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1 INTRODUCTION 
 

One characteristic common to all organisms is the dynamic ability to coordinate complex 

physiological processes with environmental changes. The function of communicating with the 

environment is achieved through a number of pathways that receive and process signals, not 

only from the external environment but also from different regions within the cell. Individual 

pathways transmit signals along linear tracts resulting in regulation of discrete cell functions. 

This type of information transfer is an important part of the cellular repertoire of regulatory 

mechanisms. During normal embryonic development and in adult life, signaling needs to be 

precisely coordinated and integrated at all times. Deregulated signal transmission is now 

recognized as a cause of many human diseases (Hanahan and Weinberg, 2000; Shawver et al., 

2002).  

The sequencing effort of the Human Genome Project has revealed that up to 20% of the 

estimated 32,000 human genes encode proteins involved in signal transduction, including 

transmembrane receptors, G protein subunits, kinases, phosphatases and proteases (Blume-

Jensen and Hunter, 2001). However, as increasingly larger numbers of cell signaling 

components and pathways are being identified, it has become apparent that these linear 

pathways are not free-standing entities but parts of larger networks (Downward, 2001).   

The reversible phosphorylation of proteins is central to the regulation of most aspects of cell 

function (Cohen, 2002). Phosphorylation and dephosphorylation, catalyzed by protein kinases 

and protein phosphatases, can modify the function of a protein in almost every conceivable 

way; for example by increasing or decreasing its biological activity, by stabilizing it or 

marking it for destruction, by facilitating or inhibiting movement between subcellular 

compartments, or by initiating or disrupting protein–protein interactions. The simplicity, 

flexibility and reversibility of phosphorylation, coupled with the ready availability of ATP as 

a phosphoryl donor, explains its selection as the most general regulatory device adopted by 

eukaryotic cells.  

There are more than 520 protein kinases and 130 protein phosphatases encoded in the human 

genome, exerting tight control on protein phosphorylation. Both of these enzyme categories 

can be subdivided into tyrosine- or serine/threonine-specific, based on their catalytic 

specificity. In addition, some possess dual specificity for both tyrosine and serine/threonine, 

and a few members of the phosphatidylinositol kinase family also exhibit protein-serine/ 

threonine kinase activity.  
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1.1 Protein tyrosine kinases 

 

Protein tyrosine kinases are important regulators of intracellular signal transduction pathways 

mediating aspects of multicellular communication and development in metazoans (Cohen, 

2002). These enzymes catalyze transfer of the γ-phosphate of ATP to hydroxyl groups of 

tyrosines on target proteins. Tyrosine kinases play an important role in the control of most 

fundamental cellular processes including the cell cycle, migration, metabolism and survival, 

as well as proliferation and differentiation. There are currently more than 90 known tyrosine 

kinase genes in the human genome; 58 encode transmembrane receptor tyrosine kinases 

(RTKs) distributed into 20 subfamilies based on their structural characteristics (Fig. 1), and 32 

encode cytoplasmic, non-receptor tyrosine kinases  (NRTKs) in 10 subfamilies. 

 

1.1.1 Receptor tyrosine kinases 

 

RTKs are type I transmembrane proteins and contain an extracellular ligand-binding domain 

that is usually glycosylated (Hubbard and Till, 2000). The structural diversity of RTK 

ectodomains is due to the presence of one or several copies of immunoglobulin-like domains, 

fibronectin type III-like domains, EGF-like domains, cysteine-rich domains, or other domains 

(Fig. 1).  

 
 
Figure 1. Subfamilies of receptor tyrosine kinases (Blume-Jensen and Hunter, 2001). 
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The ligand binding domain is connected to the cytoplasmic domain by a single 

transmembrane helix. The cytoplasmic domain contains a highly conserved protein tyrosine 

kinase core and additional regulatory sequences that are subjected to autophosphorylation and 

phosphorylation by heterologous protein kinases.  

The EGFR family consists of four RTKs, EGFR, HER2/neu, HER3 which is kinase-inactive  

and HER4 (Ullrich and Schlessinger, 1990). The EGFR was the first cell surface signaling 

protein and protooncogene product to be characterized by molecular genetic methods and 

exemplified prototypical features of  RTKs. The EGFR signaling module has been highly 

conserved throughout the course of evolution. The primordial signaling unit found in the 

nematode Caenorhabditis elegans consists of one receptor protein called LET-23 and a single 

EGF-like ligand known as LIN-3 (Yarden and Sliwkowski, 2001). In this organism, the 

EGFR network plays a central developmental role. A single receptor and four ligands are 

present in insects such as Drosophila melanogaster and - moving further up the evolutionary 

ladder - four receptors and so far ten ligands have been identified in mammals.  

 

1.1.2 EGF-like ligands 

 

Several growth factors have been shown to directly activate the EGFR: EGF, transforming 

growth factor alpha (TGFα), heparin-binding EGF-like growth factor (HB-EGF), 

amphiregulin (AR), betacellulin (BC), epiregulin (Epi) (Riese and Stern, 1998), cripto 

(Salomon et al., 1999) and epigen (Strachan et al., 2001). The various neuregulin (NRG) 

isoforms are the ligands for HER3 and HER4.  

All these molecules share a common motif of 30-50 amino acids in the active peptide, the 

EGF structural unit,  that contains six conserved cysteine residues. These cysteins form three 

intramolecular disulfide bonds, thereby restraining the peptide in a tertiary structure that has 

three disulfide bonded loops.  

EGF-like ligands are synthesized as transmembrane precursors which are subject to 

proteolytic cleavage at the cell surface to produce the soluble and diffusible growth factors 

(Massague and Pandiella, 1993). Subsequently, the mature ligands activate RTKs of the 

EGFR family by autocrine or paracrine stimulation. In addition, several studies indicate that 

the membrane-anchored precursors may be biologically active (Brachmann et al., 1989; Wong 

et al., 1989).  
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1.1.3 Ligand-induced activation of receptor tyrosine kinases  

 

Ligand-induced activation of receptor tyrosine kinases is mediated by intermolecular 

autophosphorylation of key tyrosine residues in the activation loop of the catalytic tyrosine 

kinase domain (Schlessinger, 2002). In the inactive state, the activation loop adopts a 

configuration preventing access to ATP and substrate. Upon tyrosine phosphorylation, the 

activation loop adopts an ''open configuration'' enabling access to ATP and substrate, thus 

resulting in enhanced tyrosine kinase activity.  

Recent structural studies have revealed that receptor dimerization is mediated by receptor-

receptor interactions in which a loop protruding from neighboring receptors mediates receptor 

dimerization and activation (Garrett et al., 2002; Ogiso et al., 2002). Dimerization of EGFR 

requires the binding of two molecules of monomeric EGF to two EGFR molecules in a 2:2 

EGF:EGFR complex formed from stable intermediates of 1:1 EGF:EGFR complexes. Each 

EGF molecule is bound exclusively to a single EGFR molecule, and dimerization is mediated 

entirely by receptor-receptor interactions. The crystal structures are consistent with the 

''receptor-mediated'' mechanism for dimerization (Lemmon et al., 1997), in which the binding 

of EGF to EGFR induces a conformational change that exposes a receptor-receptor interaction 

site in the extracellular domain, resulting in dimerization of two EGFR monomers only when 

occupied by EGF. The dimerization loop-mediated mechanism of receptor dimerization may 

function as a key regulatory step for control of the tyrosine kinase activity of EGFR and other 

members of the family.  

The presence of multiple ligands and receptors imparts the EGFR signaling network with an 

expanded repertoire of cellular responses, as the four receptors can potentially form ten 

distinct homo- and heterodimers that are activated by different ligands (Olayioye et al., 2000). 

In the absence of a specific ligand for HER2, this RTK functions as the preferred 

heterodimeric partner of the other members of the EGFR family (Alroy and Yarden, 1997), 

and provides an additional platform for recruitment of intracellular signaling pathways.  

 

1.1.4 Cytoplasmic tyrosine kinases 

 

There are ten known subfamilies of cytoplasmic, non-receptor tyrosine kinases (NRTKs): Src, 

Abl, Jak, Ack, Csk, Fak, Fes, Frk, Tec and Syk (Blume-Jensen and Hunter, 2001). NRTKs 

lack receptor-like features such as an extracellular ligand-binding domain and a 

transmembrane-spanning region. Most NRTKs are localized in the cytoplasm, whereas some 
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are anchored to the cell membrane through amino-terminal modifications, such as 

myristoylation or palmitoylation. In addition to a tyrosine kinase domain, NRTKs possess 

domains that mediate protein-protein, protein-lipid, and protein-DNA interactions. The most 

common theme in NRTK regulation, as in RTK function, is tyrosine phosphorylation. In 

particular, phosphorylation of tyrosines in the activation loop of NRTKs leads to an increase 

in enzymatic activity. Activation loop phosphorylation occurs via trans-autophosphorylation 

or phosphorylation by a different NRTK (Hubbard and Till, 2000). Phosphorylation of 

tyrosines outside of the activation loop can negatively regulate kinase activity. 

The largest subfamily of NRTKs, with nine members, is the Src family (Blume-Jensen and 

Hunter, 2001). Src family members participate in a variety of signaling processes, including 

mitogenesis, T- and B-cell activation, and cytoskeleton restructuring. Multiple in vivo 

substrates have been described for Src and include the PDGFR and EGFR, the NRTK focal 

adhesion kinase Fak, the adapter protein p130Cas which is involved in integrin- and growth 

factor-mediated signaling and cortactin, an actin-binding protein important for the proper 

formation of cell matrix contact sites. Regulation of Src catalytic activity has been studied 

extensively. Src and its family members contain a myristoylated amino terminus, a stretch of 

positively-charged residues that interact with phospholipid head groups, a short region with 

low sequence homology, an SH3 domain, an SH2 domain, a tyrosine kinase domain, and a 

short carboxy-terminal tail. Src possesses two important regulatory tyrosine phosphorylation 

sites. Phosphorylation of Tyr-527 in the carboxy-terminal tail of Src by the NRTK Csk 

represses kinase activity. The importance of this phosphorylation site is underscored by v-Src, 

an oncogenic variant of Src that is a product of the Rous sarcoma virus. Owing to a carboxy-

terminal truncation, v-Src lacks the negative regulatory site Tyr-527 and is constitutively 

active, leading to uncontrolled growth of infected cells. A second regulatory phosphorylation 

site in Src is Tyr-416, an autophosphorylation site in the activation loop. Maximal stimulation 

of kinase activity occurs when Tyr-416 is phosphorylated. Src has also been implicated in 

several human carcinomas, including breast, lung, and colon cancer.  

 

1.1.5 Recruitment of downstream signaling molecules 

 

Ligand-induced receptor dimerization and autophosphorylation of RTKs, as well as, 

activation of NRTKs generates phosphorylated tyrosine residues on target proteins that 

mediate the recruitment and activation of a variety of cytoplasmic signaling proteins (Hunter, 

2000). These signaling proteins are modular in nature and bring about interactions with other 
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proteins, with phospholipids, or with nucleic acids. Protein modules involved in cellular 

signaling processes downstream of RTKs and other cell surface receptors range in size from 

50 to 120 amino acids (Schlessinger, 2000). SH2 domains bind specifically to distinct amino 

acid sequences defined by 1 to 6 residues C-terminal to the phosphotyrosine moiety, while 

PTB domains bind to phosphotyrosine within context of specific sequences 3 to 5 residues to 

its N terminus. Certain PTB domains bind to nonphosphorylated peptide sequences, while still 

others recognize both phosphotyrosine-containing and nonphosphorylated sequences equally 

well. SH3 domains bind specifically to the proline-rich sequence motif PXXP, while WW 

domains bind preferentially to another proline-rich motif PXPX. Pleckstrin homology (PH) 

domains comprise a large family of more than a hundred domains. While certain PH domains 

bind specifically to PtdIns(4,5)P2, another subset of PH domains binds preferentially to the 

products of agonist-induced phosphoinositide-3-kinases (PI-3Ks). Finally, FYVE domains 

comprise another family of small protein modules that specifically recognize PtdIns-3-P, and 

PDZ domains belong to another large family of independent protein modules that bind 

specifically to hydrophobic residues at the C termini of their target proteins. 

A large family of SH2 domain-containing proteins possess intrinsic enzymatic activities such 

as protein tyrosine kinase activity (Src kinases), protein tyrosine phosphatase activity (SHP2), 

phospholipase C activity (PLCγ), or Ras-GAP activity.  

Another family of proteins exclusively contains SH2 or SH3 domains. These adaptor proteins 

(e.g. Grb2, Nck, Crk, Shc) utilize their SH2 and SH3 domains to mediate interactions that link 

different proteins involved in signal transduction. For example, the adaptor protein Grb2 links 

a variety of surface receptors to the Ras/mitogen-activated protein (MAP) kinase signaling 

cascade.  

Agonist-induced membrane recruitment of signaling proteins stimulated by tyrosine 

phosphorylation is also mediated by a family of docking proteins which all contain in their N 

termini a membrane targeting signal and in their C termini a large region that contains 

multiple binding sites for the SH2 domains of signaling proteins. Docking proteins such as 

Gab1 become associated with the cell membrane by binding of its PH domain to 

PtdIns(3,4,5)P3 in response to agonist-induced stimulation of PI-3K. In addition to the 

membrane targeting signal, most docking proteins contain specific domains such as PTB 

domains that are responsible for complex formation with a particular set of cell surface 

receptors. Because activated receptor tyrosine kinases selectively assemble and recruit  

signaling complexes every RTK is not only considered as a receptor with tyrosine kinase 
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activity but also as a platform for the recognition and recruitment of a specific complement of 

signaling proteins. 

 

1.2 MAP kinase pathways 

The main signaling pathways linking activation of many cell surface receptors such as RTKs 

to the nucleus is via Ras (Schlessinger, 2000), a small membrane-bound monomeric GTP-

binding protein. Both biochemical and genetic studies have demonstrated that Ras is activated 

by the guanine nucleotide exchange factor Sos. The adaptor protein Grb2 plays an important 

role in this process by forming a complex with Sos via its SH3 domains. The Grb2/Sos 

complex is recruited to an activated RTK through binding of the Grb2 SH2 domain to specific 

phosphotyrosine sites of the receptor, thus translocating Sos to the plasma membrane where it 

is close to Ras and can stimulate exchange of GTP for GDP. Membrane recruitment of Sos 

can be also accomplished by binding of Grb2/Sos to SHC, another adaptor protein that forms 

a complex with many receptors through its PTB domain. Alternatively, Grb2/Sos complexes 

can be recruited to the cell membrane by binding to membrane-linked docking proteins such 

as IRS1 or FRS2 which become tyrosine phosphorylated in response to activation of certain 

RTKs. Once in the active GTP-bound state, Ras interacts with several effector proteins such 

as Raf and PI-3K to stimulate numerous intracellular processes. Activated Raf stimulates 

MAPK kinase (MAPKK, MEK) by phosphorylating a key Ser residue in the activation loop. 

MAPKK then phosphorylates MAPK on Thr and Tyr residues in the activation-loop leading 

to its activation. Activated MAPK phosphorylates a variety of cytoplasmic and membrane 

linked substrates. In addition, MAPK is rapidly translocated into the nucleus where it 

phosphorylates and activates transcription factors. The signaling cassette composed of 

MAPKKK, MAPKK, and MAPK is highly conserved in evolution and plays an important 

role in the control of metabolic processes, cell cycle, cell migration, and cell shape as well as 

in cell proliferation and differentiation (Hunter, 2000).  

The specificity of MAPK interactions and the effector molecules stimulated depends largely 

on the MAPK subtypes involved. In particular, extracellular signal-regulated kinases 

(ERK1/2)/MAPKs are primarily stimulated by growth factors and modulate cell growth and 

differentiation, whereas c-Jun N-terminal kinases (JNKs) and p38 MAPKs are most 

commonly activated by stress stimuli and are involved in cell growth, diffentiation, survival, 

apoptosis, and cytokine production (Marinissen and Gutkind, 2001). 
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1.3 G protein-coupled receptors  

 

G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors involved 

in the regulation of numerous physiological functions such as neurotransmission, 

photoreception, chemoreception, metabolism, growth and differentiation (Fukuhara et al., 

2001). For signal transmission GPCRs interact with heterotrimeric G proteins which are 

composed of an α-, β- and γ-subunit. GPCRs are also frequently referred to as heptahelical or 

serpentine receptors, because they contain a conserved structural motif consisting of seven α-

helical membrane-spanning regions. Based on certain key sequences, GPCRs can be divided 

into three major subfamilies, receptors related to rhodopsin (type A), receptors related to the 

calcitonin receptor (type B), and receptors related to the metabotropic receptors (type C) 

(Gether and Kobilka, 1998). All GPCRs have an extracellular N-terminal segment, seven 

transmembrane helices, which form the transmembrane core, three exoloops, three cytoloops, 

and a C-terminal segment. Each of the seven transmembrane helices is generally composed of 

20-27 amino acids. On the other hand, N-terminal segments, loops, and C-terminal segments 

vary in size, an indication of their diverse structures and functions. Interestingly, there is a 

weak correlation between an N-terminal segment's length and ligand size, suggesting a role in 

ligand binding, in particular for large polypeptides and glycoprotein hormones. Domains 

critical for interaction with the G proteins have been localized to the second and third 

cytoplasmic loops and the C terminus (Ji et al., 1998).  

The observation that muscarinic acetylcholine M1,  M3 and M5 receptors transform murine 

fibroblasts provided evidence that wild-type GPCRs can be tumorigenic when exposed to an 

excess of agonists (Marinissen and Gutkind, 2001). Moreover, if mutated, GPCRs might be 

rendered transforming even in an agonist-independent fashion as shown, for example, for α1B-

adrenoceptors, thyroid-stimulating hormone receptors and leuteinizing hormone receptors. 

Although activating mutations are infrequent in GPCRs, these receptors often contribute to 

neoplasia when persistently stimulated by agonists released from tumors in an autocrine or 

paracrine fashion. Interfering with the function of these receptors effectively prevents tumor 

growth in animal models, which raises the possibility of developing novel agents that act on 

GPCRs for therapeutic intervention in cancer. 

Sixteen distinct mammalian G protein α subunits have been cloned and are divided into four 

families based upon sequence similarity: αs, which activates adenylyl cyclase, αi, which 

inhibits adenylyl cyclase, αq, which activates phospholipase C and α12 of unknown function. 

Similarly, eleven G protein γ subunits and five G protein β subunits have been identified 
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(Gutkind, 2000). Therefore, GPCRs are likely to represent the most diverse signal 

transduction systems in eukaryotic cells.  

GTPase-deficient mutants of αi, αq, α12, and α13 were found to display oncogenic properties 

when expressed in several cellular systems; and naturally occurring activated mutants of 

certain G proteins were also identified in various disease states, including cancer.  

GPCR activation causes a profound change in the transmembrane helices, which affects the 

conformation of intracellular loops and uncovers previously masked G protein binding sites 

(Gutkind, 2000). The GPCR-G protein interaction in turn promotes the release of guanosine 

diphosphate (GDP) bound to the G protein α subunit and its exchange for guanosine 

triphosphate (GTP), and causes a conformational change in three flexible "switch regions" of 

the Gα subunit, thus activating Gα and causing the dissociation and exposure of effector-

interaction sites in the βγ heterodimers.  

Activated G protein subunits then initiate intracellular signaling responses by acting on a 

variety of effector molecules (Gutkind, 2000). These include adenylyl and guanylyl cyclases, 

phosphodiesterases, phospholipase A2 (PLA2), phospholipase C (PLC) and PI-3Ks, thereby 

activating or inhibiting the production of a variety of second messengers such as cAMP, 

cGMP, diacylglycerol, inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3], phosphatidyl inositol 

(3,4,5)-trisphosphate [PtdIns(3,4,5)P3], arachidonic acid and phosphatidic acid, in addition to 

promoting increases in the intracellular concentration of Ca2+ and the opening or closing of a 

variety of ion channels. 

A myriad of extracellular agonists have been demonstrated to act through GPCRs including 

biogenic amines, peptide and glycoprotein hormones, neuropeptides, serine proteases, 

neurotransmitters, eicosanoids and phospholipids such as sphingosine-1-phosphate and 

lysophosphatidic acid (LPA) (Ji et al., 1998).  

LPA is an extracellular lipid mediator that has been implicated in the regulation of both 

physiological and pathophysiological processes (Fang et al., 2000a; Moolenaar et al., 1997). 

LPA represents the major mitogenic activity in serum and numerous cellular responses to 

LPA have been documented including rapid cytoskeletal rearrangements (Gohla et al., 1998), 

stimulation of cell proliferation (van Corven et al., 1989), suppression of apoptosis (Fang et 

al., 2000b) and induction of tumor cell migration and invasion (Fishman et al., 2001; Imamura 

et al., 1993). LPA levels are elevated in plasma and ascites of ovarian cancer patients (Xu et 

al., 1995; Xu et al., 1998), and LPA is likely to play a prominent role in the pathology of other 

types of human cancer.  
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The cell-surface receptors for LPA and for the structurally related phospholipid sphingosine-

1-phosphate (S1P) belong to the EDG (endothelial cell differentiation gene) subfamily of 

GPCRs (Kranenburg and Moolenaar, 2001; Pyne and Pyne, 2000). To date, three functional 

LPA receptors have been described (EDG2, EDG4 and EDG7) which couple to Gi, Gq and 

G13 subtypes of G proteins and show distinct properties in ligand specificity and activation of 

intracellular signaling pathways. According to the cellular context, LPA was shown to be 

involved in the modulation of adenylate cyclase, stimulation of phospholipase C  (PLC) and 

subsequent Ca2+ mobilization, activation of the Ras/MAPK pathway, phosphorylation of the 

survival mediator Akt/protein kinase B (PKB) by PI-3K and transcriptional regulation of 

immediate-early  genes (Kranenburg and Moolenaar, 2001; Moolenaar, 1999; Moolenaar et 

al., 1997).  

 

1.4 EGFR signal transactivation 

 

Various studies have revealed that cellular responses to LPA and other GPCR agonists depend 

on the function of the EGFR in several cell systems, a phenomenon that was termed inter-

receptor cross-talk or EGFR signal transactivation (Daub et al., 1996; Luttrell et al., 1999a; 

Marinissen and Gutkind, 2001; Zwick et al., 1999a). The pioneer studies of H. Daub and 

colleagues described a critical role of the EGFR in GPCR-induced mitogenesis of rat 

fibroblasts (Daub et al., 1996). They demonstrated that the EGFR and HER2/neu were rapidly 

tyrosine phosphorylated after stimulation of Rat-1 cells with the GPCR agonists endothelin-1 

(ET-1), LPA or thrombin (Fig. 2). This transactivation of a receptor tyrosine kinase coupled 

GPCR-ligand engagement to ERK activation, induction of fos gene expression and DNA 

synthesis, which were abrogated either by the selective EGFR inhibitor tyrphostin AG1478 or 

by expression of a dominant-negative EGFR mutant.  

