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Abstract

In constraint programming [JM94, Wal96, FA97, MS98], combinatorial prob-
lems are specified declaratively in terms of constraints. Constraints are relations
over problem variables that define the space of solutions by specifying restrictions
on the values that the variables may take simultaneously. To solve problems stated
in terms of constraints, the constraint programmer typically combines chrono-
logical backtracking with constraint propagation that identifies infeasible value
combinations and prunes the search space accordingly.

In recent years, constraint programming has emerged as a key technology for
combinatorial optimization in industrial applications. In this success, global con-
straints have been playing a vital role. Global constraints [AB93] are carefully
designed abstractions that, in a concise and natural way, allow to model problems
that arise in different fields of application. For example, the alldiff constraint
[Rég94] allows to state that variables must take pairwise distinct values; it has
numerous applications in timetabling and scheduling.

In school timetabling, we are required to schedule a given set of meetings
between students and teachers s.t. the resulting timetables are feasible and accept-
able to all people involved. Since schools differ in their educational policies, the
school-timetabling problem occurs in several variations. Nevertheless, a set of en-
tities and constraints among them exist that are common to these variations. This
common core still gives rise to NP-complete combinatorial problems.

In the first place, this thesis proposes to model the common core of school-
timetabling problems by means of global constraints. The presentation continues
with a series of operational enhancements to the resulting problem solver which
are grounded on the track parallelization problem (TPP). A TPP is specified by
a set of task sets which are called tracks. The problem of solving a TPP consists
in scheduling the tasks s.t. the tracks are processed in parallel. We show how to
infer TPPs in school timetabling and we investigate two ways of TPP propagation:
On the one hand, we utilize TPPs to down-size our models. On the other hand,
we propagate TPPs to prune the search space. To this end, we introduce the tpp
constraint along with a suitable constraint solver for modeling and solving TPPs
in a finite-domain constraint programming framework.
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To investigate our problem solvers’ behavior, we performed a large-scale com-
putational study. When designing the experiment, the top priority was to obtain re-
sults that are both reliable from a statistical point of view and practically relevant.
To this end, the sample sizes have been chosen accordingly – for each school,
our problem set contains 1000 problems – and the problems have been generated
from detailed models of ten representative schools. Our timetabling engine essen-
tially embeds network-flow techniques [Rég94, Rég96] and value sweep pruning
[BC01] into chronological backtracking.
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Chapter 1

Introduction

In school timetabling, we are required to schedule a given set of meetings between
students and teachers s.t. the resulting timetables are feasible and acceptable to
all people involved. Since schools differ in their educational policies, the school-
timetabling problem occurs in several variations. Nevertheless, a set of entities
and constraints among them exist that are common to these variations. This thesis
presents, evaluates, and compares constraint-based solvers for this common core
which still gives rise to NP-complete combinatorial problems [EIS76]1.

1.1 School Timetabling

Timetables are ubiquitous in daily life. For example, timetables substantially con-
trol the operation of educational institutions, health-care institutions, and public
transport systems. Collins Concise Dictionary (4th edition) defines a timetable as
a “table of events arranged according to the time when they take place”. Timeta-
bles always have to meet domain-specific requirements.

Willemen [Wil02] defines educational timetabling as the “sub-class of time-
tabling for which the events take place at educational institutions”. Events include
lessons and lectures which occur in class-teacher timetabling and course time-
tabling, respectively. We refer to Schaerf [Sch95, Sch99] and Bardadym [Bar96]
for well-known reviews of research in automated educational timetabling.

Educational systems differ from country to country and, within a given edu-
cational system, education differs from one level of the system to the other. In
consequence, different views evolved on how to characterize the categories of
educational timetabling. We adopt the view of Carter & Laporte [CL98] who con-
sider class-teacher and course timetabling to occur at prototypical high schools

1See also [GJ79], problem SS19.
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and universities, respectively, which they regard as opposite extreme points on the
continuum of real-world educational institutions.

At the prototypical high school, timetabling is based on classes which result
from grouping students with a common program. As only a few programs are of-
fered, the number of classes is low. Timetables must not contain conflicts, need
to be compact, and have to satisfy various other constraints on the spread and se-
quencing of lessons. Since each class has its own classroom, time-slot assignment
and room allocation do not interact except for lessons that require science labs,
craft rooms, or sports facilities. All rooms and facilities are situated in the same
location and hence traveling times are negligible.

In contrast, the prototypical university allows for assembling individual pro-
grams. This freedom of choice may render individual timetables without conflicts
impossible even though compactness is not an issue. To meet the students’ choices
as far as possible, timetable makers try to minimize the number of conflicts. Time-
tabling is complicated by room allocation and section assignment. Time-slot as-
signment interacts with room allocation because room sizes and requirements of
equipment have to be taken into account. Moreover, since rooms and facilities are
situated in different locations, traveling times need consideration. The problem of
section assignment arises whenever a course has to be divided for practical rea-
sons. As lectures of different sections may be scheduled independently, the way
of sectioning affects timetabling.

In this thesis, solvers are studied on problems from German secondary schools
of the Gymnasium type. This type of school offers nine grades of academically ori-
entated education. Each school offers a specific set of programs and the higher the
grade, the higher the number of programs. In the lower grades, a Gymnasium more
or less resembles the prototypical high school. There are classes with fixed class-
rooms though, frequently, classes with students of different programs cannot be
avoided. Subjects that are common to all programs occurring in a class are taught
to the class as a whole. For education in program-specific subjects, classes are split
and students from different classes are united. Student timetables must not contain
conflicts and idle time. In the higher grades, a Gymnasium more or less resembles
the prototypical university. Students with identical programs are rare, there are
no classes, and section-assignment problems occur. However, student timetables
must not contain conflicts and have to satisfy moderate compactness constraints.
Whether time-slot assignment and room allocation for a specific school interact
very much depends on its facilities. In the worst case, public facilities have to be
shared with other schools and course lectures have to take place in classrooms
when classes stay in science labs, craft rooms, or sports facilities. Last but not
least, teacher timetables have to satisfy moderate compactness constraints. Drexl
& Salewski [DS97] concluded that “the situation we are confronted with in sec-
ondary schools in Germany (. . .) seems to be the most general one which has ever
been addressed in the open literature.”
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1.2 Constraint Programming

In constraint programming (CP) [JM94, Wal96, FA97, MS98], combinatorial
problems are specified declaratively in terms of constraints. Constraints are re-
lations over variables that define the space of solutions by specifying restrictions
on the values that the variables may take simultaneously. To give an example rel-
evant to timetabling, the so-called alldiff constraint [Rég94, vH01] takes a set
of variables and requires the variables to take pairwise distinct values. As the pro-
cess of expressing a given problem in terms of variables and constraints over them
is widely perceived as a process of modeling, its outcome is called a constraint
model in this thesis. Note that a constraint model does not contain any information
on how to solve the problem it encodes. The term of declarative modeling refers
to this absence of control information.

To solve a combinatorial problem stated in terms of constraints, the constraint
programmer usually employs a search procedure based on chronological back-
tracking. Driven by branching strategies, chronological backtracking [BV92] un-
folds the search space in a depth-first manner. Search nodes represent partial as-
signments to decision variables. If a partial assignment cannot be extended with-
out violating constraints, chronological backtracking returns to the most recent
search node that has a subtree left to expand and explores an alternative. The ef-
ficiency of chronological backtracking essentially depends on the quality of the
branching strategies.

To reduce the search effort, chronological backtracking is combined with con-
straint propagation. From a given problem, constraint propagation infers primi-
tive constraints like ’variable x must not take value a’ which are used to prune the
search space. Typically, constraint propagation and search are integrated tightly:
Constraint propagation is invoked after every commitment, domain wipe-outs trig-
ger immediate backtracking, and dynamic branching strategies take domain sizes
into account. This way constraints take an active role in problem solving.

Typically, constraint propagation is performed by specialized software mod-
ules which are called constraint solvers2. Constraint solvers exist independent
of each other, they communicate over variable domains only, and when a con-
straint solver is applied to a constraint, it is not supplied any information except
for the constraint itself and the state of its variables. This modular design facili-
tates a plug-and-play approach to problem solving, potentially leads to problem
solvers that can be adapted to new requirements easily, and allows for embedding
application-specific constraint solvers.

When designing a suitable problem solver, the constraint programmer has to

2Constraint solvers are sometimes called constraint propagators. In fact, the terms constraint
solving and constraint propagation mean the same and we will use both of them.
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explore a multi-dimensional design space. A problem solver is determined by the
choice of a search procedure, of branching strategies, of constraint solvers, and of
how to express a given problem in terms of constraints. Due to the sheer number
of combinations, only a small part of the design space can be explored. If standard
procedures do not apply, expertise from the field of application is likely to be a
good guide in this search. In his search, the designer has to address theoretical
as well as operational issues. Theoretical issues include correctness3 (soundness)
and completeness4. Operational issues include running time, memory consump-
tion, and reliability in terms of problem-solving capabilities. Completeness may
be traded for efficiency and reliability: Frequently, sacrificing solutions by impos-
ing additional constraints after careful consideration simplifies the search because,
in effect, the search space is reduced. The clarification of operational issues usu-
ally requires empirical investigation.

In recent years, constraint programming has emerged as a key technology for
combinatorial optimization in industrial applications. Three factors have been de-
cisive: the introduction of global constraints, redundant modeling, and the avail-
ability of powerful constraint-programming tools (e.g. CHIP5, ECLiPSe6, SICStus
Prolog7, ILOG Solver8, Mozart9, CHR [FA97, Frü98]).

Global constraints [AB93] are carefully designed abstractions that, in a con-
cise and natural way, allow to model combinatorial problems that arise in different
fields of application. The alldiff constraint [Rég94, vH01] mentioned earlier is
a prominent representative of global constraints; it has numerous applications in
timetabling and scheduling. Global constraints are important because they allow
for concise and elegant constraint models as well as for efficient and effective
propagation based on rich semantic properties (e.g. [Nui94, Rég94, Rég96, RP97,
BP97, PB98, Bap98, Pug98, FLM99, BPN99, MT00, DPPH00, BC01, BK01]).

Redundant modeling [CLW96] refers to the extension of constraint models
with redundant constraints. A constraint is called redundant wrt. a given problem
if the problem implies the constraint (i.e. every solution to the problem satisfies the
constraint) but does not state it explicitely. Redundant modeling is well known for
its potential operational benefits. It can be considered as a kind of constraint prop-
agation performed prior to search that results in constraints that are themselves
subject to propagation during search.

3A problem solver is called correct iff every assignment it outputs is a solution.
4A problem solver is called complete iff, in a finite number steps, it either generates a solution

or proves that no solution exists.
5http://www.cosytec.com
6http://www.icparc.ic.ac.uk
7http://www.sics.se
8http://www.ilog.com
9http://www.mozart-oz.org
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For detailed introductions to constraint programming, we refer to the text-
books by Tsang [Tsa93], Frühwirth & Abdennadher [FA97], and Marriott &
Stuckey [MS98].

1.3 Outline of Thesis

Research in automated school timetabling can be traced back to the 1960s [Jun86].
During the last decade, efforts concentrated on local search methods such as
simulated annealing, tabu search, and genetic algorithms (e.g. [Sch96a, DS97,
CDM98, CP01]). Constraint-programming technology has been applied to univer-
sity course timetabling (e.g. [GJBP96, HW96, GM99, AM00]) but its suitability
for school timetabling has not yet been investigated.

In the first place, this thesis proposes to model the common core of school-
timetabling problems by means of global constraints. The presentation continues
with a series of operational enhancements to the resulting problem solver which
are grounded on the track parallelization problem (TPP). A TPP is specified by
a set of task sets which are called tracks. The problem of solving a TPP consists
in scheduling the tasks s.t. the tracks are processed in parallel. We show how to
expose redundant TPPs in school timetabling and we investigate two ways of TPP
propagation: On the one hand, we utilize TPPs to down-size our constraint models.
On the other hand, we propagate TPPs to prune the search space. To this end, we
introduce the tpp constraint along with a suitable constraint solver for modeling
and solving TPPs in a finite-domain constraint-programming framework10. More-
over, we propose to reduce the search space by imposing non-redundant TPPs in
a systematic way. In summary, this thesis emphasizes modeling aspects. Search
procedures and branching strategies are not subject to systematic study.

To investigate our problem solvers’ behavior, we performed a large-scale com-
putational study. The top priority in experimental design was to obtain results that
are practically relevant and that allow for statistical inference. To this end, the
problems have been generated from detailed models of ten representative schools
and the sample sizes have been chosen accordingly – for each school, our problem
set contains 1000 problems. The school models describe the programs offered to
the students, the facilities, the teacher population, the student population, and var-
ious requirements imposed by the school management. Our timetabling engine es-
sentially embeds network-flow techniques [Rég94, Rég96] and value sweep prun-
ing [BC01] into chronological backtracking. It comprises about 1500 lines of code
and has been built on top of a finite-domain constraint system [COC97] which it-
self is part of the constraint-logic programming environment SICStus Prolog 3.9.0

10In finite-domain constraint programming, we deal with finite-domain constraints defined
over variables with finite integer domains which are called finite-domain variables.
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[Int02]. The experiment was performed on a Linux workstation cluster by means
of the high-throughput computing software Condor [Con02].

To facilitate the computational study of problem solvers for school time-
tabling, a comprehensive simulation environment has been developed. This soft-
ware package contains a problem generator, the school models, and various tools
to visualize and analyze problems and solutions. The package has been imple-
mented using the state-of-the-art functional programming language Haskell (e.g.
[PJH99, Tho99]) and comprises about 10000 lines of code. The school models
account for about 2700 lines of code.

This thesis is organized as follows. Chapter 2 introduces to school timetabling.
Chapter 3 deals with track parallelization: it introduces the TPP and proposes the
tpp constraint along with a suitable solver for modeling and solving TPPs in a
finite-domain constraint-programming framework. Chapter 4 presents constraint-
based solvers for school timetabling, shows how to infer and exploit TPPs in this
setting, and presents our computational study of solver behavior. Chapter 5 sum-
marizes, discusses the contribution of this thesis wrt. timetabling in general, and
closes with perspectives for future work. Appendix A presents a new method for
proving confluence in a modular way and applies this method to the TPP solver.

1.4 Publications

The work presented in this thesis was outlined at the 3rd International Conference
on the Practice and Theory of Automated Timetabling (PATAT-2000) [Mar00].
The tpp constraint and its solver (cf. Chapter 3) were presented at the 5th Work-
shop on Models and Algorithms for Planning and Scheduling Problems (MAPSP-
2001) [Mar01a] and at the Doctoral Programme of the 7th International Confer-
ence on Principles and Practice of Constraint Programming (CP-2001) [Mar01b].
The method for proving confluence in a modular way (cf. Appendix A) was pre-
sented at the 4th International Workshop on Frontiers of Combining Systems
(FroCoS-2002) [Mar02].

1.5 Reduction Systems

A reduction system is a pair (A,→) where the reduction→ is a binary relation on
the set A, i.e.→⊆ A×A. Reduction systems will be used throughout this thesis to
describe inference algorithms including constraint solvers. In such a context, the
elements of A will be states, the elements of→ will be transitions that correspond
to steps of computation, and a computation will proceed step by step until no more
transition applies.
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Describing algorithms with reduction systems has some advantages over using
procedural programs:

• Reduction systems are more expressive than procedural programs because
non-determinism can be modeled explicitely. So we are not required to com-
mit to a specific execution order in case there are alternatives.

• Freed from the need to fix an execution order, we can concentrate on the
essential algorithmic ideas. There is no need to worry about operational
issues like which execution order will perform best in some sense or another.

• If we give a non-deterministic reduction system, every result about its com-
putations (like correctness and termination) will apply a fortiori to every of
its deterministic implementations.

• We can study the effects of non-deterministic choices: Is there a uniquely
determined result for every input? If this is the case for a given reduction
system, then its deterministic implementations will have one and the same
functionality.

The theory of reduction systems has many results to answer questions on termina-
tion and on the effects of non-deterministic choices (for example, see Newman’s
Lemma below).

When talking about reductions systems, we will make use of the concepts and
the notation introduced in the following (cf. [BN98]):

Definition 1.1. Let (A,→) be a reduction system.

• It is common practice to write a→ b instead of (a,b) ∈→.

• →=, →+, and →∗ denote the reflexive closure, the transitive closure, and
the reflexive, transitive closure of→, respectively.

• We say that y is a direct successor to x iff x→ y.

We say that y is a successor to x iff x→+ y.

• x is called reducible iff ∃y. x→ y.

x is called in normal form (irreducible) iff it is not reducible.

y is called a normal form of x iff x→∗ y and y is in normal form.

If x has a uniquely determined normal form, the latter is denoted by x↓.
• x,y ∈ A are called joinable iff ∃z. x→∗ z←∗ y, in which case we write x ↓ y.

→ is called locally confluent iff y← x→ z implies y ↓ z.

It is called confluent iff y←∗ x→∗ z implies y ↓ z.
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• → is called terminating iff there is no infinite, descending chain a0→ a1→
·· · of transitions.

• → is called convergent iff it is terminating and confluent.

The following Lemma follows easily from the definition of convergence.

Lemma 1.1. Let (A,→) be a reduction system. If → is convergent, then each
a ∈ A has a uniquely determined normal form.

This Lemma may free us from worrying about whether the non-determinism
that is inherent in a certain reduction system allows for computations that produce
different results for the same input. With a convergent reduction system, whatever
path of computation is actually taken for a given input, the result is uniquely de-
termined. In other words, if→ is a convergent reduction on some set A, then the
reduction {(a,a↓) : a ∈ A} is a function on A.

The following statement provides a tool for proving confluence via local con-
fluence; it is called Newman’s Lemma. See [BN98] for a proof.

Lemma 1.2. A terminating reduction is confluent if it is locally confluent.

1.6 Constraint Satisfaction

To faciliate the application of constraint technology to a school-timetabling prob-
lem, we have to translate the high-level problem description (in terms of teachers,
students, facilities, and meetings) into a so-called constraint satisfaction problem
(CSP). A CSP is stated in terms of constraints over variables with domains and
to find a solution requires to choose a value from each variable’s domain s.t. the
resulting value assignment satisfies all constraints.

The usual way to describe a CSP is to give a triple (X ,δ,C) with a set of vari-
ables X , a set of constraints C over X , and a total function δ on X that associates
each variable with its domain. Another way to specify a CSP is to give a hyper-
graph with variables as nodes and constraints as hyperarcs. Such a graph is called
a constraint network.

When talking abount constraint satisfaction and constraint solving, we will use
the concepts and the notation introduced in the following:

Definition 1.2. Let P = (X ,δ,C) be a CSP.

• δ is called a value assignment iff |δ(x)|= 1 for all x ∈ X .

• If δ is a value assignment and x ∈ X , then xδ denotes the single element of
δ(x).
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• P is called ground iff δ is a value assignment.

• P is called failed iff some x ∈ X exists with δ(x) = /0.

• A domain function σ on X is called a solution to P iff σ is a value assign-
ment, xσ ∈ δ(x) for all x ∈ X , and σ satisfies all constraints c ∈C.

• sol(P) denotes the set of solutions to P.

• If Q is a CSP, too, then P and Q are called equivalent iff sol(P) = sol(Q),
in which case we write P≡Q.

• If D is a set of constraints over X , then P⊕D denotes (X ,δ,C∪D).

• A constraint c over X is called redundant wrt. P iff c /∈ C and sol(P) ⊆
sol(P⊕{c}).

So a constraint is called redundant wrt. a given problem if every solution to the
problem satisfies the constraint though the problem does not state the constraint
explicitely.

The following statement about adding constraints follows easily from the
properties of solutions:

Lemma 1.3. Let P be a CSP with variables X and let C be a set of constraints
over X. P≡ P⊕C holds iff P≡ P⊕{c} for all c ∈C.

We will consider finite CSPs with integer domains only and use the abbrevia-
tion FCSP to denote such problems. If a and b are integers, we will write [a,b] to
denote the set of integers greater than or equal to a and smaller than or equal to b,
as usual.

1.7 Constraint Solving

In this thesis, constraint solvers will be described through non-deterministic re-
duction systems. As explained in Section 1.5, this way of specifying constraint
solvers has a number of advantages over giving procedural programs: We may
concentrate on the essential algorithmic ideas without bothering about operational
issues, our results about computations will apply to every deterministic implemen-
tation, and there is a variety of technical means to study questions on confluence.

To provide a framework for defining constraint solvers, our next step is to
define the FCSP transformer→FD as

(X0,δ0,C0)→FD (X1,δ1,C1)
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iff X1 = X0, C1 = C0, δ1 �= δ0, and δ1(x)⊆ δ0(x) for all x ∈ X0.
The resulting reduction system captures three important aspects of finite-

domain constraint solving as we find it implemented in today’s constraint-
programming systems: Constraint solvers reduce the search space by domain re-
ductions, they cooperate by communicating their conclusions, and this process
will not stop until no transition applies. Further aspects of constraint solving like
correctness will be considered later on.

The possibility of adding variables and constraints has not been provided for
because we will not consider computations where constraint solvers add new con-
straints except for such that can be expressed in terms of domain reductions.

It is easy to see that →FD is transitive and convergent. Because of transitiv-
ity, it is not necessary to distinguish successors, that are reached by one or more
reduction steps, from direct successors.

The following monotonicity properties of domain bounds and solutions sets
are immediate:

Corollary 1.1. Let P0 and P1 be FCSPs with P0→FD P1.

1. Lower (Upper) bounds of domains grow (shrink) monotonically, i.e.

minδ0(x)≤minδ1(x)≤maxδ1(x)≤maxδ0(x)

for all x ∈ X where δ0 and δ1 denote the domain functions of P0 and P1,
respectively.

2. Solution sets shrink monotonically, i.e. sol(P0)⊇ sol(P1).

We continue by considering those subsets of →FD that preserve solutions: We
define the reduction→C as

{(P0,P1) ∈→FD: P0 ≡ P1}

and call a subset of→FD correct iff it is contained in→C. Clearly,→C is correct
itself and every correct reduction is terminating.

If a correct reduction reliably detects variable assignments that violate a given
constraint, then we call the reduction a solver for this particular constraint:

Definition 1.3. Let c be a constraint and let→⊆→FD.→ is called a solver for c iff
→ is correct and satisfies the following requirement: If P = (X ,δ,C) is a ground,
unfailed FCSP with c ∈C and δ violates c, then every normal form of P wrt.→ is
failed.
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The requirement of correctness restricts the scope of the preceding definition
to those subsets of→FD that perform deduction by adding redundant constraints
in terms of domain reductions. Returning a failed problem signals the embedding
search procedure11 that a constraint violation has occured, causes it to reject the
variable assignment, and to look for another one.

By requiring that violated constraints do not go unnoticed, we can be sure
that any variable assignment returned by any embedding search procedure is a
solution. Nevertheless, one might object that the definition is not quite complete
because it does not impose any bound on time complexity though a decent con-
straint solver is usually required to run in polynomial time12. However, such a
definition would rule out generic constraint solvers with exponential worst case
complexity that apply to any constraint but are not practical unless the constraint
to be propagated has only a few variables with small domains. Such a constraint
solver (e.g. [BR99]) is useful if a specialized constraint solver is not available and
developing one does not pay off because the run times exhibited by the generic
constraint solver are reasonable.

The preceding definition might be objected to for another reason: It allows for
problems solvers that implement a pure generate & test approach. This contradicts
the spirit of constraint programming whereby constraints should take an active
role in the problem-solving process as early as possible because search becomes
easier the more values are pruned and the earlier this happens13. The definition
does not make any requirement in this direction because what kind of reasoning
should be performed really depends on the application. If there is any need to
specify the reasoning power of a constraint solver, there are established ways to
do this like asserting the maintenance of interval or domain consistency [VSD98].

Note that there are two ways to employ reductions that are correct but that
do not solve a constraint or a class of constraints in the sense of the preceding
definition. Such reductions can be used to propagate redundant constraints or to
provide additional pruning.

It remains to clarify how to combine constraint solvers defined as reductions. If
→1, . . . ,→n are constraint solvers, then there are two immediate ways to combine

11Constraint solvers on their own are not able to solve problems. A given problem may have
many solutions and committing to one of them is beyond deduction. So we find constraint solvers
embedded into search procedures like chronological backtracking.

12With regard to the definition of constraint solvers in terms of reductions, to run in polynomial
time means that every path of computation ending in a normal form can be traversed in polynomial
time. This is not possible unless every transition can be carried out in polynomial time.

13Of course, the overall efficiency of a problem solver depends on the nature of the problems it
is applied to and on the time complexity of the propagation algorithms that are used. However, as
experience has shown for many applications, it is more efficient to spend less time on search than
on constraint propagation (e.g. [SF94, BR96a, SW99]).
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them: Either we use their union or we use
�

1≤i≤n

{(P,Q) : P is a FCSP, Q �= P, and Q is a normal form of P wrt.→i} .

The latter method comes closer to what actually happens in today’s constraint-
programming systems: When a variable domain is reduced (either by constraint
propagation or by the search procedure committing to a choice14), then the con-
straints containing the variable are determined and the corresponding constraint
solvers are scheduled for invocation. When a constraint solver is eventually ap-
plied to a constraint, then the former is expected to reduce the search space in-
stantaneously and as far as it is able to do so. This way the constraint does not
require further consideration until it has its wake-up conditions satisfied again.

14The alternatives arise from partitioning the variable’s domain in some way.



Chapter 2

School Timetabling

Besides NP-completeness, there is another fundamental issue in school time-
tabling, namely the diversity in problem settings. Even schools of the same type
may differ with regard to the requirements of their timetables. In face of this diver-
sity, which constraints does a timetabling algorithm need to handle to be widely
applicable? It is clear that a timetabling algorithm will not be very useful unless it
can handle the frequent constraints. But which constraints occur frequently? This
question is studied in Section 2.1 which, at the same time, introduces the reader
to school timetabling.

Section 2.2 continues the presentation with introducing a special class of
schools – namely German secondary schools of the Gymnasium type. Among
other things, their timetabling problems are characterized and the process of man-
ual timetabling is explained. The treatment is very detailed to enable the reader to
assess the scope of the results presented in Chapter 4 where the operational prop-
erties of constraint-based solvers for school timetabling are studied on problems
from schools of the Gymnasium type.

Research in automated school timetabling can be traced back to the 1960s and,
during the last decade, efforts concentrated on greedy algorithms and on local
search methods. Several case studies have been performed and some promising
results have been obtained. Section 2.3 closes the chapter with a review of these
more recent approaches.

2.1 The Core of School-Timetabling Problems

In school timetabling, we are required to schedule a given set of meetings s.t.
the resulting timetables are feasible and acceptable to all people involved. Since
schools differ in their educational policies, the school-timetabling problem occurs
in various variations. Nevertheless, a set of entities (namely students, teachers,
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Mon Tue Wed Thu Fri
1
2
3
4
5
6

Figure 2.1: A typical time grid with five days and six time slots a day

rooms, and meetings of fixed duration) and constraints among them exist that are
common to these variations. This section details on the core’s composition from
the author’s point of view (c.f. Figure 2.2) which is based on a survey of more
recent publications [Cos94, Sch96b, Sch96a, DS97, CDM98, FCMR99, KYN99,
BK01, CP01], on a survey of commercial timetabling software1 (gp-Untis 20012,
Lantiv Timetabler 5.03, OROLOGIO 114, SPM 3.15, TABULEX 2002 (6.0)6,
Turbo-Planer 20007), and on the author’s own field work.

