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1. INTRODUCTION 

1.1. Sepsis 

Injury induced by a stochastic event, such as trauma or after an operative 

intervention initiates an inflammatory response directed to control the initial insult. 

Patients, who withstand the initial injury, are still at risk to suffer serious deterioration 

of their health by secondary responses mounted after the initiating insult. Such 

secondary responses are commonly sepsis, acute respiratory distress syndrome 

(ARDS) and multiple organ dysfunction syndrome (MODS) (Baue 1975; Meakins 

1990; Baue 1996). Morbidity and mortality associated with these conditions are a 

major health problem (Rangel-Frausto et al. 1995). A national estimate of 751,000 

cases of sepsis is predicted per annum in the U.S, with an average hospital stay of 

19.8 days and costs of approximately $22.100 per case (Angus et al. 2001). 

An intriguing question that arises from clinical observations is the diversity in 

the outcome after severe injury. Thus, it could be hypothesized that the regulation of 

the response to injury is different among human beings, thus resulting in a different 

incidence of sepsis, ARDS and MODS.  

 

1.2. Mediators of sepsis  

Although the patho-physiological mechanism that underlines these syndromes 

is not exactly clear, it seems to proceed from an uncontrolled inflammatory response 

(Livingston et al. 1995). The inflammatory response is composed by the orchestrated 

expression of several factors directed to repair the initial insult. In addition, the 

inflammatory process auto-regulates itself through actions that aim at clearing 

components of the inflammatory cascade. 

Lipopolysaccaride (LPS), or endotoxin, is a component of the outer cell-wall 
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of gram-negative bacteria (Mayeux 1997). In patients with bacteremia, LPS can be 

detected in about 30% of patients (Cohen 2000). LPS is considered to play a key-role 

in human gram-negative septic shock (Kelly et al. 1997). Injection of bacterial LPS to 

healthy volunteers results in a hyper-dynamic metabolic state accompanied by an 

acute inflammatory response, which mimics several aspects of gram-negative sepsis 

(Bone 1992; Mayeux 1997). 

LPS in circulation is recognized by a protein, named LPS-binding protein 

(LBP). The LPS-LBP-complex interacts with a surface receptor on monocytes and 

macrophages, coined CD-14 (Wright et al. 1990). CD-14 is a glycosyl-phospho-

inositol (GPI) anchored glycoprotein, which does not possess any trans-membrane or 

cytosolic domains. Thus, the signal transduction triggered by LPS requires accessory 

membrane associated proteins. One of these accessory proteins is Toll-like receptor 4 

(TLR-4). Via a complex signal transduction pathway activated by TLR-4, the 

transcription factor NF-κB is activated, and is translocated into the nucleus to initiate 

transcription of pro-inflammatory genes that encode for mediators of the 

inflammatory response, such as Tumor Necrosis Factor α (TNF- α) (Beutler et al. 

2001). 

TNF-α belongs to the family of cytokines. They can be divided into two 

major groups: pro-inflammatory cytokines (e.g. TNF-α, IL-1β) that initiate the 

inflammatory response, and anti-inflammatory cytokines (e.g. IL-10), which regulate 

the inflammatory process. The presence of cytokines in circulation is considered a 

good marker of the inflammatory response (Ertel et al. 1993; Volk et al. 1999; 

Hoflich et al. 2002). TNF- α is a pro-inflammatory cytokine that is produced by 

macrophages, monocytes, neutrophile granulocytes, natural killer-cells and 

keratinocytes. The production of TNF- α can also be induced by a vast number of 
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stimuli, such as bacteria, fungi, tumor cells, cytokines like IL-1, IL-2, interferon γ 

(IFN- γ) etc. It is considered a major mediator in the physiological response to shock 

and sepsis with a broad range of effects on cells of the immune system. In addition, 

TNF- α stimulates the proliferation of T- and B-cells, the expression of major 

histocompatibility complex antigens (MHC-I and MHC-II) and modulates the 

expression of adhesion-molecules on endothelial cells. TNF- α also interacts with 

anticoagulation properties of the endothelium and promotes prostaglandin E2 

formation. TNF-α is chemotactic for neutrophils and induces the production of IL-2 

receptors and IFN-γ from T-cells (Aggarwal et al. 1996). TNF- α plasma levels peak 

1.5 to 2h after LPS-injection before going back to baseline (Villa et al. 1995; De 

Maio et al. 1998; Remick et al. 2000). TNF-α has been implicated as major negative 

factor in the clinical outcome from sepsis in humans (Damas et al. 1989; Baud et al. 

1990; Pinsky et al. 1993). However, studies on the effects of anti-TNF-α antibodies in 

humans remain controversial. Most studies could not demonstrate improved survival 

in septic patients (Abraham et al. 1995; Cohen et al. 1996; Reinhart et al. 1996; 

Abraham et al. 1998; Abraham et al. 2001). Interestingly, LPS-induced TNF-α levels 

in the supernatant of monocyte-cultures from healthy humans show inter-individual, 

probably HLA –associated differences (Molvig et al. 1988). Differences in LPS-

induced TNF-α levels between A/J and B6 mice have also been observed and were 

referred to genetic variability within the same species (De Maio et al. 1998). 

Polymorphisms in the TNF-α gene of these two strains have been reported (Iraqi et 

al. 1997, 1999). In humans, at least two polymorphism have been evaluated for their 

association with increased susceptibility to severe sepsis (Stuber et al. 1995; Stuber et 

al. 1996; Fang et al. 1999; Mira et al. 1999; Schroeder et al. 1999; Schroder et al. 

2000; Riese et al. 2003). These findings suggest that genetic diversity may have 
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stronger impact on inter-individual differences than originally anticipated. 

Interestingly, a gender component was described in one of these studies (Schroder et 

al. 2000). 

IL-10 is also produced by macrophages, T lymphocytes and epithelial cells 

and is one of the most important anti-inflammatory cytokines (Moore et al. 1993; 

Oberholzer et al. 2002). IL-10 has a direct role in the down-regulation of several pro-

inflammatory cytokines, particularly TNF-α (Marchant et al. 1994; van der Poll et al. 

1997). Down-regulation of TNF-α by IL-10 occurs at multiple levels including 

transcriptional and posttranscriptional mechanisms (Gerard et al. 1993; Marchant et 

al. 1994; van der Poll et al. 1997). The importance of IL-10 has been illustrated in 

mice lacking the IL-10 gene, which develop symptoms similar to Crohn’s disease 

(Kuhn et al. 1993). Moreover, IL-10 knock out mice injected with bacterial 

lipopolysaccharide (LPS) displayed elevated levels of TNF-α as compared to wild 

type animals (Kuhn et al. 1993). Administration of exogenous IL-10 to female 

BALB/c mice resulted in protection from injection of LPS (Howard et al. 1993). 

Similarly, male BALB/c mice treated with IL-10 were protected from Staphylococcal 

enterotoxin-B (Bean et al. 1993). No protection was observed in female BALB/c 

mice after cecal ligation and puncture (CLP), an experimental model of sepsis 

(Remick et al. 1998). Over-expression of IL-10 improved survival of male B6 mice 

after challenge with E. coli (Takakuwa et al. 2000). Early treatment with anti-IL-10 

antibodies also increased survival of male A/J mice after CLP (Lyons et al. 1999). 

Interestingly, the response to an inflammatory stimulus varies between strains of 

inbred mice. We have previously reported that B6 mice showed higher IL-10 plasma 

levels in comparison with A/J mice after CLP (Stewart et al. 2002). Consequently, a 
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contribution of the genetic background has to be assumed to the inflammatory 

response in general. 

 

1.3. Genetic components in sepsis 

A genetic component in the response to injury has recently been 

demonstrated. Different frequencies of mortality after injection of LPS were observed 

in various mouse strains (De Maio et al. 1998). Similar observations were made after 

CLP (Stewart et al. 2002), and mechanical, thermal and radiation injury (Radojicic et 

al. 1990). Different components of the inflammatory process, such as circulating 

cytokine levels, acute phase gene expression, and infiltration of polymorph-nuclear 

leukocytes in liver and lung have been observed to be different between various 

mouse strains after injection of LPS (De Maio et al. 1998; O'Malley et al. 1998) or 

after CLP (Stewart et al. 2002). Loci contributing to the LPS response have been 

identified in mouse (Matesic et al. 2000). Similarly, mutations in TLR-4 of C3H/HeJ 

and C57BL/10SCr mice have been identified as the responsible factor for their 

resistance to LPS (Qureshi et al. 1996; Poltorak et al. 1998). Studies in humans also 

indicate a genetic component in the response to several inflammatory conditions. The 

polymorphism in the promoter of the human TNF-α gene, 308(G/A), has been 

associated with increased risk of sepsis related mortality (Stuber et al. 1995; Mira et 

al. 1999). The TNFβ, LTα-Nco1 polymorphism of the TNFB locus (TNFB1/2) has 

been correlated with increased mortality of septic patients (Stuber et al. 1996; Fang et 

al. 1999; Schroeder et al. 1999; Schroder et al. 2000), with an increased risk to 

develop severe posttraumatic sepsis (Majetschak et al. 1999) or with higher risk for 

complications after major surgery (Riese et al. 2003). Similarly, Tnf polymorphisms 

are associated with negative outcome from other infectious diseases, such as cerebral 



 6

malaria (McGuire et al. 1994), leishmaniasis (Cabrera et al. 1995), and autoimmune 

diseases, such as systemic lupus erythematosus (Jacob et al. 1991). Consequently, 

genetic diversity has to be taken into account to explain the variable response 

observed in patients and in order to identify risk-factors that predict increased 

susceptibility to develop severe sepsis after a major injury. 

  

1.4. Gender as a risk factor for the outcome from sepsis 

Another confounding factor in the response to injury is gender. Male gender 

has been associated with a higher risk of infections after injury (Offner et al. 1999). 

After surgery, male patients require therapy in the surgical intensive care unit more 

frequently than females and have higher incidence of severe sepsis and septic shock 

as compared to females (Wichmann et al. 2000). Females from different species have 

been demonstrated to be more resistant to bacterial, viral, and parasitic infections 

(Klein 2000). In general, female rodents have an enhanced immunological response 

with respect to males, resulting in better survival after injury (Zellweger et al. 1997; 

Angele et al. 2000). In particular, cytokine-secretion (IL-1, IL-2, IL-3, and IL-6) from 

isolated peritoneal and splenic macrophages from C3H/HeN mice after hemorrhagic 

shock were higher in females than in males (Wichmann et al. 1996). Similar studies 

provide evidence that female C3H/HeN mice are immunologically more competent 

than male mice after CLP (Zellweger et al. 1997). Gender differences have also been 

demonstrated in the response after burn injury in BALB/c mice (Gregory et al. 2000). 

This lower susceptibility of females to different insults has been explained by the 

presence of sex steroids. 

Castrated C3H/HeN male mice supplemented with 5α-dihydrotestosterone 

(DHT) show a decrease in the levels of pro-inflammatory cytokines after hemorrhagic 
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shock with respect to non-castrated mice. These findings were prevented when 

castrated male mice were supplemented with EST (Angele et al. 1999). A decrease in 

testosterone levels by either surgical castration or pharmacological blockage has been 

shown to be beneficial in C3H/HeN male mice after hemorrhagic shock (Remmers et 

al. 1997; Wichmann et al. 1997; Remmers et al. 1998). 

However, controversial findings have been made in studies that found no 

gender difference (Riche et al. 1996; Eachempati et al. 1999; Wichmann et al. 2000), 

or an even higher mortality in septic female patients (McLauchlan et al. 1995; 

Napolitano et al. 2001; O'Keefe et al. 2001). Some authors even described higher 

incidence of infection in female patients (Dinkel et al. 1994; Kollef et al. 1997). In 

summary, it seems as if there is no general consensus whether gender is a positive or 

negative factor in the outcome from injury and how such controversial findings may 

be interpreted. 

Interestingly, differences in TNFB gene distribution of septic patients have 

been correlated with a better outcome in females as compared to males (Schroder et 

al. 2000). It is possible that genetic variability has major impact on gender differences 

in the inflammatory response or its modulation by sex-steroids and thus may explain 

controversial observations on gender as a potential risk-factor that determines the 

outcome from severe sepsis.  



 8

2. AIMS OF THE STUDY 
 

We hypothesized that gender differences are also dependant on genetic traits. Since it 

is well-anticipated that sex-steroids are most likely responsible for gender differences, 

the effect of sex-steroids on the inflammatory process was investigated. To test this 

hypothesis, we designed an experimental model to answer the following question: 

 

• Is gender a contributing factor to the LPS-induced inflammatory response? 

• Can sex-steroids or hormone depletion by surgical castration modulate this 

response? 

• Is this modulation dependent of the genetic background of the individual? 

• Do sex-chromosomes carry information that is responsible for a variable 

response? 

• Do changes in the response that were induced with sex-steroids or hormone 

depletion affect the outcome from endotoxic shock? 
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3. MATERIAL AND METHODS 
 

3.1. Animals 

Male and female A/J, AKR/J, BALB/cJ, C57BL/6J (herein designated as B6), and 

DBA/2J mice at the age of 6 weeks were obtained from Jackson Laboratory (Bar 

Harbor, Maine). Additional male C3H/HeN mice were purchased from Charles River 

Laboratory (Portage, Michigan).  

B6AF1 mice (F1-generation; herein designated as B X A), the offspring from 

a B6 female and an A/J male were purchased from Jackson Laboratory (Bar Harbor, 

Maine). F1s bred from an A/J female and a B6 male are not commercially available. 

Hence, AB6F1, (herein designated as A X B) were bred in our laboratory animal 

facility. 

All mice were maintained under identical environmental conditions in a 

pathogen-free animal facility. All procedures were carried out in accordance with the 

guidelines for the Care and Use of Laboratory Animals by the National Institutes of 

Health (NIH). The experimental protocol was approved by the Institutional Animal 

Care and Use Committee of Johns-Hopkins-University School of Medicine. 

