chosen threshold value

for the d statistic. Thus, an intrinsic variable selection is performed. Shrinkage

methods such as ridge regression and the LASSO (Tibshirani, 1996) and localized

logistic classification with variable selection (Binder and Tutz, 2004) can also be

considered as classification methods performing variable selection intrinsically.

These approaches can be combined. For example, Dettling and Bühlmann (2003) use

a CART-based method after variable selection and Nguyen and Rocke (2002a) perform

dimension reduction after variable selection.
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The next section discusses four of the most common methods used to compare classifi-

cation methods in the microarray framework. As an introduction, a few useful concepts

from the decision theory are presented.

2.2 Comparing classification methods

An important problem which often occurs in practice is: ”Should I rather use method

A than method B to make a diagnosis using gene expression data ?”. After a short

introduction into decision theory, we present and discuss a few common approaches used

in the microarray literature to compare classification methods.

2.2.1 Decision theory

In classification, one looks for a decision function d of the type:

d : R
p → {1, . . . ,K}

x 7→ Ŷ = d(x).

The classification methods mentioned in section 2.1 (e.g. logistic regression, nearest-

neighbor, etc) are methods to define such a decision function d using a learning data

set.

A ’good’ decision function is a function which can predict Y as well as possible, where

’well’ can be defined in different ways. For example, one might want to find the decision

function d which minimizes the overall error rate ε:

ε(d) = p(d(x) 6= Y ). (2.1)

Let εkk′(d) be defined as

εkk′(d) = p(d(x) = k′|Y = k), for k 6= k′. (2.2)

Then one obtains

ε(d) =
K

∑

k=1

K
∑

k′=1,k′ 6=k

εkk′(d) · p(Y = k). (2.3)
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Now suppose the cost induced by the misclassification of an observation from class k as

k′ is not equal for all pairs (k, k′). Then it is preferable to look for a decision function d

which minimizes the Bayes risk

R(d) =
K

∑

k=1

K
∑

k′=1,k′ 6=k

ckk′ · εkk′(d) · p(Y = k), (2.4)

where ckk′ is the cost occurring when an observation from class k is incorrectly assigned

to class k′. As can be seen from equations 2.3 and 2.4, R(d) = ε(d) if ckk′ = 1 for all

k 6= k′ and ckk = 0 for all k.

In practice, the overall error rate and the Bayes risk of a given classifier d are unknown

and have to be estimated from data. Given a decision function d and a data set, a natural

unbiased estimator of ε is the proportion of observations which are misclassified by d. In

concrete studies, one often has to compare classification methods like e.g. CART and

linear discriminant analysis, i.e. methods to construct the decision function d. This is a

more complex task than comparing two given decision functions d1 and d2. Procedures

to compare different classification methods using a data set (xi, Yi)i=1,...,n are presented

and discussed in the next section. These methods differ in the choice of the observations

used to:

• construct the decision function(s),

• estimate ε.

2.2.2 Comparing two classification methods in practice

All four approaches output a numerical criterion for each of the considered classification

methods. This criterion can be used to evaluate and compare methods. For all four

approaches, the classification method A is considered better than the classification method

B if the criterion output by A is lower than the criterion output by B.

• Approach 1. The whole data set (xi, Yi)i=1,...,n is used to construct the decision

function d. The class of the observations from (xi, Yi)i=1,...,n is then predicted us-
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ing d. The criterion is the estimated overall error rate of d, i.e. the proportion

of misclassified observations. This approach is not recommended, because it un-

derestimates the overall error rate and favors more complex classification methods

which overfit the data. Using a complex method, it may be possible to construct a

decision function which fits perfectly a particular data set. However, such a decision

function might generalize poorly on independent data. Thus, Approach 1 should be

avoided.

• Approach 2. An alternative approach consists to split the data set (xi, Yi)i=1,...,n

into two non-overlapping data sets: a learning data set L and a test data set T .

L is used to construct the decision function d. T is then run through d. The

criterion is the estimated overall error rate of d, i.e. the proportion of misclassified

observations from T . The partition into learning set and test set is sometimes fixed

due to ’historical’ reasons, for instance because the experiments were performed at

two different times or in two different places. In this case, there might be some

systematic difference between the learning set and the test set, for instance because

of different laboratory assistants. That’s why it is generally better to split the

original data set at random. The major inconvenience of Approach 2 is that it is

very sensitive to changes in the partition into learning and test sets. To circumvent

this problem, one might prefer Approach 3.

• Approach 3. A preferable option is to repeat N times Approach 2 and compute

the global criterion as the empirical mean of the N obtained criteria. Increasing

N decreases the variance of the empirical mean. Thus, N should be as large as

technically possible. The choice of the ratio between the size of the learning set

and the size of the whole data set is important. Decreasing the ratio generally

increases the empirical mean error rate, since the decision rules are built using less

observations. Increasing the ratio increases the correlation between the estimated

error rates obtained with the N partitions. Common values for the ratio are 2/3, 0.7

and 9/10. In a comparative study, the objective is not the estimation of the error

rate in itself, but the ranking of different classification methods. Thus, small ratios
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(e.g. 2/3 or 0.7) are recommended (Dudoit et al., 2002). Moreover, when comparing

several classification methods, one should always use the same partitions.

• Approach 4. Cross-validation is a quite popular option. It consists to split the

data set (xi, Yi)i=1,...,n into k non-overlapping data subsets of (approximately) equal

size S1, . . . , Si, . . . , Sk. For each subset Si, the following procedure is repeated. Si is

considered as a test data set. The learning data set is formed by the k−1 remaining

subsets S1, . . . , Si−1, Si+1, . . . , Sk and used to construct a decision function d. The

class of the observations from Si are predicted using d. After this procedure was

repeated for i = 1, . . . , k, the criterion is computed as the proportion of misclassified

observations. Two common choices for k are k = 10 and k = n. If k = n, the proce-

dure is also called leave-one-out cross-validation and do not necessitate any random

splitting. It turns out that approach 3 should be preferred to cross-validation for

small sample microarray data (Braga-Neto and Dougherty, 2004).

In the microarray literature, a very common mistake is to perform a preliminary variable

selection using the whole data set and follow Approach B, C or D based on the selected

genes. Variable selection, if any, should always be considered as a part of the construc-

tion of decision functions. As such, variable selection must be performed using only the

learning data set. An extensive study of this topic can be found in (Nguyen and Rocke,

2002a).

2.3 Variable selection

Various variable selection schemes have been applied to microarray data with a double

purpose:

• Variable selection may be performed as a preliminary step before classification,

because the chosen classification method works only with a small subset of variables.

• Variable selection is of crucial interest for biologists who want to identify genes

which are associated with specific diseases.



14 CHAPTER 2. CLASSIFICATION WITH MICROARRAY DATA

The variable selection methods found in the microarray literature can be divided into two

distinct groups: univariate ranking methods and optimal subset selection.

2.3.1 Univariate ranking methods

Each variable is taken individually and a relevance score measuring the discriminating

power of the variable is computed. The variables are then ranked according to their

score. One can choose to select only the p̃ top-ranking variables (where p̃ < p) or the

variables whose score exceeds a given threshold. If the distribution of the score is known

under the null-hypothesis that the variable is irrelevant, the p-value corresponding to

the null-hypothesis can also be used as a variable score. Microarray data analysis is an

extreme multiple testing situation, since p hypotheses are tested simultaneously. Thus, p-

values should be handled with caution, for example by using a multiple testing procedure

to control the false discovery rate, see Dudoit et al. (2003) for an overview of multiple

testing in the microarray framework. One of the most common relevance scores is the

F -statistic. For variable j, the F -statistic is defined as

Fj =

∑K
k=1

∑

i:Yi=k(µ̂kj − µ̂j)
2/(K − 1)

∑K
k=1

∑

i:Yi=k(xij − µ̂kj)2/(n − K)
. (2.5)

Let us suppose that for all j = 1, . . . , p, k = 1, . . . ,K,

• Xj is normally distributed within class k, with mean µkj and variance σ2.

• The observations xij , i = 1, . . . , n are independent.

Then under the hypothesis

H0 : µ1j = · · · = µKj (2.6)

versus

H1 : µ1j 6= µkj for at least one k, (2.7)

Fj is F -distributed with degrees of freedom K − 1 and n−K. The corresponding p-value

can be used as a relevance score. The t-statistic, which is also a very commonly used

selection criterion in the case of binary responses, turns out to be a special case of the
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F -statistic. The so-called BSS/WSS ratio used by Dudoit et al. (2002) equals the F -

statistic up to a constant. On the whole, the F -statistic and its variants are by far the

most commonly used relevance score in the microarray literature.

Since microarray data contain a lot of outliers and few observations, some authors (e.g.

Dettling and Bühlmann (2003)) prefer to use a more robust statistic such as Wilcoxon’s

rank sum statistic for the case K = 2. For variable j, the only assumption to be made is

the independence of the observations x1j , . . . , xnj . If rank(xij) denotes the rank of xij in

the sequence x1j , . . . , xnj , the test statistic for variable j is given by

Wj =
∑

i:Yi=1

rank(xij). (2.8)

Under the hypothesis

H0 : median(Xj |Y = 1) = median(Xj |Y = 2) (2.9)

versus

median(Xj |Y = 1) 6= median(Xj |Y = 2), (2.10)

Wj has a Wilcoxon distribution with degrees of freedom n1 and n2. The corresponding

p-value obtained for variable j can be used as a relevance score. For multicategorical

responses (K > 2), one can use the Kruskal-Wallis test statistic (Hollander and Wolfe,

1973), which can be seen as a generalization of Wilcoxon’s rank sum test statistic.

Various ad-hoc relevance scores can be found in the microarray literature, such as the so-

called ’TNoM’ combinatoric score (Ben-Dor et al., 2000) or a variant of the F -statistic,

which is one of the first relevance scores proposed in the literature (Golub et al., 1999).

These scores are either of the type ’signal-to-noise’ (like the F -statistic) or based on

ranks (like Wilcoxon’s rank sum statistic). They generally lead to similar orderings of the

variables.

If variables are selected according to an individual relevance score, correlations and inter-

actions with other variables are omitted, which is an important drawback. In some cases,

the subset of the top-ranking variables is not the best subset in terms of classification

accuracy. Two examples are discussed below.
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• The top-ranking variables might be strongly correlated, for instance because they

correspond to the same DNA sequence or because they are corregulated by a com-

mon regulator. Let us consider an extreme case: the two top-ranking genes have

identical expression levels across the n patients. It is then better to select genes 1

and 3 than genes 1 and 2, because genes 1 and 2 give redundant information. This

topic is examined in detail by Jäger et al. (2003).

• Another reason why the subset of top-ranking genes might not be the optimal subset

for classification is the existence of interactions between genes. Two genes which

have a low individual relevance score might separate the different classes well when

they are considered together. Emerging patterns (see section 3) are an example of

such a data structure. In this context, severe univariate variable selection might be

inadequate.

That’s why many authors try to find optimal subsets based on more complex criteria than

individual relevance scores. This approach is briefly presented in the following.

2.3.2 Optimal subset selection

Methods to find optimal subsets are characterized by

• The relevance score used to evaluate the subsets of variables. Criteria

for subsets of variables can be divided into two groups. The first group consists

of scores which can be seen as generalizations of univariate criteria and do not

involve the construction of a decision function. For instance, Chilingaryan et al.

(2002) compute the empirical Mahalanobis distance between the two classes for each

candidate subset of variables. Such methods are usually denoted as filter methods

in contrast to wrapper methods. In wrapper methods, the optimality criterion of a

each subset of variables is based on the accuracy of decision functions built using

only these variables. Wrapper methods are generally computationally intensive and

more difficult to set up than filter methods.
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• The search algorithm used to explore the space of the possible subsets,

since it is not possible to examine all the possible subsets. Furey et al. (2000)

and Model et al. (2001) use a backward selection selection procedure, whereas Bo

and Jonassen (2002) select pairs of variables following a forward selection scheme.

Alternative search approaches include genetic algorithms (Ooi and Tan, 2003; Li

et al., 2001) or simpler stochastic search algorithms (Chilingaryan et al., 2002).

Methods that look for optimal subsets of variables have two major drawbacks. First, they

are often computationally intensive and difficult to set up. Second, they generally suffer

from overfitting: even if the found subsets are optimal for the considered learning data

set, they might generalize poorly on independent data. In this thesis, we are interested

in alternatives to variable selection.
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Chapter 3

Emerging and Interaction

Patterns

3.1 Introduction

In classification interaction structures among predictors may be used explicitly or im-

plicitly. In linear discriminant analysis or logistic regression a familiar way to exploit

interactions is the incorporation of interaction terms into the linear predictor. Non-

parametric classifiers like nearest neighborhood classifiers do not specify the interaction

structure explicitly but rely on its implicit use. Tree based methods like CARTs (classi-

fication and regression trees, registered trademark by Salford Systems) as suggested by

Breiman et al. (1984) make interaction structures the central issue. The same holds for

early versions of trees, where the detection of interaction structures gave the algorithm its

name, i.e. AID for automatic interaction detection (Morgan and Sonquist, 1963). More

recently, specific interaction structures called emerging patterns have been introduced by

Dong and Li (1999) and applied to high-dimensional gene expression analysis in Li and

Wong (2003). An alternative concept which is related to interactions is the search for

boxes in the feature space in which the response variable has a particular distribution.

19
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Bump hunting as suggested by Friedman and Fisher (1999) is a method to seek boxes in

which the response is as high as possible. A short overview on bump hunting is given in

Hastie et al. (2001). In the following we will consider simple interaction structures of the

emerging pattern type which have the form

{X1 > θ1} ∩ {X2 ≤ θ2} ∩ · · · ∩ {Xd > θd}

where X1, . . . , Xd are covariates and θ1, . . . , θd are thresholds to be estimated. An inter-

action structure of this type will be called an interaction pattern. For simplicity, it will be

abbreviated by P . Emerging patterns as considered by Dong and Li (1999) are interaction

patterns which discriminate between two classes in a specific sense. Let xT = (X1, . . . , Xp)

denote the random vector of covariates and Y the class indicator which can take the val-

ues 1 and 2. Let nP,j denote the number of observations from class j in P . According to

the definition of Dong and Li (1999), a pattern P is a ρ-emerging pattern from class i to

class j if the growth rate from i to j GRij is larger than ρ, where GRij is defined as

GRij(P ) =
nP,j/nj

nP,i/ni
.

The definition is based on a heuristic rather than a statistical criterion. The focus in

Dong and Li (1999) is on data mining and therefore on algorithms that find all the ρ-

emerging patterns without regard to relevance. The problem of overfitting is neglected.

By investigating a large number of possible patterns, it is always possible to find a large

growth rate in the training data, but in an independent test data set, growth rates are

usually much lower. Another drawback of Dong and Li’s patterns is that the definition is

restricted to the case K = 2.