Meetings are regular events of fixed duration including lessons, consulting
hours, and teacher meetings. A meeting is specified in terms of a student set
(empty in case of consulting hours and teacher meetings), a non-empty teacher
set (usually singleton in case of a lesson), and a non-empty set of suitable rooms.
It is understood that a meeting has to be attended by every of its teachers and
students and that is has to be held in one of the designated rooms.

We assume that the meetings of a problem are packed into jobs. A job is a set of
meetings and we require the jobs of a problem to partition its meeting set. All the
meetings of a job have to be identical with regard to their resource requirements.
Typically, a job comprises all the lessons of some class in some subject.

Timetabling is based on a rectangular time grid that divides the planning pe-
riod into disjoint time intervals of equal duration which are called time slots or
simply periods8. Figure 2.1 shows a typical time grid with five days and six time

1This survey is based on data sheets, manuals, tutorials, on-line help files, and demo versions
that were available from the Internet.

2Gruber & Petters Software, Austria, http://www.grupet.at
3http://www.lantiv.com
4ANTINOOS Software Applications, Greece, http://www.antinoos.gr
5http://www.stundenplanmanager.de
6ZI SOFT KIEL, Germany, http://www.ziso.de
7Haneke Software, Germany, http://www.haneke.de
8Actually, the term period has at least three different uses in school timetabling: (a) In phrases

like “the first period on Monday”, we refer to a single time slot. (b) If we require that a meeting
has to take place “in the first period”, we mean that it must either take place in the first period on
Monday, or in the first period on Tuesday, and so on. (c) In phrases like “for two periods a week”,
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slots a day. A time slot can be addressed by its day and its index (contained in the
left-most column of the time grid displayed in Figure 2.1). The amount of time
represented by a time slot usually equals the amount of time required to give a les-
son though we do not impose any restriction on the granularity of time. Meeting
durations and start times are specified in terms of time slots.

As start times and rooms are not fixed in advance of planning (the exception
proves the rule), the process of timetabling involves scheduling and resource al-
location with the aim to create a timetable for each student and each teacher. As
a by-product, timetables for each room are obtained. The space of solutions is
restricted by the following constraints:

1. Resource capacities: Resources (students, teachers, and rooms) must not be
double-booked.

2. Restrictions on availability: Resources may be unavailable for given pe-
riods of time9. Such restrictions are expressed through sets of time slots
(so-called time frames). Periods of unavailability will also be referred to as
down times.

3. Couplings: A coupling requires to schedule a given set of jobs in parallel10.

4. Distribution constraints (c.f. Table 2.1):

(a) Lower and upper bounds on daily work load: This type of constraint
occurs for students, teachers, student-teacher pairs11, jobs12, and pairs
of students and job sets13. It does not occur for rooms. Work load is
measured in time slots.

(b) Lower and upper bounds on the number of working days: This type of
constraint occurs only for students and teachers.

we specify a certain amount of time; acting as a unit of measure, the term period refers to the
duration of time slots.

9Restrictions on availability may result from the sharing of teachers and facilities among sev-
eral schools.

10Couplings are essentially a consequence of study options (cf. Section 2.2 and Section 4.3).
Timetabling may be complicated considerably by couplings due to simultaneous resource de-
mands. As a rule of thumb, the more study options are offered the more couplings will give a
headache to the timetabler.

11This way, for each student and for each of its teachers, the daily amount of time spent together
in class may be bounded.

12This way job-specific bounds on the daily amount of teaching may be imposed.
13This way, for each student, the daily amount of time main subjects are taught to the student

(or any other subset of its subjects) may be bounded.
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Bounds on
daily work

load

Bounds on the
number of

working days

Bounds on
total idle time

gp-Untis 2001 +/+ +/+ +/+
Lantiv Timetabler 5.0 +/+ -/- +/+

OROLOGIO 11 -/+ -/- +/+
SPM 3.1 +/+ -/+ +/+

TABULEX 2002 (6.0) +/+ +/- -/+
Turbo-Planer 2000 +/+ -/+ +/-

[Cos94] -/- -/- -/+
[Sch96b, Sch96a] +/+ -/+ -/+

[DS97] -/+ -/- -/-
[CDM98] -/- -/- -/-

[FCMR99] -/+ -/- -/+
[KYN99] -/+ -/- -/-
[BK01] +/+ -/- -/-
[CP01] -/+ -/+ -/+

Author’s field work +/+ -/+ +/+

Table 2.1:
Survey of the most frequent distribution constraints
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Figure 2.2: The core of school-timetabling problems
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(c) Lower and upper bounds on total idle time: Timetables may contain
time slots that are not occupied by any meeting. Such a time slot in the
middle of a day is called idle, a gap, or a hole (in German Fensterstun-
de, Freistunde, Hohlstunde, or Springstunde), if there are meetings
scheduled before and after it. The number of idle time slots that occur
in a personal timetable is referred to as the person’s total14 idle time.
(Bounds on total idle time occur only for students and teachers.)15

Lower bounds on daily work load and on total idle time have in common that they
do not apply to free days. For example, consider a teacher with bounds l and u on
her daily work load. For each day of the planning period, the teacher’s timetable
has to satisfy the following condition: Either the day is free or at least l and at
most u time slots are occupied by meetings of the teacher.

The list actually comprises most constraints on student, teacher, and room
timetables that occur in practice. Yet school-timetabling problems differ consid-
erably regarding those distribution constraints that directly affect job timetables.
These constraints are therefore not included in the common core except for bounds
on the number of time slots that may be occupied a day. (Such bounds occur
frequently.) Despite this restriction, the common core gives rise to NP-complete
combinatorial problems [EIS76]16.

In practice, hard constraints are distinguished from soft constraints. Hard con-
straints are conditions that must be satisfied whereas soft constraints may be vi-
olated but should be satisfied as much as possible. By their very nature, resource
capacities and restrictions on resource availability occur only as hard constraints.
The author’s study showed that couplings occur only as hard constraints and that
distribution constraints occur mainly as soft constraints.17

2.2 The German Gymnasium

In this thesis, the operational properties of constraint-based solvers for school
timetabling are studied on problems from German secondary schools of the Gym-
nasium type. This type of school offers nine grades of academically orientated

14Rarely there are bounds on daily idle time.
15The publications that were subject to review talk about the need to minimize the number of

idle time slots but do not give any bounds. A close look into the models revealed that idle time
slots are not allowed at all and hence that the upper bounds equal zero.

16See also [GJ79], problem SS19.
17With the commercial timetabling packages, the definition of a problem is carried out in two

steps. To start with, the timetabling data is entered into the respective master-data module ex-
cept for the constraint priorities. The constraint priorities are specified only immediately before
timetabling as far as the respective planning module allows for user adjustments.
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education (numbered from five through thirteen). This section characterizes the
German Gymnasium and its timetabling problems and it describes the processes
of problem specification and manual timetabling.

2.2.1 Educational Programs

Each school offers a specific set of educational programs and the higher the grade,
the higher the number of programs. Foreign-language education starts right in the
fifth grade and, usually, English is taught as first foreign-language but there may
be options. Then the number of study options increases in three steps:

1. From the seventh grade, a second foreign language is introduced and there
may be school-specific options like, for example, either French or Latin.

2. From the ninth grade, education may diversify further because several study
directions may be offered. Official regulations [App98] define six study
directions: Humanities, Modern Languages, Music and Arts, Natural Sci-
ences, Economics, and Social Sciences. In Humanities and Modern Lan-
guages, a third foreign language is introduced and, again, there may be
school-specific options.

3. For the grades twelve and thirteen (in German Kollegstufe), the study direc-
tions of the previous grades are discontinued in favor of a system where each
study direction is based on a pair of advanced-level courses (in German Lei-
stungskurse). Official regulations [Kol97] (updated yearly) define which
base pairs are admissible (140 base pairs were admissible in 1997) and, for
each base pair, define constraints on the individual choice of foundation
courses (in German Grundkurse). In practice, about ten to twenty study di-
rections are implemented. The choice of study directions varies from school
to school and from year to year. It is determined by what the school man-
agement offers and by what the students demand for.

The choice of a study direction does not always determine a program completely
because many study directions, in particular those of the final grades, may offer
options. Hence, to fix their programs, students may have to meet further decisions
such as the students of Modern Languages who may have to choose a third foreign
language from a given set of alternatives.

For two reasons, the actual number of programs may be up to six times higher
than the number of programs resulting from the study options. On the one hand,
the sexes are segregated in physical education. It follows that a boy and a girl have
different programs even if their choice of study options is the same. On the other
hand, students are segregated in religious education according to their religious
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denominations. Catholic and Protestant students receive specific religious educa-
tion18 while members of other denominations have to undergo ethical education.
Consequently, if two students differ in religious denomination, they have different
programs unless both of them receive ethical education.

From the fifth through the eleventh grade, a Gymnasium more or less resem-
bles the prototypical high school (c.f. Section 1.1). There are classes with fixed
classrooms though, frequently, heterogeneous classes with students of different
programs (boys and girls, Catholics and Protestants, and students of different
study directions) cannot be avoided. Subjects that are common to all programs
occurring in a class are taught to the class as a whole. For education in program-
specific subjects, classes are split and students from different classes are united. In
combination with tight time frames (except for the eleventh grade, student timeta-
bles usually must not contain idle time), this procedure leads to requests for par-
allel education of several groups that complicate timetabling considerably due to
simultaneous resource demands (cf. Section 4.3).

In the final grades, a Gymnasium more or less resembles the prototypical uni-
versity. Students with identical programs are rare, there are no classes, and the
student timetables have to satisfy moderate compactness constraints.

2.2.2 The Problem Specification Process

The specification of the next school year’s timetabling problem lies in the hands of
the headmaster. When specifying the problem, the headmaster has to keep to offi-
cial regulations [App98] that for each grade, study direction, and subject specify
the subject matter and the weekly number of teaching periods. In particular, those
regulations restrict the possibilities for joint education of students from different
study directions.

The specification process results in a set of so-called modules. A module re-
quires to split a given set of students into a given number of groups of similar size
and to educate each group for a given number of periods in a given subject. To
this end, each module is assigned a set of suitable rooms and each of its groups
is assigned a suitable teacher. We distinguish intra-class from inter-class modules.
The students of an intra-class module all stem from the same class while an inter-
class module joins students from at least two classes. To translate a module into
a set of jobs (c.f. Section 2.1), we need to fix the group members and the meeting
durations.

18Parents of a Catholic or Protestant student may require that their child undergoes ethical edu-
cation instead of specific religious education.
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2.2.3 The Effects of Study Options

To illustrate the effects of study options on timetabling data, two examples will be
given. But first it is necessary to describe the school that the examples stem from:
In the fifth grade, all students start to learn English. From the seventh grade, the
foreign-language curriculum has to be extended with either Latin or French. Thus
there are two programs: English-Latin (EL) and English-French (EF). From the
ninth grade, three study directions are offered: Modern Languages (ML), Social
Sciences (SOC), and Natural Sciences (NAT). Latin is a prerequisite for ML and
ML students are taught French as third foreign language. In summary, there are
five programs: ML-ELF, SOC-EL, SOC-EF, NAT-EL, and NAT-EF.

Example 2.1. Table 2.2 defines the seventh grade of a Gymnasium timetabling
problem in terms of its modules. For each subject, there is a column and, for
each class, there is a row. There are five classes (7a through 7e) all of which are
homogeneous wrt. the foreign-language curriculum: 7a, 7b, and 7c are EL classes
while 7d and 7e are EF classes.

Depending on the corresponding subject, a table field either relates to the cor-
responding class as a whole or only to a part of it. For example, the fields in
religious education relate to the respective denominational groups only. With this
policy, the meaning of the table fields is defined as follows:

• If the field (c,s) is empty, then there is no requirement to teach the subject
s to any student of the class c.

• Numbers specify intra-class modules: If the field (c,s) contains n, then n
time slots must be reserved weekly for teaching the subject s to the respec-
tive students of the class c. There is no requirement for joint education with
students of other classes.

• Letters uniquely identify inter-class modules: If the field (c,s) contains m,
then the respective students of the class c are to be educated jointly with the
respective students of those classes for which the column s holds m, too.

• Subscripts and superscripts give additional information on the respective
inter-class modules: The subscript specifies the required number of groups
and the superscript specifies the number of time slots that need to be re-
served weekly. For each inter-class module, there is exactly one field (the
left- and/or top-most one) that gives this information.

From the state of the fields, we can draw conclusions on the composition of the
classes: All classes are mixed wrt. gender, 7a and 7d are pure Catholic classes,
and all the other classes are mixed wrt. religious denomination.
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Subjecta

Class RECb REP Ethc G E F L M B H Geo A Mu PEMd PEF #e

7a-ELf 2 4 4 5 4 2 2 1 2 2 d2
2 g2

1 30
7b-EL a2

3 b2
1 4 4 5 4 2 2 1 2 2 e2

1 h2
2 30

7c-EL b c2
1 4 4 5 4 2 2 1 2 2 d g 30

7d-EF a 4 4 5 4 2 2 1 2 2 f 2
1 i21 30

7e-EF a b c 4 4 5 4 2 2 1 2 2 e h 30

Table 2.2:
The seventh grade of a Gymnasium timetabling problem in terms of its modules

(cf. Example 2.1).

aSubject Codes: REC/REP = Religious Education for Catholics/Protestants, Eth = Ethics, G
= German, E = English, F = French, L = Latin, M = Mathematics, B = Biology, H = History, Geo
= Geography, A = Art, Mu = Music, PEM/PEF = Physical Education for Boys/Girls. If a subject
code is printed in bold face, a science lab, a craft room, or some other special facility is required.

bBy default, all Catholic students attend REC and all Protestant students attend REP.
cAll students that are neither Catholic nor Protestant attend Eth. Furthermore, parents of a

Catholic or Protestant child may require that their child attends Eth instead of REC or REP.
dIn this school, the sexes are segregated in physical education.
eFor each class, this column gives the total number of teaching periods per week.
f7a is a pure Catholic class while all the other classes are mixed wrt. religious denomination.

The composition of the classes has lead to several inter-class modules. For ex-
ample, module e specifies a boy group and requires that it has to attend physical
education for two periods a week (cf. field (7b-EL, PEM)) while module h speci-
fies two girl groups and requires that each of them has to attend physical education
for two periods a week (cf. field (7b-EL, PEF)). Both modules arise from sexual
segregation in physical education. Module e serves to save a teacher while module
h serves to specify groups of similar size.

Interestingly, the introduction of the second foreign language has not entailed
any inter-class modules because it was possible to create classes that are homoge-
neous wrt. the foreign-language curriculum.

Example 2.2. Table 2.3 defines the tenth grade of a Gymnasium timetabling prob-
lem in terms of its modules. For each subject, there is a column. For each class and
for each program that occurs in that class, there is a row. There are three classes
(10a, 10b, and 10c) and the variety of study options has resulted in a complicated
situation: 10a has students of ML-ELF, SOC-EL, and SOC-EF. 10b has students
of SOC-EF and NAT-EF. 10c has students of NAT-EF and NAT-EL. Only 10b is
homogeneous wrt. the foreign-language curriculum. Only 10c is homogeneous
wrt. the study direction. 10a is heterogeneous in any respect. (In fact, 10a is a
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Subjecta

Class REb G E F L M Ph C B (H & Soc)c EL Ad Mu PEb HE #
10a/ML-ELF a2

4 b3
1 e3

1 5 j31 k3
2 m2

2 q2
1 t3

1 w1
1 z1

2 α1
2 β2

2 30
10a/SOC-EL a b e j k m o2

1 q u4
1 w z α β δ2

1 30
10a/SOC-EF a b e i31 k m o q u w z α β δ 30
10b/SOC-EF a c3

1 f 3
1 h3

1 k m o r2
1 u x1

1 z α γ2
2 δ 30

10b/NAT-EF a c f h l4
1 n3

1 p3
1 r t x z α γ 30

10c/NAT-EF a d3
1 g3

1 i l n p s2
1 v3

1 y1
1 z α β 30

10c/NAT-EL a d g j l n p s v y z α β 30

Table 2.3:
The tenth grade of a Gymnasium timetabling problem in terms of its modules

(cf. Example 2.2).

aIn addition to the subject codes introduced in Table 2.2, we use the following subject codes:
RE = Religious Education, Ph = Physics, C = Chemistry, Soc = Social Studies, EL = Economics
and Law, PE = Physical Education, HE = Home Economics

b For reasons of space, we merged REC, REP, and Eth into RE, and PEM and PEF into PE.
cHistory is taught for two periods a week in the first term and for one period a week in the

second term. Depending on the study direction, Social Studies is taught for one or two periods a
week in the first term and for two or three periods a week in the second term.

dStudents must opt for either Art or Music.

strange class because its students are not educated jointly except for nine periods
a week.)

The way table fields are labeled corresponds to Example 2.1 except for one
extension: Letters are used to designate both inter-class and intra-class modules.

We observe two inter-class modules in foreign-language education: Modules
i and j join the French and Latin takers, respectively, of 10a and 10c that learn
French or Latin as second foreign language. Moreover, there are six inter-class
modules in natural sciences: Modules k and m join the ML and SOC students
of 10a and 10b for Mathematics and Physics, respectively. 10b had to be split
because the curricula of NAT and SOC in natural sciences differ. ML students
can be joined with SOC students because, except for Chemistry, their curricula in
natural sciences are identical. Modules l and n join the NAT students of 10b and
10c for Mathematics and Physics, respectively. Modules o and p join the SOC and
NAT students, respectively, for Chemistry. Finally, the SOC students of 10a and
10b are joined for Home Economics. All inter-class modules save teachers and
avoid group sizes that differ too much.
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2.2.4 Typical Requirements of Timetables

In the course of timetabling, each lesson (and each other meeting like consulting
hours) has to be assigned a start time and a suitable room. As a module specifies
a teacher for each of its groups, the assignment of teachers to lessons is fixed in
advance of timetabling.

Teacher timetables have to satisfy individual restrictions on availability (like
do not schedule any lesson before 9 a.m.), moderate compactness constraints (like
at most six periods of idle time a week), individual bounds on daily working time
(like not less than two and not more than six periods), and individual bounds on
the number of working days (like at least one day off).

Student timetables have to satisfy grade-specific restrictions on student avail-
ability: From the fifth through the tenth grade, compact timetables are enforced
through tight time frames where the number of acceptable time slots equals the
number of teaching periods as prescribed by official regulations. In the final
grades, the time frames are loose and, to avoid unacceptable timetables, bounds
on daily working time (like at least four and at most eight periods) and bounds
on idle time (like at most two periods a day and at most six periods a week) are
imposed.

Rooms timetables may have to satisfy room-specific restrictions on availabil-
ity, for example, if public sports facilities have to be shared with other schools.

Job timetables have to satisfy job-specific distribution constraints (like at most
two teaching periods a day).

2.2.5 Manual Timetabling

Starting out from the headmaster’s problem specification, the timetables are cre-
ated by dedicated teachers. In manual timetabling, it is common to proceed in an
iterative fashion where each iteration selects and schedules a lesson. Scheduling a
lesson requires to choose a room and a time slot s.t. the commitment to the choice
will not violate any constraint. (If the school has a lot of rooms, room allocation
may be performed after scheduling.) In case no good choice is available for the
lesson under consideration, a conflict resolution method is used to free a good time
slot by moving and interchanging lessons already scheduled. Both lesson selec-
tion and conflict resolution are supported by problem specific guidelines. Finally,
if there is time left, the timetable is optimized by means of conflict resolution. Due
to changes in problem structure, timetables have to be created from scratch every
year.

The aim of conflict resolution is to yield a good time slot for the lesson which
cannot be scheduled without violating constraints. A conflict is resolved by local
repair. The principle of local repair consists in moving and interchanging lessons
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until a good time slot is available. Consider the following problem: One lesson of
English is left to schedule, but the teacher is not available for any of the free time
slots. Local repair looks for a good time slot and dispels the lesson occupying it.
If there is a good unused time slot for the dispelled lesson, then the lessons are
scheduled and local repair finishes. If there is no good unused time slot for the
dispelled lesson, local repair iterates in order to schedule the dispelled lesson. As
experience shows, human timetable makers can cope with up to ten iterations.

Not only the timetable is subject to change in the course of local repair; the
teacher assignment may be changed, too. But since consequences of changing
the teacher assignment may be difficult to track and to cope with, such changes
come into question only in early stages of timetabling. Furthermore, the headmas-
ter, who is the person in charge, must be consulted before changing the teacher
assignment.

Neither the next lesson to schedule, nor the next lesson to dispel is chosen
arbitrarily because lessons are not equal with respect to number and tightness of
constraints. Since the satisfaction of constraints gets harder and harder with the
number of free time slots decreasing, it is clever to schedule more constrained
lessons first. This strategy diminishes the number of conflicts to resolve in the
further course of timetabling. In local repair, if the lesson to dispel can be chosen
from a set of candidates, it has proved advantageous to dispel the least constrained
lesson. In general, this lesson can be scheduled easier than the more constrained
lessons. This strategy diminishes the average number of iterations necessary to
resolve a conflict.

Usually, lesson selection is supported by a school-specific, hierarchical les-
son selection scheme. Each level of the hierarchy defines a set of lessons which
are considered equivalent in terms of constrainedness. The levels are ordered: the
higher the level the more constrained the lessons. According to the strategy in-
troduced above, timetabling starts with scheduling lessons from the highest level.
After placing the most constrained lessons, timetabling continues with the next
level, and so on. In general, when scheduling a level’s lessons, the lessons of
classes and teachers that only have a few lessons left to schedule are preferred.
Again, this strategy avoids expensive conflict resolutions.

2.3 Recent Approaches in Automated School Time-
tabling

Research in automated school timetabling can be traced back to the 1960s [Jun86].
During the last decade, efforts concentrated on greedy algorithms and on local
search methods such as simulated annealing, tabu search, and genetic algorithms
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Methods Problems
Reference GAa SAb TSc CPd GrAe HCf artificial real-world
[Cos94] • • 2

[YKYW96] • • • 7
[Sch96b, Sch96a] • • 1 2

[DS97] • • 30
[CDM98] • • • • 3

[FCMR99] • 1
[KYN99] • • • 4
[BK01] • • • •
[CP01] • 1

Table 2.4:
Overview of research in automated school timetabling

aGenetic Algorithm
bSimulated Annealing
cTabu Search
dConstraint Propagation
eGreedy Algorithm
fHill Climbing

(e.g. [Sch96a, DS97, CDM98, CP01]). Constraint-programming technology has
been used to solve timetabling problems from universities (e.g. [GJBP96, HW96,
GM99, AM00]) but the question whether it applies to school timetabling as well
is open.

In the following, research is reviewed that has been carried out in the field of
automated school timetabling during the past ten years (cf. Table 2.4). For reviews
of earlier work on heuristic, mathematical-programming, and graph-theoretical
approaches, the reader is refered to the well-known surveys of de Werra [dW85],
Junginger [Jun86], and Schaerf [Sch95, Sch99].

Yoshikawa et al. [YKYW96] present the timetabling software SchoolMagic.
SchoolMagic implements a hybrid approach that combines a greedy algorithm
with constraint propagation and local repair. The greedy algorithm is used to
build a probably inconsistent initial assignment. Initially and after every com-
mitment, the greedy algorithm prunes the search space by establishing arc con-
sistency in a network of binary constraints. In scheduling, the greedy algorithm
prefers most-constrained lessons and least-constraining values. (The authors do
not explain their interpretation of most-constrained and least-constraining.) If a
lesson cannot be scheduled, it is suspended and the greedy algorithm proceeds to
schedule the remaining lessons. Finally, all suspended lessons are scheduled with
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the objective to minimize constraint violations. Then a hill climber is applied in an
attempt to resolve the conflicts by moving single lessons. Yoshikawa et al. applied
their approach to seven timetabling problems from three Japanese high schools.
They characterize their solutions in terms of penalty points but do not describe
the underlying objective function. However, they report that the application of
SchoolMagic considerably reduced the costs of timetabling for all three schools.

Kaneko et al. [KYN99] improve on [YKYW96] by invoking local repair every
time a lesson cannot be scheduled without constraint violations. Their hill climber
escapes local optima by moving two lessons simultaneously while accepting mi-
nor additional constraint violations. Applying their approach to four timetabling
problems from [YKYW96], the authors demonstrate that their improvements ac-
tually pay off.

Costa [Cos94] presents a timetabling algorithm based on tabu search. The al-
gorithm starts out from a possible inconsistent initial assignment created by a
greedy algorithm. In scheduling, the greedy algorithm prefers the lessons with the
tightest restrictions on availability and it tries to avoid double-bookings. (Costa
notes that it does not pay off to employ stronger methods in initial assignment
because this might result in starting points already near to a local optima which
are likely to trap tabu search.) In tabu search, the neighborhood is explored by
moving single lessons. Costa applied his approach to two high-school timetabling
problems from Switzerland. He reports that both problems were solved to full
satisfaction.

Schaerf [Sch96b, Sch96a] presents a hybrid approach that interleaves tabu
search with randomized hill climbing that allows for sideway moves to explore
plateaus. The hybrid generates a random initial assignment and then hill climbing
and tabu search take turns for a given number of cycles. Tabu search performs
atomic moves while hill climbing performs double moves. Atomic moves modify
teacher timetables by moving or exchanging lessons. A double move sequences a
pair of atomic moves. Hill climbing serves to make “substantial sideway modifi-
cations” to escape local optima. Schaerf applied his approach to two timetabling
problems from Italian high schools and to one artificial problem. He reports that
his algorithm produced conflict-free timetables which were better than timetables
created manually or by commercial timetabling software.

Colorni et al. [CDM98] compare simulated annealing, tabu search, and a ge-
netic algorithm. To escape local optima, their implementations of simulated an-
nealing and tabu search may switch to a relaxed objective function for a few it-
erations. The genetic algorithm is equipped with a genetic repair function to re-
solve conflicts introduced by crossover and mutation. The algorithms were tested
on three problems from two Italian high schools. For one problem, the algorithms
started out from a hand-made timetable. For the other problems, random initializa-
tions were used. Tabu search with relaxation outperformed the genetic algorithm
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with repair which, in turn, performed better than simulated annealing with relax-
ation. All the algorithms produced conflict-free timetables that were better than
timetables created manually or by commercial timetabling software.

Fernandes et al. [FCMR99] present a genetic algorithm that starts out from a
random initial population and employs genetic repair to speed up evolution. The
repair function tries to reduce the number of conflicts by moving lessons. It is
guided by a strategy that recommends to move most-constrained lessons first. The
algorithm was studied on a problem from a Portuguese high school. It produced a
timetable that was conflict-free but worse than a hand-made timetable.

Drexl & Salewski [DS97] compare a randomized greedy algorithm to a genetic
algorithm that optimizes scheduling strategies. The greedy algorithm is guided by
scheduling strategies (priority rules) which rank alternatives in terms of priority
values. Decisions are met “randomly but according to probabilities which are pro-
portional to priority values”. Thus no alternative is ruled out completely though
those with higher probabilities are more likely to be selected. The genetic algo-
rithm operates on genes that represent random numbers which are used to drive the
greedy algorithm to obtain timetables from genetic information. To test their algo-
rithms, Drexl & Salewski generated 30 problems from three classes of tractability
(easy, medium, and hard) with 35 lessons on average. The authors report that both
approaches yield solutions close to optimality.

