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Summary 
 

The regulation of gene expression is governed in large part by transcription 

factors that bind to enhancers and promoters. The functions of transcription 

factors involve both the modulation of chromatin accessibility via the 

recruitment of histone-modifying enzymes or nucleosome-remodeling 

complexes, and the stimulation of RNA polymerase via an interaction with the 

mediator complex. In addition to enhancers and promoters, nuclear matrix 

attachment regions (MARs) have been implicated in the regulation of gene 

expression by altering the organization of eukaryotic chromosomes and 

augmenting the potential of enhancers to act over large distances. Although a 

lot is known about the function of MARs, the precise mechanism of their 

action is still obscure and probably diverse. One proposed model stipulates 

that their function is accomplished through the action of transcription factors, 

which are components of the nuclear matrix. 

Here, we identify and characterize a novel cell-type specific MAR-binding 

protein, SATB2, which binds to the MARs of the endogenous immunoglobulin 

µ locus in pre-B cells and enhances gene expression. In contrast to the 

closely related, thymocyte-specific MAR-binding protein SATB1, SATB2 is not 

proteolytically cleaved by caspase 6, but is instead SUMO-modified at two 

lysine residues. This modification is specifically augmented by the SUMO E3 

ligase PIAS1. Mutation of the sumoylation sites enhances the association of 

SATB2 with the immunoglobulin MARs, as well as its transactivation potential. 

Moreover, covalent attachment of SUMO1 and SUMO3 represses SATB2-

dependent transcription, without affecting either the DNA binding or the 

dimerization capacity of SATB2. Interestingly, SUMO conjugation affects the 

subnuclear localization of SATB2 and is involved in its targeting to distinct 

nuclear speckles (bodies). Thus, our data indicate that the regulation of 

SATB2 function through sumoylation can be mediated by both altering its 

transcriptional activation potential and by sequestering it in specific nuclear 

locations. 
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I. Introduction 
 
1. Nuclear matrix 

DNA within the eukaryotic nucleus is organized into higher-order looped 

domains ranging from 5 to 200 kb in length (Zlatanova and van Holde, 1992). 

The domain organization of the nucleus is thought to be mediated by a 

proteinacous intranuclear framework called "nuclear matrix" (Berezney and 

Coffey, 1974) or "nuclear scaffold" (Mirkoritch et al., 1984; Ivanchenko et al., 

1992). The nuclear matrix is composed of two parts: a peripheral nuclear 

lamina and an internal filamentous network that transects the nuclear remnant 

(Luderus et al., 1992). This network is built up of branched core filaments, 

which provide a supporting structure for the formation of DNA loops and 

participate in diverse matrix-associated processes such as DNA replication, 

transcription, recombination, RNA processing and transport, as well as signal 

transduction and apoptotic events. The association of DNA with the nuclear 

matrix (skeleton) on the one hand serves to structurally define the borders of 

chromatin domains at the sites of attachment, and on the other hand 

participates in the regulation of transcription (Razin, 1987, 2001; Bode et al., 

2000). The development of a method based on LIS (2,5-Lithium 

diiodosalicilate) detergent extraction of the nuclear matix allowed the isolation 

of nuclear matrix-associated DNA sequences (Mirkovitch et al., 1984). The 

scaffold-bound DNA fragments obtained by this extraction procedure were 

termed MARs (matrix attachment regions) or SARs (scaffold attached 

regions).  

 

2. Matrix attachment (association) regions (MARs) 

MARs are DNA sequences of at least 250 base pairs, which have more than 

70% AT content and bind reversibly to isolated nuclear matrices in vitro. 

Studies, using single strand-specific enzymes or reagents have shown that 

these sequences can undergo spontaneous strand separation in vitro (Bode 
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et al., 1992; 1996). Although prokaryotes do not contain MAR sequences (as 

evidenced by the fact that prokaryotic DNA, even in large excess, does not 

interfere with MAR/nuclear matrix reassociation in vitro), some plasmids 

possess two intensively studied narrow unwinding elements (UEs) that flank 

the ampicillin resistance gene (Benham, 1997). These sites are insufficient to 

mediate matrix attachment, but they serve as convenient internal standards 

for measuring the properties of the eukaryotic MARs. Eukaryotic MARs form 

extended base unpairing regions (BURs), which usually consist of multiple 

UEs, that compete strongly with the above-mentioned standards. The UEs 

typically include a major core unwinding element (CUE), which is the 

nucleation center for base unpairing (Bode et al., 1996). 

MARs are evolutionarily conserved and are often found at the borders of 

chromatin domains and in close association with certain enhancers or in 

introns (Gasser and Laemmli, 1986; Cockerill and Garrard, 1986a,b). MARs 

are located either in non-transcribed regions or within transcription units, but 

rarely if ever in coding regions (Bode et al., 2000). 

CC

 

Figure 1. High-resolution structure of the nuclear matrix. The nuclear matrix was 
visualized by resinless section electron microscopy, following high salt extraction and DNase I 
digestion. The nuclear matrix of an interphase nucleus consists of two parts – the nuclear 
lamina (L) and a network of internal nuclear fibres (Nu - nucleoli, L - lamina). (A) Overview. 
(B) High magnification. The arrowheads point the 10 nm filaments. (C) Histone-depleted 
metaphase chromosome. Nonhistone proteins provide a structural scaffold for long chromatin 
loops. (From Nickerson, 2001.) 
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The best studied matrix attachment regions are the ones found in the genes 

for lymphocyte receptors. Our main interest at the onset of this work was the 

functional characterization of the immunoglobulin µ gene MARs. Therefore, 

the following section will focus on the current knowledge about the properties 

and functions of the matrix attachment regions from the immunoglobulin and 

other lymphocyte receptor genes. 

 

2.1. MARs of the lymphocyte receptor genes 

2.1.1. The MAR of the Igκ gene 

The first identified MAR was in the Igκ receptor gene locus (Fig. 2) (Cockerill 

and Garrad, 1986b). 

 

Igκ

IgH

Jκ1-5

TCRβ

TCRα/δ

M E Cκ

M

MMM

M

MMM V DJ µδ γ3 γ2aγ1 γ2b ε α

Cβ2 Eβ Vβ14

VαVδ

Eµ

Vδ3 JαJδ2
B

Cδ TEA

M M

Igκ

IgH

Jκ1-5

TCRβ

TCRα/δ

M E Cκ

M

MMM

M

MMM V DJ µδ γ3 γ2aγ1 γ2b ε α

Cβ2 Eβ Vβ14

VαVδ

Eµ

Vδ3 JαJδ2
B

Cδ TEA

M M

 

Figure 2. Physical location of MARs in lymphoid receptor genes. MARs are shown as 
cross-hatched boxes, exons in green; B stands for boundary element, TEA for T-early 
α. (Based on Scheuermann and Garrad, 1999.) 

 

The MAR in the immunoglobulin κ gene locus (Igκ) has been shown to 

positively regulate the expression of a rearranged Igκ gene in both cell culture 

and transgenic mice studies (Blasquez et al., 1989; Goyenechea et al., 1997; 
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Xu et al., 1989). It has also been demonstrated that the Igκ MAR is required 

for the demethylation of in vitro methylated Igκ constructs, following their 

stable integration into plasmocytoma cell lines (Kirillov et al., 1996; 

Lichtenstein et al., 1994). In addition, the Igκ gene MAR is involved in 

regulating somatic hypermutation of Igκ transgenes, since transgenes lacking 

the MAR showed an impaired ability to serve as a substrate for hypermutation 

(Goyenechea et al., 1997). However, in mice with a targeted MAR deletion no 

significant defects in the levels of κ gene rearrangement, B cell populations or 

antibody production were detected (Yi et al., 1999). More detailed studies later 

demonstrated that in a fraction of B cells, Vκ-Jκ joining occurred earlier during 

development at MAR deleted alleles. Thus, it is possible that this MAR can act 

to insulate the enhancer activity in pro-B but not in pre-B cells. Supporting the 

transgenic mice studies, in ∆MAR mice the extent of somatic hypermutation in 

germinal centers is significantly reduced (Yi et al., 1999). 

 

2.1.2. The IgH gene locus MARs 

The immunoglobulin heavy chain (IgH) gene locus has multiple MARs. The 

most extensively studied ones are the 5' and 3' MARs flanking the Igµ gene 

intronic enhancer (see Fig. 2). Initial experiments involving transient 

transfection or stable integration of reporter constructs suggested that these 

MARs might play a role in repressing the Igµ gene intronic enhancer in non-B 

cells (Scheuermann and Chen, 1989). The IgH MARs are found to activate or 

repress transcription of reporter genes when the appropriate MAR-binding 

proteins are co-expressed in transient transfection experiments (Herrscher et 

al., 1995; Wang et al., 1999). 

Detailed analysis found that the intragenic enhancer region is required for the 

regulated expression of rearranged µ transgenes at different chromosomal 

locations (Jenuwein et al., 1991) and that the flanking MAR regions play a 

positive role in regulating transcription (Bode et al., 1992). Moreover, they are 

absolutely required for the transcription of rearranged, ectopically integrated 

IgH genes in transgenic mice, although they were not required for the 
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expression of the same constructs in stably transfected tissue culture cells 

(Forrester et al., 1994). In addition, the transgene with deleted MARs is 

susceptible to chromosomal position effects and is expressed at low and 

variable levels, ranging between 0.1 and 3% relative to the level of the wild-

type enhancer transgene (Forrester et al., 1994). The requirement for MAR 

function in transgenic animals, but not in cell lines or animals created from 

blastocyst fusions, suggests a function of MAR in chromatin remodeling 

during early development or passage through the germline (Sakai et al., 

1999). In fact, methylation of the µ gene constructs in vitro, prior to stable 

transfection into murine B cells, abrogates the ability of the core enhancer 

alone to activate the Vh promoter over a distance of 1.2 kb (Forrester et al., 

1999). In most of the clones the pre-methylated DNA templates were 

demethylated, which is in line with the findings of other groups that the 

presence of MARs in the immunoglobulin µ enhancer region correlates with 

the demethylation of the adjacent DNA (Lichtenstein et al., 1994; Kirillov et al., 

1996). Furthermore, it was shown that MARs facilitate long-range chromatin 

accessibility (Jenuwein et al., 1997) and generate an extended domain of 

histone acetylation (Forrester et al., 1999). The effect of the MARs on the 

extended acetylation of histone H4 is independent of transcription and 

together with the finding that the H4 C-terminal tail interacts with the 

neighboring nucleosome (Luger and Richmod, 1998) implies that acetylation 

could result in disorganization of the higher order chromatin fibers and may 

account for the active transcription in wild-type µ transgenes. 

 

2.1.3. The TCRβ gene locus MAR 

The TCRβ MAR is required for reporter gene transactivation in transiently 

transfected T-cell lines (Chattopadhyay et al., 1998a). Deletion of the TCRβ 

gene MAR from the native locus has no effect on T-cell development and 

abundance, TCR synthesis, D-J rearrangement patterns, or allelic exclusion 

(Chattopadhyay et al., 1998b). These results suggest that redundant elements 

present in the normal locus may compensate for the loss of this MAR. 
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2.1.4. The TCR α/δ gene locus MARs 

Recent studies led to the identification of three MARs in the TCR α/δ gene 

locus. Two of these flank the TCRδ transcriptional enhancer in a similar 

manner to the MARs in the IgH intronic enhancer (see Fig. 2). It was 

demonstrated that they are required for efficient VD to J recombination (Zhong 

et al., 1999). 

 

Overall, the presence of MARs in close proximity to enhancers is a conserved 

feature of lymphoid receptor genes, arguing for the functional importance of 

these elements. MAR sequences are also found within the immunoglobulin VH 

and Vκ loci at a much higher frequency than throughout the rest of the 

genome (Goebel et al., 2002). It has been proposed that variations in nuclear 

matrix factors binding to these MARs could potentially influence the extent of 

localized accessibility to V(D)J recombination and thus could play a role in the 

unequal rearrangement of individual V genes. The MAR sites could also 

contribute to the effective transcription of immunoglobulin genes in mature 

and activated B cells, bringing both the promoter and the enhancer regions 

into close proximity at the nuclear matrix (Goebel et al., 2002). 

 
3. MAR-binding proteins 

Following the initial description of the nuclear matrix as a general structure a 

number of specific proteins were identified as matrix components. They are 

referred to as MAR-binding proteins, due to their ability to associate with 

matrix attachment regions. 

In addition to ubiquitous MAR-binding proteins, such as topoisomerase II, 

lamin B, HMGI(Y), SAF-A, Cux-CDP and MeCP2 (Cockerill and Garrad, 1986; 

Lundres et al., 1992; Romig et al., 1992; Scheuermann and Chen, 1989; 

Weitzel et al., 1997), two MAR-binding proteins, SATB1 and Bright, are 

expressed specifically in T cells and activated B cells, respectively (Dickinson 

et al., 1992; Herrscher et al., 1995) – see Table 1. 
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Factor Expression 
pattern 

Target MAR Putative biochemical 
functions 

Expression function 

Cux/CDP Ubiquitous 
 

IgHE, Vh, 
TCRβ,CD8a, 
TCRα 

Displaces MAR-BP1, 
Bright, binds SATB1, 
stimulates histone 
deacetylation 

Transcriptional 
repression, antagonizes 
Bright transactivation 

SATB1 Thymocytes IgHE, Igκ, 
TCRβ, CD8a, 
TCRδ 

Influences base 
unpairing 

Transcriptional repression 

Bright  Mature B and 

plasma cells 

IgHE, Vh Chromatin remodeling Transcriptional activation 

SMAR1 Ubiquitous, 
abundant in 
thymus 

TCRβ (MARβ) Unknown Transcriptional 
modulation 

HMGI(Y) Ubiquitous IgHE Displaces histone H1 Derepression 

MeCP2 Ubiquitous  IgHE, chicken 
lysozyme MAR 

Recruits histone 
deacetylases 

Transcriptional repression 

CTCF Ubiquitous Unknown Forms topologically 
independent chromatin 
loops that may support 
gene silencing. 

Transcriptional repression 

MAR-BP1 Ubiquitous IgHE, Igκ Stimulates nuclear 
matrix attachment 

Unknown 

hnRNP-
A1/B1 

Ubiquitous IgHE DNA helicase/RNA 
splicing 

Antagonizes Cux/CDP 
repression 

AP1 

(Fos/Jun) 

Ubiquitous Igκ Trans-activation Transcriptional activation 

Nucleolin Ubiquitous IgHE Unknown rRNA transcription and 
ribosome assembly 

 

Table 1. Characteristics of selected MAR-binding proteins. (Based on Scheuermann and 

Garrad, 1999.) 

 

3.1. Cux/CDP (CCAAT displacement protein) 

Cux/CDP, also called NF-µNR, is expressed in various cell types but is not 

present in mature B cells. Cux is a member of a novel family of proteins that 

bind to DNA through repetitive domains termed CUT repeats. The family 

includes human CDP (Neufeld et al., 1992), canine Clox (Andres et al., 1992), 

and Drosophila Cut (Blochlinger et al., 1988). Each of these homologues 

contains three CUT repeats in addition to an atypical homeodomain (HOX) 
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located near the carboxy terminus. Separately, each of the CUT and the HOX 

domains are able to bind DNA with high AT-content (Harada et al., 1994; 

1995). However, full-length Cux/CDP appears to recognize DNA in a unique 

way that depends more on tertiary DNA structure rather than the linear 

nucleotide sequence, because a consensus motif is not found. 

Further experiments have shown that Cux/CDP binds in a cooperative manner 

to multiple sites in the two MARs flanking the IgH intronic enhancer, 

suggesting that multiple DNA-binding subunits are involved in the formation of 

a higher-order complex (Scheuermann and Chen, 1989). Transactivation 

studies have revealed that it is involved in the negative regulation of IgH 

enhancer-mediated transcriptional activation (Zong et al., 1995; Wang et al., 

1999).  

 

3.2. Bright (B cell regulator of IgH transcription) 

Bright has a restricted cell-type expression, being present predominantly in 

mature B cells, splenic B cells and a population of small pre-B cells in bone 

marrow. Its expression in splenic cells can be augmented following LPS 

stimulation (Webb et al., 1999). Bright is retained in the nucleus following 

nuclear matrix preparation and co-localize with PML bodies, which also 

associate with the nuclear matrix (Webb et al., 1999). 

The DNA binding region of the protein is represented by an ARID domain (AT-

rich interaction domain) (Kortschak et al., 2000), that has a homology to the 

Drosophila protein Dead ringer and the yeast Swi1, which are involved in 

chromatin remodeling. Further studies have demonstrated that Bright binds 

discrete sites in the Vh gene promoter region and in the MARs flanking the 

IgH intronic enhancer (Herrscher et al., 1995). Moreover, co-transfection 

experiments revealed that Bright augments IgH gene transcription. It was also 

suggested that its transcriptional activity is regulated by Cux/CDP, that binds 

to similar sites and displaces Bright, thereby antagonizing Bright-mediated 

transactivation (Wang et al., 1999). 
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3.3. SATB1 (special AT-rich sequence binding protein 1) 

SATB1 CUT CUT HOX 764PDZ-like

Caspase 6
cleavage site

MAR binding domain

 

Figure 3. Domain organization of SATB1. (See the text for details.) 

 

SATB1 is highly expressed in thymus and binds selectively to matrix-

associated regions (MARs) of DNA. Specific mutations that diminish the 

unwinding potential of MAR sequences greatly reduce their binding affinity for 

SATB1 (Dickinson et al., 1992). The DNA-binding domain consists of two CUT 

repeats, also referred to as the MAR-binding domain (Dickinson et al., 1997), 

a homeodomain (HOX) and a dimerization (PDZ-like) domain (Galande et al., 

2001; see Fig. 3). The isolated MAR-binding domain recognizes a certain 

DNA sequence context within MARs that is highly potentiated for base 

unpairing. Unlike the MAR-binding domain, the isolated homeodomain binds 

poorly and with low specificity to DNA. However, the combined action of the 

MAR-binding domain and the homeodomain allows SATB1 to specifically 

recognize the core-unwinding element within the base-unpairing region of 

MARs (Dickinson et al., 1997). The core-unwinding element is critical for MAR 

structure, since point mutations within it abolish the unwinding propensity of 

the MAR (Dickinson et al., 1997).  

SATB1 has multiple binding sites in the genome and associates with 

chromatin as a dimer or multimer (Cai et al., 2003). Furthermore, SATB1 has 

a cage-like "network" distribution in thymocyte nuclei and selectively tethers 

specialized DNA sequences onto its network (Cai et al., 2003, see Fig. 4). 

SATB1 is involved in the regulation of a number of T-cell specific genes. 

During T cell differentiation, the induction of DNase I hypersensitivity 

upstream of the transcriptional enhancer (Eβ − see Fig. 2) correlates with an 

increased  association  of  this  region  with the  two  MAR-binding  proteins – 
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Figure 4. SATB1 forms a three-dimentional cage-like network, surrounding dense 
regions of chromatin. The image shows thymocyte nuclei, which were salt-extracted, 
digested with DNase I, and stained with DAPI (blue, d), with an antibody against the 
heterochromatin-associated protein M31 (green, e), and an antibody against SATB1 (red, g). f 
shows the merged image of d and e with the SATB1 staining (in red). c displays a 3-D 
reconstruction of the SATB1 network in several thymocyte nuclei. (From Cai et al, 2003.) 

 

Cux/CDP and SATB1. The binding site was further shown to be a nuclear 

matrix attachment region, referred to as MARβ (See Fig. 2) (Chattopadhyay et 

al., 1998a). Binding sites for SATB1 are also found in the CD8B gene locus 

and are thought to be important for the epigenetic regulation of CD8 

expression (Kieffer et al., 2002).  

Transient transfection reporter assays revealed a role for SATB1 in 

modulating the expression of multiple genes. For example, SATB1 is a 

component of a large complex called γ−PE (for β-globin promoter and 

enhancer binding factor) that binds to five sites located 5' and 3' of the human 

γ-globin gene and participates in positive regulation of γ-globin expression 

(Case et al., 1999). However, several other examples demonstrated a 

negative role for SATB1 in the regulation of transcription of the gp91(phox) 
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gene and the MMTV long terminal repeat reporter gene (Hawkins et al., 2001; 

Liu et al., 1999). Furthermore, cells stably expressing SATB1 have lower 

activity of a reporter gene, containing multimerized binding sites in front of a 

minimal promoter, compared to cells that do not express SATB1 (Kohwi-

Schigematsu et al., 1997). Further understanding of SATB1 function was 

gained through the functional inactivation of the protein by gene targeting. 

SATB1-null mice exhibited multiple defects at almost every stage of T-cell 

development. These defects included greatly reduced triple negative (TN – 

CD3–CD4–CD8–) cells, an arrest mainly at the double positive (DP – 

CD4+CD8+) stage, inappropriate migration of DP thymocytes to lymph nodes, 

and apoptosis of peripheral CD4 single positive (SP) cells in response to 

activating stimuli. Dramatic reduction in mature T-cell subsets was observed 

since both CD4 and CD8 SP thymocytes and peripheral T cells were found at 

very low levels (Alvarez et al., 2000). Also consistent with an immature 

phenotype of SATB1-null thymocytes was the failure to up-regulate CD5. 

Since SATB1 is normally expressed in every thymocyte subpopulation - TN, 

DP, and SP cells, as well as in activated T cells (Beadling et al., 1993), it was 

proposed that the multiple defects observed were a consequence of 

disordered transcription of multiple genes due to SATB1 ablation (Alvarez et 

al., 2000). The ectopic expression of the IL-2Rα and IL-7Rα genes, as well as 

a dysregulation of many other genes (including an oncogene, a chemokine 

gene, apoptosis-related genes, tumor susceptibility genes, DNA-binding 

protein genes) and developmental surface markers was found in SATB1-null 

thymocytes and peripheral T cells. These results indicated that the spatial and 

temporal transcription of multiple genes is disordered in thymocytes and 

peripheral T cells in the absence of SATB1 and suggested that SATB1 is a 

cell type-specific global gene regulator (Alvarez et al., 2000). Further 

experiments led to a better understanding of the biochemical mechanisms of 

SATB1-mediated gene regulation, demonstrating that the binding of SATB1 to 

specific DNA sites creates a “landing platform” for the chromatin remodeling 

enzymes ACF1 and ISWI, subunits of ACF and CHRAC nucleosome 

mobilizing complexes, to specific sites, and regulates nucleosome positioning 

over long distances. SATB1 also recruits the histone deacetylase contained in 
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the NURD chromatin remodelling complex to a SATB1-binding site in the IL-

2Rα locus, and mediates the specific deacetylation of histones in a large 

domain within the locus (Yasui et al., 2002). However, Cai et al., (2003) 

showed by histone-modification analyses across a gene-enriched genomic 

region of 70 kb that acetylation of histone 3 at Lys9 and Lys14 peaks at a 

SATB1-binding site and extends over a region of roughly 10 kb covering 

genes regulated by SATB1, and that this closely correlates with SATB1-

mediated transcriptional augmentation. These controversial results could be 

explained by different associations of SATB1 with the histone modifying and 

chromatin remodeling machinery at different binding sites and will correlate 

with the observed opposing effects on the transcription of different genes. 

