Genregulation in Archaeen: Molekulare Grundlagen der Salzadaptation in Methanosarcina mazei Gö1

Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität vorgelegt von Katharina Pflüger aus München im August 2004

- 1. Gutachter: Prof. Dr. V. Müller
- 2. Gutachter: Prof. Dr. H. Scheer

Tag der mündlichen Prüfung: 25. Oktober 2004

INHALTSVERZEICHNIS

INHALTS	VERZEICHNIS	Ι
Abkürz	UNGSVERZEICHNIS	VI
1	Einleitung	1
1.1	Prinzipien der Salzadaptation in Mikroorganismen	1
1.1.1 1.1.2	"Salz-im-Cytoplasma"-Typ Akkumulation von kompatiblen Soluten	2 2
1.2	Kompatible Solute	3
1.3	Kompatible Solute in methanogenen Archaeen	5
1.4	Transport und Biosynthese von kompatiblen Soluten	7
1.5	Genregulation in Archaeen	9
1.6	Fragestellung der Arbeit	11
2	MATERIAL UND METHODEN	13
2.1	Organismen, Plasmide, Oligonukleotide	13
2.2	Nährmedien und Supplemente	18
2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Komplexmedium für <i>Methanosarcina mazei</i> Gö1 (DSMZ 120) Minimalmedium für <i>M. mazei</i> Gö1 Komplexmedium für <i>Methanococcus maripaludis</i> (McC) Minimalmedium für <i>M. maripaludis</i> (McN) Medien für <i>Escherichia coli</i> -Stämme	18 19 19 20 20
2.3	Zellanzucht	21
2.3.1 2.3.1.1 2.3.1.2 2.3.1.3 2.3.1.4 2.3.2 2.3.2	Zellanzucht von <i>M. mazei</i> Gö1 und <i>M. maripaludis</i> Anaerobe Anzucht Stammkulturen Bestimmung der Zelldichte Reinheitskontrolle Zellanzucht von <i>E. coli</i> Aerobe Anzucht	21 21 22 22 22 23 23 23

2.3.2.2	Stammkulturen	23
2.3.2.3	Bestimmung der Zelldichte	23
2.3.3	Herstellung von Zellsuspensionen zur NMR-Analyse	23
2.4	Molekularbiologische Methoden	24
2.4.1	Vorbehandlung von Geräten und Lösungen	24
2.4.2	Standardmethoden	24
2.4.3	Isolierung von Nukleinsäuren	24
2.4.3.1	Isolierung chromosomaler DNA aus <i>M. mazei</i> Göl	24
2.4.3.2	Isolierung chromosomaler DNA aus <i>M. maripaludis</i>	25
2.4.3.3	Isolierung von Gesamt-RNA aus <i>M. mazei</i> Göl	25
2.4.4	Polymerase-Kettenreaktion (PCR)	26
2.4.5	Entfernung von DNA-Verunreinigungen aus RNA-Präparaten	27
2.4.6	Auftrennung von Nukleinsäuren	27
2.4.6.1	Standardagarosegelelektrophorese	27
2.4.6.2	Gelelektrophorese von RNA im Formaldehvdgel	28
2.4.6.3	Polyacrylamid-Harnstoff-Gelelekrophorese	28
2.4.6.4	Denaturierende Agarosegelelektrophorese	29
2.4.7	Konzentrationsbestimmung und Reinheitskontrolle von Nukleinsäure-	
2	Lösungen	30
2.4.8	Ouantitative PCR	30
2.4.9	Übertragung von Nukleinsäuren auf Membranen	31
2.4.9.1	Southern-Blots	31
2.4.9.2	Northern-Blots	32
2.4.10	Färbung von RNA mit Methylenblau	32
2.4.11	Radioaktive Markierung von DNA mit $[\alpha^{-32}P]$ dATP	33
2.1.11	Markierung von DNA-Fragmenten	33
2.1.11.1	Markierung von Oligonukleotiden	33
2.4.12	DNA-Microarray-Analyse	34
2.1.12	Fluoreszenzmarkierung von cDNA	34
2.1.12.1	Fluoreszenzmarkierung von genomischer DNA	35
2.4.12.2	Microarray-Produktion	35
2.4.12.5	Hybridisierung der Microarrays	36
2.1.12.1	Hybridisierung	37
2.4.13	Hybridisierung von DNA mit radioaktiv markierten DNA-Sonden	37
2.4.13.1	Hybridisierung von RNA mit radioaktiv markierten DNA-Sonden	38
2.4.13.2	Hybridisierung von Proteinen mit radioaktiv markierten DNA-Sonden	50
2.7.13.3	(Southwestern-Blot)	38
2.4.14	Sequenzierung von DNA nach der Kettenabbruchmethode	
	(SANGER ET AL, 1977)	39
2.4.15	Primer-Extension-Analyse	40
2.4.16	Gelretardation von DNA-Protein-Komplexen	40
2.4.17	Autoradiographie	41
2.5	Biochemische und proteinanalytische Methoden	41
251	Destsichastimmung	11
2.3.1	Proteinbestimmung	41
2.3.2	Expression was male Engineering and Aufministry 1	42
2.3.3	Fusionsproteine Fusionsgenen und Aufreinigung der	42

2.5.4	Massenspektrometrie NMR-Analyse	42 42		
2.6	Immunologische Methoden	43		
2.0	minunologische Methoden	40		
2.6.1 2.6.2	Herstellung polyklonaler Antikörper Western-Blot	43 43		
2.7	Chemikalien und Gase	44		
3	Experimente und Ergebnisse	45		
3.1	Ota – ein primärer Transporter für Glycinbetain	45		
3.1.1	Bestimmung des Transkriptionsstarts des ota-Operons	46		
3.2	Biosynthese des kompatiblen Solutes N $^{\epsilon}$ -Acetyl- β -Lysin	48		
3.2.1	Biosyntheseweg von N ^ε -Acetyl-β-Lysin	49		
3.2.2	Genetische Organisation des abl-Operons	50		
3.2.3	Eigenschaften der Genprodukte und Ähnlichkeiten zu anderen	50		
2 2 4	Proteinen	52		
3.2.4	Salzabhangige Expression des <i>abi</i> -Operons	50 50		
3.2.3	Konstruktion von Deletionsmutenten	50 50		
3261	Konstruktion von Deletionsinutanten Klonierung			
3262	Verifizierung der A <i>abl</i> -Deletionsmutanten	60		
3.2.6.3	Verlust der Fähigkeit der Deletionsmutanten zum Wachstum bei	00		
3761	Hochsalz $N^{\epsilon} A cetyl \beta Lysin Akkumulation im Wildtyn und den$	63		
5.2.0.4	N-Acety1-p-Lysin Akkumulation in whatyp und den Deletionsmutenten von <i>M marinaludis</i> II	64		
3265	N ^{ε} -Acetyl-B-I vsin Akkumulation in <i>M</i> mazei Göl	65		
3.2.0.5	Immunologische Untersuchungen zum zellulören Caholt von Abl	66		
5.5	minunologische Untersuchungen zum zehunaren Genatt von Abib	00		
3.3.1	Klonierung von ablB und Überproduktion als MalE-Fusionsprotein zur			
	Gewinnung von Antikörpern	66		
3.3.2	Produktion von AbIB in salzadaptierten Zellen	68		
3.3.3	Produktion von AbiB nach einem hyperosmotischen Schock	68		
3.4	Genomweite Expressionsanalyse bei salzadaptierten Zellen	71		
3.4.1	Wachstum von salzadaptierten Zellen von M. mazei Göl	71		
3.4.2	Identifizierung von salzinduzierten Genen mittels DNA-Microarrays	72		
3.4.3	Verifizierung der salzabhängigen Expression von Genen durch quantitative PCR	78		
3.5	Zeitabhängige Expression von Genen nach hyperosmotischem			
	Schock	80		
3.5.1	Wachstum von <i>M. mazei</i> Göl nach hyperosmotischem Schock	80		
	The set of	00		

3.5.2	Expressionsmuster salzregulierter Gene nach einem Schock auf 400 mM NaCl	81		
3521	Früh in der lag-Phase induzierte Gene	83		
3.5.2.2	In der Mitte der lag-Phase induzierte Gene			
3523	Spät in der lag Phase induzierte Gene			
3524	Während der gesamten lag-Phase induzierte Gene	86		
3525	Reprimierte Gene	89		
353	Expressionsmuster salzinduzierter Gene nach einem Schock auf	07		
5.5.5	800 mM NaCl	91		
3531	Früh in der lag-Phase induzierte Gene	93		
3532	In der Mitte der lag-Phase induzierte Gene	94		
3533	Spät in der lag-Phase induzierte Gene	95		
3534	Während der gesamten lag-Phase induzierte Gene	98		
3.5.3.5	Reprimierte Gene	100		
354	Verifizierung der Expression von Genen nach osmotischem Schock	102		
36	Zeitlicher Verlauf der Geneverssion in <i>M. mazei</i> Göl nach einem	102		
5.0	Zeithener verlauf der Genespression in <i>M. mager</i> Gor nach einem	105		
	hyperosmotischen Schock	105		
3.6.1	Aufnahme von Glycinbetain, Cholin und P _i und Synthese von			
	N ^ε -Acetyl-β-Lysin	106		
3.6.2	Bildung von Glutamat und Glutamin und N-Assimilierung	110		
3.6.3	Transport von Kationen	115		
3.6.4	Zeitliche Abfolge der Regulation	117		
3.7	Versuche zur Identifizierung eines Regulators			
3.7.1	Analyse des <i>ota</i> -Operons	120		
3.7.2	Analyse des <i>abl</i> -Operons	122		
3.7.3	Analyse des <i>pst</i> -Operons	124		
3.7.3.1	Identifizierung der Pho-Box	127		
3.7.3.2	Gelretardationsanalyse	128		
3.7.3.3	Southwestern-Blot	129		
3.8	Immunologische Untersuchungen zum zellulären Gehalt von			
	MM0077	131		
3.8.1	Klonierung von MM0077 und Überproduktion als MalE-Fusionsprotein			
	zur Gewinnung von Antikörpern	131		
3.8.2	Produktion von MM0077 in salzadaptierten Zellen			
3.8.3	Produktion von MM0077 nach einem hyperosmotischen Schock	133		
4	DISKUSSION	135		
4.1	Statistische Betrachtung eines DNA-Microarray-Experiments	135		
4.1.1	"Inner-Microarray"-spezifische Streuung	135		
4.1.2	Methodische Streuung	137		
4.1.3	Fluoreszenzfarbstoff-spezifische Streuung 13			
4.1.4	Biologische Streuung 14			

4.2	Transkriptionsregulatoren in <i>M. mazei</i> Gö1	143
4.2.1	MarR-Familie der Transkriptionsregulatoren	144
4.2.2	ArsR-Familie der Transkriptionsregulatoren	146
4.2.3	TrmB-ähnliche Transkriptionsregulatoren	148
4.3	Phasen der Osmoadaptation in methanogenen Archaeen	151
4.4	Potentielle Rolle von Phosphat bei der Salzadaptation	154
4.4.1	Aufnahme von Phosphat	154
4.4.2	Einfluss von Phosphat auf eine Vielzahl zellulärer Prozesse	155
4.4.3	Potentielle Rolle von Phosphat in M. mazei Göl bei der Salzadaptation	157
4.5	Akkumulation der kompatiblen Solute Glutamat und Glutamin	159
4.5.1	Stickstofftransport und Assimilierung	159
4.5.2	Stickstofffixierung	165
4.5.3	Regulation der Ammoniumassimilierung und Stickstofffixierung	166
4.6	Veränderungen der Zelloberfläche	171
4.7	Modelle der Physiologie der Salzadaptation in M. mazei Gö1	173
4.7.1	Prinzipien der Osmoadaptation in M. mazei Göl in salzadaptierten	
	Zellen	173
4.7.2	Model der Salzadaptation in <i>M. mazei</i> Göl nach einem hyperosmotischen Schock	176
5	ZUSAMMENFASSUNG	181
6	LITERATURVERZEICHNIS	184
7	Anhang	198

ABKÜRZUNGSVERZEICHNIS

А	Ampere
Abb.	Abbildung
ADP	Adenosindiphosphat
APS	Ammoniumpersulfat
ATP	Adenosin-5'-triphosphat
Вр	Basenpaare
bzw.	beziehungsweise
ca.	circa
DEPC	Diethylpyrocarbonat
dest.	destilliert
DNA	Desoxiribonukleinsäure
DSMZ	Deutsche Sammlung für Mikroorganismen und Zellkulturen
DTT	Dithiothreitol
EDTA	Ethylendiamintetraacetat
x g	x-fache Erdbeschleunigung
IPTG	Isopropyl-β-thiogalaktosid
max	maximal
mind.	mindestens
OD _x	optische Dichte bei x nm
ORF	offener Leserahmen
ΔP	Turgordruck
PAGE	Polyacrylamidgelelektrophorese
P _i	anorganisches Phosphat
PolyP	Polyphosphat
RNA	Ribonukleinsäure
RSA	Rinderserumalbumin
SDS	Natriumdodecylsulfat
SSC	Standard-Saline-Citrat
Tab.	Tabelle
TEMED	N, N, N', N'-Tetramethylethylendiamin
V	Volt

1 EINLEITUNG

1.1 Prinzipien der Salzadaptation in Mikroorganismen

Mikroorganismen sind in ihrer natürlichen Umgebung sich ständig ändernden Bedingungen ausgesetzt. Neben der Verfügbarkeit von Nährstoffen, der Temperatur und dem pH-Wert spielt auch die Osmolarität eine entscheidende Rolle. Dies ist nicht nur in salinen Umgebungen der Fall, sondern ebenfalls im Boden, wo es durch Verdunstung oder Regen zu drastischen Änderungen in der Osmolarität der Umgebung kommen kann. Der osmotische Druck der Umgebung ist ein kritischer Parameter für das Wachstum der Zellen. Die meisten Mikroorganismen und Pflanzen halten einen internen osmotischen Druck aufrecht, der etwas höher ist als der Druck der Umgebung. Dieser nach außen gerichtete Druck wird als Turgor bezeichnet. Der Turgordruck (AP) ist definiert als die Differenz des Potentials aller extra- und intrazellulären kompatiblen Solute. Er ist essentiell für das Wachstum und die Zellteilung und muss von den Organismen aufrecht erhalten werden (KEMPF UND BREMER, 1998; WOOD, 1999). Da die Cytoplasmamembran von Mikroorganismen für Wasser permeabel ist, führen Veränderungen in der Osmolarität der Umgebung, und damit in der extrazellulären Solutkonzentration, zu einem sofortigen Ein- oder Ausstrom von Wasser, was im schlimmsten Fall zur Plasmolyse oder zum Platzen der Zelle führt. Um dies zu verhindern, haben die Zellen Strategien entwickelt, um auf Änderungen der Osmolarität reagieren zu können und sich an die neue Bedingung anzupassen. Dieser Prozess der Osmoadaptation kann in mehrere Phasen untergliedert werden.

Als Folge der Erhöhung der Osmolarität der Umgebung kommt es in einer ersten Phase zu einem rapiden Ausstrom von Wasser entlang des osmotischen Gradienten. Dies führt zu einer Veränderung der internen Salzkonzentration, einer Verminderung des Turgors und schließlich zu einer Dehydrierung des Cytoplasmas, was eine Vielzahl von zellulären Prozessen inhibieren kann (**CSONKA**, 1989; **CSONKA UND HANSON**, 1991). In einer zweiten Phase wird die intrazelluläre Solutkonzentration der Äußeren angepasst, was in der Rehydrierung der Zelle und der Wiederherstellung des Turgordruckes resultiert. In einer dritten und letzten Phase der Osmoadaptation kann es zu Umstrukturierungen in der Zelle kommen.

Die Antwort auf eine Verringerung der Osmolarität der Umgebung kann ebenfalls in drei Phasen eingeteilt werden. Direkt nach einem hypoosmotischen Schock kommt es zu einem starken Einstrom von Wasser in die Zelle. Um ein Platzen zu verhindern, muss die Zelle mit einem sofortigen Efflux von intrazellulär angereicherten Soluten reagieren. Dies führt zu der Angleichung der intrazellulären Solutkonzentration an die extrazelluläre und damit einhergehend zu einem Ausstrom von Wasser aus der Zelle und einer Wiederanpassung des Turgors (**WOOD**, 1999). Die Modulation der internen Solutzusammensetzung ist bislang die einzige bekannte Vorgehensweise, die es Zellen erlaubt, sich an Veränderungen der Osmolarität der Umgebung anzupassen.

Zwei generelle Strategien sind bekannt, derer sich Zellen bedienen, um nach einem hyperosmotischen Schock den Turgor wiederherzustellen und die drastischen Konsequenzen des Wasserverlustes zu umgehen. Das ist zum einen ist die sogenannte "Salz-im-Cytoplasma"-Strategie und zum anderen die Akkumulation von kompatiblen Soluten.

1.1.1 "Salz-im-Cytoplasma"-Typ

Bei dem "Salz-im-Cytoplasma"-Typ werden inorganische Ionen, meist Kaliumionen und als Gegenion Chlorid, im Cytoplasma akkumuliert, bis ein Gleichgewicht zwischen der intraund der extrazellulären Salzkonzentration erreicht ist. Diese Strategie wird von den halophilen *Halobacteria (Archaea)*, den anaeroben halophilen *Haloanaerobiales (Bacteria)* und dem erst kürzlich beschriebenen extrem halophilen Bakterium *Salinibacter ruber (OREN, 1999; OREN ET AL., 2002)* verfolgt. Das Anpassen der intrazellulären Ionenkonzentration an die äußere resultiert in sehr hohen Salzkonzentrationen in der Zelle. Dies erforderte eine weitreichende und permanente Umstrukturierung zellulärer Maschinerien, damit diese auch bei den im Cytoplasma herrschenden hohen Ionenkonzentrationen ihre Aufgaben erfüllen können, und somit die Entwicklung von Spezialisten. Deshalb ist das Wachstum dieser Organismen auf einen bestimmten Osmolaritätsbreich beschränkt.

1.1.2 Akkumulation von kompatiblen Soluten

Die zweite Strategie, welcher sich Mikroorganismen bedienen, um an erhöhte Osmolaritäten zu adaptieren, ist die Akkumulation von kompatiblen Soluten. Dies kann entweder durch *de novo* Synthese oder den aktiven Transport über die Membran erreicht werden. Diese Strategie, einer Erhöhung der extrazellulären Salzkonzentration mit der Anhäufung von intrazellulären Soluten zu begegnen, ist unter den lebenden Organismen weit verbreitet und in allen drei Reichen des Lebens zu finden (**BOHNERT**, 1995; **KEMPF UND BREMER**, 1998; **ROBERTS**, 2000; **ROEßLER UND MÜLLER**, 2001). Halophile Zellen, welche kompatible Solute akkumulieren, besitzen weitgehend dieselbe Enzymmaschinerie wie Nicht-Halophile. Dies ermöglicht ihnen eine weitaus größere Flexibilität in Bezug auf die Adaptation an die externe Salzkonzentration. Im Gegensatz zu Zellen, welche die "Salz-im-Cytoplasma"-Strategie verfolgen, können sie nicht nur an hohe Osmolaritäten adaptieren, sondern auch niedrigere tolerieren.

1.2 Kompatible Solute

Kompatible Solute sind als kleine lösliche Moleküle definiert, die nicht mit dem zentralen Metabolismus der Zelle interferieren, auch wenn sie in sehr hohen Konzentrationen akkumuliert werden (**BROWN**, 1976). Eine relativ geringe Anzahl Moleküle werden als kompatible Solute genutzt. Sie lassen sich in zwei Hauptgruppen unterteilen: (i) Zucker und Polyole und (ii) α - und β -Aminosäuren und deren Derivate (Abb. 1). Dieses recht kleine Spektrum spiegelt die hohen Anforderungen wieder, welche Moleküle zu erfüllen haben, damit sie mit zellulären und makromolekularen Funktionen kompatibel sind. Kompatible Solute spielen nicht nur bei dem Ausgleich des osmotischen Drucks des Cytoplasmas eine Rolle, sondern sie fungieren auch als Proteinstabilisatoren und erhöhen die Löslichkeit von Proteinen.

Ein Blick auf die Verteilung kompatibler Solute zeigt, dass bestimmte Klassen von Soluten mehr oder weniger in nur einer Gruppe von Mikroorganismen zu finden ist. So akkumulieren Thermophile und hyperthermophile Organismen einige kompatible Solute, die in Mesophilen keinen Effekt haben (SANTOS UND DA COSTA, 2002), was die Vermutung aufkommen lässt, dass diese kompatiblen Solute der Thermophilen spezielle Funktionen bei dem Leben unter hohen Temperaturen erfüllen. Das wohl am weitesten verbreitete kompatible Solut bei Thermophilen ist Di-myo-inositolphosphat (DIP), welches ursprünglich in *Pyrococcus woesei* und *Methanococcus igneus* identifiziert wurde (CIULLA ET AL., 1994b; SCHOLZ ET AL., 1992). Die intrazelluläre DIP-Konzentration ändert sich nicht in Abhängigkeit von der Salzkonzentration der Umgebung, sondern von der Temperatur. Somit scheint DIP nicht ein kompatibles Solut im engsten Sinne zu sein, sondern eher als Thermoprotektant zu wirken (SANTOS UND DA COSTA, 2002). Weitere der Gruppe der Zucker und Polyole zuzuordnende kompatible Solute sind Trehalose, ein in Bakterien weit verbreitetes kompatibles Solut, das aber auch von einigen thermophilen Archaeen, wie *Pyrobaculum aerophilum*, verwendet wird, oder Polyol-Phosphodiester, wie Diphosphoglycerat, welches bis jetzt ausschließlich in

Archaeoglobus fulgidus nachgewiesen wurde (MARTINS ET AL., 1997). Ferner gehört auch noch α -Mannosylglycerat (MG) in die Gruppe der Zucker und Polyole. MG wurde in einer Vielzahl thermophiler und hyperthermophiler Organismen, wie in *Thermus thermophilus* oder *Rhodothermus marinus*, gefunden (SANTOS UND DA COSTA, 2001).

Abb. 1: Struktur von kompatiblen Soluten aus Prokaryonten.

Die andere große Gruppe kompatibler Solute umfasst α - und β -Aminosäuren und deren Derivate. Die wahrscheinlich am weitesten verbreiteten Vertreter dieser Gruppe sind Prolin und Glutamat, welche hauptsächlich in Bakterien gefunden werden. Bis heute konnte noch nicht gezeigt werden, dass Prolin auch in Archaeen akkumuliert wird, obwohl *Archaeoglobus fulgidus* Homologe zu ProU von *Escherichia coli* besitzt (**KLENK ET AL.**, 1997). Im Gegensatz dazu wird α -Glutamat von *Methanococcus thermolitotrophicus* als kompatibles Solut genutzt, nicht aber von *Methanohalophilus*-Stämmen, in denen die α -Glutamat-Konzentration unabhängig von der externen Salzkonzentration war (**LAI ET AL.**, 1991; **MARTIN ET AL.**, 2000). Andere weit verbreitete kompatible Solute dieser Gruppe sind Ectoin und Glycinbetain (GALINSKI UND TRÜPER, 1994). Während Ectoin von fast allen heterotrophen halotoleranten Bakterien akkumuliert wird, ist Glycinbetain noch weiter verbreitet und fungiert auch in Säugetieren, Pflanzen, Archaeen und Bakterien als kompatibles Solut (MARTIN *ET AL.*, 1999). Interessanterweise fehlt den meisten Organismen die Fähigkeit, dieses Solut *de novo* zu synthetisieren, aber es sind eine Vielzahl von Transportsystemen bekannt. Die β -Aminosäuren sind hervorragend als kompatible Solute geeignet, da sie die hohe Löslichkeit ihrer α -Isomere besitzen und zusätzlich den Vorteil haben, dass sie nicht metabolisiert werden können. Bekannte β -Aminosäuren, die als kompatible Solute genutzt werden, sind β -Glutamat, β -Glutamin und N^e-Acetyl- β -Lysin. Letzteres ist das vorherrschende kompatible Solut in einer Reihe von methanogenen Archaeen (MARTIN *ET AL.*, 1999).

1.3 Kompatible Solute in methanogenen Archaeen

Die meisten Methanogenen reagieren auf Änderungen der externen NaCl-Konzentration mit der Akkumulation kompatibler Solute. Als Gegenion für die zum Teil negativ geladenen Verbindungen wird meist Kalium angehäuft (MARTIN ET AL., 1999; ROBERTSON ET AL., 1992b). Untersuchungen an salzadaptierten Zellen von Methanosarcina-Spezies zeigten, dass bei niedrigeren Osmolaritäten (0,3 osmol/kg) Kalium und α-Glutamat als vorherrschende kompatible Solute akkumuliert wurden (SOWERS UND GUNSALUS, 1995). Eine Erhöhung der Osmolarität auf 1,0 osmol/kg führte ebenfalls zu einer Erhöhung der Kalium- und α-Glutamat-Konzentration im Cytoplasma. Zum einen trägt dies zu einem Anstieg des osmotischen Potentials des Cytoplasmas bei und zum anderen werden durch die gleichzeitige Akkumulation von Kalium und Glutamat die Nettoladungen ausgeglichen. Ein weiterer Anstieg der extrazellulären NaCl-Konzentration auf 2,0 osmol/kg hatte keinen nennenswerten Einfluss mehr auf die Kalium- und Glutamat-Konzentrationen im Cytoplasma. Stattdessen konnte die Akkumulation von N^{ϵ}-Acetyl- β -Lysin beobachtet werden. War jedoch Glycinbetain im Medium vorhanden, wurde dieses in die Zelle aufgenommen und gleichzeitig die Synthese von N^{ϵ}-Acetyl- β -Lysin und α -Glutamat verringert (SOWERS UND GUNSALUS, 1995). Eine Analyse der intrazellulären Solutzusammensetzung in salzadaptierten Zellen von Methanohalophilus portucalensis zeigte, dass bei einer NaCl-Konzentration von 1,7 M α -Glutamat, Glycinbetain, β -Glutamin und N^{ϵ}-Acetyl- β -Lysin synthetisiert werden (LAI ET AL., 1991). Eine weitere Erhöhung der externen NaCl-Konzentration führte zu einer verstärkten Akkumulation von Glycinbetain, β-Glutamin und N^ε-Acetyl-β-Lysin. Die α-Glutamat-Konzentration hingegen blieb auf ungefähr demselben Niveau. Ferner wurde

gezeigt, dass die intrazelluläre Kaliumkonzentration 1,8fach erhöht war, wenn die Zellen an 2,7 M NaCl adaptiert waren, verglichen mit Zellen, die an 1,7 M NaCl angepasst waren. Der thermophile Methanogene *Methanococcus thermolithotrophicus* synthetisiert und akkumuliert, wenn die externe Salzkonzentration geringer als 1 M NaCl ist, α - und β -Glutamat (**ROBERTSON** *ET AL.*, 1992b). Die interne Kaliumkonzentration passt sich dabei dem Niveau der negativ geladenen Aminosäuren an, so dass die Nettoladung ausgeglichen ist. Erhöht sich die externe NaCl-Konzentration weiter, wird N^e-Acetyl- β -Lysin synthetisiert und die intrazellulären Konzentrationen von α - und β -Glutamat und auch von Kalium sinken leicht ab.

Bislang ist *M. thermolithotrophicus* das einzige methanogene Archaeon, an dem der Prozess der Salzadaptation auch nach einem hyperosmotischen Schock untersucht wurde (MARTIN ET AL., 2000; ROBERTS, 2000). Zellen von M. thermolithotrophicus reagierten auf eine Erhöhung der externen Salzkonzentration mit einer lag-Phase bevor sie sich wieder normal teilen. Direkt nach einem hyperosmotischen Schock wurde Kalium in die Zelle aufgenommen. Die Menge an aufgenommenem Kalium überstieg die Menge, die benötigt worden wäre, um das extrazelluläre Natrium auszugleichen. Nach 10 bis 20 min sank die Kaliumkonzentration wieder und pendelte sich auf einem geringeren Niveau ein. Zu diesem Zeitpunkt begann die Synthese von organischen Soluten, hauptsächlich von α -Glutamat. α-Glutamat war unter diesen Bedingungen das vorherrschende kompatible Solut und erreichte eine maximale Konzentration zu dem Zeitpunkt, an dem die Zellen wieder zu wachsen begannen. Nun begann die Synthese von N^ε-Acetyl-β-Lysin, und die α-Glutamat-Konzentration wurde wieder etwas reduziert. Nach einigen Zellteilungen war N^ε-Acetyl-β-Lysin das vorherrschende kompatible Solut in der Zelle. Daraus lässt sich schließen, dass Kalium und α -Glutamat eine Funktion als temporäre Osmolyte bei der Antwort auf einen hyperosmotischen Schock ausüben.

Zusammenfassend zeigt dies, dass methanogene Archaeen, wie auch Bakterien, sich nicht auf eine Verbindung als kompatibles Solut beschränken, sondern ein ganzes Set dieser Verbindungen synthetisieren. Dies erlaubt ihnen auf Änderungen der extrazellulären Salzkonzentration wesentlich flexibler zu reagieren, indem sie den Solut-Pool der jeweiligen Bedingung anpassen.

1.4 Transport und Biosynthese von kompatiblen Soluten

Die Akkumulation von kompatiblen Soluten im Cytoplasma erfolgt entweder über die Aufnahme mittels entsprechender Transportsysteme oder über de novo-Biosynthese. In der Regel wird die Aufnahme von kompatiblen Soluten der Synthese vorgezogen (DINNBIER ET AL., 1988; WHATMORE ET AL., 1990). Der Großteil der bis heute untersuchten Organismen besitzt mehrere osmoregulierte Transporter mit z. T. überlappender Substratspezifität und unterschiedlichen energetischen Kopplungsmechanismen. Es existieren zwei Arten von Transportsystemen, durch die kompatible Solute in die Zelle gelangen: primäre und sekundäre Transporter. Die primären Transporter, oder ABC-Transporter, sind dadurch charakterisiert, dass die Energie für den Transport durch Hydrolyse von ATP bereitgestellt wird. Sie bestehen in der Regel aus zwei integralen Membrandomänen, die ein Pore binden, durch die das Solut transportiert wird, zwei ATP-Bindedomänen, welche die Energie aus dem Binden und der Hydrolyse von ATP an den Transport weiterleiten und einem extrazellulären Substrat-Bindeprotein (LOCHER ET AL., 1993; LOLKEMA ET AL., 1998). Die für den Transporter kodierenden Gene sind meist in einem Operon organisiert. Sehr gut untersuchte Systeme sind der Glycinbetain-Transporter ProU von E. coli, OpuA von Lactococcus lactis und OpuA, OpuB und OpuC von Bacillus subtilis (KEMPF UND BREMER, 1998; OBIS ET AL., 1999; PFLÜGER UND MÜLLER, 2004; VAN DER HEIDE UND POOLMAN, 2000). Über OpuC werden auch die kompatiblen Solute Ectoin, Carnitin, Crotonobetain, Cholin und Cholin-O-Sulfat aufgenommen (KAPPES ET AL., 1999). Aber auch in dem methanogenen Archaeon Methanosarcina mazei Göl konnten ein primärer Glycinbetain-Transporter, Ota, und ein putativer primärer Cholin-Transporter, Otb, nachgewiesen werden (KÖGL, 2004; ROEßLER ET AL., 2002).

Sekundäre Transportsysteme hingegen nutzen die freie Energie, die in Form des elektrochemischen Gradienten von Natriumionen oder Protonen über der Membran vorliegt. Sie bestehen aus meist nur einer Untereinheit, die in 12 transmembranen Helices vorliegt (LOLKEMA ET AL., 1998). Gut untersuchte Beispiele für sekundäre Transporter sind ProP von *E. coli*, OpuE von *B. subtilis* und BetP, ProP und EctP von *Corynebacterium glutamicum* (KEMPF UND BREMER, 1998; PETER ET AL., 1996; PETER ET AL., 1998). Aber auch in methanogenen Archaeen wurden sekundäre Transportsysteme für kompatible Solute beschrieben. So besitzt *Methanosarcina thermophila* TM-1 einen hochspezifischen Transporter für Glycinbetain, der allerdings bis jetzt nur auf physiologischer Ebene untersucht worden ist (PROCTOR ET AL., 1997). Auch in *M. portucalensis* FDF1 wurde ein sekundärer

Glycinbetain-Transporter beschrieben, aber auch hier fehlen noch molekulare Daten (LAI ET AL., 2000). Wie eine Analyse der bekannten methanogenen Genome zeigte, besitzen diese Organismen eine Reihe von Genen, die für putative sekundäre Transporter kodieren, welche eine Rolle bei der Osmoadaptation spielen könnten. Allerdings ist bis heute noch keiner dieser putativen Transporter näher untersucht worden (Tab. 1).

	Na ⁺ /Neuro- transmitter- Symporter	Na ⁺ /Prolin- Sympoter	(H ⁺ /Na ⁺)/Glutamat- Symporter	Na ⁺ /Solut- Symporter
M. mazei Göl		MM1315 MM1316 MM1549 MM2305	<i>gltS</i> (MM1782)	
Methansosarcina acetivorans		MA0003 MA0279 MA1316	MA2961	
Methanococcus maripaludis	MMP0419	MMP0221		MMP1700
Methanococcus jannaschii	MJ1319			
Methanothermobacter thermautotrophicus		MTH1856		

Tab. 1: Putative sekundäre Transporter in methanogenen Archaeen, die an der Osmoadaptation beteiligt sein könnten.

Eine Vielzahl von Mikroorganismen ist in der Lage, kompatible Solute zu synthetisieren. Gut untersucht sind die Biosynthesewege von Trehalose in *E. coli* und *Salmonella typhimurium* (**KEMPF UND BREMER**, 1998). In der Abwesenheit von exogenen kompatiblen Soluten synthetisieren diese Organismen mittels der osmotisch regulierten Genprodukte von *otsA* (Trehalose-6-Phosphat Synthase) und *otsB* (Trehalose-6-Phosphat Phosphatase) Trehalose aus den Vorläufern Glukose-6-Phosphat und UDP-Glukose. Von *B. subtilis* ist bereits seit langem bekannt, dass er zu der Gruppe der Prolin synthetisierenden Organismen gehört (**MEASURES**, 1975), der Biosyntheseweg konnte jedoch erst kürzlich aufgeklärt werden (**BELITSKY** *ET AL.*, 2001). Prolin wird aus Glutamat mittels der Genprodukte von *proJ* (γ -Glytamylkinase), *proA* (γ -Glutamylphosphat Reduktase) und *proH* (Δ^1 -Pyrrolin-5-Carboxylat Reduktase) gebildet. *B. subtilis* ist ebenfalls in der Lage, Glycinbetain zu synthetisieren, aber nur, wenn der Vorläufer Cholin gegenwärtig ist (**BOCH** *ET AL.*, 1994). Die Synthese erfolgt aus Cholin mittels der Enzyme GbsB (Typ III-Alkohol-Dehydrogenase) und GbsA (Betainaldahyd-Dehydrogenase) (**BOCH** *ET AL.*, 1996). Auch für einige methanogene Archaeen wurden Biosynthesewege für kompatible Solute postuliert. Anhand von NMR-Analysen wurden hypothetische Biosynthesewege für N^e-Acetyl- β -Lysin, β -Glutamin und Glycinbetain in *M. portucalensis* ermittelt (**ROBERTS ET AL.**, 1992). N^e-Acetyl- β -Lysin wird demnach aus α -Lysin, welches zuerst in β -Lysin umgewandelt und nachfolgend acetyliert wird, gebildet. Dies erfordert die Aktivität zweier Enzyme, einer Lysin-2,3-Aminomutase und einer β -Lysin Acetyltransferase. Die Synthese des kompatiblen Solutes Glycinbetain wird hier über die Methylierung von Glyzin postuliert. Auch *Methanothermobacter marburgiensis* ist in der Lage, Glycinbetain aus Cholin zu synthetisieren (**CIULLA ET AL.**, 1994a). Ferner gibt es Hinweise, dass auch *M. mazei* Gö1 Cholin zu Glycinbetain umwandeln kann. Zum einen wird das Wachstum von in Minimalmedium bei Hochsalz durch die Zugabe von Cholin stimuliert (**BAUMANN**, 2002), und zum anderen kann man eine sehr geringe Umsetzung des Cholin beobachten (**KöGL**, 2004). Ob das Produkt dieser Umsetzung zweifelsfrei Glycinbetain ist, bleibt allerdings noch zu klären.

1.5 Genregulation in Archaeen

Im Vergleich zu den Domänen der Bacteria und der Eukarya ist sehr wenig über die molekularen Mechanismen der Kontrolle der Genexpression in der Domäne der Archaea bekannt. Die basale Transkriptionsmaschinerie der Archaeen ist ähnlich der der Eukaryonten, aber deutlich einfacher. Während in Eukaryonten der Prozess der Transkriptionsinitiation über 40 verschiedene Moleküle benötigt, finden in Archaeen nur etwa 16 verschiedene Verwendung (HICKEY ET AL., 2002). Archaeen besitzen eine RNA-Polymerase (RNAP) vom RNA-Polymerase II- Typus, und Homologe zu den eukaryontischen TATA-Box Bindeprotein (TBP) und den Transkriptionsfaktoren TFIIB und TFIIE alpha, welche entsprechend als TBP, TFB und TFE bezeichnet werden. Entsprechend besteht der Promotorbereich aus der TATA-Box, einem Transkriptionsfaktor B-Erkennungselement (BRE) und einem Initiationselement an der Transkriptionsstartstelle (THOMM, 2000). Obwohl Archaeen TBP besitzen, wurden noch keine TBP-assoziierten Faktoren (TAFs), welche in Eukaryonten Komponenten des Transkriptionsfaktors TFIID sind, gefunden. Die archaeelle Transkriptionsinitiation erfolgt in mehreren Schritten. Zunächst bindet TBP an die TATA-Box. Diese Bindung wird durch TFE erleichtert. TFB bindet dann den TBP-DNA-Komplex und bildet einen sequenzspezifischen Kontakt mit BRE aus. Die N-terminale Domäne von TFB spielt anschließend eine entscheidende Rolle bei der Rekrutierung der RNAP und damit bei der Bildung des Präinitiationskomplexes. Auch an der nachfolgenden Freisetzung der RNAP von diesem Komplex und damit am Verlassen das Promotorbereichs ist TFB beteiligt (**BELL** *ET AL.*, 2001). Eine Vielzahl von Archaeen besitzen mehrere *tbp*-Gene, deren Produkte sich etwas unterscheiden. Dasselbe gilt auch für *tfb*-Gene. Erstaunlicherweise entspricht die Anzahl der *tbp*-Kopien nicht zwangsläufig der der *tfb*-Kopien. Dies führte zu der Hypothese, dass sich unterschiedliche TBP-TFB Komplexe bilden, welche dann zu differentieller Genexpression führen können. Ein bestimmter Komplex würde so die Transkription eines Gens oder einer bestimmten Gruppe von Genen initiieren (**HICKEY ET AL.**, 2002).

Obwohl der basale archaeelle Transkriptionsapparat vom eukaryontischen Typus ist, scheint seine Aktivität häufiger von Bakterien-ähnlichen Faktoren kontrolliert zu werden (BELL ET AL., 1999). Ein Beispiel für einen solchen Faktor ist MDR-1, ein Transkriptionsrepressor aus Archaeoglobus fulgidus (BELL ET AL., 1999). Dieser ist homolog zu dem bakteriellen Metall-abhängigen Transkriptionsrepressor DtxR (BOYD ET AL., 1990). MDR-1 reprimiert die Transkription eines Operons (mdr-Operon), welches neben dem eigenen Gen noch Gene für ein ABC-Transportsystem enthält. MDR-1 bindet in Anwesenheit von spezifischen Metallionen an eine Operatorsequenz welche im Promotorbereich zu finden ist. Die Bindung von MDR-1 hat allerdings keinen Einfluss auf den TBP-TFB-DNA Komplex, sondern scheint die Rekrutierung der RNAP zu verhindern, wie es auch schon von bakteriellen Transkriptionsrepressoren bekannt ist (BELL ET AL., 1999). Archaeen besitzen ebenfalls Homologe des globalen bakteriellen Regulators Lrp (leucine responsive regulatory protein) (BRINKMAN ET AL., 2003; HICKEY ET AL., 2002; NAPOLI ET AL., 1999), welcher ein wichtiges Regulationssystem für den Aminosäure-Metabolismus und verwandte Prozesse darstellt. So bindet Lrs14 aus Sulfolobus solfataricus an den Promotor seines eigenen Gens und reprimiert dessen Transkription (NAPOLI ET AL., 1999). Im Gegensatz zu MDR-1 bindet Lrs14 in der Art in dem Promotorbereich, dass die TATA-Box und BRE verdeckt sind und verhindert somit die Bindung von TBP und TFB an den Promotor (BELL UND JACKSON, 2000). Dieser Mechanismus der Repression durch Lrp-Homologe scheint jedoch nicht generalisierbar zu sein. So wurde kürzlich gezeigt, dass LrpA aus Pyrococcus woesei seine Transkription inhibiert, indem die Rekrutierung der RNAP verhindert wird (DAHLKE UND THOMM, 2002). Auch die Bildung von Substrattransportern in Archaeen kann einer bakterienähnlichen Regulation unterliegen. So bindet TrmB, ein Regulatorprotein des hyperthermophilen Archaeons Thermococcus litoralis an die TATA-Box und das BRE eines Operons, welches für einen Trehalose/Maltose-ABC-Transporter kodiert, und verhindert somit die Translationsinitiation. Durch Bindung von Trehalose oder Maltose an TrmB wird dessen Bindung an den Promotorbereich aufgehoben und die Transportergene werden exprimiert, d. h. der Transporter wird substratspezifisch gebildet (LEE ET AL., 2003).

Allerdings wurde auch von einigen potentiellen Transkriptionsregulatoren des eukaryontischen Typs in Archaeen berichtet. So wurde in *Methanothermobacter thermautotrophicus* Tfx, ein potentieller Regulator des *fmdECB*-Operons, welches für Untereinheiten der Formylmethanofuran-Dehydrogenase kodiert, identifiziert (**HOCHHEIMER** *ET AL.*, 1999). Das *tfx*-Gen liegt direkt vor dem *fmdECB*-Operon. Tfx besteht aus einer N-terminalen basischen Domäne mit einem HTH ("helix-turn-helix")-Motiv, welches wahrscheinlich an der DNA-Bindung beteiligt ist, und einer C-terminalen sauren Dömane, die bei der Transkriptionsaktivierung eine Rolle spielen mag. Tfx bindet spezifische an eine DNA-Sequenz stromabwärts des *fmdECB*-Promotors. Während die Expression des *fmdECB*-Operons in Gegenwart von Molybdat positiv reguliert war, war die Transkription von *tfx* davon nicht betroffen (**HOCHHEIMER** *ET AL.*, 1996). Aber es wurde gezeigt, dass seine Expression in Gegenwart von Wolframat reprimiert war, wohingegen Wolframat keinen Einfluss auf die Expression des *fmdECB*-Operons hatte. Ein weiteres Beispiel für einen archeellen Transkriptionsaktivator ist GvpE, welcher die Transkription von *gvpA* aktiviert, dessen Produkt wichtig für die Bildung von Gasvesikeln ist (**KRüGER** *ET AL.*, 1998).

Erst kürzlich wurde in *Methanococcus maripaludis* ein Regulator der Expression von *glnA* und *nif* identifiziert (**LIE UND LEIGH**, 2003). Homologe zu diesem Protein konnten nur in einigen Arten der Euryarchaeota gefunden werden: in *Methanococcus jannaschii*, *M. thermautotrophicus*, *Methanopyrus kandleri* AV 19, *Archaeoglobus fulgidus*, *Methanosarcina acetivorans* und *M. mazei* Gö1. Dieser Regulator, NrpR, scheint als Tetramer vorzuliegen und als solches eine palindrome Operator-Sequenz zu binden. Dies resultierte in der Inhibition eines Schrittes der Transkriptionsinitiation. NrpR ist ein Vertreter einer neuen Familie von Regulatoren, welche bis jetzt nur in Euryarchaeota identifiziert wurde.

1.6 Fragestellung der Arbeit

Das zentrale Thema der vorliegenden Arbeit ist der Mechanismus der Regulation der Genexpression in methanogenen Archaeen. Um Regulationssysteme in Archaeen identifizieren oder globale Regulationssysteme erkennen zu können, benötigt man zum einen als Vergleich gut untersuchte Modellsysteme in Bakterien und Eukaryonten und zum anderen bekannte, regulierte Gene in dem zu untersuchenden Organismus. Als Modelsystem bietet sich die Osmoadaptation an, da einige der zugrundeliegenden Mechanismen in Methanogenen bereits beschrieben sind und in dem in dieser Arbeit verwendeten Modellorganismus *M. mazei* Gö1 bereits salzabhängig regulierte Gene identifiziert werden konnten (**KöGL**, 2004; **ROEßLER ET AL.**, 2002). Ziel der Arbeit war es, in einem ersten Schritt weitere salzregulierte Gene zu identifizieren. Dies sollte zum einen durch Expressionsstudien mit spezifischen am Prozess der Osmoadaptation beteiligten Genen und zum anderen durch genomweite Transkriptionsanalysen erreicht werden. In einem nächsten Schritt sollte aus den daraus gewonnen Daten ein Modell des Mechanismus der Salzadaptation in *M. mazei* Gö1 erstellt werden.

2 MATERIAL UND METHODEN

2.1 Organismen, Plasmide, Oligonukleotide

Die im Rahmen der Experimente dieser Arbeit verwendeten Bakterienstämme und Plasmide sind in Tab. 2 und Tab. 3 zusammengefasst.

Stamm	Relevanter Geno- oder Phänotyp	Referenz
Methanosarcina mazei Göl	Wildtyp	DSM 3647
Methanococcus maripaludis JJ	Wildtyp	DSM 2067
Methanococcus maripaludis JJ	$\Delta ablAB$	(PFLÜGER <i>ET AL.</i> , 2003)
$(\Delta ablAB)$		
Escherichia coli DH5α	$F \Phi 80d/lacZ M15 \Delta(lacZYA-argF)$	(Hanahan , 1983)
	U169 recA1 endA1 hspR17 $(r_k m_k^+)$ supE44 λ^- thi-1 gyrA96 relA1	
Escherichia coli BL21-Codon	B, F ⁻ , OmpT, $hsd(r_B^-m_B^-)$, dcm^+ ,	Stratagene
Plus (DE 3)-RIL	Tet ^R , gal , λ (DE3), $endA$, Htc,	
	$[argU, ileY, leuW, Cam^{R}]$	
Escherichia coli MKH13	K12 $(\Delta(p r \circ P)2, \Delta(pr \circ U)608)$	(HAARDT <i>et al.</i> , 1995)
	$[Spc^{R}], \Delta(putPA))$	

Tab. 2: Verwendete Organismen

Tab. 3: Verwendete	Vektoren	und Plasmide
--------------------	----------	--------------

Plasmid	Relevantes Merkmal	Referenz
pIJA03	Pur ^R , Amp ^R , pac, pMB1 ori	(Stathopoulos <i>et al.</i> , 2001)
pMal-c2	Amp ^R , <i>malE</i> , <i>lacI</i> , P _{tac} , <i>lacZ</i> , M13 ori	NEB, U.S.A.
pBAD24	Amp^{R} , P_{BAD} , <i>araC</i>	(Guzman <i>et al.</i> , 1995)
pCR 2.1-TOPO	Amp ^R , Kan ^R ; <i>lacPZ</i> α'	Invitrogen, Karlsruhe

Die im Rahmen der Experimente dieser Arbeit konstruierten Plasmide sind in Tab. 4 zusammengefasst.

Tab. 4: Plasmidkonstrukte

Plasmidname	Inseriertes Fragment	Insertionsgröße	Ursprungsvektor
pKP1	<i>ablA</i> (<i>Bam</i> HI/ <i>Xba</i> I) in MCS I, <i>ablB</i> (<i>Nhe</i> I/ <i>Eco</i> O109I) in MCS II	587 Bp 597 Bp	pIJA03
pBAD-Ota	ota Operon (EcoRI/SalI)	3299 Bp	pBAD24
pMal-MM0077	MM0077 (EcoRI/PstI)	703 Bp	pMal-c2

Tab. 4 fasst die in den Experimenten dieser Arbeit eingesetzten Oligonukleotide zusammen.

Tab. 5: Verwendete Oligonukleotide

Bezeichnung	Sequenz $(5' \rightarrow 3')^1$	Spezifität ²

NORTHERN-BLOT-ANALYSE

mcrG1 mcrG2	TACGAATCACAGTATTAC GATCCTCTGTACCCATTC	Methyl-CoM Reductase, γ-Untereinheit (<i>mcrG</i>)
lam(BamHI)5' lam(XbaI)3'	CGAGGT <u>GGATCC</u> GTGAAATCC CCGGAATTT <u>TCTAGA</u> TTCAGAAACGC	Lysine-2,3-Aminomutase (<i>ablA</i>)
act5' act3'	ATGGACTTTATCGGACGTTTTGAGG TCATAACATCCTGCACCAGATGTTC	β-Lysine-Acetyltransferase (<i>ablB</i>)
Primer-Extension	ON-ANALYSE & GELRETARDATION	
otaC-for	TGTATTTTCATAAAGGCTGGTAAG	
otaC-rev	AATCTTGGTAAGATTCTTGATTTC	
otaArev3	TCGTTTTTTGTATGTCCTCCCTTGA	Promotorbereich des ota
otaArev2	TATTTTAGCTATTTCACTC	Operons
otaAfor2	TAGAATTAATAAGGGAAGTTCATG	
otaArev4	TCGATTATTGCAGGTCATATAAAG	
lamPE-rev1	GTCTGAAAATTCTTCTTCGGATGA	
lamSeq-rev1	CTTTATGTCTCTCTTTTTCCGTGTC	Promotorbereich des abl
lamSeq-for1	GAGGGACCAGTAATGAAAAAAGAG	Operons
lamfor2	ATATAAAAGGAGCTTTTTTGGAGC	

KLONIERUNG

MM0077-for1 MM0077-rev1	TTTTTT <u>GAATTC</u> ATGCTGCAAAGCAT AAACCAGCTGAAT TTTTTT <u>CTGCAG</u> CATCACTGTTTCTGT	Hypothetisches Protein (MM0077)
CaPSotaAfor	AATAAATTCAAT AATGTCATAAG <u>CCATGG</u> ATTAGTGTT GCGA	Bereich zwischen Carbamoyl-Phosphat-
CaPSotaArev	TAGGAATTTTGG <u>GTCGAC</u> TCACATTT TAAC	Synthetase (MM0039) und otaB
otaABCfor	ATCGAGGTATAAT <u>CCATGG</u> GTGAAA TAGCTAAA	
otaABCrev	TAAAAAAATAGGAAG <u>TCTAGA</u> ATTT TACTCTTC	ota Operon
AMfor1	TTTTTT <u>GGATCC</u> GGAACGATTACAAG TGGC	
AMrev1	TTTTTT <u>TCTAGA</u> TTTGAGGAAGAACC ACGG	Lysine-2,3-aminomutase (<i>ablA</i>) in <i>M. maripaludis</i>
lam-in-for	ACCCACCGGTATCCTGAC	
lam-out-for	GGGATACCCCCTCTGTTG	Stomaufwärts von <i>ablA</i> in M. maripaludis
act-out-rev	CCGCTGTACATATAGCCC	Stromabwärts von <i>ablB</i> in <i>M. maripaludis</i>
act-in-rev	CAAGACGACGCTGCAACG	
AcTRfor1	TTTTTT <u>GCTAGC</u> GGAAAAGACGTAGG CGAA	β -Lysine-Acetyltransferase (<i>ablB</i>) in <i>M</i> maripaludis
AcTRrev1	TTTTTT <u>AGGTCCT</u> CCCTGTATCCGTTG TCTT	(4010) 111 111. 1141 (partialis
ACT(EcoRI)5'	GATTATTATAACAGAAGA <u>GAATC</u> CG TCATGGACTTTATC	β-Lysine-Acetyltransferase
ACT(SalI)3'	GGTTTTCTGGAGAG <u>GTCGAC</u> TAACAT CCTGCACCAGATG	(ablB)
REALTIME-PCR		
AmTr1-for AmTr1-rev	AGTGGTGCACTCGATAGGTG GTGACCTGGAATCGGTATGG	Ammonium-Transporter (MM0957)
GlnSyn-for GlnSyn-rev	TTACCGACCAGGGAGGATAC GAGGCTTCTATCTGGAAGCC	Glutamine-Synthetase (MM0964)
NtrB-for NtrB-rev	GTAATTGCCATCCATACAACC ACGTAACTTGGAGTGGAAGC	Nitrogenase Molybdän-Eisen Protein, β-Kette (MM0723)

PII-forCAGAGCGATGGAATATGATGPII-revCTTCCAACGTAACCGTCACPII Protein (MM0732)

AmTr2-for	CCTTACTCCGTAACAGGTACG	Ammonium-Transporter
AmTr2-rev	AGGATGAACGCGATGTAAGAC	(MM0733)
GluDH-for	TCGGATACCACGCTGCTTAC	Glutamat Dehydrogenase
GluDH-rev	AACATCCTCAGGATCAAGCC	(MM3297)
Nef-for	GTCAGGCTATCTACTTCGTGG	Putative ATP-abhängige Na ⁺ -
Nef-rev	ACACAATAATCTGCAGAAGGC	Efflux Pumpe (MM1056)
ArsA-for	AACAGGAAGAGCTTGCACAG	Transkriptionsregulator,
ArsA-rev	AAGCTCGAACAGAAGCTCAC	ArsA Familie (MM1257)
CdcH-for CdcH-rev	AGTGAGCCTCAGTGAGATCG GGAGTGATCCTTCTGAGTGC	CdcH Protein (MM1256)
Reg-for	CTCACGTTCCGAGAACGAAG	Transkriptionsregulator,
Reg-rev	TTCTAACAGCTGTTCCGGATC	TrmB-Familie (MM0345)
Cat-for	ACAACCGATCTTGCGGTAGC	Putative Kationen-Efflux
Cat-rev	GAGGACCATTGCGTACATTGC	Pumpe (MM0344)
MarR-for	GTAACGTTCAGCAGGCTTGC	Transkriptionsregulator,
MarR-rev	AATTCTGCCATCCTCAGGAC	MarR Familie (MM3117)
Pla-for	GGTCGACCTTCCTTACGTTG	ATP-abhängige Protease La
Pla-rev	ATATCTCCTCCGACAGGAGTCC	(MM3118)
Nha1-for Nha-rev	CTCCTGGTTATGGTTCAGCG AGTCTGCTTGGCTGCATCTC	Na ⁺ /H ⁺ Antiporter (MM0294)
Trk-for Trk-rev	CCTTGGAATGGTTATTGTCGG TTCATTCTCTGAAGGCTGGC	Trk Repressor Bindeprotein (MM2224)
Nha2-for Nha2-rev	AACTACCTGTCCAGCAGACC CCGAGGATGTACATAATCAGC	Na ⁺ /H ⁺ Antiporter (MM0834)
Ngs-for	AGGTGCACTGATAGAGATAGG	Na ⁺ /Glutamat Symporter
Ngs-rev	CCAAGGATCACACTGAAGAG	(MM1782)
KefC-for	TTCAGAAGAAGGCATGGAGTG	Glutathion-regulierte K ⁺ -
KefC-rev	TTCCGGACATTGTAGAGGTC	Efflux Pumpe (MM1909)
OtbA-for	GGAAGACAACGGCTATAAGGAC	Cholin-Transporter, ATP-
OtbA-rev	AACTGCCTGAACAAGGTTGG	Bindeprotein (MM0297)
OtbB1-for OtbB1-rev	TCCGCACAGTTGAACATCTC CGTTCAGGCTGTTAAGGACG	Cholin-Transporter, Permease (MM0296)
OtbB2-for OtbB2-rev	TACGGCTCTTCTTGTCGGAG AACTGCCTGAACAAGGTTGG	Cholin-Transporter, Permease (MM0295)
OtbC-for	GGAGAACAATGAGGTTGATGC	Cholin-Transporter, Cholin-
OtbC-rev	CTCGGTAACAAGAACAACGG	Bindeprotein (MM0294)

mcrG-for	GACATGGAACAGTGCGCAAAG	Methyl-CoM Reductase,
mcrG-rev	CATTACACCGTCTTCCTGGAG	γ-Untereinheit (<i>mcrG</i>)
mcrB-for	CAGTTACCCAGACCCTCATTG	Methyl-CoM Reductase,
mcrB-rev	GCTCAGAATACCCTGAACCTG	β-Untereinheit (<i>mcrB</i>)
MM0308-for	CAACGGTTTACGAGACCCATG	Uroporphyrinogen-III-
MM0308-rev	GCTTGTAAAGGCAAAGGCGTC	Synthetase (MM0308)
MM1672-for MM1672-rev	TACAGGTTATGAGCGGCACTG CATACACTTCACAGCTGCCTC	Methyltransferase (MM1672)
MM3131-for MM3131-rev	AATGAAATGTCCGTGATCTGC CAGAAAAAGCATCACCCGCTC	Fructokinase (MM3131)
pstS_rt-for	GGGTGAAGAAACCTCTTCAGG	Phosphat-Transporter,
pstS_rt-rev	TTCTTCAGCTTCAGCCTGAGC	Phosphat Bindeprotein (<i>pstS</i>)
pstC_rt-for	CAGTACCTCTGGGAATTGCTG	Phosphat-Transporter,
pstC_rt-rev	GGATGACAAGCCCGAAGAAAC	Permease (<i>pstC</i>)
pstA1_rt-for	CCTTTCAGCAATGACCGTAGC	Phosphat-Transporter,
pstA1_rt-rev	TAGATTCCACCCTGGGTCATC	Permease (<i>pstA1</i>)
pstA2_rt-for	CTTCTTACAGGCGCTGCTTAC	Phosphat-Transporter,
pstA2_rt-rev	GTTTGTCCCTGAGGTTGCAAG	Permease (<i>pstA2</i>)
pstB_rt-for	CATATGGGCCGCGTATTCATG	Phosphat-Transporter, ATP-
pstB_rt-rev	GAGCCGGTCTGAAGTTTCTTC	Bindeprotein (<i>pstB</i>)
phoU_rt-for phoU_rt-rev	TTGACCTGCTTGCACTTGAGC TGTGGCCGCCTTCGAATTTTC	regulatorisches Phosphat- Transportsystem Protein (<i>phoU</i>)
otaA_rt-for	TCGCCGTGCAGTTGATGAAAG	Betain-Transporter, ATP-
otaA_rt-rev	TTTAGAGCTTCCACAGCGTCG	Bindeprotein (<i>otaA</i>)
otaB_rt-for otaB_rt-rev	AAGCCGATCCTGGACCTTATG GGAGGCATTGCAAACACAAGG	Betain-Transporter, Permease (<i>otaB</i>)
otaC_rt-for	GGAGACAGGATTGACTCTGTC	Betain-Transporter, Betain
otaC_rt-rev	GTCGATGCCGATGATTTCTCC	Bindeprotein (<i>otaC</i>)
ablA_rt-for ablA_rt-rev	ACCCGGATAGGGTTCTTTTCC CGGATGTACTCGATTCCTTCC	Lysine-2,3-aminomutase (<i>ablA</i>)
ablB_rt-for ablB_rt-rev	TCCGGAAGGGTATACGCTAAG CAGGGGAGTGGGATATAGTTC	Lysine-acetyltransferase (<i>ablB</i>)
MM0077_rt-for	GCTGATTCCTCTCAACCTGAC	Hypothetisches Protein
MM0077_rt-rev	ATAGGGACAAGGTGATGGTGC	(MM0077)
slpB_rt-for slpB_rt-rev	TTCCAGAAAGTGCACGCTCTC AGGAACCCAGATAGATGCCAC	Surface-Layer-Protein B (<i>slpB</i>)

phoBox-for	AGTTAAATAGATTACTGG	pho Box; stromaufwärts von
phoBox-rev	GAGAGAAATATATAAGGA	pstS
1		

¹Erkennungssequenzen für Restriktionsenzyme sind unterstrichen.

²Sofern nicht anders angegeben handelt es sich um Sequenzen aus *M. mazei* Gö1.

2.2 Nährmedien und Supplemente

2.2.1 Komplexmedium für Methanosarcina mazei Gö1 (DSMZ 120)

Alle Anzuchten von *M. mazei* Gö1 wurden, wenn nicht anders angegeben, in folgendem Medium (DSMZ 120) durchgeführt:

Komplexmedium

K ₂ HPO ₄	348	mg
KH_2PO_4	227	mg
NH ₄ Cl	500	mg
$MgSO_4 \ge 7 H_2O$	500	mg
$CaCl_2 \ge 2 H_2O$	250	mg
Hefeextrakt	2	g
Casiton	2	g
NaHCO ₃	3	g
$FeSO_4 \times 7 H_2O$	2	mg
Na-Acetat	820	mg
Resazurin	1	mg
Vitaminlösung 10x (DSMZ 141)	1	ml
Spurenelementlösung 10x (SL 10)	100	μl
H ₂ O _{demin}	ad 1000	ml

Das Nährmedium wurde nach der von Hungate und Bryant beschriebenen Technik unter anaeroben Bedingungen hergestellt (**BRYANT**, 1972; **HUNGATE**, 1969). Hierfür wurde es mit einem N_2/CO_2 -Gasgemisch (80:20[v/v]) durchgast. Im Anschluss daran wurde der pH-Wert überprüft und gegebenenfalls mit HCl auf einen Wert zwischen 6,5 und 6,8 eingestellt. Außerdem wurde dem Medium noch NaCl in der für das jeweilige Experiment benötigten Konzentration hinzugefügt. Die Kulturgefäße wurden fest verschlossen autoklaviert. Direkt vor dem Beimpfen wurde das Medium mit Cystein-HCl (1,90 mM) und Na₂S x (7-9) H₂O (3,84 mM) reduziert und mit 200 mM Methanol supplementiert.

Spurenelementlösung 10x (SL10)

HCl (25%; 7,7M)	10	ml
FeCl ₂ x 4 H ₂ O	1,5	g
ZnCl ₂	70	mg
$MnCl_2 \ge 4 H_2O$	100	mg
H ₃ BO ₃	6	mg
CoCl ₂ x 6 H ₂ O	190	mg
$CuCl_2 \ge 2 H_2O$	2	mg
NiCl ₂ x 6 H ₂ O	24	mg
$Na_2MoO_4 \ge 2H_2O$	36	mg
H_2O_{dest}	ad 1000	ml

Vitaminlösung 10x (DSMZ 141)

Biotin	20	mg
Folsäure	20	mg
Pyridoxin-HCl	100	mg
Thiamin-HCl	50	mg
Riboflavin	50	mg
Nicotinsäure	50	mg
DL-Calciumpntothenat	50	mg
Vitamin B ₁₂	1	mg
p-Aminobenzoat	50	mg
Liponsäure	50	mg
H_2O_{dest}	ad 1000	ml

2.2.2 Minimalmedium für M. mazei Gö1

Die Herstellung des Mediums erfolgte wie unter Punkt 2.2.1 beschrieben, jedoch ohne die Zugabe von Hefeextrakt und Casiton.

2.2.3 Komplexmedium für Methanococcus maripaludis (McC)

Allgemeine Salzlösung	500	ml
K_2HPO_4	140	mg
Spurenelementlösung	10	ml
$Fe(NH_4)_2(SO_4)_2 \ge 6 H_2O$	10	mg
Resazurin	1	mg
Na-Acetat x 3 H_2O (136 g/l)	1,36	g
NaHCO ₃	5	g
Hefeextrakt	5	g
H_2O_{dest}	ad 1000	ml

Alle angegebenen Komponenten des Mediums wurden vereinigt, und anschließend wurde die Lösung unter Durchgasung mit einem N_2/CO_2 -Gasgemisch (80:20 [v/v]) zum Kochen

gebracht. Nach 5 bis 10 s Kochen wurde das Medium unter weiterer Durchgasung abgekühlt und anschließend mit 0,5 g/l Cystein-HCl versetzt. Außerdem wurde die NaCl-Konzentration dem jeweiligen Experiment angepasst. Das Medium wurde in ebenfalls mit N₂/CO₂ (80:20 [v/v]) begaste Kulturgefäße abgefüllt, gasdicht verschlossen und autoklaviert. Direkt vor dem Beimpfen wurde das Medium mit Na₂S x (7-9) H₂O (3,84 mM) reduziert. Nach dem Beimpfen wurde N₂/CO₂ (80:20 [v/v]) gegen H₂/CO₂ (80:20 [v/v]) ausgetauscht, und die Kulturgefäße wurden anschließend mit einem Überdruck von 2 bar versehen.

Allgemeine Salzlösung (2x)

$\begin{array}{l} \text{KCl} \\ \text{MgCl}_2 \ x \ \text{H}_2\text{O} \\ \text{MgSO}_4 \ x \ 7 \ \text{H}_2\text{O} \\ \text{NH}_4\text{Cl} \\ \text{CaCl}_2 \ x \ 2 \ \text{H}_2\text{O} \\ \text{NaCl} \\ \text{H}_2\text{O}_{\text{dest}} \end{array}$	670 5,5 6,9 1 280 44 ad 1000	mg g g mg g ml
Spurenelementlösung		
Nitrilotriacetat	1,5	g
MnSO ₄ x 2 H ₂ O	100	mg
$Fe(NH_4)_2(SO_4)_2 \ge 6 H_2O$	200	mg
CoCl ₂ x 6 H ₂ O	100	mg
$ZnSO_4 \ge 7 H_2O$	100	mg
$CuSO_4 \ge 5 H_2O$	10	mg
NiCl ₂ x 6 H ₂ O	25	mg
Na_2SeO_3	200	mg
$Na_2MoO_4 \ge 2 H_2O$	100	mg
$Na_2WO_4 \ge H_2O$	100	mg
H_2O_{dest}	ad 1000	ml

2.2.4 Minimalmedium für *M. maripaludis* (McN)

Die Herstellung des Mediums erfolgte wie unter Punkt 2.2.3 beschrieben, jedoch ohne die Zugabe von Hefeextrakt.

2.2.5 Medien für Escherichia coli-Stämme

Zur Herstellung von Agarplatten wurde Japanagar in einer Endkonzentration von 1,5% [w/v] zugegeben. Zur Selektion rekombinanter *E. coli*-Stämme wurden den Medien

nach dem Autoklavieren je nach Bedarf Ampicillin oder Spectinomycin in einer Endkonzentration von 100 μ g/ml zugegeben.

LB (Luria-Bertani) Medium		
Pepton	10	g
Hefeextrakt	5	mg
NaCl	10	mg
H_2O_{dest}	ad 1000	ml
MMA-Medium (MAY ET AL., 19	<u>86)</u>	
K ₂ HPO ₄	10,5	g
KH ₂ PO ₄	4,5	g
$(NH_4)_2SO_4$	1,0	g
Na ₃ -Citrat	0,5	g
MgSO ₄ x 7 H ₂ O	0,1	g
H_2O_{dest}	ad 1000	ml

2.3 Zellanzucht

2.3.1 Zellanzucht von M. mazei Gö1 und M. maripaludis

2.3.1.1 Anaerobe Anzucht

Die Anzucht von *M. mazei* Göl erfolgte anaerob unter einer N₂/CO₂-Atmosphäre in 5-ml-Kulturen in Hungate-Röhrchen (Glasgerätebau Ochs GmbH, Bovenden-Lenglern), in 50-ml-Kulturen in Serumflaschen (Pierce, Rockford, England) oder in 500-ml-Kulturen in Müller-Krempel-Flaschen (Müller und Krempel, Bülach, Schweiz). Die Anzucht von *M. maripaludis* erfolgte ebenfalls anaerob, jedoch unter einer H₂/CO₂-Atmosphäre in 5-ml-Kulturen in Hungate-Röhrchen (Glasgerätebau Ochs GmbH, Bovenden-Lenglern), in 30-ml-Kulturen in Serumflaschen (Pierce, Rockford, England) oder in 300-ml-Kulturen in Müller-Krempel Flaschen (Müller und Krempel, Bülach, Schweiz). Um eine optimale Versorgung der Zellen mit H₂ + CO₂ zu gewährleisten, wurde das Gas mindestens einmal täglich ausgetauscht, und die Kulturgefäße wurden anschließend wieder mit einem Überdruck von 2 bar versehen. Die Kulturen wurden unter Schütteln liegend inkubiert. Die Beimpfung des Mediums mit *M. maripaludis* oder *M. mazei* Göl erfolgte entweder mit sterilen Einwegspritzen oder mit autoklavierten 50-ml-Glasspritzen. Die Kulturen wurden bei 37°C inkubiert. Also Inokulum dienten jeweils 10% einer Kultur, die sich in der späten exponentiellen oder der frühen stationären Wachstumsphase befand.

2.3.1.2 Stammkulturen

Die Stammhaltung von *M. mazei* Gö1 und *M. maripaludis* erfolgte in den jeweils oben beschriebenen Medien mit den entsprechenden Mengen NaCl. Die Kulturen wurden bei Raumtemperatur gelagert und regelmäßig in frisches Medium überimpft. Zur Konservierung der *M. maripaludis*-Stämme über einen längeren Zeitraum wurden 5-ml-Kulturen abzentrifugiert und im Anaerobenzelt in 1 ml McC-Medium resuspendiert, dem vorher 25% [v/v] Glycerin zugegeben worden waren. Die Zellsuspension konnte in 200 μ l Aliquots in Schraubdeckel-Reaktionsgefäßen bei –70°C gelagert werden.

2.3.1.3 Bestimmung der Zelldichte

Das Wachstum der Kulturen wurde durch Messung der optischen Dichte bei einer Wellenlänge von 578 nm verfolgt. Bei 5-ml-Kulturen in Hungate-Röhrchen konnte die optische Dichte direkt im Röhrchen mit Hilfe des Spektralphotometers 1101 (Eppendorf-Netheler-Hinz GmbH, Hamburg) bestimmt werden. Die Messung der optischen Dichte in Küvetten erfolgte mit Hilfe des Spektralphotometers 100-20 (Hitachi High-Technologies, Feldkirchen). Um bei der Bestimmung der optischen Dichte in Küvetten eine Verfälschung der Messung durch die Rotfärbung des Resazurins bei Kontakt mit Sauerstoff zu vermeiden, wurde der Probe eine Spatelspitze Natriumdithionit als Reduktionsmittel zugegeben.

2.3.1.4 Reinheitskontrolle

Die Reinheit der Kulturen wurde regelmäßig durch lichtmikroskopische Untersuchung im Phasenkontrastmikroskop (Zeiss, Jena) überprüft. Als zusätzliches Kriterium diente die Fluoreszenz der Zellen nach Anregung mit Licht einer Wellenlänge von 420 nm. Mit Hilfe einer an das Mikroskop angeschlossenen Kamera (Diagnostics Instruments Inc., Sterling Heights, USA) konnte die Zellmorphologie dokumentiert werden.

2.3.2 Zellanzucht von E. coli

2.3.2.1 Aerobe Anzucht

E. coli wurde in 5-ml-Kulturen in 15-ml-Reagenzgläsern in einem Rollinkubator (Modell G76, Stufe 9, New Brunswick, Maine, USA) oder bei größeren Anzuchten in Erlmeyerkolben mit Schikane unter Schütteln (Pilot-Shake RC2 SP, B. Braun AG, Melsungen) bei 37°C angezogen.

2.3.2.2 Stammkulturen

Stammkulturen wurden über kürzere Zeiträume auf LB-Agarplatten bei 4°C gelagert. Zur Konservierung der Stämme wurde 1 ml Flüssigkultur 20% ig mit sterilem Glycerin versetzt und bei –70°C aufbewahrt.

2.3.2.3 Bestimmung der Zelldichte

Die optische Dichte der Kulturen wurde bei 600 nm in Küvetten im Spektralphototmeter U-1500 (Hitachi High-Technologies, Feldkirchen) bestimmt.

2.3.3 Herstellung von Zellsuspensionen zur NMR-Analyse

Um die intrazellulären Konzentrationen von kompatiblen Soluten in *M. mazei* Gö1 und den *M. maripaludis*-Stämmen zu bestimmen, wurden 500- bzw. 300-ml-Kulturen in Minimalmedium bei unterschiedlichen NaCl-Konzentrationen angezogen. Die Kulturen von *M. mazei* Gö1 enthielten 38,5, 400 oder 800 mM NaCl, die Kulturen von *M. maripaludis* hingegen 376,5, 800 oder 1000 mM NaCl. In der spätexponentiellen Wachstumsphase wurden die Zellen durch Zentrifugation bei 4000 x g für 20 min geerntet und in 6 bzw. 3 ml isoosmotischem Medium aufgenommen. Die Zellsuspension wurde bei -20° C eingefroren und anschließend lyophilisiert.

2.4 Molekularbiologische Methoden

2.4.1 Vorbehandlung von Geräten und Lösungen

Alle hitzestabilen Geräte und Lösungen wurden autoklaviert. Nicht autoklavierbare Geräte wurden mit 70% [v/v] Ethanol abgewischt. Hitzelabile Substanzen wurden sterilfiltriert.

2.4.2 Standardmethoden

In aller Regel wurden molekularbiologische Standardmethoden wie Restriktion, Ligation oder Fällen der DNA nach Sambrook durchgeführt (SAMBROOK ET AL., 1989). Enzyme wurden von den Firmen MBI-Fermentas (St. Leon Rot) und Roche (Mannheim) nach Herstellerangaben verwendet. Plasmide wurden aus E. coli entweder nach der Methode von Holmes und Quigley (HOLMES UND QUIGLEY, 1981) oder, sofern sehr reine Plasmidpräperationen gewünscht waren, mit Hilfe des "Mini-Präp"-Systems der Firma Quiagen (Hilden) isoliert. DNA-Fragmente wurden aus Agarosegelen mittels des "QiaexII Gel Extraction"-Verfahrens gereinigt. Die Herstellung Transformations-kompetenter E. coli-Zellen erfolgte durch die CaCl₂-Methode (COHEN ET AL., 1972; INOUE ET AL., 1990). Die Transformation von E. coli wurde nach Hanahan durchgeführt (HANAHAN, 1983). Transformation durch Elektroporation erfolgte nach Dower mit E. coli-Zellen, die zuvor dreimal mit 10% igem Glycerin gewaschen worden waren, in einem "Gene Pulser[™]" (Bio-Rad Laboratories, München) (DOWER ET AL., 1988). PCR-Produkte wurden mittels des "PCR Purification"-Systems (Qiagen, Hilden) aufgereinigt. Die Ermittlung von DNA-Sequenzen erfolgte automatisch mit fluoreszenzmarkierter DNA an einem ABI Prism[™] 377 DNA Sequenzer (Applied Biosystems, Forster City, USA).

2.4.3 Isolierung von Nukleinsäuren

2.4.3.1 Isolierung chromosomaler DNA aus M. mazei Göl

Die Isolierung von chromosomaler DNA aus *M. mazei* Gö1 erfolgte nach der modifizierten Methode von (**MARMUR**, 1961; **RAHLFS UND MÜLLER**, 1997). Eine ausgewachsene 500-ml-Kultur von *M. mazei* Gö1 wurde durch Zentrifugation (8000 x g, 4°C) geerntet. Der Überstand wurde verworfen und das Sediment anschließend in 7 ml EDTA/Tris/Saccharose-Puffer (4.38 g EDTA, 0,61 g Tris, 5 g Saccharose; H_2O_{dest} ad 100 ml) aufgenommen. Nach

Zugabe von 1 ml einer 25% igen SDS-Lösung und 100 μ l Proteinase K-Lösung (80 μ g/ml in TE-Puffer) erfolgte eine 30minütige Inkubation bei 65°C. Dem Ansatz wurden nun 12 ml einer 6 M Guanidiniumthiocyanat-Lösung, sowie 0,8 ml Glasmilch hinzugefügt und er wurde durch vorsichtiges Schwenken vermengt. Danach wurden 20 ml Isobutanol zugegeben und es wurde wieder vorsichtig gemischt. Nachdem sich die Glasmilch abgesetzt hatte, wurde der Überstand verworfen und das Sediment in 10 ml einer NaI-Lösung (90,8 g NaI, 1,5 g Na₂SO₄; H2Odest ad 100 ml) aufgenommen. Nach der erneuten Sedimentation der Glasmilch wurde der Überstand wieder verworfen und das Sediment diesmal mit 10 ml "new wash"-Puffer (50% [v/v] Ethanol, 100 mM NaCl, 20 mM Tris/HCl, 1 mM EDTA, pH 7,5) versetzt und gemischt. Es wurde gewartet, bis die Glasmilch sich ein weiteres Mal abgesetzt hatte, dann wurde der Überstand verworfen und das Sediment getrocknet. Anschließend wurde es zur Elution der DNA von der Glasmilch in 10 ml TE-Puffer aufgenommen und für 15 min bei 37°C inkubiert. Durch Zentrifugation (2 min, 2000 x g, 4°C) wurde die Glasmilch sedimentiert und die DNA aus dem Überstand durch Zugabe von 1 ml 7,5 M Amoniumacetat-Lösung (pH 7,5) und 30 ml eiskaltem Ethanol (96% [v/v]) gefällt. Die Sedimentation der DNA erfolgte durch Zentrifugation mit 1000 x g bei 4°C für 5 min. Anschließend wurde sie mit 70% igem eiskaltem Ethanol gewaschen und in 2 ml TE-Puffer aufgenommen. Durch Inkubation bei 37°C für 12 bis 16 h wurde die DNA gelöst und der Erfolg der Reinigung durch eine Agarosegelelekrophorese (s. 2.4.6.1) überprüft.

2.4.3.2 Isolierung chromosomaler DNA aus M. maripaludis

Die Isolierung chromosomaler DNA aus *M. maripaludis* erfolgte mittels des "DNeasy Tissue"-Kits (Qiagen, Hilden). Dazu wurden 15 ml einer Kultur mit 12000 x g bei 4°C abzentrifugiert, und die sedimentierten Zellen in 180 μ l ALT Puffer (Komponente des "DNeasy Tissue"-Kits) resuspendiert. Anschließend wurde nach Anleitung des Herstellers fortgefahren. Die DNA wurde zweimal mit 200 μ l Puffer AE (Komponente des "DNeasy Tissue"-Kits) eluiert, der Erfolg der Reinigung durch eine Agarosegelelektrophorese überprüft (s. 2.4.6.1) und die Konzentration der Lösung photometrisch bestimmt (s. 2.4.7).

2.4.3.3 Isolierung von Gesamt-RNA aus M. mazei Göl

Die Isolierung von RNA aus *M. mazei* Gö1 erfolgte mit Hilfe des "RNeasy Mini"-Kits (Qiagen, Hilden) oder des "Nucleospin RNA II"-Systems (Macherey und Nagel, Düren) entsprechend der Anleitung des Herstellers. Größere Mengen RNA wurden mittels des

"RNeasy Midi"-Kits (Quiagen, Hilden) oder des "NucleoSpin RNA L"-Systems (Macherey und Nagel, Düren) ebenfalls nach Herstellerangaben isoliert. Auf den Verdau der Zellen mit Lysozym wurde verzichtet, da Lysozym keinen Effekt auf die archaeelle Zellwand hat. Teil einer Zellkultur (9 bzw. 50 ml) von *M. mazei* Gö1, die sich, wenn nicht anders angegeben, in der in der späten exponentiellen Wachstumsphase befand, wurden für 2 min in einer Tischzentrifuge (Mikro 24-48, Hettich, Tuttlingen) oder für 15 min bei 5000 x g abzentrifugiert. Das Sediment wurde in 100 μ l TE-Puffer aufgenommen, und die Zellen wurden durch mehrmaliges auf- und abpipettieren lysiert. Im Folgenden wurde nach dem Protokoll des Herstellers vorgegangen.

Alle selbst hergestellten Lösungen und H_2O_{dest} wurden vor Gebrauch 1:1000 mit DEPC (Diethylpyrocarbonat), einem starken, wenn auch nicht vollständigen Inhibitor von RNasen, versetzt und zweimal autoklaviert, um Reste des DEPC aus den Lösungen wieder zu entfernen. Alle Pipettenspitzen wurden ebenfalls zweimal autoklaviert. Um eine Verunreinigung der Proben mit RNasen der Haut zu verhindern, wurde beim Umgang mit RNA stets mit frischen Handschuhen gearbeitet.

2.4.4 Polymerase-Kettenreaktion (PCR)

Die Polymerase-Kettenreaktion (PCR) (**MULLIS** *ET AL.*, 1986) wurde in 20 – 100 μ l Ansätzen in dem MinicyclerTM MJ Research (Biozym, Hessisch Oldendorf) oder in dem TPersonal Minicycler (Biometra, Göttingen) mit den Komponenten des "Qiagen Taq-Polymerase"-Kits durchgeführt. Die Programme setzten sich aus einer 5minütigen Denaturierung der DNA bei 95°C, einer anschließenden Inkubation bei 85°C zur Zugabe der Taq-Polymerase und 30 Zyklen bestehend aus Denaturierung (95°C, 30 s), Anlagerung (40 – 60°C) und Synthese (72°C) zusammen. Die Länge der Synthesephase stützte sich auf die Angabe des Herstellers der Taq-Polymerase, dass diese ca. 1000 Bp in der Minute synthetisiert. Abbruchfragmente wurden durch eine finale Inkubation bei 72°C für 10 min am Ende des Programms aufgefüllt. Die verwendeten Oligonukleotide wurden entweder von MWG-BioTech (Ebersberg) oder von Biomers.net GmbH (Ulm) hergestellt. Das Ergebnis der PCR wurde mittels einer Agarosegelelektophorese (s. 2.4.6.1) überprüft, und die amplifizierten DNA-Fragmente wurden dann entweder aus dem Gel mittels des "QiaexII Gel Extraction"-Kits (Qiagen, Hilden) oder direkt über den "PCR Purification"-Kit (Qiagen, Hilden) aufgereinigt (s. 2.4.2).

2.4.5 Entfernung von DNA-Verunreinigungen aus RNA-Präparaten

Um DNA-Kontaminationen aus RNA-Präparationen zu entfernen, wurden die Proben einem Verdau mit RNase-freier DNase I (Boehringer, Mannheim) unterzogen. Dazu wurden in einem 100 μ l Ansatz 20 bis 100 U RNase-freie DNase I, die isolierte RNA (s. 2.4.3.3) und 1/10 Vol DNase Puffer (1 M Na-Acetat, 0,05 M MgSO₄; pH 5,0; mit DEPC behandelt und 2 x autoklaviert) für 30 min bei 37°C inkubiert. Um die RNA anschließend wieder zu isolieren, wurde entweder der "RNeasy Mini"-Kit oder der "Nucleospin RNA II"-Kit nach dem vom Hersteller mitgeliefertem Protokoll zur Aufreinigung der RNA verwendet. Der Erfolg des Verdaus mit RNase-freier DNaseI wurde durch Formaldehyd-Agarosegelelektrophorese (s. 2.4.6.2) und eine PCR (s. 2.4.4) überprüft.

2.4.6 Auftrennung von Nukleinsäuren

2.4.6.1 Standardagarosegelelektrophorese

Zur analytischen und präparativen Auftrennung von DNA-Fragmenten wurde eine Agarosegelelektrophorese in horizontalen Gelkammern eigener Bauart durchgeführt. Die Agarosekonzentration betrug 0,8% [w/v] in TAE-Puffer (20x TAE-Puffer: 96,88 g Tris, 7,44 g EDTA, 22,80 ml Essigsäure [konz.], H₂O_{dest} ad 1000 ml; pH 8,0), welcher auch als Laufpuffer diente. Die Elektrophorese erfolgte bei einer Spannung von 40 V, bis die Proben die Auftragstaschen verlassen hatten. Zur Auftrennung der Nukleinsäure-Fragmente wurde die Spannung anschließend auf 60 - 80 V erhöht, wobei die Laufstrecke ca. 6 cm betrug. Für die Auftrennung von DNA, welche später auf Nylonmembranen übertragen werden sollte, wurden größere Gele mit einem Volumen von 200 ml und 11 cm Laufstrecke verwendet. In diesem Fall wurde nach dem Auftragen der Proben eine Spannung von 80 V angelegt, bis die Proben die Auftragstaschen verlassen hatten. Zur Auftrennung der DNA-Fragmente wurde diese dann auf 100 V erhöht. Als Größenstandard diente in allen Fällen DNA des Phagen λ , welche durch das Restriktionsenzym HindIII vollständig geschnitten worden war. Zum Beschweren der Proben und markieren der Lauffront wurden den aufzutrennenden Nukleinsäurelösungen jeweils 0,2 Vol Stop-Mix (0,15 M Saccharose, 0,5 M Harnstoff, 0,1 mM EDTA, 0,14 mM Bromphenolblau; pH 7,0) zugegeben. Zum Anfärben der Nukleinsäuren wurden die Gele für 10 bis 15 min in ein Ethidiumbromidbad (1 μ g/ml H₂O_{det}) gelegt. Anschließend konnten die Nukleinsäuren mittels eines UV-Transilluminators bei 254 nm sichtbar gemacht, und mit Hilfe eines Videoprinters auf Thermopapier abgebildet werden.

2.4.6.2 Gelelektrophorese von RNA im Formaldehydgel

Zur Überprüfung des Erfolgs der RNA-Isolierung und zur Abschätzung der Reinheit und der Konzentration der RNA wurde eine Agarosegelelektrophorese in horizontalen Gelkammern eigener Bauart unter denaturierenden Bedingungen durchgeführt. Dazu wurden 0,36 g Agarose in 3 ml 10x FA-Gelpuffer und 27 ml H₂O_{dest} aufgeschmolzen. Nach dem Abkühlen auf ca. 65°C wurden 600 μ l Formaldehyd (37% [v/v]) zugegeben und das Gel gegossen. Die Proben wurden vor dem Auftragen 5:1 mit 5x RNA-Auftragspuffer (s. 2.4.6.4) versetzt und für 15 min bei 65°C denaturiert. Die Elektrophorese erfolgte mit 1x FA-Gelpuffer bei konstanter Spannung von ca. 80 mV. Anschließend wurde das Gel für einige Minuten im Ethidiumbromidbad (1 μ g/ml H₂O_{dest}) gefärbt, die Nukleinsäuren wurden mittels eines UV-Transilluminators bei 254 nm sichtbar gemacht und mit Hilfe eines Videoprinters auf Thermopapier abgebildet.

<u>10x FA-Gelpuffer</u>			<u>1x FA-Gelpuffer</u>		
MOPS NaAc EDTA H ₂ O _{dest} pH 7 2x autoklavieren	41,8 4,1 3,7 ad 1000	g g ml	10x FA-Gelpuffer Formaldehyd (37% [v/v]) RNase-freies H ₂ O _{dest}	100 20 880	ml ml ml

2.4.6.3 Polyacrylamid-Harnstoff-Gelelekrophorese

Die Analyse von kurzen, radioaktiv markierten DNA-Fragmenten aus den Primer-Extension-Experimenten (s. 2.4.15) und der DNA-Sequenzierung (s. 2.4.14) erfolgte durch Elektrophorese unter denaturierenden Bedingungen im Polyacrylamid-Harnstoff-Gel. Dazu wurde ein 6%iges Sequenzgel (22x40 cm) hergestellt. Die Polymerisation wurde durch die Zugabe von 400 μ l 10% [w/v] Amoniumpersulfat und 40 μ l TEMED zu 50 ml Sequenzgel-Stammlösung gestartet. Nach einer Vorelektrophorese (1 h, 1500 V, 25 mA, 30 W) wurden die in Sequenz-Auftragspuffer aufgenommenen und für 5 min bei 95°C denaturierten Proben aufgetragen. Die Auftrennung erfolgte für 1,5 – 2 h mit 25 mA (1500 V, 30 W) bis der untere Farbmarker (Bromphenolblau) das untere Drittel des Gels erreicht hatte. Anschließend wurde
das Gel getrocknet (25 min, 80°C) und die radioaktiv markierte DNA mittels Autoradiographie nachgewiesen (s. 2.4.17).

Sequenzgel-Stammlösung 6%			TBE-Puffer		
Harnstoff 40% [w/v] Acrylamid-Stammlösung (19:1) 10x TBE Puffer H ₂ O _{dest} 2x über Faltenfilter filtrieren	210 75 50 ad 500	g ml ml ml	Tris Borsäure EDTA H ₂ O _{dest}	121,10 51,35 3,72 ad 1000	g g ml
Sequenz-Auftragspuffer					
Bromphenolblau Xylen Xyanol FF EDTA Formamid	0,05 0,05 0,46 ad 100	g g ml			

2.4.6.4 Denaturierende Agarosegelelektrophorese

Zur Auftrennung von RNA-Proben, die zur späteren Hybridisierung auf eine Nylonmembran übertragen werden sollten, wurde eine Agarosegelelekrophorese unter denaturierenden Bedingungen durchgeführt. Zur Herstellung eines 1% igen Agarosegels wurden zu einer autoklavierten Agaroselösung (1,5 g Agarose in 108 ml H_2O_{dest}) 27 ml Formaldehyd (37% [v/v]) und 15 ml 10x Laufpuffer hinzugefügt. Die Agaroselösung wurde anschließend in eine horizontale Gelkammer eingefüllt, so dass ein Gel mit ca. 11 cm Laufstrecke entstand. Nach Erkalten des Gels wurde die Kammer bis zur Geloberkante mit 1x Laufpuffer, der zuvor mit 0,22 M Formaldehyd versehen worden war, gefüllt, so dass das Gel selbst gerade nicht bedeckt war. Anschließend wurde der Kamm gezogen, und die Taschen wurden mit RNase-freiem H_2O_{dest} gefüllt. Das Gel wurde für etwa 5 min einem Vorlauf bei 40 V unterzogen, bevor bei laufendem Strom die Proben aufgetragen wurden.

Die RNA-Proben sowie der Längenstandard (RNA Marker; 0,28-6,58 kb, Promega, Madison, USA) wurden in einem Verhältnis von 5:1 mit 5x RNA-Auftragspuffer versehen und für 15 min bei 60°C denaturiert. Dabei wurden pro Spur, die auf eine Nylonmembran übertragen werden sollte, 5 μg der aus *M. mazei* Gö1 isolierten RNA eingesetzt. Die Auftragsmenge des Längenstandards betrug 10 μg . Die Proben wurden anschließend auf Eis abgekühlt und dann auf das vorbereitete Gel aufgetragen. Die Elektrophorese erfolgte zunächst bei einer Spannung von 60 V, bis die Proben die Auftragstaschen verlassen hatten. Anschließend wurde die Gelkammer vollständig mit 1x Laufpuffer gefüllt und zur Auftrennung der RNA eine Spannung von 80 bis 100 V angelegt. Nach Beendigung der Elektrophorese wurde das Gel direkt für einen Kapillarblot (s. 2.4.9) eingesetzt.

<u>10x Laufpuffer</u>		5x RNA-Auftragspuffer		
MOPS	41,8 g	Gesättigte Bromphenolblau-Lösung	16,0	μl
Na-Acetat	4,1 g	0,5 M EDTA (pH8,0)	80,0	μl
Na ₂ -EDTA	3,7 g	Formaldehyd (37% [v/v])	720,0	μl
H_2O_{dest}	ad 1000 ml	Glycerin (86% [v/v])	2,3	ml
		Formamid (99% [v/v])	3,1	ml
		10x Laufpuffer	4,0	ml

Die Puffer wurden vor Verwendung 2 x autoklaviert.

2.4.7 Konzentrationsbestimmung und Reinheitskontrolle von Nukleinsäure-Lösungen

Die Konzentration und Reinheit von Nukleinsäure-Lösungen wurde durch die Absorption bei 260 und 280 nm in Quarzküvetten bestimmt. Eine optische Dichte von 1 bei 260 nm entspricht im Falle doppelsträngiger DNA einer Konzentration von 50 μ g/ml und im Falle von RNA 40 μ g/ml (**SAMBROOK** *ET AL.*, 1989). Das Verhältnis der Absorption bei 260 und 280 nm ließ Aussagen über die Reinheit der RNA-Lösung zu. Das Verhältnis sollte für eine reine Lösung zwischen 1,5 und 1,9 liegen.

2.4.8 Quantitative PCR

Quantitative PCR wurde unter Verwendung des "QuantiTect SYBR Green RT-PCR"-Kits (Qiagen, Hilden) durchgeführt. Dazu wurden 400 ng RNA, je 25 pmol der entsprechenden Starteroligonukleotide und die Komponenten des Kits nach Anleitung des Herstellers in einem 25 μ l Ansatz zusammengefügt. Das Umschreiben der RNA in cDNA und die anschließende Amplifikation dieser wurde in einem Schritt in einem "iCycler" (BioRad, München) durchgeführt. Nach einer 30minütigen Inkubation bei 50°C, in der die RNA durch die Reverse-Transkriptase in cDNA umgeschrieben wurde, folgten 15 min bei 95°C, welche zur Hitze-Aktivierung der Polymerase notwendig waren. Das weitere Protokoll bestand aus 35 Zyklen Denaturierung (94°C, 15 s), Anlagerung (55°C, 30 s) und Amplifikation (72°C, 30 s). In der Amplifikationsphase wurden die Fluoreszenzdaten gesammelt. Anschließend wurde eine Schmelzkurve von 50°C bis 95°C erstellt mit einem Temperaturanstieg von 0,5°C/min. Die Sammlung und Auswertung der Daten erfolgte mittels des "iCycler iQ Detection"-

Systems (BioRad, München). Dabei wurde für jedes Gen ein sogenannter C_t -Wert ermittelt. Der C_t -Wert ist definiert als der Zyklus, an dem die Fluoreszenz einen definierten Schwellenwert übersteigt. Der Schwellenwert wird von dem Programm automatisch nach der Methode der "maximum curvature" berechnet. Somit ist der C_t -Wert ein Maß für die im Ansatz vorhandene mRNA.

Für jede Analyse wurde ein Experiment mit drei konstitutiv exprimierten Genen (*mcrG*, *mcrB*, MM1672) als Kontrolle durchgeführt. Die aus der Analyse der Test-Gene erhaltenen C_t -Werte wurden mit den C_t -Werten aus der Kontroll-PCR normalisiert. Um die x-fache Änderung der Expression zu berechnen wurde folgende Formel verwendet (**LIVAK UND** SCHMITTGEN, 2001):

x-fache Änderung = $2^{-\Delta\Delta Ct}$

wobei $\Delta\Delta C_t$ für Gen X = $(C_{t,GenX} - C_{t,GenK})_{800 \text{ mM NaCl}} - (C_{t,GenX} - C_{t,GenK})_{38,5 \text{ mM NaCl}}$ ist. $C_{t,GenK}$ steht für den Ct-Wert eines der Kontroll-Gene. Diese Berechnung wurde für jedes der Test-Gene mit je den drei Kontroll-Genen durchgeführt. Die angegebene x-fache Änderung berechnet sich aus dem Mittelwert dieser Ergebnisse.

2.4.9 Übertragung von Nukleinsäuren auf Membranen

2.4.9.1 Southern-Blots

Die mit Restriktionsenzymen geschnittene chromosomale DNA wurde wie beschrieben im Agarosegel (s. 2.4.6.1) aufgetrennt und anschließend nach der Methode des Kapillarblots auf eine Nylonmembran (Amersham Bioscience, Freiburg) übertragen.

Nach der Elektrophorese wurde das Gel zweimal für 10 min in 0,25 N HCl geschwenkt. Die Säure führt zu Strangbrüchen in der DNA, die den anschließenden Transfer vor allem größerer DNA-Fragmente erleichtern. Es folgte ein zweimaliges Schwenken des Gels für je 15 min in Denaturierungspuffer und eine mindestens 30minütige Inkubation in Neutralisierungspuffer. Zum Übertragen der Nukleinsäuren auf die Nylonmembran in einer Blotkammer eigener Bauart wurde das Gel mit der Rückseite nach oben auf drei Lagen mit 10x SSC-getränktem Whatmanpapier gelegt und mit der Nylonmembran, welche vorher für 15 min in 20x SSC äquilibriert worden war, luftblasenfrei bedeckt. Nun folgten mehrere Lagen Whatmanpapier und ein Stapel Papierhandtücher, die zusätzlich durch Gewichte beschwert wurden. Die Blotkammer wurde mit 10x SSC gefüllt, so dass das unterste Whatmanpapier darin eingetaucht war. Der Transfer der DNA auf die Membran erfolgte für

<u>Denaturierung</u>	<u>spuffer</u>		<u>Neutralisie</u>	<u>rungspuffer</u>	
NaOH NaCl	0,5	M M	Tris-HCl	0,5	M M
H ₂ O _{dust}	ad 1000	ml	H ₂ O _{4mt}	ad 1000	ml
2 - dest			pH	7,0	
SSC-Puffer (20	<u>0x)</u>				
NaCl	3,0	М			
Na ₃ -Citrat	0,3	Μ			
H_2O_{dest}	ad 1000	ml			

16-20 h. Danach wurde der Kapillarblot abgebaut und die DNA für 2 h bei 80°C auf der Membran fixiert.

2.4.9.2 Northern-Blots

Die RNA wurde nach Auftrennung im denaturierenden Agarosegel (s. 2.4.6.4) auf eine Nylonmembran übertragen. Dazu wurde das Gel ohne weitere Behandlung einem Kapillarblot (s. 2.4.9.1) unterzogen. Dabei wurden SSC-Puffer und Whatmanpapiere vorher autoklaviert. Nach dem Blot wurde die Membran kurz in 5x SSC geschwenkt um Gelreste zu entfernen und anschließend zum Fixieren der RNA auf der Membran und Entfernen des Formaldehyds für 2 h bei 80°C inkubiert.

2.4.10 Färbung von RNA mit Methylenblau

Um die Fragmente des RNA-Standards sichtbar zu machen, wurde der entsprechende Teil der Membran nach der Fixierung abgetrennt und die RNA-Fragmente mit Methylenblau angefärbt. Dazu wurde die Membran für 5 min in einer Methylenblaulösung (0,04 % [w/v] in 0,5 M NaAc, pH 5,5) schüttelnd inkubiert und anschließend mit Wasser so lange entfärbt, bis die einzelnen Fragmente des Standards sichtbar wurden. Die Membran konnte anschließend getrocknet und bis zur Auswertung des Northern-Blots bei Raumtemperatur aufbewahrt werden.

2.4.11 Radioaktive Markierung von DNA mit [α-³²P] dATP

2.4.11.1 Markierung von DNA-Fragmenten

Die radioaktive Markierung von DNA-Fragmenten für Southern- und Northern-Blot-Analysen erfolgte nach der Methode des "random primed labeling" (**FEINBERG UND VOGELSTEIN**, 1983) unter Verwendung des "Random Primers DNA Labeling"-System (Invitrogen, Karlsruhe). Zur Denaturierung wurden ca. 30 ng DNA in 25 μ l H₂O_{dest} für 10 min auf 95°C erhitzt und anschließend auf Eis abgekühlt. Die Bestandteile des Reaktionsansatzes wurden nach Angaben des Herstellers zusammenpipettiert. Dabei wurden 3 μ l des [α -³²P] dATPs (Hartmann Analytics GmbH, Braunschweig) eingesetzt. Durch Zugabe von 1 μ l Klenow-Fragment (2 U/ μ l) wurde die Reaktion gestartet, und nachfolgend wurde der Ansatz für 1 h bei Raumtemperatur inkubiert. Nicht eingebaute Nukleotide wurden mit Hilfe des "QIAquick Nucleotide Removal"-Kits (Qiagen, Hilden) nach Angaben des Herstellers entfernt. Die markierte Sonde wurde mit 200 μ l EB-Puffer (Komponente des "QIAquick Nucleotide Removal"-Kits) eluiert und entweder sofort zur Hybridisierung eingesetzt oder bei -20°C gelagert.

DNA-Fragmente, welche für Gelretardationsexperimente (s. 2.4.16) oder Southwestern-Blots (s. 2.4.13.3) eingesetzt wurden, wurden mittels PCR (s. 2.4.4) markiert. Dazu wurde in den PCR Ansatz anstatt des unmarkierten dATPs 1 μ l des [α -³²P]dATPs (Hartmann Analytic GmbH, Braunschweig) eingesetzt. Das verwendete Programm umfasste 10 Zyklen, und die Anlagerung erfolgte bei 56°C. Nicht eingebaute Nukleotide wurden mit Hilfe des "QIAquick Nucleotide Removal"-Kits (Qiagen, Hilden) nach Angaben des Herstellers entfernt. Das markierte DNA-Fragment wurde mit 100 μ l EB-Puffer (Komponente des "QIAquick Nucleotide Removal"-Kits) eluiert und konnte bei –20°C gelagert werden.

2.4.11.2 Markierung von Oligonukleotiden

Oligonukleotide für die Primer-Extension-Analysen (s. 2.4.15) und die Sequenzierung nach der Kettenabbruchmethode (s. 2.4.14) wurden an ihrem 5'-Ende mit $[\gamma^{-3^2}P]$ dATP (Hartmann Analytics GmbH, Braunschweig) markiert. Die Markierung erfolgte mit den Komponenten des "Reader DNA Sequencing"-Kits (MBI Fermentas, St. Leon Rot). Dazu wurden 20 pmol des zu markierenden Oligonukleotids mit 20 pmol $[\gamma^{-3^2}P]$ dATP, 20 U T4–Polynukleotidkinase und T4–Polynukleotidkinase-Puffer in einem 20 μ l Ansatz für 10 min bei 37°C inkubiert und die Reaktion anschließend bei 95°C für 3 min gestoppt. Nicht inkorporierte Nukleotide wurden mit Hilfe des "QIAquick Nucleotide Removal"-Kits (Qiagen, Hilden) nach Angaben des Herstellers entfernt. Das markierte Oligonukleotid wurde zweimal mit je 30 μ l H₂O eluiert und entweder sofort eingesetzt oder bei –20°C gelagert.

2.4.12 DNA-Microarray-Analyse

2.4.12.1 Fluoreszenzmarkierung von cDNA

Für die Transkriptionsanalyse mittels DNA-Microarrays ist es nötig, die RNA (s. 2.4.3.3) in cDNA umzuschreiben und mit Fluoreszenzfarbstoffen zu markieren. Dabei wird die Referenz-RNA mit einem anderen Farbstoff markiert als die Test-RNA. Dies ermöglicht die gleichzeitige Hybridisierung beider RNA-Präperationen. Somit erscheinen die ORFs, welche nur bei einer der beiden Bedingungen exprimiert werden, in der jeweiligen Farbe, während konstitutiv exprimierte Gene gelb erscheinen. Dies kommt durch die Überlagerung der beiden Farbstoffe (Cy5: rot; Cy3: grün) zustande. Das Umschreiben der RNA in cDNA und die Markierung mit den Fluoreszenzfarbstoffen erfolgte in einem Schritt mittels des "CyScribe First-Strand cDNA Labelling"-Kits (Amersham Biosciences, Freiburg). Es wurde pro Microarray-Experiment eine Markierungsreaktion mit Cy3-dCTP (Amersham Biosciences, Freiburg) und zwei Markierungsreaktionen mit Cy5-dCTP (Amersham Biosciences, Freiburg) durchgeführt. Die Anlagerung der "Random nonamers" erfolgte nach dem unten dargestellten Protokoll in einem PCR-Gerät (Primus HT PCR; MWG Biotech, Ebersberg). Dazu wurden 25 μ g RNA, 1 μ l des entsprechenden "spike" Mixes und 2 μ l der "random nonamers" mit H₂O auf 11 μ l aufgefüllt und die Oligonukleotide mit unten dargestelltem Programm in der PCR-Maschine angelagert. Anschließend wurde das Reaktionsgemisch auf Eis gestellt und mit folgenden Komponenten in der dargestellten Reihenfolge versehen:

- 4 μ l 5x "CyScript"-Puffer¹
- 2 µl DTT (0,1 M)
- 1 μ l fluoreszenzmarkiertes dCTP (Cy3-dCTP oder Cy5-dCTP)
- $1 \mu l$ "CyScript" Reverse-Transkriptase¹

¹ Komponente des "CyScribe First-Strand cDNA Labelling"-Kits

Nach 1,5-stündiger Inkubation bei 42°C wurde 2 μ l 2,5 M NaOH zugegeben und der Ansatz für 15 min bei 37°C inkubiert. Nachfolgend wurde er mit 10 μ l 2M HEPES neutralisiert. Die markierte cDNA wurde anschließend mittels des "CyScribe GFX Purification"-Kits (Amersham Biosciences, Freiburg) nach Angaben des Herstellers aufgereinigt. Der Erfolg der Markierung wurde dann durch einen Wellenlängen-Scan von 450 – 700 nm überprüft und die Menge der eingebauten Fluoreszenz-Farbstoffe mit der in dem Protokoll zum "CyScribe First-Strand cDNA Labelling"-Kit angegebenen Formel berechnet.

PCR-Progran	nm zur Anla	gerung der O	ligonukleotide
-------------	-------------	--------------	----------------

70°C	für 5 min
50°C	mit 3°C/s
40°C	mit 1°C/s
35°C	mit 0,3°C/s
30°C	mit 0,2°C/s
25°C	mit 0,1°C/s
22°C	mit 0,1°C/s
22°C	für 20 min
4°C	unendlich
	70°C 50°C 40°C 35°C 30°C 25°C 22°C 22°C 4°C

2.4.12.2 Fluoreszenzmarkierung von genomischer DNA

Als Kontrolle für das korrekte immobilisieren aller DNA-Fragmente auf den DNA-Microarray-Slides wurde eine Hybridisierung mit fluoreszenzmarkierter genomischer DNA durchgeführt. Dazu wurden 10 μ g genomischer DNA und 5 μ l 10x Hexanukleotid-Mix (Roche Diagnostics, Mannheim) mit H₂O auf 30 μ l aufgefüllt und für 10 min bei 95°C denaturiert. Anschließend wurden je 5 μ l 5 mM dATP, dTTP und dGTP, 2 μ l 1 mM Cy3–dCTP, 5 μ l 10x Klenow Puffer und 1 μ l Klenow-Fragment (10 U/ μ l) zugesetzt und der Ansatz mit H₂O auf 50 μ l aufgefüllt. Die Reaktion fand über Nacht bei 37°C statt. Nachfolgend wurden 2,5 μ l 0,5 M EDTA zugesetzt, um die Reaktion zu stoppen. Der Ansatz wurde dann mittels des "CyScribe GFX Purification"-Kits (Amersham Biosciences, Freiburg) nach Angaben des Herstellers aufgereinigt. Durch photometrische Messung bei 260 und 550 nm wurde die Markierungseffizienz ermittelt, da in das nachfolgende Hybridisierungs-Experiment 150 pmol Cy3 eingesetzt werden sollten.

2.4.12.3 Microarray-Produktion

Für die Produktion des DNA-Microarrays wurden die PCR-Produkte von 3269 der 3371 ORFs von *M. mazei* Gö1 auf einem "Miroarray Slide Type 7 Star" (Amersham Biosciences, Freiburg) immobilisiert. Die entspricht 97% der ORFs des Genoms. Die PCR-Produkte wurden in den Laboren von Prof. R. Gunsalus (University of California Los Angeles UCLA, Los Angeles, USA) und PD U. Deppenmeier (Institut für Mikrobiologie, Georg-August-Universität, Göttingen) generiert und mir freundlicherweise zur Verfügung gestellt. Für die Immobilisierung auf dem Microarray-Slide wurden zu jedem der PCR-Produkte (10 μ l) je 10 μ l 50%iges Dimethylsulfoxid gegeben und die DNA-Fragmente wurden anschließend mit dem Lucidea Array Spotter (Generation V) (Amersham Biosciences, Freiburg) auf dem Microarray-Slide immobilisiert. Die PCR-Produkte wurden in Duplikaten auf einem einzelnen Slide aufgebracht und die DNA wurde mittels UV-Quervernetzung (50 mJ/cm²) fixiert. Die fertigen DNA-Microarray-Slides wurden im Dunkeln in einem Exikator unter Vakuum aufbewahrt.

