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Zusammenfassung

Das Studium der Entstehung und Entwicklung von Galaxien ist eines der interessantesten

Gebiete der Kosmologie. In dieser Arbeit verwenden wir die sogenannte Resimulations-

technik und berechnen ultrahochauflösende Computersimulationen der Strukturentste-

hung im Universum.

Zunächst simulieren wir eine sorgfältig ausgewählte große Region mittlerer Dichte mit

vier verschiedenen Auflösungen und untersuchen die Abhängigkeit der Eigenschaften

der Halos aus dunkler Materie von der Materiedichte in ihrer lokalen Umgebung. Wir

finden eine schwache Abhängigkeit der Spin- und Konzentrationsparameter. Die Form

der Halos, ihre Entstehungszeitpunkte sowie der Zeitpunkt des letzten Verschmelzens

mit einer etwa gleich großen Galaxie sind dagegen umgebungsunabhängig. In einem

weiteren Schritt wenden wir ein semi-analytisches Modell der Galaxienentstehung auf

die Simulationen an. Unsere Modellgalaxien zeigen starke Umgebungsabhängigkeiten.

Im zweiten Teil dieser Arbeit vergleichen wir die beobachtete Struktur und Kinematik

der bekannten Satellitengalaxien der Milchstraße mit den Eigenschaften simulierter Sub-

halos. Es war behauptet worden, diese beobachteten Eigenschaften würden nicht mit den

simulierten übereinstimmen, was das kosmologische ΛCDM Modell in Frage gestellt hat.

Wir berechnen die Entstehung des Halos einer Galaxie von der Größe der Milchstraße

mit bisher unerreichter Auflösung und untersuchen dieses sogenannte “Substruktur-

Problem” erneut. Wir finden, daß die von unserer Simulation vorhergesagten Geschwin-

digkeitsdispersionen beobachteter Sternverteilungen exakt mit den beobachteten Dis-

persionen übereinstimmen. Dies ist ein Triumph für das ΛCDM Modell. Andere For-

men dunkler Materie, die vorgeschlagen wurden, um das Substruktur-Problem zu lösen,

würden die gefundene Übereinstimmung zerstören.

Im dritten Teil dieser Arbeit untersuchen wir, ob die Gammastrahlung, die durch

Selbst-Annihilation entstehen kann, falls die dunkle Materie im Universum aus schwach

wechselwirkenden massiven Teilchen besteht, mit der nächsten Generation von Gam-

mastrahlungsteleskopen beobachtet werden kann. Wir verwenden unsere hochauflösende

Simulation des Galaxienhalos und finden, daß frühere Untersuchungen die Bedeutung

der Gammastrahlung von Subhalos überschätzt haben. Wir schlagen eine neue Beobach-

tungsstrategie vor und zeigen, daß bei derzeit diskutierten Modellen für die Teilchen der

dunklen Materie das galaktische Zentrum mit glast beobachtet werden kann.
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Summary

Galaxy formation is one of the most fascinating topics of modern cosmology. Since

time immemorial, people have desired to understand the origin, motion and evolution of

planets, stars and, more recently, galaxies and the Universe as a whole. Great advances

in astronomy always have had impact on philosophy and redefined the self-understanding

of mankind within the Universe.

The first milestone on the long road of discoveries was undoubtedly the formulation

of the laws of gravity and mechanics in 1687 by Newton. Einstein’s extension of these

laws in the years 1905 and 1913 led to a revolutionised understanding of space and

time. In 1929 Hubble established the expanding Universe which subsequently led to

the postulation of the hot Big Bang by Lemâıtre (1934). Zwicky (1933) found that

most of matter in the Universe is dark. The nature of this matter, interacting only

through gravity and perhaps through the weak interaction, is still a mystery. Finally,

Penzias and Wilson (1965) discovered the cosmic microwave background radiation, not

only confirming the theory of the Big Bang, but also - as was observed later - revealing

the origin of structure in the Universe.

Today, cosmology and especially galaxy formation are fast paced exciting scientific

fields. Surveys like the Sloan Digital Sky Survey will soon provide a catalogue of about

500 million galaxies with an unprecedent wealth of data. Deep observations with 8 or 10

m telescopes or with the Hubble Space telescope allow to observe objects in their very

early evolutionary stages.

In addition to this, the dramatic increase in computer power now allows us to carry out

numerical experiments on galaxies and even on the large scale structure of the Universe.

The latter is possible because of the extraordinary fact that as a result of microwave

background observations the properties of the Universe some 300,000 years after the Big

Bang are well known.

As ordinary matter makes up only about ten percent of the total matter in the Uni-

verse, it can be neglected in simulations in a first approximation. An initial density field

can then be evolved under the sole influence of gravity. The result of such simulations

may be combined with semi-analytic models for the baryonic physics associated with

galaxy formation.
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Summary

Gravity is a long range force, and it turns out that length scales of 100 Mpc or more

have to be included in large scale structure simulations in order to obtain results that

are representative for the Universe as a whole. The sizes of galaxies, however, are three

to four orders of magnitude smaller than this so that numerical resolution has always

been a concern in simulations which try to include galaxy formation.

A clever and powerful trick alleviates this problem. After a low-resolution simulation

has been performed, a small region of interest is selected and the simulation is run again,

this time concentrating most of the computational effort on the small region, allowing

the resolution to be increase dramatically without losing tidal influences from the large

cosmological volume.

This technique - called resimulation - is the driving force behind all the simulations

that were performed for this thesis. After having run about 1500 supercomputer jobs it

is clear that this technique is extremely powerful and allows the faithful simulation of

objects that are far into the regime of non-linear evolution while taking into account the

full cosmological context.

In the first chapter of this work we briefly introduce aspects of the observable Universe

and discuss the relevant theoretical background for this thesis.

In the second chapter we use high-resolution simulations of structure formation to

investigate the influence of the local environment of dark matter haloes on their proper-

ties. We run a series of four re-simulations of a typical, carefully selected representative

region of the Universe so that we can explicitly check for convergence of the numerical

results. In our highest resolution simulation we are able to resolve dark matter haloes

as small as the one of the large Magellanic cloud.

We propose a new method to estimate the density in the environment of a collapsed

object and find weak correlations of the spin parameter and the concentration parameter

with the local halo density. We find no such correlation for the halo shapes, the formation

time and the last major merging event. In a second step we produce catalogues of model

galaxies using a semi-analytic model of galaxy formation. We find correlations between

the bulge-to-disk luminosity and the B-V colour index with the local environment.

In chapter three we compare observations of the internal structure and kinematics of

the eleven known satellites of the Milky Way with simulations of the formation of its

dark halo in a ΛCDM universe. Earlier work by Moore et al. (1999) and Klypin et al.

(1999) claimed the cosmological concordance model of the Universe, the ΛCDM model,

to disagree with observations. The so-called “substructure-problem” is one of the two

major challenges for this model and has attracted much attention. In order to remove the

discrepancy, changes of the cosmological model have been proposed. We reinvestigate

the substructure-problem using our ultra-high resolution simulations. For a galaxy-sized

dark matter halo, our mass resolution is the highest resolution ever achieved. In contrast

12



to the work of Moore et al. (1999) and Klypin et al. (1999), we find excellent agreement.

The observed kinematics are exactly those predicted for stellar populations with the

observed spatial structure orbiting within the most massive “satellite” substructures

in our simulations. Less massive substructures have weaker potential wells than those

hosting the observed satellites. If there is a halo substructure “problem”, it consists in

understanding why halo substructures have been so inefficient in making stars. We find

that suggested modifications of dark matter properties (e.g. self-interacting or warm

dark matter) may well spoil the good agreement found for standard Cold Dark Matter.

If the dark matter in the Universe is made of weakly self-interacting particles, they

may self-annihilate and emit γ-rays. The detection of the γ-ray signal would finally,

after seventy years since its discovery, shed light on the nature of the dark matter. In

chapter four we use our ultra-high resolution numerical simulations to estimate directly

the annihilation flux from the central region of the Milky Way and from dark matter

substructures in its halo. Such estimates remain uncertain because of their strong de-

pendence on the structure of the densest regions of the halo. Our numerical experiments

suggest, however, that less direct calculations have typically overestimated the emission

from the centre of the Milky Way and from its halo’s substructure. We find an overall

enhancement of at most a factor of a few with respect to a smooth halo of standard NFW

structure. For an observation outside the region around the galactic centre where the

diffuse galactic γ-ray background is dominant, Glast can probe a large region of pos-

sible MSSM models. This result is independent of the exact structure of the innermost

region of the Galaxy. Our analysis shows that the flux from the inner galaxy exceeds the

expected contribution from the brightest substructure by a large factor. Nevertheless,

for certain MSSM models substructure halos might be detectable with Glast.
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1. The Standard Model of Galaxy Formation

In this chapter we first give a very short overview of the observable Universe before

we briefly describe the standard model of cosmology and the theory of structure forma-

tion. In section 1.3 we discuss the main processes relevant for galaxy formation in this

framework and finally outline the background that is necessary for understanding the

simulations studied in the following chapters.

1.1 The Universe in a nutshell

Our planet Earth is orbiting together with eight other planets around the Sun. The Earth

has a mass of about 6.0 ×1024 kg, i.e. 3 ×10−6 M¯ (see appendix D for a summary of

the units used in this work) and has formed about 4.7 Gyr ago. The Sun has a mass

of 2.0 ×1030 kg, and is located at 1.5 ×1011 m (i.e. 4.8 ×10−6 pc) from us. Sun and

planets form the solar system which has a diameter of about 1.2 ×1013 m (i.e 3.4 ×10−4

pc). The nearest star to the Sun is Proxima Centauri at 1.3 pc. Probably about two

thirds of the stars are bound in binary systems.

The stars (together with their planets) are themselves grouped in galaxies. The galax-

ies are given classes according to their types (irregular, spiral, lenticular and elliptical

galaxies) and sizes (from dwarf spheroidal to giant elliptical galaxies). The smallest

galaxies contain about 105 stars whereas the largest ones have up to 1013 stars. Most

of the galaxies, however, are made up of about 1010 to 1012 stars and have diameters of

about 10 to 30 kpc.

Galaxies can be split in two major classes: disk and elliptical galaxies. Elliptical

galaxies are smooth, featureless, ellipsoidally shaped and contain mostly old stars. These

stars are moving on random orbits. Disk galaxies contain young stars, much gas and

dust. They often show spiral arm and bar features. The disks are rotating and are

rotationally supported.

The different stellar populations of galaxies give valuable clues on their formation

histories. The current understanding is that the different galaxy types are stages of

their evolution from the collapse of clouds of primordial gas, through matter accretion

and galaxy-galaxy merging. Whereas stellar encounters are extremely rare, mainly due

to their small sizes compared to the mean separation, galaxy collisions are believed to

have happened quite frequently: Elliptical galaxies are believed to have formed through

mergers of disk galaxies of similar mass. The build up of the structures in the Universe

is thought to have happened in a hierarchical manner. Larger structures are formed

through the merging of smaller ones.

Our own galaxy, the Milky Way (MW), is a spiral galaxy. It contains about 2 ×1011

stars which are orbiting in a disk of radius 18 kpc and thickness of 300 pc as well as in

a spheroidal bulge of radius 1.8 kpc. A black hole of mass 2.5 ×106 M¯ is at the very

16



1.1 The Universe in a nutshell

centre. The Sun is orbiting in the outskirts of the disk at about 8 kpc from the centre

with a velocity of about 220 km/s. It completes one full revolution every 0.22 Gyr.

The galaxies themselves are, just like the stars, distributed inhomogeneously. They

come in entities from a few galaxies, called groups, to thousands of galaxies, called galaxy

clusters. Our own galaxy is the second largest galaxy of the Local Group (LG) which

contains about 30 galaxies. The largest LG object is M31 (Andromeda) which is a spiral

galaxy just like the MW. The two galaxies are approaching at about 70 km/s due to

their gravitational attraction. The LG itself is moving with about 620 km/s with respect

to the local restframe (see next section). The closest galaxy cluster to the MW is Virgo

at 60 Mpc containing about 2000 galaxies. In contrast to Virgo, the galaxies in Coma

are concentrated towards the centre. Coma, situated at roughly 90 Mpc from the MW

is about four times more massive.

Galaxy clusters are the largest quasi-equilibrium systems in the Universe. The typical

separation of galaxy clusters is of the order of 50 Mpc. The distribution of the galaxy

clusters, groups and galaxies forms a web-like structure with clusters and filaments

surrounding large underdense regions, called voids (see Figure 2.2).

The different types of galaxies are distributed differently in the Universe. Whereas

spiral galaxies make up nearly eighty per cent of the galaxy population in the low density

regions of the Universe, they contribute with only ten per cent in galaxy clusters (Hubble

& Humason (1931); G.C. McVittie (1962); Dressler (1980)).

The latest measurements suggest that the Universe, since the Big Bang, has an age

of 13.4 Gyr. This can be converted into the radius of the observable part of 13.7 Gpc.

Due to the finite value of the speed of light, observations of distant objects show them

in an early state of their evolution. Although observations are only a snapshot of the

evolution of the Universe, observing distant objects allows to get information about the

structure and galaxy formation processes.

The galaxy distribution is not static, but on average, galaxies are receding faster from

the MW the more distant they are (Hubble (1929)). The frequencies of photons emitted

at earlier times are shifted to lower values, i.e. to the red.

z =
λobs

λlab
− 1 =

νlab

νobs
− 1 (1.1)

The subscripts denote the quantities observed and measured in the laboratory, respec-

tively. This redshift can be explained with the expansion of the Universe (section 1.2.3).

The object with the highest redshift discovered so far is the galaxy HCM 6A in the

Subaru Deep Field at z = 6.58 (Hu et al. 2002).

Using galaxies as measurement units, one finds that the distribution on the sky (2D

and nowadays also 3D) is approximately isotropic and homogeneous on scales larger than

17



1. The Standard Model of Galaxy Formation

about 100 Mpc. A subregion of the Universe must therefore be as large or larger than

this in order to be representative of the Universe as a whole.

Studies of the velocities of galaxies in galaxy clusters or stars in galaxies revealed that

the mass of the stars is by far too small to be the source of the gravitational potential

the galaxies or stars orbit in (Zwicky (1933); Peacock (1993) and references therein).

Only a small fraction, about 1.5 % of the matter in the universe can actually be seen.

The average density of this visible matter is about 10−31g/cm3.

1.2 Large scale structure

The ultimate task of cosmology is to find a theory describing the observations just

presented. Although the final theory is not in reach today, enormous progress has been

made in the recent years and it is possible to claim that a “standard model of structure

and galaxy formation” has emerged. In this section we give the background of structure

formation relevant for our work. The processes relevant for galaxy formation are treated

in the next section.

1.2.1 The standard model of cosmology

The standard model is based on four pillars. The first one is the theory of the hot

Big Bang. Georges Lemâıtre was the first to realize that following the expansion of

the Universe back in time, the initial state must have been of very high density and

temperature. After the Planck time (i.e., t > 10−43 s) the Universe started to expand

and the temperature dropped. For the time before the Planck time a theory of quantum

gravity is required. Finding such a theory is to date one of the major activities in

modern physics. As the definite theory has yet to be found, the description of the initial

state of the Universe is not possible. The current understanding is that the Universe

underwent several phase transitions that led to the appearance of the physical forces.

Between about 10−11 seconds and 100 seconds after the Big Bang the temperature was

low enough so that particles (electrons, quarks, protons, neutrons, Weakly Interacting

Massive Particles (WIMPS), baryons etc.) froze out: When the reaction time scales

become longer than the expansion time scale the creation and destruction reactions of

a particle species are not in equilibrium any more. For stable particles the abundance

becomes constant. Around t = 10000 yr, most of the energy density was not in radiation

any more; the Universe became matter dominated and the primordial composition of

particles was fixed (see also next section).

At t = 300, 000 yr, free electrons could be captured by protons and α-particles trans-

forming the ionised plasma into neutral atoms. The mean free path of the thermalized
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1.2 Large scale structure

photons, previously constantly scattered in the plasma, increased dramatically. The

radiation, the famous microwave background, has a temperature of 2.728 ± 0.004 K

today (Spergel et al. 2003). It has a perfect black body radiation spectrum. Although

discovered only in 1965 (Penzias & Wilson 1965), the microwave background had been

predicted already earlier (Gamov 1946; Alpher, Bethe & Gamov 1948).

After subtraction of the dipole anisotropy due to the motion of the Earth with respect

to the local rest-frame (371 ± 1 km/s), the background radiation is isotropic to better

than 10−4 on scales larger than about 12 arcminutes! Although previous observations

already showed isotropy on large scales, the confirmation from the microwave background

is highly impressive. With the reasonable assumption that the Universe is isotropic also

seen from a different position, the second pillar of the standard model, the assumption

of the homogeneous and isotropic Universe (on large scales) can be confirmed. We will

briefly discuss the consequences of the tiny deviations from the isotropy below.

The third pillar of the standard model of cosmology is the assumption that the theory

of general relativity describes gravitation and space time geometry correctly. For the

homogeneous, isotropic Universe, Einstein’s equations can be written in a rather simple

form. So far, the theory has passed all tests (van Straten et al. (2001) and references

therein). Although improbable, the possibility remains that the law of gravity is not

newtonian for very small accelerations (Milgrom 1983; Sanders & McGaugh 2002).

The theory of the nucleosynthesis during the evolution of the early Universe is very

mature today. The predictions of the abundances of the light elements (H,2D, 3He, 4He

and 7Li) are consistent with the observed abundances over 10 orders of magnitude. This

theory can be considered the fourth pillar of the cosmological standard model. The best

fit value for the abundance of baryons in the Universe is in very good agreement with

the latest determinations from the cosmic microwave background (CMB) Ωb = ρm/ρc =

0.047 ± 0.006. Where the critical density ρc

ρc =
3H2

0

8πG
(1.2)

is the density required for a closed Universe (section 1.2.3). This is a very strong ar-

gument, as the two observations are independent. The theory of the Big Bang nucle-

osynthesis (BBN) is so predictive because for each of the light elements the prediction

can be compared to the observations independently. The free parameters of the model,

however have to be the same for all of them.

1.2.2 Dark matter

As mentioned in section 1.1, most of the matter in the Universe does not emit radiation

and manifests itself only via gravity and perhaps weak interaction. This was first estab-
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1. The Standard Model of Galaxy Formation

Figure 1.1: Contributions of the different forms of matter to the total matter

density. The values are given for the current concordance ΛCDM model. The

luminous matter makes up only 0.4% of the total matter density. On all scales

there are unknown matter or energy components. The left Ω-labels indicate the

probable cosmological objects that provide the missing matter densities.

lished by Fritz Zwicky 1933, on the scale of galaxy clusters. Today there is evidence for

Dark Matter on all mass scales from galaxy clusters to dwarf galaxies (see also chapters

3 and 4).

The total amount of visible matter is about Ωvis ≈ 0.004. Together with the mea-

surement from BBN this means that about 90 % of the baryons are actually “dark”.

Observations of the Lyman-α-forest suggest that these baryons form molecular gas of

low column-density.

The determination of the total matter density in the Universe has been a longstanding

task in cosmology. The best value today is Ωm = 0.29 ± 0.07 (Spergel et al. 2003).

This leads to an astonishing result: about 90% of the matter in the Universe is made of

non-baryonic, as yet unknown, particles! Many candidate particles have been proposed

(neutrinos, axions, WIMPS, ...). They are regrouped in the categories “hot”, “warm”

and “cold”, for light (typically eV), medium (typically keV) and heavy (typically MeV

20



1.2 Large scale structure

to TeV) particles. Hot DM particles decouple when they are still relativistic. They

are roughly as abundant as photons and due to their high velocities can traverse large

regions in the early Universe. The CMB density fluctuations on small scales (see below)

will then be washed out. Cold DM particles decouple when they are non-relativistic.

CMB density fluctuations would remain intact down to small scales due to the nearly

vanishing thermal velocities. Warm DM particles are an intermediate case. Although

the particles decouple when they are still relativistic, their abundance is suppressed.

As for now, only hot dark matter is ruled out (Hut & White 1984). A warm DM

particle must probably have a rest-mass much higher than 10 keV in order to not violate

the latest CMB measurements (Yoshida et al. 2003). The most probable candidate for

the DM particle is the WIMP (see also chapter 4).

For the remainder of this work we will use the term “DM” only for the non-baryonic

DM component. Processes involving baryons will be discussed in section 1.3 and chapter

2.

1.2.3 The homogeneous Universe

For the very special case of a homogeneous and isotropic Universe the equations of general

relativity become rather simple. This is not astonishing because the properties of space

time depend on the matter distribution. As no position or direction are privileged, any

observer at rest with respect to the matter in the local frame will measure the same

proper time. This proper time is an universal time coordinate. It is convenient to

introduce comoving coordinates r

x(t) = a(t)r(t) (1.3)

where the general expansion of the Universe a(t) has been factored out. The usual

convention is that the value of the present day expansion factor a(t = t0) is set to 1.

The most general metric for a homogeneous and isotropic Universe is the Robertson-

Walker (RW) metric (see Peacock (1993)) in spherical coordinates (r, θ, φ):

c2dτ2 = c2dt2 − a2(t)

(

dr2

1 − kr2
+ r2(dθ2 + sin2(θ) dφ2)

)

. (1.4)

Depending on the value of k the Universe is “flat” (k < 0), “open” (k = 0) or “closed”

(k > 0). These notations correspond to Universes in which the space time is flat,

negatively and positively curved, respectively. Note that for the case of a flat Universe

as observations suggest (Spergel et al. 2003), the metric simplifies even further.

With the RW metric (equation 1.4), Einstein’s equations become

ä

a
= −4πG

3

(

ρ +
3p

c2

)

+
Λc2

3
(1.5)
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and
(

ȧ

a

)2

=
8πG

3
− kc2

a2
+

Λc2

3
(1.6)

Here, ρ is the matter density, p the pressure and Λ the cosmological constant. This

constant corresponds to an energy density of the vacuum

ρvc
2 =

Λc4

8πG
= ΩΛρcc

2 (1.7)

Note that we omit the subscripts ”0” for present-day values on the density parameters

Ω as well as on the cosmological constant Λ.

The expansion rate of the Universe and the expansion factor are related by Hubble’s

law, i.e.

H(a) =
ȧ

a
. (1.8)

At present time, the proportionality constant H0, the Hubble constant, has a value of 72

± 8 km/s/Mpc (Freedman et al. 2001). It is usual to introduce a dimensionless constant

h defined as H0 = 100 h km/s/Mpc.

Photon wavelengths stretch with the expansion if the Universe. The spectral lines get

redshifted according to

z + 1 =
1

a
. (1.9)

The second Friedmann equation can now be transformed into

H2(z)

H2
0

= Ωm(1 + z)3 + Ωc(1 + z)2 + ΩΛ . (1.10)

We here have introduced the density parameter of the curvature of space time

Ωc = − k c2

H2
0

. (1.11)

Given that we know the values of the present-day density parameters we can integrate

equation 1.10 using equations 1.8 and 1.9

t =

∫ z

0

dx

(1 + x)H0

√

Ωm(1 + x)3 + Ωc(1 + x)2 + ΩΛ

(1.12)

This equation relates the cosmological redshift to the look back time and is a very useful

equation in cosmology. The comoving distance d to an object is

d =

∫ z

0

c dz′

H(z′)
(1.13)
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1.2 Large scale structure

When setting z = ∞ the lookback time t corresponds to the age of the Universe.

For some combinations of the cosmological parameters there are analytical solutions to

equation 1.12. For a flat space time and a non-vanishing cosmological constant this

analytic solution is

t =
2

3H0(1 − Ω0)1/2
arssinh

[

√

1/Ωm − 1

(1 + z)3/2

]

(1.14)

To complete this section, we list the current best estimates of the cosmological pa-

rameters as determined by the WMAP collaboration.

Ωm 0.29 ± 0.07

ΩΛ 0.69 ± 0.05

Ωc 0 (assumption)

Ωb 0.0047 ± 0.006

H0 [km/s/Mpc] 72 ± 5

age [Gyr] 13.4 ± 0.3

zreion 17 ± 5

σ8 0.9 ± 0.1

A 0.9 ± 0.1

n 0.99 ± 0.04

Table 1.1: Most recent values of the cosmological parameters

as determined by the CMB experiment WMAP (Spergel et al.

2003). The value of H0 is from Freedman et al. (2001).

1.2.4 Density fluctuations

As mentioned in the previous section, the microwave background radiation is not ab-

solutely smooth but after the subtraction of the dipole anisotropy small temperature

fluctuations remain. These fluctuations were studied by the satellite mission COBE and

subsequently by BOOMERANG, ARCHEOPS, and WMAP. COBE and WMAP cov-

ered the whole sky. Decomposing the temperature fluctuations in spherical harmonics,

it is possible to recover the underlying fluctuation spectrum. The measurement of these

fluctuations is currently the best method to obtain the cosmological parameters.

At the origin of the observed temperature fluctuations were density fluctuations in the

very early Universe. The currently most widely accepted model is that these fluctuations
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1. The Standard Model of Galaxy Formation

were then expanded on very large scales by a period (∆t ≈ 10−33 s) of exponential

expansion of the Universe. This period is called inflation and was first suggested by Guth

(1981). The inflation scenario successfully eliminates severe problems of the standard

model of cosmology (see section 1.2.7). How inflation started or stopped or which of the

different inflationary theories proposed is the best one is still unknown.

The results from (Spergel et al. 2003) are consistent with a random gaussian scale free

Harrison-Zeldovich initial fluctuation spectrum, i.e. Pinitial(k) ∝ kn with n = 1.

P (k, t) = P (k, t) =
〈

|δ(k, t)|2
〉

(1.15)

δ(k, t) =
1

(2π)3

∫

dx δ(x, t) e−ikx (1.16)

During the evolution of the early Universe until the end of the epoch of recombination,

the density fluctuations are modified. For a calculation of the final fluctuation spectrum,

the plasma and the dark matter as well as the neutrinos and the photons have to be taken

into account. The density fluctuations grow by self-gravitation. This growth is reduced

by radiation pressure and small-scale fluctuations are dissipated by free streaming.

The cumulative effect is put into the transfer function T (k) that can be computed,

for example with the code CMBFAST (Seljak & Zaldarriaga 1996) which is publicly

available. Analytical fits, for example from Bond & Efstathiou (1987) are also available:

TBE(k) =
1

(1 + (6.4 q + (3 q)1.5 + (1.7 q)2)1.13)1/1.13
(1.17)

where q = k/(Γ h). The powerspectrum is then

P (k) = A T 2(k) kn (1.18)

The normalisation constant A has to be determined either from the CMB directly (see

Table 1.1) or with a measurement of the present-day fluctuation amplitude on a given

scale. Usually the density contrast in spheres of 8 Mpc σ8 is used (White, Efstathiou &

Frenk 1993; Eke, Cole & Frenk 1996; Viana & Liddle 1996).

The fluctuations observed in the microwave background are a result of the density

fluctuations: The photons that have to climb out of the potential wells lost energy and

thus regions on the sky corresponding to overdensities have lower CMB temperatures.

In addition to this effect, which is called Sachs-Wolfe effect, anisotropies arise due to the

compression of radiation in high density regions and due to the Doppler shift resulting

from the motion of the plasma.

24



1.2 Large scale structure

Finally, after recombination, the photon energy can be changed by the accumu-

lated gravitational potential, by scattering by free electrons either in clusters (Sunyaev-

Zeldovich effect) or in the (reionised) inter-galactic medium (IGM). These anisotropies

are called secondary anisotropies.

As different cosmological parameter sets can yield very similar CMB power spectra,

it is crucial to reduce the measurement error bars. A promising field for CMB measure-

ments is the region of high multipole numbers and polarisation fluctuations which will

allow to break some degeneracies.

1.2.5 Fluctuation growth

After the epoch of recombination, the density fluctuations grow purely by self-gravitation.

We now give the formulae for the evolution of a weakly perturbed density field in an

expanding Universe to first order approximation starting from the continuity equation

(due to the conservation of mass), the Euler equation (the equation of motion in a grav-

itational potential) and the Poisson equation (the relation between a density field and

the generated gravitational potential).

