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ABSTRACT 
 
Counter-gravity mould filling has been developed to prevent the entrainment of deleterious 
oxide films into the liquid metal by eliminating turbulence at the metal surface. However, its 
application to the Lost Foam process has not been studied in detail. In this research, 
aluminium Lost Foam castings were made using gravity and counter-gravity filling 
techniques and the velocity of the metal fronts was estimated from timing electrodes and real 
time X-ray radiography. The latter technique was also used to study the morphology of the 
metal fronts as they progressed through the moulds. Casting quality was evaluated by means 
of tensile strength testing and SEM and EDX studies of the fracture surfaces of the tensile test 
bars. A room temperature analogue, which accelerated a Hg-glucose interface vertically 
upwards, was constructed to understand the mechanisms that might have controlled the shape 
of the metal front and the viscosity of liquid polystyrene, in its untreated and Br-treated 
forms, was determined from its molecular weight. Finally, the influence of viscosity on metal 
front morphology was assessed by casting an untreated and a Br-treated pattern plate under 
the same filling conditions and comparing tensile strength data and metal front profiles from 
each. 
 
The metal fronts observed during gravity casting were unstable and associated with a number 
of fingers that protruded into the pattern from the main body of metal. Casting quality was 
very poor and unaffected by ingate location, even though filling velocity was marginally 
reduced by bottom gating. Casting in a counter-gravity fashion provided control of the filling 
velocity and this influenced the shape of the metal front such that it was planar at low 
velocities and became unstable as the speed of the interface increased. The quality of the 
castings made under stable filling conditions, measured by tensile strength variation, was 
markedly better than those where a non-planar front had been observed. However, a low 
filling velocity tended to promote premature freezing which manifested itself as a misrun 
defect at the top of the casting. Where an instability was present during casting, its severity 
was unrelated to casting quality. The SEM and EDX studies revealed small irregular pores on 
all the fracture surfaces with larger more spherical pores also being found within the castings 
where the metal front had been unstable. Carbon was found in every pore that was analysed 
and this suggested that their formation was the result of polymer entrapment.  
 
As the velocity of the Hg in the analogue increased, the interface became unstable and a 
number of fingers developed. It was found that the velocity necessary to bring about the onset 
of such an instability increased with decreasing glucose viscosity. Liquid polystyrene 
viscosity was found to decrease with increasing temperature, increasing exposure to heat and 
in the presence of a Br additive. The planar interface present during the filling of a Br-treated 
pattern contrasted sharply with the unstable one that was seen when an untreated pattern was 
cast under the same conditions of temperature and velocity. The velocity at which the 
interface became unstable correlated well with predictions made using the Saffman-Taylor 
equation and was therefore probably of this type.  
 
This research provided a better understanding of the interaction of liquid aluminium with 
polystyrene degradation products as well as the benefits of controlled counter-gravity filling 
in making Lost Foam castings. It forms the basis for other researchers to pursue techniques 
and materials that permit an increase in the filling velocity without promoting an instability in 
order to improve process flexibility and eliminate surface defects such as misruns.  
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1 INTRODUCTION 
 

The Lost Foam casting process is characterized by the use of one or more expendable patterns 

made usually of expanded polystyrene foam. These are manufactured either in sections or 

complete, depending upon their complexity, and assembled by means of hot-melt glue that is 

applied on all pattern interfaces immediately prior to joining. The complete assembly is then 

attached to a gating system of identical material using the same fixing method. 

 

The complete assembly, known as a cluster, is coated with a permeable, water based, ceramic 

slurry. This acts as a barrier between the loose sand mass and the advancing metal front during 

the casting stage of the process. The water in the coating acts as a carrier fluid that facilitates 

total and even coating of the cluster and is subsequently removed, prior to moulding, by 

means of a drying oven operating at a temperature of around 60oC. Figure 1.1 illustrates the 

steps required to manufacture complete cluster assemblies to a level that the moulding media 

can be consolidated around them. This set of steps is known collectively as “White Side 

Production”.  

 

 
 

 
 
 
 
 

 
 
 
 

 
 
 

 
Figure 1.1: Main steps in complete pattern (cluster) manufacture. 

Step 1 
Filling Pre-Expander 

Step 2 
Pre-Expanding 

Step 3 
Patternmaking 

Step 4 
Pattern Assembly 

Step 5 
Cluster Assembly 

Step 6 
Coating 

Step 7 
Drying 
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The coated and dried clusters are transferred to the moulding line where they are placed into 

empty moulding flasks. Correct positioning of the cluster is usually accomplished by means of 

a simple jig known as a spider. The free volume remaining in the flask is taken up by adding 

loose, dry, unbonded sand that is consolidated around the cluster by application of an 

externally located vibration source.  

 

Liquid metal is poured, or in a very limited number of cases pumped, onto that part of the 

polystyrene cluster emerging from the face of the mould. The heat energy in the metal causes 

the foam to undergo a series of physical changes, which culminates in decomposition. The 

permeable nature of the cluster coating and the moulding sand allows the products of 

decomposition to escape and, in so doing, allows the advancing liquid metal to flow into the 

resultant cavity. After complete filling has been achieved the mould and its contents are 

allowed to cool naturally prior to removal of the casting from the mould. This part of the 

process is referred to as the “Black Side Production” and is illustrated in Figure 1.2. 

 
  
 
 

 
 
 
 

 
 
 
 
 
 

 

 
 

 
 
 

Figure 1.2: Main steps in Lost Foam moulding and casting. 
 

Step 1 
Flask Positioning 

Step 2 
Cluster Location 

Step 3 
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Flask Transport 
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Mould Casting 

Step 6 
Casting Cooling 

Step 7 
Casting Removal  
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The process has been successful in producing castings in aluminium, brass, bronze, cast iron 

and steel. However, application with some ferrous grades of material has necessitated that the 

polystyrene pattern material be substituted by a copolymer of polystyrene and 

polymethylmethacrylate in order to eliminate carbon film defects. 

 

The Lost Foam process offers significant benefits in terms of improved dimensional accuracy, 

elimination of cores and consolidation of parts into a single component. However, castings 

produced by this technique suffer from classes of defect inherent in the casting method. The 

advancing metal front provides the heat needed to degrade the polystyrene pattern and this can 

result in misrun defects due to premature freezing. Additionally, seemingly well-formed 

castings can contain entrainment and entrapment defects. Entrapment defects are caused by 

the degradation products being trapped within the liquid metal and entrainment defects are 

caused by the meeting of two advancing metal fronts. 

 

It has been widely suggested that the velocity of the liquid metal front during filling is critical 

in producing castings of high quality. However, in contrast to open-channel casting processes, 

the gating system has not been considered significant in controlling this variable. Instead, 

liquid metal flow has been controlled through variation of pattern and coating properties. This 

is an indirect way of controlling the critical variable, i.e., liquid metal filling velocity and is 

far from ideal because it is inflexible, costly to operate and has a high potential for failure. 

 

Counter-gravity filling of aluminium into open channel moulds has previously been used to 

control liquid metal filling velocities independently of other variables such as mould 

permeability or runner system design. The castings produced were of a significantly higher 

quality than when cast in a gravity fashion. 

 

The objective of this research has been to determine whether the application of this technique 

has a similar effect on the quality of aluminium Lost Foam castings. Castings have been made 

using both gravity and counter-gravity filling techniques and the morphology of the metal 

fronts observed in real time, using X-ray radiography as they progressed through the moulds. 

The quality of the resultant castings was determined by means of tensile testing and casting 

defect analysis, and the interface between the advancing metal front and the polystyrene 
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pattern was examined to determine any correlation between metal front morphology and 

casting quality.  

 

Based on the outcome of these experiments, predictions were made to determine the 

maximum speed of filling that could be achieved without loss of casting quality. These 

predictions were confirmed by the manufacture and subsequent evaluation of a further set of 

castings that were filled at a velocity in accordance with predictions.  
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2 LITERATURE REVIEW 
 

The Lost Foam casting process originated in 1958 when Shroyer [1] was granted a patent for a 

cavityless casting method that used a polystyrene foam pattern embedded in bonded sand. He 

suggested that, as castings became more and more complex in design, the application of 

conventional casting processes became less and less practical because of the necessity to apply 

multiple parting lines and complex core assemblies to the construction of the mould. Using a 

disposable pattern that did not need to be removed from the mould prior to filling with liquid 

metal, but that decomposed and was replaced by this metal, overcame these limitations. 

 

The original patent [1] specified greensand as the moulding medium. However, this material 

contains considerable amounts of clay and water that not only reduced the flowability of the 

mix during mould consolidation but also restricted the escape of pattern degradation products 

from the mould during the filling process.  Although some attempts were made to overcome 

the problem by applying gas vents to the mould this procedure was both time consuming and 

awkward and detracted somewhat from the original process concept. 

 

In 1964 Smith [2] patented the use of dry, unbonded sand as a substitute for greensand. The 

absence of both the bonding medium and associated water had a two-fold beneficial effect. 

Firstly, the permeability of the mould was increased significantly and this allowed the pattern 

degradation products to leave the mould in a much less restricted fashion. The second effect 

was to maximise the flowability of the moulding medium. With no bonding material to lock 

grains of sand together, vibration could be applied to encourage flow of sand into the most 

intricate of cavities in the pattern and consolidate it effectively to provide maximum support 

during casting. 

 

Introduction of free-flowing, unbonded sand was undoubtedly a significant improvement to 

the original process but its use meant that a coating had to be applied to all surfaces of the 

pattern prior to forming a mould around it. Initially, these coatings were zircon based [3] and 

acted as a barrier between the polystyrene pattern and the unbonded sand mould. Early 

coatings were used to prevent sand collapse into the cavity left through degradation of the 

pattern before it could be replaced by the advancing metal front and to improve the surface 
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finish of the casting produced [3]. However, over the last 25 years, coatings have been 

developed to act also as a control mechanism for the escape of degradation products [4-6] and 

hence influence the rate at which the liquid metal travels within the mould during the filling 

process. 

 

2.1  GRAVITY FILLING OF LOST FOAM CASTINGS 
 
Open-cavity casting involves the introduction of liquid metal through a series of 

interconnected channels, which are collectively known as the running and gating system, into 

one or more empty cavities contained within a mould. Conversely, the pattern used in the Lost 

Foam process is linked to the surface of the mould by a running and gating system  that is 

usually made of the same, solid material as the pattern, although hollow sections and pre-

formed fibre downsprues are also used on occasions. The complete assembly remains in the 

mould until it is degraded during the filling operation and therefore a Lost Foam mould has 

limited or no open channels through which the liquid metal travels during casting.  

 

2.1.1  Pattern Degradation  
 
Upon thermal decomposition, polystyrene yields the styrene monomer and various saturated 

and unsaturated fragments, with the styrene monomer the major product among the 

decomposition components when complete depolymerisation takes place below 500 oC [7]. At 

temperatures above 500 oC, the oligomers undergo further defragmentation and form low 

molecular weight gaseous fractions, including toluene, benzene and significant amounts of 

partially depolymerised viscous residue [8]. The ratio of gaseous to liquid products increases 

at temperatures above 750 oC, implying degradation into the gaseous phase at those 

temperatures as the exposure time increases [9]. The degradation of polystyrene occurs by a 

radical chain process characterized by three consecutive steps: (i) initiation, (ii) propagation 

and (iii) termination. Since most of these reactions involve a C–C bond cleavage, the thermal 

stability of polystyrene depends on the strength of its C–C bond. Initiation reactions can either 

occur by random scission or by C–C bond chain-end cleavage resulting in the production of 

radicals. Propagation reactions consist of the sequence of H-abstraction and ß-decomposition 

or unzipping reactions as shown in Figure 2.1.  
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Figure 2.1: Radical-chain mechanism reaction in polystyrene decomposition. Propagation 
                   reactions: (a) H-abstraction, (b) ß-decomposition and (c) unzipping reaction [10]. 
 

The free radicals formed react with polystyrene to produce short chain molecules. Hence, the 

rate of the propagation step is dependent on the concentration of free radical sites. 

Termination usually occurs by the recombination of two radical chains with or without the 

formation of an unsaturated end. 

 

Expanded polystyrene foam used in the Lost Foam casting process is an amorphous, linear 

polymer composed of 92% carbon and 8% hydrogen by weight and has a molecular weight 

ranging from 300,000 to 500,000 [11]. The polystyrene beads typically used in aluminium 

casting have a density of 0.02–0.026 g/cm3 and an average bead diameter of 1.4 mm. During 

thermal decomposition, the expanded polystyrene softens at about 120 oC, melts at 160 oC, 

and completely volatilises between 470 and 500 oC [12]. The average heat of degradation of 

the polystyrene foam has been estimated to be 800 J/g (191.08 cal/g) [11]. Results from other 

differential scanning calorimetric (DSC) experiments [12] have shown that the initial bead 

structure and polymer density do not have a significant effect on the heat of degradation. The 

thermal stability of polystyrene depends on a number of parameters including the presence of 

additives, number of weak bonds and method of synthesis [13]. For instance, polystyrene is 

more stable thermally when prepared in the presence of oxygen than in its absence due to 

cross-linking [13].  

 

A number of authors have attempted to explain the foam degradation process that occurs when 

the liquid metal transfers heat energy to the solid foam in terms of physical models. They 

include the formation and elimination of the foam decomposition products from the reaction 
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site to the surroundings, temperature losses in the liquid metal due to heat transfer, 

permeability of the refractory coating, and sand and metal flow behaviour.  

 

Yang et al. [14] suggested that during mould filling a transformation zone forms between the 

advancing metal front and the polystyrene pattern, consisting of a melt zone and a thermally 

affected (TA) zone. 

 

 
Figure 2.2: Effect of molten aluminium on an EPS pattern at a specific moment during mould           

filling [14]. 

 

The melt zone consists of partially decomposed liquid polymer and some gas whereas the 

thermally affected (TA) zone consists of shrinking polymer. Temperatures measured within 

plate patterns during the mould filling process suggested that the transformation zone was just 

over 3 mm thick, as illustrated in Figure 2.2. Additionally, Yang et al. applied sensors to 

measure gas pressures when pouring aluminium and iron in EPS patterns coated with a low-

permeability coating and obtained values of 200-500 Pa and 11,000-26,000 Pa respectively. 

The authors concluded that very little gas was produced when pouring aluminium, and that the 

gas pressure measured in their experiments was mainly from the air originating in the 

polystyrene pattern. 

 

Zhao et al. [15] agreed with Yang et al. in proposing the presence of an organic gas–liquid 

phase between the advancing liquid metal and the retreating solid foam pattern. Zhao et al. 
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proposed that, when the molten metal is poured on to the foam pattern, direct contact between 

the metal and the solid foam occurs. Due to the highly endothermic nature of the degradation 

process, a significant amount of heat flux occurs during the initial contact phase resulting in 

immediate gasification of the foam. But, during casting, the contact time is very small and 

heat transfer by direct contact is predominant only in the early stages of the fill [16]. As the 

process proceeds, radiation becomes the dominant mode of heat transfer because of an 

increase in the thickness of the gas layer. The radiant heat softens, collapses and melts the 

foam, which flows outward, away from the advancing liquid metal front towards the 

coating/sand interface, where it coalesces and adheres to the coating surfaces. The advancing 

metal envelopes the coalesced foam products (referred to as ‘‘plastic globs’’ by Zhao et al. 

[15]). The thermal conductivity of polystyrene is very low; hence, large temperature gradients 

exist across the plastic globs. Zhao’s infrared imaging of the filling of a coated polystyrene 

plate, through a glass window in the mould, indicated that the temperature at the coating 

substrate was less than 150 oC whereas that at the plastic/melt interface was around 440 oC. 

Based on these data, it seems that gasification occurs at the melt/plastic interface, and this 

reduces the size of the plastic globs. 

 

A schematic of the physical model of foam degradation proposed by Molibog et al. [16] is 

shown in Figure 2.3. Explanations concerning the formation and elimination of degradation 

products were similar to Zhao’s physical model [15]. According to Molibog et al., a three-

phase kinetic zone comprising the solid polymer, liquid polymer and the gaseous products of 

foam pyrolysis is formed between the metal and the pattern. It was argued that the width of 

this kinetic zone and the shape of the metal front dictated the rate of formation of the pyrolysis 

products. 

 

Depending on the width of the kinetic zone, the heat transfer from the metal to the pattern 

varies, consequently varying the amount of energy supplied to the foam. As the width 

increases, the rate of heat transfer decreases and the gas layer starts to build up. Due to this 

decrease in heat transfer, the rate of gas generation also decreases until the gaseous products 

escape from the kinetic zone, thus starting the cycle again. 
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Figure 2.3: Schematic of the foam degradation process [16]. 

 

More recent interpretations of the mechanisms of foam degradation have been published by 

Barone and Caulk [17] and by Caulk [18-20]. When the polystyrene pattern comes into direct 

contact with liquid metal foam ablation occurs, a condition that applies at the start of almost 

all Lost Foam mould filling cycles. Barone and Caulk [17] refer to this as the contact mode of 

decomposition. When this condition is satisfied, the molten metal becomes separated from the 

solid pattern by a small layer of liquid foam between 100 and 200 microns thick. The authors 

refer to this zone as the decomposition layer and suggest that foam cells adjacent to it melt 

continually as a result of heat flow from the liquid metal (Figure 2.4). 

 

The newly liquefied cells join the decomposition layer and replace some of the layer material 

that is drawn towards the porous coating where it gasifies and escapes into the surrounding 

sand mass. 

 
 

 

 

Cellular structure 
collapses at 120 oC 
(393 K) 

Gaseous products form 
at 300 oC (573 K) 

Softening occurs at 
160 oC (433 K) Compacted sand 

Refractory coating 
200-300 µm thick 

Liquid aluminium poured 
at 750 oC (1023 K) 

Expanded polystyrene 
(density 17-29 kg.m-3) 
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Figure 2.4: Schematic of a decomposition layer between liquid metal and receding foam [17]. 

 

Key to Figure 2.4: u = velocity of the liquid metal, θM = temperature at the surface of the 

metal, θ0 = the initial temperature of the pattern, θP = pattern melting temperature, lD = the 

thickness of the decomposition layer, and ρPu = the normal mass flux entering the 

decomposition layer from the decomposing foam. 

 

For a foam pattern to degrade by melting, Caulk [18] suggested that a vapour gap must form 

between the liquid metal and the receding foam. This gap is initiated by polymer vapour 

bubbling through the liquid metal from some other region of the mould cavity. When these 

bubbles reach an upward-facing flow front, they accumulate and form a vapour layer that 

separates the metal from the foam. This interrupts the foam ablation process in contact mode 

and replaces it by the slower process of foam melting across a finite gap. Caulk calls this 

mechanism of foam degradation the gap mode, shown in Figure 2.5. 
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Figure 2.5: Schematic of the mechanism responsible for initiating gap mode during side-filling 

       of a uniform plate pattern [18]. 
 

In contact and gap modes filling speeds are reported to increase with metal pressure and are 

insensitive to pattern thickness [17,18]. However, the rate of filling when a gap is present 

between the liquid metal and the solid foam pattern is influenced significantly by metal 

temperature.   

 

The third mechanism put forward by Caulk for pattern degradation by the liquid metal is that 

of foam collapse [19]. Polystyrene bead expansion in the pattern moulding process, which 

occurs immediately after blowing of the pre-expanded material into the tooling cavity, can 

have a high degree of variability in soundness of the final foam pattern. Sun et al. [21-22] 

referred to this condition as poorly fused foam, and Littleton et al. [23] characterised it as 

foam with too great a permeability.  

 

During mould filling, Barone and Caulk [17] proposed that the smooth process of foam 

ablation can be suddenly interrupted if the liquid metal encounters a region in the pattern that 

contains low density, unsound foam [19], as illustrated in Figure 2.6. If a polystyrene pattern 

has been manufactured in such a way that it contains a region of inter-bead porosity that 

extends to its surface, this fissure provides an alternative means for the air in the foam to 

escape during casting. Caulk proposes that if the fissure is sufficiently permeable to gas 

diffusion, then foam beads within it can collapse and expel their air directly into the fissure 

itself. Liquid metal fills the space left by the collapsing beads and forces the air down the 

fissure and out through the coating at the opposite end. This causes the metal to shoot forward 
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quite suddenly into the empty void forming a protrusion or a finger. The phenomenon has 

been reported by Sun et al. [21] who observed an irregular metal filling pattern during the 

casting of an 8mm thick plate at filling velocities of approximately 55 mm/s. 

 
Figure 2.6: Schematic of the mechanism responsible for initiating the collapse mode of pattern 
                  degradation during filling of a lost foam mould [19]. 
 

Foam engulfment [20] is the fourth and final mechanism that Caulk proposes for pattern 

degradation. For this to occur in preference to foam ablation, melting or collapse, the 

advancing metal front must have a concave profile. As a metal front becomes increasingly 

concave, it surrounds a region of foam on two sides as depicted in Figure 2.7. If there is a 

sudden agitation in the flow of the liquid metal, or there is a random fissure in the foam, some 

part of the pattern may break away. When this happens the liquid metal quickly surrounds the 

detached piece of foam causing it to liquefy very quickly and then vaporise. 
 

 
Figure 2.7: Development of a foam core inside the hollow of a concave flow front (a) before 
                   and (b) after the foam core breaks off, allowing the metal to engulf a piece of  
                   foam [20]. 
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Because the polymer vapour cannot escape readily, it forms a relatively large bubble within 

the metal stream that may ultimately rise to the surface of the liquid metal or lodge 

somewhere in the mould cavity. Caulk [20] suggests that this mode of mould filling proceeds 

in a pulse-like fashion so that, immediately after a piece of foam has been engulfed, the metal 

front profile flattens out somewhat before it begins to redevelop its concave shape and 

envelope yet another piece of foam. This pulse-like filling has been observed by Wang et al. 

[25] when casting thin aluminium plates at various velocities.  

 

In addition to the physical models discussed so far, a few researchers have tried to estimate the 

rate of formation of the pattern decomposition products. Molibog et al. [16] determined gas 

fractions by pushing bars of polystyrene pattern material through a strip heater, (with 

temperatures ranging from 580 °C to 910 °C), at controlled velocities and pressures. Using 

polystyrene with a nominal density of 19.6 kg.m-3 and two different driving pressures of 

10.3 kPa and 27.6 kPa, the gas fraction was observed to increase steadily from 20-25% at 

600 °C to 33-43% at 900 °C (Figure 2.8). This was probably due to more heat energy being 

available to decompose the polymer to gas, rather than to liquid residue. 
 

 
Figure 2.8: Gas fraction vs. heater temperature at driving pressures of 10.3 kPa and 27.6 kPa 
                   for 19.6 kg.m-3 density expanded polystyrene [16]. 
 



 17 
 
  

According to Molibog et al. [16], the specific energy of decomposition of expanded 

polystyrene can be estimated using the energy balance approach: 

 

∆Hௗ௘௚௥ ൌ ∆H௦௘௡௦ ൅ ∆Hௗ௘௣௢௟ ൅ F௚௔௦∆H௩௔௣௢௥ Equation 2.1
 

where ∆Hdegr is the specific energy of degradation of the polymer to a gas fraction of Fgas and 

a liquid fraction of (1-Fgas); ∆Hsens is the sensible heat involved in heating the polymer from 

room temperature (25 °C) to the temperature of the liquid residue, ∆Hdepol is the heat of 

depolymerisation of the polymer to the main constituent of the liquid residue. ∆Hvapor is the 

heat of vaporisation of the liquid fraction, which includes the heat of depolymerisation of the 

main constituent of the liquid fraction to the main constituent of the gas fraction and heating 

the gas from the liquid fraction temperature to the temperature of the gaseous fraction [16]. 

 

Molibog et al. [16] then calculated that, for a liquid fraction of 65% and a gas fraction of 35%, 

at a metal temperature of 650 °C, the energy of decomposition would be 965 J.g-1, which 

compared well with an experimentally determined value of 1075 J.g-1. “T” grade beads, which 

have a diameter of only 0.4 mm and a high potential for producing dense, uniform Lost Foam 

patterns, have been estimated by Mehta et al. [12] to have an average heat of decomposition of 

912 J.g-1, as determined by Differential Scanning Calorimetry (DSC). 

 

2.1.2  Removal of Degradation Products 
 
For the mould to fill fully with liquid metal, degradation products need to be removed through 

the coating and into the sand mould [9]. Although coatings are permeable [26,27] gases can 

only escape through areas where the coating is not in contact with the virgin polystyrene 

pattern, liquid residues or molten metal. It is therefore very important that the exposed coating 

occurs at a suitable time and location ahead of the metal-foam interface [28]. The simplest 

model for determining how much of the coating is available for gas diffusion is shown in 

Figure 2.9 [17] and has been replicated by numerous authors over the past 40 years 

[16,21,29,30-33]. 
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Figure 2.9: Traditional model of gas escaping from the decomposition layer [17]. 

 

This model assumes that gas escapes from the mould cavity though the area of coating 

between the liquid metal and the unmelted foam, lD. The filling speed u and thickness lD adjust 

in opposite directions so that gas escapes at the same rate as it is formed [17]. Although this 

concurs with previous experimental results, Barone and Caulk [17] suggest that it is unable to 

predict associated filling speeds with any accuracy. In fact, they calculate that the application 

of this model alone produces filling speed data that are approximately ten times slower than 

actually observed [21,34,35]. In an attempt to explain this disparity, Barone and Caulk [17] 

propose that a coating undercut exists at the pattern boundary, adjacent to the coating just 

ahead of the decomposition zone, as shown in Figure 2.10. 

 

The products of decomposition from foam cells in the interior of the pattern enter the 

decomposition layer and flow parallel to the liquid metal front until they reach the coating and 

escape. However, the cells in the boundary layers of the pattern collapse through heating and 

expel air directly through the coating without first entering the decomposition layer. The 

resultant void is filled with liquid degradation products from the decomposition layer that 

heats the next cell and causes the mechanism to repeat. In so doing, a narrow undercut is 

formed between pattern and coating as illustrated in Figure 2.11. The length of the undercut lC 

is determined by a balance between the heat flux in the foam and the rate that energy is 
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expended in causing the foam to collapse at its leading edge. Under these circumstances, there 

is a certain level of porosity between the beads that make up the polystyrene pattern. This 

porosity allows some of the air within the beads to pass between them and escape through the 

coating ahead of the metal front [23,24]. 
  
 

 

 

 

 

 

 

 

Figure 2.10: Schematic representation of foam collapse in cells adjacent to the coating,  
         leading to the formation of an undercut [17]. 

 

A further phenomenon suggested by Barone and Caulk [17] and illustrated in Figure 2.11 is 

that liquid residues do not adhere to the inside surface of the coating, along the length of the 

undercut, because the coating has not yet achieved a sufficiently high temperature for this 

liquid to wet its surface [6]. Instead, as the gas loses heat to the coating during its escape into 

the sand, some of it condenses on the foam on the other side of the undercut and begins to 

melt it whilst some collects in isolated globules on the inside of the coating. This leaves most 

of the coating surface exposed and capable of permitting gas escape.  

 

As the liquid metal fills the mould, it overtakes the globules of liquid residue. These globules 

then begin to vaporise and create gas bubbles within the liquid metal itself. Some of this gas 

diffuses through the coating as it rises through the metal and the rest ultimately reaches the 

surface and adds to that gas already within the gap as shown in Figure 2.12. Caulk argues that 

the gap sustains itself by continually generating excess quantities of liquid degradation 

products that vaporise and emerge in the gap region. In this mechanism of degradation product 

removal from the mould, it is assumed that all the air within the foam initially enters the gap. 

The same is also assumed with respect to polymer vapour. These assumptions are 

predominantly dependant upon the quality of the moulded foam [23,24]. 

 

Boundary layer 
of pattern 
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Figure 2.11: Schematic of the undercut as proposed by Barone and Caulk [17]. 

 

Fu et al. [36] collected time-temperature data in the sand mould at various distances from the 

metal – mould interface during and after casting of open cavity and Lost Foam moulds with 

aluminium. The results showed that, in a Lost Foam casting, the sand near the metal – mould 

interface stabilised at approximately 150 oC for about a minute before continuing to rise at a 

slower rate up to its peak temperature. At a distance of 1 mm from the metal – mould interface 

the peak temperature was recorded at 440 oC and a further 14 mm into the mould reached   

260 oC. 

 

Although the curves relating to open cavity moulds exhibited the same general profiles as 

those obtained from Lost Foam moulds, no temperature plateau was observed. Fu et al. [36] 

concluded that this phenomenon was caused by gaseous polystyrene degradation products 

condensing in the cooler sand in the vicinity of the metal – mould interface and, in so doing, 

reducing the permeability in that region. As the temperature of the sand increased by heat 

transfer from the metal, the condensed gases re-vaporised and travelled further into the sand 

[8,37]. This sequence of vaporisation-condensation-vaporisation continued even after the 

mould had been filled. Fu et al. [36] did not consider the transport of liquid polystyrene 

through the sand, yet this may also be important if the liquid polymer is transported through 

the coating.  
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Figure 2.12: Schematic of the air and gas diffusion through the coating where a distinct 
                     vapour gap is present between liquid metal and solid foam [18]. 
 

Wetting and wicking have been put forward as mechanisms for the elimination of the liquid 

degradation products from the mould [6,38]. Sun et al. [6] proposed that it was unrealistic to 

assume that all the liquid polymer would vaporise and escape the mould cavity as a gas, but 

would instead be displaced to and accumulate at the metal-coating interface. The 

characteristics of the coating would then determine the mechanism and extent that liquid 

polymer would be removed from the mould cavity. They suggested that “wetting” and 

“wicking” may play a part in the transport of liquid polymer through the coating and into the 

surrounding sand. Wetting is described as the “the affinity of a liquid for a solid surface” [6]. 

In other words, when a liquid spreads spontaneously along a solid surface, it is said to wet the 

surface. Wicking, on the other hand, involves the infiltration of the liquid polymer into the 

porous coating material by means of capillary action.  

 

Sun et al. [6] carried out a series of experiments to determine the critical combination of 

coating and liquid polystyrene temperatures needed for liquid polystyrene to wet and wick 

coating samples. Where either the coating or the polystyrene temperature had been towards 

the lower end of the experimental range, a discontinuous layer of polystyrene was observed on 
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the coating samples. The authors suggested that this was a result of the coating quenching the 

liquid polystyrene, even if the coating temperature was high and the polymer temperature was 

low. As the temperature of both components was increased, the liquid polystyrene was able to 

wet the coating surface, but no absorption or “wicking” was observed. As the temperature of 

both the polymer and the coating were increased further, liquid polystyrene was absorbed by 

all coating samples, and it was found that the critical temperature for wicking was between 

325 °C and 400 °C, depending on the coating composition. 

 

Alumina coatings were more capable of wetting and wicking liquid polystyrene at lower 

temperatures than mica or silica coatings. The authors suggested that the affinity of the base 

materials for liquid polystyrene was the decisive factor in controlling wetting. However, 

wicking was controlled by the shape, size, and size distribution of coating particles. This 

phenomenon is illustrated in Figure 2.13. 

 
Figure 2.13: The effect of immersion time on liquid polystyrene infiltration depth at a liquid 
                     polystyrene temperature 370 °C [6]. 
 

Based on these results Sun et al. [6] developed a model for the removal of liquid polystyrene 

residue during aluminium casting, which is shown schematically in Figure 2.14. As liquid 

metal advances through the mould, the foam pattern is decomposed to liquid polystyrene with 

little gasification. The liquid polystyrene is then pushed toward the coating where it spreads 

across the coating surface and wicking into the coating and sand starts when both the coating 

and liquid polystyrene are heated to a critical temperature of between 275 to 300 °C [12], 
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where the polymer begins to decompose such that the liquid fraction begins to reduce in 

viscosity [39].  

 

While the literature provides clear evidence that pattern coatings can absorb liquid polystyrene 

under certain conditions, Zhao et al. [38] argued that liquid polystyrene would not maintain 

direct contact with the liquid metal but would be separated by a film of vapour from the 

gaseous degradation products. The authors developed a technique that allowed them to 

interrupt mould filling and study decomposing polystyrene mass transfer behaviour, and the 

role of polymer vapour in foam removal from the mould cavity. 

 

Using counter gravity casting equipment, liquid aluminium was drawn into a mould by the 

application of a vacuum. After a preset time the reduced pressure was removed causing the 

liquid aluminium to flow back into the crucible. At the same time air was fed into the mould 

cavity to cool the mould and any retained polymer residue as quickly as possible. Coating 

samples were then removed from the mould and examined using optical and scanning electron 

microscopy. 

 
 

 

 

 

     

 

 

 

 

 

 

 

                       Sand 

 
Figure 2.14: Model for wetting and wicking of liquid polystyrene during aluminium Lost 
                     Foam casting. Re-drawn from Sun et al. [6]. 
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The experiments produced many coalesced liquid polystyrene globs on the inside of the 

pattern coating instead of a uniform liquid film. As the melt contact times increased these 

globs became smaller. The globs were analysed by gas chromatography and were found to 

have an average molecular weight of 178,000 g.mol-1. Interestingly, a lower molecular weight 

was detected near the outer surface of the glob and a heavier molecular weight near the 

coating substrate (although specific values were not reported). This indicated a non-uniform 

temperature distribution across each plastic globule, which Zhao et al. [38] claimed made 

capillary driven liquid transfer kinetically unfavourable. Furthermore, the size reduction of 

plastic globs in all three dimensions indicated that the polymer was removed by an interface-

controlled mechanism, as shown in Figure 2.15. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.15: Gasification-driven foam removal mechanism. Re-drawn from Zhao et al [38]. 
 

Three distinct zones were observed on the outer coating surface, which the authors explained 

were due to liquid metal, liquid polymer and gas, contacting the inner coating surface. The 

coating directly under a glob of liquid polymer exhibited no change in its appearance and 

showed no sign of having absorbed any polymer. This was attributed to the polymer having 

insulated the coating from the liquid metal. However, around this central zone there was a 

region of coating that had become light grey in colour and that was a result of complete metal-
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coating contact. Between these two zones a dark brown region of coating was observed and 

this was interpreted as being the area where gas had escaped through the coating. 

 

It is possible that no absorbed polymer was found in the coating because the liquid metal was 

only in the mould for a few seconds. Therefore it is possible that neither the polymer nor the 

coating had reached the critical temperature proposed by Sun et al. [6] that was required for 

the liquid polystyrene to be absorbed into the coating. In experiments where the metal was 

allowed to cool and solidify in the mould, evidence of liquid polystyrene absorption was 

found [15]. To explain this it was suggested that the liquid polymer had been pushed into the 

coating by a combined increase in gas and metallostatic pressure that had built up between the 

non-permeable metal skin and the entrapped polymer glob. However, once the metal had 

formed a solid skin and the polymer globule continued to shrink, a larger area of exposed 

coating would have become available for the evolved gases to flow through. A significant 

build-up of gas pressure could therefore only have occurred if the coating pores had become 

blocked by polystyrene condensates. 

 

2.1.3  Influence of the Filling Velocity 
 
In open cavity casting processes, the total time required for a mould cavity to fill is related to 

the quality of the casting. If filling times are too long, problems such as misrun or cold shuts 

may be observed. Filling times that are too short cause turbulence on the metal surface, 

erosion of the mould, introduction of inclusions, metal-mould reactions and a variety of other 

casting defects. 

 

In the Lost Foam casting process, mould filling times and hence filling velocities are also 

important in preventing and controlling casting defects. A low filling velocity has often been 

reported as the cause of misrun, cold lap and sand collapse defects. Misruns occur when the 

liquid metal freezes before the pattern is completely filled [40]. When the metal stalls due to 

the loss of fluidity, it usually exhibits a smooth and rounded surface appearance. Although 

metal velocity is a significant factor in the formation and degree of severity of this defect, 

metal front temperature and the rate of removal of pattern decomposition products have also 

been reported as being factors [40,41]. 
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Laps or folds form when two streams of molten metal meet and a thin layer of oxides and 

pattern decomposition products covering the metal fronts prevent the two streams of metal 

from fusing [40]. The defect appears as a distinct linear recess on the surface of the casting. 

The space between the folding surfaces can be between microns and millimetres in size, and is 

visible as a distinct line on the casting surface [15,41]. Cold lap defects are produced as a 

direct result of excessive, conductive heat loss from the metal to the sand and the foam. 

 

Sand collapse is rarely mentioned in Lost Foam casting literature published within the past  

10 years. However, Monroe [43] makes reference to it as a phenomenon that can be prevented 

by a coating with suitable mechanical strength. The only region of the mould into which sand 

can ingress is the void or “gap” that is formed between the advancing liquid metal front and 

the receding polystyrene pattern during mould filling. A slow filling velocity encourages a 

large vapour gap to form and a high permeability coating ensures that vapour degradation 

products can escape easily into the sand. The formation of a relatively large gap that has little 

or no positive pressure in comparison to the surrounding sand mass provides the optimum 

conditions for sand ingress. Hill et al [40] poured simple flange patterns using A356 

aluminium alloy, and determined the significance of five variables on metal velocity and 

defect formation. Misrun and sand collapse was observed on castings filled below 8 mm.s-1 

with the latter defect being reported until filling velocity exceeded 14 mm.s-1. 

 

As the filling velocity increases another group of defects becomes prevalent. These defects are 

formed primarily as a result of liquid or gaseous degradation products becoming entrapped 

within the liquid metal and result in the appearance of pores, rough surfaces, blisters, laps and 

folds. Examining thin aluminium castings, Wang et al. [25] observed internal pores only when 

the velocity of the liquid metal had exceeded 23 mm.s-1. An unstable metal front profile, 

generated at a high filling velocity, was thought to be responsible for the trapped foam and 

pores. Hill et al. [40] observed rough surfaces on most castings that had been filled with a high 

velocity and suggested that this defect was caused by liquid polymer being pushed to the top 

surface of the mould cavity, but not having sufficient time to pyrolyse and escape prior to 

casting solidification. A similar explanation was offered by Liu et al. [42] who had observed 

rough surfaces on the upper ends of castings poured with aluminium alloy A319. Again, these 

were only found where the mould had filled at a high velocity. 
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Blisters are another form of surface defect and are the result of a thin layer of polystyrene 

residue trapped just beneath a solidified skin of metal [40]. Bennett et al. [34] suggested that 

blisters may form when a concave metal front permits liquid metal to flow rapidly along the 

foam pattern-coating interface. The thin film of metal may then solidify and trap liquid 

polymer just beneath the solidified skin. 

 

Hill et al. [40] summarised the effects of filling velocity on the type and incidence of defects 

as illustrated in Figure 2.16. They determined that there was a narrow velocity window, 

between 14 mm.s-1 and 18 mm.s-1, where no defects were observed. Above 18 mm.s-1, 

porosity, folds and surface defects occurred, while misruns and sand collapse occurred below 

14 mm.s-1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Summary of defects vs. average metal velocity, when casting A356 alloy [40]. 

 

 In contradiction to the above findings, Hess [44] found no correlation between defect area 

and metal velocity when pouring A319, A356 and A206 aluminium alloys into coated EPS 

patterns. In fact, the highest incidence of defects was found at a velocity reported previously 

by Hill [40] to be optimum for reducing defects. Hess suggested that maintaining the desired 

filling velocity during mould filling was not sufficient to ensure good castings. He argued that 

the same factors that can be used to adjust metal velocity also impact on defect formation and 

that these factors should be optimised as a system in order to achieve a filling profile such that 
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liquid decomposition products do not become entrapped in the progressing metal front and 

enough time is available for decomposition products to exit the system through the coating. 

 

Mould filling velocity, amongst other variables, has also been reported to influence metal 

front shape. Molibog et al. [16] hypothesised that using a pattern with a higher density 

towards the surface in conjunction with a low filling velocity would encourage the formation 

of an “arrow pointed” convex metal front. They also believed that the shape of the metal front 

has a strong effect on the rate of removal of pyrolysis products from the kinetic zone. A 

convex metal front would assist the highly viscous residue to move towards the coating from 

the centre and escape from the kinetic zone. Warner et al. [32] observed metal front profiles 

and measured metal front velocities as part of their aluminium casting experiments to study 

the effects of coating type, coating permeability and pattern geometry on pyrolysis related 

casting defects. They noted that the metal front profile had a tendency to become increasingly 

concave as both filling velocity and coating permeability increased.  

 

2.1.4  Influence of the Coating 
 
The thin refractory pattern coating controls the rate at which pattern decomposition products 

are eliminated from the mould cavity and the rate at which heat is lost from the liquid metal to 

the sand. Both of these factors influence filling behaviour and defect formation. Coating 

permeability varies with the size and shape of the refractory particles in the slurry and the 

thickness of the coating layer [26,27]. Inconsistencies in coating permeability are reported to 

be directly related to inconsistencies in casting quality by causing variations in the rate at 

which foam decomposition products can be removed from the mould during filling 

[4,28,45,46].  

 

Kocan [47] and Littleton [46] developed two different types of apparatus for measuring 

coating permeability. The apparatus developed by Kocan [47] used a machine that had been 

originally designed for determining the permeability of sand mixes in conjunction with a 

modified sample tube that supported the coating sample. An exploded view of the sample tube 

assembly is shown in Figure 2.17. 
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Figure 2.17: Modified foundry equipment for determining coating permeability [47].  

 

A schematic of Littleton’s apparatus [46] is shown in Figure 2.18. In this apparatus a disc of 

coating is clamped between two silicone gaskets and air is forced through the coating at a 

controlled pressure (typically between 7 and 20 kPa). Littleton gave no information regarding 

the size or thickness of the coating samples, or how the samples were obtained.  

 

 
Figure 2.18: Schematic of apparatus for measuring air flow through coatings [46]. 

 

In a more recent paper Zhao et al. [48] described coating samples of 12 mm diameter and 

1 mm thickness that were slip cast in aluminium moulds. The coating samples were ground to 
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different degrees in order to obtain a range of coating thickness for subsequent permeability 

measurements. However, the author failed to mention if a ground coating varied in structure 

from those that had been applied by dipping. Furthermore, in grinding the coating samples the 

authors may have inadvertently blocked some of the pores of the coating, and this would have 

resulted in lower airflow rates through the coating samples. 

 

In Littleton’s apparatus, airflow rates and the pressure differences across prepared coating 

discs were measured and the permeability of the coating calculated by application of Darcy’s 

Law for the permeability of a porous medium (see Equation 2.2) [49-52]. For laminar viscous 

flow through a macroscopically homogeneous porous material, Darcy’s law reads: 

 
∆ܲ
ܮ ൌ

ߤ
݇ଵ

ܷ Equation 2.2

   

where ∆P is the total pressure drop across a medium of length L and specific permeability k1.  

U is the superficial velocity of the fluid (with viscosity µ), and is uniform in the medium [49]. 

 

ܷ ൌ
∆ܳ
ܣ  Equation 2.3

 

where ∆Q is the measured flow rate through the medium and A is the cross-sectional area [50]. 

 

Although Forchheimer’s equation [53] has been accepted in the literature as giving more 

reliable information than Darcy’s Law on the permeability of highly porous structures where 

fluid velocities are very high, for example in ceramic foam filters used in metal filtration, 

Darcy’s Law is considered to be valid for lost foam coatings because of the low rates of fluid 

flow occurring within the coatings [17,48]. 

 

When pouring several aluminium plate castings at 800 °C, Hill et al. [40] observed that when 

the permeability of the coating was “high”, rapid filling produced an unstable metal front that 

trapped liquid polystyrene. However, when the permeability of the coating was “low”, the 

metal front became more convex, pushing the decomposition products to the metal-coating 
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interface. Liu et al. [42] made similar observations when pouring simple plate castings at 

800 °C. 

  

Hess et al. also found that more defects formed when a high permeability coating was used 

[4]. The sum of the area of all the defects (folds and blisters) that could be imaged and found 

in one casting (using an image analysis program) was defined as the total defect surface area 

for that casting. The total defect area for castings made using a high-permeability coating was 

at least twice the total defect area found in castings produced with a low permeability coating. 

 

High permeability coatings allow air and gaseous pattern decomposition products to escape 

quickly from the metal-foam interface. This leads to a better contact between the metal and 

the foam which accelerates foam decomposition. As foam can decompose and leave the 

mould more rapidly, the metal front velocity also increases. Based upon Caulk’s theory 

[19,20] a velocity increase can result in the pattern decomposing according to the engulf or 

collapse mode and ultimately encourage the formation of casting defects. 

 

Under certain circumstances a pattern coating has the ability to remove liquid degradation 

products from the mould cavity by either wetting or wicking. Littleton [46] developed an 

apparatus for measuring the wicking capability of lost foam coatings by measuring the real-

time weight of a liquid absorbed into the coating by means of an externally applied pressure 

and capillary pressure. In order for room temperature measurements to be made, olive oil was 

chosen to simulate the liquid degradation products of the polystyrene pattern but Littleton et 

al. [46] offered no explanation of the suitability of this choice. Although it is reasonable to see 

how this apparatus may be used as a routine check for coating consistency, the arbitrary use of 

olive oil at room temperature does not emulate the process of wicking in the Lost Foam 

process as described by various authors in Section 2.1.2. On the contrary, Sun et al. [6] 

considered that the crucial factor in controlling the wetting and wicking of a liquid polymer 

was the temperature - viscosity relationship of the polymer during mould filling and not its 

composition. Therefore, this apparatus has no direct application in determining a coating’s 

propensity for removal of liquid polymer from the mould cavity by wicking.   
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Davies [54], however, considered that coating permeability was of more importance than its 

ability to absorb liquid polymer. This is because, in order to improve a coating’s ability to 

absorb liquid polystyrene, its pores must increase in size. As a consequence, the permeability 

of the coating and the mould filling speed are increased. Higher metal front velocities have 

been consistently reported to affect casting quality in an adverse fashion [20,40,42] and 

therefore promotion of a coating with good wicking properties can be counter-productive.  

 

The insulating properties of the pattern coating can also play an important part in the integrity 

of the castings produced. Tan et al. [55] studied the fluidity of liquid aluminium when cast 

into Lost Foam moulds in which patterns had been coated with either high conductivity silica- 

based, or low conductivity potassium aluminium silicate-based coatings. Square bars (cross 

section of 30 mm by 30 mm, and 254 mm in length), filled completely regardless of the 

coating used. However, thinner bars (30 mm wide by 3.3 mm thick and 254 mm long) only 

filled on average 59% of the total length when cast with the insulating coating, and not at all 

when silica based coatings were used.  

 

When a coating with high thermal conductivity is used, heat transfer from the liquid metal into 

the mould occurs more quickly than with an insulating coating. Rapid heat loss may cause the 

liquid metal at the coating interface to solidify quickly, thereby resulting in misrun defects. 

Additionally, premature solidification at the interface may block the escape of pattern 

decomposition products and result in the formation of entrapment defects [56]. On the other 

hand, highly insulating coatings such as those containing mica, encourage the liquid metal at 

the metal-coating interface to remain molten for a longer period of time. The additional time 

available for pattern degradation products to escape through the coating into the mould may 

be necessary to render the casting “defect free”. The mechanism by which mica improves the 

insulation properties of a coating has been explained by Zhao et al. [48]. They report that such 

particles tend to orientate themselves parallel to the free surfaces, which creates loosely 

packed layers of granular structures that significantly lower the heat and mass transfer rates of 

the coatings. 
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2.1.5  Influence of the Gating System  
  
In conventional, open cavity-type casting, the main aim of the gating system is to control the 

flow of liquid metal through the channels leading to the mould cavity so that flow is 

conducted in a controlled fashion devoid of surface turbulence. As long as all other variables 

are suitably controlled, a properly designed gating system should produce a casting that is free 

of defects deleterious to its function. Unfortunately, in the Lost Foam process the gating 

system cannot be relied upon to carry out this task because a number of other factors such as 

the foam degradation mechanism and removal rate of the degradation products from the 

mould are much more influential. Hence, the main requirements of a Lost Foam gating system 

are to provide mechanical support for the cluster, control the direction of flow of the liquid 

metal, and help to provide feed metal to compensate for solidification shrinkage.   

 

Hill et al. [57] suggested that although the above was essentially true, “there must logically be 

some critical gate size below which restriction of fluid flow becomes more important than the 

rate of foam decomposition or transport of foam decomposition products”. A series of plates 

was cast, each coated with a high or low permeability coating, and with varying gate sizes of 

between 0.02 in.2 and 0.5 in.2. It was found that gate areas above 0.05 in.2 had no effect on 

mould filling times when used in conjunction with high permeability coatings. For low 

permeability coatings, where removal of degradation products proceeded at a slower rate, the 

critical gate area fell to 0.03 in.2. The authors concluded that, to avoid collapse of the pattern 

and surrounding sand during filling, the region between the advancing metal front and the 

solid polystyrene pattern must be pressurised, either due to contact or near contact between the 

liquid metal and the decomposing foam, or due to a high gas back pressure. If the gate was to 

act as the choke, these conditions could not be met and a sound casting could not be produced. 

This statement is supported by a number of authors [18,58,59] who agree that the only 

practical influence that the gating system can have on metal velocity is the level of 

metallostatic pressure applied throughout mould filling. 

 

Although gate area may not be significant in determining the quality of the castings made by 

the Lost Foam process, the location and number of gates used has some effect. Lawrence et al. 

[59] stated that the minimum number of gates should be used to avoid impinging metal 
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streams, and that gates should be located near the bottom of the pattern to eliminate any 

surface turbulence at the metal front and encourage a smooth metal-pattern interface. They 

also suggested that the path of the metal front can be designed, by an appropriate gating 

system, to direct residual decomposition products that cannot be handled by the coating into 

the gating system, rather than being trapped in the casting. Sun et al. [60] made 30 mm 

diameter bars by casting A356 aluminium alloy into Lost Foam moulds. Patterns were gated 

from the top, bottom, one side or both sides, and the authors reported that defects encountered 

in top- or bottom-gated castings were not as severe as those observed where one or more side 

gates had been used. They concluded that this was because top and bottom gates more evenly 

distributed liquid polystyrene to the coating-metal interface.  

 

To assemble Lost Foam patterns hot-melt adhesives are commonly used, which have 

amorphous properties, i.e., they are solid at room temperature and experience a decrease in 

viscosity as the temperature rises [61]. The glue adhesive has a relatively high density of 

approximately 960 kg/m3, when compared to an average foam pattern of only 24 kg/m3, and 

therefore requires more energy in degradation. When the liquid metal front reaches a joint in 

the cluster additional heat is lost in degrading the glue [62], and this may cause the metal front 

to stall momentarily.  