In this chapter, we suggest a more general definition of interaction patterns which is based

on the underlying probability and allows for more than two classes. In addition, a CART-

based method is proposed to identify statistically relevant interactions in cases where

many variables are potential candidates. In gene expression data where the expression

levels of thousands of genes are measured simultaneously the challenge is the number of

predictors. The objectives of our approach are identification of interaction patterns as well

as their use in classification. In the microarray framework, the detection of interactions
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aims at the analysis of gene expression profiles to uncover how combinations of genes are

linked to specific diseases. The classification part aims at the improvement of classification

rules.

Two main papers address the problem of the discovery of emerging patterns. While Dong

and Li (1999) focus on an enumeration based algorithm to find all patterns with large

empirical growth rates, Boulesteix et al. (2003) propose a CART-based method. Here,

we suggest an improvement of the CART-based method developed in Boulesteix et al.

(2003). The method allows to identify candidate patterns and only those which satisfy a

statistical criterion are selected as interaction patterns. In addition, a pruning criterion is

used to prevent too long and irrelevant IPs. A simpler version of the algorithm which is

restricted to the case of two classes is given in Boulesteix et al. (2003). The present chapter

can be seen as an extension of Boulesteix et al. (2003) with respect to three important

issues. First, the concept of interaction patterns is mapped into a theoretical statistical

framework. Second, various statistical aspects of interaction patterns are investigated

(e.g. receiver operating characteristic, length of the interaction patterns, survival plot).

Third, the concept of interaction patterns as well as the discovering algorithm are adapted

to handle multicategorical response variables: all the variables involved in the patterns are

tested for relevance (not only the variable involved in the last splitting, as in Boulesteix

et al. (2003)) .

3.2 Definition of interaction patterns

3.2.1 Interaction Patterns for two classes

In this section, we first consider the binary case. For simplicity, the variables X1, . . . , Xp

are assumed to be metric, although the method is easily generalized to categorical vari-

ables. A pattern may be characterized as a collection of restrictions on a subset of variables

Xj1 , . . . , Xjd
. The restrictions have the simple form Xj ≤ θj or Xj > θj. Let Ij denote
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an interval of this type, then the restrictions are collected in

Xj1 ∈ I1, . . . , Xjd
∈ Id.

More formally, the restrictions may be represented as a subset of the observation space

R
p or in terms of the underlying event. As subset of R

p they are given by

{x|Xj1 ∈ I1} ∩ · · · ∩ {x|Xjd
∈ Id}.

For random variables X1, . . . , Xp the underlying event for pattern P is given by

P = Aj1 ∩ · · · ∩ Ajd
,

where As = {ω|Xs(ω) ∈ Is}. The pattern P may be simply identified by the sequence of

variables and corresponding intervals {(js, Is), s = 1, . . . , d} where d is the order of the

pattern. In addition, let P\j denote the pattern where the restriction for variable j is

omitted, i.e.

P\j = ∩i∈{j1,...,jd}\{j}Ai.

The original pattern is easily obtained by P = P\j ∩ Aj .

Definition 3.1. Interaction pattern for two classes

For η > 1, P is called a η- Interaction Pattern (IP) for class k0 if

p(P |Y = k0)

p(P |Y 6= k0)
> η, (3.1)

and for all j ∈ {j1, . . . , jd} the condition

p(P\j |Y = k0)

p(P\j |Y 6= k0)
<

p(P |Y = k0)

p(P |Y 6= k0)
(3.2)

holds.

In simple words, an interaction pattern is a condition on a collection of covariates for which

the probability of occurrence is larger in one of the classes (equation (3.1)) and such that

every involved covariate actually contributes to the ratio between the probabilities of

occurrence within classes (equation (3.2)). The probabilities involved in the definition

are unknown. Therefore, given a candidate pattern P , the data are used to decide if it
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is an interaction pattern fulfilling equations (3.1) and (3.2). One option is to base the

decision on a statistical test. For fixed k0, condition (3.1) may be investigated by testing

the hypothesis

H
(1)
0 : p(P |Y = k0) ≤ p(P |Y 6= k0).

For simplicity η = 1 is used. Then testing of H
(1)
0 is equivalent to one-sided independence

testing in the following 2×2 contingency table with rows given by presence or non-presence

of pattern P and columns defined by the classes.

Y = k0 Y 6= k0

P nP,k0
nP,k0

nP

P nP,k0
nP ,k0

nP

In the contingency table P stands for presence of a specific pattern P and P = R
p \ P

denotes the non-presence of P . One can use for instance Fisher’s exact test, which allows

one-sided testing and is also valid for small numbers of observations. An overview on

independence testing in contingency tables is given in Agresti (2002). The hypothesis H
(1)
0

is rejected by the chosen independence test (for instance Fisher’s test) to the significance

level α1 if p(1) < α1, where p(1) denotes the p-value obtained by testing of H
(1)
0 . P

is selected as an interaction pattern only if p(1) < α1 holds. For the investigation of

condition (3.2) it is useful to reformulate the condition. Since

p(P\j |Y = k0)

p(P\j |Y 6= k0)
<

p(P |Y = k0)

p(P |Y 6= k0)

is equivalent to

p(P\j ∩ Aj |Y = k0)

p(P\j ∩ Aj |Y 6= k0)
<

p(P |Y = k0)

p(P |Y 6= k0)
(3.3)

condition (3.2) may be investigated by one-sided independence testing in the following

contingency table:

Y = k0 Y 6= k0

P = P\j ∩ Aj n
(j)
A,k0

n
(j)

A,k0

nP

P\j ∩ Aj n
(j)

A,k0

n
(j)

A,k0

nP\j
− nP
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Let γ(j) denote the associated odds ratio

γ(j) =
p(P ∩ {Y = k0})/p(P ∩ {Y 6= k0})

p(P\j ∩ Aj ∩ {Y = k0})/p(P\j ∩ Aj ∩ {Y 6= k0})
.

Then, condition (3.3) can be reformulated as γ (j) > 1. To investigate condition (3.3), one

has to test for all j the hypothesis

H
(2,j)
0 : γ(j) = 1 vs. H

(2,j)
1 : γ(j) > 1.

An option is to use Fisher’s one-sided independence test again. The hypothesis H
(2,j)
0 is

rejected by the chosen independence test to the significance level α2 if p(2,j) < α2, where

p(2,j) denotes the p-value obtained by testing of H
(2,j)
0 . P is selected as an interaction

pattern only if maxj p(2,j) < α2 holds, i.e. for all j ∈ {j1, . . . , jd}, H
(2,j)
0 has to be rejected.

The number of involved variables represents the order of the interaction pattern and is

denoted by d. Patterns of order 1 are explicitly allowed. In the following, empirical

interaction patterns are simply denoted as IPs. The connection to emerging patterns

is easily derived. In the emerging pattern literature which uses terminology from data

mining the support is defined by suppk(P ) = nP,k/nk. This is an unbiased estimate of

the probability p(P |Y = k). The crucial difference between the present approach and the

emerging pattern approach in data mining is that in the latter approach growth rates are

simple descriptive tools and only condition (3.1) is investigated.

3.2.2 Generalization to multicategorical response

In practice, categorical variables often have more than two possible classes. In this section,

we address the problem of multicategorical responses (K > 2) and propose a generaliza-

tion of the definition of IPs.

Definition 3.2. Interaction pattern for more than two classes

For η > 1, P is called a η-Interaction Pattern (IP) for the class k0 if

p(P |Y = k0)

p(P |Y = k)
> η (3.4)
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holds for all k and for all j from {j1, . . . , jd} one has

p(P\j |Y = k0)

p(P\j |Y 6= k0)
<

p(P |Y = k0)

p(P |Y 6= k0)
. (3.5)

For fixed k0, condition (3.4) may be investigated by testing the hypotheses

H
(1,k)
0 : p(P |Y = k0) ≤ p(P |Y = k)

for all k 6= k0. The hypothesis H
(1,k)
0 is rejected by the chosen independence test (for

instance Fisher’s test) to the significance level α1 if p(1,k) < α1, where p(1,k) denotes the

p-value obtained by testing of H
(1,k)
0 . For fixed α1, P is selected as an interaction pattern

if maxk 6=k0
p(1,k) < α1 holds.

Condition (3.5) can be investigated using the same procedure as for IPs for two classes.

3.3 Discovering interaction patterns with trees

Interaction patterns and single leaves of classification trees have similar structures and

properties. Thus, we propose to use the well-known and fast CART-algorithm proposed

in Breiman et al. (1984) to discover interaction patterns.

3.3.1 Tree methodology

Classification trees are an efficient exploratory tool to detect structures in data (Breiman

et al., 1984). They are based on recursive partitioning whereby the measurement space

R
p is successively split into subsets. Let xT = (X1, . . . , Xp) ∈ R

p denote the vector of

covariates. If C is a subset of R
p (corresponding to the partitioning of R

p into C and

C = R
p \ C), the split of C based on variable Xj divides C into

C1(j, θ) = {x ∈ C|Xj ≤ θ},

C2(j, θ) = {x ∈ C|Xj > θ}.
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Thus the subset C is split by use of one variable, Xj , with the split simply depending on

a threshold θ from the range of Xj. By starting with C = R
p and performing successive

splittings one obtains a tree. After d splittings, one obtains subsets of R
p of the form

{x|Xi1 ≤ θ1} ∩ {x|Xi2 > θ2} ∩ · · · ∩ {x|Xid ≤ θd}.

A subset is identical to a pattern P given by the sequence {(js, Is), s = 1 . . . , d} where

js identifies the variable and Is specifies the interval which in the simple case of binary

splits has the form Is = (−∞, θs] or Is = (θs,+∞). The relationship between decision

trees and patterns is simple: a pattern is equivalent to a leaf.

Splitting criterion

Given a pattern P of order d, an additional split in variable j at θ yields a (d + 1)-

dimensional pattern. Let

P ∩ A = P ∩ {ω|Xj(ω) ∈ Ij}

denote the new pattern where Ij = (−∞, θj ] or Ij = (θj ,+∞). Thus starting from P one

obtains for the transition from P to P ∩ A the transition contingency table

Y = 1 . . . Y = K

P ∩ A nPA,1 . . . nPA,K

P ∩ A nPA,1 . . . nPA,K

nP,1 . . . nP,k

The margins nP,k for k from {1, . . . ,K} represent the number of observations from class

k in pattern P .

The new split is chosen to minimize a splitting criterion. One of the most common

criteria is the deviance, also called cross-entropy, see Hastie et al. (2001). The deviance

of a pattern P corresponds to the fit of the model

p(P |Y = 1) = · · · = p(P |Y = K).
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Let n denote the total number of observations and nk the number of observations from

class k. The deviance has the form

D(P ) = 2
∑K

k=1{nP,k log
nP,k/nk

nP /n + nP,k log
n

P,k
/nk

n
P

/n }
= 2

∑K
k=1{nP,k log p̂(P |k)

p̂(P ) + nP,k log p̂(P |k)

p̂(P )
}

= 2
∑K

k=1 nkKL(p̂(P |k), p̂(P ))

where nP =
∑K

k=1 nP,k, p̂(P |k) =
nP,k

nk
, p̂(P ) = nP

n , and KL stands for the Kullback-

Leibler distance

KL(p, q) = p log
p

q
+ (q − p) log

1 − p

1 − q
.

The new split which characterizes A is chosen to minimize the conditional deviance D(P ∩
A|P ) given by

D(P ∩ A|P ) = D(P ∩ A) − D(P )

and tests the hypothesis

p(P ∩ A|Y = 1) = · · · = p(P ∩ A|Y = K)

given p(P |Y = 1) = · · · = p(P |Y = K). The conditional deviance can also be written as

D(P ∩ A|P ) = 2

K
∑

k=1

nP,kKL(p̂(P ∩ A|k), p̂(P ∩ A)).

Various other splitting criteria have been used to grow trees, for instance the Gini-Index

or the misclassification error, see Hastie et al. (2001).

Stopping Criterion

The splitting criterion characterizes the way the tree is grown. In addition a stopping-

criterion has to be chosen. In the tree literature, various stopping criteria have been

proposed, for instance by Breiman et al. (1984). Let us consider a leaf P . One can decide

not to split this leaf if its order exceeds a fixed number, if it contains less than a fixed

number of observations or if the best split would yield at least one leaf with less than

a fixed number of observations. Many other more sophisticated methods to limit the

depth of trees such as cost-complexity pruning described in Hastie et al. (2001) have been

investigated.
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3.3.2 Discovering Algorithm

When using trees for the detection of interaction patterns the main problem is that trees

are constructed by recursive partitioning. What is an advantage in terms of computation

time and structuring turns into a disadvantage since the leaves share splits in the same

variables. In particular, all leaves share the same root splitting. Patterns that do not

involve the root splitting variable will never be found by a single tree. Therefore the

proposed algorithm is based on the growing of several trees which use different sets of

variables from which the splitting starts.

The first stage is designed to find candidate patterns. Here candidate patterns are gen-

erated which are investigated in the following steps. The selection is directly based on

classification trees. The iterative algorithm grows a tree on the available set of vari-

ables and then removes the variable that generates the first split from the available set of

variables. Thus patterns result which include different sets of variables. In applications

we use the CART-algorithm tree (Ripley, 1996) implemented in the tree library in R

(R-Development-Core-Team, 2004) with the deviance as splitting criterion. As stopping

criterion, we fix mincut (minimal number of observations to include in either child node)

at 5, minsize (minimal allowed node size) at 10 and mindev (minimal ratio between

within-node deviance and the root node deviance for the node to be split) at 0.01. These

settings are the default values of the R program.

In a second stage, conditions (3.1) and (3.2) resp. (3.4) and (3.5) are tested for the se-

lected candidates patterns. The significance levels for the tests (α1 and α2) as well as

the test T to be used (e.g. Fisher’s exact test) have to be specified as input. The whole

procedure can be summarized by the following algorithm.

Stage 1: Candidate patterns

Grow a classification tree. Store the obtained leaves and eliminate the variable defining

the first splitting of the tree from the set of input variables . Repeat this procedure until

there is no more variable in the input set. Define S as the set of all obtained leaves.

Stage 2: Relevance of candidate patterns

For each leaf from S, define k0 as the class that maximizes p̂(P |k).
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1. For each leaf, for all k 6= k0, test H
(1,k)
0 with test T to the significance level α1. Elim-

inate from S all the patterns for which maxk 6=k0
p(1,k) > α1. This step corresponds

to the testing of condition (3.1) resp. (3.4).

2. For all the remaining leaves from S, test H
(2,j)
0 for all j in {j1, . . . , jd} with test T to

the significance level α2. If maxj p(2,j) > α2, eliminate the variable for which p(2,j)

is maximal from the interaction pattern. Repeat this procedure as long as variables

are eliminated. This step corresponds to the testing of condition (3.2) resp. (3.5).

3. Repeat step 1 for all the leaves that have be shortened in step 2. This step is

necessary to ascertain that the shortened patterns still fulfill condition (3.1) resp.

(3.4).

4. Eliminate from S all the duplicated patterns.

The algorithm yields empirical interaction patterns which are based on tests with sig-

nificance levels α1 and α2. Since many tests are performed the question of the overall

significance level arises. This might be controlled for the given set of candidate patterns.

It is however hard to control for the total procedure. Approaches to control the level for

trees by maximally selected rank statistics are found in Lausen and Schumacher (1992).