Thus, it was proposed that SATB1 is a new type of gene regulator with a 

novel nuclear architecture, providing sites for tissue-specific organization of 

DNA sequences and regulating region-specific histone modification (Yasui et 

al., 2002). 

SATB1's transcriptional activity is tightly regulated. One common mechanism 

to regulate homeodomain protein function is through protein-protein 

interactions. It was shown that SATB1 associates with CDP and this leads to 

inhibition of their binding to specific MAR sites, suggesting that the SATB1-to-

CDP ratio in different tissues is an important mechanism to control gene 

expression (Liu et al., 1999; Case et al., 1999). Another very important 

mechanism for the regulation of the SATB1 activity is proteolysis. It was 

demonstrated that during negative selection processes in the thymus, when 

the majority of thymocytes are eliminated by apoptosis, SATB1 is specifically 

cleaved by a caspase 6-like protease at amino acid position 254 (Galande et 

al., 2001). This cleavage separates the DNA-binding domains from the PDZ-

like dimerization domain. The resulting 65-kD major fragment contains both 

the base-unpairing region (BUR)-binding domain and the homeodomain. 

However, since this SATB1 fragment is monomeric, it loses its BUR-binding 

activity, despite containing both its DNA-binding domains, and rapidly 

dissociates from chromatin in vivo (Galande et al., 2001).  
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In conclusion, it should be pointed out that although a lot has been learned 

about the function of MARs, the precise mechanism through which they 

influence gene expression is still obscure and probably diverse. One possible 

model involves the MAR-binding protein HMGI(Y) that could depelete histone 

H1 and cause chromatin opening. MARs also mediate the targeting of DNA to 

the nuclear matrix, which is enriched in RNA polymerases and splicing 

complexes (Berezney et al., 1995). Another mechanism could rely on the 

MAR-induced changes in DNA topology, since matrix attachment regions 

have been shown to interact with topoisomerase II and contain sequences, 

which unwind easily under superhelical tension (Bode et al., 1992; Benham et 

al., 1997). Yet another pathway may involve MeCP2 - a ubiquitously 

expressed protein that interacts with both methylated CpG dinucleotides and 

MAR sequences. MeCP2 associates with histone deacetylases and might 

therefore confer repression upon MAR-containing regions of chromatin. 

Finally, certain MAR sequences are also recognized by tissue-specific 

transcriptional regulators, such as Bight and SATB1, which can modulate 

transcription at the sites of binding. 

 

4. Post-translational protein modifications. SUMO modification 

4.1. SUMO (small ubiquitin-related modifier) 

Post-translational modification of proteins is a fundamental mechanism of 

modulating their function, activity or localization after their synthesis has been 

completed. These modifications are usually accomplished via enzymatic 

reactions: acetylation, methylation, phosphorylation, ADP ribosylation, 

carboxylation, adenylation, glycosylation, prenylation, and ubiquitination. 

Modification with ubiquitin was the first identified case when the modifier itself 

is a small polypeptide. Ubiquitin is a 76-amino acid polypeptide that is highly 

conserved. The proteins ligated to multi-ubiquitin chains (usually formed 

through isopeptide bonds between lysine 48 of one ubiquitin and the C-

terminal glycine residue of the neighboring ubiquitin) are degraded by the 

ATP-dependent 26S proteasome (Coux et al., 1996). More recently it was 

shown that ubiquitination has a number of additional functions. For example, 
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mono-ubiquitination, unlike poly-ubiquitination, is not involved in the protein 

degradation pathway, but plays a role in at least three distinct cellular 

processes, such as histone regulation, endocytosis, and budding of 

retroviruses from the plasma membrane (Terrell et al., 1998; Hofmann and 

Pickart, 1999; Deng et al., 2000; Hicke, 2001). 

During the past few years, several proteins have been discovered that have 

sequence similarity to ubiquitin. These ubiquitin-like proteins form two 

separate classes: ‘ubiquitin-like modifiers’ (UBLs) and ‘ubiquitin-domain 

proteins’ (UDPs). UBLs function as modifiers in a manner analogous to that of 

ubiquitin. This class is comprised of SUMO (small ubiquitin-related modifier), 

Rub1 (also called Nedd8), Apg8 and Apg12. UDPs harbour domains that are 

homologous in sequence to ubiquitin but are otherwise unrelated to each 

other. In contrast to UBLs, these proteins are not conjugated to other proteins 

(Jentsch et al., 2000; Hochstrasser et al., 2000). This class includes parkin, 

RAD23 and DSK2. 

SUMO (small ubiquitin-related modifier) is the best-characterized member of a 

growing family of UBLs and shows a high degree of conservation from yeast 

to humans. Saccharomyces cerevisiae contains only one SUMO homologue, 

Smt3p, which was originally discovered as a suppressor of mutations in the 

centromeric protein MIF2 (Meluh and Koshland, 1995). In contrast, the 

mammalian SUMO family consists of three members: SUMO-1, -2, and -3 

(Kamitani et al., 1998; Saitoh and Hinchey, 2000; see Fig. 5). In humans, 

SUMO-1 is a 101 amino acid polypeptide that shares 48% identity with 

SUMO-2 and 46% identity with SUMO-3. SUMO-2 and -3 share 95% identity, 

and can be grouped into a subfamily distinct from SUMO-1. Human SUMO1 

shares only 18% sequence identity with ubiquitin. Nevertheless, NMR 

structure analysis (Bayer et al., 1998) revealed that SUMO1 contains the 

characteristic ββαββαβ ubiquitin fold common to ubiquitin-like proteins (Mayer 

et al., 1998). Similarly to ubiquitin, SUMO-1 is synthesized as a precursor with 

a C-terminal extension of several amino acids, which needs to be processed 

to make the C-terminal double-Gly motif available for conjugation. 

Interestingly, SUMO-1 has a long and highly flexible N-terminal extension that 

is absent in ubiquitin, but at present the functional importance of this 
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sequence is not known. SUMO2 and SUMO3, analogously to SUMO1, can 

also be conjugated to target proteins (Kamitani et al., 1998). Further 

experiments demonstrated that the target proteins for SUMO1 and SUMO2/3 

are different and the conjugation of SUMO-2 and -3 can be promoted by 

stress-inducing stimuli, such as acute temperature shift and high osmolarity 

(Saitoh and Hinchey, 2000). Moreover, SUMO2/3 can form poly-SUMO chains 

(Tatham et al., 2001). It was shown that both SUMO-2 and -3, but not SUMO-

1, contain a consensus motif, ψKXE (ψ stands for a hydrophobic amino acid 

and X for any amino acid), in their N-terminal regions that is used for 

sequential SUMO conjugation. Point mutation of the lysine residue in the 

above sequence abolishes the poly-SUMO chain formation. The yeast SUMO 

homologue, Smt3p, also contains a similar sequence motif, and can form 

poly-SUMO chains (Johnson and Gupta, 2001) but until now the functional 

significance of the poly-SUMO chain formation is unknown.  

 
SUMO-1     1  MSD----QEAKPSTEDLGDKKEG-EYIKLKVIGQDSS-EIHFKVKMTTHLKKLKESYCQRQGV 57
SUMO-2     1  MAD----E--KP---KEGVKTENNDHINLKVAGQDGS-VVQFKIKRHTPLSKLMKAYCERQGL 53
SUMO-3     1  MSE----E--KP---KEGVKTEN-DHINLKVAGQDGS-VVQFKIKRHTPLSKLMKAYCERQGL 52
SMT3       1  MSDSEVNQEAKPEV-KPEVKPET--HINLKVS--DGSSEIFFKIKKTTPLRRLMEAFAKRQGK 58
Ubiquitin  1                          MQIFVKTL--TGK-TITLEVEPSDTIENVKAKIQDKEGI 36

 
 
 

 
SUMO-1     58 PMNSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQEQTGGHSTV         101 
SUMO-2     54 SMRQIRFRFDGQPINETDTPAQLEMEDEDTIDVFQQQTGGVY           95 
SUMO-3     53 SMRQIRFRFDGQPINETDTPAQLEMEDEDTIDVFQQQTGGVPESSLAGHSFL 104 
SMT3       59 EMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGATY          101 
Ubiquitin  37 PPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG             76 

 

Figure 5. Sequence alignment of SUMO family members and ubiquitin. Sequence 
comparison of the human SUMO family members (SUMO-1, -2, and -3) to the yeast SUMO 
homologue SMT3 and to human ubiquitin. Identities are shown in blue, similarities in yellow. 
The scissors symbol indicates the sites of precursor processing, which occurs in the carboxy-
terminus after the double-glycine motif. (Based on Müller et al., 2001.) 
 

4.2. The SUMO conjugation pathway 

The SUMO conjugation pathway (Fig. 6) is highly analogous to the ubiquitin 

pathway. The first step involves an E1 (SUMO-activating) enzyme that 

activates SUMO in an ATP-dependent reaction, which results in the formation  
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Figure 6. The SUMO conjugation pathway. The SUMO precursor is subjected to proteolysis 
to expose the C-terminal Gly residue to the E1 activating enzyme (a dimer of SAE1/SAE2 
(Aos1/Uba2 in yeast)), which forms a highly reactive thioester bond with SUMO. SUMO is 
subsequently transferred to the E2 conjugating enzyme, Ubc9, and with the help of the 
substrate specific E3 ligase is conjugated to target proteins at ψKXE consensus motifs. The 
resulting isopeptide bond is stable and SUMO-deconjugating enzymes are required for 
hydrolysis. (From Verger et al., 2002.) 

 

of a highly reactive thioester bond between the E1 enzyme and SUMO. In 

contrast to the ubiquitin-activating enzyme, the SUMO E1 is a heterodimer 

consisting of two subunits: Aos1 and Uba2. Interestingly, Aos1 shows 

sequence and structural similarity to the amino-terminal part of Uba1 - the E1 

enzyme for ubiquitin, whereas Uba2 is related to the carboxy-terminal region 

of Uba1. The Uba2 subunit harbours the ‘active site’ cysteine residue required 

for the formation of SUMO–E1 enzyme thioesters; nevertheless both subunits 

are required for SUMO activation in vitro and in vivo.  

The second reaction of the SUMO-conjugation pathway is the transfer of 

SUMO from the E1 activating enzyme to the E2 conjugating enzyme - Ubc9, a 

single polypeptide that is specific for SUMO and does not act on ubiquitin 

(Gong et al., 1997; Jonson et al., 1997; Schwarz et al., 1998). Structural 

analysis revealed that the feature that confers the specificity of Ubc9 versus 

the two known ubiquitin-specific E2 enzymes (Ubc4 and Ubc7) is the 

positively charged SUMO binding surface, which is highly complementary in 

its electrostatic potential and hydrophobicity to the negatively charged surface 

of SUMO. Ubiquitin cannot bind to Ubc9 because of the positive charges in 

this region (Giraud et al., 1998). 
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In vitro experiments demonstrated that the E1 activating and E2 conjugating 

enzymes (together with ATP and SUMO) are sufficient for a relatively robust 

modification of proteins at precisely the lysines that are preferred in vivo. In 

contrast, in the ubiquitin pathway an additional factor, called E3 ligase or 

ubiquitin-protein ligase, is almost always necessary for efficient substrate 

ubiquitination, both in vitro and in vivo (Hershko and Ciechanover, 1998). 

 

4.3. SUMO protein ligases 

Recently, several E3-like proteins for sumoylation have been identified from 

yeast and mammals. Using the yeast two-hybrid approach Siz1 was found to 

associate with both Ubc9 and Cdc3 (a member of the septin family), and to 

strongly stimulate the sumoylation of the septin. Another yeast E3-like protein, 

Siz2, also promotes sumoylation of protein substrates that are different from 

the substrates modified with Siz1 (Johnson and Gupta, 2001; Takahashi et al., 

2001a,b). However, Siz1 and Siz2, unlike Aos1/Uba2 and Ubc9, are not 

essential for cell survival in yeast. The mammalian proteins to which Siz1 and 

Siz2 are most closely related are the PIAS (protein inhibitor of activated 

STAT) proteins, and indeed it was soon reported that PIAS1 is an E3-like 

protein for sumoylation of the p53 tumor suppressor in human cells (Kahyo et 

al., 2001). PIAS1 was isolated as a SUMO-1-binding protein by yeast two-

hybrid screening, and shown to interact with both p53 and Ubc9. Furthermore, 

PIAS1 augmented the SUMO conjugation of p53 in U2OS cells, when p53, 

SUMO-1, and PIAS1 were co-transfected. Independently, it was shown that all 

members of the PIAS family can act like E3 ligases (Sachdev et al., 2001; 

Kotaja et al., 2002; Nishida et al., 2002). Although in the presence of high 

amounts of Aos1\Uba2 and Ubc9 both septins and and p53 can be SUMO-

modified without Siz1 and PIAS1 in vitro, the amount of sumoylated proteins 

greatly increases when the E3-like ligases are also present in the system. 

Thus, the E3-like proteins may serve to specifically recognize the substrates, 

increase the affinity between them and the E2 conjugating enzyme (Ubc9), 

and by bringing them in close proximity in a catalytically favourable 

orientation, can stimulate the sumoylation to occur at a maximal rate. 
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The SUMO E3 ligases can be separated in two classes. The first class 

comprises Siz1, Siz2 and the PIAS family. One common feature in this class 

is the presence of a RING-like domain that is known to mediate interaction of 

E3 with E2 in the ubiquitin system (Freemont, 2000). Mutations in the RING-

like domain of Siz1 and PIAS1 result in the loss of binding of the E3-like 

enzyme to Ubc9 (Takahashi et al., 2001a,b; Kahyo et al., 2001). Thus, the 

RING-like domain of the E3-like enzymes might function in a similar manner to 

the RING domain of E3 ubiquitin ligases. The second class consists of 

RanBP2 and Pc2, which have no significant homology to the RING-like 

ligases. RanBP2 (Ran binding protein 2) contains a RanGAP-binding domain, 

and repeats responsible for the nuclear transport receptor binding together 

with a cyclophilin homology region, but has no similarity to the other E3 

SUMO ligases (Pichler et al., 2002). Pc2 is a member of the Polycomb group 

(PcG) proteins, which were first described in Drosophila as factors responsible 

for maintaining the transcriptionally repressed state of Hox/homeotic genes in 

a stable and heritable manner throughout development (Otte et al., 2003). The 

PcG complex forms unique nuclear structures, termed PcG bodies (Saurin et 

al., 1998). These domains vary in number and structure and it is currently 

unclear whether they are storage compartments or are directly involved in 

silencing (Spector, 2001). 

 

4.4. SUMO-specific proteases (SUSPs) 

Like ubiquitination, sumoylation is a dynamic, reversible process. 

Deubiquitination enzymes (DUBs) are thiol proteases that hydrolyze ester, 

thiol ester, and amide bonds formed by the carboxyl group of Gly76 of 

ubiquitin. They are involved in the processing of ubiquitin precursors, 

dissociation of polyubiquitin chains, recycling of ubiquitin from late proteolytic 

intermediates and regulation of the ubiquitination state of proteins (Chung and 

Baek, 1999; Wilkinson, 1997). Like ubiquitin, SUMO proteins are synthesized 

as precursors with an amino acid stretch after the double glycine motif, that 

needs to be released through proteolytic cleavage by C-terminal hydrolases, 

in order to become accessible for SUMO conjugation. Furthermore, SUMO-
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protein conjugates are highly susceptible to deconjugation in cell extracts and 

different subcellular fractions, indicating the presence of several 

isopeptidases. 

In yeast, two SUMO-specific proteases - Ulp1 and Ulp2 were identified (Li and 

Hochstrasser, 1999, 2000; Schwienhorst et al., 2000). In vitro, both Ulp1 and 

Ulp2 can catalyze the C-terminal processing of the SUMO precursor and both 

enzymes can remove SUMO from isopeptide-linked conjugates. Genetic 

studies have shown that like SUMO conjugation, SUMO de-conjugation is 

needed for viability in the budding yeast (Li and Hochstrasser, 1999, 2000; 

Schwienhorst et al., 2000). It was further demonstrated that Ulp1, but not 

Ulp2, is essential for viability. Analysis of an Ulp1 temperature sensitive 

mutant showed an arrest of the cells at the G2/M boundary when shifted to 

the restrictive temperature, suggesting that a SUMO-conjugated protein needs 

to be deconjugated in order that the cell could progress into mitosis. In 

addition, it is suggested that Ulp1 is involved in the processing of the SUMO 

precursor molecule, because the lethality of Ulp1 deletion can be partially 

overcome by expressing mature SUMO. Disruption of Ulp2, although not 

absolutely lethal, leads to several abnormalities including slow and 

thermosensitive growth, defects in cell morphology, chromosome instability 

and sporulation defects. Both Ulp1 and Ulp2 mutant strains revealed an 

increased accumulation of SUMO conjugates. Interestingly, the overall pattern 

of the SUMO conjugated proteins differs in each of the individual mutants, 

suggesting that the two enzymes act on distinct substrates. Surprisingly, 

however, inactivation of Ulp2 partially rescues the defects caused by Ulp1 

deficiency, and the double mutant accumulates fewer SUMO conjugates than 

either of the single mutants. One suggested explanation is that Ulp1 and Ulp2 

control the modification levels of proteins in opposing pathways (Li and 

Hochstrasser, 2000).  

In humans, at least 7 SUSPs, with sizes ranging from 238 to 1112 amino 

acids, have been identified (Yeh et al., 2000; Gong et al., 2000; Kim et al., 

2000). These enzymes have also been termed SENPs (for sentrin-specific 

proteases; sentrin is an alternative name for SUMO-1). 
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The sequence similarity between Ulp1, Ulp2, SUSP1 and SENP1 is restricted 

to a 200 amino acid sequence, termed ULP domain, which harbours the 

catalytically active center. Remarkably, no sequence or structural similarity 

exists between the SUSPs and the de-ubiquitinating enzymes, although both 

belong to the cysteine protease superfamily. Moreover, these proteins show 

similarity to the adenovirus L3 protease, suggesting that SUSPs may use a 

catalytic mechanism similar to that of viral proteases (Li and Hochstrasser, 

1999; Andres et al., 2001). 

 

4.5. Biological functions of SUMO modification 

 

 

 

Figure 7. Functional significance of SUMO modification. (From Verger et al., 2002.) 

 
4.5.1. Nuclear pore complex shuttling 

The first identified substrate for SUMO1 modification was the mammalian 

GTPase-activating protein RanGAP1 (Matunis et al., 1996; Mahajan et al., 

1997). The function of RanGAP1 includes the GTP-dependent activation of 

the small nuclear GTPase Ran, which was shown to be essential for transport 

across the nuclear pore complex (NPC) (Melchior et al., 1993; Moore and 
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Blobel, 1993). Sumoylation, almost exclusively with SUMO1, is required for 

the stable association of RanGAP1 and RanBP2. Since SUMO-1 itself cannot 

bind to RanBP2 (Mahajan et al., 1997), sumoylation most likely induces a 

conformational change to create a binding surface for RanBP2 in the C-

terminal domain of RanGAP1. It was further demonstrated that RanBP2 is the 

E3 ligase for RanGAP1 (Pichler et al., 2002).  

Indirect evidence for the role of SUMO in nuclear import processes comes 

from studies of Drosophila melanogaster harbouring a loss-of-function 

mutation in the UBC9 gene (semushi) (Epps et al., 1998). In these mutants, 

nuclear import of the transcription factor BICOID is prevented, leading to 

defects in embryogenesis. However, it remains unclear whether sumoylation 

is indeed involved in the control of the nuclear protein import pathway.  

 

4.5.2. Changes in subnuclear localization and targeting to PML bodies 

PML (promyelocytic leukemia protein) is a RING-finger protein with a tumor 

suppressor activity. In the majority of the patients with acute promyelocytic 

leukemia, the PML gene is translocated to the retinoic acid receptor gene 

(RARα) and generates a chimeric PML/RARα protein (Kakizuka et al., 1991). 

PML consists of a RING domain, cysteine- and histidine-rich B1 and B2 boxes 

and a coiled-coil domain, which was shown to be responsible for the 

dimerization of the protein (Kastner et al., 1992). PML is enriched in discrete 

nuclear matrix-associated structures, termed PML nuclear bodies (sometimes 

also referred to as ND10 bodies, Kr bodies, or PML oncogenic domains) 

(Dyck et al., 1994; Koken et al., 1994; Weis et al., 1994). PML is one of the 

target proteins for SUMO-1 modification. Sumoylation of PML was shown to 

target the protein to nuclear bodies, whereas the unmodified form remains in 

the nucleoplasmic fraction (Boddy et al., 1996; Sternsdorf et al., 1997; Müller 

et al., 1998; Zhong et al., 2000). Sumoylation is also required for the nuclear 

body localization of several other proteins, including Sp100, Daxx, CBP, 

ISG20, HIPK2, TEL, LEF-1, TCF-1, and Sp3 (Sternsdorf et al., 1997; Kim et 

al., 1999; Chakrabarti et al., 2000; Sachdev et al., 2001; Ross et al., 2002). 

Recently, a role for SUMO-1 modification of PML in protein degradation was 
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suggested (Lallemand-Breitenbach et al., 2001). It was shown that 

sumoylation at a specific residue triggers the proteasome-dependent 

degradation of PML and that the mature nuclear bodies harbor 11S 

proteasome components, suggesting that these structures might be the site of 

intranuclear proteolysis. 

 

4.5.3. Modulation of protein-protein interactions 

Sp100 is an interferon-inducible protein, which was initially characterized as 

an antigen reactive with antibodies from patients with autoimmune disorders 

(Szostecki et al., 1990). SUMO-conjugation of Sp100 promotes its interaction 

with members of the HP1 (heterochromatin protein 1) family of non-histone 

chromosomal proteins, suggesting its regulatory role in chromatin organization 

and in the functional interplay between the nuclear bodies and chromatin 

(Lehming et al., 1998; Sternsdorf et al., 1999; Seeler et al., 1998, 2001).  

 

4.5.4. Regulation of DNA binding 

HSF1 and HSF2 (heat shock factors 1 and 2) are transcription factors that 

mediate the induction of heat shock protein gene expression under 

environmental stress conditions (Cotto and Morimoto, 1999). Electromobility 

shift assays demonstrated that SUMO modification enhances the DNA-

binding ability of both proteins. Furthermore, mutation of the SUMO target 

lysine on HSF1 results in a significant decrease in stress-induced 

transcriptional activity of the protein in vivo (Goodson et al., 2001; Hong et al., 

2001). 

  

4.5.5. Modulation of the activity of transcription factors 

TEL is a transcription factor specifically required for bone marrow 

hematopoiesis (Wang et al., 1998). It associates with histone deacetylases 

and can act as a transcriptional repressor (Fenrick et al., 1999; Lopez et al., 

1999). Sumoylation of TEL modulates its transcriptional activity by recruiting 
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TEL to nuclear speckles in a cell cycle-specific manner (Chakrabarti et al., 

2000). The transcriptional repressor Daxx can be recruited to nuclear bodies 

upon sumoylation of PML, thereby relieving the Daxx-mediated transcriptional 

repression of its target genes (Ishov et al., 1999; Lehembre et al., 2001). 