If the length scale of the perturbations is smaller than the effective cosmological hori-

zon dH = c/H0, a Newtonian treatment of the evolution is valid. If in addition the mean

free path of a particle is small, matter can be treated as an ideal fluid and the Newtonian

equations governing the motion of gravitating particles in an expanding universe can be

written in terms of comoving coordinates (r,u) (equation 1.3) with physical velocity

v = ẋ = ȧr + aṙ = Hx + au (1.19)

where we introduced u := ṙ the comoving peculiar velocity corresponding to the depar-

tures from the general expansion. The latter, corresponding to the term Hx, is called

the Hubble flow. Dots indicate derivation with respect to the proper time of an observer

following the particle’s trajectory.

In comoving coordinates (without pressure term and with vanishing cosmological con-

stant) the continuity equation, the Euler equation and the Poisson equation are (Peebles

1980; Peacock 1993)

d

dt
ρ + ∇(ρu) = 0 (1.20)

du

dt
= −∇Φ and (1.21)

∆Φ = 4πG(ρ − ρmean) (1.22)
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respectively where d/dt is the total time derivative

d

dt
=

∂

∂t
+ u ◦ ∇ =

∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
. (1.23)

We write the density field as a homogeneous mean density part with superposed

density fluctuations

ρ(r) = ρmean(1 + δ(r)). (1.24)

Equation 1.24 can now be introduced into equations 1.20, 1.21 and 1.22. The arising

second derivative can be replaced using the Friedmann equation 1.6. The resulting

equations are describing the evolution of density fluctuations in an expanding Universe

under self-gravity.

δ̇ + (1 + δ)∇ṙ = 0 (1.25)

r̈ + 2
ȧ

a
ṙ = − 1

a2
∇Φp (1.26)

∆Φp = 4π G ρmean a2 δ (1.27)

The peculiar gravitational potential used here

Φp = −G

∫

dr′
ρ(r′) − ρmean

|r − r′| (1.28)

corresponds to the part generated by the density fluctuations.

When the fluctuations δ are small, the equations simplify. Combining equations 1.10,

1.25, 1.26 and 1.27 and neglecting terms of higher order than linear, the equation of

gravitational amplification of density perturbations can be obtained as

δ̈ + 2
ȧ

a
δ̇ = 4π G ρmean δ (1.29)

There are two general solutions for equation 1.29 δ(z) ∝ D(z): a decaying mode

Dd(z) = H(z) and a growing mode

Dg(z) = Dd(z)

∫ ∞

z
dx

1 + x

D3
d(x)

(1.30)

which is the one relevant for structure formation.

For a given set of cosmological parameters the Friedmann equation 1.6 can be solved

to obtain the solution for the expansion factor a(t). The growth of initial density pertur-

bations δ(x, z) = δ0(x) Dg(z)/Dg(z0) can then be computed with equation 1.29. This

works fine as long as the density fluctuations are small δ ¿ 1. When expressing the ini-

tial density field in its Fourier components δ(k) it becomes clear that each mode evolves
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independently from one another. The initial spectrum of the fluctuation will - in this

regime - not change except that the amplitude of the fluctuations will grow with the

growth factor from equation 1.30:

P (k, z) = P0(k) T 2(k)
Dg(z)

Dg(z0)
(1.31)

In the non-linear regime, power from the small scales is transfered to the larger scales.

An analytical prediction of the evolution of the power spectrum in the non-linear regime

has been given by Peacock & Dodds (1996). For parts of the evolution of a single density

peak in the non-linear regime a few analytical solutions are available (see next section).

For the complete treatment of the initial density field numerical simulations are required

(see section 1.4).

1.2.6 Object formation

The density peaks expand and amplify under self-gravity until a critical overdensity

threshold is reached. In the model of a spherical perturbation with homogeneous density,

this threshold (for a Ωm = 1 model) is

δ =
9π2

16
≈ 5.55 (1.32)

at which time the corresponding linearly extrapolated density contrast is about 1.06

(Peebles 1980; White 1993; Peacock 1993). The spherical perturbation then breaks

away from the general expansion and collapses. The collapsing matter elements exchange

energy and the system virialises.

This process, the violent relaxation process, is very difficult to compute analytically.

It is therefore not obvious to determine beforehand the density profile of the remaining

object. Using the virial theorem, one can estimate that the overdensity of the final object

will be of the order of one to three hundred depending on the assumptions.

N-body simulations show that the virialised part of the collapsed haloes, i.e. the

approximately spherical region in which the average radial motions are close to zero

indeed has a mean overdensity of about 200 (Cole & Lacey 1996). Throughout this work

we will adopt however a value of 200 times the critical density to define the boundaries

of collapsed objects as is common practice.

Much effort has been undertaken to calculate a priori the density profile of DM haloes

(see Peacock (1993), section 3.2.2.1) giving solutions for simplified assumptions. The

currently best estimate however comes from N-body simulations. Navarro, Frenk &

White (1997) (hereafter NFW) find the profile to be universal with the shape (see also
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section 3.2.2.1)

ρ(r) ∼ 1

r (1 + r)2
(1.33)

This finding was confirmed (for example Tormen, Bouchet & White (1997), Power et al.

(2003), section 3.2.2.1). There is however still some debate about the exact slope in the

very inner part of the DM haloes (Moore et al. 1998; Ghigna et al. 2000) (see also section

3.1).

The number of objects that have collapsed at a given redshift is a direct consequence

of the underlying initial gaussian random density field. Press & Schechter (1974) (PS)

realized that although the small-scale modes have become nonlinear, the large scale

modes still are very close to the linear prediction. By filtering the linearly evolved density

field with filters of different sizes, which is equivalent to different masses (Mfilter ∼
ρmeanr3

filter), for each point in space it can be determined whether or whether not it is

part of a collapsed region (i.e. having reached the linearly extrapolated density contrast

threshold of ≈ 1) at this epoch. This is nothing else than the fraction of mass in the

Universe in collapsed objects F (> M) at that time. The number of objects of mass M

that are collapsed, called the mass function can be determined by differentiation of F :

M f(M)

ρmean
=

∣

∣

∣

∣

dF

dM

∣

∣

∣

∣

(1.34)

The PS theory uses a spherical top-hat filter and has to introduce a fudge factor of 2.

The theory gives good but not perfect agreement with numerical simulations. Later

careful reworkings (Bond et al. 1991) identified the origin of the fudge factor that was

part of the original PS theory. The state-of-the art is the work of Sheth, Mo & Tormen

(2001a,b) who computed the collapse of ellipsoidal instead of spherical regions. They

fitted their result to high resolution N-body simulations. Their best fit model is:

ν f(ν) = 0.6444

(

1 +
1

1 + ν0.6

)(

ν2

2π

)1/2

exp

(

ν2

2

)

. (1.35)

Here the mass variable ν is defined as

ν :=
δac(z)

σ(m, z)
(1.36)

where δac(z) is the linearly extrapolated critical threshold for the collapse of a spherical

region. The value for an Ωm = 1 Universe is 1.686. For the general case the values can

be found in Eke, Cole & Frenk (1996). σ(m, z) is the rms of the density fluctuations

on scales k corresponding to the mass m. It can directly be obtained by convolving the

power spectrum with a window function (see for example Peacock (1993)).
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1.3 Galaxy formation

In a Universe dominated by cold DM the smallest structures collapse first. The larger

ones build up by merging of the smaller ones. This formation process is therefore often

termed “bottom-up”.

1.2.7 Limits of the standard model

The standard model of cosmology has proven to be very successful and a large number

of observables (element abundances, background radiation, matter clustering) can be

described with only a handfull of free parameters.

Nevertheless some severe problems still remain. The first one is to explain the im-

pressive homogeneity of the Universe. At the moment of the last scattering of the CMB

photons, i.e. at the recombination epoch, only regions corresponding to about 1 de-

gree on the sky were causally connected. The CMB background radiation however is

homogeneous over the whole sky.

The second one is the fact that the Universe is flat, i.e. Ω = 1.02 ± 0.02 according

to WMAP. At the time where quantum gravity ceased to be dominant, about 10−43

seconds after the Big Bang, the total density had to differ from one by less than 1 part

in 1060. Otherwise Ω would have grown to a value larger than the observed one.

An other problem is that there is no sign of anti-matter in the Universe although

initially, when the temperature was higher than Tp = mpc
2/kB protons and antiprotons

should have been present in equal amounts.

Fourth, not only the nature of the DM is completely unknown to date (see also chapter

4) but also a rough estimate of the cosmological constant Λ yields a value that is about

122 orders of magnitude too large.

Finally the nature of the expansion and the expansion mechanism are unclear (Peacock

1993).

The horizon problem and the flatness problem can be understood with the theory of

inflation. The matter-antimatter problem is probably a result of broken symmetry in

the very early Universe. There is hope that the theory of quantum gravity will provide

solutions to the remaining questions.

1.3 Galaxy formation

In the previous sections we have discussed the current understanding of structure forma-

tion in the Universe. We will now turn to the processes relevant for galaxy formation.

The model we describe here was first proposed by White & Rees (1978) and White

(1978).
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This model lives in the framework of a hierarchical build-up of structures from an

initial nearly homogeneous DM and gas distribution. The gas, which became neutral at

the epoch of recombination, initially has the element abundances predicted by BBN (see

above).

Note that we continue to neglect the feedback effects of the gas on the structure

formation, i.e. change of the density profile due to pressure forces, for example. The

treatment described here is therefore not self-consistent. It is, however, a very good

approximation, as the amount of gas is very small compared to that of the DM (see

Table 1.1).

The advantage of this approach is that the model of galaxy formation can be ap-

plied to the result of a simulation of structure formation. This is usually very fast. A

self-consistent treatment of the main physical processes can be computationally more

expensive by two orders of magnitude (Yoshida et al. 2002) but has been done, too

(Springel & Hernquist 2003).

1.3.1 Cooling

The homogeneously distributed neutral gas collapses together with the DM to gravita-

tionally bound objects. During the relaxation process this gas is expected to shock heat

to high temperatures and to get completely ionised (Tvirial > µmp/(2kB)V 2
vir. µ is here

the mean molecular weight for an ionised gas of the primordial composition (µ ≈ 0.57).

This gas then will radiate its energy away because cooling is very efficient for temper-

atures above T > 104 K (see Figure 1.2). The resulting radiation can be observed in

X-rays. The cold gas, having now less energy, can settle down in the centre of the po-

tential well produced by the DM halo. Parts of the cloud of cold gas can collapse under

gravitation and from stars.

1.3.2 Star formation

The process of star formation out of clouds of cold gas is still poorly understood. The

current understanding is that the collapsing regions have sizes of 10 pc and masses of

105 M¯, typically. The star formation begins in dense cores of the substructure that are

present in the cold clouds, often called giant molecular clouds.

The formation of the substructures is a subject not yet well understood by astronomers.

It very probably is a combination of the influences of self-gravitation, magnetic fields,

turbulence, and pressure gradients within the clouds. If a core contains more mass than

the Jeans mass

MJeans =

(

5kBT

Gµmp

)3/2 ( 3

4πρ

)1/2

, (1.37)
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Figure 1.2: This figure shows the contributions of the line cooling efficiency of

Hydrogen (thin solid lines), Helium (dot-dashed lines) as well as the one of the

bremsstrahlung (dashed line) to the total cooling function (thick solid line) of

an ionised plasma in primordial composition. (Plot from Volker Springel using

data from Katz, Weinberg & Hernquist (1996))
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1. The Standard Model of Galaxy Formation

where µ is the molecular weight of the gas and mp the mass of the proton, the gas

pressure is smaller than the self-gravitation and the cloud collapses. Once the gas is no

longer transparent, radiation pressure slows down the collapse. When the temperature

in the centre reaches Tfusion = 107 K, hydrogen burning starts and a new star is born.

For a cold gas region, the simplest model, the one which will be used in chapter 2,

is that where the number of stars that form in a given time interval is proportional to

the mass of cold gas available and inversely proportional to the dynamical time of the

system.

The stars evolve depending on their initial masses. We use an evolution model for a

whole population of stars in chapter 2 (Bruzual A. & Charlot 1993).

Whereas we neglect feedback of stars as far as radiation is concerned, the feedback

from supernovae is an important ingredient in the galaxy formation model.

1.3.3 Feedback

At the end of their stellar evolution, stars with masses larger than about 4 M¯ will

collapse after the pressure support from the nuclear burning has stopped and the inner

region collapses to form a very high density core. Outer layers of gas falling onto this

core bounce off it producing a very strong shock wave in the still infalling layers. The

energy released in such a “supernova” is about 1051 erg = 1044 J. This energy is released

into the interstellar medium (ISM) “instantaneously” compared to the time scales of the

stellar evolution.

It is uncertain however, how this energy affects the further evolution of the ISM.

Current models use the global or partial reheating of the cold gas disk or the ejection of

parts of the gas in “winds”. In addition to the energy injection, the metallicity (we call

“metals” all elements heavier than Helium) of the cold gas changes due to the production

of heavy elements during the supernova explosion.

Both, the energy injection and the metallicity change, have strong effects on the cooling

properties of the cold gas. The actual star formation is the result of the complicated

interplay between matter accretion, gas cooling and this feedback.

1.3.4 Merging

In the hierarchical scenario of structure formation, galaxies are assembled by a com-

bination of accretion of smooth matter and frequent merging events. The current un-

derstanding is that if the masses of two merging galaxies differ considerably, the larger

system just incorporates the gas and stars from the smaller one. The disk of the larger

galaxy will survive the impact. For major merging events, however, i.e. when the merg-
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1.4 Numerical simulations

ing galaxies are of comparable size, the disks are supposed to be destroyed and, when

the system relaxes, a large stellar bulge remains.

These models have been verified with simulations (see Springel & White (1999) and

references therein). These simulations show that the disks can survive if the mass ratio

of the merging galaxies is of the order of 0.3 or less.

In the hierarchical model, according to the merger hypothesis, disk galaxies form by

smooth accretion of matter whereas bulge galaxies (i.e. elliptical galaxies) are the result

of a major merging event. Between these two extremes lie galaxies that have had a

major merger in the past and accreted a disk later on.

1.3.5 Reionisation

Although the Universe became neutral at recombination, observations show that both

hydrogen and helium in the intergalactic medium of the local Universe are fully ionised.

The results from WMAP are consistent with a reionisation epoch of 12 < zreion < 22

at 68% confidence whereas previous estimates, especially supported by the detection

of the Gunn-Peterson trough (Gunn & Peterson 1965) in the spectra of high redshift

quasars, seemed to point to redshifts of zreion ≈ 6.

The sources of ionising photons can be the first stars that have formed in the Universe,

special populations of very massive, bright stars (Population III stars), active galactic

nuclei (AGN) and/or quasars (QSO). Simulations indicate that with reasonable assump-

tions, the ionising photons produced by the first stars could be sufficient to ionise the

Universe (Ciardi, Stoehr & White 2003b; Ciardi, Ferrara & White 2003a).

QSO absorption lines may indicate that HeII -reionization happened around zHeII−reion ≈
3.3 (Theuns & Zaroubi 2000).

1.4 Numerical simulations

The observation of the CMB and the extraction of the power spectrum of density fluc-

tuations just 300,000 years after the Big Bang places cosmologists in the extraordinary

situation of knowing - statistically - the initial conditions of the matter dominated Uni-

verse! Following a realisation of an initial density field with a given fluctuation spectrum

is in principle straight-forward if star formation and radiation are neglected, as in that

case only expansion and gravity have to be taken into account (Efstathiou et al. 1985).

The fact that the result of such computations is independent of parameters - other than

the cosmological ones which are accessible through observation - constitutes the power

of the approach.
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1. The Standard Model of Galaxy Formation

Figure 1.3: Plot taken from Ciardi, Stoehr & White (2003b) showing the prop-

agation of reionization fronts in a ΛCDM Universe using the M-series simulation

described in the next chapter.

.
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1.4 Numerical simulations

This outcome can then be confronted with the observed Universe at low redshifts (see

chapters 2, 3 and 4). In this way the initial and the final state can be observed and at

the same time the intermediate evolution is well understood. Cosmological simulations

therefore overcome the fact that experiments with the Universe as a whole are impossible.

In principle the evolution of the density field could be evaluated on a fixed grid, as

is usual for evolution of fluid fields where pressure forces play a role. In the case of

cosmological simulations however, where densities can reach values of 106 times the

mean density the eulerian grid approach is inadequate. It turns out that for pure DM

simulations lagrangian methods, i.e. the direct integration of Newton’s laws for a large

number of “particles” work best.

In this approach, the initial density field is represented by collisionless ”particles”

(typically with masses from 1011 to 105 M¯). For the initial distribution of particles,

the Zel’dovich approximation (Zel’dovich 1970) of linear theory is used.

1.4.1 Zel’dovich approximation

The main idea is to use linear theory to displace the particles from their initial (un-

perturbed) positions according to the given density field and, in addition, to assign

velocities to them. In doing so the paths of the particles can be followed instead of

having to compute the evolution of a density field.

In the linear regime, the lagrangian position x of a particle being originally at its

unperturbed eulerian position q is (Zel’dovich 1970)

x(t) = q − Dg(t) Ψ(q). (1.38)

The displacement field Ψ(q) is related to the density contrast via

δ(q) = −Dg(t) ∇ ◦ Ψ(q) (1.39)

The initial velocity pointing in the direction of the displacement can be obtained directly

from the displacement field with

ẋ(t) = −Ḋg(t) Ψ(q). (1.40)

The initial positions q of the particles must be distributed in a way that the density

field they generate has itself only very small fluctuations on all scales so that they do not

change the applied initial fluctuation spectrum. Two methods of generating the initial

unperturbed positions are used frequently: grid and glass distributions (section 2.2.1.2).

When setting up the initial conditions of a cosmological simulation, the particles are

displaced with the Zel’dovich approximation as far as possible without entering the

nonlinear regime. The corresponding starting redshifts are typically of the order of

10 < zinit < 200 (see also section 3.2.1.3).
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1. The Standard Model of Galaxy Formation

1.4.2 Simulation codes

Although the evolution of the particle distribution is, in principle, straight-forward,

performing this integration for a large number of particles (typically 108) is a very

challenging task. The reason is that gravitation is a long range force with only positive

“charge”. No shielding effects render the problem local: The influence of each particle

has to be computed for all others. Intrinsically this problem requires O(N 2) operations

for N particles. For reasonable amounts of cpu-time the direct summation can only be

done for a very small number of particles.

Different techniques have been invented to circumvent this restriction. All techniques

rely on an approximation of the total force acting on a given particle by approximating

the contribution from relatively distant particles.

In “PM” codes, the density field produced by the particles is computed on the points

of a cartesian grid and the Poisson equation is solved on the gridpoints. This can be

done relatively fast in k-space using Fast Fourier Transform Techniques (FFT) resulting

in the values of the gravitational potential on the grid. The force on the particles is then

computed by deriving and interpolating the potential values. The computational effort

of the FFT is O(Ngrid log(Ngrid)).

As the resolution of this method is limited to the grid size, a further improvement was

to compute the forces of the particles in cells around the considered particle by direct

summation (P3M, see Efstathiou & Eastwood (1981); Efstathiou et al. (1985)).

A small revolution was the invention of simulation codes using hierarchical trees

(Barnes et al. 1986). This method decomposes the simulation region recursively in

nested subcubes until there is only one or no particle in each of them. If ever a cell is

seen from the particle for which the force shall be computed under an angle smaller than

a threshold value, the centre-of-mass distance and the total cell mass are used instead

of computing the sum of the forces for all the particles in the cell. If the angle is larger,

the tree is followed and the procedure is repeated for all of the 8 subcubes.

With this method, as for the PM algorithm, only O(Ngrid log(Ngrid)) operations are

required. The big advantage however is, that the tree adapts automatically and without

limitations to any particle distribution, i.e. there is no spatial resolution limit. The

latter renders it perfect for cosmological structure formation.

We have used the treecode gadget written by Volker Springel (Springel, Yoshida &

White 2001b) for the simulations in chapter 2. This code is publicly available under the

General Public License (GPL). For the simulations performed for chapters 3 and 4, we

have used gadget-2.0. In this version, Volker Springel has added a PM algorithm for

the computation of the forces from very distant particles. This TreePM code is more

than an order of magnitude faster than the original version.
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1.4 Numerical simulations

1.4.3 Semi-analytic models

DM-only simulations have the inconvenience that by construction the simulation results

cannot directly be compared with observations. Either DM-related quantities like circu-

lar velocity curves, have to be extracted from the observations or additional assumptions

of the relation between mass and “light” have to be used. This is by no means obvious.

The model of galaxy formation described in sections 1.3 to 1.3.5 can, however, be used

to create the missing link. Simple analytical recipes for the relevant physical processes

can be coupled to the result of a structure formation computation. This semi-analytic

approach, pioneered by White & Frenk (1991) and Kauffmann, White & Guiderdoni

(1993) has been widely explored ever since (Somerville, Primack & Faber (2001);De-

vriendt et al. (1999); Cole et al. (2000) and references therein). The structure formation

computation has to provide the mass distribution of objects at any redshift as well as

the complete merging history. Several methods have been used.

White & Frenk (1991) worked with the global evolution of DM haloes as predicted by

the PS-theory. Kauffmann, White & Guiderdoni (1993) followed merging, cooling, star-

formation and feedback in merging-trees they generated with Monte Carlo techniques

using the PS mass functions and the clustering model from Mo & White (1996). The

advantage of these methods is, that only rather limited computational resources are

required.

Other approaches combine the semi-analytic galaxy formation model with the result

of a cosmological DM-simulation. Kauffmann et al. (1997) use the positions of the

DM-haloes at z = 0 and their previous method to generate merging-trees. Kauffmann

et al. (1999) take the merging-trees directly from the N-body simulation. Springel et al.

(2001a) finally extend this method by including merging-trees for substructure haloes.

There are several advantages to the approach where semi-analytic techniques are com-

bined with N-body simulations. The first one is that the positions and the velocities of

the DM-haloes, and therefore also of the attached galaxies, are available. This makes it

possible to study galaxy correlations, to look for environmental effects and to produce

mock catalogues. The second one is that the merging history is correct and not only

statistically reproduced. All possible dependencies of the assembly of the DM-haloes on

the local density, tidal torques and nearby objects are fully accounted for in the galaxy

catalogues. We will use this second method in chapter 2.

The application of the semi-analytic model of galaxy formation to the DM-simulations

multiplies the possibilities of comparison with observations. Because the underlying DM

structure seems to be well understood, this coupled method allow us to test the model

of galaxy formation and the corresponding physical assumptions in a very complete way.
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1. The Standard Model of Galaxy Formation

1.4.4 DM-only vs. SPH

Instead of neglecting the baryonic component in the cosmological simulations, the corre-

sponding physics can also be included in a self-consistent way. The hydrodynamic part

is often implemented as smoothed particle hydrodynamics (SPH). In this method, gas

“particles” carry gas properties like temperature, composition and eventually stars. The

hydrodynamic equations are then solved using quantities averaged over a given number

of neighbouring particles, typically 32.

Although, of course, solving the full hydrodynamics should eventually be the most

accurate method, as for now the approach has several drawbacks. The resolution is

set by the smoothed quantities which by construction is much poorer than the DM

resolution. The computation time at given resolution is about a factor of 100 larger

compared to the semi-analytic approach (Yoshida et al. 2002). In addition, for each set

of parameters or recipes for the gas physics, a new simulation has to be run. For this

reason only a fiducial run can be done in most cases. Parameter studies, feasible with the

semi-analytic approach, are impossible. Finally the gas physics is very complicated and

the simplifications may not be valid. In the semi-analytical approach, this ignorance can

be much more easily studied. Nevertheless, full cosmological hydrodynamic simulations

have been carried out with some success (Springel & Hernquist 2003).

For simplified cases the SPH method and the semi-analytic approach give very sim-

ilar fractions of cold and hot gas for the collapsed objects when state-of-the-art SPH

implementations are used (Yoshida et al. 2002).

In recent years the computation of the hydrodynamic equations on a grid has also

become popular in cosmology. This is due to the advent of adaptive mesh refinement

(AMR) or multigrid techniques where subgrids are nested in larger grid cells wherever

the higher resolution is required.

Although SPH and AMR techniques most probably will become more and more impor-

tant in the future, the semi-analytic approach is the most efficient means for modelling

the formation of large galaxy populations today.
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2.1 Introduction

The fact that galaxy properties depend on the local environment is established since

the work of Dressler (1980). This is most clearly seen in the difference in the relative

abundance of spiral and elliptical galaxies in cluster and field environments (section 1.1).

It is natural to try and use simulations of galaxy formation to understand how these

correlations have emerged aiming for a deeper understanding of galaxy formation as a

whole.

The hybrid method mentioned in the introduction turns out to be fast and to give

very similar results to a full SPH treatment of the gas physics (Yoshida et al. 2002).

We will use this approach for the work in this chapter. Tackling the environmental

dependence of the properties of DM haloes and of the galaxies they host requires high

mass resolution in order to resolve dwarf galaxies as well as a large simulation volume

in order to obtain meaningful statistics.

Given that a relatively small region must be simulated in order to obtain high res-

olution on individual systems, the usual choice of periodic boundary conditions in a

cubic box causes problems because of the severe constraints on the Fourier content of

the perturbation field which it implies.

In this situation the method of choice is the resimulation technique presented in sec-

tion 2.2.1. It allows to take the large scale tidal field of the cosmological environment

into account while concentrating most of the computational effort on a small previously

selected region. It has already been successfully applied to clusters and groups of galax-

ies (Navarro, Frenk & White (1995b, 1997); Tormen, Bouchet & White (1997);Tormen

(1998); Moore et al. (1999); Klypin et al. (1999); Jing & Suto (1999); Jing (1999); Ghigna

et al. (2000); Springel et al. (2001a); Bullock et al. (2001); Lanzoni & Ciotti (2003) to

galaxies (Power et al. (2003); Moore et al. (1999); Steinmetz (1999); Klypin et al. (1999)

and also chapter two) and even to underdense regions (Stoehr 1999). However until now

only one other mean density region has been studied in the full cosmological context

(Mathis et al. 2002). The resimulation technique makes it possible to select a relatively

small region - in our case a sphere of 52 Mpc/h in diameter - and run it down to z = 0.

We carefully selected this sphere from the parent simulation to make sure that it is as

representative as possible of the whole Universe. This ensures that quantities like the

mass distribution of the DM haloes match the global expectation even at high mass

where the number of objects is small.

We have performed a series of simulations of the same region with different mass

resolution and have evaluated for each the properties of the DM haloes as well as the

properties of the galaxies produced by our semi-analytic recipes of galaxy formation

(sections 1.3 and 2.5). We explicitly study the correlations of these properties with the
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mass of the corresponding DM haloes and with their local environment.

After describing the set-up and the execution of the simulation series - which we call

the M-series - we present two methods for the density estimation of the environment of

a DM halo (section 2.3). We then show the results of the DM properties of the haloes

in our simulations (section 2.4). In section 2.5 we describe and apply the semi-analytic

galaxy formation model to the simulations and present our findings.

2.2 N-body simulations

2.2.1 Initial conditions

The initial conditions for the simulation series were prepared using the Zoomed Initial

Conditions code zic written by Bepi Tormen (Tormen, Bouchet & White (1997), see also

Stoehr (1999)). This code package allows the user to select particles from a previously

computed parent simulation, to track them back to their initial (lagrangian) positions

and to determine a corresponding connected lagrangian region to be followed at high

resolution. This region can be of arbitrary shape. It is often convenient to render

it convex and to add a boundary shell in order to prevent “contamination”, i.e. LR

particles falling into the region of interest.

This high resolution region (HR region) is then placed at the centre of the new re-

simulation volume. The particles of the initial conditions of the parent simulation are

regrouped on a spherical grid of given angle θ where the radial cell bounds are chosen

so that the resulting cells are approximately “cubic”. This results in low resolution

particles (LR particles) with radially increasing masses. The angle θ or alternatively

the number of particles representing the structure of the parent simulation controls the

accuracy of the corresponding tidal field. We used a 2◦ grid, considerably smaller than

the 3◦ grid considered necessary by Stoehr (1999). The distribution of the LR particles

was the same for all simulations of the M-series.

As the HR region is centred in the new simulation box, it is feasible to remove the

outmost LR particles in order to obtain a simulation sphere instead of a simulation box.