2.4.12.4 Hybridisierung der Microarrays

Die Hybridisierung der fluoreszenzmarkierten cDNA mit den auf einem "Miroarray Slide Type 7 Star" (Amersham Biosciences, Freiburg) immobilisierten DNA-Fragmenten erfolgte in einem automatisierten "Slide Processor" (APS) (Lucidea SlidePro hybridization chamber, Amersham Biosciences, Freiburg). Dafür wurden 50 μ l der Markierungsreaktion (s. 2.4.12.1) für 2 min bei 95°C denaturiert, anschließend sofort auf Eis abgekühlt und mit 50 μ l "Microarray hybridization buffer" (Komponente des "CyScribe First-Strand cDNA Labelling"-Kits) versetzt. Nach der Zugabe von 110 μ l Formamid wurde der Ansatz kurz abzentrifugiert und 200 μ l in den APS injiziert. Die Hybridisierung erfolgte mit nachfolgendem Protokoll:

Überprüfen, ob in jeder Kammer ein "Dummy Slide" ist
Leeren der Schläuche und Kammern von alten Lösungen
Kammern auf 38°C aufheizen
Kammern mit Isopropanol spülen und leeren
Kammern mit H ₂ O spülen und leeren
Kammern für 1 min mit Luft spülen
Heizung auschalten
Schläuche mit Lösung 3 (1x SSC, 0,2% SDS) füllen
DNA-Microarray Slides einlegen
Kammern auf 42°C aufheizen
Hybridisierungslösung injizieren
Mischen der Hxbridisierungslösung in den Kammern für 12 h
Kammern mit Lösung 3 spülen
Kammern auf 45°C aufheizen
Mischen der Lösung 3 in den Kammern für 10 min
Schläuche mit Lösung 4 (0,1x SSC, 0,2% SDS) füllen
Kammern mit Lösung 4 spülen
Mischen der Lösung 4 in den Kammern für 10 min
Kammern mit Lösung 4 spülen
Mischen der Lösung 4 in den Kammern für 4 min
Schläuche mit Lösung 2 (0,1x SSC) füllen
Kammern mit Lösung 2 spülen
Schläuche mit Isopropanol füllen

Kammern mit Isopropanol spülen
Kammern mit Luft spülen
Kammern mit Luft trocknen
Heizung ausschalten
DNA-Microarray Slides entfernen und durch "Dummy Slides" ersetzen
Kammern auf 38°C aufheizen
Kammern mit Lösung 4 spülen
Mischen der Lösung 4 in den Kammern für 5 min
Schläuche mit H ₂ O füllen
Kammern mit 6 ml H ₂ O spülen
Mischen des H ₂ O in den Kammern für 5 min
Kammern mit 6 ml H ₂ O spülen
Kammern mit Luft spülen
Schläuche mit Isopropanol füllen
Kammern mit Isopropanol spülen
Kammen mit Luft spülen
Kammern mit Luft trocknen

Die Fluoreszenzintensität beider Flurophore wurde durch Scannen in einem Axon 4000 B Scanner (Axon Instruments, Union City, USA) ermittelt. Die Analyse der Daten erfolgte mit der GenePix Pro Software (Axon Instruments, Union City, USA) und die statistische Auswertung mit der SAM (Significance analysis of microarrays) Software der Universität Stanford, USA (**Tusher** *ET AL.*, 2001).

2.4.13 Hybridisierung

2.4.13.1 Hybridisierung von DNA mit radioaktiv markierten DNA-Sonden

Vor der Hybridisierung der auf Nylonmembranen fixierten DNA mit den radioaktiv markierten DNA-Sonden war es nötig, unspezifische Bindungsstellen für die Sonden auf der Membran abzusättigen. Dies geschah durch Prähybridisierung (Hybridisierungslösung ohne Sonde) für mindestens 2 h bei 60°C in speziellen Hybridisierungsröhrchen (Glasgerätebau Ochs GmbH, Bovenden-Lenglern) im Hybridisierungsofen (Hybaid Mini Oven MKII, MWG-Biotech, Ebersberg). Anschließend wurde die durch 10minütiges Kochen und kurzes Abkühlen auf Eis denaturierte Sonde zur Prähybridisierungslösung gegeben. Die Hybridisierung erfolgte über Nacht für 16 - 20 h bei 60°C. Nach Beendigung der Hybridisierung wurde die Hybridisierungslösung entnommen und bei –20°C gelagert. Die Membranen wurden anschließend für 20 min in 6x SSC gewaschen und in Plastikfolie eingeschweißt. Die Detektion der radioaktiv markierten DNA erfolgte mittels Autoradiographie (s. 2.4.17).

5x Hybridisierungspuffer			<u>Hybridisierungslösung</u>		
Rinderserumalbumin	2	g	5x Hybridisierungspuffer	2	ml
Polyvinylpyrrolidon 40	2	g	Dextransulfat, 50% (w/v)	2	ml
Ficoll 400	2	g	SDS, 10% (w/v)	1	ml
Tris-HCl	6,06	g	NaCl	0,58	g
Na-Pyrophosphat	1	g	H_2O_{dest}	ad 10	ml
H_2O_{dest}	ad 200	ml			

2.4.13.2 Hybridisierung von RNA mit radioaktiv markierten DNA-Sonden

Hybridisierungen von Northern-Blots mit radioaktiv markierten DNA-Sonden erfolgten in Anwesenheit von 50% Formamid, da bei dieser Formamid-Konzentration keine RNase-Aktivität zu verzeichnen ist. Die Membranen wurden für mindestens 2 h bei 42°C prähybridisiert (Hybridisierunslösung ohne Sonde). Anschließend wurde die durch 10minütiges Kochen denaturierte Sonde zugegeben und die Membran für 12 - 16 h bei 42°C hybridisiert. Nach dem Abgießen der Hybridisierungslösung wurde die Membran zweimal für je 5 min in 2x SSC bei 42°C gewaschen. Danach folgten zwei Waschschritte für jeweils 30 min bei 55°C in 2x SSC und 1% [w/v] SDS und zwei weitere, ebenfalls für je 30 min, bei 25°C in 0,1x SSC. Alle Puffer wurden vorher autoklaviert. Die Membran wurde nach dem Waschen in eine Plastikfolie eingeschweißt, und die radioaktiv markierte RNA wurde mittels Autoradiographie detektiert (s. 2.4.17).

Formamid-Hybridisierungslösung

Formamid	5,0	ml
Dextransulfat, 50% (w/v)	2,0	ml
20x SSC	1,5	ml
SDS, 25% [w/v]	1,0	ml
Denhardt'sche Lösung (100x)	0,5	ml

Denhardt'sche Lösung (100x)

Ficoll 400	2%	[w/v]
Polyvinylpyrrolidon 40	2%	[w/v]
Rinderserumalbumin	2%	[w/v]

2.4.13.3 Hybridisierung von Proteinen mit radioaktiv markierten DNA-Sonden (Southwestern-Blot)

Die Identifizierung von Proteinen, die mit DNA-Fragmenten interagieren, erfolgte mit der Methode des Southwestern-Blots. Hierfür wurde in einem ersten Schritt das Cytoplasma von Zellen von *M. mazei* Gö1, welche bei unterschiedlichen Salzkonzentrationen gewachsen waren, in einem 10% igen SDS-Polyacrylamidgel (s. 2.5.2) aufgetrennt und anschließend auf eine Nirozellulosemembran geblottet (s. 2.6.2). Zum Renaturieren der Proteine auf der Membran und zum Absättigen unspezifischer Bindungsstellen wurde diese dann für 45 min in 1x DBB (s. 2.4.16) mit 5% [w/v] Magermilch bei Raumtemperatur schüttelnd inkubiert. Nach mehrmaligem kurzen Waschen mit 1x DBB wurde die Membran in Hybridisierungsröhrchen (Glasgerätebau Ochs GmbH, Bovenden-Lenglern) überführt und mit der Hybridisierungslösung (siehe unten) 1 h bei 37°C inkubiert. Im Folgenden wurde die Membran zweimal für 5 min mit 1x DBB gewaschen, eingeschweißt und die Signale mittels Autoradiographie detektiert (s. 2.4.17).

Hy	bridisierun	gslösung
_		

50% [v/v] Glycerin	264	μl
dIdC (0,5 mg/ml)	88	μ1
BSA (1 mg/ml)	55	μl
³² P-markiertes DNA-Fragment	35	μl
10x DBB	88	μl
H ₂ O	351	μl
1x DBB	10	ml

2.4.14 Sequenzierung von DNA nach der Kettenabbruchmethode (SANGER *ET AL.*, 1977)

Als Referenz in der Primer-Extension-Analyse wurde nach der Kettenabbruchmethode nach Sanger (SANGER *ET AL.*, 1977) sequenziert. Dazu wurde je Base folgender Ansatz zusammenpipettiert:

DNA-Fragment	5 - 6	μl
5'-markiertes Oligonukleotid	1	μ l
ddNTP ²	4	μ l
MgCl ₂	2	μ l
Q-Solution ¹	5	μ l
10x PCR Puffer ¹	2	μ l
Taq DNA Polymerase ²	0,5	μ l

¹Komponenten des "Qiagen Taq-Polymerase"-Kits (Qiagen, Hilden) ²Komponente des "Reader DNA Sequencing"-Kits (MBI Fermentas, St. Leon Rot)

Anschließend wurde eine PCR-Reaktion (s. 2.4.4) durchgeführt. Die Anlagerung des markierten Oligonukleotids erfolgte bei 50°C und die Verlängerungsreaktion bei 68°C für 1 min. Die Produkte wurden nachfolgend getrocknet und in 20 μ l Sequenz-Auftragspuffer (s. 2.4.6.3) resuspendiert. Entweder wurden 8 μ l sofort auf das Gel (s. 2.4.6.3) aufgetragen, oder die Proben konnten bei –20°C gelagert werden.

2.4.15 Primer-Extension-Analyse

Die Bestimmung der 5'-Enden der mRNA erfolgte durch die Methode der Primer-Extension-Analyse. Dabei wird ein zur mRNA komplementäres Starteroligonukleotid mit der RNA hybridisiert und davon ausgehend mit der Reversen Transkriptase ein DNA-Strang synthetisiert, der am 5'-Ende der mRNA abbricht. Als Referenz wurde eine DNA-Sequenzreaktion mit demselben Starteroligonukleotid durchgeführt (s. 2.4.14). Der Ansatz für die Anlagerung des Oligonukleotids setzte sich wie folgt zusammen:

Anlagerungs-Puffer (50 mM PIPES pH 6,4; 2 M NaCl)	9	μl
RNA	30	μg
Starteroligonukleotid	4	μl
H ₂ O	ad 40	μl

Der Ansatz wurde zunächst zur Denaturierung für 5 min auf 95°C erhitzt und dann sofort in einen Heizblock mit 65°C gestellt. Dieser wurde im Anschluß auf 42°C eingestellt und der Ansatz solange inkubiert, bis die Temperatur erreicht war. Währenddessen wurde der Extensions-Ansatz vorbereitet und auf 42°C vorgewärmt. In ihm sind die Reverse-Transkriptase, der dazugehörige Puffer und die Nukleotide in folgender Zusammensetzung enthalten:

AMV Reverse-Transkriptase ¹	1,5	μl
AMV RT 5x Reaktionspuffer ²	30	μl
dNTPs (10 mM)	15	μl
H_2O_{dest}	73,5	μl
Promega, Mannheim mitgelieferter Puffer für AMV Reverse-Transkriptase (Prome	ga, Mannheim)	

Zu diesem Ansatz wurde der Hybridisierungs-Ansatz hinzugefügt und für 1 h bei 42°C inkubiert. Nach der Zugabe von 45 μ l 3 M Na-Acetat (pH 4,8) wurde eine Phenolextraktion durchgeführt und die DNA anschließend mit 96%igem Ethanol gefällt. Das getrocknete DNA-Sediment wurde in 30 μ l Sequenz-Auftragspuffer (s. 2.4.6.3) aufgenommen und entweder direkt auf das Gel aufgetragen oder bei –20°C gelagert.

2.4.16 Gelretardation von DNA-Protein-Komplexen

Der Nachweis von Protein-DNA-Komplexen erfolgte durch die Methode der Gelretardationsanalyse (AUSUBEL ET AL., 1993). Dabei wird ausgenutzt, dass solche

Komplexe in der Elektrophorese langsamer laufen als die freie DNA (LANE *ET AL.*, 1992). Dazu wurde der DNA-Mix (Ansatz siehe unten) mit unterschiedlichen Mengen Cytoplasma $(5 - 30 \ \mu g)$ für 10 – 30 min bei 37°C inkubiert. Die Reaktion wurde durch schnelles Abkühlen der Proben auf Eis gestoppt. Anschließend wurden sie auf ein 6% iges Polyacrylamidgel aufgetragen und unter Kühlung (4°C) einer Elektrophorese bei 15 mA/Gel für 30 – 45 min unterzogen. Das Gel wurde nachfolgend getrocknet (80°C, 25 min) und die radioaktiv markierte DNA in Gel mittels Autoradiographie (s. 2.4.17) nachgewiesen.

DNA-Mix			<u>10x DBB</u>		
50% [v/v] Glycerin	3	μl	Tris-HCl pH 7,9	200	mM
BSA (1 mg/ml)	1 0 625	μ_1	KCI EDTA	1 10	M mM
³² P-markiertes DNA-Fragment	2	μ l	DTT	10	mM
10x DBB	1,75	μl			
H_2O_{dest}	ad 12,5	μl			

Gel-Lösung (6% AA)

Acrylamid (29:1)	15	ml
TBE 10x	10	ml
50% [v/v] Glycerin	5	ml
H ₂ O _{dest}	ad 100	ml

2.4.17 Autoradiographie

³²P-markierte DNA-Fragmente auf Membranen oder Gelen wurden mit Hilfe des Kodak "Storage Phosphor Sceens" (Molecular Dynamics, Sunnyvale, USA) per Autoradiographie sichtbar gemacht. Die Autoradiogramme wurden mittels eines "Storm 860 Laser Scanners" (Molecular Dynamics, Sunnyvale, USA) digitalisiert und mit der Bildbearbeitungssoftware "Image Quant" (Molecular Dynamics, Sunnyvale, USA) visualisiert und ausgewertet.

2.5 Biochemische und proteinanalytische Methoden

2.5.1 Proteinbestimmung

Die Bestimmung von Proteinkonzentrationen erfolgte nach Lowry oder Bradford (BRADFORD, 1976; LOWRY ET AL., 1951).

2.5.2 Denaturierende Polyacrylamidgelelekrophorese (SDS-PAGE)

Die Auftrennung von Proteinen durch denaturierende Polyacrylamidgelelektrophorese (PAGE) erfolgte nach Schägger und von Jagow (SCHÄGGER UND VON JAGOW, 1987). Um die Proteine nach der Auftrennung im Gel sichtbar zu machen, wurde eine Silberfärbung nach Blum (BLUM *ET AL.*, 1987) oder eine Färbung mit Coomassie Brilliant Blue G250 (WEBER UND OSBORNE, 1969) angeschlossen.

2.5.3 Expression von *malE*-Fusionsgenen und Aufreinigung der Fusionsproteine

Die *malE*-Fusionsgene wurden in *E. coli* DH5 α in LB-Medium bei 37°C exprimiert. Die Proteinproduktion wurde bei einer OD₆₀₀ von 0,5 durch Zugabe von 0,5 mM IPTG induziert. Die Zellen wurden 2 h nach der Induktion geerntet und in der French-Press aufgebrochen. Durch Affinitätschromatographie über eine Amylose-Matrix wurden die Fusionsproteine nach Angaben des Herstellers (New England Biolabs, Beverly, USA) in PD-10-Säulen (Amersham Biosciences, Freibung) aufgereinigt.

2.5.4 Massenspektrometrie

Die Identität der Proteine, die im Southwestern-Blot identifiziert wurden (s. 2.4.13.3), wurde mittels Massenspektometrie bestimmt. Dazu wurden die Proteine im 10% igen SDS-Polyacrylamidgel (s. 2.5.2) aufgetrennt, die Banden, welche die gewünschten Proteine enthielten, ausgeschnitten und einer massenspektrometrischen Analyse unterzogen. Die Massenspektrometrie wurde freundlicherweise von Herrn B. Granvogl (Botanisches Institut, Department Biologie I, LMU München) durchgeführt.

2.5.5 NMR-Analyse

Die Bestimmung der kompatiblen Solute erfolgte mittels NMR-Analyse. Dazu wurden die intrazellulären kompatiblen Solute von *M. mazei* Gö1 und der *M. maripaludis*-Stämme durch Kochen mit 80% igem Ethanol, wie bei Martins und Santos beschrieben (MARTINS UND SANTOS, 1995), extrahiert. Die lyophilisierten Extrakte wurden in destilliertem Wasser gelöst und mittels NMR analysiert. Die NMR Spektren wurden in einem Bruker AMX300

Spektrometer wie beschrieben (**PFLÜGER** *ET AL.*, 2003) aufgenommen. Als Standard zur Berechnung der Konzentration der kompatiblen Solute wurde eine bekannte Menge Na–Formiat zugesetzt. Die NMR-Analysen wurden freundlicherweise von Frau Prof. H. Santos (Instituto de Tecnologia Química e Biológia, Universidade Nova de Lisboa, Portugal) durchgeführt.

2.6 Immunologische Methoden

2.6.1 Herstellung polyklonaler Antikörper

Die Herstellung polyklonaler Antikörper wurde von der Firma DaBio Biotechnologie (Regensburg) übernommen. Hierzu wurde über eine Amylose-Säule aufgereinigtes Protein (s. 2.5.3) einem Kaninchen injiziert. Das Antiserum wurde nach ca. 12 Wochen entnommen und konnte in entsprechender Verdünnung im Western-Blot eingesetzt werden.

2.6.2 Western-Blot

Zur immunologischen Analyse von Proteinen wurden diese zunächst mittels SDS-PAGE aufgetrennt (s. 2.5.2), wobei ein vorgefärbter Größenstandard verwendet wurde, welcher direkt nach dem Transfer auf der Membran sichtbar bleibt ("Prestained Protein-Ladder"; MBI-Fermentas, St. Leon Rot). Vor dem Aufbau des Western-Blots in einer "Semidry-Elektroblottingkammer" (TransBlot SD; BioRad, München) wurden das Polyacrylamidgel, zugeschnittenes Filterpapier (3MM-Whatman; Whatman, Maldstone, GB) und die Nitrozellulosemembran (ProtranBA 85; Schleicher & Schüll, Dassel) gleicher Größe folgendermaßen in dem jeweils angegebenen Transferpuffer äquilibriert: Beginnend auf der Anodenseite wurden zwei Whatmanpapiere (in Anodenpuffer I (150 mM Tris, 20% [v/v], pH 10,4) getränkt), ein Whatmanpapier und die Nitrozellulosemembran (in Anodenpuffer II (12,5 mM Tris, 20% Methanol [v/v], pH 10,4) inkubiert) und zwei weitere Filterpapiere (in Kathodenpuffer (150 mM Tris, 20% Methanol [v/v], 20 mM ε-Aminocapronsäure, pH 9,4) getränkt) luftblasenfrei aufeinander gestapelt. Der Proteintransfer wurde bei 3,5 mA/cm² Gel für 30 min durchgeführt.

Nach dem Transfer wurde die Membran zur Absättigung unspezifischer Bindungsstellen 1 h in PBST (140 mM NaCl, 10 mM KCl, 6,4 mM Na₂HPO₄, 2 mM KH₂PO₄, 0,05% Tween 20-Lösung) mit 1% Magermilchpulver geschwenkt. Nach dreimaligem Waschen der Membran für 10 min in PBST wurden 20 – 40 μ l des Antiserums zugegeben und die Membran 2 – 16 h inkubiert. Anschließend wurde die Membran viermal für 20 min gewaschen und dann für 1 h mit Protein A-Meerrettichperoxidase-Konjugat (6 μ l/20 ml PBST) (ICN Biomedicals GmbH, Eschwege) inkubiert und erneut dreimal für jeweils 10 min mit PBST gewaschen. Der Nachweis der immunologischen Reaktion erfolgte nach Inkubation der Membran in Detektionslösung (0,03% H₂O₂, 1,2 mM Luminol, 0,2 mM para–Coumarsäure, 100 mM Tris-HCl, pH 8) für 1 min. Die Dokumentation der Fluoreszenz erfolgte durch Belichtung von Röntgenfilmen (X-OMAT-AR, Fa. Kodak AG, Stuttgart).

2.7 Chemikalien und Gase

Alle Chemikalien stammen, wenn nicht anders angegeben, von den Firmen VWR International (Darmstadt), Carl Roth GmbH (Karlsruhe) oder Sigma-Aldrich (Taufkirchen). Die verwendeten Gase wurden von der Messer-Griesheim GmbH (Gröbenzell) bezogen.

3 EXPERIMENTE UND ERGEBNISSE

3.1 Ota – ein primärer Transporter für Glycinbetain

Der primäre ABC-Transporter Ota (<u>O</u>smopreotectant <u>transporter A</u>) ist ein salzinduzierter Transporter für des kompatiblen Solutes Glycinbetain (**ROEßLER** *ET AL.*, 2002). Er wird von drei Genen kodiert, welche in einem Operon organisiert sind (Abb. 2).

Abb. 2: Genetische Organisation des *ota*-Operons und hypothetische Struktur des primären Glycinbetain-Transporters Ota. *otaA* kodiert für das cytoplasmatische ATP-Bindeprotein, *otaB* für die membranständige Domäne und *otaC* für das extrazelluläre Glycinbetain-Bindeprotein, das in der Membran verankert vorliegt.

Das erste Gen des Operons, *otaA*, kodiert für die intrazelluläre ATP-Bindedomäne des Transporters, welche die nötige Energie für den Transport von Glycinbetain über die Membran bereitstellt. *otaB* kodiert für die membrandurchspannende Untereinheit des Transporters, welche vermutlich als Dimer eine Pore in der Membran bildet, durch welche Glycinbetain in die Zelle gelangt. Die Hydrophobizitäts-Analyse lässt vermuten, dass OtaB sechs Transmembranbereiche ausbildet, so dass der Transportkanal insgesamt von 12 transmembranen Helices gebildet wird. Stromabwärts davon liegt *otaC*, dessen Produkt die extrazelluläre Glycinbetain-bindende Untereinheit darstellt.

Bereits in früheren Untersuchungen wurde gezeigt, dass die Aufnahme von Glycinbetain in die Zellen von *M. mazei* Gö1 von der Salzkonzentration des Mediums abhängig ist. Eine maximale Glycinbetain-Akkumulation wurde bei einer Salzkonzentration von 800 mM NaCl

beobachtet (**ROEßLER** *ET AL.*, 2002). Die salzabhängige Expression von *otaC* konnte in Zellen, welche in Komplexmedium angezogen worden waren, mittels Northern-Blot-Analysen nachgewiesen werden (**ROEßLER** *ET AL.*, 2002). Die verstärkte Produktion von OtaC konnte auf Protein-Ebene bestätigt werden (**HOFFMANN**, 2003). Darüber hinaus bewiesen Komplementationsanalysen mit der salzdefizienten Mutante *E. coli* MKH13, welche mit dem kompletten *ota*-Operon transformiert worden war und den Transporter auch produzierte, dass Ota die Aufnahme von Glycinbetain in die Zelle katalysiert (**KöGL**, 2004). Um das *ota*-Operon weiter zu charakterisierten und den Promotorbereich genau festlegen zu können, sollte der Transkriptionsstartpunkt identifiziert werden.

3.1.1 Bestimmung des Transkriptionsstarts des ota-Operons

Archaeelle Promotoren bestehen aus einer TATA-Box, welche von dem TATA-Box-Bindeprotein (TBP) als entscheidendes Transkriptionssignal erkannt wird, und einem Transkriptionsfaktor B-Erkennungselement (BRE), welches direkt stromaufwärts der TATA-Box lokalisiert ist und durch den Transkriptionsfaktor (TFB) erkannt wird (**THOMM**, 2000). Die Analyse der DNA-Sequenz stromaufwärts von *otaA* ergab mehrere mögliche Promotorstrukturen. Da es für Regulationsstudien unerlässlich ist, den Promotorbereich zu kennen, wurde der Transkriptionsstartpunkt mittels Primer-Extension-Analysen identifiziert. Dafür wurden Zellen von *M. mazei* Gö1 bei 38,5 oder 800 mM NaCl in Komplexmedium angezogen, in der späten exponentiellen Phase geerntet, die RNA wurde isoliert und nach einer Behandlung mit DNase in den Versuch eingesetzt. Als Referenz wurde eine Sequenzierung nach der Kettenabbruchmethode mit dem gleichen Oligonukleotid, welches für das Primer-Extension-Experiment verwendet wurde, durchgeführt. Als Vorlage für die Sequenzierung diente ein 644 Bp-langes DNA-Fragment, welches mit den Oligonukleotiden otaAfor2 und otaArev3 amplifiziert worden war und den Bereich 526 Bp stromaufwärts des Startkodons von *otaA* abdeckte.

In einem ersten Ansatz wurde als Starteroligonukleotid otaCrev eingesetzt, welches 20 Bp stromabwärts des Startkodons von *otaA* bindet. Das Ergebnis dieser Primer-Extension-Analyse zeigte, dass das 5'-Ende des mRNA-Transkriptes und damit der Transkriptionsstartpunkt unerwartet weit von dem Startkodon von *otaA* entfernt lag und aufgrund der schlechten Auflösung im Gel nicht eindeutig bestimmt werden konnte (Daten nicht gezeigt). Deswegen wurde in einem zweiten Ansatz ein neues Starteroligonukleotid, otaArev4, für die Verlängerungsreaktion gewählt. Dieses bindet 275 Bp stromaufwärts des

Startkodons von *otaA*. Mittels dieses Ansatzes konnte der Transkriptionsstartpunkt eindeutig identifiziert werden (Abb. 3).

Abb. 3: Autoradiogramm der Primer-Extension-Analyse des *ota*-Operons. In den Spuren C, G, T und A sind die Produkte aus der DNA-Sequenzierung als Größen- und Positionsreferenz aufgetragen. In den ersten beiden Spuren sind Extensionsprodukte der Analyse zu sehen. Die mit *-markierte Base stellt den Transkriptionsstartpunkt dar. RNA wurde aus Zellen von *M. mazei* Gö1 isoliert, die in Komplexmedium mit der angegebenen Salzkonzentration angezogen worden waren.

Die Primer-Extension-Analyse ergab für beide Salzkonzentrationen ein Reaktionsprodukt gleicher Länge, dessen 3'-Ende einer Position 402 Bp stromaufwärts des Startkodons von *otaA* entsprach. Das Signal war, wie erwartet, mit RNA aus Zellen, die in Komplexmedium bei Hochsalz angezogen worden waren, stärker. Bei dieser Bedingung wurde auch schon im Northern-Blot eine erhöhte Expression des Operons nachgewiesen.

Abb. 4: Genetische Organisation des Promotorbereichs des *ota*-Operons. Der Pfeil bezeichnet den Transkriptionsstartpunkt, das Startkodon von *otaA* ist durch Fettdruck hervorgehoben, *otaA* ist unterstrichen dargestellt.

Aufgrund der Kenntnis des Transkriptionsstartpunktes konnte nun eine putative Promotorstruktur durch Analyse der DNA-Sequenz bestimmt werden (Abb. 4). Eine mögliche TATA-Box konnte 23 Bp stromaufwärts des Transkriptionsstartes identifiziert werden. Direkt davor liegt eine Sequenz, die identisch mit der Konsensussequenz des BRE-Elements ist. Der gesamte Promotorbereich erstreckt sich von 23 Bp bis 37 Bp stromaufwärts des Transkriptionsstartes, wie es für Archaeen gefordert wird (**THOMM**, 2000). Somit liegt der Promotor des *ota*-Operons 424 Bp vor dem Startkodon des ersten Gens des Operons, *otaA*.

3.2 Biosynthese des kompatiblen Solutes N^ε-Acetyl-β-Lysin

Das kompatible Solut N^{ϵ}-Acetyl- β -Lysin ist in methanogenen Archaeen weit verbreitet. So wurde es unter anderem in *Methanogenium cariaci, Methanosarcina* spp., *Methanohalophilus* spp. und *Methanococcus* spp. gefunden (LAI *ET AL.*, 1991; ROBERTS *ET AL.*, 1992; **ROBERTSON** *ET AL.*, 1992b; **SOWERS** *ET AL.*, 1990; **SOWERS UND GUNSALUS**, 1995). Es wird als Antwort auf einen hyperosmotischen Schock in der Zelle angehäuft, trägt dort zur Stabilisierung des Turgordruckes und der Proteine bei und verhindert somit ein Schrumpfen der Zelle. Für die Synthese von N^{ϵ}-Acetyl- β -Lysin aus α -Lysin sind zwei Enzyme verantwortlich, eine Aminomutase und eine Acetyltransferase, die salzabhängig reguliert sind.

3.2.1 Biosyntheseweg von N^ε-Acetyl-β-Lysin

N^ε-Acetyl-β-Lysin wird aus der Aminosäure α-Lysin synthetisiert. Basierend auf Studien der Gruppe von M. F. Roberts wird angenommen, dass α-Lysin in einem ersten Schritt zu β-Lysin umgewandelt und anschließend acetyliert wird (ROBERTS ET AL., 1992; ROBERTSON ET AL., 1992b). α-Lysin kann in Bakterien entweder über den Diaminopimelat-Weg oder den Aminoadipat-Weg gebildet werden. Eine Untersuchung der genomischen Sequenz von M. mazei Göl zeigte, dass die Biosynthese von α-Lysin in diesem Organismus höchstwahrschscheinlich über den Diaminopimelat-Weg verläuft. Der erste Schritt zur Bildung von α-Lysin ist die Kondensation von Pyruvat und Aspartatsemialdehyd zu Dihydrodipicolinat durch die Dihydrodipicolinat-Synthetase. Dihydrodipicolinat wird anschließend durch die Dihydrodipicolinat-Reduktase zu Tetrahydrodipicolinat reduziert, welches nachfolgend durch die Aktivität der Tetrahydrodipicolinat-Succinylase N-acetyliert wird, so dass es zu einem Aufbrechen der Ringstruktur kommt. Der Transaminierung der 2-Oxo-Gruppe des Succinyl-ε-Oxo-α-Aminopimelates durch die Succinyldiaminopimelat-Aminotransferse folgt die Hydrolyse der Acylgruppe, katalysiert durch die Succinyldiaminopimelat-Desuccinylase. Das entstandene L,L- α , ϵ -Diaminopimelat wird im Folgenden durch die Diaminopimelat-Epimerase zu seiner meso-Form epimerisiert. Der letzte Schritt bei der Bildung von α-Lysin ist die Decarboxylierung von meso-Diaminopimelat durch die Diaminopimelat-Decarboxylase, wobei α-Lysin entsteht. Von diesen sieben Enzymen, die an der Bildung von α-Lysin beteiligt sind, konnten vier Orthologe im Genom von M. mazei Göl gefunden werden: Gene, deren Produkte Ähnlichkeit zur Dihydrodipicolinat-Synthetase (MM1201), zur Dihydrodipicolinat-Reduktase (MM1202), zur Succinyldiaminopimelat-Aminotransferse (MM2649) und zur Diaminopimelat-Decarboxylase (MM1885) haben, wurden identifiziert. Es wird angenommen, dass die Bildung von N^ε-Acetyl-β-Lysin aus α-Lysin durch zwei Enzyme katalysiert wird, nämlich durch die Lysin-2,3-Aminomutase und die β-Lysin-Acetyltransferase. Die dafür kodierenden Gene wurden durch einen Vergleich der Lysin-2,3-Aminomutase von Clostridium subterminale (RUZICKA ET AL., 2000) mit dem Genom von M. mazei Göl gefunden. Der erste offene Leseramen, ablA, kodiert für ein Protein, dass zu 55,8% identisch mit der Lysin-2,3-Aminomutase von Clostridium subterminale ist. Direkt stromabwärts dieses Gens liegt ein weiterer offener Leseramen, dessen Produkt große Ähnlichkeit zu Acetyltransferasen anderer Organismen hat. Diese zwei Gene wurden *ablA* und *ablB* genannt (für: N^ε-<u>A</u>cetyl-β-<u>L</u>ysin Synthese), und das zugehörige Operon wird im Folgenden als abl-Operon bezeichnet. Der hypothetische Biosyntheseweg von N^{ϵ}-Acetyl- β -Lysin ist in Abb. 5 dargestellt. α -Lysin wird in einem ersten Schritt durch die Aktivität von AblA in β -Lysin umgewandelt, welches dann durch AblB acetyliert wird. Diese Hypothese wird durch Messungen der Aktivität der Lysin-2,3-Aminomutase in *M. thermolithotrophicus* gestützt. Diese Untersuchungen zeigten eine 8fach höhere spezifische Aktivität dieses Enzyms in Proteinextrakten von Zellen, die an Hochsalz adaptiert waren (**MARTIN** *ET AL.*, 2000)

Abb. 5: Hypothetischer Biosyntheseweg von N^ε-Acetyl-β-Lysin.

3.2.2 Genetische Organisation des abl-Operons

Die zwei Gene, *ablA* und *ablB*, die für putative Biosynthese-Enzyme für das kompatible Solut N^{ϵ}-Acetyl- β -Lysin kodieren, sind in einem Operon organisiert und liegen in der Reihenfolge 5'-*ablA-ablB*-3' auf dem Chromosom (Abb. 6). Sie sind durch eine kurze intergene Sequenz von 204 Bp getrennt. Stromaufwärts von *ablA* befindet sich eine große, offensichtlich nicht-kodierende Region, welche durch den Start des nächsten Gens, *kefC1* (MM0933), welches in ungekehrter Orientierung vorliegt, beendet wird (Abb. 7). Im Fall von *ablA* wird das alternative Startkodon GTG verwendet. Vor beiden Genen befindet sich eine gut konservierte Shine-Dalgano-Sequenz. Ein mögliches Terminationssignal in Form einer Haarnadelstruktur befindet sich 49 Bp stromabwärts vom Stopkodon von *ablB*. Ein Vergleich mit den Datenbanken zeigte, dass die genetische Organisation des *abl*-Operons in ähnlicher Weise auch in den Organismen *M. acetivorans*, *M. maripaludis* und *Methanosarcina barkeri* zu finden ist (Abb. 6). Dies führt zu der Annahme, dass all diese Organismen in der Lage sind, N^ε-Acetyl-β-Lysin zu synthetisieren und als kompatibles Solut zu nutzen. Das Genom von *Methanococcus jannaschii* enthält zwar ein Gen, welches für eine putative Aminomutase kodiert (MJ0634), aber das Gen stromabwärts davon zeigt keinerlei Ähnlichkeiten zu Acetyltransferasen.

Abb. 6: Vergleich der genomischen Organisation der Lysin-2,3-Aminomutase (*ablA*)- und der Acetyltransferase (*ablB*)-Gene der Methanogenen *M. mazei* Gö1 (**DEPPENMEIER ET AL.**, 2002), *Methanosarcina acetivorans* (MA3979) (**GALAGAN ET AL.**, 2002), *Methanococcus maripaludis* (MMP0861 und MMP0862), *Methanosarcina barkeri* (Contig 1866) (http://www.jgi.doe.gov/JGI_microbial/html/methanosacina/methano_hompage.html) und *Methanococcus jannaschii* (**BULT ET AL.**, 1996).

Eine Analyse der Genregion in der sich das *abl*-Operon befindet, zeigte, dass sich stromaufwärts von *ablA* zwei offene Leserahmen befinden, die für putative Glutathion-regulierte K⁺-Efflux-Systeme (KefC) kodieren (Abb. 7). Da für *Methanosarcina*-Spezies gezeigt wurde, dass Kalium nur transient, als Antwort auf eine Erhöhung der extrazellulären Salzkonzentration, akkumuliert wird (**SowERS UND GUNSALUS**, 1995), liegt die Vermutung nahe, dass Kalium in der zweiten Phase der Osmoadaptation aus der Zelle gepumpt wird. Dies könnte eventuell durch diese Glutathion-regulierten K⁺-Efflux-Systeme bewerkstelligt werden. So könnten die Gene für diese Systeme zusammen mit dem *abl*-Operon reguliert werden und somit einen Wechsel in der internen Solutzusammensetzung hervorrufen. Ein Transkriptionsregulator, der stromaufwärts des *abl*-Operons und der beiden *kefC*-Gene auf dem Chromosom vorliegt, könnte an der Regulation dieses Vorgangs beteiligt sein. Allerdings

deuten die Ergebnisse der Microarray-Analysen nicht unbedingt in diese Richtung. So konnte nach einem Schock auf 400 mM NaCl die Represseion von *kefC1* beobachtet werden. *kefC2* wurde unter keiner der Bedingungen als signifikant reguliert erkannt.

Abb. 7: Physikalische Karte der Genregion von *M. mazei* Gö1, in der sich das *abl*-Operon befindet. Die weißen Nummern repräsentieren die MM-Nummern und die Annotationen sind durch Pfeile mit den Genen korreliert.

3.2.3 Eigenschaften der Genprodukte und Ähnlichkeiten zu anderen Proteinen

Die Lysin-2,3-Aminomutasen aus unterschiedlichen Organismen haben einen hohen Grad an Sequenzähnlichkeit (Abb. 8). Das wohl am besten untersuchte Enzym ist die Lysin-2,3-Aminomutase aus C. subterminale (Kam) (EC 5.4.3.2.). Es hat eine hexamere quarternäre Struktur, welche aus identischen Untereinheiten mit einer molekularen Masse von 48 kDa aufgebaut ist. Dies ist in Übereinstimmung mit der abgeleiteten molekularen Masse von AblA von M. mazei Göl von 47,7 kDa. Kam enthält drei [4Fe-4S]-Cluster, welche an konservierte Cysteine gebunden sind. Diese Cysteine konnten ebenfalls in der Sequenz von AblA identifiziert werden, was vermuten lässt, dass auch dieses Enzym drei [4Fe-4S]-Cluster enthält. Die Bildung von N^ε-Acetyl-β-Lysin aus α-Lysin benötigt S-Adenosylmethionin (SAM) (RUZICKA ET AL., 2000). Von kristallographischen Strukturanalysen SAM-abhängiger Enzyme konnte eine Struktur abgeleitet werden, welche an der Bindung von SAM beteiligt ist. Diese besteht aus einer Glyzin-reichen Region, die eine flexible Schleife bildet. Diese Region kann sowohl in Kam als auch in AblA gefunden werden. Ferner ist Zink essentiell für die Funktion von Kam und eine weitere Gruppe von Cysteinen wird als Zink-Bindestelle postuliert. Diese drei Cysteine sind auch in AblA vorhanden. Kam enthält sechs Pyridoxal-5'-Phosphat Moleküle pro Hexamer (PETROVICH ET AL., 1992; SONG UND FREY, 1991), aber bis jetzt konnte keine Bindestelle für diese identifiziert werden, weder in der Sequenz von Kam noch in der von AblA. Diese Daten weisen darauf hin, dass ablA für eine Aminomutase kodiert, die sehr ähnlich zu Kam von *C. subterminale* ist. Deswegen wird angenommen, dass der Mechanismus der Umwandlung von α -Lysin in β -Lysin in *M. mazei* Göl dem von Kam in *C. subterminale* ebenfalls sehr ähnlich ist (**RUZICKA ET AL.**, 2000).

Die Acetyltransferase ist ein Mitglied der GNAT (GCN-5-verwandten N-Acetyltransferasen) Superfamilie. Diese Superfamilie kommt in allen drei Reichen des Lebens vor und zeichnet sich durch den gemeinsamen Acetylgruppendonor Acetyl-Coenzym A aus (**DyDA** *ET AL.*, 2000). Die Acetylierung von β -Lysin erfolgt wahrscheinlich mit einem ähnlichen Mechanismus, wie er aus *E. coli*-Stämmen, die resistent gegen Nourseothricin sind, bekannt ist. Die Resistenz dieser Stämme beruht auf der Detoxifizierung des Antibiotikums durch Acetylierung der β -Lysin Untereinheit (**SELTMANN**, 1989). Die Acetyltransferasen der GNAT-Superfamilie zeichnen sich durch vier Motive (A –D) aus, welche in der Primärsequenz schlecht konserviert sind und in der Reihenfolge C-D-A-B vorliegen (**ANGUS-HILL** *ET AL.*, 1999). Das am besten konservierte Motiv ist Motiv A, da es die kritischsten Kontakte bei der Bindung von Acetly-Coenzym A beinhaltet (**DyDA** *ET AL.*, 2000). Aus diesem Grund ist auch in diesem Bereich die am besten konservierte Sequenz der GNAT-Superfamilie, nämlich Q/R-x-H/K-G-x-G/A-K/R, zu finden. In AblB von *M. mazei* Gö1 liegt sie in der Form von R-G-K-G-H-M-K vor (Abb. 9).

EXPERIMENTE UND ERGEBNISSE

M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	V V M M M M	- I V T S	- VNQDP	- L - L L V	- N - Y -	I I E I Q I I	- L -	- - - - - - - - 	K D K	SSE R I	RKS HH	I I W I	K K R K	D T K D	C C Y I I	FFTESI	- - - - - - -	- K - D	- ILLA -	- −SFWT -	- EKKR -	N N D A	A A V V A	SGTSTP	E I D E D	E I D A S T -	EENDQTI	F F W W W	S S N N N Q		18 18 30 19 27 18 4
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	W W Y W	K K R L	W W W W		Y Y L V L V	R R S R T R	N N N H Q	R S R T G T	I I I V L	T T K E R R R R	T D T H D	V V V I V A	E E D E D R R	EETEDDS		EEKKDT	K K N K Q R E	L F Y L A	- L -	G	I I I I	L P T P N P G	L F L L L L	S D T T S V	D D E K E P P	T P K E V S	EEEEEE	K K K E E R R	- - - A L	R A T E A P	45 45 59 46 54 42 25
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	D D E G G A A	I I V V L	K Q A R Q E	K K Q I A A	A A C S A V	L L V T A A	EEDKKA A	V V S T H R	F F L I H Y	P S P R P K A	M M M L V V	A S A N R A	I I I A I	SSTT TT PT	Р Р Р Р К Р	Y Y Y Y A A	Y Y Y Y Y M	A A L A L A	S S S S S D E		I I I M I I I		Р Р Р Р Ø	D K N D N D	D D N D D D R	- L -	P P G P P P D	E K N R A D		P P P P P P	74 74 89 75 83 70 54
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	V I I V I I I I	R Y R R R A	L M K M A R	00000000	A S A S V F	V V V I V I V	P P A P P P P	QLSTHSS	S S S A S P P	A A K L K D E	EEEEEE	LLLLL	Q Q I N E E V	K K L K K E S	S S E A T A S	S S N A K E P	W F A Y G G	EEEDDEE	L M L M L D	EEEEEGG		P P P P P P P P	LLLLIII	C C S H A G	EEEEDD		QLETEDAS		<pre></pre>	P P P P P P P	104 104 119 105 113 100 84
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	S S V V V V V V	E K I P A P E	EEGGGRG	SS		I I L L I I		H H H H H H H	R R R R R R R	Y Y Y Y H Y	P P P P T P		R R R R R R R	V V V V V V V		FFFLFLL	L L Y L L F K	I I I V P P	SSN TT T	N P D N Y H	R R R R R N M Q Q T		G G A S S A A	M M M M V V V	Y Y Y Y Y Y Y Y		RRRRRR	H H H H Y F F		T T T T F F	134 134 147 133 141 128 112
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	R R R R R R R	K K R R K R	R R R R E E	R R K F F S M	V V A S L V	GGSGGFG	N N E Q Q S P	R R K S I I E	EESDGGG	- - - - L	H Y D M R S	DDNSGGN	Y P M V Y L	SSSPPTT	EEKMKRP	K E E K E A	A T E R Q A Q	I I I M L L	R Q D D E D	E K K A P A	G A A A A A	I I I I L F	E D D A A	Y Y Y Y Y Y Y	I I I I I I I I	R R R A A A	⊕ m e n n q d q	H H T T H R	H P N P P P P	E K Q A E Q	163 163 176 162 170 157 142
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	⊕vv vv vv uv vu uv	R R R R R R W		V V V V V V V	LLLLLH	L L L L L V	SSSSSTT	00000000	000000000		A P A G P P		LLLLSV	V V L V I L L	5 5 5 5 N P 5		EEEEQKR	R F T I A R		D D D E E A A	W W Y Y E D		L L L I L V M	G G S A K A D	E E K N R R	L L L L L L L	FFSRRE E	S D S E A A A	I I I I I I I I	P P F P P P D	193 193 206 192 200 187 172
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	H H H H H H H	V V V V V V V	EEEERK	I L I L L I L	V V I V I L V	R R R R R R	L I I I I F	GGGGGHH	T T S S T T T	R R R R R R	A V T A V	P P P P P P	V V V V V A	T V V V A V	L L L F L D	P P P P P P	000000000	R R R R R R A	I I I I I V	TTTTTT	P P D P D S P	EENEHGE			E N N S A A	I V M I A A		GGKKKQK	K K K K R	Y Y Y Y G S	223 223 236 222 230 216 202
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	P P H H H S		SSPPPMT	V V I V V V V	W W W W T Y	L L L L V V	N N N N V A	T T T T T L	H H H H H H	F F Y F F F F A	N N N N N N	H H H T H H	P P P P S A A	K K V N L R R	EEEEEE	I I I I I L	TTTTTT	PSKEKPP	E E E E E A A	A S S A T A	K K K K K K E R	K K K R E V A	A A A A A A A	MMLCCCC	NGDQERA	M M K L K T Q	LLLLM	A S A V R V	C R D D D Q D	A S A A A A	252 252 265 251 259 246 232

M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	0000000	I I V F V	P P P P V P	L L L V L M	GGGGLV	N N N N N S	0000000	S S T S A S T	V V V V V V V	LLLLL		R A R A K R	RGGGGGG	V V V I V V	N N N N N		C C C C S T N	₽ ₽ ₽ V T ₽	V M H H E E	I V V I V T	I M M L L	K K K K E V	NKKEKE EE		C C N V M C M	H Q N H R	E K K D E A	LLLLF	L V V M V	- - - Y	281 294 280 288 276 261
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	K R S K A R E	I S I L T	K K R R R G R	T V V V V I	R R R R R R R R	P P P P P P	Y Y Y Y Y Y	Y Y Y Y Y Y	L L L V L L	Y Y Y Y H H	Q Q Q Q H H	00000000		$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	SSSSSA A	F F K L E R P	0000000	L L I L M T	EESESAA	H H H H H H H H H H H H	FFFFRL	R R R R R R R R	T T T T A T T	SSSPPTT	V V V I I V	A A S S S S A A	R R K K K Q E	0000000	ЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧЧ	E E E E A A	311 311 324 310 318 306 291
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	I I I I I I I	I I M V M	EEEEER	M S G A A A		R R I R R R R	G G G G A G	H H H H R T	TTTTLL	3 5 H 5 5 5 5 5	00000000	L F Y I L	A A C A C A	V V V V V N Q	P P P P P P	T T R T T V T	F F F F Y Y	V V V V V V V	V V V V L L		A A A A A L I	P P P P P P P P P	G G G G E G	000000000000000000000000000000000000000	H D D D D D D D D D D D D D D D D D D D	99999999	K K K K K K K	I I T V V V	Р Р Р Р Р Р Р	V V V L L V	341 341 354 340 348 336 321
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	G G M M Q G G	P P P P P P	N N N N C N	Y Y Y Y P Y	L V V I I L	I V I E S	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SSWQQR	SSGSSED	D D S H P G G	T D D S D A	GGRKKT-	V V V T W	T T I V R -	L L L L I V	R R R R R E	N N N N G D	Y Y F F Q P	EEEEDD	00000000	V V I V V A A	I I I M V	C C T T S R R	V M S T T T P	Y Y Y Y Y Y	P P V S P R P	EEEEEP	P P P P I I	A A S I D I	E E D N H I	371 371 384 370 378 363 343
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	Y Y Y Y	S S G T V I I	S A P P	K A G G G I I		Q P S	Q Q K 	K K N K	C C C C C C C C C C			C C C C C C C C C C C C C C C C C C C		D D D G A I	K R K K	H H M M	P P C K T I	G E I V G I I	L G I I	КК D – Т – –	<u> </u>	D D E D	T T E -	- N H R -	QKS	- T V I -	00000	L I V I -	A E A H	R K G R -	397 397 412 393 405 363 343
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus		Y I L M I T	D T N K V A	H H D G D G	EEVEEE	N D G E	D D N	V I S -	I I M I	A S A N	L L L L L	E E I E V	P P P P P	E E V K	G G N G G	L L N L L	EEEK	R R R R R	- V - L	- - - - - -	- - L	- - R		- - - v	- - - Y	 - E	Q		- - - T	K K R	416 432 409 433 367 345
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	Q Q H	R R R	- - - S	- - L	- - K		- - L	- - R	E	- R K	- R R			- - L	- - K	- - E	- - ĸ	- - ĸ	- - W	- - L	- - A	– N E	– K Q	- R R	- н к	- - L		- E E	– – G	_ к	418 418 436 416 463 367 345
M. mazei Gö1 M. acetivorans M. maripaludis LL C. subterminale B. halodurans M. loti C. crescentus	- - ĸ	- S	- - D	– – E	F F M																										419 419 436 416 468 367 345

Abb. 8: Sequenzvergleich der Lysin-2,3-Aminomutase von *M. mazei* Gö1 mit Lysin-2,3-Aminomutasen von *M. acetivorans* (MA3979) (GALAGAN *ET AL.*, 2002), *M. maripaludis* LL/S2 (J. Leigh, persönliche Mitteilung), *C. subterminale* (RUZICKA *ET AL.*, 2000), *Bacillus halodurans* (BH2255) (TAKAMI *ET AL.*, 2000), *Mesorhizobium loti* (mll1971) (KANEKO *ET AL.*, 2000) und *Caulobacter crescentus* (CC0716) (NIERMAN *ET AL.*, 2001).

EXPERIMENTE UND ERGEBNISSE

M. mazei Gö1 M. acetivorans M. maripaludis LL	M M M	– P E	– G K	- - I	- - I	– – E	- - I	– A N	G D	– A S	– E I	– L I	- v Q	I I	D S	Ч Ч Д	- Y L	N N	Q D	R R	I I	- к ұ	- v I	M M	D E K	F F L	I T G	G G K	R L D	F F V	7 26 30
M. mazei Gö1 M. acetivorans M. maripaludis LL	E E G	E A E	I L L	A S I	G G K	A N H	L L V	K E D	A T S	L L V	A A C	G E N	T A E	E K K	K E K	M M L	G G S	K K K	I I V	I I F	V V A	Y Y K	T T V	P P S	P P G	E K N	K K	K G K	D N E	E D L	37 56 60
M. mazei Gö1 M. acetivorans M. maripaludis LL	P V F	E R E	T A K	C C N	G G G	Y C Y	M V I	E C	E E E	G G G	I I K	I I L	R R E	R G N	Y Y Y	Y F Y	A S S	G G N	K M D	D D D	C C A	H H Y	I I F	Y F M	52 52 52 52	N S K	Y Y F	P P F	E E	S S E	67 86 90
M. mazei Gö1 M. acetivorans M. maripaludis LL	S S S S	R R R	E G K	I I I	S S S	– – K	F F F	H Q S	K K	E E E	K K A	E E E	D D D	R Q V	I	I L	K K	N N	C C	L L L	R R N	K K Y	D K V	R R K	G E T	T T V	G G G	K K V	N R N	Q R P	96 115 115
M. mazei Gö1 M. acetivorans M. maripaludis LL	K Q H	K K T	K K K	K G -	I G -	S S	R R	K K	К М -	D E	N S	W W	K R	K Q -	R Q -	K K	E E	K K	S I -	R C -	L L I	P P D	E E E	G G K	Y Y F	T I H	L L L	R R K	P L I	A A A	126 145 128
M. mazei Gö1 M. acetivorans M. maripaludis LL	V V N	QQE	A A T	D D D	A A A	S S E	A A K	M M L	A A S	S A K	L L H	Y Y Y	S R S	Q Q K	G E V	F F F	E Q K	L L T	Y Y Y	P P P	T A F	P P P	L L I	H H D	M M D	E P	N N N	Y Y Y	I L I	L L L	156 175 158
M. mazei Gö1 M. acetivorans M. maripaludis LL	E E K	T T T	M M M	H D Q	S S T	N N N	V V V	L L K	Y Y Y	F L F	L L I	V V I	E E E	K R D	Y H N	G G G	K E K	I I I	V V V	S A	L L A	A A S	S S S	A A C	E E	M M M	D D D	P P I	K E K	N K N	186 205 188
M. mazei Gö1 M. acetivorans M. maripaludis LL	R A K	N S C	A A V	E E E	I I M	T T T	D D D	C C F	L L A	T T V	I V L	P P E	SSE	E Y	R R Q	G G K	K K L	G G G	H L L	M M S	K K K	E E Y	L L L	I I L	R K Y	A A I	L L M	E E E	K E K	E E I	216 235 218
M. mazei Gö1 M. acetivorans M. maripaludis LL	L L M	S S K	E D	R R N	S N G	F F Y	L L R	I S V	S S F	Y Y Y	T T T	L L I	C C A	R R R	A A S	S S I	A S S	P P Y	G G G	I I M	N N N	A S I	A A T	F F F	S A K	S S K	L L M	G G G	Y Y Y	A A M	246 265 248
M. mazei Gö1 M. acetivorans M. maripaludis LL	F C Y	T T S	G G G	R R T	L L A	V V V	N N N	N N N	C C T	R R N	I I I	G G C	N K G	G G N	F F F	E E E	D N D	M M M	N N N	I I F	W W W	C G Y	R K K	M L L	L L S	K E					271 291 274

Abb. 9: Sequenzvergleich der Acetyltransferasen (AblB) der Methanogenen *M. mazei* Gö1 (**DEPPENMEIER** *ET AL.*, 2002), *M. acetivorans* (MA3979) (**GALAGAN** *ET AL.*, 2002) und *M. maripaludis* (J. Leigh, persönliche Mitteilung).

3.2.4 Salzabhängige Expression des *abl*-Operons

Da die Produkte der beiden Gene *ablA* und *ablB* wahrscheinlich an der Biosynthese des kompatiblen Solutes N^e-Acetyl- β -Lysin beteiligt sind, kam die Frage auf, ob ihre Transkription salzreguliert ist. Um dies zu beantworten, wurden Northern-Blot-Analysen durchgeführt (Abb. 10). Dazu wurden die Zellen in Minimalmedium bei 38,5, 400 oder bei 800 mM NaCl bis zur späten exponentiellen Phase angezogen und RNA wurde isoliert. Nach dem Auftrennen der RNA im denaturierenden Agarosegel und dem Transfer auf eine Membran wurde die immobilisierte RNA mit Sonden gegen einen Teil von *ablA* bzw. *ablB* hybridisiert. Die Sonden wurden durch Amplifikation der Teilbereiche mit den Oligonukleotiden lam(BamHI)5' und lam(XbaI)3' für *ablA*, und act5' und act3' für *ablB* gewonnen. Als Kontrolle wurde ebenfalls eine Hybridisierung mit einer Sonde gegen das die γ -Untereinheit der Methyl-CoM Reduktase kodierende Gen (*mcrG*; amplifiziert mit den

Oligonukleotiden mcrG1 und mcrG2), durchgeführt. McrG ist in den Prozess der Methanogenese involviert und gilt als Housekeeping-Gen. Die Expression von *mcrG* ist weitgehend unabhängig von der externen Salzkonzentration (**RoeßLER** *ET AL.*, 2002).

Abb. 10: Die Expression von *ablA* und *ablB* ist salzabhängig. RNA aus Zellen von *M. mazei* Gö1, die bei der angegebenen Salzkonzentration in Minimalmedium gewachsen waren, wurde isoliert, einer denaturierenden Agarosegeleletrophorese unterzogen und auf eine Nylonmembran geblottet. Die Hybridisierung erfolgte mit Sonden gegen *mcrG*, *ablA* oder *ablB*.

Wie aus Abb. 10 zu erkennen ist, konnte die Salzunabhängigkeit der *mcrG*-Expression auch hier bestätigt werden. Die bestimmte Transkriptgröße von ungefähr 5500 Basen entspricht weitgehend der abgeleiteten Größe des *mcr*-Operons von 4940 Basen. Im Gegensatz dazu konnte keine Expression der Gene *ablA* und *ablB* bei 38,5 mM NaCl detektiert werden. Bei 400 und 800 mM NaCl hingegen zeigte sich ein deutlich anderes Bild. Die Transkription beider Gene war eindeutig induziert, wenn die Zellen in einer Hochsalz-Umgebung angezogen worden waren. Mit beiden Sonden wurde das gleiche Hybridisierungsmuster erzielt, was ein weiterer Hinweis auf die Organisation von *ablA* und *ablB* als Operon ist. Die bestimmte Transkriptgröße von 2600 Basen ist in Übereinstimmung mit der abgeleiteten Transkriptgröße des *abl*-Operons von 2448 Basen. Offensichtlich bestand kein Unterschied in der Transkriptmenge in Zellen, die bei 400 und in Zellen, die bei 800 mM NaCl gewachsen waren.

3.2.5 Bestimmung des Transkriptionsstarts des *abl*-Operons

Zur Aufklärung der Operonstruktur und zur Identifizierung des Promotors sollte der Transkriptionsstartpunkt des *abl*-Operons identifiziert werden. Dazu wurden Zellen von *M. mazei* Gö1 bei 38,5 oder 800 mM NaCl in Komplexmedium angezogen, und in der spätexponentiellen Wachstumsphase wurde RNA isoliert, die nach einem Verdau mit DNase direkt in die Primer-Extension-Analyse eingesetzt wurde. Als Starteroligonukleotid für die Verlängerungsreaktion durch die Reverse-Transkriptase wurde lamPErev1 gewählt. Als Referenz zur Längenbestimmung des Transkriptes wurde parallel dazu eine Sequenzanalyse nach der Kettenabbruchmethode mit demselben Starteroligonukleotid durchgeführt. Als Vorlage für die Sequenzierung diente ein 1029 Bp-langes Fragment, welches mittels der Oligonukleotide lamSeqfor1 und lamSeqrev1 amplifiziert worden war und einen Bereich von 886 Bp vor dem Startkodon von *ablA* abdeckte.

Abb. 11: Autoradiogramm der Primer-Extension-Analyse des *abl*-Operons. In den Spuren C, G, T und A sind die Produkte aus der DNA-Sequenzierung als Größen- und Positionsreferenz aufgetragen. In den letzten beiden Spuren ist das Extensionsprodukt der Analyse mit den angegebenen Salzkonzentrationen zu sehen. Die mit *-markierte Base stellt den Transkriptionsstartpunkt dar.

Die Primer-Extension-Analyse ergab ein Reaktionsprodukt, dessen 3'-Ende einer Position 163 Bp stromaufwärts des Startkodons von *ablA* entsprach. Das Signal war nur mit RNA von Zellen, die mit Hochsalz gewachsen waren, zu erkennen, was in Übereinstimmung mit den Ergebnissen der Expressionsanalyse mittels Northern-Blots ist. Eine Promotorstruktur, bestehend aus einem BRE-Element und einer TATA-Box konnte 19 Bp stromaufwärts des Transkriptionsstartpunktes identifiziert werden (Abb. 12). Somit liegt der Promotor 170 Bp stromaufwärts des Startkodons des ersten Gens des *abl*-Operons.

Abb. 12: Genetische Organisation des Promotorbereichs des *abl*-Operons. Der Pfeil bezeichnet den Transkriptionsstartpunkt, das Startkodon von *ablA* ist durch Fettdruck hervorgehoben, *ablA* ist unterstrichen dargestellt.

3.2.6 Konstruktion von Deletionsmutanten

Die bisher beschriebenen Ergebnisse stützen die Hypothese, dass *ablA* und *ablB* die Biosynthese des kompatiblen Solutes N^{ϵ}-Acetyl- β -Lysin aus α -Lysin katalysieren. Um zu untersuchen, ob die Produkte des *abl*-Operons in der Tat für die Bildung dieses kompatiblen Solutes verantwortlich sind, wurden Mutanten generiert, in denen die beiden Gene deletiert sind. Diese Δabl -Mutanten wurden dann auf ihre Fähigkeit zur N^{ϵ}-Acetyl- β -Lysin Bildung und auf ihr Vermögen an erhöhte Salzkonzentrationen zu adaptieren untersucht. Da für *M. mazei* Gö1 noch kein genetisches System vorhanden ist und die Genomsequenz von *M. acetivorans* zu diesem Zeitpunkt noch nicht veröffentlicht war, wurden diese Experimente mit *M. maripaludis* JJ in Zusammenarbeit mit Prof. W. Whitman (Department of Microbiology, University of Georgia, Athens, USA) durchgeführt.

3.2.6.1 Klonierung

Die beiden Gene *ablA* und *ablB* von *M. maripaludis* sind in der gleichen Form organisiert wie in *M. mazei* Gö1 (s. Abb. 6) und diesen recht ähnlich (s. Abb. 8 und Abb. 9). Um eine Deletion des *abl*-Operon zu erreichen, wurde das integrative Shuttle-Plasmid pKP1 nach dem in Abb. 13 dargestellten Schema konstruiert. Das Plasmid beruht auf dem Vektor pIJA03,

welchem ein passender Replikationsstartpunkt für Methanococcen fehlt. Es enthält die *pac*-Kassette, die Puromycin-Resistenz in Methanococcen kodiert, und die von zwei multiplen Klonierungsstellen (MCSI und MCSII) flankiert wird (**GERNHARDT** *ET AL.*, 1990; **METCALF** *ET AL.*, 1997; **STATHOPOULOS** *ET AL.*, 2001). Zur Konstruktion von pKP1 wurde nun ein 587 Bp-langes Fragment des 5'-Endes von *ablA* in die erste Konierungsstelle und ein 597 Bp-langes Fragment des 3'-Endes von *ablB* in die zweite Klonierungsstelle, stromabwärts der *pac* Kassette inseriert.

Abb. 13: Konstruktion des Plasmides pKP1. pKP1 basiert auf pIJA03 (**STATHOPOULOS** *ET AL.*, 2001). Ein Fragment von *ablA* wurde in die MCSI und ein Fragment von *ablB* in die MCSII kloniert.

Dieses Plasmid, pKP1, wurde anschließend linearisiert und in *M. maripaludis* JJ transformiert. Die Transformation wurde freundlicherweise von Herrn W. Lin (Department of Microbiology, University of Georgia, Athens, Georgia, USA) durchgeführt. In der Zelle sollte es dann zu einer homologen Rekombination von *ablA* und *ablB* aus dem Plasmid mit dem Wildtyp *abl*-Operon kommen, was zu einer Insertion der *pac*-Kassette in dieses Operon und damit einerseits zu einer Deletion desselben und andererseits zur Puromycin-Resistenz der Isolate führt. Es wurden zwei Isolate erhalten, welche als *M. maripaludis* JJ $\Delta abl1$ und *M. maripaludis* JJ $\Delta abl2$ bezeichnet wurden.

3.2.6.2 Verifizierung der Δabl -Deletionsmutanten

Die korrekte Insertion des Konstruktes in das *abl*-Operon von *M. maripaludis* JJ wurde mittels Southern-Blot-Analyse (s. Abb. 14) und PCR (s. Abb. 15) überprüft.

Abb. 14: Southern-Blot-Analyse der Δabl -Deletionsmutanten. Chromosomale DNA aus *M. maripaludis* JJ, *M. maripaludis* JJ $\Delta abl1$ und *M. maripaludis* JJ $\Delta abl2$ wurde mit den angegebenen Restriktionsenzymen geschnitten, im Agarosegel aufgetrennt und auf eine Nirozellulosemembran geblottet. Die Hybridisierung erfolgte mit Sonden, welche gegen *ablA* oder *pac* gerichtet waren.

Für die Southern-Blot-Analyse wurde chromosomale DNA aus M. maripaludis JJ, M. maripaludis JJ $\Delta abl1$ und M. maripaludis JJ $\Delta abl2$ isoliert und mit den Restriktionsenzymen XhoI oder KpnI geschnitten. Anschließend wurde sie im Agarosegel aufgetrennt und auf eine Nitrozellulosemembran geblottet. Die Hybridisierung erfolgte mit Sonden, welche gegen ablA oder pac gerichtet waren. Zur Generierung der Sonden wurde das Plasmid pKP1 mit den Restriktionsenzymen NheI, BamHI und XbaI geschnitten, im Agarosegel aufgetrennt und die entsprechenden Fragmente wurden aus dem Gel eluiert. Die Hybridisierung von DNA aus M. maripaludis JJ $\Delta abl1$ und aus M. maripaludis JJ $\Delta abl2$ führte zu identischen Hybridisierungsmustern (Abb. 14), was darauf hindeutet, dass beide Isolate identisch sind. Da das abl-Operon nicht komplett deletiert ist, sondern durch die Insertion der pac-Kassette nur Teile der Gene fehlen und die Sonde gegen den noch im Chromosom vorhandenen Teil von ablA gerichtet war, konnte auch in den Mutanten mit der Sonde gegen *ablA* ein Signal identifiziert werden. Ferner ist mit jeder Sonde nur ein Signal zu erkennen, was zeigte, dass das Konstrukt wie erwartet nur einmal in das Chromosom inseriert war. Die Beobachtung, dass die Sonden jeweils mit demselben Fragment der chromosomalen DNA hybridisierten, führte zu dem Schluss, dass das Konstrukt intakt in das Chromosom integriert wurde. Als Kontrolle wurde die DNA des Wildtyps ebenfalls mit beiden Sonden hybridisiert. Wie erwartet, konnte nur mit der Sonde, welche gegen ablA gerichtet war, ein Signal identifiziert werden. Das Fragment, an welches die Sonde gegen *ablA* band, hatte darüber hinaus eine andere Größe verglichen mit denen der Mutanten. Zusammenfassend deutet dies darauf hin, dass *M. maripaludis* JJ $\Delta abl1$ und *M. maripaludis* JJ $\Delta abl2$ identisch sind, und dass das Konstrukt nur einmal in das Chromosom integriert wurde, was in einer Deletion des *abl*-Operons resultierte.

Dieses Ergebnis sollte mittels einer PCR-Reaktion bestätigt werden. Dazu wurde mit den Oligonukleotiden lam-out-for und act-out-rev mit der chromosomalen DNA aus *M. maripaludis* JJ, *M. maripaludis* JJ $\Delta abl1$ und *M. maripaludis* JJ $\Delta abl2$ eine PCR durchgeführt. Beide Oligonukleotide binden außerhalb des Konstruktes, entweder stromaufwärts von *ablA* oder stromabwärts von *ablB*. In Abb. 15 ist das Ergebnis der PCR mit der chromosomalen DNA von *M. maripaludis* JJ $\Delta abl2$ dargestellt. Es konnte ein DNA-Fragment amplifiziert werden, dessen Länge der erwarteten Länge von 2681 Bp entspricht. Dies zeigt, dass das Konstrukt, bestehend aus *ablA-pac-ablB* in voller Länge an der korrekten Stelle im Chromosom von *M. maripaludis* JJ integriert worden ist. Als Kontrolle wurde ebenfalls eine PCR mit den gleichen Oligonukleotiden und DNA aus dem Wildtyp durchgeführt. Es wurde ein Fragment erhalten, dessen Größe gut mit der erwarteten Größe von 2131 Bp übereinstimmt. Mit der chromosomalen DNA von *M. maripaludis* JJ $\Delta abl1$ konnte kein PCR-Fragment amplifiziert werden. Der Grund hierfür wurde im Rahmen der Arbeit nicht weiter untersucht.

Abb. 15: PCR zur Verifizierung der Identität von *M. maripaludis* JJ $\Delta abl2$. Die PCR-Produkte, welche durch Amplifikation mit Oligonukleotiden, die außerhalb des *abl*-Operons binden, erhalten wurden, wurden im 0,8% igen Agarosegel aufgetrennt, die DNA mit Ethidiumbromid angefärbt und die Signale mittels eines UV-Transiluminators detektiert. Spur 1: PCR-Produkt *M. maripaludis* JJ, Spur 2: PCR-Produkt *M. maripaludis* JJ $\Delta abl2$.

3.2.6.3 Verlust der Fähigkeit der Deletionsmutanten zum Wachstum bei Hochsalz

M. maripaludis wird routinemäßig im Labor bei einer NaCl-Konzentration von 376,5 mM kultiviert, kann aber bis zu einer NaCl-Konzentration von 1 M wachsen (Abb. 16). Durch Wachstumsexperimente sollte überprüft werden, ob die Deletion des *abl*-Operons einen Einfluss auf die Fähigkeit zur Salzadaptation hat. Dazu wurden Zellen von *M. maripaludis* JJ, *M. maripaludis* JJ $\Delta abl1$ und *M. maripaludis* JJ $\Delta abl2$ in Anwesenheit von 376,5, 800 oder 1000 mM NaCl angezogen, und der Wachstumsverlauf wurde durch Messung der optischen Dichte dokumentiert.

Abb. 16: Das Wachstum der *M. maripaludis* Δabl Mutanten ist bei erhöhten Salzkonzentrationen inhibiert. Zellen von *M. maripaludis* JJ (\blacklozenge), *M. maripaludis* JJ $\Delta abl1$ (\triangle) und *M. maripaludis* JJ $\Delta abl2$ (O) wurden in Minimalmedium mit H₂ + CO₂ als Substrat in Anwesenheit von 376,5, 800 oder 1000 mM NaCl angezogen. Die Vorkultur war in Minimalmedium in Gegenwart von 376,5 mM NaCl mit H₂ + CO₂ als Substrat angezogen worden. Die Hauptkulturen wurden 10%ig beimpft. Alle 4 h wurden die Kulturen mit einem Überdruck von 2 bar mit H₂ + CO₂ versehen und alle 8 h wurde ein kompletter Gasaustausch mit H₂ + CO₂ vorgenommen und die Kulturen anschließend wieder mit 2 bar Überdruck versehen. Die optische Dichte bei 578 nm (OD₅₇₈) wurde unverdünnt im Hungate-Röhrchen gemessen.

M. maripaludis JJ wuchs bei einer Salzkonzentration von 376,5 mM NaCl mit einer Wachstumsrate von 0,306 h⁻¹ bis zu einer finalen optischen Dichte von 1,45 (Tab. 6). Wenn die externe Salzkonzentration auf 800 mM erhöht wurde, kam es weder zu einer signifikanten lag-Phase, noch zu einer deutlichen Verringerung der Wachstumsrate oder der finalen optischen Dichte. Mit einer NaCl-Konzentration von 1 M konnte eine geringe Erniedrigung der Wachstumsrate auf 0,150 h⁻¹ beobachtet werden. Salzkonzentrationen über 1 M NaCl führten zu nicht-reproduzierbarem Wachstum. Bei einer Salzkonzentration von 376,5 mM NaCl zeigten die Δabl -Mutanten von *M. maripaludis* JJ keinen signifikanten Unterschied in ihrem Wachstumsverhalten verglichen mit dem Wildtyp, was darauf hindeutet, dass N^e-Acetyl- β -Lysin kein essentielles kompatibles Solut bei dieser Salzkonzentration von 800 mM

NaCl deutlich eingeschränkt. Die Wachstumsrate reduzierte sich auf 0,084 h⁻¹ bzw. 0,089 h⁻¹ und es wurde nur noch eine finale optische Dichte von 0,59 bzw. 0,48 erreicht. Bei einer Salzkonzentration von 1 M NaCl konnte in den Mutanten kein wirkliches Wachstum mehr nachgewiesen werden. Dies zeigt deutlich, dass die Deletion des *abl*-Operons einen entscheidenden Einfluss auf das Wachstum der Zellen bei erhöhten Salzkonzentrationen hat und damit N^{ϵ}-Acetyl- β -Lysin essentiell für das Wachstum bei Hochsalz ist.

Tab. 6: Wachstumsraten und Verdopplungszeiten des *M. maripaludis*-Wildtyp und der Δabl -Mutanten bei unterschiedlichen Salzkonzentrationen in Minimalmedium.

	Wildtyp	$\Delta abl1$	$\Delta abl2$
NaCl [mM]	376.5 800 1000	376.5 800 1000	376.5 800 1000
Wachstumsrate μ [h ⁻¹]	0,306 0,211 0,150	$0,242 \ 0,084 \^{a)}$	$0,241 \ 0,089 \^{a)}$
^{a)} kein Wachstum	2,27 3,29 4,02	2,00 0,23	2.00 1,19

3.2.6.4 N^{ϵ}-Acetyl- β -Lysin Akkumulation im Wildtyp und den Deletionsmutanten von *M. maripaludis* JJ

Die optimale NaCl-Konzentration für das Wachstum von M. maripaludis beträgt 376,5 mM, was ungefähr der Salzkonzentration von Meerwasser entspricht. M. maripaludis ist aber, wie oben gezeigt, durchaus in der Lage, an NaCl-Konzentrationen von bis zu 1 M zu adaptieren (s. Abb. 16). NMR-Analysen sollten Auskunft über die kompatiblen Solute geben, welche im Cytoplasma von M. maripaludis bei Wachstum auf Hochsalz angereichert werden, und überprüfen, ob die Deletionsmutanten noch in der Lage sind, N^ε-Acetyl-β-Lysin zu produzieren. Dazu wurden Zellen des Wildtyps und der Deletionsmutanten bei unterschiedlichen NaCl-Konzentrationen in McN-Medium angezogen, in der späten exponentiellen Phase geerntet und einer NMR-Analyse unterzogen. Die NMR-Analyse wurde freundlicherweise von Frau Prof. Santos (Universidade Nova de Lisboa, Portugal) durchgeführt. M. maripaludis JJ akkumulierte bei einer Salzkonzentration von 376,5 mM NaCl 0,41 μ mol Glutamat/mg Protein, aber nur 0,14 μ mol N^{ϵ}-Acetyl- β -Lysin/mg Protein (Tab. 7). Wenn die Zellen hingegen in Anwesenheit von 800 mM NaCl kultiviert worden waren, erhöhte sich die intrazelluläre N^ε-Acetyl-β-Lysin-Konzentration 3,7fach auf 0,7 μ mol/mg Protein. Dieser Effekt war noch dramatischer, wenn die Zellen in Gegenwart von 1 M NaCl angezogen worden waren. In diesem Fall kam es zu einer Erhöhung der N^ε-Acetyl- β -Lysin-Konzentration um das 7,8fache auf 1,09 μ mol/mg Protein. Die Akkumulation von
N^ε-Acetyl-β-Lysin als Antwort auf die Erhöhung der externen Salzkonzentration deutet darauf hin, dass diese Verbindung in der Tat als kompatibles Solut genutzt wird. Die intrazelluläre Glutamat-Konzentration blieb jedoch auf einem ähnlichen Niveau und wurde somit nicht von der extrazellulären NaCl-Konzentration beeinflusst. Diese Daten zeigen, dass *M. maripaludis* JJ die Synthese des kompatiblen Solutes N^ε-Acetyl-β-Lysin mit steigenden Salzkonzentrationen induziert. Die Δabl -Mutanten hingegen waren, wie aus Tab. 7 ersichtlich ist, nicht mehr in der Lage N^ε-Acetyl-β-Lysin zu akkumulieren. Diese bewies eindeutig, dass *ablA* und *ablB* für Enzyme kodieren, die die Biosynthese des kompatiblen Solutes N^ε-Acetyl-β-Lysin aus α-Lysin katalysieren.

Tab. 7	: Kompatible Solute des	Wildtyps und der Δabl	-Mutanten von M. maripaludis J.	J.
--------	-------------------------	-------------------------------	---------------------------------	----

		Solute [µmol/mg]											
		Wildtyp $\Delta abl1$ Δ							$\Delta abl2$				
	376.5	800	1000	376.5	800	1000	376.5	800	1000				
Solute	n	nM NaC	1	r	nM NaC	21	n	mM NaCl					
N ^ε -Acetyl-β-Lysin	0.14	0.70	1.09	n.d ^a .	n.d.	n.a. ^b	n.d.	n.d.	n.a.				
Glutamat	0.41	0.32	0.39	0.48	0.41	n.a.	0.53	0.46	n.a.				

^an.d., nicht detektierbar

^bn.a., nicht ausführbar

3.2.6.5 N^{ϵ}-Acetyl- β -Lysin Akkumulation in *M. mazei* Gö1

M. maripaludis JJ akkumuliert als Antwort auf eine erhöhte Salzkonzentration N^e-Acetyl- β -Lysin. Diese Verbindung wird unter Beteiligung der Genprodukte von *ablA* und *ablB* synthetisiert. Da die Gene ursprünglich in *M. mazei* Gö1 identifiziert worden waren, war es natürlich ebenfalls von großem Interesse, ob auch dieser Organismus bei erhöhten NaCl-Konzentrationen N^e-Acetyl- β -Lysin akkumuliert. Dazu wurden Zellen in Minimalmedium bei 38,5, 400 und 800 mM NaCl angezogen, in der spätexponentiellen Wachstumsphase geerntet und einer Analyse mittels NMR-Spektroskopie unterzogen. Bei der Anzucht mit einer Salzkonzentration von 38,5 mM konnten weder N^e-Acetyl- β -Lysin noch Glutamat in den Zellen nachgewiesen werden (Tab. 8). Nach einer Erhöhung der Salzkonzentration auf 400 mM wurden aber bereits 0,14 μ mol/mg Protein N^e-Acetyl- β -Lysin und sogar 0,41 μ mol/mg Protein Glutamat akkumuliert. Die Menge an angereichertem N^e-Acetyl- β -Lysin stieg noch mal um das 5,9fache auf 0,82 μ mol/mg Protein an, wenn die Zellen bei 800 mM NaCl kultiviert worden waren. Die Glutamat-Konzentration änderte sich jedoch nur geringfügig auf 0,59 μ mol/mg Protein. Die Konzentrationen von N^e-Acetyl- β -Lysin in *M. maripaludis* JJ und *M. mazei* Gö1 bei den unterschiedlichen Salzkonzentrationen waren durchaus vergleichbar. Bei ca. 400 mM NaCl akkumulierten sie die gleiche Menge N^e-Acetyl- β -Lysin (0,14 μ mol/mg Protein) und auch bei einer NaCl-Konzentration von 800 mM lagen die Werte in einem vergleichbaren Bereich (0,7 bzw. 0,82 μ mol/mg Protein).

Konzentration [µmol/mg] in M. mazei Gö1									
Solute	38,5 mM NaCl ^a	400 mM NaCl ^a	800 mM NaCl ^a						
N ^ε -Acetyl-β-Lysin Glutamat	n.d. ^b n.d.	0,14 0,41	0,82 0,59						

	Tab.	8:	Ak	kun	nula	atior	i voi	n N	₹ - 2	Ace	etyl	l-β	-L	ysin	und	(Glutamat	in	М.	mazei	Gö	1
--	------	----	----	-----	------	-------	-------	-----	--------------	-----	------	-----	----	------	-----	---	----------	----	----	-------	----	---

^a angegeben ist die NaCl-Konzentration des Anzuchtmediums

^bn.d., nicht detektierbar

3.3 Immunologische Untersuchungen zum zellulären Gehalt von AbIB

Nachdem die direkte Beteiligung der Enzyme AblA und AblB an der Synthese von N^{ϵ}-Acetyl- β -Lysin gezeigt worden war, sollte nun die Produktion der Enzyme in *M. mazei* Göl untersucht werden. Dazu war es notwendig ein Antiserum zu generieren, welches gegen eines dieser Proteine gerichtet war.

3.3.1 Klonierung von *ablB* und Überproduktion als MalE-Fusionsprotein zur Gewinnung von Antikörpern

Um die Produktion von AblB unter unterschiedlichen Bedingungen untersuchen zu können, war es zunächst nötig ein Antiserum gegen AblB zu generieren. Dazu wurde das Gen mit den Oligonukleotiden ACT(BamHI)5' und ACT(SalI)3' amplifiziert, wodurch Restriktionsstellen für die Enzyme *Bam*HI und *Sal*I eingebracht wurden. Mittels dieser Schnittstellen wurde das Fragment in den Vektor pMalc2 kloniert und in *E. coli* DH5 α transformiert. Zur Produktion des MalE-Fusionsprotein wurde das Plasmid in *E. coli* BL21-Codon Plus (DE 3)-RIL umkloniert, da dieser Stamm einige in Bakterien selten vorkommende tRNAs besitzt, die aber in Archaeen häufig verwendet werden. Die Genexpression wurde durch Zugabe von IPTG gestartet. Wie in Abb. 17 zu erkennen ist, wurde das AblB-MalE-Fusionsprotein in *E. coli* produziert.

Abb. 17: Überproduktion des AblB-MalE-Fusionsproteins. SDS-PAGE der Zellextrakte von *E. coli* BL21-Codon Plus (DE 3)-RIL, der mit pMal-AblB transformiert worden war. v.I.: vor der Induktion durch IPTG; n.I.: 3 h nach der Induktion durch IPTG.

Das Fusionsprotein wurde über Affinitätschromatographie gereinigt und der Erfolg der Reinigung mittels SDS-PAGE überprüft (Abb. 18). Das mit dem Pfeil markierte Protein stellt das AblB-MalE-Fusionsprotein dar. Wie mittels einer Western-Blot-Analyse mit einem Antiserum gegen MalE gezeigt werden konnte, handelt es sich bei den kleineren Proteinen, die in der SDS-PAGE detektiert werden konnten, um Abbauprodukte dieses Fusionsproteins (Daten nicht gezeigt). Somit konnte das Fusionsprotein in ausreichender Qualität gereinigt werden und wurde zur Produktion des Antiserums direkt in ein Kaninchen injiziert.

Abb. 18: Reinigung des AblB-MalE-Fusionsproteins. SDS-PAGE der einzelnen Fraktionen der Aufreinigung des AblB-MalE-Fusionsproteins mittels Affinitätschromatogrphie. E1 bis E4: Fraktionen 1 – 4 des Eluats.

3.3.2 Produktion von AblB in salzadaptierten Zellen

Zunächst sollte der zelluläre Gehalt von AblB in salzadaptierten Zellen von *M. mazei* Gö1 analysiert werden. Dazu wurde *M. mazei* Gö1 mit 38,5 oder 800 mM NaCl in Minimalmedium angezogen, und die Zellen wurden in der späten exponentiellen Wachstumsphase geerntet. Die erhaltenen Zellextrakte wurden anschließend in einer SDS-PAGE aufgetrennt, auf eine Nitrozellulosemembran geblottet und mit dem Antiserum gegen AblB inkubiert (Abb. 19). Die Western-Blot-Analyse zeigte, dass AblB nur in an 800 mM NaCl adaptierten Zellen produziert wurde, was in guter Übereinstimmung mit den Ergebnissen der Northern-Blot-Analysen ist.

Abb. 19: Produktion von AblB in salzadaptierten Zellen. Zellextrakte von *M. mazei* Gö1-Kulturen, die in Anwesenheit von 38,5 oder 800 mM NaCl in Minimalmedium gewachsen waren, wurden durch SDS-PAGE aufgetrennt, auf eine Nitrozellulosemembran geblottet und mit Antiserum gegen AblB (40 μ l in 20 ml PBST) inkubiert.

3.3.3 Produktion von AblB nach einem hyperosmotischen Schock

Im Folgenden sollte die Produktion von AblB nach einem hyperosmotischen Schock untersucht werden, um zu analysieren, wann die Synthese der Enzyme beginnt und somit die Produktion von N^{ε}-Acetyl- β -Lysin. Dazu wurden Zellen von *M. mazei* Gö1 in Minimalmedium mit 38,5 mM NaCl angezogen. Wenn die Kulturen eine optische Dichte von ca. 0,4 erreicht hatten, wurde die Salzkonzentration durch Zugabe von NaCl auf 800 mM erhöht.

Abb. 20: Wachstum von *M. mazei* Gö1 nach einem hyperosmotischen Schock auf 800 mM NaCl in Minimalmedium. Die Zellen wurden in Minimalmedium mit 38,5 mM NaCl bis zu einer optischen Dichte von ca. 0,4 angezogen, dann wurde die NaCl-Konzentration durch Zugabe von 7,6 ml einer 5 M NaCl-Stammlösung zu einer 50-ml-Kultur auf 800 mM erhöht. Das Wachstum wurde durch Messung der optischen Dichte bei 578 nm (OD₅₇₈) verfolgt. An den mit Pfeilen markierten Zeitpunkten wurden Proben für die Analyse der Produktion von AblB entnommen.

Dies resultierte in einem sofortigen Anstieg der optischen Dichte, was wahrscheinlich auf ein Anschwellen der Zellen, wie es unter dem Mikroskop beobachtet werden kann, zurückzuführen ist. Nach einer lag-Phase von 24 h wuchsen die Zellen wieder normal weiter (Abb. 20). Der Wachstumsverlauf glich somit weitgehend demjenigen, welcher bei Kulturen in Komplexmedium nach einem hyperosmotischen Schock beobachtet wurde (s. Abb. 30) mit der Ausnahme, dass die lag-Phase nach dem Salzschock geringfügig verlängert war. Zu unterschiedlichen Zeitpunkten (3, 9, 12, 15, 24, 33, 52 und 83 Stunden) nach dem Schock wurden Proben entnommen und diese in einem Western-Blot mit einem Antiserum, welches gegen AblB gerichtet war, auf die Produktion der β -Lysin-Acetyltransferase untersucht (Abb. 21).

Abb. 21: Produktion von AblB in *M. mazei* Gö1 nach einem hyperosmotischen Schock. *M. mazei* Gö1 wurde in Minimalmedium bis zu einer optischen Dichte von 0,4 angezogen und auf 800 mM NaCl geschockt. Vor und zu den angegebenen Zeitpunkten nach dem Schock wurden Zellextrakte hergestellt, diese in der SDS-PAGE aufgetrennt, auf Nitrozellulosemembranen geblottet und mit einem Antiserum gegen AblB (40 μ l in 20 ml PBST) inkubiert.

Erst 24h nach dem hyperosmotischen Schock konnte ein Signal identifiziert werden, welches der Acetyltransferase AblB entspricht. Wie aus Abb. 20 ersichtlich ist, war dies der letzte Zeitpunkt in der lag-Phase, kurz bevor die Zellen wieder mit dem Wachstum begannen. Dies unterstützte die Hypothese, dass es in der beobachteten lag-Phase zur Produktion von Proteinen kommt, welche essentiell für die Adaptation an erhöhte Salzkonzentrationen sind. AblB war anschließend über den gesamten Wachstumsverlauf in den Zellen nachzuweisen. Die Stärke des Signals, und damit die Menge des in der Zellen vorhandenen AblB, nahm von 24 bis 52 h nach dem hyperosmotischen Schock deutlich zu, blieb dann allerdings auf einem ähnlichen Niveau erhalten, bis die Zellen die stationäre Phase erreicht hatten. Dies zeigte, dass N^ε-Acetly-β-Lysin erst am Ende der lag-Phase synthetisiert werden kann und führte zu der Vermutung, dass die maximale Akkumulation von N^ε-Acetly-β-Lysin erst nach einigen Zellteilungen zu beobachten ist. Ferner konnten zwei weitere Signale in der Western-Blot-Analyse identifiziert werden, die weiter unten im Gel lokalisiert waren. Ihr Erscheinen war jedoch nicht reproduzierbar und unabhängig von der Salzkonzentration. Es ist anzunehmen, dass es sich bei diesen Signalen um unspezifische Kreuzreaktionen des Antiserums gegen AblB mit anderen Proteinen der Zelle handelt. Da die Signale auch in Zellen zu identifizieren waren, in denen kein AblB nachzuweisen war, konnte ausgeschlossen werden, dass es sich um Abbauprodukte der β-Lysin-Acetyltransferase handelte. Die Identität dieser unspezifisch detektierten Proteine wurde jedoch im Rahmen der Arbeit nicht weiter untersucht.

3.4 Genomweite Expressionsanalyse bei salzadaptierten Zellen

Änderungen in der Salzkonzentration der Umgebung führen zu weitreichenden Veränderungen in der Zelle. So muss für ein Überleben bei hohen Salzkonzentrationen gewährleistet sein, dass der Turgordruck erhalten bleibt und es weder zu einem starken Schrumpfen noch zu einem Platzen der Zelle kommt. Außerdem müssen die zellulären Funktionen erhalten bleiben und die Proteine stabilisiert werden. Dies erfordert ein fein abgestimmtes System von Signalwahrnehmung und -weiterleitung, dessen Ziel in der Expression von benötigten Genen und der Produktion ihrer Produkte liegt. Bis zum heutigen Zeitpunkt gibt es noch keine Studien in Archaeen, die das Signal oder die Signaltransduktionskette zum Inhalt haben, die zu einer Adaptation an erhöhte Salzkonzentrationen führt. Um ein wenig Licht in diese komplexen Vorgänge zu bringen, wurde eine genomweite Expressionsanalyse mit Zellen durchgeführt, welche in Komplexmedium an eine Salzkonzentration von 800 mM NaCl adaptiert waren.

3.4.1 Wachstum von salzadaptierten Zellen von M. mazei Gö1

M. mazei Gö1 ist, wie bereits in früheren Studien gezeigt wurde, in der Lage, an Salzkonzentrationen bis zu 1 M NaCl zu adaptieren (**ROEßLER** *ET AL.*, 2002). In Abb. 22 ist eine typische Wachstumskurve dieses Organismus in Komplexmedium bei unterschiedlichen Salzkonzentrationen mit Methanol als Substrat dargestellt.

Abb. 22: Einfluss der Salzkonzentration auf das Wachstum von *M. mazei* Gö1. Zellen von *M. mazei* Gö1 wurden in Komplexmedium mit (\bigcirc) 38,5, (\blacksquare) 200, (\blacktriangle) 400, (\square) 800, oder (\triangle)1000 mM NaCl mit Methanol als Substrat angezogen. Die optische Dichte wurde bei 578 nm (OD_{578}) unverdünnt direkt im Hungate-Röhrchen bestimmt.

Mit steigender NaCl-Konzentration war eine deutliche Verlängerung der lag-Phasen zu erkennen. Während bei 38,5 und 200 mM NaCl noch keine lag-Phase zu beobachten war, zeigte sich bereits eine vergleichsweise kurze lag-Phase von ca. 22 h bei einer Salzkonzentration von 400 mM. Diese verlängerte sich deutlich auf 42 h bei 800 mM NaCl, bzw. auf 85 h bei einer NaCl-Konzentration von 1 M. Die Wachstumsraten der Kulturen, die mit bis zu 400 mM NaCl angezogen worden waren, wichen nicht signifikant voneinander ab. Allerdings ließ sich eine Reduktion der Wachstumsrate um 30 bzw. 46% beobachten, wenn die Zellen in Gegenwart von 800 bzw. 1000 mM NaCl kultiviert worden waren. Die finale optische Dichte der Kulturen zeigte keine signifikanten Unterschiede.

Zur genomweiten Analyse der Genexpression wurden nun Zellen bei 38,5 oder 800 mM in Komplexmedium angezogen, bei einer optischen Dichte von 0,5 geerntet und RNA wurde isoliert. Die Zellen waren an die angegebene Salzkonzentration adaptiert, d. h. sie waren für mindestens 5 Transfers bei der angegebenen NaCl-Konzentration gewachsen. Nach einem Verdau der isolierten RNA mit DNase, wurde sie in das Microarray-Experiment eingesetzt.

3.4.2 Identifizierung von salzinduzierten Genen mittels DNA-Microarrays

Für die DNA-Microarrays wurden fünf RNA-Parallelen analysiert, wobei mit jeder Parallele zusätzlich noch ein sogenanntes "Flip-Dye"-Experiment durchgeführt wurde. Dafür wurde das Experiment mit demselben RNA-Paar wiederholt, aber die RNA-Proben wurden mit dem jeweils anderen Fluoreszenzfarbstoff markiert. Im Endeffekt wurde so jede RNA mit beiden Fluoreszenzfarbstoffen markiert, um Farbstoff-bedingte Fehler zu minimieren. Die hier dargestellten Werte repräsentieren also den Mittelwert aus 10 Experimenten, die aus fünf unabhängigen Parallelen bestehen. In Abb. 23 ist exemplarisch ein Block einer DNA-Microarray-Analyse dargestellt. RNA, die aus Zellen, die bei 38.5 mM NaCl gewachsen waren, isoliert worden war, wurde mit Cy3 markiert und erscheint also grün, während RNA, welche aus bei Hochsalz gezogenen Zellen gewonnen worden war, mit Cy5 markiert wurde, und somit rot erscheint. Nicht regulierte Gene erscheinen gelb, da sowohl rot- als auch grünmarkierte RNA im gleichen Verhältnis an den immobilisierten ORF bindet.

Abb. 23: DNA-Microarray. Dargestellt ist exemplarisch ein Microarray-Slide und vergrößert ein Block. Rote Spots repräsentieren salzinduzierte Gene, grüne salzreprimierte Gene, und nicht regulierte Gene erscheinen gelb.

Die statistische Auswertung der DNA-Microarrays erfolgte durch die SAM-Software (**TUSHER** *ET AL.*, 2001), welche Permutationen verwendet, um den Prozentsatz der Gene zu bestimmen, welche fälschlicherweise identifiziert werden. Dieser Prozentsatz wird als FDR (false discovery rate) bezeichnet. Die FDR ist definiert als der Prozentsatz der fälschlicherweise als signifikant bezeichneten Gene von allen als signifikant identifizierten Genen. Mittels des Δ -Wertes kann die FDR eingestellt werden. Der Δ -Wert wurde bei allen Microarray-Experimenten dieser Arbeit so gewählt, dass die FDR bei max. 5% liegt. In diesem Fall war dies ein Δ -Wert von 1,58571 und eine FDR von 4,69648%. Dies produzierte 114 signifikant in ihrer Expression veränderte Gene, mit 0,90799 Genen, die fälschlich als signifikant bezeichnet wurden. 102 dieser signifikant in ihrer Expression veränderten Gene waren bei Hochsalz stärker exprimiert als bei Niedrigsalz und die restlichen 12 waren bei 800 mM NaCl schwächer exprimiert. Die komplette Liste aller salzregulierten Gene ist im Anhang dargestellt. Im Folgenden soll auf einige der salzregulierten Gene näher eingegangen werden.

Wie aus Tab. 9 ersichtlich, bestätigte das Ergebnis des Microarrays die Ergebnisse der Northern-Blot-Analysen (s. 3.1 und 3.2.4). Alle Gene des *ota*-Operon waren bei 800 mM NaCl signifikant höher exprimiert als bei 38,5 mM NaCl. Die Genregion, in der das *ota*-Operon auf dem Chromosom lokalisiert ist, ist in Abb. 24 dargestellt. Es befinden sich in der direkten Umgebung keine weiteren Gene, deren Produkte an der Osmoadaptation beteiligt zu sein scheinen. Auch die salzabhängige Expression des abl-Operons konnte gezeigt werden, obwohl die Analyse mit RNA durchgeführt wurde, welche aus Zellen isoliert worden war, die in Komplexmedium gewachsen waren. Da die Komplexbestandteile des Medium in der Regel die Synthese von kompatiblen Soluten hemmen, deutet dies darauf hin, dass die im Komplexmedium verfügbaren kompatiblen Solute entweder nicht ausreichten um die Zelle adäquat zu versorgen, oder aber, dass keine Repression der Biosynthesegene durch externe kompatible Solute vorlag. Da jedoch für andere Methanosarcina-Spezies gezeigt wurde, dass Glycinbetain im Medium die Synthese von N^ε-Acetyl-β-Lysin reprimiert (SOWERS UND **GUNSALUS**, 1995), ist anzunehmen, dass dies generell auch in *M. mazei* Göl der Fall ist, aber in diesem Fall die Menge der zur Verfügung stehenden kompatiblen Solute nicht ausreichte, um das Überleben der Zelle bei 800 mM NaCl sicherzustellen. Um diese Frage eindeutig zu klären, müsste die Expression des abl-Operons, z. B. mittels quantitativer PCR, unter beiden Bedingungen direkt verglichen werden. Ferner wäre es von Interesse, die mindestens benötigte Menge kompatibler Solute für eine - wenn vorhanden - vollständige Repression des abl-Operons zu bestimmen. Dies könnte mittels quantitativer PCR mit RNA aus Zellen, die in Minimalmedium mit unterschiedlichen Konzentrationen von z. B. Glycinbetain angezogen worden waren, erfolgen. Die Genregion in der sich das abl-Operon befindet, wurde bereits in 3.2.2 besprochen.

Ferner konnten drei weitere Gene, pstS, pstC und pstB, welche für einen primären Phosphat-Transporter kodieren, als signifikant induziert identifiziert werden. Diese drei Gene sind Teil eines Operons, des pst-Operons, welches in ähnlicher Struktur auch in E. coli vorliegt (AGUENA ET AL., 2002). In M. mazei Gö1 besteht es aus sechs Genen, welche in der Reihenfolge 5'-pstS-pstC-pstA1-pstA2-pstB-phoU-3' organisiert sind und für die typischen Komponenten eines ABC-Transporters kodieren. Das erste Gen pstS kodiert für ein putatives extrazelluläres Phosphat-Bindeprotein. Die drei Gene stromabwärts davon, pstC, pstA1 und *pstA2*, haben Ähnlichkeiten zu Transmembranproteinen und bilden wahrscheinlich die Pore, durch welche Phosphat transportiert wird. Weiter stromabwärts liegt pstB, welches für das putative ATP-Bindeprotein kodiert. Am 3'-Ende des pst-Operons liegt phoU. Die Funktion des phoU Genproduktes ist noch nicht geklärt. Ein weiteres Gen, welches in den Zusammenhang mit Phosphat gebracht wird, ppk, wurde ebenfalls mittels des Microarrays identifiziert. ppk kodiert für eine putative Polyphosphatkinase, welche die Synthese von Polyphosphat (PolyP) aus P_i katalysiert. In Abb. 25 und Abb. 26 sind die Regionen des Genoms von M. mazei Göl dargestellt, in denen sich das pst-Operon und ppk befinden. Während in der Umgebung des pst-Operons keine weiteren Gene identifiziert werden konnten, denen aufgrund ihrer Annotation eine Rolle bei der Osmoadaptation zugesprochen werden kann, liegt direkt stromabwärts von ppk das ppx-Gen, das für eine Exopolyphosphatase kodiert und somit für die Spaltung von PolyP verantwortlich ist.

Tab. 9: Signifikant höher exprimierte Gene in salzadaptierten Zellen v	von M.	mazei Gö1,	bestimmt	durch
DNA-Microarray-Analysen.				

Funktion		hnung (ID)	relative	x-fache
			Differenz	Änderung
			der Gene	xpression
Glycinbetain-Transporter, ATP-Bindeprotein	otaA	(MM0040)	8,26	NA^1
Glycinbetain - Transporter, Permease	otaB	(MM0041)	3,53	NA
Glycinbetain - Transporter, Glycinbetain -	otaC	(MM0042)	3,52	59,35
Bindeprotein				
Lysin-2,3-Aminomutase	ablA	(MM0934)	8,02	NA
β-Lysin-Acetyltransferase	ablB	(MM0935)	5,40	NA
Phosphat-Transporter, Phosphat-Bindeprotein	pstS	(MM2005)	5,59	NA
Phosphat-Transporter, Permease	pstC	(MM2006)	6,84	63,41
Phosphat-Transporter, ATP-Bindeprotein	pstB	(MM2009)	3,76	5,44
Hypothetisches Protein		(MM0077)	3,63	6,28
Surface-Layer-Protein B	slpB	(MM1589)	5,80	5,04
Na ⁺ /Glutamat Symporter	gltS	(MM1782)	4,66	2,65
Polyphosphat Kinase	ppk	(MM1375)	3,24	1,86

¹Die x-fache Änderung der Expression $(|\bar{x}_{i2}/\bar{x}_{il}|)$ kann nicht berechnet werden, da $\bar{x}_{il} \le 0$ oder $\bar{x}_{i2} \le 0$ (oder beides ≤ 0). Wobei \bar{x}_{il} und \bar{x}_{i2} die durchschnittliche Fluoreszenz eines Genes *i* unter einer der beiden Bedingungen (1 oder 2) ist.

Des weiteren konnte ein ORF (MM0077) identifiziert werden, dessen Expression bei 800 mM signifikant höher war als bei 38,5 mM NaCl. MM0077 ist als hypothetisches Protein mit Verwandtschaft zu Icc-Proteinen annotiert, und besitzt möglicherweise eine regulative Funktion. So ist ein Icc-Protein in *E. coli*, CpdA, an der Regulation des *lac*-Operons beteiligt (**IMAMURA ET AL.**, 1996). Die salzabhängige Expression von MM0077 wurde zusätzlich mittels Northern-Blot-Analyse verifiziert (Daten nicht gezeigt). Die Genregion in der MM0077 lokalisiert ist, ist in Abb. 27 dargestellt. Auch hier waren keine Gene in der direkten Umgebung zu identifizieren, deren Produkte eine Rolle bei der Osmoadaptation spielen könnten.

Auch die Expression des Gens *slpB*, welches für ein Surface-Layer-Protein B kodiert, war signifikant höher, wenn die Zellen an eine Salzkonzentration von 800 mM adaptiert waren. Direkt stromabwärts von *slpB* liegt ein anderes Gen, *slgB*, welches ebenfalls ein Surface-Layer-Protein B kodiert (Abb. 28) (**YAO** *ET AL.*, 1994). Es konnte aber keine signifikante Erhöhung der Expression von *slgB* bei salzadaptierten Zellen von *M. mazei* Gö1 beobachtet werden.

Ein weiteres Gen, welches am Prozess der Osmoadaptation beteiligt sein könnte und dessen Expression signifikant bei salzadaptierten Zellen erhöht war, ist *gltS*, welches für einen putativen Natrium/Glutamat-Symporter kodiert. Die Genregion in der *gltS* auf dem Chromosom lokalisiert ist, ist in Abb. 29 dargestellt. Direkt stromaufwärts von *gltS* liegt ein Gen, das für eine putative signaltransduzierende Histisin-Kinase kodiert. Ob diese allerdings Teil eines 2-Komponentensystems ist, welches an der salzabhängigen Regulation der Expression von Genen beteiligt ist, kann auf der Basis der vorhandenen Daten nicht geklärt werden.

Abb. 24: Physikalische Karte der Genregion von *M. mazei* Gö1, in der sich das *ota*-Operon befindet. Dargestellt sind die Gene MM0036 bis MM0045.

Abb. 25: Physikalische Karte der Genregion von *M. mazei* Gö1, in der sich das *pst*-Operon befindet. Dargestellt sind die Gene MM2002 bis MM2013.

Abb. 26: Physikalische Karte der Genregion von *M. mazei* Gö1, in der sich *ppk* befindet. Dargestellt sind die Gene MM1372 bis MM1377.

Abb. 27: Physikalische Karte der Genregion von *M. mazei* Gö1, in der sich MM0077 befindet. Dargestellt sind die Gene MM0072 bis MM0084.

Abb. 28: Physikalische Karte der Genregion von *M. mazei* Gö1, in der sich *slpB* befindet. Dargestellt sind die Gene MM1584 bis MM1595.

Abb. 29: Physikalische Karte der Genregion von *M. mazei* Gö1, in der sich gltS befindet. Dargestellt sind die Gene MM1780 bis MM1789.

3.4.3 Verifizierung der salzabhängigen Expression von Genen durch quantitative PCR

Einige der mittels der DNA-Microarrays in salzadaptierten Zellen in Komplexmedium identifizierten Gene waren von besonderem Interesse. Die erhöhte Expression dieser sollte mit quantitativer PCR bestätigt werden. Dazu wurde RNA aus Zellen, die an 38,5 bzw. 800 mM NaCl in Komplexmedium adaptiert waren, in einem Schritt durch Reverse-Transkriptase in DNA umgeschrieben, und die entsprechenden Gene wurden anschließend mittels homologer Oligonukleotide amplifiziert. Der in dem Ansatz enthaltene Fluoreszenzfarbstoff Cyber-Green ist in der Lage, an doppelsträngige DNA zu binden, wobei er ein Fluoreszenzsignal emittiert. Die Fluoreszenz ist somit ein Maß für die Menge an amplifizierter DNA. Der Zeitpunkt in der Reaktion, an dem die Fluoreszenz einen definierten Schwellenwert überschreitet, wird als C_t-Wert bezeichnet. Aus den C_t-Werten kann die x-fache Induktion eines Gens berechnet werden. Im Anschluss an die eigentliche Reaktion wurde eine Schmelzkurve erstellt, durch welche die Spezifität und Identität der RT-PCR-Produkte überprüft wurde. Die hier angegebenen Werte sind die Mittelwerte aus drei unabhängigen Experimenten (Tab. 10).

Gen	Beschreibung	Induktion (x-fach) ¹
otaA (MM0040)	Glycinbetain-Transporter, ATP Bindeprotein	9,14
otaB (MM0041)	Glycinbetain - Transporter, Permease	22,69
otaC (MM0042)	Glycinbetain - Transporter, Glycinbetain - Bindeprotein	25,98
ablA (MM0934)	Lysin-2,3-Aminomutase	126,58
ablB (MM0935)	β-Lysin-Acetyltransferase	56,18
<i>pstS</i> (MM2005)	Phosphat-Transporter, Phosphat-Bindeprotein	11,66
<i>pstC</i> (MM2006)	Phosphat-Transporter, Permease	18,33
<i>pstA1</i> (MM2007)	Phosphat-Transporter, Permease	21,7
pstA2 (MM2008)	Phosphat-Transporter, Permease	15,09
<i>pstB</i> (MM2009)	Phosphat-Transporter, ATP-Bindeprotein	7,39
<i>phoU</i> (MM2010)	Phosphat Transportsystem Protein	4,8
MM0077	Hypothetisches Protein	5,37
<i>slpB</i> (MM1589)	Surface-Layer-Protein B	4,41

Tab. 10: Gene, deren Expression in salzadaptierten Zellen von *M. mazei* Gö1 induziert ist. Dargestellt sind die Ergebnisse der quantitativen PCR.

¹der quantitative Nachweis erfolgte durch quantitative PCR.

Die im Microarray beobachtete erhöhte Expression der Gene des ota-Operons konnte durch quantitative PCR bestätigt werden. Die Expression von otaA war um den Faktor 9 erhöht, wohingegen die Expression von otaB und otaC deutlich stärker erhöht war (23- bzw. 26fach). Die Expression von gltS und ppk wurde nicht mittels quantitativer PCR untersucht. Die stärkste Induktion der Expression konnte für die Gene des abl-Operons nachgewiesen werden. So war *ablA* in salzadaptierten Zellen ca. 127fach stärker exprimiert und *ablB* ca. 56fach. Obwohl laut der Ergebnisse des DNA-Microarrays nur die Expression von drei Genen des pst-Operons induziert war, wurden in der quantitativen PCR-Analyse, welche wesentlich sensitiver ist als der Microarray, alle Gene des Operons überprüft. Mittels dieser Methode konnte für alle Gene des pst-Operons eine erhöhte Expression in salzadaptierten Zellen nachgewiesen werden. Das pstS Gen war ca. 12fach induziert und die Gene, welche für die Transmembranproteine kodieren, variierten in ihrer Induktion von 15- bis 22fach, wohingegen *pstB* nur eine ca. 7fach erhöhte Expression zeigte. Die geringste Induktion von ca. 5fach konnte für phoU beobachtet werden. Auch die verstärkte Expression von MM0077 (5fach) und *slpB* (4fach) bei salzadaptierten Zellen konnte mittels quantitativer PCR bestätigt werden. Somit war es möglich, die Ergebnisse des DNA-Microarrays durch eine andere Methode zu verifizieren.

3.5 Zeitabhängige Expression von Genen nach hyperosmotischem Schock

Mikroorganismen sind in ihrer natürlichen Umgebung sich ständig ändernden Umweltbedingungen ausgesetzt. Neben anderen Faktoren spielt die Änderung der Salzkonzentration durch Austrocknung oder Regen eine entscheidende Rolle. Auf einen Anstieg der Salzkonzentration müssen die Zellen sofort reagieren, um den Verlust von Wasser zu verhindern, und damit ein Schrumpfen der Zelle zu vermeiden und den Turgor zu erhalten. Doch wie wird das erreicht? Welche Gene werden angeschaltet und welche abgeschaltet? Wie schafft es die Zelle sich in kürzester Zeit an die erhöhte Salzkonzentration anzupassen? Um Antworten auf diese Fragen zu erhalten, wurde eine genomweite Expressionsanalyse in *M. mazei* Gö1 nach einem hyperosmotischen Schock durchgeführt.

3.5.1 Wachstum von M. mazei Gö1 nach hyperosmotischem Schock

M. mazei Gö1 reagiert auf einen hyperosmotischen Schock mit einer lag-Phase (Abb. 30), deren Länge abhängig von der Salzkonzentration ist. Zellen von *M. mazei* Gö1 wurden bei einer Salzkonzentration von 38,5 mM NaCl in Komplexmedium bis zu einer optischen Dichte von 0,4 angezogen. Dann wurde durch Zugabe einer anaeroben NaCl-Lösung die Salzkonzentration auf 400 bzw. 800 mM erhöht. Eine plötzliche Erhöhung der NaCl-Konzentration auf 400 mM resultierte in einer lag-Phase von ca. 12 h. Anschließend wuchsen die Zellen wieder weiter, wobei kein deutlicher Unterschied in der Wachstumsrate und der finalen optischen Dichte zu beobachten war. Eine Erhöhung der Salzkonzentration auf 800 mM hingegen führte zu einer deutlichen Verlängerung der lag-Phase auf ca. 22 h. Danach wuchsen die Zellen wieder normal weiter.