Sumoylation of PML is also responsible for the recruitment of p53 to the 

nuclear bodies and promotes the transcriptional and pro-apoptotic activities of 

p53 (Fogal et al., 2000). In addition, recruitment of p53 to the nuclear bodies 

has been suggested to trigger post-translational modifications (e.g. 

acetylation), which also stimulate the transcriptional activity of p53 (Giaccia 

and Kastan, 1998; Pearson et al., 2000). Later experiments revealed that p53 

is also a target for SUMO-1 modification and that the SUMO conjugation is 

induced by UV irradiation (Gostissa et al., 1999; Rodriguez et al., 1999; Müller 

et al., 2000). The target lysine residue for sumoylation, however, is different 

from the one conjugated to ubiquitin. Therefore SUMO conjugation at Lys-386 

does not affect the stability of p53. Furthermore, the apoptotic potential of a 

mutant form of p53, in which Lys-386 is replaced by arginine (K386R), is 

moderately impaired, implying that sumoylation of p53 is necessary for 

exerting its full apoptotic activity (Müller et al., 2000). In addition, SUMO 

modification is a common mechanism for regulating the transcriptional activity 

of the steroid receptor superfamily. Point mutations of lysine residues that are 

targets for SUMO conjugation in the androgen receptor enhance its 

transcriptional activity, suggesting that sumoylation negatively regulates the 

activity (Tian et al., 2002). SUMO modification was shown to be a common 

mechanism for repressing a variety of transcription activators (e.g. LEF1, Sp3 

and CtBP) by altering their subnuclear localization and recruiting them to 

nuclear matrix-associated PML bodies (Sachdev et al., 2001; Ross et al., 

2002; Kagey et al., 2003). 

 

4.5.6. Antagonism of ubiquitination 

IκB is an inhibitory protein that sequesters the transcriptional factor NF-κB 

(involved in a variety of processes such as immune function, inflammatory 

response, cell adhesion, and growth control) in an inactive complex (Baeuerle 



INTRODUCTION                                           30 

and Henkel, 1994; Siebenlist et al., 1994; Beg and Baldwin, 1993; Verma et 

al., 1995). Upon stimulation with proinflammatory cytokines, phorbol esters, 

oxidants, or viral infection, IκBα is rapidly phosphorylated by a signal-

inducible IκB kinase (IKK) complex (Mercurio et al., 1997; Woronicz et al., 

1997; Zandi et al., 1997). Once IκBα is phosphorylated, it is recognized by the 

ubiquitin-conjugating machinery, which leads to the formation of poly-ubiquitin 

chains that target the protein for rapid degradation by the 26S proteasome 

(Alkalay et al., 1995; DiDonato et al., 1996). This results in the liberation of 

NFκB, which then translocates from the cytosol to the nucleus to activate the 

transcription of target genes. Interestingly, SUMO can be conjugated to the 

same lysine residue as ubiquitin, thus leading to stabilization of IκBα against 

degradation by the 26S proteasome (Desterro et al., 1998). Sumoylated forms 

of IκBα have been detected in a number of cell types, and are resistant to 

TNFα-induced degradation. Another example of the antagonistic role of 

sumoylation against ubiquitination is Mdm2 (Buschmann et al., 2001). Mdm2 

is an E3 ligase catalyzing the ubiquitination of p53, as well as of itself (Honda 

et al., 1997). In normal cells, most of the Mdm2 proteins are sumoylated at 

Lys-446, which is the same site as the one for self-ubiquitination (Buschmann 

et al., 2001). SUMO-conjugation protects Mdm2 from destabilization, but 

increases p53 ubiquitination and degradation. It is suggested that upon DNA 

damage Mdm2 is desumoylated and subsequently conjugated to ubiquitin, 

which targets the protein for degradation. This results in a dramatic increase 

of the activity of p53, leading to cell cycle arrest or apoptosis (Oren, 1999). 

 

The work described in this thesis identified and characterized a novel cell-type 

specific MAR-binding protein, SATB2. We find that SATB2 binds to the MAR 

sequences of the endogenous immunoglobulin µ enhancer region and 

activates transcription. We also show that this protein is modified with SUMO 

in a PIAS1-dependent manner, and that this modification is crucial for the 

SATB2-mediated gene activation, MAR association and subnuclear 

localization. 
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II. Results 
1. Synthetic multimerized MAR-binding sites mimic the natural MARs in 

augmenting the transcription of the IgH gene 

Previous experiments indicated that the nuclear matrix-binding regions 

(MARs) that flank the intragenic µ enhancer augment markedly the expression 

of a rearranged µ gene in pre-B cells derived from transgenic mice (Forrester 

et al., 1994). Furthermore, stable cell lines established with µ gene constructs, 

premethylated at all CpG dinucleotides, revealed that the MARs are 

responsible for the generation of an extended domain of histone acetylation, 

which could account for the long-range function of the µ enhancer in 

combination with MARs. Since the 5' and 3' MAR regions are fairly long 

(approximately 500 bp for the 5' MAR and 300 bp for the 3' MAR regions) and 

contain consensus sites for binding of general transcription factors, we 

decided to examine whether shorter, synthetic multimerized MAR consensus 

sites could mimic the natural MARs in augmenting IgH transcription. To 

answer that question, a construct - pµ∆MAR-SBS7, in which the core 

immunoglobulin enhancer is surrounded by 7 copies of the MAR consensus 

sequences (Dickinson et al., 1992) was generated (Fig. 8A). pµ, pµ∆MAR or 

pµ∆MAR-SBS7 plasmid DNAs were subjected to in vitro CpG methylation with 

SssI DNA methylase (Fig. 8B) and were transfected in J558L cells. Twelve 

stable cell lines for each of the transfections were established and DNA and 

RNA were isolated in parallel (four representative clones are shown). The 

stable integration of the constructs was analyzed by Southern blotting with a 

probe specific for the rearranged VDJ region of the µ gene construct 

(Grosschedl et al., 1984; Fig. 8D). The transcriptional activity was monitored 

by Northern blot analysis. As shown previously, the transcriptional activity of 

the pre-methylated pµ∆MAR construct was dramatically decreased (Fig. 8C, 

middle panel). However, when multimerized MAR-binding sites were 

introduced in place of the natural MARs, IgH transcription was restored (Fig. 

8C, lower panel), suggesting that the AT-rich sequences in the 5' and 3' MAR 

regions are absolutely necessary for their function and  implying  that a MAR- 
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Figure 8. Synthetic multimerized MAR sites mimic the natural MARs in augmenting the 
transcription of the IgH gene. (A) Schematic diagram of the rearranged pµ wild-type, 
pµ∆MAR and pµ∆MAR-SBS7 constructs. The intragenic locus control region (LCR), contains 
the µ enhancer (black bar), flanked by matrix attachment regions (MARs - hatched bars). The 
exons are shown as gray boxes, and the transcription start site of the Vh promoter is 
indicated by an arrow. Relevant restriction sites: (S) Sac I; (E) EcoRV; (H) HpaII/Msp; (N) NotI 
sites, used to introduce the artificial enhancer in the vector pµ∆2, lacking the 1 kb XbaI 
fragment of the intragenic LCR; (X) XbaI sites, flanking the intragenic LCR. (B) Analysis of the 
methylation pattern of the SssI pre-methylated µ genes. The pre-methylated DNA was 
digested to completion with either Msp (M) or HpaII (H) and run on a 1% agarose gel. (C) 
Northern blot analysis of total RNA isolated from stable cell clones in J558L cells, transfected 
with premethylated DNA of pµ, pµ∆MAR and pµ∆MAR-SBS7 genes. Numbers represent 
individual cell clones. For the Northern blot 10 µg of total RNA was used to detect the µ 
transcripts. The equal loading was controlled by the intensity of the ribosomal bands 
visualized under UV light (data not shown). (D) Southern blot analysis. To check whether the 
constructs were integrated stably in the genome, genomic DNA isolated from the established 
cell lines was digested to completion with EcoRV, SacI for pµ, and pµ∆MAR, and with NotI, 
for pµ∆MAR-SBS7. The blots were hybridized with a radiolabeled probe as shown in A. 
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binding protein might be involved in the regulation of IgH transcription in B 

cells. 

 

2. A homologue of the MAR-binding protein SATB1 is expressed in pre-B 

cells 

Our data revealed that multimerized MAR consensus sites mimic the function 

of the natural MARs and suggested that MAR-binding proteins might be 

involved in the regulation of immunoglobulin transcription. Although two 

previously cloned MAR-binding proteins, SATB1 and Bright, were shown to 

interact with the same set of five binding sites in the µ MARs in vitro 

(Dickinson et al., 1992; Herrscher et al., 1995), neither of these proteins are 

expressed in early B cells, in which the enhancer and MARs collaborate to 

augment Vh promoter activity. In particular, SATB1 is predominantly 

expressed in T lymphocytes, whereas Bright is expressed in activated and 

terminally differentiated B cells. Therefore, we began to search for additional 

MAR-binding proteins that are expressed in pre-B cells. 

To identify MAR-binding proteins that are expressed predominantly in early 

stages of the B cell lineage, we searched the murine and human databases 

for sequences that show homologies to known MAR-binding proteins and 

examined their expression in pre-B cells. We identified two clones that 

displayed 71% and 70% overall sequence homology with SATB1 and Bright, 

respectively (Fig. 9 and data not shown). Analysis of the expression patterns 

of these clones revealed a ubiquitous expression for the Bright homologue 

and a predominantly pre-B cell specific pattern for the SATB1 homologue, 

which we termed SATB2 (Fig. 11 and data not shown). 

 
2.1. SATB2 has a high homology and a similar domain organization to 
SATB1 

SATB2 was PCR amplified from a cDNA pool obtained from Abelson murine 

leukemia virus (AMuLV)-transformed pre-B cells. The 2002 bp open reading 

frame (ORF) of the SATB2 cDNA codes for a protein of 733 amino acids. The 

predicted  molecular  weight (Mw)  of the full-length SATB2 protein is 82,5 kD. 
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SATB2  1   MERRSESPCLRDSPDRRSGSPDVKGPPPVKVARLEQNGSPMGAR------GRPNGAV 51 
SATB1  1   MDHLNEATQGKEHSEMSNNVSDPKGPP-AKIARLEQNGSPLGRGRLGSTGGKMQGVP 56 
 
 
SATB2  52  AKAVG---------GLMIPVFCVVEQLDGSLEYDNREEHAEFVLVRKDVLFSQLVET 99 
SATB1  57  LKHSGHLMKTNLRKGTMLPVFCVVEHYENAIEYDCKEEHAEFVLVRKDMLFNQLIEM 113 
 
 
SATB2  100 ALLALGYSHSSAAQAQGIIKLGRWNPLPLSYVTDAPDATVADMLQDVYHVVTLKIQL 156 
SATB1  114 ALLSLGYSHSSAAQAKGLIQVGKWNPVPLSYVTDAPDATVANMLQDVYHVVTLKIQL 170 
 
 
SATB2  157 QSCSKLEDLPAEQWNHATVRNALKELLKEMNQSTLAKECPLSQSMISSIVNSTYYAN 213 
SATB1  171 HSCPKLEDLPPEQWSHTTVRNALKDLLKDMNQSSLAKECPLSQSMISSIVNSTYYAN 227 
 
 
SATB2  214 VSATKCQEFGRWYKKYKKIKVERVERENLSDYCVLGQRPMHLPNMNQLASLGKTNEQ 270 
SATB1  228 VSAAKCQEFGRWYKHFKKTKDMMVEMDSLSELSQQG---ANHVNFGQQPVPGNTAEQ 281 
 
 
SATB2  271 SP-HSQIHHSTPIRNQVPALQPIMSPGLLSPQLSPQLVRQQIAMAHLINQQIAVSRL 326 
SATB1  282 PPSPAQLSHGS--QPSVRTPLPNLHPGLVSTPISPQLVNQQLVMAQLLNQQYAVNRL 336 
 
 
SATB2  327 LAHQHPQAINQQFLNHPPIPRAVKPEP----TNSSVEVSPDIYQQVRDELKRASVSQ 379 
SATB1  337 LAQQ--S-LNQQYLNHPPPVSRSMNKPLEQQVSTNTEVSSEIYQWVRDELKRAGISQ 390 
 
 
SATB2  380 AVFARVAFNRTQGLLSEILRKEEDPRTASQSLLVNLRAMQNFLNLPEVERDRIYQDE 436 
SATB1  391 AVFARVAFNRTQGLLSEILRKEEDPKTASQSLLVNLRAMQNFLQLPEAERDRIYQDE 447 
 
 
SATB2  437 RERSMNPNVSMVSSASSSPSSSRTPQAKTSTPTTDLPIKVDGANVNITAAIYDEIQQ 493 
SATB1  448 RERSLNAASAMGPAPLLSTPPSRPPQVKTATLATERNGKPENNTMNINASIYDEIQQ 504 
 
 
SATB2  494 EMKRAKVSQALFAKVAANKSQGWLCELLRWKENPSPENRTLWENLCTIRRFLNLPQH 550 
SATB1  505 EMKRAKVSQAPFAKVAATKSQGWLCELLRWKEDPSPENRTLWENLSMIRRFLSLPQP 561 
 
 
SATB2  551 ERDVIYEEES--RHHHSERMQHVVQLPPEPVQVLHRQQSQPTKESSPPR---EEAPP 602 
SATB1  562 ERDAIYEQESNAVHHHGDRPPHIIHVPAEQIQQQQQQQQQQQQQQQPPPPPPQPQPQ 618 
 
 
SATB2  603 P------PP--PTEDSCAK-------KPRSRTKISLEALGILQSFIHDVGLYPDQEA 644 
SATB1  619 PQAGPRLPPRQPTVASSAESDEENRQKTRPRTKISVEALGILQSFIQDVGLYPDEEA 675 
 
 
SATB2  645 IHTLSAQLDLPKHTIIKFFQNQRYHVKHHGKLKEHLGSAVDVAEYKDEELLTESEEN 701 
SATB1  676 IQTLSAQLDLPKYTIIKFFQNQRYYLKHHGKLKDNSGLEVDVAEYKDEELLKDLEES 732 
 
 
SATB2  702 DSEEGSEEMYKVEAEEE-NADKSKAAPAETDQR 733 
SATB1  733 VQDKNANTLFSVKLEEELSVEGSTDVNADLKD  764 

 

Figure 9. Alignment of SATB2 and SATB1. Mouse SATB1 and SATB2 were aligned using 
the Clustal algorithm. Identities are shown in blue, similarities in yellow. 
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The alignment of murine SATB1 and SATB2 shows that the two proteins are 

59% identical and 71% similar (Fig. 9). Sequence analysis of SATB2 revealed 

the presence of two CUT domains and a Hox domain, which are highly 

conserved with the corresponding DNA-binding domains of SATB1 (Fig. 10; 

Nakagomi et al.,1994; Dickinson et al., 1997). A unique feature of the protein 

is a 23 amino acid stretch in the N-terminus of the protein, which is not 

homologous to any sequence in SATB1, suggesting that this portion may 

confer some specific properties on the molecule. 

 

SATB2 CUT CUT HOX

86% 82% 85%

733

SATB1 CUT CUT HOX 764PDZ-like

PDZ-like
 

 

Figure 10. Domain organization of SATB2. Schematic linear representation of the domain 
organization of SATB1 and SATB2 (drawn to scale). The two CUT repeats (black boxes) 
represent the MAR-binding domain; HOX (yellow boxes) - homeodomain; PDZ-like 
dimerization domain (red boxes). The numbers indicate the percentage of identity between 
the respective domains. 

 

2.2. Expression pattern of SATB2 

To examine the tissue and cellular distribution of SATB2, RNA from different 

mouse organs and cell lines was isolated and a Northern blot was performed, 

using the full-length cDNA as a probe. The membrane was subsequently re-

hybridized with a probe recognizing the transcript of the house-keeping gene 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a control for 

loading and transfer.  

RNA blot analysis of total RNA from different lymphoid and non-lymphoid cell 

lines indicated that SATB2 transcripts with sizes of ~6.3 and ~5.4 kb can be 

detected most abundantly in cell lines representing pre-B cells or B cells, and 

at lower levels in cells representing T cells  (Fig. 11A). In tissue Northern blot, 

SATB2 transcripts could be detected predominantly in brain and kidney, 
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although differently sized transcripts were detected at a lower abundance in 

thymus and testis (Fig. 11B).   
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Figure 11. SATB2 has a cell type and tissue-specific distribution. Full-length SATB2 
coding sequence was used in Northern blot to probe RNA isolated from various cell lines (A) 
and mouse organs (B). Abundant expression of ~6.3 and ~5.4 kb transcripts that hybridize 
with a 32P-labeled SATB2 DNA probe can be detected in B cells, brain and kidney (A, B; top 
panels). The quality and quantity of RNA was confirmed by hybridization with a GAPDH probe 
(A, B; bottom panels). 

 

2.3. SATB2 is a component of the nuclear matrix 

In order to obtain information about the intracellular localization of SATB2, an 

EGFP-SATB2 construct was generated and transfected in 293T cells, and its 

subcellular distribution was examined by direct immunofluorescence. Upon 
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transfection, EGFP-SATB2 and all other SATB2 constructs (FLAG-SATB2 

and SATB2-myc, tested by indirect immunofluorescence) localized to the 

nucleus (Fig. 12A). 

Previous studies have shown that SATB1 is a component of the nuclear 

matrix (de Belle et al., 1998; Cai et al., 1999).  To examine whether SATB2 

can also associate with the nuclear matrix, we transfected 293T cells with 

plasmids encoding either an EGFP-SATB2 fusion protein or an EGFP-NLS 

control protein. 36 h. post transfection the cells were directly fixed or a nuclear 

matrix preparation was performed. In brief, nuclear matrices were prepared by 

removing the membrane and soluble proteins with detergent treatment, 

followed by DNaseI digestion and high salt extraction of the chromatin fraction 

(Fig. 12B). As shown in Fig. 12C, when cells were directly fixed, both EGFP-

SATB2 and EGFP-NLS were localized in the nucleus; however, following high 

salt extraction SATB2 remained associated with the nuclear matrix, in contrast 

to EGFP-NLS, which was no longer found in the nucleus. 

 

2.4. SATB2 binds to the core-unwinding element of the IgH enhancer 
MARs in vitro 

While no primary consensus has been found for matrix attachment regions, 

except that they are generally AT-rich, MARs typically contain a small region 

of more than 150-200 bp that is highly potentiated for base unpairing, when 

examined under negative superhelical strain (Kohwi-Shigematsu and Kohwi, 

1992). Within the base-unpairing region (BUR), a core-unwinding element 

exists and its mutation abolishes the base unpairing properties within the MAR 

(Kohwi-Shigematsu and Kohwi, 1992). The high unwinding capacity of MARs 

is important for conferring high-affinity binding to the nuclear matrix. With the 

use of a specific sequence containing the core-unwinding element derived 

from the IgH enhancer MARs, SATB1 was cloned and shown to bind 

specifically AT-rich sequences that are highly potentiated to unwind 

(Dickinson et al., 1992). Therefore we decided to test whether SATB2 could 

also specifically associate with the core-unwinding element from the IgH 

enhancer MARs - termed wtMAR. 
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Figure 12. SATB2 is a component of the nuclear matrix. (A) SATB2 localizes in the 
nucleus. EGFP and EGFP-SATB2 were transfected in 293T cells and visualized by the EGFP 
fluorescence. SATB2 showed clear staining in the nucleus in contrast to EGFP, which 
showed diffuse distribution throughout the whole cell. (B) Nuclear matrices were prepared by 
removing the membrane and soluble proteins with detergent, followed by DNaseI digestion 
and high salt extraction of the chromatin fraction. (C) SATB2 is a component of the nuclear 
matrix. 293T cells were transiently transfected with expression vectors encoding EGFP-NLS 
or EGFP-SATB2. 48 h. post transfection the cells were either immediately fixed (upper 
panels) or processed for nuclear matrix preparations before fixation (lower panels) and 
visualized by the EGFP fluorescence.  
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To this end, we examined the DNA binding ability of SATB2 by electrophoretic 

mobility shift assays with purified recombinant SATB2 protein. Efficient 

binding was detected with the wild-type MAR consensus sequence (Dickinson 

et al., 1992), but not with a mutant oligonucleotide (Fig. 13; lane 2 and 12). 

We confirmed the specificity of DNA binding by the addition of excess 

unlabelled competitor DNA, which impaired DNA binding in a dose-dependent 

manner (Fig.13; lane 3-6). In contrast, the binding could not be competed with 

increasing amounts of nonspecific competitor (lane 7-10). Thus, SATB2 

resembles SATB1 in its ability to bind the wt MAR consensus sequence, 

derived from the core unwinding element of the IgH enhancer MARs. 

 

mut
wt

SATB2

Competitor

MAR-wt MAR-mutProbe

SATB2-DNA

Free probe

1 2 3 4 5 6 7 8 9 10 11 12  

 

Figure 13. SATB2 binds to nuclear matrix attachment region (MAR) DNA. Recombinant 
SATB2 was tested for its ability to bind to a 32P- labeled wild-type (wt) or mutated (mut) MAR 
(BUR) consensus sequence by electrophoretic mobility shift assays, as indicated. The binding 
reactions were performed as described in Materials and Methods. SATB2 binding to the wt 
MAR probe (lane 2) could be specifically competed with wt cold competitor (lanes 3-6) but not 
with the cold mutated sequence (lanes 7-10; see Materials and Methods for the sequences of 
the probes). The positions of the SATB2-DNA complex and of the free probe are indicated on 
the left. 
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2.5. SATB2 binds to the MARs of the endogenous µ locus 

Our in vitro data demonstrated that SATB2 binds to the core-unwinding 

element of the IgH enhancer MARs. This raised the question whether the 

same is also true in vivo. To address this issue, we performed chromatin 

immunoprecipitations (ChIP). Due to the lack of antibodies that 

immunoprecipitate SATB2, we generated a pre-B cell line that had been 

stably transfected with a SATB2-TAPtag gene construct. After a two-step 

affinity purification (Rigaut et al., 1999) of SATB2-TAPtag protein that had 

been cross-linked to DNA in vivo, the immunoprecipitated DNA was amplified 

in serial dilutions by polymerase chain reactions with primers specific for the 5' 

MAR region of the intronic µ enhancer (Fig. 14, lanes 1-6), or with primers 

specific for β-globin gene sequences as a control (Fig. 14, lanes 7-12).  

Significant enrichment (approximately 100-fold) of µ 5' MAR sequences was 

detected with immunoprecipitated DNA from the SATB2-TAPtag-expressing 

cell line (lanes 1-6, top panels), but not with the immunoprecipitated DNA from 

the parental pre-B cell line (lanes 1-6, bottom panels).  No enrichment of β-

globin sequences was detected (lanes 7-12, top panels), indicating that 

SATB2 is specifically bound to the MAR flanking the intragenic enhancer of 

the endogenous µ gene. 

