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                                                                                                                                                                 Summary 

SUMMARY 

 

During the 20th century revolutionary breakthroughs in medicine were achieved: e.g. the 

advent of antibiotics and vaccinations have resulted in overcoming many infectious 

diseases. In contrast, a large number of genetic diseases remain with no effective treatment 

in place. These disorders are caused by inherited or spontaneous mutations that result in the 

absence or dysfunction of an indispensable gene product. Cure may require the 

reconstitution of the missing function through a molecular treatment approach. The aim of 

this study was to investigate two strategies for the molecular therapy of Duchenne muscular 

dystrophy (DMD), an X-linked fatal muscle wasting disease. Specifically, the muscle 

creatine kinase promoter as a muscle specific gene expression element for dystrophin gene 

therapy and the use of gentamicin to induce translational "read-through" of dystrophin point 

mutations were studied in detail (see below). This work provided important insights into 

possible treatment strategies for DMD, which may not only be helpful for future basic 

research projects but also for upcoming clinical trials. Additionally, these findings may not 

only apply to the therapy of DMD but also to the treatment of other genetic diseases such as 

cystic fibrosis or haemophilia. 

 

The strategy for gene therapy of DMD is to introduce an additional copy of the dystrophin 

gene/cDNA into skeletal muscle fibres to protect them from necrosis and to prevent their 

eventual loss that leads to muscle weakness. The most promising gene delivery vehicles, 

viral vectors, suffer from several limitations including immunogenicity, loss of therapeutic 

gene expression, and a limited packaging capacity. Therefore, various efforts were 

undertaken to use small therapeutic genes and to place them under the control of a strong 

and muscle-specific promoter. One aim of this study was to examine the effects of a mini-

dystrophin (6.3 kb) under the control of a short muscle-specific promoter (MCK 1.35 kb) 

over most of the lifetime (4-20 months) of a transgenic mouse model. 

  

Dystrophin expression remained stable and muscle-specific at all ages and greatly 

ameliorated the dystrophic phenotype. Importantly, muscle function in limb muscles was 

significantly improved not only in young but also in aged transgenic mice as compared to 

non-transgenic littermates. Interestingly, dystrophin expression was strong in fast-twitch 

skeletal muscles such as M. tibialis anterior and M. extensor digitorum longus but weak or 

absent in heart, diaphragm and slow-twitch muscles. Additionally, expression was strong in 
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glycolytic but weak in oxidative fibres of fast-twitch muscles. In conclusion, the MCK 

promoter may be well suited for certain applications which require long-lasting and strong 

muscle specific gene expression such as DNA-vaccination or the production of soluble 

proteins in muscle tissue for metabolic engineering. For the gene therapy of DMD and 

other muscular dystrophies, the MCK promoter may be most efficient in fast skeletal 

muscles but may not be adequate for use in tissues such as heart and diaphragm.   

 

An alternative strategy for the restoration of functional dystrophin is aimed at overcoming 

the deleterious mutation by interfering with protein translation. A recent report suggested 

that aminoglycoside antibiotics may restore the expression of functional dystrophin to 

skeletal muscles of mdx mice, the animal model of DMD. This raised hopes that DMD may 

be treatable by a conventional drug, and several clinical trials were initiated. The proposed 

mechanism relies on the ability of aminoglycosides to interfere with translation and thereby 

permitting “read-through” of premature stop codons. Therefore, we investigated the effect 

of gentamicin treatment on dystrophin expression and force generation. For in vitro 

experiments, an immortalised myogenic mdx cell line was established, and cells were 

treated with gentamicin. Additionally, mdx mice received direct gentamicin injections. We 

did neither detect significant “read-through”-effects nor positive effects on muscle 

histology and function by gentamicin treatment. Therefore, we believe that additional 

preclinical experimentation is required to further evaluate the possibility of in vivo 

aminoglycoside therapy of DMD or other diseases. 
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Part I 

         
 

 Background               
 

DUCHENNE MUSCULAR DYSTROPHY 

Duchenne muscular dystrophy (DMD) is a X-linked fatal progressive muscle wasting 

disease. With an incidence of ~ 1 in 3.500 male new-borns it is the most common muscular 

dystrophy and one of the most common fatal hereditary diseases. It was first described by 

Duchenne (Duchenne, 1868) and Gowers (Gowers, 1879). Affected boys appear normal at 

birth. First clinical symptoms of the disease develop between 2 and 5 years of age. They 

include a delay in walking, difficulties in climbing stairs and a waddling gait (Dubowitz, 

1978). A typical behavioural adaptation (Gowers´s sign) is that patients use the arms to 

“climb” up the own thighs,  when changing from a lying to a standing position. Calf 

muscles show a marked pseudohypertrophy while all proximal muscles become 

progressively weaker. On average the patients become confined to a wheelchair by the age 

of 12. Before mechanical ventilation was introduced, most DMD patients died from 

respiratory or cardiac failure in the second or third decade of life. Becker muscular 

dystrophy (BMD) is a milder allelic form of the disease (Becker and Kiener, 1955). Even 

though the clinical symptoms are similar to DMD they are significantly delayed. Some 

BMD patients remain ambulant until old age (England et al., 1990). Dystrophin is not only 

indispensable to guarantee muscle function, but also plays a role in the brain. This role is 

poorly understood presently, but absence of dystrophin in DMD may result in a mild 

cognitive impairment (Blake and Kroger, 2000; Mehler, 2000). Histological hallmarks of 

the disease in skeletal muscle are: fibre size variation, clusters of necrotic fibres, central 

nuclei in regenerating fibres, fibrosis, and infiltration of macrophages and CD4+ 

lymphocytes (Gorospe et al., 1990;  McDouall et al., 1990; Blake et al., 2002). The 

progressive nature of the disease results from the inability of the affected muscle to 

efficiently replace damaged muscle fibres. This is mainly due to an exhaustion of the 
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potential to regenerate fibres from muscle progenitor cells, in concert with the gradual 

replacement of muscle fibres by connective tissue (Reimann at al., 2000). A useful, 

although unspecific diagnostic marker even before the onset of a clinical phenotype is the 

strongly increased serum creatine phosphokinase activity. A definite diagnosis for DMD is 

based either on the absence of dystrophin protein in a muscle biopsy or on the molecular 

identification of a mutation in the dystrophin gene. About 65% of dystrophin mutations are 

large deletions and duplications which occur preferentially at two mutation “hot spots” 

(Koenig at al., 1989). The remaining mutations are evenly distributed over the whole gene: 

18% are nonsense mutations, 8% small deletions or insertions, 7% splice site mutations, 

and 2% are missense mutations (Roberts et al., 1994). According to the “reading frame 

theory” (Monaco et al., 1988) a deletion or duplication causing a frame shift leads to a 

premature termination of translation. The resulting dystrophin protein is truncated, not 

functional, and due to low mRNA and protein stability only present at very low levels. 

Patients with such mutations will develop DMD. Surprisingly, even these patients show a 

small subset of dystrophin positive fibres. The occurrence of so-called revertant fibres is 

directly associated with the nature of the mutation in individual patients. While some 

mutations allow revertant fibres others do not. A natural exon skipping mechanism was 

proposed to be the underlying molecular mechanism. Overall, revertant fibres are detected 

in approximately 50% of DMD patients and can account for 0.2 – 4 % of the total number 

of muscle fibres (Burrow et al., 1991; Nicholson et al., 1993).  

In BMD, the mutations usually cause the loss of a small, non-essential part of the molecule 

while the reading frame stays intact. This allows the expression of smaller dystrophin 

molecules. The resulting dystrophins can have varying degrees of functionality, depending 

on the size and the position of the deleted sequence. This is reflected by the wide spectrum 

of the clinical severity of BMD patients. Female carriers are not or only mildly affected 

because they are normally able to compensate the defect via the functional dystrophin copy 

on their second X chromosome. Current treatment options for DMD and BMD are very 

limited. No effective pharmacological treatment is available so far while supportive 

therapies like artificial ventilation have moderately prolonged patients’ survival but offer no 

cure (Scheuerbrandt, 1998).  
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DYSTROPHIN  

The molecular cause of DMD is a defect in a single gene located at Xp21 (Murray et al., 

1982). The dystrophin gene encompasses 2.4 Mb, contains 79 exons, and is one of the 

largest human genes (Coffey et al., 1992, Nobile et al., 1997). The full-length dystrophin 

protein has a molecular weight of 427 kDa and is translated from a 14kb mRNA. 

Expression is regulated by three independent promoters which have different activities e.g. 

in muscle and in brain (Boyce et al., 1991; Chelly et al., 1990; Klamut et al., 1990). These 

promoters use unique first exons which are spliced to the commonly used remaining 78 

exons. Four additional internal promoters express smaller dystrophin molecules which lack 

large N-terminal parts (Fig. 1-1).  

 

Fig. 1-1  Location of dystrophin promoters and organisation of functional domains. Three 

promoters (brain (B), muscle (M) and Purkinje neurones (P)) drive the expression of full-length 

dystrophin. Four additional internal promoters produce shortened dystrophins (Dp260, Dp140, 

Dp116, Dp71). The rod domain consists of 24 triple helical units and four hinge regions (H). 

Dystrophin contains a number of protein domains that form the binding sites for components of 

the dystrophin-associated protein complex. These are the WW domain (WW) the ZZ domain 

(ZZ) in the cysteine-rich region and the coiled-coil domain at the COOH Terminus (CT). 

(Adapted from Blake and Kroger, 2000.) 

 

The most common short dystrophin isoform is Dp71 (71 kDa) which is found in many non-

muscle tissues: e.g. in brain, lung, liver and kidney. However, Dp71 cannot replace full-

length dystrophin in skeletal muscle (Cox et al., 1994). The number of isoforms is further 
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increased through alternative splicing at the 3’-end which may regulate the binding of 

several dystrophin-associated proteins (Crawford et al., 2000).  

In skeletal muscle, dystrophin makes up approximately 0.002 % of the total protein and is 

located at the interior side of the sarcolemma. It is rod-shaped and contains 3685 amino 

acids which are organised into four different functional domains (Fig.1-1): the N-terminal 

actin-binding domain, the large rod domain, the cysteine-rich domain and the COOH-

terminal domain. The N-terminal domain has an actin-binding site (amino acids 1-220) 

whose crystal structure has been resolved in detail (Norwood et al., 2000) and which is 

homologous to the structures of α-actinin and β-spectrin. The rod domain (amino acids 

338-3,055) consists of 24 triple helical repeats of the spectrin type. These make up the 

majority of the total protein’s size and are responsible for its rod shape (Koenig et al., 

1988). It is believed that the rod domain acts as a spacer between the other domains. In 

addition to the repeat regions it contains four small proline-rich hinges which might confer 

some flexibility and a second actin-binding site (Rybakova et al., 1996; Koenig and 

Kunkel, 1990). The cystein-rich domain (amino acids 3,056-3,354) is crucial for the correct 

assembly of the complex of dystrophin-associated proteins. It contains several protein 

binding and regulatory motives: 1) A WW domain that binds proline rich substrates and is 

known from regulatory and signalling molecules (Bork and Sudol, 1994), 2) Two EF-hand 

motivs that resemble those in α-actinin and may bind intracellular Ca2+, 3) A ZZ motive 

that resembles zinc finger motives and was shown to bind calmodulin in a Ca2+ dependent 

manner (Ponting et al., 1996). The fourth domain of the dystrophin molecule is the COOH-

terminal region (amino acids 3,355-3,685). This region contains two α-helical coiled coil 

domains (Sadoulet-Puccio et al., 1997) and a region which is alternatively spliced in non-

skeletal muscle tissues such as brain and cardiac muscle.     

THE DYSTROPHIN-ASSOCIATED PROTEIN COMPLEX 

In skeletal muscle, dystrophin is located at the cytoplasmatic site of the sarcolemma. 

Dystrophin binds to a complex of dystrophin-associated proteins (DAPC) which spans the 

sarcolemma. Together dystrophin and the DAPC provide a bridge between the extracellular 

matrix and the actin-based cytoskeleton. Dystrophin plays an essential part in the formation 

of the DAPC, because dystrophin deficiency leads to a loss of the DAPC. In the absence of 

dystrophin mRNA levels of DAPC components are normal, but the complex is not properly 

assembled and/or integrated into the sarcolemma or is degraded. A truncated dystrophin 

which contains the cysteine-rich domain, but not the N-terminal actin-binding site allows 
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the assembly of the DAPC. But importantly, when the restoration of the DAPC is mediated 

by this mutated dystrophin, the presence of the DAPC is not sufficient to prevent the DMD 

phenotype (Cox et al., 1994). This shows that both, the interaction with the DAPC and the 

connection to the actin-cytoskeleton via the actin-binding site are essential functions of the 

dystrophin molecule. The DAPC consists of three separate sub-complexes based on their 

localisation within the cell and their physical association with each other (Fig.1-2): the 

dystroglycan complex, the sarcoglycan complex and the cytoplasmatic complex (Blake et 

al., 2002).  

 

The two most important components of the dystroglycan complex are α- and β-

dystroglycan. They are both transcribed from a single dystroglycan gene and are 

subsequently proteolytically processed from a precurser protein (Ibraghimov-Beskrovnaya 

et al., 1993). α-dystroglycan is located on the extracellular site of the sarcolemma. It binds 

to several extracelluar matrix proteins like agrin or laminins. It is anchored to the 

membrane via a binding site to β-dystroglycan which has a single transmembrane domain 

and spans the sarcolemma. The COOH-terminus of β-dystroglycan binds to dystrophin. 

Crystal structure analysis of a β-dystroglycan/dystrophin complex revealed that β-

dystroglycan interacts with the WW domain and the EF-hands of dystrophin (Huang et al., 

2000). 

 

The sarcoglycan complex consists of five transmembrane proteins: α-, β-, γ- and δ-

sarcoglycan and sarcospan. The molecular interactions between the sarcoglycans and 

between them and the other components of the DAPC are not well understood. Mutations 

of the sarcoglycans are the cause of autosomal-recessive limb-girdle dystrophies (Straub 

and Campbell, 1997; Ozawa et al., 1998). 

 

The third component of the DAPC is the cytoplasmatic complex which contains the 

syntrophins and the dystrobrevins among other proteins. Five members of the syntrophin 

family (Piluso et al., 2000) of proteins are known: α1, β1, β2, γ1 and γ2. They are 

differentially expressed in different muscles, but all syntrophins share similar functional 

domains: a pleckstrin type PH-domain, a intact PH-domain, a syntrophin unique region and 

a PDZ-domain. The PDZ-domain interacts with several other proteins e.g. ErbB4, Na-

channels and nNOS (Brenman et al., 1996; Blake and Kroger, 2000).  
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Fig. 1-2 Organisation of the dystrophin-associated protein complex (DAPC) at the 

sarcolemma of skeletal muscle. Muscular dystrophies that result from mutations in different 

parts of the complex are indicated. Currently used animal models for the gene therapy of 

Duchenne muscular dystrophy are also shown. (Adapted from Allamand and Campbell, 2000) 
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The dystrobrevins are dystrophin-related proteins as they have significant sequence 

homology to the COOH-terminal part of dystrophin (Wagner et al., 1993; Roberts, 2001) . 