Abb. 30: Wachstum von *M. mazei* **Gö1 nach einem hyperosmotischen Schock.** Die Zellen wurden mit 38,5 mM NaCl in Komplexmedium bis zu einer optischen Dichte von 0,4 angezogen, dann wurde die NaCl-Konzentration auf 400 bzw. 800 mM erhöht. Das Medium wurde dabei 1,07 bzw. 1,14fach verdünnt. Das Wachstum wurde durch Messung der optischen Dichte bei 578 nm (OD₅₇₈) verfolgt. An den mit Pfeilen markierten Zeitpunkten wurde RNA für die Transkriptionsanalysen isoliert.

Diese Beobachtung drängte die Frage auf, was in dieser lag-Phase auf Genomebene geschieht. Die Vermutung war dahingehend, dass es in dieser Zeit zu einer Umstrukturierung der Genexpression kommt, die die Zelle dazu befähigt, an die erhöhte Salzkonzentration zu adaptieren. Um die Änderung in der Expression von Genen nach einem hyperosmotischen Schock zu analysieren und zeitlich aufzulösen, wurden vor dem Schock und zu unterschiedlichen Zeitpunkten danach aus den Kulturen Proben entnommen, die RNA isoliert und eine DNA-Microarray-Analyse durchgeführt. Dazu wurden für jeden Zeitpunkt je mind. zwei unabhängige RNA-Parallelen analysiert. Ferner wurde mit jeder Parallele ebenfalls ein "Flip-Dye"-Experiment durchgeführt und zusätzlich eine Hybridisierung wiederholt, um die Reproduzierbarkeit der Ergebnisse überprüfen zu können. Die im Folgenden angegebenen Werte repräsentieren somit Mittelwerte aus mind. sechs Microarray-Analysen. Die statistische Auswertung der DNA-Microarrays erfolgte durch die SAM-Software (**TUSHER ET AL.**, 2001). Es wurden nur solche Gene als signifikant verändert bezeichnet, welche eine mind. 2fache Änderung der Expressionsstärke zeigten. Ferner wurde der Δ-Wert so gewählt, dass die FDR (false discovery rate) bei max. 5% lag.

3.5.2 Expressionsmuster salzregulierter Gene nach einem Schock auf 400 mM NaCl

Die Analyse der Genexpression auf genomweiter Ebene in *M. mazei* Gö1 nach einem hyperosmotischen Schock auf 400 mM NaCl ermittelte 953 signifikant in ihrer Expression veränderte Gene. 471 davon wurden nach einem hyperosmotischen Schock induziert und 482

reprimiert, wobei nur 21 Gene zu unterschiedlichen Zeitpunkten in der lag-Phase sowohl induziert als auch reprimiert waren. Von den 471 signifikant induzierten Genen sind 224 und von den 482 reprimierten sind 171 als hypothetische oder konservierte Proteine annotiert. Betrachtet man nun die Anzahl der salzabhängig regulierten Gene zu den unterschiedlichen Zeitpunkten, sind deutliche Unterschiede zu erkennen (Abb. 31). Bereits 1,5 h nach dem Salzschock war die höchste regulative Aktivität auf Genomebene zu verzeichnen. 553 Gene waren zu diesem Zeitpunkt signifikant in ihrer Expression verändert, wovon die Mehrzahl (76%) induziert war. Zu dem Zeitpunkt 4 h nach dem hyperosmotischen Schock war nur eine geringe Anzahl von 69 Genen reguliert, wobei auch hier über die Hälfte der Gene (61%) induziert war. Bei den beiden später in der lag-Phase liegenden Zeitpunkten zeigte sich ein anderes Bild. 8 h nach dem Salzschock war, verglichen mit der Situation vor dem Schock, die Expression von 319 Genen verändert. Allerdings wurde davon nur ein kleiner Prozentsatz der Gene (23%) induziert und die Mehrheit (77%) reprimiert. Eine ähnliche Verteilung konnte auch 12 h nach dem Schock, gegen Ende der lag-Phase, beobachtet werden: von 215 regulierten Genen waren 16% induziert und 84% reprimiert. Zusammenfassend lassen diese Beobachtungen vermuten, dass sofort nach dem osmotischen Schock eine Vielzahl von Genen induziert wurde, deren Produkte wichtig für die Adaptation an die neuen Bedingung waren. In dem Zeitraum kurz vor dem Wiedereintritt in das Wachstum war zu beobachten, dass die Mehrheit der Gene reprimiert wurde. Hierbei handelte es sich vermutlich um Gene, deren Produkte nicht für das "normale" Wachstum benötigt werden, sondern für die Aufrechterhaltung der Zellfunktionen unter Stress verantwortlich sind. Somit konnte die lag-Phase auf Expressionsebene in zwei Phasen eingeteilt werden: eine erste induktive Phase und eine darauf folgende repressive Phase.

Abb. 31: Anzahl salzabhängig regulierter Gene nach einem hyperosmotischen Schock auf 400 mM NaCl in Komplexmedium. Dargestellt ist die Anzahl der induzierten (dunkelgrau) und reprimierten (hellgrau) Gene nach einem hyperosmotischen Schock auf 400 mM zu den angegebenen Zeitpunkten.

Betrachtet man die Expressionsänderung einzelner salzinduzierter Gene, sind unterschiedliche Gruppen zu erkennen. Es gibt Gene, deren Expression früh in der lag-Phase nach dem hyperosmotischen Schock induziert wurde, Gene die ausschließlich in der Mitte der lag-Phase exprimiert wurden und Gene welche vor allem am Ende der lag-Phase, kurz vor dem Wiedereintritt in das Wachstum, eine verstärkte Expression aufwiesen. Darüber hinaus konnte eine weitere Gruppe von Genen identifiziert werden, die sich dadurch auszeichneten, dass sie über den gesamten Verlauf der lag-Phase stärker exprimiert wurden. Im Folgenden soll auf diese vier Gruppen näher eingegangen werden und jeweils einige ausgewählte Vertreter dargestellt werden.

3.5.2.1 Früh in der lag-Phase induzierte Gene

Als früh in der lag-Phase induzierte Gene wurden solche definiert, welche bis 4 h nach dem hyperosmotischen Schock auf 400 mM eine verstärkte Expression zeigten. Dieses Expressionsmuster konnte bei 377 Genen beobachtet werden, wovon jedoch 178 als hypothetische oder konservierte Proteine annotiert sind (komplette Liste s. Anhang). Von den 199 restlichen Genen wiederum waren nur 5 sowohl 1,5 h als auch 4 h nach dem Salzschock stärker exprimiert, die übrigen zeigten ausschließlich 1,5 h nach dem Schock eine erhöhte Expression. Aufgrund der Funktion der putativen Genprodukte lassen sie sich zu Gruppen zusammenfassen. So gibt es eine Gruppe von Genen, deren Genprodukte möglicherweise regulative Funktionen besitzen. Einige Vertreter dieser Gruppe sind in Tab. 11 dargestellt.

Bezeichnung	Annotation	x-fache Ind	duktion
		1,5 h	4 h
MM1863	Transkriptionsregulator, MarR-Familie	11,77	n.i. ¹
MM3117	Transkriptionsregulator, MarR-Familie	7,97	n.i.
MM1257	Transkriptionsregulator, ArsR-Familie	4,68	n.i.
MM0345	Transkriptionsregulator, TrmB-Familie	2,90	n.i.
MM0346	Transkriptionsregulator, MarR-Familie	4,81	n.i.
MM0169	Hypothetische Signaltranduzierende Histidin-Kinase	16,25	n.i.
MM0077	Hypothetisches Protein	12,74	n.i.

Tab. 11: Früh in der lag-Phase nach einem Salzschock auf 400 mM NaCl induzierte Gene, deren Produkte wahrscheinlich an der Regulation der salzabhängigen Genexpression beteiligt sind.

¹n.i.: nicht signifikant induziert

Auffällig ist, dass direkt stromabwärts einiger dieser für mögliche Regulatoren kodierende Gene ebenfalls induzierte Gene liegen, deren Produkte an der Osmoadaptation beteiligt sein könnten. So findet man direkt stromabwärts von MM1863 ein Gen, dessen Expression um den Faktor 5,48 erhöht war und welches für einen Transporter kodiert. Stromabwärts von MM3117 liegt ein Gen, welches 20,13fach induziert war und als ATP-abhängige Protease La annotiert ist. Auf MM1257 folgt ein Gen, welches 9fach stärker exprimiert war und für ein CdcH-Protein (cell division control) kodiert. Direkt stromabwärts des putativen Regulators MM0346 liegt MM0345, welches ebenfalls für einen putativen Regulator kodiert und von MM0344 gefolgt wird, welches 5,15fach induziert war und für eine mögliche Kationen-Efflux-Pumpe kodiert. Allerdings konnte dies nicht bei allen für putative Regulatoren kodierenden Genen beobachtet werden. So war in der Umgebung von MM0077 oder MM0169 kein ebenfalls reguliertes Gen zu identifizieren.

Eine weitere Gruppe wird von Genen geformt, deren Produkte möglicherweise an der Aufnahme oder Synthese von kompatiblen Soluten beteiligt sind. Einige Vertreter dieser Gruppe sind in Tab. 12 aufgelistet.

Bezeichnung	Annotation	x-fache In	duktion
		1,5 h	4 h
otbB1 (MM0296)	Cholin-Transporter Otb, Permease	3,89	n.i . ¹
otbB2 (MM0295)	Cholin-Transporter Otb, Permease	2,47	n.i.
gltS (MM1782)	Natrium/Glutamat-Symporter	3,04	2,84
MM2405	Kationen-Transporter	2,45	2,11
$amtB_2$ (MM0957)	Ammonium-Transporter	54,26	n.i.
glnA1 (MM0964)	Glutamin-Synthetase	32,16	n.i.
MM1940	Glutamin-Transporter, Permease	2,20	n.i.
MM3189	Kalium-Kanal	2,38	n.i.
$amtB_1$ (MM0733)	Ammonium-Transporter	9,49	n.i.
MM0344	Kationen-Efflux-Pumpe	5,15	n.i.
MM0530	Aminosäure-Permease	2,20	n.i.

Tab. 12: Früh in der lag-Phase nach einem Salzschock auf 400 mM NaCl induzierte Gene, deren Produkte wahrscheinlich an der Akkumulation von kompatiblen Soluten beteiligt sind.

¹n.i.: nicht signifikant induziert

Die Beteiligung des Cholin-Transporters Otb an dem Prozess der Osmoadaptation wurde bereits untersucht (**KöGL**, 2004). Allerdings lagen noch keine Daten über die zeitabhängige Induktion der Expression nach einem hyperosmotischen Schock vor. Die beiden für die Permease-Untereinheiten kodierenden Gene waren direkt nach dem Schock signifikant induziert, wiesen aber bereits 4 h nach dem Schock keine Änderung der Expression mehr auf. Weitere Gene, deren Produkte an dem Transport von kompatiblen Soluten beteiligt sein könnten und deren Expression induziert war, sind MM1940, das für eine Untereinheit eines Glutamin-Transporters kodiert, *gltS*, welches für einen Natrium/Glutamat-Symporter kodiert, und MM0530, dessen Produkt eine putative Aminosäure-Permease darstellt. Ferner wurden einige Gene stärker exprimiert, welche an der Aufnahme oder dem Efflux von Ionen beteiligt sind. So waren die für die Ammonium-Transporter $AmtB_1$ und $AmtB_2$ kodierenden Gene, wobei $amtB_2$ deutlich stärker induziert war, ein für einen Kationen-Transporter kodierendes Gen, und Gene, welche für einen Kalium-Kanal und eine Kationen-Efflux-Pumpe kodieren, signifikant stärker exprimiert. Ebenfalls sehr stark induziert war die Expression von glnA1, welches für eine Glutamin-Synthetase kodiert.

Einige Vertreter einer weiteren Gruppe von Genen, deren Expression früh in der lag-Phase induziert wurde und deren Produkte nur indirekt an dem Prozess der Salzadaptation beteiligt sind, sind in Tab. 13 dargestellt. Die Expression einer ganzen Reihe von Genen, deren Produkte am Stickstoff-Kreislauf beteiligt sind, wurde signifikant induziert. So war eine starke Erhöhung der Expression von $glnK_l$, nifN, nifE, nifK und nifD, welche für das N₂-regulatorische Protein PII, die für die Biosynthese der Nitrogenase notwendigen Proteine NifN und NifE und für die α - und β -Untereinheiten der Dinitrogenase kodieren, zu beobachten. Ferner war die Expression des für die Polyphosphatkinase kodierenden Gens und des für ein Trp-Repressor-Bindeprotein kodierenden Gens signifikant induziert. Ebenfalls deutlich stärker exprimiert wurden, wie oben bereits erwähnt, ein Gen, dessen Produkt an der Zellteilung beteiligt ist (CdcH), und ein für eine Protease kodierendes Gen (MM3118).

Tab. 13: Früh in der lag-Phase nach einem Salzschock auf 400 mM NaCl induzierte Gene, deren Produkte wahrscheinlich indirekt an der Osmoadaptation beteiligt sind.

Bezeichnung	Annotation	x-fache I	nduktion
		1,5 h	4 h
<i>ppk</i> (MM1375)	Polyphosphatkinase	2,03	n .i. ¹
MM2224	Trp-Repressor-Bindeprotein	12,96	n.i.
$glnK_1$ (MM0732)	N ₂ -regulatorisches Protein PII	13,80	n.i.
nifN (MM0725)	Nitrogenase, FeMo-Kofaktor Biosynthese Protein NifN	8,52	2,11
nifE (MM0724)	Nitrogenase, FeMo-Kofaktor Biosynthese Protein	13,02	n.i.
<i>nifK</i> (MM0723)	Nitrogenase, FeMo-Protein, β-Kette	43,13	n.i.
nifD (MM0722)	Nitrogenase, FeMo-Protein, α-Kette	30,25	n.i.
<i>cdcH</i> (MM1256)	CdcH-Protein	9,01	n.i.
MM3118	ATP-abhängige Protease La	20,13	n.i.

¹n.i.: nicht signifikant induziert

3.5.2.2 In der Mitte der lag-Phase induzierte Gene

Als in der Mitte der lag-Phase induzierte Gene wurden solche definiert, die zwischen 4 und 8 h nach dem osmotischen Schock eine Erhöhung ihres Expressionsniveaus zeigten. Dies war nur bei 37 Genen der Fall, wovon 21 als konservierte oder hypothetische Proteine annotiert sind (komplette Liste s. Anhang). Von den 16 anderen Genen war nur eines sowohl 4 als auch 8h nach dem Schock induziert, 5 zeigten nur nach 4 h eine verstärkte Expression und 10 ausschließlich nach 8 h. Allerdings war kein Gen dabei, welches aufgrund seiner Annotation in direkten Zusammenhang mit dem Prozess der Osmoadaptation gebracht werden konnte. Deswegen soll hier nicht weiter darauf eingegangen werden.

3.5.2.3 Spät in der lag-Phase induzierte Gene

In der Gruppe der spät in der lag-Phase induzierten Gene wurden all diejenigen zusammengefasst, die von 8 bis 12 h nach dem hyperosmotischen Schock auf 400 mM stärker exprimiert waren. Es konnten 16 spät-induzierte Gene identifiziert werden, von denen 7 als hypothetische oder konservierte Proteine annotiert sind (komplette Liste s. Anhang). Ein Gen, welches induziert war und an der Osmoadaptation beteiligt sein könnte, ist *natB* (MM1056), welches für eine putative ATP-abhängige Natrium-Efflux-Pumpe kodiert. Seine Expression war 8 h nach dem hyperosmotischen Schock um den Faktor 3,10 erhöht. Alle anderen induzierten Gene in dieser Gruppe scheinen nicht direkt an der Osmoadaptation beteiligt zu sein.

3.5.2.4 Während der gesamten lag-Phase induzierte Gene

In einer vierten Gruppe von Genen, die sich dadurch auszeichneten, dass ihre Expression über den gesamten Verlauf der lag-Phase nach einem osmotischen Schock auf 400 mM verstärkt war, wurden 38 Gene zusammengefasst (komplette Liste s. Anhang). 21 davon sind als konservierte oder hypothetische Proteine annotiert. Die anderen konnten aufgrund ihrer Annotation in weitere Gruppen unterteilt werden. Die Genprodukte der ersten Gruppe sind entweder direkt oder indirekt an dem Prozess der Osmoadaptation beteiligt (Tab. 14). Eine verstärkte Expression aller dieser Gene konnte auch bereits in an Hochsalz adaptierten Zellen beobachtet werden (s. 3.4.2).

Die stärkste Induktion der Expression konnte für *pstS* beobachtet werden, welches 1,5 h nach einem osmotischen Schock auf 400 mM NaCl fast 90fach induziert war. Auch die anderen Gene des *pst*-Operons, mit Ausnahme von *phoU*, zeigten eine signifikante Induktion der Expression zu diesem Zeitpunkt. Während für *pstS* und *pstC* über den gesamten Zeitraum der lag-Phase eine verstärkte Transkription nachzuweisen war, war *pstA1* nur 1,5 h und 12 h nach dem osmotischen Schock signifikant induziert. Das *pstA2* Gen zeigte zu allen

Zeitpunkten, außer 4 h nach dem Schock, eine signifikante Induktion der Expression. Auch das für das Phosphat-Bindeprotein kodierende Gen, *pstB*, konnte 1,5, 4, und 12 h nach dem Schock als signifikant induziert bezeichnet werden. Dies zeigt, dass die Transkription der für den primären Phosphat-Transporter Pst kodierenden Gene bereits sehr kurz nach dem osmotischen Schock induziert wurde, und auch für die Dauer der lag-Phase verstärkt erhalten blieb.

Tab. 14: Während der gesamten lag-Phase nach einem Salzschock auf 400 mM NaCl induzierte Gene, deren Produkte wahrscheinlich an dem Prozess der Osmoadaptation beteiligt sind.

Bezeichnung	Annotation	x-f	fache I	nduktio	on
		1,5 h	4 h	8 h	12h
<i>slpB</i> (MM1589)	Surface-Layer-Protein B	6,43	2,72	3,30	n.i. ¹
<i>pstS</i> (MM2005)	Phosphat-Transporter, Phosphat-Bindeprotein	89,68	13,48	8,52	18,09
<i>pstC</i> (MM2006)	Phosphat-Transporter, Permease	65,11	10,09	8,25	20,43
pstA1 (MM2007)	Phosphat-Transporter, Permease	6,44	n.i.	n.i.	3,61
pstA2 (MM2008)	Phosphat-Transporter, Permease	6,15	n.i.	2,12	4,70
<i>pstB</i> (MM2009)	Phosphat-Transporter, ATP-Bindeprotein	4,22	2,90	n.i.	3,09
otaB (MM0041)	Glycinbetain-Transporter, Permease	10,73	3,62	2,77	n.i.
otaA (MM0040)	Glycinbetain - Transporter, ATP-Bindeprotein	12,21	6,92	3,74	2,44
ablA (MM0934)	Lysin-2,3-Aminomutase	77,78	31,58	19,30	8,42
<i>ablB</i> (MM0935)	β-Lysin-Acetyltransferase	84,64	38,83	22,89	10,27

¹n.i.: nicht signifikant induziert

Ebenfalls signifikant induziert war die Expression zweier Gene, *otaA* und *otaB*, welche Teil des *ota*-Operons sind. Das für das ATP-Bindeprotein kodierende Gen, *otaA*, war für die gesamte die Dauer der lag-Phase induziert, wohingegen eine signifikante Induktion der Expression von *otaB* nur 1,5, 4 und 8h nach dem osmotischen Schock beobachtet werden konnte. Warum keine signifikante Induktion des dritten Gens des *ota*-Operons beobachtet werden konnte, mag unterschiedliche Ursachen haben. So wäre z. B. bei der Hybridisierung eine deutlich schlechtere Bindung der markierten DNA an den immobilisierten ORF denkbar, was zu einem falsch-negativen Ergebnis führen würde. Somit ist es von entscheidender Bedeutung, die erlangten Ergebnisse aus den DNA-Microarray-Analysen durch quantitative RCR zu verifizieren.

Über den gesamten Zeitraum der lag-Phase nach einem osmotischen Schock ebenfalls sehr stark induziert waren die Gene des *abl*-Operons. Sie zeigten die höchste Induktion der Expression bereits 1,5 h nach dem Schock. Nachfolgend war eine sukzessive Verringerung des Expressionsniveaus mit der Zeit zu beobachten. Dass diese beiden für die Biosynthese von N^ε-Acetyl-β-Lysin verantwortlichen Gene auf Komplexmedium induziert wurden, lässt vermuten, dass entweder die im Medium enthaltene Konzentration kompatibler Solute nicht ausreichend war, um der Zelle eine Anpassung an die erhöhte Salzkonzentration zu ermöglichen, oder die Expression des *abl*-Operon nicht von der externen Solutkonzentration beeinflusst wird. Nachdem eine erhöhte Expression des Operons auch in salzadaptierten Zellen in Komplexmedium beobachtet wurde, scheint es sich hierbei zusätzlich um eine längerfristige Adaptation zu handeln und nicht um eine spontane Überschuss-Reaktion, die ausschließlich auf der plötzlichen Erhöhung der extrazellulären Salzkonzentration beruht und unabhängig von der An- oder Abwesenheit von kompatiblen Soluten in der Umgebung ist.

Auch die Transkription des für das Surface-Layer-Protein B kodierende Gens, *slpB*, war signifikant erhöht. Direkt nach dem osmotischen Schock war es ca. 6fach induziert. Mit der Zeit sank die Induktionsrate auf ca. 3fach in der Mitte der lag-Phase ab. Kurz vor Widereintritt der Zellen in das Wachstum konnte keine signifikante Induktion der Expression von *slpB* mehr beobachtet werden.

Die Genprodukte der zweiten Gruppe von Genen, die während der gesamten lag-Phase nach einem osmotischen Schock auf 400 mM induziert waren, sind laut ihrer Annotation an Stoffwechselprozessen beteiligt. Einige Vertreter dieser Gruppe sind in Tab. 15 dargestellt. Zwei Gene eines Operons, welches für einen primären Molybdat-Tansporter kodiert, wurden signifikant induziert. MM1580, das erste Gen des putativen Operons, kodiert für das Molybdat-Bindeprotein. MM1579 liegt stromabwärts davon und kodiert für die Permease-Untereinheit des Transporters. Es wird gefolgt von MM1578, welches für die ATP-bindende Untereinheit kodiert. MM1580 zeigte über den kompletten Zeitraum der lag-Phase hinweg eine verstärkte Expression und MM1579 konnte zu allen Zeitpunkten, außer 4 h nach dem Schock, als signifikant induziert identifiziert werden. Beide Gene hatten ihr Expressionsmaximum 8 h nach dem osmotischen Schock. Das für die ATPase kodierende Gen wurde durch die statistische Auswertung nicht als signifikant induziert erkannt.

Tab. 15: Während der gesamten lag-Phase nach einem Salzschock auf 400 mM NaCl induzierte Gene, deren Produkte wahrscheinlich an Stoffwechselprozessen beteiligt sind.

Bezeichnun	Bezeichnung Annotation				tion
		1,5 h	4 h	8 h	12h
MM1580	Molybdat-ABC-Transporter, Molybdat-Bindeprotein	4,74	4,58	8,16	5,74
MM1579	Molybdat-ABC-Transporter, Permease	2,84	n.i. ¹	5,09	3,60
MM1564	Molybdän-enthaltende Formylmethanofuran- Dehydrogenase-Untereinheit, Isoenzym I, Untereinheit E	3,31	n.i.	2,28	3,67
MM1568	Molybdän-enthaltende Formylmethanofuran- Dehydrogenase Untereinheit	2,11	n.i.	2,31	4,40

¹n.i.: nicht signifikant induziert

Zwei weitere Gene, MM1564 und MM1568, die in einem Cluster bestehend aus sechs Genen liegen, welche alle als Molybdän-enthaltende Formylmethanofuran-Dehydrogenase-Untereinheiten annotiert sind, zeigten ebenfalls eine verstärkte Expression nach einem osmotischen Schock. Für beide konnte keine signifikante Induktion der Expression nach 4 h nachgewiesen werden und beide hatten ihr Expressionsmaximum 12 h nach dem Schock, kurz vor Beginn des Wachstums. Aufgrund dieser Ergebnisse kann postuliert werden, dass die Zelle nach einem osmotischen Schock, besonders aber kurz vor Wiedereintritt in das Wachstum, einen erhöhten Bedarf an Molybdän, einem wichtigen Cofaktor, hat und diesen u. a. durch die Induktion von Molybdat-Transportern zu decken sucht. Das Molybdän kann dann in Enzyme, wie z. B. die Molybdän-enthaltende Formylmethanofuran-Dehydrogenase oder die Dinitrogenase, eingebaut werden.

3.5.2.5 Reprimierte Gene

Nach einem hyperosmotischen Schock auf 400 mM kam es zu einer signifikanten Reduktion der Expression von 482 Genen (komplette Liste s. Anhang), von denen 171 als konservierte oder hypothetische Proteine annotiert sind. Die übrigen ließen sich aufgrund der möglichen Funktion ihrer Genprodukte in unterschiedliche Gruppen unterteilen, von denen einige im Folgenden näher besprochen werden sollen.

In der ersten Gruppe wurden all diejenigen Gene zusammengefasst, welche aufgrund ihrer Annotation eine regulatorische Funktion besitzen könnten. Diese Gruppe beinhaltet 13 Gene, welche für putative Transkriptionsregulatoren (9), regulatorische Proteine (2) oder signaltransduzierende Histidin-Kinasen (2) kodieren (Tab. 16). Die Mehrheit (67%) der reprimierten Gene mit möglicher regulatorischer Funktion wurde erst zu einem späten Zeitpunkt in der lag-Phase, also 8 oder 12 h nach dem osmotischen Schock reprimiert, wenngleich einige auch bereits zu einem früheren Zeitpunkt eine Regulation aufwiesen. Zwei dieser putativen Regulatoren, MM1986 und MM3195, wurden 1,5 h nach dem hyperosmotischen Schock induziert und dann 12 h nach dem Schock reprimiert. Dies lässt vermuten, dass die von ihnen regulierten Gene wichtig für die Prozesse in der Zelle während der lag-Phase, aber nicht mehr bei Wiedereintritt in das Wachstum sind.

Bezeichnung	Annotation	x-fache Repression			
		1,5 h	4 h	8 h	12h
MM0288	Transkriptionsregulator, ArsR-Familie	1	2,90		
MM1662	Transkriptionsregulierendes Protein, AsnC-Familie			2,03	
MM2394	Transkriptionsregulator, MerR-Familie		2,06		
MM2965	Hypothetische signaltransdudierende Histidin-	2,29			
	Kinase				
MM3077	Möglicher Transkriptionsregulator				2,34
MM1986	Regulatorisches Protein (putativ)				2,13
MM0811	Stress-induzierter Transkriptionsregulator				2,04
MM1531	Putatives regulatorisches Protein			2,24	
MM3195	Transkriptionsregulator, MarR-Familie				2,08
MM2277	Hypothetische signaltransduzierende Histidin-			2,22	
	Kinase				
MM2246	Transkriptionsregulator, ArsR-Familie			2,03	
MM0872	Putativer Transkriptionsregulator			2,33	
MM2990	Hypothetische signaltransduzierende Histidin-			2,34	
	Kinase				

Tab. 16: Nach einem osmotischen Schock auf 400 mM NaCl reprimierte Gene, die für putative regulatorische Proteine kodieren.

¹nicht signifikant reprimiert

In einer zweiten Gruppe von Genen konnten solche zusammengefasst werden, deren Produkte direkt an der Transkription oder Translation beteiligt sind. So wurden 31 Gene, welche für ribosomale Proteine kodieren, und 8 Gene, welche für Untereinheiten der RNA-Polymerase kodieren, im Laufe der lag-Phase reprimiert. Ferner konnte eine große Gruppe von Genen gefunden werden, die am Energiestoffwechsel der Zelle beteiligt sind und ebenfalls reprimiert waren. Hierzu zählen einige in den Prozess der Methanogenese involvierte Gene.

Erstaunlicherweise konnte auch eine kleine Gruppe von Genen als signifikant in ihrer Expression reprimiert identifiziert werden, die aufgrund ihrer Annotationen eher der Osmoadaptation zuzuordnen sind (Tab. 17). So war Expression von MM2503, welches für das Kalium-Aufnahmeprotein des Trk-Systems kodiert, während der gesamten lag-Phase signifikant reprimiert. Ein weiteres Gen, *kefC1*, dessen Produkt ebenso einen Einfluss auf die intrazelluläre Kaliumkonzentration hat, war ebenfalls signifikant reprimiert. Außerdem zeigten zwei weitere Gene, MM1250 und MM1253, welche als putative Kationen-Transporter annotiert sind, ebenfalls eine Reduktion ihrer Expression. Darüberhinaus war auch die Transkription von MM0230, welches für einen Natrium/Calcium-Austauscher, von MM0498, welches für einen putativen Chloridkanal, und von MM0834, welches für einen Natrium/Prolin-Symporter kodiert, in der späten lag-Phase nach einem osmotischen Schock

verringert. Die Produkte all dieser Gene sind an der Aufnahme oder dem Austausch von Ionen beteiligt. Ferner konnte beobachtet werden, dass die Expression des für die Glutamin-Synthetase GlnA2 kodierenden Gens und der für die große Kette der Glutamat-Synthase kodierenden Gene reprimiert ist. Die Repression von glnA2 ist sehr interessant, da, wie unter Punkt 3.5.2.1 beschrieben, die Expression eines anderen, ebenfalls für eine Glutamin-Synthetase kodierenden Gens (glnA1) bereits 1,5 h nach dem Schock deutlich induziert war. Offensichtlich unterliegen die Gene glnA1 und glnA2 verschiedenen Regulationsmechanismen. So kann eine unterschiedliche Regulation des Stickstoff- und des Stressmetabolismus durch Isoenzyme vermutet werden. Während das glnA1-Genprodukt an der salzinduzierten Synthese von Glutamin, welches als kompatibles Solut genutzt werden kann, beteiligt sein könnte, könnte GlnA2 für die Ammoniumassimilation in der Antwort auf Stickstoffmangelbedingungen verantwortlich sein.

Bezeichnung	Annotation	x-fache Repression		ion	
		1,5 h	4 h	8 h	12h
MM2503	Trk-System, Kalium-Aufnahmeprotein	2,38	2,63	1	2,64
MM0498	Putativer Chloridkanal		2,14		2,33
<i>kefC1</i> (MM0933)	Glutathion-reguliertes Kalium-Efflux-System				2,50
	Protein				
gltB1 (MM0966)	Glutamat-Synthase, große Kette		2,43	2,39	4,01
<i>gltB2</i> (MM0967)	Glutamat-Synthase, große Kette		3,74	2,35	2,95
<i>gltB3</i> (MM0968)	Glutamat-Synthase, große Kette	2,25			
<i>glnA2</i> (MM3188)	Glutamin-Synthetase		5,26	3,82	4,43
nha2 (MM0834)	Na ⁺ /H ⁺ -Antiporter			2,18	2,05
MM0230	Natrium-Calcium-Austauscher			2,68	2,10
MM2305	Natrium/Prolin-Symporter	3,95			
MM1250	Kationen-Transporter			2,15	
MM1253	Kationen-Transporter			2,23	3,92

Tab. 17: Nach einem osmotischen Schock auf 400 mM NaCl reprimierte Gene, welche möglicherweise an der Akkumulation kompatibler Solute beteiligt sind.

¹nicht signifikant reprimiert

3.5.3 Expressionsmuster salzinduzierter Gene nach einem Schock auf 800 mM NaCl

Auf einen osmotischen Schock auf 800 mM NaCl in der späten exponentiellen Phase reagierten die Zellen von *M. mazei* Gö1, die in Komplexmedium mit einer NaCl-Konzentration von 38,5 mM wuchsen, mit einer lag-Phase von ca. 22 h. Anschließend begannen sie wieder zu wachsen (s. Abb. 30). Mittels Microarray-Analysen sollte nun untersucht werden, was in dieser lag-Phase auf Transkriptionsebene geschieht. Nach einem

solchen hyperosmotischen Schock kam es im Laufe der lag-Phase zu einer veränderten Expression von insgesamt 903 Genen. Davon wurden 478 Gene in ihrer Expression reprimiert und 424 induziert. Nur ein Gen wurde zu unterschiedlichen Zeitpunkten in der lag-Phase sowohl induziert als auch reprimiert. Betrachtet man die Anzahl der regulierten Gene zu den unterschiedlichen Zeitpunkten in der lag-Phase, so ist deutlich zu erkennen, dass der Zeitpunkt der maximalen regulatorischen Aktivität 13 h nach dem osmotischen Schock, also ziemlich in der lag-Phase, zu finden war (Abb. 32).

Abb. 32: Anzahl salzabhängig regulierter Gene nach einem hyperosmotischen Schock auf 800 mM NaCl in Komplexmedium. Dargestellt ist die Anzahl der induzierten (dunkelgrau) und reprimierten (hellgrau) Gene nach einem hyperosmotischen Schock auf 800 mM zu den angegebenen Zeitpunkten.

1,5 h nach dem Schock war nur eine sehr geringe Regulation der Expression zu beobachten: 43 Gene wurden induziert und 2 reprimiert. Die Anzahl der regulierten Gene stieg nun an, bis sie 13 h nach dem Schock ein Maximum erreicht hatte. So war 7 h nach dem Schock bereits bei 289 Genen eine Veränderung der Expression zu beobachten, wobei 42% induziert und 58% reprimiert waren. 13 h nach dem Schock zeigten 719 Gene eine veränderte Transkriptionsrate. Die Verteilung der induzierten und reprimierten Gene war allerdings ähnlich wie zu dem davorliegenden Zeitpunkt. So waren 44% davon signifikant in ihrer Expression induziert, während 56% reprimiert waren. Zu dem letzten Zeitpunkt in der lag-Phase, 21 h nach dem Schock, war das Verhältnis induzierter zu reprimierter Gene zu Gunsten der induzierten verschoben. So waren von 275 regulierten Genen 80% induziert. Bei einem Schock auf 800 mM NaCl kann offensichtlich nicht, wie bei einem Salzschock auf 400 mM, zwischen einer induktiven und einer repressiven Phase unterschieden werden, sondern die Prozesse der Transkriptionsinduktion und -repression schienen zeitgleich abzulaufen.

Betrachtet man jedoch die Änderung der Transkription eines jeden Genes zu den unterschiedlichen Zeitpunkten, so lassen sich, wie bei der Transkriptionsanalyse nach einem Salzschock auf 400 mM, deutlich 4 Gruppen von Induktionsmustern unterscheiden: (i) früh in der lag-Phase induzierte Gene, (ii) in der Mitte der lag-Phase induzierte Gene, (iii) spät in der lag-Phase induzierte Gene und (iv) über den kompletten Verlauf der lag-Phase induzierte Gene. Im Folgenden soll auf jede dieser Gruppen kurz eingegangen werden und einige für den Prozess der Osmoadaptation relevante Vertreter vorgestellt werden.

3.5.3.1 Früh in der lag-Phase induzierte Gene

Als früh in der lag-Phase induzierte Gene wurden solche definiert, welche 1,5 oder/und 7 h nach dem Salzschock auf 800 mM eine erhöhte Expression zeigten. Dies war bei 59 Genen der Fall, wovon 27 als hypothetische oder konservierte Proteine annotiert sind (komplette Liste s. Anhang). Einige dieser der Gruppe der früh in der lag-Phase induzierten Gene zuzuordnenden Gene sind in Tab. 18 aufgelistet.

Bezeichnung	Annotation	x-fache In	duktion
		1,5 h	7 h
MM1986	Regulatorisches Protein (putativ)	2,11	n.i . ¹
<i>ppk</i> (MM1375)	Polyphosphatkinase	n.i.	2,78
MM2242	Transkriptionsregulator, ArsR-Familie	n.i.	2,11
nifK (MM0723)	Nitrogenase-Fe/Mo-Protein, β-Kette	n.i.	2,39
nifD (MM9722)	Nitrogenase-Fe/Mo-Protein, α-Kette	n.i.	2,31
<i>cdcH</i> (MM1256)	CdcH-Protein	12,49	n.i.

Tab. 18: Früh in der lag-Phase nach einem Salzschock auf 800 mM NaCl induzierte Gene.

¹n.i.: nicht signifikant induziert

Das am stärksten induzierte Gen war das für das CdcH-Protein kodierende Gen, welches auch schon in der Gruppe der früh induzierten Gene nach einem Salzschock auf 400 mM NaCl zu finden war. Ebenfalls dort zu finden und auch bei einem Schock auf 800 mM NaCl früh induziert waren die Gene *nifK* und *nifD*, welche die Untereinheiten der Dinitrogenase kodieren. Allerdings war die Änderung der Expression der *nif*-Gene bei einem Schock auf 800 mM erst zum Ende der frühen lag-Phase zu beobachten (nach 7 h), wohingegen sie bei einem Schock auf 400 mM ausschließlich zu Beginn der lag-Phase klar induziert waren. Zudem waren die beiden Gene bei einem Schock auf 800 mM deutlich geringer, ca. um den Faktor 20, induziert. Auch *ppk*, welches für die Polyphosphatkinase kodiert, war gegen Ende der frühen lag-Phase nach einem Schock auf 800 mM induziert. Dieses Gen konnte ebenfalls in der Gruppe der früh in der lag-Phase induzierten Gene nach einem Salzschock auf 400 mM NaCl gefunden werden. Allerdings war es hier, wie auch schon die *nif*-Gene, ausschließlich zu Beginn der lag-Phase induziert, wohingegen es bei einem Schock auf 800 mM erst nach 7 h signifikant induziert war. Die Höhe der Änderung der Expression von *ppk* war in beiden Fällen vergleichbar. Ferner konnten zwei weitere Gene identifiziert werden, die nicht in der frühen lag-Phase nach einem hyperosmotischen Schock auf 400 mM gefunden worden waren. Es handelt sich hierbei um die Gene MM1986 und MM2242, deren Produkte wahrscheinlich eine regulative Funktion besitzen. MM1986 kodiert für ein putatives regulatorisches Protein und MM2242 für einen Transkriptionsregulator der ArsR-Familie. Ein anderes Gen, MM1257, dessen Produkt ebenfalls der Gruppe der Transkriptionsregulatoren der ArsR-Familie angehört, war hingegen ausschließlich früh in der lag-Phase nach einem Schock auf 400 mM NaCl induziert (s. 3.5.2.1).

3.5.3.2 In der Mitte der lag-Phase induzierte Gene

In der zweiten Gruppe wurden diejenigen Gene zusammengefasst, welche im mittleren Bereich der lag-Phase stärker exprimiert wurden, also solche, die 7 und/oder 23 h nach dem hyperosmotischen Schock auf 800 mM NaCl eine erhöhte Transkription aufwiesen. Diese Gruppe besteht aus 142 Genen, von denen 77 als konservierte oder hypothetische Proteine annotiert sind (komplette Liste s. Anhang). Einige ihrer Vertreter sind in Tab. 19 dargestellt.

Bezeichnung	Annotation	x-fache Iı	x-fache Induktion	
		7 h	13 h	
otbC (MM0294)	Cholin-Transporter Otb, Cholin-Bindeprotein	$n.i.^1$	2,07	
MM2516	Möglicher Trankriptiosregulator	n.i.	2,05	
<i>kefC3</i> (MM1909)	Glutathion-regulieres Kalium-Efflux System	n.i.	2,16	
MM3118	ATP-abhängige Protease La	n.i.	8,61	
MM3117	Transkriptionsregulator, MarR-Familie	n.i.	3,15	
MM2237	Transkriptionsregulator, ArsR-Familie	n.i.	2,49	
$amtB_1$ (MM0733)	Ammonium-Transporter	n.i.	2,00	

Tab. 19: In der Mitte der lag-Phase nach einem Salzschock auf 800 mM induzierte Gene.

¹n.i.: nicht signifikant induziert

Die Expression von *otbC*, welches für das Cholin-Bindeprotein des putativen primären Cholin-Transporters Otb kodiert und Teil des *otb*-Operons ist, war 13 h nach dem osmotischen Schock auf 800 mM signifikant erhöht. Bei einem Schock auf 400 mM konnte in der frühen lag-Phase eine Induktion der Expression zweier anderer Gene dieses Operons nachgewiesen werden (*otbB1* und *otbB2*). Wie auch schon in der frühen lag-Phase nach einem Schock auf 400 mM NaCl beobachtet, wurde die Expression von $amtB_1$, ein für einen Ammonium-Transporter kodierendes Gens, signifikant induziert. Allerdings fiel die Erhöhung der Expression nach einem Salzschock auf 800 mM fast um den Faktor 5 geringer aus. Nach einem Schock auf 400 mM NaCl wurde darüber hinaus noch $amtB_2$, das für einen weiteren Ammonium-Transporter kodiert, induziert, und zwar deutlich stärker als $amtB_1$. Das $amtB_2$ -Gen wurde nach einem Schock auf 800 mM NaCl nicht als signifikant induziert erkannt. Ferner wurde eine signifikante Induktion der Expression der Gene MM3117 und MM3118 beobachtet, welche auf dem Genom benachbart liegen. MM3117 kodiert für einen Transkriptionsregulator, welcher der MarR-Familie zugerechnet wird, und MM3118 kodiert für eine ATP-abhängige Protease La. Wie auch schon bei den Daten nach einem Schock auf 400 mM beobachtet wurde, liegt hier ein Transkriptionsregulator direkt stromaufwärts eines weiteren induzierten Gens. Allerdings war auch hier die Induktion der Expression verglichen mit der nach einem Schock auf 400 mM beobachteten deutlich geringer. Außerdem konnten noch zwei weitere Gene, MM2516 und MM2237, welche auch für putative Transkriptionsregulatoren kodieren, als signifikant induziert identifiziert werden. Ebenfalls induziert war die Expression von kefC3, welches für ein putatives Glutathion-reguliertes Kalium-Efflux-System kodiert. Interessanterweise konnte nach einem Schock auf 400 mM beobachtet werden, dass ein anderes ebenfalls für ein Glutathion-reguliertes Kalium-Efflux-System kodierendes Gen (kefC1) zum Ende der lag-Phase reprimiert wurde. Möglicherweise sind die Produkte der kefC-Gene am Efflux von Kalium nach einer transienten Akkumulation dieses Ions in der initialen Antwort auf einen osmotischen Schock beteiligt.

3.5.3.3 Spät in der lag-Phase induzierte Gene

In der Gruppe der spät in der lag-Phase induzierten Gene wurden solche zusammengefasst, die 13 und/oder 21 h nach dem osmotischen Schock auf 800 mM NaCl signifikant induziert waren. Ihr gehören 148 Gene an, von denen 67 als hypothetische oder konservierte Proteine annotiert sind (komplette Liste s. Anhang). Aufgrund der putativen Genprodukte ließen sich die induzierten Gene in einzelne Untergruppen unterteilen, von denen im Folgenden einige vorgestellt und typische Vertreter genannt werden sollen.

Die erste Untergruppe fasst solche Gene zusammen, deren Produkte an der Regulation der Genexpression beteiligt sein könnten (Tab. 20). So wurden 5 Gene (MM0345, MM1554, MM3284, MM0571 und MM2861) identifiziert, deren Produkte putative Transkriptionsregulatoren darstellen. MM0345 war auch schon nach einem Schock auf

400 mM als signifikant induziert identifiziert worden, allerdings bereits sehr früh in der lag-Phase. Wie auch schon bei anderen für Transkriptionsregulatoren kodierenden Genen beobachtet, war auch hier wieder ein Gen zu identifizieren, dessen Expression signifikant induziert war, und das direkt vor einem weiteren, ebenfalls induzierten Gen lokalisiert ist. So folgt auf MM1554 das Gen MM1555, welches für eine putative Metall-abhängige Hydrolase kodiert und 13 h nach dem Schock 2,15fach und 21h danach 2,47fach induziert war.

Bezeichnung Annotation x-fache Induktion 13 h 21 h Transkriptionsregulator, TrmB-Familie 3,85 2,37 MM0345 5,70 5,53 MM0077 Hypothetisches Protein Hypothetische signaltranduzierende Histidin-Kinase 2,20 MM1093 2,13 HTH-DNA-Bindeprotein MM0444 5,67 3,80 Hypothetisches transkriptionsregulatorisches Protein 3,31 MM1957 2,45 MM1554 Transkriptionsregulator 2,22 2,87 MM3284 Transkriptionsregulator 4,35 3,58 MM0571 Transkriptionsregulator, Icc-verwandtes Protein 2,33 2,55 MM2861 Transkriptionsregulator, ArsR-Familie 3,08 2,67

Tab. 20: Spät in der lag-Phase nach einem Salzschock auf 800 mM NaCl induzierte Gene, deren Produkte wahrscheinlich an der Regulation der salzabhängigen Genexpression beteiligt sind.

Ebenfalls möglicherweise an der Regulation der Transkription beteiligt ist MM1957, welches für ein hypothetisches an der Regulation der Transkription beteiligtes Protein kodiert. Ferner konnte noch ein weiteres Gen identifiziert werden, dessen putatives Produkt ein HTH-DNA-Bindeprotein darstellt. Eine mögliche Funktion in der Weiterleitung von Signalen hat das Genprodukt von MM1093, welches für eine hypothetische Histidin-Kinase kodiert und ebenfalls induziert war. Auch die Expression von MM0077, welches für ein hypothetisches Protein kodiert, war signifikant erhöht. Eine Induktion der Expression dieses Gens konnte auch schon nach einem osmotischen Schock auf 400 mM beobachtet werden. Allerdings war MM0077 dort ausschließlich zu Beginn der lag-Phase deutlich induziert (ca.13fach), wohingegen es bei einem Schock auf 800 mM erst gegen Ende der lag-Phase eine erhöhte Transkriptionsrate (ca. 6fach induziert) aufzeigte.

In einer zweiten Untergruppe wurden solche Gene zusammengefasst, deren Produkte an dem Prozess der Osmoadaptation beteiligt sind (Tab. 21). So wurde *gltS*, welches für einen Natrium/Glutamat-Symporter kodiert, signifikant induziert. *gltS* konnte auch schon nach einem Schock auf 400 mM als signifikant induziert beobachtet werden, allerdings in der frühen lag-Phase. Der Faktor der Expressionsinduktion lag bei beiden Bedingungen in

demselben Bereich (ca. 2-3fach). Auch natB, welches für eine putative ATP-abhängige Natrium-Efflux-Pumpe kodiert, war bereits nach einem Schock auf 400 mM als signifikant induziert identifiziert worden. Sowohl nach einem Schock auf 400 wie auch auf 800 mM NaCl wurde *natB* erst gegen Ende der lag-Phase kurz vor Wiedereintritt in das Wachstum induziert. Auch der Faktor der Expressionsinduktion war bei beiden Bedingungen vergleichbar. Ebenfalls deutlich induziert war slpB. Im Gegensatz zu der Situation nach einem Schock auf 400 mM NaCl, wo es früh in der lag-Phase stark induziert worden war und der Faktor der Expressionsinduktion mit der Zeit abnahm, wurde die Expression von slpB nach einem Schock auf 800 mM NaCl erst in der späten lag-Phase induziert, blieb aber dann auf dem gleichen Niveau erhalten. Die Expression des abl-Operons war sehr stark induziert. Aber auch hier ergaben sich Unterschiede zwischen der Situation nach einem Schock auf 400 und einem Schock auf 800 mM. So wurden die Gene ablA und ablB nach einem Schock auf 800 mM erst in der späten lag-Phase induziert, wohingegen eine erhöhte Transkriptionsrate des Operons nach einem Schock auf 400 mM bereits nach 1,5 h beobachtet worden war. Somit konnte auch nach einem Schock auf 800 mM keine vollständige Hemmung der Biosynthese von kompatiblen Soluten durch Komplexmedium gezeigt werden. Ferner war die Expression des pst-Operons nach einem hyperosmotischen Schock auf 800 mM deutlich induziert. Bis auf pstA2 und phoU zeigten alle Gene des Operons eine erhöhte Transkriptionsrate. Wie auch schon nach einem Schock auf 400 mM zeigte das für das Phosphat-Bindeprotein kodierende pstS die stärkste Induktion. Darüberhinaus konnte auch hier wieder die Salzinduktion des ota-Operons, welches für den primären Glycinbetain-Transporter Ota kodiert, bestätigt werden.

Tab. 21: Spät in der lag-Phase nach einem Salzschock auf 800 mM NaCl induzierte Gene, deren Produkte wahrscheinlich an der Salzadaptation beteiligt sind.

Bezeichnung	Annotation	x-fache Induktion		
		13 h	21 h	
<i>gltS</i> (MM1782)	Natrium/Glutamat-Symporter	3,21	2,36	
natB (MM1056)	Putative ATP-abhängige Na ⁺ -Efflux-Pumpe	$n.i.^1$	2,03	
<i>slpB</i> (MM1589)	Surface-Layer-Protein B	5,79	5,55	
ablA (MM0934)	Lysin-2,3-Aminomutase	35,19	20,23	
<i>ablB</i> (MM0935)	β-Lysin-Acetyltransferase	34,65	28,11	
<i>pstB</i> (MM2009)	Phosphat-Transporter, ATP-Bindeprotein	7,31	5,59	
<i>pstA1</i> (MM2007)	Phosphat-Transporter, Permease	7,06	5,87	
<i>pstC</i> (MM2006)	Phosphat-Transporter, Permease	45,70	42,98	
<i>pstS</i> (MM2005)	Phosphat-Transporter, Phosphat-Bindeprotein	64,96	49,54	
otaB (MM0041)	Betain-Transporter Ota, Permease	6,98	4,83	

¹n.i.: nicht signifikant induziert

Wie auch schon in der lag-Phase nach einem Schock auf 400 mM beobachtet, wurde ebenfalls eine Gruppe von Genen induziert, die aufgrund ihrer Annotation dem Stoffwechsel zugeordnet werden können. Einige der in dieser Untergruppe zusammengefassten Gene sind in Tab. 22 dargestellt. So wurde, wie bereits nach einem osmotischen Schock auf 400 mM beobachtet, ein Gencluster, welches für einen primären Molybdat-Transporter kodiert, induziert. Im Gegensatz zu den Ergebnissen nach einem Schock auf 400 mM konnte hier für alle drei Gene eine signifikante Induktion beobachtet werden. Ebenfalls signifikant stärker exprimiert waren zwei der Gene (MM1568 und MM1569), die in einem Zusammenschluss mit vier weiteren Genen auf dem Chromosom lokalisiert sind, die alle als Formylmethanofuran-Dehydrogenase-Untereinheiten annotiert sind. Für eines (MM1568) war auch schon nach einem Schock auf 400 mM eine erhöhte Expression nachgewiesen worden. Auch das Gen MM2224, welches für ein Trp-Repressor-Bindeprotein kodiert, war bereits aus den Ergebnissen der Microarray-Analysen nach einem Schock auf 400 mM NaCl bekannt. Dort war seine Expression 1,5 h nach dem Schock um den Faktor 13 erhöht. Nach einem Schock auf 800 mM NaCl hingegen wurde es erst spät in der lag-Phase induziert.

Bezeichnung	Annotation	x-fache Induktion	
		13 h	21 h
MM1568	Molybdän-enthaltende Formylmethanofuran-	n i ¹	4,12
	Dehydrogenase	11.1.	
MM1569	Molybdän Formylmethanofuran-Dehydrogenase	n.i.	2,02
MM1578	Molybdat-ABC-Transporter, ATP-Bindeprotein	n.i.	4,07
MM1579	Molybdat-ABC-Transporter, Permease	2,61	6,30
MM1580	Molybdat-Bindeprotein	3,13	8,17
MM2224	Trp-Repressor-Bindeprotein	6,51	3,78

Tab. 22: Spät in der lag-Phase nach einem Salzschock auf 800 mM NaCl induzierte Gene, deren Produkte wahrscheinlich an Stoffwechselprozessen beteiligt sind.

¹n.i.: nicht signifikant induziert

3.5.3.4 Während der gesamten lag-Phase induzierte Gene

Eine dritte Gruppe von Genen zeichnet sich dadurch aus, dass ihre Expression während der gesamten lag-Phase signifikant induziert war (komplette Liste s. Anhang). Diese Gruppe besteht aus 64 Genen, von denen 26 als konservierte oder hypothetische Proteine annotiert sind. Einige Gene, die aufgrund ihrer Annotation dem Prozess der Osmoadaptation zugeordnet werden können, sind in Tab. 23 dargestellt.

Zwei Gene des *otb*-Operons, *otbB1* und *otbB2*, welches für einen putativen primären Cholin-Transporter kodiert, wurden 7 h nach dem Schock auf 800 mM bis zum Ende der lagPhase signifikant induziert. Ein weiteres Gen dieses Operons, otbC, war aufgrund seines Expressionsmusters zu der Gruppe der in der Mitte der lag-Phase exprimierten Gene zugeordnet worden, da es nur nach 13 h eine signifikant Induktion der Expression zeigte. Ebenfalls in der Gruppe der während der gesamten lag-Phase induzierten Gene war ein Gen des ota-Operons, otaA, zu finden. Das für die Permease dieses primären Glycinbetain-Transporters kodierende Gen, otaB, war der Gruppe der spät in der lag-Phase induzierten Gene zugeordnet worden, da es nur 13 und 21 h nach dem Schock signifikant in seiner Expression induziert war. Das gleiche Phänomen konnte für das pst-Operon beobachtet werden. pstA2, wurde aufgrund seines Expressionsmusters in die Gruppe der während der gesamten lag-Phase induzierten Gene eingeordnet, wohingegen die anderen Gene dieses Operons in der Gruppe der spät in der lag-Phase induzierten Gene zu finden waren. Da aber anzunehmen ist, dass die Gene eines Operons zu dem gleichen Zeitpunkt induziert werden, sollten diese drei Operone eher der Gruppe der während der gesamten lag-Phase induzierten Gene zugeordnet werden. Die falsche Einordnung der Gene mag auf einer nicht ausreichenden Sensitivität des DNA-Microarrays beruhen. So ist denkbar, dass geringe Transkriptmengen nicht ausreichen, um ein signifikantes Signal zu erzeugen.

Tab. 23: Während der gesamten lag-Phase nach einem Salzschock auf 800 mM NaCl induzierte Gene, deren Produkte wahrscheinlich an dem Prozess der Osmoadaptation beteiligt sind.

Bezeichnung	Annotation	x-fache Induktion			
		1,5 h	7 h	13 h	21h
otbB1 (MM0296)	Cholin-Transport System Otb, Permease	n.i. ¹	4,92	3,69	2,63
<i>otbB2</i> (MM0295)	Cholin-Transport System Otb, Permease	n.i.	2,72	2,51	2,08
otaA (MM0040)	Betain-Transporter Ota, ATP-Bindeprotein	5,99	n.i.	7,12	5,16
pstA2 (MM2008)	Phosphat-Transporter, Permease	n.i.	4,42	7,65	7,06
<i>glnA1</i> (MM0956)	Glutamin-Synthetase	13,10	n.i.	3,57	2,56
MM2405	Kationen-Transporter	n.i.	2,62	4,73	3,33
MM0344	Mögliche Kationen-Efflux-Pumpe	n.i.	4,55	5,73	3,35
MM1094	Putativer Transkriptionsregulator	4,80	n.i.	3,58	2,25
MM1863	Transkriptionsregulator, MarR-Familie	14,34	n.i.	4,19	2,11

¹n.i.: nicht signifikant induziert

Ebenfalls während der gesamten lag-Phase induziert war *glnA1*, welches für die Glutamin-Synthetase GlnA1 kodiert. Dieses Gen wurde auch schon nach einem Schock auf 400 mM NaCl als signifikant induziert identifiziert, allerdings konnte eine erhöhte Expression hier nur direkt zu Beginn der lag-Phase beobachtet werden. Ferner waren zwei Gene in der Gruppe der während der gesamten lag-Phase induzierten Gene zu finden, welche möglicherweise an dem Transport von Kationen über die Membran beteiligt sind. MM2405, welches für einen Kationen-Transporter, und MM0344, welches für eine putative Kationen-Efflux-Pumpe kodiert, waren von 7 h nach dem Salzschock bis zum Ende der lag-Phase signifikant induziert. Beide Gene waren ebenfalls in der Gruppe der früh in der lag-Phase induzierten Gene nach einem Salzschock auf 400 mM zu finden. Desweiteren konnten zwei Gene identifiziert werden, MM1094 und MM1863, deren Expression während der gesamten lag-Phase nach einem Schock auf 800 mM signifikant erhöht war und die für putative Transkriptionsregulatoren kodieren. Eines dieser beiden Gene, MM1863, war auch nach einem Schock auf 400 mM NaCl identifiziert worden, allerdings zeigte es hier nur direkt nach dem Schock eine signifikante Induktion. Ferner konnte auch stromabwärts dieses für einen möglichen Transkriptionsregulator kodieren Gens ein weiteres signifikant induziertes Gen gefunden werden. Es handelt sich hierbei um MM1862, welches für einen putativen Transporter kodiert. MM1862 zeigte 1,5 h nach dem Schock eine Induktion der Expression um den Faktor 2,7.

3.5.3.5 Reprimierte Gene

Wie auch schon aus Abb. 32 ersichtlich ist, kam es nach einem osmotischen Schock auf 800 mM NaCl ebenfalls zur Verringerung der Expression einer Vielzahl von Genen. So wurden über den Verlauf der lag-Phase 477 Gene in ihrer Expression reprimiert, von denen 182 als konservierte oder hypothetische Proteine annotiert sind (komplette Liste s. Anhang). Auch hier ließen sich auf Grund der Funktion der putativen Genprodukte unterschiedliche Gruppen von Genen identifizieren. Auf einige von ihnen soll im Folgenden näher eingegangen werden, und einige ihrer Vertreter sollen vorgestellt werden.

Zu erwähnen ist eine Gruppe von Genen, deren Produkten eine regulative Funktion zugewiesen wird (Tab. 24). So wurden 7 Gene identifiziert, die laut ihrer Annotation an der Regulation der Genexpression beteiligt sind. Bei 4 von diesen 7 Genen konnte ebenfalls eine Repression nach einem Schock auf 400 mM festgestellt werden. MM0288 wurde unter beiden Bedingungen in der Mitte der lag-Phase reprimiert und auch der Repressionsfaktor war durchaus vergleichbar. MM3077 wurde nach einem Schock auf 800 mM in der Mitte in der lag-Phase reprimiert, wohingegen es nach einem Schock auf 400 mM erst am Ende der lag-Phase eine signifikante Repression zeigte. Das für eine Histidin-Kinase kodierende Gen MM2277 wurde unter beiden Bedingungen gegen Ende der mittleren lag-Phase reprimiert. Auch für MM0872, welches für einen putativen Transkriptionsregulator kodiert, ließen sich keine deutlichen Unterschiede zwischen den beiden Bedingungen feststellen. In allen Fällen
wich der Repressionsfaktor nicht stark voneinander ab, so waren alle Gene 2 bis 3fach reprimiert. Die Gene MM1825, MM0984 und MM3310 wurden nur nach einem Schock auf 800 mM signifikant reprimiert. Sie kodieren für ein putatives DNA-Bindeprotein, einen Transkriptionsregulator, welcher der AraC-Familie zugeordnet wird, und für eine hypothetische signaltransduzierende Histidin-Kinase.

Tab. 24: Nach einem osmotischen Schock auf 800 mM NaCl reprimierte Gene, die für putative regulatorische Proteine kodieren.

Bezeichnung	Annotation	x-fache Repression				
		1,5 h	7 h	13 h	21 h	
MM0288	Transkriptionsregulator, ArsR-Familie	¹	2,41	2,42		
MM1825	DNA-Bindeprotein		2,50			
MM3077	Möglicher Transkriptionsregulator			2,69		
MM0948	Signaltransduzierende Histidin-Kinase			2,11		
MM3310	Transkriptionsregulator, AraC-Familie			2,45		
MM2277	Hypothetische signaltransduzierende Histidin-			2,08		
	Kinase					
MM0872	Putativer Transkriptionsregulator		2,21	2,49		
1						

¹nicht signifikant reprimiert

Wie auch schon nach einem Schock auf 400 mM NaCl beobachtet, kam es auch hier zur Repression einer Reihe von Genen, deren Produkte an Stoffwechselprozessen oder der Proteinbiosynthese beteiligt sind. So konnten 17 Gene, die für ribosomale Proteine kodieren als signifikant reprimiert identifiziert werden. Ferner kam es in der Mitte der lag-Phase zur Repression fast aller Gene des ATPase-Operons (außer *ahaG*) und auch zur Repression einiger Gene, deren Produkte an der Methanogenese beteiligt sind. So wurden z. B. 9 Gene signifikant reprimiert, die für Untereinheiten der F_{420} -Dehydrogenase kodieren und 5 Gene, die für Untereinheiten der Ech-Hydrogenase kodieren. Dies lässt auf einen geringeren Energiebedarf der Zelle in der lag-Phase schließen.

Ferner konnte eine Gruppe von Genen als signifikant reprimiert identifiziert werden, deren Produkte an dem Prozess der Osmoadaptation beteiligt zu sein scheinen (Tab. 25). Jedes dieser Gene war ebenfalls nach einem hyperosmotischen Schock auf 400 mM reprimiert worden. MM2503, welches für das Kalium-Aufnahmeprotein des Trk Systems kodiert, war bereits 7 h nach dem osmotischen Schock deutlich reprimiert und behielt die Repression auch bis zum Ende der lag-Phase bei. Ebenfalls reprimiert waren die drei für die große Kette der Glutamat-Synthase kodierende Gene, *gltB1*, *gltB2* und *gltB3*. Auch *glnA2*, welches für eine Glutamin-Synthetase kodiert, zeigte eine signifikante Reduktion der Expression, wie auch

schon nach einem Schock auf 400 mM beobachtet. Dies unterstützt die Annahme, dass die unterschiedliche Regulation der Glutamin Synthese des Stickstoff- und des Salzmetabolismus auf Isoenzymen beruhen, da unabhängig von der Hohe des osmotischen Schocks eine Induktion von *glnA1* und eine Repression von *glnA2* beobachtet werden konnte. Ferner wurde noch ein Gen, MM2305, dessen Produkt eine Rolle bei der Aufnahme kompatibler Solute spielen könnte, und zwei Gene, MM0230 und MM1250, deren Produkte an dem Transport von Ionen über die Membran beteiligt sind, signifikant reprimiert. Eine Repression dieser Gene, welche an dem Prozess der Osmoadaptation beteiligt sein könnten, lässt sich auf den ersten Blick nicht erklären und gibt Anlass zu Spekulationen.

Tab. 25: Nach einem osmotischen Schock auf 800 mM NaCl reprimierte Gene, welche möglicherweise an der Akkumulation kompatibler Solute beteiligt sind.

Bezeichnung	Annotation	x-fa	che Re	epress	ion
_		1,5 h	7 h	13 h	21 h
MM2503	Trk-System, Kalium-Aufnahmeprotein	¹	4,92	4,17	2,34
<i>gltB1</i> (MM0966)	Glutamat-Synthase, große Kette			2,19	2,24
<i>gltB2</i> (MM0967)	Glutamat-Synthase, große Kette		2,35	2,38	2,19
<i>gltB3</i> (MM0968)	Glutamat-Synthase, große Kette		7,62	4,88	
<i>glnA2</i> (MM3188)	Glutamin-Synthetase		3,34		2,56
MM0230	Natrium-Calcium-Austauscher				2,02
MM2305	Natrium/Prolin-Symporter			2,35	
MM1250	Kationen-Transporter			2,06	

¹nicht signifikant reprimiert

3.5.4 Verifizierung der Expression von Genen nach osmotischem Schock

Die DNA-Microarrays stellen ein einzigartiges Werkzeug zur Untersuchung des Transkriptoms dar, stoßen aber, was die exakte Quantifizierung der mRNA-Transkripte angeht, bald an ihre Grenzen. Deswegen ist es von entscheidender Bedeutung, Ergebnisse einer solchen DNA-Microarray-Analyse zu bestätigen. Um die Erhöhung der Expression einiger der nach einem osmotischen Schock als induziert identifizierten Gene zu verifizieren, wurde eine quantitative PCR durchgeführt. Dazu wurde aus den Operonen, welche von besonderem Interesse waren, jeweils mindestens ein Gen ausgewählt, und das Verhältnis der Mengen der mRNA wurde bestimmt. Die Gene und die Änderung der Expression nach einem Schock auf 400 mM NaCl sind in Tab. 26 dargestellt.

Gen	Induktion (x-fach)									
-	1,5 h	4 h	8 h	12 h						
$amtB_2$ (MM0957)	241,90	54,73	1,48	0,82						
glnA1 (MM0964)	1191,28	109,46	0,06	0,47						
<i>nifK</i> (MM0723)	42,76	22,23	1,70	2,03						
$glnK_1$ (MM0732)	1037,07	190,57	1,59	0,82						
$amtB_1$ (MM0733)	638,39	117,31	1,70	1,34						
natB (MM1056)	1,25	2,78	2,77	1,65						
MM1257	4,34	1,30	0,05	0,21						
<i>cdcH</i> (MM1256)	4,99	1,21	0,26	0,41						
MM0345	10,69	13,68	1,48	0,06						
MM0344	6,14	13,68	0,56	0,36						
MM3117	3,07	1,83	0,03	0,11						
MM3118	8,68	3,19	0,02	0,15						
MM2224	13,00	28,44	1,31	1,47						
gltS (MM1782)	8,57	11,55	3,01	3,16						
<i>kefC3</i> (MM1909)	1,74	4,38	0,99	1,47						
otbA (MM0297)	3,25	4,38	1,14	1,58						
otbB1 (MM0296)	25,99	35,02	1,99	1,69						
otbB2 (MM0295)	13,00	26,54	2,28	1,95						
otbC (MM0294)	6,50	14,22	0,87	0,91						
otaC (MM0042	8,57	49,52	6,03	7,26						
ablA (MM0934)	274,39	198,08	25,84	27,10						
<i>slpB</i> (MM1589)	14,93	21,55	4,26	5,13						
MM0077	29,86	35,02	1,41	2,95						
<i>pstS</i> (MM2005)	128,01	56,88	1,99	29,04						
<i>pstC</i> (MM2006)	73,52	46,20	3,46	33,36						
<i>pstB</i> (MM2009)	17,15	46,20	3,23	8,34						
<i>phoU</i> (MM2010)	0,66	3,56	0,81	2,09						
nhal (MM0294)	0,77	1,60	1,59	2,17						
nha2 (MM0834)	6,50	10,78	0,81	0,91						

Tab. 26: Änderung der Expression von Genen nach einem osmotischen Schock auf 400 mM NaCl, bestimmt durch quantitative PCR.

Auf den ersten Blick fällt auf, dass die Induktionsraten deutlich höher lagen als die durch die Microarrays ermittelten. Dies lässt sich auf die höhere Spezifität der quantitativen PCR zurückführen. Aber die Expressionsmuster blieben bei allen Genen erhalten. Mittels dieser Methode konnte auch gezeigt werden, dass alle Gene des *otb*-Operons nach einem Salzschock induziert wurden, mit einer maximalen Induktionsrate 4 h nach dem Schock. Auch *otaC*, welches in der Microarray-Analyse nicht als signifikant induziert identifiziert werden konnte, konnte ebenfalls als während der gesamten lag-Phase induziert bestimmt werden. Zusätzlich zu den unter Punkt 3.5.2 beschriebenen Genen wurde noch die Expression von zwei Genen, welche für Na⁺/H⁺-Antiporter kodieren, untersucht. *nha1* ist nicht auf dem Microarray lokalisiert und wurde deswegen mittels quantitativer PCR untersucht, zeigte aber keine

deutliche Änderung der Expression, wohingegen *nha2* zu Beginn der lag-Phase deutlich induziert und gegen Ende der lag-Phase leicht reprimiert ist. Im Microarray wurde nur die Repression von *nha2* als signifikant erkannt (s. 3.5.2.5).

Natürlich wurden die Ergebnisse der DNA-Microarray-Analysen nach einem hyperosmotischen Schock auf 800 mM ebenfalls mittels quantitativer PCR überprüft. Die Gene und die Änderung der Expression sind in Tab. 27 dargestellt.

Gen	Induktion (x-fach)			
	1,5 h	7 h	13 h	21 h
$amtB_2$ (MM0957)	248,45	592,64	40,16	10,08
glnA1 (MM0964)	993,82	3593,13	20,08	4,39
nifK (MM0723)	3,38	60,17	12,36	4,70
<i>glnK</i> ¹ (MM0732)	702,74	1796,56	369,08	26,61
$amtB_1$ (MM0733)	285,40	1105,91	211,98	14,26
natB (MM1056)	1,81	7,02	8,16	5,40
MM1257	19,12	6,11	1,35	0,39
<i>cdcH</i> (MM1256)	12,61	11,40	2,04	0,83
MM0345	4,46	60,17	18,74	2,70
MM0344	4,46	26,19	17,48	2,90
MM3117	23,54	48,87	3,55	1,35
MM3118	38,24	138,24	16,31	1,66
MM2224	7,87	24,63	17,29	4,23
gltS (MM1782)	0,86	9,33	3,28	0,53
<i>kefC3</i> (MM1909)	0,57	8,71	3,76	0,86
otbA (MM0297)	0,98	18,67	3,76	2,12
otbB1 (MM0296)	0,80	34,83	15,05	2,27
otbB2 (MM0295)	4,22	52,79	14,04	5,99
otbC (MM0294)	5,57	28,29	2,48	1,72
otaC (MM0042)	1,49	11,49	12,23	6,42
ablA (MM0934)	95,47	452,65	182,51	89,37
<i>slpB</i> (MM1589)	41,56	85,76	39,72	6,88
MM0077	19,39	139,32	148,24	29,48
pstS (MM2005)	15,75	56,58	195,61	55,01
<i>pstC</i> (MM2006)	0,92	171,52	158,88	38,90
pstB (MM2009)	1,39	40,01	30,10	3,95
<i>phoU</i> (MM2010)	0,12	6,16	2,02	0,02
nha1 (MM0294)	1,19	3,51	5,38	2,52
nha2 (MM0834)	0,92	21,44	5,32	1,50

Tab. 27: Änderung der Expression von Genen nach einem osmotischen Schock auf 800 mM NaCl.

Wie schon bei der Verifizierung der Expression der Gene nach einem Schock auf 400 mM fällt auch hier auf, dass die Induktionsfaktoren deutlich höher waren. Darüberhinaus konnten mittels dieser Methode noch einige Gene identifiziert werden, die in den DNA-Microarray-

Analysen nicht erkannt worden waren. So wurde $amtB_2$, welches für einen Ammonium-Transporter kodiert, deutlich während der gesamten lag-Phase induziert, mit einer maximalen Induktionsrate von 593fach 7 h nach dem Schock. Somit kann davon ausgegangen werden, dass auch nach einem Schock auf 800 mM NaCl beide amtB-Gene induziert wurden. Ebenfalls nicht im Microarray erkannt wurde die Induktion von $glnK_1$, welches für eines der N₂-regulatorischen Proteine PII kodiert. Es liegt direkt vor $amtB_1$ auf dem Chromosom und war auch über die gesamte lag-Phase induziert, mit einer maximalen Expression nach 7 h. Auch die salzabhängige Induktion der Expression von MM1257, welches für einen Transkriptionsregulator der ArsA-Familie kodiert, konnte hier zusätzlich gezeigt werden. MM1257 gehörte in die Gruppe der früh in der lag-Phase induzierten Gene.

Ferner fielen einige Abweichungen der Induktionsmuster von den durch die Microarray-Analysen ermittelten auf. So waren einige Gene offensichtlich den falschen Gruppen zugeordnet worden. Laut dieser Ergebnisse gehörten $amtB_1$, MM0345, MM0344, MM3117, MM3118, MM2224, ablA und slpB in die Gruppe der während der gesamten lag-Phase induzierten Gene. Außerdem gab es einige Abweichungen in den Expressionsmaxima. So lag das Expressionsmaximum von glnA1 laut Microarray bei 13 h nach dem Schock, aber laut quantitativer PCR war es deutlich bei 7 h nach dem Schock einzuordnen. Das gleiche galt für gltS. Auch das Expressionsmuster von natB, welches für eine putative Natrium-Efflux-Pumpe kodiert, wich von dem durch die Microarray-Analyse gezeigten ab. So war natB bereits 7 h nach dem Schock induziert und die Expression blieb bis zum Ende der lag-Phase erhöht. Nichtsdestotrotz konnte die salzabhängige Induktion aller Gene bestätigt werden, auch wenn die Induktionsmuster sich nicht in allen Fällen entsprachen.

3.6 Zeitlicher Verlauf der Genexpression in *M. mazei* Gö1 nach einem hyperosmotischen Schock

Untersuchungen zur Osmoadaptation in *Methanosarcina*-Spezies haben gezeigt, dass diese Organismen als Antwort auf erhöhte Salzkonzentrationen der Umgebung kompatible Solute akkumulieren (**SOWERS UND GUNSALUS**, 1995), wobei die Solutzusammensetzung abhängig von der Osmolarität des Mediums und der Verfügbarkeit von kompatiblen Soluten ist. Bei mittleren Salzkonzentrationen wurden hauptsächlich α -Glutamat und Kalium akkumuliert, während bei höheren Osmolaritäten N^ε-Acetyl- β -Lysin als das vorherrschende kompatible Solut angereichert wurde. War jedoch Glycinbetain im Medium vorhanden, wurde die Synthese von α -Glutamat und N^ε-Acetyl- β -Lysin verringert und Glycinbetain als

vorherrschendes kompatibles Solut in der Zelle akkumuliert. Dies zeigt, dass die Akkumulation von kompatiblen Soluten ein dynamischer Prozess ist, welcher durch eine Vielzahl von Faktoren beeinflusst wird. Zum einen besteht ein Zusammenhang zwischen der Salzkonzentration und der Art der osmotischen Antwort der Organismen. Zum anderen kann die osmotische Antwort nach einem Schock zeitlich aufgelöst, also in mehrere aufeinander folgende Phasen unterteilt werden, wie es bereits für M. thermolithotrophicus beschrieben wurde (MARTIN ET AL., 2000). Diese zwei Faktoren, die Zeit und die Salzkonzentration, spielen auch bei der differentiellen Genexpression von M. mazei Göl nach einem hyperosmotischen Schock eine Rolle. Betrachtet man die Expressionsänderung eines Operons zu den unterschiedlichen Zeitpunkten in der lag-Phase nach einem Salzschock, sind deutliche Unterschiede in der Induktionsrate der Gene zu erkennen. Vergleicht man nun dieses Expressionsmuster nach einem Salzschock auf 400 mM NaCl mit dem nach einem Salzschock auf 800 mM NaCl, so erkennt man, dass die Salzkonzentration ebenfalls einen Einfluss auf das Expressionsmuster hat. Im Folgenden soll der zeitliche Verlauf der Genexpression einiger Gene, die an der Aufnahme oder Biosynthese kompatibler Solute, an der Bildung von Glutamat oder Glutamin und der Ammonium-Rekrutierung, sowie dem Transport von Ionen über die Membran beteilig sind, dargestellt werden.

3.6.1 Aufnahme von Glycinbetain, Cholin und P_i und Synthese von N^ε-Acetyl-β-Lysin

Das Induktionsmuster des *ota*-Operons, das für einen primären Glycinbetain-Transporter kodiert, und des *abl*-Operons, dessen Produkte an der Biosynthese von N^e-Acetyl- β -Lysin beteiligt sind, entsprachen sich weitgehend (Abb. 33 und Abb. 35). Nach einem Schock auf 400 mM NaCl erfolgte die stärkste Induktion der Gene bereits nach 1,5 h. Die Expression war über den gesamten Zeitraum der lag-Phase signifikant erhöht verglichen mit der Situation vor dem Schock, mit der Ausnahme von *otaB*, welches 12 h nach dem Schock nicht mehr als signifikant induziert identifiziert werden konnte. Nach einem Schock auf 800 mM jedoch lag das Induktionsmaximum beider Operone bei 13 h nach dem Schock. In der Zeit davor waren ihre Gene (mit der Ausnahme von *otaA* 1,5 h nach dem Schock) nicht induziert. Nur für *otaC*, das für das Glycinbetain-Bindeprotein kodiert, konnte in keinem Fall mittels der Microarray-Analyse eine signifikante Induktion nachgewiesen werden. Da aber die Induktion von *otaC* bereits mit anderen Methoden gezeigt wurde (**RoeßLER** *ET AL.*, 2002) (s. 3.5.4), ist anzunehmen, dass dies ein falsch-negatives Ergebnis war.

Ferner konnte beobachtet werden, dass das abl-Operons deutlich stärker induziert wurde als das ota-Operon. Dies bedeutet allerdings nicht, dass auch mehr AblA und AblB in der Zelle vorlag, da mittels der DNA-Microarrays nur eine relative Änderung der Expression bestimmt werden kann. Northern-Blot-Analysen zeigten, dass das ota-Operon bei Niedrigsalz-Bedingungen bereits basal transkribiert wird, das abl-Operon hingegen nicht (PFLÜGER ET AL., 2003; ROEßLER ET AL., 2002). Nichtsdestotrotz konnte die Induktion des abl-Operons beobachtet werden, was verwunderlich war, da die Zellen auf Kompexmedium angezogen worden waren und somit kompatible Solute in der Umgebung vorhanden waren. Dieses Phänomen wurde auch schon in salzadaptierten Zellen beobachtet (s. 3.4). Offensichtlich kam es also durch die Anwesenheit kompatibler Solute im Medium (Hefeextrakt und Casiton) nicht zu einer vollständigen Repression der Biosynthesegene von N^ε-Acetyl-β-Lysin. Auch in *M. thermophila* wurde dies beschrieben. So synthetisierte dieser Organismus auch dann noch N^ε-Acetyl-β-Lysin, wenn kompatible Solute extrazellulär bereitgestellt wurden, allerdings deutlich weniger (SOWERS UND GUNSALUS, 1995). Da die Expression des abl-Operons in Zellen von M. mazei Gö1, die in Minimalmedium gewachsen waren, im Rahmen dieser Arbeit nicht untersucht wurde, kann die Höhe der Induktion nicht verglichen werden, und somit können keine Aussagen über eine mögliche Repression und deren Stärke getroffen werden. Aber offensichtlich schienen die aufgenommenen kompatiblen Solute nicht auszureichen, um eine Adaptation zu gewährleisten, weder nach einem Schock auf 400 noch nach einem auf 800 mM NaCl, oder aber die Expression des abl-Operons wird durch die Anwesenheit von kompatiblen Soluten nicht vollständig reprimiert, vielleicht um der Zelle eine höhere Flexibilität zu ermöglichen.

Der zeitliche Verlauf der Expression der Gene des *otb*-Operons, welches für einen putativen Cholin-Transporter kodiert, ist in Abb. 34 dargestellt. Nach einem Schock auf 400 mM NaCl waren die Gene *otbB1* und *otbB2*, die für die Transmembrandomäne des Transporters kodieren, ausschließlich 1,5 h nach dem Schock induziert. Nach einem hyperosmotischen Schock auf 800 mM NaCl hingegen war eine maximale Induktion von *otbB1* und *otbB2* erst nach 7 h zu beobachten. Anschließend nahm Induktionsrate mit der Zeit ab. Somit wurde das *otb*-Operon bereits zu einem früheren Zeitpunkt induziert als das *abl*-Operon und die Höhe der Induktion war deutlich geringer, als für das *ota*- und das *abl*-Operon beobachtet.

Das *pst*-Operon zeigte tendenziell ein ähnliches Expressionsmuster (Abb. 36) wie das *abl*und das *ota*-Operon. Nach einem Schock auf 400 mM war die höchste Induktion der Expression der Gene des Operons nach 1,5 h zu beobachten. Anschließend nahm sie mit der Zeit ab. Im Gegensatz zu den drei oben besprochenen Operonen waren die Gene jedoch kurz vor dem Wiedereintritt in die Wachstumsphase noch einmal deutlich induziert. Bei der Antwort nach einem Schock auf 800 mM zeigte sich weitgehend dasselbe Expressionsmuster, das auch schon bei dem *ota-* und dem *abl-*Operon beobachtet wurde.

Abb. 33: Induktion der Expression des *ota***-Operons nach einem hyperosmotischen Schock.** Dargestellt ist die x-fache Induktion der Expression von *otaA* (hellgrau) und *otaB* (dunkelgrau) nach einem hyperosmotischen Schock auf die angegebene NaCl-Konzentration.

Abb. 34: Induktion der Expression des *otb*-Operons nach einem hyperosmotischen Schock. Dargestellt ist die x-fache Induktion der Expression von *otbC* (hellgrau), *otbB1* (dunkelgrau) und *otbB2* (schwarz) nach einem hyperosmotischen Schock auf die angegebene NaCl-Konzentration.

Abb. 35: Induktion der Expression des *abl*-Operons nach einem hyperosmotischen Schock. Dargestellt ist die x-fache Induktion der Expression von *ablA* (hellgrau) und *ablB* (dunkelgrau) nach einem hyperosmotischen Schock auf die angegebene NaCl-Konzentration.

Abb. 36: Induktion der Expression des *pst*-Operons nach einem hyperosmotischen Schock. Dargestellt ist die x-fache Induktion der Expression von *pstS* (hellgrau), *pstC* (quergestreift), *pstA1* (schwarz), *pstA2* (längsgestreift) und *pstB* (diagonal gestreift) nach einem hyperosmotischen Schock auf die angegebene NaCl-Konzentration.

Fasst man diese Informationen zusammen, so ergibt sich folgendes Bild: Ein Schock auf 400 mM NaCl führte zu einer sofortigen Induktion der Gene, deren Produkte für die Aufnahme von Glycinbetain, Cholin und P_i, und für die Synthese von N^e-Acetyl- β -Lysin verantwortlich sind. Am stärksten wurden die Gene für die N^e-Acetyl- β -Lysin-Synthese und das P_i-Aufnahme-System induziert und am schwächsten die des *otb*-Operons, das ausschließlich direkt nach dem Schock eine erhöhte Expression zeigte. Die anderen Operone waren über den gesamten Verlauf der lag-Phase induziert und kurz vor dem Wiedereintritt in das Wachstum kam es noch einmal zu einer verstärkten Induktion der *pst*-Gene. Ein Schock auf 800 mM NaCl hingegen führte zu einer sofortigen Expression von *otaA*. Da davon auszugehen ist, dass die Gene eines Operon gemeinsam reguliert werden, wurde damit der Glycinbetain-Transporter direkt nach dem Schock induziert. Darauf folgten die Induktion des *otb*-Operons. Erst im letzten Drittel der lag-Phase wurde das *abl*-Operon

induziert. Auch nach einem Schock auf 800 mM wurde die stärkste Induktion für das *pst-* und das *abl-*Operon beobachtet und die schwächste für den Cholin-Transporter.

3.6.2 Bildung von Glutamat und Glutamin und N-Assimilierung

Glutamat und Glutamin können von methanogenen Archaeen als kompatible Solute genutzt werden (LAI ET AL., 1991; ROBERTSON ET AL., 1992a; ROBERTSON ET AL., 1992b; SOWERS UND GUNSALUS, 1995). Im Rahmen dieser Arbeit konnte eine Reihe von Genen identifiziert werden, die salzabhängig reguliert wurden, und deren Produkte eine Rolle bei der Aufnahme stickstoffhaltiger Verbindungen und der Bildung von Glutamat und Glutamin spielen. Im Folgenden soll der zeitliche Verlauf der Expression dieser Gene nach einem hyperosmotischen Schock genauer betrachtet werden und der Einfluss der NaCl-Konzentration auf die Expression dargestellt werden.

Eine Möglichkeit für Mikroorganismen Glutamat zu akkumulieren, ist die Aufnahme der Verbindung aus der Umgebung. Mittels der DNA-Microarray-Analysen wurde ein Gen identifiziert, dessen Produkt für den Transport von Glutamat über die Membran verantwortlich sein kann. Es handelt sich hierbei um *gltS*, das für einen putativen Natrium/Glutamat-Sympoter kodiert und die Aufnahme von Glutamat in die Zelle entlang des elektrochemischen Natriumionen-Gradienten in die Zelle katalysiert. Nach einem hyperosmotischen Schock auf 400 mM NaCl konnte eine Induktion von *gltS* 1,5 h und 4 h nach dem Schock festgestellt werden. Die Stärke die Induktion war recht gering (ca. 3fach) und variierte kaum. Später in der lag-Phase war das Gen nicht mehr induziert. Nach einem Schock auf 800 mM hingegen war eine erhöhte Expression von *gltS* erst 13 h nach dem Schock nachzuweisen. Sie blieb dann allerdings bis zum Ende der lag-Phase erhöht. Die Induktionsrate lag in demselben Bereich wie nach einem Schock auf 400 mM beobachtet.

Ferner liegen im Genom von *M. mazei* Gö1 zwei Gene vor, die für Ammonium-Transporter kodieren und somit an der Ammonium-Rekrutierung beteiligt sein könnten. Diese Gene, $amtB_1$ und $amtB_2$, liegen jeweils stromabwärts bzw. stromaufwärts eines weitern Gens, $glnK_1$ bzw. $glnK_2$, deren putative Produkte Ähnlichkeiten zu dem an der Stickstoffregulation beteiligten Protein PII aufweisen (EHLERS ET AL., 2002a) (genetische Organisation der Operone s. Abb. 74 und Abb. 75). Direkt nach einem hyperosmotischen Schock auf 400 mM wurde das $glnK_1$ - $amtB_1$ -Operon induziert (Abb. 38). Für das $amtB_2$ - $glnK_2$ -Operon konnte zu demselben Zeitpunkt nur für $amtB_2$ eine erhöhte Expression nachgewiesen werden. Allerdings wurde $amtB_2$ deutlich stärker induziert als $amtB_1$ (45fach gegenüber 9fach). Später in der lag-Phase war keines dieser Gene mehr signifikant induziert. Nach einem hyperosmotischen Schock auf 800 mM jedoch wurde nur $amtB_1$ 13 h nach dem Schock geringfügig induziert (ca. 2fach).

Betrachtet man den zeitlichen Verlauf der Expression des *nif*-Operons, zeigt sich ein sehr ähnliches Bild (Abb. 39). Die Gene des Operons kodieren für die Untereinheiten der Nitrogenase und für Enzyme, die für die Bildung der Nitrogenase verantwortlich sind (**EHLERS ET AL.**, 2002b) (genetische Organisation des *nif*-Operons s. Abb. 74). Dieser Enzymkomplex ist für die Fixierung von Stickstoff aus der Luft verantwortlich und stellt ihn der Zelle in Form von Ammonium zur Verfügung. Direkt nach einem hyperosmotischen Schock auf 400 mM wurden die Gene des *nif*-Operons deutlich induziert. Jedoch schon 4 h nach dem Schock konnte nur noch für *nifN* eine geringe Induktion nachgewiesen werden. Nach einem Schock auf 800 mM NaCl war erst nach 13 h eine erhöhte Expression der *nif-*Gene zu beobachten, allerdings nur der beiden Gene, die für die Dinitrogenase kodieren (*nifK* und *nifD*). Darüberhinaus war die Induktionsrate recht gering (ca. 2fach). Somit wurden diejenigen Gene, welche für die Rekrutierung von Ammonium verantwortlich sind, sei es durch Aufnahme von NH_4^+ oder durch Stickstofffixierung, nach einem Schock auf 400 mM NaCl deutlich früher und stärker exprimiert, als dies nach einem Schock auf 800 mM NaCl beobachtet werden konnte.

Im Genom von M. mazei Göl liegen zwei Gene vor, glnAl und glnA2, die als Glutamin-Synthetasen annotiert sind und deren putative Produkte somit für die Synthese von Glutamin aus Glutamat und Ammonium verantwortlich sind (genetische Organisation s. Abb. 75 und Abb. 78). Die Expression von glnA1 war salzinduziert, während die Expression von glnA2 salzreprimiert war (Abb. 40 und Abb. 41). Nach einem Schock auf 400 mM NaCl wurde glnA1 1,5 h nach dem Salzschock deutlich induziert, wohingegen noch keine Regulation der Expression von glnA2 zu diesem Zeitpunkt zu beobachten war. 4 h nach dem Schock war glnA2 dann jedoch signifikant reprimiert. Die verringerte Expression von glnA2 war über den restlichen Verlauf der lag-Phase mit gleichbleibender Rate zu beobachten. glnA1 hingegen wurde in dem späteren Verlauf der lag-Phase nicht mehr induziert. Nach einem Schock auf 800 mM konnte eine Induktion der Expression von glnA1 ebenfalls bereits 1,5 h nach dem Schock beobachtet werden. Auch 13 und 21 h nach dem Schock wurde dieses Gen stärker exprimiert, wenn auch die Induktionsrate ca. um den Faktor 3 geringer war als direkt nach dem Schock. Eine Repression der Expression von glnA2 wurde 7 und 21 h nach dem hyperosmotischen Schock beobachtet. Der Faktor der Repression entsprach weitgehend dem nach einem Schock auf 400 mM NaCl identifizierten.

Die Bildung von Glutamat kann über zwei unterschiedliche Enzymsysteme verlaufen. Zum einen kann Glutamat durch die Aktivität der Glutamat-Dehydrogenase aus α -Ketoglutarat und Ammonium gebildet werden, und zum anderen durch die Glutamat-Synthase aus Glutamin und α-Ketoglutarat. Die für die Glutamat-Dehydrogenase kodierenden Gene zeigten keine Regulation nach einem hyperosmotischen Schock, wohingegen die Gene, die für die Glutamat-Synthase kodieren, deutlich reprimiert waren (Abb. 42). Nach einem Schock auf 400 mM waren die drei für die große Untereinheit der Glutamat-Synthase kodierenden Iso-Gene gltB1, gltB2 und gltB3 reprimiert. Die drei Gene sind aufeinanderfolgend im Genom organisiert (s. Abb. 75 und Abb. 77). gltB3 wurde bereits 1,5 h nach dem Schock reprimiert. Nach 4, 8 und 12 h hingegen, konnte nur die Repression der anderen beiden Gene, gltB1 und gltB2, beobachtet werden. Die Expression war in allen Fallen 2 – 4fach reprimiert. Da aber davon auszugehen ist, dass die drei Gene in einem Operon vorliegen und gemeinsam reguliert sind, bedeutet dies, dass ihre Expression über den gesamten Verlauf der lag-Phase reprimiert wurde. Nach einem Schock auf 800 mM konnte nach 1,5 h noch keine Regulation der Gene nachgewiesen werden, wohingegen nach 7 h gltB2 und gltB3 reprimiert waren. Nach 13 h konnte eine Repression der Expression aller drei *gltB*-Gene beobachtet werden und nach 21 h, am Ende der lag-Phase, wurde keine Repression von gltB3 mehr beobachtet, aber gltB1 und gltB2 waren immer noch reprimiert. gltB3 zeigte die stärkste Repressionsrate, die anderen beiden Gene waren vergleichbar stark reprimiert. Somit kann davon ausgegangen werden, dass das putative gltB-Operon nach einem Schock auf 800 mM NaCl nach 7 h reprimiert wurde und die Repression bis zum Ende der lag-Phase erhalten blieb.

Abb. 37: Induktion der Expression von *gltS* **nach einem hyperosmotischen Schock.** Dargestellt ist die x-fache Induktion der Expression nach einem hyperosmotischen Schock auf die angegebene NaCl-Konzentration.

Abb. 38: Induktion der Expression von $glnK_1$, $amtB_1$ und $amtB_2$ nach einem hyperosmotischen Schock. Dargestellt ist die x-fache Induktion der Expression von $glnK_1$ (hellgrau), $amtB_1$ (dunkelgrau), welche in einem Operon vorliegen, und $amtB_2$ (schwarz) nach einem Schock auf die angegebene NaCl-Konzentration.

Abb. 39: Induktion der Expression des *nif*-Operons nach einem hyperosmotischen Schock. Dargestellt ist die x-fache Induktion der Expression von *nifN* (grau quergestreift), *nifE* (diagonal gestreift), *nifK* (längsgestreift) und *nifD* (schwarz) nach einem hyperosmotischen Schock auf die angegebene NaCl-Konzentration.

Abb. 40: Induktion der Expression von *glnA1* **nach einem hyperosmotischen Schock.** Dargestellt ist die x-fache Induktion der Expression nach einem Schock auf die angegebene NaCl-Konzentration.

Abb. 41: Repression der Expression von *glnA2* nach einem hyperosmotischen Schock. Dargestellt ist die x-fache Repression der Expression nach einem Schock auf die angegebene NaCl-Konzentration.

Abb. 42: Repression der Expression des *gltB***-Operons nach einem hyperosmotischen Schock.** Dargestellt ist die x-fache Repression der Expression von *gltB1* (hellgrau), *gltB2* (dunkelgrau) und *gltB3* (schwarz) nach einem hyperosmotischen Schock auf die angegebene NaCl-Konzentration.

Eine allgemeine Betrachtung dieser Ergebnisse zeigte, dass die Mehrheit der salzregulierten Gene, die an der Bildung von Glutamin oder Glutamat und der Rekrutierung von Ammonium beteiligt sind, einem ähnlichen Muster folgte. Ein Schock auf 400 mM führte zu einer sofortigen Induktion der Gene, die an der Ammonium-Rekrutierung und Glutamin-Bildung beteiligt sind. Anders jedoch nach einem Schock auf 800 mM. Dies führte zu einer sofortigen Induktion von *glnA1*, des für die Glutamin-Synthase kodierenden Gens. Erst später in der lag-Phase, und auch deutlich schwächer als nach einem Schock auf 400 mM NaCl beobachtet, wurden die für die Rekrutierung von Ammonium verantwortlichen Gene erhöht exprimiert. Die Expressionsmuster der nach einem Schock reprimierten Gene zeigten keine gravierenden Unterschiede in Abhängigkeit von der Salzkonzentration, nur das putative *gltB*-Operon wurde nach einem Schock auf 400 mM NaCl etwas früher reprimiert als nach einem Schock auf 800 mM NaCl.

3.6.3 Transport von Kationen

Nach einem hyperosmotischen Schock ist es essentiell für die Zelle schnell reagieren zu können, damit der Turgor erhalten bleibt und ein Schrumpfen der Zelle bis hin zur Plasmolyse verhindert wird. Eine Vielzahl von Mikroorganismen erreicht dies durch einen sofortigen und schnellen Einstrom von Kaliumionen (GALINSKI UND TRÜPER, 1994; KEMPF UND BREMER, 1998; WOOD, 1999). Auch in dem methanogenen Archaeon *M. thermolithotrophicus* wurde diese Strategie nachgewiesen (MARTIN *ET AL.*, 2000). In einer zweiten Phase beginnt dann die Synthese von organischen Osmolyten und die Kaliumkonzentration in der Zelle sinkt wieder ab. Im Folgenden sollen die Expressionsmuster einiger Gene betrachtet werden, die für die Aufnahme oder den Efflux von Kationen verantwortlich sein könnten.

M. mazei Gö1 reagierte auf einen hyperosmotischen Schock mit der Induktion der Expression zweier Gene, MM0344 und MM2405, die für eine putative Kationen-Efflux-Pumpe und einen putativen Kationen-Transporter kodieren (Abb. 43), und der Repression eines Gens (MM1250), das ebenfalls für einen Kationen-Transporter kodiert. Nach einem Schock auf 400 mM NaCl waren MM0344 und MM2405 bereits 1,5 h nach dem Schock induziert und MM1250 reprimiert. Nach 4 h konnte nur noch eine verstärkte Expression des für den Kationen-Transporter kodierenden Gens nachgewiesen werden. In der späten lag-Phase wurde keines dieser Gene mehr signifikant reguliert. Anders war die Situation nach einem Schock auf 800 mM NaCl. Dort wurden MM0344 und MM2405 von 7 h nach dem Schock bis zum Ende der lag-Phase signifikant stärker exprimiert. Das für den Kationen Transporter kodierende Gen MM1250 wurde 13 h nach dem Schock reprimiert.

Ferner wurde mittels der DNA-Microarray-Analyse ein Gen identifiziert, welches für das putative Kalium-Aufnahmeprotein des Trk-Systems kodiert und nach einem hyperosmotischen Schock deutlich reprimiert war (Abb. 44). Nach einem Schock auf 400 mM NaCl war die Expression dieses Gens über die gesamte lag-Phase reprimiert (mit der Ausnahme8 h nach dem Schock). Nach einem Schock auf 800 mM NaCl wurde eine Repression die Expression dieses Gens für den Zeitraum von 7 h nach dem Schock bis zum Ende der lag-Phase nachgewiesen. Da jedoch der Einstrom von Kalium in die Zelle nach einem hyperosmotischen Schock sehr schnell vonstatten gehen muss, bedeutet dies nicht, dass Kalium nicht über dieses System in die Zelle aufgenommen werden kann. In *E. coli* ist das Trk-System auf transkriptioneller Ebene nicht salzreguliert, sondern es wird konstitutiv exprimiert und die Regulation erfolg auf der Aktivitätsebene (**BAKKER**, 1993; **Kempf UND BREMER**, 1998; **WOOD**, 1999). So kann man vermuten, dass in *M. mazei* Gö1 die Kalium-Akkumlation ebenfalls auf einer Erhöhung der Aktivität des Trk-Systems beruht und nicht auf

der Induktion der Expression. Dies hat den Vorteil, dass es deutlich weniger Zeit in Anspruch nimmt bis Kalium akkumuliert werden kann. Desweiteren mag die Aufnahme von Kalium in die Zelle in den ersten 1,5 h nach dem Schock bereits abgeschlossen gewesen sein, weswegen keine salzinduzierten Kalium-Transportsysteme identifiziert werden konnten. Um die Repression des Trk-Systems zu erklären, kann man sich vorstellen, dass zu dem Zeitpunkt, an dem die Synthese organischer Osmolyte (Glycinbetain, Cholin) beginnt, die Transkription dieses Systems reprimiert wird, um einen weiteren Kalium-Einstrom zu verhindern bzw. den Efflux von Kalium zu ermöglichen. Demnach hätten die Gene, die für die Synthese oder Aufnahme kompatibler Solute verantwortlich sind, und die Gene, die an dem Efflux von Kalium beteiligt sein könnten, nach einem Schock auf 400 bzw. 800 mM NaCl zeitgleich mit der Repression von MM2503 induziert werden müssen. Ein Blick auf die Expressionsmuster dieser Gene (*ota*-Operon, *otb*-Operon, *abl*-Operon, MM2305 und MM0344) zeigt, dass das weitgehend der Fall war.

Abb. 43: Induktion der Expression von MM0344 und MM2405 nach einem hyperosmotische Schock. MM0344 (hellgrau) kodiert für eine putative Kationen-Efflux-Pumpe und MM2405 (dunkelgrau) für eine putativen Kationen-Transporter. Dargestellt ist die x-fache Induktion der Expression nach einem hyperosmotischen Schock auf die angegebene NaCl-Konzentration.

Abb. 44: Repression von MM2503 nach einem hyperosmotischen Schock. MM2503 kodiert für ein putatives Kalium-Aufnahmeprotein des Trk-Systems. Dargestellt ist die x-fache Repression der Expression nach einem hyperosmotischen Schock auf die angegebene NaCl-Konzentration.

3.6.4 Zeitliche Abfolge der Regulation

Zusammenfassend zeigt dies, dass die Zelle nach einem hyperosmotischen Schock die Salzkonzentration sensieren kann und entsprechend reagieren kann. Bei den hier besprochenen Genen und Operonen geschah dies meist in einer ähnlichen Art und Weise. Nach einem Schock auf 400 mM waren bereits nach 1,5 h die Mehrheit der Gene maximal induziert, während nach einem Schock auf 800 mM erst in der späten lag-Phase die maximale Induktion beobachtet wurde. Überträgt man dies auf die Länge der lag-Phase, so war die maximale Induktion nach einer Erhöhung der Salzkonzentration auf 400 mM sofort nach dem hyperosmotischen Schock zu beobachten, während dieser Zeitpunkt nach einer Erhöhung auf 800 mM erst ungefähr in der Mitte der lag-Phase zu identifizieren war. Offensichtlich schienen unterschiedliche Mechanismen zum tragen zu kommen, je nachdem, ob die Zelle einem Salzschock auf 400 bzw. 800 mM NaCl ausgesetzt worden war. Betrachtet man die Zeitpunkte, an denen die Gene, welche am Prozess der Osmoadaptation beteiligt sein könnten, eine Regulation der Expression aufwiesen, so kann man nach einem Schock auf 400 mM deutlich vier Gruppen erkennen: (i) früh-induzierte, (ii) komplett-induziert, (iii) komplettreprimierte und (iv) spät reprimierte Gene (Abb. 45). Die Antwort auf einen hyperosmotischen Schock auf 400 mM kann also in zwei Phasen eingeteilt werden, in die frühe, induktive Phase und die drauffolgende repressive Phase. Die putativen Genprodukte der ausschließlich in dieser ersten Phase induzierten Gene sind an dem Transport von Kationen über die Membran, der Ammonium-Rekrutierung, der Synthese von Glutamin, Cholin und PolyP, und dem Transport von Glutamat beteiligt. Die zweite Gruppe der Gene war ebenfalls an dieser ersten Phase beteiligt, blieb aber weiterhin über den gesamten Zeitraum der lag-Phase induziert. Ihre putativen Produkte sind an der Aufnahme von Glycinbetain, Molybdat und Pi, der Synthese von N^ε-Acetyl-β-Lysin und der Umstrukturierung der Zellhülle beteiligt. Nur ein Gen, natB, das für eine putative Na⁺-Efflux-Pumpe kodiert, war spät in der lag-Phase induziert. In der ersten Phase nach einem Schock kam es ferner zu der Repression der Gene, deren putative Produkte für die Synthese von Glutamat und die Aufnahme von Kalium und Prolin verantwortlich sind. Mit Ausnahme von MM2305, dem putativen Na⁺/Prolin-Symporter, waren sie über den gesamten Zeitraum der lag-Phase reprimiert. Zum Ende der ersten Phase der ,Osmoantwort' kam es zur Repression von glnA2, dessen putatives Produkt für die Synthese von Glutamin verantwortlich ist. Dieses Gen blieb bis zum Ende der lag-Phase reprimiert. In der zweiten Phase der Antwort, konnte eine deutlich verringerte Expression der Gene beobachtet werden, deren putative Produkte an dem Transport von Ionen über die Membran beteiligt sind.

Abb. 45: Zeitlicher Verlauf der salzregulierten Gene nach einem hyperosmotischen Schock auf 400 mM NaCl. Der Balken in der Mitte symbolisiert die lag-Phase nach dem Salzschock. Dargestellt ist die verstärkte oder verminderte Expression der salzregulierten Gene, die am Prozess der Osmoadaptation beteiligt sein könnten zu den jeweiligen Zeitpunkten in der lag-Phase. Von oben nach unten: *ppk* (MM1375), Kat. Efflux (MM0344), K⁺-Kanal (MM3189), *nif* (MM0725 – MM0722), *glnK*₁ (MM0732), *amtB*₁ (MM0733), *amtB*₂ (MM0957), *glnA1* (MM0964), *otb* (MM0296, MM0295), Kationen-Transport (MM2405) *gltS* (MM1782), *natB* (MM1056), Mo-Transport (MM1580, MM1579), *ota* (MM0040, MM0041), *ab1* (MM0934, MM0935), *pst* (MM2005 – MM2009), *slpB* (MM1589), *gltB* (MM0966, MM0967, MM0968), *trk* (MM2503), Na⁺/Pro (MM2305), *glnA2* (MM3188), *nha2* (MM0834), Kationen-Transport (MM1253), Kat.-Transport (MM1250), *kefC1* (MM0933).

Betrachtet man den zeitlichen Ablauf der Regulation der Expression nach einem Schock auf 800 mM NaCl, so sind auch hier zwei Phase zu erkennen, wenn auch nicht so deutlich wie nach einem Schock auf 400 mM NaCl (Abb. 46). Außerdem liefen Induktion und Repression der Gene zeitgleich ab. In der ersten Phase, welche ungefähr die erste Hälfte der lag-Phase abdeckte, kam es zur Induktion von Genen, deren putative Produkte an der Synthese von Glycinbetain, Glutamin, Cholin und PolyP, an dem Transport von Kationen, der Aufnahme von Pi und der Stickstofffixierung beteiligt sind. Mit Ausnahme der Gene für die Stickstofffixierung und der PolyP-Synthese blieben sie auch in der zweiten Phase induziert. Ferner wurden in der Mitte dieser ersten Phase die Gene reprimiert, die für die Synthese von Glutamat und Glutamin und die Aufnahme von Kalium verantwortlich sind. Auch sie blieben in der zweiten Phase reprimiert. Zu Beginn der zweiten Phase der Antwort auf einen hyperosmotischen Schock auf 800 mM NaCl kam es zusätzlich zu Induktion von Genen, deren putative Produkte an der Aufnahme von Ammonium, Molybdat und Glutamat, an dem Efflux von Kalium, an der Umstrukturierung des S-Layers und der Biosynthese von N^{ϵ}-Acetyl- β -Lysin beteiligt sind. Während *amtB1* und *kefC3* nur zu Begin der zweiten Phase induziert waren, blieb die Expression der anderen Gene bis zum Ende der lag-Phase erhöht.

Ebenfalls zu Beginn der zweiten Phase wurden Gene, welche am Transport von Kationen und Prolin beteiligt sind, reprimiert. Ganz am Ende dieser zweiten Phase, direkt vor der Wiederaufnahme des Wachstums, kam es zur Induktion von *natB*, das für eine putative Na⁺-Efflux-Pumpe kodiert.

Abb. 46: Zeitlicher Verlauf der salzregulierten Gene nach einem hyperosmotischen Schock auf 800 mM NaCl. Der Balken in der Mitte symbolisiert die lag-Phase nach dem Salzschock. Dargestellt ist die verstärkte oder verminderte Expression der salzregulierten Gene, die am Prozess der Osmoadaptation beteiligt sein könnten zu den jeweiligen Zeitpunkten in der lag-Phase. Von oben nach unten: *kefC3* (MM1909), *amtB*₂ (MM0957), *natB* (MM1056), Mo-Transport (MM1578 - MM1580), *gltS* (MM1782), *ppk* (MM1375), *slpB* (MM1589), *nif* (MM0723, MM0722), *abl* (MM0934, MM0935), *pst* (MM2005 – MM2009), Kationen-Transport (MM2405), Kationen-Efflux (MM0344), *otb* (MM0296, MM0295), *glnA1* (MM0964), ota (MM0040, MM0041), *gltB* (MM0966, MM0967, MM0968), *trk* (MM2503), *glnA2* (MM3188), Na⁺/Pro (MM2305), Kat.-Transport (MM1250).

Ein Vergleich der zeitlichen Abläufe der Antworten auf einen hyperosmotischen Schock auf 400 bzw. 800 mM NaCl zeigt, dass in beiden Fällen in der ersten Phase die Gene zu finden waren, welche an der Glutamin/Glutamat-Bildung, der Ammonium-Rekrutierung und dem Transport von Kationen beteiligt sind, wohingegen in der zweiten Phase die Mehrheit der induzierten Gene für die Biosynthese von kompatiblen Soluten (N^ε-Acetyl-β-Lysin, Glycinbetain) verantwortlich ist. Ferner kann man beobachten, dass die maximale regulative Aktivität nach einem Schock auf 400 mM NaCl direkt nach dem Schock zu finden war, wohingegen sie nach einem Schock auf 800 mM NaCl erst nach 13 h auftrat. Hat aber dann die Umorganisation der Genexpression erst einmal begonnen, war der Zeitraum, bis die Zellen wieder in das Wachstum eintreten, zwischen den beiden Bedingungen durchaus vergleichbar. So begannen Zellen nach einem Schock auf 400 mM ca. 10 h nach dem Zeitpunkt der maximalen Genexpression wieder mit dem Wachstum und Zellen nach einem Schock auf 800 mM ca. nach 9 h.

3.7 Versuche zur Identifizierung eines Regulators

Wie im Rahmen dieser Arbeit gezeigt wurde, kommt es bei der Adaptation von *M. mazei* Göl zu einer Änderung der Expression einer Vielzahl von Genen. Es konnte eine ganze Reihe Gene identifiziert werden, die abhängig von der externen Salzkonzentration reguliert wurden. Aber wie erfolgt die Regulation der Expression und was ist das regulierende Element? Diesen Fragen sollte im Folgenden nachgegangen werden. Zur Identifizierung eines möglichen Regulators wurden drei salzabhängig regulierte Operone, das *ota*-Operon, das *abl*-Operon und das *pst*-Operon herangezogen. Es wurde nach einem DNA-Bindeprotein gesucht, welches bei einer der beiden Salzkonzentrationen in dem Promomotorbereich eines der - oder aller drei - Operone bindet und so entweder zu einer Repression oder zu einer Aktivierung der Expression der Gene führt. Dafür wurden Gelretardationsanalysen mit Cytoplasma von Zellen, die bei 38,5 mM NaCl oder 800 mM NaCl gewachsen waren, durchgeführt.