 

Sun and Littleton [63] used a real time X-ray apparatus to view the influence of glue joints on 

the advancing metal front. They reported that when the metal stream reached the joint, its 

forward progress was halted for between 0.8 and 1 s. During this time the metal started to 

build up along the joint until it managed to break through at various locations. Mould filling 

then continued by means of multiple metal streams passing through the joint. The authors 

concluded that glue joints contributed significantly to the formation and subsequent 

convergence of multiple metal fronts which encouraged the creation of fold defects. Under 

these circumstances, a gating system with the minimum of glued joints should maximise 

casting quality.  
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2.1.6  Influence of Pouring Temperature 
 
The temperature of the metal provides heat to decompose the polystyrene pattern and fluidity 

for the liquid metal to fill the resultant cavity. A high temperature increases metal fluidity as 

in conventional casting processes, but published literature is inconsistent in reporting its 

influence on the filling speed of a Lost Foam mould. A number of authors [58,64,65] suggest 

that pouring temperature does not play a significant role whilst others [25,34,44] have 

observed the opposite.  

 

Fu et al. [66] produced a number of clusters each made up of a gating system and four plates, 

each being 0.125 inches (3.17 mm) thick. Two of the four plates were oriented in the vertical 

plane and two in the horizontal plane. Each cluster was coated with either a high permeability, 

alumina-based coating, or a low permeability silica-based coating. The clusters were cast with 

a hypoeutectic A319 aluminium alloy at temperatures ranging between 660 oC and 900 oC, 

and it was found that in the lower range of pouring temperature fluidity increased rapidly with 

increased superheat, but improved little between 740 oC and 780 oC. As pouring temperature 

was raised further, fluidity again began to increase rapidly with increasing superheat. At a 

temperature of 860 oC and above all patterns, irrespective of coating or orientation, were fully 

filled.  

 

The authors proposed that, at low pouring temperatures, the pattern degradation products were 

nearly all liquid and were removed into and through the coating by wetting and wicking. They 

suggested that, at these low temperatures, the coating temperature would also be relatively low 

and would not encourage the liquid polystyrene to decompose into gases and escape into the 

sand. Under these circumstances the coating might have become saturated with liquid residues 

and the permeability reduced. They hypothesised that, as the pouring temperature increased to 

700 oC, more gas was evolved while at the same time enough liquid polystyrene produced to 

block the pores in the coating, thereby accounting for the levelling off in fluidity results 

observed between 740 oC and 780 oC. At even higher temperatures the ratio between liquid 

and gaseous degradation products fell even further which promoted more rapid removal of 

both through the coating.  
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Caulk [17,18] explained the apparent disparities in the published literature by suggesting that 

the mode of pattern decomposition influences the effect that pouring temperature has on 

filling times. Together with Barone [17], he calculated that, in contact mode, filling speed was 

essentially unaffected by metal temperature because any increase in heat flux into the foam 

was offset by an increase in the rate of vaporisation of the polymer liquid and the two trends 

balanced each other. This is illustrated in Figure 2.19 where the filling speed at a constant 

metal pressure equivalent to a 0.5 m head of aluminium was almost unaffected by the 

temperature at which the metal was cast. Interestingly, the graph also showed that the 

polystyrene pattern which had been treated with a compound of bromine was slightly less 

sensitive to metal temperature than the untreated one. The authors suggested that this was 

because the presence of bromine had reduced its activation energy by approximately 40%.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Filling speed in contact mode as a function of metal temperature for regular and 
                     brominated polystyrene foam with a metal pressure corresponding to 0.5 metres 
                     of aluminium [17]. 
 

However, when the method of pattern decomposition changed from contact into gap mode 

[18], the effect of pouring temperature on fill rate increased significantly. In the gap mode of 

filling, radiation is responsible for the majority of the heat flux used to decompose the 

polystyrene foam. Conversely the heat flux from conduction stays almost constant because 

gap width increases as the temperature rises, thus reducing heat transfer by conduction, and 

this offsets any difference across the gap. 
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The effect of metal temperature on the filling speed when the gap mode of pattern 

decomposition is apparent is shown in Figure 2.20 for four pattern thicknesses. Although the 

absolute speeds are relatively small, the percentage increase between 600 oC and 800 oC is 

approximately 50%. 

 
Figure 2.20: Filling speed in gap mode as a function of metal temperature for several values of 

         pattern thickness and a metal pressure corresponding to 0.5 metres of aluminium 
         [18]. 

 

The temperature at which a Lost Foam mould is poured has also been reported to contribute to 

the presence of a range of defects in the finished castings. High pouring temperatures have 

been associated with the presence of blisters [34], whilst low pouring temperatures have 

produced internal pores and folds [67]. Blisters have been found most commonly near ingates 

where metal temperatures were relatively high whereas internal pores and folds, on the other 

hand, have been associated with areas of the casting that filled towards the end of the pour and 

hence have been related to low metal temperatures and rapid solidification [34].  

 

Bennett et al. [68] used the Lost Foam process to manufacture a number of flange-type 

castings in A356 aluminium alloy. To measure the liquid metal front temperature during 

filling they attached thermocouples to the patterns at the ingate, and at 90o and at 180o around 

the flange from the ingate. No defects were observed in the vicinity to the ingate where metal 

temperatures remained high throughout the mould filling cycle. Internal pores and folds 

congregated primarily in the region of the casting furthest from the ingate, and blisters were 

found exclusively in the region between. These findings corresponded well with earlier 
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research [69] and suggested that the temperature of the liquid metal during mould filling not 

only influenced the occurrence of casting defects but also their location and form.  

 

Gas porosity is also associated with the use of high pouring temperatures in the casting of 

aluminium [70,71]. The solubility of hydrogen in aluminium at atmospheric pressure increases 

dramatically at the melting point and it is this difference in solubility between liquid and solid 

aluminium that causes gas porosity in the solidifying casting. In order to examine hydrogen 

gas pick-up, Shin et al. [70] cast a number of Lost Foam moulds, each containing a 

polystyrene pattern that had a 7 mm, an 11 mm and a 17 mm thick leg. The clusters were 

embedded in their own moulds and cast in aluminium at 670 oC, 750 oC or 830 oC under 

atmospheric or reduced pressure conditions of 710 mmHg. Where moulds were cast at 

reduced pressure, this under pressure was maintained until solidification was complete. 

 

As the thickness of the leg increased, the level of porosity in the area of the casting nearest the 

sprue also increased. Conversely, porosity at the opposite end of the legs increased as 

thickness decreased. A pouring temperature of 750 oC was observed to produce the best results 

in legs of 17 mm and 11 mm whilst the lowest porosity results recorded in the thinnest legs 

occurred when cast at 800 oC. The application of a reduced pressure during mould filling also 

had the effect of reducing the level of porosity in all samples by about 0.4 percentage points.  

 

The authors suggested that there was an optimum metal front temperature at which the lowest 

levels of gas porosity are achieved. Too high a pouring temperature will increase hydrogen 

pick-up and prolong solidification time, whereas a low temperature will produce a greater 

amount of liquid degradation products that may become entrapped and result in large pores. 

 

Energy dispersive X-ray analysis (EDS) was performed in gas pores to determine the level of 

carbon present. The absence of carbon in a pore indicated that it was formed by precipitation 

of hydrogen whereas a pore that contained carbon was formed by entrapment of some 

decomposition products of polystyrene. Where both carbon and hydrogen were found in the 

same pore, the mechanism of formation was by foam entrapment with diffusion of hydrogen 

into it taking place during subsequent growth. The thicker 17 mm legs exhibited carbon levels 

of around 8 wt.% in samples cast at 700 oC and this fell to around 3 wt.% at pouring 
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temperatures between 750 oC and 830 oC. The flow tips of 7 and 11 mm legs contained pores 

with carbon contents as high 10 and 13%. From these results the authors concluded that not 

only can pores form through capture of liquid or gaseous decomposition products, but also 

from supersaturated hydrogen gas which originates from the initial melt or from reaction with 

decomposed polystyrene. 

 

2.1.7  Effects of Temperature Gradients  
 
Temperature gradients experienced within the metal during the filling and solidification 

phases of the Lost Foam casting process are considerably greater than those encountered in 

conventional, open-channel sand casting [67]. This is because liquid metal poured into a Lost 

Foam mould has the additional task of thermally decomposing an expendable polystyrene 

pattern in order to occupy the void so produced. In order to prevent the metal front from 

stalling during the filling process, casting temperatures are usually higher than those employed 

in conventional casting.  

 

The higher temperature gradients present in the Lost Foam process can have both positive and 

negative consequences on casting quality. When a Lost Foam pattern is gravity filled from the 

top, the positive temperature gradient that results between the metal front and the ingate 

promotes directional solidification and therefore reduces the possibility of solidification 

shrinkage. However, a number of researchers [72-74] have applied the technique of counter-

gravity casting to the Lost Foam process in order to achieve greater control over the filling of 

the mould. In this case, the downsprue is eliminated altogether and the complete running 

system and liquid metal reservoir are located below the casting. This produces a negative 

temperature gradient throughout the casting during filling and subsequent solidification. 

Unless the driving force used to generate a metal flow in the opposite direction to the gravity 

vector continues to be applied after the mould has been filled, feed metal may not be present, 

or have sufficient potential energy, to offset the shrinkage that occurs during solidification. 

 

A higher pouring temperature also means that the various regions of the casting solidify at 

different rates [67,75]. Chen and Ravindran [75] made a series of stepped aluminium castings 

in the Lost Foam process. Thermocouples were inserted at the centre of each of the steps and 
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the metal was cast at varying levels of dissolved hydrogen, (between 0.149 and  

0.409 cc/100g). Shrinkage was absent from all but the thinnest sections of the castings and 

even then, a high level of dissolved hydrogen (0.41 cc/100 g) suppressed this defect. Gas 

pores, however, were observed in every section of every casting with their size being related 

to solidification time. Where a solidification time of 5 minutes had been recorded the 

associated pore diameter was between 150 – 200 µm but where it had taken 20 minutes for 

solidification the pores were between 400 – 900 µm in diameter.  The level of dissolved 

hydrogen in the sections that had taken longer to freeze was also influential on the pore size 

found. Generally, 400 µm diameter pores were observed in castings where the dissolved 

hydrogen was 0.15 cc/100 g and the largest pores occurred where the hydrogen level had been 

measured at 0.41 cc/100 g.  Therefore, whilst counteracting the potentially negative effects of 

solidification shrinkage, a high temperature gradient can encourage the formation of hydrogen 

gas porosity in the finished castings. Interestingly, the authors did not investigate if any of the 

pores contained carbon and therefore could not be sure that hydrogen was the cause of the 

defects. 

 

Temperature gradients also exist between the metal, pattern coating and moulding media 

during mould filling, solidification and subsequent cooling, which affect the quality of the 

castings produced. Khan et al. [76] measured interfacial heat transfer coefficients in Lost 

Foam casting of aluminium alloys, for two thicknesses of pattern coating. Values were 

calculated based on solidified metal temperature measurements via an inverse heat conduction 

method and varied between 200 – 1800 W/m2K for a 1.0 mm coating thickness and 200 – 

1000 W/m2/K for a 2.5 mm coating thickness.  

 

Subsequently, Khan et al. [77] remeasured the interfacial heat transfer coefficient across the 

metal-coating-mould interface using a modified technique to minimise possible convective 

heat transfer by gaseous decomposition products. A temperature dependant value for the 

coefficient varying from 150 W/m2K at the A356 aluminium alloy eutectic temperature 

(577 oC) to about 80 W/m2K around 350 oC was reported. To estimate the effects of the 

coating, Khan et al. [77] proposed a model of the interfacial heat transfer coefficient based on 

thermal resistances; Equation 2.4. 
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where hM/C and hC/S are the metal-coating and the coating/sand interface heat transfer 

coefficients, and lC and kC are the coating thickness and the coating thermal conductivity, 

respectively.  

 

In more recent work, Zhao et al. [78] reviewed the effects of the pattern coating on heat 

transfer in the Lost Foam casting of aluminium with a view to preventing fold defects. They 

postulated that a minimum liquid metal cooling time is needed to allow complete foam 

removal from the mould cavity and prevent fold formation. Clusters were cast in an 

aluminium alloy in an uncoated condition, or after a single or double layer of coating had been 

applied. Unbonded silica sand was used as the moulding media in two moulds, while a third 

utilised steel shot, and a cluster with a single layer of coating.  

 

Thinner bars filled more completely as the pattern coating thickness increased, which 

suggested a higher heat loss rate across the metal/sand interface where there was a limited 

coating or no coating at all. As casting thickness increased, the incidence of misrun and 

variation in dendrite cell spacing between castings was reduced until a point was reached 

where there was no difference with coating thickness. Interestingly, the authors reported that 

although steel shot had a slight effect on refining the structure in thin walled parts, its 

influence decreased as section size increased to such an extent that the moulding media played 

no part in the spacing of the dendrites in the thickest bars. Additionally, steel shot was not 

found to have any effect on the duration of mould filling. 

 

2.2  CASTING DEFECTS 
 
Defects associated with mould filling can manifest themselves in a number of different forms 

and many researchers [14,24,40,45,58,59,64,66,67,79] have found that the factors affecting 

mould filling are also closely related to formation of defects. These include (i) mechanical and 

chemical properties of the polystyrene pattern, (ii) morphology, size and compaction of the 
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moulding media, (iii) thickness, viscosity and permeability of the pattern coating, and (iv) 

pouring temperature, metal front velocity and profile, and the design of the gating system. 

 

2.2.1  Porosity 
 
Internal porosity is probably the most widely reported defect encountered in the production of 

aluminium castings. Although similar bulk density porosity levels of between 1.0% and 1.5% 

have been found in identical aluminium castings made in both the Lost Foam and the 

greensand processes [80], a considerable difference has been observed in pore morphology. 

Whilst interdendritic porosity and spherical gas bubbles are present in Lost Foam castings, 

only interdendritic cavities are observed in greensand samples. Figures 2.21 and 2.22 illustrate 

interdendritic and gas-type pore defects respectively.  

 

 
 

Figure 2.21: Interdendritic pore  
                    (characterised by predominant 
                        dendrite arms and an irregular 
                        pore surface) 

Figure 2.22: Gas pore (characterised by a 
                         smooth, rounded pore surface) 

 

Shrinkage defects in aluminium castings occur during solidification as a result of volumetric 

differences between liquid and solid states. Interdendritic shrinkage porosity is most widely 

associated with aluminium containing significant quantities of magnesium or copper. These 

elements not only increase the freezing range of the alloy but also provide elevated 

temperature strength to the skin of the casting which is normally the first region to solidify. 

200 µm 200 µm
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With surface collapse unlikely and the progressive development of a primary dendrite 

network, resistance to the flow of the remaining, near eutectic liquid, increases to a point at 

which the pressure at the solidification front reaches zero and where interdendritic shrinkage 

forms. The phenomenon is found in all casting processes, especially those where a sand mould 

is used because the rate of solidification is relatively slow and non-uniform.  

 

Apart from shrinkage, Shin et al. [70] suggested that pores form by three different 

mechanisms in Lost Foam casting. The first is by gasification of liquid polystyrene products 

that have been captured within the liquid metal as it flows through the mould during the filling 

process. The second is similar to the first but this time involves the entrapment of gaseous 

decomposition products directly rather than gasification after capture. The third mechanism is 

by supersaturated hydrogen gas contained within the melt that can originate from the melt 

itself or through reaction with decomposed polystyrene.  

 

Based on the results of their experiments, they suggested that the different mechanisms of 

pore formation would result in a variation in the carbon content found within the pore cavity. 

The highest carbon contents should be associated with entrapped liquid polystyrene that 

subsequently forms a gas whereas the lowest values would be found in pores related to 

hydrogen precipitation. Carbon contents associated with pores found in the thicker 17 mm 

plates ranged from 0% to 4% when casting temperatures of 750 oC or above were used. As the 

plate thickness reduced to 11 mm and 7 mm the carbon levels associated with the pores rose, 

in some instances to 8% and 12% respectively. Lower casting temperatures, of below 750 oC, 

also produced higher carbon levels in pores. These results indicate that casting geometry and 

pouring temperature influence pore formation mechanisms. 

 

2.2.2  Folds  
 
Folds are a group of defects exclusively found in aluminium and magnesium castings 

produced by the Lost Foam process. Zhao et al. [15] categorised this type of defect into a 

number of sub-categories depending on the morphology and location in which they are found. 

Folds connected to downward facing casting surfaces or the lowermost faces of the mould are 

termed “bubble-trail” defects, whilst those associated with converging metal fronts or the last 
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areas of the casting to fill are called “misruns” or “cold laps”. “Blisters” are another form of 

fold defect that are found on upward facing casting surfaces. These defects are usually 

accompanied by a severe distortion of the immediate casting surface.  

 

They also suggested that, in some cases, internal pores can be classified as fold-type defects 

and reasoned that, because Auger depth profiling [81] and X-ray photoelectron spectroscopy 

[15] data published for bubble folds, bubble-trail folds, laps, blisters and internal pores were 

similar in terms of chemistry and physical disposition, these defects could all be categorised as 

folds of one type or another. Examples of fold-type defects on a polished section and on the 

fracture surface of an aluminium casting are illustrated in Figures 2.23 and 2.24. On the 

polished section a fold is recognisable as a thin black line separating two areas of the matrix 

and when the casting is fractured, a smooth shiny surface is revealed.  

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 2.23: Photomicrograph of a fold defect observed in an aluminium flange casting [40]. 

 

 
Figure 2.24: A fold defect in an aluminium flange where two metal streams met [40]. 
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Zhao et al. [15] examined a number of process-specific defects that they collected from 

production and research environments in order to characterise and understand fold defect 

formation. Visual inspection, both real time and post cast, as well as surface analysis indicated 

that all the defects observed had similar surface structures and shared the same root cause in 

defect formation. It was only the formation path of a specific fold defect that led to the 

complexity in defect appearance. Based on their analyses they concluded that all folds 

originated from the initial formation of a gas bubble in the liquid metal and proposed 

nucleation kinetics for such a bubble as illustrated in Figure 2.25. 

 

 
 
Figure 2.25: Illustration of fold nucleation whilst casting aluminium by means of the Lost 

        Foam process. 
 

They postulated that the size of the equilibrium, spherical, gas bubbles that would be 

nucleated at the interface, r*, could be represented by the following equation: 

 

כݎ ൌ
ߪ2

௚݌ െ ௠݌
 Equation 2.5

                               

where pg is the local gas pressure, pm is metallostatic pressure and σ is the surface tension of 

the liquid metal.  
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By application of Darcy’s Law [51] and Bernoulli’s engineering equation [82] and 

discounting any pressure drops that might occur in the sand mould itself (i.e. psand ≈ pamb), they 

expanded equation 2.5 as follows: 
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Equation 2.6

 

where υg is the gas flux through the coating, η is the gas viscosity, ∆X is the coating thickness, 

λp0 is the initial, average linear spacing between plastic globs, λp(t) is the diameter of 

remaining plastic globs at time t after the metal front has passed, H is the total metal head, h is 

the local metal height, ρ is the metal density, υm0 is the initial metal pour velocity, υm is the 

local metal velocity, f is the friction factor, and K is the overall velocity head loss factor due to 

sudden changes in a mould filling path.  

 

As illustrated in Figure 2.25, any perturbation on the liquid metal surface that has a radius 

smaller than r* would nucleate into a bubble in the liquid metal. The authors suggested that 

bubbles generated in this fashion would form folds in one of a number of ways. The type of 

fold would be determined by the susceptibility for liquid residue to accumulate behind the 

metal front at the metal-coating interface, the local gas transfer rate into the surrounding sand, 

the ratio of local casting thickness to r*, the local metal temperature and associated cooling 

rate, and the degree of melt surface contamination. For example, blisters were categorised as 

bubbles that managed to rise to within a short distance of the upper surface of the mould 

cavity and pores found within the casting were given the name of internal pores. Finally, cold 

laps were reported to form between converging metal streams, usually in thin sections. The 

slow filling rates associated with these thin sections resulted in metal fronts being exposed to 

the carbon rich gases of polystyrene decomposition which had the effect of hindering their 

fusion. A number of papers have since been published [83-85], that empirically explored the 

effect of various parameters on minimising fold defects, which supported the theories put 

forward by Zhao et al. [15]. 
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2.2.3  Surface Roughness and Staining 
 
Positive surface roughness on a Lost Foam casting is caused by liquid metal breaking through 

the mould coating and penetrating into the surrounding sand. The coating itself has little 

mechanical strength and, if not supported by well-compacted moulding sand, can rupture 

when subjected to the thermal and dynamic loads applied to it by the liquid metal. The 

resultant fissure provides a route for the liquid metal to exit the mould cavity and force its way 

between the sand grains. Poor coating control and rough cluster handling can result in 

localised coating thicknesses falling below a level required to prevent metal penetration.  

 

Negative surface roughness is caused primarily by the liquid metal front advancing through 

the mould at a faster rate than the liquid and gaseous degradation products can exit into the 

surrounding moulding sand. The liquid polystyrene collects at the metal coating interface 

where a small amount is wicked into the coating [54] and the remainder degrades further into 

the gaseous form before it can permeate into the sand. The phase change from liquid to gas is 

associated with a pressure increase, especially if the coating is of low permeability and this 

pressure change causes rippling on the surface of the metal. Hill et al. [40] observed rough 

surfaces on a number of castings that had been filled at high velocity. It was considered that 

this defect had been caused by liquid polymer that had been displaced to the upper surface of 

the mould but had not had time to escape through the coating prior to solidification. Liu et al. 

[42] also observed rough surfaces in the upper regions of castings. Interestingly, this defect 

was again reported to be associated with rapid mould filling. 

 

Although not a defect in the mechanical sense of the word, surface staining of aluminium 

castings has also been reported. Warner et al. [32] observed brown splotches on the surfaces 

of aluminium bar castings which were attributed to deposits of liquid polystyrene remaining 

on the casting surface after the metal had solidified. Not only can this staining result in the 

reject of a casting for aesthetic reasons but can also indicate that conditions in the mould are 

approaching those conducive to the formation of the more serious “orange peel” defect. 
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2.2.4  Effect on Mechanical Properties 
 
Mechanical failure of a casting is usually caused by the initiation of a propagating crack from 

the most serious defect in the structure [86]. The significance of any one defect in the structure 

of a casting depends not only on its size and shape but also on its location relative to the 

applied stress.  

 

The most widely reported type of defect found in Lost Foam castings is the fold. Although this 

type of defect can manifest itself in a number of forms, for example bubble trails, cold laps 

and blisters, it is always associated with an oxide film. Campbell [87] suggested that many of 

these films were entrained into the bulk liquid by surface turbulence and their dry surfaces 

folded together. As the opposing faces constituted a ceramic to ceramic interface they could 

not bond and created a crack in the liquid. The doubled over nature of these films led to them 

being named “bifilms” and the variable strength that they imparted to castings was dependent 

upon the level of mechanical interlocking of their opposing faces as well as their alignment to 

any tensile force applied [88]. A planar “bifilm” oriented in the same direction as this force 

would cause no significant reduction in tensile strength whereas one lying across the axis of 

the force would have almost no strength at all. 

 

Green and Campbell [89] illustrated these effects by varying the surface turbulence in the 

region of the metal front whilst casting Al-7Si-0.4Mg alloy into chemically bonded sand 

moulds. The castings produced in this experiment were subjected to tensile testing and the 

resultant values analysed using Weibull statistics [90]. The reliability of the castings was 

found to vary in accordance with the amount of surface turbulence present during mould 

filling and hence the content of “bifilms” present in the finished castings. The reliability 

results obtained by each method of manufacture are illustrated in Figure 2.26. Nyahumwa et 

al. [91] showed that “bifilms” also influenced the fatigue life of aluminium castings. Liquid 

Al-7Si-0.4Mg alloy was encouraged to enter test bar moulds in a manner that either 

encouraged or suppressed surface turbulence. After a T6 heat treatment the bars were subject 

to a high cycle fatigue life test where they were cycled in alternating tension-tension with 

stress ratio R = +0.1. They found that oxide films initiated 98% of the fatigue cracks observed 
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and the other 2%, which were created by slip planes, exhibited up to 100 times greater fatigue 

lives as shown in Figure 2.27. 

 
Figure 2.26: Relative reliability of Al-7Si-0.4Mg alloy cast by different methods, 
                    assessed by Weibull Plot and showing the scatter of tensile strengths [89]. 
 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2.27: Effect of Bifilms on the fatigue life of unfiltered (open symbols) and filtered 
                    (solid symbols) castings where surface turbulence was reduced by filtration [91]. 
 

In addition to oxide films, internal pores also have a detrimental effect on the mechanical 

strength of a casting. Ammar et al. [92] studied the effects of porosity on the fatigue life of 

test bars made by low-pressure die-casting and Lost Foam moulding. The authors found that 
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96% of the die-cast specimens and 89% of those made using the Lost Foam technique failed 

as a result of a surface defect that acted as the initiator for the propagation of a fatigue crack. 

Additionally, they reported that an increase in pore area had a deleterious effect on the fatigue 

strength irrespective of the method of manufacture. However, for a similar pore area, for 

example 100 000 µm2, the die-cast samples exhibited a five-fold increase in fatigue life. The 

authors reasoned that propagation of a crack by a small pore took longer because it was 

constrained by the solid matrix between the individual pores. A large pore on the other hand, 

commonly found in the castings made by the Lost Foam method, failed much earlier because 

of the high stress levels associated with it.  

 

Recently, pressurisation has been applied to Lost Foam moulds immediately after casting in 

an attempt to minimise the deleterious effects of shrinkage and gas porosity [71,93]. This was 

achieved by placing a mould in an open pressure vessel and, immediately after casting it, 

sealing the vessel with the mould still inside. The vessel was then pressurised with either air or 

a mixture of nitrogen and air to various levels ranging between 0.5 MPa and 1.47 MPa.  

Porosity levels fell rapidly from around 4% when solidified under normal atmospheric 

conditions to 1% or less when a pressure of 0.5 MPa was applied during solidification. 

Although tensile strength increased slightly it was elongation that was most affected. This rose 

by up to 130% compared to castings solidified under atmospheric pressure. The severe effect 

that porosity had on elongation was supported by earlier work that determined the effect of 

second phase particles, including pores, on the ductility of copper [94]. The results are 

illustrated graphically in Figure 2.28. 

 

It is interesting to note that some researchers report that pores are more important in initiating 

mechanical failures than “bifilms” [95,96] whilst others suggest the opposite [87,88].  This 

may be somewhat irrelevant if both are considered as entrainment defects with the pore being 

treated only as a more open form of “bifilm”.  
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Figure 2.28: Ductility of copper containing a dispersion of second phases (including pores) 
                    [94]. 

 

2.3  COUNTER-GRAVITY FILLING OF LOST FOAM CASTINGS 
 
The velocity of the liquid metal front entering and travelling through the mould during the 

filling operation has a significant effect on the severity of defects found in Lost Foam 

castings. Conventional gravity filling, however well regulated by application of automated 

filling systems and control of process characteristics such as polystyrene foam pattern density 

and coating permeability, is inherently prone to the creation of defects because of the 

influence of gravity. If the casting is top-gated, the complete filling cycle is carried out in the 

direction of the gravity vector. In this case, not only does the metallostatic head increase 

throughout the filling process but also degradation products (of lower density than the liquid 

metal), move counter to the direction of metal flow. These two phenomena promote formation 

of defects through entrainment and entrapment. The situation is improved somewhat if the 



 52 
 
  

casting is bottom-gated because the gaseous pattern degradation products flow in the same 

direction as the incoming metal, and therefore away from the metal front. However, in this 

case, metallostatic pressure and metal front velocity decrease throughout the fill process 

whether this is required or not. 

 

 A radical change to the system of metal transfer can be achieved by upward displacement of 

metal into a mould. Filling the mould in the opposite direction to the gravity vector allows 

precise control over the metal front velocity throughout the filling cycle whilst promoting 

optimum removal of degradation products. A number of counter-gravity casting systems have 

been developed in the last few decades. The most common method is low pressure casting in 

which air or an inert gas is used to pressurise an enclosed furnace [97]. This forces the melt up 

a riser tube and into the mould. Other systems use partial vacuum, or various forms of pump 

or electromagnetic action [87,98] to draw up the metal.  

 

The first mention of counter-gravity casting being applied to Lost Foam moulds was in 1997 

when Bast [99] brought together Lost Foam moulding and low-pressure casting. A mould, 

with its inlet located centrally in the base of the flask, was placed on top of a sealed pressure 

chamber that contained a crucible of liquid metal. A riser tube was placed in the liquid metal 

so that the other end was flush with the upper face of the chamber. The mould flask was 

positioned in such a way that the riser tube and the mould inlet were aligned. All joints were 

sealed and the chamber was filled with air at a pressure of up to 10 kPa (0.1 bar) which caused 

the metal to flow up the riser tube and into the mould. This early paper described the operation 

of the equipment, including the effects of pressure variation on filling rate, but did not provide 

any information on resultant casting quality.  

 

Since that time, a number of other authors have applied counter-gravity casting to the Lost 

Foam process. Bakhtiyarov et al. [72] used a ductile iron treatment ladle as a moulding flask. 

The base of the ladle was modified to accommodate a vertically arranged riser tube, the upper 

opening of which was inside the ladle just above the base and the lower part protruded 

through the base into a reservoir of liquid metal. A foam cluster was located in the upper 

opening of the riser tube with thermocouples and pressure sensors attached, so that 

temperature, vacuum levels and metal front position could be monitored during filling. The 
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ladle was filled with dry, unbonded olivine sand and then a double skinned lid, fitted with a 

series of 25.4 mm diameter vents, was fixed to its upper face. This lid was connected to a 

variable vacuum source of between 76.2 and 84.8 kPa (0.75 – 0.85 bar) which, when applied, 

caused ductile iron at about 1 400 oC to travel up the riser tube and into the mould. The 

vacuum was only released when the ingate between the riser tube and the casting had 

solidified and this caused any remaining metal in the riser tube to fall back into the crucible.  

 

Bakhtiyarov et al. [100] cast a number of plates, but in some cases the flasks were inverted a 

few seconds after mould filling was complete. This procedure was named “a modified vacuum 

assisted counter-gravity casting method”. The idea of the inversion was to provide hot liquid 

feed metal to the solidifying casting. The metal density of the samples produced by the 

standard counter-gravity casting method ranged from 7.17 g/cm3 to 7.25 g/cm3 whereas those 

cast using the technique involving inversion had densities of between 7.28 g/cm3 and  

7.45 g/cm3. Inverting the flask within a few seconds of filling reduced the difference in the 

temperatures recorded throughout the casting and resulted in a slower overall solidification 

time. The authors suggested that these two effects encouraged the escape of gaseous products 

into the moulding sand and therefore reduced casting porosity. 

 

Finally, Penumadu et al. [74] has used an electromagnetic pump to fill Lost Foam moulds in a 

counter-gravity fashion. By varying the power to the pump, metal flow rate and pressure was 

varied during the filling of a number of plate castings in A356 aluminium alloy.  

 

Although interest in the application of counter-gravity filling to the Lost Foam process has 

grown in the past few years, the flow controls have been very primitive. These include using a 

gas pressure profile to encourage the liquid metal to fill the mould in the desired manner and 

direct pressure measurement in the launder system of the electromagnetic pump to 

approximate metal flow. The main drawback with these methods was that neither used a real-

time, closed-loop feedback system. Although thermocouples, inserted at various positions 

within the patterns, gave some insight into the position of the metal front at certain points 

throughout the fill process, these are only snapshots of the complete filling cycle. Another 

aspect lacking from the published literature was quantitative data concerning the number and 

deleterious nature of defects associated with counter-gravity filling. This is not surprising 
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because, without knowing exactly how liquid metal filled the mould, it was not possible to 

determine whether the filling technique or the level of process control exerted the most 

influence on casting quality results. 

 

2.4  FOAM-METAL INTERFACE PHENOMENA 
 
Three distinct zones are present during the filling of a Lost Foam mould. These are, (i) the 

volume occupied by the liquid metal, (ii) the volume occupied by the polystyrene pattern and  

(iii) a region in between these two in which the pattern material is in one or more stages of 

decomposition. As filling proceeds the liquid metal volume increases at the expense of that of 

the polystyrene pattern. The dynamics of the foam-metal interface region not only influence 

the rate at which the metal advances but also the mechanism that allows this to occur.  

 

Published literature puts forward a number of filling mechanisms some of which are stable, 

for example the contact mode [17] and some which are unstable, like the collapse mode [19]. 

However, all authors concur that the foam-metal interface region contains varying levels of 

liquid and gaseous degradation products depending upon the properties of certain elements of 

the system being used. These characteristics include the casting alloy, pouring temperature, 

pattern composition, coating permeability and coating conductivity.  

 

Hirt [101] observed the filling of a number of Lost Foam moulds by means of real-time X-ray 

radiography in order to verify modelling predictions made by FLOW 3-D. He remarked that 

there appeared to be a gravity influence on the motion and an asymmetrical appearance to the 

metal front that was unrelated to the hydrostatic pressure and proposed that this phenomenon 

might have occurred as a result of a Rayleigh-Taylor instability being present at the foam-

metal interface during filling.  

 

2.4.1  Hydrodynamic Instabilities 
 
A hydrodynamic instability is essentially the unstable flow of a fluid whilst in motion. Any 

unstable flow can evolve into a chaotic state of motion called turbulence. A flow is unstable if 

small disturbances in the initial flow do not die out but instead grow into larger disorders that 

influence a significant part of the system.  
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Although Hirt [101] is the only author to have hitherto postulated the occurrence of a 

hydrodynamic instability at the foam-metal interface, the significant density and viscosity 

differences between the liquid metal and the liquid polystyrene [102-104] could encourage the 

existence of one of a class of instabilities to which the Rayleigh-Taylor type belongs. 

2.4.1.1  The Rayleigh-Taylor Instability  
 
In 1880, as part of an effort to better understand the formation of cirrus clouds, Lord Rayleigh 

first investigated the interfacial motion that occurs when a heavy fluid is supported by a 

lighter one [105]. He considered the idealised case of two incompressible immiscible fluids in 

a constant gravitational field. Some seventy years later Taylor [106] recognized that 

Rayleigh's interfacial instability also occurs for accelerations other than gravity. Although the 

classical case involves constant acceleration, a Rayleigh-Taylor instability can also occur for 

time-dependent accelerations whenever the acceleration is directed from the light to the denser 

fluid. 

 

A simple but explicit example of a Rayleigh-Taylor instability is when a glass of water is held 

inverted. This causes the water to fall out at the sides of the glass whilst a column of air rises 

along the centre in its place. Although the atmospheric pressure of the air column is sufficient 

to support the weight of water, the instability is caused by tiny perturbations at the interface. It 

is not difficult to make the comparison between this example and that of Lost Foam casting, 

with the glass substituted for a mould, the water for liquid metal, and the air for liquid or 

gaseous polystyrene.  

 

The interfacial perturbations may be of a single wavelength, λ, or comprise a superimposition 

of many waves, known as a spectrum. Structures of the light fluid penetrating the heavy fluid 

are called bubbles whilst the corresponding fingers of the heavy fluid are called spikes. An 

illustrative example of a Rayleigh-Taylor instablity is shown in Figure 2.29. A single 

wavelength grows exponentially in time before saturating to a constant terminal velocity, but 

when a spectrum of modes is present the interactions between the modes result in turbulent 

flow characterised by high levels of mixing between the fluids. 
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Figure 2.29: Example of a Rayleigh-Taylor instability set up by co-flowing streams (heavy 

above light) of different densities.  
 

A Rayleigh-Taylor instability that propagates at the interface between two miscible fluids 

obeys the following equations of motion [107]:  

 

ߩ߲ ௜ܻ

ݐ߲ ൅ ߘ · ൫ߩ ௜ܻ ሬԦݑ ൅ పሬሬԦ൯ܬ ൌ 0 ;  ሺ݅ ൌ 1, 2ሻ Equation 2.7

  
ሬԦݑߩ߲
ݐ߲ ൅ ߘ · ൤ݑߩሬԦݑሬԦ ൅ ԦԦߜ݌ െ Ԧ߬Ԧ൨ ൌ ߩ Ԧ݃ Equation 2.8

  
ܧ߲
ݐ߲ ൅ ߘ · ቂሺܧ ൅ ሬԦݑሻ݌ െ Ԧ߬Ԧ · ሬԦݑ ൅ ௖ሬሬሬԦݍ ൅ ௗሬሬሬሬԦቃݍ ൌ ߩ Ԧ݃ · ሬԦ Equation 2.9ݑ

                                                  

where ߩ is density, ௜ܻ is the mass fraction of the species ݅, ݑሬԦ is velocity, ܬపሬሬԦ is a diffusional mass 

flux, ݌ is pressure, ߜԦԦ is the unit tensor, Ԧ߬Ԧ is the viscous stress tensor, Ԧ݃ is gravity (or frame 

acceleration), ܧ ൌ ሺ݁ߩ ൅ ሬԦݑ ·  ௖ሬሬሬԦ isݍ ,ሬԦ/2ሻ and is the total energy (with ݁ being internal energy)ݑ

the conductive heat flux and ݍௗሬሬሬሬԦ is enthalpy diffusion. 

 

For incompressible fluids, Equation 2.7 reduces to  
 

ߩ߲
ݐ߲ ൅ ሬԦݑ · ߩߘ ൌ ߘߩ · ൬

ܦ
ߩ ൰ Equation 2.10ߩߘ
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where ܦ is diffusivity [108] and the pressure field satisfies a Poisson equation [109].  

 

For two incompressible immiscible fluids with an interfacial perturbation of wave number ݇ 

and amplitude ߟ, such that ا ߟ ߣ where) ߣ  ൌ  is the wavelength), inviscid linear ݇/ߨ2

stability theory [105] predicts that ߟ will satisfy the following ordinary differential equation:  

 

ߟ݀
ݐ݀ ൌ ሺ݇݃ܣሻଵ/ଶߟ    Equation 2.11

                  

where ݃ is a constant acceleration and A is the Atwood number: 
 

ܣ ؠ
ଶߩ െ ଵߩ

ଶߩ ൅ ଵߩ
 Equation 2.12

                   

with ߩଵ and ߩଶ being the densities of the light and heavy fluids respectively [110]. Thus, the 

initial growth rate is exponential as in Equation 2.13.  

 

ሻݐሺߟ ൌ ൧ Equation 2.13ݐሻଵ/ଶ݇݃ܣሺൣ݌ݔ଴݁ߟ
                            

where ߟ଴ ൌ  ሺ0ሻߟ 

 

Viscosity and diffusivity inhibit high wave number growth and diffusion stabilizes the flow 

above a critical wave number. Including viscous and diffusive effects, the growth rate derived 

from a linear stability analysis is:  

 

ሻݐሺߟ ൌ ߰/݇݃ܣ൛ൣሺ݌ݔ଴݁ߟ ൅ ଶ݇ସሻଵ/ଶݒ  െ ሺݒ ൅ ൟ Equation 2.14ݐሻ݇ଶ൧ܦ
 

where ݒ is kinematic viscosity and ߰ is a function of ܣ, ݇ and the initial diffusion thickness of 

the interface [111].  

2.4.1.2  The Saffman-Taylor Instability 
 
1n 1956 Sir Geoffrey Taylor visited a small oil company and became interested in the specific 

problem associated with recovery of oil from porous rock. Initially, oil could be extracted by 

the intrinsically high pressure in the reservoir, but once this had been exhausted another fluid 
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such as water was injected to allow further extraction to take place. During this “water-

flooding” operation a hydrodynamic instability developed at the interface between the oil and 

the water. The instability arose because the less viscous water was used to push the more 

viscous crude oil in a porous or relatively confined space. As a result ‘fingers’ of the less 

viscous fluid grew into the viscous one. These became narrower as the flow proceeded 

through the reservoir and reached the entrance to the well prior to the displacement of all the 

oil. 

 

In a paper written jointly with P.G. Saffman, they considered an idealised version of the 

problem in which they studied the interfacial instability of a flow between two fluids of 

differing densities and viscosities within a Hele-Shaw cell [112]. A Hele-Shaw cell comprises 

two parallel glass plates separated by a small gap b, and was used because representative 

transparent porous media were not available. In the original experiment only one stable finger 

was observed to propagate steadily. The width of the finger resulted from the competition 

between the capillary forces that tended to maximise the radius of the curvature at the tip of 

the finger and therefore widen it, and the viscous forces that sought the smallest resistance for 

finger propagation and hence encouraged it to narrow.   

 

The Saffman-Taylor instability is essentially the over-damped analogue of the  

Rayleigh-Taylor instability and can be envisaged in terms of Lost Foam casting where the 

pattern has a relatively thin cross section, for example a plate, and is filled from the bottom so 

that the heavier, more fluid liquid metal is being forced into the mould below the lighter, more 

viscous polystyrene residue, and tries to displace it. Two examples of the Saffman Taylor 

instability, taken from the same set of experiments, are illustrated in Figure 2.30.  

 

In both cases, a horizontally arranged Hele-Shaw cell was used in which the gap between the 

plates was set at approximately 0.2 mm [113]. The cell was filled initially with pancake syrup 

at a viscosity of 3 200 cP (3.2 Pa.s), and then isopropyl alcohol was forced through it by 

means of a syringe. The isopropyl alcohol had a viscosity of only 2.43 cP (0.0024 Pa.s) and 

the resultant displacement of the pancake syrup produced the image depicted as Figure 2.30 

(a). The experiment was repeated with the pancake syrup being substituted by corn syrup with 



 59 
 
  

a viscosity of 24 000 cP (24.0 Pa.s), and the pattern of fingering was thicker, as shown in 

Figure 2.30 (b). 
  

 
   (a)         (b) 

Figure 2.30: Illustration of the Saffman-Taylor instability where the viscosity of the 
                    displaced fluid is significantly smaller in (a) than in (b).  
 

Ladtkow [113] reasoned that the difference in the two patterns was caused by viscosity 

differences between the two displaced fluids and suggested that in the first experiment, where 

there was a smaller viscosity difference between the two interacting fluids, a lower pressure 

gradient was present during displacement. This permitted the isopropyl alcohol to flow at a 

higher velocity and form longer, thinner fingers that, in some cases, broke up into sub-fingers.  

When flow through a porous medium is considered in terms of a co-ordinate system where x 

is directed vertically upwards in the direction of the base state fluid flow at velocity V, and y 

and z lie in a horizontal plane, flow over distances greater than the pores themselves can be 

considered in terms of Darcy's law [51]: 

ߘ · ݑ ൌ ݑ          0 ൌ െ
݇
ߤ ݌ሺߘ ൅ ሻݔ݃ߩ ൌ Equation 2.15 ߶ߘ

 

where u is velocity of the penetrating liquid, k is permeability of the porous medium, µ is 

dynamic viscosity of the penetrating liquid, p is pressure, ρ is density of the penetrating liquid, 

g is the gravitational constant and φ is the velocity potential. 
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Saffman and Taylor [112] solved Laplace’s equation for pressure in both fluids, subject to 

continuity of velocity and a prescribed pressure difference across the complete interface. 

Although Saffman and Taylor acknowledged that there could have been a transient zone 

between the two fluids, in which both intermingled, the authors suggested that this zone would 

have been so thin that its width was small compared to the length scale of motion. Therefore, 

for the purpose of mathematical analysis, they assumed that a sharp interface was present, 

across which the normal component of velocity was continuous and, neglecting surface 

tension effects, the pressure difference was zero.  

 

To examine stability, the interface in the base state was taken to be x = 0, as depicted in a  co-

ordinate frame moving upwards at velocity V, and a small time-dependent perturbation, 

ܽ݁௜௡௬ାఙ௧, was added, where a was an arbitrarily small constant, n was an arbitrary integer and 

the sign of σ denoted stability (if negative) or instability (if positive).  

 

The authors reasoned that, from the continuity of normal velocity, that the velocity potential 

gradients on x = 0 equalled the velocity of the interface and could be given by: 

 

߲߶ଵ

ݔ߲ ൌ
߲߶ଶ

ݔ߲ ൌ ܸ ൅ ௜௡௬ାఙ௧ Equation 2.16݁ߪܽ

 

The velocity potential functions are harmonic functions subject to the above boundary 

condition at the interface and such that the effects of the interface perturbation decay as the 

distance from it increases. 

 

߶ଵ ൌ ݔܸ െ
ߪܽ
݊ ݁௜௡௬ି௡௫ାఙ௧,       ߶ଶ ൌ ݔܸ െ

ߪܽ
݊ ݁௜௡௬ା௡௫ାఙ௧ Equation 2.17

 

Neglecting surface tension effects, Saffman and Taylor [112] found the solutions ݌ଵ, ௜݌ଶሺ݌ ൌ

െ ௜ߤ ݇௜߶௜⁄ െ ,ݔ௜݃ߩ ݅ ൌ 1,2ሻ equating the pressures on the interface showed that the stability 

condition is as follows: when fluid 2 is forced upwards towards fluid 1 such that the 

undisturbed interface at x = 0 is travelling at velocity V, the interface is stable if 

 

൬
ଶߤ

݇ଶ
െ

ଵߤ

݇ଵ
൰ ܸ ൅ ሺߩଶ െ ଵሻ݃ߩ ൐ 0 Equation 2.18
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and unstable if the reverse inequality holds (for all wavelengths n). Therefore, the authors 

showed that the effect of the more viscous fluid lying above the less viscous fluid, when the 

lower fluid was forced upwards, was destabilizing. Similarly, the effect of the more dense 

fluid lying above the less dense fluid, as in the Rayleigh-Taylor instability, was destabilizing.  

 

By using a Hele-Shaw cell in their experimental work, Saffman and Taylor [112] were able to 

study fluid motion in essentially two dimensions and make use of the result that the motion of 

a viscous fluid, when the plates of the cell were vertically arranged, was such that the 

components of mean velocity across the interface could be written: 

 

ݑ ൌ
ܾଶ

ߤ12 ൬
݌߲
ݔ߲ ൅ ൰݃݌ ݒ        , ൌ െ

ܾଶ

ߤ12
݌߲
Equation 2.19 ݕ߲

 

where b was the distance between the plates, the x axis was vertically upwards, the y axis 

parallel to the plates and the z axis perpendicular to the plates. u and v were then the 

components of mean velocity in the x and y directions respectively. 

 

The components of velocity in Equation 2.19 were for flow in a porous media with a 

permeability of b2/12 and because there is direct analogy between flow in a porous media and 

that between parallel plates, k1 and k2 in Equation 2.18 can be replaced by b2/12. Therefore, 

the critical velocity for the onset of the instability can therefore be determined from: 

 

V ൌ
െ݃ሺߩଶ െ ଵሻߩ
ଶߤ

ܾଶ/12 െ ଵߤ
ܾଶ/12

 Equation 2.20

                 

 where µ = dynamic viscosity, b2/12 = permeability, V = velocity and ρ = density. Subscripts 1 

and 2 refer to the upper and lower fluids respectively, for a case where fluid 1 is less viscous 

than fluid 2, and fluid 1 is driven upwards into fluid 2. 

 

The authors also observed that when a finger developed in the channel, the ratio λ of the width 

of the finger to the width of the channel was approximately one-half, except when the flow 

speed was slow. Additionally, they determined the shape of the interface for one finger in a 

channel analytically. They found an infinite family of solutions dependent on the value of the 
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parameter λ which was undetermined analytically. Taking 2/1=λ  in accordance with 

experimental observations of systems in which the flow is not slow, yielded a solution which 

was in good agreement with observations made experimentally. When the flow was slow, 

however, the experimental observations and the analytical results differed significantly. 

Saffman and Taylor were unable to explain this discrepancy.  

2.4.1.3  Kelvin-Helmholtz Instability 
 
Since Lord Kelvin [114] and Helmholtz [115] first pointed out that the relative motion of two 

media caused an unstable wave at the boundary between them, many theoretical and 

experimental efforts have been devoted to understand its properties. Today, the growing wave 

at such an interface is known as a Kelvin-Helmholtz instability after the names of the first two 

contributors. An example of such a wave is shown in Figure 2.31. 

 

When a light fluid is located on top of a heavy fluid and shear is induced, for example, by 

moving the heavy fluid one way and the lighter fluid the other way, an unstable condition is 

created between the two. A slight wave forms at the interface between the fluids and grows 

and develops "rolls" which mix the light fluid into the heavy fluid e.g., waves on the sea. 

However, in many cases, one or both fluids are continuously stratified with density decreasing 

smoothly with height, for example the atmosphere above the sea. Nonetheless, a strong, 

smooth, shear (wind) can induce a similar instability and produce layers of turbulence. 

Whether or not the small disturbance triggers instability depends on the value of the 

Richardson number. This is a dimensionless parameter that measures the ratio of stratification, 

(i.e. how fast the density changes with height), to shearing. 

 

ܴ௜ ൌ
݄݃
ଶݑ  Equation 2.21

 

where g is the acceleration due to gravity, h a representative vertical length scale, and u a 

representative speed. For a flow with a sufficiently small Richardson number, the noise will 

produce "rolls”, as in the conventional Kelvin-Helmholtz problem, that lead to turbulent 

mixing. 
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If surface tension can be ignored, and for some short wavelengths, two fluids in parallel 

motion with different velocities and densities will yield an interface that is unstable for all 

speeds. However, the existence of surface tension stabilises the short wavelength instability 

until a velocity threshold is reached. The theory with surface tension included broadly predicts 

the onset of wave-formation in the case of wind-over-water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.31: Laboratory demonstration of a Kelvin-Helmholtz instability. A long tank, filled 
with two resting fluids of different densities was tipped slightly. As the denser 
fluid sank towards the bottom and the lighter fluid rose, a counter flow was 
generated and the interface between the two fluids became unstable [116].  
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The prototypical case is that with one layer of lighter fluid overlying another of denser fluid, 

with the two moving horizontally in the same direction but with different velocities. The 

theory then states that a sinusoidal perturbation of wave number k on the discontinuous 

velocity and density interface is unstable if it meets the following inequality: 

 

ሺߩଶ
ଶ െ ଵߩ

ଶሻ݃ ൏ ଶ݇ሺߩଵߩ ଵܷ െ ܷଶሻଶ Equation 2.22
 

where 1ρ  and 2ρ  are the upper and lower densities, respectively, g the gravitational 

acceleration and 1U  and 2U  the upper and lower velocities, respectively [117].  