This allows the resimulation to be computed with vacuum boundary conditions. This

is advantageous because the computation of the latter can consume up to 20% of the

cpu-time in a periodic simulation.

LR particles falling in the previously determined HR region are removed and the

HR region is filled with a homogenous distribution of HR particles of the desired mass

resolution. These particles have to be displaced from their positions according to the

displacement field of the parent simulation as well as with a newly generated displace-

ment field corresponding to density fluctuations of higher spatial frequency than those
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present in the parent simulation (see section 1.4.1).

One advantage of the method implemented in zic is that the HR region can be chosen

with arbitrary shape. This allows the computational effort to be concentrated on the

region of interest, i.e. the one that will at z = 0 contain the resimulated object. If instead

the smallest cubic HR region is selected, typically three times or more HR particles may

be necessary, significantly reducing the mass resolution that can be achieved with a given

amount of cpu time.

A second important advantage of this code is that it is possible to extract the dis-

placement field from an existing simulation and thus carry out resimulations from initial

conditions that have been produced with a different code.

In order to assure no contamination, even with the arbitrary shaped lagrangian HR

region, it is necessary to follow more HR particles than will later form the resimulated

object. As a rule of thumb, for resimulations of galaxy clusters about three times more

HR particles are necessary than are contained within r200 of the final object. For a

resimulated galaxy this increases to a factor of four or five. For the mean density region

considered in this chapter only about two times more HR particles were required. The

best situation however is found when resimulating voids. In this case nearly no HR

particles other than the ones found in the void have to be set up.

Several similar codes for setting up resimulations exist. The most prominent are the

ones implemented by Adrian Jenkins (Durham, UK) and Edmund Bertschinger (MIT).

Whereas the first implementation is very similar to the method used by zic, the latter

uses cartesian grids only and has implemented a convolution method to generate the

required displacement fields (Bertschinger 2001).

The advantage of resimulations using cartesian grids only is that when replacing a LR

grid cell with a HR grid, even the density at the interface is close to be homogenous. This

is not true for the spherical grids where the inclusion or omission of LR particles very

close to the border of the HR region necessarily produces small over- or underdensities.

This favours mixing of LR and HR particles in the boundary region leading to slightly

larger contamination.

2.2.1.1 Region selection

The parent simulation we used was the 5123 ΛCDM simulation set up and run by

Naoki Yoshida (Yoshida, Sheth & Diaferio 2001) who also adapted the gadget reading

routine to the zic output and produced the data necessary for the inclusion of the parent

displacement field. In addition to this and making available the simulation data he also

kindly provided a halo catalogue which was used for the selection of the spherical region

to resimulated.
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2.2 N-body simulations

Figure 2.1: HR region of M3 at redshift z = 20. The shape was chosen so

that at z = 0 the resimulated sphere contains no LR particle. The cubic region

shown has a comoving side length of 70 Mpc/h.
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Figure 2.2: As Figure 2.1 but for the matter distribution at z = 0.
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This region was determined by optimising the mean values of the number of haloes,

the mass in haloes as well as a requiring the net matter flow through the surface of the

selected sphere to be as close to zero as possible. Whereas the first two conditions fix

the mass function, the third one assures slow evolution of the boundary close to z = 0.

For the desired mass resolution of about 1.6 × 108 M¯/h and given our maximal

particle number of 7×107, the largest uncontaminated sphere to resimulate had a radius

of 27 Mpc/h. We selected randomly 20000 such spheres from the parent simulation and

selected the one with the smallest deviation from our criteria above.

After a HR boundary layer had been added, we ran the lowest resolution simulation

of the series at the mass resolution of the parent simulation. We then identified LR

particles that fell into the final sphere, added the corresponding regions of the initial

conditions to the HR region and reran the simulations. The largest sphere containing

no LR particles has in the parent simulation the coordinates:

xcenter,P = 344.653 Mpc/h (2.1)

ycenter,P = 240.128 Mpc/h

zcenter,P = 298.280 Mpc/h

radius = 26 Mpc/h

This corresponds to

xcenter,M = 4.1497 Mpc/h (2.2)

ycenter,M = −5.9124 Mpc/h

zcenter,M = 0.38836 Mpc/h

in the coordinate system of the resimulations where the centre of mass of the eulerian

HR particles has been put at the simulation centre.

2.2.1.2 Grid and glass distributions

Two types of unperturbed HR particle distributions are commonly used. The most

popular, because most easily implemented, distribution is to lay out the HR particles

on a cartesian grid. The advantage is that this distribution is perfectly uniform. The

inconvenience is however, that the grid introduces very strongly preferred directions

along its axes.

As second possibility is the use of a “glass” distribution of particles. Such a particle

distribution is obtained by evolving a set of randomly distributed particles with repulsive
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“gravitation” forces until their positions do not change any more (White 1993). This

method overcomes the problem of the cartesian-grid distributions. If the glass distribu-

tion is evolved long enough, the density fluctuations of the unperturbed distribution can

be very small, more than sufficient for the use in the cosmological simulations.

The homogeneity of the particle distribution of glass files allows arbitrary regions to be

extracted where the density in the region boundary is always close to the mean density.

Cutting out regions from grid distributions has to be done carefully: the cut has to be

made exactly between two gridpoints in order to conserve homogeneity.

Although a glass distribution appears more random than a grid distribution, the

distribution of the separations between neighbouring particles is very narrowly peaked

around the mean interparticle separation.

2.2.1.3 Simulations

The cosmological parameters of the parent simulation and therefore also of the series of

resimulations are given in Table 2.1.

Ωm 0.3

ΩΛ 0.7

Ωc 0.0

σ8 0.9

Γ 0.21

n 1.0

h 0.7

zparent 35

Table 2.1: Cosmological parameters used for the M-series sim-

ulations.

The transfer function of Bond & Efstathiou (1987) (equation 1.17) was used to gener-

ate the density fluctuations. The corresponding powerspectrum is shown in Figure 2.3

(dashed) together with the powerspectrum as computed by cmbfast (Seljak & Zaldar-

riaga 1996) (solid).

We followed Springel et al. (2001a) in the choice of the mass resolution. The parame-

ters of the resimulations are summarised in Table 2.2.

All simulations were ran on the Cray T3E of the Rechenzentrum of the Max-Planck

Society in Garching. Depending on the starting redshift, the LR particles are displaced
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2.2 N-body simulations

Figure 2.3: Powerspectra from Bond & Efstathiou (1987) (dashed) and from

cmbfast (solid). The vertical lines indicate for M3 (from left to right) the

largest fluctuation mode of the parent simulation, the matching frequency of

the LR and HR particles, and the Nyquist-frequency of the HR particles. The

rightmost vertical line shows the Nyquist frequency of the SHR particles of

GA3n (see section 3.2.1.2)
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m nhr nlr ntot zini ε cpu

[M¯/h] [kpc/h] [proc. hr]

M0 6.827 × 1010 168436 602272 770708 35 15 121

M1 4.814 × 109 2388896 602272 2991168 35 6 730

M2 9.529 × 108 12067979 602302 12670281 70 3 3300

M3 1.668 × 108 68958296 602341 69560637 120 1.4 67000

Table 2.2: Mass resolution m, number of HR particles nhr,

number of LR particles nlr, total particle number ntot, starting

redshift zini, gravitational softening ε and CPU times for the

four M-series simulations.

more (M0) or less (M3) from their unperturbed positions which leads to the inclusion

or exclusion of LR particles that are very close to the HR region. This is the reason for

the small differences in the LR particle numbers.

In order to be sure that the particle representation of the density field behaves like

a collisionless fluid, two-body effects have to be suppressed. This is done by modifying

the interacting potential on small scales so that a constant finite value is reached if two

particles have identical positions. The parameter ε – the gravitational softening – given

in Table 2.2 corresponds to a finite particle size and thus to the formal resolution of the

simulation. The softening was kept fixed in comoving coordinates down to z = 6. Below

z = 6 it was kept fixed in physical coordinates. The effective spatial resolution limit is

problem dependent can only be determined by convergence studies. It is approximately

about three to four times the gravitational softening (section 4.3).

The effective mass resolution, e.g. for convergence in the abundance of haloes of a

given mass, is discussed in section 2.4.1. Note that convergence studies are often the

only way to assess the reliability of simulations.

During the analysis of the simulations, some integration inaccuracies of the simulation

series turned up that might be of interest for future users of the M-series data. The

masses of the HR particles differ by a factor of h = 0.7 from the corresponding S-series

simulations (Springel et al. 2001a). Secondly the different resolution simulations do

not have the same phases for their small scale modes. Structures influenced by modes

with k > 2.35 Mpc−1 differ from simulation to simulation. Note that this is not true
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2.3 Halo environment

Random seed 12345

LR mesh size 512

HR mesh sizes 24/52/88/156

HR replication 10

HR/LR matching frequency 2.35 [1/Mpc]

LR grid resolution 2.0 [deg]

Table 2.3: Parameters used for the generation of the initial

conditions. The HR mesh sizes are given for the simulations

M0, M1, M2 and M3, respectively.

for the GA-series simulations used in chapter 3 and chapter 4. Due to an incorrect

interpolation routine in zic, small deviations from the correct displacement appeared

at the boundaries of the 5123 parent grid cells. At very high redshifts a corresponding

structure can be seen in images of thin slices through the particle distribution. This

problem was corrected for the simulations in the following chapters.

As mentioned before, when placing the HR region into a grid particle distribution,

over- or underdense regions can be produced at the region boundaries. A small un-

derdense region has developed in the M-series simulations just at the border of the

uncontaminated region (at about (-20 Mpc/h,-20 Mpc/h, 0 Mpc/h). As the HR region

for the simulations of the upcoming chapters was a glass distribution, the density at the

HR region boundaries was perfect.

Finally, the simulation series was run with the code gadget in its version 1.0 and

with the time-step criterion “1”. Extensive tests showed that this selection can lead to

densities in the very inner parts of the DM haloes that are too high.

For the analysis in this work however, none of these inaccuracies is relevant.

2.3 Halo environment

The Press-Schechter formalism (Press & Schechter 1974; Bond et al. 1991; Sheth et al.

2001b) allows to compute the mass function of collapsed DM haloes at any redshift to be

computed from the initial power spectrum, i.e. for a given set of cosmological parameters.

In addition, the formalism allows to derive the average progenitor mass function of the

DM haloes and thus to follow some aspects of their accretion history. This can be

studied directly or can be the basis of semi-analytic models of galaxy formation (Cole
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2. Galaxies and Environment

et al. (2000), see also section 1.4.3).

Analysing the GIF simulations (Kauffmann et al. 1999), Lemson & Kauffmann (1999)

studied the correlations of halo properties like the mass, the spin parameter and the

formation time with the halo environment. Besides the obvious correlation between the

halo mass and the density of the local surroundings they found a weak correlation of the

spin parameter with environment. We confirm these results below.

2.3.1 Estimators

For the estimation of the local density of a DM halo, a characteristic length scale has

to be specified. Although in principle this choice, especially for a near-scale invariant

region of the power spectrum is somewhat arbitrary, it should reflect the size of the

region that may dominate local evolution if we are to be sensitive to a link between the

environment and the object properties. We consider two estimators describing the local

density of a DM halo and choose the characteristic scale to be 3 Mpc/h corresponding

to a mass of 9.4 ×1012 M¯/h.

This choice reflects the higher mass resolution of M3 compared to the GIF simulation,

where 5 Mpc/h was chosen (Lemson & Kauffmann 1999).

2.3.1.1 Mass in shells

Lemson & Kauffmann (1999) suggested to evaluate the density on a spherical shell of

inner radius 2 Mpc/h and outer radius 5 Mpc/h centred on the halo position. The inner

bound of the shell assures that none of the particles within the virial radius of the halo

under consideration is taken into account: the virial radius of the largest halo in M3 is

about 700 kpc/h. Figure 2.4 shows the halo-density distribution as a function of the

halo mass for M3 as well as the histogram of the density values. Only haloes with more

than 100 particles have been included.

2.3.1.2 FOF subtraction

We propose a second method. Instead of using all the mass for the density evaluation we

only select regions that are not part of collapsed haloes: After the simulation particles are

assigned on a cartesian grid, all grid cells containing particles that are part of collapsed

objects, i.e. particles that have been selected by a standard FOF algorithm (Davis et al.

1985), are removed. This removes most of the mass from the grid. We then compute

the average density of the remaining cells in a sphere with radius 3 Mpc/h. An inner

cut-off is not necessary because the halo’s own contribution has been taken out already.

We fixed the cartesian grid cells to have side length equal to the mean interparticle
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2.3 Halo environment

Figure 2.4: Left panel: Densities evaluated in spherical shells around the haloes

in M3 as a function of their mass. The average values of log(ρ) and the corre-

sponding 1σ deviations are overplotted with lines. Right panel: distribution of

the density values. The vertical line corresponds to the mean. Only haloes with

more than 100 particles have been taken into account.
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2. Galaxies and Environment

Figure 2.5: As Figure 2.4 but this time using the “FOF subtraction” method.

The lines show the mean and deviation of the log-values.

separation of the HR particles. The lower panel of Figure 2.5 shows the corresponding

density distribution.

2.3.1.3 Comparison

Figure 2.6 shows the correlation of the two methods on a halo-by-halo basis. Due to

the different philosophy of the density estimation there is significant amount of scatter.

This is an advantage as it allows to check for the robustness of the correlations found in

the following subsections.

The advantage of the FOF subtraction method is that the dominance of the collapsed

objects is reduced as no region with overdensities of more than 125 times the mean

density are taken into account (Stoehr 1999, page 45). An advantage of the shell method

is that it is easy to implement and that the evaluated densities lie around the mean

density and that they are independent of the mass resolution. In addition, the shell

method returns density values with a dynamic range two orders of magnitude larger.

2.4 Dark Matter Properties

Radial velocity curves of DM haloes show a clear boundary between the infalling ma-

terial and the part of the halo that is virialised Lacey & Cole (1993). Several methods
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2.4 Dark Matter Properties

Figure 2.6: Upper left panel: Comparison of the two density estimation meth-

ods on a halo-by-halo basis. Upper right panel: Histogram of the correlations

between the shell estimators and the halo mass for the four different simula-

tions M0 (short-dashed), M1 (dot-dashed), M2 (long-dashed) and M3 (solid).

Lower panel: As the centre panel but for the “FOF subtraction estimator”. This

estimator shows a rather pronounced resolution dependence.
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2. Galaxies and Environment

exist to find the simulation particles corresponding to the virialised regions. The most

popular one is the FOF method that links together all particles that are separated by

less than a given fraction of the mean interparticle separation, typically chosen to be

0.2 following the analysis of Cole & Lacey (1996). The advantage of this method is that

it is very robust and very fast. The selected objects correspond to material enclosed in

an isodensity contour of 1/0.23 times the mean density (see for example Stoehr (1999)).

They are usually rather elongated.

A second method is to define the haloes as spheres around the most bound particle

enclosing some given multiple of a characteristic density. For the work in this chapter we

concentrate on the use of M200 and r200 defined as the mass and the radius corresponding

to a sphere with 200 times the critical density of the Universe at z = 0. This (M200, r200)

definition is the one used by Navarro, Frenk & White (1997) (hereafter NFW).

2.4.1 Mass function

Figure 2.7 shows the cumulative number of haloes with more than 20 simulation particles

in the uncontaminated HR region of the simulations M0, M1, M2 and M3, respectively.

The agreement down to about 50 particle haloes is very good. Near their low mass limits

the mass functions are always slightly higher than their higher resolution counterparts.

The reason for this is stochastic noise in the detection of small haloes. This is a well

known effect of the FOF group finder. We explicitly checked in test simulations that it

is not due to the timestep criterion used for the computation.

Figure 2.8 shows the mass function, i.e. the number of DM haloes per log mass interval

and per unit simulation volume for different redshifts. Overplotted is the analytical fit

given by Sheth et al. (2001b). Again the agreement down to about 50 particle haloes is

good. At high redshifts the mass functions of the M-series are steeper than the analytical

fit.

2.4.2 Profiles

Figure 2.9 shows profiles of the most massive of the DM haloes in M3. This halo with

mass of 8 × 1013 corresponds to a galaxy cluster. Shown are the density profile, the

rotation velocity curve

Vcirc(r) =

√

G M(< r)

r
(2.3)

as well as the average radial velocity. The density profile and the circular velocity curve

are well fit by a NFW profile with concentration c = 8. For a detailed discussion of

density profiles see section 3.2.2.1 and section 3.2.2.4.
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2.4 Dark Matter Properties

Figure 2.7: Cumulative halo numbers for haloes with more than 20 particles

in the four M-series simulations at the redshifts z = 5, z = 2, z = 1 and z = 0,

respectively. The vertical lines show the 20 particle limits. The masses M200

have been used.
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Figure 2.8: Mass functions for haloes with more than 20 particles in the four

M-series simulations at the redshifts z = 5, z = 2, z = 1 and z = 0, respectively.

The vertical lines show the 20 particle limits. The solid thick line corresponds

to the analytic formula of Sheth et al. (2001b).
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2.4 Dark Matter Properties

Due to the version of gadget that was used for the simulations as well as the timestep

criterion, the very inner part of the simulated haloes was not correctly evolved. This

is shown in Figure 2.11 where the profiles of the 50 most massive haloes of M3 have

been stacked together. The average rotation curve of these haloes lies well above the

NFW curve for radii smaller than about 0.01r200. We use this value to define the spatial

resolution of this simulation series.

NFW profiles are determined by two parameters, for example the virial radius r200 and

the concentration parameter c. We use only haloes with more than 500 particles, to be

sure that the concentrations can be safely determined. Figure 2.10 shows the distribution

of the concentration parameter as well as its correlation with mass and environment. We

find the well known anti-correlation with mass (see for example NFW). If we reject the

left-most bin of the “FOF”-histogram because of small number statistics (10 haloes only)

we find a weak positive correlation of c with the environment with both methods.

2.4.3 Shapes

It is a long established fact that the FOF-DM haloes are not spherical but are ellipsoidally

shaped with typical axis ratios for the mass distribution of typically 1:1.4:2 (Frenk et al.

1988; Dubinski & Carlberg 1991). Here we use the M200 definition of the DM haloes

when computation of axis ratios. After determining the centre of mass of the halo

particles, the inertia tensor

Θik =
N
∑

ν=1

mν

(

r2
ν δik − xν

i xν
k

)

(2.4)

and its eigenvalues are computed. The halo-axis-ratios are defined as the square-root of

the ratios of the lengths of the eigen vectors. The results are shown in Figures 2.12 and

2.13.

We find that the short-to-long and the intermediate-to-long axis ratio anticorrelate

weakly with mass, implying that more massive haloes tend to have slightly less spherical

mass distributions than less massive haloes. Our results are consistent with the fitting

formula given by Jing & Suto (2002).

The average halo ratio for the particles within r200 is 1:1.2:1.3 and for the FOF particles

about 1:1.3:1.6. Our haloes are thus a bit more spherical than those of Dubinski &

Carlberg (1991). A reason for this might be that their simulations were carried out in a

cosmology with vanishing cosmological constant.

We find no correlation of the axis-ratios with environment. The small trend visible is

a result of the correlation of the axis-ratios with halo mass and the correlation of halo

mass with the local environment.
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2. Galaxies and Environment

Figure 2.9: Density profile (upper left panel), rotation velocity curve (upper

right panel) and radial velocity profile (lower panel) for the most massive DM

halo in M3. The best fitting NFW profiles are overplotted as well the softening

length (left vertical line) and the virial radius (right vertical line).
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2.4 Dark Matter Properties

Figure 2.10: Correlation of the NFW concentration parameter c with mass

(upper left) and with environment (upper right : “FOF”-method, lower left,

lower left: shell method) for haloes in M3. The lower right panel shows the

concentration distribution. For a small number of low-mass haloes no NFW

profile fit could be found (upper right panel,points in the upper left corner).
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Figure 2.11: Averaged density profile (upper left panel), averaged circular

velocity curve (upper right panel) and total number of haloes contributing to

each bin (lower panel) for the 50 most massive DM haloes in M3. NFW profiles

for the average concentration caverage = 6.2 are overplotted. Note the sharp rise

of the profiles around 1% of r200 which is due to integration problems.
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Figure 2.14 shows the short-to-long axis ratio as a function of the local matter density

evaluated with the shell-method. We split the halo masses in mass bins from 1010 M¯/h

to 1011 M¯/h (upper left), 1011 M¯/h to 1012 M¯/h (upper right), 1012 M¯/h to 1013

M¯/h (lower left) and 1013 M¯/h to 1014 M¯/h (lower right). By splitting the haloes

according to their mass we reduce the influence of the mass-density correlation. The

remaining correlation between density and the halo-axis ratio is consistent with zero.

2.4.4 Spin parameter

The spin parameter λ is defined as the ratio

λ =
L
√

E

GM2.5
. (2.5)

It is a dimensionless measure for the angular momentum a halo has gained from tidal

torques during its evolution (Hoyle 1949; Peebles 1969; White 1984; Steinmetz & Bartel-

mann 1995). A rotationally supported system has λ ' 0.4. This parameter is tradi-

tionally computed from the FOF halo particles and was found to have a mean value of

λ ≈ 0.05. The distribution as well as the correlations with mass and density for both

environment definitions are shown in Figure 2.15. We find a mean value of λ = 0.062

for haloes with more than 500 particles. As Lemson & Kauffmann (1999) we find a

small positive correlation of the spin parameter λ with environment with both density

estimators when we again reject the first bin of the histogram of the “FOF”-method.

The anticorrelation of the spin parameter with mass, shown in the upper left panel of

Figure 2.15 is well known (see for example Peacock (1993)). It is due to the fact that

more extreme overdensities in the initial density fields started to collapse earlier when

the tidal torques on the collapsing regions were smaller.

2.4.5 Formation time

The DM halo properties analysed so far were taken from a snapshot at z = 0 of the

halo evolution. In this and the following section we study properties of the evolution

itself. The first property is the formation time, which is defined as the redshift at which

a DM halo first contained half of its present mass. This time is a measure of the recent

accretion rate.

Figure 2.16 shows the distribution and correlations of the formation times of haloes

with more than 500 particles in M3. Again, rejecting the first bin of the “FOF-method”-

histogram we find a correlation of the formation time with mass and density. This time,

the correlation with the density is negative and so we check in Figure 2.17 that this is

not just a result from the correlation of environment with mass. We split the haloes in
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2. Galaxies and Environment

Figure 2.12: As the previous figures but for the short-to-long axis-rations of

the DM haloes. All particles within the virial radius r200 have been used.
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2.4 Dark Matter Properties

Figure 2.13: As figure 2.12 but for the intermediate-to-long axis ratio. We find

no correlation of this ratio with the environment, but a weak anticorrelation with

the halo mass.
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Figure 2.14: The correlation of the short-to-long halo axis ratio in the mass

bins 1010 M¯/h to 1011 M¯/h (upper left), 1011 M¯/h to 1012 M¯/h (upper

right), 1012 M¯/h to 1013 M¯/h (lower left) and 1013 M¯/h to 1014 M¯/h (lower

right). We find no correlation and thus that the correlation seen in Figure 2.12

is a result of the correlation between mass and density.
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2.4 Dark Matter Properties

Figure 2.15: Correlation of the M3 spin parameter λ with the halo mass mass

(upper left) and with the density (upper right : “FOF”-method, lower left, lower

left: shell method). The distribution of the λ-values as well as the mean value

(0.062) are shown in the lower right panel.
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2. Galaxies and Environment

mass bins using the density evaluation in shells as shown in Figure 2.17. The correlation

of the formation redshift with the environment from Figure 2.16 is thus just a result

of the established correlation between halo mass and formation redshift. Our finding is

thus consistent with that of Lemson & Kauffmann (1999).

2.4.6 Last major merger

As a last DM property we examine the mass and density dependence of the last major

merging event, i.e. the last redshift zmerger where the second most massive progenitor

of a halo was more than 0.3 times as massive as the most massive one. In the theory

of galaxy formation this measure is important because it marks the transition region

between a major merger where the cold gas is consumed in a large star-burst to produce

a galaxy bulge and the regime where the smaller galaxy is just accreted onto the larger

system without destroying its structure.

We again use all haloes with more than 500 DM particles for the analysis. We find no

correlation between the last major merging event and the mass or the local environment

of a halo (Figure 2.18). This is consistent with the analytical result of Lacey & Cole

(1993).

2.5 Galaxies

The very high mass resolution of M3 together with the fact that the HR region of the

simulation series had been computed within the full cosmological context makes these

simulations predestined for the application of a semi-analytical model of galaxy formation

(section 1.3).

The mass resolution allows the resolution of the DM haloes of dwarf galaxies. In

order to faithfully compute the properties of larger galaxies, i.e. galaxies of the size of

the Milky Way, the correct evolution of the progenitors is essential.

Due to the high quality of the resulting galaxy catalogue, several projects using the

data of the simulation have been carried out (Ciardi, Stoehr & White 2003b; Ciardi,

Ferrara & White 2003a) or are in preparation.

We extend our environmental analysis of the DM haloes above to the model galaxies

produced by the semi-analytic model. In this section we first describe the semi-analytic

model of galaxy formation that we have used. We then show the global properties of

the produced galaxy population, i.e. the galaxy luminosity function, the Tully-Fisher-

Relation and the global star-formation history. We finally correlate individual galaxy

properties with the local environment in sections 2.5.6.1 and 2.5.6.2.
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Figure 2.16: As the previous plots, this time showing the halo formation

times. The formation time is strongly correlated with mass. This correlation is

the reason for the trends observed in the upper right and lower left panel as can

be seen from Figure 2.17.
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Figure 2.17: Correlations of the formation time with the density (evaluated

with the shell-method). The figures correspond to the mass ranges 1010 M¯/h

to 1011 M¯/h (upper left), 1011 M¯/h to 1012 M¯/h (upper right), 1012 M¯/h

to 1013 M¯/h (lower left) and 1013 M¯/h to 1014 M¯/h (lower right).
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Figure 2.18: Correlation between mass and the last major merging event

(mass-ratio of the progenitor haloes larger than 0.3). There is a no correla-

tion with the halo mass or with the environment.
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2.5.1 Galaxy formation model

We use the version of the semi-analytic modelling that includes the treatment of sub-

structure haloes developed by Volker Springel (Springel et al. 2001a) following the model

of Kauffmann et al. (1999).

For all DM haloes identified by the FOF group finder, gravitationally bound substruc-

ture haloes are identified with subfind (Springel et al. 2001a). This selects candidate

substructure haloes by lowering a density threshold starting from the particle with the

highest local halo density. For this, the particles are sorted according to density. If during

the lowering of the threshold particles are treated that are close to the already processed

ones, they are attached to corresponding substructure candidate. If the particle under

consideration however is separated by any of the processed particles by more than a few

softening lengths, then this particle is taken to be the seed of a new substructure halo.

Once all particles are processed and all substructure candidates are determined, sub-

structure particles that are not gravitationally bound are removed from the subhaloes.

This is repeated iteratively until the gravitationally bound substructure is determined.

(Springel et al. 2001a) show that a semi-analytic galaxy formation model that correctly

follows the evolution of the substructure haloes performs significantly better than one

which does not follow substructure.

After the substructure haloes are detected, a merging tree is built by following the

simulation particles from one output to the other. A halo in output i−1 is defined to be

a progenitor of a halo in output i if the second contains more than half of the particles

of the first. A subhalo in output i−1 is progenitor of a subhalo in output i, if more than

half of the Nlink=10 gravitationally most bound particles end up in the new subhalo.

The cooling of the primordial gas is computed following White & Frenk (1991). A

singular isothermal sphere density profile is assumed

ρg(r) =
Mhot

4πRvirr2
. (2.6)

For this profile the virial temperature, virial mass and virial circular velocity are

T = 35.9 (Vvir/km s−1)2, (2.7)

Mvir =
100 H2R3

vir

G
, (2.8)

V 2
vir = G

Mvir

Rvir
. (2.9)

(2.10)

The total gas mass associated with the DM mass of the halo is set as

Mgas = fbMvir, (2.11)
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where the baryon fraction fb is a parameter of the model. With the dynamical time

tdyn =
Rvir

Vvir
, (2.12)

the cooling time from Sutherland & Dopita (1993)

tcool(r) =
3
2kT

µ̄ mp ne(r) nt(r)Λ(T, Z)
, (2.13)

can be converted into the cooling rate

dMcool

dt
=

Mhot

Rvir

rcool

2 tdyn
, (2.14)

which gives the rate at which the shock heated gas in the halo cools to temperatures at

which the gas clouds collapse and can turn on star formation (see the definition of rcool

below).