3.7.1 Analyse des *ota*-Operons

Zur Identifizierung eines putativen Regulators durch Gelretardationsanalyse, wurde ein 585 Bp-langes Fragment amplifiziert, welches den Bereich 101 Bp stromaufwärts des Promotors bis 45 Bp stromabwärts des Startkodons von *ablA* abdeckte (Abb. 47). Dieses wurde durch eine PCR-Reaktion mit $[\alpha - {}^{32}P]$ -dATP radioaktiv markiert und mit unterschiedlichen Mengen Cytoplasma für 30 min bei 37°C inkubiert. Anschließend wurde eine Polyacrylamidgelelekrophorese durchgeführt (Abb. 48).

Abb. 47: Schematische Darstellung des Promotorbereichs des *ota***-Operons.** Für die Gelretardationsanalyse wurde ein 585 Bp-langes Fragment amplifiziert, welches den Bereich von 101 Bp stromäufwärts des Promotors bis 45 Bp stromabwärts des Startkodons von *otaA* abdeckte. MM0039 kodiert für eine putative Carbamoyl-Phosphat-Synthetase. P: Promotor.

Mit steigender Cytoplasma-Konzentration konnte ein deutlicher Unterschied im Laufverhalten der Probe beobachtet werden. Ohne Cytoplasma konnte nur ein Signal identifiziert werden, das dem freien DNA-Fragment entspricht. Mit steigenden Cytoplasma-Konzentrationen war ein weiteres Signal zu erkennen, welches weiter oben im Gel zu erkennen war und durch das Binden eines Proteins an die markierte DNA hervorgerufen wurde. Allerdings konnte kein Unterschied festgestellt werden, ob Cytoplasma von Zellen, die bei 38,5 oder bei 800 mM NaCl gewachsen waren, eingesetzt wurde.

Abb. 48: Gelretardationsanalyse mit dem Promotorbereich des *ota*-Operons. Es wurde Cytoplasma aus Zellen, die in Gegenwart von 38,5 oder 800 mM NaCl gewachsen waren, in der angegebenen Konzentration eingesetzt. Die Reaktion erfolgte in einem 25 μ l-Ansatz mit 25 ng ³²P-markierter DNA. Gel: 6% [w/v] Acrylamid, Elektrophorese: 40 min, 15 mA.

Im Folgenden sollte die Spezifität der Bindung überprüft werden. Dazu wurde erneut eine Gelretardationsanalyse mit dem 585 Bp-Fragment durchgeführt, aber anstelle des Cytoplasmas wurde Rinderserumalbumin (RSA) oder Albumin aus Hühnereiern in den gleichen Konzentrationen eingesetzt. Dabei konnten keine DNA-Protein-Komplexe nachgewiesen werden (Daten nicht gezeigt). Dies schloss aus, dass die Retardation auf eine unspezifische Bindung von Proteinen an die DNA aufgrund sehr hoher Proteinkonzentrationen zurückzuführen ist. Ferner wurde eine weitere Gelretardationsanalyse durchgeführt, bei der das Cytoplasma vorher für 10 min gekocht wurde, um die Proteine zu denaturieren. Auch hier konnten keine DNA-Protein-Komplexe mehr nachgewiesen werden (Daten nicht gezeigt). Somit konnte davon ausgegangen werden, dass die Retardation durch das Binden eines Proteins von *M. mazei* Gö1 an die DNA verursacht wurde.

Mittels einer kompetitiven Gelretardationsanalyse kann überprüft werden, ob das Protein spezifisch einen bestimmten Sequenzbereich oder generell Nukleinsäuren bindet. Dazu werden zu dem Ansatz steigende Mengen spezifischer, unmarkierter DNA gegeben. Ist die Bindung des Proteins sequenzspezifisch, sollte dies zu einem Verschwinden der Retardationsbande führen, da alles Protein von dem Überschuss an unmarkierter DNA gebunden wurde. Zu einem zweiten Ansatz werden steigende Mengen unspezifischer, ebenfalls unmarkierter Kompetitor-DNA gegeben, was bei einer sequenzspezifischen Bindung des Proteins keine Auswirkung auf die Retardation haben sollte. Bindet das Protein jedoch generell DNA, führt dies zu einem Verschwinden der Retardationsbande. Als spezifische DNA wurde das 585 Bp-Fragment des Promotorbereichs des *ota*-Operons und als unspezifische DNA ein 702 Bp-Fragment des *mcrG*-Gens, welches für die Methyl-CoM-Reduktase kodiert, verwendet. Die Kompetitor-DNA wurde in 5, 10 und 50fachem Überschuss eingesetzt (Abb. 49). Erstaunlicherweise konnte weder in den Ansätzen mit spezifischer, noch in denen mit unspezifischer DNA ein Verschwinden der Retardationsbande beobachtet werden. Dies lässt vermuten, dass es sich um ein Protein handelte, welches generell DNA bindet und in sehr hohen Konzentrationen in der Zelle vorkommt, so dass ein 50facher Überschuss an unspezifischer DNA nicht ausreichend war, um alles Protein zu binden.

Abb. 49: Kompetitive Gelretardationsanalyse mit dem Promotorbereich des *ota*-Operons. Es wurden je 10 μ g Cytoplasma (Spuren 2 - 9) aus Zellen, die in Gegenwart von 38,5 oder 800 mM NaCl gewachsen waren, eingesetzt. Diesem Ansatz wurde spezifische und unspezifische DNA in dem angegebenen Überschuss zugegeben. In der jeweils ersten Spur (-) ist der Ansatz ohne Cytoplasma aufgetragen, in der zweiten und sechsten Spur (+) ist der Ansatz mit Cytoplasma aufgetragen, jedoch ohne die Zugabe von Kompetitor-DNA. Spezifische DNA: 585 Bp-Fragment des Promotbereichs des *ota*-Operons; unspezifische DNA: 702 Bp-Fragment von *mcrG*. Gel: 6% [w/v] Acrylamid, Elektrophorese: 40 min, 15 mA.

3.7.2 Analyse des *abl*-Operons

Zur Identifizierung eines möglichen Regulators des *abl*-Operons wurde eine Gelretardationsanalyse mit einem 256 Bp-langen Fragment, welches den Bereich von 66 Bp stromaufwärts des Promotors bis 30 Bp stromabwärts des Startkodons von *ablA* abdeckte, durchgeführt (Abb. 50).

Abb. 50: Schematische Darstellung des Promotorbereichs des *abl*-Operons. Für die Gelretardationsanalyse wurde ein 256 Bp-langes Fragment amplifiziert, welches den Bereich von 66 Bp stromäufwärts des Promotors bis 30 Bp stromabwärts des Startkodons von *ablA* abdeckte. P: Promotor.

Mit steigender Cytoplasma-Konzentration konnte deutlich das Auftauchen eines weitern Signals beobachtet werden, welches weiter oben im Gel lokalisiert ist (Abb. 51). Dieses Signal wurde durch das Binden eines Proteins an die DNA hervorgerufen, was zu einem verändertem Laufverhalten des Fragmentes führte. Auch hier konnte kein Unterschied zwischen den Ansätzen mit Cytoplasma aus Zellen, die an 38,5 oder aus Zellen, die an 800 mM NaCl adaptiert waren, beobachtet werden.

Abb. 51: Gelretardationsanalyse mit dem Promotorbereich des *abl*-Operons. Es wurde Cytoplasma aus Zellen, die in Gegenwart von 38,5 oder 800 mM NaCl gewachsen waren, in der angegebenen Konzentration eingesetzt. Die Reaktion erfolgte in einem 25 μ l-Ansatz mit 25 ng ³²P-markierter DNA. Gel: 6% [w/v] Acrylamid, Elektrophorese: 40 min, 15 mA.

Wie bereits unter 3.7.1 beschrieben, sollte im Folgenden die Spezifität der Protein-DNA-Interaktion näher untersucht werden. Dazu wurde zum einen eine Gelretardationsanalyse durchgeführt, in der anstelle des Cytoplasmas RSA oder Albumin aus Hühnereiern in der gleichen Konzentration wie vorher das Cytoplasma eingesetzt wurde (0, 5, 15 oder 30 μ g). Es konnte in keinem der Ansätze das Auftauchen einer Retardationsbande beobachtet werden und damit ein Protein-DNA-Komplex nachgewiesen werden (Daten nicht gezeigt). Dies schloss aus, dass es sich bei dem beobachteten Protein-DNA-Komplex (s. Abb. 51) um eine unspezifische Bindung aufgrund zu hoher Proteinkonzentrationen handelte. Ferner wurde eine Gelretardationsanalyse mit durch 10minütiges Kochen denaturiertem Cytoplasma durchgeführt. Auch hier konnte kein Protein-DNA-Komplex mehr nachgewiesen werden, was bestätigte, dass die beobachtete Retardation durch das Binden eines nativen Proteins von *M. mazei* Gö1 an die DNA zustande kam (Daten nicht gezeigt).

Ob die Bindung des Proteins an die DNA sequenzspezifisch ist, wurde auch hier durch eine kompetitive Gelretardationsanalyse untersucht. Die Retardation konnte weder durch einen 50fachen Überschuss spezifischer DNA, noch durch einen 50fachen Überschuss unspezifischer DNA rückgängig gemacht werden (Abb. 52). Diese Experimente lassen

vermuten, dass es sich bei dem Protein ebenfalls um ein generelles DNA-Bindeprotein handelte, welches in zu hoher Konzentration in der Zelle vorlag, als dass ein 50facher Überschuss unspezifischer DNA ausreichend war, es komplett zu binden.

Abb. 52: Kompetitive Gelretardationsanalyse mit dem Promotorbereich des *abl*-Operons. Es wurden je 10 μ g Cytoplasma (Spuren 2 - 9) aus Zellen die in Gegenwart von 38,5 oder 800 mM NaCl gewachsen waren eingesetzt. Diesem Ansatz wurde der angegebene Überschuß spezifischer und unspezifischer DNA zugegeben. In der jeweils ersten Spur (-) ist der Ansatz ohne Cytoplasma aufgetragen, in der zweiten und sechsten Spur (+) ist der Ansatz mit Cytoplasma aufgetragen, jedoch ohne die Zugabe von Kompetitor-DNA. Spezifische DNA: 256 Bp-Fragment des Promotbereichs des *abl*-Operons; unspezifische DNA: 702 Bp-Fragment von *mcrG*. Gel: 6% [w/v] Acrylamid, Elektrophorese: 40 min, 15 mA.

3.7.3 Analyse des *pst*-Operons

Das *pst*-Operon kodiert für die Untereinheiten eines primären Phosphat-Transporters. Es ist in *M. mazei* Gö1 strukturell sehr ähnlich aufgebaut wie in *E. coli* (Abb. 53), mit der einzigen Ausnahme, dass das für eine Permease-Untereinheit kodierende Gen, *pstA*, geteilt vorliegt. Auch die Größen der Gene entsprechen sich weitgehend.

Abb. 53: Vergleich der Struktur des pst-Operons von M. mazei Gö1 und E. coli K12.

Das *pst*-Operon von *E. coli* ist gut untersucht (AGUENA *ET AL.*, 2002; JIANG *ET AL.*, 1995; WANNER, 1993). Es ist Teil des Pho-Regulons und wird damit von einem 2-Komponentensystem, bestehend aus den regulativen Proteinen PhoB und PhoR kontrolliert. Alle Gene oder Operone des Pho-Regulons zeichnen sich durch den Besitz einer stromaufwärts gelegenen Aktivierungsstelle mit einer Konsensussequenz, der sogenannten

Pho-Box, aus (WANNER, 1996a). An diese bindet das phosphorylierte PhoB und führt so zur Aktivierung der Transkription der stromabwärts gelegenen Gene. In *M. mazei* Gö1 liegen die Gene des *pst*-Operons in derselben Reihenfolge vor wie in *E. coli. pstS* kodiert für ein putatives Phosphat-Bindeprotein, welches außerhalb der Zelle vorliegt. Die Produkte von *pstC*, *pstA1* und *pstA2* bilden die membranständige Untereinheit des Phosphat-Transporters durch welche P_i transportiert wird. Eine vergleichende Analyse der abgeleiteten Aminosäuresequenzen von PstA1 und PstA2 aus *M. mazei* Gö1 mit der Sequenz von PstA aus *E. coli* zeigte, dass PstA1 Ähnlichkeit zu dem N-terminalen Bereich von PstA besitzt, wohingegen PstA2 Ähnlichkeiten zu dem C-terminale Bereich von PstA aufweist (Abb. 54). Somit scheint in *M. mazei* Gö1 die eine Untereinheit der transmembranen Domäne von zwei Genen, *pstA1* und *pstA2*, kodiert zu werden und die andere von *pstC*. Die Hydrophobizitäts-Analyse der drei Proteine lässt vermuten, dass PstC sechs und PstA1 und PstA2 je drei transmembrane Helices ausbilden, womit die membrandurchspannende Domäne 12 Transmembranbereiche besäße.

Stromabwärts der für die Membrandomäne kodierenden Gene liegt *pstB*, welches für ein putatives ATP-Bindeprotein kodiert und somit die für den Transport benötigte Energie bereitstellen könnte. Das letzte Gen des Operons ist *phoU*. Die Funktion des *phoU*-Genproduktes ist auch in *E. coli* noch nicht vollständig geklärt. Es ist nicht an dem Phosphat Transport beteiligt, scheint aber eine Rolle bei der Regulation des *pho*-Regulons zu spielen (AGUENA ET AL., 2002; SURIN ET AL., 1986).

M. mazei Göl (pstAl) M. mazei Göl (pstA2) E. coli (pstA)	M M	E P A	L A M	S A V	T I E	K P M	V G Q	N I T	E V T	N T A	D G A	H S L	K I A	S L E	L S S	R I R	V G R	Q R K	G V M	G A Q	L G A	S - R	M - R	E - R	L - L	N - K	A - N	R - R	T - I	S - A	30 22 30
M. mazei Göl (pstAl) M. mazei Göl (pstA2) E. coli (pstA)	E - L	к - Т	I - L	A - S	F - M	S - A	L - T	L - M	Т - А	L - F	S - G	A - L	M - F	T - W	V - L	A - -	G - -	F - -	v ī	V W	v ī	I - L	L - M	A - S	Y - T	I - I	I - T	Y - R	N - G	G - I	60 22 57
M. mazei Göl (pstAl) M. mazei Göl (pstA2) E. coli (pstA)	Y - D	S - G	А - М	I - S	S - L	I - A	E - L	F - F	L - T	Т - Е	Е - М	М - Т	P - P	R - P	М - Р	R - N	М - Т	Т - Е	Q G	G - G	G - G	I - L	Y - A	P - N	A - A	I - L	A - A	G G	T - S	V - G	90 22 87
M. mazei Göl (pstAl) M. mazei Göl (pstA2) E. coli (pstA)	Y - L	L - L	I - I	L - L	G - W	S - A	м - Т	A - V	V F	A - G	L - T	P - P	V - L	G - G	I - I	M - M	A - A	A - G	I - I	Y - Y	L - L	N - A	E E	Y - Y	A - G	G - R	E - K	N - S	R - W	T - L	120 22 117
M. mazei Göl (pstAl) M. mazei Göl (pstA2) E. coli (pstA)	Т - А	W E	L - V	I - I	E - R	M - F	A - I	I - N	N - D	N - I	L - L	Q - L	G - S	L - A	H - P	L - S	S - I	Y - V	s - V	G - G	F - L	S - F	D - V	S - Y	H - T	F - I	s - V	L - V	S - A	T - Q	150 22 147
M. mazei Göl (pstAl) M. mazei Göl (pstA2) E. coli (pstA)	S - M	G - E	L - H	V - F	L - S	L - G	C - W	C - A	R - G	P - V	A - I	L - A	L - L	S - A	L - L	F - L	- Q	v	- P	- I	v	- I	- R	- T	- T	- E	– N	– M	- L	- K	166 22 177
M. mazei Göl (pstAl) M. mazei Göl (pstA2) E. coli (pstA)	- L	v	- P	- Y	- S	- L	- R	– E	Ā	Ā	- Y	Ā	- L	- G	- T	- P	- K	w	- K	– M	- I	- S	Ā	- I	- T	- L	- K	Ā	- S	v	166 22 207
M. mazei Göl (pstAl) M. mazei Göl (pstA2) E. coli (pstA)	- S	- G	Ī	– M	- T	– G	- I	- L	- L	E A	T I	A A	P R	I I	L A	L G	T E	G T	A A	A P	Y L	F L	L F	P T	R A	M L	P S	D N	S Q	V F	166 42 237
M. mazei Göl (pstAl) M. mazei Göl (pstA2) E. coli (pstA)	Y W	S S	Q T	F D	M M	A M	L Q	P P	Y I	H A	L N	F L	V P	L V	A T	T I	S F	G K	T F	N A	I M	I S	Q P	T F	R A	P E	L W	Q Q	Y Q	G L	166 72 267
M. mazei Göl (pstAl) M. mazei Göl (pstA2) E. coli (pstA)	T A	A W	L A	V G	L V	L	M I	I I	V T	L	G C	L V	N L	I L	I L	A N	VI	M L	I A	R R	R V	H V	Y F	R A	Q K	K N	L K	K H	I G		166 101 296

Abb. 54: Vergleich der Aminosäuresequenz der membranständigen Untereinheiten PstA1 und PstA2 des Phosphat-Transporters aus *M. mazei* Gö1 mit PstA von *E. coli* K12.

Ein Vergleich der abgeleiteten Aminosäuresequenzen der Proteine dieses Operons von *M. mazei* Gö1 und *E. coli* zeigte, dass die höchste Ähnlichkeit in dem ATP-Bindeprotein PstB zu finden ist und die größte Abweichung in PstS, dem Phosphat-bindenden Protein (Tab. 28). Alle anderen Proteine haben eine zu 23 – 27% identische Aminosäuresequenz.

Tab. 28: Vergleich der durch das *pst*-Operon kodierten Proteine von *M. mazei* Gö1 mit denen aus *E. coli* K12.

Identität [%]												
PstS	PstC	PstA1 ¹	$PstA2^2$	PstB	PhoU							
13%	27%	23%	27%	56%	26%							

¹PstA1 aus *M. mazei* Gö1 wurde mit den Aminosäuren 1 bis 203 von PstA aus *E. coli* verglichen.

²PstA2 aus *M. mazei* Gö1 wurde mit den Aminosäuren 204 bis 296 von PstA aus *E. coli* verglichen.

Da die Expression des *pst*-Operons in *E. coli* durch das PhoB/PhoR 2-Komponentensystem reguliert wird, sollte im Folgenden untersucht werden, ob die salzabhängige Regulation des *pst*-Operons in *M. mazei* Gö1 ebenfalls auf die Aktivität eines dem PhoB/PhoR ähnlichen 2-Komponentensystems zurückzuführen ist.

3.7.3.1 Identifizierung der Pho-Box

Die Promotorbereiche des Pho-Regulons zeichnen sich dadurch aus, dass sie eine Pho-Box besitzen. Diese besteht aus zwei 7 Bp-langen direkten Wiederholungen mit dem relativ gut konservierten Konsensus CTGTCAT, welche durch ein Fragment von 4 Bp Länge voneinander getrennt sind. Vor einigen Genen oder Operonen kann der 7 Bp-Bereich in noch weiteren Kopien vorliegen, wie das z. B. bei dem *pst*-Operon von *E. coli* der Fall ist (AGUENA *ET AL.*, 2002). Eine der Pho-Box ähnliche Struktur kann auch im Promotorbereich des *pst*-Operons von *M. mazei* Göl gefunden werden (Tab. 29).

Das 7 Bp-lange Fragment, das als direkte Wiederholung vorliegt, hat die Sequenz C(T/A)(T/C)ATAT. Die beiden Wiederholungseinheiten werden durch ein Fragment mit einer Länge von 4 Bp mit der Sequenz ATAT, welche der Konsensussequenz entspricht, voneinander getrennt. Allerdings konnten keine weiteren der 7 Bp-Wiederholung ähnlichen Bereiche identifiziert werden.

Tab. 29: Vergleich der Pho-Box von *M. mazei* Gö1 und *E. coli*. Konservierte Basen sind unterstrichen dargestellt und identische Basen in den Wiederholungseinheiten durch Fettdruck hervorgehoben.

7 Bp-Wiederholung - 4 Bp - 7 Bp-Wiederholung

	1	e i	1	6
Konsensus ^{1,2}	CTGTCAT	AXAX	CTGTXAY	
<i>E. coli</i> (Pho-Box1) ¹	CTGTCAT	AAAA	CTGTCAT	
<i>E. coli</i> (Pho-Box2) ¹	CT TA CAT	ATAA	CTGTCAC	
M. mazei Gö1 (Pho-Box)	<u>CT</u> TATAT	ATAT	<u>C</u> CA ATAT	

¹(WANNER, 1993)

²X: A oder T; Y: C oder T

Offensichtlich ist *M. mazei* Gö1 im Besitz einer Pho-Box, welche stromaufwärts des *pst*-Operons lokalisiert ist und die für die Pho-Box geforderten Eigenschaften besitzt. Ob sie jedoch mit einem 2-Komponentensystem reagiert und an der Regulation der salzabhängigen Expression des *pst*-Operons beteiligt ist, sollte im Folgenden geklärt werden. Zunächst wurde untersucht, ob im Genom von *M. mazei* Gö1 offenen Leserahmen vorliegen, die Ähnlichkeiten zu dem PhoB/PhoR-Systems von *E. coli* aufzeigen. Dazu wurde die Sequenz von PhoB und PhoR aus *E. coli* mit dem Proteom von *M. mazei* Gö1 verglichen. Dieser Ansatz lieferte zwar eine Reihe von Genen, deren Produkte als Histidin-Kinasen oder Antwortregulatoren annotiert sind, aber keine mit deutlichen Ähnlichkeiten (Daten nicht gezeigt). Dies bedeutet, dass *M. mazei* Göl entweder kein zu dem PhoB/PhoR-System von *E. coli* homologes 2-Komponentensystem besitzt, oder aber, dass es nicht ausreichend konserviert ist, um es mittels des Sequenzvergleichs zu identifizieren. Auch der Sequenzvergleich von PhoB und PhoR aus *B. subtilis* mit dem Proteom von *M. mazei* Göl lieferte kein Ergebnis.

3.7.3.2 Gelretardationsanalyse

Da der Vergleich der Sequenz des PhoB/PhoR-Systems von *E. coli* und *B. subtilis* mit dem Proteom von *M. mazei* Gö1 keine eindeutigen Ähnlichkeiten lieferte, sollte das putative Pho-Box bindende Protein durch Gelretardationsanalyse identifiziert werden. Dazu wurde mittels der Oligonukleotide phoBox-for und phoBox-rev ein 80 Bp-langes DNA-Fragment amplifiziert, welches den Bereich 28 Bp stromaufwärts der Pho-Box bis 33 Bp stromabwärts der Pho-Box abdeckte. Dieses wurde radioaktiv markiert und in die Gelretardationsanalyse eingesetzt (Abb. 55).

Abb. 55: Gelretardationsanalyse mit dem Promotorbereich des *pst***-Operons.** Es wurde Cytoplasma aus Zellen die in Gegenwart von 38,5 oder 800 mM NaCl gewachsen waren in der angegebenen Konzentration eingesetzt. Gel: 6% [w/v] Acrylamid, Elektrophorese: 40 min, 15 mA.

Die Zugabe von steigenden Cytoplasmakonzentrationen führte zum Auftauchen eines weiteren Signals im Gel, welches einem DNA-Protein-Komplex entsprach. Dies konnte sowohl mit Cytoplasma aus Zellen, welche bei 38,5 mM NaCl gewachsen waren, als auch mit Cytoplasma aus Zellen, die bei 800 mM NaCl angezogen worden waren, beobachtet werden. Allerdings wurde mit Cytoplasma aus an 38,5 mM NaCl adaptierten Zellen die gesamte freie DNA gebunden, was mit Cytoplasma aus an Hochsalz adaptierten Zellen nicht beobachtet

werden konnte. Dies deutet darauf hin, dass bei dieser Bedingung weniger Protein, welches in der Lage ist das 80 Bp-Fragment zu binden, in der Zelle vorlag, oder die Bindung des Proteins an die DNA verschlechtert war. In dem Fall müsste es sich bei dem Protein um eine Repressor handeln, der bei 38,5 mM stärker produziert wird, und im Promotorbereich des *pst*-Operons bindet, was zu einer Repression der Expression des Operons führt. Bei einer Salzkonzentration von 800 mM würde die Bindung des Repressors an die DNA verhindert und es käme so zu einer Derepression des *pst*-Operons.

Wie aus Abb. 55 ferner ersichtlich ist, war es offensichtlich nicht gelungen, das DNA-Fragment zufriedenstellend zu reinigen, da auch in den Spuren ohne Cytoplasma Fragmente zu sehen sind, welche weiter oben im Gel laufen. Allerdings werden alle diese Fragmente durch ein oder mehrere im Cytoplasma vorhandene Proteine gebunden. Ferner kann in den Fraktionen mit Cytoplasma das Auftauchen einer Doppelbande beobachtet werden, welche den oder die DNA-Protein-Komplexe darstellt. Dies kann entweder durch das Binden unterschiedlicher Proteine an die DNA oder aber das Binden desselben Proteins an Fragmente unterschiedlicher Länge hervorgerufen werden. Darüberhinaus lässt sich in Abb. 55 in den Spuren mit Cytoplasma das Auftauchen eines Signals erkennen, welches weiter unten im Gel läuft als das 80 Bp-Fragment. Hierbei handelt es sich vermutlich um ein Abbauprodukt desselben, welches durch die Aktivität eines oder mehrerer im Cytoplasma vorkommenden Enzyme entsteht. Diese Vermutung wird dadurch gestützt, dass die Stärke dieses Signals mit steigender Inkubationszeit des 80 Bp-Fragments mit Cytoplasma zunimmt (Daten nicht gezeigt). Nichtsdestotrotz ist im Cytoplasma von M. mazei Göl ein Protein vorhanden, welches an das Fragment salzabhängig bindet. Auf der Grundlage dieser Beobachtung sollte im Folgenden die Identität dieses Proteins geklärt werden.

3.7.3.3 Southwestern-Blot

Zur eindeutigen Identifizierung des DNA-Bindeproteins wurde ein Southwestern-Blot durchgeführt. Dazu wurde Cytoplasma von *M. mazei* Gö1 im Polyacrylamidgel aufgetrennt und auf eine Nitrozellulosemembran geblottet. Nach einem Renaturierungsschritt wurde diese Membran mit dem radioaktiv markierten 80 Bp-Fragment (s. 3.7.3.2) hybridisiert und das Signal mittels Autoradiographie sichtbar gemacht (Abb. 56).

Abb. 56: Identifizierung eines DNA-Bindeproteines. Cytoplasma von *M. mazei* Gö1 wurde in einem 10% igen SDS-Polyacrylamidgel aufgetrennt, auf eine Nitrozellulosemembran geblottet, renaturiert und mit einer ²³P-markierten DNA-Sonde, welche die Pho-Box enthält, hybridisiert. Das Signal wurde mittels Autoradiographie sichtbar gemacht. Die mit *-markierte Bande wurde aus dem Gel ausgeschnitten und die Identität des Proteins durch Massenspektrometrie bestimmt. Linker Teil: Coomassie-gefärbte SDS-PAGE des Cytoplasmas von *M. mazei* Gö1; rechter Teil: Southwestern-Blot.

Das 80 Bp-Fragment wurde von einem Protein mit einer molekularen Masse von ca. 60 kD gebunden, aber es war kein Unterschied zwischen Cytoplasma aus Zellen, die bei 38,5 mM oder 800 mM NaCl angezogen worden waren, zu erkennen. Das Protein, welches durch einen Vergleich des Signals auf dem Southwestern-Blot mit dem Polyacrylamidgel identifiziert werden konnte, wurde aus dem Gel ausgeschnitten und mittels Massenspektrometrie analysiert. Es handelte sich um ein Protein, welches als Replikationsfaktor A annotiert ist (MM1299). Eine Datenbank- und Sequenzanalyse zeigte, dass es eine signifikante Sequenzähnlichkeit mit der konservierten Domäne KOG1599 aufweist, welche als "einzelsträngiges DNA-bindendes Replikationsprotein A (RPA), große (70 kD) Untereinheit und verwandte einzellsträngige DNA-bindende Proteine, die in DNA-Replikation, Rekombination und Reparatur involviert sind" beschrieben ist. Damit handelte es sich bei dem im Southwestern-Blot detektierten Protein nicht um ein Protein, welches an der

salzabhängigen Regulation der Expression des *pst*-Operons beteiligt ist, sondern um ein sequenzunabhängig DNA-bindendes Protein, welches offensichtlich in recht hoher Konzentration in der Zelle vorliegt. Dennoch kann nicht ausgeschlossen werden, dass es auch in *M. mazei* Gö1 ein 2-Komponentensystem gibt, welches die Pho-Box erkennt und an der Regulation des *pst*-Operons beteiligt ist, welches aber in zu geringer Konzentration in der Zelle vorliegt, als dass es mit dieser Methode detektiert werden könnte.

3.8 Immunologische Untersuchungen zum zellulären Gehalt von MM0077

Der ORF MM0077 kodiert für ein hypothetisches Protein mit Ähnlichkeit zu einem Icc Protein. Da für ein Icc Protein von *E. coli* bekannt ist, dass es indirekt einen Einfluss auf die Expression von *lacZ* hat (**IMAMURA ET AL.**, 1996), ist es möglich, dass MM0077 auch in *M. mazei* Gö1 eine regulative Aufgabe hat. Um einen Hinweis auf eine mögliche Funktion von MM0077 in *M. mazei* Gö1 zu erlangen, sollte die Produktion dieses Proteins unter unterschiedlichen Bedingungen untersucht werden.

3.8.1 Klonierung von MM0077 und Überproduktion als MalE-Fusionsprotein zur Gewinnung von Antikörpern

Um die Produktion von MM0077 unter unterschiedlichen Bedingungen untersuchen zu können, war es zunächst nötig ein Antiserum gegen MM0077 zu generieren. Dazu wurde das Gen mittels der Oligonukleotide MM0077-for und MM0077-rev amplifiziert, wodurch Schnittstellen für die Restriktionsenzyme *Eco*RI und *Pst*I eingebracht wurden. Mit Hilfe dieser Schnittstellen wurde das Fragment anschließend in den Vektor pMalc2 kloniert, das entstandene Plasmid pMal-MM0077 in *E. coli* DH5 α transformiert und die Genexpression durch die Zugabe von IPTG induziert. Wie aus Abb. 57 ersichtlich ist, kam es in *E. coli* zu einer Produktion des MM0077-MalE-Fusionsproteins.

Abb. 57: Überproduktion des MM0077-MalE-Fusionsproteins. SDS-Page der Zellextrakte von *E. coli* DH5 α , welche mit pMal-MM0077 transformiert worden waren. V.I.: vor der Induktion durch IPTG; n.I.: 3h nach der Induktion durch IPTG.

Das Fusionsprotein wurde über Affinitätschromatographie gereinigt und der Erfolg der Reinigung mittels einer SDS-PAGE überprüft (Abb. 58).

Abb. 58: Reinigung des MM0077-MalE-Fusionsproteins. SDS-PAGE der einzelnen Fraktionen der Aufreinigung des MM0077-MalE-Fusionsproteins mittels Affinitätschromatographie. D1, D2: Fraktionen 1 und 2 des Durchlaufs; E1 bis E6: Fraktionen 1 – 6 des Eluates.

Das Fusionsprotein konnte in ausreichender Qualität gereinigt werden und wurde anschließend zur Produktion des Antiserums direkt in ein Kaninchen injiziert.

3.8.2 Produktion von MM0077 in salzadaptierten Zellen

Die Ergebnisse der DNA-Microarray-Analyse zeigten, dass die Expression von MM0077 in salzadaptierten Zellen erhöht war. Im Folgenden sollte dieser Befund auf Proteinebene untersucht werden. Dazu wurden aus Kulturen von *M. mazei* Gö1, welche entweder in Anwesenheit von 38,5 oder 800 mM NaCl gewachsen waren, in der exponentiellen Phase Zellextrakte hergestellt. Diese wurden dann mittels SDS-PAGE aufgetrennt, auf eine Nitrozellulosemembran geblottet und mit einem Antiserum, welches gegen MM0077 gerichtet war, inkubiert (Abb. 59). Die Western-Blot-Analyse zeigte, dass MM0077 nur in an 800 mM NaCl adaptierten Zellen produziert wird, was in guter Übereinstimmung mit den Daten aus den Microarray-Analysen ist.

Abb. 59: Produktion von MM0077 in salzadaptierten Zellen. Linker Teil: Coomassie-gefärbte SDS-Page (10%) von Zellextrakten von *M. mazei* Gö1, welcher bei 38,5 mM oder 800 mM NaCl gewachsen war. Rechter Teil: Western-Blot-Analyse dieser Zellextrakte mit einem Antiserum gegen MM0077.

3.8.3 Produktion von MM0077 nach einem hyperosmotischen Schock

Wie unter Punkt 3.5.1 beschrieben, reagierte *M. mazei* Gö1 auf einen hyperosmotischen Schock mit einer lag-Phase, deren Länge von der Salzkonzentration abhängig war. In dieser lag-Phase schien es zu der notwendigen Umstrukturierung in der Zelle zu kommen, welche sie dazu befähigte, anschließend wieder ein normales Wachstum zu zeigen. Die DNA-Microarray-Analyse nach einem osmotischen Schock der Zellen auf 400 mM zeigte eine frühe signifikante Erhöhung der Expression des MM0077-Gens (13fach nach 1,5h). Zu den späteren Zeitpunkten konnte keine signifikante Expressionsänderung von MM0077 detektiert werden, verglichen mit der Situation vor dem Schock. Um zu untersuchen, ob dies auch auf Proteinebene zu bestätigen ist, wurde eine Western-Blot-Analyse mit einem Antiserum, welches gegen MM0077 gerichtet ist, durchgeführt. Dazu wurden Zellen von *M. mazei* Gö1 in Komplexmedium in Anwesenheit von 38,5 mM NaCl bis zu einer optischen Dichte von 0,4 angezogen, und dann wurde die Salzkonzentration auf 400 mM erhöht. Vor dem Salzschock und zu definierten Zeitpunkten danach (nach 1,5, 4, 8, 12, 17, 23, 31, 41, 62, 73 und 81 h) wurden Proben entnommen, welche dann in den Western-Blot-Analysen eingesetzt wurden. Es konnte zu keinem Zeitpunkt eine Produktion von MM0077 nachgewiesen werden (Daten nicht gezeigt). Weder früh in der lag-Phase, noch in der sich anschließenden Wachstumsphase, und der folgenden stationären Phase wurde MM0077 produziert.

Bei einem hyperosmotischen Schock auf 800 mM NaCl ergab sich jedoch ein anderes Bild. Wie unter 3.5.2.3 beschrieben, war eine verstärkte Expression des MM0077-Gens am Ende der lag-Phase, kurz vor Eintritt in die Wachstumsphase zu beobachten (13 und 21h nach dem Schock). Im Folgenden sollte die Produktion des MM0077-Proteins nach einem osmotischen Schock auf 800 mM NaCl untersucht werden. Dazu wurden, wie bereits oben beschrieben, Zellen in Komplexmedium bei 38,5 mM NaCl angezogen und bei einer optischen Dichte von 0,4 wurde die Salzkonzentration auf 800 mM NaCl erhöht. Vor dem Schock und zu unterschiedlichen Zeitpunkten nach der Salzzugabe (nach 1,5, 7, 13, 21, 41, 62, 73 und 86 h), wurden Proben entnommen und im Western-Blot auf den zellulären Gehalt von MM0077 hin untersucht (Abb. 60). Die Western-Blot-Analyse wurde mit drei unabhängigen Parallelen durchgeführt. Die Produktion von MM0077 setzte 21 bis 41 h nach dem Schock ein, also am Ende der lag-Phase oder kurz nach Wiederaufnahme des Wachstums (s. Abb. 20). Anschließend war das Protein über die gesamte Länge der Wachstumsphase detektierbar. Allerdings schien es zu einer Reduktion der Proteinmenge in der stationären Phase zu kommen. Der Produktionsbeginn von MM0077 war in guter Übereinstimmung mit den Daten aus der Microarray-Analyse, die zeigten, dass die Expression 13 und 21 h nach dem Schock induziert wird.

Abb. 60: Produktion von MM0077 nach einem hyperosmotischen Schock auf 800 mM NaCl. Zellextrakte von *M. mazei* Gö1, die zu den angegebenen Zeitpunkten nach einem hyperosmotischen Schock auf 800 mM NaCl gewonnen worden waren, wurden durch SDS-PAGE aufgetrennt und auf eine Nitozellulosemembran geblottet. A: Amidoschwarz-gefärbte Membran nach dem Blotten; B: Westen-Blot-Analyse mit einem Antiserum gegen MM0077. vS: vor Schock.

4 DISKUSSION

4.1 Statistische Betrachtung eines DNA-Microarray-Experiments

DNA-Microarray-Experimente stellen eine einzigartige Methode dar, um die Expression einer Vielzahl von Genen gleichzeitig zu analysieren. Eine Analyse in dem Umfang, wie sie im Rahmen dieser Arbeit durchgeführt wurde, eignet sich hervorragend, um Aussagen zur Reproduzierbarkeit und den größten Schwachstellen eines Microarray-Experiments zu treffen. Zur Überprüfung der Konsistenz der Methode (verschieden Auftragungsorte auf dem Microarray, Auftragung auf verschiedenen Microarrays, Unterschiede in der Präparation gleicher Proben) wurden entsprechende Korrelationsberechnungen nach Pearson durchgeführt. Es wurde also überprüft, in welchem Maße Änderungen zweier Variablen miteinander verknüpft sind, z. B. ob die Auftragung eines Genes in zwei verschiedenen Positionen des Microarrays Auswirkungen auf das Verhältnis der gemessenen Fluoreszenzintensitäten des "Spots" hat. Korrelationskoeffizienten nahe 1 bedeuten, dass die beiden Variablen positiv korreliert sind, die Intensität der beiden Messpunkte also zusammen zu- bzw. abnimmt, was in diesen Experimenten ein Maß für die Qualität und die Reproduzierbarkeit der Messungen darstellt. Es gibt vier Fragestellungen, die hiermit bearbeitet werden können. So kann die (i) Streuung innerhalb eines Microarrays, (ii) die Auswirkung der Probenaufbereitung, (iii) Einflüsse der beiden Farbstoffe und die (iv) Streuung durch biologische Parallelen bestimmt werden.

4.1.1 "Inner-Microarray"-spezifische Streuung

Da jeder ORF auf dem Microarray zweimal immobilisiert ist, können Aussagen über die Reproduzierbarkeit der Werte innerhalb eines Experiments getroffen werden. Dazu wird der Korrelationskoeffizient des Verhältnisses der Fluoreszenz der jeweiligen "Test"-RNA zur "Ausgangs"-RNA eines jeden ORF in den zwei Positionen bestimmt (Abb. 61). Abweichungen in den Verhältnissen der Fluoreszenzintensitäten sind in diesem Fall ausschließlich auf Unterschiede innerhalb des Microarrays zurückzuführen. So ist es denkbar, dass beim Drucken der Microarrays Unregelmäßigkeiten auftreten, oder dass die Position eines "Spots" und damit seine Position in der Hybridisierungskammer, Einfluss auf das Ergebnis hat.

RNA (38,5 mM)cy3 RNA (800 mM)cy5

Abb. 61: Bestimmung der "Inner-Microarray"-spezifischen Streuung eines Microarray-Experiments. Zur Bestimmung des Einflusses der Position des immobilisierten ORFs auf das Ergebnis und der Abweichungen innerhalb eines Microarrays aufgrund des Druckvorgangs wurde der Korrelationskoeffizient der Verhältnisse der Fluoreszenzintensitäten eines jeden ORFs in den zwei Positionen bestimmt. RNA: RNA aus derselben Kultur vor und nach dem hyperosmotischen Schock isoliert.

Der Korrelationskoeffizient wurde für alle durchgeführten Microarrays (51) bestimmt und anschließend der Mittelwert gebildet: er betrug 0,89. Trägt man die Verhältnisse der Fluoreszenzintensitäten der beiden Positionen gegeneinander auf, wie in Abb. 62 exemplarisch für ein Experiment dargestellt, ist die positive Korrelation der Werte deutlich zu erkennen. Eine lineare Korrelation wäre dann gegeben, wenn die Werte exakt auf der Geraden liegen würden.

Abb. 62: "Inner-Microarray"-spezifische Streuung. Aufgetragen sind die Verhältnisse der Fluoreszenzintensitäten eines jeden ORFs in den zwei Positionen. Exemplarisch sind hier die Werte eines Microarray-Experimentes mit einem Korrelationskoeffizienten (r) von 0,987 dargestellt.

Wie anzunehmen war, korrelieren die Werte der beiden Positionen recht gut miteinander, die "Inner-Microarray"-spezifische Streuung ist also nicht unerwartet hoch, aber nichtsdestotrotz vorhanden. Deswegen ist es durchaus sinnvoll, jeden ORF auf einem Microarray-Slide zweimal zu immobilisieren und den Mittelwert der Verhältnisse der Fluoreszenzintensitäten für die Auswertung des Microarray-Experiments heranzuziehen.

4.1.2 Methodische Streuung

Die Reproduzierbarkeit der Methodik eines Microarray-Experiments kann aus zwei mit den gleichen Proben unabhängig voneinander durchgeführten Experimenten untersucht werden. Hiermit wird bestimmt, welchen Einfluss die Probenaufbereitung (reverse Transkription der RNA, Einbau des Farbstoffs, Aufreinigung und Denaturierung der markierten cDNA, Injektion in den automatisierten Slide-Prozessor (ASP) etc.) auf die Resultate eines Microarray-Experiments hat. Dazu wird der Korrelationskoeffizient der Mittelwerte der Verhältnisse der Fluoreszenzintensitäten gleicher ORFs unterschiedlicher Experimente, die aber mit denselben RNA-Präparationen durchgeführt wurden, bestimmt (Abb. 63). Durch die Verwendung der Mittelwerte der Fluoreszenzintensitäten des gleichen ORFs eines Microarrays wird die "Inner-Microarray"-spezifische Streuung weitgehend ausgeglichen.

Abb. 63: Bestimmung der methodischen Streuung eines Microarray-Experimentes. Zur Bestimmung des Einflusses der Probenaufbereitung wurde der Korrelationskoeffizient der Mittelwerte der Verhältnisse der Fluoreszenzintensitäten gleicher ORFs aus zwei Microarray-Experimenten bestimmt, die mit den gleichen RNA-Präparationen durchgeführt worden waren. RNA: RNA aus derselben Kultur vor und nach dem hyperosmotischen Schock isoliert.

Der Mittelwert der Korrelationskoeffizienten aus acht Paaren von Microarray-Experimenten liegt mit 0,72 deutlich niedriger als der unter 4.1.1 bestimmte. Betrachtet man das dazugehörige Diagramm, wie in Abb. 64 exemplarisch für ein Microarray-Paar dargestellt, so kann auch hier deutlich die positive Korrelation der Werte erkannt werden, obwohl sie einen deutlich höheren Streuungsgrad aufweisen als die innerhalb eines Microarrays (vgl. Abb. 62).

Abb. 64: Methodische Streuung eines Microarray-Experiments. Aufgetragen sind die Mittelwerte der Verhältnisse der Fluoreszenzintensitäten gleicher ORFs von zwei Experimenten. Exemplarisch sind hier die Werte zweier Microarray-Experimente mit den gleichen Proben mit einem Korrelationskoeffizienten (r) von 0,456 dargestellt.

Hieraus ist ersichtlich, dass die Probenaufbereitung einen deutlichen Einfluss auf die Reproduzierbarkeit eines Microarray-Experimentes hat. Deswegen ist es notwendig, wie auch in der vorliegenden Arbeit geschehen, diese Abweichungen durch die Wiederholung eines Experiments mit denselben RNA-Präparationen und anschließender Mittelwertbildung der Ergebnisse auszugleichen.

4.1.3 Fluoreszenzfarbstoff-spezifische Streuung

Es ist bereits seit längerem bekannt, dass die mit den beiden Fluoreszenzfarbstoffen Cy3oder Cy5-markierten Nukleotide mit unterschiedlicher Effizienz bei dem Vorgang der reversen Transkription in die DNA eingebaut werden. Um diesen farbstoffbedingten Fehler auszugleichen, wurde in der vorliegenden Arbeit einerseits die doppelte Menge RNA mit Cy3 markiert, da Cy3-markiertes dCTP deutlich schlechter eingebaut wird als Cy5-markiertes. Zum anderen ist es üblich, sog. "flip-dye"-Experimente durchzuführen, d. h. dasselbe Experiment wird ein weiteres mal durchgeführt, aber die RNA mit dem jeweils anderen Fluoreszenzfarbstoff markiert. Die Auswertung erfolgt dann durch die Mittelwertbildung der Verhältnisse der Fluoreszenzintensitäten der entsprechenden Bedingungen.

Abb. 65: Bestimmung der Fluoreszenzfarbstoff-spezifischen Streuung eines Microarray-Experiments. Zur Bestimmung des Einflusses der unterschiedlichen Einbaueffizienzen der beiden Fluoreszenzfarbstoffe wurde der Korrelationskoeffizient der Mittelwerte des gleichen ORFs aus zwei Experimenten, die als "flip-dye"-Experimente durchgeführt worden waren, bestimmt. RNA: RNA aus derselben Kultur vor und nach dem hyperosmotischen Schock isoliert.

Als Maß für die Fluoreszenzfarbstoff-spezifische Streuung wurde der Korrelationskoeffizient der Verhältnisse der Fluoreszenzintensitäten der Mittelwerte gleicher ORFs aus zwei Experimenten bestimmt, wobei die RNA mit dem jeweils anderen Farbstoff markiert worden war (Abb. 65). Der Korrelationskoeffizient wurde in acht Paaren von Microarrays bestimmt und anschließend der Mittelwert berechnet: er betrug 0,28. Dies ist ein sehr niedriger Wert. Daher kann davon ausgegangen werden, dass die Werte nur sehr schwach bis gar nicht miteinander korrelieren, wie auch in Abb. 66 deutlich zu erkennen ist.

Abb. 66: Fluoreszenzfarbstoff-spezifische Streuung eines Microarray-Experiments. Aufgetragen sind die Mittelwerte der Verhältnisse der Fluoreszenzintensitäten gleicher ORFs von zwei Experimenten. Exemplarisch sind hier die Werte zweier Microarray-Experimente mit denselben Proben, die mit dem jeweils anderen Fluoreszenzfarbstoff markiert worden waren, mit einem Korrelationskoeffizienten (r) von 0,389 dargestellt.

Das bedeutet, dass es von essentieller Bedeutung ist, diesen farbstoffspezifischen Fehler herauszumitteln, um reproduzierbare Ergebnisse durch Microarray-Experimente zu erhalten. Durch das Mitteln der Verhältnisse der Fluoreszenzintensitäten der mit je beiden Fluoreszenzfarbstoffen markierten Proben wird allerdings die Trennschärfe der Methodik deutlich herabgesetzt. Dies kann einerseits dazu führen, dass regulierte Gene nicht erkannt werden, also falsch-negative Ergebnisse entstehen, andererseits aber auch zur Produktion falsch-positiver Daten. Deswegen ist es von entscheidender Bedeutung, die Ergebnisse eines Microarray-Experiments zu verifizieren. Offensichtlich ist die unterschiedliche Effizienz des Einbaus der fluoreszenzmarkierten Nukleotide die größte Schwachstelle in der Methodik eines Microarrays.

4.1.4 Biologische Streuung

Alle bis hier behandelten Fragen zur Reproduzierbarkeit eines Microarray-Experiments hatten ausschließlich die Varianz der Methodik zum Inhalt, da die Experimente jeweils mit denselben Proben durchgeführt wurden. Da aber die eigentliche Idee eines Microarray-Experiments der Vergleich von biologischen Proben ist, ist die Frage nach der Reproduzierbarkeit der Ergebnisse mit unabhängigen biologischen Proben von entscheidender Relevanz. Zur Bestimmung der biologischen Streuung wurde der Korrelationskoeffizient der Mittelwerte des gleichen ORFs von zwei komplett unabhängigen Microarray-Experimenten ermittelt. Die zur Berechnung des Korrelationskoeffizienten eingesetzten Werte waren die Mittelwerte der Fluoreszenzintensitäten aus zwei Microarray-Experimenten mit denselben Proben, um die methodische Streuung weitgehend auszugleichen (Abb. 67). Der angegebene Korrelationskoeffizient ist der Mittelwert aus acht Berechnungen, denen jeweils zwei Paare von Microarrays zugrunde lagen. Er betrug 0,54.

Abb. 67: Bestimmung der biologischen Streuung eines Microarray-Experiments. Zur Bestimmung des Einflusses unterschiedlicher RNA-Präparationen wurde der Korrelationskoeffizient bestimmt. Die eingesetzten Werte waren die Mittelwerte des gleichen ORFs aus zwei unabhängigen Experimenten, wobei jedes Experiment in zwei Parallelen durchgeführt worden war (in der Abb. nicht dargestellt). RNA1: RNA aus Kultur 1 vor und nach dem hyperosmotischen Schock isoliert; RNA2: RNA aus Kultur 2 vor und nach dem hyperosmotischen Schock isoliert.

Die graphische Darstellung der biologischen Streuung zeigt ebenfalls, dass die Werte positiv miteinander korrelieren. Wie jedoch zu erwarten, liegt der mittlere Korrelationskoeffizient deutlich niedriger, als derjenige, der die "Inner-Microarray"spezifische oder die methodische Streuung definiert. Deshalb ist es für die Aussagekraft der mittels einer DNA-Microarray-Analyse ermittelten Daten immens wichtig, dass sie die Mittelwerte mehrerer biologischer Parallelen darstellen. Somit kann die Wahrscheinlichkeit, dass ein Gen irrtümlich als signifikant reguliert identifiziert wird, verringert werden.

Abb. 68: Biologische Streuung eines Microarray-Experiments. Aufgetragen sind die Mittelwerte der Verhältnisse der Fluoreszenzintensitäten gleicher ORFs von zwei Experimenten, die in Parallelen durchgeführt wurden. Exemplarisch sind hier die Werte zweier Microarray-Experimente mit einem Korrelationskoeffizienten (r) von 0,732 dargestellt.

Zusammenfassend betrachtet macht diese statistische Auswertung einer DNA-Microarray-Analyse deutlich, dass die wohl größte Fehlerquelle in der unterschiedlichen Effizienz des Einbaus der fluoreszenzmarkierten Nukleotide liegt. Deswegen sollte jede Markierungsreaktion ebenfalls mit umgekehrter Spezifität durchgeführt werden, um eine Farbstoff bedingte Fehlinterpretationen der Ergebnisse weitgehend zu vermeiden, auch wenn dafür eine Herabsetzung der Trennschärfe in Kauf genommen werden muss. Selbstverständlich sollten, wie bei allen biologischen Experimenten, mindestens zwei unabhängige biologische Proben analysiert werden. Wie die Daten zeigen, ist es durchaus sinnvoll, wenn auch nicht von absoluter Relevanz, durch Wiederholung der Experimente mit denselben RNA-Präparationen und Mittelwertbildung methodische Streuungen zu verringern, und somit die Aussagekraft einer solchen Analyse zu erhöhen.

4.2 Transkriptionsregulatoren in M. mazei Gö1

Archaeelle Promotoren entsprechen in ihrer Grundstruktur weitgehend ihren eukaryontischen Gegenstücken, auch wenn diese deutlich komplizierter aufgebaut sind (BELL UND JACKSON, 2001; REEVE, 2003; SOPPA, 2001; THOMM, 1996). Deswegen ist es äußerst verwunderlich, dass in archaeellen Genomen eine deutliche höhere Anzahl bakterieller Transkriptionsregulatoren im Vergleich zu der Menge eukaryontischer Transkriptionsregulatoren, identifiziert werden konnte (ARAVIND UND KOONIN, 1999; KYRPIDES UND OUZOUNIS, 1999). In letzter Zeit wurden einige dieser Regulatoren näher untersucht. So wurde gezeigt, dass Homologe des bakteriellen Lrp (leucine responsive protein) in Pyrococcus furiosus, Sulfolobus sulfataricus und M. jannaschii ihre eigenen Promotorregionen in vitro binden können und dies zur Repression ihrer eigenen Gene führt (BELL UND JACKSON, 2000; BRINKMAN ET AL., 2000; DAHLKE UND THOMM, 2002; NAPOLI ET AL., 1999; OUHAMMOUCH UND GEIDUSCHEK, 2001). In Archaeoglobus fulgidus wurde ein Homolog des bakteriellen Metall-abhängigen Repressors DtxR identifiziert (BELL ET AL., 1999), und erst kürzlich wurde in Thermococcus litoralis ein zuckerspezifischer Transkriptionsregulator, TrmB, beschrieben, welcher die Transkription des Trehalose/Maltose ABC-Transporters reguliert (LEE ET AL., 2003). Allerdings wurden auch Regulatoren gefunden, die Ähnlichkeiten zu eukaryontischen Systemen haben. Beispiele hierfür sind MDR-1 aus Methanothermobacter thermoautotrophicus und GvpE aus Haloferax mediterranei (HOCHHEIMER ET AL., 1999; KRÜGER ET AL., 1998) (vgl. 1.5).

Im Rahmen dieser Arbeit konnten eine Reihe salzregulierter Gene identifiziert werden, welche als Transkriptionsregulatoren annotiert sind. Einige von ihnen liegen direkt stromaufwärts von anderen, ebenfalls salzinduzierten Genen (Abb. 69). Drei dieser Gene werden der MarR-Familie der Transkriptionsregulatoren zugeordnet, eines der ArsA-Familie und zwei haben Ähnlichkeiten zu TrmB aus *T. litoralis*. In bakteriellen Systemen sind einige Vertreter dieser Familien gut untersucht. Sowohl in der MarR- als auch in der ArsR-Familie sind bis heute ausschließlich Repressoren von Multi-Drug-Resistenz (MDR)-Systemen zu finden (**BUSENLEHNER ET AL.**, 2003; **SCHUMACHER UND BRENNAN**, 2002). Die Zuordnung der Transkriptionsregulatoren zu den Familien basiert ausschließlich auf Ähnlichkeiten in ihren DNA-Bindedomänen und lässt keine Aussagen über die Natur der von ihnen regulierten Gene zu (**GRKOVIC ET AL.**, 2002).

Abb. 69: Transkriptionsregulatoren in *M. mazei* Gö1, welche salzabhängig induziert sind und stromaufwärts ebenfalls salzinduzierter Gene liegen. Die Regulatoren sind dunkelgrau dargestellt und die möglicherweise von ihnen regulierten Gene hellgrau.

4.2.1 MarR-Familie der Transkriptionsregulatoren

Zwei gut untersuchte Vertreter der MarR-Familie von Transkriptionsregulatoren sind MarR und EmrR von E. coli (GRKOVIC ET AL., 2001; GRKOVIC ET AL., 2002; SCHUMACHER UND BRENNAN, 2002). MarR wird von dem marR-Gen kodiert, welches in einem Operon mit marA und marB vorliegt. marB kodiert für ein Protein mit unbekannter Funktion und marA für den globalen Aktivator MarA, welcher die Transkription von über 60 Genen aktiviert (ALEKSHUN UND LEVY, 1997). Dieses mar-Regulon ist für den Mar-Phänotyp verantwortlich, der sich in der Resistenz gegenüber einer Vielzahl strukturell unterschiedlicher Antibiotika manifestiert (COHEN ET AL., 1993). MarR spielt eine entscheidende Rolle bei der Regulation der Expression des marRAB-Operons. MarR kommt in der Zelle als Dimer vor und bindet an der Operator/Promotor-Region, auch als mar-Box oder marO bezeichnet, was in der Repression des marRAB-Operons resultiert und damit auch der Gene des mar-Regulons. Jede Untereinheit des MarR-Dimers kann in zwei Domänen unterteilt werden: eine N/C-terminale Domäne, welche hauptsächlich an der Dimerisierung beteiligt ist, und eine zentrale globuläre Domäne, welche für die Bindung an die DNA verantwortlich ist. Dieses geflügelte HTH-Motiv ist das Charakteristikum der Regulatoren der MarR-Familie (ALEKSHUN ET AL., 2001). Zusätzlich ist MarR in der Lage eine Vielzahl von Substanzen zu binden, welche einen negativen Effekt auf die Zelle ausüben. So wurde gezeigt, dass Salicylat, Plumbagin, 2,4-Dinitrophenol und Menadion die Bindung von MarR an marO verhindern und es zur Induktion der Expression des marRAB-Operons kommt und damit zu einer verstärkten Expression des globalen Aktivators MarA. Ferner scheint es auch noch eine zweite Möglichkeit der Aktivierung der Transkription des *marRAB*-Operons zu geben, welche es der Zelle ermöglicht, eher auf allgemeine Stresssituationen zu reagieren. Das periplasmatische Bindeprotein MppA sensiert niedrige Mengen Mureintripeptid im Periplasma, welches als Stessindikator gilt. Dies könnte über eine Signaltransduktionskette zur Phophorylierung von MarR führen, welches dann nicht mehr in der Lage ist, *marO* zu binden und es somit zu einer Aktivierung des *marRAB*-Operons kommt. Allerdings wird dies aufgrund der Kristallstruktur von MarR in Zweifel gezogen, da eine der putativen Phosphorylierungsstellen in einer α -Helix lokalisiert ist, und nicht wie bei bekannten Antwortregulatoren an der Schleife. EmrR, welches ebenfalls zur MarR-Familie der Transkriptionsregulatoren zählt, kontrolliert die Expression des *emrRAB*-Operons, welches neben dem Transkriptionsregulator für eine Multi-Drug-Resistenz-Pumpe kodiert. EmrR hat mit MarR die hoch konservierte DNA-Bindedomäne-Sequenz und die Fähigkeit, ähnliche anionische Substanzen zu binden, gemeinsam.

Ein Vergleich der Aminosäuresequenz der drei der MarR-Familie angehörigen Transkriptionsregulatoren von *M. mazei* Gö1 mit MarR von *E. coli* K12 zeigt besonders in der zentralen Domäne eine hohe Sequenzkonservierung (Abb. 70). Aber auch in der N/Cterminalen Domäne sind Ähnlichkeiten zu erkennen. Dies führt zu der Hypothese, dass diese Transkriptionsregulatoren in *M. mazei* Gö1 mit einem ähnlichen Mechanismus funktionieren. So ist denkbar, dass der durch den hyperosmotischen Schock ausgelöste Stress in irgendeiner Form, sei es durch direkte Bindung von Liganden oder durch andere Mechanismen, von den Transkriptionsregulatoren sensiert wird, was verhindert, dass sie an die DNA binden können, und es somit zu einer verstärkten Expression ihrer eigenen und der stromabwärts gelegenen Gene kommt. Die Produkte der stromabwärts gelegenen Gene könnten eine Funktion bei der Osmoadaptation erfüllen. Die Induktion des Repressors führt dazu, dass er in höherer Konzentration in der Zelle vorliegt. Dies ermöglicht, dass es zu dem Zeitpunkt, an dem alle Liganden gebunden sind, wieder zu einer Repression des von ihm kontrollierten Operons kommen kann.

MarR <i>E. coli</i> K12	M V N Q K K D R L L N E Y L S S P	16
MM3117	M F I V F - E N L I K I K S E C S C E	19
MM1863	M N T T E F D G I S H A E G L C D K E F I G K A I S Y L Y R	30
MM0346	M I H L F H K N F A R A F H K T G S G	20
MarR <i>E. coli</i> K12	L D D I T A A Q F K V L C S I R C A A	34
MM3117	F S E C G I S D I T V K Q I G Y L K A I D E H G	43
MM1863	Y G Q I Y I G K K I E P Y G I G S G Q F P F L M R L Y R E D	60
MM0346	Y N - N A L N K N Q N K A I L I I G A V G	38
MarR <i>E. coli</i> K12 MM3117 MM1863 MM0346	C I T P V E L K K V L S V D L G A L T R M L D R L V C K G W E V T F S R L A K I T K N S K P T I T E M V N K F V R M E C G I N Q E S L S V I T K N K F V R M E C G I I I I I I N K I <td>64 73 90 68</td>	64 73 90 68
MarR <i>E. coli</i> K12	V E R L P N P N D K R G V L V K L T T G G A A I C E Q C H Q	94
MM3117	V Y R E K C P E D G R I F Y I R L T E K G Q R I A R A E E S	103
MM1863	V F R Q R D E K D R R S Y R V F L T E K G K K L E P D	117
MM0346	V Y R R G D P S D R R K I L V S L T E K G E D Y R N	94
MarR <i>E. coli</i> K12	L V G Q D L H Q E L T K N L T A D E V A T L E Y L L K	121
MM3117	S L L R V I E K M A E S L N E K E I E T L	124
MM1863	- M K K I A S E W G E I L F S S F D D R Q R R E I T N S L E	146
MM0346	W L I E E L E K N N S E V L S R L T E E E I A A Y Q E G L K	124
MarR <i>E. coli</i> K12	K V L P	125
MM3117	I R I L G K V R	132
MM1863	I M F E N G L K I M	156
MM0346	T I L D T - L K K L D E S T	137

Abb. 70: Vergleich der Aminosäuresequenzen der Transkriptionsregulatoren der MarR-Familie von *M. mazei* Gö1 mit MarR von *E. coli* K12. In mindestens zwei Proteinen konservierte Aminosäuren sind grau unterlegt, in allen Proteinen konservierte Bereiche sind umrandet, und die zentrale Domäne von MarR ist überstrichen dargestellt.

4.2.2 ArsR-Familie der Transkriptionsregulatoren

Transkriptionsregulatoren der ArsR-Familie ermöglichen es Bakterien auf Stress, welcher durch Schwermetallionen hervorgerufen wird, zu reagieren. Alle bis jetzt bekannten Vertreter dieser Familie wirken ausschließlich als Repressoren der Resistenzoperone, was durch Bindung der Transkriptionsregulatoren an eine Operator/Promotor-Sequenz erreicht wird. Erst die Bindung eines Metallions an den Regulator verhindert dessen Bindung an die DNA und ermöglicht somit die Induktion der Expression des jeweiligen Operons (**BUSENLEHNER ET AL.**, 2003). Regulatoren der ArsR-Familie sind durch eine hoch-konservierte DNA-Bindedomäne der geflügelten HTH-Familie charakterisiert. Es wurden zwei Metallbindestellen identifiziert, welche als α 3N- und α 5-Metallbindestelle bezeichnet werden (**BUSENLEHNER ET AL.**, 2002; **BUSENLEHNER ET AL.**, 2003; **VANZILE ET AL.**, 2002). Die Bindung des Metallions an die α 3N-Position ist durch die Beteiligung zweier Cysteine der konservierten Metall-Bindebox (-ELCV(C/G)D-) und eines Cysteins aus dem N-terminalen Bereich des Proteins charakterisiert (vgl. Abb. 71). Noch ist nicht eindeutig geklärt, ob alle Metallbindestellen von einem Partner des Dimers bereitgestellt werden, oder ob die N-terminale Bindestelle von dem anderen Monomers herrührt. Kürzlich durchgeführte Untersuchungen an CadC aus *Staphylococcus aureus*, einem Cd(II)/Pb(II)/Zn(II)-abhängigen Repressor der ArsR-Familie, deuten eher in die zweite Richtung (**WONG ET AL.**, 2002). Bei der Bindung eines Metallions an der α 5-Position werden die Metallliganden ausschließlich von der C-terminalen α -Helix des Proteins (α 5-Helix) bereitgestellt. Einige der Regulatoren der ArsR-Familie besitzen nur die α 3N-Bindestelle, wie z. B. ArsR von *E. coli*, in anderen hingegen können beide oder aber nur die α 5-Bindestelle identifiziert werden. Welche Funktion diese zusätzliche Metallbindestelle erfüllt, ist bisher noch nicht geklärt, so scheint nur eine dieser Stellen essentiell für die Sensierung des Metalls *in vivo* zu sein (**BUSENLEHNER ET AL.**, 2002; **WONG ET AL.**, 2002).

Bei der Suche nach konservierten Domänen in der abgeleiteten Aminosäuresequenz des putativen Transkriptionsregulators MM1257 konnte eindeutig die ArsR-spezifische HTH-Domäne identifiziert werden. Die DNA-Bindedomäne, im Besonderen aber die DNA-Erkennungssequenz, sind in den Mitgliedern dieser Familie gut konserviert. Ein Vergleich der Aminosäuresequenz von MM1257 mit anderen Transkriptionsregulatoren der ArsR-Familie zeigt, dass die DNA-Erkennungssequenz auch in diesem Protein gut konserviert ist (Abb. 71). Allerdings können in MM1257 keine putativen Metallbindestellen identifiziert werden, was die Vermutung bestärkt, dass es sich bei diesem Protein um einen Metall-unabhängigen Transkriptionsregulator handelt. Die Funktion von MM1257 und die Natur des von diesem Regulator sensierten Liganden bleiben jedoch unklar.

ArsR 3 MM1257 M D P A K L L D I L G N E N R R K I I Q L L A N R P C Y V S 30 CadC М Т К D М - - - - - - - - - - - - - С Е V Т Y I Н 12 SmtB M T K P V L Q D G - - - - - - - E T V V C Q G T - -17 - L - T P L Q L F K N L S 14 - -ArsR EISGRLGVGPKAIISHLSLLEQAGLIECSV 60 MM1257 E - - D K V N R A K K D L A K Q N P M - D V A K V F K A L S 39 CadC H - - A A I A S E L Q A I A P E V A Q - S L A E F F A V L A 44 SmtB DETR - - L G I V L L L R E M G E L C V C D L C M A L D ArsR 41 D E Q R R K Y F N I A N N V R L E V S V S P Y S Y T M A L Q 90 MM1257 D D T R - - - V K I A Y V L S L E G E L C V C D V A N I I E CadC 66 SmtB D P N R - - - L R L L S L L A - R S E L C V G D L A Q A I G 70 ArsR 44 MM1257 D I N F D R E K K R E S Y A V E N N G P A T R D E S S C F F 120 CadC SST-- - - - -- -_ - -_ 69 SmtB VSE-73 ArsR PKISRHLAMLR - - ESGILLDRKQGKWVHYR 72 MM1257 L K L S E R L R E L R I K Q E E L A Q M Q K Q L Q A E Y T E 150 CadC A T A S H H L R L L K - - N L G I A K Y R K E G K L V Y Y S 97 SmtB SAVSHQLRSLR - - NLRLVSYRKQGRHVYYQ 101 L S P H Î P S W A A Q I I E Q A - - - - - - W L S Q Q D ArsR 94 L M D K C L D S I E D I A R N P V E C E L L F E L L K N E A MM1257 180 L D D E H - - - V K Q L V E K A - - - - - - - F L H Q R CadC 115 SmtB LQDHH---IVALYQNA---- - - - L D H L Q 119 ☆ D V Q V - - - - - - - - - I A R K L A S V N C S G S S K 113 ArsR TAAVLCYNLRLHPSIINSNLMDLAERGFVE 210 MM1257 CadC E V A S - - - - - - I G 121 SmtB ECR 122 ArsR - - - - - - - A V C I 117 MM1257 Y T I K N S Q Q Y W K I C E T G V E N K 230

Abb. 71: Vergleich der Aminosäuresequenz des Transkriptionsregulators der ArsR-Familie von *M. mazei* Gö1 mit Proteinen der ArsR-Familie aus Bakterien. ArsR: *E. coli*, CadC: *Staphylococcus aureus*, SmtB: *Synechococcus* PCC7942. In mindestens zwei Proteinen konservierte Aminosäuren sind grau unterlegt, die putativen Metall-Bindestellen sind mit einem darüberliegenden Stern markiert und die mögliche DNA-Erkennungssequenz ist überstrichen dargestellt.

4.2.3 TrmB-ähnliche Transkriptionsregulatoren

Die Analyse der Proteinsequenz und eine Suche nach konservierten Domänen von MM0346 und MM1554 zeigte, dass sie in die Familie der TrmB-ähnlichen Transkriptionsregulatoren einzuordnen sind. Allerdings ist in dieser Familie bis jetzt nur ein Protein, TrmB von *T. litoralis*, beschrieben (LEE *ET AL.*, 2003). Dort bindet TrmB in Abwesenheit von Maltose/Trehalose im Promotorbereich des Operons, welches für einen

Trehalose/Maltose-ABC-Transporter kodiert, und verhindert so dessen Transkription. Ist jedoch Maltose/Trehalose vorhanden, bindet diese den Regulator, so dass er nicht mehr an die DNA adherieren kann, und es kommt zu einer verstärkten Transkription des Operons. MM0345 ist mit 110 Aminosäuren jedoch deutlich kürzer als TrmB (338 Aminosäuren) und MM1554 (260 Aminosäuren). Ein Vergleich der Aminosäuresequenz der beiden putativen Proteine von *M. mazei* Gö1 mit PH1034 von *Pyrococcus horikoshii* OT3, welches die höchste Ähnlichkeit zu TrmB von *T. litoralis* aufweist (71% Identität) (**LEE ET AL.**, 2003) und AF1232 von *Archaeoglobus fulgidus* zeigt, dass die höchste Konservierung im N-terminalen Bereich der Proteine zu finden ist. Dies wurde auch schon von Lee *et al.* beobachtet (**LEE ET AL.**, 2003). Auch für diese beiden putativen Proteine, MM1554 und MM0346, ist es auf der Basis der Aminosäuresequenzanalyse nicht möglich, definitive Vorhersagen über den möglichen Mechanismus der Regulation zu treffen. Ob und wie die putativen Transkriptionsregulatoren den hyperosmotischen Schock sensieren, und ob sie in der Tat für die erhöhte Transkription ihrer stromabwärts liegenden Gene verantwortlich sind, müssen weiterführende Studien klären.

AF1232 MM0345 MM1554 PH1034	M M M	- F -	- - L -	- Q E	- H I	- Q N P	- T N P	E Q E	L L I	V T I L	E G C Q	V K N S	L L L	K Q E I	S K K E	F M L	G G G G	L F L	S T T T	E E K	Y N N Y	E E E E	A A A V	K K K L	A I A T	L Y Y Y	V I V W	A G G T	L L L	V L V]L	22 26 30 28
AF1232 MM0345 MM1554 PH1034	S R S V	K Q L Y	G G G G	T E E P	L V A S	T T T T	A A A A	K R R K	E E E	V I V I	S H H S	E E I	I F L R	S T T S	G H N G	I V V I	P P P P	R R R Y	T T A N	S K K R	V I I V	Y Y Y Y	D S E D	V T V T	M L L I	N N K S	S R V S	L M L	L S A K	S K K V	52 56 60 58
AF1232 MM0345 MM1554 PH1034	K K R	G K G G	L Y F	V I L V	E E T	S V V E	F I R I	E Q E	G G G G	K T S N	P P P	K A T K	R Y Y	F F F Y	K R A	A S A A	L I V Y	N D D S	V P P	S E K R	D Q Q I	I L V A	I L I F	S E G L	V R K R	L L I F	S R K K	R - - K	R - - E	V - L	81 84 88 88
AF1232 MM0345 MM1554 PH1034	N D D	E E E	N F F I	I L I S	E F N E	I S C K	L L A L	R N I E	R E K	E T T	L L I	S E D S	K E Q E	L L V	E N K	T S E R	E A L E	E G S E	I Y Y	D - E	V - L -	I - P -	R - R R	V - T C	- S R	- P P	- - S	- V I	W	– C R	106 103 116 114
AF1232 MM0345 MM1554 PH1034	Y - I S	R - Q H	G - S D	E - E F	M - W E	V G G E	L M I A	K K I	E N N E	K K R M	L - I F	R - R K	E E E	L - I T	V - L	E - N E	S - G S	A - V S	K - K E	R - E N	E E E	I - L V	V - I I	G - V V	V - F V	L - S T	S - S P	- S S	- - P E	– – R F	132 108 146 144
AF1232 MM0345 MM1554 PH1034	Y - F F	I - F K	P - Q S	E - E I	S - F R	V - E E	A - A T	E - E L	I - L I	L - K G	R - K I	- - L	R - E D	A - K R	T - T G	C C C V	R - Q T	L - L	I - T S	L - F L	I - I Y	S - I I	S - S D	N - E K	A - P V	R - - P	A - D	V - I	E - E S	N - K D	160 109 173 174
AF1232 MM0345 MM1554 PH1034	A - F F	E E E	S - S G	- - R	- - G	- - N	- - F	- - F	- - L	- - R	- - R	Y - F F	E - P T	- - K	F F F	E E N	- - H	- - L	- - I	- - G	- - L	- - A	- - D	- - G	- - K	- - V	- - V	- - A	- - - T	- - I	168 109 181 204
AF1232 MM0345 MM1554 PH1034	- - Q	- - N	- - V	- - S	K - F F	K - R M	E - E P	E - T P	V - S	А - Т Р	R - K P	S - E S	F F F	K - R K	N - E S	F - F T	C - L F	H - N K	G - N E	I - I I	F - V I	- - F	- - S	- - Q	- - Y	- - S	- - L	- - - T	- - L	- - E	185 109 197 234
AF1232 MM0345 MM1554 PH1034	- - I	- - F	- - K	- - E	- - S	- - S	- - L	- - E	I - I V	– – D E	- G Q	- I I	- R M	F - Y N	D - D P	D - E Q	E - E D	R - - I	T - R	F F F	S - F F	I - M A	F - I V	I - A F	N - D H	G G A	T - K A	Q - E D	I - S F	- I V	202 109 216 264
AF1232 MM0345 MM1554 PH1034	- G K	- - V R	- H H	- S L	- - A P	- G S	- D S	- - K T	- - R I	- - E F	A - A S	I - V E	M - V I	S - I V	E - K G	S - L R	P - P N	A - V V	V - V K	I C C T	E Y G	F L E	S Q V	K K E	M M K	V I L	M Y Y	I D G	P R K	V V V	221 109 246 294
AF1232 MM1554 PH1034	I L V	- - G	- - Y	- - T	- - L	- - S	- - F	- - R	- - E	- - G	- v	- - N	- - N	- - I	- - Q	- - I	- - E	- - T	E E E	- P K	- S G	F F I	M V V	R K K	- v	- - G	- - G	- - M	- - F	- - A	227 254 324
AF1232 MM1554 PH1034	- v	- - I	- - E	- - D	- - Y	- - E	- - S	- - T	- - N	- - V	- K R	- N L	R R M	K K L	N S E	D A S															230 259 340

Abb. 72: Vergleich der Aminosäuresequenz der Transkriptionsregulatoren MM1554 und MM0346 von *M. mazei* Gö1 mit Proteinen der TrmB-Familie aus Archaeen. AF1232: konserviertes hypothetisches Protein aus *Archaeoglobus fulgidus*; PH1034: hypothetisches Protein aus *Pyrococcus horikoshii* OT3.

4.3 Phasen der Osmoadaptation in methanogenen Archaeen

Die Antwort auf einen hyperosmotischen Schock lässt sich in zwei generelle Phasen einteilen. In der ersten Phase kommt es zu einem schnellen Einstrom von Ionen in die Zelle, um den Turgor zu erhalten und Plasmolyse zu verhindern. In der zweiten Phase beginnt die Akkumulation kompatibler Solute. Diese erste Phase ist weitgehend unabhängig von transkriptioneller Aktivität und beruht auf bereits vorhandenen Ressourcen. M. thermolithotrophicus ist bislang das einzige methanogene Archaeon, bei dem die zeitliche Hierarchie der Akkumulation von Osmolyten untersucht wurde (MARTIN ET AL., 2000). Auf eine Erhöhung der extrazellulären Salzkonzentration reagierten die Zellen innerhalb der ersten Minuten mit einem schnellen Einstrom von Kaliumionen. Die Menge an aufgenommenen Kalium übertraf die Menge, die benötigt worden wäre, um die extrazelluläre Na+-Konzentration auszugleichen, vorausgesetzt ein passendes Gegenion wurde ebenfalls aufgenommen. In den folgenden 10 – 20 min nahm die intrazelluläre Kaliumkonzentration wieder leicht ab und pendelte sich auf einem Niveau ein, welches ca. 1.5fach höher lag als in Zellen, die nicht geschockt worden waren. Die Geschwindigkeit dieser Antwort deutet darauf hin, dass der Kaliumeinstrom auf die Aktivierung von bereits vorhandenen Kalium-Aufnahmesystemem zurückzuführen ist und nicht auf einer erhöhten Expression der Gene und Produktion dieser Proteine beruht. In der zweiten Phase der Antwort auf einen hyperosmotischen Schock kommt es zur Akkumulation von organischen Soluten. So begannen Zellen von *M. thermolithotrophicus* ca. 20 min nach dem hyperosmotischen Schock mit der Akkumulation von α-Glutamat. Ferner konnte die Anreicherung von β-Glutamat und Aspartat beobachtet werden, allerdings auf einem deutlich niedrigeren Niveau. Zu einem sehr geringen Maß konnte auch N^ε-Acetyl-β-Lysin in den Zellen nachgewiesen werden, wenn es auch kurz nach dem Schock noch keinen signifikanten Anteil an der Solutzusammensetztung ausmachte. Eine maximale Akkumulation von N^ε-Acetyl-β-Lysin konnte erst nach einigen Zellteilungen beobachtet werden. Die Beobachtung, dass Glutamat zunächst bevorzugt vor N^ε-Acetyl-β-Lysin akkumuliert wurde, führte zu der Vermutung, dass die Biosynthese oder Modifikation von Proteinen, welche an der Akkumulation von N^ε-Acetyl-β-Lysin beteiligt sind, bei der Adaptation von M. thermolithotrophicus an hohe Salzkonzentrationen eine Rolle spielt. In salzadaptierten Zellen ist N^ε-Acetyl-β-Lysin das vorherrschende kompatible Solut und die Menge an α -Glutamat ist reduziert (**ROBERTSON** ET AL., 1992b). Dies deutet auf eine Rolle von α-Glutamat und Kalium als transiente Osmolyte in der zweiten Phase der Osmoadaptation hin.

Auf Grund der in dieser Arbeit gewonnenen Daten und einem Vergleich mit den Erkenntnissen bei *M. thermolithotrophicus* ist es möglich, unterschiedliche Phasen der Osmoadaptation in *M. mazei* Gö1 zu postulieren. Auch *M. mazei* Gö1 muss über ein Rettungssystem verfügen, welches es den Zellen ermöglicht, in der ersten Phase auf einen hyperosmotischen Schock zu reagieren und das Überleben zu sichern. Aller Wahrscheinlichkeit nach ist das in der ersten Phase schnell aufgenommenen Osmolyt ebenfalls Kalium. Im Genom von *M. mazei* Gö1 sind eine Reihe Gene zu finden, deren Produkte an der Aufnahme von Kalium beteiligt sein könnten (Tab. 30).

Tab. 30: Gene im Genom von M. mazei Gö1, die an der Aufnahme von Kalium beteiligt sein könnten.

Annotation
Kalium-Kanal
Kalium-Kanal
Trk-System; Kalium-Aufnahmeprotein, TrkG
Trk-System; Kalium-Aufnahmeprotein, TrkA
Trk-System; Kalium-Aufnahmeprotein, TrkG
Trk-System; Kalium-Aufnahmeprotein, TrkA
Kalium-Kanal
Kalium-Kanal

Vier Gene (MM2500 - MM2503) kodieren für putative Proteine des Trk-Systems. In E. coli wurde gezeigt, dass die Aufnahme von Kalium in die Zelle nach einem hyperosmotischen Schock unter anderem auf eine erhöhte Aktivität dieses Systems zurückzuführen ist, die Expression der Gene aber unbeeinflusst bleibt (KEMPF UND BREMER, 1998). In E. coli können zwei Trk-Systeme, TrkG und TrkH, unterschieden werden, die durch die Zusammensetzung ihrer Untereinheiten definiert sind (DOSCH ET AL., 1991). Beide Systeme enthalten das trkA-Genprodukt, welches ein peripheres Membranprotein darstellt und essentiell für die Aktivität des Trk-Systems ist, und das trkE-Genprodukt, dessen Funktion noch nicht vollständig geklärt ist, aber welches an der Interaktion von TrkA mit den membranständigen Proteinen beteiligt zu sein scheint. Sie unterscheiden sich ausschließlich durch das membrandurchspannende Protein, welches von trkG oder trkH kodiert wird (HARMS ET AL., 2001; SCHLÖSSER ET AL., 1995). Untersuchungen zeigten, dass TrkA und TrkG ausreichen um Kalium-Transport über die Membran zu gewährleisen, wenn auch mit veränderten Transport-Kinetiken (DOSCH ET AL., 1991). Kalium-Transport war strikt abhängig von ATP und der protonenmotorischen Kraft (RHOADS UND EPSTEIN, 1977). So scheint das Trk-System zunächst durch ATP aktiviert zu werden, wohingegen der Transport von Kalium durch die protonenmotorische Kraft getrieben wird (HARMS ET AL., 2001; RHOADS UND EPSTEIN, 1977). Im Genom von M. mazei Göl sind je zwei Homologe der Gene trkA und trkG zu finden, deren Produkte ausreichen würden, um den Kernkomplex des Trk-Systems zu formen. Ferner gibt es im Genom von M. mazei Göl vier weitere Gene, die für putative Kalium-Kanäle kodieren. Da die Kalium-Aufnahme in der ersten Phase der osmotischen Antwort aller Wahrscheinlichkeit nach auch in M. mazei Göl auf einer Aktivierung bereits vorhandener Proteine beruht, können die Ergebnisse der DNA-Microarray-Analysen keinen Aufschluss über die Prozesse in der ersten Phase geben. Nach einem Schock auf 400 mM konnte eines der für einen Kalium-Kanal kodierenden Gene (MM3189) identifiziert werden, dessen Expression 1,5 h nach dem Schock erhöht war. Andererseits wurde beobachtet, dass MM2503, das für eines der beiden putatives TrkA-Proteine des Trk-Systems kodiert, fast über die gesamte lag-Phase nach einem hyperosmotischen Schock reprimiert war, unabhängig von der Höhe des Schocks. Die anderen Gene, die für putative Kalium-Kanäle kodieren, waren nicht reguliert. Da die intrazelluläre Kaliumkonzentration durch ein Zusammenspiel aus Influx und Efflux reguliert wird, deutet dies darauf hin, dass später, in der zweiten Phase der Antwort auf einen hyperosmotischen Schock, die intrazelluläre Kaliumkonzentration wieder verringert wird.

Über die Natur des Gegenions zu Kalium liegen keine Erkenntnisse vor. In E. coli wird diskutiert, ob Kalium und Glutamat als sekundäre Übermittler des Salzstresses fungieren und an der Initiierung und Koordination der Antwort der zweiten Phase beteiligt sind (KEMPF UND BREMER, 1998). Man könnt sich ein ähnliches Modell auch für M. mazei Göl überlegen. Wie unter Punkt 4.2 beschrieben, sind alle bisher bekannten Mitglieder der Familien der in dieser Arbeit identifizierten Transkriptionsregulatoren Repressoren, die in der Lage sind, Liganden zu binden. Eine Erhöhung der extrazellulären Salzkonzentration und damit auch der intrazellulären Kaliumkonzentration könnte somit durch Binden von Kalium an die Repressoren sensiert werden. Dies würde zum Verlust ihrer Fähigkeit führen, an die DNA zu binden, und damit zu einer Aktivierung der von ihnen regulierten Gene und dem Beginn der zweiten Phase der Osmoadaptation. In dieser Phase kommt es nun zur differentiellen Expression von Genen, deren Produkte relevant für die längerfristige Osmoadaptation sind. Die Ergebnisse der DNA-Microarray-Analysen lassen darauf schließen, dass die kompatiblen Solute Cholin, Glycinbetain, N^ε-Acetyl-β-Lysin, aber auch die Aminosäuren Glutamat und Glutamin aufgenommen bzw. synthetisiert werden. Darüberhinaus scheint es zur Aufnahme von anorganischem Phosphat, dessen Umwandlung in Polyphosphat, und zur Veränderung der Zelloberfläche zu kommen.

4.4 Potentielle Rolle von Phosphat bei der Salzadaptation

4.4.1 Aufnahme von Phosphat

Ein hyperosmotischer Schock in M. mazei Göl führte zur verstärkten Transkription der Gene, welche für einen primären Phosphat-Transporter mit Ähnlichkeiten zu Pst von E. coli kodieren. Pst ist in E. coli für die Aufnahme von anorganischem Phosphat (P_i) in die Zelle verantwortlich. Phosphat ist ein integraler Bestandteil des kompletten zellulären Metabolismus, da es für DNA- und RNA-Synthese, den Energiehaushalt und Membrantransport unersetzlich ist. Phosphat wird von der Zelle in Form von Phosphationen verwendet, welche während der Assimilation weder reduziert noch oxidiert werden. Eine große Anzahl von Phosphaten, die in der Natur vorkommen, können jedoch von E. coli nicht genutzt werden, außer sie werden vorher zu Pi abgebaut. Phosphorylierte Verbindungen werden zunächst über die äußere Membran transportiert und dann im Periplasma hydrolysiert, so dass P_i freigesetzt wird. Dieses kann nun durch spezifische Phosphat-Transporter, wie das Pst-System über die Cytoplasmamembran in die Zelle aufgenommen werden (RAO UND TORRIANI, 1990). Das pst-Operon ist Teil des Pho-Regulons, einer Gruppe von Genen und Operonen, die durch die Phosphat-Konzentration im Medium reguliert werden. Das Pho-Regulon besteht in E. coli aus 31 oder mehr Genen, die in mindestens acht transkriptionellen Einheiten organisiert sind (Tab. 31) und an der Regulation des Phosphat-Metabolismus und Assimilierung von Phosphat beteiligt sind (WANNER, 1996a).

Gen/Operon	Beschreibung/Funktion						
phoA(psiA) - psiF	Bap (periplasmatische unspezifische Monophosphateserase)						
phoBR	Regulator, P _i -Sensor						
phoE	Polyanion-Porin						
phoH(psiH)	ATP-Bindeprotein						
phnCDEFGHILKLMNOP(psiD)	PolyP-Aufnahme und Abbau						
pstSCAB-phoU	P _i -Aufnahme						
ugpBAECQ(psiB, C)	Glycerin-3-Phosphat-Aufnahem						
psiE	unbekannte Funktion						

Tab. 31: Gene und Operone des Pho-Regulaons in E. coli (WANNER, 1996a).

Neben seiner Rolle als P_i -Transporter wirkt das Pst-System zusätzlich auch noch als Repressor des Pho-Regulons (**WANNER**, 1996a). Die Gene und Operone dieses Regulons werden durch ein 2-Komponentensystem, bestehend aus der Sensorkinase PhoR und dem Antwortregulator PhoB, reguliert (**WANNER**, 1996b). Wenn die P_i -Konzentration unter 4 μ M fällt, phosphoryliert das Sensorprotein PhoR den Regulator PhoB, welcher dann an die Pho-Boxen bindet und die Transkription initiiert. Alle Promotoren des Pho-Regulons besitzen eine Pho-Box. Diese besteht aus zwei gut konservierten 7 Bp-langen direkten Wiederholungen, welche durch ein 4 Bp-Segment getrennt sind (**WANNER**, 1996a). Auch in dem putativen Promotorbereich des *pst*-Operons von *M. mazei* Gö1 konnte eine Sequenz identifiziert werden, die Ähnlichkeiten zur Pho-Box hat (s. 3.7.3).

4.4.2 Einfluss von Phosphat auf eine Vielzahl zellulärer Prozesse

Für den Metabolismus und das Wachstum von Zellen ist eine gleich bleibende P_i-Konzentration von essentieller Bedeutung. So trägt P_i z. B. direkt zur ATP-Synthese durch die ATP-Synthase, welche die Umsetzung von ADP und P_i zu ATP katalysiert, bei. P_i wird in der Zelle als Polyphosphat (PolyP) gespeichert. Dieses Aggregat, welches mit multivalenten Gegenionen komplexiert ist, hat einen deutlichen osmotischen Vorteil gegenüber freiem P_i. Der einzige bis jetzt bekannte Biosyntheseweg von PolyP ist die Polymerisation des terminalen Phosphats von ATP durch die Aktivität der Polyphosphatkinase (Ppk) in *E. coli* (s. Gleichung I) (**KORNBERG** *ET AL.*, 1956). Allerdings scheint es noch eine weitere Möglichkeit der PolyP-Synthese zu geben, da Mutanten, welchen das Gen, das für Ppk kodiert, fehlt, immer noch in der Lage waren, PolyP zu synthetisieren. Jedoch sind diese PolyP-Ketten mit bis zu 60 Einheiten deutlich kürzer als die durch die Ppk synthetisierten (bis zu 750 Einheiten) (**KORNBERG**, 1995). Das *ppk*-Gen liegt in einem Operon mit *ppx*, welches für eine Exopolyphosphatase kodiert, vor. Dieses Operon wird ebenfalls durch die Aktivität des PhoR/PhoB 2-Komponentensystems reguliert. Ppx katalysiert die Freisetzung von Pi aus PolyP (s. Gleichung II) (**WANNER**, 1996a).

$Ppk: nATP \leftrightarrow PolyP_n + nADP$	(Gleichung I)
$Ppx: PolyP_n \rightarrow PolyP_{(n-1)} + P_i$	(Gleichung II)

Neben der Rolle als P_i-Speicher hat PolyP aber noch eine Reihe weiterer Funktionen. So dient es auch als ATP-Ersatz und Energiequelle. Ein Beispiel ist der von Ppk katalysierte Angriff von ADP an den Terminus der PolyP-Kette, welcher zu der Bildung von ATP führt.

Ein solches Aggregat von PolyP assoziiert an das membrangebundene Enzym Ppk ermöglicht auf der Stelle die Bildung großer Mengen ATP. Ferner erfüllt PolyP eine Funktion als Chelator von Metallionen. So verrichtet ein Komplex aus PolyP und Mn²⁺ in Lactobacillus plantarum die Aufgabe der Superoxiddismutase bei der Entgiftung von Superoxidradikalen (ARCHIBALD UND FRIDOVICH, 1982a; ARCHIBALD UND FRIDOVICH, 1982b). In Algen wurde gezeigt, dass PolyP eine Funktion als Puffer gegen Alkaliionen hat, welche als Folge eines alkalischen Stresses in die Vakuolen der Algen eintreten. Es wird angenommen, dass die Akkumulation von Aminen eine spezifische Phosphatase aktiviert, die PolyP in Tripolyphosphate hydrolysiert (KULAEV UND KULAKOVSKAYA, 2000; PICK ET AL., 1990; PICK UND WEISS, 1991). Eine Beteiligung von PolyP bei der Transformation von DNA wird ebenfalls diskutiert. So wurde beobachtet, dass in Membranen transformationskompetenter E. coli Zellen Polyhydroxybutyrat (PHB) komplexiert mit Ca²⁺ und PolyP vorkommt. Dieser Komplex führt zu grundlegenden Änderungen der physikalischen Eigenschaften der Membran, was eine Aufnahme der DNA in die Zelle erleichtern könnte (KORNBERG, 1995). Ferner ist PolyP ein Bestandteil der Kapsel von Neisseria-Arten, und eine Rolle von PolyP bei der Regulation der Fruchtkörper- und Sporenbildung von Myxobakterien, der Sporenbildung von Bazillen und Pilzen und der Heterocystenbildung von Cyanobakterien wird ebenfalls diskutiert (KORNBERG, 1995). Aber die wohl wichtigste und am weitesten verbreitete Funktion von PolyP ist seine regulatorische Rolle. PolyP kann mit basischen Proteinen, wie z. B. Histonen, oder basischen Domänen von Proteinen, wie in Polymerasen vorhanden, interagieren. Solche Interaktionen können positive oder negative Effekte auf die Expression von Genen ausüben. Es ist also möglich, dass PolyP eine Rolle in dem Netzwerk der Stressantwort spielt (KORNBERG, 1995). Es wurde beobachtet, dass eine RNA-Polymerase, welche aus Zellen von E. coli, die sich in der stationären Phase befanden, isoliert wurde, eng mit PolyP assoziiert war. Untersuchungen mit zwei Formen des Holoenzyms, von denen eines σ^{70} und das andere σ^{38} enthielt, zeigten, dass bei hohen PolyP-Konzentrationen das σ^{38} -enthaltende Enzym aktiviert wird, wohingegen die Transkription durch das σ^{70} -enthaltende Enzym inhibiert ist (KUSANO UND ISHIHAMA, 1997). Ferner wurde gezeigt, dass PolyP akkumuliert wird, wenn E. coli mit einem Aminosäure-Mangel konfrontiert wird. Die Akkumulation von PolyP beruht wahrscheinlich auf einer Hemmung von Ppx, welches für den Abbau von PolyP verantwortlich ist. Bei der Antwort auf einen Aminosäure-Mangel wird RelA, ein Enzym welches für die Synthese von Guanosinpentaphosphat (pppGpp) verantwortlich ist, aktiviert. pppGpp wird durch die Aktivität eines weiteren Enzyms, GppA, zu Guanosintetraphosphat (ppGpp) hydrolysiert. Diese Guanosinnukleotide fungieren als Signale für die Repression der Expression ribosomaler RNA und der Gene für ribosomale Proteine, für die Aktivierung von bestimmten biosynthetischen Genen und für die Akkumulation von PolyP (KORNBERG ET AL., 1999; KURODA ET AL., 1997). pppGpp und/oder ppGpp inhibieren den hydrolytischen Abbau von PolyP durch Ppx, haben aber keinen Einfluss auf Ppk, welches für die Synthese von PolyP verantwortlich ist (KURODA ET AL., 1997), so dass PolyP akkumuliert wird. Auch nach einem Transfer von E. coli-Zellen aus Komplexmedium in Minimalmedium wird eine schnelle Akkumulation von PolyP beobachtet (AULT-RICHÉ ET AL., 1998). Ferner hat auch in E. coli osmotischer Stress einen Einfluss auf die Anhäufung von PolyP. So wurde gezeigt, dass Zellen, die einem hyperosmotischen Schock ausgesetzt werden, schnell PolyP akkumulieren. Erstaunlicherweise ist jedoch der Weg der salzinduzierten PolyP Akkumulation unabhängig von dem Protein EnvZ, welches an der osmotischen Antwort in E. coli beteiligt ist (KORNBERG ET AL., 1999). Die Akkumulation von PolyP scheint darüber hinaus auch einen Beitrag zum Überleben der Zellen in der stationären Phase zu leisten. So sind Zellen in der stationären Phase, welche PolyP akkumulieren, deutlich resistenter gegenüber Hitze, oxidativem und osmotischem Stress und UV-Strahlung (KORNBERG ET AL., 1999).

4.4.3 Potentielle Rolle von Phosphat in M. mazei Gö1 bei der Salzadaptation

Ein hyperosmotischer Schock führte in *M. mazei* Gö1 zu der verstärkten Expression des *pst*-Operons und des Gens, welches für die Polyphosphatkinase (Ppk) kodiert. Diese zwei Beobachtungen lassen vermuten, dass als Antwort auf einen Salzschock P_i in die Zelle aufgenommen, und PolyP, wie auch in *E. coli* beobachtet, akkumuliert wird. Im Genom von *M. mazei* Gö1 konnten keine Gene identifiziert werden, deren putative Produkte Ähnlichkeit mit dem PhoB/PhoR 2-Komponentensystem haben. Dies lässt vermuten, dass die Regulation der Expression über einen anderen Mechanismus oder nicht homologe Proteine vonstatten geht. Die in dieser Arbeit präsentierten Daten zur Identifizierung eines Regulators des *pst*-Operons deuten darauf hin, dass möglicherweise ein Repressor vorliegt (s. 3.7.3). Der Idee folgend, dass Kalium als sekundärer Überträger des "Osmosignals" dienen könnte, kann auch hier über eine Derepression aufgrund der Erhöhnung der intrazellulären Kaliumkonzentration spekuliert werden. Ferner ist anzunehmen, dass die Regulation des *pst*-Operons zumindest teilweise über zwei unterschiedliche Wege erfolgt, je nachdem ob auf Salzstress oder Phosphat-Mangel reagiert wird. Aber aufgrund der in dieser Arbeit erhaltenen Ergebnisse können keine definitiven Aussagen zu dem Mechanismus der Regulation des *pst*-Operons

getroffen werden, und die hier erwähnten Möglichkeiten sind rein spekulativ. Ein erster Schritt, um Licht in die Mechanismen der Regulation des Pst-Systems zu bringen, wäre die Untersuchung der P_i-Aufnahme und PolyP-Akkumulation durch Zellen von *M. mazei* Gö1 bei unterschiedlichen Bedingungen.

Das *ppk* Gen, welches für die putative Polyphosphatkinase kodiert, liegt im Genom von *M. mazei* Gö1, wie in *E. coli*, in einem Operon mit dem Gen, welches für eine Expolyphosphatase (Ppx) kodiert, vor (Abb. 73).

Abb. 73: Physikalische Karte der Genregion in Genom von *M. mazei* Gö1, in der sich *ppk* und *ppx* befinden. Dargestellt sind die Gene MM1372 bis MM1377.

Die Expression von *ppx* ist nach einem osmotischen Schock nicht signifikant verändert. Da Ppx für den Abbau von PolyP verantwortlich ist, unterstützt diese Beobachtung die Hypothese, dass PolyP akkumuliert wird. Aber welche Aufgabe erfüllt das Phosphat bei der Salzadaptation von M. mazei Gö1? Auf diese Frage gibt es einige mögliche Antworten, die aber zum jetzigen Zeitpunkt noch rein hypothetisch sind. So ist es denkbar, dass PolyP auch in M. mazei Gö1 eine regulative Funktion erfüllt und an der Regulation der differentiellen Genexpression nach einem osmotischen Schock beteiligt ist. Dies kann entweder über eine direkte Interaktion mit der RNA-Polymerase erfolgen, wie es in E. coli gezeigt wurde, oder aber die Akkumulation von PolyP dient als Signal, welches von der Zelle sensiert und transformiert wird und in der Regulation der Genexpression resultiert. Natürlich kann PolyP ebenfalls als P_i- oder Energie-Speicher wirken. So ist es denkbar, dass der erhöhte Energiebedarf der Zellen, bei dem Wiedereintritt in das Wachstum nach einem osmotischen Schock, zum Teil durch die Aktivität der Ppk gedeckt wird. Nachdem in E. coli gezeigt wurde, dass die Akkumulation von PolyP in der stationären Phase eine Erhöhung der Resistenz gegenüber Stress vermittelt, kann ebenfalls eine ähnliche Wirkung von PolyP in M. mazei Göl in der lag-Phase nach einem osmotischen Schock vermutet werden. Ferner kann auch die Funktion von PolyP als Gegenion diskutiert werden. PolyP ist in der Lage, eine Vielzahl positiv geladener Ionen zu binden und könnte somit in der ersten Antwort auf einen hyperosmotischen Schock den Überschuss an positiver Ladung durch eine transiente Akkumulation von Kalium ausgleichen. Neben PolyP käme auch noch Glutamat, wie in *E. coli* gezeigt, als Gegenion in Frage. Ob und wenn ja in welcher Weise Phosphat direkt an dem Prozess der Salzadaptation in *M. mazei* Gö1 beteiligt ist, wird jedoch erst durch weitere Untersuchungen eindeutig zu klären sein.

4.5 Akkumulation der kompatiblen Solute Glutamat und Glutamin

Methanogene Archaeen akkumulieren kompatible Solute als Antwort auf erhöhte Salzkonzentrationen. Die vorherrschenden kompatiblen Solute sind α -Glutamat und N^e-Acetyl- β -Lysin (SOWERS UND GUNSALUS, 1995). In einigen Organismen konnte zusätzlich auch β -Glutamin identifiziert werden (LAI *ET AL.*, 1991; ROBERTSON *ET AL.*, 1992a; ROBERTSON *ET AL.*, 1992b). Im Rahmen dieser Arbeit wurde nachgewiesen, dass *M. mazei* Göl ebenfalls α -Glutamat und N^e-Acetyl- β -Lysin akkumuliert. Um Glutamat und auch N^e-Acetyl- β -Lysin verstärkt synthetisieren zu können, benötigt die Zelle eine größere Menge stickstoffhaltiger Verbindungen. Deswegen scheint es durchaus schlüssig, dass der Prozess der Osmoadaptation eng mit dem Prozess der Stickstoffassimilierung verbunden ist. Ein Zusammenhang zwischen Stickstoffassimilierung und Osmotoleranz wurde bereits für *Salmonella typhimurium* und *E. coli* beschrieben (CSONKA *ET AL.*, 1994; SAROJA UND GOWRISHANKAR, 1996). Die Analyse des Transkriptoms von *M. mazei* Göl nach einem hyperosmotischen Schock zeigte, dass eine Reihe von Genen, die in einen Zusammenhang mit der Stickstoffassimilierung zu bringen sind, und damit im Endeffekt zur Synthese von Glutamat führen, in ihrer Expression induziert waren.

4.5.1 Stickstofftransport und Assimilierung

Eine Möglichkeit den erhöhten Stickstoffbedarf nach einem Salzschock zu decken, ist die Aufnahme von stickstoffhaltigen Verbindungen. So ist die Expression eines Gens, *gltS*, welches für einen putativen Na⁺/Glutamat-Symporter kodiert, signifikant erhöht. In *E. coli* wurde gezeigt, dass eine Deletion des *gltS*-Gens, welches für den Natrium-abhängigen Glutamat-Transporter GltS kodiert, zum Verlust der Fähigkeit des Organismus zum Wachstum auf Glutamat führt (KALMAN *ET AL.*, 1991). Ferner wurde nachgewiesen, dass die Aufnahme von Glutamat in die Zelle strikt Natrium-abhängig ist und optimale Aufnahmeraten wurden in Vesikel in Gegenwart von 10 mM Na⁺ erreicht (**DEGUCHI** *ET AL.*, 1989). Die Induktion der Expression dieses Gens in *M. mazei* Gö1 nach einem osmotischen Schock ist in Übereinstimmung mit der Beobachtung, dass die Zellen Glutamat akkumulieren (s. 3.2.6.5). Mittels dieses Transporters sind sie in der Lage, das kompatible Solut direkt aus der Umgebung aufzunehmen und somit einen Teil ihres Glutamat-Bedarfs zu decken.

Allerdings scheint dies noch nicht auszureichen, um adäquat auf die Erhöhung der Osmolarität zu reagieren. So wurde zusätzlich auch noch die Induktion der Expression eines Gens, welches für einen Ammonium-Transporter kodiert, nachgewiesen. Dieser Transporter liegt in einem Operon mit dem regulativen Gen $glnK_l$, dessen Expression ebenfalls induziert war, und wird als AmtB₁ bezeichnet (Abb. 74). In der näheren Umgebung dieses Operons sind auch die *nif*-Gene lokalisiert. Die Expression des $glnK_l$ -amtB_l-Operons und des stromabwärts davon liegenden Gens wurde ebenfalls durch Stickstoffmangelbedingungen induziert, wie durch Norhtern-Blot-Analysen gezeigt wurde (EHLERS ET AL., 2002a). Im Genom von M. mazei Gö1 ist noch eine weitere Operonstruktur bestehend aus amtB₂-glnK₂ zu finden (Abb. 75) (EHLERS ET AL., 2002a). Allerdings konnte in diesem Operon im Rahmen der Untersuchungen dieser Arbeit nur für das den Ammonium-Transporter kodierende Gen, und auch nur nach einem Schock auf 400 mM NaCl, eine Induktion beobachtet werden. Da die beiden Gene des Operons aber höchstwahrscheinlich gemeinsam transkribiert werden, ist anzunehmen, dass das gesamte Operon nach einem Schock auf 400 mM NaCl induziert ist, und die Nichterkennung dessen auf Microarray-spezifischen Fehlern beruht. Analysen zur Expression dieses Operons unter Stickstoffmangelbedingungen liegen nicht vor. Wie aus Abb. 75 ersichtlich ist, sind in der näheren Umgebung des $amtB_2$ -glnK₂-Operons noch weitere Gene lokalisiert, die am Stickstoffmetabolismus beteiligt sind. So liegen stromabwärts des $amtB_2$ -glnK_2-Operons noch die Gene glnA1, das für eine Glutamin-Synthetase kodiert, und gltB1, gltB2 und gltB3, die für Untereinheiten der Glutamat-Synthase kodieren. Die Ammonium-Transporter AmtB₁ und AmtB₂ katalysieren in *M. mazei* Gö1 wahrscheinlich ebenfalls den Transport von Ammonium und Methylammonium in die Zelle, wie für eine Vielzahl von Bakterien beschrieben (ARCONDÉGUY ET AL., 2001). Das aufgenommene Ammonium kann dann im Zuge der Ammoniumassimilation durch die Aktivität assimilatorischer Enzyme zur Synthese von Glutamat oder Glutamin beitragen, wovon ersteres eine Funktion als kompatibles Solut in M. mazei Göl besitzt.

Abb. 74: Physikalische Karte der Genregion von *M. mazei* Gö1, in der das *nif*-Operon und das $glnK_{I}$ *amtB*₁-Operon lokalisiert sind. Dargestellt sind die Gene MM0715 bis MM0739.

Abb. 75: Physikalische Karte der Genregion von *M. mazei* Gö1, in der das *amtB*₂-*glnK*₂-Operon, *glnA1* und das *glnB*-Operon lokalisiert sind. Dargestellt sind die Gene MM0956 bis MM0970.

Es gibt zwei Hauptwege für die Assimilation von Ammonium: (i) den Glutamin-Synthetase/Glutamat-Synthase (GS/GOGAT) Weg, der ubiquitär in Bakterien vorkommt, und (ii) den Glutamat-Dehydrogenase (GDH) Weg, welcher eine alternative Route der Assimilation in vielen Bakterien darstellt (ARCONDÉGUY ET AL., 2001; REITZER, 2003; SCHREIER, 1993).

Glutamat + ATP + $NH_4^+ \rightarrow Glutamin + ADP + P_i$	(GS)							
Glutamin + α -Ketoglutarat + NADPH \rightarrow 2 Glutamat + NADP ⁺								
α -Ketoglutarat + NH ₄ ⁺ + ATP + NADPH \rightarrow Glutamat + NADP ⁺ + ADP	(Summe)							
α -Ketoglutarat + NH ₄ ⁺ + NADPH \rightarrow Glutamat + NADP ⁺	(GDH)							

In der Summe werden in beiden Wegen ein Glutamat aus einem α-Ketoglutarat gebildet. Die beiden Wege sind jedoch keineswegs physiologisch äquivalent. Die Assimilation von Ammonium über den GS/GOGAT-Weg ist energieaufwendiger als mittels der GDH. Andererseits hat die GS aber einen deutlich niedrigeren K_m -Wert für Ammonium. Deswegen erfolgt die Assimilation bei Stickstoffmangelbedingungen bevorzugt über den GS/GOGAT-Weg, wohingegen der GDH-Weg in stickstoffreicher Umgebung zum Einsatz kommt. Im Genom von *M. mazei* Gö1 sind die Gene der Enzyme beider Wege vorhanden. So sind drei Kopien des *gdhA* Gens, welches für die Glutamat-Dehydrogenase kodiert (MM0357, MM3297 und MM3298), zu finden (Abb. 76). *gdhA1* ist an einer anderen Stelle im Chromosom lokalisiert als *gdhA2* und *gdhA3*, die eine Überlappung von 130 Bp aufweisen. In *E. coli* ist die Glutamat Dehydrogenase aus sechs identischen Untereinheiten zusammengesetzt, die durch *gdhA* kodiert werden (**REITZER**, 1996). Allerdings scheinen nicht alle Mikroorganismen eine funktionelle GDH zu besitzen, so konnte in einigen *Bacillus*-Spezies keine GDH-Aktivität nachgewiesen werden (**SCHREIER**, 1993; **VANONI UND CURTI**, 1999). Ob in *M. mazei* Gö1 eine funktionelle GDH gebildet wird, und welche Genprodukte daran beteiligt sind, ist noch nicht untersucht und kann mit den im Rahmen dieser Arbeit gewonnenen Erkenntnissen nicht geklärt werden.

Abb. 76: Physikalische Karte der Genregionen von *M. mazei* Gö1, in der die *gdh*-Gene lokalisiert sind. Dargestellt sind die Gene MM0354 bis MM0359 (oberer Teil) und MM3294 bis MM3300 (unterer Teil).