 

Figure 2.32 illustrates the growth of the instability and it can be seen that the initial 

perturbation grows into an oscillation because the pressure in a concavity is greater than that 

associated with a convex region of the interface. This encourages the wave peaks to be carried 

by the upper, faster flowing fluid and the velocity of the trough regions to be influenced by the 

slower moving, lower fluid. This results in a “rolling up” of the interface, in this case, in the 

direction of the vorticity direction of the mixing layer. The situation is the same where the 

upper and lower fluids move in opposite directions but in this case the velocity of one of the 

fluids, usually the lower, is represented as a negative value.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.32: Illustration of the formation of a Kelvin-Helmholtz instability which  
                     subsequently grows into a roll [118]. 
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2.4.2  Viscosity of Liquid Polystyrene  
 
Fluid density and viscosity are important in promoting or suppressing instabilities. When a 

fluid is subjected to shear stress, it flows and resists the shear through molecular momentum 

transfer. The macroscopic effect of this molecular action, for most common fluids, is the 

physical property called viscosity. Since shear stresses cause motion in a fluid and result in 

differences in normal stresses at a point, it follows that a fluid at rest must have zero shear and 

uniform pressure at a point. This is the hydrostatic condition. In general, in any flow, layers 

move at different velocities and the fluid’s “thickness” arises from the shear stress between 

the layers that ultimately oppose any applied force. 

 

In Figure 2.33 two plates, each of area A, are kept apart by a distance H, by an intermediate 

fluid. If the two plates are then moved relative to each other at velocity V by a force F, 

Newton’s law [119] states that the shear stress, the force divided by the area parallel to the 

force, F/A, is proportional to the shear strain rate, V/H. The proportionality constant is known 

as the dynamic viscosity, η . The effect of shear strain is quantified by the displacement per 

unit height, D/H, and the rate of this effect, i.e., the strain rate, is the velocity per unit height, 

V/H. Therefore, the viscosity η  can be defined by: 

 

η ൌ
ݏݏ݁ݎݐܵ ݎ݄ܽ݁ܵ
݁ݐܴܽ ݊݅ܽݎݐܵ     ሺܲܽ. ሻ Equation 2.23ݏ

 

Thus, as the viscosity of a fluid increases, it requires a larger force to move the top plate at a 

given velocity. For simple, Newtonian fluids, the viscosity is a constant dependent only on 

temperature, but in the case of polymers such as liquid polystyrene, the shear strain rate also 

has an effect [120]. Figure 2.34 represents the effect that strain rate has on a liquid polystyrene 

melt at constant temperature, known as shear thinning. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figur

 

 

 

 

 

 

 

 

 

 

 

 
Figur
        
 

The v

 

ߟ ൌ

re 2.33: Ste

re 2.34: The
             thin

viscosity at 

ஶߟ ൅
଴ߟ െ
ሺ߬ߛሻ

eady shear f

e effect of s
nning fluid 

any point o

ஶߟ
ሻ௠  

flow of a flu

strain rate on
[120]. 

on either of 

 

uid between

n the viscos

the two cur

n a fixed and

sity of (a) a 

rves in Figu

d a parallel p

strongly an

ure 2.39 is re

plate. 

nd (b) a mild

epresented b

Equ

 66

dly shear- 

by: 

uation 2.24



 67 
 
  

where η0 and η∞ are the viscosities at zero and infinite shear strain rate respectively, τ is a 

shear-dependant time constant that represents the reciprocal of the shear strain rate required to 

halve the viscosity, γ is the shear strain rate and the exponent (m) gives the degree of thinning 

(0 = no thinning, i.e., Newtonian behaviour and 1 = maximum thinning) 

 

The viscosity of shear thinning fluids such as liquid polystyrene depends on the cross-

sectional area in the direction of flow. At low flow rates, the long, thin molecules have large 

effective cross-sections due to them moving in random orientation to one another. However, 

as the shear strain rate increases they align with the flow and thereby reduce their effective 

cross-sections [121]. This results in a significant reduction in viscosity. 

 

Published literature contains a number of references to the viscosity of liquid polystyrene 

melts measured over a range of shear strain rates at temperatures between 170 oC and 230 oC 

[120,122,123]. Although there was some difference in the actual values reported, probably 

due to slight chemical and molecular weight differences of the melts, the order of magnitude 

of each set of results was similar. Williams et al. [124] put forward an expression for the 

temperature dependence of viscosity for glass-forming systems, as shown in Equation 2.25. 

 

log்ܽ ൌ
െ8.86൫ܶ െ ௚ܶ൯
101.6 ൅ ܶ െ ௚ܶ

          ௚ܶ ൏ ܶ ൏ ൫ ௚ܶ ൅ 100൯ Equation 2.25

 

where the parameter aT is the Ferry temperature shift factor, which is approximately equal to 

the ratio of the zero shear viscosity at temperature T to that at the reference temperature Tg. In 

their paper the authors specify Tg = 135 oC as the reference temperature for polystyrenes. 

 

 Figure 2.35, from work published by Osswald [122], approximates η0 for a melt of Polystyrol 

144 CH at three different temperatures, and quantifies the effects of shear strain rate and 

temperature on this value. 
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Figure 2.35: Influence of shear rate and temperature on the viscosity of a polystyrene melt 

        [122]. 
 

Although polystyrene remains in the liquid phase at temperatures well over 

300 oC [54], the bulk of published literature only considers melt viscosity up to 230 oC. This is 

probably because most of the research conducted relates to plastic injection moulding where 

the melt temperature is kept intentionally low to minimise any material degradation [125].  

However, Merz and Colwell [126] showed empirically that it was also applicable to a melt at 

450 oC. Additionally, Lomellini [127] studied the rheology of polystyrene with the aim of 

determining whether the Williams-Landel-Ferry equation was valid at temperatures in excess 

of Tg + 100 oC, Tg being the glass transition temperature which has been reported at 95 oC for 

polystyrene [128]. He concluded that this approach was valid for polystyrene up to at least Tg 

+ 185 oC, the upper limit of his experiment, but did not comment on its accuracy at higher 

temperatures.  

 

Apart from shear rate and temperature, a number of studies have suggested that the molecular 

weight of a polystyrene melt has a significant effect on viscosity. For linear polymers in which 

the monomeric units were linked together in linear fashion with little or no long chain 

branching, i.e., low-density polyethylene and high-density polyethylene, η0 increased linearly 

with molecular weight [129,130]. However, Fox and Flory [131] showed that when the 

molecular weight of a polystyrene melt, Mc, exceeded 38 000, η0 became proportional to M 3.4, 
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(see Equation 2.26). They reasoned that individual chains became entangled with one another 

and this caused a sharp increase in zero shear viscosity above Mc.  

 

logߟ଴ ൌ 3.4logܯ ൅ ܯ          ܭ ൐ 38 000 Equation 2.26
 

where K is a constant at a particular temperature, and has the value of –13.40 for polystyrene 

at a temperature of 217 oC. 

 

Equations 2.25 and 2.26 only considered the effect of a single variable on the viscosity of a 

polystyrene melt. By combining them, Cox and Ballman [39] generated an expression that 

described both molecular weight and temperature dependence simultaneously. This is shown 

in Equation 2.27 below. 

 

logߟ଴ ൌ 3.4logܯ ൅ ሾ900.2/ሺܶ െ 306.4ሻሿ െ 18.38 Equation 2.27
 

A comparison of calculated values for η0 with those obtained experimentally led to the 

conclusion that there was a “satisfactory agreement”. Equation 2.27 appears to be even more 

robust in terms of molecular weight variation. Fox and Flory [131] showed that the viscosity 

of a number of discrete polystyrene melts, each held at a temperature of 217 oC, but ranging in 

molecular weight from 38 000 to 316 000, corresponded accurately with the prediction made 

by the equation that they put forward. 

 

A polystyrene melt can also be characterised by the molecular weight distribution of the 

chains within its total mass. This is known as the level of polydispersity and is measured by 

means of the polydispersity index, ܫ, which is the ratio between the weight average molecular 

weight, ܯ௪, and number average molecular weight, ܯ௡, of the melt such that ܫ ൌ  ௡ܯ/௪ܯ

[102].  A melt where I < 1.1 is monodisperse whereas above that value it is considered to have 

some level of polydispersity. The accuracy of the viscosity exponent of the Fox and Flory 

equation, i.e., 3.4, has been questioned by a number of researchers when applied to 

polydisperse melts [132,133]. However, Bernard and Noolandi [134] examined these claims 

using model molecular weight distributions and found them to be completely unjustified.  
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2.5  ALTERNATIVE PATTERN MATERIALS  
 
2.5.1  Polymethyl Methacrylate 
 
Expanded polystyrene is the most commonly used material for manufacturing patterns in the 

Lost Foam process. However, decomposition of this material at elevated casting temperatures 

produces carbonaceous substances that have been reported to be responsible for carbon pick-

up in low carbon steel castings and surface imperfections across the complete range of ferrous 

alloys [135]. To overcome this limitation Moll and Johnson [136] developed polymethyl 

methacrylate (PMMA). 

 

The principal advantage associated with PMMA is its ability to decompose with minimal 

carbon residue. This results from both the chemical composition of the material and the 

mechanism by which the material decomposes. Figure 2.36 illustrates the differences in 

chemical structure between polystyrene and PMMA. It can be seen that whilst the polystyrene 

monomer is made up of eight carbon atoms, that of PMMA consists of only five. Hence the 

potential to form carbon residues is reduced by over a third. 

 

 

 

 

 

 

 

 

 

 

                (a)             (b) 

Figure 2.36: Chemical structure of (a) polymethyl methacrylate (PMMA) and (b) polystyrene  

 

The PMMA molecule also contains two oxygen atoms and it is thought that these contribute to 

a decrease in carbon residue by reacting with and carrying away some of the carbon from the 

mould cavity. Madorsky [13] studied the degradation of this material in vacuum at elevated 
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temperatures and found that at 500 oC the products of volatilisation consisted almost entirely 

of monomer. However, at 1200 oC this had dropped to around 10% and the gaseous products 

were made up of lighter hydrocarbons and large amounts of carbon monoxide and carbon 

dioxide. PMMA is also devoid of a benzene ring in its structure and therefore another source 

of carbon is eliminated. In aluminium casting, where polystyrene patterns are used widely, the 

benzene ring does not pose a quality problem because casting temperatures are not high 

enough to decompose it into elemental carbon.  

 

Mehta and Shivkumar [137] used thermogravimetric analysis (TGA) and differential scanning 

calorimetry (DSC) to evaluate the physicochemical phenomena that occurred during the 

thermal degradation of PMMA between 50 oC and 600 oC. They found that, although PMMA 

started to collapse and melt at a higher temperature than polystyrene, it began to volatilise 

some 25 oC to 50 oC earlier. In addition, the end temperature at which it had fully volatilised 

was approximately 50 oC lower than that of polystyrene. 

 

The researchers also noted that, during the degradation process, PMMA produced a larger 

quantity of gas than a corresponding amount of polystyrene and suggested that this was 

because the mechanism of degradation was by “unzipping” rather than by the random scission 

mechanism associated with polystyrene. Their graph comparing the gas production from both 

materials is contained in Figure 2.37. 

 
 

 

 

 

 

 

 

 
 
 
 
Figure 2.37: Volume of gases (standard temperature and pressure) produced upon the 

         degradation of a unit mass of PMMA and polystyrene as a function of 
         temperature [137]. 
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Since foamed PMMA is relatively expensive to produce, a number of copolymers of 

polystyrene and PMMA have been developed as pattern materials for ferrous use. Typically, 

these consist of 70 wt.% polystyrene – 30 wt.% PMMA and 30 wt.% polystyrene – 70 wt.% 

PMMA. 

 

2.5.2  Bromine-based Additives 
 
Brominated additives, such as hexabromocyclododecane, have been used as flame retardants 

in structural polystyrene components since the 1970’s [138] and experiments have shown that 

bromine in the polystyrene matrix promotes cleavage of the polymer chain into smaller units 

which increases the rate at which depolymerisation takes place [139]. In the last few years, a 

variety of bromine bearing materials have been added to polystyrene pattern material used in 

the Lost Foam process with the primary goal of eliminating fold defects. The chemical 

structures of three of these additives are shown in Figure 2.38 [140]. 

 
Figure: 2.38: Chemical structure of some organic brominated additives used in the Lost Foam 

          process [140]. 
 

Both Bertini [139] and Molibog et al. [141] showed that a polystyrene that had been treated 

with a bromine-based additive decomposed more quickly than a standard one and this resulted 

in a reduction of the amount of partially decomposed polymer in the mould which could form 

defects in the casting. Molibog et al. [141] simulated foam decomposition by pushing treated 

and untreated foam bars against a strip heater, during which the liquid foam decomposition 

products were collected and subsequently analysed using gel permeation chromatography. The 

residue from the treated foam bars was found to have a lower molecular weight than that of 

the untreated bars, and this was thought to have resulted in the residue having a lower 

viscosity. Sonnenberg et al. [142] determined that this molecular weight reduction was due to 

Octabromodiphenyl oxide Tetrabromophenol A bis(allyl ether) Tetrabromocyclo-octaneOctabromodiphenyl oxide Tetrabromophenol A bis(allyl ether) Tetrabromocyclo-octane
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the liberation of free radicals from the additives during the heating cycle and these attacked 

the polystyrene matrix and reduced its molecular weight. 

 

Hess et al. [143] examined the effect of three foam characteristics (bead type, bead fusion and 

nominal pattern density) on metal velocity and defect formation in aluminium casting. Two 

chemistries of expanded polystyrene beads were examined, including untreated beads and 

those treated with a bromine-based additive. Both beads had a molecular weight of 280,000 

and an average size of 350 microns. The bromine additive reduced the incidence of pyrolysis-

related defects with the measured defect area being approximately 12% of that obtained when 

untreated foam was used. However, the reduction in defect area was not as noticeable in thick 

pattern sections where the area-to-perimeter ratio was large, probably because, even though 

the foam was decomposing more quickly, the liquid residue had to be transported to the mould 

walls a longer distance, before removal through the pattern coating. 

 

The lower activation energy in brominated foam makes its filling speed less sensitive to metal 

temperature. However, this dependence is weak even in non-brominated foam, and the filling 

speed remains essentially unaffected [17].  

 

2.6  TECHNIQUES FOR MONITORING FILLING BEHAVIOUR 
 
The earliest and probably simplest way to visualise the filling sequence in Lost Foam casting 

was to build a transparent window into the side of the mould. This method was used by Butler 

and Pope [3] in 1964 to study the filling of lost foam moulds in detail. In their experiment they 

placed uncoated blocks of polystyrene on a mica window that acted as one vertical side of a 

sand mould. The patterns were filled from the bottom and the flow of molten aluminium 

recorded on film. Other researchers [8,29,45,145] have since used this method to study the 

influences of the pattern material, coating thickness and sand fineness on the filling of simple 

patterns with molten aluminium. Figure 2.39 contains a single frame from a video that 

captured the displacement of a vertically oriented polystyrene pattern by liquid aluminium as 

viewed through a transparent window.  
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However, mica windows are not permeable and therefore, in all of these experiments, the 

pattern decomposition products were not able to escape from the region adjacent to the 

window in the same manner as they would have in a conventional Lost Foam mould. 

Therefore, this technique, although easy to use, was not suitable for making quantitative 

measurements of mould filling behaviour. 

 

Detection devices embedded in the foam pattern have also been used to monitor the position 

of the liquid metal as it flowed through the mould cavity. Yao and Shivkumar [145] used the 

thermometric technique to study filling behaviour in rectangular plate patterns when pouring 

different molten liquids, such as wax, tin, aluminium and copper. Figure 2.40 shows the 

typical thermocouple response times for each of these liquids and it can be seen that the 

temperature rose sharply as soon as contact was made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.39: Single frame of a video used to record the filling of a Lost Foam mould through 

        a transparent window (courtesy of Lovink B.V., The Netherlands)  
 

Detection devices embedded in the foam pattern have also been used to monitor the position 

of the liquid metal as it flowed through the mould cavity. Yao and Shivkumar [145] used the 

thermometric technique to study filling behaviour in rectangular plate patterns when pouring 

different molten liquids, such as wax, tin, aluminium and copper. Figure 2.40 shows the 
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typical thermocouple response times for each of these liquids and it can be seen that the 

temperature rose sharply as soon as contact was made. 

 

By using an array of thermocouples, Yao and Shivkumar [145] were able to plot contour maps 

showing the position of the liquids during the filling cycle. They were also used to assess any 

variations in the speed of the fronts as they travelled through the moulds. This was done by 

approximating the front velocity from the time recorded for it to travel between two 

thermocouples of a known distance apart. 

Figure 2.40: Typical response times of closed thermocouples located in polystyrene plates and 
        displaced by different liquids [145]. 

 

This technique has the benefits of utilising conventional Lost Foam moulds and generating 

quantitative data, but it cannot determine in detail how the metal front moves between any two 

detectors, making any set of results open to multiple interpretations.   

 

Although the first attempts at using real-time X-ray to observe metal filling behaviour were 

over 60 years ago [146] its application for this task only became more widespread in the mid 

1990’s. In 2002 Sun et al. [21] observed the effects of bead fusion and coating permeability on 

the filling of vertically oriented polystyrene plates with liquid aluminium. The X-ray system 

that was used included a 320 kV metal ceramic tube with a spot size of 0.8 mm x 0.8 mm and 
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a 228 mm tri-field image intensifier linked to a video camera. The complete system was 

housed in a lead lined room with remote control of the X-ray and data acquisition systems.    

 

Subsequently real-time X-ray has been used to study many other aspects of the process, such 

as the formation of lustrous carbon and the effect of glue joints [63,148]. For example, Sun et 

al. [147] also made a number of iron castings from vertically oriented plate patterns that had 

either a low or normal level of bead fusion. Figure 2.41 contains two real-time X-ray images 

of the filling of a normally fused pattern together with the resultant casting, and Figure 2.42 

shows a similar set of images but relating to a poorly fused pattern. 

 

From resultant videos the authors determined metal velocity changes and the profile of the 

metal front during filling as well as the total filling time. Additionally, they were able to 

superimpose a map of the advancing metal front on the casting and relate it to the location and 

morphology of any lustrous carbon defects. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.41: Real-time X-ray images of the filling behaviour with a polystyrene pattern whose 

        beads had undergone the correct amount of fusion and a photograph of the 
        resultant casting [147]. 
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Figure 2.42: Real-time X-ray images of the filling behaviour with a poorly fused foam 

        pattern together with a photograph of the resultant casting [147]. The black lines 
        on the surface of the casting denote the location of lustrous carbon defects. 

 

The main limitations to this technique are that as the pattern thickness, mould thickness or the 

density of the cast alloy increases, the X-ray source intensity also needs to increase in order to 

be detected by the receiving unit. Also, three-dimensional patterns with hollow sections are 

difficult to interpret because the flow of liquid metal up one face of a pattern may mask filling 

of a section of the pattern behind it. Therefore, this technique has been limited to observing 

the filling of simple 2-dimensional shapes. 

 

2.7  STATISTICAL ANALYSIS OF THE PROPERTIES OF CASTINGS 
 
When a set of specimens from a single casting or a batch of castings made under seemingly 

identical conditions are subject to mechanical testing, the measured strengths are normally 

scattered about a median value. The extent of this scatter provides an indication of the 

reliability of the material in respect of the mechanical properties being assessed. A number of 

statistical techniques, such as normal distribution, Weibull distribution and the type I extreme 

value distribution, have been used to describe the scatter of data.  
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Green and Campbell [148] evaluated these three distributions, to determine which most 

accurately described the scatter of tensile test data, and determined that the Weibull 

distribution was most accurate. The Weibull distribution function linearises most engineering 

data distributions and therefore makes it possible to estimate the behaviour of a population of 

infinite size from a small amount of data. Unlike the normal distribution, a Weibull 

distribution is skewed such that it has a long tail of low strengths and a sharp fall off in the 

high strength region. 

 

The Weibull distribution can be used as a tool for casting quality analysis because it enables a 

single figure quantification (modulus, λ) to be used to describe the strength distribution. This 

is a more accurate description than a standard deviation, which assumes a symmetrical 

distribution of strength about a mean value [89,149]. Generally, a minimum of 20 to 30 

samples is required for a good characterisation of the strength of a brittle material [149]. The 

Weibull distribution can be expressed in the cumulative, three-parameter form as [90]: 

 

୵ܨ ൌ 1 െ exp ቊെ ൬
ݔ െ ߤ
ߪ െ ൰ߤ

ఒ
ቋ Equation 2.28

               

where Fw = the cumulative fraction of failures in the mechanical property, x = variable being 

measured, e.g. tensile strength, σ = characteristic stress at which 1/e of specimens survived, µ 

= boundary value below which no failure can occur and λ = a width parameter, often referred 

to as the Weibull modulus. 

 

As the value of λ increases, the spread of x narrows. When characterising fracture 

distributions, the Weibull distribution is often used in two-parameter form with µ set to zero: 

 

୵ܨ ൌ 1 െ exp ቊെ ቀ
ݔ
ቁߪ

ఒ
ቋ Equation 2.29

 

The value of modulus, λ, can be calculated by taking the logarithm of Equation 2.29 twice to 

give a linear equation: 
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݈݊ ൜݈݊ ൬
1

1 െ ୵ܨ
൰ൠ ൌ ሻݔሺ݈݊ߣ െ ሻ Equation 2.30ߪሺ݈݊ߣ

 

By plotting ln{1/(1-Fw)} versus ln(x) a straight line graph is obtained with slope λ and 

intercept –λln(σ), often referred to as a Weibull plot. Linear regression analysis is widely used 

to evaluate λ. The x values (e.g. UTS or elongation) are arranged in order of increment and a 

probability of failure, a number between 0 and 1, is assigned to each corresponding Fw. Since 

the sample tested is considered representative of a large population, the true value of Fw.j (the 

probability of failure of the jth specimen) is not known and has to be estimated. This estimator 

equation should be chosen such that, on average, the errors arising each time due to this 

estimation compensate each other, and several estimators have been reported [149]. For the jth 

specimen failure from a total of N results, four of the most common estimators are as follows: 

 

௝ܨ ൌ
݆ െ 0.5

ܰ  Equation 2.31

 

௝ܨ ൌ
݆

ܰ ൅ 1 Equation 2.32

 

௝ܨ ൌ
݆ െ 0.3
ܰ ൅ 0.4 Equation 2.33

 

௝ܨ ൌ
݆ െ 0.5

ܰ ൅ 0.25 Equation 2.34

                                       
Examples of skewed distributions and associated ln{ln{1/(1-Fw)}} versus ln(UTS) plots of 

three sets of data that were used to evaluate the effect of ingate design in open channel casting 

of aluminium are shown in Figure 2.43 [150]. It can be seen that the cumulative distributions 

are characterised by skews to the right with tails of weak specimens extending into the low-

strength regions. 
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Figure 2.43: (a) Frequency and (b) ln{ln{1/(1-Fw)}} versus ln(UTS) plots of aluminium 

         castings made with three different designs of ingate [150]. 
 

2.8  SUMMARY 
 
In contrast to all other casting processes, the filling of a Lost Foam mould with liquid metal is 

heavily influenced by the presence of the pattern, made from polystyrene, PMMA or a 

copolymer. This pattern must decompose and exit through the coating into the surrounding 

sand mould at such a rate that the metal front neither freezes prematurely nor hinders the 

transport of liquid and gaseous degradation products to the pattern walls and through the 

coating into the sand mass. To encourage this condition a large number of variables are 

controlled so that they either directly or indirectly affect the filling speed. 

 

The running system has little or no influence on the velocity of the liquid metal as it travels 

through the mould and, up until recently, the main focus of attention in controlling this 

parameter has been the properties of the pattern coating. A highly permeable coating allows 

(a) 

(b) 
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the metal to move at a faster rate through the mould because the degradation products can 

escape more easily. Although this situation reduces misrun defects, it can disrupt the transport 

of liquid and gaseous phases of the pattern material to the mould walls and promote an 

unstable metal front that may result in entrapment of degrading pattern material. The 

application of a low permeability coating has essentially the opposite effect.  

 

A significant amount of viscous, liquid polymer is generated when polystyrene patterns are 

used in conjunction with aluminium alloys. The liquid aluminium has a relatively low 

viscosity and this contrast between the two liquids may influence the stability of the interface 

as front velocity increases. To reduce the amount of liquid residue formed, bromine additives 

have been introduced into the polystyrene pattern material.  

 

With such a critical parameter as velocity being controlled indirectly, it is not surprising that 

the Lost Foam process has been fraught with casting production and process reliability 

problems. However, over the past twenty-five years, systems have been developed for filling 

open channel moulds with direct and, in some cases, closed loop control of the metal velocity. 

For aluminium alloys it has been shown that controlled filling from the bottom of the mould   

eliminates surface turbulence and improves the reliability of the process. 

 

The main purpose of this research has been to determine whether aluminium castings made by 

the Lost Foam process benefit from the application of controlled counter-gravity filling 

techniques. This involved a thorough study of the nature of the interaction between the 

advancing metal front and the receding Lost Foam pattern in order to understand its effect on 

casting quality. The initial part of this research applied conventional gravity-filling techniques 

in order to expose their level of inadequacy and this was followed by use of a directly 

controlled, counter-gravity filling technique so that velocity control could be maintained 

throughout the filling cycle.  
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3  EXPERIMENTAL PROCEDURE 
 
 
3.1  GRAVITY FILLING OF LOST FOAM CASTINGS 
 
A series of simple plate castings was made to determine the differences in the filling 

behaviour of Lost Foam moulds when patterns were gated either from the top or the bottom. 

In addition, a set of more complex frame castings was produced with identical running 

systems. This casting design encouraged the formation and subsequent recombining of 

multiple metal fronts during the mould filling process. Samples taken from these castings 

were subjected to tensile testing and the results compared with the observations made during 

mould filling. 

 

3.1.1  Mould Filling Observations 

3.1.1.1  Datalogger Method 
 
Plate and frame patterns were produced from pre-expanded, T-grade polystyrene beads with 

an average diameter of 1 mm, made on the same industrial pattern moulding machine from 

one set of horizontally parted, aluminium tooling. Both pattern types had overall dimensions 

of 363 mm long, 197 mm wide and 15 mm thick and, whereas the plate was essentially solid, 

the frame had seven large rectangular holes moulded in. The arrangement of these holes was 

such that the frame had a simple, 15 mm square section that consisted of two long bars with a 

further eight small ones arranged perpendicularly. Figure 3.1 shows the dedicated drag tools 

used to make both pattern designs. The tool on the left was for making frames and illustrates 

the arrangement of the bars.  

 

After aging for 24 hours, one pattern of each design was sectioned into 15 mm cubes and 

density profiles obtained by measuring the mass and volume of each specimen. The patterns 

were then attached to dedicated running systems to form clusters as shown in Figure 3.2. Each 

running system consisted of a set of common elements as follows,  
 

(i) A pre-formed, proprietary brand, ceramic pouring basin. 

(ii) A 40 mm diameter, expanded polystyrene downsprue (but with a 10mm diameter 

hollow centre to minimise the temperature loss of the cast metal).  
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(iii) A solid, expanded polystyrene runner bar (6.0 cm2 cross section). 

(iv) A solid, expanded polystyrene ingate (10.4 cm2 cross section), to which was 

attached the plate or frame pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1: Photograph of drag tooling for making frames (left) and plate (right) patterns. 

 

The pattern and running system components were manually assembled using a hot-melt 

ethylene vinyl acetate adhesive with a melting point of approximately 110 oC. Four clusters 

were made with the runner bar and ingate located above the pattern plate and a further four 

with the runner bar and ingate located underneath. Each cluster incorporated a single pattern, 

either a plate or a frame, so that two frame-type and two plate-type clusters of each running 

system configuration were available for casting. Figure 3.2(a) shows the cluster design of a 

top-gated plate and Figure 3.2(b) illustrates the same pattern design, assembled into a cluster, 

where the ingate is placed at the bottom. A metallostatic head height of 200 mm between the 

top face of the pattern and the lower face of the pouring basin was maintained in each design. 
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A water based alumino-silicate refractory (Semco Perm C2) was applied by manually dipping 

each cluster into a tank of this material until all but the pouring basin was submerged. The 

capacity of the coating to adhere to the polystyrene surfaces was measured by immersing a 

stainless steel plate (100 mm x 100 mm x 2 mm thick) into the bath and then determining the 

weight of wet coating adhering to the plate. The wet weight tolerance of the coating was 

maintained within the supplier recommended limits of 4.5 g + 0.5 g by adding coating or 

distilled water to the tank and mixing by means of an electrically driven paddle. Coating 

samples were collected by dipping 100 x 100 stainless steel wire mesh discs which had a 

diameter of 65 mm into the mixed material. These samples were dried, together with the 

coated clusters, for 4 hours in a gas fired, circulating air oven at 55 oC. After this they were 

used to determine coating permeability in accordance with the procedure described by Kocan 

[47] as described in section 2.1.4. 

 

Loose, dry, recycled silica sand with an average grain size of 370 µm was used as the 

moulding media and was contained in fabricated, steel flasks that had internal dimensions of 

0.9 m x 0.9 m x 0.9 m. Each flask was filled with a “bedding layer” of sand approximately 

150 mm deep. Two clusters were placed on the sand base and centrally located in the flask by 

means of a jig as shown in Figure 3.3. 

 

The flask was then filled with sand and subjected to horizontal and vertical vibration with an 

acceleration of 0.8 G to bring about compaction. Maximum sand grain compaction was 

considered to have been achieved when there was no longer any reduction in bulk density of 

the sand in the flask, generally achieved within 10 s. of completion of filling of the moulding 

box. 

 

Ingots of Al-10wt.%Si alloy that had been pre-modified with strontium were melted in a 

gas-fired crucible furnace of 500 kg capacity. The metal was superheated to approximately 

830 oC before it was tipped directly into a preheated crucible furnace that used electrical 

resistance heating to maintain metal temperature. A permanently immersed chromel-alumel 

thermocouple measured and controlled the temperature of the metal in conjunction with a 

proportional integral derivative (PID) controller. When the temperature had stabilised to 

784 oC each plate cluster was cast one at a time. After casting a single cluster, any metal 
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remaining in the ladle was discarded and it was refilled from the holding furnace. The frame 

clusters were cast in the same manner but at the higher temperature of 909 oC. This was 

because the modulus of the frame casting, i.e., the ratio between the volume and the surface 

area of all cooling faces, was significantly lower than that of the plate (0.38 cm against  

0.67 cm) and the higher temperature was needed to counteract premature freezing. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: Arrangement of two bottom-gated clusters resting on the “bedding layer” of sand 
                  and located at the top of the flask by means of a steel jig.  
 

Castings were left to cool in the mould for one hour before being separated from the moulding 

sand on a vibratory grid. Any coating still adhering to the castings was removed using 

compressed air and a wire brush. 

 

Mould filling of one top-gated and one bottom-gated cluster of each pattern design was 

monitored by means of a datalogger unit that was connected to a disposable, 25 strand copper 

wire. A schematic representation of this unit is illustrated in Figure 3.4.   
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Figure 3.4: Schematic representation of the datalogger unit that was used to measure mould 
                  filling characteristics. 
 

Each strand was attached at a pre-chosen point to the pattern cluster by inserting its open end 

into the polystyrene substrate and fixing its outer sheath to the pattern coating with hot melt 

glue. One strand, which acted as a trigger to start the datalogger recording, was located 

alongside the common earth wire in the pouring basin. At the start of mould filling the trigger 

and common earth strands were shorted through contact with the liquid metal. This action 

caused the datalogger to start a series of internal timers, each related directly to a specific 

strand in the cable. As the metal continued its passage through the mould it made contact with 

the other strands of the cable and shorted them out, causing the timer associated with the 

shorted out wire to stop counting. A map could then be constructed of the time taken for liquid 

metal to reach various points throughout the mould. 

3.1.1.2  Real Time X-ray Method 
 
Determination of the progress of mould filling by means of a datalogger was limited in the 

scope of information that could be collected. Firstly, data could only be measured at a small 

number of points throughout the casting and, secondly, it focused only on one variable, in this 

case the time taken for the metal front to reach each of the pre-determined monitoring 
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positions. By means of a real time X-ray device a section of the complete mould cavity could 

be viewed throughout the filling cycle and the image recorded for subsequent playback.  

 

For this experiment plate and frame clusters were produced in the same way. To ensure that a 

good image resolution was achieved from the real time X-ray unit, a modified moulding flask 

was used, that had a steel frame construction, but had 10 mm thick plywood sheets to form the 

two large opposing faces of the flask. Internal dimensions measured 0.45 m long by 0.11 m 

wide by 0.83 m deep. Loose, dry silica sand was again used to support the clusters in the 

mould. A bedding layer of 150 mm was placed in the bottom of the flask and a single cluster 

centralised on top of it. The remaining space in the flask was manually filled with sand whilst 

being subject to vertical vibration of approximately 0.8 G to bring about sand compaction. 

Filling of each flask took approximately 30 s. and maximum sand grain compaction was 

achieved within 10 s. after the flask was full. Although the moulding flask was of a different 

configuration to that used in the previous experiments and the moulding sand was compaction 

without the use of a horizontal vibration component, sand packing density was considered to 

have been similar because the patterns were very simple in design (no cavities and limited 

undercuts) and were always positioned in a vertical orientation in the flask.  

 

Each completed mould was placed, one at a time, in a lead lined, real time X-ray facility that 

was used to monitor and record the filling of the mould in a pre-selected area. This unit was 

equipped with a 160 kV X-ray tube, an image intensifier and a high-speed camera linked to an 

S-VHS video recorder. The X-ray source was located on one side of the mould and the image 

intensifier on the other as illustrated in Figure 3.5. This arrangement produced an image of the 

mould being filled of about 150 mm diameter. 

 

Approximately 8 kg of the pre-modified Al-10wt.%Si alloy was melted using a high 

frequency induction furnace, and then superheated to about 50 oC above the desired pouring 

temperature so that sufficient time was available for transfer of the crucible from the furnace 

to the pouring device of the real time X-ray facility without the temperature of the metal 

dropping below the desired pouring temperature. Metal temperature was measured 

continuously by means of a chromel-alumel thermocouple connected to a digital thermometer. 
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Figure 3.5: Real time X-ray observation of the mould filling of a gravity cast, bottom-gated 
                  frame pattern. 
 

When the desired temperature was reached, the pouring device was driven up to the mould in 

the X-ray unit and the liquid aluminium discharged into the pouring basin by motor driven 

tilting about an axis through the lip of the crucible. A pouring temperature of 784 oC was used 

to cast all the plate clusters and the first frame cluster. However, it was raised to 909 oC for 

casting of the remaining three frames because real time X-ray imaging had revealed that the 

metal front had frozen prematurely whilst filling the frame at 874 oC. Once the filling cycle 

was complete the casting was allowed to cool in the mould for 1 hour before being removed.  

 

3.1.2  Tensile Strength Testing 
 
Top and bottom-gated castings of both pattern designs were selected for the determination of 

their as-cast tensile strength. Eight test bars, with a length of 115 mm and a 15 mm by 15 mm 

square section, were extracted from each of the chosen castings and machined to produce 
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tensile test bars with a gauge length of 60 mm and diameter of 10 mm. The source, 

identification and dimensions of each of the eight test bars relative to the cluster type from 

which they were taken are illustrated in Figures 3.6 and 3.7.  

 

Tensile testing was performed on a Losenhausen Universal Testing Machine S/N 3617 in 

accordance with British Standard EN 10 002-1:2001 [151], with a strain rate of 1mm.min-1. 

 

3.1.3  Examination of Fracture Surfaces 
 
One fracture surface of each of the test bars from the experiments was observed using a JEOL 

6060 scanning electron microscope. Defect types were characterised by means of their 

morphology and a small region of the surface of each defect was subject to electron 

microprobe analysis (EMPA).   

 

 
 
Figure 3.6: Tensile test piece sampling and labelling system for top and bottom-gated plate    

castings. 
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Figure 3.7: Tensile test piece sampling and labelling system for top and bottom-gated frame 

castings. 
 
 

3.2  COUNTER-GRAVITY FILLING OF LOST FOAM CASTINGS 
 
The control over metal flow during gravity casting is limited because, for at least some portion 

of the filling cycle, the metal travels in the direction of the gravity vector. When the metal 

travels against the gravity vector, as is the case with bottom-gated castings, the flow rate is 

also affected by the constantly changing head differential between metal in the pouring basin 

and the metal front in the mould cavity. In the uncontrolled condition, fingers of metal can 

precede the general front and then later recombine entraining degraded polystyrene. 

Introducing the metal into the mould from below and filling vertically upwards throughout the 

complete cycle can remove this limitation. Such a system requires the ladle of metal to be 

located under the mould and the liquid metal to be transferred into the mould by a pump that 

is equipped with suitable controls. 
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3.2.1  Mould Filling Observations 
 
This set of experiments made use of the original plate pattern and also a number of patterns 

supplied by Foseco Morval Ltd. of Tamworth, UK. These patterns were also of a plate design 

but with a length of 440 mm, a width of 180 mm and a thickness of 10 mm and some 

contained a proprietary organic brominated substance. This material had been added to the 

expanded polystyrene beads prior to the moulding process, and was added in order to reduce 

the amount of liquid degradation products produced during casting. 

 

In order to cast these plates in a counter-gravity fashion the previously applied bottom gating 

system was substantially modified. Firstly, the pouring basin, downsprue and runner bar were 

discarded altogether and these items were replaced with a single pre-expanded polystyrene 

upsprue. This upsprue had a diameter of 40 mm (with a 10 mm diameter hollow centre) and a 

length of 95 mm. The upsprue and pattern plate were attached to an ingate of the original 

design by means of hot-melt glue and the complete cluster was coated and dried in the same 

manner as described previously.   

 

The moulding flask used in conjunction with the real time X-ray facility was also modified by 

drilling a centrally located, 70 mm diameter hole through its base. This hole was fitted with a 

compressible ceramic sleeve that was 40 mm in height and had an internal diameter also of 

40 mm. The sleeve was inserted so that one face was flush with the bottom of the flask while 

the other end protruded into the flask. The pattern cluster was positioned by locating its 

upsprue into the sleeve so that its face was also flush with the base of the flask. By locating 

the pattern in this way the hole in the base of flask was sealed and this permitted the mould to 

be filled in the same manner as described previously. 

 

To cast each mould approximately 8 kg of a pre-modified LM25 alloy (Al-7wt.%Si0.3%Mg) 

was melted in a clay graphite crucible that was located in a small, high frequency induction 

furnace. The metal was superheated to approximately 100 oC above the desired casting 

temperature and then the crucible was transferred to the counter-gravity casting machine 

which is illustrated in Figure 3.8.  
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This device consisted of a cylindrical steel pressure vessel mounted on a square base plate 

with wheels attached. The vessel was fitted with a pressure gauge, a pressure relief valve and 

a chromel-alumel thermocouple that could measure the temperature of the liquid metal at all 

times. The inside of the vessel was accessed by means of a hinged lid which was fitted with an 

O-ring seal. When in the closed and clamped position, this seal mated with the upper flange of 

the vessel and formed an air-tight joint. The lid had a 50 mm diameter hole located in its 

centre and this was used to locate a steel “riser” tube.  

 

The crucible of liquid aluminium was placed on a refractory brick in the pressure vessel, the 

thermocouple placed in the liquid metal and the lid closed and clamped. A ring gasket made 

from compressed refractory fibre blanket was placed in the recess in the lid and the steel 

“riser” tube, previously coated with a refractory wash, was lowered through the hole in the lid. 

The upper end of the tube was fitted with a flange that located it in a recess in the lid which 

left it flush so that the opposite end was submerged in the liquid metal centrally and to a 

suitable depth. 

 

A second gasket of the same material was placed on the upper flange of the “riser” tube and 

then the completed mould was placed on the lid of the pressure vessel so that the hole in the 

bottom of the flask aligned with the riser tube. The gasket provided a seal between the edge of 

the tube and that of the flask inlet hole. The mould was clamped to the pressure vessel by 

means of an A-frame arrangement across the upper face of the flask. 

 

The complete assembly was wheeled in to the real time X-ray facility and connected to a 

compressed air supply that was pressure regulated. A manual shut-off valve was built into the 

pipeline between the regulator and pressure vessel to prevent premature pressurisation. When 

a metal temperature of 785 oC was recorded by the thermocouple in the melt, the shut-off 

valve was moved to the open position. This caused the vessel to pressurise and the liquid 

metal to be forced up the “riser” tube and into the mould. Moulds were cast at different 

upwards velocities by varying the overpressure in the vessel within the range of 24.1 to  

68.9 kPa (3.5 to 10 psi). The metal front velocity averaged 22 mm.s-1 at the highest 

overpressure applied and only 5 mm.s-1 at the lowest setting. 
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Filling was recorded by means of the X-ray source, image intensifier, camera and recording 

equipment used previously. Once the mould was fully filled or the metal front had stopped 

advancing for more than 10 s. the shut-off valve was closed manually. Pressure in the vessel 

was maintained for 30 s., after which time it was released to atmosphere. After one hour the 

metallic cluster was removed from the flask together with the sand and cleaned in the 

conventional manner.  

 

3.2.2  Tensile Testing 
 
Test pieces were cut from the counter-gravity cast plates for tensile testing in the same manner 

as was used for the gravity filled castings. Sampling locations and the specimen labelling 

system for the castings made from 15 mm thick, conventional polystyrene patterns are 

illustrated in Figure 3.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Tensile test piece sampling and labelling system for counter-gravity filled castings 
                   made from 15 mm thick, conventional polystyrene pattern plates. 
 

The number of test pieces taken from castings in this experiment was increased from 8 to 23, 

the maximum number that could be obtained from a single plate casting whilst maintaining 

original specimen size and horizontal positioning. In some cases test pieces were extracted 

from the thinner, narrower and longer plates that had been supplied by Foseco Morval Ltd. 

Test pieces coloured in orange were also used for 
to determine hydrogen content in the casting.  
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and these had a smaller machined gauge diameter of 6.7 mm as a result of the reduction in 

plate thickness. However, as is shown in Figure 3.10, the sampling and labelling system 

remained the same as used in conjunction with the 15 mm plates so that as direct a comparison 

as possible could be made between the various sets of results obtained. 

 

Figure 3.10: Tensile test piece sampling and labelling system for counter-gravity filled 
                     castings made from 10 mm thick polystyrene pattern plates (with and without 
                     bromine additions). 
 

3.2.3  Determination of Hydrogen Pick-up 
 
In order to determine if hydrogen pick-up occurred during the counter-gravity casting 

experiments, due to the much slower filling velocities, a sample from three separate melts was 

poured into a steel mould to form “keel” block samples before casting. The remainder of each 

melt was then used immediately to produce the plate castings by the counter-gravity method 

described. Three fractured test bars, previously used for tensile testing as described in  

Section 3.2.2, were also selected from the lower, middle and upper regions of each plate, and 

used for hydrogen determination. The location in the plate from which each bar originated is 

highlighted in Figure 3.9. 
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The hydrogen contents of the “keel” block and samples from the plates were determined by 

Sci-Lab Analytical Ltd., Chester, UK, using the Inert Gas Fusion technique. In this method a 

known sample weight was induction melted in a graphite crucible and any hydrogen present 

removed by nitrogen. The gas was then processed and cleaned by a number of filters after 

which it flowed into a thermal conductivity cell. The cell consisted of two pairs of matched 

filaments that made up four legs of a Wheatstone bridge. The “reference” filaments were 

maintained in a constant flow of nitrogen gas, at a constant temperature, whilst the gas 

composition around the “measuring” filament was allowed to vary. The temperature in the 

oven where the filaments were housed was set at 45 oC + 0.2 oC in order to eliminate any 

effects of normal room temperature variation, while the filament temperature was maintained 

at a significantly higher level.  

 

As hydrogen was introduced into the measuring chamber, the measuring filament increased in 

temperature relative to the reference filament that was surrounded by a nitrogen atmosphere, 

due to hydrogen having a higher thermal conductivity than nitrogen. The resultant imbalance 

in the bridge produced a positive current output which was related to the quantity of hydrogen 

present, measured in parts per million (ppm). 

 

3.3  ACCELERATED LIQUID-LIQUID INTERFACE EXPERIMENTS 
 
Metal fronts, observed during the filling of Lost Foam moulds, were seen to adopt one of a 

number of profiles depending upon the casting conditions used. Slow moving and stationary 

fronts were planar in appearance but those with a higher velocity had an irregular or unstable 

profile. A number of authors have suggested that, at aluminium casting temperatures, the 

region immediately ahead of the advancing metal front consists predominantly of viscous 

liquid polystyrene [12,141,152]. Therefore, a physical model was constructed to simulate the 

interaction of molten aluminium and liquid polystyrene during mould filling and, if possible, 

examine the mechanism by which the metal front became unstable. 

 

The model, illustrated in Figure 3.11, consisted of a vertically oriented, thin glass cell 

containing a layer of glucose syrup above a layer of liquid mercury, attached to the discharge 

end of a horizontally positioned air cylinder that was fixed to a steel profile base. The distance 
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Clear glucose syrup was chosen to represent liquid polystyrene because it had a similar 

density, 1 050 kg.m-3, for concentrated glucose syrup at 20 oC [153] compared with  

1 040 kg.m-3 for a virgin grade polystyrene melt at 200 oC [120]. Its initial viscosity could 

easily be reduced by dilution with water. Also, the long molecular chains associated with this 

material were thought to mimic those of liquid polystyrene.  

 

Although mercury has a very high density, 13 545 kg.m-3 at 20 oC [154] compared to only 

2 364 kg.m-3 at 702 oC [155] for liquid aluminium, it was selected for use in the model 

because it remained a liquid metal at room temperature and had a similar viscosity to liquid 

aluminium. The viscosity of mercury is 1.55 mPa.s at 20 oC [156] while liquid aluminium at 

702 oC is only slightly lower at 1.24 mPa.s [155]. 

 

Three samples of glucose syrup were prepared with differing levels of water dilution. The first 

was undiluted and as-received from the supplier. The other two samples were diluted slightly 

by adding 2.5 wt.% and 5.0 wt.% water, respectively. The dynamic or absolute viscosity of 

each sample was measured on a TA Instruments AR500 rheometer using parallel plate 

geometry. A sample of the glucose syrup was placed on a horizontally positioned plate within 

the machine, pre-heated to 25 oC. A stainless steel disc with a diameter of 40 mm was placed 

on top of the sample and the gap between the plate and disc set to 200 µm. At the upper side 

of the disc was a vertical shaft through which a torque was applied. This resulted in the 

sample being subjected to a shear stress that was initially increased (ramped up) and then 

gradually decreased (ramped down). Any angular displacement of the disc was measured by 

an optical encoder and related to the strain of the sample and hence its viscosity. In undiluted 

form the glucose syrup had a viscosity of 93 Pa.s which fell to 35 Pa.s when diluted with 2.5 

wt.% water. The addition of a further 2.5 wt.% of water produced a solution with a viscosity 

of 16 Pa.s. The ratio of density for the glucose-Hg system was therefore about 1 : 13, while 

the ratio of viscosity was about 104 : 1. 

 

After filling the model with Hg and the glucose solution with a viscosity of 16 Pa.s, the piston 

in the air cylinder was actuated by means of an oil-over-air cylinder that was coupled in-line 

with it by a shaft-to-shaft connection. The secondary drive cylinder was connected to the 

mains air supply (at 8 bar pressure) and its piston speed, and therefore speed of mercury 
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displacement into the mould, were controlled via a flow regulator situated on the oil outlet 

side of the unit. During displacement, the appearance of the interface of the fluids was 

recorded using a high-speed video camera. The experiment was repeated initially with the 

glucose solution of 35 Pa.s viscosity and subsequently with the undiluted glucose syrup at  

93 Pa.s. 

 

3.4  APPROXIMATION OF THE VISCOSITY OF LIQUID POLYSTYRENE 
 
As reported by Saffman and Taylor [112], a large variation in the viscosity of two interacting 

fluids within a narrow channel can have an influence on the stability of the interface between 

them. Although published literature reports viscosity data of polystyrene melts, viscosity in 

polymers is known to vary widely because the material is shear-thinning, viscoelastic and has 

flow properties that are temperature dependant [122] (see Section 2.4.2). Additionally, 

bromine-based additives have the effect of reducing the viscosity by decomposing at relatively 

low temperatures and forming bromine radicals. These radicals accelerate the degradation of 

the polystyrene ahead of the advancing metal front [15]. Therefore an experiment was 

designed to capture and measure the molecular weight of suitably degraded samples of 

conventional and brominated pattern material from which their viscosity might be inferred. 

 

A series of small, cylindrical vessels was manufactured from copper tubing, with a length of 

120 mm, wall thickness of 1 mm, and an inside diameter of 21 mm. A copper end plug was 

welded to the bottom of each tube and the other end was fitted with a brass cap with a screw 

fitting. Each cap had a 1 mm hole drilled through its centre to allow the insertion of a sheathed 

thermocouple that remained in position for the duration of the experiment. 

 

Expanded polystyrene samples were cut manually from sections of previously manufactured 

plate patterns. The diameter of the samples matched the internal diameter of the copper tube 

and the thickness was equivalent to that of the pattern section. A single sample of brominated 

or unbrominated polystyrene was inserted as far into each tube as possible so that one flat face 

of the sample came into contact with the internal face of the copper end cap and the 

cylindrical face of the sample remained in contact with the internal walls of the tube. The 

brass cap was secured to the other end of the tube and a K-type thermocouple, contained 
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further degradation of the polymer, thereby preserving the characteristics of the degraded 

polymer at the temperature of removal from the liquid aluminium. 

 

Gel Permeation Chromatography, undertaken by RAPRA Technology Ltd., was used to 

determine the average molecular weight of each of the samples. This analysis technique 

separated polymer molecules in solution by their size as they passed through a column 

containing tightly packed, highly porous particles. Small, low molecular weight molecules 

were trapped by the porous particles whereas the higher molecular weight particles passed 

through the column more freely. Molecules exited the column at different rates depending on 

their size and this effect was quantified by means of a refractive index detector. 

