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SUMMARY 

 
Stress plays a role in the etiology of anxiety and mood disorders. To investigate these 

disorders, animal models are used, many of which incorporate a stressful stimulus. Recently, 

the interest in animal models that use a psychological stressor has grown, as the brain regions 

that are activated by this kind of stress might differ from those activated by more physical 

forms of stress, for example those based on nociception. It is thought that psychological 

stressors may more closely resemble stressful situations that in humans can lead to pathology.  

The study, described in this thesis, was undertaken to elucidate the effects predator exposure 

has on behaviour, on neurochemical parameters in various brain regions and on 

neuroendocrine parameters. Also the effects of repeated predator exposure were assessed. 

For this purpose C57bl/6N and Balb/c mice were exposed to a rat for thirty minutes. The rat 

was introduced in a rat compartment of the mouse home cage, separated from the mouse 

compartment by a Plexiglas separation wall equipped with small holes. Animals could smell, 

see and hear each other, but not touch. The effect of such stimuli on behaviour was described 

comprehensively. Simultaneously, using a high time resolution microdialysis method, several 

neurochemical parameters were measured. In various strains of mice the effect of predator 

exposure on plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone were 

also determined.  

Rat exposure caused marked changes in the behaviour of the mice. They became alert, started 

risk-assessment activities, which were followed by coping behaviour. Upon re-exposure the 

behavioural profile had slightly changed, showing less risk-assessment and more self-directed 

behaviour, interpreted as less arousing properties of the paradigm on a second trial. It was 

also found that the levels of free corticosterone were lower on a second day of exposure, 

confirming the less stressful nature of the paradigm when repeated. During rat exposure 

extracellular levels of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-

HIAA) were higher than baseline levels in the hippocampus, the prefrontal cortex and the 

lateral septum, but not in the caudate putamen of C57bl/6N mice. In Balb/c mice 

microdialysis was performed in the hippocampus, paraventricular nucleus (PVN) and anterior 

hypothalamus (AHP). Elevations in 5-HT and 5-HIAA were seen in the hippocampus, and to 

a lesser extent in the PVN and the AHP. The finding that extracellular levels of 5-HT were 

not ubiquitously increased under stressful conditions, but in selected brain regions only, 

underlines the role that 5-HT plays in emotion during stress.  
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Sharp increases were seen at the beginning of rat exposure in the extracellular levels of 

noradrenaline (NA) in the hippocampus of both strains of mice, indicating the arousing 

properties of the paradigm. In the PVN and AHP the levels of NA were not measurable, but 

increases in its metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) were seen. Levels of 

the dopaminergic metabolites homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid 

(DOPAC) were either slightly or not increased respectively, in the hippocampus, PVN and 

AHP, which fits with findings in literature that these anatomical structures do not play an 

important role in dopaminergic neurotransmission during mild stress. Unlike with the 

behavioural parameters or with the levels of free corticosterone, no clear effects of re-

exposure were seen on the neurochemical parameters. Also it was not possible to correlate 

certain behaviours, indicative of anxiety or coping, to the observed changes in 

neurotransmitter levels.   

Comparison of plasma levels of ACTH and corticosterone in various strains of mice revealed 

strain differences, with C57bl/6N, Balb/c and B6C3F1 mice showing elevated levels of these 

hormones after rat exposure, which was not the case for C57bl/6J and DBA/2 mice. The 

strains exhibiting more pronounced neuroendocrine responses also had a different 

behavioural profile, with displaying increased rearing, sniffing in the air or at the separation 

wall or spending more time with food-related behaviour. On the contrary, in mice genetically 

altered to overexpress corticotropin-releasing hormone (CRH), which are thought to be more 

anxious by nature, rat exposure did not yield behavioural patterns that were clearly different 

from those seen in the CRH-wildtypes. 

Taken together, behavioural, neurochemical and neuroendocrine parameters form a 

complimentary picture indicating that rat exposure in its current form had mild arousing 

properties. It would be worthwhile to increase the stressful properties of the paradigm in 

order to have a functional model to study the mechanisms, from both behavioural, 

neurochemical and hormonal points of view, underlying the way an organism copes with 

stress. Furthermore, it is interesting to see in which way these mechanisms are disturbed in 

pathological cases. Nevertheless, in this mild form predator exposure elicited a selective 

activation of brain regions and neurochemicals. This highly differentiated response may be of 

utmost importance to coordinate and to fine-tune the specific neuroendocrine, behavioural 

and autonomic responses to this form of stress. 
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ZUSAMMENFASSUNG 

 
Stress spielt eine wichtige Rolle in der Ätiologie von Angsterkrankungen wie auch von 

affektiven Störungen. Um diese Erkrankungen zu erforschen werden Tierverhaltensmodelle 

benutzt, von denen viele einen stressvollen Stimulus verwenden.  

In der letzten Zeit bedient man sich immer häufiger Modellen, die auf der Verwendung von 

psychologisch stressvollen Reizen basieren, da in dieser Situation offensichtlich andere 

Gehirnareale aktiviert werden als bei anderen, mehr physischen Stressoren, wie etwa 

schmerzvollen Stimuli. Daher könnten derartige psychologische Stressoren möglicherweise 

ein besseres Model für Situationen darstellen, die für Menschen pathologische Folgen haben 

könnten. 

Die vorliegende Arbeit beabsichtigt, die Effekte der Fressfeind-Exposition auf das Verhalten, 

neurochemische Parameter in unterschiedlichen Gehirnregionen und neuroendokrine 

Parameter zu beschreiben. Auch wurden die Effekte von wiederholter Exposition betrachtet. 

Als Stressstimulus wurden C57bl/6N und Balb/c Mäuse für 30 Minuten einer Ratte 

ausgesetzt. Hierzu wurde die Ratte in ein durch eine Plexiglastrennwand abgegrenztes 

Kompartiment im Heimkäfig der Maus plaziert. In der Trennwand befanden sich kleine 

Löcher, so dass die Tiere einander riechen, sehen und hören, sich aber nicht berühren konnten. 

Die Effekte dieses Vorgangs auf das Verhalten der Maus wurden ausführlich beschrieben. 

Gleichzeitig wurden mittels einer Mikrodialysemethode mit hoher zeitlicher Auflösung 

unterschiedliche neurochemische Parameter gemessen. In unterschiedlichen Mäusestämmen 

wurden schließlich die Effekte von Fressfeind-Exposition auf die Plasmawerte von 

adrenocorticotropem Hormon (ACTH) und Corticosteron ermittelt. 

Die Rattenexposition führte zu erheblichen Änderungen im Verhalten der Mäuse. Sie wurden 

aufmerksam, fingen an mit Risikoabschätzungsverhalten, gefolgt von 

Stressbewältigungsstrategien. Bei wiederholter Exposition hatte sich dieses Verhaltensprofil 

leicht geändert. Es gab weniger Risikoabschätzungsverhalten, dafür aber mehr 

selbstgerichtetes Verhalten, woraus geschlossen wurde, dass die Exposition beim zweiten 

Mal als weniger aufregend interpretiert wurde. Auch wurde nachgewiesen, dass die Werte 

des freien Corticosterons bei der Zweitexposition niedriger waren, was bestätigte, dass dieses 

Modell bei einer Reexposition weniger stressvoll war. 

In Anwesenheit der Ratte waren die extrazellulären Werte von Serotonin (5-HT) und dessen 

Metabolit 5-Hydroxyindolessigsäure (5-HIAA) höher als unter basalen Bedingungen im 
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Hippocampus, präfrontalen Cortex und im lateralen Septum, aber nicht im caudaten Putamen 

der C57bl/6N Mäuse. In Balb/c Mäusen wurde Mikrodialyse durchgeführt im Hippocampus, 

paraventrikulären Nucleus (PVN) und im anterioren Hypothalamus (AHP). Anstiege in 5-HT 

wurden gesehen im Hippocampus und in geringerem Ausmaß im PVN und AHP. Das 

Ergebnis, dass 5-HT unter stressvollen Bedingungen nicht überall erhöht war, sondern 

ausschließlich in bestimmten Gehirnregionen, unterstreicht die Funktion von 5-HT in 

emotionaler Verarbeitung von Stressstimuli. 

Am Anfang der Rattenexposition stieg der extrazelluläre Gehalt von Noradrenaline (NA) im 

Hippocampus der beiden Mäusestämme deutlich an, was darauf hinweist, dass dieses 

Verfahren erregende Eigenschaften hat. Im PVN und AHP konnte NA nicht bestimmt werden, 

jedoch wurde eine Erhöhung in dessen Metaboliten 3-Methoxy-4-hydroxyphenylglycol 

(MHPG) gemessen. Im Hippocampus, PVN und AHP waren die Mengen des dopaminergen 

Metaboliten Homovanillinsäure (HVA) leicht, die des Dihydroxyphenylessigsäures 

(DOPAC) nicht angestiegen. Diese Ergebnisse stimmen mit der Literatur überein. Hier wird 

beschrieben, dass diese anatomischen Strukturen keine ausgeprägte Rolle in der dopaminerge 

Neurotransmission während milder Stressexposition spielen. Im Gegensatz zu den 

beobachteten Verhaltensparametern oder den Mengen von freiem Corticosteron waren bei 

den neurochemischen Parametern keine Einflüsse von wiederholter Rattenexposition 

nachweisbar. Auch war es nicht möglich, bestimmte Verhaltensparameter, die Angst oder 

Stressbewältigung wiederspiegeln, mit den Neurotransmitterlevels zu korrelieren. 

Ein Vergleich der Plasmakonzentrationen von ACTH und Corticosteron in unterschiedlichen 

Mäusestämmen zeigte, dass Unterschiede zwischen den Stämmen existierten. C57bl/6N, 

Balb/c und B6C3F1 Mäuse zeigten erhöhte Levels dieser Hormone, was für C57bl/6J und 

DBA/2 Mäuse nicht der Fall war. Die Stämme mit der ausgeprägteren Hormonantwort 

zeigten auch ein anderes Verhaltensprofil mit mehr „Männchen machen“, mehr schnuppern 

in Luft oder an der Trennwand und mehr Fressverhalten. Im Gegensatz dazu konnte in 

Mäusen, die genetisch manipuliert wurden, Corticotropin-releasing Hormone (CRH) zu 

überexprimieren und denen eine ängstlichere Natur unterstellt wird, kein Verhaltensprofil 

während Rattenexposition festgestellt werden, das sich von dem von den CRH-Wildtypen 

unterschied. 

Zusammengenommen formen die Verhaltens-, neurochemischen und neuroendokrinen 

Parameter ein sich ergänzendes Bild, woraus hervor geht, dass Rattenexposition in seiner 

jetzigen Form leicht erregende Eigenschaften hatte. Es würde sich lohnen, um die 

stressvollen Eigenschaften des Modells zu verstärken, um ein funktionelles Modell zu 
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kreieren, mit dem die Mechanismen (sowohl aus verhaltensbezogenem, neurochemischem 

und neuroendokrinem Blickwinkel) untersucht werden können, auf denen die 

Stressbewältigungsstrategien eines Organismus beruhen. Anschließend wäre es interessant zu 

erforschen, wie diese Mechanismen pathologisch verändert sein können. Nichtsdestotrotz 

verursachte Rattenexposition auch in dieser milden Form eine ausgeprägte und selektive 

Aktivierung von Gehirnregionen und Neurotransmittern. Diese hochdifferenzierte Antwort 

könnte von großem Belang für die Koordination und Abstimmung der spezifischen 

neuroendokrinen, verhaltensbezogenen und autonomen Antworten auf diese Art Stress sein. 
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LIST OF ABBREVIATIONS 

 
5-HIAA 5-hydroxyindole-3-acetic acid, the metabolite of serotonin 
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ANOVA analysis of variance 

AUC area under curve 
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DA dopamine 
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ECT electroconvulsive therapy 

EPM elevated plus maze, a behavioural anxiety model 
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HPLC high performance (pressure) liquid chromatography 

HVA homovanillic acid, a metabolite of dopamine 
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LHPA axis limbic-hypothalamic-pituitary-adrenocortical axis 
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MHPG 3-methoxy-4-hydroxyphenylglycol, a metabolite of noradrenaline 

mPFC medial prefrontal cortex 
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OCD obsessive compulsive disorder 
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PTSD post-traumatic stress disorder 

PVN paraventricular nucleus of the hypothalamus 

RIA radioimmunoassay 

S.E.M. standard error of mean 

SAP stretched attend posture, a behavioural parameter 

SSRI selective serotonin reuptake inhibitor, an antidepressant drug 

Tg transgenic, genetically manipulated animal, overexpressing a protein 
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I. INTRODUCTION 

The introduction will start off with a description of depression and the global involvement of 

monoaminergic neurotransmitters and the hypothalamic-pituitary-adrenocortical-axis (HPA 

axis) in mood and anxiety disorders to set the background against which the project described 

in this thesis was carried out. 

Aspects relevant to the research at hand will then be described more elaborately. 

 

1. SETTING THE SCENE 

1.1. Depression in society 
Major depressive disorder, commonly referred to as depression, is a psychiatric disease that is 

becoming an increasingly important problem in modern society. The diagnosis of a 

depressive episode is made based on the criteria in the ICD-10 [348] or in the DSM-IV [5] 

(also listed in Table 1). The DSM-IV states that either an abnormal depressed mood, or an 

abnormal loss of interest and pleasure or, in persons 18 years of age or younger, an abnormal 

irritable mood must be present for most of the day, almost every day, for at least two weeks. 

In addition to at least one of those symptoms, at least five of the symptoms listed in Table 1 

must be present. 

 

Table 1. Symptoms occurring in a depressive episode [5, 348]. 

ICD-10 based symptoms (F32) DSM-IV based symptoms 
• Depressed mood • Abnormal depressed mood 
• Loss of interest and enjoyment • Abnormal loss of all interest and 

pleasure 
• Bleak and pessimistic views of the 

future 
• If 18 yrs or younger, abnormal 

irritable mood 
• Reduced energy and increased 

fatigability 
• Activity disturbance 

• Reduced concentration and attention • Abnormal poor concentration or 
indecisiveness 

• Reduced self-esteem and self-
confidence 

• Abnormal self-reproach or 
inappropriate guilt 

• Ideas of guilt and unworthiness • Abnormal fatigue or loss of energy 
• Disturbed sleep • Sleep disturbance 
• Diminished appetite • Appetite or weight disturbance 
• Ideas or acts of self-harm or suicide • Abnormal morbid thoughts of death 

or suicide 
 

Not every depressive episode therefore needs to consist of the same symptoms. To 

distinguish between several depressive syndromes, depression can be classified based on 
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several factors, like severity (mild, moderate, severe), onset (early, postpartum, late), clinical 

course (single episode, recurrent, chronic) etc. This classification however remains based on 

subjective criteria; so far no biological markers have been identified that could facilitate the 

diagnosis, classification or the prognosis of the disease [347]. 

Depression has a lifetime prevalence of 10% to 25% for women and of 5% to 12% for men. 

Indeed, women are 2 – 3 times as vulnerable to suffer from a depressive episode as men. At 

any point in time, 5% to 9% of women and 2% to 3% of men suffer from this disorder. Its 

prevalence is unrelated to factors like ethnicity, education, income, or marital status. Yet, 

depression is more common in certain areas. For example in Italy 6-month prevalence rates 

of 8% are reported, whereas they are as low as 1.4% in rural Bavaria, Germany [347]. A 

depressive episode lasts 9 months on average, but in 20% of the persons it turns into a 

chronic disease. 

Depression forms a risk factor for other disorders. In 80 to 90% of depressed patients, anxiety 

symptoms are also present, and about 30% have a full-blown anxiety disorder. In fact the 

symptomatology of depression and anxiety partly overlap. The outlook of patients with both 

disorders is gloomier than for depressed individuals that do not suffer from anxiety symptoms. 

Patients with depression also suffer more frequently from cardiovascular disease, and it has 

been associated with a decreased bone mineral density [213]. Depressive syndromes often 

occur in the context of other medical conditions as well, like Cushing’s disease 

(hyperadrenalism), Addison’s disease (hypoadrenalism) [149], Parkinson’s disease, certain 

cancers, asthma, diabetes and stroke [224].  

The death rate among depressed persons is high: 15% of the patients commit suicide [111]. It 

is a disease that seriously impairs the quality of life of both the patient and his social 

environment, and that is costly to society. For example: in the USA more than 19 million 

adults are affected, making it the most common serious brain disease in the United States. An 

estimated $43 billion was lost to the direct and indirect costs of the illness in 1990 [117], and 

the costs are estimated to be an annual $70 billion nowadays [116]. 

 

1.2. Etiology 
For obvious reasons, the etiology of depression and the related anxiety disorders are of 

considerable interest to many research institutes and pharmaceutical companies. However, 

there is no one cause for depression. The situation is much more complex. Preclinical studies 

as well as modern brain imaging technologies are revealing that, in depression, neural circuits 

responsible for the regulation of mood, thought, sleep, appetite, and behaviour fail to function 
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properly, and the balance of critical neurotransmitters are dysregulated. Also the involvement 

of growth hormone, the thyroid axis, opioid receptors, substance P and brain cytokines have 

been described [110, 112, 224, 341]. Reports even exist suggesting that an infection with the 

Borna-disease virus might cause some forms of depression [35].  

Epidemiologic studies have shown that around 40 – 50 % of the risk for depression is genetic 

[93, 306]. Therefore genes involved in depression are sought. But as it is such a complex 

phenomenon, many genes might be involved, with each of them possibly responsible for a 

relatively small effect. Because vulnerability is only partly genetic, it is a combination of 

genetic and environmental factors that precipitates a depressive episode (see also Figure 1). 

 

Figure 1. A combination of genetic and environmental factors can cause depression. Taken from [347] 

Because of all the (multidisciplinary) effort that is put into the elucidation of the background 

of depression, much more is known now than 10 years ago. Still, furher knowledge and better 

treatments are necessary, as 24% of patients do not respond to pharmacological or 

psychotherapeutic treatment, and persons have a more than 80% chance to suffer from 

additional major depressive episodes at a 8-year follow-up. Additional drawbacks so far are 

the slow onset of effect of therapy and adverse effects of the drugs in use. Three kinds of 

treatments have been shown to be effective in fighting depression. These are antidepressant 

drugs, certain forms of psychotherapy (in particular cognitive and behavioural therapies) and 

electroconvulsive therapy (ECT) [223]. One of the ways to learn about depression is to study 

the working mechanisms of these therapies. Doing so with some agents that have 

antidepressant capacities, lead to the recognition of the role of monoamines in the disease.  

 

Genetic factors 
• Susceptibility genes of 

major effect 
• Susceptibility genes of 

small effect 

Environmental factors
• Prenatal factors 
• Loss 
• Deprivation 
• Grief 
• Stress 
• Natural disasters 
• War 
• Social support systems 
• Nutrition 
• Exercise 
• Drug effects 
• Medical illness 

DEPRESSIVE 
SYNDROMES 
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2. ROLE OF MONOAMINES AND STRESS IN DEPRESSION 

2.1. Monoamines 
Three serendipitous findings around the mid 20th century gave rise to the monoamine 

hypothesis of depression (also named the biogenic amine hypothesis). First, Bloch et al. [34] 

described in 1954 that iproniazid, an agent used to treat tuberculosis, improved the mood of 

some patients suffering from this disease. Later it was found that iproniazid inhibits the 

function of the enzyme monoamine oxidase (MAO), one of the enzymes that breaks down 

monoaminergic neurotransmitters and that iproniazid thus leads to an increase in central 

dopamine (DA), serotonin (5-HT) and noradrenaline (NA). Around the same time a derivate 

of chlorpromazine, which was very effective in the treatment of psychosis itself, called 

imipramine, was found by Kuhn [161] to have antidepressant effects. Towards the end of the 

1950’s, the mechanism of action was elucidated: imipramine inhibits the reuptake of 

monoamines, another way of increasing the availability of monoamines. Tricyclic 

antidepressants, based on the prototype imipramine, are still in use to treat depression.  

Finally the reverse was found to be true when it became clear that reserpine, used to lower 

high blood pressure, lowers the concentration of monoamines in the brain by blocking the 

storage of monoamines in the vesicles, and can cause depression [106]. 

Based on this, it was hypothesised that depression is caused by a lack of noradrenaline and/or 

serotonin. The monoamine hypothesis has proven itself to be a very good working hypothesis. 

Indeed, all pharmacotherapeutic agents used nowadays in the treatment of depression 

interfere with the central availability of monoamines. All drugs, be it tricyclic antidepressants, 

selective serotonin reuptake inhibitors (SSRI) or selective noradrenaline reuptake inhibitors 

(SNRI) work in one of three ways, all increasing synaptic levels of monoamines:  

1. blockade of presynaptic transporter proteins that remove monoamines from the 

extracellular space,  

2. inhibition of monoamine oxidase,  

3. inhibition or excitation of pre- or postsynaptic receptors that regulate the firing rate of 

neurons or regulate the release of monoamines [223].  

Although it is commonly accepted that an imbalance in 5-HT and NA contributes to the 

etiology of depression, there is more to the disease than just the monoamine hypothesis, 

which can also be conferred from the host of systems that are involved (see above). 

The monoamine hypothesis for example does not explain why antidepressants need to be 

taken over several weeks, before clinical effects become apparent. It is now thought that 
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influencing the balance of 5-HT and NA also influences the transcription regulation of certain 

genes, and that it is through these genes that symptoms of depression are alleviated. Such 

mechanism of action requires a longer treatment time than is necessary for influencing 

neurotransmitter levels per se [224, 258, 347].  

 

2.2. Stress and the HPA axis 

2.2.1. Stress 

Stress is known to be a factor in the cause of depression (for reviews see [10, 138, 139]). 

Interestingly, it seems to play a role in the onset of the first two episodes, but not in 

consecutive episodes. Stress per se however is probably not sufficient to cause a depression. 

Typically, horrendous stress does usually not cause a depression, but a post-traumatic stress 

disorder (PTSD). In vulnerable patients however, stressors that other individuals would 

consider mild, can play a major role in the manifestation of a depressive episode. This again 

underlines the interplay of multiple factors in the etiology of depression. 

 ‘Stress’ is a very general concept, and relates to the responses of the body to external events 

that bring the physiological equilibrium out of balance. These external events can be of 

physical, chemical or psychological nature [107]. The term stress and stressors as those 

events that cause stress was introduced by Hans Selye in 1936 as part of his generalised 

adaptation syndrome [284]. The stress response comprises those behavioural, neuroendocrine 

and neurochemical changes that are evoked as a kind of alarm system that is initiated when 

there is a discrepancy between what an organism is expecting and what really exists [168]. In 

other words, the stress response is meant to cope with stressors and to find a new equilibrated 

state. If the coping process is not sufficient, and the stress response is therefore prolonged and 

sustained, the body and brain homeostasis can be threatened and health can be endangered 

[107]. In humans for example the incapacity to deal with (most often psychological) stressors 

can result in anxiety and mood disorders. 

The stress response is mediated by activity of the autonomic nervous system and the HPA 

axis and these systems interact. In addition to these two components, behavioural changes 

occur. 

The activation of the autonomic nervous system results in the release of noradrenaline from 

various autonomic nerve cell endings in practically every organ in the body, as well as the 

excretion of adrenaline from the adrenal medulla into the blood. These events result in an 

increase in pulse and blood pressure, digestion is slowed down, and nociceptors become less 

sensitive. This enables an organism to directly respond to the stressor with a flight-or-flight 



INTRODUCTION 
 

 

22

reaction. The activation of the HPA axis will be discussed more elaborately in the next 

paragraph. 

 

2.2.2. The hypothalamus and the HPA axis 

One component of the stress response is HPA axis activation. A pivotal structure in the HPA 

axis is the hypothalamus. Its role is to maintain homeostasis of the body. Input to the 

hypothalamus comes from various sensors and structures. These include among others 

thermoreceptors; osmoreceptors; projections from the nucleus of the solitary tract, informing 

about blood pressure and other visceral sensory information; projections from the nucleus 

suprachiasmaticus, enabling the hypothalamus to couple its activity to dark/light rhythms; 

and projections from limbic and olfactory structures, that play a role in the regulation of 

feeding behaviour, reproductive behaviour, but also in stress-induced responses (see 

paragraph 6.1 of the introduction). The output from the hypothalamus follows two major 

projections. One of them is the autonomic nervous system that through its sympathetic and 

parasympathetic branches controls heart rate, vasoconstriction, digestion etc. The second 

output involves endocrine signals. The hypothalamus consists of a number of specialised 

nuclei secreting various releasing factors. These factors induce the pituitary to excrete 

specific hormones, among which are adrenocorticotropic hormone, thyroid stimulating 

hormone, follicle-stimulating hormone, prolactin, somatotropic hormone. These hormones in 

their turn can affect peripheral organs. Thus the hypothalamus and pituitary form a part of 

various regulatory endocrine axes, of which the HPA axis is one. 

Activity of the HPA axis results in the excretion of glucocorticoids (like corticosterone in 

rodents or cortisol in humans) from the adrenal cortex, that increase the availability of 

glucose in the blood by increasing gluconeogenesis, lipolysis, proteolysis and increasing 

insulin resistance. In addition, glucocorticoids have an anti-inflammatory function. Under 

non-stressful conditions the HPA axis is important for regulating osmotic and nutritional 

balances. The activity of this system shows a circadian rhythm, with the peak activity at the 

onset of the waking cycle [72, 74]. 

Also under stressful conditions the HPA axis is activated, as glucose is needed to supply 

enough energy to organs that are active during the stress response (see also Figure 2). 

In this context the paraventricular nucleus (PVN) is the most important nucleus in the 

hypothalamus, as the focal point in the complex of interacting systems regulating the stress 

responses [232]. The PVN again consists of magnocellular cells, that produce and release 

arginine vasopressin (AVP) and oxytocin, and of parvocellular cells, that produce and release 
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corticotropin-releasing hormone (CRH) from their medial part [136]. From the median 

eminence, CRH is released into the portal system. CRH in turn elicits the release of 

adrenocorticotropic hormone (ACTH) from the pituitary into the circulation. AVP synergises 

with CRH and can enhance the ACTH response [7, 186, 340]. When ACTH reaches the 

adrenal cortex, corticoids are released.  

 

 

Figure 2.  Schematic representation of the HPA axis. BS: brainstem, SON: supraoptic nucleus (another 
source for VP), VP: vasopressin. For other abbreviations and explanation see the text. 

Various feedback loops inhibit these stress-induced processes. First, in a short feedback loop, 

ACTH inhibits the release of more ACTH from the pituitary. In a larger feedback loop (see 

also Figure 2), the excreted glucocorticoids are necessary to inhibit the responsiveness of the 

HPA axis over glucocorticoid receptors (GR) and mineralocorticoid receptors (MR), which 

are mainly located in the hippocampus [73, 259, 260, 262]. 

In healthy individuals the HPA axis responds with increases in glucocorticoids to stressful 

events, which occupy GR and over this feedback mechanism induce a return to the 

equilibrated state of the system. Normal levels of glucocorticoids are thought to have 

beneficial effects on the hippocampal function and certain cognitive abilities [224]. 

In depressed patients on the other hand it has been shown that feedback mechanisms are not 

sufficiently functional anymore. Patients show a sustained activation of the sympathetic 

nervous system, higher levels of circulating cortisol (although this is not a universal finding 

in patients), an increased cortisol-response to ACTH, and also pituitary and adrenal glands 

are often found to be enlarged [22, 114, 258, 290]. Exemplifying of the deleterious effects of 

sustained high levels of cortisol is the fact that 40 – 90% of patients suffering from Cushing’s 
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disease, which is characterised by high levels of cortisol, also suffer from depression [149]. 

Tests to illustrate the malfunctioning feedback mechanism are the dexamethasone (Dex) 

suppression test or the Dex/CRH test. In these, the synthetic glucocorticoid dexamethasone is 

administered. Dexamethasone can not cross the blood brain barrier and in healthy individuals 

suppresses, through occupation of the GR in the pituitary, the ACTH-release. In depressed 

patients, this feedback mechanism is disturbed, and ACTH release is suppressed less. In the 

Dex/CRH test, CRH is administered after a low dose of dexamethasone. In depressed patients, 

the ACTH and glucocorticoid response to this exogenous CRH is stronger than in healthy 

individuals. Reversely, the exaggerated response to CRH is often less pronounced in patients 

after clinical remission [214, 215]. This is another indication that the feedback mechanisms, 

that are meant to keep the system as stable as possible are out of balance during depression.  

  

2.2.3. Extrahypothalamic effects of CRH 

CRH is not only produced and released from the PVN, but also functions as a 

neurotransmitter in the central nervous system (CNS). CRH-containing neurons can be found 

in limbic and cortical areas. CRH and related peptides like urocortin I, II and III are also 

found in other areas, including hypothalamic nuclei, the locus coeruleus and the lateral 

septum. The peptide is released from the central amygdala in response to stressors [210, 211, 

263]. Central administration elicits endocrine, autonomic and behavioural effects that 

resemble the effects caused by stressors [90, 111, 231, 316]. The effects of these 

neuropeptides are exerted through CRH1 and CRH2 receptors, the former mainly associated 

with anxiety and the latter with anxiolysis. CRH is thus able to elicit anxiety-like properties, 

that are unrelated to HPA axis activity [26, 43, 67, 169, 261, 296, 299, 313, 319, 342]. 

 

3. ANXIETY DISORDERS 

3.1. Forms of anxiety disorders 
A variety of anxiety disorders is described in the ICD-10 and DSM-IV. These include panic 

disorder (with and without a history of agoraphobia), agoraphobia (with and without a history 

of panic disorder), specific phobia, social phobia, generalised anxiety disorder, obsessive-

compulsive disorder (OCD), acute stress disorder, and PTSD. In addition, there are 

adjustment disorders with anxious features, anxiety disorders due to general medical 

conditions, substance-induced anxiety disorders, and the residual category of anxiety disorder 

not otherwise specified [5, 348].  
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A panic attack is a period of acute terror, with physical symptoms like shortness of breath, 

clammy sweat, irregular heartbeat, dizziness and feelings of irreality and wanting to flee the 

place where the attack began. In between the attacks, many people suffer from anticipatory 

anxiety, which may culminate in agoraphobia.  The incidence of panic disorder is about 1 to 

2%, with a two-fold chance for women to develop a panic disorder. Panic attacks commonly 

occur with social phobia, generalised anxiety disorder and major depression as well. 

Agoraphobia, severe anxiety in places from where escape is difficult, or avoidance of such 

places, has a 1-year prevalence of 5% and is also twice as common in women. Specific 

phobias are characterised by irrational fear, sometimes also taking the form of panic as 

described above, in situations that very often involve certain animals, heights, flying, storms, 

blood, needles etc. These phobias occur with a prevalence of 8% per year. Social phobia 

occurs in social situations, in which one could be embarrassed or ridiculed, for example when 

giving a presentation. It has a prevalence rate of 7%. Generalised anxiety is characterised as a 

long period of anxiety and worry, with accompanying symptoms like muscle tension, fatigue, 

poor concentration, insomnia and irritability, like in the forms of anxiety disorder described 

above, but without a focus on a special event or situation. The prevalence is 3%, again with a 

two-fold number of female patients suffering from it. The most common therapy with these 

disorders consists of behavioural-cognitive therapy, and in case of medication, administration 

of benzodiazepines [149]. 

Acute stress disorder and PTSD refer to the anxiety and the behavioural disturbances after 

being involved in an extreme trauma, like rape, combat, severe accidents, witnessing murder 

etc. A critical feature is dissociation, in which the world is perceived as unreal. Often 

memories to the traumatic event are impaired, although flashbacks can occur. The difference 

between acute stress disorder and PTSD lies in the duration of the symptoms. When they 

exceed a month, one speaks of PTSD. Because of the duration of symptoms, PTSD is often 

accompanied by decreased self-esteem, hopelessness, and difficulties in maintaining 

relationships. Pharmacologically, PTSD is often treated with SSRIs, also used as 

antidepressants. 

The incidence for obsessive compulsive disorder is about 2%. Patients suffer from thoughts 

that will not leave them and behaviour that they can not help performing. Mostly these 

behaviours are counting, checking, cleaning or avoiding. Effective drug therapy involves the 

administration of SSRIs, whereas benzodiapines are not effective [48, 149]. 
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Clearly the group of anxiety disorders is very heterogeneous, but all forms of anxiety disorder 

share a state of exaggerated arousal. Some have a strong genetic element (e.g. panic disorder), 

whereas others are rooted in stressful events [5, 348].  