There are two independent dystrobrevin genes each encoding several isoforms (Sadoulet-

Puccio et al., 1996; Peters et al., 1997). α-dystrobrevins are expressed in muscle and the 

central nervous system while β-dystrobrevin is missing in muscle, but found in brain and 

other tissues, such as placenta and kidney. The exact function of α-dystrobrevins in skeletal 

muscle is unknown, but they may play a role in intracellular signal transduction.          

UTROPHIN  

Dystrophin and the dystrobrevins are not the only members of the dystrophin/dystrobrevin 

protein family. Vertebrates possess two other closely related proteins: utrophin and 

dystrophin-related protein 2 (Roberts et al., 1996). The utrophin gene is autosomally 

encoded (chromosome 6q24) and smaller than the dystrophin gene ~900 kb vs. 2,400 kb. 

Both genes share an almost identical intron-exon organisation, and it is very likely that they 

are paralogs that arose by duplication early in vertebrate evolution (Roberts and Bobrow, 

1998). 

The size and functional domain organisation of the two proteins are very similar. The 

utrophin protein has 3,433 amino acids and a molecular mass of 395 kDa. Most of the size 

difference to dystrophin results from a shorter rod-domain that contains 22 instead of 24 

repeats (dystrophin repeats 14 and 18 are missing in utrophin). Utrophin expression is 

regulated by several promoters (Burton et al., 1999; Dennis et al., 1996). The expression 

pattern of utrophin is different from dystrophin. Utrophin is generally more widely 

expressed, hence it’s name. It is found in non-muscle and in muscle cells. However, unlike 

dystrophin utrophin is not located at the sarcolemma, but at the neuromuscular and 

myotendinous junctions (Khurana et al., 1991). Utrophin knockout mice were normal 

except for reduced membran folding at the neuromuscular junction. Interestingly, 

dystrophin/utrophin double knockout mice showed a more severe phenotype (these mice 

die very prematurely at 20 weeks of age) than single knockout mice (Deconinck et al., 

1997; Grady et al., 1997). These data suggest that dystrophin and utrophin can compensate 

for each other. It was also shown that overexpression of utrophin in muscle prevents the 

dystrophic phenotype in dystrophin deficient mice (Tinsley et al., 1996; Tinsley et al., 

1998). Therefore, increased expression of utrophin at the sarcolemma may offer an 
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alternative therapeutic approach, and several strategies to achieve this goal are under 

development (Chaubourt et al., 1999; Corbi et al., 2000).  

FUNCTION OF DYSTROPHIN 

In depth studies of natural and intentionally induced mutations of dystrophin were 

undertaken to elucidate the function of the whole molecule, the functions of individual 

domains and interactions with other molecules. Because most gene therapy vectors have 

packaging size limitations for the therapeutic gene, a shortened dystrophin would be highly 

desirable. The size of dystrophin would need to be minimised without compromising 

functionality. Therefore, various experiments have been undertaken to answer the following 

question: what are the essential parts of the dystrophin protein and which parts might be 

dispensable and could be removed? The N-terminal domain and the cysteine-rich domain 

were shown to contain vital elements for optimal dystrophin function (Corrado et al., 1996). 

In contrast, the COOH-terminal region may be removed without major negative 

consequences (Rafael et al., 1996; Crawford et al., 2000) The region with the biggest 

potential for significant size reduction is the rod domain which makes up 74% of the full-

length molecule. Natural occurring large deletions of the rod domain were identified in 

BMD patients with very mild phenotypes (Love et al., 1991; Winnard, 1993; Mirabella et 

al., 1998). A shortened dystrophin with a large in-frame deletion in the rod-domain (exons 

17-48) based on a mutation found in such a patient was widely used in gene therapy trials 

(England et al., 1990). It is 46% shorter than the full-length dystrophin and is referred to as 

mini-dystrophin. In animal studies, it almost completely restored a normal muscle 

phenotype in the absence of full-length dystrophin (Cox et al., 1993; Wells et al., 1995). 

Recently, dystrophin constructs with even larger deletions in the rod domain and deletion of 

the COOH-terminus were developed (Harper et al., 2002; Scott et al., 2002). Some of these 

micro-dystrophins contained only four of the inverted terminal repeats. Their size was 

reduced by 74% when compared to full-length dystrophin. Even though micro-dystrophins 

correct most abnormalities related to dystrophin-deficiency, they do not restore full muscle 

strength. Therefore, the rod domain may not be completely removed to allow optimal 

function of dystrophin.  

 

Surprisingly, the exact role of dystrophin and the mechanisms by which its absence leads to 

the observed phenotype remain enigmatic. Several hypotheses have been proposed. And a 

10 
 



                                                                                                                               Background 

combination of different mechanisms may contribute to the pathogenesis including 

increased membrane permeability, elevated Ca2+ levels, proteolysis, oxidative damage, 

inflammation, apoptosis, regeneration, and fibrosis (Fig. 1-3).   

 

 

Fig. 1-3 The pathophysiology of Duchenne muscular dystrophy. Dystrophin deficiency 

results in the absence of the complex of dystrophin-associated proteins (DAPC). Muscle fibres 

become vulnerable to mechanical stress through the loss of mechanical stability and/or the loss 

of some so far unknown signalling capability. Increased membrane permeability, an impaired 

calcium homeostasis and activation of proteases contribute to increased levels of cell death. In 

the long term, insufficient regeneration and progressive fibrosis lead to an ultimately fatal 

muscle weakness. 

 

One of the crucial mechanisms shall be shortly discussed: Membranes of dystrophin 

deficient fibres have an increased permeability to macromolecules. This was shown in 

experiments where exogenous vital dyes such as Evans blue or Procion orange normally 
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excluded from muscle cells were internalised in dystrophin deficient cells (Bradley and 

Fulthorpe, 1978; Petrof et al., 1993; McArdle et al., 1994). 

This membrane permeability increases when the muscle is exercised. This may be an 

indicator of a structural weakness of the membranes which cannot withstand the physical 

forces which arise with muscle exercise. This idea is supported by several observations: 

heavy exercise leads to increased levels of muscle cell necrosis and infiltration of 

macrophages in muscles of DMD patients while inactivity reduces myonecrosis (Kimura et 

al., 1998). In the mouse model for DMD a susceptibility of muscles to contraction-induced 

stress was also observed. The first histological evidence of muscle damage in dystrophin-

deficient mice is found 2-3 weeks after birth when the mice start to move around to find 

there own food. In contrast, immobilisation or denervation of muscles prevents the 

development of muscle damage in mice.  

Alternatively a not yet identified signalling role of dystrophin together with the increased 

permeability may disrupt the normal balance of molecules inside and outside the cell. 

Elevated Ca2+ levels in muscle fibres of DMD patients may be of particular interest (Cullen 

and Fulthorpe, 1975). Calcium homeostasis plays an important regulatory role in muscle 

(Berchtold et al., 2000). Ca2+ levels may be increased not only by the increase in membrane 

permeability but also through leaky calcium channels (Carlson and Officer, 1996). 

ANIMAL MODELS FOR DMD 

Animal models have provided valuable clues to the understanding of DMD pathogenesis 

and offer good opportunities for the development and testing of therapeutic approaches 

(Allamand and Campbell, 2000). Several species of animals have been identified in which 

mutations in the dystrophin gene (murine, canine and feline) lead to the absence of 

dystrophin and to the development of dystrophy with varying degrees of severity. The mdx 

mouse (murine dystrophy x-linked) is the most common murine model for DMD. A point 

mutation in the dystrophin gene (position 3185) results in a premature stop codon (CAA -> 

TAA) (Sicinski et al., 1989). Skeletal muscle fibres are therefore dystrophin-negative with 

the exception of a small number of revertant fibres (about 1%). Surprisingly, the clinical 

phenotype in mdx mice is much more benign than in human DMD patients (Gillis, 1999). 

In captivity these animals have a nearly normal life expectancy and move normally at old 

ages. The reason for this marked difference in pathology between human and murine 

dystrophin deficiency is not understood. The mild phenotype of mdx mice leads to two 
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problems: firstly, it is more difficult to access the success of a therapeutic intervention, and 

secondly, one should be cautious to extrapolate results from mdx mice to human patients. 

Some features of DMD are also observed and can be evaluated in mdx mice. Creatine 

kinase activity levels are highly elevated. Necrosis-regeneration circles of muscle fibres 

start at 15-21 days of age and are still present in animals older than 2 years, peaking 

between the ages of 45 and 60 days. There is also a pronounced inflammatory reaction with 

invasion of immune cells into the muscle. Generally, some muscles are more affected than 

others. Histopathological signs and muscle force deficits are especially pronounced in 

diaphragm. On the contrary, in muscles which are composed mainly of fibres of small 

diameter such as extra-ocular muscles (Karpati and Carpenter, 1986) or smooth muscle 

(Boland et al., 1995) pathological signs are absent. A typical feature of regenerated muscle 

are centrally located nuclei. Under normal conditions nuclei return to the periphery of the 

muscle fibre after a regeneration process is completed. In mdx muscles very high levels of 

central nuclei were observed over the entire lifespan. It is not known why the nuclei remain 

central in mdx mice, but central nucleation is an easily measurable and well accepted 

indicator of muscle pathology in mdx mice.  

 

The dog model of DMD is golden retriever muscular dystrophy (GRMD). It is caused by a 

point mutation in the consensus splice acceptor site in intron 6 of the canine dystrophin 

gene. The mutation results in the deletion of exon from the mRNA thereby introducing a 

frame shift which leads to a premature stop codon. Affected pups gain weight slower than 

unaffected siblings. Hind limbs become increasingly affected and the animals often 

advance them simultaneously (bunny hopping). Many of the affected dogs die within days 

or months (Cooper et al., 1988). The severe clinical phenotype, the accompanying 

histopathological progression and the larger size of the animals make the GRMD dogs a 

good model for DMD (Howell et al., 1997; Cozzi et al., 2001). However limitations arise 

from observations that these dogs are difficult to breed and that there are large variations in 

the development of the phenotype e.g. some of the dogs live for 6 and more years. 

Hypertrophic feline muscular dystrophy (HFMD) has been described in dystrophin 

deficient cats (Carpenter et al., 1989; Gaschen and Burgunder, 2001). Hypertrophy is the 

most notable effect in affected animal. An abnormal gait and some necrosis are present but 

the overall phenotype is benign.   
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MOLECULAR THERAPY FOR DMD 

DMD is the most common fatal muscle disease and affects hundreds of thousands patients 

world-wide. Because no effective treatments are available, great efforts are underway to 

develop a cure. Once an effective approach is established it might be applicable with 

modifications in large numbers of other heritable diseases. Several different strategies could 

be envisioned for the treatment of DMD (Fig. 1-4).    
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One avenue for the successful treatment of DMD would be to substitute the defect 

dystrophin gene with a functional therapeutical gene. Methods for in vivo gene delivery to 

skeletal muscle fibres are either based on naked DNA transfer or on virally mediated gene 

transfer. High-level and long-lasting gene expression has been reached by the development 

of improved naked DNA transfer techniques: intravascular injections with high pressure 

(Budker et al., 1998), optimised electroporation conditions (Vicat et al., 2000) and use of 

ultrasound (Danialou et al., 2002). Several viral vector systems for gene therapy of muscle 

diseases are currently under development: adenovirus (Ad), adeno-associated virus (AAV) 

retroviruses, and herpes simplex virus (HSV). They all have distinct advantages and 

disadvantages which will be shortly discussed for the two most important vectors Ad and 

AAV.  

 

Ad vectors have a large cloning capacity, can be produced at high titers (1012-1013) and 

infect muscle fibres relative efficiently (Yang et al., 1998). The latest generation of Ad 

vectors are devoid of any viral sequences (Kochanek et al., 1996). This allows a maximal 

cloning capacity of >30 kb. It was envisaged that these “gutted” Ads will elicit a weaker 

immune response than earlier Ad vectors which still contain viral genes. Ad gene therapy 

vectors do not integrate into the genome of the target cells. This is an advantage because of 

safety considerations but it is unclear whether long term gene expression (> 1 year) can be 

achieved. 

 

AAV vectors hold great promise, because they infect muscle well, they show little 

immunogenicity, they can be produced at high titers (1012-1013) and they have the 

potential of site specific integration (Xiao et al., 1996; Fisher et al., 1997). Unfortunately, 

they have a relatively small packaging capacity of maximum 5 kb. It is not yet clear if 

micro-dystrophins of this size are completely functional (Harper et al., 2002).  

 

An alternative to the delivery of genes into muscle fibres is the transplantation of myogenic 

cells. These could be either myoblasts or myogenic stem cells. Myoblast therapy was 

already attempted in clinical trials, but the results were disappointing (Partridge et al., 

1998). It is hampered by the poor survival of the injected myoblasts. Only about 1% of the 

transplanted cells contribute to the formation of new muscle (Beauchamp et al., 1999). The 

poor survival is partly due to an immune response against the myoblasts and the therapeutic 
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protein (Guerette et al., 1997). Immunsuppresion of mdx mice has resulted in prolonged 

survival and even some functional improvement after myoblast transfer (Brussee, 1998). 

Recent advancements in stem cell research raised the hope that it might be possible to 

identify muscle progenitor cells that could not only be used for local injection but also for 

systemic application. Two reports describe that bone marrow transplantation of stem cells 

resulted in low level transgenic dystrophin expression in skeletal muscle (Bittner et al., 

1999; Gussoni et al., 1999). Clinical therapy of DMD would presumably require two steps 

prior to the application of the cells. Firstly, suitable stem cells would have to be isolated 

from the patient. And secondly, the therapeutic gene would need to be integrated into these 

stem cells. Lentiviral vectors could be used for this purpose because they efficiently infect a 

variety of stem cells (Van den Driessche et al., 2002). 

 

The goal of gene repair is not to replace the dysfunctional gene, but to allow the production 

of a functional protein through molecular manipulations which overcome a deleterious 

mutation. Therefore, this techniques will be limited to patients with mutations where all the 

functional domains of dystrophin are preserved, but the mutations prevent correct 

expression. It is estimated that up to 30-50% of DMD patients fall into this category. 

Depending on the nature of the mutation, one of the following strategies might be suitable: 

single base pair repair, targeted exon skipping or manipulations of the translation 

machinery.  

 

The repair of point mutations in the dystrophin gene has recently been demonstrated in 

cultured mdx cells and in muscles of mdx mice (Bertoni and Rando, 2002) This single base 

pair repair is mediated by so called chimeraplasts, which are single stranded RNA/DNA 

oligonucleotides. They bind in a first step to the targeted sequence and then in a second step 

trigger the repair of the mutation through the endogenous DNA repair machinery (Bartlett 

et al., 2000) In theory, this method would allow a permanent correction of all kinds of point 

mutations and therefore is a very general and promising approach. However, efficiencies 

have to be significantly improved because so far only 1-2% of all fibres per muscle were 

repaired which is not enough for clinical improvement.   