Further investigations revealed that the GPCR-EGFR cross-talk mechanism is installed in a 

variety of other cell types such as human keratinocytes, primary mouse astrocytes, PC-12 

cells and vascular smooth muscle cells (Daub et al., 1997; Eguchi et al., 1998; Zwick et al., 

1997) and established it as a widely relevant pathway towards the activation of the MAP 

kinase signal.  

A number of reports have demonstrated that various extracellular stimuli, unrelated to EGF-

like ligands and GPCR agonists can also activate the EGF receptor (Zwick et al., 1999a). 

These diverse stimuli include agonists for cytokine receptors (prolactin, growth hormone), 
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adhesion receptors (integrins), membrane-depolarizing agents (KCl), and environmental stress 

factors (ultraviolet and gamma irradiation, oxidants, heat shock, hyperosmotic shock).  

In addition to EGFR transactivation, other RTKs have been shown to be activated by GPCR 

ligands (Fig. 2B). For example, in primary rat smooth muscle cells the insulin-like growth 

factor receptor (IGF-1R) phosphorylation is induced by thrombin (Weiss et al., 1997) while 

the VEGFR-2 is transactivated by S1P in human umbilical vein endothelial cells (HUVECs) 

(Endo et al., 2002). Moreover, it was reported that LPA induces PDGFR tyrosine 

phosphorylation in L cells (Herrlich et al., 1998) and that opioid receptor agonists 

transactivate the fibroblast growth factor receptor (FGFR)-1 in rat C6 glioma cells that lack 

the EGFR (Belcheva et al., 2002) suggesting that transactivation of distinct RTKs can 

contribute to GPCR signaling in a cell-type-specific manner.  

 

 
Figure 2. GPCR and RTK signaling systems. A) Individual pathways transmit signals along linear tracts 
resulting in regulation of discrete cell functions. B) RTK signal transactivation leads to RTK-characteristic 
cellular responses upon GPCR stimulation. 
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Subsequent work provided evidence for widespread use of EGFR signal transactivation by 

diverse GPCRs and the capacity of different G-proteins to generate the necessary connections 

(Table 1). Interestingly, LPA-induced transactivation of the EGFR in COS-7 cells was 

attenuated by pertussis toxin (PTX) which inactivates Gα subunits of the Gi/o family of G 

proteins. In contrast, thrombin stimulated EGFR tyrosine phosphorylation and downstream 

signaling was not affected (Daub et al., 1997). Furthermore, agonist stimulation of ectopically 

expressed Gq-coupled bombesin (BombR) or Gi-coupled M2 muscarinic acetylcholine 

receptor (M2R) triggered EGFR transactivation followed by tyrosine phosphorylation of SHC 

and formation of SHC-Grb2 complexes. These results demonstrated that EGFR 

transactivation occurs via both PTX-insensitive and -sensitive pathways and that the EGFR 

mediates MAP kinase activation by Gq- and Gi-coupled receptors in COS-7 cells. More recent 

studies showed that Gα13 subunits mediate LPA-induced actin polymerization and actin stress 

fiber formation in Swiss 3T3 cells and mouse fibroblasts via EGFR transactivation (Gohla et 

al., 1998; Gohla et al., 1999).  

 

GPCR ligand G proteins  
involved 

Cell type/ tissue Cellular response Reference 

Endothelin-1,  
LPA, 
Thrombin 

? Rat-1 ERK activation, FOS transcription (Daub et al., 1996) 

Bradykinin Gq PC-12 ERK activation (Zwick et al., 1997) 
Bombesin,  
Carbachol, 
LPA 

Gq, Gi COS-7 ERK activation (Daub et al., 1997) 

Angiotensin II Gq vascular smooth 
muscle 

ERK activation (Eguchi et al., 1998) 

Thrombin, 
LPA 

? HaCaT ERK activation (Daub et al., 1997) 

Thrombin ? primary astrocytes ERK activation (Daub et al., 1997) 
Carbachol Gq HEK 293 Modulation of Kv1.2 ion channel 

activity 
(Tsai et al., 1997) 

Carbachol Gq T84 ERK activation, inhibition of Cl- 
secretion 

(Keely et al., 1998) 

LPA G13 Swiss 3T3 stress fiber formation (Gohla et al., 1998) 
LPA ? HeLa ERK activation (Cunnick et al., 1998) 
LPA ? NIH 3T3 MKK1/2 activation, DNA synthesis (Cunnick et al., 1998) 
Bombesin ? PC3 EGFR tyrosine phosphorylation (Prenzel et al., 1999) 
Substance P Gi U-373 MG ERK activation, DNA synthesis (Castagliuolo et al., 2000) 
Interleukin-8 Gq SK-OV-3 ERK activation, morphology changes (Venkatakrishnan et al., 

2000) 
 
Table 1: Cross-talk between GPCRs and the EGFR (Gschwind et al., 2001) 
 

In summary, Gi-, Gq- as well as G13-coupled receptors have been reported to transactivate the 

EGFR after agonist stimulation in diverse cell systems, whereas up to now there is no data 

available concerning an analogous function of Gs-coupled receptors. 



1 Introduction  13 
 

Several studies indicate that the EGFR transactivation mechanism is subject to different cell 

type-characteristic regulatory influences. In PC-12, vascular smooth muscle cells and 

intestinal epithelial cells intracellular Ca2+ concentration has been demonstrated to be a 

critical parameter in Gq-coupled receptor-mediated EGFR transactivation (Eguchi et al., 1998; 

Iwasaki et al., 1999; Murasawa et al., 1998; Soltoff, 1998; Zwick et al., 1997). Activation of 

the Ser/Thr protein kinase C (PKC) was shown to be required for Gq-coupled receptors to 

induce EGFR transactivation in cell lines such as HEK-293 and PC-12 cells (Grosse et al., 

2000; Soltoff, 1998; Tsai et al., 1997). 

Besides the function of PKC in GPCR-mediated EGFR transactivation Matsubara and 

coworkers reported Ca2+/calmodulin-dependent receptor activation in Ang II-stimulated 

cardiac fibroblasts (Murasawa et al., 1998). Similarly in PC-12 cells, Zwick and colleagues 

(Zwick et al., 1999b) demonstrated the involvement of an Ca2+-calmodulin-dependent kinase 

II (CaMK II) activity in K+- but not bradykinin-induced EGFR signal transactivation. The role 

of another Ca2+-dependent kinase, PYK2, in the transmission of mitogenic signals is 

controversial. While several reports suggested a role of this tyrosine kinase in Gq-mediated 

EGFR tyrosine phosphorylation in PC-12 (Soltoff, 1998) and intestinal epithelial cells (Keely 

et al., 2000) respectively, Zwick et al. reported Ca2+-dependent, but PYK2-independent 

EGFR transactivation in response to bradykinin in PC-12 cells (Zwick et al., 1999b). 

Furthermore, tyrosine phosphorylated Src is often found in association with the EGFR 

(Luttrell et al., 1999b) or with PYK2 (Keely et al., 2000; Soltoff, 1998) upon stimulation of 

Gq-coupled receptors and has therefore been proposed to function as a mediator of EGFR 

transactivation. Since other reports have demonstrated Src-independent EGFR transactivation, 

but Src-dependent SHC tyrosine phosphorylation and ERK activation (Adomeit et al., 1999; 

Daub et al., 1997; Slack, 2000) it seems likely that Src is recruited by the transactivated 

EGFR and thereby contributes to activation of the Ras signaling pathway. 

Due to the rapid kinetics of EGFR signal transactivation and the fact that release of EGFR-

ligands was not detectable after GPCR stimulation, the mechanism of EGFR transactivation 

was proposed not to involve the interaction of the EGFR with a ligand. Hence, EGFR 

activation by GPCR agonists was assumed to exclusively rely on intracellular elements such 

as Ca2+, PKC and Src (Carpenter, 1999).  

Very recently, a new mechanistic concept of strictly ligand-dependent EGFR transactivation 

by GPCRs has been presented and summarizes experimental data obtained from Rat-1, COS-7 

and HEK-293 cells (Prenzel et al., 1999). The GPCR ligands LPA, carbachol and bombesin 

were shown to induce the proteolytic processing of the transmembrane proHB-EGF precursor 
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to yield the mature ligand. Blocking of this process either with the metalloprotease inhibitor 

batimastat or the HB-EGF antagonistic diphtheria toxin mutant CRM197 completely 

abrogated GPCR-induced EGFR transactivation and SHC tyrosine phosphorylation. The so-

called triple-membrane-passing signal (TMPS) model includes the G protein-mediated 

activation of a metalloprotease via an unknown mechanism (Gschwind et al., 2001). The 

TMPS mechanism also allows the transactivation of EGFRs on neighboring cells but only 

over short distances and under participation of the heparan sulfate proteoglycan matrix which 

in retrospect explains the failure of Daub and colleagues (Daub et al., 1996) to detect EGF-

like activity in conditioned medium of GPCR-ligand-stimulated Rat1 cell cultures. In this 

context, growing evidence points to transmembrane metalloproteases as the key enzymes of 

growth factor precursor shedding. 

 

1.5 Metalloproteases 

 
Metalloproteases are important in many aspects of biology, ranging from cell proliferation, 

differentiation and remodeling of the extracellular matrix (ECM) to vascularization and cell 

migration. These events occur several times during organogenesis in both normal 

development and during tumor progression. Mechanisms of metalloprotease action underlying 

these events include the proteolytic cleavage of growth factors so that they can become 

available to cells not in direct physical contact, degradation of the ECM so that founder cells 

can move across tissues into nearby stroma, and regulated receptor cleavage to terminate 

migratory signaling. Most of these processes require a delicate balance between the functions 

of matrix metalloproteases (MMPs) or metalloprotease-disintegrins (ADAMs) and natural 

tissue inhibitors of metalloproteases (TIMPs).  

Metalloproteases are generally characterized by a catalytically indispensable zinc ion in their 

active site. Many of these enzymes contain a conserved HEXXH (X is any amino acid 

residue) consensus sequence (Hooper, 1994). Due to the presence of an extended zinc-binding 

motif, HEXXHXXGXXH and a methionine-containing turn of similar conformation close to 

the active site, the astacins, the serralysins, the MMPs and the adamalysins (ADAMs) are 

grouped into the metzincin superfamily of metalloproteases (Bode et al., 1993). The three 

histidines of the extended HEXXH sequence serve as ligands to the zinc, whereas the 

glutamic acid is believed to transfer hydrogen atoms and to polarize a zinc-bound water 

molecule for nucleophilic attack on the scissile peptide bond of bound substrate (Stocker and 

Bode, 1995).  
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Many metalloproteases are synthesized as inactive precursors in which the prodomain is 

responsible for maintaining latency of the protease via a cysteine switch mechanism: In 

particular, the free sulfhydryl group a cysteine residue in the prodomain provides a forth 

coordination site keeping the protease inactive until the prodomain is removed (Bode et al., 

1993). Besides its role as an inhibitor of the protease domain, the prodomain appears to be 

important for the proper maturation and intracellular transport of metalloproteases. Although 

prodomain removal is probably a prerequisite for protease activity, this processing appears to 

be mediated constitutively by a furin-type proprotein convertase in the trans-Golgi network. 

 

1.5.1 ADAMs 

 

Metalloprotease-disintegrins are transmembrane glycoproteins that play roles in cell-cell 

interaction and in the processing of the ectodomains of proteins (Wolfsberg et al., 1995). They 

combine features of both cell surface adhesion molecules and proteinases and are 

characterized by a conserved domain structure consisting of N-terminal signal sequence 

followed by a prodomain, metalloprotease and disintegrin domains, a cysteine-rich region and 

finally a transmembrane domain and cytoplasmic tail (Fig. 3). Thus family members are 

referred to as ADAM (a disintegrin and metalloprotease domain) or as MDCs 

(metalloprotease, disintegrin, cysteine-rich proteins). 

More than 30 ADAM cDNA sequences have been identified to date in organisms ranging 

from S. pombe to humans (Primakoff and Myles, 2000). Interestingly, although all ADAMs 

have a relatively well-conserved metalloprotease domain, only 15 of those identified contain 

the zinc-binding catalytic-site consensus sequence (HEXXH). Thus, only half of the known 

ADAMs are predicted to be catalytically active, whereas the others most likely lack 

metalloprotease activity. ADAMs have been implicated in diverse processes, including 

sperm-egg binding and fusion, myoblast fusion, protein-ectodomain processing or shedding of 

cytokines, cytokine receptors, adhesion proteins and other extracellular protein domains 

(Schlondorff and Blobel, 1999). The regulation of ADAM metalloprotease activity after 

prodomain removal is only poorly understood. Processing of membrane proteins by ADAMs 

requires both the membrane-anchored enzyme and its substrate to be present in cis on the 

same cell, probably anchored in distinct domains of the plasma membrane through 

cytoskeletal interactions (Fig. 3).  
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Figure 3. Structure of ADAM family metalloproteases and their involvement in cell surface ectodomain 
shedding of multiple substrates (PTK, protein tyrosine kinase; PKC, protein kinase C) (Werb and Yan, 
1998). 
 

Upon cell activation (for example, by PKC agonists, increases in cytoplasmic Ca2+ levels or 

tyrosine kinase stimulation), the attachments change and the proteinases and substrates 

become co-clustered and can interact. Alternatively, the signaling cascade could modify the 

cytoplasmic domains of the proteinases or substrate, producing a conformational change that 

either activates the enzyme or makes the cleavage site available (Schlondorff and Blobel, 

1999).  

For most processing reactions there appears to be a constitutive level of ectodomain shedding. 

Processing is necessary to make available paracrine growth and survival factors including 

EGF-like ligands allowing for the consistent supply of EGFR agonists.  

The first and best-characterised “sheddase” is TACE (tumour necrosis factor alpha converting 

enzyme, ADAM17) (Black et al., 1997; Moss et al., 1997). Besides TNFα, TACE mediates 

cleavage of several other unrelated membrane proteins, such as TGFα, L-selectin, p75 TNFR  

and HER4 (Black, 2002). Suprisingly, mice lacking functional TACE display multiple defects 

in epithelial cell maturation and organization  in multiple organs such as the eye, hair and 

skin. This phenotype is similar in animals engineered to lack the EGFR (Peschon et al., 1998). 

In addition, targeted disruption of the TACE genes causes a phenotype that is much more 

severe than knock-out of TGFα alone, suggesting the involvement of TACE not only in 

proTGFα shedding, but also in the membrane cleavage of other EGF-like ligand precursors.  
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1.5.2 MMPs 

 

The matrix metalloproteinases (MMPs) which are closely related to the ADAM family of 

metalloproteases play a central role in the timely breakdown of virtually any component of the 

extracellular matrix (ECM) (Shapiro, 1998). Matrix remodelling is essential for embryonic 

development, morphogenesis, reproduction, and tissue resorption.  

MMPs were historically divided into collagenases, gelatinases, stromelysins and matrilysins 

on the basis of their specificity for ECM components. However, a sequential numbering 

system for the more than 20 known human MMPs has been adapted, and the MMPs are now 

grouped according to their structure (Nagase and Woessner, 1999). There are eight distinct 

classes of MMPs: five are secreted and three are membrane-type MMPs (MT-MMPs). All 

MMPs are synthesized as prepro-enzymes and secreted as inactive pro-MMPs in most cases. 

The prodomain has a conserved unique PRCG(V/N)PD sequence. The cysteine within this 

sequence ligates the catalytic zinc to maintain the latency of pro-MMPs. The catalytic 

domains of MMPs have an additional structural zinc ion and 2-3 calcium ions, which are 

required for the stability and the expression of enzymic activity. The gelatinases MMP-2 and 

MMP-9 have three repeats of fibronectin-type II domain inserted in the catalytic domain. 

These repeats interact with collagens and gelatins. Most of the MMPs are activated outside the 

cell by other activated MMPs or furin-like serine proteases. The proteolytic activities of 

MMPs are tightly controlled by endogenous inhibitors such as α-macroglobulins, and TIMPs. 

The expression of many MMPs is transcriptionally regulated by growth factors, hormones, 

cytokines, and cellular transformation (Brinckerhoff and Matrisian, 2002).  

 

1.6 Molecular oncology 

 

Tumorigenesis is a multistep process involving genetic alterations that drive the progressive 

transformation of normal human cells into highly malignant derivatives (Hanahan and 

Weinberg, 2000). Cancer is the most common genetic disease: one in three people in the 

western world develop cancer, and one in five die from it. The genomes of tumor cells are 

altered at multiple sites, having suffered disruption through lesions as subtle as point 

mutations and as obvious as changes in chromosome complement (Blume-Jensen and Hunter, 

2001). Many types of cancers are diagnosed in the human population with an age-dependent 

incidence implicating four to seven rate-limiting, stochastic events.  
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Observations of human cancers and animal models argue that tumor development proceeds 

via a process formally analogous to Darwinian evolution, in which a succession of genetic 

changes, each conferring one or another type of growth advantage, leads to the progressive 

conversion of normal human cells into cancer cells. 

The vast catalog of cancer cell genotypes is a manifestation of six essential alterations in cell 

physiology that collectively dictate malignant growth and which are now recognized as the six 

hallmarks of cancer: self-sufficiency in growth signals, insensitivity to growth-inhibitory 

(anti-growth) signals, evasion of programmed cell death (apoptosis), limitless replicative 

potential, sustained angiogenesis, and tissue invasion and metastasis. It is assumed that these 

six capabilities are shared in common by most and perhaps all types of human tumors 

(Hanahan and Weinberg, 2000).  

Cancers of the oral cavity, salivary glands, larynx, and pharynx, collectively referred to as 

squamous cell carcinomas of the head and neck (HNSCC), are one of the most common 

malignancies and a major cause of cancer mortality worldwide. The 5-year survival rate for 

this disease is about 50% (Greenlee et al., 2001). The poor prognosis of HNSCC patients 

reflects the fact that although the risk factors for HNSCC are well-recognized, very little is 

known about the molecular mechanisms responsible for this malignancy.  

High expression levels of the EGFR and HER2/neu have been proposed as prognostic 

markers for HNSCC that correlate with poor clinical outcome (Quon et al., 2001; Shiga et al., 

2000). Therefore, these RTKs serve as molecular targets for recently developed target-

directed HNSCC therapies (Azemar et al., 2000; Shin et al., 2001). Interestingly, 

overexpression of the EGFR and TGFα have been connected to high levels of activated 

ERK/MAPK in HNSCC tumors (Albanell et al., 2001) which led to  considerable interest in 

understanding the EGFR-directed mitogenic signaling pathways in this type of cancer.   

 
1.7 Aim of the study 

 

The traditional view of growth factor receptors and hormone receptors in general is that a 

specific ligand directly recognizes a highly selective binding site on its cognate receptor and, 

thereby, activates receptor-dependent signaling and biological responses (Fig. 2A). It has 

become apparent in recent years, however, that the EGFR is also part of signaling networks 

activated by heterologous stimuli. Most importantly, agonists for GPCRs which comprise the 

largest family of cell-surface receptors have been recognized as potent inducers of EGFR 

activation (Fig. 2B). 
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Following the early observation by Faure and colleagues that agonist stimulation of COS-7 

cells transiently expressing Gq-, or Gi-coupled receptors results in ERK1/2 activation (Faure 

et al., 1994), in 1996, Daub et al. described a critical role of the EGFR in GPCR-triggered 

ERK stimulation and proliferation of rat fibroblasts (Daub et al., 1996). This was the first 

demonstration that GPCR-dependent mitogenic activity involves receptor networking that 

couples GPCRs to a growth factor receptor tyrosine kinase. Subsequent studies further 

established the EGFR as an essential element in GPCR mitogenic signaling in a variety of 

other cell systems including COS-7, HaCaT, PC-12 and HEK-293 cells (Carpenter, 1999; 

Gschwind et al., 2001; Zwick et al., 1999a). 

Because of the very rapid kinetics of the EGFR transactivation response to GPCR ligand 

stimulation, a mechanism that bypasses extracellular interaction with an EGFR ligand and 

involves an intracellualar pathway was proposed. In contrast to this concept, recent 

experimental data support the view of a strictly ligand-dependent mechanism of EGFR signal 

transactivation. Most importantly, the GPCR agonists LPA, carbachol and bombesin were 

shown to induce the proteolytic processing of the transmembrane proHB-EGF precursor to 

yield the mature ligand in COS-7 cells (Prenzel et al., 1999). Blockade of this process either 

with the metalloprotease inhibitor batimastat or the HB-EGF antagonistic diphtheria toxin 

mutant CRM197 completely abrogated GPCR-induced EGFR transactivation. These 

experimental findings led to the establishment of the TMPS model of EGFR signal 

transactivation (see 1.4). 

On the basis of these findings and the fact that deregulation of both GPCR and EGFR 

signaling systems has been recognized as a major cause of hyperproliferative diseases, the 

aim of this study was to investigate the molecular mechanisms and the pathophysiological 

significance of EGFR signal transactivation in human cancer. Since the EGFR has been 

identified as a critical determinant of disease development and progression in HNSCC (see 

1.6), cancer cells derived from this tumor type served as an experimental model system. Three 

questions were of special interest: 

 

1. Are GPCR-EGFR cross-talk pathways broadly installed in HNSCC cells? 

2. Is the EGFR signal transactivation pathway critical for the manifestation of hallmark 

cancer cell characteristics such as self-sufficiency of growth signals, replicative 

potential, migration and invasion of cancer cells (see 1.6)? 