 

3.2. Castration 

Male mice (6 weeks old) were anesthetized with an intraperitoneal injection of 

Avertin (400 to 500 mg/kg body weight). Avertin, a common rodent anesthetic, was 

composed of 0.9 mM 2,2,2 tribromoethanol (Aldrich Chemical Company, 

Milwaukee, Wisconsin) in an aqueous solution of 0.5 % (V/V) tert-amyl alcohol 

(Aldrich Chemical Company, Milwaukee, Wisconsin). After anesthesia, the abdomen 

was opened by low midline laparotomy, testicles were exposed from the scrotum, and 
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were removed after ligation with a single suture (Silk 4-0; Ethicon Inc., Somerville, 

New Jersey). The abdominal incision was closed in two layers with absorbable suture 

(Polysorb 4-0; USSC, Norfalk, Connecticut). No mortalities were observed in 

castrated mice without LPS challenge. 

 

3.3. Ovariectomy 

Female mice (6 weeks old) were anesthetized with an intraperitoneal injection 

of Avertin (400 to 500 mg/kg body weight). Each ovary was accessed via a small 

paravertebral incision between the lower rim of the rib cage and the upper pelvic 

ridge. The oviduct and adjacent blood vessels were ligated using a single suture (Silk 

4-0; Ethicon Inc., Somerville, New Jersey). The ovaries were then removed and the 

incisions were closed in two layers with absorbable suture (Polysorb 4-0; USSC, 

Norfalk, Connecticut). No mortalities were observed in ovariectomized mice without 

LPS challenge. 

 

3.4. Hormone supplementation  

Protocol and dosage used in this experiment were followed as previously 

described (Angele et al. 1999): Following gonadectomy, hormone release pellets 

(Innovative Research of America, Sarasota, Florida) were implanted through a small 

dorsal incision into a subcutaneous pocket. These pellets release constant daily doses 

of hormone for up to 21 days: 0.357 mg/d of 5-α-Dihydrotestosterone (DHT), or 23.8 

µg/d of 17-β-Estradiol (EST). Vehicle pellets that do not contain any active hormone 

served as placebo (VEH). After surgery, mice were allowed to recover for 2 weeks 

prior to further manipulations. Injection of saline in gonadoctomized and hormone 
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supplemented mice did not result in any significant TNF-α or IL-10 plasma levels 

(Figure 1a+b). 
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 Figure 1 a+b: TNF-α (Fig. 1a, top) and IL-10 (Figure 1b, bottom) plasma levels in male A/J mice 14 days 

after recovery from surgical castration. Six week old mice were castrated and received hormonal treatment 

with 5-α-Dihydrotestosterone (DHT) or 17-ß-Estrogen (EST) by hormone release pellets implanted during 

surgery. One group received pellets which do not contain any hormone (VEH). Additional, non-manipulated 

mice were used as control (CONT). Afterwards, all mice were maintained under identical conditions for two 

weeks. After fasting for 16h, mice received an intra-peritoneal injection of normal saline (-LPS). Some CONT 

mice received an injection of LPS (15mg/kg; CONT + LPS). After 1.5h of the injection plasma was obtained. 

Plasma cytokine levels were measured using an ELISA. The cytokine levels correspond to the average 

concentration obtained from each group ± standard error of the mean. As opposed to the high levels of cytokine 

induced in non-manipulated male A/J mice injected with LPS, castration and implantation of pellets (DHT, 

EST, VEH) did not result in any significant cytokine response after injection of normal saline. 
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3.5. Endotoxemia 

At the age of 8 weeks, mice were subjected to endotoxic shock. By now, 

gonadectomized animals had recovered for 2 weeks. Mice were fasted for 16 h with 

access to water ad libitum. Then, they were intraperitoneally injected with E. coli 

026:B6 LPS (15 mg/kg) (Diffco Laboratories, Detroit, Michigan) under aseptical 

conditions. After 1.5 hours of the injection, animals were anesthetized with Avertin 

and blood was drawn from the right ventricle after cardiac puncture, and collected 

into potassium-EDTA-coated Microtainer™ tubes (Becton Dickinson; Franlin Lakes, 

New Jersey). The same batch of LPS was used throughout all described experiments. 

Plasma levels of TNF-α and IL-10 were measured using a commercial ELISA-kit 

(BioSouce International Inc.; Camarillo, California). In the morality experiments, 

mice were treated as described, however survival was monitored up to 150h without 

any further intervention. 

 

3.6. Vaginal smears 

Smears were obtained by lavage of the vagina with approximately 18 µL of 

normal saline, injected through a 24G Teflon catheter on top of a 20 µL pipette. The 

sample was put into an Eppendorf™ tube. For better contrast and staining of nuclei, a 

drop of methylene-blue was added. The sample was mixed well and than spread out 

on a slide for microscopic evaluation.  

We used modified criteria to determine the stages of estrus cycle based on 

Rugh (Rugh 1990): When the majority of cells in the smear were leukocytes, the 

sample was classified as diestrus. When clearly defined epithelial cells, some with 

distinct nuclei or large, squamous epithelial cells without nuclei were observed, the 

smear was considered estrus. Intermediate stages were not further discriminated (For 
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further detail on the murine estrus cycle see APPENDIX 1: On the Estrus Cycle of 

the Mouse.)  

 

3.7. Statistical analysis 

The Kruskal-Wallis One Way Analysis of Variance (ANOVA) on ranks with 

the 1 to k correction by Dunn was performed to determine the effect of different 

hormonal treatment with respect to untreated controls (CONT). Differences between 

two independent groups were evaluated by non-parametric comparison with Mann-

Whitney-Rank Sum Test as indicated. Survival as categorical variable was analyzed 

using the Fisher Exact Test.  

Data are expressed as mean ± standard error of the mean (SEM) unless stated 

otherwise. Statistical significance was accepted at p<0.05. 
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4. RESULTS 

4.1. Gender differences in TNF-α plasma levels and the role of sex steroids 

We compared the response to LPS between female and male B6 mice. Mice 

were injected with LPS (15mg/kg), which results in significant mortality within 48h, 

as previously reported (De Maio et al. 1998). Blood samples were taken 1.5 h after 

LPS injection for analysis of TNF-α plasma levels. This time point corresponds to the 

maximum detectable plasma level of this cytokine after this dose of LPS (De Maio et 

al. 1998). Female B6 mice showed TNF-α plasma levels that were two-fold higher 

than B6 male mice (Figure 2). These results reflected several independent 

determinations performed during 10 months to account for different stages of the 

estrus cycle in female mice and potential seasonal variability. 

To test for possible influence of the estrus cycle, vaginal smears from an 

additional set of female mice was taken just before the injection of LPS. When LPS-

induced TNF-α plasma levels were stratified by “estrus” and “diestrus” stage of the 

murine estrus cycle, no significant difference between females in estrus or diestrus 

could be detected (Figure 3). Only a trend towards lower TNF-α plasma levels of 

estrus (i.e. high estrogen) mice was observed. However, female B6 mice in diestrus 

(i.e. low estrogen) had significantly higher TNF-α levels than male B6 mice, 

confirming the observed gender-difference. Comparison of male B6 mice with female 

B6 mice in estrus did not show this difference. 

Thus, the difference in LPS induced-TNF-α levels between females and males 

could be due to the presence of sex-steroids. To test this possibility, female and male 

B6 mice were gonadectomized at 6 weeks of age and supplemented with 17-β-

estradiol (EST), 5-α-dihydrotestosterone (DHT) or the vehicle as placebo (VEH). 
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Figure 2: Gender differences in TNF- α levels 1.5h after injection with 

LPS. A/J male, A/J female, B6 male and B6 female mice at the age of 8 weeks 

were injected with LPS (15 mg/kg). Plasma samples were taken 1.5h after the 

injection. TNF- α was measured using an ELISA. The cytokine levels 

correspond to the average concentration obtained from all animals in the group 

± standard error of the mean. Statistical significance was accepted at *p<0.05 

obtained by pair wise comparison as indicated by lines, using Mann-Whitney-

Rank Sum Test. 

 

Two weeks after the intervention, mice were injected with LPS and plasma TNF-α 

levels were evaluated in plasma samples obtained 1.5 h after the injection. Castration 

of male mice without hormone replacement (VEH) resulted in a two-fold increase of 

LPS- induced TNF-α levels suggesting a suppressive effect caused by testosterone. 

Addition of EST to the castrated male mice resulted in a further increase of TNF-α  
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Figure 3: Gender differences and hormonal influence on LPS-induced 

TNF- α levels in B6 mice after injection with LPS. At the age of 8 weeks, 

B6 female and B6 female in diestrus or in estrus were injected with LPS 

(15mg/kg). Plasma samples were taken 1.5h after the injection. LPS-induced 

plasma levels of TNF-α were measured using an ELISA and were compared 

to those of B6 male mice after 1.5h of LPS injection. Additionally, female B6 

mice at the age of 6 weeks were ovariectomized and treated with estradiol 

pellets (feEST) or vehicle (feVEH). After 14 days of recovery, mice were 

injected with LPS as described and blood sample were taken 1.5h after the 

injection. Plasma was obtained and TNF-α levels were measured. Cytokine 

levels in each female group were compared to LPS-induced TNF-α plasma 

levels of male B6 mice by pair wise comparison. The cytokine levels 

correspond to the average concentration obtained from all animals in the 

group ± standard error of the mean. Statistical significance was accepted at 

*p<0.05 obtained by pair wise comparison with respect to B6 males using 

Mann-Whitney-Rank Sum Test. 
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levels (3-fold) indicating an enhancing effect of this hormone. Administration of 

DHT resulted in LPS-induced TNF-α plasma levels similar to non-operated mice 

(CONT). LPS-induced TNF-α levels in EST supplemented B6 male mice were also 

higher (1.5 fold) than non-operated female mice (p < 0.022). 

Female B6 mice showed no effect of ovariectomy or hormone replacement 

in the TNF-α plasma levels induced by injection of LPS (Table 1). Examination of 

vaginal smears obtained from ovariectomized female mice supplemented with EST 

showed the typical pattern of the estrus stage. In contrast, the pattern of female mice 

supplemented with DHT or placebo corresponded to a diestrus-like stage. 

These results suggest a modifier role for sex-steroids in LPS-induced TNF-α 

response in male B6 mice. However, hormonal manipulation did not alter the 

response of female mice, arguing against that modifier role of sex-steroids. It is 

possible that other sex-related factors, such as genetic differences are involved in the 

response to LPS of female and male mice. 

To determine if gender differences underlie variability based on genetic 

differences within strains of inbred mice and thus are dependant on the genetic 

background, we repeated the experiment in A/J mice. This strain has previously been 

demonstrated to show a distinctive response to LPS in comparison with B6 mice (De 

Maio et al. 1998; O'Malley et al. 1998; Matesic et al. 1999; Matesic et al. 2000; 

Stewart et al. 2002). Male A/J mice were found to have higher LPS-induced TNF-

α plasma levels than B6 males (De Maio et al. 1998). 

When LPS-induced TNF-α plasma levels of male A/J mice were compared 

with females, no gender difference was detected (Figure 2). Since females were not 
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 CONT VEH EST DHT 

 4400 ±503 2926 ±374 1743 ±261 3573 ±452 
AJ male  n= 39 n= 21 n= 19 n= 22 

      ↓ * x2.5   
 4719 ±488 3817 ±526 3171 ±500 3832 ±418 

AJ female  n= 60 n= 18 n= 21 n= 17 
          
 2086 ±279 4158 ±763 6298 ±844 3130 ±377 

B6 male  n= 43 n= 15 n= 11 n= 9 
    ↑ * x2 ↑ * x3   
 4158 ±388 5655 ±975 4649 ±463 3051 ±435 

B6 female  n= 50 n= 10 n= 10 n= 9 
          

 

Table 1: Comparison of LPS-induced TNF-α plasma levels between male and female 

B6 mice at the age of 8 weeks. Gonadectomized mice were operated on at the age of 6 

weeks and treated with EST, DHT or VEH released from hormone pellets implanted during 

surgery and followed by a two-week recovery period. Non-operated mice were used as 

controls (CONT). All mice were maintained under identical conditions. Mice were injected 

with LPS (15mg/ml) and TNF-α plasma levels were measured. Data corresponds to the 

average TNF-α concentration obtained from each group ±standard error of the mean. 

Arrows indicate an increase (↑) or decrease (↓) of TNF-α plasma levels. Statistical 

significance was accepted at *p<0.05 obtained by ANOVA on Ranks and Dunn's Method as 

Post Hoc test with respect to CONT. 

 

stratified by the stage of the estrus cycle, possible gender differences related to 

changes in hormonal levels throughout the estrus cycle may have been masked. 

Therefore, vaginal smears were obtained from an additional set of female A/J mice. 

The findings suggest a similar, albeit statistically not significant trend as observed in 

B6 females: stages of low estrogen levels (i.e. diestrus) are associated with high 

levels of LPS-induced TNF-α and stages of high estrogen (i.e. estrus) are associated 

with low TNF-α levels (Figure 4).  
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 Figure 4: Gender differences and hormonal influence on LPS-induced TNF- α 

levels in A/J mice after injection with LPS. At the age of 8 weeks, A/J female and A/J 

female in diestrus or in estrus were injected with LPS (15mg/kg). Plasma samples were 

taken 1.5h after the injection. LPS-induced plasma levels of TNF-α were measured 

using an ELISA and were compared to those of A/J male mice after 1.5h of LPS 

injection. Additionally, female A/J mice at the age of 6 weeks were ovariectomized and 

treated with estradiol pellets (feEST) or vehicle (feVEH). All mice were maintained 

under identical conditions. After 14 days of recovery, mice were injected with LPS as 

described and blood sample were taken 1.5h after the injection. Plasma was obtained 

and TNF-α plasma levels were measured. The cytokine levels correspond to the average 

concentration obtained from all animals in the group ± standard error of the mean. 