 

3.2. Anxiety and depression 
Although mood and anxiety disorders are treated as separate syndromes, the distinction is 

very often based on whether the patient subjectively has a primarily depressed or anxious 

mood. Many symptoms are common to both syndromes, like fatigue, impaired concentration, 

irritability, sleep disturbance and worry. The comorbidity of the two disorders is high. 

Additionally, 68% of the individuals with comorbid depression and anxiety were anxious for 

over 10 years before a depression developed, which might be an indication that the 

syndromes share some mechanisms [258]. In both disorders, the HPA axis and the limbic 

system play a major role. The involvement of stress, apart from its obvious role in the 

etiology of the acute stress disorder and PTSD, can be derived from the fact that CRH 

induces a blunted ACTH response in patients with panic disorder, when compared to healthy 

individuals [276], implying that in panic disorder as well the HPA axis is overactive. In 

addition, the administration of CRH causes increased fear-responses [42, 310]. Also in 

anxiety disorders, a role is reserved for the monoamines. For example, buspirone, a high-

affinity 5-HT1A receptor agonist is an anxiolytic drug and several compounds that antagonise 

the action of 5-HT at the 5-HT2 and 5-HT3 receptor are also potential anxiolytics [281]. 

Decreases in the activity of the locus coeruleus, where many noradrenergic neurons have 

their origin, heightened anxious behaviour [305, 338]. In addition, many of the symptoms 

during anxiety are reminiscent of the effects of sympathetic activation. 

The similarities between the involved brain circuits and symptoms of stress, anxiety and 

depression caused some scientists to state that the three form a vicious circle with stress 

leading to anxiety, leading to depression, leading to more stress etc. [247].  

 

4. WHY THIS THESIS? 

As outlined above, clinical evidence exists that among other factors, monoamines and stress 

are involved in depression, and in the tightly bound anxiety disorders. To get a better 

understanding of the interplay between serotonin and noradrenaline on one side and stress on 

the other side, the study presented here used the behavioural model of predator exposure to 

characterise the neurochemical changes under this paradigm. Another focus of the study was 
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formed by behavioural observations. Attempts to link those to neurochemical and 

neuroendocrine findings also formed part of the project. In the following sections, more 

detailed information will be given on animal models in general and predator exposure in 

specific, on the role of brain regions involved in depression and emotion and on the role of 

the neurotransmitters that were measured in this work. The introduction will conclude with 

the more detailed aims of this thesis. 

 

5. BEHAVIOURAL ANIMAL MODELS 

5.1. The optimal animal model 
The search for novel behavioural models for depression and anxiety continues [267, 281], as 

it is highly unlikely that a depressed mouse will ever be found that forms an optimal model. 

In general, animal models for psychiatric ailments should fulfil the criteria of predictive 

validity, face validity and construct validity [122, 344, 345]. Predictive validity means that 

the model must distinguish compounds that might influence the disease from compounds that 

do not, preferably in a dose dependent manner [321]. Face validity refers to 

phenomenological similarity between the model and the disorder, i.e. that ‘symptoms’ or 

behavioural parameters in the model resemble symptoms of the disease in humans. Finally, 

construct validity implies that the cause for the behavioural change in the animal is similar to 

the cause of the disorder in man. However in the case of depression, too little is known about 

the etiology or its pathophysiology to be able to base a model on construct validity [225]. 

Therefore a different set of criteria has been formulated [205] saying that the minimum 

requirements for an animal model of depression are: 

• it is ‘reasonably analogous’ to the human disorder or its manifestations or 

symptomatology (refers to face validity), 

• there is a behavioural change that can be monitored objectively, 

• the observed behavioural changes should be reversed by the same treatments that are 

effective in humans (predictive validity), 

• it should be reproducible between investigators. 

In practise it means that certain symptoms of depression (endophenotypes, rather than the 

complete set of symptoms, the phenotype) are reproduced in animals, and mechanisms 

underlying these symptoms are elucidated and novel treatments are tested in these models 

[225]. Still it must be kept in mind that depression influences higher cognitive human 

processes such as motivation and self-esteem, and that it will remain unclear whether 
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mechanisms that are elucidated based on animal models truly represent the pathophysiologic 

background of depression or merely the effects of stress, pain or deprivation [347]. After all, 

the biological basis of the symptoms in animals could be different from those in humans 

[225].  

 

5.2. Animal models used in depression research 
Most of the following models, which are in use to investigate depression, use stressors to 

induce behaviours that are sensitive to antidepressant treatment:  

• Learned helplessness is a model developed in 1968 by Seligman that models some 

features of depression [283]. Animals that are exposed to an inescapable electric 

shock subsequently fail to escape from a situation in which escape is possible. These 

animals show some concomitant neurovegetative symptoms that are similar in 

depressed persons, such as alterations in REM (rapid eye movement) sleep, reduction 

in body weight and in sexual behaviour, as well as elevated CRH and corticosterone 

levels. Repeated dosing of antidepressants and ECT reduce the features of learned 

helplessness as well as the neurovegetative symptoms. Unfortunately, this model uses 

extreme stress and is very animal-unfriendly. It is also unclear whether it may model 

PTSD more than it does depression and finally, findings are less reliable and 

reproductive than in the forced swim test [225, 247]. 

• The (modified) forced swim test, also called the Porsolt test, has been very helpful in 

predicting the antidepressant properties of compounds [224, 236]. It measures the 

latency of a rat or mouse to become immobile when placed in a container filled with 

water and the time it swims, climbs and passively floats. Acute administration of 

antidepressants increases the coping responses to the swim stress. A variation to this 

is the tail suspension test, in which mice are hanged by their tails and the time is 

measured until mice stop struggling. The benefits of these tests are that they are fast 

and easy [225]. The question is however, whether these tests are capable of 

identifying anti-depressant compounds that are not monoamine-based medications. 

Also, antidepressants are already active after acute administration, whereas their 

clinical effect in patients takes more time to become apparent, which again raises the 

questions about the similarity in biological background of the parameters measured in 

the test and the symptoms in patients. 
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• In olfactory bulbectomy both olfactory bulbs of rats are removed. This causes 

hyperactive responses in novel, brightly lit open fields, which are normalised by 

chronic treatment of antidepressants. The effects of antidepressants are not secondary 

to the loss of smell in these animals [64, 197]. It is supposed to be a model for 

geriatric depression [294]. 

• In chronic stress paradigms animals undergo a variety of mild stresses such as social 

isolation, short food or water deprivation, disruption of the light/dark cycle etc. A 

variation is repeated social defeat. Animals that are stressed like this show anhedonia, 

and cardiovascular and neuroendocrine effects, that are sensitive to antidepressant 

treatment. These paradigms have face validity, but are poorly reproducible [225]. 

• Early life stress can take the form of prenatal stress, early postnatal handling or 

maternal separation. Each of these cause persistent neuroendocrine and behavioural 

changes in the pups that last until adulthood. Their HPA axis is hyperactive, they 

show elevated locomotor responses to novelty and greater vulnerability for learned 

helplessness. These models are gaining interest [225]. 

• Relatively new in the antidepressant field of research are models that use intracranial 

self-stimulation, a model known from research on drugs of abuse and reward 

mechanisms. Withdrawal symptoms, e.g. after amphetamine use, can represent an 

animal model of anhedonia. Antidepressants can reduce some of the withdrawal 

symptoms [64]. 

 

5.3. Animal models used in anxiety research 
As described before (in paragraph 3.1) many forms of anxiety disorders exist, in which 

different pharmacological agents are effective. This multitude should be reflected in the 

models of anxiety. However, no useful model exists to model phobia or PTSD, and apart 

from some commonalities between animals with certain stereotypies and OCD, no model 

exists that reflects OCD. Most models in use therefore are related to generalised anxiety 

disorder [180]. As a consequence these tests are especially sensitive towards the anxiolytic 

properties of benzodiazepines, but less to these of antidepressants [37]. The most common 

tests are listed below.  

Many of the used paradigms are ‘conflict’ tests that use both an aversive stimulus (like open 

space or a brightly lit environment) and a rewarding stimulus (like a familiar or non-

threatening environment, or food) [322]. The less animals avoid the aversive stimulus, the 
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less anxious they are. It does seem that the different tests tap into different aspects of anxiety 

[21, 271]. The tests can therefore be considered to be complimentary. An example of 

different aspects in anxiety is the distinction between state and trait anxiety [180]. State 

anxiety is the anxiety experienced at a particular moment and that is increased by an 

anxiogenic stimulus. Trait anxiety does not vary over time and is more like a baseline level of 

anxiety. 

• A commonly used paradigm is the elevated plus maze (EPM), in which an animal is 

placed on a + -shaped maze with two opposite arms that are closed off at the sides, 

and the remaining two arms having no walls. The apparatus is elevated above the 

floor. The test uses the preference of animals to stay in shielded areas and measures 

among others the time on the open and closed arms as well as the number of entries in 

both kinds of arms. Anxiolytics cause an increase of time spent or entries onto the 

scarier open arms, driven by the urge to explore. Interestingly this is mainly seen on a 

first trial. When an animal is tested repeatedly, the measures become insensitive to 

benzodiazepines. It appears that on a first trial the animal’s behaviour is mainly 

influenced by the openness of the arms, whereas on subsequent tests elevation is the 

more important aspect [100, 102]. An ethological version of the EPM has been 

developed in which more parameters, like aspects of defensive behaviour, are 

measured. Factor analysis has been performed by several research groups to identify 

the relationship between the test indices and different factors like anxiety and 

locomotion. Although results of the analysis are slightly variable among the groups, 

the general picture seems to be that for example the time in open arms, the number of 

entries into the open arms and the number of stretched-attend postures are reflective 

of fear or reactivity, whereas the total number of entries, and number of rearings is an 

index of locomotion and the time spent in the middle of the maze as well as grooming 

may have similarities with a decision-making process [97, 267, 270, 271, 322].  

• The dark/light box consists of two separated rooms, one brightly lit, the other dark. 

Night-active animals like mice and rats prefer to be in the dark compartment. Animals 

are placed in the dark compartment and it is measured how long it takes until they 

enter the light compartment, how many entries they have into this compartment and 

the time spent on the light side. Anxiolytics increase the time spent in the light 

compartment. It has been suggested that the light/dark paradigm models state anxiety 

[24]. 
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• In open-field tests the subject is placed in a wide arena and the time spent along the 

walls and in the center area is measured. The more anxious the animal is, the more 

time it spends close to the walls.  

• Under bright light and in a novel environment, social interaction between animals is 

decreased. Anxiolytics increase social behaviour again. This test works well with rats, 

but because they are more aggressive to conspecifics, it is less useful with mice [180]. 

In all these tests it is important to control for effects of test compounds on locomotion, to 

exclude false positive or false negative predictions. 

 

5.4. Rats vs. mice 
Traditionally, the rat has been the rodent of first choice in many areas of research and most 

behavioural tests have been optimised for rats. However, with the rise of genetics, the mouse 

has taken the place of rats. They are more easily to house, breed more quickly, recombination 

techniques have been standardised for mice, and their genome is more completely 

characterised. Behavioural models are now adapted from rats to the mouse situation. But this 

is not always successful. Part of the reason is that more knowledge is needed about the 

naturalistic behaviour of mice to develop better mouse behavioural tests [225]. Indeed it has 

been argued by many ethologists, like Lorenz, Tinbergen and Thorpe that a more 

comprehensive survey of the behavioural repertoire of animals is more likely to produce 

success when using behavioural models in research [267].   

 

5.5. Genetic components 
What the models mentioned above lack so far is that they do not incorporate the fact that 

depression requires a certain genetic vulnerability. The paradigms are conducted with 

‘normal’ mice, which might not have the genotype to develop analogues of depressive 

syndromes.  

To a certain extent this can be overcome by using a proper strain of mice. Commercially 

available inbred strains of mice (and rats) already show a high variation in their responses to 

stress and in for example HPA axis reactivity and responses to antidepressants [62]. In a 

survey of 11 strains of mice in the forced swim test, tenfold differences in immobility scores 

were found. Also antidepressants had dissimilar effects in the strains [190]. Large differences 

were also reported in comparing the behaviour of different strains of mice in the tail 

suspension test [182]. Strains also differ in their anxiousness. However, in models of anxiety, 
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the ranking order for various strains is task-dependent [272, 329]. This is caused by the fact 

that the different models measure different aspects of anxiety, and also because the influence 

of the genetic background (from where the strain differences primarily arise) is not equally 

large among paradigms. For example, the time mice spent on the open arms of the EPM was 

found to be determined by their genetic background for about 78% [322]. The activity in the 

open field however was only for 26% dependent on solid strain differences [322]. 

Another strategy is to selectively breed animals that show for example high or low levels of 

swimming in the forced swim test, to generate animals with larger differences in depression-

like (endo)phenotypes. It would be interesting to compare the brain systems and genes of 

these animals to ‘normal’ animals. In depression research, lines are developed with animals 

susceptible to learned helplessness, high/low responses in the forced swim test and high/low 

immobility scores in the tail suspension test. Recently, in the field of anxiety, animals 

exhibiting high- and low anxiety on the elevated plus maze have successfully been bred and 

several SNPs (single nucleotide polymorphisms) have been identified separating these 

animals from the normal phenotypes (personal communication with S. Krömer). 

Mutational techniques are also employed to improve models of depression. Two approaches 

are currently used. Forward genetics use chemical mutagens such as ethylnitrosurea (ENU) to 

randomly induce mutations. Interesting phenotypes are investigated to find the responsible 

gene. In reverse genetics, a candidate gene is disrupted or overexpressed to investigate what 

the effects are on phenotype [225]. An example of this, also used in the experiments reported 

here, are mice that overexpress CRH. Two caveats with genetically altered mice are that the 

background strain needs to be carefully selected and that compensatory adaptive changes may 

occur. The latter happens especially in animals that were born with overexpressing or 

knocked-out genes, rather than animals in which the gene transcription can be switched on or 

off with conditional mutation techniques. 

 

5.6. Example: CRH-transgenic mice 
The reason to develop mice with a mutated CRH gene is that abnormalities are found in CRH 

levels in depressed people. Some depressed patients show a hypersecretion of CRH, as well 

as a downregulation of CRH receptors and blunted ACTH responses to administered CRH 

[224]. Reversely, in healthy individuals, the effects of centrally administered CRH mimic 

symptoms of depression, like increased arousal, decreased appetite and increased blood 

pressure [224]. In rodents, the central administration of CRH reduces the exploration of novel 

surroundings, decreases sleep, enhances fear responses and decreases food and sexual 
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behaviour. These changes parallel those found in major depressive disorder, panic disorder 

and anorexia nervosa [303]. Mice that overexpress CRH have elevated levels of ACTH and 

glucocorticoids and develop a Cushing’s syndrome phenotype [302]. They also show 

characteristics that fit enhanced stress-responsiveness and anxiety-like behaviour. For 

example, the transgenic animals spent less time on the open arms than controls and were less 

active in a novel environment [303]. 

 

5.7. Predator exposure 
As outlined above, most animal models in depression and anxiety research incorporate a 

stressful situation. Apart from the models that are mentioned above there is a host of other 

models that attempt to research the various mechanisms underlying stress per se. Many of 

them contain a physical component, such as pain (avoidance paradigms), stimulation of the 

immune system (haemorrhage, lipopolysaccharides), or a decrease of body temperature (cold 

exposure). In recent years, behavioural models that use predator exposure, of which rat 

exposure is a form, have gained increasing interest. Predator exposure provides a stress 

model that relates to the innate fear for a predator, whereas other models, like the ones used 

in avoidance paradigms, relate to learned fear. Another difference with some classical 

paradigms lies in the way in which the stressful stimuli are processed (see also paragraph 6.2). 

In models based on pain, or on, for example, ether stress or hypoxia (where animals are 

presented with a situation that is immediately threatening for survival) stimuli reach the 

paraventricular nucleus of the hypothalamus directly from the brainstem. Stimuli such as 

encountered in predator exposure first have to be cognitively processed by the limbic areas 

before they are dealt with [135]. Indeed, c-fos expression after predator exposure was 

increased in numerous brain regions, indicating the activation of different regions than those 

involved in hypoxia or restraint stress [83, 99]. The impact of psychological stressors 

depends on how they have been perceived, in which previous experience and the ability to 

cope with stressful situations are important factors [135, 159]. Thus, models dealing with 

innate fear and with processive stimuli may more closely resemble psychologically stressful 

situations in humans. Various forms of predator exposure are employed. Some involve the 

presentation of dogs to cats; fox odour, cat droppings or cats to rats [1, 30, 99, 246] and 

anaesthetised or awake rats to mice [28, 174]. Models may even be as exotic as exposing sea 

trout [167] or goldfish to blue-gills [147]. 

As the method of performing predator exposure differs among laboratories, in some cases not 

only the effect of the predator but also that of novel environment or handling mix in. In the 
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case of rat exposure, mice are very often placed in a small cage within a larger cage, 

containing the rat, enabling the rat to climb on top of the mouse compartment and sometimes 

to push the mouse compartment around (e.g. [6, 132]). A special form of predator exposure is 

used by the group of Caroline Blanchard and Robert Blanchard in their Mouse Defense Test 

Battery. They use an oval or closed-off runway and follow a mouse with a handheld 

anaesthetised rat. Carefully studying the effects of drugs on defensive behaviours displayed 

by the mice makes it possible to differentiate between anxiolytics and panicolytics [29, 32, 

120, 121, 123]. 

The form of predator exposure in the experiments described in this thesis also used rats as a 

predator of mice. Rats are known to kill mice [195, 279], and mice show stressful reactions 

when presented with a rat. In the current setup, the rat was introduced into a compartment 

directly next to the mouse compartment in the mouse’s home cage, thereby avoiding novel 

environment, transportation stress, or physical contact with the experimenter, and enabling 

simultaneous microdialysis (see also Materials and Methods, paragraph II.1.3.4 and [174]). 

 

6. NEUROANATOMY 

6.1. The LHPA axis 
Previously the HPA axis has been described as consisting of the hypothalamus, pituitary and 

adrenal medulla, which cooperate in the responses to stress. However, in some cases it would 

be more accurate to speak of an LHPA system, with the L standing for limbic. The limbic 

lobe was described by Paul Broca (1824 – 1880) as a ring-formed structure around the 

brainstem, consisting of the cingulate cortex, the temporal lobe cortex and the hippocampus. 

Later it was found that the limbic lobe was important for the generation of emotion. Papez 

showed that the limbic lobe, together with the anterior nuclei of the thalamus, formed a 

functional connection between the cortex and the hypothalamus [240]. This circuit was later 

extended to include the amygdala [156]. Now the limbic system, a term introduced by Paul 

MacLean in 1952 [191], is used to represent the brain regions that generate and regulate 

emotions (see also Figure 3 and Figure 4) [107]. This system is important in the modulation 

of the HPA axis activity, and hence the term LHPA axis is found more and more often. 

It is well-described that the way an organism reacts to a stressor is related to characteristics of 

the stressor (severity, chronicity, predictability, controllability), previous experience and on  
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Figure 3. Overview of the human brain with structures that form a part of the limbic system [36].  

the subject (age, strain, species) (see e.g. [6, 187, 209, 222, 338]). It is hypothesised by 

Herman et al. [135, 137] that the activation of different neuronal circuits may partly underlie 

these differences. In case of a genuine homeostatic challenge, in which a stressor is present 

that is recognised by sensors like nociceptors, chemo-, baro- and osmoreceptors, sensors that 

respond to glucose, leptin, insulin, renin-angiotensin, atrial natriuretic peptide or sensors 

reacting to inflammatory agents, a so-called ‘systemic’ pathway is thought to be activated.  

This ‘systemic’ pathway relays information that enters the brain and needs little sensory 

processing directly from the brainstem to the hypothalamus, so that responses are reflexive 

and fast [137]. But also in absence of such a physiological stressor, HPA axis activation can 

occur in the anticipation of a challenge and its concomitant homeostatic disruption. These 

anticipatory responses can either be acquired by learning (conditioning paradigms), or can be 
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innate (reactions to predators, unfamiliar situations, social challenges, or e.g. brightly lit 

places in case of rodents). To avoid an unnecessary allostatic load (the ‘cost’ of prolonged 

stimulation or overstimulation of adaptive processes [202, 203]) the HPA responses to 

anticipated stressors are thought to be under the control of limbic structures, such as the 

hippocampus, amygdala and the prefrontal cortex (PFC), that first need to appraise the 

emotional significance of the stimulus before the HPA axis is activated [137]. These higher 

brain structures receive polysensorial and associational input, rather than primary sensory 

information [137]. Further indications exist that even within the group of processive or 

psychological stressors, different brain areas may be activated. A predator odour for example 

activated dopamine metabolism in the amygdala, but did not activate the nucleus accumbens, 

whereas the opposite was true for a conditioned fear situation [222]. Also purely 

psychological (psychogenic) stressors and those that also have a physical component 

(neurogenic stressor) differ in their impact [6, 187]. 

 

Figure 4. A schematic representation of the LHPA axis [107]. 

 
Of the higher brain structures that are involved in the responses to these stressors, the 

hippocampus exerts the strongest inhibitory influence on the hypothalamus (somewhat 

depended on subfield [92]), via a polysynaptic pathway, in which acetylcholine, gamma-

aminobutyric acid (GABA) and glutamate are important mediators [137]. Also the prefrontal 

cortex, especially its dorsal subregions, can inhibit the HPA axis responses to anticipatory 

stressors. The neurotransmitters NA and dopamine play a role in this [137, 308]. The lateral 

septum is implied in stress regulation as well. Neurons in this area are robustly activated by 

various processive stressors, that then exert an inhibitory influence on the PVN via 
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GABAergic neurons [135, 137]. In contrast, the amygdala offers an excitatory influence [135, 

137, 224]. The amygdala again consists of different nuclei. The central nucleus is involved in 

some systemic stress responses, whereas the basolateral nucleus is activated by anticipatory 

stressors. The medial nucleus takes an intermediate position [137]. The structures mentioned 

here can exert their influences also via other brain regions, like the nucleus of the solitary 

tract, the preoptic area and the PVN surrounding areas. These latter regions may also mediate 

‘systemic’ responses [137]. 

 

6.2. Relevant brain areas in emotion and depression 
Before listing brain regions that are relevant for emotion, it is important to realise that there 

are several phases that are part of the perception of emotion. First, a stimulus must be 

identified and appraised as having emotional significance. Second, an affective state has to be 

produced in response to the stimulus, which includes autonomic, neuroendocrine and 

behavioural components. Third, the affective state and emotional behaviour must be 

regulated, influencing the first and second step, so that it stays appropriate to the situation 

[248]. Both animal and human studies have shown that the amygdala is the most important 

structure in the first step of the process. Also the insula and the ventral striatum and thalamus 

have been mentioned as important to recognise displays of disgust especially.  

For the production of an affective state again the amygdala is mentioned as a key player. 

From here, projections to many brain regions mediate physiological and behavioural 

reactions. Septal nuclei and the bed nucleus of the stria terminalis (BNST, also called part of 

the ‘extended amygdala’ [68]) are functionally and anatomically related to the amygdala, and 

also play a role in fear and anxiety-like responses [224]. Also important in the production of 

an affective state are the reward pathways, the anterior cingulate cortex, the orbital and the 

medial prefrontal cortex (mPFC).  

To regulate affective states, the prefrontal cortex is important as well as the hippocampus. 

The latter structure has been hypothesised to play an important role in the inhibition and 

facilitation of defensive behaviour and anxiety in response to (potentially) threatening 

situations, as well as in spatial cognition and episodic memory. The hippocampus also has 

been named a ‘general purpose comparator’ [115], with a central role in determining the 

extent of conflict between behaviours that serve different goals, in facilitating exploratory 

patterns over defensive patterns of behaviour and allowing resolution of the goal conflict.  

The role of the prefrontal cortex is dependent upon subregion. The dorsal regions for example 

are implicated in cognitively demanding tasks, which need to take attention away from 
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emotion and for planning-based regulation of emotional behaviour. Activity of the dorsal 

PFC is found to be decreased in depressed patients [27, 86, 87]. The ventral regions mainly 

have a role in regulation at an unconscious or automatic level.  

The anterior cingulate gyrus is involved in early stages of learning, and disruptions in this 

region causes errors and attentional deficits. The anterior cingulate is also important in the 

anticipatory reactions to arousal or in the performance of relaxation tasks [248]. 

 

In depression research the hippocampus has been the brain region most extensively 

investigated. But to be expected from the above, it becomes more and more clear that many 

brain areas mediate the diverse symptoms of depression [225]. Brain imaging studies have 

shown volume reduction or altered activity in and thus implied the involvement of not only 

the hippocampus, but also of areas in the prefrontal and cingulate cortex, striatum, amygdala 

and thalamus, although some findings are contradictory [224].  

The neocortex and hippocampus might mediate the cognitive symptoms of depression 

(feelings of worthlessness, guilt, suicidality). The reward pathways in the brain, which 

encompass the dopaminergic neurons from the ventral tegmental area (VTA) in the ventral 

midbrain to the forebrain (i.e. the nucleus accumbens and the ventral striatum) regulate the 

animal’s response to natural reinforcers such as food, sex and social interaction. Interest in all 

these activities is diminished during a depression, suggesting a role of the reward centres in 

the disease [225]. The striatum and the amygdala, also important for emotional memory, are 

therefore thought to be involved in anhedonia, anxiety and reduced motivation. Volume 

reduction of the amygdala may result in a restricted range of emotions to be recognised and 

experienced, with a bias towards the identification of negative emotions [249]. 

The hypothalamus finally might mediate the neurovegetative symptoms of depression, like 

sleep disturbance, appetite and energy loss, and disinterest in sex and pleasure [224]. 

 

The brain structure that is focused on in anxiety is the amygdala (see Figure 5). It processes 

sensory information via two pathways. Through one rapid pathway, sensory information is 

received directly from the thalamus, the structure where all sensory information from the 

body is received and filtered. The second pathway is more complex and involves input from 

nuclei in the brainstem, from the hippocampus, the medial prefrontal cortex and cortico-

striato-thalamo circuits. All sensory information, gated through the thalamus, reaches the 

amygdala in the lateral nucleus. From here it is passed on to other nuclei. The central nucleus 

coordinates the information from multiple nuclei and generates a behavioural response. 
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Connections from the central nucleus to PVN, striatum and other brain regions make sure that 

the response is executed [153]. 

 

Figure 5. Schematic representation of brain regions, including the amygdala, that are involved in 
formulating a response upon presentation of an aversive stimulus [36]. 

 

Under normal conditions the amygdala continuously monitors the sensory information that is 

redirected from the thalamus and cortical regions. These are compared to known aversive or 

appetitive stimuli. Recognition of such associations activates pathways involving the central 

nucleus or the BNST in case of anxiety or fear related stimuli or of the nucleus accumbens in 

case of pleasant associations. 

Under basal conditions the hippocampus attenuates the responses of the amygdala. Under 

stressful conditions the hippocampus gives information on the context of the threat and 

makes it possible to retrieve information from explicit memory. It activates the amygdala and 

potentiates memory formation in case of aversive incidents. When the hippocampus is not 

properly functioning this often leads to a fail estimation of the context of a potential threat 

and an overgeneralised fear response, a hallmark of anxiety disorders [153]. 

The prefrontal cortex provides information on changes in the threatening stimulus or whether 

the danger has passed [153]. To extinct aversive memories, input from the cortex is needed. It 
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is proposed that the PFC provides cognitive control over stress and fear responses and 

mediates tolerance toward anger, anxiety and frustration [74, 163, 165, 166]. Psychotherapy 

might function through increasing the cortical control over the limbic pathways [165]. 

Reciprocally, under stressful circumstances the amygdala inhibits the functioning of the 

prefrontal cortex, to not have a delaying cognitive control when rapid instinctual responding 

is needed [111]. 

 

7. NEUROTRANSMITTERS 

The role of monoamines in depression has been mentioned before. In the following 

characteristics will be given of the monoamines serotonin, noradrenaline and dopamine, as 

well as some indications of their involvement in stress, depression and anxiety. 

 

7.1. Serotonin 

7.1.1. General 

Serotonin owes its name to its discovery in serum, as a compound that makes muscles 

contract. Serotonin is also present in blood platelets, chromaffin cells of the intestinal mucosa 

and in the central nervous system. 

Serotonin is synthesised (see Figure 6) from the essential amino acid tryptophan. Tryptophan 

is converted to 5-hydroxytryptophan by the enzyme tryptophan-5-hydroxylase, that is 

converted by l-aromatic amino acid decarboxylase to form serotonin. The synthesis is limited 

by the availability of tryptophan.  

Figure 6. The synthesis  and metabolism of  serotonin. 
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After release of 5-HT, its action is terminated by the reuptake of serotonin through 5-HT 

transporters in the presynaptic membrane. Serotonin is also metabolised by monoamine 

oxidase and aldehyde dehydrogenase to yield 5-hydroxyindole-3-acetic acid (5-HIAA). 

 

When serotonin is released in the synaptic cleft after an action potential, it exerts its effects 

via a multitude of 5-HT receptors. So far 7 families of receptors are known (5-HT1-7) with 15 

subtypes. All of these receptors are G-protein coupled, except the 5-HT3 receptor that is an 

ion-channel receptor.  

 

Figure 7. Schematic representation of a serotonergic neurone with pre- and postsynaptic serotonergic 
receptors. 

 

The 5-HT1A receptor exists both as postsynaptic receptor (in the hippocampus, septum, cortex, 

amygdala and other limbic structures) and as a presynaptic receptor that occurs on the cell 

body (mainly in the raphe nuclei). The postsynaptic receptor is a heteroreceptor, and can also 

be found on neurones that use other neurotransmitters, like NA. The presence of such 

heteroreceptors means that an alteration in serotonergic neurotransmission may modulate 

non-serotonergic systems as well. As presynaptic receptor it suppresses the activity of the 

serotonergic neurons.  

Also 5-HT1B/D receptors are found presynaptically, on axon terminals, where they inhibit the 

release of more 5-HT [71]. The highest density is found in the substantia nigra, but also in the 

hippocampus, caudate and the putamen. The 5-HT1B receptor can also exist on non-
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serotonergic neurons, and there may modulate the release of NA, dopamine, glutamate and 

GABA. Not only does 5-HT influence its own release, but GABA and histamine also have 

inhibitory effects on serotonergic neurotransmission [145]. Conversely, noradrenaline and 

glutamate have an excitatory influence [145].  

5-HT2 receptors are found postsynaptically, as are 5-HT3 receptors [145, 153]. 

The cell bodies of serotonergic neurons form clusters. The five caudally located clusters 

project to the spinal cord, whereas the four most rostral clusters in the dorsal and median 

raphe nuclei (DRN and MRN) project to the mid- and forebrain [145]. The effect of serotonin 

in the brainstem and spinal cord is mostly that of excitation, whereas it is usually inhibitory in 

the forebrain [145]. 

 

Figure 8. Serotonergic pathways in the rodent brain. Adapted from [48]. 

As can be taken from Figure 8, the serotonergic pathways project to a multitude of brain 

regions, that are involved in a host of functions. Serotonin is therefore involved in sleep and 

arousal, feeding behaviour, sexual behaviour, pain perception, the control of body 

temperature, memory formation, the regulation of mood and of motor behaviour, to name a 

few [48, 145, 189, 280]. The neurons originating from the dorsal and the median raphe 

nucleus project to different brain structures but with considerable overlap. Limbic structures 

seem to be mainly innervated from the median raphe nucleus, whereas structures in the basal 

ganglia, like the striatum, are primarily innervated from the dorsal raphe nucleus [258]. 

Inputs to the raphe nuclei arise from brainstem nuclei such as the ventral tegmental area (via 

dopaminergic neurons) and the locus coeruleus (LC, via noradrenergic neurons). Interestingly, 

the prefrontal cortex, hyperactive in some anxiety and depressive states, can inhibit raphe 

activity via 5-HT1A- and GABAA receptors [50, 87, 173], although, after depletion of 5-HT, 



INTRODUCTION 
 

 

43

activation of the mPFC resulted in activation of the raphe nuclei, mediated by glutamate 

receptors [50]. 