3. What are the elements involved in signal transmission from agonist-treated GPCRs to 

the EGFR? 
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2 MATERIALS AND METHODS 
 
2.1 Materials 
 
2.1.1 Laboratory chemicals and biochemicals 
 
Acrylamide       Serva, Heidelberg 
Agar        Difco, Detroit, USA 
Agarose       BRL, Eggenstein 
Ampicillin       Roche, Mannheim 
Aprotinin       Sigma, Taufkirchen 
APS (Ammonium peroxodisulfate)    Bio-Rad, München 
ATP (Adenosine 3´-triphosphate)    Pharmacia, Freiburg 
Batimastat       British Biotech, Oxford, UK 
Bisacrylamide       Roth, Karlsruhe 
Bromphenol blue      Sigma, Taufkirchen 
BSA (Bovine serum albumin)    Sigma, Taufkirchen 
Coomassie G250      Serva, Heidelberg 
Deoxynucleotides (dG/A/T/CTP)    Roche, Mannheim 
Dideoxynucleotides (ddG/A/T/CTP)    Pharmacia, Freiburg 
DTT (Dithiothreitol)      Sigma, Taufkirchen 
Ethidium bromide      Sigma, Taufkirchen 
Fibronectin       Calbiochem, Bad Soden 
FN-439 (4-(2-aminobenzoyl)-Gly-Pro-D-Leu-  Calbiochem, Bad Soden  

   D-Ala-NH-OH))    
Heparin       Sigma, Taufkirchen 
HEPES (N-(2-Hydroxyethyl)piperazine-N`-   Serva, Heidelberg 

  (2-ethanesulfonic acid))    
IPTG (Isopropyl β-D-1-thiogalactopyranoside)  Biomol, Hamburg 
L-Glutamine       Gibco, Eggenstein 
Leupeptin       Sigma, Taufkirchen 
Lipofectamine®      Gibco, Eggenstein 
Lysozyme       Sigma, Taufkirchen 
Marimastat       Sugen Inc., CA, USA 
MBP (Myelin basic protein)     Sigma, Taufkirchen 
Mineral oil       Sigma, Taufkirchen 
MOPS (3-Morpholinopropanesulfonic acid)   Biomol, Haub 
PMSF (Phenylmethanesulfonyl fluoride)   Sigma, Taufkirchen 
pNPP (p-Nitrophenyl phosphate)    Sigma, Taufkirchen 
Polybrene (Hexadimethrine bromide)   Sigma, Taufkirchen 
PD98059       Alexis, Grünberg 
PEG (Polyethylene glycol) 4000, 6000   Serva, Heidelberg 
Ponceau S       Sigma, Taufkirchen 
PP2        Calbiochem, Bad Soden 
PTX (Pertussis toxin)      List, Campbell, USA 
Salmon sperm DNA      Sigma, Taufkirchen 
SDS (Sodium dodecyl sulfate)    Roth, Karlsruhe 
Sodium azide       Serva, Heidelberg 
Sodium fluoride      Sigma, Taufkirchen 
Sodium orthovanadate     Aldrich, Steinheim 
Scintillation cocktail (Rotiszint®ecoplus)   Roth, Karlsruhe 
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TEMED (N,N,N',N'-Tetramethylethylenediamine)  Serva, Heidelberg 
TPA (Tetradecanoyl-phorbol-13-acetate)   Sigma, Taufkirchen 
Triton X-100       Serva, Heidelberg 
Tween 20, 40       Sigma, Taufkirchen 
Tyrphostin AG1478      Alexis, Grünberg 
 
All other chemicals were purchased from Merck (Darmstadt). 
 
2.1.2 Enzymes 
 
Alkaline Phosphatase       Roche, Mannheim 
Restriction Endonucleases     Pharmacia, Freiburg 

Roche, Mannheim    
      NEB, Frankfurt/ Main 

        MBI Fermentas, St. Leon-Rot 
T4-DNA Ligase       Roche, Mannheim 
T7-DNA Polymerase      Pharmacia, Freiburg 
Taq-DNA Polymerase     Roche, Mannheim 
        Takara, Japan 
Trypsin       Gibco, Eggenstein 
 
2.1.3 Radiochemicals 
 
[γ-32P] ATP  >5000 Ci/mmol 
[a-33P] dATP    2500 Ci/mmol 
L-[35S] Methionine >1000 Ci/mmol  
 
All radiochemicals were obtained from PerkinElmer Life Sciences, Köln. 
 
2.1.4 „Kits" and other materials 
 
Cell culture materials      Greiner, Solingen 
        Nunclon, Dänemark 
        Falcon, U.K. 
Cellulose nitrate 0.45 µm     Schleicher & Schüll, Dassel 
Dowex AG1-X8      Bio-Rad, München 
ECL Kit       PerkinElmer, Köln 
Glutathione-Sepharose     Pharmacia, Freiburg 
Hyperfilm MP       Amersham, USA  
Micro BCA Protein Assay Kit    Pierce, Sankt Augustin 
Parafilm       Dynatech, Denkendorf 
Poly Prep® Chromatography columns   Bio-Rad, München 
Protein A-Sepharose      Pharmacia, Freiburg 
Protein G-Sepharose      Pharmacia, Freiburg 
QIAquick Gel Extraction Kit (50)    Qiagen, Hilden 
QIAquick PCR Purification Kit    Qiagen, Hilden 
QIAGEN Plasmid Maxi Kit     Qiagen, Hilden 
Random-Primed DNA Labeling Kit    Pharmacia, Freiburg 
Sephadex G-50 (DNA Quality)    Pharmacia, Freiburg 
Sterile filter 0.22 µm, cellulose acetate   Nalge Company, USA 
Sterile filter 0.45 µm, cellulose acetate   Nalge Company, USA 



2 Materials and Methods  22 

Transwells       Corning, New York, USA 
Whatman 3MM      Whatman, USA 
 
2.1.5 Growth factors and ligands 
 
Anisomycin       Calbiochem 
Amphiregulin       R&D Systems 
Bradykinin       Calbiochem 
EGF (murine)        Toyoba, Japan 
 
All other growth factors and ligands were purchased from Sigma. 
 
2.1.6 Media and buffers 
 
Medium for E.coli 
 
LB-Medium  1.0 % Tryptone 
   0.5 % Yeast Extract 

 1.0 % NaCl 
     pH 7.2 
 
2xYT-Medium 1.6 % Tryptone 
   1.0 % Yeast Extract 
   1.0 % NaCl 
     pH 7.2 
 
When necessary the following antibiotics were added to the media after autoclavation: 
 
Ampicillin  100 µg/mL 
Kanamycin  100 µg/mL 
Chloramphenicol 30 µg/mL 
 
LB-plates additionally contained 1.5% Agar. 
 
2.1.7 Cell culture media 
 
All cell culture media and additives were from Gibco (Eggenstein), fetal calf serum (FCS) 
was purchased from Sigma.  
 
Dulbecco’s modified eagle medium (DMEM) with 4.5 mg/mL glucose, 2 mM L-glutamine,    
1 mM sodium pyruvate. 
 
Eagle´s minimum essential medium (EMEM) supplemented with 2 mM L-glutamine,          
0.1 mM non-essential amino acids and 1 mM sodium pyruvate. 
 
Nutrient mixture F12 (HAM) with L-glutamine. 
 
Freeze medium: 90% heat-inactivated FCS, 10% DMSO. 
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2.1.8 Stock solutions for buffers 
 
BBS (2x)   50 mM  BES 
    280 mM NaCl 
    1.5 mM Na2HPO4 
      pH 6.96 (NaOH) 
 
HBS (2x)   46 mM HEPES pH 7.5 
    274 mM NaCl 
    1.5 mM Na2HPO4 
      pH 7.0 
 
Denhardt (100x)  2.0 % Polyvinylpyrollidon 
    2.0 % Ficoll 
    2.0 % BSA 
 
DNA loading buffer (6x) 0.25 % Bromphenol blue 
    0.25 % Xylencyanol 
    30.0 % Glycerol 
    100.0 mM EDTA pH 8.0 
 
LaemmLi buffer (2x)  187.5 mM Tris/HCl pH 6.8 
    6.0 % SDS 
    30.0 % Glycerol 
    0.01 % Bromphenol blue 
    5.0 % ß-Mercaptoethanol 
 
NET (1x)   150.0 mM NaCl 
    5        mM EDTA 
    50      mM Tris 
    0.05 % Triton X-100 
      pH 7.4 (HCl) 
 
PBS    13.7 mM NaCl 
    2.7 mM KCl 
    80.9 mM Na2HPO4 
    1.5 mM KH2PO4, pH 7.4 (HCl) 
 
SD-Transblot   50.0 mM Tris/HCl pH 7.5 
    40.0 mM Glycine 
    20.0 % Methanol 
    0.004 % SDS 
 
“Strip” buffer   62.5 mM Tris/HCl pH 6.8 
    2.0 % SDS 
    100 mM ß-Mercaptoethanol 
 
SSC (20x)   3.0 M NaCl 
    0.3 M Sodium citrate 
 
TAE (10x)   400 mM Tris/Acetate 



2 Materials and Methods  24 

    10 mM EDTA 
      pH 8.0 (Acetic acid) 
 
TE10/0.1   10.0 mM Tris/HCl pH 8.0 
    0.1 mM EDTA pH 8.0 
 
Tris-Glycine-SDS (10x) 248.0 mM Tris/HCl pH 7.5 
    1918.0 mM Glycine 
    1.0 % SDS 
 
2.1.9 Bacterial strains, cell lines and antibodies 
 
2.1.9.1 E.coli strains 
 
E. coli  Description Origin/ Reference 
 
DH5aF’ F’/endA1 hsd17 (rk-mk-),supE44,recA1,  Genentech,  
 gyrA (Nal), thi-1, (lacZYA-argF San Francisco, USA 
 
CJ236 dut-, ung-, thi-, relA-  (Kunkel, 1985)   
          
2.1.9.2 Cell lines 
 
Cell Line Description Origin/ Reference 
 
COS-7 African green monkey, SV40-transformed kidney  Genentech 
  fibroblasts  
 
SCC-4 Human squamous cell carcinoma of the tongue ATCC CRL-1624 
 
SCC-9 Human squamous cell carcinoma of the tongue ATCC CRL-1629 
 
SCC-15 Human squamous cell carcinoma of the tongue ATCC CRL-1623 
 
SCC-25 Human squamous cell carcinoma of the tongue ATCC CRL-1628 
 
FaDu Human squamous cell carcinoma of the pharynx ATCC HTB-43 
 
Detroit 562 Human squamous cell carcinoma of the pharynx ATCC CCL-138 
 
HEK-293 T Human embryonic kidney fibroblasts, transformed  ATCC CRL-1573 
 with adenovirus Typ V DNA  
 
Phoenix E, A Retrovirus producer cell lines for the generation of  Nolan, Stanford 
 helper free ecotropic and amphotropic retroviruses  
 based on HEK-293 
 
EC-2 Murine clonal fibroblast cell line, tace∆Zn/∆Zn  (Reddy et al., 2000) 
  R. Black (Immunex) 
 
EC-4 Murine clonal fibroblast cell line, wild-type  (Reddy et al., 2000) 
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   R. Black (Immunex)    
 
All other cell lines were obtained from the American Type Culture Collection (ATCC, 
Manassas, USA) and grown as recommended by the supplier. 
 
2.1.9.3 Antibodies 
 
The following antibodies were used in immunoprecipitation experiments, as primary 
antibodies in immunoblot analysis or for staining of cell surface proteins in FACS analysis. 
 
  
Antibody  Description/ Immunogen    Origin/ Reference 
 
P-Tyr (4G10)  Mouse, monoclonal; recognizes phospho-   UBI, Lake Placid 
   (3)-tyrosine residues 
    
EGFR   Sheep, polyclonal/ part of cytoplasmic domain  UBI 

of the human EGFR  
 
EGFR  (108.1)  Mouse, monoclonal/ ectodomain of the human  (Daub et al., 1997) 

EGFR  
 
HER2/neu  Rabbit, polyclonal/ C-terminal peptide of human  (Daub et al., 1996) 

HER2/neu  
 
Akt1/2   Rabbit, polyclonal/ AA 345-480 of human Akt1 Santa Cruz, USA 
 
SHC   Mouse, monoclonal     Santa Cruz 
 
SHC   Rabbit, polyclonal/ 220 AA at C-terminus of  (Daub et al., 1997) 

human SHC  
 
Gab1   Rabbit, polyclonal/ AA 23-189 of human Gab1 (Daub et al., 1997) 
 
P-ERK   Rabbit, polyclonal; recognizes phospho-p44/p42  NEB, Frankurt/M. 

(Thr-202/ Tyr-204) MAPK  
 
P-p38   Rabbit, polyclonal; recognizes phospho-p38  NEB 

(Thr-180/Tyr-182) MAPK  
 
P-Akt/PKB  Rabbit, polyclonal; recognizes phospho-Akt  NEB 

(Ser-473)  
 
ADAM17/TACE Rabbit, polyclonal/ AA 807-823 of human  Chemicon, Hofheim  

TACE 
 
ADAM17/TACE  (M220) Mouse, monoclonal; recognizes the  (Doedens and 

 Black, 2000) 
Disintegrin and cystein-rich domains of  
human TACE 
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βPDGFR  Mouse, monoclonal/ 187 AA at    Transduction Lab.,  
N-terminus of the human βPDGFR   Lexington 

 
βPDGFR   Mouse, monoclonal/ ectodomain of human   (Daub et al., 1997) 
(128D4C10)  βPDGFR  
 
HB-EGF  Goat, polyclonal/ recombinant, human HB-EGF R&D Systems, 

Wiesbaden 
 
AR   Goat, polyclonal/ recombinant, human AR  R&D Systems 
 
AR   Goat, polyclonal, biotinylated/  

recombinant, human AR    R&D Systems 
 
AR   Mouse, monoclonal/ recombinant, human AR R&D Systems 
 
TGFα?   Mouse, monoclonal/ recombinant, human TGFα? Oncogene,  

Bad Soden 
 
ERK2 (C-14)  Rabbit, polyclonal/ peptide at C-terminus of rat  Santa Cruz  

ERK2        
 
ERK2 (K-23)  Rabbit, polyclonal/ peptide from sub-domain XI  Santa Cruz 

of rat ERK2       
 
Pan-ERK  Mouse monoclonal/ AA 219-358 of human   Transduction Lab. 

ERK2         
 
HA   Mouse, monoclonal; recognizes the influenza  Babco, California, 

hemagglutinin epitope    USA 
 
VSV (P5D4)  Mouse, monoclonal; recognizes an epitope of  Roche, Mannheim 

eleven AA derived from the vesicular stomatits  
virus glycoprotein VSV-G  

 
p38 (C-20)  Rabbit, polyclonal/ peptide at C-terminus of  Santa Cruz 

murine p38       
   
For western blot secondary antibodies conjugated with horseradish peroxidase (HRP) were 
utilized. 
 
Antibody     Dilution   Origin 
 
Goat anti-mouse   1 : 10,000   Sigma 
Goat anti-sheep   1 : 25,000   Dianova, Hamburg 
Goat anti-rabbit   1 : 25,000   BioRad, München 
 
The FITC-conjugated rabbit anti-goat and FITC-conjugated goat anti-mouse secondary 
antibodies for flow cytometry were obtained from Sigma. 
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2.1.10  Plasmids and oligonucleotides 
 
2.1.10.1 Primary vectors 
 
Vector   Description     Origin/ Reference 
  
pcDNA3  Mammalian expression vector, Ampr, Invitrogen,   
   CMV promotor, BGH poly A,   USA   
   high copy number plasmid 
 
pLXSN  Expression vector for retroviral gene  Clontech, Palo Alto, USA 
   transfer, Ampr, Neor, ori from pBR322,  
    5’-LTR and 3’-LTR from MoMuLV, 
   SV40 promotor 
 
pLXSN-ESK  Modified pLXSN vector with multipe  J. Ruhe 
   cloning site from pBluescript 
 
pRK5   Expression vector, Ampr, CMV  Genentech 
   Promoter, SV 40 poly A, high   
   copy number plasmid 
 
2.1.10.2 Constructs 
 
Vector     Description    Reference 
 
pcDNA3-HA-ERK2   cDNA of ERK2 in pcDNA3,  (Daub et al., 1997) 
     HA-Tag 
 
pRK5-HER-CD533   cDNA of the dominant negative  (Daub et al., 1997) 

EGFR mutant HER-CD533  
in pRK5      

 
pRK5-βPDGFR-CD504  cDNA of the dominant negative  (Daub et al., 1997) 

βPDGFR mutant βPDGFR- 
CD504 in pRK5    
 

pLXSN-ESK-Timp-1-VSV  cDNA of human Timp-1 in  this study 
     pLXSN-ESK; 

C-terminal VSV-tag 
 
pLXSN-ESK-Timp-3-VSV  cDNA of human Timp-3 in  this study 
     pLXSN-ESK; 

C-terminal VSV-tag 
 
pcDNA3-hADAM10-HA  cDNA of human ADAM10    this study 
     in pcDNA3; C-terminal HA-tag 
 
pLXSN-ESK-∆(Pro-MP)-  cDNA of ADAM10 lacking the this study 
-hADAM10-HA     prodomain and metalloprotease 

domain ∆(AA19-455);  
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pLXSN-ESK; HA-tag 
 
pcDNA3-∆(Pro-MP)-   cDNA of ADAM12 lacking the S. Hart 
-hADAM12-HA   prodomain and metalloprotease 

domain ∆(AA29-416);  
in pcDNA3; C-terminal HA-tag 

 
pLXSN-ESK-∆(Pro-MP)-  cDNA of ADAM12 lacking the S. Hart 
-hADAM12-HA   prodomain and metalloprotease 

domain in pLXSN-ESK; HA-tag 
 
pLXSN-ESK-∆(Pro-MP)-  cDNA of ADAM15 lacking the S. Hart 
-hADAM15-HA   prodomain and metalloprotease 

domain ∆(AA29-419)   
in pLXSN-ESK;  
C-terminal HA-tag 

 
pcDNA3-mADAM17/TACE  cDNA of murine TACE in  (Black et al., 1997) 
     pcDNA3 
 
pLXSN-ESK-mADAM17/TACE cDNA of murine TACE in  this study 
     pLXSN-ESK 
 
pcDNA3-hADAM17/TACE-HA cDNA of human TACE in  this study 
     pcDNA3; C-terminal HA-tag 
 
pLXSN-ESK-hADAM17/   cDNA of human TACE in  this study 
TACE-HA    pLXSN-ESK; C-terminal HA-tag 
 
pcDNA3-∆(Pro-MP)-   cDNA of TACE lacking the  this study 
-hADAM17/TACE-HA  prodomain and metalloprotease 

domain ∆(AA18-473) in pcDNA3;  
C-terminal HA-tag 

 
pLXSN-ESK-∆(Pro-MP)-  cDNA of TACE lacking the  this study 
-hADAM17/TACE-HA  prodomain and metalloprotease 

domain in pLXSN-ESK;  
C-terminal HA-tag 
 

pcDNA3-M1R   cDNA of human M1R in pcDNA3 (Daub et al., 1997) 
        

pLXSN-M1R    cDNA of human M1R in            (Prenzel et al., 1999) 
     pLXSN 
  
pcDNA3-proHB-EGF-VSV  cDNA of human proHB-EGF in       (Prenzel et al., 1999) 

pcDNA3, C-terminal VSV-tag   
 
pcDNA3-∆(Cyto)-   cDNA of proHB-EGF lacking the this study 
-proHB-EGF-VSV     cytoplasmic domain ∆(AA185-208) 

in pcDNA3; C-terminal VSV-tag 
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2.1.10.3 Important oligonucleotides 
 
Sequence (description)       Name 
 
ACAGAATTCTGCCGCATCGCCGAGATC    Timp-1/1 
(cloning of human Timp-1 cDNA; forward primer) 
 
ACATCTAGAGGCTATCTGGGACCGCAG    Timp-1/2 
(cloning of human Timp-1 cDNA; reverse primer) 
 
ACAGAATTCGCCACCATGACCCCTTGGCTCGGGCTC  Timp-3/1 
(cloning of human Timp-3 cDNA; forward primer) 
 
ACATCTAGAGGGGTCTGTGGCATTGATGA    Timp-3/2 
(cloning of human Timp-3 cDNA; reverse primer) 
 
GGGGTA CCG CCA CCA TGG TCT TGC TGA GAG TGT TA  ADAM10/1 
(cloning of human ADAM10 cDNA; forward primer) 
 
TCTGGG CCC TCC TCC GCG TCT CAT GTG TCC CAT TT  ADAM10/2 
(cloning of human ADAM10 cDNA; reverse primer) 
 
ACAGAATTCGCCACCATGAGGCAGTCTCTCCTATTC  ADAM17/1 
(cloning of human ADAM17 cDNA; forward primer) 
 
TGCTCTAGATCCTCCGCACTCTGTTTCTTTGCTGTC  ADAM17/2 
(cloning of human ADAM17 cDNA; reverse primer) 
 
AGGATTCCCATACTGACCGAATTCTCCCATCCCC ∆Pro-MP-10/1 
GCCGCCCA 
(cloning of ∆Pro-MP-ADAM10 lacking the prodomain  
and metalloprotease domain; creation of EcoRI-site between 
signal peptide and prodomain) 
 
TCCACAAATAGGTTGGCCGAATTCAACAAAACAG ∆Pro-MP-10/2 
TTGTT 
(cloning of ∆Pro-MP-ADAM10 lacking the prodomain  
and metalloprotease domain; creation of EcoRI-site between 
the metalloprotease and the disintegrin domain) 
 
GTCATCCGGAGGTCGCGGGATATCCGCCAGCACGA ∆Pro-MP-TACE/1 
AAGGAAC 
(cloning of ∆Pro-MP-ADAM17/TACE lacking the prodomain  
and metalloprotease domain; creation of EcoRV-site between 
signal peptide and prodomain) 
 
CCCACAAACTTTATTGCTGATATCGCGTTCTTGAAA ∆Pro-MP-TACE/2 
ACACTC 
(cloning of ∆Pro-MP-ADAM17/TACE lacking the prodomain  
and metalloprotease domain; creation of EcoRV-site between 
the metalloprotease and the disintegrin domain) 
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GTCGGTGTAGGGCCCTCTAGAGAATTCATTAGTC ∆Cyto-HB- EGF/1 
ATGCCCAACTTCAC  
(cloning of ∆Cyto-proHB-EGF lacking the cytoplasmic domain;  
forward primer) 
 
CACATCATAACCTCCTCTCCTGAATTCCCTAAAC ∆Cyto-HB- EGF/2 
ATGAGAAGCCCCAC  
(cloning of ∆Cyto-proHB-EGF lacking the cytoplasmic domain;  
reverse primer) 
 
2.2 Methods in molecular biology 
 
2.2.1 Plasmid preparation for analytical purpose 
 
Small amounts of plasmid DNA were prepared as described previously (Lee and Rasheed, 
1990). 
 
2.2.2 Plasmid preparation in preparative scale 
 
For transfection experiments of mammalian cells DNA of high quality was prepared using 
Qiagen Maxi-Kits (Qiagen, Hilden) according to the manufacturers´ recommendations. 
 
2.2.3 Enzymatic manipulation of DNA 
 
2.2.3.1 Digestion of DNA samples with restriction endonucleases 
 
Restriction endonuclease cleavage was accomplished by incubating the enzyme(s) with the 
DNA in appropriate reaction conditions. The amounts of enzyme and DNA, the buffer and 
ionic concentrations, and the temperature and duration of the reaction was adjusted to the 
specific application according to the manufacturers´recommendations.  
 