The maximum rate at which gas can settle on the central galaxy however can be

approximated by

dMaccr

dt
=

Mhot

2 ttdyn
(2.15)

which is the limiting rate if the cooling time is so short that no dynamical equilibrium

is reached. The minimum of the two rates is used to determine the amount of gas that

is available for star formation.

2.5.1.1 Cooling

The cooling radius rcool is defined as the distance from the halo centre at which the

cooling time tcool equals the dynamical time tdyn. For gas that consists of H+, He2+
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and e− follows:

Y =
4 nHe

nH + 4 nHe
(2.16)

ne = nH + 2 nHe =
(2 − Y )

2 (1 − Y )
(2.17)

nt = nH + nHe =
4 − 3Y

4 (1 − Y )
(2.18)

nHe =
Y

4 (1 − Y )
nH (2.19)

n = nHe + ne + nt =
8 − 5 Y

4 (1 − Y )
nH (2.20)

µ̄ =
4

8 − 5 Y
(2.21)

ρg = µ̄ mp n (2.22)

tcool =
K T µ̄ mp

Λnorm(T, Z) ρg(r)

3 (8 − 5 Y )

(2 − Y )(4 − 3 Y )
(2.23)

tdyn = tcool (2.24)

r2
cool =

Rvir

Vvir

Mhot Λnorm(T, Z)

K T mp 4π Rvir

(2 − Y )(4 − 3 Y )

3 (8 − 5 Y )
(2.25)

With a He-fraction of Y = 0.25 this gives:

r2
cool = 0.28086

Rvir

Vvir

Mhot Λnorm(T, Z)

K T mp 4π Rvir
(2.26)

Cooling is suppressed in substructure haloes and in haloes with circular velocities

larger than 350 km/s accounting for the fact that cooling flow clusters do not show star

formation at the rate computed above (Kauffmann et al. 1999).

2.5.1.2 Star formation

The cold gas turns into stars at a rate proportional to the mass of the cold gas available

and inversely proportional to the dynamical time of the halo:

dM∗
dt

= α
Mcold

tdyn,∗
(2.27)

with α being the star formation efficiency. The dynamical time of the stellar component

tdyn,∗ is fixed at

tdyn,∗ =
0.1 Rvir

Vvir
. (2.28)

this corresponds to assuming an extension of the stellar component of 0.1 Rvir.
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2.5.1.3 Feedback

A fraction of the newly formed stars explode as supernovae and energy is released to

the surrounding medium. Many feedback schemes have been studied (see Benson et al.

(2003) for a resume). We use the original implementation from Kauffmann et al. (1999).

dMreheated

dt
=

4

3
ε

ηSN ESN

V 2
vir

dM∗
dt

(2.29)

In the “ejection”model we use, the gas is ejected from the halo and is re-incorporated

into the halo only on the dynamical time scale (see Springel et al. (2001a) for a detailed

description).

2.5.1.4 Merging

Starting from the earliest output – at z = 20 for the M-series – a central galaxy is

assigned to each newly identified halo. The amount of gas cooling, star formation and

feedback that happens in the timespan between this and the next output is computed in

50 substeps that are equally spaced in time. The galaxy is attached to the most bound

particle of the FOF halo. Each galaxy has two distinct “containers” for stars and star

formation: the bulge component and the disk component. The cold gas and the stars

that form from the cold gas in a halo are attributed to the disk component of the central

galaxy.

The most massive galaxy attached to a FOF particle of the halo or subhalo is flagged

as its central galaxy and is newly attached to the most bound particle of that group or

subgroup at each output. Less massive galaxies within the halo or subhalo, i.e. satellite

galaxies, will merge with the central galaxy on the dynamical friction time-scale

tfriction =
1

2

f(ε)

C

Vc r2
c

G Msat ln(Λ)
(2.30)

where fe is set to 0.5 (Tormen 1997), Λ = 1 + Mvir/Msat and C = 0.43. The radius rc

is set to the virial radius of the halo when the satellite first fell onto it.

If the mass ratio of the stellar masses of the merging galaxies, is smaller than a

threshold of 0.3 then the merging event is called a minor merger. In this case the stellar

components of the satellite’s disk and bulge are added to the disk and bulge of the central

galaxy, respectively.

If the ratio of the stellar masses is larger than 0.3, the galaxies are supposed to undergo

a star burst where all of the cold gas is transformed into stars. In addition, all stars

of the two systems are transferred to the bulge of the new central galaxy which thus

becomes an elliptical galaxy. Through further gas cooling it can grow a disk again later.
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The photometric properties of the stars in the bulge and disk component are computed

using the stellar population synthesis model developed by Bruzual A. & Charlot (1993).

A more detailed discussion of the semi-analytic model can be found in Kauffmann,

White & Guiderdoni (1993); Kauffmann, Colberg, Diaferio & White (1999) and Springel

et al. (2001a).

2.5.1.5 Model parameters

Semi-analytic models contain by construction a number of free parameters. The values

of the free explicit parameters of the semi-analytic model presented above are shown in

Table 2.4. These values were used throughout this work. They differ from the ones used

by Springel et al. (2001a) only in the value of the baryon fraction. Instead of a value of

15%, a value of 12% provides for our simulations better fits to the observations.

Major-merger threshold 0.3

Baryon fraction fb 0.12

Supernova-number per mass [(1010×M¯/h)−1] ηSN 0.005

Reheating efficiency ε 0.1

Star-formation efficiency α 0.05

Metal-yield 0.02

Table 2.4: Free parameters of the semi-analytic model. The

Metal-yield is the fraction of mass of the stars that is made

of elements heavier than He. The metalicity of the gas serves

as input for the computation of the metal-dependent cooling

function.

The number of actual free parameters is very small, especially as for all but the two

efficiencies observations or simulations narrow the possible ranges. Note however that

there is significant amount of freedom in the modelling of the different processes. The

“Durham” semi-analytic model of Cole et al. (2000) for example assumes a different

dynamical time for the star-formation.

In addition, other physical processes, like photoionisation, other forms of supernova

feedback or a colour correction model accounting for the effects of dust can be added

to overcome weaknesses of the model. The danger of this approach however is to intro-

duce many new parameters and recipes that might better fit observations but do not

necessarily provide deeper physical insight.
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For the purpose of this chapter, the evaluation of the environmental dependence of the

galaxy properties, the semi-analytic model described above reproduces the observations

accurately enough.

2.5.2 Luminosity function

Although reproducing the luminosity function, i.e. the number density of galaxies as a

function of their luminosity seems an easy task, so far all semi-analytic models predict

both a faint-end slope that is too steep and well as too many bright galaxies. Figure

2.19 shows the luminosity functions of M0, M1, M2 and M3 together with the BJ -band

luminosity function from the Sloan Digital Sky Survey (Blanton et al. 2001) (dashed) as

well as the luminosity function from the 2dFGRS survey (Folkes et al. 1999) (dotted).

The BJ band is (Metcalfe et al. 1995)

BJ = B − 0.35 (B − V ) (2.31)

The survey data were kindly provided by Hughes Mathis.

The luminosity functions converge very well. The bright end and the “knee” of the

luminosity function reasonably match the observed relation. The abundance of faint

galaxies however is too large by about a factor of 5 at the limit of the resolution of

M3. A careful discussion on the problem of the faint-end slope of semi-analytic galaxy

formation models can be found in Benson et al. (2003). These authors conclude that

supernova feedback and thermal conduction are - despite substantial progress - still

poorly understood.

Our results of the luminosity function are similar to those in other work (Kauffmann

et al. 1999; Springel et al. 2001a; Mathis et al. 2002). Note however, that modelling

photoionisation (Somerville et al. 2001; Benson et al. 2003) can bring simulations in

much closer agreement with the observed faint end of the luminosity function.

2.5.3 Tully-Fisher-relation

The Tully-Fisher relation is the correlation between a galaxy’s rotation velocity, and

its intrinsic luminosity. This relation is a prominent method of determining distance of

galaxies.

Figure 2.20 shows the I-Band Tully fisher relation as observed by Giovanelli et al.

(1997)

MI − 5 log(h) = −21.00 − 7.68 (log(W ) − 2.5) (2.32)

(solid line) for the four simulations. Here MI is the I-band magnitude of the galaxy and

W the velocity dispersion.
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Figure 2.19: Luminosity function of the galaxies in M0 (long dashed), M1 (dot-

dashed), M2 (short-dashed) and M3 (solid). The thick lines show the luminosity

functions as observed by the Sloan Digital Sky Survey (Goto et al. 2002) (solid)

and the 2dF Survey (Folkes et al. 1999) (dashed).

The dots show the values for the simulated central galaxies. The stellar disks have

been assumed to rotate with the circular velocity v200 of the DM halo, hence, w = 2v200.

Whereas the slope of the relation is very well reproduced, the zero point is significantly

offset.

Although the Tully-Fisher relation seems a good means to compare observed data to

simulations, the uncertainty in how the rotation velocity of the stellar disk relates to the

circular velocity of the DM halo makes the comparison less than straightforward. Figure

2.21 shows the relation where 85% of v200 of the DM halo has been used. Our simulated

Milky Way rotation curves in Figure 4.2 show that this value corresponds approximately

to the rotation velocity of the DM halo at the position of the Sun at 8 kpc from the

galactic centre.

2.5.4 Star formation rate

We extend the range of times studied from the measurements at z = 0 to earlier times:

The star formation history of the Universe was first compiled by Madau et al. (1996).

Figure 2.22 shows the star formation history of our four simulations together with the

dust-corrected data taken from Somerville, Primack & Faber (2001). We find reasonable
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Figure 2.20: I-Band Tully-Fisher relation for the four simulations M0 (upper

left), M1 (upper right), M2 (lower left) and M3 (lower right). Although the

slope of the relation is rather well reproduced, there is a significant offset with

respect to the observed relation (Giovanelli et al. 1997).
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2. Galaxies and Environment

Figure 2.21: As figure 2.20 but this time using vrot = 0.85 v200. This scaling

corresponds roughly to the ratio of the circular velocity at the position of stellar

disk versus v200 in the Milky Way.
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Figure 2.22: Global star-formation history of the four simulations. The data

are taken from Somerville, Primack & Faber (2001) who applied dust and ex-

tinction corrections to the original data from Gronwall (1998); Tresse & Mad-

dox (1998) (triangles) and Treyer et al. (1998); Cowie et al. (1999); Steidel

et al. (1999) (boxes). Crosses show the “maximally dust corrected values” from

Somerville, Primack & Faber (2001).

agreement with the data and the result from Somerville, Primack & Faber (2001). The

curve is well below the maximally dust corrected data points (crosses).

From the curves, the approximate redshift of convergence can be determined for each

of the simulations. Approximately, M0 has converged at only z = 1, M1 has converged

at z = 2.5, and M2 has converged at z = 5. Extrapolating this series we expect the star

formation history of M3 to have converged at about redshift z = 11 (see also (Ciardi,

Stoehr & White 2003b)).

2.5.5 Galaxy distribution

Figures 2.23 to 2.26 show the galaxy distribution of M3 together with that of galaxies in

the cluster simulation S3 performed by Springel et al. (2001a). In order to allow a direct

comparison between both simulation series, the baryon fraction fb adopted in Springel
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et al. (2001a) has been used throughout.

The “galaxies” that are plotted over the dark matter distribution (blue) have areas

proportional to their B-band luminosity. They are colour coded according to their ”Hub-

ble type” T . It was derived from the B-band bulge-to-disk luminosity ratio (Springel

et al. 2001a)

mbulge − mtotal = 0.324 (T + 5) − 0.054 (T + 5)2 + 0.0047 (T + 5)3 (2.33)

Elliptical galaxies are plotted in red (T < −2.5), spiral galaxies in yellow (T > 0.92) and

S0s in green (−2.5 < T < 0.92).

In Figures 2.23 to 2.25 all galaxies of the catalogues are shown. Figure 2.26 shows

only galaxies with stellar masses larger than 109 M¯/h. This mass threshold corresponds

approximately to the stellar mass of the Small Magellanic Cloud.

The figures show that the descendants of the first stars are to be found in the centres

of the large galaxy clusters today. They also show, that galaxy formation is strongly

suppressed in the large underdense regions (see also Mathis & White (2002)).

2.5.6 Galaxies and environmental effects

In this section we finally analyse the correlation of two of the properties of our model

galaxies with their local environment, i.e. the local overdensity of their host DM halo.

We only use galaxies with stellar masses larger than 109 M¯/h. In addition, we require

them to reside in in haloes with more than 100 simulation particles. These choices assure

that the galaxies we plot are free from resolution effects.

2.5.6.1 Bulge-to-total luminosity ratio

The bulge-to-total luminosity ratio is a direct measure of the type of the galaxy as large

values (close to 1) indicate bulge-dominated, i.e. elliptical, galaxies and small values

(close to zero) disk-dominated, i.e. spiral galaxies. The ratio is rather easily observable

for many galaxies.

Figure 2.27 shows the bulge-to-total luminosity ratio as a function of the stellar mass

of the galaxy mass and local density evaluated at the position of the parent DM halo.

We find no correlation with the stellar mass. This is a non-trivial result. There are

many galaxies within a galaxy cluster that merge with the massive central galaxy. The

probability of a major merger event should therefore be larger than for two satellite

galaxies within this halo. Massive galaxies should have larger bulge-to-total ratios than

smaller galaxies. On the other hand, in systems where the cooling cut-off is not reached,

cooling onto the stellar disk only happens for the central galaxy. If no merging were

present, the bulge-to-total luminosity of these galaxies would decrease.
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Figure 2.23: Distribution of galaxies in S3 (upper panel) and M3 (lower panel)

at redshift z = 5. The thickness of the boxes is 10 Mpc/h, the side lengths are

10 Mpc/h and 20 Mpc/h for the S3 and the M3 box, respectively. Shown are all

galaxies down to the resolution limit of M3 (10 particle DM haloes). The galaxy

symbols (ellipticals red, S0’s green and spirals yellow) have sizes proportional

to their B-band luminosities. The DM distribution is shown in blue-scale.
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Figure 2.24: As Figure 2.23 at z = 2
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Figure 2.25: As Figure 2.23 at z = 0
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Figure 2.26: As Figure 2.25 but this time restricting to galaxies in DM haloes

more massive than 109 M¯/h corresponding approximately to the size of the

small Magellanic cloud.
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The upper right and the lower left panel of Figure 2.27 show the “morphological

segregation”. Vertical concentrations of galaxies arise because all galaxies in a halo get

the same density assigned. We find that galaxies in high density environments tend to

be more elliptical. This correlation is very strong. The morphological segregation can

be observed directly in galaxy clusters (Dressler 1980) or by measuring the two point

correlation function of galaxies of different types (Madgwick et al. 2003).

2.5.6.2 B-V colour index

A very easily accessible observable of a galaxy is its colour. The colour is quantified by

the magnitude difference of two bands, for example the B and V (bands centred on 440

nm and 540 nm, respectively). The B-V values correspond roughly to the colours

B − V = +1.41 → Red

B − V = +0.82 → Orange

B − V = +0.00 → White

B − V = −0.29 → Blue

(2.34)

The correlations of the B-V colour index of the galaxies in our catalogue with their

stellar mass and the local density are shown in Figure 2.28. A large population of faint

galaxies is very red. These galaxies are satellite galaxies that have fallen into larger

systems. As our model prevents gas from cooling in this case, no star formation occurs

and the galaxies turn red.

The colour mass distribution is similar to the colour magnitude relation found in

observations (Bell et al. 2003). However, instead of a slight reddening of the galaxies

with increasing mass, we find a slight negative correlation. Kauffmann & Charlot (1998)

showed, that when modelling metalicity dependent stellar evolution, the correct slope of

the colour magnitude relation can be obtained.

We find a strong trend of galaxies in high-density environments to be redder. Our

simulation thus reproduces the correlation found in observations (Kodama et al. 2001).

In addition, our model predicts a bimodal colour distribution which is, too, observed

(Bell et al. 2003).

2.6 Conclusions

We have performed a series of high-resolution simulations of a large region of the Universe

within the full cosmological context. State-of-the-art techniques were used to resimulate
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Figure 2.27: Bulge-to-total luminosity for galaxies in M3 with stellar masses

of more than 109 M¯/h.
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Figure 2.28: B-V colour index of galaxies with stellar masses larger than 109

M¯/h. The model predicts a bimodal colour distribution and the correct trend

of the colour-density relation.
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a region that was carefully selected to have mean properties. The simulated region has

very high mass resolution, is a representative patch of the Universe and evolves under

the influence of the large scale tidal field at the same time.

The simulation series is or has been used for studies of reionization (Benedetta Ciardi),

metal enrichment in the intergalactic medium through supernova driven winds (Serena

Bertone), analysis of substructure in DM haloes (Gabriella daLucia), testing of a new

tessellation method (Willem Schaap), the distribution of satellites around large galaxies

in the 2dF Survey (Peder Norberg), the mass accretion histories of haloes and their

concentration parameters (Frank van den Bosch), the spin-spin correlation of DM haloes

(Tom Theuns) and predictions for observations of the Lyman-α forest (Vincent Desjaques

and Adi Nusser).

We used the simulation as parent simulation for the ultra-high resolution simulations

analysed in chapter 3 and chapter 4.

In this chapter we have studied the influence of the matter overdensity of the local

environment of DM haloes and model galaxies on their properties. We have proposed a

new method for the estimation of this overdensity, that completely discards mass that

is bound in collapsed objects. Using two different methods for the estimation of the

local overdensity of the matter distribution allowed us to verify the robustness of the

correlations between the overdensities and the properties of the studied objects.

We first analysed the properties of collapsed DM haloes. We found that the concen-

tration parameter of the NFW profiles fitted to our DM haloes is correlated with the

matter density in the local environment of the haloes. Haloes in high density environ-

ments tend to have larger concentration parameters. In addition, we have shown that

the spin parameter of the haloes exhibits a density dependence. Haloes in denser en-

vironments tend to be more rotationally supported than their low density environment

counterparts. This result is consistent with the analyses of Heavens & Peacock (1988)

and Steinmetz & Bartelmann (1995) and the findings of Lemson & Kauffmann (1999).

We have found no correlations of the halo axis-ratios, formation times or times of the

last major merging events with the local overdensities and thus confirmed the results of

Lemson & Kauffmann (1999). The fact that the formation histories of the haloes do not

depend on the local environment is a prediction of Bond et al. (1991). We compared the

mass functions of the DM haloes with the analytical prediction of Sheth et al. (2001b)

extending its previously tested range by two orders of magnitude. We found that the

prediction matches well our results at redshift z = 0. At higher redshifts, the mass

function of the simulated DM haloes is significantly steeper.

We applied a semi-analytic model of galaxy formation to our simulation series and

adjusted the free parameters to match the luminosity function of observed galaxies.

Our model fails to reproduce the faint end slope of the luminosity function. Additional
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physics (e.g. photoheating) has to be included into the model. We find that the global

star formation history of the model galaxies for our best fitting parameters is in very

good agreement with observations.

Finally we studied correlations of the bulge-to-total luminosity ratio and of the B-V

colour index of the model galaxies with the galaxy-environment. We find a strong lu-

minosity ratio and B-V dependence on environment, consistent with observations. The

model also correctly predicts the trend of the colour-density relation found in observa-

tions. In addition, the bimodal distribution of galaxy colours is obtained.
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3.1 Introduction

Blumenthal et al. (1984) and Davis et al. (1985) showed that properties of the Large

Scale Structure of the Universe can nicely be explained when assuming that the dark

matter (DM) consists of heavy non-relativistic particles. Since then, the model became

more and more popular. Today the variant with a non vanishing cosmological constant

Λ, the ΛCDM model, is the “standard” model of structure formation (see section 1.2.1).

In this scenario the smallest structures collapse first and during the evolution of the

Universe larger structures form by merging of the smaller Dark Matter haloes that have

collapsed earlier.

For a DM halo of the size of the Milky Way, assuming simple recipes for gas cooling,

star-formation, and stellar feedback (Kauffmann & White (1992), Kauffmann, White

& Guiderdoni (1993), and also sections 1.3 and 2.5), the number of visible satellites

predicted to orbit in the DM halo exceeds by far the actual number (Kauffmann, White

& Guiderdoni 1993). Eleven satellites are known within the virial radius of the Milky

Way. The main reason for this is the large number of smaller dark matter objects that

are accreted during a Hubble time. This overabundance is directly related to the shape

of the dark halo mass function (Sheth et al. (2001b), see also 2.4.1).

The same discrepancy appears at the faint end of the luminosity function of galaxies

which is observed to be shallower than the prediction of simple models of hierarchical

galaxy formation (White & Rees 1978; White & Frenk 1991). Kauffmann, White &

Guiderdoni (1993) argued, therefore, that star formation in these small objects must be

strongly suppressed, perhaps by the radiation processes discovered by Efstathiou (1992).

As a result only the most massive Milky Way satellites would be visible, reconciling the

model with the observations.

This suppression could be achieved a consequence of photoionisation in the early stages

of the Universe (Bullock et al. 2000; Benson et al. 2002). Quasars and early galaxies

emit strongly at energies high enough to reionise hydrogen, which had been neutral

since the epoch of recombination some 300,000 years after the Big Bang (1.2.1). This

ionising radiation not only reheats part of the gas of the intergalactic medium which

could otherwise cool and form stars, but also reduces the cooling rate of this gas because

less gas is in a molecular state in which cooling is efficient (section 1.3.1, Doroshkevich

et al. (1967); Couchman & Rees (1986)). Reionisation is currently a very lively field of

research (Wyithe & Loeb (2003); Baumann et al. (2003); Kaplinghat et al. (2003); Lamb

& Haiman (2003); Doroshkevich et al. (2003) to cite a few).

As numerical simulations have been successfully used to study structure formation in

the Universe, it seems natural to extend the technique to the study of single objects like

the DM halo of the Milky Way. Such simulations can not only check the predictions
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of the simplified galaxy formation models in sofar as the survival of infalling satellites

is concerned, but can also provide the orbits, sizes and internal structures of accreted

subhaloes.

Although seemingly straight-forward, simulations of the Milky Way halo turned out to

be very challenging (van Kampen 1995; Summers, Davis & Evrard 1995; Moore, Katz &

Lake 1996). The simulated haloes were very smooth and infalling substructure was nearly

completely destroyed, an effect that was called “over-merging problem”. The solution

to this problem finally came when the resolution of the simulations was dramatically

increased (Tormen et al. 1998; Ghigna et al. 1998; Moore et al. 1998; Klypin et al. 1999;

Ghigna et al. 2000). These high resolution simulations revealed a wealth of substructure

within the dark matter haloes, accounting for roughly 5% to 10% of the mass of the

main halo. This brought the picture sketched by the simple models of hierarchical

galaxy formation into agreement with the numerical simulations. Still, the suppression

of visible objects, through photoionisation for example, is necessary to reconcile the new

simulations with observations.

The situation changed dramatically when Moore et al. (1998) and Klypin et al. (1999)

published results on the internal structure of simulated subhaloes and claimed them

to strongly disagree with observation. According to their estimates, the abundance of

massive subhaloes was much greater than inferred from the Magellanic clouds and the

nine Milky Way dwarf spheroidals.

To arrive at this conclusion, these authors compared the circular velocities of the

subhaloes in their simulations with the central velocity dispersions of the stars at the

centre of the satellite galaxies. Whereas the former are in the range of 20 to 60 km/s

for the 10 to 20 most massive haloes, the latter are observed to be below 10 km/s in

the smaller satellites. Simulated Milky Way haloes have typically more than a hundred

subhaloes with circular velocities larger than 10 km/s.

Whereas the problem of the overabundance of visible subhaloes can be solved by the

introduction of photo-heating, the internal structure of the simulated seemed to robustly

disagree with the observations. The so called “substructure problem” or “substructure

crisis” became one of the two major challenges to the ΛCDM model.

The second challenge, still remaining today, is the problem that the simulated DM

haloes, at least the haloes that are not subsystems of larger haloes, have density profiles

with steep inner slopes. Such profiles are termed “cuspy”. Navarro, Frenk & White

(1997) performed high resolution simulations and found these profiles to have “universal”

form (see also Tormen, Bouchet & White (1997)). This form seems to be inconsistent

with the near solid-body circular velocity curves observed in dark matter dominated

dwarf galaxies (Flores & Primack 1994; Moore 1994; Burkert 1995; McGaugh & de Blok

1998; Firmani et al. 2001), although the extent of this problem is controversial, e.g. van
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den Bosch & Swaters (2001). Some of the most recent studies (de Blok, McGaugh &

Rubin 2001a) continue to claim that simulations can not be reconciled with observations.

In order to solve the substructure problem, several solutions have been proposed.

Bode, Ostriker & Turok (2001a) suggested that the dark matter particles might not be

“cold” but “warm” with masses around 1 keV. The idea is that due to their larger thermal

velocities, these particles would have been able to wash out the density fluctuations at

early times that lead to subgalactic structures today. This scenario seems to be ruled

out by the recent results of the WMAP CMB experiment (Spergel et al. 2003; Yoshida

et al. 2003).

A second suggestion was to allow collisional self-interaction of DM particles (Spergel

& Steinhardt 2000; Yoshida et al. 2000). However, as Yoshida et al. (2000) show, self-

interacting dark matter can not solve the substructure problem and their lensing studies

favour collisionless dark matter.

In our study in this chapter we revisit the substructure problem. White (2000) em-

phasised that if the NFW profile is appropriate for subhalo structures, the maximum

circular velocities of the subhaloes that host Milky Way dwarf galaxies can be much

larger than the observed velocity dispersions. In order to quantify this effect, we per-

form a series of high resolution simulations of a relaxed Milky Way type halo in its full

cosmological context. Instead of converting the central velocity dispersions of observed

galaxies into halo circular velocities ad hoc, as was done by Moore et al. (1998) and

Klypin et al. (1999), we use the observed stellar distributions to predict central velocity

dispersions for the satellites sitting the potential wells of our simulated substructures.

We then compare these values to the observed ones. Finally, we compare the velocity

dispersion profiles we predict with those observed for Fornax and Draco, the only two

Milky Way satellites where this information is available.

The remainder of this chapter is organised as follows: In section 3.2 we describe the

process of the generation of the initial conditions of the simulation series and give the

results for the main halo as well as for the subhaloes. The results include information

necessary for the next chapter. In section 3.3 we summarise the observations that we

use. Section 3.4 deals with the theory of statistical motion in a given potential. We

compare the predicted velocity dispersions with the observed values in section 3.5 and

conclude in section 3.6.

3.2 The simulated Milky Way

We have performed a series of dark matter simulations of a Milky Way sized halo (mass

≈ 2.1× 1012M¯/h) in its full cosmological context. The simulations are carried out in a

ΛCDM cosmology. In the simulation with the highest mass resolution there are about
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106 particles within the virial radius and the gravitational softening is 0.18 kpc/h. These

simulations were then scaled down in length and in mass in order to match the peak of

the circular velocity curve of the Milky Way (White & Springel 2000; Helmi & White

1999).

3.2.1 Initial conditions

As for the M-series simulations (section 2.2.1.3) we use the resimulation technique to

achieve high mass resolution while preserving at the same time the tidal effects - and

therefore the cosmological evolution - of a very large cosmological volume. After selecting

reasonable candidates out of M3 (section 3.2.1.1) we extended the resimulation technique

(section 3.2.1.2) in order to achieve the mass and length resolution mentioned above. In

section 3.2.1.4 we discuss the contamination of low-resolution particles in the HR zone

and describe the simulations performed in section 3.2.1.5.

3.2.1.1 Selection procedure

The Milky Way is a spiral galaxy with probably a rather quiet recent merging history.