 

2.6. SATB2 is a B cell-specific transcriptional activator 

2.6.1. SATB2 mediates transcriptional activation under multimerized MAR 

consensus sites 

Having demonstrated that SATB2 is bound to the µ enhancer in vivo we next 

wanted to address the possible role of this protein. Previous analysis of the 

functional activity of SATB1 in transfection assays and in knockout 

experiments had indicated that SATB1 represses transcription of several 

genes in T cells (Kohwi-Shigematsu et al., 1997; Alvarez et al., 2000).  
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Figure 14. SATB2 binds to the MAR of the endogenous µ locus. Chromatin 
immunoprecipitations (ChIP) of extracts from stably transfected 38B9 cells, carrying a SATB2-
TAPtag expression plasmid, and from control 38B9 cells were performed by affinity-purifying 
chromatin fragments that have been cross-linked to SATB2-TAPtag. The immunoprecipitated 
DNA was subsequently analyzed by semi-quantitative PCR amplification with primers located 
in the 5' MAR region of the immunoglobulin µ enhancer (lanes 1-6) or in the β-globin locus 
(lanes 7-12). The levels of enrichment in the immunoprecipitations were estimated by 
comparison with the amplification products of DNA isolated from the bulk chromatin extracts 
(input DNA). Template DNA was used in a linear dilution (3, 1, 0.3, 0.1, 0.03, 0.01 ng) to allow 
for a semi-quantitative determination in the PCR assays. 

 

To examine the functional activity of SATB2, we transfected a fos-luciferase 

reporter construct containing multimerized wild-type or mutated SATB2-

binding sites, together with a β-galactosidase control plasmid and increasing 

amounts of a SATB2 expression plasmid into J558L plasmacytoma cells (Fig. 

15A). 48 h. post transfection the cells were collected and luciferase and β-

galactosidase assay were performed. The results were presented as a relative 

luciferase number, normalized to the β-galactosidase values. 

Transfection of increasing amounts of SATB2 in 293T cells did not have any 

effect on the transcription of the luciferase reporter construct (Fig. 15B). In 

contrast, when the experiment was performed in J558L plasma cells a 

dramatic transcriptional activation of around 140 fold was observed (Fig. 15B). 

A slight increase was observed for  the construct containing the  multimerized  
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Figure 15. SATB2 mediates transcriptional activation under the multimerized MAR 
consensus sites. (A) Schematic linear representation of the reporter constructs used for the 
experiments in (B). Seven copies of the wt MAR consensus sequence were multimerized and 
cloned in front of a minimal fos promoter, driving the expression of a luciferase gene. (B) 
SATB2 mediates transcriptional activation in B cells via synthetic MAR sites. 293T (top panel) 
or J558L (bottom panel) cells were transfected with 5 µg of a MAR luciferase reporter 
construct containing multimerized wild-type (wt) or mutant (mut) MAR-binding sites together 
with expression constructs encoding for β-galactosidase (1 µg - for normalization) and 
increasing amounts of SATB2 - 3, 10 and 30 µg, as indicated. For this and subsequent 
experiments, the levels of luciferase activity were normalized to the β-galactosidase activity 
and expressed as fold activation relative to the level of luciferase from cells transfected with 
the reporter construct alone. 
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mutated MAR sequences, which correlates with the results from EMSA 

experiments indicating that SATB2 could also bind, albeit with significantly 

lower efficiency, to the mutant MAR sequences, when they are multimerized 

(data not shown). 

 

2.7.2. SATB2 mediates transcriptional activation under the natural MARs of 

the immunoglobulin enhancer 

Next we wanted to examine whether SATB2 could also mediate 

transcriptional activation via the natural MARs of the immunoglobulin 

enhancer. Co-transfection experiments using luciferase reporter constructs, 

carrying either the µ enhancer or the core enhancer, lacking the MAR regions 

(pfosluc-µ∆MAR) in front of the fos promoter (Fig. 16A) and increasing 

amounts of SATB2 in Jurkat and J558L cells were performed. Transfection of 

increasing amounts of SATB2 in Jurkat cells revealed a slight activation of the 

transcription of the luciferase reporter construct (Fig. 16B). In contrast, when 

the experiment was performed in J558L plasma cells a huge transcriptional 

activation of around 450 fold was observed (Fig. 16C), implying that a B cell-

specific co-activator may be involved in SATB2-mediated gene activation. 

 

2.7.3. SATB2 augments immunoglobulin transcription 

Following the demonstration that SATB2 can activate transcription we tested 

in co-transfection experiments whether SATB2 could augment the 

transcription of a rearranged µ gene, where the enhancer is more than 1 kb 

away from the Vh promoter. J558L cells were transfected with the rearranged 

µ genes - pµ and pµ∆MAR (Fig. 17A) and increasing amounts of SATB2. 48 

h. post transfection RNA was isolated and Northern blot was performed, using 

probe annealing specifically to the rearranged VDJ region. The membrane 

was then stripped and re-hybridized with a probe recognizing the transcript of 

 

 



RESULTS                                                  44 

pfosluc-µEnh

pfosluc-µEnh∆MAR

luciferase5´MAR 3´MAR fos

Jurkat

0

1

2

3

4

5

6

0 3 10 30
µg transfected SATB2

fo
ld

 a
ct

iv
at

i o
n

500

fo
ld

 a
ct

iv
at

i o
n

J558L

0

100

400

µg transfected SATB2
0 3 10 30

A

B

C

pfosluc-µEnh

pfosluc-µEnh∆MAR

luciferase5´MAR 3´MAR fos

Jurkat

0

1

2

3

4

5

6

0 3 10 30
µg transfected SATB2

fo
ld

 a
ct

iv
at

i o
n

500

fo
ld

 a
ct

iv
at

i o
n

J558L

0

100

400

µg transfected SATB2
0 3 10 30

A

B

C

 

Figure 16. SATB2 mediates transcriptional activation under the natural MARs of the 
immunoglobulin enhancer. (A) Schematic linear representation of the reporter constructs 
used for the experiments in (B) and (C). The XbaI fragment of the µ enhancer derived from 
pµ and the enhancer fragment lacking both MAR regions from pµ∆MAR (see Fig. 8) were 
cloned in front of a minimal fos promoter, driving the expression of a luciferase gene. (B) and 
(C) SATB2 mediates transcriptional activation in B cells via the natural MARs in the µ 
enhancer. Jurkat (B) or J558L (C) cells were transfected with 5 µg of a MAR luciferase 
reporter construct containing the µ enhancer or the µ enhancer with deleted MAR regions, 
together with 1 µg expression constructs encoding for β-galactosidase and increasing 
amounts of SATB2 - 3, 10 and 30 µg, as indicated. 
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the house-keeping gene glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), as a control for loading and transfer. Indeed, consistent with the 

previous experiments, SATB2 augmented IgH transcription in a dose 

dependent manner, whereas no significant effect was observed with the 

∆MAR µ gene (Fig. 17B). 
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Figure 17. SATB2 augments the transcription of the immunoglobulin gene. (A) 
Schematic diagram of the rearranged µ wild-type and µ∆MAR gene. The position of the probe 
against Vh17.2.25 (“VDJ probe”, see Materials and Methods), used in the Northern blot is 
indicated. (B) SATB2 augments immunoglobulin µ expression. J558L cells were transfected 
with 5 µg of rearranged µ wild-type or µ∆MAR genes and increasing amounts of SATB2 (10, 
30 µg) as indicated. Northern blot using the probe against the VDJ region or against GAPDH 
for loading control, was performed. 
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3. SATB2 is posttranslationally modified 

3.1. SATB2 is SUMO-modified 

In an immunoblot analysis of lysates from cells transfected with a myc-tagged 

SATB2 expression plasmid, we detected SATB2 migrating at ~105 kD and 

two minor bands migrating at ~135-140 kD (Fig. 18A). One possible 

explanation of this observation was that the protein is posttranslationally 

modified. Various posttranslational modifications are known, including 

phosphorylation, acetylation, ubiquitination, methylation and sumoylation. 

Since most posttranslational modification do not lead to significant changes in 

the molecular weight of the protein, the large shift in the slower migrating 

SATB2 forms pointed in the direction of ubiquitination or sumoylation (see 

Introduction – 4.1). 

SUMO is a small ubiquitin-related modifier that is covalently attached to lysine 

residues in target proteins via an isopeptide linkage in a multi-step process 

that is analogous to ubiquitination (Fig. 18B; see also Fig. 6 and Introduction - 

4.2). 
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Figure 18. SATB2 is posttranslationally modified. (A) Immunoblot analysis of total protein 
extracts from 293T cells, transfected transiently with a myc-tagged SATB2 expression 
plasmid or a control vector.  In addition to SATB2, migrating at ~105 kD, two forms of SATB2, 
migrating at ~135 kD and ~140 kD can be detected with an anti-myc antibody. (B) The SUMO 
conjugation pathway. After SUMO is proteolytically processed by C-terminal hydrolases, it 
serves as the substrate for an isopeptide bond formation between the free carboxyl group of 
the C-terminal glycine in SUMO and the ε-amino group of a lysine (K) in the acceptor protein. 
The catalytic reaction is mediated by the E1 activating enzyme: Aos1/Uba2, the E2 
conjugating enzyme Ubc9, and an E3 ligase, which confers the substrate specificity. The 
cleavage of the isopeptide bond is mediated by isopeptidases. 
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Figure 19. SATB2 is modified by SUMO conjugation. Myc epitope-tagged SATB2 and 
FLAG epitope-tagged SUMO1 or SUMO3 were transiently expressed in 293T cells. 24 h. post 
transfection the cells were lysed and equivalent amounts of total cellular protein were 
immunoprecipitated with anti-myc (lanes 1-6, top panel) or anti-FLAG monoclonal antibodies 
(lanes 7-12; top panel). Immunoprecipitated proteins that have been modified with FLAG-
SUMO1 or FLAG-SUMO3 were detected with an anti-FLAG antibody (lanes 1-6); SATB2 and 
SUMO-modified forms of SATB2 were detected with an anti-myc antibody (lanes 7-12; top 
panels). Similar expression of SATB2-myc, as well as of FLAG-SUMO1 and FLAG-SUMO3 
was confirmed by immunoblot analysis of total cell extracts (bottom panels).  

 
To examine whether the two slower-migrating proteins represent covalent 

conjugations of SATB2 with the 12 kD small ubiquitin-like modifier (SUMO), 

we transfected the myc-tagged SATB2 expression plasmid, together with a 

FLAG-SUMO1 or FLAG-SUMO3 expression plasmid, into 293T cells. Co-

immunoprecipitation of proteins with an anti-myc antibody and subsequent 

immunoblot analysis with an anti-FLAG antibody detected the slower 

migrating forms of SATB2 (Fig. 19, lanes 5 and 6). Likewise, we detected 

these slower migrating forms of SATB2 in a reciprocal co-immunoprecipitation  
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Figure 20. The 105 kD isoform of SATB2 is not SUMO-modified. SATB2-myc and FLAG 
epitope-tagged SUMO1 or SUMO3 were transiently expressed in 293T cells. Equivalent 
amounts of total cellular protein were immunoprecipitated with an anti-FLAG antibody (lanes 
1-8, top panels) and the immunoprecipitated proteins that have been modified with FLAG-
SUMO1 or FLAG-SUMO3 were detected with an anti-SUMO1 antibody (lanes 1-4). After 
stripping the blot, SATB2 and the SUMO-modified forms of SATB2 were detected with an 
anti-myc antibody (lanes 5-8, top panels). Similar expression of SATB2-myc and SUMO1-
modified proteins was confirmed by immunoblot analysis of total cell lysates (bottom panels). 

 

and immunoblot analysis with an anti-myc antibody (Fig. 19, lanes 11 and 12). 

In this experiment, we also detected unmodified SATB2, which could reflect a 

dimerization of the transfected myc-tagged SATB2 with the sumoylated 

SATB2. Previous experiments have shown that SATB1 can dimerize through 

a PDZ domain that is located upstream of the CUT domains (Galande et al., 

2001). To confirm that the slower migrating forms of SATB2 correspond to a 

covalent modification with SUMO, we performed a co-immunoprecipitation 

with the anti-FLAG antibody and probed the immunoblot with an anti-SUMO1 

antibody (Fig. 20, lanes 1-4), and, after stripping - with an anti-myc antibody 

(Fig. 20, lanes 5-8). The slower migrating forms of SATB2, but not the 105 kD 
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form of SATB2, could be detected with the anti-SUMO1 antiserum. Taken 

together, these data indicate that SATB2 can be modified by conjugation with 

SUMO1 and SUMO3. 

 

3.1.1. SATB2 is SUMO-conjugated at two SUMO-consensus sites 

Our data showed that SATB2 could be posttranslationally modified by 

exogenously expressed FLAG-SUMO1 and FLAG-SUMO3. SUMO acceptor 

sites have a minimal consensus sequence, ψKXE, in which ψ is a large 

hydrophobic residue and K is the lysine to which SUMO is added (Rodriguez 

et al., 2001). Inspection of the amino acid sequence of SATB2 revealed two 

consensus sites at lysine residues 233 and 350 (Fig. 21A). To determine 

whether the putative SUMO conjugation sites in SATB2 are the actual sites of 

modification, we mutated the lysines at positions 233 and 350, individually 

(K233R and K350R) or together (K233R/K350R). We examined the effects of 

these mutations on the sumoylation of SATB2 by co-transfecting wild-type or 

mutant FLAG-SATB2 expression plasmids together with SUMO1 or SUMO3 

plasmids into 293T cells. Immunoblot analysis of total cell lysates indicated 

that the slower migrating, ~140 kD band corresponds to a sumoylation at 

position K233, whereas the faster migrating band at ~135 kD corresponds to a 

SUMO modification at position K350 (Fig. 21B; lanes 5, 6 and 8, 9). 

Consistent with the modification of SATB2 at both lysines, the ~135 kD and 

~140 kD bands are both missing in the lanes containing cell lysates of the 

double mutant form of SATB2 (lanes 11, 12). Thus, the lysines at positions 

233 and 350 are required for the SUMO-modification of SATB2. 

 

3.1.2. SATB1 is not SUMO-modified 

Sequence alignment revealed that the corresponding sequences in SATB1 do 

not conform to the consensus SUMO modification motif (Fig. 22A). To test 

whether SATB1 is not SUMO-modified in vivo, 293T cells were co-transfected 

with constructs expressing myc-SATB1 or myc-SATB2 (as a positive control) 
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Figure 21. SATB2 is SUMO conjugated at two SUMO consensus sites. (A) Schematic 
linear representation of SATB2. The two CUT motifs, homeodomain (HOX), and putative 
SUMO acceptor sites at positions 233 (IKVE) and 350 (VKPE) of SATB2 that match the 
consensus SUMO acceptor site ΨKXE (Rodriguez et al., 2001) are shown. (B) Identification 
of K233 and K350 of SATB2 as the acceptor sites for sumoylation. Total protein extracts from 
cells transfected with expression plasmids of FLAG-SATB2 (lanes 1-3) or various FLAG-
tagged SATB2 mutants: K233R (lanes 4-6), K350R (lanes 7-9) or the K233R/K350R double 
mutant (dlmut, lanes 10-12), alone or together with SUMO1 or SUMO3 expression plasmids, 
were analyzed by an immunoblot with an anti-FLAG antibody. Mutation of either sumoylation 
site interfered with the appearance of one of the two modified forms of SATB2, whereas the 
double mutation abrogated SUMO modification completely. The differences in the migration of 
the two modified forms of SATB2 are most likely due to the different branching position of the 
sumoylated polypeptides (Hoege et al., 2002). 

 

and FLAG-SUMO-1 or FLAG-SUMO3. Western blot analysis with an anti-myc 

antibody did not detect any additional slower migrating forms for SATB1 (Fig. 

22B, lane 2 and 3), whereas SATB2 was sumoylated with both SUMO1 and 

SUMO3 (Fig. 22B; lane 5 and 6). 
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Figure 22. SATB1 is not conjugated to SUMO. (A) Linear diagrams and sequence 
alignment showing that the SUMO conjugation consensus sequences of SATB2 are missing 
from the homologous regions of SATB1. (B) SATB2, but not SATB1, can be modified with 
SUMO1 and SUMO3. Myc-tagged SATB1 (lanes 1-3) and myc-tagged SATB2 (lanes 4-6) 
were detected in total cell lysates of transfected cells by an anti-myc immunoblot analysis. In 
cells transfected with SATB2-myc and SUMO1 or SUMO3 expression plasmids, SUMO-
modified forms of SATB2, but not of SATB1, can be detected (marked by arrowheads, lanes 5 
and 6).  

 
3.1.3 SATB2 is not proteolytically cleaved by caspase 6 

The transcriptional activity of SATB1 is tightly regulated. One known 

mechanism involves proteolytic cleavage by caspase 6, that separates the 

DNA-binding domain from the dimerization domain, during thymocyte and T- 
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Figure 23. SATB2 is not proteolytically cleaved by caspase 6. Purified recombinant 
SATB1 and SATB2 were incubated with or without recombinant caspase 6 for 1 h. at 37 °C in 
caspase 6 cleavage buffer. The proteins were then resolved on a 10% polyacrylamide gel and 
stained with Commassie. M - molecular weight markers. The experiment was done with the 
assistance of Magdalena Strzelecka. 

 

cell apoptosis. The resulting SATB1 monomers lose their BUR-binding 

activity, despite containing both DNA-binding domains, and rapidly dissociate 

from chromatin in vivo (Galande et al., 2001). Sequence alignment using the 

Clustal algorithm, revealed that the caspase 6 cleavage site is not conserved 

between SATB1 and SATB2, suggesting that SATB2 is not proteolysed by 

this enzyme. To confirm this observation experimentally we performed an in 

vitro cleavage assay, using purified recombinant SATB1-His, SATB2-His and 

caspase 6. Following a 1 h. incubation at 37 °C the proteins were resolved by 

SDS-PAGE and Commassie staining was performed. The results shown in 

Fig. 23 revealed that SATB2 indeed is not proteolytically cleaved in contrast to 

SATB1, which was 100% digested to two fragments of 75 kD and 35 kD. 
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3.2. PIAS1 is the E3 ligase for SATB2 

3.2.1. SATB2 interacts specifically with PIAS1 

PIAS proteins have been shown to act as SUMO E3 ligases that augment the 

sumoylation of proteins and have been proposed to confer the substrate 

specificity upon the E2 conjugating enzyme (Johnson et al., 2001; Sachdev et 

al., 2001; Kotaja et al., 2002; see Introduction – 4.3). To determine whether 

SATB2 can interact specifically with one of the members of the PIAS family of 

SUMO E3 ligases, we transfected FLAG-tagged gene constructs of PIAS1, 

PIAS3, PIASxα, PIASxβ and PIASy into 293T cells, alone or together with a 

myc-tagged SATB2 expression plasmid. Co-immunoprecipitation with an anti- 

FLAG antibody and subsequent immunoblot analysis with an anti-myc 

antibody indicated that PIAS1 was efficiently co-immunoprecipitated (Fig. 24A, 

lane 7). A weak association was also detected with PIASy (Fig. 24C; middle 

panel) but not with the other PIAS proteins. The association between SATB2 

and PIAS1 was also detected by the reciprocal co-immunoprecipitation with 

an anti-myc antibody and immunoblot analysis with an anti-FLAG antibody 

(Fig. 24B, lane 7). Similar levels of expression of the PIAS proteins and 

SATB2 were confirmed by a parallel immunoblot analysis of total cell lysates 

(Fig. 24A and B, lower panels). Thus, SATB2 and PIAS1 can specifically 

interact in cells expressing both proteins. 

 

3.2.2. PIAS1 stimulates SUMO conjugation to SATB2 in vivo 

To examine whether PIAS1 can act as a specific SUMO E3 ligase for SATB2, 

we co-transfected the expression plasmids for wild-type SATB2 or the SATB2-

K233RK350R double mutant (dlmut) together with an expression plasmid for 

each of the five PIAS family members. SUMO-modified forms of SATB2 were 

detected by an anti-myc immunoblot analysis specifically in extracts from cells 

expressing PIAS1 (Fig. 25, lane 2).  As expected, the modified forms of 

SATB2 were not detected in extracts from cells expressing the SATB2 double 

mutant (Fig. 25, lane 8). Similar levels of expression of the FLAG-tagged PIAS 

proteins were confirmed by a parallel immunoblot analysis with an anti-FLAG 

antibody (Fig. 25, lower panel). 
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Figure 24. PIAS1 interacts with SATB2 in vivo. Myc-tagged SATB2 and FLAG-tagged 
forms of PIAS1, PIAS3, PIASxα, PIASxβ  and PIASy  were transiently expressed in 293T 
cells.  Equivalent amounts of total cellular protein were immunoprecipitated with an anti-FLAG 
antibody (A - lanes 1-10, top panel; C - right panel) or an anti-myc antibody (B - lanes 1-10, 
top panel; C - middle panel) and the coimmunoprecipitated PIAS proteins or SATB2 were 
detected by immunoblot analysis with an anti-myc antibody (A - lanes 1-10, top panel; C - 
right panel) or an anti-FLAG antibody (B - lanes 1-10, top panel; C - middle panel), 
respectively. Similar expression of SATB2 and the PIAS proteins was confirmed by 
immunoblot analysis of total cell extracts (A and B - bottom panels; C - left panel). 
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Figure 25. PIAS1 stimulates SUMO conjugation to SATB2 in vivo. Myc-tagged SATB2 or 
the SATB2-K233R/K350R double mutant (dlmut) were expressed alone, or together with 
FLAG-tagged PIAS proteins in 293T cells. SATB2 and SUMO-modified SATB2 were detected 
in total cell lysates by immunoblot analysis with an anti-myc antibody. SUMO-modified SATB2 
can be detected only in cells expressing PIAS1 (lane 2). 

 

3.2.3. PIAS1 is an E3 ligase for SATB2 

The stimulatory effect of PIAS1 on the sumoylation of SATB2 raises the 

question whether PIAS1 is directly involved in this enzymatic process. To 

address this issue, an in vitro reconstituted system, consisting of purified 

proteins, was utilized (Pichler et al., 2002). Incubation of recombinant SATB2 

with SUMO1, the E1 activating enzyme Aos1/Uba2, the E2 conjugating 

enzyme Ubc9, and ATP did not result in significant SUMO conjugation of 

SATB2 (Fig. 26A, lane 2). However, addition of bacterially expressed GST-

PIAS1 led to efficient multiple conjugation of SUMO1 to SATB2, in a dose 

dependent manner (Fig. 26A, lanes 3-5). Taken together these data show that 

PIAS1 is indeed an E3 ligase for SATB2 (Fig. 26B). 
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Figure 26. PIAS1 stimulates SUMO conjugation to SATB2 in vitro. (A) Purified His- and 
T7-tagged SATB2 was subjected to in vitro SUMO1 modification in the presence of GST-
PIAS1: 300 ng purified His- and T7-double-tagged SATB2 protein was incubated for 30 min 
with 250 ng purified E1 enzyme (Aos1/Uba2 heterodimer), 250 ng E2 enzyme (Ubc9) and 1 
µg SUMO1 alone or with increasing amounts GST-PIAS1. SATB2 proteins were detected by 
anti-T7 immunoblot analysis. (B) Schematic representation of the conjugation pathway 
leading to SUMO modification of SATB2. PIAS1 acts as an E3 ligase for the sumoylation of 
SATB2.  