Instead of performing multiple testing, which would be very difficult in this framework,

we follow an alternative approach by defining receiver operating curves which capture the

performance of the algorithms for varying significance levels. This topic is addressed in

the following section, where it is shown that the algorithm can detect ’ideal’ theoretical

interaction patterns with quite good accuracy.

3.3.3 Receiver Operating Characteristic

A popular method for summarizing the accuracy of a classification rule are receiver op-

erating characteristic (ROC) curves. A ROC curve is a plot of the true-positive rates

against the false-positive rates. In classification, curves result from the consideration

of varying thresholds on the diagnostic scale. Let a disease be diagnosed if the diag-
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nostic scale is larger than threshold γ. Then the true-positive and false-positive rates

are functions of the threshold. The resulting ROC curve is convex under quite natu-

ral assumptions. A large body of literature deals with the concept and estimation of

ROC curves. An early reference is Swets and Pickett (1982), more recent approaches

to estimation are proposed in Lloyd (2000) and Venkatraman (2000). A version of the

ROC curve is suggested here to illustrate the power of the method for detecting relevant

interactions. The empirical ROC curve shows the hit rate HR (or sensitivity) against

the false alarm rate FAR (or specificity), where HR and FAR depend on the param-

eters α1 and α2 and on the order of the interaction patterns. Let, for example, the

order of the interaction patterns be fixed at d = 2, i.e. only pairs of variables are in-

vestigated. If p is the total number of variables, the total number of possible pairs of

variables is p(p − 1)/2. For each possible pair of variables, two binary variables are de-

fined: r, which equals 1 if the pair forms a real IP of order 2 and 0 else, and d, which

equals 1 if the pair is detected as an IP of order 2 by our method and 0 else. For

each parameter setting (α1 and α2), we are interested in the following contingency table.

d d Σ

r nr,d nr,d nIP

r nr,d nr,d p(p − 1)/2 − nIP

The hit rate (HR) is defined as the proportion of discovered IPs among the nIP real

IPs, i.e.

HR =
nr,d

nIP

.

Similarly, the false alarm rate (FAR) is defined as the proportion of patterns which were

detected as IPs among the non-IP patterns of the same order, i.e.

FAR =
nr,d

p(p − 1)/2 − nIP

.
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3.3.4 Simulation study

Study Design

In a simulation study it is investigated if the algorithm is able to detect simulated patterns.

To make the problem more simple and reduce the number of parameters in the study, we

consider only the case of two classes. Simulated data are obtained by following procedure.

The number of variables contained in the data set is fixed at p = 50 and the number of

observations is varied (n = 50, 80). These sample sizes correspond roughly to the typical

values found in real gene expression data sets. From the 50 variables, 20 variables form

pairwise interaction patterns (variable 1 forms an interaction pattern with variable 2,

variable 3 with variable 4, and so on). The two threshold values defining each pattern

are drawn randomly from the uniform distribution in [0.25, 0.75]. The type of inequality

defining the pattern (≤ or >) are also chosen randomly. Thus, various data configurations

are obtained. In the subsets defined by the pattern and in its complement, the distribution

is uniform. The rest of the 50 variables are generated randomly and independently of the

class, following the uniform distribution in [0, 1].

The simulation study is designed as follows. We generate 100 random data matrices

following the procedure described above. Then the discovering algorithm is run on each

data matrix with different values of α1 and α2. HR and FAR are estimated for each

parameter setting from the contingency tables obtained for the 100 random data matrices.

If an IP for class 1 is detected as an IP for class 2 or vice-versa, the IP is considered as

false alarm. Finally the means across simulations are built.

Simulation results

Figure 3.1 displays the estimated ROCs for two values of n (n = 50 and n = 80): the

hit rate is represented against the false alarm rate for different values of α1 (ranging

from 10−20 to 10−2) and α2 (ranging from 10−14 to 10−4).It is seen that for decreasing

significance levels the ROCs rather soon become horizontal, signaling a stable level of

detection rate with the level depending on sample size. Within this stable level the
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Figure 3.2: Boxplot of the hit rate (top) and false alarm rate (bottom) for n = 50 (left)

and n = 80 (right), for different values of α1 and α2.

increase of significance levels only increases the false alarm rate. Figure 3.2 displays the

boxplots of the hit rate and false alarm rate for n = 50 and n = 80, for three parameter

settings which correspond to different zones of each ROC curve. As can be seen from

Figure 3.2, the variance of the hit rate and false alarm rate across the 100 simulations is

quite low, although not negligible.
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3.4 Classification based on interaction patterns

3.4.1 Method

As can be seen from their definition, IPs might be useful to define predictors for classifi-

cation. An inconvenience of the CART approach for data sets with many variables and

few observations is that the tree often consists of few splittings. If one stops growing the

tree too late, then some splittings might be statistically irrelevant. And if the growing

is stopped too early, the decision rule depends on very few variables, and does not use

most of the potentially interesting variables from the data set. By using IPs instead of

tree leaves as a basis for the decision rule, one avoids a major problem: the decision rule

uses much more information from the data set than a single tree does. In the following, a

simple method to use IPs for classification is proposed. It is particularly suited for data

sets with many (metric or categorical) variables and few observations. It can also be used

for data sets with fewer variables, however without spectacular gain in accuracy.

From now on, we suppose that we have a learning data set L and a test data set T .

To predict the class of the observations from T , we proceed as follows: First, IPs are

found by applying the discovering algorithm on the training set L. Second, m new bi-

nary covariates Z1, . . . , Zm are defined, where m denotes the number of found IPs. The

variables

Zj =







1 for the j-th IP

0 otherwise

indicate if the considered observation fulfills the conditions defining the considered IP. One

obtains a transformed learning data set and a transformed test data set. Then virtually

any supervised learning method can be applied to these data matrices, for instance linear

discriminant analysis (with Bayes or Maximum-Likelihood rule), nearest neighborhood,

logistic regression (if m is not too large), etc.
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3.4.2 Study Design

Fifty random partitions into a learning data set L (containing n− 10 observations) and a

test data set T (containing 10 observations) are generated. For each partition, we proceed

as follows. If the number of variables is high, a prescreening step is necessary. It is done

by selecting the p̃ variables with lowest p-value for Wilcoxon’s test testing the equality of

the median in two classes, using only L, as described in Dettling and Bühlmann (2003).

If the number of classes K is greater than 2, the procedure is repeated K times: for the

K classes successively, one tests the equality of the medians in the considered class and

in all the other classes together. Then K groups of variables are selected. An alternative,

which might seem more appropriated for multiclass problems, is to use the Kruskal-Wallis

statistic. One applies the Kruskal-Wallis test to all genes and selects the p̃ genes with

lowest p-values. However, the results obtained with this method are worse than with our

procedure. One possible explanation is that the variables selected by the Kruskal-Wallis

statistic do not necessarily separate well all K classes.

A prescreening is performed for three of the four investigated data sets: the leukemia,

the colon and the SRBCT data sets, which are described in the following subsection. For

each data set, the number of selected variables is fixed successively at p̃ = 50, p̃ = 100,

p̃ = 200 and p̃ = 300. These values have been chosen, because for greater values of p̃,

the discovering algorithm is computationally very intensive and for lower values of p̃, the

number of found IPs is too low (or even zero for some of the partitions).

We run the discovering algorithm to find IPs, with different values for the parameter α1

and p̃. To reduce the number of parameters, α2 was fixed at 10−4. α1 is chosen on a

heuristic basis. It is chosen so that the number of found IPs is non zero and smaller than,

say 200 for all the partitions. For the tree topology parameters, the default values of the

R program as described in section 3 are used.

Once the IPs are found, the new covariates are determined for all observations from L and

T . Then classification is carried out, either with nearest neighborhood classification based

on 5 nearest neighbors (5-NN) or with linear discriminant analysis. Since the results were

slightly better with 5-NN, the results with linear discriminant analysis are not shown.
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For the nearest neighborhood classification, the Euclidean distance was used.

Mean error rates over the 50 partitions: For each parameter combination, the mean

error rate over the 50 random partitions (i.e. the mean proportion of observations from

the test set that were misclassified) is computed. The results are summarized in a table.

For comparison, we also show the mean error rate obtained with classical CART, using

the same R program as in the discovering algorithm, and with 5-NN applied directly on

the p̃ genes. The latter is known to be one of the best performing discrimination methods

for microarray data (Dudoit et al., 2002).

Observation-wise error rate: For each parameter combination and for each single

observation, the proportion of times it was misclassified (out of the runs in which it was

in the test set) is recorded. We summarize the results by means of survival plots as

described in Dudoit et al. (2000): the proportion of observations classified correctly in at

least V % of the runs is represented against V . The results are shown only for the best

parameter combination for each data set.

Variables involved in IPs: An interesting issue is whether the variables involved in the

IPs also perform good individually. To answer this question, we first rank the variables

according to the Wilcoxon-statistic using all the observations. Then we represent the

proportion of runs in which the variables were selected against their rank. We show the

results for the colon data and the leukemia data with p̃ = 300 and pG = 10−6 (for colon)

and pG = 10−10 (for leukemia).

Number of IPs: The number of found IPs depends highly on the parameters. Typically,

it increases with p̃ and α1. The number of found IPs of each order is stored each time the

discovering algorithm is run. The results are summarized by plotting the mean number of

found IPs of each order over the 50 random partitions, for each data set and for different

values of α1. For the 3 gene expression data sets (leukemia, colon, SRBCT), we show

only the results for p̃ = 300. For smaller values of p̃ the plots show similar patterns, but

the absolute numbers of IPs are lower.
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3.4.3 Data sets

Leukemia Data: This data set was introduced in Golub et al. (1999) and contains the

expression levels of 7129 genes for 47 ALL-leukemia patients and 25 AML-leukemia pa-

tients. It is included in the R library golubEsets. After data preprocessing following

the procedure described in Dudoit et al. (2002), only 3571 variables remain. It is easy

to achieve excellent classification accuracy on this data set, even with quite trivial meth-

ods as described in the original paper (Golub et al., 1999). Indeed, we found out that

it is possible to find many IPs even if α1 is very low. Thus, we set α1 to α1 = 10−10,

α1 = 10−12 and α1 = 10−14 successively in our study.

Colon microarray data: The colon data set is a publicly available ’benchmark’ gene

expression data set which is extensively described in Alon et al. (1999). The data set

contains the expression levels of p = 2000 genes for n = 62 patients from two classes.

22 patients are healthy patients and 40 have colon cancer. This data set is not as ’easy’

as the leukemia data set. The classification accuracy is usually much lower, for instance

using Support Vector Machines as described in Furey et al. (2000). It is also more difficult

to find good IPs: α1 was set heuristically to α1 = 10−6, α1 = 10−8 and α1 = 10−10. Note

that it is also possible to run the algorithm with α1 = 10−12 and α1 = 10−14 as for the

leukemia data set, but with such values for α1, no IP would be found.

SRBCT microarray data: This gene expression data set is presented in Kahn et al.

(2001). It contains the expression levels of 2308 genes for 83 Small Round Blue Cells

Tumor (SRBCT) patients belonging to one of the 4 tumor classes: Ewing family of tu-

mors (EWS), non-Hodgkin lymphoma (BL), neuroblastoma (NB) and rhabdomyosarcoma

(RMS). For this data set, α1 was set to α1 = 10−3, α1 = 10−4, α1 = 10−5 and α1 = 10−6.

These values are considerably higher than for the leukemia and colon data sets. One the

possible explanations is that to be selected as an IP of type k (k ∈ {1, 2, 3, 4}), a pattern

must have higher frequency in class k than in all three other classes, which is a stronger

requirement than for the two-classes case.

Iris data: The famous (Fisher’s and Anderson’s) iris data set is included in the R library

MASS. It gives 4 different measurements (sepal length and width, petal length and width)
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for 150 flowers from each of the three species (class labels) setosa, versicolor, virginica.

α1 was set successively to α1 = 10−4, α1 = 10−8 and α1 = 10−12.

3.4.4 Results

Mean error rate: The mean error rates for different values of the parameters are shown

in Table 1 for the four data sets. For all four data sets, the new method performs much

better than CART and is comparable to nearest neighborhood classification. Thus it

is a competitor to one of the best classification procedures in microarray data with the

advantage of providing information on the relevance of variables and interaction patterns.

Surprisingly, the number of variables as well as the significance level α1 do not seem to

have strong influence on the results, provided IPs are found. For the case of two classes

the method may be compared to the method suggested in Boulesteix et al. (2003). It

turns out that the classification results with the new method are as good as with the

former method for the colon data and better for the leukemia data.

Observation-wise error rate: As can be seen from the survival plot depicted in

Figure 3.3, a large part of the error rate is due to observations that are misclassified each

time they are included in the test data set. Indeed, even for small V , the proportion

of observations classified correctly in at least V % of the runs is not 1, and it decreases

slowly for large V . We found out that most of the ’problematic’ observations are also

misclassified by other classification methods (data not shown).

Number of IPs: As can be seen from Figure 3.4, the most frequent IPs are IPs of

order 2. We did not found any IP of order 4, and few IPs of order 3. If the data sets

contained more observations, it would certainly be possible to find more IPs of order 3

and 4 (or more). IPs of order 1 are quite frequent and correspond to variables that can

separate the classes well. Unsurprisingly, the number of found IPs increases with α1. An

important fact which can not be seen in the figure is the high variability of the numbers

of IPs over the random partitions: like CART, our learning method is not very robust,

which can be seen as a drawback from the statistical point of view.

Variables involved in IPs: As can be seen from Figure 3.5 (for the colon and the
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Colon data α1 = 10−6 α1 = 10−8 α1 = 10−10 tree 5−NN

50variables 0.16 0.17 0.19 0.30 0.16

100variables 0.14 0.14 0.16 0.30 0.14

200variables 0.15 0.15 0.15 0.29 0.15

300variables 0.15 0.15 0.15 0.29 0.15

Leukemia data α1 = 10−10 α1 = 10−12 α1 = 10−14 tree 5−NN

50variables 0.042 0.042 0.042 0.15 0.042

100variables 0.025 0.025 0.025 0.15 0.025

200variables 0.016 0.016 0.016 0.15 0.016

300variables 0.016 0.016 0.016 0.15 0.016

SRBCT data α1 = 10−4 α1 = 10−5 α1 = 10−6 tree 5−NN

20variables 0.0077 0.0077 0.0080 0.25 0.0077

50variables 0.0046 0.0046 0.0048 0.25 0.0046

Iris data α1 = 10−4 α1 = 10−8 α1 = 10−12 tree 5−NN

0.035 0.035 0.035 0.059 0.035

Table 3.1: Mean error rate over 50 random partitions
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Figure 3.4: Number of IPs of each order. Leukemia: p̃ = 300 and α1 = 10−10 (solid),

α1 = 10−12 (dashed),α1 = 10−14 (dotted). Colon: p̃ = 300 and α1 = 10−6 (solid), α1 =

10−8 (dashed),α1 = 10−10 (dotted). SRBCT: p̃ = 50 and α1 = 10−4 (solid), α1 = 10−5

(dashed),α1 = 10−6 (dotted). Iris: α1 = 10−4 (solid), α1 = 10−8 (dashed),α1 = 10−12

(dotted).