 

7.1.2. Involvement in stress, anxiety and depression 

Reciprocal interactions between the serotonergic system and the HPA axis have been 

described. Neurons from the raphe nuclei project to the PVN, where 5-HT influences the 

levels of CRH, ACTH and other stress hormones through 5-HT1A and 5-HT2A receptors [57, 

124, 238, 327]. Most information from the raphe nuclei however reaches the PVN via 

GABA-ergic interneurons. 5-HT thus probably influences the PVN indirect via heavy 

innervation of limbic structures [237]. 5-HT also modulates the negative-feedback of 

glucocorticoids on the HPA axis [141, 194, 285].  

Conversely, stress is associated with increased activity of the dorsal and median raphe nuclei 

[54, 129, 185, 250, 318], and most researchers find increases in the extracellular levels of 5-

HT or in the activity of serotonergic neurons in several brain areas under stressful conditions 

(reviews: [54, 193, 277]). The 5-HT synthesis rate is reduced in adrenalectomised animals 

[331], which effect is probably mediated over GR receptors in the hippocampus that are 

projecting to the raphe nuclei. In the hippocampus, MR and GR are often colocalised with the 

5-HT1A receptor, the expression of which is suppressed by corticosterone [146]. The 

expression of the 5-HT1A receptor can be influenced by corticosterone [52]. 

 

Serotonin, the serotonin transporter and practically all receptor subtypes also play a role in 

anxiety and depression [193, 207]. Indications for this are that the chance of a depression 

increases if one interferes with the availability of tryptophan, or when the synthesis of 

serotonin is blocked by PCPA (parachlorophenylalanine). Suicide victims also show reduced 

levels of serotonergic markers [78, 192]. 

A reduction in the serotonin transporter availability was found in the brains of depressed 

patients [196] and of patients with a generalised anxiety disorder [143]. Also the allele for the 

short form of the serotonin transporter promoter is associated with a poor response to SSRI 

[225].  

Knockout mouse models of the 5-HT1A receptor induced an increase in anxiety like behaviour 

[133, 241]. The selective 5-HT1A agonist buspirone is effective in the treatment of anxiety 

and depression [331]. A 5-HT1B knockout had a less anxious behavioural profile [201, 353]. 

5-HT2A receptor antagonists decreases the behavioural and physiological responses to stress, 

and are anxiolytic in some animal models. 5-HT2B agonists, 5-HT3 antagonists and 5-HT2C 
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antagonists appear to be anxiolytic, but the latter unfortunately have an increased food-intake 

and weight gain as a side effect.  

Chronic treatment with antidepressants cause levels of 5-HT in the forebrain structures and in 

the raphe nuclei to increase [18, 33], along with a reduction in the density of 5-HT2 receptors 

[274] and an increase in the density of 5-HT1A receptors [75, 131].  

In preclinical models of anxiety an increase of 5-HT function is associated with aversive 

behaviours. Conversely, drugs that reduce serotonergic function reverse fearful behaviours. 

Acute administration of SSRIs increase serotonergic concentrations by blocking the serotonin 

reuptake transporter. Indeed, the acute administration of SSRIs is known to first increase 

anxiety symptoms in patients. This elevation in 5-HT however is tempered by activation of 

autoreceptors that inhibit further release of 5-HT. With time, the autoreceptors become less 

responsive. Simultaneously, postsynaptic 5-HT receptors become downregulated, and also 

other systems may be influenced, resulting in the antidepressant and anxiolytic properties of 

SSRI [153]. 

 

7.2. Noradrenaline 

7.2.1. General 

Noradrenaline is a catecholamine that is synthesised in central noradrenergic neurons, as well 

as in the periphery.  

Noradrenaline is synthesised from the amino acid tyrosine (see Figure 9). The enzyme 

tyrosine hydroxylase catalyses the transition to DOPA, which is decarboxylated by DOPA-

decarboxylase to dopamine. This in turn is transformed to noradrenaline by dopamine-β-

hydroxylase. The step from tyrosine to DOPA is rate-limiting.  

After release, the action of noradrenaline is mainly terminated by an efficient reuptake 

mechanism, but NA is also metabolised by MAO-A and COMT (cathechol-O-

methyltransferase). The most significant metabolic product of NA is MHPG (3-methoxy-4-

hydroxyphenylglycol) [149]. Noradrenaline can interact with three families of adrenergic 

receptors, all of which are G-protein coupled. These are the β-family, divided into β1, β2 and 

β3 receptors, and the α1(a,b) and α2(a,b,c) families. The β receptors are the most important 

adrenergic postsynaptic receptors and all have an excitatory effect after activation. So are the 

α1 receptors. The α2 receptor in contrast is located on the cell body, as well as 

postsynaptically. Pre- and postsynaptically it decreases the release of NA [258]. 
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The cell bodies of the noradrenergic neurons are organised in six clusters, of which the locus 

coeruleus is best-known. Here, extensive projections to numerous areas originate. The locus  
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Figure 9. Synthesis of dopamine and noradrenaline and the metabolism of NA. 

coeruleus projects to, among other structures, the prefrontal cortex, the amygdala, the bed 

nucleus of the stria terminalis and the hippocampus, all involved in the processing of stress as 

described before. More than 70% of the noradrenergic forebrain innervation stems from the 

LC [173]. The LC also receives innervation from various structures, among which a 

projection from the amygdala that uses CRH to stimulate the LC during stress [326].  

 

7.2.2. Role in stress, depression and anxiety 

Exposure to stressful stimuli or novelty increases NA release and turnover in the LC, the 

hypothalamus, the amygdala and the hippocampus. Interestingly, this effect is stronger with 

uncontrollable or less predictable stress [153].  
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Figure 10. Noradrenergic pathways in the mouse brain. The pathways originate from the medulla 
oblongata, pons (localised left beneath the locus coeruleus in the picture) and the locus coeruleus. 
Adapted from [48]. 

One important structure that is noradrenergically innervated is the PVN. NA is a potent 

stimulator of the release of CRH [153]. For stressors like immobilisation, formalin injections, 

haemorrhage and insulin injections, the amount of noradrenaline that can be measured in the 

PVN of rats with microdialysis correlates with mean plasma ACTH levels [232]. During 

stress levels of CRH in the locus coeruleus are also increased, and when CRH is administered 

into the LC the response to anxiety is enhanced [153], as are the levels of NA in the cortex. 

High levels of glucocorticoids do not only decrease the synthesis of CRH, but also the levels 

of NA in the PVN and additionally decrease the effect of NA on the release of CRH [153]. 

In the hippocampus, NA elevations switch its function from a memory formation state when 

it is not behaviourally activated to a state of enhanced stimuli detection when aroused with 

novelty or stressed with aversion [115]. NA also modulates the amygdala to regulate stress or 

fear related memory [44]. 

 

It is thought that in patients the levels of NA are relatively low under the basal conditions, 

and that due to this decreased tone the receptors are supersensitive. During stress-induced 

increases in NA levels the system reacts sensitised. 

Indications for this are a decreased neuronal density in the LC in depression [9], increases in 

the enzyme tyrosine hydroxylase to be able to synthesise more NA, and increases in the 

presynaptic α2 receptor densities and lower levels of the NA transporter, all regulatory 

mechanisms to increase the synaptic levels of NA when this is lowered over a longer period 

of time [155, 228, 229]. 
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All noradrenergic receptors have been implicated in anxiety and depressed states. The 

prefrontal cortex for example receives a strong noradrenergic input from the locus coeruleus, 

implied in the responses to anticipatory stressors [137]. Stress-enhanced NA-release affects 

the function of the prefrontal cortex through α1 receptors and causes impaired performance on 

memory tasks [25]. These receptors are therefore a potential target to treat poor concentration 

and performance as seen during excessive anxiety. 

The presynaptic α2 receptor antagonist yohimbine can induce panic, whereas the agonist for 

the same receptor, clonidine, has anxiolytic properties [39, 323]. 

The β receptors may play a role in the consolidation of traumatic memory, and β receptor 

antagonists as propranolol may have a role in the treatment of PTSD [45, 256]. 

Chronic treatment with antidepressants causes a decrease in LC firing, a downregulation of β 

receptors and a decrease in the activity of tyrosine hydroxylase. 

 

7.2.3. Interactions between 5-HT and NA 

It has been suggested that the role of NA is mostly one of behavioural activation, vigilance 

and fight or flight. In contrast 5-HT seems to promote homeostasis via behavioural inhibition 

and tolerance to aversive stimuli, and via control of sleep, appetite and sexual behaviours 

[258]. Obviously, numerous interactions between the serotonergic and noradrenergic system 

must exist to coordinate these processes. 

Serotonergic projections from the dorsal raphe indirectly inhibit firing of the locus coeruleus 

via 5-HT1A and 5-HT2 receptors, whereas noradrenergic projections from the LC have an 

inhibitory effect on the median raphe via α2 receptors and both excitatory and inhibitory 

effects on the dorsal raphe via α1 and α2 receptors respectively. Apart from direct influences 

of the two neurotransmitter systems through heteroreceptors (see also Figure 11), numerous 

interactions exist mediated by interneurons, that usually use GABA or glutamate as 

neurotransmitter [337].  

In depression and anxiety the serotonergic system seems to be underactive and the NA 

system seems to be overactive (see above). All this might cause an overactivation of 

amygdala, hippocampus and cortical pathways that activate the stress and fear responses and 

an underactivation of cortical areas that inhibit these responses. Chronic treatment with 

antidepressants normalises the balance. Again, it is not necessarily true that normalising the 

balance per se heals, it can also be the beginning of, or a part of, a cascade of adaptive 

processes involving many neurobiological systems. 
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Figure 11. Targets within the serotonin synaps, showing heteroreceptors and autoreceptors. SERT: 
serotonin reuptake transporter, NRT: noradrenaline reuptake transporter, heteroreceptors and 
autoreceptors [153]. 

 

7.3. Dopamine 

7.3.1. General 

Dopamine is not only an intermediary product of the NA-synthesis (see Figure 9), but as 

Arvid Carlsson found out around 50 years ago, functions itself as well as a monoaminergic 

neurotransmitter in the CNS. The effects of dopamine, like noradrenaline, in the synaptic 

cleft are primarily terminated by reuptake and by metabolism. MAO metabolism of dopamine 

produces 3,4-dihydroxyphenylacetic acid (DOPAC), that is further metabolised by COMT to 

homovanillic acid (HVA) (see Figure 12). 

Two families of dopamine receptors have been described, consisting of five receptor types in 

total. D1 and D5 receptors are related, as are D2, D3 and D4 receptors. D1 receptors can be 

found in the striatum, the substantia nigra and the cortex. These receptors have stimulating 

properties. D2 receptors are located in the striatum, the cortex and the pituitary. The D2 

receptor also exists presynaptically and on the cell soma. Contrary to D1 receptors they are 

inhibitory.   
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Figure 12. Metabolism of dopamine. 

 

There are three dopaminergic tracts. Dopaminergic neurons that originate in the substantia 

nigra project to the striatum (caudate nucleus and putamen) and are involved in the initiation 

and coordination of movement (see Figure 13). This is the tract that degenerates in 

Parkinson’s disease [149]. 

Then there are neurons from the periventricular area of the hypothalamus projecting to the  

 

Figure 13. Dopaminergic pathways. Adapted from [48]. 

infundibulum and anterior pituitary, where DA inhibits the release of prolactin. A third 

dopaminergic pathway originates in the ventral tegmental area and projects to the limbic 

system and neocortex, and has a role in emotional expression [149]. One of the targets of 

dopaminergic neurons from the VTA is the nucleus accumbens (NAc). This structure and 

dopamine play a critical role in reward and are mostly studied in the context of drugs of 
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abuse. However, some reports hint that the VTA-NAc pathway is also associated with 

depression [224]. 

 

7.3.2. Role in stress and depression 

The PVN is innervated by neurons from the zona incerta, that are mainly dopaminergic [56]. 

Dopamine is known to activate the HPA axis [38], but it is unknown whether this happens 

directly or via interneurons. Also dopaminergic input to the prefrontal cortex is stress-

sensitive and may affect the output of the HPA axis [137]. 

Acute stress, like restraint or footshock, increased the release of dopamine in the mesolimbic 

system [254]. A reduction in dopamine transporter binding sites was found in the caudate 

nucleus and putamen of stressed treeshrews [2]. Also in the learned helplessness model, 

significant alterations in D1 and D2 receptors were found [160]. 

Although dopamine is mainly implicated in Parkinson’s disease (hypoactivity of the 

dopaminergic system) and schizophrenia (hyperactivity), dopaminergic hypoactivity has also 

been implicated in depression [212]. One indication is the higher incidence of depression in 

patients with Parkinson’s disease. It also has been found for example that dopaminergic 

metabolites are decreased in some depressed patients, and it has been shown that l-DOPA, an 

antiparkinsonian drug, can be useful in the treatment of retarded depression [149]. 

Amphetamine and methylphenidate, dopamine reuptake inhibitors, cause euphoria in healthy 

individuals and depressed patients [181, 227] an effect that is blocked by dopamine 

antagonists. D2/D3 receptor agonists decrease the immobility time in the Porsolt swim test 

[36]. In clinical situations the dopaminergic system is manipulated by using for example 

sertraline, one of the SSRIs, which does not only inhibit the serotonin transporter, but also 

that of dopamine [224]. When antidepressant monotherapy is unsuccessful, sometimes a 

dopamine agonist (like methylphenidate) is added to potentiate the effect of the 

antidepressant.  

 

8. AIMS 

On the previous pages it has become clear that in the field of the depression and anxiety 

research the search for suitable behavioural models continues and that predator exposure has 

interesting features that make it a promising behavioural model. On an anatomical level brain 

areas have been mentioned that play an important role in emotional and behavioural 

responses and finally, on a neurochemical level, the major neurotransmitters have been 
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named, that all seem to play a role in the etiology of depression. All these levels were 

combined in experiments measuring various neurotransmitters and metabolites with 

microdialysis in various brain regions of freely moving mice, exposed to a rat exposure 

paradigm. 

Prior experiments indicated that half an hour of rat exposure caused freezing behaviour and 

increases in free corticosterone, as well as in extracellular levels of 5-HT and 5-HIAA in the 

hippocampus of B6C3F1 mice [174]. It was decided to dedicate more time to a project 

concerning rat exposure, to learn more about the neurochemical aspects of this relatively new 

paradigm, evolving in the project at hand. 

This time a more current strain was chosen as subjects, C57bl/6N mice. The first question 

that arose was how levels of 5-HT and 5-HIAA varied over the phases of rat exposure, i.e. 

before, during and after the paradigm. The analysis method was optimised to enable the 

measurement of samples that were collected during intervals as short as 5 minutes. In 

addition, behaviour of the mice was carefully observed. The idea was that this might enable a 

correlation of higher or lower neurotransmitter levels to certain behaviours that might 

indicate either anxiety or coping behaviour. Also it was thought that behavioural analysis 

might make it possible to pinpoint behaviours that could be focussed on as a novel model for 

stress or for depression/anxiety research. As a final step it was planned to test the effect of 

antidepressants, to see how behaviour and levels of 5-HT and 5-HIAA would be different 

under predator exposure. As the project progressed however, aims needed to be adapted. 

Gradually the following questions were formulated, that this thesis aims to answer. 

• How do C57bl/6N mice behave before, during and after rat exposure? 

• Which changes in behaviour during rat exposure indicate anxiety or coping? 

• When animals are subjected to rat exposure again, does their behaviour differ from 

the first experience? 

• How do levels of 5-HT and 5-HIAA change over time under a predator exposure 

paradigm in C57bl/6N mice in brain areas that are primarily involved in emotion, 

such as the hippocampus, prefrontal cortex and lateral septum (LS)? 

• How do levels of 5-HT and 5-HIAA change in the caudate putamen, a region that was 

chosen as a control structure, because it is not primarily associated with emotion but 

with motor activity? 

• Can levels of neurotransmission be related to specific behaviours? 

• Is there an effect of the repetition of rat exposure on the levels of neurochemicals? 
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• The same applied to the measurement of NA, its metabolite MHPG and the 

metabolites of dopamine DOPAC and HVA in the hippocampus of C57bl/6N. 

 

When it was found that the neuroendocrine effects of rat exposure on C57bl/6N mice differed 

from those on B6C3F1 mice the following questions became interesting: 

• Do various strains of mice respond to predator exposure with differences in plasma 

levels of ACTH and corticosterone (CORT)? 

• Do various strains of mice respond with a different behavioural sequelae to predator 

exposure? 

• Do levels of corticosterone correlate with behaviour? 

• Do CRH-Tg (CRH-transgenic) mice, genetically engineered to have more anxious 

traits, respond differently to rat exposure than the wild type mice? 

 

As it was found that the profile of responses in Balb/c mice differed from that in C57bl/6N 

mice, microdialysis studies were performed in Balb/c mice as well, aimed to answer the 

following questions: 

• Are differences in behaviour between C57bl/6N and Balb/c mice reflected in 

differences in extracellular levels of 5-HT, 5-HIAA, NA, MHPG, DOPAC and HVA 

in the hippocampus? 

• Are behaviour and levels of neurochemicals differentially affected by re-exposure in 

these two strains? 

 

Finally, brain structures known to be involved in HPA axis regulation were studied. Levels of 

5-HT, 5-HIAA, MHPG, DOPAC and HVA were measured in the paraventricular nucleus and 

anterior hypothalamus (AHP) of Balb/c mice (NA remained below the detection limit). 

Questions related to this were: 

• What are the differences between neurotransmitter and metabolite levels in the AHP, 

PVN and the hippocampus? 

• What indications of stress can be conferred from these levels? 
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II. MATERIALS AND METHODS 

 
The experiments that were conducted in this study can roughly be divided into two groups: 

studies involving microdialysis and studies that involved the measurement of the plasma 

levels of the stress hormones ACTH and corticosterone. As the setup and methods for these 

experiments were different, the setups will be described separately. 

 

1. EXPERIMENTS USING MICRODIALYSIS 

The technique of microdialysis is introduced, followed by the specifications of the used setup. 

Then a general time frame of the experiments is given, followed by details about each step in 

this time frame. 

 

1.1. Microdialysis - Theoretical background 
Microdialysis is a technique that enables the monitoring of the levels of neurotransmitters and 

other compounds in the extracellular space of specified brain regions. The levels that can be 

measured mirror the total of release, reuptake and metabolism of the substance of interest 

during a certain time period. 

Microdialysis is a very refined technique that has not only the advantage that it can be 

performed in alive, freely moving animals, but also that it enables to get insight in the 

temporal course of neurotransmission [339]. This provides major advantages over for 

example brain punctures, where brain tissue is homogenised post mortem and analysed for 

  

Figure 14. Schematic representation of the microdialysis cannula and its tip, showing the inlet, outlet and 
liquid flow through the tip of the cannula. Taken from the website of CMA/microdialysis. 
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the contents of neurotransmitters. Microdialysis is also more sensitive than voltammetry, the 

one other in vivo technique used to monitor the chemistry in the brain.  

In microdialysis a cannula is implanted in the brain area of interest. The cannula has a tip, 

consisting of a semi permeable membrane of various lengths (for mice typically 1, 2 or 3 

mm) (see Figure 14).  

An inlet and outlet to the cannula make liquid flow possible through the cannula. When the 

liquid flows along the membrane, due to diffusion, an equilibrium will be approximated for 

molecules in the extracellular brain tissue surrounding the probe and the liquid flowing 

through the probe. As the membrane used in these studies has a cut off value of 6000 Da (i.e. 

the molecular weight at which 80% of the molecules are prevented from passing the 

membrane is 6000 Da), molecules like serotonin, noradrenaline and their metabolites can 

flow through the membrane, but proteins can not. 

The recovery rate, i.e. the amount of neurotransmitter in the surrounding medium that can be 

detected in the dialysate, depends on the flow rate of the liquid through the probe (usually 2.0 

µl/min), on the membrane length and diameter (the surface area over which exchange takes 

place), the weight, shape and charge of the molecule of interest and the temperature. Before 

endogenous substances are measured, the recovery of these should be established, to make 

sure that microdialysis is a suitable technique. Because a larger membrane can be chosen for 

larger brain regions, the recovery can easily be increased.  

 

1.2. Microdialysis set-up 
In the setup that was used, the inlet of the microdialysis probe (CMA/11, CMA/Microdialysis 

AB, Stockholm, Sweden, cuprophane membrane) was attached to a dual channel low-torque 

liquid swivel (Instech Laboratories, Plymouth, PA, USA) with a 30-cm piece of 

fluorethylenepolymere tubing (Microbiotech, Stockholm, Sweden; dead volume of 1.2 µl/100 

mm length), and from there to a microinfusion pump (TSE Technical and Scientific 

Equipment GmbH, Bad Homburg, Germany) with tubing of 50 cm long. Syringes with a 

volume of 2.5 ml, filled with sterile and pyrogen free Ringer (Delta Pharma, Pfullingen, 

Germany; composition 147 mM NaCl, 4 mM KCl, 2.25 mM CaCl2), were placed in the pump 

and served as the source of liquid, perfusing the system at 2.0 µl/min. The outlet side of the 

probe was also connected to the swivel with 30 cm of tubing, and from there to an automated 

refrigerated fraction collector (Microsampler 820, Univentor, Malta), with 100 cm of tubing. 

 



MATERIALS AND METHODS 
 

 

55

The swivel is a helpful tool to avoid that the inlet and outlet tubing to and from the 

microdialysis probe get tangled up. The swivel hanged from the side of the cage top on a 

counterbalancing arm, so that it did not pull or push on the head of the mouse once the 

microdialysis cannula was implanted. Use of a swivel did not interfere with the animals 

motions and was not stressful for them. 

Dialysate was collected in cooled vials in the autosampler. The autosampler rotated an empty 

vial under the outlet after a programmable amount of time, so that the series of vials made it 

possible to follow neurotransmitter levels over time. 

 

1.3. Overview of the experiments 
The general timeframe of the microdialysis experiments can be found in Table 2. 

 

Table 2. General timeframe of microdialysis experiments. 

Time in days Action 
- 7 or earlier • Arrival of animals, individually housed in standard cages 
0 • Operation: implantation of guide cannula, housed in rat 

exposure cages 
8 • Implantation of microdialysis cannula, start of perfusion 
10 • Experiment: rat exposure 
11 • Experiment: re exposure and killing 
later • Histological verification of probe location 

• Analysis of microdialysate using HPLC with electrochemical 
detection 

• Behavioural analysis 
• Statistical analysis 

 

The following sets of experiments were conducted, all using the rat exposure and re-exposure 

paradigm as described above: 

• Measurement of 5-HT and 5-HIAA in the hippocampus, prefrontal cortex, lateral 

septum and caudate putamen of C57bl/6N mice. 

• Measurement of NA, MHPG, DOPAC, HVA in the hippocampus of C57bl/6N mice. 

• Measurement of 5-HT, 5-HIAA and of NA, MHPG, DOPAC, HVA in the 

hippocampus of Balb/c mice. 

• Measurement of 5-HT, 5-HIAA, MHPG, DOPAC and HVA in the anterior 

hypothalamus and the paraventricular nucleus of Balb/c mice. 

 

Apart from these experiments, related or slightly different experiments were conducted, using 

the same time schedule or techniques. These were: 
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• In-vitro experiment 

To determine the recovery for the various compounds that were measured, an in vitro 

experiment was carried out. Two 1-mm membrane length and two 3-mm membrane 

length microdialysis probes were hung in Eppendorf vials filled with Ringer with 

known concentrations of 5-HT (5 fmol/15 µl), 5-HIAA (7000 fmol/15 µl), NA (5 

fmol/15 µl), DOPAC (1500 fmol/15 µl, MHPG (500 fmol/15 µl) and HVA (2500 

fmol/15 µl), kept at 37 °C with a water bath. Per probe four 15-min fractions of 

dialysate were collected and stored at -80 °C until analysis. In addition, before and 

after the in-vitro experiment, samples were taken directly from the Eppendorf vials. 

The samples were analysed later using HPLC with electrochemical detection. 

Recovery was calculated per compound as the average amount present in 15 µl of the 

dialysates, expressed as a percentage of the amount in 15 µl of the solutions taken 

directly from the vials. 

• Free corticosterone measurements 

Using the time frame described in Table 2 the dialysate of some C57bl/6N mice was 

used to determine the content of free corticosterone, rather than of neurotransmitter 

levels. With 14 animals, all samples obtained during the experiments were analysed 

for their free corticosterone content to get an indication of the time course of this.  

 

The separate steps of the general time schedule, as presented in Table 2 will be described in 

the following paragraphs. 

 

1.3.1. Animals and arrival 

Adult male, experimentally naïve C57bl/6N and Balb/c mice were bought at Charles River 

(Charles River WIGA GmbH, Sulzfeld, Germany) at the age of 12-16 weeks. Upon arrival 

they were housed individually in standard Macrolon II cages with food and water available 

ad libitum. Animals were kept in a temperature (22 ± 1 ºC) and humidity (60 ± 5%) 

controlled room, with a 12 hr light-dark cycle (lights on at 6.00 a.m.). 

Animals were allowed to adapt to their surroundings at least 7 days before any action took 

place. 

As predator, adult male Wistar rats were used, that weighed 200-220 g upon arrival. Rats 

were housed four to a cage, with food and water available ad libitum. Rats were kept strictly 
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separated from the mice, and were not used as predator until a week after their arrival. They 

were used a maximum of three times, each a week apart. 

The experimental protocols were approved by the ‘Ethical Committee on Animal Care and 

Use’ of the Government of Bavaria, Germany and all efforts were made to keep their number 

and suffering limited to the minimum. 

 

1.3.2. Operation 

Animals were transported to the operation room, where they were anaesthetised in a bowl 

with isoflurane (CuraMED Pharma GmbH, Karlsruhe, Germany). During this narcosis, they 

were positioned and immobilised in a stereotactic frame (Stoelting Co., Wood Dale, IL, 

USA), equipped with rat ear bars, a teeth bar, nose rod and a mouse inhalation anaesthesia 

mask (designed in the institute), through which narcosis was continued with isoflurane.  

The fur on the skull was removed with a clipper, after which the skin on the skull was cut 

open. Using the stereotactic instrument, the coordinates of bregma were determined, and the 

location where the guide cannula (length 14 mm, outside diameter 0.7 mm, inside diameter 

0.4 mm, see also paragraph 1.3.12 ) should be implanted was measured off.  

The area around the implantation site was roughened up with a dental drill with saw blade. 

Then, using a drill with conic head, a hole was made in the skull at the precise location of 

implantation.  

The site of implantation was determined based on the mouse brain atlas [243] and on a series 

of dummy operations. In the following table, the used coordinates are listed for the structures 

that were dialysed. 

Table 3: Implantation coordinates for the different dialysed brain regions. 

Brain region Lateral 
(mm from bregma) 

Posterior 
(mm from bregma) 

Ventral 
(mm from bregma) 

Hippocampus - 3.2 - 2.9 -1.7 
Prefrontal cortex - 0.3 + 2.3 -1.0 
Lateral septum - 0.4 + 1.2 -2.2 
Caudate putamen + 1.6 + 0.8 -2.2 
Anterior hypothalamus - 0.3 - 0.7 -4.2 
Paraventricular nucleus - 0.1 - 0.7 -3.7 

 

The guide cannula, attached in the stereotactic instrument, was lowered very slowly through 

the hole in the skull. After reaching the required depth, the cannula was fixed on the skull 

using cyanacrylat glue and dental cement (Paladur, Heraeus Kulzer, Wehrheim, Germany). 

Not until the cement was hardened out, the guide cannula was released from the stereotactic 

instrument. Subsequently, a small metal peg with a tiny hole in the middle was fixed on the 
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skull using the same fixatives. This peg served to attach a metal wire (a tether) to during 

probe implantation, to connect the animal to a swivel and balancing arm. 

The skin was sowed together and a small cap of silicon tubing, closed off at one side with 

silicon glue, was pushed onto the guide cannula, to prevent dirt to settle in the cannula. 

Animals were weighed and returned to their room, where they were placed in the rat exposure 

cages, again with water and food available ad libitum. 

The rat exposure cages were made of Plexiglas and consisted of a compartment of 15x25x30 

cm (wxdxh), separated from a compartment of 10x25x30 cm by a Plexiglas separation wall. 

The mice resided in the larger part of the cage, whereas rats were placed in the smaller 

compartment during rat exposure. The separation wall was equipped with two rows of air 

holes (6 mm in diameter, 2 x 6 holes, 6 and 3.5 cm above the bottom of the wall respectively), 

so that mice and rats could see, smell and hear each other during rat exposure. 

 

Figure 15: A C57bl/6N mouse in rat exposure cage. The mouse has been implanted with a microdialysis 
cannula. 

1.3.3. Implantation of microdialysis cannula 

A day before the implantation, the microdialysis systems (swivel and connecting tubing) 

were flushed with Virkon S (Arovet, Zollikon, Switzerland), a disinfecting agent, and rinsed 

overnight with sterile water (both at a rate of 2.0 µl/min). 
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Implantation of the cannula occurred in the “home” room of the animals, on the eighth day 

after operation. Prior to the procedure, animals were weighed, and a counterbalancing arm 

with a swivel was mounted on the cage. The inlet side of the tubing was flushed with 100% 

ethanol during 30 minutes at 2.0 µl/min. The inlet of the microdialysis cannula was then 

attached to the tubing, and the membrane was hung in a sterile Eppendorf vial, filled with 

100% ethanol. The inlet side of the tubing and the cannula were then perfused with sterile, 

pyrogen-free Ringer during 10 minutes at 2.0 µl/min. The ethanol served to remove glycerol 

from the probes. Consequently, the vial with 100% ethanol was exchanged with one 

containing sterile Ringer, and the probes, now hanging in Ringer, were perfused for an 

additional 10 min. Finally, the outlet of the probe was attached to the tubing, and perfusion 

continued for the duration of the experiment. Extreme care was taken not to introduce air into 

the system – any air bubbles visible with a magnifying glass in the probe were removed 

before the actual implantation took place. 

During the implantation, animals were again briefly sedated using a bowl in which air 

containing isoflurane was guided, and then immobilised using earplugs, teeth- and nose bar, 

equipped with inhalation mask. 

The silicon cap on the guide cannula was removed, and the microdialysis probe was slowly 

and carefully lowered into the guide cannula. When the probe was into place, it was fixed 

using a layer of cyanacrylat glue, dental cement, and glue again. 

Probes had different membrane lengths, depending on region to be dialysed. For the 

hippocampus, prefrontal cortex and caudate putamen, a membrane length of 3 mm was used, 

for the lateral septum one of 2 mm, and for the anterior hypothalamic area and 

paraventricular nucleus a membrane of 1 mm. With the probe correctly located, the 

membrane protruded from under the guide cannula into the tissue. 

A metal wire, attached to the swivel, was attached to the metal peg on the mouse’s skull, 

using a tiny metal cylinder. The animal was then placed into its cage, now connected to the 

microdialysis system. Every morning and evening, the syringes containing Ringer were filled, 

so that the probe was continuously perfused at a rate of 2.0 µl/min. 

 

1.3.4. Predator exposure and killing 

Rat exposure experiments were conducted on the second day after insertion of the 

microdialysis probe (i.e. the 10th day after surgery). In the case that the mice were re-exposed 

to a rat, this happened on the following day, using the same time schedule. Between 8.30 and  
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Figure 16. Rat exposure. In this situation no microdialysis was performed. 

 
10.30 hr baseline microdialysis samples of 15 min were collected. At 10.30 hr rats were 

brought into the experimental room and placed in the smaller compartment of the mouse 

home cage (see Figure 16). At 11.00 hr the rats were removed and brought back to their 

facilities. During the half hour of rat exposure and the consecutive 15 minutes, microdialysis 

samples were collected in 5-min intervals. Then, until 14.00 hr, samples were again collected 

every 15 minutes. To the 5-min samples 20 µl Ringer was added, so that the end volume in 

these vials was the same as the one in those with the 15 min samples. The samples were 

collected in cooled vials in an autosampler. Vials with dialysate were taken out of the 

autosampler at least once an hour and stored on dry ice until the end of the experimental day, 

when they were transferred to the – 80 °C freezer, were they were stored until analysis. 