Brucker and Knust [BK01] advocate the application of project-scheduling
technology to school timetabling. Their proposal is centered around (variants of)
the resource-constrained project scheduling problem (RCPSP) where a set of
tasks with individual resource demands has to be scheduled within a given time
horizon under consideration of precedence constraints, parallelity constraints, and
resource availabilities, among others, while minimizing a cost function. For this
kind of problem, the authors present a variety of deductive methods and they ex-
plain how these methods could be employed in local search (to preprocess the
input) and in tree search (to prune the search space after each commitment). The
authors do not report any computational results.

Carrasco and Pato [CP01] start out from the observation that the sole quest
for good teacher timetables entails bad student timetables and vice versa. In face
of two objectives that conflict with each other in optimization, the authors pro-
pose a genetic algorithm that searches for pareto-optimal solutions. Carrasco and
Pato applied their approach to a timetabling problem from a Portuguese vocational
school. They report that the genetic algorithm produced many non-dominated so-
lutions that were better than a hand-made timetable.

Indeed, the results reported by Kaneko et al., Costa, Schaerf, and Colorni et
al. are promising and lead to the hypothesis that tabu search is a good candidate
for timetabling. But note that we cannot come to serious conclusions because all
authors worked with samples that are too small to allow for statistical inference
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and thus their results do not generalize beyond their samples. This common defi-
ciency in experimental design has a simple reason: despite 40 years of automated
school timetabling, the timetabling community has not yet compiled a suitable
problem set. In fact, Costa [Cos94] complains that “it is difficult to judge the value
of a given timetable algorithm” because “there are no standard test problems or
measures of difficulty”. Schaerf [Sch96b] adds that “the absence of a common
definition of the problem and of widely-accepted benchmarks prevents us from
comparing with other algorithms”.

Drexl & Salewski [DS97] deserve special mention because they used a self-
made set of artificial problems. To make sure that their artificial problems resem-
ble real-world problems, the problem generator was configured with characteris-
tics of German secondary schools. Unfortunately, the approach was not brought
to bear: For computational reasons, only 30 problems of 35 lessons on average
were tested. The authors do not discuss how their results could generalize to real
problems that have more than 500 lessons.



Chapter 3

Track Parallelization

This chapter introduces the track parallelization problem (TPP) and proposes the
tpp constraint along with a suitable solver for modeling and solving this kind of
scheduling problem in a finite-domain constraint-programming framework.

TPPs play a central role in Chapter 4 which proposes and investigates
constraint-based solvers for school timetabling. TPPs are used to down-size the
underlying constraint models (by a transformation a priori to search) and to prune
the search space (by propagation during search).

This chapter is organized as follows. Section 3.1 introduces the TPP and
demonstrates that track parallelization is NP-complete. Section 3.2 introduces the
tpp constraint and prepares the grounds for the further treatment. Section 3.3 pro-
poses a rule-based solver for tpp constraints, demonstrates its correctness, and
gives performance guarantees. Section 3.4 closes the chapter with a survey of re-
lated work in operations research.

3.1 The Track Parallelization Problem

A track parallelization problem (TPP) is specified by a set of task sets T . The
task sets are called tracks . For each task t ∈�T , we are given a set of start times
S(t) and a set of processing times P(t) . The problem of solving a TPP consists
in scheduling the tasks s.t. the tracks are processed in parallel. More precisely, for
each task t ∈�T , we are required to find a processing interval

[s(t),s(t)+ p(t)−1]

with s(t) ∈ S(t) and p(t) ∈ P(t) s.t.

|{vc(T ) : T ∈ T }|= 1



30 Chapter 3. Track Parallelization

where
vc(T ) =

�

t∈T

[s(t),s(t)+ p(t)−1]

is called the value cover of the track T .
If some time slot a is contained in the processing interval of some task t, we

say that “t covers a”. In the same manner, if some time slot a is contained in the
value cover vc(T ) of some track T , we say that “T covers a” or that “the schedule
of T covers a”.

In its simplest form, a TPP requires to process two tasks in parallel. For a more
typical example, consider the following Gantt-like chart:

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4

t20

t11 t12

t10

t00 t01T0

T1

T2

The chart is based on the tracks T0, T1, and T2 with T0 = {t00, t01}, T1 =
{t10, t11, t12}, T2 = {t20}, s(t00) = s(t11) = 0, p(t00) = p(t11) = 2, s(t01) = s(t12) =
3, p(t01) = p(t12) = 1, s(t10) = p(t10) = 1, s(t20) = 1, and p(t20) = 2. T0 and T1

are processed in parallel because vc(T0) = vc(T1) = {0,1,3}. In contrast, T2 is
not processed in parallel to the other tracks because vc(T2) = {1,2}. Its schedule
covers time slots that the other schedules do not cover and vice versa.

Proposition 3.1. Track parallelization is NP-complete.

Proof. It is easy to see that TPP ∈ NP: A non-deterministic algorithm only has
to guess a schedule and check in polynomial time that all tracks are processed in
parallel.

We will transform SAT1 to TPP. Let U = {u1, . . . ,un} be the set of variables
and C = {c1, . . . ,cm} be the set of clauses in an arbitrary SAT instance. We must

1SAT (e.g. [GJ79]) is a decision problem from Boolean logic. A SAT instance is defined on the
basis of a variable set U . If u ∈U , then u and ū are called literals over U . A truth assignment for
U is a Boolean function on U . For u ∈U , the literal u ( ū) is true under a truth assignment iff the
variable u is true (false) under that assignment.

A SAT instance is specified by a set of clauses C over U . A clause over U is a set of literals over
U . A clause represents the disjunction of its literals and hence is satisfied by a truth assignment iff
it contains a literal that is true under that assignment.

A SAT instance C is called satisfiable iff a truth assignment exists that simultaneously satisfies
all c ∈C. Such a truth assignment is called a satisfying truth assignment for C.

The SAT problem is specified as follows: Given a SAT instance C, is C satisfiable? The SAT
problem is NP-complete.
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construct a track set T s.t. the corresponding TPP is satisfiable iff the SAT instance
is satisfiable.

1. We introduce tasks v and w with S(v) = S(w) = {0}, P(v) = {1}, and
P(w) = {2}.

2. For 1 ≤ i ≤ n, we introduce tasks ti and t̄i with S(ti) = S(t̄i) = {0,1} and
P(ti) = P(t̄i) = {1}.

3. For 1≤ i≤ n, we construct a track Tui = {ti, t̄i}.

4. For 1≤ i≤m, we construct a track Tci = {v}∪{g(l) : l ∈ ci} where g(ui) =
ti and g( ūi) = t̄i.

Let T = {{w} ,Tu1, . . . ,Tun,Tc1, . . . ,Tcm}.
Let σ be a satisfying truth assignment for C. To simplify matters, we represent

false by 0 and true by 1. With this representation, we extend σ to literals over C
in the following way: For u ∈U , σ( ū) = 1−σ(u).

We construct a schedule as follows: For 1 ≤ i ≤ n, let s(ti) = σ(ui), s(t̄i) =
σ( ūi), and p(ti) = p(t̄i) = 1. Moreover, let s(v) = s(w) = 0, p(v) = 1, and p(w) =
2. We consider all tracks of T in turn:

1. Obviously, vc({w}) = {0,1}.

2. Let 1 ≤ i ≤ n. If s(ti) = 0, then s(t̄i) = 1. If s(ti) = 1, then s(t̄i) = 0. With
p(ti) = p(t̄i) = 1, we obtain vc(Tui) = {0,1}.

3. Let 1 ≤ i ≤ m. Let l1, . . . , l|ci| denote the literals of ci. Let h be a func-
tion on {1, . . . , |ci|} s.t. l j = uh( j) or l j = ūh( j) for 1 ≤ j ≤ |ci|. We know
that Tci =

{
v,g(l1), . . . ,g(l|ci|)

}
. Obviously, vc({v}) = {0}. For 1≤ j≤ |ci|,

vc(
{

g(l j)
}
)⊆ {0,1} because S(g(l j)) = {0,1} and P(g(l j)) = {1}. More-

over, 1≤ j ≤ |ci| exists with σ(l j) = 1 because σ satisfies ci. Let k = h( j).
If l j = uk, then

s(g(l j)) = s(g(uk)) = s(tk) = σ(uk) = σ(l j) = 1.

If l j = ūk, then

s(g(l j)) = s(g( ūk)) = s(t̄k) = σ( ūk) = σ(l j) = 1.

We conclude that vc(Tci) = {0,1}.
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We conclude that all tracks of T are processed in parallel.
Suppose s and p specify a schedule s.t. all tracks of T are processed in parallel.

We observe that vc({w}) = {0,1}. We conclude that, for 1 ≤ i ≤ m, vc(Tci) =
{0,1} and that, for 1≤ i≤ n, vc(Tui) = {0,1} and thus s(t̄i) = 1− s(ti).

We construct a satisfying truth assignment σ for C as follows: For 1 ≤ i≤ n,
σ(ui) = s(ti). We extend σ to literals over C in the following way: For u ∈ U ,
σ( ū) = 1−σ(u). It follows that σ( ūi) = s(t̄i) for 1≤ i≤ n.

We have to check that σ satisfies all clauses in C. Let 1≤ i≤m. Let l1, . . . , l|ci|
denote the literals of ci. Let h be a function on {1, . . . , |ci|} s.t. l j = uh( j) or l j =
ūh( j) for 1 ≤ j ≤ |ci|. 1 ∈ vc(Tci) and hence 1 ≤ j ≤ |ci| exists with s(g(l j)) = 1.
Let k = h( j). If l j = uk, then

σ(l j) = σ(uk) = s(tk) = s(g(uk)) = s(g(l j)) = 1.

If l j = ūk, then

σ(l j) = σ( ūk) = s(t̄k) = s(g( ūk)) = s(g(l j)) = 1.

The same result could have been obtained by a transformation from 3SAT2.
This shows that the TPP remains NP-complete even if the cardinalities of tracks
and domains are limited to three and two, respectively.

3.2 The tpp Constraint

For track parallelization in a finite-domain constraint-programming framework,
we introduce the tpp constraint. The tpp constraint takes one argument: a non-
empty set T of non-empty sets of pairs of finite-domain variables. Each T ∈ T
is intended to model a track and each pair (S,P) of finite-domain variables is
intended to model a task in terms of start and processing time. Fixed start or
processing times may be modeled by means of variables with singleton domains.
We assume that processing times are greater than 0.

Notation 3.1. If P = (X ,δ,C) is a FCSP with tpp(T )∈C, T ∈ T , and t = (S,P)∈
T , we write δ(t) instead of δ(S)×δ(P).

23SAT is a special case of SAT. A 3SAT instance C is a SAT instance with |c|= 3 for all c∈C.
The 3SAT problem is NP-complete.



3.2. The tpp Constraint 33

Definition 3.1. Let P = (X ,δ,C) be a FCSP with tpp(T ) ∈ C. Let T ∈ T and
t = (S,P) ∈ T . We define value covers and value supplies as follows:

vc(t,δ) =



/0, if δ(t) = /0
�

(s,p)∈δ(t)
[s,s+ p−1] otherwise

vc(T,δ) =
�

t∈T

vc(t,δ)

vc(T ,δ) =
�

T∈T
vc(T,δ)

vs(t,δ) =
�

(s,p)∈δ(t)
[s,s+ p−1]

vs(T,δ) =
�

t∈T

vs(t,δ)

vs(T ,δ) =
�

T∈T
vs(T,δ)

As Lemma 3.1 will show, every time slot in vc(t,δ) will be covered by t (will
be contained in the processing interval of t) in any solution to P. Consequently,
in any solution to P, the schedule of T will cover every time slot in vc(T,δ) and,
for every time slot in vc(T ,δ), there will be a track T ∈ T the schedule of which
covers the time slot.

Conversely, as Lemma 3.1 and Lemma 3.4 will show, every time slot that is
not contained in vs(t,δ) (that is not supplied to t) will not be covered by t in any
solution to P. Consequently, in any solution to P, the schedule of T will not cover
any time slot that is not contained in vs(T,δ) and, for every time slot that is not
contained in vs(T ,δ), there will be no track T ∈ T the schedule of which covers
the time slot.

The meaning of tpp constraints is defined in terms of track value covers.

Definition 3.2. Let P = (X ,δ,C) be a ground FCSP with tpp(T ) ∈C. δ satisfies
tpp(T ) iff

|{vc(T,δ) : T ∈ T }|= 1,

i.e. iff the tracks are processed in parallel.

Lemma 3.4 will show that the meaning of tpp constraints could have been
defined in terms of track value supplies as well.
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Definition 3.3. Let P = (X ,δ,C) be an unfailed FCSP with tpp(T ) ∈C. Let T ∈
T and t = (S,P) ∈ T . We define earliest start times and latest completion times
as follows:

est(t,δ) = minδ(S)
est(T,δ) = min

t∈T
est(t,δ)

est(T ,δ) = max
T∈T

est(T,δ)

lct(t,δ) = maxδ(S)+maxδ(P)−1

lct(T,δ) = max
t∈T

lct(t,δ)

lct(T ,δ) = min
T∈T

lct(T,δ)

Value supplies, value covers, earliest start times, and latest completion times
have nice monotonicity properties that are summarized in Lemma 3.1 and Lemma
3.2. Lemma 3.3 shows that value supplies are closely related to earliest start and
latest completion times. Lemma 3.4 summarizes properties of ground FCSPs.

Lemma 3.1. Suppose P0 = (X ,δ0,C) and P1 = (X ,δ1,C) are FCSPs with P0→FD

P1 and tpp(T ) ∈C. Let T ∈ T and t ∈ T .

1. Value supplies shrink monotonically, i.e.
vs(t,δ0)⊇ vs(t,δ1), vs(T,δ0)⊇ vs(T,δ1), and vs(T ,δ0)⊇ vs(T ,δ1).

2. Value covers grow monotonically, i.e.
vc(t,δ0)⊆ vc(t,δ1), vc(T,δ0)⊆ vc(T,δ1), and vc(T ,δ0)⊆ vc(T ,δ1).

Proof. All properties follow immediately from Corollary 1.1.

Lemma 3.2. Suppose P0 = (X ,δ0,C) and P1 = (X ,δ1,C) are unfailed FCSPs with
P0→FD P1 and tpp(T ) ∈C. Let T ∈ T and t ∈ T .

1. Earliest start times grow monotonically, i.e.
est(t,δ0)≤ est(t,δ1), est(T,δ0)≤ est(T,δ1), and est(T ,δ0)≤ est(T ,δ1).

2. Latest completion times shrink monotonically, i.e.
lct(t,δ0)≥ lct(t,δ1), lct(T,δ0)≥ lct(T,δ1), and lct(T ,δ0)≥ lct(T ,δ1).

Proof. All properties follow immediately from Corollary 1.1.

Lemma 3.3. Suppose P = (X ,δ,C) is an unfailed FCSP with tpp(T ) ∈ C. Let
T ∈ T and t ∈ T .
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1. Earliest start times are equal to the least elements of value sup-
plies, i.e. est(t,δ) = minvs(t,δ), est(T,δ) = minvs(T,δ), and est(T ,δ) =
minvs(T ,δ).

2. Latest completion times are equal to the greatest elements of value sup-
plies, i.e. lct(t,δ) = maxvs(t,δ), lct(T,δ) = maxvs(T,δ), and lct(T ,δ) =
maxvs(T ,δ).

Proof. Let (S,P) = t.

1. We observe that

est(t,δ) = minδ(S) = min
s∈δ(S)

s

= min
s∈δ(S)

min [s,s+maxδ(P)−1]

= min
�

s∈δ(S)

[s,s+maxδ(P)−1]

= min
�

(s,p)∈δ(t)
[s,s+ p−1] = minvs(t,δ).

This result yields

est(T,δ) = min
t∈T

est(t,δ) = min
t∈T

minvs(t,δ) = min
�

t∈T

vs(t,δ)

= minvs(T,δ).

It follows that

est(T ,δ) = max
T∈T

est(T,δ) = max
T∈T

minvs(T,δ) = min
�

T∈T
vs(T,δ)

= minvs(T ,δ).

2. We observe that

lct(t,δ) = maxδ(S)+maxδ(P)−1

= max
s∈δ(S)

(s+maxδ(P)−1)

= max
s∈δ(S)

max [s,s+maxδ(P)−1]

= max
�

s∈δ(S)

[s,s+maxδ(P)−1]

= max
�

(s,p)∈δ(t)
[s,s+ p−1] = maxvs(t,δ).
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This result yields

lct(T,δ) = max
t∈T

lct(t,δ) = max
t∈T

maxvs(t,δ) = max
�

t∈T

vs(t,δ)

= maxvs(T,δ).

It follows that

lct(T ,δ) = min
T∈T

lct(T,δ) = min
T∈T

maxvs(T,δ) = max
�

T∈T
vs(T,δ)

= maxvs(T ,δ).

Lemma 3.4. Suppose P =(X ,δ,C) is a ground FCSP with tpp(T )∈C. Let T ∈T
and t ∈ T .

1. In general, vs(t,δ) = vc(t,δ) and vs(T,δ) = vc(T,δ).

2. Furthermore, if δ satisfies tpp(T ), then

(a) vc(T,δ) = vs(T ,δ) = vc(T ,δ),
(b) est(T,δ) = est(T ,δ), and

(c) lct(T,δ) = lct(T ,δ).

Proof. Let (S,P) = t.

1. We observe that

vs(t,δ) =
�

(s,p)∈δ(t)
[s,s+ p−1]

= [Sδ,Sδ+Pδ−1]

=
�

(s,p)∈δ(t)
[s,s+ p−1] = vc(t,δ).

It follows that

vs(T,δ) =
�

t∈T

vs(t,δ) =
�

t∈T

vc(t,δ) = vc(T,δ).

2. Suppose δ satisfies tpp(T ).

(a) Definition 3.2 implies that vc(T ,δ) = vc(T,δ). It follows that

vs(T ,δ) =
�

T∈T
vs(T,δ) =

�

T∈T
vc(T,δ) =

�

T∈T
vc(T ,δ) = vc(T ,δ).
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(b) From Lemma 3.3 we know that est(T,δ) = minvs(T,δ). It follows that

est(T ,δ) = max
T∈T

est(T,δ) = max
T∈T

minvs(T,δ) = max
T∈T

minvs(T ,δ)

= minvs(T ,δ) = minvs(T,δ) = est(T,δ).

(c) From Lemma 3.3 we know that lct(T,δ) = maxvs(T,δ). It follows that

lct(T ,δ) = min
T∈T

lct(T,δ) = min
T∈T

maxvs(T,δ) = min
T∈T

maxvs(T ,δ)

= maxvs(T ,δ) = maxvs(T,δ) = lct(T,δ).

Corollary 3.1. Suppose P0 = (X ,δ0,C) is a FCSP with tpp(T ) ∈ C. If P0 →FD

. . .→FD Σ with Σ = (X ,σ,C), Σ is ground, and σ satisfies tpp(T ), then the rela-
tions depicted in Figure 3.1 hold.

3.3 Solving tpp Constraints

This section proposes reductions for propagating tpp constraints, demonstrates
their correctness, and gives performance guarantees like convergence and the abil-
ity to recognize constraint violations.

3.3.1 Reductions

We propose five reductions for propagating tpp constraints, namely →PVS,
→PVSB, →FC, →IPT, and →NC. Each reduction (and every combination of these
reductions by means of set union) constitutes a deduction component with every
transition operating on some tpp constraint and the domains of its variables.

• →PVS identifies and prunes all start and processing times that entail the
covering of a value that is not element of the value supply of the track set of
the tpp constraint under consideration.

• →PVSB is similar to→PVS except for that it does not consider domain holes.
(→PVS performs domain reasoning while→PVSB performs bound reason-
ing.)

• Under certain conditions,→FC forces tasks to cover values.

• →IPT reveals inconsistencies by comparing bounds on the processing times
of tracks.



38 Chapter 3. Track Parallelization

vc(t,δ0) ⊆ . . . ⊆ vc(t,σ) = vs(t,σ) ⊆ . . . ⊆ vs(t,δ0)

⊆ ⊆ ⊆ ⊆

vc(T,δ0) ⊆ . . . ⊆ vc(T,σ) = vs(T,σ) ⊆ . . . ⊆ vs(T,δ0)

⊆ = = ⊆

vc(T ,δ0) ⊆ . . . ⊆ vc(T ,σ) = vs(T ,σ) ⊆ . . . ⊆ vs(T ,δ0)

and

est(t,δ0) ≤ . . . ≤ est(t,σ) ≤ lct(t,σ) ≤ . . . ≤ lct(t,δ0)

= = = =

minvs(t,δ0) ≤ . . . ≤ minvs(t,σ) ≤ maxvs(t,σ) ≤ . . . ≤ maxvs(t,δ0)

≥ ≥ ≤ ≤

est(T,δ0) ≤ . . . ≤ est(T,σ) ≤ lct(T,σ) ≤ . . . ≤ lct(T,δ0)

= = = =

minvs(T,δ0) ≤ . . . ≤ minvs(T,σ) ≤ maxvs(T,σ) ≤ . . . ≤ maxvs(T,δ0)

≤ = = ≥

est(T ,δ0) ≤ . . . ≤ est(T ,σ) ≤ lct(T ,σ) ≤ . . . ≤ lct(T ,δ0)

= = = =

minvs(T ,δ0) ≤ . . . ≤ minvs(T ,σ) ≤ maxvs(T ,σ) ≤ . . . ≤ maxvs(T ,δ0)

Figure 3.1: The conclusions of Corollary 3.1.
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• →NC reveals inconsistencies by identifying situations where values that
have to be covered cannot be covered.

We will see that→PVS and→NC are full-fledged solvers for tpp constraints (in the
sense of Definition 1.3) while→FC and→IPT lack the ability to detect constraint
violations reliably.

Definition 3.4. Let P0 = (X ,δ0,C) and P1 = (X ,δ1,C) be FCSPs. We say that
P0→PVS P1 iff P0→FD P1 and tpp(T )∈C, T ∈ T , t = (S,P)∈ T , and a∈ vs(t,δ0)
exist s.t. a /∈ vs(T ,δ0) and δ1 = δ0 except for

δ1(S) = {s ∈ δ0(S) : ∃p ∈ δ0(P). a /∈ [s,s+ p−1]}
and

δ1(P) = {p ∈ δ0(P) : ∃s ∈ δ0(S). a /∈ [s,s+ p−1]} .
Example 3.1. Consider the problem P0 = (X ,δ0,{tpp(T )}) with T = {T0,T1},
T0 = {t00}, T1 = {t10}, t00 = (S00,P00), t10 = (S10,P10), δ0(S00) = {1,2,4},
δ0(P00) = {1}, δ0(S10) = {1,3,4}, and δ0(P10) = {1}.→PVS applies two times:

1. →PVS applies to t00 because 2 ∈ vs(t00,δ0) = {1,2,4} and 2 /∈ vs(T ,δ0) =
{1,4}. We obtain the problem P1 with δ1 = δ0 except for δ1(S00) = {1,4}.

2. →PVS applies to t10 because 3 ∈ vs(t00,δ1) = {1,3,4} and 3 /∈ vs(T ,δ1) =
{1,4}. We obtain the problem P2 with δ2 = δ1 except for δ2(S10) = {1,4}.

Definition 3.5. Let P0 = (X ,δ0,C) and P1 = (X ,δ1,C) be FCSPs. We say that
P0 →PVSB P1 iff P0 →FD P1, P0 is not failed, and tpp(T ) ∈ C, T ∈ T and t =
(S,P) ∈ T exist s.t. δ1 = δ0 except for

δ1(S) = {s ∈ δ0(S) : ∃p ∈ δ0(P). (s, p) is feasible}
and

δ1(P) = {p ∈ δ0(P) : ∃s ∈ δ0(S). (s, p) is feasible}
where we say that (s, p) is feasible iff

est(T ,δ0)≤ s≤ lct(T ,δ0)−minδ0(P)+1

and
p≤ lct(T ,δ0)−max{minδ0(S),est(T ,δ0)}+1.

Example 3.2. Consider the problem P0 = (X ,δ0,{tpp(T )}) with T = {T0,T1},
T0 = {t00}, T1 = {t10}, t00 = (S00,P00), t10 = (S10,P10), δ0(S00) = {1,2,4},
δ0(P00) = {1,6}, δ0(S10) = {1,3,4,5}, and δ0(P10) = {1}. →PVSB applies two
times:
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1. →PVSB applies to t00 because est(T ,δ0) = 1, lct(T ,δ0) = 5, and thus (s,6)
is not feasible for all s ∈ δ0(S00). We obtain the problem P1 with δ1 = δ0

except for δ1(P00) = {1}.
2. →PVSB applies to t10 because lct(T ,δ1) = 4 and thus (5, p) is not feasi-

ble for all p ∈ δ1(P10). We obtain the problem P2 with δ2 = δ1 except for
δ2(S10) = {1,3,4}.

Note that, as demonstrated by Example 3.1, →PVS applies to P2 while →PVSB

does not.

Definition 3.6. Let P0 = (X ,δ0,C) and P1 = (X ,δ1,C) be FCSPs. We say that
P0→FC P1 iff P0→FD P1 and tpp(T )∈C, T ∈T , t = (S,P)∈ T , and a∈ vc(T ,δ0)
exist s.t. a /∈ vc(T,δ0), a ∈ vs(t,δ0), a /∈ vs(u,δ0) for all u ∈ T , u �= t, and δ1 = δ0

except for
δ1(S) = {s ∈ δ0(S) : ∃p ∈ δ0(P). a ∈ [s,s+ p−1]}

and
δ1(P) = {p ∈ δ0(P) : ∃s ∈ δ0(S). a ∈ [s,s+ p−1]} .

Example 3.3. Consider the problem P0 = (X ,δ0,{tpp(T )}) with T = {T0,T1},
T0 = {t00}, T1 = {t10, t11}, t00 = (S00,P00), t10 = (S10,P10), t11 = (S11,P11),
δ0(S00) = [0,2], δ0(P00) = {5}, δ0(S10) = {0,3}, δ0(P10) = {1,2}, δ0(S11) =
{1,3}, and δ0(P10) = {1,2}.→FC applies four times:

1. →FC applies to t11 because 2 ∈ vc(T ,δ0) = [2,4], 2 /∈ vc(T1,δ0) = /0, 2 ∈
vs(t11,δ0) = [1,4], and 2 /∈ vs(t10,δ0) = {0,1,3,4}. We obtain the problem
P1 with δ1 = δ0 except for δ1(S11) = {1} and δ1(P11) = {2}.

2. →FC applies to t00 because 1 ∈ vc(T ,δ1) = [1,4], 1 /∈ vc(T0,δ1) = [2,4],
1 ∈ vs(t00,δ1) = [0,6], and t00 is the only task in T0. We obtain the problem
P2 with δ2 = δ1 except for δ2(S00) = {0,1}.

3. →FC applies to t10 because 3 ∈ vc(T ,δ2) = [1,4], 3 /∈ vc(T1,δ2) = {1,2},
3 ∈ vs(t10,δ2) = {0,1,3,4}, and 3 /∈ vs(t11,δ2) = {1,2}. We obtain the
problem P3 with δ3 = δ2 except for δ3(S10) = {3}.

4. →FC applies to t10 because 4 ∈ vc(T ,δ3) = [1,4], 4 /∈ vc(T1,δ3) = [1,3],
4 ∈ vs(t10,δ3) = {3,4}, and 4 /∈ vs(t11,δ3) = {1,2}. We obtain the problem
P4 with δ4 = δ3 except for δ4(P10) = {2}.