42 CHAPTER 3. EMERGING AND INTERACTION PATTERNS

leukemia data sets), most of the ’best’ variables appear in at least one IP in most runs. But

some ’less relevant’ variables are involved in IPs in many runs as well, thus showing that

variables that perform poorly individually might be interesting in association with others.

On the whole, there seems to be a weak linear dependence between the variable rank and

the frequency of selection. Separate analysis for IPs of order 1,2,3 would probably show

stronger dependence for IPs of order 1 than for IPs of order 2 and 3. In the next section,

we give an example on how interactions patterns can be interpreted in practice.
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Figure 3.5: Proportion of runs in which the variable is involved in at least one IP



3.5. DISCUSSION 43

3.4.5 An example

In this section, we illustrate the concept of interaction patterns using a concrete example

from the colon data. Since the goal is not the evaluation of the classification performance

but the identification of relevant patterns, the discovering algorithm is run on the whole

colon data set with α1 = 10−10 and α2 = 10−6. The discovering algorithm outputs a list

of 9 IPs. For example, the genes R55310 and H72234 are found to form an IP for class 1

(normal tissue) which is defined by the restrictions

R55310 > 0.40

and

H72234 < −0.1,

as depicted in Figure 3.6. The corresponding biological hypothesis can be formulated

as ”in normal tissues, gene R55310 has a high expression level and gene H72234 has a

low expression level”. Hypotheses of this type might be used as a basis for the design of

biological experiments.

3.5 Discussion

CART is one of the most popular classification methods in many application fields of

statistics, for instance medicine. The main advantages that make it so popular are its

simplicity and its interpretability. Moreover, scientists are often interested in the inter-

action structures implied by the CART decision rules. However, when the number of

variables is high and the number of observations small, like in microarray data, CART

usually performs poorly, because it uses only a very small part of the available informa-

tion. Among the huge number of variables, it is often possible to find a few that separate

the classes very good or even perfectly in the learning set. Thus, the obtained trees have

very short branches and often perform poorly on new data sets. Modern methods based

on aggregation of trees do improve the results a little as argued in Dudoit et al. (2002),

but do not seem to overcome the problem completely. Instead of partitioning the input
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space like in CART, our method defines a wide collection of leaves with non-empty inter-

section, thus allowing more robust classification.

Another advantage of our classification method is its interpretability in terms of inter-

action structures. This is a very important issue for applied scientists, especially those

working on gene expression data. Indeed, although it is almost certain that genes some-

how interact, the challenging question of modeling these interactions remains partly unan-

swered. The proposed method can detect quite successfully interaction patterns in simu-

lated ’perfect’ data.

The proposed approach differs significantly from Dong and Li’s approach in several as-

pects. First, we use a statistical criterion to define the patterns instead of the heuristic

growth rate. Second, while Dong and Li find patterns of high order, we argue that short

pattern involving only relevant variables are preferable, in order to avoid overfitting of the

learning data. Therefore condition (3.2) was added in the definition. Third, the method

to detect the patterns is completely different: while Dong and Li perform a dramatic vari-

able selection and enumerate all the possible patterns built with the selected variables,

we use a CART-based algorithm which accelerates the search considerably and do not

necessitate such a strong variable selection. The approach described in Boulesteix et al.

(2003) may be seen as a simplification of the method for binary responses. The search

algorithm is similar, but the testing of condition (3.2) is replaced by a pruning step while

building the trees. Thus, only the variables involved in the subsequent splittings can be

eliminated from a pattern. This approach is often appropriate for binary responses, since

the successive splittings of the trees are chosen to minimize the deviance. However, it

is too restrictive for multicategorical responses or for highly correlated predictors. The

proposed definition and search algorithm overcome this inconvenience and generalize the

framework developed in Boulesteix et al. (2003).
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Chapter 4

Linear dimension reduction for

classification

4.1 Introduction

Variable selection is very popular in the field of microarray data analysis, since concep-

tually simple. However, it presents two major drawbacks. First, a large part of the

information contained in the data set gets lost, since most genes are eliminated by the

procedure. Second, interactions and correlations between variables are almost always ig-

nored. A few sophisticated procedures try to overcome this problem by selecting optimal

subsets with respect to a given criterion instead of filtering out the apparently uninter-

esting variables. However, these methods generally suffer from overfitting: the obtained

variable subsets might be optimal for the learning data set, but do not perform well on

independent test data. Moreover, they are based on computationally intensive iterative

algorithms and thus very difficult to implement and interpret.

Dimension reduction is a wise alternative to variable selection to handle high-dimensional

data. In the literature, it is also denoted as ’feature extraction’ or ’projection onto a low-

dimensional subspace’. Dimension reduction methods present several advantages over
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variable selection:

• They may allow data visualization in a low-dimensional space.

• They incorporate interactions and correlations between variables.

• Although information on thousands of genes are used, statistical methods which

can handle only few variables may be employed. In contrast, if one wants to apply

e.g. logistic regression to microarray data without dimension reduction, a drastic

variable selection is required, which results in a loss of information.

• In the ideal case, the new components may be interpreted by applied scientists.

Although dimension reduction can serve different purposes, e.g. clustering, regression,

classification, we will focus on dimension reduction methods for classification. They can

be categorized into:

• Linear and non-linear methods. Linear methods are usually faster, more robust

and more interpretable than non-linear methods. In turn, non-linear methods can

sometimes discover complicated structures (e.g. embedments) that linear methods

fail to detect.

• Supervised and unsupervised methods. Supervised methods use the class informa-

tion Y for constructing the new components, contrary to unsupervised methods. It

is well-known and quite intuitive that supervised methods are recommended when

dealing with a supervised problem such as classification (Nguyen and Rocke, 2002a).

Since our interest is in dimension reduction for high-dimensional microarray data, we focus

on methods which can handle the case n < p. Non-linear methods for dimension reduction

(e.g. Isomap or Sammon’s non-linear mapping) are computationally very intensive for

high-dimensional data. Moreover, they are known to perform poorly when the number of

observations is low, as in microarray data. Unsupervised dimension reduction methods

are effective tools for graphical representation or to discover structures in data. However,

they are generally inappropriate in the context of classification, because the obtained

new components are not necessarily linked to the response variable Y . Thus, we restrict
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ourselves to supervised linear methods.

In Principal component analysis (PCA), the goal is to find uncorrelated linear transfor-

mations of the random vector x which have high variance. The same analysis can be

performed on E(x|Y ) instead of x. In this chapter, this approach is denoted as between-

group PCA and examined in Section 4.2. An alternative approach for linear dimension

reduction is Partial Least Squares (PLS): the goal is to find linear transformations which

have high covariance with the response Y . In Section 4.3, the PLS approach is briefly

presented and a connection between between-group PCA and the first PLS component is

shown for the case K = 2.

If one assumes that x has a multivariate normal distribution within each class and that

the within-group covariance matrix is the same for all the classes, decision theory tells

us that the optimal decision function is a linear transformation of x. This approach is

called linear discriminant analysis (Hastie et al., 2001). For K = 2, we show in Section

4.4 that under a stronger assumption, linear discriminant analysis is based on the same

linear transformation of x as between-group PCA.

In Section 4.5, we give a brief overview of other linear dimension reduction methods.

4.2 Between-group PCA

4.2.1 Definition

Linear dimension reduction consists to define new random variables Z1, . . . , Zm as linear

combinations of X1, . . . , Xp, where m is the number of new variables. For j = 1, . . . ,m,

Zj has the form

Zj = aT
j x,

where aj is a p× 1 vector. In Principal Component Analysis (PCA), a1, . . . ,am ∈ R
p are

defined successively as follows.
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Definition 4.1. . Principal Components.

a1 is the p×1 vector maximizing VAR(aTx) = aTΣa under the constraint aT
1 a1 = 1. For

j = 2, . . . ,m, aj is the p×1 vector maximizing VAR(aTx) under the constraints aT
j aj = 1

and aT
j ai = 0 for i = 1, . . . , j − 1.

The vectors a1, . . . ,am defined in definition 4.1 are the (normalized) eigenvectors of the

matrix Σ. The number of eigenvectors with strictly positive eigenvalues equals rank(Σ),

which is p− 1 if X1, . . . , Xp are linearly independent. a1 is the eigenvector of Σ with the

greatest eigenvalue, a2 is the eigenvector of Σ with the second greatest eigenvalue, and

so on. For an extensive overview of PCA, see e.g. Jolliffe (1986).

In PCA, the new variables Z1, . . . , Zm are built independently of Y and the number of

new variables m is at most p − 1. If one wants to build new variables which contain

information on the categorical response variable Y , an alternative to PCA is to look for

linear combinations of x which maximize VAR(E(aT x|Y )) instead of VAR(aTx). In the

following, this approach is denoted as between-group PCA. ΣB denotes the between-group

covariance matrix:

ΣB = COV(E(x|Y )). (4.1)

In between-group PCA, a1, . . . ,am are defined as follows.

Definition 4.2. . Between-group Principal Components.

a1 is the p×1 vector maximizing VAR(E(aTx|Y )) = aTΣBa under the constraint aT
1 a1 =

1. For j = 2, . . . ,m, aj is the p×1 vector maximizing VAR(aTx|Y ) under the constraints

aT
j aj = 1 and aT

j ai = 0 for i = 1, . . . , j − 1.

The vectors a1, . . . ,am defined in definition 4.2 are the eigenvectors of the matrix ΣB.

Since ΣB is of rank at most K − 1, there are at most K − 1 eigenvectors with strictly

positive eigenvalues. Since E(aTx|Y ) = aT E(x|Y ), between-group PCA can be seen as

PCA performed on the random vector E(x|Y ) instead of x. In the next section, the

special case K = 2 is examined.
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4.2.2 A special case: K = 2

If K = 2, ΣB has only one eigenvector with strictly positive eigenvalue. This eigenvector

is denoted as aB . aB can be derived from simple computations on ΣB.

ΣB = p1(µ1 − µ)(µ1 − µ)T + p2(µ2 − µ)(µ2 − µ)T

= p1(µ1 − p1µ1 − p2µ2)(µ1 − p1µ1 − p2µ2)
T

+p2(µ2 − p1µ1 − p2µ2)(µ2 − p1µ1 − p2µ2)
T

= p1p
2
2(µ1 − µ2)(µ1 − µ2)

T + p2p
2
1(µ1 − µ2)(µ1 − µ2)

T

= p1p2(µ1 − µ2)(µ1 − µ2)
T

ΣB(µ1 − µ2) = p1p2(µ1 − µ2)(µ1 − µ2)
T (µ1 − µ2).

Since

p1p2(µ1 − µ2)
T (µ1 − µ2) > 0, (4.2)

(µ1−µ2) is an eigenvector of ΣB with strictly positive eigenvalue. Since aB has to satisfy

aT
BaB = 1, we obtain

aB = (µ1 − µ2)/||µ1 − µ2||. (4.3)

In practice, µ1 and µ2 are often unknown and must be estimated from the available data

set (xi, Yi)i=1,...,n. aB may be estimated by replacing µ1 and µ2 by µ̂1 and µ̂2 in equation

(4.3):

âB = (µ̂1 − µ̂2)/||µ̂1 − µ̂2||. (4.4)

Between-group PCA is applied by Culhane et al. (2002) in the context of high-dimensional

microarray data. However, Culhane et al. (2002) formulate the method as a data ma-

trix decomposition (singular value decomposition) and do not define the between-group

principal components theoretically. In the following section, we examine the connection

between-group PCA and Partial Least Squares.
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4.3 A connection between PLS dimension reduction and

between-group PCA

4.3.1 Introduction to PLS dimension reduction

Partial Least Squares (PLS) dimension reduction is another linear dimension reduction

method. It is especially appropriate to construct new components which are linked to the

response variable Y . Studies of the PLS approach from the point of view of statisticians

can be found in e.g. Stone and Brooks (1990); Frank and Friedman (1993); Garthwaite

(1994). In the PLS framework, Z1, . . . , Zm are not random variables which are theoret-

ically defined and then estimated from a data set: their definition is based on a specific

sample. Here, we focus on the binary case (Y = 1, 2), although the PLS approach can

be generalized to multicategorical response variables (de Jong, 1993). For the data set

(xi, Yi)i=1,...,n, the vectors a1, . . . ,am are defined as follows (Stone and Brooks, 1990).

Definition 4.3. . PLS components

Let ˆCOV denote the sample covariance computed from (xi, Yi)i=1,...,n. a1 is the p×1 vector

maximizing ˆCOV(aT
1 x, Y ) under the constraint aT

1 a1 = 1. For j = 2, . . . ,m, aj is the p×1

vector maximizing ˆCOV(aT x, Y ) under the constraints aT
j aj = 1 and ˆCOV(aT

j x,aT
i x) = 0

for i = 1, . . . , j − 1.

In the following, the vector a1 defined in definition 4.3 is denoted as aPLS. An exact

algorithm to compute the PLS components can be found in Martens and Naes (1989).

In Section 4.3.2, we study the connection between the first PLS component and the first

between-group principal component.

4.3.2 A property

Proposition 4.1. .

For a given data set (xi, Yi)i=1,...,n, the first PLS component equals the first between-group

principal component:

aPLS = âB .
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Proof. For all a ∈ R
p,

ˆCOV(aTx, Y ) = aT ˆCOV(x, Y )

ˆCOV(x, Y ) = 1
n

∑n
i=1 xiYi − 1

n2 (
∑n

i=1 xi)(
∑n

i=1 Yi)

= 1
n(n1µ̂1 + 2n2µ̂2) − 1

n2 (n1µ̂1 + n2µ̂2)(n1 + 2n2)

= 1
n2 (nn1µ̂1 + 2nn2µ̂2 − n2

1µ̂1 − 2n1n2µ̂1 − n1n2µ̂2 − 2n2
2µ̂2)

= n1n2(µ̂2 − µ̂1)/n
2

The only unit vector maximizing n1n2a
T (µ̂2 − µ̂1)/n

2 is

aPLS = (µ̂2 − µ̂1)/||µ̂2 − µ̂1||
= âB

2

Thus, the first component obtained by PLS dimension reduction is the same as the first

component obtained by between-group PCA. This is an argument to support the (con-

troversial) use of PLS dimension reduction in the context of binary classification. The

connection between between-group PCA and linear discriminant analysis is examined in

the next section.

4.4 A connection between LDA and between-group PCA

4.4.1 Linear discriminant analysis

In this section, linear discriminant analysis is briefly introduced. The connection to

between-group PCA is examined in section 4.4.2.

If x is assumed to have a multivariate normal distribution with mean µk and covariance

matrix Σk within class k,

P (Y = k|x) = pk · f(x|Y = k)/f(x)

lnP (Y = k|x) = ln pk − ln f(x) − ln(
√

2π|Σk|1/2) − 1
2 (x− µk)

T Σ
−1/2
k (x − µk),
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where f represents the density function. The Bayes classification rule predicts the class

of an observation x0 as

C(x0) = arg maxk P (Y = k|x)

= arg maxk(ln pk − ln(
√

2π|Σk|1/2) − 1
2 (x− µk)

T Σ
−1/2
k (x − µk)).