Freezing did not affect the levels of the compounds to be measured. 

On the days of experiments the animals were also videotaped from 8.30 hr till 14.00 hr using 

security cameras (black/white CCD cameras, Conrad, Munich, Germany). Using a quad-unit, 

four images of cages could be recorded on one tape simultaneously. 

At the end of the second experimental day, mice were killed using an overdose of 

pentobarbital. Microdialysis probes were carefully removed and checked for integrity of the 

membrane and the absence of air bubbles. Brains were collected in 4% formaldehyde, and a 

global section was done to check for any anatomical or pathological anomalies of the subjects. 

Microdialysis systems were flushed with sterile water overnight. 

 

1.3.5. Histological verification 

After the brain tissue was fixed with formaldehyde during at least 24 hours, brains were cut 

in 25 µm slices on a microtome at a temperature of about –20 °C. Every 3rd slice was 
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collected on a gelatinised slide, using the free floating method. In case of hippocampal 

dialysis, brains were cut horizontally, in all other cases transversally. 

To prevent the two hemispheres to fall apart in the transversal cuts, brains were embedded in 

a medium (see paragraph 1.3.12) before freezing them onto the microtome. 

Brain sections were coloured using cresyl violet (or Nissl-staining, see paragraph 1.3.12 for 

procedure). Under a microscope was examined where the guide cannula and probe location 

had been. Only the data obtained with microdialysis probes in the correct location were used. 

 

1.3.6. Video analysis 

The video recordings enabled a detailed behavioural analysis. The behaviour of the mice was 

scored using an instantaneous scoring method, meaning that every 30 sec (pre- and post-rat 

exposure) or every 10 sec (during rat exposure and the following 5 min) it was recorded what 

the mouse was doing at that time point. Data were stored in Microsoft Excel spreadsheets.  

Table 4 lists the behaviours that were scored. 

 

Table 4. Description of the behaviours that were scored from video. Using a decision flow diagram, 
behaviours were assessed and scores could be given in the presented order. Only one score was given per 
time point. In this way, an animal that was rearing but making small head movements as well, received 
only the score ‘rearing’, not ‘sniffing air’. * In case of freezing (‘frozen’ posture, with no movement but 
breathing, tensed tail, and head slightly protruding), which rarely happened, a note was made, but no 
separate score was given. ** Animals that were rearing whilst engaged in food-related behaviour were not 
given the separate score ‘rearing’ as this position was seen as necessary to reach the food. 

Scored behaviour Description 
Inactive Lying or sitting quietly* 
Food-related 
behaviour 

Drinking from bottle, eating from food-trough or in other parts of cage, 
moving food-pellets in trough 

Rearing Full vertical extension of hind limbs and body ** 
Sniffing wall Nose in one of the holes of the separation wall, or very close to the 

surface of the separation wall 
Stretching, retracting Full extension of the body, with arched back, or the opposite movement 
Nesting, digging Gathering bedding with front paws or moving bedding with head 

movements respectively 
Sniffing bedding Nose in or close above bedding, but without moving it around with nose. 

Especially during rat exposure, bedding close to head was 
simultaneously pushed backwards with paws. 

Walking Locomotion not including ‘sniff air’ 
Grooming, scratching Movement of head or paws over parts of the body, also included licking 
Sniffing air Small vertical movements of the head or nose, whilst sitting or lying 

 

Also the rat behaviour was scored, albeit that due to spatial limitations in the cage, the 

number of possible behaviours for the rat was less extensive. Scores were given every 10th 

second for: inactivity, rearing, grooming, sniffing separation wall, bedding, or air. 
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1.3.7. Analysis of dialysate – HPLC with electrochemical detection 

HPLC is the abbreviation of High Performance (or Pressure) Liquid Chromatography, and is 

a separation method as well as the name of the apparatus used for this separation. A liquid 

mixture of compounds (as for example neurotransmitters in Ringer) is injected onto a column. 

In reversed phase chromatography, this column is tightly packed with silica particles, to 

which aliphatic chains are attached. This makes up the stationary phase of the system. A 

pump presses a liquid hydrophilic, mobile phase through this column, which also carries the 

sample. Because the various compounds in the sample differ in hydrophobicity, and thus in 

affinity for the stationary and mobile phase, the time a compound spends on the column 

differs (and will be equal to the time it takes for the mobile phase to traverse the column for 

compounds that have no affinity at all for the stationary phase, or longer for those that can 

form hydrophobic interactions to the column material as well). Thus the compounds elute 

from the column with different retention times. When a detector is connected to the outlet of 

the column, the compounds can be identified.  

An electrochemical detector exists of a cell with two electrodes with a specified voltage 

between them. When compounds flow through this cell and are oxidised, they give rise to an 

electrical current. These currents are represented as peaks in a chromatogram. The intensity 

of the current is a measure for the amount of oxidised compound, whereas the time it takes 

for the peak to appear after injection of the sample makes identification possible. 

Qualification and quantification of the peaks usually follows relative to a calibration curve, 

generated by the measurements reference standards with defined quantities of the compounds 

under investigation. 

The chromatographical parameters such as retention time and peak height can be influenced 

by changing the speed of the mobile phase, the composition of the mobile phase (lipophility, 

pH etc.), the temperature of the column, the type of column used (packing material, size) and 

the detection potential. 

 

Various HPLCs were used to analyse the samples in these experiments. They either consisted 

of a Sunflow 100 isocratic pump (Sunchrom, Friedrichsdorf, Germany), a Mistral column 

thermostat (Spark Holland Instruments, Emmen, The Netherlands), a Rheodyne 7125 

injection valve (Rheodyne, Rhonert Park, CA, USA), and an Antec Electrochemical Detector 

(Antec Leyden, Zoeterwoude, The Neterlands) or of a Gynkotec M480 high-precision Pump 

(Gynkotec, Germering, Germany), a Rheodyne 7725 injection valve, and an electrochemical 

detector in combination with an oven (Decade, Antec Leyden). The detectors used an 
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Ag/AgCl reference electrode. The chromatography data system was Gynkosoft from 

Gynkotec. Columns (see Table 5) came from YMC (Schermbeck, Germany). Compounds 

were quantified relative to a standardcurve of four reference standards by measuring the 

height of the peaks. Other details are listed in Table 5. 

Table 5. Details to the HPLC parameters. SOS: sodium 1-octane sulfonate. EDTA: ethylenediaminetetra 
acetate. 

 5-HT and 5-HIAA NA, MHPG, DOPAC, HVA 
Eluent 22% methanol 

50 mM NaH2PO4 
40 mg/l EDTA 
0.29 mM SOS 

10% methanol 
45 mM NaH2PO4 
40 mg/l EDTA 
0.40 mM SOS, pH 4.55 

Alternative eluent 20% methanol 
13.2 mM citric acid 
40 mM sodium acetate 
40 mg/l EDTA 
0.15 mM SOS, pH 4.9 

2% methanol 
40 mM citric acid 
60 mM NaOH 
100 mM sodium acetate 
40 mg/l EDTA 
0.22 mM SOS 

Alternative eluent  6.2% methanol 
3.8 mM citric acid 
16.5 mM sodium acetate 
40 mg/l EDTA 
0.21 mM SOS. pH 5.00 

Flow rate of mobile phase 400 or 500 µl/min 400 µl/min 
Oven temperature 30 °C 40 °C 
Detector voltage 550 or 600 mV 650 mV 
Column Pro C18, 150 x 3.0 mm Pro C18 or Hydrosphere C18, 

150 x 3.0 mm 
 

Two representative chromatograms are shown in the following figures. 

 

Figure 17. Example of a chromatogram from the 5-HT analysis of a hippocampal sample from a Balb/c 
mouse. The y-axis shows the cell potential in mV, the x-axis time in min. 5-HIAA eluted with a retention 
time of  3.40 min, 5-HT had a retention time of 6.52 min. 
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Figure 18. Example of a chromatogram from the NA-analysis of a hippocampal sample of a C57bl/6 
mouse. The y-axis indicates the cell potential in mV, the x-axis time in min. DOPAC had a retention time 
of 4.24 min, MHPG of 7.41 min, NA of 8.23 min, HVA of 10.93 min. 

Detection limits in the 5-HT analysis were: 0.4 – 0.8 fmol for 5-HT and 4.5 fmol for 5-HIAA 

per injection. In the NA-analysis the following detection limits were achieved: 1 – 2 fmol for 

NA, 6.5 fmol for MHPG, 6.5 fmol for DOPAC and 4.5 fmol for HVA per injection. All 

detection limits had a signal to noise ratio of 3.  

 

1.3.8. Measurement of free corticosterone – radioimmunoassay (RIA) 

In a RIA, the sample containing the compound to measure, e.g. corticosterone or ACTH, is 

mixed with a known amount of that same compound that is radioactively labelled with 125I. A 

fixed amount of antibody against corticosterone or ACTH is added, and the non-labelled 

unknown amount of corticosterone or ACTH and the labelled form compete for binding to 

the antibody. After a fixed time period, a second antibody against the first antibody is added, 

that makes the complex precipitate. After centrifugation a pellet is formed, and the 

supernatant can be removed. The amount of radioactivity in the pellet is counted with a γ-

counter. The more activity is present, the more labelled corticosterone (or ACTH) could bind 

to the primary antibody, which means that less of the compound was present in the sample. A 

standard curve makes it possible to calculate the amount that was present in the original 

samples. 

As corticosterone passes the blood brain barrier, and evenly distributes over the extracellular 

fluid, it can also be detected in dialysate. To measure free corticosterone in the dialysate, a 

corticosterone RIA kit (MP Biomedicals (before: ICN Biochemicals), Costa Mesa, CA, USA) 

was used according to the instructions of the manufacturer. Samples however were not 
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diluted, and an extra standard curve was generated to reliably measure the low amounts of 

corticosterone in the dialysate.  

The detection limit of the assay was 0.001 µg/100 ml dialysate. 

 

1.3.9. Statistical analysis of behavioural data 

The behavioural scores were counted per 15-min (pre and post rat exposure) or per 5-min 

interval (during rat exposure and the 15-min following it) and counts for specific behaviours 

were expressed as percentage of total counts in that period. Similarly, all active behaviours 

(i.e. all scores except the score ‘inactive’) were collapsed under the term ‘activity’. Thus, the 

time intervals, 28 per experimental day, of the behavioural scores matched those of the 

microdialysis, yielding information about the behavioural changes over time and enabling 

comparisons between behaviours and microdialysis data. 

To reveal effects of ‘time’ and ‘strain’ in the specific behaviours or in ‘activity’, data were 

analysed using Analysis of Variance (ANOVA) with repeated measurements design. 

Behavioural data were arcsine transformed to approach the criteria of homogeneity and 

normality prior to ANOVA. Data were then summarised to six levels of ‘time’ as within-

subject factor, to avoid type 1 errors due to too many levels. These levels were as follows: 

one level pre-exposure, consisting of the time periods corresponding with the eight basal 

microdialysis samples; two levels during rat exposure, both consisting of three consecutive 

samples; and three levels post-exposure, with the behaviour during three 5-min samples 

directly after rat-exposure as one level, and of the consecutive five, and last six 15-min 

samples as the other two levels. An additional between-subject factor of ‘strain’ (with two 

levels: C57bl/6N and Balb/c) was added. 

When a significant effect of ‘time’ was found, post-hoc simple contrasts compared the 

different time levels to the pre-exposure values. Also the values during the second half of rat 

exposure were compared with those in the first half. The results of the post-hoc tests were 

Bonferroni corrected for multiple comparisons. 

In case of a significant effect of ‘strain’ or of the interaction ‘time by strain’, the ANOVA 

with 6 levels of time was repeated within each strain, as were the post-hoc contrasts when an 

effect of ‘time’ was still present. Then, the data for C57bl/6N and Balb/c mice were 

compared per level of time as well, using post-hoc simple contrasts. Also these results were 

Bonferroni corrected. 

Behavioural scores were also analysed by expressing the counts for specific behaviours 

before, during and after rat exposure as percentage of the total number of activity counts in 
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those periods (rather than as a percentage of total counts in those periods). Because inactivity 

was not, and time information was only limited taken into account in this analysis, this made 

clear how the animals behaved during their active periods, enabling comparisons in 

behavioural profile during activity periods before, during and after rat exposure. These 

comparisons were again done using ANOVA with repeated measures design, this time with 

four levels of ‘time’ (one level pre exposure, one level during exposure, and two levels post 

exposure, of which the first existed of scores obtained in the first 15 min following the rat 

exposure), and again two levels of ‘strain’. When a significant effect of ‘time’ was found, 

simple contrasts within ANOVA, Bonferroni corrected, compared all time levels to the 

‘during rat exposure’ level. In case of significance of ‘strain’ or of the interaction, this 

procedure was repeated within the strains, after which also the strains were compared per 

time level, using post-hoc simple contrasts. These results were Bonferroni corrected. 

Similarly, an ANOVA was done for behavioural data that were collected on two consecutive 

days of rat exposure, to see whether the behaviour was different on a second day of rat 

exposure. Apart from two levels for ‘strain’ and four levels of ‘time’, a second within-subject 

factor of ‘day’ (with two levels) was added. In case of an effect of ‘strain’, or of an 

interaction involving ‘strain’ and ‘day’, the ANOVA was repeated within the two strains. 

When an interaction involving ‘time’ and ‘day’ was found, the data for the two days were 

compared per time level using post-hoc simple contrasts within ANOVA, to see which time 

period contributed to the effect of ‘day’. Results of these post-hoc contrasts were Bonferroni 

corrected. 

Finally, rat behavioural data, averaged over the thirty minutes of rat exposure, were analysed 

with ANOVA with repeated measures. Three levels of ‘times used’ examined whether there 

was an effect of the number of times a rat was used. As no significant effect of ‘times used’ 

was present for any of the scored behaviours, no further tests were done. 

 

1.3.10. Statistical analysis of microdialysis data 

The amounts that were found in the microdialysis samples were calculated as fmol per 1-min 

dialysate collection (to account for differences in sample time), and then expressed as a 

percentage of baseline, defined as the average neurotransmitter level in the pre-rat exposure 

samples during which the behavioural activity of the animal was 10% or less.  

To reveal time effects in the levels of 5-HT and 5-HIAA (for C57bl/6N mice), or in 5-HT, 5-

HIAA, MHPG, DOPAC and HVA (for Balb/c mice) the data were analysed using ANOVA 

with 6 levels of ‘time’ (as described under the analysis of behavioural data), and a between-
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subject factor ‘region’ (4 levels for C57bl/6N mice: hippocampus, prefrontal cortex, lateral 

septum and caudate putamen, 3 levels for Balb/c mice: hippocampus, anterior hypothalamus, 

paraventricular nucleus) to be able to determine effects of dialysed brain region. Levels of 

NA, MHPG, DOPAC and HVA in the hippocampus of C57bl/6N mice were analysed using 

ANOVA with repeated measures design as well, with six levels of ‘time’ as within-subject 

factors, as above. As these parameters were not measured in other brain areas in C57bl/6N 

mice, no ‘region’ factor was present. All data were ln-transformed before the ANOVA. 

When a significant effect of ‘time’ or of the interaction ‘time by region’ was found, simple 

contrasts within ANOVA, Bonferroni corrected for multiple comparisons, were performed, to 

compare all time levels relative to baseline, as well as between the two time levels during rat 

exposure. Following a significant effect of ‘region’ or of ‘time by region’, the ANOVA was 

repeated for each brain region, and so were the post-hoc tests when an effect of ‘time’ was 

found again. Additional post-hoc Scheffé tests served to determine which brain regions 

differed from each other for the time periods. 

To compare the effects of rat exposure on neurotransmission on day 1 and day 2 of rat 

exposure, the area under curve (AUC) of the full time vs. neurotransmitter or metabolite 

levels plots were calculated after ln-transformation. ANOVA with ‘day’ as within-subject 

factor and ‘region’ as between-subject factor was performed. In case of a significant effect of 

‘region’ or of the interaction ‘day by region’ the ANOVA was repeated for the brain regions 

separately. When a significant effect of ‘day’ was found, simple contrasts within ANOVA 

were done, Bonferroni corrected, to identify the brain regions in which an effect of ‘day’ was 

apparent. A similar procedure was followed for the parts of the plots during rat exposure and 

the subsequent 15 minutes only. In the latter case, the AUC was calculated starting from a 

level of 80% upwards, as a result of which the values for the AUC did not need to be ln-

transformed before the ANOVA. 

  

1.3.11. Statistical analysis of free corticosterone data 

The free corticosterone data were analysed using ANOVA with repeated measurements 

design, after the data had been ln-transformed. As within-subject factors, seven levels of 

‘time’ and two levels of ‘day’ were chosen. The levels of ‘time’ were as follows: one level 

pre exposure (consisting of four samples), two levels during rat exposure (each consisting of 

one sample), four levels after rat exposure (the first consisting of one, the following two 

levels consisting of two and the last one of three data points). In case of a significant effect of 

‘time’ all levels were compared to baseline level using post-hoc simple contrasts, Bonferroni 
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corrected, to reveal which time levels were significantly higher than the baseline level. In 

case of an effect of ‘day’ each of the time levels of day 1 was compared to the corresponding 

level on day 2, using post-hoc simple contrasts, Bonferroni corrected. 

Although large interindividual differences were found in the corticosterone responses, a 

group of animals with relatively large increases in free corticosterone following rat exposure 

was considered too small (n=3) to justify statistical analysis of those data separately. 

However, figures showing the data of this group, as well as of the remaining animals are 

shown in the results section for illustrative purposes.  

 

Results with p < 0.05 were considered significant, unless Bonferroni corrections were applied, 

in which case the significance level depended on the number of comparisons. AUC were 

calculated with GraphPad Prism (GraphPad Software Inc., San Diego, CA, U.S.A.), whereas 

all other statistics were done with SPSS v10.0.7 (SPSS Inc., Chicago, IL, U.S.A.). 

 

1.3.12. Other procedures and preparations 

• Gelatinised slides:  

3.5 g pulverised gelatine, 0.25 g KCr(SO4)2 x 12H2O and 500 ml distilled water were 

mixed during half a day and filtered over filter paper. Slides were briefly dipped in the 

solution and dried during at least two days. 

• Embedding medium: 

One egg yolk was undone from egg white using absorbing paper, sliced open and the 

inside of  the yolk mixed with 0.8 ml 25% glutardialdehyde. 

This was briefly stirred by hand and immediately poured over the brain and solidified 

in about 5 minutes. 

• Cresyl violet solution: 

230 ml distilled water, 50 ml 10% acetic acid, 10 ml 1 M sodium acetate and 1.5 g 

cresyl violet were mixed for an hour at 50 °C and filtered over paper. 

• Nissl-staining procedure: 

Slides were kept in 70% alcohol at least 2 hours to dehydrate them and to fix the 

tissue to the glass. Then they were in the following liquids: 5 min in 96% ethanol, 5 

min in 70% ethanol, 30 sec in tap water, 30 sec in distilled water, 3 min in cresyl 

violet, 30 sec in distilled water, 1 min in 70% ethanol, 2 min in 90% ethanol, 1 min in 

96% ethanol with 0.5% acetic acid, twice 1 min in 96% ethanol, twice 1 min in 100% 



MATERIALS AND METHODS 
 

 

69

ethanol and three times 5 min in Rotihistol. Slides were covered with Roti-Histokitt, 

coverslipped, and left to dry. 

• Dummy probes: 

Pieces of about 15 mm were cut off from electrodes formerly used for monkeys, that 

had a diameter of 0.25 mm. The Teflon coat was removed with a scalpel and the 

rough end scoured with sand paper. 

• Guide cannula: 

The sharp end of a needle, sized 0.70 mm by 30 mm, was grinded off, and the steel 

shaft was grinded until it had a length of 14.0 mm. The inside of the cannula was 

cleaned with sewing silk and the sharp edges were smoothed with sandpaper. 

• Chemicals: 

All chemicals used (analytical or HPLC-grade) were obtained from Merck (Darmstadt, 

Germany) or Sigma-Aldrich Chemie (Taufkirchen, Germany) unless otherwise 

marked. 

 

2. EXPERIMENTS MEASURING PLASMA LEVELS OF STRESS HORMONES 

2.1.  Overview of the experiments 
The general time frame of the experiments was as described in Table 6. 

Table 6. General timeframe of the experiments involving plasma hormone measurements. 

Time (in days) Action 
- 7 or more • Mice arrived and were housed singly 
- 3 • Mice were put in rat exposure cages 
- 1 • Mice were brought to experimental room 
0 • Rat exposure or control experiment, killing, processing blood 
Later • Analysis of plasma 

• Video analysis 
 

The following experiments were conducted according to the schedule depicted above: 

• Rat exposure and control experiments with C57bl/6N, C57bl/6J, Balb/c, B6C3F1, 

DBA/2 mice. 

• Rat exposure and control experiments with C57bl/6N mice, bred at the institute. 

• Rat exposure and control experiments with CRH-Tg (transgenics) and CRH-Wt 

(wildtype) mice. 

 

The different steps are described in more detail in the following paragraphs. 
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2.1.1. Animals, arrival and housing 

Male mice, 12 weeks old, were ordered from Charles River (all animals, except the 

transgenic animals and the corresponding wild types, or the C57bl/6N bred in the institute’s 

facilities) and were housed in standard Macrolon II cages upon arrival, with food and water 

available ad libitum. They were kept in a housing room under the same conditions as in the 

experimental room (details as with the microdialysis experiments). Three days prior to the rat 

exposure experiment, they were singly housed in a rat exposure cage and brought to the 

experimental room on the day before the experiment. 

As only four animals could participate in an experiment per day because only four animals 

could be recorded simultaneously on video, animals from different strains were used in a 

pseudo- randomised fashion. 

CRH-Tg and CRH-Wt mice were already available in the animal facilities of the institute. 

These animals were transported to the housing room and singly housed at least 7 days prior to 

the experiment. At this time those mice were between 12 and 16 weeks old. The CRH-mice 

originally came from the group of Mary Stenzel-Poore, Portland, OH, USA. The mice that 

were used had been born in the institute facilities.  

The institute bred C57bl/6N mice were the F1 generation of mice that came from Charles 

River and had been paired using the ‘harem’ method. 

Other details were as with the microdialysis experiments, described in paragraph 1.3.1. 

 

2.1.2. Rat exposure, killing, blood preparation 

On the experimental day at 10.30 hr, a rat was put into the smaller compartment of the cage. 

The rats had been housed absolutely separated from the mice. Rats were used maximally 

three times, three days apart. After half an hour, at 11.00 hr rats were removed and placed 

outside the room. During control experiments no rat was placed in the Plexiglas cage but the 

experimenter did enter the room at 10.30 hr to remove the lid from the cage and to briefly 

extend a hand into the cage, to control for the vicinity of the experimenter to the mouse. 

During the entire experiment, from 8.30 – 11.00 hr, the behaviour of the mice and rats was 

recorded using security cameras.  

At 11.00 hr mice were sedated in a glass with isoflurane, decapitated and trunk blood was 

collected in ice-cooled tubes coated with EDTA (ethylenediaminetetraacetate, KABE 

Labortechnik GmbH, Nürnbrecht, Germany) containing 6 µl Trasylol (Bayer, Leverkusen, 

Germany). The animals were decapitated within 30 – 45 seconds after being disturbed. 

Samples were kept on ice until they were centrifuged for 20 minutes at 2500 rpm in a 
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refrigerated centrifuge. Plasma was then aliquoted in 100 µl and 25 µl portions and stored at 

– 80 ºC until concentrations of ACTH and total corticosterone were measured. Storage did 

not affect the hormone levels. 

 

2.1.3. ACTH and corticosterone measurement. 

The concentrations of ACTH and corticosterone were assessed using ACTH and 

corticosterone RIA kits respectively. The kits were used according to the manufacturer’s 

manual. See also paragraph 1.3.8. The inter- and intra assay variation coefficient were 7% 

and 5% for ACTH and 7% and 4% for corticosterone. The detection limits of the assays were 

2 pg/ml for ACTH and 0.4 ng/ml for CORT. 

 

2.1.4. Behavioural analysis 

The behaviour of the mice during the half hour of rat exposure was scored using either the 

instantaneous method with Excel as described with the microdialysis experiments (C57bl/6N, 

C57bl6/J, Balb/c, B6C3F1, DBA), or using a continuous method (Noldus Observer Video Pro, 

v 4.0, Noldus Information Technology, Wageningen, the Netherlands) (C57bl/6N, Balb/c, 

B6C3F1; CRH-Wt and Tg; C57bl/6 bred at the institute).  

Table 7. Behavioural parameters that were scored using a continuous method with Noldus Observer 
Video Pro. Latency of an event: time in seconds from the beginning of rat exposure until the first event 
took place; frequency of an event: number of times an event took place during the half hour of rat 
exposure; duration of a behaviour: time in seconds that an animal was engaged in the behaviour during 
rat exposure 

Behavioural parameter Definition 
contact latency First physical contact with separation wall, while facing 

the rat compartment 
rear frequency, duration Posture with front-paws away from the bottom, with or 

without supporting at the walls 
backup frequency Transition of an imaginary line separating the mouse 

compartment in a half close to the rat and a half away 
from the rat 

stretched attend 
posture 

frequency Full extension of the body, with arched back 

defensive bury frequency, duration Heaping up bedding with front paws against separation 
wall 

nosepoke latency, frequency, 
duration 

Putting nose in one of the holes in the separation wall 

groom duration Movement of head or paws over parts of the body, also 
included licking 

food-related 
behaviour 

duration Drinking from bottle, eating from food-trough or in other 
parts of cage, moving food-pellets in trough around 

inactivity duration Lying or sitting quietly for more than 5 seconds 
time at 
separation wall 

duration Body located in the area bordered by the separation wall, 
approx. 7 cm wide. 
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In the latter method every change of behaviour was recorded at the moment it occurred. The 

time resolution was 0.1 seconds. Parameters scored with the Noldus system are listed in 

Table 7. 

 

2.1.5. Statistical analysis 

Plasma values of ACTH and corticosterone were ln-transformed and analysed using ANOVA, 

with ‘strain’ or ‘genotype’ (5 levels for C57bl/6N, C57bl/6J, Balb/c, B6C3F1 and DBA; 2 

levels for CRH-Tg and CRH-Wt) and two levels of ‘exposure’ (control and exposed) as 

between-subject factors. In case of an effect of ‘strain’ or of the interaction ‘strain by 

exposure’, post-hoc simple contrasts within ANOVA compared the control and exposed 

levels per strain. These results were Bonferroni corrected for multiple comparisons. 

Occassional additional comparisons with the CRH-Wt and CRH-Tg were done with 

Student’s t-tests, Bonferroni corrected. Control and exposed levels of the C57bl/6N mice bred 

at the institute were compared using one-way ANOVA. Additional comparisons between 

exposed levels of C57bl/6N mice bred at the institute and those bought from Charles River 

were done with unpaired Student’s t-tests. 

Behavioural data obtained with the Excel method, were counted per behaviour for every 5-

minutes interval during rat exposure and expressed as the total number of behavioural counts 

in that period. The AUC of the time vs. behavioural intensity curves were calculated, and 

normalised so that a maximum AUC-value of 100 could be reached, in case that behaviour 

was observed throughout the rat exposure period. In case of freezing, not the AUC was used, 

but the number of ‘freezing’ counts. These AUC’s were compared for each behaviour using 

one-way ANOVA, with 5 levels of ‘strain’ as the between-subject factor. When a significant 

effect of ‘strain’ was found, post-hoc Scheffé tests determined the homogeneous subsets of 

strains. 

Behavioural data obtained with the Noldus-method were expressed in seconds (for latency 

and duration scores) for the 30 minutes of rat exposure, or as the number of times (for 

frequency scores) during the 30 minutes of rat exposure that a certain behaviour occurred. Per 

parameter one-way ANOVA was used to compare the strains C57bl/6N, Balb/c and B6C3F1. 

This ANOVA was repeated with a between-subject factor ‘height of the hormone level’. For 

this purpose ACTH and corticosterone levels were divided into three groups. One group 

contained animals with levels lower than 50 pg/ml ACTH or 25 ng/ml CORT, one group 

consisted of animals with levels higher than 100 pg/ml ACTH or 50 ng/ml CORT and a 

group was formed by animals with an intermediate level.  
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Behavioural data for CRH-Wt and CRH-Tg mice were subjected to ANOVA with two levels 

of ‘exposure’ and two levels of ‘genotype’ as between-subject factors. After significant 

differences in the groups were found, post-hoc Duncan tests determined the homogeneous 

subsets. Student’s t-tests compared the control and exposure behavioural levels for C57bl/6N 

mice bred at the institute. Students t-tests were also used to compare the behavioural levels 

after exposure to those seen with animals from Charles River. 

 

All results with p < 0.050 were considered to be significant, except for cases in which 

Bonferroni corrections were applied, in which the number of comparisons determined the 

level of significance. Calculations were all done with GraphPad and SPSS. 
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III. RESULTS 

 

1. BEHAVIOUR 

1.1. Behaviour before rat exposure 
Figure 19 shows the variations in behaviour of the C57bl/6N mice (red curves) and of Balb/c 

mice (in blue) over the time course of the experiment.  

As the experiments were conducted during the light phase, animals were typically inactive 

before and after the rat exposure. However, this state was periodically interrupted by active 

periods that could last up to 30 minutes. Because these activity phases were not synchronised 

among animals, it resulted in an average activity level before and after rat exposure that was 

varying, but continuously more than zero (see panel A).  

Figure 20 depicts the behavioural profile of animals during those active phases. During the 

phases before rat exposure (open bars), activity of C57bl/6N mice existed mostly of self-

directed behaviour like grooming, food-related behaviour, nesting, and also of considerable 

amounts of calmly sitting while sniffing air and sniffing in the bedding of the cage which 

sometimes was followed by finding parts of food pellets in the bedding and eating. Balb/c 

mice exhibited the same gamut of behaviours before rat exposure, but the level of sniffing in 

the bedding was higher, whereas levels of food-related behaviour and nesting were lower 

than with C57bl/6N mice. 

 

1.2. Behaviour during rat exposure 
At the beginning of rat exposure animals woke up and became alert and active, resulting in a 

significantly higher level of average activity (see Figure 19A). A first reaction was to move to 

a corner as far away from the rat compartment as possible. Freezing was hardly observed.  

Figure 19 (next page). Levels of activity (panel A) and specific behaviours (panels B-J) of C57bl/6N mice 
(red squares, n=31) and Balb/c mice (blue triangles, n=32) before, during (shaded area) and after their 
first exposure to a rat. Data are represented as the number of counts during which animals were active or 
showed a particular behaviour, expressed as a percentage (+ S.E.M.) of the total number of counts during 
a period in which one microdialysis sample was collected. ‘Activity’ (panel A) during a certain period is 
the sum of the percentages of the particular behaviours (panels B-J) in that same time interval. Please 
note differences in scaling of the y-axis, and the non-linearity of the time-axis.  In all cases, ANOVA 
indicated an effect of strain or of the interaction time by strain. Black asterisks indicate significant 
difference in levels for certain time periods between C57bl/6N and Balb/c mice (post-hoc Student’s t-test, 
Bonferroni corrected for multiple comparisons, p < 0.010). ANOVA also indicated an effect of time for 
both strains in all behaviours, except for food-related behaviour with C57bl/6N mice (see text). Red and 
blue asterisks indicate significant differences from baseline for C57bl/6N and Balb/c mice respectively, 
whereas coloured # indicate significant difference between the second half and first half of rat exposure 
(post-hoc simple contrasts, Bonferroni corrected for multiple comparisons, p < 0.0083).  
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Figure 20. Comparison of the behavioural make-up of active periods of C57bl/6N mice (panel A, n=31) 
and Balb/c mice (panel B, n = 32) before (clear bars), during (solid bars) and after (downwardly hatched 
bars: first 15 min afterwards; bars hatched upwards: rest of time) the first exposure to a rat. Data are 
represented as the counts (+ S.E.M.) of a specific behaviour, expressed as the percentage of total activity. 
Strain effects were found for all behaviours except sniffing separation wall. Black # in panel A show those 
bars that are significantly different between the two strains (Student’s t-test, Bonferroni corrected, p < 
0.0125). Except for rearing, walking and sniffing bedding for C57bl/6N mice and stretching for Balb/c 
mice, ANOVA indicated significant time effects for all behaviours in both strains. * depicts the results of 
post-hoc simple contrasts (Bonferroni corrected for multiple comparisons, p < 0.017) and indicates 
significant difference from ‘during rat exposure’. Although a time-effect was present with ‘sniffing 
bedding’ in Balb/c mice, no single time period was significantly different from ‘during rat exposure’. 
Food-rel. is food-related behaviour. 