Abb. 77: Physikalische Karte der Genregionen von *M. mazei* Gö1, in der *gltD* lokalisiert ist. Dargestellt sind die Gene MM0658 bis MM0666.

Die Gene, welche für die Glutamat-Synthase kodieren, liegen über das Genom verteilt: das die kleine Untereinheit kodierende Gen *gltD* (MM0664) ist an einer anderen Stelle im Genom lokalisiert, als die drei für die große Untereinheit kodierenden Iso-Gene *gltB1*, *gltB2* und *gltB3* (MM0966, MM0967 und MM0968) (Abb. 75 und Abb. 77). In *E. coli* werden die große und die kleine Untereinheit der Glutamat-Synthase von den Genen *gltB* und *gltD* kodiert, die in einem Operon organisiert sind (**OLIVER ET AL.**, 1987). In *B. subtilis* liegen die beiden Gene ebenfalls aufeinander folgend im Genom vor, werden jedoch als *gltA* und *gltB* bezeichnet (**SCHREIER**, 1993).

Ferner wurden zwei Kopien des für die Glutamin-Synthetase kodierenden Gens *glnA* im Genom von *M. mazei* Gö1 nachgewiesen. *glnA1* (MM0964) liegt stromaufwärts der *gltB1 – gltB3* Genstruktur und ist von dieser nur durch ein kurzes Gen, welches für ein hypothetisches Protein kodiert, getrennt (Abb. 75). *glnA2* (MM3188) ist jedoch an anderer Stelle im Genom zu finden (Abb. 78) und ist direkt stromaufwärts eines Kalium-Kanals lokalisiert. Unter Stickstoffmangelbedingungen konnte bisher nur für eines der beiden Enzyme, GlnA1, eine erhöhte Aktivität nachgewiesen werden (C. Ehlers, persönliche Mitteilung).

Abb. 78: Physikalische Karte der Genregionen von *M. mazei* Gö1, in der *glnA2* lokalisiert ist. Dargestellt sind die Gene MM3184 bis MM3191.

Nach einem hyperosmotischen Schock wurde ebenfalls die Expression von *glnA1* induziert, wohingegen die Transkription von *glnA2*, *gtlB1*, *gltB2* und *gltB3* reprimiert wurde. Die Expression von *gltD* und der *gdhA*-Gene jedoch blieb unbeeinflusst.

Zusammenfassend zeigt dies, dass sich die Antwort auf Stickstoffmangelbedingungen und auf einen hyperosmotischen Schock in *M. mazei* Göl unterscheiden (Abb. 79). Unter Stickstoffmangel wird aus Glutamat und Ammonium zunächst durch die Aktivität der Glutamin-Synthetase Glutamin gebildet, aus welchem dann mit α -Ketoglutarat durch die Glutamat-Synthase zwei Moleküle Glutamat synthetisiert werden.

Abb. 79: Mögliche Wege der Glutamat-Synthese in *M. mazei* Gö1 nach einem hyperosmotischen Schock oder bei Stickstoffmangelbedingungen.

Nach einem hyperosmotischen Schock wurde die Expression von *glnA1* deutlich induziert, was darauf schließen lässt, dass ebenfalls eine verstärkte Synthese von Glutamin über dieses Enzym stattfand. Die Gene, welche für die Glutamat-Synthase kodieren, wurden jedoch reprimiert und die Gene, die für die Glutamat-Dehydrogenase kodieren, unterlagen keiner Regulation. Dies lässt auf den ersten Blick vermuten, dass Glutamin akkumuliert und als kompatibles Solut genutzt wurde. NMR-Analysen in salzadaptierten Zellen von *M. mazei* Gö1 zeigten jedoch, dass kein Glutamin akkumuliert wurde, sondern Glutamat und N^ε-Acetyl-β-Lysin. Es gibt zwei mögliche Erklärungen für diesen Befund. Entweder wird Glutamin nur transient akkumuliert, oder es wird durch die Aktivität eines anderen Enzyms als die Glutamat-Synthase zu Glutamat umgewandelt

Für die Synthese von Glutamin durch die Glutamin-Synthetase wird Glutamat und Ammonium benötigt. Das Ammonium könnte durch die Aktivität der Ammoniumtransporter AmtB₁ und AmtB₂ bereitgestellt werden, was von dem Befund unterstützt wird, dass die Gene $amtB_1$ und $amtB_2$ nach einem hyperosmotischen Schock induziert waren. Glutamat kann entweder in die Zelle aufgenommen werden, was durch den Natrium/Glutamat-Symporter katalysiert werden könnte, oder synthetisiert werden. Auch *gltS*, das für den Natrium/Glutamat-Symporter kodiert, war nach einem Salzschock induziert. Aufgrund der Tatsache, dass die für die Glutamat-Synthase kodierenden Gene reprimiert waren, ist dieses Enzym wahrscheinlich nicht an der Glutamat-Synthese beteiligt. Da für die Gene, welche für die Glutamat-Dehydrogenase kodieren, keine Änderung der Expression beobachtet wurde, könnte dieses Enzym konstitutiv aktiv sein und die Synthese von Glutamat aus α-Ketoglutarat und Ammonium katalysieren. Ob diese jedoch der Fall ist, müssen weiterführende Untersuchungen zeigen. Wird Glutamin transient nach einem Salzschock akkumuliert und erst später zu Glutamat umgewandelt, könnte dies dann durch eine Derepression der für die Glutamat-Synthase kodierenden Gene erreicht werden. Wird Glutamin jedoch nicht transient in der Zelle angehäuft, muss es zu Glutamat umgewandelt werden. Dies könnte über die Aktivität einer Amidotransferase geschehen, welche unter Energieverbrauch Glutamin und α-Ketoglutarat zu zwei Molekülen Glutamat umwandelt. Im Genom von M. mazei Göl sind drei Gene (MM2180, MM3201 und MM3328), die als Glutamin-Amidotransferasen annotiert sind, zu finden. Jedoch zeigte keines dieser Gene eine Änderung der Expression nach einem hyperosmotischen Schock. Falls die Produkte dieser Gene an der Synthese von Glutamat aus Glutamin beteiligt sind, muss dies also auf eine konstitutive Aktivität eines der oder der Enzyme zurückzuführen sein. Ferner ist natürlich nicht auszuschließen, dass die Bildung von Glutamat aus Glutamin in M. mazei Gö1 nach einem hyperosmotischen Schock über einen bislang noch nicht bekannten Mechanismus verläuft.

4.5.2 Stickstofffixierung

Eine weitere Möglichkeit einen erhöhten Stickstoffbedarf zu decken, ist die Fixierung von Luftstickstoff. Diese Reaktion ist nicht nur auf Bakterien beschränkt, sondern kann auch in einigen methanogenen Archaeen beobachtet werden. Die Reduktion von N₂ zu Ammonium wird durch die Nitrogenase katalysiert. Die Nitrogenase ist ein Enzymkomplex aus Dinitrogenase und Dinitrogenase-Reduktase, welche in Bezug auf Struktur, Funktion und Aminosäuresequenz in beiden Domänen des Lebens hoch konserviert sind (**FISCHER**, 1994; **LOBO UND ZINDER**, 1990; **YOUNG**, 1992). Die Dinitrogenase ist ein $\alpha_2\beta_2$ -Heterodimer, welches von den Genen *nifD* und *nifK* kodiert wird und einen FeMo-Cofaktor enthält. Die Dinitrogenase-Reduktase ist ein Homodimer mit einem 4Fe-4S-Cluster und wird von *nifH* kodiert (**GEORGIADIS** *ET AL.*, 1992; **REES UND HOWARD**, 1999). Die Produkte der Gene *nifE* und *nifN* sind essentiell für die Ausbildung des FeMo-Cofaktors (**DEAN** *ET AL.*, 1993). In Archaeen liegen die *nif*-Gene in der gleichen Reihenfolge vor wie in Bakterien (**DEAN UND** JACOBSON, 1992; EHLERS ET AL., 2002b), mit der Ausnahme, dass alle bisher bekannten diazotrophen Methanogenen zwei weitere offenen Leseramen enthalten, welche zwischen *nifH* und *nifD* inseriert sind. Diese werden als $nifI_1$ und $nifI_2$ bezeichnet und haben große Ähnlichkeit zu glnB, das für ein zu dem Regulator PII homologes Protein kodiert. (Arcondéguy et al., 2001; Kessler et al., 2001; Merrick und Edwards, 1995; Sibold ET AL., 1991). Wie kürzlich gezeigt, ist M. mazei Göl ebenfalls in der Lage, molekularen Stickstoff als einzige Stickstoffquelle zu nutzen (EHLERS ET AL., 2002b). Allerdings sind bei Wachstum unter Stickstoffmangelbedingungen mit N2 als einziger N-Quelle eine verlängerte Verdopplungszeit und eine lag-Phase zu beobachten. Das Genom von M. mazei Gö1 enthält einen ca. 9 kB-langen Bereich, in welchem die für die Stickstofffixierung benötigten Gene organisiert sind (s. Abb. 74). Dieses Fragment besteht aus sieben offenen Leseramen, die in der Reihenfolge nifH- $nifI_1$ - $nifI_2$ -nifD-nifK-nifE-nifN organisiert sind. Unter Stickstoffmangelbedingungen wird dieses Operon verstärkt transkribiert (EHLERS ET AL., 2002b). Direkt stromabwärts davon liegen drei Gene (MM0726, MM0727 und MM0728), welche für einen primären Molybdat-Transporter kodieren (s. Abb. 74). Im Gegensatz zu einem anderen Gencluster (MM1580 – MM1578), welches ebenfalls für einen Molybdat-Transpoter kodiert, waren diese Gene jedoch nicht salzinduziert. Das in die Zelle aufgenommenen Molybdat kann dann bei der Produktion der Dinitrogenase in den FeMo-Cofaktor eingebaut werden.

Nach einem hyperosmotischen Schock wurde eine verstärkte Expression von *nifD*, *nifK*, *nifE* und *nifN* beobachtet. Da aber gezeigt wurde, dass die *nif*-Gene in einem Trankript cotranskribiert werden (EHLERS *ET AL.*, 2002b), ist anzunehmen, dass das gesamte Operon induziert ist. Zusammenfassend zeigen die Ergebnisse, dass die Erhöhung der extrazellulären Salzkonzentration in einem erhöhten Bedarf an Stickstoff resultierte, was zur verstärkten Aufnahme von Glutamat, zur gesteigerten Assimilation von Ammonium und zur Induktion der Stickstofffixierung führte.

4.5.3 Regulation der Ammoniumassimilierung und Stickstofffixierung

Die an der Ammoniumassimilierung und der Stickstofffixierung beteiligten Gene und Genprodukte werden in Mikroorganismen durch eine Reihe von Proteinen und Mechanismen reguliert. Dabei zeigen sich deutlich Unterschiede zwischen unterschiedlichen Organismengruppen auf. Im Folgenden sollen die Regulationsmechanismen bei Enterobakterien und Bazillen vorgestellt und Gemeinsamkeiten und Unterschiede zu *M. mazei* Göl dargestellt werden. Die Regulation kann auf zwei Ebenen erfolgen, auf der Ebene der Genexpression und auf Proteinebene durch Modifikation der beteiligten Enzyme.

In Enterobakterien sind beide Regulationsmechanismen vertreten. Zum einen wird die Aktivität der Glutamin-Synthetase reguliert und zu anderen erfolgt eine Regulation auf Genexpressions-Ebene durch das 2-Komponentrnsystem NtrB/NtrC (Abb. 80). Die Glutamin-Synthetase unterliegt einerseits einer kumulativen Feedback-Hemmung. Sie besteht aus zwölf identischen Untereinheiten, die in zwei hexagonalen, parallelen Ringen angeordnet sind. Die Amidogruppe des Glutamins dient als Stickstoffquelle für eine Vielzahl von Verbindungen, wie Trytophan, Histidin, Carbamoylphosphat, Glucosamin-6-phosphat, CTP und AMP. Die Kontolle der Glutamin-Synthetase erfolgt über kumulative Feedback-Hemmung durch alle diese Endprodukte des Glutaminstoffwechsels sowie durch Alanin, Serin und Glycin. Diese neun Verbindungen sind kompetitive Inhibitoren und binden das Enzym an der Glutamatoder Nukleotid-Bindestelle (REITZER, 2003). Andererseits wird die Aktivität der Glutamin-Synthetase außerdem noch durch reversible kovalente Modifikation gesteuert. Jede der zwölf Untereinheiten kann an einem spezifischen Tyrosinrest adenlylyliert werden, was die Empfänglichkeit der anderen Untereinheiten für kumulative Feedback-Hemmung erhöht (STADTMAN, 1990). Die Adenylylierung sowie die Deadenylylierung werden von demselben Enzym, der Adenylyltransferase (ATase), katalysiert. Vollständig adenylylierte Glutamin-Synthetase ist inaktiv und teilweise modifiziertes Enzym hat eine proportional zu der Anzahl adenylylierter Untereinheiten reduzierte Aktivität. Die Spezifität der ATase wird durch das Regulatorprotein PII gesteuert. Diese PII-ähnlichen Proteine sind gut konserviert und werden in allen drei Reichen des Lebens gefunden (HSIEH ET AL., 1998; MERRICK UND EDWARDS, 1995; NINFA UND ATKINSON, 2000). Die intrazelluläre Glutamin-Konzentration dient als primäres Signal für den Stickstoffstatus der Zelle und moduliert die Aktivität von GlnD, der Uridylyltransferase. GlnD modifiziert das PII-ähnliche Protein, welches von glnB kodiert wird, kovalent. Die unmodifizierte Form von GlnB ist somit das Signal für einen Stichstoffüberschuss, wohingegen uridylyliertes GlnB als Signal für Stickstoffmangel fungiert und die Aktivierung des NtrB/NtrC 2-Komponentensystems, welches an der Regulation einer Vielzahl von "Stickstoff-Genen" und Operonen (ntr-Gene) beteiligt ist, zur Folge hat (ARCONDÉGUY ET AL., 2001). Neben glnA gehören noch Gene, die für katabolische Enzyme kodieren, welche am Abbau von Verbindungen, die mit dem Polyamin-Metabolismus assoziiert sind, beteiligt sind, und solche, die für Polyamin-Transportsysteme kodieren oder deren Produkte in die Serin Biosynthese involviert sind, in die Gruppe der ntr-Gene (REITZER, 2003). Viele Enterobakterien besitzen zwei PII-ähnliche Proteine, GlnB und sein Paralog GlnK. Die Bezeichnung *glnK* wird für diejenigen Gene verwendet, welche für PII-ähnliche Proteine kodieren und mit einem weiteren Gen, *amtB*, welches für einen Ammonium-Transporter kodiert, assoziiert sind (**ARCONDÉGUY** *ET AL.*, 2001). In Gegensatz zu *glnB* liegt *glnK* unter der Kontrolle des generellen Stickstoffkontrollsystems, dem NtrB/NtrC 2-Komponentensystem, und wird also nur unter Stickstoffmangelbedingungen exprimiert. Trotz dieser Unterschiede kann das Genprodukt GlnK ebenfalls von GlnD uridylyliert werden.

Abb. 80: Regulation der Ammoniumassimilierung in *E. coli.* Die Glutamin-Synthetase (GlnA) wird durch Adenylylierung durch die Adenylyltransferase (ATase) inaktiviert (GlnA-AMP). Die ATase-Spezifität wird durch das regulatorische Protein PII (GlnB) bestimmt, welches selber einer Kontrolle über reversible kovalente Modifikation durch die Urydylyltransferase (UTase, GlnD) unterworfen ist. Das PII-Protein interagiert zusätzlich mit dem NtrB/NtrC 2-Komponentensystem, das für die Regulation der Expression der *ntr*-Gene verantwortlich ist. Weitere Erläuterungen siehe Text.

Interessanterweise können auch in den Genomen von Archaeen glnB-ähnliche Gene identifiziert werden, was vermuten lässt, dass GlnB in dieser Gruppe von Organismen ebenfalls eine wichtige Rolle im Prozess der Stickstoffregulierung spielt. Die ersten GlnB-Homologe wurden in azotrophen Methanogenen gefunden, wo sie im *nif*-Operon zwischen den Genen *nifH* und *nifD* lokalisiert sind und als *nifI*₁ und *nifI*₂ bezeichnet werden (**CHIEN UND ZINDER**, 1994; **CHIEN UND ZINDER**, 1996; **KESSLER ET AL.**, 1998). In *M. maripaludis* wurde gezeigt, dass die Produkte dieser beiden Gene an dem Ausschalten der Stickstofffixierung in der Gegenwart von Ammonium beteiligt sind (**KESSLER UND LEIGH**, 1999; **KESSLER ET AL.**, 2001). Zusätzlich wurde eine Reihe von glnK-ähnlichen Genen identifiziert, welche nicht mit den *nif*-Genen assoziiert sind, sondern mit *amtB*-Genen, welche für putative Ammonium-Transporter kodieren (**EHLERS ET AL.**, 2002a).

In M. mazei Göl wurden zwei glnK-ähnliche Gene identifiziert, die in direkter Nachbarschaft von Genen liegen, die für putative Ammonium-Transporter kodieren. Eines dieser Operone, glnK₁-amtB₁, welches ca. 8 kB stromabwärts des nif-Operons lokalisiert ist, wurde bereits näher untersucht (EHLERS ET AL., 2002a). Es konnte gezeigt werden, dass, obwohl der für die Uridylylierung essentielle Tyrosinrest in GlnK₁ konserviert ist, dieses Protein nicht von GlnD aus E. coli modifiziert werden konnte. Ferner konnten keine Heterotrimere zwischen M. mazei Göl GlnK1 und Klebsiella pneumonieae GlnK gebildet werden. Insofern zeigt dieses Protein deutliche Unterschiede zu GlnK von E. coli auf. Außerdem konnte im Genom von M. mazei Göl kein offener Leserahmen identifiziert werden, dessen abgeleitete Aminsäuresequenz Ähnlichkeit zu GlnD aus E. coli aufweist (EHLERS ET AL., 2002a). Transkriptionelle Studien zeigten, dass das $glnK_1$ -amtB₁-Operon von M. mazei Göl durch die Verfügbarkeit von Ammonium reguliert wird und nur unter Stickstoffmangel exprimiert wird (EHLERS ET AL., 2002a). Das $amtB_2$ -glnK₂-Operon wurde nicht näher untersucht. In M. maripaludis konnte eine allgemeine Repressor-Bindestelle in der Promotorregion des nif- und des glnA-Operons identifiziert werden, welche ebenfalls in anderen Methanococcus und Methanobacterium Spezies vor Genen die am Stickstoffmetabolismus beteiligt sind, gefunden wurde (KESSLER UND LEIGH, 1999). Allerdings war es nicht möglich eine ähnliche putative regulative Sequenz in M. mazei Göl zu identifizieren (EHLERS ET AL., 2002a).

Nach einem hyperosmotischen Schock kam es in *M. mazei* Göl zu einer verstärkten Expression von $glnK_1$ und auch von $amtB_1$, was zeigt, dass dieses Operon zusätzlich zu der stickstoffabhängigen Regulation auch noch einer salzabhängigen Regulation unterliegt. Allerdings könnte die Induktion des Operons auch ein sekundärer Effekt sein, der auf der Veringerung der Ammonium-Konzentration durch die massive Glutamin/Glutamat-Produktion aus α -Ketoglutarat beruht.

Im Gegensatz zu *E. coli* besitzt *B. subtilis* keine Glutamat-Dehydrogenase-Aktivität, so dass die Ammoniumassimilierung ausschließlich über den GS/GOGAT-Weg erfolgt. Unter Stichstoffmangelbedingungen wird die Synthese der Glutamin-Synthetase induziert, aber es erfolgt keine Regulation durch posttranslationale Proteinmodifikation. Während die Glutamin-Synthetasen beider Organismen über Feedback-Hemmung reguliert sind, wird die Glutamin-Synthetase von *B. subtilis* zusätzlich durch Glutamin inhibiert (**FISHER**, 1999). Ferner konnte in *B. subtilis* kein Ntr-ähnliches globales Regulationssystem identifiziert werden, sondern es liegt ein anderes Regulationssystem vor, an dem die Genprodukte von glnR und tnrA beteiligt sind (Abb. 81). Die Genprodukte beider Gene sind Mitglieder der MerR-Familie der Transkriptionsregulatoren. Unter Stickstoff-Überfluss ist GlnR, dessen Gen mit glnA in einem Operon vorliegt, aktiv und reprimiert die Synthese der Glutamin-Synthetase (glnA), der Urease und von Tnr. In Gegensatz dazu ist TnrA unter Stickstoffmangelbedingungen aktiv und kann sowohl als Aktivator wie auch als Repressor dienen. TnrA induziert die Expression von Genen für Ammonium-Transport (amtB-glnK), Asparagin Degradation (ansZ), y-Aminobutyrat-Transport (gabP), Nitrat-Assimilierung (nasA), Nitrit-Assimilierung (nasDEF), Urease (ureABC), einiger Gene, die nicht direkt in den Stickstoffmetabolismus involviert sind und die seines eigenen Gens (tnrA). Ferner reprimiert TnrA die Expression der Glutamin-Synthetase (glnA) und der Glutamat-Synthase (gltAB) (FISHER, 1999; WRAY ET AL., 2001). Wie werden aber die Transkriptionsregulatoren GlnR und TnrA reguliert? Kürzlich wurde gezeigt, dass die Feedback-inhibierte Form der Glutamin-Synthetase direkt mit TnrA interagiert und damit die Fähigkeit des Regulators an die DNA zu binden verloren geht (WRAY ET AL., 2001). Folglich kontrolliert die Glutamin-Synthetase in *B. subtilis*, zusätzlich zu ihrer enzymatischen Rolle im Stickstoffmetabolismus, direkt die DNA-Bindekapazität von TnrA durch Protein-Protein-Interaktion. GlnR benötigt ebenfalls die Glutamin-Synthetase zur Aktivierung. So sind GlnR-regulierte Gene unter Stickstoff-Überflussbedingungen in einer glnA-deletierten Mutante konstitutiv exprimiert (SCHREIER ET AL., 1989; WRAY ET AL., 1997). Dennoch scheint es nicht so zu sein, dass analog zur TnrA-Regulation - die Feedback-inhibierte Form der Glutamin-Synthetase an GlnR bindet, was zur Verstärkung der Bindung an die DNA führt. Wie und ob die Glutamin-Synthetase mit GlnR interagiert, ist noch nicht geklärt und Gegenstand weiterer Untersuchungen (WRAY ET AL., 2001).

Abb. 81: Regulation der Ammoniumassimilierung in *B. subtilis*. Die Glutamin-Synthetase ist an der Aktivierung der Transkriptionsregulatorn GlnR und TnrA beteiligt. GlnR bindet bei Stickstoff-Überfluss die DNA und reprimiert die Expression einiger Gene, wohingegen TnrA bei Stickstoffmangelbedingungen aktiv ist und sowohl als Aktivator wie auch als Repressor wirkt. Weitere Erläuterung siehe Text.

Im Genom von *M. mazei* Göl sind keine offenen Leserahmen zu finden, deren abgeleitete Aminsäuresequenz Ähnlichkeiten zu den regulatorischen Proteinen GlnR und TnrA aus *B. subtilis* aufweisen.

Die in dieser Arbeit präsentierten Daten zur Regulation der Genexpression nach einem hyperosmotischen Schock in *M. mazei* Göl deuten darauf hin, dass das Signal, welches als Antwort auf eine Erhöhung der extrazellulären Osmolarität generiert wird, einen neuartigen Regulationsweg aktiviert, der mit bereits bekannten regulatorischen Wegen Überschneidungen aufweist. So konnte gezeigt werden, dass eine Reihe von Genen, die bisher der Phosphat- oder der Stickstoffregulation zugeordnet wurden, zusätzlich unter der Kontrolle der Osmoregulation stehen.

4.6 Veränderungen der Zelloberfläche

Die meisten Archaeen besitzen außerhalb der Cytoplasmamembran eine weitere Zellhülle, den sog. Surface (S-) Layer (**SLEYTR UND BEVERIDGE**, 1999). Der S-Layer ist in der Regel aus identischen Proteineinheiten aufgebaut, die in einem Monolayer in einfachen repetetiven Mustern organisiert sind, und dient als Zellhülle. Bis heute kann ihm keine direkte allgemeingültige Aufgabe zugewiesen werden, er scheint vielmehr eine Vielzahl unterschiedlicher Funktionen für die Zelle zu erfüllen. Neben seiner Rolle als Schutzhülle vor Temperatur, pH und Salz kann er auch bei der Zelladhäsion oder Oberflächenerkennung beteiligt sein. Ferner wirkt er als molekulares Sieb oder als Ionenfalle oder bildet das Gerüst für Enzyme oder Virulenzfaktoren. Darüberhinaus ist er in einigen Organismen auch an der Definition der Zellform beteiligt und übernimmt eine Funktion bei der Zellteilung (**EICHLER**, 2003; **SLEYTR UND BEVERIDGE**, 1999).

Der S-Layer muss aber nicht zwangsläufig die äußerste Begrenzung der Zelle sein. So sind *M. mazei* Stamm S-6 und Stamm LYC, wenn sie bei ,normalen' Salzkonzentrationen (50 mM NaCl) angezogen werden, zusätzlich zum S-Layer noch von einer dicken, amorphen äußeren Schickt umgeben (HARRIS, 1987; LIU *ET AL.*, 1985; SOWERS *ET AL.*, 1984; SOWERS *ET AL.*, 1993). Diese relativ dicke (bis zu 100 nm Durchmesser) äußere Schickt besteht hauptsächlich aus Glukuronsäure- und Galaktosamin-Heteropolysaccharid und wird als Methanochondroitin bezeichnet (KREISL UND KANDLER, 1986). Diese Methanochondroitinschicht ist dafür verantwortlich, dass die Zellen in großen Aggregaten vorliegen. Werden sie jedoch in Hochsalzmedium (> 400 mM NaCl) transferiert, disaggregieren sie und wachsen als Einzelzellen. Für *M. barkeri* wurde gezeigt, dass die Dissaggregation mit einem Verlust der

172

Methanochondroitin-Matrix verbunden ist (SOWERS ET AL., 1993). Untersuchungen zur Dissagregation und der Methanochondroitin-Matrix von M. mazei S-6 legten offen, dass die Ausbildung einer solchen Matrix und damit das Wachstum in Aggregaten abhängig vom Substrat und dessen Konzentration ist (XUN ET AL., 1990). Während die Zellen von Stamm S-6 mit 50 mM Methanol als Aggregate vorlagen, wuchsen sie mit 150 mM Methanol als Einzelzellen (XUN ET AL., 1988). Diese Aggregatbildung und damit die wahrscheinliche Ausbildung einer Methanochondroitin-Matrix wurde bei Zellen von M. mazei Göl nicht beobachtet, was aber seinen Grund in der hohen Substratkonzentration (200 mM Methanol) haben könnte. Allerdings wurde beobachtet, dass die Zellen nach einem Transfer in Hochsalzmedium deutlich an Volumen zunehmen und rund und prall erscheinen, wohingegen sie in Niedrigsalzmedium klein und schrumpelig sind (BAUMANN, 2002; PFLÜGER, 2001). Dasselbe Verhalten wurde auch schon in M. mazei LYC beobachtet (LIU ET AL., 1985). Darüberhinaus wurde in M. mazei Göl nach einem hyperosmotischen Schock die Expression eines Gens, welches für das S-Layer-Protein B kodiert, signifikant induziert. Direkt stromabwärts von diesem Gen, *slpB*, liegt ein weiteres Gen, *slgB*, welches bereits in *M. mazei* S-6 identifiziert wurde und ebenfalls für ein S-Layer-Protein kodiert (YAO ET AL., 1994), aber nach einem Salzschock nicht induziert war. Es gibt zwei mögliche Erklärungen für die Induktion des S-Layer-Proteins SlpB. Zum einen verdoppelt sich, wie oben bereits erwähnt, der Durchmesser der Zellen nach einem hyperosmotischen Schock, was in einer Vervierfachung der Zelloberfläche resultiert und es dafür natürlich zusätzlichen Zellwandmaterials bedarf. Zum anderen wurde in Lactobacillus brevis Stamm ATCC 14869 beschrieben, dass abhängig von den Wachstumsbedingungen unterschiedliche S-Layer-Proteine gebildet werden (JAKAVA-VILJANEN ET AL., 2002). Dieser Organismus besitzt drei S-Layer-Proteine, SlpB, SlpC und SlpD. Unter aeroben Bedingungen formt er Kolonien mit rauer Oberfläche und produziert SlpB und SlpD, wohingegen unter anaeroben Bedingungen die Kolonien eine glatte Erscheinung haben und hauptsächlich SlpB gebildet wird (JAKAVA-VILJANEN ET AL., 2002). Die Abhängigkeit der Art des produzierten S-Layer-Proteins von den Wachstumsbedingungen wurde auch in Geobacillus stearothermophilus und Bacillus anthracis beobachtet (KUEN ET AL., 1994; KUEN ET AL., 1997; MOCK UND FOUET, 2001). Auf der Grundlage dieser Beispiele kann ein ähnlicher Mechanismus der Regulation auch in M. mazei Göl postuliert werden. So ist es durchaus denkbar, dass das von slpB kodierte Protein nur in einer Hochsalzumgebung produziert wird und der Zelle eine erhöhte Osmostabilität verleiht. Da auch in salzadaptierten Zellen noch eine erhöhte Expression von slpB nachgewiesen werden konnte, scheint es sich bei der Produktion dieses S-Layer-Proteins
um eine permanente Adaptation zu handeln. Dies unterstützt die Hypothese, dass SlpB wichtig für die dauerhafte Anpassung der Zelle an erhöhte Osmolaritäten ist und die Toleranzgrenze der Zellen gegenüber Salz heraufsetzt und ihnen somit einen höhere Resistenz vermittelt.

4.7 Modelle der Physiologie der Salzadaptation in M. mazei Gö1

4.7.1 Prinzipien der Osmoadaptation in M. mazei Gö1 in salzadaptierten Zellen

Mit Hilfe der in dieser Arbeit ermittelten Daten können auch für *M. mazei* Gö1 einige grundsätzliche Prinzipien der Osmoadaptation postuliert werden. Wie in *Methanosarcina thermophila, M. portucalensis* und *M. thermolithotrophicus* (LAI ET AL., 1991; ROBERTSON ET AL., 1992b; SOWERS UND GUNSALUS, 1995) konnte in Zellen von *M. mazei* Gö1, die an mittlere Salzkonzentrationen (400 mM NaCl) adaptiert sind, die Akkumulation von α -Glutamat nachgewiesen werden (Abb. 82). Die intrazelluläre α -Glutamat-Konzentration erhöhte sich nur geringfügig um das 1,4fache, wenn die Zellen an Hochsalz (800 mM NaCl) adaptiert waren. Hingegen konnte deutlich, wie auch schon in den drei oben genannten Organismen, die Anreicherung von N^ε-Acetyl-β-Lysin beobachtet werden, wenn die Osmolarität des Medium von 400 auf 800 mM erhöht wurde. Während bei 400 mM α -Glutamat das vorherrschende kompatible Solut war, wurde eine weitere Erhöhung der Osmolarität offensichtlich durch die Synthese von N^ε-Acetyl-β-Lysin ausgeglichen. Über den Einfluss von Glycinbetain auf die intrazelluläre Solutzusammensetzung in *M. mazei* Gö1 liegen keine direkten Daten vor, da diese Untersuchungen in Minimalmedium durchgeführt wurden.

Abb. 82: Einfluss der extrazellulären Salzkonzentration auf die Akkumulation kompatibler Solute. Die intrazelluläre Solutzusammensetzung wurde mittels NMR-Analysen bestimmt. NABL: N^{ϵ}-Acetyl- β -Lysin; α -Glu: α -Glutamat.

Aufgrund der Ergebnisse der genomweiten Expressionsanalyse salzabhängiger Gene in an Hochsalzbedingungen adaptierten Zellen und früheren Untersuchungen (ROEßLER ET AL., 2002) kann jedoch davon ausgegangen werden, dass Glycinbetain, wenn es im Medium vorhanden ist, in den Zellen akkumuliert wird (Abb. 83). Es konnte eine deutlich stärkere Expression aller Gene des ota-Operons nachgewiesen werden, das für einen primären Glycinbetain-Transporter kodiert. Ebenfalls induziert war die Expression der Biosynthesegene von N^ε-Acetyl-β-Lysin, *ablA* und *ablB*, in Komplexmedium, das Glycinbetain enthält. Somit scheint *M. mazei* Gö1 zusätzlich zu Glycinbetain auch noch N^ε-Acetyl-β-Lysin im Inneren zu akkumulieren. Dies ist überraschend, da gemeinhin die Aufnahme von kompatiblen Soluten deren Synthese vorgezogen wird. Somit bedeutet dies entweder, dass die aufgenommene Menge Glycinbetain nicht ausreicht, oder aber die Gene der N^ε-Acetyl-β-Lysin-Synthese in M. mazei Göl keiner solchen Regulation unterworfen sind. Ferner wurde ein Gen identifiziert, gltS, dessen Expression signifikant erhöht war, und das für einen Na⁺/Glutamat-Symporter kodiert. Dieser Symporter könnte dazu beitragen, in der Umgebung vorhandenes Glutamat entlang des elekrochemischen Na⁺-Gradienten in die Zelle zu transportieren. Somit scheint auch α-Glutamat eine Rolle bei der Adaptation von M. mazei Gö1 an Hochsalz zu spielen. Allerdings konnten auch in dieser Arbeit keine Informationen gewonnen werden, die auf die Natur des Gegenions schließen lassen. Es konnten keine Kalium-Aufnahme-Systeme identifiziert werden, deren Expression bei Hochsalz verstärkt wäre, im Gegenteil ist die Expression eines Gens, welches für das Kalium-Aufnahme Protein des Trk-Systems kodiert, bei Hochsalz verringert.

Darüberhinaus war die Adaptation an erhöhte Salzbedingungen von der verstärkten Expression von *slpB* begleitet. Dieses Gen kodiert für das Surface-Layer-Protein B, und es ist

denkbar, dass die verstärkte Produktion dieses Oberflächenmoleküls zu einer höheren Osmostabilität der Zellen führt (vgl. 4.6).

Eine deutlich erhöhte Expression der Gene des *pst*-Operons konnte ebenfalls im Rahmen dieser Arbeit nachgewiesen werden. Die Genprodukte bilden einen primären Transporter, der für die Aufnahme von Phosphat in die Zelle verantwortlich ist. Über die Funktion von Phosphat bei dem Prozess der Osmoadaptation kann nur spekuliert werden, aber die salzinduzierte Aufnahme von P_i ist ein bekanntes Phänomen (**KORNBERG** *ET AL.*, 1999) (s. 4.3). Auch die Induktion eines Gens, welches für eine putative Polyphosphatkinase kodiert, konnte beobachtet werden. So ist es denkbar, dass das in die Zelle aufgenommene anorganische Phosphat durch die Aktivität dieses Genproduktes in PolyP konvertiert wird, welches dann regulative Funktionen in *M. mazei* Gö1 erfüllt.

Abb. 83: Modell der Prozesse der Osmoadaptation in an Hochsalz-adaptierten Zellen von M. mazei Gö1.

Auch wenn diese Daten natürlich kein komplettes Modell der Prozesse, die es der Zelle ermöglichen bei hohen Salzkonzentrationen zu überleben, widerspiegeln können, so geben sie doch zumindest einen ersten Einblick in die Mechanismen, welche eine Rolle spielen könnten. Natürlich ist der Großteil der hier präsentierten Abläufe bis jetzt rein hypothetisch und nur auf molekulare Analysen der Genexpression gestützt und erfordert eingehendere Untersuchungen auch auf physiologischer, proteinanalytischer und biochemischer Ebene.

4.7.2 Model der Salzadaptation in M. mazei Gö1 nach einem hyperosmotischen Schock

Zellen müssen auf eine plötzliche Erhöhung der extrazellulären Salzkonzentration reagieren, um ihr Überleben zu gewährleisten. Im Rahmen dieser Arbeit wurden eine Reihe von Daten gewonnen, die es ermöglichen, ein Bild der Prozesse der Osmoadaptation in M. mazei Göl nach einem hyperosmotischen Schock zu entwerfen (Abb. 84). Die externe Salzkonzentration wird von der Zelle auf bisher noch unbekannte Weise gemessen. Ein hyperosmotischer Schock führt zur Generierung eines Signals, welches eine Vielzahl von Reaktionen auslöst. Zum einen wurde eine Reihe von Genen induziert, die für Transportsysteme kodieren. Für die beiden Transporter Ota und Otb, welche für den Transport von Glycinbetain bzw. Cholin verantwortlich sind, wurde die Induktion nach einem Salzschock auch auf Proteinebene bestätigt (HOFFMANN, 2003; KÖGL, 2004). Sie sorgen für die Aufnahme dieser kompatiblen Solute aus der Umgebung in die Zelle, wo sie sich anhäufen und dadurch einen Beitrag zur Salzadaptation leisten. Ferner wurden die für die Biosyntheseenzyme von N^{ϵ}-Acetyl- β -Lysin kodierenden Gene, *ablA* und *ablB*, induziert (PFLÜGER ET AL., 2003). Auch die salzinduzierte Produktion von AblB nach einem hyperosmotischen Schock in Zellen, welche auf Minimalmedium gewachsen waren, wurde bereits bestätigt (s. 3.3). So ist M. mazei Gö1 in der Lage, aus Lysin das kompatible Solut N^ε-Acetyl-β-Lysin zu produzieren und dieses in der Zelle anzuhäufen. Somit konnte auch nach einem hyperosmotischen Schock keine Repression der Biosynthese von N^ε-Acetyl-β-Lysin durch die Komplexbestandteile des Mediums beobachtet werden. Darüberhinaus war die Expression einiger Gene deutlich induziert, die für Proteine kodieren, welche am Stickstoffmetabolismus beteiligt sind (vgl. 4.5). Zum einen zeigte gltS, welches für einen putativen Natrium-Glutamat-Symporter kodiert, eine Induktion der Expression, was vermuten lässt, dass auch Glutamat verstärkt in die Zelle aufgenommen wird. Glutamat kann als kompatibles Solut dienen und wird in M. mazei Göl salzabhängig akkumuliert (s. 3.2.6.5). Zum anderen wurde $amtB_1$ stärker exprimiert, welches für einen putativen Ammonium-Transporter kodiert. Auch glnK₁, dessen Produkt wahrscheinlich einen regulativen Einfluss auf AmtB₁ besitzt, wurde signifikant induziert. So kommt es zur Aufnahme von Ammonium in die Zelle. Welche Funktion erfüllt nun das akkumulierte Ammonium in der Zelle? In salzadaptierten Zellen von M. mazei Göl wurde eine erhöhte Glutamat-Konzentration nachgewiesen, was darauf schließen lässt, dass es eine Funktion als kompatibles Solut hat. Das aufgenommene Ammonium wird also aller Wahrscheinlichkeit nach zur Synthese von Glutamat verwendet werden (vgl. 4.5). Wie die Synthese von Glutamat in M. mazei Gö1 im Detail abläuft, kann aufgrund der vorhandenen Daten nicht eindeutig geklärt werden. Eine Möglichkeit ist, dass es durch die Aktivität der Glutamat-Dehydrogenase mit α-Ketoglutarat zu Glutamat umgewandelt wird. Das für die Glutamat-Dehydrogenase kodierende Gen wird nach einem osmotischen Schock allerdings nicht transkriptionell reguliert. Neben der Funktion von Glutamat als kompatibles Solut, dient es aber auch als Vorläufermolekül für eine Vielzahl sickstoffhaltiger Verbindungen und erfüllt somit zwei Funktionen. Da aber das die Glutamin-Synthetase kodierende Gen, glnA, signifikant induziert ist, ist es wahrscheinlicher, dass aus dem Ammonium durch die Glutamin-Synthetase unter Verbrauch von Glutamat Glutamin synthetisiert wird. Glutamin kann von Mikroorganismen ebenfalls als kompatibles Solut genutzt werden (LAI ET AL., 1991; MARTIN ET AL., 1999), wurde aber zumindest in salzadaptierten Zellen von M. mazei Göl nicht akkumuliert. Insofern wird es, wenn überhaupt, nur transient akkumuliert. Allerdings ist es wahrscheinlicher, dass es durch die Aktivität eines anderen Enzyms, z. B. einer Amidotransferase in Glutamat umgewandelt wird. Die Gene, die für die Glutamat-Synthase kodieren, welche im Allgemeinen für die Synthese von Glutamat aus Glutamin verantwortlich ist, wurden nach einem Salzschock reprimiert. Ferner lässt sich natürlich eine Funktion von Ammonium als Gegenion nicht ausschließen. Offensichtlich scheint M. mazei Göl einen hohen Bedarf an Stickstoff zu haben, da auch die Gene, welche für die Nitrogenase kodieren, salzinduziert waren. Die Nitrogenase fixiert den Stickstoff der Umgebung und stellt ihn der Zelle als Ammonium zur Verfügung. Dadurch, dass dieses Enzym einen Eisen-Molybdän Cofaktor besitzt, lässt sich die Induktion der für einen primären Molybdat-Transporter kodierenden Gene erklären. Auch die zwei Gene, nifE und nifN, welche für die Ausbildung des FeMo-Cofaktors verantwortlich sind, wurden nach einem hyperosmotischen Schock induziert. Zusammenfassend deuten diese Daten darauf hin, dass M. mazei Gö1 nach einem osmotischen Schock Glycinbetain, Cholin, N^ε-Acetyl-β-Lysin und Glutamat akkumuliert. Ferner wurden zwei Gene, nha1 und nha2, die für Natrium-Protonen-Antiporter kodieren, nach einem osmotischen Schock induziert. Da hohe intrazelluläre Natrium-Konzentrationen toxisch für die Zelle sind, muss Na⁺ nach einem osmotischen Schock aus der Zelle transportiert werden. Dies geschieht am effizientesten mit Natrium-Protonen-Antiportern. Nha1 hat eine vorhergesagte Struktur von 12 transmembranen Untereinheiten und eine zusätzliche hydrophile C-terminale Domäne. Die hydrophile Domäne zeigt Ähnlichkeiten zu PAS-Domänen, was auf eine mögliche sensorische Funktion hindeutet. Dies könnte ein Hinweis auf eine Salz- /Osmo-Aktivierung des Natrium-Protonen-Antiporters sein, was eine schnelle Antwort auf den Salzstress ermöglicht. In der abgeleiteten Aminosäuresequenz von Nha2 wurde keine putative regulatorische Domäne gefunden. Ebenfalls induziert war die Transkription von *slpB*, welches für ein S-Layer-Protein kodiert, dessen Funktion eine Erhöhung der Resistenz der Zelle gegenüber Osmostress sein könnte (vgl. 4.6). Wie schon in salzadaptierten Zellen beobachtet, waren auch nach einem hyperosmotischen Schock die Gene des *pst*-Operons induziert, welches für einen primären Phosphat-Transporter kodiert. Das in die Zelle aufgenommene Phosphat wird wahrscheinlich durch die Polyphosphatkinase zu PolyP, dessen Rolle nicht eindeutig geklärt ist, umgesetzt. Es mag aber sein, dass es eine regulative Funktion übernimmt (vgl. 4.3).

Dies führt direkt zu der Frage der Regulation: Wie werden all diese Gene reguliert und was ist das Signal? Im Rahmen dieser Arbeit konnten einige Regulatoren identifiziert werden, deren Expression von der extrazellulären Salzkonzentration abhängig ist (vgl. 4.2), aber es fehlen noch weiterführende Untersuchungen, die den potentiellen Regulatoren eindeutige Funktionen zuordnen können.

Abb. 84: Modell der Prozesse der Osmoadaptation in Zellen von *M. mazei* Gö1 nach einem hyperosmotischen Schock. Eine Erhöhung der extrazellulären Salzkonzentration wird von der Zelle über ein noch unbekanntes Signal sensiert und hat Auswirkungen auf die Transkription von Genen, deren putative Produkte am Transport von kompatiblen Soluten oder anderen Verbindungen in die Zelle beteiligt sind, auf Gene, deren putative Produkte für die Synthese kompatibler Solute oder anderer Verbindungen/Enzyme verantwortlich sind, oder auf Gene, deren putative Produkte eine Rolle bei der Regulation der Genexpression spielen. Weiße Pfeile symbolisieren regulative Wirkung, schwarze Pfeile Aufnahme oder Synthese. Durch graue Pfeile dargestellte Reaktionen sind entweder nicht direkt am Prozess der Osmoadaptation beteiligt, oder die für die beteiligten Enzyme kodierenden Gene sind nicht induziert (nähere Erklärung: s. Text). Cho: Cholin; Bet: Glycinbetain; Glu: Glutamat; Gln: Glutamin; NABL: N^e-Acetyl- β -Lysin; α -KG: α -Ketoglutarat.

Mit den im Rahmen dieser Arbeit generierten Daten ist es nun zum ersten Mal möglich, ein potentielles Bild der einzelnen Prozesse, die an der Osmoadaptation in *M. mazei* Göl beteiligt sind, zu entwerfen. Neben erwarteten Ergebnissen, wie z. B. der verstärkten Aufnahme und Synthese von kompatiblen Soluten, wurden auch auf den ersten Blick irritierende Resultate erhalten. So ist dies, meines Wissens nach, der erste Hinweis auf einen Zusammenhang zwischen der extrazellulären Salzkonzentration und der Stickstofffixierung in methanogenen Archaeen. Das Modell der Prozesse der Osmoadaptation nach einem hyperosmotischen Schock erhebt natürlich nicht den Anspruch vollständig zu sein und alle Prozesse, die bei der Salzadaptation eine Rolle spielen, erfasst zu haben, dennoch gibt es einen ersten Einblick in die beteiligten Prozesse. Weiterhin ist es notwendig, die hier identifizierten möglichen Mechanismen sowohl auf genetischer als auch auf proteinanalytischer und biochemischer Ebene näher zu charakterisieren, um Aufschlüsse über deren genaue Funktion und Regulation

zu erhalten. Dieses Modell stellt somit die Grundlage dar, aufbauend auf der nun eine Vielzahl von Untersuchungen zur Osmoadaptation und Regulation in *M. mazei* Göl ermöglicht werden.

5 ZUSAMMENFASSUNG

- (I) Frühere Untersuchungen zeigten, dass *M. mazei* Gö1 in der Lage ist Salzkonzentrationen bis zu 1M NaCl zu tolerieren und an diese zu adaptieren. Auf einen hyperosmotischen Schock reagietren die Zellen mit einer lag-Phase, deren Dauer abhängig von der Höhe des Schocks, aber weitgehend unbeeinflusst von der Art des Mediums war. Nach einem Schock auf 400 mM NaCl hatte die lag-Phase eine Dauer von ca. 12 h, wohingegen sie nach einem Schock auf 800 mM NaCl 21 bzw. 24 h dauerte, je nachdem ob die Zellen in Komplex- oder Minimalmedium angezogen worden waren.
- (II) Das ota-Operon von M. mazei Gö1 wird salzabhängig exprimiert und kodiert für einen primären Glycinbetain-Transporter. Es besteht aus den Genen otaA, welches für das ATP-Bindeprotein kodiert, otaB, dessen Produkt die den Transporter darstellt, und otaC, das für das extrazelluläre Glycinbetain-Bindeprotein kodiert. Der Transkriptionsstart des ota-Operons wurde 402 Bp stromaufwärts des Startkodons von otaA identifiziert. Ein möglicher Promotor, bestehend aus BRE-Element und TATA-Box, ist 23 Bp stromaufwärts des Transkriptionsstarts lokalisiert.
- (III) N^e-Acetyl- β -Lysin ist ein weitverbreitetes kompatibles Solut in methanogenen Archaeen. Durch die Analyse der Genomsequenz von *M. mazei* Gö1 wurden zwei Gene identifiziert, *ablA* und *ablB*, deren Produkte Ähnlichkeiten zur Lysin-2,3-Aminomutase von *C. subterminale* und zu Acetyltransferasen von methanogenen Archaeen aufweisen. Dies führte zu der Hypothese, dass die Produkte dieser Gene an der Synthese von N^e-Acetyl- β -Lysin beteiligt sind. Northern-Blot-Analysen zeigten, dass *ablA* und *ablB* nur bei erhöhten Salzkonzentrationen exprimiert werden und höchstwahrscheinlich in einem Operon organisiert sind. Der Transkriptionsstart des *abl*-Operons wurde 163 Bp stromaufwärts des Startkodons von *ablA* identifiziert. Eine Promotorstruktur bestehend aus BRE-Element und TATA-Box wurde 19 Bp stromaufwärts des Transkriptionsstarts lokalisiert. Es wurden Mutanten von *M. maripaludis* JJ konstruiert (*Aabl*), in denen das *abl*-Operon deletiert war. Die Deletion wurde mittels Southern-Blot und PCR-Analyse bestätigt. Die *Aabl*-Mutanten zeigten im Gegensatz zum Wildtyp ein deutlich

reduziertes Wachstumsvermögen in Anwesenheit von 800 mM NaCl, und waren bei einer NaCl-Konzentration von 1 M nicht mehr zum Wachstum befähigt. Die Analyse der intrazellulär akkumulierten kompatiblen Solute in salzadaptierten Zellen zeigte, dass sowohl *M. maripaludis* JJ als auch *M. mazei* Gö1 N^e-Acetyl-β-Lysin und Glutamat anhäufen, die Δabl -Mutanten jedoch nicht mehr in der Lage waren N^e-Acetyl-β-Lysin zu akkumulieren. Dies zeigte, dass die Gene des *abl*-Operons essentiell für die Synthese von N^e-Acetyl-β-Lysin sind.

- (IV) Die genomweite Expressionsanalyse in salzadaptierten Zellen von *M. mazei* Gö1 identifizierte eine Reihe von salzabhängig exprimierten Genen und ermöglichte die Erstellung eines Modells der Regulationsvorgänge in salzadaptierten Zellen. Die Induktion der Expression konnte mittels quantitativer PCR verifiziert werden. Neben dem bereits bestätigten Aufnahmesystem für Glycinbetain konnte ein sekundärer Transporter für Glutamat als signifikant induziert identifiziert werden. Ferner ist die Expression der Gene, welche für die Biosyntheseenzyme von N^ε-Acetyl-β-Lysin kodieren, und der Gene, deren Produkte für die Aufnahme von anorganischem Phosphat verantwortlich sind, signifikant erhöht. Auch die Expression des Gens, welches für die Polyphosphatkinase kodiert, und des Gens, das für das S-Layer-Protein B kodiert, ist in salzadaptierten Zellen deutlich erhöht. Dies deutet darauf hin, dass Glutamat, Glycinbetain, N^ε-Acetyl-β-Lysin und auch PolyP eine entscheidende Rolle in salzadaptierten Zellen spielen und es zur Umstrukturierung der Zellwand kommt.
- (V) Die genomweite Expressionsanalyse in Zellen von *M. mazei* Gö1 zu unterschiedlichen Zeitpunkten in der lag-Phase nach einem hyperosmotischen Schock auf 400 bzw. 800 mM ermöglichte das Verfolgen der Dynamik der Genexpression und basierend darauf die Konstruktion eines Modells, welches die in der Osmoadaptation involvierten Prozesse aufzeigt. Die Antwort auf einen Schock auf 400 mM NaCl konnte deutlich in zwei Phasen eingeteilt werden, eine erste induktive Phase, in der die Mehrheit der regulierten Gene induziert wurde und eine zweite repressive Phase, in der die Mehrheit der regulierten Gene reprimiert war. Nach einem Schock auf 800 mM hingegen schienen Induktion und Repression zeitgleich abzulaufen und es konnten keine distinkten Phasen identifiziert werden. Unter beiden Bedingungen konnte die maximale regulative Aktivität ca. 10 h vor dem Wiedereintritt der Zellen in das Wachstum beobachtet werden. Eine

Erhöhung der extrazellulären Salzkonzentration führte zur Induktion einer Reihe von Genen, die an der Aufnahme oder Biosynthese von kompatiblen Soluten beteiligt sind, eine Rolle bei der Bildung von Glutamin/Glutamat spielen, oder in dem Transport von Ammonium in die Zelle involviert sind. Ferner kam es ebenfalls zur Induktion des *pst*-Operons, des für eine Polyphosphatkinase kodierenden Gens, und von *slpB*. Diese Daten zeigen, dass es ein Osmoregulations Netzwerk gibt, welches mit anderen regulatorischen Netzwerken, wie dem Phosphat- und dem Stickstoff-Netzwerk eng verwoben ist.

- (VI) Das pst-Operon kodiert für ein primäres Phosphat-Transportsystem und ein Protein PhoU, dessen Funktion nicht geklärt ist. Im Promotorbereich des pst-Operons konnte eine Sequenz identifiziert werden, die Ähnlichkeiten zur Pho-Box hat, welche in E. coli vor allen Genen des pho-Regulons zu finden ist und mit dem PhoB/PhoR-2-Komponentensystem interagiert. Im Genom von M. mazei Gö1 konnten keine Gene, deren Produkte Ähnlichkeiten zu dem PhoB/PhoR 2-Komponentensystem haben, identifiziert werden.
- (VII) Es war nicht möglich durch Gelretardationsanalysen und Southwestern-Blots ein spezifisches DNA-Bindeprotein mit möglicher regulativer Funktion zu identifizieren. Stattdessen wurde ein unspezifisches DNA-bindendes Protein identifiziert, welches möglicherweise an der Replikation, Rekombination oder Reparatur beteiligt ist.
- (VIII) MM0077 kodiert für ein hypothetisches Protein mit Ähnlichkeit zu Icc Proteinen. Mittels der Transkriptionsstudien wurde gezeigt, dass es in salzadaptierten Zellen und in Zellen nach einem hyperosmotischen Schock am Ende der lag-Phase deutlich stärker exprimiert wird. Untersuchungen zur Produktion des Proteins bestätigten die Salzabhängigkeit auch auf Proteinebene.

6 LITERATURVERZEICHNIS

Aguena, M., Yagil, E. und Spira, B. 2002. Transcriptional analysis of the *pst* operon of *Escherichia coli*. *Mol. Genet. Genomics* **268**:518-524.

Alekshun, M. N. und Levy, S. B. 1997. Regulation of chromosomally mediated multiple antibiotic resistance: the *mar* regulon. *Antimicrob. Agents Chemother.* **41**:2067-2075.

Alekshun, M. N., Levy, S. B., Mealy, T. R., Seaton, B. A. und Head, J. F. 2001. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution. *Nat. Struct. Biol.* **8**:710-714.

Angus-Hill, M. L., Dutnall, R. N., Tafrov, S. T., Sternglanz, R. und Ramakrishnan, V. 1999. Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily. *J. Mol. Biol.* **294:**1311-1325.

Aravind, L. und Koonin, E. V. 1999. DNA-binding proteins and evolution of transcription regulation in the *Archaea*. *Nucleic Acids Res.* **27**:4658-4670.

Archibald, F. S. und Fridovich, I. 1982a. Investigations of the state of the manganese in *Lactobacillus plantarum. Arch. Biochem. Biophys.* **215**:589-596.

Archibald, F. S. und Fridovich, I. 1982b. The scavenging of superoxide radical by manganous complexes: *in vitro*. Arch. Biochem. Biophys. **214:**452-463.

Arcondéguy, T., Jack, R. und Merrick, M. 2001. P(II) signal transduction proteins, pivotal players in microbial nitrogen control. *Microbiol. Mol. Biol. Rev.* 65:80-105.

Ault-Riché, D., Fraley, C. D., Tzeng, C. M. und Kornberg, A. 1998. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in *Escherichia coli. J. Bacteriol.* **180**:1841-1847.

Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. und Struhl, K. 1993. Current Protocols in Molecular Biology. Green publishing and Wiley-Interscience, New York, USA.

Bakker, E. P. 1993. Low-affinity K⁺ uptake systems. S. 253-276. *In:* Bakker, E. P. (Hrsg.), Alkali cation transport systems in prokaryotes. CRC Press, Boca Raton.

Baumann, S. 2002. Physiologie der Salzadaptation in *Methanosarcina mazei* Gö1: Identifizierung und Charakterisierung von Genen für die Biosynthese von kompatiblen Soluten. Diplomarbeit. Ludwig-Maximilians-Universität, München.

Belitsky, B. R., Brill, J., Bremer, E. und Sonenshein, A. L. 2001. Multiple genes for the last step of proline biosynthesis in *Bacillus subtilis*. J. Bacteriol. 183:4389-4392.

Bell, S. D., Cairns, S. S., Robson, R. L. und Jackson, S. P. 1999. Transcriptional regulation of an archaeal operon in vivo and in vitro. *Mol. Cell* **4**:971-982.

Bell, S. D. und Jackson, S. P. 2000. Mechanism of autoregulation by an archaeal transcriptional repressor. *J. Biol. Chem.* 275:31624-31629.

Bell, S. D. und Jackson, S. P. 2001. Mechanism and regulation of transcription in archaea. *Curr. Opin. Microbiol.* 4:208-213.

Bell, S. D., Magill, C. P. und Jackson, S. P. 2001. Basal and regulated transcription in Archaea. *Biochem. Soc. Trans.* 29:392-395.

Blum, H., Beier, H. und Gross, H. J. 1987. Improved silver staining of plant proteins, RNA, and DNA in polyacrylamide gels. *Electrophoresis* **8**:93-98.

Boch, J., Kempf, B. und Bremer, E. 1994. Osmoregulation in *Bacillus subtilis*: Synthesis of the osmoprotectant glycine betaine from exogenously provided choline. *J. Bacteriol.* **176:**5364-5371.

Boch, J., Kempf, B., Schmid, R. und Bremer, E. 1996. Synthesis of the osmoprotectant glycine betaine in *Bacillus subtilis*: characterization of the *gbsAB* genes. *J. Bacteriol*. **178:**5121-5129.

Bohnert, H. J. 1995. Adaptations to environmental stresses. The Plant Cell. 7:1099-1111.

Boyd, J., Oza, M. N. und Murphy, J. R. 1990. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (*dtxR*) from *Corynebacterium diphtheriae*. *Proc. Natl. Acad. Sci. U.S.A.* 87:5968-5972.

Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteine-dye-binding. *Anal. Biochem.* **72:**248-254.

Brinkman, A. B., Dahlke, I., Tuininga, J. E., Lammers, T., Dumay, V., de Heus, E., Lebbink, J. H., Thomm, M., de Vos, W. M. und van Der Oost, J. 2000. An Lrp-like transcriptional regulator from the archaeon *Pyrococcus furiosus* is negatively autoregulated. *J. Biol. Chem.* **275**:38160-38169.

Brinkman, A. B., Ettema, T. J., de Vos, W. M. und van der Oost, J. 2003. The Lrp family of transcriptional regulators. *Mol. Microbiol.* **48:**287-294.

Brown, A. D. 1976. Microbial water stress. Bacteriol. Rev. 40:803-846.

Bryant, M. P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. *Am. J. Clin. Nutr.* **25:**1324-1328.

Bult, C. J., White, O., Olsen, G. J., Zhou, L. X., Fleischmann, R. D., Sutton, G. G., Blake, J. A., Fitzgerald, L. M., Clayton, R. A., Gocayne, J. D., Kerlavage, A. R., Dougherty, B. A., Tomb, J. F., Adams, M. D., Reich, C. I., Overbeek, R., Kirkness, E. F., Weinstock, K. G., Merrick, J. M., Glodek, A., Scott, J. L., Geoghagen, N. S. M., Weidman, J. F., Fuhrmann, J. L., Nguyen, D., Utterback, T. R., Kelley, J. M., Peterson, J. D., Sadow, P. W., Hanna, M. C., Cotton, M. D., Roberts, K. M., Hurst, M. A., Kaine, B. P., Borodovsky, M., Klenk, H. P., Fraser, C. M., Smith, H. O., Woese, C. R. und Venter, J. G. 1996. Complete genome sequence of the methanogenic archaeon, *Methanococcus jannaschii. Science* 273:1058-1073 **Busenlehner, L. S., Weng, T. C., Penner-Hahn, J. E. und Giedroc, D. P.** 2002. Elucidation of primary α 3N and vestigial α 5 heavy metal-binding sites in *Staphylococcus aureus* pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins. *J. Mol. Biol.* **319**:685-701.

Busenlehner, L. S., Pennella, M. A. und Giedroc, D. P. 2003. The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance. *FEMS Microbiol. Rev.* 27:131-143.

Chien, Y. T. und Zinder, S. H. 1994. Cloning, DNA sequencing, and characterization of a *nifD*-homologous gene from the archaeon *Methanosarcina barkeri* 227 which resembles *nifD1* from the eubacterium *Clostridium pasteurianum*. J. Bacteriol. **176**:6590-6598.

Chien, Y. T. und Zinder, S. H. 1996. Cloning, functional organization, transcript studies, and phylogenetic analysis of the complete nitrogenase structural genes (*nifHDK2*) and associated genes in the archaeon *Methanosarcina barkeri* 227. *J. Bacteriol.* **178**:143-148.

Ciulla, R., Clougherty, C., Belay, N., Krishnan, S., Zhou, C., Byrd, D. und Roberts, M. F. 1994a. Halotolerance of *Methanobacterium thermoautotrophicum* Δ H and Marburg. *J. Bacteriol.* **176**:3177-3187.

Ciulla, R. A., Burggraf, S., Stetter, K. O. und Roberts, M. F. 1994b. Occurrence of dimyo-inositol-1-1'-phosphate in *Methanococcus igneus*. *Appl. Environ. Microbiol.* **176**:3177-3187.

Cohen, S. N., Chang, A. C. und Hsu, L. 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of *Escherichia coli* by R-factor DNA. *Proc. Natl. Acad. Sci. U. S. A.* 69:2110-2114.

Cohen, S. P., Hachler, H. und Levy, S. B. 1993. Genetic and functional analysis of the multiple antibiotic resistance (*mar*) locus in *Escherichia coli*. J. Bacteriol. 175:1484-1492.

Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. *Microbiol. Rev.* 53:121-147.

Csonka, L. N. und Hanson, A. D. 1991. Prokaryotic osmoregulation - genetics and physiology. *Annu Rev Microbiol.* **45:**569-606.

Csonka, L. N., Ikeda, T. P., Fletcher, S. A. und Kustu, S. 1994. The accumulation of glutamate is necessary for optimal growth of *Salmonella typhimurium* in media of high osmolality but not induction of the *proU* operon. J. Bacteriol. **176**:6324-6333.

Dahlke, I. und Thomm, M. 2002. A *Pyrococcus* homolog of the leucine-responsive regulatory protein, LrpA, inhibits transcription by abrogating RNA polymerase recruitment. *Nucleic Acids Res.* **30**:701-710.

Dean, D. R. und Jacobson, M. R. 1992. Biochemical genetics of nitrogenases. S. 763-834. *In:* Stacey, G., Burris, R. H. und Evans, H. J. (Hrsg.), Biological nitrogen fixation. Chapman & Hall, New York.

Dean, D. R., Bolin, J. T. und Zheng, L. 1993. Nitrogenase metalloclusters: structures, organization, and synthesis. *J. Bacteriol.* **175:**6737-6744.

Deguchi, Y., Yamato, I. und Anraku, Y. 1989. Molecular cloning of *gltS* and *gltP*, which encode glutamate carriers of *Escherichia coli* B. *J. Bacteriol.* **171:**1314-1319.

Deppenmeier, U., Johann, A., Hartsch, T., Merkl, R., Schmitz, R. A., Martinez-Arias, R., Henne, A., Wiezer, A., Bäumer, S., Jacobi, C., Brüggemann, H., Lienard, T., Christmann, A., Bömeke, M., Steckel, S., Bhattacharyya, A., Lykidis, A., Overbeek, R., Klenk, H.-P., Gunsalus, R. P., Fritz, H.-J. und Gottschalk, G. 2002. The genome of *Methanosarcina mazei*: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol. 4:453-461.

Dinnbier, U., Limpinsel, E., Schmid, R. und Bakker, E. P. 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells in *Escherichia coli* K-12 to elevated sodium chloride concentrations. *Arch. Microbiol.* **150**:348-357.

Dosch, D. C., Helmer, G. L., Sutton, S. H., Salvacion, F. F. und Epstein, W. 1991. Genetic analysis of potassium transport loci in *Escherichia coli*: evidence for three constitutive systems mediating uptake of potassium. *J. Bacteriol.* **173**:687-696.

Dower, W. J., Miller, J. F. und Ragsdale, C. W. 1988. High efficiency transformation of *E. coli* by high voltage electroporation. *Nucleic Acids Res.* **16**:6127-145.

Dyda, F., Klein, D. C. und Hickman, A. B. 2000. GCN5-related N-acetyltransferases: a structural overview. *Annu. Rev. Biophys. Biomol. Struct.* **29**:81-103.

Ehlers, C., Grabbe, R., Veit, K. und Schmitz, R. A. 2002a. Characterization of GlnK₁ from *Methanosarcina mazei* strain Gö1: complementation of an *Escherichia coli glnK* mutant strain by GlnK₁. *J. Bacteriol.* **184**:1028-1040.

Ehlers, C., Veit, K., Gottschalk, G. und Schmitz, R. A. 2002b. Functional organisation of a single *nif* cluster in the mesophilic archaeon *Methanosarcina mazei* strain Gö1. *Archaea* 1:143-150.

Eichler, J. 2003. Facing extremes: archaeal surface-layer (glyco)proteins. *Microbiology* 149:3347-3351.

Feinberg, A. P. und Vogelstein, B. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. *Anal. Biochem.* **132:**6-13.

Fischer, H. M. 1994. Genetic regulation of nitrogen fixation in rhizobia. *Microbiol. Rev.* 58:352-386.

Fisher, S. H. 1999. Regulation of nitrogen metabolism in *Bacillus subtilis*: vive la différence! *Mol. Microbiol.* **32**:223-232.

Galagan, J. E., Nusbaum, C., Roy, A., Endrizzi, M. G., Macdonald, P., FitzHugh, W., Calvo, S., Engels, R., Smirnov, S., Atnoor, D., Brown, A., Allen, N., Naylor, J., Stange-Thomann, N., DeArellano, K., Johnson, R., Linton, L., McEwan, P., McKernan, K., Talamas, J., Tirrell, A., Ye, W., Zimmer, A., Barber, R. D., Cann, I., Graham, D. E., Grahame, D. A., Guss, A. M., Hedderich, R., Ingram-Smith, C., Kuettner, H. C., Krzycki, J. A., Leigh, J. A., Li, W., Liu, J., Mukhopadhyay, B., Reeve, J. N., Smith, K., Springer, T. A., Umayam, L. A., White, O., White, R. H., Conway de Macario, E., Ferry, J. G., Jarrell, K. F., Jing, H., Macario, A. J., Paulsen, I., Pritchett, M., Sowers, K. R., Swanson, R. V., Zinder, S. H., Lander, E., Metcalf, W. W. und Birren, B. 2002. The genome of *Methanosarcina acetivorans* reveals extensive metabolic and physiological diversity. *Genome Res.* 12:532-542.

Galinski, E. A. und Trüper, H. G. 1994. Microbial behaviour in salt-stressed ecosystems. *FEMS Microbiol. Rev.* 15:95-108.

Georgiadis, M. M., Komiya, H., Chakrabarti, P., Woo, D., Kornuc, J. J. und Rees, D. C. 1992. Crystallographic structure of the nitrogenase iron protein from *Azotobacter vinelandii*. *Science* **257**:1653-1659.

Gernhardt, P., Possot, O., Foglino, M., Sibold, L. und Klein, A. 1990. Construction of an integration vector for use in the archaebacterium *Methanococcus voltae* and expression of a eubacterial resistance gene. *Mol. Gen. Genet.* 221:273-279.

Grkovic, S., Brown, M. H. und Skurray, R. A. 2001. Transcriptional regulation of multidrug efflux pumps in bacteria. *Semin. Cell Dev. Biol.* **12**:225-237.

Grkovic, S., Brown, M. H. und Skurray, R. A. 2002. Regulation of bacterial drug export systems. *Microbiol Mol. Biol. Rev.* 66:671-701.

Guzman, L. M., Belin, D., Carson, M. J. und Beckwith, J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J. Bacteriol.* **177:**4121-4130.

Haardt, M., Kempf, B., Faatz, E. und Bremer, E. 1995. The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of *Escherichia coli* K-12. *Mol. Gen. Genet.* **246**:783-786.

Hanahan, D. 1983. Studies on transformation of *Escherichia coli* with plasmids. *J. Mol. Biol.* 166:557 - 580.

Harms, C., Domoto, Y., Celik, C., Rahe, E., Stumpe, S., Schmid, R., Nakamura, T. und Bakker, E. P. 2001. Identification of the ABC protein SapD as the subunit that confers ATP dependence to the K⁺-uptake system Trk^H and Trk^G from *Escherichia coli* K12. *Microbiology* 147:2991-3003.

Harris, J. E. 1987. Spontaneous disaggregation of *Methanosarcina mazei* S-6 and its use in the development of genetic techniques for *Methanosarcina* spp. *Appl. Environ. Microbiol.* **53**:2500-2504.

Hickey, A. J., Conway de Macario, E. und Macario, A. J. 2002. Transcription in the archaea: basal factors, regulation, and stress-gene expression. *Crit. Rev. Biochem. Mol. Biol.* 37:537-599.

Hochheimer, A., Linder, D., Thauer, R. K. und Hedderich, R. 1996. The molybdenum formylmethanofuran dehydrogenase operon and the tungsten formylmethanofuran dehydrogenase operon from *Methanobacterium thermoautotrophicum* - structures and transcriptional regulation. *Eur. J. Biochem.* 242:156-162.

Hochheimer, A., Hedderich, R. und Thauer, R. K. 1999. The DNA binding protein Tfx from *Methanobacterium thermoautotrophicum*: structure, DNA binding properties and transcriptional regulation. *Mol. Microbiol.* **31**:641-650.

Hoffmann, M. 2003. Osmoadaptation in methanogenen Archaeen: Immunologische Studien zur Produktion des Gycin-Betain-Bindeproteins OtaC in *Methanosarcina mazei* Gö1 und zur Rolle von Chlorid. Diplomarbeit. Ludwig-Maximilians-Universität, München.

Holmes, D. S. und Quigley, M. 1981. A rapid boiling method for the preparation of bacterial plasmids. *Anal. Biochem.* **114**:193-197.

Hsieh, M. H., Lam, H. M., van de Loo, F. J. und Coruzzi, G. 1998. A PII-like protein in *Arabidopsis*: putative role in nitrogen sensing. *Proc. Natl. Acad. Sci. U. S. A.* **95:**13965-13970.

Hungate, R. E. 1969. A roll tube methode for cultivation of strict anaerobes. S. 117-132. *In:* Norris, J. R. und Ribbons, D. W. (Hrsg.), Methods in Microbiology, Vol. 3b. Academic Press, New York and London.

Imamura, R., Yamanaka, K., Ogura, T., Hiraga, S., Fujita, N., Ishihama, A. und Niki, H. 1996. Identification of the *cpdA* gene encoding cyclic 3',5'-adenosine monophosphate phosphodiesterase in *Escherichia coli*. J. Biol. Chem. **271**:25423-25429.

Inoue, H., Nojima, H. und Okayama, H. 1990. High efficiency transformation of Escherichia coli with plasmids. *Gene* 96:23-28.

Jakava-Viljanen, M., Avall-Jaaskelainen, S., Messner, P., Sleytr, U. B. und Palva, A. 2002. Isolation of three new surface layer protein genes (*slp*) from *Lactobacillus brevis* ATCC 14869 and characterization of the change in their expression under aerated and anaerobic conditions. *J. Bacteriol.* **184**:6786-6795.

Jiang, W., Metcalf, W. W., Lee, K. S. und Wanner, B. L. 1995. Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of *Salmonella typhimurium* LT2. *J. Bacteriol.* **177:**6411-6421.

Kalman, M., Gentry, D. R. und Cashel, M. 1991. Characterization of the *Escherichia coli* K12 gltS glutamate permease gene. *Mol. Gen. Genet.* 225:379-386.

Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Idesawa, K., Ishikawa, A., Kawashima, K., Kimura, T., Kishida, Y., Kiyokawa, C., Kohara, M., Matsumoto, M., Matsuno, A., Mochizuki, Y., Nakayama, S., Nakazaki, N., Shimpo, S., Sugimoto, M., Takeuchi, C., Yamada, M. und Tabata, S. 2000. Complete genome structure of the nitrogen-fixing symbiotic bacterium *Mesorhizobium loti*. *DNA Res.* 7:331-338.

Kappes, R. M., Kempf, B., Kneip, S., Boch, J., Gade, J., Meier-Wagner, J. und Bremer,
E. 1999. Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in *Bacillus subtilis*. *Mol. Microbiol*. 32:203-216.

Kempf, B. und Bremer, E. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. *Arch. Microbiol.* **170**:319-330.

Kessler, P. S., Blank, C. und Leigh, J. A. 1998. The *nif* gene operon of the methanogenic archaeon *Methanococcus maripaludis*. J. Bacteriol. 180:1504-1511.

Kessler, P. S. und Leigh, J. A. 1999. Genetics of nitrogen regulation in *Methanococcus maripaludis*. *Genetics* **152**:1343-1351.

Kessler, P. S., Daniel, C. und Leigh, J. A. 2001. Ammonia switch-off of nitrogen fixation in the methanogenic archaeon *Methanococcus maripaludis*: mechanistic features and requirement for the novel GlnB homologues, NifI₁ and NifI₂. J. Bacteriol. **183**:882-889.

Klenk, H. P., Clayton, R. A., Tomb, J. F., White, O., Nelson, K. E., Ketchum, K. A., Dodson, R. J., Gwinn, M., Hickey, E. K., Peterson, J. D., Richardson, D. L., Kerlavage, A. R., Graham, D. E., Kyrpides, N. C., Fleischmann, R. D., Quackenbush, J., Lee, N. H., Sutton, G. G., Gill, S., Kirkness, E. F., Dougherty, B. A., McKenny, K., Adams, M. D., Loftus, B., Peterson, S., Reich, C. I., McNeil, L. K., Badger, J. H., Glodek, A., Zhou, L., Overbeek, R., Gocayne, J. D., Weidman, J. F., McDonald, L., Utterback, T., Cotton, M. D., Spriggs, T., Artiach, P., Kaine, B. P., Sykes, S. M., Sadow, P. W., D'Andrea, K. P., Bowman, C., Fujii, C., Garland, S. A., Mason, T. M., Olsen, G. J., Fraser, C. M., Smith, H. O., Woese, C. R. und Venter, J. C. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon *Archaeglobus fulgidus. Nature* 390:364-370.

Kögl, S. 2004. Osmoadaptation in *Methanosarcina mazei* Gö1: Nähere Charakterisierung zweier Transporter für kompatible Solute und Untersuchungen zum Cholinstoffwechsel. Diplomarbeit. Ludwig-Maximilians-Universität, München.

Kornberg, A., Kornberg, S. R. und Simms, E. S. 1956. Metaphosphate synthesis by an enzyme from *Escherichia coli*. *Biochim. Biophys. Acta* 20:215-227.

Kornberg, A. 1995. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. *J. Bacteriol.* **177:**491-496.

Kornberg, A., Rao, N. N. und Ault-Riché, D. 1999. Inorganic polyphosphate: a molecule of many functions. *Annu. Rev. Biochem.* **68**:89-125.

Kreisl, P. und Kandler, O. 1986. Chemical strukture of the cell wall polymer of *Methanosarcina*. *System. Appl. Microbiol.* **7:**293-299.

Krüger, K., Hermann, T., Armbruster, V. und Pfeifer, F. 1998. The transcriptional activator GvpE for the halobacterial gas vesicle genes resembles a basic region leucine-zipper regulatory protein. J. Mol. Biol. 279:761-771.

Kuen, B., Sleytr, U. B. und Lubitz, W. 1994. Sequence analysis of the *sbsA* gene encoding the 130-kDa surface-layer protein of *Bacillus stearothermophilus* strain PV72. *Gene* **145**:115-120.

Kuen, B., Koch, A., Asenbauer, E., Sara, M. und Lubitz, W. 1997. Molecular characterization of the *Bacillus stearothermophilus* PV72 S-layer gene *sbsB* induced by oxidative stress. J. Bacteriol. **179**:1664-1670.

Kulaev, I. und Kulakovskaya, T. 2000. Polyphosphate and phosphate pump. *Annu. Rev. Microbiol.* **54**:709-734.

Kuroda, A., Murphy, H., Cashel, M. und Kornberg, A. 1997. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in *Escherichia coli*. J. Biol. Chem. 272:21240-21243.

Kusano, S. und Ishihama, A. 1997. Functional interaction of *Escherichia coli* RNA polymerase with inorganic polyphosphate. *Genes Cells* **2**:433-441.

Kyrpides, N. C. und Ouzounis, C. A. 1999. Transcription in archaea. *Proc. Natl. Acad. Sci. U. S. A.* 96:8545-8550.

Lai, M. C., Sowers, K. R., Robertson, D. E., Roberts, M. F. und Gunsalus, R. P. 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. *J. Bacteriol.* **173:**5352-5358.

Lai, M. C., Hong, T. Y. und Gunsalus, R. P. 2000. Glycine betaine transport in the obligate halophilic archaeon *Methanohalophilus portucalensis*. J. Bacteriol. **182:**5020-5024.

Lane, D., Prentki, P. und Chandler, M. 1992. Use of gel retardation to analyze proteinnucleic acid interactions. *Microbiol. Rev.* 56:509-528.

Lee, S. J., Engelmann, A., Horlacher, R., Qu, Q., Vierke, G., Hebbeln, C., Thomm, M. und Boos, W. 2003. TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon *Thermococcus litoralis*. J. Biol. Chem. 278:983-990.

Lie, T. J. und Leigh, J. A. 2003. A novel repressor of *nif* and *glnA* expression in the methanogenic archaeon *Methanococcus maripaludis*. *Mol. Microbiol.* **47:**235-246.

Liu, Y., Boone, D. R., Sleat, R. und Mah, R. A. 1985. *Methanosarcina mazei* LYC, a new methanogenic isolate which produces a disaggregating enzyme. *Appl. Environ. Microbiol.* **49**:608-613.

Livak, K. J. und Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta Ct}$ Method. *Methods* **25**:402-408.

Lobo, A. L. und Zinder, S. H. 1990. Nitrogenase in the Archaebacterium *Methanosarcina* barkeri 227. J. Bacteriol. 172:6789-6796.

Locher, H. H., Poolman, B., Cook, A. M. und Konings, W. N. 1993. Uptake of 4-toluene sulfonate by *Comamonas testosteroni* t-2. *J. Bacteriol.* **175**:1075-1080.

Lolkema, J. S., Poolman, B. und Konings, W. N. 1998. Bacterial solute uptake and efflux systems. *Curr. Opin. Microbiol.* 1:248-253.

Lowry, O. H., Rosebrough, N. J., Farr, A. L. und Randall, R. J. 1951. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193:265-275.

Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208-218.

Martin, D. D., Ciulla, R. A. und Roberts, M. F. 1999. Osmoadaptation in archaea. *Appl. Environ. Microbiol.* 65:1815-1825.

Martin, D. D., Ciulla, R. A., Robinson, P. M. und Roberts, M. F. 2000. Switching osmolyte strategies: response of *Methanococcus thermolithotrophicus* to changes in external NaCl. *Biochim. Biophys. Acta* **1524**:1-10.

Martins, L. O. und Santos, H. 1995. Accumulation of mannosylglycerate and di-myoinositol-phosphate by *Pyrococcus furiosus* in response to salinity and temperature. *Appl. Environ. Microbiol.* **61**:3299-3303.

Martins, L. O., Huber, R., Huber, H., Stetter, K. O., DaCosta, M. S. und Santos, H. 1997. Organic solutes in hyperthermophilic Archaea. *Appl. Environ. Microbiol.* **63**:896-902.

May, G., Faatz, E., Villarejo, M. und Bremer, E. 1986. Binding protein dependent transport of glycine betaine and its osmotic regulation in *Escherichia coli* K12. *Mol. Gen. Genet.* 205:225-233.

Measures, J. C. 1975. The role of aminoacids in osmoregulation of non-halophilic bacteria. *Nature* **257**:398-400.

Merrick, M. J. und Edwards, R. A. 1995. Nitrogen control in bacteria. *Microbiol. Rev.* 59:604-622.

Metcalf, W. W., Zhang, J. K., Apolinario, E., Sowers, K. R. und Wolfe, R. S. 1997. A genetic system for *Archaea* of the genus *Methanosarcina*: Liposome-mediated transformation and construction of shuttle vectors. *Proc. Natl. Acad. Sci. U. S. A.* 94:2626-2631.

Mock, M. und Fouet, A. 2001. Anthrax. Annu. Rev. Microbiol. 55:647-671.

Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. und Erlich, H. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. *Cold Spring Harb. Symp. Quant. Biol.* **51**:263-273.

Napoli, A., van der Oost, J., Sensen, C. W., Charlebois, R. L., Rossi, M. und Ciaramella, M. 1999. An Lrp-like protein of the hyperthermophilic archaeon *Sulfolobus solfataricus* which binds to its own promoter. *J. Bacteriol.* **181**:1474-1480.

Nierman, W. C., Feldblyum, T. V., Laub, M. T., Paulsen, I. T., Nelson, K. E., Eisen, J. A., Heidelberg, J. F., Alley, M. R., Ohta, N., Maddock, J. R., Potocka, I., Nelson, W. C., Newton, A., Stephens, C., Phadke, N. D., Ely, B., DeBoy, R. T., Dodson, R. J., Durkin, A. S., Gwinn, M. L., Haft, D. H., Kolonay, J. F., Smit, J., Craven, M. B., Khouri, H., Shetty, J., Berry, K., Utterback, T., Tran, K., Wolf, A., Vamathevan, J., Ermolaeva, M., White, O., Salzberg, S. L., Venter, J. C., Shapiro, L., Fraser, C. M. und Eisen, J. 2001. Complete genome sequence of *Caulobacter crescentus. Proc. Natl. Acad. Sci. U. S. A.* 98:4136-4141.

Ninfa, A. J. und Atkinson, M. R. 2000. PII signal transduction proteins. *Trends Microbiol.* 8:172-129.

Obis, D., Guillot, A., Gripon, J. C., Renault, P., Bolotin, A. und Mistou, M. Y. 1999. Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in *Lactococcus lactis* reveals a new functional organization within bacterial ABC transporters. *J. Bacteriol.* **181**:6238-6246.

Oliver, G., Gosset, G., Sanchez-Pescador, R., Loyoza, E., Ku, L. M., Flores, N., Becerril, B., Valle, F. und Bolivar, F. 1987. Determination of the nucleotide sequence for the glutamate synthase structural genes of *Escherichia coli* K-12. *Gene* **60**:29-39.

Oren, A. 1999. Bioenergetic aspects of halophilism. *Microbiol. Mol. Biol. Rev.* 63:334-348.

Oren, A., Heldal, M., Norland, S. und Galinski, E. A. 2002. Intracellular ion and organic solute concentrations of the extremely halophilic bacterium *Salinibacter ruber*. *Extremophiles* **6:**491-498.

Ouhammouch, M. und Geiduschek, E. P. 2001. A thermostable platform for transcriptional regulation: the DNA-binding properties of two Lrp homologs from the hyperthermophilic archaeon *Methanococcus jannaschii. EMBO J.* **20:**146-156.

Peter, H., Burkovski, A. und Krämer, R. 1996. Isolation, characterization, and expression of the *Corynebacterium glutamicum betP* gene, encoding the transport system for the compatible solute glycine betaine. *J. Bacteriol.* **178:**5229-5234.

Peter, H., Weil, B., Burkovski, A., Krämer, R. und Morbach, S. 1998. *Corynebacterium glutamicum* is equipped with four secondary carriers for compatible solutes: identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP. *J. Bacteriol.* **180**:6005-6012.

Petrovich, R. M., Ruzicka, F. J., Reed, G. H. und Frey, P. A. 1992. Characterization of iron-sulfur clusters in lysine 2,3-aminomutase by electron paramagnetic resonance spectroscopy. *Biochemistry* **31**:10774-10781.

Pflüger, K. 2001. Physiologie der Osmoadaptation in *Methanosarcina mazei* Gö1: Identifizierung und Charakterisierung eines primären Betain-Transporters. Diplomarbeit. Ludwig-Maximilians-Universität, München.

Pflüger, K., Baumann, S., Gottschalk, G., Lin, W., Santos, H. und Müller, V. 2003. Lysine-2,3-aminomutase and β-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of N^ε-acetyl-β-lysine and growth at high salinity. *Appl. Environ. Microbiol.* **69**:6047-6055.

Pflüger, K. und Müller, V. 2004. Transport of compatible solutes in extremophiles. J. Bioenerg. Biomembr. 36:17-24.

Pick, U., Bental, M., Chitlaru, E. und Weiss, M. 1990. Polyphosphate hydrolysis - a protective mechanism against alkaline stress? *FEBS Lett.* 274:15-18.

Pick, U. und Weiss, M. 1991. Polyphosphate hydrolysis within acidic vacuoles in response to amino-induced alkaline stress in the halotolerant *Dunaliella salina*. *Plant Physiol*. **97:**1234-1240.

Proctor, L. M., Lai, R. und Gunsalus, R. P. 1997. The methanogenic archaeon *Methanosarcina thermophila* TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. *Appl. Environ. Microbiol.* **63**:2252-2257.

Rahlfs, S. und Müller, V. 1997. Sequence of subunit *c* of the Na⁺-translocating F_1F_0 ATPase of *Acetobacterium woodii*: Proposal for determinants of Na⁺ specificity as revealed by sequence comparisons. *FEBS Lett.* **404**:269-271.

Rao, N. N. und Torriani, A. 1990. Molecular aspects of phosphate transport in *Escherichia coli*. *Mol. Microbiol*. **4**:1083-1090.

Rees, D. C. und Howard, J. B. 1999. Structural bioenergetics and energy transduction mechanisms. *J. Mol. Biol.* 293:343-350.

Reeve, J. N. 2003. Archaeal chromatin and transcription. Mol. Microbiol. 48:587-598.

Reitzer, L. 2003. Nitrogen assimilation and global regulation in *Escherichia coli. Annu. Rev. Microbiol.* **57:**155-176.

Reitzer, L. J. 1996. Ammonia assimilation and the biosynthesis of glutamine, glutamate, asparate, asparagine, L-alanine, and D-alanine. S. 391-407. *In:* Neidhardt, F. C. (Hrsg.), *Escherichia coli* and *Salmonella typhimurium*. Cellular and molecular biology. ASM Press, Washington, DC.

Rhoads, D. B. und Epstein, W. 1977. Energy coupling to the net K⁺ transport in *Escherichia coli*-K12. *J. Biol. Chem.* **252**:1394-1401.

Roberts, M. F., Lai, M. C. und Gunsalus, R. P. 1992. Biosynthetic pathways of the osmolytes N^{ϵ}-acetyl- β -lysine, β -glutamine, and betaine in *Methanohalophilus* strain FDF1 suggested by nuclear magnetic resonance analyses. *J. Bacteriol.* **174**:6688-6693.

Roberts, M. F. 2000. Osmoadaptation and osmoregulation in archaea. *Front. Biosci.* **5**:796-812.

Robertson, D. E., Lai, M. C., Gunsalus, R. P. und Roberts, M. F. 1992a. Composition, variation, and dynamics of major osmotic solutes in *Methanohalophilus* Strain FDF1. *Appl. Environ. Microbiol.* **58**:2438-2443.

Robertson, D. E., Noll, D. und Roberts, M. F. 1992b. Free amino acid dynamics in marine methanogens - β -amino acids as compatible solutes. *J. Biol. Chem.* **267**:14893-14901.

Roeßler, M. und Müller, V. 2001. Osmoadaptation in bacteria and archaea: common principles and differences. *Environ. Microbiol.* **3**:743-754.

Roeßler, M., Pflüger, K., Flach, H., Lienard, T., Gottschalk, G. und Müller, V. 2002. Identification of a salt-induced primary transporter for glycine betaine in the methanogen *Methanosarcina mazei* Gö1. *Appl. Environ. Microbiol.* **68**:2133-2139.

Ruzicka, F. J., Lieder, K. W. und Frey, P. A. 2000. Lysine 2,3-aminomutase from *Clostridium subterminale* SB4: mass spectral characterization of cyanogen bromide-treated peptides and cloning, sequencing, and expression of the gene *kamA* in *Escherichia coli. J. Bacteriol.* **182**:469-476.

Sambrook, J., Fritsch, E. F. und Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2. Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

Sanger, F. S., Nickelen, F. und Coulson, A. R. 1977. DNA-sequencing with chainterminating inhibitors. *Proc. Natl. Acad. Sci. U. S. A.* 74:5463-5467.

Santos, H. und da Costa, M. S. 2001. Organic solutes from thermophiles and hyperthermophiles. *Methods Enzymol.* 334:302-315.

Santos, H. und da Costa, M. S. 2002. Compatible solutes of organisms that live in hot saline environments. *Environ. Microbiol.* **4:**501-509.

Saroja, G. N. und Gowrishankar, J. 1996. Roles of SpoT and FNR in NH_4^+ assimilation and osmoregulation in GOGAT (glutamate synthase)-deficient mutants of *Escherichia coli. J. Bacteriol.* **178:**4105-4114.

Schägger, H. und von Jagow, G. 1987. Tricine-sodium dodecylsulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. *Anal. Biochem.* **166:**369-379.

Schlösser, A., Meldorf, M., Stumpe, S., Bakker, E. P. und Epstein, W. 1995. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of *Escherichia coli. J. Bacteriol.* **177:**1908-1910.

Scholz, S., Sonnenbichler, J., Schäfer, W. und Hensel, R. 1992. Di-*myo*-inositol-1,1'-phosphate: a new inositol phosphate isolated from *Pyrococcus woesei*. *FEBS Lett.* **306**:239-242.

Schreier, H. J., Brown, S. W., Hischi, K. D., Nomellini, J. F. und Sonenshein, A. L. 1989. Regulation of *Bacillus subtilis* glutamine synthetase gene expression by the product of the *glnR* gene. J. Mol. Biol. 210:51-63.

Schreier, H. J. 1993. Biosynthesis of glutamine and glutamate and the assimilation of ammonia. S. 281-298. *In:* Sonenshein, A. L., Hoch, J. A. und Losick, R. (Hrsg.), *Bacillus subtilis* and other Gram-positive bacteria. ASM Press, Washington.

Schumacher, M. A. und Brennan, R. G. 2002. Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. *Mol. Microbiol.* **45**:885-893.

Seltmann, G. 1989. Biochemical aspects of the resistance to nourseothricin (streptothricin) of *Escherichia coli* strains. *J. Basic Microbiol.* **29:**547-559.

Sibold, L., Henriquet, M., Possot, O. und Aubert, J. P. 1991. Nucleotide sequence of *nifH* regions from *Methanobacterium ivanovii* and *Methanosarcina barkeri* 227 and characterization of *glnB*-like genes. *Res. Microbiol.* **142:5**-12.

Sleytr, U. B. und Beveridge, T. J. 1999. Bacterial S-layers. Trends Microbiol. 7:253-260.

Song, K. B. und Frey, P. A. 1991. Molecular properties of lysine-2,3-aminomutase. J. Biol. Chem. 266:7651-7655.

Soppa, J. 2001. Basal and regulated transcription in *Archaea*. *Adv. Appl. Microbiol.* **50:**171-217.

Sowers, K. R., Baron, S. F. und Ferry, J. G. 1984. *Methanosarcina acetivorans* sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. *Appl. Environ. Microbiol.* **47**:971-978.

Sowers, K. R., Robertson, D. E., Noll, D., Gunsalus, R. P. und Roberts, M. F. 1990. N^{ϵ}-acetyl- β -lysine - an osmolyte synthesized by methanogenic archaebacteria. *Proc. Natl. Acad. Sci. U. S. A.* 87:9083-9087.

Sowers, K. R., Boone, J. E. und Gunsalus, R. P. 1993. Disaggregation of *Methanosarcina* spp. and growth as single cells at elevated osmolarity. *Appl. Environ. Microbiol.* **59**:3832-3839.

Sowers, K. R. und Gunsalus, R. P. 1995. Halotolerance in *Methanosarcina* spp.: Role of N^{ϵ}-acetyl- β -lysine, α -glutamate, glycine betaine, and K⁺ as compatible solutes for osmotic adaptation. *Appl. Environ. Microbiol.* **61**:4382-4388.

Stadtman, E. R. 1990. Discovery of the glutamine synthetase cascade. *Methods Enzymol.* 174:179-189.

Stathopoulos, C., Kim, W., Li, T., Anderson, I., Deutsch, B., Palioura, S., Whitman, W. und Soll, D. 2001. Cysteinyl-tRNA synthetase is not essential for viability of the archaeon *Methanococcus maripaludis*. *Proc. Natl. Acad. Sci. U. S. A.* **98**:14292-14297.

Surin, B. P., Dixon, N. E. und Rosenberg, H. 1986. Pufification of the PhoU protein, a negative regulator of the *pho* regulon of *Escherichia coli* K-12. *J. Bacteriol.* **157:**631-635.

Takami, H., Nakasone, K., Takaki, Y., Maeno, G., Sasaki, R., Masui, N., Fuji, F., Hirama, C., Nakamura, Y., Ogasawara, N., Kuhara, S. und Horikoshi, K. 2000. Complete genome sequence of the alkaliphilic bacterium *Bacillus halodurans* and genomic sequence comparison with *Bacillus subtilis*. *Nucleic Acids Res.* **28**:4317-4331.

Thomm, M. 1996. Archaeal transcription factors and their role in transcription initiation. *FEMS Microbiol. Rev.* 18:159-171.

Thomm, M. 2000. Die Transkriptionsmaschinerie der Archaea. Biospektrum 3:179-185.

Tusher, V. G., Tibshirani, R. und Chu, G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. *Proc. Natl. Acad. Sci. U. S. A.* 98:5116-5121.

van der Heide, T. und Poolman, B. 2000. Osmoregulated ABC-transport system of *Lactococcus lactis* senses water stress via changes in the physical state of the membrane. *Proc. Natl. Acad. Sci. U. S. A.* 97:7102-7106.

Vanoni, M. A. und Curti, B. 1999. Glutamate synthase: a complex iron-sulfer flavoprotein. *Cell Mol. Life Sci.* 55:617-638.

VanZile, M. L., Chen, X. und Giedroc, D. P. 2002. Structural characterization of distinct α 3N and α 5 metal sites in the cyanobacterial zinc sensor SmtB. *Biochemistry* **41**:9765-9775.

Wanner, B. L. 1993. Gene regulation by phosphate in enteric bacteria. J. Cell Biochem. 51:47-54.

Wanner, B. L. 1996a. Phosphorus assimilation and control of the phosphate regulon. S. 1357-1381. *In:* Neidhardt, F. C., Curtiss, R., Ingraham, J. L., Lin, E. C. C., Low, E. B., Magasanik, B., Reznikoff, W. F., Riley, M., Schächter, M. und Umbarger, H. E. (Hrsg.), *Escherichia coli* and *Salmonella*: cellular and molecular biology. ASM Press, Washington D. C.

Wanner, B. L. 1996b. Signal transduction in the control of phosphate-regulated genes of *Escherichia coli. Kidney Int.* **49:**964-967.

Weber, K. und Osborne, M. 1969. The reliability of the molecular weight determination by dodecyl sulfate polyacrylamide gel electrophoresis. *J. Biol. Chem.* **244**:4406-4412.

Whatmore, A. M., Chudek, J. A. und Reed, R. H. 1990. The effects of osmotic upshock on the intracellular solute pools of *Bacillus subtilis*. J. Gen. Microbiol. **136**:2527-2535.

Wong, M. D., Lin, Y. F. und Rosen, B. P. 2002. The soft metal ion binding sites in the *Staphylococcus aureus* pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor are formed between subunits of the homodimer. *J. Biol. Chem.* 277:40930-40936.

Wood, J. M. 1999. Osmosensing by bacteria: signals and membrane-based sensors. *Microbiol. Mol. Biol. Rev.* 63:230-262.

Wray, L. V., Jr., Ferson, A. E., Rohrer, K. und Fisher, S. H. 1997. Expression of the *Bacillus subtilis ureABC* operon is is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and SpoH. J. Bacteriol. **179**:5494-5501.

Wray, L. V., Jr., Zalieckas, J. M. und Fisher, S. H. 2001. *Bacillus subtilis* glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA. *Cell* **107:**427-435.

Xun, L. Y., Boone, D. R. und Mah, R. A. 1988. Control of the life cycle of *Methanosarcina mazei* S-6 by manipulation of growth conditions. *Appl. Environ. Microbiol.* **54**:2064-2068.

Xun, L. Y., Mah, R. A. und Boone, D. R. 1990. Isolation and characterization of disaggregatase from *Methanosarcina mazei* LYC. *Appl. Environ. Microbiol.* **56**:3693-3698.

Yao, R., Macario, A. J. L. und Demacario, E. C. 1994. An archaeal S-layer gene homolog with repetitive subunits. *Gene Struct. Express.* **1219:**697-700.

Young, J. P. W. 1992. Pylogenetic classification of nitrogen fixing organisms. S. 736-762. *In:* Stacey, G., Burris, R. H. und Evans, H. J. (Hrsg.), Biological nitrogen fixation. Chapman & Hall, New York.

7 ANHANG

Im Anhang sind die Listen der Gene dargestellt, welche durch die DNA-Microarray-Analysen als signifikant in ihrer Expression reguliert identifiziert worden sind. Auf der CD am Ende dieser Arbeit befindet sich die Liste, mit deren Hilfe die ERGO ORF-Nummer in die Genbank-Nummer nach NCBI (MM-Nummer) übersetzt werden kann.

Tab. 32: Gene, deren Expression bei salzadaptierten Zellen von *M. mazei* **Gö1 signifikant verändert ist.** Die Gen ID bezieht sich auf die Nomenklatur in ERGO, Score (d) ist der relative Unterschied in der Expression (berechnet durch SAM) und Änderung ist die x-fache Änderung der Genexpression (berechnet durch SAM).

Positive signifikante Gene:							
Gen	Gen ID	Score(d)	Änderung				
Glycinbetain-Transporter, ATP-Bindeprotein	2483	8,26	NA ¹				
Lysin-2,3-Aminomutase	1237	8,02	NA				
Konserviertes Protein	878	6,88	7,53				
Phosphat-Transporter, Permease	1328	6,84	63,41				
Hypothetisches Protein	1529	6,71	4,00				
Hypothetisches Protein	1416	6,42	5,15				
Phosphat-Bindeprotein	2426	6,13	8,15				
Surface-Layer-Protein B	240	5,80	5,04				
Konserviertes Protein	256	5,66	15,06				
Phosphat-Bindeprotein	1329	5,59	NA				
β-Lysin-Acetyltransferase	1238	5,40	NA				
Glycosyltransferase	881	5,25	2,84				
ATP-abhängige DNA-Helicase	941	5,08	3,23				
Konserviertes Transmembranprotein	422	4,79	2,19				
Hypothetisches Protein	113	4,71	2,64				
Natrium/Glutamat-Symporter	111	4,66	2,65				
Hypothetisches Protein	1434	4,66	5,59				
Konserviertes Protein	828	4,60	2,80				
Hypothetisches Protein	1476	4,57	4,03				
Putatives Flagellen-verwandtes Protein H	1242	4,54	3,90				
Hypothetisches Protein	1402	4,49	4,97				
Konserviertes Protein	263	4,47	NA				
Hypothetisches Protein	1524	4,35	2,88				
Eisen-Schwefel-Flavoprotein	236	4,33	4,96				
Konserviertes Protein	889	4,32	3,47				
Kobalt-Transporter, ATP-Bindeprotein	2272	4,31	3,17				
Coenzyme F_{420} -Hydrogenase, β -Untereinheit	1902	4,30	5,56				
Sec-unabhängige Protein-Translocase	650	4,30	3,46				
Hypothetische Histidin-Kinase	318	4,26	5,93				
Konserviertes Protein	880	4,23	3,13				
Konserviertes Protein	832	4,21	2,21				
Histon-Acetyltransferase (ELP3 Familie)	1359	4,14	2,88				
Konserviertes Protein	2867	4,11	NA				
Konserviertes Protein	585	4,07	NA				
Putatuve Serin/Threonin-Protein-Kinase	538	3,98	2,91				
Konserviertes Protein	833	3,97	2,38				
Hypothetisches Protein	1272	3,97	9,79				
DNA-Reperatur-Hellicase	238	3,97	NA				

Hypothetisches Protein	1335	3,93	13,34
Typ I Restriktions/Modifikations-System, Restriktions-Untereinheit	307	3,92	12,73
Konserviertes Protein	859	3,87	2,24
Thiamin-Biosyntheseprotein	2619	3,86	2,24
HTH DNA-Bindeprotein	1135	3,83	3,30
Phosphat-Transporter, ATP-Bindeprotein	1325	3,76	5,44
Konserviertes Protein	637	3,71	2,14
Konserviertes Protein	1593	3,71	2,19
Universelles Stressprotein	1657	3,68	6,78
Konserviertes Protein	264	3,67	NA
Succinatsemialdehyde-Dehydrogenase [NADP ⁺]	2228	3,66	NA
Hypothetisches Protein	1271	3,66	3,73
Konserviertes Protein	2270	3,65	4,30
Hypothetisches Protein	2519	3,63	6,28
Coenzym F ₄₂₀ -Hydrogenase, γ-Untereinheit	1073	3,63	1,84
Konserviertes Protein	226	3,58	3,77
Hypothetisches Protein	1334	3,56	NA
Surface-Layer-Protein (putativ)	648	3,54	5,72
Hypothetisches Protein	2728	3,54	3,83
Oxidoreduktase (Flavoprotein)	2794	3,53	3,12
Glycinbetain-Transporter Ota, Permease	2484	3,53	NA
Konserviertes Protein	879	3,52	NA
Glycinbetain-Transporter, Betain-Bindeprotein	2485	3,52	59,35
Konserviertes Protein	2419	3,47	1,72
Aminosäure Permease	1212	3,47	2,22
Hypothetisches Protein	1333	3,46	NA
Hypothetisches Protein	614	3,41	2,66
Flavodoxin	1497	3.41	4.33
Heterodisulfid-Reduktase, HDRB-Untereinheit	1280	3,40	2,49
Hypothetisches Protein	108	3,39	105,92
Phosphohydrolase	197	3.38	2.13
Methaltrasferase	104	3.34	1.80
Konserviertes Protein	196	3.33	2.46
Putative Metall-abhängige Hydrolase	1559	3.31	4.71
Fe/S-Cluster-Bindeprotein	784	3.31	2.55
Deoxycytidin-Triphosphat-Deaminase	278	3,30	2,06
Hypothetisches Protein	703	3.29	2.19
Konserviertes Protein	914	3.27	1.77
Polysaccharid-Deacetylase	877	3.26	9.88
Molybdopterin-Biosynthese MoeB Protein/ThiF Protein	1581	3.24	2.27
Polyphosphat-Kinase	1728	3 24	1.86
Malate-Dehvdrogenase	1366	3.24	2.06
Hypothetisches Protein	1695	3 22	301.72
Putatuve Nucleotidyltransferase	1622	3 13	93 90
FdhD-Protein	1607	3 12	2 19
Putative ATP-abhängige Na ⁺ -Efflux-Pumpe	819	3.12	2,19
Hypothetisches Protein	863	3.12	2,51
Konserviertes Protein	1286	3 11	1.58
Putatives Hitzeschock Protein	2956	3,11	2 27
ABC Transporter ATP Bindeprotein	2550 850	3 10	1 72
Konserviertes Protein	050 772	3,10	231
Hypothetisches Protein	653	3 10	1.86
Integrales Membrane Protein	1308	3,10	1,00 2 10
Transposase	1027	3,09	2,19
Coenzyme FHydrogenase R.Untereinheit	032	3,07	2,09
ABC-Transporter ATP-Rindeprotein	1253	3,07	2,20
ABC-mansporter, ATT-Bindeprotein	1233	5,07	2,05

Konserviertes Protein	359	3,05	3,03
Konserviertes Protein	3132	3,04	3,73
Hypothetisches Protein	1368	3,03	2,10
Protease HTPX-Homolog	544	3,02	2,10
Hypothetisches cytosolisches Protein	1349	3,01	2,48
Zink-Metalloprotease	1590	3,00	2,11
Konserviertes Protein	148	3,00	1,77
Konserviertes Protein	207	2,99	11,82
Negative signifikante Gene:			
Gen	Gen ID	Score(d)	Änderung
N-Acetyl-γ-Glutamylphosphat-Reduktase	1164	-5,41	0,34
β-Ketoacyl-Synthase/Thiolase	2260	-4,86	0,25
Glukose-1-Phosphat-Thymidylyltransferas	19	-4,86	0,43
Pyruvate Synthase, γ-Untereinheit	1760	-4,29	0,45
Coenzym F ₄₂₀ -abhängige N ₅ ,N ₁₀ -Methylen-Tetrahydromethanopterin			
Reduktase	2377	-4,22	0,48
A ₁ A ₀ H ⁺ -ATPase, K Untereinheit	2004	-4,19	0,43
Dipeptid-ABC-Transporter, Bindeprotein	2450	-4,01	0,39
Trk-System Kalium-Aufnahme-Protein	727	-3,84	0,28
5-Nitroimidazol-Antibiotikaresistenz-Protein	2888	-3,62	0,50
Hydroxymethylglutaryl-CoA-Synthase	2261	-3,54	0,23
Sulfit-Reduktase, assimilatorischer Typ	3138	-3,46	0,28
F ₁₀₀ H ₂ -Dehydrogenase, H Untereinheit	742	-3.40	0.52

¹Die x-fache Änderung der Expression kann nicht berechnet werden, da der Durchschnitt der Fluoreszenz-Wert einer der beiden Bedingungen ≤ 0 ist.

Tab. 33: Früh induzierte Gene in *M. mazei* **Gö1 nach einem hyperosmotischen Schock auf 400 mM.** Die Gen ID bezieht sich auf die Nomenklatur in ERGO, Induktion (x-fach) ist die x-fache Änderung der Genexpression (berechnet durch SAM) zu dem angegebenen Zeitpunkt.