The last major merger is estimated to have happened probably around redshift z = 2

to 5 (Gilmore et al. (2002), and references therein). In addition, it is quite isolated and

the nearest galaxy cluster is at a distance of about 20 Mpc (Virgo). The peak rotation

velocity of the Milky Way has been measured to about 220 km/s. Our intention was

to select a candidate a candidate for resimulation with properties as close as possible

to the observed ones. It is possible to rescale the simulated objects in mass and radius

(and so in characteristic velocity) by factors near unity provided the combination M/R3

(which specifies the timescale) is kept fixed. The exact matching of the peak velocity

was therefore the least important criterion.

In order to be able to reproduce a halo accurately in a resimulation, the object in the

parent simulation has to have more than ≈ 500 particles (Stoehr 1999). Milky Way type

haloes in the GIF ΛCDM, the best resolved full-box simulation with periodic boundaries

however have only about 140 particles. We confirmed with tests that this number of

particles was not sufficient using the techniques of Tormen, Bouchet & White (1997).

The best parent simulation available to us was therefore M3 (see section 2.2.1.3)

with its mass resolution of 1.66 ×108 M¯/h where candidate Milky Way haloes contain

roughly 104 particles. We required the candidate haloes to be positioned well inside

the HR zone (i.e. closer than 15 Mpc/h from the centre), to have had their last major

merger before z = 1.2, and not to be close to a galaxy cluster. From the four candidates

identified (Table 3.1), candidate G-2 matched our requirements best.
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Candidate G-1 G-2 G-3 G-4

Catalogue number (0 to n) 248 276 414 582

Redshift of last major merger 3.19 2.71 2.94 1.98

Distance to M3 centre [Mpc/h] 13 7 14 12

Circular velocity V200[km/s] 219 205 182 151

Peak velocity Vmax [km/s] 262 245 224 187

Virial radius R200 [kpc/h] 219 205 182 151

Mass M200 [1012 × M¯/h] 2.45 2.0 1.42 0.8

Particle number N200 14716 12010 8529 4796

Table 3.1: Properties of the four candidates in M3 that ful-

filled our selection criteria. The candidate that matched our

requirements best and that was used for the resimulation series

described in this chapter was candidate G-2.

The closest large objects are a halo with 3 times and a halo with similar mass at

distances of 3 Mpc and 4 Mpc, respectively. There is no major merger in the close

future of the candidate at z=0. Figure 3.1 shows the density and velocity profiles. The

agreement of the profiles with the analytical NFW fit for a concentration parameter

c = 11.2 is remarkably good, taking account of the small particle number. Figure 3.2

shows the radial velocity profile and the mass-accretion history for this candidate. The

merging history is shown in Figure 3.3.

The position of the candidate in the units of the simulation are

Resimulating an object in M3 which is itself a resimulation, required substantial

changes to zic, the code used for the generation of the initial conditions (Tormen,

Bouchet & White 1997).

3.2.1.2 Twolevel-zic

In addition to the steps for the generation of the initial conditions described previously

(section 2.2.1 and Tormen, Bouchet & White (1997); Stoehr (1999)) an additional region
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Figure 3.1: Upper panel: density profile of the candidate G-2 in units of

the critical density. The solid line show a NFW profile with concentration

parameter c = 8.3. The vertical line indicates the virial radius. Lower panel:

Corresponding circular velocity profile. For a halo with this low particle number

the agreement between the profile and the fit is remarkably good, indicating that

the halo is relaxed. The gravitational softening is 1.4 kpc/h.97
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Figure 3.2: Upper panel: radial velocity within the virial radius. Lower panel:

Mass growth history of the candidate halo G-2 in the M3 simulation. The solid

line shows the mass of all progenitors of the final halo, the dotted line shows

the mass of the most massive progenitor.
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Figure 3.3: Merging history. The haloes at each output are sorted from left

to right according to their particle number so that the leftmost line corresponds

to the most massive progenitor. The redshifts of the outputs are shown on the

right. For this plot, all haloes with more than ten particles were taken into

account.
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3. Satellite Galaxies of the Milky Way

M3 GA0n GA1n GA2n GA3n

x [Mpc/h] 5.9265 1.19995 1.38941 1.5901 0.4159

y [Mpc/h] -11.8997 -4.78985 -4.74637 -4.72403 -5.0260

z [Mpc/h] -2.2299 6.30782 6.49764 6.68449 6.0047

Table 3.2: Positions of the halo centres of the MW halo in the

different simulations.

containing super-high resolution (SHR) particles had to be defined, set up and perturbed

with a displacement field obtained by summing that of the LR particles, that of the HR

particles, and a newly created field with spatial frequencies above the Nyquist frequency

of the HR region. In addition, HR particles outside this new SHR region have to be

regrouped on a spherical grid.

We added these features to the initial condition generation code zic and changed the

code for tracking contaminating particles, in this case HR particles falling in the SHR

zone, back to their original positions in M3.

For the high mass resolution we wanted to achieve (2 ×105 M¯/h) and the accuracy we

required for structure on small scales, we decided to use the power spectrum generated

with the publically available package cmbfast (Seljak & Zaldarriaga 1996) instead of

the analytical fit of Bond & Efstathiou (1987). In order to obtain exactly the structure

of M3 however, the original power spectrum had to be used for the LR and HR particles.

The cmbfast power spectrum was only used to create the displacement field of the SHR

particles. We checked, that the BE and the cmbfast power spectrum match reasonably

well at the Nyquist-frequency of the HR particles: the relative deviation of the transfer

functions at this point is 31 %.

For the simulation series, the matching frequency of the perturbation modes for LR

and HR particles was at 2.35 Mpc−1 and the matching of HR and SHR particles (cor-

responding to the Nyquist-frequency of the HR particles) at 17.5 Mpc−1. The HR box

and the SHR box were replicated 10 times in each direction. The Nyquist-frequency of

the SHR particles was 163 Mpc−1 (Figure 2.3).

A problem in the interpolation routine of zic had to be corrected. The LR particles

and the HR particles were regrouped on a spherical grid with grid angle of 2 degrees,

resulting in 669,741 LR and 602,289 HR grid particles. The 2 degree grids assure a

highly accurate representation of the large scale tidal fields (Stoehr 1999) although they
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3.2 The simulated Milky Way

represent only 2.2 % of the total particle number in our highest resolution simulation.

As a first project we had studied the feasibility of the resimulation of a pair of galaxies

having properties similar to the Local Group: a separation of about 725 kpc, a radial

velocity of -70 km/s and masses of about 1012 M¯ per galaxy. There are only very few

candidates in the HR region of M3 being “close” to these values. The values of the best

pair in M3 are shown in Table 3.3. There was no approaching pair, i.e. a pair having a

negative relative velocity. A series of test runs showed that the properties of the original

pair could not be reproduced with sufficient accuracy. The distance of the resimulated

pair as well as the relative velocity were too large in all of our test simulations. It turned

out that a high force and integration accuracy at high redshift was indispensable for a

reproduction of these quantities. Table 3.3 shows the values for a low and a high accuracy

run. For the latter the parameters were chosen according to Power et al. (2003).

However, even with this setting the results of the best pair were not satisfactory for

our needs and we decided to resimulate a single galaxy, i.e. candidate G-2 from Table

3.1. In addition to an easier resimulation, this choice allowed for a much higher reso-

lution in the selected object because the HR region could be much smaller. Moreover,

we could choose among more good candidates, allowing us to put constraints on the

merging history, the mass and the position within M3.

After the candidate halo has been selected a starting redshift for the resimulation had

to be determined.

3.2.1.3 Starting redshift

At very high redshifts, just after the epoch of recombination, density fluctuations were

so small that the evolution of the structure in the Universe was almost perfectly linear.

According to linear theory, using the spherical top-hat approximation (section 1.2.6),

density fluctuations reach an extrapolated density contrast of 1.686 before starting to

collapse. In order to save computer time, the simulation should start at the point where

the first objects - in the CDM cosmologies these are the smallest objects - just are

about to start to collapse. This moment depends therefore on the mass resolution of the

simulation.

The criterion implemented in zic is the one used by Bertschinger (1995). The starting

redshift of the evolution of the simulation is here determined by the largest displace-

ment a particle obtains. All displacements are scaled to a redshift where the maximum

displacement is a given fixed fraction of the mean interparticle separation. In the case

of Bertschinger (1995) this fraction was 1.
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3. Satellite Galaxies of the Milky Way

Pair original (in M3) low accuracy high accuracy

Mass 1 [M¯] 1.8 ×1012 1.7 ×1012 1.7 ×1012

Mass 2 [M¯] 3.0 ×1012 2.7 ×1012 3.0 ×1012

Distance [kpc] 1356 1949 1896

Relative velocity [km/s] +16 +172 +106

Table 3.3: Local group resimulation project. Very high in-

tegration accuracy - especially at high redshifts - was required

in order to get low escape velocities. The original relative ve-

locity could not be reproduced. There was no candidate pair

that had an encounter velocity close to the one of the Milky

Way and M31 in the Local Group. For the high accuracy run

the parameters were set according to the suggestions of Power

et al. (2003). The low accuracy run was performed with the

parameter settings used for the M-series simulations (chapter

2).
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Figure 3.4: The average number of collapsed objects larger than a given mass

in the comoving volume of 7.3×104 (Mpc/h)3, i.e. the volume of the HR region

of M3. When starting our highest resolution simulation at redshift z = 60,

the probability that a 2-particle halo has collapsed already is smaller than 1%

(dotted lines). As the simulated halo is two orders of magnitude smaller than

the largest object in the HR region of M3, this starting redshift is still very

conservative.

Although this procedure certainly gives safe starting redshifts, i.e. provides initial

conditions that are well in the linear regime, lower redshifts closer to the actual collapse

redshift of the first objects are possible. As the lower resolution simulations were not

very time consuming, the starting redshift determined with the above criterion was a

reasonable choice. For our highest resolution simulation however, this redshift turned

out to be zstart ≈ 300 corresponding to a predicted total CPU time of well over 105

hours for the version of gadget at that time.

Using the mass function - here the cumulative one - determined by Sheth et al. (2001b)

a better estimation of the starting redshift is possible. The cumulative mass function

gives the number of collapsed objects per volume with masses larger than a given thresh-

old mass. It is then simple to find the redshift where for example the probability that
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3. Satellite Galaxies of the Milky Way

an object of the mass corresponding to the simulation particles of the highest resolution

simulation has collapsed within the volume of 7.3 × 104 (Mpc/h)3, the volume of the

final uncontaminated HR region, is smaller than 1 %. Figure 3.4 shows the average

number of haloes in this volume as a function of the minimum halo mass. The lines

give the relations for different redshifts. The horizontal and vertical lines correspond to

the minimum mass of 4 ×105 M¯/h, and the collapse probability of 1 %, respectively.

These are the settings for our highest resolution simulation which we have called GA3n

(see 3.4). It is clear from the plot that a starting redshift of z = 60, the redshift that we

have used, will be sufficient for this simulation. The choice is still very conservative as

the object we simulated is two orders of magnitude smaller than the two clusters that

are present in the HR volume of M3. z = 60 is safe even for these clusters although they

will start collapsing much earlier than the Milky Way sized halo.

3.2.1.4 Contamination

One of the most critical aspects of resimulations is the control of the region into which

where LR particles penetrate. “Uncontaminating” a simulation is done by running the

resimulation, tracing back LR particles that fall into a given region and replacing them

with HR particles in the initial conditions. Usually one iteration step is sufficient to

produce a LR particle-free final region. This has to be done only for the lowest resolution

resimulation. The differences in the distribution of the LR particles between the runs of

different resolutions are negligible.

For the G-series simulations we tracked back the particles from a sphere of 1 Mpc/h

around the centre of the galaxy (with a virial radius of 205 kpc/h). With this setup 18%

of the HR particles fell into the virial radius of the main halo.

3.2.1.5 Simulations

The GA-series consists of four simulations of the same galaxy (candidate G-2) with mass

resolutions increasing each time by a factor of 9.33 starting from the one of the parent

simulation, the ΛCDM M3 simulation, with a mass resolution of 1.6× 108 M¯/h. Table

3.4 gives the values for the initial conditions.

For the G-series simulations we have used Volker Springel’s ultra-fast code gadget

2.0 with a timestep inversely proportional to the acceleration of the particles and the

parameters given above. Note however, that GA3n has been run with a slightly older

and less accurate version.

One important issue of the initial condition set up was to assure that the low frequency

displacements in all four simulations are identical. Due to the nature of zic, the random

values used to construct the displacement field change when the size of the HR or SHR
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mparticle [M¯/h] NHR NLR Ntot zstart ε [kpc/h]

GA0n 1.677 ×108 68323 1272197 1340520 70 1.4

GA1n 1.796 ×107 637966 1272382 1910348 80 0.8

GA2n 1.925 ×106 5953033 1272434 7225467 90 0.38

GA3n 2.063 ×105 55564205 1272030 56836235 60 0.18

Table 3.4: Initial condition parameters of the GA-series. Note

the low starting redshift of GA3n.

grid changes. We therefore have used the same full size SHR grid and the same random

realization for all simulations of this series. For the simulations with lower resolution than

GA3n, the modes in k-space smaller than the Nyquist-frequency of the SHR particles

were set to zero.

The position and velocity data were saved in 108 outputs from redshift z = 37.6 to

z = 0. 60 outputs are equally spaced in log(1/(1 + z)). The other outputs were selected

at lower redshifts so that the time between two outputs below z = 2.3 is approximately

constant.

Note that the simulations used in this and the next chapter are not identical with

the ones used by Stoehr et al. (2002). The simulations have been rerun with higher

force accuracy with the newer version of gadget. In order to distinct them form the

previous simulation set, we have termed these simulations GA0n, GA1n, GA2n and

GA3n, respectively.

3.2.1.6 Scaling

We scaled the simulated haloes down by a factor of 0.91 in length and 0.913=0.74 in

mass scale so that the peak of the circular velocity curve closely matches 220 km/s, the

value of the Milky Way. The density and time scales remain unchanged.

Note that unless stated otherwise all values given below in this and in the

next chapter correspond to the scaled simulations!
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3. Satellite Galaxies of the Milky Way

GA0 GA1 GA2 GA3

mscaled [M¯/h] 1.24×107 1.33 ×107 1.42 ×106 1.71 ×105

εscaled [kpc/h] 1.2 0.72 0.34 0.17

R200 [kpc/h] 196.1 194.4 194.8 195.5

M200 [M¯/h] 1.75 ×1012 1.70 ×1012 1.71 ×1012 1.73 ×1012

N200 14097 128276 1204411 10089396

Nε 9 21 52 43

c 9.25 9.18 9.94 9.97

Table 3.5: Values of resimulated haloes. Here, N200 is the

number of DM particles within R200, Nε the number of particles

that were closer than one softening length to the centre of the

halo and c the NFW concentration parameter (see section 2.4.2).
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3.2 The simulated Milky Way

3.2.2 Simulation results

We ran the full post processing pipeline (halo-finding, property-finding, profile-finding,

merging-history finding, contamination-finding) over the simulations including subfind

to identify self bound substructure within the main halo of the Milky Way. Figure 3.8

shows a cubic region of 570 comoving kpc/h on a side around the haloes at z = 0 for

the four simulations. Figure 3.9 shows the assembly of the halo in GA3n. The images

correspond to the redshifts z = 10, 5, 2 and and 1. The properties of the main halo and

the subhaloes are discussed in the following sections.

3.2.2.1 Density profile and circular velocity curve

The determination of the density profile of DM haloes has been and still is an important

challenge in cosmology. Especially the value of the inner slope of the profile is uncertain.

However, it can play a crucial role for example for the possible annihilation of DM

particles and their detectability (see chapter 4). Many authors have tried to determine

the inner slope of dark halo density profiles through physically based analytic arguments

(Peebles 1980; Hernquist 1990; Syer & White 1998; Nusser & Sheth 1999; Subramanian

et al. 2000; Dekel et al. 2002) but despite very interesting ideas the final answer is still

missing. Numerical simulations seem to be an ideal tool to solve the problem.

As already mentioned, Navarro, Frenk & White (1995a) performed high-resolution

simulations and fitted the “universal” density profile

ρNFW (r) =
δc

r
rs

(1 + r
rs

)2
. (3.1)

to their simulated haloes. Here rs is a characteristic length and δc a characteristic

density. At the scale radius rs the slope changes from ∝ r−1 to ∝ r−3.

In subsequent papers, NFW extensively studied halo profiles for different underlying

cosmologies as well as for different ranges of halo masses and compared their results to

observed galaxy circular velocity curves and to profiles of X-ray clusters (Navarro, Frenk

& White (1995b)). They found the profile to be a good description for the simulated

haloes in all of the studied cosmologies over four orders of magnitude in mass and over

two orders of magnitude in the distance from the halo centre.

In addition, they give a correlation between the formation time of the halo and its

characteristic density (Navarro, Frenk & White (1996)). It then is possible to express the

NFW profiles for a given mass, or equally for a given radius r200, by a single parameter:

the concentration parameter c = r200/rs. The density profile writes as

ρNFW (r) =
3H2

0

8πG
(1 + z)3

Ω0

Ω(z)

δc

cx(1 + cx)2
(3.2)
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Figure 3.5: Upper panel: density profile of the GA3n main halo in units of

the critical density. The solid line shows an NFW profile with concentration

parameter c = 9.79. The vertical line indicates the virial radius. Down to

about 1% of the virial radius, the NFW profile provides an excellent fit to the

simulation data. Lower panel: radial velocity within the virial radius. For easier

comparison with the corresponding plots for the G-2 candidate, these two and

the next plot were not scaled to match the MW peak rotation velocity.
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3.2 The simulated Milky Way

Figure 3.6: Mass growth history of the GA3n main halo. The solid line shows

the mass of all progenitors of the final halo, the dotted line shows the mass of

the most massive progenitor.
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3. Satellite Galaxies of the Milky Way

Figure 3.7: Merging history of GA3n. Only subhaloes with more than 8090

particles are taken into account. This corresponds to the 10 particle limit in

M3.
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3.2 The simulated Milky Way

Figure 3.8: Density distribution in logarithmic scale of the z = 0 snapshot

of the simulations GA3n, GA2n, GA1n and GA0n. The box side length corre-

sponds to three times the virial radius (i.e. 570 kpc/h).
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3. Satellite Galaxies of the Milky Way

Figure 3.9: History of the GA3n halo assembly. The images correspond to the

redshifts z = 10, 5, 2 and and 1.
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with x = r/r200 at the redshift z, and the characteristic density

δc =
200

3

c3

ln(1 + c) − c/(1 + c)
. (3.3)

The radius r200 is linked to the mass M200 through

r200 = 1.63 10−2

(

M200

M¯

)1/3 ( Ω0

Ω(z)

)−1/3

(1 + z)−1 h−2/3 kpc. (3.4)

The circular velocity for this model is

V200 =

(

G M200

r200

)1/2

=

(

r200

kpc

)(

Ω0

Ω(z)

)1/2

(1 + z)3/2 h−1 km s−1 (3.5)

and

Vcirc(r) = V200

√

1

x

ln(1 + cx) − (cx)/(1 + cx)

ln(1 + c) − c/(1 + c)
(3.6)

Two parameters fully specify the profile. This can be either (rs, δc) or (r200, c) or

(rmax, vmax). Where the latter pair refers to the maximum of the circular velocity curve

Vcirc(r).

By numerically solving equation 3.3 for the concentration parameter c, the first pair

of parameters can easily be converted into the second one whereas the reverse conversion

is trivial.

At the maximum of the circular velocity curve cx has to fulfil the relation

ln(1 + c xmax) =
c xmax

1 + c xmax
+

c2 x2
max

(1 + c xmax)2
(3.7)

We solve this equation numerically and find that

c xmax ≈ 2.1625814 (3.8)

and therefore

rmax ≈ 2.1625814 r200

c
= 2.1625814 rs (3.9)

This together with equations 3.5 and 3.6 allows to convert from (r200, c) to (rmax, vmax).

For the inverse conversion, the equation

( vmax

km s−1

)

(

kpc

rmax

)

21.62996674

(

Ω0

Ω(z)

)−1/2

(1 + z)−3/2 h = (3.10)

√

c3

ln(1 + c) − c/(1 + c)
(3.11)
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has to be solved for c and the result inserted in equation 3.7. In what follows in this

chapter we will often use the pair (rmax, vmax) which can be extracted very robustly

from the circular velocity curve of equation 2.3 by just sorting the particles according

to their distance, counting them and inserting the result in equation 2.3. The centre of

the halo is defined as the position of the most bound particle of the halo. In addition,

using the circular velocity curve for the profile fitting instead of the density profile has

the advantage that no binning is necessary and that therefore the curve can be plotted

down to the very centre of the halo.

This technique allows therefore to give NFW “fits” and NFW-mass estimates (using

equation 3.6) for haloes with very few particles.

Tormen, Bouchet & White (1997) ran simulations and confirmed the findings of NFW.

Moore et al. (1999) and Ghigna et al. (2000) preferred to fit their haloes to a fitting for-

mula with an inner slope of -1.5 instead of -1. Recently Power et al. (2003) performed

and extensive parameter study using two different simulation codes: gadget and pkd-

grav and found good agreement, with the profiles to be fit better by the NFW profile

than by the one proposed by Moore et al. (1998). This is interesting as these authors

had used pkdgrav to find their inner slope. Power et al. (2003) however point out that

the slope at their innermost resolved point is not yet exactly equal to -1 but is a bit

higher: around 1.2-1.4 depending on the particular halos considered.

As this brief overview shows, the determination of the inner slope of the density profile

of DM haloes is far from a simple task. The first difficulty is the required mass resolution

that is only achievable using some variant of the resimulation technique. But even using

this method, with each increase of the mass resolution of one order of magnitude, only a

factor of 3
√

10 ≈ 2.15 in spatial resolution is gained if the softening ε is set proportional

to the mean particle separation of the SHR particles. Using the criterion derived from

Power et al. (2003) the softening and therefore the spatial resolution scales as
√

N200 i.e.

≈ 3.16 for one order of mass resolution increase.

A safe determination of the inner slope of the density profile, or of an other fit if it

turns out that the slope is slowly varying, would be possible with a spatial resolution

increase of an other one of two orders of magnitude. Even with planned computing and

data processing facilities this will be a challenging task. With a convergence study how-

ever, some extrapolation beyond the measurement of the highest resolution simulation

is possible.

The difficulty is to achieve sufficient numerical accuracy in the very centre of the DM

halo. Even the smallest statistically significant bias in the integration of the innermost

particles can lead to an energy increase or decrease and thus expulsion or accumulation

of particles from or to the centre resulting in a lower or higher density, respectively.

This integration however is by construction not perfect. It is done with approximated
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forces (stemming from the tree evaluation as well as from the softened potential) and

time steps that are adaptive and chosen according to the properties of the simulation

particle or the properties of its local environment (the acceleration of the particle or the

local velocity dispersion for example).

Power et al. (2003) performed extensive tests and came up with parameters that they

considered “safe”. We chose even more conservative parameters than proposed by the

guidelines of these authors.

Figure 4.2 in the next chapter shows the circular velocity profiles for our four resimu-

lated haloes together with an NFW profile with parameters r200 = 270 kpc and c = 10.

We plot these curves down to a distance from the centre equal to the softening length.

The profiles of the simulations agree well and the NFW profile provides a reasonable

fit. We overplotted also a fit of the parabolic formula we propose below. Especially

at distance of about 1-5 kpc from the halo centre, this profile matches the data better

than the NFW profile. Note, however, that this profile has an additional free parameter,

unlike the NFW profile which is fixed shape once the peak of the circular velocity curve

is determined.

Whether this new profile (Stoehr et al. (2002), hereafter SWTS) is a better description

than the NFW profile for the very inner part of velocity profiles of DM haloes in general

is unclear to date. Unfortunately, the simulations that were available to us - other than

the GA-series - have been run with versions of gadget that did not faithfully reproduce

the inner 1% of the DM haloes so that the question could not be addressed.

An interesting side effect of the SWTS profile is that is predicts a “core”. Some

observations currently favour DM haloes with cores (McGaugh & de Blok 1998; de Blok

et al. 2001b). These issues are discussed in more detail in section 4.4.

3.2.2.2 Bound vs. unbound subhalo particles

For the following analysis we identify the subhaloes using the subfind algorithm (Springel

et al. (2001a), see also section 2.5.1).

As the matter distribution of the main halo on the scale of the subhalo can be consid-

ered homogenous, the unbound particles within the volume of the subhalo and are not

dynamically relevant for the motion of the stars in the substructure potential.

We note that in the article of Stoehr et al. (2002) all particles within the volume of the

subhalo were used to estimate the subhalo circular velocity curve. This was conservative

for our purpose. The difference of the values of rmax and vmax, characterising the

subhaloes, however is rather small whether one takes the unbound particles into account

or not. This is due to the fact that subhaloes are much denser than the DM of the

surrounding main halo, resulting in relatively few unbound particles within the volume
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of the substructure.

Figure 3.10 shows the rmax and vmax-values of the substructure circular velocity curves

with and without the contribution of the unbound particles for the simulations GA1n,

GA2n and GA3n. The two methods give remarkably similar vmax-values. Some of the

rmax values differ by up to a factor of two (in one extreme case by a factor of 4).

The total mass bound in subhaloes is 1.7%, 3.0%, 5.1% and 4.1% of the mass of the

main halo in GA0n, GA1n, GA2n and GA3n, respectively. The fluctuations in this

number are due to the fact that the most massive subhaloes – which dominate the total

substructure mass (see section 4.5.1) – are subject to Poisson statistics. Although the

resimulation in principle should give exactly the same results for each run, this is not

true in reality. For the mass scales corresponding to the subhaloes of a Milky Way halo,

the evolution of the density field is highly nonlinear at lower redshifts. Tiny deviations

in the initial conditions and slightly different forces can therefore lead to the situation

where a subhalo has already been accreted at z = 0 in one simulation where in an other

it has not yet merged with the main halo.

The above values are for the mass fraction in substructure are in agreement with recent

studies of image flux ratios in multiply lensed quasars (Chiba 2002; Dalal & Kochanek

2002). These authors argue that their findings are a strong support for the CDM model.

The most massive subhaloes have 1.8%, 1.9%, 2.3% and 0.8% of the virial mass in the

simulations GA0n, GA1n, GA2n and GA3n, respectively. For GA3, this corresponds to

88832 DM particles.

3.2.2.3 Backtracking

We can have a closer look on the change of the dynamic structure of the subhaloes

by tracing them back to the redshift just before they merged with the main halo and

compare the structural parameters rmax and vmax as well as the masses pre and post

infall. We restricted to subhaloes with more than 100 particles.

The distribution of the infall-redshifts for GA3n is shown in the upper panel of Figure

3.11. The lower panel shows the cumulative distribution of these redshifts normalised to

the total subhalo number, i.e. 412. It is striking that most of the subhaloes that can still

be detected today were accreted only very recently. Half of the subhaloes were accreted

later than z ≈ 0.4. Only 10% of the haloes were accreted before z ≈ 1.6; only 1% before

z ≈ 3.8. The oldest remnant present in GA3n at z = 0 was accreted at z ≈ 7.2. All

this implies that tidal disruption is very strong which is in agreement with results from

Gao Liang (2003) (private communication). The outer regions of the infalling haloes get

stripped away and the material is lost to the halo of the MW.
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Figure 3.10: Upper panel: vmax-values for the subhaloes with more than 300

particles in the simulations GA1n (dots), GA2n (open circles) and GA3n (open

squares). The values have been measured once taking into account th gravi-

tationally bound particles only, once all simulation particles. Lower panel: as

above for the rmax-values.
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Figure 3.11: Accretion of the subhaloes with more than 100 particles. The

upper panel shows the number of accreted subhaloes that survived to z = 0 as

a function of their accretion redshift. The lower panel shows the cumulative

normalised survival fraction. We find that this fraction can be approximated by

(1 + z)−2.65.
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The fit (dotted line) corresponds to

f(z) ≈ (1 + z)−2.65. (3.12)

The line in the plot is shifted to match the value of 100% at z = 0.06 which is the redshift

of our penultimate output. f(z) is the relative number of surviving haloes which are

accreted onto the main halo before z.

However, not only the outer regions of the haloes change upon infall, also their internal

structure is altered. The change in the circular velocity profiles is discussed in the next

section.