 

 A single solution of each sample was made up by the addition of 10 ml of tetrahydrofuran to 

approximately 20 mg of each polystyrene sample. All specimens were held for at least 4 hours 

to allow total dissolution to take place. After thorough mixing, the solutions were filtered 

through a 0.2 micron polyamide membrane and transferred to sample vials, and placed in an 

autosampler.  

 

The Gel Permeation Chromatography system used for the work was calibrated with a sample 

of unbrominated polystyrene. Data capture and subsequent data handling was carried out by 

means of Viscotek ‘Trisec 2000’ and ‘Trisec 3.0’ software. The weight average molecular 

weights obtained in this experiment were inserted in Equation 3.1 [39] to estimate the 

apparent viscosity (or dynamic viscosity at zero shear) of each of the liquid polystyrene 

samples obtained.   

 

logߟ଴ ൌ 3.4logܯ ൅ ሾ900.2/ሺܶ െ 306.4ሻሿ െ 18.38 Equation 3.1
 

where η0 = zero shear viscosity 
 M = molecular weight 
 T  = the temperature of the melt (in degrees Kelvin) 
 

Equation 3.1 was put forward by Cox and Ballman [39] as a combination of the Williams-

Landel-Ferry equation (see Equation 2.25) and the Fox and Flory equation (see Equation 2.26) 

in order to overcome the limitations of the former in terms of molecular weight and the latter 

with respect to temperature. Whilst calculation of the viscosity of liquid polystyrene at zero 
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shear ignores the effect of this force on the polystyrene inside a Lost Foam mould during its 

displacement by the advancing metal front, the low filling speeds observed in this process will 

exert low levels of stress such that η → η0.   
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4 RESULTS 
 
4.1  CLUSTER CHARACTERISTICS 
 
Pattern density and coating thickness have been reported to be very influential in determining 

the filling speed in Lost Foam casting [4,33]. Pattern making and cluster coating techniques 

were adopted which minimised variation in these parameters from one pattern to the next. 

However, a certain amount of variation was likely to exist across any one pattern and this was 

measured and recorded in case it had an influence on observations made during mould filling 

experiments.  

 

4.1.1  Pattern Density Variations 
 
Figure 4.1 shows a typical density profile of a 15 mm thick, expanded polystyrene pattern 

plate. Each column represents a cube of material of a side length of 15 mm and the reference 

given to each cube denotes the position from within the plate that it was taken. 

Figure 4.1: Density profile of a 15 mm thick polystyrene pattern plate. 
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The density varied across the plate with the highest values being found around three sides of 

the perimeter and the lowest values towards the centre of the plate. The highest value recorded 

was 34.1 kg.m-3 and the lowest was 27.3 kg.m-3. The spread of results between these two 

values resulted in an average density of 29.9 kg.m-3. 

 

The maximum density of a cube taken from the 15 mm thick polystyrene frame pattern was 

34.5 kg.m-3. Although this was similar to the maximum value obtained from the plate, the 

minimum density of 24.3 kg.m-3 was lower. Figure 4.2 illustrates the variation found 

throughout the frame and follows the same general trend as observed in the plate, i.e. higher 

densities on the perimeter of the pattern and lower densities within the inner bars. 

 

Figure 4.2: Density profile of a 15 mm thick polystyrene frame. 

 

A number of casting experiments were carried out that examined the effects of a proprietary 

brominated additive contained within the pattern material. These experiments made use of 

plates that were 10 mm thick. Some of the 10 mm thick plates contained the additive and 

others, used as comparators, were untreated. The density profiles of these two types of plate 
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are shown in Figures 4.3 and Figure 4.4 respectively. Each column in these figures represents 

a 20 mm x 20 mm x 10 mm section of the plate.  

 

The density variation throughout these plates was less than those measured in the thicker 

patterns. The lowest value obtained in an untreated plate was 25.1 kg.m-3 and the highest 

28.8 kg.m-3. The spread of results between these two values produced an average density of 

27.2 kg.m-3.  

 Figure 4.3: Density profile of a 10 mm thick, untreated polystyrene plate. 

 

The highest, lowest and average density values of the plate that had been treated with a 

bromine compound were similar to those recorded in the plate without additive and were 

28.1 kg.m-3, 23.5 kg.m-3 and 26.6 kg.m-3 respectively. Although these values were similar to 

the equivalent figures recorded in the untreated plate, their density profiles were significantly 

different. The highest densities in the untreated plate were at both ends and across its middle 

region whereas the plate containing the brominated additive was least dense across its central 

area. Both plates, however, exhibited similar densities at their ends. 

 

 

D
en

si
ty

 (k
gm

-3
) 

1

5

9

23.0

25.0

27.0

29.0

31.0

33.0

35.0

A C E G I K M O R T V



 107 
 
  

Figure 4.4: Density profile of a 10 mm thick plate containing a proprietary brominated  
                   additive. 
 

4.1.2  Coating Permeability and Coating Thickness 
 
All patterns were coated with a single batch of alumino-silicate material that was pre-mixed 

prior to application in order to produce a uniform suspension. The thickness of the coating 

was determined by sectioning two frame patterns at 8 points along each side and measuring 

the cross section of the coating at a magnification of x 20 by means of a graticule with 100 µm 

divisions. The results, shown in Figure 4.5, were very similar to each other and did not exhibit 

any particular trend. The average coating thickness was 200 µm on both patterns with a range 

of 150 µm between the highest and lowest measurement. 

 

At the same time as the frame patterns were coated, two samples of the material were taken 

from the coating tank to determine its permeability. Based on the Kocan method [47] of 

measurement as described in Chapter 3, where the volume of air (in cm3) that can pass 

through a specimen of 1 cm2 cross-sectional area and 1 cm in height, at a pressure difference 

of 1 g/cm2 in one minute is reported as a unitless value known as the Permeability Number, 

the values obtained were 15 and 17 respectively. 

 

D
en

si
ty

 (k
gm

-3
) 

1

5

9

23.0

25.0

27.0

29.0

31.0

33.0

35.0

A C E G I K M O R T V



 108 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Coating thickness variation along either side of two frame patterns. 

 

4.2  GRAVITY FILLING 
 
Filling of a mould cavity from the top, so that the liquid metal flows throughout the filling 

cycle in the direction of the gravity vector, is simple and promotes good conditions for 

directional solidification. However, it has been shown that filling open channel moulds 

vertically upwards by means of a well-designed running system has resulted in a higher 

quality casting by reducing the number of entrainment defects [87]. By observing and 

comparing the filling conditions prevalent during the casting of top- and bottom-gated 

polystyrene patterns, it was possible to assess the effectiveness of conventional methoding 

techniques to the Lost Foam casting process.  

 

4.2.1  Metal Flow Characteristics Through Plate Patterns 
 
Vertically oriented, 15 mm thick, expanded polystyrene plates were cast at 784 oC using a 

gravity-fed method through a single ingate mounted either on the top or the bottom face of the 

pattern. All castings were made from a single melt of Al-10wt.%Si alloy and the filling 
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characteristics observed by two means, short-circuited electrodes connected to a datalogger, 

and imaging using a real-time X-ray unit.   

 

The filling observations from the datalogger have been displayed graphically in Figures 4.6 

and 4.7 and show at what point in the filling cycle the liquid metal front made contact with 

each of 24 separate electrodes that were arranged throughout each cluster. The top-gated plate 

took 49 s. to fill completely but surprisingly, the other plate with a bottom mounted ingate 

filled 8 s. quicker. 

 

The average metal velocity, calculated over the complete mould filling time, was 12.2 mm.s-1 

in the case of a top-gated plate and 12.67 mm.s-1 when bottom gating was used. Although 

these two values were similar, a single recording at the very end of the pour of the top-gated 

plate heavily influenced the result obtained. This can be seen in Figure 4.6 where a value of 

44.76 s. was recorded in the bottom right hand corner of the plate and where there was a 

corresponding reduction in the gradient of the line that depicted the time taken for the liquid 

metal to travel the 87 mm between the lowermost electrodes in that region. This delay was 

probably caused by a local increase in density in the corner region of the pattern as illustrated 

in region V11 to V13 of Figure 4.1. By discounting that particular result the average filling 

speed of the top-gated plate increased to 15.3 mm.s-1.  

 

Real time X-ray observations of the filling of top- and bottom-gated plates were made in the 

ingate and upper region of each cluster configuration. Because the X-ray beam was not wide 

enough to cover both areas simultaneously, two moulds of each cluster type were cast with the 

field of view in each case being adjusted to focus on one particular region. Figure 4.8 and 

Figure 4.9 illustrate the size and position of the field of view for each of the moulds cast and 

relates to a specific set of 6 frames that have been extracted from a video of a particular mould 

filling sequence. The uppermost row of white numbering in the top left hand corner of each 

frame represents the time (in seconds) from the beginning of the fill and row directly 

underneath it is a number given to that particular filling sequence.  
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Figure 4.6: Datalogger recordings during the gravity filling of a top-gated plate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Datalogger recordings during the gravity filling of a bottom-gated plate 
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Figure 4.8: Fields of view during the filling of top-gated plates (a) in the ingate region and (b) 
                  in the central region of the plate adjacent to the ingate. (see Figures 4.10 and 4.11).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.9: Fields of view during the filling of bottom-gated plates (a) in the ingate region and 
                   (b) in the upper region of the plate. (see Figures 4.12 and 4.13).   
 

(a) (b) 

Field of view produced 
by the X-ray beam.  
(approx. 150mm in 
diameter) 

Field of view produced 
by the X-ray beam.  
(approx. 150mm in 
diameter) 

(a) (b) 



 112 
 
  

Figure 4.10 illustrates observations made in the ingate region of a top poured plate. The liquid 

metal front was observed to occupy the complete cross section of the runner bar and flow 

along it with a convex profile. As soon as the ingate was reached the heat from the metal front 

began degrading the glue joint connecting it to the runner bar. At the same time the metal 

front continued to degrade the foam material of the runner bar and flow along the runner bar 

horizontally. The glue took longer to degrade than the polystyrene and when the glue line was 

finally breached, flow into the ingate proceeded at a faster rate and in a direction vertically 

downward through the ingate. The same mechanism occurred at a second glue joint between 

the ingate and the pattern and this can be seen in Frame 1 of Figure 4.10 as distinct steps in the 

metal front at each of these joints. 

 

Filling continued in a diagonal fashion across the plate with the upper corner nearest the 

downsprue filling first. This general flow of metal through the mould was supported by the 

timing measurements as shown in Figure 4.6. However, there was significant difference at the 

ingate region where the timing probes detected metal in the pattern in under 7 s. and the real 

time X-ray suggested that this did not happen until a further 10 s. had elapsed.  As the liquid 

metal advanced through the mould it exhibited some irregularities or perturbations at its front. 

These can be seen in Frame 3 of Figure 4.10 and had a wavelength of approximately 12 mm 

and a height of about 4 mm.  

 

Towards the central region of the plate the metal front was observed to have developed into 

three “stubby” fingers or streams with a wavelength of around 30 mm and a height of  

12.5 mm (see Figure 4.11), each showing the same type of surface irregularity or perturbation 

that was mentioned previously. The average velocity of these fingers was estimated at 

approximately 10 mm.s-1 and distinct gaps were observed between them, as shown in Frames 

2 and 3 of Figure 4.11, where foam material was being trapped. As they all flowed towards 

the vertical, left side wall of the plate, they converged together so that any gap between them 

was eliminated or became too narrow to be detected by the real time X-ray unit. As illustrated 

in Frames 5 and 6 of Figure 4.11, this convergence into a single front also diminished the 

number of surface perturbations until they disappeared altogether. This resulted in the front 

becoming convex in nature. 
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Figure 4.10: Filling behaviour in the ingate region of a top-gated plate. 
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Figure 4.11: Filling behaviour in the central region of a top-gated plate. 
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Figure 4.12: Filling behaviour in the ingate region of a bottom-gated plate 
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Figure 4.13: Filling behaviour in the upper region of a bottom-gated plate 
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The initial filling of a bottom-gated plate proceeded in essentially the same manner as that 

observed during top filling with the glue joints between runner bar, ingate and pattern plate 

hindering metal flow through that region. Although a step was observed in the metal front as it 

passed through the ingate, the glue joint between runner bar and ingate was breached much 

sooner and the ingate filled before the metal in the runner bar had proceeded past the ingate. 

Approximately 10 s. after start of pouring the metal front entered the pattern by means of a 

localised break through the glue joint and mushroomed up from the ingate with a convex 

profile, as shown in Frame 3 of Figure 4.12. However, in less than 2 s. the metal flow had 

transformed into four stubby fingers that are easily distinguishable in Frames 4 and 5 of the 

same figure. The thickness of these fingers varied from 22 mm to 42 mm and in height from 

12 mm to 19 mm. This similarity between metal flow into top- and bottom-gated plates was 

unexpected, bearing in mind the results of research into the filling of open cavity moulds 

where a significant difference is observed. 

 

By the time that the liquid metal had reached the top region of the plate, as depicted in 

Figure 4.13, the fingers had merged together into a single, almost horizontal front. However, 

the advancing liquid metal front exhibited similar perturbations as were observed during the 

filling of the central region of a top-gated plate (see Figure 4.11). The perturbations shown in 

Frame 1 of Figure 4.13 had a wavelength of around 9 mm and a height of 2 mm, where the 

average speed of the metal front was about 6.5 mm.s-1. The timing electrodes, on the other 

hand, registered an average vertical velocity in this region of about 9.5 mm.s-1. However, this 

value was estimated over a vertical height of 87 mm and did not include the upper 10 mm of 

the plate as was the case for the real time X-ray velocity measurements.    

 

Photographs of the castings produced during the real time X-ray experiments have been 

shown in Figures 4.14 and 4.15. Each casting was fully filled and exhibited a pattern of 

staining across its surface. The staining was essentially the same on both castings and 

consisted of a series of brownish grey streaks fanning out from the ingate area in a principally 

vertical direction. Independent of the location of the ingate the staining was noticeably more 

pronounced towards the top of the casting and was thought to be caused by the viscous liquid 

pattern degradation products that were unable to pass through the coating and became trapped 

at the metal-coating interface.  
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Figure 4.14: Top-gated plate casting (made as part of the real time X-ray mould filling 
                    analysis. Reference Figures 4.10 and 4.11) 

 

Figure 4.15: Bottom-gated plate casting (made as part of the real time X-ray mould filling 
                     analysis. Reference Figures 4.12 and 4.13) 
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4.2.2  Metal Flow Characteristics Through Frame Patterns 
 
The techniques used to make and pour moulds containing frame clusters were effectively the 

same as used in the previous plate casting experiments. The use of timing electrodes and real 

time X-ray imaging to monitor the metal front during mould filling were also both used. 

Although none of the frame castings was fully filled, even at a pouring temperature of 909 oC, 

which was 125 oC higher than that used to cast the plates, sufficient data were collected to 

provide meaningful results. 

 

The filling observations collected by means of the timing electrodes are displayed graphically 

in Figures 4.16 and 4.17. Although the overall filling time for the top-gated frame was 

approximately 3.5 s. longer than when bottom-gated, the resultant casting exhibited a higher 

degree of misrun. Bottom gating of the frames was associated with markedly higher average 

filling velocities and filling distances than when top pouring the same pattern. The flow of 

liquid aluminium through the bottom poured frame exhibited an average filling velocity of 

13.1 mm.s-1 and a maximum vertical fill height of over 250 mm compared with 8.81 mm.s-1 

and about 160 mm respectively for the top-filled equivalent.  

 
The flow of metal through the top-gated frame was much less uniform than when filled from 

the bottom. The metal front that travelled through the vertical leg of the frame nearest the 

downsprue reached the entrance to the third horizontal bar from the ingate more than  

12 s. earlier than the front that flowed down the other side of the casting. Although this faster 

moving front managed to travel further, it reduced in speed dramatically and stopped 

altogether approximately 50 mm in front of, and 6 s. earlier than, the other one.  

 

Irrespective of the position of the ingate, filling speed reduced as pouring progressed. 

However, this was most pronounced when a top-gated frame was cast because the 

metallostatic pressure driving the liquid aluminium through the ingate and into the pattern was 

lower than when bottom gating was used. Interestingly, plates and frames were made with 

identical running systems but only the plates were fully formed, even though an additional 

125 oC of superheat was used in the casting of frames. This was due to the marked difference 

in modulus between the two pattern types (i.e. 0.67 cm for a plate and only 0.38 cm for a 

frame).  
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Figure 4.16: Datalogger recordings during the gravity filling of a top-gated frame. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Datalogger recordings during the gravity filling of a bottom-gated frame. 
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Real time X-ray observations of the filling of top- and bottom-gated frames are shown in 

Figures 4.20 to 4.23 and Figure 4.18 and 4.19 illustrate the region in each mould where filling 

was observed. As the metal entered a frame it split into two streams that flowed horizontally, 

in opposite directions, towards the corners of the pattern. At these corners the metal was 

forced to change direction by 90o and began to fill the vertical sections of the frame. When a 

junction with another horizontal bar was reached, each stream of metal split into two distinct 

fronts. One front began to fill this bar from the end whilst the other front continued up along 

the vertical section of the frame. The splitting of the front in this manner can just be seen in 

Frame 2 of Figure 4.20, Frame 1 of Figure 4.21 and more clearly in all frames of Figure 4.22. 

This meant that each horizontal bar was filled by two opposing liquid metal fronts which met 

towards the middle. This general pattern of filling continued until the fronts froze prematurely, 

before the casting was fully formed.   

 

Initially the horizontally travelling metal fronts occupied the complete cross section of the bar 

and exhibited a somewhat convex shape. As they approached one another their profiles 

became more elongated in the horizontal plane so that they occupied more of the lower region 

of the bar. As their tips met the faster flowing metal immediately behind caught up and caused 

the junction to grow vertically in height. This is well illustrated in Frames 3 to 6 of Figure 

4.21. The last part of the horizontal bar to fill was its uppermost region, just behind the tip of 

each front, and evidence of pattern degradation product entrapment was observed in some of 

these regions as shown in the second of three horizontal bars in Frame 5 of Figure 4.21.  

 

On dividing into two fronts at the junction between two bars, one metal stream was observed 

to flow faster than the other. Where a top gate had been applied, the front flowing through a 

horizontal section was the most prominent and where a bottom gate had been used, flow along 

the vertical section was faster. The average front velocity, estimated during observations of 

the filling process by real time X-ray, supported those of the timing electrodes. Bottom-gated 

castings filled with an average front speed of around 10 mm.s-1 and top-gated castings at 

approximately half that value. This is consistent with the fact that bottom gating was 

associated with a significantly higher metallostatic head than when the ingate was placed at 

the top of the casting and this difference also accounted for the disparity in speed of the 

horizontal and vertical advancing liquid metal fronts. 
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Figure 4.18: Fields of view during the filling of top-gated frames (a) in the ingate region and 
                     (b) slightly below the ingate (see Figures 4.20 and 4.21).   
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Figure 4.19: Fields of view during the filling of bottom-gated frames (a) in the ingate region 
                    and (b) in the top corner nearest the sprue (see Figures 4.22 and 4.23).    
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Figure 4.20: Filling behaviour in the ingate region of a top-gated frame 
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Figure 4.21: Filling behaviour in the upper region of a top-gated frame (just below the ingate) 
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Figure 4.22: Filling behaviour in the ingate region of a bottom-gated frame. 
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Figure 4.23: Filling behaviour in the upper region of a bottom-gated frame. 
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Figure 4.24: Top-gated frame casting (made as part of the real time X-ray mould filling 
                     analysis. Reference Figure 4.20 and 4.21) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.25: Bottom-gated frame casting (made as part of the real time X-ray mould filling 
                     analysis. Reference Figure 4.22 and 4.23) 
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Misrun was observed on each of the frame castings that were made and is illustrated in 

Figures 4.24 and 4.25. Although the appearance of the defect was  independent of the location 

of the ingate, the lower metallostatic head available during the filling of top-gated frames 

resulted in the most poorly formed castings. This can be seen by comparison of the top- and 

bottom gated frames shown in Figures 4.24 and 4.25 respectively. 

 

4.3  PROPERTIES OF GRAVITY FILLED CASTINGS 
 
The ultimate tensile strength (UTS) of a number of samples taken from castings made during 

the gravity filling experiments was used as a measure of the quality associated with the 

different filling techniques that had been applied. Fracture surfaces were examined to 

determine the possible cause of failure and characterise any defects found. 

 

4.3.1  Tensile Strength Variation in the Castings 
 
Table 4.26 contains the UTS results from top and bottom gated plates and Table 4.27 contains 

the equivalent data for frames.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.26: UTS results of samples taken from top- and bottom-gated plates. 

Ultimate Tensile Strength Results of Plate Samples (MPa)
Top Gated Castings Bottom Gated Castings

Location Plate 1 Plate 2 Plate 3 Location Plate 4 Plate 5 Plate 6

A 120 114 89 A 130 130 127
B 73 96 108 B 114 113 101
C 125 108 99 C 104 111 121
D 125 129 103 D 111 116 101
E 129 131 125 E 124 130 123
F 141 130 129 F 136 123 127
G 140 141 131 G 141 135 136
H 136 150 151 H 145 149 155

Range 68 42 62 Range 41 38 54
χ 123.63 124.88 116.88 χ 125.63 125.88 123.88
σ 21.82 17.76 20.51 σ 14.92 12.79 17.69

Group Range 78 Group Range 54
Group χ 121.79 Group χ 125.13
Group σ 19.54 Group σ 14.61
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The location in a casting from which each test bar was taken is shown in Figures 3.6 and 3.7. 

However, sample “A” always represented the one taken from nearest the ingate and “H” the 

one taken furthest from it. 

 

Table 4.27: UTS results of samples taken from top- and bottom-gated frames. 
 

Bottom poured plates produced slightly better UTS values than those achieved when the same 

type of casting was filled from the top. The group average was higher at 125 MPa as 

compared to 122 MPa and the group range and standard deviation values were lower. This 

contrasted sharply with the results obtained from frames where the group results were similar 

whether filled from the bottom or the top. 

 

To determine the statistical significance of the variation of individual values recorded within 

each of the four groups, an analysis of variance (ANOVA) was carried out that applied 95% 

confidence limits to the mean of each casting. The results are contained in Tables 4.28 to 4.31 

where SS is the sum of squares, df is the degrees of freedom, MS is the mean square, F is the 

F statistic and equals the MS between groups divided by MS within groups, P-value is the 

probability of the F statistic value occurring under the assumption of the null hypothesis and 

Fcrit. is the value of F at the 95% confidence level based on the degrees of freedom between 

the groups and the error.  

Ultimate Tensile Strength Results of Frame Samples (MPa)
Top Gated Castings Bottom Gated Castings

Location Frame 1 Frame 2 Frame 3 Frame 4 Location Frame 5 Frame 6 Frame 7 Frame 8

A 156 152 147 161 A 156 145 140 153
B 166 65 127 164 B 172 92 55 133
C 171 140 58 67 C 171 47 92 171
D 139 63 89 122 D 132 57 68 160
E 174 97 76 126 E 135 143 145 148
F 163 158 51 - F - - 168 -
G - - 129 - G - - - -
H - - - - H - - - -

Range 35 95 96 97 Range 40 98 113 38
χ 161.50 112.50 96.71 128.00 χ 153.20 96.80 111.33 153.00
σ 12.69 43.21 37.78 39.20 σ 19.10 46.22 46.02 14.12

Group Range 123 Group Range 125
Group χ 123.38 Group χ 127.76
Group σ 41.37 Group σ 41.37
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Table 4.28: ANOVA of UTS values obtained from top-gated plates 

 

 

Table 4.29: ANOVA of UTS values obtained from bottom-gated plates 

 

 

Table 4.30: ANOVA of UTS values obtained from top-gated frames. 

 

SUMMARY
Groups Count Sum Average Variance

Plate 1 8 989 123.625 475.98214
Plate 2 8 999 124.875 315.55357
Plate 3 8 935 116.875 420.69643

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 296.33333 2 148.16667 0.3666789 0.6973822 3.4667949
Within Groups 8485.625 21 404.07738

Total 8781.9583 23

SUMMARY
Groups Count Sum Average Variance

Plate 4 8 1005 125.625 222.55357
Plate 5 8 1007 125.875 163.55357
Plate 6 8 991 123.875 312.98214

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 19 2 9.5 0.0407673 0.9601283 3.4667949
Within Groups 4893.625 21 233.02976

Total 4912.625 23

SUMMARY
Groups Count Sum Average Variance

Frame 1 6 969 161.5 161.1
Frame 2 6 675 112.5 1866.7
Frame 3 7 677 96.714286 1427.5714
Frame 4 5 640 128 1536.5

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 14513.1964 3 4837.7321 3.8934798 0.0242433 3.0983927
Within Groups 24850.4286 20 1242.5214

Total 39363.625 23
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Table 4.31: ANOVA of UTS values obtained from bottom-gated frames 

 

The critical value for P was 0.05 which was set by the use of 95% confidence limits. 

Table 4.28 and Table 4.29 determined that the P-value for top-gated and bottom-gated plate 

castings was much higher than Pcrit. This meant that in combination with low F statistic values, 

any variation in the results was within the boundaries of acceptable statistical error. However, 

when the same analysis was conducted on the results obtained from the frame castings, as 

shown in Figures 4.30 and 4.31, both P-values were lower than Pcrit. and F statistic values were 

higher than Fcrit. This indicated that the variation in the tensile values was significant and due 

to something other than statistical error.  

 

In order to test the null hypothesis that the results for plates cast by means of either a top or 

bottom ingate were independent of its location, tensile strength data from Table 4.26 were 

subjected to a Fisher exact one-sided analysis on the median. The median value for the 

combined set of results was 126 MPa and this allowed the construction of Table 4.32. 

 

 

 

 
 
 
Figure 4.32: 2 x 2 Contingency table for UTS results obtained from top- and bottom-gated 
                    plate castings about the combined median. 
 

No. of Plate Casting UTS Results on Each Side of the Median
Data Description Top gated Bottom gated Combined

No. of scores above combined median 12 12 24
No. of scores below combined median 12 12 24

SUMMARY
Groups Count Sum Average Variance

Frame 5 5 766 153.2 364.7
Frame 6 5 484 96.8 2136.2
Frame 7 6 668 111.33333 2118.2667
Frame 8 5 765 153 199.5

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 12832.876 3 4277.6254 3.3992361 0.0418871 3.1967744
Within Groups 21392.933 17 1258.4078

Total 34225.81 20
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The chance probability of obtaining the same or a more extreme array of results is 0.613 and 

therefore the higher average UTS results obtained from bottom gated plates cannot be 

attributed statistically to the location of the ingate.  

 

The results of this analysis clearly showed that the location of the ingate had no statistical 

significance on the UTS values obtained in any of the plates. However, it was not possible to 

determine if the same was true for top- and bottom-gated frames, or between plates and 

frames, because a statistically significant difference was found between the UTS values of 

each of the top-gated frames and also between the UTS values of each of the bottom-gated 

frames. This was due the influence of one or more uncontrolled variables in the casting 

process.  

 

Green and Campbell [148] suggested that the Weibull distribution, rather than the normal or 

the type 1 extreme distributions, most accurately described the scatter of tensile test data 

derived from cast specimens. The validity of this statement to the UTS results obtained from 

top- and bottom-gated plates was examined by adopting the same methodology as used by the 

original authors. Firstly, they determined a linear relationship for each distribution and then 

measured the ‘goodness of fit’ of each set of data to these relationships by means of the 

regression coefficient. For normally distributed data, where any scatter was purely the result 

of random experimental errors, the cumulative distribution of failures, FN (as in Equation 4.1), 

vs. tensile strength resulted in a straight line when plotted on normal probability paper.  
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where x is the tensile strength of the specimen, µ is the sample mean value and σ is the 

standard deviation.  

 

For a Weibull distribution, the data was described in two-parameter form as in Equation 4.2.  
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where Fw is the fraction of specimens failed at or below a given value of x, e.g. a measured 

UTS value, σ is a characteristic value of x at which 62.8% of the population of specimens have 

failed and λ is the Weibull modulus. A straight line was obtained by rearranging and plotting 

ln{ln[1/(1-Fw)]} vs. ln(x).  

 

Finally, for the type 1 extreme distribution, the cumulative distribution was expressed in the 

form 

 

ଵܨ ൌ ݌ݔ݁ ቂെ݁݌ݔ ቀ
x െ µ

σ ቁቃ Equation 4.3
 

where x is the fracture stress, µ is the position parameter and σ is a width parameter. A straight 

line for this type of distribution was obtained by ln[-ln(F1)] vs. x.   

 

The frequency plots of the normalised UTS data for top- and bottom-gated plates are shown in 

Figure 4.33 and it can be seen that the top-gated data set is more heavily skewed to the right 

than the bottom-gated set. 

Figure 4.33: Frequency plots of normalised UTS data for (a) top-gated and (b) bottom-gated 
                    plate castings. 
 

The corresponding regression coefficients for each type of distribution are listed in Table 4.34 

and they indicate that the Weibull distribution was most accurate in describing the spread of 

results of the top-gated data set whilst the normal distribution best applied to that from the 

bottom-gated plate. However, the Weibull distribution was, on average, the most accurate 

overall and therefore used as the comparator between the data sets. 

(a) (b) Normalised UTS Normalised UTS 
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Table 4.34: ‘Goodness of fit’ of normal, Weibull and type 1 maximum extreme value 
                    distributions to the UTS data from top- and bottom gated plate castings. 
 

Figure 4.35 contains Weibull plots of the UTS results from both top-gated and bottom-gated 

plates and showed that bottom gating produced the more consistent result over the three 

separate castings that were evaluated.  

 

 
Figure 4.35: Weibull plots of UTS results from top- and bottom-gated plates. 

 

Cluster Analysis Regression Best-fit
design coefficient parameters

Top-gated Normal 0.9462 µ = 0.8066, σ = 0.1294
plate Weibull 0.9689 σ = 0.8637, λ = 6.2272

Type 1 extreme 0.8345 µ = 0.8648, σ = 0.1009

Bottom-gated Normal 0.9840 µ = 0.8073, σ = 0.0943
plate Weibull 0.9668 σ = 0.8685, λ = 9.2487

Type 1 extreme 0.9590 µ = 0.8497, σ = 0.0735
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There was much less difference in the Weibull plots related to top- and bottom-gated frames, 

which are shown in Figure 4.36. The Weibull modulus related to bottom-gated frame results 

was only 2.5 and that for top gating was only 0.2 higher at 2.7.  

 

 
Figure 4.36: Weibull plots of UTS results from top- and bottom-gated frames. 

 

The Weibull plots shown in Figure 4.36 indicated that, for each set of data, at least two 

distinct subgroups might exist, each represented by its own straight line. However, the sample 

sizes of these subgroups were well below 20 and considered by Holland et al. [157] to be too 

small to provide an estimate of a high probability of survival. Also, no correlation could be 

found between samples with low tensile strength and the locations from which they had been 

taken from the castings (see Table 4.27). Therefore, although the regression coefficients for 

the complete top-gated and bottom-gated data sets were only 0.9279 and 0.8915 respectively, 

it was not considered that any analytical benefit would be achieved by dividing the data sets 

into subgroups. 
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Irrespective of pattern type or ingate location, the Weibull moduli were extremely low in 

comparison with values reported for castings made by open cavity methods. For example, 

Green and Campbell [89] cast a number of test bars in Al-7Si-0.4Mg aluminium alloy using 

the open cavity method and reported a Weibull modulus of 10.8 when the ingate was at the 

top of the casting and 19.7 when it was located at the bottom. The highest value of 50.3 was 

obtained when the researchers modified and filtered the alloy before it entered the mould 

cavity through bottom ingates. Frame casting results even compared poorly with those 

obtained from ceramic materials where a Weibull modulus of 5 has been commonly regarded 

as describing the least reliable of this class of materials [158]. 

 

4.3.2  Fracture Surface Defects 
 
Scanning electron microscopy was used to examine the fracture surfaces of test bars taken 

from the four, gravity-filled cluster configurations. Interdendritic porosity, as shown in the 

photomicrograph of Figure 4.37a, was observed on each fracture surface. This defect varied in 

diameter from 300 µm to about 1500 µm and was randomly dispersed over the whole fracture 

surface. A localised region, as depicted by the white square on the photomicrograph of 

Figure 4.37a, was subject to microprobe analysis. The results are depicted as a Spectrum A in 

Figure 4.38 and indicated the presence of about 18 wt.% of carbon and about 4% by weight of 

oxygen in that region. The high concentration of carbon was caused through degradation of 

the polystyrene pattern material whereas the oxygen may have been associated with an oxide 

film. 

 

In addition to pores, film-type defects were also detected but only on the fracture surfaces of 

frame castings. An example of this defect is shown in Figure 4.37b and is characterised by a 

relatively smooth appearance of the surface in the upper two thirds of the photomicrograph. It 

was much less prevalent than the porosity defect but was generally much larger, extending up 

to 3 mm in length in one case. Spectrum B in Figure 4.38 was produced by microprobe 

analysis of the area bordered by the white square in Figure 4.37b. This indicated that the 

surface of the film type defect had a carbon content of approximately 8 wt.%, and an oxygen 

content of about 4 wt.%, which was similar to that of the pore in Figure 4.37a.  

 



 137 
 
  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.37a: Interdendritic porosity on the   
fracture surface of a top-gated frame.  

Figure 4.37b: Film defect on the fracture 
surface of a bottom-gated frame. 

 
 

 

 
Figure 4.38: EDX spectra obtained from (A) the surface of a pore defect and (B) the surface of 
                    a film defect (see Figure 4.37) 
 

Spectrum B

Spectrum A 
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4.4  COUNTER-GRAVITY FILLING 
 
Having shown that top- or bottom-filling, under the action of gravity, produced essentially the 

same, low results in terms of casting quality, it was decided to apply a counter-gravity casting 

technique to the filling of Lost Foam moulds. In the past, counter-gravity filling has been used 

successfully to fill open cavity moulds in order to overcome the problems associated with high 

metal velocity that are prevalent in conventional gravity casting. Application of this technique 

to the Lost Foam process would produce results that allow direct comparison with those from 

the gravity filling experiments and provide quantitative as well as qualitative evidence of any 

improvement. 

 

A number of clusters, each incorporating a vertically oriented, 15 mm thick, expanded 

polystyrene plate, were cast in a counter-gravity fashion. Frames were not cast in this case, 

owing to the difficulty in filling. A single ingate of the same size and in the same location as 

that used to bottom-fill the gravity-cast plates was used. The crucible used in casting was only 

large enough to hold sufficient metal for filling of one mould and therefore a new melt was 

prepared for each casting. However, each melt originated from a single batch of ingots. Filling 

characteristics were observed by means of the same two systems used in the gravity filling 

experiments, i.e., a set of timing electrodes and real-time X-ray radiography. 

 

Figure 4.39 contains the results that the timing electrodes recorded during counter gravity 

filling of a plate cluster at a vessel pressure of 68.9 kPa (10 psi). The metal flowed up through 

the central region of the plate at a faster rate than up either side, and reached the top of the 

plate about 26 s. after filling began and achieved an average speed of about 22 mm.s-1.  

 

The metal that flowed up the right hand side of the plate lagged only slightly behind the front 

in the central region and had an average velocity of 16 mm.s-1. The left hand side of the plate 

was the last to fill and this can be seen in Figure 4.39 by the position of the blue line being to 

the right, relative to the other two. Interestingly, this offset was brought about almost entirely 

during the filling through a region between 50 mm and 100 mm above the ingate of the plate. 

Here the speed of the front to the left side of the casting only advanced vertically at an average 
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rate of about 5 mm.s-1 compared with about 9 mm.s-1 on the right side and 18 mm.s-1 in the 

centre.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.39: Datalogger recordings during the counter-gravity filling of a bottom-gated plate 

 

Real time X-ray observations of the flow of the liquid metal through a plate and filled in the 

same fashion and at the same vessel pressure of 68.9 kPa (10 psi) are shown in Figure 4.41. 

The field of observation was located at the top left corner of the plate (see Figure 4.40a) so that 

the right hand edge of each frame corresponded approximately with the centreline of the plate. 

The leading edge of the front was generally located to the far right of each frame which 

indicated that filling was fastest in the central region of the plate. As the metal approached the 

top of the mould it began to travel in a diagonal fashion across the field of view so that the last 

region to fill was the upper left corner. The front profile resembled a series of fingers as with 

the gravity-filled moulds, with a length of about 20 mm and approximately 30 mm between 

them. As the front approached the top of the plate the length of the fingers decreased and their 

width increased. Frames 2 and 3 of Figure 4.38 show that, although the distance between the 

fingers remained approximately the same, the change in their aspect ratios had the effect of 

creating narrow regions of partially degraded polystyrene between them. 
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Figure 4.41: Filling behaviour in the upper region of a counter-gravity filled plate (68.9 kPa 
                    vessel pressure). 
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Figure 4.42: Filling behaviour in the upper region of a counter-gravity filled plate (34.5 kPa 
                    vessel pressure). 
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Figure 4.43: Filling behaviour in the upper region of a counter-gravity filled plate (27.6 kPa 
                    vessel pressure). 
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Figure 4.44: Filling behaviour in the central region of a counter-gravity filled plate (24.1 kPa 
                    vessel pressure). 
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Figure 4.45: Filling behaviour in the upper region of a counter-gravity filled plate (24.1 kPa 
                    vessel pressure). 
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A reduction in the pressure from 68.9 kPa to 34.5 kPa resulted in the metal front adopting a 

well-defined convex shape that was made up of a number of smaller, closely packed fingers. 

This can clearly be seen in Frames 2 – 5 of Figure 4.42 and particularly well in Frame 4. With 

the vessel pressure set at 34.5 kPa, the metal front advanced vertically upwards at about 

8 mm.s-1 and the length of the perturbations on the metal front was between 4 mm and 7 mm, 

with the distance between them being in the region of 5 mm. As the front reached the top of 

the plate the fingers closed up so that no discernible gap could be seen between them. 

 

 At a vessel pressure of 27.6 kPa (see Figure 4.40) the metal front profile and vertical velocity 

of the metal front were very similar to those observed at 34.5 kPa. The front was estimated to 

have been travelling at about 8 mm.s-1 and, as Figure 4.43 illustrates, had small fingers of 

around 4 mm in length along the entire length of its slightly convex profile.  

 

Figure 4.44 illustrates the metal flow and metal front conditions in the central region of the 

plate when counter-gravity filled at a vessel pressure of only 24.1 kPa. The metal front took 

on a much smoother, horizontal profile that was devoid of any noticeable fingers and travelled 

through the central region of the plate at approximately 5 mm.s-1. The only deviation from this 

condition was captured in Frame 2, where a small concavity formed temporarily in the front in 

the right side of the field of view. The diameter of this concavity was estimated to be 

approximately 8 mm, which was exactly the same size as the vents that had been used as part 

of the tooling for making the patterns (see Figure 3.1). The way that the metal front split into 

two in order to flow around this 8 mm diameter region before recombining and engulfing it 

suggested that the polystyrene had been denser in that area than in the rest of the pattern and 

the similarity in size between the affected region and a tooling vent supports this argument. 

Frame 3 of Figure 4.44 clearly indicates that by the time the front had advanced a further  

20 mm its profile had reverted back to the planar state.  
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Figure 4.46: Counter-gravity filled plate casting made at a vessel pressure of 24.1 kPa. (made 
                     as part of the real time X-ray mould filling analysis. Reference Figure 4.44 and 
                     4.45). 
 

As the metal rose into the upper region of the plate its velocity decreased to an average of less 

than 2 mm.s-1. This resulted in premature solidification of the metal, resulting in the formation 

of a misrun defect, approximately 70 mm short of the top of the plate. The frames of 

Figure 4.45 illustrate the very slow front velocity recorded in this region and Frame 6 the 

point at which the filling process came to a halt. A photograph of the casting made is shown in 

Figure 4.46. A smooth, almost horizontal front was clearly visible at the top of the plate and 

staining of the surface, similar to that observed on gravity cast plates, was also observed.  

 

4.5  PROPERTIES OF COUNTER-GRAVITY FILLED CASTINGS 
 
The ultimate tensile strength (UTS) of counter-gravity cast samples was compared with that 

obtained previously from gravity-filled castings. This provided quantitative data on the 

difference between gravity and counter-gravity filling in terms of casting quality. Fracture 

surfaces of some of the test bars were also examined so that the cause of failure, defect type 

and defect severity could also be compared against the defects found in gravity cast samples. 
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4.5.1  Tensile Strength Variation in the Castings 
 
Tensile test bars were taken from a plate that had been cast at a vessel pressure of 27.6 kPa 

where the velocity of the metal front was 8 mm.s-1 and a further set extracted from one where 

the velocity of the front had been reduced to 5 mm.s-1 by reducing the pressure to 24.1 kPa. 

The origin and machined dimensions of each specimen are shown in Figure 3.9 and the UTS 

values are recorded in Table 4.47. Although a full set of 23 results was obtained from the plate 

cast at the higher pressure, the misrun defect at the top of the plate that was filled slowly 

meant that only 20 samples, and an equivalent number of UTS results, were available from 

this casting. 

 

A “goodness of fit” analysis was carried out to determine which distribution (i.e. the normal, 

the Weibull or the type 1 extreme) most accurately described the spread of each set of data 

and, although the UTS values from the plate that had been cast at 5 mm-1 had the highest 

regression coefficient when normally distributed (see Table 4.48), the Weibull distribution 

was the most accurate at describing both sets of results. Therefore, this type of distribution 

was adopted for all subsequent statistical analysis and comparison of UTS data.  

 

Figure 4.49 contains the resultant Weibull plots and, for comparative purposes, that of the 

bottom-gated, gravity filled plate previously shown in Figure 4.35. The Weibull modulus of 

the bottom-gated, gravity cast plate was 9.2 and this compared very closely to 10.7 obtained in 

the case of a plate produced in a counter-gravity fashion at a vessel pressure of 27.6 kPa. The 

metal fronts observed in both cases were similar in speed and appearance. Although gravity 

filling resulted in an average front speed of 12.76 mm.s-1, which was about 4 mm.s-1 faster 

than the average value for counter-gravity filling, it fell to less than 10 mm.s-1 in the upper 

region of the casting. This was comparable with the 8 mm.s-1 front speed observed throughout 

the counter-gravity filling sequence of a plate pattern. In each case the front exhibited small 

perturbations, as illustrated in Figures 4.13 and 4.43. 
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Table 4.47: Ultimate tensile strength results of samples taken from counter-gravity cast plates. 

 

 
Table 4.48: ‘Goodness of fit’ of normal, Weibull and type 1 maximum extreme value 
                    distributions to the UTS data from counter-gravity cast plates. 
 

The counter-gravity cast plate that had been made at a vessel pressure of only 24.1 kPa 

pressure yielded a greatly improved Weibull modulus of 23.2. This was associated with a 

Ultimate Tensile Strength Results of Plate Samples (MPa)
Metal Front Velocity & Pressure in Vessel During Filling 

v = 8 mm/s (27.6 kPa) v = 5 mm/s (24.1 kPa)

A 106 227
B 133 196
C 126 205
D 126 197
E 109 203
F 108 212
G 117 199
H 119 198
I 126 206
J 121 209
K 123 205
L 135 207
M 130 215
N 140 222
O 128 211
P 94 190
Q 128 212
R 134 217
S 131 220
T 137 202
U 140 no sample
V 144 no sample
W 124 no sample

Location

Cluster Analysis Regression Best-fit
design coefficient parameters

Counter-gravity Normal 0.9191 µ = 0.8692, σ = 0.0847
filled plate Weibull 0.9753 σ = 0.9020, λ = 10.6791
(v = 8 mm/s) Type 1 extreme 0.8383 µ = 0.9074, σ = 0.0660

Counter-gravity Normal 0.9865 µ = 0.9148, σ = 0.0420
filled plate Weibull 0.9521 σ = 0.9282, λ = 23.2266
(v = 5 mm/s) Type 1 extreme 0.9735 µ = 0.9337, σ = 0.0327
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planar metal front that had flowed at 5 mm.s-1 through the central region of the plate and only  

2 mm.s-1 in the upper region.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 4.49: Weibull plots of UTS results from two plates that were filled at two different 
                     vessel pressures in a counter-gravity fashion and the combined results from three 
                     bottom-gated plates that were filled by means of gravity. 
 

Since filling by means of a planar metal front had produced substantially better results than 

any other, it was decided to try and replicate this condition of filling in the production of three 

more plate castings and evaluate the results, once again, using Weibull statistics to determine 

process repeatability. 

 

In each case, the casting temperature was 785 oC but the speed at which the metal front 

travelled through the mould varied slightly from casting to casting. Whilst filling of the first 

plate (labelled Plate 1 in Table 4.50) the front was observed to travel at about 3 - 4 mm.s-1.  
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Table 4.50: UTS results of samples taken from three, separately cast plates made using the 
                   counter-gravity filling technique. 
 
Although the metal front observed during filling was planar in nature, the casting solidified 

prematurely which meant that only 18 specimens could be obtained from it for tensile testing. 

In order to counter this problem, the vessel pressure was increased slightly to about 25.5 kPa 

(3.7 psi) during the filling of the second plate. The front velocity rose to approximately  

6 mm.s-1 and the severity of the misrun defect was reduced to such an extent that 22 out of a 

maximum of 23 test bars were extracted from it. Also, a few small perturbations were 

observed along its profile as it passed through the real time X-ray’s field of view. They were 

randomly spaced between 10 mm and 50 mm apart from each other, had a wavelength of 

about 4 mm and a lifecycle, from creation to collapse, of about 2 s., or 12 mm of front 

movement. As the front reached the upper part of the plate the perturbations subsided 

altogether and the front assumed a completely planar appearance. 

 

Ultimate Tensile Strength Results of Plate Samples (MPa)
Plate No. 1 Plate No. 2 Plate No. 3

(Pvessel = 24.1 kPa) (Pvessel = 25.5 kPa) (Pvessel = 26.2 kPa)
(v = 3 - 4 mms-1) (v = 6 mms-1) (v = 7 mms-1)

A 204 233 172
B 195 202 158
C 228 214 153
D 200 233 138
E 195 204 130
F 200 204 144
G 204 215 161
H 195 214 174
I 213 204 183
J 206 214 198
K 208 215 190
L 216 215 215
M 217 216 218
N 214 201 231
O 207 153 231
P 204 224 234
Q 223 170 239
R 204 214 238
S no sample 223 240
T no sample 234 241
U no sample 229 245
V no sample 233 244
W no sample no sample 242

Location
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Filling of the third plate was carried out at a vessel pressure of 26.2 kPa (3.8 psi) and this 

resulted in a front velocity of about 7 mm.s-1. The front profile had the same number, size and 

distribution of perturbations as seen during the casting of Plate No. 2 and their lifecycle was 

also measured at about 2 s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.51: Weibull plots of UTS results taken from three counter-gravity cast plates where 
                     the metal front velocity had been measured at between 3 and 7 mm.s-1.  
 

The Weibull plots generated from the UTS test data are shown in Figure 4.51 and they clearly 

illustrate that a planar front profile, devoid of any perturbations, produced a casting in which 

the tensile strength was significantly more consistent from one end to the other. They also 

reveal that this level of repeatability was severely affected by a very small increase in the 

metal front velocity. Plate No. 3 had a Weibull modulus of only 5.1, while Plate No. 1, cast at 

half the velocity, and the only plate to have an unperturbed advancing metal front had a 

Weibull modulus of 22.4, similar to that of the casting shown in Figure 4.49. 
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4.5.2  Hydrogen Pick-up During Mould Filling 
 
The variability of the tensile strength results taken from counter-gravity cast plates suggested 

that the velocity of the metal front during mould filling had influenced their structural 

integrity. However, even at a very low filling speed, where a stable planar front had been 

observed, the Weibull modulus was only 23. This contrasted with a value of 37 that had been 

reported by Green and Campbell [89] for a set of unmodified Al-7Si-0.4Mg test bars that had 

been cast in a gravity fashion using a well designed running system.  

 

It was thought that this could have been due to hydrogen in the gas or liquid phase of the 

decomposing polystyrene pattern diffusing into the liquid aluminium as it travelled through 

the mould. This would have resulted in the presence of gas pores in the solidified casting 

which would have had a detrimental effect on tensile strength.  

 

During the first set of counter-gravity casting experiments, as described in Section 4.4, the 

amount of dissolved hydrogen in melts that were subsequently cast at speeds of 8 mm.s-1 

(vessel pressure of 27.6 kPa) and 5 mm.s-1 (vessel pressure of 24.1 kPa) were compared with 

the hydrogen content in various regions in the resultant plate castings. In this way, the extent 

of any hydrogen pick-up originating from pattern materials was determined. The hydrogen 

level in each melt was measured from a keel block sample that was cast immediately before 

each mould was filled and the level in each casting was obtained from fractured test pieces 

from the ingate, central and upper regions that had been used previously to generate tensile 

test data (see Figure 3.9). Each sample was measured twice and the two results labelled 

“Run 1” and “Run 2” to differentiate them from each other.  

 

The first of the two melts was recorded as having a hydrogen content of about 0.36 ppm just 

before it was used to make the plate, as described in Section 4.4, where the casting 

temperature had been 785 oC and the metal front velocity had been 8 mm.s-1. During the 

filling procedure, perturbations were observed on the front which were about 4 mm in length 

and had a wavelength of 5 mm. As the front reached the top of the plate the fingers closed up 

so that no discernible gap could be seen between them. The average hydrogen level in the 

ingate region was 1.36 ppm whereas, in the central region of the plate, it was 1.86 ppm. In the 
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sample taken from the upper region of the plate the hydrogen level was recorded to be 

0.585 ppm in two separate measurements. Figure 4.52 contains the complete set of hydrogen 

results taken from the metal used to cast this plate and clearly shows that there was an increase 

in the hydrogen level before and after casting. However, the values recorded in the lower and 

central regions of the plate were much higher than the 0.69 ppm that commercially pure 

aluminium could retain in the liquid state [159] and because these regions were associated 

with high levels of macro porosity, the corresponding results were considered to be erroneous, 

and due to foam pattern degradation residues trapped in pores within the casting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.52: Comparison of the dissolved hydrogen in a melt and the casting made from it 
                     when filled at a metal velocity of 8 mm.s-1. 
 