2.2.3.2 Dephosphorylation of DNA 5'-termini with calf intestine alkaline phosphatase 

(CIAP) 
 
Dephosphorylation of 5´-termini of vector DNA in order to prevent self-ligation of vector 
termini. CIP catalyzes the hydrolysis of 5´-phosphate residues from DNA, RNA, and ribo- 
and deoxyribonucleoside triphosphates. The dephosphorylated products possess 5´-hydroxyl 
termini.  
For dephosphorylation 1-20 picomoles of DNA termini were dissolved in 44 µL deionized 
water, 5 µL 10x reaction buffer (500 mM Tris/HCl pH 8.0, 1 mM EDTA pH 8.5) and 1 µL 
CIP (1 U/µL). The reaction was incubated 30 min at 37°C and stopped by heating at 85°C for 
15 minutes.  
 
2.2.3.3 DNA insert ligation into vector DNA  
 
T4 DNA Ligase catalyzes the formation of a phosphodiester bond between juxtaposed 5'-
phosphate and 3'-hydroxyl termini in duplex DNA. T4 DNA Ligase thereby joins double-
stranded DNA with cohesive or blunt termini.  
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In a total volume of 10 µL the digested, dephosphorylated and purified vector DNA (200 ng), 
the foreign DNA to be inserted, 1 µL 10x T4 DNA Ligase buffer (0.66 M Tris/HCl pH 7,5, 50 
mM MgCl2, 50 mM DTT, 10 mM ATP) and 1 µL T4 DNA Ligase (2 U for sticky ends and 4 
U for blunt ends) were mixed. The reaction was incubated at 15°C overnight. T4 DNA Ligase 
was inactivated by heating the reaction mixture at 65°C for 10 minutes. The resulting ligation 
reaction mixture was directly used  for bacterial transformation.  
 
2.2.3.4 Agarose gel electrophoresis  
 
Agarose gel electrophoresis is a simple and highly effective method for separating, 
identifying, and purifying 0.5- to 25 kb DNA fragments. 0.6-2%, horizontal agarose gels with 
1x TAE electrophoresis buffer were used for separation. The voltage was set typically to 1-10 
V/cm of gel. Gels were stained by covering the gel in a dilute solution of ethidium bromide 
(0.5 µg/mL in water) and gently agitating for 30 min and destained by shaking in water for an 
additional 30 min.  
 
2.2.3.5 Isolation of DNA fragments using low melting temperature agarose gels  
 
Following preparative gel electrophoresis using low melting temperature agarose, the gel slice 
containing the band of interest was removed from the gel. This agarose slice was then melted 
and subjected to isolation using the QIAquick Gel Extraction Kit (Qiagen). 
 
2.2.4 Introduction of plasmid DNA into E.coli cells 
 
2.2.4.1 Preparation of competent cells 
 
Competent cells were made according to the procedure described before (Chung and Miller, 
1988). For long-term storage competent cells  were directly frozen at –70°C. Transformation 
frequency ranged between 106 and 107 colonies/µg DNA.  
 
2.2.4.2 Transformation of competent cells 
 
100 µL competent cells were added to 10 µL ligation mix and 20 µL 5x KCM (500 mM KCl, 
150 mM CaCl2, 250 mM MgCl2) in 70 µL H2O and incubated on ice for 20 min. Upon 
incubation at room temperature for 10 min 1 mL LB medium was added and incubated 45 
min at 37°C with mild shaking to allow expression of the antibiotic resistance gene.  
Transformants were selected on appropriate plates.  
 
2.2.5 Oligonucleotide-directed mutagenesis 
 
A DNA sequence can be specifically altered by synthesizing the desired sequence change 
within an oligonucleotide, and then converting this into a biologically active circular DNA 
strand by using the oligonucleotide to prime in vitro synthesis on a single-stranded circular 
template. This protocol (Kunkel, 1985; Messing, 1983) uses a DNA template containing a 
small number of uracil residues in place of thymine. Use of the uracil-containing template 
allows rapid and efficient recovery of mutants. 
 
2.2.5.1 Preparation of uracil-containing, single-stranded DNA template  
 
CJ236 bacteria were transformed with the DNA of interest (typically pcDNA3 constructs). 2 
mL 2xYT-medium were inoculated with several colonies of transformed CJ236 at 37°C until 
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the early log-phase was reached. Cultures were infected with 2x107 M13K07 phages/mL 
(Amersham) and incubated for further 1.5 h. Next, kanamycin was added  (70 µg/mL final 
concentration) and the culture was incubated with vigorous shaking at 37 °C overnight.  
Cells were pelletet twice by centrifugation (13000 rpm, 5 min) to clear the supernatant. Phage 
was then precipitated by adding 200 µL 2.5 M NaCl/ 20% PEG 6000 and incubation for 15 
min at room temperature. Precipitated phage was collected by centrifugation. The phage 
sediment was resuspended in 100 µL TE10/0.1 buffer and subjected to phenol extraction/ 
ethanol precipitation in order to purify the single-stranded phage DNA. Quality and 
concentration of DNA was determined spectrophotometrically at 260 nm. For visual 
examination and documentation an aliquot of the single-stranded DNA was run on a 1% 
agarose gel.  
 
2.2.5.2 Primer extension  
 
The uracil-containing DNA was used as a template in oligonucleotide-directed mutagenesis 
experiments: 200 ng single-stranded template DNA, 2-3 pmol phosphorylated 
oligonucleotide, 1 µL 10x hybridization buffer (20 mM Tris/HCl pH 7,4, 2 mM MgCl2, 50 
mM NaCl) in a total volume of 10 µL were incubated for 2 min at 90°C and allowed to cool 
to room temperature. To the hybridization mixture 1 µL 10x synthesis buffer (5  mM dNTP-
mix, 100 mM Tris/HCl pH 7.5, 50 mM MgCl2, 20 mM DTT), 5 U T4-DNA Ligase (1 µL), 1 
µg T4-Gen 32 Protein (0.5 µL) and 3 U T4-DNA Polymerase (1 µL) were added. The 
reaction was incubated for 5 min on ice, 5 min at 25 °C and finally for 90 min at 37°C. The 
reaction was stopped by adding 66 µL TE. 100 ng of double-stranded DNA product were used 
for transformation of E. coli. Resulting clones were chosen randomLy for isolation of plasmid 
DNA which was analysed by sequencing. 
 
2.2.6 Enzymatic amplification of DNA by polymerase chain reaction (PCR) 
 
The polymerase chain reaction (PCR) is a rapid procedure for in vitro enzymatic amplification 
of a specific segment of DNA (Mullis and Faloona, 1987). A multitude of applications have 
been developed including direct cloning from cDNA, in vitro mutagenesis and engineering of 
DNA, genetic fingerprinting of forensic samples, assays for the presence of infectious agents 
and analysis of allelic sequence variations. For long and accurate cDNA amplification  LA-
Taq™  polymerase (TaKaRa) was used: 
 

   0.5 µL   template cDNA 
   2 µL   "sense" oligonucleotide, 10 pmol/µL 
   2 µL   "antisense" oligonucleotide, 10 pmol/µL 
   5 µL   10x LA PCR buffer II (w/o MgCl2) 
   5 µL   MgCl2, 25 mM  
   8 µL   dNTP-Mix, 2.5 mM each 
   0.5 µL   LA-Taq™   (5 U/µL) 
   ad 50 µL  H2O 

 
PCR reactions were performed in a automated thermal cycler („Progene“, Techne). The 
following standard protocol was adjusted to the specific application: 
 
first denaturation:   3 min    94°C 
amplification 25-30 cycles:  1 min   94°C (denaturation) 
     1 min   58°C (hybridization) 
     1 min/ kb product    72°C (extension) 
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last extension:    7 min 72°C 
 
10 µL from each reaction were electrophoresed on an agarose gel appropriate for the PCR 
product size expected. PCR products were subjected to isolation using the PCR purification 
kit (Qiagen). 
  
2.2.7 DNA sequencing 
 
DNA sequencing was performed according to the “Big Dye Terminator Cycle Sequencing 
Protocol” (ABI). The following mix was subjected to a sequencing-PCR run: 
 
     0.5 µg    DNA of interest 

   10 pmol   oligonucleotide 
   4 µL    Terminator Ready Reaction Mix 
   ad 20 µL   H2O 

 
25 cycles:    30 sec   94°C  
     15 sec   45-60°C  

    4 min   60°C  
 

The sequencing products were purified by sodium acetate/ EtOH precipitation, dissolved in 20 
µL template suppression reagent, denatured for 2 min at 90°C and analyzed on a 310-Genetic 
Analyzer (ABI Prism). 
 
2.2.8 cDNA array hybridization 
 
Filters spottet with genes of interest (cloned into pBluescript SKII+) were a gernerous gift 
from J. Ruhe, cDNA probes of the HNSCC cell lines SCC-9, SCC-15 and SCC-25 were from 
T. Knyazeva and generated according to standard molecular biology methods. Labeling of 3–
5 µL of cDNA was performed with the Megaprime kit (Amersham) in the presence of 50 µCi 
of [α-32P]dATP. The prehybridization solution was replaced from filters by the hybridization 
solution containing 5x SSC, 0.5% (v/v) SDS, 100 µg/mL baker yeast tRNA (Roche), and the 
labeled cDNA probe (2–5 x 106 cpm/mL) and incubated at 68°C for 16 h. Filters were washed 
under stringent conditions. A phosphorimager system (Fuji BAS 1000; Fuji) was used to 
quantify the hybridization signals. Average values for each slot were calculated using the 
formula: A = (AB - B) x 100/B; [A, final volume; AB, intensity of each slot signal (pixel/mm2); 

B, background (pixel/mm2)]. 
 
2.3 Methods in mammalian cell culture 
 
2.3.1 General cell culture techniques 
 
HNSCC cell lines were grown in a humidified 93% air, 7% CO2 incubator (Heraeus, B5060 
Ek/CO2) at 37°C and routinely assayed for mykoplasma contamination using a bisbenzimide-
staining kit (Sigma). Before seeding cells were counted with a Coulter Counter (Coulter 
Electronics). SCC-4, SCC-9, SCC-15 and SCC-25 were cultured in Dulbecco's modified 
Eagle's medium (DMEM) : Ham´s F12 medium (1:1) containing 400 ng/mL hydrocortisone 
and 10% FCS. FaDu and Detroit-562 were cultured in Eagle´s Minimum essential medium 
(EMEM) supplemented with 2 mM L-glutamine, 0.1 mM non-essential amino acids and 1.0 
mM sodium pyruvate and 10% FCS. EC-4 and tace∆Zn/∆Zn EC-2 were maintained in 



2 Materials and Methods  34 

Dulbecco's modified Eagle's medium-Ham's F-12 medium supplemented with 1% heat-
inactivated fetal bovine serum and glutamine.  
 
2.3.2 Transfection of cultured cell lines 
 
2.3.2.1 Transfection of cells with calcium phosphate 
  
SCC-9 cells or HEK-293 cells in six-well dishes were transfected transiently at about 70% 
confluency with a total of 2 µg DNA by using a modified calcium phosphate precipitation 
method as described previously (Chen and Okayama, 1987). In this protocol, a calcium 
phosphate-DNA complex is formed gradually in the medium during incubation with cells. 
The transfection mix of DNA and CaCl2 in water was prepared as follows: 
 

dish 6-well 6 cm  10 cm  
area 10 cm2 21 cm2 57 cm2 
Volume of medium 1 mL 2 mL 4 mL 
DNA in H2Obidest 2 µg in 90 µL 5 µg in 180 µL 10 µg in 360 µL 
2.5 M CaCl2 10 µL 20 µL 40 µL 
2 x BBS (pH 6.96) 100 µL 200 µL 400 µL 
Total volume 200 µL 400 µL  800 µL 

 
To initiate the precipitation reaction the adequate volume of 2x BBS was added and mixed by 
vortexing. The reaction was incubated for 10 min at room temperature before being added to 
each well. Plates were placed in a humidified container at 3% CO2 overnight. One day 
following transfection, cells were serum-starved for 24 hours in standard cell culture medium 
without FCS. Transfection efficiency of SCC-9 cells was typically about 50% as determined 
by LacZ staining after transfection of a LacZ-containing expression plasmid. For transfection 
of Phoenix cells HBS was used instead of BBS. 
 
 
2.3.2.2 Transfection of COS-7 cells using lipofectamine® 
 
COS-7 cells were transiently transfected using Lipofectamine® (Gibco-BRL) essentially as 
described (Daub et al., 1997). For transfections in 6-well dishes, 1.0 mL of serum-free 
medium containing 10 µL of Lipofectamine and 1.5 µg of total plasmid DNA per well were 
used. After 4 h the transfection mixture was supplemented with an equal volume of medium 
containing 20% FCS and, 20 h later, cells were washed and cultured for a further 24 h in 
serum-free medium until lysis. 
 
2.3.3 Retroviral gene transfer in cell lines 
 
High titer retrovirus was prepared as described previously (Pear et al., 1993). The packaging 
cell lines Phoenix A and Phoenix E were transfected with pLXSN-ESK expression vectors 
using calcium phosphate. Target cell lines SCC-9 (8 × 104) and murine fibroblasts wt EC-4 
and tace∆Zn/∆Zn EC-2 (4 × 104) were seeded into 6-well dishes 24 h prior to infection. The 
supernatant of transfected Phoenix A and Phoenix E cells was collected and filtered through a 
0.45 µm filter.  Target cells were incubated with virus supernatant for 12 h in the presence of 
4 µg/mL polybrene. Retroviral supernatant was then replaced with fresh medium. 2 d 
following infection, target protein expression was monitored by western blot. 
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2.4 Protein analytical methods 
 
2.4.1 Lysis of cells with triton X-100 
 
Prior to lysis, cells grown to 80% confluence were treated with inhibitors and agonists as 
indicated in the figure legends. Cells were washed with cold PBS and then lysed for 10 min on 
ice in buffer containing 50 mM HEPES, pH 7.5, 150 mM NaCl, 1% Triton X-100, 1 mM 
EDTA, 10% glycerol, 10 mM sodium pyrophosphate, 2 mM sodium orthovanadate, 10 mM 
sodium fluoride, 1 mM phenylmethylsulfonyl fluoride, and 10 µg/mL aprotinin. Lysates were 
precleared by centrifugation at 13000 rpm for 10 min at 4°C. 
 
2.4.2 Determination of protein concentration in cell lysates 
 
The „Micro BCA Protein Assay Kit” (Pierce, Sankt Augustin) was used according to the 
manufacturers´ recommendations. 
 
2.4.3 Immunoprecipitation and in vitro association with fusion proteins 
 
An equal volume of HNTG buffer was added to the precleared cell lysates that had been 
adjusted for equal protein concentration. Proteins of interest were immunoprecipitated using 
the respective antibodies and 20 µL of protein A-Sepharose for 4 h at 4°C. Alternatively, 
lysates were subjected to in vitro associations with either 3 µg of GST-Grb2 (Daub et al., 
1997) or 2 µg of GST as control pre-bound to 30 µL of gluthathione-agarose beads. 
Precipitates were washed three times with 0.5 mL of HNTG buffer, suspended in 2× SDS 
sample buffer, boiled for 3 min, and subjected to SDS-PAGE. 
 
2.4.4 TCA pecipitation of proteins in conditioned medium 
 
Phenylmethylsulfonyl fluoride (1 mM final concentration) was added to cell culture medium 
of stimulated and control treated cells and precleared by centrifugation at 13000 rpm for 
10 min at 4°C. For TCA precipitation, proteins were incubated in 0.1 mg/mL sodium 
deoxycholate, 0.6 M TCA for 30 min on ice. 
 
2.4.5 Radiolabeling 
 
For [35S]Methionine labeling, cells were incubated in methionine-free DMEM during 
starvation, and 50 µCi/mL L-[35S]Methionine were added 16 h prior to lysis.  
 
2.4.6 SDS-polyacrylamide-gelelectrophoresis (SDS-PAGE) 
 
SDS-PAGE was conducted as described previously (Sambrook, 1990). The following proteins 
were used as molecular weight standards: 
 
Protein   MW (kD)  Protein   MW (kD) 
    
Myosin  205.0   Ovalbumin  42.7 
ß-Galaktosidase 116.25   Carboanhydrase 29.0 
Phosphorylase b 97.4   Trypsin-Inhibitor 21.5 
BSA   66.2   Lysozym  14.4 
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Because of the small size of pro-HB-EGF and the processed form of HB-EGF, the tricine 
SDS-PAGE system was used as described (Schagger and von Jagow, 1987). 
 
2.4.7 Transfer of proteins on nitrocellulose membranes 
 
For immunoblot analysis proteins were transferred to nitrocellulose membranes (Gershoni and 
Palade, 1982) for 2 h at 0.8 mA/cm2 using a "Semidry”-Blot device in the presence of 
Transblot-SD buffer. Following transfer proteins were stained with Ponceau S (2 g/l in 2% 
TCA) in order to visualize and mark standard protein bands. The membrane was destained in 
water. 
 
2.4.8 Immunoblot detection  
 
After electroblotting the transferred proteins are bound to the surface of the nitrocellulose  
membrane, providing access for reaction with immunodetection reagents. Remaining binding 
sites were blocked by immersing the membrane in 1x NET, 0.25% gelatin for at least 4 h. The 
membrane was then probed with primary antibody (typically overnight). Antibodies were 
diluted 1:500 to 1:2000 in NET, 0.25% gelatin. The membrane was washed 3x 20 min in 1x 
NET, 0.25% gelatin, incubated for 1 h with secondary antibody and washed again as before. 
Antibody-antigen complexes were identified using horseradish peroxidase coupled to the 
secondary anti-IgG antibody. Luminescent substrates were used to visualize peroxidase 
activity. Signals were detected with X-ray films or a digital camera unit. Membranes were 
stripped of bound antibody by shaking in strip-buffer for 1 h at 50°C. Stripped membranes 
were blocked and reproped with different primary antibody to confirm equal protein loading. 
 
2.5 Biochemical and cell biological assays 
 
2.5.1 Stimulation of cells 
 
Cells were seeded in  cell culture dishes of appropriate size and grown overnight to about 
80% confluence. After serum-starvation for 48 h HNSCC cells were treated with inhibitors 
and agonists as indicated in the figure legends, washed with cold PBS and then lysed for 
10 min on ice. In some cases cells were transfected 24 h after seeding and serum-starved one 
day following transfection before being stimulated as indicated above. 
 
2.5.2 ERK1/2 and Akt/PKB phosphorylation 
 
For determination of ERK1/2 and Akt phosphorylation, approximately 20 µg of whole cell 
lysate protein/lane was resolved by SDS-PAGE and immunoblotted using rabbit polyclonal 
phospho-specific ERK/MAPK antibody. Akt phosphorylation was detected by protein 
immunoblotting using rabbit polyclonal anti-phospho-Akt antibody. Quantitation of ERK1/2 
was performed using the Luminescent Image Analyis System (Fuji). After quantitation of 
ERK1/2 phosphorylation, membranes were stripped of immunoglobulin and reprobed using 

rabbit polyclonal anti-ERK1/2 or rabbit polyclonal anti-Akt antibody to confirm equal protein 

loading. 
 
2.5.3 ERK/MAPK activity 
 
HA-ERK2 or endogenous ERK2 were immunoprecipitated from lysates obtained from six-
well dishes using 0.5 µg of anti-HA antibody or 0.4 µg of anti-ERK2 antibody, respectively. 
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Precipitates were washed three times with HNTG buffer, and washed once with kinase buffer 

(20 mM HEPES, pH 7.5, 10 mM MgCl2, 1 mM dithiothreitol, 200 µM sodium 
orthovanadate). Kinase reactions were performed in 30 µL of kinase buffer supplemented with 
0.5 mg/mL myelin basic protein, 50 µM ATP and 1 µCi of [γ-32P]ATP for 10 min at room 
temperature. Reactions were stopped by addition of 30 µL of LaemmLi buffer and subjected 
to gel electrophoresis on 15% gels. Labeled MBP was quantitated using a Phosphoimager 

(Fuji). 
 
2.5.4 Gelatin zymography 
 
Conditioned media of SCC-25 cells was analyzed under nonreducing conditions and separated 
in 10% SDS-polyacrylamide gels co-polymerized with 0.1% (w/v) gelatin to demonstrate 
gelatinolytic activity (MMP-2 and MMP-9) as described previously (Kleiner and Stetler-
Stevenson, 1994). Duplicate gels were incubated as controls in buffer containing 10 mM 
EDTA to inhibit MMP activity. The gels were stained with Coomassie G250 and dried with a 
gel drier. 
 
2.5.5 Flow cytometric analysis of cell surface proteins  
 
Was performed as described before (Prenzel et al., 1999). In brief, cells were seeded, grown 
for 20 h and in some cases retrovirally infected as indicated. Upon serum-starvation for 24 h 
cells were treated with inhibitors and growth factors as indicated. After collection, cells were 
stained with ectodomain-specific antibodies against HB-EGF, TGFα or AR for 45 min. After 
washing with PBS, cells were incubated with FITC-conjugated secondary antibodies for 
15 min and washed again with PBS. Cells were analysed on a Becton Dickinson FACScalibur 
flow cytometer. 
 
2.5.6 AR sandwich-ELISA 
 
Plate preparation: An ELISA microtiter plate was coated overnight at RT with an monoclonal 
anti-AR capture antibody  (MAB262, 4.0 µg/mL in PBS, 100 µL/well). Well supernatants 
were then decanted and plates were washed three times with wash buffer (PBS, 0.05% Tween 
20). Wells were blocked with 150 µL/well block buffer (PBS, 0.5 % BSA) overnight at 4°C 
and washed again three times with wash buffer. 
Assay procedure: SCC-9 cells were seeded into 12-well plates (3.2 x 104 cells per well) and 
incubated for 18 h. Upon serum deprivation for 24 h, cells were subjected to preincubation 
with batimastat (10 µM) for 20 min and stimulated as indicated in the figure legends. Cell 
culture media was collected and, after addition of PMSF (1 mM), precleared by centrifugation 
(10 min, 13.000 rpm). Samples were transferred to the antibody-coated plate (100 µL/well) 
and incubated for 2 h at RT with gentle agitation and washed three times with wash buffer. 
Next, 100 µL of biotinylated, affinity-purified, goat polyclonal, AR-detection antibody 
(BAF262, 150 ng/mL in dilution buffer: PBS, 0.5% BSA, 0.05% Tween 20; 100 µL/well) was 
added to each well and incubated for 2 h at RT. The plate was washed three times before the 
addition of 100 µL HRP-conjugated streptavidin (100 ng/mL in dilution buffer) to each well. 
Plates were then incubated for 20 min at RT. Free avidin conjugate was washed away (four 
washes) and 100 µL freshly prepared substrate solution (tetramethyl benzidine, TMB) was 
added to each well and incubated at RT with gently shaking in the dark. After 15 min the 
reaction was stopped by addition of 100 µL/well 250 mM HCl. The absorbance at 455 nm 
was read with a reference wavelength of 650 nm using an ELISA plate reader. AR 
concentrations for each sample were calculated after generating a standard curve using the 
dilution series of human recombinant AR protein.   
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2.5.7 Incorporation of 3H-thymidine into DNA 
 
SCC-9 or SCC-25 cells were seeded into 12-well plates (2.5 x 104 or 6 x 104 cells per well, 
respectively). Upon serum deprivation for 48 h, cells were subjected to preincubation with 
inhibitors before ligand treatment. After 18 h incubation, cells were pulse-labelled with 3H-
thymidine (1 µCi/mL) for 4 h, and thymidine incorporation was measured by trichloroacetic 
acid precipitation and subsequent liquid-scintillation counting. 
 