A different approach to overcome point mutations which introduce a premature stop codon 

is the manipulation of the translation machinery. This strategy will be examined in detail in 

Chapter IV. 
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Another possibility is using the mechanism of RNA-processing, e.g. to skip a stop codon 

mutation or to restore an open reading frame after a frame shift mutation. Even though the 

resulting proteins are predicted to be slightly smaller than the full-length dystrophin, they 

may nevertheless be highly functional, comparable to the functionality of Becker type 

dystrophins. A similar phenomenon occurs naturally in vivo: a small amount of dystrophin 

positive (revertant) fibres is regularly found in muscles of DMD patients. The exact 

mechanism of reversion is not understood, but a detailed study of revertant fibres in mdx 

muscle indicated that exon skipping was involved: several alternatively spliced dystrophin 

mRNA species were found which lacked the mdx premature stop codon in exon 23, while 

the stop codon could be still detected in the genomic dystrophin sequence of the dystrophin 

positive fibres (Wilton et al., 1997; Lu et al., 2000). To specifically induce exon skipping of 

mutations in DMD patients antisense oligonucleotides (AOs) were used. Successful 

skipping of the mdx stop codon (in exon 23 of the mouse dystrophin) mutation has already 

been demonstrated in vitro and in vivo when AOs specific for the junction of intron 22 and 

exon 23 were applied (Dunckley et al., 1998; Mann et al., 2001). 

 

An alternative to the repair of the mutated dystrophin or the transfer of a therapeutical gene 

is to upregulate a compensatory protein in affected cells. A natural candidate for such a 

purpose is the dystrophin paralog utrophin (Tinsley and Davies, 1993). Utrophin is already 

moderately upregulated in dystrophin deficient muscle. This upregulation was also detected 

in muscles of mdx mice. It was shown that utrophin can functionally replace dystrophin in 

numerous transgenic and viral-gene transfer studies (Tinsley et al., 1996; Wakefield et al., 

2000). To facilitate the improvement of utrophin expression in mature muscle fibres its 

regulatory elements were studied in great detail. This led to the discovery of a novel 

additional utrophin promoter (Burton et al., 1999). Large-scale screenings for small 

molecules that may specifically upregulate utrophin are currently under way.  

IMMUNE REACTIONS AGAINST TRANSGENE AND VECTOR 

Presently, immune reactions either against the vector system or the transgene itself are 

among the major obstacles which slow down the development of new therapies for DMD 

and genetic disorders in general. They can block or reduce the extent of gene transfer, 

hinder reapplication, result in the clearance of already cured cells, and cause systemic 
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reactions that in severe cases can lead to death (Yang et al., 1996; Morral et al., 2002). 

Several strategies may help to minimise these adverse immune reactions (Fig. 1-5).  

It is important to note that the dystrophin protein itself is potentially immunogenic in DMD 

patients. There is even concern that forced expression of “non-self” epitopes associated 

with therapeutic dystrophin may not only compromise long-term dystrophin expression, but 

even worsen muscle function by stimulating a cytotoxic T-cell mediated destruction of 

myofibres which express dystrophin (Ebihara et al., 2000). Depending on the kind and 

number of revertant fibres which might reduce dystrophin immunogenicity there might also 

be variations between different patients. Several studies reported an immune response in 

mdx mice against human dystrophin constructs (Ferrer et al., 2000; Braun et al., 2000). 

Another study showed that also murine dystrophin acted as a transplantation rejection 

antigen in mdx mice (Ohtsuka et al., 1998). One method to circumvent this problem may be 

the use of therapeutic utrophin constructs which are not immunogenic due to the normal or 

even increased utrophin expression in dystrophin deficiency. 

 

Fig. 1-5 Immune reactions and counter measures. 

 

The immune response against viral proteins of the vector may be very strong, but is usually 

transient, especially when AAV and gutted Ad vectors are used which contain no viral 

genes. Consequently there is no de novo viral protein synthesis and only for a short time the 

immune system is exposed to the viral proteins of the delivering viral vectors. Therefore, a 

transient immune suppression might be sufficient to avoid an immune response against the 

vector (Chamberlain, 2002).       
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The immune response can be divided in innate and acquired defense mechanisms. Innate 

immune responses are thought only to be directed against certain vectors and delivery 

routes (i.e. high doses of systemically injected adenoviral vectors) while not affecting other 

applications. Acquired immune responses can be differentiated in humoral (B-cell) and 

cellular (T-cell) pathways. A humoral immune response is based on circulating antibodies 

against newly introduced epitopes. While transgene persistence is normally not 

compromised by these antibodies, they can prevent successful readministration (Fisher et 

al., 2001). This problem may be circumvented by switching to different viral serotypes for 

successive administrations (Morral et al., 1999). The cellular immune response seems to be 

the main culprit responsible for the rapid declines of transgene expression in transfected 

muscle that has been observed in many gene transfer studies. The destruction of dystrophin- 

expressing cells in mdx mice is mediated through cytotoxic CD8+ cells. To become fully 

active, these cells require presentation of the antigen via the MHC I pathway. Because 

muscle fibres themselves only have low levels of MHC I and also lack important 

costimulatory molecules they require the help of professional antigen presenting cells e.g. 

dendritic cells for maximal activation of cytotoxic T cells. Ads readily infect macrophages 

and dendritic cells (Jooss et al., 1998). But AAV vectors (which have a low tropism for 

dendritic cells) evoked a cellular immune response against the transgene (Cordier et al., 

2000). It seems that the APCs receive antigen from transfected non-muscle cells or 

myofibres (Fig. 1-5) and then are able to present antigens on MHC I molecules via a cross-

priming pathway (Ulmer et al., 1996; Sarukhan et al., 2001). These effects may be avoided 

or diminished by the use of a muscle specific promoter which limits expression of the 

transgene to muscle cells. 

 

Not only the nature of the vector and the transgene influence the strength of the immune 

reaction but also the condition of the targeted muscle. The immunogenicity associated e.g. 

with AAV was more pronounced in dystrophic muscle than in normal muscle. In dystrophic 

muscles leaky or dying muscle fibres may release increased amounts of cytoplasmatically 

localised antigen and immune effector cells are present at elevated levels (Chamberlain, 

2002; Yuasa et al., 2002). 
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PART II 
 

Materials and Methods 
 

 

 

GENERATION OF DYSTROPHIN TRANSGENIC MDX MICE 

All animal experiments were conducted in accordance with recommendations of the 

institutional animal care committee and in agreement with provincial and federal law. A 

SacII/ClaI fragment from plasmid pAdMCKBecker (Larochelle et al., 2002) was 

microinjected into pronuclei of B6D2F2 zygotes using standard procedures (Hogan et al., 

1989). This fragment contains a previously described (Larochelle et al., 1997) short version 

of the MCK promoter and enhancer (1.35 kb; from nucleotide position –1354 to +1; 

transcription initiation site at np 0), a "Becker-type" mini-dystrophin with a large in-frame 

rod deletion (6.3kb), and the minimal rabbit beta-globin poly-A-signal (110 bp) (Jani et al., 

1997). DNA was extracted from mouse-tails, and founder animals were identified by PCR 

using the primer set: 5´-CCATGGGCAAACTGTAT and 5´-GGTAAGTTCTGTCCAAGC. 

After 2 min at 94°C the thermocycler was programmed for 3 cycles of 94°C x 1 min, 55°C 

x 1 min, 72°C x 2 min, then 30 cycles of 94°C x 50 s, 55°C x 50 s, 72°C x 50 s.  Primers 

correspond to dystrophin sequences adjacent to the 5'- and 3'- breakpoints of the large rod 

deletion. A 506 bp fragment is amplified from mini-dystrophin but not from full-length 

dystrophin.   

 

To ascertain whether the MCK promoter was integrated and intact in transgenic mice, a 1.6 

kb fragment was amplified from genomic DNA using the primers 5´-

CTGGTGCGGGTCTCATCGTA and 5´-CAGTCCTCTACTTCTTCCCA. After 2 minutes 

at 94°C the thermocycler was programmed for 35 cycles of 94°C x 1 min, 54°C x 2 min, 

72°C x 3 min. The primers correspond to transgene sequences that flank the 1.35 kb MCK 

promoter/enhancer; they do not amplify sequences from the endogenous MCK 
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promoter/enhancer. The 1.6kb PCR fragment was sequenced using additional internal 

primers. 

 

Breeding of the transgene onto the mdx background was established by crossing dystrophin 

transgenic male founders (F0) with mdx females. Transgenic male offspring (F1/N1) were 

bred with female mdx to generate male and female offspring (N2). These animals are 

negative for wild-type dystrophin and were used in the experiments described below. To 

eliminate any effects that might be due to minor differences in the genetic background, 

transgenic animals were always compared to non-transgenic littermates. 

DYSTROPHIN IMMUNOBLOTTING 

Frozen tissue samples were homogenised in RIPA buffer (Bulman et al., 1991). Protein 

concentration was determined using the BCA Protein Assay Reagent Kit (Pierce, Rockford, 

IL, U.S.A). Equal amounts of total protein were loaded onto 5.5% polyacrylamide gels and 

transferred to a nitro-cellulose membrane. Dystrophin expression was detected using an 

affinity-purified, polyclonal antiserum raised against 17 amino acids at the C-terminus of 

dystrophin (dilution 1:50; kindly provided by Dr. Paul Holland, Montreal) and visualised 

with anti-rabbit secondary antibody linked to horseradish peroxidase (Dianova, Hamburg, 

Germany; dilution 1:100) and chemiluminescence (Pierce).  This antiserum detects normal 

dystrophin (at approximately 420 kDa) as well as transgenic mini-dystrophin (at 

approximately 220 kDa).   

HISTOCHEMISTRY AND IMMUNOHISTOCHEMISTRY 

Muscle samples were embedded in Tragacanth (Sigma, St Louis, MO) and frozen in 

melting isopentane. Serial cross sections (5 µm) were cut on a cryostate and used for 

staining. For dystrophin detection, a polyclonal antiserum was used (same as described 

under immunoblotting; dilution 1:50). Biotinylated secondary antibody (Dianova, 

Hamburg, Germany; dilution 1:100) was applied and visualised by Cy3-conjugated 

streptavidin (Dianova, Hamburg, Germany; dilution 1:1000). To visualise cell nuclei the 

sections were incubated with 12µg/ml bisbenzimide (Sigma, Taufkirchen, Germany) in 

PBS for 10 min. In a final step, sections were stained with the NADH-tetrazolium reductase 

method to distinguish between oxidative and glycolytic fibres: Sections were incubated for 

30 min at 37°C in 0.2 M Tris (pH 7.4), 1.5 mM NADH and 1.5 mM Nitroblue Tetrazolium 

(all from Sigma, Taufkirchen, Germany). After incubation, slides were rinsed 3 times with 
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distilled water. Fibre counts and determination of fibre area were performed using the 

UTHSCSA Image Tool program (University of Texas, Health Science Center, San Antonio, 

U.S.A.). Fibre scoring results are from seven M. tibialis anterior (TA) and M. extensor 

digitorum longus (EDL) muscles from 7 month-old MCK1.35 and mdx mice. For EDL, all 

fibres of an entire muscle cross-section were counted. For TA, five fields of 50-100 fibres 

were randomly chosen and evaluated. More than 300 fibres were scored for each TA and 

EDL muscle. Overall, more than 2500 fibres were scored per group. 

For sarcoglycan detection on muscle sections, a polyclonal antiserum raised against β-

sarcoglycan was used (dilution 1/1000; kindly provided by Dr. Carsten Bönnemann, 

Philadelphia; Bönnemann et al., 1996). 

ISOLATION OF IMMORTALISED MYOGENIC CELL LINES 

Two male homozygous H-2Kb-tsA58 (immorto) mice were obtained from Charles River 

(UK Limited, Margate, Kent, UK). These mice contain the thermolabile tsA58 mutant of 

the SV40 large T antigen under the control of the H-2Kb promoter. Isolated cells of this 

mouse strain are easily immortalised by growing them under permissive conditions: a 

temperature of 33 °C and the presence of  INF-γ (interferon-γ). To breed the SV40 large T 

gene onto the mdx background, advantage was taken from the fact that the dystrophin gene 

is localised on the X-Chromosome. The male immorto mice were bred with female mdx 

mice. F1 male offspring received one copy of the SV40 large T antigen gene and a Y-

Chromosome (that does not contain the dystrophin gene) from the immorto father and the 

mdx dystrophin point mutation on the X-chromosome from the mdx-mother. Therefore 

male F1 offspring are heterozygous for the SV40 large T gene and also dystrophin 

negative. Leg muscles from 6 week old  animals were then removed under sterile 

conditions under a flow hood. The muscles can then be kept for up to 5 days at 4°C in SolA 

(10 mM glucose, 30 mM HEPES, 130 mM NaCl, 3.0 mM KCl, and 0.003 mM phenol red 

(all from Sigma), 50 µg/ml gentamicin (Gibco BRL, Invitrogen, Karlsruhe, Germany)  pH 

7.6,) without loss of proliferative capacity of the muscle progenitor cells. Isolation of single 

myoblasts and satellite cells was based on a procedure previously described (Shoubridge et 

al., 1996).   

Muscle pieces (~150–300µg) were transferred into a tissue culture dish and washed 

repeatedly with SolA. They were then cut into smaller pieces (<1mm3) with two scalpels in 

a volume of 5 ml of SolA+Trypsin+EDTA (SolA + 0.05% (w/v) crystalline Trypsine 

(Gibco) + 0.02% (w/v) EDTA)  and transferred into a 15 ml Wheaton trypsinising flask 
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(Wagner und Munz, München, Germany) containing a magnetic stirrer bar. To completely 

transfer all muscle bits the tissue culture dish was rinsed twice with 5ml 

SolA+Typsin+EDTA, each time the remaining tissue fragments and the solution were 

transferred to the Wheaton flask.  

The muscle was now further disaggregated to isolate single cells by vigorous stirring for 15 

min on a magnetic stirrer. To keep the temperature at 37°C the Wheaton flask was kept in a 

heated water bath. The tissue debris was then allowed to settle on the ground for 1 min. The 

solution  containing the dissociated cells was decanted into a 50 ml centrifuge tube 

containing 15 ml of washing medium (Dulbecco’s modified Eagle Medium (DMEM,) + 

15% fetal calf serum (FCS,) + 50µg/ml gentamicin (all from Gibco)). Myoblasts that 

remain with the debris were isolated by stirring two more times for 15 min in 15 ml 

SolA+Trypsin+EDTA and decanting.  

The cells were then centrifuged down at ~ 500 for 10 min and the supernatant was 

discarded. The cells were now re-suspended in 2ml of Supplemented Growth Medium  

(SGM, PromoCell, Heidelberg, Germany).  

The goal of the next steps was to receive immortalised clones which originate from single 

cells. Therefore, the cell suspension was diluted 1/10, 1/50 or 1/100 in SGM+INF-γ 

(20U/ml Interferon-γ (murine, rekombinant) Life Technologies, Invitrogen, Karlsruhe, 

Germany). Then each dilution was plated in two 24 wells. Cells were incubated in a 

humidified incubator (5 % CO2) at 33°C. After two days the medium was changed to 

remove fragments of erythrocytes and disrupted myofibres.  After 4-5 days small colonies 

of dividing myoblast could be observed using a inverted phase contrast microscope. Single 

wells which originally received more than one cell could be identified because they contain 

more than one clone. After 1-2 weeks the cells were transferred to 6 wells and later to tissue 

culture dishes. After the first week SGM was replaced with DMEM + 15 % FCS + 

Glutamax1Supplement (Gibco). Clones that consist of small myofibre like single cells 

which show good division rates were then selected. Aliquots were frozen for later use and 

to save these lines. Myoblasts from these clones were then tested for the ability to fuse to 

myotubes. Fusion conditions were: a cell density of ~ 80%,  DMEM + 2% Horse Serum 

(Gibco) and  a temperature of 37°C. Two lines which divided and fused nicely were 

cultivated for over 1 year to ensure the immortalisation of these myogenic cell lines. If the 

cells grow to 90-100%  confluency they start to fuse spontaneously even in the presence of 

high serum concentrations. This can impair their ability to amplify and to fuse. Therefore, 

the cell lines were always splitted when they reached 70-80% confluency.            
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FORCE MEASUREMENTS ON ISOLATED MUSCLES 

The goal of a therapy of a muscular dystrophy is to re-establish normal muscle function in 

the affected patients. The best test to evaluate the effectiveness of a treatment in an animal 

model are therefore direct force measurements. One aim of this study was to develop and 

establish the necessary methodology for this kind of measurements in our laboratory. 