In this section we study the changes on an object-by-object basis for the subhaloes

of one simulation. Figure 3.12 shows the rmax and vmax values before the infall and

at redshift z = 0 for all four simulations. For all subhaloes the peak rotation velocity

decreases and for most of them the position of the peak moves inwards. This change is

not a step function at the redshift of accretion. It gradually increases with the time the

subhalo is orbiting in the main halo. This can be seen from Figure 3.13. Although the

scatter is huge, the average relative change in rmax or vmax is a rather smooth function

of the accretion redshift.

Figure 3.14 shows the mass-loss that the subhaloes suffer upon infall into the main

halo as a function of the distance from the centre of the main halo at redshift z = 0.

In the upper panel, the mass of the pre-infall halo is the FOF mass whereas for the

post-infall mass the subfind mass is used. As expected, all sub haloes suffer from tidal

stripping. This effect is stronger in regions of higher density. It is interesting to observe,

that this trend is clearly visible (solid histogram line for GA3n subhaloes) although only

a snapshot of the subhalo distribution is analysed. The fact that this trend is observable

in a snapshot means that the disruption-time of a subhalo - or the time where significant

mass loss is occurring -, is comparable to the time it takes a subhalo to cross the main

halo.

subfind determines the mass of the subhaloes by finding the particles that are gravita-

tionally bound to the substructure. This naturally results in smaller masses for subhaloes

that are closer to the centre of the main halo being deeper in the potential well. In order

to assure that the observed effect is neither due to the different algorithms used for the

mass determination (FOF for the pre-infall haloes and subfind for the subhaloes) nor

to the subfind itself, we redid the above analysis, this time only using the structural

parameters rmax and vmax. Assuming that the pre-infall haloes and the subhaloes have

NFW density profiles we can compute masses “m200” for all of them and determine the

mass loss as before. Some haloes seem to have gained mass which is an artefact from

the approximation with the NFW profile. The result of this test is shown in the lower

panel of Figure 3.14. It confirms our previous findings.
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3. Satellite Galaxies of the Milky Way

Figure 3.12: Change of rmax and vmax values of infalling subhaloes.
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3.2 The simulated Milky Way

Figure 3.13: Relative change of vmax and rmax of the haloes upon infall into

the main object as a function of its accretion redshift: The peaks of the subhalo

circular velocity curves are gradually decreasing and moving inwards.
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3. Satellite Galaxies of the Milky Way

Figure 3.14: Mass-loss fraction of haloes due to their infall into the main halo

as a function of their distance to the MW centre at z = 0. Although only one

“snapshot” of the evolution is analysed, the trend is clearly visible. The upper

panel shows the mass-loss computed directly with the FOF and subfind masses,

whereas for the plot in the lower panel only the (rmax, vmax) values have been

used and an NFW profile has been assumed.122



3.2 The simulated Milky Way

The resolution of the simulations, especially GA3n, is so high, that the orbits of

the subhaloes in the Milky Way potential can be followed up to high redshifts. An

interesting follow-up project would be to determine the full path of the subhalo and

track the evolution of structural parameters, correlating them with the initial orbital

parameters and the initial mass. This together with the infall distribution would make

it possible to better understand the buildup of DM haloes and would probably allow

improvement of semi-analytic modelling techniques (Kauffmann, White & Guiderdoni

(1993);Cole et al. (2000); Taylor & Silk (2003)).

3.2.2.4 Circular velocity curves

In this subsection we compute the circular velocity curves of subhaloes and fit analytical

profiles to them that can be used to predict the central velocity dispersions of observed

stellar distributions. Only a few such studies exist to date. Moore et al. (1999); Ghigna

et al. (2000) obtained profile fits from simulations like the GA-series. They found their

haloes to follow steep slopes of -1 to -1.5.

Figure 3.15 shows the circular velocity curves of a selection of the most massive sub-

haloes of GA3n. As mentioned we used only the gravitationally bound particles in

equation 2.3. The curves rise from the centre, peak at a distance of a few kpc and then

fall rapidly. The curves are narrower than the NFW profile (the dashed curve of the peak

for the circular velocity curve of the most massive subhalo). The corresponding density

profiles are thus shallower than the NFW density profile, in contrast to the findings of

Moore et al. (1999); Ghigna et al. (2000).

Our result however is consistent with the recent study of Hayashi et al. (2003). These

authors followed a different strategy: They studied the change of the density circular

and velocity profiles of dwarf galaxy DM haloes – set up initially with NFW profiles –

as they fell into a fixed NFW potential representing the Milky Way.

We fitted the circular velocity curves of our subhaloes with parabolae:

ln

(

Vcirc(r)

Vmax

)

= −a ln

(

r

rmax

)2

(3.13)

The stars in the observed Milky Way dwarfs extend to a few kpc typically. We therefore

adjusted the values of a so that equation 3.13 is a good fit to the data for r < rmax. In

this range the profiles are remarkably well fit by our formula. This is however misleading.

Extending the parabolic fit beyond (see also section 4.8)

rcore = rmax e−
1

2a (3.14)

would lead to a decline of the density in the centre which is clearly unphysical. For

r < rcore we therefore assume a constant maximal density for the profile. The rcore
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3. Satellite Galaxies of the Milky Way

Figure 3.15: Circular velocity curves for the GA3n subhaloes ranked 1, 2,

4,... 40 in mass (solid) together with corresponding parabolic fits (dotted). For

comparison an NFW profile (dashed) and a parabolic profile with a = 0.074

(dotted) - the value for the main halo - are overplotted on the most massive

subhalo. The vertical solid line shows the softening length, the diagonal line

shows the profile slope corresponding to a constant density.
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3.2 The simulated Milky Way

Figure 3.16: As Figure 3.15 for two representative circular velocity curves

taken from Hayashi et al. (2003). The corresponding a values are 0.16 (upper

curve) and 0.18 (lower curve), respectively.
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Figure 3.17: Subhalo circular velocity curves for the GA3n subhaloes 1, 4, 7

and 10. The solid lines show the profiles taking only the bound particles into

account. Dashed lines correspond to profiles using all particles within r of the

subhalo centre.

values are too small for equation 3.14 to be relevant in this chapter. It will be used

however in the next chapter.

Note that the definition of equation 3.13 differs from equation 1 of Stoehr et al. (2002).

To allow for simpler expressions in section 4.8 we changed to the natural logarithm. This

results in

athesis =
aStoehr et al 2002

ln(10)
≈ aStoehr et al 2002

2.3
(3.15)

Especially for r < rmax equation 3.13 provides excellent fits to all of the substructure

profiles in Figure 3.15 as well as for the halo profiles computed by Hayashi et al. (2003)

as shown in Figure 3.16. In the outer regions the profiles start to be under-predicted

where the potential gradient of the main halo at the position of the particles starts to

become comparable to that of the subhalo. The particles then start to be bound to the

main halo. This can be seen from Figure 3.17 which shows for the GA3n subhaloes 1, 4,

7 and 10 the circular velocity curves including all particles (dashed) and including only

the particles that are gravitationally bound to the subhalo (solid).
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3.2 The simulated Milky Way

Figure 3.18: a-values for the GA1n (filled circles), GA2n (open circles) and

GA3n (open squares) subhaloes with more than 300 particles.
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3. Satellite Galaxies of the Milky Way

Figure 3.19: (rmax,vmax) values for the four simulations (symbols as above).

The one-third most massive subhaloes are shown, i.e. 3 of GA0n (open trian-

gles), 13 of GA1n, 102 of GA2n and 780 of GA3n. The vertical lines correspond

to the softening lengths of the simulations, the diagonal line shows the fit 3.16

Figure 3.18 shows the values a for all of the subhaloes containing more than 300

particles in the simulations GA1n, GA2n and GA3n. There is a slight trend to smaller

rmax values for simulations with higher mass resolution.

Figure 3.19 shows the structural parameters (rmax, vmax) for the one third most

massive subhaloes in GA0n, GA1n, GA2n and GA3n, respectively. The vertical lines

indicate the softening lengths of the simulations. The solid diagonal line corresponds to

the fit

vmax = 7.08

(

rmax

kpc

)0.81

km/s (3.16)

3.2.2.5 Object-by-object comparison

The fact that the initial conditions of the GA-series were set up with identical small scale

displacement fields allows us to compare the subhaloes between simulations of different

resolution on a object-by-object basis.
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In Figure 3.20 we show the (rmax, vmax) values of the 10 most massive subhaloes

in GA2n that have counterparts subhaloes within the virial radii of GA3n. We find

that despite the highly non-linear nature of the system at low redshifts the agreement

between the values in the two different simulations is remarkably good. For all subhaloes

the a values are rather faithfully reproduced. There is a slight trend to larger rmax and

smaller vmax values for GA3n subhaloes. This agreement is even more striking as they

were run with different versions of gadget.

3.3 Observations

Although the satellites within the Milky Way halo are – per definition – closer than

about 270 kpc to the Sun, they are difficult to observe. Mateo (1998) shows that com-

pared to the assumed homogenous distribution over the sky, the dwarfs have been found

preferentially at high galactic latitudes where the contamination from the Milky Way

disk is small. This difficulty is also expressed by the fact that the last two dwarf galaxies

were only detected rather recently (Irwin et al. 1990; Ibata et al. 1994). The observed

number of 11 satellites of the Milky Way therefore is probably an underestimate of the

actual number.

The two largest satellites are the Magellanic clouds. The observed peaks of the circular

velocity curves are about 60 km/s at 2.5 kpc and about 50 km/s at 5 kpc for the SMC and

the LMC, respectively (Stanimirovic 2000; van der Marel et al. 2002). They are roughly

similar to the two most massive haloes in our simulation. Besides the two Magellanic

clouds, all 9 other satellites are dwarf spheroidals. The closest satellite is Sagittarius at

24 kpc from the Sun.

3.3.1 Milky Way dwarf spheroidals

The dwarf spheroidals contain no interstellar medium that could be used to determine

their rotation velocity curves. In addition, they have very low surface brightnesses so

that their kinematic structure can only be determined using radial velocities of individual

stars (Mateo 1994; Olszewski 1998). Additional observational difficulties are contamina-

tion by sky emission lines, and the need to faithfully reject stars that are not members

of the dwarf galaxy.

King (1962) found that the radial distribution of the stars in a globular cluster can be

well fitted by

ρ(r) =
k

πrc[1 + (rc/rt)2]3/2

[

arccos(z)/z − (1 − z2)1/2
]

z2
, (3.17)

129



3. Satellite Galaxies of the Milky Way

Figure 3.20: Upper left panel: rmax and a values for matching substructure

pairs in GA2n (open circles) and GA3n (dots). Although there is some scatter,

for some pairs the matching is very good. The horizontal line corresponds to

the a-value of the main halo. Upper right panel: The correlation between rmax

and vmax. There is a significant trend that GA3n subhaloes have lower peak

velocities which is due to the fact that GA3n has been run with an older version

of gadget. Lower panel: a-values of matching pairs. The agreement is quite

reasonable. The dashed lines show the main halo value.
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3.3 Observations

rc [kpc] rt/rc σ0 [km
s ] d [kpc]

Sagittarius 0.44 6.8 11.4(19) 24

Fornax 0.46 5.1 10.5 138

Leo I 0.215 3.8 8.8 250

Sculptor 0.11 13 6.6 79

Leo II 0.16 3 6.7 205

Sextans 0.335 9.6 6.6 86

Carina 0.21 3.3 6.8 101

Ursa Minor 0.20 3.2 9.3 66

Draco 0.18 5.2 9.5 82

Table 3.6: Core radii rc, tidal to core radius ratios rt/rc and central velocity

dispersions σ0 for the Milky Way dwarf spheroidals. The value in parenthesis

corresponds to the pre-disruption model of Helmi & White (2001)

where

z2 =
1 + r2/r2

c

1 + r2
t /r

2
c

. (3.18)

Here, k is a number factor, rc the core radius and rt the tidal radius. The core radius

is the radius at which the surface brightness has fallen to half of central value, the tidal

radius corresponds to the maximal extend of the stellar distribution. This profile also

provides good fits to the dwarf spheroidals. Table 3.6 gives values of rc and rt as well

as central velocity dispersions and distances from the Sun d for all the 9 known dwarf

spheroidals within the virial radius of the Milky Way, taken from Mateo (1998). (The

parameters k are not necessary for our analysis.)

3.3.2 Fornax and Draco

Only for Fornax (Mateo 1997) and Draco (Kleyna et al. 2001) have enough stars been

observed so that radial binning and therefore the determination of the velocity dispersion

profile is possible. High resolution spectra for 215 and 159 member giant branch stars

had been observed for Fornax and Draco, respectively. Their radial velocities have been

obtained from the Doppler shift of the star’s spectral lines.
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Figure 3.21: Velocity dispersion profiles for Fornax and Draco taken from

Mateo (1997) and Kleyna et al. (2001), respectively.
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3.4 Velocity dispersion

Figure 3.21 shows the corresponding projected one dimensional velocity dispersion

profiles. We compare predicted velocity dispersion profiles for these systems with the

full observed profiles in section 3.5.2.

3.4 Velocity dispersion

In this section we provide the formalism for the prediction of the central velocity dis-

persions or velocity dispersion profiles for a given distribution of stars in a spherical,

time-independent potential.

3.4.1 Phase space density

Describing a large system of gravitating point masses by two-body interactions, i.e.

~Fi = Gmi

∑

i6=j

mj~x

|~xi − ~xj |3
(3.19)

is cumbersome. A statistical treatment of the mass distribution as a whole is possible

when the system is non-collisional (see Binney & Tremaine (1987)). The distribution

function f(~x,~v, t), defined as the number density of point masses in phase space, fulfils

a continuity equation as the total number of point-masses is conserved

∂f

∂t
+

6
∑

α=1

∂(fẇα)

∂wα
= 0 (3.20)

where

~w = (~x,~v) = (x1, x2, x3, v1, v2, v3) (3.21)

and

ẇα = (~̇x, ~̇v) = (v1, v2, v3,−∇1Φ,−∇2Φ,−∇3Φ) (3.22)

For the special case where the force is only gravitation (in equation 3.22) the continuity

equation reduces to the collisionless Boltzmann equation

∂f

∂t
+

6
∑

α=1

ẇα
∂f

∂wα
= 0 (3.23)

because neither the velocities depend on the positions nor the gradient depends on the

velocities (Binney & Tremaine 1987).
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3.4.2 The Jeans equation

Although the whole system can be described with only seven variables now, for most

systems the solution is impossible. If we are interested only in mean quantities, like the

mean density and the mean velocity of the point masses

ρ =

∫

fd~v (3.24)

and

v̄i =
1

ρ

∫

f vi d~v (3.25)

we can integrate equation 3.23 over all velocities. With the definition of the radial

velocity dispersion

σr = v̄2
r (3.26)

the integrated collisional Boltzmann equation in spherical coordinates for a system in a

steady state can be transformed into the Jeans equation for a spherical system (Binney

& Tremaine 1987,pages 195-198,203,279)

1

ρ

d

dr
ρ(r)σ2

r (r) + 2β
σ2

r (r)

r
+

dΦ(r)

dr
= 0 (3.27)

where

β = 1 − σ2
θ(r)

σ2
r (r)

(3.28)

the coefficient of anisotropy at r. Assuming finally that the velocity distribution of the

point-masses, is isotropic, then β = 0. With

dΦ

dr
= G

M(r)

r2
=

V 2
circ(r)

r
(3.29)

we get
d

dr
ρ(r)σ2

r (r) =
ρ(r) V 2

circ(r)

r
. (3.30)

For a system of self-gravitating point-masses this equation has to be solved self-consistently,

i.e. the density ρ(r) must produce the potential Φ(r) corresponding to Vcirc. The equa-

tion however is also applicable to a subsystem of negligible mass (i.e. the stars) that

orbits in a given potential, i.e. the potential of the DM.

Integrating this over r with the additional constraint that ρ(r) = 0 for r ≥ rt we find

ρ(r)σ2(r) =

∫ rt

r

ρ(r′) V 2
circ(r

′)

r′
dr′ (3.31)
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Figure 3.22: Line of sight projection at projected radius rp through a spherical

dwarf galaxy with tidal radius rt

These 3D values have to be projected on the sky in order to be able to compare them

with the observed ones.

For a spherical stellar system, - with the geometry of Figure 3.22 - we can evaluate

the mean line-of-sight density

ρp(rp) =
1

(r2
t − r2

p)
1/2

∫ (r2
t −r2

p)1/2

0
dz ρ(r2

p + z2) = (3.32)

=
1

(r2
t − r2

p)
1/2

∫ rt

rp

dr
ρ(r) r

(r2 − r2
p)

1/2
(3.33)

where for the last step we used the substitution r = (r2
p + z2)1/2. In the same manner

we can project equation 3.30

ρp(rp)σ
2
p(rp) =

1

(r2
t − r2

p)
1/2

∫ (r2
t −r2

p)1/2

0
dz ρ((z2 + r2

p)
1/2) σ2((z2 + r2

p)
1/2) =

=
1

(r2
t − r2

p)
1/2

∫ (r2
t −r2

p)1/2

0
dz

∫ rt

z
dr

ρ(r) V 2
circ(r)

r
=
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interchanging the integrals and updating the integration boundaries gives

=
1

(r2
t − r2

p)
1/2

∫ rt

rp

dr

∫ (r2
t −r2

p)1/2

0
dz

ρ(r) V 2
circ(r)

r
=

=
1

(r2
t − r2

p)
1/2

∫ rt

rp

dr
ρ(r) V 2

circ(r)

r

∫ (r2
t −r2

p)1/2

0
dz =

=
1

(r2
t − r2

p)
1/2

∫ rt

rp

dr
ρ(r) V 2

circ(r)

r
(r2

t − r2
p)

1/2 (3.34)

The line-of-sight velocity dispersion σp is then finally

σ2
p(rp) =

∫ rt

rp
dr ρ(r) V 2

circ(r) (r2 − r2
p)

1/2 / r
∫ rt

rp
dr ρ(r) r / (r2 − r2

p)
1/2

. (3.35)

3.5 Comparison

3.5.1 Central velocity dispersions

With this formalism we can now calculate the expected the central velocity dispersion of

the stellar distribution of the observed dwarf spheroidals (table 3.7 and equation 3.35)

within the gravitational potential of the simulated subhaloes (Figure 3.15 and equation

3.13).

As it is impossible to tell which stellar distribution may reside in which type DM

halo, we compute the central velocity dispersion values for each stellar distribution of

the nine dwarf spheroidal galaxies orbiting in all of of our 30 most massive subhaloes

of GA3n. We then count – for each galaxy – the number of subhaloes for which the

predicted central velocity dispersion is larger than observed. This number is the number

of subhaloes that are more massive than the real DM haloes of the dwarf galaxies.

We have carried out this exercise twice. Once, using the circular velocity profiles of

equation 3.13 with the values of a obtained from our simulation, once using a = 0.16 for

all subhaloes. This value is an upper bound for the subhalo halo profiles from Hayashi

et al. (2003). The resulting profiles resemble that of the most concentrated of their

subhaloes. This is conservative for our purpose.

The numbers in Table 3.7 show a remarkable result. For the GA3n subhaloes, all 11

of the satellites of the Milky Way can be accommodated within the 21 most massive

subhaloes, and all but two can be accommodated within the 10 most massive.

Assuming the conservative estimate from Hayashi et al. (2003) all dwarfs can be accom-

modated within the 22 most massive subhaloes and all but three can be accommodated

within the first 10 (all but two if the higher dispersion value is adopted for Sagittarius).
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3.5 Comparison

NGA3n NHayashi

Sagittarius 7(0) 15(1)

Fornax 9 18

Leo I 0 1

Sculptor 0 2

Leo II 0 0

Sextans 21 22

Carina 1 8

Ursa Minor 0 0

Draco 0 0

Table 3.7: Number of simulated subhalo profiles that predict a larger central

velocity dispersion than that observed, i.e. the number of the 30 most massive

simulated subhaloes that are more massive than the DM haloes of the observed

dwarf spheroidals.
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Given that substantial realization-to-realization fluctuations are expected in the prop-

erties of the more massive subhaloes, there is a surprisingly good agreement between the

kinematics of the observed satellites and those predicted by our ΛCDM simulation.

In contrast to Moore et al. (1999) and Klypin et al. (1999) we therefore find that

the observed DM haloes are not required to be less massive than those found in our

simulation.

3.5.2 Velocity dispersion profiles

For Fornax and Draco (section 3.3.2) an even closer comparison is possible. Figure

3.23 shows the predicted velocity dispersion profiles for the 20 most massive subhaloes

(dotted). They are plotted over the data from Figure 3.21. The two best fitting profiles

are shown in thick lines. The dashed lines show the corresponding circular velocity

curves. The dot-dashed line shows the profile of the stellar distribution (values on the

right axis).

The agreement is remarkably good. Not only the value of the central velocity disper-

sion, but also the shape of the dispersion profile can be correctly predicted. Within the

given uncertainties, this is equally true for the profiles taken directly from our simulation

GA3n and for the most concentrated profiles of Hayashi et al. (2003).

This result means also, that, although the velocity dispersion profile is flat, the mass

distribution corresponding to equation 3.13 is in very good agreement with the observa-

tions. This mass distribution differs strongly from NFW form, and even more from an

isothermal mass distribution.

The predicted peak velocities of the circular velocity curves for the models of Fornax

are in the range of 33 to 51 km/s. The ones for Draco in the range of 48 to 68 km/s.

These values are higher than the central velocity dispersions of Fornax and Draco by

factors substantially larger than the factor of
√

3 that would be correct if the stars had

the same radial distribution as the DM.

It is a curious that the observational data requires Fornax and Draco to have more

or less similar DM haloes, i.e. rather similar peak velocity values, despite the fact that

their luminosities differ by a factor of almost 60.

Very recently Klessen, Grebel & Harbeck (2003) tried to fit a non-DM dominated

model to Draco using data from the Sloan Digital Sky Survey (SDSS). As no model

was able to fit all the requirements they concluded – as we do – that the Draco dwarf

spheroidal galaxy is strongly DM dominated.
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3.5 Comparison

Figure 3.23: Predicted velocity dispersion profiles (dotted) for Fornax and

Draco using the DM profiles of our 20 most massive subhaloes on GA3n. The

two best fitting models for each dwarf spheroidal are shown with thick solid

lines. The dashed lines correspond to the circular velocity curves of these best-

fit dispersion profiles. King-profile fits to the stellar distributions are shown in

dot-dashes (values given at the right axis). The horizontal line corresponds to

the central dispersion value given by Mateo (1998). The data are from Mateo

(1997) and Kleyna et al. (2001).
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Figure 3.24: As Figure 3.23 but for the DM profiles using the conservative fits

to Hayashi et al. (2003) setting a=0.16 for all substructure profiles.
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3.6 Conclusions

The last two sections show that the potentials of the most massive subhaloes in our

ΛCDM simulation are in excellent agreement with the observed kinematics of the Milky

Way’s satellites. There is some reason to be cautious, because our subhalo concentrations

could be significantly underestimated as a result of numerical limitations, in particular

the relatively large gravitational softening and particle mass in even our highest res-

olution simulation. We have argued from a comparison of simulations with differing

resolution that the induced bias in the values of Vmax and rmax is small for objects

as massive as those which concern us here. Furthermore, our subhalo circular velocity

curves agree well at small radii with those which Hayashi et al. (2003) obtain from sim-

ulations of the tidal stripping of individual satellites. These authors explain why tidal

effects produce objects with lower central concentration than isolated haloes of similar

maximum circular velocity. Even adopting the most concentrated profile consistent with

their simulations has only a minor effect on our analysis. (Compare the rankings for

the two cases in Table 3.7.) On the basis of the currently available observational and

simulation data, it seems more appropriate to consider the observed kinematics of the

Milky Way’s satellites as a triumph for the ΛCDM model than as a crisis.

If the observed dwarf spheroidals do indeed have dark haloes of the kind that both

we and Hayashi et al. (2003) suggest, there are a number of interesting consequences.

In the first place, the measured “tidal radii” can have nothing to do with tidal effects,

but must reflect an edge to the visible stellar population within a much more extended

dark halo. This kind of structure appears to be a direct and inevitable consequence of

the flat or rising velocity dispersion profiles measured in Fornax and Draco. Tidal tails

and extra-tidal stars should not, then, be present in most systems.

On the other hand we know that disruption will occur inevitably in some systems.

The stars of these subhaloes are tidally stripped and may be detected in streams today

(Helmi & White 2000). Although there is no problem accommodating a few disrupting

objects like Sagittarius and perhaps Carina (Majewski et al. 2000) it would become un-

comfortable if tidal stripping were detected unambiguously in most of the other systems.

A second consequence is that the total mass associated with the dwarf spheroidals is

much larger than usually assumed. The tenth most massive subhalo in our GA3 sim-

ulation has a bound mass of 1.6 × 109M¯ and its progenitor system was several times

more massive just before it fell into the Milky Way’s halo. This sharpens the problem

in understanding why the dwarf spheroidals have formed stars with such low efficiency;

their stellar masses lie in the range 106 to 108M¯. Clues presumably lie in their compar-

atively narrow ranges of size and velocity dispersion, and in their surprisingly varied star

formation histories (Mateo 1998). Finally, if the observed satellites do occupy the most
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massive subhaloes in a ΛCDM model, then many smaller subhaloes are presumably also

present but are devoid of stars. It is interesting to look for observable consequences of

their existence. Dynamical effects, for example heating or distortion of the Galactic disk

or scattering of the orbits of visible halo objects, are weak, and are dominated by the

most massive subhaloes rather than by their more abundant low mass brethren. Such

effects may, nevertheless, be detectable in favourable cases (Font et al. 2001; Johnston

et al. 2002). It may also be possible to detect substructure in gravitational lens galax-

ies through the statistics of flux ratios in samples of multiply imaged quasars (Mao &

Schneider 1998; Chiba 2002; Dalal & Kochanek 2002; Kochanek 2003); again the effects

are dominated by the few most massive subhaloes. If dark matter detection experiments

are successful, it may become feasible to search for structure in the dark matter distribu-

tion at the Earth’s position. Detailed analysis suggests that in a ΛCDM model the signal

will be difficult, but perhaps not impossible, to see (Helmi et al. 2002). Even detecting

substructure from possible DM annihilation in the near future might be possible (see

next chapter).

The fact that the core structure of satellite subhaloes in a ΛCDM model agrees with

the kinematics of observed satellites is prima facie evidence against dark matter with

modified properties, for example, Warm dark matter or Self-Interacting dark matter.

In recent work, the primary motivation for considering such modifications to the mi-

croscopic physics of the dark matter particles has been to reduce the concentration of

haloes and the abundance of substructure (e.g. Spergel & Steinhardt (2000); Yoshida

et al. (2000); Bode et al. (2001b)). A significant reduction of the central concentration

of satellite subhaloes in our simulations would, however, make it difficult to produce

satellites with velocity dispersions as large as those observed.
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4.1 Introduction

The nature of the dark matter (DM) in the Universe is one of the most prominent

unsolved questions in cosmology. As mentioned in section 1.2.2, there is evidence for

non-visible matter on all scales and most of it must be composed of some as yet unknown

non-baryonic particles. This follows from measurements of the actual matter density and

from the predictions of Big Bang Baryon Nucleosynthesis, both of which are considered

well established. Much effort is underway to find the DM particle. Although there

is some chance that it can directly be detected in particle accelerators like LHC at

CERN, many theoretical models propose candidates with masses out of reach of these

experiments.

For this reason, other techniques for detecting DM particles in the local Universe

have been pursued. One of them is to search for γ-radiation from self-annihilation of

the candidate particles. As this signal scales with the square of the DM density, high

density regions within the Milky Way halo, both at the centre of the Galaxy and at the

centres of its satellite galaxies, are relevant.

In addition to sources in our own Galaxy, extragalactic sources, especially nearby

galaxies (M87, Baltz et al. (2000) and M31 Nuss et al. (2002)) have been considered.

Due to the large distance from our observing position, however, the corresponding signals

are expected to be very weak. Recently, the homogenous extragalactic background of γ-

annihilation radiation, produced by structure formation as a whole, has been investigated

(Ullio et al. 2002).

Finally, other very strong DM concentrations, for example around the central black

hole of our Galaxy, could provide a strong annihilation signal. Most recent studies

suggest however, that the corresponding contribution is rather low (Merritt et al. 2002).