Figure 19 shows that in the first minutes of rat exposure the activity no longer was made up 

of self-directed behaviours, but consisted of investigative behaviours like sniffing air, 

stretching towards the rat compartment, rearing, walking and sniffing at the separation wall. 

These behaviours were significantly more present in the first half of rat exposure, than under 

pre-exposure conditions (the following effects of ‘time’ were found for C57bl/6N and Balb/c 

mice respectively, activity: F(5,305) = 33.98, p < 0.0005; F(5,305) = 104.16, p < 0.0005; 

sniffing air: F(5,305) = 85.04, p < 0.0005; F(5,305) = 122.27, p < 0.0005; stretching: 
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F(5,305) = 30.83, p < 0.0005; F(5,305) = 2.87, p < 0.02; rearing F(5,305) = 2.87, p < 0.02; 

F(5,305) = 17.84, p < 0.0005, walking F(5,305) = 11.13, p < 0.0005; F(5,305) = 7.65, p < 

0.0005; sniffing at wall: F(5,305) = 13.26, p < 0.0005; F(5,305) = 39.92, p < 0.0005; 

asterisks in Figure 19 indicate those time periods that were significantly different from pre-

exposure levels). Also sniffing bedding (F(5,305) = 6.91, p < 0.0005; F(5,305) = 43.87, p < 

0.0005) was increased, but a self-directed behaviour like nesting (F(5,305) = 3.22, p < 0.01; 

F(5,305) = 3.33, p < 0.01) was decreased. Time effects were also found for grooming 

(F(5,305) = 2.76, p < 0.02; F(5,305) = 4.87, p < 0.0005) and food-related behaviour in Balb/c 

mice (F(5,305) = 13.21, p < 0.0005), but these were not apparent from comparing the first 

half of rat exposure to baseline conditions. Remarkably, mice and rats occasionally had nose-

to-nose contact when they simultaneously poked their noses through a hole in the separation 

wall. Over the course of rat exposure, activity, sniffing air, stretching and sniffing at 

separation wall decreased significantly in C57bl/6N mice when compared to the first half of 

rat exposure. In contrast, these mice were still intensively sniffing around in bedding, usually 

close to the separation wall. Small, but not significant increases in grooming and nest-

building were seen as well in this phase. Occasionally, when mice had had their nest close to 

the separation wall, they would form a new nest at a larger distance from the rat compartment. 

Balb/c mice differed from this, in that their activity did not become less as rat exposure 

progressed. Decreases in investigative behaviours as sniffing air and stretching were 

compensated by higher levels of rearing, sniffing at the separation wall, and sniffing in the 

bedding, whereas also the self-directed food-related behaviour was more present.  

Figure 20 does not reveal the temporal changes within the half hour of rat exposure, but does 

show that during rat exposure the levels of sniffing air, stretching (only for C57bl/6N), 

rearing and walking (only for Balb/c) and sniffing the separation wall, which all constitute 

investigative behaviours, are significantly higher than levels found during active periods 

before rat exposure or towards the end of the experiment. In contrast, self-directed behaviours 

like food-related activities (only for C57bl/6N mice), grooming and nest-building were 

significantly lower during rat exposure (effects of ‘time’ were found for sniffing air F(3,183) 

= 27.30, p < 0.0005 and F(3,183) = 13.98, p < 0.0005 for C57bl/6N and Balb/c respectively, 

stretching F(3,183) = 37.22, p < 0.0005 for C57bl/6N but not for Balb/c with F(3,183) = 1.45, 

p > 0.05; rearing F(3,183) = 10.18, p < 0.0005 for Balb/c but not for C57bl/6N with F(3,183) 

= 0.70, p > 0.05; walking F(3,183) = 2.86, p < 0.05 for Balb/c, but not for C57bl/6N with 

F(3,183) = 2.26, p > 0.05, sniffing wall F(3,183) = 46.21, p < 0.0005 (no effect or interaction 

of ‘strain’), sniffing bedding F(3,183) = 4.83, p < 0.005 for Balb/c, not significant for 
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C57bl/6N F(3,183) = 2.38, p > 0.05, food-related behaviour F(3,183) = 9.93, p < 0.0005 for 

C57bl/6N and F(3,183) = 6.65, p < 0.0005; grooming F(3,183) = 25.62, p < 0.0005 for 

C57bl/6N and F(3,183) = 50.23, p < 0.0005 for Balb/c and nesting F(3,183) = 27.89, p < 

0.0005, F(3,183) = 4.61, p < 0.005 for C57bl/6N and Balb/c respectively. Asterisks in Figure 

20 represent those time periods that were different from during rat exposure). 

 

1.3. Behaviour after rat exposure 
When the rats were removed from the rat exposure cages, mice often became more alert again 

and often moved to an opposite corner. In the first fifteen minutes after rat-exposure, 

C57bl/6N mice showed increased levels of activity, sniffing air and sniffing bedding when 

compared to baseline, but later all activity levels where no longer different from baseline 

level (see Figure 19). Balb/c mice also showed higher activity levels in the 15 min after rat 

exposure than during baseline. Here behavioural scores for sniffing in air, rearing, walking, 

sniffing at the separation wall, sniffing bedding, and for the self-directed behaviours 

grooming and food-related activity were still higher than during baseline. All of these, except 

for sniffing at the separation wall returned to levels as found before rat exposure. Sniffing 

bedding and nesting however showed levels even less than found before rat exposure. 

Figure 20 underlines that the activity profile of mice during and briefly after rat exposure 

showed great resemblance, in which only stretching and sniffing at the separation wall 

occurred significantly more during rat exposure than shortly afterwards in C57bl/6N mice. 

Balb/c were sniffing air more during than briefly after rat exposure, but participated less in 

food-related behaviour, grooming or nesting. Behaviour during and shortly after rat exposure 

greatly differed from the behavioural profile before and longer after rat exposure. 

 

1.4. Differences in behaviour between C57bl/6N and Balb/c mice 
For all behaviours in Figure 19 the ANOVA indicated significant effects of ‘strain’ (activity 

F(1,61) = 12.61, p < 0.001;  stretching F(1,61) = 13.95, p < 0.0005; rearing F(1,61) = 5.86, p 

< 0.02; sniffing bedding F(1,61) = 11.02, p < 0.005; food-related behaviour F(1,61) = 6.51, p 

< 0.02; nesting F(1,61) = 11.30, p < 0.01) and/or of the interaction ‘strain by time’  (activity 

F(5,305) = 14.73, p < 0.0005; sniffing air F(5,305) = 2.53, p < 0.05; stretching F(5,305) = 

7.71, p < 0.0005; rearing F(5,305) = 4.38, p < 0.001; walking F(5,305) = 2.25, p < 0.05; 

sniffing separation wall F(5,305) = 7.46, p < 0.0005; sniffing bedding F(5,305) = 7.78, p < 

0.0005; food-related behaviour F(5,305) = 5.50, p < 0.0005; grooming F(5,305) = 4.00, p < 

0.005; nesting F(5,305) = 3.03, p < 0.02).  
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Also in Figure 20 effects of ‘strain’ (stretching F(1,61) = 17.19, p < 0.0005, walking F(1,61) 

= 8.49, p < 0.005, sniffing bedding F(1,61) = 10.51, p < 0.005; nesting F(1,61) = 35.55, p < 

0.0005) and/or of the interaction ‘strain by time’ (sniffing air F(3,183) = 6.56, p < 0.0005; 

grooming F(3,183) = 4.29, p < 0.01; stretching F(3,183) = 12.35, p < 0.0005; rearing 

F(3,183) = 3.78, p < 0.02; sniffing food F(3,183) = 13.27, p < 0.0005; nesting F(3,183) = 

8.71, p < 0.0005) were found for all behaviours, except sniffing at the separation wall.   

When comparing behaviour for the two strains in Figure 19 and in Figure 20, the most 

striking difference prior to rat exposure was the level of food-related behaviour that was 

lower in Balb/c than in C57bl/6N mice. Interestingly it was the same behaviour that was 

higher for Balb/c mice in the 15 minutes after rat exposure. During rat exposure, slight 

differences were found in the investigative behaviours stretching and walking, which were 

seen more in C57bl/6N mice and in rearing and sniffing bedding, which were scored more 

often with the Balb/c mice. Maximal levels of rearing, sniffing separation wall and sniffing 

bedding occurred later in Balb/c mice, and this strain stayed active for longer as well. 

Focussing on the self-directed behaviours it can be recognised that grooming was seen more 

often in C57bl/6N mice, especially towards the end of the exposure. Briefly after rat exposure 

it was the self-directed food-related behaviour that was seen preferentially in Balb/c mice 

briefly after rat exposure. In general however both strains showed mostly self-directed 

behaviours before and towards the end of the experiment, and mainly investigative 

behaviours during rat exposure. 

 

1.5. Differences in behaviour on day 1 and 2 
The temporal course of behavioural changes over the phases of rat exposure as described 

above was highly the same when the paradigm was repeated on a second day. Interestingly, 

small changes in behavioural levels were found between the two days that were mostly 

independent of strain or of time period. Figure 21 illustrates this for the time during rat 

exposure. On day two the levels of most of the investigative behaviours (sniffing air, rearing, 

walking, and sniffing wall (the latter in case of C57bl/6N only, effect of strain by day F(1,51) 

= 5.66, p < 0.05) were less than on day 1. In contrast, levels of food-related behaviour, 

grooming and nesting were higher. The corresponding effects of ‘day’ were as follows: 

sniffing air F(1,51) = 3.45, p < 0.001; rearing F(1,51) = 13.38, p < 0.001; walking F(1,51) = 

4.71, p < 0.05; sniffing wall F(1,51) = 10.52, p < 0.005; food-related behaviour F (1,51) =  
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Figure 21. Behavioural profile of C57bl/6N mice (panel A, n=21) and Balb/c mice (panel B, n=32) on two 
consecutive days (open bars: day 1; closed bars: day 2) during rat exposure. Data are represented as the 
duration (+ S.E.M.) of a specific behaviour, expressed as the percentage of time during which the animal 
was active. As an interaction of ‘time by day’ was only found for sniffing air and sniffing separation wall, 
the results before and after rat exposure have been omitted from this figure. Black asterisks indicate that 
post-hoc simple contrasts revealed that day 2 differed from day 1 (p < 0.0125), but that ANOVA had not 
indicated an effect of ‘strain’. In case of sniffing separation wall a significant interaction of ‘strain by day’ 
was found and the coloured asterisk indicates that levels on day 1 and 2 differed for C57bl/6N mice, 
whereas the ‘ns’ signifies the absence of such a difference for Balb/c mice.  No effects of ‘day’ were found 
for stretching and sniffing bedding. 

5.29, p < 0.05; grooming F(1,51) = 14.58, p < 0.0005; nesting F(1,51) = 16.06, p < 0.0005. In 

addition, significant interactions of ‘time by day’ were found for sniffing air F(3,153) = 3.45, 

p < 0.02, sniffing wall F(3,153) = 4.17, p < 0.02 and sniffing bedding F(3,153) = 3.82, p < 

0.02.  

Although not many, some day-differences existed that were not the same for each time period. 

In case of sniffing air, levels were lower on day 2 for each of the phases, but were not as 
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clearly lower in the phases after rat exposure. Balb/c mice were sniffing less at the separation 

wall after rat exposure on day 2 than on day 1, whereas there was no difference during rat 

exposure. For sniffing at the bedding, differences between the two days were variable for the 

phases, and in the end did not result in an effect of day. Other than the mentioned interaction 

of ‘strain by day’ in case of sniffing at the separation wall, no further significant interactions 

of ‘strain by time’ or of ‘strain by time by day’ were found. 

 

1.6. Behaviour of rats 
When rats (data not shown) were introduced in the rat exposure cages, they first started with 

turning around a lot in their small compartment, with frequent sniffing at the separation wall, 

the floor and with rearing. This was typically followed by a period of intensive grooming, 

and by the end of rat exposure, animals were calmly sitting while sniffing in the air. 

Occasionally they had fallen asleep. ANOVA did not show an effect of ‘times used’ for the 

time animals were active (F(2,12) = 0.31, p > 0.05) or for the time they spent with any of the 

specific behaviours (grooming F(2,12) = 2.78, p > 0.05; sniffing air F(2,12) = 0.46, p > 0.05; 

rearing F(2,12) = 1.21, p > 0.05; sniffing separation wall F(2,12) = 1.76, p > 0.05; sniffing 

floor F(2,12) = 0.11, p > 0.05), indicating that this pattern was similar across the maximum of 

three times the rats were used. 

 

2. MICRODIALYSIS 

2.1. In-vitro experiment 
The in-vitro experiment was performed to determine whether the system set-up was 

functional and whether the compounds of interest could be measured using microdialysis. 

Table 8 shows the recovery rates of the various compounds using a 1-mm and 3-mm probe. 

All compounds were measurable. 

Table 8. Recovery data for various compounds with 1-mm and 3-mm probes. 

 Recovery 1 mm probes, % Recovery 3 mm probes, % 
5-HT 4.5 15.4 
5-HIAA 4.7 16.0 
NA 4.0 11.3 
MHPG 6.1 17.5 
DOPAC 5.0 15.3 
HVA 5.6 14.8 

 

The values showed that when a membrane was used with three times the surface of another 

membrane, recovery was also three times as high, as predicted by theory. Based on the 
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recovery rates, it would be possible to convert the measured amounts in the dialysates back to 

what the extracellular concentrations surrounding the microdialysis probe in the brain must 

have been that were present during experiments. This was not done, so all figures in this 

thesis are based on the amounts in the samples. 
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Figure 22 (previous page). Schematic representation of probe locations in the hippocampus (panel A, 
coronal slice at -2.92 mm from bregma),  prefrontal cortex (panel B, coronal slices at +2.34 mm and +1.94 
mm from bregma), lateral septum (panel C, coronal slice at +0.74 mm from bregma) and caudate 
putamen (panel D, coronal slice at +1.10 mm from bregma) of C57bl/6N mice, as well as the anterior 
hypothalamus (panel E, coronal slice at -0.94 mm from bregma) and paraventricular nucleus (panel F, 
coronal slice at -0.94 mm from bregma) of Balb/c mice. Dotted lines indicate position of the semi-
permeable membrane, continuous lines the guide cannula. Drawings reproduced from [243]. 1 layer 1 
(tenia tecta); 2 layer 2 (tenia tecta); aca anterior commisure, anterior part; 3V third ventricle; AcbC 
accumbens nucleus, core; AcbSh accumbens nucleus, shell; AhipM amygdalohippocampal area; AHP 
anterior hypothalamic area, posterior part; CA1 field CA (cornu amonis) 1 of the hippocampus; CA2 field 
CA2 of the hippocampus; CA3 field CA3 of the hippocampus; Cg1 cingulate cortex, area 1; Cir circular 
nucleus; CPu caudate putamen (striatum); DG dentate gyrus; DTT dorsal tenia tecta; fmi forceps minor 
of the corpus callosum; Ld lambdoid septal zone; Lmol lacunosum molecular layer of the hippocampus; 
LSD lateral septal nucleus, dorsal part; LSI lateral septal nucleus, intermediate part; LSV lateral septal 
nucleus, ventral part; LV lateral ventricle; M2 secondary motor cortex; MO medial orbital cortex; Mol 
molecular layer of the dentate gyrus; MS medial septal nucleus; Or oriens layer of the hippocampus; Pa 
paraventricular nucleus, -DC dorsal cap, -LM lateral magnocellular part, -MM medial magnocellular part, 
-MP medial parvicellular part; Pe periventricular hypothalamic nucleus;  PrL prelimbic cortex; Py 
pyrimidal cell layer of the hippocampus; Re reunions thalamic nucleus; SHI septohippocampal nucleus; 
Spa subparaventricular zone of the hypothalamus; VDB nucleus of the vertical limb of the diagonal band; 
VP ventral pallidum; Xi xiphoid thalamic nucleus; ZI zona incerta. 

 

2.2. Histological verification of probe location 
Figure 23 shows a schematic representation of the probe locations in the various brain regions. 

In case of the hippocampus, where brains were cut horizontally, the location in the frontal 

projection plane was approximated. All results that are shown in the microdialysis 

experiments are based on measurements obtained with these probes.  

A 

B 
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Figure 23 (previous page). Pictures of probe locations in coronally cut slides of hippocampus (panel A, 
C57bl/6N mouse) and paraventricular nucleus (panel B, Balb/c mouse). Arrow in A points towards hole 
made by probe. In B both a more lateral (middle) and more medial (right) PVN-implantation locus are 
shown. The slices were Nissl-stained.  

To give a more detailed view of this, photos made from a horizontal hippocampal section and 

a frontal section showing the probe location around the paraventricular nucleus have been 

included in Figure 23. 

 

2.3. Serotonergic neurotransmission in  C57bl/6N mice 

2.3.1. Effect of rat exposure on 5-HT on day 1 

Figure 24 shows the time course of levels of 5-HT, 5-HIAA and behavioural activity, in 

animals that were dialysed in one of four different brain structures.  
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Figure 24. Extracellular levels of 5-HT (red squares, left y-axis), 5-HIAA (blue triangles, right y-axis) 
in % of baseline (+ S.E.M.), and time behaviourally active (black bars, right y-axis) in % of sample time 
(+ S.E.M.), over the course of the experiment in hippocampus (n=9, panel A), prefrontal cortex (n=8, 
panel B), lateral septum (n=7, panel C) and caudate putamen (n=7, panel D) of C57bl/6N mice. Shaded 
area indicates the period of exposure to a rat. When the ANOVA indicated a significant effect of ‘time’, 
post-hoc simple contrasts were performed comparing all time levels to baseline and comparing the two 
levels during rat exposure. Results from the post-hoc tests are denoted by * in red or blue, which indicates 
significant difference from the baseline levels of the compound in the same colour (Bonferroni corrected 
for multiple comparisons, p < 0.0083).  5-HT baseline values were 0.40 ± 0.09 fmol/min in the 
hippocampus, 0.25 ± 0.08 fmol/min in the prefrontal cortex, 0.25 ± 0.06 fmol/min in the lateral septum 
and 0.66 ± 0.09 fmol/min in the caudate putamen. 5-HIAA baseline values were respectively 151.2 ± 13.3, 
90.3 ± 4.9, 115.2 ± 8.7 and 212.5 ± 9.3 fmol/min. 
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The behavioural activity pattern did not depend on the location of implantation. The overall 

ANOVA did not indicate an effect of ‘region’ (F(3,27) = 0.69, p > 0.05) or of ‘region by 

time’ (F(15,135) = 0.81, p > 0.05) for activity. As was the case in Figure 19, activity levels 

did vary with ‘time’ (F(5,135) = 30.07, p < 0.0005), with higher levels during rat exposure 

(results of corresponding post-hoc simple contrasts are not depicted in Figure 24). 

Different was the situation for 5-HT, in which case the overall ANOVA not only indicated a 

significant effect of ‘time’ (F(5,135) = 18.40, p < 0.0005), but also of ‘region’ (F(3,27) = 

3.57, p < 0.05). After further analysis, ‘time within region’ effects were present in the 

hippocampus (F(5,135)= 9.53, p < 0.0005), the prefrontal cortex (F(5,135) = 7.69, p < 

0.0005) and lateral septum (F(5,135) =  5.42, p < 0.0005), but not in the caudate putamen 

(F(5,135) = 1.11, p > 0.05), meaning that the variations in 5-HT levels over the course of the 

experiment were not significant in the caudate putamen, as the only one out of four brain 

regions tested.  

In the period before rat exposure, hippocampal levels varied between 94.0 ± 2.5% and 221.6 

± 37.1% of baseline, with an average of 155.7 ± 14.2%. This variation in pre-exposure levels 

was less in cortical 5-HT (ranging from 100.0 ± 7.3% to 184.8 ± 17.9% with an average of 

131.2 ± 7.3%), septal 5-HT (ranging from 107.0 ± 10.0% to 191.0 ± 33.4%, with an average 

of 132.4 ± 8.1%), and a similar variation was hardly noticeable in the caudate putamen (93.6 

± 3.3% to 124.9 ± 14.3%, with an average of 107.2 ± 3.0%).  

During rat exposure, extracellular levels of 5-HT increased rapidly, and again reached highest 

levels in the hippocampus, with a maximum of 306.2 ± 28.4%. In the prefrontal cortex, a 

maximum was reached of 242.3 ± 20.0% and in the lateral septum of 222.2 ± 24.5%. Post-

hoc contrasts revealed that extracellular levels of 5-HT in the hippocampus, the prefrontal 

cortex and the lateral septum were significantly higher during the first half of rat exposure 

than under basal conditions (see Figure 24). In the caudate putamen, levels did not exceed 

137.8 ± 14.4% during rat exposure, which was not significantly higher than pre-exposure 

level. According to post-hoc Scheffé test, hippocampal levels during this period were 

significantly higher than those in lateral septum and in caudate putamen, whereas also 

cortical levels were higher than in the caudate putamen. In the second half of rat exposure, 

extracellular levels decreased, and were no longer different from pre-exposure levels, the 

same of which holds true for the levels after rat exposure.  

Interesting is that the pattern of increases and decreases in 5-HT in three out of the four 

regions resembled the pattern of increases and decreases in activity. 
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2.3.2. Effect of rat exposure on 5-HIAA on day 1 

The overall ANOVA for ‘time’ and ‘region’ effects of 5-HIAA indicated a significant effect 

of ‘time’ (F(5,135) = 12.01, p < 0.0005). Similar to the results obtained with 5-HT, 

significant time effects were present in the hippocampus (F(5,135) = 6.14, p < 0.0005), 

prefrontal cortex (F(5,135) = 5.54, p < 0.0005) and lateral septum (F(5,135) = 3.93, p < 

0.005), but not in the caudate putamen (F(5,135) = 1.93, p > 0.05). Variations in levels of 5-

HIAA were more modest than the variations in 5-HT. Pre-exposure levels had an average of 

106.0 ± 1.8% in the hippocampus, 104.0 ± 0.7% in the prefrontal cortex, 105.1 ± 2.0% in the 

lateral septum and 100.1 ± 0.9% in the caudate putamen. In the first three regions, 

extracellular levels of 5-HIAA increased significantly during rat exposure, but the increase 

was slighter than with 5-HT. Also the maximum levels were reached at a later time point than 

in case of 5-HT. Levels in hippocampal 5-HIAA peaked one sample later than in case of 5-

HT and were 135.3 ± 3.7%. In the cortical region, only during the second half of rat exposure 

significantly higher 5-HIAA concentrations were found than during the pre-exposure period 

(peak level: 128.6 ± 5.4%). The septal maximum concentration of 5-HIAA was 132.4 ± 

11.0%. In the putamen, 5-HIAA showed a non-significant increase to maximal 112.5 ± 2.7%. 

 

2.3.3. Effect of rat exposure on 5-HT and 5-HIAA on day 2 

The curves for 5-HT and 5-HIAA on a second day of predator exposure greatly resembled 

those shown in Figure 24. The curves of day 2 (shown in Figure 25 for the hippocampus) for 

5-HT practically overlapped the ones of day 1, but the curves of 5-HIAA lay lower on the 

second day in the hippocampus and caudate putamen. To compare the effects of rat exposure  
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Figure 25. Extracellular levels (average + S.E.M.)  of 5-HT (panel A) and 5-HIAA (panel B) in the 
hippocampus of C57bl/6N mice (n=4) on day 1 (red squares) and day 2 (blue triangles). Figure serves 
illustrative purposes. Statistical analysis to compare day 1 to day 2 followed over analysis of the AUC, see 
Table 9. 
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on day 1 and 2, the AUC of these curves were calculated both for the complete time curve, 

and for the part during rat exposure and the 15 minutes following it. These 15 minutes were 

added to the AUC, to account for effects on neurotransmission that might become visible 

with a temporal delay. The AUC are listed in Table 9. For all AUC effects of ‘region’ were 

found, which was not different from examining the curves themselves, as was done in Figure 

24 for day 1. An effect of ‘day’ however was only found when considering the AUC of 5-

HIAA during rat exposure. This indicated that on a second day of rat exposure, hippocampal 

5-HIAA increased later or slower than on the first day. 

Table 9. AUC (in arbitrary units, average ± S.E.M.) for 5-HT and 5-HIAA in C57bl/6N mice, on two 
consecutive days of rat exposure.  Also the significant p-values are listed for the effects of ‘day’ in the 
ANOVAs within region, when this was allowed based on an effect of ‘region’ in the overall ANOVA.  In 
case the simple contrasts that were done afterwards also yielded a significant difference between day 1 
and 2, the p-value is in italic. When the ANOVA did not indicate a significant effect of ‘day’ n.s. for non 
significant is listed. AUC for the hippocampus were based on n=4 because not all C57bl/6N mice with 
probes in the hippocampus had been subjected to the exposure twice, for the PFC on n=5 for a similar 
reason, for LS on n=7 and for the caudate putamen on n=5. Baseline levels were comparable to those 
measured on day 1. 

Brain region 5-HT: 8.30 – 14.00 hr 5-HT: 10.30 – 11.15 hr 
 Day 1 Day 2  Day 1 Day 2  
Hippocampus 5286 ± 655 5327 ± 462 n.s. 1347 ± 297 1342 ± 151 n.s. 
Prefrontal cortex 4076 ± 485 4202 ± 436 n.s. 839 ± 171 974 ± 235 n.s. 
Lateral septum 3877 ± 367 4033 ± 231 n.s. 776 ± 142 837 ± 91 n.s. 
Caudate putamen 2930 ± 131 2639 ± 150 n.s. 284 ± 46 177 ± 55 n.s. 

 
Brain region 5-HIAA: 8.30 – 14.00 hr 5-HIAA: 10.30 – 11.15 hr 
 Day 1 Day 2  Day 1 Day 2  
Hippocampus 3308 ± 46 3114 ± 34 n.s. 398 ± 46 277 ± 35 0.017 
Prefrontal cortex 3014 ± 92 2984 ± 63 n.s. 304 ± 43 260 ± 38 n.s. 
Lateral septum 3068 ± 121 3039 ± 114 n.s. 302 ± 49 285 ± 41 n.s. 
Caudate putamen 2814 ± 29 2728 ± 63 n.s. 211 ± 16 147 ± 23 n.s. 
 

2.4. Noradrenergic and dopaminergic neurotransmission in C57bl/6N mice 

2.4.1. Effect of rat exposure on day 1 

Whereas 5-HT and 5-HIAA could be measured simultaneously in the dialysate, a new set of 

experiments was performed to be able to measure NA with its metabolite MHPG, and the 

metabolites of dopamine, DOPAC and HVA. These compounds were only measured in the 

hippocampus. 

Effects of time were present for NA, MHPG and HVA, but not for DOPAC, see Figure 26 

(NA: F(5,30) = 7.63, p < 0.0005; MHPG: F(5,30) = 4.85, p < 0.005; HVA: F(5,35) = 5.75, p 

< 0.001 DOPAC F(5,35) = 0.97, p > 0.05).  
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Noradrenaline showed a steep increase at the beginning of rat exposure, peaking in the first 

sample during rat exposure with a level of 238 ± 11%. Levels were also still higher during the 

second half of rat exposure but then returned to baseline level. Its metabolite MHPG did not 

show such a steep increase, and during no time period the level was higher than under pre-

exposure conditions. During the second half of rat exposure however, levels were slightly 

higher than during the first half. 

Dopamine itself could not be measured (under detection limit), but its metabolites DOPAC 

and HVA could be detected in the dialysate. Rat exposure did not significantly influence the 

average levels of DOPAC, but HVA was increased during and briefly after rat exposure. 

Not shown in Figure 26 are the results of the analysis of behavioural activity – for this effects 

of time were found and post-hoc contrasts indicated that the levels during rat exposure were 

higher than before or afterwards.  
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Figure 26. Extracellular levels of noradrenaline (left panel, left y-axis, red squares, n=7), MHPG (left 
panel, right y-axis, blue triangles, n=7), DOPAC (right panel, red squares, n=8) and HVA (right panel, 
blue triangles, n=8) in the hippocampus of C57bl/6N mice. Baseline values were 0.48 ±  0.06 fmol/min for 
NA, 26.3 ± 1.8 for MHPG, 8.6 ± 0.8 for DOPAC and 20.8 ± 1.4 fmol/min for HVA. # indicates a significant 
difference between the first and second half of rat exposure (post-hoc simple contrasts, p < 0.0083). Other 
details as in Figure 24. 

 

2.4.2. Effect of rat exposure on day 2 

Table 10 shows that the AUC of the curves on repetition of the paradigm did not differ from 

the first exposure. The curves of day 2 (shown in Figure 27 for NA) practically overlapped 

those from day 1. Figure 27 also illustrates that the remarkable peak seen on day 1 with 

noradrenaline was also present on day 2, with a level of 212 ± 29%. 

Table 10 (next page). AUC (in arbitrary units, average ± S.E.M.) for hippocampal NA; MHPG, DOPAC 
and HVA on two consecutive days. None of the paired Student’s t-tests comparing the values for day 1 
with those of day 2 were significant. AUC were based on n=6 for NA, n=7 for MHPG, and on n=8 for 
DOPAC and HVA. Baseline values were similar to those encountered on day 1. 
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Compound 8.30 – 14.00 hr 10.30 – 11.15 hr 
 Day 1 Day 2  Day 1 Day 2  
Noradrenaline 3643 ± 213 3933 ± 244 n.s. 668 ± 112 810 ± 117 n.s. 
MHPG 2921 ± 83 2869 ± 116 n.s. 246 ± 47 221 ± 61 n.s. 
DOPAC 2781 ± 78 2782 ± 61 n.s. 234 ± 27 192 ± 36 n.s. 
HVA 2914 ± 41 2849 ± 35 n.s. 249 ± 15 204 ± 23 n.s. 
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Figure 27. Extracellular levels (average + S.E.M.) of NA in the hippocampus of C57bl/6N mice (n=6) on 
day 1 (red squares) and day 2 (blue triangles). Figure serves illustrative purposes. Statistical analysis to 
compare day 1 to day 2 followed over analysis of the AUC, see Table 10. 

 
2.5. Serotonergic neurotransmission in Balb/c mice 

2.5.1. Effect of rat exposure on day 1 

In Balb/c mice three brain structures were dialysed: the hippocampus, the anterior 

hypothalamus and the paraventricular nucleus. In the dialysate, levels of 5-HT, 5-HIAA, 

MHPG, DOPAC and HVA were measured. In the hippocampus, different animals needed to 

be used to measure 5-HT and 5-HIAA on the one side and the other compounds on the other 

side. In the AHP and PVN all could be measured in the same animals. Due to analytical 

difficulties however, it was not possible to measure 5-HT in all animals that were dialysed in 

the AHP or PVN. Therefore the n-number is lower for 5-HT in these cases than for MHPG, 

DOPAC and HVA. The results for 5-HIAA were chosen to match the individuals with 

successful analysis of 5-HT, and therefore also have a lower n-number. Levels of NA could 

not be measured in the AHP and PVN due to chromatographic problems. Also, from the 

placement of the microdialysis probes in Figure 22F and Figure 23B, it follows that some 

probes were located more in the medial, and others more in the lateral PVN. As no 

differences were found in the neurochemical results, these data have been pooled. 
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Figure 28 depicts the levels of 5-HT and 5-HIAA in the three structures, as well the 

behavioural activity. ANOVA did not 

indicate an effect of ‘region’ for the activity. 

Activity levels did change with time, but as 

these results were not different from those 

described above and depicted in Figure 19, 

no further details are given here.  

Effects of ‘region’ however were found for 

5-HT and 5-HIAA (F(2,14) = 17.14, p < 

0.0005 and F(2,14) = 5.43, p < 0.02 

respectively) as well as interactions of 

‘region by time’ (F(10,70) = 2.74, p < 0.01 

and F(10,70) = 2.05, p < 0.05 respectively), 

so the time course of these compounds was 

analysed separately for each region. 