For K = 2, the discriminant function d12 is

d12(x) = lnP (Y = 1|x) − lnP (Y = 2|x)

= −1
2(x − µ1)

T Σ
−1/2
1 (x − µ1) + 1

2(x − µ2)
TΣ

−1/2
2 (x− µ2)

+ ln p1 − ln p2 − ln(
√

2π|Σ1|1/2) + ln(
√

2π|Σ2|1/2)

If one assumes Σ1 = Σ2 = Σ, d12 is a linear function of x (hence the term linear discrim-

inant analysis):

d12(x) = (x − µ1+µ2

2 )TΣ−1/2(µ1 − µ2) + ln p1 − ln p2

= aT
LDAx + b,

where

aLDA = Σ−1/2(µ1 − µ2) (4.5)

and

b = −1

2
(µ1 + µ2)

TΣ−1/2(µ1 − µ2) + ln p1 − ln p2. (4.6)

4.4.2 A property

Proposition 4.2. .

If Σ is assumed to be of the form Σ = σ2Ip, where Ip is the identity matrix of dimensions

p × p and σ is a scalar, aLDA and aB are collinear.

Proof. The proof follows from equations (4.3) and (4.5). 2

Thus, we showed the strong connection between linear discriminant analysis and between-

group PCA in the case K = 2. In practice, aB is estimated by âB and aLDA is estimated
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by âLDA = (µ̂1 − µ̂2)/σ̂, where σ̂ is an estimator of σ. Thus, âB and âLDA are also

collinear.

The assumption about the structure of Σ is quite strong. However, such an assumption

can be wise in practice when the available data set contains a large number of variables

p and a small number of observations n. If p > n, which often occurs in practice (for

instance in microarray data analysis), Σ̂ can not be inverted, since it has rank at most

n− 1 and dimensions p× p. In this case, it is sensible to make strong assumptions on Σ.

Proposition 4.2 tells us that between-group PCA takes only between-group correlations

into account, not within-group correlations.

4.5 Overview of other methods

Many other methods for dimension reduction in the context of classification have been

proposed in the statistical literature. Here, we give a short overview of these approaches

and discuss their utility for microarray data analysis.

The most common projection method is probably the so-called discriminant coordinates

approach (Gnanadesikan, 1977), which can be seen as a generalization of Fisher’s linear

discriminant for more than two classes (Rao, 1952). An adaptation of this method for

data with asymmetric classes (i.e. classes with strongly different within-group covariance

matrices) can be found in Hennig (2004). The idea behind discriminant coordinates is to

find linear transformations of x ”such that the between-group variance is maximized rela-

tive to the within-group variance” (Hastie et al., 2001). For a given data set (xi, Yi)i=1,...,n,

the vectors a1, . . . ,am are defined as follows.

Definition 4.4. . Discriminant coordinates

a1 is the p × 1 vector maximizing aTBa/aT Wa under the constraint aT
1 Wa1 = 1. For

j = 2, . . . ,m, aj is the p × 1 vector maximizing aTBa/aTWa under the constraints

aT
j Waj = 1 and aT

j Wai = 0 for i = 1, . . . , j − 1.

It is easy to show that the vectors a1, . . . ,am are the normalized eigenvectors of the matrix
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W−1B corresponding to the maximal eigenvalues. The number of such eigenvectors with

non-zero eigenvalues equals the rank of the matrix W−1B, which is at most K − 1. This

method requires the inversion of the sample within-group covariance matrix, which is not

possible if n < p. That’s why it is not applicable to microarray data.

In the case K = 2, another approach consists to look for linear transformations of x

which maximize the so-called Bhattacharyya distance D (Fukunaga, 1990) measuring the

dissimilarity between the two classes. D is defined by Fukunaga (1990) as

D(µ1,µ2,Σ1,Σ2) =
1

8
(µ1−µ2)

T (
Σ2 + Σ1

2
)−1(µ2−µ1)+

1

2
log

det(Σ2+Σ1

2 )
√

det(Σ1)det(Σ2)
. (4.7)

In Hennig (2004), the so-called mean-dominated Bhattacharyya coordinates are defined

as follows for a given data set (xi, Yi)i=1,...,n.

Definition 4.5. Mean-dominated Bhattacharyya coordinates

Let 1
2(S1 + S2) be denoted as WD. a1 is the p × 1 vector maximizing

D(aT
µ̂1,a

T
µ̂2,a

T WDa,aTWDa)

under the constraint aT
1 WDa1 = 1. For j = 2, . . . ,m, aj is the p × 1 vector maximizing

D(aT
µ̂1,a

T
µ̂2,a

TWDa,aTWDa) under the constraints aT
j WDaj = 1 and aT

j S1ai = 0

for i = 1, . . . , j − 1.

In practice, the maximization of D(aT
µ̂1,a

T
µ̂2,a

T WDa,aTWDa) requires the inversion

of S1 + S2, which is impossible if n < p.

Young et al. (1987) propose another approach denoted as mean/variance difference co-

ordinates. This method is applicable for multicategorical responses and captures the

difference between the within-group covariance matrices. Hennig (2004) interprets this

method as the maximization of the ”sum of the projected squared between-group differ-

ences in mean and variance”. In practice, the procedure can be applied even if n < p.

However, it requires the eigendecomposition of a p× (p + 1) · (K − 1) matrix. Thus, it is

not recommended when p is very large.

Sufficient dimension reduction represents a large family of dimension reduction methods

for regression. Some of these methods can be applied in the context of binary classification.
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An overview of sufficient dimension reduction for binary classification can be found in

Cook and Lee (1999). The general idea of sufficient dimension reduction is to find a p×m

matrix A (with m ≤ p) such that the distribution of Y |x is the same as the distribution

of Y |AT x for all x. This condition can also be formulated as

Y ⊥⊥x|AT x, (4.8)

where ⊥⊥ denotes stochastic independence.

It implies that the random vector x of length p can be replaced by the random vector

ATx of length m without loss of information on Y (Cook and Lee, 1999). Such a matrix

A always exists, since if one sets m = p, the identity matrix Ip satisfies (4.8). This matrix

is not unique, since any matrix whose columns form a base of the same subspace as the

subspace spanned by A’s columns satisfies (4.8) as well. m must be as small as possible.

A and m can be estimated in several ways. The most common methods to estimate A are

sliced inverse regression (SIR) proposed by Li (1991), slice average variance estimation

(SAVE) proposed by Cook and Weisberg (1991) and principal Hessian directions (PHD)

proposed by Li (1992). In practice, these methods require the inversion of the sample

covariance matrix, which is not possible if n < p.

4.6 Discussion

We showed the strong connection between PLS dimension reduction for classification,

between-group PCA and linear discriminant analysis for the case K = 2. PCA and

PLS are useful techniques in practice, especially when the number of observations n is

smaller than the number of variables p, for instance in the context of microarray data

analysis (Nguyen and Rocke, 2002a). The connection between PLS and between-group

PCA can also support the use of PLS dimension reduction in the classification framework.

The conclusion of this theoretical study is that PLS and between-group PCA, which are

the two main dimension reduction methods allowing n < p are tightly connected to a

special case of linear discriminant analysis with strong assumptions. In future work, one
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could examine the connection between the three approaches for multicategorical response

variables. The connection between linear dimension reduction methods and alternative

methods such as shrinkage methods could also be investigated in future.



Chapter 5

A study of PLS dimension

reduction

5.1 Introduction

The output of n microarray experiments can be summarized as a n × p data matrix,

where p is the number of analyzed genes. p is always much larger than the number of

experiments n. An important application of microarray technology is tumor diagnosis,

i.e. class prediction. High-dimensionality makes the application of most classification

methods difficult, if not impossible. To overcome this problem, one can either extract

a small subset of interesting variables (gene selection) or construct m new components

which summarize the original data as well as possible, with m < p (dimension reduction).

Gene selection has been studied extensively in the last few years. The most commonly

used gene selection procedures are based on a score which is calculated for all genes

individually. Then the genes with the best scores are selected. These methods are often

denoted as univariate gene selection. Several selection criteria have been used in the

literature, e.g. the t statistic (Hedenfalk et al., 2001), Wilcoxon’s rank sum statistic

(Dettling and Bühlmann, 2003) or Ben Dor’s combinatoric ’TNoM’ score (Ben-Dor et al.,

59
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2000). When using a test statistic as criterion, it is useful to adjust the p-values with a

multiple testing procedure (Dudoit et al., 2003). The main advantages of gene selection

are its simplicity and interpretability. Gene selection procedures output a list of relevant

genes which can be experimentally analyzed by biologists. Moreover, univariate gene

selection is generally quite fast.

The scores mentioned in the previous paragraph are all based on the association of indi-

vidual genes with the classes. Interactions and correlations between genes are omitted,

although they are of great interest in system biology. For illustration, let us consider

three genes A, B and C. A relevance score like the t statistic might tell us: gene A is

more relevant than gene B and gene B is more relevant than gene C for classification.

Now suppose we want to select two of these three genes to perform classification. The

t statistic does not tell us if it is better to select A and B, A and C or B and C. A few

sophisticated procedures intend to overcome this problem by selecting optimal subsets

with respect to a given criterion instead of ranking the genes. Bo and Jonassen (2002)

look for relevant pairs of genes, whereas Li et al. (2001) want to find optimal gene subsets

via genetic algorithms. However, these methods generally suffer from overfitting: the

obtained gene subsets might be optimal for the training data, but they do not perform

as well on independent test data. Moreover, they are based on computationally intensive

iterative algorithms and thus very difficult to interpret and implement.

Dimension reduction is a wise alternative to variable selection in order to overcome this

dimensionality problem. It is also denoted as feature extraction. Unlike gene selection,

such methods use all the genes included in the data set. The whole data are projected onto

a low-dimensional space, thus allowing a graphical representation. The new components

often give information or hints about the data’s intrinsic structure, although there is no

standard concept and procedure to do this. Dimension reduction is sometimes criticized

for its lack of interpretability, especially for applied scientists who often need more concrete

answers about individual genes. In this chapter, we show that PLS dimension reduction

is tightly connected to gene selection.

Dimension reduction methods for classification can be categorized into linear and nonlin-
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ear, supervised and unsupervised methods. Intuitively, supervised methods, i.e. methods

which use the class information of the observations to construct new components, should

be preferred to unsupervised methods, which work only ’by chance’ in ’good’ data sets

(Nguyen and Rocke, 2002a). Since nonlinear methods are generally computationally in-

tensive and lack robustness, they are not recommended for microarray data analysis. To

our knowledge, the only well-established supervised linear dimension reduction method

working even if n < p is the Partial Least Squares method (PLS). PLS is a linear method

in the sense that the new components are linear combinations of the original variables.

However, the coefficients defining the new components are not linear. Another approach

denoted as between-group analysis has been proposed by Culhane et al. (2002), but it

turns out that it is strongly related to PLS. Principal component analysis (Ghosh, 2002;

Kahn et al., 2001) is an unsupervised method: its goal is to find uncorrelated linear

transformations of the original variables which have high variance. As an unsupervised

method, it is inappropriate for classification. Sufficient dimension reduction for classifica-

tion is reviewed in Cook and Lee (1999) and applied to microarray data in Chiaromonte

and Martinelli (2001). It is a supervised approach: it looks for components which summa-

rize the predictor variables such that the class and the predictor variables are independent

given the new components. This method can not be applied if p > n. A few other di-

mension reduction methods for classification are reviewed in Hennig (2004). Some of

them, such as discriminant coordinates or the Bhattacharyya distance approach can not

be applied if p > n. The mean/variance difference coordinates approach is introduced

in Young et al. (1987) and discussed in Hennig (2004). It can theoretically be applied if

p > n, but it requires the eigendecomposition of a p×p empirical covariance matrix, which

is not recommended when p >> n. To our knowledge, PLS is the only fast supervised

dimension reduction method which can handle a huge number of predictor variables.

It is known that PLS dimension reduction can be used for classification problems in the

context of microarray data analysis (Nguyen and Rocke, 2002a; Huang and Pan, 2003).

However, these papers do not include any extensive comparative study of classification

methods. Moreover, they treat the PLS technique as a ’black box’ which is only meant
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to improve classification accuracy, without concern for the components themselves. In

this chapter, two aspects of PLS dimension reduction are examined. First, the classifica-

tion performance is compared with the classification performance of top-ranking methods

which have already been studied in the literature. Second, the connection between PLS

dimension reduction and gene selection is examined.

In recent years, aggregation methods such as bagging (Breiman, 1996) and boosting (Fre-

und, 1995) have been extensively analyzed. They lead to spectacular improvements of

prediction accuracy when they are applied to classification problems. In microarray data

analysis, accuracy improvement is also observed (Dettling and Bühlmann, 2003; Dudoit

et al., 2002). So far, aggregating methods have been applied with weak and unstable clas-

sifiers such as stumps or classification trees. To our knowledge, boosting has never been

used with dimension reduction techniques. In this chapter, we apply a classical boosting

algorithm (AdaBoost) in the framework of PLS dimension reduction.

The chapter is organized as follows. PLS dimension reduction and boosting are introduced

in section 2. In Section 3, the data are introduced and a few examples of data visualization

using PLS dimension reduction are given. Classification results using PLS, PLS with

boosting and various other methods are presented in section 4. In section 5, the connection

between PLS and gene selection is studied and an interesting property of the first PLS

component is proved in the case of binary responses.

In the following, X1, . . . , Xp denote the continuous predictors (genes) and x = (X1, . . . , Xp)
T

the corresponding random vector. xi = (xi1, . . . , xip)
T for i = 1, . . . , n denote indepen-

dent identically distributed realizations of the random vector x. Each row of the n × p

data matrix X ∈ R
n×p contains a realization of x.
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5.2 Dimension reduction and classification with PLS

5.2.1 Outline of the method

Suppose we have a learning set L consisting of observations whose class is known and a test

set T consisting of observations whose class has to be predicted. The data matrices corre-

sponding to L respectively T are denoted as XL respectively XT . The vector containing

the classes of the observations from L is denoted as YL. A classification method can be

formalized as a function δ of XL, YL and the vector of predictors xnew,i corresponding

to the ith observation from the test set:

δ(.,XL,YL) : R
p → {1, . . . ,K}

xnew,i → δ(xnew,i,XL,YL).

In this section, we describe briefly the function δ which is discussed in this chapter. From

now on, it is denoted as δPLS . δPLS consists of two steps.

The first step is dimension reduction. The idea is to look for m appropriate linear trans-

formations Z1, . . . , Zm of the vector of predictors x, where m has to be chosen by the

user (this topic is discussed in Section 5.2.3). In the whole chapter, a1, . . . ,am denote the

p × 1 vectors which are used to construct the linear transformations Z1, . . . , Zm:

Z1 = aT
1 x,

. . . = . . . ,

Zm = aT
mx.