Definition 3.7. We say that P1 ∈ gs(P0) (P1 is a ground successor to P0) iff
P0→FD P1 and P1 is ground.

Corollary 3.2. If P0→FD P1, then gs(P0)⊇ gs(P1).
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Definition 3.8. Let P0 = (X ,δ0,C) and P1 = (X ,δ1,C) be FCSPs. We say that
P0→IPT P1 iff P0→FD P1, P1 is failed, and tpp(T ) ∈C, T0,T1 ∈ T , and l,u≥ 0
exist s.t., for all (X ,γ,C) ∈ gs(P0), l is a lower bound on |vc(T0,γ)|, u is an upper
bound on |vc(T1,γ)|, and u < l.

Example 3.4. Consider the problem (X ,δ,{tpp({T0,T1})}) with T0 = {t00, t01}
and T1 = {t10, t11} where t00 = ({0,5} ,{2}), t01 = ({2,6} ,{1,2,3}), t10 =
({2,3} ,{4,5}), and t11 = ({0,6} ,{2,3}). (To simplify matters, the variables have
been replaced by their domains.) We note that vs(T0,δ) = vs(T1,δ) = [0,8] and
that T0 cannot cover more than five values. If the tasks of T1 are allowed to over-
lap, T1 has a schedule covering five values and →IPT does not apply. However,
if the schedules of T1 are required to be disjunctive, each of them will cover at
least six values. In consequence, the tracks cannot be processed in parallel.→IPT

will reveal this inconsistency if the demand for disjunctiveness is considered when
computing the lower bound on the number of values covered by the schedules of
T1.

Definition 3.9. Let P = (X ,δ,C) be a FCSP with tpp(T )∈C. If T = {t1, . . .tn} ∈
T , then vcg(T ,T,δ) denotes the bipartite graph (U,V,E) with

• U =
�

1≤i≤n
δ(Pi)�= /0

{
u j

i : 0≤ j < maxδ(Pi)
}

,

• V = vc(T ,δ), and

• E =
{
(u j

i ,a) : u j
i ∈U ∧ a ∈V ∧ ∃s ∈ δ(Si). s+ j = a

}
.

We call this structure value-cover graph .

Definition 3.10. Let P0 = (X ,δ0,C) and P1 = (X ,δ1,C) be FCSPs. We say that
P0 →NC P1 iff P0 →FD P1, P1 is failed, and tpp(T ) ∈ C and T ∈ T exist s.t.
vcg(T ,T,δ0) = (U,V,E) does not have a matching3 M with |M|= |V |.

Example 3.5. Consider the problem P = (X ,δ,{tpp({T0,T1})}) with T1 =
{t10, t11, t12}, t10 = ({1,2} ,{1}), t11 = ({3} ,{2}), and t12 = ({3,4} ,{1}). (To
simplify matters, the variables have been replaced by their domains.) Suppose
vc(T0,δ) = vs(T0,δ) = [1,4]. We note that vs(T1,δ) = [1,4]. Now consider the
value-cover graph vcg({T0,T1} ,T1,δ):

3Given a bipartite graph (U,V,E), a matching is a subset of edges M ⊆ E s.t., for all vertices
v ∈U ∪V , at most one edge of M is incident on v.
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u0
1 u0

2 u1
2 u0

3

1 2 3 4

The dotted edges constitute a matching of cardinality 3 and it is easy to verify that
it has maximum cardinality. Hence only three values out of [1,4] can be covered
simultaneously.→NC detects this inconsistency and signals a failure by transform-
ing P into a failed FCSP.

3.3.2 Correctness

To demonstrate the correctness of a reduction→⊆→FD, we have to show that each
of its transitions does not restrict the solution space. More precisely, we have to
show that sol(P0) = sol(P1) for (P0,P1) ∈→. Irrespective of→, sol(P1)⊆ sol(P0)
does not require any work as it follows easily from Lemma 1.1 with P0→FD P1.
To show the other direction for the reductions proposed in the previous section,
we derive a contradiction from the assumption that a solution to P0 exists that does
not solve P1.

Proposition 3.2. →PVS is correct.

Proof. Let P0 = (X ,δ0,C) and P1 = (X ,δ1,C) be FCSPs with P0 →PVS P1. We
have to show that sol(P0) = sol(P1). By Lemma 1.1, sol(P1) ⊆ sol(P0) because
P0→FD P1. To show that sol(P0)⊆ sol(P1), let tpp(T )∈C, T ∈ T , t = (S,P)∈ T ,
and a ∈ vs(t,δ0) s.t. a /∈ vs(T ,δ0) and δ1 = δ0 except for

δ1(S) = {s ∈ δ0(S) : ∃p ∈ δ0(P). a /∈ [s,s+ p−1]}
and

δ1(P) = {p ∈ δ0(P) : ∃s ∈ δ0(S). a /∈ [s,s+ p−1]} .
Obviously,

sol(P1) = {σ ∈ sol(P0) : Sσ ∈ δ1(S) ∧ Pσ ∈ δ1(P)} .
Let σ ∈ sol(P0) and (s, p) = (Sσ,Pσ). Suppose σ /∈ sol(P1), or equivalently, s /∈
δ1(S) ∨ p /∈ δ1(P). In either case, a ∈ [s,s + p− 1] = vs(t,σ). By Lemma 3.1,
vs(T ,δ0)⊇ vs(T ,σ). By Lemma 3.4, vs(T ,σ) = vs(T,σ). Putting it all together
we obtain the contradiction

a /∈ vs(T ,δ0)⊇ vs(T ,σ) = vs(T,σ) =
�

t∈T

vs(t,σ)⊇ vs(t,σ) = [s,s+ p−1] � a.
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Proposition 3.3. →PVSB is correct.

Proof. Let P0 = (X ,δ0,C) and P1 = (X ,δ1,C) be FCSPs with P0 →PVSB P1. We
have to show that sol(P0) = sol(P1). By Lemma 1.1, sol(P1) ⊆ sol(P0) because
P0→FD P1. To show that sol(P0)⊆ sol(P1), let tpp(T ) ∈C, T ∈ T , and t ∈ T s.t.
δ1 = δ0 except for

δ1(S) = {s ∈ δ0(S) : ∃p ∈ δ0(P). (s, p) is feasible}
and

δ1(P) = {p ∈ δ0(P) : ∃s ∈ δ0(S). (s, p) is feasible}
Obviously,

sol(P1) = {σ ∈ sol(P0) : Sσ ∈ δ1(S) ∧ Pσ ∈ δ1(P)} .
Let σ ∈ sol(P0) and (s, p) = (Sσ,Pσ). Suppose σ /∈ sol(P1), or equivalently, s /∈
δ1(S) ∨ p /∈ δ1(P). In either case, (s, p) is not feasible. Before examining the single
cases, it is useful to picture some facts.

• Obviously, s = minσ(S) and p = minσ(P).

• By Corollary 1.1, minσ(S)≥minδ0(S) and minσ(P)≥ minδ0(P) because
P0→FD (X ,σ,C).

• By Lemma 3.2, est(T ,δ0) ≤ est(T ,σ) and lct(T ,δ0) ≥ lct(T ,σ) because
P0→FD (X ,σ,C).

• By Lemma 3.4, est(T ,σ) = est(T,σ) and lct(T ,σ) = lct(T,σ) because σ is
a solution.

• By Definition 3.3, est(T,σ) = mint∈T est(t,σ)≤ est(t,σ) = minσ(S).

We have to consider three cases.

1. s < est(T ,δ0): From the facts we collected, we obtain the contradiction

est(T ,σ) = est(T,σ)≤minσ(S) = s < est(T ,δ0)≤ est(T ,σ).

2. s > lct(T ,δ0)−minδ0(P)+1: We note that

lct(t,σ) = s+ p−1

> lct(T ,δ0)−minδ0(P)+ p

= lct(T ,δ0)−minδ0(P)+minσ(P)
≥ lct(T ,δ0)

and hence

lct(T ,σ) = lct(T,σ) = max
t∈T

lct(t,σ)≥ lct(t,σ) > lct(T ,δ0)≥ lct(T ,σ).
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3. From the facts we collected, we obtain

p > lct(T ,δ0)−max{minδ0(S),est(T ,δ0)}+1

≥ lct(T ,σ)−max{minσ(S),est(T ,σ)}+1

= lct(T ,σ)−max{minσ(S),est(T,σ)}+1

= lct(T ,σ)−minσ(S)+1

= lct(T ,σ)− s+1

It follows that lct(t,σ) = s+ p−1 > lct(T ,σ). Using this relationship, we
obtain the contradiction

lct(T ,σ) = lct(T,σ) = max
t∈T

lct(t,σ)≥ lct(t,σ) > lct(T ,σ).

Proposition 3.4. →FC is correct.

Proof. Let P0 = (X ,δ0,C) and P1 = (X ,δ1,C) be FCSPs with P0 →FC P1. We
have to show that sol(P0) = sol(P1). By Lemma 1.1, sol(P1) ⊆ sol(P0) because
P0→FD P1. To show that sol(P0)⊆ sol(P1), let tpp(T )∈C, T ∈ T , t = (S,P)∈ T ,
and a∈ vc(T ,δ0) s.t. a /∈ vc(T,δ0), a ∈ vs(t,δ0), a /∈ vs(u,δ0) for all u ∈ T , u �= t,
and δ1 = δ0 except for

δ1(S) = {s ∈ δ0(S) : ∃p ∈ δ0(P). a ∈ [s,s+ p−1]}

and
δ1(P) = {p ∈ δ0(P) : ∃s ∈ δ0(S). a ∈ [s,s+ p−1]} .

Obviously,

sol(P1) = {σ ∈ sol(P0) : Sσ ∈ δ1(S) ∧ Pσ ∈ δ1(P)} .

Let σ ∈ sol(P0) and (s, p) = (Sσ,Pσ). Suppose σ /∈ sol(P1), or equivalently, s /∈
δ1(S) ∨ p /∈ δ1(P). In either case, a /∈ [s,s+ p−1] = vc(t,σ). Moreover, for u ∈ T
with u �= t, we have a /∈ vs(u,δ0) ⊇ vs(u,σ) = vc(u,σ) by Lemma 3.1 and by
Lemma 3.4. Now, because no task in T can cover a, a /∈ vc(T,σ). On the other
hand, we have a∈ vc(T ,δ0)⊆ vc(T ,σ) = vc(T,σ) by Lemma 3.1 and by Lemma
3.4.

Proposition 3.5. →IPT is correct.
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Proof. Let P0 = (X ,δ0,C) and P1 =(X ,δ1,C) be FCSPs with P0→IPT P1. We have
to show that sol(P0) = sol(P1). sol(P1) = /0 because P1 is failed. Let σ ∈ sol(P0).
We know that tpp(T ) ∈C, T0,T1 ∈ T , and l,u≥ 0 exist s.t. l is a lower bound on
|vc(T0,σ)|, u is an upper bound on |vc(T1,σ)|, and u < l. Furthermore, by Lemma
3.4, we know that vc(T0,σ) = vc(T1,σ) = vc(T ,σ). Putting it all together we
obtain the contradiction

|vc(T ,σ)|= |vc(T1,σ)| ≤ u < l ≤ |vc(T0,σ)|= |vc(T ,σ)| .
Hence sol(P0) is empty and equals sol(P1).

Lemma 3.5. Let P =(X ,δ,C) be a FCSP with tpp(T )∈C. Let T ∈ T . If sol(P) �=
/0, then vcg(T ,T,δ) has a matching M with |M|= |V |.
Proof. Let (U,V,E) = vcg(T ,T,δ) (cf. Definition 3.9), σ ∈ sol(P), and

M =
{
(ua−Siσ

i ,a) : 1≤ i≤ n ∧ a ∈V ∧ a ∈ vc(ti,σ) ∧ ∀1≤ j < i. a /∈ vc(t j,σ)
}

.

We will show that M ⊆ E, M is a matching, and |M|= |V |.
1. M ⊆ E: Let (u j

i ,a) ∈M. From the definition of M, we know that 1≤ i≤ n,
j = a−Siσ, a ∈ V , and a ∈ vc(ti,σ). First, we have to show that s ∈ δ(Si)
exists s.t. s+ j = a. Let s = Siσ. s+ j = Siσ+a−Siσ = a and, by Lemma
1.1, s ∈ δ(Si). It remains to show that u j

i ∈ U , or equivalently, 0 ≤ j <
maxδ(Pi). From a ∈ vc(ti,σ) = [Siσ,Siσ+Piσ−1] and by Lemma 1.1, we
conclude that

0≤ a−Siσ = j ≤ Piσ−1 < Piσ = maxσ(Pi)≤maxδ(Pi).

2. M is a matching: Let (u j
i ,a) ∈M.

(a) u j
i is the only mate of a in M: Suppose (ul

k,a) ∈ M s.t. (k, l) �= (i, j).
We note that j = l = a−Siσ which implies k �= i. Suppose k < i. Then
(u j

i ,a) /∈ M because a ∈ vc(tk,σ). Suppose k > i. Then (ul
k,a) /∈ M

because a ∈ vc(ti,σ).

(b) a is the only mate of u j
i in M: Suppose (u j

i ,b)∈M s.t. b �= a. However,
by the definition of M, a = j +Siσ = b.

3. |M| = |V |: Let a ∈ V = vc(T ,δ). By Lemma 3.1, a ∈ vc(T ,σ) and, by
Lemma 3.4, a ∈ vc(T,σ). We have to show that 1 ≤ i ≤ n exists s.t.
(ua−Siσ

i ,a) ∈ M. Let I = {1≤ i≤ n : a ∈ vc(ti,σ)}. I �= /0 because other-
wise a /∈ vc(T,σ) =

�
1≤i≤n vc(ti,σ). Let i = min I. It is easy to verify that

(ua−Siσ
i ,a) ∈M. Furthermore, ua−Siσ

i is the only mate of a in M because M
is a matching. Thus |M|= |V |.
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Proposition 3.6. →NC is correct.

Proof. Let P0 = (X ,δ0,C) and P1 = (X ,δ1,C) be FCSPs with P0→NC P1. We have
to show that sol(P0) = sol(P1). sol(P1) = /0 because P1 is failed. Suppose sol(P0) �=
/0. By Lemma 3.5, vcg(T ,T,δ0) = (U,V,E) has a matching M with |M|= |V | for
all tpp(T ) ∈C and T ∈ T . This contradicts the definition of→NC.

Corollary 3.3. If R⊆{→PVS,→PVSB,→FC,→IPT,→NC} and→R=
�

R, then→R

is correct.

3.3.3 Convergence

A reduction is called convergent if it is terminating and confluent. Termination
guarantees that there are no infinite computations; confluence guarantees that ev-
ery element of the underlying set has at most one normal form. With a convergent
reduction system, whatever path of computation is actually taken for a given input
(there may be many due to non-determinism), the result is uniquely determined
(c.f. Section 1.5).

Each of the reductions for solving tpp constraints is terminating because each
of them is a subset of→FD and→FD is terminating itself. The following statement
is an easy consequence.

Proposition 3.7. If R ⊆ {→PVS,→PVSB,→FC,→IPT,→NC} and →R=
�

R, then
→R is terminating.

To obtain the following convergence result, a considerable amount of work is
required. Consult Appendix A or [Mar02] for the details.

Proposition 3.8. If R ⊆ {→PVS,→FC,→IPT,→NC} and →R=
�

R, then →R is
convergent.

A corresponding result for→PVSB is currently not available.
The following statement on normal forms follows easily with Lemma 1.1.

Corollary 3.4. Let P be a FCSP. If R⊆{→PVS,→FC,→IPT,→NC} and→R=
�

R,
then P has a uniquely determined normal form wrt.→R.

3.3.4 Other Performance Guarantees

To show that→PVS is a solver for tpp constraints (in the sense of Definition 1.3),
it remains to verify that→PVS recognizes constraint violations. We start out from
a ground, unfailed FCSP P0 that contains at least one violated tpp constraint. In
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the first place, we show that there is at least one way to apply →PVS to P0 that
results in a failed FCSP. In a second step, we combine the first result with Lemma
1.1 to demonstrate that the normal form of P0 wrt.→PVS is necessarily failed.

Proposition 3.9. Let P0 = (X ,δ0,C) be a ground, unfailed FCSP with tpp(T ) ∈
C. If δ0 violates tpp(T ), then a failed FCSP P1 exists s.t. P0→PVS P1.

Proof. We know that |{vc(T,δ0) : T ∈ T }| > 1, because T �= /0 and δ0 violates
tpp(T ). Let T0,T1 ∈ T s.t. vc(T0,δ0) �= vc(T1,δ0). If vc(T0,δ0) ⊂ vc(T1,δ0), let
a ∈ vc(T1,δ0) \ vc(T0,δ0) and t = (S,P) ∈ T1 s.t. a ∈ vc(t,δ0). Otherwise, let a ∈
vc(T0,δ0)\vc(T1,δ0) and t = (S,P)∈ T0 s.t. a∈ vc(t,δ0). Let P1 = (X ,δ1,C) with
δ1 = δ0 except for δ1(S) = δ1(P) = /0. Obviously, P1 is failed and P0 →FD P1. It
remains to verify that a ∈ vs(t,δ0), a /∈ vs(T ,δ0),

{s ∈ δ0(S) : ∃p ∈ δ0(P). a /∈ [s,s+ p−1]}= /0

and
{p ∈ δ0(P) : ∃s ∈ δ0(S). a /∈ [s,s+ p−1]}= /0.

The latter equations hold because Sδ0 and Pδ0 are the only candidates and, by
assumption, a ∈ vc(t,δ0) = [Sδ0,Sδ0 +Pδ0−1]. a ∈ vs(t,δ0) because, by Lemma
3.4, vs(t,δ0) = vc(t,δ0) and, by assumption, a ∈ vc(t,δ0). a /∈ vs(T ,δ0) because,
by Definition 3.1 and by Lemma 3.4,

vs(T ,δ0) =
�

T∈T
vs(T,δ0)⊆ vs(T0,δ0)∩vs(T1,δ0) = vc(T0,δ0)∩vc(T1,δ0)

and a has been chosen s.t. a /∈ vc(T0,δ0)∩vc(T1,δ0).

Proposition 3.10. Let R ⊆ {→PVS,→FC,→IPT,→NC} s.t. →PVS ∈ R and let
→R=

�
R. Let P0 = (X ,δ0,C) be a ground, unfailed FCSP with tpp(T ) ∈ C.

If δ0 violates tpp(T ), then P0↓R is failed.

Proof. By Proposition 3.9, a failed FCSP P1 exists s.t. P0→PVS P1. From Corol-
lary 3.4, we know that P0 and P1 have uniquely determined normal forms wrt.
→R, namely P0↓R and P1↓R. So we have P0↓R←∗R P0→PVS P1→∗R P1↓R and we
see that P1↓R is a normal form of P0 wrt.→R. It follows that P1↓R = P0↓R and thus
P1→∗R P0↓R. Since→R⊆→FD, P0↓R is failed like its predecessor P1.

So we have a guarantee that violated tpp constraint will be detected by→PVS.
This will happen at the latest when all variables have become ground. There is
no guarantee, however, that violations will be detected as soon as possible. Note
that such a solver would implement a decision procedure for the TPP and, un-
less P = NP, it would have exponential time complexity because the TPP is NP-
complete.

Next we show that →NC is a solver for tpp constraints. We proceed in the
same manner as before.
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Proposition 3.11. Let P0 = (X ,δ0,C) be a ground, unfailed FCSP with tpp(T ) ∈
C. If δ0 violates tpp(T ), then a failed FCSP P1 exists s.t. P0→NC P1.

Proof. We know that |{vc(T,δ0) : T ∈ T }| > 1, because T �= /0 and δ0 vio-
lates tpp(T ). Let T0,T1 ∈ T s.t. vc(T0,δ0) �= vc(T1,δ0). Let G = (U,V,E) =
vcg(T ,T0,δ0) and let M be a matching in G. Considering the structure of
vcg(T ,T0,δ0) (cf. Definition 3.9), we find that

{a : ∃u ∈U. (u,a) ∈ E}= vc(T0,δ0).

Thus, |vc(T0,δ0)| is an upper on |M|. We obtain

|M| ≤ |vc(T0,δ0)|< |vc(T0,δ0)∪vc(T1,δ0)| ≤
∣∣∣∣∣
�

T∈T
vc(T,δ0)

∣∣∣∣∣= |vc(T ,δ0)|= |V |

and conclude that G does not have a matching M with |M| = |V |. Thus, for any
failed FCSP P1 s.t. P0→FD P1, P0→NC P1.

Proposition 3.12. Let R⊆ {→PVS,→FC,→IPT,→NC} s.t.→NC ∈ R and let→R=�
R. Let P0 = (X ,δ0,C) be a ground, unfailed FCSP with tpp(T ) ∈C. If δ0 vio-

lates tpp(T ), then P0↓R is failed.

Proof. Similar to the proof of Proposition 3.10 by employing Proposition 3.11.

Note that →FC and →IPT are not solvers for tpp constraints. →FC simply
does not apply to ground problems and →IPT does not complain about tracks
with different value covers as long as the number of values covered is the same.
So both →FC and →IPT may let constraint violations go unnoticed. Despite this
shortcoming, there are two ways to employ→FC and→IPT: They can be used to
propagate redundant tpp constraints or in combination with the other reductions
to compute more consequences.

3.4 Related Work

To our best knowledge, the TPP has not yet been described. In terminology, the
TPP is related to the track assignment problem (TAP) that has been investigated
in operations research. A TAP is stated in terms of a task set and a track set. Tasks
are specified by intervals, i.e. start and processing times are fixed. A track is either
a single machine [BN94, SL94, KL95] or a bank of identical parallel machines
[FKN99] with time windows of availability. A schedule is an assignment of tasks
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to tracks that respects the capacity and the availability of the machines. Objec-
tives include the minimization of the number of used tracks [SL94] and the maxi-
mization of the number of scheduled tasks [BN94, FKN99]. Applications include
the assignment of transmission tasks to satellites [FKN99] and the assignment of
clients to summer cottages [KL95].

The TPP differs from the TAP in several aspects. The chief difference is that
solving a TAP requires to assign tracks while solving a TPP requires to assign
times s.t. tracks are processed in parallel. Furthermore, a TAP includes restrictions
on the availability of machines and the implicit assumption that each task requires
a single machine for processing. In a constraint-programming fashion, the TPP
does not impose any constraint except for that tracks have to be processed in
parallel.





Chapter 4

Constraint-Based Solvers for School
Timetabling

Research in automated school timetabling can be traced back to the 1960s and,
during the last decade, efforts concentrated on greedy algorithms and on local
search methods such as simulated annealing, tabu search, and genetic algorithms.
Constraint-programming technology has been used to solve timetabling problems
from universities but the question whether it applies to school timetabling as well
is open (c.f. Section 2.3). This chapter takes a long stride towards an answer by
proposing, investigating, and comparing constraint-based solvers for school time-
tabling.

The approach proposed in this chapter is based on a transformation of high-
level problem descriptions (in terms of teachers, students, facilities, and meetings,
c.f. Section 2.1) to constraint models (in terms of finite constraint networks, c.f.
Section 1.6). This transformation is distinguished by its use of global constraints
and deals with all common requirements of timetables (c.f. Section 2.1) except
for bounds on idle time. Fixing the search strategy and the constraint-propagation
algorithms yields a first solver for school-timetabling problems.

By a series of additional post-processing steps to the fundamental transfor-
mation, several solvers are obtained from the primal solver. Post processing is
grounded on track parallelization problems (cf. Chapter 3) which are used to
down-size the constraint models (by an additional transformation a priori to
search) and to prune the search space (by propagation during search).

To study the operational properties of the primal solver and to compare it to
its offspring, a large-scale computational experiment has been performed. The top
priority in experimental design was to obtain results that are practically relevant
and that allow for statistical inference. Inspired by a study of Drexl & Salewski
[DS97], a configurable problem generator was developed, field work was per-
formed to obtain configurations (i.e. detailed school descriptions), and for each of
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ten representative schools a sample of 1000 problems has been generated.
This chapter is organized as follows. Section 4.1 introduces finite-domain con-

straints that are relevant to this chapter, namely arithmetic constraints, the global
cardinality constraint, and a constraint to place rectangles without overlaps. Sec-
tion 4.2 presents the fundamental transformation of high-level problem specifica-
tions to constraint models. Sections 4.3 through 4.6 show how to obtain track par-
allelization problems and how to exploit them to obtain leaner constraint models.
Section 4.7 reports the computational study (in terms of objectives, experimental
design, and results) that was performed to investigate and to compare the various
solvers. Section 4.8 closes the chapter with a review of related work.

4.1 Constraints for School Timetabling

This section introduces finite-domain constraints that will be used to model
school-timetabling problems.

4.1.1 Arithmetic Constraints

An arithmetic constraint takes the form e1 ◦e2 where e1 and e2 are integer-valued
arithmetic expressions over finite-domain variables and ◦ is a binary relation sym-
bol like = and ≤.

4.1.2 The Global Cardinality Constraint

Let X be a set of finite-domain variables that take their values in a set V . For each
value in V , the global cardinality constraint (gcc) [Rég96] allows to constrain
the frequency of its assignment to variables in X . The constraints on frequency
are specified by a set of pairs of the form (v,F) were the domain of the frequency
variable F defines the frequencies that are admissible for the value v.

Definition 4.1. Let (X ,δ,C) be a ground FCSP with

c = gcc({X1, . . . ,Xn} ,{(v1,F1), . . . ,(vm,Fm)}) ∈C.

δ satisfies c iff
∀1≤ i≤ n. ∃1≤ j ≤ m. Xiδ = v j

and
∀1≤ j ≤m.

∣∣{1≤ i≤ n : Xiδ = v j
}∣∣ = F jδ.

The alldiff constraint [Rég94, MT00, vH01] is well-known special case
of the global cardinality constraint. It takes a set of finite-domain variables and
requires that the variables are assigned pairwise different values.
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4.1.3 Non-Overlapping Placement of Rectangles

We are given n sets of rectangles: For 1 ≤ i ≤ n, we are given a set of origins
Xi×Yi and a set of sizes Wi×Hi. We are required to select n rectangles s.t. the
rectangles do not overlap pairwise. More precisely, for 1≤ i≤ n, we are required
to find an origin (xi,yi) ∈ Xi×Yi and a size (wi,hi) ∈Wi×Hi s.t.

∀1≤ i < j ≤ n. xi +wi ≤ x j ∨ x j +wj ≤ xi ∨ yi +hi ≤ y j ∨ y j +h j ≤ yi.

By a straightforward polynomial transformation from problem SS1 of Garey
& Johnson [GJ79] (sequencing with release times and deadlines) we can show
that this kind of placement problem is NP-complete.

To solve this kind of placement problem in a finite-domain constraint-
programming framework, we use the disjoint constraint. The disjoint con-
straint takes one argument: a set

{(X1,Y1,W1,H1), . . . ,(Xn,Yn,Wn,Hn)}
of tuples of finite-domain variables.

Definition 4.2. Let (X ,δ,C) be a ground FCSP with

c = disjoint({(X1,Y1,W1,H1), . . . ,(Xn,Yn,Wn,Hn)}) ∈C.