2.5.8 Distribution of cell cycle phases 
 
SCC-25 cells were seeded into 6-well plates (1.5 x 104 cells per well). Upon serum 
deprivation for 48 h, cells were subjected to 20 min preincubation with either DMSO (control) 
or batimastat before ligand treatment. After 18 h incubation, cells were collected and 
incubated in hypotonic buffer containing 0.1% sodium acetate, 0.1% Triton X-100 and 20 
µg/mL propidiumiodide for 2 h on ice. Samples were analysed on a Becton Dickinson 
FACScalibur flow cytometer. 
 
2.5.9 In vitro wound closure  
 
The assay was performed as previously described (Fishman et al., 2001) with some 
modifications. Confluent monolayers of SCC-9 cells were wounded with a uniform scratch, 
the medium was removed and cells were washed twice with PBS. Medium without FCS was 
added and cells were subjected to 20 min preincubation with either DMSO (control), 250 nM 
AG1478 or 10 µM batimastat before ligand treatment. Cells were permitted to migrate into the 
area of clearing for 48 h. Wound closure was monitored by visual examination using a Zeiss 
microscope. 
 
2.5.10  Migration 
 
Analysis of chemotactic directional migration was performed as described before (O-
Charoenrat et al., 2000) using a modified Boyden chamber. SCC-9 cells in exponential 
growth were harvested, washed and suspended in standard medium without FCS. Cells were 
preincubated with either DMSO (control), 125 nM AG1478 or 5 µM batimastat for 20 min. 
Preincubation of cells with inhibitors did not affect viability or attachment of cells to 
membranes (data not shown). 1 x 105 cells were seeded into polycarbonate membrane inserts 
(6.5 mm diameter and 8 µm pore size)  in 24-transwell cell culture dishes in the presence or 
absence of ligand. The lower chamber was filled with 600 µL standard medium without FCS 
containing 10 µg/mL of fibronectin as a chemoattractant. Cells were permitted to migrate for 
36 h. Following incubation, nonmigrated cells were removed from the upper surface of the 
membranes. The cells that had migrated to the lower surface were fixed and stained with 
crystal violet. The stained cells were solubilized in 10% acetic acid, absorbance at 570 nm 
was measured in a micro-plate reader. 
 
2.6 Statistical analysis 
 
Student’s t-test was used to compare data between two groups. Values are expressed as mean 
±  standard deviation (s. d.) of at least triplicate samples. P < 0.05 was considered statistically 
significant. 
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3  RESULTS 
 
3.1 GPCR agonists stimulate EGFR tyrosine phosphorylation via a 

metalloprotease-dependent pathway in HNSCC. 

 
GPCR-induced EGFR signal transactivation was previously shown to couple G protein 

activation to the Ras-MAPK pathway in non-transformed cell lines such as Rat-1 fibroblasts, 

COS-7, HEK-293 and vascular smooth muscle cells (Gschwind et al., 2001). In contrast, little 

is known about the involvement and the molecular mechanisms of EGFR transactivation in 

cancer cell pathophysiology. To investigate the functional role of EGFR transactivation in 

squamous cell carcinoma the HNSCC cell lines SCC-4, SCC-9, SCC-15, SCC-25, FaDu and 

Detroit-562 were screened for their responsiveness to the GPCR ligands LPA (10 µM), 

thrombin (Thr, 1 U/ml), carbachol (Car, 1 mM) and bradykinin (Bk, 5 µM) at physiological 

concentrations. Following stimulation for three minutes cell lysates were subjected to 

immunoprecipitation with anti-EGFR antibodies and immunoblotted against phosphotyrosine.  

 

 

Figure 4. Diverse GPCR ligands stimulate tyrosine phosphorylation of the EGFR in head and neck 
squamous cell carcinoma cells. A) SCC-9 cells were serum-starved for 48 h and treated with 10 µM LPA, 1 
U/ml thrombin (Thr), 1 mM carbachol (Car), 5 µM bradykinin (Bk) or 7.5 ng/ml EGF for 3 min. After lysis, 
EGFR was immunoprecipitated (IP) using monoclonal anti-EGFR antibody. Tyrosine-phosphorylated EGFR 
was detected by immunoblotting (IB) with monoclonal anti-phosphotyrosine (PY) antibody, followed by 
reprobing of the same filter with polyclonal anti-EGFR antibody (EGFR). B) Quiescent SCC-9 cells were treated 
with 10 µM LPA or 7.5 ng/ml EGF for the indicated times. After cell lysis, EGFR tyrosine phosphorylation was 
detected as described under (A) followed by reprobing of the same filter with anti-EGFR antibody. 
 
While treatment of serum-deprived SCC-4, SCC-9 and FaDu cells with either GPCR agonist 

or EGF (7.5 ng/ml) resulted in tyrosine phosphorylation of the EGFR (Fig. 4A, representative 
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data shown for SCC-9) transactivation of the EGFR was induced by LPA and thrombin in 

SCC-25, by LPA and bradykinin in SCC-15 and by LPA in Detroit-562 (Table 2) 

demonstrating that cross-talk pathways linking GPCR stimulation with EGFR activation are  

installed both in HNSCC cells that display low (FaDu, SCC-9) and high EGFR (SCC-15, 

SCC-4, Detroit-562) expression levels.  

 
Table 2 Tyrosine phosphorylation of the EGFR by  

 GPCR agonists in HNSCC cell lines 
 

Cell line LPA Thr Car Bk EGF EGFRd 
SCC-4 +a + + + + ++++ 
SCC-9 + + + + + + 
FaDu + + + + + + 
SCC-25 + + - b - + ++ 
SCC-15 + - - + + +++ 
Detroit-562 + ND c ND ND + +++++ 

 
   a(Trans)activation of the EGFR by immunoblot analysis  
   bTransactivation of the EGFR not detectable  
   cND, not determined  
   dRelative expression levels of the EGFR by immunoblot  

(Azemar et al., 2000; O-Charoenrat et al., 2000) 
 

In time-course experiments (Fig. 4B, representative data shown for LPA in SCC-9 cells) the 

transactivation signal was detectable as early as three minutes after LPA treatment. Moreover, 

LPA-induced EGFR tyrosine phosphorylation was slightly slower and more transient when 

compared to EGF stimulation (7.5 ng/ml). Together, these findings suggested a role for the 

EGFR as a convergence point for signaling by diverse GPCR agonists and demonstrated that 

HNSCC cells may be targets for stimulation by multiple ligands. The finding that LPA was 

the predominant stimulus of EGFR activation among several GPCR ligands in all cell lines 

examined (Table 2) led the further investigations focus on LPA-induced signal transactivation 

in HNSCC.  

To examine which GPCRs are involved in LPA signaling in head and neck cancer cells,  

micro-array analysis of cDNA prepared from SCC-9, SCC-15 and SCC-25 cells was 

performed. Besides the EGFR, HER2 and HER3, all three known LPA receptor genes (EDG2, 

EDG4 and EDG7) were found to be expressed in SCC-9 and SCC-15 while expression of 

EDG2 and EDG7 was detected in SCC-25 cells (Fig. 5). The three LPA receptors are known 

to display cell type-specific coupling properties for heterotrimeric G proteins.  
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Figure 5. Expression pattern of EGFR- and EDG receptor family members by cDNA micro-array 
analysis. cDNA prepared from SCC-9, SCC-15 and SCC-25 cells was labelled with α[33P]dATP and hybridized 
on array filters as described under Materials and Methods. Data represent relative hybridization signals for 
individual genes. 
 
Therefore, the effect of pertussis toxin (PTX) which inactivates Gα subunits of the Gi/o 

family of G proteins on LPA-induced EGFR tyrosine phosphorylation was examined. As 

shown in Figure 6A, pre-incubation of head and neck cancer cells with PTX (100 ng/ml) 

strongly attenuated the EGFR transactivation signal upon LPA stimulation whereas 

carbachol-, EGF- and pervanadate-induced EGFR tyrosine phosphorylation remained 

unaffected. (Pervanadate is a potent tyrosine phosphatase inhibitor which increases the 

tyrosine phosphorylation content of many intracellular proteins (Huyer et al., 1997)). These 

findings suggested that a predominantly PTX-sensitive cross-talk pathway links agonist-

treated LPA receptors with the EGFR in HNSCC cells. 

Recently, Prenzel et al. have demonstrated that GPCR-induced EGFR transactivation in COS-

7 and HEK-293 cells requires proteolytic cleavage of the membrane-anchored growth factor 

precursor proHB-EGF (Prenzel et al., 1999). To address the question whether a 

metalloprotease-dependent mechanism is involved in EGFR transactivation in HNSCC cells 

the effect of broad-spectrum metalloprotease inhibitors on GPCR-triggered EGFR signal 

activation in head and neck cancer cells was investigated. As shown in Figure 6A, the 

hydroxamic acid derivates batimastat (BB94, 10 µM) and marimastat (BB2516, 10 µM), as 

well as the peptide-based metalloprotease inhibitor FN-439 (100 µM), completely blocked 

LPA- and carbachol-induced EGFR tyrosine phosphorylation in SCC-9 cells while these 

compounds did not interfere with EGF or pervanadate stimulated EGFR activation (Fig. 6A, 

representative data shown for BB94) . Similar results were obtained in SCC-4, SCC-15, SCC-

25, FaDu and Detroit-562 cells. Under these experimental settings, serine-protease inhibitors 

such as PMSF (10 µM) and aprotinin (100 ng/ml) did not influence the GPCR-induced 

transactivation signal (data not shown). 



3 Results   42 

 
 
Figure 6. Both, GPCR-induced and constitutive EGFR tyrosine phosphorylation, depend on 
metalloprotease activity. A) Quiescent SCC-9 cells were pretreated with PTX (100 ng/ml; 18 h), batimastat 
(BB94, 10 µM; 20 min), anti-EGFR blocking antibody ICR-3R (20 µg/ml; 60 min) or an equal volume of 
vehicle, and stimulated for 3 min with 10 µM LPA or 7.5 ng/ml EGF. Cell lysates were analyzed as described 
under Figure 4. B) SCC-25 cells were seeded at 3 x 105 cells in 6-Well dishes in standard medium and incubated 
for 18 h. Cells were washed with PBS and incubated with medium without FCS in the presence of batimastat 
(BB94, 10 µM) or vehicle (DMSO) for the indicated period of time. Cell lysates were analyzed as described 
under Figure 4.  
 
Next, the effect of the EGFR-specific blocking antibody ICR-3R on EGFR phosphotyrosine 

content upon stimulation with GPCR ligands was examined. ICR-3R targets the extracellular 

domain of the EGFR and prevents binding of EGF-like ligands to the receptor (Mateo et al., 

1997). Interestingly, preincubation of head and neck cancer cells with ICR-3R (20 µg/ml) 

completely abrogated the EGFR transactivation signal and EGF-induced EGFR tyrosine 

phosphorylation whereas the antibody did not interfere with pervanadate-induced responses 

(Fig. 6A, representative data shown for SCC-9).  

In addition to its effect on the EGFR transactivation signal upon acute GPCR stimulation, 

batimastat drastically reduced basal tyrosine phophorylation levels of the EGFR in SCC-25 
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cells during a period of six hours after serum withdrawal (Fig. 6B) suggesting the critical 

involvement of metalloproteases in autocrine growth factor precursor shedding in HNSCC 

presumably by regulating basal EGFR ligand availability. Together, these experiments 

demonstrated that a variety of physiologically relevant GPCR agonists are capable of 

inducing rapid EGFR activation in head and neck cancer cells via a pathway that involves 

both PTX-sensitive and PTX–insensitve G proteins, metalloprotease activity and the 

extracellular ligand-binding domain of the EGFR. Moreover, metalloproteases are required 

for constitutive EGFR tyrosine phosphorylation in HNSCC.  

 

3.2 Transactivation of HER2/neu is dependent on metalloprotease 

function and EGFR tyrosine kinase activity. 

 

Since the oncoprotein HER2/neu, which serves as a prognostic marker in HNSCC (Quon et 

al., 2001), has been reported to be transactivated by agonist-treated GPCRs in Rat-1 

fibroblasts (Daub et al., 1996) and since HER2/neu is expressed in SCC-9, SCC-15 and SCC-

25 cells (Fig. 5) the question was raised whether HER2/neu is activated in response to LPA in 

this tumor type. The experiment presented in Figure 7 demonstrated that  LPA (20 µM) 

dramatically increased tyrosine phosphorylation of HER2/neu in SCC-9 cells and that 

transactivation of HER2/neu was sensitive to batimastat.  

 

 

Figure 7. Effect of metalloprotease and EGFR inhibition on LPA-induced transactivation of HER2/neu. 
Quiescent SCC-9 cells were pretreated with batimastat (BB94, 10 µM),  AG1478 (250 nM) or an equal volume 
of vehicle (DMSO) for 20 min, and stimulated for 3 min with 20 µM LPA or 10 ng/ml EGF. After cell lysis, 
HER2/neu was immunoprecipitated using polyclonal anti-HER2/neu antibody. Tyrosine-phosphorylated 
HER2/neu was detected by immunoblotting with monoclonal anti-phosphotyrosine antibody, followed by 
reprobing of the same filter with polyclonal anti-HER2/neu antibody.  
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In addition, tyrosine phosphorylation of HER2/neu following LPA or EGF treatment was 

abolished by the EGFR inhibitor AG1478 (250 nM). Phosphorylation of HER2/neu therefore 

appears to result from EGFR transphosphorylation. The above results implicate that the 

regulation of metalloproteases and the intrinsic EGFR tyrosine kinase activity are critical for 

LPA-induced transactivation of HER2/neu in HNSCC cells.  

 

3.3 EGFR association and tyrosine phosphorylation of SHC and Gab1 

upon LPA treatment is metalloprotease-dependent. 

 
One key downstream event in the transmission of mitogenic signals by the activated EGFR is 

the association and subsequent tyrosine phosphorylation of adaptor proteins (Prenzel et al., 

2001). Furthermore, SHC and Gab1 phosphorylation represent important regulatory steps in 

mitogenic GPCR signaling (Chen et al., 1996; Daub et al., 1997). To address the role of the 

EGFR and metalloproteases in LPA-induced adaptor protein recruitment, SHC was 

immunoprecipitated  from SCC-9 lysates and immunoblotted against phosphotyrosine. As 

demonstrated in Figure 8, LPA stimulation lead to increased tyrosine phosphorylation of SHC 

and two proteins of 170 kDa and 116 kDa which co-immunoprecipitated with activated SHC.  

 

 

Figure 8. LPA-stimulated SHC and Gab1 tyrosine phosphorylation requires both EGFR and 
metalloprotease activities. Quiescent SCC-9 cells were preincubated with inhibitors as described under Figure 
7 and stimulated for 5 min with 10 µM LPA or 7.5 ng/ml EGF. After cell lysis, SHC and Gab1 were 
immunoprecipitated using polyclonal anti-SHC and anti-Gab1 antibody, respectively. Tyrosine-phosphorylated 
proteins were detected by immunoblotting with monoclonal anti-phosphotyrosine antibody, followed by 
reprobing of the same filter with monoclonal anti-SHC antibody.  
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The 170 kDa protein showed immunoreactivity with anti-EGFR antibodies (data not shown) 

whereas in agreement with earlier reports the faint 116 kDa band could be identified as the 

adaptor protein Gab1 (Daub et al., 1997; Murasawa et al., 1998). Moreover, pre-treatment of 

SCC-9 cells with batimastat or AG1478 completely prevented LPA-induced tyrosine 

phosphorylation of SHC and of the co-immunoprecipitated EGFR and Gab1. As shown by 

immunoblot analysis, the increased Gab1 phosphotyrosine content in response to LPA 

treatment was sensitive to batimastat and AG1478 (Fig. 8). Moreover, batimastat did not alter 

EGF stimulated SHC and Gab1 tyrosine phosphorylation. Together, these data demonstrate 

that LPA mobilizes the docking proteins SHC and Gab1 by activating the EGFR through a 

metalloprotease-dependent pathway. 

 

3.4 Activation of the ERK/MAPK pathway by LPA requires both EGFR 

function and metalloprotease activity.  

 
Activation of the ERK/MAPK pathway is a key step in the regulation of important cellular 

responses such as cell proliferation. Therefore, the effect of LPA and EGF stimulation on 

MAPK activity in head and neck cancer cells was investigated by immunoblotting cell lysates 

with phospho-specific MAPK antibodies. In time-course experiments LPA (10 µM) and EGF 

(5 ng/ml)-induced ERK/MAPK activation was detectable as early as three min following 

stimulation and peaked within 15 min in both SCC-9 and SCC-25 cells (Fig. 9, representative 

data shown for SCC-25).  

 

 

Figure 9. Time-course of ERK and p38/MAPK activation. Quiescent SCC-25 cells were treated with 10 µM 
LPA, 5 ng/ml EGF or 5 µg/ml anisomycin (AI) for the indicated times. After lysis, activated ERK1/2 and p38 
was detected by immunoblotting of total lysates with polyclonal anti-phospho-ERK (P-ERK) or anti-phospho-
p38 (P-p38) antibody, followed by reprobing of the same filter with monoclonal anti-ERK (ERK) and 
monoclonal anti-p38 (p38) antibody. *, unspecific signal. 
 



3 Results   46 

Furthermore, LPA-induced ERK activation was slightly more transient when compared to 

EGF stimulation. In contrast to ERK1/2, LPA and EGF only led to low-level activation of the 

stress-responsive MAPK p38, while anisomycin stimulation (5 µg/ml) served as a positive 

control.  

Based on these findings, the functional role of the EGFR in activation of the MAPK ERK2 

evoked by LPA was assessed in HNSCC cells. Previously, expression of a dominant-negative 

EGFR mutant has been shown to block EGFR-specific downstream signaling events (Daub et 

al., 1997). Therefore, hemagglutinin (HA)-tagged ERK2 (HA-ERK2) was co-expressed 

together with the EGFR mutant HER-CD533 in SCC-9 cells. HA-ERK2 activity was 

measured in vitro with an immunocomplex assay using myelin basic protein (MBP) as a 

substrate. As shown in Figure 10, LPA (10 µM) and EGF (5 ng/ml) lead to an eight-fold 

increase of HA-ERK2 activity in cells transfected with empty vector while in the presence of 

different amounts of HER-CD533, activation of HA-ERK2 was inhibited up to 75%. As 

specificity controls, expression of HER-CD533 did not influence PDGF stimulated HA-ERK2 

activation and the dominant-negative βPDGFR-CD504 mutant had no significant effect on 

HA-ERK2 activation by LPA. Interestingly, βPDGFR-CD504 attenuated HA-ERK2 

stimulation upon EGF treatment by 50%, pointing towards an additional cross-talk 

mechanism between these two RTKs as suggested before (Bagowski et al., 1999; He et al., 

2001).  
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Figure 10. Inhibition of ERK/MAPK activation by expression of dominant-negative EGFR HER-CD533. 
SCC-9 cells were transiently transfected with an expression plasmid encoding HA-ERK2 (250 ng/well). Where 

indicated, a plasmid encoding HER-CD533 (+: 150 ng/well, ++: 450 ng/well) or βPDGFR-CD504 (+: 
450 ng/well) were co-transfected. Following serum starvation for 24 h, cells were treated for 7 min with LPA 
(10 µM) or EGF (5 ng/ml), lysed and HA-ERK2 activity was determined using MBP as substrate as described in 
Materials and Methods. Phosphorylated MBP was visualized by autoradiography after gel electrophoresis and 

HA-ERK2 was immunoblotted in parallel using monoclonal anti-HA antibody. Quantitative analysis of HA-
ERK2 activation from three independent experiments (mean ± s.d.). *, P < 0.001 for the difference between 
control + LPA and HER-CD533 + LPA; **, P < 0.005 for control + EGF versus HER-CD533 + EGF and 
βPDGFR-CD504. For expression control of HER-CD533, transfected cells were labeled with [35S]methionine 
and lysates were subjected to immunoprecipitation with monoclonal anti-EGFR antibody  followed by 
autoradiography. Expression of βPDGFR-CD504 was detected by subjecting lysates to immunoprecipitation 

with anti-βPDGFR 128D4C10 antibody and by immunoblotting with monoclonal anti-βPDGFR antibody.  
 

To extend the results obtained with ectopically expressed ERK in SCC-9 cells, the 

requirement of EGFR and metalloprotease activities for activation of endogenous 

ERK/MAPK in response to LPA was investigated. AG1478 treatment completely abrogated 

ERK2 activation upon LPA and EGF stimulation in SCC-9 and SCC-25 cancer cells (Fig. 11).  

 

 

 
Figure 11. Inhibition of endogenous ERK/MAPK activation by interfering with EGFR signal 
transmission. Quiescent SCC-9 and SCC-25 cells were preincubated with batimastat (10 µM), AG1478 (250 
nM) or vehicle (DMSO) for 20 min, and stimulated for 7 min with 10 µM LPA or 5 ng/ml EGF. After cell lysis, 
endogenous ERK2 was immunoprecipitated using polyclonal anti-ERK2 antibody and ERK2 activity was 
determined using MBP as substrate and ERK2 was immunoblotted in parallel using polyclonal anti-ERK2 

antibody. Quantitative analysis of endogenous ERK2 activation from three independent experiments (mean ± 
s.d.). *, P < 0.005 for the difference between DMSO + LPA versus BB94 + LPA and AG1478 + LPA; **, P < 
0.01 for DMSO + EGF versus AG1478 + EGF (SCC-9). ***, P < 0.05 for DMSO + EGF versus AG1478 + EGF 
(SCC-25). 
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Furthermore, LPA-triggered ERK2 activation was almost completely inhibited by batimastat 

whereas ERK2 activation by exogenous EGF was minimally affected. Taken together, these 

data demonstrate a critical role for metalloprotease-mediated transactivation of the EGFR in 

promotion of the ERK/MAPK pathway in HNSCC cells. 

Recently, the NRTK Src was shown to be a critical mediator of GPCR-induced ERK/MAPK 

activation that can either act upstream (Luttrell et al., 1997) or downstream (Daub et al., 1997) 

of the transactivated EGFR. To address the role of Src in the EGFR transactivation pathway 

in HNSCC the effect of the Src inhibitor PP1 on GPCR-triggered EGFR and ERK activation 

was investigated. The results showed that PP1 did not affect LPA-induced EGFR tyrosine 

phosphorylation (Fig. 12A) whereas ERK activation by LPA was completely abrogated (Fig. 