Suitable equipment was selected, purchased, interlinked and thoroughly tested before the 

experiments were started. Then force measurements on isolated mouse muscles were 

carried out basically as described (Petrof et al., 1993).  

 

Mice were first anesthetised with ketamine (130 mg/kg) and xylazine (20 mg/kg) to achieve 

a loss of deep pain reflexes. Entire muscles were then carefully removed from tendon to 

tendon. Animals were killed while still anesthetised. Isolated muscles were anchored on 

one end while the other end was connected to a force transducer (model Grass FT03; Astro-

Med, West Warwick, RI, U.S.A) coupled to a signal amplifier (model MIO 0500; FMI, 

Seeheim, Germany). During measurements the muscle was kept in a bath at 30°C in Ringer 

solution which was perfused with 95% O2 and 5% CO2. Muscle length and forced muscle 

lengthening were adjusted by a computer-controlled servomotor (model x.act LT 50; Linos, 

Göttingen, Germany). Electrical field stimulation was induced via platinum electrodes on 

both sides of the muscle (Fig. 2-1).  

 

Supramaximal stimuli with a monophasic pulse duration of 1 ms were delivered using a 

computer-controlled electrical stimulator (model ISG-8834/1-S; FMI, Seeheim, Germany). 

Signals were converted by an analog/digital converter (model Digidata 1200B; Axon 

Instruments, Union City, California, U.S.A.). Data recording and measurement protocol 

execution were handled by a custom-made software. After an initial adjustment time of 10 

min the optimal muscle length Lo (Lo is the length at which maximal twitch force is 

achieved) was determined and defined as the starting length. Measurements started 30 min 

after the muscle was removed. The following muscle parameters were evaluated: twitch 

force, tetanic force and resistance to eccentric contraction. 
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Fig. 2-1 Equipment for force measurement of isolated muscle. (adapted from World 

Precision Instruments, Berlin, Germany 1999)  
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Three twitch stimulations were recorded and the mean value was used to calculate maximal 

isometric twitch force. Maximal isometric tetanic force was then measured by stimulating 

the muscle at 125 Hz for 175ms, allowing a clear plateau in force to be attained. Specific 

force was calculated by normalising maximum tetanic force to total muscle cross-sectional 

area (CSA). CSA was determined by dividing muscle mass (milligram) by the product of 

fibre length (millimeter) and the average density of mammalian skeletal muscle taken as 

1.06 mg /mm3. 

 

Muscle of dystrophin-deficient mice (mdx) is especially susceptible to eccentric contraction 

which consists of forced muscle lengthening during maximal tetanic contraction. 

Successive eccentric contractions result in a more pronounced force drop in mdx muscle 

compared to wild type muscle. Measurements for eccentric contraction were carried out 

basically as described (Petrof et al., 1993). Briefly, the isolated muscle was stimulated at 

125 Hz for 700 ms; the muscle was held at Lo for the initial 200 ms and was then 

additionally stressed by lengthening (speed: 3 mm/s) of 10% Lo during the final 500 ms. A 

total of five contractions was recorded, each separated by a two min recovery period at Lo. 

The decline in maximal isometric force at Lo, obtained from the tetanic plateau reached 

during the first 200 ms of the first measurement of muscle stimulation, was compared to the 

value of the fifth measurement and used as an index of eccentric contraction induced 

muscle damage. 

GRIP STRENGTH OF LIVING ANIMALS 

Grip strength of living animals was determined as described previously (Connolly et al., 

2001) . In brief, mice were allowed to grasp a small metal trapeze which was attached to a 

force transducer (same as described above). The mice instinctively try to hold onto the 

trapeze. They were then pulled backwards until they released their grip (Fig. 2-2). The 

maximal grip strength was measured by a force transducer and recorded by a computer. 

The protocol for each mouse consisted of 10 repeated pulls separated by rest periods of 8 

sec. 
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The mean value of the three highest measurements was taken as the maximal grip strength. 

To evaluate if the animals showed different resistances to fatigue induced by repeated pulls 

we divided the mean of the three strongest pulls from measurements 1 - 5 by the mean of 

the three strongest pulls from measurements 6 - 10.  These values were then expressed as 

percentages. A value for resistance to fatigue of 100% indicates that the animals grip 

strength remained on the same level during the course of 10 pulls while a value of 0% 

indicates that the animal would not hold on any more during the last five measurements. 

 

 

 

Fig. 2-2 Grip strength measurement. After it has gripped the trapeze the mouse is gently 

pulled backwards until it releases its grip. Grip strength is measured by a force transducer and 

recorded by a computer. (after Connolly et al., 2001)  

STATISTICS 

Force measurement data were first statistically evaluated by an analysis of variance. The 

difference between two groups was further evaluated by the Tuckey test. Histological 

results (central nuclei, dystrophin and NADH counts) were compared between groups using 
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Students t test. Chi-square tests were used to test the hypothesis that adjacent dystrophin-

positive fibres decrease the probability of central nucleation in dystrophin-negative fibres. 
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PART III 
 

Muscle specific gene expression in MCK 1.35kb 
mini-dystrophin transgenic mdx mice 

 

 

INTRODUCTION  

Duchenne muscular dystrophy (DMD) is the most common primary muscle wasting disease 

in humans. Because of its high incidence, well characterised genetics, the complete lack of 

effective treatments and its severe progression with a fatal outcome, DMD has been 

considered a prime candidate for gene therapy (Hoffman and Dressman, 2001). Even 

though the concept of supplementing dystrophin-deficient muscle cells with a functional 

copy of the dystrophin gene is simple, its realisation has proven difficult (Somia and 

Verma, 2000).  Viral vectors capable of transferring therapeutic genes to a high number of 

cells in clinically relevant muscles such as the heart, diaphragm and limb muscles are under 

development. Ideally, several requirements should be met by the regulatory elements that 

drive expression of the therapeutic gene in the target tissue such as: 1) being strong enough 

to produce sufficient quantities of the therapeutic protein; 2) remaining active for the 

lifetime of the patient; 3) restricting expression to the target tissue; and 4) being small 

enough to fit into viral vectors with a limited packaging capacity (Walther and Stein, 1996; 

Cordier et al., 2001). It is noteworthy that strong constitutive viral promoters such as the 

CMV promoter are prone to cytokine-induced gene silencing and thus might not ensure 

long-term, stable expression (Harms and Splitter, 1995).  Moreover, viral promoters are 

active in many tissues other than skeletal muscle, which may also impair the safety, 

tolerability, and longevity of gene transfer (Ferrer et al., 2000; Pinto et al., 2000).  Indeed, 

the immune response against the vector and transgene product is aggravated when antigen-

presenting cells (APC) are infected by the vector and the transgene is expressed by APC 

(Hartigan-O’Connor et al., 2001; Yuasa et al., 2002). Therefore, regulatory elements, which 

are selectively active in the target tissue, but not in cells of the immune system, are 

increasingly recognised as being preferable for the purpose of somatic gene therapy 

(Weeratna et al., 2001). 
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The muscle creatine kinase (MCK) promoter is currently considered a good candidate to 

achieve the goal of muscle-specific gene expression in DMD. The MCK enzyme is 

abundantly expressed in skeletal muscle (Welle et al., 1999), and its regulatory regions 

have been well characterised in vitro, in transgenic animals and in gene transfer 

experimentation (Haecker et al., 1996; Deconinck et al., 1996; Yang et al., 1998; Hauser et 

al., 2000; Wang et al., 2000). The regulatory elements of the MCK promoter/enhancer are 

located within a 6.5kb sized region (Fig. 3-1). 

 

 

Fig. 3-1 MCK Promoter and MCK1.35dys construct. A) Depiction of the 6.5 kb full-length 

murine muscle creatine kinase regulatory region. Sites that contain major regulatory elements 

are indicated: the enhancers 1 and 2 (E1 and E2) and the proximal promoter region (PPR). 

Translation is initiated at the ATG codon. B) MCK1.35dys transgenic mice were produced by 

micro-injection of a 9.5 kb ClaI/SacII fragment, which contained a 1.35kb MCK promoter, a 

6.5kb mini-dystrophin, and a poly-A signal (pA).  

 

About half of this region is located upstream of the first exon within the 5’-untranslated 

region and the other half downstream of the first exon within intron1. Directly 5’ of the first 

exon lies a proximal promoter region (PPR) which has a size of approximately 385 bp. In 

promoter deletion studies the PPR was found to be indispensable for high level muscle 

specific gene expression. It contains at least one muscle specific regulatory element namely 

a MEF2 site. Two additional elements were identified that are important for optimal gene 

expression, they were called the MCK enhancer region 1 and 2 (E1 and E2). The E2 region 

lies in the first MCK intron 738bp downstream from the transcription initiation site 

(+738bp to +1598). It increases the activity of the basal promoter in skeletal muscle but not 

in the heart. The 206 bp E1 region (-1258bp to -1049bp) directs strong expression in 
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skeletal muscle and somewhat weaker expression in the heart (Johnson et al., 1989) 

Multiple transcriptional regulatory elements have been identified in this region: Two E-

boxes, MEF-2, AT-rich, and CArG sites, and Trex sites (Fabre-Suver and Hauschka, 1996; 

Hauser et al., 2000). An overview of the factors that bind to the different sites is given in 

Table 3-1. 

 

Table 3-1  Regulatory sites in the MCK Enhancer 1 (E1) 

 MCK E1 sites  DNA  binding factors  

 E-boxes   Members of MyoD family Lassar et al., 1989 

 MEF-2  MEF-2 Yu et al., 1992 

 AT-rich  MHox, MEF-2, Oct-1 Cserjesi et al., 1992 

 CArG  Serum response factor (SRF) Shore and Sharrocks, 1995 

 Trex  Trex-binding factor Fabre-Suver and Hauschka, 1996 
 

Virus mediated gene therapy requires packaging of the therapeutic construct consisting of 

the transgene and a promoter into the viral vector. However, the full-length MCK 

promoter/enhancer (6.5 kb) exceeds the limited packaging capacity of some of the most 

promising vectors for somatic gene therapy, such as adeno-associated virus and lentivirus 

based vectors (Scott et al., 2002). Therefore, several short versions of the MCK 

promoter/enhancer have been developed and tested in transgenic mice or gene transfer 

experimentation.  Unfortunately, most of these studies were limited by their short-term 

nature and/or were based upon analysis of reporter genes rather than therapeutic gene 

expression.  In addition, although previous studies have suggested unequal activity of MCK 

promoter/enhancer elements in slow-twitch and fast-twitch skeletal muscles, this issue has 

not been examined in detail.  

 

To address the aforementioned issues we created a transgenic mouse line which expresses a 

6.5kb mini-dystrophin under the control of a short muscle specific promoter. In the study 

mentioned above we have determined the efficacy of the short MCK 1.35 kb 

promoter/enhancer driving mini-dystrophin expression in multiple muscles for the entire 

lifetime of transgenic mice. Furthermore, we have evaluated whether there is any selectivity 

for expression within fast-twitch glycolytic fibres under these conditions.  Since large 

glycolytic muscle fibres are more prone to undergo necrosis in dystrophin-deficiency than 
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small oxidative fibres (Karpati and Carpenter, 1986), sufficient transgene expression in this 

subset of fibres might be of particular clinical relevance.  

Our model provides important insights into the scenario that may be anticipated following 

systemic delivery of a viral vector containing MCK regulatory elements to drive therapeutic 

transgene expression in DMD. 
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RESULTS 

Generation of dystrophin transgenic mdx mice 

We identified two founder animals that were positive for transgene sequences. Both 

founders were found to transmit the transgene to their offspring thus establishing two 

independent dystrophin transgenic lines. To ensure integrity of the promoter and 

promoter/dystrophin boundaries the complete MCK 1.35 kb promoter/enhancer region and 

adjacent parts of mini-dystrophin were sequenced for both lines. No mutations or 

rearrangements were found (data not shown). Both lines showed very similar expression 

patterns and expression levels for dystrophin once crossed onto the mdx background. If not 

otherwise stated the presented data are from transgenic line 2.  

Tissue-specific expression of dystrophin in transgenic mic 

In normal mice, expression of full-length dystrophin driven by endogenous promoters is 

limited to skeletal muscle, heart, and brain, and is very low or absent in other tissues. In 

contrast, muscles of mdx mice do not contain dystrophin except for a few so-called 

revertant fibres.  

Fig. 3-2. Immunoblot analysis of full-length (427 kDa) and mini-dystrophin (220 kDa) in 

various muscles and other tissues of wild-type (wt; C57BL/6) and transgenic (tg) mice. 

Muscle samples show a prominent band (myosin at 200 kDa) on the post transfer Coomassie 

gel (loading control). Dystrophin expression in transgenic mice is muscle-specific. It is strong 

in fast-twitch muscles but weak or absent in slow-twitch muscles, diaphragm and heart. 
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Western blot analysis of MCK1.35dys transgenic mice showed a muscle-specific, but 

more restricted pattern of dystrophin expression as compared to wild-type mice  

Expression was absent in non-muscle tissues, but varied considerably among different 

muscles. In detail, mini-dystrophin expression was 1) strongest in fast muscles such as M. 

tibialis anterior (TA), 2) intermediate in M. extensor digitorum longus (EDL) which is 

composed of fast-twitch and slow-twitch fibres and 3) absent or very weak in muscles 

containing mainly slow-twitch fibres such as M. soleus; and not detectable in the heart. This 

is in contrast to wild-type mice where expression levels of endogenous dystrophin are 

equally strong in all muscles and do not depend on muscle type (Fig. 3-2).. 

Muscle histochemistry and immunohistochemistry of transgenic mice 

Immunohistochemistry of transgenic mice revealed that even for dystrophin-positive 

muscles expression was not uniform and equal in all fibres, but a mosaic of dystrophin-

positive and dystrophin-negative fibres was observed. This pattern was seen in both 

transgenic lines, it was characteristic of a certain muscle (such as TA), and did not change 

in aged animals (Fig. 3-3). 

 

As dystrophin-positive fibres were larger than negative fibres we measured individual fibre 

cross sectional areas. This allowed us to compare the contribution of different fibres to the 

total muscle cross sectional area (CSA). In transgenic mice, 56% (TA) and 48% (EDL) of 

the CSA consisted of dystrophin-positive fibres (Table 3-2). Moreover, fibrosis in TA and 

EDL in 21-month-old dystrophin transgenic mice was slightly reduced if compared to non-

transgenic littermates (data not shown). In accordance with the immunoblot results, almost 

no dystrophin staining was observed in M. soleus and diaphragm of dystrophin transgenic 

mice. In these muscles, very few fibres were dystrophin-positive and their number did not 

exceed the number of revertant fibres in non-transgenic mdx mice of the same age. 