Statistical significance was accepted at *p<0.05 obtained by pair wise comparison with 

respect to A/J males using Mann-Whitney-Rank Sum Test 
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To evaluate the potential of sex-steroids to modulate TNF-α levels in this 

strain, A/J mice were gonadectomized and treated with hormone pellets releasing 

DHT or EST. An additional group was supplied with placebo pellets (VEH). In A/J 

male mice, there was no significant effect of castration without hormonal replacement 

(VEH) in LPS-induced TNF-α plasma levels. After treatment with EST, a decrease in 

LPS-induced TNF-α levels was observed. Ovariectomy and implantation of pellets, 

releasing either DHT, EST or VEH respectively, did not affect TNF-α plasma levels 

after injection of LPS in any female A/J group (Table 1). It appears that sex steroids 

can only modify the LPS-induced inflammatory response in male mice.  

 

4.2. Effect of 17-β-EST on TNF-α plasma levels varies with the genetic 

background 

We assessed whether the effect of EST on LPS-induced TNF-α plasma levels 

was particular to B6 mice or if it could be observed in other mouse strains. Male mice 

of the inbred strains AKR/J, DBA/2J, and BALB/cJ were included into the study. 

Statistically different levels of plasma TNF-α after LPS injection in non-manipulated 

mice were observed in these strains resulting in the following hierarchy: DBA/2J > 

AKR/J = BALB/cJ = A/J >B6 (Table 2, Mann-Whitney Rank-Sum-Test, p<0.05). 

There was no significant effect of castration without hormonal replacement (VEH) in 

LPS-induced TNF-α plasma levels in any of these mouse strains other than B6. All of 

them showed a decrease in LPS-induced TNF-α levels after treatment with EST, 

which is contrary to the values observed in B6 mice (Table2). 
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Table 2: Modulation of LPS-induced TNF-α plasma levels in male mice from different 

inbred strains after estradiol treatment. A/J, AKR/J, DBA/2J, BALB/cJ and B6 were 

castrated and supplemented with EST or VEH pellets. Non-operated mice were used as 

controls (CONT). Mice were injected with LPS (15mg/ml) and TNF-α plasma levels were 

measured. Data corresponds to the average TNF-α concentration obtained from each group 

±standard error of the mean. Arrows indicate increase (↑) or decrease (↓) of TNF-α plasma 

levels. Statistical significance was accepted at *p<0.05 obtained by ANOVA on Ranks & 

Dunn's Method as Post Hoc test with respect to CONT. 

 

4.3. IL-10 plasma levels in male and female B6 and A/J mice and the role of sex 

steroids 

Male and female mice of B6 and A/J strain were injected with LPS (15 

mg/kg) and blood samples were collected after 1.5 h for IL-10 detection. For this 

time-point, plasma IL-10 levels were observed to be maximal and with higher levels 

in B6 mice. However, there were no differences in LPS-induced IL-10 plasma levels 

between females and males of each strain (Figure 5). The data represents several 

independent experiments performed during a time period of 10 months to include 

possible seasonal variability. Moreover, female mice were not differentiated by the 

stage in the estrus cycle. Thus, this data represents the average of possible differences 

due to hormonal changes between males and females. 

 A/J AKR DBA BALB/cJ B6 

 4400 ±503 6070 ±1031 12196 ±1624 3917 ±442 2086 ±279
CONT  n= 39 n= 8 n= 8 n= 10 n= 43 

            
 2926 ±374 6503 ± 1148 9916 ±781 5476±1498 4158 ±763

VEH  n= 21 n= 8 n= 8 n= 10 n= 15 
          ↑ * x2 

 1743 ±261 4110 ±306 7480 ±1183 2365 ±254 6298 ±844
EST  n= 19 n= 8 n= 8 n= 8 n= 11 

  ↓ * x2.5 ↓ * x1.5 ↓ * x1.6  ↓ * x1.7 ↑ * x3 
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An additional set of A/J and B6 female mice was obtained and stages of the 

estrus cycle were determined just before the injection of LPS. While no effect of 

estrus or diestus was detected in B6 females (Figure 6), A/J females in estrus (high 

estrogen) showed a trend towards increased IL-10 plasma levels (Figure 7). Thus a 

possible influence of sex-steroid on LPS-induced IL-10 plasma levels could not be 

excluded at least for the A/J strain. This finding implicates that hormonal effects 

might create differences between males and females although no relevant gender 

difference in LPS-induced IL-10 plasma levels was observed. 

Thus, mice were gonadectomized at the age of 6 weeks and supplemented 

with pellets that release a daily dose of DHT or EST. These mice were maintained 

under hormonal replacement conditions for two weeks. As a control, gonadectomized 

mice were supplemented with pellets that release no hormones (VEH). After two 

weeks of hormone replacement, mice were injected with LPS and IL-10 plasma levels 

were detected 1.5 h after the injection. The three groups were compared with mice 

that were not operated, but maintained under the same environmental conditions as 

the manipulated rodents (CONT). Gonadectomy and treatment with placebo pellets 

(VEH) did not affect the LPS-induced IL-10 plasma levels of neither male nor female 

B6 mice (Table 3). However, EST treatment increased LPS-induced IL-10 levels in 

both sexes. On the contrary, DHT did not affect LPS-induced IL-10 levels in any sex. 

In A/J mice a comparable response was observed (Table 3). While DHT had no 

effect on IL-10 plasma levels, EST markedly increased IL-10 plasma levels in male 

and female mice respectively. Interestingly, ovariectomy in A/J females without 

hormonal replacement (VEH) resulted in an increase of LPS-induced IL-10 levels 

(2.3 fold) whereas castration did not have such an effect on male A/J mice (Table 3).
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Figure 5: Gender differences in IL-10 plasma levels after injection with LPS. A/J 

male, A/J female, B6 males, B6 females mice at the age of 8 weeks were injected with 

LPS (15 mg/kg). Blood samples were taken 1.5h after injection. Plasma was obtained and 

IL-10 was measured by an ELISA. The cytokine levels corresponded to the average 

concentration obtained from each group ± standard error of the mean. The data was 

collected during the course of ten months to include possible seasonal variability and 

possible differences in the estrus cycle of female mice. LPS-induced IL-10 plasma levels 

were increased in both, male and female B6 mice as opposed to the A/J strain. Statistical 

significance was accepted at *p<0.05 obtained by pair wise comparison with respect to 

males using Mann-Whitney-Rank Sum Test. 
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Figure 6: Gender differences and hormonal influence on LPS-induced IL-10 levels in 

A/J mice after injection with LPS. At the age of 8 weeks, A/J female and A/J female in 

diestrus or in estrus were injected with LPS (15mg/kg). Plasma samples were taken 1.5h after 

the injection. LPS-induced plasma levels of IL-10 were measured by the use of ELISA and 

were compared to those of A/J male mice after 1.5h of LPS injection. Additionally, female B6 

mice at the age of 6 weeks were ovariectomized and treated with estradiol pellets (feEST) or 

vehicle (feVEH). After 14 days of recovery, mice were injected with LPS as described and 

blood sample were taken 1.5h after the injection. Plasma was obtained and TNF-α plasma 

levels were measured. Cytokine levels in each female group were compared to LPS-induced 

TNF-α plasma level of male A/J mice by pair wise comparison. The cytokine levels 

correspond to the average concentration obtained from all animals in the group ± standard 

error of the mean. Statistical significance was accepted at *p<0.05 obtained by pair wise 

comparison with respect to B6 males using Mann-Whitney-Rank Sum Test. 
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Figure 7: Gender differences and hormonal influence on LPS-induced IL-10 levels in 

A/J mice after injection with LPS. At the age of 8 weeks, A/J female and A/J female in 

diestrus or in estrus were injected with LPS (15mg/kg). Plasma samples were taken 1.5h 

after the injection. LPS-induced plasma levels of IL-10 were measured using an ELISA 

and were compared to those of A/J male mice after 1.5h of LPS injection. Additionally, 

female A/J mice at the age of 6 weeks were ovariectomized and treated with estradiol 

pellets (feEST) or vehicle (feVEH). After 14 days of recovery, mice were injected with 

LPS as described and blood sample were taken 1.5h after the injection. Plasma was 

obtained and IL-10 plasma levels were measured. This data was included into the 

comparison. Cytokine levels in each female group were compared to LPS-induced IL-10 

plasma level of male A/J mice by pair wise comparison. The cytokine levels correspond to 

the average concentration obtained from all animals in the group ± standard error of the 

mean. Statistical significance was accepted at *p<0.05 obtained by pair wise comparison 

with respect to A/J males using Mann-Whitney-Rank Sum Test. 
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 CONT VEH EST DHT 

 1920 ±216 3157 ±582 5293 ±893 2323 ±324 
A/J male n= 32 n= 21 n= 19 n= 22 

   ↑ * x2.8  
 2110 ±139 4846 ±800 7321 ±829 3053 ±446 

A/J female n= 52 n= 18 n= 21 n= 17 
  ↑ * x2.3 ↑ * x3.5  
 3228 ±310 3932 ±519 6060 ±706 4280 ±706 

B6 male n= 32 n= 15 n= 11 n= 9 
   ↑ * x1.9  
 3322 ±252 4558 ±1130 10231 ±886 4113 ±646 

B6 female n= 37 n= 10 n= 10 n= 9 
   ↑ * x3.1  

 
Table 3: LPS-induced IL-10 plasma levels in eight week old male and female A/J and 

B6 mice treated with different sex steroids. Male mice were castrated and females were 

ovariectomized at the age of 6 weeks respectively. Mice were supplemented with 

subcutaneous hormone pellets of 17-β-estradiole (EST), 5-α-dihydroxytestosterone (DHT) 

or placebo (VEH) for 14 days and than injected with LPS (15mg/kg). Cytokine plasma 

levels were measured using an ELISA. The data correspond to the average of each group± 

standard error of the mean. Arrows indicate increase (↑) of plasma levels. Statistical 

significance was accepted at p<0.05 (*) obtained by ANOVA on Ranks & Dunn's Method as 

Post Hoc test with respect to CONT. 

 

4.4. 17-β-Estradiole enhancement of IL-10 plasma levels during endotoxemia is 

determined by the genetic background 

The importance of the genetic background on the response to EST was further 

elucidated by employing other inbred strains. Male AKR/J, DBA/2J, and BALB/cJ 

were castrated and supplemented with EST or VEH pellets and compared with non-

operated mice. LPS-induced IL-10 plasma levels in the non-operated group were very 

different among the various strains. Statistical differences in IL-10 levels of these 

strains resulted in the following hierarchy: BALB/cJ >AKR/J =B6 > A/J =DBA/2J 

(Table 4, Mann-Whitney Rank-Sum-Test, p<0.05). Castration and VEH treatment did 
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not affect LPS-induced IL-10 levels in any studied strain. Administration of EST 

resulted in an increase of LPS-induced IL-10 levels in AKR/J similar to A/J and B6 

mice. DBA/2J and BALB/cJ did not demonstrate any further increase of LPS-induced 

IL-10 levels after administration of EST (Table 4). This data indicates that the 

response to EST is genetically modulated. 

 

 A/J AKR DBA BALB/cJ B6 

 1920 ±216 2918 ±568 1348 ±124 5117 ±484 3228 ±310 
CONT  n= 32 n= 8 n= 7 n= 10 n= 32 

            
 3157 ±582 4158 ±773 1267 ±144 6270 ±952 3932 ±519 

VEH  n= 21 n= 8 n= 8 n= 10 n= 15 
  x1.6         
 5293 ±893 8375 ±1934 1467 ±223 4292 ±274 6060 ±706 

EST  n= 19 n= 8 n= 8 n= 8 n= 11 
  ↑ * x2.8 ↑ * x2.9     ↑ * x1.9 

 

Table 4: LPS-induced IL-10 plasma levels in male mice from different inbred strains after 

castration and estrogen treatment. Male A/J, AKR/J, DBA/2J, BALB/cJ and B6 mice were 

castrated at the age of 6 weeks, treated with subcutaneous hormone pellets of 17-β-estradiol 

(EST) or placebo (VEH) for 14 days and injected with LPS (15mg/kg). Blood samples were 

collected 1.5h after LPS injection. Cytokine plasma levels were obtained using an ELISA. The 

displayed cytokine levels correspond to the average concentration obtained from each group ± 

standard error of the mean. Arrows indicate increase (↑) or decrease (↓) of TNF-α plasma levels. 

Statistical significance was accepted at *p<0.05 obtained by ANOVA on Ranks & Dunn's 

Method as Post Hoc test with respect to CONT. 

 

4.5. Investigation of sex-link of the observed phenotypes in the F1 generation 

Apart from sex-steroids another possible variable that may be responsible for 

gender differences are the sex-chromosomes. To evaluate if sex-chromosomes are 

involved in the observed phenotypes we analyzed LPS-induced inflammatory 
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response in the F1-generation bred from B6 and A/J mice. The offspring of two 

homozygous founder strains generates mice that are heterozygous in every single 

allele except from the sex-chromosomes. Since the Y-chromosome of a male F1 

mouse may be contributed by an A/J or B6 father, both possible alternatives (A X B or 

B X A) were included. Moreover, this approach would give a rough idea on the 

inheritance pattern of the observed phenotypes. 

Non-operated male and female F1 mice have a TNF-α phenotype similar to 

B6 male mice at 1.5h after injection of LPS (Figure 8). This suggests that this 

phenotype is neither sex-linked nor imprinted, and may be a B6 dominant, autosomal 

allele. Evaluation of the IL-10 phenotype in F1 mice clearly indicates that LPS-

induced IL-10 plasma levels in B X A male and female mice follow the same pattern 

than B6 mice (Figure 9). However, IL-10 plasma levels in A X B males and females 

do not match the pattern in either A/J or B6. The data suggests comparable IL-10 

levels between A/J males and A X B males (Figure 9). This might suggest 

involvement of the A/J X-chromosome. However, the levels of A X B females seem 

to be comparable to B6 mice. Moreover, IL-10 plasma levels of A X B male and 

female mice do not differ statistically (p=0.35 in a pair wise comparison by Mann-

Whitney-Rank Sum Test). If IL-10 levels of A X B males and females were 

comparable to the B6 founder strain, no sex-link or imprinting could be postulated for 

this phenotype. Male F1 mice were also castrated and supplemented with sex-

steroids. The levels of LPS-induced TNF-α were neither modified by castration and 

administration of vehicle (VEH) nor castration and hormone treatment (i.e. EST or 

DHT; Table 5). Thus, the effect of EST on LPS-induced TNF-α plasma levels in the 

parental generation and the effect of castration on male B6 mice disappear with the 

loss of homozygosity. Another explanation for the loss of these changes might be that 
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opposing alleles neutralize each other when combined in the same individual. No 

effects were observed in female F1 mice (Table 5). 