12B). These data suggested the involvement of Src in ERK activation by LPA downstream of 

the EGFR in HNSCC cells. 

 
 

Figure 12. Effect of the Src inhibitor PP1 on LPA-triggered EGFR tyrosine phosphorylation and 
ERK/MAPK activation. Quiescent SCC-9 cells were preincubated with PP1 (20 µM, 30 min) or vehicle and 
stimulated with LPA (10 µM) or EGF (7.5 ng/ml) for 3 min. Tyrosine-phosphorylated EGFR (A) and activated 
ERK (B) were identified as described above. 
 

3.5 Metalloprotease-dependent transactivation of the EGFR is required 

for LPA-induced  DNA synthesis and S-phase progression.  

 
Since it has been observed that batimastat reduces basal tyrosine phosphorylation levels of the 

EGFR in SCC-25 cells (Fig. 6B), it was next  investigated whether metalloprotease- or EGFR 

inhibition influences proliferation of HNSCC cells under normal growth conditions in the 

presence of 10% FCS. As shown in Figure 13A, batimastat and AG1478 completely blocked 

growth of SCC-25 cells demonstrating that metalloprotease and EGFR activities are required 

for growth of HNSCC cells. 

For further quantification of mitogenic signaling in response to LPA, the rate of DNA 

synthesis was measured by an 3H-thymidine incorporation assay. In SCC-9 and SCC-25 cells 

that express low and medium levels of EGFR, respectively, AG1478 blocked DNA synthesis 

in response to LPA or EGF stimulation (Fig. 13B). Furthermore, batimastat  reduced  the  rate  
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Figure 13. Batimastat and the EGFR-specific tyrphostin AG1478 inhibit general and LPA-induced cell 
proliferation and DNA synthesis. A) Direct determination of cell proliferation: SCC-25 cells were grown in 
standard media containing 10% FCS in the presence of batimastat (10 µM), AG1478 (250 nM) or vehicle 
(DMSO). Media were changed every two days. Cells were harvested by trypsination and counted by using a 
Coulter counter. Shown are the results of triplicate wells ± s.d.. B) 3H-thymidine incorporation into DNA. 
Quiescent HNSCC cells were preincubated with batimastat (+: 5 µM, ++: 10 µM), AG1478 (250 nM) or vehicle 
(DMSO) for 20 min and incubated in the absence or presence of ligands (LPA, 10 µM; EGF, 25 ng/ml) for 18 h. 
Cells were then pulse-labelled with 3H-thymidine and thymidine incorporation was measured by liquid-
scintillation counting. Quantitative analysis from three independent experiments (mean ± s.d.). *, P < 0.025 for 
the difference between control versus inhibitor-treated samples. 
 
of DNA synthesis by LPA in a dose-dependent fashion up to 45% (10 µM batimastat) in 

SCC-9, while in SCC-25 cells complete inhibition of DNA synthesis by batimastat was 

observed already at 5 µM. This difference in batimastat-sensitivity indicates variations in the 

dependence of HNSCC cells on the TMPS pathway. Interestingly, DNA synthesis induction 

by exogenous EGF was also reduced by batimastat by 40% in SCC-9 cells and 35% in SCC-

25 cells suggesting that EGF stimulation results in enhanced shedding of endogenous EGFR 

ligands. These findings are consistent with reports showing that HNSCC cell lines and tumors 

are mitogenically stimulated by EGF-like autocrine systems (O-Charoenrat et al., 2000b). In 
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addition, the MEK inhibitor PD98059 (5 µM) completely inhibited basal, as well as, LPA- 

and EGF- induced DNA synthesis in SCC-9 and SCC-25 cells (data not shown),  

underscoring the importance of the Ras/MAPK pathway in the regulation of cell proliferation 

in response to growth factor stimulation. In the EGFR over-expressing cell lines SCC-4 and 

SCC-15 LPA was also able to stimulate thymidine incorporation in a batimastat- and 

AG1478-dependent manner (Fig. 13B) suggesting that  cross-talk pathways between GPCRs 

and the EGFR are also relevant for head and neck cancer cell proliferation with high EGFR 

background.   

To extend the results on proliferative responses upon GPCR stimulation growth factor-

induced cell cycle progression of serum-deprived SCC-25 cells was investigated by flow 

cytometric analysis. As shown in Table 3, the accumulation of a S-phase cell population in 

response to LPA (25 µM) was sensitive to metalloprotease inhibition. Complete abolishment 

of LPA-induced S-phase progression was observed in the presence of 5 µM batimastat (Fig. 

14). Under these experimental conditions, EGF (50 ng/ml) stimulated S-phase entry was 

reduced by 50% which, as mentioned above, indicates an involvement of metalloprotease-

dependent growth factor precursor cleavage in the EGF action on these cells.  

 
 

Table 3 LPA-induced S-phase progression is blocked by the 
 metalloprotease inhibitor batimastat in SCC-25 cells 

 
Stimulus Batimastat < G1 G1 S G2/M 

- - 5a 75 9 11 
- 3 65 19 13 

0.2 µM 4 66 16 14 
1 µM 5 71 12 12 

LPA 
 

5 µM 8 69 9 14 
- 5 64 19 12 

0.2 µM 8 61 19 12 
1 µM 5 66 18 11 

EGF 

5 µM 6 69 14 11 
 

aFlow cytometric analysis of SCC-25 cell cycle (% of cells). Quiescent 
SCC-25 cells were preincubated with batimastat or vehicle (DMSO) for 
20 min and incubated in the absence or presence of ligands (LPA, 25 µM; 
EGF, 50 ng/ml) for 18 h. Representative data of one of three experiments 
are shown. 
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Figure 14. Effect of metalloprotease inhibition on S-phase progression. Quiescent SCC-25 cells were 
preincubated with batimastat (5 µM) or vehicle (DMSO) for 20 min and incubated in the absence or presence of 
ligands (LPA, 25 µM; EGF, 50 ng/ml) for 18 h. Cells were harvested and analysed by flow cytometry. 
 

Together, these data emphasize the biological significance of metalloprotease-dependent 

EGFR signal transactivation in LPA-induced mitogenic signaling of head and neck cancer 

cells. 

 

3.6 LPA enhances HNSCC cell motility via transactivation of the EGFR.  

 

Besides proliferation, cell motility represents another critical parameter in the pathobiology of 

cancer. Recent reports demonstrated that EGF-like ligands such as HB-EGF, TGFα and 

amphiregulin promote invasion of HNSCC cells in vitro (O-Charoenrat et al., 2000a) and that 

LPA stimulation is capable of promoting migration of ovarian cancer cells (Fishman et al., 

2001). It was therefore hypothesized that GPCR stimulation, that leads to EGFR 

transactivation, might influence the migratory behaviour of head and neck cancer cells. First, 

the effect of LPA on migration of HNSCC keratinocytes was investigated in an in vitro 

wound closure assay. Migration of cells was studied by scraping a wound into a confluent 

monolayer of SCC-9 or SCC-25 cells and determining the rate of closure. Both LPA (5 µM or 

20 µM) and HB-EGF (20 ng/ml) drastically enhanced closure of the wounded area (Fig. 15A, 

representative data shown for SCC-9). Furthermore, wound closure in response to LPA was 

completely blocked by AG1478 or batimastat at selective concentrations. These observations 

suggested a role of the EGFR transactivation pathway in regulation of the migratory 

behaviour of head and neck cancer cells.  
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Figure 15. GPCR stimulated wound closure, migration and expression of MMP-9 require both EGFR and 
metalloprotease activities. A) In vitro wound closure assay. SCC-9 cells were seeded into 6-Well plates and 
grown to confluence for a classical wounding assay. Cells were scraped with a plastic tip, the medium was 
removed and cells were rinsed twice with PBS. Medium without FCS was added and cells were preincubated 
with either DMSO (control), 250 nM AG1478 or 10 µM batimastat. Cells were stimulated with LPA (+: 5µM, 
++: 20 µM) or HB-EGF (20 ng/ml) and permitted to migrate for 48 h. The dishes were monitored 
microscopically (20x). B) Chemotactic migration toward fibronectin. SCC-9 cells were preincubated with either 
DMSO (control), 125 nM AG1478 or 5 µM batimastat. Cells were seeded into membrane inserts of transwell 
dishes in the presence or absence of ligands  (LPA, 50 µM; EGF, 25 ng/ml) and were permitted to migrate for 36 
h toward fibronectin as a chemoattractant. Nonmigrated cells were removed from the upper surface of the 
membrane, while the cells that had migrated to the lower surface were fixed and stained with crystal violet. 
Absorbance of solubilized cells was measured with a micro-plate reader. Each bar is the average of quadruplicate 
values (mean ± s.d.). *, P < 0.005 for the difference between control versus LPA and EGF. **, P < 0.001 
between LPA versus BB94 + LPA and AG1478 + LPA. C) Zymography of conditioned media from SCC-25 
cells. Quiescent SCC-25 cells were stimulated with the indicated concentration of LPA and 25 ng/ml EGF, 
respectively, for 2 d (upper panel) or stimulated with 10 µM LPA in the presence of 10 µM batimastat, 250 nM 
AG1478, 10 µM PD98059 or vehicle (lower panel). Gelatinolytic activity of MMP-2 and MMP-9 was visualized 
by staining gels with Coomassie G250. 
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Secondly, the chemotactic motility of HNSCC cells in response to growth factor stimulation 

was assessed in a modified Boyden chamber assay. Similar to the results obtained in the 

induction of wound closure, chemotactic migration of SCC-9 cells toward fibronectin was 

strongly potentiated by LPA or EGF stimulation (Fig. 15B). Moreover, inhibition of EGFR or 

metalloprotease activity prevented LPA-triggered migration of SCC-9 cells.  

Besides high EGFR expression levels, over-expression of certain matrix metalloproteinases 

(MMPs) has been associated with increased invasive potential of HNSCC tumors and poor 

prognosis. Recently, it has been demonstrated that direct EGFR stimulation with EGF-like 

ligands upregulates the expression of MMP-9 in HNSCC cell lines (O-Charoenrat et al., 

2000a). Therefore, the effect of LPA on the expression of MMP-2 and MMP-9 in SCC-25 

cells was determined by gelatin zymography. As shown in Figure 15C, LPA drastically 

induced the expression of MMP-9 in a concentration-dependent manner, while the expression 

of MMP-2 was only weakly affected. Moreover, LPA-induced MMP-9 expression was 

significantly inhibited by batimastat, AG1478 and the MEK inhibitor PD98059, suggesting a 

direct role of the TMPS pathway and downstream ERK activation in the regulation of MMP-9 

expression in head and neck cancer cells. 

Altogether, these data substantiate the importance of EGFR and metalloprotease function in 

GPCR stimulated motility of head and neck cancer cells. 

 

3.7 LPA promotes cell-surface ectodomain processing and release of AR. 

  

It has been reported previously that LPA stimulation leads to the metalloproteolytic 

processing of the growth factor precursor HB-EGF in COS-7 and VeroH cells (Hirata et al., 

2001; Prenzel et al., 1999; Umata et al., 2001). To gain further insight into the molecular 

mechanisms of EGFR signal transactivation in head and neck cancer, the question was 

addressed whether HB-EGF or other EGF-like growth factors are cleaved upon GPCR 

stimulation in HNSCC. By cDNA micro-array analysis expression of HB-EGF, TGFα and 

AR mRNAs was found in SCC-9, SCC-15 and SCC-25 cells (Fig. 16). Expression on the 

protein level, as well as, cell-surface localization of these ligands were confirmed by flow 

cytometry using ectodomain specific antibodies (Fig. 17A). Interestingly, and in contrast to 

the results in COS-7 cells, treatment of SCC-9 and SCC-15 cancer cells with LPA (10 µM) or 

the phorbol ester TPA (1 mM) dramatically reduced the cell surface content of endogenous 

proAR (Fig. 17B).  
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Figure 16. Expression pattern of EGF-like growth factor precursors by cDNA micro-array analysis. cDNA 
prepared from SCC-9, SCC-15 and SCC-25 cells was labelled with α[33P]dATP and hybridized on array filters 
as described under Materials and Methods. Data represent relative hybridization signals for individual genes. 
 

 

Figure 17. Flow cytometric analysis of EGF-like precursor expression and LPA-induced proteolytic 
processing of proAR. A) Quiescent SCC-9 cells were collected and stained for surface HB-EGF, TGFα or AR 
and analysed by flow cytometry. Control cells were labelled with FITC-conjugated secondary antibody alone. B) 
SCC-9 cells were serum-starved for 24 h, incubated for the last 18 h with PTX (100 ng/ml) or for 20 min with 
batimastat (10 µM) and stimulated for 5 min with LPA (10 µM) or TPA (1 µM). Control cells were labelled with 
FITC-conjugated secondary antibody alone. Cells were collected and analysed for cell surface AR density by 
flow cytometry.  
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However, in this cellular context, LPA was not able to induce the proteolytic cleavage of 

proTGFα or proHB-EGF, while TPA stimulation resulted in shedding of both EGF-like 

growth factor precursors (data not shown). These findings suggested that LPA stimulation 

selectively induces shedding of proAR in HNSCC. AR is widely expressed in normal human 

tissues (Plowman et al., 1990) and represents the major autocrine growth factor for 

keratinocytes in the process of wound healing (Cook et al., 1991; Schelfhout et al., 2002). 

Interestingly, enhanced expression of AR has been detected in epidermal biopsies derived 

from psoriatic lesions as well as in colon and stomach carcinomas (Cook et al., 1992). 

Moreover, AR has been shown to act as an autocrine growth factor for normal and 

transformed mammary epithelial and colon carcinoma cells (Johnson et al., 1992; Li et al., 

1992; Normanno et al., 1994). In agreement with the previous findings demonstrating an 

involvement of predominantly PTX-sensitive G proteins in EGFR transactivation (Fig. 6A), 

PTX (100 ng/ml) partially inhibited proAR shedding at the cell-surface of SCC-9 cells (Fig. 

17B). In addition, batimastat (BB94, 10 µM) completely abolished LPA-induced ectodomain 

cleavage of proAR (Fig. 17B). This result confirmed the requirement of metalloprotease 

activity for proAR shedding in response to GPCR stimulation mediated by PTX-sensitive and, 

to lesser extent, PTX-insensitive G proteins. 

In addition to the decrease in the amount of cell-surface proAR (17B), LPA stimulation 

resulted in the accumulation of mature AR in cell culture medium as determined by sandwich-

ELISA (Fig. 18).  

 

Figure 18. GPCR-induced proteolytic release of AR by sandwich-ELISA. A) Quiescent SCC-9 cells were 
stimulated with 10 µM LPA as indicated. Conditioned medium was collected and analyzed for total amount of 
AR by ELISA. Each point is the average of duplicate values. B) Quiescent SCC-9 cells were preincubated with 
batimastat (10 mM) or vehicle for  20 min followed by stimulation with 10 µM LPA, 1 mM carbachol, 1 mM 
TPA for 120 min and analyzed as described under A). Each bar is the average of triplicate values (mean ± s.d.). 



3 Results   56 

The amount of free AR increased from 533 pg/ml to 975 pg/ml within 120 min after LPA 

stimulation, while half-maximal AR-release was observed already after about 10 min (Fig. 

18A). AR release in response to carbachol was substantially lower compared to LPA 

stimulation (Fig. 18B) suggesting a direct correlation between the amount of released AR and 

the EGFR tyrosine phosphorylation content in response to GPCR ligands (see Fig. 4A, 6A). 

Moreover, pre-incubation with batimastat completely prevented GPCR- and TPA-induced 

accumulation of AR in cell culture medium (Fig. 18B), demonstrating metalloprotease-

dependency of AR release. 

In conclusion, stimulation of head and neck cancer cells with the GPCR ligands LPA and 

carbachol results in the rapid activation of a metalloprotease activity that specifically cleaves 

proAR at the cell surface, subsequently leading to release of the mature growth factor. 

 

3.8 LPA-induced EGFR signal transactivation and downstream events 

depend on AR. 

 
To gain insight into the functional role of AR precursor processing in the EGFR 

transactivation pathway the effect of anti-AR neutralizing antibodies on EGFR-tyrosine-

phosphorylation by LPA in SCC-9 cells was examined. Pre-treatment with either polyclonal 

goat (50 µg/ml) or monoclonal mouse (25 µg/ml) antibodies raised against the ectodomain of 

human AR inhibited the EGFR transactivation signal while EGFR activation upon EGF 

stimulation remained unaffected (Fig. 19A). Similar results were obtained upon stimulation of 

SCC-9 cells with carbachol (data not shown). In contrast, inhibition of HB-EGF by using the 

diphtheria toxin mutant CRM197 or anti-HB-EGF neutralizing antibodies showed no effect 

on LPA- or carbachol-induced EGFR transactivation (data not shown). Since it has been 

observed that the glycosaminoglycan heparin abrogates thrombin-induced EGFR 

transactivation in vascular smooth muscle cells by blocking HB-EGF function (Kalmes et al., 

2000) and both HB-EGF and AR belong to the family of heparin-binding growth factors the 

question was raised whether heparin treatment of SCC-9 cells would affect the EGFR 

transactivation signal.  
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Figure 19. Effect of inhibition of AR biological activity on EGFR signal transactivation, SHC tyrosine 
phosphorylation and in vitro association of Grb2 with SHC. A) Quiescent SCC-9 cells were pretreated with 
polyclonal goat AR neutralizing antibody (αAR Ab, 50 µg/ml, 60 min) or heparin (100 ng/ml, 15 min), and 
stimulated for 3 min (EGFR) or 5 min (SHC) with 10 µM LPA or 7.5 ng/ml EGF. Tyrosine-phosphorylated 
EGFR or SHC was detected as described above. Data for the monoclonal mouse AR antibody are not shown. B) 
SCC-9 cells were preincubated and stimulated for 5 min as described above. Lysates were incubated with GST-
Grb-2 fusion protein or GST alone. Proteins were separated by SDS-PAGE and immunoblotted with monoclonal 
anti-SHC antibody. 
 
As shown in Figure 19A, heparin (100 ng/ml) completely blocked EGFR tyrosine 

phosphorylation caused by LPA, but had no effect on the ability of exogenous EGF to activate 

the EGFR. In addition to SCC-9, anti-amphiregulin neutralizing antibodies and heparin 

abolished LPA stimulated EGFR transactivation in SCC-4, SCC-15 and SCC-25 cells (data 

not shown). Based on these findings the effect of AR inhibition on SHC activation 

downstream of the transactivated EGFR was evaluated. In fact, anti-AR neutralizing 

antibodies and heparin completely prevented LPA-induced SHC tyrosine phosphorylation. 

Moreover, following LPA stimulation SHC was found to associate with a glutathione-S-

transferase (GST) Grb2 fusion protein (Fig. 19B). In head and neck cancer cells, however, 

where AR function or metalloprotease activity was blocked by anti-AR neutralizing 

antibodies, heparin or batimastat, these proteins did not associate. The inhibitors were used at 

concentrations that maintain their selectivity and in contrast to anti-AR blocking antibodies, 

control goat IgG had no effect on LPA-induced complex formation. Together, these 

experimental findings argue for a critical role of proAR cleavage in LPA stimulated EGFR 

signal transactivation and downstream SHC tyrosine phosphorylation and Grb2 adaptor 

protein recruitment in head and neck cancer cells. 
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3.9 ProAR processing is required for ERK/MAPK activation and 

Akt/PKB phosphorylation in response to LPA. 

 

To define whether AR participates in LPA stimulated ERK/MAPK activation in HNSCC 

cells, the effect of AR inhibition on ERK1/2 activation was studied.  

 

 

Figure 20. AR is required for GPCR-induced ERK/MAPK activation and Akt/PKB phosphorylation. 
Quiescent SCC-9 or SCC-15 cells were pretreated with anti-AR neutralizing antibodies (αAR Ab, 50 µg/ml), 
control IgG (50 µg/ml), heparin (100 ng/ml) or batimastat (10 µM), and stimulated for 7 min with 10 µM LPA or 
7.5 ng/ml EGF. Phosphorylated ERK1/2 was detected by immunoblotting of total lysates with anti-phospho- 
ERK antibodies  (P-ERK). The same filters were reprobed with anti-ERK antibodies (ERK). Quantitative 
analysis of ERK phosphorylation from three independent experiments (mean ± s.d.). SCC-9: *, P < 0.05 for the 
difference between unstimulated control versus LPA; **, P < 0.001 for LPA vs. αAR Ab + LPA; ***, P < 0.025 
for LPA vs. Heparin + LPA and BB94 + LPA. SCC-15: *, P < 0.025 for the difference between unstimulated 
control versus LPA; **, P < 0.05 for LPA vs. αAR Ab + LPA and BB94 + LPA; ***, P < 0.001 for LPA vs. 
Heparin + LPA. Stimulation of Akt/PKB. Quiescent SCC-9 or SCC-15 cells were processed as described above 
and whole cell lysates were immunoblotted with anti-phospho-Akt/PKB antibodies  (P-Akt/PKB). The same 
filters were reprobed with anti-Akt/PKB antibodies (Akt/PKB). 
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As shown on Figure 20, anti-AR neutralizing antibodies, heparin and batimastat completely 

prevented LPA-induced ERK activation in SCC-9 cells as determined by immunoblotting of 

lysates with anti-phospho-ERK antibody and subsequent quantification. 

In SCC-15, AR blocking antibodies reduced ERK phosphorylation in response to LPA by 

50%, heparin by 95% and batimastast by 75%, respectively.  These findings suggested that 

LPA signaling to ERK1/2 in oral squamous cell carcinoma occurs via both an AR- and 

metalloprotease-dependent pathway.  

In addition to its mitogenic effect, several investigations have revealed that LPA acts as a 

survival factor by activating both the ERK/MAPK pathway and the PI-3K-dependent 

phosphorylation of Akt/PKB in diverse cell types (Fang et al., 2002; Sautin et al., 2001; Yart 

et al., 2002). Therefore, the question was raised whether GPCR stimulation induces 

phosphorylation of Akt/PKB in head and neck cancer cells. The results indicated that LPA 

drastically increased phosphorylation of Akt/PKB at Ser-473 in SCC-9 and SCC-15 cells 

(Fig. 20) and that Akt/PKB phosphorylation was substantially inhibited by AR-blockade or 

batimastat treatment. Moreover, Akt/PKB phosphorylation by LPA and carbachol was 

prevented by AG1478 and sensitive to PI-3K inhibition by wortmannin (100 nM) and 

LY294002 (100 µM; Fig. 21).  