 

In addition, fibrosis of M. soleus and diaphragm in dystrophin transgenic mice were not 

reduced in comparison to non-transgenic littermates (data not shown). 
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Fig. 3-3 Immunofluorescent localisation of dystrophin in muscles from control and 

transgenic mice. TA (A, E, I, M, Q), EDL (B, F, J, N, R), M. soleus (C, G, K, O, S), and 

diaphragm (D, H, L, P, T). Panels (A-P) are from mice at the age of 7 months, panels (Q-T) 

from mice at the age of 20 months. Note the regularity of dystrophin expression in C57BL/6 

(A-D), its absence in mdx (E-H) and the mosaic pattern in adult muscle from both transgenic 

lines: line 2 (I-L) and line 1 (N-P) at the age of 7 months, and line 2 at the age of 20 months (Q-

T). Bar = 50 µm. 
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Table 3-2 Comparison of dystrophin expression, central nuclei and metabolic fibre type 

between transgenic and mdx mice 

        MCK1.35dys (tg)        mdx 

Dystrophin-positive fibres TA 56.3 ±   4.4 0.9 ± 0.7 

% of total area  EDL 48.2 ± 10.6 1.2 ± 0.7 

Fibres with central nuclei TA 33.2 ±   8.5 82.8 ± 2.8 

% of total area EDL 25.5 ±   3.5 86.7 ± 5.3 

Glycolytic fibres TA 64.6 ±   6.0 57.8 ± 8.0 

% of total area EDL 61.7 ±   7.2 53.2 ± 5.0 

 

TA and EDL from transgenic mice have a significantly higher percentage of dystrophin -

positive fibre area and less central nucleation as compared to mdx (P < 0.001). Transgenic EDL 

has a moderately increased percentage of glycolytic fibre area (P < 0.05). Mean ± standard 

deviation is shown. 

 

Each muscle has a characteristic composition of fibre types, which corresponds to the 

metabolic requirements of the muscle. A subset of fast-twitch muscle fibres depends mainly 

on glycolytic energy metabolism, whereas slow-twitch fibres depend on oxidation. The 

metabolic fibre type was visualised by the NADH reductase reaction, which is strong (dark) 

for oxidative fibres, and weak (light) for glycolytic fibres. In transgenic mice, a moderate 

increase in the number of glycolytic fibres was observed if compared to non-transgenic 

mdx mice (Table 3-2).  

 

To characterise the frequency, distribution and effect of MCK driven mini-dystrophin in 

TA and EDL muscles of transgenic mice (age 7 months), dystrophin expression, central 

nucleation and metabolic fibre type were assessed on the same sections (Fig 3-4).  

 

We observed a strong correlation between dystrophin expression and metabolic fibre type 

in transgenic mice: almost all dystrophin-positive fibres were large and glycolytic (98.5% 

for TA; 94.7% for EDL), whereas dystrophin-negative fibres were mostly small and 

oxidative (Table 3-3). 
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Fig. 3-4 Correlation of dystrophin expression, central nucleation and metabolic fibre type. 

Sections from 7-month-old C57BL/6 TA (A), mdx TA (B), transgenic TA (C), and transgenic 

EDL (D). Dystrophin immunostaining (red); nuclear bisbenzimide staining (blue); NADH-

tetrazolium reductase (glycolytic fibres light; oxidative fibres dark). In transgenic muscles, 

dystrophin-positive fibres are large; central nuclei are nearly absent (C, D). In contrast, 

dystrophin-negative fibres are smaller, mostly oxidative and often have central nuclei (C, D).  

Interestingly dystrophin expression depends on muscle fibre type. Dystrophin is nearly 

exclusively found in fast glycolytic fibres.  Also note the central nucleus in the revertant 

(dystrophin-positive) fibre in the mdx muscle (B). Bar = 50µm. 

A high rate of central nuclei is typically found in dystrophin-deficient muscle (mdx) and 

indicates ongoing cycles of necrosis and regeneration. Central nucleation increases with age 

and reaches 70-80 % in 3-6-month-old mdx mice. In transgenic TA and EDL, the area with 

centrally nucleated fibres was reduced by about 50 % if compared to mdx. This proportion 

remained stable even in aged mice (20 months). Muscles of transgenic mice that did not 
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express dystrophin, such as M. soleus showed similarly high levels of central nucleation as 

muscles of mdx mice. 

 
Table 3-3 Correlation between dystrophin expression, central nuclei and metabolic fibre 

type in transgenic mice. 

 

         MCK1.35dys (tg)  

% Dystrophin-positive fibres TA 5.6 ±   7.8

.with central nuclei EDL 2.7 ± 1.9

% Dystrophin-negative fibres TA 68.6 ± 10.3

.with central nuclei EDL 45.0 ± 20.6

% Dystrophin-positive fibres TA 98.5 ±   1.1

.which were glycolytic EDL 94.7 ± 6.7

% Dystrophin-negative fibres TA 78.4 ± 5.5

.which were oxidative EDL 69.5 ± 4.7

 
Fibres expressing dystrophin show a significant reduction of central nucleation. Note that 

almost all dystrophin expressing fibres are of the glycolytic fibre type. In contrast, dystrophin-

negative fibres are mostly oxidative. Mean ± standard deviation is shown. 

 

Dystrophin-positive fibres showed considerably less central nucleation as compared to 

dystrophin-negative fibres (Fig. 3-4). In dystrophin-positive fibres of transgenic mice, 

central nucleation was strongly reduced to 5.6 % in TA and 2.7% in EDL (Table 3-3). 

Therefore, mini-dystrophin expression appeared to be sufficiently protective against fibre 

degeneration. In dystrophin-negative fibres of transgenic mice, central nucleation was 

moderately reduced to 69% in TA and 45% in EDL when compared to corresponding mdx 

muscles. Interestingly, dystrophin-negative fibres with peripheral nuclei were frequently 

found directly adjacent to dystrophin-positive fibres. Central nucleation of dystrophin-

negative fibres not in contact with dystrophin-positive fibres was significantly higher than 

central nucleation of dystrophin-negative fibres surrounded by dystrophin-positive fibres 

(80.9 % versus 7.0 %; P < 10-6; Table 3-4). 
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Table 3-4 Neighbouring dystrophin-positive fibres reduce the rate of central nucleation in 

dystrophin-negative fibres of transgenic mice 

 
 number of fibres central nuclei (%) 

surrounded by dystrophin-positive fibres 57 7.0 

up to 75 % of total fibre surface area in contact with 
dystrophin-positive fibres 

255 18.4 

up to 50 % of total fibre surface area in contact with 
dystrophin-positive fibres 

443 36.1 

up to 25 % of total fibre surface area in contact with 
dystrophin-positive fibres 

529 61.2 

no contact with dystrophin-positive fibres 482 80.9 
 

Dystrophin-negative fibres of transgenic mice were scored for central nucleation according 

to their proximity with dystrophin-positive fibres. Contact with dystrophin-positive fibres 

led to a gradual reduction of central nucleation. Seven transgenic EDL muscles of 7-

months-old mice were scored. P < 10-6 for all groups if compared to the group of fibres 

with no contact with dystrophin-positive fibres. 

In contrast, revertant (dystrophin-positive) fibres of mdx muscles showed a high percentage 

of central nucleation (73%; TA; 7 months; n = 102) which indicates that revertant 

dystrophin is not fully protective. 

Force measurements on isolated muscles 

To compare the muscle function of transgenic, mdx and C57BL/6 mice in detail force 

measurements on isolated muscles are required. Three important parameters were 

measured: specific twitch force, specific tetanic force (Quinlan et al., 1992) and resistance 

to eccentric contraction. 

 

Twitch and tetanic contractions were measured under isometric conditions, i.e. the length of 

the muscle remained unchanged during contraction. A twitch is a short contractions in 

response to a single action potential that can be induced by a short (1 ms) electrical 

stimulation. Since the mechanical response lasts for about 100ms it is possible to induce a 

second action potential during the ongoing mechanical activity of the first stimulus. 

Therefore, when a muscle is stimulated by many rapidly successive electric pulses the level 

of tension increases until a maximum, tetanic force, as it is called, is reached (Fig. 3-5). 
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A protocol which emphasises the marked susceptibility of dystrophin deficient muscles to 

muscle damage consists of forced lengthening of the muscle during tetanic contractions. A 

series of these so-called eccentric contractions results in a dramatic force drop in mdx 

muscle, whereas normal muscle is more resistant to mechanical stress. In Fig. 3-5 data from 

tests of an EDL muscle are displayed, which demonstrated that the muscle force 

measurement worked as intended.  

 

Fig. 3-5 Measurement of muscle functions (Forces: red; electrical stimulation: blue)   

(A) single electric stimuli produce short “twitches” of the muscle. A rapid series of electric 

stimuli produces a tetanic contraction.  For an eccentric contraction the muscle is stretched 

when a tetanic contraction has reached its maximal force, which increases the strain on the 

muscle. (B) Comparison between transgenic and mdx muscle when subjected to a series of 

successive eccentric contractions. Note the great susceptibility of the mdx muscle and the 

resistance of the transgenic muscle. 
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To monitor the long-term function of MCK-driven dystrophin expression force 

measurements were carried out in isolated muscles of transgenic mice at the ages of 3.5, 7, 

14, and 20 months and compared to non-transgenic littermates (mdx) and wild-type mice 

(C57BL/6). No difference in muscle function between dystrophin transgenic and mdx mice 

was found for muscles such as M. soleus and diaphragm that did not show significant 

dystrophin expression (data not shown). The EDL of transgenic mice showed a mosaic 

pattern of dystrophin expression (see above) and revealed an improved function if 

compared to EDL of age-matched, non-transgenic littermates (Fig. 3-6). Isometric force of 

transgenic mice was restored to wild-type levels. 

 

Fig. 3-6 Mechanics of isolated EDL muscle. Evaluation of specific twitch force (A), specific 

tetanic force (B), and resistance to eccentric contractions (C) for female wild-type (black), 

transgenic (grey) and mdx (white) mice. Between 5 and 18 muscles were analysed in every 

group. Data are presented as mean ± s.e.m. Statistically relevant differences between transgenic 

and mdx mice are indicated  (* P < 0.05; ** P < 0.01).  Differences between wild-type and mdx 

mice are highly significant for eccentric contraction (P < 0.001; not indicated). 
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After twitch and tetanic force measurements the muscle were subjected to an eccentric 

contraction protocol. For all mouse lines tested the force drop remained fairly constant at all 

ages. Dystrophin transgenic EDL showed a significantly improved performance as 

compared to non-transgenic littermates (mdx; P < 0.01), but did not reach levels of wild-

type mice. The partial resistance to eccentric contractions in transgenic EDL corresponded 

well with the percentage of dystrophin-positive fibres. 

Grip strength of living animals 

Grip strength was measured to evaluate an overall beneficial effect of limited, transgenic 

mini-dystrophin expression at different ages. No significant difference between transgenic 

and non-transgenic (mdx) mice was detected at ages up to 14 months (data not shown). In 

contrast, wild-type mice were significantly stronger at all ages, and the difference in 

strength increased with age (data not shown). At 17 months of age, transgenic mice were 

significantly stronger than non-transgenic (mdx) mice (P < 0.05; Fig. 3-7). 

Fig. 3-7 Grip force measurements. 17-month-old female C57BL/6 (black), transgenic 

(grey) and mdx (white) mice. Between 8 and 10 mice were tested in every group. Data are 

presented as mean ± s.e.m. Statistically relevant differences between transgenic and mdx mice 

are indicated (* P < 0.05). 
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Moreover, we measured the resistance to fatigue against repeated grip strength pulls. There 

was no difference between mdx and transgenic mice, but they both were significantly less 

resistant to fatigue than wt mice (Fig. 3-8). While wt mice could maintain a constant force 

over 10 repeated pulls, the force dropped strongly for the other two models. After the 

measurement, wt mice immediately started to move in the cage. In contrast, mdx and 

transgenic mice made no attempts to move around and also had a much higher breathing 

frequency.  

 

 Fig. 3-8 Resistance to fatigue. Female C57BL/6 (black), transgenic (grey) and mdx (white) 

mice aged between 3-17 months .  8 - 10 mice were tested in every group.  Data are presented 

as mean ± s.e.m. Differences were not significant between mdx and transgenic mice. But both 

were significantly different when compared to C57BL/6 mice at all ages (** P < 0.001; * P < 

0.05).  
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DISCUSSION 

In this study we demonstrate that transgenic expression of mini-dystrophin driven by a 1.35 

kb muscle creatine kinase (MCK) promoter partially protects skeletal muscle throughout 

the lifetime of dystrophin-deficient (mdx) mice. Interestingly, we observed a preference of 

transgenic dystrophin expression for glycolytic fibres in fast skeletal muscle of two 

independent mouse lines.  Our detailed histological and functional analysis of several 

muscles provides new insights into the therapeutic effects of mosaic transgene expression.  

 

Ideally, somatic gene therapy of muscular dystrophy will result in adequate transgene 

expression in every muscle and in every muscle fibre of the body. However, current gene 

delivery protocols suffer from several limitations: skeletal muscle is distributed throughout 

the body and accounts for more than 40% of total body mass, many muscles such as heart 

and diaphragm are difficult to reach directly, and systemic vector delivery implies 

additional risks such as increased toxicity and immunogenicity (Kay et al., 2001). 

Therefore, gene delivery is likely to be incomplete and to result in unequal or mosaic 

transgene expression for different muscles or muscle fibres. So far, few attempts have been 

made to determine the level and distribution of transgene expression that would permit 

functional improvement. Phelps et al. compared several lines of transgenic mdx mice with 

varying levels of dystrophin expression and fibre-by-fibre mosaics. They concluded that 

uniform dystrophin expression at a level of 20-30% in all fibres efficiently corrects the 

dystrophic phenotype. In contrast, high expression levels restricted to a smaller number of 

fibres were not equally protective (Phelps et al., 1995). Interestingly, no negative effect was 

observed in transgenic mice that strongly overexpress dystrophin in all tissues by an 

ubiquitously active viral promoter (Cox et al., 1993). 

 

Most studies use central nucleation as an endpoint in gene transfer and transgenic 

experimentation and correlate the overall levels of central nucleation and dystrophin 

expression in entire muscles. Our approach to score large numbers of individual fibres in 

different muscles allowed for additional conclusions: central nucleation in transgene 

expressing fibres is reduced to almost wild-type levels (5.6 % for TA and 2.7 % for EDL). 

Therefore, the 6.3 kb mini-dystrophin may be fairly protective even if it is not strongly 

overexpressed. This is in accordance with the original observation of this mini-dystrophin 

in a very mildly affected patient  (England et al., 1990). However, precise phasing of the 

dystrophin rod deletion may lead to functionally improved mini-dystrophin molecule 
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(Harper et al., 2002). In contrast, dystrophin-positive, so-called revertant fibres of non-

transgenic mdx mice showed high levels of central nucleation close to levels in dystrophin-

negative fibres. Revertant dystrophins are thought to arise from somatic deletions or post-

transcriptional exon skipping that excise the mdx stop codon (Uchino et al., 1995; Wilton et 

al., 1997; Lu et al., 2000; Crawford et al., 2001). Our findings may indicate that the 

majority of naturally occurring revertant dystrophin is dysfunctional.  