In all three regions effects of ‘time’ were 

present for 5-HT (F(5,70) = 31.62, p < 

0.0005 in the hippocampus; F(5,70) = 8.84, 

p < 0.0005 in the AHP and F(5,70) = 21.87, 

p < 0.0005 in the PVN). Levels of 5-HT 

increased at the beginning of rat exposure to 

levels that were significantly higher than 

during pre exposure conditions. This 

increase was largest in the hippocampus  

Figure 28.  Extracellular levels of 5-HT, 5-HIAA and behavioural activity in the hippocampus (panel A, 
n=5), anterior hypothalamus (panel B, n=6) and paraventricular nucleus (panel C, n=6) of Balb/c mice. 
Please note the difference in scaling of the left y-axis. Baseline values for 5-HT were 0.58 ± 0.10 in the 
hippocampus; 0.23 ± 0.05 in the AHP and 0.16 ± 0.03 fmol/min in the PVN. For 5-HIAA these were 156.5 
± 13.3; 147.0 ± 26.9 and 108.0 ± 10.9 fmol/min. Other details are as described in the caption to Figure 24. 

with a maximum level of 298.8 ± 35.2%, followed by the PVN with a maximum level of 

171.3 ± 7.1%. In the first 15 minutes after rat exposure, levels stayed elevated in the 

hippocampus and PVN, before returning to levels that were no longer different from baseline. 

In the PVN it seemed as if the elevation in 5-HT fell off during the presence of the rat, to 

increase again after removal of the predator. In the AHP 5-HT was only higher during rat 

exposure. Post-hoc Scheffé tests (not represented in the figure) indicated that levels in the 
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hippocampus were different from AHP and PVN before rat exposure, during rat exposure and 

the 15 minutes after. Hippocampal levels were also higher than those in PVN in the last time 

period. Scheffé tests however did not indicate differences between the levels in AHP and 

PVN for any of the six time levels. An effect of ‘time’ was found for 5-HIAA in the 

hippocampus (F(5,70) = 13.58, p < 0.0005) and the PVN (F(5,70) = 4.69, p < 0.001), but just 

did not reach significance in the AHP (F(5,70) = 2.32, p > 0.05). In both former brain regions, 

levels of 5-HIAA were mildly increased during the second half of rat exposure, as well as in 

the 15 minutes following it. Again, the amplitude of the effect was largest in the 

hippocampus with a maximum of 150.8 ± 4.2% compared to 122.0 ± 9.2% in the AHP and 

125.5 ± 5.9% in PVN. Here, post-hoc Scheffé tests showed that levels of hippocampal 5-

HIAA were different from those in AHP during the second half of rat exposure, and from 

those in PVN in the second post exposure period. 

 

2.5.2. Effect of rat exposure on day 2 

Whereas most curves looked the same on day 2 as on day 1, the levels of 5-HT in the 

hippocampus were higher during rat exposure on a second day of rat exposure, resulting in a 

significant effect of ‘day’ in the ANOVA (see Table 11 and Figure 29). Yet, a direct 

comparison of these AUC with paired t-tests, without taking data of the AHP and PVN into 

account did not yield significance. These higher levels were not seen in all animals, but in 

two out of the five that made up the average. In the AHP and PVN, curves did not look 

differently on day 2, as can be seen in Figure 29 as well. 

Table 11. AUC (in arbitrary units, average ± S.E.M.) for 5-HT and 5-HIAA in Balb/c mice on two 
consecutive days of rat exposure. The overall ANOVA indicated a significant effect of ‘region’, so 
ANOVA was repeated for each region separately. When the ANOVA within each region indicated a 
significant effect of ‘day’, the p-values for this effect are listed. When the ANOVA did not indicate a 
significant effect of ‘day’ n.s. for non significant is listed. The post-hoc test for 5-HT in the hippocampus 
was not significant. AUC for the hippocampus were based on n=5, in the AHP on n=9 and in the PVN on 
n=10. Baseline levels were comparable to those measured on day 1. 

Brain region 5-HT: 8.30 – 14.00 hr 5-HT: 10.30 – 11.15 hr 
 Day 1 Day 2  Day 1 Day 2  
Hippocampus 5343 ± 430 6896 ± 538 0.024 1487 ± 186 2268 ± 248 0.038 
AHP 3501 ± 152 3390 ± 125 n.s. 547 ± 47 540 ± 72 n.s. 
PVN 3529 ± 131 4218 ± 586 n.s. 674 ± 45 1131 ± 462 n.s. 

 
Brain region 5-HIAA: 8.30 – 14.00 hr 5-HIAA: 10.30 – 11.15 hr 
 Day 1 Day 2  Day 1 Day 2  
Hippocampus 3316 ± 82 3371 ± 114 n.s. 418 ± 45 440 ± 50 n.s. 
AHP 2947 ± 86 2813 ± 31 n.s. 239 ± 50 205 ± 23 n.s. 
PVN 2955 ± 61 2968 ± 83 n.s. 269 ± 25 280 ± 35 n.s. 
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Figure 29. Extracellular levels (average + S.E.M.) of 5-HT in the hippocampus (panel A, n=5) and the 
anterior hypothalamus (panel B, n=9) of Balb/c mice on day 1 (red squares) and day 2 (blue triangles). 
Figure serves illustrative purposes. Statistical analysis to compare day 1 to day 2 followed over analysis of 
the AUC, see Table 11. 

 
2.6. Noradrenergic and dopaminergic neurotransmission in Balb/c mice 

2.6.1. Effect of rat exposure on day 1 

The changes in the level of the metabolite of noradrenaline were similar among the dialysed 

regions, as depicted in Figure 30, and no effect of ‘region’ or of ‘region by time’ was 

indicated by the ANOVA (F(2,21) = 0.01, p > 0.05; F(10, 105) = 1.49, p > 0.05). Yet, an 

effect of ‘time’ was present (F(5,105) = 33.35, p < 0.0005). Levels of MHPG were higher 

during and in the two periods after rat exposure than prior to rat exposure. The levels in the 

second half of rat exposure were significantly higher than in the first. Although it was not 

allowed based on the results of the ANOVA to investigate this temporal effect for the regions 

separately, it is clear from Figure 30 that in the hippocampus MHPG was only clearly 

elevated above baseline level in the second half of rat exposure, where it reached a level of 

128.8 ± 10.8%. It is also visible that the highest levels in the AHP and PVN are found in this 

period and the successive one, with respective maxima of 129.6 ± 6.0% and 129.0 ± 3.3. 

Unlike with 5-HT and 5-HIAA these amplitudes were of comparable size in the hippocampus 

and the two other structures. 

Figure 31 shows the results for the metabolites of dopamine. For DOPAC and HVA as well, 

no effect of ‘region’ (F(2,21) = 0.73, p > 0.05; F(2,21) = 2.33, p > 0.05) or of the interaction 

‘region by time’  (F(10,105) = 1.06, p > 0.05; F(10,105) = 1.63, p > 0.05) were found. 

ANOVA did not indicate an effect of time either for DOPAC (F(5,105) = 1.00, p > 0.05), but  
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Figure 30 (left). Extracellular levels of MHPG in the hippocampus (n=5), AHP (n=9) and PVN (n=10) of 
Balb/c mice. Baseline values were 14.9 ± 2.2; 13.9 ± 2.3 and 13.7 ± 1.0 fmol/min respectively. Other details 
as in Figure 24 and Figure 28. 

Figure 31 (right). Extracellular levels of DOPAC and HVA in the hippocampus (n=5), AHP (n=9) and 
PVN (n=10) of Balb/c mice. Baseline values for DOPAC were 11.3 ± 1.7; 26.0 ± 4.6 and 27.5 ± 3.7 
fmol/min for the hippocampus, AHP and PVN respectively. For HVA these were 25.8 ± 1.1; 59.1 ± 8.8 and 
56.8 ± 5.7 fmol/min. Details as in Figure 24 and Figure 28. 

did so for HVA (F(5,105) = 13.58, p < 0.0005. HVA was slightly elevated during and shortly 

after rat exposure, especially in the latter half of the exposure. The maximal levels were 

comparable among the three regions. They were 110.2 ± 2.8% in the hippocampus, 115.9 ± 

6.3% in the AHP and a bit higher in the PVN with 121.7 ± 3.7%. Although not significantly, 
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there seemed to be a tendency for a decrease in DOPAC at the beginning of rat exposure in 

the AHP, when a level was measured of 87.9 ± 8.8% and to a lesser extent in the PVN (96.4 

± 10.9%), but not in the hippocampus. After the paradigm, levels were not differing from 

those under baseline conditions. 

 

2.6.2. Effect of rat exposure on day 2 

Curves for MHPG on the second day of rat exposure showed a tendency to increase less in 

the PVN, and to not increase until just after rat exposure in the AHP, resulting in an effect of 

‘day’ for MHPG (no effect of ‘region’ F(2,21) = 1.04, p > 0.05). An effect of ‘region by day’ 

was found for HVA (F(2,21) = 3.65, p < 0.05 for the AUC of the full curve and F(2,21) = 

4.48, p < 0.05 for the part during rat exposure). In the hippocampus, the AUC was less on day 

2 for HVA according to the ANOVA, but a post-hoc direct comparison with paired t-tests 

was not significant (see also Figure 32). For DOPAC no differences between the two days 

were found. On day 2 a seeming decrease in DOPAC in the AHP was present as well. 

Table 12. AUC (in arbitrary units, average ± S.E.M.) for MHPG, DOPAC, HVA in Balb/c mice, on two 
consecutive days of rat exposure.  Significant p-values are listed at the top of the column for the effects of 
‘day’ for MHPG and ‘day by region’ for HVA in the ANOVA that compared all data combined. In case 
of HVA, ANOVAs within regions were allowed, and effects of ‘day’ per region are listed as well. The post-
hoc test for HVA in the hippocampus was not significant. When the ANOVA did not indicate a significant 
effect of ‘day’ n.s. for non significant is listed. AUC for the hippocampus were based on n=5, in the AHP 
on n=9 and in the PVN on n=10. Baseline levels were comparable to those measured on day 1. 

Brain region MHPG: 8.30 – 14.00 hr MHPG: 10.30 – 11.15 hr 
 Day 1 Day 2 0.034 Day 1 Day 2 0.007 
Hippocampus 3035 ± 104 3041 ± 125  287 ± 51  260 ± 50  
AHP 3000 ± 56 2830 ± 30  294 ± 26 218 ± 10  
PVN 2974 ± 44 2904 ± 52  315 ± 22 267 ± 26  

 
Brain region DOPAC: 8.30 – 14.00 hr DOPAC: 10.30 – 11.15 hr 
 Day 1 Day 2 n.s. Day 1 Day 2 n.s. 
Hippocampus 2733 ± 84 2872 ± 71  205 ± 33 253 ± 38  
AHP 2682 ± 80 2806 ± 52  206 ± 31 178 ± 25  
PVN 2863 ± 89 2875 ± 82  250 ± 35 232 ± 42  

 
Brain region HVA: 8.30 – 14.00 hr HVA: 10.30 – 11.15 hr 
 Day 1 Day 2 0.044 Day 1 Day 2 0.024 
Hippocampus 2733 ± 37 2913 ± 70 0.027 180 ± 13 262 ± 40 0.012 
AHP 2866 ± 60 2834 ± 48 n.s. 226 ± 29 215 ± 18 n.s. 
PVN 2920 ± 60 2858 ± 62 n.s. 272 ± 28 248 ± 24 n.s. 
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Figure 32. Extracellular levels (average + S.E.M.) of MHPG (panel A) and HVA (panel B) in the 
hippocampus of C57bl/6N mice (n=5) on day 1 (red squares) and day 2 (blue triangles). Figure serves 
illustrative purposes. Statistical analysis to compare day 1 to day 2 followed over analysis of the AUC, see 
Table 12. 

 
 
2.7. Comparison of neurotransmission in C57bl/6N and Balb/c mice 
Because the microdialysis experiments were not primarily designed to compare the 

differential neurochemical effects of predator exposure on C57bl/6N and Balb/c mice, and 

the experiments with the Balb/c mice were performed after those with C57bl/6N mice, the 

neurochemical results for the two strains can not be compared statistically. Still, Figure 33 

brings the results for the strains, that except for NA in Balb/c mice have been shown in 

previous figures, together to illustrate that only few differences in the neurochemical 

parameters existed between the two strains. This contrasts the differences that were seen 

when comparing the effect of rat exposure on behavioural parameters. 

A strain difference only appears to be present in the extracellular levels of HVA that were 

higher in C57bl/6N mice. Differences were also seen in the absolute baseline values (see 

caption to Figure 33), with extracellular levels of NA being higher in Balb/c but levels of 

MHPG being lower. 

Figure 33 also underlines the rapid increase in 5-HT and NA in both strains at the beginning 

of rat exposure, the latter having a clear peak in the first sample collected in presence of the 

rat. The metabolites of these neurotransmitters also increased, but slower and to a lesser 

extent. Where the levels of 5-HT and 5-HIAA in Balb/c stayed elevated for longer than in 

C57bl/6N mice, the same was true for the behavioural activity during that time. 
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Also the metabolites of dopamine increased somewhat during rat exposure in both strains, but 

very mildly.   
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Figure 33. Comparison of C57bl/6N (red curves, squares) and Balb/c (blue curves, triangles). Results for 
six compounds (coloured lines) and for behavioural activity (black lines) are depicted (average values + 
S.E.M.). Baseline values for C57bl/6N and Balb/c were  0.40 ± 0.09 (n=9) and 0.58 ± 0.10 (n=5) fmol/min 
for 5-HT; 151.2 ± 13.3 (n=9) and 156.5 ± 13.1 (n=5) fmol/min for 5-HIAA; 0.48 ± 0.06 (n=7) and 0.93 ± 
0.15 (n=5) fmol/min for NA; 26.3 ± 1.8 (n=7) and 14.9 ± 2.2 (n=5) fmol/min for MHPG; 8.6 ± 0.8 (n=8) and 
11.3 ± 1.7 (n=5) fmol/min for DOPAC; 20.8 ± 1.4 (n=8) and 25.8 ± 1.1 (n=5) fmol/min for HVA. Other 
details as described in the caption to Figure 24 and Figure 26. 
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3. NEUROENDOCRINE DATA 

3.1. Free corticosterone  
The dialysate of 14 C57bl/6N mice 

was used to determine the time curve 

of free corticosterone over the course 

of the experiment on the two days. The 

results are depicted in panel A of 

Figure 34.  

Significant effects were found for 

‘time’ (F(6,78) = 3.80, p < 0.005) and 

‘day’ (F(1,13) = 5.03, p < 0.05), but 

not for the interaction ‘time by day’ 

(F(6,78) = 1.75, p > 0.05). Post-hoc 

tests showed that the corticosterone 

levels towards the end of the 

experimental day were higher than the 

levels during baseline. Also a modest 

increase could be seen in the levels of 

free corticosterone during and briefly 

after rat exposure on day 1. Overall, 

levels of corticosterone were lower on 

day 2 than on day 1, but post-hoc 

contrasts did not indicate a certain 

time period in which this difference 

was significant. 

In the group of 14 animals 

interindividual differences were found, 

with some animals responding to rat 

exposure with larger increases in free  

Figure 34.  Average (+ S.E.M.) free corticosterone – time curves for all C57bl/6N mice of which the 
dialysate was analysed (panel A, n=14) on day 1 (red squares) and day 2 (blue triangles) of rat exposure, 
as well as for 3 animals (panel B) of which the levels of free corticosterone clearly deviated from the other 
11 animals (panel C). Please note differences in Y-axis scaling. Shaded area signifies the time frame 
during which the rat was present. Only the figure in panel A was analysed statistically. Asterisks indicate 
a significant deviation from baseline level (post-hoc simple contrasts, Bonferroni corrected for multiple 
comparisons, p < 0.0083). 
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Figure 35. Plasma levels of ACTH (top panel) and corticosterone (bottom panel) in C57bl/6N (red 
squares) and Balb/c (blue triangles) under control (open symbols, n=6) and rat exposure (closed symbols, 
n=12) conditions. See text for significant effects. 

 

corticosterone than others. The levels of free corticosterone in these two groups are illustrated 

in panels B and C of Figure 34. However, due to the low number of animals in the group with 

higher corticosterone levels, no statistics were done on this result. Nevertheless it can be 

recognised that in these animals the effect of rat exposure had less impact on free 

corticosterone levels when the paradigm was repeated on a second day.  

A different situation was found when not the levels of free corticosterone, but the plasma 

levels of total corticosterone and of ACTH were measured in C57bl/6N and Balb/c mice (see 

Figure 35). Although interindividual differences could be noticed, on average, the levels of 

both corticosterone and ACTH were clearly higher after rat exposure than under control 

conditions. ANOVA showed a significant effect of ‘exposure’ on both ACTH (F(1,32) = 

20.00, p < 0.0005) and corticosterone (F(1,32) = 8.14, p < 0.01). No effect of ‘strain’ or of 

the interaction ‘exposure by strain’ existed.  
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3.2. More strain differences – plasma values 
After the finding that exposure leads to only mild increases in free corticosterone in 

C57bl/6N mice, whereas previous experiments with B6C3F1 mice had indicated larger 

effects, different strains of mice, known to 

differ in emotionality, were subjected to 

predator exposure or a control experiment 

and plasma ACTH and plasma corticosterone 

were measured. The results are presented in 

Figure 36. Control levels of ACTH and 

CORT were roughly the same for all strains, 

but not all strains showed an elevation in 

these hormones when they were subjected to 

rat exposure. C57bl/6J and DBA/2 mice did 

not respond with an increase in plasma 

concentrations for example. In the overall 

ANOVA an effect of ‘exposure’ was present 

(F(1,50) = 15.43, p < 0.0005 for ACTH and 

F(1,50) = 7.05, p < 0.010 for CORT). An  

Figure 36. Average (+ S.E.M.) plasma levels of ACTH (top panel) and corticosterone (bottom panel) for 5 
strains of mice under control conditions (open bars, n=6) or after half an hour of rat exposure (closed 
bars, n=12 for C57bl/6N and Balb/c mice, n=6 for C57bl/6J, DBA/2 and B6C3F1 mice). Asterisks indicate 
a significant difference between control and exposed conditions (post-hoc simple contrasts, Bonferroni 
corrected for multiple comparisons, p < 0.010). 

effect of ‘strain’ was found for CORT with F(4,50) = 3.22, p < 0.05. In the case of  

ACTH this was F(4,50) = 2.36, p > 0.05. From Figure 36, however, is clear that both for 

ACTH and CORT, Balb/c were the most responsive mice. Also C57bl/6N and B6C3F1 mice 

seemed to show increased hormonal levels after rat exposure.  

To investigate whether differences in hormone responses were reflected in behaviour, the 

behaviour during exposure was examined in the five strains. Results are shown in Table 13. 

Table 13 (next page).  AUC (± S.E.M.) for all different behavioural parameters that were scored during 
rat exposure for five strains of mice (n=6 per strain). Behaviour was scored using the instantaneous Excel 
method and plotted in figures like in Figure 19. AUC were calculated and normalised so that an AUC 
value could be maximally 100, in case that behaviour had been exhibited throughout rat exposure. For 
freezing not the AUC was determined, but the total number of behavioural scores that indicated 
‘freezing’. Descriptions of behaviours can be found in Table 4 and Table 7. N.s. or * in the second column 
means that the ANOVA indicated a non-significant or significant effect of ‘strain’, in the latter case the 
results of homogeneous subsets according to Scheffé post-hoc tests are indicated in superscript behind the 
values of each strain. 
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  C57bl/6N C57bl/6J DBA/2 Balb/c B6C3F1 
GENERAL       
active n.s. 90.0 ± 5.0 86.6 ± 2.3 81.8 ± 9.2 97.5 ± 1.0 92.8 ± 2.6 
time close to wall n.s. 53.2 ± 10.6 25.1 ± 6.4 51.6 ± 17.2 55.6 ± 3.4 28.5 ± 6.2 
INVESTIGATIVE       
freezing * 0.0 ± 0.01 0.7 ± 0.71 0.0 ± 0.01 0.0 ± 0.01 3.7 ± 1.91 

sniffing air * 30.1 ± 3.11,2 31.5 ± 2.32 14.9 ± 2.31 27.3 ± 4.81,2 32.0 ± 3.42 

stretching n.s. 0.3 ± 0.2 1.1 ± 0.7 0.2 ± 0.1 0.1 ± 0.1 0.4 ± 0.3 
rearing * 2.3 ± 1.01,2 1.3 ± 0.51,2 0.3 ± 0.11 4.2 ± 0.42 3.1 ± 0.91,2 

walking n.s. 1.9 ± 0.7 1.6 ± 0.4 0.6 ± 0.2 2.4 ± 0.7 1.4 ± 0.4 
sniffing wall * 23.2 ± 5.92 8.4 ± 1.41,2 5.5 ± 1.71 24.0 ± 7.92 9.3 ± 3.41,2 

sniffing bedding n.s. 15.6 ± 1.8 21.3 ± 2.7 16.8 ± 2.9 12.4 ± 3.6 13.7 ± 2.9 
defensive burying n.s. 0.0 ± 0.0 0.0 ± 0.0 5.8 ± 4.1 0.2 ± 0.1 3.0 ± 1.5 
OTHER       
grooming * 7.2 ± 1.91 10.7 ± 3.21,2 28.6 ± 8.22 6.1 ± 0.91 7.2 ± 2.01 

food-related * 7.9 ± 2.31,2 7.6 ± 3.21,2 0.6 ± 0.11 20.6 ± 4.02 19.8 ± 5.72 

nesting, digging n.s. 1.6 ± 0.7 2.8 ± 0.9 8.7 ± 5.3 0.2 ± 0.1 1.7 ± 1.0 
 

Strain differences were found for the following behaviours: freezing F(4,25) = 3.00, p < 0.05; 

sniffing air F(4,29) = 4.57, p < 0.01; rearing F(4,29) = 5.25, p < 0.005; sniffing separation 

wall F(4,29) = 6.30, p < 0.001; grooming F(4,29) = 5.22, p < 0.005 and food-related 

behaviour F(4,29) = 5.95, p < 0.005. For rearing, the distribution of the values matched those 

of hormone increases: strains with higher hormone levels also tended to show more rearing. 

They also seemed to show more sniffing at the separation wall and less grooming. Balb/c and 

B6C3F1 mice, both with higher corticosterone values during rat exposure than the other 

strains, also exhibited more food-related behaviour than the other strains. When the levels of 

behavioural intensities were compared to the levels of CORT in the same individuals, 

regardless of strain, no additional indications were found that certain behaviours were more 

intense with higher corticosterone levels, except for the aforementioned grooming, rearing 

and food-related behaviour. 

 

For C57bl/6N, Balb/c and B6C3F1 it was decided to use a continuous scoring model as well 

to take another look at behavioural differences between the strains during rat exposure. 

Behavioural parameters as described in Table 7 were scored and are shown in Figure 37. 

Effects of ‘strain’ were not found for any of the parameters. This was partly due to the 

inclusion of the B6C3F1 strain in the analysis, because rearing was seen more often, and 

food-related behaviours were seen longer in Balb/c than in C57bl/6N mice when only these 

strains were compared. These results did not contradict those found in the behavioural 

scoring during the microdialysis experiments (see Figure 20 for example). 

Also when the individual behavioural data were not sorted by strain but by height of the 

ACTH or CORT levels in the animals, hardly any correlations were found between hormone 
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levels and behaviour. An exception was the nosepoke frequency, for which an effect of the 

height of the CORT response was found (F(2,17) = 3.72, p < 0.05), with the lowest group of 

CORT values (less than 25 ng/ml) being associated with poking less often than the other two 

groups of CORT values.  
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Figure 37. Behavioural profile (averages + S.E.M.) of C57bl/6N (red bars), Balb/c (blue bars) and B6C3F1 
(green bars) mice (n=6 per strain) during rat exposure. 

 

4. ADDITIONAL EXPERIMENTS 

4.1. C57bl/6N mice bred at the institute 
Due to a preliminary experiment using transgenic animals that were bred in the institute, in 

which the wildtype animals showed very high corticosterone values (data not shown; 

experiment could not be repeated because too few animals were available), it seemed to be a 

good idea to examine whether the results for the experiments would be different when 

animals were bred in the institute. The first generation of C57bl/N mice that were born in the 

institute’s animal facilities were subjected to a control experiment or to rat exposure. 

Figure 38 shows that the hormone levels were higher in exposed than in non-exposed controls 

(effect of ‘exposure’ on ACTH: F(1,15) = 13.34, p < 0.005; on CORT: F(1,15) = 6.93, p < 

0.02) .  
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Figure 38. Average (+S.E.M.) plasma levels of ACTH (left) and corticosterone (right) for C57bl/6N mice, 
born in the institute, with a control experiment (n=8) and after rat exposure (n=8). Asterisks indicates a 
significant difference between control (One-way ANOVA, p < 0.05) 
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A comparison with Figure 36 indicates that both ACTH and CORT values after rat exposure 

lay higher (198.9 ± 62.0 and 103.9 ± 31.3) with the institute-bred animals, but still within the 

same range found with animals delivered from Charles River (111.2 ± 13.2 and 58.0 ± 17.0), 

as Student’s t-test were not significant. Control levels were not different either. 

Interestingly, differences in behaviour between the control and the exposed group were 

hardly seen. Only stretched-attend posture was observed with the exposed group but not with 

the control group. Due to the setup of this control experiment, in which an empty hand was 

inserted in the rat compartment, animals were alerted, and did not stay sleeping. Compared to 

the values of the C57bl/6N mice from Figure 37, these exposed mice were much more 

inactive (unpaired Student’s t-test, t = -2.20, p < 0.05), and consequently, showed less often 

backups (t = 3.21, p < 0.01), nosepoking (t = 3.89, p < 0.005), and spent less time nosepoking 

(t = 3.76, p < 0.005) or at the separation wall (t = 3.59, p < 0.005). 
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Figure 39. Behavioural profile (average + S.E.M.) for C57bl/6N mice, born in the institute, under control 
(open bars, n=8) and exposure (closed bars, n=8) conditions. Asterisk indicates a significant difference 
between the two conditions (unpaired Student’s t-test, p < 0.05).  

 

4.2. CRH-transgenic animals 
One experiment was performed with mice overexpressing CRH, which are thought to be 

more anxious than their wildtype littermates. Plasma ACTH was elevated in both Wt and Tg 

after exposure (effect of ‘exposure’ F(1,20) = 8.17, p < 0.01, no effect of ‘genotype’ or 

interaction). For corticosterone however, an effect of ‘genotype’ (F(1,20) = 28.27, p < 

0.0005), ‘exposure’ (F(1,20) = 4.69, p < 0.05) and a significant ‘genotype by exposure’ 

interaction (F(1,20) = 14.46, p < 0.001) taught that Wt had elevated corticosterone levels 
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after exposure, but that Tg did not. Also, the control levels of Tg were higher than those of 

Wt, and even comparable to the exposed corticosterone levels of Wt (see Figure 40). 
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Figure 40. Average ACTH (left panel) and CORT (right panel) levels in CRH-Wt (n=6) and CRH-Tg 
(n=6) after a control experiment (open bars) and after rat exposure (closed bars). Black * indicate that no 
effect of ‘strain’ was present and that exposed levels were different from control. Blue * indicates a 
difference with the control level of the same genotype (post-hoc simple contrasts, p < 0.025). # indicates a 
difference with the control level of the other genotype (Student’s t-test, p < 0.025). 
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Figure 41. Behavioural profile of CRH-Wt (blue bars) and CRH-Tg (red bars) under control (open bars) 
or exposure (closed bars) conditions. In all groups n=6. When ANOVA indicated a significant effect of 
‘exposure’, the homogeneous subgroups according to Duncan post-hoc tests have been indicated in the 
figure with letters. In case of a significant effect of ‘genotype’, these letters are in italic (which is the case 
for food-related behaviour). 

Behavioural analysis of these animals revealed (see Figure 41) differences between the 

control and the exposed animals for backup (F(1,3) = 20.40, p < 0.0005), SAP (F(1,3) = 6.28, 

p < 0.05) and nosepoke (F(1,3) = 9.83, p < 0.005) frequencies, which were all seen more in 

exposed animals, as well as in the duration of nosepoking (F(1,3) = 11.30, p < 0.005), 

grooming (F(1,3) = 6.00, p < 0.05) and time spent at the separation wall (F(1,3) = 7.20, p < 

0.02). Animals that were exposed to a rat were also more active than controls (F(1,3) = 20.17, 

p < 0.0005). Differences in this behavioural profile after rat exposure between the two 
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genotypes were small, but CRH-Tg tended to show less or less frequent SAP and nosepokes. 

Interestingly, a genotype difference was also found in the behaviour: transgenics spent more 

time engaged in food-related behaviours than their wild types, both under control and under 

exposure conditions (F(1,3) = 9.80, p < 0.005). 
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IV. DISCUSSION 

 

1. BEHAVIOURAL ASPECTS OF RAT EXPOSURE 

1.1. Behaviour of  C57bl/6N and Balb/c mice on day 1 
Introduction of a rat into the home cage changed the behavioural profile of C57bl/6N and 

Balb/c mice. The animals were asleep or mainly exhibited self-directed behaviours, such as 

grooming, food-related behaviour and nest-building, before and after rat exposure. During rat 

exposure and the 15 min afterwards however, the activity levels increased, and rather than 

self-directed behaviour, investigative behaviours were seen, such as sniffing in the air, 

stretching and sniffing at the separation wall. As a first reaction to the introduction of the rat, 

animals jumped to an opposite corner of the cage, in an attempt to flee from the rat, and 

oriented towards the rat compartment. From there, they started their risk-assessment activities, 

while keeping a close eye on the rat. This behavioural concatenation shows great resemblance 

with those seen in behavioural models of anxiety, for example in the Mouse Defense Test 

Battery, in which a mouse in an oval or closed-off runway is approached by a hand-held, 

anaesthetised rat. If there is an escape possibility, the mouse will flee, when not, it orients 

towards the threat, and starts risk-assessment behaviour [28]. Risk assessment serves to gain 

information about the anticipated threat. Especially when the nature and location of the threat 

are uncertain, approach and investigation of the possible danger is part of the behavioural 

repertoire of mammals [28]. In addition, risk assessment behaviour, especially stretching, is 

sensitive to anxiolytic drugs [19, 23, 28, 118, 267], and is therefore an indication of arousal, 

stress or even anxiety. Another clear sign of anxiety would have been freezing. However, 

unlike with previous experiments using B6C3F1 mice [174], jumping away from the rat 

compartment, a sign of anxiety by itself, was not followed by freezing in the C57bl/6N and 

Balb/c mice. An explanation for this could be in the distinction that Koolhaas et al. [159] 

make between two coping styles that species can exhibit under stressful conditions, a 

proactive and a reactive form. These differ in behavioural characteristics, e.g. freezing is 

found with the reactive coping style, whereas defensive burying is a characteristic of 

proactive coping. Possibly, C57bl/6N and Balb/c mice tend to more proactive coping styles 

than B6C3F1 mice. The absence of freezing would be in line with that assumption. On the 

other side, defensive burying, which under the present rat exposure paradigm would take the 

form of heaping up bedding against the separation wall, was not observed. A behaviour that 

might be considered to be related to defensive burying however, frantically digging in the 
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bedding close to the separation wall, has been seen extensively. The attribution of 

behavioural phenomena such as freezing to either proactive or reactive coping styles is not 

rigid. Also proactive animals can manifest freezing, for example in the absence of saw dust 

[159]. 

After a first intensive phase of risk-assessment, these behaviours became less intensive. This 

happened earlier in the C57bl/6N mice than in the Balb/c mice. Most animals exhibited a 

brief period of intense grooming, and sometimes of nest-building before they returned to a 

behavioural state that was no longer indicative of stress (i.e. sleeping, or mostly involving 

self-directed behaviour). The transitional state might be characterised as a state in which the 

animals were coping with the novel situation at hand. Grooming is considered a sign of de-

arousal and coping after stress [62, 298, 316, 328]. Also nest-building has been mentioned as 

a behaviour related to coping [159, 295]. Based on the observation that food-related 

behaviour was seen more intensively in Balb/c just after the rat exposure than during any 

other time of the experiment, it is tempting to hypothesise that in this strain food-related 

behaviour is also a sign of de-arousal, and as such comparable in function to grooming and 

nesting. The behaviour may have an analogy with binge-eating in humans. 