 

 
 
Figure 21. PI3K and EGFR are required for GPCR-induced Akt/PKB phosphorylation. Quiescent SCC-9 
cells were pre-treated with wortmannin (WM, 100 nM), LY294002 (100 µM), AG1478 (250 nM) or vehicle for 
30 min and stimulated with 10 µM LPA or 1 mM carbachol (Car) for 15 min. After lysis, activated Akt/PKB 
was detected by immunoblotting of total lysates with polyclonal anti-phospho-Akt/PKB (P-Akt) antibody, 
followed by reprobing of the same filter with polyclonal anti-Akt/PKB (Akt) antibody.    
 

Together, these findings demonstrated that metalloprotease-dependent processing of the 

heparin-binding growth factor proAR is a crucial step in LPA-induced ERK/MAPK activation 

and phosphorylation of Akt/PKB in HNSCC cells. 
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3.10 AR bioactivity is involved in LPA stimulated DNA synthesis and cell 

motility.  

 

To further extend the studies on AR function for growth-promoting GPCR signaling the effect 

of AR inhibition on LPA-induced DNA synthesis was examined in an 3H-thymidine 

incorporation assay. As shown in Figure 22A, HNSCC cells displayed a significant reduction 

in the rate of DNA synthesis triggered by LPA upon AR inhibition by 50% (AR neutralizing 

antibody + LPA or heparin + LPA) suggesting that a full proliferative response triggered by 

LPA requires AR. Moreover, batimastat and the EGFR-specific inhibitor tyrphostin AG1478 

decreased DNA synthesis by LPA to below basal level.  

 

 

 
Figure 22. Effect of AR inhibition on LPA-induced DNA synthesis and migration. A) 3H-thymidine 
incorporation into DNA. Quiescent SCC-15 cells were pre-incubated with AR neutralizing antibodies (αAR Ab, 
50 µg/ml), control IgG (50 µg/ml), 100 ng/ml heparin, batimastat (10 µM) or AG1478 (250 nM) and incubated 
in the absence or presence of ligands (LPA, 10 µM; AR, 10 ng/ml) for 18 h. Cells were then pulse-labelled with 
3H-thymidine and thymidine incorporation was measured by liquid-scintillation counting. Quantitative analysis 
from three independent experiments (mean ± s.d.). *, P < 0.001 for the difference between unstimulated control 
vs. LPA, control IgG + LPA and AR; **, P < 0.001 for LPA vs. αAR Ab + LPA, Heparin + LPA, BB94 + LPA 
and AG1478 + LPA. B) Chemotactic migration toward fibronectin. Quiescent SCC-9 cells were preincubated 
with anti-EGFR neutralizing antibody ICR-3R (αEGFR Ab, 20 µg/ml), AR neutralizing antibody (αAR Ab, 50 
µg/ml) or control IgG (50 µg/ml) in the absence or presence of LPA (50 µM). Migration of cells was analyzed as 
described under Figure 15. Each bar is the average of quadruplicate values (mean ± s.d.). *, P < 0.025 for the 
difference between LPA versus LPA + blocking antibody-treated samples. 
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Since LPA has been identified as a potent stimulus of cell migration in head and neck cancer 

cells (see Fig. 15) the effect of AR inhibition on chemotactic motility was studied. The results 

show that AR and EGFR neutralizing antibodies inhibited LPA-induced tumor cell migration 

by 16% and 21%, respectively, while control IgG had no effect (Fig. 22B). The results 

presented here, demonstrating specific involvement of AR function in LPA- and carbachol-

induced EGFR tyrosine phosphorylation and motility of HNSCC cells (3.8-3.10) were 

independently verified by studies conduced in collaboration with S. Hart (this department, 

MPI of Biochemistry) using RNA interference technology (S. Hart, personal communication; 

Gschwind, A. et al., submitted, 2002).  

In summary, these data further substantiate the importance of AR function as a key element in 

mitogenic and motility-promoting LPA signaling in head and neck cancer. 

 
3.11 TACE is required for proAR shedding and EGFR signal 

transactivation by LPA and carbachol in HNSCC cells.  

 
Recent observations have suggested a role of the metalloprotease-disintegrin TACE/ 

ADAM17 in  shedding of proAR and other EGF-like growth factor precursors in murine 

fibroblasts (Peschon et al., 1998; Sunnarborg et al., 2002). Moreover, the proteolytic activity 

of TACE has been shown to be inhibited by the tissue inhibitor of metalloprotease-3 (Timp-3) 

but not Timp-1 in vitro (Amour et al., 1998). Since TACE and also other ADAMs were found 

to be widely expressed in HNSCC cell lines on the mRNA (Fig. 23A) and protein level (Fig. 

23B) the effect of Timp-1 and Timp-3 on the EGFR transactivation signal was investigated.  
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Figure 23. Expression of TACE and other metalloproteases by cDNA micro-array and Western blot 
analysis (only TACE) in HNSCC cell lines. A) cDNA prepared from SCC-9, SCC-15 and SCC-25 cells was 
labelled with α[33P]dATP and hybridized on array filters as described under Materials and Methods. Data 
represent relative hybridization signals for individual genes. Although ADAM12 did not show an hybridisation 
signal under this experimental conditions, expression of ADAM12 was observed by RT-PCR analysis in SCC-9 
cells (S. Hart, personal communication). B) TACE was immunoprecipitated from lysates with monoclonal anti-
TACE antibody. HEK-293 cells transfected with human TACE cDNA served as a positive control. 
 
Indeed, ectopic expression of  Timp-3 but not Timp-1 by retroviral transduction significantly 

inhibited GPCR-induced EGFR tyrosine phosphorylation in SCC-9 cells (Fig. 24A). 

Expression of Timps carrying a C-terminal VSV-tag was confirmed by immunoblotting total 

lysates with anti-VSV antibodies (Fig. 24B). These results pointed towards a direct 

involvement of TACE in the TMPS pathway in HNSCC cells. 
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Figure 24. Timp-3 but not Timp-1 inhibits EGFR signal transactivation in SCC-9 cells. A) SCC-9 cells 
were infected with retrovirus encoding human Timp-1 or Timp-3. EGFR activation was determined by 
immunoblot after stimulation with agonists as indicated.  B) Expression of VSV-tagged Timps was confirmed by 
immunoblotting crude cell lysates with monoclonal anti-VSV antibody. 
 
Therefore, a dominant-negative TACE mutant which lacks the pro- and metalloprotease 

domain (Solomon et al., 1999) (Fig. 25D) was ectopically expressed in SCC-9 cells. The 

results showed that this TACE mutant indeed suppressed GPCR-induced proAR cleavage 

(Fig. 25A), release of mature AR (Fig. 25B) and EGFR signal transactivation (Fig. 25C).  

In contrast, neither dominant-negative mutants of ADAM10 (Lemjabbar and Basbaum, 2002) 

and ADAM12 (Asakura et al., 2002) which have been shown to be involved in GPCR-

triggered proHB-EGF processing nor an analogous ADAM15 mutant affected the GPCR-

induced responses (Fig. 25C, Fig. 26). In addition, the specific involvement of TACE in LPA- 

and carbachol-induced EGFR tyrosine phosphorylation in HNSCC cells was corroborated and 

extended to downstream mitogenic and motility-promoting signaling events by studies using 

RNA interference (S. Hart, personal communication; Gschwind, A. et al., submitted, 2002).  
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Figure 25. Dominant-negative TACE suppresses GPCR-induced AR release and EGFR signal 
transactivation. SCC-9 cells were infected with retrovirus encoding a TACE mutant that lacks the pro- and 
metalloprotease domain (∆MP TACE) or with control retrovirus. ProAR ectodomain shedding (A) and AR 
release into cell culture medium (B) was analyzed by flow cytometry and AR-ELISA, respectively. C) SCC-9 
cells were infected with retrovirus encoding wild-type TACE (Wt 17), dominant-negative TACE (∆MP TACE), 
dominant negative ADAM12 (∆MP 12) or control retrovirus. EGFR tyrosine phosphorylation was determined by 
immunoblot after stimulation with agonists as indicated.  D) Expression of protease constructs was confirmed by 
immunoblotting crude cell lysates with polyclonal anti-TACE and monoclonal anti-HA antibody, respectively. 
 



3 Results   65 

 
 

Figure 26. Specificity of dominant-negative TACE for LPA-induced EGFR signal transactivation in 
HNSCC. A) SCC-9 cells were infected with retrovirus encoding deletion mutants of ADAM10 (∆MP 10), 
ADAM12 (∆MP 12), ADAM15 (∆MP 15) or TACE (∆MP 17) lacking the pro- and metalloprotease domain. 
EGFR tyrosine phosphorylation was determined by immunoblot after stimulation with LPA. B) Expression of 
HA-tagged protease mutants was confirmed by immunoblotting crude cell lysates with monoclonal anti-HA 
antibody. *, unspecific signal. 
 
Collectively, these data suggested that TACE in involved in proAR cleavage and EGFR 

signal transactivation by LPA and carbachol in HNSCC cells.  

 
3.12 TACE is involved in carbachol stimulated proHB-EGF shedding and 

EGFR signal transactivation in COS-7 cells. 

 

Analysis of the phenotype resulting from targeted disruption of the TACE genes in mice 

suggested a role for TACE  in ectodomain shedding of a variety of EGF-like growth factor 

precursors, including proHB-EGF (Peschon et al., 1998; Sunnarborg et al., 2002). To 

determine whether TACE can also be involved in proHB-EGF cleavage in response to GPCR 

stimulation, endogenous proHB-EGF ectodomain shedding in TACE-deficient murine 

fibroblasts was investigated. The fibroblast cell line tace∆Zn/∆Zn EC-2 expresses an inactive, 

truncated mutant of TACE lacking the Zn2+-binding motif in the active site of the enzyme 

(Peschon et al., 1998; Reddy et al., 2000). Both TACE-deficient (EC-2) and wild-type murine 

fibroblasts (EC-4) were infected with retrovirus encoding human, muscarinic acetylcholine  

receptor-1 (M1R) and, following stimulation with the M1R agonist carbachol or with TPA, 

the cell-surface content of proHB-EGF was determined by FACS analysis. The results 

showed that both carbachol and TPA induced cell-surface ectodomain shedding of proHB-

EGF in a batimastat-sensitive fashion in EC-4 wild-type fibroblasts (Fig. 27, left panel). In 

contrast, proHB-EGF shedding was deficient in tace∆Zn/∆Zn EC-2 cells (Fig. 27, right panel). 

Nevertheless, carbachol and TPA were about equally efficient in activating ERK1/2 in EC-2 
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and EC-4 cells demonstrating that both cell lines were responsive to these stimuli (Fig. 28). 

Interestingly, co-infection of murine TACE together with M1R partially restored carbachol- 

and TPA-induced proHB-EGF shedding in tace∆Zn/∆Zn EC-2 fibroblasts (Fig. 27, right panel). 

Together, these data demonstrated that TACE is required for carbachol- and TPA-triggered 

proHB-EGF shedding in murine fibroblasts.   

 

 
 
 

Figure 27. Flow cytometric analysis of carbachol- and TPA-induced proteolytic processing of proHB-EGF 
in murine fibroblasts. TACE-deficient tace∆Zn/∆Zn (EC-2, right panel) and wild-type murine fibroblasts (Wt, EC-
4, left panel) were infected with retrovirus encoding M1R. Where indicated, tace∆Zn/∆Zn EC-2 cells were co-
infected with  retrovirus encoding murine TACE to reconstitute TACE function. After stimulation with 
carbachol (Car, 1 mM) for 20 min or TPA (1 mM) for 10 min cells were collected and stained for surface 
proHB-EGF and analysed by flow cytometry. Control cells were labelled with FITC-conjugated secondary 
antibody alone.  
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Figure 28. Activation of ERK/MAPK in murine fibroblasts. TACE-deficient tace∆Zn/∆Zn (EC-2) and wild-type 
murine fibroblasts (Wt, EC-4) were infected with retrovirus encoding M1R. After stimulation with carbachol 
(Car, 1 mM) or TPA (1 mM) for 10 min cells were lysed and activation of ERK was determined by 
immonoblotting cell lysates with polyclonal anti-phospho-ERK antibody followed by reprobing of the same 
filter with polyclonal anti-ERK antibody to confirm equal protein loading.  
 

 
Since Prenzel and colleagues have recently shown that proHB-EGF shedding links agonist-

treated GPCRs with activation of the EGFR in COS-7 cells (Prenzel et al., 1999) it was 

hypothesized that blockade of TACE function might affect GPCR-induced proteolytic 

cleavage of proHB-EGF in this cell system.  

 

 
 

Figure 29. Dominant-negative TACE attenuates carbachol stimulated proHB-EGF shedding and EGFR 
transactivation in COS-7 cells. A) COS-7 cells were transiently transfected with pcDNA3-proHB-EGF-VSV, 
pcDNA3-M1R and expression construct encoding wild-type TACE (Wt 17-HA), dominant-negative TACE 
(∆MP 17-HA), dominant-negative ADAM12 (∆MP 12-HA) as indicated. Transfected cells were pre-incubated ± 
BB94 (10 µM) for 20 min and stimulated with carbachol (1 mM) for 20 min. Total protein in conditioned 
medium was precipitated with TCA and analysed by Western blot. Mature HB-EGF was identified with 
polyclonal anti-HB-EGF antibody (upper panel). Expression of HA-tagged protease constructs was confirmed by 
immunoblotting crude cell lysates with monoclonal anti-HA antibody (lower panel). B) COS-7 cells were 
transfected with pcDNA3-M1R ± pcDNA3-∆MP-TACE-HA. EGFR tyrosine phosphorylation upon carbachol (1 
mM, 3 min) stimulation  was analysed by immunoblot. 
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In fact, co-transfection of dominant-negative TACE with M1R and proHB-EGF inhibited 

carbachol-induced HB-EGF release into cell culture medium by 50%, while an analogous 

ADAM12 mutant or wild-type TACE showed no effect (Fig. 29A, upper panel). In addition, 

pre-incubation of cells with batimastat completely prevented HB-EGF release. Interestingly, 

dominant-negative TACE also significantly inhibited carbachol-induced EGFR 

transactivation (Fig. 29B) suggesting the involvement of TACE in proHB-EGF shedding and 

EGFR signal transactivation by carbachol in COS-7 cells. 

 
3.13 The cytoplasmic domain of proHB-EGF is dispensible for carbachol 

and TPA stimulated proHB-EGF shedding in COS-7 cells. 

 

Finally, it was investigated whether the cytoplasmic domain of proHB-EGF is required for 

stimulus-induced processing of proHB-EGF. The results showed that similar to wild type 

proHB-EGF (Prenzel et al., 1999), a deletion mutant of proHB-EGF lacking the cytoplasmic 

tail was indeed proteolytically processed in response to carbachol or TPA but not EGF in 

COS-7 cells (Fig. 30).  

 

 
 

Figure 30. The cytoplasmic domain of proHB-EGF is dispensible for carbachol-induced shedding. COS-7 
cells were transiently transfected with pcDNA3-M1R and pcDNA3-pro∆cyto-HB-EGF-VSV. Transfected cells 
were pre-incubated ± BB94 (10 µM) for 20 min and stimulated with carbachol (1 mM) or TPA (1 mM) as 
indicated. Total protein in conditioned medium was precipitated with TCA. Mature HB-EGF was identified by 
Western blot analysis with polyclonal anti-HB-EGF antibody (upper panel). Expression of pro∆cyto-HB-EGF-
VSV was analyzed by immunoprecipitation/immunoblot with monoclonal anti-VSV antibody (lower panel).  
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In addition, HB-EGF release by carbachol and TPA was sensitive to batimastat. Together, 

these data demonstrated that the cytoplasmic domain of proHB-EGF is dispensible for 

carbachol- and TPA-triggered proHB-EGF shedding. 
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4 DISCUSSION  
 
Deregulated signaling through EGFR family members is frequently involved in cancer 

development due to overexpression, activating mutations or autocrine stimulation of the 

receptors by EGF-like growth factors (Zwick et al., 2001). In different forms of squamous cell 

carcinoma EGFR expression serves as an early marker of neoplastic transformation (Rusch et 

al., 1995) and is closely related to the malignant potential of tumors (Almadori et al., 1999; 

Grandis et al., 1998; Kersemaekers et al., 1999). In addition, GPCRs have been implicated in 

the etiology of hyperproliferative diseases because of activating mutations or when locally 

exposed to an excess of agonist (Marinissen and Gutkind, 2001). Given the significance of 

both heptahelical receptor-mediated and direct EGFR signaling in tumor cell biology this 

study investigates the pathophysiological significance and the molecular mechanisms of 

EGFR signal transactivation in head and neck cancer cells.  

 

4.1 Transactivation of the EGFR and HER2/neu by GPCR agonists 

involves a ligand-dependent mechanism in HNSCC cells. 

 

The data presented here provide evidence that treatment of HNSCC cells with bradykinin, 

carbachol, thrombin or LPA results in rapid EGFR activation (Fig. 4; Table 2). Previously, 

bradykinin stimulation of HNSCC cell lines has been reported to cause elevation of 

intracellular calcium levels while calcium influx inhibitors blocked proliferation and 

migration of head and neck cancer cells (Wu et al., 1997). Moreover, it has been shown that 

the thrombin receptor PAR1 is widely expressed in oral squamous cell carcinoma and that 

thrombin enhances growth of metastatic HNSCC cells (Liu et al., 2001). The experimental 

finding that the LPA receptor-EGFR cross-talk is established in all six head and neck cancer 

cell lines examined in this study (Table 2) suggests that the EGFR signal transactivation 

pathway in response to LPA is a major hallmark of this type of cancer. EGFR tyrosine 

phosphorylation upon stimulation with LPA has been reported in several cell lines including 

Rat-1 (Daub et al., 1996), HEK-293 (Della Rocca et al., 1999), PC-12 (Kim et al., 2000), 

Swiss 3T3 (Gohla et al., 1998), HaCaT and COS-7 (Daub et al., 1997) with kinetics similar to 

those found in squamous cancer cells (Fig. 4B). Since all three known LPA receptors which 

display differences in G protein coupling are expressed in HNSCC (Fig. 5) and the EGFR 

transactivation signal was significantly inhibited by PTX (Fig. 6A) it can be concluded that, in 
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this cell type, predominantly PTX-sensitive G proteins mediate  EGFR transactivation 

following LPA treatment. In COS-7, PTX attenuates LPA-evoked EGFR tyrosine 

phosphorylation to a lesser extent (Daub et al., 1997) than observed in head and neck cancer 

cells (Fig. 6A). Moreover, Gohla et al. reported that EGFR-dependent stress fiber formation 

by LPA in Swiss 3T3 was exclusively mediated by G13 proteins (Gohla et al., 1998). 

Together, these experimental findings suggest that LPA-induced EGFR activation is mediated 

by different G protein subtypes in a cell type-specific manner.  

In light of the finding that besides LPA several other GPCR agonists are inducers of the 

transactivation signal (Fig. 4; Table 2) the EGFR may function as a central integrator of 

signaling by diverse, cancer-promoting GPCR ligands in HNSCC. Expression of a variety of 

pathophysiologically significant GPCRs and the role of the EGFR as a convergence point for 

heptahelical receptor stimulation provides a rational explanation for the enhanced sensitivity 

of head and neck cancer cells towards motility- and growth-promoting stimuli. Further 

investigations are to be conducted, however, to determine whether the observed GPCR 

expression patterns are prerequisite to or the consequence of neoplastic transformation in 

HNSCC. 

Originally, a ligand-independent, intracellular pathway of EGFR transactivation had been 

proposed (Carpenter, 1999; Hackel et al., 1999; Luttrell et al., 1999) which was supported by 

the rapid kinetics of EGFR tyrosine phosphorylation in response to GPCR agonists and the 

fact that soluble EGF-like growth factors could not be detected in cell culture medium. Later, 

it was demonstrated that in COS-7, HEK-293 and Rat-1 cells EGFR transactivation is 

critically dependent on cell surface processing of the EGF-like growth factor precursor 

proHB-EGF through an unknown metalloprotease which is sensitive to the inhibitor 

batimastat (Prenzel et al., 1999). The experimental results presented here show that in analogy 

to the COS-7 system in head and neck cancer cells (Fig. 6A) a batimastat-sensitive shedding 

activity is induced upon GPCR stimulation that results in the release of soluble EGFR ligands 

which subsequently bind to the ectodomain of the EGFR. The finding that in SCC-9 HNSCC 

cells LPA treatment also leads to tyrosine phosphorylation of the oncoprotein HER2/neu (Fig. 

7), confirms a previous observations in Rat-1 fibroblasts (Daub et al., 1996) and further 

expands the signficance of the TMPS pathway. A critical role for EGFR-HER2/neu 

heterodimers in the etiology of HNSCC has been recently suggested by the finding that EGFR 

and HER2/neu are specifically co-expressed in neoplastic epithelium of  tumors when 

compared to normal tissue (Bei et al., 2001). Our findings that transactivation of both the 

EGFR and HER2/neu required metalloprotease activity (Fig. 6-7) and that the EGFR-specific 
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inhibitor AG1478 completely prevented tyrosine phosphorylation of HER2/neu by LPA (Fig. 

7) establish the LPA receptors and possibly other GPCRs as new upstream regulators of 

EGFR and HER2/neu signals. It remains to be further examined whether HER3 which is also 

expressed in HNSCC cell lines (Fig. 5) contributes to serpentine receptor signal transmission 

in these cells.  

 

4.2 Regulation of the proliferative and migratory behavior of HNSCC 

cells by GPCRs requires EGFR function and metalloprotease activity. 

 

When the role of EGFR transactivation in LPA-induced mitogenic signaling was investigated, 

it was found that inhibition of EGFR function or metalloprotease activity by small chemical 

compounds blocked EGFR association and phosphorylation  of the tyrosine kinase substrates 

SHC and Gab1 upon LPA treatment (Fig. 8). Furthermore, it was observed that expression of 

a dominant-negative EGFR mutant abrogated ERK/MAPK activation by LPA in SCC-9 cells 

(Fig. 10). Similarly, endogenous ERK2 activation by LPA was blocked by AG1478 in SCC-9 

and SCC-25 (Fig. 11). These experimental data indicate that the EGFR is instrumental in 

transducing mitogenic signals in response to LPA in head and neck cancer cells as previously 

described for several model systems such as Rat-1 (Daub et al., 1996), COS-7 (Daub et al., 

1997), PC-12 (Kim et al., 2000) and HEK-293 (Della Rocca et al., 1999). Interestingly, 

Albanell et al. have reported that immunostaining of activated ERK1/2 was associated with 

high EGFR and HER2/neu expression levels in head and neck tumor biopsies (Albanell et al., 

2001). Moreover, anti-EGFR therapy with Cetuximab (C225) resulted in lower ERK 

activation and decreased keratinocyte proliferation in HNSCC patients (Albanell et al., 2001). 