Figure 8: Comparison of LPS-induced TNF-α plasma levels in A/J, B6 and 

their F1-generation. Male A/J, AxB, BxA and B6 mice and female A/J, AxB, 

BxA and B6 mice at the age of 8 weeks were injected with LPS (15 mg/kg). 

Blood samples were taken 1.5h after injection. Plasma was obtained and TNF-α 

was measured using an ELISA. The displayed cytokine levels correspond to the 

average concentration obtained from each group ± standard error of the mean. 

Statistical significance was accepted at *p<0.05 obtained by pair wise comparison 

with respect to B6 males using Mann-Whitney-Rank Sum Test. 
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 CONT VEH EST DHT 

 2211 ±165 2777 ± 339 2289 ±314 3195 ±531 
AxB males n= 10 n= 10 n= 8 n= 10 

         
 3302 ±946 5279 ±1605 4030 ±1140 2826 ±687 

AxB females n= 8 n= 8 n= 7 n= 7 
         
 1772 ±173 2748 ±292 3073 ±499 2443 ±188 

BxA males n= 10 n= 12 n= 9 n= 12 
         
 1992 ±182 2490 ±191 2710 ±165 2625 ±239 

BxA females n= 10 n= 12 n= 12 n= 12 
          

 

Table 5: LPS-induced TNF-α plasma levels in the F1-Generation of A/J and B6 mice 

after castration and hormonal treatment. Male and female F1 mice were bred from A/J 

and B6 parental generation. Male and female AxB and BxA were gonadectomized at the 

age of 6 weeks respectively, and treated with subcutaneous hormone pellets of 17-β-

estradiol (EST) or placebo (VEH) for 14 days. On the day of the experiment they were 

injected with LPS (15mg/kg). Blood samples were collected 1.5h after LPS injection. 

Cytokine plasma levels were obtained using an ELISA. The displayed cytokine levels 

correspond to the average concentration obtained from each group ± standard error of the 

mean. Arrows indicate increase (↑) or decrease (↓) of TNF-α plasma levels. Statistical 

significance was accepted at *p<0.05 obtained by ANOVA on Ranks & Dunn's Method as 

Post Hoc test with respect to CONT. 
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The effects of gonadectomy and implantation of hormone or VEH pellets had a 

similar effect on IL-10 plasma levels in F1 mice as on the parental generation: 

Gonadectomy with VEH-treatment or DHT-treatment respectively had no effect on 

LPS-induced IL-10 levels. EST-treatment clearly increased IL-10 levels in male A X 

B, male B X A and females B X A mice. In female A X B mice however, the increase 

failed statistical significance (Table 6). 

 

Figure 9: Comparison of LPS-induced IL-10 plasma levels in A/J, B6 and their F1-

generation. Male A/J, AxB, BxA and B6 mice and female A/J, AxB, BxA and B6 mice at the 

age of 8 weeks were injected with LPS (15 mg/kg). Blood samples were taken 1.5h after 

injection. Plasma was obtained and IL-10 plasma levels were measured using an ELISA. The 

displayed cytokine levels correspond to the average concentration obtained from each group ± 

standard error of the mean. Statistical significance was accepted at *p<0.05 obtained by pair 

wise comparison with respect to A/J or AxB males females respectively by using Mann-

Whitney-Rank Sum Test. 

AJmale AJfemale AxBmale AxBfemale BxAmale BxAfemale B6male B6female

IL
-1

0 
pl

as
m

a 
le

ve
ls

 (p
g/

m
l)

0

2000

4000

6000

8000

10000

12000

(n= 39) (n= 52) (n= 10) (n= 7) (n= 9) (n= 10) (n= 32) (n= 37)

*



 32

 

 CONT VEH EST DHT 

 2341 ±214 3532 ±554 6986 ±904 3885 ±982 
AxB males n= 10 n= 10 n= 8 n= 10 

     ↑ * x3   
 3169 ±605 3186 ±398 4795 ±736 3248 ±587 

AxB females n= 7 n= 8 n= 7 n= 6 
     x1.5   
 3516 ±270 5012 ±510 8736 ±1916 3526 ±329 

BxA males n= 9 n= 12 n= 9 n= 12 
     ↑ * x2.5   
 3128 ±216 3796 ±305 9254 ±665 3506 ±178 

BxA females n= 10 n= 12 n= 12 n= 12 
     ↑ * x3   

 

Table 6: LPS-induced IL-10 plasma levels in the F1-Generation of A/J and B6 mice after 

castration and hormonal treatment. Male and female F1 mice were bred from A/J and B6 

parental generation. Male and female AxB and BxA were gonadectomized at the age of 6 

weeks respectively, treated with subcutaneous hormone pellets of 17-ß-estradiol (EST) or 

placebo (VEH) for 14 days and were injected with LPS (15mg/kg). Non-operated mice were 

used as control (CONT). All mice were maintained under identical environmental conditions. 

Blood samples were collected 1.5h after LPS injection. Cytokine plasma levels were obtained 

using an ELISA. The displayed cytokine levels correspond to the average concentration 

obtained from each group ± standard error of the mean. Arrows indicate increase (↑) or 

decrease (↓) of IL-10 plasma levels. Statistical significance was accepted at *p<0.05 obtained 

by ANOVA on Ranks & Dunn's Method as Post Hoc test with respect to CONT. 

 

4.6. Effects of EST-related changes on outcome from lethal endotoxemia 

Mortality after lethal endotoxemia has previously been described to have 

strain specific differences (De Maio et al. 1998). A/J mice do not only have higher 

TNF-α levels and lower IL-10 plasma levels 1.5h after the injection of a lethal dose 

of LPS (15mg/kg), they also have a better survival rate (63% vs. 30% at 48h after the 

injection) (De Maio et al. 1998). Thus, we had to determine whether the changes in 
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cytokine patterns observed after EST-treatment would alter the outcome. Frequency 

of mortality was compared between non-operated mice (CONT) and mice that were 

castrated and supplemented with EST or placebo (VEH). After 48h, no difference in 

mortality was observed between non-operated and vehicle treated B6 mice (Survival: 

CONT 37%, VEH 36%). In contrast, castrated mice supplemented with EST showed 

an increased frequency of mortality (survival EST 8%). The data was obtained from 2 

independent experiments to assure reproducibility (Figure 10). 

Figure 10: Survival of estrogen-treated B6 male mice after injection of LPS. Male B6 

mice at the age of 6 weeks were castrated and treated with subcutaneous hormone pellets of 

17-β-estradiol (▲EST, n=27) or placebo (�VEH, n=30). Non-castrated mice were used as 

control (♦CONT, n=30). Two weeks after the procedure, mice were injected with LPS 

(15mg/ml). All mice were maintained under the same environmental conditions. Survival was 

monitored over 48h, at this time-point survival was 8% for EST group, 36% for VEH group 

and 37% for CONT. The data represents the average mortalities from 2 independent 

experiments to assure reproducibility. Statistical significance was accepted at *p<0.05 

obtained with respect to CONT by using Fischer Exact Test. 
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Interestingly, castrated and VEH treated A/J mice had a markedly improved 

survival (90%) as compared to non-operated A/J males. Treatment with EST did not 

increase the frequency of mortality but seemed do enhance the velocity of LPS-

induced mortality in this strain. The data was obtained from 3 independent 

experiments to assure reproducibility (Figure 11). 

 

 

Figure 11 Survival of estrogen-treated A/J male mice after injection of LPS. Male A/J 

mice at the age of 6 weeks were castrated and treated with subcutaneous hormone pellets of 

17-β-estradiol (▲EST, n=44) or placebo (�VEH, n=44). Non-castrated mice were used as 

control (♦CONT, n=44). Two weeks after the procedure, mice were injected with LPS 

(15mg/ml). All mice were maintained under the same environmental conditions. Survival 

was monitored over 48h, at this time-point survival was 16% for EST group, 90% for VEH 

group and 25% for CONT. The data represents the average mortalities from 3 independent 

experiments to assure reproducibility. Statistical significance was accepted at *p<0.05 

obtained with respect to CONT by using Fischer Exact Test. 
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Based on this data we determined if protection by androgen depletion could be 

found in other strains. AKR/J, BALB/cJ and DBA/2J were included into the 

experiment. Mice were castrated but no VEH pellets were implanted. In order to 

exclude the unlike possibility that VEH pellets would affect the outcome, additional 

A/J and B6 mice were enrolled into this series once again. Survival was monitored for 

up to 150h and compared to non-manipulated mice (CONT), which were maintained 

in an identical environment. Although provided by a different vendor, and 

consequently being exposed to different environmental conditions, C3H/HeN mice 

were also included. This strain has previously been reported to have improved 

survival after pharmacological castration in a model of trauma-hemorrhage with 

consequent sepsis (Angele et al. 1997). C3H/HeN are not identical with the LPS-

resistant strain C3H/HeJ provided by Jackson Laboratory. C3H/HeJ are hypo-

responsive to LPS because of a point-mutation in the cytoplasmatic domain of TLR-4 

and consequently lack signal-transduction (Poltorak et al. 1998). Over the time-

course of 150h, we found that A/J mice were the only strain that definitely benefited 

from removal of the testicles (Figure 12). This effect turned out to be independent of 

the application of the placebo pellet (Figure 11 and Figure 12a). The overall 

survival from castrated A/J mice in all experiments was 89% (50 of 56) as opposed to 

25% (11 of 56) in the non-operated groups. When additional castrated male A/J mice 

were supplemented with DHT pellets protection from LPS ceased (Figure 13).  

Frequency of mortality in all other strains remained unchanged, even in 

C3H/HeN (Figure 12c). For DBA/2J mice, the data may suggest attenuation of the 

dynamic of the clinical course, however without changing the outcome (Figure 12d). 
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Figure 12 a-f: Survival of castrated mice from different inbred strains after injection of LPS. 

Male A/J (Figure 12a), B6 (Figure 12b), C3H/HeN (Figure 12c), DBA/2J (Figure 12d), BALB/cJ 

(figure 12e) and AKR/J (Figure 12f) mice were castrated at the age of 6 weeks. Non-castrated mice 

were used as control and maintained under identical conditions. Two weeks after the procedure, mice 

were injected with LPS (15mg/ml). Survival was monitored up to 150h. Statistical significance was 

accepted at *p<0.05 obtained by comparison with respect to CONT by using Fischer Exact Test. 
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Figure 13: Survival of dihydrotestosterone-treated A/J male mice after injection of LPS. 

Male A/J mice were castrated (CX) at the age of 6 weeks and randomized into two groups. One 

group was treated with subcutaneous hormone pellets releasing 5-α-Dihydroxytestosterone 

( CX+DHT, n=15), the other group received no further hormonal treatment (�CX, n=24). 

Non-castrated mice (●NOP, n=25) were used as control. Two weeks after the procedure, mice 

were injected with LPS (15mg/ml). Survival was monitored over 140h, at this time-point 

survival was 42% for CX group, 7% for CX+DHT group and 24% for CONT group. Statistical 

significance was accepted at *p<0.05 obtained with respect to CONT by using Fischer Exact 

Test. 
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5. DISCUSSION 

We have hypothesized that the response to injury is modified by three major factors: 

the type of injury, the environment and the genetic background (Figure 14). Prior 

studies in different experimental rodent models support this hypothesis (De Maio et 

al. 1998; Stewart et al. 2002; Trentzsch et al. 2003). This paradigm could explain the 

variability observed in the outcome of critically ill patients. In addition to these 

factors, gender is likely to be another component that influences the response to 

injury. 

 

 

Figure 14: The “Three-Circle-Theory”. This model considers determination of 

the inflammatory response as an intersection of three major components: The type 

of injury, the physical condition of the individual and its environment and the 

genetic make-up. As depicted here, the inflammatory response that can be 

measured after a certain injury such as injection of LPS can be understood as the 

hatched intersection of the three circles. 
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Clinical studies have shown that male septic patients have a higher risk of 

mortality with respect to the female counterpart (Schroder et al. 1998; Bauerle et al. 

2000; Schroder et al. 2000). However, these observations have been challenged by 

other studies that found no gender difference (Riche et al. 1996; Eachempati et al. 

1999; Wichmann et al. 2000), or an even higher mortality in septic female patients 

(McLauchlan et al. 1995; Napolitano et al. 2001; O'Keefe et al. 2001). A higher 

incidence of infection (Offner et al. 1999) and sepsis (McGowan et al. 1975) has also 

been associated with male patients.  In contrast, two other studies have shown a 

higher incidence of infection in female patients (Dinkel et al. 1994; Kollef et al. 

1997). In summary, there is no general consensus whether gender is a positive or 

negative factor in the outcome from injury. Genetic diversity may contribute to such 

contradicting results. However, genetic diversity has never really been considered in 

such studies. Only one study has so far suggested a gender-contribution on increased 

risk for mortality from sepsis associated with TNF-α polymorphisms (Schroder et al. 

2000). The contribution genetic variability of the inflammatory response in regard to 

sex-steroids however remains unconsidered so far. 