 

Interestingly, even dystrophin-negative fibres in muscles with mosaic transgene expression 

show a moderately reduced rate of central nucleation if compared to non-transgenic 

littermates (69% in transgenic TA compared to 82% in mdx TA; 45% in transgenic EDL 

compared to 86% in mdx EDL). We cannot rule out that "dystrophin- negative" fibres 

express low amounts of dystrophin that are below the detection threshold of our 

immunohistochemical analysis. However, it appears unlikely that such very low transgene 

levels would protect muscle fibres from degeneration. Moreover, we observed lower levels 

of central nucleation mostly in dystrophin-negative fibres that were in close vicinity to 

dystrophin-positive fibres. Therefore, we hypothesise that dystrophin-negative fibres may 

benefit from a positive bystander effect. Under these conditions, dystrophin-positive fibres 

may carry the main mechanical burden, thereby leading to reduced stress and cell death of 

the adjacent, more vulnerable dystrophin-negative fibres. Moreover, fibre necrosis in 

dystrophic muscle is accompanied by inflammation which results in further deterioration of 

the muscle (Porter et al., 2002; Spencer et al., 2001). Therefore, an overall reduction of 

inflammation may contribute to a further prolonged survival of all muscle fibres.  

 

The reduction of central nucleation is a well-accepted histological outcome measure of 

therapeutic or transgenic intervention in muscular dystrophies. However, the primary and 

most clinically relevant goal is the improvement of force generation. The mdx mouse has 

been criticised as an animal model for human dystrophin-deficiency since caged mdx mice 

do not reveal severe functional impairment on first sight. Maximum tetanic force is not 

compromised in several hindlimb muscles of mdx mice. This is because a decrease in 

maximum tetanic force per muscle cross sectional area (specific force) is compensated by a 

gain in muscle mass and diameter (Coulton et al., 1988; DelloRusso et al., 2001). However, 

specific forces and resistance to eccentric contractions are clearly impaired in mdx muscle 

if compared to controls. These deficits are due to the lack of dystrophin and worsen with 
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age. To further evaluate the effect of transgenic mini-dystrophin expression we ascertained 

functional parameters in isolated EDL muscles of young adult and aged mice. 

For specific twitch and tetanic forces as well as the resistance to eccentric contractions, we 

found significant improvements in transgenic mice as compared to their non-transgenic 

littermates. This improvement was most pronounced in aged mice, which is in agreement 

with previous results (DelloRusso et al., 2001; Lynch et al., 2001). Resistance to eccentric 

contractions was the most sensitive parameter, showing significant differences for the EDL 

muscle in all age groups (Moens et al., 1993).  

 

It is an interesting question why skeletal muscles of mdx mice are highly susceptible to 

eccentric contraction while other mechanical functions are not substantially affected. 

Two additional observations in mdx mice support this notion: The diaphragm is most 

severely affected, and intensive downhill running results in increased membrane leakage. 

Both are naturally occurring models for eccentric contractions, i.e. muscle lengthening 

during contractile work. Apparently, mdx muscle can sustain stress connected with normal 

muscle contractions, but cannot cope with the additional physical stress during eccentric 

contractions.  

  

Grip force measurements are non-invasive tests, which allow for longitudinal studies 

without killing the mice. However, grip force appeared to be a less sensitive parameter if 

compared to isolated muscle measurements, since a significant difference between 

transgenic mice and non-transgenic littermates was only detected in aged mice. Similarly, 

the degree of muscle fibrosis was only reduced in EDL and TA of aged transgenic mice as 

compared to their non-transgenic littermates.  

In other studies mdx mice had to complete exercise protocols such as swimming or running 

(Hayes and Williams, 1998; Granchelli et al., 2000; Vilquin et al., 1998). It was noted that 

mdx mice show earlier and stronger signs of exhaustion than normal controls. Apparently, 

dystrophin-deficiency in mice results in a phenotype that allows for normal movement and 

behaviour of caged animals, but additional exercise reveals physical limitations. To 

quantify increased fatigue we measured grip strength of 10 successive pulls (see above). 

Interestingly a highly significant fatigue in mdx mice was detected when compared to wt 

mice. This protocol is a fast, non-invasive, repeatable and sensitive method to evaluate the 

overall physical performance of mdx mice. Importantly, this method allowed a sensitive 

characterisation of the mdx phenotype already at 3 months of age. However, this method 
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does not allow to distinguish among a number of possible causes for increased fatigue such 

as limb muscle weakness, heart insufficiency, influence on behaviour, or breathing 

insufficiency. However the increased breathing rate that we observed in the transgenic 

animals and mdx mice after repeated grip strength measurements may be caused by the 

very pronounced phenotype that is found in the diaphragm of these mice. Stedman et al. 

have argued that the eccentric mode of action and a high respiratory work load in rodents 

are the reasons why the mdx diaphragm is more severely affected than other muscles 

(Stedman et al., 1991). When the resistance to fatigue of MCK1.35dys mice was measured, 

no improvement was detected in comparison to mdx mice. Since dystrophin was not 

expressed in heart and diaphragm of the transgenic mice, an impairment in cardio-

respiratory function may have been responsible for the increased overall fatigue. 

 

Another finding of interest in our study was a mosaic pattern of transgene expression in 

several muscles within two independent transgenic mouse lines, which suggests that this 

pattern is not due to a position effect of a specific integration site in the mouse genome, but 

rather an intrinsic property of the MCK promoter. We hypothesise that the MCK promoter 

shows higher activity in fast-twitch muscles and glycolytic fibres as compared to slow-

twitch muscles and oxidative fibres. Evidence from several studies of the function and 

distribution of muscle creatine kinase, from MCK promoter analysis and from in vivo 

expression studies support this notion. Indeed, muscle type creatine kinase is mainly 

located at sites of high ATP consumption and participates in the regeneration of ATP from 

phosphocreatine (Bessman and Carpenter, 1985; Wallimann et al., 1992). Therefore, 

muscle creatine kinase plays a pivotal role in fibres that depend on glycolysis for energy 

generation. Accordingly, fast-twitch glycolytic muscles contain higher levels of MCK-

mRNA and MCK-activity in comparison to slow-twitch oxidative muscles (Andres et al., 

1990; Yamashita and Yoshioka, 1991; Tsika et al., 1995). 

 

Regulatory elements of the MCK promoter/enhancer that are responsible for muscle-

specific expression and for differential expression in fast-twitch, slow-twitch and cardiac 

muscles have been identified (Johnson et al., 1989; Shield et al., 1996). MCK1.35 used in 

this study contains two major regulatory elements: a muscle-specific enhancer (E1) located 

1.1 kb upstream of the transcription start site and the proximal promoter region. The 

intronic enhancer (E2) is not included.  MCK promoter/enhancer constructs have been used 

in several studies to achieve muscle-specific gene expression in transgenic animals, and 
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include variants of 6.5kb, 3.3kb and 570bp (Johnson et al., 1989; Hauser et al., 2000). Most 

of these studies focused on transgene expression in fast-twitch skeletal muscles and 

reported strong variations in MCK-driven expression: 1) between different transgenic lines; 

and/or 2) between different muscles; and/or 3) a mosaic pattern of expression in muscles 

(Lee et al., 1993). Although strong transgene expression has been demonstrated in 

diaphragm in some exceptions (Cox et al., 1993; Squire et al., 2002), expression levels are 

usually highest in fast-twitch skeletal muscles and considerably lower in slow-twitch 

skeletal muscle, diaphragm and heart  (Phelps et al., 1995; Harper et al., 2002; Johnson et 

al., 1989; Shield et al., 1996; Wells et al., 1995; Donoviel et al., 1996; Corrado et al., 1996; 

Ahmad et al., 2000). 

 

As with our study, most in vivo studies on MCK promoter/enhancer function are based 

upon observations in transgenic animals. While it appears theoretically possible that a 

different expression pattern could result after viral gene transfer (particularly when the 

transgene does not stably integrate in the host genome), it is noteworthy that MCK-driven 

transgene expression remained muscle-specific after adenoviral gene transfer (Larochelle et 

al., 2002; Scott et al., 2002). Previous gene transfer studies have mainly examined fast-

twitch muscles or failed to directly compare expression in fast-twitch and slow-twitch 

muscles. However, MCK-driven luciferase expression was high in fast-twitch muscle and 

poor in heart if normalised to activity of the RSV promoter (42% for skeletal muscle and 

0.7% for heart) (Larochelle et al., 1997). 

 

This comprehensive study allows for the first time a direct correlation between dystrophin 

expression, metabolic fibre type and central nucleation in transgenic mice using a MCK 

promoter/enhancer construct.  In conclusion the MCK promoter/enhancer provides not only 

muscle-specific expression, but also different levels of expression depending on the 

metabolic characteristics of the muscle and its component muscle fibres. The MCK 

promoter seems to be highly appropriate in applications in which transgene expression 

should be restricted to skeletal muscle and high expression in a limited number of muscle 

fibres is sufficient. This may include DNA immunisation (Gebhard et al., 2000), metabolic 

engineering for systemic delivery of non-muscle proteins (Bou-Gharios et al., 1999) and 

experiments in which expression of a transgene - specifically in glycolytic fibres - is 

desirable (Lin et al., 2002). Since large, glycolytic fibres are especially vulnerable to the 

dystrophic process in DMD, high levels of transgene expression in these fibres is likely to 
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be essential (Karpati and Carpenter, 1986). However, therapeutic efficacy of the MCK 

promoter might still be limited in gene therapy of muscular dystrophies, since a more 

widespread and even expression of the transgene is probably needed. On the other hand, it 

may be possible to overcome these limitations by modifying the MCK promoter/enhancer 

or by coupling MCK with regulatory elements from other muscle-specific or ubiquitous 

promoters. As for now, in vivo expression analysis of such constructs has focused solely on 

fast-twitch skeletal muscle (Hauser et al., 2000; DelloRusso et al., 2002). Further studies in 

a larger variety of muscles of dystrophic animals will be required to fully ascertain the 

therapeutic efficacy and fibre type specificity of such constructs in the context of muscular 

dystrophies. 

 

These experiments discussed above focussed on tissue specific gene expression achieved 

through the use of a tissue specific promoter in a transgenic mouse model. In a therapeutic 

gene therapy approach the tissue specificity may not only be determined through the control 

of gene expression, but also through the specificity of the applied gene transfer system for 

the target tissue. To accomplish optimal tissue specificity it may be therefore beneficial to 

combine a tissue specific promoter with a tissue specific method of gene delivery. The high 

synergy of such an approach was demonstrated in a system for lung specific gene 

expression after adenoviral gene transfer. By combining transductional targeting to a 

pulmonary endothelial marker and transcriptional targeting the selectivity of transgene 

expression for the lung was largely improved (Reynolds et al., 2001). For the DMD therapy 

a muscle specific promoter should be combined with a delivery method that targets all 

affected muscle tissues.  

 

Direct injections into the muscle would allow some level of specificity. Unfortunately, 

transgene expression is restricted to the injection site and the near vicinity (O’Hara et al., 

2001). For human muscular dystrophies this approach would require hundreds of 

intramuscular injections. Recently, improved uptake of naked DNA, lipid coupled DNA 

and viral vectors into muscle was reported by electrotransfer (Cappelletti et al., 2003), 

ultrasound (Danialou et al., 2002), and the modulation of Starling forces (Cho et al., 2000). 

To reach all muscles including the heart and the diaphragm, systemic delivery through 

intravascular routes would be favourable. For systemic delivery, several obstacles need to 

be overcome: capillaries may transport the therapeutic agent to many non-muscle tissues, 
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and the therapeutic agent has to pass the blood vessel walls and to enter the muscle cells 

with high efficiency. 

 

Use of Ads for gene therapy of adult skeletal muscle is restricted by low levels of the 

primary virus attachment receptor, the Coxsackie- and adenovirus receptor (CAR), on the 

surface of mature myofibres (Bergelson et al., 1998; Nalbantoglu et al., 1999). Especially 

after systemic injection the majority of Ad is not found in muscle but in other tissues that 

express higher levels of CAR, most notably hepatocytes. Retargeting of Ad therefore 

depends on a twofold strategy (Thirion et al., 2002). First, the ablation of the national 

tropism by removing the CAR binding site and other sites which still have to be identified 

that allow interactions with non-muscle cells (Alemany and Curiel, 2001); and second, the 

introduction of binding moieties that allow to specifically target muscle fibres (Fig. 3-9).  

 

Fig. 3-9 Strategy for adenovirus targeting and enhanced gene delivery into the targeted 

tissues. (I) In wild-type adult skeletal muscle Ad gene-transfer is limited by the low amount of 

CAR on myofibres. This low tropism could be overcome by: (II) an increase of CAR 

expression on the target tissue surface, (III) direct targeting through genetic engineering, e.g. 

insertion of targeting ligand into the Ad fibre, fibre-swab between Ad-serotypes, or 

modifications of the penton or hexon sub-units of the viral capsid, (IV) coupling of targeting 

compounds such as antibody- or bispecific protein-adapters. 
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Recently, we have demonstrated that antibody-mediated targeting of Ad resulted in muscle 

specific targeting. A synthetic 33-amino-acid immunoglobulin G (IgG) binding domain 

derived from staphylococcus protein A was inserted into the Ad fibre (Volpers et al., 2003). 

The modified fibre bound IgG with high affinity and retained the ability to assemble as 

fibre-trimers to the viral capsid. Preincubation with monoclonal antibodies against muscle 

surface molecules like neuronal cell adhesion molecule (NCAM) or α7-integrin resulted in 

an up to 77-fold increase in reporter gene transfer in differentiated primary human 

myoblasts. 

This IgG-binding Ad vector holds promise to allow a) easy systematic screenings for the 

identification of new tissue specific surface receptors, b) targeted gene transfer to a wide 

variety of cell types without laborious specific modifications of the capsid for each 

individual target through the use of different antibodies, and c) a double targeting strategy 

for skeletal muscle through the combination of a muscle specific gene control element with 

targeted gene transfer.  
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PART IV 
 

Gentamicin Induced Read-Through of Stop Codons 
 

 

INTRODUCTION 

For decades aminoglycoside (AG) antibiotics have been used to fight bacterial infections. 

The structural and biochemical properties of AG explain both the therapeutic and side-

effects of these drugs. AG interact with ribosomal RNA's (rRNA) inducing errors of the 

cellular translation machinery .They bind to a highly conserved decoding region of rRNA. 

The structure of the RNA complexed to gentamicin was recently resolved (Yoshizawa et 

al., 1998). The affected RNA region normally mediates the precise codon-anticodon 

pairing. When aminoglycosides are bound to this region the rRNA conformation is 

modified and the accuracy of the translation process is reduced. Although this interaction 

with rRNA takes place in various organisms, bacterial translation appears to be more 

sensitive to AG than mammalian translation (Lynch and Puglisi, 2001). Furthermore, 

mitochondrially encoded rRNA may be more vulnerable to AG than nuclear encoded 

rRNA, which may explain some of the side-effects, i.e. ototoxicity and nephrotoxicity 

(Guan et al., 2000).  