In this chapter, the vectors a1, . . . ,am are determined using the SIMPLS algorithm

(de Jong, 1993), which is one of the variants of PLS dimension reduction. The SIM-

PLS algorithm is introduced in Section 5.2.2. The linear transformations Z1, . . . , Zm are

denoted as new components, for consistency with the PLS literature.

The second step is linear discriminant analysis using the new components Z1, . . . , Zm as

predictor variables. Linear discriminant analysis is described in Section 5.4. One could

use another classification method such as logistic regression. However, logistic regres-

sion is known to give worse results for some specific data configurations. For example,
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logistic regression does not perform well when the different classes are completely or

quasi-completely separated by the predictor variables, as claimed by Nguyen and Rocke

(2002a). Since this configuration is quite common in microarray data, logistic regression

is not a good choice. Linear discriminant analysis, which is not recommended when the

number of predictor variables is large (see Section 5.4), performs well when applied to a

small number of approximately normally distributed PLS components.

The procedure to predict the class of the observations from T using L can be summarized

as follows.

1. Determine the vectors a1, . . . ,am using the SIMPLS algorithm (see Section 5.2.2) on

the learning set L. If A denotes the p×m matrix containing the vectors a1, . . . ,am

in its columns, the matrix ZL of new components for the learning set is obtained as

ZL = XLA. (5.1)

2. Compute the matrix ZT of new components for the test data set as

ZT = XTA. (5.2)

3. Predict the class of the observations from T by linear discriminant analysis, using

Z1, . . . , Zm as predictor variables. The classifier is built using only ZL.

This two-step approach is applied to microarray data by Nguyen and Rocke (2002a). In

this chapter, we use the SIMPLS algorithm by de Jong (1993), which can be seen as a

generalization for multicategorical response variables of the algorithm used by Nguyen

and Rocke (2002a). The SIMPLS algorithm is presented in the next section.

5.2.2 The SIMPLS algorithm

Partial Least Squares (PLS) is a wide family of methods which are originally developed as

a multivariate regression tool in the context of chemometrics (Martens and Naes, 1989).

Later on, PLS regression has been studied by statisticians (Stone and Brooks, 1990; Garth-

waite, 1994; Frank and Friedman, 1993). An overview of the history of PLS regression
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is given in Martens (2001). PLS regression is especially appropriate to predict a univari-

ate or multivariate continuous response using a large number of continuous predictors.

The underlying idea of PLS regression is to find uncorrelated linear transformations of the

original predictor variables which have high covariance with the response variables. These

linear transformations can then be used as predictors in classical linear regression models

to predict the response variables. Since the p original variables are summarized into a

small number of relevant new components, linear regression can be performed even if the

number of original variables p is much larger than the number of available observations.

The different PLS algorithms differ in the definition of the linear transformations. Here,

the focus is on the SIMPLS algorithm, because it can handle efficiently both univariate

and multivariate variables in the same framework.

If Y is a binary response, it can be treated as a continuous response variable, since PLS

regression does not require any distributional assumption. However, if Y is a multicategor-

ical variable, it can not be treated as a continuous response variable. The problem can be

circumvented by dummy-coding. The multicategorical random variable Y is transformed

into a K-dimensional random vector y ∈ {0, 1}K as follows:

yi1 = 1 if Yi = k,

yik = 0 else,

where yi = (yi1, . . . , yiK)T denotes the ith realization of y. In the following, y denotes

the (one-dimensional) random variable Y if Y is binary (K = 2) or the K-dimensional

random vector as defined above if Y is multicategorical (K > 2).

The SIMPLS algorithm proposed by de Jong (1993) computes the vectors a1, . . . ,am

defined as follows.

Definition 5.1. Let ˆCOV denote the empirical covariance computed from the available

data set. a1 and b1 are the unit vectors maximizing ˆCOV(aT
1 x,bT

1 y). For all j = 2, . . . ,m,

aj and bj are the unit vectors maximizing ˆCOV(aT
j x,bT

j y) subject to the constraint

ˆCOV(aT
j x,aT

i x) = 0 for all i = 1, . . . , j − 1.

In words, the SIMPLS algorithm computes linear transformations of x and linear trans-
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formations of y which have maximal covariance, under the constraint that the linear

transformations of x are mutually uncorrelated. This formulation might seem familiar to

those working with canonical correlation analysis. However, in contrast to canonical cor-

relation analysis, the PLS approach defined above is based on the empirical covariances,

not on the correlations. In PLS regression, a multivariate regression model is then built

using y as multivariate response variable and aT
1 x, . . . ,aT

mx as predictors, hence the name

PLS regression. The regression coefficients for each response variable and each predictor

variable are also output by the SIMPLS algorithm. However, they are not used here,

since we use the SIMPLS algorithm for dimension reduction only: our focus is on the new

components Z1, . . . , Zm, which are then used for linear discriminant analysis.

The predictor variables as well as the response variables have to be centered to have

zero mean before running the SIMPLS algorithm. The R library pls.pcr includes an

implementation of the SIMPLS algorithm, which is used in this chapter. To illustrate

PLS dimension reduction, let us consider the following data matrix X:

X1 X2 X3 X4 X5

1 5 4 4 3

2 9 3 2 6

5 6 7 2 7

3 1 2 4 3

and the vector of classes

YT = (1 1 2 2).

Y and the columns of X are first centered to zero mean by substracting the empirical

mean. The SIMPLS algorithm is then applied with e.g. m = 2. One obtains:

aT
1 = (1.77 −4.86 0.53 0.76 −0.82)

aT
2 = (2.31 3.01 3.02 −1.79 3.45)

The matrix of new components is obtained as

Z = XA,
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where A is the 5 × 2 matrix containing a1 and a2 in its columns:

Z1 Z2

−0.20 −0.46

−0.71 0.13

0.33 0.76

0.58 −0.43

.

As can be seen from the matrix Z, Z1 seems to separate the two classes very well. Z2,

which is uncorrelated with Z1, seems to be less relevant. It indicates that m = 1 might

be a sensible choice in this trivial case. However, it is generally difficult to choose the

right number m of PLS components to use for classification. In the following section, we

address the problem of the choice of m.

5.2.3 Choosing the number of components

There is no widely accepted procedure to determine the right number of PLS components.

Here, we propose to use a simple method based on cross-validation. Suppose we have a

learning set L and a test set T . Only the learning set L is used to choose m. The

following procedure is repeated Nrun times: the classifier δPLS is built using only α%

of the observations from L and applied to the remaining observations, with m taking

successively different values. For each of the Nrun runs, the error rate is computed using

only the remaining observations from L. After Nrun runs, the mean error rate over the

Nrun runs is computed for each value of m. For a more precise description of the mean

error rate, see Section 5.4.1. The value of m minimizing the mean error rate is then used

to predict the class of the observations from T . In the following, it is denoted as mopt. In

our analysis, we set α to 0.7 for consistency with Section 5.4 and Nrun = 50, which seems

to be a good compromise between computation time and estimation accuracy. It seems

that mopt does not depend highly on the parameters α and Nrun.

When the procedure described above is used to choose the number of PLS components,

the classification method consisting of PLS dimension reduction and linear discriminant
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analysis does not involve any parameter. Since boosting is known to improve classification

accuracy in many situations, we suggest to apply a boosting strategy to this classification

method. Boosting is briefly introduced in the following section.

5.2.4 Boosting

Bagging and boosting consist of building a simple classifier using successively different

bootstrap samples. In bagging, the bootstrap samples are based on the unweighted boot-

strap and the predictions are made by majority voting. In boosting, the bootstrap samples

are built iteratively using weights that depend on the predictions made in the last itera-

tion. An early study focusing on statistical aspects of boosting is Schapire et al. (1998). A

classifier based on a learning set L containing nL observations is represented as in section

5.2.1 as a function of the p-dimensional vector of predictors xnew,i:

δ(.,XL,YL) : R
p → {1, . . . ,K}

xnew,i → δ(xnew,i,XL,YL).

In boosting, perturbed learning sets L1, . . . ,LB are formed adaptively by drawing from

the learning set L at random, where the probability of an observation to be selected in Lj

depends on the prediction made by δ(.,XLb−1
,YLb−1

). Observations which are incorrectly

classified by δ(.,XLb−1
,YLb−1

) have greater probability to be selected in Lb.

The discrete AdaBoost procedure was proposed by Freund (1995). In the first iteration,

the weights are initialized to w1 = · · · = wnL
= 1/nL. In the following we show the b-th

step of the algorithm as described by Tutz and Hechenbichler (2004).

Discrete AdaBoost algorithm

1. • Based on the resampling probabilities w1, . . . , wnL
, the learning set Lb is sam-

pled from L with replacement.

• The classifier δ(.,XLb
,YLb

) is built.
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2. The learning set L is run through the classifier δ(.,XLb
,YLb

) yielding an error

indicator εi = 1 if the i-th observation is classified incorrectly and εi = 0 otherwise.

3. With eb =
∑nL

i=1 wiεi, bb = (1 − eb)/eb and cb = log(bb) the resampling probabilities

are updated for the next step by

wi,new =
wib

εi

b
∑nL

j=1 wjb
εj

b

=
wi exp (cbεi)

∑nL

j=1 wj exp (cbεj)

After B iterations the aggregated voting for observation xnew is obtained by

arg max
j

(

B
∑

k=1

cbI(δ(x,XLb
,YLb

) = j))

We propose to apply the AdaBoost algorithm with δ = δPLS with different numbers of

components. To our knowledge, boosting has never be used in the context of dimension

reduction. In the whole study, we use 9 real microarray cancer data sets which are

introduced in the following section.

5.3 Data

5.3.1 Data sets

Colon: The colon data set is a publicly available ’benchmark’ gene expression data set

which is extensively described in Alon et al. (1999). The data set contains the expression

levels of 2000 genes for 62 patients from two classes. 22 patients are healthy patients and

40 patients have colon cancer.

Leukemia: This data set is introduced by Golub et al. (1999) and contains the expression

levels of 7129 genes for 47 ALL-leukemia patients and 25 AML-leukemia patients. It is

included in the R library golubEsets. After data preprocessing following the procedure

described in Dudoit et al. (2002), only 3571 variables remain. It is easy to achieve excellent

classification accuracy on this data set, even with quite trivial methods as described in

the original paper by Golub et al. (1999).
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Prostate: This data set gives the expression levels of 12600 genes for 50 normal tissues

and 52 prostate cancer tissues. We threshold the data and filter genes as described in

Singh et al. (2002). The filtering step leaves us with 5908 genes.

Breast cancer (ER+/ER-): This data set gives the expression levels of 7129 genes for

46 breast cancer patients from which 23 have status ER+ and 23 have status ER-. It is

presented in West et al. (2002).

Carcinoma: This data set comprises the expression levels of 7463 genes for 18 normal

tissues and 18 carcinomas. We standardize each array to have zero mean and unit variance.

For an extensive description of the data set, see Notterman et al. (2001).

Lymphoma: The data set presented by Alizadeh et al. (2000) comprises the expression

levels of 4026 genes for 62 patients from 3 different classes (B-CLL, FL and DLBCL).

The missing values are inputed as described in Dudoit et al. (2002) using the function

pamr.inpute from the R library pamr (Tibshirani et al., 2002).

SRBCT: This gene expression data set is presented in Kahn et al. (2001). It contains the

expression levels of 2308 genes for 83 Small Round Blue Cells Tumor (SRBCT) patients

belonging to one of the 4 tumor classes: Ewing family of tumors (EWS), non-Hodgkin

lymphoma (BL), neuroblastoma (NB) and rhabdomyosarcoma (RMS).

Breast cancer (BRCA): This breast cancer data set contains the expression levels of

3227 genes for breast cancer patients with one of the three tumor types: sporadic, BRCA1

and BRCA2. It is described in Hedenfalk et al. (2001). The data are preprocessed as

described in Simon et al. (2004).

NCI: This dataset comprises the expression levels of 5244 genes for 61 patients with 8

different tumor types: 7 breast, 5 central nervous system, 7 colon, 6 leukemia, 8 melanoma,

9 non-small-cell-lung-carcinoma, 6 ovarian, 9 renal Ross et al. (2000). The data are

preprocessed as described in Dudoit et al. (2002).

In this next section, some of these data sets are visualized graphically using PLS dimension

reduction.
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5.3.2 Data Visualization via PLS dimension reduction

An advantage of PLS dimension reduction is the possibility to visualize the data by

graphical representation. For instance, one can plot the second PLS component against

the first PLS component using different colors for each class. As a visualization method,

PLS might be useful for applied researchers who need simple graphical tools. In the

following, we give a few concrete examples and show briefly and qualitatively that PLS

dimension reduction can outline relevant cluster structures.

Suppose we have to analyze a data set with a binary response. One of the classes, e.g.

class 2, consists of 2 subclasses: 2a and 2b. In the following, we try to interpret the PLS

components in terms of clusters. For example, the first PLS component may discriminate

between class 1 and class 2a and the second PLS component between class 1 and class

2b. In order to illustrate this point, we perform PLS dimension reduction on the whole

prostate data set. We also cluster the observations from class 2 into two subclasses 2a and

2b using the k-means algorithm on the original variables X1, . . . , Xp. For the k-means

clustering, we set the maximal number of iterations to 10. As can be seen from Figure

5.1, the first PLS component separates almost perfectly class 1 and class 2a, whereas the

second PLS component separates almost perfectly class 1 and class 2b. Thus, the two

PLS components can be interpreted in terms of clusters. A similar result can be obtained

with the breast cancer data. We perform PLS dimension reduction on the whole breast

cancer data set and cluster the observations from class 2 into 2a and 2b using the k-means

algorithm on X1, . . . , Xp. The first and the second PLS components are represented as

a scatterplot in Figure 5.2. We observe that the first PLS component can separate class

1 from class 2 perfectly. The second PLS component separates only 1 and 2a from 2b.

Similar results are observed for the carcinoma and the leukemia data. Thus, for 4 of 5

data sets with binary class, the PLS components can be easily interpreted in terms of

clusters.

However, in our examples, we do not know whether the subclasses 2a and 2b are biologi-

cally interpretable: they are only the output of the k-means clustering algorithm. Thus,
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Figure 5.1: First and second PLS components for the prostate data

we also perform the same analysis on the lymphoma data set, for which three biologically

interpretable classes are known. Patients with tumor type DLBCL are assigned to class

1, B-CLL to class 2a and FL to class 2b. PLS dimension reduction is performed as if the

class were binary. As can be seen from Figure 5.3, the first PLS discriminates between

class 1 and class 2, whereas the second PLS discriminates between class 2a and classes 1

and 2b.

As a conclusion, we recommend the PLS technique as a visualization tool, because it

can outline relevant cluster structures. As can be seen from the figures presented in this

section, the PLS components can be used to predict the class of new observations. The

next section is dedicated to the classification method δPLS consisting of PLS dimension

reduction and linear discriminant analysis.
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Figure 5.2: First and second PLS components for the breast cancer data

5.4 Classification results on real microarray data

5.4.1 Study design

For each data set, 200 random partitions into a learning data set L containing nL obser-

vations and a test data set T containing the n−nL remaining observations are generated.