The importance of genetics in the response to injury has recently been 

demonstrated in animal models of endotoxemia (De Maio et al. 1998) and sepsis 

(Stewart et al. 2002). This genetic contribution has been evaluated at the level of 

mortality as well as at different components of the inflammatory process, such as 

cytokines (De Maio et al. 1998; Stewart et al. 2002), end-organ damage (O'Malley et 

al. 1998), and spleenocyte proliferation (Matesic et al. 1999). Clinical studies have 

been initiated to evaluate genetic components in sepsis research (Schroder et al. 2000; 

Tabrizi et al. 2001; Riese et al. 2003).The potential contribution of genetics to the 

inflammatory response became more important with completion of the Human 
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Genome Project. The sequencing data of the human genome revealed 1.42 million 

single nucleotide polymorphisms (SNP) within the 3 billion base pairs that built the 

whole human genome. This one tenth percent of differences implies that there are 3 

million possible differences between 2 individuals (Sachidanandam et al. 2001). Such 

genetic diversity provides solid bases for differences in the response to many 

pathological situations including sepsis. To evaluate the linkage between gender 

differences and their variability based on genetic differences, we have investigated 

this relationship in a model of endotoxemia in mice with dissimilar genetic 

background. Since these mice were subjected to the same insult and were maintained 

in an identical environment (Figure 14), the only variable that may account for such 

differences is the genetic background.  

 

5.1. Gender and genetics determine LPS-induced cytokine plasma levels through 

sex-steroidal modulation 

LPS-induced TNF-α plasma levels were different between male and female 

B6 mice indicating a gender-significant difference (Figure 2). By evaluating different 

stages of the estrus cycle in female B6 mice, our data suggests a hormonal bases for 

the observed gender difference. Surprisingly, we found that the estrus stage (high 

estrogen) was associated with rather depressed LPS-induced TNF-α levels, voiding 

the difference between male and female B6 mice, while females in di-estrus (low 

estrogen) displayed high TNF-α plasma levels that characterize this gender 

difference. With TNF-α playing a key role in induction of the inflammatory response, 

this observation might object the established dogma of a more active immune system 

in females. And moreover, estrogen has been described to increase TNF-α plasma 

levels after LPS challenge in female BALB/c mice (Zuckerman et al. 1995; 
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Zuckerman et al. 1996). However, decreased TNF-α expression and plasma levels 

after estrogen-treatment of female C3H/He mice has been found after inflammatory 

stimuli with protease peptone (Salem et al. 2000). These observations raise concern 

what effect estrogen actually has on TNF-α production and what differences between 

exogenous hormone treatment and physiological plasma levels exist. Actually, few 

data is available on estrogen-related effects on this cytokine throughout the estrus 

cycle and studies in humans remain controversial (Angstwurm et al. 1997; Schwarz et 

al. 2000; Bouman et al. 2001). 

The data on B6 mice clearly provides evidence for the hormone dependent 

modulation of the inflammatory response and thus implies gender-specific differences 

herein. Moreover, comparison with another strain of inbred mice (i.e. A/J) revealed 

that genetic diversity may have important impact on gender-differences in the 

inflammatory response and their modulation by sex-steroids: Although female A/J 

mice showed similar trends in the modulation of LPS-induced TNF-α plasma levels 

depending on the stage of the estrus cycle, there was no gender-difference detectable 

between male and female A/J mice (Figure 4), and androgen-depletion of male A/J 

mice did not change TNF-α plasma levels in the response to LPS injection (Table 1). 

Differences in hormone secretion, plasma protein binding, receptor affinity and 

density or hormone clearance and degradation may provide possible explanation for 

the variable qualitative and quantitative inflammatory response observed between 

these two strains. A number of such differences including plasma sex-steroid 

concentrations between various strains of inbred mice have been reported (Crispens 

1975). They are likely to be result of differences in the genetic composition of each 

strain. 
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To compensate for strain-differences in hormonal levels or cycle-dependant 

variability, mice were gonadectomized and supplemented with subcutaneous, 

constant release pellets of DHT or EST to deliver equal amounts of hormone into the 

mice. This model has previously been reported to result in physiologic hormone 

plasma levels in mice (Angele et al. 1999). Interestingly, no effect on TNF- α levels 

after hormone depletion by ovariectomy and VEH or ovariectomy with 

supplementation with EST or DHT was observed in either B6 or A/J female mice 

(Table 1). A similar observation has previously been made in humans, too. LPS-

induced TNF-α levels were increased by EST treatment of ex-vivo white blood cells 

(PBMC) from male volunteers while there was no effect in female PBMC (Asai et al. 

2001). It remains unclear, why females show this poor response to hormone 

manipulation. It may be the result of greater tolerance towards changes in sex-

hormone plasma levels that comes with cycle dependant fluctuation. Females may 

have differences in control and regulation of receptor-density as compared to males. 

It has been demonstrated that the endocrine modulation of the inflammatory response 

in rats is most likely to be controlled by the adrenal gland and may be dependant on 

the immune-reactivity of estrogen receptor α in the medullar cells (Green et al. 1999). 

Interestingly, administration of estriol (an estrogen agonist) to female 

BALB/c mice resulted in a dramatic increase in LPS-induced TNF-α levels 

approximately 1 hour after the injection. This increase was suppressed by 

administration of tamoxifen, an estrogen antagonist, (Zuckerman et al. 1996). Thus, 

females like BALB/c and by implication all other females with a genetic background 

other than B6 or A/J may be better responders to EST-treatment. 

The comparison of castrated and VEH treated or castrated and hormone 

treated male A/J and B6 mice revealed two important observations that clearly 
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support our hypothesis, that the genetic background may exert different effects on 

sex-steroidal modulation of the inflammatory response: First, depressive effects of 

androgens on LPS-induced TNF- α plasma levels were observed in B6 males only. 

Second, EST-treatment showed marked effects in males of either strain, however with 

opposite effects (Table 1). When other inbred strains (AKR/J, DBA/2J, and 

BALB/cJ) were included, it became apparent, that both observations are unique for 

B6 males (Table 2). Depressive effects of androgens on the inflammatory response 

have previously been described (Angele et al. 1997; Angele et al. 1998; Angele et al. 

1999). Androgen depletion by castration prevents this depression and can be reverted 

by pharmacological blockade of testosterone receptors with Flutamide (Angele et al. 

1997; Wichmann et al. 1997). Our studies showed that DHT-treatment was capable to 

reverse the effects of androgen depletion in castrated male B6 mice (Figure 13). 

After treatment with EST reduced TNF- α plasma levels after LPS injection 

were observed in male mice except from B6 males (Table 2). Data from female A/J 

and B6 mice in the estrus stage (high estrogen) of the cycle suggest similar tendencies 

in the effect of EST on LPS-induced TNF-α plasma levels (Figure 3 and Figure 4). 

Depression of LPS-induced TNF-α levels under the influence of EST has previously 

been observed. For example, peritoneal macrophages of 17-β-estradiol-treated 

C3H/He mice infected with Listeria monocytogenes show decreased gene expression 

and production of TNF-α (Salem et al. 1999). After treatment with estrogen, LPS-

induced TNF-α production of murine macrophages isolated from female BALB/c 

mice was reduced, possibly by interaction with NF-κB (Deshpande et al. 1997). 

However, data from the F1 generations bred from A/J and B6 mice suggests that the 

responsible alleles need to be homozygous (Table 5).  
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Our data suggests that the gender difference in TNF- α plasma levels after 

injection of LPS between B6 males and B6 females may be a result of differences in 

estrogen concentrations. EST treatment of males decreased LPS-induced TNF- α 

levels and plasma levels in estrus B6 females are comparable to males. Thus times of 

high estrogen blood levels seem to be responsible for the gender difference. 

Surprisingly, B6 females supplemented with EST after ovariectomie showed LPS-

induced TNF-α plasma levels comparable to those found in di-estrus B6 females and 

ovariectomized female B6 mice with VEH treatment (Mann-Whitney Rank Sum Test, 

p=0.807). Moreover, they also have higher TNF- α levels than male B6 mice 

(ANOVA on Ranks with Dunn’s correction, p<0.05). The amount of EST in the 

pellets may be very different from physiological 17-β-estradiol levels of naïve B6 

females in estrus. Sex-steroids are known to function within a broad range of 

concentrations but may have functional optimum at a specific dosage (Goretzlehner 

1991; Asai et al. 2001). Consequently, there may be dose-dependant variability in the 

capacity of sex-steroids to modulate the inflammatory response. By implication this 

includes strain-specific differences that are based on the genetic background. Thus, 

variable effects of sex steroids among inbred mice of different strains may also be a 

result of physiologic hormone plasma levels characteristic for each strain.  

Despite the lack of gender-differences in LPS-induced IL-10 plasma levels in 

B6 or A/J mice (Figure 5) hormonal modulation of the LPS-induced IL-10 response 

was suggested by stratification for different stages of the estrus cycle: In female A/J 

mice we observed a trend towards higher LPS-induced IL-10 plasma levels during 

estrus (high estrogen) as compared to diestrus (Figure 7). No such effect was 

observed in B6 females (Figure 6). Again, such differences may be explained by 

inter-strain variability. Further experiments revealed that LPS-induced IL-10 plasma 
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levels can be enhanced by EST-treatment in both sexes of either A/J or B6 mice 

(Table 3). While the TNF- α phenotype could not be reproduced in the F1-

Generations (Table 5), the effect of EST on LPS-induced IL-10 plasma levels could 

be observed in the F1-generations bred from A/J and B6 mice (Table 6). Castrated 

male AKR mice treated with EST also experienced an increase in LPS-induced IL-10 

levels (Table 4). The presence of steroid responsive elements in the promoter region 

of the IL-10 gene may provide a possible explanation for this finding (Kim et al. 

1992; Kube et al. 2001). However, the identified elements are not typical and 

functional assays have not been performed yet. Interestingly, two of the evaluated 

strains, i.e. DBA/2J and BALB/cJ, were identified as non-responders to EST 

treatment (Table 4). Estrogen responsive elements in the IL-10 promoter might be 

missing, be defective, or require a different dosage of EST for optimal function. 

Dose-dependency of hormonal effects has been described in humans (Goretzlehner 

1991; Asai et al. 2001) and may explain our finding in the LPS-induce TNF-α plasma 

levels of B6 mice. 

Regulatory pathways other than interaction of EST with the promoter of the 

IL-10 gene may be possible. For example, estrogen has also been reported to regulate 

IL-6 expression (Girasole et al. 1992; Deshpande et al. 1997), but to date, no estrogen 

responsive element has been detected in the IL-6 promoter (Ray et al. 1994; 

Deshpande et al. 1997). Indeed, the ability to decrease IL-6 levels has been related to 

direct interaction of estrogen with NF-κB (Ray et al. 1994; Stein et al. 1995). In 

conclusion, it is possible that sex-steroids regulated the inflammatory process at 

different levels. 

With respect to the effects of EST on LPS-induced IL-10 plasma levels, an 

alternative explanation for the TNF-α data come into view: Interleukin 10 down-
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regulates TNF-α expression and thus is responsible for a balancing effect on the 

proinflammatory response (Gerard et al. 1993; Marchant et al. 1994; van der Poll et 

al. 1997). However, there is evidence in our data that makes this scenario seem less 

likely: First, IL-10 plasma levels after LPS challenge are increased in castrated B6 

mice supplemented with EST. Consequently, a result of an inhibitory effect of IL-10 

should cause depression of TNF-α of these mice (Table 1). However, this observation 

may be explained by traits in the genetic background of the B6 strain. Actually, A/J 

and AKR/J do show decreased TNF-α levels along with increased IL-10 levels after 

EST treatment.  

Second, DBA/2J and BALB/cJ mice are unresponsive to EST-treatment and 

maintain the level of LPS-induced IL-10 levels (Table 4). However, LPS-induced 

TNF- α plasma levels also decrease with EST treatment in these two strains (Table 

2). There may be another regulatory mechanism involved in the down-regulation of 

TNF- α. It is also possible, that the unresponsiveness of DBA/2J and BALB/c mice 

actually is an artifact from sub-optimal dosage.  

Ovariectomized female A/J mice show an increase in LPS-induced IL-10 

plasma levels (Table 3). Apparently this does not match with the concept of IL-10 

modulation thru EST. It is however possible, that this finding is a consequence of 

regulation at an endocrine location other than the ovaries. Studies in rats suggest 

medullar cells in the adrenal gland to be responsible for gender differences in the 

inflammatory response (Green et al. 1999). 
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5.2. F1-generation: contribution of sex-chromosomes to TNF-α and IL-10 

phenotypes 

There are two possible mechanisms behind gender differences of any kind. 

One is a difference in hormonal activity, i.e. sex-steroids; the other is availability of 

alternative genetic information. In a genetic sense, sex-chromosomes are the only 

thing that make the difference between male and female (Passarge 1994): By looking 

at meiosis, it becomes clear, that apparently every single autosome is exchangeable 

between male and female without changing the genetic sex. However, the presence of 

an intact Y-chromosome will determine male sex of the embryo. Patients with two X 

chromosomes and an accessory Y-chromosome will clinically present with a male 

phenotype (Klinefelter-Syndrome), and individuals with only one X-chromosome will 

develop a female phenotype (Turner-Syndrome) as long as no Y-chromosome is 

present.  

Interestingly, the sex-determination is not dependant on the complete Y-

chromosome. The critical region that determines biologic sex lies on the distal short 

arm of the Y-chromosome. The physical map of this region shows the following 

subsets: The most distal part of the Y-chromosome is considered the 

pseudoautosomal region (PAR). Because of the homology with the distal part of the 

short arm of the X-chromosome homologue pairing and crossing-over may occur in 

this region of the Y-chromosome during meiosis - just like on any other autosome – 

without changing the sex.  

The adjacent region to PAR is segment 1. The total to a length of these two 

segments is 2500kb. The following segments 2 to 7 do not contain any relevant gene 

for male sex-determination. Located adjacent to PAR is the proximal part of segment 

1 (1 A1), were the sex-determining region Y (SRY) lays (Wolf et al. 1992). This 
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rather short sequence of just 35kb is most likely to be identical with the testis-

determinating factor (TDF). After transfection with the Sry-Region (the murine 14kb 

equivalent of the human SRY), transgenic mice with female genotype (X/X) will 

develop as males (Koopman et al. 1991). Similar sex-reversal as the result of an 

SRY-exchange by crossing-over during meiosis (a risk that comes with the close 

proximity of SRY to PAR) or secondary to a defective SRY through single nucleotide 

mutations have been described in humans (McElreavy et al. 1992; Wolf et al. 1992; 

Affara et al. 1993).  