Depending on the nature of the annihilating particle, its annihilation flux can be

estimated and its detectability with current or planned γ-ray telescopes assessed. De-

tectability estimates have varied a lot during the last few years. This is partly due to

the fact that the matter density, previously assumed to be Ωm = 1, turned out to be

lower: Ωm ≈ 0.3. In addition, different assumptions about the structure of DM haloes

strongly effect the total radiation prediction. Uncertainties of a factors of 1 to 100 have

been discussed (Bergström et al. 1998; Baltz et al. 2000).

As the annihilation radiation signal depends on the DM density distribution, N-

body simulations of DM structure formation are an ideal tool for a study of DM self-

annihilation. They readily return the DM density distribution for given cosmological

initial and boundary conditions. For the study of annihilation radiation in this chapter

we use the high resolution simulations presented in chapter 3. This series includes the

highest resolution simulation of a galaxy halo to date.
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The chapter is organised as follows. In section 4.2 we give a short overview of candidate

particles, supersymmetry, DM detection experiments and the annihilation process itself.

We then discuss the properties of our simulations as they affect the DM annihilation

(section 4.3), compute the luminosities from the smooth Milky Way halo (section 4.4)

and from the substructure (sections 4.5 and 4.6). We briefly analyse the distribution

of the subhaloes in our highest resolution simulation (4.7) and present the detectability

computation in section 4.8 and 4.8.1. We conclude in section 4.9.

4.2 Dark matter

4.2.1 Candidate particles

The candidates for dark matter, from elementary particles to black holes, span about

75 orders of magnitude in mass. The most important candidates for baryonic DM are

brown-dwarfs, “Jupiters” and 100 M¯ black-holes. The bulk of the dark matter however

is probably made of non-baryonic DM particles. They split into three classes: Neutrinos,

Axions and WIMPS.

Heavy tau and/or muon neutrinos (2 to 100 eV) once seemed to be good candidates,

especially because they are known to exist. Neutrinos however are too light. They

cannot make up all the required DM density and simultaneously fulfil the requirements

of the current best-fit CDM scenario (Hut & White 1984). Axions, non-thermal relics

from the Big Bang, are predicted from a newly introduced symmetry in QCD that is

used to solve the CP violation problem (Peccei & Quinn 1977).

Another very well motivated DM candidate class is a weakly interacting massive par-

ticle (WIMP). The idea is that WIMPs were thermally created during the Big Bang

and decoupled from the photon field at temperatures corresponding to the WIMP mass.

Whereas annihilation and creation were in equilibrium at high temperatures, as the den-

sity dropped, WIMP annihilation became rare because the probability of a WIMP to

find another one became small. The WIMP number density “froze out” and so a large

number of WIMPs remains today.

The thermally averaged annihilation cross section 〈σv〉 is roughly equal to

〈σv〉 =
10−26 cm3s−1

ΩWIMP
(4.1)

where ΩWIMP = ΩDM if the WIMP is the DM particle. The most probable WIMP

candidates have masses in the range of 50 to 104 GeV/c2.
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4.2.2 Supersymmetry

In most of the theories that try to combine quantum field theory and gravity the intro-

duction of a new symmetry is required. This “supersymmetry” is a symmetry between

particles with and without spin, i.e. fermions and bosons, respectively. Postulating

the existence of such a symmetry, every particle with spin must have a related “super-

particle” without spin. Although this symmetry doubles the number of particles and

none of the new particles has been detected so far, it is very popular. The reason is

that it overcomes the “gauge hierarchy problem”. It turns out that severe fine-tuning

of the parameters of the standard particle model is necessary to tame large quantum

corrections to the Higgs mass. The new symmetry would magically remove the necessity

of this fine-tuning. Unwanted terms in the perturbation approach cancel because of the

new particles that differ only in their spin. This is considered much more “natural”.

Although none of the new particles yet has been detected they have been given names:

The no-spin-partners of the fermions get the prefix “s” (selectron, squark, sneutrino, etc.)

and the spin-partners of the bosons get the ending “-ino” (photino, gravitino, etc.). The

super-particles that have the same quantum numbers can mix. The lightest of these

mixing states is stable if the symmetry is conserved. This mixing state is called the

neutralino. The self annihilation of this WIMP is considered in this chapter.

The straight-forward supersymmetric generalisation of the standard model of particle

physics is called the Minimal Supersymmetric Standard Model (MSSM). “Minimal”

means that the number of new fields (superfields) and interactions is kept as small as

possible. We will use predictions of this model to compute the detectability of the

WIMP-signal in section 4.8.

4.2.3 Dark matter search

If the mass of the WIMP is accessible with accelerator experiments, this technique

surely is the most suited for the detection. The chances are good, especially with the

new hadron collider LHC at CERN. It is supposed to reach energies of 16 TeV and will

start operating in 2005. However, the energies reachable in the laboratory are limited

and it may well be that the only remaining possibility for the detection of the WIMP

particles is to observe those that exist in the Universe already.

There are good chances that the particles that make up the halo of the Milky Way

can be detected directly by elastic scattering in suitable detectors on Earth. Due to the

weak interaction, the event rates are very low (of the order of 10−4 events per year and

per kg of detector material). In addition, the deposited energy is very small (of the order

of keV).

For this reason, a growing effort has been dedicated to detecting WIMPs through the
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energy deposited by elastic WIMP-nucleon scattering in massive, cryogenically cooled

bolometers where the phonons of a scattered WIMP can be measured. The first results

of these detectors seem promising, but building large detectors still remains a huge

challenge (Klapdor-Kleingrothaus & Zuber 1997).

A different detection strategy is possible if WIMPS are Majorana particles. In this

case, pair-annihilations can occur, producing high-energy neutrinos, positrons, antipro-

tons and γ-rays. The resulting γ-ray fluxes might be detectable with current or next-

generation γ-ray telescopes.

Two γ-ray signatures are produced. When the WIMPs annihilate directly into two

γ-rays or into one γ-ray and a Z◦ Boson, very sharp line signals are produced. Although

this signal would be a “smoking” gun for the presence of WIMPs, the line-flux is very

small. Many more photons are produced when the WIMPs annihilate into quarks which

fragment into π0 mesons which then decay to γ-rays. This signal is much easier to detect.

It lacks however a clear feature so that a careful discrimination between the possible DM

annihilation and other processes producing γ-rays (cosmic rays, accelerated electrons) is

required.

Both ground-based Air-Shower-Čerenkov (ACT) and space-borne telescopes might be

able to detect annihilation γ-rays. When high energetic γ-rays hit the atmosphere of

the Earth, they induce a shower of secondary particles which themselves decay mainly

into photons, muons and neutrinos. The photons create e+e− pairs which cascade their

energy down by bremsstrahlung and Compton-scattering. The Čerenkov light can be

detected on the ground in moonless nights with photo-multipliers. The discrimination

between γ-ray induced showers and showers from cosmic-rays can be done by measur-

ing the form of the shower on the ground. The Čerenkov light cones from γ-rays are

much narrower than the cosmic ray induced ones. This discrimination is crucial for the

observation, as less than 1% of the detections stem from γ-rays.

Space-borne telescopes such as egret and the planned glast satellite instrument,

detect γ-rays by pair-production in the detector material. To discriminate the γ events

from cosmic rays, an anti-coincidence detector sensitive to charged particles is built

around the calorimeter.

Space-borne telescopes have the advantage of a rather low energy threshold, typically

in the MeV range. In this low energy range many photons are expected. Typical ACT

thresholds are of the order of 50 GeV. On the other hand, the effective area of space

borne detectors is tiny (< 1m2) compared to the large area covered by ACTs (typically

104m2).

The γ-ray observations can be used to constrain WIMP parameters, in particular the

self-annihilation cross-section and the particle mass. However, so far neither technique

has detected a DM particle.
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4.2.4 Annihilation

Predictions of the expected flux from the annihilation of DM particles require not only

the particle parameters but also a detailed knowledge of the structure of regions of high

DM density, i.e. of DM haloes. This is because the annihilation flux (in photons/cm2/s)

may be written as:

F =
Nγ 〈σv〉
2 m2

DM

∫

V

ρ2
DM (x)

4π d2(x)
d3x , (4.2)

where Nγ is the number of photons produced per annihilation, 〈σv〉 is the averaged

product of cross-section and relative velocity, ρDM is the DM density, V is the halo

volume, mDM is the mass of the DM particle and d the distance from each point in the

halo to the observer. The density squared weighting of the integrand in this equation

results in most of the flux in dark matter haloes being produced by the small fraction of

their mass in the densest regions.

As mentioned, two specific regions have been suggested as dominating the annihilation

signal from haloes. A large contribution could come from the innermost part of the halo.

For a distant spherically symmetric system equation 4.2 becomes

F =
Nγ 〈σv〉
2 d2m2

DM

∫ r200

0
ρ2

DM (r)r2dr , (4.3)

so if the inner density profile is ∝ r−1.5 or steeper, the emitted flux diverges at the

centre. A lower cut-off must then be specified on physical grounds, for example at the

point where the annihilation timescale for the DM becomes equal to the lifetime of the

halo. This divergent case may be relevant since at least some high resolution numerical

simulations have suggested that the inner cusps of DM haloes could be this steep (Moore

et al. 1999; Calcanéo-Roldán & Moore 2000), but contrast with Power et al. (2003) and

our own simulation data in section 4.3).

A second contribution can come from small-scale structure in the DM distribution in

the halo. It is now well known that 5 to 10% of the halo mass in Cold Dark Matter

(CDM) haloes is contained in gravitationally self-bound substructures (Moore et al.

1999; Klypin et al. 1999). If the central regions of these subhaloes are dense enough

they may produce a substantial fraction of the total annihilation radiation from the halo

(Calcanéo-Roldán & Moore 2000).

In recent years, advances in integrator software, multi-mass initial condition techniques

and computer speed have made it possible to simulate the DM halo of the Milky Way with

sufficient resolution to see the dense structures which would dominate the annihilation

signal.
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4.3 N-body simulations

In this chapter we use the N-body simulations presented in chapter 3 to predict the

annihilation flux from a CDM halo similar in mass to the Milky Way’s halo. Figure 4.1

shows the projected density weighted DM distribution which corresponds to an image

of its annihilation radiation. The upper panel shows the distribution in linear scale, the

lower panel in logarithmic scale. The total luminosity from the centre of the galaxy

outperforms by far that from the subhaloes. The plotted region has a sidelength of one

times the virial radius of the galaxy, i.e. 270 kpc.

The use of simulations for this approach has the advantage over semi-analytic tech-

niques (Taylor & Silk 2003; Tasitsiomi & Olinto 2002) that the full history, dynamics

and structural change of the main halo, but especially of the substructure haloes, is

available. As the annihilation luminosity is strongly dependent on the structure of the

highest density regions, which are by construction the ones that are the most difficult

to obtain, any approximation can have large influence on the detectability prediction.

4.4 Smooth halo luminosity

The most crucial parameter determining the annihilation rate in the smooth halo is the

point at which the slope of its density profile passes through the critical value −1.5. Most

of the annihilation radiation will come from this region. As it is difficult to distinguish

the slopes in logarithmic plot of density against radius, we use circular velocity curves.

In Figure 4.2 we show circular velocity profiles

Vc(r) =

(

G M(< r)

r

)1/2

=

(

G

r

∫

V (r)ρDM (x) dV

)1/2

, (4.4)

where V (r) is the region within distance r of halo centre.

As mentioned in section 3.2.2.1 we find the NFW profile

ρ(r) =
3H2

0

8πG

δc

cx (1 + cx)2
(4.5)

with x = r/r200 and c = 10 to be a reasonably good fit to our data outside the inner

core region. A better fit is a parabolic function of the form proposed by SWTS with a

width parameter of a= 0.17 (the dotted curve in the figure, a=0.074 for equation 3.13).

This profile has a substantially shallower density profile at small radii than the NFW

profile. The measured circular velocity profiles of GA2n and GA3n agree very well,

but a comparison with GA1n and GA0n suggests that this apparent convergence is in

part a fluke. The curves for the two lower resolution simulations converge to within 5%
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Figure 4.1: Upper panel:The distribution of DM in our highest resolution

simulation GA3n. The region displayed is a cube of side 1080 kpc, i.e. four

times r200. Each particle is weighted by its local density so that the picture

represents an image in linear annihilation radiation. Lower panel: The same

image in logarithmic scale.
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4.4 Smooth halo luminosity

Figure 4.2: Circular velocity curves for the simulations GA0n, GA1n, GA2n

and GA3n. The vertical line indicates the location of the virial radius r200. The

best fit NFW profile with concentration c = 10 is plotted in long dashes. A

fit of the form proposed by SWTS with a=0.17 is shown in dots (a=0.074 for

equation 3.13). At small radii, the slope for GA3n is considerably below that

corresponding to a density profile with ρ ∝ r−1.5.
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of the high resolution answer beyond about 5 times their respective softening lengths.

Assuming this to be true for GA2n and GA3n also, the inner slope of the density profile

of our simulated halo is already established to be well below −1.5. With this criterion,

convergence for GA3n is achieved just outside 1 kpc or at about 0.4% of r200. This agrees

with the expectation from the convergence study of Power et al. (2003) who performed

a large number of simulations of several haloes using two different N-body codes as well

as a wide variety of code parameters (timestep, softening, particle number, etc.).

The concentration parameter for our NFW fit to our halo is c = 10. Thus, δc =

4.48 × 104 and the above value of r200 implies a scale radius rs = 27 kpc, and a density

at the Sun’s position (r0=8.0 kpc) of ρ0 = 1.2 × 107 M¯/kpc3 = 0.46 GeV c−2cm−3.

For our NFW fit, half of the annihilation radiation is predicted to come from within

0.26rs which is 7 kpc. Thus the resolution in GA3n appears easily sufficient to measure

the bulk of the emission, even though still better resolution would clearly be desirable.

Unfortunately, the numerical situation will not improve dramatically in the next few

years unless revolutionary new techniques are discovered. As discussed at length by

Power et al. (2003), an increase in halo particle number by (say) two orders of magnitude

would provide an increase in length resolution at halo centre by at best a factor of ten.

Many authors have tried to determine the inner slope of dark halo density profiles

through physically based analytic arguments (Peebles 1980; Hernquist 1990; Syer &

White 1998; Nusser & Sheth 1999; Subramanian et al. 2000; Dekel et al. 2002) but despite

some interesting ideas a convincing final answer is still missing. For the purposes of this

work the critical issue is whether the slope of the density profile interior to the points for

which it has so far been estimated accurately from simulations (i.e. at radii below 1 kpc)

remains significantly shallower than -1.5. If it does, then the integral over the smooth

halo density distribution is convergent and can be estimated reasonably accurately from

high resolution simulations, for example from GA3n which is currently the best resolved

simulation of a galaxy halo ever carried out.

Bergström et al. (1998) show that for the case where a smooth NFW halo, similar to

that of Figure 4.2, is a good description of the Milky Way’s halo, the γ-ray flux may

just be detectable for some MSSM models with the next generation telescopes. This flux

could, however, be significantly enhanced if the density distribution within the halo is

sufficiently clumpy (Bergström et al. 1999; Calcanéo-Roldán & Moore 2000). Ullio et al.

(2002) find that without clumpiness enhancing the total flux by a factor of 10 or more,

the high-galactic latitude γ-ray background as measured by EGRET can not be the

result of DM annihilations. We now estimate whether the clumpiness of our simulated

haloes is enough to produce a large enhancement.
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4.5 Halo substructure

In GA0n, GA1n, GA2n and GA3n the total mass in gravitationally bound substructures,

identified with subfind, is 1.7%, 3.0%, 5.1% and 4.1%, respectively; the fluctuations are

due to the exclusion or inclusion of one or two massive satellites within the radius r < r200

we consider to define the halo boundary. These percentages are very similar to those

found in the cluster simulations of Springel et al. (2001a).

4.5.1 Subhalomassfunction

In Figure 4.3 we show the abundance of substructures as a function of mass fraction

for our highest resolution simulation GA3n, as well as for S4, the highest resolution

simulation of Springel et al. (2001a).

These two mass functions are remarkably similar and are very close to a power-law

dn/dm ∝ m−1.78 as shown by the solid line in the figure. They are consistent with the

findings of other authors (Moore et al. 1999; Klypin et al. 1999; Metcalf & Madau 2001;

Font et al. 2001; Helmi et al. 2002) although the range of values (1.75 to 1.9) suggests

that the close agreement between these two particular haloes is likely to be a fluke. Some

variation is undoubtedly due to the fact that different authors use different algorithms to

define substructure, but these effects have not yet been studied in detail. Note that such

slopes are also found at low mass for the mass function of isolated haloes in a ΛCDM

Universe, suggesting that the fraction of mass lost depends only weakly on the initial

mass of an accreted DM halo. These slopes are shallow enough to ensure that most of

the mass in substructures is contained in the few most massive objects. Thus we do not

expect the total mass in substructure to increase significantly as resolution is extended

below our current limit. In GA3n there are 1973 subhaloes with more than 20 particles.

As suggested by Bergström et al. (1999) and Calcanéo-Roldán & Moore (2000), if these

subhaloes are sufficiently concentrated, they can make a substantial contribution to the

total annihilation flux from the halo. Just as for the main halo, the critical question

is the structure in their inner regions, in particular, whether they contain more or less

mass at the highest densities than does the core of the main halo. Recently Hayashi

et al. (2003) carried out high resolution simulations of the tidal stripping of satellites

to assess how their internal structure is affected by the removal of the outer material.

Their results show clearly that the stripping process reduces the density of an accreted

object at all radii, not just in its outer regions. Thus tidal effects progressively lower the

annihilation luminosity of an accreted system. If its γ-ray flux was convergent in the inner

regions while it was an independent system, then it converges even more rapidly once it

has become a partially stripped “satellite”. Both the individual satellite simulations of
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Figure 4.3: Subhalo mass function for the GA3n (Milky Way) and S4 (Cluster)

simulations. Subhaloes identified by subfind and with ten or more particles are

included in these distributions.

Hayashi et al. (2003) and the results plotted in SWTS, suggest that the inner structure

of halo substructures corresponds to density profiles shallower than NFW.

4.6 Substructure luminosity

We now proceed estimate the annihilation luminosity of our simulations directly in order

to evaluate how much of the flux is contributed by the various different parts of the

system. To do this we evaluate the “astrophysical” part of equation 4.2 in the form

J =

∫

V
ρ2

DM dV =

N200
∑

i=1

ρi mi , (4.6)

where ρi is an estimate of the DM density at the position of the ith particle, mi is its

mass, and N200 is the total number of particles within r200. With this representation of

the flux, it is easy to evaluate the contribution from any sub-element of the halo simply

by restricting the sum to the relevant particles. We will consider how these Js should

be converted into γ-ray detectability limits for various WIMP parameters in section 4.8.
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Figure 4.4: Cumulative number of subhaloes in the four simulations GA0n,

GA1n, GA2n and GA3n down to 20 particle subhaloes.

4.6.1 Density estimation

The quality of our estimate of J will obviously depend strongly on the quality of our

estimates of DM density. For a given simulation we would like these estimates to have

the maximum possible resolution. We have elected to determine the ρi by Voronoi-

tessellation. This procedure uniquely divides three dimensional space into convex poly-

hedral cells, one centred on each particle, defined to contain all points closer to that

particle than to any other. Figure 4.5 shows a two-dimensional example.

The density estimate for each particle is then its mass divided by the volume of its

cell. We have used the publicly available package Qhull1 to make these estimates. One

major advantage of this scheme in comparison, say, to density estimation with an SPH

kernel is that it is parameter-free and has very high resolution; the density estimate for

each particle is determined by the position of its few nearest neighbours. Another is

that it is unbiased and that the sum
∑N200

i mi/ρi recovers the full volume.

1www.geom.umn.edu/software/qhull/
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Figure 4.5: 2-dimensional example of a space-decomposition with Voronoi-

tessellation. The particles are shown by squares.

4.6.2 Enhancement due to substructure

4.6.2.1 Flattening and discreteness

A direct numerical evaluation of J using equation 4.6 will differ from the value obtained

by carrying out the appropriate integral over the circular velocity curves of Figure 4.2.

This is because any deviation from strict spherical symmetry results in the sum of miρi

over a spherical shell being larger than the product of its total mass and its mean

density. Thus flux “enhancements” will result from bound subhaloes, from unbound

streams, from the overall flattening of the halo and from noise in the density estimates

due to discreteness effects.

The enhancements due to flattening and discreteness effects can be estimated from

DM haloes with random particle positions set up to have an NFW density profile. Such

haloes can be constructed as follows.
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Figure 4.6: The sum J , which is proportional to the expected annihilation

luminosity, is plotted as a function of subhalo mass for all subhaloes with more

than 20 particles in GA0n (circles), GA1n (crosses), GA2n (dots) and GA3n

(triangles). The values of J for the main haloes as a whole are also indicated

using the larger symbols. Subhaloes with the same J/M as the GA3n main halo

would lie on the solid line. The dashed line corresponds to a 4 times larger value

of J/M . Vertical lines indicate subhalo masses corresponding to 100 particles in

each of the four simulations. Above these limits subhaloes in all four simulations

have similar values of J/M with no obvious trend with subhalo mass.

In spherical coordinates and for a spherically symmetric density distribution

ρ =
dM

dV
=

m dn

dV
(4.7)

the number density is

dn =
1

m
dϕ sin(θ) dθ ρ(r)r2dr (4.8)

We draw linearly distributed random numbers x, y and z in the interval [0..1]. They

have to be mapped on the variables ϕ, θ and r. This can be done by integrating the

differential mapping and solving for the original variables. For ϕ this is trivial. For θ we

find

dy = sin(θ) dθ ⇒ y = − cos(θ) ⇒ θ = arccos(−y) (4.9)
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For the interval [0..1[ for the random numbers, the mapping is

ϕ = 2π [0..1[

θ = arccos(−1 + 2 [0..1[) (4.10)

For constant density the z-mapping is reversible

dz = r2dr ⇒ z =
1

3
r3 ⇒ r =

3
√

3 z

r = rvir
3
√

[0..1[. (4.11)

For a NFW halo

z =





ln
[

1 + c
rmax

r
]

+ 1/(1 + c
rmax

r) − 1

ln [1 + c] + 1/(1 + c) − 1



 (4.12)

which can not be reversed but allows one to produce a look-up table: z runs from [0..1]

for r from 0 to rmax. With equations 4.10 and 4.12, the particle positions (sin(θ) cos(ϕ) r,

sin(θ) sin(ϕ) r, cos(θ) r) can be obtained for the desired number of particles.

For our artificial NFW haloes we find that in any region where the mean particle

separation is small compared to the length-scale for density variations, our Voronoi

scheme will give 22% more flux than what is estimated from average densities in spherical

shells. For an ellipsoidal NFW halo with axial ratios 1:1.2:1.8, similar to what we measure

in the inner regions of our simulated haloes, the enhancement due to the flattening is

about 15%. The enhancement due to bound structures is estimated explicitly below.

4.6.2.2 Selfsimilarity

If subhaloes were simply scaled down copies of the main halo, then their fractional

contribution to the annihilation luminosity of the system would be the same as their

fractional contribution to its mass, i.e. roughly 5%. However, the algorithm subfind

bounds substructures at the point where their density equals the local density of material

within the main halo.

As a result, the internal structure of a subhalo cannot be similar to the main halo as a

whole, but might be similar to that part of it which lies interior to the subhalo’s position

(scaled down in size by the cube root of the ratio of the substructure’s mass to the total

halo mass within a sphere passing through it). If such self-similarity were actually to

hold then the annihilation luminosity per unit mass (i.e. the quantity J/M) would be the

same for the subhalo as for the main halo interior to its position. In fact, however, the

study of Hayashi et al. (2003) shows that the density of a satellite at radii approaching

its tidal limit is is reduced by a substantially greater factor than that in the regions near
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4.6 Substructure luminosity

Figure 4.7: The luminosities of different halo components as a function of mass

resolution. The values for each simulation are scaled so that the luminosity of

its smooth halo is unity after correction for Poisson discreteness and flattening.

The large squares show the luminosities of these smooth halo components in

units of the value found in GA3n.
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the peak of its circular velocity curve. This effect increases the luminosity per unit mass

of a substructure relative to the main halo interior to its position. Higher values might

also be expected because subhaloes had lower mass progenitors at high redshift than did

the main halo, and so began life with higher concentration (see Navarro, Frenk & White

(1997) and Bullock et al. (2001) for estimates). On the other hand, we have argued

above that tidal effects also reduce the concentration of the inner core of subhaloes, thus

reducing their annihilation luminosities. The J/M values for substructures reflect the

combination of all these effects.

Figure 4.6 shows the sums J – which are proportional to annihilation luminosity – as

a function of subhalo mass for all four of our simulations and for subhaloes containing

at least 50 particles. A point is also plotted for the main halo as a whole. If subhaloes

were similar to the GA3n main halo, they would lie along the solid line of constant J/M .

Clearly, J/M is larger for the subhaloes. The vertical lines in the plot indicate subhalo

masses corresponding to 200 particles for each of the four simulations.

Such GA3n subhaloes have J/M values typically 4 times larger than the main halo

as a whole and twice as large as the part of the main halo interior to their position.

The other effects discussed above presumably account for the remaining factor. Note

that there is no indication that J/M depends on subhalo mass for subhaloes with more

than 200 particles. This implies that the total luminosity from subhaloes, like the total

subhalo mass, is dominated by the largest objects.

4.6.2.3 Luminosity contributions

The upper panel of Figure 4.7 shows the contributions of different components to the

total estimated annihilation luminosity of our simulated haloes. The smooth halo com-

ponent is shown by a dashed line. This was calculated from the circular velocity curves

of Figure 4.2 and was corrected up by 15% to account for the fact that the main halo

is ellipsoidal rather than spherical, and by 22% to account for discreteness noise in our

Voronoi density estimates. The total luminosity from bound subhaloes is indicated by

a dotted line. The remainder of the total halo luminosity is then assumed to come from

unbound substructure and is indicated by a dot-dashed line. All values are given in units

of the corresponding smooth halo luminosities.

The values of the latter, relative to GA3n, are indicated by boxes in the Figure. The

close agreement of the circular velocity curves for GA3n and GA2n results in identical

predictions for the smooth halo luminosity. The values predicted for GA1n and GA0n are

only smaller by 20% and 35% respectively, suggesting that convergence is approximately

achieved in the inner regions even for relatively low mass resolution. The reason is simply

that the simulations predict the half-light radii of haloes to be relatively large (8.6 kpc
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in GA3n) in comparison with the nominal resolution.

In GA3n, the total luminosity is a factor of 1.7 – the ‘clumpiness factor’ – times the

value for a smooth spherical halo with the same circular velocity curve. Of this 70%

increase, 25% is due to bound substructures with 10 or more particles, 22% is due to

Poisson discreteness noise, 15% to the mean flattening of equidensity surfaces in the

inner halo and 8% to unbound fluctuations. Although the fraction of the annihilation

luminosity contributed by substructure nearly does not change between GA2n and GA3n,

it is clear that this does not indicate absolute convergence.

The total mass in substructures in GA2n is 1.2 times that in GA3n (a consequence of

the chance inclusion of a couple of substructures in GA2n which lie just outside r200 in

GA3n). The luminosity per unit mass of substructures is a factor of 1.11 larger for GA3n

than for GA2n. Similarly, the luminosity of the inner 10% of r200 (which dominate the

luminosity of the smooth halo) is a factor of 1.05 larger in GA3n than in GA2n.

4.6.3 Results

In order to get an idea of an upper limit of the additional luminosity which might be

found at higher resolution it is instructive to extrapolate the variation between GA1n

and GA2n down to a mass resolution of one solar mass. (Note that GA3n lies well below

this extrapolation.) Even at such high resolution, the total luminosity is predicted to be

only about 3.0 times that of the smooth halo in GA3n.

Lake (1990) and Bergström et al. (1999) suggested that if dark matter substructure

happens to be close to the observer, it might be easier detectable than the galactic centre

itself.