		Induk	tion (x	x-fach)	1
Gen	Gen ID	1,5h	4h	8h	12h
Metall-abhängige Hydrolase	6	2,01			
Cholin-Transport System, Permease	22	3,89			
Cholin-Transport System, Permease	23	2,47			
Natrium/Glutamat-Symporter	111	3,04	2,84		
10 kDa Chaperonin	125	2,49			
60 kDa Chaperonin	126	2,54			
Zellteilungsprotein	144	2,26			
Dipeptid/Oligopeptid-Bindeprotein	184	2,40			
Transporter	187	5,48			
Transkriptionsregulator, MarR-Familie	188	11,77			
DNA-Reperatur-Helicase	238	4,61			
Transkriptionsregulator, TetR-Familie	265	2,79			
Transkriptionsregulator	284	2,54			
Glycosyltransferase beteiligt an Zellwand Biogenese	287	2,73			
Glycosyltransferase	301	2,38			
O-Acetyltransferase	330	3,14			
Kationen-Transporter	397	2,45	2,11		
NADH:Flavin-Oxidoreduktase	407	2,72			
Transkriptionsregulator	449	3,26			
CODH Nickel-Insertions-Protein	564	2,30	2,28		
Thioredoxin	577	3,16			
Trimetylamin-Corrinoid-Protein	609	17,52			
Transporter, LysE-Familie	633	3,07			
Sec-unabhängige Protein-Translokase	649	2,67			

Pyruvat-Formiat-Lyase aktivierendes Enzym	669	2,77
GrpE-Protein	724	2,81
Ribosomales Protein Alanin-Acetyltransferase	755	2,19
Nucleotidyltransferase	757	2,05
Endonuklease III	766	10,58
Hypothetische Histidin-Kinase	768	2,20
DNA-Polymerase IV	778	2,03
Fe/S-Cluster-Bindeprotein	784	2,33
O6-Methylguanine-DNA-Methyltransferase	785	5,12
Putativer Transkriptionsregulator	856	4,21
Fe-S-Bindeprotein	857	2,08
Glycosyltransferase	881	4,54
Transporter	894	2,25
Glycosyltransferase	896	2,09
Glycosyltransferase	897	2,22
Protease HTPX	923	2,21
5-Methylcytosin-spezifisches Restriktionsenzym	924	2,36
Nitrilase	929	2,18
Coenzym F_{420} -Hydrogenase, β Untereinheit	933	3,79
ATP-abhängige DNA-Helicase	941	2,38
Transkriptionsregulator	990	3,59
Pirin	992	3,02
Transposase	999	2,95
Oxidoreduktase, aldo/keto-Reduktase-Familie	1013	2,41
Serin-O-Acetyltransferase	1029	2,33
Oxidoreduktase	1081	2,18
DNA-Topoisomerase I	1103	2,71
Transkriptionsregulator, TetR/AcrR-Familie	1123	2,13
HTH-DNA-Bindeprotein	1135	5,81 2,76
kleines Hitzeschock Protein	1169	25,12
Phycocyanin α -Untereinheit Phycocyanobilin-Lyase	1176	2,18
Acetatekinase	1180	2,11
Phosphat-Acetyltransferase	1181	3,62
Aminosäure-Permease	1212	2,20
Putatives Flagellen-verwandtes Protein J	1240	5,00
Putatives Flagellen-verwandtes Protein H	1242	2,04
ABC-Transporter, Permease	1254	2,03
ABC-Transporter, ATP-Bindeprotein	1256	2,46
Ammonium-Transporter	1259	54,26
Chi c	1265	2,10
Giutamine-Synthetase	1200	32,10
Van Der Amingementidere	1270	2,05
Aaa-Pro Aminopepudase	1275	2,28
Protease (putative)	12//	2,17
HIH-DNA-Bindeprotein Desulatorisches Protein (nutative)	1289	2,38
Regulatorisches Protein (putative)	1347	2,29
Orideredulteee, elde/lete Dedulteee Formilie	1373	2,00
Clutamin Transporter, Dermoose	1365	2,57
Signaltranduzierande Drotein Kinese	1391	2,20
ATD abhöngiga DNA Ligasa	1400	2,04
Flavodovin	1430	2,00
Flavodovin	1497	2,12
Transporter LysE Femilie	1497	2,17
ATP shhanging Proteose I a	1510	2,45
Transkriptionsregulator MarR-Familie	1517	20,13 7 07
Phycocyanin α -Untereinheit Phycocyanobilin-Lyase verwandtes Pr	rotein,	2,50
CpcE/NbIB-Familie	1545	2,68
Molybdan-Formylmethanofuran-Dehydrogenase	1548	4,66

Wolframat-Transporter, ATP-Bindeprotein	1552	2,82
Putative Metall-abhängige Hydrolase	1559	2,19
Transkriptionsregulator	1560	2,03
Tetrahydromethanopterin-S-Methyltransferase	1574	2,10
Citrat-Synthase	1586	2,03
Putative Nukleotidyltransferase	1622	2,14
Lysyl-tRNA-Synthetase (PylS)	1662	2,58
Methylcobalamin-Coenzyme M-Methyltransferase	1668	2,82
Monomethylamin:Corrinoid-Protein	1669	14,03
Monomethylamine:Corrinoid-Methyltransferase	1671	10,41
Molybdän-Cofaktor-Biosynthese-Protein	1710	2,21
Chaperon-Protein	1722	2,70
Chaperon-Protein	1723	2,15
Origen-Erkennungskomplex-Untereinheit	1725	3,75
Polyphosphat-Kinase	1728	2,03
Peptidketten freisetzender Faktor	1755	2,14
Fe-abhängiger Repressor	1770	2,38
Chemotaxis-Protein	1775	2,22
Origen-Erkennungskomplex-Untereinheit	1787	3,00
Monomethylamin:Corrinoid-Methyltransferase	1835	11,10
Monomethylamin:Corrinoid-Methyltransferase	1836	9,35
Monomethylamin:Corrinoid-Protein	1837	10,87
Aldehyd-Ferredoxin-Oxidoreduktase	1845	3,94
Putative DNA-oder RNA-Helicase der Superfamilie II	1865	2,37
Transkriptionsregulator	1883	2,94
Serine-O-Acetyltransferase	1897	2,36
HTH-DNA-Bindeprotein	1928	2,29
Transkriptionsregulator, MarR-Familie	1964	2,04
Kalium-Kanal-Protein	1969	2,38
Zink-Metalloprotease	2019	2,35
Putative Methyltransferase	2066	3,17
Transkriptionsregulator, ArsR-Familie	2067	2,73
Transkriptionsregulator, ArsR-Familie	2072	2,35
Transposase	2077	3,16
Transposase	2078	4,70
Transposase	2079	2,94
Trp-Repressor-Bindeprotein	2084	12,96
Glykogen-verzweigendes Enzym	2165	2,88
Zwei-Komponentensystem Histidin-Kinase	2168	2,30
Succinatsemialdehyde-Dehydrogenase [NADP ⁺]	2228	4,02
Putative Methyltransferase	2276	2,10
CbiM-Protein	2278	2,96
CbiM-Protein	2279	2,11
Endonuklease III	2280	4,63
MutT-verwandtes Protein	2305	3,10
Methyltransferase	2348	3,14
Acetyltransferases	2394	2,09
Glykosyltransferase	2422	8,29
Transposase	2425	2,95
Phosphat-Transporter, ATP-Bindeprotein	2427	5,60
Putatives Phosphat-System regulatorisches Protein	2429	2,72
Transkriptionsregulator, Icc-verwandtes Protein	2433	7,72
Ubiquinon/Menaquinone-Biosynthese-Methyltransferase	2465	2,18
Superfamilie I DNA-und RNA-Helicase	2473	3,06
O-linked-N-Acetylglucosamin-Transferase	2475	2,34
DNA Integration/Rekombination/Invertion	2591	2,59
Hypothetische signaltransduzierende Histidin-Kinase	2606	16,25
Methylcobalamin:Coenzyme M-Methyltransferase	2613	2,23
Molybdopterin-Bindeprotein	2664	2,13

Signaltransduzierende Protein-Kinase	2719	2,48	
Ammonium-Transporter	2780	9,49	
Stickstoff-regulierendes Protein P-II	2781	13,80	
Nitrogenase Fe/Mo Cofactor-Biosynthese-Protein NifN	2787	8,52	
Nitrogenase Fe/Mo Cofactor-Biosynthese-Protein	2788	13,02	
Nitrogenase Fe/Mo Protein, β-Kette	2789	43,13	
Nitrogenase Fe/Mo Protein α-Kette	2790	30,25	
NifI(2), GlnB-ähnliches Protein	2791	3,07	
Nitrogenase Eisen-Protein	2793	31,24	
Translationsinitiations-Faktor 1A	2829	6,12	
DNA-gerichtete RNA-Polymerase I, II and III, 7,3 kDa Polypeptid	2830	2,28	
Multi-Drug-Efflux Pumpe	2832	2,20	
Uncharakterisierte Permease	2834	3,76	
Hydrogenase Expression/Bildung-Protein	2846	2,43	
Hydrogenase Expression/Bildung-Protein	2847	2,30	
Methaltrasferase	2861	3,55	
Transkriptionsregulator, ArsR-Familie	2869	3,30	
Putatives Hitzschockprotein	2956	2,84	2,26
Putatives Hitzschockprotein	2957	3,38	
CdcH-Protein	2958	9,01	
Transkriptionsregulator, ArsR-Familie	2959	4,68	
Phosphohydrolase	2970	2,04	
NifB-Protein	2980	2,31	
ATP-abhängige RNA-Helicase	2991	2,85	
Putatives Ferredoxin	3037	2,21	
Pyruvates Formiat-Lyase aktivierendes Enzym	3042	2,70	
Acetyltransferase	3058	2,05	
Mögliche Resolvase/Recombinase	3059	2,02	
Mögliche Resolvase/Recombinase	3061	2,19	
ABC-Transporter, Permease	3066	2,34	
Lactoylglutathion Lyase	3082	2,86	
Mögliche Kationen-Efflux-Pumpe	3125	5,15	
Transkriptionsregulator	3126	4,81	
Transkriptionsregulator, MarR-Familie	3127	2,90	
Sulfit Reduktase, assimilatorischer Typ	3138	2,71	
Transkriptionsregulator, MarR-Fmilie	3139	3,10	
Flagellen-verwandtes Protein FlaJ	3189	2,11	
Transposase	3245	2,82	
Transkriptionsregulator, PBSX-Familie	3247	2,09	
Transkriptionsregulator, ArsR-Familie	3397	2,23	
Transposase	3448	3,23	
Putatives Ferredoxin	3802	24,01	
Transposase	4029	2,13	
Universelles Stress-Protein	4034	3,43	
Transposase	4043	2,01	
Xanthin-Guanine-Phosphoribosyltransferase	4112	2,08	
Transposase	4313	2,36	
Transposase	4330	3,55	
Transposase	4441	3,70	
Transposase	4462	3,17	
Transposase	4462	2,96	

		Induktion (x-fach)				
Gen	Gen ID	1,5h	4h	8h	12h	
Glutamyl-tRNA-Synthetase	80		4,17			
Konserviertes Protein	168			2,57		
Konserviertes Protein	193		4,21			
Vanillat-Decarboxylase-Protein	195			2,07		
Phosphohydrolase	197			2,24		
Konserviertes Protein	200			2,08		
Integrales Membranprotein	248			2,12		
Konserviertes Protein	249			2,05		
Cobalamin-Biosynthese-Protein	252			2,14		
Eisen/Schwefel-Flavoprotein	282		2,16			
Konserviertes Protein	351		2,04			
Konserviertes Protein	367			2,54		
Hypothetisches Protein	707			2,10		
Konserviertes Protein	874			2,08		
Konserviertes Protein	875		2,24	2,25		
Oxidoreduktase	882			2,09		
Konserviertes Protein	914			2,68		
Oxidoreduktase	974			2,25		
Rekombination/Reparatur-Protein RADA	1146		2,39			
Konserviertes Protein	1156		2,03			
Hypothetisches Protein	1272			2,12		
Molybdän-Cofaktor-Biosynthese-Enzym	1313		2,44			
Mögliches Peroxiredoxin	1468		2,05	2,86		
Transporter, RND-Superfamilie	1561			2,03		
Hypothetisches Protein	1562		3,02	2,27		
Hypothetisches Protein	1563		2,71	2,47		
Konserviertes Protein	1593			2,30		
Thiamin-Monophosphat-Kinase	1739		2,20			
Konserviertes Protein	1753		2,06	2,13		
Konserviertes Protein	2213		2,23			
Konserviertes Protein	2227		2,29			
Sulfat-Adenylyltransferase	2417			2,48		
Cobyrsäure-Synthase	2533			2,20		
Konserviertes Protein	2821			2,16		
Hypothetisches Protein	3268			11,65		
Thiamin-Biosynthese-Protein	4074			2.43		

Tab. 34: In der Mitte der lag-Phase induzierte Gene in *M. mazei* **Gö1 nach einem hyperosmotischen Schock auf 400 mM.** Die Gen ID bezieht sich auf die Nomenklatur in ERGO, Induktion (x-fach) ist die x-fache Änderung der Genexpression (berechnet durch SAM) zu dem angegebenen Zeitpunkt.

Tab. 35: Spät in der lag-Phase induzierte Gene in *M. mazei* Gö1 nach einem hyperosmotischen Schock auf 400 mM. Die Gen ID bezieht sich auf die Nomenklatur in ERGO, Induktion (x-fach) ist die x-fache Änderung der Genexpression (berechnet durch SAM) zu dem angegebenen Zeitpunkt.

		Induktion (x-fach)				
Gen	Gen ID	1,5h	4h	8h	12h	
Molybdän-Formylmethanofuran-Dehydrogenase	221		2,26	2,36	2,88	
Konserviertes Protein	228			2,84	2,06	
Nicotinat-Nucleotid-Pyrophosphorylase	229			2,57	2,36	
Molybdat-ABC-Transporter, ATP-Bindeprotein	230			4,30	3,65	
Cobalamin-Biosynthese-Protein CobN	253			3,94		
Trimethylamin:Corrinoid-Protein	818			8,25	2,03	

Putative ATP-abhängige Na ⁺ -Efflux-Pumpe	819	3,10	
Cobalamin-Biosynthese-Protein	1336	3,97	3,33
Molybdän-Formylmethanofuran-Dehydrogenase	1550		2,63
Hypothetisches Protein	1625	4,39	
Konserviertes Protein	1796	2,02	2,24
Konserviertes Protein	2121		2,53
Konserviertes Protein	2420	3,49	
Konserviertes Protein	3075	2,55	2,38
Hypothetisches Protein ähnlich zur C-terminalen Domäne von HdrB	3184		2,06
Molybdän-Formylmethanofuran-Dehydrogenase	4141	2,33	5,00

Tab.	36:	Während	der	kompletten	lag-Phase	induzierte	Gene	in	М.	mazei	Gö1	nach	einem
hyper	osma	otischen Sch	nock a	auf 400 mM. I	Die Gen ID l	bezieht sich a	uf die l	Nom	enkl	atur in H	ERGO	, Induk	tion (x-
fach)	ist die	e x-fache Än	derun	g der Genexpr	ession (berec	hnet durch SA	AM) zu	den	1 ang	egebene	en Zeit	punkt.	

		Induktion (x-fach)				
Gen	Gen ID	1,5h	4h	8h	12h	
Konserviertes Protein	207	3,57		3,55		
Molybdän-enthaltende Formylmethanofuran-Dehydrogenase	220	2,11		2,31	4,40	
Molybdat-ABC-Transporter, Permease	231	2,84		5,09	3,60	
Molybdat-Bindeprotein	232	4,74	4,58	8,16	5,74	
Fe/S-Flavoprotein	236	2,01		2,22		
Surface-Layer-Protein B	240	6,43	2,72	3,30		
Konserviertes Protein	264	3,44		2,58		
Typ I Restriktions/Modifikations-System, Restriktions-Untereinheit	307	2,17		2,34		
Hypothetisches Protein	366	2,51	3,67	3,64		
Konserviertes Protein	767	15,78	7,50	4,21	6,41	
Konserviertes Protein	878	17,23		2,79		
Konserviertes Protein	879	5,21		2,10		
Lysin-2,3-Aminomutase	1237	77,78	31,58	19,30	8,42	
β-Lysin-Acetyltransferase	1238	84,64	38,83	22,89	10,27	
Phosphat-Transporter, ATP-Bindeprotein	1325	4,22	2,90		3,09	
Phosphat-Transporter, Permease	1326	6,15		2,12	4,70	
Phosphat-Transporter, Permease	1327	6,44			3,61	
Phosphat-Transporter, Permease	1328	65,11	10,09	8,25	20,43	
Phosphat-Bindeprotein	1329	89,68	13,48	8,52	18,09	
Hypothetisches Protein	1333	5,55	15,75	4,97	4,42	
Hypothetisches Protein	1334	2,96		2,51	2,47	
Hypothetisches Protein	1335	2,12		2,75	2,97	
Hypothetisches Protein	1402	4,23		2,10		
Hypothetisches Protein	1484	2,83		2,27		
Molybdän-enthaltende Formylmethanofuran-Dehydrogenase,						
IsoenzymI, Untereinheit E	1551	3,31		2,28	3,67	
Hypothetisches Protein	1557	6,49	4,57	2,41	3,10	
Phosphat-Bindeprotein	2426	45,02	12,59	6,08	10,80	
Glycinbetain-Transporter Ota, ATP-Bindeprotein	2483	12,21	6,92	3,74	2,44	
Glycinbetain-Transporter Ota, Permease	2484	10,73	3,62	2,77		
Hypothetisches Protein	2728	2,84		2,17		
Konserviertes Protein	2867	27,30	7,91	2,01		
Konserviertes Protein	3076	2,22		2,15	2,17	
Konserviertes Protein	3131	8,42		2,60	8,76	
Hypothetisches Protein	3769	3,50		2,29		
Konserviertes Protein	3851	2,39		2,13		
Konserviertes Protein	3911	4,14			2,51	
Hypothetisches Protein	3979	3,47			2,08	
Konserviertes Protein	4009	3,34	2,11	2,55	2,38	

Tab. 37: Reprimierte Gene in *M. mazei* **Gö1 nach einem hyperosmotischen Schock auf 400 mM.** Die Gen ID bezieht sich auf die Nomenklatur in ERGO, Repression (x-fach) ist die x-fache Änderung der Genexpression (berechnet durch SAM) zu dem angegebenen Zeitpunkt.

		Repression (x-fach)			
Gen	Gen ID	1,5h	4h	8h	12h
Anthranilate-Synthase, Konmpnente I	3	2,87		3,37	2,29
Anthranilate-Synthase, Konmpnente II	4			2,63	
Glukose-1-Phosphat-Thymidylyltransferas	16	2,44			
Phosphoglukmutase/Phosphomannomutase	17	2,46	2,28		
Glukose-1-Phosphat-Thymidylyltransferas	19	2,35			
Transkriptionsregulator, ArsR-Familie	30		2,90		2,11
Deoxyhypusine-Synthase	31	3,46	2,52	2,18	2,91
Hypothetisches Protein	32	2,09		2,10	2,57
Alanin-Aminopeptidase	39	2,84			
DNA-Cytosin-Methyltransferase	40				2,22
Hypothetisches Protein	49			2,15	
Porphobilinogen-Deaminase	75	2,09			
LSU Ribosomales Protein L18E	87	2,21			
LSU Ribosomales Protein L13P	88	2,53			
SSU Ribosomales Protein S9P	89	2,26			
DNA-gerichtete RNA-Polymerase-Untereinheit N	90	2,13			
DNA- gerichtete RNA-Polymerase-Untereinheit K	91	2,53			
SSU Ribosomales Protein S2P	92	3,52		2,02	2,55
Pyruvat-Phosphat-Dikinase	100	2,14		,	ŗ
Konserviertes Protein	118	,			2,07
Konserviertes Protein	133	2,04			,
Konserviertes Protein	134	,			2,06
Protein-Translationsinitiations-Faktor 2	136	2,35	2,15		ŗ
LSU Ribosomales Protein L44E	138	,	ŕ		2,28
Konserviertes Protein	139	2,10			2,11
Konserviertes Protein	146	2,05			,
Phosphoserine-Phosphatase	161	2.35			2.29
Konserviertes Protein	163	_,			2.00
Zellteilungs-Kontrollprotein (MCM-Familie)	164	2.14		2.46	3.23
Heterodisulfid-Reductase. Untereinheit HdrE	170	_,		_,	2.31
Heterodisulfid-Reductase, Untereinheit HdrD	171				2.07
Konserviertes Protein	213			2.02	,
Konserviertes Protein	214			2.14	
Konserviertes Protein	243	2.41		,	
mögliches RNA-Prozessierungsprotein	244	2.15			
Integrales Membraneprotein	248	2.91			
Konserviertes Protein	249	2.33			
Cobalamin-Biosynthese-Protein	252	2.17			2.29
Cobalamin-Biosynthese-Protein CobN	253	2.80			_,
Acetyltransferase	258	_,			2.06
ABC-Transporter ATP-Bindeprotein	259	2.24			2,00
Ferredoxin	270	2.53			
Konserviertes Protein	275	2,55	2 37		2 1 5
Oligosaccharid-Transporter	291	2,00	2,57	2 12	2,15
Methanol:Corrinoid-Methyltransferase Mta	294			2,12	
Konserviertes Protein	297	2.59		2,00	
Ferredoxin	299	<u>_</u> ,_,		2 17	
Transkriptionsregulierendes-Protein ASNC-Familie	308			2,17 2,03	
Konserviertes Protein	322			2,05	2.51
CDP-Diacylglycerin/Glycerin-3-Phosphat-3-Phosphatidyltransferase	331			2.11	2,21
Dimethylamin:Corrinoid-Protein	333		2.50	16 11	11 84
,			_,20	,	,0 -

Trimethylamin:Corrinoid-Methyltransferase	334			13,75	7,39
Trimethylamin:Corrinoid-Methyltransferase MttB C-terminale Domäne	335			7,55	4,77
Timethylamin:Corrinoid Protein	336			13,75	9,05
Trimethylamin-Permease	337			2,26	
Dimethylamin:Corrinoid-Methyltransferase MtbB	340			2,54	3,56
Dimethylamin:Corrinoid-Methyltransferase MtbB C-terminale Domäne	341	2,08			3,08
Konserviertes Protein	379			2,25	
Superoxiddismutase	381			2,06	
DNA-Gyrase, Untereinheit B	386	2,11		2,11	2,63
Transkriptionsregulator, MerR-Familie	408		2,06		
Langkettige Fettsäuren-CoA-Ligase	410			2,33	
Kobalt-Transporter, ATP-Bindeprotein	414			2,32	
Hypothetisches Protein	415			2,79	2,43
Hypothetisches Protein	423			2,18	
6-Phosphofructokinase (ADP)	442				2,54
Konserviertes Protein	444			2.39	,
Thioredoxin	446			2.20	
Konserviertes Protein	448	2.41		,	
Oligosaccharyl-Transferase	458	2,62			
Protein-Translokase Untereinheit SecY	514	,		2.07	
LSU Ribosomales Protein L32E	520			_,	2.08
LSU Ribosomales Protein L6P	521				2.01
LSU Ribosomales Protein L14P	526				2.35
SSU Ribosomales Protein S17P	527				2,35
Ribonuklease P Protein Untereinheit P29	528				2.15
LSU Ribosomales Protein L29P	529			2.43	_,
SSU Ribosomales Protein S3P	530			2,15	2 1 5
L SU Ribosomales Protein L 22P	531			2 01	2,15
I SU Ribosomales Protein I 2P	533			2,01	2 24
I SU Ribosomales Protein I 23P	534				2,27 2 21
I SU Ribosomales Protein I 4	535				2,21 2,00
Hypothetisches Protein	541			2 53	2,00
Hypothetisches Protein	542		2 20	2,55	2,71
Glycosyl-Transferase	555		2,29	2.07	2,71
Hateropolycoccharid Exporter	556			2,07	2 28
Konserviertes Protein	557	281			2,50
Indolpurius 1 rollin	563	2,01			2,00
S. Adenosylmethionin. Synthetase	580				2,00
S-Addiosymetholmin-Symetrase SSU Dibosomalas Drotain S15D	500				2,20
Konserviertes Protein	590				2,15
Humothatisahas Bratain	508				2,12
ABC Transporter ATP Bindeprotein	590 601	2.00			2,15
ABC Transporter ATP Bindeprotein	602	2,09			
Dimethylamina/Carrinoid Mathyltransforaça	605	2,23		2.22	2 10
Trimethylamine.Corrinoid Methyltransferase	607			2,23	2,10
Trimethylamine.Commond-Methyltransforase MttD C tampingle	007			3,03	
Domäne	608			2.07	
Trimethylamin Corrinoid Protein	600			2,07 5,20	1 17
SSU Dibosomales Protain SSE	618			5,20	2 40
Konserviertes Protein	610			2.26	2,40
Hypothetisches Protein	641			2,20	2.03
Hypothetisches Protein	041 644				2,05
ABC Transporter ATP Bindeprotein	663	2 1 2			∠,∠∠
Hunothatisches Protein	672	2,12			
Rongerviertes hypothetisches Drotein	673	2,40		2.01	
A cetultransferase	680			2,01	2.06
Konserviertes hypothetisches Drotain	604				2,00 2.01
Konservienes hypotheusches Protein	074				∠,01

GTP-Bindeprotein-Homolog	712				2 64
Thiamine-Biosynthese-Protein	712			2.06	2,01
Archaeelles Protein Translationselongations-Factor 1, B-Untereinheit	717			2,00	2.50
Chaperon-Protein	726				2.08
Trk-System, Kalium-Aufnahmeprotein	727	2.38	2.63		2.64
Konserviertes Protein	732	2,00	2,00		3.05
$F_{400}H_0$ -Dehvdrogenase. Untereinheit I	743	2.02			- ,
$F_{420}H_2$ -Dehydrogenase, Untereinheit J1	744	_,		2.18	
$F_{420}H_2$ -Dehydrogenase. Untereinheit J2	745	2.02		,	
$F_{420}H_0$ -Dehydrogenase, Untereinheit M	748	2.66			
$F_{420}H_2$ -Dehydrogenase, Untereinheit N	749	2.97			
$F_{420}H_2$ -Dehydrogenase, Untereinheit O	750	2.63			
Hypothetisches Protein	756	,		2.13	
ABC-Transporter. Permease	764	2.14		_,	
Konserviertes Protein	795	2.42			
Kobalt-Transporter, ATP-Bindeprotein	802	_,			2.06
D-Alanin-D-Alanine-Ligase verwandtes Protein	813	2.28		2.84	3.78
Trimethylamin:Corrinoid-Protein	818	2.58		_ ,° .	0,70
Formiat-Hydrogenlyase-Untereinheit 4	823	2.56			2.39
Hydrogenase-4 Komponente F	825	2,75			_,,
Formiat-Hydrogenlyase Untereinheit 5 Vorläufer	826	2,45			2.12
Konserviertes Protein	842	2,15			2,12 2 24
O-Antigen-Translocase	884		2.03		2,21
Konserviertes Protein	904		2,05		2 34
3-Phosphoshikimate_1_Carboxyvinvltransferase	921	2.68			2,51
Thymidylate-Synthase	922	2,00			
Fe-S-Oxidoreduktase	939	2,51			2 57
Asnartat-Carhamovltransferase, regulatorische Untereinheit	946	2 19			2,57
SSU Ribosomales Protein S17F	955	2,19		2.08	
Konserviertes Protein	1008			2,00	
Flavoredoxin	1011			2,11 2.08	
Ribonuklesse BN	1018			2,00	
Hypothetisches Protein	1035			2,09	
Dimethylamine:Corrinoid-Methyltransferase	1052			$2,0^{\circ}$	3 31
Dimethylamine:Corrinoid-Methyltransferase C-terminale Domäne	1052			2,27 2,07	5,51
Dimethylamine-Permease	1054			2,07	2.18
Hypothetische signaltransdudierende Histidin-Kinase	1055	2 29			2,10
Isoleucyl-tRNA-Synthetase	1057	2,23			2.26
Hypothetisches Protein	1071				2.09
Hypothetisches Protein	1091			2.03	_,,
Möglicher Transkriptionsregulator	1104			2,00	2.34
Typ I Restriktions-Modifikations System Restriktionsuntereinheit	1122	2.38			2,51
Methylentetrahydrofolat-Dehydrogenase	1132	2,06			
Serine-Hydroxymethyltransferase	1133	2,10			2.25
Hydrolase (HAD-Superfamilie)	1145	2,10		2.06	2,25
5-Methyltetrahydropteroyltriglutamathomocysteine-Methyltransferase	1150			2.02	
Kobalt-Transporter. ATP-Bindeprotein	1150			2,02	2.00
Konserviertes Protein	1157			2.33	2,00
Hypothetisches Protein	1165			2.19	
Hypothetisches Protein	1168			2.33	
kleines Hitzeschockprotein	1169			_,	2.15
Konserviertes Protein	1177			2.08	,
Putativer Chloridkanal	1183		2.14	,	2.33
Konserviertes Protein	1195		,		2,06
Cobyrsäure-a.c-Diamide-Synthase	1197			2.22	,
Konserviertes Protein	1201	2,97		, =	
Hypothetisches Protein	1203	,		2,13	
Konserviertes Protein	1220			2.00	
---	------	------	-------	-------	------
Humothatiashas Dratain	1220			2,09	2.06
Clutathion reguliertes Kalium Efflux System Protein	1229				2,00
Adenulosuccipata Lyaca	1230				2,50
Gerenvloerenvlolveervldinheenhet Syntheee	1244	2.06			2,21
Mahyl CoM Paduktasa System, Komponenta A2 Homolog	1240	2,00			
Vonsorviortes Protein	1247	2,22		2.00	
APC Transporter Dermoore	1250			2,09	
Dutativas klainas Hitzasahaakmatain	1257	2.61		2,05	
Clutemate Sumthage, angle Kette	1262	2,01	2 42	2 20	4.01
Clutamate Synthase, große Kette	1207		2,43	2,39	2.05
Chitamate Synthese, große Kette	1200	2.25	3,74	2,33	2,95
Figen Schwafel Bindenrotein	1209	2,23			
Vonsorviortes Protein	1201	2,14			
Konserviertes Protein	1203	2,30			2 20
Konserviertes Protein	1207				2,20
Nonserviertes Protein	1200	2.26			2,09
Precomin 2D C17 Mathyltranafaraaa	1295	2,20			
Cabalamin Biographosoprotain C	1294	2,00			
Discouring 4 C11 Methodesenformer	1293	2,19			
Precorrin-4-C11-Methyltransferase	1297	2,11			2.02
Precorrin-2-C20-Methyltransferase	1298	2,45	2 20		2,02
Zinklinger Protein	1303		2,39		0.00
Putatives Transcription-Antiterminations-Protein NusG	1308	0.07			2,23
LSU Ribosomales Protein L11P	1309	2,27			0.10
LSU Ribosomales Protein L10P	1311	0.00			2,12
LSU Ribosomales Protein L12AE	1312	2,36			
Serine/Threonine Protein-Kinase	1321	2,34			0.10
Regulatorisches Protein (putative)	1347				2,13
Alkyl-Sulfatase	1351	a (a	• • •		2,16
Wolfram-Formylmethanofuran-Dehydrogenase, Untereinheit D	1352	2,42	2,92	3,41	3,68
Wolfram-Formylmethanofuran-Dehydrogenase, Untereinheit B	1353	2,38	2,76	3,64	4,35
Wolfram-Formylmethanofuran-Dehydrogenase, Untereinheit A	1354			3,58	4,35
Katalase	1381				2,06
Konserviertes Protein	1388			• • •	2,20
Zelloberflächen-Glycoprotein	1404			2,30	
Hypothetisches Protein	1405			2,26	
Hypothetisches Protein	1451				2,46
Hypothetisches Protein	1455			2,35	
SSU Ribosomales Protein S19E	1457				2,08
Konserviertes Protein	1458				2,12
Hypothetisches ATP-Bindeprotein	1459				2,05
LSU Ribosomales Protein L39E	1460				2,88
LSU Ribosomales Protein L31E	1461			2,24	
Protein Translationsinitiations-Factor 6	1462				2,51
Stress-induzierter Transkriptionsregulator	1465				2,04
Konserviertes Protein	1475				2,02
Hypothetisches Protein	1476	2,18			
Typ I Restriktions-Modifikations-System, Spezifitäts-Untereinheit	1495				2,14
Hypothetisches Protein	1516				2,48
Hypothetisches Protein	1527			2,07	
Hypothetisches Protein	1539			2,10	
Wolframat-Transporter, Permease	1553			2,22	
Hypothetisches Protein	1555			2,06	
Tetrahydromethanopterin-S-Methyltransferase, Untereinheit E	1567	2,17			
Tetrahydromethanopterin-S-Methyltransferase, Untereinheit D	1569	2,50			2,15
Tetrahydromethanopterin-S-Methyltransferase, Untereinheit C	1570	2,63			2,05
Tetrahydromethanopterin-S-Methyltransferase, Untereinheit B	1571	2,60			

Tetrahydromethanopterin-S-Methyltransferase, Untereinheit A	1572	2,96	2,17		
Tetrahydromethanopterin-S-Methyltransferase, Untereinheit F	1573	2,15			
Putatives regulartorisches Protein	1582			2,24	
Konserviertes Protein	1620				2,18
Konserviertes Protein	1642			2,01	
Universelles Stressprotein	1658			2,22	
Inorganische Pyrophosphatase	1666				2,02
Monomethylamine:Corrinoid-Protein	1669			4,92	6,00
Monomethylamine:Corrinoid-Methyltransferase, C-terminale Domäne	1671			4,70	7,34
Archaeosin tRNA-Ribosyltransferase	1696			2,04	
Glycyl-tRNA-Synthetase	1715	2,00			
Glutaredoxin-ähnliches Protein	1736			2,13	
Anaerobe Ribonucleosidetriphosphat Reduktase	1737	2,21			
Putativer aliphatischer Sulfonate-Bindeprotein Voläufer	1742				2,25
Putative Methyltransferase	1746			2,07	2,76
Konserviertes Protein	1747			2.53	2.13
Konserviertes Protein	1748			,	2.18
Arginyl-tRNA-Synthetase	1754	2.20	2.22		,
Pvruvate-Svnthase. γ-Untereinheit	1760	2.09	,		2.05
Pyruvate-Synthase. α -Untereinheit	1762	2.47			_,
Chemotaxis-Protein	1777	_,			2.30
DNA-Primase	1806			2 59	2,00
(S)-2-Hydroxysäure-Dehydrogenase	1810			2,37	
Fe-S-Oxidoreduktase	1811			2.27	
2-Isopronylmalate-Synthase	1816			4 13	3 70
Hypothetisches Protein	1828			1,15	2 28
Konserviertes Protein	1831				2,20
Monomethylamin:Corrinoid-Methyltransferase MtmB C-terminale	1051				2,10
Domäne	1835			4.46	6.23
Monomethylamin:Corrinoid-Methyltransferase	1836			4.14	4.35
Monomethylamine:Corrinoid-Protein	1837			2.74	2.31
O-linked N-Acetylglucosamine-Transferase	1841			2.03	-,01
Phosphoglycolat-Phosphatase	1842			2,28	
Hypothetisches Protein	1868			2.05	
Hypothetisches Protein	1880			2,05	
Hypothetisches Protein	1893			2,20	2 12
Glutaredoxin	1895				2 01
Konserviertes Protein	1899			2 22	2,01
Verzweigte_Aminosäuren_Transport_Protein	1903			2,22	
Konserviertes Protein	1909			2,57	2.00
Konserviertes Protein	1909			2 35	2,00
Hypothetisches Protein	1921			2,55	
Hypothetisches Protein	1921			2,29	
Konserviertes Protein	1024			2,10	
ABC Transporter Dermanse	1935			2,05	
ADC-ITAIIsponer, refinease	1930			2,09	
Konserviertes Protein	1938			2,07	
Hypothetisches Protein	1942			2,20	
Hypothetisches Protein	1940			2,33	
Hypothetisches Protein	1950			2,09	
Transkriptioneregulator MarP Familia	1905			2,17	2.08
Chitamin Synthetics	1904		5 76	202	2,00
Ornithin December Vilese	1970	2 70	5,20	3,02 2 10	4,43 2 1 0
Unnunn-Decaluoxylase Katoisovalarat Ovidoraduktasa Untarainhait	1973	2,19		∠,4ð	∠,1ð
Katoisovalerat Ovidoraduktase Untersinheit	17/4	2,10		2.04	
Kulosovaleilat-Oxidoledukiase Undfellineli Hupothatisches Protein	1002			2,04 2.00	
Typometisches Protein	1900			2,00	
Hypoinetiscnes Protein	1988			2,27	

Konserviertes Protein	1993	2,34			
$A_1A_0H^+$ ATPase, Untereinheit D	1998	2,03			
$A_1A_0H^+$ ATPase, Untereinheit B	1999	2,14			
$A_1A_0H^+$ ATPase, Untereinheit C	2002				2,02
$A_1A_0H^+$ ATPase, Untereinheit E	2003				2,19
A ₁ A ₀ H ⁺ ATPase, Untereinheit K	2004	2,04			
Hypothetische signaltransduzierende Histidin-Kinase	2032			2,22	
DNA-gerichtete RNA-Polymerase, Untereinheit H	2035		2,20		
DNA-gerichtete RNA-Polymerase, β-Kette	2036				2,11
DNA-gerichtete RNA-Polymerase, β-Kette	2037	2,03			
DNA-gerichtete RNA-Polymerase, Untereinheit A'	2038	2,08			
DNA-gerichtete RNA-Polymerase, Untereinheit A"	2039			2,21	
DNA-gerichtete RNA-Polymerase, Untereinheit A"	2039	2,22			
LSU Ribosomales Protein L30E	2040	2,28			2,27
NusA-Protein Homolog	2041	2,12	2,16		2,09
SSU Ribosomales Protein S7P	2043	2,18			2,11
SSU Ribosomales Protein S10P	2046	2,11			
Konserviertes Protein	2054			2,25	
Dihydropyrimidinase	2055			2,05	
Konserviertes Protein	2058			2,14	
Konserviertes Protein	2061			2,08	
Transkriptionsregulator, ArsR-Familie	2063			2,03	
Konserviertes Protein	2075			2,00	
Acetyltransferase	2082			2,20	
Dolichylphosphat-Glukose-Synthetase	2085			2,00	
Glycosyltransferase	2087			2,19	
Konserviertes Protein	2108			2,44	
Hypothetisches Protein	2120			2,07	
Konserviertes Protein	2126			2,31	
Konserviertes Protein	2134			2,06	
Typ I Restriktions-Modifikations System, Spezifitäts-Untereinheit	2135			2,21	
Hypothetisches Protein	2139			2,45	
Hypothetisches Protein	2146			2,12	
Hypothetisches Protein	2148			2,06	
Hypothetisches Protein	2158			2,02	
Putative DNA-Rekombinase	2159			2,05	
Konserviertes Protein	2163	2 00		2,10	
Konserviertes Protein	2167	2,90		2.07	
Hypothetisches Protein	2195			2,07	
Phosphoribosylformylglycinamidin-Synthase	2201			2,30	
Konserviertes Protein	2218	2.02		2,10	
Konserviertes Protein	2223	2,03		2 1 0	2.05
Na /H -Anuporter	2224			2,18	2,05
Nonservientes Protein	2240	1 10		2,01	2.00
R Katagayi Synthaga/Thiologa	2243	4,10		2.62	2,00
p-Ketoacyt-Synthase/Thiolase	2200			2,02	
Bydroxymethylgiularyl-CoA-Synthase	2201			2,80	
	2202			2,33	
Rollservienes Protein	2298			2,08	<u>ר ר</u>
Agmetinese	2307				2,20
Aginatinase Venserviertes Drotein	2300			2.96	2,29
Konserviertes Protein	2309	2 20		3,00	2,22
Coenzyme Fabhängige N. N. Methylen Tetrahydromethanonterin	2309	2,30			
Reduktase	2377	2.48			
Transposase	2382	2,10		2.21	
Konserviertes Protein	2389			2.15	
				-,10	

Fa/S Cluster Bindeprotein	2202			2.02	
Nucleosid Triphosphetece	2393			2,02	
Protein Translation initiation Faktor 2 y Unterainhait (IF 2g)	2400			2,13	2.11
Konserviertes Protein	2409				2,11 2.01
ABC Transporter ATP Bindeprotein	2414			2 20	2,01
Hypothetisches Protein	2433	2.03		2,20	
Dipantid ABC Transportar Bindeprotein	2444	2,03			2.00
Dipeptid ABC Transporter, Bindeprotein	2450			2.01	2,09
Dipeptid APC Transporter, Dermana	2451			2,01	2,05
Dipeptid APC Transporter, Dermaase	2452	2.00			2,10
Konserviertee Protein	2455	2,09		2.02	2,57
Konserviertes Protein	2430			2,03	
Konserviertes Protein	2474			2,14	
Konserviertes Protein	2470			2,08	
Hypothetisches Protein	2479			2,24	
Rypoineuscnes Protein	2494			2,10	2.01
Surface-Layer-Protein B	2500			2.00	2,01
Natrium-abnangiger Transporter	2511			2,09	
A DC T	2523			2,20	
ABC-Transporter Permease	2531			2,05	
Hypothetisches Protein	2543			2,03	
Putatives transmembranes Efflux-Protein	2554			2,08	
Hypothetisches Protein	2556			3,79	3,28
CTP-Synthase	2558		2,75	2,14	2,49
Kohlenmonoxid-Dehydrogenase	2560			2,29	
FeS-Protein	2561			2,16	
Universelles Stressprotein	2562	2,18			
Konserviertes Protein	2563			2,20	
Threonin-Synthase	2572	2,11			
Cytochrom C-typ-Biogenese-Protein	2578			2,17	
FeS-Flavoprotein	2587			2,04	
Methanol:Corrinoid-Protein	2611			2,02	
SSU Ribosomales Protein S3AE	2621	2,01		2,11	2,51
ATP-abhängige DNA-Helicase	2638			2,21	
Hypothetisches Protein	2644			2,13	
Konserviertes Protein	2646			2,07	
Hypothetisches Protein	2663			2,08	
Natrium-Calcium-Austauscher	2668			2,68	2,10
Konserviertes Protein	2672				2,08
Putativer mechanosensitiver Ionenkanal	2674			2,25	
Hypothetisches Protein	2686			2,07	
Hypothetisches Protein	2693			2,30	
Putativer Molybdopterin umwandelnder Faktor	2721			2,03	
Konserviertes Protein	2737			2,20	
LSU Ribosomales Protein L37AE	2741	2,96			
Ribonuklease	2742	2,45			
Ribonuklease	2743		2,17		
Hypothetisches Protein	2744	2,16			
Mögliche ATP-abhängige-Helikase	2755			2,06	
Transposase	2774				2,08
Konserviertes Protein	2776			2,10	
Konserviertes Protein	2778			2,04	
Hypothetisches Protein	2779			2,04	
Molybdän-Transporter, Permease	2785			2,37	
Nitrogenase FeMo-Cofaktor-Biosynthese-Protein NifN	2788			2,10	
Stickstoff-fixierende NifHD Region GlnB-ähnliches Protein	2792			2,22	
Spaltungs- und Polyadenylierungsspezifitätsfaktor, 100 kD Untereinheit	2808			2,37	2,50
β-Phosphoglucomutase	2809			2,40	
•				,	

Translationsinitiationsfaktor 1A	2829			2,25	
DNA-gerichtete RNA Polymerasen I, II and III, 7,3 kD Polypeptid	2830			2,62	2,20
Translationsinitiationsfaktor 1A (EIF-1A)	2831				2,09
Ech-Hydrogenase, Untereinheit	2838	2,30			
Ech-Hydrogenase, Untereinheit	2839	2,36			
Ech-Hydrogenase, Untereinheit	2840	2,59			
Ech-Hydrogenase, Untereinheit	2841	2,91			
Ech-Hydrogenase, Untereinheit	2842	2,80			
Natrium/Prolin-Symporter	2858	3,95			
L-Sorboson-Dehydrogenase	2860			2,16	
Hypothetisches Protein	2862			2,12	
Coenzyme F ₃₉₀ -Synthetase/Phenylaceat-Co A-Ligase	2864	3,90			
Konserviertes Protein	2866			2,15	
Konserviertes Protein	2870			3,32	
Hypothetisches Protein	2877				2,83
Enolase	2893	2,19			
Hypothetisches Protein	2902			2,18	
Tryptophan-Synthase, β-Kette	2907			3,07	
Anthranilat-Phosphoribosyltransferase	2910	2,12		2,73	
N-5'-Phosphoribosyl-Anthranilate-Isomerase	2911	2,15		3,55	
ABC-Transporter, ATP-Bindeprotein	2925	,		2,12	
Dipeptid/Oligopeptid-Bindeprotein	2930			ŕ	2.02
SSU Ribosomales Protein S6E	2931			2.48	,
SSU Ribosomales Protein S28E	2934			,	2.69
LSU Ribosomales Protein L7AE	2935				2.72
SUA5 Protein	2944			2.09	,
Kationen-Transporter	2946			2.15	
Kationen-Transporter	2955			2.23	3.92
Glycosyl-Transferase	2971			,	2.00
6-Pyruvovltetrahydropterin-Synthase	2982			2.64	_,
Konserviertes Protein	2983	2.71		5.89	
Konserviertes Protein	2984	,		2.96	
Konserviertes Protein	2985	2.16		6.42	
2-Dehydro-3-Desoxyphosphoheptanote-Aldolase	3007	2.04		,	
Hypothetisches Protein	3012	2.78			2.67
Konserviertes Protein beteiligt am Zuckermetabolismus	3015	2,09			2,56
Hypothetische signaltranduzierende Histidin-Kinase	3043	,		2.34	,
Putative NADH-Oxidase	3045			2,19	
Phosphoglycerate-Mutase	3046			,	2,17
Transposase	3052			2.23	,
Valvl-tRNA-Synthetase	3098	2.51	2.16	,	2.56
Hypothetisches Protein	3105	,	,	3.68	5.57
Flagellin B1-Vorläufer	3106			2.32	,
Chemotaxis-Protein	3109			2.28	
Tryptophan-Synthase, β-Kette	3120			2.04	
Hypothetisches Protein	3142			2.14	
Konserviertes Protein	3143			_,	2.13
Hypothetisches Protein ähnlich zu C-terminalen Domäne von HdrB	3170			2.51	3.08
Konserviertes Protein	3172		2.15	_,	2.00
Surface-Laver-Protein (putativ)	3173		_,		2.30
Transposase	3174				2.12
Konserviertes Protein	3178			2.02	_,
Flagillin B1	3195			2.00	
Hypothetisches Protein	3225			2.19	
Oligopeptid-Bindeprotein OppA	3234			_,	2.21
Putative NADH-Oxidase	3235			2.22	_, _ .
Konserviertes Protein	3240		2,67	,⊐ -	2,55
			-		-

Konserviertes Protein	3246				2,21
Hypothetisches Protein	3250			2,13	
Hypothetisches Protein	3268	3,00			
Hypothetisches Protein	3285			2,01	
Transposase	3289			2,02	
Eisen-abhängiger Repressor	3291			2,12	
LSU Ribosomales Protein L24P	3296				2,07
Konserviertes Protein	3320			2,02	
Hypothetisches Protein	3342			2,25	
Konserviertes Protein	3394	2,12		2,63	2,53
Konserviertes Protein	3395			2,07	
Konserviertes Protein	3410			2,16	
Konserviertes Protein	3416			2,09	
Konserviertes Protein	3426			2,23	2,49
Hypothetisches Protein	3447			2,03	
Konserviertes Protein	3481			2,18	
Konserviertes Protein	3509				2,16
Hypothetisches Protein	3585			2,04	
Konserviertes Protein	3646			2,76	2,51
Hypothetisches Protein	3734			2,91	3,68
2-Isopropylmalate-Synthase	3829	2,17			
Konserviertes Protein	3996			2,18	
Hypothetisches Protein	4058			2,09	
Hypothetisches Protein	4081			2,30	
Hypothetisches Protein	4087			2,09	
Konserviertes Protein	4105				2,24
Konserviertes Protein	4107			2,12	
Hypothetisches Protein	4182			2,00	
DNA-Gyrase, Untereinheit A	4242	2,03	2,17		2,56
Konserviertes Protein	4438			2,15	

Tab. 38: Früh induzierte Gene in *M. mazei* **Gö1 nach einem hyperosmotischen Schock auf 800 mM.** Die Gen ID bezieht sich auf die Nomenklatur in ERGO, Induktion (x-fach) ist die x-fache Änderung der Genexpression (berechnet durch SAM) zu dem angegebenen Zeitpunkt.

		Induktion (x-fach)			
Gen	Gen ID	1,5h	4h	8h	12h
T/G-spezifische DNA-Glycosylase	41		2,23		
Mevalonat-Kinase	94	2,92			
Hypothetisches Protein	251	2,35			
Divalente Kationen-Ttansportprotein	272		2,25		
ABC-Transporter, ATP-Bindeprotein	283		2,11		
Konserviertes Protein	351		2,16		
3,4-Dihydroxy-2-Butanon-4-Phosphat-Synthase	356		2,73		
Hypothetisches Protein	630	2,39			
Hypothetisches Protein	682		2,68		
Putatives sensorisches Protein	816		2,11		
Phosphoribosylformimino-5-Aminoimidazolcarboxamidribotide-					
Isomerase	873		2,45		
SAM-abhängige Methyltransferases	928	2,46	2,23		
Transposase	1069	2,57			
Hypothetisches Protein	1118		2,12		
Phycocyanin α-Untereinheit Phycocyanobilin-Lyase	1176		2,12		
Putatives Flagellen-verwandtes Protein J	1240		2,41		
Hypothetisches Protein	1271	2,38			
Hypothetisches Protein	1334		2,60		

Regulatorisches Protein (putativ)	1347	2,11	
Konserviertes Protein	1372		2,18
Kobalt-Zink-Cadmium-Resistenz Protein	1379		2,66
Hypothetisches Protein	1430		2,15
ATP-abhängige DNA-Ligase	1436		2,16
Universelles Stressprotein	1657		2,05
Konserviertes Protein	1677		2,05
Polyphosphatkinase	1728		2,78
Peptidketten freisetzender Faktor	1755	2,22	
Origen-Erkennungskomplex Untereinheit	1787	3,35	
Putative tRNA-2-Phosphotransferase	1803		2,00
Hypothetisches Protein	1980		2,20
Zink-Metalloprotease	2019		2,25
Transkriptionsregulator, ArsR-Familie	2067		2,11
Transposase	2078		2,28
Konserviertes Protein	2140		2,31
Hypothetisches Protein	2153	11,94	2,74
Hypothetisches Protein	2154	4,56	
Fe-enthaltende Alkohol-Dehydrogenase	2164	2,97	
Konserviertes Protein	2202		4,37
Konserviertes Protein	2210		2,55
Hypothetisches Protein	2212	5,59	
Konserviertes Protein	2285		2,40
Konserviertes Protein	2459		2,05
Konserviertes Protein (Archaea)	2577	2,82	
Acetyltransferase	2708		2,49
Nitrogenase, Fe/Mo-Protein, β-Kette	2789		2,39
Nitrogenase, Fe/Mo-Protein, α-Kette	2790		2,31
Translationsinitiation-Faktor 1A	2829		3,56
CdcH-Protein	2958	12,49	
Bacterioferritin	3019	5,05	
Hypothetisches Protein	3078	2,63	
Hypothetisches Protein	3124	2,67	
Sulfit-Reduktase, assimilatorischer Typ	3138		2,10
Hypothetisches Protein	3383	7,24	
Konserviertes Protein	3431	2,15	
Hypothetisches Protein	3511	4,94	
Hypothetisches Protein	3792		2,15
Hypothetisches Protein	4044	8,14	
Transposase	4313		2,57
Transposase	4441	6,38	

Tab. 39: In der Mitte der lag-Phase induzierte Gene in *M. mazei* Gö1 nach einem hyperosmotischen Schock auf 800 mM. Die Gen ID bezieht sich auf die Nomenklatur in ERGO, Induktion (x-fach) ist die x-fache Änderung der Genexpression (berechnet durch SAM) zu dem angegebenen Zeitpunkt.

	Induktion (x-fach)					
Gen	Gen ID	1,5h	8h	13h	21h	
Cholin-Transporter Otb, Cholin-Bindeprotein	20			2,07		
Konserviertes Protein	25			2,28		
Amidohydrolase (putativ)	34			2,43		
Konserviertes Protein	55			2,35		
10 kDa Chaperonin	125			2,71		
Konserviertes Protein	129			2,03		

Konserviertes Protein	147		2,48
Konserviertes Protein	189	2,24	3,02
Hypothetisches Protein	191		2,09
Konserviertes Protein	192	3,21	2,85
Deoxycytidin-Triphosphat-Deaminase	278		2,23
Glycosyl-Transferase	301		2,10
Mögliche Serin\Threonin-Protein-Phosphatase	304		2,12
Konserviertes Protein	355	2,19	2,38
Konserviertes Protein	395		2,05
Hypothetisches Protein	402		2,19
Konserviertes Protein	429		2,34
Konserviertes Protein	471		2,03
Hypothetisches Protein	476	4,30	3,04
Hypothetisches Protein	537		2,09
Konserviertes Protein	558		2,21
Thioredoxin	577		2,31
Trimethalamin:Corrinoid-Protein	609		2,02
Konserviertes Protein	634		3,39
Pyruvat-Formiat-Lyase aktivierendes Enzym	654	2,52	2,09
Fe ²⁺ -Transportprotein B	658		2,37
Pyruvat-Formiat-Lyase aktivierendes Enzym	669	2,33	2,78
Hypothetisches Protein	684	2,24	2,02
Hypothetisches Protein	703		2,32
Konserviertes Protein	711		2,56
Möglicher Trankriptiosregulator	715		2,05
Konserviertes Protein	732		3,61
Hypothetisches Protein	771		2,25
Polysaccharid-Deacetylase	877	2,11	2,33
Nitrilase	929		2,28
ATP-abhängige DNA-Helicase	941		2,06
Konserviertes Protein	951	• • • •	3,11
Konserviertes Protein	959	2,49	2,22
Konserviertes Protein	961		2,29
Pirin	992	0.10	2,23
Transposase	999	2,13	2,31
Lipopolysaccharid N-Acetylglucosaminyltransferase	1032	2,17	2,16
Konserviertes Protein	1037		2,33
Hypothetisches Protein	1060		2,07
Uxidoreduktase	1081	2 20	2,22
Hypothetisches Protein	1089	2,38	2,63
Hypothetisches Protein	1092		2,43
Protease I Vonconviortos Drotoin	1110		2,33
Nonservienes Protein Dhaanharikaasialaksin amid Earmasiltranafaraas	1124		2,27
2 Demethylyhigyingn 0.2 Methyltransferres	1154	2 70	2,17
J-Demethylubiquinon-9,5-Methylufansierase	1105	2,19	2,29
Hypothetisches Protein	1207		2,23
Van Dra Aminoportidaça	1208		2,01
Add-F10-Annhopephidase	1273		2,12 2.40
Hypothetisches Protein	1346		2,40
Hypothetisches Protein	1365		2,01 2,35
Hypothetisches Protein	1305		2,35 A 13
Polyprenyltransferase	1380		$^{+,15}_{201}$
Maf_Protein	1420		2,01 2,03
Glutathion_regulieres Kalium_Efflux_System	1420		2,05
Hypothetisches Protein	1429		2,10
Konserviertes Protein	1475		2,50
Transporter, LysE-Familie	1500	3.00	3.28
Hypothetisches Protein	1508	2,00	2.68
FeS-Flavoprotein	1518		2.38
·····			_,

ATP-abhängige Protease La	1519		8,61
Transkriptionsregulator, MarR-Familie	1520		3,15
Hypothetisches Protein	1522	2,62	2,06
Hypothetisches Protein	1524		3,28
Hypothetisches Protein	1537	2,68	2,58
Phycocyanin α-Untereinheit Phycocyanobilin-Lyase verwandtes Protein	,		
CpcE/NblB-Familie	1545		2,10
Konserviertes Protein	1566		2,06
Hypothetisches Protein	1580		2.01
Monomethylamin:Corrinoid-Protein	1669	2.46	2.24
Monomethylamin-Permease (C-terminale Domäne)	1673	,	2.04
Konserviertes Protein	1714		2,06
Chaperon Protein	1722	2.45	2,27
Konserviertes Protein	1798	2,15	2 98
Konserviertes Protein	1853	2.82	2,50 2.42
Hypothetisches Protein	1855	2,02	2,72 2 38
Hypothetisches Protein	1801		2,50 2,33
Serine O Acetultransforase	1891		2,55
APC Transporter ATD Dindeprotein	1037		2,02
Abc-Hanspoller, Alf-bindepioleni Vonsorviortos Drotoin	1937	2 22	2,04
Konserviertes Protein	1941	2,32	2,17
Konserviertes Protein	1955		2,63
Iransporter	1960		2,09
Konserviertes Protein	1991		2,30
Konserviertes Protein	2069		2,52
Transkriptionsregulator, ArsR-Familie	2072		2,49
Glucoamylase	2083		2,19
Typ I Restriktions-Modifikations System, Methylierungs-Untereinheit	2103		2,11
Konserviertes Protein	2169	2,07	2,23
Konserviertes Protein	2170		3,98
Hypothetisches Protein	2189		2,17
Konserviertes Protein	2193	3,16	2,60
Asparagin-Synthetase (Glutamin-hydrolysierend)	2199		2,32
Konserviertes Protein	2213		3,31
Konserviertes Protein	2217	2,42	2,88
Methionyl-tRNA-Synthetase	2257		2,48
Putative Methyltransferase	2276	2,38	2,50
Endonuclease III	2280		2,49
MutT-verwandtes Protein	2305	2,11	2,57
Sulfate-Adenylyltransferase	2417		3,14
Hypothetisches Protein	2469		2,08
Konserviertes Protein	2537		2,29
DNA-Integration/Rekombination/Invertion	2591	2,52	2,18
Konserviertes Protein	2600	,	2.84
Methylcobalamin:Coenzyme M-Methyltransferase	2613		2.94
Konserviertes Protein	2651		2.45
Hypothetisches Protein	2669		2.19
Hypothetisches Protein	2695		$2,1^{\circ}$
Konserviertes Protein	2700		2,00 2 14
Konserviertes Protein	2700		2,1+ 2 74
Hypothetisches Protein	2720		2,74
Ammonium Transporter	2780		2,52
Nitrogenese Figen Drotein	2700	2.04	2,00
Tunogonaso, Elson-Houtin Uunothatische Dermasse	2193 2016	2,94	3,00 2 1 2
Hypometischer Felliease	2010 2076		2,13 254
nypometiscnes Protein	28/0		2,54
rutrescin-Ornitnin-Antiporter	2884		2,06
Glukose-o-Phosphat-Denydrogenase (Coenzym F_{420} -abhängig)	2905		2,22
Putatives Hitzeschockprotein	2956		2,04
Phosphohydrolase	2970	2,08	2,64
NitB-Protein	2980	2,58	2,27
ATP-abhängige RNA-Helicase	2991		2,32

Konserviertes Protein	2992		2,84
Arsen-Resistenz-Protein	2996		2,07
Mögliche Resolvase/Rekombinase	3059		2,03
Hypothetisches Protein	3064		2,19
Hypothetisches Protein	3068	2,07	2,88
Hypothetisches Protein	3231	2,87	2,47
Hypothetisches Protein	3428		2,40
Transposase	3448	2,45	2,07
Konserviertes Protein	3454		2,11
Endonuclease III	3502		2,12
Hypothetisches Protein	3515	2,72	2,36
Hypothetisches Protein	3529		2,73
Konserviertes Protein	3556	3,12	4,35
Hypothetisches Protein	3887	2,37	2,23
Xanthin-Guanin-Phosphoribosyltransferase	4112		2,33
Transposase (N-terminale Domäne)	4307		2,19
Transposase (N-terminale Domäne)	4362		2,28

Tab. 40: Spät in der lag-Phase induzierte Gene in *M. mazei* Gö1 nach einem hyperosmotischen Schock auf 800 mM. Die Gen ID bezieht sich auf die Nomenklatur in ERGO, Induktion (x-fach) ist die x-fache Änderung der Genexpression (berechnet durch SAM) zu dem angegebenen Zeitpunkt.

		Induktion (x-fach)				
Gen	Gen ID	1,5h	8h	13h	21h	
Konserviertes Protein	33			2,59	2,47	
Methyltransferase	104			2,14	2,05	
Hypothetisches Protein	108			3,24	3,65	
Natrium/Glutamat-Symporter	111			3,21	2,36	
Hypothetisches Protein	113			3,28	2,37	
Hypothetisches Protein	114			2,12	2,21	
FeS-Cluster-Bindeprotein	123			2,74	2,16	
60 kDa Chaperonin	126			2,30	2,05	
Rubrerythrin	132				2,23	
Konserviertes Protein	148			2,48	2,38	
Konserviertes Protein	207			2,23	3,16	
Molybdän-enthaltende Formylmethanofuran-Dehydrogenase	220				4,12	
Molybdän-Formylmethanofuran-Dehydrogenase	221				2,02	
Konserviertes Protein	222				2,06	
Konserviertes Protein	226			4,33	2,84	
Konserviertes Protein	228				2,95	
Nicotinat-Nucleotid-Pyrophosphorylase	229				2,39	
Molybdat-ABC-Transporter, ATP-Bindeprotein	230				4,07	
Molybdat-ABC-Transporter, Permease	231			2,61	6,30	
Molybdat-Bindeprotein	232			3,13	8,17	
FeS-Flavoprotein	236				2,62	
Surface-Layer-Protein B	240			5,79	5,55	
Konserviertes Protein	264				2,28	
Deoxycytidin-Triphosphat-Deaminase	278				2,64	
Transkriptionsregulator	284			3,93	3,20	
Glycosyl-Tranferase	286			2,07	2,32	
Typ I Restriktions/Modifikations-System, Restriktions-Untereinheit	307				2,74	
Hypothetische signaltranduzierende Histidin-Kinase	318			2,37	2,32	
Transposase	325				2,14	
O-Acetyl-Transferase	330			4,38	2,94	
Konserviertes Protein	354			3,26	2,17	
Hypothetisches Protein	366			2,43	2,37	
NADH:Flavin-Oxidoreduktases	407			5,02	3,02	
Konserviertes Protein	491			3,53	2,68	
Putative Serin/Threonin-Protein-Kinase	538			2,96	2,25	

Trimethylamin-Permease	610	2,25 2,	,07
Hypothetisches Protein	614	3,70 3,	,95
Sec-unabhängige Protein-Translokase	650	3,21 2,	,49
Hypothetisches Protein	707	2,	,63
Endonuclease III	766	7,30 2,	,60
Konserviertes Protein	767	6,48 5,	,97
Konserviertes Protein	772	6,94 3,	,98
Konserviertes Protein	782	2,64 2,	,69
O6-Methylguanine-DNA-Methyltransferase	785	4,43 4,	,07
Trimethylamin:Corrinoid-Protein	818	2,	,04
Putative ATP-abhängige Na ⁺ -Efflux-Pumpe	819	2,	,03
Konserviertes Protein	828	7,42 4,	,73
Hypothetische signaltranduzierende Histidin-Kinase	855	2,20 2,	,13
Konserviertes Protein	875	2,	,49
Konserviertes Protein	879	4,28 4,	,18
Konserviertes Protein	880	2,69 2,	,38
Glycosyl-Transferase	881	6,99 4,	,14
Konserviertes Protein	889	6,48 4,	,28
Glycosyl-Transferase	896	2,98 2,	,23
Glycosyl-Transferase	897	3,17 2,	,23
Konserviertes Protein	914	2,07 3,	,15
Coenzym F_{420} -Hydrogenase, β -Untereinheit	933	3,47 2,	,83
Konserviertes Protein	942	7,25 6,	,10
Konserviertes Protein	944	2,	,11
Konserviertes Protein	960	2,	,21
Hypothetisches Protein	1040	2,	,02
DNA-Topoisomerase I	1103	4,49 3,	,86
Hypothetisches Protein	1107	7,08 2,	,08
Konserviertes Protein	1119	2,31 2,	,23
HTH-DNA-Bindeprotein	1135	5,67 3,	,80
Acetatkinase	1180	2,	,13
Konserviertes Protein	1216	2,59 2,	,52
Hypothetisches Protein	1222	2,	,52
Lysin-2,3-Aminomutase	1237	35,19 20),23
β-Lysin-Acetyltransferase	1238	34,65 28	3,11
Putatives Flagellen-verwandtes Protein H	1242	3,21 3,	,14
putatives Flavoprotein	1243	2,	,17
Hypothetisches Protein	1272	2,	,62
Phosphat-Transporter, ATP-Bindeprotein	1325	7,31 5,	,59
Phosphat-Transporter, Permease	1327	7,06 5,	,87
Phosphat-Transporter, Permease	1328	45,70 42	2,98
Phosphat-Bindeprotein	1329	64,96 49	9,54
Hypothetisches Protein	1333	4,99 4,	,85
Hypothetisches Protein	1335	2,	,73
Kobalt-Transport-Protein	1339	2,75 2,	,23
Malat-Dehydrogenase	1366	2,21 2,	,22
Hypothetisches transkriptionsregulatorisches Protein	1375	3,31 2,	45
Cystein-Desulfurase, NifS	1377	3,07 2,	32
Hypothetisches Protein	1386	5,61 4,	88
Hypothetisches Protein	1406	2,	.02
Hypothetisches Protein	1408	2,76 2,	42
Hypothetisches Protein	1416	7,59 3,	89
Hypothetisches Protein	1484	3.10 2.	91
Hypothetisches Protein	1486	3.20 2.	.34
Methyltransferase	1488	2.	.00
Flavodoxin	1497	3.92 3.	.09
Hypothetisches Protein	1528	5.10 3.	.57
Molybdän-Formylmethanofuran-Dehydrogenase	1548	4.07 2	.64
Molybdän-enthaltende Formylmethanofuran-Dehvdrogenase. Is	oenzym I.	., . ,	
Untereinheit E	1551	2.	.92

Hypothetisches Protein	1557	3,89	3,01
Putative Metall-abhängige Hydrolase	1559	2,15	2,47
Transkriptionsregulator	1560	2,22	2,87
Molybdopterin-Biosynthese, MoeB-Protein/ThiF-Protein	1581		2,08
Konserviertes Protein	1593		2,29
Aminosäure-Acetyltransferase	1594		2,01
Konserviertes Protein	1595		2,05
Hypothetisches Protein	1650	13,58	7,19
Hypothetisches Protein	1660	4,69	2,92
Lysly-tRNA-Synthetase (PylS)	1662		3,29
Methylcobalamin:Coenzyme M-Methyltransferase	1668	2,86	2,43
Hypothetisches Protein	1692		2,03
Hypothetisches Protein	1695		3,30
Molybdän-Cofaktor-Biosynthese-Protein	1710	2,07	2,90
Konserviertes Protein	1796		2,44
Konserviertes Protein	1800	3,72	2,60
FeS-Cluster-Bindeprotein	1875	2,46	2,30
Transkriptionsregulator	1883	4,35	3,58
Hypothetisches Protein	1908	2,70	2,14
Hypothetisches Protein	2023	5.26	4.73
Konserviertes Protein	2048	- ,	2.04
Transposase	2077	2.58	2.63
Transposase	2079	2,50	2,00
Trn-Repressor-Bindeprotein	2084	6 51	3 78
Konserviertes Protein	2004	0,51	2.04
Hypothetisches Protein	2121	6.11	2,0 4 4 36
Molyhdonterin umwandelnder Faktor, Untereinheit 2	2100	0,11	2,50
Konserviertes Protein	2107	2 11	2,23
Konservieres Floteni Vahalt Transmortan ATD Dindonnatain	2270	5,44	3,17 2,66
Kobali-Transporter, ATP-Dilideprotein	2212	2.04	2,00
Mypolitetisches Floteni Mathyltranafaraaa	2343	2,94	2,15
Claboration	2546	3,00	2,05
Giykosyitranierase	2422	5,14	2,27
Phypothetisches Protein	2424	0,38	3,10
	2420	20,08	20,33
Iranskriptionsregulator, Icc-verwandtes Protein	2433	2,33	2,55
O-linked-N-Acetylglucosamin-Transferase	2475	2,12	2,66
Glycinbetain-Transporter Ota, Permease	2484	6,98	4,83
Hypothetisches Protein	2519	5,70	5,53
Kurzketten Dehydrogenase/Reductase	2623	2,11	2,28
Konserviertes Protein	2627	2,77	2,08
Glycerin-3-Phosphat-Cytidylyltransferase	2680	2,55	2,40
Hypothetisches Protein	2705	2,85	2,29
Hypothetisches Protein	2728	3,21	3,37
Uncharakterisierte Permease	2834	4,15	2,79
Konserviertes Protein	2867	16,21	9,04
Transkriptionsregulator, ArsR-Familie	2869	3,08	2,67
Hypothetisches Protein	2877	7,57	3,57
Putatives Hitzeschockprotein	2957	2,67	2,53
Konserviertes Protein	3017		2,26
Konserviertes Protein	3075		2,06
Transkriptionsregulator	3126	3,85	2,37
Konserviertes Protein	3131	2,82	3,20
Konserviertes Protein	3132	2,46	5,07
Hypothetisches Protein ähnlich zur C-terminalen Domäne von HdrB	3184	, -	2,16
Hypothetisches Protein	3309		2,02
Konserviertes Protein	3466	3.06	2.47
Konserviertes Protein	3699	4.06	2.57
Hypothetisches Protein	3769	2.10	2.36
Hypothetisches Protein	3806	3 38	2,41
Hypothetisches Protein	3960	3 90	2,22
Typoureusenes i rotem	5700	5,0	

Konserviertes Protein	4000	2 20 2 71
	4009	2,29 2,71
CO-Dehydrogenase/Acetyl-CoA-Synthase, ε-Untereinheit	4020	2,04
Molybdän-Formylmethanofuran-Dehydrogenase	4141	3,94
Transposase	4388	2,03

Tab. 41: Während der gesamten lag-Phase induzierte Gene in *M. mazei* Gö1 nach einem hyperosmotischen Schock auf 800 mM. Die Gen ID bezieht sich auf die Nomenklatur in ERGO, Induktion (x-fach) ist die x-fache Änderung der Genexpression (berechnet durch SAM) zu dem angegebenen Zeitpunkt.

		Induktion (x-fach)			
Gen	Gen ID	1,5h	8h	13h	21h
Cholin-Transportsystem Otb, Permease	22	,	4,92	3,69	2,63
Cholin-Transportsystem Otb, Permease	23		2,72	2,51	2,08
Konserviertes Protein	50		3,35	4,38	2,41
Konserviertes Protein	51		2,34	4,37	2,78
Transporter	187	4,85		2,17	
Transkriptionsregulator, MarR-Familie	188	14,34		4,19	2,11
DNA-Reparatur-Helikase	238		2,55	2,54	2,08
Konserviertes Protein	256		3,16	4,76	3,19
Konserviertes Protein	317		3,14	2,95	2,29
Kationen-Transporter	397		2,62	4,73	3,33
Konserviertes Protein	637	2,04		2,65	2,25
Sec-unabhängige Protein-Translokase	649		2,12	2,51	2,47
Konserviertes hypothetisches Protein	688		4,41	5,77	2,10
GrpE-Protein	724	2,34		2,34	2,50
Hypothetisches Protein	758	2,14		2,21	2,37
DNA-Polymerase IV	778		2,26	2,41	2,17
Thioldisulfid-Isomerase/Thioredoxin-verwandtes Protein	854		2,70	2,79	2,39
Putativer Transkriptionsregulator	856	4,80		3,58	2,25
Konserviertes Protein	878	6,01	4,61	17,32	12,80
Konserviertes Protein	1033		3,16	3,56	2,28
Konserviertes Protein	1048	2,11		2,48	2,30
Konserviertes Protein	1125	10,76		5,70	4,64
Kleines Hitzeschockprotein	1169	13,50		6,50	3,17
Phosphat-Acetyltransferase	1181	2,66	3,02	2,39	
Hypothetisches Protein	1187		2,08	3,25	2,76
ABC-Transporter, Permease	1254		2,00	2,07	2,05
Glutamine-Synthetase	1266	13,10		3,57	2,56
Protease (putative)	1277		2,19	3,16	2,26
Phosphat-Transporter, Permease	1326		4,42	7,65	7,06
Cobalamin-Biosynthese-Protein	1336		2,67		2,79
NifU-Protein	1378		3,64	3,45	2,81
Oxidoreduktase, aldo/keto-Reduktase-Familie	1383		2,24	3,43	2,54
Hypothetisches Protein	1407	2,88			2,02
Hypothetisches Protein	1434		3,10		2,95
Konserviertes Protein	1589		2,29		2,23
Putative Nukleotidyltransferase	1622		3,03	3,64	3,00
Origen-Erkennungskomplex, Untereinheit	1725		2,75	5,24	5,03
Eisen-abhängiger Repressor	1770		2,89	3,36	2,36
Hypothetisches Protein	1910		3,54	5,88	3,42
Succinatsemialdehyd-Dehydrogenase [NADP ⁺]	2228		3,55	6,90	3,54
Coenzyme F ₃₉₀ -Synthetase/Phenylacetyl-CoA-Ligase	2233		2,04	2,55	2,34
Konserviertes Protein	2423		3,64	15,02	4,22
Phosphat-Transporter, ATP-Bindeprotein	2427		2,44	3,23	2,63
Glycinbetain-Transporter Ota, ATP-Bindprotein	2483	5,99		7,12	5,16

Hydrolase	2715		2,16	2,69	2,84
Oxidoreduktase (Flavoprotein)	2794		3,50	2,54	2,44
Hypothetisches Protein	2795		2,02	2,08	2,53
Methyltransferase	2861		3,24	2,98	2,05
Pyruvat-Formiat-Lyase aktivierendes Enzym	3042		2,82	3,10	2,69
Konserviertes Protein	3076		2,06		2,26
Lactoylglutathion-Lyase	3082		4,23	4,29	2,83
Hypothetisches Protein	3097		2,77	6,27	4,89
Mögliche Kationen-Efflux-Pumpe	3125		4,55	5,73	3,35
Flagellen-verwandtes Protein FlaH	3191		2,27	2,12	2,28
Konserviertes Protein	3252		2,79	2,12	2,23
Hypothetisches Protein	3272		2,57	3,81	2,05
Konserviertes Protein	3413	8,11		5,31	4,34
Hypothetisches Protein	3578	2,53			2,01
Konserviertes Protein	3756	3,16	2,84	2,94	2,32
Putative Ferredoxin	3802		2,74	7,80	2,97
Hypothetisches Protein	3978	8,89		2,05	
Universelles Stress-Protein	4034		3,76	4,68	3,29
Transposase	4330	2,12		2,30	
Transposase	4462		2,19	2,18	2,32

Tab. 42: Reprimierte Gene in *M. mazei* **Gö1 nach einem hyperosmotischen Schock auf 800 mM.** Die Gen ID bezieht sich auf die Nomenklatur in ERGO, Repression (x-fach) ist die x-fache Änderung der Genexpression (berechnet durch SAM) zu dem angegebenen Zeitpunkt.

		Repression (x-fach)			
Gen	Gen ID	1,5h	4h	8h	12h
Anthranilate-Synthase, Komponente II	4			2,73	
Glucose-1-Phosphat-Thymidylyltransferase	19		2,81	2,54	
Transkriptionsregulator, ArsR-Familie	30		2,41	2,42	
Deoxyhypusin-Synthase	31		3,96	3,57	2,16
Superfamilie II DNA- und RNA-Helikase	42			2,11	
Hypothetisches Protein	49			2,38	
Konserviertes Protein	53			2,47	
Porphobilinogen-Deaminase	75			2,36	
Dihydroorotate-Dehydrogenase	76			2,12	
Pyruvat/Phosphat-Dikinase	100		2,45		
Protein-Translationsinitiations-Faktor 2	136		2,35	2,47	
Konserviertes Protein	139		2,29	4,32	2,19
Konserviertes Protein	146		2,03	3,43	
DNA-Bindeprotein	154		2,50		
Phosphoserine-Phosphatase	161		2,37		
Zellteilungs-Kontrollprotein (MCM-Familie)	164	2,17	2,07	2,36	2,11
Konserviertes Protein	168		2,51	2,46	
Konserviertes Protein	178				2,07
Archaeelles Flavoprotein	179			2,45	
Dipeptid/Oligopeptid-ABC-Transporter, ATP-Bindeprotein	180			2,11	
Konserviertes Protein	200			2,82	
Konserviertes Protein	213			2,38	
Konserviertes Protein	224			2,25	
Integrales Membranprotein	248		3,24	2,83	
Konserviertes Protein	249		3,27		
Cobalamin-Biosynthese-Protein	252		2,83	2,52	
Cobalamin-Biosynthese-Protein CobN	253		8,49	3,28	

222

ABC-Transporter, ATP-Bindeprotein	259		2,45	
Oxidoreduktase, aldo/keto-Reduktase-Familie	266		2,00	
Ferredoxin	270		2,55	
Konserviertes Protein	271	2,24		
Konserviertes Protein	273	,	2.10	
Konserviertes Protein	275	3.13	2.86	
Oligosaccharid-Transporter	291	,	2.13	
Methanol:Corrinoid-Methyltransferase MtaB	294	5.30	2.67	
Methanol:Corrinoid-Protein MtaC	295	2.08	_,	
Konserviertes Protein	297	2.64	2.31	
Ferredoxin	299	_ ,° .	2.24	
$M\sigma^{2+}$ -Transporter MotE	306		2 36	
DNA-Mismatch-Reperaturprotein	329	2 66	2,00	
Dimethalamin:Corrinoid-Protein	333	2,00 4 89	5 99	7 55
Trimethylamin Corrinoid Methyltransferase	334	1,05	4 95	5.96
Trimethylamin: Corrinoid Methyltransferase MttB (C-terminale	554		ч,75	5,70
Domäne)	335	2 99	3 62	4 62
Trimethalamin Corrinoid-Protein	336	2,99	3 74	4 79
Konserviertes Protein	338		2,74	ч,79
Dimethylamin:Corrinoid-Methyltransferase MthB (C-terminale	550		2,25	
Domäne)	341	2 29		
Konserviertes Protein	342	$2,2^{\circ}$		
Konserviertes Protein	353	3 13	236	
Konserviertes Protein	379	5,15	2,50	
Superoviddismutese	381		2,50	
DNA Gyrage Unterginheit B	386	2 17	2,10	2 34
DNA-Oylase, Unterennen D	200	2,17	2,01	2,34
Kanaamiantaa Bratain	390 400	2.02	2,39	
Konserviertes Protein	409	2,05	2,01	
Langkeinge Feitsauren-CoA-Ligase	410	0.12	2,38	
Konserviertes Protein	417	2,13	2,04	
Hypothetisches Protein	423		2,27	
Phosphoribosyl-ATP-Pyrophosphatase	428		2,67	
GTP-Bindeprotein	436	0.50	2,16	
Hypothetisches Protein	443	2,53	2,10	
Konserviertes Protein	444		2,12	
Thioredoxin	446		2,06	
Konserviertes Protein	448	• • •	2,65	
Methyltransferase	454	2,97	3,00	
Oligosaccharyl-Transferase	458	2,56		
Konserviertes Protein	479		2,17	
Fructose-1,6-Bisphosphatase	484	2,32		
Hydrogenase-Expression/Bildung-Protein	493	2,34		
F_{420} -nicht-reduzierende Hydrogenase II, CytochromB-Untereinheit	494		2,49	
SSU ribosomales Protein S11P	504		2,02	
SSU ribosomales Protein S4P	505	2,03		
SSU ribosomales Protein S13P	506	2,01		
Cytidylate-Kinase	508		2,06	
Protein-Translokase, SecY Untereinheit	514		2,33	
LSU ribosomales Protein L30P	516	2,12		
Hypothetisches Protein	542	3,92	4,85	3,21
Hypothetisches Protein	547		2,43	
Glycosyl-Transferase	551		2,62	
Putative Glycosyl-Transferase	552		2,25	
Putative Glycosyl-Transferase	553		2,45	
Glycosyl-Transferase	555		2,37	
Konserviertes Protein	557		2,93	
Eisen(III)-Dicitrat-Transporter, ATP-Bindeprotein	589		2,17	
· · · · · ·			,	

Putative Nukleotidyltransferase	600	2,12	2,10	
ABC-Transporter, ATP-Bindeprotein	602	2,34	2,06	
Konserviertes Protein	619		2,14	
Konserviertes Protein	620	2,27	2,49	
Orotat-Phosphoribosyltransferase	622	2,34	2,20	
Konserviertes Protein	631	,	2.22	
Konserviertes Protein	632		2.60	
ABC-Transporter, ATP-Bindeprotein	662		2.14	
ABC-Transporter, ATP-Bindeprotein	663	2.05	,	
ABC-Transporter. Permease	664	_,	2.05	
ABC-Transporter, Permease	665		2.26	
ABC-Transporter periplasmatisches ATP-Bindeprotein	666	2.14	3 54	
Hypothetisches Protein	672	2,11	2,35	
Konserviertes hypothetisches Protein	673		2,23	
Hypothetisches Protein	701	2.08	2,21	
Thiamine-Biosynthese-Protein	701	2,00	2,21 2,26	
Trk System Kalium Aufnahmenrotein	714	4.02	2,20 1 17	2 34
Oxidoreduktase (hypothetisch)	727	7,52	2.03	2,54
E H Dehydrogenose Untereinheit I	743	2,44	2,05	2 18
F H Dahydrogenese Untereinheit I	743	5,55	2,00	2,10
$F_{420}\Pi_2$ -Denydrogenase, Untereinheit J1 E. H. Dehydrogenase, Untereinheit J2	744		2,37	
$\Gamma_{420}\Pi_2$ -Denydrogenase, Untereinheit K	745	2.02	2,27	
$F_{420}\Pi_2$ -Denydrogenase, Untereinheit K	740	2,03	2,09	
$F_{420}H_2$ -Denydrogenase, Untereninen L	747	2,54	2,05	
$F_{420}H_2$ -Denydrogenase, Untereinneit M	748	3,07	2,11	
$F_{420}H_2$ -Denydrogenase, Untereinnent N	749	3,02	2,78	
$F_{420}H_2$ -Denydrogenase, Untereinneit O	750	4,73	2,78	
Hypothetisches Protein	754		2,52	a 10
ABC-Transporter, Permease	764			2,13
Tetratricopeptid-Repeat-Familie-Protein	775	2.02	• • • •	2,22
Transkriptionsinitiations-Faktor TFIIB	792	3,02	2,36	
Iranskriptionsinitiations-Faktor IFIIB	793	2,26	2,17	2.04
D-alanine-D-alanine-Ligase-verwandtes Protein	813		4,03	3,86
Konserviertes Protein	815		2,12	
Surface-Layer-Protein B	817		2,66	
Trimethylamin:Corrinoid-Protein	818	2,82		
Formiat-Hydrogenlyase-Untereinheit 4	823	2,80	2,69	
Hydrogenase-4-Komponente F	825		2,86	
Formiat-Hydrogenlyase-Untereinheit 5, Vorläufer	826		2,46	
Methylcobalamin:Coenzyme M-Methyltransferase	831	2,27		
Thioldisulfide-Isomerase/Thioredoxin-verwandtes Protein	853		2,08	
F ₄₂₀ -abhängige Methylenetetrahydromethanopterin-Dehydrogenase	868	2,10		
Methyl-Coenzyme M-Reduktase, Protein D	916	3,53	2,52	
Methyl-Coenzyme M-Reduktase, γ-Untereinheit	918	2,37		
Methyl-Coenzyme M-Reduktase, α -Untereinheit	919	2,31		
Konserviertes Protein	936	2,02		
Chromosomales Protein	937	3,39	3,33	
Aspartat-Carbamoyltransferase, regulatorische-Untereinheit	946		2,04	
Dihydrodipicolinate-Synthase	954	2,34		
SSU ribosomales Protein S17E	955		2,52	
Glykosyl-Transferase	972	2,31	2,25	
Glykosyl-Transferase	975		2,10	
Glykosyl-Transferase	976		2,25	
Glykosyl-Transferase	977		2,77	
UDP-N-Acetyl-D-Mannosamin-6-Dehydrogenase	979		2,06	
dTDP-Glukose-4,6-Dehydratase	983		2,89	
dTDP-4-Dehydrorhamnose-3,5-Epimerase	984		2,15	
Konserviertes Protein	993		2,44	

Konserviertes Protein	1008		2,18	
Hypothetisches Protein	1010		2,03	
Dimethylamin:Corrinoid-Methyltransferase	1053		2,25	
Hypothetisches Protein	1088		2,28	
Hypothetisches Protein	1091		2,34	
Möglicher Transkriptionsregulator	1104		2,69	
Dihydropteroat-Synthase	1131		2,46	
Methylenetetrahydrofolate-Dehydrogenase	1132		2,08	
5-Methyltetrahydropteroyltriglutamate-Homocystein-Methyltransferase	1150		2,27	
Kobalt-Transportprotein	1153		3,25	
tRNA-Nukleotidyltransferase	1159		2,30	
8-Oxoguanin-DNA-Glykosylase	1160		2,16	
N-Acetyl-γ-Glutamyl-Phosphat-Reduktase	1164		2,39	
Hypothetisches Protein	1165		2,51	
Konserviertes Protein	1178		2,12	
Hypothetisches Protein	1184		2,25	
Konserviertes Protein	1190		2,29	
Konserviertes Protein	1195		2,01	
Cobyrsäure-a,c-Diamide-Synthase	1197		2,46	
Konserviertes Protein	1201	2,45	2,72	
Hypothetisches Protein	1203		2,40	
Konserviertes Protein	1220		2,51	
Konserviertes Protein	1221		2,85	
Geranylgeranylglyceryldiphosphat-Synthase	1246	2,39		
Mehyl-CoM-Reduktase-System, Komponente A2 Homolog	1247	2,34	2,79	
Signaltransduzierende Histidin-Kinase	1251		2,11	
ABC-Transporter, Permease	1257		2,31	
Konserviertes Protein	1261		2,62	
Putatives kleines Hitzeschockprotein	1262	4,32	4,44	2,07
Putatives kleines Hitzeschockprotein	1263	3,55	3,72	
Glutamate-Synthase, große Kette	1267		2,19	2,24
Glutamate-Synthase, große Kette	1268	2,35	2,38	2,19
Glutamate-Synthase, große Kette	1269	7,62	4,88	
FeS-Bindeprotein	1281	6,42	4,54	
Konserviertes Protein	1283	6,60	5,05	
Konserviertes Protein	1284			2,31
Konserviertes Protein	1285			2,64
Konserviertes Protein	1287			2,28
Thioldisulfid-Isomerase/Thioredoxin	1291	2,03	2,52	
Precorrin-8X-Methylmutase	1293	3,15	2,94	
Precorrin-3B-C ₁₇ -Methyltransferase	1294	4,13	3,99	
Cobalamin-Biosyntheseprotein G	1295	3,84	3,36	
Cobalamin-Biosyntheseprotein G	1296		2,97	2,18
Precorrin-4-C ₁₁ -Methyltransferase	1297	7,50	6,04	
Precorrin-2-C ₂₀ -Methyltransferase	1298		5,94	
Precorrin-6Y- $C_{5,15}$ -Methyltransferase (decarboxylierend)	1299		3,83	
26S Proteasom regulatorische Untereinheit RPT2/S4	1304	2,26		
Zellteilungsprotein	1306	2,02		
Protein-Translokase, SecE-Untereinheit	1307	2,15		
LSU ribosomales Protein L11P	1309		4,17	
LSU ribosomales Protein L1P	1310	2,05		
LSU ribosomales Protein L12AE	1312	2,90	2,30	
Translationsinitiations-Faktor 1A (EIF-1A)	1320	·	2,14	
Serine/Threonine-Protein-Kinase	1321	4,55	5,33	2,03
Putatives RNA-Bindeprotein	1322	2,47	a	
Dihydroorotase	1323		2,59	• • • •
Wolfram-Formylmethanofuran-Dehydrogenase, Untereinheit D	1352			2,93

Wolfram-Formylmethanofuran-Dehydrogenase, Untereinheit B	1353				3,61
Wolfram-Formylmethanofuran-Dehydrogenase, Untereinheit A	1354			2,02	3,37
Hypothetisches Protein	1393			2,42	
Zelloberfächen-Glycoprotein	1404			2,30	
Konserviertes Protein	1458		2,30		
Hypothetisches ATP-Bindeprotein	1459		2,60		
LSU ribosomales Protein L31E	1461			2,40	
Protein-Translationinitiations-Factor 6 (IF-6)	1462		2,05		
Prefoldin, a-Untereinheit	1463		2,43		
Hochleitender mechanosensitiver Kanal	1498			2,09	
Hypothetisches Protein	1516	2,13			
Hypothetisches Protein	1539			2,33	
Hypothetisches Protein	1540			2,02	
Wolframat-Transporter, Permease	1553			2,17	
Hypothetisches Protein	1555			2,21	
Tetrahydromethanopterin-S-Methyltransferase, Untereinheit E	1567		3,88	3,20	
Tetrahydromethanopterin-S-Methyltransferase, Untereinheit C	1569		4,86	3,15	
Tetrahydromethanopterin-S-Methyltransferase, Untereinheit B	1570		3,30	3,56	2,05
Tetrahydromethanopterin-S-Methyltransferase, Untereinheit A	1571		3,66	3,48	
Tetrahydromethanopterin-S-Methyltransferase, Untereinheit F	1572		5,30	4,10	2,43
Tetrahydromethanopterin-S-Methyltransferase, Untereinheit G	1573		5,62	3,88	2,40
Phosphoglukomutase/Phosphomannomutase	1592		2,23		
Methionin-Aminopeptidase	1614		2,54		
SWF/SNF-Familie Helikase	1632		,	2.69	
Pvruvat-Formiat-Lvase aktivierendes Enzym	1634			2.85	
Universelles Stressprotein	1658			2.07	
Monomethylamin-Permease	1672			2.06	
Archaeosine-tRNA-Ribosyltransferase	1696			2.45	
DNA-gerichtete RNA-Polymerase. Untereinheit M	1705			2.25	
Glycyl-tRNA-Synthetase	1715		2.88	2,23	
Hypothetisches Protein	1726		2,00	2,05	
Glutaredoxin-ähnliches Protein	1726			2,05	
Ribonukleosidtrinhosphat-Reduktase aktivierendes Enzym	1738			2,20 2 43	
Hypothetisches Protein	1740		2.02	2,43	
Putative Methyltranferase	1746		2,02	2 17	2 36
Konserviertes Protein	1740			2,17 2.88	2,50
Konserviertes Protein	1747			2,00	
Formulmethenofuren Tetrahydromethenonterin Formultransferese	1791		2.60	2,09	
Hypothetisches Protein	1701		2,00	2,09	
DNA Drimese	1806			2,10 2.07	
(S) 2 Hudrovucäura Dahudroganaga	1810			2,07	
Fas Oxidereduktore	1010			2,39	
O linked N A certulalucecemin Transferrese	1011			2,30	
Dhaanhaalyaalat Dhaanhatasa	1041			2,10	
Encomposition Encomposition Encomposition Encomposition Encomposition	1042			2,19	
Olissmential Transmenter Democrat	1044			2,35	
Transformer Arec Especial	1830			2,21	
Transkriptionsregulator, AraC-Familie	1800			2,45	
Ferredoxin	1861		0.15	2,42	
Inreonyl-tRNA-Synthetase	1866		2,15	0.00	
Hypothetisches Protein	1868			2,33	
Hypothetisches Protein	18/4			2,12	
NADPH-Flavin-Oxidoreduktase	1898			2,02	
Konserviertes Protein	1899			2,21	
verzweigte Aminosauren-Transportprotein	1903			2,51	
Konserviertes Protein	1918			2,29	
Hypothetisches Protein	1921			2,50	
Hypothetisches Protein	1924			2,23	

Transposase	1932		2,11	
Konserviertes Protein	1933		2,07	
Antwortregulator	1953		2,14	
Hypothetisches Protein	1956		2,06	
Glutamine-Synthetase	1970	3,34		2,56
Ornithin-Decarboxylase	1973		2,76	
Ketoisovalerat-Oxidoreduktase Untereinheit	1975		2,01	
Hypothetisches Protein	1988		2,28	
Konserviertes Protein	1993	4,61	3,45	
A ₁ A ₀ H ⁺ ATPase, Untereinheit D	1998	2,28	2,53	2,03
$A_1A_0 H^+$ ATPase, Untereinheit B	1999	3,07	2,46	
A ₁ A ₀ H ⁺ ATPase, Untereinheit A	2000	2,76	2,66	
A ₁ A ₀ H ⁺ ATPase, Untereinheit F	2001		2,80	2,14
$A_1A_0 H^+$ ATPase, Untereinheit C	2002	2,39	2,61	
A ₁ A ₀ H ⁺ ATPase, Untereinheit E	2003	2,83	2,36	
A ₁ A ₀ H ⁺ ATPase, Untereinheit K	2004		3,43	2,87
Hypothetische signaltransduzierende Histidin-Kinase	2032		2,08	
DNA-gerichtete RNA-Polymerase, Untereinheit A"	2039	3,02	2,62	2,11
LSU ribosomales Protein L30E	2040		2,22	
NusA-Protein Homolog	2041	2,71	2,43	
SSU ribosomales Protein S12P	2042	2,25		
SSU ribosomales Protein S7P	2043	2,09		
Proteintranslations-Elongationsfaktor 2	2044	2,13		
Proteintranslations-Elongationsfaktor 1A	2045	2,10		
SSU ribosomales Protein S10P	2046	2,46		
Konserviertes Protein	2051		3,05	
Konserviertes Protein	2054		2,31	
Dihydropyrimidinase	2055		2,17	
Konserviertes Protein	2058		2,15	
Konserviertes Protein	2074		2,24	
Konserviertes Protein	2075		3,08	
Acetyltransferase	2082		2,66	
Polysaccharid-ABC-Transporter, ATP-Bindeprotein	2093		2,35	
Hypothetisches Protein	2101	2,08	2,10	
Hypothetisches Protein	2125		2,21	
Konserviertes Protein	2134		2,13	
Typ I Rrstriktions-Modifikations-System, Spezifität-Untereinheit	2135		2,14	
Hypothetisches Protein	2148		2,05	
Hypothetisches Protein	2158		2,12	
Putative DNA-Rekombinase	2159		2,42	
Konserviertes Protein	2167		2,29	
Glycerinaldehyde-3-Phosphat-Dehydrogenase	2176		2,01	
Hypothetisches Protein	2178		2,24	
Phosphoribosylformylglycinamidin-Synthase	2201		2,84	
Konserviertes Protein	2218		2,01	
Konserviertes Protein	2223	2,33	,	
Konserviertes Protein	2226	,	2,01	
Deoxyribodipyrimidin-Photolyase	2242		3,87	
Phosphoribosylamidoimidazol-Succinocarboxamid-Synthase	2245		2,46	
Phosphoribosylformylglycinamidin-Synthase	2250	2,09		
β-Ketoacyl-Synthase/Thiolase	2260	2,43	2,36	
Hvdroxymethylglutaryl-CoA-Synthase	2261	,	2.17	
Putativer Transkriptionsregulator	2262	2.21	2,49	
Konserviertes Protein	2284	2.03	2,16	
Proteintranslations-Initiations-Faktor 5A	2307	,	2,01	
Hypothetisches Protein	2315		2,12	
Hypothetisches Protein	2317		2,07	

Transposase	2321		2,85	
Konserviertes Protein	2333	2,91	2,25	
Prefoldin, β-Untereinheit	2334	2,14		
Putativer Nickel-regulierter Regulator, NikR	2342		2,54	
GDP-Fucose-Synthetase	2351		2,03	
Coenzym F_{420} -abhängige N_5 , N_{10} -Methylene-Tetrahydromethanopterin	0077	0.71	2 (0	
	2377	3,/1	2,60	
F ₄₂₀ H ₂ -Dehydrogenase, Untereinheit FpoF	2378	3,12	2,34	
Konserviertes Protein	2380		2,47	
Iransposase	2382	2.04	2,42	
Hypothetisches Protein	2397	2,04	a 40	
Konserviertes Protein	2399		2,43	
Konserviertes Protein	2402		2,39	
DNA-gerichtete RNA-Polymerase, Untereinheit E	2406			2,13
DNA-gerichtete RNA-Polymerase, Untereinheit E'	2407	2,06		
ABC-Transporter, ATP-Bindeprotein	2435		2,22	
Hypothetisches Protein	2442		2,30	
Hypothetisches Protein	2444	2,49		
Dipeptid-ABC-Transporter, Bindeprotein	2450	2,04	3,64	2,46
Dipeptid-ABC-Transporter, Bindeprotein	2451		4,47	3,09
Dipeptid-ABC-Transporter, Permease	2452		2,43	
Dipeptid-ABC-Transporter, Permease	2453		2,36	
Konserviertes Protein	2456		3,42	
Translationsinitiations-Faktor 1A (EIF-1A)	2464		2,11	
Konserviertes Protein	2478		2,12	
Hypothetisches Protein	2479		3,07	
Argininosuccinat-Synthase	2480	2,47	2,16	
Hypothetisches Protein	2494		2,27	
Natrium-abhängiger Transporter	2511		2,02	
Hypothetisches cytosolisches Protein	2523		2,41	
ABC-Transporter, Permease	2531		2,27	
Cobyrsäure-Synthase	2533	3,13	2,04	
Konserviertes Protein	2534		2,55	
O-linked-N-Acetylglucosamin-Transferase	2542		2,05	
Hypothetisches Protein	2543		2.54	
Hypothetisches Protein	2556	3.36	2.65	2.63
Kohlenmonoxid-Dehvdrogenase	2560	- ,	2.39	_,
Universelles Stressprotein	2564	3.56	2.39	
Zink-Metalloprotease	2566	0,00	2.18	
Cytochrome C-Typ-Biogenese Protein	2578		2,10 2,27	
FeS-Flavoprotein	2587		2 76	
Konserviertes Protein	2593		2,00	
Konserviertes Protein	2618		2,00	
ATP-abhängige DNA-Helikase	2638		2,10	
Natrium Calcium Austauscher	2658		2,10	2.02
Forredovin	2008	2 22	2 1 1	2,02
Diboflavin Synthese & Untersinheit	2078	2,22	2,11	
Hypothetisches Protein	2082	2,41	2.24	
Hypothetisches Protein	2080		2,24	
Kypothetisches Protein	2095		2,17	
Konservieries Protein	2097		2,03	
Hypothetisches Protein	2698		2,89	
IVIOXK-anniiche All Pase	2099 0700		2,26	
Konserviertes Protein	2702	0.50	2,06	
repudyiproiyi-cis/trans-isomerase	2/10	2,52	0.00	
Hypoinetiscnes Protein	2/11	0.04	2,89	
N ₅ ,N ₁₀ -Methenyltetrahydromethanopterin-Cyclohydrolase	2/13	2,24	2,03	• • -
Hypothetisches Protein	2714			2,05

Ribonuclease	2743	3,07	2,35	
Hypothetisches Protein	2744	,	2,60	
Hypothetisches Protein	2745		2,61	
LSU ribosomales Protein L15E	2750	2,00	,	
Hypothetisches Protein	2752	2.09		
Konserviertes Protein	2776	,	2.20	
Hypothetisches Protein	2779		2.07	
Molvbdat-Transporter, Permease	2785		2.04	
Stickstoff fixierende NifHD Region, GlnB-ähnliches Protein	2792		2.16	
Konserviertes Protein	2812	2.15	2.08	
Translationsinitiations-Faktor 1A (EIF-1A)	2831	_,	2.02	
Ech-Hydrogenase Untereinheit	2838	2.67	2.49	
Ech-Hydrogenase Untereinheit	2839	2.59	2.88	
Ech-Hydrogenase Untereinheit	2840	2.61	2.47	
Ech-Hydrogenase Untereinheit	2841	2.66	2.75	
Ech-Hydrogenase Untereinheit	2842	3 21	2,69	
Fnicht-reduzierende Hydrogenase I. Vorläufer	2849	2 30	2,07	
Natrium/Proline-Symporter	2858	2,50	2,07 2,35	
Hypothetisches Protein	2850		2,55	
C_{OPNZ} Conzume E Synthetisse/Phenylaceate $C_{O}\Delta_{-}$ Ligase	2864		2,15 2 3 2	
Konserviertes Protein	2866		2,52	
Hypothetisches Protein	2885	2 79	2,00 4 20	3 4 8
Hypothetisches Protein	2005	2,19	7,20 2 14	5,40
N 5' Phoenhoribosylanthranilate Isomerase	2004		2,17	2 15
Konserviertes Protein	2911		2.02	2,15
ABC Transporter ATP Bindeprotein	2915		2,02	
Dipentid/Oligopentid Transporter Dermasse	2923		2,24	
Mathultrasfarasa	2927	2.01	2,04	
Dipentid/Oligonantid Bindeprotein	2929	2,01	2,55	
SSU ribosomalas Protein S6E	2930	2,28	2,90	
Nucleosid Diphosphat Kingse	2931	2.83	2,42	2.08
SEL ribosomalas Drotoin S29E	2933	2,83	2,40	2,08
I SU ribosomales Protein I 7 A F	2934	2,40	2,55	
Zolltailungezuklus Protain (AAA Familia ATDasa)	2933	2,23	2,20	
SUA 5 Drotoin	2940		2,12	
Dibulosahishhoshhat Carboxylaga, große Kette	2944	2 13	2,23	
Kitouioseoispiiospiiai-Carboxylase, große Kette	2945	2,43	2.06	
Transposase	2940	2.24	2,00	
Vonsorviortos Drotoin	2973	2,24	2,22	
6 Durawoultetrebudrontarin Sunthase	2977	2,00	2,02 2.11	2 14
Konserviertes Protein	2982		2,11 2.07	2,14
Konserviertes Protein	2963		2,97	2,92
Dutative Sering/Threening Drotain Dhosphatase	2985	2 30	5,40	5,56
Dibudropyrimidinasa	2907	2,50		
Unydropyrinidinase	2900	2,28	2 80	2 07
Mypolitetisches Floteni Mathultransfarasa	3012	5,79	3,09 2,66	3,07
Interry Industriase	2045		2,00	
Veneemientee Drotein	3043 2056		2,33	
Konserviertes Protein	2077		2,02	2.02
Konserviertes Protein	2008	2.46	2,92	2,05
Valyl-tRINA-Synthetase	2106	5,40	2,34	
Chamatania Datain	3100		2,20	
Chemotavia Protein	2110		∠,00 2,02	
Chemotavia Protein	5110 2115		2,83	
Unemotionalist Protein Hatara digulfid Dadultaga HarC Hutara interit	2166		2,13	
Hunothatisahas Drotain ähelish zur C tampie 1-2 Demäna and H1 D	3100 2170		∠,00	206
Rypometisches Protein annich zur U-terminalen Domane von HdrB	5170 2172	2,04	2.20	2,00
Konserviertes Protein	3172		2,20	

Transposase	3199		2,32	
Hypothetisches Protein	3225		2,53	
Konserviertes Protein	3228		2,15	
Fe ²⁺ -Transport Protein B	3232		2,24	
Konserviertes Protein	3240		2,11	
Konserviertes Protein	3249		2,07	
Hypothetisches Protein	3250		2,44	
Konserviertes Protein	3257		2,45	
Hypothetisches Protein	3268		5,13	
Transposase	3281		2,96	
Konserviertes Protein	3287		2,12	
Hypothetisches Protein	3295		2,61	
Konserviertes Protein	3331		2,16	
Chromosomales Protein	3333	2.20	2.63	2.03
Hypothetisches Protein	3354	_,	2.48	_,
Konserviertes Protein	3374		2.37	
Konserviertes Protein	3379		2,57	
Konserviertes Protein	3380		2,+0 2 47	
Konserviertes Protein	330/		2,47	2.54
Konserviertes Protein	2205		2,08	2,54
Konservieres Floteni Itymathatiashaa Dratain	2402		2,23	
Rypoineuscies Protein	3402		2,20	
Konserviertes Protein	3410		2,12	2.20
Konservieries Protein	3420		a ao	2,29
Hypothetisches Protein	3447		2,30	
Konserviertes Protein	3458		2,40	
Konserviertes Protein	3459		2,08	
Konserviertes Protein	3481		2,25	
Hypothetisches Protein	3561		2,03	
Hypothetisches Protein	3566		2,18	
Konserviertes Protein	3646		2,00	2,23
Hypothetisches Protein	3664		2,12	
Hypothetisches Protein	3734		5,89	3,72
Hypothetisches Protein	3789		2,56	
Hypothetisches Protein	3814		2,25	
Heterodisulfat-Reductase, Untereinheit A	3940		2,19	
Hypothetisches Protein	3946		2,39	
Hypothetisches Protein	3992		2,73	
Konserviertes Protein	3996		2,48	
Hypothetisches Protein	4028	2,32		
Hypothetisches Protein	4032		2,64	
A_1A_0 H ⁺ ATPase, Untereinheit I	4041	2,96	2,64	
A_1A_0 H ⁺ ATPase, Untereinheit H	4042	3,52	3,01	
Pyrroline-5-Carboxylate-Reduktase	4047		2,51	
Hypothetisches Protein	4058		2.51	
Hypothetisches Protein	4070		2.10	
Thiamine-Biosynthese-Protein	4074		2.05	
Hypothetisches Protein	4081		2.58	
Hypothetisches Protein	4087		2.44	
Konserviertes Protein	4107		3.16	
DNA-Gyrase Untereinheit A	4242		2,09	2.10
Hypothetisches Protein	4434		2,00	2,10
Konserviertes Protein	4438		2,57 2,72	
Transposase (N-terminale Domäne)	4460		2,72 2 01	
	1 100		<i>∠</i> ,∪1	

DANKSAGUNG

Mein besonderer Dank gilt Herrn Professor Dr. Volker Müller für die Überlassung dieses interessanten Themas, sein Interesse am Fortgang der Arbeit, die Bereitschaft zu stimulierenden Diskussionen und für die fortwährende Unterstützung, die es mir u. a. ermöglichte an mehreren nationalen und internationalen Tagungen teilzunehmen.

Bei Dr. Uwe Deppenmeier und Dr. Armin Ehrenreich von der Georg-August-Universität in Göttingen bedanke ich mich für die Einführung in die DNA-Microarray Technologie und die Möglichkeit zur Durchführung der Microarray-Experimente. Bei den Mitarbeitern des Instituts, im Besonderen bei Birgit und Tinki, möchte ich mich für die freundliche Aufnahme und Unterstützung bedanken.

Allen Mitgliedern der AG Müller danke ich ganz herzlich für das gute Arbeitsklima und die stetige Bereitschaft zu Diskussionen, sowohl fachlicher als auch privater Natur: den ehemaligen und aktuellen Doktoranden Claudia, Christiane, Heidi, Sascha, Smurf, Stephan, und Thorsten, allen Diplomanden (Stephi, Markus, Sabine, Pesl, Babaryka, Dengl, Kerstin, Vanessa, Heiko, Jasmin und Tina) und Brigitte und Heike für ihre Unterstützung und die freundschaftliche Zusammenarbeit.

Gesondert möchte ich mich bei Astrid, Frank und Anna für ihre Freundschaft und ihre Hilfe bei vielen Fragen dieser Arbeit und darüber hinaus bedanken.

Ferner danke ich allen anderen Mitarbeitern des Instituts und der Werkstatt für ihre Unterstützung.

Besonders bedanken möchte ich mich bei Ben, dafür dass er immer für mich da ist.

Ein ganz großes Danke geht an meine Familie: an meine Eltern, meinen Bruder und meine Großeltern, die mich immer unterstützt haben und mir jederzeit mit Rat und Tat zur Seite stehen.