It seems likely that a higher front velocity was associated with larger amounts of liquid 

degradation products because less time was available for heat to be transferred from the metal 

into the degrading polystyrene and any gaseous layer would have been reduced in thickness or 

eliminated altogether. The front profile at this velocity was observed to have been unstable 

and would have entrapped some of the liquid degradation products in the lower and central 

regions of the plate and would have rendered the hydrogen measurements in these areas 

invalid. The upper region of the plate was devoid of this type of defect, which was probably 

the result of a combination of temperature and velocity reduction of the metal front. Under 
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these circumstances, the 0.585 ppm of hydrogen recorded in the area was considered to be 

accurate even though it was about 60% higher than in the melt immediately prior to casting. 

Its source was thought to have been pattern degradation products. 

 

The second plate was also cast at 785 oC and the hydrogen concentration in this melt was 

measured at 0.403 ppm and 0.423 ppm just before casting. During the mould filling process 

the metal front took on a smooth, horizontal profile that was devoid of any noticeable fingers 

and travelled through the central region of the plate at approximately 5 mm.s-1. The resultant 

hydrogen levels inside the casting, as depicted in Figure 4.53, were measured at 0.365 ppm 

and 0.389 ppm near the ingate, 0.491 ppm and 0. 512 ppm in the central region and 0.305 ppm 

and 0.353 ppm towards the top.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.53: Comparison of the dissolved hydrogen in a melt and the casting made from it 
                     when filled at a metal velocity of 5 mm.s-1. 
 
The plate that had been cast at a metal front velocity of only 5 mm.s-1 exhibited no macro 

porosity and the hydrogen level was only found to be higher than the melt in the central region 

of the casting. In general, the lower filling speed would have resulted in a larger layer of 

gaseous degradation products between the metal front and the solid pattern and the smooth 

profile of the metal front would have minimised any entrapment or diffusion of liquid 
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degradation products in the casting. The elevated hydrogen levels in the central area of this 

plate, which were approximately 24% higher than in the melt, could have been caused by a 

localised region of polystyrene that failed to decompose at the same rate as the surrounding 

material. This phenomenon, illustrated in Frame 2 of Figure 4.44, was observed by means of 

real time X-ray whilst observing the filling of a plate under similar conditions. A single, 

localised region of the pattern (thought to be associated with a vent in the tooling and 

therefore denser) was totally engulfed by a planar metal front prior to decomposing into liquid 

and gaseous phases. 

 

4.5.3  Fracture Surface Defects   
 
Fracture surfaces produced during tensile testing of counter-gravity filled plate samples were 

examined using a scanning electron microscope. Every specimen contained pore-type defects 

that varied in size from approximately 400 µm up to 2500 µm. Those that originated from a 

plate in which a smooth, planar-type front had been observed travelling through the mould at 

about 5 mm.s-1 were relatively spherical in shape and up to about 800 µm in diameter. As the 

pore size increased above this value, they became more elongated and irregular in its profile.  

 

At x7 magnification, as shown in the left hand photomicrograph of Figure 4.54, large irregular 

regions of porosity were clearly visible. The right hand photomicrograph of the same figure 

depicts the area of the fracture surface surrounded by the white square. The magnification in 

this case was x25 and revealed that porous regions within this area were characterised by 

numerous dendrite arms with interlocking tips. The pores in the fracture surfaces of the plate 

where a front speed of 8 mm.s-1 had been observed were all rounded in nature even at sizes of 

over 2000 µm. Although the tips of dendrite arms could be seen on the surface of these 

defects, they were much less well defined as illustrated in Figure 4.55. The size and shape of 

these defects was much more indicative of entrapped pattern material than those encountered 

in a casting where the filling velocity had been slower. 
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Figure 4.54: Fracture surface of a specimen taken from a plate in which a metal front had 
                    been observed travelling through the mould at about 5 mm.s-1. The profile of this 
                    front was planar in nature.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.55: Fracture surface of a specimen taken from a plate in which a metal front had 
                    been observed travelling through the mould at about 8 mm.s-1. The front profile 
                    was associated with small perturbations on its surface. 
 

One pore on each fracture surface was analysed by means of energy-dispersive X-ray (EDX) 

and the carbon and oxygen results compared with those found from a region of sound material 

nearby. Figure 4.56 shows an example of an EDX spectrum that was obtained from within a 

pore on the fracture surface of a sample that had been cast at 8 mm.s-1 . The site of the analysis 

is indicated by a small white square on the associated photomicrograph where the carbon level 

was determined to be at 15.6 wt.% and the oxygen to be at 2.34 wt.%. The complete set of 

results for both plates is contained in Table 4.57.  
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Fig. 4.56:  EDX results from a pore defect observed on a fracture surface originating from a 
                  plate in which the metal front velocity had been measured at 8 mm.s-1.   
 

 
Table 4.57: Carbon and oxygen levels in pores and sound regions on each fracture surface. 

Region analysed by EDX 
analysis 

EDX Measurements of Carbon & Oxygen
Plate Filling Speed = 8 mm/s Plate Filling Speed = 5 mm/s

Carbon (by wt) Oxygen (by wt) Carbon (by wt) Oxygen (by wt)
Normal Defective Normal Defective Normal Defective Normal Defective

A used for H determination used for H determination
B 2.88% 3.38% 0.41% 0.88% 1.20% 9.27% 0.31% 3.29%
C 1.61% 3.50% 0.44% 1.13% 2.81% 3.58% 0.66% 0.46%
D 2.93% 3.36% 0.49% 0.70% 1.31% 10.92% 0.29% 1.56%
E 4.82% 15.62% 1.33% 2.34% 1.53% 8.84% 0.18% 1.01%
F 3.32% 4.21% 0.56% 0.75% 3.99% 4.73% 0.46% 0.83%
G 1.22% 3.31% 0.24% 0.47% 1.91% 4.23% 0.35% 1.24%
H used for H determination used for H determination
I 0.66% 2.91% 0.33% 0.30% 1.69% 5.73% 0.64% 1.66%
J 2.62% 2.86% 0.33% 0.61% 1.58% 2.98% 0.42% 0.11%
K 1.68% 6.39% 0.43% 1.28% 2.52% 2.60% 0.63% 0.55%
L 3.91% 22.33% 1.11% 0.31% 3.15% 4.12% 0.68% 1.54%
M 2.91% 2.84% 0.68% 0.93% 2.52% 4.55% 0.06% 0.83%
N 1.17% 1.51% 0.41% 0.42% 1.49% 1.62% 0.34% 0.41%
O 3.41% 3.60% 0.62% 0.85% 1.57% 3.47% 0.44% 0.88%
P used for H determination used for H determination
Q 1.19% 2.95% 0.52% 0.59% 2.79% 4.77% 0.72% 0.75%
R 3.68% 3.80% 1.08% 1.12% 1.26% 3.17% 0.46% 0.46%
S 2.89% 2.58% 0.51% 1.02% used for H determination
T 2.44% 5.06% 0.60% 1.00%
U 0.00% 4.19% 1.05% 0.68%
V 2.47% 4.25% 0.49% 0.73%

Location
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Figure 4.58: Carbon levels detected in pores and on sound regions of the fracture surfaces of 
                    a plate casting which had been filled at a metal velocity 8 mm.s-1. 
 

 
Figure 4.59: Carbon levels detected in pores and on sound regions of the fracture surfaces of 
                    a plate casting which had been filled at a metal velocity of 5 mm.s-1. 
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Figures 4.58 and 4.59, which illustrate the differences in the amount of carbon present in 

pores and on sound fracture surfaces of castings made at two different fill velocities, clearly 

show that, in all but two pores the carbon content was higher than on sound regions of the 

corresponding fracture surfaces. In the two cases where the opposite condition was apparent, 

the difference in the carbon levels was only 0.07 wt.% and 0.31 wt.% respectively.  

 

The average carbon content found in pores of the plate in which the metal front had travelled 

at 8 mm.s-1 and adopted an irregular profile was about 5.2 wt.%. However, the average level 

detected in the other plate where the front speed had been 5 mm.s-1 was slightly lower at just 

under 5 wt.%. Another interesting observation was that the highest individual values in both 

plates all occurred in the lower and central regions of the castings, not in the upper sections. 

 

Oxygen contents from the same locations are shown in Figures 4.60 and 4.61. Where mould 

filling had taken place at 8 mm.s-1 the average oxygen level detected in the pores was 0.9% 

whereas at the lower filling velocity of 5 mm.s-1 it was around 1%. 

 
 Figure 4.60: Oxygen levels detected in pores and on sound regions of the fracture surfaces of 
                     a plate casting which had been filled at a metal velocity of 8 mm.s-1. 
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Figure 4.61: Oxygen levels detected in pores and on sound regions of the fracture surfaces of 
                     a plate casting which had been filled at a metal velocity of 5 mm.s-1. 
 

The average oxygen levels found in sound regions of each plate were lower than those 

measured within the pores. The plate made at the higher filling speed of 8mm.s-1 yielded a 

value of about 0.6 wt.% oxygen whereas the more slowly filled plate only yielded an average 

of 0.4 wt.%. Additionally, in three separate locations in each plate the sound structure had an 

oxygen content that was higher than the associated pore. Although no correlation could be 

found in the locations that these anomalies were detected, the highest oxygen value from each 

casting was found in a pore in the lower region of the plate. 

 

The hydrogen content in the lower and central regions of the plate that had been cast at a 

filling velocity of 8 mm.s-1 (see Figure 4.52) was much higher than would have been expected 

to be dissolved in the liquid metal and to have precipitated out during solidification to form a 

pore. Also, as shown in Table 4.57, carbon was not only detected in every pore that was 

examined, irrespective of the shape of the metal front during  mould filling but in all but two 

locations was higher in the pore than on the sound fracture surface. This suggests that the 

porosity encountered on the fracture surface of all specimens was caused by entrapment of the 
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degradation products of polystyrene and not as a result of excessive levels of dissolved 

hydrogen in the melt.  

 

At the higher filling velocity of 8 mm.s-1 the metal front was unstable and this combination of 

irregular front profile and the rate at which it progressed through the mould was thought to 

have resulted in entrapment of a large amount of degrading pattern material which manifested 

itself in the casting as a relatively large area fraction of pores. This is supported by the 

presence of large, spherically shaped pores which indicated that degradation of entrapped 

pattern material continued within each pore during solidification. Whilst a reduction in filling 

velocity resulted in the presence of a planar metal front and a reduced level of porosity in the 

casting, carbon was still present in each pore that was analyzed. The means that entrapment of 

pattern degradation products rather than hydrogen precipitation was responsible for pore 

formation during the filling and solidification of both plate castings. 

 

4.6  ACCELERATED LIQUID-LIQUID INTERFACE MODELLING 
 
A comparison of the appearance of the metal fronts observed during the casting experiments 

and the tensile properties of the castings suggested that only a completely smooth advancing 

metal front would give reproducible casting properties. In order to understand the mechanisms 

that might have controlled the shape of the metal-foam interface and the entrainment of 

pattern degradation products into the casting, a physical model was constructed that simulated 

counter-gravity filling of a Lost Foam mould at room temperature. The apparatus, illustrated 

in Figure 3.11, contained liquid mercury as a replacement for liquid aluminium and glucose 

syrup as a substitute for the liquid polystyrene that had been reported to be present at the 

metal-foam interface [6,16,17]. Accelerating the Hg-glucose interface vertically upwards 

would be an analogue for the counter-gravity Lost Foam process where high density, low 

viscosity aluminium was being pushed upwards into low density, high viscosity polymer 

degradation products.  

 

4.6.1  Glucose Syrup Viscosity 
 
Published literature [155] suggests that, over the range of casting temperatures used in the 

mould filling experiments, i.e. between 748 oC and 909 oC, the viscosity of the liquid 
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aluminium would have varied by only 0.3 mPa.s, from 1.2 mPa.s to 0.9 mPa.s. Therefore, the 

application of liquid Hg in the room temperature analogue closely replicated the viscosity of 

the metal flowing through the mould. However, the viscosity of any liquid polystyrene 

degradation products that were present just ahead of the advancing metal front may have 

varied considerably depending on the rate that heat was transferred from the liquid metal to 

the degrading foam and also on the speed that the front was advancing through the mould. 

Figure 2.35, from work published by Osswald [122], shows quite clearly that over a 

temperature range of only 60 oC (between 170 oC and 230 oC) the viscosity of a polystyrene 

melt varied dramatically, especially at low shear rates.  

 

During the mould filling experiments, it was not possible to determine accurately the 

temperature of liquid polystyrene degradation products within the mould but, based on foam 

pattern collapse, softening and vaporisation experiments carried out by Davies [54] in which 

the lowest temperature at which liquefaction of any of the samples began was 240 oC, it was 

predicted that the viscosity of liquid polystyrene just ahead of the metal front would be within 

the range of 10 Pa.s to 100 Pa.s. depending on the temperature and shear force in that region at 

that time. Therefore, the glucose syrup that was used as a substitute for liquid polystyrene in 

the analogue was prepared in three different concentrations by dilution with small amounts of 

water. The dynamic viscosity of the original syrup was measured at 93 Pa.s and the results are 

shown in Figure 4.62. When 2.5 wt.% water was added to the original syrup, the dynamic 

viscosity fell to 35 Pa.s and a further 2.5 wt.% water addition reduced this value to 16 Pa.s. 

The viscosity measurements taken on both these diluted samples have been presented in 

Figure 4.63 and Figure 4.64 respectively. 
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Figure 4.62: Viscosity measurements taken from an undiluted sample of glucose syrup. The 
                     dynamic viscosity of this sample was 93 Pa.s. 
 

 
Figure 4.63: Viscosity measurements taken from a sample of glucose syrup diluted with 2.5% 
                     by wt. of water. The dynamic viscosity of this sample was 35 Pa.s. 
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Figure 4.64: Viscosity measurements taken from a sample of glucose syrup diluted with 5.0% 
                     by wt. of water. The dynamic viscosity of this sample was 16 Pa.s. 
 

4.6.2  Interfacial Observations During Model Operation 
 
When glucose syrup with a dynamic viscosity of 16 Pa.s was displaced from the region 

between the two opposing glass plates of the model by the controlled injection of Hg, the 

interface accelerated upwards in a horizontal, planar fashion until, about 0.5 s. after the 

displacement began, its speed reached 50 mm.s-1 as shown in Figure 4.65. However, even at 

lower speeds the mercury stream was observed to contract away from the faces of the glass 

plates. This had the effect of reducing the overall cross section of the front and accentuating 

the curvature of the leading edge.  

 

The interface reached its maximum velocity of around 140 mm.s-1 about 1 second into the 

displacement period, and this corresponded to a vertical distance of 70 mm. At that point the 

Hg began to develop three perturbations that developed into distinct fingers as the front 

continued to travel vertically upwards to the upper part of the model. Figure 4.65 clearly 

shows that the largest and most pronounced of these perturbations or fingers was located 

y = 16.46x + 4.66

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

Sh
ea

r S
tr

es
s (

Pa
)

Glucose Viscosity (diluted with 5.0 % by wt. of water)

Shear Rate (s-1) 



 166 
 
  

between the other two and directly above the region where the mercury had entered the model 

initially. Although all three fingers became more prominent as displacement continued, the 

central one grew at a much greater rate, reaching a length of about 80 mm towards the end of 

the displacement.  This caused it to surge ahead and reach the top of the glass cell about 

0.75 s. before the other two.  

 

Although shorter and narrower than the central finger, the one observed on the right hand side 

of the model was well defined. It had a length of approximately 55 mm and the horizontal 

distance between its tip and the tip of the central finger was about 70 mm. This was in contrast 

to the left hand finger which was less prominent, having little length development until the 

latter stages of displacement, by which time it had reached a length of 10 mm. The horizontal 

distance between its tip and that of the central finger was estimated to be around 60 mm, but it 

could be seen that, in the latter stages of the displacement, as shown in the last three frames of 

Figure 4.65, the finger was beginning to divide into two.  

 

When glucose syrup with a dynamic viscosity of 35 Pa.s was used in the model, perturbations 

at the interface began to appear when the metal front velocity had reached about 70 mm.s-1, as 

shown in the 1.33 s frame of Figure 4.66. This equated to about half the metal front velocity 

associated with a glucose syrup viscosity of 16 Pa.s. The progression and shape of the 

interface during the first second of displacement was essentially the same whether a 16 Pa.s or 

35 Pa.s viscosity glucose syrup had been used. This was because the model required about one 

second to accelerate the mercury from standstill up to the desired maximum velocity. The 

approximate distance between two fingers was about 65 mm and the middle finger, which 

grew to be the longest, was measured to be about 70 mm from peak to trough. The only 

noticeable difference was that at the slower displacement speed the division of the left hand 

finger into two was more pronounced in the latter three frames of Figure 4.66 

 

Increasing the dynamic viscosity of the glucose syrup in the model to 93 Pa.s had the effect of 

lowering the velocity at which an interfacial disturbance was observed even further. The nine 

frames contained in Figure 4.67 were taken at intervals of one second. The average speed of 

the interface was only 25 mm.s-1, but even at this slow speed the onset of finger formation was 

recorded after about 4 s of the displacement cycle had elapsed. 
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Figure 4.65: Displacement of glucose syrup with a dynamic viscosity of 16 Pa.s and confined 
                     between glass plates by liquid mercury travelling at approximately 140 mm.s-1.  

Contraction of 
mercury away 

from the walls of 
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Figure 4.66: Displacement of glucose syrup with a dynamic viscosity of 35 Pa.s and confined 
                     between glass plates by liquid mercury travelling at approximately 70 mm.s-1. 
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Figure 4.67: Displacement of glucose syrup with a dynamic viscosity of 93 Pa.s and confined 
                     between glass plates by liquid mercury travelling at approximately 25 mm.s-1. 
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Although the development of the finger pattern was qualitatively similar to that observed 

where lower glucose viscosities had been used, i.e. preferential growth of a central finger with 

a maximum length of 80 mm and a gap between finger tips of about 70 mm, no distinct gap 

formed between the separate fingers.  

 

In each of the three experiments, the finger spacing varied only slightly from about 65 mm to 

70 mm and finger length between 70 mm and 80 mm. When the interface or mercury front 

speed was increased above the value where a perturbation was observed, no fundamental 

change occurred in the finger pattern that had initially been created. Instead, the growth of the 

central finger, in preference to all others, was exaggerated so that it grew vertically upwards at 

an even greater rate than before and reached the top of the model even sooner than its nearest 

neighbour. The experiment was repeated on a number of occasions and each successive set of 

results was found to be almost identical to the previous set. Therefore, it can be concluded that 

the experiment was highly reproducible.  

 

4.7  PROPERTIES OF POLYSTYRENE DEGRADATION PRODUCTS 
 
A number of authors [8,16,19] have suggested that, during the filling of Lost Foam moulds 

with aluminium alloys, the majority of the degradation products found at the metal - foam 

interface were polymer liquids with relatively high viscosities. Although Molibog [16] 

estimated that these degradation products were about 60% to 80% liquid (depending upon 

temperature) with the rest being in a gaseous form, none of the authors gave values for the 

viscosity of this material. The results of the metal - foam interface analogue experiment 

showed that the speed of the advancing metal front needed to bring about the onset of an 

interfacial instability fell as the viscosity of the glucose syrup increased. Therefore, it was 

necessary to approximate the viscosity of the liquid polystyrene present in a Lost Foam mould 

so that predictions could be made about the influence of a particular filling velocity. 

 

4.7.1  The Molecular Weight of Liquid Polystyrene 
 
It was not possible to measure the viscosity of liquid polystyrene directly, especially when 

trying to replicate the conditions at the metal – foam interface during Lost Foam casting. 
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However, Cox and Ballman [39] have determined that the apparent viscosity, or dynamic 

viscosity at zero shear, of liquid polystyrene could be determined from its molecular weight.    

 

Therefore, samples were collected for molecular weight determination by subjecting 

conventional polystyrene pattern material (molecular weight of 413 000 g.mol-1) to 

degradation at 4 different peak temperatures. Immediately thereafter each sample was 

quenched to room temperature as quickly as possible in order to capture the degraded material 

in the solid form. The actual temperature profiles experienced by the polymer have been 

shown in Figure 4.68 and the figure in brackets next to every sample number in the legend is 

the temperature at which it was removed from the heat source, (a liquid aluminium melt).  

 

An overshoot was observed in each profile between the temperature at which the sample was 

removed from the heat source and the maximum temperature reached. This is because a 

certain amount of time was needed to transfer each sample from the heat source to the cooling 

medium. The profiles associated with samples U1, U3 and U4 suggested that this manual 

operation took between 0.5 and 1.5 s, but for sample number 2 took about 3 s. The associated 

heating curve also indicated that this sample had been subject to much less severe heating and 

cooling rates than the other three and therefore it was thought that the thermocouple tip had 

shifted from the surface to the central region of the sample.  

 

Samples of brominated, expanded polystyrene (molecular weight of 340 000 g.mol-1) were 

also subject to heating and quenching similar to that applied to the conventional pattern 

material. Although the experimental procedure was the same, the temperature curves recorded 

were slightly different. As shown in Figure 4.69, three temperature profiles exhibited an 

overshoot of approximately 50 oC compared to the temperature at which they were removed 

from the heat source. Although this value was similar to those recorded during the degradation 

of normal polystyrene, a 150 oC overshoot was observed in respect of sample number B2. This 

may have been caused by an increase in the time taken to transfer this sample from the heat 

source to the quenching medium. 
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Figure 4.68: Temperature profiles used to capture samples of conventional polystyrene pattern 
                    material that had been degraded at various temperatures. 
 

 
Figure 4.69: Temperature profiles used to capture samples of brominated polystyrene pattern 
                    material that had been degraded at various temperatures. 

Thermal Degradation Cycles (unbrominated polystyrene)

0

100

200

300

400

500

600

700

0 5 10 15 20 25

Time (s.)

Sample U3 (550)
Sample U4 (600)
Sample U1 (450)
Sample U2 (500)

T
em

p 
(o C

) 

Thermal Degradation Cycles (brominated polystyrene)

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

Time (s.)

Sample B2 (500)
Sample B3 (550)
Sample B4 (600)
Sample B1 (450)

T
em

p 
(o C

) 



 173 
 
  

 
 

 

 

 

  

 

 

 

 

Table 4.70: Molecular weights of conventional and brominated samples of polystyrene pattern 
                   material compared with the areas under each of the temperature curves used to 
                   degrade them.   
 

 
Figure 4.71: Effect of exposure to heat on the molecular weight of samples of polystyrene 
                     with and without additions of a bromine compound.  
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results obtained from each sample and the area under each of the temperature curves used to 

degrade them. This was used as an indication of the degree of exposure to heat that each 

sample had experienced. Very little difference was found between the two values obtained 

from any one sample (see Figure 4.71). Also, at heat exposures corresponding to an area under 

the temperature curve of between 4000 oC.s and 5000 oC.s, the influence of the bromine 

compound addition was negligible. However, as heat exposure increased above this level, the 

molecular weights of those samples containing bromine were substantially lower than those 

where conventional polystyrene had been used. This implied that, above a certain heat 

exposure level, the presence of bromine compound additions in the polystyrene had the effect 

of reducing its viscosity in the liquid phase. 

 

4.7.2  The Viscosity of Liquid Polystyrene 
 
With the molecular weights of the polystyrene patterns known, the apparent viscosity (or 

dynamic viscosity at zero shear) of the liquid degradation products could be estimated 

according to Cox and Ballman’s formula, Equation 4.1 [39].  

 

log η0 = 3.4 log M + [900.2/(T – 306.4)] – 18.38             Equation. 4.1 

 

where η0 = apparent viscosity at zero shear 

 M = molecular weight 

 T  = the temperature of the melt (in degrees Kelvin) 

 

Although these researchers had derived this equation for a polystyrene melt with a 

temperature of between 175 oC to 230 oC, Merz and Colwell [126] showed empirically that it 

was also applicable to a melt at 450 oC. 

 

According to Equation 4.1 the apparent viscosity of liquid polystyrene is dependant not only 

upon molecular weight, but also on temperature. The liquid aluminium used to fill the plate 

castings in this series of experiments was cast at a temperature of about 785 oC as it entered 

the mould, and would be at a lower temperature at the interface with the pattern. In fact, 

during Lost Foam casting experiments carried out by Davies [54], the temperature of the metal 



 175 
 
  

front was measured to be at only 605 oC as it advanced through the central region of a 10 mm 

plate pattern at about 5 mm.s-1. This was just below the liquidus temperature of the alloy. 

 

Table 4.72 shows the calculated viscosity at 400 oC, 500 oC and 600 oC, for each of the 

samples from which a molecular weight value had been obtained. Although it was recognised 

that, in non-Newtonian fluids such as polystyrene, the viscosity at zero shear would be higher 

than that encountered during the filling of Lost Foam moulds because of the shearing that 

occurs in the liquid polymer as it is displaced by the metal front, these values could serve as a 

guide to approximating the order of magnitude difference in viscosity of the liquid metal and 

the degraded pattern material.  

  

 

 

  

 

 

 

 

 

 

 
 
Table 4.72: Apparent viscosity of polystyrene melts of known molecular weight at 
                   different temperatures (according to Cox and Ballman [39]). 
 
 
The data are shown in Figure 4.73, where it is clear that the influence of molecular weight on 

the viscosity of a polystyrene melt was most pronounced at lower temperatures. 

Calculated Melt Viscosity at Various Temperatures
Sample Mol. Wt. Apparent Viscosity (Pa.s)

Ref. (gmol-1) 400 oC 500 oC 600 oC

U1 183000 92.9 27.6 12.6
U2 67200 3.1 0.9 0.4

U3 177500 83.7 24.9 11.4

U4 157500 55.8 16.6 7.6

B1 55070 1.6 0.5 0.2

B2 40250 0.5 0.2 0.1

B3 166000 66.7 19.8 9.1

B4 136500 34.3 10.2 4.7
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Figure 4.73: Influence of molecular weight on the viscosity of polystyrene melts at different 
                    temperatures. 
 

4.8  CASTING OF PATTERNS CONTAINING BROMINE COMPOUNDS 
 
It has been shown that by adding bromine to polystyrene pattern material, the molecular 

weight of the liquid polystyrene residue was reduced and, for a given exposure to heat, the 

resultant liquid should be less viscous than that of the untreated material. Therefore, it was 

decided to fill Br-treated and untreated plates in a counter-gravity fashion at two different 

velocities and compare front behaviour and profile by means of real time X-ray observations 

and tensile strength variation in the resultant castings by means of a Weibull analysis. 

 

4.8.1  Mould Filling Observations  
 
Four separate moulds were cast, each containing a single plate pattern and Figure 4.74 

highlights the region in each mould where filling was observed. Figure 4.75 shows real time 

X-ray images of the aluminium-pattern interface for a 10 mm thick plate made of 

conventional polystyrene material. This material originated from the same batch that was used 

to estimate the molecular weights in the previous experiments. As the metal front advanced at 
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an average velocity of about 6 mm.s-1, small perturbations were seen at the interface which 

had a wavelength of about 6 mm. Although these perturbations are not very pronounced, they 

can be seen in Frame 3 of Figure 4.75 and in much more clarity on the accompanying video 

which can be found on the CD that is located in Appendix I of this thesis. Although the ingate 

was located centrally on the bottom face of the plate, metal entering it favoured the left hand 

side as viewed from the imaging device. This caused the front to travel at a shallow angle, 

diagonally upwards across the main field of view.  

 

When the front velocity was increased to about 10 mm.s-1, during the filling of a second 

mould of similar characteristics, it filled in essentially the same manner as the first. However, 

the angle of diagonal travel of the front was much greater and resulted in an almost horizontal 

travel from left to right across the field of view as shown in the frames of Figure 4.76. This 

caused polystyrene degradation products, mainly gases, to rise up across its face in an attempt 

to escape away from the interface and into the surrounding moulding sand. Such a flow of hot 

gases carried with it liquid metal which accumulated in a wave at the uppermost corner of the 

front. This can be seen in Frames 1 and 2 of Figure 4.76 and more clearly on the video from 

which the individual frames were extracted. This can be found on the CD that is located in 

Appendix I of this thesis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.74: Fields of view during the counter-gravity filling of 10 mm thick plates (a) in the 
                    ingate region (see Figure 4.75) and (b) in the central region of the plate (see 
                    Figures 4.76 to 4.78).   
 

(a) (b) 

Field of view 
produced by the X-
ray beam.  (approx. 
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Figure 4.75: Sequence of real-time X-ray frames capturing the behaviour of the interface 
                     between molten aluminium and a plate pattern made of conventional polystyrene. 
                     (Approximate metal velocity = 6 mm.s-1). 
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Figure 4.76: Sequence of real-time X-ray frames capturing the behaviour of the interface 
                     between molten aluminium and a plate pattern made of conventional polystyrene. 
                     (Approximate metal velocity = 10 mm.s-1). 
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When the lower region of the metal front reached the right hand vertical sidewall of the mould 

it started to flow upwards. This had the effect of reducing the length of that part of the front 

that was flowing in a near horizontal direction and also the amount of gaseous degradation 

products that were rushing vertically past it. As this flow of gases reduced, their effect on the 

front profile diminished and, in Frames 4 and 5 of Figure 4.76, perturbations similar to those 

seen where the front speed had been 6 mm.s-1 were observed. However, in this case, slightly 

longer wavelengths of between 6 mm and 8 mm were recorded.  

 

When a mould that contained a 10 mm thick brominated plate pattern was cast such that the 

metal front velocity averaged 6 mm.s-1, the interface between the metal and the foam took on 

a very different configuration. Figure 4.77 shows that the front adopted a generally smooth, 

almost horizontal profile and progressed vertically upward throughout the filling sequence. No 

perturbations were encountered at the interface and the occasional irregularity in the 

advancing metal front that could be seen had a very large radius. 

 

When the same technique was used to cast a brominated plate at twice the velocity (about  

14 mm.s-1), the direction of flow remained essentially in the vertically upward direction. 

Nevertheless, the front adopted a less uniform profile with the distance between peak and 

trough reaching a value between two and three times that observed in Figure 4.77. Even then, 

in the early stages of the filling, as depicted in Frames 1 to Frame 3 of Figure 4.78, no 

perturbations of a small wavelength were observed. 

 

As filling progressed, a small “mushroom” of metal was seen breaking through the front. This 

was captured in Frame 4 of Figure 4.78 and can be seen about 60 mm along the front from the 

far right. Within another 1.5 s. a further two “mushrooms” had broken through the front just to 

the right of the original one and a few small perturbations, similar to those captured in Figures 

4.75 and 4.76, were also observed. The change in height of the front between Frame 4 and 

Frame 5 suggests that the velocity increased locally to around 18 mm.s-1 and it was this that 

brought about the onset of an instability at the interface. The distance between the mushroom 

peaks ranged from about 10 mm to 15 mm and that between the smaller perturbations that 

appeared in Frame 5 were about 5 mm. 
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Figure 4.77: Sequence of real-time X-ray frames capturing the behaviour of the interface 
                     between molten aluminium and a plate pattern made of brominated polystyrene. 
                     (Approximate metal velocity = 6 mm.s-1). 
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Figure 4.78: Sequence of real-time X-ray frames capturing the behaviour of the interface 
                     between molten aluminium and a plate pattern made of brominated polystyrene. 
                     (Approximate metal velocity = 14 mm.s-1). 
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Although the severity of an instability at the metal – foam interface had been noticeably less 

when a bromine additive was present in the pattern plate, a completely planar front had not 

been observed during the filling of any of the four plates, even when the metal front had only 

been travelling at 6 mm.s-1. For example, the metal front that had the most planar 

characteristics is shown in Figure 4.77 and even during the filling of this plate a number of 

irregularities were present at the metal-foam interface, particularly during the early stages of 

the fill as seen in Frame 2. These can be seen much more clearly in the video from which the 

frames were extracted which is located on a CD in Appendix I to this thesis. Therefore, a 

further two moulds were cast, one containing a 10 mm thick plate pattern made of 

conventional polystyrene and the other where the same pattern design had been treated with  a 

bromine compound, such that the metal front speed in each case was observed to travel 

through the mould at approximately 5 mm.s-1. The fields of view revealed by the real time X-

ray unit and used to observe the metal as it filled each mould are shown in Figure 4.79. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.79: Fields of view during the counter-gravity filling of 10 mm thick plates (a) in the 
                    ingate region (see Figure 4.80 and Figure 4.82) and (b) in the central region of the 
                    plate (see Figures 4.81 and 4.83).   
 

In the case of a conventional polystyrene pattern, the filling of the running system proceeded 

in the same general fashion as had been observed when the front had been travelling at  

6 mm.s-1. However, at the interface between the ingate and the pattern plate, the metal broke 

through the glue joint in a localised region that was slightly to one side of the centre. Frame 1 

of Figure 4.80 clearly shows that the initial breach had a cross section of only 8 mm but within  
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3 s., as illustrated by Frame 4 of the same figure, this had grown to over 30 mm. At that point 

in the fill, another breach occurred on the opposite side of the ingate and it was only 4 s. after 

liquid metal began to degrade the pattern plate that the glue joint had disappeared altogether. 

The liquid metal then began to fill one side of the plate in preference to the other. This mode 

of filling prevailed until the mould was completely full and, as can be seen in Figure 4.81, 

resulted in a front profile that moved diagonally across the field of view as observed by the 

real time X-ray unit. As the metal front reached the central region of the plate a kink was 

observed in its profile with the lower region being a few degrees offset from the horizontal 

plane and the upper region being almost vertical in orientation. This was most pronounced in 

Frames 1 and 2 of Figure 4.81 where it was associated with a wave that travelled up the near 

vertical part of the front. The wave was caused by gaseous degradation products flowing 

upwards across the almost vertically oriented metal front in an attempt to escape along the 

path of least resistance which suggested that it was an interfacial instability of the Kelvin-

Helmholtz type. The phenomenon can be seen most clearly on the video from which the 

frames of Figure 4.81 were extracted which is contained on a CD in Appendix I to this thesis.   

 

As filling progressed, the angle of the lower region of the front increased in relation to the 

horizontal plane. This caused a relaxation of the kink in the front profile such that, by 14 s. 

into the fill as shown in Frame 4 of Figure 4.81, the front had become essentially concave and 

was devoid of any unstable regions. As the metal neared the top of the plate the concave shape 

of the front became less and less pronounced until, as depicted in Frames 5 and 6, it exhibited 

an almost planar profile at approximately 45o to the horizontal. 

 

When a brominated plate was cast at the same advancing liquid metal velocity of 5 mm.s-1, the 

filling sequence was observed to be much more controlled and uniform. Figure 4.82 clearly 

illustrates that the metal entered into the pattern region as a continuous, horizontal front. This 

meant that the glue joint between pattern plate and ingate degraded uniformly over its entire 

area and prevented the metal from emerging from the ingate in a number of localised regions. 

Although the metal front favoured one side of the plate to the other initially, this phenomenon 

was much less pronounced than during the filling of a conventional polystyrene plate. 

Moreover, as Figure 4.83 shows, the orientation of the front remained generally horizontal 

throughout the filling sequence and devoid of any unstable regions or perturbations. 
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Figure 4.80: Sequence of real-time X-ray frames taken from the ingate region of the mould  

and depicting the behaviour of the interface between molten aluminium and a 
plate pattern made of conventional polystyrene. (Approximate metal velocity 
= 5 mm.s-1). 
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Figure 4.81: Sequence of real-time X-ray frames taken from the central region of the mould  

and depicting the behaviour of the interface between molten aluminium and a 
plate pattern made of conventional polystyrene. (Approximate metal velocity 
= 5 mm.s-1). 
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Figure 4.82: Sequence of real-time X-ray frames taken from the ingate region of the mould  

and depicting the behaviour of the interface between molten aluminium and a 
plate pattern made of brominated polystyrene. (Approximate metal velocity 
= 5 mm.s-1). 
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Figure 4.83: Sequence of real-time X-ray frames taken from the central region of the mould  

and depicting the behaviour of the interface between molten aluminium and a 
plate pattern made of brominated polystyrene. (Approximate metal velocity 
= 5 mm.s-1). 

 
 



 189 
 
  

Ultimate Tensile Strength Results of Plate Samples (MPa)
Conventional Polystyrene Brominated Polystyrene

v = 5 mm/s v = 5 mm/s

A 171 211
B 204 221
C 196 212
D 199 217
E 180 227
F 174 214
G 185 214
H 182 222
I 187 224
J 181 217
K 187 223
L 167 210
M 213 230
N 199 227
O 196 227
P 209 229
Q 214 233
R 210 237
S 230 231
T 227 239
U 232 233
V 237 239
W 227 240

Location

4.8.2  Tensile Strength Variation in the Castings 
 
Twenty-three tensile test bars were extracted from each of the two plates that had been cast at 

a filling velocity of 5 mm.s-1. The location, label and final machined dimensions of each of 

these bars are shown in Figure 3.10 and the UTS values obtained from them listed in 

Table 4.84.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.84: Ultimate tensile strength results of samples taken from a counter-gravity cast 
                    pattern plate made of conventional polystyrene and one made of brominated 
                    polystyrene. 

 

The results of a “goodness of fit” analysis are shown in Table 4.85 and indicate that, on 

average, the Weibull distribution was marginally more accurate than the normal distribution in 

describing both sets of results whereas the Type 1 extreme distribution was, overall, the least 

accurate. 
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Weibull plots of both sets of UTS data are illustrated graphically in Figure 4.86 and it can be 

seen that the Weibull modulus of the plate casting made from a brominated pattern was 25.6, 

while that of the unbrominated plate was only 10.3.  

 
Table 4.85: ‘Goodness of fit’ of normal, Weibull and type 1 maximum extreme value 
                     distributions to the UTS data from plates made from untreated and Br-treated 

 polystyrene patterns. (Approximate metal velocity = 5 mm.s-1 in both cases). 
 

 
Figure 4.86: Weibull plots of UTS results taken from two counter-gravity cast plates (one 
                     from an untreated polystyrene pattern and the other from a Br-treated polystyrene 
                     pattern) where the metal velocity in each case had been measured at 5 mm.s-1.  
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Cluster Analysis Regression Best-fit
design coefficient parameters

Plate made from untreated Normal 0.9398 µ = 0.8452, σ = 0.0881
polystyrene pattern Weibull 0.9393 σ = 0.8760, λ = 10.3172
(v = 5 mm/s) Type 1 extreme 0.9406 µ = 0.8848, σ = 0.0687

Plate made from Br-untreated Normal 0.9441 µ = 0.9379, σ = 0.0394
polystyrene pattern Weibull 0.9476 σ = 0.9531, λ = 25.5988
(v = 5 mm/s) Type 1 extreme 0.9127 µ = 0.9556, σ = 0.0307
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Interestingly, the plots are very similar to those shown in Figure 4.49 and Figure 4.51 where 

15 mm thick, untreated polystyrene plates were cast at various filling speeds. In these earlier 

experiments, front speeds of 4 – 5 mm.s-1 gave rise to planar fronts during mould filling and 

produced castings with Weibull moduli of 22.4 and 23.2. When similar plates was cast at 

slightly higher speeds, i.e. 6 – 8 mm.s-1, instabilities were observed at the interfaces between 

the patterns and the metal fronts and the corresponding Weibull moduli were only around 10. 

 

In this series of experiments, the casting with the highest UTS Weibull modulus was made by 

filling a brominated pattern plate in a planar fashion. However, this slight improvement in 

modulus compared with those of the other two counter-gravity plates where the metal – foam 

interface had been stable during mould filling (i.e. 25.6 against 22.4 and 23.2 – see previous 

paragraph) was likely to have been influenced heavily by a decrease in the plate thickness 

from 15 mm to 10 mm where a greater surface area to volume ratio reduced the length of the 

path along which degradation products needed to travel in order to escape into the moulding 

sand. 

 

4.9  SUMMARY 
 
When Lost Foam moulds were cast in a gravity fashion, filling velocities of around 12 mm.s-1 

were observed. These were not only much smaller than would have been expected if the 

mould cavity had been open but were also unaffected by the location of the ingate. During the 

casting of plates, a number of fingers were observed on all metal fronts irrespective of ingate 

location. However, these were more pronounced where the casting had been gated from the 

top. Frames filled at an even slower rate than the plates and none of them filled fully. This 

resulted in the presence of misrun defects on each casting which was most severe where top-

gating had been used. Glue joints between the runner bar and pattern were seen to degrade 

more slowly than the surrounding polystyrene and this caused a temporary reduction in the 

speed of the metal front. None of these joints degraded evenly, probably because they were 

not uniform in thickness, and encouraged the metal to flow in a preferential direction as it 

entered into the pattern. Whilst no significant difference was found between the UTS data sets 

obtained from three top-gated and three bottom-gated plates, there were significant differences 

between each of the data sets related to frame castings. This is thought to have been due to the 
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uncontrolled variation of one or more parameters such as coating thickness or glue joint 

uniformity. The design of the frame pattern made it much more susceptible to variations 

because once the metal had been directed preferentially in one direction along a leg of the 

frame it had limited freedom to change the way it travelled through the mould. Although the 

distribution of the individual values in each UTS data set was most accurately described by 

means of the Weibull distribution, the associated modulus for each data set was very low. The 

best result was 9.2 and was obtained in respect of the three plates that had been bottom-gated. 

The worst, corresponding to a value of 2.5, was related to the bottom-gated frames. Although 

pores were found on all fracture surfaces, aluminium oxide, film-type defects were only found 

on fracture surfaces of test bars that had been taken from frame castings. The oxide films were 

generally much larger than the pores and would have been responsible not only for the very 

low UTS values but also for the extremely low Weibull moduli that were associated with the 

frames. 

 

Casting in a counter-gravity fashion provided more control over the rate that the mould was 

filled. At metal velocities approaching those observed during gravity casting, the metal front 

was seen to take on a similar profile where fingers of around 20 mm in both length and 

spacing were present. As the filling speed was reduced so did the length and distance between 

the fingers. For example, at a metal velocity of 8 mm.s-1, the finger length was around 

5 mm and the distance between two adjacent tips was also about 5 mm. These small, closely 

packed fingers were referred to as perturbations and were associated with a slightly convex 

curvature of the front across the field of view. When the velocity of the metal front was 

reduced to 5 mm.s-1 the perturbations disappeared and the front took on a smooth, planar 

profile which was horizontally oriented. The associated Weibull modulus was 23.2 and this 

was significantly greater than the nearest value of 10.7 where the filling velocity had been 

8 mm.s-1 and irregularities had been seen on the metal front. In a second experiment, the 

Weibull modulus of a plate cast at 4 mm.s-1, where the metal front had been planar, was 22.4 

whereas plates cast at 6 mm.s-1 and 7 mm.s-1, in which irregular metal fronts were observed, 

had Weibull moduli of only 10.1 and 5.1 respectively. This strongly suggested that the filling 

velocity had a large effect on the metal front profile which, in turn, influenced the Weibull 

modulus that was achieved. Although low filling speeds resulted in the highest reliabilities, 
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they were also associated with misrun defects which reduced the length of the castings by up 

to 20%. 

 

The defects found on the fracture surfaces of the tensile specimens taken from a counter-

gravity cast plate, where the filling speed had been 8 mm.s-1 and the metal front had been non-

planar, were much more severe than when the metal velocity had been lower and the front had 

been smooth. Not only was the defect area fraction greater but individual defects were larger 

and many of them were almost spherical, resembling gas pores. Although a large increase in 

the hydrogen level was detected in the lower and central regions of the plate compared to the 

original melt, the values obtained were much higher than aluminium could retain in the liquid 

state. EDX analysis revealed that carbon was present on the surface of every defect that was 

analysed and hence it was concluded that they were caused by entrapment of polystyrene 

pattern material rather than by hydrogen gas pick-up. Hydrogen levels in the plate that had 

been filled with a planar metal front were essentially the same as the levels detected in the 

melt before it was cast and, as some carbon was found in each of the defects that were 

analysed, it is reasonable to conclude that these were also formed as a result of polystyrene 

entrapment, albeit at a much reduced level. Both the shape of the metal front and the speed 

with which it travelled through the mould were considered to have been heavily influential in 

this improvement. 

 

The room temperature analogue, which accelerated a Hg-glucose interface vertically upwards, 

was constructed to understand the mechanisms that might have controlled the shape of the 

metal-foam interface and the entrapment of polystyrene degradation products when high 

density, low viscosity aluminium was pushed upwards into low density, high viscosity liquid 

polymer. As the velocity of the interface was increased it became unstable and Hg fingers 

protruded into the overlying glucose syrup. When the viscosity of the glucose syrup was 

reduced, the velocity required to bring about an unstable interface increased, thereby 

confirming that the instability observed was of the Saffman Taylor type. 

 

In order to determine whether the perturbations and fingers that had been seen at the metal-

foam interface during the casting of Lost Foam were the result of a Saffman Taylor instability, 

the viscosity of the liquid polystyrene that was reported to be present immediately ahead of 
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the advancing front was approximated from its molecular weight. It was found that the amount 

of heat used to transform the polystyrene from a solid to a liquid was much more influential in 

reducing the viscosity than the peak temperature. Treating the polystyrene with a bromine 

compound also had a viscosity reducing effect but this was only small in comparison to the 

influence of the other two parameters.  

 

When an untreated polystyrene plate and a Br-treated plate were cast at a filling speed of  

5 mm.s-1 immediately after one another, an interfacial instability was only observed in the 

mould containing the untreated plate. Analysis of the UTS data from each plate showed that 

the Weibull modulus of the plate where an untreated pattern had been used was only 10.3 

whereas that of the Br-treated plate was 25.6. 
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5 DISCUSSION 
 

One of the unique features of the Lost Foam casting process is that the pattern remains in the 

mould at the start of the filling sequence. This allows great flexibility in casting design. 

Despite this, Lost Foam castings are plagued by a number of defects resulting from the 

entrapment of pattern degradation products and premature freezing of the metal front. Whilst 

published literature stresses the importance of controlled mould filling in preventing these 

defects, the mechanisms used to regulate it have, up to now, almost always been passive. The 

two most widely used mechanisms have been coating permeability and pattern density.  

 

The effectiveness of these passive systems is somewhat limited because they cannot react to 

the dynamics of mould filling. For example, where a mould contains a pattern that is oriented 

in the vertical plane and is bottom-gated and cast by means of gravity, the metallostatic head 

reduces throughout the filling sequence. This means that, in the initial stages of filling, the 

pattern is in direct contact with the liquid metal and decomposes by means of ablation [17]. 

However, as filling progresses and the head pressure decreases, the speed of the metal front 

also decreases. This suggests that a gap may form between the foam and the metal and the 

mechanism by which the foam degrades may change to one of melting. The formation of a 

gap also exposes a larger area of the coating through which degradation products can pass and 

this reduces any back pressure that restricts the forward movement of the front. On the face of 

it these two conditions counter each other but the gap cannot grow indefinitely because the 

advancing liquid metal temperature also has an effect. If this temperature is high, the gap will 

also be large but as the front slows down due to loss in metallostatic head and loses some of 

its initial heat energy in decomposing the foam in front of it, the temperature falls and the gap 

diminishes once again. Thus coating permeability or pattern density can only be truly effective 

in controlling the front speed at any one point during the casting of the mould.  

 

In the current work a form of controlled, counter-gravity filling was compared with 

conventional gravity casting to determine if there was any benefit in adopting this technique. 

Assessment was carried out in terms of tensile strength variation in the resultant castings, as 

well as from observations concerning metal front velocity, metal front morphology and 

fracture surface appearance. Vertically oriented plate patterns were used in most of the casting 
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experiments but limited use was also made of a frame-type pattern that forced the liquid metal 

to split into a number of fronts that later recombined. This provided data on the influence of 

converging metal streams with respect to casting quality. Finally, the interfacial interaction 

between metal and pattern was studied to determine how this influenced the quality of the 

castings produced, and the filling speed at which castings would show a marked reduction in 

strength. The mechanism that caused this decrease in reliability was also explored and was 

used to predict filling speed limitations for the manufacture of quality castings. 

 

5.1  MECHANICAL PROPERTIES OF GRAVITY FILLED CASTINGS 
 
The tensile strength of the gravity filled plates was very low, and individual results ranged 

from 73 MPa to 155 MPa. Overall, castings that had been filled from the bottom produced the 

better results in terms of average value, range and Weibull modulus. However, comparison of 

this set of results with that obtained from top-gated castings suggested that the difference was 

not statistically significant. There was only a small difference of < 1 mm.s-1 in the filling 

speed when the ingate was located at the top of the plate rather than the bottom. As expected, 

the speed of filling was slightly slower when the plate was cast from the bottom because the 

front was travelling against the gravity vector and continued to lose metallostatic head 

pressure throughout the filling sequence. However, when a top gate was used the liquid metal 

flowed counter to the flow of degradation products as they escaped out of the mould. This 

interaction had the effect of reducing the influence of the growing metallostatic head that was 

trying to drive the metal forward as mould filling proceeded.  

 

The similarity in the overall rate that bottom- and top-gated plates filled can be seen by 

comparison of Figure 4.10 and Figure 4.13. In Figure 4.10, where the metal entered a plate 

through an ingate that was located directly above it, the front profile developed into a number 

of small perturbations that had a wavelength of 12 mm and a height of 4 mm. This can be seen 

clearly in Frame 3 where the metallostatic head was around 300 mm. A comparable front 

profile was observed in the latter stages of the filling of a bottom-gated plate as shown in 

Frame 4 of Figure 4.13. Here the head differential was also about 300 mm and the 

perturbations were similar in terms of height and wavelength. Hence, the location of the ingate 

in gravity casting of Lost Foam moulds has little influence on the filling rate of the mould and, 
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at any given metallostatic head, has no influence on the profile of the metal front. However, 

the results indicated that the metallostatic head influenced the shape of the metal front and that 

ingate location determined the position in the mould where a certain front profile would occur. 

In other words, the change in the shape of the metal front as it progressed through the plate 

from top to bottom, as in the case of a top-gated plate, was essentially the opposite of that 

observed when the gate was placed at the bottom. 