For 1 ≤ i ≤ n, let xi = Xiδ, yi = Yiδ, wi = Wiδ, and hi = Hiδ. δ satisfies c iff the
arrangement specified by (xi)1≤i≤n, (yi)1≤i≤n, (wi)1≤i≤n, and (hi)1≤i≤n satisfies
the requirement stated above.

4.2 A Basic Model Generator

This section shows how to transform school-timetabling problems into finite con-
straint networks by using global constraints. The following notation will be used:

Notation 4.1. Let P be a school-timetabling problem (c.f. Section 2.1).

• S(P), T (P), R(P), M(P), and J(P) denote the students, the teachers, the
rooms, the meetings, and the jobs of P.

• S(m), T (m), R(m), and p(m) denote the students, the teachers, the rooms,
and the duration (the processing time) of meeting m.

• M(s) and D(s) denote the meetings and the down time of student s.

• M(t) and D(t) denote the meetings and the down time of teacher t.
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• D(r) denotes the down time of room r.

• M( j) denotes the meetings of job j.

In later parts of this thesis, the model generator specified in this place will be
referred to as µ0.

4.2.1 Representation of Time Slots

We assume that the (rectangular) time grid of P is derived from its width w(P)
(the number of days) and its height h(P) (the number of time slots a day):

G(P) = [0,w(P)−1]× [0,h(P)−1]

Hence (0,0) represents the first time slot of the first day, (0,h(P)−1) represents
the last time slot of the first day, (1,0) represents the first time slot of the second
day, and so on.

This representation is convenient but it cannot be used in finite-domain con-
straint programming where variables range over finite sets of integers. This prob-
lem can be solved easily by mapping (i, j) to i∗h(P)+ j. So the first time slot of
the first day is represented by 0, the last time slot of the first day is represented by
h(P)−1, the first time slot of the second day is represented by h(P), and so on.

4.2.2 Variables and Initial Domains

For each meeting m ∈ M(P), three finite-domain variables are introduced: a
period-level start-time variable S(m), a day-level start-time variable S̄(m), and a
room variable R(m). The set-up procedure takes the following steps:

1. The domain of S(m) is initialized with the time grid of P under consideration
of the relevant down times

D(m) =
�{�

s∈S(m) D(s),
�

t∈T(m) D(t),
�

r∈R(m) D(r)
}

,

the day boundaries, and the duration of m:

(i, j) ∈ δ(S(m))↔∀ j ≤ k < j + p(m). (i,k) ∈G(P)\D(m)

2. The initial domain of S̄(m) is obtained from the initial domain of S(m) by
projection:

δ(S̄(m)) = {i : (i, j) ∈ δ(S(m))}
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3. To propagate changes in the domain of S(m) to the domain of S̄(m) and vice
versa, the following constraint is imposed:

S̄(m) = �S(m)/h(P)�

4. The domain of R(m) is initialized with the rooms that are suitable for m:

δ(R(m)) = R(m)

4.2.3 Symmetry Exclusion

Let j be a job in J(P). If the meetings of j are identical with regard to their
resource requirements and their durations, then an arbitrary total order is imposed
on them to exclude symmetries and to reduce the search space. More precisely, if
m1, . . . ,mn are the meetings of j, then the constraint S(mi)+ p(mi) ≤ S(mi+1) is
imposed for 1≤ i < n. If the meetings differ in resource requirements or duration,
then symmetry exclusion is performed separately for each maximum subset that
satisfies the prerequisites.

4.2.4 Couplings

Let J ∈C(P) be a set of jobs to be scheduled in parallel. To enforce the coupling J,
a tpp constraint is employed where each job constitutes a track and each meeting
constitutes a task:

tpp({{(S(m), p(m)) : m ∈M( j)} : j ∈ J})

4.2.5 Resource Capacities

To avoid the double-booking of students and teachers, alldiff constraints are
used. The procedure is demonstrated on the example of a teacher t. For each meet-
ing m ∈M(t), the following steps are taken:

1. m is decomposed into p(m) meetings m1, . . . ,mp(m) with p(mk) = 1 for 1≤
k ≤ p(m).

2. For 1≤ k ≤ p(m), a period-level start-time variable S(mk) with

δ(S(mk)) = {(i, j + k−1) : (i, j) ∈ δ(S(m))}

is introduced. Let X denote the set of variables obtained in this way.
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3. To achieve that the meetings of the decomposition are scheduled in succes-
sion and without any gaps, the constraint S(mk+1) = S(mk)+1 is imposed
for 1≤ k < p(m).

4. To relate m to the meetings of its decomposition, the constraint S(m1) =
S(m) is imposed.

Using this infrastructure, double-bookings are avoided by means of

alldiff(X).

The alldiff constraint applies only if the assignment of consumers to re-
sources is fixed. Hence it cannot be used to avoid the double-booking of rooms
unless rooms are allocated prior to time-slot assignment. To allow for a problem
solver that alternates between time-slot assignment and room allocation, an ap-
proach has been implemented that is based on the disjoint placement of rectangles
in the plane spanned by the time grid G(P) and by the room set R(P). Each meet-
ing m ∈ M(P) is assigned a rectangle of width p(m) and height 1 the origin of
which is not fixed. Clearly, a disjoint placement of the rectangles corresponds to
a timetable where no room is double-booked. To enforce a disjoint placement, a
single disjoint constraint is used:

disjoint({(S(m),R(m), p(m),1) : m ∈M(P)})

Restrictions on room availability are modeled by means of fixed rectangles.

4.2.6 Bounds on Daily Work Load

To enforce bounds on daily work load, global cardinality constraints are used. The
procedure is demonstrated on the example of a teacher t with bounds l and u on
her daily work load. Suppose that 0≤ l ≤ u≤ h(P), let I =

�
m∈M(t) δ(S̄(m)), and

let n = |I|.
1. For 1≤ i≤ n, a filling task ft,i with duration u is introduced.

2. For 1≤ i≤ n, a day-level start-time variable S̄( ft,i) with domain I∪{−i} is
introduced.

3. For each meeting m ∈ M(t) ∪ { ft,i : 1≤ i≤ n}, the following steps are
taken:

(a) m is decomposed into p(m) meetings m1, . . . ,mp(m) with p(mk) = 1
for 1≤ k ≤ p(m).
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(b) For 1 ≤ k ≤ p(m), a day-level start-time variable S̄(mk) with
δ(S̄(mk)) = δ(S̄(m)) is introduced. Let X denote the set of variables
obtained in this way.

(c) To achieve that the meetings of the decomposition are scheduled for
the same day, the constraint S̄(mk) = S̄(m) is imposed for 1 ≤ k ≤
p(m).

4. For i ∈ I, a frequency variable Ft,i with domain [l,u] is introduced.

Let F1 = {(i,Ft,i) : i ∈ I}.
5. For 1≤ i≤ n, a frequency variable Ft,−i with domain [0,u] is introduced.

Let F2 = {(−i,Ft,−i) : 1≤ i≤ n}.
With this infrastructure, the bounds on daily work load are enforced by means of

gcc(X ,F1∪F2).

The filling tasks are required to implement the lower bound on daily work load
(c.f. Section 2.1). Suppose l > 0 and consider some day i ∈ I. With the filling task
ft,i, there are two alternatives for the timetable of t: Either the day i is free or at
least l time slots are occupied by meetings of t. The former situation occurs if
the filling task is scheduled for the day i. Then at the same time, the lower bound
is satisfied and no other meeting of t can be scheduled for the day i because the
duration of the filling task equals the upper bound. The latter situation occurs if
the filling task is scheduled for a negative ’day’.

4.2.7 Bounds on the Number of Working Days

To enforce bounds on the number of working days, global cardinality constraints
are used. The procedure is demonstrated on the example of a teacher t with bounds
l and u on the number of her working days. Let I =

�
m∈M(t) δ(S̄(m)), suppose that

0≤ l ≤ u≤ |I|, and let n = |I|− l.

1. For 1≤ i≤ n, a filling task ft,i with duration h(P) is introduced.

2. For 1≤ i≤ n, a day-level start-time variable S̄( ft,i) with

δ(S̄( ft,i)) =

{
I∪{−i} , if 1≤ i≤ u− l,

I otherwise

is introduced.
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3. The meetings and the filling tasks are decomposed and day-level start vari-
ables are introduced as described in the previous section. Let X denote the
set of variables obtained in this way.

4. For i ∈ I, a frequency variable Ft,i with domain [1,h(P)] is introduced.

Let F1 = {(i,Ft,i) : i ∈ I}.
5. For 1≤ i≤ u− l, a frequency variable Ft,−i with domain [0,h(P)] is intro-

duced.

Let F2 = {(−i,Ft,−i) : 1≤ i≤ u− l}.
With this infrastructure, the bounds on the number of working days are enforced
by means of

gcc(X ,F1∪F2).

The filling tasks with domain I are required to implement the upper bound u.
As there are |I|−u filling tasks of this kind, there will be at least |I|−u free days
and thus at most u working days. The lower bound l is enforced by requiring that
at least one time slot is occupied each day. Yet this amounts to a lower bound
on daily work load that rules out solutions with more than |I| − u free days. To
allow for such solutions, u− l filling tasks are introduced each of which can either
be scheduled for some day in I or be put aside. The former decision leads to an
additional free day while the latter decision entails an additional working day.

If there are both bounds on daily work load and on the number of working
days, all the bounds can be enforced with a single global cardinality constraint by
combining the approaches presented in this and the previous section.

4.3 Inference Processes

This section proposes two reductions for TPP inference in school timetabling,
demonstrates their correctness and convergence, and gives extensive examples.

To keep the presentation simple, a TPP is specified by a set of job sets. This
differs from the representation used in Chapter 3 where a TPP was specified by a
set of task sets. Yet, as each job is a set of meetings and each meeting constitutes a
task, the translation is straightforward. Note that couplings (a special kind of TPP
with only one job per track, c.f. 2.1) form an exception; a coupling is specified by
means of a job set.

We will make heavy use of the notation that has been introduced in Section 4.2.
In addition, we will use the following concepts and shortcuts related to students
and their programs:
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Definition 4.3. Let P be a school-timetabling problem.

• If j ∈ J(P), then

– S( j) denotes the students of j and

– p( j) denotes ∑m∈M( j) p(m) (the so-called processing time of j).

• If s ∈ S(P), then

– J(s) denotes the jobs s participates in (the so-called program of s) and

– F(s) denotes G(P)\D(s) (the so-called time frame of s).

F(s) is called tight iff |F(s)|= ∑ j∈J(s) p( j).

• Students s0,s1 ∈ S(P) are called equivalent iff J(s0) = J(s1).

• H (P) denotes the equivalence classes of S(P) wrt. the student-equivalence
relation (the so-called homogeneous groups of P).

• If H ∈H (P), then

– J(H) is the subset of J(P) with J(H) = J(s) for all students s ∈H (the
so-called program of H) and

– F(H) denotes
�

s∈H F(s) (the so-called time frame of H).

F(H) is called tight iff |F(H)|= ∑ j∈J(H) p( j).

So all students of a homogeneous group have the same program and if two students
have the same program, they belong to the same homogeneous group. Hence the
program of any homogeneous group is well-defined.

Next, as TPPs are specified in terms of jobs instead of tasks, we need to adapt
the definitions of value covers and value supplies:

Definition 4.4. Let P be a school-timetabling problem and let δ denote the domain
function of the constraint model µ0(P) (c.f. Section 4.2).

• If j ∈ J(P), then

– vc( j,δ) denotes vc({(S(m), p(m)) : m ∈M( j)} ,δ) and

– vs( j,δ) denotes vs({(S(m), p(m)) : m ∈M( j)} ,δ).
(S(m) is the period-level start-time variable for the meeting m as introduced
by the model generator µ0.)
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• If T ⊆ J(P) (i.e. if T is a track), then

– vc(T,δ) denotes
�

j∈T vc( j,δ) and

– vs(T,δ) denotes
�

j∈T vs( j,δ).

• If T is a set of subsets of J(P) (i.e. if T is a track set), then

– vc(T ,δ) denotes
�

T∈T vc(T,δ) and

– vs(T ,δ) denotes
�

T∈T vs(T,δ).

The reader is encouraged to verify that all properties of value covers and supplies
readily transfer from task to job level.

To simplify the translation of TPPs to tpp constraints, we introduce the fol-
lowing shortcuts:

Definition 4.5. Let P be a school-timetabling problem.

• If T is a set of subsets of J(P) (i.e. if T is a track set), then ‖T ‖ denotes
the constraint

tpp({{(S(m), p(m)) : j ∈ T ∧ m ∈M( j)} : T ∈ T }) .

• If J ⊆ J(P), then J (J) denotes {{ j} : j ∈ J}.
Finally, P (X) denotes the power set of X as usual.

4.3.1 Reductions

We start by defining the reduction system (A(P),→A,P) for any school-timetabling
problem P. It serves to infer couplings from the students’ individual programs and
time frames. A(P) comprises all sets of couplings that are possible on the basis
of J(P). An application of→A,P transforms a set of couplings into one of smaller
cardinality by merging couplings. The merging operation takes a pair of couplings
J0 and J1 and returns the coupling J0∪ J1. Such a merging is admissible only if
J0 and J1 are not disjoint or if there are jobs j0 ∈ J0 and j1 ∈ J1 with students
s0 ∈ S( j0) and s1 ∈ S( j1) the programs of whom do not differ except for j0 and j1
and who have identical and tight time frames.

Definition 4.6. Let (A(P),→A,P) be a reduction system with

A(P) = P (P (J(P)))

and R0→A,P R1 iff J0,J1 ∈ R0 exist s.t.
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• J0 �= J1;

• either J0∩ J1 �= /0 or j0 ∈ J0, j1 ∈ J1, s0 ∈ S( j0), and s1 ∈ S( j1) exist with

– J(s0)\{ j0}= J(s1)\{ j1},
– F(s0) = F(s1), and

– both F(s0) and F(s1) are tight; and

• R1 = R0 \{J0,J1}∪{J0∪ J1}.
P (J(P)) is the set of couplings that are possible on the basis of J(P). The require-
ment J0 �= J1 is necessary to obtain a terminating reduction.

Next we define the reduction system (B(P),→B,P) that serves to infer TPPs
from the couplings of P. B(P) comprises all sets of TPPs that are possible on
the basis of J(P) and that satisfy the following requirement: Every track’s jobs
belong to a single homogeneous group. (Hence the meetings of a track must not
overlap.) An application of→B,P transforms a set of TPPs by reducing some TPP.
The reduction operation takes a TPP T0 and a job set J and returns the TPP T1 =
{T \ J : T ∈ T0}. Such a reduction is admissible only if the jobs in J are coupled
according to C(P) and if J intersects with each track of T0.

Definition 4.7. Let (B(P),→B,P) be a reduction system with

B(P) = P
{
T ∈ P (P (J(P))) : ∀T ∈ T . ∃H ∈H (P). T ⊆ J(H)

}
and R0→B,P R1 iff J ∈C(P) and T0 ∈ R0 exist s.t.

• ∀T ∈ T0. J∩T �= /0 and

• R1 = R0 \{T0}∪{T1} with T1 = {T \ J : T ∈ T0}.
P (J(P)) is the set of tracks that are possible on the basis of J(P) and P (P (J(P)))
is the set of TPPs that are possible on the basis of these tracks.

4.3.2 Examples

We give four examples to demonstrate the inference capabilities of the reductions
we have introduced. As a side effect, it becomes clear how study options compli-
cate timetabling by entailing the frequent need for parallel education.

This section’s examples take up the examples of Section 2.2.3 where a school-
timetabling problem has been presented in part. Suppose the entire problem is
known and let P denote this problem.
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Subject
Class REC REP Eth G E F L M B H Geo A Mu PEM PEF
7a-EL d2

2 g2
1

7b-EL a2
3 b2

1 e2
1 h2

2
7c-EL b c2

1 d g
7d-EF a f 2

1 i21
7e-EF a b c e h

Table 4.1:
Four couplings inferred from the modules specified in Table 2.2

(cf. Example 4.1).

Example 4.1. Table 4.1 shows four couplings that have been inferred on the basis
of Table 2.2 which specifies the modules of a seventh grade. The couplings are set
off from each other by means of gray backgrounds of varying intensity (including
white).

To explain how these couplings have been inferred by means of→A,P, we need
to give some facts that are not apparent from Table 2.2. Let a1, a2, a3, b1, c1, d1,
d2, e1, f1, g1, h1, h2, and i1 denote the jobs due to the modules a through i.

1. All students of the seventh grade have the same time frame and this time
frame is tight for each of them.

2. For 1≤ i≤ 3, students s0 ∈ S(ai) and s1 ∈ S(b1) with J(s0)\{ai}= J(s1)\
{b1} exist.

3. Students s0 ∈ S(a3) and s1 ∈ S(c1) with J(s0)\{a3}= J(s1)\{c1} exist.

4. For i ∈ {1,2}, students s0 ∈ S(di) and s1 ∈ S(g1) with J(s0)\{di}= J(s1)\
{g1} exist.

5. For i ∈ {1,2}, students s0 ∈ S(hi) and s1 ∈ S(e1) with J(s0)\{hi}= J(s1)\
{e1} exist.

6. Students s0 ∈ S( f1) and s1 ∈ S(i1) with J(s0)\{ f1}= J(s1)\{i1} exist.

Moreover, as Table 2.2 shows, the job sets J0 = {a1,a2,a3,b1,c1} (religious ed-
ucation) and J1 = {d1,d2,e1, f1,g1,h1,h2, i1} (physical education) are not related
in the following sense: For j0 ∈ J0 and j1 ∈ J1, students s0 ∈ S( j0) and s1 ∈ S( j1)
with J(s0)\{ j0}= J(s1)\{ j1} do not exist. In consequence,→A,P will never in-
fer a coupling that contains jobs from both religious and physical education. This
allows to split the inference process and we obtain two computations:
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1. We consider J0 and start out from J (J0):

J (J0) = {{a1} ,{a2} ,{a3} ,{b1} ,{c1}}
→A,P {{a1,b1} ,{a2} ,{a3} ,{c1}} by fact (2)

→A,P {{a1,a2,b1} ,{a3} ,{c1}} by fact (2)

→A,P {{a1,a2,a3,b1} ,{c1}} by fact (2)

→A,P {{a1,a2,a3,b1,c1}} by fact (3)

2. We consider J1 and start out from J (J1):

J (J1) = {{d1} ,{d2} ,{e1} ,{ f1} ,{g1} ,{h1} ,{h2} ,{i1}}
→A,P {{d1,g1} ,{d2} ,{e1} ,{ f1} ,{h1} ,{h2} ,{i1}} by fact (4)

→A,P {{d1,d2,g1} ,{e1} ,{ f1} ,{h1} ,{h2} ,{i1}} by fact (4)

→A,P {{d1,d2,g1} ,{e1,h1} ,{ f1} ,{h2} ,{i1}} by fact (5)

→A,P {{d1,d2,g1} ,{e1,h1,h2} ,{ f1} ,{i1}} by fact (5)

→A,P {{d1,d2,g1} ,{e1,h1,h2} ,{ f1, i1}} by fact (6)

The following table surveys the resource requirements of the couplings that
we have obtained:

Coupling Classes Teachers Rooms Total
{a1,a2,a3,b1,c1} 4 5 5 14
{d1,d2,g1} 2 3 3 8
{e1,h1,h2} 2 3 3 8
{ f1, i1} 1 2 2 5

For example, we see that to schedule one meeting of the first coupling, we have to
make sure that four given classes, five given teachers, and five suitable rooms are
available at the same time.

Example 4.2. Table 4.2 shows seven couplings that have been inferred on the
basis of Table 2.3 which specifies the modules of a tenth grade. To make sure that
the backgrounds can be distinguished from each other by the human eye, only four
intensity levels (including white) have been employed. However, since there are
seven couplings, three levels had to be used twice. We rule out any ambiguities by
annotating that the couplings in the left part of Table 4.2 are unrelated to those in
the right part.

Again, if µ is a module with n groups, then let (µi)1≤i≤n denote the jobs due
to µ. The couplings have been inferred from the following facts which are not
apparent from Table 2.3:
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Subject
Class RE G E F L M Ph C B (H & Soc) EL A Mu PE HE

10a/ML-ELF a2
4 j31 k3

2 m2
2 z1

2 α1
2 β2

2
10a/SOC-EL a j k m z α β
10a/SOC-EF a i31 k m z α β
10b/SOC-EF a k m z α γ2

2
10b/NAT-EF a z α γ
10c/NAT-EF a i z α β
10c/NAT-EL a j z α β

Table 4.2:
Seven couplings inferred from the modules specified in Table 2.3

(cf. Example 4.2).

1. All students of the tenth grade have the same time frame and this time frame
is tight for each of them.

2. For 1≤ i≤ 3, students s0 ∈ S(ai) and s1 ∈ S(a4) with J(s0)\{ai}= J(s1)\
{a4} exist.

3. Students s0 ∈ S(i1) and s1 ∈ S( j1) with J(s0)\{i1}= J(s1)\{ j1} exist.

4. For each module µ∈ {k,m,z,β,γ} and its jobs µ1 and µ2, students s0 ∈ S(µ1)
and s1 ∈ S(µ2) with J(s0)\{µ1}= J(s1)\{µ2} exist.

5. For i ∈ {1,2}, students s0 ∈ S(zi) and s1 ∈ S(αi) with J(s0)\{zi}= J(s1)\
{αi} exist.

Like in the previous example, the inference process may be split because →A,P

will never infer a coupling that contains, for example, jobs of religious and
foreign-language education. To mention one of the seven computations that re-
sult from splitting, {{a1, . . . ,a4}} is obtained by computing a normal form of
{{a1} , . . . ,{a4}} wrt.→A,P by employing the first fact three times.

As in the previous example, the couplings’ resource requirements are consid-
erable:

Coupling Classes Teachers Rooms Total
{a1,a2,a3,a4} 3 4 4 11
{i1, j1} 2 2 2 6
{k1,k2} 2 2 2 6
{m1,m2} 2 2 2 6

{z1,z2,α1,α2} 3 4 4 11
{β1,β2} 2 2 2 6
{γ1,γ2} 1 2 2 5
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Subject
Class REC REP Eth G E F L M B H Geo A Mu PEM PEF #a

7a-EL
7b-EL 4 4 5 4 2 2 1 2 2 26
7c-EL
7d-EF
7e-EF 4 4 5 4 2 2 1 2 2 26
7a-EL 2 4 4 5 4 2 2 1 2 2 28
7b-EL b2

1
7c-EL b c2

1 4 4 5 4 2 2 1 2 2 28
7d-EF
7e-EF b c

Table 4.3:
Two TPPs inferred from the couplings depicted in Table 4.1 (cf. Example 4.3).
The upper TPP stems from the classes 7b-EL and 7e-EF. The lower TPP stems

from the classes 7a-EL and 7c-EL.
aFor each track, this column gives the number of teaching periods per week.

Again, it becomes clear how study options may complicate timetabling in combi-
nation with tight time frames.

Example 4.3. Table 4.3 shows two TPPs that have been inferred from the cou-
plings depicted in Table 4.1. The TPPs are set off from each other by means of
gray backgrounds of varying intensity. The first TPP stems from the classes 7b-
EL and 7e-EF. Since the students of theses classes are joined for religious and for
physical education and their time frames are tight, the remaining subjects have to
be scheduled for the remaining slots. This conclusion has been modeled by a TPP
with two tracks: The upper track contains all lessons that involve 7b-EL but not
7e-EF while the lower track contains all lessons that involve 7e-EF but not 7b-
EL. Each track contains all lessons its class is involved in except for the lessons
both classes are involved in. Thus, in this case, religious and physical education
are missing. The second TPP stems from the classes 7a-EL and 7c-EL. Since the
students of theses classes are joined for physical education only, we obtain a TPP
with two tracks where physical education is missing.

Example 4.4. Table 4.4 shows three TPPs that have been inferred from the cou-
plings depicted in Table 4.2. The first TPP stems from the classes 10a/ML-ELF
and 10a/SOC-EL. It essentially reflects the curricular differences of the study di-
rections Modern Languages (ML) and Social Sciences (SOC). While ML students
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Subject
Class RE G E F L M Ph C B (H & Soc) EL A Mu PE HE #a

10a/ML-ELF 5 t3
1 8

10a/SOC-EL o2
1 u4

1 δ2
1 8

10a/SOC-EF o u δ
10b/SOC-EF o u δ
10b/NAT-EF t
10c/NAT-EF
10c/NAT-EL
10a/ML-ELF k3

2 m2
2 t3

1
10a/SOC-EL k m o2

1 u4
1 δ2

1
10a/SOC-EF k m o u δ
10b/SOC-EF k m o u δ 13
10b/NAT-EF l4

1 n3
1 p3

1 t 13
10c/NAT-EF l n p
10c/NAT-EL l n p
10a/ML-ELF b3

1 e3
1 j31 q2

1 w1
1 β2

2
10a/SOC-EL b e j q w β
10a/SOC-EF b e i31 q w β 14
10b/SOC-EF c3

1 f 3
1 h3

1 r2
1 x1

1 γ2
2 14

10b/NAT-EF c f h r x γ
10c/NAT-EF i β
10c/NAT-EL j β

Table 4.4:
Three TPPs inferred from the couplings depicted in Table 4.2 (cf. Example 4.4).

The first TPP stems from the the classes 10a/ML-ELF and 10a/SOC-EL. The
second TPP stems from the classes 10b/SOC-EF and 10b/NAT-EF. The third

TPP stems from the classes 10a/SOC-EF and 10b/SOC-EF.
aFor each track, this column gives the number of teaching periods per week.
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are taught a third foreign language and Social Studies, SOC students are taught
Chemistry, Social Studies, and Home Economics. The second TPP stems from the
classes 10b/SOC-EF and 10b/NAT-EF. As the previous TPP, it reflects the curricu-
lar differences of two study directions. Students in Natural Sciences (NAT) attend
ten periods of Mathematics, Physics, and Chemistry a week. In the SOC direction,
only seven periods a week are allocated for these subjects. In return, SOC students
attend more periods in Social Studies than their NAT colleagues and receive ed-
ucation in Home Economics. The third TPP stems from the classes 10a/SOC-EF
and 10b/SOC-EF. This TPP is basically due to students from the same study di-
rection but from different classes being joined for education specific to the study
direction.

4.3.3 Correctness

Consider some school-timetabling problem P and its constraint model µ0(P). We
will show that→A,P is correct in the following sense: If R0→A,P R1, then every
solution to µ0(P) that satisfies the couplings in R0 also satisfies the couplings in
R1 and vice versa. To formalize this statement, we translate the couplings to tpp
constraints (J becomes ‖J (J)‖) and employ the constraint-addition operator ⊕:

Proposition 4.1. If R0→A,P R1, then P0 ≡ P1 with Pi = µ0(P)⊕{‖J (J)‖ : J ∈ Ri},
i ∈ {0,1}.