Once the sex is determined genetically by sex-chromosomes, the development 

of each sex (sex-differentiation) can evolve. It is a complex, time-dependant process 

that requires the expression of a multitude of genes in different tissues. This gene-

expression is controlled by sex-hormones, like estrogen or testosterone. These 

hormones are primarily produced in the gonads. The presence of SYR initiates the 

development of testicles from the so far undifferentiated gonads. This step grants the 

production of high levels of androgens and thus causes differentiation of a male 

phenotype determined by a male genotype. In the absence of SRY the 

undifferentiated gonads will develop as ovaries (Ganong 1993).  

During sex-differentiation, sex-steroids are required as mediators to develop 

gender-specific features. The significance of the hormonal gene-regulation becomes 

apparent when the normal function is disturbed. For example, a defective testosterone 

receptor can cause testosterone-resistance. Despite a male genotype (X/Y), a female 

phenotype will evolve. This disorder is known as testicular feminism. The importance 

of estrogen in the female sex-differentiation is also illustrated in the adreno-genital 

syndrome (AGS). This disease is based on an estrogen-deficit caused by a defective 

21-hydroxilase. As a result metabolites of the estrogen-biosynthesis are shifted into 
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pathways of the androgen-production. The surplus in androgen hormones results in 

male features despite a female genotype (X/X) (Ganong 1993). 

Although the amount of DNA that actually makes the difference between 

male and female is very small, elucidation of the role of sex chromosomes in a study 

on genetic impact on gender differences of the inflammatory response is mandatory. 

Data on the TNF-α phenotype in F1 mice indicate that neither the gender 

difference in B6 mice nor the response to sex-steroids, in particular the modulation of 

the TNF-α by EST is linked to the sex-chromosomes or is genetically imprinted and 

requires homozygosity of the underling allele. Additionally, the opposite effects of 

EST on LPS-induced TNF-α levels may be the result of opposing alleles that may 

neutralize the parental phenotype in the F1-generation (Table 5).  

Data obtained from the F1 generation on the IL-10 phenotype may allow 

exclusion of any linkage to sex-chromosomes or imprinting, too. However, B X A 

respond like B6 only. Statistically there is no difference between A/J males and A x B 

or B6 males and A X B, respectively. A X B females follow the pattern of B6 mice, 

though. This may suggest a possible linkage to the A/J X-chromosome or maternal 

imprinting (Figure 9). The problem with this experiment however is that AxXxB mice 

are not commercially available and thus had to be bred in the institutional animal 

facility. Thus, a larger number of batches with a smaller number of animals per group 

were used per experiment. Consequently, environmental factors may differ from 

those for mice that were obtained from commercial sources, which may disturb the 

accuracy of this experiment. Moreover, female F1 mice were not stratified by stage of 

the estrus cycle, which may increase the variability in the control groups. 

A mapping approach currently under way suggests candidate genes located on 

chromosome 13 for the IL-10 phenotype in non-manipulated male mice after 
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injection of LPS and chromosome 9 for the TNF-α phenotype (unpublished data). 

However, the IL-10 gene is located on murine chromosome 1, the TNF-α gene is 

located on murine chromosome 17. In summary, the observed phenotypes in this 

study are very likely to follow a multi-factorial pattern of inheritance, involving a 

number of loci on different autosomes rather than to be linked to sex-chromosomes. 

Which loci significantly contribute to the observed effects of sex-steroids and 

gender-differences will have to be elucidated in future mapping approaches. 

Distribution of the TNF-α plasma levels after EST treatment in A/J and B6 males 

suggest that this phenotype may be suitable for comparative mapping strategies 

(Figure 15). Such concepts have previously been described (Matesic et al. 1999; 

Matesic et al. 2000). 

Besides sex steroids and sex chromosomes, other, yet unknown factors related 

to gender may be involved. Such factors have been suggested by the fact, that 

mortality due to infection is higher in newborn boys than in girls (Wells 2000). 

Additionally, a clinical study in burned children at an average age of 5 years reports a 

higher mortality rate in boys with respect to girls (Barrow et al. 1990). Sex-steroids 

obviously play a secondary role in these two populations. A comparable study on 

burns, in sexually mature adults, female sex was found as an independent risk-factor 

for adverse outcome (O'Keefe et al. 2001). Such contradicting results may correlate 

with gender differences independently of sex-steroids. 
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Figure 15: LPS-induced TNF-α plasma levels after estrogen-treatment in 

castrated A/J and B6 male mice. Mice underwent surgical castration by 

removal of their testicles at the age of 6 weeks. Subcutaneous constant release 

pellets containing 17-Estradiol (EST) were implanted. After 14 days of 

recovery, mice were injected with LPS (15mg/kg). TNF-α plasma levels 

(pg/ml) were measured 1.5h after the injection using an ELISA. Each dot 

represents the TNF-α plasma levels in each individual mouse in the respective 

group (A/J or B6). 

 

5.3. Protection from lethal endotoxic shock by castration depends on genetic 

background 

Androgen-depletion by surgical or pharmacological castration has been 

proposed to modulate the inflammatory response after hemorrhagic shock and 

improve outcome from subsequent sepsis (Wichmann et al. 1996; Angele et al. 1997; 

Angele et al. 1999). In analogy, female sex-steroids may have salutary effects to 

improved outcome (Zellweger et al. 1997; Angele et al. 2000; Knoferl et al. 2002). 
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Indeed, castrated A/J male mice were protected against lethal endotoxemic 

shock (Figure 12a). Survival was markedly improved over the evaluated time-course 

and restoration of the androgen hormonal environment by implantation of DHT 

pellets reversed this protection (Figure 13). In conclusion, androgen depletion results 

in protection from LPS. The most striking finding of our mortality-studies, however 

is that the benefit is restricted exclusively to the A/J genetic background. Castration 

may have decelerated the frequency of mortalities in DBA/2J mice though (Figure 

12d). All other examined strains had an unchanged outcome after surgical castration. 

C3H/HeN mice (Figure 12c) have been reported to have survival-benefits after 

androgen depletion in a model of abdominal sepsis following hemorrhagic shock 

(Angele et al. 1997). In our model, they showed no improved outcome. 

Consequently, protection by androgen depletion may not only depend on the genetic 

background but moreover may change with the type of injury. Qualitative and 

quantitative divergence in the response to different types of injury can be observed in 

animal models: CLP produces a quite different cytokine response as observed during 

endotoxemia (Villa et al. 1995; De Maio et al. 1998; Remick et al. 2000; Stewart et 

al. 2002). Variable extend of an injury influences the inflammatory response as 

demonstrated in a model of combined insult using CLP and endotoxic shock 

(Trentzsch et al. 2003). 

A mechanistic explanation for protection through androgen depletion has not 

yet been provided. The evaluated cytokines may suggest reduced TNF-α plasma 

levels and increased IL-10 plasma levels in A/J male mice after castration as a 

possible explanation. This observation may suggest a shift in the ratio of pro- vs. anti-

inflammatory activity. Although, the cytokine levels lack statistical significance, the 

analysis of the TNF/IL-10 ratio of these mice indicates a significant drop (Table 7a) 
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suggesting attenuation of the predominantly pro-inflammatory state towards an anti-

inflammatory state. EST-treatment of A/J males after castration also results in a 

decrease of TNF-α and an increase of IL-10 plasma levels. Indeed, the TNF/IL-10 

ratio is diminished even further and thus the inflammatory response is changed from a 

predominantly pro-inflammatory response towards an anti-inflammatory state (Table 

7b). Interestingly, this was not associated with improved survival and actually 

accelerated the clinical course, although the outcome after all was unchanged (Figure 

11).  

Improved survival may depend on the ideal equilibrium of pro- and anti-

inflammatory components of the inflammatory response. Pharmacological approaches 

to attenuated sepsis in order to improve survival of septic patients aim at anti-

inflammatory strategies. The latest promising candidates for “magic bullets”1 are 

Afelimomab, a new F(ab`)2 antibody fragment against TNF-α; and activated protein 

C (Xigirs™), which actually possesses anti-inflammatory properties by inhibiting the 

LPS-induced liberation of TNF-α (Bloos et al. 2002; Hotchkiss et al. 2003). However, 

these adjuncts are restricted to the early phase of sepsis and thus illustrate the delicacy 

of the pro-/anti-inflammatory equilibrium that is mandatory for survival from sepsis. 

Overwhelming anti-inflammatory predominance may cause depression of the cellular 

immune function and consequently predispose to increased risk of infectious 

complication, most likely to result in a fatal course (Faist et al. 1996; Oberholzer et al. 

2002).  

Testosterone blockage with Flutamide protected male C3H/HeN mice from 

septic insults after hemorrhagic shock (Angele et al. 1997). In a number of clinical 

                                                 
1 A fundamental concept of modern pharmacology is that each pathologic condition can be corrected or 

reversed by a single pharmacological compound. Paul Ehrlich, who first enunciated this concept, called 

such compounds “magic bullets”.  
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studies, a decrease of testosterone levels has been described in male patients after 

burns (Lephart et al. 1987), trauma (Majetschak et al. 2000), and sepsis or  septic 

shock (Christeff et al. 1988; Christeff et al. 1992; Fourrier et al. 1994; Schroder et al. 

1998). Assuming that low testosterone may offer protection from injury, this response 

may be interpreted as a possible strategy of the organism to adapt to stressful 

conditions. Surprisingly, this decrease has been reported to be accompanied by an 

increase in estrogen levels, (Benassayag et al. 1984; Christeff et al. 1988; Christeff et  

al. 1992; Fourrier et al. 1994; Schroder et al. 1998; Majetschak et al. 2000) and two 

clinical studies  report increased mortality among male patients with such hormonal 

changes (Schroder et al. 1998; Majetschak et al. 2000). However, testosterone 

concentrations in severely ill male patients inversely correlated with APACHE scores 

(Luppa et al. 1991), implying that severely ill patients with high testosterone levels 

have low APACHE score and thus have a better likely-hood to survive. Taking our 

mortality studies in castrated male mice into consideration, such contradictive 

findings may be explained by genetic differences in the studied cohort’s gene-pool. 
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Table 7a+b : Effects of castration on the TNF-α/IL-10 ratio in male mice. Male mice 

were castrated (CX) and supplemented with vehicle pellets (VEH) at the age of 6 weeks. 

After recovery for 14 days, LPS was injected (15mg/kg). Blood samples were obtained upon 

sacrifice 1.5h after the injection and TNF-α and IL-10 plasma levels were measured using an 

ELISA. Non-operated mice of each strain were maintained under identical conditions and 

used as control (CONT).  Table 7a shows baseline ratios of the “inflammatory 

coefficient” (i.e. ratio of TNF-α/IL-10) of mice from various inbred strains (AKR/J n=8; A/J 

n=31; B6 n=32; BALB/cJ n=10; and DBA/2J n=7) in comparison with ratios of mice after 

surgical castration and implantation of vehicle pellets (CX+VEH: AKR/J n=7; A/J n=21; B6 

n=15; BALB/cJ n=9; and DBA/2J n=8). Data corresponds to the average ratio obtained from 

all animals in the group ± standard error of the mean. Statistical significance was accepted at 

*p< 0.05 obtained by Mann-Whitney-Rank Sum Test.  Table 7 b shows changes in TNF-

α/IL-10 ratio in male A/J mice after castration and hormonal treatment. Mice were treated as 

described. Additional males were castrated (CX) and supplemented with hormone pellets 

(DHT, n=22; EST, n=19). Data corresponds to the average TNF-α/IL-10 ratio obtained from 

all animals in the group ± standard error of the mean. Statistical significance was accepted at 

*p< 0.05 obtained by Mann-Whitney Rank Sum Test for pair-wise comparison VEH vs. 

CONT and #p<0.05 for pair-wise comparison EST vs. VEH. 

Table 7a AKR/J A/J B6 BALB/cJ DBA/2J 

 2.3 ±0.4 3.2 ±0.4 0.8 ±0.1 0.9 ±0.2 9.4 ±1.6 
CONT n= 8 n= 31 n= 32 n= 10 n= 7 

      
 1.6 ±0.1 1.7 ±0.4 1.2 ±0.2 1.0 ±0.3 8.8 ±1.5 

CX 
(+VEH) n= 7 n= 21 n= 15 n= 9 n= 8 

 p= 0.173 p= 0.004* p= 0.182 p= 0.967 p= 0.397 

Table 7b CONT CX +VEH CX +DHT CX +EST 

 3.2 ±0.4 1.7 ±0.4 4.2 ±1.5 0.5 ±0.1 
A/J n= 31 n= 21 n= 22 n= 19 

  p= 0.004* p= 0.179 p< 0.001*# 
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5.4. Critical effects of EST on LPS-induced mortality 

Modulation of the inflammatory response during endotoxemia in EST-treated 

male B6 mice increased mortality significantly (Figure 10). This finding contradicts 

with the idea, as concluded from many studies, that female rodents have better 

survival than males after injury as a result of sex-steroids (Zellweger et al. 1997; 

Angele et al. 2000; Diodato et al. 2001; Knoferl et al. 2002). Interestingly, no 

differences in mortality between female and male B6 mice after injection of LPS have 

been observed (Laubach et al. 1998). Since the genetic background seems responsible 

for gender differences and sex-steroidal modulation of the inflammatory response, B6 

may not have a suitable make-up for showing gender differences in outcome and 

inflammatory response in a model of endotoxemia. This strain may also be more 

susceptible to adverse effects of EST. Activated CD4+ T-cells (helper T-cells) secrete 

cytokines with either one of two distinct and antagonistic profiles. They secrete either 

cytokines with inflammatory properties (type 1 helper T-cell; Th-1) including TNF-α, 

IFN- γ, and interleukin 2, or cytokines with anti-inflammatory properties (type 2 

helper T-cells ; Th-2), such as interleukin 4 and IL-10 (Abbas et al. 1996; Opal et al. 