Combined with the data of this study, GPCR-induced activation of the EGFR in head and 

neck cancer cells might lead to enhanced ERK/MAPK activity and proliferation in vivo. 

Besides the EGFR-dependency of MAPK activation by LPA in HNSCC, studies with the 

metalloprotease inhibitor batimastat suggested the critical involvement of a shedding activity 

in the stimulation of ERK (Fig. 11). These observations agree with previous reports on the 

ligand-dependency of ERK activation in vascular smooth muscle cells (Eguchi et al., 2001; 

Kalmes et al., 2000), MDA-MB-231 (Filardo et al., 2000) and COS-7 cells (Pierce et al., 

2001). Recently, it was demonstrated that specific interference with the EGFR kinase activity 

reduced the rate of DNA synthesis in Rat-1 fibroblast and Swiss 3T3 cells in response to LPA 

and other GPCR agonists (Daub et al., 1996; Santiskulvong et al., 2001). The current results 
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further indicate that LPA-induced DNA synthesis and S-phase cell cycle progression requires 

EGFR and metalloprotease activity in HNSCC with both low and high EGFR expression 

levels (Fig. 13-14, Table 3). Since LPA treatment of Detroit-562 cells did not result in further 

stimulation of cell proliferation (data not shown) EGFR activity may not be significantly 

enhanced by GPCR ligands in cancer cells with the highest EGFR over-expression.  

A further important aspect of these findings is that, in addition to the proliferative responses, 

EGFR signal transactivation plays a direct role in the regulation of the migratory behavior of 

head and neck cancer cells. It has been reported before that wound stimuli induce 

metalloprotease-dependent shedding of EGF-like ligands in keratinocytes (Tokumaru et al., 

2000) and that LPA enhances wound closure and invasion of ovarian cancer cells (Fishman et 

al., 2001). Interestingly, it is shown here that LPA treatment drastically increased the rate of 

wound closure and chemotactic migration in an EGFR and metalloprotease-dependent manner 

(Fig. 15) providing a mechanistic explanation for GPCR-triggered wound healing and 

migration via transactivation of the EGFR in HNSCC. Finally, studies using pharmacological 

inhibitors against individual elements of the TMPS pathway suggested a critical role for the 

EGFR and MEK in LPA-induced expression of the matrix metalloprotease MMP-9, an 

important regulator of angiogenesis and tumor progression (O-Charoenrat et al., 2000a; O-

Charoenrat et al., 2000b). 

 

4.3 ProAR ectodomain cleavage is a prerequisite to EGFR activation by 

GPCR agonists in HNSCC cells. 

 
Several observations have supported the concept of a ligand-dependent mechanism of EGFR 

transactivation (Gschwind et al., 2001). In diverse cell systems, EGFR signal transmission in 

response to LPA and other GPCR ligands requires metalloprotease activity and HB-EGF. 

However, although SCC-9, SCC-15 and SCC-25 cells express proTGFα and proAR in 

addition to proHB-EGF (Fig. 16, 17A), LPA selectively induced rapid shedding of 

endogenous proAR (Fig. 17B) and subsequent release of the mature ligand (Fig. 18). This is 

the first demonstration that agonist-treated GPCRs induce ectodomain cleavage of this EGF-

like growth factor precursor. Previously, Brown et al. have provided evidence for 

metalloprotease-dependent shedding of proAR in Madin-Darby canine kidney cells by several 

non-physiological stimuli such as TPA, pervanadate or calcium ionophore (Brown et al., 

2001).  
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Furthermore, it was demonstrated here that proAR cleavage in head and neck cancer cells 

following LPA treatment was attenuated by PTX and completely blocked by batimastat (Fig. 

17B). A similar result was obtained on the level of EGFR tyrosine phosphorylation (Fig. 6A) 

suggesting that GPCR-mediated proAR shedding may be directly involved in the EGFR 

transactivation pathway. This hypothesis was further supported by the finding that function-

perturbing anti-AR antibodies and heparin abrogated the EGFR transactivation signal and 

downstream mitogenic responses by LPA (Fig 19-22), while the potential involvement of HB-

EGF was excluded. These growth-promoting signaling events are accompanied by 

phosphorylation of the survival mediator Akt/PKB via PI-3K downstream of the EGFR (Fig. 

20-21). Recently, AR was shown to be a potent inhibitor of apoptosis induced by serum 

deprivation in non-small cell lung cancer cell lines (Hurbin et al., 2002) suggesting that AR 

can provide survival signals for cancer cells derived from different form of squamous cell 

carcinoma. In the current experiments using anti-AR neutralizing antibodies and heparin, 

however, no complete blockade of LPA-induced ERK/MAPK activation, DNA synthesis and 

transwell migration was observed. This could be due to limitations in inhibitor potency or due 

to limited access of the inhibitors to the growth factor embedded in the heparan sulfate 

proteoglycan matrix.  

Despite the expression of a variety of EGFR ligands in HNSCC cells (Fig. 16, 17A) and some 

functional redundancy within the EGFR ligand family in developmental processes, the results 

of this study demonstrated that AR is specifically required for LPA- and carbachol-induced 

EGFR transactivation and downstream signaling events (see 3.7-3.10). However, what is the 

(patho-)physiological function of proHB-EGF and proTGFα in head and neck cancer cells?  

The observations of this study and by Eccles and co-workers (O-Charoenrat et al., 2002) that 

basal levels of EGFR tyrosine phosphorylation  (Fig. 5B), ERK1/2 activity (Fig. 11) and cell 

proliferation (Fig. 13) were significantly reduced by batimastat and AG1478, however, 

strongly argued for the existence of autocrine EGFR activation loops that require 

metalloprotease activity for EGFR ligand shedding. Furthermore, anti-TGFα neutralizing 

antibodies reduced proliferation of SCC-9 and FaDu cells (Solorzano et al., 1997) and TGFα 

antisense therapy has recently been shown to inhibit HNSCC tumor growth in nude mice 

(Endo et al., 2000). Collectively, these studies demonstrate a critical role for TGFα in 

autocrine stimulation of the EGFR resulting in sustained proliferation of HNSCC cells while 

our current data establish a function of AR in GPCR-induced cellular responses. 
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4.4 TACE is the proAR sheddase in HNSCC cells. 

 

The enzymes implicated in shedding of EGF-like growth factor precursors belong to the 

ADAM family of zinc-dependent proteinases which are widely expessed in many tissues and 

also in HNSCC cell lines (Fig. 23). The finding that the EGFR transactivation signal in 

HNSCC cells is sensitive to Timp-3 but not Timp-1 (Fig. 24) is in accordance with the 

published inhibitor spectrum of recombinant TACE in vitro (Amour et al., 1998). Moreover, 

Sunnaborg et al. have recently proposed a role for TACE in constitutive ectodomain cleavage 

of proAR, proHB-EGF and proTGFα (Sunnarborg et al., 2002). Remarkably, they showed 

that reintroduction of TACE into tace∆Zn/∆Zn EC-2 fibroblasts resulted in increased basal 

shedding of the co-transfected growth factor precursors. 

The current data identify a novel biological function for the metalloprotease TACE in GPCR 

signalling, since expression of a dominant-negative TACE mutant blocked cell-surface proAR 

cleavage, release of mature AR and EGFR tyrosine phosphorylation by LPA and carbachol 

(Fig. 25). Although recent reports have implicated ADAM10 (Lemjabbar and Basbaum, 2002; 

Yan et al., 2002) and ADAM12 (Asakura et al., 2002) in HB-EGF-dependent TMPS 

pathways (Table 4) the involvement of these metalloproteases in EGFR signal transactivation 

in HNSCC cells was excluded (Fig. 26). How TACE is activated by heterotrimeric G proteins 

is currently not known. Although ERK has been shown to bind to and phosphorylate the 

cytoplasmic domain of TACE at threonine 735 in response to TPA stimulation (Diaz-

Rodriguez et al., 2002), GPCR-induced AR release and EGFR tyrosine phosphorylation is 

insensitive to MEK inhibitors in HNSCC cells (unpublished observation) suggesting ERK1/2 

not to be involved upstream of the EGFR. Another report demonstrated that TACE must be 

expressed with its membrane-anchoring domain for TPA stimulated shedding of TNF, p75 

TNFR, and IL-1R-II, but that the cytoplasmic domain of TACE is not required for the 

shedding of these substrates (Reddy et al., 2000). Future studies will therefore have to focus 

on the question whether the cytoplasmic domain of TACE and other ADAM proteases are 

involved in GPCR-induced shedding of EGF-like ligands.  

In summary, the results of this study indicate that  treatment of head and neck squamous cell 

carcinoma cells with GPCR ligands such as LPA and carbachol leads to the rapid and specific 

cleavage of proAR at the cell-surface by TACE (Fig. 31). Moreover, release of mature AR is 

a prerequisite to EGFR stimulation, subsequent SHC and Grb2 adaptor protein recruitment 

and downstream activation of ERK1/2 and PI-3K-dependent phosphorylation of Akt/PKB. 

Finally, this triple-membrane-passing signal (TMPS) mechanism of EGFR transactivation 
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provides a molecular explanation for the question of how GPCR ligands regulate the 

proliferative and  migratory behavior of HNSCC cells. 

 

 
 
Figure 31. Triple-membrane-passing signal (TMPS) mechanism of EGFR transactivation in HNSCC cells.  
Activation of TACE by the GPCR agonists LPA and carbachol results in cell-surface ectodomain cleavage of 
proAR. Upon release of mature AR the EGFR and HER2/neu are activated leading to an EGFR-characteristic 
intracellular signal. GPCR ligands regulate the proliferative and migratory behavior of head and neck cancer 
cells via the TMPS pathway. Adapted from (Gschwind et al., 2001). 
 
 

4.4 TACE is involved in carbachol-induced proHB-EGF ectodomain 

processing in murine fibroblasts and COS-7 cells. 

 

Besides its role in proAR cleavage in HNSCC cells, TACE was shown to be involved in 

proHB-EGF processing in murine fibroblasts (Fig. 27) and COS-7 cells (Fig. 29) in response 

to carbachol stimulation. These findings are in contrast to recent observations showing that a 

dominant-negative mutant of ADAM10 significantly attenuates bombesin-induced shedding 

of proHB-EGF and EGFR tyrosine phosphorylation in COS-7 cells (Yan et al., 2002). In both 

studies, however, no complete inhibition of proHB-EGF cleavage was achieved. It therefore 

remains to be investigated, whether ADAM10 and TACE cooperate in proHB-EGF cleavage 

and EGFR stimulation in this cell system or whether carbachol and bombesin specifically 

trigger the activation of  two different metalloproteases. 

Further studies on ectodomain shedding in COS-7 cells using a C-terminal deletion mutant of 

proHB-EGF showed that the cytoplasmic domain of proHB-EGF is dispensible for carbachol- 
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and TPA-induced processing (Fig. 30). These findings are in agreement with recent 

observations that ionomycin-induced proHB-EGF cleavage is not dependent on the presence 

of the proHB-EGF cytoplasmic tail segment in rat NbMC-2 prostate epithelial cells 

(Dethlefsen et al., 1998). Collectively, these data suggest that GPCR-induced ectodomain 

shedding of proHB-EGF is most likely regulated on the metalloprotease level. 

 

4.6 Perspectives 

 

Recent reports identified TGFα as an element in signal transmission from GPCRs to the 

EGFR in gastric epithelia (Pai et al., 2002) and T-84 cells (McCole et al., 2002) suggesting 

that at least three, HB-EGF, AR and TGFα of the eight known EGF-like growth factors can 

be mediators of EGFR signal transactivation (Table 4). Although TACE-deficient murine 

fibroblasts show partial defects in constitutive and 4-aminophenylmercuric acetate (APMA)-

induced TGFα release (Merlos-Suarez et al., 2001; Peschon et al., 1998; Sunnarborg et al., 

2002), the identity of the ADAM(s) responsible for proTGFα cleavage by GPCR ligands in 

the cell systems mentioned above remains to be determined.  

There is an increasing body of evidence that, in addition to the potential involvement of 

several EGF-like ligands in TMPS pathways, one individual growth factor precursor such as 

proHB-EGF can be cleaved by several ADAMs: ADAM9, ADAM10, ADAM12 and TACE 

have been shown to be proHB-EGF sheddases in living cells (Table 4 and 4.5).  
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Table 4: Critical elements of EGFR signal transactivation pathways. 

 
Another level of complexity is added to the mechanisms of growth factor precursor cleavage 

by the observation that, for example, in Vero-H cells TPA induces proHB-EGF shedding via 

ADAM9 (Izumi et al., 1998) while LPA-induced proHB-EGF cleavage in the same cell 

system is independent of ADAM9 (Umata et al., 2001). These data suggest that different 

stimuli can induce proteolytic cleavage of an individual growth factor precursor via different 

metalloproteases in one cell line. Therefore, an important issue of future studies will be to 

determine what defines the choice of EGFR ligands in signal transmission of GPCRs to the 

EGFR and the physiological significance of either TGFα, ADAM10/HB-EGF, 

ADAM12/HB-EGF or TACE/AR in different cell-types. Signal specificity may in part be 

achieved by localizing these modules to discrete regions in the cell membrane. Interestingly, 

co-immunoprecipitation studies by Maudsley and colleagues demonstrated that the β2-

adrenergic receptor physically interacts with the "transactivated" EGFR in COS-7 cells 

(Maudsley et al., 2000) suggesting the formation of a macromolecular signaling complex 

which is likely to contain other elements of the TMPS pathway.   

Metalloprotease-mediated ectodomain shedding of growth factor precursors in vivo is as yet 

only poorly understood. The severe phenotype of mice lacking TACE suggests an essential 

role for soluble TGFα in normal development and emphasizes the importance of protein 

ectodomain shedding in vivo. In addition, absence of functional TACE results in impaired 

basal solubilisation of a variety of other EGF-like ligands such as AR and HB-EGF (Merlos-

Suarez et al., 2001; Sunnarborg et al., 2002; Fig. 27, this study). ADAM10-deficient mice 
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have been reported to die very early in embryogenesis with multiple defects of the developing 

central nervous system, somites, and cardiovascular system (Hartmann et al., 2002). It is not 

known, however, whether these developmental defects are due to impaired growth factor 

precursor shedding. On the other hand, mice lacking ADAM9 have no evident major 

abnormalities during development or adult life (Weskamp et al., 2002). Moreover, proHB-

EGF processing is comparable in embryonic fibroblasts isolated from ADAM9(-/-) and wild-

type mice, arguing against an essential role of ADAM9 in proHB-EGF shedding in these 

cells.  

Further investigations in vivo will also have to focus on the relevance of TMPS pathways for 

both normal and pathophysiological processes. Remarkably, recent data derived from animal 

models have implicated GPCR-EGFR cross-talk pathways in abnormal ERK1/2 signaling in 

vascular smooth muscle cells from hypertensive rats (Touyz et al., 2002), in cardiac 

hypertrophy (Asakura et al., 2002) and ischemic preconditioning (Krieg et al., 2002). Finally, 

this and other studies have demonstrated that GPCR-induced and autocrine activation of the 

EGFR appears to be critical for the growth of HNSCC. Elucidation of the molecular 

mechanisms underlying deregulated EGFR signaling may ultimately lead to pharmaceutical 

intervention in HNSCC and other human cancers. 
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5 SUMMARY 
 

Transactivation of the EGFR represents the paradigm for cross-talk between G protein-

coupled receptors (GPCRs) and receptor tyrosine kinase signaling pathways. The molecular 

mechanisms and the pathophysiological significance of GPCR-induced EGFR signal 

transactivation, however, is only poorly understood. In a variety of squamous cell carcinoma 

cell lines of the head and neck (HNSCCs), it was found that treatment with the GPCR agonists 

LPA, bradykinin, thrombin and carbachol results in rapid tyrosine phosphorylation of the 

EGFR. In these tumor cells, signal transactivation of the EGFR and the oncoprotein HER2/neu 

is critically dependent on metalloprotease activity. Using the metalloprotease inhibitors 

batimastat and marimastat, the EGFR-specific tyrphostin AG1478, and a dominant-negative 

EGFR mutant, it was shown that EGFR tyrosine phosphorylation, recruitment of the adaptor 

proteins SHC and Gab1, and activation of the ERK/MAPK pathway in response to LPA 

depend both on metalloprotease function and EGFR tyrosine kinase activity. Most 

importantly, critical characteristics of HNSCC cell lines such as DNA synthesis, cell cycle 

progression and tumor cell migration are stimulated by LPA and can be abrogated by 

interfering with EGFR signal transmission suggesting that highly abundant GPCR ligands 

such as LPA may function as tumor promoters and determinants of HNSCC progression.  

Previous investigations revealed that EGFR signal transactivation often involves cell-surface 

proteolysis of the growth factor precursor proHB-EGF in non-transformed cells. Stimulation 

of squamous cell carcinoma cells with LPA or carbachol, however, results in metalloprotease-

dependent cleavage and release of the EGFR ligand amphiregulin (AR). Moreover, inhibition 

of AR biological activity by neutralizing antibodies or heparin prevents GPCR-induced EGFR 

tyrosine phosphorylation, downstream mitogenic signaling events, activation of Akt/PKB, cell 

proliferation and migration. Recent studies supported a role for the metalloprotease-

disintegrin TACE/ADAM17 in ectodomain shedding of EGFR ligands. Interestingly, 

evidence was provided here that blockade of TACE by expression of the tissue inhibitor of 

metalloprotease (TIMP)-3 or of a dominant-negative TACE mutant suppresses GPCR 

stimulated AR release and tyrosine phosphorylation of the EGFR.  

Together, these data substantiate the importance of a mechanism that promotes head and neck 

cancer cell proliferation and motility by GPCR ligands involving EGFR transactivation. 

Finally, these findings demonstrate that proAR cleavage by TACE is required for GPCR-

induced EGFR activation implying that TACE can function as an effector of GPCR signaling 

that regulates receptor cross-talk in human cancer cells. 
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7 ABBREVIATIONS 
 
AA      Amino acid 
Ab      Antibody 
ADAM     A disintegrin and metalloprotease domain 
Ampr      Ampicilline resistence 
APS      Ammoniumpersulfate 
AR      Amphiregulin 
ATP      Adenosintriphosphate 
bp      Base pairs 
BSA      Bovine serum albumin 
°C      Degree celsius 
cAMP      Cyclic adenosinmonophosphate 
Ca2+      Calcium Ions 
CaM Kinase     Ca2+-calmodulin-dependent kinase 
cDNA      Complementary DNA 
c-fos  Cellular homologue to v-fos (FBJ murine 

osteosarcoma viral oncogene) 
c-jun      Cellular homologue to v-jun (avian sarcoma virus 
      17 oncogene) 
DAG      Diacylglycerol 
DMEM     Dulbecco's modified eagle medium 
DN      Dominant negative 
DMSO      Dimethylsulfoxide 
DNA      Desoxyribonukleic acid 
dsDNA     Dooble-stranded DNA 
DTT      Dithiothreitol 
ECL      Enhanced chemiluminescence  
EDTA      Ethlendiamintetraacetate 
EGF      Epidermal growth factor 
EGFR      Epidermal growth factor receptor 
EGTA      Ethylene glycol-bis(2-aminoethyl)- 

N,N,N',N'-tetraacetic acid 
ERK      Extracellular signal-regulated kinase 
FAK      Focal adhesion kinase 
FCS      Fetal calf serum 
FGF      Fibroblast growth factor 
FGFR      Fibroblast growth factor receptor 
Fig      Figure 
g      Gramm 
Gab1      Grb2-associated binder-1 
Gab2      Grb2-associated binder-2 
GDP      Guanosindiphosphate 
GPCR       G protein-coupled receptor  
Grb2      Growth factor receptor binding protein 2 
GST      Glutathion-S-transferase 
GTP      Guanosintriphosphate 
h      Hour 
HA      Hemagglutinin 
HB-EGF      Heparin-binding EGF-like growth factor 
H2Obidest     Twice-destilled, deionised Water 
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HEPES     N-(2-Hydroxyethyl)-piperazin-N‘-2- 
Ethansulfonic acid 

HER      Human EGFR-related 
HNSCC     Head and neck squamous cell carcinoma 
Ig      Immunglobulin 
IP      Immunoprecipitation 
IP3      Inositol-1,4,5-trisphosphate 
IPTG      Isopropyl-ß-thiogalactopyranoside 
JNK      c-Jun N-terminal kinase 
kb      Kilobase 
kDa      Kilodalton 
l      Liter 
LPA      Lysophosphatydic acid 
µ      Micro 
m      Milli 
M      Molar 
MAP      Mitogen-activated protein 
MAPK      MAP kinase 
MBP      Myelin basic protein 
MEK      MAPK/ERK Kinase 
min      Minute 
MMP      Matrix metalloprotease 
n      Nano 
OD      Optical density 
p.a.      Per analysis 
PBS      Phosphate-buffered saline 
PCR      Polymerase chain reaction 
PDGF      Platelet-derived growth factor 
PEG      Polyethylenglycole 
PI 3-Kinase     Phosphatidylinositol 3-kinase 
PIP2      Phosphatidylinositol-4,5-diphosphate 
PKC      Protein kinase C 
PLC      Phospholipase C 
PMSF      Phenylmethylsulfonyl-fluoride 
PNPP      p-Nitrophenyl-phosphate 
PTX      Pertussis toxin 
PY      Phospho-tyrosine 
Raf  Homologue to v-raf (murine sarcoma viral 

oncogene) 
Ras      Homologue to v-ras (rat sarcoma viral oncogene) 
RNA      Ribonucleic acid 
rpm      Rotations per minute 
RT      Room temperature 
RTK      Receptor tyrosine kinase 
SAPK      Stress-activated protein kinase 
S. D.      Standard deviation 
SDS      Natriumdodecylsulfate 
SDS-PAGE     SDS polyacrylamide gel elektrophoresis 
Sek.      Second 
SH2, 3 domain    Src homology 2, 3 domain 
SHP-2      SH2-containing PTP-2 
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Sos      Son of sevenless 
Src      Homologue to v-src (sarcoma viral oncogene) 
TACE      TNFα-converting enzyme 
TCA      Trichloroacetic acid 
TGFα      Transforming growth factor alpha 
TEMED     N, N, N‘, N‘-Tetramethyletylendiamine 
TNFα      Τumor necrosis factor alpha 
TPA      12-O-Tetradecanoyl-phorbol-13-acetate 
Tris      Tris(hydroxymethyl)aminomethan 
Tween 20     Polyoxyethylensorbitanmonolaureate 
U      Enzymatic activity unit 
O/N      Overnight 
UV      Ultraviolett 
V      Volt 
Vol      Volume 
Wt      Wild type 
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