Proof. Let J0,J1 ∈ R0 s.t. the preconditions for a transition are satisfied and R1 =
R0 \{J0,J1}∪{J0∪ J1}. We have to show that sol(P0) = sol(P1).

sol(P1)⊆ sol(P0): Let σ ∈ sol(P1). σ satisfies ‖J (J0∪ J1)‖ and thus it satisfies
‖J (J0)‖ as well as ‖J (J1)‖.

sol(P0) ⊆ sol(P1) if J0∩ J1 = /0: Choose any j0 ∈ J0, j1 ∈ J1, s0 ∈ S( j0), and
s1 ∈ S( j1) s.t. J(s0)\{ j0}= J(s1)\{ j1}, F(s0) = F(s1), and both F(s0) and F(s1)
are tight. Let σ∈ sol(P0), T0 = J(s0), and T1 = J(s1). Lemma 3.4, Lemma 3.1, and
the definition of µ0 yield

vc(Ti,σ) = vs(Ti,σ)⊆ vs(Ti,δ0)⊆ F(si)

for i∈ {0,1}. vc(Ti,σ)⊂F(si) can be ruled out because F(si) is tight for i∈ {0,1}
and thus |F(si)| slots are required to schedule the lessons of si without double-
booking si. With F(s0) = F(s1), we obtain vc(T0,σ) = vc(T1,σ), i.e. σ satisfies
‖{T0,T1}‖. To finish the proof, we need to take into account that students must
not be double-booked. This yields

vc( ji,σ) = vc(Ti,σ)\vc(Ti \{ ji} ,σ)
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for i ∈ {0,1}. Putting it all together, we obtain

vc( j0,σ) = vc(T0,σ)\vc(T0 \{ j0} ,σ)
= vc(T1,σ)\vc(T1 \{ j1} ,σ) = vc( j1,σ),

i.e. j0 and j1 and thus, by Lemma 3.4, all jobs of J0 and J1 are processed in parallel
under σ. In consequence, σ satisfies ‖J (J0∪ J1)‖.

sol(P0) ⊆ sol(P1) if J0 ∩ J1 �= /0: Let σ ∈ sol(P0) and j ∈ J0 ∩ J1. σ satisfies
‖J (J0)‖ and ‖J (J1)‖ and thus, by Lemma 3.4, the jobs of J0 and J1 are processed
in parallel with j under σ. In consequence, σ satisfies ‖J (J0∪ J1)‖ as well.

To formalize the correctness of→B,P, we follow the pattern used with→A,P:

Proposition 4.2. If R0→B,P R1, then P0 ≡ P1 with Pi = µ0(P)⊕{‖T ‖ : T ∈ Ri},
i ∈ {0,1}.
Proof. Let J ∈C(P) and T0 ∈ R0 s.t. the preconditions for a transition are satisfied
and R1 = R0 \{T0}∪{T1} with T1 = {T \ J : T ∈ T0}. Let T ∈ T0 and I = T ∩ J.
We start by making some observations for σ ∈ sol(µ0(P)):

• For all j0, j1 ∈ T , vc( j0,σ)∩ vc( j1,σ) = /0 because a homogeneous group
must not be double-booked.

• vc(T,σ) = vc(T \ I,σ)∪vc(I,σ) because I ⊆ T .

• vc(T \ I,σ)∩vc(I,σ) = /0 because I ⊆ T and, for all j0, j1 ∈ T , vc( j0,σ)∩
vc( j1,σ) = /0.

• vc(T \ I,σ) = vc(T,σ)\vc(I,σ) follows easily from the previous facts.

• vc(I,σ) = vc(J (J),σ): σ satisfies ‖J (J)‖ and hence, by Lemma 3.4,
vc({ j} ,σ) = vc(J (J),σ) for all j ∈ J. The claim follows easily with I ⊆ T .

These relations readily specialize to any solution to Pi, i ∈ {0,1}, because
sol(Pi)⊆ sol(µ0(P)).

sol(P0)⊆ sol(P1): Let σ ∈ sol(P0). σ satisfies ‖T0‖ and hence, by Lemma 3.4,
vc(T,σ) = vc(T0,σ). We obtain

vc(T \ J,σ) = vc(T \ I,σ)
= vc(T,σ)\vc(I,σ)
= vc(T0,σ)\vc(J (J),σ),

i.e. vc(T \ J,σ) does not depend on T .
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sol(P1)⊆ sol(P0): Let σ ∈ sol(P1). σ satisfies ‖T1‖ and hence, by Lemma 3.4,
vc(T \ J,σ) = vc(T1,σ). We obtain

vc(T,σ) = vc(T \ I,σ)∪vc(I,σ)
= vc(T \ J,σ)∪vc(I,σ)
= vc(T1,σ)∪vc(J (J),σ),

i.e. vc(T,σ) does not depend on T .

4.3.4 Convergence

A reduction is called convergent if it is terminating and confluent. Termination
guarantees that there are no infinite computations; confluence guarantees that ev-
ery element of the underlying set has at most one normal form. With a convergent
reduction system, whatever path of computation is actually taken for a given input
(there may be many due to non-determinism), the result is uniquely determined
(c.f. Section 1.5).

Let P be a school-timetabling problem. To demonstrate the convergence of
→A,P, we take the route via Newman’s Lemma which states that a terminating
reduction is confluent if it is locally confluent, i.e. if every single-step fork is join-
able. To ensure termination, we need to require that J(P) is finite. This restriction
is without any practical relevance.

Proposition 4.3. If J(P) is finite, then→A,P is terminating.

Proof. Remember that→A,P is a reduction on the set A(P) = P (P (J(P))). If J(P)
is finite, then P (J(P)) is finite as well and hence every element of A(P) is finite.

Let R ∈ A(P) and consider some computation that starts out from R. Since R
is a finite set of couplings and every transition of →A,P reduces the number of
couplings by one, there are at most |R|−1 transitions.

Proposition 4.4. →A,P is locally confluent.

Proof. There is only one kind of single-step fork that requires a close look. Let
R1←A,P R0→A,P R2 s.t.

• J0,J1,J2 ∈ R0 and J0, J1, and J2 are pairwise different;

• R1 = R0 \{J0,J1}∪{J0∪ J1}; and

• R2 = R0 \{J0,J2}∪{J0∪ J2}.
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We will show that R1→∗A,P R3←∗A,P R2 with R3 = R0\{J0,J1,J2}∪{J0∪ J1∪ J2}.
To show that R1 →∗A,P R3, we consider J0 ∪ J1,J2 ∈ R1 and distinguish two

cases: If J2 = J0∪ J1, then

R1 = R0 \{J0,J1}∪{J0∪ J1}
= R0 \{J0,J1,J0∪ J1}∪{J0∪ J1}
= R0 \{J0,J1,J2}∪{J0∪ J1∪ J2}= R3.

Otherwise, we have R1→A,P R3:

• From R0→A,P R2, we conclude that either J0∪ J1 and J2 are not disjoint or
that j0 ∈ J0∪ J1, j2 ∈ J2, s0 ∈ S( j0), and s2 ∈ S( j2) exist s.t. J(s0)\{ j0}=
J(s2)\{ j2}, F(s0) = F(s2), and both F(s0) and F(s2) are tight.

• Obviously, R1 \{J0∪ J1,J2}∪{J0∪ J1∪ J2}= R3.

R2→∗A,P R3 can be established in a similar way.

Corollary 4.1. If J(P) is finite, then→A,P is convergent.

The following statement on normal forms follows easily with Lemma 1.1:

Corollary 4.2. Let R ∈ A(P). If J(P) is finite, then R has a uniquely determined
normal form wrt.→A,P.

To demonstrate the convergence of →B,P, we proceed as before. Again, we
need to require that J(P) is finite.

Proposition 4.5. If J(P) is finite, then→B,P is terminating.

Proof. Remember that→B,P is a reduction on the set B(P)⊆ P (P (P (J(P)))). If
J(P) is finite, then P (P (J(P))) is finite as well and hence every element of B(P)
is finite. C(P) is finite because C(P) ∈ A(P) and every element of A(P) is finite as
we know from the proof to the claim that→A,P is terminating.

Let R ∈ B(P). To reduce a TPP T0 ∈ R, we need a coupling J ∈ C(P) which
intersects with each track T ∈ T0. Given such a coupling, T0 is replaced with the
TPP T1 = {T \ J : T ∈ T0}. It is obvious that T1 cannot be reduced further on the
basis of J. Hence any computation that starts out from {T0} performs at most
|C(P)| transitions. It follows that any computation that starts out from R performs
at most |R| |C(P)| transitions.

For our proof of local confluence, we require that the couplings of P are dis-
joint. This restriction is without any practical relevance because, if C(P) does not
have this property,→A,P can be used to establish it (cf. Proposition 4.7).
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Proposition 4.6. If the elements of C(P) are disjoint, then→B,P is locally conflu-
ent.

Proof. There is only one kind of single-step fork that requires a close look. Let
R1←B,P R0→B,P R2 s.t.

• J1,J2 ∈C(P) with J1 �= J2,

• T0 ∈ R0,

• R1 = R0 \{T0}∪{T1} with T1 = {T \ J1 : T ∈ T0}, and

• R2 = R0 \{T0}∪{T2} with T2 = {T \ J2 : T ∈ T0}.

We will show that R1 →∗B,P R3 ←∗B,P R2 with R3 = R0 \ {T0} ∪ {T3} and T3 =
{(T \ J1)\ J2 : T ∈ T0}.

R1→B,P R3: We use J2 to reduce T1 ∈ R1. This is possible because J1 and J2

are disjoint and thus ∀T ∈ T0. ∃ j ∈ J2. j ∈ T \ J1. It is straightforward to verify
that R3 = R1 \{T1}∪{T3}.

R2→B,P R3: We use J1 to reduce T2 ∈ R2. This is possible because J1 and J2

are disjoint and thus ∀T ∈ T0. ∃ j ∈ J1. j ∈ T \ J2. We obtain the state R2 \{T2}∪
{{(T \ J2)\ J1 : T ∈ T0}} which equals R3.

Corollary 4.3. If J(P) is finite and the elements of C(P) are disjoint, then→B,P

is convergent.

The following statement on normal forms follows easily with Lemma 1.1:

Corollary 4.4. Let R∈B(P). If J(P) is finite and the elements of C(P) are disjoint,
then R has a uniquely determined normal form wrt.→B,P.

Note that→B,P may derive couplings represented as sets of singleton job sets.
These couplings are not fed back though they might trigger further applications of
→A,P and→B,P.

4.4 Conservative Model Extensions

This section defines the model generators µA, µB, and µAB. Given a school-
timetabling problem P, the generators extend the constraint model µ0(P) with tpp
constraints derived by means of→A,P and→B,P. We study the question whether
the generators are correct and investigate the redundancy status of the constraints
they add.
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4.4.1 Model Generators

When applied to a school-timetabling problem P, µA computes a set of couplings,
transforms the couplings into tpp constraints, and adds the tpp constraints to
µ0(P):

Definition 4.8. Let
µA(P) = µ0(Q)

with Q = P except for
C(Q) = IA(P)↓A,P

where
IA(P) = C(P)∪{{ j} : j ∈ J(P)} .

The couplings are computed by means of →A,P starting out from the initial
state IA(P) that contains the couplings of P and a singleton coupling for each job
of P. To make sure that the computation converges (terminates in the uniquely
determined state IA(P)↓A,P), we require that J(P) is finite. The resulting set of
couplings has an interesting property:

Proposition 4.7. The elements of IA(P)↓A,P are pairwise disjoint.

Proof. Let J0,J1 ∈ IA(P)↓A,P with J0 �= J1 and suppose J0 and J1 are not disjoint.
Then→A,P applies to IA(P)↓A,P. This contradicts the premise that IA(P)↓A,P is a
normal form.

In structure, µB is very similar to µA and, like µA, µB generates and processes
TPPs. However, the outcome of the inference process employed by µB is not lim-
ited to couplings.

Definition 4.9. Let Let

µB(P) = µ0(P)⊕{‖T ‖ : T ∈ IB(P)↓B,P}
with

IB(P) =
{{

J(H) : H ∈H }
: H ⊆H (P) ∧ f (H )

}
where a set of homogeneous groups H passes the filter f iff F(H) is tight for all
H ∈H and F(H0) = F(H1) for all H0,H1 ∈H .

The TPPs are computed by means of →B,P starting out from the initial state
IB(P) that contains a TPP for every subset of homogeneous groups with identical
and tight time frames. To make sure that the computation converges (terminates
in the uniquely determined state IB(P)↓B,P), we require that J(P) is finite and that
the couplings in C(P) are disjoint. (Remember that the definition of→B,P refers
to C(P).)

µAB connects the inference processes of µA and µB in series. The couplings
obtained in the manner of µA are used to drive the inference process of µB:
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Definition 4.10. Let
µAB(P) = µB(Q)

with Q = P except for
C(Q) = IA(P)↓A,P.

The link is established by means of the intermediate problem Q which is ob-
tained from the input P by replacing its couplings with IA(P)↓A,P. µAB(P) is well-
defined if C(P) is finite: Then C(Q) is finite, its elements are pairwise disjoint by
Proposition 4.7, and thus µB(Q) is well-defined.

4.4.2 Correctness

This section demonstrates that µA, µB, and µAB are correct in the sense that the
constraints they add do not restrict the solution space wrt. µ0, i.e.

µA(P)≡ µB(P)≡ µAB(P)≡ µ0(P)

for any school-timetabling problem P the model generators apply to.
For µA, we show that adding any coupling in IA(P) is safe wrt. correctness and,

on the basis of this knowledge, we prove that replacing the couplings of P with
IA(P)↓A,P is safe, too.

Lemma 4.1. If J ∈ IA(P), then µ0(P)≡ µ0(P)⊕{‖J (J)‖}.
Proof. Let J ∈ IA(P), c = ‖J (J)‖, and P0 = µ0(P). To show that sol(P0) ⊆
sol(P0⊕{c}), let σ ∈ sol(P0). J is singleton and thus c has only one track. As
tpp constraints with singleton track sets are satisfied by any value assignment, σ
satisfies c. It follows that σ ∈ sol(P0⊕{c}).
Proposition 4.8. µA(P)≡ µ0(P)

Proof. By the definition of µA, we have to show that µ0(P)≡ µ0(Q) with Q = P
except for C(Q) = IA(P)↓A,P.

sol(µ0(P)) ⊆ sol(µ0(Q)): Let σ ∈ sol(µ0(P)). By Lemma 4.1, σ satisfies all
‖J (J)‖ with J ∈ IA(P). By Lemma 1.3 and by the correctness of→A,P, it follows
that σ satisfies all ‖J (J)‖ with J ∈ IA(P)↓A,P as well. Hence σ ∈ sol(µ0(Q)).

sol(µ0(Q))⊆ sol(µ0(P)): Let σ ∈ sol(µ0(P)) and J ∈C(P). If J ∈C(Q), then
σ satisfies ‖J (J)‖, of course. Otherwise, by the definition of →A,P, a K ∈ C(Q)
with J ⊆ K exists. As σ satisfies ‖J (K)‖, it satisfies ‖J (J)‖ as well.

To show the correctness of µB, we follow the pattern used with µA:

Lemma 4.2. If T ∈ IB(P), then µ0(P)≡ µ0(P)⊕{‖T ‖}.
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Proof. Let H ⊆ H (P) s.t. T =
{

J(H) : H ∈H }
. Let P0 = µ0(P), let δ0 denote

the domain function of P0, let σ ∈ sol(P0), and let T = J(H). Lemma 3.4, Lemma
3.1, and the definition of µ0 yield

vc(T,σ) = vs(T,σ)⊆ vs(T,δ0)⊆ F(Hi).

vc(T,σ)⊂ F(H) can be ruled out because F(H) is tight and thus |F(H)| slots are
required to schedule the lessons of H without double-booking H. With F(H0) =
F(H1) for all H0,H1 ∈H , we obtain vc(J(H0),σ) = vc(J(H1),σ), i.e. σ satisfies
‖T ‖. It follows that sol(P0) ⊆ sol(P0⊕{‖T ‖}). The other direction is obvious
and hence P0 ≡ P0⊕{‖T ‖}.
Proposition 4.9. µB(P)≡ µ0(P)

Proof. sol(µB(P))⊆ sol(µ0(P)): By the definition of µB, every constraint of µ0(P)
occurs in µB(P) and thus every solution to µB(P) is a solution to µ0(P).

sol(µ0(P)) ⊆ sol(µB(P)): Let σ ∈ sol(µ0(P)). By Lemma 4.2, σ satisfies all
‖T ‖ with T ∈ IB(P). By Lemma 1.3 and by the correctness of →B,P, it follows
that σ satisfies all ‖T ‖ with T ∈ IB(P)↓B,P as well. Hence σ ∈ sol(µB(P)).

With the results we have obtained up to now, the correctness of µAB follows
easily:

Proposition 4.10. µAB(P)≡ µ0(P)

Proof. Let Q = P except for C(Q) = IA(P)↓A,P. By the definition of µAB, the cor-
rectness of µB, the definition of µA, and the correctness of µA, we obtain

µAB(P) = µB(Q)≡ µ0(Q) = µA(P)≡ µ0(P).

4.4.3 Redundancy

A constraint is called redundant wrt. a given problem, if the problem implies the
constraint (i.e. every solution to the problem satisfies the constraint) but does not
state it explicitely (c.f. Definition 1.2).

This section shows that every constraint of µA(P), µB(P), and µAB(P) is redun-
dant wrt. µ0(P) if it does not occur in µ0(P).

Proposition 4.11. Let C0, CA, CB, and CAB denote the constraints of µ0(P), µA(P),
µB(P), and µAB(P) respectively. If c ∈CA \C0, c ∈CB \C0, or c ∈CAB \C0, then c
is redundant wrt. µ0(P).
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Proof. We give a proof for the case c∈CA\C0. The proof idea works for the other
cases as well.

We know that µA(P)≡ µ0(P) and hence every solution to µ0(P) satisfies c or,
equivalently, sol(µ0(P))⊆ sol(µ0(P)⊕{c}), as required. c /∈C0 follows from the
choice of c.

4.4.4 Operational Concerns

Let P be a school-timetabling problem. µA(P), µB(P), and µAB(P) are very likely
to include tpp constraints that are useless from an operational point of view:

• Both µA(P) and µB(P) may include single-track tpp constraints. In the case
of µA(P), these constraints go back to members of IA(P) that have not been
merged with other members of IA(P) in the course of computing IA(P)↓A,P.
In the case of µB(P), they go back to singleton members of IB(P). Irrespec-
tive of P, all these constraints are trivially satisfied by any variable assign-
ment and hence their propagation is futile.

• µB(P) may include tpp constraints that are subsumed by other tpp con-
straints. A case of subsumption is present if the track set of a tpp constraint
is a subset of another tpp constraint’s track set. Every occurence of sub-
sumption traces back to a pair of TPPs that have been reduced with the same
couplings. The propagation of subsumed constraints is useless because it
does not lead to additional pruning in comparison to what the propagation
of the subsuming constraints achieves anyway.

• µB(P) may include tpp constraints where each track holds a complete pro-
gram of some homogeneous group; if present, these constraints go back to
members of IB(P) that have not been reduced in the course of computing
IB(P)↓B,P. The propagation of such constraints by means of the tpp solver
is useless because it does not result in additional pruning in comparison to
what the solver in charge of the single groups’ capacity constraints achieves
anyway.

• Since µAB connects the inference processes of µA and µB in series, µAB(P)
may contain useless tpp constraints of all three kinds.

To save memory, we are free to leave out the useless tpp constraints. Extending
the model generators with appropriate filters is safe because not adding constraints
does not restrict solution spaces, of course.
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4.5 Non-Conservative Model Extensions

On the basis of µ0, this section defines model generators that sacrifice solutions
by imposing non-redundant tpp constraints in a systematic way. The resulting
constraint models are leaner and have smaller search spaces in comparison to what
µ0 produces. This entails considerable operational benefits as our computational
study will demonstrate.

To generate non-redundant tpp constraints, we introduce the reduction→C,P

for any school-timetabling problem P.→C,P is a variant of→A,P; in comparison
to→A,P, it allows for more transitions because of weaker preconditions and hence
→A,P⊆→C,P.

Definition 4.11. Let (A(P),→C,P) be a reduction system with R0 →C,P R1 iff
J0,J1 ∈ R0 exist s.t.

• J0 �= J1;

• either J0∩ J1 �= /0 or j0 ∈ J0, j1 ∈ J1, s0 ∈ S( j0), and s1 ∈ S( j1) exist with
J(s0)\{ j0}= J(s1)\{ j1}; and

• R1 = R0 \{J0,J1}∪{J0∪ J1}.
→C,P differs from →A,P in that it does not require the students to have identical
and tight time frames.

To define model generators on the basis of →C,P, we need to be sure that
every computation converges. This can be shown by reference to the arguments
that served to prove the convergence of→A,P.

Proposition 4.12. If J(P) is finite, then→C,P is convergent.

Next we define the model generator µAC. When applied to a school-timetabling
problem P, µAC computes a set of couplings, removes obviously unsatisfiable cou-
plings, and adds the remaining couplings to µA(P) after transforming them into
tpp constraints. In the definition, R( j) denotes the set of rooms that are suitable
for the meetings of any job j.

Definition 4.12. Let

µAC(P) = µA(P)⊕{‖J (J)‖ : J ∈ IA(P)↓C,P ∧ f (J)}
where a coupling J passes the filter f iff J satisfies the following conditions:

1. No pair of jobs has a teacher or a student in common and all jobs have the
same processing time:

For all j0, j1 ∈ J, if j0 �= j1, then T ( j0)∩T ( j1) = /0, S( j0)∩S( j1) = /0, and
p( j0) = p( j1).
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2. The bipartite graph (J,R(P),E) with ( j,r) ∈ E iff r ∈ R( j) has a matching
M with |M|= |J|.
This condition is necessary for the existence of a room assignment without
double-bookings.

µAC(P) is well-defined if C(P) is finite: Then µA(P) is well-defined and →C,P is
convergent.

The filter built into µAC is necessary because the couplings created in the
course of computation are possibly non-redundant. Adding them without prior
checking might render the resulting problem inconsistent, for example by forcing
the parallel processing of jobs that have a teacher in common. µA does not re-
quire this kind of filter because µA adds redundant couplings only. Using this filter
would even mean to prevent the revelation of inconsistencies. Note that building
the filter into→C,P would render→C,P non-confluent.

Finally, we define the model generator µABC which combines the ideas be-
hind µAB and µAC. When applied to a school-timetabling problem P, µABC extends
µAC(P) with tpp constraints that have been computed in the manner of µAB.

Definition 4.13. Let

µABC(P) = µAC(P)⊕{‖T ‖ : T ∈ IB(Q)↓B,Q}

with Q = P except for
C(Q) = IA(P)↓A,P.

The inference process is based on the intermediate problem Q which is ob-
tained from the input P by replacing its couplings with IA(P)↓A,P. µABC(P) is
well-defined if C(P) is finite: Then C(Q) is finite, its elements are pairwise dis-
joint by Proposition 4.7, and thus→B,Q is convergent.

4.6 Reducing Memory Requirements

Before handing over a model to our timetabling engine, we perform a post-
processing step that exploits couplings to reduce the number of variables and
scheduling problems by combining meetings.

Let P be a school-timetabling problem and let X denote the variables of
µ0(P). We define the postprocessor πP as a function that applies to any FCSP
with variables X . Let C denote the constraints of such a FCSP and consider any
tpp(T ) ∈C. If a job set J ⊆ J(P) exists s.t.

T = {{(S(m), p(m)) : m ∈M( j)} : j ∈ J}
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and if all the meetings that occur in J have the same duration, then πP removes
the constraint tpp(T ) from C and enforces the coupling J by systematic variable
replacements instead. For example, if J = { j1, j2}with M( j1)= {u1,u2}, M( j2)=
{v1,v2}, and p(u1) = p(u2) = p(v1) = p(v2), then the following replacements are
performed throughout the model:

S(v1)→ S(u1)
S̄(v1)→ S̄(u1)
S(v2)→ S(u2)
S̄(v2)→ S̄(u2)

If the meetings differ in duration, then the tpp constraint is retained.

Definition 4.14. Let µ1(P) = πP(µA(P)), µ2(P) = πP(µAC(P)), and µ3(P) =
πP(µABC(P)).

Note that the variable replacements carried out by πP can be considered as a
kind of constraint propagation performed prior to search.

4.7 Computational Study

4.7.1 The Objectives

To investigate the operational effects of TPP propagation in school timetabling,
we performed a large-scale computational study. More precisely, we investigated
three questions:

Q1 How does the propagation of couplings as performed by the model generators
µ1 and µ2 affect the model size?

Q2 How does the propagation of couplings as performed by the model generators
µ1 and µ2 affect the probability that a problem can be solved?

Q3 How does the propagation of TPPs other than couplings affect the probability
that a problem can be solved and which combination of propagation rules
performs best?

Due to limited computational resources, we did not employ a full factorial de-
sign wrt. the third question but confined ourselves to the separate investigation of
→PVS, →PVSB, →FC, →NC, and

� {→PVS,→FC,→NC}. We did not investigate
→IPT because, in our application, the processing times of tracks are fixed.
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R1 R2 R3 R4 R5 R6 A1 A2 A3 A4

Programsa 2 5 3 3 4 7 3 5 7 7
Labsb 17 19 23 13 13 18 19 23 19 23

Classrooms 23 25 45 26 38 47 25 45 25 45
Students 540 718 1165 740 760 1030 718 1165 718 1165

HGsc 204 226 314 248 184 382 216 323 232 321
Teachers 57 64 91 63 64 86 63 94 64 93
Modules 319 328 447 328 316 401 329 450 330 453
Lessons 707 779 1156 790 798 1053 785 1156 786 1151

µ0 Variables 1414 1558 2312 1580 1596 2106 1570 2312 1572 2302
SPsd 795 874 1288 917 808 1328 862 1306 876 1273

µ1 Couplings 21 23 37 33 22 38 22 40 23 31
Variables 1358 1472 2157 1452 1484 1932 1488 2161 1491 2168

SPs 697 739 1084 752 687 1113 732 1094 750 1093
µ2, µ3 Couplings 45 49 71 59 44 74 48 74 47 61

Variables 1300 1412 2057 1389 1424 1815 1423 2069 1433 2083
SPs 477 487 669 479 479 620 483 680 498 686

µ3 TPPse 56 69 100 81 61 114 63 108 74 97

Table 4.5:
Characteristics of schools, problems, and models (µ0, µ1, µ2, and µ3) from top
to bottom. Problem and model characteristics are described in terms of their

medians.
aThis row gives the number of programs resulting from what study directions and language

curricula are offered and how these may combined. Other factors that increase the number of
programs (like the segregation of the sexes in physical education, c.f. Section 2.2.1) have not
been considered here.

bIncluding craft rooms, sports facilities, etc.
cHG = homogeneous group
dSP = scheduling problem
eThe number of TPPs includes the number of couplings.

4.7.2 The Problem Set

To ensure the practical relevance of our results, problems close to reality have been
generated randomly on the basis of detailed models of representative schools. We
modeled German secondary schools of the Gymnasium type (cf. Section 2.2).
A school model describes the options offered to the students, the facilities, the
teacher population, the student population, and various requirements of the school
management that concern the design of timetables. We modeled ten secondary
schools (R1 through R6, A1 through A4) that are briefly described in Table 4.5.
Schools R1 through R6 have real-world counterparts while schools A1 through
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A4 are artificial schools that were created by hybridizing schools in the following
way:

• A1 hybridizes R2 and R3. The facilities and the student numbers are inherited
from R2, the study options are inherited from R3.

• A2 hybridizes R2 and R3. The facilities and the student numbers are inherited
from R3, the study options are inherited from R2.

• A3 hybridizes R2 and R5. The facilities and the student numbers are inherited
from R2. A3 offers all the study options that its parents offer.

• A4 hybridizes R3 and A3. The facilities and the student numbers are inherited
from R3, the study options are inherited from A3.

For each school, we generated and tested 1000 problems with the following re-
quirements of timetables:

• Most teachers with less than seventeen teaching periods a week need a day
off and for some teachers this day is fixed.