2000). The Th-1 response plays a role in activation and recruitment of other T-cells 

and macrophages; the Th-2 response regulates antibody secretion from B-cells and 

exerts anti-inflammatory properties via IL-10. Th-1 and Th-2 clones are reciprocally 

regulated by their secreted cytokines: INF- γ inhibits the proliferation of Th-2 clones 

whereas IL-10 inhibits that of Th1 clones (Giron-Gonzalez et al. 2000). A shift in the 

T-cell function towards Th-2 is believed to play a key role in cell-mediated immune 

dysfunction after trauma and critical illness, which is associated with an increased 

risk of septic complications (Faist et al. 1996; Hotchkiss et al. 2003). Such changes in 

T-cell function have been demonstrated in humans after burns (Zedler et al. 1999) 
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and abdominal sepsis (Heidecke et al. 2000). A similar shift from Th-1 to Th-2 type 

response has also been observed in animal models of trauma hemorrhage (Ayala et al. 

1996; Schneider et al. 2000). Interestingly, estrogen enhances phospholipase A2 

activity and consequently increases prostaglandin production (Dey et al. 1982). 

Production of prostaglandin E2 from monocytes promotes the described shift in T-

cell function from Th-1 to Th-2 (Faist et al. 1996). Based on this concept, estrogen 

may be rather fatal than beneficial in septic patients. Indeed, an increase in estrogen 

levels can be observed in such patients (Benassayag et al. 1984; Christeff et al. 1988; 

Christeff et al. 1992; Fourrier et al. 1994; Schroder et al. 1998; Majetschak et al. 

2000). The increase in plasma estrogen levels is accompanied by decreasing 

testosterone levels and as observed in two clinical studies (Schroder et al. 1998; 

Majetschak et al. 2000) this finding correlates with increased mortality associated 

with male gender. A state of high estrogen and low testosterone reflects conditions 

similar to those in our mortality study and thus may explain the severe effects of 

EST-treatment on castrated B6 males (Figure 10). High estrogen plasma levels may 

contribute to the shift in T-cell function that is associated with posttraumatic immune 

changes. As studies in humans may suggest, the major sex-dimorphic difference in 

the inflammatory response is a predominantly Th-2 biased response in females as 

opposed to a predominantly Th-1 response in males (Giron-Gonzalez et al. 2000). 

This situation is likely to be determined by estrogen-action. Estrogen-treatment 

promotes suppression of the Th-1 type response in the delayed-type hypersensitivity 

response to purified protein derivatives in mice (Salem et al. 2000). We have 

observed markedly increased IL-10 plasma levels after EST-treatment in several 

strains of inbred mice (Table 3 and Table 4). Interleukin 10 is a defining cytokine of 

the Th-2 response (Faist et al. 1996) and has been shown to down-regulate the 
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production of several pro-inflammatory cytokines, including TNF-α, IL-1, IL-6, IL-

12 and IL-18 (Moore et al. 1993). However, the beneficial effect of IL-10 in the 

response to injury is controversial. Exogenously administration of IL-10 has been 

shown to reduce several aspects of the inflammatory process and improve survival in 

experimental models of endotoxemia (Howard et al. 1993) and against staphylococcal 

enterotoxin B (Bean et al. 1993). On the other hand, similar experiments in animal 

models of sepsis and thermal injury have shown no effect on inflammatory mediators, 

increased T-cell dysfunction, and elevated mortality (Oberholzer et al. 2002). Further 

studies will have to determine whether EST can be helpful to modulate the 

inflammatory response in order to protect from adverse outcome after injury. Correct 

dosage might be of critical importance (Goretzlehner 1991) and so may be the right 

equilibrium between androgen and estrogens (Angele et al. 1998). However, the 

genetic background and type of injury may restrict such approach to an exclusive 

group of patients. In our model, we were not able to identify such a group within the 

evaluated gene-pool. 

 

5.5. Clinical and scientific relevance of the findings 

Our findings illustrate, that the modulation of the inflammatory response by 

sex-steroids depends on the genetic make-up of the subject. During sex-

differentiation, sex-steroids control the expression of genes that are responsible for 

the formation of gender-specific features. Studies suggest that genes encoding 

mediators of the inflammatory response are under sex-steroidal control: Estrogen 

receptors (ERs) have been identified in the nuclei of various human immune cells, 

such as monocytes (Wada et al. 1992; Ben-Hur et al. 1995), macrophages (Gulshan et 

al. 1990), and T cells(Cohen et al. 1983; Cutolo et al. 1993). There is evidence of 
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membrane-bound ERs on the surface of monocytes (Stefano et al. 1999). Steroid 

responsive elements are located in the promoter region of the IL-10 gene (Kim et al. 

1992; Kube et al. 2001). Estrogen may possibly control cytokine production by direct 

interaction with NF-κB (Ray et al. 1994; Stein et al. 1995). Apparently, sex-steroids 

regulate the inflammatory process at different levels and all of these mechanisms 

offer a vast number of possible genetic differences.  

However, the effect of sex-steroids on the inflammatory response is not 

heterogeneous: A decrease in LPS-induced production of TNF-α was observed in 

murine splenic macrophages from BALB/c mice treated with EST (Deshpande et al. 

1997). In contrast, an increase in this cytokine was observed in peritoneal 

macrophages derived from female BALB/c mice (Zuckerman et al. 1996), or male 

rats (Chao et al. 1994) both treated with LPS and EST. A reduction in IL-6 levels was 

found in BALB/c splenic macrophages treated with LPS and EST (Deshpande et al. 

1997), which is the opposite observation as in peritoneal macrophages from female 

BALB/c mice under similar conditions (Zuckerman et al. 1996). While these findings 

may indicate different responses in distinct compartments of the inflammatory 

cascade and thus may contribute to the contradicting results, our data clearly 

demonstrates that the genetic background determines variable modulation of the 

inflammatory response by sex-steroids. This genetic component can be easily 

visualized by analyzing the ratio between IL-10 and TNF-α of each strain (Figure 16 

a + b). Changes in this ratio by administration of EST are obviously very different 

and predicting the effect seems impossible. 
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Figure 16 a+b: Strain-specific variability in TNF/IL-10 ratio of male mice 1.5h after 

injection of LPS. Figure 16a shows the distribution of average TNF/IL-10 ratios of non-

manipulated, 8 week old male mice after injection of LPS (15mg/kg). AKR n= 8, A/J n=10, B6 

n=6, BALB/c n=10, DBA/2J n=7. Figure 16b additionally shows the distribution of TNF/Il-10 

ratio in male mice that were castrated at the age of 6 weeks and received EST-treatment for 2 

weeks. Arrows indicate the shift in the ratio that resulted from the EST-treatment. AKR (n=8), 

A/J (n=7), B6 (n=6), BALB/c (n=8), DBA/2J (n=8). Each dot represents the average TNF/IL-

10 ratio of each group. Arrows indicate the shift in the ratio when compared with non-

manipulated CONT. 
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We are aware, that findings in mice are difficult to be extrapolated to men. However, 

our observations suggest a critical role of hormones and hormonal treatment in 

critically ill patients. Sex steroids are routinely employed in the clinical field, for 

example in prostate cancer therapy and hormone replacement therapy (HRT). 

Consequently, information on how hormones influence the body’s homeostasis is of 

importance. This became illustrated most recently by the confusion caused by the halt 

of the estrogen plus progestin (Prempro™) component in the Women’s Health 

Initiative (WHI), a randomized, placebo-controlled and blinded, multi-center trail 

enrolling 27.348 patients for evaluation of HRT. As a matter of fact, 22.3 million 

prescriptions make Prempro™ the second most frequently prescribed hormone 
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replacement medication throughout the US in 2000 (Kreling et al. 2001). The data 

and safety monitoring board (DSMB) of the WHI made their recommendation to halt 

the Prempro™ treatment-arm, after Prempro™ medication was associated with an 

increased risk of invasive breast cancer, stroke, coronary heart disease, and 

pulmonary embolism. An overall measurement suggested that HRT with estrogen 

plus progestin would do more harm than good (i.e. reduced risk of colorectal cancer 

and reduced hip-fractures) (Fletcher et al. 2002; Rossouw et al. 2002). As a result of 

the DSMB-recommendation, physicians worldwide had to wonder if HRT could be 

considered safe. Epidemiologic data of the WHI indicates that the majority of patients 

enrolled in this trail were Caucasians. One may speculate if the increased risk would 

have been reduced, if patients with potential genetic risk-factors would have been 

excluded.  

In another study on men after coronary artery bypass found reduced leukocyte 

activation after estrogen treatment which may contribute to improved graft survival 

(Wei et al. 2001). However, the sample size was too small to detect improved 

outcome and there were no significant changes in cytokine profiles. If they 

successfully prevented sepsis and multiple organ failure was not evaluated. 

Apparently, EST-treatment was tolerated better than in our model. This may be a 

result of the type of injury, differences in environmental factors, or genetics 

(including genetic differences between species!). 

Our data supports the hypothesis that clinical application of sex-steroids or 

alteration of sex-hormone profiles in critically ill patients may be difficult to asses 

without consideration of the genetic background. Quantitative trait loci that are 

responsible for the phenotypes observed in our mouse model may have homologies in 
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the human genome and thus one day may allow identification of patients at risk to 

develop sepsis or to adjust their therapeutic regiments. 

Preliminary sequencing data from the human genome project reveals that the 

human genome consists of possibly 25,000 to 40,000 genes. Only twice as many as in 

fruit fly, worm, or plant and about the same number of genes that built the murine 

genome (Waterston et al. 2002). 

Genomics, the science of determining the functions of individual gene 

segments, facilitates structural homologies between evolutionarily, closely related 

genomes. Its success is based on a simple concept: Functionally important sequences 

are more likely to retain their sequence during evolution than non-functional 

sequences. So DNA sequences that are conserved between species are likely to have 

important function. Comparison of genomes of closely related species may also help 

to identify gene-control regions (Rubin 2001). We may assume that homologies of 

loci that control the inflammatory response between mice and men exist. An 

assumption that has been fueled by disclosure of sequencing data of the murine 

genome (Waterston et al. 2002). 

 

5.6. Comments on methodology 

We have based our experimental approach to the role genetic contribution to 

sex-steroidal modulation of the inflammatory response on the premises that the 

inflammatory response is the intersection of three major components: type of injury, 

environmental factors and the genetic background (Figure 14). To disclose 

differences that are determined by either one of these three factors, uncompromised 

experimental control of the other factors is mandatory. In our model, we studied the 

inflammatory response induced by injection of LPS to inbred mice. The use of small 
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rodents provides a lot of advantages. They are inexpensive, widely available in large 

numbers, at the same age and sex, genetically identical, free of specific pathogens, 

and on the same diet, which minimize biological variability. 

LPS-models are well-know for their reliable and reproducible results 

(Chaudry 1999). TLR4 seems to be the sole gateway to the LPS-induce inflammatory 

response in mice, by implication in all mammals. LPS itself is not capable to evoke 

shock, tissue injury, and other effects through non-specific interaction. Instead it can 

be anticipated that these effects are a product of the pro-inflammatory cascade 

activated by this single pathway (Beutler et al. 2001). Highly reproducible 

phenotypes are the fundamental bases for comparative mapping-strategies. LPS-

injections require only minimal animal manipulation and thus warrant little alteration 

of the organism’s homeostasis after the inflammatory challenge. Our experience with 

the LPS-model reassures us that observations in this model are highly reproducible 

(De Maio et al. 1998).  

Apparently, gram-negative sepsis can not be restricted to LPS alone. 

Consequently, experimental endotoxemia is probably a better model of inflammation 

and acute phase response than of authentic sepsis. However, we think that the early 

events of the acute phase and inflammatory response are key-factors in the 

pathogenesis of sepsis and the resulting clinical course. Endotoxic shock provides an 

excellent model to study the impact of the genetic background on the inflammatory 

response because it reduces the risk of other pathways creating too much background, 

which actually may mask genetic differences. 

Many LPS preparations are contaminated with other bacterial products 

reacting with different Toll receptors, which may explain some of the discrepancies in 

the literature with regard to LPS (Hirschfeld et al. 2000). Although a non-extracted 
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mixture might represent real biology, it complicates experimentation. Only when LPS 

is re-extracted it acts as a pure TLR4 activator. To keep the experimental conditions 

in this study constant, we utilized LPS from a single batch only. 

LPS produces a cytokine-rich inflammatory response. To quantify the 

inflammatory response and to detect changes in the response after hormone 

manipulation, we selected two of the possible markers involved, TNF-α and IL-10. 

These two markers have been considered as major players of the LPS-induced 

inflammatory response. A large body of evidence on these two markers has been 

accumulated, providing a broad basis for discussion of the findings. Detection by the 

use of ELISA-Kits is state of the art (Ertel et al. 1993). 

Studying hormonal effects is a big experimental challenge. Endocrine activity 

underlies dynamic changes that lie beyond experimental control or simply exceed a 

practical approach. Obviously the biggest challenge in studies on sex-hormones is the 

reproductive cycle of females that is accompanied with a load of hormonal changes 

over a short period of time. As outlined in Appendix 1, the window of a certain 

condition may close over the time-course of an experiment and thus complicates 

experimental conditions (e.g. mortality-studies). Moreover, misinterpretation of 

smears may occur (e.g. anestrus or pseudopregnancy). For example, cycle-related 

changes on cytokine, such as TNF-α in humans remains controversial (Angstwurm et 

al. 1997; Schwarz et al. 2000; Bouman et al. 2001). The evaluation of cycle-

determined differences is complicated and difficult to perform even in the controlled 

environment of an animal model. For this reason and to control for strain-specific 

differences in hormonal features, we decided to control hormonal activities by 

applying defined doses of hormone into gonadectomized animals. This model has 
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previously been reported to result in physiologic hormone plasma levels in mice 

(Angele et al. 1999). 

Administration of LPS and estriol (an estrogen agonist) to female BALB/c 

mice did not affect IL-6 serum levels, but did change the kinetics of its appearance in 

the circulation (Zuckerman et al. 1996). We did not check for changes in the kinetics 

of our model. It is possible that IL-10 plasma levels in DBA/2J and BALB/cJ mice 

after EST treatment reached peaks either before or after our designated time-point 

that we may have missed. This may explain why we did not see any response to DHT 

and why female mice seemed to be unresponsive to hormonal manipulation. 