 

The presence of an irregular metal front profile throughout the filling of the plates encouraged 

the entrapment of some of the degradation products between the perturbations or, at higher 

filling speeds, between the distinct fingers that were observed along the liquid metal front. 

Any of this material that was subsequently unable to escape to the mould wall became 

entrapped in the solidified metal. Even if it travelled as a bubble of gas or globule of liquid 

polystyrene through to the mould wall, any oxygen present in the bubble would have reacted 

with the liquid metal to leave behind a thin oxide film known as a bubble trail [87] and this 

would have been associated with carbon residues deposited as a result of polystyrene 

degradation. The fracture surfaces of tensile test specimens taken from the plates revealed 

randomly dispersed pore-type defects which contained carbon deposits. This indicated that 

they were formed as a result of pattern degradation products being trapped within the final 

structure of the casting, reducing its inherent strength by acting either as a stress raiser or as a 

non-wetting discontinuity in the matrix. 

 

Frame castings exhibited a much wider range of tensile strength values than the equivalent 

plate castings and their Weibull moduli were also much lower. A value of only 2.5 was 

recorded in respect of the bottom-gated frames and where top gating had been used this value 

was only 2.7. Although the range of results was much greater, 14 out of the total population of 

45 results (i.e. 31%) exceeded 155 MPa, the highest value obtained from a specimen taken 

from a plate casting. This may be because the frame patterns had a lower casting modulus than 

the plates and therefore solidified more rapidly.   

 

The frame castings not only produced some of the highest tensile strength values, but also 

yielded the lowest. The lowest value recorded in a plate casting was 73 MPa but this was 

higher than 9 results obtained from frame specimens, the lowest having a value of 47 MPa. A 
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statistical analysis of the results indicated that there was a significant difference between the 

tensile results of one casting to another, even though they had been made in the same way, 

from the same batch of metal and with the same running system design. This is likely to have 

been caused by the different ways that individual castings filled, and specifically the 

horizontal bars of each. For example, Figure 4.22 shows two distinct metal fronts, produced as 

a consequence of the pattern configuration, recombining in the central region of one of the 

horizontal bars. However, in the next illustration (Figure 4.23), only one of the fronts was 

observed filling the horizontal and vertical bars. Additionally, in Frame 2 of the same figure, a 

small lighter region can be made out at the intersection between a vertical and a horizontal 

bar. This was created by entrapment of some degrading polystyrene and its location in Frame 

2 was at the point that the liquid metal front split into two distinct streams. One of the streams 

began to travel down the horizontal bar and the other continued to flow upwards along the 

vertical bar. Therefore, the entrapped material could have proceeded in either direction but, as 

Frames 3 and 4 of Figure 4.23 show, it actually continued to move with the metal in the 

vertical leg of the pattern until it reached the coating interface where it was seen to disappear, 

presumably through the coating and into the sand. Tensile testing was only carried out on 

specimens machined from horizontal bars and therefore the consequences of entrapping 

material in the vertical legs of the casting were not recorded. However, if the entrapped 

material had favoured the other metal stream and entered a horizontal bar, the effect on the 

tensile strength results could have been significant. Therefore, diverging and recombining 

metal streams encouraged greater variability in the location that defects were found in the 

solidified castings. 

 

The frame pattern was intentionally used in order to encourage the liquid metal to split into 

two distinct streams as it emerged through the ingate into the adjacent, horizontal bar and then 

recombine as it filled subsequent bars from both ends. Any oxide films or pattern degradation 

products that were immediately ahead of the two opposing fronts would be entrapped at the 

point along the bar where these fronts met. Obviously, no metal fronts recombined in the bar 

attached to the ingate and tensile strengths recorded here were relatively high, although not the 

highest. This was because all the liquid metal that flowed into the pattern did so through a 

single ingate and would have caused this region of the frame to become hotter than the rest. 
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Subsequently, it would have cooled more slowly than other parts of the casting and, therefore 

would have been associated with a coarser structure.  

 

The only other bar in the frame that produced consistently high results was the fully formed 

bar furthest away from the ingate. Datalogger results as shown in Figure 4.16 and the real-

time X-ray images in Figure 4.23 clearly showed that filling was not uniform in the vertical 

plane and that one front sometimes travelled half way along a horizontal bar before the other 

front even entered it from the other end.  This meant that the two fronts met much nearer to 

one end of the bar, possibly in the head portion of the test bar rather than within the gauge 

length. Additionally, the profile of the opposing metal fronts travelling down the bar furthest 

from the ingate was different to that seen in the other bars. Here it was much more elongated 

and tended to spread out across the lower region of the bar rather than filling the complete 

cross section. Although this gave rise to a larger surface area that could be oxidised, it allowed 

the degradation products to escape through the coating above it and would tend to push and 

deposit the liquid metal oxide film against the coating. Without oxides or degradation 

products entrapped across the cross section of the bar the strength would not have been 

severely reduced. 

 

The bars situated between these two extremes exhibited the greatest variability in strength 

which was related to how uniformly each bar filled from both ends and the shape of each of 

the two metal fronts as they travelled towards each other. 

 

Irrespective of pattern type or ingate location, the Weibull moduli were extremely low in 

comparison with values reported for castings made by open cavity methods. For example, 

Green and Campbell [89] cast a number of test bars in Al-7Si-0.4Mg aluminium alloy using 

the open cavity method and reported a Weibull modulus of 10.8 when the ingate was at the 

top of the casting and 19.7 when it was located at the bottom. The highest value of 50.3 was 

obtained when the researchers modified and filtered the alloy before it entered the mould 

cavity through bottom ingates. Frame casting results even compared poorly with those 

obtained from ceramic materials where a Weibull modulus of 5 has been commonly regarded 

as describing the least reliable of this class of materials [158]. 
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Microscopic study of some of the fracture surfaces revealed that all of them contained 

interdendritic porosity as shown in Figure 4.37. The size and morphology of this defect was 

responsible for reducing the strength of the material in relation to the area of the fracture 

surface that it occupied and this accounts for the lower strength values found in the frame 

samples. Large oxide film defects, such as the one shown in Figure 4.38, were found on some 

of the fracture surfaces that originated in frame castings and these were thought to have been 

responsible for the lowest values recorded.  

 

5.2  MECHANICAL PROPERTIES OF COUNTER-GRAVITY FILLED CASTINGS 
 
In the counter-gravity casting experiments two sizes of plate were cast in a pre-modified  

Al-7wt.%Si0.3%Mg alloy. Tensile testing was carried out on machined samples that had been 

cut from one of seven separately made castings in the as-cast condition. In contrast to the 

gravity cast plates, only one specimen failed at a UTS value below 100 MPa and over 60% of 

the total 152 specimens reached a strength of over 200 MPa prior to failure.  

 

Plates filled at a low velocity (i.e., 4 mm.s-1 to 5 mm.s-1), where a planar front had been 

observed during casting, produced the highest tensile strength values with a location 

parameter (i.e. the strength below which no specimens failed) value of 190 MPa. However, 

where the velocity had been 8 mm.s-1 and the metal front had been associated with a number 

of perturbations, this value fell to 94 MPa. These perturbations on the metal fronts were very 

similar, in terms of length and spacing, to those observed in the upper region of a bottom-

gated, gravity cast plate and this can be seen by comparison of the frames in Figure 4.13 with 

those from Figure 4.43. The filling velocity in each case was similar and was measured to be 

approximately 6.5 mm.s-1. This suggests that the velocity at which the metal proceeded 

through the mould has a direct influence on its front profile which, in the non-planar 

condition, resulted in a significant reduction in tensile strength. 

 

Interestingly, a low filling velocity on its own was not sufficient to ensure high average tensile 

strength results. When casting a 10 mm thick plate at a filling velocity of 5 mm.s-1 the 

orientation of the front was almost diagonal across the plate. This encouraged a wave to 

propagate along the front as it ran from the bottom to the top (see Figure 4.81 and the 
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associated video contained on a CD in Appendix I of this thesis). This disturbance was 

thought to have been responsible for the reduction in tensile strength values when compared to 

the other castings that were filled at 5 mm.s-1. Also, apart from the plates that exhibited a 

planar metal front during filling, the only other one that had an average tensile strength of over 

200 MPa was cast at a velocity of 6 mm.s-1. This plate was associated with a front that had a 

few minor perturbations along its length which had a life cycle of only about 2 s. It is thought 

that the filling of this plate was carried out a velocity at which the metal – foam interface was 

at its limit of stability and was beginning to show signs of disruption.  

 

Pores were found on the fracture surfaces of all tensile test pieces examined. Where the plate 

had been cast at a velocity of 8 mm.s-1 they were more spherical in shape, generally larger in 

size (up to 2500 µm in diameter) and occupied approximately 10% of the total fracture area. 

This was in contrast to the smaller, more irregular pores that occupied about 5% of the 

fracture surface and were found in plates where a planar front had been present during casting. 

Irrespective of the speed of fill and the morphology of the defects on the fracture surfaces, 

carbon deposits were found in every pore that was subject to EDX analysis. However, sound 

regions of the same fracture surfaces contained much lower levels of carbon and on one 

specimen no carbon was found at all. This indicates that these defects were formed as a result 

of foam entrapment rather than by hydrogen diffusion into the liquid aluminium from the 

pattern decomposition layer. 

 

Fracture surfaces containing the largest area of defects originated from the plate that had been 

filled at 8 mm-1 and in which the metal front had been unstable. This suggests that an irregular 

metal front, promoted by a higher filling speed, entraps more degrading foam material and 

results in a higher fraction of defects in the solidified casting. The difference in the hydrogen 

content in each of the two castings and their associated melts supports this statement. Whereas 

the hydrogen found in the plate that had been filled at 5 mm.s-1, under planar front conditions, 

was slightly lower than in the original melt, the opposite was found in the plate cast at  

8 mm.s-1. Because each pore defect contained carbon and therefore was formed as a result of 

foam entrapment, any increase in hydrogen above that in the original melt would have also 

originated from the same source. An increase in foam entrapment and therefore severity of 

defects within the casting caused by an increase in filling velocity concurs with work carried 
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out by Caulk [20] who proposed that foam engulfment takes place when the metal front is 

concave and is encouraged by increasing filling velocity. 

 

5.3  INTERFACIAL INSTABILITY DURING MOULD FILLING 
 
5.3.1  The Nature of the Liquid Metal – Pattern Interface 
 
During the counter-gravity mould filling experiments, metal front velocities ranging from 

between 2 mm.s-1 to 22 mm.s-1 were observed.  At velocities below 5 mm.s-1 the liquid metal 

front appeared smooth and planar although castings produced at these filling speeds failed to 

fill completely on their uppermost surfaces. At 5 mm.s-1 the metal fronts retained their 

generally smooth, planar profiles but filled the moulds completely. The only exception to this 

was observed during the counter-gravity casting of a 10 mm thick, conventional polystyrene 

plate. In this case a large region of the front was oriented almost in the vertical plane, as 

shown in Frame 1 of Figure 4.81, and a wave-like disturbance was seen running up it, (see 

relevant video on CD contained in the appendices to this thesis). 

 

At high filling velocities, > 8 mm.s-1, the liquid metal front began to show signs of 

perturbation on its hitherto smooth profile. At around 8 mm.s-1, small perturbations were 

observed along the length of the interface between the metal and the degrading pattern. These 

disturbances had a wavelength of approximately 5 mm and a length that varied from between 

4 mm to 7 mm. At speeds higher than 10 mm.s-1 the fronts were seen to split into a number of 

distinct fingers that became more elongated as the velocity increased. This is illustrated by 

comparison of Figure 4.11 and Figure 4.41 respectively. In the first of these figures the front 

velocity was about 12 mm.s-1 and the fingers that were present had a length of around 20 mm. 

In Frames 1 to 3 of Figure 4.41 the fingers were about 30 mm in length and these were 

associated with a liquid metal front that was travelling at approximately 16 mm.s-1. These 

results indicated that an increase in the velocity of the metal front was associated with the 

onset and growth of disturbances normal to its profile, suggesting that an instability was 

present at the metal – pattern interface when the liquid metal front travelled at velocities in 

excess of 5 mm.s-1. 
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A number of authors have reported that unsound regions in the pattern [21-23] or inter-bead 

porosity that extended to the pattern surface [17,19] encouraged the formation of fingers on 

the front of the advancing metal. Unsound regions in the pattern have been associated with 

low density but no such density variations were detected in any of the patterns used in the 

casting experiments. The lowest density of 23.5 kg.m-3 was measured in the central region of a 

10 mm thick brominated plate and this was well within the range of 20 kg.m-3 to 25 kg.m-3 

that published literature suggests is acceptable [16,19]. Inter-bead porosity, which has been 

shown to be the result of poor bead fusion [21], is associated with pattern permeability [19]. 

However, Davies [54] found that polystyrene plate patterns, similar to those used in these 

experiments, had zero permeability, even when the denser, well fused surface layer of the 

pattern had been removed. Also, expanded polystyrene beads in the plate and frame patterns 

had a diameter of about 1 mm and any poor fusion between them would have resulted initially 

in finger wavelengths of approximately the same pitch. However, the smallest finger 

wavelength observed during the casting experiments was 5 mm (see Figures 4.42 and 4.43). 

Therefore, the physical characteristics of the patterns were not responsible for the formation of 

fingers at the metal front during casting.   

 

Davies [54] showed that polystyrene pattern material degrades into a viscous liquid at 

temperatures between 300 oC to 400 oC, and begins to boil at a temperature about 40 oC 

higher. He also found that by increasing the heating rate of the foam sample from 10 oC.min-1 

to 50 oC.min-1, boiling was delayed by approximately 60 oC. The interface between liquid 

aluminium and the foam pattern probably comprises a mixture of liquid polystyrene 

degradation products, gaseous degradation products and air that had been previously 

entrapped within the cellular structure during pattern manufacture. It is considered that the 

temperature range in which aluminium is cast is not sufficient to generate high levels of 

gaseous degradation products ahead of the metal front, although some might occur. It is more 

likely that the majority of polystyrene degradation products are in the liquid form [6,8,10,19].  

 

Liquid aluminium at 750 oC has a density of 2 350 kg.m-3 and a viscosity of 1.07 mPa.s 

[102,155].  Liquid polystyrene, on the other hand, has a density of around 1 040 kg.m-3 at  

200 oC and its viscosity can vary from 39 Pa.s to well over 1 000 Pa.s, depending upon the 

rate of shear applied during the viscosity measurement [103, 120]. From this data, it is to be 
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expected that the liquid polystyrene-gas mixture created just ahead of an advancing metal 

front would be significantly less dense, but significantly more viscous than the liquid metal 

advancing to displace it.  

 

5.3.2  Saffman-Taylor Instability and Lost Foam Casting 
 
It is known that an interface between a dense, low viscosity liquid and a less dense, higher 

viscosity liquid lying above it can become unstable if accelerated perpendicularly. This is 

known as Saffman-Taylor instability [112]. The room temperature analogue, which was built 

to mimic the interface between liquid polystyrene and the underlying liquid aluminium, 

revealed that, (i) accelerating such an interface produces an instability (see Figure 4.65 to 

Figure 4.67), and (ii) as the viscosity of the upper fluid in the cell increased, the velocity at 

which the underlying metal front became unstable decreased. These effects are characteristic 

of the Saffman-Taylor instability and are described by Equation 2.20. 

 

 
 
Figure 5.1: Relationship between modelled values observed at the onset of interfacial 

                   instability and values derived mathematically using the Saffman-Taylor equation.  
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The line in Figure 5.1 has been plotted using the Saffman-Taylor equation (Equation 2.20) to 

predict the velocity at which the Hg-glucose interface in the analogue becomes unstable as the 

viscosity of the glucose increases. The triangular shaped points on the graph represent the 

interfacial velocities that were observed during the analogue experiments at three different 

levels of glucose viscosity. The empirically derived results were a very good fit with the 

predicted values showing that the instabilities seen during the analogue experiments were 

Saffman-Taylor instabilities. Although glucose is a shear-thinning liquid, the good agreement 

shown in Figure 5.1 suggests that, at the velocities involved in this experiment (between 

25 mm.s-1 and 140 mm.s-1), the effect of shear rate on viscosity was not significant. 

Furthermore, the morphology of the interfacial instability, as it grew from a single, central 

finger with a well rounded tip into a small number of stubby fingers with the original one 

predominating, supported Ladtkow’s theory that large differences in viscosity between the 

two fluids result in a high pressure gradient which suppresses the number of fingers formed 

and reduces the aspect ratio values that they achieve [113].  

 

Since the Saffman-Taylor equation has been shown to describe the onset of an instability in a 

low viscosity, high density liquid accelerated upwards into a high viscosity, low density 

liquid, between two parallel plates, it was considered possible that the advancing liquid 

aluminium being forced upwards into the degrading polystyrene pattern could be behaving in 

the same way, accounting for the perturbations in the metal front seen in the X-ray 

radiography. To demonstrate that this was the case, the Saffman-Taylor equation was again 

used to try to predict the velocity at which the instability began in the Lost Foam castings. 

However, to predict this critical velocity requires the use of accurate values for the density and 

viscosity of both liquid aluminium and liquid polystyrene at the temperatures occurring during 

filling, which for the liquid polystyrene/gas mixture in the pattern-metal interface is difficult. 

This was the only parameter for which representative data were not available from published 

literature, and therefore this was estimated empirically.  

 

Samples of conventional and brominated polystyrene patterns were subjected to a variety of 

thermal degradation cycles that were intended to mimic the effect of different pouring 

temperatures in Lost Foam casting. The rapidly cooled residues were analysed using Gel 

Permeation Chromatography to obtain their molecular weight from which to infer their 
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viscosities using Equation 4.1 (see Section 4.74) which had been shown by Merz and Colwell 

[126] to be valid for a liquid polystyrene with a temperature of at least 450 oC. Of the three 

factors that had an effect in causing molecular weight reductions, the addition of a bromine 

compound to the polystyrene was the most influential. This was followed closely by the 

amount of heat that each sample had been subjected to, with the effect of the peak temperature 

only playing a small role.  

 

The molecular weight of conventional polystyrene samples (labelled with the letter U) and 

brominated polystyrene samples (labelled with the letter B) fell into two distinct categories. 

The first consisted of samples U1, U3, U4, B3 and B4 which had been subject to a high ∆T 

for a short time during thermal degradation. These samples all exhibited molecular weight 

values significantly higher than 100 000 g.mol-1. The other category, where much lower 

molecular weight values were determined, was made up of samples U2, B1 and B2, and these 

had been exposed to lower ∆T values for a longer period of time. Table 5.2 shows the 

different molecular weights found in the foam heating experiments used to estimate viscosities 

of the associated liquid polymer at different temperatures in the metal-pattern interface. These 

ranged from 183 000 (U1) to 40 250 (B2). Temperatures of 300 oC, 400, 500, 600 and 700 oC 

have been selected so as to bracket the temperatures likely to be found in the interface. The 

estimated viscosity of the degradation products in the interface ranged from < 0.05 Pa.s up to 

774 Pa.s and were used in conjunction with Equation 2.20 to predict the critical velocity for 

the onset of the Saffman-Taylor instability. 

 

The results of the liquid polystyrene viscosity experiments showed that, in addition to 

chemistry, molecular structure and temperature, this property was influenced by the time 

during which thermal degradation took place. While casting a series of 10 mm thick, 

horizontally oriented polystyrene plates in aluminium, Davies [54] measured the temperature 

gradient ahead of the advancing metal front and found that, for a metal front velocity of about 

15 mm.s-1, the time taken for the temperature to rise from ambient to that of the liquid metal 

was approximately 0.3 s whereas, at the slower front speed of 6 mm.s-1, it took around 1 s. He 

also studied the temperature and the rate at which polystyrene pattern samples decomposed 

into liquid and gaseous phases. When a heating rate of 10 oC.min-1 was used, the samples 

liquified at about 300 oC. However, at 50 oC.min-1 this transformation was only completed at 
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400 oC. Both heating rates were significantly lower than those observed during the 

polystyrene viscosity experiments and whilst filling Lost Foam moulds. Therefore, it is 

reasonable to assume that the liquid polystyrene in the heat-affected zone immediately ahead 

of the advancing metal front would have a higher temperature than that of the liquid 

polystyrene in Davies’ experiment. Obviously, the temperature of the liquid polystyrene is 

heavily influenced by the temperature of the metal front but cannot be hotter than it. The front 

temperatures measured by Davies fell from about 700 oC to 600 oC as the aluminium travelled 

through the mould. Under these or similar circumstances it is realistic to assume that the liquid 

polystyrene temperature in the metal-foam interface in these experiments should be between 

500 oC and 600 oC.  
 

 
 
Table 5.2: Velocities, determined by means of Equation 2.20, at which a liquid Al-liquid 

      polystyrene interface becomes unstable as the temperature and viscosity of the 
      polystyrene at the interface changes (assuming that the instability is Saffman- 
     Taylor in nature. (U = unbrominated samples and B = brominated samples). 
 

 
 

Based upon the arguments that liquid polystyrene degradation products just ahead of the metal 

front (i) have only been subject to short heat exposure times, and would have molecular 

weights > 104, (see Table 5.2), and (ii) have a temperature of between 500 oC and 600 oC, 

Liquid Polystyrene Viscosity & Critical Velocity of Metal Front at Various Temp.s
Sample Mol. Wt. 300 oC 400 oC 500 oC 600 oC 700 oC

Ref. (gmol-1) η0 Vcrit. η0 Vcrit. η0 Vcrit. η0 Vcrit. η0 Vcrit. 

U1 183000 774.3 0.000 92.9 0.001 27.6 0.004 12.6 0.008 7.3 0.015
U2 67200 25.7 0.004 3.1 0.035 0.9 0.117 0.4 0.256 0.2 0.443

U3 177500 698.0 0.000 83.7 0.001 24.9 0.004 11.4 0.009 6.6 0.016

U4 157500 464.9 0.000 55.8 0.002 16.6 0.006 7.6 0.014 4.4 0.024

B1 55070 13.1 0.008 1.6 0.068 0.5 0.230 0.2 0.503 0.1 0.871

B2 40250 4.5 0.024 0.5 0.199 0.2 0.667 0.1 1.461 0.0 2.530

B3 166000 555.9 0.000 66.7 0.002 19.8 0.005 9.1 0.012 5.2 0.020

B4 136500 285.8 0.000 34.3 0.003 10.2 0.010 4.7 0.023 2.7 0.040

where g = 9.81 m.s-2
µ Al. = 0.00107 Pa.s [159] η 0 =    in Pa.s

ρ Al. = 2350 kg.m-3 [159] b = 0.01 m V crit.  =    in m.s-1

ρ poly. = 1040 kg.m-3 [136]
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predictions were made of the interfacial velocity range in which an instability would arise if it 

was of the Saffman-Taylor type. 

  

Figure 5.3 considers a 10 mm thick, unbrominated plate that is cast in aluminium and predicts 

the velocity at which a liquid aluminium – liquid polystyrene interface becomes unstable over 

a range of interfacial degradation product temperatures of between 300 oC and 700 oC.  The 

lower limit of instability on the graph has been constructed using the critical velocity values 

for sample U1 in Table 5.2. This sample was chosen because it had the highest molecular 

weight of all the unbrominated samples and was considered to probably represent the highest 

liquid polystyrene viscosity that would be found in the mould during the casting experiments. 

Therefore, any velocity lower than the calculated critical values for this sample would always 

result in the presence of a stable interface.  

 

 
Figure 5.3: Prediction of the metal front velocity that would cause an instability to occur at 

the interface between the liquid aluminium and liquid products of degradation of a 
conventional polystyrene pattern. 

 
The upper limit of stability was constructed using the calculated critical velocity values for 

sample U4 in Table 5.2, because this had the lowest molecular weight of the unbrominated 

samples that had been exposed to heat for only a short time during their transformation from 
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solid to liquid. This molecular weight was considered to be probably the lowest that would be 

encountered under similar filling conditions to those that had been observed during the casting 

experiments. Hence, for any interfacial velocity laying above this line an instability would be 

present at the metal – foam interface.  

 

 
Figure 5.4: Prediction of the metal front velocity that would cause an instability to occur at 
                   the interface between the liquid aluminium and liquid products of degradation of 
                   a brominated polystyrene pattern. 
 

Figure 5.3 therefore suggests that for a 10 mm thick, plate-type pattern made from untreated 

polystyrene (i) a stable front should always be present when its speed is 4 mm.s-1 or less, and 

(ii) an unstable front will always be present when its speed is greater than 14 mm.s-1. A 

transitional condition will occur when the front is moving at a velocity between the two. The 

actual point of onset of the instability is heavily dependant upon the actual temperature of the 

liquid polystyrene and the degree of thermal degradation that has occurred within it. 

 

Figure 5.4 contains similar predictions related to a brominated plate, based on the molecular 

weights of samples B3 and B4 (see Table 5.2). The limits of stability and instability have been 

shifted both upwards and apart, (relative to the unbrominated plate shown in Figure 5.3), so 

that a stable front is predicted to occur at velocities of below about 6 mm.s-1, and an unstable  
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front from 23 mm.s-1 and above. The range of velocities in which such an instability would be 

transitional has now risen to a gap of 18 mm.s-1, compared to 11 mm.s-1 in respect of an 

unbrominated plate. Observations made during the casting experiments supported the 

predictions made by the two figures. For example, whilst filling an unbrominated polystyrene 

plate at a velocity of 5 mm.s-1 disturbances were observed on the metal front (see Figures 4.80 

and 4.81) whereas the front observed during the filling of a brominated plate at the same 

velocity was planar (see Figures 4.82 and 4.83).   

 

Two graphs have been constructed from Table 5.2 in order to illustrate how the velocity of the 

metal – foam interface must change as the temperature of the liquid polystyrene degradation 

products increases in order to bring about the onset of a Saffman-Taylor instability, (Figures 

5.5 and 5.6).  

 

Figure 5.5: Critical velocity of interfacial instability, Vcrit., as a function of the temperature of 
                   liquid polystyrene samples with high molecular weights and viscosities.  
 

Figure 5.5, which relates to the higher molecular weight, higher viscosity group of samples, 

shows that additions of a bromine compound have a positive effect in preventing an instability 

occurring during  counter-gravity filling of a Lost Foam mould, and that this effect becomes 
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much greater as the temperature of the pattern degradation products increases. A similar trend 

can be seen in Figure 5.6 where the effects of critical velocity over a range of temperatures 

were also plotted for the lower molecular weight, lower viscosity group of samples. (The 

results shown in Figure 5.5 are much more representative of the conditions experienced during 

the casting of thin plates in the Lost Foam process than those in Figure 5.6). 

 

 
Figure 5.6: Critical velocity of interfacial instability, Vcrit., as a function of the temperature of 
                   liquid polystyrene samples with low molecular weights and viscosities.   
 

The perturbations observed at the metal – foam interface during the filling of bottom-gated 

plate castings were probably due to Saffman-Taylor Instability because, not only did they 

occur when high density, low viscosity aluminium was being pushed upwards into low 

density, high viscosity polymer degradation products in a plate pattern, producing a metal 

front profile which was analogous to the profile found in a Hele-Shaw cell used in the original 

experiments carried out by Saffman and Taylor [112], but also the interfacial velocity at which 

they appeared, determined by real-time X-ray imaging, (about 5 mm.s-1 for an untreated plate 

and 6 mm.s-1 for a brominated plate) correlated well with the predictions made, using the 

Saffman-Taylor equation (Equation 2.20), (see Figures 5.3 and Figures 5.4). However, these 

predictions were based on liquid polymer viscosities between 500 oC and 600 oC in samples 
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that had only been exposed to heat for a short time. A change to any parameter that might 

influence either of these conditions, e.g., a reduction in the casting temperature, would require 

the critical velocity predictions to be recalculated. 

 

The ratio of finger width to plate width, i.e., the λ value, observed during the mould filling 

experiments, was always significantly lower than the value of 0.5 that Saffman and Taylor 

reported during their experiments using a Hele-Shaw cell [112]. However, the researchers also 

found that at low interfacial velocities this correlation was not true and that the λ value 

increased up to 1.0 as the velocity reduced to zero. This general trend was observed in the 

real-time X-ray imaging during the counter-gravity casting experiments. At an interface 

velocity of about 16 mm.s-1 distinct fingers with a width of approximately 30 mm were 

observed (see Figure 4.41). When the filling velocity was reduced by half to 8 mm.s-1 the front 

took on a convex profile along which a series of closely packed perturbations or small, closely 

packed fingers were seen (as shown in Figure 4.42 and Figure 4.43). The convex metal front 

could be considered as the start of a single finger with a λ value of 1.0 which was brought 

about by a reduction in interface velocity from 16 mm.s-1 to 8 mm.s-1.    

 

An alternative explanation for the formation of the small perturbations at the metal – foam 

interface could be as follows. Molibog [16] and Davies [54] observed that the liquid in the 

degradation zone contained many gas bubbles which Davies suggested was primarily air that 

had been trapped within the polystyrene cells. This air would expand as the temperature 

increased and this would have produced small pockets of lower viscosity gas within the liquid 

degradation products at the interface. These sites would have been less restrictive to the flow 

of the advancing metal front and could have been responsible for the presence of the small 

perturbations on the liquid metal front. When the filling velocity was reduced even further, it 

is possible that a distinct gas layer formed immediately ahead of the metal front because the 

rate of decomposition of liquid polystyrene was greater than the rate of advancement of the 

metal. Because the viscosity of this gas layer was relatively uniform and the interfacial 

velocity was very slow it follows that the perturbations would subside. This was observed 

when the filling velocity was only 5 mm.s-1 as shown in Figure 4.44 and Figure 4.45. 
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Although the Saffman-Taylor Instability occurred during the mould filling experiments, a 

different instability was probably observed when part of the advancing metal front was 

inclined much more towards the vertical rather than the horizontal plane. Under these 

conditions, shown in Figure 4.75, Figure 4.76 and Figure 4.81, the wave-like instability seen 

travelling along the inclined region of the front was of the Kelvin-Helmholtz type (see 

Section 2.4.1.3) and caused by the rapid, upward flow of gaseous degradation products in the 

small interfacial zone between the liquid metal and solid polystyrene (see CD in Appendix I of 

this thesis). Interestingly, this phenomenon was only observed during the casting of 

conventional polystyrene plates that were 10 mm thick.  

 

5.3.3  Mechanical Properties and the Metal – Pattern Interfacial Instability 
 
The Weibull distribution plots and Weibull moduli that were obtained from the UTS values of 

specific castings were placed into 3 distinct categories as summarised in Table 5.7, in which 

the behaviour of the liquid metal front was also noted.  

 
Table 5.7: Categorisation of the Weibull distribution data obtained from castings made during 
                 mould filling experiments. 
 

The first category contained two frames that had Weibull moduli of 2.5 and 2.7. The second 

category was made up of six plate castings that had been made from conventional polystyrene 

UTS Results Categorised by Weibull Modulus Value
Front

Design Additive Speed

1 Frame none bottom-gated 13 mms-1 rounded with occasional small perturbation 2.5
Frame none top-gated 8 mms-1 rounded with occasional small perturbation 2.7

2 Plate (15 mm) none top-gated 10-12 mms-1 irregular with large protruding fingers 6.2
Plate (15 mm) none bottom-gated 10-12 mms-1 generally horizontal with small perturbations 9.2
Plate (15 mm) none counter-gravity 8 mms-1 slightly convex with small perturbations 10.7
Plate (15 mm) none counter-gravity 7 mms-1 generally horizontal with small perturbations 5.1
Plate (15 mm) none counter-gravity 6 mms-1 generally horizontal with small perturbations 10.1
Plate (10 mm) none counter-gravity 5 mms-1 45o inclination with wave running up across it 10.3

3 Plate (15 mm) none counter-gravity 3-4 mms-1 horizontal, planar, no perturbations 22.2
Plate (15 mm) none counter-gravity 5 mms-1 horizontal, planar, no perturbations 23.2

Plate (10 mm) bromine
compound

counter-gravity 5 mms-1 generally horizontal and planar, no
perturbations

25.6

Cat. Pattern Gating Front Profile Weibull
Modulus
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patterns of 10 mm and 15 mm thick. These patterns had been cast either in a gravity fashion, 

with the ingate located on the upper or lower face, or by means of the counter-gravity casting 

apparatus through an ingate situated at the bottom. Weibull moduli for the castings in this 

group ranged from 5.1 to 10.7. The last of the three categories consisted of two 15 mm thick 

plates and one of 10 mm thick. The 10 mm thick casting had been made from a brominated 

pattern whereas the other two had used patterns of conventional polystyrene. The Weibull 

results for this category were 22.2, 23.2 and 25.6. 

 

The absence of castings from category 3 which had been associated with an interfacial 

instability during mould filling and the difference between the highest Weibull modulus in 

category 2 and the lowest of category 3 suggest strongly that interfacial instability during 

casting is very detrimental to casting quality. Interestingly, the severity of the instability was 

almost irrelevant to the modulus value, its presence in one form or another being sufficient to 

cause a marked decline in tensile properties. This suggests that once the filling velocity has 

reached or exceeded the critical value that triggers the onset of an interfacial instability, the 

quality of the resultant casting will almost certainly be poor. 

 

5.4  PRACTICAL IMPLICATIONS 
 
The experimental results have shown that interfacial instability can exist between an 

advancing liquid metal front and the decomposition products of a pattern in vertical, counter-

gravity Lost Foam casting. The onset and propagation of this instability are heavily dependant 

upon the velocity at which the metal front travels though the mould and the nature and 

viscosity of the polystyrene degradation products immediately ahead of it. The instability has 

been shown to be of the Saffman-Taylor type, in which the interface between a dense, low 

viscosity liquid and a less dense, higher viscosity liquid lying above it becomes unstable when 

accelerated perpendicularly, and this has allowed predictions to be made, for brominated as 

well as conventional polystyrene pattern materials, about the front velocity required to bring 

about its onset. This has provided the foundryman with a tool to determine the velocity 

threshold for filling of a particular Lost Foam mould, vertically upwards. If this filling speed 

is exceeded it can be expected that the resultant casting would have severely reduced and 

more scattered mechanical properties. If an untreated polystyrene pattern material is used and 
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the maximum filling velocity that could be used without disruption to the metal front might 

result in a misrun defect, due to a slow filling rate, a brominated pattern material would permit 

a slightly higher filling speed without detriment to casting integrity.  

 

By application of controlled, counter-gravity filling, the metal front can be maintained below, 

but close to, the maximum speed permitted thereby creating the best possible conditions for 

production of sound castings of high reliability. Up until now, most Lost Foam castings have 

been made using gravity filling techniques and metal velocities have been controlled primarily 

by variation in coating permeability [40,42]. This has meant that the foundry had to stock as 

well as control the use of a variety of coatings, each with its own permeability, and effectively 

carry out a balancing act for every casting. Now, using controlled counter-gravity filling, the 

coating no longer has to control the fill and it can be of high permeability. This not only 

reduces the number of different coatings required in the plant to one but also encourages a 

more rapid removal of pattern degradation products from the mould cavity and into the sand. 

 

Even though the entrapment of polystyrene degradation products can be prevented by the 

application of a suitably permeable coating in conjunction with controlled counter-gravity 

filling, the viscosity of the liquid polymer just ahead of the metal front limits the velocity at 

which the interface can proceed without it becoming unstable. The casting experiments 

showed that the maximum filling velocity at which the metal – foam interface remained stable 

was only 5 mm.s-1 which, in some cases, resulted in the presence of misrun defects on the 

casting surfaces. To overcome this, the viscosity of the liquid degradation products needs to 

be reduced and published literature suggests that this may be achieved by using a co-polymer 

of polystyrene and polymethyl acrylate [160] where the tertiary hydrogen ions in the chain of 

polystyrene molecules are attacked by polymethyl acrylate macroradicals which results in 

scission at an adjacent bond and unzipping of the molecular chain. Alternatively, inclusion of 

a small amount of spherical, nanoparticles, such as fullerenes (C60), that are well dispersed 

within the polystyrene pattern material, have been reported to bring about substantial 

reductions in the viscosity of polystyrene melts [161]. These nanoparticles are not thought to 

participate in the entanglement dynamics within the melt but only to have a dilution effect 

which translates into a viscosity reduction. 
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The Lost Foam process relies upon energy from the liquid metal to decompose the pattern 

material that lies immediately ahead of it and misrun and cold lap defects are relatively 

common, especially when filling velocities are low. In fact, of the four plates that were filled 

with a metal velocity of < 5 mm.s-1, only two were fully filled. Therefore, the foundryman is 

encouraged to cast very close to the transition speed where an interface begins to show signs 

of instability. However, the limits of stability shown in Figures 5.3 and 5.4 are heavily 

dependant upon the molecular weight of the polystyrene degradation products. This value is in 

turn affected significantly by the amount of heat that these substances have been exposed to. 

For example, in Figure 5.3, if the temperature of the degradation products decreases by only 

20 K from 500 oC to 480 oC, the limit of stability drops from 4 mm.s-1 to 3 mm.s-1. Although 

this reduction is not large in absolute terms, it amounts to a 25% decrease and could easily 

result in an instability at the metal – foam interface. Conversely, if the filling velocity is 

reduced slightly, it follows that the time required to fill the mould increases and this extends 

the time that the polystyrene degradation products are exposed to the heat of the liquid metal. 

Under these conditions and based on the results shown in Table 4.70, the polystyrene 

degradation products would undergo a reduction in molecular weight which would also reduce 

their viscosity. This would have the effect of shifting the limit of stability of the interface 

upwards in terms of filling velocity. Therefore, two distinct mechanisms discourage the 

propagation of an interfacial instability when the filling velocity is reduced.  

 

A limitation of the casting experiments was that they used simple pattern shapes of uniform 

thickness that were all oriented in the vertical plane during mould filling. This is generally not 

the case in production foundries where cast parts usually have a variety of cross sections and 

are shaped in such a way that the metal does not travel vertically upwards as it proceeds 

through the mould. This can result in a much more complicated filling pattern with the liquid 

metal dividing into a number of fronts, each one travelling through a different cross section of 

the pattern at a different velocity, and only recombining at a later stage in the filling sequence.  

 

It is likely that the decomposition zone in a thin section is significantly different to that in a 

thicker section. The metal front temperature in the thinner section would be lower because 

heat loss into the surrounding mould would be higher. This would have the effect of lowering 

the temperature and increasing the viscosity of the polystyrene degradation products at the 
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metal – foam interface. As a result, an instability would occur at a lower velocity than in a 

thicker section. Pattern geometry or orientation could also influence the plane in which the 

metal front travels through the mould. A change in the cross section of a pattern from one side 

to the other, even where there is no divergence of the front into more than one stream, may 

cause it to travel faster in the thicker section because of variations in heat loss, degradation 

product viscosity and surface tension. Under these circumstances, the front may move forward 

at a steep angle tending towards the vertical plane and, although moving at a velocity lower 

than that required to generate a Saffman-Taylor instability, may encourage a Kelvin-

Helmholtz instability to occur. 

 

Research into the Lost Foam casting process has now reached a point where most authors 

recognise that the velocity of the metal, as it travels through the mould, is critical in 

determining whether the viscous pattern degradation products ahead of the metal front are 

entrapped or not. This has led to a few researchers applying simple methods of counter-gravity 

casting to the process to control the filling velocity to improve casting quality [72,74,99,100]. 

Whilst improvements in the density and dimensional repeatability of castings made in this 

way have been reported [75,110], most authors have focused on the level of filling velocity 

control that was achievable. Additionally, a number of authors have put forward explanations 

for the mechanisms by which foam entrapment takes place [19,20,25,42] but none have 

offered predictions of the filling velocities at which these mechanisms take place. This 

research has shown that an unstable metal – foam interface of the Saffman-Taylor type can 

lead to entrapment of pattern degradation products thereby reducing the quality of the castings 

produced. This has allowed predictions to be made of the velocity at which an interface 

becomes unstable and, by means of controlled counter-gravity casting, to ensure that it is not 

exceeded. Finally, in order to overcome misrun defects the filling velocity can be maximised, 

without causing an interfacial instability, by inclusion of a bromine additive in the polystyrene 

pattern material which reduces the viscosity of the degradation products ahead of the 

advancing metal stream. 
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6 CONCLUSIONS 
 

1. The location of the ingate in gravity casting of Lost Foam plates had no significant 

influence on the rate that the mould filled and, in all cases, produced castings with tensile 

strengths of low reproducibility as characterized by the Weibull modulus. 

 

2. None of the gravity cast frame patterns filled completely but, when gated from the 

bottom, the filling speed was slightly increased and the misrun defect reduced in severity 

from over half the casting to the third furthest away from the ingate.  

 
3. The range of tensile strength values found in frame castings was much larger than that 

observed in gravity cast plates. The large film-type defects found only in the frame 

castings were probably responsible for this phenomenon.  

 

4. Filling of Lost Foam plates from the bottom, under controlled, counter-gravity filling 

conditions, showed that only very slow filling conditions were associated with 

reproducible mechanical properties. Counter-gravity filling at a velocity of about 5 mm.s-1 

was associated with a Weibull modulus of up to 25, (still much less than can be obtained 

with open cavity shape casting). 

 

5. Examination of the filling process using real-time X-ray equipment showed that liquid 

aluminium front velocities of above 5 mm.s-1 were associated with a destabilization of the 

metal – foam interface into small perturbations and fingers, which would lead inevitably 

to the entrapment of pattern degradation products. 

 

6. The real-time X-ray images showed that the uniform tensile strengths and higher Weibull 

modulus associated with the slower metal front velocity of 5 mm.s-1 were the result of a 

planar advancing metal front, which would be associated with a reduction in the trapped 

degradation products.  

 

7. As carbon was found in every defect that was analysed by means of EDX, the increased 

level of hydrogen detected in plates when compared to their melts indicates that it 
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originated from entrapped degradation products rather than by diffusion through the metal 

front from the pattern decomposition zone. 

 

8. Modelling the effect of velocity on the metal front profile with a mercury-glucose 

analogue of the Lost Foam casting process revealed similarities to the filling of Lost 

Foam moulds with aluminium and suggested that the irregular advancing liquid metal 

fronts in Lost Foam casting were a case of Saffman-Taylor instability. 

 

9. At 500 oC (the minimum temperature expected in the zone immediately ahead of the 

advancing liquid metal front) liquid polystyrene from an untreated pattern was estimated 

to have a viscosity of between 16 Pa.s and 27 Pa.s which, according to the Saffman-

Taylor equation, caused the metal – foam interface to become unstable at a velocity of 

between 4 mm.s-1  and 6 mm.s-1.   

 

10. The addition of an organic brominated additive to the polystyrene pattern material 

reduced the viscosity of the liquid degradation products at 500 oC to between 10 Pa.s and 

19 Pa.s. This had the effect of raising the critical velocity at which the metal – foam 

interface became unstable to between 5 mm.s-1 and 10 mm.s-1.  

 

11. The filling velocity at which an interfacial instability occurred during the counter-gravity 

casting of plates in the brominated and unbrominated forms concurred with filling 

predictions based on the Saffman-Taylor equation and a liquid polystyrene temperature 

just ahead of the metal front of between 500 oC and 600 oC. 

 

12. A non-horizontal interface, flowing upwards through a vertically oriented plate pattern, 

has been shown to exhibit a wave-type instability that travelled along the front in the 

same direction as the metal flow. Its characteristics are similar to those of Kelvin-

Helmholtz instability which suggests that the metal – foam interface in Lost Foam casting 

can become unstable in more than one fashion. 
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7 FURTHER WORK 
 

Considerable progress has been made in understanding the mechanisms that are responsible 

for casting defects specific to the Lost Foam process, the influence of these defects on 

mechanical properties and the application of a number of techniques to improve casting 

quality. Nonetheless, further research is needed in the following areas: 

 

1. The quality of Lost Foam castings improves when filled in a counter-gravity fashion. 

However, further counter-gravity casting experiments should be performed by means 

of a more sophisticated casting apparatus that monitors and controls the velocity of the 

metal front throughout the complete filling operation in order to quantify accurately 

the benefits of this technique. 

 

2. The temperature of the liquid degradation products plays a critical role in determining 

the velocity at which the metal – foam interface becomes unstable. Further work needs 

to be carried out not only to determine this temperature more accurately but also how it 

varies throughout the filling operation and what parameters influence it the most.  

 
3. Some researchers have reported that the pattern degradation products ahead of the 

aluminium metal front resemble more of a foam than a liquid. Therefore, it is 

necessary to determine to what extent a foam is more likely to be present than a liquid 

and what consequences this might have on the stability of the interface. 

 
4. This research only considered the metal – foam interface in simple plate and frame-

type patterns. Even so, there were substantial differences between the two. 

Engineering castings are almost always more complex and have varying section sizes 

and orientations in the mould. Hence, there is a need to study these variables in more 

detail. 

 
5. Addition of a bromine compound to a polystyrene pattern has been shown to reduce 

the molecular weight and hence viscosity of the liquid degradation products that it 

forms during casting. Investigation into alternative, viscosity reducing additives is 

needed to determine if there is a more suitable or more potent one available. 
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APPENDIX I: VIDEO RECORDINGS OF THE MOULD FILLING & LIQUID-LIQUID 

                            INTERFACE EXPERIMENTS 
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ABSTRACT 
 
To understand better the filling of molds in the Lost Foam casting process, the filling of vertically oriented plates 
was viewed using a real-time X-ray technique, to examine the interaction of the cast Al alloy with the 
polystyrene foam pattern and the resulting profile of the metal front. The plates were filled from the bottom, 
using both gravity and counter-gravity techniques. 
 
The real-time X-ray images from gravity-filled castings showed that the advancing metal front was associated 
with the development of a number of finger-like protrusions as filling of the mold progressed. These protrusions 
inevitably led to the entrapment of the degradation products of the polystyrene pattern. Mechanical properties of 
these castings were characterised by low and variable tensile strength and elongation. Examination of the tensile 
test bar fracture surfaces revealed pores due to entrapment of the pattern degradation products and oxide films, in 
all of the castings produced.  
 
Counter-gravity filling was applied by means of a pressurised chamber containing a crucible of the liquid alloy 
into which was inserted a riser tube leading to the mold. As the filling velocity was reduced below that possible 
using gravity-filling techniques the metal front became planar, without any finger-like perturbations. 
 
The tensile properties of castings made by counter-gravity filling were significantly improved over the gravity-
filled castings, with a corresponding reduction in the number of defects found on the fracture surfaces. In 
addition, the tensile properties of the counter-gravity filled molds with the planar front were improved by up to 
50% in comparison to the counter-gravity filled molds filled at a velocity such as to produce an irregular metal 
front. 
 
 
INTRODUCTION 
 
The Lost Foam casting process is characterized by the use of a polystyrene pattern that is placed within an 
unbonded silica sand mold and vaporized during casting. This technique allows the production of complex 
shapes and, in some cases, the unification into one casting of a number of components that were previously made 
separately and then joined together. This casting method is associated with defects that are specific to this 
process.  
 
Three major defects associated with the production of aluminum castings in the Lost Foam process have been 
recognized (Bennett, 1999); internal pores, folds and blisters. All originated from the degradation of the pattern 
by the liquid metal during mold filling. Internal pores were caused by entrapment of liquid polymer within the 
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molten metal as it filled the mold, whereas the formation of folds was influenced by a number of factors such as 
low pouring temperature, metallic oxides, high or variable density patterns and metal turbulence. Blisters, 
apparent on the surface of the casting, consisted of a thin layer of aluminum that was separated from the main 
body by a thin layer of entrapped degradation products and oxide. 
 
Experiments were carried out to determine the mechanisms responsible for fold and blister defects in aluminum 
Lost Foam castings by Ramsay et al. (Ramsay et al., 2000). It was determined that increased velocity of filling 
was the predominant factor in the formation of blisters, and that the use of a high permeability coating 
contributed to the incidence of this defect. The authors concluded that increasing liquid metal velocity generated 
higher surface turbulence thereby trapping higher amounts of pyrolysis products. The higher velocity also meant 
that the coating was not as hot when the metal front passed, thereby promoting a more rapid formation of a solid 
aluminum skin at the metal-coating interface. The deleterious effect of a high permeability coating, (Warner, 
1998), has been attributed to its higher thermal conductivity.  
 
In conventional gravity casting processes the running system is designed to control the filling rate of the mold 
and hence, in conjunction with the gravity vector, the metal front velocity.  However, experiments conducted 
using bottom-gated polystyrene plate patterns with varying gate sizes and two pattern coatings of different 
permeabilities indicated that gate size, number of gates and gate position were not significant in Lost Foam 
casting (Hill et al., 1997). 
 
The published literature concurs that metal front velocity in Lost Foam casting production is a significant factor 
in determining the quality of the final casting, and the main focus of control of this variable has been pattern 
composition, coating composition and coating thickness (Wang, 1997). It was further proposed that the “process 
choke” could either be the metal-foam interface or the metal-foam-coating interface depending on whether the 
decomposition of the foam or removal of the products was the most influential (Lawrence, 1998). 
 
A more detailed study of this zone suggested that foam degradation, back pressure, and wetting and wicking 
were the control mechanisms by which the filling of a Lost Foam mold took place (Liu et al, 1997). In this work 
it was shown that, with the use of a high permeability coating, the gap between the advancing metal front and the 
pattern was small and it was deduced that all degradation products could therefore leave the mold without 
hindrance. This mechanism was defined as foam-degradation control and was associated with a relatively high 
filling velocity. In contrast, low permeability coating trials exhibited significantly larger gaps between the metal 
front and pattern material and it was argued that the larger gap reduced the rate of degradation of the pattern and 
generation of gaseous products. It was argued that the pattern and the liquid metal reached a dynamic pressure 
balance with a large gap between them. This mechanism was named the back-pressure effect and was 
characterized by a relatively low filling velocity. 
 
It is quite reasonable to assume that the velocity of the metal front should closely follow the rate of pattern 
decomposition and its subsequent removal from the mold in order to prevent any entrapment. A number of 
authors (Hill, 1997; Ramsay, 2000) have put forward critical metal velocity windows with which fully filled 
castings, with a low incidence of defects, could be produced. The velocity windows reported all fell between  
12.5 and 22.9 mm.s-1 with misrun and sand collapse being observed below the minimum figure and inclusions 
encountered above the upper limit. The liquid degradation products at the foam–metal interface are viscous in 
nature and it was suggested that they could only be transported to the pattern coating by a convex metal front 
(Mobilog, 2001).  In patterns oriented vertically, this could only be achieved by top gating. This stance was 
supported by a set of experiments in which the occurrence of a concave metal front profile was reported in 
conjunction with vertically oriented patterns that had been filled from the bottom. (Davies, 2002). 
 