This possibility was judged plausible by Tasitsiomi & Olinto (2002; hereafter TO) who

assumed subhaloes to be distributed through the Galactic halo like the DM itself and

tried various models for their internal structure. For the internal structure predicted

by our simulations, however, it is very unlikely that any substructure will outshine the

Galactic Centre. The most massive and most luminous substructures are rare and tend

to avoid the inner Galaxy. They presumably correspond to the known satellites of the

Milky Way (see SWTS), the nearest of which is Sagittarius, 24 kpc from the Sun. The

greater abundance predicted for less massive substructures is insufficient to compensate

for their lower predicted luminosities – the chance that the received flux is dominated

by an unexpectedly nearby low-mass substructure is predicted to be very low.
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4. Dark Matter Annihilation

Figure 4.8: Cumulative luminosity (dashed) and mass (solid) for the GA3n

main halo (thick) and for the subhaloes with more than 50 particles (thin) as a

function of radius.
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4.7 Subhalodistribution

These issues are clarified in figure 4.8, where we plot cumulative radial distributions

for enclosed total mass and total annihilation luminosity exclusive of substructure, as

well as for substructure number, mass and annihilation luminosity. While the diffuse

luminosity is much more strongly concentrated towards the Galactic Centre than the

mass, all properties of the substructure are more weakly concentrated. In addition, since

J/M is independent of subhalo mass, which in turn is almost independent of distance

from the Galactic Centre, the distributions of substructure number, mass and luminosity

are all rather similar. The latter two are much noisier than the first because most of the

mass and most of the luminosity come from the few most massive subhaloes. At 8 kpc,

the Sun’s galactocentric radius lies in the region where most of the diffuse annihilation

radiation originates, but well inside any of the resolved subhaloes in GA3n (the first is

at R = 17.2 kpc) and even further inside any of the more massive subhaloes (the first is

at R = 70 kpc).

While Figure 4.8 was constructed directly from GA3n based on our Voronoi estimate

of J/M for each particle, we obtain almost identical results if we instead use our SWTS

model fits to main halo and subhalo circular velocity curves and assume that J/M is 4

times the value for the main halo for all subhaloes which are too small for circular velocity

curves to be estimated. This again suggests that GA3n has high enough resolution to

get reliable results for the problem at hand.

4.8 Detectability

The 148 most massive subhaloes, having masses between 5.2×107M¯ and 1.8×1010M¯,

are well resolved enough to obtain rmax and vmax, the distance and the circular velocity

at the peak of the rotation curve.

The substructure profiles are shallower than the NFW form. For an estimate we use

the profile of SWTS with a fitting parameter a for each subhalo. This rotation velocity

profile leads to a density profile that reaches a maximum value and has decreasing density

if the distance to the substructure centre gets smaller than a certain small value. We

use the maximum value of the density for this innermost region.

The SWTS density profile can be obtained from

ρ(r) =
dM

dV

∣

∣

∣

∣

r

=
d(V (r′)2r′/G)

d(4π/3 r′3)

∣

∣

∣

∣

r

(4.13)
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4. Dark Matter Annihilation

Figure 4.9: Mean predicted surface brightness of annihilation radiation as

a function of angular distance from the Galactic Centre. The hatched regions

enclose profiles estimated directly from six different “solar” positions 8kpc from

the centre of GA3n, while the two curves gives results based on SWTS (solid) and

NFW (dashed) fits to the circular velocity curve, together with an enhancement

factor of 1.7. In the left-hand panel the surface brightness profiles are plotted

directly, whereas on the right they are multiplied by one power of the angle θ

to represent the signal-to-noise expected in an observation of fixed duration of

a region whose size increases in proportion to θ, (specifically [θ,1.01θ]). Vertical

dashed lines indicate the angle subtended by the gravitational softening length

at the distance of the Galactic Centre.164



4.8 Detectability

with V (r′) being the SWTS rotation curve of equation 3.13. It may be written as

ρSWTS(r) =
V 2

max

4πG
e−2a ln( r

rmax
)2 1

r2

[

1 − 4 a ln

(

r

rmax

)]

(4.14)

for r > rcore where rcore is the radius at which the density profile becomes flat. This

radius can be obtained by requiring that the mass interior to rcore (at constant density)

is the mass required to produce the rotation curve at rcore, i.e.

4π

3
r3
coreρSWTS(rcore) = Mcore =

V (rcore)
2 rcore

G
. (4.15)

We find

rcore = rmax e−
1

2a . (4.16)

The maximal density of the profile is then

ρSWTS(rcore) =
3

4πG

V 2
max

r2
max

e1/(2a). (4.17)

This density is adopted for r < rcore. It is easy to crosscheck, that the core radius is the

radius at which the rotation curve has a slope of 1. The corresponding mass M(< r) is

just

M(< r) =
V 2 r

G
=

V 2
max e−2a ln( r

rmax
) r

G
(4.18)

We note however, that the density profile is not smooth at rcore. The radius at which

the density profile gets flat is a bit smaller than rcore for typical values of a:

rflat = rmax e−
1

8a [1+
√

9+16a]. (4.19)

The density at this point is

ρSWTS(rflat) =
1

8πG

V 2
max

r2
max

e
3
√

9+16a−1−8a
16a

[

3 +
√

9 + 16a
]

(4.20)

Using rflat instead of rcore, and thus obtaining a smooth density profile resulting in a

sooth total rotation curve is not a bad approximation. For the GA3n halo, the relative

difference in mass integrated up to the maximum of the rotation curve is 4.0 × 10−5.

The values for the main halo of GA3n with a = 0.0738, Vmax = 228 km/s and

rmax = 58.5 kpc are rcore = 0.067 kpc and ρ(rcore) = 7.36 × 108 M¯/kpc3 = 28.0

GeV/c2/cm3 as well as rflat = 0.048 kpc and ρ(rflat) = 7.48 × 108 M¯/kpc3 =28.4

GeV/c2/cm3 . The density at the maximum of the rotation curve is

ρSWTS(rmax) =
1

4πG

V 2
max

r2
max

(4.21)
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which has the value of 2.8 ×108 M¯/kpc3 = 0.011 GeV/c2/cm3 for GA3n.

We compute the astrophysical part of the annihilation luminosity numerically from

equations 4.14, 4.19 and 4.20.

For our highest resolution simulation GA3n we can make artificial sky maps of the

annihilation radiation by choosing appropriate positions for the Sun within the model.

Figure 4.9 shows the result of this exercise based on six possible solar positions. Even

though we average the predicted surface brightness around circles of fixed Galactocentric

angle, there is significant variation among the resulting profiles. This is primarily a

consequence of the prolate structure of the inner regions, clearly visible in Figure 4.2.

The profiles flatten out within about 10 degrees, quite possibly as a consequence of

poor numerical resolution. Prima facie this seems plausible since the angular scale

corresponding to our softening length (the vertical lines in the plots) is only 4 or 5 times

smaller than the radius where the profiles bend. Some indication of the strength of this

effect is given by the two curves. These indicate predictions based on SWTS (solid) and

NFW (dashed) fits to the circular velocity profile of GA3n, corrected up by a clumpiness

factor of 1.7. Both inward extrapolations predict substantially more flux within a few

degrees than the direct numerical estimates.

It is important to note, however, that the area potentially available for a measurement

at distance θ from the Galactic Centre increases as θ (for θ ¿ π/2). As a result, the

counts available to detect a signal vary as θ2 times the profiles shown in the left panel

of Figure 4.9 while, for a uniform background, the noise against which the signal must

be detected grows only as θ. Thus the potential S/N for a detection, shown in the right-

hand panel, is given by θ times the profile. This function is quite flat out to 20 degrees,

both for the directly measured profiles and for our two alternative fitting formulae. This

has two consequences: (i) since for many observations the background is higher in the

direction of the Galactic Centre, it may be advantageous to observe at large θ if one has

a detector with sufficient field- of-view; (ii) the estimates of detectability which we give

below for detectors with a wide field of view are not greatly affected by the resolution

of our simulation.

4.8.1 Cross-section computation

Using the above results, we can check if the centre of the Milky Way or a substructure

halo close to the Sun might be detectable with next generation γ-ray telescopes. We

use the excellent package Darksusy2 to compute the cross-sections 〈σv〉 and neutralino

masses mχ for a Monte Carlo sampling of the MSSM parameter space. The results are

shown in Figure 4.11. From roughly two million models randomly picked out of the

2www.physto.se/∼edjso/darksusy/
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Table 4.1: MSSM parameter bounds and our adopted sampling strategy. (for

a detailed description see Bergström et al. (1998)).

tan(β) µ [GeV] M2 [GeV] mA [GeV] m0 [GeV] Ab/m0 At/m0

sampling log log log log log lin lin

min 3.0 -50000 -50000 0 100 -3 -3

max 60.0 50000 50000 10000 30000 3 3

parameter space, 19421 did not violate current accelerator bounds. Of these, 825 result

in relic densities of cosmological interest, i.e. 0.17 < ΩDM < 0.43, the 95% confidence

interval quoted by Spergel et al. (2003). For the MSSM parameter space we followed

the choices of TO (Table 4.1).

Instead of the total flux from the source (equation 4.3) the line-of-sight integral of the

DM distribution averaged over the angular resolution of the telescope has to be used.

Fastro =
1

∆Ω

∫

∆Ω

∫ ∞

0
dl ρ2(l) (4.22)

The “angular resolution” σθ is half the opening angle of the observing cone and thus

∆Ω = 2π (1 − cos(σθ)) . (4.23)

Averaged over a gaussian beam of width σθ=0.1◦, we find that the line-of-sight integral

of the square of the mass density in the direction of the Galactic Centre takes values 5.2

×1025 and 1.8 ×1024 GeV2/c4/cm5 for inward extrapolations of our NFW and SWTS fits

to the main halo circular velocity curve. The large difference reflects the fact that this

estimate is sensitive to density values far inside the region resolved by our simulations.

Figure 4.2 suggests that the lower value obtained from the SWTS extrapolation is more

likely to be correct. To estimate the maximum plausible brightness for a subhalo, we

chose six possible positions for the Sun, each 8 kpc from the centre. From each position

we made an artificial sky and identified the brightest subhalo as seen with a telescope

with a 0.1◦ beam. The beam-averaged line-of-sight integral of density squared for the

(apparently) brightest substructure in these six realisations is 4.9 × 1023 GeV2/c4/cm5.
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4. Dark Matter Annihilation

Figure 4.10: Upper Panel: Relic density for particle models randomly drawn

from the MSSM parameter space as a function of the corresponding cross-

sections. The horizontal lines show the 95% confidence interval of the WMAP

results (Spergel et al. 2003). Lower Panel: The astrophysical part of the anni-

hilation flux for a line of sight to the centre of the (perfectly smooth) simulated

MW as a function of the angular resolution (solid angle) of the telescope. The

solid line corresponds to our best NFW fit, the dotted line to our best SWTS

fit. For the angular resolution of typical γ-ray telescopes (around 10−5 sr) the

SWTS profile provides much less flux than the NFW fit in a single resolution

element.
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The number of photons arriving on the telescope is

Nannihilation = Aeff t
Ncont

2

〈σv〉
m2

χ

∆Ω

4π
Fastro (4.24)

with the telescope parameters Aeff (the effective area) and t (the integration time).

We concentrate on the γ-ray continuum signal which is easier to detect than the line

signal (Baltz et al. 2000,TO). We use the approximation of the number of continuum

photons produced in one annihilation from TO

Ncont(Eγ > Eth) =
5

6

(

Eγ

mχ

)3/2

− 10

3

Eγ

mχ
+ 5

(

Eγ

mχ

)1/2

+
5

6

(

Eγ

mχ

)−1/2

− 10

3
(4.25)

where Eth is the low-energy threshold of the telescope and mchi the mass of the neu-

tralino. The significance of a detection is given by the number of detected photons from

DM annihilations over the background

Ms ≤
Nannihilation
√

Nbackground

(4.26)

For given telescope and observation parameters i.e. the effective area Aeff , the in-

tegration time t, the angular resolution σθ or the beam half-angle θmax, the effective

γ-ray background and the significance required for detection Ms, the smallest detectable

cross-section 〈σv〉 can be computed as a function of the neutralino mass mχ (Bergström

et al. 1998; Baltz et al. 2000, TO).

〈σv〉min =
Msm

2
χ

√

Nbackground

Ncont Aeff t ∆Ω
4π Fastro

(4.27)

4.8.2 Background

Bergström et al. (1998) and Baltz et al. (2000) give the following fits for the background

contributions. Hadrons can produce particle showers in the earth’s atmosphere which

might be misinterpreted as γ-ray detections in ATC detectors. To be conservative for our

purpose we completely neglect this background contribution assuming a perfect rejection

mechanism.

dNhadronic(Eγ > Eth)

dt dA
= 6.1 × 10−3

(

∆Ω

1sr

)(

Eth

1 GeV/c2

)−1.7

cm−2 s−1 (4.28)

For ACT observations we however do include electron induced showers:

dNelectron−induced(Eγ > Eth)

dt dA
= 3.0 × 10−2

(

∆Ω

1sr

)(

Eth

1 GeV/c2

)−2.3

cm−2 s−1 (4.29)
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All observations at low latitudes are affected by the diffuse Galactic γ-ray background

observed by EGRET. Its origin is probably the interaction of cosmic rays and electrons

with the interstellar medium.

dNdiffuse−galactic,θ=0(Eγ > Eth)

dt dA
= 5.1 × 10−5

(

∆Ω

1sr

)(

Eth

1 GeV/c2

)−1.7

cm−2 s−1

(4.30)

Whereas this contribution can be neglected for ACT observations, it is the dominant

background for space-borne experiments. This background however is not isotropic but

concentrated around the galactic centre and in the galactic disc. We find that for both

possible DM profiles for the main halo the signal-to-noise ratio is larger when instead of

the galactic centre itself a ring outside of the diffuse galactic component is observed.

If we assume that the diffuse galactic background has dropped to the level of the extra-

galactic background outside of 30 degrees from the centre and 10 degrees of the galactic

plane, the signal-to-noise ratio is expected to be about 12 times better than that for a

0.1 degree beam in the direction of the Galactic Centre (for an assumed NFW profile).

This result is spectacular: the density profile of the DM halo in these regions is well

established from the simulations and the prediction becomes independent of numerical

uncertainties in the innermost structure of CDM haloes.

Finally, EGRET has also observed a diffuse extragalactic γ-ray background which is

supposed to stem from unresolved sources (Fichtel et al. (1983); Ullio et al. (2002)).

dNextra−galactic(Eγ > Eth)

dt dA
= 1.2 × 10−6

(

∆Ω

1sr

)(

Eth

1 GeV/c2

)−1.1

cm−2 s−1 (4.31)

The backgrounds taken into account for the different detectability estimates are sum-

marised in Table 4.2.

4.8.3 Results

These results are shown in Figure 4.11. The solid curve gives our estimated lower limit on

the cross-section for a 3-σ detection of the Galactic Centre in a 0.1 degree beam for a 250

hr observation with the planned ACT Veritas. This particular calculation extrapolates

to small radii using the NFW model of Figure 4.9 and the S/N is then maximised for

the smallest resolved detection cell. The short-dashed curve is the corresponding limit

for inward extrapolation using the SWTS model. In this case the S/N is maximised

using a detection cell of radius 1.75 degrees, corresponding to the full field-of-view of

Veritas. The corresponding lower limit for detection of the brightest substructure in

our six artificial skies, again for a 1.75 degree beam, is shown by the long dashed curve.
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ground-based space-born

centre subhalo centre subhalo

Hadronic no no no no

Electron-induced yes yes no no

Diffuse-galactic yes no yes no

Extra-galactic yes yes yes yes

Table 4.2: Summary of the different γ-ray backgrounds used for the detectabil-

ity estimates.

We assume the inner density structure of this object to be correctly described by our

SWTS model fit. A 250 hr observation may just be enough to detect the Galactic Centre,

at least for a few of the plausible MSSM models. Detection of substructure appears out

of reach unless our simulations have grossly underestimated the central concentration of

subhaloes.

Figure 4.11 also shows cross-section limits for a 1 year exposure with the satellite

telescope Glast. The straight long-dashed line is the limit for detecting the brightest

satellite, assuming this to be outside the region with strong diffuse Galactic emission

and using a detection cell of radius 5 degrees corresponding to the the peak S/N-angle.

The straight solid line gives the limit for detecting annihilation radiation in an annulus

between 25 and 35 degrees from the Galactic Centre but excluding the region within

10 degrees of the Galactic Plane. We assume that the total diffuse Galactic emission in

this region is zero. The results here are quite encouraging. The inner Galaxy should be

detectable for most allowable MSSM parameters, while the brightest substructure is also

detectable for many of them (for TO’s implicitly adopted prior on the MSSM parameter

space).

Whereas the field-of-view of Glast covers almost a fifth of the full sky, the smaller

field-of-view of Veritas allows observation of only one object at a time. In addition,

ACTs can only operate about 6 hours per night. For these reasons we consider exposure

times of 1 year for Glast and 250 hours for Veritas to be large but feasible.
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Figure 4.11: MSSM models of cosmological interest (dots) and 3-σ detection

limits for Veritas and Glast. For Veritas the limits are shown for a pointing

at the centre of the Milky Way, assuming an NFW profile (solid) and an SWTS

profile (short dashes). The shaded region gives estimated limits for Glast for a

larger area observation of the inner Galaxy which avoids regions of high contam-

ination by diffuse Galactic emission. Limits for a pointing at the brightest high

latitude subhalo are shown for both telescopes using long dashes. The brightest

subhalo was chosen from the 6 artificial skies used in making Figure 4.9.

Table 4.3: Simplified telescope specifications

Aeff [m2] Eth [GeV/c2] σθ [arcmin]

Veritas 104 50 6

Glast 0.8 0.02 6
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4.9 Conclusions

We have directly estimated the γ-ray emissivity of the Milky Way’s halo using high

resolution simulations of its formation in a standard ΛCDM universe. A series of resim-

ulations of the same DM halo at different mass resolution allows us to check explicitly

for numerical convergence in our results. We find that the resolution limit of our largest

simulation is almost an order of magnitude smaller than the half-light radius for the

annihilation radiation, and that our estimates of the total flux are almost converged.

We argue that the annihilation radiation from substructure within the Galactic halo is

dominated by the most massive subhaloes, is concentrated in the outer halo, and is less

in total than the radiation from the smooth inner halo. For the most massive subhaloes

our convergence study indicates sufficient resolution in our best simulations to get robust

estimates of their internal structure. An important result is that subhalo cores are less

concentrated both than that of the main halo and than those of their progenitor haloes.

This confirms earlier results by SWTS and Hayashi et al (2003) and apparently reflects

the influence of tidal shocking on subhalo structure.

We find that 15% of the total flux in our highest resolution simulation is coming

from gravitationally bound subhaloes and that no more than about 5% can be assigned

to other small-scale density fluctuations. Some of our results do strongly rely on the

density behaviour we infer from our simulations for the innermost regions both of the

main halo and of the subhaloes. This subject is still controversial, although the most

detailed convergence study to date agrees quite well with our results for the centre of the

main halo (Power et al. 2003). As already noted our subhalo structure agrees well with

that found by Hayashi et al (2003). The disagreement between our results and other

theoretical work on annihilation luminosities (Calcaneo-Rodan & Moore 2000, Tasitsiomi

& Olinto 2002, Taylor & Silk 2003) can be traced to the fact that the density profiles

adopted in these papers are incompatible with those we measure in our simulations,

particularly for subhaloes. It may be relevant that observational data on dwarf galaxies

also speak in favour of dark matter density profiles with low concentrations or cores (de

Blok et al. 2001b) although here again the situation is controversial.

To estimate the fluxes expected for deep integrations with upcoming experiments, it

is necessary to extrapolate density profiles down to scales at least an order of magni-

tude below those where they can be reliably estimated in our simulations. This clearly

introduces substantial uncertainty. Our results suggest that the central regions of the

Galaxy will be intrinsically more luminous than the brightest substructure by a factor

of at least ten, and apparently more luminous by a factor approaching one thousand.

The angular scale associated with the central emission will be several tens of degrees

while that associated with the substructure will be a few degrees. This suggests that it
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may be worthwhile to investigate detection strategies which are sensitive to large-scale

diffuse emission. Notice that since our results imply that the most apparently luminous

subhaloes will also be among the most massive, it is likely that the brightest substructure

source will be identified with one of the known satellites of the Milky Way. The closest

of these is the Sagittarius dwarf at a distance of 24 kpc, but it may well be outshone

by the LMC at a distance of 45 kpc. Both are sufficiently far that they will be much

fainter (and smaller in angular size) than the main halo source which is centred only 8

kpc away.

Following TO and using Darksusy we checked for detectability of the inner Milky

Way with Veritas and Glast, examples of ground- and space-based next-generation

telescopes, respectively. If we extrapolate our simulated density profiles inwards using an

NFW fit, Veritas can probe into the parameter ranges in which a minimal supersym-

metric extension of the Standard Model could provide a Dark Matter candidate with

the observed cosmic density. Unfortunately, extrapolating inwards using our SWTS

fit, which appears to provide a better description of our simulations, results in lower

predicted fluxes, undetectable for Veritas.

By searching for extended emission outside the central region where diffuse Galactic

γ-ray emission is dominant Glast can probe a large region of possible MSSM models.

This result is based on the DM distribution in regions where the simulations have reliably

converged, and so should be robust. It is independent of the exact structure of the DM

in the innermost regions.

Our simulations suggest that the flux from the inner Galaxy will outshine the brightest

substructure by a large factor. Nevertheless, for certain MSSM models some of the most

massive substructure haloes might be detectable with Glast. Clearly the most massive

and nearest known satellite galaxies are the primary targets for observation.
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In this work we have extensively used the resimulation technique to address aspects of

structure formation.

In the first chapter we studied the influence of the local environment density of DM

haloes on their properties. We ran a series of high-resolution simulations for a carefully

selected representative region of a ΛCDM universe. The mass resolution reached in

our largest simulation is the highest resolution obtained in a comparable volume so

far. The simulation series has already been widely used by different groups to study

the propagation of reionisation fronts, metal enrichment in the intergalactic medium

through supernova driven winds, substructure in DM haloes, a new tessellation method,

the distribution of satellites around large galaxies in the 2dF Survey, mass accretion

histories of haloes and their concentration parameters, spin-spin correlation of DM haloes

and predictions for observations of the Lyman-α forest.

We analysed the mass function of haloes in our simulations and compared it to the

analytical prediction of Sheth et al. (2001b), extending the range over which this pre-

diction is tested by two orders of magnitude. We find that their formula describes very

well our results at z = 0. At higher redshifts, however, we measure mass functions that

have significantly steeper slopes.

We proposed a new method of estimating the density around dark matter haloes that

only takes into account those parts of the density field that do not belong to collapsed

regions. We used this method and the one proposed by Lemson & Kauffmann (1999)

and find that the concentration parameter of the halo density profiles as well as the spin

parameter positively correlate with the local density. Haloes in denser environments

are on average more concentrated and rotate faster than their low-density environment

counterparts. We confirm the results of Lemson & Kauffmann (1999) finding no cor-

relation of halo formation time, halo shape or the last major merging event with the

environment.

In a second step we applied a semi-analytic model of galaxy formation to the results of

our dark matter simulation series. We find the luminosity function of the model galaxies

and the global star formation history to provide a good match of observations. We

confirm the finding of other authors that the faint-end slope of the simulated luminosity
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function is steeper than those of the Sloan Digital Sky Survey and the 2dF Survey.

Additional physics (i.e. photoheating) has to be included in the models.

Our galaxy sample nicely reproduces the slope of the Tully-Fisher relation. The nor-

malisation can be brought into agreement with observations by assuming that the stellar

component has a characteristic velocity of 85% of the virial velocity. Our simulations of

chapter 2 suggest that this assumption is plausible.

We find a strong luminosity ratio and B-V dependence on environment, consistent

with observations. The model also correctly predicts the trend of the colour-density

relation found in observations and we obtain a bimodal distribution of galaxy colours.

In the second chapter we addressed the so-called “substructure problem” which is one

of the two major challenges of the ΛCDM model of cosmology. We performed ultra-high

resolution simulations of the assembly of a Milky Way type dark matter halo within its

full cosmological context. We ran a series of four resimulations with increasing mass

resolution, reaching in our largest simulation the highest resolution achieved so far.

We identified subhaloes within the main galaxy halo and proposed a new analytical

fitting formula (SWTS) for their circular velocity curves. This formula provides a very

good fit for the profiles of all of our subhaloes. We find that the corresponding density

profiles are shallower in their very inner part than the universal profile found for haloes

(Navarro, Frenk & White 1997). We verified the convergence of our results with object-

by-object comparison between simulations of different mass resolution.

Our new profile also provides a better fit to the simulated Milky Way halo than the

NFW profile does. If future simulations confirm this result, it might bring simulations

in closer agreement with the observed density cores in galaxies and could thus solve the

second major problem of the ΛCDM model.

Using observed stellar distributions of the Milky Way dwarf spheroidal galaxies, we

predict their central velocity dispersions by placing them in our simulated potential

wells. The observed kinematics exactly match those predicted by our simulations. In

addition, we show that our simulations not only predict the central dispersion value but

also the correct shape of the full velocity dispersion profile for Fornax and Draco, where

such profiles have been observed.

We find that it is more appropriate to consider the observed kinematics of the Milky

Way’s satellites a “triumph” for the ΛCDM model than a problem.

If our findings are correct then the measured “tidal-radii” of dwarf spheroidals only

mark the edge of the stellar distribution within a much larger dark matter halo. They

have nothing to do with tidal effects. A second consequence is that the dark matter mass

of dwarf galaxies is much larger than previously assumed. If this is true, star formation

must be strongly suppressed in these systems. Furthermore, our results predict that

many small substructure haloes devoid of stars are present in the Milky Way halo.
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The fact that the structure of the subhaloes agrees with the observed satellites is

evidence against dark matter with modified properties like warm dark matter or self-

interacting dark matter.

In the third chapter we used our ultra-high resolution simulations to study the possible

γ-ray signal from dark matter annihilation. If such a signal was detected, the nature of

the dark matter, one of the most important questions of modern cosmology, would be

known.

We used a Voronoi-tessellation density estimate and computed the annihilation signal

from the centre of the Milky Way as well as from the subhaloes. We find that the

γ-ray emission is rather extended. Half of the light comes from a smooth dark matter

distribution emitted from a region of about 7 kpc around the halo centre. Subhaloes

contribute with about 15% to the total flux and with about 5% to the total mass. We

find that this annihilation signal from subhaloes is dominated by the largest objects. We

studied the distribution of the subhaloes within the main halo and find that they are

concentrated in the outskirts: Only one percent of the substructure haloes is closer than

80 kpc to the galactic centre.

One of the most probable candidates for the dark matter particle is the neutralino

arising in minimally supersymmetric extensions of the standard model of particle physics

(MSSM). Following Tasitsiomi & Olinto (2002) and using the package darksusy, we

estimated the detectability of the corresponding annihilation signal. If we extrapolate

our simulated density profiles inwards using an NFW fit, Veritas can probe into the

parameter ranges where the MSSM model could provide a dark matter candidate with

the observed cosmic relic density, ΩDM . An inward extrapolation with the our pro-

posed SWTS profile, which appears to provide a better description of the results of our

simulations, predicts lower fluxes, undetectable for Veritas.

For an observation outside the region around the galactic centre where the diffuse

galactic γ-ray background is dominant Glast can probe a large range of possible MSSM

models. This result is based only on the well established structure of the DM distribution

at relatively large distances from the galactic centre. It is independent of the exact

density distribution in the innermost regions.

Our analysis shows that the flux from the galactic centre is likely to outshine the

contribution from the brightest substructure by a large factor. Nevertheless, for certain

MSSM models subhaloes might be detectable with Glast, although detailed modelling

of the best candidates, the closest of the known Milky Way dwarfs, is necessary.
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Recent years have witnessed dramatic progress in cosmology. The theory of struc-

ture formation seems to be mature and the cosmological parameters are measured with

unprecedented accuracy. We now know that we live in an accelerating Universe where

about nine tenth of matter is dark. Upcoming or already operating experiments (SDSS,

Glast, NGST, Planck, ...) will provide us with fascinating new data at a fast pace.

On the other hand, the power of supercomputers seems to increase without rest. When

this PhD thesis was started, the supercomputer of the Max-Planck-Society was the 24th

fastest computer in the world. The new supercomputer of the Max-Planck-Society is

the 25th fastest computer in the world today. However, this new computer is more than

6 times more powerful than its predecessor. We live in exciting times.
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