However, we feel comfortable with this decision, since changes in the kinetics may 

be result of strain-specific traits and thus would be referred to as a result of different 

genetics. However such changes would not be suitable as map-able phenotypes and 

therefore are of minor interest. 
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6. SUMMARY 

We have shown that gender is a contributing factor in the LPS-induced inflammatory 

response of B6 mice. Gender-dimorphisms of the inflammatory response appear to be 

associated with hormonal differences. However, this contribution is dependent on the 

genetic background, as demonstrated in comparison with A/J mice. Additionally, we 

found that treatment with sex-steroid modulates LPS-induced mediators of the 

inflammatory response, such as IL-10 and TNF-α. However, male mice seem to be 

better responders to such manipulation. Moreover, the effects were dependent on 

genetic differences. Some mouse strains revealed to be non-responders to changes in 

the hormonal environment, i.e. IL-10 levels after EST-treatment in DBA2/J and 

BALBc/J mice, while others showed opposing response, i.e. TNF-α levels of EST-

treated A/J and B6 mice. Thus, our data suggests that gender and genetic diversity 

combine to modulate the response to a particular injury. However, the effects of sex-

steroids and the observed gender-differences seem to be independent of sex-

chromosomes. We also evaluated effects of hormonal manipulation at the levels of 

mortality. Androgen depletion is considered a mainstay of gender-related differences 

and may improve survival. Interestingly, castration protected only A/J mice against 

LPS. Such protective effects may be secondary to sex-steroid controlled changes in 

the ratio of pro- vs. anti-inflammatory components of the inflammatory cascade. 

However, we concluded that protection is dependent on the type of injury and the 

genetic background. EST-treatment of A/J and B6 males did not improve outcome 

from endotoxic shock.  

If our findings in mice could be extrapolated to humans, they might explain 

contradictory observations of clinical studies on gender differences. Genetic markers 

might better delineate the contribution of gender in the response to injury in the 
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clinical setting. Thus, research on such markers needs to be intensified in the future. 

Consequently, this information is of importance for planning basic science 

experiments, clinical trials and for the development of therapies that ameliorate the 

secondary effects of injury.  

 

7. ZUSAMMENFASSUNG 

Die hier vorliegenden Daten zeigen deutliche geschlechtsspezifische Unterschiede in 

der LPS-induzierten entzündlichen Antwort von B6-Mäusen. Geschlechtsspezifische 

Dimorphismen der entzündlichen Antwort scheinen mit hormonell bedingten 

Unterschieden assoziiert zu sein. Der Vergleich mit A/J-Mäusen weist hierbei jedoch 

eine unterschiedliche Ausprägung in Abhängigkeit von genetischen Faktoren auf. 

Darüber hinaus wurde festgestellt, dass die hier untersuchten Marker TNF-α und IL-

10 durch Behandlung mit Sexual-Steroiden moduliert werden können. Männliche 

Tiere reagieren dabei allerdings deutlich besser auf diese Beeinflussung von außen. 

Auch hier wurde eine Abhängigkeit von genetischen Faktoren gezeigt: Einige der 

untersuchten Mausstämme erwiesen sich von den Veränderungen der hormonellen 

Bedingungen unbeeinflusst, wie an den IL-10 Plasmaspiegel von DBA2/J und 

BALBc/J Mäusen nach EST-Behandlung zu sehen ist, während andere Stämme gar 

gegensätzliche Antworten zeigten, wie an den TNF-α Plasmaspiegeln nach EST-

Behandlung von A/J und B6 Mäusen erkennbar wird. 

Somit erlauben die vorgelegten Daten die Schlussfolgerung, dass biologisches 

Geschlecht und individuelle genetische Ausstattung gemeinsam einen messbaren 

Einfluss auf die entzündliche Antwort nach einer bestimmten Verletzung haben. Die 

Effekte von Sexualsteroiden und Geschlechtsunterschieden sind dabei unabhängig 

von den Geschlechtschromosomen. Da Androgene allgemein als hauptsächlich 
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verantwortlich für die geschlechtsspezifischen Unterschiede der entzündlichen 

Antwort eingeschätzt werden, haben wir von der Verringerung der systemischen 

Androgenspiegel einen Überlebensvorteil erwartet. Um so interessanter war die 

Beobachtung, dass diesbezüglich lediglich A/J Mäuse nach chirurgischer Kastration 

vor den Auswirkungen der LPS-Gabe geschützt waren. Dieser protektive Effekt 

könnte die Folge von sexual-steroid-abhängigen Änderungen in der Relation von pro- 

und antiinflammatorischer Komponente der entzündlichen Antwort sein. Es ist 

anzunehmen, dass dieser Schutz nur bei entsprechender genetischer Konstellation und 

wahrscheinlich in Abhängigkeit vom Verletzungsmechanismus zustande kommt. 

EST-Behandlung von männlichen A/J and B6 Mäusen brachte kein verbessertes 

Überleben nach Endotoxinschock. 

Könnte man diese Ergebnisse auf Menschen übertragen, so ließe sich hieraus 

eine Erklärung für gegensätzliche Beobachtungen bei geschlechtsspezifischen 

Unterschieden in klinischen Studien ableiten. Genetische Marker könnten helfen, die 

Einflüsse des biologischen Geschlechts auf die entzündliche Antwort klinisch besser 

untersuchen zu können. Die Suche nach solchen Markern sollte in Zukunft 

intensiviert werden, da ihnen auch eine große Bedeutung für das Design von 

Laborexperimenten und klinischen Studien zukommt, aus denen sich dann eventuell 

sogar therapeutische Ansätzen zur Milderung der sekundären Effekte von 

Verletzungen ableiten lassen. 
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APPENDIX 1: On the Estrus Cycle of the Mouse. 

 
Female mice have a poly-estrus cycle that persists throughout the whole year. 

Central endocrine regulation involves Gonadotrophine Releasing Hormone (GnRH), 

Follicle Stimulating Hormone (FSH) and Luteinizing Hormone (LH) that are derived 

from hypothalamus and piturity gland and control levels of estradiol and 

progesterone, which themselves contribute to the regulation of the estrus cycle 

through positive feed-back mechanism on the central regulation. The ovaries are the 

major source of estradiol and progesterone. The growing oocyte produces estradiol. 

Throughout the cycle, phases of predominant estradiol-levels or predominant 

progesterone-levels create four stage of the estrus cycle: diestrus, proestrus, estrus 

and metestrus (also know as postestrus or metaestrus; subdivision into phase I and II 

may occur). The estradiol/progesterone-ratio changes over these stages (Nelson et al. 

1981). Consequently, metabolic changes occur along the cycle: Proestrus and estrus 

are anabolic stages with active growth, whereas metestrus is a catabolic stage of 

degenerative changes. Diestrus is a quiescent stage with slow growth (Schwacha et al. 

2001). Morphologic changes in the cells reflect these metabolic changes. There are 

three types of cells commonly found in smears obtained from the vagina: 

Polymorphonuclear cells (i.e. leucocytes), nucleated epithelium cells and cornified 

epithelium cells. The morphology and number of these three types reflects the phase 

of the cycle and has been well described (Barkley et al. 1981; Rugh 1990; Schwacha 

et al. 2001): 

Peak levels of estrogen characterize proestrus (20-25 pg/ml in CD-1 mice 

(Campbell et al. 1976) and CBA/J NIA mice (Kahlke et al. 2000); up to 28 pg/ml in 

B6 (Nelson et al. 1981)). Smears show approximately even numbers of leucocytes 

and primarily nucleated epithelium cells. Only few cornified cells are present. This 
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phase takes 24 to 36h. While estradiol-levels start to decline with the onset of estrus, 

progesterone starts to increase. The epithelium cells of the vagina show an 

accelerated turnover. A lot of huge, squamous, cornified cells without nuclei are 

obtained in the smear. Leukocytes are missing completely. In the early phase of 

estrus, clearly defined epithelial cells with distinct nuclei can also be found. Estrus, 

(from Greek oestrum for “heat”) is the beginning of the reproductive state in the 

cycle. Ovulation starts 2 to 3 hours after the onset of estrus (Crispens 1975). 

However, it is the shortest phase of all and takes only 12 to 14h (Crispens 1975). 

Extended duration of estrus up to 72h has been described (Schwacha et al. 2001). 

Throughout metestrus, estrogen-levels further decline (as low as 5 pg/ml in CD-1 

mice (Campbell et al. 1976)) and progesterone-levels remain high (9.9 ng/ml have 

been described on day 0 of pregnancy (Crispens 1975), which is comparable to 

maximum progesterone levels during metestrus in CD-1 mice (Campbell et al. 1976), 

slightly lower levels of 4 ng/ml were found in B6 (Nelson et al. 1981)). Now, the 

epithelium cells are large, folded and with translucent nuclei. They lie in even 

numbers with leucocytes. This phase takes 24 to 48h (Crispens 1975) but can extend 

up to 120h (Schwacha et al. 2001). Diestrus starts as progesterone-levels go back to 

baseline (~2 ng/ml progesterone during proestrus (Campbell et al. 1976; Nelson et al. 

1981)). Estradiol remains low. The smear will now produce almost exclusively 

leukocytes. This phase takes 36 to 72h before rising estradiol levels lead into a new 

onset of proestrus. Under certain conditions, diestrus is prolonged for several days. 

An easy way to determine the stage of the estrus cyle is to obtain smears 

through lavage with isotonic saline solution as described by Rugh (Rugh 1990). An 

alternative technique is inspection of the typical changes found in the genital by 

Champlin (Champlin et al. 1973). While this technique is less invasive than a lavage, 
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which is considered a low-stress procedure anyhow, inspection demands a lot of 

experience in order to make valid predictions on the stage of the cycle. However, it 

may be preferable for repeated sampling. Repeated smearing, especially with cotton 

swabs is likely to result in vaginal cornification or the induction of 

pseudopregnancy. 

The duration of the cycle has an average duration of 4 to 5 days, however 

most authors report variable length of the different phases. The total of days may 

exceed this period and thus cycle length varies between 3 to 9 days. In fact, regularly 

recurring cycles are rare in the mouse other than in rats (Barkley et al. 1981). Several 

factors have impact on the estrus cycle: day-night-phases (Campbell et al. 1976), age 

(Nelson et al. 1981) and even genetic background (Barkley et al. 1981) influence its 

delicate dynamics. CF-1 female mice subjected to short-term food deprivation (24h or 

48h) showed delay of ovulation by a week or more when 48 h of food deprivation 

was initiated in diestrus. Lesser delays occurred when food deprivation began in 

estrus (Bronson et al. 1985). 

The absence of males or housing large groups of females together in the same 

cage may result in irregular cycling (i.e. prolonged diestrus). Two different types 

can be distinguished: anestrus or pseudopregnancy. Anestrus is characterized by 

prolonged diestrus predominantly when large groups of females are housed together 

and rapidly changes to estrus upon pairing with males. Pseudopregnancy shows 

formation of deciduomata and occurs preferablely in small groups of females without 

presence of males. For both phenomena, a genetic contribution has been suggested. 

Olfactory stimuli i.e. presence of males or male urine exposure are capable to 

override prolonged phases of diestrus and synchronize the onset of estrus (McKinney 

1972; Barkley et al. 1981). 
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ABBREVIATIONS 

$  U.S. Dollar 

%  percent 

µg  microgram (1x10-9 kg) 

/d  per day 

µL  micro liter (1x10-9 L) 

A X B  AB6F1 mice (F1-generation; the offspring from an A/J female and a B6 male) 

AGS  adreno-genital syndrome 

ANOVA Analysis of Variance 

APACHE acute physiology and chronic health evaluation (scoring system) 

ARDS  Acute Respiratory Distress Syndrome 

B X A  B6AF1 mice (F1-generation; the offspring from a B6 female and an A/J male) 

B6  inbred mouse strain C57BL/6J 

CD-14  Cluster of Differentiation 14 

CD-4  Cluster of Differentiation 4 

CLP  cecal ligation and puncture 

CONT  control 

CX  castrated 

DHT  5α-dihydrotestosterone 

DNA  deoxyribonucleic acid 

DSMB  data and safety monitoring board 

E. coli  Escherichia coli 

EDTA  ethylene diamine tetraacetic acid 

ELISA  enzyme-linked immuno sorbant assay 

ERs  estrogen receptors 

EST  17-β-Estradiol 

F1  1st filial generation 

FSH  follicle stimulating hormone 

G  gauge, unit for outer diameter of a catheter 

g  gram (1x10-3 kg) 
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GnRH  gonadotrophine releasing hormone 

h  hours 

HLA  human leukocyte antigens 

HRT  hormone replacement therapy 

IFN-γ  interferon γ 

IL-10   interleukin 10 

IL-1ß  interleukin 1ß 

IL-2  interleukin 2 

IL-3  interleukin 3 

IL-6  interleukin 6 

kb  kilo base-pairs 

kg  kilogram 

L  liter 

LBP  LPS-binding protein 

LH  luteinizing hormone 

LPS  lipopolysaccaride 

mg  milligram (1x10-6 kg) 

MHC-I  major histocompatibility complex class 1 

MHC-II  major histocompatibility complex class 2 

ml  milliliter (1x10-6 L) 

MODS  Multiple Organ Dysfunction Syndrome 

n  number of mice in the designated experimental group 

NF-κB  nuclear factor κB 

ng  nanogram (1x10-12 kg) 

NIH  National Institutes of Health 

p  p-value, probability of a statistic occurring by chance 

PAR  pseudoautosomal region 

pg  pictogram (1x10-15 kg) 

SRY  sex-determining region Y 

TDF  testis-determinating factor 
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Th1  type 1 helper T-cell 

Th2  type 2 helper T-cell 

TLR-4  Toll-like receptor 4 

TNF-α  Tumor Necrosis Factor α 

U.S.  United States of America 

V/V  volume per volume 

VEH  vehicle, i.e. placebo-pellet without hormone 

WHI  Women’s Health Initiative 

X/X  female genotype as indicated by two x chromosomes 

X/Y  male genotype as indicated by x and y chromosome 
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