The brief revival in overall activity and sniffing the air seen in C57bl/6N mice when the rat 

was removed from the cage was probably due to the close presence of the experimentor, and 

to the necessity to now adapt to a situation without a rat. Taken together, the observed 

behavioural changes, some of which are reminiscent of those seen in anxious situations, 

indicate a slightly anxious, clearly arousing effect of rat exposure. 

 

1.2. Behaviour of C57bl/6N and Balb/c mice on day 2 
Mice were re-exposed to a rat on the consecutive day to find out whether the mouse had 

learned from the previous experience and was less aroused or had become sensitised and 

would be more anxious. On the second day, a behavioural pattern unfolded that was highly 

similar to the one of the first day. Still, differences could be recognised. Overall, sniffing in 

the air, rearing, walking and sniffing at the separation wall (for C57bl/6N) were seen less, 

behaviours that are part of the risk assessment stage of the behaviour sequelae during and 

briefly after rat exposure. Groom and nest behaviour, indicative of coping, were more present 

on day two, especially briefly after rat exposure, as well as food-related behaviour. Although 

these differences were small, they may show a better coping with the situation after the 

second exposure. Also cat exposure only very slowly, after multiple sessions, changed the 

exhibited behaviour in rats [30].  
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Data in the literature show very diverse effects of a previous stressor on behaviour during a 

subsequent stressor. However, decreases in risk assessment and increases in self-directed 

behaviours are generally interpreted as decreased anxiety. Concerning risk assessment, it was 

found that DBA/2 mice after social isolation showed reduced risk assessment on the elevated 

plus maze. This was carefully interpreted as a reduction of anxiety [97, 269]. Also in T1 mice, 

a novel environment experience decreased anxiety [269]. These reports of decreased risk 

assessment after a prior stressful experience are contrasted by reports that DBA/2 mice on the 

other hand were more anxious on the elevated plus maze after a novel environment stress 

[269], social defeat or prior experience with the plus maze [268]. Also Blanchard et al. report 

that for example in situations in which a predator has been encountered before, risk 

assessment is elicited maximally [28, 31]. Differences in grooming were seen in Wistar rats, 

where repeated restraint stress increased, but mild chronic stress reduced grooming, of which 

both effects were prevented with the antidepressant desipramine [65]. Taken together, the 

effect of previous stress, is very much conditional upon strain, but also on the nature of the 

previous stressor, and on the frequency of prior exposition to stress. One report was found on 

repeated rat exposure, by Grootendorst et al., who exposed mice repeatedly to a rat over a 

period of two weeks, after which several tests were performed. These stressed C57bl/6 mice 

showed increased locomotor activity levels and defecated less when submitted to the circular 

hole board or the light/dark box [125]. These results seem to indicate a decrease in 

emotionality after repeated rat-exposure. In our case, the small differences in coping and risk 

assessment behaviour might also indicate a decrease in emotionality. The increase in food-

related behaviour as well can be interpreted as an indication that the animals were less 

anxious. Although not often done nowadays, it used to be common to investigate the effect of 

potential anxiolytics on consummatory behaviour. Anxiolytics were found to increase food 

intake, regardless whether a fearful stimulus was present as well [321]. The same principle is 

found in the Vogel’s punished drinking test, in which anxiolytics restore the amount animals 

drink after having associated drinking with an electric shock. 

Concluding, re-exposure of mice to a rat resulted in small shifts in behaviour that seem to 

indicate a reduction in anxiety and arousal. 

 

1.3. Behavioural strain differences 
The differences observed between the two strains could reflect genetic differences relating to 

emotionality or learning. Balb/c mice spent more time with risk assessment activities. The 

increased levels of grooming and nesting were seen later in this strain than in C57bl/6 mice. 
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This could indicate that Balb/c experienced more anxiety than C57bl/6N mice. Using a 

light/dark test, Balb/c mice were found to be highly reactionary, spending by far the least 

time in the lit compartment whereas C57bl/6 were found to be intermediate reactionary [119]. 

Other tests however found that Balb/c mice are less anxious than C57bl/6 mice. Balb/c mice 

showed high levels of open arm entries on the EPM, indicating low levels of anxiety, in 

comparison to C57bl/6 [272]. Another study, examining 16 strains of mice even found that 

C57bl/6 mice were among the most anxious on the EPM [322]. On the other hand, the EPM 

data were not confirmed by results in the open field test, where both strains spent a similar 

period of time in the central arena, an index for similar levels in emotionality [272]. From test 

batteries it also has become apparent that C57bl/6 mice are good learners, whereas Balb/c 

mice are impaired learners when it comes to spatial learning [60, 272], although the 

performance in contextual fear conditioning does not indicate a large difference [60, 286]. 

Still, it could be that better general cognitive capabilities of C57bl/6 mice enable them to 

understand faster that they have little to fear from the rat in the rat exposure paradigm. This 

might also contribute to the explanation why C57bl/6 mice showed a faster onset of coping 

behaviour when compared to Balb/c mice.  

That strains differ behaviourally is also apparent from the results obtained from subjecting 

five different strains to rat exposure. Differences were seen with freezing, sniffing the air or 

at the separation wall, rearing, grooming and food-related behaviour. B6C3F1 mice spent 

little time sniffing at the separation wall, and they also exhibited freezing, as has been 

described before [174]. These observations indicate an anxious reaction to the presence of the 

rat and could be indicative of a reactive coping style as described before. Low levels of 

sniffing behaviour and rearing were seen with DBA/2 mice, whereas they exhibited high 

levels of grooming. Contrasting the results with B6C3F1 mice, this could mean low levels of 

arousal in DBA/2 mice. This would fit with the findings that they are known as impaired 

learners [60, 286], show low levels of acoustic or tactile startle [60], but are intermediate 

responders in a light/dark paradigm [119]. On the other hand, DBA/2 mice exhibited 

defensive burying behaviour, which is seen in response to aversive stimuli [321]. This strain 

has also been reported to be irritable, vocalising during handling, and to be anxious on the 

EPM [272].  

In addition, it should be noted that within a strain, sublines may not respond similarly. This is 

reflected in different levels of sniffing at the separation wall between C57bl/6N (a subline 

bred by Charles River) and C57bl/6J (a subline bred by Jackson) mice. In general, the 

variance in behavioural parameters may be larger in the Charles River line (personal 
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communication with I. Sillaber). The Jackson line was reported to spend more time burying 

in the home cage (a spontaneous behaviour) and made more entries in the illuminated part of 

a light/dark box [329], whereas also differences in exploratory behaviour have been reported 

[63]. Subline differences were reported for behaviour in the open field with the 129 strain too 

[217]. As an additional consideration, even when the same (sub)strain and the exact same 

procedure would have been followed, results may still depend on the testing site, as was 

found by Crabbe et al. [61], who subjected several mouse strains to standardised tests in three 

different laboratories. 

From the above it becomes clear that first, it is not possible to give definite statements on an 

animals emotionality based on one behavioural test, as the rank orders for strains too often 

differ among paradigms. This has to do with the fact that different drives are determining the 

behaviour of mice for parameters that are measured in the various anxiety paradigms. Factor 

analysis revealed for example that on the EPM the urge to explore is important, whereas 

neophobia and locomotion are more important in light/dark paradigms [21].  

Secondly, various strains, known to cover a wide scala of emotionality and cognitive abilities, 

exhibited only small differences in the various behavioural parameters. Unless extensive 

further factor analysis would reveal that the combination of small differences in several 

parameters suffices to discriminate the typical properties of the strains, it appears that rat 

exposure, as applied here, may not be a powerful enough model to screen for such inherited 

differences. 

 

2. NEUROCHEMICAL ASPECTS OF RAT EXPOSURE 

2.1. Serotonergic neurotransmission 

2.1.1. Effects of stress on 5-HT and 5-HIAA 

During rat exposure, levels of 5-HT and its metabolite 5-HIAA increased in three out of four 

brain areas dialysed in C57bl/6N mice, i.e. the hippocampus, the prefrontal cortex and the 

lateral septum. In a fourth region, the caudate putamen, significant increases were absent. In 

Balb/c mice as well increases in 5-HT were found in the hippocampus. Also in the two other 

dialysed structures of Balb/c mice 5-HT levels increased during rat exposure, but these were 

smaller in the PVN than in the hippocampus, and even less in the AHP. In this mouse strain 

increases in 5-HIAA were found in the hippocampus and the PVN, but not in the AHP. The 

largest effect of rat exposure on 5-HT and 5-HIAA in both strains was observed in the 

hippocampus. In both C57bl/6N and Balb/c mice the hippocampus was dialysed and 5-HT 
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and its metabolite had been measured. Similar baseline levels and rat exposure-induced 

increases in 5-HT and 5-HIAA were found in the hippocampus of the two strains of mice. 

Previous results from our laboratory are in line with these findings. In that study [174] 

extracellular levels of 5-HT and 5-HIAA in the hippocampus of B6C3F1 mice were also 

found to increase as a consequence of rat exposure. In this case, the results of Linthorst et al. 

could be compared to the current findings, because microdialysis was used, and the setup of 

the experiments was similar to the one reported in this thesis. However, not many other 

studies combined predator exposure with measuring neurochemical parameters. Those that 

did used post-mortem tissue, or in case of microdialysis, did not have the same time-

resolution as was used in the current study. Two other factors also confound the comparison 

of the present serotonergic results to literature findings. First, it has often been reported that 

5-HT levels in various brain regions as well as the firing rate of raphe 5-HT neurons are 

highly correlated with behavioural activity [174, 178, 277, 277, 278, 292, 312], which is also 

described in this thesis. Nevertheless, remarks on the activity state of the animal at the time of 

microdialysis sampling are often omitted in the description of results, thus making it hard to 

attribute increases in levels of 5-HT to behavioural activity, stress, or a combination of both. 

Another confounding factor is that in some microdialysis studies an SSRI is added to the 

perfusion liquid to artificially increase levels of serotonin in the dialysate (eg. in [278], see 

also [277]). The way in which such an addition interferes with the physiological 

neurotransmission processes is unclear. In the present studies, no SSRI needed to be used, 

because the highly sensitive analysis method that was used, was able to measure in the 

physiological femtomol range of extracellular levels of serotonin.  

Taking the above precautions into account, most other predator exposure studies measuring 

serotonin in various brain regions were in line with our observations in C57bl/6N and Balb/c 

mice and with the findings in B6C3F1 mice [174]. Hayley et al. [132] for example, 

measuring neurochemical parameters in brain micropunches, also found increases of 5-HIAA 

in the hippocampus and prefrontal cortex of both C57bl6/J and Balb/c mice when animals 

were killed 20 minutes after the end of rat exposure. On the other hand, no increases in 5-HT 

were found.  In Swiss-Webster mice, killed directly after a 5-min exposure to a cat, 5-HT and 

5-HIAA levels were not significantly increased in hippocampus, hypothalamus or striatum 

[19]. Although in these studies 5-HT and 5-HIAA increases were not or not always seen, it 

must be noted that also in the paradigm in the present study, 15 minutes after the rat exposure, 

neurotransmitter levels were no longer higher than under pre-exposure conditions.  
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One microdialysis study exists in which rats were exposed to a cat. During cat exposure, rats 

showed significant increases in alert waking, and 5-HT was significantly, around 30%, higher 

than baseline levels in hippocampus, prefrontal cortex, amygdala and also in the striatum, a 

structure where we found no significant changes in 5-HT levels. The reported increase was 

somewhat, but not significantly, larger in prefrontal cortex, followed by hippocampus and 

striatum. For 5-HIAA only significant increases of about 8% were seen in hippocampus and 

amygdala [278]. That the percent increases in that study are less than found in our 

experiments, can be explained by a different definition of ‘baseline’. In our study baseline 

levels were calculated by only taking into account those samples, during the collection of 

which the activity was equal to or lower than 10% of the sample duration. When baseline 

neurotransmission is based upon a fixed number of samples, regardless of behavioural 

activation, the average level may be higher, and increases relative to that therefore smaller.  

From the above follows that after predator exposure, often increases are found in 5-HT and 5-

HIAA in the hippocampus and prefrontal cortex, whereas results are less unambiguous for 

structures like the striatum and hypothalamus. 

Also other stressors have been described to lead to changes in 5-HT and 5-HIAA. In the 

hippocampus, stress induces increases in extracellular levels of 5-HT and 5-HIAA. This has 

been shown for example repeatedly in mice and rats after swim stress [108, 179, 230, 245, 

278], although this was not always the case [4, 154]. In both of these latter studies however, 

baseline levels of 5-HT were calculated without correcting for the behavioural activity at the 

time of sampling. It is therefore unclear in how far the deviating results can be attributed to 

that. Apart from swim stress, stressors that involve the activation of pain pathways like with 

tail pinching and electrical shocks caused increases in 5-HT and its metabolite [108, 127, 

278]. In addition, purely physical stress, such as stimulation of the immune system by 

lipopolysaccharide or cytokines had 5-HT neurotransmission stimulating effects [175, 178, 

242] in the hippocampus. The magnitude of the increases that are found vary, but are mostly 

in the range of 130 to 300% of baseline 5-HT. These variations are hard to contribute to the 

severity of the stressor and of course depend greatly on the definition of baseline. Therefore it 

is not possible to draw conclusions about the severity of rat exposure based on the elevations 

that were seen in 5-HT and 5-HIAA.  

Not only does literature confirm that stress leads to elevations in serotonergic indices in the 

hippocampus, the same holds true for the prefrontal cortex. In this structure as well, almost 

all studies report an increase after swim stress ([58, 108, 278], again with the exception of [4, 

154]), tail pinch [108, 244, 278], shocks [130] and immune stress [91, 164]. 
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Contrasting the abundance of studies investigating the effects of stress in the hippocampus 

and cortical areas, is the limited amount of studies involving microdialysis of the lateral 

septum. The group of Lucki et al. found a decrease in 5-HT and 5-HIAA in rats that were 

forced to swim for 30 minutes [154, 251], whereas we saw a mild increase during predator 

stress. As mentioned above, differences in baseline definition make it hard to compare the 

results. 

Also for the striatum, where we saw no increases in 5-HT or 5-HIAA, different findings have 

been published for other stress paradigms. Forced swimming lead to increases in 5-HT [154, 

278], but in the latter study also to a concomitant decrease in 5-HIAA. Tail pinch increased 

extracellular levels of 5-HT [278], but was not found to have affected the turnover of 5-HT 

when analysed in post-mortem tissue [244]. A decrease in striatal levels of 5-HT was seen 

after restraint stress in mice, but not in rats [158].  

The hypothalamic region as well is a region in which conflicting effects of stress on 

serotonergic parameters are reported. Tail pinch did not affect the turnover of 5-HT [244], 

and after foot shock increases in the turnover have been reported [89] that sometimes 

occurred only in case of a strong shock, but not after a mild shock [142]. Also immune stress 

did not reliably lead to increases in 5-HT or its turnover (increase in [164], but not in [59, 

91]). 

All in all, the finding in the present study that predator stress increases extracellular levels of 

5-HT and 5-HIAA in a brain-region specific manner is underlined by brain-region specificity 

of the effects of predator stress by other groups and of other stress paradigms. A differential 

role of 5-HT in these brain regions presents itself as an explanation for this observation. Also 

differences in the innervation of these brain regions could explain such findings. 

 

2.1.2. The role of 5-HT in various brain regions 

One hypothesis concerning the role of 5-HT was put forward by Barry Jacobs and colleagues 

[277]. They hypothesised that, as behavioural activity correlates to such a high degree with 5-

HT levels, the main function of 5-HT resides in the ubiquitous facilitation of motor output 

and the coordination of concurrent autonomic and endocrine responses [145, 277]. Some 

findings in the present study are not in line with this hypothesis. For one thing, in the caudate 

putamen, a region highly involved in the coordination of movement [149, 352], levels of 5-

HT did not vary with behavioural activity. Also in the PVN and AHP, such a correlation was 

largely absent. In addition, other studies have shown brain region dependent increases in 5-

HT that were not paralleled by behavioural activation. Immune stress for example increased 
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hippocampal but not preoptic levels of 5-HT in absence of behavioural activation [176, 178]. 

Linthorst et al. also described a dramatic increase in hippocampal 5-HT in diving rats during 

a swim stress paradigm. These levels of up to 1500% of baseline were much higher than 

found during other periods of behavioural activity, and could be related to a panic-like state 

[179]. Thus it seems that 5-HT is indeed increased during states of higher behavioural 

activity, but that this is especially true for limbic areas, like the hippocampus, prefrontal 

cortex and lateral septum, and not necessarily for a structure like the caudate putamen. The 

first three structures have in common that they are all part of the extended Papez-circuit [107, 

205] and as such play a role in the generation and regulation of emotions [107, 150, 346]. The 

hippocampus and prefrontal cortex seem to be specifically involved in the more mnemonic or 

cognitive aspects of regulating emotion. Although the ventral striatum as well plays a role in 

emotion, it is part of the reward pathway and therefore especially important in the response to 

reinforcers [47, 225, 248]. It is feasible that this pathway is not activated during rat exposure, 

whereas the pathways involving the hippocampus and prefrontal cortex are. In this respect it 

would also be interesting to investigate the effects of predator exposure on neurotransmission 

in the amygdala, which plays a role in the appraisal of a stimulus and in anxiety [224, 248]. 

The PVN is a region that is involved in coordinating and executing the stress response. It is 

tempting to speculate that the increases in 5-HT in this region are related to the mild HPA 

axis stimulating properties of predator exposure. Also it appeared as if an elevation of 

extracellular 5-HT in the PVN was seen twice during the experiments: once at the beginning 

of rat exposure and once at the beginning of the post stress period. As in both cases a 

manipulation took place (i.e. placing and removing the rat from its compartment respectively), 

this would be time points at which an HPA axis response could be initiated. However, these 

observations are too preliminary to make definite statements. 

The anterior hypothalamus is a region that is implied in thermoregulation. Internal body 

temperature is monitored by temperature-sensitive cells in this region and changes in 

autonomic nervous system activity, endocrine secretions, and behaviour can be initiated by 

the AHP to aid in thermoregulation. Serotonin appears to play a role in this and can cause 

hyperthermia [170, 171]. Apart from this, the AHP also has a role in rat offence behaviour, 

such as biting and kicking [3]. As there were no signs of offence behaviour, and an effect of 

rat exposure on body temperature is not likely, it may not be surprising that only very mild 

increases were found in this area.  

The above explains how the results as they were found for serotonin could be explained in the 

light of the brain areas in which it was measured. However, differences in the innervation of 
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these structures can not be excluded to play a role as well in the region-specific increases in 

5-HT and 5-HIAA. For example, two of the areas in which clear elevations in 5-HT were 

seen, the hippocampus and septum, are (partly) innervated by the median raphe nucleus. The 

dorsal part of the hippocampus even receives almost exclusively neurons from the MRN, 

whereas the ventral part is innervated by both raphe nuclei [145, 206, 226, 301]. The septum 

as well appears to receive a mixed [206] innervation of both the DRN [76, 333] and the MRN 

[16, 334]. The AHP is not densily innervated by serotonergic neurons [41] and only a mild 

increase in 5-HT was found in this area during rat exposure. Also for this structure 

indications exist that both raphe nuclei play a role in the innervation [144, 265]. In contrast, 

the striatum, where we did not find increases in 5-HT, seems to be a terminal area of dorsal 

raphe pathways [145, 206, 333].  

Indeed, it could be that the MRN and DRN are differentially activated during stress. For 

example, it was shown that the expression of tryptophan hydroxylase mRNA was increased 

in the MRN after one session with immobilisation stress, but only after three sessions in the 

dorsal raphe [53]. Also, the MRN responded to lower concentrations of CRH than does the 

DRN [309]. Sound stress activated the median raphe nucleus but not the DRN [84], and 

correspondingly, elevations in 5-HT were found in the median but not dorsal raphe nucleus 

[66]. 

Still, the prefrontal cortex too is mainly innervated by the dorsal raphe, yet an increase in 

extracellular 5-HT was found during rat exposure. To a certain extent this also goes for the 

mild elevations found in the PVN, which serotonergic innervation, although not dense [41], 

comes from the dorsal raphe [85, 333, 351]. Possibly, differences in the effect rat exposure 

has on levels of 5-HT in regions innervated by the DRN could be attributable to a subdivision 

within the organisation of this nucleus. Neurons to the striatum for example originate from 

more lateral parts of the caudate DRN than those to the frontal cortex [325]. Adding to a dual 

role that the DRN may have under stressful conditions is the finding that activation of CRH1 

receptors in the DRN seems to mediate inhibition of serotonergic neurons, whereas 

stimulation of CRH2 receptors can result in the opposite effect [128, 129]. Indeed it was 

found that low doses of CRH, administered into the DRN, mainly inhibited its activity and 

that this was followed by a facilitatory rebound effect after higher doses of CRH [318].  

Summarising the above, it seems that the background for the brain region-specific increases 

in 5-HT and 5-HIAA is formed by a combination of the functionality and innervation patterns 

of the structures under investigation. Concluding it can be said that the picture is emerging 

that the neuroanatomically highly differentiated response of the 5-HT system to different 
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forms of stress subserves its various roles in the coordination of not only motor activity, 

neuroendocrine and autonomic responses, but also emotional behaviour.  

 

2.1.3. 5-HT and specific behaviours 

The collection of samples of short duration during rat exposure, combined with detailed 

behavioural observations, enabled us to try to relate increases in 5-HT to certain specific 

behaviours. It has been hypothesised that increased activity of the 5-HT system takes place 

especially during self-directed behaviours such as grooming and feeding and other oral 

buccal movements [15, 105, 126, 188, 264, 264]. Under these circumstances, 5-HT is thought 

to reduce the signal to noise ratio, making an organism less attentive to external stimuli. In 

contrast, noradrenaline signalling would be highest during situations in which animals are 

orienting toward their environment, thereby actually increasing the signal to noise ratio [258]. 

Indeed, fluctuations during baseline and post rat exposure recordings in the limbic forebrain 

(but not the caudate putamen) were often, but not exclusively, correlated with self-directed 

behaviours such as grooming. However, a sharp and immediate increase in extracellular 

levels of 5-HT, especially in the hippocampus, was observed during the first 5 min of rat 

exposure, when animals are almost only sniffing in the air, hence orienting to their 

environment. One explanation for this elevation could of course be that stress can also cause 

not-behaviourally related increases in serotonin. Another explanation could be that 5-HT is 

correlated with different behaviours during the various phases of the experiment. For 

example, before and after rat exposure, when no stressor is present, it could be correlated 

with grooming, the main constituent of activity during those phases, whereas 5-HT could be 

more related with sniffing air during the rat exposure. Hence, increased serotonergic 

neurotransmission in regions such as the hippocampus, septum and prefrontal cortex during 

psychological challenges may play an important role in the assessment of information on 

(changes in) the environment. Such information will eventually be used to modulate the 

emotional response of the organism. Concluding, whereas elevations in 5-HT can not be 

interpreted as an indication of stress, without taking the behavioural activation into account, 

elevations in 5-HT can also not be taken as a sign for the occurrence of specific behaviours, 

without taking the state of arousal into account. 

 

2.2. Noradrenergic neurotransmission 

2.2.1. Effects of stress on NA and MHPG 

In the hippocampus of both C57bl/6N and Balb/c mice, the extracellular levels of NA showed  
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a steep and immediate increase in the first 5 min of rat exposure. This peak value was seen in 

both strains and was similar among the two days of rat exposure. Contrasting the serotonergic 

results, the levels of NA appeared to be less correlated with behavioural activity. Also the 

peak at the beginning of rat exposure was not paralleled by a maximum in behavioural 

activation. Levels of the metabolite MHPG showed a mild increase, starting in the second 

half of rat exposure. This was seen in all three areas in which MHPG was measured, i.e. the 

hippocampus, PVN and AHP of Balb/c mice. The begin peak that was seen with NA in the 

hippocampus was not mirrored in hippocampal MHPG levels. Therefore it is not possible to 

derive from the MHPG results in the AHP and the PVN whether NA showed a maximum at 

the beginning of rat exposure in these areas as well. Still, it seems allowed to assume a 

general elevation of extracellular NA levels in these regions based on the elevation seen in 

MHPG.  

The present findings of increased noradrenergic and metabolite levels are supported by 

results of other predator stress studies found in the literature. Elevations in MHPG were 

found in the post-mortem analysis of the hippocampus of C57bl/6 and Balb/c mice in a rat 

exposure study by Hayley et al. [132]. They also reported increases in the metabolite level in 

the locus coeruleus and prefrontal cortex of these mice [132]. In cat odour-exposed Swiss 

Webster the NMN level, another metabolite of NA, was elevated in the hippocampus but not 

in the hypothalamus, the latter contrasting our observation that MHPG was increased in the 

PVN and AHP. NA itself was not increased in the cat-odour exposed rats [19]. However, in 

the study brain micropunches were examined post-mortem, so it is very well possible that an 

increase in NA was missed due to the fact that it could not be determined at the beginning of 

exposure. Finally, ferret exposure was found to increase levels of noradrenaline in the PVN 

of both slow and fast seizing rats [204]. 

Also other types of stressors have been described to increase levels of NA and MHPG in the 

hippocampus. Measurements in rats sacrificed directly after immobilisation stress indicated 

elevated levels of MHPG in the hippocampus [134]. Tail pinch increased levels of 

noradrenaline in the hippocampus of rats [235, 273]. Rosario et al. [273] also showed that 

rats that were more anxious in a novel open field also had larger increases in hippocampal 

NA in response to tail pinching, suggesting a relation between emotionality and the height of 

the NA-response. Immune stress too, in the form of a challenge with endotoxin, caused 

increases in hippocampal levels of NA and MHPG [177]. 

Stress has also been shown to affect hypothalamic levels of NA and MHPG. Immobilisation 

stress caused increases in NA in the PVN of rats, as well as in the central amygdala and the 
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BNST [8, 218]. Tail pinch [134] caused increases in MHPG, but a decrease in the level of 

NA in the rat hypothalamus, measured post-mortem. Also inescapable footshock resulted in 

increased levels of MHPG in hypothalamic and cortical brain slices of Balb/c and C57bl/6J 

mice killed directly after the shock [287]. Interestingly, footshock intensity was found to 

correlate with increases of NA in the rat amygdala [255]. Assuming that the emotional 

response also increases with stress intensity, this would be another indication that 

emotionality and levels of NA are related.  

Taken together, both the present study and findings in literature show that stress in mice and 

rats leads to increases in levels of NA and MHPG in a variety of brain structures. 

 

2.2.2. Function of noradrenaline 

More than with serotonin, there is a concensus concerning the role of NA. Increases in the 

levels of this neurotransmitter are thought to be related to arousal. This arousal can be novelty, 

like in primates presented with new faces, but also arousal due to more classical stressors 

such as restraint, footshock etc. [12, 221, 253, 291, 314, 317, 324]. Psychogenic stressors 

such as predator exposure also fall into the arousing category. Under circumstances that ask 

for externally directed attention, as is often the case in behavioural stress paradigms, firing of 

the locus coeruleus, the nucleus where most noradrenergic fibers originate, increases [258]. 

Especially when an automatic behaviour is suddenly interrupted, and orienting responses 

become prevalent, the firing rates of the LC are highest [13, 14]. As the locus coeruleus also 

projects to the hippocampus, this would fit with the observation that peaks in noradrenaline 

were seen here in the beginning of rat exposure, in the time mice needed to orient towards the 

rat. The increases found in the hippocampus therefore can be seen as an index of arousal. 

This increase might have been necessary to switch the hippocampus to a state of enhanced 

stimuli detection [115].  

Another area that is innervated by NA is the PVN. It receives its input mainly from the A1 

and A2 regions in the medulla oblongata. These noradrenergic pathways are activated by 

systemic stressors, but also play a role in the response to stressors that have anticipatory 

aspects [137]. For systemic stressors, such as hypoglycaemia, insulin injections, formalin 

injections, and also for the neurogenic stressor immobilisation, the amount of noradrenaline 

in the PVN of rats correlates with mean plasma ACTH levels [232, 234]. It is tempting to 

speculate that ACTH levels in case of psychogenic stressors also correlate with 

paraventricular levels of NA. In that case, the observed elevations in MHPG during rat 

exposure, and the supposed increases in NA, would be mirroring the mild increases seen in 
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plasma ACTH levels. On the other hand, a correlation between NA and ACTH was not seen 

with stressors like cold exposure and hemorrage [234] and also in a study with rats involving 

repeated restraint stress, discrepancies were found between NA and ACTH values [317].  

The function of an increase in noradrenergic neurotransmission in the anterior hypothalamus 

under the presented paradigm is unclear. In this region, noradrenaline is known to cause 

hypothermia [170], but possibly it is also released here to prepare an organism for attack [3]. 

Again, such an increase in noradrenergic levels is only assumed based on the observed 

elevations of MHPG.  

Based on our current results, in which noradrenaline was only measurable in the 

hippocampus, it is not possible to draw conclusion about differences in the effect of predator 

exposure on structures that are differentially innervated by noradrenergic neurons. As 

indications exist that the levels of noradrenaline might correlate with stressor intensity, it 

would be interesting to investigate this under more challenging conditions as well. 

Concerning the assumed differential activation of pathways by systemic and more 

psychological stressors (see also paragraph 6.1 in the introduction), it would be interesting to 

see how noradrenaline reacts to different kinds of stress in not only the paraventricular 

nucleus, but also in the medial prefrontal cortex. This latter structure receives a strong 

noradrenergic input from the locus coeruleus. It has been proposed that NA plays an 

inhibitory role in the PFC under life threatening circumstances, to favour rapid instinctual 

responses over more complicated ones [12, 111]. On the other hand, the prefrontal cortex is 

also involved in the evaluation of anticipatory stressors [137]. Possibly the two categories 

have differential effects, for example over time, or when simultaneously measuring the effect 

in the PVN. The effect on the prefrontal cortex of rats has been investigated for a host of 

stressors, like tail pinch [104, 304], foot shock [70, 95], handling [151, 199], restraint [297], 

novelty [96, 253], exposure to fox odour [304] and administration of anxiogenic compounds 

[70]. These paradigms covered the scala of systemic to psychological stressors, and an 

increase in noradrenaline was seen in all cases. Nevertheless, a direct comparison of the 

effects of systemic and psychological stressors has hardly been performed, except for 

Kawahara et al. [152], who found that both hypotension and handling increased prefrontal 

cortical levels of noradrenaline to the same extent. However, handling is a neurogenic 

stressor as it still involves a strong physical component. Possibly, differences are found when 

comparing systemic with psychogenic stressors, such as predator exposure. 
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2.3. Dopaminergic neurotransmission 

2.3.1. Effects of stress on dopaminergic metabolites and dopamine 

Dopamine itself could not be measured, but its metabolites DOPAC and HVA were 

assessable. In the hippocampus of C57bl/6N and Balb/c mice and in the AHP and PVN of 

Balb/c mice levels of HVA were higher during rat exposure, but DOPAC was not. This was 

due to the fact that some animals had actually shown a decrease in DOPAC at the beginning 

of rat exposure, thus affecting the average. No large effects of re-exposure were seen for 

DOPAC or HVA.  

Different DOPAC results were obtained in a study by Belzung et al. [20] who exposed Swiss 

Webster mice to cat odour and found elevated levels of DOPAC in brain micropunches of the 

hypothalamic region and striatum, but not of dopamine. No effects of exposure were found in 

the hippocampus, also contrasting the present results. Brain region dependent effects were 

also seen in Sprague-Dawley rats exposed to fox odour. The DOPAC/DA ratio, measured in 

brain homogenates was increased in the PFC and the amygdala, indicating the activation of 

dopaminergic metabolism in these limbic areas after the aversive stimulus. This activation 

was absent in other areas, including striatum and nucleus accumbens. On a second trial with 

fox-odour exposure the activation was not seen at all [222]. Another study in rats confirmed 

with microdialysis increased levels of dopamine in the prefrontal cortex after exposure to the 

smell of red fox urine [17]. Additionally, increases were seen in the nucleus accumbens core 

but not in the nucleus accumbens shell [17]. 

In general the effects of stress on the levels of dopamine and its metabolites are complex. 