This approach for evaluating classification methods was used in one of the most exten-

sive comparative studies of classification methods for microarray data (Dudoit et al.,

2002). It is believed to be more reliable than leave-one-out cross-validation (Braga-Neto

and Dougherty, 2004). We fix the ratio nL/n at 0.7, which is a usual choice. For each

partition {L, T }, we predict the class of the observations from T using δPLS with suc-

cessively 1,2,3,4,5 PLS components for the data sets with a binary response. We also

use the discrete AdaBoost boosting algorithm based on the classifier δ = δPLS with 1,2,3

PLS components. For data sets with multicategorical responses, we use 1,2,3,4,5,6 PLS
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Figure 5.3: First and second PLS components for the lymphoma data with 2 classes

components for the lymphoma and BRCA data, 1,2,3,4,5,6,8,10 for the SRBCT data and

1,5,10,15,20 components for the NCI data.

For each approach and for each number of components, the mean error rate over the

200 partitions is computed using only the test set. Let nTj
(j = 1, . . . , 200) denote the

number of observations in the test set Tj, L1, . . . ,L200 denote the 200 learning sets and

T1, . . . , T200 the 200 corresponding test sets. For a given approach, a given number of

components and a given partition, Ŷi denotes the predicted class of the ith observation

of the test set. The mean error rate MER over the 200 partitions is given by

MER =
1

200

200
∑

k=1

1

nTj

nTj
∑

i=1

I(Ŷi 6= Yi), (5.3)

where I is the standard indicator function (I(A) = 1 if A is true, I(A) = 0 otherwise).

The results are summarized in Tables 5.1 and 5.2.

For each partition {Lj , Tj}, the optimal number of PLS components mopt is estimated
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following the procedure described in section 2.3 and the error rate of δPLS with mopt

PLS components is computed. The corresponding mean error rate over the 200 random

partitions is given in Table 5.1 (last column). The candidate numbers of components used

to determine mopt by cross-validation are also given in the table for each data set. For the

data sets with a binary response, mopt is chosen from 1, 2, 3, 4, 5. For data sets with a mul-

ticategorical response (except the NCI data), mopt is chosen from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

For the NCI data set, which has much more classes, mopt is chosen from 1, 5, 10, 15, 20.

For comparison, the mean error rate obtained with some of the best classification methods

for microarray data is also computed. The first one is nearest-neighbor classification based

on 5 neighbors (5NN). This method can be summarized as follows. For each observation

from the test set, the 5 closest observations (’neighbors’) in the learning set are found and

the observation is assigned to the class which is most common among those k neighbors.

Closeness is measured using a specified distance metric. The most common distance

metric, which we use here, is the euclidean distance metric. Nearest-neighbor classification

is implemented in the R library class. This method is known to achieve good classification

accuracy with microarray data (Dudoit et al., 2002).

The second method is linear discriminant analysis (LDA), which is also known to give good

classification accuracy (Dudoit et al., 2002). A short description of linear discriminant

is given in the following. Suppose we have p predictor variables. The random vector

x = (X1, . . . , Xp)
T is assumed to a multivariate normal distribution within class k (k =

1, . . . ,K) with mean µk and covariance matrix Σk. In linear discriminant analysis, Σk

is assumed to be the same for all classes: for all k, Σk = Σ. Using estimates µ̂k and

Σ̂ in place of µk and Σ, the maximum-likelihood discriminant rule assigns the ith new

observation xnew,i to the class

δ(xnew,i) = arg min
k

(xnew,i − µ̂k)Σ̂
−1(xnew,i − µ̂k)

T . (5.4)

This approach is usually denoted as linear discriminant analysis, because δ(xnew,i) is a

linear function of the vector xnew,i. In our study, it does not perform as well as 5NN, SVM

and PAM, probably because the estimation of the inverse of Σ̂ is not robust when the
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number of variables is too large. Thus, the classification results using linear discriminant

analysis are not shown.

The third method is Support Vector Machines (SVM). This method is used by Furey et al.

(2000) and seems to perform well on microarray data. The idea is to find a separating

hyperplane which separates the classes as well as possible in an enlarged predictor space.

This leads to a complex optimization problem in high dimension. In our study, the optimal

hyperplan is determined using the function svm from the R library e1071.

A short overview of NN, LDA and SVM is given in Hastie et al. (2001). These three

methods require preliminary gene selection, either because they can not be applied if

n < p (LDA) or because they perform much better in practice if the number of noisy

variables is not too large (NN and SVM). The gene selection is performed by ranking

genes according to the BSS/WSS-statistic, where BSS denotes the between-group sum

of squares and WSS the within-group sum of squares. For gene j the BSS/WSS-statistic

is calculated as

BSSj/WSSj =

∑K
k=1

∑

i:Yi=k(µ̂jk − µ̂j)
2

∑K
k=1

∑

i:Yi=k(xij − µ̂jk)2
,

where µ̂j is the sample mean of Xj and µ̂jk is the sample mean of Xj within class k, for

k = 1, . . . ,K. The genes with the highest BSS/WSS-statistic are selected. There is no

well-established rule to choose the number of genes to select, which is a major drawback

of classification methods requiring gene selection. In this study, we decide to use 20 or

50 genes for data sets with a binary response and 100 and 200 genes for data sets with

a multicategorical response. The results obtained using other numbers of genes turn out

to be similar or worse. Moreover, these numbers are in agreement with similar studies

found in the literature (Dudoit et al., 2002).

At last, we apply a recent method called ’Prediction Analysis of Microarray’(PAM) which

was especially designed for high-dimensional microarray data (Tibshirani et al., 2002). To

our knowledge, it is the only fast classification method beside PLS which can be applied

to high-dimensional data without gene selection. PAM is based on shrunken centroids.

The user has to choose the shrinkage parameter ∆. The number of genes used to compute
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the shrunken centroids depends on ∆. A possible choice is ∆ = 0: all genes are used to

compute the centroids. Tibshirani et al. (2002) propose to select the best value of ∆ by

cross-validation: the classification accuracy is evaluated by leave-one-out cross-validation

for a set of 30 values of ∆. The value of ∆ minimizing the number of misclassifications

is chosen. In our study, we try successively both approaches: ∆ = 0 (denoted as PAM)

and ∆ = ∆opt (denoted as PAM-opt), where ∆opt is determined by leave-one-out cross-

validation as described in Tibshirani et al. (2002). The PAM method as well the choice

of ∆ by cross-validation are implemented in the R library pamr (Tibshirani et al., 2002).

The table of results contains only the error rates obtained with 5NN, SVM, PAM and

PAM-opt, because the classification accuracy with LDA was found to be comparatively

bad for all data sets. The number of selected genes is specified for each method: for

example, ’SVM-20’ stands for Support Vector Machines with 20 selected genes.

The classification results obtained with δPLS , 5NN, SVM and PAM are presented in the

next section, whereas the results obtained with boosting are discussed in Section 5.4.3.

5.4.2 Classification accuracy of δPLS

The classification results using the PLS-based approach δPLS are summarized in Table

5.1. The data sets with a binary response can be divided in two groups. For the leukemia

and carcinoma data, the classification accuracy does not depend highly on the number of

PLS components. It seems that subsequent components are only noise. On the contrary,

the error rate is considerably reduced by using more than one component for the colon,

prostate and breast cancer data. The improvement is rather dramatic for the prostate

data. Thus, it seems that for data sets with low error rates (leukemia, carcinoma), the

classes are optimally separated by one component, whereas subsequent components are

useful for data sets with high error rates (prostate, colon, breast cancer).

PLS dimension reduction is very fast because it is based on linear operations with small

matrices. The proposed procedure is much faster than the standard approach consisting

of selecting a gene subset and building a classifier on this subset. For the lymphoma
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Colon 1 2 3 4 5 mopt

(K = 2) 0.136 0.114 0.119 0.143 0.147 0.124

Leukemia 1 2 3 4 5 mopt

(K = 2) 0.020 0.028 0.03 0.030 0.028 0.024

Prostate 1 2 3 4 5 mopt

(K = 2) 0.366 0.140 0.076 0.081 0.077 0.078

Breast cancer 1 2 3 4 5 mopt

(K = 2) 0.14 0.110 0.104 0.106 0.103 0.110

Carcinoma 1 2 3 4 5 mopt

(K = 2) 0.025 0.021 0.022 0.024 0.023 0.024

Lymphoma 1 2 3 4 5 6 mopt

(K = 3) 0.037 0.0003 0.002 0.001 0.004 0.003 0.004

SRBCT 1 2 3 4 6 10 mopt

(K = 4) 0.343 0.200 0.056 0.027 0.009 0.003 0.003

BRCA 1 2 3 4 5 6 mopt

(K = 3) 0.468 0.348 0.310 0.268 0.285 0.303 0.304

NCI 1 5 10 15 20 mopt

(K = 8) 0.715 0.338 0.293 0.318 0.325 0.329

Table 5.1: Mean error rate over 200 random partitions obtained with δPLS with different

number of PLS components and with mopt components

data and the SRBCT data, K − 1 seems to be the minimum number of PLS components

required to obtain good classification accuracy. As can be seen from Table 5.1, δPLS can

also perform very well on data sets with many classes (K = 8 for the NCI data).

As can be seen from Table 5.1, the number of components giving the best classification

accuracy is not the same for all data sets. When our procedure to determine the number of

useful PLS components is used for each partition (L, T ), the classification accuracy turns

out to be quite good. In Figure 5.4, histograms of mopt over the 200 random partitions

are represented for each data set. These histograms agree with Table 5.1. For instance,
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Colon 5NN-20 5NN-50 SV M − 20 SV M − 50 PAM PAM-opt

(K = 2) 0.182 0.19 0.134 0.139 0.143 0.130

Leukemia 5NN-20 5NN-50 SV M − 20 SV M − 50 PAM PAM-opt

(K = 2) 0.034 0.039 0.038 0.05 0.022 0.046

Prostate 5NN-20 5NN-50 SV M − 20 SV M − 50 PAM PAM-opt

(K = 2) 0.119 0.124 0.086 0.085 0.370 0.099

Breast cancer 5NN-20 5NN-50 SV M − 20 SV M − 50 PAM PAM-opt

(K = 2) 0.117 0.123 0.100 0.093 0.120 0.147

Carcinoma 5NN-20 5NN-50 SV M − 20 SV M − 50 PAM PAM-opt

(K = 2) 0.020 0.021 0.024 0.029 0.036 0.096

Lymphoma 5NN-100 5NN-200 SV M − 100 SV M − 200 PAM PAM-opt

(K = 3) 0.014 0.003 0.038 0.019 0.013 0.042

SRBCT 5NN-100 5NN-200 SV M − 100 SV M − 200 PAM PAM-opt

(K = 4) 0.012 0.0052 0.010 0.014 0.046 0.069

BRCA 5NN-100 5NN-200 SV M − 100 SV M − 200 PAM PAM-opt

(K = 3) 0.378 0.318 0.588 0.581 0.331 0.396

NCI 5NN-100 5NN-200 SV M − 100 SV M − 200 PAM PAM-opt

(K = 8) 0.394 0.366 0.466 0.452 0.316 0.296

Table 5.2: Mean error rate over 200 random partitions with classical methods



80 CHAPTER 5. A STUDY OF PLS DIMENSION REDUCTION

the most frequent value of mopt for the colon data is 2. It can be seen in Table 5.1 that

the best classification accuracy is obtained with 2 PLS components for the colon data.

Some of the tested classical methods also perform well, especially SVM and PAM. SVM

performs slightly better than PAM for most data sets. However, a pitfall of SVM is that

it necessitates gene selection in practice, although not in theory. On the whole, the PLS-

based method performs at least as good as the other methods for most data sets. More

specifically, PLS performs better than the other methods for the colon, the prostate data,

the SRBCT and the BRCA data. It is (approximately) as good as PAM and better than

SVM and 5NN for the leukemia data, as good as SVM and better than PAM and 5NN for

the breast cancer data, as good as 5NN and better than PAM and 5NN for the carcinoma

data and the lymphoma data, and a bit worse than PAM-opt but much better than 5NN

and PAM for the NCI data. Each of the three tested methods (5NN,SVM,PAM) performs

much worse than PLS for at least two data sets. PLS is the only method which ranges

among the two best methods for all data sets. This accuracy is not reached at the expense

of computational time, except if one performs many cross-validation runs for the choice

of the number of components. The problem of the choice of the number of components

is one of the major drawbacks of the PLS approach. This problem is partly solved by

the procedure based on cross-validation, but this procedure is computationally intensive

and not optimal. Another inconvenience of the PLS approach which is often mentioned

in the statistical literature is that it is based on an algorithm rather than on a theoretical

probabilistic model, like LDA or PAM. However, PLS is a fast and efficient method which

never fails to give a good to excellent classification accuracy for all the studied data sets.

Since the best number of components can be estimated by cross-validation, the method

does not involve any parameter like the number of selected genes for SV M or 5NN.

Boosting does not improve the classification obtained with δPLS in most cases. However,

the results are interesting because they indicate a qualitative similarity between boosting

and PLS. This topic is discussed in the next section.
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Figure 5.4: Histogram of the estimated optimal number of components for 200 partitions

with different data sets (relative frequencies).
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5.4.3 Classification accuracy of discrete AdaBoost with δ = δPLS

Real Data

In this section, we compute the mean classification error rate over 50 random partitions

using the AdaBoost algorithm with δ = δPLS and B = 30. B = 30 turns out to be

a sensible choice for all data sets, because the classification accuracy remains constant

after approximately 20 iterations. The results are represented in Figure 5.5 (top) for the

prostate data. Boosting can reduce the error rate when one or two PLS components are

used. However, the classification accuracy of δPLS with three PLS components is not

improved by boosting. It can be seen from Table 5.1 that the best classification accuracy

for δPLS is reached with three PLS components: the fourth and fifth PLS components do

not improve the classification accuracy. Thus, with a fixed number m of PLS components,

boosting improves the classification accuracy if and only the (m + 1)th PLS component

also does.

In order to examine the connection between boosting and PLS, we perform PLS dimension

reduction on the whole prostate data set. We also run the AdaBoost algorithm with

δ = δPLS (with 1 component) and compute the empirical correlations between the four

first PLS components and the first PLS component obtained at each boosting iteration

(the correlations are computed based on the n observations). The results are shown

for 5 boosting iterations in Table 5.3. The first component at each boosting iteration

is strongly correlated with the first and the second PLS component, but not with the

subsequent components. This statement agrees with the classification accuracy results:

it can be seen from Figure 5.5 (top) that the classification accuracy obtained by boosting

with one component equals approximately the classification accuracy of δPLS with two

components.