LEBENSLAUF

Name:	Anna Katharina Pflüger
Geburtsort:	München
Geburtsdatum:	18.08.1975
1982 – 1986	Besuch der Grundschule an der Gebelestrasse in München
1986 – 1995	Besuch des Wilhelm-Hausenstein-Gymnasiums in München
Mai 1995	Abitur
Oktober 1995	Immatrikulation an der Ludwig-Maximilians-Universität
	München im Studiengang Biologie
November 1997	Vordiplom
April – Juni 2000	Diplomprüfung in den Fächern Mikrobiologie,
	Neurobiologie, medizinische Mikrobiologie und
	Immunologie
Juli 2000 – April 2001	Experimentelle Diplomarbeit am Institut für Mikrobiologie
	unter der Anleitung von Prof. Dr. V. Müller mit dem Thema
	"Physiologie der Osmoadaptation in Methanosarcina mazei
	Gö1: Identifizierung und Charakterisierung eines primären
	Betain-Transporters"
Mai 2001	Beginn der experimentellen Arbeiten zur vorliegenden
	Dissertation
Mai – August 2001	Forschungsaufenthalt im Labor von Prof. R. Gunsalus an der
	University of California Los Angeles (UCLA) in Los
	Angeles, USA
Mai 2003	Forschungsaufenthalt im Labor von Dr. U. Deppenmeier an
	der Georg-August-Universität zu Göttingen
November – Dezember 2003	Forschungsaufenthalt im Labor von Dr. Armin Ehrenreich an
	der Georg-August-Universität zu Göttingen

Übersetzung der ERGO ORF-Nummern in die Genbank-Nummern (MM-Nummern)

ERGO ORF Nummer	Genbank Nummer (MM-Nummer)	Annotation
0003	AE008384_2818	Anthranilate synthase, component I
0004	AE008384_2817	Anthranilate synthase, component II
0005	AE008384_2816	Conserved protein
0006	AE008384_2815	Metal-dependent hydrolase
0007	AE008384_2814	Ribonuclease
0008	AE008384_2813	Hypothetical protein
0008	AE008384_2813	Hypothetical protein
0009	AE008384_2812	Phenylalanyl-tRNA synthetase, beta chain
0011	AE008384_307	Uroporphyrin-III C-methyltransferase
0012	AE008384_306	Metal-dependent hydrolases
0013	AE008384_305	Conserved protein
0014	AE008384_304	AAA family ATPase
0015	AE008384_303	Hypothetical protein
0016	AE008384_302	Glucose-1-phosphate thymidylyltransferase
0017	AE008384_301	Phosphoglucomutase/phosphomannomutase
0018	AE008384_300	Glucosamine-fructose-6-phosphate aminotransferase [isomerizing]
0019	AE008384_299	Glucose-1-phosphate thymidylyltransferase
0020	AE008384_298	Glycine betaine-binding protein
0021	AE008384_297	Glycine betaine transporter, ATP-binding protein
0021	AE008384_297	Glycine betaine transporter, ATP-binding protein
0022	AE008384_296	Glycine betaine transport system, permease protein
0023	AE008384_295	Glycine betaine transport system, permease protein
0024	AE008384_294	Na+/H+ antiporter
0025	AE008384_293	Conserved protein
0026	AE008384_292	Conserved protein
0027	AE008384_291	Hypothetical protein
0028	AE008384_290	Hypothetical protein
0029	AE008384_289	Transcriptional regulator
0030	AE008384_288	Transcriptional regulator, ArsR family
0031	AE008384_287	Deoxyhypusine synthase
0032	AE008384_286	Hypothetical protein
0033	AE008384_285	Conserved protein
0034	AE008384_284	Amidohydrolase (putative)
0034	AE008384_284	Amidohydrolase (putative)
0035	AE008384_283	Leucyl-tRNA synthetase
0036	AE008384_282	Threonine synthase
0037	AE008384_281	Hypothetical protein
0038	AE008384_280	Hypothetical protein
0039	AE008384_279	Membrane alanine aminopeptidase
0040	AE008384_278	DNA-cytosine methyltransferase
0041	AE008384_277	T/G-SPECIFIC DNA GLYCOSYLASE
0042	AE008384_276	Superfamily II DNA and RNA helicase
0043	AE008384_275	Hypothetical protein
0044	AE008384_274	Endonuclease (putative)
0044	AE008384_274	Endonuclease (putative)
0045	AE008384_273	Hypothetical protein
0046	AE008384_272	Hypothetical protein
0047	AE008384_271	Conserved protein

1

0048	AE008384_270	Conserved protein
0049	AE008384_269	Hypothetical protein
0050	AE008384_267	Conserved protein
0051	AE008384_266	Conserved protein
0052	AE008384_265	Conserved protein
0053	AE008384_264	Conserved protein
0054	AE008384_263	Conserved protein
0055	AE008384_262	Conserved protein
0056	AE008384_261	Uncharacterized flavoprotein
0057	AE008384_260	Putative Sensory Transduction protein Kinase
0058	AE008384_259	Dihydroxy-acid dehydratase
0059	AE008384_258	Transposase
0060	AE008384_257	Hypothetical protein N5-METHYL-H4MPT:COENZYME M METHYLTRANSFERASE, SUBUNIT H
0061	AE008384_256	HOMOLOG N5-METHYL-H4MPT:COENZYME M METHYLTRANSFERASE, SUBUNIT A
0062	AE008384_255	HOMOLOG
0063	AE008384_254	N5-METHYL-H4MPT:COENZYME M METHYLTRANSFERASE, SUBUNIT X
0066	AE008384_1736	Transposase
0067	AE008384_1737	Heme biosynthesis protein
0068	AE008384_1738	Heme biosynthesis protein
0073	AE008384_1742	Delta-aminolevulinic acid dehydratase
0074	AE008384_1743	Glutamate-1-semialdehyde 2,1-aminomutase
0075	AE008384_1744	Porphobilinogen deaminase
0076	AE008384_1745	Dihydroorotate dehydrogenase
0077	AE008384_1746	Dihydroorotate dehydrogenase electron transfer subunit
0078	AE008384_1747	2-Hydroxy-2,4-diene-1,7-dioate isomerase
0079	AE008384_1748	Conserved protein
0080	AE008384_1749	Glutamyl-tRNA synthetase
0081	AE008384_1750	Conserved protein
0084	AE008384_1752	Conserved protein
0085	AE008384_1753	D-3-phosphoglycerate dehydrogenase
0086	AE008384_1754	Conserved protein
0087	AE008384_1755	LSU ribosomal protein L18E
0088	AE008384_1756	LSU ribosomal protein L13P
0089	AE008384_1757	SSU ribosomal protein S9P
0090	AE008384_1758	DNA-directed RNA polymerase subunit N
0091	AE008384_1759	DNA-directed RNA polymerase subunit K
0092	AE008384_1760	SSU ribosomal protein S2P
0093	AE008384_1761	Conserved protein
0094	AE008384_1762	Mevalonate kinase
0094	AE008384 1762	Mevalonate kinase
0095		Archaeal Kinase
0096		Isopentenvl-diphosphate delta-isomerase
0097		Zn-dependent hydrolase
0098		Geranyltransferase
0099	AE008384 1768	Hypothetical protein
0100	AE008384 1770	Pyruvate, phosphate dikinase
0101	AE008384 1772	Transcription initiation factor IIB
0101	AF008384 1772	Transcription initiation factor IIB
0102	AF008384 1773	Conserved protein
0102	AF008384 1774	Hypothetical protein
0104	AF00838/ 1775	METHYL TRANSFERASE
0104	AE000304_1772	Thial specific antioxidant protein
0105	AE000304_1770	rmor-speeme annoxidant protein

0106	AE008384_1777	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
0107	AE008384_1778	Cobalt-zinc-cadmium resistance protein
0108	AE008384_1779	Hypothetical protein
0109	AE008384_1780	Hypothetical protein
0110	AE008384_1781	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
0111	AE008384_1782	Sodium/glutamate symport carrier protein
0112	AE008384_1783	Hypothetical protein
0113	AE008384_1784	Hypothetical protein
0114	AE008384_1785	Hypothetical protein
0115	AE008384_1787	Transposase
0116	AE008384_1788	HTH DNA-binding protein
0117	AE008384_1789	Hypothetical protein
0118	AE008384_1790	Conserved protein
0119	AE008384_1791	Conserved protein
0120	AE008384_1792	Hypothetical protein
0121	AE008384_1793	Hypothetical protein
0122	AE008384_1794	Hypothetical protein
0123	AE008384_1795	Iron-sulfur cluster-binding protein
0124	AE008384_1796	Conserved protein
0125	AE008384_1797	10 kDa chaperonin
0126	AE008384_1798	60 kDa chaperonin
0127	AE008384_1799	Conserved protein
0128	AE008384_1800	Transporter
0129	AE008384_1801	Conserved protein
0130	AE008384_1802	Aspartate aminotransferase
0131	AE008384_1803	Hypothetical protein
0132	AE008384_1804	Rubrerythrin
0133	AE008384_1805	Conserved protein
0134	AE008384_1806	Conserved protein
0136	AE008384_1807	protein Translation Initiation Factor 2 subunit alpha IF-2a
0137	AE008384_1808	SSU ribosomal protein S27E
0138	AE008384_1809	LSU ribosomal protein L44E
0139	AE008384_1810	Conserved protein
0140	AE008384_1811	DNA primase small subunit
0141	AE008384_1812	Conserved protein
0142	AE008384_1813	Conserved protein
0143	AE008384_1814	Hypothetical protein
0144	AE008384_1815	Cell division protein
0146	AE008384_1816	Conserved protein
0146	AE008384_1816	Conserved protein
0147	AE008384_1817	Conserved protein
0148	AE008384_1818	Conserved protein
0149	AE008384_1819	Transposase
0150	AE008384_1820	tRNA nucleotidyltransferase
0151	AE008384_1821	REPLICATION FACTOR C SUBUNIT
0152	AE008384_1823	PUTATIVE SMALL MULTI-DRUG EXPORT PROTEIN
0152	AE008384_1823	PUTATIVE SMALL MULTI-DRUG EXPORT PROTEIN
0153	AE008384_1824	Ferredoxin
0154	AE008384_1825	DNA binding protein
0155	AE008384_1826	Methyltransferase
0156	AE008384_1827	Pyruvate carboxylase (biotin-containing) subunit B
0157	AE008384_1828	Pyruvate carboxylase, subunit A

ACETYL-COA-CARBOXYLASE]	SYNTHETASE/BIOTIN	OPERON
D		

0158	AE008384 1829	BIOTIN[ACETYL-COA-CARBOXYLASE] SYNTHETASE/BIOTIN C REPRESSOR
0159	AE008384 1830	Conserved protein
0160	AF008384 1832	Transnosase
0161	AF008384 1833	Phosphoserine phosphatase
0162	AE008384 1834	Conserved protein
0162	AE008384_1834	Conserved protein
0163	AE008384_1835	Conserved protein
0164	AE008384_1835	CELL DIVISION CONTROL DEOTEIN (MCM family)
0165	AE008384_1830	PNA mathylasa
0105	AE008384_1837	Foredoxia
0100	AE008384_1838	
0167	AE008384_1839	
0168	AE008384_1840	Conserved protein
0169	AE008384_1842	Sume reductase, assimilatory-type
0170	AE008384_1843	Heterodisulfide reductase, subunit HdrE
0171	AE008384_1844	Heterodisulfide reductase, subunit HdrD
0172	AE008384_1845	Conserved protein
0173	AE008384_1846	Conserved protein
0174	AE008384_1847	Hypothetical protein
0175	AE008384_1849	Geranylgeranyl reductase
0176	AE008384_1851	Hypothetical protein
0177	AE008384_1852	Conserved protein
0179	AE008384_1854	Archaeal flavoprotein
0180	AE008384_1855	Dipeptide/oligopeptide ABC transporter, ATP-binding protein
0181	AE008384_1856	Dipeptide/ oligopeptide ABC transporter, ATP-binding protein
0182	AE008384_1857	Dipeptide/ oligopeptide ABC transporter, permease
0183	AE008384_1858	Dipeptide/ oligopeptide ABC transporter, permease
0184	AE008384_1859	Dipeptide/ oligopeptide binding protein
0185	AE008384_1860	Conserved protein
0186	AE008384_1861	Conserved protein
0187	AE008384_1862	Transporter
0187	AE008384_1862	Transporter
0188	AE008384_1863	Transcriptional regulator, MarR family
0189	AE008384_1864	Conserved protein
0190	AE008384_1865	Conserved protein
0191	AE008384_1866	Hypothetical protein
0192	AE008384_1868	Conserved protein
0193	AE008384_1869	Conserved protein
0194	AE008384_1870	Conserved protein
0195	AE008384_1871	Vanillate decarboxylase protein
0196	AE008384_1872	Conserved protein
0197	AE008384_1873	Phosphohydrolase
0198	AE008384_1874	METHYLTRANSFERASE
0200	AE008384_1875	Conserved protein
0201	AE008384_1876	Purine phosphoribosyltransferase
0202	AE008384_1877	Diphthamide synthase subunit
0203	AE008384_1878	Methyltransferase
0204	AE008384_1879	putative RNA-binding protein
0205	AE008384_1880	DNA-directed RNA polymerase subunit L
0206	AE008384_1881	Conserved protein
0207	AE008384_1882	Conserved protein
0208	AE008384_1883	Conserved protein
0209	AE008384_1885	Diaminopimelate decarboxylase

0210	AE008384_1886	Nonspecific acid phosphatase precursor
0211	AE008384_1887	Hypothetical protein
0212	AE008384_1888	Transposase
0213	AE008384_1889	Conserved protein
0214	AE008384_1890	Conserved protein
0215	AE008384_1891	Na+/H+ antiporter
0216	AE008384_1892	Arylsulfatase
0217	AE008384_1893	Probable transcriptional regulator
0220	AE008384_1568	MOLYBDENUM-CONTAINING FORMYLMETHANOFURAN DEHYDROGENASE
0221	AE008384_1569	MOLYBDENUM FORMYLMETHANOFURAN DEHYDROGENASE SUBUNIT
0221	AE008384_1569	MOLYBDENUM FORMYLMETHANOFURAN DEHYDROGENASE SUBUNIT
0222	AE008384_1570	Conserved protein
0223	AE008384_1571	Conserved protein
0224	AE008384_1572	Conserved protein
0226	AE008384_1574	Conserved protein
0227	AE008384_1575	Conserved protein
0228	AE008384_1576	Conserved protein
0229	AE008384_1577	Nicotinate-nucleotide pyrophosphorylase
0229	AE008384_1577	Nicotinate-nucleotide pyrophosphorylase
0230	AE008384_1578	Molybdate ABC transporter, ATP-binding protein
0231	AE008384_1579	Molybdate ABC transporter, permease protein
0232	AE008384_1580	Molybdate-binding protein
0233	AE008384_1581	Putative NAD(P)H oxidoreductase
0234	AE008384_1582	IRON-SULFUR FLAVOPROTEIN
0235	AE008384_1584	NADPH-flavin oxidoreductase
0236	AE008384_1585	IRON-SULFUR FLAVOPROTEIN
0237	AE008384_1586	Transcriptional regulator, MarR family
0238	AE008384_1587	DNA REPAIR HELICASE
0239	AE008384_1588	SURFACE LAYER PROTEIN B
0240	AE008384_1589	SURFACE LAYER PROTEIN B
0241	AE008384_1590	Conserved protein
0242	AE008384_1591	Conserved protein
0243	AE008384_1592	Conserved protein
0244	AE008384_1593	probable RNA processing protein
0245	AE008384_1594	Fibrillarin
0246	AE008384_1595	Conserved protein
0247	AE008384_1596	Conserved protein
0248	AE008384_1597	Integral membrane protein
0249	AE008384_1598	Conserved protein
0250	AE008384_1599	Integral membrane protein
0251	AE008384_1600	Hypothetical protein
0252	AE008384_1601	Cobalamin biosynthesis protein
0253	AE008384_1602	Cobalamin biosynthesis protein CobN
0254	AE008384_1603	Conserved protein
0255	AE008384_1604	TUNGSTEN FORMYLMETHANOFURAN DEHYDROGENASE, SUBUNIT E
0256		Conserved protein
0257		Archaeal protein Translation Initiation Factor 2B subunit 2aIF-2B2
0258		Acetyltransferase
0259		ABC transporter, ATP-binding protein
0260	 AE008384_1609	ABC transporter, permease protein
0261		HYPOTHETICAL BINDING PROTEIN OF ABC TRANSPORTER
0262		Uridylate kinase

0263	AE008384 1612	Conserved protein
0264	AE008384 1613	Conserved protein
0265	AE008384_1614	Transcriptional regulator TetR family
0266	AE008384 1615	OXIDOREDUCTASE ALDO/KETO REDUCTASE FAMILY
0267	AE008384 1616	Phosphoribosylaminoimidazole carboxylase
0268	AE008384_1617	Conserved protein
0269	AE008384_1618	Aspartate semialdehyde dehydrogenase
0270	AE008384_1619	Forradovin
0271	AE008384_1620	Conserved protein
0272	AE008384_1621	Cohalamin biosynthesis protein CohW
0272	AE008384_1622	Conserved protein
0273	AE008384_1624	
0274	AE008384_1024	Conserved protein
0275	AE008384_1023	
0276	AE008384_1626	Conserved protein
0277	AE008384_1627	
0278	AE008384_1628	Deoxycytidine tripnosphate deaminase
0279	AE008384_1629	Conserved protein
0280	AE008384_1630	
0281	AE008384_1631	IRON-SULFUR FLAVOPROTEIN
0282	AE008384_1632	IRON-SULFUR FLAVOPROTEIN
0283	AE008384_1633	ABC transporter, ATP-binding protein
0283	AE008384_1633	ABC transporter, ATP-binding protein
0284	AE008384_1634	Transcriptional regulator
0284	AE008384_1634	Transcriptional regulator
0285	AE008384_1635	Beta-phosphoglucomutase / Glucose-1-phosphate phosphodismutase
0286	AE008384_1636	GLYCOSYLTRANSFERASE
0287	AE008384_1638	Glycosyltransferase involved in cell wall biogenesis
0288	AE008384_1639	Putative acetyltransferase
0289	AE008384_1640	Putative polysaccharide deacetylase
0290	AE008384_1641	GLYCOSYL TRANSFERASE
0291	AE008384_1643	OLIGOSACCHARIDE REPEAT UNIT TRANSPORTER
0292	AE008384_1644	METHYLTRANSFERASE
0293	AE008384_1645	Hypothetical protein
0294	AE008384_1647	Methanol:corrinoid methyltransferase MtaB
0295	AE008384_1648	Methanol corrinoid protein MtaC
0296	AE008384_1649	Conserved protein
0297	AE008384_1650	Conserved protein
0298	AE008384_1651	Conserved protein
0299	AE008384_1652	Ferredoxin
0300	AE008384_1653	Conserved protein
0301	AE008384_1654	GLYCOSYL TRANSFERASE
0302	AE008384_1655	Conserved protein
0303	AE008384_1656	OXIDOREDUCTASE
0304	AE008384_1657	POSSIBLE SERINE\THREONINE PROTEIN PHOSPHATASE
0305	AE008384_1658	methyl-accepting chemotaxis protein
0306	AE008384_1660	MG2+ TRANSPORTER MGTE
0307	AE008384_1661	TYPE I RESTRICTION-MODIFICATION SYSTEM RESTRICTION SUBUNIT
0308	AE008384_1662	TRANSCRIPTIONAL REGULATORY PROTEIN, ASNC FAMILY
0309	AE008384_1663	Conserved protein
0310	AE008384_1664	Conserved protein
0311	AE008384_1665	Conserved protein
0314	AE008384_1667	TYPE I RESTRICTION-MODIFICATION SYSTEM SPECIFICITY SUBUNIT

0315	AE008384_1668	ATP-dependent DNA helicase RecG
0316	AE008384_1669	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT
0317	AE008384_1670	Conserved protein
0318	AE008384_1671	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
0319	AE008384_1672	Methyltransferase
0320	AE008384_1673	Galactoside O-acetyltransferase
0321	AE008384_1675	Conserved protein
0321	AE008384_1675	Conserved protein
0322	AE008384_1676	Conserved protein
0324	AE008384_1678	Conserved protein
0325	AE008384_1679	Transposase
0326	AE008384_1680	Precorrin-6Y C5,15-methyltransferase [decarboxylating]
0327	AE008384_1681	CbiD protein
0328	AE008384_1682	DNA mismatch repair protein
0329	AE008384_1683	DNA mismatch repair protein
0330	AE008384_1684	O-acetyl transferase
0331	AE008384_1685	CDP-diacylglycerolglycerol-3-phosphate 3-phosphatidyltransferase
0332	AE008384_1686	Iron-sulfur binding reductase
0333	AE008384_1687	DIMETHYLAMINE CORRINOID PROTEIN
0333	AE008384_1687	DIMETHYLAMINE CORRINOID PROTEIN
0334	AE008384_1688	Trimethylamine:corrinoid methyltransferase
0335	AE008384_1689	Trimethylamine:corrinoid methyltransferase MttB (C-terminal domain)
0336	AE008384_1690	TRIMETHYLAMINE CORRINOID PROTEIN
0337	AE008384_1691	Trimethylamine permease
0338	AE008384 1692	Conserved protein
0340	AE008384_1693	Dimethylamine:Corrinoid Methyltransferase MtbB
0341	AE008384_1694	Dimethylamine:corrinoid methyltransferase MtbB (C-terminal domain
0342	AE008384_1695	Conserved protein
0343		Lysyl-tRNA synthetase, class I
0344		Conserved protein
0345	AE008384_1698	Conserved protein
0346	AE008384_1700	PROTEASE
0347	AE008384_1701	Putative nucleoside-diphosphate-sugar epimerase
0348	AE008384_1702	Conserved protein
0349	AE008384_1703	Conserved protein
0350	AE008384 1704	Histidine biosynthesis protein
0351		Conserved protein
0352		Protein-L-isoaspartate O-methyltransferase
0353		Conserved protein
0354		Conserved protein
0355		Conserved protein
0356		3.4 dihydroxy-2-butanone 4-phosphate synthase
0357		Cobalt-zinc-cadmium resistance protein
0357		Cobalt-zinc-cadmium resistance protein
0358		Chorismate synthase
0359	AE008384 1713	Conserved protein
0360	AE008384 1714	Conserved protein
0361	AE008384 1716	Transcriptional regulator, ArsR family
0362	AE008384 1717	Conserved protein
0363	AE008384 1718	Conserved protein
0364	AE008384 1719	Hypothetical protein
0366		Hypothetical protein
	-	· - •

0367	AE008384_1723	Conserved protein
0368	AE008384_1726	Heme biosynthesis protein
0369	AE008384_1727	Heme biosynthesis protein
0378	AE008384_2426	Dienelactone hydrolase
0379	AE008384_2425	Conserved protein
0380	AE008384_2424	Conserved protein
0381	AE008384_2423	Superoxide dismutase
0382	AE008384_2422	Conserved protein
0383	AE008384_2421	Chaperone protein
0386	AE008384_2419	DNA gyrase, subunit B
0387	AE008384_2418	Type II DNA topoisomerase VI, subunit A
0388	AE008384_2417	Type II DNA topoisomerase VI, subunit B
0389	AE008384_2416	TRANSCRIPTIONAL REGULATORY PROTEIN, ASNC FAMILY
0390	AE008384_2415	Hypothetical protein
0391	AE008384_2413	Conserved protein
0392	AE008384_2412	Conserved protein
0393	AE008384_2409	Conserved protein
0394	AE008384_2408	Conserved protein
0395	AE008384_2407	Conserved protein
0396	AE008384_2406	Conserved protein
0397	AE008384_2405	Cation transporter
0398	AE008384_2404	Cation transporter
0399	AE008384_2403	Potassium channel protein
0400	AE008384_2402	Hypothetical protein
0401	AE008384_2401	Conserved protein
0402	AE008384_2400	Hypothetical protein
0403	AE008384_2399	Peptide methionine sulfoxide reductase
0404	AE008384_2398	ABC transporter, ATP-binding protein
0405	AE008384_2397	Heme exporter, protein B
0406	AE008384_2396	Heme exporter, protein C
0406	AE008384_2396	Heme exporter, protein C
0407	AE008384_2395	NADH:flavin oxidoreductases
0408	AE008384_2394	Transcriptional regulator, MerR family
0409	AE008384_2393	Conserved protein
0410	AE008384_2392	Long-chain-fatty-acidCoA ligase
0412	AE008384 2389	Conserved protein
0413		Cobalt transport protein
0414	AE008384 2387	Cobalt transport ATP-binding protein
0415	AE008384_2386	Hypothetical protein
0416	AE008384_2385	Conserved protein
0417	AE008384_2384	Conserved protein
0418	AE008384_2383	Small nuclear riboprotein (snRNA) homolog
0419	AE008384_2381	Conserved protein
0420		ATP-dependent DNA helicase
0421	AE008384 2379	5'-methylthioadenosine phosphorylase
0422		Conserved transmembrane protein
0423	AE008384 2377	Hypothetical protein
0424	AE008384 2376	Conserved protein
0425	AE008384 2375	Conserved protein
0426	AE008384 2374	Conserved protein
0427	AE008384 2373	3-isopropylmalate dehydratase
0428	AE008384 2372	Phosphoribosyl-ATP pyrophosphatase
	—	

0429	AE008384_2371	Conserved protein
0430	AE008384_2370	GTP-binding protein
0431	AE008384_2369	Cytochrome c-type biogenesis protein
0432	AE008384_2368	Aspartate aminotransferase
0433	AE008384_2367	HEXULOSE-6-PHOSPHATE ISOMERASE
0434	AE008384_2366	Conserved protein
0435	AE008384_2365	Conserved protein
0436	AE008384_2364	GTP-binding protein
0437	AE008384_2363	Conserved protein
0438	AE008384_2362	Shikimate kinase
0439	AE008384_2361	Chorismate mutase / prephenate dehydratase
0440	AE008384_2360	Phosphoribosylaminoimidazole carboxylase, catalytic subunit
0441	AE008384_2359	Conserved protein
0442	AE008384_2358	6-phosphofructokinase (ADP)
0443	AE008384_2357	Hypothetical protein
0444	AE008384_2356	Conserved protein
0445	AE008384_2355	Diphthine synthase
0446	AE008384_2354	Thioredoxin
0447	AE008384_2353	Thioredoxin reductase
0448	AE008384_2352	Conserved protein
0449	AE008384_2351	Transcriptional regulator
0450	AE008384_2350	O-linked N-acetyglucosamine transferase
0451	AE008384_2349	Putative phosphatase
0452	AE008384_2348	O-linked N-acetyglucosamine transferase
0453	AE008384_2347	Ribosomal protein S6 modification protein
0454	AE008384_2346	METHYLTRANSFERASE
0457	AE008384_2211	Hypothetical protein
0458	AE008384_2210	Oligosaccharyl transferase
0459	AE008384_2209	Conserved protein
0460	AE008384_2208	putative sugar kinase
0461	AE008384_2207	Conserved protein
0462	AE008384_2206	Molybdenum cofactor biosynthesis protein C
0463	AE008384_2205	Ribose-phosphate pyrophosphokinase
0464	AE008384_2204	Hypothetical protein
0465	AE008384_2203	Hypothetical protein
0466	AE008384_2202	Hypothetical protein
0467	AE008384_2201	Hypothetical protein
0468	AE008384_2199	TYPE I RESTRICTION-MODIFICATION SYSTEM SPECIFICITY SUBUNIT
0469	AE008384_2198	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT
0470	AE008384_2197	Conserved protein
0471	AE008384_2196	Conserved protein
0472	AE008384_2195	F420-DEPENDENT GLUCOSE-6-PHOSPHATE DEHYDROGENASE
0473	AE008384_2194	DNA repair protein RAD50
0474	AE008384_2193	DNA REPAIR PROTEIN (MRE11/RAD32 family)
0476	AE008384_2190	Hypothetical protein
0477	AE008384_2189	Rubrerythrin
0478	AE008384_2188	Conserved protein
0479	AE008384_2187	Conserved protein
0480	AE008384_2186	Conserved protein
0481	AE008384_2185	Hypothetical protein
0482	AE008384_2184	TATA-box binding protein
0482	AE008384_2184	TATA-box binding protein

0483	AE008384_2182	Hypothetical protein
0484	AE008384_2181	Fructose-1,6-bisphosphatase
0484	AE008384_2181	Fructose-1,6-bisphosphatase
0485	AE008384_2180	GMP synthase [glutamine-hydrolyzing]
0486	AE008384_2179	Conserved protein
0487	AE008384_2178	Two component system histidine kinase
0488	AE008384_2177	F420-NONREDUCING HYDROGENASE III, SUBUNIT CYTOCHROME B
0489	AE008384_2176	F420-NONREDUCING HYDROGENASE III, LARGE SUBUNIT
0490	AE008384_2175	F420-NONREDUCING HYDROGENASE III PRECURSOR, SMALL SUBUNIT
0491	AE008384_2174	Conserved protein
0492	AE008384_2173	Conserved protein
0493	AE008384_2172	HYDROGENASE EXPRESSION/FORMATION PROTEIN
0494	AE008384_2171	F420-NONREDUCING HYDROGENASE II, SUBUNIT CYTOCHROME B
0494	AE008384_2171	F420-NONREDUCING HYDROGENASE II, SUBUNIT CYTOCHROME B
0494	AE008384_2171	F420-NONREDUCING HYDROGENASE II, SUBUNIT CYTOCHROME B
0495	AE008384_2170	F420-NONREDUCING HYDROGENASE II, LARGE SUBUNIT
0496	AE008384_2169	F420-NONREDUCING HYDROGENASE II PRECURSOR
0497	AE008384_2167	Transposase
0498	AE008384_2164	Hydrogenase expression/formation protein
0499	AE008384_2163	Hydrogenase expression/formation protein
0500	AE008384_2162	Hypothetical protein
0500	AE008384_2162	Hypothetical protein
0501	AE008384_2161	Hypothetical protein
0502	AE008384_2159	Hypothetical protein
0503	AE008384_2158	DNA-directed RNA polymerase, subunit D
0503	AE008384_2158	DNA-directed RNA polymerase, subunit D
0504	AE008384_2157	SSU ribosomal protein S11P
0505	AE008384_2156	SSU ribosomal protein S4P
0506	AE008384_2155	SSU ribosomal protein S13P
0507	AE008384_2154	TRNA PSEUDOURIDINE SYNTHASE
0508	AE008384_2153	Cytidylate kinase
0509	AE008384_2152	Hypothetical protein
0510	AE008384_2151	Carbonic anhydrase
0511	AE008384_2150	Conserved protein
0512	AE008384_2149	Phosphoribosylaminoimidazole carboxylase
0513	AE008384_2148	Adenylate kinase
0514	AE008384_2147	PROTEIN TRANSLOCASE SUBUNIT SECY
0514	AE008384_2147	PROTEIN TRANSLOCASE SUBUNIT SECY
0515	AE008384_2146	LSU ribosomal protein L15P
0515	AE008384_2146	LSU ribosomal protein L15P
0516	AE008384_2145	LSU ribosomal protein L30P
0517	AE008384_2144	SSU ribosomal protein S5P
0518	AE008384_2143	LSU ribosomal protein L18P
0519	AE008384_2142	LSU ribosomal protein L19E
0520	AE008384_2141	LSU ribosomal protein L32E
0521	AE008384_2140	LSU ribosomal protein L6P
0522	AE008384_2139	SSU ribosomal protein S8P
0523	AE008384_2138	SSU ribosomal protein S14P
0524	AE008384_2137	LSU ribosomal protein L5P
0525	AE008384_2136	SSU ribosomal protein S4E
0526	AE008384_2134	LSU ribosomal protein L14P
0527	AE008384_2133	SSU ribosomal protein S17P

0528	AE008384_2132	RNaseP subunitP29
0529	AE008384_2131	Ribonuclease P protein subunit P29
0529	AE008384_2131	LSU ribosomal protein L29P
0530	AE008384_2130	SSU ribosomal protein S3P
0531	AE008384_2129	LSU ribosomal protein L22P
0532	AE008384_2128	SSU ribosomal protein S19P
0533	AE008384_2127	LSU ribosomal protein L2P
0534	AE008384_2126	LSU ribosomal protein L23P
0535	AE008384_2125	LSU ribosomal protein L4
0536	AE008384_2124	LSU ribosomal protein L3P
0537	AE008384_2123	Hypothetical protein
0538	AE008384_2122	PUTATIVE SERINE/THREONINE PROTEIN KINASE
0539	AE008384_2121	Hypothetical protein
0540	AE008384_2120	Hypothetical protein
0541	AE008384_2119	Hypothetical protein
0542	AE008384_2118	Hypothetical protein
0543	AE008384_2117	Hypothetical protein
0544	AE008384_2115	Protease HTPX homolog
0544	AE008384_2115	Protease HTPX homolog
0545	AE008384_2114	Hypothetical protein
0546	AE008384_2113	Hypothetical protein
0547	AE008384_2112	Hypothetical protein
0548	AE008384_2111	GALACTOSIDE-O-ACETYLTRANSFERASE
0549	AE008384_2110	Conserved protein
0550	AE008384_2109	Glycosyl transferase
0551	AE008384_2107	Glycosyl transferase
0552	AE008384_2106	Putative glycosyl transferase
0553	AE008384_2105	Putative glycosyl transferase
0554	AE008384_2103	Putative Methyltransferase
0555	AE008384_2102	Glycosyl Transferase
0556	AE008384_2101	Heteropolysaccharide repeat unit export protein
0557	AE008384_2100	Conserved protein
0558	AE008384_2098	Conserved protein
0559	AE008384_2097	Hypothetical protein
0560	AE008384_2096	UDP-N-Acetylglucosamine-1-phosphate transferase
0561	AE008384_2095	Hypothetical protein
0562	AE008384_2094	Indolepyruvate oxidoreductase, subunit
0563	AE008384_2093	Indolepyruvate oxidoreductase, subunit
0564	AE008384_2092	CODH nickel-insertion accessory protein (iron-sulfur protein)
0565	AE008384_2091	probable transport channel protein
0566	AE008384_2090	HTH DNA-binding protein
0567	AE008384_2089	CO DEHYDROGENASE/ACETYL-COA SYNTHASE ALPHA SUBUNIT
0568	AE008384_2088	CO DEHYDROGENASE/ACETYL-COA SYNTHASE EPSIOLON SUBUNIT
0569	AE008384_2087	CO DEHYDROGENASE/ACETYL-COA SYNTHASE BETA SUBUNIT
0570	AE008384_2086	CODH nickel-insertion accessory protein (iron-sulfur protein)
0571	AE008384_2085	CO DEHYDROGENASE/ACETYL-COA SYNTHASE DELTA SUBUNIT
0572	AE008384_2084	CO DEHYDROGENASE/ACETYL-COA SYNTHASE GAMMA SUBUNIT
0573	AE008384_2083	Orotidine 5'-phosphate decarboxylase
0574	AE008384_2082	DEOXYHYPUSINE SYNTHASE
0575	AE008384_2081	ABC transporter, ATP-binding protein
0576	AE008384_2080	Galactoside O-acetyltransferase
0577	AE008384_2079	Thioredoxin

1	0
1	. 2

0578	AE008384_2078	Conserved protein
0579	AE008384_2077	Conserved protein
0580	AE008384_2076	S-adenosylmethionine synthetase
0581	AE008384_2075	4-hydroxybenzoate octaprenyltransferase
0582	AE008384_2074	Conserved protein
0583	AE008384_2073	Quinolinate synthetase A
0584	AE008384_2072	putative dinucleotide-utilizing enzyme
0585	AE008384_2071	Conserved protein
0586	AE008384_2070	NICOTINATE-NUCLEOTIDE PYROPHOSPHORYLASE CARBOXYLATING
0587	AE008384_2069	Iron(III) dicitrate-binding protein
0587	AE008384_2069	Iron(III) dicitrate-binding protein
0588	AE008384_2068	Iron(III) dicitrate transport system permease protein
0589	AE008384_2067	Iron(III) dicitrate transport ATP-binding protein
0590	AE008384_2066	SSU ribosomal protein S15P
0591	AE008384_2065	Conserved protein
0592	AE008384_2064	Conserved protein
0593	AE008384_2063	Conserved protein
0594		Conserved protein
0595		Histidyl-tRNA synthetase
0596		HISTIDINOL-PHOSPHATE AMINOTRANSFERASE
0597		CbiB protein
0598		Hypothetical protein
0599		Cobalamin [5'-phosphate] synthase
0600		PUTATIVE NUCLEOTIDYLTRANSFERASE
0601		ABC transporter. ATP-binding protein
0602	AE008384 2054	ABC transporter. ATP-binding protein
0603		Conserved protein
0604	AE008384 2052	DIMETHYLAMINE CORRINOID PROTEIN
0605	AE008384 2051	Dimethylamine:corrinoid methyltransferase
0606		Dimethylamine:corrinoid methyltransferase (C-terminal domain)
0607	 AE008384_2049	Trimethylamine:corrinoid methyltransferase
0608		Trimethylamine:Corrinoid Methyltransferase MttB (C-terminal domain)
0608		Trimethylamine:corrinoid methyltransferase (C-terminal domain)
0609	AE008384 2047	TRIMETHYLAMINE CORRINOID PROTEIN
0610	AE008384_2046	Trimethylamine Permease
0610	AE008384_2046	Trimethylamine Permease
0611	AF008384 2045	Conserved protein
0613	AF008384_2044	Conserved protein
0614	AE008384_2043	Hypothetical protein
0615	AF008384_2042	ARCHAEAL TRANSCRIPTIONAL REGULATOR
0616	AE008384_2041	Aspartate aminotransferase
0617	AE008384_2040	TRANSCRIPTIONAL REGULATORY PROTEIN ASNC FAMILY
0618	AE008384_2039	SSU ribosomal protein S8E
0619	AE008384_2038	Conserved protein
0620	AE008384_2037	Conserved protein
0620	AE008384_2036	Conserved protein
0622	AF008384 2035	Orotate phosphoribosyltransferase
0623	AF008384 2034	Conserved protein
0624	AF008384 2034	STOMATIN LIKE-PROTEIN
0625	AF008384 2032	NODULATION PROTEIN
0625	AF008384 2032	NODULATION PROTEIN
0626	ΔE008384 2021	Hydrogenese expression/formation protein
0020	AL000304_2031	riyurogenase expression/tormation protein
0626	AE008384_2031	Hydrogenase expression/formation protein
------	---------------	--
0627	AE008384_2030	Amidotransferase hisH
0628	AE008384_2028	Hypothetical protein
0629	AE008384_2027	Hypothetical protein
0629	AE008384_2027	Hypothetical protein
0630	AE008384_2026	Hypothetical protein
0631	AE008384_2024	Conserved protein
0632	AE008384_2023	Conserved protein
0633	AE008384_2022	TRANSPORTER, LysE family
0634	AE008384_2021	Conserved protein
0635	AE008384_2020	TWITCHING MOBILITY (PilT) related protein
0635	AE008384_2020	TWITCHING MOBILITY (PilT) related protein
0636	AE008384_2019	Phosphoribosyl-AMP cyclohydrolase
0637	AE008384_2018	Conserved protein
0638	AE008384_2017	Conserved protein
0639	AE008384_2016	HESB PROTEIN
0640	AE008384_2015	Hypothetical protein
0641	AE008384_2596	Hypothetical protein
0641	AE008384_2596	Hypothetical protein
0642	AE008384_2595	Hypothetical protein
0643	AE008384_2594	Hypothetical protein
0644	AE008384_2593	Hypothetical protein
0645	AE008384_2592	Hypothetical protein
0646	AE008384_2591	Hypothetical protein
0647	AE008384_2588	Transposase
0648	AE008384_2587	Surface layer protein (putative)
0649	AE008384_2586	Sec-independent protein translocase, protein
0650	AE008384_2585	Sec-independent protein translocase, protein
0651	AE008384_2584	Sec-independent protein translocase protein tatA
0652	AE008384_2383	Hupothetical protain
0654	AE008384_2582	Puruwate formate lyace activating enzyme related protein
0655	AE008384_2579	Transposase
0655	AE008384 2578	Ferrous iron transport protein A
0657	AE008384 2577	Ferrous iron transport protein A
0658	AE008384 2576	Ferrous iron transport protein B
0659	AE008384 2575	Hypothetical protein
0660	AE008384 2573	Iron dependent transcriptional repressor
0661		METHYLTRANSFERASE
0662		ABC transporter, ATP-binding protein
0663		ABC transporter, ATP-binding protein
0664	AE008384_2569	ABC transporter, permease protein
0664	AE008384_2569	ABC transporter, permease protein
0665	AE008384_2568	ABC transporter, permease protein
0666	AE008384_2567	ABC transporter, periplasmic binding protein
0666	AE008384_2567	ABC transporter, periplasmic binding protein
0668	AE008384_2566	CODH nickel-insertion accessory protein
0668	AE008384_2566	CODH nickel-insertion accessory protein
0669	AE008384_2565	Pyruvate formate-lyase activating enzyme
0669	AE008384_2565	Pyruvate formate-lyase activating enzyme
0670	AE008384_2564	Hypothetical protein
0671	AE008384_2563	Ferredoxin

0672	AE008384_2562	Hypothetical protein
0673	AE008384_2561	Conserved hypothetical protein
0674	AE008384_2560	Hypothetical protein
0675	AE008384_2559	Hypothetical protein
0675	AE008384_2559	Hypothetical protein
0676	AE008384_2558	Hypothetical protein
0677	AE008384_2557	Catalase
0678	AE008384_2556	ATP-dependent RNA helicase
0679	AE008384_2555	Hypothetical protein
0680	AE008384_2554	Acetyltransferase
0681	AE008384_2553	Putative hydrolase
0682	AE008384_2552	Hypothetical protein
0683	AE008384_2551	Acetyltransferase
0684	AE008384_2550	Hypothetical protein
0685	AE008384_2549	Conserved hypothetical protein
0686	AE008384_2548	Hypothetical protein
0688	AE008384_2546	Conserved hypothetical protein
0689	AE008384_2545	Hypothetical protein
0690	AE008384_2542	PHOSPHOHYDROLASE (MUTT/NUDIX family protein)
0691	AE008384_2541	Cation-transporting ATPase
0692	AE008384_2540	Conserved hypothetical protein
0693	AE008384_2539	Dimethyladenosine transferase
0694	AE008384_2538	Conserved hypothetical protein
0695	AE008384_2537	Hypothetical protein
0696	AE008384_2536	LSU ribosomal protein L21E
0697	AE008384_2535	Conserved hypothetical protein
0698	AE008384_2534	Conserved hypothetical protein
0699	AE008384_2533	Hypothetical protein
0700	AE008384_2532	Hypothetical protein
0701	AE008384_2531	Hypothetical protein
0703	AE008384_2529	Hypothetical protein
0704	AE008384_2528	N2,N2-dimethylguanosine tRNA methyltransferase
0705	AE008384_2527	Hypothetical protein
0705	AE008384_2527	Hypothetical protein
0706	AE008384_2526	Conserved protein
0707	AE008384_2525	hypothetical protein
0708	AE008384_2524	Phage shock protein A
0709	AE008384_2523	Hypothetical protein
0710	AE008384_2522	Universal stress protein
0711	AE008384_2520	Conserved protein
0712	AE008384_2519	GTP-binding protein homolog
0713	AE008384_2518	Sensory transduction histidine kinases
0714	AE008384_2517	Thiamine biosynthesis protein
0715	AE008384_2516	Probable transcriptional regulator
0716	AE008384_2515	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
0717	AE008384_2514	Archaeal protein Translation Elongation Factor 1, subunit beta
0718	AE008384_2512	1-pyrroline-5-carboxylate synthetase
0719	AE008384_2511	Hypothetical protein
0720	AE008384_2510	Hypothetical protein
0722	AE008384_2508	Heat shock protein
0724	AE008384_2506	GrpE protein
0725	AE008384_2505	Chaperone protein

0726	AE008384_2504	Chaperone protein DnaJ
0727	AE008384_2503	Trk system potassium uptake protein TrkA
0728	AE008384_2502	Trk system potassium uptake protein
0729	AE008384_2501	Trk system potassium uptake protein
0730	AE008384_2500	Trk system potassium uptake protein
0731	AE008384_2499	Geranylgeranyl reductase
0732	AE008384_2498	Conserved protein
0733	AE008384_2497	Hypothetical protein
0734	AE008384_2496	Biotin synthase / thiamine biosynthesis enzyme
0735	AE008384_2495	Biotin synthase / thiamine biosynthesis enzyme
0736	AE008384_2494	Biotin synthase / thiamine biosynthesis enzyme
0737	AE008384_2493	Oxidoreductase (hypothetical)
0738	AE008384_2491	F420H2 dehydrogenase, subunitA
0739	AE008384_2490	F420H2 dehydrogenase, subunitB
0740	AE008384_2489	F420H2 dehydrogenase, subunitC
0741	AE008384_2488	F420H2 dehydrogenase, subunitD
0742	AE008384_2487	F420H2 dehydrogenase, subunitH
0743	AE008384_2486	F420H2 dehydrogenase, subunitI
0744	AE008384_2485	F420H2 dehydrogenase, subunitJ1
0745	AE008384_2484	F420H2 dehydrogenase, subunitJ2
0746	AE008384_2483	F420H2 dehydrogenase, subunitK
0747	AE008384_2482	F420H2 dehydrogenase, subunitL
0748	AE008384_2481	F420H2 dehydrogenase, subunitM
0749	AE008384_2480	F420H2 dehydrogenase, subunitN
0750	AE008384_2479	F420h2 dehydrogenase, subunitO
0751	AE008384_2478	Chloride channel (putative)
0752	AE008384_2477	Hypothetical protein
0753	AE008384_2476	Ribosomal-protein-alanine acetyltransferase
0754	AE008384_2475	Hypothetical protein
0755	AE008384_2474	Ribosomal-protein-alanine acetyltransferase
0756	AE008384_2473	Hypothetical protein
0756	AE008384_2473	Hypothetical protein
0757	AE008384_2472	NUCLEOTIDYLTRANSFERASE
0758	AE008384_2471	Hypothetical protein
0759	AE008384_2470	Surface layer protein (putative)
0762	AE008384_2468	Metallo cofactor biosynthesis protein (moaA/ nifB /pqqE family
0763	AE008384_2893	Hypothetical protein
0764	AE008384_2891	ABC transporter, permease protein
0764	AE008384_2891	ABC transporter, permease protein
0765	AE008384_2889	Hypothetical protein
0766	AE008384_2888	Endonuclease III
0767	AE008384_2887	
0768	AE008384_2886	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
0769	AE008384_2883	Concerned anothin
0771	AEUU0384_2884	Conserved protein
0772	AE000304_2003	Conserved protein
0773	AE000304_2002	Conserved protein
0774	AE000304_2001	Sensor insudine kinase/response regulator
0775	AE000304_2000	TETD ATDICODEDTINE DEDEAT FAMILY DROTTIN
0776	AE000304_20/9	IEINAINUUTETIDE NEPEAI FAMILI PROTEIN
0776	AE000304_20/0	Hypothetical protein
0770	AE000304_20/0	nypomencal protein

0777	AE008384_2877	Hypothetical protein
0778	AE008384_2876	DNA polymerase IV
0779	AE008384_2875	Hypothetical protein
0781	AE008384_1016	Putative ribosomal-protein-alanine acetyltransferase
0782	AE008384_1017	Conserved protein
0783	AE008384_1018	Conserved protein
0784	AE008384_1019	Iron-sulfur cluster-binding protein
0785	AE008384_1020	O6-methylguanine-DNA methyltransferase
0785	AE008384_1020	O6-methylguanine-DNA methyltransferase
0786	AE008384_1022	Conserved protein
0787	AE008384_1023	Conserved protein
0788	AE008384_1024	Conserved protein
0791	AE008384_1026	Dolichol-phosphate mannosyltransferase
0792	AE008384_1027	Transcription initiation factor TFIIB
0793	AE008384_1028	Transcription initiation factor TFIIB
0794	AE008384_1029	Hypothetical protein
0795	AE008384_1030	Conserved protein
0796	AE008384_1031	Chromosome partition protein
0797	AE008384_1032	Conserved protein
0798	AE008384_1033	Ferrous iron transport protein B
0799	AE008384_1034	Transcriptional repressor
0800	AE008384_1035	Amino-acid acetyltransferase
0801	AE008384_1036	BIOY PROTEIN
0802	AE008384_1037	Cobalt transporter, ATP-binding protein
0803	AE008384_1038	Cobalt transporter, ATP-binding protein
0804	AE008384_1039	Cobalt transport protein
0805	AE008384_1040	Predicted transcriptional regulator
0806	AE008384_1041	Transporter
0807	AE008384_1042	Transcriptional regulator
0808	AE008384_1043	Transposase
0809	AE008384_1044	Transposase
0810	AE008384_1045	Branched-chain amino acid aminotransferase
0811	AE008384_1046	Molybdopterin biosynthesis protein
0812	AE008384_1047	GTP-binding protein
0813	AE008384_1048	D-alanine-D-alanine ligase related protein
0814	AE008384_1049	Arsenite permease
0815	AE008384_1052	Conserved protein
0816	AE008384_1053	Putative Sensory protein
0817	AE008384_1054	SURFACE LAYER PROTEIN B
0818	AE008384_1055	TRIMETHYLAMINE CORRINOID PROTEIN
0819	AE008384_1056	Putative ATP-dependent Na+ efflux pump
0820	AE008384_1057	ABC transporter, ATP-binding protein
0821	AE008384_1058	N-5-phosphoribosylamino)uracil reductase
0822	AE008384_1059	Formate hydrogenlyase subunit 3
0823	AE008384_1060	Formate hydrogenlyase subunit 4
0824	AE008384_1061	Hydrogenase-4 component E
0825	AE008384_1062	Hydrogenase-4 component F
0826	AE008384_1063	Formate hydrogenlyase subunit 5 precursor
0827	AE008384_1064	Formate hydrogenlyase subunit 7
0828	AE008384_1067	Conserved protein
0829	AE008384_1068	Two-component response regulator
0830	AE008384_1069	Cation-transporting ATPase

ANHANG ZUR DISSERTATION KATHARINA PFLÜGER 17

0831	AE008384_1070	Methylcobalamin: Coenzyme M Methyltransferase
0832	AE008384_1071	Conserved protein
0833	AE008384_1072	Conserved protein
0836	AE008384_1074	Methanol:corrinoid methyltransferase
0837	AE008384_1075	putative regulatory protein
0838	AE008384_1076	Cation efflux system protein
0839	AE008384_1077	Conserved protein
0840	AE008384_1078	Conserved protein
0841	AE008384_1079	Conserved protein
0842	AE008384_1080	Conserved protein
0843	AE008384_1081	Conserved protein
0844	AE008384_1082	GTP-binding protein
0845	AE008384_1083	Undecaprenyl pyrophosphate synthetase
0846	AE008384_1084	Hypothetical protein
0847	AE008384_1085	Conserved protein
0848	AE008384_1086	METAL DEPENDENT HYDROLASE
0849	AE008384_1087	ABC transporter, ATP-binding protein
0850	AE008384_1088	ABC transporter, ATP-binding protein
0851	AE008384_1089	Putative DNA integration/recombination/invertion protein
0852	AE008384_1090	Putative DNA integration/recombination/invertion protein
0853	AE008384_1091	Thiol-disulfide isomerase/thioredoxin related protein
0854	AE008384_1092	Thiol-disulfide isomerase/thioredoxin related protein
0855	AE008384_1093	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
0856	AE008384_1094	Putative transcriptional regulator
0857	AE008384_1095	Iron-sulfur-binding protein
0858	AE008384_1096	Thermosome, gamma subunit
0859	AE008384_1097	Conserved protein
0860	AE008384_1098	Conserved protein
0861	AE008384_1100	Hypothetical protein
0862	AE008384_1101	Archaeosine tRNA-ribosyltransferase
0863	AE008384_1103	Hypothetical protein
0864	AE008384_1104	Oxidoreductase (flavoprotein)
0865	AE008384_1105	Metallo cofactor biosynthesis protein (moaA/ nifB /pqqE family
0866	AE008384_1106	Putative phosphoserine phosphatase
0867	AE008384_1107	Putative phosphoserine phosphatase
0868	AE008384_1108	F420-dependent methylenetetrahydromethanopterin dehydrogenase
0869	AE008384_1109	Conserved protein
0870	AE008384_1110	Conserved protein
0871	AE008384_1111	Thymidylate kinase
0872	AE008384_1112	Conserved protein
0873	AE008384_1113	Phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase
0874	AE008384_1114	Conserved protein
0875	AE008384_1115	Conserved protein
0875	AE008384_1115	Conserved protein
0876	AE008384_1116	Hypothetical protein
0877	AE008384_1117	Polysaccharide deacetylase
0878	AE008384_1118	Conserved protein
0879	AE008384_1119	Conserved protein
0880	AE008384_1120	Conserved protein
0881	AE008384_1121	Glycosyl transferase
0882	AE008384_1122	OXIDOREDUCTASE
0883	AE008384_1123	Hypothetical protein

0884	AE008384_1124	O-antigen translocase
0884	AE008384_1124	O-antigen translocase
0885	AE008384_1125	Conserved protein
0886	AE008384_1126	GLYCOSYL TRANSFERASE
0887	AE008384_1127	Glycosyl transferase
0888	AE008384_1128	Conserved protein
0889	AE008384_1129	Conserved protein
0890	AE008384_1131	Hypothetical protein
0890	AE008384_1131	Hypothetical protein
0891	AE008384_1132	UDP-glucose 6-dehydrogenase
0892	AE008384_1133	UTPglucose-1-phosphate uridylyltransferase
0893	AE008384_1134	UDP-glucose 4-epimerase
0894	AE008384_1135	Transporter
0895	AE008384_1136	Disaggregase-like protein
0895	AE008384_1136	Disaggregase-like protein
0896	AE008384_1137	GLYCOSYL TRANSFERASE
0897	AE008384_1138	GLYCOSYL TRANSFERASE
0898	AE008384_1139	Dolichyl-phosphate mannose synthase related protein
0899	AE008384_1140	Dolichyl-phosphate mannose synthase related protein
0900	AE008384_1141	GLYCOSYL TRANSFERASE
0901	AE008384_1142	GLYCOSYL TRANSFERASE
0902	AE008384_1143	GLYCOSYL TRANSFERASE
0903	AE008384_1144	Disaggregase
0904	AE008384_1145	Conserved protein
0914	AE008384_1245	Conserved protein
0915	AE008384_1244	Methyl-coenzyme M reductase, beta subunit
0915	AE008384_1244	Methyl-coenzyme M reductase, beta subunit
0916	AE008384_1243	Methyl-coenzyme M reductase operon protein D
0917	AE008384_1242	Methyl-coenzyme M reductase operon protein C
0918	AE008384_1241	Methyl-coenzyme M reductase, gamma subunit
0919	AE008384_1240	Methyl-coenzyme M reductase, alpha subunit
0920	AE008384_1239	METHYLTRANSFERASE
0921	AE008384_1238	3-phosphoshikimate 1-carboxyvinyltransferase
0922	AE008384_1237	Thymidylate synthase
0923	AE008384_1236	PROTEASE HTPX
0924	AE008384_1235	5-methylcytosine-specific restriction enzyme
0925	AE008384_1234	Conserved protein
0926	AE008384_1233	Hypothetical protein
0927	AE008384_1232	Conserved protein
0928	AE008384_1231	SAM-dependent methyltransferases
0929	AE008384_1229	Nitrilase
0930	AE008384_1228	Glutamyl-tRNA (Gln) amidotransferase, subunit B
0931	AE008384_1227	Glutamyl-tRNA (Gln) amidotransferase, subunit A
0932	AE008384_1226	Glutamyl-tRNA (Gln) amidotransferase, subunit C
0933	AE008384_1225	Coenzyme F420 hydrogenase, beta subunit
0934	AE008384_1224	Conserved protein
0935	AE008384_1223	Conserved protein
0936	AE008384_1222	Conserved protein
0937	AE008384_1221	Chromosomal protein
0938	AE008384_1220	Acetylglutamate kinase
0939	AE008384_1219	Fe-S OXIDOREDUCTASE
0940	AE008384_1218	GMP synthase [glutamine-hydrolyzing]

0941	AE008384_1217	ATP-dependent DNA helicase
0942	AE008384_1216	Conserved protein
0943	AE008384_1215	HEXULOSE-6-PHOSPHATE SYNTHASE
0944	AE008384_1214	Conserved protein
0945	AE008384_1213	Aspartate carbamoyltransferase, catalytic subunit
0946	AE008384_1212	Aspartate carbamoyltransferase, regulatory subunit
0947	AE008384_1211	Conserved protein
0948	AE008384_1210	Conserved protein
0949	AE008384_1209	Conserved protein
0950	AE008384_1206	Conserved protein
0951	AE008384_1204	Conserved protein
0952	AE008384_1203	Conserved protein
0953	AE008384_1202	Dihydrodipicolinate reductase
0954	AE008384_1201	Dihydrodipicolinate synthase
0955	AE008384_1200	SSU ribosomal protein S17E
0956	AE008384_1199	Conserved protein
0958	AE008384_1197	Conserved protein
0959	AE008384_1196	Conserved protein
0960	AE008384_1195	Conserved protein
0961		Conserved protein
0962		dTDP-glucose 4,6-dehydratase
0963		Transposase
0964		dTDP-glucose 4,6-dehydratase
0965		Conserved protein
0966		Conserved protein
0967		Conserved protein
0968		Conserved protein
0970		Dolichyl-phosphate mannose synthase related protein
0971		Dolichyl-phosphate mannose synthase related protein
0972		GLYCOSYL TRANSFERASE
0973	AE008384 1181	Conserved protein
0974		OXIDOREDUCTASE
0975		GLYCOSYL TRANSFERASE
0976		GLYCOSYL TRANSFERASE
0977		GLYCOSYL TRANSFERASE
0978		Oligosaccharide repeat unit transporter
0979		UDP-N-acetyl-D-mannosamine 6-dehydrogenase
0980	AE008384 1170	UDP-N-acetylglucosamine 2-epimerase
0981	AE008384 1169	Glucose-1-phosphate thymidylyltransferase
0982	AE008384 1168	dTDP-4-dehvdrorhamnose reductase
0983	AE008384 1167	dTDP-glucose 4.6-dehydratase
0984	AE008384 1166	dTDP-4-dehvdrorhamnose 3.5-epimerase
0985	AE008384 1165	Dolichyl-phosphate mannose synthase related protein
0986	AE008384_1164	hypothetical nucleotidyltransferase
0987	AE008384_1163	NUCLEOTIDYLTRANSFERASE
0988	AE008384_1162	UDP-N-acetylglucosamine 4-epimerase
0989	AE008384_2894	ABC transporter ATP-binding protein
0990	AF008384 2895	Transcriptional regulator
0991	AF008384 2896	Hypothetical protein
0992	AF008384 2897	Pirin
0993	AF008384 2808	Conserved protein
0994	AF00838/ 2800	Conserved protein
3771	· 1000000-2000	Conserved protein

0	998	AE008384_2902	Transposase
0	999	AE008384_2903	Transposase
1	000	AE008384_2904	Transposase
1	001	AE008384_2905	Transposase
1	002	AE008384_2907	Pirin
1	003	AE008384_2908	Hypothetical protein
1	004	AE008384_2909	Conserved protein
1	005	AE008384_2910	Adenine deaminase
1	005	AE008384_2910	Adenine deaminase
1	006	AE008384_2911	Phosphoserine aminotransferase
1	007	AE008384_2912	5-oxoprolinase
1	008	AE008384_2913	Conserved protein
1	009	AE008384_2914	Conserved protein
1	010	AE008384_2915	Hypothetical protein
1	011	AE008384_2916	FLAVOREDOXIN
1	012	AE008384_2917	OXIDOREDUCTASE, ALDO/KETO REDUCTASE FAMILY
1	013	AE008384_2918	OXIDOREDUCTASE, ALDO/KETO REDUCTASE FAMILY
1	014	AE008384_2919	Hypothetical protein
1	015	AE008384_2920	Ribosomal-protein-alanine acetyltransferase
1	016	AE008384_2921	Hypothetical protein
1	017	AE008384_2923	Hypothetical protein
1	018	AE008384_2924	Ribonuclease BN
1	021	AE008384_2928	Hypothetical protein
1	022	AE008384_2930	Hypothetical protein
1	023	AE008384_2931	Hydrolase
1	024	AE008384_2932	Conserved protein
1	025	AE008384_2933	Conserved protein
1	026	AE008384_2935	Hypothetical protein
1	027	AE008384_2937	Conserved protein
1	028	AE008384_2938	Conserved protein
1	029	AE008384_2939	Serine O-acetyltransferase
1	030	AE008384_2941	METAL DEPENDENT HYDROLASE
1	031	AE008384_2942	Conserved protein
1	032	AE008384_2943	Lipopolysaccharide N-acetylglucosaminyltransferase
1	033	AE008384_2944	Conserved protein
1	034	AE008384_2945	Mannosyltransferase
1	035	AE008384_2946	Hypothetical protein
1	036	AE008384_2947	Conserved protein
1	037	AE008384_2948	Conserved protein
1	038	AE008384_2949	Hypothetical protein
1	039	AE008384_2950	Conserved protein
1	040	AE008384_2951	Hypothetical protein
1	041	AE008384_2952	Conserved protein
1	042	AE008384_2953	Transcriptional regulator
1	043	AE008384_2954	Transcriptional regulator
1	044	AE008384_2955	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
1	044	AE008384_2955	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
1	046	AE008384_2956	Conserved protein
1	048	AE008384_2958	Conserved protein
1	049		Hypothetical protein
1	050		Hypothetical protein
1	051	AE008384 2961	Dimethylamine corrinoid protein
			· · · · ·

1052	AE008384_2962	Dimethylamine:corrinoid methyltransferase
1053	AE008384_2963	Dimethylamine:corrinoid methyltransferase (C-terminal domain)
1054	AE008384_2964	Dimethylamine permease
1055	AE008384_2965	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
1056	AE008384_2966	Conserved protein
1057	AE008384_2967	Isoleucyl-tRNA synthetase
1058	AE008384_2968	Conserved protein
1059	AE008384_2972	Hypothetical protein
1060	AE008384_2973	Hypothetical protein
1061	AE008384_2974	Hypothetical protein
1062	AE008384_2975	Hypothetical protein
1063	AE008384_2976	TYPE I RESTRICTION-MODIFICATION SYSTEM RESTRICTION SUBUNIT
1064	AE008384_2977	Hypothetical protein
1064	AE008384_2977	Hypothetical protein
1065	AE008384_2978	TYPE I RESTRICTION-MODIFICATION SYSTEM SPECIFICITY SUBUNIT
1066	AE008384_2979	Hypothetical protein
1066	AE008384_2979	Hypothetical protein
1069	AE008384_3038	Transposase
1070	AE008384_3040	Hypothetical protein
1071	AE008384_3041	Hypothetical protein
1072	AE008384_3042	Coenzyme F420 hydrogenase, beta subunit
1073	AE008384_3043	Coenzyme F420 hydrogenase, gamma subunit
1074	AE008384_3044	Coenzyme F420 hydrogenase, delta subunit
1075	AE008384_3045	Coenzyme F420 hydrogenase, alpha subunit
1076	AE008384_3046	Conserved protein
1078	AE008384_3048	Hypothetical protein
1079	AE008384_3050	GLYCOSYL TRANSFERASE
1080	AE008384_3051	Hypothetical protein
1081	AE008384_3052	OXIDOREDUCTASE
1082	AE008384_3053	CapK protein
1083	AE008384_3056	Competence-like protein
1084	AE008384_3057	Hypothetical protein
1085	AE008384_3058	IRON-SULFUR FLAVOPROTEIN
1086	AE008384_3059	Conserved protein
1087	AE008384_3060	Hypothetical protein
1088	AE008384_3061	Hypothetical protein
1089	AE008384_3062	Hypothetical protein
1090	AE008384_3063	CALCIUM DEPENDENT PROTEASE
1091	AE008384_3064	Hypothetical protein
1092	AE008384_3065	Hypothetical protein
1093	AE008384_3066	FUMARATE HYDRATASE, ALPHA SUBUNIT
1094	AE008384_3067	FUMARATE HYDRATASE, BETA SUBUNIT
1095	AE008384_3068	Conserved protein
1096	AE008384_3069	Cation-transporting ATPase
1097	AE008384_3070	Hypothetical protein
1098	AE008384_3071	Putative membrane transport protein
1099	AE008384_3072	Hypothetical protein
1100		SURFACE LAYER PROTEIN B
1101	AE008384_3074	RNASE P RNA COMPONENT
1102	AE008384_3075	Hypothetical protein
1103	AE008384_3076	DNA topoisomerase I
1104	AE008384_3077	Probable transcriptional regulator

1105	AE008384_3078	mRNA 3'-end processing factor
1106	AE008384_3079	Hypothetical protein
1107	AE008384_3080	Hypothetical protein
1108	AE008384_3081	Serine/threonine protein kinases
1110	AE008384_3084	Protease I
1110	AE008384_3084	Protease I
1111	AE008384_3085	Cystathionine gamma-synthase
1112	AE008384_3086	Nicotinate phosphoribosyltransferase
1114	AE008384_3087	Hypothetical protein
1116	AE008384 425	HELICASE (DEAD/DEAH FAMILY)
1117		RNase L inhibitor
1118		Hypothetical protein
1119		Conserved protein
1120		TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT
1121	AE008384 430	TYPE I RESTRICTION-MODIFICATION SYSTEM SPECIFICITY SUBUNIT
1122	AE008384_431	TYPE I RESTRICTION-MODIFICATION SYSTEM RESTRICTION SUBUNIT
1123	AE008384 432	Transcriptional regulator TetR/AcrR family
1123	AE008384_433	Conserved protein
1124	AE008384_433	Conserved protein
1125	AE008384_435	Conserved protein
1120	AE008384_435	Thioredovin
1127	AE008384_430	
1120	AE008384_437	Nativianatatrahydrofolata radvataca
1129	AE008384_438	
1120	AE008384_439	ZINC-FINOER PROTEIN
1131	AE008384_440 AE008384_441	Methylenetetrahydrofolate dehydrogenase (NADP+)/ methylenetetrahydrofolate cyclohydrolase
1133	AE008384 442	Serine hydroxymethyltransferase
1134		Phosphoribosylglycinamide formyltransferase
1135		HTH DNA-binding protein
1136		Hypothetical protein
1137	AE008384 446	NAD+ synthetase
1138		Cell division control protein (AAA family ATPase)
1139	AE008384 448	Hypothetical protein
1140	AE008384 449	SAM-dependent methyltransferases
1141	AE008384_450	Conserved protein
1142	AF008384_451	Hypothetical protein
11/2	AE008384_454	Hypothetical protein
1145	AE008384_455	Hypothetical protein
1144	AE008384_455	Hydrolese (HAD superfemily)
1145	AE008384_430	DECOMDINATION/DEDAID DOCTEIN DADA
1140	AE008384_437	
1147	AE008384_438	Concerned metain
1140	AE008384_439	Parkelle and analysis BV
1149	AE008384_400	Frontier endonuclease IV
1150	AE008384_461	5-methyltetranydropteroyltrigiutamatenomocysteine methyltransferase
1151	AEUU8384_402	Cobalt transport ATP-Dinding protein
1152	AEUU8384_463	Cobalt transport protein
1153	AE008384_464	Cobait transport protein
1154	AE008384_465	Cobaiamin biosynthesis protein CbiM
1155	AE008384_466	CbiM protein
1156	AE008384_467	Conserved protein
1157	AE008384_468	Conserved protein
1158	AE008384_469	Hypothetical protein

1159	AE008384_471	tRNA nucleotidyltransferase
1160	AE008384_472	8-OXOGUANINE DNA GLYCOSYLASE
1161	AE008384_473	Glucokinase
1161	AE008384_473	ADP-dependent phosphofructokinase
1162	AE008384_474	Glutamate N-acetyltransferase / Amino-acid acetyltransferase
1163	AE008384_475	Putative inosine-5'-monophosphate dehydrogenase
1163	AE008384_475	Putative inosine-5'-monophosphate dehydrogenase
1164	AE008384_476	N-acetyl-gamma-glutamyl-phosphate reductase
1165	AE008384_477	Hypothetical protein
1166	AE008384_478	Hypothetical protein
1167	AE008384_481	Acetyltransferase
1167	AE008384_481	Acetyltransferase
1169	AE008384_483	Small heat shock protein
1170	AE008384_484	Hypothetical protein
1171	AE008384_485	Phosphoglycerate kinase
1172	AE008384_486	DNA polymerase
1173	AE008384_487	Heat shock protein
1174	AE008384_488	Ferredoxin
1175	AE008384_489	Ferredoxin
1176	AE008384_490	Phycocyanin alpha-subunit phycocyanobilin lyase
1177	AE008384_491	Conserved protein
1178	AE008384_492	Conserved protein
1179	AE008384_493	Acetyl-CoA synthetase, beta subunit
1180	AE008384_495	Acetate kinase
1181	AE008384_496	Phosphate acetyltransferase
1182	AE008384_497	IRON-SULFUR FLAVOPROTEIN
1183	AE008384_498	Putative chloride channel protein
1184	AE008384_500	Hypothetical protein
1185	AE008384_501	3-demethylubiquinone-9 3-methyltransferase
1186	AE008384_502	Translation initiation inhibitor
1187	AE008384_503	Hypothetical protein
1188	AE008384_504	Phycocyanin alpha-subunit phycocyanobilin lyase (CpCE/NbIB family)
1189	AE008384_505	Methylcobalamin:Coenzyme M methyltransferase MtbA
1190	AE008384_506	Conserved protein
1191	AE008384_507	Conserved protein
1192	AE008384_508	Isoleucyl-tRNA synthetase
1194	AE008384_510	GTP-binding protein
1195	AE008384_511	Conserved protein
1196	AE008384_512	tRNA-intron endonuclease
1197	AE008384_513	Cobyrinic acid a,c-diamide synthase
1198	AE008384_514	NITROGENASE IRON PROTEIN 2
1199	AE008384_515	Conserved protein
1199	AE008384_515	Conserved protein
1200	AE008384_516	Hypothetical protein
1201	AE008384_517	Conserved protein
1202	AE008384_518	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
1203	AE008384_519	Hypothetical protein
1204	AE008384_520	Hypothetical protein
1205	AE008384_522	Transposase
1206	AE008384_524	Hypothetical protein
1207	AE008384_525	Hypothetical protein
1208	AE008384_526	Hypothetical protein

1209	AE008384_527	Conserved protein
1210	AE008384_528	Hypothetical protein
1211	AE008384_529	HYDROLASE
1212	AE008384_530	Amino acid permease
1213	AE008384_531	Conserved protein
1214	AE008384_532	Hypothetical protein
1215	AE008384_533	Conserved protein
1216	AE008384_534	Conserved protein
1217	AE008384_535	Hypothetical protein
1218	AE008384_536	Hypothetical protein
1219	AE008384_537	Hypothetical protein
1220	AE008384_540	Conserved protein
1221	AE008384_541	Conserved protein
1222	AE008384_542	Hypothetical protein
1223	AE008384_544	Exoribonuclease II
1224	AE008384_546	Conserved protein
1224	AE008384_546	Conserved protein
1226	AE008384_549	Conserved protein
1227	AE008384_550	Hypothetical protein
1228	AE008384_551	Hypothetical protein
1229	AE008384_552	Hypothetical protein
1231	AE008384_928	Conserved protein
1232	AE008384_929	Glutathione-regulated potassium-efflux system protein
1233	AE008384_930	Nitrogen regulatory protein P-II
1234	AE008384_931	Hypothetical protein
1235	AE008384_932	Hypothetical protein
1236	AE008384_933	Glutathione-regulated potassium-efflux system protein
1237	AE008384_934	LYSINE 2,3-AMINOMUTASE
1238	AE008384_935	Beta-lysine acetyltransferase
1239	AE008384_936	Conserved protein
1240	AE008384_937	PUTATIVE FLAGELLA-RELATED PROTEIN J
1241	AE008384_938	PUTATIVE FLAGELLA RELATED PROTEIN FIaI
1242	AE008384_939	Putative flagella-related protein H
1243	AE008384_940	putative Flavoprotein
1244	AE008384_941	Adenylosuccinate lyase
1246	AE008384_943	GERANYLGERANYLGLYCERYL DIPHOSPHATE SYNTHASE
1247	AE008384_944	METHYL COENZYME M REDUCTASE SYSTEM, COMPONENT A2 HOMOLOG
1248	AE008384_945	IRON-SULFUR FLAVOPROTEIN
1249	AE008384_946	PUTATIVE NADPH-FLAVIN OXIDOREDUCTASE
1250	AE008384_947	Conserved protein
1251	AE008384_948	Sensory transduction histidine kinases
1252	AE008384_949	Hypothetical protein
1253	AE008384_950	ABC transporter, ATP-binding protein
1254	AE008384_951	ABC transporter, permease protein
1255	AE008384_952	Hypothetical protein
1256	AE008384_953	ABC transporter, ATP-binding protein
1257	AE008384_955	ABC transporter, permease protein
1258	AE008384_956	ABC transporter, ATP-binding protein
1259	AE008384_957	Ammonium transporter
1260	AE008384_958	Nitrogen regulatory protein P-II
1261	AE008384_959	Conserved protein
1262	AE008384_960	Small heat shock protein

1263	AE008384_961	Putative small heat shock protein
1263	AE008384_961	Putative small heat shock protein
1264	AE008384_962	Conserved protein
1265	AE008384_963	Integral Membrane protein
1266	AE008384_964	Glutamine synthetase
1267	AE008384_966	Glutamate synthase, large chain
1268	AE008384_967	Glutamate synthase, large chain
1269	AE008384_968	Glutamate synthase, large chain
1270	AE008384_969	Coenzyme F420 hydrogenase beta subunit
1271	AE008384_970	Hypothetical protein
1272	AE008384_971	Hypothetical protein
1273	AE008384_972	Conserved protein
1274	AE008384_973	Conserved protein
1275	AE008384_974	Xaa-Pro aminopeptidase
1276	AE008384_975	Conserved protein
1277	AE008384_976	Protease (putative)
1277	AE008384_976	Protease (putative)
1278	AE008384_977	F420-dependent NADP reductase
1279	AE008384_979	HETERODISULFIDE REDUCTASE, SUBUNIT HDRC
1280	AE008384_980	HETERODISULFIDE REDUCTASE, SUBUNIT HDRB
1281	AE008384_981	Iron-sulfur binding protein
1283	AE008384_983	Conserved protein
1284	AE008384_984	Conserved protein
1285	AE008384_985	Conserved protein
1286	AE008384_986	Conserved protein
1287	AE008384_987	Conserved protein
1288	AE008384_988	Conserved protein
1289	AE008384_989	HTH DNA-binding protein
1290	AE008384_990	Nucleotide-binding protein
1291	AE008384_991	Thiol-disulfide isomerase/thioredoxin
1291	AE008384_991	Thiol-disulfide isomerase/thioredoxin
1292	AE008384_992	Cytochrome c-type biogenesis protein
1293	AE008384_994	Precorrin-8X methylmutase
1294	AE008384_995	Precorrin-3B C17-methyltransferase
1295	AE008384_996	COBALAMIN BIOSYNTHESIS PROTEIN G
1295	AE008384_996	COBALAMIN BIOSYNTHESIS PROTEIN G
1296	AE008384_997	Putative small heat shock protein
1296	AE008384_997	COBALAMIN BIOSYNTHESIS PROTEIN G
1297	AE008384_998	Precorrin-4 C11-methyltransferase
1298	AE008384_999	Serine/threonine protein kinase
1298	AE008384_999	Precorrin-2 C20-methyltransferase
1299	AE008384_1000	Precorrin-6Y C5,15-methyltransferase [decarboxylating]
1300	AE008384_1002	2-isopropylmalate synthase
1301	AE008384_1003	Isocitrate dehydrogenase [NADP]
1302	AE008384_1004	Putative molybdenum cofactor biosynthesis protein
1303	AE008384_1005	Zinc finger protein
1304	AE008384_1006	26S PROTEASOME REGULATORY SUBUNIT RPT2/S4
1305	AE008384_1007	Conserved protein
1306	AE008384_1008	Cell division protein
1307	AE008384_1009	PROTEIN TRANSLOCASE SUBUNIT SECE
1308	AE008384_1010	Putative transcription antitermination protein nusG
1309	AE008384_1011	LSU ribosomal protein L11P

0	6
7	υ

1310	AE008384_1012	LSU ribosomal protein L1P
1311	AE008384_1013	LSU ribosomal protein L10P
1312	AE008384 1014	LSU ribosomal protein L12AE
1313	AE008384_1015	Molybdenum cofactor biosynthesis enzyme (Fe-S oxidoreductase family)
1314	AE008384_3355	Conserved protein
1314	AE008384_3355	Conserved protein
1315	AE008384_3356	Hypothetical protein
1316	AE008384_3357	Hypothetical protein
1317	AE008384_3358	Hypothetical protein
1318	AE008384_3359	Conserved protein
1319	AE008384_3360	Hypothetical protein
1320	AE008384_2014	TRANSLATION INITIATION FACTOR 1A (EIF-1A)
1321	AE008384_2013	Serine/threonine protein kinase
1322	AE008384_2012	Putative RNA-binding protein
1323	AE008384_2011	Dihydroorotase
1324	AE008384_2010	Phosphate transport system protein
1325	AE008384_2009	Phosphate transporter, ATP-binding protein
1326	AE008384_2008	Phosphate transporter, permease protein
1327	AE008384_2007	Phosphate transporter, permease protein
1328	AE008384_2006	Phosphate transporter, permease protein
1329	AE008384_2005	Phosphate-binding protein
1330	AE008384_2004	DNA polymerase delta catalytic subunit
1331	AE008384_2003	Magnesium-chelatase subunit
1332	AE008384_2002	Conserved protein
1333	AE008384_2001	Hypothetical protein
1334	AE008384_2000	Hypothetical protein
1335	AE008384_1999	Hypothetical protein
1336	AE008384_1998	Cobalamin biosynthesis protein
1337	AE008384_1997	Conserved protein
1338	AE008384_1996	Cobalt transport ATP-binding protein
1339	AE008384_1995	Cobalt transport protein
1340	AE008384_1994	ABC transporter ATP-binding protein
1341	AE008384_1993	ABC transporter, ATP-binding protein
1341	AE008384_1993	ABC transporter, permease protein
1342	AE008384_1991	Hypothetical protein
1343	AE008384_1990	Hypothetical protein
1344	AE008384_1989	Hypothetical protein
1345	AE008384_1988	Conserved protein
1346	AE008384_1987	Hypothetical protein
1347	AE008384_1986	Regulatory protein (putative)
1348	AE008384_1985	Hypothetical Cytosolic protein
1349	AE008384_1984	Hypothetical Cytosolic protein
1350	AE008384_1983	Conserved protein
1351	AE008384_1982	Alkyl sulfatase
1352	AE008384_1981	TUNGSTEN FORMYLMETHANOFURAN DEHYDROGENASE, SUBUNIT D
1353	AE008384_1980	TUNGSTEN FORMYLMETHANOFURAN DEHYDROGENASE, SUBUNIT B
1354	AE008384_1979	TUNGSTEN FORMYLMETHANOFURAN DEHYDROGENASE, SUBUNIT A
1355	AE008384_1978	TUNGSTEN FORMYLMETHANOFURAN DEHYDROGENASE, SUBUNIT C
1356	AE008384_1977	Conserved protein
1357	AE008384_1976	Conserved protein
1358	AE008384_1975	Conserved protein
1359	AE008384_1974	HISTONE ACETYLTRANSFERASE (ELP3 faminly)

	AE008384_1974	HISTONE ACETYLTRANSFERASE (ELP3 faminly)
1360	AE008384_1973	Conserved protein
1361	AE008384_1971	Conserved protein
1362	AE008384_1970	Single-stranded-DNA-specific exonuclease recJ
1363	AE008384_1969	Hypothetical protein
1364	AE008384_1968	Hypothetical protein
1365	AE008384_1967	Hypothetical protein
1366	AE008384_1966	Malate dehydrogenase
1367	AE008384_1965	Hypothetical protein
1368	AE008384_1964	hypothetical protein
1369	AE008384_1963	Tyrosyl-tRNA synthetase
1370	AE008384_1962	Conserved protein
1371	AE008384_1961	Hypothetical protein
1371	AE008384_1961	Hypothetical protein
1372	AE008384_1960	Conserved protein
1373	AE008384_1959	Hypothetical protein
1374	AE008384_1958	Hit-like protein, involved in cell-cycle regulation
1375	AE008384_1957	Hypothetical Transcriptional Regulatory protein
1376	AE008384_1956	Hypothetical protein
1377	AE008384_1955	Cysteine desulfurase NifS
1378	AE008384_1954	NifU protein
1379	AE008384_1953	Cobalt-zinc-cadmium resistance protein
1380	AE008384 1952	Cobalt-zinc-cadmium resistance protein
1381	AE008384 1950	Catalase
1382	AE008384_1949	METHYLTRANSFERASE
1383	AE008384_1948	OXIDOREDUCTASE, ALDO/KETO REDUCTASE FAMILY
1384	AE008384_1947	Integral membrane protein
1385		GLYCOSYL TRANSFERASE
1386		Hypothetical protein
1387		Transporter
		*
1388		Conserved protein
1388 1389	 AE008384_1943 AE008384_1942	Conserved protein POLYPRENYLTRANSFERASE
1388 1389 1390		Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein
1388 1389 1390 1391	_ AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein
1388 1389 1390 1391 1392	AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940 AE008384_1939	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein
1388 1389 1390 1391 1392 1393	- AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940 AE008384_1939 AE008384_1938	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein
1388 1389 1390 1391 1392 1393 1394	AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940 AE008384_1939 AE008384_1938 AE008384_1937	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein
1388 1389 1390 1391 1392 1393 1394 1395	AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940 AE008384_1939 AE008384_1938 AE008384_1937 AE008384_1936	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein
1388 1389 1390 1391 1392 1393 1394 1395 1396	AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940 AE008384_1939 AE008384_1938 AE008384_1937 AE008384_1936 AE008384_1935	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397	AE008384_1943 AE008384_1942 AE008384_1942 AE008384_1940 AE008384_1939 AE008384_1939 AE008384_1937 AE008384_1936 AE008384_1935 AE008384_1935	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398	AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940 AE008384_1939 AE008384_1938 AE008384_1937 AE008384_1935 AE008384_1935 AE008384_1934 AE008384_1933	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399	AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940 AE008384_1939 AE008384_1938 AE008384_1937 AE008384_1935 AE008384_1934 AE008384_1933 AE008384_1933 AE008384_1933	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein Methylcobalamin:coenzyme M methyltransferase
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400	AE008384_1943 AE008384_1942 AE008384_1942 AE008384_1940 AE008384_1939 AE008384_1939 AE008384_1937 AE008384_1937 AE008384_1933 AE008384_1933 AE008384_1933 AE008384_1932 AE008384_1931	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein Methylcobalamin:coenzyme M methyltransferase Sensory Transduction protein Kinase
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401	AE008384_1943 AE008384_1942 AE008384_1942 AE008384_1940 AE008384_1939 AE008384_1939 AE008384_1937 AE008384_1936 AE008384_1935 AE008384_1933 AE008384_1933 AE008384_1931 AE008384_1931 AE008384_1930	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein Methylcobalamin:coenzyme M methyltransferase Sensory Transduction protein Kinase Transposase
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402	AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940 AE008384_1939 AE008384_1938 AE008384_1937 AE008384_1935 AE008384_1935 AE008384_1933 AE008384_1932 AE008384_1931 AE008384_1930 AE008384_1930	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein Methylcobalamin:coenzyme M methyltransferase Sensory Transduction protein Kinase Transposase Hypothetical protein
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	AE008384_1943 AE008384_1942 AE008384_1942 AE008384_1940 AE008384_1939 AE008384_1939 AE008384_1937 AE008384_1937 AE008384_1935 AE008384_1934 AE008384_1933 AE008384_1931 AE008384_1930 AE008384_1929 AE008384_1928	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein Methylcobalamin:coenzyme M methyltransferase Sensory Transduction protein Kinase Transposase Hypothetical protein PHOSPHINOTHRICIN ACETYLTRANSFERASE
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404	AE008384_1943 AE008384_1942 AE008384_1942 AE008384_1940 AE008384_1939 AE008384_1939 AE008384_1937 AE008384_1937 AE008384_1935 AE008384_1933 AE008384_1933 AE008384_1931 AE008384_1930 AE008384_1929 AE008384_1928 AE008384_1927	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein Methylcobalamin:coenzyme M methyltransferase Sensory Transduction protein Kinase Transposase Hypothetical protein PHOSPHINOTHRICIN ACETYLTRANSFERASE Cell surface glycoprotein
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405	AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940 AE008384_1939 AE008384_1939 AE008384_1937 AE008384_1937 AE008384_1935 AE008384_1933 AE008384_1932 AE008384_1931 AE008384_1929 AE008384_1928 AE008384_1927 AE008384_1926	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein Methylcobalamin:coenzyme M methyltransferase Sensory Transduction protein Kinase Transposase Hypothetical protein PHOSPHINOTHRICIN ACETYLTRANSFERASE Cell surface glycoprotein Hypothetical protein
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406	AE008384_1943 AE008384_1942 AE008384_1940 AE008384_1940 AE008384_1939 AE008384_1939 AE008384_1937 AE008384_1937 AE008384_1936 AE008384_1933 AE008384_1933 AE008384_1931 AE008384_1930 AE008384_1929 AE008384_1927 AE008384_1927 AE008384_1926 AE008384_1926	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein Methylcobalamin:coenzyme M methyltransferase Sensory Transduction protein Kinase Transposase Hypothetical protein PHOSPHINOTHRICIN ACETYLTRANSFERASE Cell surface glycoprotein Hypothetical protein
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407	AE008384_1943 AE008384_1942 AE008384_1942 AE008384_1940 AE008384_1940 AE008384_1939 AE008384_1937 AE008384_1937 AE008384_1935 AE008384_1933 AE008384_1933 AE008384_1932 AE008384_1930 AE008384_1929 AE008384_1927 AE008384_1925 AE008384_1925 AE008384_1923	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein Methylcobalamin:coenzyme M methyltransferase Sensory Transduction protein Kinase Transposase Hypothetical protein PHOSPHINOTHRICIN ACETYLTRANSFERASE Cell surface glycoprotein Hypothetical protein Hypothetical protein
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408	AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940 AE008384_1939 AE008384_1939 AE008384_1938 AE008384_1937 AE008384_1935 AE008384_1933 AE008384_1933 AE008384_1932 AE008384_1929 AE008384_1929 AE008384_1925 AE008384_1925 AE008384_1925 AE008384_1923	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein Methylcobalamin:coenzyme M methyltransferase Sensory Transduction protein Kinase Transposase Hypothetical protein PHOSPHINOTHRICIN ACETYLTRANSFERASE Cell surface glycoprotein Hypothetical protein Hypothetical protein Hypothetical protein Hypothetical protein
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408	AE008384_1943 AE008384_1942 AE008384_1941 AE008384_1940 AE008384_1939 AE008384_1939 AE008384_1937 AE008384_1937 AE008384_1936 AE008384_1933 AE008384_1933 AE008384_1931 AE008384_1930 AE008384_1929 AE008384_1928 AE008384_1927 AE008384_1925 AE008384_1923 AE008384_1923 AE008384_1923 AE008384_1923 AE008384_1923 AE008384_1923	Conserved protein POLYPRENYLTRANSFERASE Glutamine transporter, ATP-binding protein Glutamine transporter, permease protein Glutamine-binding protein Hypothetical protein Hypothetical protein Conserved protein Acetyltransferase Hypothetical protein Integral membrane protein Methylcobalamin:coenzyme M methyltransferase Sensory Transduction protein Kinase Transposase Hypothetical protein PHOSPHINOTHRICIN ACETYLTRANSFERASE Cell surface glycoprotein Hypothetical protein Hypothetical protein

0	o
L	0

1410	AE008384_1920	NUCLEOTIDYLTRANSFERASE
1411	AE008384_1919	Hypothetical protein
1412	AE008384_1918	Hypothetical protein
1413	AE008384_1917	ATP-dependent RNA helicase
1414	AE008384_1916	Lysyl-tRNA synthetase, class II
1415	AE008384_1915	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
1416	AE008384_1914	Hypothetical protein
1417	AE008384_1913	ATP-dependent protease La
1418	AE008384_1912	Hypothetical protein
1419	AE008384_1911	Cysteinyl-tRNA synthetase
1420	AE008384_1910	Maf protein
1421	AE008384_1909	Glutathione-regulated potassium-efflux system protein
1421	AE008384_1909	Glutathione-regulated potassium-efflux system protein
1422	AE008384_1908	Hypothetical protein
1423	AE008384_1907	Isochorismatase
1424	AE008384_1906	Conserved protein
1425	AE008384_1905	Hypothetical membrane spanning protein
1425	AE008384_1905	Hypothetical membrane spanning protein
1427	AE008384_1904	Hypothetical protein
1428	AE008384_1903	Transcriptional regulator, MarR family
1429	AE008384_1902	Hypothetical protein
1430	AE008384_1901	Hypothetical protein
1431	AE008384_1900	Hypothetical protein
1432	AE008384_1899	Hypothetical protein
1433	AE008384_1898	Potassium channel protein
1434	AE008384_1897	Hypothetical protein
1435	AE008384_1896	Phenylacetic acid degradation protein
1436	AE008384_1895	ATP-dependent DNA ligase
1437	AE008384_1894	DNA polymerase beta
1441	AE008384_687	Nitrogenase iron protein
1442	AE008384_688	CO DEHYDROGENASE/ACETYL-COA SYNTHASE DELTA SUBUNIT
1445	AE008384_788	Metallo cofactor biosynthesis protein (moaA/ nifB /pqqE family
1446	AE008384_789	$Geranyl transferase/Farne syltransferase/\ Hexaprenyl\ diphosphate\ synthase$
1447	AE008384_790	Hypothetical protein
1450	AE008384_794	ADP-ribosylglycohydrolase
1451	AE008384_795	Hypothetical protein
1452	AE008384_796	Hypothetical protein
1453	AE008384_797	Hypothetical protein
1454	AE008384_798	26S PROTEASOME REGULATORY SUBUNIT RPT2/S4
1455	AE008384_800	Hypothetical protein
1456	AE008384_801	Adenylosuccinate synthetase
1457	AE008384_802	SSU ribosomal protein S19E
1458	AE008384_803	Conserved protein
1459	AE008384_804	Hypothetical ATP-binding protein
1459	AE008384_804	Hypothetical ATP-binding protein
1460	AE008384_805	LSU ribosomal protein L39E
1461	AE008384_806	LSU ribosomal protein L31E
1462	AE008384_807	protein Translation Initiation Factor 6 (IF-6)
1463	AE008384_809	Prefoldin, alpha subunit
1464	AE008384_810	SIGNAL RECOGNITION PARTICLE, SUBUNIT Ffh/SRP54
1465	AE008384_811	Stress-responsive transcriptional regulator
1466	AE008384_812	Conserved protein

1467	AE008384_813	Conserved protein
1468	AE008384_814	Probable peroxiredoxin
1472	AE008384_712	Hypothetical protein
1472	AE008384_712	Hypothetical protein
1474	AE008384_3166	Hypothetical protein
1475	AE008384_3164	Conserved protein
1476	AE008384_3162	Hypothetical protein
1476	AE008384_3162	Hypothetical protein
1476	AE008384_3162	Hypothetical protein
1480	AE008384_3157	Putative 6-aminohexanoate-dimer hydrolase
1483	AE008384_3155	Hypothetical protein
1484	AE008384_3154	Hypothetical protein
1485	AE008384_3153	Hypothetical protein
1486	AE008384_3152	Hypothetical protein
1487	AE008384_3151	Hypothetical protein
1488	AE008384_3150	METHYLTRANSFERASE
1489	AE008384_3149	Hypothetical protein
1490	AE008384_3148	Exodeoxyribonuclease III
1491	AE008384_3147	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT
1492	AE008384_3146	Hypothetical protein
1493	AE008384_3145	Hypothetical protein
1494	AE008384_3143	Hypothetical protein
1495	AE008384_3142	TYPE I RESTRICTION-MODIFICATION SYSTEM SPECIFICITY SUBUNIT
1496	AE008384_3141	TYPE I RESTRICTION-MODIFICATION SYSTEM RESTRICTION SUBUNIT
1497	AE008384_3140	Flavodoxin
1497	AE008384_3140	Flavodoxin
1498	AE008384_3139	Large-conductance mechanosensitive channel
1498 1498	AE008384_3139 AE008384_3139	Large-conductance mechanosensitive channel Large-conductance mechanosensitive channel
149814981499	AE008384_3139 AE008384_3139 AE008384_3138	Large-conductance mechanosensitive channel Large-conductance mechanosensitive channel Cob(I)alamin adenosyltransferase
1498 1498 1499 1499	AE008384_3139 AE008384_3139 AE008384_3138 AE008384_3138	Large-conductance mechanosensitive channel Large-conductance mechanosensitive channel Cob(I)alamin adenosyltransferase Cob(I)alamin adenosyltransferase
1498 1498 1499 1499 1500	AE008384_3139 AE008384_3139 AE008384_3138 AE008384_3138 AE008384_3137	Large-conductance mechanosensitive channel Large-conductance mechanosensitive channel Cob(I)alamin adenosyltransferase Cob(I)alamin adenosyltransferase TRANSPORTER, LysE family
1498 1498 1499 1500 1501	AE008384_3139 AE008384_3139 AE008384_3138 AE008384_3138 AE008384_3137 AE008384_3136	Large-conductance mechanosensitive channel Large-conductance mechanosensitive channel Cob(I)alamin adenosyltransferase Cob(I)alamin adenosyltransferase TRANSPORTER, LysE family ABC Transporter, permease protein
1498 1498 1499 1500 1501 1502	AE008384_3139 AE008384_3139 AE008384_3138 AE008384_3138 AE008384_3137 AE008384_3136 AE008384_3135	Large-conductance mechanosensitive channel Large-conductance mechanosensitive channel Cob(I)alamin adenosyltransferase Cob(I)alamin adenosyltransferase TRANSPORTER, LysE family ABC Transporter, permease protein ABC Transporter, ATP-binding protein
1498 1498 1499 1500 1501 1502 1503	AE008384_3139 AE008384_3139 AE008384_3138 AE008384_3138 AE008384_3137 AE008384_3136 AE008384_3135 AE008384_3134	Large-conductance mechanosensitive channel Large-conductance mechanosensitive channel Cob(I)alamin adenosyltransferase Cob(I)alamin adenosyltransferase TRANSPORTER, LysE family ABC Transporter, permease protein ABC Transporter, ATP-binding protein PROTEASE HTPX
1498 1498 1499 1500 1501 1502 1503 1504	AE008384_3139 AE008384_3139 AE008384_3138 AE008384_3138 AE008384_3137 AE008384_3136 AE008384_3135 AE008384_3134 AE008384_3133	Large-conductance mechanosensitive channel Large-conductance mechanosensitive channel Cob(I)alamin adenosyltransferase Cob(I)alamin adenosyltransferase TRANSPORTER, LysE family ABC Transporter, permease protein ABC Transporter, ATP-binding protein PROTEASE HTPX Hypothetical protein
1498 1498 1499 1500 1501 1502 1503 1504 1505	AE008384_3139 AE008384_3139 AE008384_3138 AE008384_3138 AE008384_3137 AE008384_3136 AE008384_3135 AE008384_3134 AE008384_3133 AE008384_3133	Large-conductance mechanosensitive channel Large-conductance mechanosensitive channel Cob(I)alamin adenosyltransferase Cob(I)alamin adenosyltransferase TRANSPORTER, LysE family ABC Transporter, permease protein ABC Transporter, ATP-binding protein PROTEASE HTPX Hypothetical protein Hypothetical protein
1498 1498 1499 1500 1501 1502 1503 1504 1505 1506	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3136AE008384_3135AE008384_3134AE008384_3133AE008384_3132AE008384_3132AE008384_3131	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinHypothetical proteinFructokinase
1498 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507	AE008384_3139AE008384_3139AE008384_3138AE008384_3138AE008384_3137AE008384_3136AE008384_3135AE008384_3134AE008384_3133AE008384_3132AE008384_3132AE008384_3131AE008384_3131AE008384_3131AE008384_3131	Large-conductance mechanosensitive channel Large-conductance mechanosensitive channel Cob(I)alamin adenosyltransferase Cob(I)alamin adenosyltransferase TRANSPORTER, LysE family ABC Transporter, permease protein ABC Transporter, ATP-binding protein PROTEASE HTPX Hypothetical protein Hypothetical protein Fructokinase
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508	AE008384_3139 AE008384_3139 AE008384_3138 AE008384_3138 AE008384_3137 AE008384_3136 AE008384_3135 AE008384_3134 AE008384_3133 AE008384_3132 AE008384_3131 AE008384_3130 AE008384_3129	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinFructokinaseHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical protein
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3136AE008384_3136AE008384_3134AE008384_3134AE008384_3132AE008384_3131AE008384_3131AE008384_3130AE008384_3129AE008384_3128	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinFructokinaseHypothetical proteinHypothetical protein
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510	AE008384_3139AE008384_3139AE008384_3138AE008384_3138AE008384_3137AE008384_3136AE008384_3135AE008384_3133AE008384_3132AE008384_3132AE008384_3131AE008384_3130AE008384_3129AE008384_3128AE008384_3127	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinFructokinaseHypothetical proteinHypothetical protein
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3136AE008384_3135AE008384_3134AE008384_3132AE008384_3131AE008384_3131AE008384_3131AE008384_3130AE008384_3129AE008384_3128AE008384_3127AE008384_3126	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinFructokinaseHypothetical proteinHypothetical protein
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1511 1512	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3136AE008384_3136AE008384_3131AE008384_3132AE008384_3131AE008384_3131AE008384_3130AE008384_3129AE008384_3128AE008384_3127AE008384_3126AE008384_3126AE008384_3126AE008384_3126	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinFructokinaseHypothetical proteinHypothetical protein
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1512 1513	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3136AE008384_3136AE008384_3133AE008384_3133AE008384_3131AE008384_3130AE008384_3130AE008384_3120AE008384_3123AE008384_3120AE008384_3127AE008384_3126AE008384_3126AE008384_3125AE008384_3124	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinFructokinaseHypothetical proteinHypothetical proteinHypoth
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3136AE008384_3136AE008384_3131AE008384_3132AE008384_3131AE008384_3131AE008384_3130AE008384_3129AE008384_3128AE008384_3128AE008384_3127AE008384_3126AE008384_3126AE008384_3125AE008384_3124AE008384_3124	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinFructokinaseHypothetical proteinHypothetical proteinHypoth
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1511 1512 1513 1514	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3137AE008384_3136AE008384_3131AE008384_3131AE008384_3131AE008384_3131AE008384_3131AE008384_3131AE008384_3129AE008384_3129AE008384_3126AE008384_3126AE008384_3126AE008384_3126AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinFructokinaseHypothetical proteinHypothetical proteinHypoth
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3137AE008384_3136AE008384_3131AE008384_3132AE008384_3131AE008384_3130AE008384_3130AE008384_3120AE008384_3123AE008384_3127AE008384_3126AE008384_3126AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3123AE008384_3124AE008384_3123AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinFructokinaseHypothetical proteinHypothetical proteinHypoth
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1513 1513 1514 1515	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3136AE008384_3136AE008384_3137AE008384_3131AE008384_3132AE008384_3131AE008384_3131AE008384_3120AE008384_3128AE008384_3128AE008384_3126AE008384_3126AE008384_3127AE008384_3126AE008384_3127AE008384_3126AE008384_3127AE008384_3124AE008384_3124AE008384_3123AE008384_3124AE008384_3123	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(1)alamin adenosyltransferaseCob(1)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinFructokinaseHypothetical proteinHypothetical proteinHypoth
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1511 1512 1513 1514 1515 1516	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3137AE008384_3136AE008384_3131AE008384_3131AE008384_3131AE008384_3131AE008384_3131AE008384_3131AE008384_3128AE008384_3128AE008384_3128AE008384_3128AE008384_3128AE008384_3128AE008384_3128AE008384_3128AE008384_3128AE008384_3126AE008384_3124AE008384_3124AE008384_3124AE008384_3123AE008384_3122AE008384_3122AE008384_3122AE008384_3122AE008384_3122AE008384_31212	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinFructokinaseHypothetical proteinHypothetical proteinHypoth
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1512 1513 1514 1515 1516 1517	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3137AE008384_3136AE008384_3131AE008384_3132AE008384_3131AE008384_3130AE008384_3130AE008384_3129AE008384_3129AE008384_3126AE008384_3126AE008384_3126AE008384_3126AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3124AE008384_3122AE008384_3122AE008384_3122AE008384_3121AE008384_3121AE008384_3121	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinHypothetical protein <t< td=""></t<>
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3136AE008384_3137AE008384_3133AE008384_3131AE008384_3131AE008384_3131AE008384_3131AE008384_3121AE008384_3123AE008384_3126AE008384_3126AE008384_3127AE008384_3126AE008384_3126AE008384_3124AE008384_3124AE008384_3123AE008384_3124AE008384_3122AE008384_3122AE008384_3122AE008384_3121AE008384_3120AE008384_3121AE008384_3121AE008384_3121AE008384_3121AE008384_3121AE008384_3121AE008384_3121AE008384_3121AE008384_3121	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinHypothetical protein <t< td=""></t<>
1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519	AE008384_3139AE008384_3139AE008384_3138AE008384_3137AE008384_3137AE008384_3136AE008384_3137AE008384_3131AE008384_3131AE008384_3131AE008384_3131AE008384_3131AE008384_3131AE008384_3129AE008384_3129AE008384_3126AE008384_3126AE008384_3126AE008384_3126AE008384_3127AE008384_3126AE008384_3126AE008384_3124AE008384_3124AE008384_3122AE008384_3122AE008384_3122AE008384_3121AE008384_3120AE008384_3120AE008384_3120AE008384_3121AE008384_3120AE008384_3121AE008384_3120AE008384_3121AE008384_3120AE008384_3121AE008384_3120AE008384_3121AE008384_3120AE008384_3121AE008384_3121AE008384_3120AE008384_3121AE008384_3121AE008384_3120AE008384_3121AE008384_3121AE008384_3121AE008384_3121AE008384_3121AE008384_3121AE008384_3121AE008384_3121AE008384_3121AE008384_3113	Large-conductance mechanosensitive channelLarge-conductance mechanosensitive channelCob(I)alamin adenosyltransferaseCob(I)alamin adenosyltransferaseTRANSPORTER, LysE familyABC Transporter, permease proteinABC Transporter, ATP-binding proteinPROTEASE HTPXHypothetical proteinHypothetical protein <t< td=""></t<>

1520	AE008384_3117	Transcriptional regulator, MarR family
1521	AE008384_3116	Hypothetical protein
1522	AE008384_3115	Hypothetical protein
1523	AE008384_3113	Oligoendopeptidase F
1524	AE008384_3111	Hypothetical protein
1525	AE008384_3110	Hypothetical protein
1526	AE008384_3109	Glycogen phosphorylase
1527	AE008384_3108	Hypothetical protein
1528	AE008384_3107	Hypothetical protein
1529	AE008384_3106	Hypothetical protein
1530	AE008384_3105	Probable cytosine deaminase
1531	AE008384_3104	Hypothetical protein
1532	AE008384_3103	Hypothetical protein
1533	AE008384_3102	Conserved protein
1534	AE008384_3101	Two component system histidine kinase
1535	AE008384_3100	Hypothetical protein
1536	AE008384_3099	Two component system histidine kinase
1536	AE008384_3099	Two component system histidine kinase
1537	#NV	Hypothetical protein (not in ERGO !)
1538	AE008384 3098	ABC transporter, permease protein
1539		Hypothetical protein
1540		Hypothetical protein
1541		ABC transporter. ATP-binding protein
1542	AE008384_3094	Hypothetical protein
1543	AE008384_3093	Hypothetical protein
1543	AE008384_3093	Transcriptional regulator
1544	AE008384_3092	Hypothetical protein
1545	AE008384_3091	Phycocyanin alpha-subunit phycocyanobilin lyase related protein CrocE/NbIB family
1546	AE008384_3091	Hypothetical protein
1547	AE008384_3089	Carbonic anhydrase
1548	AE008384_3088	Carbonic anhydrase
1549	AE008384_5000	MOLYRDENIM FORMYLMETHANOFUR AN DEHYDROGENASE SUBUNIT
1550	AE008384_1565	MOLYBDENUM FORMYLMETHANOFURAN DEHYDROGENASE SUBUNIT
1550	AE008384_1564	MOLYBDENUM-CONTAINING FORMYLMETHANOFURAN DEHYDROGENASE ISOENZYME I SUBUNIT E
1552	AE008384_1563	TUNGSTEN TRANSPORTER, ATP BINDING PROTEIN
1553	AE008384_1562	TUNGSTEN TRANSPORTER, PERMEASE PROTEIN
1554	AE008384_1561	ABC TRANSPORTER, TUNGSTEN-BINDING PROTEIN
1555	AE008384_1560	Hypothetical protein
1556	AE008384_1559	Hypothetical protein
1557	AE008384_1558	Hypothetical protein
1558	AE008384_1557	Signal recognition particle SEC65 subunit
1559	AE008384_1555	PUTATIVE METAL DEPENDENT HYDROLASE
1560	AE008384_1554	Transcriptional regulator
1561	AE008384_1553	TRANSPORTER, RND superfamily
1562	AE008384_1552	Hypothetical protein
1563	AE008384_1551	Hypothetical protein
1564		putative molybdenum transport protein ModA
1565		SODIUM/PROLINE SYMPORTER
1566		Conserved protein
1567		Tetrahydromethanopterin S-methyltransferase, subunit E
1568		Tetrahydromethanopterin S-methyltransferase, subunit D
1569	_ AE008384_1545	Tetrahydromethanopterin S-methyltransferase, subunit C

1570	AE008384_1544	Tetrahydromethanopterin S-methyltransferase, subunit B
1571	AE008384_1543	Tetrahydromethanopterin S-methyltransferase, subunit A
1572	AE008384_1542	Tetrahydromethanopterin S-methyltransferase, subunit F
1573	AE008384_1541	Tetrahydromethanopterin S-methyltransferase, subunit G
1574	AE008384_1540	Tetrahydromethanopterin S-methyltransferase, subunit H
1575	AE008384_1539	Hypothetical protein
1576	AE008384_1538	Replication factor C subunit
1577	AE008384_1537	Conserved protein
1578	AE008384_1536	CDP-diacylglycerolglycerol-3-phosphate 3-phosphatidyltransferase
1579	AE008384_1535	L-fuculose phosphate aldolase
1580	AE008384_1534	Hypothetical protein
1581	AE008384_1533	Molybdopterin biosynthesis MoeB protein/ThiF protein
1582	AE008384_1531	Putative regulartory protein
1583	AE008384_1530	Hypothetical protein
1584	AE008384_1529	Hypothetical protein
1585	AE008384_1528	Aconitate hydratase
1586	AE008384_1527	Citrate (si) synthase
1587	AE008384_1526	4-hydroxybenzoate decarboxylase
1588	AE008384_1525	Conserved protein
1589	AE008384_1524	Conserved protein
1590	AE008384_1523	Zinc metalloprotease
1591	AE008384_1522	Putative FeS oxidoreductase
1592	AE008384_1521	PHOSPHOGLUCOMUTASE / PHOSPHOMANNOMUTASE
1593	AE008384_1520	Conserved protein
1594	AE008384_1519	Amino-acid acetyltransferase
1595	AE008384_1518	Conserved protein
1596	AE008384_1517	Cysteine desulfurase
1597	AE008384_1516	Type II secretion system protein
1598	AE008384_1515	Transporter
1599	AE008384_1514	Hypothetical protein
1600	AE008384_1513	Hypothetical protein
1601	AE008384_1512	Hypothetical protein
1602	AE008384_1511	Hypothetical protein
1603	AE008384_1510	Hypothetical protein
1604	AE008384_1509	Hypothetical protein
1605	AE008384_1508	Hypothetical protein
1606	AE008384_1507	Hypothetical protein
1607	AE008384_1506	FdhD protein
1608	AE008384_1505	Imidazoleglycerol-phosphate dehydratase
1609	AE008384_1504	Phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase
1610	AE008384_1503	ATP phosphoribosyltransferase
1611	AE008384_1502	S-adenosylmethionine synthetase
1612	AE008384_1501	Hypothetical protein
1613	AE008384_1500	Xaa-Pro aminopeptidase
1614	AE008384_1499	Methionine aminopeptidase
1615	AE008384_1498	Hypothetical protein
1616	AE008384_1497	Conserved protein
1617		PUTATIVE METHYLTRANSFERASE
1618	AE008384_1495	tRNA pseudouridine synthase A
1619	AE008384_1494	Hypothetical transcriptional regulatory protein
1620	AE008384_1493	Conserved protein
1621		Conserved protein
		-

1622	AE008384_1491	PUTATIVE NUCLEOTIDYLTRANSFERASE
1623	AE008384_1490	3-isopropylmalate dehydratase
1624	AE008384_1489	3-isopropylmalate dehydrogenase
1625	AE008384_1488	Hypothetical protein
1626	AE008384_1487	METHYLTRANSFERASE
1627	AE008384_1486	Alanyl-tRNA synthetase
1628	AE008384_1485	Conserved protein
1629	AE008384_1484	Conserved protein
1630	AE008384_1482	Hypothetical protein
1631	AE008384_1480	Conserved protein
1632	AE008384_1479	SWF/SNF FAMILY HELICASE
1633	AE008384_1478	Molybdenum cofactor biosynthesis protein B
1634	AE008384_1477	Pyruvate formate-lyase activating enzyme
1635	AE008384_1476	LSU ribosomal protein L10E
1636	AE008384_1475	Probable translation initiation factor 2 beta subunit
1637	AE008384_1474	Metallo cofactor biosynthesis protein (moaA/ nifB /pqqE family
1638	AE008384_1473	Conserved protein
1639	AE008384_1472	PUTATIVE NUCLEOTIDYLTRANSFERASE
1640	AE008384_1471	Tryptophanyl-tRNA synthetase
1641	AE008384_1470	Phenylalanyl-tRNA synthetase, alpha chain
1642	AE008384_1469	Conserved protein
1643	AE008384_1468	Hypothetical protein
1644	AE008384_1467	Hypothetical protein
1645	AE008384_1466	Hypothetical protein
1646	AE008384_1465	Hypothetical membrane spanning protein
1647	AE008384_1464	Hypothetical protein
1648	AE008384_1463	Copper-exporting ATPase
1649	AE008384_1461	Cation-transporting ATPase
1650	AE008384_1459	Hypothetical protein
1651	AE008384_1458	Conserved protein
1652	AE008384_1457	Conserved protein
1653	AE008384_1456	Universal stress protein
1654	AE008384_1455	Universal stress protein
1655	AE008384_1454	Universal stress protein
1656	AE008384_1453	Universal stress protein
1657	AE008384_1452	Universal stress protein
1658	AE008384_1451	Universal stress protein
1659	AE008384_1450	Fe-S OXIDOREDUCTASE
1660	AE008384_1448	Hypothetical protein
1661	AE008384_1447	Hypothetical protein
1662	AE008384_1445	Lysly-tRNA synthetase (PylS)
1663	AE008384_1444	PylB (Pyrrolysine synthesis)
1664	AE008384_1443	PylC (Pyrrolysine synthesis)
1665	AE008384_1442	Hypothetical protein
1666	AE008384_1441	Inorganic pyrophosphatase
1666	AE008384_1441	Inorganic pyrophosphatase
1667	AE008384_1440	Conserved protein
1668	AE008384_1439	Methylcobalamin:coenzyme M methyltransferase
1669	AE008384_1438	Monomethylamine corrinoid protein
1669	AE008384_1438	Monomethylamine corrinoid protein
1670	AE008384_1437	Monomethylamine:corrinoid methyltransferase
1671	AE008384_1436	Monomethylamine:corrinoid methyltransferase (C-terminal domain)