 

3.3. SUMO conjugation antagonizes SATB2-mediated gene activation  

3.3.1. Mutations of the sumoylation sites of SATB2 augment its activation 

potential 

 

SUMO-modification has been found to antagonize the activation potential of 

several transcription factors (Müller et al., 2000; Sachdev et al., 2001; Ross et 

al., 2002; Chun et al., 2003). To examine the effects of sumoylation on the 

transcriptional activation by SATB2, we transfected J558L cells with 

expression plasmids encoding wild-type or mutant forms of FLAG-tagged 

SATB2, together with a fos-luciferase reporter construct containing 

multimerized SATB2-binding sites (Fig. 27A; see also Fig. 16A). Wild-type 

SATB2 augmented reporter gene expression by a factor of up to ten, whereas 

mutations of both sumoylation sites of SATB2 (dlmut) further increased the  
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Figure 27. Sumoylation antagonizes SATB2-mediated transcriptional activation. (A) 
Schematic representation of wild-type SATB2 and mutant SATB2 proteins containing 
mutations in the sumoylation sites, individually (K233R, K350R) or in combination 
(K233R/K350R - dlmut). (B) Mutation of both sites of SATB2 augments transcriptional 
activation. J558L cells were transiently transfected by electroporation with 5 µg MAR-
luciferase reporter construct containing multimerized SATB2-binding sites, alone or together 
with increasing amounts (1, 3 and 10 µg) of expression plasmids encoding wild-type SATB2 
or mutated SATB2 proteins (K233R, K350R or the K233R/K350R double mutant - dlmut). For 
the normalization of luciferase activities, the activity of a co-transfected β-galactosidase 
expression plasmid (1 µg) was determined for each sample. The normalized levels of 
luciferase activity are expressed as fold-activation relative to the level of luciferase activity 
from cells transfected with the reporter construct alone. 
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level of reporter gene expression by a factor of approximately five (Fig. 27B). 

Mutation of the sumoylation site at position 233 alone resulted in a three-fold 

increase of reporter gene expression relative to the stimulation of expression 

by wild-type SATB2. 

 

3.3.2. Covalent attachment of SUMO1 and SUMO3 antagonizes SATB2-

dependent transcription 

 

Our results indicate that SUMO1 modification represses the transcriptional 

activation mediated by SATB2. To examine whether the effects of the 

mutations of the lysines at positions 233 and 350 are due to a lack of SUMO 

modification, rather than a lack of other modifications such as acetylation or 

methylation (which also occur at lysine residues), we generated gene 

constructs in which SUMO1 or SUMO3 are fused to the amino-terminus of 

SATB2-dlmut (Fig. 28A). The C-terminal 5 amino acids of full-length SUMO1 

and SUMO3, including the double glycine motif found at the C-terminus of 

mature SUMO1, were not included in these constructs in order to prevent 

cleavage of the fusion proteins by C-terminal SUMO hydrolases (see Fig. 6 

and Introduction – 4.2). Transfection experiments in J558L cells showed that 

both SUMO1-SATB2-dlmut and SUMO3-SATB2-dlmut activate reporter gene 

expression at levels five-to six-fold lower than those observed with SATB2-

dlmut (Fig. 28B). Immunoblot analysis with an anti-FLAG antibody indicated 

that the various SATB2 proteins are expressed at similar levels (data not 

shown). Taken together, these results indicate that the sumoylation of SATB2 

antagonizes its transcriptional activation potential. 

 

3.3.3. Wild-type and SATB2-dlmut, but not the SUMO-SATB2 fusions, 

augment immunoglobulin Cα gene transcription 

 

To examine the activation potential of wild-type SATB2 and the mutant SATB2 

proteins in a more physiological context, we generated J558L plasmocytoma  
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Figure 28. Covalent attachment of SUMO1 and SUMO3 antagonizes SATB2-dependent 
transcription. (A) Schematic linear representation of SATB2 and N-terminal SUMO1- and 
SUMO3-SATB2 fusions. (B) N-terminal SUMO1- and SUMO3-SATB2 fusions antagonize 
SATB2-mediated transcriptional activation. J558L cells were transfected with 5 µg of a MAR 
luciferase reporter construct together with expression constructs encoding β-galactosidase (1 
µg - for normalization) and increasing amounts of SATB2 double mutant, SUMO1-SATB2-
dlmut or SUMO3-SATB2-dlmut (1, 3, 10 µg), as indicated. 

 

cell lines, stably transfected with FLAG-tagged SATB2 constructs, and 

examined the expression of the endogenous immunoglobulin α heavy chain 

gene (Cα). For this experiment, we chose clones that express the exogenous 

SATB2 proteins at similar, moderate levels (Fig. 29). RNA blot analysis 
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indicated that SATB2 and SATB2-dlmut augmented Cα expression, relative to 

the expression in the parental J558L cells, by a factor of two and three, 

respectively (Fig. 29, lanes 1-3 and lane 8).  In contrast, no activation of Cα 

expression was observed with the covalent SUMO-SATB2-dlmut fusion 

proteins (Fig. 29, lanes 4-7). 
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Figure 29. Wild-type and SATB2-dlmut augment immunoglobulin Cα gene transcription. 
RNA blot analysis of J558L clones, stably transfected with various SATB2 constructs, as 
indicated. 5 µg total RNA was hybridized with probes that detect the endogenous Cα (top 
panel) and GAPDH (middle panel) transcripts, as well as the transfected SATB2 mRNA 
(bottom panel). The intensities of the bands were quantified using the Image Quant 5.1. 
Software on a Storm™ Scanner. 

 

3.4. Mutations of the sumoylation sites of SATB2 augment the 
association with MAR sequences of the endogenous immunoglobulin 
heavy chain locus. 

 

One explanation for the lower activation potential of the sumoylation-

competent SATB2 protein, relative to the SUMO-deficient SATB2-double 

mutant, could be a sumoylation-dependent decrease in the association of 

SATB2 with chromatin. To address this issue and more specifically - the 

binding of the different SATB2 mutants to the immunoglobulin enhancer MAR 

regions, we established stable cell lines expressing FLAG-tagged SATB2 or  
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Figure 30. The SATB2 double mutant has a stronger association with the 
immunoglobulin intronic enhancer MARs. (A) Chromatin immunoprecipitation (ChIP) from 
stable cell lines expressing equal amounts of FLAG-SATB2 (top panel) or SATB2 double 
mutant (bottom panel) using an anti-FLAG antibody was performed. 20% of the 
immunoprecipitated material was used to purify the DNA, which was subsequently analyzed 
by PCR, using primers located in the 5` MAR region of the immunoglobulin µ enhancer (right) 
or in the β-globin locus (left). Template DNA was used in a linear five-fold dilution (starting 
from 5 ng) to allow for a semi-quantitative determination of the immunoprecipitated amount. 
(B) 80% of the immunoprecipitated material was used for an anti-FLAG Western blot analysis 
to detect SATB2 proteins that have been immunoprecipitated under ChIP conditions, to 
control for equal fractionation and recovery of SATB2 and SATB2-dlmut. 

 

SATB2 double mutant and performed chromatin immunoprecipitation from 

clones expressing equal amounts of SATB2, using an anti-FLAG antibody. 

The immunoprecipitated DNA was amplified using specific primers for the 5' 

MAR region of the intronic enhancer and a region of the β-globin locus, as a 

specificity control. The results revealed that the SATB2 double mutant is 

associated with the 5' MAR of the intragenic µ enhancer region at least five 

times more efficiently than the wild-type SATB2 protein (Fig. 30A). This effect 

was not due to a more efficient immunoprecipitation of the SATB2-dlmut 
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relative to the wild-type protein, as confirmed by an anti-FLAG Western blot of 

the immunoprecipitated proteins (Fig. 30B). 

 

3.5. Covalent fusion of SUMO1 and SUMO3 to SATB2 does not affect its 
DNA binding in vitro 

 

Our data revealed that SUMO conjugation, as well as covalent attachment of 

SUMO by gene fusion, antagonize the transcriptional activation mediated by 

SATB2 and this closely correlates with its association with chromatin. The 

next question we wanted to answer was whether SUMO conjugation interferes 

with the DNA binding of SATB2. To address this issue, equal amounts of 

recombinant His-SATB2, His-SUMO1-SATB2-dlmut or His-SUMO3-SATB2-

dlmut were tested for their ability to bind a wild-type MAR consensus probe in 
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Figure 31. Covalent fusion of SUMO to SATB2 does not affect its DNA binding in vitro. 
100 ng of recombinant His-SATB2-dlmut, His-SUMO1-SATB2-dlmut and His-SUMO3-SATB2-
dlmut were tested for their ability to bind to a 32P-labeled wild-type MAR consensus sequence 
by electrophoretic mobility shift assays. The binding reactions were performed as described in 
Materials and Methods and separated on a 6% polyacrylamide gel. 
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electromobility shift assay. The results shown on Fig. 31 revealed no 

significant difference in the DNA binding of the SUMO fusions in comparison 

with SATB2. 

 

3.6. SUMO modification does not inhibit the dimerization of SATB2 

Previous studies have shown that SATB1 associates with chromatin as a 

dimer or multimer and that the PDZ-like domain is responsible for the 

dimerization of the protein. Furthermore, it was shown that during the negative 

selection of T-cells in the thymus SATB1 is proteolytically cleaved by caspase 

6, which results in SATB1 monomers that dissociate from chromatin in vivo. It 

thus became clear that the PDZ-like dimerization domain, together with the 

MAR-binding domain, is absolutely necessary for the chromatin association of 

SATB1. Since the PDZ-like domain is conserved between SATB1 and SATB2, 

we decided to test whether SUMO conjugation might inhibit SATB2 

dimerization and thus downregulate the transcriptional activity of the protein 

by decreasing its DNA binding in vivo. Toward this end, 293T cells were 

transfected with myc- and FLAG-epitope tagged SATB2, SATB2 double 

mutant, SUMO1-SATB2-dlmut and SUMO3-SATB2-dlmut, in different 

combinations, as indicated (Fig. 32). Co-immunoprecipitation was performed 

using an anti-FLAG antibody and subsequently the co-immunoprecipitated 

proteins were detected by an anti-myc Western blot. 

As seen on Fig. 32, the covalent conjugation of SUMO1 or SUMO3 to SATB2 

had no inhibitory effect on the dimerization of the protein (lanes 8, 10). 

Therefore, the inhibition of the SATB2-mediated transcriptional activation by 

the covalent fusion of SUMO does not appear to be dependent on the 

suppression of dimerization. Thus, the SUMO conjugation uses a different 

mechanism to antagonize SATB2 mediated transactivation, which is not 

related to the dimerization of the protein. 
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Figure 32. Covalent fusion of SUMO1 and SUMO3 to SATB2 does not affect the 
dimerization of the protein. Myc epitope-tagged SATB2 or SATB2 double mutant (dlmut) 
were co-expressed alone or together with FLAG epitope-tagged SATB2, SATB2-dlmut, 
SUMO1-SATB2-dlmut or SUMO3-SATB2-dlmut in 293T cells. Equal amounts of each extract 
were used for anti-FLAG immunoprecipitation and the co-immunoprecipitated proteins were 
detected by an anti-myc Western blot. The arrowhead (top panel) indicates the antibody 
heavy chain. 

 

3.7. SUMO-modification alters the subnuclear localization of SATB2 

We determined that SUMO conjugation of SATB2 reduces the binding to 

chromatin in vivo, but this is not due to a loss of the ability to form dimers. 

Another possible mechanism to influence the chromatin association is by 

changing the subnuclear localization of the protein. Indeed, conjugation of 

SUMO to multiple target proteins has been shown to influence their 

subcellular localization (Sachdev et al., 2001; Kirsh et al., 2002; Ross et al., 

2002). We therefore wanted to examine the effects of sumoylation on the 
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subnuclear localization of SATB2 in stable cell lines of J558L cells, expressing 

similar amounts of FLAG-SATB2, FLAG-SATB2 double mutant, FLAG-

SUMO1-SATB2-dlmut or FLAG-SUMO3-SATB2-dlmut. The stable cell lines 

were established to avoid the side effects of overexpression, which can 

influence the subcellular distribution of the protein.  
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Figure 33. SUMO-modification alters the subnuclear localization of SATB2. Stable cell 
lines in J558L cells, expressing equal amounts of FLAG-SATB2, FLAG-SATB2 double mutant 
or SUMO1-SATB2-dlmut and SUMO3-SATB2-dlmut were analyzed by indirect 
immunofluorescence to study the intracellular distribution of the indicated proteins. The 
detection was performed with an anti-FLAG monoclonal antibody. SATB2 localizes to the 
nuclear periphery (A), while the SATB2 double mutant is diffusely distributed throughout the 
nucleus (B). Covalent attachment of SUMO1 relocalizes SATB2 into nuclear bodies 
(speckles) (C). Covalent attachment of SUMO3 relocalizes SATB2 into nuclear bodies, 
distributed mainly in the nuclear periphery (D). The experiment was done with the assistance 
of Julia Dambacher. 

 

Indirect immunofluorescence analysis with an anti-FLAG antibody indicated 

that wild-type SATB2 is localized predominantly in the nuclear periphery (Fig. 

33A), whereas the SATB2 double mutant was localized more diffusely 
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throughout the nucleus (Fig. 33B). Notably, the covalent fusion of SUMO1 

resulted in an accumulation of SATB2 in distinct nuclear speckles (Fig. 33C), 

in contrast to the covalent fusion with SUMO3, which resembled the staining 

of wild-type SATB2 at the nuclear periphery (Fig. 33D). 

 

3.8. SUMO conjugation is stimulated by stress conditions 

Having demonstrated that SUMO conjugation of SATB2 antagonizes SATB2-

mediated transcriptional activation we were further interested to see how this 

process might be regulated. It was previously shown that SUMO conjugation 

of proteins is cell cycle-dependent with a peak of sumoylated species in S-

phase (Chakrabarti et al., 2000). This is most likely due to changes in the level 

of Aos1 and Ubc9 that was reported to increase as cells progress trough S-

phase and to substantially decrease in G2 phase (Azuma et al., 2001). 

Experiments involving a double thymidine or aphidicolin block of cell-cycle 

progression, as well as sorting of cells in S-phase using the elutriation 

method, revealed only a modest increase in the sumoylation of SATB2 during 

S-phase (up to two fold; data not shown). Since the subcellular distribution of 

SATB2 resembles the localization of the SUMO3 covalent fusion and it is 

known that SUMO conjugation can be promoted by stress-inducing stimuli, 

such as acute temperature shift and high osmolarity (Saitoh and Hinchey, 

2000), we decided to induce stress by culturing the cells for 3 hours at 42 °C, 

increasing the salt concentration in the cell culture medium with NaCl at a final 

concentration of 0.5 M, or dehydrating the cells via treatment with 7% ethanol. 

We observed a significant augmentation of SUMO conjugation to SATB2 

when the cells were shifted to 42 °C or cultured in medium with high 

osmolarity. We further examined whether this process was reversible, by 

shifting the heat shocked cells back to 37 °C for 5 hours. We found that 

SATB2 sumoylation was indeed dynamic, since the SUMO-conjugated 

species decreased after reversal of the heat shock (Fig. 34). 
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Figure 34. SUMO modification of SATB2 is augmented by stress-inducing stimuli. (A) 
293T cells were transiently transfected with SATB2-myc. 36 h. post transfection the cells were 
transferred to a 42 °C incubator or subjected to treatment with 0.5 M NaCl or 7% ethanol. (B) 
Cells that had been heat shocked by incubation at 42 °C were transferred back to 37 °C and 5 
hours later harvested in CoIP buffer. Using equal amounts of protein extract from each 
condition in A and B, SATB2 and the SUMO-conjugated SATB2 species were detected by an 
anti-myc Western blot. 
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III. Discussion 
 

The nuclear matrix participates in diverse processes such as DNA replication, 

transcription, recombination, RNA processing and transport, as well as signal 

transduction and apoptotic events. One fundamental issue concerning the 

function of the nuclear matrix is the precise mechanism through which it 

regulates the transcriptional activity of the associated chromatin. This thesis 

was aimed at investigating the mechanism by which matrix attachments 

regions (MARs) and in particular the MARs in the intronic enhancer of the 

immunoglobulin µ heavy chain modulate transcription. 

 

1. Synthetic multimerized MAR-binding sites mimic the natural MARs in 

augmenting transcription of the IgH gene 

 

It was already shown in transgenic mice that the expression of a rearranged µ 

gene is dependent on the presence of both the core µ enhancer and the 

flanking MARs (Forrester et al., 1994). The natural immunoglobulin MARs, 

however, are fairly long sequences and contain binding sites for a number of 

general transcription factors. Thus, it was unclear whether a specific portion of 

the natural MARs is essential for µ gene transcription. By substituting these 

sites with short, multimerized MAR consensus sequences (Dickinson et al., 

1992) we could prove that indeed the AT-rich sequences in the 5' and 3' MAR 

regions are the ones collaborating with the core µ enhancer in augmenting the 

transcription of the IgH gene (Fig. 8). These experiments raised the question 

how the MARs modulate transcription. One basic hypothesis would be that 

this is accomplished through the action of transcription factors, which are 

component of the nuclear matrix and specifically interact with the IgH MAR 

sequences. However, no MAR-binding proteins that are expressed in pre-B 

cells (where the action of MARs is involved in immunoglobulin expression) 
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had been previously discovered. Therefore, our initial efforts were focused on 

the identification of MAR-binding proteins expressed in pre-B cells. 

 

2. SATB2 is a novel MAR-binding protein 

We identified SATB2 as a novel, cell-type specific MAR-binding protein that is 

expressed abundantly in pre-B and B cells, as well as in kidney and brain 

(Fig. 11). Furthermore, SATB2 binds to MAR consensus sequences 

(Dickinson et al., 1992) in vitro and is a component of the nuclear matrix (Fig. 

12 and Fig. 13). Moreover, in pre-B cells, stably transfected with a tagged 

SATB2 gene, the SATB2 protein was shown to bind MAR sequences flanking 

the enhancer of the endogenous immunoglobulin gene (Fig. 14). 

In contrast to SATB2, the other lymphoid specific MAR-binding proteins, 

SATB1 and Bright, which can also interact with multiple sites in the µ MARs in 

vitro, are not expressed in early B cells, where the µ enhancer and MARs 

collaborate to augment the Vh promoter activity. SATB1 is expressed 

predominantly in T lymphocytes and Bright – in activated B cells and late 

stages of the B cell lineage (Dickinson et al., 1992; Herrscher et al., 1995). 

Using the minimal AT-rich MAR consensus sequence, which is sufficient for 

nuclear matrix association (Dickinson et al., 1992), we demonstrated that 

SATB2, like SATB1 and Bright, binds in vitro to these MAR sites. 

Furthermore, we could also show by chromatin immunoprecipitation that 

SATB2 is bound the immunoglobulin µ enhancer in vivo, which has not been 

shown for either SATB1 or Bright. 

 

3. SATB2 augments immunoglobulin gene expression 

The binding of SATB2 to µ MAR sequences in vivo was found to correlate 

with an increase in the expression of a transfected, rearranged wild-type µ 

gene, but not of a µ∆MAR gene, lacking the MAR sequences (Fig. 8 and Fig. 

17). In addition, the expression of SATB2 in stably transfected plasmocytoma 

cells results in a modest but reproducible increase in the expression of the 
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endogenous immunoglobulin gene. Finally, SATB2 was found to augment the 

expression of a reporter gene construct containing multimerized SATB2 

binding sites, indicating that SATB2 acts as a bona fide transcriptional 

activator (Fig. 15). 

 

3.1. Possible mechanisms of SATB2-mediated transcriptional activation 
– comparison with other MAR-binding proteins 

 

In contrast to the stimulation of the transcription of immunoglobulin gene 

constructs by SATB2, the closely related thymocyte-specific MAR-binding 

protein SATB1 has been shown to repress target genes, such as IL-2R. In 

SATB1-knockout thymocytes, which arrest at the CD4+CD8+ stage of 

differentiation, IL-2Rα expression is upregulated and this effect correlates with 

changes in the acetylation pattern in histone H3 over a large chromatin 

domain (Yasui et al., 2002). Consistent with the repressive effect of SATB1, 

this protein has been found to associate with the histone deacetylase (HDAC) 

of the NURD complex and to recruit the chromatin remodeling complexes 

ACF and ISWI in vitro (Yasui et al., 2002). Another histone deacetylase, 

HDAC1, could also be cross-linked to a MAR region in the first intron of the IL-

2R gene in wild-type, but not in SATB1-deficient thymocytes. Recently, 

SATB1 has also been implicated in the positive regulation of genes, based on 

the finding that the c-myc locus, which contains a SATB1-binding region 

upstream of the transcription start site, is not properly up-regulated in PMA-

stimulated thymocytes from SATB1-deficient mice (Cai et al., 2003). 

Furthermore, Cai et al., (2003) identified multiple SATB1-associated genes 

that are actively transcribed in the presence of SATB1 and are downregulated 

after ablation of the protein, supporting the notion that SATB1 can in some 

cases act as an activator. The fact that SATB1 could act both as a 

transcriptional activator and as a repressor raises the question as to how it 

chooses its function with respect to any given gene. One possibility might be 

that at different sites SATB1 could interact specifically with other factors 

(activators or repressors) binding to neighbouring sequences. Another 
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explanation may be that at different sites SATB1 is differently modified which 

leads to the recruitment of distinct transcriptional regulators. 

Another MAR-binding protein, Bright, which is expressed predominantly in 

activated B cells and antibody-secreting plasma cells, has also been shown to 

augment the expression of the immunoglobulin µ gene. Bright, which shares 

no sequence similarity with SATB1 and SATB2, binds to MAR sequences 

through a distinct region, termed the ARID domain (Kortschak et al., 2000; 

Webb, 2001). In addition, the tetramerization of Bright is mediated through a 

REKLES domain (Schandala et al., 2002). Some insights into the potential 

mechanism by which Bright stimulates µ gene expression came from a search 

for interacting partners of Bright, which identified a B-cell specific isoform of 

the speckle protein 100 (LYSp100B) as a co-activator of Bright.  

The main focus of interest of this work was the molecular mechanism by 

which MARs augment the transcription of the immunoglobulin gene. Our 

experiments demonstrated that SATB2 binds the µ enhancer MAR regions in 

vivo and stimulates µ gene transcription. We further established that SATB2 

stimulates transcription in plasma B cells but not in non-lymphoid cells. One 

explanation of that fact could be that in B cells the transcriptional repressor 

Cux/CDP, which also binds the IgH MAR regions, is not expressed (Wang et 

al., 1999), allowing SATB2 to bind and stimulate the transcription of the 

immunoglobulin gene. Another possibility is that SATB2, like Bright, may 

interact with a B cell-specific transcriptional co-activator. In this context it will 

be important to search for interaction partners of SATB2 and such 

experiments are currently under way. Future studies should address the 

question whether SATB2, in analogy to SATB1, can also act as a 

transcriptional repressor at specific sites. 

Overall, the multiple roles of MAR-binding proteins in gene regulation suggest 

that their function depends on the context of their cis-acting DNA elements. 

Although no direct interactions of MAR-binding proteins with transcription 

factors have been identified to date, two lines of evidence suggest that MAR-

binding proteins collaborate functionally with the µ enhancer-binding proteins. 

First, MAR elements that are combined with the µ enhancer generate DNase I 

 



DISCUSSION                                         72 

hypersensitive sites and alter chromatin accessibility, whereas MAR elements 

alone fail to modify the chromatin structure (Jenuwein et al., 1993, 1997). 

Second, the potentiation of the µ enhancer by the MAR-binding protein Bright 

has been shown to depend on the presence of a binding site for the Oct 

transcription factor in the µ enhancer (Webb et al., 1999). In addition, Bright 

transactivates only from a subset of binding sites and acts by competing with 

the repressor Cux/CDP, which recognizes the same nucleotide sequence 

(Kaplan et al., 2001). Thus, it seems likely that the context of the regulatory 

sequences may determine whether MAR-binding proteins act as activators or 

repressors of transcription. 