 

Several in vitro experiments indicated that AG-related interference with translation may be 

used for therapy of inherited disorders. A certain proportion of these disorders is caused by 

nonsense mutations, i.e. a single nucleotide exchange replacing a codon for an amino acid 

by a stop codon resulting in premature termination of the respective amino acid chain. The 

resulting truncated proteins are normally not functional and are rapidly degraded. 

  

Several independent groups have shown in cellular models of cystic fibrosis, Hurler's 

disease and DMD, that AG are capable of inducing “read-through” of such nonsense 

mutations generating full-length protein that is otherwise deficient (Howard et al., 1996; 

Howard et al., 2000; Keeling et al., 2001). These full–length proteins may carry an amino 
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acid substitution as a consequence of the incorporation of an amino acid at the site of the 

stop codon but in most cases will be nevertheless functional (Fig. 4-1). 

 

 

Fig. 4-1 Gentamicin induced “read-through”. The wt mRNA encodes the full-length 

dystrophin protein. At the ribosome a glutamine-carying tRNA normally binds to the 

corresponding CAA sense codon. In the mdx mouse mRNA a single base transition (CAA > 

UAA) codes for a premature stop codon which is recognised by release factor proteins (RF). 

The RFs bind to the mRNA and terminate the translation. Gentamicin binds close to the 

ribosomal tRNA recognition site and interferes with correct codon recognition. Now, not only 

RFs bind to the mRNA but occasionally also a tRNA carrying an amino acid. Therefore, full-

length dystrophin can be assembled carrying an amino acid substitution if another amino acid 

than glutamine is incorporated. (Adapted from Mankin and Liebman, 1999)  

 

 However, the amount of protein generated was dependant on several factors such as the 

dosage and composition of the AG as well as the exact sequence of the mutation, and even 

in the best case scenario it did not reach the levels of wild type cells. Moreover, in vivo 

53 
 



                                                                                                           Gentamicin Introduction 

application of subtoxic doses of AG has resulted in little if any functional benefit (Clancy et 

al., 2001). 

 

Therefore, the findings of Barton-Davis et al. reporting that AG can restore functional 

dystrophin and associated proteins in mdx mice came as a welcome surprise for the 

scientific community and the lay public (Barton-Davis et al., 1999; Mankin and Liebman, 

1999). A number of arguments in favour of AG therapy led to the rapid initiation of several 

clinical trials for DMD: 1. DMD is a fatal disorder for which other therapies are not really 

effective. 2. Molecular therapeutic approaches such as gene or stem cell therapy may be 

years ahead and/or may not live up to the expectations. 3. Gentamicin can be systemically 

administered and thereby potentially reach all affected muscles. 4. It can be easily produced 

in sufficient quantities 5. It is a widely used AG, an approved, conventional drug with a 

long-standing record in safety and tolerance. While a restoration of dystrophin to normal 

levels was not anticipated, even levels as low as 20% of the normal level may prevent 

muscle fibre necrosis and improve muscle function (Ahmad et al., 2000; Yang et al., 1998). 

The majority of mutations of the dystrophin gene, such as large deletions, are unlikely to be 

beneficially influenced by gentamicin treatment. However, it was estimated that 5- 15% of 

all DMD cases are due to nonsense mutations of the dystrophin gene, and such cases would 

be candidates for gentamicin therapy (Mendell et al., 2001). 

 

Up to the present time, results of three clinical trials using gentamicin in DMD/BMD 

patients carrying nonsense mutations of the dystrophin gene have been reported; two in 

abstract form and one as a full communication (Dubowitz, 2002, Serrano et al., 2001, 

Wagner et al., 2001). The fully reported trial by Wagner et al. did not reveal an increase of 

dystrophin expression in four gentamicin-treated DMD/BMD patients (Wagner et al., 

2001), neither did the trial by Serrano et al. in twelve patients. By contrast, G. Nigro in a 

special workshop reported an immunohistochemical increase of dystrophin expression for 

one out of four gentamicin-treated DMD patients, but immunoblotting data were not 

presented (Dubowitz, 2002). The latter trial consisted of 3 cycles of daily gentamicin 

infusions for one week each, while in the first two trials, a 14-day protocol of daily 

infusions, very similar to the mouse study (Barton-Davis et al., 1999), was applied. 

Interestingly, a decrease in creatine kinase (CK) levels during gentamicin treatment was 

noted in several patients although an increase in dystrophin expression was not detected. 

The clinical significance of this finding is unclear at the moment. In summary, in contrast 
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to the reported mouse data (Barton-Davis et al., 1999), clinical trials in DMD patients with 

short courses of subtoxic gentamicin infusions did not result in clinical benefit. Therefore, 

independent experimentation in the mdx mouse was carried out to evaluate the effect of 

gentamicin treatment. 
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RESULTS 

Because a treatment for DMD is in urgent need,  treatment of mdx mice with gentamicin 

was simultaneously tested in two laboratories. The author conducted  the work in the 

laboratory of Hanns Lochmüller which is described here in detail. Supporting data from the 

trial in Montreal are marked as such.  

In the Montreal-study (Laboratory of George Karpati, Neuromuscular Research Group, 

Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada), 

gentamicin was applied as described in reference 2 (data not shown). Groups of 6 mdx mice 

were used. Starting at age 4-6 days mice were injected subcutaneously with gentamicin 

sulfate (34mg/kg or 17 mg/kg; Sigma) or normal saline daily for 14 days.  

In the Munich-study effects of gentamicin on dystrophin expression were tested in vitro and 

in vivo.  

Establishment of immortalised dystrophin negative cells 

For in vitro experiments, myogenic cells were needed that are dystrophin deficient due to a 

nonsense mutation of the dystrophin gene (mdx cells). However, cultures of primary 

murine myoblasts are very heterogeneous, and the cells cannot be propagated for an 

extended time in tissue culture. Therefore, we generated immortalised lines of dystrophin 

deficient myogenic (mdx) cells. We used the H-2Kb-tsA58 mouse system which allows 

quick isolation of immortalised cells from different tissues. Cell lines were isolated from 

normal and mdx mice that were cross-breeded with “immorto” mice. The resulting cell 

lines divide indefinitely when cultivated at 33°C and in the presence of INF-γ. They have 

the additional advantage that the immortalising SV40 large T antigen can be shut down 

when the cells are cultivated at 37°C and INF-γ is withdrawn. Clones from single muscle 

progenitor cells of mdx × H-2Kb-tsA58 mice were isolated and characterised. Several 

clones had the appearance of myoblasts when grown at low densities. Under fusion 

conditions the cells fused to form elongated multinucleated myotubes (Fig. 4-2).  

 

Fusion started after 36 hours and the majority of cells fused after 3-5 days. Importantly, 

most myotubes displayed spontaneous contractions after 5-7 days which is a very good 
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Fig. 4-2  Immortalised dystrophin negative cells. (A) At low densities the myoblasts divided 

rapidly. (B) At higher densities and fusion-conditions the cells fused to multinucleated 

myotubes which contracted spontaneously. Arrows in the magnified window indicate the 

position of single nuclei.  

 

indicator that cells had the potential of differentiated muscle cells. Because human 

myoblasts whose life span were prolonged by the expression of viral tumor genes 

(Lochmüller et al., 1999) and primary murine myoblasts show signs of senescence after 

multiple cell divisions we wanted to assess that our clones were truly immortalised. Two 

independent clones were continuously cultivated for more than 12 months. The speed and 

the total number of cell divisions were measured based on cell counts and splitting rates. 

Overall, cells divided approximately every 22 hours. More than 400 cell divisions were 

monitored. To ensure that the cultures kept their myogenic features they were regularly 

tested for fusion and contraction competence. The cells also withstood repeated freezing 

and thawing without losing any of their characteristic features, which allows convenient 

storage and distribution of these cell lines. As a control, we isolated an immortalised cell 

line from a dystrophin positive wild-type mouse with the same method. Western blot 

analysis revealed that dystrophin was expressed in fused and unfused cells from the 

immortalised control cell line but was absent in cultured mdx cells (data not shown). 
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In vitro gentamicin treatment  

Dystrophin negative cells were treated with different concentrations (200-500µg/ml) of 

gentamicin sulfate from two different suppliers. Treatment was continued for 14 days to 

ensure that dystrophin could accumulate to detectable levels.  Cells were either cultivated 

under normal growing conditions or under fusion conditions. High concentrations of 

gentamicin sulfate resulted in lower fusion rates and deattachment of the cells (Table 4-1). 

Therefore, it seems that too high levels of gentamicin interfere with the eukaryotic 

translation machinery and thereby block proliferation and differentiation. 
 

Table 4-1 in vitro effect of gentamicin treatment on cultivated mdx cells (fusion conditions) 

Immortalised Cell line Control mdx mdx mdx mdx mdx 

Gentamicin (µg/ml) / / 200 300 400 500 

Fusion to myotubes +++ +++ +++ ++ ++ + 

Presence of deattached cells - - - + ++ ++ 

Dystrophin staining +++ - - - - - 

 

A dystrophin signal could not be detected either in directly stained myotubes (data not 

shown) nor in western blot analysis of cell lysates (Fig. 4-3). 

In vivo gentamicin treatment 

For in vivo experiments, groups of 4 mdx mice were used. Mice were 5 weeks old at the 

beginning and 12 weeks old at the end of the experiment. Three courses of daily 

intraperitoneal gentamicin sulfate injections were given for one week (8.5 mg/kg for female 

and 34mg/kg for male mdx mice). Gentamicin sulfate was purchased from GibcoBRL 

(Batch 3034117; composition according to the supplier: C1 - 28%; C1a - 20%; C2a and C2 

- 52%). The 3 courses were separated by 2-week intervals. On the day following the last 

injection, the resistance to eccentric muscle contractions was measured (Yang et al., 1998) 

and muscles were collected for immunohistochemistry and immunoblotting. No fatality 

was noted during the treatment and no obvious side-effects were observed.  
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Fig. 4-3 Dystrophin expression in immortalised mdx myotubes that were treated in vivo 

with different concentrations of gentamicin (200-500µg / ml).  Two exposures of the 

dystrophin immunoblot and the corresponding post-transfer Coomassie blue stained gel are 

shown.  Lane 1, protein lysate of tibialis anterior muscles from a dystrophin positive wt mouse 

and lane 2, lysate of immortalised cells of a wt mouse -  as positive controls. Note that no 

dystrophin was detected in the cell lysates of gentamicin-treated immortalised mdx cells even 

when the blot was overexposed. 

Muscle function measurements 

Resistance to eccentric muscle contraction was measured for EDL muscles (M. extensor 

digitorum longus) according to standard protocols (Yang et al., 1998). Gentamicin-treated 

mdx mice were not different compared to untreated control mdx mice in contrast to the very 

good resistance of age matched C57BL/6 muscles (Table 4-2).  
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Table 4-2 Resistance to eccentric muscle contraction was measured for EDL muscles. 

male mice female mice  

force drop SD force drop SD 

C57BL/6 (control) 20.1 % 4.1 % 14.2 % 3.8 % 

mdx (untreated) 68.1 % 9.7 % 65.0 % 12.2 % 

mdx (gentamicin-treated) 67.9 % 12.7 % 61.6 % 8.9 % 

 

The maximum force at the first tetanic contraction is compared to the maximum force at the 

first eccentric contraction. The force drop is given as a percentage +/- standard deviation. A 

high force drop is observed in muscles with decreased membrane stability such as dystrophin 

deficient muscle. Gentamicin-treated mdx mice were not different compared to untreated 

control mdx muscles in contrast to the very good resistance of age matched C57BL/6 muscles. 

Fig. 4-4  Immunohistochemistry for dystrophin and β-sarcoglycan. Representative 

results (M. tibialis anterior) of dystrophin-positive control mice (C57BL/6), of gentamicin-

treated mdx mice and of untreated mdx mice are shown. Revertant fibres are indicated by 

an asterisk. In muscles of gentamicin-treated mdx mice an increase of dystrophin or 

sarcoglycan was not detected. 
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Detection of dystrophin expression 

Sections of various skeletal muscles (M. tibialis anterior, M. soleus, M. quadriceps femoris, 

M. extensor digitorum longus, diaphragm) were analysed immunohistochemically for the 

expression of dystrophin and sarcoglycans. Muscle sections of mdx and C57BL/6 mice 

were used as controls. An increase of dystrophin or sarcoglycans in muscles of gentamicin-

treated mice was not observed (Fig. 4-4). 

 

Western blot analysis of dystrophin does not give information about the localisation and 

distribution of the protein of interest, but is very sensitive and also allows an estimate of the 

size of the detected protein. In the case of a gentamicin induced read-through mechanism 

full-length dystrophin (427kDa) would be expected.  Muscle protein lysates of M. tibialis 

anterior and heart from gentamicin-treated mdx mice were analysed for dystrophin 

expression on western blots. Lower amounts  (50% and 17%) of muscle protein from 

dystrophin-positive C57BL/6 mice were used as positive controls, and blots were 

overexposed. We estimated that our method could detect dystrophin levels as low as 3 % of 

the normal. However, no specific signal for dystrophin was present in gentamicin-treated 

mdx mice (Fig. 4-5). 

 

 In conclusion, gentamicin treatment failed to lead to a significant increase of dystrophin 

expression as ascertained by both immunohistochemistry and immunoblotting. 
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Fig. 4-5 Dystrophin expression in muscles from mdx mice that received gentamicin 

injections. Two exposures of the dystrophin immunoblot and the corresponding post-transfer 

Coomassie blue stained gel are shown. In lane 1, a molecular size marker was loaded (myosin, 

200 kDa). Lanes 2,3 are protein lysates of M. tibialis anterior (TA), lane 11 cardiac muscle of 

dystrophin-positive control mice (C57BL/6). Note that only 17% (lane 2) and 50% (lane 3,11) 

total protein were loaded for controls if compared to gentamicin-treated mdx mice. Lane 4-8 

are protein lysates of tibialis anterior muscles, 9 and 10 of cardiac muscle of gentamicin-

treated mdx mice (2-6 and 9 - female mdx mice; lanes 7,8,10 - male mdx mice). In muscle 

lysates of gentamicin-treated mdx mice dystrophin was not detected even when the blot was 

overexposed (panel B). 
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DISCUSSION 

The urgent need of treatment for DMD, the in vitro proof that aminoglycoside antibiotics 

can overcome premature stop codons and an initial report that claimed substantial 

gentamicin induced dystrophin expression and improvement of muscle function in mdx 

mice led to the rapid initiation of clinical trials. Unfortunately, DMD patients treated with 

gentamicin did not show any benefit and dystrophin expression was not restored.  

 

In clinical trials, potential side-effects have to be carefully balanced with potential benefits. 