The reduction of the metallostatic pressure during gravity filling has a significant effect upon the metal front 
velocity throughout the filling of the mold. As a vertically oriented, bottom gated, gravity cast mold is filled the 
reducing metallostatic head reduces the velocity of metal flowing into the mold. For a pattern with uniform cross 
section throughout its length, such as a plate, this reduction in the metal velocity leads to a reduction in the flow 
rate and hence the speed of the advancing front.  
 
In an attempt to overcome this limitation a simple, vacuum-assisted, counter-gravity casting apparatus was 
employed to fill Lost Foam molds with ductile iron (Bakhtiyarov, 2000).  A number of molds containing 
vertically oriented plate patterns were cast and mold filling characteristics monitored by a set of thermocouples 
inserted at pre-determined locations in the pattern. Isochronal contour maps suggested that the metal flowed into 
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and through the mold cavity as one continuous convex metal front at an average flow rate of approximately  
120 mm.s-1.  
 
A modification of this simple casting procedure was also evaluated in which the mold was rotated immediately 
after casting. This permitted feeding of hot liquid metal from a reservoir in the mold to the casting during 
solidification. The density of samples produced by the modified casting technique was higher than those where 
mold rotation was absent after casting. The author concluded that the modified procedure assisted the removal of 
gaseous products from the liquid metal and eliminated internal porosity defects. 
 
Therefore the published literature indicates that the velocity of filling of Lost Foam molds has a significant effect 
on the level of pattern degradation products found in the final casting but the influence on the shape of the 
advancing metal front and its associated relationship with the level of entrapped degradation products is not 
completely understood. Almost all metal front morphology studies conducted in conjunction with the Lost Foam 
casting process have made use of a series of thermocouples or timing probes that have been placed in a pre-
determined array in the pattern prior to casting. This method of profile morphology examination has a number of 
constraints that means that results can only be approximations even in the best cases. 
 
The main focus of this work has been to determine the effect of metal front profile morphology on the quality of 
the castings produced. Using real time X-ray techniques to monitor the front profile, gravity, and controlled 
counter-gravity filling techniques, were applied to the filling of simple plate patterns. Profile differences were 
characterized in terms of the mechanical properties of the castings produced and the types of defects found on the 
fracture surfaces of the samples.  
 
 
EXPERIMENTAL PROCEDURE 
 
The casting experiments described in this study were designed so that pressure (exerted as a result of 
metallostatic head in the case of gravity filling and by means of a pump when counter-gravity filling) was the 
only parameter used to effect changes to the fill profile observed. All other factors known to influence this 
element (i.e. pattern thickness, bead fusion, coating permeability, coating thickness and gating orientation) were 
maintained at a constant level during the complete set of experiments. 
 
PATTERNS 
A simple plate pattern geometry was employed to evaluate the metal front profile behavior and resultant 
mechanical properties of castings filled by gravity and counter-gravity techniques. The patterns were made from 
pre-expanded, T-grade polystyrene beads on an industrial pattern molding machine that was equipped with 
horizontally split aluminum tooling.  All patterns were produced in one batch, and had a bead size of 
approximately 1 mm and a nominal pattern density of 29.9 kg/m3.  
 
After ageing for 1 day each pattern was attached to its own running system to form a cluster.  The running system 
for the gravity cast plates consisted of a pre-formed ceramic pouring basin, a 40 mm diameter, expanded 
polystyrene downsprue with a 10 mm diameter hollow centre, an expanded polystyrene runner bar with a 6.0 cm2 
cross section and a single ingate of 10.4 cm2 cross section (Fig. 1a). In contrast, the simpler counter-gravity 
system was made up of a short expanded polystyrene upsprue with a 10 mm hollow centre and a single, 
expanded polystyrene ingate of 10.4 cm2 cross section (Fig. 1b).   
 
Pattern and running system components were manually assembled using proprietary hot-melt glue. An alumino-
silicate refractory casting, suspended in water, was applied by manually dipping each pattern until all but the 
pouring basin or, in the case of the counter-gravity filled clusters, the bottom face of the upsprue, was immersed. 
Each cluster was maintained in the fully immersed position for a period of 5 s and then placed on a rack to dry in 
a circulating air oven at 55 oC (131 oF) for a period of 4 hours. Coating adherence was measured by immersing a 
stainless steel plate of 100 mm x 100 mm x 2 mm thick into the coating bath and then measuring the weight of 
the coating on the plate after removal. This value was maintained at 4.5 g + 0.5 g for the duration of the operation 
and resulted in coating thicknesses ranging from 200 – 275 µm.   
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All dimensions in mm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
                           Fig. 1a  Sketch of the gravity-filled plate         Fig. 1b  Sketch of the counter-gravity filled plate. 
 
 
MOLDING 
Loose, dry, silica sand with an average grain size of 370 µm was used to support the pattern in a flask that had 
internal dimensions of 0.45 m in length x 0.11 m width x 0.83 m depth. This design produced the best image 
resolution in the real time X-ray used to study the mold filling. For the gravity filled molds, each flask was filled 
initially with a bedding layer of sand approximately 150 mm deep. A single cluster was placed on the sand base 
and located centrally by hand. The flask was then filled with sand while being subjected to vertical vibration to 
bring about sand compaction. Filling of the flasks took approximately 30 s and maximum sand grain compaction 
was considered to have been achieved when there was no longer any reduction in the bulk density of the sand 
within the flask. This situation was always achieved within 10 seconds of completion of filling of the mold. 
 
The same materials, basic flask design and molding procedure, was adopted for the counter-gravity cast plates. 
However, in this case the flask was modified to incorporate a centrally located, 70 mm diameter hole in the base. 
This hole contained a compressible ceramic sleeve that had an internal diameter and height of 40 mm, fitted into 
the hole so that one face of the sleeve was flush with the flask surface. The pattern cluster was positioned in the 
flask by locating its upsprue into the sleeve so that the face of the upsprue was also flush with the base of the 
flask.   
 
MOLD FILLING 
The gravity casting process was performed by means of a conventional, joystick controlled autoladle which 
carried a crucible containing a strontium modified Al-10wt.%Si alloy. Counter-gravity filling was achieved by 
using a pressure chamber of welded steel construction that housed a similar crucible to that used for the gravity 
casting (Fig.s 2a and 2b). 
 
In the case of the counter-gravity filling experiments a pre-modified LM25 (Al-7wt.%Si) alloy was used. One 
end of a refractory coated “riser tube” was inserted into the crucible in the pressure chamber while the other end 
of the tube was placed against the mold, and fitted with a flange that located into a recess on the lid of the 
chamber so that its upper face was flush with the top face of the pressurized chamber . All mating faces of the 
chamber were made pressure tight by means of gaskets. The chamber was fitted with a coupling to allow 
connection of a compressed air supply, a pressure gauge, a pressure relief valve and thermocouple for monitoring 
the metal temperature in the crucible.  
 
Immediately after sealing of the chamber with the crucible of metal in place, a gasket was placed on the rim of 
the riser tube in line with the upper face of the pressure chamber and the mold placed on the chamber lid. The 
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bottom inlet to the mold was located over the riser tube and the complete mold clamped to the chamber by means 
of an A frame arrangement. Compressed air was used to pressurize the chamber, regulated by a pressure control 
valve, and the chamber was pressurized using a manually operated valve between the pressure regulator and the 
inlet to the chamber.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
      Fig 2a  Isometric View of the Counter-gravity 

Casting Machine with Mold in Position 

 
Fig 2b  Section View of the Counter-gravity 

Casting Machine with Mold in Position 
 
 
All castings were filled at a temperature of 785 oC (1445 oF), and the filling process monitored using a 160 kV 
real-time X-ray with the image captured using a S-VHS 50 Hz video recorder.  
 
MECHANICAL PROPERTIES AND FRACTURE SURFACES 
Specimens for tensile strength determination were taken from locations in each plate as shown in Fig. 3. In one 
experiment a counter-gravity cast plate did not fill completely and exhibited a misrun defect along its upper edge. 
In this case samples were only obtained from locations A – T.  

 
Weibull Analysis 
The tensile values obtained from the test bars were subject to a Weibull analysis. This technique (Rezvani, 1999) 
more accurately described the distribution of the tensile strength results of Al-7Si-Mg alloy castings when 
compared with the Gaussian distribution. 
 
Essentially, when a relationship between the risk of rupture RR and the probability of survival Ps is such that 
Ps=0 at RR= ∞ and Ps=1 at RR=0, then it was proposed (Weibull, 1951) that the exponential function that best 
describes this situation is: 
 

Ps = exp(-RR)   or  RR = - ln(Ps)   Eq. 1 
 

The risk of rupture R of a given component is a function of the applied stress and also proportional to the volume 
of the material under stress σ. For a volume V under uniformly distributed stress σ, the risk of rupture function 
RR is written as : 
 

RR = (V/V0) . ([σ - σu ] / σ0)M     Eq. 2 
 

Similarly, for a non-uniformly distributed stress σ = σ (V):  
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RESULTS 
 
MOLD FILLING 
Gravity Filled Plates 
Gravity filled plates exhibited an average metal fill velocity of 12 mm.s-1. However, there was significant 
variation of the actual value across the casting during the fill with a maximum flow rate of 25 mm.s-1 occurring 
in the lower part of the plate. The ingate was attached to the runner bar and pattern by means of hot melt glue that 
did not degrade uniformly. This gave rise to a non-uniform flow of metal into the ingate and the lower pattern 
region (Fig. 4, Frame 1). The liquid metal began its path into the plate as a single, convex metal front that 
originated from the downsprue side of the ingate. As the ingate filled, this metal front split into five distinct 
fingers (Fig 4, Frames 2 and 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Finger Formation of the Metal Front on Entering the Ingate Area of a Gravity Filled Mold. 
 
 

After approximately 150 mm of vertical travel the speed of these fingers began to decrease. The flow of metal in 
the vertical plane in the central region was accelerated towards the side of the plate furthest away from the 
downsprue. Individual fingers merged after approximately 250 mm of vertical travel to form one metal front. 
This assumed a slightly concave shape across the complete width of the plate that was slightly advanced at the 
side furthest from the downsprue (Fig. 5, Frames 3 and 4). The front profile was characterized by a series of 
small protrusions, approximately 5 mm in height (Fig. 5). The first point of contact with the top of the mold was 
at the corner opposite the downsprue. From that point filling took place in a horizontal fashion. The duration of 
filling of the mold with this method of casting was 41 s. 
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Fig. 5  Unstable Single Metal Front Profile Observed in the Top Region of a Gravity Filled Plate 

 
 
Counter-gravity Filled Plates  
The application of pressures of 5 psi (34.5 kPa) and above within the casting unit gave rise to metal fronts with 
long finger-like protrusions that were present throughout the filling of the plate. These fingers had a spiked 
appearance and were more numerous than those encountered in the gravity filled plates (see Fig. 6).  The average 
filling speed, captured from the real time X-ray image of a plate filled using a chamber pressure of 10 psi (68.9 
kPa) was 24 mm.s-1, twice the velocity associated with the gravity-filled plate. The rate of fill was such that the 
liquid metal reached the top of the plate in 21 s. However, the liquid and gaseous pattern degradation products 
preceding the front could not escape through the mold coating at the same rate and became temporarily trapped 
in this region. It took a further 7 s for this trapped material to leave the mold cavity and pass into the surrounding 
sand. 
 
The average filling velocity of plates cast in a counter-gravity fashion at chamber pressures of between 4 - 4.5 psi 
(27.6 – 31.0 kPa) was 13 mm.s-1 (see Figure 7). This speed was comparable to that recorded in the upper region 
of the gravity filled mold. The metal front profile was also similar with small protrusions present along the 
complete length of the front. An interesting difference was that, rather than being concave, the metal front was 
slightly convex in shape with the leading region being situated towards the centre of the plate.  
 
A reduction of the chamber pressure by only 0.5 psi (3.4 kPa) to 3.5 psi (24.1 kPa), reduced the average fill 
velocity to approximately 5 mm.s-1. This produced an almost horizontal metal front that had a profile devoid of 
any protrusions. This was classified as a planar type front. The filling velocity was, however, so slow that it 
resulted in an arrest of the metal front approximately 30 mm from the top of the plate, resulting in a short run 
defect on the casting.  
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Fig. 6.  Finger-type Front in the Upper Region of a Counter-gravity Filled Plate (10 psi chamber pressure) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 7  Irregular Metal Front in the Top Region of a Counter-gravity Filled Plate (4 psi chamber pressure) 
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Fig. 8  Planar-type Metal Front Profile Observed in the Top Region of a Counter-gravity Filled Plate (3.5 psi chamber 
pressure). 

 
 
MECHANICAL PROPERTIES 
Table 1 contains the complete set of Ultimate Tensile Strength results obtained from three gravity cast plates and 
two counter-gravity filled plates. All plates filled using gravity, as well as the one made by counter-gravity 
means at 4.0 psi (27.6 kPa), displayed non-planar fronts during mold filling (Fig.s 4, 5 and 7) and yielded similar, 
low results. In some cases fracture occurred before the 0.2% proof stress value had been reached. In contrast, the 
tensile results obtained from the counter-gravity cast plate, filled at 3.5 psi (24.1 kPa) and in which a planar metal 
front was observed (Fig. 8), were significantly higher.   
 
To obtain realistic sample sizes for conducting the Weibull analysis the tensile results from the three plates that 
were cast in a gravity fashion were combined to form a single set of data whereas those from each of the counter-
gravity cast plates were treated separately. The Weibull moduli obtained from the UTS of the combined gravity 
casting results and the results from counter-gravity filling at a pressure of 4.0 psi (27.6 kPa), were 9 and 11 
respectively. In comparison, the counter-gravity cast plate in which a planar metal front had been observed 
during filling yielded a significantly higher result of 23 (Fig. 9). 
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Ultimate Tensile Strength (MPa)
Test Piece Gravity Filled Plates Counter-gravity Filled Plates
Position No. 1 No. 2 No. 3 4.0 psi 3.5 psi

A 145 149 155 106 227
B 141 135 136 133 196
C 136 123 127 126 205
D 124 130 123 126 197
E 111 116 101 109 203
F 104 111 121 108 212
G 114 113 101 117 199
H 130 130 127 119 198
I 126 206
J 121 209
K 123 205
L 135 207
M 130 215
N 140 222
O 128 211
P 94 190
Q 128 220
R 134 202
S 131 217
T 137 212
U 140 unavailable
V 144 unavailable
W 124 unavailable

W eibull P lot o f UTS R esults  from P lates

M = 1 0 .6 7

M = 9 .2 7

M = 23 .2 0

-4.0

-3.0

-2.0
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18.2 18.4 18.6 18.8 19.0 19.2 19.4

In o (M Pa) 

In
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 (1
/S

)

Grav ity  Fill (b o ttom gate)

Co un ter-g rav ity  (4.0 p s i fill)

Co un ter-g rav ity  (3.5 p s i fill)

Table 1. Ultimate Tensile Strength Results From Gravity and Counter-gravity Filled Plates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9  Weibull Plots of the Ultimate Tensile Strength of Samples Taken from Gravity and Counter-gravity Filled Plates. 
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FRACTURE SURFACES 
All test bar fracture surfaces were examined using an SEM. Two types of defect were detected and are illustrated 
in Figs. 10 and 11, namely, a pore, and a film-type defect, respectively.  
 

 
Fig. 10  Pore Defect Detected on the Fracture Surfaces 

of all Samples 
Fig. 11  Film Type Defect Found on the Fracture 

Surfaces of Samples Cast with a Non-planar Metal 
Front 

All fracture surfaces, including those taken from the plate where a planar front was observed during filling, 
contained interdendritic pore-type defects as shown in Fig. 10. These pores varied in size from approximately 
400 µm up to 2 500 µm and were located randomly across the surface. The smaller pore defects were spherical in 
shape as in Fig. 10 but the larger ones were flatter and more irregular. The film type defect (Fig. 11) was detected 
on all fracture surfaces originating from the gravity cast plates but on only one of the fracture surfaces from the 
plate cast by counter-gravity means at 4.0 psi (27.6 kPa) chamber pressure. The location of this defect was seen 
in specimen G that had been taken from the central region of the casting. No films were observed in the counter-
gravity cast plate that exhibited a planar metal front on filling. Observation of film type defects showed that they 
were at least as large in cross-section as the largest pore defects and had a two-dimensional, wrinkled 
appearance. EDX analysis indicated that carbon and oxygen were present, as well as the expected alloy 
constituents, in the defective regions of all fracture surfaces, (see Fig. 12). 
  

 
Fig. 12  EDX Results from a Pore Defect Observed on a Fracture Surface Originating from the plate filled 
using a chamber pressure of 4.0 psi. (The EDX sample location is shown in the inset micrograph). 
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DISCUSSION 
 
The main aim of the experiments was to determine the level of benefit, in terms of casting quality improvement, 
that could be achieved by application of counter-gravity filling to Lost Foam molds. 
 
MOLD FILLING 
Plates filled by gravity means exhibited the largest variation in metal front velocity throughout the filling of the 
mold and this is thought to have been a contributory factor to the change in metal front profile from a series of 
large, well defined fingers to a single, essentially horizontal front that was associated with a number of small 
protrusions. At the higher metal front velocities (24 mm.s-1 to 25 mm.s-1), recorded in the lower regions of the 
gravity-cast plates and during application of 10 psi (68.9 kPa) pressure to the chamber when counter-gravity 
filling, the metal front profile consisted of a number of distinct fingers. However, the well-rounded profile of the 
fingers associated with gravity casting contrasted sharply with the more pointed nature of those seen in the 
counter-gravity filled plate, with the latter being obviously more deleterious, and leading to greater entrapment of 
the pattern degradation products.   
   
In the upper region of the plate a similar metal front profile was observed with both gravity filling and counter-
gravity filling with a pressure applied to the chamber of 4.0 psi (27.6 kPa). The filling velocities recorded were 
also very similar with the metal front in the gravity filled plate closely following the average filling speed of  
12 mm.s-1 and that of the counter-gravity filled plate being about 13 mm-1. Although front speeds of 12 mm.s-1 

and 13 mm-1 produced the same general morphology, characterized by a single, principally horizontal front with 
small protrusions of approximately 5 mm in height, the overall curvature of the front tended to be slightly 
concave during gravity filling and convex when associated with counter-gravity filling. 
 
The mechanical property results show that the plate made by the counter-gravity technique that exhibited a planar 
metal front during mold filling had the greatest and most uniform UTS. However, a large misrun defect was also 
present which limited the number of samples available for tensile testing to 20 instead of the normal 23 that 
could be obtained from a fully filled plate. 
 
The observations made during the experiments suggest that there is a direct relationship between metal front 
morphology and its velocity although the mechanism of the transition from a stable, planar front into an unstable, 
finger-like front with increasing metal front velocity is, at present, not fully understood. One explanation may be 
that this is a case of a fluid flow instability, leading to an uneven liquid metal front. Saffman and Taylor 
described a case  where a low viscosity fluid, driven into one of much higher viscosity whilst contained within 
parallel planes, resulted in an unstable interface, (Saffman and Taylor, 1958), leading to the formation of fingers 
of the lower viscosity fluid reaching into the higher viscosity one. In the experiments described in this paper the 
liquid aluminum would represent the low viscosity fluid, while the polystyrene pattern degradation products 
would represent the high viscosity fluid, respectively.  
 
A second possible explanation for the onset of an unstable metal front is connected with film boiling. The 
interaction of the liquid metal and the polystyrene pattern produces both liquid and gaseous degradation products 
and it has been suggested that a gaseous layer of these products would lie immediately above the metal front with 
a (cooler) liquid layer beyond that. A thin vapor film lying over a horizontal heat source has long been 
recognized as unstable (Bromley, 1950) and has been associated with the formation of large bubbles that break 
away. If these gas bubbles pass through the high viscosity liquid polystyrene above, they could lead to localized 
breakdown of the foam, and create paths in which the liquid metal could follow more easily, leading to the 
development of the fingers of liquid metal that were observed. 
 
MECHANICAL PROPERTIES & FRACTURE SURFACES 
Published literature has shown that castings manufactured in open molds, under controlled conditions and with 
well designed running systems, have resulted in Weibull moduli of up to about 38. This contrasted strongly with 
the results obtained in this set of experiments that yielded Weibull moduli of between 9 and 23. The results 
obtained were influenced by the presence of pore defects and in some cases film defects in the fracture surfaces.  
 
Gravity casting, where widely varying metal front velocities were observed throughout the filling process, did 
not provide sufficient control over filling to prevent the formation of these defects. The resultant properties 
therefore yielded the lowest Weibull modulus figure recorded and indicated that a convex metal front profile was 
needed to remove polystyrene degradation products effectively from the mold without entrapment.  
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Although the rates of filling in the bottom region of the plates made in a gravity-filled fashion greatly exceeded 
those suggested as a maximum to ensure that degradation products could escape from the mold, there was no 
correlation in the mechanical test results, or from observations of the fracture surfaces, to suggest that the casting 
quality was worse in this region than in any other area of the casting. To summarize, the mechanical property 
results clearly indicated that any type of non-planar metal fill profile had a serious, deleterious effect on the 
reproducibility of the casting properties. 
 
CONCLUSIONS 
 

1. Filling of Lost Foam plates from the bottom under the influence of gravity, and with controlled counter-
gravity conditions, showed that only very slow filling conditions were associated with reproducible 
properties, as characterized by the Weibull Modulus approach. 

 
2. Counter-gravity filling with a velocity of about 5 mm.s-1 was associated with a Weibull Modulus of 23, 

a value below that obtained with an open cavity shape casting. 
 

3. Examination of the filling process using real-time X-ray equipment showed that metal front velocities of 
around 12 mm.s-1 were associated with a break-up of the advancing liquid metal front into short fingers, 
which would lead inevitably to the entrapment of pattern degradation products. 

 
4. Real-time X-ray images of the mold filling process showed that the uniform tensile strengths and higher 

Weibull Modulus associated with the slower metal front velocity of 5 mm.s-1 were the result of a planar 
advancing liquid metal front, which would be associated with a reduction in trapped pattern degradation 
products. 

 
REFERENCES  

 
Bakhtiyarov, S.I., Overfelt, R.A., Alagarsamy, A. and Vatankhah, B., “Study of Molten Metal – Polymeric 

Interface Dynamics in Counter Gravity Casting Process”, Materials Processing Section, 20th Southeastern 
Conference on Theoretical and Applied Mechanics, Pine Mountain, GA, Paper No. MP7, p. 1 – 9, (2000). 

Bennett, S., Moody, T., Vrieze, A., Jackson, M., Ramsay, C.W. and Askeland, D., “Pyrolysis Defects in 
Aluminum Lost Foam Castings”, AFS Transactions, vol. 107, p. 795 – 803, (1999). 

Bromley, L.A., “Heat Transfer in Stable Film Boiling”, Chemical Engineering Progress, vol. 46, p. 221, (1950). 
Davies, P., “The Effect of Orientation on Mould Filling in Lost Foam Casting”, MRes. thesis, School of 

Engineering, Dept. of Metallurgy and Materials, University of Birmingham, United Kingdom, (2002). 
Hill, M.W., Lawrence, M., Ramsay, C.W. and Askeland, D.R., “Influence of Gating and Other Processing 

Parameters on Mold Filling in the LFC Process”, AFS Transactions, vol. 105, p. 443 – 450, (1997). 
Lawrence, M., Ramsay, C.W. and Askeland, D.R., “Some Observations and Principles for Gating of Lost Foam 

Castings”, AFS Transactions, vol. 106, p. 345 – 356, (1998). 
Liu, J., Ramsay, C.W. and Askeland, D.R., “A Study of Foam-Metal-Coating Interaction in the LFC Process”, 

AFS Transactions, vol. 105, p.419 – 425, (1997).  
Molibog, T.V. and Littleton, H., “Experimental Simulation of Pattern Degradation in Lost Foam”, AFS 

Transactions, vol. 104, p. 1523 – 1554, (2001). 
Ramsay, C.W., Askeland, D.R. and Tschopp, M.A., “Mechanisms of Formation of Pyrolysis Defects in 

Aluminum Lost Foam Castings”, AFS Transactions, vol. 108, p. 609 - 614 (2000). 
Rezvani, M., Yang, X. and Campbell, J., “Effect of Ingate Design on Strength and Reliability of Al Castings”,  

AFS Transactions vol. 107, p. 181 – 188, (1999). 
Saffman, P.G. and Taylor, G., “The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a 

More Viscous Liquid”, Proceedings of the Royal Society A, 245, p. 312 – 329, (1958). 
Wang, C., Ramsay, C.W. and Askeland, D.R., “Process Variable Significance on Filling Thin Plates in the LFC 

Process – The Staggered, Nested Factorial Experiment”, AFS Transactions, vol . 105, p. 427 – 434, (1997). 
Warner, M., Miller, B.A. and Littleton, H., “Pattern Pyrolysis Defect Reduction in Lost Foam Castings”, AFS 

Transactions, vol. 104, p. 777 – 785, (1998). 
Weibull, W., “A Statistical Distribution Function of Wide Applicability”, Journal of Applied Mechanics, vol. 18, 

p. 293 – 297, (1951). 
 
 
 



 236 
 
  

AII.2. WFO World Foundry Congress, 4-7 June 2006, Harrogate, UK.  
 

Mould Filling in the Lost Foam Casting of Al Alloys 
 

M J Ainsworth * and W D Griffiths **. 
 

* Gemco Cast Metal Technology, The Netherlands ** IRC, University of Birmingham, 
United Kingdom. 

 
 
 
 
 
Abstract 
The filling of vertically oriented plates was viewed using a real-time X-ray technique to 
examine the interaction of the cast Al with the polystyrene foam pattern. The plates 
were cast by means of a counter-gravity technique and bottom-gated running system.  
  
Real-time X-ray images showed that the advancing metal front was associated with 
the development of finger-like protrusions as mould-filling velocity was increased. 
This inevitably led to the entrapment of the degradation products of the polystyrene 
pattern. Tensile properties of the plates showed a significant reduction when an 
unstable metal front was present during filling.   
 
A similar type of instability was encountered during the displacement of liquid glucose 
by mercury in a Hele-Shaw cell. The empirically derived displacement velocity 
required to generate an interface instability concurred with the published 
mathematical model. 

 
Key words Finger-like, Planar, Viscosity, Instability. 
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Introduction 
Although the metal front velocity in Lost Foam casting is an important factor in 
determining the quality of the final product, the size, number and position of the gates 
are not significant in controlling the metal fill velocity [1]. The main focus of control of 
this variable has been on pattern composition, coating composition and coating 
thickness [2]. The “process choke” has been determined to be either the metal-foam 
interface or the metal-foam-coating interface depending on whether the 
decomposition of the foam or removal of the products was the most influential [3]. 
 
It is quite reasonable to assume that the velocity of the metal front should closely 
follow the rate of pattern decomposition and its subsequent removal from the mould 
in order to prevent any entrapment. This aspect has been studied by a number of 
authors [1,2,4] who reported that critical metal velocity windows between 12 and 23 
mm.s-1 have produced fully filled castings with a low incidence of defects. Misrun and 
sand collapse was observed below the minimum figure and inclusions encountered 
above the upper limit.  
 
Casting of aluminium into Lost Foam moulds is performed at significantly lower 
temperatures than those applied for ferrous alloys such as cast irons and steels. This 
has the effect of heating and melting the foam with little associated gasification and 
creates a two-phase system behind the advancing metal front [5]. The liquid 
degradation products at the foam–metal interface are much more viscous in nature 
than the molten metal that generates them [6] and it has been suggested that they 
can only be transported to the pattern coating by a convex metal front [7].  This front 
morphology is most easily achieved, when gravity casting, by means of a top gated 
running system [7,8] However, this system has a number of specific limitations; (i) 
mould fill in the direction of the gravity vector is almost totally uncontrolled and, (ii) the 
flow of foam degradation products in the opposite direction to that of the advancing 
front results in entrapment of liquid and gaseous polystyrene as well as surface 
turbulence within of metal.  
 
In an attempt to overcome these limitations Bakhtiyarov [9] used a simple, vacuum-
assisted, counter-gravity casting apparatus. A number of moulds containing vertically 
oriented plate patterns were cast and mould filling characteristics monitored. The 
observations suggested that metal flowed into and through the mould cavity as one 
continuous convex metal front and resulted in castings with improved properties. 
 
Although the published literature indicates that the velocity of filling of Lost Foam 
moulds has a significant effect on the level of pattern degradation products found in 
the final casting, its influence on the shape of the advancing metal front and its 
associated relationship with the level of entrapped degradation products is less well 
reported. Almost all metal front morphology studies conducted in conjunction with the 
Lost Foam process have made use of a series of thermocouple or timing probes that 
have been placed in a pre-determined array in the pattern prior to casting. This 
method of profile morphology examination has a number of constraints that means 
that results can only be approximations even in the best cases. 
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Real-time X-ray imaging and data capture overcome many of the above limitations 
and, when applied to filling of Lost Foam moulds, have revealed that the metal front 
profile was planar at very low velocities and “finger-like” as velocities were increased 

[10]. The incidence of pyrolysis product entrapment defects in the resultant castings 
was also higher when unstable metal fronts were observed. 
 
Aluminium castings made today have relatively thin walls of 15mm or less and are 
generally bottom gated. When produced by means of the Lost Foam process in this 
manner, the interaction of the relatively flowable liquid metal underneath a layer 
highly viscous liquid polystyrene is analogous to that demonstrated by Saffman and 
Taylor in a Hele-Shaw cell [11]. In the original experiment glycerine, confined 
between closely spaced, parallel sheets of glass, was driven out by significantly less 
viscous air. During this action, an instability occurred at the interface between the two 
fluids. This manifested itself as a series of round-ended fingers of the lower viscosity 
fluid penetrating into the denser one.  
 
The main focus of this work has been to investigate (i) the effects of various metal 
front morphologies on the quality of the castings produced and, (ii) the mechanism of 
metal front morphology variation during the filling of the mould. To achieve this a 
counter-gravity filling technique was applied to filling simple plate patterns oriented in 
the vertical plane and the front profile monitored and recorded by means of a real 
time X-ray data capture device. Profile differences were characterized in terms of the 
mechanical properties of the castings produced and the type of defects found on the 
fracture surfaces of the samples.  
 
Further, a physical model was constructed to simulate, at room temperature, the 
effects of velocity variation on the interface morphology of the metal front and the 
superimposed pattern degradation products. In this case front profile morphologies 
were captured by means of digital video recording medium.  
 
Experimental 
Casting Manufacture 
A simple plate pattern geometry was employed to evaluate the metal front profile 
behaviour and resultant mechanical properties of castings filled by counter-gravity 
techniques. The patterns were made from pre-expanded, T-grade polystyrene beads 
on an industrial pattern-moulding machine that was equipped with horizontally split 
aluminium tooling.  All patterns were produced in one batch, and had a bead size of 
approximately 1 mm and a nominal pattern density of 29.9 kg/m3.  
 
After ageing for 1 day each pattern was attached to its own running system to form a 
cluster.  The system was made up of a short expanded polystyrene upsprue with a  
10 mm hollow centre and a single, expanded polystyrene ingate of 10.4 cm2 cross 
section.   

 
Pattern and running system components were manually assembled using a 
proprietary hot-melt glue. An aluminium-silicate refractory, suspended in water, was 
applied by manually dipping each pattern until all but the bottom face of the upsprue 
was immersed. Each cluster was maintained in the fully immersed position for a 
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period of 5 s. and then placed on a rack prior to drying in a circulating air oven at  
55 oC for a period of 4 hours. Coating capacity was measured by immersing a 
stainless steel plate of 100 mm x 100 mm x 2 mm thick into the coating bath and then 
measuring the weight of coating that adhered to the plate after removal. This value 
was maintained at 4.5 g + 0.5 g for the duration of the operation and resulted in 
coating thicknesses ranging from 200 – 275 µm.  
 
A modified flask, that had internal dimensions of 0.45 m in length x 0.11 m width x 
0.83 m depth and a centrally located, 70 mm diameter hole in the base, was used for 
making the moulds. This design produced the best image resolution in the real time 
X-ray unit. The hole in the base of the flask was fitted with a compressible ceramic 
sleeve that had an internal diameter and height of 40 mm so that one face of the 
sleeve was flush with the bottom of the flask. The pattern cluster was positioned in 
the flask by locating its upsprue into the sleeve so that the face of the upsprue was 
also flush with the base of the flask. Loose, dry, silica sand with an average grain size 
of 370 µm was used to support the pattern in the flask. The flask was then filled with 
sand whilst being subjected to vertical vibration to bring about sand compaction. 
Filling took approximately 30 s. and maximum sand grain compaction was considered 
to have been achieved when there was no longer any reduction in the bulk density of 
the sand mass. This situation was always achieved within 10 seconds of completion 
of the filling cycle. 
 
Counter-gravity filling was achieved by using a pressure vessel of welded steel 
construction that housed a silicon carbide crucible (Fig. 1). This crucible held a pre-
modified LM25 (Al-7wt.%Si) alloy into which one end of a refractory coated “riser 
tube” was inserted. The other end of the tube was fitted with a flange that located into 
a recess on the lid of the vessel so that its upper face was flush with the top face of 
the vessel. All mating faces were made pressure tight by means of gaskets. The 
vessel was fitted with a coupling to allow connection of a compressed air supply, a 
pressure gauge, a pressure relief valve and thermocouple for monitoring the metal 
temperature in the crucible.  
 
Immediately after sealing of the vessel with the crucible of liquid Al in place, a gasket 
was placed on the rim of the riser tube in line with the upper face of the pressure 
vessel and the mould placed on the vessel lid. The bottom inlet to the mould was 
located over the riser tube and the complete mould clamped to the vessel by means 
of an A frame arrangement. Compressed air was used to pressurize the chamber and 
regulated by a pressure control valve. The chamber was pressurized using a 
manually operated valve between the pressure regulator and the inlet to the chamber.  
 
All castings were filled at a temperature of 785 oC, and the filling process monitored 
using a 160 kV real-time X-ray with the image captured using a S-VHS 50 Hz video 
recorder. 
 
Mechanical Properties 
Specimens for tensile strength determination were taken from locations throughout 
two plate castings (Fig 2). One of the samples had been filled in association with a 
cellular metal front and the other where a planar front had been observed. The plate 
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that filled by means of a planar metal front did not fill completely and exhibited a 
misrun defect along its upper edge. In this case samples were only obtained from 
locations A – T.  
 
The tensile values obtained from the test bars were subject to a Weibull analysis [12]. 
This technique more accurately describes the distribution of the tensile strength 
results of Al-7Si-Mg alloy castings when compared with the Gaussian distribution.  
 
Metal – Foam Interface Modelling 
A physical model was constructed to simulate the interaction of molten metal and 
liquid polystyrene observed during counter-gravity casting of the plates made in the 
first experiment (Fig. 3). The model consisted of a steel profile base that supported a 
simple air cylinder in the horizontal plane. The outlet from this cylinder was connected 
to a vertically positioned mould by a set of steel pipe-work. Both the displacement 
side of the cylinder and the pipe-work were filled with mercury at a viscosity of  
1.55 mPa.s at 20oC [13]. This material was chosen to simulate liquid aluminium 
because it (i) was a liquid metal at room temperature, (ii) eliminated any density 
conflicts that might have arisen in the choice of the substitute for liquid polystyrene 
and (iii) was relatively close to the viscosity as liquid Al (1.220 mPa.s at 20oC) [14]. 
 
The mould cavity had the same dimensions as the polystyrene patterns in Fig. 1 with 
the two large opposing mould sides being constructed from glass plates that 
permitted observations to be recorded via a high-speed video camera. The complete 
mould assembly was bolted to a steel base plate in which the ingate was located and 
a neoprene gasket of 3 mm thickness was used between both parts of the assembly 
to prevent fluid leakage.  
 
The upper face of the mould was left open to atmosphere which permitted the mould 
cavity to be filled with a clear glucose syrup of viscosity 95 000 mPa.s. This material 
was chosen because it had a similar density and as high a viscosity as could be 
effectively applied. 
 
After filling the model with the two substitute materials, the piston in the air cylinder 
was actuated, by means of an oil-over-air cylinder that was positioned in line with the 
main air cylinder and coupled to it by a shaft-to-shaft connection. The secondary drive 
cylinder was connected to the mains air supply (at 8 bar pressure) and its piston 
speed, and associated mercury displacement speed into the mould, were controlled 
via a flow regulator situated on the oil outlet side of the unit. 
 
Results 
Mould Filling 
The application of pressures of 34.5 kPa and above within the casting unit gave rise 
to metal fronts with long finger-like protrusions that were present throughout the filling 
of the plate (Fig. 4). The average filling speed, captured from the real time X-ray 
image of a plate filled using a chamber pressure of 68.9 kPa was 24 mm.s-1 and the 
rate of fill was such that the liquid metal reached the top of the plate in 21 s. However, 
the liquid and gaseous pattern degradation products preceding the front could not 
escape through the mould coating at the same rate and became temporarily trapped 
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in this region. It took a further 7 s. for this trapped material to leave the mould cavity 
and pass into the surrounding sand. 
 
The average filling velocity of plates cast with chamber pressures of between 27.6 – 
31.0 kPa was 13 mm.s-1. The metal front profile assumed a slightly convex shape 
across the complete width of the plate with the leading region being situated towards 
the centre of the plate (Fig. 5). It was characterized by a series of small protrusions, 
approximately 5 mm in height that gave it a cellular appearance. 
  
A reduction of the chamber pressure by only 3.4 kPa to 24.1 kPa reduced the 
average fill velocity to approximately 5 mm.s-1. This produced an almost horizontal 
metal front that had a profile devoid of any protrusions (Fig. 6) and was classified as a 
planar type front. However, the filling velocity was so slow that it resulted in an arrest 
of the metal front approximately 30 mm from the top of the plate. This gave rise to a 
short run defect that was visible along the upper edge of the casting.  
 
Mechanical Properties 
Ultimate tensile strength results were obtained from samples taken from one plate in 
which a cellular front was observed and from one in which a planar front was 
observed during the filling cycle (Table 1). The results related to filling with a cellular 
metal front were significantly lower than those where a planar metal front was present 
during filling.  
 
The Weibull distribution was plotted for each of the two sets of UTS results (Fig. 7). 
The modulus value related to mould filling with a cellular metal front was only 10.6 
whereas that related to a planar metal front was significantly higher at 23.2.  
 
Metal – Foam Interface Modelling 
The interaction of mercury and glucose syrup within the physical casting model 
produced a planar interface up to a vertical displacement velocity of 0.020 m.s-1. As 
the speed of the metal front increased above this value, the interface became 
unstable. This was apparent by the formation of a series of fingers (Fig. 8) that were 
observed across the length of the interface. The displacement speed had a direct 
effect on the number and length of these fingers.  
 
At 0.022 m.s-1 one finger was seen emerging from the central area of the metal front. 
Its length grew to a maximum of 15 mm ahead of the main front during the filling 
cycle. In contrast, a displacement velocity of 0.039 m.s-1 caused the initially planar 
metal front to break up completely into 5 distinct fingers. These fingers were relatively 
long in comparison to their width and also increased in length during the 
displacement cycle. The predominant finger was situated centrally along the metal 
front, directly above the ingate and protruded at its maximum to about 70 mm ahead 
of the tip of the nearest trailing finger. The maximum distance between the tips of the 
leading and lagging fingers was measured at 105 mm.     
 
Discussion 
The main aims of these experiments were to determine the level of benefit, in terms 
of casting quality improvement that could be achieved by application of counter-
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gravity filling to Lost Foam moulds and to simulate the interaction of the metal front 
and liquid polystyrene during the filling process in a room temperature model.  
 
Mould Filling 
The results show that as the velocity of the metal front increased above a critical 
speed, it became unstable and began to break up into a number of fingers that 
preceded the main body of flow. These fingers are thought to have been associated 
with oxide films covering their surface. As the fingers grew in size, and because of the 
physical constraints of the mould walls, they remerged together. The recombining of 
these individual metal streams is likely to have caused entrainment of oxide films. 
Additionally, when very high velocities were observed during filling (Fig. 4), some 
fingers were seen to travel in an upwardly diagonal direction across the mould that 
recombined initially at their tips. The area of the product directly below was, at that 
time, unfilled and would have been rich in liquid and gaseous polystyrene 
degradation products. Although these regions were seen to fill shortly afterwards, 
presumably as a result of gaseous degradation product escape through the walls of 
the mould and because of the dynamic pressures in the liquid metal, it is reasonable 
to conclude that some pyrolysis products did not escape and became entrapped in 
the body of the final casting.  
 
Although neither of the above phenomena were observed when a fill speed of 5 mm-1 
was applied, the metal front was arrested approximately 30 mm short of the top of the 
mould cavity. This resulted in a short run defect being apparent in the final casting 
which was the result of lack of metal fluidity in the final stages of filling caused by 
excessive heat loss to the mould. It is interesting to note that where the metal front 
was relatively stable, ie. in planar or cellular form, its profile was convex. The location 
of the ingate and the relatively controlled and constant flow achieved through 
counter-gravity filling were considered to be primary factors in achieving this.   
 
Mechanical Properties 
Published literature has shown that castings manufactured in open moulds, under 
controlled conditions and with well designed running systems have resulted in Weibull 
moduli of up to about 38. This contrasted strongly to the results obtained in this set of 
experiments where a Weibull moduli of 10.6 was obtained from a plate associated 
with cellular filling and a corresponding value of 23.2 achieved by planar filling.   
 
No degassing of the melt was carried out prior to casting and it is possible that some 
hydrogen gas porosity was present in the castings produced. It is therefore 
reasonable to assume that that, in these experiments, the factor limiting the value of 
this statistic changed from metal front stability at a fill speed of 13 mm-1 to hydrogen 
porosity at a fill speed of 5 mm-1.  However, the results clearly indicate that any type 
of non-planar metal fill profile has a serious, deleterious effect on the reproducibility of 
the casting properties. 
 
Metal – Foam Interface Modelling 
The room temperature model used to simulate the interaction of liquid aluminium and 
liquid polystyrene clearly demonstrated that displacement of a viscous fluid by a 
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significantly more flowable one caused an instability to occur above a specific 
displacement velocity.  
 
The criterion for the development of this phenomenon between two fluids of different 
viscosity passing through a porous medium is given by; 
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where µ = dynamic viscosity, k = permeability, V = velocity and ρ = density. Subscripts 1 and 2 refer to 
the upper and lower fluids respectively, for a case where fluid 1 is less viscous than fluid 2, and fluid 1 
is driven upwards into fluid 2. 
 
For a Hele-Shaw cell consisting of two plane parallel plates, k1 and k2 can be 
replaced by b2/12, where b = the distance between the two plates. The critical 
velocity for the onset of the instability can therefore be determined from; 
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For all experiments b was fixed at 15 mm and the applied density and viscosity of 
mercury were 13 570 kg.m-3 and 1.55 mPa.s respectively. The corresponding values 
for glucose were 1 050 kg.m-3 and 95 000 mPa.s. Therefore, for liquid Hg driven 
upwards against glucose, V = 0.0242 m.s-1.  
 
This value concurs well with the results obtained and in order for a liquid aluminium 
front to become unstable when driven upwards against liquid polystyrene at a velocity 
of 0.005 m.s-1, the viscosity of the liquid polymer would need to be in the order of 
50 Pa.s. The viscosity of a polystyrene melt is affected dramatically by molecular 
weight, temperature and shear rate and further work is needed to verify that this 
viscosity is apparent during the production of Lost Foam castings. 
   
 
Conclusions 
1.  Filling of Lost Foam plates from the bottom under the influence of controlled 

counter-gravity conditions, showed that only very slow filling conditions were 
associated with reproducible properties, as characterized by the Weibull 
Modulus approach. 

2. Counter-gravity filling with a velocity of about 5 mm.s-1 was associated with a 
Weibull Modulus of 23, still much less than can be obtained with an open cavity 
shape casting. 

3. Examination of the filling process using real-time X-ray equipment showed that 
metal front velocities of around 13 mm.s-1 were associated a break-up of the 
advancing liquid metal front into short fingers, which would lead inevitably to the 
entrapment of pattern degradation products. 
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4. The real-time X-ray images showed that the uniform tensile strengths and 
higher Weibull Modulus associated with the slower metal front velocity of 5 
mm.s-1 were the result of a planar advancing liquid metal front, which would be 
associated with a reduction in the trapped degradation products. 

5. Room temperature modelling of the effects of displacement velocity on the 
metal front profile and interface stability exhibited similarities to observations 
recorded during filling of Lost Foam moulds with aluminium and the empirically 
determined critical velocity at which an instability occurred was consistent with 
that mathematically derived. 

 
References 
1. Hill M W, Lawrence M, Ramsay C W and Askeland D R, Influence of Gating 

and Other Processing Param eters on Mold Filling in the LFC Process,  AFS 
Transactions, vol. 105, p. 443 – 450, (1997). 

2. Wang C, Ramsay C W and Askeland D R, Process Variable Significance on 
Filling Thin Plates in the LFC Process – T he Staggered, Nested Factorial 
Experiment, AFS Transactions, vol. 105, p. 427 – 434, (1997). 

3. Lawrence M, Ramsay C W and Askeland D R, Some Observations and 
Principles for Gating of Lost Foam  Castings, AFS Casting Conference, May 
1998, Pre-print No. 98-112. 

4. Ramsay C W, Askeland D R and Tschopp M A, Mechanisms of Formation of 
Pyrolysis Defects in Alum inum Lost Foam  Castings, AFS Casting 
Conference, April 2000, Pre-print 00-131. 

5. Zhao Q, Burke J T and Gustafson T W, Foam Removal Mechanism in 
Aluminum Lost Foam Casting, AFS Transactions, vol. 110, p. 1399 – 1414, 
(2002). 

6. Cox W P and Ballam R L, Calculation of the Apparent Viscosity of 
Polystyrene Melts, Journal of Applied Polymer Science, vol. 4 Issue 10, p. 
121, (1960). 

7. Molbilog T V and Littleton H, Experimental Simulation of Pattern Degradation 
in Lost Foam, AFS Transactions, vol. 109, p. 1523 – 1554, (2001). 

8. Davies P, The Effect of Orientati on on Moul d Filling in Lost Foam  Casting, 
MRes. Thesis, School of Engineering, Metallurgy and Materials, University of 
Birmingham, 2002. 

9. Bakhtiyarov S I, Overfelt R A, Alagarsamy A and Vatankhah B, Study of 
Molten Metal – Poly meric Interface Dyna mics in Counter Gravity Castin g 
Process, Proceeedings of the SECTAM-XX, April 2000. 

10. Sun W L, Littleton H E and Bates C E, Real-Time X-ray Investigations on Lost 
Foam Mold Filling, AFS Transactions, vol. 110, p. 1347 – 1356, (2002). 

11. Saffman P G and Taylor G, The Penetration of a Fluid into a Porous Medium 
or Hele-Shaw Cell Containing a More Visc ous Liquid, Proc. Royal Society, 
245, p. 312 – 329, (1958). 

12. Weibull W, A Statistical Distribution Function of Wide Applicab ility, Journal of 
Applied Mechanics, vol. 18, p. 293 – 297, (1951). 

13. Elert G, The Physics Hypertextbook, 1998. 
14. Dinsdale A T and Quested P N, The Viscosity of Aluminium and Its Alloys – A 

Review of data and Models, Journal of Materials Science, vol. 39, p. 7221 – 
7228, (2004). 



 245 
 
  

Ultimate Tensile Strength (MPa)
Fill Test Piece Position
Pressure A B C D E F G H I J K L

24.1 kPa 227 196 205 197 203 212 199 198 206 209 205 207

27.6 kPa 106 133 126 126 109 108 117 119 126 121 123 135

M N O P Q R S T U V W

24.1 kPa 215 222 211 190 220 202 217 212 n/a n/a n/a -

27.6 kPa 130 140 128 94 128 134 131 137 140 144 124 -

Tables 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1  Ultimate Tensile Strength Results Achieved at Various Locations 

in Plates Cast in a Counter-gravity Fashion at Two Different Fill Press 
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Fig 1a  Isometric View of the Counter-
gravity Casting Machine with Mould in 

Position  

Fig 1b  Section View of the Counter-
gravity Casting Machine with Mould in 

Position 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3  Isometric View of the Physical Model Used to Observe Fluid Interface Morphologies at Varying 

Displacement Velocities 
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Fig 4 Finger-type Front in the Upper Region of a Plate (Fill Pressure = 68.9 kPa) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5 Irregular Metal Front in the Upper Region of a Plate (Fill Pressure = 27.6 kPa) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6 Planar-type Metal Front in the Upper Region of a Plate (Fill Pressure = 24.1 kPa) 
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Fig 7 Weibull Plots of the Ultimate Tensile Strength of Samples Taken from Plates Filled in a Counter-

gravity Fashion at Two Different Fill Pressures.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig 8  Saffman-Taylor Instability Observed during the Displacement of Glucose Syrup (viscosity 95 000 
mPa.s) by Liquid Mercury (viscosity 1.55 mPa.s) in a Hele-Shaw Cell. 
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Abstract 
 
Recent research has been aimed at investigating the factors that determine the quality of the 
final product during the casting of Al alloys using the Lost Foam process. Research has been 
carried out on the role of the coating in removing liquid pattern degradation products, and 
experiments suggest that absorption of the liquid polystyrene can occur by the coating, but this 
is dependant upon the degradation of the polystyrene to a sufficiently low molecular weight 
liquid. In addition, the filling of vertically oriented plates, imaged with real-time X-ray 
equipment, has shown that in gravity casting experiments the advancing metal front developed 
finger-like protrusions whether the metal entered the pattern from above or below. In 
countergravity filling experiments it has been shown that, as the velocity with which the 
mould was filled was decreased, the nonuniformity of the metal front was also decreased, 
reducing the entrapment of the degradation products of the polystyrene pattern. An 
approximate value for the maximum velocity of mould filling associated with a smooth 
advancing metal front was found to be about 5 mm.s-1. 
 