 

4. Regulation of SATB2 function 

After determining that SATB2 act as transcriptional activator of the 

immunoglobulin gene, our interest shifted towards the mechanisms that 

regulate its function. To date, the regulation of the activity of MAR-binding 

proteins is still fairly obscure. One common mechanism appears to be 

proteolytic cleavage by caspases that leads to functional inactivation of the 

respective protein and its dissociation from chromatin – as shown for SATB1 

(Galande et al., 2001) and SAF-A (SAF-A - Gohring et al., 1997). However, in 

the case of SATB2 such regulation does not appear to be applicable, since 

SATB2, in contrast to SATB1, does not contain a caspase cleavage site and 

is not proteolysed in vitro (Fig. 22 and Fig. 23). Therefore we concentrated on 

other posttranslational modifications, as a possible means for the regulation of 

SATB2 activity. 

 

4.1. SATB2 is SUMO-modified  

In recent years the covalent conjugation of SUMO has emerged as an 

important mechanism for the posttranslational regulation of diverse proteins, 

including numerous transcription factors (see Introduction – 4.5). Our results 

demonstrated that SATB2 is modified by SUMO conjugation at two SUMO 

consensus sites around lysine 233 and lysine 350 (K233 and K350). It is 
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interesting to note that the consensus SUMO site, IK233VE, is located at 

almost the same position where a caspase cleavage site is found in SATB1 

(Fig. 22). The second SUMO consensus site, VK350PE, is positioned 

immediately upstream of the first CUT repeat of the DNA-binding domain; this 

may explain the inhibitory effects of SATB2 sumoylation on its binding to MAR 

regions and on its transcriptional activation ability. The SUMO conjugation 

sites of SATB2 are not conserved in SATB1 and our experiments revealed 

that in vivo SATB1 is not SUMO-modified under conditions that produce a 

significant sumoylation of SATB2. Therefore, this dynamic modification is a 

distinctive feature of SATB2, compared to SATB1, whose activity is known to 

be tightly regulated by irreversible inactivation through proteolytic cleavage in 

apoptotic T cells during negative selection. The caspase 6 cleavage 

separates the DNA-binding domains from the PDZ-like dimerization domain, 

results in a monomeric SATB1 which lacks BUR-binding activity, despite 

containing both its DNA-binding domains, and rapidly dissociates from 

chromatin in vivo (Galande et al., 2001). In comparison, our results indicated 

that the sumoylation of SATB2 does not affect its dimerization, although it also 

reduces its association with chromatin. This further underlines the 

dissimilarities in the regulation of the closely homologous SATB1 and SATB2. 

We demonstrated that the SUMO modification of SATB2 is augmented under 

conditions of cellular stress. In this respect, it is relevant to note that stress 

factors, such us temperature shifts, high osmolarity, or DNA damage, are 

reversible conditions that in most cases do not lead to cell death. A reversible 

inactivation of transcription factors during these periods (e.g. by sumoylation, 

in the case of SATB2) could be one mechanism for adjustment of the stress 

response. It will also be important to examine whether the SUMO modification 

of SATB2 is altered during normal physiological processes, e.g. the selection 

of B cells. 

The dissimilarities between SATB1 and SATB2 are not unique. Similar 

differences in the sumoylation of highly related proteins have been shown for 

the Sp1 family of transcription factors. Sp1, Sp3 and Sp4 have similar 

transactivation domains and recognize the same binding sites, but only Sp3 

can also act as a repressor. The ability of Sp3 to repress transcription is due 
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to SUMO modification at lysine 539 in its inhibitory domain, which is not 

present in Sp1 and Sp4 (Ross et al., 2002). Thus, SUMO modifications of 

specific members of protein families can differentially modulate the 

transcriptional activity of the conjugated protein. 

 

4.2. PIAS1 is the E3 ligase for SATB2 

The final step of the SUMO conjugation pathway is catalyzed by E3 ligases, 

which are specific for the modified substrate (see Introduction – 4.3). Thus, it 

was intriguing to determine which is the E3 ligase mediating SATB2 

sumoylation. Our experiments identified PIAS1 as the SUMO E3 ligase for 

SATB2. Co-expression of SATB2 with PIAS1, but not with other members of 

the PIAS family, led to significant augmentation of the sumoylation of SATB2 

in vivo. We could further demonstrate that PIAS1 is directly involved in this 

enzymatic process, using a reconstituted in vitro system. It is interesting to 

note that in contrast to the other SUMO targets that associate with and are 

sumoylated by several PIAS proteins, SATB2 shows high specificity for 

PIAS1. For example, all PIAS family members stimulate sumoylation of LEF1 

(Rick Sachdev, personal communication), while both PIAS1 and PIASxβ can 

modify p53 (Schmidt and Müller, 2002). In contrast, only PIAS1 showed any 

detectable binding to SATB2 and led to its sumoylation.  

Recently, additional E3 ligases for SUMO conjugation have been identified. 

RanBP2, which has no homology to PIAS proteins and is localized at the 

cytoplasmic side of the nuclear pore, acts as an E3 ligase for RanGAP, p53 

and HDAC4 (Pichler et al., 2002; Kirsh et al., 2002). Sumoylation by this E3 

ligase has been implicated in the regulation of nucleocytoplasmic shuttling of 

proteins. In addition, polycomb group protein-2 (Pc2), a component of Pc 

nuclear bodies, which are involved in the stable repression of genes, has 

been shown to stimulate SUMO modification of the transcriptional co-

repressor CtBP (Kagey et al., 2003). These SUMO E3 ligases have an 

overlapping substrate specificity but differ in their subcellular localization. 

PIAS proteins contain a conserved domain, termed the SAP domain, which 

mediates their association with the nuclear matrix and localization to PML 
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nuclear bodies (Sachdev et al., 2001). Polycomb group protein-2 on the other 

hand, localizes to Pc nuclear bodies that are distinct from PML bodies (Kagey 

et al., 2003). Thus, different E3 ligases may impart a spatial or temporal 

regulation on SUMO modification. Therefore, further experiments will need to 

investigate whether under specific conditions or at specific locations SATB2 

can be SUMO-modified by some of the other E3 ligases mentioned above. 

 

4.3. SUMO modification antagonizes SATB2-mediated transcriptional 
activation 

 

Even though sumoylation is now an established posttranslational modification 

for a large number of proteins, the functional consequences of SUMO 

conjugation in most cases remain unclear. It was therefore important to 

attempt characterizing the effect of SUMO modification on the function of 

SATB2.  

A functional role for the sumoylation of SATB2 was inferred from the analysis 

of a mutant protein (K233R/K350R) that cannot be modified with SUMO. This 

sumoylation-deficient SATB2 protein stimulated expression of a co-

transfected reporter plasmid, carrying multimerized SATB2-binding sites, 

more efficiently than the wild-type SATB2. Although lysines can also be 

modified by ubiquitination, acetylation or methylation, an amino-terminal 

fusion of SUMO to the K233R/K350R double mutant of SATB2 resulted in a 

decrease of the transcriptional activation potential, suggesting that the effects 

of the lysine mutations of SATB2 are most likely due to deficiency in 

sumoylation. Therefore, SUMO modification appears to contribute to the 

regulation of the transcriptional activity of SATB2, as in the case of Sp3 (Ross 

et al., 2002). In this regard, SATB2 differs from LEF1, p53 and STAT1, which 

are also SUMO-modified by PIAS proteins. For these proteins, mutations of 

the sumoylation sites do not alter the transcriptional activity. However, the 

sumoylation activity of PIASy was found to be important for the PIASy-

mediated transcriptional repression and subnuclear targeting of LEF1 to PML 

nuclear bodies (Sachdev et al., 2001). These observations were interpreted to 

suggest that sequestration of LEF1 and p53 to sumoylation centers, such as 
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PML bodies, may be the primary event in the regulation of LEF1 by PIAS 

family members, whereas sumoylation of SATB2 and Sp3 by PIAS proteins 

may alter the activity of these proteins irrespective of the location where they 

function. Thus, SUMO modification may generate different pools of proteins 

that are functionally distinct and/or localized to different subnuclear 

compartments. 

 

4.4. SUMO modification of SATB2 reduces its chromatin association 

In addition to its increased transactivation capacity, the sumoylation-deficient 

SATB2 protein was found to associate more efficiently with the MAR 

sequences of the endogenous immunoglobulin µ locus than the wild-type 

SATB2 protein, suggesting that sumoylation may regulate DNA binding. 

Similar observations have been reported for other transcription factors e.g. the 

heat shock factors HSF1 and 2, although in that case the SUMO modification 

leads to increased association with DNA (Goodson et al., 2001). However, 

using the covalent SUMO–SATB2 fusion proteins we could show that the 

difference in the transactivation potential and chromatin association is unlikely 

to be due to differences in the direct protein-DNA interactions (Fig. 31). A 

decrease in DNA binding has been reported for STAT proteins, which are also 

targets for sumoylation (Liu et al., 1998). In this case sumoylation does not 

appear to affect the DNA binding per se, but rather serves to stabilize the 

interaction between STAT and PIAS proteins, that is responsible for the 

decreased association with DNA (Liu et al., 1998). In fact, some of our 

experiments suggest that an analogous interaction between SATB2 and 

PIAS1 may have the same effect and inhibit the DNA binding of SATB2 (data 

not shown). 

The dimerization domain of SATB1 was shown to be absolutely required for 

SATB1 association to chromatin in vivo (Galande et al., 2001). The 

experiments shown on Fig. 32 used N-terminal SUMO1 and SUMO3 fusions 

to SATB2 and showed no decrease in the dimerization capacity of the protein. 

This most likely indicates that the negative effect of sumoylation on the 
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transactivation potential and chromatin association of SATB2 is exerted by a 

mechanism that is independent of SATB2 dimerization. 

Nevertheless, the possibility exists that SUMO modification thorough an 

isopeptide bond at the SUMO consensus sites (K233 and K350) could affect 

the dimerization, as well as the DNA association of SATB2, in a manner 

different from that shown for the N-terminal SUMO fusion proteins, since this 

conjugation would lead to branching of the polypeptide chain in close 

proximity to the DNA-binding domains and might influence the protein 

conformation. Further experiments involving electromobility shift analysis with 

100% SUMO-modified SATB2 would answer that question.  

 

4.5. Sumoylation alters the subnuclear localization of SATB2 

In a number of instances, SUMO conjugation leads to changes in the 

subcellular localization of the modified proteins. In the case of SATB2, we 

also found a striking correlation between sumoylation of the protein and its 

subnuclear localization. For these experiments, we used stably transfected 

plasmocytoma cells that express SATB2 at moderate levels, to avoid artificial 

targeting of excess proteins to sites of protein storage or degradation. Both 

SATB2 and the SUMO3-SATB2-dlmut fusion protein are localized at the 

nuclear periphery, whereas the sumoylation-deficient SATB2-dlmut protein 

has a more diffuse nuclear localization. Importantly, the SUMO1-SATB2-dlmut 

fusion protein accumulated in prominent nuclear speckles (bodies). As 

SATB2-dlmut and SUMO1-SATB2-dlmut have different localization patterns, it 

seems likely that the subnuclear distribution of SATB2 is influenced by the 

added SUMO peptide. This can probably be explained by associations with 

other proteins that may lead to targeting of SATB2 to specific sites. In 

connection with this, it has to be mentioned that association of the MAR-

binding protein, Bright, to the speckle protein LYSp100 targets Bright to 

distinct subnuclear sites, termed LANDs and leads to augmentation of 

immunoglobulin transcription, whereas the related Sp100 protein, which 

represses Bright-mediated activation by antagonizing tetramerization, targets 

Bright to PML nuclear bodies (Zong et al., 2000).  
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It would obviously be intriguing to see whether the SATB2-dlmut or the 

SUMO1 and SUMO3 covalent fusions have different interaction partners, that 

may account for the different subnuclear localization and such 

immunoprecipitation experiments are currently under way. 

The differences in the subnuclear localization of wild-type SATB2 and the 

SUMO-deficient SATB2 double mutant raise the question of whether the 

sumoylation of this MAR-binding protein may be involved in the changes of 

the localization of genes during transcriptional activation and/or repression. 

The immunoglobulin µ gene has been shown to localize at the nuclear 

periphery in primary T cells that do not express the gene, whereas the µ gene 

is localized away from the nuclear periphery in pre-B cells in which the gene is 

activated (Kosak et al., 2002). In addition, the nuclear localization of genes 

that are silenced by the transcription factor Ikaros is altered in comparison to 

cells in which Ikaros is not present (Cobb et al., 2000). In this case, the 

silenced genes co-localize with heterochromatic chromatin in foci that are 

located near the nuclear periphery. Our experiments indicate that the 

sumoylation of SATB2 downregulates its association with MAR sequences 

and the transcriptional activation of MAR-containing target genes. In addition, 

sumoylation targets SATB2 to the nuclear periphery. However, we consider it 

unlikely that these processes are linked and that SUMO modification of 

SATB2 is involved in localizing silent immunoglobulin genes to the nuclear 

periphery. Instead, we favor the view that other mechanisms, including 

epigenetic modifications of chromatin and/or binding to other proteins, may 

account for the localization of the silent immunoglobulin loci to the nuclear 

periphery. If SATB2 had a similar function as the proposed nuclear scaffold 

role of SATB1 (Cai et al., 2003), SATB2 could be involved in localizing the 

immunoglobulin loci to sites of active transcription. According to this scheme, 

sumoylation of SATB2 could be a mechanism to regulate chromatin tethering 

during the cell cycle, cellular stress or upon receiving extracellular signals that 

alter the balance between sumoylation and desumoylation. 

 

In conclusion, the work presented in this thesis identified SATB2 as a novel 

MAR-binding protein with high homology to the previously described SATB1, 
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but with a number of distinct properties. SATB2 is expressed in early B cells 

and specifically stimulates immunoglobulin transcription upon association with 

the MAR sequences of the µ gene. Furthermore, SATB2, unlike SATB1, is 

SUMO-modified by PIAS1 at two consesus sites, and this decreases the 

transactivation potential of SATB2. In addition to suppressing the activity of 

the protein, sumoylation also leads to the sequestration of SATB2 in distinct 

nuclear structures. 

 

5. Perspectives 

The exact mechanisms, through which SATB2 activates transcription upon 

binding to MAR sites, remain unclear. Therefore it is important to identify 

interacting partners for this protein, which may provide essential clues about 

the transcriptional activation, and possibly other cellular functions, mediated 

by SATB2. In addition, selected candidates can be assayed for their ability to 

act as co-activators for SATB2. It would be interesting to examine whether the 

SATB2 double mutant or the SUMO1 and SUMO3 covalent fusions associate 

with different proteins, which may account for their different subnuclear 

localization and chromatin association. To this end, both the purified SATB2 

protein and the stable cell lines expressing TAPtag-SATB2 or FLAG-tagged 

SATB2 and its derivatives, that we have established, will represent valuable 

tools.  

Further work is needed to elucidate the physiological stimuli that lead to 

SATB2 sumoylation, as well as the spatio-temporal regulation of this process. 

In the same line of work, it will be interesting to analyze in more detail the 

speckled structures, where SUMO-modified SATB2 is targeted, and to 

determine whether it colocalizes there with other nuclear proteins. 
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IV. Materials and methods 
1. Reagents 

1.1. Chemicals 
 
Except where otherwise stated, reagents were from Sigma (Deisenhofen, 

Germany), Roth (Karlsruhe, Germany) or Merck (Darmstadt, Germany). 

1.2. Enzymes 

Enzyme     Company  

 
Klenow fragment    Roche 

Pfu DNA polymerase   Stratagene 

Restriction enzymes   New England Biolabs 

RNase A     Roche 

Superscript II reverse transcriptase Invitrogen 

T4 DNA ligase    New England Biolabs 

T4 DNA polymerase   Roche 

T4 polynucleotide kinase   New England Biolabs 

Taq polymerase    Roche 

Expand High Fidelity PCR system Roche 

   

 
2. General buffers  

BBS (BES-buffered saline), 2×: 50 mM N,N-bis(2-hydroxyethyl)-2-

aminoethanesulfonic acid (BES; Calbiochem), 280 mM NaCl, 1.5 mM 

Na2HPO4, pH 6.95. Filter sterilize through a 0.45-µm nitrocellulose filter 

(Millipore). Store in aliquots at –20 °C. 
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Denhardt solution, 100×: 10 g Ficoll 400, 10 g polyvinylpyrrolidone, 10 g 

bovine serum albumin in 500 ml dH2O. Filter sterilize and store at –20 °C in 

25 ml aliquots. 

 

HeBS (HEPES-buffered saline) solution, 2×: 16.4 g NaCl, 11.9 g HEPES, 

0.21 g Na2HPO4 in 1l dH2O. Titrate to pH 7.05 with 5 N NaOH. 

Filter sterilize through a 0.45-µm nitrocellulose filter (Millipore). Store in 

aliquots at –20 °C. 

 

MOPS buffer: 0.2 M MOPS [3-(N-morpholino)-propanesulfonic acid], pH 7.0, 

0.5 M sodium acetate, 0.01 M EDTA. Store in the dark. 

 

10× PBS (phosphate-buffered saline): 1,37 M NaCl, 27 mM KCl, 43 mM 

Na2HPO4⋅7H2O, 14 mM KH2PO4, pH 7.4. Dilute with dH2O to a 1× working 

solution. 

 

SDS electrophoresis (Tris/glycine) buffer, 5×: 15.1 g Tris base, 72.0 g 

glycine, 5.0 g SDS in 1 liter H2O. 

 

SSC (sodium chloride/sodium citrate), 20×: 3 M NaCl (175 g/liter), 0.3 M 

tri-sodium citrate. Adjust pH to 7.0 with 1M HCl.  

 

TBE (Tris/borate/EDTA) electrophoresis buffer (10×): 890 mM Tris base  

890 mM boric acid, 20 mM EDTA. 

 

1× protease inhibitor mix (PIM): 1.5 mM MgCl2, 10 mM KCl, 5 µg/ml 

Soybean Trypsin/Chymotrypsin inhibitor, 5 µg/ml Antipain, 5 µg/ml Aprotinin; 

5 µg/ml Leupeptin, 0.5 µg/ml Pepstatin A, 5 µg/ml Bestain. 
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Z buffer: 60 mM Na2HPO4.7H2O, 40 mM NaH2PO4.7H2O, 10 mM KCl, 10 mM 

MgSO4.7H2O. 

3. Cloning and related techniques 

3.1. Cloning of SATB2 constructs 

Full-length SATB2 was cloned in pBluescript SK(+/-) by RT-PCR from RNA 

isolated from Abelson transformed pre-B cell line (19-1-4) using the following 

primers: SATB1h-Uf (5' ATGGAGCGGCGGAGCGAGAG 3') and SATB1h-Lf 

(5' TTATCTCTGGTCAATTTCGGCAGGTGC 3'). 

pcDNA3.1-SATB2-myc-His was constructed by two fragment ligation of an 

EcoRI, KpnI SATB2 fragment derived from pBluescript (pBs) SK-SATB1h and 

a KpnI, XbaI digested PCR fragment amplified using the following primers: 5' 

AAGCCATCCACACACTCTCC 3' and 5' GCTCTAGACTCGAGTTGTCTCTG 

GTCAATTTCGGCAGGTGC 3'). 

pET21a-SATB2 was constructed by two fragment ligation of a BamHI, MscI 

digested PCR fragment, amplified using the primers: 5' GCGGATCCATGGAG 

CGGCGGAGCGAGAG 3' and 5' GTGCTCTTCTCGGTTGTCGT 3', and a 

MscI, XhoI fragment derived from pcDNA3.1-SATB2-myc-His. 

pEF-FLAG-SATB2 was cloned by two fragment ligation a BamHI, MscI 

digested PCR fragment, amplified using the primers: 5' GCGGATCCATGGAG 

CGGCGGAGCGAGAG 3' and 5' GTGCTCTTCTCGGTTGTCGT 3', and a 

MscI, XbaI fragment derived from pcDNA3.1-SATB2-myc-His. 

pcDNA3.1-SATB2-TAPtag was cloned by ligation of a SATB2 BamHI 

fragment, derived from pET21a-SATB2, into pcDNA3.1-TAPtag. 

All of the above PCRs were performed with Expand High Fidelity PCR System 

(Roche Molecular Biochemicals, Mannheim, Germany) or with PfuTurbo DNA 

polymerase (Stratagene, La Jolla, CA), using deoxyribonucleosidetri-

phosphate mix (final concentration 250 mM) and reaction buffers, supplied by 

the manufacturers. 
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3.2. Cloning of the luciferase reporter constructs 

pfosluc-µ enhancer and pfosluc-µ enhancer∆MAR were cloned by introducing 

the 1 kb or respectively 450 bp XbaI fragment of the µ enhancer derived from 

pµ or pµ∆MAR plasmids, respectively (Grosschedl et al., 1984), into the XbaI 

site of pfosluc. 

pfosluc-wt(MAR)7 was cloned by ligation of a SacI, XhoI fragment, containing 

the multimerized wild-type MAR consensus sequences - wt(MAR)7, derived 

from pBs-wt(MAR)7 into the SacI, XhoI sites of pfosluc. 

pfosluc-mut(MAR)7 was cloned by ligation of of a SacI, XhoI fragment, 

containing the multimerized mutated MAR consensus sequences - 

mut(MAR)8, derived from pBs-mut(MAR)8, into the SacI, XhoI sites of pfosluc. 

 

3.3. Preparation of competent E. coli 

50 ml LB medium were inoculated with 0.5 ml overnight culture of E. coli 

DH5α or BL21(DE3) and grown to A600 of 0.5. The bacteria were then 

centrifuged in a 50 ml conical tube (Falcon, Becton Dickinson Labware, 

Franklin Lakes, NJ) at 3000 rpm, 5 min., 4 °C, resuspended in 25 ml cold 

sterile 0.1 M CaCl2 and stored on ice for 30 min. After a second spin as 

above, the bacteria were resuspended in 1 ml cold 0.1 M CaCl2 and frozen in 

15% sterile glycerol at –80 °C, in aliquots. 

 

3.4. Transformation and growth of transformed bacteria 

100 µl competent bacterial cells were mixed with 0.1–100 ng of plasmid DNA 

and incubated on ice for 30 min. The cells were then heat shocked by placing 

in a 42 °C water bath for 90 s. 1 ml LB medium was added to the 

transformation mix and the tubes were placed in a 37 °C shaker for 1h. 

Afterwards the cells were spread onto LB agar plates containing the 

respective antibiotic: 100 µg/ml ampicillin, 50 µg/ml kanamycin, or 34 µg/ml 
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chloramphenicol and grown overnight at 37 °C. Single colonies were used to 

inoculate 2 ml LB cultures. These cultures were expanded to 400 ml and 

grown overnight at 37 °C, shaking at 200 rpm. 

 

3.5.“Mini” and “maxi” plasmid preparation 

Maxi preps were done using kits from Qiagen (Chatsworth, CA) according to 

the manufacturer’s instructions. Mini preps were done according to Clewell et 

al., 1970. 