Thus, both the classification results and the study of the correlations suggest a similarity

between the PLS components obtained in subsequent boosting iterations and the subse-

quent PLS components obtained when δPLS is used without boosting. The same can be

observed with the multicategorical responses. Here we focus on the SRBCT data, but the
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B = 1 B = 2 B = 3 B = 4 B = 5

PLS 1 0.80 −0.74 0.79 −0.74 0.60

PLS 2 −0.48 0.63 −0.35 0.58 −0.30

PLS 3 0.03 0.00 −0.00 0.00 0.14

PLS 4 −0.06 −0.01 −0.03 −0.02 −0.19

Table 5.3: Correlations between 4 PLS components and the 5 first PLS components with

boosting (prostate data)

study of other data sets yields similar results. The mean error rate of δPLS with boosting

is depicted in Figure 5.5 (bottom) for different numbers of PLS components. As for the

prostate data, boosting reduces the error rate when one or two PLS components are used,

but not when three PLS components are used. As can be seen from Table 5.1, three is

the minimal number of components required to obtain good classification accuracy. Thus,

with a fixed number m of PLS components, boosting improves the classification accuracy

if and only the (m + 1)th PLS component also does.

The similarity between PLS and boosting can be intuitively and qualitatively explained as

follows. In this paragraph, ’boosting’ stands for ’boosting of δPLS with one component’.

At iteration b in boosting, an observation is either in or out of the learning set, and

the probability depends on how the observation was classified at iteration b − 1. The

observations which are misclassified at iteration b−1 have higher probability to be selected

in the learning set at iteration b. At each iteration, the error rate in the learning set

is expected to decrease, since the algorithm focuses on ’problematic’ observations. In

practice, the PLS components computed at subsequent iterations have low correlations

with the PLS component computed at the first iteration. The PLS component computed

at the first iteration has high covariance with the class in the whole learning set, whereas

the PLS components computed at subsequent iterations have high covariance with the

class in particular learning sets where observations which are incorrectly predicted by the

first PLS component are over-represented.
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Figure 5.5: Mean error rate over 50 random partitions with AdaBoost and δPLS with

different numbers of PLS components for the prostate data (top) and the SRBCT data

(bottom)
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Let us consider δPLS without boosting, but with several PLS components. For the com-

putation of each PLS component, all the observations remain in the learning set, but

the mth PLS component is uncorrelated with the m − 1 first PLS components. Thus,

observations which are correctly predicted by the m − 1 first PLS components do not

participate as much in the construction of the mth PLS component as the observations

which are incorrectly predicted. In conclusion, both algorithms (boosting and PLS with

several components) focus on observations or directions which have been neglected in the

previous runs (for boosting) or components (for PLS). The theoretical connection between

boosting and PLS could be examined in future work in a probabilistic framework.

Simulated Data

In simulations, we examine the effect of boosting on the classification accuracy for mul-

ticategorical data. For the generation of simulated data, the number of classes K is set

successively to K = 3 and K = 4 and the number of observations in each class is set to

30 for the learning sets. The test sets contain 100 observations for each class, in order to

improve the accuracy of the estimation of the error rate. To limit the computation time,

the number of predictor variables p is set to p = 200. Similar results can be obtained

with different values of n and p. Each class k is separated from the other classes by a

group of 10 genes. The K groups of relevant genes are distinct, which is a simplifying

but realistic hypothesis. For each class k, the 10 relevant genes are assumed to have the

following conditional distributions:

X|Y = k ∼ N (µ = 0, σ = 1)

X|Y 6= k ∼ N (µ = 1, σ = 1),

where N (µ, σ) denotes the normal distribution with mean µ and standard deviation σ,

and to be mutually uncorrelated within each class. Furthermore, the n observations are

assumed to be identically and independently distributed given the class.

For K = 3 and K = 4 successively, we generate 50 learning data sets {L1, . . . ,L50} and 50

test data sets {T1, . . . , T50} as follows. First, the K groups of 10 relevant genes are drawn
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1 2 3

K=3 0.328 0.077 0.113

K=4 0.504 0.283 0.104

Table 5.4: Mean error rate over 50 simulated learning sets and test sets with δPLS for

different numbers of PLS components.

within each class from the conditional distributions given above. The remaining genes

are drawn from the standard normal distribution for all classes. For each pair {Lj , Tj}
(j = 1, . . . , 50), δPLS with boosting (B = 30) for 1,2,3 components is used to predict the

classes of the observations from Tj. The mean error rate over the 50 runs is then computed

at each boosting iteration. The results are depicted in Figure 5.6 for K = 3 (top) and

K = 4 (bottom). As can be seen from Figure 5.6, boosting improves the classification

accuracy of δPLS if and only if less than K − 1 components are used. It seems that using

boosting with a larger number of components can even decrease the classification accuracy.

For comparison, the classification accuracy of δPLS without boosting is given in Table 5.4

for different numbers of PLS components. The best classification accuracy is achieved

with K − 1 PLS components for both K = 3 and K = 4. Thus, the similarity between

boosting and PLS which is observed for real data can also be observed for simulated data:

for a given number m of PLS components, boosting improves the classification accuracy

if and only if the (m + 1)th PLS component also does.

In the following section, we show a connection between the first PLS component and

gene selection: the squared coefficient in the first PLS component can be seen as a score

of relevance for single genes (see section 4 for more details). ’Boosted gene selection’

might be an interesting application of boosting with PLS: we suggest that selecting the

top-ranking genes at each boosting iteration might improve the classification accuracy of

classifiers based on small gene subsets, although the study of this topic would be beyond

the scope of this thesis.
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Figure 5.6: Mean error rate over 50 simulated learning sets and test sets with AdaBoost

and δPLS with different numbers of PLS components for simulated data for K = 3 (left)

and K = 4 (right)
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5.5 PLS and gene selection

Biologists often want statisticians to answer questions such as ’which genes can be used

for tumor diagnosis ?’. Thus, gene selection remains an important issue and should not

be neglected. Dimension reduction is sometimes wrongly described as a black box which

looses the information about single genes. In the following, we will see that PLS is strongly

connected to gene selection.

In this section, only binary responses are considered: Y can take values 1 and 2. We

denote as YC = (YC1, . . . , YCn)T the vector obtained by centering Y = (Y1, . . . , Yn)T to

have zero mean:

YCi = −n2/n if Yi = 1,

= n1/n if Yi = 2,

where n1 respectively n2 are the numbers of observations in class 1 respectively 2.

To perform PLS dimension reduction, it is not necessary to scale each column of the data

matrix X to unit variance. However, the first PLS component satisfies an interesting

property with respect to gene selection if X is scaled. In this section, the columns of

the data matrix X are supposed to be have been scaled to unit variance and, as usual in

the PLS framework, centered to zero mean. a = (a1, . . . , ap)
T denotes the p × 1 vector

defining the first PLS component as calculated by the SIMPLS algorithm.

A classical gene selection scheme consists of ordering the p genes according to BSSj/WSSj

and selecting the top-ranking genes. For data sets with a binary response, we argue that

a2
j can also be seen as a scoring criterion for gene j and we prove that the ordering of the

genes obtained using BSSj/WSSj is the same as the ordering obtained using a2
j .

Theorem 5.1. If K = 2, there exists a strictly monotonic function f such that

BSSj/WSSj = f(a2
j),

for j = 1, . . . , p.

Proof. From the SIMPLS algorithm, we get

a = c1 ·XTYC ,



5.5. PLS AND GENE SELECTION 89

where c1 is a scalar. For j = 1, . . . , p,

aj = c1 ·
n

∑

i=1

xijYCi.

It leads to

aj = c1 · (−(n2/n)
∑

i:Yi=1 xij + (n1/n)
∑

i:Yi=2 xij)

a2
j = c2

1 · (n1n2/n)2(µ̂j2 − µ̂j1)
2

For K = 2,

BSSj = n1(µ̂j1 − µ̂j)
2 + n2(µ̂j2 − µ̂j)

2

= n1((nµ̂j1 − n1µ̂j1 − n2µ̂j2)/n)2 + n2((nµ̂j2 − n2µ̂j2 − n1µ̂j1)/n)2

= (n1n
2
2/n

2 + n2n
2
1/n

2)(µ̂j2 − µ̂j1)
2

= c2a
2
j ,

where c2 is a positive constant which does not depend on j. BSSj + WSSj is propor-

tional to the sample variance of Xj. Since the variables X1, . . . , Xp all have equal sample

variance, there exists a constant c3 which is independent of j such that

BSSj/WSSj =
BSSj

c3−BSSj

=
c2a2

j

c3−c2a2

j

.

2

As a consequence, the first PLS component calculated by the SIMPLS algorithm can be

used to order and select genes and the ordering is the same as the ordering produced

by one of the most widely accepted selection criteria. As an illustration, the BSS/WSS

ratio can be computed for the 2000 genes of the colon data set. For the 5 first genes, one

obtains:

1.069 · 10−2, 3.979 · 10−5, 6.439 · 10−3, 2.431 · 10−3, 9.492 · 10−4.

The coefficients of these 5 genes for the first PLS component are

9.280 · 10−5, −5.691 · 10−6, 7.217 · 10−5, −4.444 · 10−5, 2.779 · 10−5.
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As can be seen from these partial results, the ordering of the genes produced by the

BSS/WSS ratio is the same as the ordering produced by the absolute value of the

coefficient for the first PLS component. For the colon data, the 5 top-ranking genes are

gene 493 (Hsa.37937), gene 377 (Hsa.36689), gene 249 (Hsa.8147), gene 1635 (Hsa.2097)

and gene 1423 (Hsa.1832).

Up to a constant, the BSS/WSS-statistic equals the F -statistic which is used to test the

equality of the means within different groups. Thus, we have proved that the SIMPLS

algorithm can be used as a gene selection procedure which is exactly equivalent to the

procedure based on the BSS/WSS ratio or on the F -statistic. This method tends to be

sensitive to outliers, which are common in microarray data. Moreover, it does not incor-

porate interactions and correlations between genes, as all univariate criteria. However,

it is one of the most widely used criteria for gene selection and seems to perform well

in most cases (Dudoit et al., 2002). We claim that one should rather use the first PLS

component than the BSS/WSS ratio because it is faster to compute.

5.6 Discussion

In this chapter, several aspects of PLS dimension reduction for classification are exam-

ined. First, PLS is compared to several other classification methods which are known to

give excellent classification accuracy. To our knowledge, this work is the first extensive

comparison study including PLS. The classifier δPLS turns out to be the best one in terms

of classification accuracy for most of the data sets. Another advantage is its computa-

tional efficiency. Even if PLS dimension reduction is originally designed for continuous

regression, it can be successfully applied to classification problems. To determine the op-

timal number of PLS components, a simple cross-validation procedure is proposed. The

reliability of this procedure is quite good, although not perfect. An aggregation strategy

(AdaBoost) is used in the hopes of improving the classification accuracy, because aggre-

gation methods are known to be very effective in reducing the error rate on independent

test data. The conclusion is that boosting does not improve the classification accuracy
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of PLS, except in some special cases. The second topic of this chapter is gene selection.

We show that the first PLS component can be used for gene selection and prove that the

proposed procedure is equivalent to a well-known gene selection procedure found in the

literature. Thus, the information on single genes does not get lost through PLS dimension

reduction. Moreover, we claim that PLS dimension reduction can be used as a visualiza-

tion tool. Contrary to principal component analysis, PLS is a supervised procedure which

uses the information about the class of the observations to construct the new components.

Unlike sufficient dimension reduction and related methods, PLS can handle all the genes

simultaneously and performs gene selection intrinsically. In a word, PLS is a very fast

and competitive tool for classification problems with high-dimensional microarray data

as regards to prediction accuracy, feature selection and visualization. In future work, one

could examine the theoretic connection between PLS and boosting, as well as the use of

boosting in gene selection. Since the best classification accuracy is often reached with

more than one PLS component, the subsequent PLS components could also be used to

perform a refined gene selection. One could also try to improve the procedure to choose

the number of components. It seems that cross-validation is appropriate, but a more

sophisticated cross-validation scheme could maybe improve the classification performance

of our PLS-based approach.
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Chapter 6

Conclusion

In this thesis, different aspects of dimension reduction for high-dimensional microarray

data have been studied. In this chapter, a summary of the achieved objectives and the

possible directions for future methodological research are given for each topic, as well as a

brief outlook on the evolution of biological research and its consequences for the statistical

analysis.

• In the introductory Chapter 2, I reviewed briefly a few usual variable selection cri-

teria, as well as a few common methods used to compare different classification

methods. Variable selection methods can be divided in two categories: methods

based on univariate selection criteria and methods looking for optimal variable sub-

sets. While univariate selection criteria miss potentially useful information, optimal

subsets tend to overfit the learning data set. Dimension reduction is an interesting

alternative to variable selection. I also reviewed four common approaches used to

compare classification methods. In this thesis, I always use Approach 3 (successive

random splittings of the available data set into learning data set and test data set)

to compare classification methods, because it is the most reliable design according

to several studies.

93
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• In Chapter 3, I mapped the data mining tool ”emerging pattern” into a statistical

framework and proposed a new and more general probabilistic definition. I pro-

posed a new fast search algorithm to identify such patterns in high-dimensional

data sets and showed its efficiency in simulations. I also proposed a new approach

to use emerging patterns for classification. The programs are implemented in the

language R. The concept of emerging patterns which is proposed in this thesis could

be generalized to categorical or ordinal variables in order to integrate other types

of data. In the context of low-dimensional data, emerging patterns could also be

examined in the multiple testing framework.

• In Chapter 4, the strong connection between three linear dimension reduction and

classification approaches is proved for K = 2. I showed that the first PLS component

is the same as the first between-group principal component and that between-group

principal component analysis is strongly related to classical linear discriminant anal-

ysis for binary response variables (K = 2). In future work, one could examine the

case K > 2, which is common in practical microarray studies. The connection to the

wide family of sufficient dimension reduction methods could also be investigated, as

well as an adaptation of these methods to very high-dimensional data with n < p.

• Chapter 5 deals with PLS dimension reduction with application to classification

problems. PLS regression is a powerful tool for the analysis of various types of

high-dimensional data, ranging from chemometric data to microarray data. In an ex-

tensive comparison study based on nine real microarray data sets, I showed that the

classification method consisting of PLS dimension reduction and linear discriminant

analysis using the PLS components ranges among the best classification methods

and should be recommended because of its computational efficiency and conceptual

simplicity. Moreover, PLS dimension reduction can be used to visualize microarray

data in two or three dimensions in the context of classification. I showed that the

obtained directions can often be interpreted in terms of subclasses in practice. I

also examined the connection between PLS dimension reduction and boosting and

pointed out a qualitative similarity between these two approaches. Lastly, I proved



95

a property concerning the connection between the so-called BSS/WSS ratio, which

is one of the most common selection criteria in microarray data analysis, and the

coefficient in the first PLS component. The theoretical connection between boost-

ing and PLS dimension reduction, as well as the application of boosting to variable

selection could be examined in further work. In the context of class prediction, the

performance of PLS dimension reduction could be improved by refining the choice of

the number of components. Another direction for future research is the application

of PLS regression or dimension reduction to other types of high-dimensional data

and other biological issues.

Indeed, the multiplication of experimental technologies generating high-dimensional data

in the field of life sciences constitutes a major challenge for biostatisticians who now

have to develop methods integrating different types of data. For instance, protein-protein

interaction data, which give information on single pairs of proteins, are becoming common.

In the near future, gene expression data will be only a small piece of a giant puzzle.

Detecting interaction structures using several high-dimensional data sets will probably be

one of the most important tasks for biostatisticians.
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