1672	AE008384_1435	Monomethylamine permease
1673	AE008384_1434	Monomethylamine permease (C-terminal domain)
1674	AE008384_1433	Hypothetical protein
1675	AE008384_1431	Transposase
1676	AE008384_1430	Transposase
1677	AE008384_1428	Conserved protein
1678	AE008384_1426	REPLICATION FACTOR C SUBUNIT
1679	AE008384_1425	PROTEIN TRANSLOCASE, SUBUNIT SECD
1680	AE008384_1424	PROTEIN TRANSLOCASE, SUBUNIT SECF
1681	AE008384_1423	dCMP DEAMINASE
1682	AE008384_1422	Hypothetical protein
1683	AE008384_1421	Conserved protein
1684	AE008384_1420	Hypothetical protein
1685	AE008384_1419	Small heat shock protein
1686	AE008384_1418	3-phosphonopyruvate decarboxylase
1687	AE008384_1417	Aspartate kinase
1688	AE008384_1416	Phosphoribosylformylglycinamidine cyclo-ligase
1689	AE008384_1415	Conserved protein
1690	AE008384_1414	Conserved protein
1691	AE008384_1413	Conserved protein
1692	AE008384_1412	Hypothetical protein
1693	AE008384_1411	Hypothetical protein
1694	AE008384_1410	Hypothetical protein
1695	AE008384_1409	Hypothetical protein
1696	AE008384_1408	archaeosine tRNA-ribosyltransferase
1697	AE008384_1407	Conserved protein
1698	AE008384_1406	Acetylornithine aminotransferase
1699	AE008384_1405	Histidinol-phosphate aminotransferase
1700	AE008384_1404	Conserved protein
1701	AE008384_1403	CDP-diacylglycerolserine O-phosphatidyltransferase
1702	AE008384_1402	Phosphatidylserine decarboxylase
1703	AE008384_1401	Hypothetical protein
1704	AE008384_1399	MutT-like protein
1705	AE008384_1398	DNA-directed RNA polymerase subunit M
1706	AE008384_1397	DNA polymerase sliding clamp
1707	AE008384_1396	Conserved protein
1708	AE008384_1395	Consered protein
1709	AE008384_1394	Cobyrinic acid a,c-diamide synthase
1710	AE008384_1393	Molybdenum cofactor biosynthesis protein A
1711	AE008384_1392	Hypothetical protein
1712	AE008384_1391	Survival protein
1713	AE008384_1390	Probable transcriptional regulator
1714	AE008384_1389	Conserved protein
1715	AE008384_1388	Glycyl-tRNA synthetase
1716	AE008384_1387	ATP-DEPENDENT RNA HELICASE, EIF-4A FAMILY
1717	AE008384_1386	Hypothetical protein
1718	AE008384_1385	Conserved protein
1719	AE008384_1384	Superfamily I DNA and RNA helicase
1720	AE008384_1383	Phenylalanyl-tRNA synthetase, alpha chain
1721	AE008384_1382	Conserved protein
1722	AE008384_1381	Chaperone protein
1723	AE008384_1380	Chaperone protein

0	1
э	4

1723	AE008384_1380	Chaperone protein
1724	AE008384_1379	Thermosome, alpha subunit
1725	AE008384_1378	ORIGIN RECOGNITION COMPLEX SUBUNIT
1726	AE008384_1377	Hypothetical protein
1727	AE008384_1376	Exopolyphosphatase
1727	AE008384_1376	Exopolyphosphatase
1728	AE008384_1375	Polyphosphate kinase
1728	AE008384_1375	Polyphosphate kinase
1729	AE008384_1374	DNA mismatch repair protein
1731	AE008384_1373	Hydrolase of the alpha/beta superfamily
1732	AE008384_1372	Hypothetical protein
1733	AE008384_1371	Archaeal protein Translation Initiation Factor 2B subunit 1 (aIF-2B1)
1734	AE008384_1370	Myo-inositol-1-phosphate synthase
1735	AE008384_1369	DNA repair protein
1736	AE008384_1368	Glutaredoxin-like protein
1737	AE008384_1367	Anaerobic ribonucleoside-triphosphate reductase
1738	AE008384_1366	Ribonucleoside-triphosphate reductase activating enzyme
1739	AE008384_1365	THIAMIN-MONOPHOSPHATE KINASE
1740	AE008384_1364	Hypothetical protein
1741	AE008384_1363	Conserved hypothetical protein
1742	AE008384_1362	Putative aliphatic sulfonate binding protein precursor
1743	AE008384_1361	ABC transporter, permease protein
1744	AE008384_1360	ABC transporter, ATP-binding protein
1745	AE008384_1359	Hypothetical protein
1746	AE008384_1358	PUTATIVE METHYLTRANSFERASE
1747	AE008384_1356	Conserved protein
1748	AE008384_1355	Conserved protein
1749	AE008384_1354	Hypothetical protein
1750	AE008384_1353	Conserved protein
1751	AE008384_1352	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase
1752	AE008384_1351	5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase
1753	AE008384_1349	Conserved protein
1754	AE008384_1348	Arginyl-tRNA synthetase
1754	AE008384_1348	Arginyl-tRNA synthetase
1755	AE008384_1347	Peptide Chain Release Factor
1756	AE008384_1346	Fe-S OXIDOREDUCTASE
1757	AE008384_1345	DNA polymerase II small subunit
1758	AE008384_1344	SIGNAL SEQUENCE PEPTIDASE
1758	AE008384_1344	SIGNAL SEQUENCE PEPTIDASE
1759	AE008384_1343	NifR3-like protein
1760	AE008384_1342	Pyruvate synthase, gamma subunit
1761	AE008384_1341	Pyruvate synthase, delta subunit
1762	AE008384_1340	Pyruvate synthase, alpha subunit
1763	AE008384_1339	Pyruvate synthase, beta subunit
1763	AE008384_1339	Pyruvate synthase, beta subunit
1764	AE008384_1338	Hypothetical protein
1765	AE008384_1337	Hypothetical protein
1766	AE008384_1336	Hypothetical protein
1767	AE008384_1335	Zinc ABC transporter, permease protein
1768	AE008384_1334	Zinc ABC transporter, ATP-binding protein
1769	AE008384_1333	Zinc ABC transporter, zinc-binding protein
1770	AE008384_1332	Iron-dependent repressor

1771	AE008384_1331	Gluconate permease
1772	AE008384_1330	Chemotaxis protein CheW
1773	AE008384_1329	Methyl-accepting chemotaxis protein
1774	AE008384_1328	Two-component response regulator
1775	AE008384_1327	Chemotaxis protein
1776	AE008384_1326	protein-glutamate methylesterase
1777	AE008384_1325	Chemotaxis protein
1778	AE008384_1324	Chemotaxis protein methyltransferase
1779	AE008384_1323	Chemotaxis protein
1780	AE008384_1322	Chemotaxis protein
1781	AE008384_1321	Formylmethanofuran tetrahydromethanopterin formyltransferase
1781	AE008384_1321	Formylmethanofurantetrahydromethanopterin formyltransferase
1782	AE008384_1319	Pheromone shutdown protein
1783	AE008384_1318	Conserved protein
1784	AE008384_1317	Glutamate decarboxylase
1785	AE008384_1316	Sodium/proline symporter
1785	AE008384_1316	Sodium/proline symporter
1786	AE008384_1315	Sodium/proline symporter
1787	AE008384_1314	ORIGIN RECOGNITION COMPLEX SUBUNIT
1788	AE008384_1313	UMP/CMP kinase related protein
1789	AE008384_1312	Conserved protein
1790	AE008384_1311	Conserved protein
1791	AE008384_1310	Hypothetical protein
1792	AE008384_1309	protein Translation Elongation Factor 1A (EF-1A)
1794	AE008384_1307	Conserved protein
1795	AE008384_1306	HTH DNA-binding protein
1796	AE008384_1305	Conserved protein
1797	AE008384_1304	Conserved protein
1798	AE008384_1303	Conserved protein
1799	AE008384_1302	Conserved protein
1800	AE008384_1301	Conserved protein
1801	AE008384_1300	Transposase
1802	AE008384_1299	Replication factor-A protein
1803	AE008384_1298	Putative tRNA 2'phosphotransferase
1804	AE008384_1297	RNA 3'-terminal phosphate cyclase
1805	AE008384_1296	NADH oxidase
1806	AE008384_1295	DNA primase
1807	AE008384_1294	Conserved protein
1808	AE008384_1293	Ribosomal protein S18 alanine acetyltransferase
1809	AE008384_1292	Archaeosine tRNA-ribosyltransferase
1810	AE008384_1291	(S)-2-hydroxy-acid dehydrogenase
1811	AE008384_1290	Fe-S oxidoreductase
1812	AE008384_1288	Conserved protein
1815	AE008384_1285	Sec-independent transport protein TatD
1816	AE008384_1284	2-isopropylmalate synthase
1822	AE008384_3353	Conserved protein
1823	AE008384_3352	Hypothetical protein
1824	AE008384_3350	Hypothetical protein
1825	AE008384_3349	Hypothetical protein
1826	AE008384_3347	Conserved protein
1827	AE008384_3346	Hypothetical protein
1828	AE008384_3345	Hypothetical protein

1829	AE008384_3344	Transposase
1831	AE008384_3342	Conserved protein
1832	AE008384_3340	Hypothetical protein
1833	AE008384_3339	Hypothetical protein
1834	AE008384_3338	Hypothetical protein
1835	AE008384_3336	Monomethylamine:corrinoid methyltransferase MtmB (C-terminal domain)
1836	AE008384_3335	Monomethylamine:corrinoid methyltransferase
1837	AE008384_3334	Monomethylamine Corrinoid protein
1839	AE008384_3332	Putative ferredoxin
1840	AE008384_3331	Conserved protein
1841	AE008384_3330	O-linked N-acetylglucosamine transferase
1842	AE008384_3329	Phosphoglycolate phosphatase
1843	AE008384_3328	Conserved protein
1844	AE008384_3327	Ferredoxin
1845	AE008384_3326	ALDEHYDE FERREDOXIN OXIDOREDUCTASE
1846	AE008384_3325	permease, Na+/H+-dicarboxylate symporter
1846	AE008384_3325	permease, Na+/H+-dicarboxylate symporter
1847	AE008384_3324	Oligopeptide transporter, ATP-binding protein
1848	AE008384_3323	Oligopeptide transporter, ATP-binding protein
1850	AE008384_3321	Oligopeptide transporter, permease protein
1851	AE008384_3320	Oligopeptide transporter, permease protein
1852	AE008384_3319	Transport protein
1853	AE008384_3318	Conserved protein
1854	AE008384_3317	Hypothetical protein
1855	AE008384_3315	Hypothetical protein
1856	AE008384_3314	N-5'-phosphoribosyl)anthranilate isomerase
1857	AE008384_3313	Hypothetical protein
1858	AE008384_3312	5-methylcytosine-specific restriction enzyme A
1859	AE008384_3311	Acetyltransferase
1860	AE008384_3310	Transcriptional regulator, AraC family
1861	AE008384_3309	Ferredoxin
1862	AE008384_3308	Conserved protein
1863	AE008384_3307	Conserved protein
1864	AE008384_3306	Conserved protein
1865	AE008384_3305	Putative DNA or RNA helicase of superfamily II
1866	AE008384_3304	Threonyl-tRNA synthetase
1867	AE008384_3303	Hypothetical protein
1868	AE008384_3301	Hypothetical protein
1869	AE008384_3300	Phosphoadenosine phosphosulfate reductase
1870	AE008384_3299	Hypothetical protein
1871	AE008384_3297	Glutamate dehydrogenase
1872	AE008384_3296	Hypothetical protein
1873	AE008384_3295	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
1874	AE008384_3294	Hypothetical protein
1875	AE008384_3293	Iron-sulfur cluster-binding protein
1876	AE008384_3291	Excinuclease ABC, subunit A
1877	AE008384_3290	Excinuclease ABC, subunit C
1878	AE008384_3289	Excinuclease ABC, subunit B
1878	AE008384_3289	Excinuclease ABC, subunit B
1878	AE008384_3289	Excinuclease ABC, subunit B
1879	AE008384_3288	Conserved protein
1880	AE008384_3287	Hypothetical protein

1881	AE008384_3286	Hypothetical protein
1882	AE008384_3285	Conserved protein
1883	AE008384_3284	Transcriptional regulator
1884	AE008384_3283	Putative inorganic pyrophosphatase
1885	AE008384_3282	Probable ATP-dependent helicase
1886	AE008384_3281	SAM-dependent methyltransferases
1887	AE008384_3280	Conserved protein
1888	AE008384_3279	Dihydrolipoamide dehydrogenase
1889	AE008384_3278	Hypothetical Membrane Spanning protein
1890	AE008384_3277	PROTEASE I
1891	AE008384_3276	Hypothetical protein
1892	AE008384_3275	Conserved protein
1893	AE008384_3274	Hypothetical protein
1894	AE008384_3272	Putative transport protein
1895	AE008384_3271	Glutaredoxin
1896	AE008384_3270	Ferredoxin-thioredoxin reductase, catalytic chain
1897	AE008384_3269	Serine O-acetyltransferase
1898	AE008384_3268	NADPH-flavin oxidoreductase
1899	AE008384_3267	Conserved protein
1900	AE008384_3266	Hypothetical protein
1902	AE008384_3264	Coenzyme F420 hydrogenase beta subunit
1903	AE008384_3263	Branched-chain amino acid transport protein
1904	AE008384_3262	Branched-chain amino acid transport protein
1905	AE008384_3261	Conserved protein
1906	AE008384_3260	Hypothetical protein
1907	AE008384_3259	Conserved protein
1908	AE008384_3258	Hypothetical protein
1909	AE008384_3257	Conserved protein
1910	AE008384_3256	Hypothetical protein
1911	AE008384_3255	Hypothetical protein
1912	AE008384_3254	Hypothetical protein
1913	AE008384_3253	Hypothetical protein
1914	AE008384_3251	Hypothetical protein
1915	AE008384_3250	Hypothetical protein
1916	AE008384_3249	Hypothetical protein
1917	AE008384_3248	Hypothetical protein
1918	AE008384_3247	Conserved protein
1919	AE008384_3245	Transposase
1920	AE008384_3244	Hypothetical protein
1921	AE008384_3243	Hypothetical protein
1922	AE008384_3241	Hypothetical protein
1923	AE008384_3240	Probable transcriptional regulator
1924	AE008384_3239	Hypothetical protein
1925	AE008384_3238	Conserved protein
1926	AE008384_3235	Thiamin-phosphate pyrophosphorylase
1927	AE008384_3234	Hydroxyethylthiazole kinase
1928	AE008384_3233	HTH DNA-binding protein
1929	AE008384_3231	Conserved protein
1930	AE008384_3230	Phosphate permease
1930	AE008384_3230	Phosphate permease
1932	AE008384_3228	Transposase
1933	AE008384_3227	Conserved protein

1934	AE008384_3226	Conserved protein
1935	AE008384_3225	Putative ketoreductase
1936	AE008384_3224	ABC Transporter, permease protein)
1937	AE008384_3223	ABC transporter, ATP-binding protein
1938	AE008384_3222	Conserved protein
1939	AE008384_3221	Conserved protein
1940	AE008384_3220	Transporter
1941	AE008384_3219	Conserved protein
1942	AE008384_3218	Conserved protein
1943	AE008384_3217	Conserved protein
1944	AE008384_3216	Conserved protein
1945	AE008384_3215	Conserved protein
1946	AE008384_3214	Ferredoxin
1947	AE008384_3213	Prismane protein
1948	AE008384_3212	Hypothetical protein
1949	AE008384_3211	Cation efflux protein
1950	AE008384_3209	Transporter
1951	AE008384_3208	Transcriptional regulator, ArsR family
1952	AE008384_3207	PROTEASE
1953	AE008384_3206	Response regulator
1954	AE008384_3205	Two component system histidine kinase
1955	AE008384_3204	Conserved protein
1956	AE008384_3203	Hypothetical protein
1957	AE008384_3202	Conserved protein
1958	AE008384_3201	Conserved protein
1959	AE008384_3200	Hypothetical protein
1960	AE008384_3199	Transporter
1961	AE008384_3198	Hypothetical protein
1962	AE008384_3197	Hypothetical protein
1963	AE008384_3196	Hypothetical protein
1964	AE008384_3195	Transcriptional regulator, MarR family
1965	AE008384_3194	Uncharacterized membrane protein
1966	AE008384_3192	Hypothetical membrane spanning protein
1967	AE008384_3191	Hypothetical protein
1968	AE008384_3190	Hypothetical protein
1969	AE008384_3189	Potassium channel protein
1970	AE008384_3188	Glutamine synthetase
1971	AE008384_3187	Flavodoxin
1972	AE008384_3186	Transporter
1973	AE008384_3185	Ornithine decarboxylase
1974	AE008384_3183	KETOISOVALERATE OXIDOREDUCTASE SUBUNIT
1975	AE008384_3182	KETOISOVALERATE OXIDOREDUCTASE SUBUNIT
1976	AE008384_3181	Ketoisovalerate oxidoreductase subunit
1977	AE008384_3180	Putative Acetyl-CoA synthetase
1978	AE008384_3179	Transcriptional regulator
1979	AE008384_3178	Hypothetical protein
1980	AE008384_3177	Hypothetical protein
1981	AE008384_3176	Hypothetical protein
1982	AE008384_3175	Hypothetical protein
1983	AE008384_3174	Hypothetical protein
1984	AE008384_3173	Transcriptional regulator, ArsR family
1985	AE008384_3172	PUTATIVE METHYLTRANSFERASE

1986	AE008384_3171	Hypothetical protein
1987	AE008384_3170	I ranscriptional regulator, Merk family
1988	AE008384_3169	Hypothetical protein
1991	AE008384_772	Conserved protein
1992	AE008384_773	Putative cation transport regulator
1993	AE008384_774	Conserved protein
1996	AE008384_776	Conserved protein
1997	AE008384_777	Hydrogenase maturation protein
1998	AE008384_778	A1AO H+ ATPASE, SUBUNIT D
1998	AE008384_778	A1AO H+ ATPASE, SUBUNIT D
1999	AE008384_779	A1AO H+ ATPASE, SUBUNIT B
1999	AE008384_779	A1AO H+ ATPASE, SUBUNIT B
2000	AE008384_780	A1AO H+ ATPASE, SUBUNIT A
2001	AE008384_781	A1AO H+ ATPASE, SUBUNIT F
2002	AE008384_782	A1AO H+ ATPASE, SUBUNIT C
2003	AE008384_783	A1AO H+ ATPASE, SUBUNIT E
2004	AE008384_784	A1AO H+ ATPASE, SUBUNIT K
2008	AE008384_2302	Conserved protein
2009	AE008384_2301	Carbon monoxide dehydrogenase
2010	AE008384_2300	METAL DEPENDENT HYDROLASE
2011	AE008384_2299	Hypothetical protein
2012	AE008384_2298	Conserved protein
2013	AE008384_2297	Conserved protein
2014	AE008384_2296	Conserved protein
2015	AE008384_2295	SURFACE LAYER PROTEIN B
2016	AE008384_2294	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT
2017	AE008384_2293	TYPE I RESTRICTION-MODIFICATION SYSTEM SPECIFICITY SUBUNIT
2018	AE008384_2292	TYPE I RESTRICTION-MODIFICATION SYSTEM RESTRICTION SUBUNIT
2019	AE008384_2291	Zinc metalloprotease
2020	AE008384_2290	Cell surface protein
2021	AE008384_2289	Hypothetical protein
2022	AE008384_2288	Methyltranferase involved in cell division
2023	AE008384_2287	Hypothetical protein
2024	AE008384_2286	Conserved protein
2025	AE008384_2285	Conserved protein
2026	AE008384_2283	DNA/pantothenate metabolism flavoprotein
2027	AE008384_2282	Conserved protein
2028	AE008384_2281	Hypothetical protein
2029	AE008384_2280	Conserved protein
2030	AE008384_2279	Chlorohydrolase family protein
2031	AE008384_2278	Adenosylhomocysteinase
2032	AE008384_2277	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
2033	AE008384 2276	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
2034		HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
2035		DNA-directed RNA polymerase, subunit H
2036		DNA-directed RNA polymerase, beta chain
2037	AE008384 2272	DNA-directed RNA polymerase, beta chain
2038	AE008384 2271	DNA-directed RNA polymerase subunit A'
2039	AE008384 2270	DNA-directed RNA polymerase subunit A"
2039	AE008384 2270	DNA-directed RNA polymerase subunit A"
2040	AF008384 2269	LSU ribosomal protein L30E
2040	AF008384 2269	Nus A protein homolog
2071	11200000 1 2200	rush Protein nonolog

1	n
4	υ

2042	AE008384_2267	SSU ribosomal protein S12P
2043	AE008384_2266	SSU ribosomal protein S7P
2044	AE008384_2265	protein Translation Elongation factor 2
2045	AE008384_2264	protein Translation Elongation Factor 1A
2046	AE008384_2263	SSU ribosomal protein S10P
2047	AE008384_2262	Conserved protein
2048	AE008384_2261	Conserved protein
2049	AE008384_2259	Conserved protein
2050	AE008384_2258	Conserved protein
2051	AE008384_2257	Conserved protein
2052	AE008384_2256	Conserved protein
2053	AE008384_2255	Conserved protein
2054	AE008384_2254	Conserved protein
2055	AE008384_2253	Dihydropyrimidinase
2056	AE008384_2252	Conserved protein
2057	AE008384_2251	Tetrahydromethanopterin S-methyltransferase, subunit A
2058	AE008384_2250	Conserved protein
2059	AE008384 2249	Hypothetical protein
2060		Conserved protein
2061		Conserved protein
2063		Transcriptional regulator, ArsR family
2064		Conserved protein
2065		ARSENATE REDUCTASE
2066		Putative methyltransferase
2067	AE008384 2242	Transcriptional regulator, ArsR family
2068		Cytochrome c-type biogenesis protein CcdA
2069	AE008384 2240	Conserved protein
2070	AE008384 2239	Conserved protein
2071	AE008384 2238	Hypothetical protein
2072	AE008384 2237	Transcriptional regulator, ArsR family
2073	AE008384_2236	Conserved protein
2074	AE008384_2235	Conserved protein
2075	AE008384_2234	Conserved protein
2076	AE008384_2233	Conserved protein
2077	AE008384_2232	Transposase
2078	AE008384_2231	Transposase
2079	AE008384_2230	Transposase
2080	AE008384_2229	Conserved protein
2081	AE008384_2228	AMIDOHYDROLASE (putative)
2082	AE008384_2227	Acetyltransferase
2083	AE008384_2225	Glucoamylase
2084	AE008384_2224	Trp repressor binding protein
2085	AE008384_2223	Dolichyl-phosphate glucose synthetase
2086	AE008384_2222	Galactosyltransferase
2087	AE008384_2221	Glycosyltransferase
2088	AE008384_2220	Hypothetical protein
2089		Hypothetical protein
2090	AE008384_2218	Transposase
2091	AE008384_2217	Conserved protein
2092	AE008384_2216	Glucose-1-phosphate thymidylyltransferase
2093	AE008384_2214	Polysaccharide ABC transporter, ATP-binding protein
2097	AE008384_2698	REVERSE TRANSCRIPTASE

AE008384_2700 AE008384_2701 AE008384_2702	Transposase Hypothetical protein
AE008384_2701 AE008384_2702	Hypothetical protein
AE008384_2702	•
1 500000 1 0500	Hypothetical protein
AE008384_2703	TYPE I RESTRICTION-MODIFICATION SYSTEM SPECIFICITY SUBUNIT
AE008384_2704	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT
AE008384_2706	Conserved protein
AE008384_2707	Conserved protein
AE008384_2708	Conserved protein
AE008384_2709	Conserved protein
AE008384 2710	Conserved protein
AE008384 2711	Conserved protein
	Conserved protein
	Homoserine dehvdrogenase
AE008384 2714	ATP-dependent DNA ligase
AE008384 2715	Hypothetical protein
AE008384_2716	Conserved protein
AE008384_2717	Conserved protein
AF008384_2718	Hypothetical protein
AE008384_2719	Conserved protein
AE008384_2719	Hypothetical protein
AE008384_2720	Conserved protein
AE008384_2721	
AE008384_2722	Phosphoanolpyruyata synthese
AE008384_2723	Conserved protein
AE008384_2727	
AE008384_2728	Conserved protein
AE008384_2730	Conserved protein
AE008384_2731	Concerned exerting
AE008384_2732	
AE008384_2733	Hypothetical protein
AE008384_2734	Conserved protein
AE008384_2736	Conserved protein
AE008384_2737	Conserved protein
AE008384_2738	
AE008384_2739	TYPE I RESTRICTION-MODIFICATION SYSTEM SPECIFICITY SUBUNIT
AE008384_2740	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT
AE008384_2740 AE008384_2741	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT Hypothetical protein
AE008384_2740 AE008384_2741 AE008384_2742	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT Hypothetical protein Hypothetical protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT Hypothetical protein Hypothetical protein Hypothetical protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2744	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT Hypothetical protein Hypothetical protein Conserved protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2744 AE008384_2745	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT Hypothetical protein Hypothetical protein Conserved protein Conserved protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2744 AE008384_2744 AE008384_2745	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT Hypothetical protein Hypothetical protein Conserved protein Conserved protein Conserved protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2744 AE008384_2745 AE008384_2746 AE008384_2747	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT Hypothetical protein Hypothetical protein Conserved protein Conserved protein Hypothetical protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2744 AE008384_2745 AE008384_2746 AE008384_2747 AE008384_2747	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT Hypothetical protein Hypothetical protein Conserved protein Conserved protein Conserved protein Hypothetical protein HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2744 AE008384_2745 AE008384_2746 AE008384_2747 AE008384_2748 AE008384_2749	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT Hypothetical protein Hypothetical protein Conserved protein Conserved protein Hypothetical protein Hypothetical protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2744 AE008384_2745 AE008384_2746 AE008384_2747 AE008384_2748 AE008384_2749 AE008384_2750	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT Hypothetical protein Hypothetical protein Conserved protein Conserved protein Conserved protein Hypothetical protein HyPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE Aminoacyl-histidine dipeptidase Hypothetical protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2744 AE008384_2745 AE008384_2746 AE008384_2747 AE008384_2748 AE008384_2749 AE008384_2750 AE008384_2751	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNITHypothetical proteinHypothetical proteinConserved proteinConserved proteinConserved proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinHYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASEAminoacyl-histidine dipeptidaseHypothetical proteinConserved protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2743 AE008384_2745 AE008384_2746 AE008384_2746 AE008384_2747 AE008384_2749 AE008384_2750 AE008384_2751 AE008384_2752	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNITHypothetical proteinHypothetical proteinConserved proteinConserved proteinHypothetical protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2744 AE008384_2745 AE008384_2746 AE008384_2747 AE008384_2747 AE008384_2749 AE008384_2750 AE008384_2751 AE008384_2752 AE008384_2752	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNITHypothetical proteinHypothetical proteinConserved proteinConserved proteinConserved proteinHypothetical proteinHypothetical proteinHypothetical proteinConserved proteinConserved proteinConserved proteinHypothetical protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2743 AE008384_2744 AE008384_2745 AE008384_2746 AE008384_2747 AE008384_2748 AE008384_2750 AE008384_2751 AE008384_2751 AE008384_2753 AE008384_2753	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNITHypothetical proteinHypothetical proteinConserved proteinConserved proteinConserved proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinConserved proteinConserved proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinHypothetical proteinConserved proteinConserved proteinConserved proteinHypothetical protein
AE008384_2740 AE008384_2741 AE008384_2742 AE008384_2743 AE008384_2744 AE008384_2745 AE008384_2746 AE008384_2746 AE008384_2747 AE008384_2749 AE008384_2750 AE008384_2751 AE008384_2752 AE008384_2753 AE008384_2754 AE008384_2755	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNITHypothetical proteinHypothetical proteinConserved proteinConserved proteinConserved proteinHypothetical proteinConserved proteinHypothetical protein
	AE008384_2709 AE008384_2710 AE008384_2711 AE008384_2712 AE008384_2713 AE008384_2714 AE008384_2714 AE008384_2716 AE008384_2716 AE008384_2717 AE008384_2719 AE008384_2720 AE008384_2720 AE008384_2722 AE008384_2723 AE008384_2730 AE008384_2731 AE008384_2731 AE008384_2733 AE008384_2734 AE008384_2736 AE008384_2736 AE008384_2737

2154	AE008384_2757	Hypothetical protein
2155	AE008384_2759	Hypothetical protein
2156	AE008384_2760	Hypothetical protein
2157	AE008384_2761	Hypothetical protein
2158	AE008384_2762	Hypothetical protein
2159	AE008384_2763	Putative DNA recombinase
2160	AE008384_2764	Hypothetical protein
2161	AE008384_2766	Hypothetical protein
2162	AE008384_2767	Hypothetical protein
2163	AE008384_2768	Conserved protein
2164	AE008384_2769	Iron-containing alcohol dehydrogenase
2165	AE008384_2770	Glycogen debranching enzyme
2165	AE008384_2770	Glycogen debranching enzyme
2166	AE008384_2771	Conserved protein
2167	AE008384_2772	Conserved protein
2168	AE008384_2773	Two component system histidine kinase
2169		Conserved protein
2170		Conserved protein
2171		Acvlphosphatase
2172		Cobalt-zinc-cadmium resistance protein
2173	AE008384 2779	Putative phosphoglycerate mutase
2174	AE008384_2780	Hypothetical protein
2175	AE008384 2781	Conserved protein
2176	AE008384_2782	Glyceraldehyde 3-phosphate dehydrogenase
2177	AE008384 2783	Suppressor protein SuhB homolog
2178	AE008384_2784	Hypothetical protein
2181	AE008384_2787	Conserved protein
2183	AE008384_2788	INDOLEPYRUVATE FERREDOXIN OXIDOREDUCTASE. SUBUNIT ALPHA
2183	AE008384_2789	Hypothetical protein
2185	AE008384_2790	IRON-SULFUR FLAVOPROTEIN
2186	AE008384_2791	DNA repair protein
2183	AE008384_2792	Molybdopterin converting factor subunit 2
2188	AE008384 2793	Molybdopterin-guanine dinucleotide biosynthesis protein
2189	AE008384_2794	Hypothetical protein
2199	AE008384_2795	Conserved protein
2190	AE008384_2796	Conserved protein
2191	AE008384_2797	Pirin
2192	AE008384_2798	Conserved protein
2193	AE008384_2798	
2193		Conserved protein
2194	AE008384_2798	Conserved protein
21)5	AE008384_2800 AE008384_2801	Conserved protein Conserved protein Hypothetical protein
2196	AE008384_2738 AE008384_2800 AE008384_2801 AE008384_2802	Conserved protein Conserved protein Hypothetical protein
2196 2197	AE008384_2800 AE008384_2801 AE008384_2801 AE008384_2802 AE008384_2803	Conserved protein Conserved protein Hypothetical protein Hypothetical protein Carbon monovide debydrogenase accessory protein
2196 2197 2198	AE008384_2800 AE008384_2801 AE008384_2801 AE008384_2802 AE008384_2803 AE008384_2803	Conserved protein Conserved protein Hypothetical protein Hypothetical protein Carbon monoxide dehydrogenase accessory protein Conserved protein
2196 2197 2198 2199	AE008384_2800 AE008384_2800 AE008384_2801 AE008384_2802 AE008384_2803 AE008384_2804 AE008384_2804	Conserved protein Conserved protein Hypothetical protein Hypothetical protein Carbon monoxide dehydrogenase accessory protein Conserved protein Asparagine synthetase [glutamine_bydrolyzing]
2196 2197 2198 2199 2200	AE008384_2800 AE008384_2801 AE008384_2801 AE008384_2802 AE008384_2803 AE008384_2804 AE008384_2805 AE008384_2805	Conserved protein Conserved protein Hypothetical protein Hypothetical protein Carbon monoxide dehydrogenase accessory protein Conserved protein Asparagine synthetase [glutamine-hydrolyzing] Hypothetical protein
2196 2197 2198 2199 2200 2201	AE008384_2800 AE008384_2800 AE008384_2801 AE008384_2802 AE008384_2803 AE008384_2804 AE008384_2805 AE008384_2806 AE008384_2807	Conserved protein Conserved protein Hypothetical protein Hypothetical protein Carbon monoxide dehydrogenase accessory protein Conserved protein Asparagine synthetase [glutamine-hydrolyzing] Hypothetical protein Phosphoribosylformylelycinamidine synthese
2196 2197 2198 2199 2200 2201 2201	AE008384_2800 AE008384_2800 AE008384_2801 AE008384_2802 AE008384_2803 AE008384_2803 AE008384_2805 AE008384_2806 AE008384_2807 AE008384_2807	Conserved protein Conserved protein Hypothetical protein Hypothetical protein Carbon monoxide dehydrogenase accessory protein Conserved protein Asparagine synthetase [glutamine-hydrolyzing] Hypothetical protein Phosphoribosylformylglycinamidine synthase Conserved protein
2196 2197 2198 2199 2200 2201 2202 2202	AE008384_2800 AE008384_2800 AE008384_2801 AE008384_2802 AE008384_2803 AE008384_2804 AE008384_2805 AE008384_2806 AE008384_2807 AE008384_2808 AE008384_2808	Conserved protein Conserved protein Hypothetical protein Hypothetical protein Carbon monoxide dehydrogenase accessory protein Carbon monoxide dehydrogenase accessory protein Conserved protein Asparagine synthetase [glutamine-hydrolyzing] Hypothetical protein Phosphoribosylformylglycinamidine synthase Conserved protein Conserved protein
2196 2197 2198 2199 2200 2201 2202 2203 2203	AE008384_2800 AE008384_2800 AE008384_2801 AE008384_2802 AE008384_2803 AE008384_2803 AE008384_2805 AE008384_2805 AE008384_2806 AE008384_2807 AE008384_2808 AE008384_2809 AE008384_2810	Conserved protein Conserved protein Hypothetical protein Hypothetical protein Carbon monoxide dehydrogenase accessory protein Conserved protein Asparagine synthetase [glutamine-hydrolyzing] Hypothetical protein Phosphoribosylformylglycinamidine synthase Conserved protein Conserved protein Conserved protein
2196 2197 2198 2199 2200 2201 2202 2203 2203 2204 2208	AE008384_2800 AE008384_2801 AE008384_2801 AE008384_2802 AE008384_2803 AE008384_2803 AE008384_2805 AE008384_2806 AE008384_2806 AE008384_2808 AE008384_2809 AE008384_2810 AE008384_2810	Conserved protein Conserved protein Hypothetical protein Hypothetical protein Carbon monoxide dehydrogenase accessory protein Conserved protein Asparagine synthetase [glutamine-hydrolyzing] Hypothetical protein Phosphoribosylformylglycinamidine synthase Conserved protein Conserved protein Conserved protein Glutamate 5-kinase
2196 2197 2198 2199 2200 2201 2202 2203 2204 2208 2209	AE008384_2800 AE008384_2800 AE008384_2801 AE008384_2802 AE008384_2803 AE008384_2804 AE008384_2805 AE008384_2806 AE008384_2807 AE008384_2809 AE008384_2809 AE008384_2810 AE008384_818 AE008384_819	Conserved protein Conserved protein Hypothetical protein Hypothetical protein Carbon monoxide dehydrogenase accessory protein Conserved protein Asparagine synthetase [glutamine-hydrolyzing] Hypothetical protein Phosphoribosylformylglycinamidine synthase Conserved protein Conserved protein Conserved protein Glutamate 5-kinase Gamma-glutamyl phosphate reductase

2209	AE008384_819	Gamma-glutamyl phosphate reductase
2210	AE008384_820	Conserved protein
2211	AE008384_821	Conserved protein
2212	AE008384_822	Hypothetical protein
2213	AE008384_823	Conserved protein
2214	AE008384_824	Universal stress protein
2215	AE008384_825	Conserved protein
2216	AE008384_826	Conserved protein
2217	AE008384_827	Conserved protein
2218	AE008384_828	Conserved protein
2219	AE008384_829	Conserved protein
2220	AE008384_830	Molybdopterin biosynthesis MoeA protein
2221	AE008384_831	Molybdopterin converting factor, small subunit
2222	AE008384_832	Conserved protein
2223	AE008384_833	Conserved protein
2224	AE008384_834	Na+/H+ antiporter
2224	AE008384_834	Na+/H+ antiporter
2225	AE008384_835	Cation-transporting ATPase
2226	AE008384_836	Conserved protein
2226	AE008384_836	Conserved protein
2227	AE008384_837	Conserved protein
2228	AE008384_838	Succinate-semialdehyde dehydrogenase [NADP+]
2229	AE008384_839	Conserved protein
2230	AE008384_840	Glycosyltransferases involved in cell wall biogenesis (putative)
2231	AE008384_841	Transcriptional regulator, ArsR family
2232	AE008384_842	Conserved protein
2233	AE008384_843	Coenzyme F390 synthetase/phenylacetyl-CoA ligase
2234	AE008384_844	Hypothetical protein
2235	AE008384_845	Conserved protein
2236	AE008384_846	Conserved protein
2237	AE008384_847	Conserved protein
2238	AE008384_848	Conserved protein
2239	AE008384_849	Bacterioferritin comigratory protein
2240	AE008384_850	Conserved protein
2241	AE008384_851	Conserved protein
2242	AE008384_852	Deoxyribodipyrimidine photolyase
2243	AE008384_853	Conserved protein
2244	AE008384_854	Cell division cycle protein 48 homolog
2245	AE008384_855	Phosphoribosylamidoimidazole-succinocarboxamide synthase
2246	AE008384_856	Conserved protein
2247	AE008384_857	Conserved protein
2248	AE008384_858	protein Translation Initiation Factor 1 (IF-1)
2249	AE008384_859	Conserved protein
2250	AE008384_860	Phosphoribosylformylglycinamidine synthase
2251	AE008384_861	Alpha-amylase
2252	AE008384_862	Alpha-amylase
2253	AE008384_863	Conserved protein
2254	AE008384_864	Glucoamylase
2255	AE008384_865	Seryl-tRNA synthetase
2256	AE008384_866	Periplasmic serine protease
2257	AE008384_867	Methionyl-tRNA synthetase
2258	AE008384_868	Adenylate cyclase

2259	AE008384_869	Conserved protein
2260	AE008384_870	Beta-ketoacyl synthase/ thiolase
2261	AE008384_871	Hydroxymethylglutaryl-CoA synthase
2262	AE008384_872	Putative transcriptional regulator
2263	AE008384_873	Conserved protein
2264	AE008384_874	Conserved protein
2265	AE008384_876	Hypothetical protein
2266	AE008384_877	Transposase
2267	AE008384_880	Conserved protein
2269	AE008384_882	Conserved protein
2270	AE008384_883	Conserved protein
2271	AE008384_886	DNA polymerase IV
2272	AE008384_887	Cobalt transporter, ATP-binding protein
2273	AE008384_888	Cobalt transport protein
2274	AE008384_889	Hypothetical protein
2275	AE008384_890	Putative methyltransferase
2276	AE008384_891	Putative methyltransferase
2276	AE008384_891	Putative methyltransferase
2277	AE008384_892	Hypothetical protein
2278	AE008384_893	Cobalamin biosynthesis protein CbiM
2279	AE008384_894	Cobalamin biosynthesis protein CbiM
2280	AE008384_895	Endonuclease III
2281	AE008384_896	Conserved protein
2282	AE008384_897	Glutathione reductase
2283	AE008384_898	Bifunctional purine biosynthesis protein PurH
2284	AE008384_899	Conserved protein
2285	AE008384_900	Conserved protein
2286	AE008384_901	Cation-transporting ATPase
2287	AE008384_902	Putative methyltransferase
2288	AE008384_903	Transcriptional regulator
2289	AE008384_904	Phosphoglycerate mutase
2290	AE008384_905	Conserved protein
2291	AE008384_906	FLAP ENDONUCLEASE-1 (RAD27/FEN1 family)
2292	AE008384_907	Hypothetical protein
2293	AE008384_908	Conserved protein
2294	AE008384_909	Conserved protein
2295	AE008384_910	POTASSIUM/COPPER-TRANSPORTING ATPASE
2296	AE008384_911	ABC transporter, ATP-binding protein
2297	AE008384_912	Conserved protein
2298	AE008384_913	Conserved protein
2299	AE008384_914	Conserved protein
2300	AE008384_915	Conserved protein
2301	AE008384_916	Conserved protein
2302	AE008384_917	Conserved protein
2303	AE008384_918	4-carboxymuconolactone decarboxylase
2304	AE008384_919	Conserved protein
2305	AE008384_920	MutT related protein
2306	AE008384_921	Aldehyde ferredoxin oxidoreductase
2307	AE008384_922	protein Translation Initiation Factor 5A (IF-5A)
2308	AE008384_923	Agmatinase
2309	AE008384_924	Conserved protein
2310	AE008384_925	Conserved protein

2314	AE008384_2690	Transposase
2315	AE008384_2691	Hypothetical protein
2316	AE008384_2692	Hypothetical protein
2317	AE008384_2693	Hypothetical protein
2320	AE008384_2684	Transposase
2321	AE008384_2685	Transposase
2322	AE008384_2687	Hypothetical protein
2326	AE008384_682	INTEGRAL MEMBRANE PROTEIN
2327	AE008384_681	Conserved protein
2328	AE008384_680	Conserved protein
2329	AE008384_679	Conserved protein
2330	AE008384_678	Conserved protein
2331	AE008384_677	Acetolactate synthase small subunit
2332	AE008384_676	Coenzyme F390 synthetase
2333	AE008384_675	Conserved protein
2334	AE008384_674	Prefoldin beta subunit
2335	AE008384_673	Conserved protein
2336	AE008384_672	Hypothetical protein
2337	AE008384_671	2-isopropylmalate synthase
2338	AE008384_670	Acetolactate synthase large subunit
2339	AE008384 669	Acetolactate synthase small subunit
2340		Ketol-acid reductoisomerase
2341		Nitroreductase family protein
2342		Putative nickel-responsive regulator NikR
2343		Hypothetical protein
2344		Glutamate synthase [NADPH]
2345		Probable dihydroorotate dehydrogenase electron transfer subunit
2347	AE008384 662	Transcriptional regulator. ArsR family
2348	AE008384 661	METHYLTRANSFERASE
2349	- AE008384_660	MANNOSE-6-PHOSPHATE ISOMERASE/ MANNOSE-1-PHOSPHATE GUANYLYL TRANSFERASE
2350	AE008384_659	GDP mannose / 6 dehydratase
2350	AE008384_059	CDD FUCOSE SVNTHETASE
2351	AE008384_058	Polycocharide ABC transporter, permease protein
2352	AE008384_057	Polysaccharide ABC transporter. ATP binding protein
2353	AE008384_050	MANNOSVI TDANSEEDASE
2354	AE008384_054	Glugogultennefarsog involved in cell well biogeneois
2355	AE008384_053	Glycosyltransferase involved in cell wall biogenesis
2350	AE008384_052	Glycosyltransferase involved in cell wall biogenesis
2357	AE008384_051	MANNOCVI TDANCEEDASE
2350	AE008384_030	
2359	AE008384_049	CLUCOSYL TRANSFERASE
2360	AE008384_048	Oliososokaril transferase
2302	AE008384_040	2. incompositional ato delaudratese
2303	AE008384_043	S-isopropyimalate denydratase
2364	AE008384_644	
2365	AE008384_043	Conserved protein
1466	AE000204 642	Isocitrate dehydrogenese [NADD]
2300	AE008384_642	Isocitrate dehydrogenase [NADP]
2366 2367 2368	AE008384_642 AE008384_639	Isocitrate dehydrogenase [NADP] Alpha-acetolactate decarboxylase
2366 2367 2368 2369	AE008384_642 AE008384_639 AE008384_638	Isocitrate dehydrogenase [NADP] Alpha-acetolactate decarboxylase PUTATIVE FLAVODOXIN
2366 2367 2368 2369 2370	AE008384_642 AE008384_639 AE008384_638 AE008384_636	Isocitrate dehydrogenase [NADP] Alpha-acetolactate decarboxylase PUTATIVE FLAVODOXIN Conserved protein
2366 2367 2368 2369 2370	AE008384_642 AE008384_639 AE008384_638 AE008384_636 AE008384_635	Isocitrate dehydrogenase [NADP] Alpha-acetolactate decarboxylase PUTATIVE FLAVODOXIN Conserved protein FLAVOPROTEIN
2366 2367 2368 2369 2370 2371	AE008384_642 AE008384_639 AE008384_638 AE008384_636 AE008384_635 AE008384_634	Isocitrate dehydrogenase [NADP] Alpha-acetolactate decarboxylase PUTATIVE FLAVODOXIN Conserved protein FLAVOPROTEIN IRON-SULFUR FLAVOPROTEIN

4	6

2373	AE008384_632	Desulfoferrodoxin
2374	AE008384_631	Hypothetical protein
2375	AE008384_630	Zinc finger protein
2377	AE008384_628	Coenzyme F420-dependent N5,N10-methylene tetrahydromethanopterin reductase
2377	AE008384_628	Coenzyme F420-dependent N5,N10-methylene tetrahydromethanopterin reductase
2378	AE008384_627	F420H2 Dehydrogenase Subunit FpoF
2378	AE008384_627	F420H2 Dehydrogenase Subunit FpoF
2379	AE008384_626	Nicotinamide-nucleotide adenylyltransferase
2379	AE008384_626	Nicotinamide-nucleotide adenylyltransferase
2380	AE008384_625	Conserved protein
2381	AE008384_624	Hypothetical protein
2382	AE008384_623	Transposase
2383	AE008384_622	Transposase
2384	AE008384_621	Hypothetical protein
2385	AE008384_620	Conserved protein
2386	AE008384_619	Conserved protein
2387	AE008384_618	Undecaprenyl pyrophosphate synthetase
2388	AE008384_617	Conserved protein
2389	AE008384_616	Conserved protein
2390	AE008384_614	Long-chain-fatty-acidCoA ligase
2391	AE008384_613	Conserved protein
2392	AE008384_612	NH3-dependent NAD(+) synthetase
2393	AE008384_611	Iron-sulfur cluster-binding protein
2394	AE008384_610	Acetyltransferases
2395	AE008384_609	Conserved protein
2396	AE008384_608	Probable radical-forming protein
2397	AE008384_606	Hypothetical protein
2398	AE008384_605	Conserved protein
2399	AE008384_604	Conserved protein
2400	AE008384_603	Nucleoside-triphosphatase
2401	AE008384_602	O-sialoglycoprotein endopeptidase
2402	AE008384_601	Conserved protein
2403	AE008384_600	SSU ribosomal protein S27AE
2404	AE008384_599	SSU ribosomal protein S24E
2405	AE008384_598	Hypothetical protein
2406	AE008384_597	DNA-directed RNA polymerase subunit E"
2407	AE008384_596	DNA-directed RNA polymerase subunit E'
2408	AE008384_595	Conserved protein
2409	AE008384_594	protein Translation Initiation Factor 2 subunit gamma (IF-2g)
2410	AE008384_593	Conserved protein
2411	AE008384_592	Integral membrane protein
2412	AE008384_591	Conserved membrane protein
2413	AE008384_590	GLYCEROL 1-PHOSPHATE DEHYDROGENASE (putative)
2414	AE008384_589	Conserved protein
2415	AE008384_588	Conserved protein
2417	AE008384_586	Sulfate adenylyltransferase
2418	AE008384_585	Conserved protein
2418	AE008384_585	Conserved protein
2419	AE008384_584	Conserved protein
2420	AE008384_583	Conserved protein
2422	AE008384_582	GLYCOSYLTRANSFERASE
2423	AE008384_581	Conserved protein

2424	AE008384_580	Hypothetical protein
2425	AE008384_579	Transposase
2426	AE008384_578	Phosphate-binding protein
2427	AE008384_577	Phosphate transport ATP-binding protein
2428	AE008384_576	Phosphate transport system protein
2429	AE008384_575	PUTATIVE PHOSPHATE REGULATORY PROTEIN
2430	AE008384_574	ARSENATE REDUCTASE
2431	AE008384_573	Conserved protein
2432	AE008384_572	Alkaline phosphatase
2433	AE008384_571	Transcriptional regulator, Icc related protein
2434	AE008384_570	ABC transporter, ATP-binding protein
2435	AE008384_569	ABC transporter, ATP-binding protein
2436	AE008384_568	Conserved protein
2436	AE008384_568	Conserved protein
2437	AE008384_567	Acetyltransferase
2438	AE008384_566	Hypothetical protein
2439	AE008384_565	Transcriptional regulator
2439	AE008384_565	Transcriptional regulator
2440	AE008384_564	Hypothetical protein
2441	AE008384_563	Hypothetical protein
2442	AE008384_562	Hypothetical protein
2443	AE008384_561	Conserved protein
2444	AE008384_560	Hypothetical protein
2445	AE008384_559	Hypothetical protein
2446	AE008384_558	Hypothetical protein
2447	AE008384_557	Hypothetical protein
2449	AE008384_3371	Conserved protein
2450	AE008384_1	Dipeptide ABC transporter, binding protein
2451	AE008384_2	Dipeptide ABC transporter, binding protein
2452	AE008384_4	Dipeptide ABC transporter, permease protein
2453	AE008384_5	Dipeptide ABC transporter, permease protein
2454	AE008384_6	Dipeptide ABC transporter, ATP-binding protein
2455	AE008384_7	Dipeptide ABC transporter, ATP-binding protein
2456	AE008384_8	Conserved protein
2457	AE008384_9	Conserved protein
2458	AE008384_10	Hypothetical protein
2459	AE008384_11	Conserved protein
2460	AE008384_12	RNA SIGNAL RECOGNITION PARTILCE 4.5S RNA
2461	AE008384_13	Conserved protein
2462	AE008384_14	Undecaprenyl pyrophosphate synthetase
2463	AE008384_15	METHYLTRANSFERASE
2464	AE008384_16	TRANSLATION INITIATION FACTOR 1A (EIF-1A)
2465	AE008384_17	Ubiquinone/menaquinone biosynthesis methyltransferase
2466	AE008384_19	Conserved protein
2467	AE008384_20	Conserved protein
2468	AE008384_22	Hypothetical protein
2469	AE008384_24	Hypothetical protein
2469	AE008384_24	Hypothetical protein
2470	AE008384_25	Hypothetical protein
2471	AE008384_26	Conserved protein
2472	AE008384_27	Conserved protein
2473	AE008384_28	Superfamily I DNA and RNA helicase

2474	AE008384_29	Conserved protein
2475	AE008384_30	O-linked N-acetylglucosamine transferase
2476	AE008384_31	Hypothetical protein
2477	AE008384_33	Conserved protein
2478	AE008384_35	Conserved protein
2479	AE008384_36	Hypothetical protein
2480	AE008384_37	Argininosuccinate synthase
2481	AE008384_38	Carbamoyl-phosphate synthase large chain
2482	AE008384_39	Carbamoyl-phosphate synthase small chain
2483	AE008384_40	Glycine betaine transporter, ATP-binding protein (OtaA)
2483	AE008384_40	Glycine betaine transporter, ATP-binding protein (OtaA)
2484	AE008384_41	Glycine betaine transporter, permease protein (OtaB)
2484	AE008384_41	Glycine betaine transporter, permease protein (OtaB)
2485	AE008384_42	Glycine betaine transporter, substrate-binding protein (OtaC)
2486	AE008384_43	Conserved protein
2487	AE008384_44	Hypothetical protein
2488	AE008384_45	Hypothetical protein
2489	AE008384_46	Hypothetical protein
2490	AE008384_47	Acetylornithine aminotransferase
2491	AE008384_48	Aldehyde dehydrogenase
2492	AE008384_49	Conserved protein
2492	AE008384_49	Conserved protein
2493	AE008384_50	Glutamyl-tRNA (Gln) amidotransferase
2494	AE008384_51	Hypothetical protein
2495	AE008384_52	Transposase
2496	AE008384_54	Transposase
2497	AE008384_55	Universal stress protein
2500	AE008384_57	TUNGSTEN FORMYLMETHANOFURAN DEHYDROGENASE, SUBUNIT F
2501	AE008384_58	Ferredoxin-thioredoxin reductase, catalytic chain
2502	AE008384_59	Tungsten formylmethanofuran dehydrogenase subunit B TUNGSTEN-CONTAINING FORMYLMETHANOFURAN DEHYDROGENASE
2502	AE008384_59	SUBUNIT B
2503	AE008384_60	TUNGSTEN FORMYLMETHANOFURAN DEHYDROGENASE, SUBUNIT D
2504	AE008384_61	Conserved protein
2505	AE008384_62	SAM-dependent methyltransferases
2506	AE008384_63	SURFACE LAYER PROTEIN B
2507	AE008384_64	SURFACE LAYER PROTEIN B
2508	AE008384_66	CONSERVED PROTEIN
2509	AE008384_67	Hypothetical protein
2510	AE008384_68	N-methylhydantoinase (ATP hydrolyzing)
2511	AE008384_69	Sodium-dependent transporter
2512	AE008384_70	Putative ribosomal RNA methyltransferase
2513	AE008384_71	CONSERVED PROTEIN (Archaea)
2514	AE008384_72	Thermosome b-subunit
2515	AE008384_73	Ribose 5-phosphate isomerase
2516	AE008384_74	Aspartyl-tRNA synthetase
2517	1 000000 4 75	Conserved protein
2510	AE008384_/5	
2518	AE008384_75 AE008384_76	Hypothetical protein
2518 2519	AE008384_75 AE008384_76 AE008384_77	Hypothetical protein Hypothetical protein
2518 2519 2520	AE008384_75 AE008384_76 AE008384_77 AE008384_78	Hypothetical protein Hypothetical protein Xanthine-guanine phosphoribosyltransferase
2518 2519 2520 2521	AE008384_75 AE008384_76 AE008384_77 AE008384_78 AE008384_79	Hypothetical protein Hypothetical protein Xanthine-guanine phosphoribosyltransferase Conserved protein
2518 2519 2520 2521 2522	AE008384_75 AE008384_76 AE008384_77 AE008384_78 AE008384_79 AE008384_80	Hypothetical protein Hypothetical protein Xanthine-guanine phosphoribosyltransferase Conserved protein Hypothetical protein
2524	AE008384_82	Phosphoserine phosphatase
--------------	--------------	---
2525	AE008384_84	Shikimate kinase
2526	AE008384_85	Conserved protein
2527	AE008384_86	Hypothetical protein
2528	AE008384_87	Pyrimidine-nucleoside phosphorylase
2529	AE008384_88	Transporter
2530	AE008384_90	Conserved protein
2531	AE008384_91	ABC transporter permease protein
2532	AE008384_92	Conserved protein
2533	AE008384_93	Cobyric acid synthase
2534	AE008384_95	Conserved protein
2535	AE008384_96	Transposase
2536	AE008384_97	Ornithine cyclodeaminase
2537	AE008384_98	Conserved protein
2538	AE008384_99	O-linked N-acetylglucosamine transferase
2539	AE008384_100	Conserved protein
2540	AE008384_101	Conserved protein
2541	AE008384_102	Serine/threonine protein phosphatase
2542	AE008384_103	O-linked N-acetylglucosamine transferase
2543	AE008384_105	Hypothetical protein
2544	AE008384_106	FxsA protein
2545	AE008384_107	Hypothetical protein
2546	AE008384_108	Hypothetical protein
2547	AE008384_109	Cysteine desulfhydrase
2548	AE008384_110	NifU protein
2549	AE008384_111	Ribosomal protein S6 modification protein
2550	AE008384_112	Hypothetical protein
2551	AE008384_113	Conserved protein
2553	AE008384_114	Conserved protein
2554	AE008384_115	Putative transmembrane efflux protein
2555	AE008384_116	Transcriptional regulator, MarR family
2556	AE008384_117	Hypothetical protein
2558	AE008384_118	CTP synthase
2559	AE008384_119	Hypothetical protein
2560	AE008384_121	Carbon monoxide dehydrogenase
2561	AE008384_122	Iron-sulfur protein
2562	AE008384_123	Universal stress protein
2563	AE008384_124	Conserved protein
2564	AE008384_125	Universal stress protein
2565	AE008384_126	PmbA protein
2566	AE008384_127	
2567	AE008384_128	ATP-dependent protease La
2568	AE008384_129	Conserved protein
2569	AE008384_130	Conserved protein
2570	AEUU8384_131	Conserved protein
2571	AE008384_132	Conserved protein
2572	AEUU8384_133	Sulfonumuoto deserborriles, shiha shek
2515	AEUU8384_134	Sunopyruvate decarboxyrase alpha chain
2575	AE000304_133	Zn dependent hydrologo
2575 2576	AE000304_130	Conserved protein
2570	AEUU0304_13/	CONSERVED DROTEIN (Archage)
4311	AE000304_138	CONSERVED FROTEIN (Archaea)

2578	AE008384_139	Cytochrome c-type biogenesis protein
2579	AE008384_140	Putative Cytochrome c biogenesis factors
2580	AE008384 141	Conserved protein
2581		Orotate phosphoribosyltransferase
2582		4-carboxymuconolactone decarboxylase
2584		Phosphoribosvlamineglycine ligase
2585		Ornithine carbamovltransferase
2586	AE008384_146	Transcriptional regulator
2587	AE008384_147	IRON-SULFUR FLAVOPROTEIN
2588	AE008384 148	Conserved protein
2589	AF008384_150	nutative nucleoside_dinhosphate_sugar enimerase
2590	AE008384_151	Conserved protein
2590	AE008384_152	DNA integration/recombination/invertion protein
2591	AE008384_152	Conserved protein
2502	AE008384_153	
2593	AE008384_134	
2394	AE008384_133	
2393	AE008384_130	ATD down dont DNA holizon
2597	AE008384_157	ATP-dependent DNA helicase
2598	AE008384_158	A IP-dependent DNA helicase
2599	AE008384_159	Hypothetical protein
2600	AE008384_162	Conserved protein
2601	AE008384_163	DNA repair protein
2602	AE008384_164	ATP-dependent protease La
2603	AE008384_166	HOMOSPERMIDINE SYNTHASE
2604	AE008384_167	Cobalt-zinc-cadmium resistance protein
2605	AE008384_168	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
2606	AE008384_169	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
2607	AE008384_170	Transposase
2608	AE008384_171	Transposase
2609	AE008384_172	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
2610	AE008384_173	Transporter
2611	AE008384_174	Methanol corrinoid protein
2612	AE008384_175	Methanol:corrinoid methyltransferase MtaB
2613	AE008384_176	Methylcobalamin:coenzyme M methyltransferase
2614	AE008384_177	Conserved protein
2615	AE008384_178	Conserved protein
2616	AE008384_179	Conserved protein
2617	AE008384_180	Diamine acetyltransferase
2618	AE008384_181	Conserved protein
2619	AE008384 182	Thiamine biosynthesis protein
2620	AE008384 183	DNA topoisomerase III
2621		SSU ribosomal protein S3AE
2623	AE008384_185	Short chain dehydrogenase/reductase
2624	AE008384_186	Conserved protein
2625	AF008384_187	NIICI FOTIDVI TRANSFERASE
2626	AF008384 188	Hypothetical nucleotidyltransferase
2627	AF00838/ 180	Conserved protein
2621	AE000304_103	
2001	AE000304_191	Hunothatiaal protain
2002	AE000304_192	TYPE III DECTRICTION MODIFICATION OVOTEM METHALATION OUDDANT
2033	AE000304_193	111E III KESTRICHON-MODIFICATION STSTEM METHTLATION SUBUNIT
2034	AE008384_194	Conserved protein
2033	AE008384_195	Conserved protein

2636	AE008384_196	Conserved protein
2637	AE008384_197	Conserved protein
2638	AE008384_198	ATP-dependent DNA helicase
2639	AE008384_199	Conserved protein
2640	AE008384_200	Conserved protein
2641	AE008384_201	Conserved protein
2642	AE008384_202	Hypothetical protein
2643	AE008384_203	Hypothetical protein
2644	AE008384_204	Hypothetical protein
2645	AE008384_205	Conserved protein
2646	AE008384_206	Conserved protein
2646	AE008384_206	Conserved protein
2648	AE008384_207	Hypothetical protein
2649	AE008384_208	Hypothetical protein
2650	AE008384_209	Hypothetical protein
2651	AE008384_210	Conserved protein
2652	AE008384_211	Cysteine proteinase
2653	AE008384_212	Conserved protein
2654	AE008384_213	Putative single-stranded-DNA-specific exonuclease
2655	AE008384_214	Hypothetical protein
2656	AE008384_215	Hypothetical protein
2657	AE008384_216	Conserved protein
2658	AE008384_217	Conserved protein
2659	AE008384_218	Conserved protein
2660	AE008384_219	Conserved protein
2661	AE008384_221	Fe-S OXIDOREDUCTASE
2662	AE008384_222	THIAZOLE BIOSYNTHETIC ENZYME
2663	AE008384_223	Hypothetical protein
2664	AE008384_224	Molybdenum-pterin-binding-protein
2665	AE008384_225	Conserved protein
2667	AE008384_226	Conserved protein
2668	AE008384_230	SODIUM-CALCIUM EXCHANGER
2669	AE008384_231	Hypothetical protein
2670	AE008384_232	Hypothetical protein
2671	AE008384_233	Alanyl-tRNA synthetase
2672	AE008384_234	Conserved protein
2673	AE008384_235	Conserved protein
2674	AE008384_236	PUTATIVE MECHANOSENSITIVE ION CHANNEL
2675	AE008384_237	Conserved protein
2676	AE008384_238	Hypothetical protein
2677	AE008384_239	Conserved protein
2678	AE008384_240	Ferredoxin
2679	AE008384_241	Hypothetical protein
2680	AE008384_242	Glycerol-3-phosphate cytidylyltransferase
2681	AE008384_243	Aspartate aminotransferase
2682	AE008384_244	Riboflavin synthase, subunit beta
2683	AE008384_245	Riboflavin synthase, subunit alpha
2685	AE008384_2682	Transposase
2686	AE008384_2681	Hypothetical protein
2687	AE008384_2680	Conserved protein
2688	AE008384_2679	Conserved protein
2689	AE008384_2677	Conserved protein

2690	AE008384_2676	Conserved protein
2691	AE008384_2675	Serine protease inhibitor
2692	AE008384_2674	Conserved protein
2693	AE008384_2673	Hypothetical protein
2694	AE008384_2672	Conserved protein
2695	AE008384_2671	Hypothetical protein
2696	AE008384_2670	Hypothetical protein
2697	AE008384_2669	Conserved protein
2698	AE008384_2668	Hypothetical protein
2699	AE008384_2667	MoxR-like ATPase
2700	AE008384_2666	Conserved protein
2701	AE008384_2665	ABC transporter, ATP-binding protein
2702	AE008384_2664	Conserved protein
2703	AE008384_2663	Conserved protein
2704	AE008384_2662	(Na+)-linked D-alanine glycine permease
2705	AE008384_2661	Hypothetical protein
2706	AE008384_2660	SODIUM-CALCIUM EXCHANGER PROTEIN
2707	AE008384_2659	Acetyltransferase
2708	AE008384_2658	Acetyltransferase
2709	AE008384_2657	transcriptional regulator
2710	AE008384_2656	Peptidyl-prolyl cis-trans isomerase
2711	AE008384_2655	Hypothetical protein
2712	AE008384_2654	Hypothetical protein
2713	AE008384_2653	N5,N10-methenyltetrahydromethanopterin cyclohydrolase
2713	AE008384_2653	N5,N10-methenyltetrahydromethanopterin cyclohydrolase
2714	AE008384_2652	Hypothetical protein
2715	AE008384_2650	HYDROLASE
2716	AE008384_2649	Aspartate aminotransferase
2717	AE008384_2648	Hypothetical protein
2719	AE008384_2646	Sensory Transduction protein Kinase
2720	AE008384_2645	Aldehyde ferredoxin oxidoreductase
2720	AE008384_2645	Aldehyde ferredoxin oxidoreductase
2721	AE008384_2644	Putative molybdopterin converting factor
2722	AE008384_2643	Hypothetical protein
2723	AE008384_2642	Hypothetical protein
2724	AE008384_2641	Conserved protein
2725	AE008384_2640	Magnesium and cobalt transport protein CorA
2726	AE008384_2639	Conserved protein
2727	AE008384_2638	Hypothetical protein
2728	AE008384_2637	Hypothetical protein
2729	AE008384_2636	Coenzyme F390 synthetase
2730	AE008384_2635	Putative pyruvate:ferredoxin oxidoreductase
2731	AE008384_2634	Indolpyruvate ferredoxin oxidoreductase, alpha subunit
2732	AE008384_2633	Hypothetical protein
2735	AE008384_2632	NAD-dependent malic enzyme
2736	AE008384_2631	Hypothetical protein
2737	AE008384_2630	Conserved protein
2738	AE008384_2629	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
2739	AE008384_2628	Conserved protein
2740	AE008384_2627	Conserved protein
2741	AE008384_2625	LSU ribosomal protein L37AE
2742	AE008384_2624	Ribonuclease

2743	AE008384_2623	Ribonuclease
2744	AE008384_2622	Hypothetical protein
2745	AE008384_2621	Hypothetical protein
2746	AE008384_2620	Proteasome, subunit-alpha
2747	AE008384_2619	Hypothetical protein
2748	AE008384_2618	Hypothetical protein
2749	AE008384_2617	Hypothetical protein
2750	AE008384_2616	LSU ribosomal protein L15E
2750	AE008384_2616	LSU ribosomal protein L15E
2751	AE008384_2615	Hypothetical protein
2752	AE008384_2614	Hypothetical protein
2755	AE008384_2612	Probable ATP-dependent helicase
2756	AE008384_2611	Hypothetical protein
2757	AE008384_2610	Type I restriction enzyme
2758	AE008384_2609	NUCLEOTIDYLTRANSFERASE
2759	AE008384_2608	NUCLEOTIDYLTRANSFERASE
2760	AE008384_2607	NUCLEOTIDYLTRANSFERASE
2761	AE008384_2606	Hypothetical protein
2762	AE008384_2604	Conserved protein
2763	AE008384_2603	Hypothetical protein
2764	AE008384_2602	Hypothetical protein
2765	AE008384_2601	Zinc metalloprotease
2766	AE008384_2600	Conserved protein
2767	AE008384_2598	Hypothetical protein
2770	AE008384_816	Transposase
2774	AE008384_739	Transposase
2775	AE008384_738	Conserved protein
2776	AE008384_737	Conserved protein
2777	AE008384_736	Transporter
2778	AE008384_735	Conserved protein
2779	AE008384_734	Hypothetical protein
2780	AE008384_733	Ammonium transporter
2780	AE008384_733	Ammonium transporter
2781	AE008384_732	Nitrogen regulatory protein P-II
2782	AE008384_730	SAM-dependent methyltransferases
2783	AE008384_729	Conserved protein
2784	AE008384_728	MOLYBDENUM TRANSPORTER, ATP-BINDING PROTEIN
2785	AE008384_727	Molybdenum transporter, permease protein
2786	AE008384_726	Molybdate-binding protein
2787	AE008384_725	Nitrogenase iron-molybdenum cofactor biosynthesis protein NifN
2788	AE008384_724	Nitrogenase iron-molybdenum cofactor biosynthesis protein
2789	AE008384_723	Nitrogenase molybdenum-iron protein beta chain
2790	AE008384_722	Nitrogenase molybdenum-iron protein alpha chain
2791	AE008384_721	NifI(2), GlnB-like protein
2792	AE008384_720	NITROGEN FIXATION NIFHD REGION GLNB-LIKE PROTEIN
2793	AE008384_719	Nitrogenase iron protein
2794	AE008384_718	Oxidoreductase (flavoprotein)
2795	AE008384_717	Hypothetical protein
2795	AE008384_717	Hypothetical protein
2796	AE008384_716	Hypothetical protein
2797	AE008384_715	Pyruvate kinase
2797	AE008384_715	Pyruvate kinase

2798	AE008384_714	Fructose-bisphosphate aldolase
2802	AE008384_689	CO DEHYDROGENASE/ACETYL-COA SYNTHASE GAMMA SUBUNIT
2802	AE008384_689	CO DEHYDROGENASE/ACETYL-COA SYNTHASE GAMMA SUBUNIT
2803	AE008384_690	Conserved protein
2804	AE008384_691	Hypothetical protein
2805	AE008384_692	Transcription initiation factor IIE, alpha subunit
2806	AE008384_693	Conserved protein
2807	AE008384_694	Proteasome, beta subunit
2808	AE008384_695	CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR, 100 KD SUBUNIT
2809	AE008384_696	Beta-phosphoglucomutase
2810	AE008384_697	Cell division protein
2811	AE008384_698	Dihydropteroate synthase
2812	AE008384_699	Conserved protein
2813	AE008384_700	VACUOLAR-TYPE H+-PYROPHOSPHATASE
2813	AE008384_700	VACUOLAR-TYPE H+-PYROPHOSPHATASE
2814	AE008384_701	VACUOLAR-TYPE H+-PYROPHOSPHATASE
2814	AE008384_701	VACUOLAR-TYPE H+-PYROPHOSPHATASE
2815	AE008384_702	Hypothetical permease
2816	AE008384_703	Hypothetical permease
2820	AE008384_707	Prolyl-tRNA synthetase
2821	AE008384_708	Conserved protein
2824	AE008384_2344	Copper-binding protein
2825	AE008384_2343	Copper-binding protein
2826	AE008384_2342	Hypothetical protein
2827	AE008384_2341	Succinate-semialdehyde dehydrogenase [NADP+]
2828	AE008384_2340	Acetolactate synthase
2829	AE008384_2339	TRANSLATION INITIATION FACTOR 1A
2830	AE008384_2338	DNA-directed RNA polymerases I, II, and III, 7.3 kDa polypeptide
2831	AE008384_2336	TRANSLATION INITIATION FACTOR 1A (EIF-1A)
2832	AE008384_2333	Multidrug efflux pump
2833	AE008384_2332	SAM-dependent methyltransferases
2834	AE008384_2331	Uncharacterized permease
2835	AE008384_2328	Copper-exporting ATPase
2836	AE008384_2327	COP associated protein
2837	AE008384_2326	COP associated protein
2838	AE008384_2325	Ech Hydrogenase, Subunit
2839	AE008384_2324	Ech Hydrogenase, Subunit
2840	AE008384_2323	Ech Hydrogenase, Subunit
2841	AE008384_2322	Ech Hydrogenase, Subunit
2842	AE008384_2321	Ech Hydrogenase, Subunit
2843	AE008384_2320	Ech Hydrogenase, Subunit
2844	AE008384_2319	Hydrogenase expression/formation protein
2845	AE008384_2318	HYDROGENASE EXPRESSION/FORMATION PROTEIN
2846	AE008384_2317	HYDROGENASE EXPRESSION/FORMATION PROTEIN
2847	AE008384_2316	Hydrogenase expression/formation protein
2847	AE008384_2316	Hydrogenase expression/formation protein
2848	AE008384_2315	Hydrogenase expression/formation protein
2849	AE008384_2314	F420-NONREDUCING HYDROGENASE I PRECURSOR
2850	AE008384_2313	F420-NONREDUCING HYDROGENASE I, LARGE SUBUNIT
2851	AE008384_2312	F420-NONREDUCING HYDROGENASE I, CYTOCHROME B SUBUNIT
2852	AE008384_2311	COP associated protein
2853	AE008384_2310	UBIQUINONE BIOSYNTHESIS PROTEIN

2854	AE008384_2309	Hypothetical protein
2855	AE008384_2308	METHYLTRANSFERASE
2856	AE008384_2307	Argininosuccinate lyase
2857	AE008384_2306	L-asparaginase
2858	AE008384_2305	Sodium/proline symporter
2860	AE008384_2873	L-sorbosone dehydrogenase
2861	AE008384_2872	METHYLTRANSFERASE
2862	AE008384_2870	Hypothetical protein
2863	AE008384_2869	Hypothetical protein
2864	AE008384_2867	Coenzyme F390 Synthetase/Phenylaceate-CoA Ligase
2866	AE008384_2865	Conserved protein
2867	AE008384_2864	Conserved protein
2868	AE008384_2862	Hypothetical protein
2869	AE008384_2861	Transcriptional regulator, ArsR family
2870	AE008384_2860	Conserved protein
2871	AE008384_2859	Hypothetical protein
2872	AE008384_2858	Potassium channel protein
2873	AE008384_2857	Hypothetical protein
2874	AE008384_2856	ABC transporter, ATP-binding protein
2875	AE008384_2855	ABC Transporter, permease protein
2876	AE008384_2854	Hypothetical protein
2877	AE008384_2853	Hypothetical protein
2878	AE008384_2852	Membrane protein related to SecD/SecF
2879	AE008384_2851	Transcriptional regulator, MarR family
2880	AE008384_2850	ABC transporter, permease protein
2881	AE008384_2849	Hypothetical permease
2882	AE008384_2848	Conserved protein
2883	AE008384_2847	Amino acid permease
2884	AE008384_2846	Putrescine-ornithine antiporter
2885	AE008384_2845	Hypothetical protein
2886	AE008384_2844	Hypothetical protein
2887	AE008384_2843	Hypothetical protein
2888	AE008384_2842	5-NITROIMIDAZOLE ANTIBIOTIC RESISTANCE PROTEIN
2889	AE008384_2841	Acetolactate synthase
2890	AE008384_2837	Hypothetical protein
2891	AE008384_2839	MoxR-like ATPase
2892	AE008384_2837	Transposase
2893	AE008384_2836	Enolase
2894	AE008384_2835	Hypothetical protein
2895	AE008384_2834	Hypothetical protein
2896	AE008384_2833	ABC transporter, ATP-binding protein
2897	AE008384_2832	ABC-Type transporter, permease protein
2898	AE008384_2831	ABC-Type transporter, permease protein
2899	AE008384_2830	Ribonucleoside-diphosphate
2900	AE008384_2829	Peptidyl-prolyl cis-trans isomerase
2901	AE008384_2828	Conserved protein
2902	AE008384_2827	Hypothetical protein
2903	AE008384_2826	Conserved protein
2904	AE008384_2825	Hypothetical protein
2905	AE008384_2824	GLUCOSE-6-PHOSPHATE DEHYDROGENASE [coenzyme F420 dependent]
2906	AE008384_2823	Indole-3-glycerol phosphate synthase
2907	AE008384_2822	Tryptophan synthase, beta chain

_	1
<u>- ٦</u>	r
2	L

2908	AE008384_2821	Tryptophan synthase, alpha chain
2910	AE008384_2820	Anthranilate phosphoribosyltransferase
2911	AE008384_2819	N-5'-phosphoribosyl)anthranilate isomerase
2913	AE008384_2440	Conserved protein
2914	AE008384_2441	Transcriptional regulator, ArsR family
2915	AE008384_2442	Conserved protein
2916	AE008384_2445	Conserved protein
2917	AE008384_2447	Transposase
2918	AE008384_2448	Transposase
2919	AE008384_2449	Conserved protein
2921	AE008384_2451	Conserved protein
2921	AE008384_2451	Conserved protein
2922	AE008384_2452	Conserved protein
2923	AE008384_2453	Conserved protein
2924	AE008384_2454	ABC transporter, permease protein
2925	AE008384_2455	ABC transporter, ATP-binding protein
2926	AE008384_2456	Dipeptide/oligopeptide transporter, ATP-binding protein
2927	AE008384_2457	Dipeptide/oligopeptide transporter, permease protein
2928	AE008384_2458	Dipeptide/oligopeptide transporter, permease protein
2929	AE008384_2459	METHYLTRANSFERASE
2930	AE008384_2460	Dipeptide/oligopeptide-binding protein
2931	AE008384_2462	SSU ribosomal protein S6E
2932	AE008384_2463	protein Translation Initiation Factor IF2
2933	AE008384_2464	Nucleoside diphosphate kinase
2934	AE008384_2466	SSU ribosomal protein S28E
2935	AE008384_2467	LSU ribosomal protein L7AE
2936	AE008384_253	REPLICATION FACTOR C SUBUNIT
2937	AE008384_252	CONSERVED PROTEIN (Archaea)
2939	AE008384_249	BRAMP
2940	AE008384_248	Cell division cycle protein (AAA family ATPase)
2941	AE008384_247	Putative inosine monophosphate dehydrogenase
2944	AE008384_1248	SUA5 protein
2945	AE008384_1249	Ribulose bisphosphate carboxylase large chain
2945	AE008384_1249	Ribulose bisphosphate carboxylase large chain
2946	AE008384_1250	Cation transporter
2947	AE008384_1251	Cation transporter
2955	AE008384_1253	Cation transporter
2956	AE008384_1254	Putative heat shock protein
2957	AE008384_1255	Putative heat shock protein
2958	AE008384_1256	CdcH protein
2959	AE008384_1257	Transcriptional regulator, ArsR family
2962	AE008384_2431	Conserved protein
2963	AE008384_2432	Putative pyridoxine biosynthesis protein
2964	AE008384_2433	Imidazoleglycerol-phosphate synthase
2965	AE008384_2435	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
2966	AE008384_2436	Transposase
2969	AE008384_770	Conserved protein
2970	AE008384_769	Phosphohydrolase
2971	AE008384_768	GLYCOSYL TRANSFERASE
2972	AE008384_767	Conserved protein
2973	AE008384_766	Transposase
2974	AE008384_765	Conserved protein

2975	AE008384_764	Conserved protein
2976	AE008384_763	Conserved protein
2977	AE008384_762	Conserved protein
2978	AE008384_761	THIAMIN-MONOPHOSPHATE KINASE
2979	AE008384_760	Ferredoxin
2980	AE008384_759	NifB protein
2981	AE008384_757	NifB protein
2982	AE008384_756	6-pyruvoyltetrahydropterin synthase
2983	AE008384_755	Conserved protein
2984	AE008384_754	Conserved protein
2985	AE008384_753	Conserved protein
2986	AE008384_752	Conserved protein
2987	AE008384_751	Putative serine/threonine protein phosphatase
2988	AE008384_750	Dihydropyrimidinase
2989	AE008384_749	Glutathione-independent formaldehyde dehydrogenase
2990	AE008384_748	Conserved protein
2991	AE008384_747	ATP-dependent RNA helicase
2992	AE008384_746	Conserved protein
2993	AE008384_745	Conserved protein
2994	AE008384_744	Conserved protein
2995	AE008384_743	Conserved protein
2996	AE008384_742	Arsenical-resistance protein
3001	AE008384_1263	Conserved protein
3002	AE008384_1264	Hypothetical protein
3003	AE008384_1265	Hypothetical protein
3004	AE008384_1266	Conserved protein
3005	AE008384_1267	SIGNAL RECOGNITION PARTICLE, SUBUNIT FFH/SRP54
3006	AE008384_1270	GMP synthase [glutamine-hydrolyzing]
3007	AE008384_1271	2-dehydro-3-desoxyphosphoheptanote aldolase
3008	AE008384_1272	3-dehydroquinate synthase
3009	AE008384_1273	3-dehydroquinate dehydratase
3010	AE008384_1274	Shikimate 5-dehydrogenase
3011	AE008384_1275	Prepnenate denydrogenase
3012	AE008384_1276	Hypothetical protein
3013 2014	AE008384_1277	METHYLIKANSFERASE
2015	AE008384_1278	Conserved protein involved in sugar metabolism
3015	AE008384_1279	Endervedenses III
3010	AE008384_1280	Concerned protein
3017	AE008384_1281	Conserved protein
3010	AE008384_1282	Bacterioferritin
3019	AE008384_1283	Bacterioferritin
3021	AE008384_1283	Conserved protein
3022	AE008384_1148	Hypothetical protein
3023	AE008384 1151	Acetyltransferase
3024	AE008384 1152	Aspartate aminotransferase
3025	AE008384 1153	Myo-inositol 2-dehydrogenase
3026	AE008384 1154	NDP-N-acetyl-D-galactosaminuronic acid dehydrogenase
3027	AE008384 1155	Conserved protein
3028	AE008384 1156	O-antigen translocase
3029	AE008384 1157	Conserved protein
3030		Conserved protein

3031	AE008384_1159	Hypothetical protein
3036	AE008384_2982	ANTIBIOTIC RESISTANCE PROTEIN
3037	AE008384_2984	Putative ferredoxin
3038	AE008384_2985	Transcriptional regulator, ArsR family
3039	AE008384_2986	Hypothetical protein
3040	AE008384_2987	Hypothetical protein
3041	AE008384_2988	Conserved protein
3042	AE008384_2989	Pyruvate formate-lyase activating enzyme
3043	AE008384_2990	HYPOTHETICAL SENSORY TRANSDUCTION HISTIDINE KINASE
3044	AE008384_2991	Hypothetical protein
3045	AE008384_2992	Putative NADH oxidase
3046	AE008384_2993	Phosphoglycerate mutase
3047	AE008384_2994	Conserved protein
3048	AE008384_2995	Hypothetical protein
3049	AE008384_2996	Hypothetical protein
3050	AE008384_2997	Hypothetical protein
3051	AE008384_2998	Transposase
3052	AE008384_2999	Transposase
3053	AE008384_3000	DNA REPAIR HELICASE (RAD25/XPB family)
3054	AE008384_3001	Hypothetical protein
3055	AE008384_3002	Hypothetical protein
3056	AE008384_3003	Conserved protein
3057	AE008384_3004	Conserved protein
3058	AE008384_3005	Acetyltransferase
3059	AE008384_3006	Probable resolvase/ recombinase
3060	AE008384_3007	Probable transcriptional regulator
3060	AE008384_3007	Probable transcriptional regulator
3061	AE008384_3008	Probable resolvase/ recombinase
3062	AE008384_3009	Membrane metalloprotease
3063	AE008384_3010	Periplasmic divalent cation tolerance protein
3064	AE008384_3011	Hypothetical protein
3065	AE008384_3012	Hypothetical protein
3066	AE008384_3013	ABC transporter, permease protein
3067	AE008384_3014	Conserved protein
3068	AE008384_3015	Hypothetical protein
3069	AE008384_3016	Cobalt transport ATP-binding protein
3069	AE008384_3016	Cobalt transport ATP-binding protein
3070	AE008384_3017	ABC transporter, permease protein
3071	AE008384_3018	Conserved protein
3072	AE008384_3019	Conserved protein
3073	AE008384_3020	Conserved protein
3074	AE008384_3021	ABC transporter, ATP-binding protein
3075	AE008384_3022	Conserved protein
3076	AE008384_3023	Conserved protein
3077	AE008384_3024	Conserved protein
3078	AE008384_3025	Hypothetical protein
3079	AE008384_3026	Hypothetical protein
3080	AE008384_3027	Transposase
3081	AE008384_3028	Deoxycytidylate deaminase
3082	AE008384_3029	Lactoylglutathione lyase
3083	AE008384_3032	Conserved protein
3085	AE008384_3036	Hypothetical protein

3087	AE008384_1730	Transposase
3088	AE008384_1732	Transcriptional regulator, ArsR family
3089	AE008384_1734	Conserved protein
3092	AE008384_308	Uroporphyrinogen-III synthase
3093	AE008384_309	Metallo cofactor biosynthesis protein (moaA/ nifB /pqqE family
3094	AE008384_310	Hypothetical protein
3095	AE008384_311	Conserved protein
3096	AE008384_312	Hypothetical protein
3097	AE008384_313	Hypothetical protein
3098	AE008384_314	Valyl-tRNA synthetase
3099	AE008384_315	Hypothetical protein
3100	AE008384_316	FLAGELLA RELATED PROTEIN FlaJ
3101	AE008384_317	FLAGELLA RELATED PROTEIN FlaI
3102	AE008384_318	FLAGELLA RELATED PROTEIN FlaH
3103	AE008384_319	Conserved protein
3104	AE008384_320	Hypothetical protein
3105	AE008384_321	Hypothetical protein
3106	AE008384_322	Flagellin B1 precursor
3106	AE008384_322	Flagellin B1 precursor
3107	AE008384_323	Flagellin B1 precursor
3108	AE008384_325	CHEMOTAXIS PROTEIN METHYLTRANSFERASE
3109	AE008384_326	Chemotaxis protein
3110	AE008384_327	Chemotaxis protein
3111	AE008384_328	Chemotaxis protein
3112	AE008384_329	Protein-glutamate methylesterase
3113	AE008384_330	Chemotaxis protein
3114	AE008384_331	Hypothetical Exported protein
3115	AE008384_332	Chemotaxis protein
3115	AE008384_332	Chemotaxis protein
3116	AE008384_333	Methyl-accepting chemotaxis protein
3117	AE008384_334	Hypothetical protein
3118	AE008384_335	3-hydroxy-3-methylglutaryl-coenzyme A reductase
3119	AE008384_336	Conserved protein
3120	AE008384_337	Tryptophan synthase, beta chain
3121	AE008384_338	Putative snRNP Sm-like protein
3121	AE008384_338	P U T A T I V E P H O S P H O M E T H Y L P Y R I M I D I N E KINASE/HYDROXYMETHYLPYRIMIDINE KINASE
3122	AE008384_339	Putative snRNP Sm-like protein
3123	AE008384_341	Amidophosphoribosyltransferase
3124	AE008384_342	Hypothetical protein
3125	AE008384_344	Probable cation efflux pump
3126	AE008384_345	Transcriptional regulator
3127	AE008384_346	Transcriptional regulator, MarR family
3128	AE008384_347	Hypothetical protein
3129	AE008384_348	Putative cation efflux pump
3130	AE008384_350	Putative molybdopterin biosynthesis protein
3131	AE008384_351	Conserved protein
3132	AE008384_353	Conserved protein
3133	AE008384_354	Hypothetical protein
3134	AE008384_356	Conserved protein
3135	AE008384_357	Glutamate dehydrogenase
3136	AE008384_358	Acetyl-CoA synthetase, alpha subunit
3137		Hypothetical protein
	-	· - •

60

3138	AE008384_360	Sulfite reductase, assimilatory-type
3139	AE008384_361	Transcriptional regulator, MarR family
3140	AE008384_362	Sulfite reductase, assimilatory-type
3141	AE008384_363	Hypothetical protein
3142	AE008384_364	Hypothetical protein
3143	AE008384_365	Conserved protein
3144	AE008384_366	Ferredoxin
3145	AE008384_367	Hypothetical protein
3146	AE008384_368	Hypothetical protein
3147	AE008384_369	Hypothetical protein
3148	AE008384_370	CHORISMATE MUTASE/ PREPHENATE DEHYDRATASE
3149	AE008384_371	Conserved protein
3150	AE008384_372	MoxR-like ATPase
3151	AE008384_373	Hypothetical Cytosolic protein
3152	AE008384_374	Conserved protein
3153	AE008384_375	Conserved protein
3154	AE008384_376	Conserved protein
3155	AE008384_377	Integral membrane protein
3156	AE008384_378	SUGAR-PHOSPHATE NUCLEOTYDYL TRANSFERASE
3157	AE008384_379	Conserved protein
3158	AE008384_380	Peptidyl-prolyl cis-trans isomerase
3159	AE008384_381	Peptidyl-prolyl cis-trans isomerase
3160	AE008384_382	Peptidyl-prolyl cis-trans isomerase
3161	AE008384_383	Hypothetical protein
3162	AE008384_384	Conserved protein
3163	AE008384_385	Hypothetical protein
3164	AE008384_386	Hypothetical protein
3165	AE008384_387	HETERODISULFIDE REDUCTASE, SUBUNIT HDRA
3166	AE008384_388	HETERODISULFIDE REDUCTASE, SUBUNIT HDRC
3167	AE008384_389	HETERODISULFIDE REDUCTASE, SUBUNIT HDRB
3167	AE008384_389	HETERODISULFIDE REDUCTASE, SUBUNIT HDRB
3168	AE008384_390	Surface layer protein (putative)
3169	AE008384_391	Hypothetical protein
3170	AE008384_392	Hypothetical protein similar to C-terminal domain of HdrB
3171	AE008384_393	Conserved protein
3172	AE008384_394	Conserved protein
3173	AE008384_395	Surface layer protein (putative)
3174	AE008384_396	Transposase
3175	AE008384_398	Conserved protein
3176	AE008384_399	Hypothetical protein similar to C-terminal domain of HdrB
3177	AE008384_400	Conserved protein
3178	AE008384_401	Conserved protein
3179	AE008384_402	Conserved protein
3180	AE008384_403	Hypothetical protein similar to C-terminal domain of HdrB
3181	AE008384_404	Hypothetical protein
3182	AE008384_405	Surface layer protein (putative)
3183	AE008384_406	Conserved protein
3184	AE008384_407	Hypothetical protein similar to C-terminal domain of HdrB
3184	AE008384_407	Hypothetical protein similar to C-terminal domain of HdrB
3184	AE008384_407	Hypothetical protein similar to C-terminal domain of HdrB
3184	AE008384_407	Hypothetical protein similar to C-terminal domain of HdrB
3185	AE008384_408	Hypothetical protein

3186	AE008384_409	3-isopropylmalate dehydratase
3187	AE008384_410	Hypothetical protein
3188	AE008384_411	Conserved protein
3189	AE008384_412	FLAGELLA RELATED PROTEIN FlaJ
3190	AE008384_413	FLAGELLA RELATED PROTEIN FlaI
3191	AE008384_414	FLAGELLA RELATED PROTEIN FlaH
3193	AE008384_416	Conserved protein
3194	AE008384_417	Conserved protein
3195	AE008384_418	Flagillin B1
3196	AE008384_419	Pyruvate synthase, subunit beta
3197	AE008384_420	Pyruvate synthase, subunit alpha
3198	AE008384_421	Transposase
3199	AE008384_422	Transposase
3203	AE008384_120	Conserved protein
3205	AE008384_2465	LSU ribosomal protein L24E
3209	AE008384_2513	Hypothetical protein
3210	AE008384_161	Hypothetical protein
3211	AE008384_2626	DNA-DIRECTED RNA POLYMERASE SUBUNIT P
3214	AE008384_228	Hypothetical protein
3218	AE008384_340	LSU ribosomal protein L37E
3219	AE008384_2330	Hypothetical protein
3220	AE008384_160	Hypothetical protein
3221	AE008384_539	Hypothetical protein
3222	AE008384_1822	Hypothetical protein
3223	AE008384_1583	Conserved protein
3225	AE008384_2599	Hypothetical protein
3228	AE008384_453	Conserved protein
3231	AE008384_640	Hypothetical protein
3232	AE008384_1483	Ferrous iron transport protein B
3233	AE008384_2345	Transposase
3234	AE008384_3322	Oligopeptide-binding protein OppA
3235	AE008384_2983	Putative NADH oxidase
3236	AE008384_543	Hypothetical protein
3238	AE008384_1674	Hypothetical protein
3240	AE008384_1357	Conserved protein
3243	AE008384_1699	Conserved protein
3244	AE008384_165	Hypothetical protein
3245	AE008384_2686	Transposase
3246	AE008384_1150	
3247	AE008384_927	TRANSCRIPTIONAL REGULATOR, PBSX FAMILY
3249	AE008384_615	Conserved protein
3250	AE008384_2651	Hypothetical protein
3251	AE008384_1039	Rypotnetical protein
3232 2 25 2	AE008384_1188	Conserved protein
5255 2 25 4	AE008384_2443	Conserved protein
3255	AE000304_1320	Conserved protein
3233 2254	AEUU8384_23	Unserved protein
3250	AEUU0304_3348	Concerved protein
3259	AEUU0304_2934	Conserved protein
3250	ΔE000304_1247	Hypothetical protein
3261	AE000304_3310	Conserved protein
5202	AL000304_2003	Conserved protein

3263	AE008384_607	Ferredoxin
3264	AE008384_452	Hypothetical protein
3265	AE008384_3341	Conserved protein
3266	AE008384_2260	Hypothetical protein
3267	AE008384_545	Hypothetical protein
3268	AE008384_1951	Hypothetical protein
3269	AE008384_2410	Conserved protein
3270	AE008384_1924	Hypothetical protein
3271	AE008384_2725	Transposase
3272	AE008384_2765	Hypothetical protein
3273	AE008384_1066	Hypothetical protein
3275	AE008384_149	Hypothetical protein
3276	AE008384_1350	Conserved protein
3277	AE008384_1765	Hypothetical protein
3279	AE008384_2776	Hypothetical protein
3281	AE008384_2729	Transposase
3283	AE008384_1400	Hypothetical protein
3285	AE008384_3165	Hypothetical protein
3286	AE008384_2160	Hypothetical protein
3287	AE008384_220	Conserved protein
3288	AE008384_3112	Conserved protein
3289	AE008384_1429	Transposase
3291	AE008384_1481	Iron-dependent repressor
3293	AE008384_34	Hypothetical protein
3295	AE008384_3035	Hypothetical protein
3296	AE008384_2135	LSU ribosomal protein L24P
3297	AE008384_3232	Hypothetical protein
3299	AE008384_3031	Hypothetical protein
3304	AE008384_799	Hypothetical protein
3307	AE008384_3193	Hypothetical membrane associated protein
3309	AE008384_2025	Hypothetical protein
3311	AE008384_2980	Hypothetical protein
3312	AE008384_2724	Hypothetical protein
3313	AE008384_629	Zinc finger protein
3317	AE008384_2099	Hypothetical protein
3320	AE008384_3054	Conserved protein
3321	AE008384_3242	Hypothetical protein
3323	AE008384_18	Conserved protein
3325	AE008384_1724	Hypothetical protein
3328	AE008384_89	Hypothetical protein
3329	AE008384_1646	Conserved protein
3330	AE008384_32	Conserved protein
3331	AE008384_879	Conserved protein
3332	AE008384_538	Hypothetical protein
3333	AE008384_1051	Chromosomal protein
3334	AE008384_1556	Conserved protein
3335	AE008384_2892	ABC transporter, permease protein
3336	AE008384_523	Hypothetical protein
3337	AE008384_1462	Hypothetical protein
3338	AE008384_3030	Conserved protein
3339	AE008384_1289	Conserved protein
3340	AE008384_2461	Conserved protein

3342	AE008384_1432	Hypothetical protein
3350	AE008384_3055	Conserved protein
3354	AE008384_2200	Hypothetical protein
3356	AE008384_2871	Hypothetical protein
3357	AE008384_2444	Conserved protein
3358	AE008384_2191	Conserved protein
3360	AE008384_1173	Conserved protein
3362	AE008384_637	Putative Flavodoxin
3371	AE008384_2215	Polysaccharide ABC transporter, permease protein
3372	AE008384_251	Transposase
3374	AE008384_1427	Conserved protein
3375	AE008384_324	Hypothetical protein
3379	AE008384_1269	Conserved protein
3380	AE008384_1725	Conserved protein
3381	AE008384_1715	Conserved protein
3383	AE008384_2758	Hypothetical protein
3386	AE008384_499	Conserved protein
3390	AE008384_1171	Conserved protein
3393	AE008384_1207	Conserved protein
3394	AE008384_2335	Conserved protein
3395	AE008384_2166	Conserved protein
3396	AE008384_2574	Conserved protein
3397	AE008384_2446	Transcriptional regulator, ArsR family
3400	AE008384_2969	Conserved protein
3402	AE008384_3252	Hypothetical protein
3403	AE008384_3298	glutamate dehydrogenase
3404	AE008384_1205	Conserved protein
3405	AE008384_1771	Hypothetical protein
3408	AE008384_2212	Conserved protein
3410	AE008384_227	Conserved protein
3411	AE008384_349	Hypothetical protein
3413	AE008384_21	Conserved protein
3414	AE008384_2696	Hypothetical protein
3415	AE008384_2940	Conserved protein
3416	AE008384_1208	Conserved protein
3417	AE008384_2735	Conserved protein
3419	AE008384_2329	Conserved protein
3421	AE008384_3237	Transposase
3424	AE008384_3114	Conserved protein
3425	AE008384_2108	Conserved protein
3426	AE008384_268	Conserved protein
3428	AE008384_3039	Hypothetical protein
3430	AE008384_1720	Conserved protein
3431	AE008384_1731	Conserved protein
3433	AE008384_1268	Hypothetical protein
3434	AE008384_3292	Hypothetical protein
3436	AE008384_3083	Conserved protein
3442		Hypothetical protein
3447		Hypothetical protein
3448	AE008384_2165	Transposase
3449		Conserved transmembrane protein
3453	 AE008384_554	Conserved protein

3454	AE008384_547	Conserved protein
3456	AE008384_470	Hypothetical protein
3458	AE008384_2838	Conserved protein
3459	AE008384_993	Conserved protein
3460	AE008384_2434	Conserved protein
3463	AE008384_3236	Transposase
3466	AE008384_884	Conserved protein
3475	AE008384_2168	Transposase
3477	AE008384_2726	Hypothetical protein
3479	AE008384_1867	Conserved protein
3481	AE008384_2104	Conserved protein
3484	AE008384_1642	Conserved transmembrane protein
3485	AE008384_2890	Hypothetical protein
3486	AE008384_709	Conserved protein
3489	AE008384_3273	Conserved protein
3493	AE008384_2868	Conserved protein
3496	AE008384_758	Conserved protein
3497	AE008384_3049	GLYCOSYL TRANSFERASE
3501	AE008384_1769	Transposase
3502	AE008384_793	Endonuclease III
3504	AE008384_65	Hypothetical protein
3509	AE008384_1460	Conserved protein
3511	AE008384_1972	Hypothetical protein
3514	AE008384_2183	Hypothetical protein
3515	AE008384_3333	Hypothetical protein
3529	AE008384_2391	Hypothetical protein
3530	AE008384_808	LSU ribosomal protein LX
3533	AE008384_3369	Hypothetical protein
3535	AE008384_2334	Conserved protein
3536	AE008384_2863	Conserved protein
3545	AE008384_3034	Conserved protein
3547	AE008384_3337	Conserved protein
3551	AE008384_1733	METALLOPROTEINASE
3556	AE008384_641	Conserved protein
3561	AE008384_1446	Hypothetical protein
3566	AE008384_3354	Hypothetical protein
3576	AE008384_3144	Hypothetical protein
3578	AE008384_3370	Hypothetical protein
3585	AE008384 2414	Hypothetical protein
3594		Conserved protein
3612		Hypothetical protein
3614		Hypothetical protein
3633		Hypothetical protein
3634		Conserved protein
3639		Hypothetical protein
3646		Conserved protein
3664	AE008384 2922	Hypothetical protein
3667	AE008384 2411	Hypothetical protein
3671		Hypothetical protein
3678	 AE008384_53	Hypothetical protein
3683		Hypothetical protein
3699	_ AE008384_1449	Conserved protein
	-	*

ANHANG ZUR DISSERTATION KATHARINA PFLÜGER 65

3727	AE008384_104	Hypothetical protein
3734	AE008384_3	Hypothetical protein
3737	AE008384_83	Hypothetical protein
3737	AE008384_83	Hypothetical protein
3745	AE008384_1532	Hypothetical protein
3748	AE008384_2678	Hypothetical protein
3753	AE008384_1174	Hypothetical protein
3756	AE008384_479	Conserved protein
3762	AE008384_3302	Hypothetical protein
3769	AE008384_555	Hypothetical protein
3771	AE008384_978	Hypothetical protein
3785	AE008384_494	Hypothetical protein
3788	AE008384_2521	Hypothetical protein
3789	AE008384_2543	Hypothetical protein
3792	AE008384_2469	Hypothetical protein
3795	AE008384_2492	Putative Ferredoxin
3800	AE008384_2530	Transposase
3800	AE008384_2530	Transposase
3802	AE008384 2547	Putative ferredoxin
3802		Putative ferredoxin
3805		Transposase
3806		Hypothetical protein
3809	AE008384 2613	LemA PROTEIN
3814	AE008384_2688	Hypothetical protein
3817		Transposase
3819		TYPE I RESTRICTION-MODIFICATION SYSTEM RESTRICTION SUBUNIT
3829	AE008384_2785	2-isopropylmalate synthase
3830	AE008384_2786	Conserved protein
3830	AE008384_2786	Conserved protein
3837	AE008384_2811	Conserved protein
3843	AE008384_2866	Conserved protein
3847	AE008384_2874	Conserved protein
3847	AE008384_2874	Conserved protein
3851	AE008384_2900	Conserved protein
3862	AE008384_2927	Heteropolysaccharide repeat unit export protein
3868	AE008384_2936	Transposase
3874	AE008384_2957	Transposase
3876	AE008384_2971	Conserved protein
3878	AE008384_2981	TYPE I RESTRICTION-MODIFICATION SYSTEM METHYLATION SUBUNIT
3882	AE008384_3033	Conserved protein
3887	AE008384_3082	Hypothetical protein
3900	AE008384_3156	OXIDOREDUCTASE
3901	AE008384_3158	Hypothetical protein
3902	AE008384_3159	Hypothetical protein
3903	AE008384_3160	Transposase
3905	AE008384_3163	Conserved protein
3908	AE008384_3168	Conserved protein
3911	AE008384_3184	Conserved protein
3915	AE008384_3210	Cation efflux protein
3929	AE008384_3351	Hypothetical protein
3940	AE008384_56	Heterodisulfate reductase, subunit A
3946	AE008384_94	Hypothetical protein

3956	AE008384_190	DNA helicase II
3960	AE008384_229	Hypothetical protein
3964	AE008384_246	Serine-pyruvate aminotransferase
3965	AE008384_250	Transposase
3978	AE008384_343	Hypothetical protein
3979	AE008384_352	Hypothetical protein
3986	AE008384_415	Conserved protein
3987	AE008384_423	Conserved protein
3988	AE008384_424	Histidinol dehydrogenase
3992	AE008384_480	Hypothetical protein
3994	AE008384_509	Transposase
3996	AE008384_521	Conserved protein
4000	AE008384_548	Hypothetical protein
4009	AE008384_587	Conserved protein
4015	AE008384_647	Oligosaccharyl transferase
4019	AE008384_684	CO DEHYDROGENASE/ACETYL-COA SYNTHASE ALPHA SUBUNIT
4019	AE008384_684	CO DEHYDROGENASE/ACETYL-COA SYNTHASE ALPHA SUBUNIT
4020	AE008384_685	CO DEHYDROGENASE/ACETYL-COA SYNTHASE EPSIOLON SUBUNIT
4020	AE008384_685	CO DEHYDROGENASE/ACETYL-COA SYNTHASE EPSIOLON SUBUNIT
4021	AE008384_686	CO DEHYDROGENASE/ACETYL-COA SYNTHASE BETA SUBUNIT
4023	AE008384_704	Conserved protein
4024	AE008384_705	Conserved protein
4025	AE008384_706	Thioredoxin 2
4028	AE008384_710	Hypothetical protein
4029	AE008384_711	Transposase
4029	AE008384_711	Transposase
4030	AE008384_713	Conserved protein
4032	AE008384_731	Hypothetical protein
4034	AE008384_741	Universal stress protein
4034	AE008384_741	Universal stress protein
4039	AE008384_775	Conserved protein
4041	AE008384_785	A1AO H+ ATPASE, SUBUNIT I
4042	AE008384_786	A1AO H+ ATPASE, SUBUNIT H
4043	AE008384_787	Transposase
4044	AE008384_792	Hypothetical protein
4047	AE008384_817	Pyrroline-5-carboxylate reductase
4058	AE008384_885	Hypothetical protein
4060	AE008384_926	Transposase
4063	AE008384_942	Hypothetical protein
4064	AE008384_954	Hypothetical protein
4066	AE008384_965	Hypothetical protein
4070	AE008384_1001	Hypothetical protein
4073	AE008384_1021	Hypothetical protein
4074	AE008384_1025	Thiamine biosynthesis protein
4076	AE008384_1050	Conserved protein
4081	AE008384_1065	Hypothetical protein
4082	AE008384_1073	Methanol corrinoid protein
4082	AE008384_1073	Methanol corrinoid protein
4086	AE008384_1099	Hypothetical protein
4087	AE008384_1102	Hypothetical protein
4088	AE008384_1130	Hypothetical protein
4089	AE008384_1146	Conserved protein

c	
Ο	1

4090	AE008384_1147	Dolichol-phosphate mannosyltransferase
4093	AE008384_1160	NUCLEOTIDYLTRANSFERASE
4094	AE008384_1161	Conserved protein
4096	AE008384_1187	Hypothetical protein
4104	AE008384_1246	DNA polymerase II large subunit
4105	AE008384_1252	Conserved protein
4107	AE008384_1258	Conserved protein
4109	AE008384_1260	Transposase
4110	AE008384_1261	Conserved protein, Archaea
4112	AE008384_1262	Xanthine-guanine phosphoribosyltransferase
4115	AE008384_1286	Hypothetical protein
4116	AE008384_1287	Fe-S OXIDOREDUCTASE
4141	AE008384_1567	MOLYBDENUM FORMYLMETHANOFURAN DEHYDROGENASE SUBUNIT
4151	AE008384_1666	ATPase involved in DNA repair
4154	AE008384_1677	Conserved protein
4163	AE008384_1728	Heme biosynthesis protein
4167	AE008384_1739	Heme biosynthesis protein
4168	AE008384_1741	Glutamyl-tRNA reductase
4168	AE008384_1741	Glutamyl-tRNA reductase
4170	AE008384_1751	Replication factor-A protein 1
4182	AE008384_1841	Hypothetical protein
4182	AE008384_1841	Hypothetical protein
4183	AE008384_1848	Hypothetical protein
4184	AE008384_1850	RNase P
4201	AE008384_1992	Hypothetical protein
4214	AE008384_2116	Hypothetical protein
4223	AE008384_2213	Putative glycosyltransferase
4223	AE008384_2213	Putative glycosyltransferase
4224	AE008384_2226	Glucoamylase
4228	AE008384_2284	Conserved protein
4230	AE008384_2303	Transcriptional regulator
4230	AE008384_2303	Transcriptional regulator
4237	AE008384_2382	Hypothetical protein
4238	AE008384_2390	Transposase
4242	AE008384_2420	DNA gyrase, subunit A
4244	AE008384_2427	Methylthiol:coenzyme M methyltransferase
4245	AE008384_2428	Methylthiol:coenzyme M methyltransferase
4247	AE008384_2430	Transposase
4251	AE008384_2438	Hypothetical protein
4251	AE008384_2438	Hypothetical protein
4253	AE008384_2450	Transposase
4254	AE008384_3364	Hypothetical protein
4275	AE008384_355	Transposase
4279	AE008384_397	Transposase (N-terminal domain)
4289	AE008384_556	Hypothetical protein
4295	AE008384_683	Hypothetical protein
4300	AE008384_740	Transposase (N-terminal domain)
4302	AE008384_771	Transposase
4307	AE008384_815	Transposase (N-terminal domain)
4312	AE008384_875	Hypothetical protein
4313	AE008384_881	Transposase
4317	AE008384_982	Transposase (N-terminal domain)

4330	AE008384_1198	Transposase
4330	AE008384_1198	Transposase
4333	AE008384_1259	Transposase (N-terminal domain)
4335	AE008384_1308	Transposase
4351	AE008384_1573	Transposase
4355	AE008384_1623	Transposase (N-terminal domain)
4359	AE008384_1721	Transcriptional regulator, ArsR family
4360	AE008384_1729	Transposase
4362	AE008384_1735	Transposase (N-terminal domain)
4365	AE008384_1786	Transposase
4369	AE008384_1831	Transposase (N-terminal domain)
4373	AE008384_1884	Transposase
4388	AE008384_2192	Transposase
4390	AE008384_2304	Transposase
4396	AE008384_2429	Transposase (N-terminal domain)
4397	AE008384_2437	Transposase
4398	AE008384_2439	Transposase
4401	AE008384_2507	Transposase
4402	AE008384_2509	Transposase
4407	AE008384_2589	Transposase (N-terminal domain)
4411	AE008384_2647	Transposase
4414	AE008384_2683	REVERSE TRANSCRIPTASE
4415	AE008384_2689	Transposase (N-terminal domain)
4417	AE008384_2695	REVERSE TRANSCRIPTASE
4417	AE008384_2695	REVERSE TRANSCRIPTASE
4425	AE008384_2799	Transposase
4428	AE008384_2901	Transposase
4429	AE008384_2906	Transposase
4433	AE008384_2925	Hypothetical protein
4434	AE008384_2926	Hypothetical protein
4438	AE008384_2970	Conserved protein
4441	AE008384_3037	Transposase
4442	AE008384_3047	Transposase
4453	AE008384_3161	Transposase (N-terminal domain)
4455	AE008384_3167	Transposase
4458	AE008384_3229	Transposase
4460	AE008384_3246	Transposase (N-terminal domain)
4461	AE008384_3265	Transposase
4462	AE008384_3343	Transposase
4462	AE008384_3343	Transposase
4463	AE008384_3362	Hypothetical protein
4464	AE008384_3363	Hypothetical protein
4465	AE008384_3365	Hypothetical protein
4466	AE008384_3366	Hypothetical protein
4467	AE008384_3367	Hypothetical protein
4468	AE008384_3368	Hypothetical protein