 

3.6. Restriction digests 

Restriction digests were typically done for 2 h. at 37 °C with 2 units restriction 

endonuclease per µg DNA in the appropriate buffer as recommended by the 

manufacturer (New England Biolabs, Beverly, MA). 

 

3.7. Ligation of DNA 

Ligation was done with T4 DNA ligase in buffer supplied by the manufacturer 

(New England Biolabs, Beverly, MA) in a final volume of 10 µl for 1-4 h. at RT. 

 

3.8. Agarose gel electrophoresis 

Agarose (electrophoresis grade, GibcoBRL, Grand Island, NY) was dissolved 

in 0.5× TBE buffer to the desired concentration (1 to 2.5% depending on the 

size of DNA fragments) by boiling in a microwave oven, and after cooling 

down, ethidium bromide was added to a final concentration of 0.5 µg/ml and 

the agarose solution poured in a gel chamber (Peqlab Biotechnologie GmbH, 

Erlangen). The DNA sample was mixed 1:10 with 10× DNA sample buffer 

(30% glycerol, 0.25% Bromphenol Blue, 0.25% Xylene Cyanole in TBE 

buffer). The gels were run in 0.5× TBE buffer and visualized on a UV 

transilluminator. 
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3.9. Point mutant generation 

The point mutants in the SUMO consensus sites of SATB2 were introduced 

following the instructions of the QuikChange Site-Directed Mutagenesis Kit 

(Stratagene, La Jolla, CA) using the pEF-FLAG-SATB2 clone (previously 

verified by sequencing) as a template and PfuTurbo DNA polymerase 

(Stratagene) with the following primers: 

233 K/R: 5' AAGTATAAGAAGATAAGAGTGGAAAGAGTGGAGCGAGAG 3' 

350 K/R: 5' ATTCCCAGAGCAGTTAGGCCAGAGCCAACAAAC 3' 
 

4. Tissues culture and related techniques 

4.1. Cell lines 
 

38B9 (Engler and Storb, 1987) Murine fetal liver-derived Abelson-

transformed pre-B lymphocytes. 

PD36 (Travis et al., 1991) Murine adult bone marrow-derived pre-B 

lymphocytes. 

70Z/3 (Maki et al., 1980) Murine late pre-B lymphocytes derived from 

adult bone marrow. 

BJAB (Menezes et al., 1975) Human Epstein-Barr virus negative B 

lymphoblastoid cell line established from an 

African Burkitt’s lymphoma. 

M12 (Laskov et al., 1981) Murine mature B cell line. 

Sp2 (Hurwitz et al., 1980) Murine myeloid cell line. 

J558L (Gehring et al., 1972) Murine plasmocytoma cell line. 

WEHI231 (Boyd et al., 1981) Murine B cell lymphoblasts. Secrete IgM 

under lipopolysaccharide stimuli. 

WEHI3 (Kersten et al., 1980) Murine myeloid cell line. 

EL4 (Johnson, 1972) Murine T cell lymphoma. 
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BW5147 (Ralph et al., 1973) Murine T cell lymphoma. 

Jurkat (Gillis et al., 1980) Human T lymphoblastoid cell line. 

Heterogeneous in ploidy.. 

293T (Xie et al., 1996) Adenovirus 5-transformed human embryonic 

kidney cell line. 

HeLa (Boshart et al., 1984) Aneuploid, human epithelial cell line 

originating from a cervical carcinoma.  

NIH 3T3 (Jainchill et al., 1969) Fibroblastic cell line from mouse embryo. 

MEL (Orkin et al., 1975) Murine erythroleukemia cell line. 

 

4.2. Culture conditions 

The cell lines, used in this study were grown in the following media: 

1) HeLa - Eagle minimal essential medium (MEM) supplemented with 10% 

heat-inactivated foetal bovine (calf) serum (FBS=FCS, Invitrogen Life 

Technologies) and 100 units/ml penicillin G and 100 µg/ml streptomycin 

sulfate and 2 mM L-glutamine (Invitrogen Life Technologies). 

2) 293T and NIH3T3 - Dulbecco’s modified Eagle medium (DMEM), 

containing 1 g/l glucose and supplemented with 10% FBS, 4 mM L-glutamine, 

100 units/ml penicillin G and 100 µg/ml streptomycin sulfate (Invitrogen Life 

Technologies). 

3) 38B9, PD36, 70Z/3, BJAB, M12, Sp2, J558L, WEHI231, WEHI3, Jurkat, 

EL4, BW5147, MEL  - RPMI 1640 medium, supplemented with 10% heat-

inactivated foetal calf serum (FCS) and 100 U/ml penicillin G, 100 µg/ml 

streptomycin sulfate, 4 mM L-glutamine. 

The adherent cell lines, used in this study were usually grown in 10-cm or 15-

cm tissue culture dishes (Falcon, Becton Dickinson Labware) in a tissue 

culture incubator with 5% CO2 atmosphere at 37 °C. Subculturing of the 
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adherent cells was done by trypsinization with 0.25% trypsin, 0.2% EDTA 

(Invitrogen Life Technologies).  

Suspension cell lines were grown in 25, 75 or 175 cm2 tissue culture flasks. 

Subculturing of suspension cells was done by diluting with fresh medium.  

The freezing of cells was done in 90% FCS and 10% (v/v) dimethyl-sulfoxide 

(DMSO) in a freezing box at -80°C. The frozen aliquots were stored in a liquid 

nitrogen tank or at -80°C.   

Thawing of the cells was done by submerging the frozen vial in a 37 °C water 

bath. The cells were then washed with medium by centrifugation at 1200 rpm 

for 3 min. and resuspended in pre-warmed medium before transferring them 

to culture plates or flasks. 

 
4.3. Calcium phosphate transfection 

The day before transfection, 293T or HeLa cells were seeded in 10 cm tissue 

culture dishes or in 6-well plates (for reporter assays) at 30% confluency. 20 

µg or 4 µg total DNA (the total DNA concentration in each transfection 

experiment was kept constant by adding vector plasmid DNA) was used and 

the reactions were filled to 450 µl or 90 µl with H2O for 10-cm dishes or 6-well 

plates, respectively. 50 µl or 10 µl of 2.5 M CaCl2 were added, the tubes were 

vortexed, and left at room temperature for 20 min. 500 µl of 2× BES or 

2× HBS (depending on the cell type) were added dropwise while gently 

vortexing, and the solution was incubated another 20 min. at room 

temperature. The calcium phosphate-DNA solution was added dropwise onto 

the cell culture plate while swirling. The plates were incubated overnight in a 

3% CO2-humidified incubator at 37 °C to allow for a calcium phosphate-DNA 

complex to gradually form. The cells were then washed three times in PBS, 

and incubated in complete medium in a 5% CO2 humidified incubator at 37 

°C.   
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4.4. Transfection by electroporation 

5×106 cells per transfection were spun down and resuspended in 500 µl pre-

warmed RPMI medium. 35 µg total plasmid DNA (the total DNA concentration 

in each transfection experiment was kept constant by adding vector plasmid 

DNA) was added to the cell suspension and mixed carefully. The sample was 

then transferred to a 4 mm Gene Pulser® cuvette (Bio-Rad Laboratories, 

Hercules, CA) and a pulse of 250 mV and 975 µF was applied. The cell 

suspension was then transferred to a 10 cm tissue culture dish, containing 10 

ml pre-warmed RPMI medium and the cells were incubated for the desired 

period of time (at least 36 h).  

This protocol was applied successfully for the transfecion of Jurkat, EL4, 

J558L, Sp2, BJAB and 38B9 cells. 

 
4.5. Stable cell line establishment 

For stable cell line establishment, J558L or 38B9 cells were electroporated 

with 30 µg linearized DNA, carring neomycin resistance or together with 3 µg 

pSVneo linerized with NotI, for plasmids that did not contain a neomycin 

resistance gene. 24 h. post transfection 100 mg/ml (active concentration) G-

418 (Invitrogen Life Technologies) in 100 mM HEPES (pH 7.4) was added to 

a final concentration of 2 mg/ml. Cell clones were established by diluting to 

densities of 104 cells/ml and seeding of 200 µl aliquots into 96-well plates. 14 

days after plating, G-418-resistant clones were expanded in RPMI medium 

containing 200 µg/ml G-418. 

 
4.6. Nuclear matrix preparation 

Transfected or untransfected cells, were plated on glass coverslips (11 mm, 

Menzel-Gläser) at least 8 h. prior to fixation. The cells were washed with 1× 

PBS and then treated with 0.5% Triton X-100 in CSK buffer (10mM PIPES pH 

7.1, 1 mM EGTA, 3 mM MgCl2, 20 % sucrose) for 5 min. at 4 °C to remove 

the membrane and soluble proteins. Subsequently the slides were treated 
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with extraction buffer (42.5 mM Tris.HCl pH 8.3, 8.5 mM NaCl, 2.6 mM MgCl2, 

1.2 mM phenyl methylsulfonyl flouride (PMSF), 1% Tween 40 and 0.5 % 

deoxycholic acid) for 5 min. at 4 °C to remove the cytoskeletal proteins. After 

extraction the cells were transferred to a humid chamber and treated with 100 

µl digestion buffer (50 mM NaCl, 300 mM sucrose, 10 mM PIPES pH 6.8, 3 

mM MgCl2, 1 mM EGTA, 1.2 mM phenylmethyl sulfonyl flouride, 100 µg/ml 

DNaseI). The slides were incubated at 37 °C for 1 h. and then extracted with 

0.25 M ammonium sulfate in digestion buffer at 4 °C for 5 min. to remove the 

chromatin fraction from the nuclei. The slides were washed once with 1× PBS, 

fixed consecutively in methanol and acetone at –20 °C for 3 min. each, and 

allowed to air dry. 

 

4.7. Immunofluorescence 

Transfected or untransfected cells, were plated on glass coverslips (11 mm, 

Menzel-Gläser) at least 8 h. prior to fixation. The cells were washed 1× with 

PBS and fixed (see below). After washing 3× with PBS, blocking was done 

with 10% foetal bovine serum in PBS by incubating 30 min. on a 50 µl drop. 

The coverslips were then transferred to a 50 µl drop primary antibody diluted 

in PBS and incubated 30-60 min. Following a 3× washing with PBS, the cells 

were incubated 30 min. with the secondary antibody, diluted in PBS. After a 

final wash (3× with PBS followed by dH2O) the coverslips were mounted on a 

precleaned microscope slide (Menzel-Gläser) in MOWIOL 4-88 medium 

(Calbiochem, La Jolla, CA) containing 1 mg/ml p-phenylenediamine (Sigma) 

as an anti-fade reagent. 

For immunofluorescence of suspension cells, the cells were spun down and 

then resuspended in PBS to a final density of 106 cells/ml. 1 cm2 squares 

were made with a hydrophobic pen (Super PAP pen; Electron Microscopy 

Sciences, Fort Washington, PA) on a poly-lysine coated slide (Poly-PrepTM 

slides, Sigma Diagnostics), 100 µl of the cell suspension was added in the 

square and the cells were allowed to attach for 30 min. at 37 °C. The cells 
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were washed once with 1× PBS and the immunofuorescence was performed 

essentially as described above. 

The fixation procedures were as follows: 

“PFA”: Fix with 3% paraformaldehyde (PFA) for 10-30 min., wash 1× with PBS 

and permeabilize with 0.5% Triton X-100 in PBS for 5 min. at RT. 

“P-T”: Fix with 3% paraformaldehyde, 0.1% Triton X-100 in PBS for 10 min. at 

RT. 

“MeOH” - Fix with cold (–20 °C) methanol for 15 min. at –20 °C. 

"MeOH-Acetone" - Fix with cold (–20 °C) methanol for 5 min. followed by 

incubation with –20 °C acetone for 5 min. 

“Acetone” – Fix with cold (–20 °C) acetone at RT for 5 min. 

For the “P-M”, “MeOH”, and “MeOH-Acetone” fixations it is important to 

aspirate all the PBS before adding methanol. 

 

4.8. Microscopy 

Microscopy was done with a fluorescent microscope (Zeiss, Jena, Germany) 

equipped with standard DAPI, FITC (or GFP) and Texas Red (or Cy3) filters. 

Images were acquired with a 63× objective, using a high-performance 

charged-coupled digital (CCD) camera with MetaMorph software (Universal 

Imaging Corporation). 

 

4.9. Reporter assays: luciferase and β-galactosidase assay 

Cells were collected, washed once with 1× PBS and resuspended in 200 µl 1× 

Reporter Lysis Buffer (Promega, Madison, WI). The cell suspension was 

frozen in a dry ice\ethanol bath and thawed at room temperature. The cell 

debris were spun down at 13000 rpm for 5 min. 20 µl of the protein extract 

were used for measurement of the luciferase activity using the Luciferase 

assay system (Promega, Madison, WI), following the manufacturer’s 
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instructions. The measurement was performed with the luminometer LUMAT 

LB9507 (EG&G® BERTHOLD, Wellesley, MA). 

β-galactosidase assays were performed as follows: 20 µl of the protein extract 

were transferred to a 96-well plate and 180 µl β-galactosidase assay mix (10 

ml Z buffer, 10 µl 50 mM CPRG (chlorophenol-red-β-galactopyranoside 

monosodium salt – Roche, Mannheim, Germany), 10 µl β-mercaptoethanol) 

were added to each reaction. 20 µl 1× reporter lysis buffer were used as a 

blank. The measurement of the enzymatic activity was performed using the 

SoftMax program on the Spectra MAX250 ELISA machine (Molecular 

Devices, Sunnyvale, CA) . 

 

5. RNA isolation, purification and analysis 

5.1. Isolation of total and poly-A+ RNA 

5.1.1. Preparation of total RNA 

Cellular or tissue total RNA was prepared either with Trizol reagent (Gibco 

BRL) according to the manufacturer’s instructions or following the single-step 

method for isolation (Acid Guanidine-Phenol Extraction) developed by 

Chomczynski and Sacchi (1987). The cells were washed with PBS, lysed in 4 

ml of GITC solution (4 M Guanidine thiocyanate, 25 mM sodium citrate, 0.5% 

sarcosyl, 0.1 M β-mercaptoethanol). 0.4 ml of 2 M sodium acetate pH 4.0, 4 

ml of water-saturated phenol and 0.8 ml of chloroform-isoamylalcohol mixture 

(49:1) were added, mixed and incubated on ice for 15 min. The samples were 

centrifuged at 6000 rpm for 30 min. at 4 °C, the aqueous phase was removed 

and mixed with the same volume of 2-propanol. RNA was precipitated at –20 

°C for 1 h. and pelleted by centrifugation at 6000 rpm for 20 min. at 4 °C. The 

RNA pellet was dissolved in 0.5 ml of GITC solution, re-precipitated with 2-

propanol, washed with 80% ethanol, air dried and dissolved in 100-500 µl 

DEPC-treated water. RNA concentration was determined on a 

spectrophotometer by measuring the A260 and samples were stored at –80 °C. 
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The quality of isolated RNA was determined by electrophoresis in 1% MOPS 

agarose gel. 

 

5.1.2. Preparation of poly-A+ RNA 

1 g of oligo(dT) cellulose powder (BMB) was added to 2 ml of 0.1 M NaOH 

and poly(A) loading buffer (0.5 M LiCl, 10 mM Tris-HCl pH 7.5, 1 mM EDTA 

pH 8.0, 0.1% (w/v) SDS) and the volume was filled to 10 ml. 1 ml of the slurry 

was added into BioRad plastic columns. The column was rinsed in 10 ml of 

DEPC-H2O and equilibrated two times with 20 ml of poly(A) loading buffer 

until the pH of the flow-through reached neutral point. The RNA samples were 

heated to 70 °C for 10 min. and LiCl was added to 0.5 M final concentration. 

The RNA solution was loaded onto the oligo(dT) column and the column was 

washed with 1 ml of poly(A) loading buffer. The resulting flow-through 

containing mainly ribosomal and transfer RNA was used to test for RNA 

degradation. The column were rinsed with 2 ml of middle wash buffer (0.15 M 

LiCl, 10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 8.0, 0.1% (w/v) SDS). The 

purified poly-A+ RNA was eluted with 2 ml of 2 mM EDTA, pH 8.0, 0.1% (w/v) 

SDS and precipitated in 0.3 M NaAcetate, pH 7.0 and 100% ethanol at -20°C 

for 2 h. After centrifugation and two washes in 70% ethanol, the pellet was 

dried and resuspended in 50 µl of DEPC-H2O. 5 µl of each sample was taken 

out to test for the quality of RNA. The concentration of RNA was determined 

by measurement of the absorbance at 260 nm (A260).  

 

5.2. Northern blot hybridization 

5.2.1. Agarose gel electrophoresis 

A volume corresponding to 10-20 µg of total RNA or 2-10 µg poly-A+ RNA 

were adjusted to a volume of 30 µl with DEPC-H2O and an equal volume of 

2× Rotta loading dye (62.5% formamide, 10% formaldehyde, 1× MOPS) was 

added. The samples were subsequently heated to 65 °C for 10 min. (to 

denature secondary RNA structures) and placed on ice for 5 min. The RNA 
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was loaded on an agarose gel, containing 1% (w/v) agarose in 1× MOPS 

buffer and run at 5 V/cm in 1× MOPS buffer.  The RNA was visualized and the 

gel photographed with a gel documentation system (IS-1000, Alpha Innotech 

Corporation). The locations of the 28S (corresponding to 4718 nt.) and 18S 

(corresponding to 1874 nt.) rRNA molecules were marked on the gel. 

 

5.2.2. Transfer of RNA to nylon membrane 

Two pieces of Whatmann 3MM paper, wetted in 20× SSC, were placed on 

two pieces of dry Whatmann 3MM paper and a stack of paper towels. 

Hybond-N+ nylon membrane was soaked first in dH2O, then in 20× SSC and 

placed on the pre-wetted Whatmann 3MM papers. The gel was placed on the 

membrane and the whole sandwich was covered with Saran-Wrap. A heavy 

glass plate was placed on top of the stack for compression. The RNA was 

transferred to the nylon membrane overnight. 

To immobilize the RNA, the membrane was UV-crosslinked in a 

transilluminator (Spectronics Corporation). 

 

5.2.3. Preparation of probes 

The probes were prepared with the Rediprime II random prime labeling kit 

(Amersham Biosciences). 20 ng of linearized DNA template in 45 µl of TE-

buffer was denatured by boiling for 10 min. at 100 °C. The sample was placed 

immediately on ice for 5 min., collected by centrifugation, and added to the 

Rediprime reaction tube. 5 µl of α-32P-dCTP (3000 Ci/mmol) were added to 

the reaction mix and incubated for 30 min. at 37 °C. The reaction was stopped 

by adding 5 µl of 0.2 M EDTA, pH 8.0. 50 µl of H2O was added to increase the 

volume for more efficient elution. To remove unincorporated nucleotides, the 

probe was loaded on a Quick Spin Column G50 (Roche) and centrifuged at 

1200×g for 3 min. 1 µl of the probe was used for counting the activity in a 

liquid scintillation counter. 
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PROBES: 

Name of the probe Source of the DNA fragment 

full length SATB2 XhoI/XbaI fragment from pBluescript SK-SATB1h 

GAPDH NotI/BamHI fragment from pGAPDH 

VDJ probe PCR fragment, amplified from pµ using primers:  

5' GGGATATCCACACCAAACATC 3' 
5' AGAGGCCATTCTTACCTGAGG 3' 

Cα  PCR fragment, amplified from J558L cDNA using 
primers: 
5' TGCACAGTTACCCATCCTGA 3' 
5' AGACGGTCGATGGTCTTCTG 3' 

 

5.2.4. Hybridization 

The nylon membrane was placed in a hybridization tube with the RNA-side 

facing the center of the tube. Depending on the probe, two different methods 

were used for hybridization:  

1) 20 ml of hybridization mixture (50% formamide, 5× SSC, 50mM Na-

phosphate pH 6.5, 5× Denhardt’s reagent, 0.1% (w/v) SDS, 0.5 mg/ml yeast 

transfer RNA) were added and the membrane was pre-hybridized in a 

hybridization oven for 2 h. at 42 °C. The pre-hybridization solution was 

discarded and fresh 5-10 ml hybridization mix (depending of the hybridization 

tube), containing the respective radioactively labeled probe at a final 

concentration of 1-3×106 cpm/ml, was added. The hybridization was carried 

out at 42 °C overnight. After hybridization the membrane was washed once 

with 2× SSC, 0.1% (w/v) SDS at room temperature for 15 min. Two 

subsequent washes in 0.2× SSC, 0.1% (w/v) SDS for 15 min. at 68 °C were 

performed. The membrane was wrapped in Saran Wrap and exposed to 

autoradiography films AR (Kodak) in a cassette at –80°C. 

2) 20 ml of hybridization mixture (5× SSC, 50 mM Na-phosphate pH 7.0, 1× 

Denhardt’s reagent, 1% (w/v) SDS, 0.1 mg/ml yeast transfer RNA) were 
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added and the membrane was pre-hybridized in a hybridization oven for 2 h. 

at 68 °C. The pre-hybridization solution was discarded and fresh 5-10 ml 

hybridization mix (depending of the hybridization tube) were added, containing 

the respective radioactively labeled probe at a final concentration of 1-3×106 

cpm/ml. The hybridization was carried out at 68 °C overnight. After 

hybridization the membrane was washed once with 5× SSC at 68 °C for 15 

min. Two subsequent washes in 2× SSC, 0.5% (w/v) SDS for 15 min. at 68°C 

were performed. The membrane was wrapped in Saran Wrap and exposed to 

autoradiography films AR (Kodak) in a cassette at –80°C. 

For reprobing, the membrane was stripped by 3 washes with 0.1× SSC, 0.1% 

(w/v) SDS on a rocking plate for 15 min. at 90 °C followed by washing at room 

temperature 0.1× SSC, 0.1% (w/v) SDS for 2 min. 

 

5.3. RT-PCR (Reverse transcription polymerase chain reaction) 

5 µg of cytoplasmic RNA or 1 µg of poly-A+ tissue RNA in 15 µl of DEPC-H2O 

were incubated at 65 °C for 5 min. to denature secondary RNA structures and 

subsequently placed on ice for 5 min.  

The following components were mixed in DEPC-treated Eppendorf tubes: 

Reagent Volume 

RNA 15µl 

5× first strand buffer (Invitrogen) 5 µl 

0.1 M DTT 2 µl 

Oligo dT primer (50 pmol/µl) 1 µl 

dNTPs (10 mM) 1 µl 

Superscript II Reverse 

Transcriptase (Invitrogen, 200 U/µl) 

 

1 µl 

Final volume 25 µl 
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As a negative control, one reaction was mixed without Reverse Transcriptase. 

The reaction was carried out at 42 °C for 1 h. to allow the cDNA synthesis to 

take place. The samples were diluted 1:2 by addition of 50 µl of DEPC-H2O 

and subsequently used for PCR analysis (see 6.3). 

 
6. DNA isolation, purification and analysis 

6.1. Isolation of genomic DNA 

Genomic DNA was isolated according the method developed from Kirby, 

1957. The cells were washed with PBS and resuspended in NET buffer (10 

mM Tris-HCl pH 7.5, 25 mM EDTA, 100 mM NaCl). SDS to a final 

concentration of 1% and proteinase K to 50 µg/ml were added and the cell 

lysate was incubated for 4 h. at 56 °C or overnight at 37 °C. Two phenol-

chloroform extractions were performed and the DNA was then precipitated 

with 2 to 3 volumes absolute ethanol. The precipitated DNA was harvested 

with a pasteur pipette, washed in 70% ethanol, air dried and subsequently 

resuspended in 100-500 µl dH2O (depending on the starting material).  