Also studies employing other paradigms show differential effects of stress on dopaminergic 

neurotransmission. The effects of stress that were found, appear to be brain region, stressor, 

species [158, 289] and hemisphere [307] dependent, and can also differ between a first or 

subsequent confrontation with the stimulus. Brain region dependency has partly been 

illustrated already in the mentioned studies involving predator exposure. Other examples are 

that for example chronic variate stress induced increases in hippocampal DOPAC levels, but 

a decrease in the hypothalamic levels of both HVA and DOPAC [109]. 

Intracerebroventricular injection of CRH or intraperitoneal administration of corticosterone 

only increased DA levels in the dorsomedial hypothalamus [184]. Also immobilisation did 

not increase DA in other hypothalamic regions except the dorsomedial one [162], but 

DOPAC on the other hand was found to be higher in the PVN after immobilisation stress in 

another study [233]. An example of stressor dependent effects is that the forced swim test 
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made dopamine and DOPAC increase in the whole brain of Swiss mice, but the tail 

suspension test did not [257].  

In none of the studies it was found that the direction of change in the levels of HVA and 

DOPAC were opposite. It has been described that stress can result in decreased activity of 

monoamine oxidase, the enzyme that degrades dopamine [82]. However, this as well would 

not explain why HVA is not too decreased, as MAO is also a necessary enzyme for the 

metabolism of dopamine to HVA. The observed decrease in DOPAC levels in some animals 

can therefore not be explained.  

Also it becomes clear from the literature that measuring the metabolites of dopamine do not 

substitute for the assessment of dopamine itself, and that no effects on extracellular levels of 

dopamine in the hippocampus or hypothalamic areas can be inferred from the levels of HVA 

or DOPAC. This notwithstanding, based on the role of dopamine (see paragraph 2.3.2 below), 

an increase in its levels would be expected after a psychological stimulus such as rat exposure 

is. As stress-induced increases in dopamine levels have been described before in structures 

like the hippocampus and hypothalamus, they could also have occurred under the present 

predator exposure conditions. The increases in HVA, and partly in DOPAC, might be 

reflective of this. 

 

2.3.2. Function of dopamine 

Apart from its role in movement, dopamine is considered the principal neurotransmitter in 

motivated action, and plays a role in approaching appetitive and evading aversive stimuli, 

that can be both of a physical or psychological nature [239]. However, the role of dopamine 

in brain regions during appetitive stimuli and also addiction is beyond the scope of this 

section.  

Emotional arousal is accompanied by increases in extracellular dopamine in the medial 

prefrontal cortex especially, and to a lesser extent, in other limbic areas and the striatum [51, 

94, 96, 140, 208]. Increases in the prefrontal cortex are often associated with anxiety or with 

coping [69, 140, 148], and are thought to take the prefrontal cortex ‘offline’ to allow for the 

regulation of fast and more primitive forms of behaviour [350], which is similar to the alleged 

role of noradrenaline in this structure. This would make it interesting to also investigate the 

effects of predator exposure on dopaminergic transmission in the PFC. Aversive and 

appetitive stimuli also affect the nucleus accumbens shell and core. It is the latter region, as 

well as the PFC, that is also associated with the effect of novelty on dopaminergic stimulation. 

In these regions a reduction in the response to a stimulus is seen when novelty wears off [17, 
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343]. Possibly, re-exposure would yield interesting data obtained when these regions would 

be dialysed.  

The effects of stress on dopamine levels are independent of locomotor effects [257]. However, 

dopaminergic neurotransmission is associated with specific (peri) oral movements like 

grooming and with spontaneous exploratory activity [98, 103, 252, 335]. Several brain 

structures, including the nucleus accumbens, the olfactory tubercle and the BNST, but not the 

hippocampus, could be identified to play a role in this [103]. Indeed no correlation was found 

between the occurrence of grooming and the changes in the levels of HVA and DOPAC. As 

the hippocampus and hypothalamic structures do not appear to be the structures that play a 

major role in the regulation of stress responses by dopamine, this could explain why also only 

small variations in the metabolites were found.  

 

2.4. Effect of re exposure on neurotransmission 
In general, there were hardly differences observable in neurotransmission patterns on day 1 

and 2 of rat exposure. The few observations that were made will be discussed in this section.  

One finding was that the hippocampal levels of 5-HIAA in C57bl/6N but not in Balb/c mice, 

were slightly lower on day 2 than on day 1. Interestingly, such a difference was not present in 

the AUC of 5-HT. The background of this effect remains to be elucidated. However, it has 

been shown before that there is no consistent relationship between 5-HT release and its 

metabolism or synthesis, as reflected in 5-HIAA levels, and that these might be differentially 

regulated (reviewed in [277]).  It has been suggested that CRH plays a role in this [179].  

Also an interesting finding is that the beginning peak during rat exposure in extracellular 

levels of NA seen in the hippocampus was not attenuated upon re-exposure. If this 

noradrenaline has the function to switch the animal’s attention to external events, it 

apparently makes no difference whether this event is novel, or has been experienced before. 

In this respect it would have been especially interesting to have measured noradrenaline in 

the hypothalamic areas, where a relationship between levels of NA and HPA axis activity has 

been described for certain stressors. As corticosterone levels were lower during re-exposure, 

it would have been worthwhile to measure whether levels of NA were correspondingly lower 

in the PVN. Although in our studies an overall effect of ‘day’ was found for MHPG, with the 

levels of the noradrenergic metabolite being lower on a second day, this is not enough to 

conclude that also levels of noradrenaline were lower on day 2 than day 1. On the other hand, 

it is also imaginable that levels of NA in the PVN were similar to the ones on the first day, 

despite declined HPA axis activation. Such deviation has been described before [317]. A 
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study by Shibasaki et al. [291] suggests that such an attenuation of extracellular NA-levels in 

the PVN of rats after repeated stress might be stressor dependent. A decreased NA-response 

was observed after restraint, but not after pain inflicted by tail pinch. This finding adds to the 

discussion in paragraph 2.2.2 above, that a difference may be found in the way systemic and 

psychological stressors may affect noradrenergic neurotransmission, for example over time. 

 

It is interesting that ‘day’ differences were found for the behavioural parameters that were 

scored, as well as for the free corticosterone data. This is contrasting the lack of 

neurochemical alterations after prior experience with predator exposure. An absence between 

behavioural and neurochemical parameters has been mentioned in literature as well [204]. 

This indicates that behavioural and neuroendocrine responses are not under the influence of 

only 5-HT or NA, but under a multitude of modulating neurochemicals. The view that 

neurotransmitters do not play a solitary role is commonly accepted, and for example the 

interplay of serotonergic and noradrenergic neurotransmission is often described (e.g. [58, 

183, 216, 258, 311]). Interestingly, strain differences do not seem to play such a large role in 

neurochemical studies as they do in behavioural or neuroendocrine studies. This also 

underlines the rudimentary function of elevations in neurochemicals, that only in interplay 

with other messengers result in differences in behaviour or neuroendocrine differences 

downstream.  

 

 

3. NEUROENDOCRINE ASPECTS 

3.1. Effects of stress on HPA axis activation 
Measurement of plasma levels of ACTH and corticosterone revealed that predator exposure 

stimulated the activity of the HPA axis in C57bl/6N, Balb/c and B6C3F1 mice, but not in 

C57bl/6J or in DBA/2 mice. Noteworthy is that the increases were mild, and that strain 

differences were present. 

Increased levels of stress hormone levels have been reported more than once after predator 

exposure. The group of Anisman reported elevated corticosterone and ACTH levels in 

C57bl/6 and Balb/c mice after rat exposure [6, 187]. Also Sprague-Dawley rats exposed to 

fox odour had elevated plasma corticosterone levels, when compared to no or to control 

odour exposure [101, 222]. So-called fast and slow seizing rats both responded with increases 

in plasma ACTH and corticosterone to ferret exposure too [209]. A study by Figueiredo [99] 
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showed that when rats were exposed to cats, increases in ACTH and CORT were seen, but 

that these seemed to be differentially regulated when the rats were familiar with the testing 

apparatus already. Temporal dynamics of the hormone increases could underlie this 

observation. It is known that maximal values for ACTH are reached within a few minutes, 

but that it takes 20 to 30 min for corticosterone to reach a maximum. The same phenomenon 

could explain why we, in our study, saw that the strain in which ACTH was elevated most 

significantly, C57bl/6N mice, was not the strain with the largest increases in CORT. 

The increases in plasma ACTH and corticosterone found in our study were only mild, when 

compared to values in the literature found with predator exposure or other stressors (e.g. [6, 

88, 187]). This can be explained by the influence that the chosen method of predator 

exposure has on the outcome of hormonal levels. Anisman et al. [6] for example placed the 

mice in a clear plastic case in a rat arena, adding an element of novel environment to the 

paradigm, which is likely to increase the corticosterone responses of the animals by itself, and 

also to sensitise the subsequent response to the rat [99]. In addition, the rat could roam over 

the compartment in which the mouse was placed, which could lend the situation a more 

threatening aspect than when the mice and rat confrontation can only take place at one side of 

the mouse’s home cage, as was the case in this study and in the one of Linthorst et al. [174]. 

Apart from such large differences in the procedures, it has even been described that even a 

factor like the diet of the predator can influence the reaction of the predated animal to its 

presence [23]. 

As predator exposure with the used paradigm was experienced as a mild psychological 

stressor, this could also explain why some strains and individuals did not respond with a more 

pronounced increase in stress hormone levels. 

Such interindividual differences also became apparent with the free corticosterone 

measurements, in which 3 out of 14 animals only responded with a clear stress-induced 

increase in corticosterone levels. When analysing the data of all 14 animals simultaneously a 

significant increase in free corticosterone was seen towards the end of the experimental day, 

caused by the diurnal activity of the HPA axis (as described by [174, 230, 245]). At the time 

of rat exposure an increase was seen as well, but due to the Bonferroni correction this 

remained statistically non-significant. Such a difference between plasma and central levels of 

corticosterone can be explained by the fact that the two values may not directly be related. 

Free corticosterone is the fraction of corticosterone that is not bound to corticosterone 

binding globulin (CBG), and that is available for binding to glucocorticoid and 

mineralocorticoid receptors. When measuring the plasma value, the amount of free 
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corticosterone and the fraction bound to CBG can not be differentiated. The plasma value of 

corticosterone therefore does not necessarily reflect the biologically active amount of 

hormone, and might give a distorted image of the actual HPA axis activation. This is even 

more so because the amount of CBG also varies with time and stress-situation (levels of CBG 

decrease under stressful conditions). It is therefore not possible to predict the free amount of 

corticosterone based on the total levels [77, 79, 300, 315, 320].  

Still, measuring free corticosterone levels and using the same rat exposure method, Linthorst 

et al. [174] found larger increases in B6C3F1 mice than we did with C57bl/6N mice. Indeed, 

the choice of strain is an important factor in determining the neuroendocrine and behavioural 

outcome of experiments (see also paragraph 1.3 for more discussion on strain differences and  

[6, 11, 40, 55, 81, 113, 200, 282, 287, 288, 322]). Apparently the observed differences 

between the free corticosterone values of C57bl/6N and B6C3F1 mice, as well as those in the 

plasma hormone levels are related to genetic differences of vulnerability to stress and HPA 

axis activity. Adding to this, changes in CBG are strain dependent [80]. Another contributing 

factor to strain differences when it comes to hormonal levels is the rate of steroid degradation, 

which is different among strains. C57bl/6N have a high rate of catabolism and Balb/c a lower 

rate [172, 198, 293]. 

The differentiation by Koolhaas et al. between reactive and proactive coping styles, of which 

the behavioural consequences have been discussed above in paragraph 1.1, also has 

neuroendocrine implications. With the reactive form, the reactivity of the HPA axis is high, 

whereas the proactive form is more associated with low levels of corticosterone [159]. In 

mild stressing circumstances, such as predator exposure here, reactive strains might not 

necessarily yield higher average levels of corticosterone, but a higher number of responders, 

than proactive styles. This would be consistent with the fact that from a behavioural point of 

view, B6C3F1 in this predator exposure paradigm seem to have a reactive coping style, 

whereas the C57bl/6 and Balb/c strains seem to be proactive.  

A final observation from the neuroendocrine data is related to the effect of re-exposure. The 

free corticosterone data showed that the HPA axis is activated less during a second trial than 

with the first one. This has also been described with plasma values of corticosterone in rats 

repeatedly exposed to cat odour [101, 222]. This might indicate that the animals had learned 

from the previous experience that the rat did not oppose an acute threat. Based on the 

information from this prior exposure, it is possible for the hippocampus to exert an inhibitory 

influence on the HPA axis. This attenuated HPA-response also fits with the observed 

behavioural differences that were less indicative of stress on the second day of rat exposure.  



DISCUSSION 
 

 

125

3.2. Behavioural and hormonal correlates 
One of the questions to be answered in this thesis is whether specific behaviours correlate 

with hormonal levels. Therefore the behaviour of the 5 strains of which plasma hormone 

levels were assessed was analysed, which was repeated using another method for the three 

strains with the most pronounced activation of the HPA axis. A relation between hormonal 

levels and behaviour could be expected, based on the discrimination of reactive and proactive 

coping styles, which indeed classifies certain behaviours that are more likely to be related to 

higher or lower levels of corticosterone. The latter category for example has high levels of 

defensive burying and nest-building [159, 332]. The present results carefully indicated that 

mice that spent more time rearing or sniffing at the separation wall, and/or exhibited more 

food-related behaviour had higher stress hormone levels. This however was only a general 

tendency that did not apply to every individual with this profile. Contrasting this, mice that 

were freezing or jumping, did always show increased hormonal levels.  

From literature becomes clear that it is more often so that specific behavioural parameters can 

not or hardly be related to stress hormone levels. In a study exposing rats to odours, among 

which a predator odour, no significant alterations in immobility, grooming, rearing or 

horizontal locomotion were found, although corticosterone levels between groups differed 

[222]. Balb/c mice exposed to a rat showed more stretch attend postures than controls and 

had higher corticosterone levels, whereas the reverse was true for C57bl/6J mice. In both 

strains, the level of freezing was positively correlated with corticosterone levels, and the 

levels of rearing negatively [6, 275]. On the other hand the amount of freezing was not 

related with corticosterone levels in rats receiving footshock stress [127]. No relation was 

found between the time various strains of mice spent in the open arms of the EPM or the 

exploratory locomotor activity in a novel environment and levels of corticosterone [40, 322]. 

Also levels of locomotion did not correlate with ACTH or corticosterone levels in rats 

exposed to ferret odour [246], nor did levels of struggling or immobility in the rat forced 

swim test [11]. 

Taken together, except maybe for some extremes in behaviour, like jumping, most behaviour 

is not reflecting the activity of the HPA axis. It can be that in individual cases, or 

occasionally on strain level, such correlations exist, but the large interindividual variance of 

both behavioural and neuroendocrine parameters makes it hard to extent such observations to 

whole species. This also reflects that differential brain circuits underlie the control of 

behaviour and neuroendocrine responses. 
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4. DISCUSSION OF ADDITIONAL EXPERIMENTS 

4.1. C57bl/6N mice bred at the institute 
Many researchers use animals that are bred in their own facilities. This has the advantage that 

all events during the animal’s life are known that might influence results. In addition it is 

known that animals that come from commercial vendors may vary in their behavioural 

responses, depending on where they come from [60, 63, 329]. Possibly even subtle 

differences in diet, housing and caretakers may underlie these different responses [46, 336, 

349]. 

Hormonal responses to rat exposure were not different in animals that were born in the 

institute or that were delivered from Charles River. Behavioural differences however were 

seen. Institute-bred mice were less active in general and showed less investigative behaviours 

than animals from Charles River. In general an attenuated activity response to a novel 

situation is interpreted as a sign of anxiety. Also the occurrence of panic like jumping 

behaviour of one of the animals born at the institute would point into this direction. It is 

feasible that animals from Charles River have been confronted with the smell of rats before, 

for example through the cloths of caretakers, and therefore were not absolutely rat exposure 

naïve before used in the rat exposure experiments described here. Prior exposure to odours 

does indeed affect the response to consecutive odour exposures [266]. Also, animals coming 

from a vendor have been confronted with novelty and changing conditions more often than 

animals that were not confronted with transportation, different housing conditions, changing 

care takers etc. Taken together this could lead to predominating interest in the presence of a 

rat, rather than fear for it, and thus in higher levels of investigative behaviours in the bought 

animals than in the animals from the institute. Still, it remains debatable whether a different 

emotionality between the two groups truly exists. Hormonal levels did not confirm this and 

the overall impression of the animals when observing the behavioural videos also did not 

indicate a clear difference in anxiety. In addition, behavioural data of exposed institute-bred 

animals were not much different from those of unexposed ones. It would be necessary to 

conduct additional experiments, like the elevated plus maze, to clarify whether animals from 

the institute are more, less, or equally anxious as animals from somewhere else. Nevertheless, 

the results do confirm that differences in behaviour exist between groups of animals that 

differ in origin. Also the results show that behavioural differences are not necessarily 

reflected in hormonal differences. 

  



DISCUSSION 
 

 

127

4.2. CRH-transgenic animals 
Rat exposure exposure experiments were also conducted with CRH-transgenic and wildtype 

mice. As also mentioned in paragraphs 2.2.3 and 5.6 of the introduction, CRH plays a role in 

depression and anxiety. Consequently, CRH-transgenic mice were found to be more anxious 

than wildtypes on the EPM, in a novel environment and in the light-dark box [303, 330]. 

Contrasting these findings that relate to innate fear, CRH-Tg did not appear to be more 

anxious in conditioning paradigms [330]. 

In our study, only small differences were found between the two genotypes on a behavioural 

level. Under control conditions, CRH-Tg tended to groom more than Wt did. This 

observation was also made by Van Gaalen et al. [330] when observing spontaneous home 

cage behaviour of the mice after a 1-min confinement. This was interpreted as an indication 

of higher levels of anxiety that had been present in the CRH-Tg.  

Rat exposure gave rise to investigative behaviours in both kinds of mice. Transgenics 

however tended to engage less frequently in these than wildtypes did. As with the C57bl/6 

mice from the institute, discussed in the previous section, this might be signalling the more 

anxious nature of CRH-Tg mice. Similarly, in a novel environment study by Stenzel-Poore 

[303] CRH-Tg were less active than Wt in the first 5 min of the paradigm, also interpreted as 

a sign of increased anxiety. Throughout the rest of the novel environment paradigm however, 

differences between CRH-Wt and Tg were absent. This might also explain why no larger 

behavioural differences between the two genotypes were found in our study: possibly the 

time frame was too long to still see significant quantitative differences that might only occur 

in the first minutes. On the other hand, it is also possible to interpret the slightly lower levels 

of investigative behaviour in CRH-Tg as an indication that they were less aroused than 

wildtypes by the presence of the rat. As CRH-Tg react more dramatically to superimposed 

stressors than wildtypes do [303], an experiment pre-stressing the animals with social defeat 

for example would help elucidate how to interpret the behavioural differences between the 

genotypes. In case the difference between the levels of investigative behaviour increases, this 

would indicate that these are a measure of anxiety in the CRH-Tg. 

The higher amount of food-related behaviour that was seen in CRH-Tg is more likely to be a 

result of genotype, than to be an expression of experienced stress, as it was seen both under 

unexposed and exposed conditions. Although increased food-intake has not been described 

with mice overexpressing CRH, various neuropeptides, including CRH, are known to play a 

role in consummatory behaviour. However, central administration of CRH induces a decrease 

in food consumption [219, 220]. It can be envisioned though, that in mice with lifelong 
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increased levels of CRH and corticosterone, these effects are different. Obesity is often seen 

in patients with Cushing’s disease [157], and in obese rats it was shown that reduction of 

corticosterone levels reduced levels of food intake [49]. 

Whereas the behavioural differences between the genotypes were not very evident, 

differences in stress hormones were. Control levels of corticosterone were higher in mice 

overexpressing CRH than in the wildtypes, but were not elevated in response to rat exposure, 

where the wildtypes did have higher CORT-levels after stress. Levels of ACTH though were 

similar among the genotypes under control conditions and elevated after stress in both kinds 

of mice. However, this elevation was less pronounced in the CRH-transgenics. 

The observation that the basal levels of CORT were higher in the CRH-Tg is in line with 

findings by Stenzel-Poore et al. [302]. However, they found higher basal levels for ACTH in 

the transgenics as well. Based on the ACTH-release stimulating function of CRH, we had 

also expected to find an elevated basal level of ACTH in the transgenics. The reason for this 

discrepancy is unclear, but may have to do with interindividual differences. Also in the study 

of Stenzel-Poore not every single transgenic animal had an ACTH level that was higher than 

the average level of wildtypes. The effects of rat exposure that we described on plasma 

ACTH and corticosterone are similar to those found after restraint stress in these animals [60]. 

Because the CRH-Tg by nature suffer from chronical HPA activation (reflected in the higher 

basal levels of CORT), the HPA axis gets desensitised to further stimulation. This results in 

attenuated stress hormone responses after a stressful experience [60, 302]. 

Concluding, the neuroendocrine findings with CRH-Tg and CRH-Wt mice were in 

correspondence with what is described in literature. The differences in behaviour between the 

genotypes during rat exposure did not convincingly indicate a more anxious nature of the 

CRH-Tg. This is might be an indication that rat exposure in this form was too mild to elicit a 

discriminative response. 

 

5. CONCLUSIONS AND CONCLUDING REMARKS 

This section will present the answers to the questions, posed in the aims section of the 

introduction (paragraph 8), in a condensed form. Following are concluding remarks on the 

value of rat exposure as a behavioural paradigm and on its use for neurochemical studies. 

 

5.1. Answers 
Rat exposure in the form it was used in the described experiments is a model that is mildly  
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stressing. It resulted in changes in the behaviour of C57/bl/6N and Balb/c mice, as well as 

changes in diverse neurochemical parameters and measures of neuroendocrine functioning.  

On a behavioural level, predator exposure caused mice of various strains to become alert, 

start risk-assessment activities like rearing and sniffing, followed by behaviour that indicates 

coping, such as grooming and nesting. In case of Balb/c possibly also the engagement in 

food-related behaviour forms an index of coping behaviour. Upon re-exposure mice spent 

less time with risk-assessment and more time with coping behaviour, hinting that they had 

learned from the previous experience and adapted their behavioural strategy accordingly. 

These behavioural changes were paralleled by increases in 5-HT during the active phases, as 

well as in its metabolite 5-HIAA. These increases were found in the hippocampus, PFC and 

LS, all part of the limbic system, but were absent in the caudate putamen, a brain area that is 

not part of the limbic system. 5-HT was also found to be increased in the PVN, and to a lesser 

extent in the AHP. These findings indicate that brain-region specific alterations in 5-HT 

subserve the role of 5-HT in emotion. 

Increases in NA were seen in the hippocampus, especially during the first 5 minutes of rat 

exposure, indicative of the arousing properties of the paradigm. Similar findings on a second 

day of rat exposure could mean that hippocampal NA-elevations are needed to switch 

attention to external events, and that this might not easily be subject to desensitisation. 

Increases in the metabolite MHPG were found in the hippocampus, but also in the anterior 

hypothalamus and paraventricular nucleus, potentially pointing towards an elevation of NA in 

those regions as well. Unfortunately it was not possible to make statements on the relation 

between HPA axis activation and hypothalamic levels of NA based on the MHPG-

measurements. 

Levels of the dopaminergic metabolite HVA, but not of DOPAC, were increased in the 

hippocampus, in the paraventricular nucleus, and in the AHP. Although it is not possible to 

conclude from this that also dopamine itself had been increased, it is likely that these 

increases too were caused by arousing properties of rat exposure. 

It was not possible to correlate certain behaviours to the increases in neurotransmitters. But it 

does seem that 5-HT is not only elevated during oral-buccal movements, as a current 

hypothesis states. 5-HT and especially NA are mainly elevated during the beginning of rat 

exposure, in the alert and risk assessment phase. Whereas the behaviour was different during 

re-exposure, neurochemical patterns remained the same.  

Predator exposure also affected the HPA axis activity, in which strain differences became 

apparent. Levels of total corticosterone and ACTH were higher after rat exposure in 
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C57bl/6N, Balb/c and B6C3F1 mice, but not in C57bl/6J and DBA/2 mice. Levels of free 

corticosterone were also elevated in subsets of C57bl/6N, and were lower on a subsequent 

trial. This underlines the behavioural data that indicated an attenuated stress effect of 

repetition of rat exposure and contrasts the neurochemical data that were not different on a 

second day. Differences in hormonal responses were partly reflected in behavioural 

differences as well. Higher levels of stress hormones seemed to be found in mice that were 

rearing more, sniffing more in the air or at the separation wall, or spent more time with food-

related behaviour.  

The arousing properties of rat exposure were confirmed by neuroendocrine findings with 

institute bred C57bl/6N mice or CRH-Tg mice. The behaviour of C57bl/6N mice from the 

institute was different from that of the mice coming directly from the vendour. This forms a 

good argument to breed animals for behavioural research as much as possible in house. 

Interestingly, behavioural observations with CRH-Tg could not unequivocally confirm the 

more anxious nature of these mice comparing to wildtypes. Possibly this was the case 

because rat exposure in its current form was a very mild stressor, and maybe not powerful 

enough to reveal differences in anxiety between the two genotypes. 

Concluding, although rat exposure confronts mice with a mild stress, it has marked, strain 

dependent effects on behaviour and HPA axis activation. It also affects neurotransmission in 

a brain region-selective manner. Behaviour and neuroendocrine data were different with re-

exposure, the neurochemical parameters were not. This underlines that behavioural, 

neurochemical and neuroendocrine effects are not mediated similarly, but are different, 

complimentary, pieces of the total picture of effects stress can have on an organism. 

 

5.2. The value of predator exposure as a behavioural model 
Although predator exposure has repeatedly been named as a model for psychological stress, 

and in some cases serves as a model of panic [1, 28, 30, 122, 174, 222, 246], this view needs 

to be differentiated based on the present results. In order to function as a proper stress or 

panic model, it is important to make careful considerations about the strain of mice and about 

the exact procedure to employ. 

Concerning the method used in this study, it may be worthwhile to couple predator exposure 

to a novel environment. After all, under naturalistic conditions as well, mice are not very 

likely to engage predators in their home dens, but when they are outside in the open. This 

would also enhance face validity of the model. A practical downside of such an adaptation 

could be that it complicates the performance of simultaneous microdialysis.  
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Once the rat exposure paradigm is potentiated by adding an element of novel environment for 

example, the behavioural profile of various of strains of mice, like C57bl/6N, Balb/c or 

B6C3F1 mice, should be re-analysed to find the strain with a preferably large HPA axis 

response, behaviours indicative of anxiety (like jumping or freezing), and preferably large 

differences in risk assessment and coping behaviour between the first and second rat 

exposure trial. In this case the neuroendocrine and behavioural window would be optimised 

to discriminate in anxiolytic, anxiogenic and possibly antidepressant effects of compounds. 

The predictive validity of the model could then be put to the test. 

The rat exposure model certainly has potential as a behavioural model. Even in its mild form 

it was possible to discern an effect of ‘day’ on behaviour, which was not possible based on 

the neurochemical indices, and only clear in a subset of animals based on the hormonal data. 

This behavioural strength is due to the multitude of behavioural parameters that were 

examined. At the same time this also forms a practical drawback of predator exposure: the 

behavioural observations of the animals are very time consuming and need training. However, 

it may be very well possible that the future of behavioural models lies in ethological 

approaches. Ever finer differences in drug profiles should be discriminated. Closely 

observing animals makes the researcher sensitive to such subtle changes in the animals. The 

value of observing more than one behavioural parameter is already clear in the elevated plus 

maze and the forced swimming test. The difference between catecholaminergic drugs and the 

serotonergic SSRI only becomes visible in the forced swim test, when behaviour is more 

closely observed than just measuring the immobility time. Catecholaminergic antidepressants 

namely selectively increase the amount of struggling or climbing behaviour, whereas SSRI 

selectively increase the amount of swimming [64].  

 

5.3. Rat exposure and neurochemistry 
If the rat exposure paradigm as it was used in the current experiments would be adapted so 

that it poses a more threatening situation to the mouse, it could very well be used to 

investigate neurochemical processes that underlie the various phases of the stress response. 

These phases would first be a baseline situation, then realising that a threatening situation is 

present, assessing the extent of danger, possibly take protective action and returning to an 

equilibrated state again. A technique like microdialysis offers itself to study the levels of 

certain neurotransmitters over time, although the temporal resolution may not be high enough 

to study all phases of the response. It would be interesting to more extensively study the 

effects rat exposure has on the prefrontal cortex and on the paraventricular nucleus. A 
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question could be whether the levels of noradrenaline in the prefrontal cortex, like those in 

the hippocampus, do not differ with repeated exposure and how this is in the PVN. The latter 

structure also presents itself to further look into the correlation between neurochemicals and 

neuroendocrine activity. Also the amygdala offers itself as an interesting, and technically 

challenging structure to explore. When certain behaviours seem to correlate with 

neurochemical changes in specific brain structures, it would be interesting to investigate 

whether pharmacological manipulation of the extracellular level of that compound affects 

behaviour. The list of possibilities is sheer endless to investigate the function of 

neurochemicals in certain brain structures in their relevance for behaviour and HPA axis 

activation. 

 

5.4. A personal note 
It is my conviction that depression is a disease that can exclusively be found in humans 

(possibly in primates too), but not in rodents. It appears to me that depression is a state that 

develops from a situation in which cognitive control over emotional impulses is so strong that 

the balance between ratio and emotion is lost and gets pathological. Indeed, a characteristic of 

depression is emotional flattening and attenuated responses to emotional events. 

Translated to a neuroanatomical level this could mean that cortical areas are too active in 

suppressing the activity of the limbic system. Indeed the cortex is larger in humans than in 

any other species. The prefrontal cortex  takes up a third of human brain volume and plays a 

key role in complex planning, problem solving and provides a perspective on whether a task 

is proceeding satisfactorily [111]. Also the evolutionary role of the cortical areas seems to be 

to modulate behavioural responses originating in other limbic areas in such a way that future 

purposes or additional knowledge can be incorporated in the final behavioural action that is 

taken after presentation of a stimulus. Still, emotions generated by activity of the limbic 

system are the most effective warning systems that have been developed in evolution, and the 

behaviour that is a consequence of certain emotions has a function in the survival of an 

individual and a species. When emotions that are generated in humans and that function as an 

alert to take action, are chronically not followed by certain behavioural events, it is not 

surprising that this leads to increasing activity of the limbic system and stress system, 

necessitating more cognitive control. An intuitive approach says that such a strained system 

can only collapse in a state with predominantly suppressed emotions, as could be the case in 

depressive syndromes, or in a state controlled by exaggerated emotion, as could be the case in 

anxiety disorders. 
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What follows from the above is that anxiety is easier to model in animal models than 

depression is. After all, rodents have the neuroanatomical structures that enable the induction 

of a state of exaggerated emotion, but not so much the ability to create a situation in which 

emotions are suppressed the way humans can. What can be seen however in functional 

animal models of depression is that they rely on a learned element that is contra-natural. In 

the learned helplessness paradigm, animals no longer try to avoid an electric shock. In the 

forced swim test animals stop trying to get out of the water. Antidepressants effects are 

characterised by returning the animal’s behaviour to a more intuitive, emotionally driven 

state.  

Other implications of the above are that the future of psychiatric research may not be in the 

focus of a primary imbalance in neurotransmitters, but in the imbalance between complete 

networks. Such an imbalance will certainly be measurable in the form of changed 

neurotransmission in the brain, after all this is the means by which neuronal structures 

communicate. But not less important is to simultaneously investigate the resulting effects on 

the output of the brain: behaviour, endocrinology and autonomic nervous activation. To 

understand the processes that occur in the etiology of depression and anxiety it is therefore 

imperative to investigate how a disruption of an equilibriated state by a stressor leads to 

effects on all those different levels and how these effects are correlated. It appears especially 

interesting to find out in how far systemic and psychological stressors indeed are two of a 

kind. 

In the end however it must be realised that as animals are not humans, it will not be possible 

to get the full picture based on animal studies. But in vivo animal studies will enable us to 

take a few steps towards the elucidation of neurobiological background of psychiatric 

disorders. 
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