Long term use of gentamicin, as would be required for the therapy of DMD, may be 

associated with damage especially to the renal tubes (nephrotoxicity) and to the hair cells of 

the inner ear which can result in hearing loss (ototoxicity). Gentamicin also has a weak 

neuromuscular-junction-blocking activity among other less common side-effects. The exact 

cause of these effects is not known. But it seems reasonable that the same mechanisms 

which effect general translation and allow read-through in the case of the mdx point 

mutation also may promote the misreading in other proteins. This may result in detrimental 

function losses or gains in the affected proteins. Alternatively, proteins which do not fold 

properly due to alterations may form toxic aggregates. Aminoglycosides were shown to 

interfere with a number of RNA functions such as self splicing of group I introns (Von 

Ahsen and Noller, 1993) and hammerhead ribozyme cleavage (Stage et al., 1995). They can 

also destabilise plasma membranes and interfere with phosphatidylinositol mediated signal 

transduction. Mitochondria may be also involved in aminoglycoside toxicity because 

mitochondrial translation is closer related to procaryotic translation and therefore more 

vulnerable than eucaryotic translation. Because of the widespread use of and the frequent 

side-effects attempts were undertaken to reduce the toxicity of aminoglycosides. Iron 

chelators (Song et al., 1998) such as dihydoxybenzoate (DHB) and substances that reduce 

the production of reactive oxygen species (McFaddden et al., 2003) attenuated ototoxicity 

in guinea pigs which support the idea that iron and free radicals play a critical role. 

Ototoxicity was also reduced by leupeptin, a calpain inhibitor (Ding et al., 2002). The 

calpains are a family of calcium-activated proteases that participate in protein degradation 

and cell death. Hair cells could be also protected through inhibitors of the c-Jun-N-terminal 

kinase (JNK) signalling pathway (Bodmer et al., 2002). Even though these studies are still 

at a pre-clinical stage they may lead to the development of a protocol that reduces 

gentamicin induced side-effects. An alternative option to reduce the toxicity of 

aminoglycosides is to target the drug to the most affected tissue. In the case of DMD it 
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would be sufficient if the compound would reach the muscle. This may reduce damage of 

the more sensitive organs, i.e. the ear and the kidneys. Drug targeting to skeletal muscle 

may be achieved through coupling of the aminoglycoside to a compound that binds 

preferentially to muscle fibres. Similarly, drugs were targeted to the liver by coupling to 

galactose derivates (Hashida et al.,  2001; Ulrich, 2002). 

 

Even if the side-effects of gentamicin could be controlled and were tolerable, a significant 

improvement of muscle function related to the treatment needs to be shown in DMD 

patients. Initial clinical trials in DMD did not reveal functional improvement or even a 

small raise in dystrophin levels. This was in contrast to results that had been reported on 

successful gentamicin treatment in the mdx mouse (Barton-Davis et al., 1999), and a 

species-specific difference in gentamicin action was discussed. Therefore, the aim of our 

experiments was to reevaluate gentamicin treatment in vitro and in the mdx mouse model. 

 

In vitro experimentation has the advantages that it can be rapidly conducted, is ethically 

unproblematic when compared to animal or clinical trials, and that gentamicin application 

is straightforward in tissue culture. Even though a functional improvement of muscle force 

can not directly be ascertained in cultivated cells, a gentamicin induced read-through that 

results in de novo dystrophin expression should be easily detectable in mdx cells. 

Moreover, in vitro tests may allow the rapid screening of different forms and concentrations 

of aminoglycosides.  

Therefore, we generated immortalised, myogenic mdx cells that yielded reproducible 

results. Moreover, these cells can easily be differentiated to fused myotubes. Initial tests 

ascertained that in contrast to control myotubes the mdx myotubes did not produce 

dystrophin. Immortalised mdx cells were then incubated for 14 days with gentamicin from 

two different suppliers at different concentrations. At the highest concentrations gentamicin 

was clearly toxic to the cells because an inhibitory effect on myoblast division and myotube 

formation was observed. Moreover, treatment with gentamicin did not lead to significantly 

increased dystrophin expression. It should also be noted that immortalised mdx cells were 

successfully used by us to express dystrophin in other therapeutic experiments: 

Immortalised mdx cells were used in experiments in which AOs were applied to overcome 

a mutation in the dystrophin gene by splicing out the affected exon (see introduction). 

Clinical use of AOs would require an repeated administration to obtain a lasting effect. A  

refinement of this strategy could be the in situ production of antisense RNA. This would 
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require the transfer of the AOs sequences into the affected tissues. But because the AOs are 

very small (~25 bp) this might be more easily achieved than the transfer of the much longer  

dystrophin protein-constructs. In a recent study, Weis and colleagues in co-operation with 

our group proved the feasibility of this concept by demonstrating that expression of small 

antisense U7 snRNAs could restore dystrophin expression in immortalised mdx myoblasts 

(Brun et al., 2003). 

 

We then conducted gentamicin experiments in mdx mice. However, no increase in 

dystrophin expression and no improvement of muscle force was observed. Therefore, 

neither clinical trials in DMD/BMD nor our studies in mdx mice revealed a significant 

increase of dystrophin expression in skeletal or cardiac muscle in response to gentamicin 

treatment. Subtoxic doses of systemically administered gentamicin did not reveal 

therapeutic efficacy in dystrophin deficiency. This is at variance with the original positive 

report (Barton-Davis et al., 1999). A number of reasons may account for this discrepancy 

such as the chemical composition of the drug, the duration of treatment, the method of 

application, the exact sequence of the mutation, etc. (Karpati and Lochmüller, 2001). 

 

An important issue may be the composition of the gentamicin sulphate used. A given batch 

of commercially available gentamicin usually contains 3 major components (gentamicin 

C1, C1a and C2) that are structurally identical except for the different methylation patterns 

at the 6` position (Fig. 4-6).  

 

Fig. 4-6 Structure of gentamicin components. Commercially available gentamicin is a 

mixture of 3 components. The composition of the individual components varies from batch to 

batch.  
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Interestingly, the three components differ significantly in their propensity to induce 

misreading in bacterial and eukaryotic ribosomes (Loveless et al., 1984; Yoshizawa et al., 

1998). It was shown that gentamicin C2 induced the highest rate of misreading for poly (U)-

directed protein synthesis (Loveless et al., 1984) while gentamicin C1 was virtually 

ineffective. The gentamicin used in our experiments contained a relative high amount of the 

C2 component (52%) and may not account for the failure of dystrophin induction. It may be 

necessary to test pure compounds for their ability to induce read-through of point 

mutations. Additionally, subtle alterations of the stereochemistry at the 6’ position of 

gentamicin may lead to drugs that combine the optimal induction of stop codon read-

through with a low overall toxicity. Alternatively, other aminoglycosides such as G-418 

and paromomyxin that were also demonstrated to induce read-through (Howard et al., 

2000) could be used.  

 

The dosage, the form of application and the duration of the gentamicin treatment may be 

critical, especially as there may be only a narrow window that allows for efficient 

dystrophin production (Barton-Davies et al., 1999). According to the original report, 

gentamicin dosage was critical and differed among female and male mdx mice (Barton-

Davies et al., 1999). However, we used the same dosage and application method as 

originally reported (Barton-Davies et al., 1999). Therefore, it appears unlikely that these 

factors are responsible for the divergent results obtained by us if compared to the 

previously reported study (Barton-Davies et al., 1999). 

 

Nevertheless, the assessment of an optimal dosage would prove a great challenge in the 

putative treatment of DMD patients, becaus of a) differences in individual sensitivity to 

gentamicin toxicity b) different drug metabolism rates and c) different point mutations (see 

below). This may necessitate long term optimisation of dosing for individual patients. This 

optimisation would be further complicated since mild improvement would be difficult to 

seize: quantification of dystrophin protein in muscles would necessitate repeated muscle 

biopsies. Criteria that do not depend on invasive methods such as improvement of muscle 

function (e.g. force) may require long time expression. Surrogate markers of muscle 

damage such as serum creatine kinase levels may not yield a realistic assessment of muscle 

function. For example, gentamicin treatment of DMD patients resulted in a decrease of the 

serum creatine kinase relative to pre-trial values, while dystrophin expression and muscle 

function were not improved (Wagner et al., 2001). 
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Effective treatment of DMD may require the long term persistence of dystrophin in affected 

muscles. In theory, dystrophin production may be strongest after single peaks of 

aminoglycoside application. Therefore, it is important to determine the half-life of the 

dystrophin protein and the duration of the protective effect. Ahmad et al. (2000) 

demonstrated in a transgenic mouse model which allowed inducible dystrophin expression, 

that dystrophin persisted for more than 6 months and was accompanied with a functional 

protection of the muscle once it was associated with the sarcolemma. These observations 

indicate that it may be possible to develop treatment regimes where short time periods of 

treatment alternate with rest periods to reduce possible side-effects. We also conclude that 

the combined 3 weeks of gentamicin treatment in our mdx trial should have been a 

sufficient time period to accumulate enough dystrophin to allow its detection.  

 

Previous studies of aminoglycoside treatment have indicated that the efficiency of read-

through depends strongly on the sequence context and on the different termination 

efficiencies of the 3 possible stop codons. This may be of particular interest because 

individual DMD patients carry different stop codons in varying parts of the dystrophin 

gene. Different stop codons have low and somewhat different rates of naturally occurring 

read-through (UGA > UAG > UAA), i.e. in the absence of a drug. Moreover, it was 

recently shown that efficiency of translation termination correlates inversely with the ability 

to allow aminoglycoside induced read-through (Howard et al., 2000). UAA is the strongest 

translation terminator and allows the lowest rate of read-through in the presence of 

gentamicin. The context of 5’ and 3’ sequences also modifies the stop codon efficiency. 

The most pronounced effect has the nucleotide immediately after the stop codon (+4) 

(Brown et al., 1990; McCaughan et al., 1995). For UGA the order of bases at +4 that 

allowed the highest read-through in in vitro assays were C > U > A ≥  G. In general, 

purines may mediate a stronger termination signal at this position than pyrimidines. 

Approximately 90% of strong house keeping genes in mammals have a purine right after 

the stop codon (Tate and Mannering, 1996). Interestingly, the naturally occurring stop 

codon read-through can reach levels that ameliorate the progression of a genetic disease 

even in the absence of aminoglycosides: a UGA stop codon mutation in the gene that 

causes cystic fibrosis (CFTR) led to a milder phenotype than other types of missense 

mutations (Cuppens et al., 1990; Cuttting et al., 1990). The same mutation allowed a read-
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through of approximately 10% in the corresponding gene of a yeast model (Fearon et al., 

1994). 

 

Even in the most positive therapeutic scenario, it can be predicted that dystrophin will not 

reach normal wt levels. Therefore, additional questions need to be answered : What are the 

maximal levels of functional dystrophin that can be expected by gentamicin treatment? 

What are the minimal levels of dystrophin that bring about functional improvement? First, 

induction of high dystrophin levels is in direct competition with the impairment of general 

protein translation and increased levels of wrongly incorporated amino acids. 

Aminoglycoside concentrations that may allow high levels of dystrophin read-through may 

therefore at the same time compromise normal translation termination. In addition, 

aminoglycosides may lead to the introduction of missense mutations that will impair the 

function of dystrophin and other proteins. 

A second limitation may be the availability of dystrophin mRNA. It has been shown that 

the dystrophin mRNA is strongly reduced in muscles of mdx mice to approximately 20% of 

control levels (Chamberlain et al., 1988). This decrease of dystrophin mRNA may be 

mediated through the nonsense-mediated mRNA decay pathway which degrades 

specifically messages containing premature stop codons (Hentze and Kulozik, 1999; 

Frischmeyer and Dietz, 1999; Byers, 2002). Therefore, low levels of the prerequisite 

dystrophin mRNA may also reduce maximal translational read-through. It should be noted 

though that low-levels of aminoglycoside induced read-through may on the other hand be 

sufficient to reduce the level of nonsense-mediated decay which may result in elevated 

dystrophin mRNA levels. An example for the latter possibility has been described: read-

trough of a UGA stop codon, induced by selenocystein incorporation reduced nonsense-

mediated mRNA decay of the selenium-dependent glutathione peroxidase I gene (Moriarty 

et al., 1998). 

 

When gentamicin was not effective in the clinical trials it seemed possible that differences 

between humans and mice were responsible. Since our experiments in mice do not show a 

positive effect of gentamicin treatment in mice, the difference between species is probably 

not a key factor. The data that were represented in this study clearly indicate that additional 

tissue culture and in vivo mouse experimentation is required to identify factors or 

circumstances that may render AG effective in treating DMD/BMD. While gentamicin thus 

far did not show efficacy in DMD, the recent clinical trials yielded several useful data: 1. 
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new methodology has been developed to identify nonsense mutations in dystrophin-

deficient patients, not only large-scale deletions (Dolinsky et al., 2002; Mendell et al., 

2001); 2. an awareness was raised that different molecular defects of the same gene in the 

same disease may require different modalities of molecular treatments ; and therefore 3. 

molecular treatment may need to be custom-tailored for individual patients (Dubowitz, 

2002; Walter and Lochmüller, 2001).  
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ABBREVIATIONS 

°C  degrees Celsius 
AAV  adeno-associated-virus 
AG  amino glycoside 
APC  antigen presenting cell 
AO  antisense ologonucleotides 
Ad  adenovirus 
Ads   adenoviruses 
BMD  Becker muscular dystrophy 
bp  base pair 
CAR  coxsackie adenovirus receptor 
cDNA  complementary (to mRNA) DNA 
CFTR  cystic fibrosis transmembrane regulator 
CMV  cytomegalovirus promoter 
COOM Coomassie 
CSA   cross sectional area 
DAPC  dystrophin-associated protein complex 
DHB   dihydoxybenzoate 
Dia  diaphragm 
DMD  Duchenne muscular dystrophy 
DNA  deoxyribonucleic acid 
Dys  dystrophin 
EDL  M. extensor digitorum longus 
EDTA   ethylendiamintetraacetate 
EF-hand intracellular calcium binding motif  
e.g.  exempli gratia (Lat. = for instance)   
et al.  et alii (Lat. = and others) 
FCS  fetal calf serum 
Fig.   figure 
GRMD golden retriever muscular dystrophy 
g  gram 
HEPES N-(2-Hydroxyethyl)-piperazine-N´-2-ethansulfonacid 
HFMD  hypertrophic feline muscular dystrophy  
HSV   herpes simplex virus 
Hz  Herz 
i.e.   id est (Lat. = that is to say) 
IgG  immunoglobulin G 
INF-γ    interferon-gamma 
JNK  c-Jun-N-terminal kinase 
kb  kilo (103) bases 
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l  liter 
Lo  optimal muscle length 
M  molar 
M.  musculus 
Mb  mega (106) bases  
MCK  muscle creatine kinase 
MEF2  muscle enhancer factor 2 
mdx  murine dystrophy X-linked  
MHC  major histocompatibility complex 
min  minute 
mRNA  messenger RNA 
N  newton 
nNOS  neuronal nitric oxide synthase  
NCAM neuronal cell adhesion molecule 
nt  nucleotide 
NADH  nicotineamide adenine dinucleotid  
pA    poly-A signal 
PBS  phosphate buffered saline 
PCR   polymerase chain reaction 
PPR  proximal promoter region 
QU  M. quadriceps 
RF  release factor 
RNA  ribonucleic acid 
RSV  rous sarcoma virus 
s  second 
SD  standart deviation 
s.e.m.  standart error 
Sol  M. soleus 
SV40  Simian virus 40 
TA  M. tibialis anterior 
tg  transgenic 
tRNA  transfer RNA 
v/v  volume per volume 
w/v   weight per volume 
WB   western blot 
wt  wild-type 
WW domain domain that contains 2 conserved tryptophans and binds proline rich proteins 
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