 

6.2. Southern blot hybridization 

6.2.1. Restriction digestion and agarose gel electrophoresis 

5-10 µg of genomic DNA was subjected to restriction digestion with 10 U per 

µg DNA of the respective restriction endonuclease in the appropriate buffer as 

recommended by the manufacturer (New England Biolabs, Beverly, MA) in a 

final volume of 60 µl. The restriction digest was typically carried out overnight 

at 37 °C. After the incubation, the DNA was mixed with 10× DNA loading dye, 

loaded on a 0.7% agarose gel and run at 2 V/cm in 1× TBE buffer. The DNA 

was visualized and the gel photographed with a gel documentation system 

(IS-1000, Alpha Innotech Corporation). The locations of marker bands relative 

to a ruler were marked. 
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6.2.2. Transfer of the digested DNA to nylon membrane 

After running, the gel was incubated two times for 15 min. in denaturation 

solution (0.5 M NaOH, 1.5 M NaCl), then incubated two times for 15 min. in 

neutralization solution (1 M Tris pH 7.4, 0.5 M NaCl) and subsequently 

equilibrated in 20× SSC.  

To assemble the transfer sandwich, a piece of Whatmann 3MM paper with 

both ends submerged in 20× SSC was placed on a solid support. The gel was 

placed topside facing down on the Whatmann 3MM paper and a piece of 

wetted Hybond-N nitrocellulose membrane (Amersham Biosciences) was 

placed on the gel carefully, avoiding any air bubbles. One piece of wetted and 

five pieces of dry Whatmann 3MM paper, lying on top of the membrane and a 

stack of paper towels, constituted a sponge. A heavy glass plate was placed 

on top of the stack for compression. The transfer was carried overnight. DNA 

transferred on the membrane was immobilized by UV-crosslinking. 

 

6.2.3. Preparation of probes 

The probes were prepared with the Rediprime II random prime labeling kit 

(Amersham Biosciences) essentially as described (5.2.3.). 

 

PROBES: 

Name of the probe Source of the DNA fragment 

VDJ probe PCR fragment, amplified using primers:  

5’ GGGATATCCACACCAAACATC 3’ 
5’ AGAGGCCATTCTTACCTGAGG 3’ 

 

6.2.4. Hybridization 

The hybridization was performed in hybridization tubes. 20 ml of hybridization 

mixture (50% formamide, 2.5× SSC, 10 mM Tris pH7.5, 1× Denhardt’s 

reagent, 1% (w/v) SDS, 0.1 mg/ml sonicated salmon sperm DNA) was added 
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and the membrane was pre-hybridized in a hybridization oven for 2 h. at 42 

°C. The pre-hybridization solution was discarded and fresh 5-10 ml 

hybridization mix (depending of the hybridization tube), containing the 

respective radioactively labeled probe at a final concentration of 1-3×106 

cpm/ml, were added. The hybridization was carried out at 42 °C overnight. 

After hybridization, the mixture was poured off and the membrane was 

washed twice with 2× SSC, 0.1% (w/v) SDS at room temperature for 15 min. 

Two subsequent washes in 0.2× SSC, 0.1% (w/v) SDS for 15 min. at 68 °C 

were performed. The membrane was wrapped in Saran Wrap and exposed to 

autoradiography films AR (Kodak) in a cassette at –80°C. 

 

6.3. PCR (Polymerase chain reaction) 

The standard PCR reaction is assembled by mixing the following components:  

 

Reagent Amount 

DNA 2-200 ng 

10× PCR buffer 5 µl 

25 mM MgCl2 5 µl 

dNTPs (10 mM) 2 µl 

Primers (forward and reverse) 20 pmol 

FIREPol® polymerase (SOLIS BIODYNE) 0,5 µl 

Final volume 50 µl 

 

7. Protein purification and analysis 

7.1. Expression and purification of recombinant proteins 

For His-SATB2, His-SUMO1-SATB2 and His-SUMO3-SATB2 purification, E. 

coli (Rosetta) were transformed with pET21a-SATB2, pET21a-NtermSATB2, 
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pET21a-SUMO1-SATB2-dlmut and pET21a-SUMO3-SATB2-dlmut. A single 

colony was used to inoculate 10 ml LB, containing 50 µg/ml ampicillin and 34 

µg/ml chloramphenicol. 4 ml overnight culture was transferred to 800 ml LB 

with 50 µg/ml ampicillin and incubated at 37 °C until A600=0.6. Protein 

expression was induced by 0.5 mM IPTG (isopropyl-β-D-

thiogalactopyranoside) and carried out at room temperature for 4 h. The 

bacteria were harvested by centrifugation, washed with 1× PBS and frozen at 

–80 °C. After defreezing the pellets were resuspended in 10 ml lysis buffer 

(300 mM NaCl, 5 mM MgCl2, 20 mM sodium phosphate pH7.5, 40 mM 

imidazole, 10% glycerol, 0,1% Triton X-100, 1 mM DTT and protease 

inhibitors mix) and sonicated 3× 30 sec. The bacterial lysate was spun for 15 

min. at 27 000 g (15 000 rpm in a SS-34 rotor (Sorvall, Newton, CT)). The 

soluble fraction was filtered (0.45 µm filter, Millipore, Bedford, MA) and loaded 

on Ni-NTA Agarose (Qiagen). After binding, the Ni-NTA Agarose was washed 

three times with 10 ml lysis buffer. The bound proteins were eluted with 300 

mM imidazole in lysis buffer. Eluted proteins were dialysed against 20 mM 

Tris-HCl pH 8.0, 100 mM KCl, 5 mM MgCl2, 0.2 mM EDTA, 25% glycerol. 

For SUMO1 purification, bacteria lysed in 50 mM Tris-HCl pH 8.0 and 50 mM 

NaCl were precleared with Q Sepharose (Sigma) and purified by gel filtration.  

For purification of catalytically active SUMO E1 enzyme, His-Aos1 and His-

Uba2 were coexpressed in bacteria, lysed in 50 mM Na-phosphate buffer pH 

8.0, 300 mM NaCl, 10 mM imidazole, and purified on ProBond Resin 

(Invitrogen), followed by molecular sieving (Superdex 200) and ion exchange 

chromatography (Mono Q, Pharmacia Biotech).  

For purification of Ubc9, bacteria were lysed in 50 mM Na-phosphate buffer 

(pH 6.5), 50 mM NaCl, incubated with SP-Sepharose beads (Sigma), eluted 

with 50 mM Na-phosphate buffer (pH 6.5), 300 mM NaCl, and sieved through 

a Superdex 200 column. All of the proteins were dialyzed against transport 

buffer (20 mM HEPES pH 7.5, 110 mM K-acetate, 2 mM Mg-acetate, 0.5 mM 

EGTA) before their use in the in vitro sumoylation assays.  

For GST-PIAS1 purification, GST-PIAS1 was expressed in Rosetta and lysed 

in GST-lysis buffer (10 mM Na-phosphate buffer pH 7.2, 150 mM NaCl, 10 
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mM EDTA, 1% Triton X-100, 1 mM DTT, 1 mM phenyl methylsulfonyl fluoride 

(PMSF)) and sonicated 3× 30 sec. The bacterial lysate was spun for 15 min. 

at 27 000 g (15 000 rpm in a SS-34 rotor (Sorvall, Newton, CT)). The soluble 

fraction was filtered (0.45 µm filter, Millipore, Bedford, MA) and loaded on 

Glutathione-Sepharose beads preequlibrated with GST-lysis buffer. After 

binding (typically for 1 hour), the Glutathione-Sepharose was washed three 

times with 10 ml GST-wash buffer (20 mM HEPES pH 7.9, 50 mM NaCl, 1 

mM DTT, 10% glycerol). The bound proteins were eluted with 50 mM 

glutathione in GST-wash buffer. Eluted protein was dialyzed against 20 mM 

Tris-HCl pH 8.0, 100mM KCl, 5 mM MgCl2, 0.2 mM EDTA, 25% glycerol. 

 

7.2. Preparation of total protein extracts 

7.2.1. Cell extracts 

Plates of adherent cells were washed twice with Dulbecco’s phosphate-

buffered saline (PBS), scraped off with a rubber policeman and transferred to 

an Eppendorf tube. Suspension cells were collected by centrifugation, washed 

twice in Dulbecco’s PBS without Ca2+ and Mg2+, and transferred to Eppendorf 

tubes. All subsequent steps were performed on ice. The cells were 

resuspended in an appropriate volume (depending on the cell pellet) of RIPA 

buffer (10 mM Na-phosphate pH 7.2, 150 mM NaCl, 1% (v/v) Triton X-100, 

1% (w/v) Na-deoxycholate, 0.1% (w/v) SDS), supplemented with 1× protease 

inhibitors mix, 1 mM dithiotreitol (DTT), and 1 mM phenylmethylsulfonyl 

fluoride (PMSF), added just before harvesting, or CoIP buffer (50 mM Tris-

HCl, pH 7.9, 15 mM EGTA pH 8.0, 100 mM NaCl, 0.1% (v/v) Triton X-100, 1× 

protease inhibitors mix, 1 mM DTT, 1 mM PMSF). The samples were 

sonicated 3× 30 s. and then centrifuged for 15 min. at 13000 rpm, 4 °C. The 

supernatant, containing the total protein extract, was transferred to a fresh 

Eppendorf tube and the protein concentration was determined by the Bradford 

assay. The total protein extract was stored at –20°C or –80°C. 
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7.2.2. Organ extracts 

Mouse organ extracts for Western blot analysis were prepared by isolating the 

respective organs from anaesthetized mice, snap freezing them in liquid 

nitrogen and thawing by resuspension with a plastic homogenizer on ice in 

cold lysis buffer: 50 mM Tris-HCl 7.5, 1% Triton X-100, 120 mM NaCl, 20 mM 

NaF, 1 mM sodium pyrophosphate, 1 mM sodium vanadate, 10 µg/ml 

pepstatin, leupeptin, aprotinin, antipain and chymostatin, and 250 µg/ml 

Pefabloc SC (Roche). 

 

7.3. Measurement of protein concentration  

Protein concentration was determined using a Coomassie Brilliant Blue G-

250-based protein assay reagent (Biorad; see also Krauspe and Scheer, 

1976). 

 

7.4. Sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-
PAGE) 

 

SDS-PAGE was based on the discontinuous system described by Laemmli 

(1970). 8-15% separating gels (depending of the size of the proteins of 

interest) were cast using a 30% acrylamide/0.8% N,N'-methylene 

bisacrylamide solution (Roth). For electrophoresis, protein samples were 

mixed 1:1 with 2× Laemmli buffer, heat denatured for 10 min. at 95 °C and 

loaded onto the gel. Proteins were separated by applying a current of 40 mA 

until the dye front had reached the end of the gel. Pre-stained or unstained 

marker proteins (Bio-Rad) were run in parallel. Following electrophoresis, 

proteins were stained with Coomassie Brilliant Blue G250, silver staining or 

subjected to Western blotting (see below). 
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7.5. Coomassie staining of polyacrylamide gels 

For Coomassie staining of polyacrylamide gels, the gels were incubated for 

30 minutes on a slowly rocking platform with Staining solution (50% Methanol, 

10% Glacial Acetic acid, 0,25 % Coomassie Brilliant Blue G250). To visualize 

the proteins the gels were incubated overnight in destaining solution (50% 

Methanol, 10% Glacial Acetic acid). For drying the gels were soaked in dH20 

containing 20% gycerol, placed between cellophane film and dried for 2 h. at 

75 °C.  

 

7.6. Silver staining of polyacrylamide gels 

The gels were fixed in 2.5% acetic acid, 2.5% methanol, rinsed 2× with dH2O 

and shaken in dH2O for 2 h. to overnight. Sensitization was with 0.02% 

sodium thiosulphate for 2 min., followed by rinsing 2× 30 sec. with dH2O. The 

gels were then incubated 30 min. in 0.1% AgNO3, rinsed 2× 30 sec with dH2O 

and developed with 0.01% formaldehyde, 2% sodium carbonate. When a 

sufficient degree of staining was reached the developing solution was poured 

out and the process was stopped with several changes of 1% acetic acid. 

 

7.7. Western blotting (immunoblotting) 

Proteins separated by SDS-PAGE were transferred to a nitrocellulose filter 

(membrane) using either wet or semi-dry blot transfer.  

For semi-dry transfer ROTH „SEMI-DRY-BLOT“ apparatus was used applying 

constant current of 0.8 mA per cm2 for 1 hour. For protein transfer, the gel 

was sandwiched between gel-sized Whatmann 3MM papers soaked in 

transfer buffer (20% methanol in 1× Tris/glycine buffer). 

The wet blot was carefully set up under transfer buffer to avoid air pockets. 

The transfer was run in a cold room at 60 V for 2 hours or at 20 V overnight.  

After transfer, nitrocellulose filters were incubated for 1 hour in a Blocking 

solution (PBS containing 5% dried milk and 0.1% Tween-20) in order to 
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reduce the unspecific background. The membrane was sealed in a plastic bag 

and incubated for 1 h. with in appropriate dilution of the primary antibodies, 

directed against the protein of interest.  

 

Primary antibody Dilution Secondary 
antibody 

Dilution 

Mouse monoclonal α-myc (Roche) 1:1000 α-mouse-HRP 1:4000 

Mouse monoclonal α-FLAG M2  

(1 mg/ml, Sigma) 

1:5000 α-mouse-HRP 1:5000 

Mouse monoclonal α-T7 (Novagen) 1:5000 α-mouse-HRP 1:5000 

Mouse monoclonal α-SUMO1 

(Zymed) 

1:1000 α-mouse-HRP 1:500 

 

The membrane was washed 3 times for 10 min. in PBST (0.1% Tween-20 in 

PBS) and incubated for an additional hour with the appropriate secondary 

antibody conjugated to horseradish peroxidase. After 3 washes in PBST, 

antigen-antibody complexes were detected using the enhanced 

chemiluminescence detection system (NEN, Boston, MA or Amersham 

Biosciences), according to the manufacturer’s instructions and exposed on 

Biomax-MR film (Eastman Kodak, Rochester, NY). 

 

8. Analysis of protein-protein and protein-DNA interactions 

8.1. Protein-protein interactions 

8.1.1. Co-immunoprecipitation 

Protein extracts (typically 500 µg) were diluted in Co-IP buffer (50 mM Tris-

HCl, pH 7.9, 15 mM EGTA, pH 8.0, 100 mM NaCl, 0.1% (v/v) Triton X-100) to 

a final volume of 500 µl. To each sample, 1 µg monoclonal antibody (α-myc, 

α-FLAG, α-T7) was added. The samples were then incubated rotating at 4 °C 
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for 2 h. Meanwhile Protein G-Sepharose was washed three times and 

resuspended in Co-IP buffer to a 1:1 slurry. 50 µl of the slurry was added to 

each sample and incubated for another hour while rotating in a cold room. 

The Protein G-Sepharose beads were washed three times in washing buffers 

of different stringency: Co-IP buffer with 100 to 300 mM NaCl and/or 0.1% 

(w/v) SDS and subsequently resuspended in 30 µl of 2× Laemmli sample 

buffer and boiled at 100 °C for 10 min. The samples were immediately cooled 

on ice, centrifuged at 23000 rpm for 2 min. at 4 °C and analyzed by SDS 

PAGE and Western blotting. 

 

8.1.2. TAPtag purification 

The TAPtag purification was done essentially as described by Rigaut et al., 

1999. In brief, cells were spun down and the packed cell volume was 

measured. An equal volume of Buffer A (10 mM Tris-HCl, pH 8.0, 150 mM 

NaCl, 0.1% NP-40, 0.5 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl 

fluoride, 2 mM benzamidine, 1 mM leupeptin, 2 mM pepstatin A, 4 mM 

chymostatin, 2.6 mM aprotinin) was added to the pellet and the cells were 

broken by sonicating 5× 30 sec. The extract was then centrifuged at 20000×g 

for 1 h. 200 µl bead suspension of IgG-Sepharose was transferred into the 

Bio-Rad Poly-Prep columns (Bio-Rad). The beads were washed with 10 ml 

IPP150 (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.1% NP-40). The extract 

was then transferred into the column containing the pre-washed beads and 

rotated for 2 h. at 4 °C. After the incubation, the beads were washed three 

times with 10 ml of IPP150 and once with 10 ml of TEV cleavage buffer 

(IPP150 adjusted to 0.5 mM EDTA and 1 mM DTT). Cleavage was done in 

the same column by adding 1 ml of TEV cleavage buffer and 100 units of TEV 

protease (Invitrogen). The beads were rotated for 2 h. at 16 °C and the eluate 

was recovered by gravity flow. 100 µl of calmodulin beads (Stratagene), 

corresponding to 200 µl of bead suspension, were transferred into a column 

and washed with 10 ml of calmodulin binding buffer (10 mM Tris-HCl, pH 8.0, 

10 mM 2-mercaptoethanol, 150 mM NaCl, 1 mM magnesium acetate, 1 mM 

imidazole, 2 mM CaCl2, 0.1 % NP-40). 3 ml of calmodulin binding buffer and 3 
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µl of 1 M CaCl2 were added to the 1 ml of eluate recovered after TEV 

cleavage. The sample was then transferred to the column containing pre-

washed calmodulin beads and rotated for 1 h. at 4 °C. After the beads were 

washed with 30 ml of calmodulin binding buffer, the bound proteins were 

eluted with 1 ml of calmodulin elution buffer (10 mM Tris-HCl pH 8.0, 10 mM 

2-mercaptoethanol, 150 mM NaCl, 1 mM magnesium acetate, 1 mM 

imidazole, 0.1% NP-40, 2 mM EGTA). Five elution fractions of 200 µl each 

were collected. 

 

8.2. Protein-DNA interactions 

8.2.1. Electromobility shift assay (EMSA) 

The wild-type MAR (5´-TCTTTAATTTCTAATATATTTAGAATTC-3´) or mutant 

MAR (5´-TCTTTAATTTCTACTGCTTTAGAATTC-3´) oligonucleotides were 

radiolabeled with 32P and purified on a 20% native polyacrylamide gel. The 

MAR oligonucleotides have been previously described (Dickinson et al., 

1992). DNA-binding reactions contained 20 mM HEPES (pH 7.9), 100 mM 

KCl, 5 mM MgCl2, 0.1 mM EDTA, 8% glycerol, 1 µg poly dI-dC and 10000 

cpm radiolabeled probe. Electrophoretic mobility shift assays were performed 

for 20 min. at RT and subsequently run on a 6% native polyacrylamide gel in 

0,33× TBE. 

 

8.2.2. Chromatin immunoprecipitation (ChIP) 

Proteins were crosslinked to DNA by adding formaldehyde directly in the 

culture medium to a final concentration of 1% and incubated for 10 min. at 37 

°C. Cells were collected in a Falcon tube, washed once with 1× PBS, then 

with Triton buffer (10 mM Tris-HCl 8.0, 0.25% Triton X-100, 10 mM EDTA, 0.5 

mM EGTA) and finally with NaCl buffer (200 mM NaCl, 1 mM EDTA, 10 mM 

Tris-HCl pH 8.0). After the washes the cells were resuspended in sonication 

buffer (1% SDS, 10 mM EDTA, 50 mM Tris pH 8.0). DNA was sheared by 

sonicating 15× 15 sec. Chromatin extracts were diluted 10-fold in 
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immunoprecipitation (IP) buffer (140 mM NaCl, 1% Triton X-100, 0.1% sodium 

deoxycholate, 1 mM phenylmethylsulfonyl fluoride and protease inhibitors 

mix). Immunoprecipitation using anti-FLAG mAb and Protein G-Sepharose or 

two-step TAP-tag affinity chromatography purification (Rigaut G et al., 1999) 

was performed. The IPs were washed twice with 1 ml of IP buffer, once with 1 

ml of IP buffer containing 500 mM NaCl, once with 0.5 ml wash buffer (10 mM 

Tris pH 8.0, 250 mM LiCl, 1 mM EDTA, 0.25% sodium deoxycholate), and 

twice with 0.5 ml of TE buffer. The chromatin bound to the beads was eluted 

in 300 µl elution buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 1% SDS) by 

heating at 65 °C for 15 min. Bound and input chromatin samples were diluted 

to a final SDS concentration of 0.5%. All samples were incubated overnight at 

65 °C to reverse formaldehyde crosslinking. RNA was digested for 30 min. at 

37 °C with 3 µl of DNase-free RNase A (10 mg/ml), followed by proteinase K 

digestion. After phenol-chloroform extraction, the DNA was ethanol 

precipitated using glycogen (10 mg/ml; Sigma) as a carrier. Precipitated DNA 

was resuspended in 100 µl of TE. Semiquantitative PCRs using five-fold 

dilutions were performed, using primer pairs 5'MAR-CHIP-U (5' 

CCTGCAAAAGTCCAGCTTTC 3') and 5'MAR-CHIP-L (5' AGAGCCTCAC 

TCCCATTCCT 3') for the 5' MAR region in the immunoglobulin intronic 

enhancer, H7uA and H7uB for the β-globin locus (Litt et al., 2001). 

 

9. Sequence analysis  

Protein and DNA sequences were retrieved from the Entrez server 

(http://www.ncbi.nlm.nih.gov/Entrez/) or with the Sequence Retrieval System 

(http://srs.ebi.ac.uk/) and analysed for open reading frames (ORF) and 

restriction sites using the DNA Strider software (Douglas, 1995).  

Sequence homology searches and alignments were done on the BLAST 

server (http://www.ncbi.nlm.nih.gov/BLAST/; Altschul et al., 1997) or with the 

ClustalX programme (Thompson et al., 1997). 

Domain searches and analyses were done using the SMART tool 

(http://smart.embl-heidelberg.de/; Schultz et al., 1998) or the NCBI CD-Search 
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engine (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi; Marchler-Bauer 

et al., 2002). EST sequences were searched on the EST database 

(http://www.ncbi.nlm.nih.gov/dbEST/; Boguski et al., 1993). 
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V. Publications 
 

The work presented in this thesis will be published in the following article: 

 

Gergana Dobreva, Julia Dambacher and Rudolf Grosschedl (2003). “SUMO 
modification of a novel MAR-binding protein, SATB2, modulates 

immunoglobulin µ gene expression”. Genes and Development 2003 (in 

press) 

 

 

 

Previous work has been published in: 

 

Boyanovski B, Russeva M, Dobreva G, Ganev V, Mladenova A, Peicheva V, 

Nikolov K, and Baleva M.: "Protein C Activity in Patients with 
Antiphospholipid Syndrome." Journal of Clinical Rheumatology 2000 

Oct;6:239-243. 

Bodem J*, Dobreva G*, Hoffmann-Rohrer U, Iben S, Zentgraf H, Delius H, 

Vingron M, Grummt I.: "TIF-IA, the factor mediating growth-dependent 
control of ribosomal RNA synthesis, is the mammalian homolog of yeast 
Rrn3p." EMBO Reports 2000 Aug;1(2):171-5. 

* J. Bodem and G. Dobreva contributed equally to this work 
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