 
Introduction 
 
The Lost Foam casting process is well known for its versatility and holds the promise of 
producing complex castings more economically than conventional casting processes. 
However, in the case of casting of Al alloys, the degradation of the expanded polystyrene 
pattern is associated with large numbers of defects that result in castings with high porosity 
and high rejection rates during production, particularly when production of the casting is first 
attempted [1-3]. 
 
The liquid metal fills the mould by causing the polystyrene pattern to degrade as it is heated. 
Firstly there is a collapse of the expanded polystyrene bead structure, then melting, followed 
by a reduction in molecular weight of the liquid polystyrene, which finally breaks down to 
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vapour byproducts. It has been suggested that the behaviour of the pattern coating in 
controlling the passage of these liquid and vapour degradation products is an important factor 
in controlling the final casting quality [4,5]. 
 
Since this is a new casting process the factors that control successful casting production are 
not well understood. Consequently there is considerable need for further research and in the 
work reported here the behaviour of the coating in removing the degradation products of the 
polystyrene pattern has been examined, together with the effect on casting quality and 
properties of using a counter-gravity filling method. 
 
 
Experimental Procedure 
 
To examine the possibility of wicking of liquid polystyrene degradation products into the 
pattern coating an experiment was carried out that involved the degradation of an expanded 
polystyrene foam sample in contact with a typical pattern coating, (characterised as a low 
permeability coating). A sketch of the experiment has been shown in Figure 1. A small sample 
of polystyrene pattern material, (of 20 mm diameter x 10 mm thick and of density 
23.4 kg.m-3), was placed in a resistance-heated tube furnace, set to varying temperatures of 
between 400°C to 1000°C. The temperature of the sample was then allowed to rise to between 
300°C and 500 °C, (determined by an 80 µm diameter thermocouple embedded in the coating 
attached to the sample). In this way polystyrene samples that had experienced different 
amounts of thermal degradation were obtained. When the required temperature was reached 
the sample was rapidly quenched using a water-cooled chill to minimise any further 
degradation of the polymer, thus preserving the characteristics of the polymer at that 
temperature and time. Gel Permeation Chromatography was then used to determine the 
average molecular weight of the polymer remaining on or in each coating after being heated, 
as well as being used to characterise the starting pattern material. This experiment was carried 
out on both typical expanded polystyrene foam pattern material, and Br-treated expanded 
polystyrene foam. 
 
In addition, expanded polystyrene plate patterns of 440 mm x 180 mm x 10 mm, coated with 
~500 µm thickness high- and low-permeability coatings, were cast in a flat, horizontal 
orientation at 850 °C using A319 aluminium alloy, (Al-6wt.%Si-3.5wt.%Cu). Pattern and 
coating temperatures experienced during filling were measured by the same 80 µm diameter 
type K thermocouples, which were embedded within the pattern at its centre, and within the 
pattern coating at the same positions, along the centre line of the plate, (see Figure 2). The 
filling of these castings was also examined using real-time X-ray radiography. 
 
Real-time X-ray radiography was also applied to study the filling of a foam pattern plate in a 
vertical orientation. These were of two types; in one case a liquid Al alloy was cast into a 
conventional running system, (that is, conventional for Lost Foam casting), which led to an 
ingate at either the top or bottom of a vertically oriented pattern plate, thereby filling the plate 
from either the top or the bottom. This was intended to be a reflection of the practice in open 
cavity casting processes where it would be expected that filling a mould from the top would 
produce a casting with more variable (and lower) mechanical properties than if the mould 
cavity was filled from the bottom. 
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The second type of mould filling used the equipment shown in Figure 3. In this experiment the 
pattern was placed in a mould box placed above a steel chamber that contained a crucible of 
liquid metal. Applying an overpressure to this chamber forced the liquid metal up a 
connecting tube to enter the plate pattern from below. By varying the overpressure applied to 
the chamber, the velocity of the liquid metal passing into the pattern plate was varied, and the 
real-time X-ray image showed the effect of this variation in velocity on the shape of the liquid 
metal front, and the entrainment of the pattern degradation products into the liquid metal, as it 
filled the mould. These experiments were cast in both Al-10wt.%Si-0.3wt.%Mg alloy at 
785°C, for the gravity casting experiments, and Al-7wt.%Si-0.3wt.%Mg (A356) alloy at 
785°C, for the countergravity casting experiments. The cast plates were subsequently 
sectioned and machined into tensile test specimens so that the effect of filling velocity on 
mechanical properties could be assessed. 
 
 
Results 
 
Table 1 shows the molecular weight of polystyrene foam samples held for different times at 
different temperatures in the experiment shown in Figure 1. The original molecular weight of 
the foam was about 290,000. As the furnace temperature was increased, but the sample 
removed when it reached the same temperature, (for example, 300°C), the molecular weight 
of the degraded sample tended to increase. In other words, as the sample was heated more 
quickly, but to the same temperature, less degradation of the polymer took place. For samples 
placed in the same furnace temperature, (for example, 800°C), but heated to higher 
temperatures, (and therefore heated for longer times), increased degradation of the polymer 
occurred. 
 
After each experiment was completed the coating was examined to determine if the degraded 
(liquid) polymer had wetted the coating surface and had been wicked into the coating interior. 
The results showed that the degraded polystyrene wetted the low permeability coating once its 
molecular weight was reduced to about 100,000, but that wicking of the liquid polymer 
degradation products into the coating occurred when the molecular weight had been reduced 
to about 13,000, about 5% of the original molecular weight. 
 
The same experiment was carried out for a high permeability coating[6] and the same effects 
were found. Increasing time and temperature resulted in a reduction in molecular weight, until 
wetting of the coating occurred. As the molecular weight reduced still further the liquid 
polymer was wicked into the coating. However, in the case of the high permeability coating, 
wicking occurred when the molecular weight was reduced to about 70,000, about 24% of the 
original molecular weight.     
 
Table 2 shows the change in molecular weight found with the Br-treated polystyrene foam. 
This showed wicking behaviour at a molecular weight of below about 23,000, a reduction in 
molecular weight to about 7% of the original molecular weight. The Br-treated pattern 
material therefore behaved in a similar way to the untreated foam, but with the low molecular 
weight liquid polymer residue occurring at lower temperatures in the experiment, more readily 
than in the case of the untreated polystyrene.   
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Figure 4 shows temperature-time curves obtained from the coating and from within the foam 
pattern during filling of the mould, for the locations shown in the sketch in Figure 2. All four 
thermocouples within the horizontal plate showed a steep temperature gradient ahead of the 
advancing metal front, but the thermocouples within the coating showed that here the 
temperature rose only slowly. For example, by the time the liquid metal had reached 
thermocouple 4, closest to the end of the plate, the thermocouple embedded in the coating at 
location 1, closest to the ingate, (and 300 mm away), had risen to only about 430°C. The 
thermocouples at locations 2 and 3 at this time were at still lower temperatures, (about 390° 
and 180°C respectively). The thermocouples in the coatings were only an indication of the 
temperature at the coating-pattern interface but suggested that the temperature at this point 
should be much lower than the metal temperatures within the filling casting. 
 
In the real-time X-ray studies of filling of the vertically oriented plates the gravity cast 
experiments showed an irregular metal-foam interface, whether the mould was filled from 
above or from below, (see Figures 5 and 6 respectively). The mean UTS values shown in 
Table 3 indicate similar, low values in each case, and the Weibull modulus values, used here 
as an indication of the scatter of the tensile properties of the castings, were also low. Values of 
6 and 9 were found, whereas values of more than 20 have been typically reported for open 
cavity castings. In the counter-gravity filled castings, the nature of the advancing metal front 
was quite different. At a velocity of 24 mm.s-1, a highly irregular metal front was observed, 
(see Figure 7). When the castings were filled more slowly, at 13 mm.s-1, the advancing metal 
front lost its highly irregular appearance and became what may be termed “cellular”, (see 
Figure 8). This is similar in appearance to the metal front seen in Figure 6. Despite the 
apparent improvement in the filling of the mould the mean UTS value (see Table 3) was still 
low, and the Weibull modulus of 11 again indicated a poor quality casting. (These castings 
were made in a slightly different alloy to the gravity cast plates, but the comparison should not 
be misleading.) When the mould filling velocity was decreased to only about 5 mm.s-1 a 
smooth metal-pattern interface was obtained, (see Figure 9). The mean UTS values from this 
casting were significantly improved, (by 66% compared to the casting shown in Figure 8), and 
the Weibull modulus improved to 23, a value associated with open cavity castings. However it 
should be noted that this casting, was filled so slowly that the metal solidified prematurely 
before the casting was complete.   
 
 
Discussion 
 
The experiments involving the thermally degraded polystyrene in contact with the coating 
suggested that wicking of liquid polymer into the coating can occur once the liquid has 
reached a sufficiently low molecular weight, and therefore viscosity. The molecular weight at 
which this occurred depended upon coating permeability. 
 
A comparison between the temperatures recorded in a casting being filled, (shown in Figure 
4), and the temperatures and heating times necessary for the wicking to take place in the 
experiment shown in Figure 1, (the results of which have been shown in Table 1), suggest 
that, in a casting, any wicking of liquid polymer into the coating must occur after the metal 
front has passed. For example, in Table 1 wicking occurred with a sample placed in a furnace 
temperature of 600°C and heated to 450°C, resulting in a molecular weight of about 11,900. 
The time taken for this reduction in molecular weight was 590 s. When the polystyrene was 
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heated to 450°C with a furnace temperature of 800°C, resulting in a molecular weight of about 
96,400, (which took 205 s), no wicking occurred because of the high molecular weight of the 
liquid residue. In the case of the Br-treated polystyrene, wicking occurred when the molecular 
weight was reduced to 19,700 (see Table 2), a process that took 830 s in the experiment. The 
heating curves shown in Figure 4 for the coating, where filling of the mould took place in less 
than 60 s, although only a guide to the temperature of the polystyrene degradation products 
displaced to the coating-pattern interface, suggest that insufficient time and heating would 
have occurred for the polymer residue to break down to a sufficiently low molecular weight 
liquid to be absorbed by the coating, at least until after the metal front had passed. 
 
These experiments therefore clarify the role of the pattern coating in removing liquid polymer 
degradation products in the Lost Foam casting process. It was proposed by Sun et al. [4] that 
the liquid polymer was wicked into the coating at a critical temperature. Conversely, Zhao et 
al. [5] proposed that liquid polymer degradation products were instead pushed to the coating-
casting interface and were not absorbed by the coating, but remained there as the metal front 
passed by and eventually vaporised with only the vapour passing through the coating. These 
results suggest instead that both theories are partly true. The liquid polymer degradation 
products displaced to the coating-casting interface should remain there while the casting is 
filling. At the coating surface they continue to break down into lower molecular weight 
products until their viscosity is reduced sufficiently and they are then wicked into the coating, 
but this should occur after the passage of the liquid metal front. This behaviour may not 
therefore have a great effect on the filling of the mould, although it would affect the area of 
the coating through which vapour pattern degradation products can pass, but it would certainly 
strongly affect surface quality. 
 
The appearance of the liquid metal front advancing up through the pattern in the 
countergravity filling experiments shown in Figures 7 to 9, show that it is possible for the Lost 
Foam casting process to produce well-filled castings with good and uniform mechanical 
properties, (as shown in Table 3). A comparison of the appearance of the metal fronts in 
Figures 8 and 9 and the tensile properties of the castings given in Table 3 suggest that only a 
completely smooth advancing metal front can give good casting properties. This poses a 
problem, if such a smooth metal front can only be obtained by such slow filling rates that 
misrun castings can occur. 
 
One explanation for the transition in the shape of the metal fronts shown in Figures 7 to 9 may 
be that the countergravity filling of the pattern was preceded by a volume of hot air, originally 
in the connecting tube between the liquid metal and the pattern, which would be displaced up 
into the pattern once filling had begun. Rapid injection of this volume of hot air into the base 
of the pattern could lead to some initial degradation and partial collapse of the pattern 
structure and give rise to the highly irregular metal front seen in Figure 7. However, the 
transition from the “cellular” to the planar front in Figures 8 and 9 suggests other mechanisms 
that may control the shape of the metal-pattern interface and the entrainment of pattern 
degradation products into the casting.   
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Conclusions 
 
1. Liquid polymer degradation products from an expanded polystyrene pattern can be 
absorbed (wicked) into the pattern coating once they have degraded to a sufficiently low 
molecular weight. This molecular weight needed for wicking to take place depends upon the 
permeability of the pattern coating. 
 
2. Real-time X-ray examination of countergravity filling of a vertical pattern plate showed that 
smooth filling of the mould can be achieved at a velocity of about 5 mm.s-1, producing a 
sounder casting with good mechanical properties. 
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300 350 400 450 500
400 156,000
450 138,000 93,500
500 167,000 128,000 31,700
600 179,000 170,000 117,000 11,900 no signal
800 221,000 182,000 168,000 96,400 13,100

1000 211,000 191,000 193,000 169,000 52,000

Furnace 
Temperature 

(oC)

Sample Temperature (oC)

300 350 400 450 500
400 118,000
450 86,000 40,200
500 64,500 43,400 19,700
600 134,000 59,500 29,500 8,210 no signal
800 217,000 98,600 49,200 22,800 no signal

1000 247,000 162,000 69,300 41,200 13,700

Sample Temperature (oC)

Furnace 
Temperature 

(oC)

TABLES 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Molecular weights of expanded polystyrene foam samples having undergone 
differing amounts of thermal degradation. The values in italics are from the samples that 
showed that the polymer had wicked into the low permeability coating. (Original molecular 
weight about 290,000). 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Molecular weights of Br-treated expanded polystyrene foam samples having 
undergone differing amounts of thermal degradation. The values in italics are from the 
samples that showed that the polymer had wicked into the low permeability coating. (Original 
molecular weight about 340,000). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3. Summary of tensile properties of Al test bars taken from cast Lost Foam plates 
produced by different mould filling methods. 

Mould filling method Mean UTS
(Mpa)

Weibull Modulus

Gravity cast; (Al-10wt.%Si)
Top-filled 122 6
Bottom-filled 125 9
Counter-gravity cast; (Al-7wt.%Si)
Filling velocity of  24 ׾ mm/s not determined not determined
Filling velocity of  13 ׾ mm/s 125 11
Filling velocity of  5 ׾ mm/s 208 23
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FIGURES 
 

 
 
Figure 1. Diagram of experimental arrangement for the controlled thermal degradation of 
coated expanded polystyrene samples. 
 
 

 
 
Figure 2. Location of thermocouples in the coating and the pattern for the horizontal pattern 
plate casting experiments, (seen from above). 

 
 

 
 

Figure 3. Diagram of the experimental arrangement used for the counter-gravity casting of 
Lost Foam plate patterns from below. 
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Figure 4. The temperatures recorded in the coating and in the pattern during the filling of a 
horizontally oriented pattern, (using a low permeability coating). 
 

 
 
Figure 5. Real-time X-ray image of the filling of a Lost Foam plate pattern with a top-gated 
running system. 
 

 
 
Figure 6. Real-time X-ray image of the filling of a Lost Foam plate pattern with a bottom-
gated running system. 
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Figure 7. Real-time X-ray image of the filling of a Lost Foam plate pattern at a velocity of 
about 24 mm.s-1. 

 

 
 

Figure 8. Real-time X-ray image of the filling of a Lost Foam plate pattern at a velocity of 
about 13 mm.s-1. 

 

 
 

Figure 9. Real-time X-ray image of the filling of a Lost Foam plate pattern at a velocity of 
about 5 mm.s-1. 
 



 258 
 
  

LIST OF REFERENCES 
 
1. Shroyer, H.F., Cavityless Casting Mold and Method of Making Same. 1958: U.S. 

Patent No. 2,830,343. 
 
2. Smith, T.R., Method of Casting. 1964: U.S. Patent No. 3,157,924. 
 
3. Butler, R.D. and R.J. Pope, Some Factors Involved in Full Mould Casting with 

Unbonded Sand Moulds. The British Foundryman, 1964. April: p. 178-191. 
 
4. Hess, D.R., B. Durham, C.W. Ramsay and D.R. Askeland, Observations on the Effect 

of Pattern and Coating Properties on Metal Flow and Defect Formation in Aluminum 
Lost Foam Castings. Transactions of the American Foundrymen's Society, 2002. 110: 
p. 1435-1448. 

 
5. Goria, C.A., G. Serramoglia, G. Caironi and G. Tosi, Coating Permeability: A Critical 

Parameter of the Evaporative Pattern Process. Transactions of the American 
Foundrymen's Society, 1986. 94: p. 589-600. 

 
6. Sun, Y., H.L. Tsai, and D.R. Askeland, Investigation of Wetting and Wicking 

Properties of Refractory Coating in the EPC Process. Transactions of the American 
Foundrymen's Society, 1992. 100: p. 297-308. 

 
7. Gowariker, V.R., N.V. Viswanathan and J. Sreedhar, Polymer Science, New York: 

Halstead Press (John Wiley & Sons), 1986. 
 
8. Shivkumar, S., X. Yao, and M. Makhlouf, Polymer-Melt Interactions during Casting 

Formation in the Lost Foam Process. Scripta Metallurgica et Materialia, 1995. 33: p. 
39-46. 

 
9. Cai, M., J. Siak, B.R. Powell, G. Nouaime and S.J. Swarin, Physical and Chemical 

Analysis of the Thermal Degradation Products of Expanded Polystyrene Patterns with 
Short Thermal Exposures. Transactions of the American Foundrymen's Society, 2002. 
110: p. 1463-1481. 

 
10. Kannan, P., J.J. Biernacki and D.P. Visco Jr., A Review of Physical and Kinetic Models 

of Thermal Degradation of Expanded Polystyrene Foam and their Application to the 
Lost Foam Casting Process. Journal of Analytical and Applied Pyrolysis, 2006. 78: p. 
162-171.  

 
11. Shivkumar, S. and B. Gallois, Physico-Chemical Aspects of the Full Mold Casting of 

Aluminum Alloys, Part 1: The Degradation of Polystyrene. Transactions of the 
American Foundrymen's Society, 1987. 95: p. 791-800. 

 
12. Mehta, S., S. Biederman and S. Shivkumar, Thermal Degradation of Foamed 

Polystyrene. Journal of Materials Science, 1995. 30: p. 2944-2949. 
 



 259 
 
  

13. Madorsky, S.L., Thermal Degradation of Organic Polymers. New York: Interscience 
Publishers, 1964.  

 
14. Yang, J., T. Huang and J. Fu, Study of Gas Pressure in EPC (LFC) Molds. 

Transactions of the American Foundrymen's Society, 1998. 106: p. 21-26. 
 
15. Zhao, Q., T.W. Gustafson, M. Hoover and M.C. Flemings, Folds Formation and 

Prevention in the Lost Foam Aluminium Process. Transactions of the American 
Foundrymen's Society, 2004. 112: p. 1145-1159. 

 
16. Molibog, T. and H. Littleton, Experimental Simulation of Pattern Degradation in Lost 

Foam. Transactions of the American Foundrymen's Society, 2001. 109: p. 1523-1554. 
 
17 Barone, M.R. and D.A. Caulk, A Foam Ablation Model for Lost Foam Casting of 

Aluminum. International Journal of Heat and Mass Transfer, 2005. 48: p. 4132-4149. 
 
18. Caulk, D.A., A Foam Melting Model for Lost Foam Casting of Aluminum. 

International Journal of Heat and Mass Transfer, 2006. 49: p. 2124-2136. 
 
19. Caulk, D.A., A Pattern Decomposition Model for Lost Foam Casting of Aluminum: 

Part III-Collapse Mode. Transactions of the American Foundrymen's Society, 2007. 
115: p. 833-844. 

 
20. Caulk, D.A., A Pattern Decomposition Model for Lost Foam Casting of Aluminum: 

Part IV-Engulf Mode. Transactions of the American Foundrymen's Society, 2007. 115: 
p. 845-860. 

 
21. Sun, W.L., H.E. Littleton and C.E. Bates, Real-Time X-Ray Investigations on Lost 

Foam Mold Filling. Transactions of the American Foundrymen's Society, 2002. 110: 
p. 1347-1356. 

 
22. Sun, W., H.E. Littleton and C.E. Bates, Effects of Foam Pattern Fusion on the Quality 

of Lost Foam Aluminum Castings: Real Time and Digital X-ray Observations. 
Transactions of the American Foundrymen's Society, 2003. 111: p. 1245-1253. 

 
23. Littleton, H.E., T. Molibog and W. Sun, The Role of Pattern Permeability in Lost 

Foam Casting. Transactions of the American Foundrymen's Society, 2003. 111: p. 
1265-1277. 

 
24. Rossacci, J. and S. Shivkumar, Influence of EPS Bead Fusion on Pattern Degradation 

and Casting Formation in the Lost Foam Process. Journal of Materials Science, 2003. 
38: p. 2321-2330. 

 
25. Wang, C., C.W. Ramsay and D.R. Askeland, Processing Variable Significance on 

Filling Thin Plates in the LFC Process - The Staggered, Nested Factorial Experiment. 
Transactions of the American Foundrymen's Society, 1997. 105: p. 427-434. 

 
 



 260 
 
  

26. Bex, T., Coating Chemistry Key to FPC Consistency. Modern Casting, 1989. October: 
p. 34-35. 

 
27. Martinez, O.A., A Supplier's Overview of Lost Foam Refractory Coatings. 

Transactions of the American Foundrymen's Society, 1990. 98: p. 241-244. 
 
28. Liu, J., C.W. Ramsay, and D.R. Askeland, A Study of Foam-Metal-Coating Interaction 

in the LFC Process. Transactions of the American Foundrymen's Society, 1997. 105: 
p. 419-425. 

 
29. Walling, R.P. and J.A. Dantzig, Mechanisms of Mold Filling in the EPC Process. 

Transactions of the American Foundrymen's Society, 1994. 102: p. 849-854. 
 
30. Dieter, H.B. and A.J. Paoli, Sand Without Binder for Making Full Mold Castings. 

Transactions of the American Foundrymen’s Society, 1967. 75: p. 147-160. 
 
31. Shivkumar, S., Modelling of Temperature Losses in Liquid Metal during Casting 

Formation in Expendable Pattern Casting Process. Materials Science and Technology, 
1994. 10: p. 986-992. 

 
32. Warner, M.H., B.A. Miller, and H.E. Littleton, Pattern Pyrolysis Defect Reduction in 

Lost Foam Castings. Transactions of the American Foundrymen's Society, 1998. 106: 
p. 777-785. 

 
33. Rossacci, J. and S. Shivkumar, Bead Fusion in Polystyrene Foams. Journal of 

Materials Science, 2003. 38: p. 201-206. 
 
34. Bennett, S., T. Moody, A. Vrieze, M. Jackson, D.R. Askeland and C.W. Ramsay, 

Pyrolysis Defects in Aluminum Lost Foam Castings. Transactions of the American 
Foundrymen's Society, 2000. 108: p. 795-803. 

 
35. Pan, E.N. and G.L. Sheu, The Filling Phenomena of Lost Foam Cast Irons and 

Aluminium Alloys. Transactions of the American Foundrymen's Society, 2003. 111: p. 
1255-1263. 

 
36. Fu, J., H.L. Tsai and D.R. Askeland, Transport of Foam Decomposition Products into 

the Sand in the Lost Foam Casting Process. Transactions of the American 
Foundrymen's Society, 1996. 104: p. 263-270. 

 
37. Tseng, C.H.E. and D.R. Askeland, Thermal and Chemical Analysis of the Foam, 

Refractory Coating and Sand in the EPC Process. Transactions of the American 
Foundrymen's Society, 1992. 100: p. 509-518. 

 
38. Zhao, Q., J.T. Burke and T.W. Gustafson, Foam Removal Mechanism in Aluminum 

Lost Foam Casting. Transactions of the American Foundrymen's Society, 2002. 110: 
p. 1399-1414. 

 



 261 
 
  

39. Cox, W.P. and R.I. Ballmann, Calculation of the Apparent Viscosity of Polystyrene 
Melts. Journal of Applied Polymer Science, 1960. 4: p. 121. 

 
40. Hill, M., A.E. Vrieze, T.L. Moody, C.W. Ramsay and D.R. Askeland, Effect of Metal 

Velocity on Defect Formation in Al LFCs. Transactions of the American Foundrymen's 
Society, 1998. 106: p. 365-374. 

 
41. Tschopp, M.A., Q.G. Wang and M.J. DeWyse, Mechanisms of Misrun Formation in 

Aluminum Lost Foam Castings. Transactions of the American Foundrymen's Society, 
2002. 110: p. 1371-1386. 

 
42. Liu, J., C.W. Ramsay and D.R. Askeland, Effects of Foam Density and Density 

Gradients on Metal Fill in the LFC Process. Transactions of the American 
Foundrymen's Society, 1997. 105: p. 435-442. 

 
43. Monroe, R.W., Expendable Pattern Casting. Des Plaines: American Foundrymen’s 

Society, 1992. 
 
44. Hess, D.R., Comparison of Aluminum Alloys and EPS Foams for Use in the Lost Foam 

Casting Process. Transactions of the American Foundrymen's Society, 2004. 112: p. 
1161-1174. 

 
45. Sands M. and S. Shivkumar, Influence of Coating Thickness and Sand Fineness on 

Mold Filling in the Lost Foam Casting Process. Journal of Materials Science, 2003. 
38: p. 667-673. 

 
46. Littleton, H.E., B.A. Miller, D. Sheldon and C.E. Bates, Lost Foam Casting - Process 

Control for Precision. Transactions of the American Foundrymen's Society, 1996. 
104: p. 335-346. 

 
47. Kocan, G.H., Incorporating Permeability into Lost Foam Coating Controls. 

Transactions of the American Foundrymen's Society, 1996. 104: p. 565-569. 
 
48. Zhao, Q., H. Wang, S. Biederman, D. Jason and J.S. Parish, Lost Foam Casting 

Coating Characterization: Heat and Mass Transfer. Transactions of the American 
Foundrymen's Society, 2005. 113: p. 1013-1027. 

 
49. Philipse, A.P. and H.L. Schram, Non-Darcinian Airflow through Ceramic Foams. 

Journal of the American Ceramic Society, 1991. 74: p. 728-732. 
 
50. Massey, B.S., Laminar Flow between Solid Boundaries, in Mechanics of Fluids. 

London: Chapman & Hall, 1995. 
 
51. Darcy, H., Les Fontaines Publiques de la Ville de Dijon. Paris: Victor Dalmont, 1856.  
 
52. Liu, Y., S.I. Bakhtiyarov and R.A. Overfelt, Numerical Modeling and Experimental 

Verification of Mold Filling and Evolved Gas Pressure in Lost Foam Casting Process. 
Journal of Materials Science, 2002. 37: p. 2997-3003. 



 262 
 
  

53. Innocentini, M.D.M., V.R. Salvini, V.C. Pandolfelli and J.R. Coury, Assessment of 
Forchheimer's Equation to Predict the Permeability of Ceramic Foams. Journal of the 
American Ceramic Society, 1999. 82: p. 1945-1948. 

 
54. Davies, P., The Role of the Pattern Coating in Lost Foam Casting of Aluminium. Ph.D. 

Thesis, 2006, University of Birmingham, England. 
 
55. Tan, L.S., R.A. Bambauer, T.A. Delong, R.B. Dinwiddie and H. Wang, The Effect of 

Thermal Conductivity on Metal Fill in Lost Foam Casting of Aluminum. Paper 
presented at the 101st AFS Casting Congress, April 1997, Seattle, WA.  

 
56. Molibog, T., R.B. Dinwiddie, W.D. Porter, H. Wang and H.E. Littleton, Thermal 

Properties of Lost Foam Casting Coatings. Transactions of the American 
Foundrymen's Society, 2000. 108: p. 471-478. 

 
57. Hill, M.W., M. Lawrence, C.W. Ramsay and D.R. Askeland, Influence of Gating and 

Other Processing Parameters on Mold Filling in the LFC Process. Transactions of the 
American Foundrymen's Society, 1997. 105: p. 443-450. 

 
58. Liu, X., C.W. Ramsay and D.R. Askeland, A Study on Mold Filling Control 

Mechanisms in the Expendable Pattern Casting Process. Transactions of the American 
Foundrymen's Society, 1994. 102: p. 903-914. 

 
59. Lawrence, M.D., C.W. Ramsay and D.R. Askeland, Some Observations and Principles 

for Gating of Lost Foam Castings. Transactions of the American Foundrymen's 
Society, 1998. 106: p. 349-356. 

 
60. Sun, Y., H.L. Tsai and D.R. Askeland, Effects of Silicon Content, Coating Materials 

and Gating Design on Casting Defects in the Aluminum Lost Foam Process. 
Transactions of the American Foundrymen's Society, 1996. 104: p. 271-279. 

 
61. Vinarcik, E.J., Thermo Gravimetric Analysis of Expendable Pattern Casting 

Adhesives. Transactions of the American Foundrymen's Society, 1997. 105: p. 355-
357. 

 
62. Bates, C.E., J. Griffin and H.E. Littleton, Expandable Pattern Casting, Process 

Manual. Des Plaines, American Foundrymen’s Society, 1994. 
 
63. Sun, W. and H.E. Littleton, Real-Time X-Ray Visualization of Effects of Glue Joints on 

Metal Filling and Defect Formation of Lost Foam Castings. Transactions of the 
American Foundrymen's Society, 2005. 113: p. 1099-1107. 

 
64. Shivkumar, S., Casting Characteristics of Aluminum Alloys in the EPC. Transactions 

of the American Foundrymen's Society, 1993. 101: p. 513-518. 
 
65. Buesch, A., C. Carney, T. Moody, C. Wang, C.W. Ramsay and D.R. Askeland, 

Influence of Sand Temperature on Formation of Pyrolysis Defects in Aluminum Lost 



 263 
 
  

Foam Castings. Transactions of the American Foundrymen's Society, 2000. 108: p. 
615-621. 

 
66. Fu, J., H.-L. Tsai and D.R. Askeland, Mold Filling in Thin-Section Castings Produced 

by the EPC Process. Transactions of the American Foundrymen's Society, 1995. 103: 
p. 817-828. 

  
67. Bennett, S., C.W. Ramsay and D.R. Askeland., Temperature Gradients during Fill and 

Solidification of Al LFCs. Transactions of the American Foundrymen's Society, 1998. 
106: p. 357-363. 

 
68. Bennett, S., M. Tschopp, A. Vrieze, E. Zelkovich, C.W. Ramsay and D.R. Askeland, 

Observations on the Effect of Gating Design on Metal Flow and Defect Formation in 
Aluminum Lost Foam Castings: Part I. Paper presented at the 105th AFS Casting 
Congress, April 2001, Dallas, TX.  

 
69.  Tschopp, M., C.W. Ramsay and D.R. Askeland, Mechanisms of Formation of 

Pyrolysis Defects in Aluminum Lost Foam Castings. Transactions of the American 
Foundrymen's Society, 2000. 108: p. 609-614. 

 
70.  Shin, S.R., Z.H. Lee, G.S. Cho and K.W. Lee, Hydrogen gas pick-up mechanism of Al-

alloy melt during Lost Foam Casting. Journal of Materials Science, 2004. 39: p. 1563-
1569. 

 
71. Chintalapati, P.P., J.A. Griffin and R.D. Griffin, Improved Mechanical Properties of 

Lost Foam Cast A356 and A319 Aluminum Solidified under Pressure. Transactions of 
the American Foundrymen's Society, 2007. 115: p. 881-898. 

 
72. Bakhtiyarov S.I., R. Overfelt and A. Alagarsamy, Advances in Counter Gravity Lost 

Foam Casting Process. Transactions of the American Foundrymen's Society, 2000. 
108: p. 137-145. 

 
73. Fan Z-T., S. Ji, Low Pressure Lost Foam Process for Casting Magnesium Alloys. 

Materials Science and Technology, 2005, 21: p. 727-734. 
 
74. Penumadu, D., M. Kant, R. Michaels and E. Lichner, Lost Foam Casting Using 

Electromagnetic Pump Avoiding Downsprue With Feedback Control. Transactions of 
the American Foundrymen's Society, 2005. 113: p. 1047-1057. 

 
75. Chen, Q. and C. Ravindran, Effects of Hydrogen Content and Solidification Time on 

Porosity Formation in Lost Foam Casting of A356 Alloy – A Semi-Empirical Model. 
Paper presented at the 104th AFS Casting Congress,  April 2000, Pittsburgh, PA. 

 
76. Khan, S., C. Ravindran, D. Naylor and D. Sharma, Measurement of Interfacial Heat 

Transfer Coefficient in LFC of A356 Al Alloy. Transactions of the American 
Foundrymen's Society, 2000. 108: p. 445-452. 

 



 264 
 
  

77. Khan, S., D. Naylor and C. Ravindran, Effect of Casting Section Thickness and 
Coating Thickness on the Interfacial Heat Transfer Coefficient in Lost Foam Casting. 
Transactions of the American Foundrymen's Society, 2001. 109: p. 1495-1501. 

 
78.  Zhao, Q., S. Biederman and M. Flemings, The Effects of Coating on Heat Transfer in 

Lost Foam Aluminum Process. Transactions of the American Foundrymen's Society, 
2006. 114: p. 899-912. 

 
79. Moore, A.R., T.C. Pederson and A.K. Sachdev, New Pattern Coating for Improved 

Metal Fill in Low-Pressure Lost Foam Aluminum Castings. Transactions of the 
American Foundrymen's Society, 2006. 114: p. 875-886. 

 
80. Shivkumar, S., L. Wang and D. Apelian, The Lost-Foam Casting of Aluminum Alloy 

Components. Journal of the Minerals, Metals and Materials Society, 1990. November: 
p. 38-44. 

 
81. Hess, D.R., B. Durham, C.W. Ramsay and D.R. Askeland, Observations on the Effect 

of Gating Design on Metal Flow and Defect Formation in Aluminum Lost Foam 
Castings : Part II. Transactions of the American Foundrymen's Society, 2001. 109: p. 
19-34. 

 
82. Batchelor, G.K., An Introduction to Fluid Dynamics, 1st ed. New York: Cambridge 

University Press, 2000. 
 
83. Sands, M. and S. Shivkumar, EPS Bead Fusion Effects on Fold Defect Formation in 

Lost Foam Casting of Aluminum Alloys. Journal of Materials Science, 2006. 41: p. 
2373-2379. 

 
84. Pedersen, T.C., New Brominated Additives for Expanded Polystyrene Patterns to 

Reduce Fold Defects in Lost Foam Aluminum Castings. Transactions of the American 
Foundrymen's Society, 2006. 114: p. 887-898. 

 
85. Jagoo, S., C. Ravindran and D. Nolan, Minimizing Fold Defects in Aluminum Alloy 

A356 Lost Foam Casting. Transactions of the American Foundrymen's Society, 2007. 
115: p. 899-910. 

 
86. Nyahumwa, C., N.R. Green and J. Campbell, The Concept of the Fatigue Potential of 

Cast Alloys. Journal of the Mechanical Behaviour of Materials, 1998. 9: p. 227-235. 
 
87. Campbell, J., Entrainment Defects. Materials Science and Technology, 2006. 22: p. 

127-145.   
 
88. Campbell, J., Castings. 2nd ed. Oxford: Butterworth-Heinemann, 2003. 
 
89. Green, N. and J. Campbell, Influence of Oxide Film Filling Defects on the Strength of 

Al-7Si-Mg Alloy Castings. Transactions of the American Foundrymen's Society, 1994. 
102: p. 341-347. 

 



 265 
 
  

90. Weibull, W., Statistical Distribution Function of Wide Applicability. Journal of 
Applied Mechanics, 1951. 18: p. 293-297. 

  
91. Nyahumwa, C., N.R. Green and J. Campbell, Effect of Mold-Filling Turbulence on 

Fatigue Properties of Cast Aluminium Alloys, Transactions of the American 
Foundrymen's Society, 1998. 106: p. 215-223. 

 
92. Ammar, H.R., A.M. Samuel and F.H. Samuel, Effect of Casting Imperfections on the 

Fatigue Life of 319-F and A356-T6 Al-Si Casting Alloys. Materials Science & 
Engineering A, 2008. 473: p. 65-75. 

 
93. Kang, B., Y. Kim, K. Kim, G. Cho, K. Choe and K. Lee, Density and Mechanical 

Properties of Aluminum Lost Foam Casting by Pressurisation During Solidification. 
Journal of Materials Science and Technology, 2007. 23: p. 828-832. 

 
94. Edelson, B.I. and W.M. Baldwin Jr., The Effect of Second Phases on the Mechanical 

Properties of Alloys. Transactions of the American Society for Metals, 1962. 55: p. 
230-250. 

 
95. Hedjazi, D., G.H.J. Bennett and V. Kondik, Effects of Non-metallic Inclusions on the 

Tensile Characteristics of Al4.5Cu1.5Mg Aluminium Alloy. Metals Technology, 1976. 
December: p. 537-541. 

 
96. Wang, Q.G., P.N. Crepeau, D. Gloria and S. Valtierra, Advances in Aluminium Casting 

Technology. 2nd International Aluminum Casting Technology Symposium, October 
2002, Columbus, OH. 

 
97. Smith, R.A. and P.S.A. Wilkins, Low Pressure Sand Casting: Current Experience with 

a New Process. Transactions of the American Foundrymen's Society, 1986. 94: p. 785-
792. 

 
98. Lavington, M.H., The Cosworth Process – A New Concept in Aluminium Alloy Casting 

Production. Metals and Materials, 1986. November: p. 713-719. 
 
99. Bast, J., Lost Foam Process with Low Pressure Casting. Foundry Trade Journal, 1997. 

November: p. 446-448. 
 
100. Bakhtiyarov, S.I., R.A. Overfelt and A. Alagarsamy, Measurements of Decomposed 

EPS Gases Pressure and Molten Metal-Polymeric Foam Interface Velocity during 
Counter-Gravity Lost Foam Casting. Transactions of the American Foundrymen's 
Society, 2001. 109: p. 1439-1453. 

 
101. Hirt, C.W. and M.R. Barkhudarov, Modeling the Lost Foam Process with Defect 

Prediction-Progress Report: Lost-Foam Model Extensions, Wicking. Flow Science 
Inc. Technical Notes TN 45-1, 1999. 

 
 



 266 
 
  

102. Dinsdale, A.T. and P.N. Quested, The Viscosity of Aluminium and Its Alloys – A 
Review of Data and Models. Journal of Materials Science, 2004. 39: p. 7221-7228. 

 
103. Nichetti, D. and I. Manas-Zloczower, Viscosity Model for Polydisperse Polymer Melts, 

Journal of Rheology, 1998. 42: p. 951-969. 
 
104.  Mackay, M.E. and D.J. Henson, The Effect of Molecular Mass and Temperature on the 

Slip of Polystyrene Melts at Low Stress Levels. Journal of Rheology, 1998. 42: p. 
1505-1517. 

 
105. Rayleigh, Lord, Investigation of the Character of the Equilibrium of an Incompressible 

Heavy Fluid of Variable Density. Proceedings of the London Mathematical Society, 
1883. 14: p. 170-177. 

 
106. Taylor, G.I., The Instability of Liquid Surfaces when Accelerated in a Direction 

Perpendicular to their Planes. Proceedings of the Royal Society of London, 1950. 
A201: p. 192-196.  

 
107.  Bird, R.B., W.E. Stewart and E.N. Lightfoot, Transport Phenomena. 2nd ed. New 

York: John Wiley & Sons, 2002. 
 
108. Joseph, D.D., Fluid Dynamics of Two Miscible Liquids with Diffusion and Gradient 

Stresses. European Journal of Mechanics. B/Fluids, 1990. 9: p. 565-596. 
 
109. Cook, A.W. and P.E. Dimotakis, Transition Stages of Rayleigh-Taylor Instability 

between Miscible Fluids. Journal of Fluid Mechanics, 2001. 443: p. 69-99.    
 
110. Chandrasekhar, S., The Character of the Equilibrium of an Incompressible Heavy 

Viscous Fluid of Variable Density. Proceedings of the Cambridge Philosophical 
Society, 1955. 51: p. 161-178.  

 
111. Duff, R.E., F.H. Harlow and C.W. Hirt, Effects of Diffusion on Interface Instability 

between Gases. Physics of Fluids, 1962. 5: p. 417-425.   
 
112. Saffman, P.G. and G.I. Taylor, The Penetration of a Fluid into a Porous Medium or 

Hele-Shaw Cell Containing a More Viscous Liquid. Proceedings of the Royal Society, 
1958. 245: p. 312-329. 

 
113. Ladtkow, T., Fluorescent Fingers produced using Saffman-Taylor Instability in a 

Hele-Shaw Cell, Course in Flow Visualisation, University of Colorado, USA, 2006.  
 
114. Kelvin, Lord, Hydrokinetic Solutions and Observations. Philosophical Magazine, 

1871. 42: p. 362-377. 
 
115. Helmholtz, H.L.F. von, Über discontinuierliche Flüssigkeitsbewegungen [On the 

discontinuous movement of fluids]. Monatsberichte der Königlichen Preussiche 
Akademie der Wissenschaften zu Berlin [Monthly Reports of the Royal Prussian 
Academy of Philosophy in Berlin], 1868. 23: p. 215-228. 



 267 
 
  

116. Thorpe, S.A., Experiments on the Instability of Stratified Shear Flows: miscible fluids. 
Journal of Fluid Mechanics, 1971. 46: p. 299-319. 

 
117. Cushman-Roisin B., Kelvin-Helmholtz Instability as a Boundary-value Problem. 

Environmental Fluid Mechanics, 2005. 5: p. 507-525. 
 
118.  École Nationale Supérieure d’Electrotechnique, d’Electronique, d’Informatique, 

d’Hydraulique et des Télécommunications, Kelvin-Helmholtz Instability [online]. 
Available from: http://hmf.enseeiht.fr/travaux/optmfn/hi/01pa/hyb72/kh/kh_theo.htm 
#part1. [accessed 29th October 2007]. 

 
119. Newton, Sir. I., Philosophiae Naturalis Principia Mathematica. New York: 

Prometheus Books, 1995.  
 
120. Joshi, J., R. Lehman and T. Nosker, Selected Physical Characteristics of 

Polystyrene/High Density Polyethylene Composites Prepared from Virgin and 
Recycled Materials. Journal of Applied Polymer Science, 2006. 99: p. 2044 -2051. 

 
121.  Kavassalis T.A. and J. Noolandi, New View of Entanglements in Dense Polymer 

Systems. Physical Review Letters, 1987. 59: p. 2674-2677. 
 
122. Osswald, T.A. and G. Menges, Materials Science of Polymers for Engineers. New 

York: Hanser Gardner Publications, Inc., 2003. 
 
123. Anukulthanakorn, K., S. Limtrakul and T. Vatanatham, Commercial Polystyrene Melt 

Behaviour in Rod Capillary Die Extrusion. Technical Report, Department of Chemical 
Engineering, Kasetsart Univerity, Bankok, Thailand, 2005. 

 
124. Williams, M.L., R.F. Landel and J.D. Ferry, The Temperature Dependence of 

Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. 
Journal of the American Chemical Society, 1955. 77: p. 3701-3707. 

 
125. Diduch, C., R. Dubay and W.G. Li, Temperature Control of Injection Molding 

Incorporating Zone Interactions and Back Pressure - Part I: Modeling and 
Simulation. Polymer Engineering and Science Journal, 2004. 44: p. 2308 -2317. 

    
126. Merz, E.H. and R.E. Colwell, A High Shear Rate Capillary Rheometer for Polymer 

Melts. ASTM Bulletin No. 232, Sept. 1958. 
 
127. Lomellini, P., Williams-Landel-Ferry versus Arrhenius Behaviour: Polystyrene Melt 

Viscoelasticity Revised. Polymer, 1992. 33: p. 4983-4989. 
 
128. Wilkes, C.E., J.W. Summers and C.A. Daniels, PVC Handbook. 1st ed. Munich: 

Hanser Gardner, 2005. 
 
129. Berry, G.C. and T.G. Fox, The Viscosity of Polymers and Their Concentrated 

Solutions. Advances in Polymer Science, 1968. 5: p. 261-357. 
 



 268 
 
  

130. Colby, R.H., L.J. Fetters and W.W. Graessley, Melt Viscosity-Molecular Weight 
Relationship for Linear Polymers. Macromolecules, 1987. 20: p. 2226-2237. 

 
131. Fox, T.G. and P.J. Flory, The Glass Temperature and Related Properties of 

Polystyrene. Journal of Polymer Science, 1954. 14: p. 315-319. 
 
132.  Gennes de, P.G., Reptation of a Polymer Chain in the Presence of Fixed Obstacles. 

Journal of Chemical Physics, 1971. 55: p. 572-579. 
 
133. Curtiss, C.F. and R.B. Bird, A Kinetic Theory for Polymer Melts, Parts I and II. 

Journal of Chemical Physics, 1981. 74: p. 2016-2033. 
 
134. Bernard, D.A. and J. Noolandi, Zero-Shear Viscosity Exponent and Polydispersity 

Effects. Macromolecules, 1982. 15: p. 1553-1559.  
 
135. Brown, J.R., Foseco Ferrous Foundryman’s Handbook. Oxford: Butterworth-

Heinemann, 2000. 
 
136. Moll, N. and D. Johnson, Advanced Moldable Foam Eliminates Carbon Defects in 

Evaporative Pattern Castings. Modern Casting, 1987. June: p. 37-40. 
 
137. Mehta, S. and S. Shivkumar, Thermal Degradation of Foamed Polymethyl 

Methacrylate in the Expendable Pattern Casting Process. Journal of Materials 
Engineering and Performance, 1994. 03: p. 329-333. 

 
138. Dufton, P., Flame Retardants for Plastics – Market Report. Rapra Technology 

Limited, Shrewsbury, 2003.  
 
139. Bertini, F., G. Audisio and J. Kiji, Thermal Behavior and Degradation Mechanism of 

Brominated Polystyrenes. Journal of Analytical and Applied Pyrolysis, 1995. 33: p. 
213-230. 

  
140. Sonnenberg, F., Recent Innovations with EPS Lost Foam Beads. Transactions of the 

American Foundrymen's Society, 2003. 111: p. 1213-1229. 
 
141.  Molibog, T.V. and H. Littleton, Degradation of Expanded Polystyrene Patterns. 

Transactions of the American Foundrymen’s Society, 2002. 110: p. 1483 – 1496. 
 
142. Sonnenberg, F., K.M. Taristo and T.V.J. Johansson, Treatment for Reducing Residual 

Carbon in the Lost Foam Process. 2001: U.S. Patent No. 6,303,664. 
 
143. Hess, D.R., D.R. Askeland and C.W. Ramsay, Influence of Bead Chemistry on Metal 

Velocity and Defect Formation in Aluminum Lost Foam Castings. Transactions of the 
American Foundrymen's Society, 2003. 111: p. 1279-1292. 

 
144. Khodai, M. and N. Parvin Pressure Measurement and Some Observation in Lost Foam 

Casting. Journal of Materials Processing Technology, 2008. 206: p. 1-6. 
 



 269 
 
  

145. Yao, X. and S. Shivkumar, Mould Filling Characteristics in Lost Foam Casting 
Process. Materials Science and Technology, 1997. 13: p. 841-846. 

 
146. Fry, S.L., Preliminary Investigation of Metal Pouring by Cine Radiography. 

Proceedings of the Institute of British Foundrymen, 1944. 39: p. 44-54. 
 
147. Sun, W. and H.E. Littleton, Real-Time X-ray Study on Formation of Lustrous Carbon 

in Lost Foam Iron Castings. Transactions of the American Foundrymen's Society, 
2006. 114: p. 1001-1008. 

 
148. Green, N.R. and J. Campbell, Statistical Distributions of Fracture Strengths of Cast 

Al-7Si-Mg Alloy. Materials Science and Engineering A, 1993. 173: p. 261-266. 
 
149. Khalili, A. and K. Kromp, Statistical Properties of Weibull Estimators. Journal of 

Materials Science, 1991. 26: p. 6741-6752. 
 
150. Rezvani, M., X. Yang and J. Campbell, Effect of Ingate Design on Strength and 

Reliability of Al Castings. Transactions of the American Foundrymen's Society, 1999, 
107: p. 181 – 188. 

 
151. British Standards Institution, Tensile Testing of Metallic Materials. Method of Test at 

Ambient Temperature, London: BSI, 2001. (BS EN 10002-1). 
  
152. Sands, S. and S. Shivkumar, EPS Molecular Weight and Foam Density Effects in the 

Lost Foam Process. Journal of Materials Science, 2003. 38: p. 2233-2239. 
 
153. Roquette UK Limited, ROCLYS C3078S Specification Sheet, Reference No. E00-

123A40, August 2005. 
 
154. Sommer, K.-D and J. Poziemski, Density, Thermal Expansion and Compressibility of 

Mercury, Metrologia, 1993. 30: p. 665-668. 
 
155. Assael, M.J., K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, 

K.C. Mills, A. Nagashima, Y. Sato and W.A. Wakeham, Reference Data for the 
Density and Viscosity of Liquid Aluminium and Liquid Iron. Journal of Physical and 
Chemical Reference Data, 2006. 35: p. 285-300. 

 
156. Beer, S.Z., Liquid Metals – Chemistry and Physics. New York: Marcel Dekker Inc., 

1972. 
 
157. Holland, F.A. and E.V. Zaretsky, Investigation of Weibull Statistics in Fracture 

Analysis of Cast Aluminum. Failure Prevention and Reliability Conference, September 
1989, Montreal, Canada. 

 
158. Carter, C.B. and M.G. Norton, Ceramic Materials – Science and Engineering. New 

York: Springer Science + Business Media, 2007. 
 



 270 
 
  

159. Kaufmann, J.G. and E.L. Rooy, Aluminum Alloy Castings – Properties, Processes and 
Applications. Ohio: ASM International, 2004. 

 
160. Gardner, P., R. Lehrle and D. Turner, Polymer Degradation Modified by Blending with 

Polymers Chosen on the Basis of Their Φ-factors, Journal of Analytical and Applied 
Pyrolysis, 1993. 25: p. 11-24. 

 
161. Tuteja, A., P.M. Duxbury and M.E. Mackay, Multifunctional Nanocomposites with 

Reduced Viscosity, Macromolecules, 2007. 40: p. 9427-9434. 
 
 
 
 
 
 