• Some teachers are not available before 9 a.m. and some teachers are not
available for Friday afternoon.

• The working time of teachers must not exceed six periods a day.

• The daily working time of the students with loose time frames (those of the
upper grades) must not be lower than four periods and must not exceed eight
periods.

• There are job-specific bounds on the daily number of teaching periods: This
number must not exceed two in any case and is limited to one if the lessons’
total duration equals two.

• Individual timetables must not contain more than six periods of idle time a
week.

• In the upper grades, double lessons are compulsory in most cases. In the
lower grades, however, double lessons are required only for physical educa-
tion.

• Some schools have access to facilities of other public institutions for settled
periods of time which have to be considered in timetabling.

Moreover, note that our problems do not contain couplings. Couplings are gen-
erated and added only when a problem is prepared for submission to a problem
solver.
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4.7.3 The Timetabling Engine

Our timetabling engine embeds constraint propagation into chronological back-
tracking. At each node of the search space, a task is chosen and scheduled and
rooms are allocated. All decisions required to unfold the search space are guided
by strategies. Constraint propagation takes place after each commitment that is
issued to the constraint solver and is performed in a fixed-point manner.

gcc constraints are propagated by means of network-flow techniques1

[Rég94, Rég96]. disjoint constraints are propagated by means of value sweep
pruning3 [BC01]. Our TPP solver implements →PVS, →PVSB, →FC, and →NC.
The implementation of→NC is based on the Ford and Fulkerson algorithm (e.g.
[MN99]). The propagation rules can be applied in any combination and the solver
can be switched off completely.

In task selection, we exploit heuristic knowledge gained from prior failures.
If there are unscheduled tasks that were met at a dead end4 before (in a chrono-
logical sense, not wrt. the path from the root of the search tree to the current
node), only this task set is subject to selection. Otherwise, all unscheduled tasks
are subject to selection. The search procedure prefers tasks the period-level start-
time variables of which have smallest domains. Ties are broken by considering
the processing time and the number of resources required; tasks that maximize
the product of processing time and resource demand are preferred. Periods are
assigned in ascending order. If the task has even duration (double lessons), odd
periods are preferred to maximize the utilization of scarce resources. In room al-
location, the search procedure prefers rooms that are as small or supply as few
equipment as possible.

The timetabling engine comprises about 1500 lines of code and has been
built on top of a finite-domain constraint system [COC97] which itself is part
of the constraint-logic programming environment SICStus Prolog 3.9.0 [Int02].
The TPP solver accounts for about 600 lines of code.

1More precisely, we used the all distinct and global cardinality constraints as pro-
vided by SICStus Prolog 3.9.0 [Int02] that maintain domain consistency 2 for alldiff [Rég94,
vH01] and global cardinality constraints [Rég96], respectively. SICStus Prolog 3.9.0 propagates
both types of constraints by means of algorithms due to Régin [Rég94, Rég96].

2Suppose P = (X ,δ,C) is a FCSP and c = p(x1, . . . ,xn) ∈C. According to van Hentenryck et
al. [VSD98], c is domain-consistent in P, if, for each variable x i and for each value vi ∈ δ(xi),
there exist values v1, . . . ,vi−1,vi+1, . . . ,vn in δ(x1), . . . ,δ(xi−1),δ(xi+1), . . . ,δ(xn) s.t. p(v1, . . . ,vn)
holds.

3More precisely, we used the disjoint2 constraint as provided by SICStus Prolog 3.9.0
[Int02]. SICStus Prolog 3.9.0 propagates this type of constraint by means of an algorithm due
to Beldiceanu & Carlsson [BC01].

4A dead end is a state of search where some variable cannot be assigned a value without some
constraint solver detecting an inconsistency.
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µ0 µ1 µ3

S1 S1 S1 S2 S3 S4 S5 S6

R1 13.5
(2.16)

14.4
(2.22)

77.5
(2.64)

77.5
(2.64)

77.5
(2.64)

77.5
(2.64)

77.5
(2.64)

77.5
(2.64)

R2 21.5
(2.60)

30.2
(2.91)

71.8
(2.85)

83.9
(2.33)

75.0
(2.74)

71.9
(2.84)

71.8
(2.85)

84.1
(2.31)

R3 3.4
(1.15)

23.8
(2.69)

82.0
(2.43)

83.3
(2.36)

83.4
(2.35)

82.0
(2.43)

82.0
(2.43)

83.3
(2.36)

R4 13.5
(2.16)

32.1
(2.95)

78.2
(2.61)

79.5
(2.55)

78.6
(2.60)

78.2
(2.61)

78.2
(2.61)

79.5
(2.55)

R5 17.7
(2.42)

29.7
(2.89)

87.4
(2.10)

86.8
(2.14)

87.6
(2.09)

87.4
(2.10)

87.4
(2.10)

86.8
(2.14)

R6 1.9
(0.86)

12.3
(2.08)

62.0
(3.07)

60.6
(3.09)

61.3
(3.08)

62.0
(3.07)

62.0
(3.07)

60.6
(3.09)

A1 25.4
(2.75)

39.0
(3.09)

85.8
(2.21)

86.7
(2.15)

86.1
(2.19)

85.8
(2.21)

85.8
(2.21)

86.7
(2.15)

A2 5.4
(1.43)

20.9
(2.57)

74.6
(2.75)

84.0
(2.32)

76.6
(2.68)

74.8
(2.75)

74.6
(2.75)

83.9
(2.33)

A3 17.2
(2.39)

24.9
(2.74)

66.2
(2.99)

71.7
(2.85)

65.8
(3.00)

66.2
(2.99)

66.2
(2.99)

71.6
(2.85)

A4 6.8
(1.59)

19.0
(2.48)

63.7
(3.04)

72.4
(2.83)

64.2
(3.03)

63.7
(3.04)

63.7
(3.04)

72.4
(2.83)

Table 4.6:
Probability of solving a problem (100 x̄ with 200σ̂ x̄% in parentheses)

4.7.4 Results

The effects of TPP propagation on model size are reported in Table 4.5. We ob-
serve that, for the grades five through ten, where all classes have tight time frames,
µ1 produces less variables and scheduling problems than µ0. Moreover, by assum-
ing tight time frames for all classes, µ2 reduces the model size considerably in
comparison to µ1. Note that Table 4.5 does neither consider TPPs with only one
track, nor TPPs where each track holds a complete program of some homogeneous
group, nor subsumed TPPs (c.f. Section 4.4.4).

Table 4.6 reports the effects of TPP propagation on the reliability5 of our time-
tabling engine. We tested six solvers that differ in how tpp constraints are propa-

5Here reliability refers to the probability of solving a problem from a certain problem class.
For example, we say that solver S0 is more reliable than solver S1 wrt. a certain problem class C,
if S0 is more likely to solve problems from C than S1.
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gated. S1 does not propagate tpp constraints while, according to our experimental
design outlined earlier, S2 through S6 employ →PVS, →PVSB, →FC, →NC, and� {→PVS,→FC,→NC}, respectively. Table 4.6 reports the percentage of solved
problems out of 1000 together with the 95% confidence intervals6. Runs were
constrained to abort after 1000 dead ends7. Due to the large sample size, the 95%
confidence intervals are quite narrow. We make the following observations:

• The propagation of couplings derived and added by µA considerably in-
creases the reliability of our timetabling engine.

• The propagation of couplings derived and added by µAC tremendously in-
creases the reliability of our timetabling engine.

• The propagation of TPPs other than couplings pays off only for the schools
R2, A2, A3, and A4.→PVS is effective for each of these schools while→PVSB

is effective for school R2 only. So domain reasoning is more effective than
bound reasoning. The other reductions do not contribute considerably, not
even when applied in combination.

• In no case, the reliability of our timetabling engine was considerably im-
paired by TPP propagation.

Figures 4.1 through 4.10 show plots that give more insight into the search process
by relating the number of solved problems

• to the number of dead ends that were encountered during search and

• to the number of backtracking steps that were necessary to obtain a solution.

When interpreting the results, keep in mind that bounds on idle time were ignored.

6Suppose we are given a sample with mean x̄ and standard error σ̂ x̄. Then the 95% confidence
interval (e.g. [Coh95]) is approximately x̄± 2σ̂ x̄. This interval is likely to contain the population
mean µ with 95% probability. For example, according to Table 4.6, µ 3 + S1 solved x̄ = 77.5% of
the R1 problems. In this case, 2σ̂ x̄≈ 2.64%. This means that we can be 95% sure that, in the long
term, S1 will be able to solve 77.5%±2.64% of the R1 problems.

7Note that the number of dead ends is different from the number of backtracking steps. With a
limit of 1000 dead ends, the timetabling engine backtracked up to 40000 times to come up with a
solution.
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Figure 4.1: Behavior of solvers for school R1
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Figure 4.2: Behavior of solvers for school R2
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Figure 4.3: Behavior of solvers for school R3



4.7. Computational Study 85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000

#dead ends encountered

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5000 10000 15000 20000 25000

#backtracking steps

µ0+S1
µ1+S1
µ3+S1
µ3+S2
µ3+S3
µ3+S4
µ3+S5
µ3+S6

Figure 4.4: Behavior of solvers for school R4
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Figure 4.5: Behavior of solvers for school R5
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Figure 4.6: Behavior of solvers for school R6
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Figure 4.7: Behavior of solvers for school A1
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Figure 4.8: Behavior of solvers for school A2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000

#dead ends encountered

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5000 10000 15000 20000 25000 30000 35000

#backtracking steps

µ0+S1
µ1+S1
µ3+S1
µ3+S2
µ3+S3
µ3+S4
µ3+S5
µ3+S6

Figure 4.9: Behavior of solvers for school A3
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Figure 4.10: Behavior of solvers for school A4

4.8 Related Work

Couplings have occurred in publications on school timetabling as part of the prob-
lem statement but only limited attention was paid to them:

• In his computational study of a timetabling system based on tabu search,
Costa [Cos94] investigated two timetabling problems from Switzerland. He
reports that about 10% and 15%, respectively, of the lessons are involved
in couplings. He notes that couplings with three classes and four groups
complicated timetabling because they required to find a fourth free room
(in addition to the classrooms).

• Schaerf [Sch96b] stated that couplings “are necessary for tackling practi-
cal cases” and reported that couplings in physical education complicated
timetabling considerably.

• Drexl & Salewski [DS97] utilized couplings to down-size their
mathematical-programming models but neither discussed nor investigated
the operational effects of this transformation.

• Kaneko et al. [KYN99] used a greedy algorithm to compute a probably
inconsistent initial assignment for a local search procedure. Initially and
after every commitment, the greedy algorithm established arc-consistency
and it seems that couplings were considered in this step.

• Fernandes et al. [FCMR99] employed couplings to obtain more concise ge-
netic timetable representations but neither discussed nor investigated the
operational effects of this transformation.
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Drexl & Salewski and Schaerf were required to produce compact student timeta-
bles and their respective comments lead to the conclusion that they actually dealt
with redundant couplings. The problem descriptions of Costa, Kaneko et al., and
Fernandes et al. are not detailed enough to allow for such a conclusion.



Chapter 5

Conclusion

5.1 Summary

In this thesis, we developed and studied constraint-based solvers for school time-
tabling. To facilitate the computational studies, a lot of infrastructure had to be
developed. In the following, we detail on our achievements.

• Emphasizing modeling aspects, we demonstrated how to tackle school-
timetabling problems by means of constraint-programming technology. We
considered various requirements that frequently occur in school timetabling
including compactness and distribution constraints like bounds on daily
work load and bounds on the weekly number of working days.

We developed a basic model generator and a suitable timetabling engine,
both on the basis of global constraints. The problem solver resulting from
their combination performed pretty poorly in terms of reliability.

We continued with a series of modifications to the basic model generator
with the aim to produce operationally enhanced constraint models. In this
process, the track parallelization problem (TPP) played a central role. We
proceeded as follows:

1. We developed a convergent reduction system to infer redundant cou-
plings (a special kind of TPP). These couplings served to reduce the
number of variables and scheduling problems by variable replacement.
This way we obtained smaller constraint models and better albeit still
poor results.

2. We traded completeness for efficiency: We sacrificed solutions by im-
posing non-redundant couplings in a systematic way. Exploiting them
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like redundant constraints, we obtained even smaller constraint mod-
els and, finally, promising results. Of course, though this measure in-
creases reliability on average, it may rule out all solutions to a given
problem. However, this is no obstacle to practical problem solving be-
cause we are always free to fall back to a model generator that pre-
serves solutions.

3. We developed a convergent reduction system to infer more redundant
TPPs on the basis of redundant couplings. These TPPs were propa-
gated at each search node to prune the search space. This measure
increased our problem solver’s reliability even further.

Because of its generality, our basic model generator is suitable for a large
variety of educational institutions. The rules for TPP inference even apply to
any educational institution. The question arises whether our problem solver
applies to problem classes other than those we investigated, namely Ger-
man secondary schools. The variety of the schools (with regard to student
numbers, educational programs, and facilities) that served as basis for our
computational study gives cause to an affirmative answer which, of course,
has to be considered a hypothesis as long as it has not been confirmed em-
pirically.

• We introduced the tpp constraint along with a suitable solver for modeling
and solving TPPs in a finite-domain constraint-programming framework.
We demonstrated correctness and gave some performance guarantees in-
cluding convergence.

• In our computational studies, we obtained results that are both reliable from
a statistical point of view and practically relevant. We modeled ten repre-
sentative German secondary schools and, for each school, we generated and
tested 1000 timetabling problems. This problem set may serve as a reference
point for future research in automated school timetabling. It facilitates the
assessment and the comparison of timetabling algorithms. Its publication
on the Web is in preparation.

• Last but not least, we gave a new condition that is sufficient for local con-
fluence and, by applying it to the TPP solver, we demonstrated that it is well
suited to study the behavior of cooperating constraint solvers.
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5.2 Future Work

As explained in Section 1.2, there are many dimensions to explore in problem-
solver design like models, constraint-propagation algorithms, and branching
strategies. This thesis dealt with modeling aspects but did not explore the other di-
mensions. The composition of our timetabling engine (cf. Section 4.7.3) is rather
based on results from non-systematic pilot studies. (This procedure is not unusual,
cf. [DS97].) Hence it is near at hand to investigate the contribution of each single
component:

• Branching strategies: Our strategies take problem characteristics into ac-
count. How do they compare to more standard strategies? What is the im-
pact of preferring lessons that were met at a dead end?

• Constraint propagation: We employ network-flow techniques [Rég94,
Rég96] that achieve maximum consistency. How do they compare to other
methods that achieve lower levels of consistency?

Moreover, the following issues require consideration:

• Bounding idle time: We ignored bounds on idle time because there is no
way to enforce them by means of pre-implemented constraints. This lack of
functionality affects teachers and students with loose time frames. For all of
them, we obtained timetables with too much idle time.

To obtain a practically useful problem solver, it is crucial to develop means
to control idle time. This kind of research cannot be conducted without suit-
able infrastructure. We need problem sets to test new algorithms and we
need a good understanding of how to cope with the other requirements. By
providing this infrastructure, this thesis prepared the grounds for research
in controlling idle time.

• Constraints that directly affect job timetables: We presented model gener-
ators that deal with the common core of school-timetabling problems (c.f.
Section 2.1) except for bounds on idle time. This core comprises all the con-
straints that occur frequently. Yet constraints that directly affect job timeta-
bles are not contained in the common core (except for bounds on the daily
number of teaching periods) because of their diversity. Nevertheless, such
constraints are required in some form or another.

• Interactivity: An interactive timetabling system allows the user to interfere
in the timetabling process and supports manual changes to complete timeta-
bles. The need for manual changes may arise in the following situations:
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– The timetable is finished and probably in operation already. Suddenly
timetabling data changes (like a teacher is replaced by another one)
and the timetable has to be adapted to the changes.

– The timetable is finished but violates some rare requirement that was
not stated explicitely. Maybe it only became evident when looking at
the timetable or the timetabling system did not allow to state it.

– The timetabling system runs forever without producing a (good) so-
lution because the problem is inconsistent or because the algorithm is
unsuitable.

Schaerf [Sch96b] stated that “the ability to work interactively is widely rec-
ognized as crucial for timetabling systems in the research community”.

Being based on chronological backtracking, constraint-programming sys-
tems are not very well equipped for interactive problem solving. To move
a lesson, all decisions met after placing the lesson have to be recorded, un-
done, and replayed after moving the lesson. To add or remove a constraint,
the whole timetabling process has to be restarted. Unacceptable reaction
times may result.

• Support of rare requirements: In Section 2.1, we identified constraints that
frequently occur in school-timetabling. If a timetabling system can han-
dle these constraints, it is very likely to be useful. But what about rare re-
quirements? Provided that a language exists to express school-specific re-
quirements, how to propagate them? Generic propagation algorithms (e.g.
[BR99]) always have exponential worst case complexity and hence only
apply to constraints with few variables that have small domains. In our
case, they could apply to job-specific constraints on day level. Alternatively,
branch & bound could be used to optimize an objective function that con-
tains all constraints that cannot be dealt with otherwise. However, chrono-
logical backtracking is likely to have a very hard time to escape local op-
tima.

The latter issues could be addressed by limiting the role of constraint program-
ming to compute a high-quality initial assignment that serves as a starting point
for incremental improvements by interleaving local search with user activity.



Appendix A

A Modular Approach To Proving
Confluence

We are interested in investigating the confluence properties of cooperating con-
straint solvers. If a system of constraint solvers is confluent, then the result of
constraint propagation does not depend on how the solvers are scheduled. If it is
either known to diverge or if it is neither known to be confluent nor to diverge,
then the question arises which scheduling strategy will perform best. This lack of
knowledge may be very inconvenient in empirical research and application devel-
opment as it potentially adds another dimension to the design space.

To establish confluence properties, we suppose that solvers are modeled as
reductions that transform constraint networks (cf. Section 1.7), we define the no-
tion of insensitivity to a superset relation, and show that, if each solver of a given
set of solvers is insensitive to the same terminating superset relation, then any
combination of these solvers is confluent.

We apply our approach to the TPP solver which has been presented in Section
3.3. This solver consists of several reductions and we demonstrate its confluence
and the confluence of any subset of its reductions with a number of proofs linear
in the number of reductions.

This chapter is organized as follows. Section A.1 introduces the concept of
insensitivity and relates it to the concept of strong commutation. Section A.2
presents our method for proving confluence. In Section A.3, we investigate the
confluence properties of the TPP solver. In Section A.4, we present related work
and compare to it. Section A.5 summarizes and closes with perspectives for future
work.



94 Appendix A. A Modular Approach To Proving Confluence

A.1 Insensitivity

Intuitively,→1 is insensitive to →2, if the inference capabilities of →1 are pre-
served under application of→2.

Definition A.1. Let (A,→1) and (A,→2) be reduction systems. We say that→1

is insensitive to→2 iff the following requirements are satisfied.

1. If y←1 x→2 z, y �= z, and z→2 y, then z→1 y.

x 1

2

y

z

2 ⇒
x 1

2

y

z

1

2. If y←1 x→2 z, y �= z, y �→2 z, and z �→2 y, then u∈ A exists s.t. y→2 u←1 z.

x 1

2

y

z

⇒
x 1

2

y 2u

z

1

Corollary A.1. If→1 and→2 are insensitive to→3, then→1 ∪→2 is insensitive
to→3.

Corollary A.2. Let (A,→) be a reduction system. If→ is insensitive to itself, then
it is locally confluent.

Next we study the relationship of insensitivity to the well-known notion of
strong commutation. Like insensitivity, strong commutation is a binary relation
on reductions.

Definition A.2. Let (A,→1) and (A,→2) be reduction systems. We say that→1

and→2 commute strongly iff y←1 x→2 z implies ∃u. y→=
2 u←∗1 z.

Proposition A.1. Let (A,→1) and (A,→2) be reduction systems. If→1 is insen-
sitive to→2, then→1 and→2 commute strongly.

Proof. We have to show that y←1 x→2 z implies ∃u. y→=
2 u←∗1 z. If y = z, we

are done. Otherwise, there are three cases. If y→2 z, we are done. If z→2 y, then
z→1 y because→1 is insensitive to→2. If neither y→2 z nor z→2 y, then u ∈ A
exists s.t. y→2 u←1 z because→1 is insensitive to→2.

Proposition A.2. Let (A,→2) be a reduction system and let→1⊆→2 be a tran-
sitive reduction s.t.→1 and→2 commute strongly. If y←1 x→2 z, y �= z, y �→2 z,
and z �→2 y, then u ∈ A exists s.t. y→2 u←1 z.
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Proof. By strong commutation, we know that u ∈ A exists s.t. y→=
2 u←∗1 z. Sup-

pose u = z. Then y→=
2 z. Because y �= z, y→2 z. This contradicts the premise and

thus z→+
1 u. Because→1 is transitive, z→1 u. Suppose u = y. Then z→1 y and

thus z→2 y because→1⊆→2. This contradicts the premise and thus y→2 u.

A.2 Confluence Through Insensitivity

Theorem A.1. Let (A,→2) be a terminating reduction system. If→1⊆→2 is in-
sensitive to→2, then→1 is locally confluent.

Proof. For each pair (y,z) ∈ A×A s.t. ∃x. y←1 x→2 z, ∃x. y←2 x→1 z, y �= z,
y �→2 z, and z �→2 y, choose a pair (ŷ, ẑ) ∈ A×A s.t. y→2 ŷ←1 z and z→2 ẑ←1 y.
This is possible because→1 is insensitive to→2.

Let (x2,y2) ≺ (x1,y1) iff x1 →2 x2. ≺ is well-founded because →2 is termi-
nating. By well-founded recursion on ≺, we define s(y,z) for all (y,z) that satisfy
∃x. y←1 x→2 z and ∃x. y←2 x→1 z:

s(y,z) =

{
(y,z), if y = z, y→2 z, or z→2 y

(y,z),s(ŷ, ẑ) otherwise

In the second case, s(ŷ, ẑ) is well-defined because (ŷ, ẑ) exists, ŷ←1 z→2 ẑ, and
ŷ←2 y→1 ẑ. Since s is defined by well-founded recursion on ≺, s(y,z) is finite
for all (y,z) that s is defined for.

Let y1←1 x→1 z1. s(y1,z1) is well-defined because→1⊆→2 and thus y1←1

x →2 z1 and y1 ←2 x →1 z1. Let n > 0 s.t. s(y1,z1) = (y1,z1), . . . ,(yn,zn). We
observe that, for all 1≤ k < n, yk→2 yk+1←1 zk and zk→2 zk+1←1 yk, and that
yn = zn, yn→2 zn, or yn←2 zn. The following figure shows a situation where n≥ 5.

x 1

1

y1
2

1

y2
2

1

y3 +
2yn−1

2

1

yn

2 =

z1
2

1

z2
2

1

z3
2

+zn−1
2

1

zn

It remains to show that y1 ↓1 z1. If n is odd, then y1 →∗1 yn and z1 →∗1 zn. If n
is even, then y1 →∗1 zn and z1 →∗1 yn. If yn = zn, we are done. If yn →2 zn, then
yn→1 zn because yn←2 yn−1→1 zn and→1 is insensitive to→2. If zn→2 yn, then
zn→1 yn because zn←2 zn−1→1 yn and→1 is insensitive to→2.

The following result is obtained by applying Newman’s Lemma. Newman’s
Lemma states that a terminating reduction is confluent if it is locally confluent.

Corollary A.3. Let (A,→2) be a terminating reduction system. If →1⊆→2 is
insensitive to→2, then→1 is confluent.
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A.3 Confluence Properties of the tpp Solver

We show that each combination of→PVS,→IPT,→FC, and→NC is confluent. We
proceed as follows: We show that→PVS,→IPT, and→NC are insensitive to→FD

(cf. Corollaries A.4, A.6, and A.7) and that→FC is insensitive to→C (cf. A.5). It
turns out that, if a correct reduction is insensitive to→FD, then it is insensitive to
→C (cf. Lemma A.1). Thus, each of→PVS,→IPT,→FC, and→NC is insensitive
to→C and, by Corollary A.1, each combination of→PVS,→IPT,→FC, and→NC

is insensitive to→C. Then, by Corollary A.3, each combination of→PVS,→IPT,
→FC, and →NC is confluent. The proofs make heavy use of monotonicity and
correctness properties.

Lemma A.1. Let →⊆→FD. If → is correct and insensitive to →FD, then it is
insensitive to→C.

Proof. Let P1← P0→C P2 s.t. P2→C P1. P2→ P1 because→C⊆→FD and→ is
insensitive to→FD.

Let P1←P0→C P2 s.t. P1 �= P2, P1 �→C P2, and P2 �→C P1. We have to show that
P3 exists s.t. P1→C P3← P2. By the definitions of correctness and→C, P1 �→C P2

iff P1 �→FD P2 or sol(P1) �= sol(P2). However, sol(P1) = sol(P0) = sol(P2) because
P1← P0→C P2 and both→ and→C are correct. Hence P1 �→FD P2. By a symmet-
ric argument, P2 �→FD P1. Furthermore, P0→FD P2 because→C⊆→FD. By the in-
sensitivity of→ to→FD, P3 exists s.t. P1→FD P3← P2. Finally, sol(P3) = sol(P2)
because P2 → P3 and → is correct. In consequence, sol(P1) = sol(P3) and thus
P1→C P3.

We conclude that→ is insensitive to→C.

Lemma A.2. Let P0 = (X ,δ0,C), P1 = (X ,δ1,C), and P2 = (X ,δ2,C) be FCSPs
with P0→FD P1 and let Y = {y1, . . . ,yn} ⊆ X s.t. δ1(x) = δ0(x) for all x ∈ X \Y .

1. If P0→FD P2→FD P1, then

δ1(y1)× . . .×δ1(yn)⊂ δ2(y1)× . . .×δ2(yn)⊂ δ0(y1)× . . .×δ0(yn).

2. If P0→FD P2, P1 �→FD P2, P2 �→FD P1, and P1 �= P2, then

δ2(y1)× . . .×δ2(yn) �⊆ δ1(y1)× . . .×δ1(yn).

3. If P0→C P2, P1 �→C P2, P2 �→C P1, and P1 �= P2, then

δ2(y1)× . . .×δ2(yn) �⊆ δ1(y1)× . . .×δ1(yn).

Proof.
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1. Let x ∈ X \Y . By the definition of→FD, δ1(x)⊆ δ2(x)⊆ δ0(x). Considering
that δ1(x) = δ0(x), we obtain δ1(x) = δ2(x) = δ0(x). In consequence, the
variables in Y are the only variables the domains of which may be reduced
in the course of P0→FD P2. Taking into account that some reduction has to
take place in the course of P0→FD P2, we end up with

δ2(y1)× . . .×δ2(yn)⊂ δ0(y1)× . . .×δ0(yn).

By a similar argument,

δ1(y1)× . . .×δ1(yn)⊂ δ2(y1)× . . .×δ2(yn).

2. Let Z = X \Y . We start by noting that δ2(x) ⊆ δ0(x) = δ1(x) for all x ∈ Z.
Now suppose

δ2(y1)× . . .×δ2(yn)⊆ δ1(y1)× . . .×δ1(yn).

Then either δ2(yi) = δ1(yi) for all 1≤ i≤ n or 1≤ i≤ n exists s.t. δ2(yi)⊂
δ1(yi).

Suppose δ2(yi) = δ1(yi) for all 1≤ i≤ n. If δ2(x) = δ1(x) for all x ∈ Z, then
P2 = P1. If x ∈ Z exists s.t. δ2(x)⊂ δ1(x), then P1→FD P2.

Suppose 1 ≤ i ≤ n exists s.t. δ2(yi) ⊂ δ1(yi). Then P1 →FD P2 because
δ2(x)⊆ δ1(x) for all x ∈ Z.

3. By the definitions of correctness and →C, P1 �→C P2 iff P1 �→FD P2 or
sol(P1) �= sol(P2). However, sol(P1) = sol(P0) = sol(P2) because P1 ←C

P0→C P2 and→C is correct. Hence P1 �→FD P2. By a symmetric argument,
P2 �→FD P1. Thus, by (2),

δ2(y1)× . . .×δ2(yn) �⊆ δ1(y1)× . . .×δ1(yn).

Lemma A.3. If P0 →C P1 and P0 →=
FD P2 →=

FD P1, then sol(P0) = sol(P2) =
sol(P1).

Proof. By Corollary 1.1, sol(P0) ⊆ sol(P2) ⊆ sol(P1) and, by the correctness of
→C, sol(P0) = sol(P1).

Notation A.1. If P = (X ,δ,C) is a FCSP with tpp(T )∈C, T ∈ T , and t = (S,P)∈
T , we write δ(t) instead of δ(S)×δ(P).

Proposition A.3. If P0→PVS P1 and P0→FD P2→FD P1, then P2→PVS P1.
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Proof. Let P0 = (X ,δ0,C), P1 = (X ,δ1,C), and P2 = (X ,δ2,C) be FCSPs that
satisfy the premise. Let tpp(T ) ∈C, T ∈ T , t = (S,P) ∈ T , and a ∈ vs(t,δ0) s.t.
a /∈ vs(T ,δ0) and δ1 = δ0 except for

δ1(S) = {s ∈ δ0(S) : ∃p ∈ δ0(P). a /∈ [s,s+ p−1]}
and

δ1(P) = {p ∈ δ0(P) : ∃s ∈ δ0(S). a /∈ [s,s+ p−1]} .
By Lemma A.2, δ1(t)⊂ δ2(t)⊂ δ0(t). Let ∆ = δ2(t) \ δ1(t). We observe that

/0 �= ∆⊂ δ0(t)\δ1(t). It follows that

a ∈
�

(s,p)∈∆
[s,s+ p−1]⊆

�

(s,p)∈δ2(t)

[s,s+ p−1] = vs(t,δ2).

Furthermore, by Lemma 3.1, a /∈ vs(T ,δ2). We conclude that P2→PVS P1.

Proposition A.4. If P0→PVS P1, P0→FD P2, P1 �→FD P2, P2 �→FD P1, and P1 �= P2,
then a FCSP P3 exists s.t. P1→FD P3 and P2→PVS P3.

Proof. Let P0 = (X ,δ0,C), P1 = (X ,δ1,C), and P2 = (X ,δ2,C) be FCSPs that
satisfy the premise. Let tpp(T ) ∈C, T ∈ T , t = (S,P) ∈ T , and a ∈ vs(t,δ0) s.t.
a /∈ vs(T ,δ0) and δ1 = δ0 except for

δ1(S) = {s ∈ δ0(S) : ∃p ∈ δ0(P). a /∈ [s,s+ p−1]}
and

δ1(P) = {p ∈ δ0(P) : ∃s ∈ δ0(S). a /∈ [s,s+ p−1]} .
Let P3 = (X ,δ3,C) with δ3 = δ2 except for

δ3(S) = {s ∈ δ2(S) : ∃p ∈ δ2(P). a /∈ [s,s+ p−1]}
and

δ3(P) = {p ∈ δ2(P) : ∃s ∈ δ2(S). a /∈ [s,s+ p−1]} .
P2→PVS P3: By Lemma A.2, δ2(t) �⊆ δ1(t), or equivalently, (s, p) ∈ δ0(t) ex-

ists s.t. (s, p)∈ δ2(t) and (s, p) /∈ δ1(t). If s /∈ δ1(S), then a∈ [s,s+ p−1] and thus
s /∈ δ3(S). If p /∈ δ1(P), then a ∈ [s,s+ p−1] and thus p /∈ δ3(P). In either case,
a ∈ vs(t,δ2) and P2→FD P3. Moreover, by Lemma 3.1, a /∈ vs(T ,δ2). It follows
that P2→PVS P3.

P1 →FD P3: P3 �= P1 because otherwise P2 →FD P1. For all x ∈ X \ {S,P},
δ1(x) = δ0(x) ⊇ δ2(x) = δ3(x) because P1 ←PVS P0 →FD P2 →PVS P3. Sup-
pose δ3(t) �⊆ δ1(t), or equivalently, (s, p) ∈ δ0(t) exists s.t. (s, p) ∈ δ3(t) and
(s, p) /∈ δ1(t). If s /∈ δ1(S), then a ∈ [s,s+ p−1] and thus s /∈ δ3(S). If p /∈ δ1(P),
then a ∈ [s,s+ p−1] and thus p /∈ δ3(P). In either case, (s, p) /∈ δ3(t).
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Corollary A.4. →PVS is insensitive to→FD.

Proposition A.5. If P0→FC P1 and P0→C P2→C P1, then P2→FC P1.

Proof. Let P0 = (X ,δ0,C), P1 = (X ,δ1,C), and P2 = (X ,δ2,C) be FCSPs that
satisfy the premise. Let tpp(T ) ∈C, T ∈ T , t = (S,P) ∈ T , and a ∈ vc(T ,δ0) s.t.
a /∈ vc(T,δ0), a ∈ vs(t,δ0), a /∈ vs(u,δ0) for all u ∈ T , u �= t, and δ1 = δ0 except
for

δ1(S) = {s ∈ δ0(S) : ∃p ∈ δ0(P). a ∈ [s,s+ p−1]}
and

δ1(P) = {p ∈ δ0(P) : ∃s ∈ δ0(S). a ∈ [s,s+ p−1]} .
We observe that a ∈ vs(t,δ1). Hence a ∈ vs(t,δ2) because vs(t,δ1)⊆ vs(t,δ2)

by Lemma 3.1.
By Lemma A.2, δ1(t)⊂ δ2(t)⊂ δ0(t). Let ∆ = δ2(t) \ δ1(t). We observe that

/0 �= ∆ ⊂ δ0(t) \ δ1(t). It follows that (s, p) ∈ ∆ exists with a /∈ [s,s + p− 1] and
thus

a /∈
�

(s,p)∈∆
[s,s+ p−1]⊇

�

(s,p)∈δ2(t)

[s,s+ p−1] = vc(t,δ2).

Let u ∈ T with u �= t. By Lemma 3.1, a /∈ vs(u,δ2). By Corollary 3.1,
vc(u,δ2)⊆ vs(u,δ2) and hence a /∈ vc(u,δ2). With a /∈ vc(t,δ2) we conclude that
a /∈ vc(T,δ2).

Finally, by Lemma 3.1, a ∈ vc(T ,δ2) and thus P2→FC P1.

Proposition A.6. If P0→FC P1, P0→C P2, P1 �→C P2, P2 �→C P1, and P1 �= P2, then
a FCSP P3 exists s.t. P1→C P3 and P2→FC P3.

Proof. Let P0 = (X ,δ0,C), P1 = (X ,δ1,C), and P2 = (X ,δ2,C) be FCSPs that
satisfy the premise. Let tpp(T ) ∈C, T ∈ T , t = (S,P) ∈ T , and a ∈ vc(T ,δ0) s.t.
a /∈ vc(T,δ0), a ∈ vs(t,δ0), a /∈ vs(u,δ0) for all u ∈ T , u �= t, and δ1 = δ0 except
for

δ1(S) = {s ∈ δ0(S) : ∃p ∈ δ0(P). a ∈ [s,s+ p−1]}
and

δ1(P) = {p ∈ δ0(P) : ∃s ∈ δ0(S). a ∈ [s,s+ p−1]} .
Let P3 = (X ,δ3,C) with δ3 = δ2 except for

δ3(S) = {s ∈ δ2(S) : ∃p ∈ δ2(P). a ∈ [s,s+ p−1]}
and

δ3(P) = {p ∈ δ2(P) : ∃s ∈ δ2(S). a ∈ [s,s+ p−1]} .
a /∈ vc(t,δ2) and P2 →FD P3: By Lemma A.2, δ2(t) �⊆ δ1(t), or equivalently,

(s, p) ∈ δ0(t) exists s.t. (s, p) ∈ δ2(t) and (s, p) /∈ δ1(t). If s /∈ δ1(S), then a /∈
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[s,s + p− 1] and thus s /∈ δ3(S). If p /∈ δ1(P), then a /∈ [s,s + p− 1] and thus
p /∈ δ3(P). In either case, a /∈ vc(t,δ2) and P2→FD P3.

a /∈ vc(T,δ2): Let u∈ T with u �= t. By Lemma 3.1, a /∈ vs(u,δ2). By Corollary
3.1, vc(u,δ2)⊆ vs(u,δ2) and hence a /∈ vc(u,δ2). With a /∈ vc(t,δ2) we conclude
that a /∈ vc(T,δ2).

a ∈ vs(t,δ2): To show that a ∈ vs(t,δ2), let σ ∈ sol(P0). By Lemma 3.1,
a ∈ vc(T ,σ). By Lemma 3.4, vc(T,σ) = vc(T ,σ). Suppose a /∈ vs(t,σ). By
Lemma 3.4, a /∈ vc(t,σ). Moreover, for u ∈ T with u �= t, we have a /∈ vs(u,δ0)⊇
vs(u,σ) = vc(u,σ) by Lemma 3.1 and by Lemma 3.4. Now, because no task in
T can cover a, a /∈ vc(T,σ). Putting it all together, we obtain the contradiction
a /∈ vc(T,σ) = vc(T ,σ) � a. sol(P0) = sol(P2) because P0→C P2 and→C is cor-
rect. Hence σ ∈ sol(P2) and thus P2→FD (X ,σ,C). By Lemma 3.1, it follows that
a ∈ vs(t,σ)⊆ vs(t,δ2).

P2→FC P3: It remains to show that a ∈ vc(T ,δ2) and that a /∈ vs(u,δ2) for all
u ∈ T , u �= t. Both facts follow from Lemma 3.1.

P1 →FD P3: P3 �= P1 because otherwise P2 →FD P1. For all x ∈ X \ {S,P},
δ1(x) = δ0(x) ⊇ δ2(x) = δ3(x) because P1 ←FC P0 →FD P2 →FC P3. Suppose
δ3(t) �⊆ δ1(t), or equivalently, (s, p) ∈ δ0(t) exists s.t. (s, p) ∈ δ3(t) and (s, p) /∈
δ1(t). If s /∈ δ1(S), then a /∈ [s,s + p− 1] and thus s /∈ δ3(S). If p /∈ δ1(P), then
a /∈ [s,s+ p−1] and thus p /∈ δ3(P). In either case, (s, p) /∈ δ3(t).

P1 →C P3: sol(P1) = sol(P0) = sol(P2) = sol(P3) because P1 ←FC P0 →C

P2→FC P3 and both→FC and→C are correct.

Corollary A.5. →FC is insensitive to→C.

Proposition A.7. If P0→IPT P1 and P0→FD P2→FD P1, then P2→IPT P1.

Proof. Let P0 = (X ,δ0,C), P1 = (X ,δ1,C), and P2 = (X ,δ2,C) be FCSPs that
satisfy the premise. Let tpp(T )∈C, T0,T1 ∈ T , and l,u≥ 0 s.t., for all (X ,γ,C)∈
gs(P0), l is a lower bound on |vc(T0,γ)|, u is an upper bound on |vc(T1,γ)|, and u <
l. Let (X ,γ,C) ∈ gs(P2). By Corollary 3.2, gs(P2) ⊆ gs(P0) and thus l is a lower
bound on |vc(T0,γ)|, u is an upper bound on |vc(T1,γ)|, and u < l. Furthermore,
P1 is failed because P0→IPT P1. We conclude that P2→IPT P1.

Proposition A.8. If P0→IPT P1, P0→FD P2, P1 �→FD P2, P2 �→FD P1, and P1 �= P2,
then a FCSP P3 exists s.t. P1→FD P3 and P2→IPT P3.

Proof. Let P0 = (X ,δ0,C), P1 = (X ,δ1,C), and P2 = (X ,δ2,C) be FCSPs that
satisfy the premise. Let tpp(T )∈C, T0,T1 ∈ T , and l,u≥ 0 s.t., for all (X ,γ,C)∈
gs(P0), l is a lower bound on |vc(T0,γ)|, u is an upper bound on |vc(T1,γ)|, and
u < l. Let P3 = (X ,δ3,C) with δ3(x) = δ1(x)∩ δ2(x) for all x ∈ X . P3 is failed
because P1 is failed.
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Suppose P1 �→FD P3. Then either δ1 = δ3 or x∈ X exists s.t. δ3(x) �⊆ δ1(x). The
latter case contradicts the construction of P3. If δ1 = δ3, then δ1(x)⊆ δ2(x) for all
x ∈ X and thus either P1 = P2 or P2→FD P1.

Suppose P2 �→FD P3. Then either δ2 = δ3 and thus P2 = P3 or x ∈ X exists s.t.
δ3(x) �⊆ δ2(x). The former case contradicts P1 �→FD P2, the latter case contradicts
the construction of P3.

Finally, let (X ,γ,C) ∈ gs(P2). By Corollary 3.2, gs(P2)⊆ gs(P0) and thus l is
a lower bound on |vc(T0,γ)|, u is an upper bound on |vc(T1,γ)|, and u < l.

We conclude that P2→IPT P3.

Corollary A.6. →IPT is insensitive to→FD.

Proposition A.9. If P0→NC P1 and P0→FD P2→FD P1, then P2→NC P1.

Proof. Let P0 = (X ,δ0,C), P1 = (X ,δ1,C), and P2 = (X ,δ2,C) be FCSPs that
satisfy the premise. Let tpp(T ) ∈ C and T ∈ T s.t. G0 = (U0,V0,E0) =
vcg(T ,T,δ0) does not have a matching M0 with |M0| = |V0|. Suppose G2 =
(U2,V2,E2) = vcg(T ,T,δ2) has a matching M2 with |M2| = |V2|. Let M0 ={
(u j

i ,a) ∈M2 : a ∈V0

}
. We will show that M0 is a matching in G0 and that

|M0|= |V0|.
1. M0 is a matching because M0 ⊆M2.

2. M0⊆ E0: Let (u j
i ,a)∈M0. We know that u j

i ∈U2, a∈V0, and that s∈ δ2(Si)
exists s.t. s + j = a. Let s ∈ δ2(Si) s.t. s + j = a. u j

i ∈ U0 and s ∈ δ0(Si)
because P0→FD P2.

3. |M0|= |V0| because, for all a ∈V2, a is matched by M2 and, by Lemma 3.1,
V0 = vc(T ,δ0)⊆ vc(T ,δ2) = V2.

Furthermore, P1 is failed because P0→NC P1. We conclude that P2→NC P1.

Proposition A.10. If P0→NC P1, P0→FD P2, P1 �→FD P2, P2 �→FD P1, and P1 �= P2,
then a FCSP P3 exists s.t. P1→FD P3 and P2→NC P3.

Proof. Let P0 = (X ,δ0,C), P1 = (X ,δ1,C), and P2 = (X ,δ2,C) be FCSPs that
satisfy the premise. We let our proof follow the pattern that we used to prove
Proposition A.8: We choose a constraint tpp(T ) ∈ C and a track T ∈ T s.t. the
graph (U0,V0,E0) = vcg(T ,T,δ0) does not have a matching M0 with |M0|= |V0|.
Then, by reference to the arguments employed in the proof of Proposition A.9,
we show that the graph (U2,V2,E2) = vcg(T ,T,δ2) does not have a matching M2

with |M2|= |V2|.
Corollary A.7. →NC is insensitive to→FD.
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Corollary A.8. →PVS,→IPT, and→NC are insensitive to→C.

Corollary A.9. If R⊆ {→PVS,→FC,→IPT,→NC} and→R=
�

R, then→R is ter-
minating, insensitive to→C, locally confluent, and confluent.

A.4 Related Work

A.4.1 The Commutative Union Lemma

The Commutative Union Lemma [BN98] (CUL) is a well-known tool to prove
confluence. It states that the union of two reductions is confluent if both reduc-
tions are confluent and commute. In the following, we compare our method to
the method suggested by the CUL. We are interested in how to proceed in differ-
ent situations: when proving the confluence of a reduction from scratch and when
proving the confluence of a reduction that has been obtained by extending or re-
ducing a confluent reduction. Note that our statements wrt. the number of proof
obligations arising on top-level are not meant to say anything about the complexity
and the difficulties of the proofs that are actually required.

Let (A,
�

1≤i≤n→i) be a reduction system. To show that
�

1≤i≤n→i is conflu-
ent, the CUL suggests to show that each→i, 1≤ i≤ n, is confluent and that, for
each 1 < i≤ n,→i and

�
1≤k<i→k commute. Hence n confluence proofs and n−1

proofs of commutation are required. Suppose we are showing that→i, 1 < i≤ n,
and
�

1≤k<i→k commute. In general, this proof requires to consider i− 1 cases,
one for each →k, 1 ≤ k < i, except for it is possible to characterize

�
1≤k<i →k

in a way that facilitates to deal with all cases in one sweep. In summary, at least
2n+1 ∈O(n) and at most n+ (n−1)(n−2)

2 ∈O(n2) proof obligations arise. Our ap-
proach requires n proofs of insensitivity to

�
1≤i≤n→i, one for each→i, 1≤ i≤ n.

In general, each proof of insensitivity has to consider n cases, one for each →i,
1≤ i≤ n, except for it is possible to characterize

�
1≤i≤n→i or some superset re-

lation in a way that facilitates to deal with all cases in one sweep. In summary, at
least n and at most n2 proof obligations arise. In our application to finite-domain
constraint solving, we proved insensitivity to either→FD or→C.→FD allows for
arbitrary domain reductions while→C⊆→FD only allows for domain reductions
that preserve solutions. This way it was possible to prove the confluence of the
TPP solver with a number of proofs linear in the number of reductions.

Let→n+1∈ A×A. Suppose
�

1≤i≤n→i is known to be confluent. To show that�
1≤i≤n+1 →i is confluent, the CUL obliges to show that →n+1 is confluent and

that →n+1 and
�

1≤i≤n →i commute. As explained above, the proof of commu-
tation may require to distinguish up to n cases. In the worst case, our approach
obliges to show that, for all 1≤ i≤ n+1,→i is insensitive to

�
1≤i≤n+1→i. This
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amounts to proving confluence from scratch. However, if we can characterize a su-
perset relation that contains all reductions we might wish to investigate, it is pos-
sible to reuse all prior proofs of insensitivity: Suppose we know that

�
1≤i≤n→i

is insensitive to the superset relation, then it is sufficient to show that →n+1 is
insensitive to the superset relation. In our application to finite-domain constraint
solving, we used →FD and →C as superset relations. If we wished to extend the
TPP solver, it was sufficient to show that the extension is insensitive to either→FD

or→C.
Suppose

�
1≤i≤n→i is known to be confluent. Let 1≤ k≤ n. Is

�
1≤i≤n,i�=k→i

confluent? If the CUL has been applied, then, for each k < l ≤ n, it is necessary
to prove that →l and

�
1≤i<l,i�=k commute. If our approach has been used, no

proof obligations arise, independent of whether insensitivity has been proved to�
1≤i≤n→i or to some superset relation.

Suppose
�

1≤i≤n →i is known to be confluent. Let I ⊂ [1, . . . ,n]. Is
�

i∈I →i

confluent? The answers to this question are similar to those to the previous ques-
tion. In particular, if our approach has been used to prove the confluence of�

1≤i≤n→i, no proof obligations arise.

A.4.2 The Critical-Pair Approach

Critical pairs are employed in the static analysis of term-rewriting systems [BN98]
and rule-based constraint solvers [AFM99]. Critical pairs are defined in a domain-
specific way; basically, a critical pair is a pair of states obtained from the parallel
application of two interfering rewrite rules to a common and minimal ancestor
state. The importance of critical pairs is due to their relationship to local conflu-
ence. For example, a term-rewriting system is locally confluent iff all its critical
pairs are joinable. However, the critical-pair approach is not modular. Suppose we
are given a term-rewriting system the critical pairs of which are all joinable. After
adding a rule, the approach requires to check all the critical pairs the new rule has
with itself and with the other rules. After removing a rule, the approach requires
to check all proofs of joinability; any proof that is based on the removed rule has
be redone.

A.5 Conclusion

We developed a sufficient condition for local confluence and demonstrated that it
is well suited to study the behavior of cooperating constraint solvers.

We call our approach modular because removing reductions does not affect
confluence and because proving confluence after adding a reduction requires only
a single proof that, if a superset relation is used, does not require to reconsider
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any other reduction. Our approach is suitable for the study of constraint solvers
because superset relations are available that comprise all conceivable solvers.
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Compiègne, 1998.

[Bar96] Victor A. Bardadym. Computer-aided school and university time-
tabling: The new wave. In Burke and Ross [BR96b], pages 22–45.

[BC01] Nicolas Beldiceanu and Mats Carlsson. Sweep as a generic pruning
technique applied to the non-overlapping rectangles constraint. In
Toby Walsh, editor, Seventh International Conference on Principles
and Practice of Constraint Programming, LNCS 2239, pages 377–
391. Springer, 2001.



106 Bibliography

[BE01] Edmund Burke and Wilhelm Erben, editors. Practice and Theory of
Automated Timetabling III. LNCS 2079. Springer, 2001.

[BK01] Peter Brucker and Sigrid Knust. Resource-constrained project
scheduling and timetabling. In Burke and Erben [BE01], pages 277–
293.

[BN94] P. Brucker and L. Nordmann. The k-track assignment problem. Com-
puting, 52(2):97–122, 1994.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[BP97] Philippe Baptiste and Claude Le Pape. Constraint propagation and
decomposition techniques for highly disjunctive and highly cumula-
tive project scheduling problems. In Smolka [Smo97], pages 375–
389.

[BPN99] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Satisfiability
tests and time-bound adjustments for cumulative scheduling prob-
lems. Annals of Operations Research, 92:305–333, 1999.

[BR96a] Christian Bessière and Jean-Charles Régin. MAC and combined
heuristics: Two reasons to forsake FC (and CBJ?) on hard problems.
In Freuder [Fre96], pages 61–75.

[BR96b] Edmund Burke and Peter Ross, editors. Practice and Theory of Au-
tomated Timetabling, LNCS 1153. Springer, 1996.

[BR99] Christian Bessière and Jean-Charles Régin. Enforcing arc consis-
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Index

[·, ·], integer interval, 9
→∗, reflexive, transitive closure of

→, 7
→+, transitive closure of→, 7
→=, reflexive closure of→, 7
→A,·, 60
→B,·, 61
→C,·, 76
→C, 10
→FC, 37
→FD, 9
‖·‖, 60
→IPT, 37
→NC, 37
·↓, see normal form, uniquely deter-

mined
· ↓ ·, see joinable
→PVS, 37
→PVSB, 37
≡, see constraint satisfaction prob-

lem, equivalence
⊕, constraint-addition operator, 9

A(·), 60
advanced-level course, 18
alldiff, 3, 4, 52

B(·), 61

chronological backtracking, 3
constraint, 3

arithmetic, 52
finite-domain, 5
global, 4
hard, 17
redundant, 4, 9
soft, 17

constraint model, 3
constraint network, 8
constraint programming, 3

finite-domain, 5
constraint propagation, 3
constraint propagator, see constraint

solver
constraint satisfaction problem, 8

equivalence, 9
failed, 9
finite, 9
ground, 9
solution, 9

constraint solver, 3, 10
combination, 11

constraint solving, see constraint
propagation

core problem in school timetabling,
13

coupling, 15
CP, see constraint programming
CSP, see constraint satisfaction prob-

lem
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D(·), down time of, 53
dead end, 81, 83
design space, 4
disjoint, 53
distribution constraint, 15
down time, 15

est(·, ·), earliest start time of the first
argument under the domain
function given by the second
argument, 33

F(·), time frame of, 59
FCSP, see constraint satisfaction

problem, finite
filling task, 56
foundation course, 18
frequency variable, 52

G(·), time grid of, 54
gap, see time slot, idle
gcc, see global cardinality constraint
global cardinality constraint, 52
gs(·), ground successors to, 40
Gymnasium, 2, 17

H (·), homogeneous groups of, 59
h(·), height of the time grid of, 54
high school, 2
hole, see time slot, idle
homogeneous group, 59

IA(·), 72
IB(·), 72
idle time, 17
insensitivity, 94
irreducible, 7

J(·), jobs of, 53, 59
J (·), 60
job, 14

value cover of, 59
value supply of, 59

joinable, 7

lct(·, ·), latest completion time of the
first argument under the do-
main function given by the
second argument, 33

M(·), meetings of, 53
meeting, 14
modeling

declarative, 3
of problems in constraint pro-

gramming, 3
redundant, 4

µ0(·), 54
µ1(·), 78
µ2(·), 78
µ3(·), 78
µA(·), 72
µAB(·), 73
µABC(·), 77
µAC(·), 76
µB(·), 72

Newman’s Lemma, 8
normal form, 7

uniquely determined, 7

P(·), processing times of, 29
P (·), power set of, 60
p(·), processing time of, 59
parallel processing, 15, 29
period, 14
πP(·), 77
problem solver, 3

complete, 4
correct, 4

processing time, 53, 59
program, 59

R(·), rooms of, 53, 76
R(·), room variable of, 54
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reducible, 7
reduction, 6

confluent, 7
locally, 7

convergent, 8
correct, 10
terminating, 8

reduction system, 6
reliability, 82
resource, 15

availability of, 15
capacity of, 15

room variable, 54

S(·), students of, 53, 59
S(·), start times of, 29
S̄(·), day-level start-time variable of,

54
S(·), period-level start-time variable

of, 54
section assignment, 2
sol(·), solutions to, 9
solution space

of constraint satisfaction prob-
lem, 9

of school-timetabling problem,
15

strong commutation, 94
student equivalence, 59
successor, 7

direct, 7
ground, 40

symmetry exclusion, 55

T (·), teachers of, 53
task

earliest start time of, 33
latest completion time of, 33
processing interval of, 29
processing times of, 29
start times of, 29

value cover of, 32
value supply of, 32

time frame, 15, 59
tight, 59

time grid, 14, 54
height of, 54
width of, 54

time slot, 14
covering of, 30
idle, 17

timetable, 1
TPP, see track parallelization prob-

lem
tpp constraint, 32
track, 29

earliest start time of, 33
latest completion time of, 33
schedule of, 30
value cover of, 30, 32, 59
value supply of, 32, 59

track assignment problem, 48
track parallelization problem, 29
track set

earliest start time of, 33
latest completion time of, 33
value cover of, 32, 59
value supply of, 32, 59

university, 2

value assignment, 8
value-cover graph, 41
variable

day-level start-time, 54
finite-domain, 5
period-level start-time, 54

vc(·), value cover of, 30
vc(·, ·), value cover of the first argu-

ment under the domain func-
tion given by the second ar-
gument, 32, 59
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vs(·, ·), value supply of the first argu-
ment under the domain func-
tion given by the second ar-
gument, 32, 59

w(·), width of the time grid of, 54
work load, 15
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